Heterozygous Mutation of Drosophila Opa1 Causes the Development of Multiple Organ Abnormalities in an Age-Dependent and Organ-Specific Manner

Parvin Shahrestani1,*, Hung-Tat Leung2,*, Phung Khanh Le3, William L. Pak2, Stephanie Tse3, Karen Ocorr4, Taosheng Huang3,5,6*

1 Ecology and Evolution, University of California Irvine, Irvine, California, United States of America, 2 Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America, 3 Division of Human Genetics, Department of Pediatrics, University of California Irvine, Irvine, California, United States of America, 4 Burnham Institute for Medical Research, Program for Systems and Developmental Biology, Center for Neurosciences and Aging, La Jolla, California, United States of America, 5 Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America, 6 Department of Pathology, University of California Irvine, Irvine, California, United States of America

Abstract

Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila Opa1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner.

Citation: Shahrestani P, Leung H-T, Le PK, Pak WL, Tse S, et al. (2009) Heterozygous Mutation of Drosophila Opa1 Causes the Development of Multiple Organ Abnormalities in an Age-Dependent and Organ-Specific Manner. PLoS ONE 4(8): e6867. doi:10.1371/journal.pone.0006867

Editor: Gregory S. Barsh, Stanford University School of Medicine, United States of America

Received April 6, 2009; Accepted June 22, 2009; Published August 31, 2009

Copyright: © 2009 Shahrestani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was partially supported by NEI 1R01EY018876-01, the Helen & Larry Hoag Foundation to TH. HTL was supported by a grant from National Eye Institute, NIH, EY00033, awarded to WLP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: huangts@uci.edu

Current address: Department of Biological Sciences, Grambling State University, Grambling, Louisiana, United States of America

† These authors contributed equally to this work.

Introduction

OPA1 is encoded by a ubiquitously expressed nuclear gene and localized in the inner mitochondrial membrane [1–3]. OPA1 consists of a mitochondrial targeting signal (MTS), a transmembrane domain (TMD), a presenilin-associated rhomboid-like protease (PARL) site, and a dynamin/GTPase domain. The PARL can process OPA1, converting the insoluble inner mitochondrial membrane protein to a soluble protein [1,3]. OPA1 also regulates cytochrome-c mediated apoptosis by modulating mitochondrial cristae morphology [4,5,6,7]. In humans, mutation of OPA1 causes retinal ganglion cell death and optic atrophy [4]. The disease leads to loss of central vision and color vision abnormalities [5–8]. More than 100 different OPA1 mutations have been identified, including missense, nonsense, deletion/insertion and splicing mutations [1,2,13,14]. A few families with sex-influenced DOA phenotypes have been described [9]. In a study of the sex-influenced phenotype, we found that vision loss was more severe among affected males than females, and caused by the mutation IVS9 +2A>G in the OPA1 gene [16,17].

Previous studies suggest that OPA1 mutations may cause multiple organ anomalies. This is supported by several lines of evidence. First, OPA1 is a ubiquitously expressed protein [1,3]. When mutated, it results in mitochondrial fragmentation, a decreased mitochondrial membrane potential and decreased ATP production. The impaired ATP synthesis is associated with decreased oxygen consumption [10]. Second, OPA1 mutations affect organs other than the retina [18,19,20,21,22,23,24,25,26]. For example, the R455H mutation causes both optic atrophy and...
are several advantages to using Drosophila models for studying eye disorders: 1) significant cost and time savings; 2) eye phenotypes are easier to detect in Drosophila than in other models; 3) the Drosophila eye is non-essential for viability. Versatile technologies exist for generating, identifying and characterizing mutations in the Drosophila retina, making this an unrivaled system for deciphering gene function. In addition, there is a high degree of similarity between Drosophila Opa1 and human OPA1 [18]. Recently, we generated a Drosophila homozygous mutant for the Opa1 gene. Heterozygous mutations in Drosophila caused rough (mis patterning) and glossy (decreased lens deposition) eye phenotypes. The homozygous condition was lethal in embryonic development. In the eye-specific somatic clones, homozygous mutations in Opa1 caused rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila and is associated with increased ROS production [18]. Since OPA1 mutations in human muscles cause the autosomal dominant form of the disease, we examined the effect of age on the on-transient amplitudes in dOpa1 mutants. Our results showed that in dOpa1+/− Drosophila, significantly reduced on-transient amplitudes at the brightest two light stimuli (B). At 35 d.o., a significant reduction in on-transient amplitudes was only seen with the two brightest light stimuli (B). At 35 d.o., dOpa1+/− showed significantly reduced on-transient amplitudes with Or-2, Or-1, and Or light stimuli (C). At 42 d.o., reduction in on-transient amplitudes was manifested in all but the dimmest stimulus in dOpa1+/− (D). Reduced on-transient amplitudes were also observed with brighter Or stimuli (D). Our data showed that in dOpa1+/−, there was no significant age-dependent reduction in peak (E) or on-transient amplitudes (G) over the range of light stimuli tested. However, dOpa1+/− showed a significant age-dependent reduction in on-transient amplitudes (H) but not in peak amplitudes (F). Since the on-transient has been shown to be originated from the laminar monopolar L1 and L2 neurons [19,20], these results suggest that the dOpa1+/− mutation has an apparent effect on photoreceptor cell function but has no effect on lamina neuron function or synaptic transmission between the photoreceptor cells and their target lamina neurons.

To study the effect of age in detail, on-transient amplitudes were compared among dOpa1+/− Drosophila of different ages. There was an age-dependent progressive reduction of the on-transient amplitudes and the defect could be detected over a wider range of light stimuli in the older dOpa1+/− Drosophila (Figure 2). At 28 d.o., the on-transient defect in dOpa1+/− was only seen with the two brightest light stimuli (B). At 35 d.o., dOpa1+/− showed significantly reduced on-transient amplitudes with Or-2, Or-1, and Or light stimuli (C). At 42 d.o., reduction in on-transient amplitudes was manifested in all but the dimmest stimulus in dOpa1+/− (D). To test if the defect found could be reversed by antioxidant treatment, on-transient amplitudes were determined in 7 to 42 d.o. Drosophila flies at 42 d.o., typically showed a significant reduction over a wider range of light intensities tested and a slower reduction in on-transient amplitudes with age when compared with dOpa1+/−. At 35 d.o., a significant reduction in on-transient amplitudes was seen only with the brightest light stimulus in dOpa1+/− (Figure 2E). At 42 d.o., dOpa1+/− showed significantly reduced on-transient amplitudes at the brightest two (Or stimuli) E, while dOpa1+/− showed a significant reduction over a wider range of Or light stimuli (D). Thus, antioxidant fed dOpa1+/− delayed the onset of on-transient defect by one to two weeks. These results suggest that ROS play a very important role in the pathogenesis of optic atrophy and that antioxidants are a potential therapeutic agent for this condition.

Results

Heterozygous dOpa1 mutation results in loss of normal eye function in adult Drosophila and antioxidants can partially prevent the loss of function

Previously, we have analyzed the effects of dOpa1 mutation in Drosophila eyes. Loss of a single copy of dOpa1 did not elicit a gross eye phenotype other than morphologically perturbed mitochondria in transmission electron microscopy (TEM) [18]. To identify subtle phenotypes, a large cohort of dOpa1+/− and dOpa1+/+ control Drosophila were aged and their ERG profiles measured every 7 days for 6 weeks. As shown in Figure 1, heterozygous mutation of dOpa1 resulted in perturbed ERG profiles in an age-dependent manner. The dOpa1+/− mutants showed an age-dependent progressively worsening reduction in the on-off-transients beginning at 28 d.o., but no reduction in the peak amplitude for the six weeks tested (Figure 1). Since the transients, but not the off-transient, is independent of the stimulus duration, we decided to determine if there were defects in the age-dependence of the on-transient amplitudes in dOpa1+/− and dOpa1+/− Drosophila. The ERG response in dOpa1+/− flies at 42 d.o., typically showed an initial transient response (the on-transient) and then a sustained corneal-negative photoreceptor response followed by an off-transient when the light stimulus was turned off. ERGs with different intensities of orange light stimuli, Or-4 (B), Or-2 (C), and Or (D), are superimposed to show the differences in the on-transient amplitudes. There was a severe reduction in the on-transient amplitude in dOpa1+/− eyes with brighter Or (D), but not with a dimmer stimulus (B). Our data showed that in dOpa1+/−, there was no significant age-dependent reduction in peak (E) or on-transient amplitudes (G) over the range of light stimuli tested. However, in dOpa1+/−, there was a significant age-dependent reduction in on-transient amplitudes (H) but not in peak amplitudes (F). Since the on-transient has been shown to be originated from the laminar monopolar L1 and L2 neurons [19,20], these results suggest that the dOpa1+/− mutation has an apparent effect on photoreceptor cell function but has no effect on lamina neuron function or synaptic transmission between the photoreceptor cells and their target lamina neurons.

To study the effect of age in detail, on-transient amplitudes were compared among dOpa1+/− Drosophila of different ages. There was an age-dependent progressive reduction of the on-transient amplitudes and the defect could be detected over a wider range of light stimuli in the older dOpa1+/− Drosophila (Figure 2). At 28 d.o., the on-transient defect in dOpa1+/− was only seen with the two brightest light stimuli (B). At 35 d.o., dOpa1+/− showed significantly reduced on-transient amplitudes with Or-2, Or-1, and Or light stimuli (C). At 42 d.o., reduction in on-transient amplitudes was manifested in all but the dimmest stimulus in dOpa1+/− (D). To test if the effect found could be reversed by antioxidant treatment, on-transient amplitudes were determined in 7 to 42 d.o. Drosophila flies at 42 d.o., typically showed a significant reduction over a wider range of light intensities tested and a slower reduction in on-transient amplitudes with age when compared with dOpa1+/−. At 35 d.o., a significant reduction in on-transient amplitudes was seen only with the brightest light stimulus in dOpa1+/−. The on-transient amplitude was only seen with the two brightest light stimuli (B). At 35 d.o., dOpa1+/− showed significantly reduced on-transient amplitudes with Or-2, Or-1, and Or light stimuli (C). At 42 d.o., reduction in on-transient amplitudes was manifested in all but the dimmest stimulus in dOpa1+/− (D). To test if the defect found could be reversed by antioxidant treatment, on-transient amplitudes were determined in 7 to 42 d.o. Drosophila flies at 42 d.o., typically showed a significant reduction over a wider range of light intensities tested and a slower reduction in on-transient amplitudes with age when compared with dOpa1+/−. At 35 d.o., a significant reduction in on-transient amplitudes was seen only with the brightest light stimulus in dOpa1+/−. To test if the defect found could be reversed by antioxidant treatment, on-transient amplitudes were determined in 7 to 42 d.o. Drosophila flies at 42 d.o., typically showed a significant reduction over a wider range of light intensities tested and a slower reduction in on-transient amplitudes with age when compared with dOpa1+/−. At 35 d.o., a significant reduction in on-transient amplitudes was seen only with the brightest light stimulus in dOpa1+/−. To test if the defect found could be reversed by antioxidant treatment, on-transient amplitudes were determined in 7 to 42 d.o. Drosophila flies at 42 d.o., typically showed a significant reduction over a wider range of light intensities tested and a slower reduction in on-transient amplitudes with age when compared with dOpa1+/−. At 35 d.o., a significant reduction in on-transient amplitudes was seen only with the brightest light stimulus in dOpa1+/−. To test if the defect found could be reversed by antioxidant treatment, on-transient amplitudes were determined in 7 to 42 d.o. Drosophila flies at 42 d.o., typically showed a significant reduction over a wider range of light intensities tested and a slower reduction in on-transient amplitudes with age when compared with dOpa1+/−. At 35 d.o., a significant reduction in on-transient amplitudes was seen only with the brightest light stimulus in dOpa1+/−.
Figure 1. Electroretinogram analyses show an age-dependent reduction in the on-transient but not in the phototransduction response in heterozygous dOpa1 (dOpa1+/−) mutants. (A) A typical ERG response showing on-/off-transients and peak amplitude when elicited with an Or, -2 stimulus. (B) Typical ERGs obtained from 42 d.o. dOpa1+/−, dOpa1+/−antiox and dOpa1+/− using Or, -4 light stimuli are superimposed. The on-transients and peak amplitudes from the three Drosophila types are comparable. (C) Typical ERGs from 42 d.o. dOpa1+/−, dOpa1+/−antiox and dOpa1+/− during light stimulus with Or, -2 were superimposed. The on-transient, but not the peak amplitudes, from dOpa1+/− were smaller than those of dOpa1+/− and dOpa1+/−antiox. (D) Typical ERGs from 42 d.o. dOpa1+/−, dOpa1+/−antiox and dOpa1+/− during light stimulus with Or were superimposed. The on-transients of dOpa1+/− and dOpa1+/−antiox, but not the peak amplitudes, were significantly smaller than those of dOpa1+/−. (E) V-log I curves and (G) on-transient amplitudes vs log I from 7, 14, 21, 28, 35 and 42 d.o. dOpa1+/− show no age-dependent reduction in on-transient and peak amplitude responses of the photoreceptor component. V-log I curves from 7, 14, 21, 28, 35, and 42 d.o. dOpa1+/− show no age-dependent reduction in peak amplitude responses (F) while the on-transient amplitudes vs log I curves from dOpa1+/− show an age-dependent reduction in on-transient amplitudes (H).

doi:10.1371/journal.pone.0006867.g001
in dOpa1+/− heterozygous mutants with a phototaxis assay. This assay allowed us to measure larval visual phototactic response to light (Figure 3A). Fifty second-instar larvae were tested in three trials. In the absence of light, average response indexes (RI) for dOpa1+/+ and dOpa1+/− were similar (RI = 0.072, RI = 0.096, respectively, p>0.05) (Figure 3B). However, with light, dOpa1+/− mutants scattered on the plate showing little visual phototactic response (RI = 0.248), while wild-type dOpa1+/+ exhibited strong negative phototactic behavior (RI = 0.616, p<0.05) (Figure 3B). These results were replicated using both dOpa1+/− and dOpa1+/− Drosophila as discussed in our earlier paper [18]. Our results suggest that heterozygous mutation of dOpa1 causes loss of visual acuity in Drosophila. This observation is consistent
with the results of ERG, which indicates heterozygous mutation of dOpa1 affects laminar neuron function or synaptic transmission between the photoreceptor cells and their target laminar neurons.

To test if treatment with antioxidants can improve the visual function of dOpa1 heterozygous mutants, dOpa1+/+ and dOpa1+/− Drosophila were treated with antioxidant. Again, fifty second-instar larvae were collected and the phototaxis assay was repeated three times. In the absence of the light, average RI for dOpa1+/+ and dOpa1+/− treated with antioxidant were similar (RI = 0.107, RI = 0.133, p > 0.05) (data not shown). In the presence of light, antioxidant treatment made no difference in wild-type dOpa1+/− (RI = 0.667), while mutant dOpa1+/− showed a significant increase in phototactic response (RI = 0.427, p < 0.05, Figure 3C). These results suggest that antioxidant treatment can partially reverse abnormal visual response in dOpa1 mutants. These reversals were observed both in heterozygous mutant dOpa1+/+ and dOpa1+/−. The partial reverse of ERG response and phototaxis of antioxidant treatment support our hypothesis that ROS plays an essential role in the pathogenesis of optic atrophy and antioxidants have the potential to be an effective therapeutic agent for optic atrophy.

Figure 3. A. Larval phototaxis assay. A plastic petri plate was divided into four quadrants, two dark quadrants diametrically opposite to two clear quadrants. 1% agarose was used for the clear and 1% agarose containing 0.6% charcoal powder was used for the dark quadrants. 50 second-instar larvae were placed at the center of the plate and were allowed to migrate for 3 minutes in complete darkness for the control, and in the presence of light by using a light box. The assay was repeated 3 times. B. Larval Phototaxis Response Index. 50 second instars were used for each trial (total of 3 trials each). Wildtype dOpa1+/+ exhibited strong negative phototropic response in the presence of light (RI = 0.616). Heterozygous mutant dOpa1+/− showed little light response (RI = 0.248). Antioxidant treatment made no difference in wildtype dOpa1+/+ (RI = 0.667). Mutant dOpa1+/− treated with antioxidant exhibited a significantly stronger negative phototactic response to light (RI = 0.427).

doi:10.1371/journal.pone.0006867.g003

Heterozygous mutation of dOpa1 results in decreased heart rates and increased cardiac arrhythmias that were not affected by antioxidant treatment.

Heterozygous mutation of OPA1 has predominantly been associated with retinal disorders, but recent studies indicate that it disrupts function of other organs [27, 28, 29]. Using our Drosophila model, we tested if heterozygous dOpa1 mutation affects cardiac function using the methods described by Ocorr et al.[21] Since in intact Drosophila, the signals from the central nervous system (CNS) may affect the rate and rhythm of the heart, we removed the Drosophila head, ventral thorax, ventral abdominal cuticle and all internal organs as described previously [21]. Drosophila hearts were then exposed and video recorded for 30 seconds (Figure 4). The movies were analyzed using the software as described in Ocorr et al.[21]. Forty Drosophila of each genotype (20 male and 20 female) were tested at week 3. As shown in Figure 5, heart rate was significantly reduced in heterozygous dOpa1 mutants (Figure 5, A). The decreased heart rates resulted predominantly from increased diastolic intervals, not from changes in systolic intervals (Figure 5, B). Heterozygous dOpa1 mutation also caused an increase in heart arrhythmias as shown in Figure 5, C.

Figure 4. Representative M-mode traces (10 s) of semi-intact Drosophila from different genotype and sex. M-modes were created by electronically “cutting” out a single specified vertical row of pixels that span the heart tube from every frame of the movie, and aligning them horizontally. The M-modes describe the vertical movement of the heart walls in time. In these representative M-modes of 3-week-old dOpa1+/+ and dOpa1+/− Drosophila, it is seen that mutation causes increased heart period, due primarily to increased diastolic intervals. The dilation of mutant heart tube is also visible.

doi:10.1371/journal.pone.0006867.g004
SD = 46.7+/−12.3, p<0.05). We calculated the percent fractional shortening (FS) from the heart diameter measurements as an estimate of cardiac contractility (33). These results showed that heterozygous dOpa1 mutations led to a significant reduction in FS (dOpa1+/− FS = 43.2%+/−7.3% vs. dOpa1+/− FS = 39.5%+/−6.7%, p<0.05) suggesting a loss of myocardial contractility. In order to determine if excess ROS production played a role in these observed cardiac abnormalities, we treated the Drosophila with antioxidant (100 μM MnTBAP). Our results show that antioxidants had no effect on any of the heart function parameters we measured (Data not shown) in either wild-type or heterozygous dOpa1 mutants. This suggests that changes in ROS production do not mediate the observed effects of OPA mutations on the heart. Instead, heterozygous mutation of dOpa1 leads to a respiratory defect in Complex II and III of the electron transport chain (ETC) as shown in our recent publication [23].

Heterozygous mutation of dOpa1 results in increased heart failure in response to electrical pacing in Drosophila

We also examined the effect of stress on cardiac function in Opa1 mutants. 80 Drosophila of each genotype (40 male and 40 females) were tested for heart failure in response to electrical pacing for six consecutive weeks starting at one week of age. Fly hearts were paced with external electrical pacing and heart function was observed immediately following and two minutes after pacing. The effect on heart function was defined as “heart failure” if the heart did not resume a normal beating pattern after a two minute rest period following electrical pacing. Our result showed that heart failure in response to electrical pacing increased with age in all flies tested (Figure 6). However, heterozygous dOpa1 mutation caused a significant increase in heart failure when compared to wild-type controls and this was true for both males and females (Figure 6, p = 1.63e-05), suggesting heterogeneous dOpa1 mutations compromise heart function in the flies and decrease their ability to tolerate arrhythmia by stress.

Heterozygous mutation of dOpa1 results in reduced escape response after stress

To determine the effect of dOpa1 mutation on Drosophila physical fitness, we quantified the escape responses of dOpa1+/− and dOpa1+/− using a previously described technique [24]. Under non-stress conditions, there were no significant differences between dOpa1+/− and dOpa1+/+ for all age groups (data not shown). We then tested if heat-shock stress had an impact on the escape response of dOpa1+/− and dOpa1+/+ Drosophila. For this experiment, Drosophila in vials were startled by tapping them to the bottom of the vial. The climbing capacity, before and after a 10-min 37°C heat shock, was determined by calculating the percentage of flies that climbed up>1.0 cm within 15 seconds (locomotive index). The time required for the locomotive index to exceed 50% (recovery time) was also determined (Figure 7). There were no differences in climbing capacity before the heat shock. However, the dOpa1+/− mutants exhibited lower locomotive indexes after the heat shock and were unable to recover within

Figure 5. A. Heterozygous mutation of dOpa1 results in decreased heart rate (p<0.001). Single dashed bars represent dOpa1+/− and double dashed bars represent dOpa1+/+. Drosophila. Error bars are standard deviation of the mean. Heart rates were recorded at 3 weeks of age. Figure 5B. The decreased heart rate shown in Figure 5A was predominantly due to an increase in diastolic intervals (⟨<0.001), not an increase in systolic intervals (0.09).

doi:10.1371/journal.pone.0006867.g005

Figure 6. Heterozygous mutation of dOpa1 results in increased heart failure (solid line) compared to controls (dashed line). Heart failure here is defined as cardiac arrest or fibrillation after a two-minute recovery period following electrical pacing. Heart failure increased with age for both controls and mutants, but was significantly higher in mutants. 40 males and 40 females of each genotype were tested at every age.

doi:10.1371/journal.pone.0006867.g006
one hour. In contrast, the dOpa1+/+ Drosophila recovered within ~10 minutes (Figure 7). These results suggest that under stress, mutation of dOpa1 causes decreased physical fitness. For cardiac and skeletal dysfunction, previously two studies showed that OPA1 in humans causes mitochondrial DNA deletion [28,29]. We have tested this in our Drosophila model. As shown in Supplemental Figure S1, we see no difference DNA deletion in heterozygous mutant fly compared with the wild-type. We also used a long range PCR to test the deletion. The results are very similar (Data not shown). Instead, heterozygous mutation of dOpa1 leads to a respiratory defect in Complex II and III of the electron transport chain (ETC)[23].

Discussion

Mutation of OPA1 can lead to DOA and is one of the most common genetic causes of degeneration of retinal ganglion cells, leading to blindness. The main clinical features of DOA include reduced visual acuity, color vision abnormalities, centrocaecal visual field defects and pallor of the optic nerve head. However, the OPA1 gene is ubiquitously expressed and recent studies have suggested that mutation of OPA1 results in complicated optic atrophy “plus” phenotypes. These clinical phenotypes include optic atrophy, as well as neurosensorial hearing loss, ataxia, sensory motor polyneuropathy and chronic progressive external ophthalmostasia. In skeletal muscle of optic atrophy patients, mutation of OPA1 causes mitochondrial myopathy characterized by cytochrome c oxidase negative, ragged red fibers and abnormal morphology and distribution of mitochondria [25]. Since both the heart and skeletal muscle are the high energy-demanding organs, mutations of OPA1 may affect the cardiac and skeletal function, which prompted us to analyze function of multiple organs in our Drosophila dOpa1 mutant model. Here we show that heterozygous dOpa1+/− mutations not only perturb eye function, but also decrease cardiac function and decrease escape responses under stress. These results are consistent with recent studies that

![Heat shock](image-url)

Figure 7. dOpa1 mutation impairs the ability of Drosophila to exhibit a negative geotaxis response following a heat shock. Seven d.o. Drosophila were places in 9 × 2 cm tubes with a line drawn horizontally 1 cm from the base. Every 30 seconds, the tubes were tapped until all Drosophila were at the bottom of the tubes. A baseline locomotive index (number of Drosophila above the 1 cm line after 15 seconds) was established at 22 °C. Drosophila were then subject to a 20 minute 37 °C heat shock and returned to 22 °C. Subsequently, the locomotive indexes were recorded as the samples recovered.

doi:10.1371/journal.pone.0006867.g007
OPA1 mutation affects other organs besides the retina [18,19,20,21,22,23,24,27,28,29].

An electroretinogram (ERG) is an extracellular recording of the compound eye and their sympathetic targets, the lamarim neurons [19,20]. With an orange light stimulus, a typical wildtype ERG consists of a sustained cornell-negative photoreceptor component and transient components at the onset and offset of the light stimulus. Thus, ERGs can be used to detect defects in both the photoreceptor response and the response of lamarin neurons. The abnormal on-transient but normal photoreceptor component obtained with the dOpa1+/− Drosophila suggest that photoreceptor function is normal but either lamarin neuron function or synaptic transmission between the photoreceptor and the lamarin neuron is impaired. Based on the correlation with age and the fact that antioxidants partially rescued the phenotype of ERG and vision loss, our results suggest that high ROS levels contribute to the phenotypes, which is consistent with our previous results that somatic mutation of dOpa1 may cause increased ROS production [18].

A number of studies have implicated mitochondrial defects in cardiac dysfunction. Mitochondrial dysfunction can cause decreased ATP production and/or increased ROS production, and either outcome can lead to cardiac cellular damage. Mutations affecting mitochondrial function have been shown to cause Leber’s Hereditary Optic Neuropathy (LHON), MERRF, MELAS, Chronic Progressive External Ophthalmoplegia (CPEO), Kearns-Sayre Syndrome (KSS), and various other pediatric and adult cardiomyopathies. In Friedrich ataxia, mutations occur in the nuclear frataxin gene. Frataxin encodes a mitochondrial inner membrane protein, which transports iron out of the mitochondrial matrix. In the absence of frataxin, iron accumulates in the mitochondria, stimulating the Fenton reaction and ROS production [26,27]. However, our result show that antioxidants do not improve cardiac abnormalities caused by dOpa1 mutations, suggesting that these mutations result in cardiac dysfunction primarily by affecting mitochondrial ATP production rather than by increasing ROS production.

Mitochondrial dysfunction has been associated with many skeletal abnormalities such as MERRF. Recently, two groups reported that several OPA1 mutations cause “optic atrophy plus syndrome”. In addition to optic atrophy, the clinical phenotypes of “optic atrophy plus syndrome” were reported [27,28,29]. The mitochondrial diseases MERRF, and MELAS are caused by mutations of the mitochondrial genome, but associated with abnormal proteolytically processing of OPA1 [17]. Taken together, this supports the hypothesis that OPA1 mutations cause skeletal abnormalities [27,28,29]. Our result showed that heterozygous dOpa1 mutation caused reduced escape response, suggesting the possibility of abnormal function of the skeletal muscles.

The analysis of the effect of dOpa1+/− on Drosophila organ systems showed that organ dysfunction developed in an age-dependent manner, consistent with the clinical optic atrophy phenotype. In humans, the onset of most optic atrophies is in childhood and the pathologies typically include progressive bilateral loss of visual acuity, abnormal color vision [3-8], and temporal pallor of the optic disk [28]. The loss of visual acuity is caused by a decrease in the number of optic nerve fibers in the central retina. The age-dependent phenotypes suggest cumulative damage and this is consistent with our observation that dOpa1 mutation results in increased ROS production and accumulation in eyes[18]. Together, these observations partially explain the significant intra- and inter-familial variations in vision loss, the incomplete penetrance of the disease and sex dependent phenotype [9,16,17,41] since estrogen receptors in mitochondria may play an antioxidant contributing to the observed sex influenced eye phenotypes [29].

Dominant optic atrophy is one of the most common forms of inherited optic neuropathy [5]. The etiology is heterogeneous and many inheritance patterns have been described, including autosomal dominant, autosomal recessive, X-linked and mitochondrial. Importantly, several other optic atrophies share pathophysiology with DOA and, therefore, the results from this study can be extended to other types of optic atrophy and neurodegenerative disease. Moreover, mutation of OPA1 causes mitochondrial dysfunction, including fragmentation, decreased ATP production, increased ROS production and decreased mitochondrial membrane potentials [10]. Abnormalities of mitochondrial fusion and fission have been reported in several mitochondrial disorders [43,44]. Together, this suggests that OPA1 mutations cause multiple organ abnormalities, including auditory neuropathy, peripheral neuropathy (apoptosis and ophthalmoplegia), cardiomyopathy and myopathy, suggesting that OPA1 could be a common target for treatment of mitochondria-related disorders.

Materials and Methods

Drosophila stocks

y[d2] w[1118] P[ry+t7.2] = ey-FLP.N; 2 P[ry+t7.2] = neoFRT42D P{PBac[WH]CG8479}925779 (dOpa1+/−) and y[d2] w[1118] P[ry+t7.2] = ey-FLP.N; 2 P[ry+t7.2] = neoFRT42D P{PBac[WH]CG8479}925779 (dOpa1+/−) Drosophila were used in this study. The stocks were established in a previous study [18], dOpa1+/− mutants and dOpa1+/− controls were transferred to fresh food every two to three days while aging. dOpa1+/− mutant Drosophila and dOpa1+/−/antioxDrosophila were maintained on 100 μM MnTBAP antioxidant food.

Electroretinograms (ERG)

ERGs were performed as previously described [31] on 7, 14, 21, 28, 35, and 42 d.o. Drosophila. A 300-Watt Halogen lamp (OSRAM) with an unattenuated intensity of 810 μW/cm² at the level of the photoreceptors was used for light stimuli. Kodak neutral filters and a Corning orange (Or) filter were used to achieve the desired light intensity and color for the light stimuli. For each stimulus, the Drosophila was first dark-adapted for 3 minutes and then given a 1 second light stimulus. Orange light stimuli were used because they elicit larger on-transient amplitudes than white light stimuli. All recordings were made at 25°C. Signals were sampled at 2 kHz with an analog-to-digital converter (Digidata 1200A), and the data were acquired and analyzed using a computer with Axoscope (Axon Instruments).

Larval phototaxis assay

The phototaxis assay tested larval visual response using methods according to Lilly and Carlson [32]. Plastic petri plates were sectioned into four quadrants, two dark quadrants diametrically opposite to two clear quadrants. 20 ml of 1% agarose was poured into the clear quadrants, and 20 ml of 1% agarose containing 0.6% charcoal powder was poured into the dark quadrants. After the plates cooled to room temperature, 15 ml of 1% agarose was poured evenly on the gel to create a smooth surface. The plates were allowed to equilibrate to room temperature overnight. Thick black papers were used to cover the sides of the plates, and to cover underneath the plates in regions of the dark quadrants to reduce light reflection. 50 second-instar larvae were placed on the center of the experimental test plate. The plate was placed in total darkness and the larvae were allowed to migrate for 3 minutes for...
the control. Subsequently, the plate was covered with a piece of black foam to reduce light reflection and then it was placed on a light box in a dark room. The larvae were allowed to migrate for 3 minutes. Response index (RI) was calculated by subtracting the number of larvae on the clear quadrants (C) from the number of larvae on the dark quadrants (D) all divided by the total larvae used, RI = (D – C) / (D+C).

Cardiac function analysis

Drosophila were dissected under an oxygenated saline solution that served as artificial hemolymph, composed of NaCl (108 mM), KCl (5 mM), CaCl2 (2 mM), MgCl2 (8 mM), NaH2PO4 (1 mM), NaHCO3 (4 mM), HEPES (15 mM), sucrose (10 mM), trehalose and thus gives an estimate of the contractibility of the heart tube. We measured the relaxed diameter size that the heart shortens to when it contracts in manually advanced movies. Markings were made in the third row of pixels that span the heart tube from every frame of the movie, and systolic diameters were measured by marking the edges of the movement of the heart walls in time. Diastolic intervals were measured as the pause in movements occurring during relaxation. The time between the ends of two consecutive diastolic intervals gave the systolic interval. The arrhythmicity index (AI) is the heart period standard deviation normalized to the median heart period to compensate for variabilities between flies and for effects on periodicity due to prolonged contractions[21]. Diastolic and systolic diameters were measured by marking the edges of the heart tube in maximum contraction and maximum relaxation states in manually advanced movies. Markings were made in the third abdominal segment, which is a relatively linear region of the heart tube. Percent fractional shortening was calculated as [(Diastolic diameter – Systolic diameter)/Diastolic diameter]. % FS is the fraction of relaxed diameter size that the heart shortens to when it contracts and thus gives an estimate of the contractibility of the heart tube. We tested for population and sex effects and population by sex interactions by ANOVA in R (www.r-project.org).

Cardiac pacing assay

Drosophila heart function was tested using an electrical pacing assay as previously described[49]. Briefly, *Drosophila* were anesthetized by exposing to triethylamine (FlyNap™; Caroline Biological, Burlington, NC, USA), and were placed on glass microscope slides with their heads and posterior abdomens touching two strips of conductive electrode gel. A square wave stimulator was used to pace the heart at 40V and 6 Hz for 30 s. The assay was done under an inverted microscope and an X25 objective. Each *Drosophila* was visually checked for cardiac arrest or fibrillation immediately after pacing and then two minutes after pacing. Data were analyzed using a Chi-square test.

Locomotive Assay

Drosophila were placed in 9×2 cm tubes with a line drawn horizontally 1 cm from the base. Every 30 seconds, the tubes were tapped until all *Drosophila* fell to the bottom of the tubes. A baseline locomotive index (number of *Drosophila* above the 1 cm line after 15 seconds) was established at 22°C. The *Drosophila* were then subjected to a 20 minute 37°C heat treatment and returned to 22°C. The locomotive indexes were recorded as the samples were allowed to recover[24].

Supporting Information

Figure S1 dOpa1+/− *Drosophila* is not associated with major mitochondrial DNA deletions. Total genomic DNA from 3 wk and 6 wk old dOpa1+/− and dOpa1+/+ flies were fractionated by agarose gel electrophoresis, visualized by ethidium bromide staining and then transferred to nylon membrane. Digoxigenin-tagged DNA probe (Long PCR products spanning positions 1,867–14,744 of the Drosophila mtDNA (Panel A) were generated by random primer labeling, hybridized to target sequences, bound by anti-digoxigenin-AP, Fab fragments, and then detected with CDP-Star (Roche). Panel B, Southern blot for mitochondrial genome, showing a very similar pattern in dOpa1+/− and dOpa1+/+ (Panel B).

Acknowledgments

We would like to thank John Olson at UC Los Angeles for the *Drosophila* stocks used in this study. We would like to thank Drs. Douglas Wallace at University of California Irvine and Rolf Bodmer at Burnham Institute for Medical Research for their inspiration and stimulating discussions.

Author Contributions

Conceived and designed the experiments: KAO TH. Performed the experiments: PS HTL PKL ST. Analyzed the data: PS HTL PKL BP KAO TH. Wrote the paper: PS HTL KAO TH.

PLoS ONE | www.plosone.org 9 August 2009 | Volume 4 | Issue 8 | e6867

References

1. Alexander C, Votruba M, Pesch UE, Thielien DL, Mayer S, et al. (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26: 211–215.
2. Delettre C, Lenaers G, Griffioen JM, Gigarel N, Lorenzo C, et al. (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207–210.
3. Misaka T, Miyashita T, Kudo Y (2002) Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J Biol Chem 277: 15083–15092.
4. Elberg H, Kjer B, Kjer P, Rosenberg T (1994) Dominant optic atrophy (OPA1) mapped to chromosome 3q region. I. Linkage analysis. Hum Mol Genet 3: 977–980.
5. Votruba M, Aijaz S, Moore AT (2003) A review of primary hereditary optic neuropathies. J Inherit Metab Dis 26: 209–227.
6. Carelli V, Ross-Cinamero FN, Sachan AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23: 53–89.
7. Bente S, Schlaasus H, Wissinger B, Meyermann R, Mitter/Bromm M (2005) OPA1, associated with autosomal dominant optic atrophy, is widely expressed in the human brain. Acta Neurobiol (Berl) 109: 593–599.
8. Votruba M, Moore AT, Bhattacharya SS (1998) Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. J Med Genet 35: 793–800.
9. Gorgone G, Li Volli S, Cavallaro N, Conti L, Profeta GM, et al. (1986) Familial optic atrophy with sex-influenced severity. A new variety of autosomal-dominant optic atrophy? Ophthalmologica 192: 26–33.
10. Lodi R, Tonon C, Valentino ML, Iotti S, Clementi V, et al. (2004) Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Ann Neurol 56: 719–723.

11. Chen S, Zhang Y, Wang Y, Li W, Huang S, et al. (2007) A Novel OPA1 Mutation Responsible for Autosomal Dominant Optic Atrophy with High Frequency Hearing Loss in a Chinese Family. Am J Ophthalmol 143: 186–190.

12. Amati-Bonneau P, Guichet A, Ollechon A, Chevrollier A, Viala F, et al. (2005) OPA1 R143H mutation in optic atrophy associated with sensorineural deafness. Ann Neurol 58: 958–963.

13. Amati-Bonneau P, Odent S, Derrien C, Pasquier L, Malhierre Y, et al. (2003) The association of autosomal dominant optic atrophy and moderate deafness may be due to the R145H mutation in the OPA1 gene. Am J Ophthalmol 136: 1170–1171.

14. Elberg H, Hansen L, Kjer B, Hansen T, Pedersen O, et al. (2006) Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene. J Med Genet 43: 435–445.

15. Payne M, Yang Z, Katz BJ, Warner JE, Weight CJ, et al. (2004) Dominant optic atrophy, sensorineural hearing loss, ptosis, and ophtalmoplegia: a syndrome caused by a missense mutation in OPA1. Am J Ophthalmol 138: 749–755.

16. Ke T, Nie SW, Yang QB, Liu JP, Zhou LN, et al. (2006) The G401D mutation of OPA1 causes autosomal dominant optic atrophy and hearing loss in a Chinese family. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 23: 481–485.

17. Deutz-Caulet S, Jagasia R, Wagenet J, Hofmann S, Trifunovic A, et al. (2006) Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281: 37972–37979.

18. Yarosh W, Monserrate J, Tong JJ, Tse S, Le PK, et al. (2008) The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment. PLoS Genet 4: e6.

19. Buchner E (1991) Genes expressed in the adult brain of Drosophila and effects of their mutations on behavior: a survey of transmitter- and second messenger-related genes. J Neurogenet 7: 153–192.

20. Lilly M, Carlson J (1990) smellblind: a gene required for Drosophila olfaction. Genetics 124: 293–302.

21. Larrivee DC, Conrad SK, Stephenson RS, Pak WL (1981) Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. J Gen Physiol 78: 521–545.

22. Cammarato A, Dambacher CM, Knowles AF, Kronert WA, Bodmer R, et al. (2008) Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Mol Biol Cell 19: 553–562.

23. Tang S, Le PK, Tse S, Wallace DC, Huang T (2009) Heterozygous mutation of Opal in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS ONE 4: e4492.

24. Tong JJ, Schriner SE, McCleary D, Day BJ, Wallace DC (2007) Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nat Genet 39: 476–485.

25. Amati-Bonneau P, Valentino ML, Reymier P, Guillardo ME, Bornstein R, et al. (2008) OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 131: 338–351.

26. Campuzano V, Montermini L, Molto MD, Pianese L, Cosse M, et al. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271: 1423–1427.

27. Delettre C, Lenaers G, Belenguer P, Hamel CP (2003) Gene structure and chromosomal localization of mouse Opa1: its exclusion from the Bst locus. BMC Genet 4: 8.

28. Pedram A, Razzandi M, Wallace DC, Levin ER (2006) Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 17: 2125–2137.

29. A complete genome screen in sib pairs affected by Gilles de la Tourette syndrome. The Tourette Syndrome Association International Consortium for Genetics. Am J Hum Genet 65: 1428–1436.

30. Ocree K, Reeves NL, Vesellos RJ, Fink M, Chen HS, et al. (2007) KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci U S A 104: 3943–3948.

31. Barrientos A (2002) In vivo and in organello assessment of OXPHOS activities. Methods 26: 307–316.

32. Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264: 484–509.