Review Article

Čižmáriková Ružena, Valentová Jindra*, Horáková Renáta

Chirality of β₂-agonists. An overview of pharmacological activity, stereoselective analysis, and synthesis

https://doi.org/10.1515/chem-2020-0056
received November 27, 2019; accepted April 1, 2020

Abstract: β₂-Agonists (β₂-adrenergic agonists, bronchodilatants, and sympathomimetic drugs) are a group of drugs that are mainly used in asthma and obstructive pulmonary diseases. In practice, the substances used to contain one or more stereogenic centers in their structure and their enantiomers exhibit different pharmacological properties. In terms of bronchodilatory activity, (R)-enantiomers showed higher activity. The investigation of stereoselectivity in action and disposition of chiral drugs together with the preparation of pure enantiomer drugs calls for efficient stereoselective analytical methods. The overview focuses on the stereoselectivity in pharmacodynamics and pharmacokinetics of β₂-agonists and summarizes the stereoselective analytical methods for the enantioseparation of racemic beta-agonists (HPLC, LC-MS, GC, TLC, CE). Some methods of the stereoselective synthesis for β₂-agonists preparation are also presented.

Keywords: 2-agonists, stereoisomers, pharmacological activity, stereoselective analysis, stereoselective synthesis on adrenergic receptors or by indirect action, causing flushing of endogenous catecholamines, with subsequent limitation of their backflushing. Natural transmitters are noradrenaline and, to a lesser extent, adrenaline. Isoprenaline (isoproterenol) was prepared as one of the first synthetic sympathomimetic amines, which is structurally related to adrenaline and acts almost exclusively on β-adrenergic receptors. A key role in inducing β-responsive is considered the activation of adenyl cyclase with subsequent increased production of cyclic adenosine monophosphate (AMP). The mechanism of cAMP’s action consists of activating protein kinases. Activated protein kinases transfer gamma-phosphate from AMP to various proteins, phosphorylating them by binding them to serine or threonine, while changing their activity. Binding to the β₁-receptors of these substances is manifested by narrowing the peripheral vessels in the skin and mucous membranes, acceleration of heart activity, and increase in blood pressure. Binding to the β₂-receptors is associated with bronchodilation, uterine relaxation, and skeletal muscle glycogenolysis [1–3]. The presented overview focuses on stereochemical aspects of β₂-agonists which are nowadays, along with corticoids, one of the most effective drugs in asthma therapy. In the case of β₂-agonists, bronchospasm is being released in contrast to corticosteroids, in the case of which the inflammation process is suppressed in the asthma therapy [4,5].

According to the action of the bronchodilatory effect, they are divided into β₂-agonists that are as follows:

short-acting – salbutamol, levosalbutamol, terbutaline, pirbuterol, procaterol, fenoterol
long-acting – salmeterol, formoterol, bumberterol, mabuterol, clenbuterol;
ultra-long-acting – indacaterol, olodaterol, vilanterol, carmoterol, abediterol [6,7].

In addition to these β₂-agonists, naturally occurring β-agonists such as adrenaline (epinephrine), the suprarenal gland hormone, and ephedrine, an alkaloid, are

1 Introduction

β₂-Agonists (sympathomimetic drugs, adrenergic drugs, and adrenomimetic drugs) produce effects similar to the stimulation of sympathetic nerves. They induce stimulation of the sympathetic nervous system either by direct
also used in the treatment of asthma [8]. The overview focuses on β₂-agonists from the aspect of their stereogenic configuration, especially with regard to their optically active stereoisomers. Chemical IUPAC names of presented β₂-agonists are listed in Table 1.

Chemically, β₂-agonists represent a single group with a side aminoethanol chain. The aromatic nucleus is substituted with hydroxyl groups that are either in the 3,4-positions (isoprenaline and hexoprenaline) or in the 3,5-positions (fenoterol, reproterol, orciprenaline, and terbutaline). For some β₂-agonists, the phenolic OH group is substituted with hydroxyethyl (salbutamol and salmeterol).

There is one stereocenter in the structure of these drugs, with two optically active forms of (R)-(−) and (S)-(+) in individual drugs that differ in pharmacological and pharmacokinetic properties.

The differences in the structure of the two enantiomers can be seen in the orciprenaline structure (Figure 1).

In the case of multiple stereocenters, several stereoisomers can be distinguished, e.g., ritodrine or fenoterol with two stereocenters form four stereoisomers, and they cannot all be nonsuperimposable mirror images of each other (Figure 2). These stereoisomers (diastereoisomers) differ in their physicochemical properties unlike enantiomers.

The mechanism of action of the individual enantioomers is explained through a stronger binding to the β₂-receptor upon the interaction of the more efficient isomer at the receptor sites under precisely defined stereocchemical conditions. By using the X-ray structural analysis, the interpretation of the Easson–Stedman hypothesis [9] was confirmed in many β₂-agonists. The crucial binding sites are mainly linked to three functional groups, such as the amino group, the hydroxyl group of the side chain, and the substituted aromatic nucleus.

Mesecar and Koshland in 2000 proposed a four-point model that is suitable for the receptor binding site [10,11].

The receptor to which β₂-agonists bind is a protein macromolecule composed of seven transmembrane helixes with three intracellular and three extracellular loops. A schematic structural model of the β-adrenoceptor, highlighting the agonist and antagonist binding regions, is shown in Figure 3. The β-adrenoceptor agonists bind to a hydrophobic pocket or active site located approximately 30–40% into the depth of the receptor. This location corresponds to the predicted location of the several amino acid residues that are critical in the binding of adrenaline [12,13]. Aspartate 306 in helix 3 forms a salt bridge with the amine of adrenaline. Serine 204 and 205 in helix 5 interact with the two hydroxyl groups of an aromatic ring.

Table 1: Chemical IUPAC names of selected β₂-agonists

Drug	Chemical Name
Albuterol	4-(2-(tert-Butylamino)-1-hydroxyethyl)-2-(hydroxymethyl)phenol
Abediterol	5-((1R)-2-[6-(2,2-Difluoro-2-phenylethoxy)hexylamino]-1-hydroxy-ethyl)-8-hydroxy-1H-quinolin-2-one
Bambuterol	5-(2-(tert-Butylamino)-1-hydroxyethyl][benzene-1,3-diyl-bis(dimethylether)carbamate)
Formoterol	N-(2-Hydroxy-5-((1R)-1-hydroxy-2-((2R)-1-(4-methoxyphenyl)propan-2-ylamino)ethyl)-1H-quinolin-2-one
Indacaterol	5-((1R)-2-((5,6-Diethyl-2,3-dihydro-1H-inden-2-ylamino)-1-hydroxyethyl)-8-hydroxy-1H-quinolin-2-one
Isosuxpine	4-((1-Hydroxy-2-(1-phenoxyp propane-2-ylamino)propyl)phenol
Mabuterol	1-[4-Amino-3-chloro-5-(trifluoromethyl)phenyl]-2-(tert-butylamino)-ethanol
Olodaterol	6-Hydroxy-8-((1R)-1-hydroxy-2-(1-(4-methoxyphenyl)-2-methylpropan-2-ylamino)ethyl]-3,4-dihydro-2H-1,4-benzoxazin-3-one
Orciprenaline	5-[1-Hydroxy-2-[1-(4-hydroxyphenyl)propan-2-ylamino]ethyl]benzene-1,3-diol
Salbutamol	2-(Hydroxymethyl)-4-([1-hydroxy-2-[6-(4-phenylbutoxy)hexylamino]-ethyl]phenol
Bambuterol	4-((1R)-2-[6-(2,6-Dialkoxyphenyl)methoxy)ethoxy][hexylamino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol
Trantinterol	2-[4-Amino-3-chloro-5-(trifluoromethyl)phenyl]-2-(tert-butylamino)-ethanol
Terbutaline	5-[2-(tert-Butylamino)-1-hydroxyethyl]benzene-1,3-diol

![Figure 1: Two stereoisomers of orciprenaline.](image-url)
Phenylalanine 517 and 508 interact with the aromatic nucleus of adrenaline through van der Waals forces. In terms of efficacy, the hydroxyl group on the stereogenic carbon in the side chain is important. It forms a hydrogen bond with serine 413 on helix 4.

Binding interactions to individual amino acids in the β2-receptor were also described in the case of noradrenaline and other β2-agonists [14,15].

A deeper study of bindings on the β-receptor enabled the resolution of the β2-receptor’s by X-ray structural analysis [16,17]. Molecular interactions between fenoterol stereoisomers and derivatives and the β2-adrenergic receptor binding site were studied by docking and molecular dynamics simulations [18–20]. Docking studies indicate that the hydroxyl group at the first chiral center of the ligand creates hydrogen bonds with Asp113 or/and Asn312 in the case of (R,*) stereoisomers mainly. Molecular dynamics simulations confirm the existence of the stereoselective effects accompanying the ligand–receptor interactions, namely, different stereoisomers exhibit diverse conformational behaviors and distances between characteristic ligand–receptor atom–atom pairs. Stereochemistry of fenoprofen molecule also affects the coupling of the receptor to different G proteins. In a rat cardiomyocyte contractility model, (R,R')-fenoprofen was shown to selectively

Figure 2: Chemical structures of ritodrine stereoisomers.

Figure 3: Schematic diagram of the β-adrenoreceptor and its binding domain for agonist (☆) and antagonist (✪). Helices are individually numbered, and the approximate dimension of the receptor is marked in Angstroms (Å). (a) (Side-view) It shows a cut-away view of the seven-transmembrane α-helices of the β-adrenoreceptor seen from the plane of the membrane lipid bilayer. (b) (Top view) It shows the same beta-adrenoreceptor viewed from the extracellular space. (c) It shows an expanded detail of the ligand-binding site for agonists formed by helices 3, 4, 5, and 6, during binding of adrenaline. Reproduced with the permission of the © ERS 2020: European Respiratory Journal 7(3):569–78; Published 1 March 1994 [12].
activate Gs protein signaling while the \((S,R')\)-isomer activated both Gi and Gs protein. The overall data demonstrate that the chirality at the two chiral centers of the fenoprofen molecule influences the magnitude of binding affinity, thermodynamics of local interactions within the binding site, and the global mechanism of \(\beta_2\)-adrenergic receptor activation. The marketed product is the racemic mixture of the \((R,R';S,S')\)-fenoterol (Figure 4) which was selected after initial development studies, demonstrating that this racemic mixture was 9–20-fold more active than the \((R,S';S,R')\)-fenoterol racemate [20].

\[\text{Figure 4: Chemical structures of more active isomers of fenoterol.} \]

2 Stereoselective pharmacological effects of \(\beta_2\)-agonists

\(\beta_2\)-Agonists have been used in treating asthma and obstructive pulmonary disease (COPD) for a long time. Long-acting \(\beta_2\)-agonists are effective in the prevention of COPD and bronchial asthma exacerbation induced by a viral infection, including infection with coronaviruses (HCoV-229E). Recently, it has been found that formoterol inhibited HCoV-229E replication partly by inhibiting receptor expression and/or endosomal function, and it could modulate infection-induced inflammation in the airway [21].

Based on more recent indications, \(\beta_2\)-agonists are also used for alleviating symptoms in amyotrophic lateral sclerosis [22].

They were mostly used in the form of racemates with a 50:50 ratio of \((R)\)- and \((S)\)-isomer. Their therapeutical effects were described in various overviews and publications [3–8,23–34]. Due to the chirality of \(\beta_2\)-agonists, the pharmacological properties of their single stereoisomers were also studied. Some of them are already in clinical practice as pure enantiomers (levalbuterol, arformoterol, indacaterol, olodaterol, and vilanterol). The bronchodilatory activity of most \(\beta_2\)-agonists is higher in the \((R)\)-isomer. Studies made on different animal models confirmed significantly higher bronchodilatory and antidepressant activity of \((R)\)-enantiomer of clenbuterol, albuterol, formoterol, and terbutaline [23]. In some cases in treating asthma and obstructive pulmonary disease, only this stereoisomer is used (levalbuterol – \((R)\)-form of albuterol, arformoterol – \((R,R)\)-form of formoterol) [23–25].

Albuterol also known as salbutamol is largely used as bronchodilators in the management of asthma, both in control of acute symptomatic attacks and chronic, long-term prevention and management. Levalbuterol (levosalbutamol) is the \((R)\)-isomer (Figure 5) of albuterol. Its \(\beta\)-adrenoreceptive activities were about 80 times more efficient than activities of \((S)\)-enantiomer [26]. Compared with the racemate, it has a much higher effect on respiratory diseases. Its preferential use has not even been altered by several preclinical and \textit{in vitro} studies in adults and children with asthma, which confirmed that the \((S)\)-enantiomer is not inert but has a pro-inflammatory effect [27]. The racemate of albuterol is still being widely used in comparison with levalbuterol to treat acute asthma exacerbations. Levalbuterol is recommended for severe asthma diseases, although many works indicate conflicting opinions concerning its use [28–30].

In formoterol that has two stereocenters, effects of the enantiomers of formoterol on inherent and induced tone in isolated human bronchi with that on guinea-pig trachea \textit{in vitro} were compared. In both human bronchus and guinea-pig trachea, \((S,S)\)-formoterol was more than 1,000 times less potent than \((R,R)\)-formoterol. Thus, the relaxing effect of formoterol in human airways and guinea-pig trachea was shown to lie with the \((R,R)\)-enantiomer [31].

The \((R,R)\)-isomer of arformoterol (Figure 6), indicating a high activity, has recently been introduced into the clinical practice [32].

Salmeterol (Figure 7) belongs to the long-acting \(\beta_2\)-agonists used in clinical practice as a racemate [33]. Clinical studies evaluating the efficacy of this \(\beta_2\)-agonist in the maintenance treatment of asthma demonstrated that salmeterol was more effective than albuterol.

\[\text{Figure 5: Chemical structures of (a) \((RS\)\)-(\(\pm\)) albuterol (salbutamol) and (b) \((R)\)-(\(-\)) albuterol (salbutamol).} \]
(short-acting β₂-agonist) in improving pulmonary function and controlling asthma symptoms [34]. For salmeterol, β₂-adrenoceptor pharmacological activity (B2ADR) resides in (R)-salmeterol, while (S)-salmeterol is generally considered to be inert at this target. The difference in B2ADR activity between (R)- and (S)-salmeterol has been reported to be approximately 40-fold [35] less than for other β₂-agonists.

Isoxsuprine has three stereogenic centers (Figure 8), and theoretically, eight stereoisomers can be created. It stimulates β-receptors, and it is known as a vasodilator and a tocolytic with anti-inflammatory and hemorheological properties [36,37]. In the in vivo model of stroke, its neuroprotective effect has also been shown [38]. Studies of bindings confirmed that (−)-Isoxsuprine has higher activity than (+)-Isoxsuprine in the binding on the α-receptor, while the (+) isomer has an affinity similar to the β-blocker propranolol [39].

The long-acting bambuterol is used to treat asthma (Figure 9). Structurally, it is a biscarbamate which, as the form of a prodrug, can be hydrolyzed by butyrylcholinesterase and transitioned to an active form of terbutaline. The study found that (R)-bambuterol inhibited butyrylcholinesterase 5-fold faster than the (S)-isomer. The (R)-isomer is more active in response to histamine-induced asthma. Both isomers increase the heart rate [40–42].

Many of the β₂-agonists show anabolic activity, and their use is banned in certain types of sports [43]. This may concern clenbuterol (Figure 10), for which the anabolic activity of individual (R)- and (S)-stereoisomers was monitored. The activity was monitored by measuring the tissue mass and determining the protein content. The results showed that both stereoisomers had the same anabolic activity, but (S)-(+) -clenbuterol exhibited a significant increase in the mass of the heart muscle [44].

Trantinterol (also known as SPFF) and mabuterol (Figure 11) were prepared as potent long-acting bronchodilators with relatively higher β₂-adrenoceptor selectivity. The affinity of (−)-enantiomer of trantinterol to β₂-adrenoceptor was 6- and 164-fold greater than that of (±)- and (+)-trantinterol, respectively. In addition, the isomeric difference of overall selectivity between (−)-enantiomer and (+)-enantiomer was 10.7-fold for lung versus atria [45].

Many of the β₂-agonists have found use in tocolytic therapy, particularly in the risk of premature birth or in miscarriage, due to the higher selectivity for inhibition of uterus contractions [46]. Ritodrine is a short-acting β₂-agonist with a hydroxyphenol group on a basic nitrogen forming a hydrogen bond. Since ritodrine has a bulky N-substituent, it has high β₂ selectivity. It is used as a tocolytic drug [47,48]. In animal experiments, the (−)-ritodrine showed 40 times higher contractions of the uterus than the (+)-enantiomer [49]. In terms of stereochromy, diastereoisomers of ritodrine in pregnant women were studied, and the duration of...
pregnancy was compared in women expecting one child with women expecting twins. The differences were observed in the serum concentration of (−) and (+)-ritodrine [50].

Indacaterol [51–53] and carmoterol, containing in lipophilic part a carbostyril skeleton, are ultra-long-acting β2-agonists (Figure 12) that are well tolerated. They have a rapid onset of action, and their long duration of action allow them to be administered once a day. Indacaterol is used in therapeutic practice as pure (R)-enantiomer and carmoterol as the (R,R)-form [54,55].

Abediterol (Figure 13) is a novel long-acting β2-adrenoceptor agonist currently in development for once-daily combination maintenance therapy of asthma and chronic obstructive pulmonary disease (COPD). In the preclinical stage, abediterol exhibited (5–20)-fold higher activity when compared with other bronchodilators [56].

In the case of vilanterol, the basic nitrogen contains a bulky chain with substituted phenyl and two ether oxygens, something that differentiates it from salmeterol [57]. This group also includes olodaterol with the dihydrobenzoxazine skeleton in the lipophilic and hydrophilic parts of the molecule with substituted hydrogen in 2-methylpropan-2-yl methoxyphenyl [56]. Vilanterol and olodaterol have 1 stereocenter with the (R)-configuration in their structures (Figure 14).

3 Stereoselective pharmacokinetics of β2-agonists

Although β2-agonists have been used in clinical practice as racemic mixtures for a long period, the data on stereoselective pharmacokinetics are incomplete for the β2-agonists.

β-Agonists are absorbed from the gastrointestinal tract by diffusion in which individual enantiomers behave differently. The plasma concentrations of the enantiomers of anti-asthma drugs may differ as a reflection of stereoselectivity in clearance, the volume of distribution, and the route of administration [58].

Enantioselectivity of salbutamol in plasma was also evident in experiments on horse models, where the values for the (S):(R) ratio were 1.25 and 1.14. Enantioselectivity was not observed in pulmonary lining fluid and the central lungs [59].

In the case of terbutaline, different bioavailability was detected [60]. In human studies, the bioavailability calculated from the plasma values was 7.5% for the (R)-(+)‐terbutaline and 14.8% for the (S)-(−)-terbutaline. These differences indicate differences in absorption for both enantiomers of terbutaline and their first-pass metabolism. Bioavailability of the racemate was similar to the (S)-(−)-enantiomer [61–63].
The distribution of β₂-agonists is closely related to their physical and chemical properties. For hydrophilic compounds, their binding to plasma proteins is negligible. For lipophilic β₂-agonists, such as clenbuterol, the binding on plasma proteins is 97% [64]. Indacaterol is relatively highly bound to plasma proteins regardless of concentration. No stereoselective binding on plasma proteins has been reported with albuterol [65].

Interesting results were found by Boulton [66] in the study of transplacental albuterol distribution after administration to women before the caesarean section. The (R):(+)-albuterol ratio in cord plasma was significantly lower than in maternal plasma. The distribution of (S)/(R)-enantiomers of albuterol in plasma and skeletal and cardiac muscle was compared in animal models using more recent analytical methods (LC-MS/MS) [67]. The results confirmed higher distribution of the (R)-enantiomer in individual muscles when compared with the plasma, which is of importance for anti-doping assessments. Jacobson et al. [68] observed an enantioselective distribution of salmeterol in the central part of the lungs. (R)-enantiomer exhibited about 30% higher distribution than (S)-enantiomer.

Metabolism of β₂-agonists induces sulfation and glucuronidation, which differs from the β₂-agonist type, e.g., albuterol and salbutamol are biotransformed by sulfation into an ineffective metabolite (Figure 15), whereas fenoterol induces glucuronidation in addition to sulfation, and the case of formoterol, it is only glucuronidation. Glucuronidation of formoterol occurs at the phenolic position as well as the formation of a benzyl glucuronide (Figure 16) [69–71].

The racemate of salbutamol undergoes stereoselective sulfation by sulfotransferases mainly in the intestine and liver, and it has been found that (S)-salbutamol is retained in the body longer and reaches higher plasma levels than (R)-salbutamol [71,72]. (R)-Salbutamol is metabolized up to 12 times faster than (S)-salbutamol. Following oral or inhaled administration of enantiomerically pure salbutamol, a small quantity (6%) is transferred to the second enantiomer, probably through acid-catalyzed racemization in the stomach [73]. Indacaterol also undergoes glucuronidation, where the most common metabolites are 8-<i>O</i>-<i>a</i>-<i>N</i>-glucuronides [74].

Some β₂-agonists reported enantioselectivity in renal clearance. Following intravenous administration of albuterol in the form of the racemate and individual enantiomers, clearance exceeded creatine clearance. Renal clearance of (R)-albuterol is 2- to 3-fold higher than (S)-albuterol [75]. Differences in renal clearance were studied also in the case of terbutaline. The statistically significant value for intravenous and oral administration of (+)-terbutaline was slightly higher than for (−)-terbutaline [63].

4 Stereoselective analysis of β₂-agonists

The investigation of stereoselectivity in action and disposition of chiral drugs together with the preparation of pure enantiomer calls for efficient stereoselective analytical methods.

Methods for separation and quantification of the isomers in biological samples are also desirable for
Table 2: Direct chromatographic enantioseparation of β-agonists

Methods	CSP	Analyte	Mobile phase	Matrix	Reference	
Macrocyclic antibiotic-based CSP						
LC-MS/MS (ESI)	Chirobiotic T	Fenoterol	Methanol with 0.2% acetic acid and 0.01% triethylamine	Human plasma	80	
			Methanol–water (20:80, v/v) with 20 mM ammonium acetate and 0.005% formic acid	Human plasma	92	
LC-MS/MS (ESI)	Chirobiotic T	Bambuterol	Methanol–water (10:90, v/v)	Methanol–water (10:90, v/v)	Human plasma	93
LC-MS/MS (APCI)	Chirobiotic T	Terbutaline	Methanol–water (10:90, v/v)	Methanol–water (10:90, v/v)	Human plasma	94
LC-MS/MS (ESI)	Chirobiotic T	Cilenbuter	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	95
LC-MS/MS (ESI)	Chirobiotic T	Salbutamol	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	96
LC-MS/MS (ESI)	Chirobiotic T	Salbutamol, sulfate metabolite	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	97
LC-MS/MS (ESI)	Chirobiotic T	Salbutamol	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	98
Polysaccharide-based CSP						
LC-UV (λ = 230, λ_em = 310)	Chirobiotic T	Salbutamol	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	99	
LC-MS/MS (ESI)	Chirobiotic T, chirobiotic V	Salbutamol	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	100	
LC-UV (λ = 234 nm)	Chirobiotic V	Mabuterol	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	101
LC-UV (λ = 280 nm)	Chirobiotic V	Salbutamol, terbutaline	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	102
LC-MS/MS (ESI)	Chirobiotic V	Trantinterol	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	103
LC-MS/MS (ESI)	Chirobiotic V	Trantinterol	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	104
LC-MS/MS (ESI)	Chirobiotic V	Trantinterol	Methanol–water (20:80, v/v)	Methanol–water (20:80, v/v)	Human plasma	105
Protein-based CSP						
LC-UV (λ = 234 nm)	Chiralpak AS-H	Trantinterol	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	106	
LC-UV (λ = 250 nm)	Chiralpak AD, Chiralcel OD	Isosuprime	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	107	
LC-UV (λ = 234 nm)	Chiralpak AD Chiralcel OD	Bambuterol salbutamol	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	108	
LC-UV (λ = 234 nm)	Chiralpak AD Chiralcel OD	Bambuterol salbutamol	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	109	
LC-UV (λ = 234 nm)	Chiralpak AD Chiralcel OD	Bambuterol salbutamol	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	110	
LC-UV (λ = 276 nm)	Chiral-AGP	Salbutamol	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	111	
LC-UV (λ = 300 and 630 mV)	Chiral-AGP	Formoterol, glucuronide conjugate	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	112	
LC-UV (λ = 700 mV)	Chiral-CBH	Salmeterol, o-hydroxy salmeterol	Methanol–water (20:80, v/v) with 0.01% triethylamine	Human plasma	113	

Chirality of β-agonists. An overview

635
pharmacological studies, pharmacokinetic studies, and therapeutic drug monitoring [76–78]. Recently, the enantioseparation of chiral pharmaceuticals in the environmental matrices becomes more important. Concerning biodegradation and environmental fate, the recognition of enantioselectivity is essential to provide a more realistic risk assessment of chiral compounds [79].

Several different technologies have been reported for the enantioseparation of β2-agonists enantiomers, including predominantly liquid chromatography (LC, HPLC) using chiral stationary phase (CSP) [80] or derivatizing reagents [81] as well as GC, TLC, and capillary electrophoresis (CE) using cyclodextrins or their derivatives as chiral selectors [63,82].

4.1 Stereoselective liquid chromatographic analysis of β2-agonists

4.1.1 Direct chiral chromatographic separation

Generally, chiral separation can be carried out by (a) direct separation of the enantiomers using CSPs or chiral mobile additives or (b) indirect separation by conversion of the enantiomers to diastereoisomers using a chiral reagent followed by chromatography on a chiral column [82,83].

Direct chromatographic enantioseparation on CSP has appeared as the most effective and convenient way of determining the enantiomeric composition of chiral drugs. Different structural types of CSPs including the π-donor/acceptor phases (Pirkle phase) [84], derivatized polysaccharides [85], proteins [86], β-cyclodextrin [87], and macrocyclic antibiotics [88] were utilized for the enantiomeric separation of β2-agonists (Table 2).

The following molecular interactions with CSP are supposed to play a role in chiral discrimination of enantiomers: H-bonding, π–π interaction, hydrophilic, dipole–dipole, and steric interactions [89]. The possible interactions between analytes depend on the type of CSP and mobile phase selection, which determines that enantiomers fit into the three-dimensional structure of sorbent [90].

In earlier applications of HPLC stereoisomers, the analysis was performed using ultraviolet (UV) and fluorescence detection (FLD). Currently, the liquid chromatography and mass spectrometry (LC-MS, LC-MS/MS) applications are utilized. Using tandem mass spectrometry assays allows for increasing the sensitivity
without losing enantioselectivity [91]. Furthermore, HPLC combined with tandem mass spectrometry is particularly attractive for the simultaneous quantification of drug molecules and their metabolites in biological matrices.

Several papers have recently reported direct liquid chromatography enantioseparation methods for β2-agonists in biological fluids. The majority of enantioseparation was performed on CSP based on macrocyclic antibiotics (teicoplanin and vancomycin).

The fenoterol enantiomers were determined in plasma using a sensitive chiral LC-MS/MS method [80]. Enantiomers of fenoterol were separated ($R_s = 1.4$) on Astec Chirobiotic T analytical column containing teicoplanin as a chiral selector. The mobile phase was methanol containing 0.2% acetic acid and 0.01% triethylamine. The method was validated and applied to study the bioavailability of fenoterol after oral administration of the single enantiomer formulation and after the administration of the racemic formulation. The results showed a potential pre-systematic enantioselective interaction, in which (S,S)-fenoterol reduces the sulfation of the active (R,R’)-fenoterol.

The LC-MS/MS method using Astec Chirobiotic T-chiral column was developed for the simultaneous determination of bambuterol (bis-dimethylylcarbamate prodrug of terbutaline), its metabolite–monocarboxamate bambuterol and terbutaline enantiomers in human plasma. Enantioseparation was performed under isocratic elution with a mobile phase consisting of methanol and water with the addition of 20 mM ammonium acetate and 0.005% (v/v) formic acid. The method was successfully applied to an enantioselective pharmacokinetic study of racemic bambuterol [92].

The similar LC-MS/MS method using a teicoplanin-based column for the analysis of bambuterol, and its active metabolite terbutaline enantiomers in plasma samples was described by Luo et al. and Xia et al. [93,94].

The chiral chromatography assay (LC-MS/MS with Chirobiotic column) was utilized for the study of enantioselectivity in the disposition of clenbuterol following the administration of clenbuterol racemate to rats. The results indicated that there are differences in the distribution and excretion of the clenbuterol enantiomers, and these may be predominantly due to enantioselective protein binding [95].

The enantiomers of salbutamol in porcine urine samples were assayed using the Chirobiotic T column with a mobile phase constituted of 5 mM ammonium formate in methanol. The sequential solid-phase extraction sample clean up method for the determination of salbutamol in porcine urine was developed. Enantiomers of salbutamol were detected and quantified by the LC-ESI-MS/MS method [96].

Teicoplanin as a chiral selector served for the determination of the enantiomers of salbutamol and its 4-O-sulphate metabolite in human plasma and urine [97].

Wu et al. [98] presented an automated chiral LC-MS/MS method for the determination of salbutamol in dog plasma. The method employed on-line sample extraction using turbulent flow chromatography coupled to a Chirobiotic T column with a polar organic mobile phase–methanol, 0.02% formic acid, and 0.1% ammonium formate.

Detection and determination of low levels of salbutamol enantiomers in dog plasma were also achieved on the teicoplanin CSP using HPLC analysis with fluorescence detection [99].

Chiral liquid chromatography methods with teicoplanin and vancomycin CSP were applied for the analysis of enantiomers of salbutamol and other pharmaceuticals in environmental water and wastewater [100,101].

The vancomycin-based CSP (Chirobiotic V column) with a mobile phase containing methanol with 0.01% acetic acid and 0.01% triethylamine, was used for enantiomeric HPLC separation of mabuterol during pharmacokinetics study in rats. Results indicated that enantioselective pharmacokinetics between mabuterol enantiomers occur within the metabolism phase [102].

The effect of chromatographic conditions on the chiral separation of terbutaline and salbutamol on the Chirobiotic V column was investigated. The salt concentration in the mobile phase and pH value was found to be the most important factors affecting separation. In polar mobile phase containing ammonium nitrate in 100% methanol, pH = 5.1 value was found to give the best separation [103].

Enantioseparation of a new β2-agonist trantinterol was achieved on the Chirobiotic V column with a mobile phase consisting of acetonitrile–methanol (60:40, v/v) containing 0.05% ammonia and 0.1% acetic acid [104]. The LC-MS/MS method based on this separation condition was applied to a study of stereoselective pharmacokinetics of trantinterol in rats and humans [105].

The enantioseparations of different derivatives of the same drug were also investigated on amylose-based CSP–Chiralpak AS-H column–amylose [tris(S)-α-methylbenzylcarbamate]. Trantinterol enantiomers were resolved ($R_s = 2.73$) within 14 min using hexane–ethanol
(98:2, v/v) with 0.1% triethylamine as the mobile phase. The method was applied for the enantiomeric impurity determination of (−)-trantinterol bulk samples [106].

HPLC enantioseparation of isoxsuprine was studied on three different polysaccharide type CSPs: Chiralcel OJ – cellulose tris(4-methylbenzoate), Chiralcel OD – cellulose tris(3,5-dimethylphenylcarbamate), and Chiralpak AD – amyllose tris(3,5-dimethylphenylcarbamate). The chromatographic analyses were performed in the normal phase with hexane–ethanol–triyethylamine. Both of cellulose-based CSPs did not result in the acceptable enantioseparation. Baseline enantioseparation of isoxsuprine was obtained on amyllose-based CSPs in the presence of triethylamine in the mobile phase [107].

Chiralpak AD and Chiralcel OD columns were also used for the enantioseparation of bambuterol and salbutamol [108] and for the separation of enantiomers of fenoterol [109] – β₂-agonist with two chiral centers.

Gazíč et al. [110] attempted the separation of bambuterol enantiomers on a new generation of chiral polysaccharide stationary phase Chiralpak IA, a 3,5-dimethylphenylcarbamate derivative of amyllose immobilized onto silica, which is the immobilized version of Chiralpak AD. An advantage of Chiralpak IA over Chiralpak AD is that immobilization allows the use of the most common organic solvents. However, Chiralpak IA showed a much weaker enantioresolution with the mobile phase already determined as optimal for bambuterol on Chiralpak AD (hexane:propan-2-ol, 100:30 with 0.1% diethylamine).

The urea type CSP made of (S)-indoline-2-carboxylic acid and (R)-(α-naphthyl)ethylamine known as Chirex 3022 column were used for the enantioseparation of clenbuterol [111] in the normal phase condition.

The resolution of salbutamol and formoterol enantiomers was achieved also on the α₁-glycoprotein chiral stationary phase (AGP) under the reverse phase condition [84,112]. Protein-based chiral column with cellulobiodyrhalase as a chiral selector (CBH) served for the simultaneous determination of salmeterol and its main human metabolite α-hydroxysalmeterol. Two-pair enantiomers were detected by electrochemical detectors, and the method was applied to a study of human hepatic metabolism of salmeterol in vitro [113].

4.1.2 Indirect chiral chromatographic separation

The conversion of enantiomers into diastereoisomers using chiral derivatizing agents allows the separation on a nonchiral column. This mode is sometimes simpler, less expensive than the use of CSP, and often results in better resolution, because of the more sensitive detector response. On the other hand, this method requires high optical purity derivatizing reagents and is sometimes time-consuming [114]. Various derivatizing reagents were used for the enantioseparation of β₂-agonists.

Enantioseparation of fenoterol was performed by indirect separation on an octadecyl reverse phase column after chiral derivatization by (S)-(+)−1-naphthyl ethyl isocyanate. However, better sensitivity was achieved by achiral derivatization by 1-naphthyl isocyanate followed by chiral separation on a Chiracel column. Detection was carried out fluorometrically with a detection limit in the low nanograms per milliliter. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates [82].

(S)-(−)-α-Methylbenzyl isocyanate was applied for the resolution of salbutamol enantiomers in human urine. After solid-phase extraction, the diastereoisomeric derivatives were resolved (R² = 1.6) on the C18 column using 47% methanol as a mobile phase with fluorescence detection [115]. The same derivatizing reagents were utilized for the determination of terbutaline enantiomers by reversed-phase HPLC method (R² = 1.4) [81].

One of the later synthesized isocyanate derivatizing agents, 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate was used for stereoanalysis of salbutamol in human urine. The salbutamol diastereoisomeric derivatives were resolved (R² = 1.8) on a C18 column using 35% acetonitrile in 0.05 M ammonium acetate as a mobile phase with electrochemical detection [116].

Chiral derivatizing reagents prepared by substitution of the fluorine atoms in 1,5-difluoro-2,4-dinitrobenzene (DFDNB) with three amino acids: l-alanine, 1-valine, and (S)-benzyl-l-cysteine cysteine were used for enantioresolution of racemic β₂-agonist isoxsuprine on reversed-phase HPLC and reversed-phase thin-layer chromatography [117].

Enantioseparation of salbutamol was also achieved by both TLC and RPHPLC via an indirect approach. A new chiral reagent, (S)-naproxen benzotriazole ester, was used to synthesize diastereomeric derivatives of salbutamol under microwave irradiation. Diastereoisomers were separated by both TLC and RPHPLC methods [118].

4.2 Stereoselective gas chromatographic (GC) analysis of β₂-agonists

Although liquid chromatography is the most frequently used method for the enantioseparation of β₂-agonists,
other techniques were also occasionally described for that purpose.

Separation of enantiomers of β2-agonists by GC requires derivatization with various derivatizing agents, e.g., trimethylsilylation associated with acylation (bambuterol, salbutamol, and terbutaline) or formation of cyclic methylboronates (bambuterol, clenbuterol, formoterol, salbutamol, and salmeterol) [119,120].

Phosgene has been used to form cyclic derivatives of chiral diols, α-hydroxy acids, N-methylamino acids, and other di- and trifunctional compounds – terbutaline, salbutamol, and orciprenaline; the enantiomers were then separated by gas chromatography on the chiral polysiloxane phase XE-60 l-valine-(R)-α-phenylethylamide. In this way, phosgene can supplement the isocyanates as a versatile reagent for enantiomer separation. Factor of separation was 1.03 and (-)-enantiomer eluted before (+)-enantiomer [121]. l-α-Chloroisovaleryl chloride was used for other aminoolcohols to prepare diastereoisomers, and the samples were then dissolved in dichloromethane and N-methyl-N-trimethylsilyl trifluoroacetamide [122]. These methods require high chemical and optical purity of the derivatizing agent and are therefore poorly used [123–125], and GC is currently being replaced by other separation techniques.

4.3 Stereoselective thin layer chromatography (TLC) of β2-agonists

TLC is one of the methods by which it is also possible to separate individual enantiomers in the group of β2-agonists. It is possible to use a direct and indirect enantioseparation method.

The individual methods applied to β2-agonists were likewise used with β-adrenolytic drugs. TLC served for the resolution of enantiomers of isoxsuprime using thin silica gel layers impregnated with l-glutamic acid. The limit of detection of each enantiomer was 11–13 ng/mL [117].

Enantiomers of salbutamol were resolved by adopting different modes of loading or impregnating the Cu(n) complexes of l-proline, l-phenylalanine, l-histidine, N,N-dimethyl-l-phenylalanine, and l-tryptophan on commercial precoated normal phase plates. The detection limit was 0.18 ng for each enantiomer [126].

Direct enantiomeric resolution of salbutamol and five racemic β-adrenolytics has been achieved by thin-layer chromatography using bovine serum albumin (BSA) as a chiral additive in the stationary phase. The effect of variation in pH, temperature, amount of BSA as the additive, and composition of the mobile phase on the resolution was systematically studied [127].

4.4 Stereoselective CE method for determination of β2-agonists

Compared with HPLC, the CE analytical method is advantageous in which the chiral column is substituted by the chiral selector added to the base electrolyte using a small volume of the sample and buffer solution [128]. Recently, this method has been largely used for the enantioseparation of chiral compounds and β2-agonists. The most common chiral selectors for β2-agonists include various types of cyclodextrins (CDs) (Table 3).

CDs and their derivatives as chiral selectors are frequently used for enantioseparation due to their good solubility in aqueous buffers and wide availability [129].

Native β-cyclodextrin (β-CD) and its derivatives, namely, ethyl-β-CD, methyl-β-CD, hydroxypropyl-β-CD, and hydroxy-β-CD, as chiral selectors were used for simultaneous CE enantioseparation of trantinterol, mafenide, clenbuterol, and bambuterol. Hydroxypropyl-β-CD was found to be the most effective complexing agent that allows excellent chiral resolution when compared with other CDs [130].

Hydroxy propyl-β-cyclodextrin was also used for stereoselective determination of clenbuterol in human urine [131] and for enantioresolution of salbutamol, terbutaline, salmeterol, and bambuterol [132].

Esquisabel et al. [133] developed the CE method using another cyclodextrin derivative – heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD). The method was applied for the study of the release of salbutamol enantiomers from the matrix tablet.

Determination of salbutamol enantiomers in different pharmaceutical preparation – syrups, oral solutions, and tablets was performed by the CE method using carboxymethyl-β-cyclodextrin (CM-β-CD) in 25 mM acetate buffer (pH 5.0) [134].

The CM-β-CD as a chiral selector was utilized for the enantimeric separation of clenbuterol [135] and the other five β2-agonists. The optimal separation was obtained using the following buffer: 50 mM phosphoric acid with 10 mM CD at pH 3.5 [136].

Sulfated β-cyclodextrin (HS-β-CD) was chosen for the enantioseparation of some β2-agonists (terbutalin, salbutamol, clenbuterol, dobutamine, and orciprenaline) [137,138] and for the quantitative determination of
Table 3: Enantiomeric separation of β-agonists by CE methods

Chiral selector	Analyte(s)	Buffer (pH)	Application	Reference
HE-β-CD	Clenbuterol	200 mM phosphoric acid (3.3)	Human urine	131
	Terbutaline	0.1 M sodium phosphate (2.5, 3.5, 4.5, 5.5)		132
	Clenbuterol			
	Salbutamol			
	Bambuterol			
α-CD, β-CD, HDMS-β-CD	Salbutamol	40 mM Tris–base in water (2.5)	Tablets	133
CM-β-CD	Salbutamol	25 mM acetate (5.0)	Syrups	134
CM-β-CD	Clenbuterol	50 mM monopotassium phosphate (3.5)		135
CM-β-CD	Procaterol	50 mM phosphoric acid (3.5)		136
S-β-CD	Terbutaline	40 mM monosodium phosphate (2.5)		137
	Orciprenaline			
S-β-CD	Terbutaline	50 mM monosodium phosphate (2.5)		138
	Clenbuterol			
	Salbutamol			
	Dobutamine			
S-β-CD	Clenbuterol	50 mM monosodium phosphate (2.4)		139
	Salbutamol			
HDAS-β-CD	Salbutamol	10 mM ammonium formate	Urine	140 and 141
Glu-β-CD	Terbutaline	120 mM phosphate buffer (2.5–4.0)		142
α-CD, β-CD, γ-CD, CM-β-CD, HS-β-CD, SBE-β-CD, SU-β-CD, HDAS-β-CD, HDMS-β-CD, HS-β-CD, DM-β-CD, TM-β-CD	Isosuprine	100 mM triethanolamine phosphate (3.0)		107
Clarithromycin	Clenbuterol	100 mM citric acid, 10 mM sodium hydroxide, 240–300 mM boric acid	Urine	143
Lactobionic acid/α-(+)-xylose–boric acid complex	Cycloclenbuterol	14.4 mM triethylamine in methanol		144
	Clenbuterol			
	Bambuterol			
	Terbutaline			
	Clorprenaline			

CD, cyclodextrine; CM-β-CD, carboxymethyl-β-CD; DM-β-CD, dimethyl-β-CD; Glu-β-CD, glutamic acid-β-CD; HE-β-CD, hydroxyethyl-β-CD; HDAS-β-CD, heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-CD; HDMS-β-CD, heptakis(2,6-O-methy1-6-O-sulfo)-β-CD; HP-β-CD, hydroxyethyl-β-CD; HS-β-CD, highly sulfated-β-CD; S-β-CD, sulfated-β-CD; SBE-β-CD, sulfobutyl-β-CD; TM-β-CD, trimethyl-β-CD.

clenbuterol, salbutamol, and tulobuterol enantiomers by the CE method [139].

Other sulfo derivatives of β-cyclodextrin – heptakis (2,3-di-O-acetyl-6-O-sulfo)-β-cyclodextrin (HDAS-β-CD) were applied for the enantioselective determination of the low concentration of salbutamol in human urine by nonaqueous capillary electrophoresis (NACE) [140,141].

Satisfactory CE enantioseparation of terbutaline and clenbuterol was achieved also using glutamic acid-β-CD, which was prepared as a novel single-isomer cyclodextrin derivative [142].

Chankvetadze et al. [107] tested different native and derivatized CDs: α-CD, β-CD, γ-CD, CM-β-CD, HS-β-CD, SBE-β-CD, SU-β-CD, HDAS-β-CD, HDMS-β-CD, HS-β-CD, DM-β-CD, and TM-β-CD for the enantioseparation of isosuprine. β-CD exhibited the highest enantioseparation ability from native CDs and γ-CD, the lowest one. Neutral β-CD derivatives such as DM-β-CD and TM-β-CD
also exhibited significant enantioseparation ability toward the enantiomers of isoxsuprine. In nonaqueous CE, clarithromycin as a chiral selector was used for the enantioseparation of clenbuterol [143]. Two new chiral selectors, lactobionic acid–boric acid complex and D-(+)-xylose–boric acid complex, were synthesized in situ in nonaqueous background electrolytes containing methanol and triethylamine and were found to be applicable for the enantioseparation of several β₂-agonists [144].

Capillary electrochromatography (CEC) has also become an important mode of CE for the separation of enantiomers. It is a hybrid of CE and HPLC and combines the high efficacy of CE and high selectivity of HPLC. Chiral separation by CEC can be performed in a wall-coated open tubular, packed, and monolithic capillary column. Enantioseparations of salbutamol were performed using a packed capillary column with CSP on-base teicoplanin [145] and vancomycin [146].

5 Stereoselective synthesis of β₂-agonists

In addition to the enantiomeric separation, the individual enantiomers may also be prepared by stereoselective synthesis. For many β₂-agonists, the α-chloroacetophenone or α-bromoacetophenone derivative is the base for this synthesis. Their preparation is based on the reaction with chloroacetyl chloride with a substituted aromatic nucleus, followed by stereogenic reduction with various reducing agents (Figure 17).

In the case of salmeterol, the enantioselective reduction was performed with BH₃·S(CH₃)₂ in THF under chiral Borodin catalysis [147] and reduction with NaBH₄ [148].

For the enantioselective synthesis of (S)-salmeterol, azido ketones reduced with the aid of Pichia angusta yeast were prepared [149].

For the synthesis of (R)-(−)-salmeterol, Goswami et al. [150] used the stereoselective reduction of 4-benzylxy-3-hydroxymethylbromoacetophenone with Rhodotorula rubra (a yeast microbe isolated from local brewery waste) in the presence of sodium lauryl sulfate, an anionic surfactant. Epoxide was regioselectively opened by nucleophilic attack with (R)-6-(4-phenylbutoxyhexyl)-1-amine in reasonable yield (94%). Catalytic hydrogenation cleaved the benzyl protecting group to give (R)-(−)-salmeterol (Figure 18).

Further, other enantioselective synthetic approaches of salmeterol are summarized in the published overviews [151,152].

In the case of bambuterol, to prepare the (R)-enantiomer, the (−)-DIP chloride was used for asymmetric reduction. To prepare the (S)-stereoisomer, its dextrorotatory form of (+)-DIP chloride was used. The optical purity was verified by HPLC. Optical properties were confirmed by optical rotation and the absolute configuration by circular dichroism [153].

Asami et al. [154] used whole cells of Williopsis californica JCM 3600 for asymmetric reduction of chloroketone in the synthesis (R)-bambuterol.

In the work of Huang et al. [155], a 6-stage stereoselective synthesis of (R,R)-formoterol was developed starting from 4-hydroxy-3-nitroacetophenone (Figure 19). The key step is the reduction of the ketone group with Rh-complex as a hydrogenation catalyst.

In the stereoselective synthesis of (R)-terbutaline, the starting O-protected cyanohydrins were used that are converted to amides via the Ritter N-tertiary butylation. In the next step, hydrogenation provided the amino alcohol, from which the (R)-terbutaline was obtained by the group deprotection [156].

A similar procedure was also used to prepare (R)-salbutamol. In the next step of its preparation, selective hydrogenation of protected cyanohydrin was used. A 2-aminoethanol derivative was prepared by NaBH₄ hydrogenation of tert-butylamine iminodervative. Desilylation was carried out with LiAlH₄ but the hydrolytic cleavage of the protected acetal was accompanied by racemization [156].

6 Conclusion

In the presented overview, attention is focused on β₂-agonists from the stereochemical point of view. Most of β₂-agonists is mainly used in the treatment of asthma and obstructive pulmonary disease. In addition to the bronchodilatory activity, they also have a tocolytic and anabolic effect, and, from the more recent indications,
they make it possible to monitor the amelioration of symptoms in amyotrophic lateral sclerosis. Many β₂-agonists have different pharmacological and pharmacokinetic activity due to the different stereochemistry and, likewise, indicate varying degrees of toxicity. The overview focuses on β₂-agonists with one stereocenter (albuterol, bambuterol, clenbuterol, salmeterol, and trantinterol) and with multiple stereocenters (formoterol, isoxsuprine, and ritodrine). From these β₂-agonists, pure enantiomers of levalbuterol or levosalbutamol, such as the (R)-isomer of albuterol or salbutamol and the arformoterol (R,R)-isomer of formoterol, were introduced into the therapy by the way of the racemic switch process. More recently, long-acting drugs (indacaterol, carmoterol, abediterol, olodaterol, and vilanterol) have already been introduced into clinical practice as pure enantiomers.

Individual phases of pharmacokinetics enabled the observation of absorption, distribution, and metabolism of different β₂-agonists. Nonetheless, many lack complete data on the pharmacokinetics of individual (R)- and (S)-stereoisomers.

To obtain enantioselective separation of racemates to individual enantiomers, chromatographic and electrophoretic methods were used. In the case of HPLC, various chiral phases were used for the direct methods based on CDs, macrocyclic antibiotics (vancomycin, teicoplanin) on substituted carbamates of cellulose and amylose, many of which are the basis of chiral selectors in the direct methods in CE. Besides the preparative chromatographic methods, the overview lists many methods of stereoselective synthesis enabling pure enantiomers of this group of drugs to be obtained.

Acknowledgments: This review utilizes the research results of the CEBV project, ITMS: 26240120034, and project APVV-0516-12.

Conflict of interest: Authors declare no conflict of interest.

References

[1] Mersmann HJ. Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci. 1998;76:160–72.
Chirality of β₂-agonists. An overview
Battram C, Charlton SJ, Cuenoud B, Dowling MR, Rosenfeld GA. Identification of isoaxazine hydrochloride as a neuroprotectant in ischemic stroke through cell-based high-throughput screening. PLoS One. 2014;9:e96761.

Belloli C, Badino P, Carcano R, Odore R, Arioli F, Caloni F, et al. Investigations on the stereoselective action of isoaxazine on alpha- and beta-adrenoceptors in equine common digital artery. Pharmacol Res. 1999;40:177–82.

Bosak A, Gazić I, Vinković V, Kovarik Z. Stereoselective inhibition of human, mouse, and horse cholinesterases by bambuterol enantiomers. Chem Biol Interact. 2008;175:192–5.

Pistolozzi M, Du H, Wei H, Tan W. Stereoselective inhibition of human butyrylcholinesterase by the enantiomers of bambuterol and their intermediates. Drug Metab Dispos. 2015;43:344–52.

Wu J, Liu F, Wang S, Wang H, Liu Q, Song X, et al. Resolution of rac-bambuterol via diastereoisomeric salt formation with o-chloromandelic acid and differences in the enantiomers’ pharmacodynamical effects in Guinea Pigs and Beagles. Chirality. 2016;28:306–12.

Jacobson GA, Fawcett JP. Beta2-agonist doping control and optical isomer challenges. Sports Med. 2016;46:1787–95.

Kitaura T, Suzuki S, Kraemer WJ. Effect of clenbuterol enantiomers on growth of young male rats. J Phys Fitness Sports Med. 2015;4:369–76.

Hao Z, Zhang Y, Pan L, Xu S, Cheng M, Wang M, et al. Comparison of enantiomers of SPFF, a novel beta2-Adrenoceptor agonist, in bronchodilating effect in guinea pigs. Biol Pharm Bull. 2008;31:866–72.

Bieniarz J, Motew M, Scommegna A. Uterine and cardiovascular effects of ritodrine in premature labor. Obstet Gynecol. 1972;40:65–73.

Barden TP. Effect of ritodrine on human uterine motility and cardiovascular responses in term labor and the early postpartum state. Am J Obstet Gynecol. 1972;112:645–52.

Yamazaki N, Fukuda Y, Shibazaki Y, Nizato T, Kosugi T, Yoshioka S. (–)-Ritodrine, therapeutic composition and use, and method of preparation. US5449694, 1995.

Konda A, Ito T, Yoshida H, Toda T, Hayakawa T, Inotsume S. Pharmacokinetics of ritodrine diastereomers in patients pregnant with singletons and twins. Eur J Clin Pharmacol. 2009;65:913–7.

Caughhey AB, Parer JT. Tocolysis with beta-adrenergic receptor agonists. Semin Perinatol. 2001;25:248–55.

Batram C, Charlton SJ, Cuenoud B, Dowling MR, Fairhurst RA, Farr D, et al. In vitro and in vivo pharmacological characterization of S-((R)-2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl)-8-hydroxy-1H-quinolin-2-one (indaclerol) a novel inhaled β2 adrenoceptor agonist with a 24-h duration of action. J Pharmacol Exp Ther. 2006;317:762–70.

Naline E, Trifilieff A, Fairhurst RA, Advenier C, Molimard M. Effect of indacaterol, a novel long-acting beta2-agonist, on isolated human bronchi. Eur Respir J. 2007;29:575–81.

Steriopoulos P, Archontogegoris K, Nena E, Bzouros D. New developments in the management of COPD: clinical utility of indacaterol 75 μg. Int J Chron Obstruct Pulmon Dis. 2014;9:1–7.

Cazzola M, Matera MG, Lötvall J. Ultra long-acting beta 2-agonists in development for asthma and chronic obstructive pulmonary disease. Expert Opin Investig Drugs. 2005;14:775–83.

Matera MG, Cazzola M. Ultra-long-acting β2-adrenoceptor agonists: an emerging therapeutic option for asthma and COPD? Drug. 2007;67:503–15.

Aparici M, Gaivalda A, Ramos I, Carcasona C, Otal R, Fernández-Blanco JA, et al. In vitro and in vivo preclinical profile of abediterol (LAS100977), an inhaled long-acting β-adrenoceptor agonist, compared with indacaterol, olodaterol and vilanterol. Eur J Pharmacol. 2016;770:61–69.

Malerba M, Radaelli A, Montuschi P, Morjaria JB. Vilanterol trifenlate for the treatment of COPD. Expert Rev Respir Med. 2016;10:719–31.

Vakily M, Mevhar R, Brooks D. Stereoselective pharmacokinetics and pharmacodynamics of anti-asthma agents. Ann Pharmacother. 2002;36:693–701.

Ward JK, Dow J, Dallow N, Eynott P, Millner S, Ventresca GP. Enantiospecific inhibition of inhaled, intravenous and oral racemic salbutamol in man – no evidence of enantioselective lung metabolism. Br J Clin Pharmacol. 2000;49:15–22.

Jacobson GA, Raidal S, Robson K, Narkowicz ChK, Nichols DS, Walters EH. Bronchopulmonary pharmacokinetics of (R)-salbutamol and (S)-salbutamol enantiomers in pulmonary epithelial lining fluid and lung tissue of horses. Br J Clin Pharmacol. 2017;83:1436–45.

Borgström L, Liu CX, Walhagen A. Pharmacokinetic of the enantiomers of terbutaline after repeated oral dosing with racemic terbutaline. Chirality. 1989;1:174–7.

Borgström L, Kennedy BM, Nilsson B, Angelin B. Relative absorption of the two enantiomers of terbutaline after duodenal administration. Eur J Clin Pharmacol. 1990;38:621–3.

Borgström L, Nyberg L, Jönsson S, Lindberg C, Paulson J. Pharmacokinetic evaluation in man of terbutaline in man given as separate enantiomers and as the racemate. Br J Clin Pharmacol. 1989;27:49–56.

Morgan DJ. Clinical pharmacokinetics of beta-agonists. Clin Pharmacokinet. 1990;18:270.

Cazzola M, Calzetta L, Page CP, Matera MG. Use of indacaterol for the treatment of COPD: a pharmacokinetic evaluation. Expert Opin Drug Metab Toxicol. 2014;10:329–37.

Boulton DW, Fawcett JP, Fiddes TM. Transplacental distribution of salbutamol enantiomers at Caesarean section. Br J Clin Pharmacol. 1997;44:587–90.

Jacobson GA, Yee KC, Premilovac D, Rattigan S. Enantioselective disposition of (R/S)-albuterol in skeletal and cardiac muscle. Drug Test Anal. 2014;6:563–7.

Jacobson GA, Raidal S, Robson K, Narkowicz CK, Nichols DS, Walters EH. Salmeterol undergoes enantioselective bronchopulmonary distribution with receptor localisation a likely determinant of duration of action. J Pharm Biomed Anal. 2018;154:102–7.

Jacobson GA, Hostrup M, Narkowicz CK, Nichols DS, Walters EH. Enantioselective disposition of (R,R)-formoterol, (S,S)-formoterol and their respective glucuronides in urine following single inhaled dosing and application to doping control. Drug Test Anal. 2019;11:950–6.

Wilson AA, Wang J, Koch P, Walle T. Stereoselective sulphate conjugation of fenoterol by human phenolsulphotransferases. Xenobiota. 1997;27:1147–54.
Boulton DW, Fawcett JP. The pharmacokinetics of levosalbutamol: what are the clinical implications? Clin Pharmacokinet. 2001;40:23–40.

Kagan M, Dain J, Peng L, Reynolds C. Metabolism and pharmacokinetics of indicaterol in humans. Drug Metab Dispos. 2012;40:1712–22.

Maier G, Rubino C, Hsu R, Grasela T, Baumgartner RA. Population pharmacokinetics of (R)-albuterol and (S)-albuterol in pediatric patients aged 4–11 years with asthma. Pulm Pharmacol Ther. 2007;20:534–42.

Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics: cardiovascular drugs. In: Reddy IK, Mehvar R, editors. Chirality in drug design and development. 1st ed. New York: Marcel Dekker; 2004.

Gumieniczek A, Berecka A. Analytical tools for determination of new oral anti-diabetic drugs, glitazones, glitpions, gliflozins and glinides, in bulk materials, pharmaceuticals and biological samples. Open Chem. 2016;14:215–42.

Nie Y, Liu X, Yang X, Zhao Z. Recent application of chiral liquid chromatography-tandem mass spectrometric methods for enantiomeric pharmaceutical and biomedical determinations. J Chromatogr Sci. 2013;51:753–63.

Ribeiro AR, Maia AS, Cass QB, Tiritan ME. Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: an overview. J Chromatogr B. 2014;968:8–21.

Sanghvi M, Ramamoorthy A, Strait J, Wainer IW, Moaddel R. Development and validation of a sensitive LC-MS/MS method for the determination of fenoterol in human plasma and urine samples. J Chromatogr B. 2013;933:37–43.

Kim KH, Kim HJ, Kim JH, Lee JH, Lee SC. Determination of the optical purity of (R)-terbutaline by H$^+$-NMR and RP-LC using chiral derivatizing agent, (S)-(-)-alpha-methylbenzyl isocyanate. J Pharm Biomed Anal. 2001;25:947–56.

Ullrich T, Wesenberg D, Bleuel C, Krauss GJ, Schmid MG, Weiss M, et al. Chiral separation of the β2-sympathomimetic fenoterol by HPLC and capillary zone electrophoresis for pharmacokinetic studies. Biomed Chromatogr. 2010;24:1125–9.

Gubitz G, Schmidt MG. Chiral separation principles: an introduction. In: Gubitz G, Schmidt MG, editors. Chirality in drug design and development. Totowa, New Jersey: Humana Press; 2004.

Aboul-enein HY, Serigene V. Direct separation of albuterol enantiomers in biological fluids and pharmaceutical formulations using α1-acid glycoprotein and pirkle ureka type columns. Chirality. 1995;7:158–62.

Siluk D, Mager DE, Kim HS, Wang Y, Furimsky AM, Ta A, et al. Pharmacokinetics and metabolism of (R,R)-methoxyfenoterol in rat. Xenobiotica. 2010;40:195–206.

Tanaka Y, Terabe S. Separation of the enantiomers of basic drugs by affinity capillary electrophoresis using a partial filling technique and α1-acid glycoprotein as chiral selector. Chromatographia. 1997;44:119–28.

Boulton DW, Fawcett JP. Interaction of beta 2-adrenoceptor agonists with native cyclodextrins: application to the development of chiral assays for terbutaline. Pharm Acta Helv. 1996;71:293–6.

Mostafa GA, Hefnawy MM, El-Majed A. Separation and determination of clenbuterol by HPLC using a vancomycin chiral stationary phase. J AOAC Int. 2009;92:824–9.

Ali I, Kumerer K, Aboul-Enein HY. Mechanistic principles in chiral Separations using liquid chromatography and capillary electrophoresis. Chromatographia. 2006;63:295–307.

Ilisz I, Berkecz R, Peter A. Retention mechanism of high-performance liquid chromatographic enantioseparation on macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A. 2009;1216:1845–60.

Chen J, Kormfacher WA, Hsieh Y. Chiral liquid chromatography-tandem mass spectrometric methods for stereoisomeric pharmaceutical determinations. J Chromatogr B. 2005;820:1–8.

Zhou T, Liu S, Zhao T, Zeng J, He M, Xu B, et al. Chiral analysis of bambuterol, its intermediate and active drug in human plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study. J Chromatogr B. 2015;997:38–44.

Luo W, Zhu L, Deng J, Liu A, Guo B, Tan W, et al. Simultaneous analysis of bambuterol and its active metabolite terbutaline enantiomers in rat plasma by chiral liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2010;52:227–31.

Xia Y-Q, Liu DQ, Bakhtrar R. Use of online-dual-column extraction in conjunction with chiral liquid chromatography tandem mass spectrometry for determination of terbutaline enantiomers in human plasma. Chirality. 2002;14:742–9.

Hirosawa I, Ishikawa M, Ogino M, Ito H, Hirao T, Yamada H, et al. Enantioselective disposal of clenbuterol in rats. Biopharm Drug Dispos. 2014a;35:207–17.

Chan SH, Lee W, Asmawi MZ, Tan SC. Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development for the detection of salbutamol in urine samples. J Chromatogr B. 2016;1025:83–91.

Joyce KB, Jones AE, Scott R, Biddlecombe RA, Pleasance S. Determination of the enantiomers of salbutamol and its 4-O-sulphate metabolites in biological matrices by chiral liquid chromatography tandem mass spectrometry. Rapid Commun Mass Spectrom. 1998;12:1899–910.

Wu ST, Xing J, Apedo A, Wang-Iverson DB, Olah TV, Tymiak AA, et al. High-throughput chiral analysis of salbutamol enantiomers in dog plasma using on-line sample extraction/ polar organic mode chiral liquid chromatography with tandem mass spectrometric detection. Rapid Commun Mass Spectrom. 2004;18:2531–6.

Fried KM, Koch P, Wainer IW. Determination of the enantiomers of salbutamol in human and canine plasma by enantioselective high-performance liquid chromatography on a teicoplanin-based chiral stationary phase. Chirality. 1998;10:484–91.

Rosales-Conrado N, Dell’Aica M, de León-González ME, Pérez-Arribas LV, Polo-Díez LM. Determination of salbutamol by direct chiral reversed-phase HPLC using teicoplanin as
stationary phase and its application to natural water analysis. Biomed Chromatogr. 2013;27:1413–22.

[101] MacLeod SL, Sudhir P, Wong CS. Stereoisomer analysis of waste water-derived beta-blockers, selective serotonin reuptake inhibitors, and salbutamol by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2007;1170:23–33.

[102] Lu X, Liu P, Chen H, Qin F, Li F. Enantioselective pharmacokinetics of mabuterol in rats studied using sequential achiral and chiral HPLC. Biomed Chromatogr. 2005;19:703–8.

[103] Hashem H, Tründelberg C, Attef O, Jira T. Effect of chromatographic conditions on liquid chromatographic chiral separation of terbutaline and salbutamol on Chirobiotin V column. J Chromatogr A. 2011;1218:6727–31.

[104] Qin F, Wang X, Jing L, Pan L, Cheng M, Sun G, et al. Bidirectional chiral inversion of transtiluron enantiomers after separate doses to rats. Chirality. 2013;25:934–8.

[105] Qin F, Wang Y, Wang L, Zhao L, Pan L, Cheng M, et al. Determination of transtiluron enantiomers in human plasma by high-performance liquid chromatography-tandem mass spectrometry using vancomycin chiral stationary phase and solid phase extraction and stereoselective pharmacokinetic application. Chirality. 2015;27:327–31.

[106] Yang J, Guan J, Pan L, Jiang K, Cheng M, Li F. Enantioseparation and impurity determination of the enantiomers of novel phenylethanolamine derivatives by high performance liquid chromatography on amylose stationary phase. Anal Chim Acta. 2008;610:263–7.

[107] Chankvetadze B, Burjanadze N, Blaschke G. Enantioseparation of chiral vasodilator drug isoxsuprine in high-performance liquid chromatography and capillary electrophoresis. J Pharm Biomed Anal. 2002;27:157–9.

[108] Bartoliničić Ć, Drušković V, Šiporec A, Vinković V. Development and validation of HPLC methods for the enantioselective analysis of bambuterol and albuterol. J Pharm Biomed Anal. 2005;36:1003–10.

[109] Beigi F, Bertucci C, Zhu W, Chakir K, Wainer IW, Xiao R, et al. Enantioselective separation and online affinity chromatographic characterization of R,R- and S,S-fenoterol. Chirality. 2006;18:822–7.

[110] Gazić I, Bosak A, Šinko G, Vinković V, Kovarik Z. Preparative HPLC separation of bambuterol enantiomers and stereo-selective inhibition of human cholinesterases. Anal Bioanal Chem. 2006;385:1513–9.

[111] Abou-Basha Li, Aboul-Enein HY. Direct enantioselective separation of clenbuterol by chiral HPLC in biological fluids. Biomed Chromatogr. 1996;10:69–72.

[112] Zhang M, Fawcett JP, Shaw JP. Stereoselective urinary excretion of formoterol and its glucuronide conjugate in human. Br J Clin Pharmacol. 2002;54:C246–50.

[113] Zhang M, Fawcett JP, Shaw JP. Rapid chiral high-performance liquid chromatographic assay for salmeterol and alpha-hydroxysalmeterol. Application to in vitro metabolism studies. J Chromatogr B Biomed Sci Appl. 1999;729:225–30.

[114] Bojarski J. Stereoselective chromatography of cardiovascular drugs: an update. J Biochem Biophys Methods. 2002;54:197–220.

[115] Kim KH, Kim TK, Kwon YH, Sohn YT. Resolution of salbutamol enantiomers in human urine by reversed-phase high performance liquid chromatography after derivatization with (S)-(−)-alpha-methylbenzyl isocyanate. Arch Pharm Res. 1997;20:486–90.

[116] Kim KH, Kim TK. Resolution of salbutamol enantiomers in human urine by reversed-phase high performance liquid chromatography after derivatization with 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl isothiocyanate. Arch Pharm Res. 1998;21:217–22.

[117] Bhushan R, Nagar H. Resolution and isolation of enantiomers of (±)-isoxsuprine using thin silica gel layers impregnated with L-glutamic acid, comparison of separation of its diastereomers prepared with chiral derivatizing reagents having L-amino acids as chiral auxiliaries. Biomed Chromatogr. 2015;29:357–65.

[118] Malik P, Bhushan R. Development of liquid chromatographic methods for enantioseparation and sensitive detection of β-adrenolytics/β₂-agonists in human plasma using a single enantiomer reagent. J Chromatogr B. 2017;1061–2:117–22.

[119] Damasceno L, Ventura R, Ortujo J, Segura J. Derivatization procedures for the detection of beta(2)-agonists by gas chromatographic/mass spectrometric analysis. J Mass Spectrom. 2000;35:1285–94.

[120] Damasceno L, Ventura R, Cardoso J, Segura J. Diagnostic evidence for the presence of beta-agonists using two consecutive derivatization procedures and gas chromatography-mass spectrometric analysis. J Chromatogr B. 2002;780:61–71.

[121] König WA, Gyllenhaal O, Vessman J. Enantiomer separation of phenolic α- and β-receptor active drugs by chiral capillary gas chromatography after derivatization with diazomethane and phosgene. J Chromatogr A. 1986;356:354–8.

[122] Könenig WA, Stoelting K, Kruse K. Gas chromatographic separation of optically active compounds in glass capillaries. Chromatographia. 1977;10:444–8.

[123] Caban M, Migowska N, Stepnowski P, Kwiatkowski M, Kumirska J. Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of β-blockers and β-agonists in environmental samples. J Chromatogr A. 2012;1258:117–27.

[124] Caban M, Mioduszewska K, Stepnowski P, Kwiatkowski M, Kumirska J. Dimethyl(3,3,3-trifluoropropyl)silylidiethylamine—a new silylating agent for the derivatization of β-blockers and β-agonists in environmental samples. Anal Chim Acta. 2013;782:75–88.

[125] Segura J, Ventura R, Jurado C. Derivatization procedures for gas chromatographic/mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J Chromatogr B Biomed Sci Appl. 1998;713:61–90.

[126] Bhushan R, Tanwar S. Different approaches of impregnation for resolution of enantiomers of atenolol, propranolol and salbutalol using Cu(n)-(−)-α-amino acid complexes for ligand exchange on commercial thin layer chromatographic plates. J Chromatogr A. 2010;1217:1395–8.

[127] Malik P, Bhushan R. Thin layer chromatographic resolution of some β-adrenolytics and a β2-agonist using bovine serum albumin as chiral additive in stationary phase. J Chromatogr Sci. 2018;56:92–98.
Mikuš P, Valašková I, Havránek E. Determination of salbutamol in pharmaceuticals by capillary electrophoresis. Arch Pharm Chem Life Sci. 2005;338:498–501.

Scriba GK. Cyclodextrins in capillary electrophoresis enantioseparations – recent developments and applications. J Sep Sci. 2008;31:1991–2011.

Yang J, Lu X, Pan L, Jiang K, Cheng M, Li F. Simultaneous enantioseparation of four beta2-agonists by capillary electrophoresis with cyclodextrin additives. Study of the enantioselective mechanism. J Sep Sci. 2008;31:3749–54.

Gaußepohl C, Blasche G. Stereoselective determination of clenbuterol in human urine by capillary electrophoresis. J Chromatogr B Biomed Sci Appl. 1998;713:443–6.

Kim KH, Kim HJ, Jeun EY, Seo SH, Hong SP, Kang JS, et al. Chiral separation of beta2-agonists by capillary electrophoresis using hydroxypropyl-alpha-cyclodextrin as a chiral selector. Arch Pharm Res. 2001;24:281–5.

Esquibel A, Hernández RM, Gascon AR, Igartua M, Calvo B, Pedraz JL. Determination of salbutamol enantiomers by high-performance capillary electrophoresis and its application to dissolution assays. J Pharm Biomed Anal. 1997;16:357–66.

Ekiert E, García-Ruiz C, García MA, Marina ML. Rapid determination of salbutamol in pharmaceutical preparations by chiral capillary electrophoresis. Electrophoresis. 2003;24:2680–6.

Zhou J, Li Y, Liu Q, Fu G, Zhang Z. Capillary electrophoresis of clenbuterol enantiomers and NMR investigation of the clenbuterol/carboxymethyl-beta-cyclodextrin complex. J Chromatogr Sci. 2013;51:237–41.

Zhou J, Yao H, Shao H, Li Y, Zhang Z. Enantioseparation of beta-agonists with carboxymethyl-beta-cyclodextrin by CE. J Liquid Chromatogr Rel Technol. 2012;35:50–58.

Yang GS, Chen DM, Yang Y, Tang B, Gao JJ, Aboul-Enein HY, et al. Enantioseparation of some clinically used drugs by capillary electrophoresis using sulfated beta-cyclodextrin as a chiral selector. Chromatographia. 2005;62:441–5.

Aboul-Enein HY, Efstathiadie MD, Baiulescu GE. Cyclodextrins as chiral selectors in capillary electrophoresis: a comparative study for the enantiomeric separation of some beta-agonists. Electrophoresis. 1999;20:2686–90.

Vela J, Yanes EG, Stalcup AM. Quantitative determination of clenbuterol, salbutamol and tulobuterol enantiomers by capillary electrophoresis. Fresenius J Anal Chem. 2001;369:212–9.

Servais A-C, Fillet M, Mol R, Somsen GW, Chiap P, de Jong GI, et al. On-line coupling of cyclodextrin mediated nonaqueous capillary electrophoresis to mass spectrometry for the determination of salbutamol enantiomers in urine. J Pharm Biomed Anal. 2006;40:752–7.

Servais A-C, Chiap P, Hubert P, Crommen J, Fillet M. Determination of salbutamol enantiomers in human urine using heptakis(2,3-di-O-acetyl-6-O-sulfo)-beta-cyclodextrin in nonaqueous capillary electrophoresis. Electrophoresis. 2004;25:1632–40.

Liu Y, Deng M, Yu J, Jiang Z, Guo X. Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism. J Sep Sci. 2016;39:1766–75.

Lebedeva MV, Prokhorova AF, Shapovalova EN, Shigvin OA. Clarithromycin as a chiral selector for enantioseparation of basic compounds in nonaqueous capillary electrophoresis. Electrophoresis. 2014;35:2759–64.

An N, Wang L, Zhao J, Lv L, Wang N, Guo H. Enantioseparations of fourteen amino alcohols by nonaqueous capillary electrophoresis using the lactobionic acid/b- (+)-xylose-boric acid complexes as chiral selectors. Anal Methods. 2016;8:1127–34.

Catarcini P, Fanali S, Presutti C, D’Acquarica I, Gasparrini F. Evaluation of teicoplanin chiral stationary phases of 3.5 and 5 μm inside diameter silica microparticles by polar-organic mode capillary electrophromatography. Electrophoresis. 2003;24:3000–5.

Yao C, Tang S, Gao R, Jiang C, Yan C. Enantiomer separations on a vancomycin stationary phase and retention mechanism of pressurized capillary electrophromatography. J Sep Sci. 2004;27:1109–14.

Hett R, Helquist P. Enantioselective synthesis of salmeterol via asymmetric borane reduction. Tetrahedron Lett. 1994;35:9375–8.

Jiang L, Lin Ch, Oiu Y, Quan X, Zhu J, Shi H. A highly enantioselective synthesis of (R)-salmeterol using a chiral auxiliary. J Chrom Res. 2016;40:564–6.

Procopiou PA, Morton GE, Todd M, Webb G. Enantioselective synthesis of (S)-salmeterol via asymmetric reduction of azidoketone by Pichia angusta. Tetrahedron Asymmetry. 2001;12:2005–8.

Goswani J, Berbaruah RL, Goswami A, Borthakur N. A convenient stereoselective synthesis of (R)-(–)-denopamine and (R)-(–)-salmeterol. Tetrahedron Asymmetry. 2001;12:3343–8.

Anwar MM, El-Haggar RS, Zagharya WA. Salmeterol xinafoate. In: Brittain H, editor. Profiles drug substances, excipients and related methodology. vol. 40, 1st ed. New York: Elsevier Academic Press; 2015.

Buchanan DJ, Dixon DJ, Looker BE. A short stereoselective synthesis of (R)-salmeterol. Synlett. 2005;12:1948–50.

Cao G, Hu A-X, Zou K-S, Xu L, Chen J-L, Tan W. Highly enantioselective synthesis, crystal structure, and circular dichroism spectroscopy of (R)-bambuterol hydrochloride. Chirality. 2008;20:856–62.

Asami K, Machida T, Jung S, Hanaya K, Shoji M, Sugai T. Synthesis of (R)-bambuterol based on asymmetric reduction of 1-[3,5-bis(dimethylcarbamoyloxoy)phenyl]-2-chloroethane with incubated whole cell of Williopsis Californica ICM3600. J Mol Catal B Enzym. 2013;97:106–9.

Huang L, Liu J, Shan W, Liu B, Shi A, Li X. The asymmetric synthesis of (R,R)-formoterol via transfer hydrogenation with polyethylene glycol bound Rh catalyst in PEG2000 and water. Chirality. 2010;22:206–11.

Effenberger F, Jäger J. Synthesis of the adrenergic bronchodilators (R)-terbutaline and (R)-salbutamol from (R)-cyanohydrins. J Org Chem. 1997;62:3867–73.