The Role of the Renin-Angiotensin System and Vitamin D in Keloid Disorder—A Review

Ethan J. Kilmister, Claudia Paterson, Helen D. Brasch, Paul F. Davis and Swee T. Tan

Keloid disorder (KD) is a fibroproliferative condition characterized by excessive dermal collagen deposition in response to wounding and/or inflammation of the skin. Despite intensive research, treatment for KD remains empirical and unsatisfactory. Activation of the renin-angiotensin system (RAS) leads to fibrosis in various organs through its direct effect and the resultant hypertension, and activation of the immune system. The observation of an increased incidence of KD in dark-skinned individuals who are predisposed to vitamin D deficiency (VDD) and hypertension, and the association of KD with hypertension and VDD, all of which are associated with an elevated activity of the RAS, provides clues to the pathogenesis of KD. There is increasing evidence implicating embryonic-like stem (ESC) cells that express ESC markers within keloid-associated lymphoid tissues (KALTs) in keloid lesions. These primitive cells express components of the RAS, cathepsins B, D, and G that constitute bypass loops of the RAS, and vitamin D receptor (VDR). This suggests that the RAS directly, and through signaling pathways that converge on the RAS, including VDR-mediated mechanisms and the immune system, may play a critical role in regulating the primitive population within the KALTs. This review discusses the role of the RAS, its relationship with hypertension, vitamin D, VDR, VDD, and the immune system that provide a microenvironmental niche in regulating the ESC-like cells within the KALTs. These ESC-like cells may be a novel therapeutic target for the treatment of this enigmatic and challenging condition, by modulating the RAS using inhibitors of the RAS and its bypass loops and convergent signaling pathways.

Keywords: keloid disorder, keloid lesion, renin-angiotensin system, embryonic stem cells, vitamin D deficiency, keloid-associated lymphoid tissue, cathepsins, immune system

INTRODUCTION

Keloid disorder (KD) is a fibroproliferative condition characterized by excessive dermal collagen deposition in response to wounding such as ear piercing, surgery and burns, or inflammation such as acne and herpes zoster infection (1–3). Keloid lesions (KLs) characteristically extend beyond the confines of the original wound and invade adjacent dermis without spontaneous scar remodeling typically seen in normal wound healing (2). KLs differ from hypertrophic scars, which are confined within the original wound boundaries and undergo spontaneous regression over time (4).
Keloid lesions present as firm, rubbery, and shiny plaque-like lesions that cause cosmetic concerns, pruritis (5), tenderness (6), and functional problems such as joint contractures (5). Acne keloidalis nuchae, a chronic inflammatory condition characterized by scarring around hair follicles, is often complicated by keloid-like papules (5, 7). KLs, especially larger lesions, may cause physical disability and psychological sequelae with impaired quality of life for affected individuals (6, 8).

Keloid lesions occur most commonly on the shoulders, anterior chest, upper back, and earlobes (9, 10). Surface tension and increased sebaceous gland density have been proposed as contributing factors to keloid formation that commonly affect these sites (11), although these do not fully explain earlobes as a site of predilection. KD has a common age of onset between the first and third decades of life, affects both sexes equally and is more common in dark-skinned individuals (10, 12), often displaying a familial pattern (2, 12).

Current first-line treatment for KD includes intralesional corticosteroid injections (13), topical 5-fluorouracil (14), surgical excision with intra-operative steroid injection (15) or post-operative radiotherapy (16), laser therapy (17), cryotherapy (18), and silicon occlusive dressing (15). These empirical treatments for KD remain unsatisfactory (13), with high recurrence rates of 45–100% following surgical excision without adjuvant therapy (10), underscoring the need for understanding the pathogenesis of this enigmatic condition. The prevalence of KD varies geographically, affecting 0.09% of the population in the United Kingdom, and up to 16% in the Congo (19). Interestingly, KD is extremely rare in albino individuals (20).

Inheritance patterns of KD portray an autosomal dominant trait with incomplete penetrance and variable expressivity (19). There have been reports of autosomal recessive inheritance and X-linked patterns in family case studies with multiple syndromes (21), suggesting that several genes contribute to KD predisposition (19, 22). Human leukocyte antigen polymorphisms have also been implicated in KD (23), with four single-nucleotide polymorphisms also being associated with keloid formation (24).

The pathogenesis of KD remains unknown, although there is mounting evidence implicating stem cells (25), the renin-angiotensin system (RAS) (26), vitamin D receptor (VDR) (27), and the immune system (28) involving endothelial-to-mesenchymal transition (endo-MT), a process by which endothelial cells lose their specific markers and develop a mesenchymal phenotype (29).

In this review we discuss growing evidence supporting an embryonic stem cell (ESC)-like origin of KD, and the complex interactions these primitive cells have with the RAS, hypertension, VD-related pathways and the immune system, to elucidate the pathogenesis of this challenging condition.

FIBROBLASTS AND MYOFIBROBLASTS IN KEOID DISORDER

Histologically, KLs contain haphazard, thick, hyalinized eosinophilic bundles of types I and III collagen fibers with persistent immune cell infiltration sub-epidermally (30) (Figure 1). Some studies indicate hypervascularity in KLs (31), whilst others report limited microvasculature involvement associated with luminal occlusion primarily attributed to endothelial cells (32), favoring the role of hypoxia in keloid pathogenesis (33). The predominant cell types within KLs are fibroblasts and myofibroblasts, which are responsible for collagen and ECM deposition and wound contraction, respectively (34, 35). Through the regulation of the TGF-β1/Smad3 pathway, fibroblasts transition to a myofibroblast phenotype causing subsequent excessive extracellular matrix (ECM) deposition, forming a persistent pathologic scar (35, 36). However, the precise origin of these aberrant myofibroblasts remains unclear (29).

Aberrant keloid fibroblasts and myofibroblasts may be derived from an ESC-like population in keloid-associated lymphoid tissues (KALTs) (25) through a mesenchymal stem cell intermediate, by the process of endo-MT and epithelial-to-mesenchymal transition (EMT) (Figure 2), or from bone marrow mesenchymal precursors as proposed for Dupuytren’s disease (29, 37, 38).

STEM CELLS IN KEOID DISORDER

There is increasing evidence supporting the role of stem cells in the pathogenesis of KD (28). Bagabir et al. (39) report the presence of the KALTs located within the reticular dermis, just beneath the epidermis of KLs (Figure 1). The KALTs are aggregates of inflammatory cells including T lymphocytes expressing CD3 and CD4, B lymphocytes expressing CD20, macrophages expressing CD68 and CD163, and mast cells expressing c-kit, tryptase, and OX40L (39). We have recently demonstrated the presence of an ESC-like population located within the endothelium of the microvessels and the perivascular tissue within the KALTs that expresses ESC markers octamer-4 (OCT4), sex determining region Y-box 2, NANOG, and phospho-signal transducer and activator of transcription 3 (Figure 3) (25). Additionally, elevated levels of OCT4 and stage specific embryonic antigen-4 have been found throughout the reticular dermis in KLs, when compared to the patient’s normal skin (40). The presence of the mRNA for the ESC marker Rex-1 in KLs has also been reported (40).

Embryonic stem cells are capable of unlimited proliferation and differentiation and, with the appropriate signals, can form precursor cells of nearly all mature cell types (41). Stem cell populations previously identified, termed keloid precursor cells (KPCs), demonstrate multipotent differentiation, clonogenicity, and are proposed to be regulated by a microenvironmental niche conducive to keloid formation (40). We have recently demonstrated an ESC-like population within KALTs that expresses components of the RAS (26), cathepsins B, D, and G which constitute bypass loops of the RAS (42), and also VDR (27).

The ESC-like population within the KALTs that is proposed to give rise to the aberrant keloid fibroblasts and myofibroblasts expresses the RAS, its bypass loops and VDR (Figure 2).
FIGURE 1 | A hematoxylin and eosin stained slide of a keloid tissue sample demonstrating the presence of keloid-associated lymphoid tissues (KALTs) containing microvessels surrounded by inflammatory cells with a magnified view showing a KALT within the keloid lesion. Original magnification: 100× and 400×.

FIGURE 2 | A proposed model of keloid disorder showing embryonic stem cell (ESC)-like cells within keloid-associated lymphoid tissues (KALTs), regulated by a microenvironmental niche with resultant proliferation and accumulation of fibroblasts and myofibroblasts in the keloid lesion (KL) via a mesenchymal stem cell intermediate through an endothelial-to-mesenchymal transition (endo-MT). The renin-angiotensin system (RAS) plays a central role in the microenvironmental niche with complex interactions with the immune system/inflammation, vitamin D, vitamin D deficiency (VDD), vitamin D receptor (VDR), and hypertension. VDD which is caused by reduced sunlight/UVB radiation, and leads to increased RAS activity and the resultant hypertension. VDD also directly leads to hypertension. Increased RAS activity also activates the immune system. The complex interactions between these elements lead to activation of various pro-fibrotic signaling pathways leading to generation of fibroblasts and myofibroblasts. Hypertension has a direct pro-fibrotic effect and contributes to the conducive microenvironment for the ESC-like cells within the KALTs. VDD increases RAS activity, with activation of the immune system/inflammation leading to an altered microenvironmental niche via the IL-6 and IL-17 axis. This increased RAS activity activates TGF-β/Smad signaling to promote EndoMT. Binding of vitamin D to VDR results in a genomic effect which counteracts the profibrotic signaling pathways. VDR transcriptional activity inhibits keloid fibroblast proliferation. VDR transcriptional activity also inhibits the pro-fibrotic TGF-β/Smad signaling pathway, down-regulates genes for EndoMT, and so may influence the formation of fibroblasts and myofibroblasts within KLs. ECM, extracellular matrix; TGF-β, transforming growth factor-β; MMP-1, matrix metalloproteinase-1; TIMP-1, tissue inhibitor of metalloproteinase-1; IL, interleukin; UVB, ultraviolet B; VEGF, vascular endothelial growth factor. **+** signifies a positive effect; **−** signifies a negative effect.
RENIN-ANGIOTENSIN SYSTEM AND KEOID DISORDER

The RAS is an endocrine cascade integral to blood pressure, tissue perfusion, extracellular volume homeostasis, and electrolyte balance (43, 44). Renin, a rate-limiting enzyme, is released into the circulation in response to several physiological triggers (43, 44). Through cleavage by renin, angiotensinogen is converted into angiotensin I (ATI) which is subsequently hydrolyzed by angiotensin-converting enzyme (ACE) to form angiotensin II (ATII)—the primary active product of the RAS (44). Most physiological and pathophysiological roles of ATII are mediated by binding to angiotensin II receptor 1 (ATIIR1), causing vasoconstriction, increased blood pressure and cardiac contractility, cardiac hypertrophy, sympathetic nervous system amplification, increasing sodium retention, and angiogenesis (45, 46). Binding of ATII to ATIIR1 also affects cellular growth and proliferation, inflammation, oxidative stress (47), and influences immunological responses that lead to inflammatory cell recruitment and ECM deposition (48). Angiotensin II receptor 2 (ATIIR2) opposes the actions of ATIIR1, through its anti-proliferative and apoptotic functions in vascular smooth muscle, and thereby inhibiting cardiac hypertrophy and remodeling (45, 48).

The association between the RAS and tissue fibrosis is well-documented (49, 50). ATII is known to induce fibrous remodeling in several organ systems through ATIIR1 signaling, resulting in renal (51), cardiac (52), and idiopathic pulmonary (53) fibrosis, and silicosis and asbestosis (54). The mechanism underscoring the association between RAS activity and fibrosis is believed to be increased expression of TGF-β1 caused by ATII (55, 56), which plays a central role in fibrogenesis (55) (Figure 2). As well, over-expression of TGF-β1 has been established as a key contributor to fibrosis in nearly all tissue types, due to its stimulating effect on myofibroblast differentiation and synthesis of ECM proteins (36). It also strongly induces connective tissue growth factor, a profibrotic mediator influencing fibroblast...
FIGURE 4 | The renin-angiotensin system (RAS). In the RAS (pro)renin activation is caused by its binding to the (pro)renin receptor. Cathepsins B and D are also renin-activating enzymes. Renin and cathepsin D convert angiotensinogen to angiotensin I (ATI) which is acted upon by angiotensin converting enzyme (ACE) and chymase, to produce angiotensin II (ATII). Aminopeptidase A converts ATII to angiotensin III (ATIII). ATII and ATIII act on angiotensin II receptor 1 (ATIIR1) and angiotensin II receptor 2 (ATIIR2). Redundancy in the pathway has been revealed in the form of cathepsins B and D, aminopeptidase A and chymase. Reproduced with permission from Integrative Cancer Science and Therapeutic.

proliferation, cellular adhesion, and ECM deposition (57) (Figure 2).

We have recently demonstrated the expression of pro-renin receptor, ACE, ATIIR1, ATIIR2 on the endothelium of the microvessels and perivascular cells within the KALTs (26). Morihara et al. (50) show significantly higher ACE activities in wounded skin and pathological scar tissue than in normal skin, implying increased levels of ATII in these conditions. Treatment with ATIIR1 blockers significantly reduces the pliability and vascularity of KLS and hypertrophic scars (58). This observation along with improvement of KLS following treatment with low-dose enalapril, an ACE inhibitor, further supports the role of the RAS in KD (59) (Figure 2).

Chymase, a serine protease within mast cells, is involved in wound regeneration and pathologic scarring, and the production of ATII in tissues (60). It constitutes a bypass loop of the RAS (Figure 4) (61), having six times greater expression in KLS than in normal skin (62), and contributes to KL formation by activating TGF-β1/Smad signaling (60). It catalyzes the formation of ATII, and increases collagen I, TGF-β1, and interleukin (IL)-1β in keloid fibroblasts. Treatment of keloid fibroblasts with either the ACE inhibitor captopril or the ATIIR1 blocker valsartan significantly reduces mRNA expression of TGF-β1(62).

The RAS is implicated in the regulation of stem cell proliferation and differentiation, which may be the source of fibroblasts and myofibroblasts in KD (63) (Figure 2). The ESC-like population within the KALTs (39) has been proposed to be a novel therapeutic target by modulation of the RAS. Cathepsins B, D, and G are also expressed by this primitive population within the KALTs (42), and may act as bypass loops for the RAS (Figure 4) (61). This suggests the need of inhibitors of the bypass loops, in addition to classical RAS blockers, to achieve a more effective modulation of the RAS.

Hypertension has been linked to the susceptibility for the development of KD (3), with both occurring more frequently in individuals of African descent than Caucasians (67). Patients
with KD are more likely to have concomitant hypertension than patients without KD (68). Improvement of KLS in hypertensive patients has been observed following treatment with anti-hypertensive medications, such as ACE inhibitors (66) and calcium channel blockers (69). Endothelial dysfunction, which also occurs in hypertension, may also participate in the pathogenesis of KD (1, 70), and is associated with lung (71), liver (72), cardiac (73), and kidney (74) fibrosis.

In KD there is an imbalance between ECM synthesis and degradation that favors fibrosis (75). Hypertensive individuals have elevated tissue inhibitor of metalloproteinase-1 (TIMP-1), an important mediator of ECM structure (76). Interestingly, keloid fibroblasts also have elevated levels of TIMPs (75). TIMP-1 inhibits the enzyme matrix metalloproteinase-1 (MMP-1), which is responsible for collagen type 1 breakdown. Higher concentrations of TIMP-1, an inhibitor of MMP-1 seen in hypertension and keloid fibroblasts, may reduce turnover of type 1 collagen (77), which is present at higher levels in KLS (30). This hypertension-associated increase in TIMP-1 may contribute to an altered MMP-1/TIMP-1 ratio that already favors ECM over degradation (76) (Figure 2). Patients with hypertension treated with the ACE inhibitor lisinopril, demonstrate an increase in MMP, a decrease in TIMP-1 levels, and increased extracellular collagen maturation (78).

Hypertension is also associated with inflammation-induced hypoxia, whereby a prolonged inflammatory phase in wounding may induce interstitial hypertension, increase cellular metabolic demand within the KL causing tissue hypoxia (3, 79). This is supported by keloid fibroblasts generating ATP primarily from glycolysis, suggesting that keloid fibroblasts possess a greater capacity to survive and proliferate in a hypoxic environment (80). Evidence of reduced or occluded microvessels in the center of KLS further implicates hypoxia in KD pathogenesis (30). Furthermore, hypoxia-inducible factor-1 (HIF-1), a biomarker for local skin hypoxia, is over-expressed in KLS when compared to normal skin (81). HIF-1 activation regulates EMT, a process proposed for generating keloid fibroblasts and myofibroblasts, through the TGF-β pathway (82). A hypoxic environment has also been shown to modulate the TGF-β1/Smad3 pathway, which drives the transition of dermal fibroblasts into myofibroblasts (35).

A higher incidence of both KD and hypertension in individuals of African descent, and hypertensive individuals being more likely to develop KD than their normotensive counterparts have been observed. This suggests an interplay between these factors that may be mediated by an altered MMP-1/TIMP-1 ratio that favors ECM deposition, and hypertension-associated tissue hypoxia that increases HIF-1 expression that influences the development of aberrant keloid fibroblasts and myofibroblasts.

VITAMIN D METABOLISM

In the body, vitamin D (VD) exists in two main forms: vitamin D$_2$ (ergocalciferol, VD$_2$) and vitamin D$_3$ (cholecalciferol, VD$_3$). Ultraviolet B intensity, which depends on latitude (83), and skin pigmentation determined by melanin, are key determinants of VD$_3$ production (84). In this article, both VD$_2$ and VD$_3$ will be referred to as VD, as their respective metabolically active forms, 1,25-dihydroxyvitamin D$_3$ (1,25(OH)$_2$D$_3$) and 1,25-dihydroxyvitamin D$_2$ (1,25(OH)$_2$D$_2$), have comparable biologic activity upon binding to VDR (85).

Vitamin D is best known for its regulation of calcium and phosphorus homeostasis through rapid non-genomic actions by signaling intestinal calcium and phosphate absorption to maintain calcium and skeletal homeostasis (86). VDR can activate or inhibit gene expression, which can inhibit cellular proliferation, stimulate differentiation and inhibit adaptive immunity whilst promoting innate immunity (85, 87).

Vitamin D is converted to its biologically active form by hydroxylation in two steps: by 25-hydroxylation primarily in the liver to form 25-hydroxyvitamin D (25OH D) (88), which then undergoes 1α-hydroxylation by CYP27B1 to form 1,25-dihydroxyvitamin D (1,25(OH)$_2$D) (85). Although the latter

References	Study type	Drug	Target	Outcome
Hedayatvanfard et al. (58)	Pilot study	Topical losartan	AT1R1	Reduced KL pliability and vascularity
Wang et al. (62)	In-vitro study	Chymostatin	Chymase	Reduced expression of angiotensin II, TGF-β, IL-1β, and COL1
Wang et al. (62)	In-vitro study	Captopril	ACE	Reduced expression of angiotensin II, TGF-β, IL-1β, and COL1
Enoshiri et al. (64)	Case-control study	β-blocker (carvediolol, bisoprolol, or atenolol)	Renin	Patients with either a HTS or KL were less likely to take β-blockers than those who did not develop abnormal scarring following cardiac device implantation (OR, 0.14; 95 CI, 0.01–0.87; p = 0.0534)
Ardekani et al. (65)	Pre-clinical study (rabbits)	Topical captopril	ACE	Decreased scar elevation index in HTS
Ardekani et al. (66)	Single case	Topical captopril	ACE	Decreased height, redness and scaling of KL with reduced pruritis
Iannello et al. (59)	Two cases	Low-dose enalapril	ACE	Near-complete resolution of KL after 15 days of treatment and complete resolution of HTS within 3–4 months of treatment in one patient. Significant improvement within 6 months of treatment in a second patient

ACE, angiotensin-converting enzyme; AT1R1, angiotensin II receptor 1; COL1, collagen, type 1; HSP47, heat shock protein 47; HTS, hypertrophic scar; IL-1β, interleukin-1β; KL, keloid lesion; PDGF-BB, platelet derived growth factor with two B subunits; TGF-β, transforming growth factor-β.
reaction primarily occurs within the proximal renal tubule, this enzyme is also found in several extra-renal sites, including T and B lymphocytes (89, 90). Given that KALTs consist of lymphoid aggregates (39), CYP27B1 may be present in the KALTs.

Vitamin D exerts its biologic effects through genomic and non-genomic actions. It binds to VDR, a DNA-binding transcription factor from the superfamily of steroid hormone nuclear receptors (89) (Figure 2). When VD binds to VDR, an active signal transduction complex consisting of VD liganded to VDR and the retinoid X (RXR) is formed. The VDR-RXR heterodimer is able to recognize VDREs on VD regulated genes and to have genomic effects (91), with thousands of VDREs, and hundreds of genes containing VDREs, having been identified.

CYP27B1 may be expressed by lymphocytes within KALTs leading to local production of VD which may then exert genomic effects via VDR signaling on ESC-like cells expressing VDR within KALTs. Investigation into the presence of CYP27B1 in lymphocytes within the KALTs warrants investigation.

VITAMIN D DEFICIENCY IN KEOID DISORDER

Individuals with KD are more likely to develop VD deficiency (VDD) (92), hypertension (3), and be dark-skinned (67). Both VDD and hypertension are also more prevalent in dark-skinned populations (67, 92).

The primary source of VD comes from sunlight exposure (88), with skin pigmentation being the key determinant in reduced UVB penetration, leading to decreased cutaneous synthesis of VD₃ (83) (Figure 2). Very dark-skinned individuals, as in some African populations, may have a sun protection factor of up to 15, which absorbs up to 99% of UVB radiation and consequently decreases VD₃ synthesis by up to 99%, thus increasing the susceptibility to VDD (93, 94).

Keloid fibroblasts demonstrate reduced proliferation in response to VD₃ treatment in a dose-dependent manner, with collagen I expression decreasing three-fold in the treated samples, supporting the influence of VD₃ on keloid regression (95). Following this treatment, the gene expression pattern of the anti-apoptotic factor Bcl-2 reduces significantly over time, and after 24 h, the level of pro-apoptotic caspase-3 increases five-fold (95) (Figure 2). The effect of VD on Bcl-2 and caspase-3 is relevant since keloid fibroblasts have increased resistance to apoptosis compared with normal skin fibroblasts (96).

Vitamin D receptor acts as a negative regulator of TGF-β1/Smad signaling (Figure 2). VDR knockout enhances fibroblast sensitivity to TGF-β1 in patients with systemic sclerosis, and activation of VDR with paricalcitol reduces the stimulatory effect of TGF-β1 on fibroblasts, and so inhibits collagen production and myofibroblast differentiation. Furthermore, paricalcitol increases formation of VDR and phosphorylated Smad3 complexes, inhibiting Smad transcriptional activity (97), which regulates the expression of various profibrotic genes, including MMPs, various proteoglycans, integrins, and plasminogen activator (98). The genes for plasminogen activator and VDR have been identified as susceptibility genes for KD (92).

Expression of VDR is significantly lower in the peripheral blood lymphocytes of individuals with KD (92), in the epidermis of KLS (99), and in fibroblasts of patients with systemic sclerosis (97), another fibrotic condition. We have previously demonstrated that the ESC-like population within the KALTs also expresses VDR (27), in addition to components of the RAS (26), and cathepsins B, D, and G which constitute bypass loops of the RAS (42).

Upon binding to VDR, the genomic effects of VD may regulate expression of genes regulating EMT (100), endo-MT and subsequent cellular differentiation and proliferation, and hence may contribute to the formation of keloid fibroblasts and myofibroblasts via a mesenchymal stem cell intermediate, in KD (28) (Figure 2). Further work is needed to elucidate whether VDD influences the proliferation and differentiation of ESC-like cells within the KALTs through genomic actions of VD.

The observation that darker skinned individuals are predisposed to VDD, hypertension and KD, may give clues to the pathogenesis of KD. The anti-proliferative effect of VD through reduced Bcl-2 and increased caspase-3 expression, its inhibition of TGF-β1/Smad signaling, and its potential influence on the ESC-like cells within KALTs, underscore the need of investigation that may lead to potential therapy of KD with VD supplements.

VITAMIN D DEFICIENCY INCREASES RENIN-ANGIOTENSIN SYSTEM ACTIVITY

Vitamin D deficiency increases RAS activity which exacerbates fibroproliferative conditions such as pulmonary fibrosis (49); this may also occur in KD. Moreover, inhibition of the RAS by VDR activation has been shown in vitro (101) and in vivo (102), suggesting that VD acts as an endogenous RAS inhibitor (103) (Figure 2). Through increased expression of TGF-β and its stimulatory effect on myofibroblast differentiation and ECM deposition, elevated RAS activity ultimately induces tissue fibrosis via the TGF-β signaling pathway (36, 57) (Figure 2). Additionally, VDR interacts with Smad3 to form a VDR-Smad3 complex (104), further indicating that VD interacts with the TGF-β signaling pathway via VDR. The complex resulting from interaction of TGF-β with Smad, translocates to the nucleus to regulate transcription of genes in the TGF-β family, which regulate ECM (105).

Chun et al. (102) show that VD₃ negatively and directly regulates renin gene transcription, via a VDR-mediated process (Figure 2), and that VDR-null mice have elevated plasma ATII production, are hypertensive and have abnormal drinking behavior. The VDR-mediated suppression of renin is confirmed by the observation that treatment of wild-type mice with VD₃ over three days suppresses renin expression by 50%. They also report that wild-type mice with reduced VD₃ biosynthesis display elevated expression of renin, which is reversed by injection of VD₃, and that VD₃ directly suppresses transcription of the renin gene in transfected As4.1 cells via a VDR-dependent mechanism.
However, it has also been reported that VD given to hypertensive animals reduces blood pressure independent of renin levels (106).

Increased RAS activity by a VDR-mediated effect leads to increased renin levels, resulting in increased plasma ATII levels which cause hypertension in mice. If these same observations occur in humans, hypertension resulting from a VDR-mediated effect may impact on the ESC-like cells within the KALTs (25) that express the RAS (26) and its bypass loops (42) (Figure 2).

MICROENVIRONMENTAL NICHE AND VITAMIN D IN KELOID DISORDERS

Stem cells that possess self-renewal and pluripotent capabilities, are regulated by both intrinsic genetic programs and extrinsic signals (107). The former involve genes, including those expressed on ESC-like cells within the KALTs (25), and the latter arising from the microenvironmental niche (40), which includes all immediate ECM constituents and the surrounding cells (40, 108). For ESC-like cells within the KALTs to be affected by the microenvironmental niche, intrinsic programs respond to changes in the surrounding niche (107). In normal physiologic conditions, a microenvironmental niche prevents aberrant stem cell proliferation by providing the balance between proliferation-inhibiting and proliferation-promoting signals (40, 109). ESC-like cells within the KALTs (25) and tumor-like cells expressing ESC markers in the reticular dermis (40), may in fact be the same cell populations. Dysregulation of this microenvironmental niche may cause uncontrolled proliferation, self-renewal (110), and differentiation (37) of the ESC-like cells via endo-MT, giving rise to the fibroblasts and myofibroblasts within KLs (28) (Figure 2).

Inflammation is initiated in response to injury or infection (111)—a protective process shown to regulate stem cell niches (112). There is mounting evidence demonstrating innate and adaptive immune systems being central to wound repair and tissue regeneration (113), during which, released cytokines and growth factors contribute to the excessive cellular proliferation and ECM deposition in KD (30). An increase of the inflammatory cytokines IL-6 and IL-17 plays a critical role in the microenvironmental niche within KLs by regulating self-renewal and differentiation capability of KPCs (40), and possibly, the ESC-like cells within the KALTs (25) (Figure 2). IL-6 is an influential regulator of stem cell differentiation and self-renewal (114, 115), and is implicated in the development of most fibrotic conditions (116), with IL-17 being implicated in some inflammatory conditions (117, 118). The levels of both IL-6 and IL-17, and their respective receptors, are elevated within KLs, and are implicated in the pathogenesis of KD (40, 119).

Other cytokines that are elevated within KLs include ATII, TGF-β1, vascular endothelial growth factor (VEGF) (Figure 2), oncogene-α, IL-1β, TNF-α, RANTES, platelet-derived growth factor-β homodimer, and stem cell factor (40).

Zhang et al. (40) have demonstrated that IL-6 increases expression of OCT4 and telomerase, which are regulators of stem cell function, in vivo, supporting the role of IL-6 in KD. IL-6 has been shown to promote growth of transplants from KPCs in vivo which show histological features characteristic of KLS. Moreover, administration of IL-6 neutralizing antibodies decreases telomerase expression and the growth of KPC-generated transplants. IL-6 functions both upstream and downstream of IL-17, creating a positive feedback loop that promotes autoimmunity (120). IL-6 and TGF-β1, which are elevated in KLs, promote differentiation of T4H17 cells which then produce IL-17, further enhancing IL-6 release from keloid stem cells to influence the microenvironmental niche (40). This IL-6/IL-17 positive feedback loop is one factor contributing to the altered inflammatory microenvironmental niche, that may possibly control the proliferation and transdifferentiation of ESC-like cells within the KALTs (Figure 2).

The altered microenvironmental niche within KLs regulated by positive feedback loops involving IL-6 and IL-17 and other cytokines, may promote the stemness and proliferation of the ESC-like within the KALTs within KLs.

 IMMUNE SYSTEM AND VITAMIN D IN KELOID DISORDERS

Bagabir et al. (39) show that the number of CD3+ and CD4+ T lymphocytes underneath the epidermis overlying KLS is significantly higher than in normal skin and scar tissue (121). VDR expressed on CD4+ cells has been shown to have high affinity for VD (122), and T4H17 cells which produce IL-17 have many VDR transcripts (123). VD is known to influence the immune system by targeting CD4+ cells (123), as demonstrated by data showing VDR expression on hematopoietic cells is required for inhibition of experimental autoimmune encephalomyelitis in chimeric mice (123). This research concludes that VD has autoimmune-protective effects via VDR signaling in CD4+ T lymphocytes (123, 124), which are present at higher levels in KLs than in normal skin and scar tissue (39).

It is interesting that VD affects cells that are in higher proportions in KLs than in normal skin, and that abundant VDR transcripts are found within IL-17 producing T4H17 cells that may contribute to the IL-6/IL-17 axis that may regulate primitive cells in KLs (Figure 2). Furthermore, the fact that KD has autoimmune characteristics that may be mediated by autoimmune responses (125), indicates that immunological effects caused by VD may impact upon the immune response seen in KD, ultimately affecting the keloid microenvironmental niche, and thus potentially the ESC-like cells on KALTs.

The RAS which is expressed on ESC-like cells within the KALTs is implicated in stem cell proliferation and differentiation (63, 126), and also has a range of effects on both innate and adaptive immunity (126) with inflammatory cells possessing all the components of the RAS (127). Activation of the RAS has strong pro-inflammatory effects through increasing vascular permeability, expression of inflammatory cytokines, chemokines, induction of reactive oxygen species (ROS), as well as other processes, primarily through ATII1 activation (128). Increased expression of the aforementioned pro-inflammatory molecules by ATII1 binding occurs through activation of...
various pathways in which there is stimulation of the NF-kB pathway, which can be attenuated by VD to produce an anti-fibrotic effect (129). Moreover, ATIIIR1 activation stimulates fibroblast proliferation and collagen synthesis (130). Lastly, ATII binds to the transduction protein signal pSTAT3, an ESC marker expressed by ESC-like cells within the KALTs (25), to mediate inflammation, cell proliferation and differentiation (131).

Vitamin D may produce auto-immune protective effects that impact on the microenvironmental niche within KLs to alter the behavior of the ESC-like population within the KALTs. Activation of the NF-kB pathway, its limited attenuation in VDD, and increased fibroblast proliferation and ECM production caused by RAS activation, are hallmarks of pathological scarring characteristic of KD (Figure 2).

CONCLUSION

Despite intensive research, treatment for KD remains empirical and unsatisfactory. Mounting evidence suggests a central role for an ESC-like population within KALTs. These cells can be regulated by an microenvironmental niche centered on the RAS including its bypass loops consisting of enzymes such as cathepsins B, D, and G, and on converging signaling pathways including VDR-mediated mechanisms and the immune system, resulting in proliferation and accumulation of keloid fibroblasts and myofibroblasts. Further elucidation of the complex interaction between the RAS, VDR, other compounds, and the immune system that collectively form the microenvironmental niche may lead to novel targeted therapies for this enigmatic and challenging condition.

AUTHOR CONTRIBUTIONS

EK and ST drafted the manuscript. EK, CP, PD, HB, and ST critically revised the manuscript. HB provided the H&E images. All authors commented on and approved the manuscript.

FUNDING

This research did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

1. Ogawa R, Akaishi S. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis–keloids and hypertrophic scars may be vascular disorders. Med Hypotheses. (2016) 96:51–60. doi: 10.1016/j.mehy.2016.09.024
2. Shih B, Bayat A. Genetics of keloid scarring. Arch Dermatol Res. (2010) 302:319–39. doi: 10.1007/s00403-009-1014-y
3. Arima J, Huang C, Rosner B, Akaishi S, Ogawa R. Hypertension: a systemic key to understanding local keloid severity. Wound Repair Regen. (2013) 21:23–21. doi: 10.1111/wrr.12277
4. Peacock EE Jr, Madden JW, Trier WC. Biologic basis for the treatment of keloids and hypertrophic scars. South Med J. (1970) 63:735–60. doi: 10.1097/00007611-197007000-00002
5. Huang C, Murphy GE, Akaishi S, Ogawa R. Keloids and hypertrophic scars: update and future directions. Plast Reconstr Surg Glob Open. (2013) 1:e25. doi: 10.1097/GOX.0b013e3182c4597
6. Lemosas P, Ahmad I, Falvey H, Jimenez G, Myers S. Keloid scars: the hidden burden of disease. J Pigment Disord. (2015) 2:12. doi: 10.4172/2376-0427.1000231
7. Maranda EL, Simmons BJ, Nguyen AH, Lim VM, Keri JE. Treatment of acne keloidalis nuchae: a systematic review of the literature. Dermatol Ther. (2016) 6:363–78. doi: 10.1007/s13555-016-0134-5
8. Robles DT, Berg D. Abnormal wound healing: keloids. Clin Dermatol. (2007) 25:26–32. doi: 10.1016/j.clindermatol.2006.09.009
9. Muri I. On the nature of keloid and hypertrophic scars. Br J Plast Surg. (1990) 43:61–9. doi: 10.1016/0007-1226(90)90046-3
10. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scars may be vascular disorders. J Burn Care Regen Med. (2004) 25:26–32. doi: 10.1016/j.clindermatol.2006.09.009
11. Al-Attar A, Mess S, Thomassen JM, Kauffman CL, Davison SP. Keloid pathogenesis and treatment. Plast Reconstr Surg. (2006) 118:286–300. doi: 10.1097/01.prss.0000195073.73580.46
12. Lu WS, Zheng XD, Yao XH, Zhang LF. Clinical and epidemiological analysis of keloids in Chinese patients. Arch Dermatol Res. (2015) 307:109–14. doi: 10.1007/s00403-014-1507-1
13. Gauglitz GG. Management of keloids and hypertrophic scars: current and emerging options. Clin Cosmet Investig Dermatol. (2013) 6:103. doi: 10.2147/CCID.S35252
14. Fitzpatrick RE. Treatment of inflamed hypertrophic scars using intralesional 5-FU. Dermatol Surg. (1999) 25:224–32. doi: 10.1097/00001238-199908000-00003
15. Kelly AP. Medical and surgical therapies for keloids. Dermatol Ther. (2004) 17:212–8. doi: 10.1111/j.1396-0296.2004.0022.x
16. Borok TI, Bray M, Sinclair I, Pfäcker J, LaBirth L, Rollins C. Role of ionizing irradiation for 393 keloids. Int J Radiat Oncol Biol Phys. (1988) 15:865–70. doi: 10.1016/0360-3016(88)90119-8
17. Alster TS, Williams CM. Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet. (1995) 345:1198–200. doi: 10.1016/S0140-6736(95)91899-9
18. Rusciani L, Rossi G, Bono R. Use of cryotherapy in the treatment of keloids. J Dermatol Surg Oncol. (1993) 19:529–34. doi: 10.1111/j.1399-5017.1993.tb07836.x
19. Clark JA, Turner ML, Howard L, Stanescu H, Kleta R, Kopp JB. Description of familial keloids in five pedigrees: evidence for autosomal dominant inheritance and phenotypic heterogeneity. BMC Dermatol. (2009) 9:8. doi: 10.1186/1471-5945-9-8
20. Seifert O, Mrowietz U. Keloid scarring: bench and bedside. Arch Dermatol. (2009) 301:259–72. doi: 10.1001/archdermatol.2009.105
21. Omo-Dare P. Genetic studies on keloid. J Natl Med Assoc. (1975) 67:428.
22. Glass DA 2nd. Current understanding of the genetic causes of keloid formation. J Investig Dermatol Symp Proc. (2017) 18:S50–3. doi: 10.1016/j.jispp.2016.10.024
23. Brown J, Ollier W, Thomson W, Bayat A. Positive association of HLA-DRB1*15 with keloid disease in Caucasians. Int J Immunogenet. (2008) 35:303–7. doi: 10.1111/j.1744-313X.2008.00780.x
24. Nakashima M, Chung S, Takahashi A, Kamatani N, Kawaguchi T, Tsunoda T, et al. A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nature Genet. (2010) 42:678. doi: 10.1038/ng.645
25. Grant C, Chudakov DA, Itinteang T, Chibnall AM, Brasch HD, Davis PF, et al. Expression of embryonic stem cell markers in keloid-associated lymphoid tissue. J Clin Pathol. (2016) 69:643–6. doi: 10.1111/jclinpath.2015.20348
26. Humphries H, Brasch HD, van Schaik J, Tan ST. Expression of components of the renin-angiotensin system in in embryonic stem cell-like population within keloid lesions. Plast Reconstr Surg. (2019) 144:372–84. doi: 10.1097/PRS.0000000000005867
Kilmister et al. Renin-Angiotensin System and Keloid Disorder

34. Ehrlich HP, Desmoulière A, Diegelmann RF, Cohen IK, Compton CC, Amadeu T, Braune A, Mandarim-de-Lacerda C, Porto LC, Desmoulière Jumper N, Paus R, Bayat A. Functional histopathology of keloid disease. Histol Histopathol. (2011) 17:109–74. doi: 10.1080/03440338.2011.6001

35. Zhao B, Guan H, Liu J-Q, Zheng Z, Zhou Q, Zhang J, et al. Hypoxia β

36. Tan K, Withers AH, Tan ST, Itinteang T. The role of stem cells in the inflammatory niche driven by IL-17/IL-6 axis. PLoS ONE. (2009) 4:e7798. doi: 10.1371/journal.pone.007798

37. Bishop AE, Buttery LD, Polak JM. Embryonic stem cells. J Pathol. (2002) 197:424–9. doi: 10.1002/path.1154

38. Paterson C, Lee VMY, Brach HD, van Schajijk B, Marsh RW, Tan ST, et al. Expression of Cathespins B, D and G by the embryonic stem cell-like population within human keloid tissues and keloid-derived primary cell lines. Plast Reconstr Surg. (2019). doi: 10.1097/PRS.0000000000006275. [Epub ahead of print]

39. Lavoie JL, Sigmund CD. Minireview: the role of the renin-angiotensin system—an endocrine and paracrine system. Endocrinology. (2003) 144:2179–83. doi: 10.1210/en.2003-0150

40. Atlas SA. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. (2007) 13(Suppl B):9–20. doi: 10.18553/jmcp.2007.13.s8-b9

41. Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocrine Rev. (2003) 24:261–71. doi: 10.1210/er.2003-0001

42. Beierwaltes WH. The role of calcium in the regulation of renin secretion. Am J Physiol Regul Integr Comp Physiol. (2009) 298:F11–11. doi: 10.1152/ajpregu.01143.2009

43. Ferrario CM. Role of renin in cardiovascular disease—therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst. (2006) 7:3–14. doi: 10.3317/raas.2006.003

44. Kaschina E, Unger T. Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press. (2003) 12:70–88. doi: 10.1080/0803705031001057

45. Shi Y, Liu T, Yao L, Xing Y, Zhao X, Fu J, et al. Chronic vitamin D deficiency induces lung fibrosis through activation of the renin-angiotensin system. Sci Rep. (2017) 7:3312. doi: 10.1038/s41598-017-03474-6

46. Morihara K, Takai S, Takenaka H, Sakaguchi M, Okamoto Y, Morihara T, et al. Cutaneous tissue angiotensin-converting enzyme may participate in pathologic scar formation in human skin. J Am Acad Dermatol. (2006) 54:251–7. doi: 10.1016/j.jaad.2005.09.027

47. Sun Y, Zhang J, Zhang JQ, Ramires FJ. Local angiotensin II and transforming growth factor-β in renal fibrosis of rats. Hypertension. (2000) 35:1078–84. doi: 10.1161/01.HYP.35.5.1078

48. Sun Y, Zhang JQ, Zhang J, Ramires FJ. Angiotensin II, transforming growth factor-β and repair in the injured heart. J Mol Cell Cardiol. (1998) 30:1559–69. doi: 10.1006/jmcc.1998.0721

49. Specks U, Martin WJ, Rohrbach MS. Bronchoalveolar lavage fluid angiotensin-converting enzyme in interstitial lung diseases. Am Rev Respir Dis. (1990) 141:117–23. doi: 10.1164/ajrccm.141.1.117

50. Grönhagen-Riska C, Kurppa K, Fyhrequist E, Selroos O. Angiotensin-converting enzyme and lysozyme in silicosis and asbestosis. Scand J Respir Dis. (1978) 39:228–31.

51. Murphy AM, Wong AL, Beuzhly M. Modulation of angiotensin II signaling in the prevention of fibrosis. Fibrogenesis Tissue Repair. (2015) 8:7. doi: 10.1186/s13069-015-0023-z

52. Peters H, Border WA, Noble NA. Targeting TGF-β overexpression in renal disease: maximizing the antifibrotic action of angiotensin II blockade. Kidney Int. (1998) 54:1570–80. doi: 10.1046/j.1523-1755.1998.00164.x

53. Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. (1993) 122:103–11. doi: 10.1083/jcb.122.1.103

54. Hedayatyanfard K, Ziai SA, Niazi H, Habibi I, Habibi B, Moravej H. Losartan ointment relieves hypertrophic scars and keloid: a pilot study. Wound Repair Regen. (2018) 26:340–3. doi: 10.1111/wrr.12648

55. Iannello S, Milazzo P, Bordarono F, Bellioure F. Low-dose enalapril in the treatment of surgical cutaneous hypertrophic scar and keloid - two case reports and literature review. MedGenMed. (2006) 8:60.

56. Dong X, Zhang C, Ma S, Wen H. Mast cell chymase in keloid induces profibrotic response via transforming growth factor-β1/Smad activation in keloid fibroblasts. Int J Clin Exp Pathol. (2014) 7:5956–607.

57. Munro MJ, Wickremesekera AC, Davis PF, Marsh R, Tan ST, Itinteang T. Renin-angiotensin system and cancer: a review. Int J Cancer Exp Ther. (2017) 4:1–6. doi: 10.1537/ICET.20100231

58. Wang R, Chen J, Zhang Z, Cen Y. Role of chymase in the local renin-angiotensin system in keloids: inhibition of chymase may be an effective therapeutic approach to treat keloids. Drug Des Devel Ther. (2015) 9:379. doi: 10.2147/DDDT.S87842

59. Durik M, Pessoa BS, Roks AJ. The renin–angiotensin system, bone marrow and progenitor cells. Clin Sci. (2012) 123:205–23. doi: 10.1042/CS20110660

60. Enoshiri T, Naitoh M, Yamawaki S, Kagawuchi A, Aya R, Noda K, et al. β-adrenergic receptor blockers reduce the occurrence of keloids and hypertrophic scars after cardiac device implantation: a single-institution case-control study. Plast Reconstr Surg. (2017) 139:1248–56. doi: 10.1097/PRS.0000000000002329

61. Ardekani GS, Ebrahimis A, Mami M, Aslani FS, Handjani F, Omrani GR, et al. Topical captopril as a novel agent against hypertrophic scar formation in New Zealand white rabbit skin. Wounds. (2008) 20:101–6.

62. Ardekani GS, Aghaie S, Nemati MH, Handjani F, Kasraei B. Treatment of a postburn keloid scar with topical captopril: report of the first case. Plast Reconstr Surg. (2009) 123:112e–3e. doi: 10.1097/PRS.0b013e31819a34db

63. Louw L. Keloids in rural black South Africans. Part 1: general occurrence of keloids and hypertrophic scars after cardiac device implantation: a single-institution case-control study. Plast Reconstr Surg. (2017) 139:1248–56. doi: 10.1097/PRS.0000000000002329

64. D’Andrea F, Brongo S, Ferraro G, Baroni A. Prevention and treatment of keloids with intraleosional verapamil. Dermatology. (2002) 204:60–2. doi: 10.1159/000051812

Frontiers in Surgery | www.frontiersin.org 11 November 2019 | Volume 6 | Article 67
105. Aschenbrenner JK, Sollinger H, Becker B, Hullett D. 1,25-(OH2)D 3 alters muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. (2011) 22:3543–51. doi: 10.1091/mbc.e11-08-0587

106. Chen S, Sun Y, Agrawal D. Vitamin D deficiency and essential hypertension. J Am Soc Hypertens. (2005) 29:527–32. doi: 10.1016/j.jsh.2005.09.009

107. Li L, Xie T. Stem cell niche: structure and function. Science. (2007) 318:614–20. doi: 10.1126/science.1146900

108. Kolf CM, Cho E, Tuan RS. SMAD signaling for the prevention of fibrosis. Front Pharmacol. (2017) 8:461. doi: 10.3389/fphar.2017.00461

109. Hahn JM, Supp DM. Abnormal expression of the vitamin D receptor in keloid scars. Burns. (2007) 33:1506–15. doi: 10.1016/j.burns.2007.04.009

110. Scadden DT. The stem-cell niche as an entity of action. Nature. (2007) 448:955–60. doi: 10.1038/nature06103

111. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. (2010) 140:766–77. doi: 10.1016/j.cell.2010.02.010

112. Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. (2014) 32:795–803. doi: 10.1038/nbt.2978

113. Julien Z, Park A, Briquez P, Martino M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. (2017) 15:13–28. doi: 10.1016/j.actbio.2017.01.056
114. Xu G, Zhang Y, Zhang L, Ren G, Shi Y. The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun. (2007) 361:745–50. doi: 10.1016/j.bbrc.2007.07.052

115. Kovačević-Filipović M, Petakov M, Hermitte F, Debeissat C, Krstić A, Jovčić G, et al. Interleukin-6 (IL-6) and low O₂ concentration (1%) synergize to improve the maintenance of hematopoietic stem cells (pre-CFC). J Cell Physiol. (2007) 212:68–75. doi: 10.1002/jcp.21003

116. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. (2006) 8:S3. doi: 10.1186/ar1917

117. Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci USA. (2003) 100:5986–90. doi: 10.1073/pnas.1035999100

118. Isailovic N, Daigo K, Mantovani A, Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. (2015) 60:1–11. doi: 10.1016/j.jaut.2015.04.006

119. Xue H, McCauley RL, Zhang W. Elevated interleukin-6 expression in keloid fibroblasts. J Surg Res. (2000) 89:74–7. doi: 10.1006/jsre.1999.5805

120. Ogura H, Murakami M, Okuyama Y, Tsuruoka-Ogura M, Kitabayashi C, Kanamoto M, et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity. (2008) 628–36. doi: 10.1016/j.immuni.2008.07.018

121. Jin Q, Gui L, Niu F, Yu B, Lauda N, Liu J, et al. Macrophages in keloid are potent at promoting the differentiation and function of regulatory T cells. Exp Cell Res. (2017) 356:282–8. doi: 10.1016/j.yexcr.2017.12.011

122. Bhalla AK, Amento EP, Clemens TL, Holick MF, Krane SM. Specific high-affinity receptors for 1, 25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J Clin Endocrinol Metab. (1983) 57:1308–10. doi: 10.1210/jcem-57-6-1308

123. Mayne C, Spanier J, Relland LM, Williams CB, Hayes C. 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur J Immunol. (2011) 822–32. doi: 10.1002/eji.201040632

124. Hayes C, Hubler S, Moore J, Barta LE, Praska C, Nashold F, Vitamin D actions on CD4+ T cells in autoimmune disease. Front Immunol. (2015) 6:100. doi: 10.3389/fimmu.2015.00100

125. Jiao H, Fan J, Cai J, Pan B, Yan L, Dong P, et al. Analysis of characteristics similar to autoimmune disease in keloid patients. Aesthetic Plast Surg. (2015) 39:818–25. doi: 10.1007/s00266-015-0542-4

126. Crowley SD, Rudemiller NP. Immunologic effects of the renin-angiotensin system. J Am Soc Nephrol. (2017) 28:1350–61. doi: 10.1681/ASN.2016101066

127. Garcia GE. ANG II receptor antagonists as modulators of macrophages polarization. Am J Physiol Renal Physiol. (2010) 298:F686–9. doi: 10.1152/ajprenal.00041.2010

128. Capettiini LS, Montecucco F, Mach F, Stergioupolus N, Santos RA, da Silva RF. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des. (2012) 18:963–70. doi: 10.2174/138161212799936593

129. Mirković K, de Borst MH. Beyond the RAAS: dissecting the antifibrotic effects of vitamin D analogues. Lab Invest. (2012) 92:1666–9. doi: 10.1038/labinvest.2012.150

130. Cipollone F, Fazia M, Iezzi A, Pini B, Caccurrello C, Zucchelli M, et al. Blockade of the angiotensin II Type 1 receptor stabilizes atherosclerotic plaques in humans by inhibiting prostaglandin E2–dependent matrix metalloproteinase activity. Circulation. (2004) 109:1482–8. doi: 10.1161/01.CIR.0000121735.52471.AC

131. Abadir PM, Walston JD, Carey RM, Siragy HM. Angiotensin II Type-2 receptors modulate inflammation through signal transducer and activator of transcription proteins 3 phosphorylation and TNFα production. J Interferon Cytokine Res. (2011) 31:471–4. doi: 10.1089/jir.2010.0043

Conflict of Interest: ST and PD are inventors of a PCT application Treatment of Fibrotic Conditions (PCT/NZ2016/050187).

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Kilmister, Paterson, Brasch, Davis and Tan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.