№ п./п.	Название исследования	Год	
1	Factors Which Contribute to the Immunogenicity of Non-replicating Adenoviral Vectored Vaccines	2020	
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248264/		
2	Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine a dose-escalation, open-label, non-randomised, first-in-human trial	2020	
	https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31208-3/fulltext		
3	Immunogenicity and safety of a recombinant adenovirus type-5 vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial	2020	
	https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31605-6/fulltext		
4	A Bivalent Human Adenovirus Type 5 Vaccine Expressing the Rabies Virus Glycoprotein and Canine Distemper Virus Hemagglutinin Protein Confers Protective Immunity in Mice and Foxes	2020	
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309451/		
5	Safety and immunogenicity of Ad26 and MVA vaccines in acutely treated HIV and effect on viral rebound after antiretroviral therapy interruption	2020	
	https://www.nature.com/articles/s41591-020-0774-y		
6	Ad26-vector based COVID-19 vaccine encoding a prefusion stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses	2020	
	https://www.biorxiv.org/content/10.1101/2020.07.30.227470v1		
7	The fiber knob protein of human adenovirus type 49 mediate highly efficient and promiscuous infection of cancer cell lines using a novel cell entry mechanism	2020	
	https://www.biorxiv.org/content/10.1101/2020.07.20.213223v1		
8	Adenovector 26 encoded prefusion conformation stabilized RSV-F protein induces long-lasting Th1-biased immunity in neonatal mice	2020	
	https://www.nature.com/articles/s41594-020-0200-y		
9	Immunogenicity of Different Forms of Middle East Respiratory Syndrome S Glycoprotein	2019	
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475872/		
10	State-of-the-art human adenovirus vectorology for therapeutic approaches	2019	
	https://pubmed.ncbi.nlm.nih.gov/31758807/		
11	Human adenovirus type 26 uses sialic acid–bearing glycans as a primary cell entry receptor	2019	
	https://advances.sciencemag.org/content/5/9/eaax3567		
12	Adenoviral vector-based vaccine is fully protective against lethal Lassa fever challenge in Hartley guinea pigs	2019	
	https://www.sciencedirect.com/science/article/pii/S0264410X19312307		
13	Immunogenicity of adenovirus-vector vaccine targeting hepatitis B virus: non-clinical safety assessment in non-human primates	2018	
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056916/		
#	Title	Year	
----	--	------	
14	Adenoviral vector type 26 encoding Zika virus (ZIKV) M-Env antigen induces humoral and cellular immune responses and protects mice and nonhuman primates against ZIKV challenge	2018	
15	Similar Epitope Specificities of IgG and IgA Antibodies Elicited by Ad26 Vector Prime, Env Protein Boost Immunizations in Rhesus Monkeys	2018	
16	First-in-Human Randomized, Controlled Trial of Mosaic HIV-1 Immunogens Delivered via a Modified Vaccinia Ankara Vector	2018	
17	Heterologous prime–boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus	2018	
18	Разработка вакцин на основе аденовирусных векторов: обзор зарубежных клинических исследований (Часть 1)	2017	
19	Разработка вакцин на основе аденовирусных векторов: обзор зарубежных клинических исследований (Часть 2)	2017	
20	Векторные вакцины против болезни, вызванной вирусом Эбола	2017	
21	Safety profile of a replication-deficient human adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle	2017	
22	Recent advances in genetic modification of adenovirus vectors for cancer treatment	2017	
23	Regulation of Adenoviral Vector-Based Therapies: An FDA Perspective	2016	
24	Adenoviral vector-based strategies against infectious disease and cancer	2016	
25	First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus–Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens	2016	
26	IMMUNOBIOLOGICAL DRUG AND METHOD FOR USING SAME FOR INDUCING SPECIFIC IMMUNITY AGAINST THE EBOLA VIRUS	2016	
27	Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats	2015	
No.	Title	DOI	Date
-----	---	--	--------
28	High titre neutralising antibodies to influenza after oral tablet immunisation: a phase 1, randomised, placebo-controlled trial	https://pubmed.ncbi.nlm.nih.gov/26333337/	2015
29	Ad35.CS.01-RTS,S/AS01 heterologous prime boost vaccine efficacy against sporozoite challenge in healthy Malaria-Naïve adults	https://pubmed.ncbi.nlm.nih.gov/26148007/	2015
30	Induction of HIV-1-specific mucosal immune responses following intramuscular recombinant adenovirus serotype 26 HIV-1 vaccination of humans	https://pubmed.ncbi.nlm.nih.gov/25165165/	2015
31	A Phase I double blind, placebo-controlled, randomized study of the safety and immunogenicity of electroporated HIV DNA with or without interleukin 12 in prime-boost combinations with an Ad35 HIV vaccine in healthy HIV-seronegative african adults	https://pubmed.ncbi.nlm.nih.gov/26252526/	2015
32	A Phase I, open-label trial, evaluating the safety and immunogenicity of candidate tuberculosis vaccines AERAS-402 and MVA85A, administered by prime-boost regime in BCG-vaccinated healthy adults	https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141687	2015
33	Immunization with Hexon Modified Adenoviral Vectors Integrated with gp83 Epitope Provides Protection against Trypanosoma cruzi Infection	https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003089	2014
34	First-in-human evaluation of a hexon chimeric adenovirus vector expressing HIV-1 Env (IPCAVD 002)	https://pubmed.ncbi.nlm.nih.gov/24719474/	2014
35	Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial	https://pubmed.ncbi.nlm.nih.gov/25007091/	2014
36	A Human Type 5 Adenovirus–Based Tuberculosis Vaccine Induces Robust T Cell Responses in Humans Despite Preexisting Anti-Adenovirus Immunity	https://pubmed.ncbi.nlm.nih.gov/24089406/	2013
37	Viral vectors for vaccine applications	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710930/	2013
38	Using Multivalent Adenoviral Vectors for HIV Vaccination	https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060347	2013
39	Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection	https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082528	2013
40	Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-γ T cell responses in humans, Vaccine	https://pubmed.ncbi.nlm.nih.gov/23357198/	2013
41	Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PFCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection. Hum. Vaccin	https://pubmed.ncbi.nlm.nih.gov/23357198/	2013
ID	Reference	Year	
----	---	------	
42	A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in Burkinabe healthy adults 18 to 45 years of age	2013	
43	First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine	2013	
44	DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity	2013	
45	Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-gamma T cell responses in humans	2013	
46	Ad35 and Ad26 Vaccine Vectors Induce Potent and Cross-Reactive Antibody and T-Cell Responses to Multiple Filovirus Species	2012	
47	Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man	2012	
48	Advances and future challenges in recombinant adenoviral vectored h5n1 influenza vaccines	2012	
49	Adenovirus 5-vected P.falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults	2011	
50	A phase IIA randomized clinical trial of a multiclade HIV-1 DNA prime followed by a multiclade rAd5 HIV-1 vaccine boost in healthy adults (HVTN204)	2011	
51	The Th1 Immune Response to Plasmodium falciparum Circumsporozoite Protein Is Boosted by Adenovirus Vectors 35 and 26 with a Homologous Insert	2010	
52	Priming Immunization with DNA Augments Immunogenicity of Recombinant Adenoviral Vectors for Both HIV-1 Specific Antibody and T-Cell Response	2010	
53	Protective Efficacy and Immunogenicity of an Adenoviral Vector Vaccine Encoding the Codon-Optimized F Protein of Respiratory Syncytial Virus	2009	
54	Advanced Malignant Pleural orPeritoneal Effusion in Patients Treatedwith Recombinant Adenovirus p53Injection plus Cisplatin	2008	
Adenoviruses: Malignant Transformation and Oncology	2008		
---	------		
https://www.sciencedirect.com/science/article/pii/B9780123744104003575			

Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-α and antibody responses in mice	2008
https://www.sciencedirect.com/science/article/pii/S0264410X08004180	

A double-blind, placebo-controlled study of the safety and immunogenicity of live, oral type 4 and type 7 adenovirus vaccines in adults, Vaccine	2008
https://pubmed.ncbi.nlm.nih.gov/18448211/	

Role of MyD88 and TLR9 in the Innate Immune Response Elicited by Serotype 5 Adenoviral Vectors	2007
https://pubmed.ncbi.nlm.nih.gov/17685831/	

Protective immunity against botulism provided by a single dose vaccination with an adenovirus vectored vaccine	2007
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077857/	

Generation of a novel replication-incompetent adenoviral vector derived from human adenovirus type 49: manufacture on PER.C6 cells, tropism and immunogenicity	2006
https://pubmed.ncbi.nlm.nih.gov/16963747/	

Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity	2005
https://pubmed.ncbi.nlm.nih.gov/19559110/	

Adenoviral vectors: a promising tool for gene therapy	2005
https://pubmed.ncbi.nlm.nih.gov/16622281/	

Good Manufacturing Practice Production of Adenoviral Vectors for Clinical Trials	2005
https://pubmed.ncbi.nlm.nih.gov/15812223/	

Gene therapy clinical trials worldwide 1989–2004—an overview	2004
https://onlinelibrary.wiley.com/doi/10.1002/jgm.619	

Adenoviruses as Vaccine Vectors	2004
https://www.sciencedirect.com/science/article/pii/S1525001604013425	

Safety of Adenoviral Vectors: Results of Clinical Investigations in 445 Cancer Patients Treated with Advexin® (Adenoviral p53) Gene Therapy	2004
https://cyberleninka.org/article/n/1336451	

Adenoviral vectors for gene transfer and therapy	2004
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgm.496	

Neutralizing Antibodies Elicited by Immunization of Monkeys with DNA Plasmids and Recombinant Adenoviral Vectors Expressing Human Immunodeficiency Virus Type 1 Proteins	2004
https://jvi.asm.org/content/79/2/771	

Immunogenicity of Recombinant Adenovirus Serotype 35 Vaccine in the Presence of Pre-Existing Anti-Ad5 Immunity	2004
https://pubmed.ncbi.nlm.nih.gov/15128818/	
ID	Title
----	--
70	Experimental infections of humans with wild-type adenoviruses and with replication-competent adenovirus vectors: replication, safety, and transmission
71	Production of adenovirus vector for gene therapy
72	Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector-specific immune response
73	A New Vector System with Inducible E2a Cell Line for Production of Higher Titer and Safer Adenoviral Vectors
74	Human adenovirus type 5 vectors expressing rabies glycoprotein
75	Adenovirus vectors as recombinant viral vaccines
76	Gene therapy using adenoviral vectors
77	Adenoviruses as expression vectors and recombinant vaccines

Links:

- https://www.nature.com/articles/7700765
- https://pubmed.ncbi.nlm.nih.gov/14550017/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459421/
- https://pubmed.ncbi.nlm.nih.gov/10998335/
- https://www.sciencedirect.com/science/article/pii/S0264410X96000126
- https://www.sciencedirect.com/science/article/pii/0958166994900841
- https://pubmed.ncbi.nlm.nih.gov/1366528/