Skin values of 208Pb and 48Ca determined from reaction cross sections

Tomotsugu Wakasa, Shingo Tagami, and Masanobu Yahiro
Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

Background: The PREX and the CREX group reported skin values, r_{skin}^{208} (PREX2) = 0.283 ± 0.071 fm and r_{skin}^{48} (CREX) = 0.121 ± 0.026 (exp) ± 0.024 (model) fm, respectively. Using the Love-Franey (LF) t-matrix folding model with the neutron and proton densities scaled to the neutron radius r_n^{208} (PREX2) and the proton radius of the electron scattering, we found that the reaction cross sections σ_R reproduce the data for $p+$ 208Pb scattering at $E_{\text{lab}} = 534.1, 549, 806$ MeV. Zenihiro et al. deduce neutron radii $r_n^{48,40}$ (exp) from the angular distributions of the cross sections and analyzing powers of proton elastic scattering, whereas we determine matter radius r_m^{40} (exp) = 3.361 ± 0.075 fm from measured σ_R for $^4\text{He}+$ 40Ca scattering.

Aim: Our first aim is to determine r_{skin}^{208} from measured σ_R of $p+$ 208Pb scattering at $E_{\text{lab}} = 534.1, 549, 806$ MeV by using the Love-Franey (LF) t-matrix folding model. Our second aim is to determine r_{skin}^{48} from r_{skin}^{40} (exp) and the difference $\Delta \equiv r_{\text{skin}}^{48} - r_{\text{skin}}^{40}$ (exp) that is evaluated from the $r_n^{48,40}$ (exp) and the $r_p^{48,40}$ (exp) calculated with the isotope shift method based on the electron scattering.

Method and results: For the first aim, we use the Love-Franey t-matrix model with the densities scaled from the D1S-GHFB+AMP neutron density, where D1S-GHFB+AMP stands for D1 S Gogny HFB (GHFB) with the angular momentum projection (AMP). The D1M-GHFB+AMP is also used to estimate a theoretical error. The resulting skin values are $r_{\text{skin}}^{208} = 0.324 \pm 0.047$ fm for D1S and $r_{\text{skin}}^{208} = 0.333 \pm 0.047$ fm for D1M. The difference $\Delta = 0.109$ fm and $r_{\text{skin}}^{208} = 3.470 \pm 0.075$ fm, leading to $r_{\text{skin}}^{208} = 0.144 \pm 0.075$ fm.

Conclusion: We conclude that $r_{\text{skin}}^{48} (\text{exp}) = 0.324 \pm 0.047 (\text{exp}) \pm (0.009)_{\text{th}}$ fm for p scattering at $E_{\text{lab}} = 534.1, 549, 806$ MeV. Our skin value $r_{\text{skin}}^{48} = 0.144 \pm 0.083 = 0.061 \sim 0.227$ fm is consistent with $r_{\text{skin}}^{208} (\text{CREX}) = 0.071 \sim 0.171$ fm.

Background: Horowitz et al. [1] proposed a direct measurement for neutron skin r_{skin}. The measurement consists of parity-violating weak scattering and elastic electron scattering. The neutron radius r_n is determined from the former experiment, whereas the proton radius r_p is from the latter.

The direct measurement was applied for 208Pb and 48Ca. As for 208Pb, the PREX collaboration presented $r_{\text{skin}}^{208} (\text{PREX2}) = 0.283 \pm 0.071$ fm, (1)

combining the original Lead Radius EXperiment (PREX) result with the updated PREX2 result [2,4]. As for 48Ca, the CREX group presented [5]

$$r_{\text{skin}}^{48} (\text{CREX}) = 0.121 \pm 0.026 (\text{exp}) \pm 0.024 (\text{model}) = 0.071 \sim 0.171 \text{ fm.} \quad (2)$$

The $r_{\text{skin}}^{208} (\text{PREX2})$ and the $r_{\text{skin}}^{48} (\text{CREX})$ are most reliable at the present stage, and provide crucial tests for the equation of state (EoS) of nuclear matter [6-10] as well as nuclear structure.

Reed et al. [11] reported a value of the slope parameter of the EoS and examine the impact of such a stiff symmetry energy on some critical neutron-star observables. The $r_{\text{skin}}^{208} (\text{PREX2})$ value is considerably larger than the other experimental values that are model-dependent [12-15]. Meanwhile, the nonlocal dispersive-optical-model (DOM) analysis of 208Pb yields $r_{\text{DOM}}^{208} = 0.25 \pm 0.05$ fm [16]. The value is consistent with $r_{\text{skin}}^{208} (\text{PREX2})$.

Using the chiral (Kyuushu) g-matrix folding model, we determine $r_{\text{skin}}^{208} (\text{exp}) = 0.278 \pm 0.035$ fm from reaction cross section σ_R in $30 \sim E_{\text{lab}} \leq 100$ MeV [17]. In addition, for $^4\text{He}+$ 208Pb scattering, we determine $r_{\text{skin}}^{208} (\text{exp}) = 0.416 \pm 0.146$ fm from measured σ_R in $E_{\text{lab}} = 30 \sim 50$ MeV [18]. These values are consistent with $r_{\text{skin}}^{208} (\text{PREX2})$.

For 12C scattering on $^4\text{He}, ^{12}$C, 37Al targets, we tested reliability of the Kyushu g-matrix folding model and found that the folding model is reliable in $30 \leq E_{\text{lab}} \leq 100$ MeV and $250 \leq E_{\text{lab}} \leq 400$ MeV [19]. Furthermore, we mentioned that the difference between the t-matrix and the g-matrix is small in $E_{\text{lab}} \geq 400$ MeV. Since the cutoff of the chiral nucleon-nucleon (NN) is 550 MeV, the chiral NN t-matrix is useful in $400 \leq E_{\text{lab}} \leq 500$ MeV. For $E_{\text{lab}} \geq 400$ MeV, the most famous t-matrix is Love-Franey (LF) t-matrix [20].

As for 208Pb, it is possible to determine reliable neutron radius $r_n (\text{PREX2}) = 5.727 \pm 0.071$ fm and matter radius $r_m (\text{PREX2}) = 5.617 \pm 0.044$ fm from $r_p (\text{exp}) = 5.444$ fm [21] of electron scattering and $r_{\text{skin}}^{208} (\text{PREX2})$. The r_p calculated with D1S-Gogny-HFB (D1S-GHFB) with the angular momentum projection (AMP) agrees with $r_p (\text{exp})$. The neutron density calculated with D1S-GHFB+AMP is scaled so as to $r_n^{\text{scaling}} = 5.727$ fm. In Ref. [22], we showed that the LF t-matrix folding model with the scaled neutron density and the D1S-GHFB+AMP proton one reproduces the data $\sigma_R (\text{exp})$ at $E_{\text{lab}} = 534.1, 549, 806$ MeV within total error bars.

Nevertheless, we do not determine r_{skin}^{208} from the data at $E_{\text{lab}} = 534.1, 549, 806$ MeV.

As for 48Ca, an indirect measurement is made with the high-resolution $E1$ polarizability experiment (E1Pe) [25]. The skin value $r_{\text{skin}}^{48} (\text{E1Pe}) = 0.14 \sim 0.20$ fm is consistent with $r_{\text{skin}}^{48} (\text{CREX})$. Using $^4\text{He}+$ 40Ca scattering in $E_{\text{lab}} = 30 \sim 50$ MeV, we determine matter radius $r_m^{40} (\text{exp})$ from measured σ_R [18], whereas Zenihiro et al. deduce neutron radii $r_n^{48,40} (\text{exp})$ from the angular distributions of the cross sections and analyzing powers of polarized proton elas-
tic scattering at $E_{\text{lab}} = 295$ MeV [26]. The $r_{48}\text{ skin}(\exp)$ = 0.168$^{+0.025}_{-0.029}$ fm determined by Zenihiro et al. is consistent with $r_{48}\text{ skin}(\text{CREX})$.

Aim: The first aim is to determine $r_{208}\text{ skin}(\exp)$ from the data [23,24] on σ_T of $p + 208\text{ Pb}$ scattering at $E_{\text{lab}} = 534.1, 549, 806$ MeV by using the LF t-matrix folding model.

The second aim is to determine $r_{48}\text{ skin}(\exp)$ with the result $r_{48}\text{ m}\text{(}\exp\text{)} = 3.361 \pm 0.075$ fm [18] of $^{4}\text{He} + ^{40}\text{Ca}$ scattering in $E_{\text{lab}} = 30 \sim 50$ MeV and the difference $\Delta = r_{48}\text{ m}(\exp) - r_{48}\text{ m}(\exp)$, since there is no data on σ_T for $^{4}\text{He} + ^{40}\text{Ca}$ scattering. The derivation of Δ is shown below.

Method for determining $r_{48}\text{ skin}(\exp)$: Zenihiro et al. determine neutron radii $r_{40}\text{ m}(\exp) = 3.375^{+0.022}_{-0.023}$ fm and $r_{48}\text{ m}(\exp) = 3.555^{+0.026}_{-0.028}$ fm from the angular distributions of the cross sections and the analyzing powers of proton elastic scattering [26]. We can obtain the proton radii for $^{40,48}\text{Ca}$ with the isotope shift method based on the electron scattering [27], i.e., $r_{40}\text{ p}(\exp) = 3.378$ fm and $r_{48}\text{ p}(\exp) = 3.385$ fm. Using these values, we can obtain $r_{40}\text{ m}(\exp) = 3.777^{+0.023}_{-0.025}$ fm, $r_{48}\text{ m}(\exp) = 3.485^{+0.025}_{-0.026}$ fm.

From the central values of $r_{40}\text{ m}(\exp)$ and $r_{48}\text{ m}(\exp)$, we obtain the difference $\Delta = r_{48}\text{ m}(\exp) - r_{40}\text{ m}(\exp) = 0.109$ fm. In Ref. [18], meanwhile, we determined $r_{40}\text{ m}(\exp)$ = 3.361 \pm 0.075 fm from measured σ_T of $^{4}\text{He} + ^{40}\text{Ca}$ scattering in $E_{\text{lab}} = 30 \sim 50$ MeV. We can then obtain $r_{48}\text{ m}(\exp)$ = 3.470 \pm 0.075 fm from $r_{40}\text{ m}(\exp)$ = 3.361 \pm 0.075 fm and Δ. The $r_{48}\text{ m}(\exp)$ = 3.470 \pm 0.075 fm and $r_{48}\text{ m}(\exp)$ = 3.385 fm lead to $r_{48}\text{ skin}(\exp) = 0.144 \pm 0.075$ fm, respectively.

Method for determining $r_{208}\text{ skin}(\exp)$: We use the folding model based on Lovey-dovey (LF) t-matrix [20] to determine $r_{208}\text{ skin}(\exp)$ from data $\sigma_T(\exp)$ [23,24] at $E_{\text{lab}} = 534.1, 549, 806$ MeV. We have already applied the LF t-matrix folding model for $p + ^{4,6,8}\text{He}$ scattering at 700 MeV to determine matter radii $r_{m}(\exp)$ from the high-accuracy data [28]. The results are $r_{4m}(\exp) = 2.483 (3), 2.53 (2)$ fm and $r_{4\text{ skin}} = 0.78 (3), 0.82 (2)$ fm for $^{6,8}\text{He}$ [29].

Now we show the formulation on the LF t-matrix folding model below. For proton-nucleus scattering, the potential $U(\mathbf{R})$ between an incident proton (p) and a target (T) has the direct and exchange parts, U^{DR} and U^{EX}, as

$$U^{\text{DR}}(\mathbf{R}) = \sum_{\mu,\nu} \rho^{\mu}_T(\mathbf{r}_T) \hat{t}^{\text{DR}}_{\mu\nu}(s; \rho_{\mu\nu}) d\mathbf{r}_T,$$

$$U^{\text{EX}}(\mathbf{R}) = \sum_{\mu,\nu} \int \rho^{\mu}_T(\mathbf{r}_T, \mathbf{r}_T + s) \times \hat{t}^{\text{EX}}_{\mu\nu}(s; \rho_{\mu\nu}) \exp[-i \mathbf{K}(\mathbf{R}) \cdot \mathbf{s}/M] d\mathbf{r}_T,$$

where \mathbf{R} is the relative coordinate between p and T, $s = -\mathbf{r}_T + \mathbf{R}$, and \mathbf{r}_T is the coordinate of the interacting nucleon from T. Each of μ and ν denotes the z-component of isospin. The non-local U^{EX} has been localized in Eq. (3b) with the local semi-classical approximation [30,32] where $\mathbf{K}(\mathbf{R})$ is the local momentum between p and T, and $M = A/(1 + A)$ for the mass number A of T; see Ref. [33] for the validity of the localization.

The direct and exchange parts, $t^{\text{DR}}_{\mu\nu}$ and $t^{\text{EX}}_{\mu\nu}$, of the t matrix are described by

$$t^{\text{DR}}_{\mu\nu}(s) = \frac{1}{4} \sum_{S} \hat{S}^{2} \hat{S}^{1}_{\mu\nu}(S) \text{ for } \mu + \nu = \pm 1,$$

$$t^{\text{DR}}_{\mu\nu}(s) = \frac{1}{8} \sum_{S,T} \hat{S}^{2} \hat{T}^{S}_{\mu\nu}(S) \text{ for } \mu + \nu = 0,$$

$$t^{\text{EX}}_{\mu\nu}(s) = \frac{1}{4} \sum_{S} \hat{S}^{2} \hat{T}^{S}_{\mu\nu}(S) \text{ for } \mu + \nu = \pm 1,$$

$$t^{\text{EX}}_{\mu\nu}(s) = \frac{1}{8} \sum_{S,T} \hat{S}^{2} \hat{T}^{S}_{\mu\nu}(S) \text{ for } \mu + \nu = 0,$$

where $\hat{S} = \sqrt{2S + 1}$ and $\hat{T}^{S}_{\mu\nu}$ are the spin-isospin components of the t-matrix interaction.

As proton and neutron densities, $\rho_{p} = -1/2$ and $\rho_{n} = 1/2$, we use D1S-GHFB+AMP; see Ref. [34] for the formulation. As a way of taking the center-of-mass correction to the densities, we adapt the method of Ref. [35].

We scale the D1S-GHFB+AMP neutron density so that the radius $r_{n}(\text{scaling})$ of the scaled density can reproduce $\sigma_{T}(\exp)$, since the r_{p} calculated with the D1S-GHFB+AMP density agrees with $r_{p}(\exp) = 5.444$ fm [21] of electron scaling. The same procedure is taken the D1M-GHFB+AMP neutron density, where D1M [36,37] is an improved version of D1S and the proton radius calculated with D1M-GHFB+AMP agrees with $r_{p}(\exp) = 5.444$ fm.

Our scaling procedure is explained below. The scaled density $\rho_{\text{scaling}}(r)$ is determined from the original (D1S-GHFB+AMP or D1M-GHFB+AMP) one $\rho(r)$ as

$$\rho_{\text{scaling}}(r) = \frac{1}{\alpha^3} \rho(r/\alpha), \quad r_{\text{scaling}} = r/\alpha$$

with a scaling factor

$$\alpha = \sqrt{\langle r^{2}\rangle_{\text{scaling}} / \langle r^{2}\rangle}.$$
FIG. 1. E_{lab} dependence of reaction cross sections σ_R for $p+^{208}\text{Pb}$ scattering. Open circles stand for the results of the LF t-matrix folding model with the D1S-GHFB+AMP densities, whereas open triangles correspond to that with the D1M-GHFB+AMP densities. The data are taken from Refs. [23,24].

Now we scale the D1S-GHFB+AMP neutron density so that the result of the LF t matrix folding model agrees with the data [23,24]. In the present case, the neutron scaling factor is $\alpha = 1.017$. Since the resulting $r_n(\exp)$ depends on E_{lab}, we take the weighted mean and its total error for $E_{\text{lab}} = 534.1, 549, 806$ MeV. Neutron and matter radii thus obtained are $r_n(\exp) = 5.768 \pm 0.047$ fm and $r_m(\exp) = 5.643 \pm 0.047$ fm, leading to $r_{\text{skin}}^{208}(\exp) = 0.324 \pm 0.047$ fm.

The same procedure is taken for D1M-GHFB+AMP. This leads to $r_{\text{skin}}^{208}(\exp) = 0.333 \pm 0.047$ fm, where the neutron scaling factor is $\alpha = 1.038$. The theoretical error is evaluated with the difference between the central values of D1S-GHFB+AMP and D1M-GHFB+AMP. The value is 0.009 fm. The result of D1S-GHFB+AMP yields better agreement with the data than that of D1M-GHFB+AMP. We then obtain $r_{\text{skin}}^{208}(\exp) = 0.324 \pm (0.047)_{\text{exp}} \pm (0.009)_{\text{th}}$ fm.

Discussions: Finally, the uncertainties of our results are listed.

1. Ambiguity of original densities taken: As for proton and neutron densities for ^{48}Ca, we used D1S and D1M in Ref. [38]. Our result is $r_{\text{skin}}^{48}(\exp) = 0.158 \pm (0.023)_{\exp} \pm (0.012)_{\text{th}}$ fm; the theoretical error $(0.012)_{\text{th}}$ fm is evaluated with D1S and D1M. The same procedure is taken for ^{208}Pb. Our result is $r_{\text{skin}}^{208}(\exp) = 0.324 \pm (0.047)_{\exp} \pm (0.009)_{\text{th}}$ fm.

2. Experimental ambiguity: Our present result $r_{\text{skin}}^{48} = 0.144 \pm 0.075$ fm based on Δ is consistent with $r_{\text{skin}}^{48}(\exp) = 0.158 \pm (0.023)_{\exp} \pm (0.012)_{\text{th}}$ fm of Ref. [38]. The central values are different from each other. The difference comes from the data used.

Conclusion: Our final values are $r_{\text{skin}}^{208}(\exp) = 0.324 \pm (0.047)_{\exp} \pm (0.009)_{\text{th}}$ fm and $r_{\text{skin}}^{48} = 0.144 \pm 0.075$ fm. Our results are consistent with r_{skin}^{208} (PREX2) and r_{skin}^{48} (CREX), respectively. These values are tabulated in Table I.

$r_{\text{skin}}^{208}(\exp)$ or $r_{\text{skin}}^{48}(\exp)$	Value
PREX2	0.283 ± 0.071
TW (^{208}Pb)	$0.324 \pm (0.047)_{\exp} \pm (0.009)_{\text{th}}$
CREX	$0.121 \pm 0.026(\exp) \pm 0.024(\text{model})$
TW (^{48}Ca)	0.144 ± 0.075

ACKNOWLEDGMENTS

We would like to thank Dr. Toyokawa from his contribution.

[1] C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels, Phys. Rev. C 63, 025501 (2001)
[2] D. Adhikari et al. (PREX), Phys. Rev. Lett. 126, 172502 (2021) arXiv:2102.10767 [nucl-ex]
[3] S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, T. Averett, B. Babineau, A. Barbieri, V. Bellini, et al. (PREX Collaboration), Phys. Rev. Lett. 108, 112502 (2012)
[4] C. J. Horowitz, Z. Ahmed, C.-M. Jen, A. Rakhman, P. A. Souder, M. M. Dalton, N. Liyanage, K. D. Paschke, K. Saenboonruang, R. Silwal, G. B. Franklin, D. McNeil, D. Mercado, S. Rich-Don, J. Wexler, R. W. Michaels, and G. M. Urciuoli, Phys. Rev. C 85, 032501 (2012)
[5] D. Adhikari et al. (CREX), Phys. Rev. Lett. 129, 042501 (2022) arXiv:2205.11593 [nucl-ex]
[6] S. J. Novario, G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. C 102, 051303 (2020)
[7] H. Shen, F. Ji, J. Hu, and K. Sumiyoshi, Astrophys. J. 891, 148 (2020)
[8] C. Horowitz, Ann. Phys. (Amsterdam) 411, 167992 (2019)
[9] Wei, Jin-Biao, Lu, Jia-Jing, Burgio, G. F., Li, Zeng-Hua, and Schulze, H.-J., Eur. Phys. J. A 56, 63 (2020)
[10] M. Thiel, C. Shenti, J. Piekarewicz, C. J. Horowitz, and M. Vanderhaeghen, J. Phys. G: Nucl. Part. Phys. 46, 093003 (2019)
[11] B. T. Reed, F. J. Fattofey, C. J. Horowitz, and J. Piekarewicz, arXiv:2101.03193 [nucl-th]
[12] A. Trzcińska, J. Jastrzębski, P. Lubiszski, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Klos, arXiv:2101.03193 [nucl-th]
[13] J. Zenihiro, H. Sakaguchi, T. Murakami, M. Yosoi, Y. Yasuda, S. Terashima, Y. Iwao, et al., Phys. Rev. C 82, 044611 (2010).

[14] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A. Bertulani, J. Carter, et al., Phys. Rev. Lett. 107, 062502 (2011).

[15] C. M. Tarbert, D. P. Watts, D. I. Glazier, P. Aguair, J. Ahrens, J. R. M. Anand, H. J. Arends, R. Beck, V. Bekrenev, B. Boillat, et al. (Crystal Ball at MAMI and A2 Collaboration), Phys. Rev. Lett. 112, 242502 (2014).

[16] M. C. Atkinson, M. H. Mahzoon, M. A. Keim, B. A. Bordelon, C. D. Pruitt, R. J. Charity, and W. H. Dickhoff, Phys. Rev. C 101, 044303 (2020).

[17] S. Tagami, T. Wakasa, J. Matsui, M. Yahir, and M. Takechi, Phys. Rev. C 104, 024606 (2021) [arXiv:2010.02450 [nucl-th]].

[18] M. Matsuzaki, S. Tagami, and M. Yahir, Phys. Rev. C 104, 054613 (2021) [arXiv:2107.06441 [nucl-th]].

[19] S. Tagami, M. Tanaka, M. Takechi, M. Fukuda, and M. Yahir, Phys. Rev. C 101, 014620 (2020).

[20] W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073 (1981).

[21] A. B. Jones and B. A. Brown, Phys. Rev. C 90, 067304 (2014).

[22] T. Wakasa, S. Tagami, J. Matsui, M. Yahir, and M. Takechi, Results in Physics 29, 104749 (2021).

[23] F. S. Dietrich et al., J. Nucl. Sci. Tech. 39, 269 (2002).

[24] M. Nakano, Y. Yamaguchi, and Y. Uozumi, Phys. Rev. C 103, 044608 (2021).

[25] J. Birkhan et al., Phys. Rev. Lett. 118, 252501 (2017) arXiv:1611.07072 [nucl-ex].

[26] J. Zenihiro et al., (2018), arXiv:1810.11796 [nucl-ex].

[27] I. Angeli and K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

[28] S. R. Neumaier et al., Nucl. Phys. A 712, 247 (2002).

[29] T. Wakasa, M. Takechi, S. Tagami, and M. Yahir, Results in Physics, 105329 (2022).

[30] F. A. Brieva and J. R. Rook, Nucl. Phys. 291, 299 (1977).

[31] F. A. Brieva and J. R. Rook, Nucl. Phys. 291, 317 (1977).

[32] F. A. Brieva and J. R. Rook, Nucl. Phys. 297, 206 (1978).

[33] K. Minomo, K. Ogata, M. Kohn, Y. R. Shimizu, and M. Yahir, J. Phys. G 37, 085011 (2010) arXiv:0911.1184 [nucl-th].

[34] S. Tagami, M. Tanaka, M. Takechi, M. Fukuda, and M. Yahir, Phys. Rev. C 101, 014620 (2020) [arXiv:1911.05417 [nucl-th]].

[35] T. Sumi, K. Minomo, S. Tagami, M. Kimura, T. Matsunno, K. Ogata, Y. R. Shimizu, and M. Yahir, Phys. Rev. C 85, 064613 (2012) [arXiv:1201.2497 [nucl-th]].

[36] S. Goriely, S. Hilaire, M. Girod, and S. Peru, Phys. Rev. Lett. 102, 242501 (2009).

[37] L. M. Robledo, T. R. Rodríguez, and R. R. Rodríguez-Guzmán, J. Phys. G 46, 013001 (2019) arXiv:1807.02518 [nucl-th].

[38] S. Tagami, T. Wakasa, M. Takechi, J. Matsui, and M. Yahir, Results in Physics 33, 105155 (2022).