Beyond the Electrocardiogram: Mutations in Cardiac Ion Channel Genes Underlie Nonarrhythmic Phenotypes

Thomas M Roston1, Taylor Cunningham1, Anna Lehman1, Zachary W Laksman1, Andrew D Krahn1 and Shubhayan Sanatani1,2

1British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada. 2Children’s Heart Centre, BC Children’s Hospital, Vancouver, BC, Canada.

ABSTRACT: Cardiac ion channelopathies are an important cause of sudden death in the young and include long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, and short QT syndrome. Genes that encode ion channels have been implicated in all of these conditions, leading to the widespread implementation of genetic testing for suspected channelopathies. Over the past half-century, researchers have also identified systemic pathologies that extend beyond the arrhythmic phenotype in patients with ion channel gene mutations, including deafness, epilepsy, cardiomyopathy, periodic paralysis, and congenital heart disease. A coexisting phenotype, such as cardiomyopathy, can influence evaluation and management. However, prior to recent molecular advances, our understanding and recognition of these overlapping phenotypes were poor. This review highlights the systemic and structural heart manifestations of the cardiac ion channelopathies, including their phenotypic spectrum and molecular basis.

KEYWORDS: Arrhythmia, ion channel, genetics, cardiomyopathy, sudden unexpected death

Ion Channel Gene Mutations in Cardiomyopathy

Many genes have been implicated in cardiovascular disease, including those associated with arrhythmia and cardiomyopathy. Among these genes, the data supporting pathogenicity are variable, in part because many cases are sporadic, and molecular mechanisms are difficult to elucidate. This section will focus on the genes for which there is reasonable and consistent evidence of a cardiac channelopathy phenotype, in addition to a potential link to cardiomyopathy (Table 1). However, even for the genes meeting this criteria (ie, SCN5A, KCNQ1, RYR2, and HCN4), disease causation may be questionable. For example, although SCN5A has long been associated with BrS, emerging evidence indicates that BrS may be an oligogenic disease (ie, >1 gene influences phenotype). Supplementary Table 1 includes the clinical-, genetic-, and population-level evidence for disease causation for each variant. The link between many of these variants and human disease is likely to change as scientific knowledge evolves.

SCN5A

Ion influx through the voltage-gated sodium channel (Nav1.5) encoded by SCN5A is a ubiquitous process underlying myocardocyte excitability and cell-to-cell conduction. SCN5A has been implicated as a causative or modifier gene in nearly all of the channelopathies, including LQTS, BrS, CPVT, SQT5, AF, PCCD, and SSS.8,9,26–31 The J-wave syndromes, as well as BrS, are linked to loss-of-function mutations in SCN5A, whereas...
LQTS is associated with gain-of-function mutations. In some channelopathies, such as CPVT and SQTS, the SCN5A link is limited to single families.

A well-established nonelectrophysiological manifestation of SCN5A variants is dilated cardiomyopathy (DCM). Of these, the R222Q variant is supported by the most robust data. In a cohort of 338 genotype-elusive patients with DCM, McNair et al identified 5 missense SCN5A variants in 15 subjects. These individuals experienced arrhythmias seemingly out of proportion to the degree of cardiac dysfunction, including supraventricular arrhythmia, SSS, AF, ventricular tachycardia (VT), and PCCD in the absence of QT prolongation or J-point elevation. These missense variants typically localized to highly conserved regions of SCN5A, supporting their pathogenic role, and a shared voltage-sensing mechanism underlying both DCM and arrhythmia.

The mechanism linking impaired Na+ current and PCCD is not well established, and aging likely plays a role in unmasking the phenotype. SCN5A variants can be challenging to interpret in the clinical setting. Na,1.5 probably has many roles and directly interacts with other proteins, such as PKP2-encoded plakophilin, which underlies arrhythmogenic right ventricular cardiomyopathy (ARVC). In this setting, loss of PKP2 function leads to impaired I\textsubscript{Na}, suggesting an important, shared role between desmosomes, gap junctions, and Na+ channels in maintaining I\textsubscript{Na}. This discovery is supported by a large BrS cohort with coexisting Na+ channel dysfunction and PKP2 variants. A growing number of studies also report possible subtle structural changes in patients with BrS and abnormal electrograms during epicardial mapping. Ablation can normalize the electrocardiogram but does not provide complete protection from arrhythmia. This highlights the complex pathophysiological mechanisms of BrS, which remain elusive despite decades of research. Brugada syndrome is likely oligogenic, as evidenced in stem cells which did not recapitulate an arrhythmia phenotype in vivo despite harboring SCN5A mutations. This is highlighted by the relatively high allele frequencies of certain BrS-associated variants (Supplementary Table 1).

Table 1. Summary of genes implicated in the cardiomyopathy-channelopathy overlap syndrome.

| ION CHANNEL GENES AND THEIR ASSOCIATION WITH CHANNELOPATHY AND CARDIOMYOPATHY |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| **SCN5A** | **KCNQ1** | **RYR2** | **HCN4** |
| LVNC | Nakashima et al16 | Ohno et al10 | Milano et al18 |
| | | Campbell et al12 | |
| ARVC | Tiso et al7 | | |
| DCM | McNair et al18,9 | Nair et al20 | Xiong et al23 |
| | Gosselin-Badaroudine et al21 | | |
| | Cheng et al22 | | |

Abbreviations: ARVC, arrhythmogenic right ventricular cardiomyopathy; DCM, dilated cardiomyopathy; LVNC, left ventricular noncompaction.

KCNQ1

KCNQ1, encoding the pore-forming subunit (K\textsubscript{1,7,1}) of the slowly activating delayed-rectifier potassium channel, underlies LQTS, SQTS, and atrial arrhythmias. Despite *KCNQ1* being an ion channel gene, cases of LQTS and SQTS complicated by cardiomyopathy have been described. One such example is a highly arrhythmogenic cardiomyopathy observed in the setting of a loss-of-function *KCNQ1* (R397Q) mutation. A hypothesized mechanism by which a mutation in *KCNQ1* propagates structural heart disease is as follows: *KCNQ1* and *KCNE1* form repolarizing channels which are regulated by beta-adrenergic-mediated protein kinase...
A-‐dependent phosphorylation. IK, currents are also sensitive to Ca2+, in part through interaction with calmodulin. Abnormal interaction between mutant K\textsubscript{7.1} and calmodulin may lead to Ca2+ dysregulation and impaired cardiomyocyte contractility, thus producing a structural phenotype. Similar mechanisms have been theorized in other cardiomyopathy-‐channelopathy overlap syndromes,9,42,43 including SCN5A-‐associated DCM and left ventricular noncompaction (LVNC) and KCNQ1-‐associated DCM in 3 patients with SQTS.44 However, incomplete phenotyping and so-‐called tachycardia-‐induced cardiomyopathy may confound these reports, and mechanistic descriptions are largely speculative. Alternatively, KCNQ1 may be a genetic modifier of structural heart disease. These dramatic but isolated observations highlight the need for further biophysical and linkage studies and detailed phenotyping.

An overlap between a channelopathy and a developmental abnormality has recently been seen in the form of LVNC.16,42,44 Left ventricular noncompaction is an uncommon congenital cardiomyopathy defined by intertrabecular sinusoids communicating with the ventricular cavity. In 2013, Nakashima reported LVNC in a young child with cardiac arrest, QTc prolongation, and a pathogenic KCNQ1 variant.45 Accordingly, ion channel genes have embryological roles46 and may also be downstream targets of transcription factors. These provide hypothetical mechanisms by which KCNQ1 may relate to congenital heart disease. However, the channelopathy-‐LVNC link is ill-‐defined and may be attributable to the coexistence of 2 rare, unrelated pathologies.

RYR2

Catecholaminergic polymorphic ventricular tachycardia is a channelopathy that leads to polymorphic VT during exertion or emotional stress. Priori et al47 implicated RYR2 in CPVT, which encodes the ryanodine receptor 2 (RyR2).47 Ryanodine receptor 2 is the largest ion channel in the human genome with a complex heterotetrameric structure, which allows it to interact with the cytosol, plasma membrane, and lumen of the sarcoplasmic reticulum.48 As such, RyR2 may be involved in cellular processes that extend beyond the action potential. Since 2001, more than 200 gain-‐of-‐function RYR2 variants have been described.49 To a lesser extent, loss-‐of-‐function RYR2 mutations exist, but instead underlie an arrhythmia syndrome distinct from CPVT.50-‐52 RYR2 variants2,10,17,19 and abnormalities in Ca2+ current53 are also associated with changes in cardiac structure.

Arrhythmogenic right ventricular cardiomyopathy came to be recognized due to its severe electrophysiological consequences (and extracardiac cutaneous phenotype). Accordingly, diagnostic criteria rely on electrical findings,54 in addition to coexistent fibrofatty ventricular infiltration, making it the prototypical cardiomyopathy-‐channelopathy overlap syndrome. Arrhythmogenic right ventricular cardiomyopathy is a disorder of the intercalated disk, desmosome, and gap junction,55,56 of which the intercalated disk is integral in forming the myocardial scaffold.56 The intercalated disk interacts with a variety of proteins, including ion channels.57 As Priori and colleagues were describing RYR2-‐associated CPVT, Tiso et al48 published on 4 ARVC families with variants in RYR2. More recently, 6 rare missense variants in RYR2 were identified in 64 previously genotype-‐elusive ARVC subjects.49 Tiso and colleagues hypothesized that Ca2+ dysregulation at the sarcoplasmic reticulum, a mechanism also proposed to underlie CPVT, leads to myocardial necrosis, resulting in ARVC.7 The role of the intercalated disk in this relationship is unclear, and data linking ion channels to the intercalated disk involve Na+ rather than Ca2+ current.57 Further molecular work is needed to determine the mechanism of RYR2-‐related ARVC.

RYR2 is also linked to LVNC.10,44 Our group recently described a loss-‐of-‐function mutation in a family with LVNC and atypical CPVT.17 In another family, there are 2 female CPVT probands with deletion of exon 3 in RYR2, exercise-‐induced ventricular ectopy, and LVNC.10 Family screening identified 8 mutation carriers, of which 7 had LVNC. A structural phenotype related to RYR2 exon 3 deletion has also been described in an unrelated patient.52 These are some of the reports describing large exon deletions of RyR2. At present, it is not known whether larger deletions of RyR2 are likely to manifest in structural heart disease. In addition, some RYR2 mutations may actually be benign polymorphisms,58 and variants of unknown significance in RYR2 are common,59 making it difficult to link rare structural phenotypes to RYR2.

HCN4

Before the genetic basis of conduction disease was known, SAN dysfunction was thought to be a channelopathy, caused by impaired “funny current,” I\textsubscript{f}.60 Using a candidate gene approach, Macri et al61 demonstrated that HCN4 variants cause chronotropic incompetence. HCN4 is expressed in the SAN and encodes the hyperpolarization-‐activated cyclic nucleotide-‐gated potassium channel 4. Since their work, HCN4 has been implicated in familial sinus bradycardia,18,62 tachycardia-‐bradycardia syndrome, and AF.62 Unlike traditional channelopathies, HCN4 does not appear to manifest in primary ventricular arrhythmia.

In 2014, Milano and colleagues18 showed that HCN4 may have a structural role in a family with SAN dysfunction, LVNC, and HCN4 mutation. There are two main mechanistic hypotheses to explain HCN4-‐related LVNC. The first is that although HCN4 is expressed predominantly in the SAN, it is coexpressed in ventricular progenitor cells.63 Under these circumstances, HCN4 mutations could lead to congenital heart disease and then later manifest as bradycardia after birth. The second hypothesis is that trabeculation is a compensatory response to bradycardia, as seen in athletes with low resting heart rates.64 Most recently, multiple variants in HCN4, including those previously implicated in LVNC,18,65 have been shown to underlie
Clinical Medicine Insights: Cardiology

ascending aortic dilation. Young patients with symptomatic, chronotropic incompetence, LVNC, and/or aortic dilation should be considered for sequencing of HCN4.

Extracardiac Manifestations of Ion Channel Gene Mutations
The following section discusses the channelopathies which have been classically associated with a systemic phenotype, as well as emerging theories supporting the systemic impact of these mutations. For these syndromes, a description of the systemic findings often predated the causative molecular abnormality. Table 2 summarizes these genotype-phenotype correlations.

Syndromic features of the long QT syndrome
The Jervell and Lange-Nielsen syndrome was described over 50 years ago as a constellation of congenital deafness, childhood SUD, and QTc prolongation. We now know that this syndrome is caused by homozygous recessive mutations in KCNE1 and KCNQ1. In the heterozygous state, enough K+ is secreted into the endolymph to maintain the endocochlear potentials responsible for sensory conduction. However, in a homozygous state, little or no functional protein is produced, resulting in deafness and a markedly prolonged QT interval.

Timothy syndrome (TS) (allelic to LQT8) is an autosomal dominant type of LQTS, characterized by congenital heart disease, syndactyly, autism, and immunodeficiency. Timothy syndrome is almost universally lethal by the third decade of life. In 1995, the Ca1.2 Ca2+ channel encoded by CACNA1c, usually in exon 8A, was found to be causative in TS. CACNA1c is ubiquitously expressed and has embryological importance, highlighted by the diverse congenital TS manifestations, including seizures, cognitive disability, electrolyte derangements, and hypoglycemia. Polymorphisms in CACNA1c may also play a role in valvular heart disease and psychiatric disease.

Andersen-Tawil syndrome (ATS) is an autosomal dominant syndrome classically defined by the triad of episodic flaccid paralysis, QTc prolongation, and congenital morphological anomalies. In actuality, ATS is better defined by its characteristic T-U wave patterns than by QT prolongation, which is usually absent. Mutations in the inward-rectifying potassium channel, KCNJ2, underlie ATS, as well as isolated cases of SQTS and CPVT. In fact, the bidirectional VT characteristic of ATS is a phenocopy of CPVT, and both conditions appear to respond well to Na+ channel antagonists, suggesting the possibility of a shared mechanism.

The role of SCN5A in gastrointestinal motility
SCN5A-encoded Na+ channels have been identified in gastrointestinal (GI) smooth muscle cells and interstitial cells of Cajal, raising suspicion that the familial preponderance of certain GI

SYNDROME	GENE	FUNCTIONAL SIGNIFICANCE	MANIFESTATIONS	CITATION
Jervell and Lange-Nielsen syndrome	KCNQ1/KCNE1	LoF	QTc prolongation Deafness	Neyround et al
Timothy syndrome	CACNA1c	GoF	QTc prolongation Congenital heart disease Syndactyly Autism Immunodeficiency Seizures/neurological deficits Hypotonia Electrolyte derangements Hypoglycemia	Splawski et al
Andersen-Tawil syndrome	KCNJ2	LoF	QTc prolongation Micronatia Hypertelorism Short stature Scoliosis Low-set ears Clinodactyly Periodic paralysis	Plaster et al
Primary epilepsy	KCNH2	LoF	LQT2	Johnson et al
	KCNQ1	LoF/Not listed	LQT1, CPVT, ATS (LQT7) BrS	Zamorano-Leon et al
	RYR2	LoF		Goldman et al
	KCNJ2	LoF		Nagrani et al
	SCN5A	LoF		Marquez et al
				Sandorfi et al

Abbreviations: ATS/LQT7, Andersen-Tawil syndrome/long QT syndrome type 7; BrS, Brugada syndrome; CPVT, catecholaminergic polymorphic ventricular tachycardia; GoF, gain of function; LoF, loss of function; LQT1, long QT syndrome type 1; LQT2, long QT syndrome type 2.
diseases could be attributable to heritable Na⁺ channel defects. Subsequent functional and animal studies confirmed the importance of **SCN5A** in GI motility, and **SCN5A** variants are now thought to underlie human GI syndromes, including reports of overlapping GI and BrS phenotypes. This example highlights the importance of pursuing comprehensive evaluations in all patients, as yet unrecognized syndromes may relate to the ion channel genes.

Glucose control in CPVT patients with RYR2 mutations

RYR2 is ubiquitously expressed in a variety of tissues, including the brain and pancreas. Using oral glucose tolerance testing, Santulli et al. found that patients with CPVT have impaired glucose regulation, likely related to RyR2 dysfunction. They recapitulated this phenotype in CPVT mice and then rescued β-cell function in vitro using small molecules that stabilize RyR2, called “Rycals.” Rycals have not been studied in human CPVT but do offer hope that genotype-specific treatments are possible.

Epilepsy

Ventricular arrhythmias can cause hypoxemic seizures, including reports of cardiac ion channelopathy masquerading as epilepsy. The possibility of arrhythmic syncope must be considered in all patients with unexplained seizure, with a careful focus on the electrocardiogram and history. However, seizures can occur independent of arrhythmia in patients with channelopathy. **KCNQ1** channels are expressed in both neural and cardiac tissue, and primary epilepsy and LQTS have been reported to coexist in 1 LQT1 family. This relationship extends to LQT2, in which seizures may be even more prevalent. Recently, whole exome sequencing of SUD in epilepsy victims revealed several rare LQTS variants. Animal models further support evidence of a phenotypic overlap. In ATS, BrS, and CPVT, this phenomenon may also exist, making cardiocerebral-channelopathy overlap syndrome a suitable all-encompassing term. We recommend that cardiologists and neurologists pursue detailed phenotyping in patients with arrhythmias and seizures (Figure 1) so as not to miss this unifying syndrome.

Conclusions

Mutations in the ion channel genes underlie a variety of phenotypes that extend beyond the electrocardiogram, ranging from overt, life-threatening symptoms, to concealed, benign pathology. The most recognized overlapping manifestations include cardiomyopathy and the systemic features of LQTS, almost all of which were described before the modern molecular era. So far, no unifying mechanism exists to explain these syndromes, and a variety of additional factors may influence gene expression in ion channel diseases, such as epigenetic factors in cancer proliferation, genetic compartmentalization in heart disease, and posttranslational modifications in epilepsy. The ion channels interact with one another, and disruption of one channel may induce dysfunction in another, as has been shown with Ca²⁺ regulation in LQTS models. In many of these examples, genetic causation may be questionable, and genetic testing is essential.

Figure 1. Simplified algorithm for the assessment of a potential ion channel overlap syndrome.
probabilistic in nature.99 We propose an assessment model (Figure 1) that emphasizes the multidisciplinary care required to evaluate these syndromes. In the future, improved clinical recognition will inform further molecular studies on the mechanical basis of the nonarrhythmic phenotypes.

Acknowledgements

The authors thank Ms. Frances Perry for assisting with reference material.

Author Contributions

TMR conducted the literature review and wrote the manuscript. TC conducted the literature review, drafted portions of the manuscript and assisted with reference material. AL conceived the review topic and revised the manuscript. ZWL provided revisions and reference material for the manuscript. SS conceived the review topic and revised the manuscript. ZWL provided revisions and reference material for the manuscript. SS conceived the review topic, supervised the first author, assisted with revisions and approved of the final version of the manuscript.

REFERENCES

1. Neyroud N, Tesnou F, Denjoy J, et al. A novel mutation in the potassium channel gene KVLQ1 causes the Jervell and Lange-Nielsen cardiomyopathic syndrome. Nat Genet. 1997;15:186–189.

2. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the QT interval and sudden death. Am Heart J. 1954;54:59–68.

3. Pisini SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus document on exercise testing in arrhythmia syndromes. Heart Rhythm. 2012;9:1932–1963.

4. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus document on exercise testing in arrhythmia syndromes. Heart Rhythm. 2012;9:1932–1963.

5. Liu JF, Moss AJ, Jons C, et al. Mutation-specific risk in two genetic forms of short QT syndrome. J Am Coll Cardiol. 2010;56:106–112.

6. Liu JF, Moss AJ, Jons C, et al. Mutation-specific risk in two genetic forms of short QT syndrome. J Am Coll Cardiol. 2010;56:106–112.

7. Tiso N, Stephan D, Nava A, et al. Identification of mutations in the cardiac ryanodine receptor gene causes exercise-induced polymorphic ventricular arrhythmias. Circulation. 2004;110:2163–2167.

8. McNair WP, Ku L, Taylor MR, et al. Identification of mutations in the cardiac ryanodine receptor gene causes exercise-induced polymorphic ventricular arrhythmias. Circulation. 2004;110:2163–2167.

9. McNair WP, Ku L, Taylor MR, et al. SCNS5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation. 2004;110:2163–2167.

10. Ohno S, Omura M, Kawamura K, et al. Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction. Eur Heart J. 2014;35:1646–1654.

11. Frez S, Giustetto C, Capriolo M, et al. New echocardiographic insights in short QT syndrome: more than a channelopathy? Heart Rhythm. 2015;10:2096–2105.

12. Campbell MJ, Coles D, Hinton RB, Miller EM. exon 3 deletion of ryanoide receptor causes left ventricular noncompaction, worsening catecholaminergic polymorphic ventricular tachycardia, and sudden cardiac arrest. Am J Med Genet A. 2015;167A:2197–2200.

13. Johnson JN, Hofman N, Haglund CM, Cascino GD, Wilde AAM, Ackerman MJ. Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy. Neurology. 2009;72:224–231.

14. Zamorano-Leon JJ, Yanez R, Jaime G, et al. KCNH2 gene mutation: a potential link between epilepsy and long QT syndrome. J Neurol. 2012;268:382–386.

15. Bagnall RD, Crompton DE, Petrovics S, et al. Exome-based analysis of cardiac arhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Ann Neurol. 2016;79:522–534.

16. Nakashima K, Kusakabe I, Yamamoto T, et al. Left ventricular noncompaction in a patient with long QT syndrome caused by a KCNQ1 mutation: a case report. Heart Vessels. 2013;28:126–129.

17. Roston TM, Guo W, Krush AD, et al. A novel RYR2 loss-of-function mutation (I485SM) is associated with left ventricular non-compaction and atypical catecholaminergic polymorphic ventricular tachycardia [published online ahead of print September 8, 2016]. J Electrocardiol. doi:10.1016/j.jelectrocard. 2016.09.006.

18. Milano A, Vermeir AM, Lodder EM, et al. KCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol. 2014;64:745–756.

19. Roux-Buisson N, Gandjbakhch E, Donal E, et al. Prevalence and significance of rare RYR2 variants in arhythmogenic right ventricular cardiomyopathy/dysplasia: results of a systematic screening. Heart Rhythm. 2014;11:1999–2009.

20. Nair K, Pekhletski R, Harris L, et al. Escape capture bigeminy: phenotypic marker of cardiac sodium channel voltage sensor mutation R222Q. Heart Rhythm. 2012;9:1681.e1–1688.e1.

21. Gosselin-Badaroudine P, Keller DI, Huang H, et al. A proton leak current with the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype. PLoS ONE. 2012;7:e38331.

22. Cheng J, Morales A, Siegfried JD, et al. SCN5A rare variants in familial dilated cardiomyopathy decrease peak sodium current depending on the common polymorphism H558R and common splice variant Q797del. Clin Transl Sci. 2010;3:287–294.

23. Swan H, Amorouch M, Leinonen J, et al. A gain-of-function mutation of the SCN3A gene causes exercise-induced polymorphic ventricular arrhythmias. Circ Cardiovasc Genet. 2014;7:771–781.

24. Beaufort-Krol GC, van den Berg MP, Wilde AA, et al. Developmental aspects of long QT syndrome type 3 and Brugada syndrome on the basis of a single SCN5A mutation in childhood. J Am Coll Cardiol. 2005;46:331–337.

25. Hong K, Hu J, Brugada R. Concomitant Brugada-like and short QT electrocardiogram linked to SCN5A mutation. J Eur Heart J. 2012;23:911–917.

26. Chen J, Makiya T, Wuriyangh Y, et al. Cardiac sodium channel mutation associated with epinephrine-induced QT prolongation and sinus node dysfunction. Heart Rhythm. 2016;13:289–298.

27. Ohno S, Omura M, Kawamura K, et al. Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction. Eur Heart J. 2011;32:2369–2368.

28. Schott J, Alishanavi C, Knyst D, et al. Cardiac conduction defects associate with mutations in SCNS5A. Nat Genet. 1999;23:20–21.

29. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduct system. Circ Res. 2003;92:159–168.

30. Manna SA, Castro ML, Ohanian M, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol. 2012;60:1566–1573.

31. Towbin J, Lorts A. Arrhythmias and dilated cardiomyopathy. J Am Coll Cardiol. 2011;57:2169–2168.

32. Vermeer AM, Lodder EM, et al. Common variants at KCNQ1-SCN1A and HER2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 2013;45:1044–1049.

33. Schott J, Alishanavi C, Knyst D, et al. Cardiac conduction defects associate with mutations in SCNS5A. Nat Genet. 1999;23:20–21.

34. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCNS5A associated with severe cardiac conduction disturbances and degenerative changes in the conduct system. Circ Res. 2003;92:159–168.

35. Mann SA, Castro ML, Ohanian M, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol. 2012;60:1566–1573.

36. Hong K, Piper DR, Diaz-Valdecantos A, et al. De novo KCNQ1 gain-of-function mutation respon- sible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res. 2005;68:433–440.

37. Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299:251–254.

38. Ogawa K, Nakamura Y, Terano K, Ando T, Hishitani T, Hoshino K. Isolated noncompaction of the ventricular myocardium associated with long QT syndrome: a report of 2 cases. Circ J. 2009;73:2169–2172.
69. Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL, Nagrani T, Siyamwala M, Vahid G, Bekheit S. Ryanodine calcium channel: a novel channelopathy for seizures. *Neurology*. 2011;77:91–94.

71. Marquez M, Tomoouch-Sera A, Burgos J, et al. Abnormal electrophenomenal, epileptic seizures, structural congenital heart disease and aborted sudden cardiac death in Andersen-Tawil syndrome. *Int J Cardiol*. 2015;180:206–208.

72. Sandorfi G, Clemens B, Csnaadi Z. Electrical storm in the brain and in the heart: epilepsy and Brugada syndrome. *Mol Clin Proc*. 2013;8:1167–1173.

74. Schwartz JP, Spaziano C, Croitti L, et al. The Jerreli and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. *Circulation*. 2006;113:783–790.

75. Vetter DE, Mann JR, Wangemann P, et al. Inner ear defects induced by null mutation of the isk gene. *Neuron*. 1996;17:1231–1264.

76. Modell SM, Lehmann MR. The long QT syndrome family of cardiac ion channelopathies: a HuGe review. *Genet Med*. 2006;8:143–155.

78. Marks ML, Whisler SL, Clericiuzio C, Keating M. A new form of long QT syndrome associated with syndactyly. *J Am Coll Cardiol*. 1995;29:59–64.

79. Marks ML, Tripple DL, Keating MT. Long QT syndrome associated with syndactyly identified in females. *Am J Cardiol*. 1995;76:744–745.

80. Gauquie-Olarle S, Messika-Zeitoun D, Droit A, et al. Calcium signaling pathway genes RUSN2 and CACNA1C are associated with calcific aortic valve disease. *Circ Cardiovasc Genet*. 2015;8:812–822.

81. Priori SG, Chen SR. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. *Circ Res*. 2011;108:871–880.

82. Kalscheur MM, Vaidyanathan R, Orland KM, et al. KCNJ2 mutation causing an adrenergic-dependent rectification abnormality in calcium sensitivity and ventricular arrhythmia. *Heart Rhythm*. 2014;11:885–894.

83. Miyamoto K, Aiba T, Kimura H, et al. Efficacy and safety of flecainide for ventricular arrhythmias in patients with Andersen-Tawil syndrome with KCNJ2 mutations. *Heart Rhythm*. 2014;11:1055–1062.

84. Ou Y, Gibbons SJ, Miller SM, et al. SCN5A is expressed in human jejunal circular smooth muscle cells. *Neurogastroenterol Motil*. 2002;4:477–486.

85. Strege PR, Ou Y, Sha L, et al. Sodium current in human intestinal interstitial cells of Cajal. *Am J Physiol Gastrointest Liver Physiol*. 2003;285:G1111–G1121.

86. Saito YA, Strege PR, Menon S, et al. Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy. *Am J Gastroenterol*. 2009;29:G21–G218.

87. Verstraeten TE, Ter Bekke RM, Volders PG, Maselie AA, Kraiem JW. The role of the KCNQ1-encoded channelopathy in irritable bowel syndrome and other gastrointestinal disorders. *Neurogastroenterol Motil*. 2014;27:901–913.

88. Jung KT, Park H, Kim JH, et al. The relationship between gastric myoelectric activity and SCN4A mutation suggesting sodium channelopathy in patients with Brugada syndrome and functional dyspepsia—a pilot study. *J Neurogastroenterol Motil*. 2012;18:58–63.

89. Llanos P, Contreras-Ferrat A, Barrientos G, Valencia M, Mears D, Hidalgo C. Glucose-dependent insulin secretion in pancreatic β-cell islets from male rats requires Ca2+ release via ROS-stimulated ryanodine receptors. *PLoS ONE*. 2015;10:e0129386.

90. Sarnatti G, Pagano G, Sarudi C, et al. Calcium release channel RYR2 regulates insulin release and glucose homeostasis. *J Clin Invest*. 2015;125:1968–1978.

91. Heron SE, Hernandez M, Edwards C, et al. Neonatal seizures and long QT syndrome: a cardiorespiral channelopathy? *Epilepsia*. 2010;51:293–296.

92. Tiron C, Campuzano O, Perez-Serra A, et al. Further evidence of the association between LQJ1 and epilepsy in a family with KCNQ1 pathogenic variant. *Seizure*. 2015;25:65–67.

93. Anderson JH, Bos JM, Cascino GD, Ackerman MJ. Prevalence and spectrum of cardiac arrhythmia among patients with the long-QT syndrome. *Am J Cardiol*. 2013;6:481–489.

94. Ryland KE, Hawkins AG, Weisenberger DJ, et al. Promoter methylation analysis of the isk gene. *Hum Genet*. 2015;134:347–351.

95. Splawski I, Timothy K, Sharpe I, et al. CaV1.2 calcium channel dysfunction causes cardiac death in Andersen-Tawil syndrome. *Cell* 2001;103:196–200.

96. Kleber AG, Saffitz JE. Role of the intercalated disc in cardiac propagation and arrhythmogenesis. *Cardiovasc Res*. 2008;78:15–25.

97. Deo M, Ruan Y, Pandit SV, et al. KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular prearhythmia. *Proc Natl Acad Sci U S A*. 2013;110:4291–4296.

98. Ghouse J, Have CT, Weeke P, et al. Rare genetic variants previously associated with congenital forms of long QT syndrome have little or no effect on the QT interval. *Eur Heart J*. 2015;36:2523–2529.

99. Yalowicz SG, Zanger EM. Genotype-specific therapy. *Curr Opin Cardiol*. 2014;30:1262–1273.

100. Kanemoto N, Horigome H, Nakayama J, et al. Interstitial 1q43-q43 deletion with reduced Ca2+ release and short-coupled torsades de pointes ventricular arrhythmia. *Heart Rhythm*. 2017;14:98–107.

101. Paech C, Gebauer RA, Karstedt J, Marschall C, Bollmann A, Husser D. Ryanodine receptor mutations presenting as idiopathic ventricular fibrillation: a report on two novel familial compound mutations, c.6224T>C and c.13781A>G, with the clinical presentation of idiopathic ventricular fibrillation. *Pediatr Cardiol*. 2014;35:1447–1441.

102. Liu L, Makita N, Xing Y, et al.Ryanodine receptor mutations presenting as idiopathic ventricular fibrillation: a model for genotype-specific therapy. *Circ Opin Cardiol*. 2017;32:78–85.

103. Roston TM, Van Petegem F, Sanatani S. Catecholaminergic polymorphic ventricular tachycardia: a model for genotype-specific therapy. *Circ Opin Cardiol*. 2017;32:78–85.