Kubo formula for Floquet states and photoconductivity oscillations in a 2D electron gas.

Manuel Torres1 and Alejandro Kunold2

1Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D. F. 01000, México

2Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Pablo 180, México D. F. 02200, México

(Dated: March 22, 2022)

The recent discovery of the microwave induced vanishing resistance states in a two dimensional electron system (2DES) is an unexpected and surprising phenomena. In these experiments the magnetoresistance of a high mobility 2DES under the influence of microwave radiation of frequency \(\omega\) at moderate values of the magnetic field, exhibits strong oscillations with zero-resistance states (ZRS) governed by the ratio \(\omega/\omega_c\), where \(\omega_c\) is the cyclotron frequency. According to Zudov et al., the oscillation amplitudes reach maxima at \(\epsilon = \omega/\omega_c = j\) and minima at \(\epsilon = j + 1/2\), for \(j\) an integer. On the other hand Mani et al. reported also a periodic oscillatory behavior, but with maxima at \(\epsilon = j - 1/4\) and minima at \(\omega/\omega_c = j + 1/4\).

Additionally experimental work appeared recently5,6,7,8,9, finding that the oscillation behavior with the correct period and phase. It is found that, in agreement with experiment, negative dissipation can only be induced in very high mobility samples. We analyze the dependence of the results on the microwave power and polarization. For high-intensity radiation multi-photon processes take place predicting new negative-resistance states centered at \(\omega/\omega_c = 1/2\), and \(\omega/\omega_c = 3/2\).

I. INTRODUCTION.

Two-dimensional electron systems (2DES) in a perpendicular strong magnetic field have been extensively studied in relation with the quantum Hall effect. Recently, two experimental groups1,2,3,4, reported the observation of a novel phenomenon: the existence of zero-resistance states (ZRS) in an ultraclean GaAs/Al\(_x\)Ga\(_{1-x}\)As sample subjected to microwave radiation and moderate magnetic fields. The magnetoresistance exhibits strong oscillations with ZRS governed by the ratio \(\epsilon = \omega/\omega_c\), where \(\omega_c\) is the cyclotron frequency. According to Zudov et al., the oscillation amplitudes reach maxima at \(\epsilon = \omega/\omega_c = j\) and minima at \(\epsilon = j + 1/2\), for \(j\) an integer. On the other hand Mani et al. reported also a periodic oscillatory behavior, but with maxima at \(\epsilon = j - 1/4\) and minima at \(\omega/\omega_c = j + 1/4\).

In spite of a large number of theoretical works1,2,3,4,5,6,7,8,9, a complete understanding of the new effects in 2DES induced by microwaves has not yet been achieved. A pioneering work put forward by Ryzhii10,11 predicted the existence of negative-resistance states (NRS). Durst and collaborators12 found also NRS in a a diagrammatic calculation of the photoexcited electron scattered by a disorder potential. A possible connection between the calculated NRS and the observed vanishing resistance was put forward in reference13, noting that a general analysis of Maxwell equations shows that negative resistance induces an instability that drives the system into a ZRS. Whereas some of the models10,11,12,13,14,15,16,17,18,19,20 are based on an impurity assisted mechanisms, there are alternative explanations5,19,20 in which the leading contribution arises from the modifications of the electron distribution function induced by the microwave radiation. These models, as well as some of their predictions remain to be tested experimentally.

In this work we present a model which includes the Landau and radiation contribution (in the long-wavelength limit) in a non-perturbative exact way. Impurity scattering effects are treated perturbatively. With respect to the Landau-Floquet states, the impurities act as a coherent oscillating field which induces the transitions that proved to be essential in order to reproduce the observed oscillatory behavior of the magnetoresistance. Based on this formalism a Kubo-like expression for the conductance is provided. Our results display a strong oscillatory behavior for \(\rho_{xx}\) with NRS. It is found that \(\rho_{xx}\) vanishes at \(\epsilon = \omega/\omega_c = j\) for \(j\) integer. The oscillations follow a pattern with minima at \(\epsilon = j + 1/2\), and maxima at \(\epsilon = j - 1/4\), adjusted with \(\delta \approx 1/5\). The model is used to test chirality effects induced by the magnetic field, calculations are carried out for various \(E\)-field polarization’s. Finally, we explore the nonlinear regime in which multi-photon processes play an essential role.

The paper is organized as follows. In the next section we present the model and the method that allow us to obtain the exact solution of the Landau-microwave system, as well as the perturbative corrections induced by the impurity potential. In section III we develop the formulation of \(dc\) electrical linear response theory valid in arbitrary magnetic
field and microwave radiation. A discussion of relevant numerical calculations is presented in section (IV). The last section contains a summary of our main results. Details of the calculations are summarized in the appendices.

II. THE MODEL.

We consider the motion of an electron in two dimensions subject to a uniform magnetic field \mathbf{B} perpendicular to the plane and driven by microwave radiation. In the long-wave limit the dynamics is governed by the Schrödinger equation

$$i\hbar \frac{\partial \Psi}{\partial t} = H\Psi = \left[H_{(B,\omega)} + \tilde{V}(r)\right]\Psi,$$ \hspace{1cm} (1)

here $H_{(B,\omega)}$ is the Landau hamiltonian coupled to the radiation field (with $\lambda \to \infty$) and $\tilde{V}(r)$ is any potential that can be decomposed in a Fourier expansion. The method applies in general if $\tilde{V}(r)$ includes various possible effects such as: lattice periodic potential, finite wave-length corrections, impurity scattering, etc; however as it will be lately argued, the impurity scattering is the most likely explanation for the recent experimental results. One important remark with relation to the impurity potential in Eq. (1) is that to start with, it should only include the polarization effects produced by the combined effects of the Landau-Floquet states and the impurity potentials, the broadening effects produced by this potential are, as usually, included through the Kubo formula. Then we write $\tilde{V}(r)$ as

$$\tilde{V}(r) = V(r) - \Delta V(r), \hspace{1cm} \Delta V(r) = W^\dagger V(r)W,$$ \hspace{1cm} (2)

were W is the transformation that takes exactly into account the microwave-Landau dynamics, it is explicitly given in Eq. (II). In the absence of the microwave radiation, $W \equiv 1$ and $\tilde{V}(r)$ vanishes. The impurity scattering potential $V(r)$ is decomposed as

$$V(r) = \sum_i \int \frac{d^2q}{(2\pi)^2} V(q) \exp\{iq \cdot (r - r_i)\},$$ \hspace{1cm} (3)

here r_i is the position of the ith impurity and the explicit form of $V(q)$ depends of the mechanism that applies under particular physical conditions, some examples will be consider in section (IV). $H_{(B,\omega)}$ is then written as

$$H_{(B,\omega)} = \frac{1}{2m^*} \Pi^2, \hspace{1cm} \Pi = p + e\mathbf{A},$$ \hspace{1cm} (4)

m^* is the effective electron mass and the vector potential \mathbf{A} includes the external magnetic and radiation fields (in the $\lambda \to \infty$ limit) contributions

$$\mathbf{A} = -\frac{1}{2} \mathbf{r} \times \mathbf{B} + \text{Re} \left[\frac{E_0}{\omega} \exp\{-i\omega t\}\right].$$ \hspace{1cm} (5)

We first consider the exact solution of the microwave driven Landau problem, the impurity scattering effects are lately added perturbatively. This approximation is justified on the following conditions: (i): $|V|/\hbar\omega_c << 1$ and (ii): $\omega \tau_{tr} \sim \omega_c \tau_{tr} >> 1$; τ_{tr} is the transport relaxation time that is estimated using its relation to the electron mobility $\mu = e\tau_{tr}/m^*$. As discussed in section (IV) both conditions are fully complied.

The system posed by $H_{(B,\omega)}$ can be recast as a forced harmonic oscillator, a problem that was solved long time ago by Husimi21. Following the formalism developed in references22,23, we introduce a canonical transformation to new variables $Q_\mu, P_\mu; \mu = 0, 1, 2$, according to

$$Q_0 = t, \hspace{1cm} P_0 = i\partial_t + e\phi + e\mathbf{r} \cdot \mathbf{E},$$

$$\sqrt{eB}Q_1 = \Pi_y, \hspace{1cm} \sqrt{eB}P_1 = \Pi_x,$$

$$\sqrt{eB}Q_2 = p_x + eA_x + eB_y, \hspace{1cm} \sqrt{eB}P_2 = p_y + eA_y - eB_x.$$ \hspace{1cm} (6)

It is easily verified that the transformation is indeed canonical, the new variables obey the commutation rules: $-\{Q_0, P_0\} = \{Q_1, P_1\} = \{Q_2, P_2\} = i$; all other commutators being zero. The inverse transformation gives

$$x = l_B (Q_1 - P_2), \hspace{1cm} y = l_B (Q_2 - P_1),$$ \hspace{1cm} (7)
where \(l_B = \sqrt{\frac{e}{\hbar c}} \) is the magnetic length. The operators \((Q_2, P_2)\) can be identified with the generators of the electromagnetic translation symmetries. Final results are independent of the selected gauge. From the operators in Eq. \(4\) we construct two pairs of harmonic oscillator-like ladder operators: \((a_1, a_1^\dagger)\), and \((a_2, a_2^\dagger)\) with:

\[
a_1 = \frac{1}{\sqrt{2}} (P_1 - iQ_1), \quad a_2 = \frac{1}{\sqrt{2}} (P_2 - iQ_2),
\]

obeying: \([a_1, a_1^\dagger] = [a_2, a_2^\dagger] = 1\), and \([a_1, a_2] = [a_1, a_2^\dagger] = 0\).

It is now possible to find a unitary transformation that exactly diagonalizes \(H_{\{B, \omega}\}\), it yields

\[
W^\dagger H_{\{B, \omega\}} W = \omega_c \left(\frac{1}{2} + a_1^\dagger a_1 \right) \equiv H_0,
\]

with the cyclotron frequency \(\omega_c = eB/m^*\) and the \(W(t)\) operator given by

\[
W(t) = \exp \{ i\eta_1 Q_1 \} \exp \{ i\xi_1 P_1 \} \exp \{ i\eta_2 Q_2 \} \exp \{ i\xi_2 P_2 \} \exp \{ -i \int^t L \, dt' \},
\]

where the functions \(\eta_i(t)\) and \(\xi_i(t)\) represent the solutions to the classical equations of motion that follow from the variation of the Lagrangian

\[
\mathcal{L} = \frac{\omega_c}{2} \left(\eta_1^2 + \eta_2^2 \right) + \dot{\eta}_1 \eta_1 + \dot{\eta}_2 \eta_2 + e \sqrt{\frac{\hbar}{m}} \left[E_x (\xi_1 + \eta_2) + E_y (\eta_1 + \eta_2) \right].
\]

The explicit form of the solutions for \(\eta_i(t)\) and \(\xi_i(t)\) are given in the appendix (VI A).

Let us now consider the complete Hamiltonian including the contribution from the \(\tilde{V}(r)\) potential. When the transformation induced by \(W(t)\) is applied the Schrödinger equation in Eq. \(1\) becomes

\[
P_\mu \Psi^{(W)} = H_0 \Psi^{(W)} + V_W(t) \Psi^{(W)},
\]

where \(\Psi^{(W)} = W(t) \Psi\) and

\[
V_W(t) = W(t) \tilde{V}(r) W^{-1}(t) = W(t) V(r) W^{-1}(t) - V(r).
\]

Notice that the impurity potential acquires a time dependence brought by the \(W(t)\) transformation. The problem is now solved in the interaction representation using first order time dependent perturbation theory. In the interaction representation \(\Psi^{(W)}_I = \exp \{ iH_0 t \} \Psi^{(W)}\), and the Schrödinger equation becomes

\[
i\partial_t \Psi^{(W)}_I = \{ V_W(t) \} _I \Psi^{(W)}_I.
\]

The equation is solved in terms of the evolution operator \(U(t)\), in such a way that \(\Psi^{(W)}_I(t) = U(t - t_0) \Psi^{(W)}_I(t_0)\). The solution of the evolution operator in first order perturbation theory is given by the expression

\[
U(t) = 1 - i \int^t_{-\infty} dt' \left[W^\dagger(t') \tilde{V}(r) W(t') \right] _I,
\]

that is explicitly evaluated in the appendix (VI B). The interaction is adiabatically turned off as \(t_0 \rightarrow -\infty\), in which case the asymptotic state is selected as one of the Landau-Floquet eigenvalues of \(H_0\), i.e. \(|\Psi^{(W)}_I(t_0)\rangle \rightarrow |\mu, k\rangle\).

The solution to the original Schrödinger equation in Eq. \(1\) has been achieved by means of three successive transformations, which expressions have been explicitly obtained:

\[
|\Psi_{\mu, k}(t)\rangle = W^\dagger \exp \{ -iH_0 t \} U(t - t_0) |\mu, k\rangle.
\]

As discussed on the appendix (VI A) the index \(k\) labels the degeneracy of the Landau-Floquet states. Selecting the \(P\)-representation the dependence of the wave function on \(k\) becomes very simple, see Eq. \(17\), for simplicity in what follows the index \(k\) will not be shown. The expression of the Kubo formula that will be derived in section (III) requires the knowledge of the matrix elements of the momentum operator \(\Pi\):

\[
\langle \Psi_\mu | \Pi_I | \Psi_\nu \rangle = \langle \mu | U^\dagger(t - t_0) \left[W \Pi_I W^\dagger \right] _I U(t - t_0) |\nu\rangle.
\]
Let us first consider the term inside the square brackets, using the explicit form of the operators in Eqs. (11) and (10) it yields

\[W \Pi_i W^\dagger = \begin{cases} \sqrt{e^B}(P_{i} - \eta_i), & i = x, \\ \sqrt{e^B}(Q_{i} - \xi_i), & i = y. \end{cases} \]

If we now utilize the result for the evolution operator \(U \) given in the appendix (VI B), we can explicitly work out the matrix elements of the momentum operator

\[\langle \Psi_{\mu} | \Pi_i | \Psi_{\nu} \rangle = \sqrt{\frac{e^B}{2}} \left(a_j \sqrt{\mu} e^{i \omega t} \delta_{\mu, \nu+1} + b_j \sqrt{\nu} e^{-i \omega t} \delta_{\mu, \nu-1} \right) + \sqrt{\frac{e^B}{2}} \sum_i e^{i (\epsilon_{\mu \nu} + \omega l - i \eta t)} \Delta^{(l)}_{\mu \nu}(j). \]

Here the following definitions were introduced: \(\epsilon_{\mu \nu} = \epsilon_{\mu} - \epsilon_{\nu}, a_j = b_j = 1 \) if \(j = x \) and \(a_j = -b_j = -i \) if \(j = y \), and \(\Delta^{(l)}_{\mu \nu}(j) \) is given by

\[\Delta^{(l)}_{\mu \nu}(j) = \delta_{\mu \nu} \left[\rho_1 \delta_{l,1} + \rho_2 \delta_{l,-1} \right] - \frac{1}{\sqrt{2}} \left[\frac{a_j \tilde{q} C^{(l)}_{\mu \nu}}{\epsilon_{\mu \nu} - \omega_c + \omega l - i \eta} + \frac{b_j \tilde{q} C^{(l)}_{\mu \nu}}{\epsilon_{\mu \nu} + \omega_c + \omega l - i \eta} \right], \]

where \(\tilde{q} = i l_B (q_x - iq_y) / \sqrt{2} \), and the expressions for the functions \(\rho_1 \), and \(C^{(l)}_{\mu \nu} \) are worked out as

\[\rho_1 = \frac{el_B E_0}{\omega^2 - \omega_c^2 + i \omega \Gamma_{\text{rad}}}, \quad \rho_2 = \frac{el_B E_0}{\omega^2 - \omega_c^2 + i \omega \Gamma_{\text{rad}}}, \]

and

\[C^{(l)}_{\mu \nu} = \sum_i \int \frac{d^2 q}{(2\pi)^2} V(q) e^{-i q \cdot r_i} D_{\mu \nu}(q) \left(\frac{\Delta}{|\Delta|} \right)^l \tilde{J}_l (|\Delta|), \]

where \(\tilde{J}_l = J_l - \delta_{l,0} \), \(J_l \) being the Legendre polynomials, and \(D_{\mu \nu}(q) \) is given in terms of the generalized Laguerre polynomials in (23), and

\[\Delta = \frac{\omega_e l_B^2 e E_0}{\omega (\omega^2 - \omega_c^2 + i \omega \Gamma_{\text{rad}})} \left[\omega \left(q_x \epsilon_x + q_y \epsilon_y \right) + i \omega_c \left(q_x \epsilon_y - q_y \epsilon_x \right) \right]. \]

It is important to notice that the subtracted term \(\tilde{J}_l = J_l - \delta_{l,0} \), has its origin in the fact that the impurity potential Eq. (2) includes only the dynamical effects, with the corresponding zero field-term conveniently subtracted. This procedure is justified because the broadening effects produced by \(V(r) \) are separately included via the Kubo formula, see appendix (VI B). The subtraction \(\tilde{J}_l = J_l - \delta_{l,0} \) becomes essential, otherwise the longitudinal resistance would be dominated by the \(l = 0 \) term, producing incorrect results.

III. KUBO FORMULA FOR FLOQUET STATES.

In this section we shall develop the Kubo formula that applies when the dynamics includes Landau-Floquet states as those in Eq. (10). We take the perturbing electric field to have the form \(E_{\text{ext}} = E_0 \cos (\Omega t) \exp (-\eta |t|) \). The static limit is obtained with \(\Omega \to 0 \) and \(\eta \) represents the rate at which the perturbation is turned on and off. The perturbing electric field is included in the vector potential, as we are interested in the linear response the perturbing potential has the form

\[V_{\text{ext}} = \frac{1}{m} \Pi \cdot A_{\text{ext}}, \quad A_{\text{ext}} = \frac{E_0}{\omega} \sin (\Omega t) \exp (-\eta |t|). \]

Besides the original Hamiltonian in (1), the complete Hamiltonian should include \(V_{\text{ext}} \) and the part of the disorder potential \((\Delta V(r) = W^\dagger V(r)W) \) that was previously subtracted (see Eq. (2)). Hence the total Hamiltonian \(H_T \) is written as

\[H_T = H + V_{\text{ext}} + \Delta V(r). \]
The disorder potential $\Delta V(\mathbf{r})$ will induce broadening effects, and it will be later included. Then, the time-evolution for the density matrix $\rho(t)$ obeys the von Neumann equation

$$i\hbar \frac{\partial \rho}{\partial t} = [H + V_{\text{ext}}, \rho].$$

(26)

Within the linear regime ρ is split in the sum $\rho = \rho_0 + \Delta \rho$. The zero order term ρ_0 must satisfy

$$i\hbar \frac{\partial \rho_0}{\partial t} = [H, \rho_0],$$

(27)

the conditions required to solve this equation will be established below. The first order deviation $\Delta \rho$ then obeys

$$i\hbar \frac{\partial \Delta \rho}{\partial t} = [H, \Delta \rho] + [V_{\text{ext}}, \rho_0].$$

(28)

We shall now apply to this equation the three transformations that were utilized in the previous section in order to solve the Schrödinger equation, hence in agreement with Eq. (16), $\Delta \rho$ is defined as

$$\Delta \rho(t) = U^\dagger(t - t_0) \exp{iH_0t}W(t) \Delta \rho(t) W^\dagger(t) \exp{-iH_0t}U(t - t_0).$$

(29)

In terms of the transformed density matrix $\Delta \rho(t)$, Eq. (28) becomes

$$i\hbar \frac{\partial \Delta \rho}{\partial t} = \tilde{\rho}_{\text{ext}},$$

(30)

where \tilde{V}_{ext} and $\tilde{\rho}_0$ are the external potential and quasi-equilibrium density matrix transformed in the same manner as $\Delta \rho$ is transformed in Eq. (29). The transformed quasi-equilibrium density matrix is assumed to have the form $\rho_0 = \sum_\mu |\mu\rangle f(\mathcal{E}_\mu) \langle \mu|$, where $f(\mathcal{E}_\mu)$ is the usual Fermi function and \mathcal{E}_μ the Landau-Floquet levels (see appendix VI A). It is straightforward to verify that this selection guarantee that the quasi-equilibrium condition in (27) is verified. The justification for selecting a Fermi-Dirac distribution in the quasi-energy states is presented in the appendix VI C. It is shown, that under experimental conditions ($\tau_\omega \ll \tau_r \ll \tau_m$), the elastic and inelastic relaxation processes can be neglected as compared to the external field effects. The solution of the Boltzmann equation yields, for a weak microwave intensity, a Fermi-Dirac distribution in the quasi-energy states. The expectation value of $\Delta \rho(t)$ in the $|\mu\rangle$ base can now be easily calculated using Eqs. (16), (24) and (29), solving the resulting equation with the initial condition $\Delta \rho(t) \to 0$ as $t \to -\infty$, yields for $t < 0$

$$\langle \mu | \Delta \rho(t) | \nu \rangle = \langle \Psi_\mu | \Delta \rho(t) | \Psi_\nu \rangle = \frac{eE_0}{2} \int_{-\infty}^{t} \frac{e^{i(\Omega - i\eta)t}}{\Omega} f_{\mu \nu} \langle \Psi_\mu | \Pi(t') | \Psi_\nu \rangle + (\Omega \to -\Omega),$$

(31)

where the definition $f_{\mu \nu} = f(\mathcal{E}_\mu) - f(\mathcal{E}_\nu)$ was used. Substituting the expectation value for the momentum operator given in (19), the integral in the the previous equation is easily performed. The current density to first order in the external electric field can now be calculated from $\langle \mathbf{J}(t, \mathbf{r}) \rangle = Tr \left[\Delta \rho(t) \mathbf{J}(t) \right]$, the resulting expression represents the local density current. Here we are concerned with the macroscopic conductivity tensor that relates the spatially and time averaged current density $\mathbf{j} = (\tau_\omega V)^{-1} \int_0^{\tau_\omega} dt \int d^2x \langle \mathbf{J}(t, \mathbf{r}) \rangle$ to the averaged electric field; here $\tau_\omega = 2\pi/\omega$. The macroscopic conductivity can now be worked out, for the dark and microwave-induced conductivities are quoted:

$$\sigma_{\mu \nu} = \frac{e^2 \omega_\perp^2}{4\hbar} \sum_{\mu \nu} \left\{ f_{\mu \nu} \left[\frac{a_{\mu \nu} \delta_{\mu, \nu+1}}{\mathcal{E}_{\mu \nu} + \Omega - i\eta} + \frac{b_{\mu \nu} \delta_{\mu, \nu-1}}{\mathcal{E}_{\mu \nu} + \Omega + i\eta} \right] + (\Omega \to -\Omega) \right\},$$

(32)

$$\sigma^x_{\mu \nu} = \frac{e^2 \omega_\perp^2}{4\hbar} \sum_{\mu \nu} \left\{ f_{\mu \nu} \left[\Delta^{(0)}_{\mu \nu}(i) \Delta^{(-1)}_{\mu \nu}(x) \right] + (\Omega \to -\Omega) \right\}.$$

(33)

In these expressions the external electric field points along the x-axis. Hence, setting $i = x$ or $i = y$ the longitudinal and Hall conductivities can be selected. The denominators on the R.H.S. of the previous equations can be related to the advanced and retarded Green’s functions $G^\pm_\mu(\mathcal{E}) = 1/ (\mathcal{E} - \mathcal{E}_\mu \pm i\eta)$. To make further progress the real and absorptive
parts of the Green’s functions are separated taking the limit \(\eta \to 0 \) and using \(\lim_{\eta \to 0} 1/(\mathcal{E} - i\eta) = P1/\mathcal{E} + i\pi\delta(\mathcal{E}) \), where \(P \) indicates the principal-value integral. As usual the real and imaginary parts contribute to the Hall and longitudinal conductivities respectively. In what follows details of the calculations are presented for the longitudinal microwave-induced conductivity, the corresponding dark conductivity expressions as well as the Hall microwave-induced conductance are quoted in the appendix \(\text{VID} \). Implementing the previous considerations and inserting a \(\delta \) function, the longitudinal microwave-induced conductivity takes the form

\[
\sigma_{xx}^{\omega} = -\frac{e^2}{\pi\hbar} \sum_{\mu\nu} \sum_{l} \int d\mathcal{E} \delta(\mathcal{E} - \mathcal{E}_{\mu}) |\Delta^{(l)}_{\mu\nu}(x)|^2 \left\{ \frac{f(\mathcal{E} + \omega l + \Omega) - f(\mathcal{E})}{\Omega} \right\} Im G_{\nu}(\mathcal{E} + \omega l + \Omega) \\
+ (\Omega \to -\Omega) \right\},
\]

where \(Im G_{\nu}(\mathcal{E}) = \frac{1}{\pi} [G_{\nu}^{+}(\mathcal{E}) - G_{\nu}^{-}(\mathcal{E})] \). The static limit with respect to the external field is obtained taking \(\Omega \to 0 \). In the case of the impurity assisted contribution an additional average over the impurity distribution has to be carried out, it is assumed that the impurities are no correlated, utilizing the explicit expressions for the velocity matrix elements in \(\text{20} \), the final result for the averaged microwave induced longitudinal conductance is worked out as

\[
\langle \sigma_{xx}^{\omega} \rangle = \frac{e^2}{\pi\hbar} \sum_{\mu\nu} \sum_{l} Im G_{\mu}(\mathcal{E}) B^{(l)}(\mathcal{E}, \mathcal{E}_{\nu}) \left\{ \omega_{c}|\rho_{l}|^2 \delta_{\mu\nu} (\delta_{l1} + \delta_{l,-1}) + n_{imp} l_{B}^2 \int \frac{d^2q}{(2\pi)^2} q_y^2 \left| \tilde{J}_{l}(\Delta)|V(q)D_{\mu\nu}(\tilde{q})\right|^2 \right\},
\]

where \(n_{imp} \) is the two dimensional impurity concentration, and the following function has been defined

\[
B^{(l)}(\mathcal{E}, \mathcal{E}_{\nu}) = - \left[\frac{d}{d\mathcal{E}_0} \{ f(\mathcal{E} + l\omega + \mathcal{E}_0) - f(\mathcal{E}) \} Im G_{\nu}(\mathcal{E} + l\omega + \mathcal{E}_0) \right]_{\mathcal{E}_0=0}.
\]

The photoconductivity in \(\text{35} \) has a first contribution that depends on the \(\rho_{l} \) factor (independent of the impurity concentration), it represents the direct cyclotron resonance heating, arising when the \(W(t) \) transformation is applied to the momentum operator (see Eq. \(\text{13} \)). The impurity induced contribution (second row in \(\text{35} \)) takes into account the dynamics produced by the magnetic and microwave fields, combined with the resonant effect of the impurities; the information is contained in the complete wave function in Eq. \(\text{10} \).

The previous expression would present a singular behavior that is an artifact of the \(\eta \to 0 \) limit. This problem is solved by including the disorder broadening effects. A simple phenomenological prescription is dictated by simply retaining a finite value of \(\eta \) that is related to the quasiparticles lifetime \(\eta = 2\pi/\tau_{s} \frac{\nu_{s}}{2\Gamma_{mu}} \). According to this prescription the density of states (DOS) of the \(\mu \) level would have a Lorentzian form \(\text{Im} \ G_{\mu}(\mathcal{E}) = \frac{\eta^{2}2\pi}{(\mathcal{E} - \mathcal{E}_{\mu})^{2} + \eta^{2}4/4} \). A more formal procedure requires to calculate the broadening produced by, the so far neglected, part of the disorder potential \(\Delta V(r) \) (see Eq. \(\text{26} \)); fortunately as explained in the appendix \(\text{VID} \) the calculation becomes equivalent to that carried out by Ando and Gerhardts,\(\text{22} \), so the density of states for the \(\mu \)-Landau level can be represented by a Gaussian-type form\(\text{32} \).

\[
\text{Im} \ G_{\mu}(\mathcal{E}) = \sqrt{\frac{\pi}{2\Gamma_{\mu}^{2}}} \exp \left[- (\mathcal{E} - \mathcal{E}_{\mu})^{2}/(2\Gamma_{\mu}^{2}) \right], \quad \Gamma_{\mu}^{2} = \frac{2\beta_{\mu}^{\hbar^{2}}\omega_{c}}{(\pi\tau_{tr})}.
\]

The parameter \(\beta_{\mu} \) in the level width takes into account the difference of the transport scattering time determining the mobility \(\mu \), from the single-particle lifetime. In the case of short-range scatterers \(\tau_{tr} = \tau_{s} \) and \(\beta_{\mu} = 1 \). An expression for \(\beta_{\mu} \), suitable for numerical evaluation, that applies for the long-range screened potential in \(\text{40} \) is given in appendix \(\text{VID} \). \(\beta_{\mu} \) decreases for higher Landau levels. This property becomes essential to generate NRS, because they only appear for a narrow \(\Gamma_{\mu} \), a condition that is satisfied around the Fermi level in the case of large filling factors.

Eqs. \(\text{35,36} \) contain the main ingredients that explain the huge increase observed in the longitudinal conductance (and resistance), when the material is irradiated by microwaves. In the standard expression for the Kubo formula there are no Floquet replica contribution, hence \(\omega \) can be set to zero in \(\text{36} \), if that is the case \(B^{(l)} \) becomes proportional to the energy derivative of the Fermi distribution, that in the \(T \to 0 \) limit becomes of the form \(\delta(\mathcal{E} - \mathcal{E}_{F}) \), and the conductivity is positive definite depending only on those states lying at the Fermi level. On the other hand, as a result of the periodic structure induced by the microwave radiation, \(B^{(l)} \) contains a second contribution proportional to the derivative of the density of states: \(\frac{d}{d\mathcal{E}} \text{Im} G_{\nu}(\mathcal{E} + l\omega) \). Due to the oscillatory structure of the density of states,
this extra contribution takes both positive and negative values. According to Eq. (37) this second term (as compared to the first one) is proportional to the electron mobility, hence for sufficiently high mobility the new contribution dominates leading to negative resistance states. The former observation becomes fundamental, because in agreement with experiment, our calculations show that NRS can only be induced in very high mobility samples (see Fig. 3).

As it was mentioned in section (III) the present method applies in general if \(\tilde{V}(r) \) can be decomposed in its Fourier expansion \(e.g. \), finite wave-length corrections, lattice periodic potential, impurity scattering, etc. The microwave radiation by itself only produces transitions between adjacent Landau levels (first term on the R.H.S of Eq. (35)) leading to the cyclotron peak. In the case of a periodic potential the resulting spectrum will be dominated by the region \(q \approx 2\pi/a \), where \(a \) is the lattice parameter; for the experimental conditions \(\lambda_B \gg a \) and the contribution is negligible. So we are led to analyze the impurity assisted mechanism as a plausible scenario to explain the strong oscillatory structure of the magnetoresistance.

IV. RESULTS.

The single-particle and transport relaxation rates induced by disorder are given by

\[
\frac{1}{\tau_{tr}} = n_{imp} \frac{m^*}{\pi \hbar^2 k_F} \int_0^{2k_F} dq \frac{|V(q)|^2}{\sqrt{1 - (q/2k_F)^2}} \times \left(\frac{1}{2k_F} q^2 \right),
\]

where \(V(q) \) is the Fourier transform of the impurity potential \(\tilde{\kappa} \). Remarkably, we have a consistent formalism in which: (i) the photoconductivity \((35) \), (ii) the relaxation rates \((38) \), and (iii) the level broadening Eqs. \((37) \) and \((60) \) can all be consistently calculated once \(V(q) \) has been specified.

For neutral impurities the potential can be represented by a short range delta interaction, the coefficient in Eq. \((3) \) corresponds to a constant that can be selected as \(V(q) = 2\pi \hbar^2 \alpha/m^* \). The expression in Eq. \((38) \) is readily calculated to yield the same value for the single-particle and transport relaxation rates

\[
\frac{1}{\tau_{tr}^{(N)}} = \frac{1}{\tau_{s}^{(N)}} = \frac{4\pi^2 \hbar^2}{m^*} \alpha^2 n_{imp}^{(N)} ,
\]

the upper index \(N \) labels the neutral impurity case. The evaluation of the photoconductivity \((35) \) requires in general a time consuming numerical integration. However, for moderate values of the microwave radiation the transitions are dominated by single photon exchange, in the neutral impurity case a very precise analytical approximation can be explicitly worked out; see appendix \((VI) \).

For charged impurities the Coulomb potential is long-range modified by the screening effects. Although electron motion is restricted to 2-dimensions, the electric field is three dimensional and there are contributions from the impurities localized within the doped layer of thickness \(d \). The screened potential can then be represented in momentum coordinates by the expression

\[
V(q) = \frac{\pi \hbar^2}{m^*} e^{-qd} \frac{q^2}{2k_F}; \quad q_{TF} = \frac{e^2 m^*}{2\pi \epsilon_0 \epsilon_s \hbar^2},
\]

where the Thomas-Fermi (TF) approximation is implemented in order to calculate the dielectric function. Here \(\epsilon_s \) represents the relative permittivity of the surrounding media. The expression in \((40) \) corresponds to a screened potential, that in real space has a \(r^{-3} \) decay for large \(r \). The rates in Eq. \((38) \) can be evaluated numerically, however an accurate analytical results is obtained observing that the decaying exponential in \((40) \) causes the integral to die off for \(q \gg 1/|d| \), and the upper limit in the integral can therefore be set to infinity. Additionally for the relevant parameters (see below) the following conditions are observed \(k_F \gg 1/|d| \) and \(q_{TF} \gg 1/|d| \); consequently, it is reasonable to drop the factor \(q/q_{TF} \) in the denominator of \((40) \) and replace the square root in the denominator of Eq. \((38) \) by unity. These simplifications yields for the transport relaxation rate

\[
\frac{1}{\tau_{tr}^{(C)}} = \frac{\pi \hbar}{8m^* (k_F d)} n_{imp}^{(C)},
\]

the upper index \(C \) labels the charged impurity case. As expected, for charged remote impurities the single-particle lifetime differs from the transport lifetime, the approximated relation reads \(\tau_{tr}^{(C)} \approx (2k_F d)^2 \tau_{s}^{(C)} \).

The parameter values have been selected corresponding to reported experiments\(2,3 \) in ultraclean \(GaAs/Al_xGa_{1-x}As \) samples: effective electron mass \(m^* = 0.067 m_e \), relative permittivity \(\epsilon_s \approx 13.18 \), fermi energy \(E_F = 10 \, meV \), electron
FIG. 1: Longitudinal resistance, both total (continuous line) and dark (dotted line) as a function of the magnetic field. The figure also includes the Hall resistance (dashed line, ρ_{xy} is rescaled by a factor 1/10). Results correspond to neutral impurity scattering obtained with the approximated solution (appendix VII) and the selected parameters are: μ ≈ 0.25 \times 10^7 cm^2/Vs, T ≈ 1 K, f = 100 GHz, |\vec{E}| ≈ 2.5 V/cm, α^2 n_{imp}^{(N)} = 5 \times 10^6 cm^{-2}. The values of the other parameters used in the calculations are discussed in the text.

mobility μ ≈ 0.1 − 2.5 \times 10^7 cm^2/Vs, electron density n = 3 \times 10^{11} cm^{-2}, microwave frequencies f = 50 − 100 GHz, magnetic fields in the range 0.05 − 0.4 Tesla and temperatures T ≈ 0.5 − 2.5 K. The reported specimen is an 5 mm \times 5 mm square. Typical microwave power is 10 − 40 mW, however it is estimated that the microwave power that impinges on the sample surface is of the order 100 − 200 µW, hence the microwave electric field intensity is estimated as |\vec{E}| ≈ 1 − 3 V/cm. Using these values, it is verified that the weak-overlapping condition holds: \omega_c \tau_{tr} ≈ 100 − 1000.

Recalling that μ = eτ_{tr}/m^*, one can use Eqs. (39) and (41) to determine the values of n_{imp} corresponding to neutral or charged scatterers respectively. For example assuming μ ≈ 2.5 \times 10^7 cm^2/Vs, one estimates for neutral scattering α^2 n_{imp}^{(N)} ≈ 1 \times 10^7 cm^{-2}. Although α and n_{imp}^{(N)} are not separately fixed, one notices that the condition for weak disorder potential as compared to the Landau energy can be be expressed as V(q)/(l_B^2 \hbar \omega_c) = 2πα ≪ 1; e.g if α ≈ 0.01, then n_{imp}^{(N)} ≈ 10^{11} cm^{-2}. For charged impurities and taking a value for the separation d between the impurity and the 2DES as d ≈ 20 nm, yields n_{imp}^{(C)} ≈ 1.5 \times 10^{11} cm^{-2}. In this case the weak disorder condition takes the form V(q)/(l_B^2 \hbar \omega_c) ≈ π \exp(-2\pi d/l_B) ≪ 1, that is satisfied. A final remark is related to the radiative electron decay Γ_{rad} that determines the direct electron response to the microwave excitation (see Eqs. (45) and (23)), following reference 39, Γ_{rad} is related to the radiative decay width that is interpreted as coherent dipole re-radiation of electromagnetic waves by the oscillating 2D electrons excited by microwaves. Hence, it is given by Γ_{rad} = n e^2/(6\epsilon_0 m^* c), using the values of n and m^* given above it yields Γ_{rad} ≈ 0.38 meV.

Adding the dark and microwave induced conductivities, the total longitudinal σ_{xx} = σ_{xx}^{\rho}_{xx} + σ_{xx}^{\epsilon}_{xx}, and Hall σ_{xy} = σ_{xx}^{\rho}_{xy} + σ_{xy}^{\epsilon}_{xy} conductivities are obtained. It should be pointed out that the interference between the dark and microwave contributions exactly cancels. The corresponding resistivities are obtained from the expression ρ_{xx} = σ_{xx}^{-1}, ρ_{xy} = σ_{xx}^{-1} (σ_{xx}^{\epsilon}_{xx} + σ_{xy}^{\epsilon}_{xy}) and ρ_{xy} = σ_{xy}^{-1} (σ_{xx}^{\epsilon}_{xx} + σ_{xy}^{\epsilon}_{xy}). The relation σ_{xy} ≫ σ_{xx} holds in general, hence it follows that ρ_{xx} ≈ σ_{xx}, and the longitudinal resistivity follows the same oscillation pattern as that of σ_{xx}. The plots of the total longitudinal and Hall resistivities as a function of the magnetic field intensity are displayed in Fig. 4. Whereas the Hall resistance presents the expected monotonous behavior, the longitudinal resistance shows a strong oscillatory behavior with distinctive NRS. The behavior of the complete ρ_{xx} is contrasted with the dark contributions that presents only the expected Shubnikov-de-Hass oscillations.

Fig. 2 shows a comparison of the longitudinal resistivity as function of \omega/\omega_c, obtained for the case of neutral impurity scattering using both the approximated expression in the appendix VII as well as the result of the numerical integration Eq. (35); the electron mobility is selected as μ = 0.25 \times 10^7 cm^2/Vs. The approximated analytical
the previously known, almost linear behavior ρ appear only in samples with an electron mobility exceeding a threshold value $\delta \sim \mu$. The correct representation of the density of states, using a Lorentzian form instead of the Gaussian in (37) would give $\approx \mu$. The phenomenon is absent in samples in which μ is slightly reduced.

This behavior is well reproduced by the present formalism. Fig. 2 displays the ρ_{xx} vs. $\epsilon = \omega/\omega_c$ plot for neutral impurity scattering and three selected values of μ. For $\mu \approx 0.5 \times 10^8 cm^2/Vs$ the previously known, almost linear behavior $\rho_{xx} \propto B$ is clearly depicted. As the electron mobility increases to $\mu \approx 1.5 \times 10^6 cm^2/Vs$, the magnetoresistance oscillations are clearly observed; however, NRS only appear when the mobility is increased to $\mu \approx 2.5 \times 10^6 cm^2/Vs$. It is observed that ρ_{xx} vanishes at $\epsilon = j$ for j integer. The period and phase of the oscillations follow a pattern very similar to the one observed in experiments, with minima at $\epsilon = j + \delta$, and maxima at $\epsilon = j - \delta$, adjusted with $\delta \approx 1/5$. It should be pointed out that this value of δ depends on the correct representation of the density of states, using a Lorentzian form instead of the Gaussian in giving a similar broadening value, although for the neutral case $V(q)$ is constant over all the q-range of integration, whereas for charged case $V(q)$ varies according to the expression in, the integral in is dominated by the region in which $q \approx 2\pi/l_B$.

One of the puzzling properties of the observed huge magnetoresistance oscillations is related to the fact that they appear only in samples with an electron mobility exceeding a threshold value μ_{th}. The phenomenon is absent in samples in which μ is slightly reduced. This behavior is well reproduced by the present formalism. Fig. 2 displays the ρ_{xx} vs. $\epsilon = \omega/\omega_c$ plot for neutral impurity scattering and three selected values of μ. For $\mu \approx 0.5 \times 10^8 cm^2/Vs$ the previously known, almost linear behavior $\rho_{xx} \propto B$ is clearly depicted. As the electron mobility increases to $\mu \approx 1.5 \times 10^6 cm^2/Vs$, the magnetoresistance oscillations are clearly observed; however, NRS only appear when the mobility is increased to $\mu \approx 2.5 \times 10^6 cm^2/Vs$. It is observed that ρ_{xx} vanishes at $\epsilon = j$ for j integer. The period and phase of the oscillations follow a pattern very similar to the one observed in experiments, with minima at $\epsilon = j + \delta$, and maxima at $\epsilon = j - \delta$, adjusted with $\delta \approx 1/5$. It should be pointed out that this value of δ depends on the correct representation of the density of states, using a Lorentzian form instead of the Gaussian in giving a similar broadening value, although for the neutral case $V(q)$ is constant over all the q-range of integration, whereas for charged case $V(q)$ varies according to the expression in, the integral in is dominated by the region in which $q \approx 2\pi/l_B$.

The first reported experiments were carried out for a microwave radiation with transverse polarization with respect to the longitudinal current flow direction. However, it is clear that the presence of the magnetic field induces a chirality in the system, the model can be used to test these effects. Fig. 4 shows the results for different E-field polarization’s with respect to the current. In Fig. 4b it is observed that the amplitudes of the resistivity oscillation are slightly bigger for transverse polarization as compared to longitudinal polarization. This result is in agreement with the recent experiment in which it is reported that the selection of longitudinal or transverse polarization produces small
to the nonlinear regime in which a qualitatively new behavior is observed. For however the width of these regions increase to include practically all the range from $|\mathbf{E}|$. A further increase of the electric field intensity to ρ corresponding increase in the minima and maxima of $|\mathbf{E}|$. Electric field intensities converge results are obtained including terms up to the l and the numerical expression in (35) with higher multipole (j) plays an essential role. As the microwave radiation intensity is increased, the analytical approximation breaks down with transitions by two microwave photons are observed near $\epsilon = j + \delta$, and maxima at $\epsilon = j - \delta$, adjusted with $\delta \approx 1/5$. NRS only appear when $\mu > \mu_{th} \sim 1.5 \times 10^6 \text{cm}^2/\text{V}s$. The values of the other parameters are the same as in figure Fig. 1.

FIG. 3: Longitudinal resistivity as function of $\epsilon = \omega/\omega_c$ for neutral impurity scattering and three values of the electron mobility: $\mu \approx 0.5 \times 10^6 \text{cm}^2/\text{V}s$ (dotted line), $\mu \approx 1.5 \times 10^6 \text{cm}^2/\text{V}s$ (dash-dotted line), and $\mu \approx 2.5 \times 10^6 \text{cm}^2/\text{V}s$ (continuous line). In the two former cases the oscillations follow a pattern with minima at $\epsilon = j + \delta$, and maxima at $\epsilon = j - \delta$, adjusted with $\delta \approx 1/5$. NRS only appear when $\mu > \mu_{th} \sim 1.5 \times 10^6 \text{cm}^2/\text{V}s$. The values of the other parameters are the same as in figure Fig. 1.

However, we propose that the more significant signatures will be only observable for circular polarization. Selecting negative circular polarization (see Fig. 4a), the oscillation amplitudes get the maximum possible value. Instead, for positive circular polarization an important reduction of the amplitude is observed leading to the total disappearance of the NRS. These results are understood recalling that for negative circular polarization and $\omega \approx \omega_c$ the electric field rotates in phase with respect to the electron cyclotron rotation. Based on the present results, it will be highly recommended to carry out experiment for circular polarization configurations.

The present formalism can also be used in order to explore the non-linear regime in which multi-photon exchange plays an essential role. As the microwave radiation intensity is increased, the analytical approximation breaks down and the numerical expression in (35) with higher multipole (l) needs to be evaluated. In the explored regime convergent results are obtained including terms up to the $l = 3$ multipole. Fig. 5a displays ρ_{xx} vs. ϵ plots for electric field intensities $|\mathbf{E}| = 2.5 \text{V/cm}$ and $|\mathbf{E}| = 5 \text{V/cm}$ respectively, the increase on the field intensity produces a corresponding increase in the minima and maxima of ρ_{xx}, but apart of this, the qualitative behavior in both cases is similar. A further increase of the electric field intensity to $|\mathbf{E}| = 10 \text{V/cm}$ and $|\mathbf{E}| = 30 \text{V/cm}$ (Fig. 5b), takes us to the nonlinear regime in which a qualitatively new behavior is observed. For $\epsilon > 2$ the same NRS are observed, however the width of these regions increase to include practically all the range from $\epsilon = j$ to $\epsilon = j + 1$. Notice that the negative resistance minima has not a monotonous dependence on $|\mathbf{E}|$, in fact for the strongest field intensity the minima approaches zero. Remarkably, for $|\mathbf{E}| = 30 \text{V/cm}$ and $\epsilon < 2$, new negative resistance states associated with transitions by two microwave photons are observed near $\epsilon = 1/2$ and $\epsilon = 3/2$. The minima of these states are centered at $\epsilon_{min} = 0.52$ and $\epsilon_{min} = 1.52$ respectively. Evidence of ZRS associated with multi-photon processes have been already observed by Zudov et al. (\cite{zudov}); they reported structures with maxima near $\epsilon = 1/2$ and $\epsilon = 3/2$, and the corresponding minima centered around $\epsilon_{min} = 0.67$ and $\epsilon_{min} = 1.68$ respectively. Dorozhkin and Willett et al. (\cite{dorozhkin}) have also reported ρ_{xx} minimum associated with $\epsilon = 1/2$. Although the exact position of the minima and maxima of ρ_{xx} observed in Fig. 5b are not localized at the same position reported by Zudov et al. (\cite{zudov}), the general pattern is very similar, supporting the interpretation as multi-photon processes. Clearly, a more systematic analysis and further experimental studies are necessary.

Comparison with some other theoretical work is obliged. Previous work in references\cite{durst, willett, zudov, dorozhkin} analyzed the effects of the microwave radiation on the electron scattering by impurities in the presence of a magnetic field. Durst et al.\cite{durst} consider an out of equilibrium calculation, instead here a quasi-adiabatic approximation is implemented, assuming that the system is thermalized in those states characterized by the Landau-Floquet spectrum. The similarity between
FIG. 4: Longitudinal resistance ρ_{xx} for neutral impurity scattering and various microwave $E-$field polarization’s with respect to the current. In figure (a) the continuos and dotted lines correspond to linear transverse and longitudinal polarization’s respectively. Figure (b) shows results for circular polarization’s: left-hand (continous line) and right-hand (dashed line). The values of the parameters are the same as in figure Fig. 1.

some results in the present work and those of Durst et al.12, suggest that departure from equilibrium is not significant for the studied phenomenon. The present formalism extends and explores the impurity assisted photoconductivity mechanism in detail. In this model the same disorder potential determines the broadening of the Landau levels, as well as the wave function that is used to evaluate the velocity matrix element. These matrix element are incorporated into a Kubo-like formula that takes into account the Floquet structure of the system. As previously mentioned, there are alternative models in which the leading contribution arises from the modification of the electron distribution function induced by the microwave radiation. According to Dorozhkin5 the negative resistance phenomena has its origin in a local population inversion that produces a change of sign of the $(\partial f/\partial E)$ term that appears in the conductivity. Although possible, the inversion of population requires rather strong microwave powers, which were not achieved in the experiments.34 Indeed, the inversion population is expected to be produced when the microwave energy exceeds the Fermi energy $(eE)^2/(m^*\omega^2) > E_F$ (see appendix VI C), clearly the estimated value for the threshold electric field $E_{th} \sim 1000 \text{ V/cm}$ highly exceeds the experimental microwave fields $E \sim 1 - 5 \text{ V/cm}$. An interesting alternative explanation based on the modifications that the microwave radiation produces in the distribution function was recently presented by Dmitriev et al.18 and Kennett et al.20. In these publications it is assumed that the inelastic-scattering processes give the dominant contribution to the collision term of the kinetic equation. However, as explained in the appendix VI C under experimental conditions $\tau_\omega < \tau_{tr} < \tau_{in}$, and certainly the inelastic processes can be safely ignored as compared to the elastic processes. In fact we have presented an argument for a first approximation in which the distribution function is determined only by the microwave effects. It may be interesting for a future work, to add to the present formalism the effects that elastic processes produces to the distribution function. In any case, we consider that the present results taken together with those of references10,11,12,17 consolidate the explanation of the photoconductivity oscillations and negative resistance states in terms of the microwave-disorder mechanism.

V. CONCLUSIONS.

We have considered a model to describe the photoconductivity of a 2DEG subjected to a magnetic field. We presented a thoroughly discussion of the method that allow us to take into account the Landau and microwave contributions in a non-perturbative exact way, while the impurity scattering effects are treated perturbatively. The method exploits the symmetries of the problem: the exact solution of the Landau-microwave dynamics is obtained in terms of the electric-magnetic generators as well the solutions to the classical equations of motion.11
Non-linear effects

FIG. 5: Nonlinear effects in the longitudinal resistance ρ_{xx} for charged impurity scattering. Figure (a) includes the ρ_{xx} v.s. $\epsilon = \omega/\omega_c$ plots for electric filed intensities of $|\vec{E}| = 2.5\,\text{V/cm}$ (continuos line) and $|\vec{E}| = 5\,\text{V/cm}$ (dotted line). Figure (b) displays results for $|\vec{E}| = 10\,\text{V/cm}$ (dotted line) and $|\vec{E}| = 30\,\text{V/cm}$ (continuos line). The parameter values are: $\mu \approx 2.5 \times 10^7\,\text{cm}^2/\text{V}\,\text{s}$, $T \approx 1\,\text{K}$, $f = 100\,\text{GHz}$, $n_{imp}^{(C)} = 1.5 \times 10^{11}\,\text{cm}^{-2}$.

spectrum and Floquet modes are explicitly worked out. In our model, the Landau-Floquet states act coherently with respect to the oscillating field of the impurities, that in turn induces transitions between these levels. Based on this formalism, a Kubo-like formula is provided, it takes into account the oscillatory Floquet structure of the problem. It should be stressed that the disorder potential is conveniently split (see Eqs. 2, 25) in such a way that it contributes both to the matrix elements of the velocity operator, as well as to the broadening of the Landau levels. Hence, we have a consistent formalism in which: (i) the photoconductivity 35, (ii) the relaxation rates 38, and (iii) the level broadening Eqs. 37 and 60 can all be consistently calculated once the disorder potential has been specified.

The expression for the longitudinal photoconductivity Eq. 35 contains the main ingredients that explain the huge increase observed in the experiments. As explained in section 11, the standard expression for the Kubo formula at low temperature is dominated by the states near to the Fermi level. On the other hand, as a result of the periodic structure induced by the microwave radiation the term $B^{(l)}$ contains a second contribution proportional to the derivative of the density of states: $\frac{d}{dE} \text{Im}\, G_v(E + l\omega)$. Due to the oscillatory structure of the density of states this extra contribution takes both positive and negative values. According to Eq. 37 this second term is proportional to the electron mobility, hence for sufficiently high mobility the new contribution dominates leading to negative resistance states. This allows us to explain one of the puzzling properties of the observed huge magnetoresistance oscillations, related to the fact that they appear only in samples with an electron mobility exceeding a threshold. This result is well reproduced by the present model, for the selected parameters, NRS emerge when the condition $\mu \geq 2.5 \times 10^6\,\text{cm}^2/\text{V}\,\text{s}$ (short-range disorder), and $\mu \geq 2.5 \times 10^7\,\text{cm}^2/\text{V}\,\text{s}$ (long-range disorder) are satisfied. The oscillations follow a pattern with minima at $\epsilon = j + \delta$, and maxima at $\epsilon = j - \delta$, adjusted with $\delta \approx 1/5$. These results are in reasonable good agreement with the observation of Mani et al. 2, 4, they reported a similar pattern with $\delta \approx 1/4$.

An interesting prediction of the present model is related to polarization effects that could be possible observed in future experiments. While the results for the cases of linear transverse or longitudinal polarization’s show small differences, the selection of circular polarized radiation leads to significant signatures. The maximum possible value for the oscillation amplitudes of ρ_{xx} appears for negative circular polarization. Instead, positive circular polarization yields an important reduction on the oscillation amplitudes and the total disappearance of the NRS. This result can be understood, if one recalls that for negative circular polarization and $\omega \approx \omega_c$, the electric field rotates in phase with respect to the electron cyclotron rotation. The present results call for the importance to carry out experiment with
circular polarization configurations.

An analysis was presented in order to explore the non-linear regime in which multi-photon exchange plays an essential role. The results suggest the existence of new NRS (which are expected to develop into ZRS) near \(\epsilon = 1/2 \) and \(\epsilon = 3/2 \), these states correspond to two-photon exchange processes and are in reasonable agreement with the reported experimental results.

Some final remarks are related to the limitations and possible extensions of the present work. In a first approximation we have not included the contribution of the elastic processes to the kinetic equation that determines the electron distribution. However, it will be interesting to extend the present calculations to include, not only the dynamical effects produced by the impurity on the electron wave function, but also the modifications that they produce in the distribution function.

VI. APPENDICES.

A. Microwave driven Landau problem.

Eq. (6) defines a canonical transformation from the variables \(\{t, x, y, p_0, p_x, p_y\} \) to \(\{Q_0, Q_1, Q_2; \mu, P_1, P_2\} \), in terms of the new variables the Schrödinger equation (11) (without impurity potential) takes the form

\[
P_0 \Psi = \left[\hbar \omega_c \frac{Q_1^2 + P_1^2}{2} + e l_B E_x (Q_1 - P_2) + e l_B E_y (Q_2 - P_1) \right] \Psi.
\]

(42)

The action of the transformation \(W \) defined in Eq. (10) over the \((Q, P) \) variables can be easily calculated as:

\[
\begin{align*}
WQ_0 W^\dagger &= Q_0, \\
WP_1 W^\dagger &= P_0 + \eta_1 Q_1 + \zeta_1 P_1 + \eta_2 Q_2 + \zeta_2 P_2 - \zeta_1 \eta_1 - \zeta_2 \eta_2 + \mathcal{L}, \\
WQ_1 W^\dagger &= Q_1 + \zeta_1, \\
WP_1 W^\dagger &= P_1 - \eta_1, \\
WQ_2 W^\dagger &= Q_2 + \zeta_2, \\
WP_2 W^\dagger &= P_2 - \eta_2.
\end{align*}
\]

(43)

It can be verified that when the \(W \) transformation is applied to Eq. (12), the second and third terms in the right hand side exactly cancel with all the terms that appear in the expression for \(WP_1 W^\dagger \) (except \(P_0 \)) if \(\mathcal{L} \) is identified with the Lagrangian in Eq. (11) an the functions \(\eta \) and \(\zeta \) satisfy the differential equations that follows from the variation of \(\mathcal{L} \):

\[
\begin{align*}
\dot{\eta} - \omega_c \zeta &= e l_B E_x, \\
\dot{\zeta} + \omega_c \eta &= -e l_B E_y, \\
\eta_1 &= e l_B E_0 \text{Re} \left[\frac{-i \omega_c \epsilon_x + \omega_c \epsilon_y}{\omega^2 - \omega_c^2 + i \omega \Gamma_{rad}} \right], \quad \eta_2 = e l_B E_0 \text{Re} \left[\frac{\epsilon_y e^{i \omega t}}{i \omega} \right], \\
\zeta_1 &= e l_B E_0 \text{Re} \left[\frac{\omega_c \epsilon_x + i \omega \epsilon_y}{\omega^2 - \omega_c^2 + i \omega \Gamma_{rad}} e^{i \omega t} \right], \quad \zeta_2 = -e l_B E_0 \text{Re} \left[\frac{\epsilon_x e^{i \omega t}}{i \omega} \right].
\end{align*}
\]

(44)

According to the Floquet theorem the wave function can be written as \(\Psi(t) = \exp\left(-i \mathcal{E}_\mu t\right) \phi_\mu(t) \), where \(\phi_\mu(t) \) is periodic in time, i.e. \(\phi_\mu(t + \tau) = \phi_\mu(t) \). From Eq. (11) it is noticed that the transformed wave function \(\Psi' = W \Psi \) contains the phase factor \(\exp\left(i \int_0^t \mathcal{L} dt' \right) \). It then follows that the quasienergies and the Floquet modes can be deduced if we add and subtract to this exponential a term of the form \(\frac{1}{2} \int_0^t \mathcal{L} dt' \). Hence, the quasienergies can be readily read off

\[
\begin{align*}
\mathcal{E}_\mu &= \mathcal{E}^{(0)}_\mu + \mathcal{E}_{\text{rad}}; \\
\mathcal{E}^{(0)}_\mu &= \hbar \omega_c \left(\frac{1}{2} + \mu \right), \\
\mathcal{E}_{\text{rad}} &= \frac{e^2 E_0^2 \left[1 + 2 \omega_c \text{Re}(\epsilon_x \epsilon_y)/\omega \right]}{2 m^* \left(\omega - \omega_c \right)^2 + \Gamma_{\text{rad}}^2}.
\end{align*}
\]

(46)
here \(\mathcal{E}^{(0)}_\mu \) are the usual Landau energies, and the induced Floquet energy shift is given by the microwave energy \(\mathcal{E}_{rad} \). The corresponding time-periodic Floquet modes in the \((P_1, P_2)\) representation are given by

\[
\Psi_{\mu,k}(P) = \exp\{-i \sin(2 \omega t) F(\omega)\} \phi_\mu(P_1) \delta(P_2 - k),
\]

(47)

here \(\phi_\mu(P_1) \) is the harmonic oscillator function in the \(P_1\) representation

\[
\phi_\mu(P_1) = \langle P_1 | \mu \rangle = \frac{1}{\sqrt{\pi^{1/2}2^\mu \mu!}} e^{-P_1^2/2} H_\mu(P_1),
\]

(48)

and \(H_\mu(P_1) \) is the Hermite polynomial and the function \(F(\omega) \) is given as

\[
F(\omega) = \frac{\omega_c}{\omega} \left(\frac{eE_0lB}{\omega_c^2 - \omega^2} \right)^2 \left[\omega^2 - \omega_c^2 + 2 \omega_c^2 \epsilon_x^2 - 2 \omega_c^2 \epsilon_y^2 + \frac{Re(\epsilon_x^* \epsilon_y)}{\omega \omega_c} \left(2 \omega^4 - \omega^2 \omega_c^2 + \omega_c^4 \right) \right].
\]

(49)

The wave function \(\Phi \) depends on the Landau \((\mu)\), and center guide \((k)\) indexes; however the spectrum \(\mathcal{E}^{(0)} \) is degenerate with respect to \(k \). It is important to notice that \(F(\omega) \) appear in the wave function phase, that depends only on time, hence its contribution to the expectation value of the momentum operator cancels exactly. Thus, contrary to what it is claimed in reference \(\mathcal{E} \), the effect of the Floquet dynamics (without including an extra effect such as impurity scattering) can not account for the explanation of the ZRS observed in recent experiments.

B. Impurity induced transitions.

In this appendix we consider the first order solution of the evolution operator \(U(t) \) given by

\[
U(t) = 1 - i \int_{-\infty}^t dt' \left[W^\dagger(t') W(t') \right]_1.
\]

(50)

The effect of the transformation induced by the \(W \) operator over the impurity potential can be easily evaluated considering the effect over the Fourier decomposition of \(V(r) \) given in Eq. \(\mathcal{E} \). Recalling that the \(x \) and \(y \) coordinates are written in terms of the new variables \((Q_1, P_1, Q_2, P_2)\) by means of Eq. \(\mathcal{E} \), and utilizing the transformation properties of the \((Q_1, P_1)\) operators in \(\mathcal{E} \), it is readily obtained

\[
W^\dagger(t) \exp\{i \mathbf{q} \cdot \mathbf{r}\} W(t) = \exp\{i B (q_x P_2 - q_y Q_2)\} \times \exp\{-i B (q_x Q_1 - q_y P_1)\} \times \exp\{i B [q_x (\zeta_1 + \eta_2) + q_y (\zeta_2 + \eta_1)]\}.
\]

(51)

Using Eqs. \(\mathcal{E} \), the third exponential in the previous equation can be recast in a compact form as \(\exp\{-i Re(\Delta \exp(i \omega t))\} \), with \(\Delta \) given in Eq. \(\mathcal{E} \); this expression can be expanded as

\[
\exp\{-i Re(\Delta \exp(i \omega t))\} = \sum_{l=-\infty}^{l=\infty} \left(\frac{\Delta}{i |\Delta|} e^{i \omega t} \right)^l J_l(|\Delta|),
\]

(52)

with \(J_l \) the Legendre polynomials. For the the second exponential notice that once that \(Q_1 \) and \(P_1 \) are replaced by the raising and lowering operators given in Eq. \(\mathcal{E} \), one is led to evaluate the matrix elements of the operator \(D(\tilde{q}) = \exp\left(\tilde{q} a_1^\dagger - \tilde{q}^* a_1 \right) \) that generates coherent Landau states. A calculation yields

\[
D^{\mu \nu}(\tilde{q}) = \langle \nu | D(\tilde{q}) | \mu \rangle = e^{-\frac{1}{2} |\tilde{q}|^2} \left\{ \begin{array}{ll}
(-\tilde{q})^{\mu-\nu} \sqrt{\frac{2^\mu}{\pi^\mu}} L_\mu^{\nu-\mu} (|\tilde{q}|^2), & \mu > \nu, \\
q^{\mu-\nu} \sqrt{\frac{2^\nu}{\pi^\nu}} L_\nu^{\mu-\nu} (|\tilde{q}|^2), & \mu < \nu,
\end{array} \right.
\]

(53)

where \(L_\mu^{\nu} \) are the generalized Laguerre polynomial. With all these provisions the matrix element of the solution of the evolution operator in \(\mathcal{E} \) can be worked out as

\[
\langle \mu | U(t) | \nu \rangle = \delta_{\mu \nu} - \sum_l e^{i (E_{\mu \nu} + \omega t)l} C^{(l)}_{\mu \nu},
\]

(54)

the explicit expression for \(C^{(l)}_{\mu \nu} \) was given in \(\mathcal{E} \).
C. Microwave-driven distribution function.

Within the time relaxation approximation the Boltzmann equation can be written as

$$\frac{df}{dt} + \frac{df}{p} \cdot (eE + ev \times B) = -\frac{f - f_F}{\tau_{tr}} - \frac{f - f_F}{\tau_{in}},$$

where \(f_F\) is the Fermi-Dirac distribution and we distinguish between the elastic \(\tau^{-1}_\text{el}\) and inelastic or energy relaxation rate \(\tau^{-1}_\text{in}\). Under experimental conditions: \(\tau_\omega \ll \tau_{tr} \ll \tau_{in}\), and certainly the inelastic processes can be safely ignored. Furthermore, due to the \(ac\)-electric field \(E\), the L.H. S. of the previous equation is estimated to be of order \(f/\tau_\omega\); hence, in a first approximation the elastic scattering contribution can also be neglected. The resulting Vlasov equation has the exact solution \(f(p,t) = f_F(p - m^*a v(t))\), where the velocity \(v(t) \equiv (\dot{\eta}_1, \dot{\zeta}_1)\) solves exactly the same classical equations of motion as given in \(f_F\), and the initial condition is selected as \(f \rightarrow f_F\) as the external electric field is switched-off. In particular it is verified that \(m^*|v(t)|^2/2 = E_{\text{rad}}\) coincides with the Floquet energy shift produced by the microwave radiation \(E\). The steady-state distribution, evaluated at the Landau energy \(E = E_\mu(0)\), is obtained by averaging \(f_F(p - m^*a v(t))\) over the oscillatory period

$$\langle f_F \rangle = \frac{1}{\tau_\omega} \int_0^{\tau_\omega} f_F \left(E_\mu(0) + E_{\text{rad}} + 2 \cos \omega_c t \sqrt{E_\mu(0) E_{\text{rad}}} \right) dt.$$

For the experimental conditions it is verified that \(E_{\text{rad}} \ll E_\mu(0)\), thus expanding to first order one finds \(\langle f_F \rangle \approx f_F \left(E_\mu(0) + E_{\text{rad}} \right) = f_F(E_\mu)\). Hence, it is verified that a rapid relaxation of the Fermi distribution to the quasi-energy states is a reasonable assumption. The arguments presented in this appendix have been introduced by Mikhailov\(^\text{14}\) in order to explore the possibility that the microwave radiation leads to a population inversion; however, it is concluded that it would require a rather high microwave intensity \(E_{\text{rad}} > E_F\).

D. Dark and Hall conductivities.

In section \(\text{II}\) it was explained in detail the method to obtain the final expression for the microwave induced magnetoresistance Eq. \((35)\). Working along a similar procedure the expression for the remaining conductivities are worked from equations \((32)\) and \((33)\). First we quote the longitudinal dark conductance

$$\sigma_{xz}^D = \frac{e^2 \omega_c^2}{\pi \hbar} \sum_\mu \int d\mathcal{E} \Im G_\mu(\mathcal{E}) \frac{df}{d\mathcal{E}} \Im G_\mu(\mathcal{E} + \omega_c),$$

whereas the dark Hall conductance is given by

$$\sigma_{xy}^D = \frac{e^2 \omega_c^2}{\pi \hbar} \sum_\mu \int d\mathcal{E} \Im G_\mu(\mathcal{E}) \left[f(\mathcal{E}_\mu - \omega_c) - f(\mathcal{E}_\mu) \right] \frac{1}{(\mathcal{E} - \mathcal{E}_\mu + \omega_c)^2},$$

where \(P\) indicates the principal-value integral. The impurity assisted contributions require an additional average over the impurity distribution, it is assumed that the impurities are no correlated. The final result for the microwave assisted longitudinal conductivity was quoted in Eq. \((35)\). Following a similar procedure the microwave assisted Hal conductivity is calculated to give

$$\langle \sigma_{xy}^D \rangle = \frac{e^2 \omega_c^2}{\pi \hbar} \sum_{\mu \nu} \sum_l \Im G_{\mu \nu}(\mathcal{E}) \left[f(\mathcal{E}_\nu) - f(\mathcal{E}_\mu) \right] \left\{ \delta_{\mu \nu} \left(\rho_1^2 \delta_{l,1} + \rho_2^2 \delta_{l,-1} \right) + \rho_{\text{imp}} \int d^2q T(q) \left| \tilde{J}_l(\Delta) V(q) D_{\mu \nu}(\tilde{q}) \right|^2 \right\},$$

were the function \(T(q)\) is defined as

$$T(q) = \omega_c^3 \int_B \frac{q_x^2 + q_y^2}{(\mathcal{E} + \omega l - \mathcal{E}_\nu) \left| (\mathcal{E} + \omega l - \mathcal{E}_\nu)^2 - \omega_c^2 q^2 \right|^2}.\)
E. Landau density of states.

A detailed calculation of the density of states incorporating all the elements that contribute to the system under study is beyond the scope of the present paper. However, it can be argued that the expression given in Eq. (57) for the DOS is expected to be a reasonable selection under some consistent approximations. Let us consider the Green's function associated with the Hamiltonian $H + \Delta V$, where H is given in (11) and $\Delta V = W^1 V W$ is the subtracted part of the disorder potential [25]. As explained in section (11), the Kubo formula [32, 33] was deduced using the wave function obtained after the three transformations in Eq. (16) are applied to the Landau states. Hence, ΔV is transformed according to $\Delta V(t) = U_f^\dagger(t - t_0) \exp(iH_0t) W(t) \Delta V W^\dagger(t) \exp(-iH_0t) U_f(t - t_0)$ (see Eq. (24)). Notice that: (i) the W transformation cancels exactly, (ii) both ΔV and the first order correction to $U_f(t - t_0)$ are proportional to V, hence considering linear terms on V we can set $U_f(t - t_0) \approx 1$, (iii) finally when evaluated in the $|\mu\rangle$ base and neglecting inter-Landau mixing, the contributions from $\exp(-iH_0t)$ cancels out. Hence $\Delta V \approx V(r)$, and the problem under consideration reduces to evaluate the density of states produced by a magnetic field and a disorder potential $V(r)$ of the form given in Eq. (3); but this is precisely the problem considered some ago time by Andreev and Gerhardts [34], the density of states is well represented by the Gaussian expression in (57), and the level broadening neglecting couplings between different Landau levels is taken from reference [33]:

$$\Gamma_\mu = 8 \pi l_B^2 n_{imp} \int \frac{d^2 r}{2\pi l_B^2} \int \frac{d^2 r'}{2\pi l_B^2} V(r)V(r') \left[D^{\mu\mu} \left(|r - r'|/(\sqrt{2}l_B)\right)\right]^2,$$ \hspace{1cm} (59)

where $D^{\mu\mu}$ is given in [33]. For the delta short range scatterers the previous expression is readily evaluated yielding the result in (57) with $\beta_\mu = 1$. In the case of the charged impurity disorder, after the substitution of the Fourier decomposition (3) and using Eq. (40) it is verified that Γ_μ is again given by the expression in Eq. (57), but the factor β_μ is given by

$$\beta_\mu = 16\pi (k_F d)^3 \int_0^\infty \frac{dq}{q} \exp\left[-\frac{\sqrt{2} q}{l_n}\right] \left[D^{\mu\mu}(q)\right]^2 dq.$$ \hspace{1cm} (60)

Previous analysis of the Landau level broadening were carried out, for example [30], for a Gaussian potential $V(r) \sim e^{-r^2/d^2}$, however as mentioned in section (IV) the actual situation corresponds to a screened potential that in real space has a r^{-3} decay for large r. As mentioned in section (III) the value of β_μ decreases for higher Landau levels. For example for the selected parameter, we have: $\beta_0 = 108$, $\beta_{30} = 14$, $\beta_{50} = 11$.

F. Approximated one-photon exchange photoconductivity.

The microwave induced longitudinal [35] conductivity requires the numerical evaluation of a time consuming integral given by

$$S_1 = \int d^2 q K(q) \left|J_i(|\Delta|) V(q) D_{\mu\nu}(\tilde{q})\right|^2.$$ \hspace{1cm} (58)

However, if we consider the regime of moderate microwave intensity and assuming neutral impurity scattering, a very useful analytical approximation can be worked out. For neutral impurity scatterers, the potential is assumed to be of the short range delta form, hence the Fourier coefficient in (3) is given by $V(q) = 2\pi \hbar^2 \alpha/m^*$. The $D_{\mu\nu}(\tilde{q})$ term contains an exponential factor that represents a cut off for large q. Then according to Eq. (28) for moderate values of the microwave electric field the Δ term is small and the leading contributions arises from the $l = \pm 1$ factors that correspond to the single photon exchange contribution. Using the approximation $J_i(z) \approx z/2$ one is lead to evaluate

$$S_{\pm 1} = \frac{2\pi \hbar^2 \alpha}{m^*} \int d^2 q K(q) |\Delta|^2 |D_{\mu\nu}(\tilde{q})|^2.$$ \hspace{1cm} (61)

The angular integration is straightforward, while the integral over the $q = \sqrt{q_x^2 + q_y^2}$ leads, after a change of variable $\xi = q^2$ to an integral of the form

$$\int_0^\infty d\xi e^{-\xi} \xi^{\mu - \nu + 2} \left(L_\nu^{-\nu}\right)^2,$$ \hspace{1cm} (62)
that is explicitly evaluated with the help of the recurrence relation \(xL_n^k = (2n + k + 1)L_n^k - (n + k)L_{n-1}^k - (n + 1)L_{n+1}^k \) and the integral:

\[
\int_0^\infty d\xi e^{-\xi^k} L_n^k L_m^k = \frac{(n + k)!}{n!} \delta_{mn}.
\] (63)

The final result reads

\[
S_{\pm 1} = \frac{\pi \hbar^2 \alpha \omega^2 |E|^2 I_{\mu\nu}}{8m^*\omega^2}\left[\omega^2(1 + 2|\epsilon_x|^2) + \omega_c^2(1 + 2|\epsilon_y|^2) - 8\omega_c Im(\epsilon_y^*\epsilon_x) \right],
\] (64)

where

\[
I_{\mu\nu} = 6 \left(\mu + \frac{1}{2} \right) \left(\mu + \frac{1}{2} \right) + (\mu - \nu)^2 + \frac{1}{2}.
\] (65)

These expressions greatly simplify the numerical calculations, and as it is discussed in section (IV) they provide a very accurate approximation to the exact result.

Acknowledgments

We acknowledge the partial financial support endowed by CONACyT through grants No. 42026-F and 43110.
33 T. Dittrich, P. Hanggi, G. L. Ingold, B. Kramer, G. Schon, W. Zwerger, “Quantum transport and dissipation”, Wiley-VCH (1998).
34 S. A. Mikhailov, cond-mat/0405136 (2003).
35 M. Abramowitz, I. A. Stegun, “Handbook of mathematical functions”, Dover Publications, Inc. New York (1972).