Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable *Amaranthus gangeticus*

Umakanta Sarker1* and Shinya Oba2

Abstract

Background: Red amaranth (*Amaranthus gangeticus* L.) has great diversity in Bangladesh, India, and South East Asia with multipurpose uses. The bright red-violet colored *A. gangeticus* is a popular and low-cost leafy vegetable in the Asian continent including Bangladesh and India because of attractive leaf color, taste, adequate nutraceuticals, phenolic compounds, and sole source of betalains. The natural colors and phenolic compounds of this species have a significant role in promoting the health-benefit including the scavenging capacity of radicals, the colorant of food products, and play a vital role in the industry of foods. However, phenolic profiles and radical scavenging activity of this species have not been evaluated. Hence, for the first time, four selected advance lines of *A. gangeticus* were characterized for phenolic profiles, antioxidant constituents, and antioxidant potentiality.

Results: *A. gangeticus* genotypes are abundant sources of phenolic profiles and antioxidant constituents with good radical quenching capacity that differed across the genotypes. Twenty-five phenolic acids and flavonoids, such as protocatechuic acid, salicylic acid, gentisic acid, gallic acid, β-resorcylic acid, vanillic acid, p-hydroxybenzoic acid, chlorogenic acid, ellagic acid, syringic acid, ferulic acid, kaempferol, m-coumaric acid, *trans*-cinnamic acid, quercetin, *p*-coumaric acid, apigenin, caffeic acid, rutin, sinapic acid, isoquercetin, naringenin, myricetin, catechin, and hyperoside were identified in *A. gangeticus* accessions. *A. gangeticus* accessions LS7 and LS9 demonstrated ample phenolic acids, flavonoids, antioxidant constituents, and antioxidant potentiality. It revealed from the correlation study that antioxidant components of *A. gangeticus* genotypes exhibited good radical scavenging activities. The genotypes LS7 and LS9 could be directly used as phenolic profiles, antioxidant constituents, and antioxidant activity enrich cultivars.

Conclusions: The identified compounds of phenolic acids and flavonoids in *A. gangeticus* privilege the comprehensive study of pharmacology. The basic information on phenolic profiles and antioxidant constituents achieved in the present study will provide the scientist's forum for the scientific assessment of these compounds in *A. gangeticus*.

Keywords: *A. gangeticus*, Phenolic profiles, Flavonoids, Antioxidant activity, HPLC-UV, LC-MS-ESI, DPPH and ABTS assays

* Correspondence: umakanta@bsmrau.edu.bd
1Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background
The genus *Amaranthus* is a fast-growing C_{4} plant with versatile uses such as ornamental plants, vegetables, and grains. It has wider acclimatization and distributed worldwide including Africa, America, Asia, Australia, and Europe. Edible stems and leaves of different *Amaranthus* species are cheap vegetables containing good protein with lysine and methionine, dietary fiber [1–3], vitamins [4, 5], carotenoids, and minerals [6–8]. It also contains natural pigments [9–11]; natural phytochemicals, such as flavonoids, phenolic acids, and vitamins [12–15]. The above compounds have remarkable contributions to the industry of food as these compounds quench reactive oxygen species (ROS) in the human body and give protection against several diseases including neurodegenerative diseases, cancer, cardiovascular diseases, cataracts, emphysema, retinopathy, atherosclerosis, and arthritis [16–20]. These compounds also have a significant role in promoting the health-benefit and food colorants [21]. The species of this genus are tolerant of salinity [22–24] and drought stress [25–28]. *Amaranthus gangeticus* has high diversity in Bangladesh, India, and Asia [29] with multiple utilities. The selected genotypes are bright red-violet and maroon color due to the presence of abundant betain. It is an inexpensive and famous leafy vegetable in the Asian continent including Bangladesh and India because of attractive leaf color, taste, and high nutritional value. In Bangladesh, *A. gangeticus* is grown throughout the year including a period of scarcity of leafy vegetables from the end of winter to the start of summer [1, 2]. *A. gangeticus* leaves inhibited the proliferation of colon (Caco-2) cancer cell lines, breast (MCF-7), and liver (HepG2) and exhibited anticancer potential [30]. Plants can be successfully engineered as biofactories for synthesizing biomolecules such as phenolic compounds, antioxidants, flavonoids, and vitamins having industrial and pharmaceutical interest; these efforts need the optimization of the above-mentioned biochemical knowledge to improve large-scale production, streamline the development of new products and make agribusiness increasingly competitive [31]. In the current decades, researches on food science are focused on polyphenols of plant origin, their antioxidant potentiality, accessibility in diets, and roles of protecting deadly diseases such as cardiovascular diseases, cancer, and neuro-degenerative [32]. Phenolic compounds are plant substances that possess in a common and aromatic ring bearing one or more hydroxyl groups. Flavonoids are the largest group of naturally occurring phenolic compounds, which occur in different plant parts both in a free state and as glycosides [33, 34]. Antioxidants of natural origin, such as phenolic components and vitamins are available in fruits and vegetables and protect against several diseases [35]. Phenolic components of plant origin can be classified into phenolic acids or simple phenols (hydroxycinnamic acids and hydroxybenzoic acids), tannins, flavonoids, and lignins that are involved in antioxidant potentiality, bitterness, color, flavor, acerbic taste, and odorness [36]. Antioxidant compounds reduce oxidative damage to the human body through inhibition of the oxidizing chain reactions caused by free radical [37]. Flavonoids and phenolic compounds are natural antioxidants, which can act as free radical scavengers [34]. Quercetin quenches free radicals to prevent the oxidation of low-density lipoprotein [38]. Ellagic acid has health-promoting effects due to its anticarcinogenic and antimutagenic responses [39].

Total phenolic content and antioxidant activity of *A. gangeticus* have already been reported [40]. However, there is little information available in the literature regarding the phenolic composition of this plant. Currently, the research group is evaluating the chances of utilizing *A. gangeticus* phenolic profiles, antioxidant constituents, as it has abundant natural potent antioxidants of interest in the food industry [18, 20]. Based on yields and antioxidant activity, *A. gangeticus* genotypes were previously screened and the best four high yielding and antioxidant potential genotypes LS3, LS5, LS7, and LS9 were selected as advanced lines. It is the first attempt to study the phenolic profiles, antioxidant constituents, and antioxidant capacity in *A. gangeticus*. Hence, in this study, phenolic profiles, antioxidant constituents, and antioxidant potentiality of selected four advanced lines of *A. gangeticus* leafy vegetables were characterized in detail using high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS). The results of the present study improve the understanding of vitamins, phenolic, and flavonoids compounds and the antioxidant potentiality of *A. gangeticus* leafy vegetables for the food industry, nutritionists, pharmacists, and consumers.

Methods
Experimental materials
The seeds of four advance genotypes were collected from the Department of Genetics and Plant Breeding.

Design and layout
A completely randomized block design (RCBD) was used to execute the experiment at Bangabandhu Sheikh Mujibur Rahman Agricultural University with three replicates. The seeds of each genotype were sown in the ambient field of 1 m² experimental plot following 20 cm and 5 cm distance between rows and plants, respectively.
Climatic and edaphic conditions and intercultural practices

The site falls under the subtropical zone and has mean temperatures of 29 °C (summer) and 18 °C (winter). There was no precipitation during the cropping season. The soil characteristics are silty clay, a little acidic (pH 6.4) with low content of organic matter (0.87%). The compost (10 ton/ha) was applied at the time of preparation of lands. Gypsum, MP, TSP, and Urea were applied at 30, 150, 100, and 200 kg/ha, respectively [41]. Proper intercultural operations were continued. For maintaining the exact spacing of plants in a row, proper thinning was executed. Weeds of experimental plots were regularly removed through proper weeding and hoeing. Regular irrigation was provided in the experimental plots for maintaining the proper growth of leafy vegetable amaranth. The leaf samples were collected from 10 randomly selected plants of each experimental plot at 30 days old plant (vegetative stage).

Solvents and reagents

Methanol, acetic acid (HPLC grade), acetonitrile (HPLC grade), acetone, standard phenolic compounds, 2, 2-dipyridyl, dithiothreitol (DTT), DPPH (2, 2-diphenyl1-picrylhydrazyl), standard Trolox, ABTS, gallic acid, aluminum chloride hexahydrate, Folin-Ciocalteu reagent, potassium acetate, rutin, sodium carbonate, and potassium persulfate. All solvents and reagents were bought from Merck (Germany) and Kanto Chemical Co. Inc. (Tokyo, Japan).

Samples extraction for HPLC and LC-MS analysis

The leaf samples were extracted by adding 10 mL methanol (80%) containing acetic acid (1%) in 1 g of leaves. The mixture was thoroughly homogenized. Then the mixture was kept in a test tube (50 mL) and capped tightly. The test tube was shaken in a shaker (Scientific Industries Inc., USA) for 15 h at 400 rpm. Finally, the extract was centrifuged for 15 min at 10,000×g and filtered through a 0.45 μm filter. The phenolic compounds were analyzed from the final filtrate. All extractions were performed in triplicate independent samples.

Determination of phenolics through HPLC

The HPLC method previously described by Sarker & Oba [11, 28] was used to determine phenolic profiles in A. gangeticus leaf samples. Shimadzu SCL10Avp (Kyoto, Japan) HPLC was equipped with a binary pump (LC-10Avp), a degasser (DGU-14A), and a Shimadzu detector (SPD-10Avp UV–Vis). Flavonoids and phenolic acids were separated using a column [CTO-10 AC (STR ODS-II, 150 × 4.6 mm I.D., (Kyoto, Japan)] [11]. The binary mobile phase was pumped with solvent A (6% v/v acetic acid) in water and solvent B (acetonitrile) at the flow rate of 1 mL/min for 70 min. HPLC system was run using a gradient program with 0–15% acetonitrile for 45 min, 15–30% for 15 min, 30–50% for 5 min, and 50–100% for 5 min. Thirty-five °C temperature in the column was maintained with a 10 μL volume of injection [11]. The detector was set at 360, 370, 280, and 254 nm, respectively for continuous monitoring of flavonoids, cinnamic acids, and benzoic acids. For identification of the compounds, retention time and UV–vis spectra were compared with their respective standards. The confirmation of flavonoids and phenolic acids were performed through the mass spectrometry assay method. HPLC detected total compounds were represented as a total phenolic index (TPI). The previously described method of Sarker & Oba [11, 28] was used to calculate TPI from the HPLC data. All samples were prepared and analyzed in duplicate. Phenolic compounds were estimated as μg g⁻¹ FW. A mass spectrometer (AccuTOF, Japan) equipped with HPLC (Agilent 1100 Series) and a detector (UV–Vis) attached on-line with an ESI to analyze the spectrometric masses in negative ion mode maintaining the column elutes range of m/z 0–1000 and needle voltage at –2000 V. Extract constituents were identified by LC-MS-ESI analysis.

Quantification of phenolic compounds

The respective standards of calibration curves were used to quantify each phenolic compound. We dissolved 25 phenolic compounds in 80% methanol as stock solutions to the final concentration of 100 mg/mL. Respective standard curves (10, 20, 40, 60, 80, and 100 mg/mL) were used to quantify the individual phenolic compounds with external standards. UV spectral characteristics, retention times, and co-chromatography of samples spiked with commercially available standards were applied for identification and match the phenolics. The phenolic compounds were quantified estimating the area of peak of corresponding standards.

Estimation of pro-vitamin A

The pro-vitamin A was estimated following our previously described method [7, 14]. The fresh leaf samples (0.5 g each) were extracted with adding acetone (10 mL, 80%) followed by centrifugation for 3–4 min at 10,000 × g. A spectrophotometer was set at 510 nm and 480 nm, respectively to read the absorbance. The results were calculated as mg pro-vitamin A per 100 g FW.

\[
\text{Pro – vitamin A} = \left(7.6 \times \text{A}_{480} – 1.49 \times \text{A}_{510}\right) \\
\times \text{Final volume/}(1000 \times \text{weight of leaf (fresh)})
\]

Estimation of vitamin C

Vitamin C was estimated following our previously described method [14, 42] by pre-incubation of samples
using Dithiothreitol. Ascorbate reduced ferric ion to ferrous ion. 2, 2-dipyridyl bound with reduced ferrous ion to form complexes. A spectrophotometer was set at 525 nm to read the absorbance of Fe$^{2+}$ complexes. Vitamin C was calculated in mg 100 g$^{-1}$ FW.

Extraction of samples for TP, TF, and TAC

A. gangeticus leaves were collected at 30 days old plant. The collected leaves were air-dried in a shady place. 40 mL methanol (90%) was utilized to extract samples from 1 g of fresh leaves (for TF) and dried leaf powder (for TF and TAC) of each accession in a capped test tube. The test tubes were shaken in a Thomastant T-N22S (Japan) water bath shaker for 1 h. Finally, the extract was centrifuged for 15 min at 10,000×g and filtered through a 0.45 μm filter. The TAC, TF, and TP were estimated from the filtered extract.

Estimation of total polyphenols

The estimation of total polyphenols was carried out according to the method described by Jimenez-Aguilar & Grusak [45] using AlCl₃. A microplate reader was set to detect the optical density at 740 nm. The results were estimated as μg GAE g$^{-1}$ FW.

Estimation of total flavonoids

Estimation of flavonoids was carried out according to the method described by Jimenez-Aguilar & Grusak [45] using AlCl₃. A microplate reader was set to detect the optical density at 500 nm. The results were estimated as μg RE g$^{-1}$ DW.

Radical quenching capacity assay

The antioxidant activity was estimated following the DPPH radical quenching assay [46, 47] and the ABTS method [48]. The absorbance was read at 517 (DPPH) and 734 (ABTS) nm using a Hitachi spectrophotometer (Japan). The antioxidant capacity (ABTS and DPPH) was measured according to the following equation:

$$AC(\%) = \left(\frac{A_b - A_s}{A_b}\right) \times 100$$

Where, AC = antioxidant capacity, A_b = absorbance of the blank sample [10 and 150 μL methanol for DPPH and ABTS, respectively as a substitute of leaf extract], and A_s = absorbance of the test compound. The results were calculated as μg TEAC g$^{-1}$ DW.

Statistical analysis

The analysis of ANOVA was performed from mean data using software namely Statistix 8 [49, 50]. The Mean separation was carried out following DMRT ($P < 0.01$). The results indicated as mean ± SD.

Results

Flavonoids and phenolic acids

The data on main fragment ions in MS², identified compounds, Amax, the molecular ion, and retention time are presented in Table 1. The flavonoids and phenolic acid data from four genotypes (LS3, LS5, LS7, and LS9) separated by liquid chromatography were compared with standard masses of phenolics and their respective peaks. Twenty-five flavonoid and phenolic acids such as protocatechuic acid, vanillic acid, gallic acid, salicylic acid, gentisic acid, p-hydroxybenzoic acid, β-resorcylic acid, syringic acid, ellagic acid, m-coumaric acid, trans-cinnamic acid, caffeic acid, chlorogenic acid, ferulic acid, sinapic acid, p-coumaric acid, rutin, naringenin, kaempferol, myricetin, catechin, isoquercetin, apigenin, hyperoside, and quercetin were detected in A. gangeticus. Across the compounds, seven compounds were identified as cinnamic acids, nine compounds were identified as benzoic acids, and nine compounds were identified as flavonoids compounds. Concerning three main classes of phenolics, the most prominent compounds were identified in four advance lines of A. gangeticus genotypes in the order: benzoic acids > cinnamic acids > flavonoids.

Benzoic acids

The most available phenolic acids were salicylic acids. The rest of the benzoic acids were identified in the following order: ellagic acid < syringic acid < β-resorcylic acid p-hydroxybenzoic acid < gentisic acid < protocatechuic acid < vanillic acid < gallic acid (Fig. 1).

The range of vanillic acid, gentisic acid, salicylic acid, gallic acid, β-resorcylic acid, syringic acid, and ellagic acid were 5.88 to 13.24, 3.27 to 9.78, 7.87 to 22.43, 4.74 to 14.76, 1.86 to 7.26, 2.85 to 6.36, and 1.35 to 4.08 μg g$^{-1}$ FW, individually (Fig. 1). The maximum vanillic acid (13.24 μg g$^{-1}$ FW), gentisic acid (9.78 μg g$^{-1}$ FW), salicylic acid (22.43 μg g$^{-1}$ FW), gallic acid (14.76 μg g$^{-1}$ FW), β-resorcylic acid (7.26 μg g$^{-1}$ FW), syringic acid (6.36 μg g$^{-1}$ FW), and ellagic acid (4.08 μg g$^{-1}$ FW) were recorded in LS7. In contrast, the genotype LS5 showed the lowest vanillic acid (5.88 μg g$^{-1}$ FW), gallic acid (4.74 μg g$^{-1}$ FW), and the genotype LS3 had the lowest salicylic acid (7.87 μg g$^{-1}$ FW), gentisic acid (3.27 μg g$^{-1}$ FW), β-resorcylic acid (1.86 μg g$^{-1}$ FW), syringic acid (2.85 μg g$^{-1}$ FW), and ellagic acid (1.35 μg g$^{-1}$ FW). Protocatechuic acid and p-hydroxybenzoic acid ranged from 3.65 to 11.68 and 1.65 to 7.64 μg g$^{-1}$ FW, individually (Fig. 1). LS9 demonstrated the maximum protocatechuic acid (11.68 μg g$^{-1}$ FW) and p-hydroxybenzoic acid (7.64 μg g$^{-1}$ FW), whereas, LS5 demonstrated the minimum protocatechuic acid (3.65 μg g$^{-1}$ FW) and p-hydroxybenzoic acid (1.65 μg g$^{-1}$ FW).
Cinnamic acids
Chlorogenic acid was identified as the most prominent compound within cinnamic acids followed by trans-cinnamic acid, sinapic acid, and ferulic acid (Fig. 2). A. gangeticus genotypes demonstrated ample cinnamic acids. The range of chlorogenic acid, trans-cinnamic acid, sinapic acid, p-coumaric acid, and ferulic acid was 8.86 to 15.38, 5.52 to 11.85, 4.26 to 8.35, 4.72 to 7.20, and 3.51 to 5.16 μg g\(^{-1}\) FW, individually (Fig. 2). The maximum trans-cinnamic acid, chlorogenic acid, sinapic acid, ferulic acid, and p-coumaric acid (15.38, 11.85, 8.35, 7.20, and 5.16 μg g\(^{-1}\) FW, individually) were noted in LS7. Whereas, LS3 exhibited the minimum chlorogenic acid and trans-cinnamic acid (8.86 and 5.52 μg g\(^{-1}\) FW) and LS5 demonstrated the minimum sinapic acid, ferulic acid, and p-coumaric acid (4.26, 4.72, and 3.51 μg g\(^{-1}\) FW). The range of m-coumaric acid and caffeic acid was 2.67 to 6.13 and 2.56 to 6.65 μg g\(^{-1}\) FW (Fig. 2). The maximum m-coumaric acid and caffeic acid (6.13 and 6.65 μg g\(^{-1}\) FW) were recorded in LS9. Conversely, LS3 had the lowest m-coumaric acid and caffeic acid (2.67 and 2.56 μg g\(^{-1}\) FW).

Flavonoids
In this study, A. gangeticus genotypes demonstrated ample flavonoids such as rutin, naringenin, isoquercetin, quercetin, myricetin, kaempferol, apigenin, hyperoside, and catechin. Rutin, naringenin, isoquercetin, quercetin, myricetin, kaempferol, apigenin, hyperoside, and catechin varied from 6.73 to 9.62, 2.24 to 7.14, 3.15 to 6.98, 3.62 to 6.35, 3.72 to 5.48, 2.02 to 4.88, 2.21 to 4.37, 1.05 to 2.35, and 1.12 to 3.78 μg g\(^{-1}\) FW, individually (Fig. 3).
The accession LS7 demonstrated the maximum rutin, naringenin, isoquercetin, quercetin, myricetin, kaempferol, apigenin, hyperoside, and catechin (9.62, 7.14, 6.98, 6.35, 5.48, 4.37, 2.35, and 3.78 μg g⁻¹ FW, respectively). Hyperoside content of LS7 had statistical similarity with LS9. The accessions LS5 and LS3 demonstrated high myricetin (4.22 and 4.18 μg g⁻¹ FW), the accessions LS5 and LS9 demonstrated high rutin (8.89 and 7.89 μg g⁻¹ FW), the accession LS5 demonstrated high quercetin (5.32 μg g⁻¹ FW), and the accession LS3 demonstrated high isoquercetin and hyperoside (4.23 and 2.15 μg g⁻¹ FW). In contrast, the accession LS9 demonstrated the minimum quercetin and myricetin (3.62 and 3.72 μg g⁻¹ FW), the accession LS3 exhibited the minimum rutin and catechin (6.73 and 1.12 μg g⁻¹ FW), and the accession LS5 exhibited the minimum isoquercetin, naringenin, apigenin, kaempferol, and hyperoside (3.15, 2.24, 2.21, 2.02, and 1.05 μg g⁻¹ FW, respectively) (Fig. 3).

Phenolic fractions

The range of total phenolic index (TPI), total cinnamic acids (TCA), total benzoic acids (TBA), total flavonoids (TF), and total phenolic acids (TPA) were 103.58 to 204.03, 36.10 to 59.27, 36.59 to 93.81, 30.89 to 50.95, and 72.69 to 153.08 μg g⁻¹ FW, individually (Fig. 4). The accession LS7 showed the maximum TPI (204.03 μg g⁻¹ FW), TCA (59.27 μg g⁻¹ FW), TBA (93.81 μg g⁻¹ FW), TPA (153.08 μg g⁻¹ FW), and TF (50.95 μg g⁻¹ FW). The TF of the accession LS3 and LS5 had statistical
similarity to the accession of LS9. Conversely, the accessions LS3 and LS5 demonstrated the minimum TF (30.89, 31.35 μgg⁻¹ FW), TCA (36.10, 37.10 μgg⁻¹ FW), TBA (36.59, 37.18 μgg⁻¹ FW), and TPI (103.58, 105.63 μgg⁻¹ FW). The accession LS3 demonstrated the minimum TPA (72.69 μgg⁻¹ FW) (Fig. 4).

Antioxidant constituents and radical quenching capacity

TP, pro-vitamin A, vitamin C, AC, and TF differed significantly regarding the advance lines of A. gangeticus accession (Fig. 5). The range of pro-vitamin A content was 33.62 mg 100 g⁻¹ in LS3 to 72.34 mg 100 g⁻¹ in LS7. The accession LS7 demonstrated the maximum pro-vitamin A and LS9 exhibited high pro-vitamin A content. The range of vitamin C content was 72.45 mg 100 g⁻¹ in LS3 to 156.34 mg 100 g⁻¹ in LS7. The range of TP was 89.34 μgg⁻¹ (LS3) to 182.55 μgg⁻¹ (LS7). The accession LS7 exhibited the maximum total polyphenols followed by LS9. TF exhibited prominent variation regarding genotypes with a range of 154.89 μgg⁻¹ in LS5 to 280.44 μgg⁻¹ in LS7. The range of antioxidant capacity (DPPH) was 12.27 μgg⁻¹ (LS3) to 34.38 μgg⁻¹ (LS7). The maximum antioxidant capacity (DPPH) was recorded in LS7 followed by LS9 and LS5. In contrast, LS3 demonstrated the minimum antioxidant capacity (DPPH). The range of antioxidant capacity (ABTS) was 26.69 μgg⁻¹ to 68.89 μgg⁻¹. The A. gangeticus advance line LS7 demonstrated the maximum antioxidant capacity (ABTS) followed by LS9. In contrast, antioxidant capacity (ABTS) was the minimum in LS3.
Correlation coefficient study

The correlation of antioxidant constituents and the antioxidant capacity of *A. gangeticus* are shown in Table 2. Pro-vitamin A and vitamin C had significant positive interrelationships with vitamins, TP, TF, AC (DPPH and ABTS). A significant correlation among TP, TF, AC (DPPH and ABTS) were observed. Similarly, AC (ABTS) was significantly interrelated with AC (DPPH).

Discussion

Vitamins including pro-vitamin A and Vitamin C, flavonoids, and polyphenol compounds from natural origins, such as vegetables and fruits serve as antioxidants and protect against several diseases [35]. Recently, food researchers and consumers are interested in vitamins, polyphenols, and flavonoids of plant origin, their antioxidant potentiality, accessibility in diets, and roles of protecting deadly diseases such as cardiovascular diseases, cancer, and neuro-degenerative [32]. Phenolic compounds are plant substances that possess in a common and aromatic ring bearing one or more hydroxyl groups. Flavonoids are the largest group of naturally occurring phenolic compounds, which occur in different plant parts both in a free state and as glycosides [33, 34]. Antioxidants compounds reduce oxidative damage to the human body through inhibition of the oxidizing chain reactions caused by free radical [37]. The shikimic acid pathway transformed phenylalanine and tyrosine into phenolic acids and flavonoids in plants [51]. Flavonoids have important biological functions in the human body. Quercetin quenches free radicals to prevent the oxidation of low-density lipoprotein [38]. Ellagic acid has health-promoting effects due to its anticarcinogenic and antimutagenic responses [39].

The analysis of variance revealed a wide range of variability of the studied traits regarding selected advance genotypes of *A. gangeticus*. A wide range of variability of the studied traits was also reported in *A. tricolor* and *A. lividus* [11], rice [52–65], maize [66–68], and coconut [69]. By the liquid chromatography assay, twenty-five flavonoid and phenolic compounds such as protocatechuic acid, vanillic acid, gallic acid, salicylic acid, gentisic acid, p-hydroxybenzoic acid, β-resorcylic acid, syringic acid, ellagic acid, m-coumaric acid, trans-cinnamic acid, etc., were identified in the leaves of *A. gangeticus*. The correlation coefficient for antioxidant constituents and radical quenching capacity in four selected *A. gangeticus* leafy vegetables is shown in Table 2.

Table 2: The correlation coefficient for antioxidant constituents and radical quenching capacity in four selected *A. gangeticus* leafy vegetables.

Pro-vitamin A (mg 100 g⁻¹ FW)	Vitamin C (mg 100 g⁻¹ FW)	Total polyphenols (GAE μg g⁻¹ FW)	Total flavonoids (RE μg g⁻¹ DW)	AC (DPPH) (TEAC μg g⁻¹ DW)	AC (ABTS⁺) (TEAC μg g⁻¹ DW)
Pro-vitamin A	0.65ᵇ	0.74ᵇ	0.96ᵇ	0.53ᵃ	0.58ᵃ
Vitamin C		0.78ᵇ	0.85ᵇ	0.77ᵇ	0.78ᵇ
Total polyphenols			0.6¹ᵇ	0.88ᵇ	0.87ᵇ
Total flavonoids				0.58ᵃ	0.56ᵃ
AC (DPPH)					0.98ᵇ

AC (DPPH) Antioxidant capacity (DPPH), AC (ABTS⁺) Antioxidant capacity (ABTS⁺), ᵃsignificant at 5% level, ᵇsignificant at 1% level, (n = 3)
caffeic acid, chlorogenic acid, ferulic acid, sinapic acid, p-coumaric acid, rutin, naringenin, kaempferol, isoquer-
cetin, myricetin, apigenin, catechin, quercetin, and hyperoside were identified in $A.$ gangeticus. Across the
compounds, seven compounds were identified as cin-
namic acids, nine compounds were identified as benzoic
acids, and nine compounds were identified as flavonoids
compounds. In the previous study, 24 flavonoids and
phenolic acids were identified in the leaves of red and
green color amaranth ($A.$ tricolor and $A.$ lividus) [11].
Khanam et al. [48] and Khanam & Oba [70] identified
16 phenolic and flavonoid compounds such as syringic
acid, vanillic acid, m-coumaric acid, gallic acid, salicylic
acid, p-hydroxybenzoic acid, ellagic acid, caffeic acid,
trans-cinnamic acid, chlorogenic acid, rutin, ferulic acid,
p-coumaric acid, sinapic acid, hyperoside, and isoquer-
cetin in green and red amaranths. In the stalks, leaf,
sprouts, flowers, and the seed of $A.$ caudatus, $A.$ cruen-
tus, and $A.$ hypochondriacus, eleven phenolics including
gallic acid, chlorogenic acid, ferulic acid, β-resorcylic
acid, gentisic acid, salicylic acid, protocatechuic acid, el-
lagic acid, rutin, quercetin, and kaempferol were de-
tected [71]. Eight phenolics like p-hydroxybenzoic acid,
gallic acid, vanillic acid, p-coumaric acid, ferulic acid,
cinnamic acids, caffeic acids, syringic acids, vitexin,
rutin, and isovitexin were reported in $A.$ cruentus seeds
class and sprouts [72]. Across the three main classes of pheno-
lcics, the most prominent compounds were identified in
four advance lines of $A.$ gangeticus genotypes in the
following order: benzoic acids > cinnamic acids > flavonoids.

The most available phenolic acids were salicylic acids.
The rest of the benzoic acids were salicilic acids.
The remaining benzoic acids were salicylic acids.
The p-hydroxybenzoic acid was the most available
phenolic acid. The p-hydroxybenzoic acid was the most
available phenolic acid. We obtained much greater benzoic acid content in the $A.$ gangeticus
genotype LS7 and LS9 compared to the results of the
benzoic acid content of green amaranth of our previous
study [11] and the results of the benzoic acid content of
$A.$ tricolor [48].

The most salicylic acid, vanillic acid, gallic acid, gentisic acid, β-resorcylic acid, syringic
acid, and ellagic acid were obtained from the genotype
LS7 followed by the genotype LS9. The genotype LS9 ex-
hibited the maximum protocatechuic acid and p-hydro-
xybenzoic acid followed by LS7. Hence, the selected
advance genotypes LS7 and LS9 could be considered as
high benzoic acid profiles enrich genotypes. These two
genotypes could be directly used as benzoic acid profiles
enrich cultivars.

Chlorogenic acid was identified as the most pro-
nounced compound within cinnamic acids followed by
trans-cinnamic acid, sinapic acid, and ferulic acid. $A.$
gangeticus genotypes demonstrated ample cinnamic
acids. Seven cinnamic acids obtained from the genotype
LS7 and LS9 were much greater in comparison with the
results of cinnamic acids in $A.$ tricolor [48]. The max-
imum trans-cinnamic acid, chlorogenic acid, sinapic
acid, ferulic acid, and p-coumaric acid were observed in
LS7. The maximum m-coumaric acid and caffeic acid
were reported in LS9. Seven cinnamic acids found in the
current investigation were much greater in comparison
to the seven cinnamic acids of green amaranth of our
previous study [11]. The selected advance genotypes LS7
and LS9 could be considered as high cinnamic acid pro-
files enrich genotypes. These two genotypes could be
directly used as cinnamic acids acid profiles enrich
cultivars.

In this study, $A.$ gangeticus genotypes demonstrated
ample flavonoids such as myricetin, rutin, naringenin,
isoqueretin, quercetin, kaempferol, apigenin, catechin,
and hyperoside which were much greater in comparison
to nine flavonoid compounds of green amaranth of our
previous study [11]. LS7 demonstrated the maximum
myricetin, rutin, naringenin, isoqueretin, quercetin,
kaempferol, apigenin, catechin, and hyperoside. Quer-
cetin and hyperoside of $A.$ gangeticus accessions were
greater in comparison to the content of quercetin and
hyperoside reported in $A.$ tricolor [48]. Hence, the se-
lected advance accession LS7 could be considered as
high flavonoids profiles enrich accession. This accession
could be directly used as flavonoids profiles enrich
cultivar.

LS7 demonstrated the maximum TCA, TBA, TPI,
TPA, and TF. The TPI, TF, and TPA of $A.$ gangeticus ac-
cessions were much pronounced in comparison to the
content of $A.$ tricolor [48]. Cinnamic acid was synthe-
sized in the tissues of plants from the most widely avail-
able phenylalanine [73]. In the tissue of plants, although
glycoside derivatives are the types of flavonoids which
are most available and also occur as aglycone. Across
total phenolics, 60% are represented as flavonoids [74].
Naturally, the most available flavonoids in the plants are
flavonols and quercetin glycosides [74]. Different geno-
types of the Cichorium spinosum exhibited significant
differences in flavonoids and phenolic acid profiles [75].

In this study, considerable phenolics, such as gallic
acid, protocatechuic acid, salicylic acid, vanillic acid,
trans-cinnamic acid, p-hydroxybenzoic acid, gentisic
acid, β-resorcylic acid, ellagic acid, syringic acid, caffeic
acid, chlorogenic acid, m-coumaric acid, ferulic acid,
sinapic acid, p-coumaric acid, rutin, isoqueretin, nari-
genin, quercetin, kaempferol, myricetin, catechin, api-
genin, and hyperoside were identified in $A.$ gangeticus
genotypes. The reported results of Khanam & Oba
[70] were corroborative to the results of our present
study. They obtained greater vanillic acid, salicylic acid,
gallic acid, ellagic acid, syringic acid, trans-cinnamic
The present results showed that the red color A. gangeticus genotypes exhibited 2 to 3-fold higher β-carotene in comparison with the β-carotene of green color A. gangeticus [76]. β-carotene of red color A. gangeticus was 2 to 3-fold higher than the β-carotene of A. caudatus leaves [20]. A. hypochondriacus exhibited the maximum TF, TP, and TAC (ORAC and FRAP methods) in comparison with A. caudatus [71]. Additionally, they noted the maximum TF, TP, and TAC (FRAP) in comparison with sprouts, seed, flowers, and stalks. The procedures of determination and extraction and standards differed from the present methodology; hence, it’s tedious to compare the current findings with their results. The accessions LS7 and LS9 demonstrated high phenolic profiles, antioxidant constituents such as pro-vitamin A, vitamin C, TP, TF, and AC. The accessions LS7 and LS9 could be used as antioxidant profiles enriched high-yielding varieties. It revealed from the study that these two accessions could offer huge prospects for feeding the antioxidant-deficient community.

Pro-vitamin A and vitamin C had significant positive interrelationships with vitamins, TP, TF, AC (DPPH and ABTS) that signify that both pro-vitamin A and vitamin C exhibited good antioxidant potentiality. The results of the present study corroborated with the results of our earlier study of drought and salt-stressed A. tricolor [22–24, 28]. The significant correlations among TP, TF, AC (DPPH and ABTS) were observed that indicated high potential antioxidant activity of TP and TF in A. gangeticus. The correlations of TP and TF, versus AC (FRAP) in salt-stressed purslane [77], were corroborative to our present findings. Similarly, AC (ABTS) was significantly associated with AC (DPPH) that validated the estimation of antioxidant activity of two different methods in A. gangeticus.

Conclusions

Twenty-five flavonoids and phenolic acids such as p-hydroxybenzoic acid, salicylic acid, protocatechuic acid, vanillic acid, gentisic acid, gallic acid, β-resorcylic acid, ellagic acid, syringic acid, chlorogenic acid, m-coumaric acid, trans-cinnamic acid, caffeic acid, ferulic acid, sinapic acid, p-coumaric acid, the accessions LS7 and LS9 exhibited high antioxidant potentiality. The results of the present study corroborated with the results of our earlier study of drought and salt-stressed A. tricolor [22–24, 28]. The significant correlations among TP, TF, AC (DPPH and ABTS) were observed that indicated high potential antioxidant activity of TP and TF in A. gangeticus. The correlations of TP and TF, versus AC (FRAP) in salt-stressed purslane [77], were corroborative to our present findings. Similarly, AC (ABTS) was significantly associated with AC (DPPH) that validated the estimation of antioxidant activity of two different methods in A. gangeticus.

Conclusions

Twenty-five flavonoids and phenolic acids such as p-hydroxybenzoic acid, salicylic acid, protocatechuic acid, vanillic acid, gentisic acid, gallic acid, β-resorcylic acid, ellagic acid, syringic acid, chlorogenic acid, m-coumaric acid, trans-cinnamic acid, caffeic acid, ferulic acid, sinapic acid, p-coumaric acid, naringenin, rutin, isoquercetin, quercetin, myricetin, kaempferol, apigenin, catechin, and hyperoside. The accessions LS7 and LS9 exhibited high antioxidant potentiality. It revealed from the study that two A. gangeticus accessions LS7 and LS9 could be used as antioxidant profiles enriched high-yielding varieties. It revealed from the study that these two accessions could offer huge prospects for feeding the antioxidant-deficient community.

Pro-vitamin A and vitamin C had significant positive interrelationships with vitamins, TP, TF, AC (DPPH and ABTS) that signify that both pro-vitamin A and vitamin C exhibited good antioxidant potentiality. The results of the present study corroborated with the results of our earlier study of drought and salt-stressed A. tricolor [22–24, 28]. The significant correlations among TP, TF, AC (DPPH and ABTS) were observed that indicated high potential antioxidant activity of TP and TF in A. gangeticus. The correlations of TP and TF, versus AC (FRAP) in salt-stressed purslane [77], were corroborative to our present findings. Similarly, AC (ABTS) was significantly associated with AC (DPPH) that validated the estimation of antioxidant activity of two different methods in A. gangeticus.

Conclusions

Twenty-five flavonoids and phenolic acids such as p-hydroxybenzoic acid, salicylic acid, protocatechuic acid, vanillic acid, gentisic acid, gallic acid, ellagic acid, syringic acid, chlorogenic acid, m-coumaric acid, trans-cinnamic acid, caffeic acid, ferulic acid, sinapic acid, p-coumaric acid, naringenin, rutin, isoquercetin, quercetin, myricetin, kaempferol, catechin, hyperoside, myricetin, apigenin, and quercetin were identified in the A. gangeticus genotypes. A. gangeticus genotype LS7 and LS9 had abundant phenolic acids, flavonoids, antioxidant constituents, and antioxidant potentiality. It revealed from the correlation study that all antioxidant compositions of A. gangeticus exhibited high antioxidant potentiality. It revealed from the study that two A. gangeticus genotypes had excellent sources of antioxidants components capable of quenching ROS. It revealed from this study that data obtained from advance lines of A. gangeticus genotypes contribute to the scientists to evaluate pharmacologically active constituents.

In this study, considerable antioxidant constituents such as pro-vitamin A, vitamin C, TP, TF, and AC were found in the A. gangeticus accessions. The findings of the present study were corroborative to the findings of TP, TF, and AC of A. tricolor [70]. AC (ABTS), TF, and AC (DPPH) obtained in this study corroborated with the findings of A. tricolor [48] whereas, TP obtained in this study were much greater in comparison to TP of A. tricolor [48]. Vitamin C obtained from A. gangeticus accessions was much greater in comparison to vitamin C of different Amaranthus species [45]. The present results showed that the red color A. gangeticus, A. hypochondriacus, and A. hypochondriacus genotypes exhibited 2 to 3-fold higher β-carotene in comparison with the β-carotene of green color A. gangeticus [76]. β-carotene of red color A. gangeticus was 2 to 3-fold higher than the β-carotene of A. caudatus leaves [20]. A. hypochondriacus exhibited the maximum TF, TP, and TAC (ORAC and FRAP methods) in comparison with A. caudatus [71]. Additionally, they noted the maximum TF, TP, and TAC (FRAP) in comparison with sprouts, seed, flowers, and stalks. The procedures of determination and extraction and standards differed from the present methodology; hence, it’s tedious to compare the current findings with their results. The accessions LS7 and LS9 demonstrated high phenolic profiles, antioxidant constituents such as pro-vitamin A, vitamin C, TP, TF, and AC. The accessions LS7 and LS9 could be used as antioxidant profiles enriched high-yielding varieties. It revealed from the study that these two accessions could offer huge prospects for feeding the antioxidant-deficient community.

Pro-vitamin A and vitamin C had significant positive interrelationships with vitamins, TP, TF, AC (DPPH and ABTS) that signify that both pro-vitamin A and vitamin C exhibited good antioxidant potentiality. The results of the present study corroborated with the results of our earlier study of drought and salt-stressed A. tricolor [22–24, 28]. The significant correlations among TP, TF, AC (DPPH and ABTS) were observed that indicated high potential antioxidant activity of TP and TF in A. gangeticus. The correlations of TP and TF, versus AC (FRAP) in salt-stressed purslane [77], were corroborative to our present findings. Similarly, AC (ABTS) was significantly associated with AC (DPPH) that validated the estimation of antioxidant activity of two different methods in A. gangeticus.

Conclusions

Twenty-five flavonoids and phenolic acids such as p-hydroxybenzoic acid, salicylic acid, protocatechuic acid, vanillic acid, gentisic acid, gallic acid, ellagic acid, syringic acid, chlorogenic acid, m-coumaric acid, trans-cinnamic acid, caffeic acid, ferulic acid, sinapic acid, p-coumaric acid, naringenin, rutin, isoquercetin, quercetin, myricetin, kaempferol, catechin, hyperoside, myricetin, apigenin, and quercetin were identified in the A. gangeticus genotypes. A. gangeticus genotype LS7 and LS9 had abundant phenolic acids, flavonoids, antioxidant constituents, and antioxidant potentiality. It revealed from the correlation study that all antioxidant compositions of A. gangeticus exhibited high antioxidant potentiality. It revealed from the study that two A. gangeticus genotypes had excellent sources of antioxidants components capable of quenching ROS. It revealed from this study that data obtained from advance lines of A. gangeticus genotypes contribute to the scientists to evaluate pharmacologically active constituents.
Abbreviations
ANOVA: Analysis of variance; ABTS: 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid); AAS: Atomic absorption spectrophotometry; DPPH: 2,2'-diphenyl-1-picrylhydrazyl; DHA: Dehydroascorbate; DMIT: Duncan’s Multiple Range Test; DTT: Dithiothreitol; DW: Dry weight; FW: Fresh weight; FRAP: Ferric reducing antioxidant power; GAE: Gallic acid equivalent; HCl: Hydrochloric acid; HPLC-UV: High-performance liquid chromatography-ultra violet; LC-MS-ESI: Liquid chromatography-mass spectroscopy-electrospray ionization; ORAC: Oxygen radical absorbance capacity; RCBD: Completely randomized block design; RE: Rutin equivalent; ROS: Reactive oxygen species; SD: Standard deviation; TAC: Total antioxidant capacity; TEAC: Trolox equivalent antioxidant capacity; TFC: Total flavonoid content; TPC: Total polyphenol content; TPI: Total phenolic index

Acknowledgments
None.

Authors’ contributions
US conceptualized and conducted the experiments, analyzed the data, helped with the experimental design, and prepared and revised the manuscript. SO revised the manuscript and give valuable suggestions. All authors read and approved the final manuscript.

Funding
No funding was received.

Availability of data and materials
All data generated or analyzed during this study are included in this article and available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh. 2Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Japan.

Received: 5 May 2020 Accepted: 13 October 2020
Published online: 02 November 2020

References
1. Sarker U, Islam MT, Rabbanig MG, Oba S. Genotypic variability for nutrient, antioxidant, yield and yield contributing traits in vegetable amaranth. J Food Agri Environ. 2014;12:168–74.
2. Sarker U, Islam MT, Rabbanig MG, Oba S. Variability, heritability and genetic association in vegetable amaranth (Amaranthus tricolor). Span J Agric Res. 2015a;13:1–8 https://doi.org/10.5424/sjar/201513z-6843.
3. Sarker U, Islam MT, Rabbanig MG, Oba S. Genotype variability in composition of antioxidant vitamins and minerals in vegetable amaranth. Genetika. 2015b;47:85–96.
4. Sarker U, Islam MT, Rabbanig MG, Oba S. Genetic variation and interrelationship among antioxidant, quality and agronomic traits in vegetable amaranth. Turk J Agric For. 2016;40:526–35.
5. Sarker U, Islam MT, Rabbanig MG, Oba S. Genotypic diversity in vegetable amaranth for antioxidant, nutrient and agronomic traits. Indian J Genet Pl Breed. 2017;77:173–6.
6. Chakrabarty T, Sarker U, Hasan M, Rahman MM. Variability in mineral compositions, yield, and yield contributing traits of stem amaranth (Amaranthus lividus). Genetika. 2018b;50:909–1010.
7. Sarker U, Oba S. Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus levya leafy vegetable. PLoS One. 2019a;140222517 https://doi.org/10.1371/journal. pone.0222517.
8. Sarker U, Oba S. Nutriceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci Rep. 2019b;9:20413 https://doi.org/10.1038/s41598-019-50977-5.
9. Sarker U, Islam MT, Rabbanig MG, Oba S. Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth. J Integrative Agric. 2018a;17:1145–53.
10. Sarker U, Islam MT, Rabbanig MG, Oba S. Antioxidant leaf pigments and variability in vegetable amaranth. Genetika. 2018b;50:209–20.
11. Sarker U, Oba S. Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Sci Rep. 2019c;9:18233 https://doi.org/10.1038/s41598-019-5038-3.
12. Sarker U, Islam MT, Rabbanig MG, Oba S. Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional and agronomic traits. Acta Agric Scand Section B- Soil Plant Sci. 2018c;68:7–76.
13. Sarker U, Hossain MM, Oba S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci Rep. 2020;10:1336 https://doi.org/10.1038/s41598-020-75687-3.
14. Sarker U, Oba S, Daramy MA. Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stern amaranth. Sci Rep. 2020a;10:3802 https://doi.org/10.1038/s41598-020-60252-7.
15. Sarker U, Oba S. Nutrients, minerals, pigments, phytochemical, and radical scavenging activity in Amaranthus blitum leafy vegetable. Sci Rep. 2020a;10:3868 https://doi.org/10.1038/s41598-020-59848-w.
16. Dusgupta N, De B. Antioxidant activity of some leafy vegetables of India: a comparative study. Food Chem. 2007;101:471–4.
17. Isabelle M, Lee BL, Lim MT, Koh WP, Huang D, Ong CN. Antioxidant activity and profiles of common fruits in Singapore. Food Chem. 2010;123:77–84.
18. Repo-Carrasco-Valencia R, Hellstrom JK, Pihlava JM, Mattila PH. Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa (Chenopodium quinoa), kariwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010;120:23–33.
19. Steffensen SK, Rinnan A, Mortensen AG, Laursen B, Troiani RM, Noellmeyer EJ, Janovska D, Dusek K, Delano-Frier J, Tabemer A, Christophensen C, Inge S, Fomsgaard IS. Variations in the polyphenol content of seeds of field grown Amaranthus genotypes. Food Chem. 2011;129:31–8.
20. Versukitonis PR, Kraujalis P. Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Comp Rev Food Sci Food Saf. 2013;12:401–412.
21. Cai Y, Sun M, Corke H. Antioxidant activity of betalains from plants of the Amaranthaceae. J Agril Food Chem. 2003;51:2288–94.
22. Sarker U, Islam MT, Oba S. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS One. 2018;13:0206388 https://doi.org/10.1371/journal.pone.0206388.
23. Sarker U, Oba S. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci Rep. 2018a;8:12349 https://doi.org/10.1038/s41598-019-30897-6.
24. Sarker U, Oba S. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J Sci Food Agric. 2019d;99:2275–84 https://doi.org/10.1002/jsfa.9423.
25. Sarker U, Oba S. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chem. 2018b;252:72–83.
26. Sarker U, Oba S. Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in A. tricolor. Appl Biochem Biotechnol. 2018;186:999–1016 https://doi.org/10.1007/s12010-018-2784-5.
27. Sarker U, Oba S. Catalase, superoxide dismutase, and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep. 2018d;8:16496 https://doi.org/10.1038/s41598-018-39944-0.
28. Sarker U, Oba S. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol. 2018e;18:238 https://doi.org/10.1186/s12870-018-1484-1.
29. Rajan S, Markose BL. Horticultural Science Series-6. In: Peter KMV, editor. Propagation of horticultural crops. New Delhi: New India Publishing Agency; 2007. p. 201–320.
30. Sani HA, Rahmat A, Ismail M, Rosli R, Endrini S. Potential anticancer effect of red spinach (Amaranthus goyazeticus) extract. Asia Pacific J Clinical Nutr. 2004;13:396–400.

31. Mohammadnejad R, Shavandi A, Raje DS, et al. Plant molecular farming: production of metallic nanoparticles and therapeutically proteins using green factories. Green Chem. 2019;21:1845–65.

32. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. American J Clinical Nutr. 2004;79:727–47.

33. Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci. 2020;21:1250.

34. Tohid B, Rahimaalek M, Arzani A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017;220:153–61.

35. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006;19:669–75.

36. Karki H, Li QX, Wall MM, Nakamoto ST, Iwaoa WT. Major phenolic acids and total antioxidant activity in Mamaki leaves, Pipturus albidus. J Food Sci. 2007;72:696–701.

37. Namiki M. Antioxidants/anti-mutagens in food. Critical Rev Food Sci Nutr. 1990;29:273–300.

38. Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Mol. Biol. 2011;16:251–28 https://doi.org/10.3930/molecules16010251.

39. Maa JL, Galletta GJ, Stoner GD. Ellagic acid, an anticarcinogen in fruits, especially in strawberries: a review. HortSci. 1991;26:10–4.

40. Amin I, Norazaidah Y, Emmy Hainida KI. Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem. 2006;94:47–52.

41. Rashad MW, Sarker U. Genetic variations in yield and yield contributing traits of green amaranth. Genetika. 2020;52:391–404.

42. Sarker U, Oba S. Nutritional and bioactive constituents and scavenging capacity of radicals in Amaranthus hypochondriacus. Rev. Biol. 2020; (accepted). https://doi.org/10.3390/81598-020-71174-3.

43. Sarker U, Oba S. Phenolic profiles and antioxidant activities in selected drought-tolerant leafy vegetable amaranth. Rev. Biol. 2020; (accepted). https://doi.org/10.3390/81598-020-71172-7.

44. Sarker U, Oba S. Bioactive components and radical scavenging activity in selected advance lines of salt-tolerant vegetable amaranth. Front Nutr. 2020; (accepted).

45. Jimenez-Aguilar DM, Grusak MA, Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J Food Compos Anal. 2017;58:33–9.

46. Sarker U, Oba S. Leaf pigmentation, its profiles and radical scavenging activity in selected Amaranthus tricolor leafy vegetables. Rev. Biol. 2020; (accepted).

47. Sarker U, Oba S. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci. 2020;11:595876. https://doi.org/10.3389/fpls.2020.595876.

48. Khanam UKS, Oba S, Yarase E, Murakami Y, Mian MAK. Phenolic acids in foods: an overview of analytical methodology. J Agril Food Chem. 2003;51:3866–87.

49. Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochem. 2000;55:481–504.

50. Petroopoulos SA, Levizou E, Ntats G, Fernandes A, Petrotsos K, Akoumianakis K, Barros L, Isabel CFRR. Salinity effect on nutritional value, chemical composition, and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017;214:129–36.

51. Raju M, Varakumar S, Lakshminarayana R, Krishnakanta PT, Baskaran V. Carotenoid composition and vitamin a activity of medicinally important green leafy vegetables. Food Chem. 2007;101:1598–605.

52. Alam MA, Jurami AS, Rafi MV, Hamid AA, Aslani F, Alam MZ. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chem. 2015;169:439–47.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.