Quantized Berry Phases of a Spin-1/2 Frustrated Two-Leg Ladder with Four-Spin Exchange

I Maruyama¹, T. Hirano¹, and Y Hatsugai²

¹Department of Applied Physics, University of Tokyo, Hongo Bunkyo-ku, Tokyo 113-8656, Japan
²Institute of Physics, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8571, Japan
E-mail: maru@pothos.t.u-tokyo.ac.jp

Abstract. A spin-1/2 frustrated two-leg ladder with four-spin exchange interaction is studied by quantized Berry phases. We found that the Berry phase successfully characterizes the Haldane phase in addition to the rung-singlet phase, and the dominant vector-chirality phase. The Hamiltonian of the Haldane phase is topologically identical to the $S = 1$ antiferromagnetic Heisenberg chain. Decoupled models connected to the dominant vector-chirality phase revealed that the local object identified by the non-trivial (π) Berry phase is the direct product of two diagonal singlets.

The $S = 1/2$ two-leg ladder model with the four-spin exchange interactions has been studied extensively to clarify physics of La$_x$Ca$_{14-x}$Cu$_{24}$O$_{41}$[1–3]. The four-spin ring exchange interaction introduces frustration into the system and plays an essential role in several models to give rise to exotic order, such as, the vector chirality order[4], nematic order[5], and octapolar order[6]. Especially, phases in the two-leg ladder model with the four-spin ring exchange interactions have been studied extensively [7–13]. To clarify its rich phases theoretically, not only correlation functions corresponding to phases but also entanglement concurrence[14], Lieb-Schulz-Mattis twist operators[10], and quantized Berry phases[15] have been studied.

The Berry phase is pure quantum quantity due to quantum interference as in the case of the Aharonov-Bohm effect[16] and has no corresponding classical analogue. The quantized Berry phase which is proposed to detect the topological and quantum orders can be used as a order parameter even if there is no classical order parameter[17–19]. It has been successfully applied to gapped systems such as generalized valence bond solid states, dimerized Heisenberg models [19–21], surface states in semiconductors[22], and the t-J model[23]. An advantage of the Berry phase is that it quantizes to 0 or π even in the finite sized systems in any dimension when the system has the time reversal invariance. Its quantization is protected against small perturbations unless the gap closes. This stability enables us to obtain topologically identical models which have the same result of Berry phases. For these systems, the non-trivial (π) Berry phase reveals a local singlet or dimer, which is a purely quantum object.

In the previous study[15], the quantized Berry phases have been defined for models with four-spin exchange interactions, and have been shown to be useful to characterize the rung-singlet and dominant vector-chiral phases in the $S = 1/2$ spin ladder with ring exchange interactions. It has also been shown that the Hamiltonian of the rung-singlet phase is topologically identical to a decoupled rung-singlet model $H_{RS} = \sum_{i=1}^{N/2} S_{i,1} \cdot S_{i,2}$ and that of the vector-chiral phase...
is identical to a decoupled vector-chiral model \(H_{DVC} = \sum_{i=1}^{N/4} (S_{2i,1} \times S_{2i,2}) \cdot (S_{2i+1,1} \times S_{2i+1,2}) \). The latter Hamiltonian includes only four-spin exchange interactions and its ground state is a direct product of plaquette singlets.

In this paper, we discuss other simple models which are topologically identical to \(H_{RS} \) or \(H_{DVC} \). In addition, we shall extend the quantized Berry phase to the Haldane phase of the ladder.

Before detailed discussion of results, let us describe the definition of the Berry phase briefly. Here, the ladder model is generally written as

\[
H = \sum_{i=1}^{N/2} [J_r h_{i,1} h_{i,2} + J_l h_{i,1} h_{i+1,1} \pm J_r h_{i,2} h_{i+1,1} \pm J_l h_{i,2} h_{i+1,1} + J_d h_{i,1,1} h_{i,1,2} \pm J_d h_{i,2,1} h_{i,2,2}] \quad \text{with} \quad h_{i,\alpha} = \mathbf{S}_{i,\alpha} \cdot \mathbf{S}_{i',\alpha'} \quad \text{and} \quad \mathbf{S}_{i,\alpha} = \mathbf{S}_{i,\alpha} \cdot \mathbf{S}_{i',\alpha'},
\]

where all bilinear and quadratic terms in the Hamiltonian are classified as rung, leg, and diagonal exchange interactions. Especially, we define a general frustrated ladder without four-spin exchange interaction as

\[
H_{\alpha,\beta} = H(J_r = \cos \theta, J_l = \sin \theta, J_d = \alpha \sin \theta, J_r = J_l = J_d = 0).
\]

The Berry phase \(\gamma \) depends on how adiabatic parameter \(\phi \) is introduced to \(H \). For a parameter dependent Hamiltonian \(H(\phi) \) with \(H(\phi + 2\pi) = H(\phi) \), the Berry phase \(\gamma \) is defined as \(\gamma = i \int 2\pi A(\phi) d\phi (\text{mod} \ 2\pi) \), where \(A(\phi) \) is the Abelian Berry connection obtained by the single-valued normalized ground state \(|gs(\phi)\rangle \) of \(H(\phi) \) as \(A(\phi) = \langle gs(\phi) | \partial_\phi |gs(\phi)\rangle \). The adiabatic parameter \(\phi \) can be introduced by \(h_{i,\alpha} = h_{i,\alpha} e^{i\theta} \), where all bilinear and quadratic terms in the Hamiltonian are classified as rung, leg, and diagonal exchange interactions. Especially, we define a general frustrated ladder without four-spin exchange interaction as

\[
H_{\alpha,\beta} = H(J_r = \cos \theta, J_l = \sin \theta, J_d = \alpha \sin \theta, J_r = J_l = J_d = 0).
\]

The Berry phase \(\gamma \) depends on how adiabatic parameter \(\phi \) is introduced to \(H \). For a parameter dependent Hamiltonian \(H(\phi) \) with \(H(\phi + 2\pi) = H(\phi) \), the Berry phase \(\gamma \) is defined as \(\gamma = i \int 2\pi A(\phi) d\phi (\text{mod} \ 2\pi) \), where \(A(\phi) \) is the Abelian Berry connection obtained by the single-valued normalized ground state \(|gs(\phi)\rangle \) of \(H(\phi) \) as \(A(\phi) = \langle gs(\phi) | \partial_\phi |gs(\phi)\rangle \). The adiabatic parameter \(\phi \) can be introduced by \(h_{i,\alpha} = h_{i,\alpha} e^{i\theta} \), where all bilinear and quadratic terms in the Hamiltonian are classified as rung, leg, and diagonal exchange interactions. Especially, we define a general frustrated ladder without four-spin exchange interaction as

\[
H_{\alpha,\beta} = H(J_r = \cos \theta, J_l = \sin \theta, J_d = \alpha \sin \theta, J_r = J_l = J_d = 0).
\]
To discuss the transition between the rung-singlet and rung* phases, the energy diagram as a function of θ and spin twist ϕ is shown in fig. 2. Although the gap of untwisted Hamiltonian $H(\phi = 0)$ is smoothly connected, the gap of $H(\phi = \pi)$ for γ_r closes at $\theta = \theta_d$. Numerical data show $\theta_d < \pi/4$ and $\theta_d \sim 0.23\pi$ at $N = 20$. The Berry phase γ_r changes at θ_d. Then, the rung* phase has been identified by the quantum phase transition of $H(\phi = \pi)$, which is not contradicting previous studies on the untwisted Hamiltonian ($\phi = 0$), which predict no transition between $0 < \theta < \pi/4$. However, some papers have implied that the localized rung-singlet picture is limited to $0 < \theta < \theta_d$ with $\theta_d < \pi/4[25,27-29]$. Especially some new spin-liquid phase[25] was predicted in a finite region in the phase diagram of $H_{\alpha,\theta}$. To clarify that it corresponds to the rung* phase, we calculate the Berry phases of $H_{\alpha,\theta}$. The numerical result is summarized as the schematic phase diagram in fig. 3. The rung* phase existing in the normal ladder $H_{\alpha,\theta} = 0$ disappears as α approaches to one. At $\alpha = 1$, there is a direct transition between the rung-singlet phase and the Haldane phase at $\theta = \theta_c$. $\theta_c = \arctan(J_I/J_r)c \simeq 0.20\pi$ is determined by $(J_I/J_r)c \simeq 0.71$. This behavior is similar to that of the spin-liquid phase[25], but the relation is still unclear. Meaning of the rung* phase can be revealed by different Berry phase associated with twisting several links simultaneously as in the case of γ_h.

Finally, we shall address the decoupled vector-chiral model H_{DVC}. Since H_{DVC} is decoupled, it is enough to consider the 4 spin problem $h_i^{(0)}$, where $h_i^{(0)} = (S_{2i+1,1} \times S_{2i+1,2}) \cdot (S_{2i+1,1} \times S_{2i+1,2})$ and $H_{DVC} = \sum_i h_i^{(0)}$. The Berry phase of $h_i^{(0)}$ is obtained as $\gamma_d = \pi, \gamma_l = \gamma_r = 0$. After an adiabatic transformation, we obtained three models $h_i^{(k)}$ with the same Berry phases.

The first model is $h_i^{(1)}(\theta)$ with $J_r = J_I = \cos \theta + \sin \theta, J_d = \sin \theta, J_H = J_{rr} = 4 \sin \theta, J_{dd} = -4 \sin \theta$, which is the $N = 4$ original Hamiltonian with the open boundary condition. It can be easily shown that $h_i^{(1)}(\theta)$ has $\gamma_d = \pi, \gamma_l = \gamma_r = 0$ between $\pi/2 < \theta < 0.93\pi$. The ground state of $h_i^{(1)}(\theta)$ does not depend on θ and is the direct product of two diagonal singlets. For parameters $J_r = 2J_I, J_I = \cos \theta + \sin \theta, J_d = \sin \theta, J_H = J_{rr} = 4 \sin \theta, J_{dd} = -4 \sin \theta$, the ground state depends on θ while the Berry phases remain the same for $0.59\pi \leq \theta \leq 0.93\pi$.

The second model with the same Berry phases is $h_i^{(2)} = -(S_{2i+1,1} \cdot S_{2i+1,2})(S_{2i+1,2} \cdot S_{2i+1,1})$. Its ground state is also the direct product of diagonal singlets. Moreover, spin twist ϕ on a diagonal link introduced in $h_i^{(2)}$ can gauged out by the local gauge transformation of $S_{2i+1,1}$ or $S_{2i+1,2}$. Since all spin is $S = 1/2$, it can be proved that $\gamma_d = \pi$.

![Figure 1. Berry phases as a function of θ of a ladder $H_{\theta,\alpha=0}$ at $N = 16$.](image1)

![Figure 2. Energy diagram around gap-closing point between the rung singlet and rung* singlet phase of $H_{\theta,\alpha=0}$ at $N = 8$ with varying a spin twist ϕ on rung bond.](image2)

![Figure 3. Schematic phase diagram of a frustrated ladder model $H_{\theta,\alpha}$ obtained at $N = 8$.](image3)
In addition, the third model with the same Berry phases is a diagonal-singlet model $h_i^{(3)} = S_{2i,1} \cdot S_{2i+1,2} + S_{2i,2} \cdot S_{2i+1,1}$. Its ground state is obviously the direct product of diagonal singlets. This model reveals that non-trivial diagonal Berry phase $\gamma_d = \pi$ comes from local diagonal singlets, since $h_i^{(3)}$ includes only two-spin interactions. It should be noted that γ_d is defined by the spin twist on its diagonal link which affects both two-spin and four-spin interactions in an adiabatic transformation. If the Berry phase is defined by the spin twist only in the two-spin interactions, the Berry phase does not remain the same in the adiabatic transformation to the original Hamiltonian with four-spin ring exchange.

These three models $h_i^{(k)}$, $(k = 1, 2, 3)$ are topologically identical to $h_i^{(k)}$ through the adiabatic transformation $(1 - \alpha)h_i^{(0)} + \alpha h_i^{(k)}$ with adiabatic parameter α, which has been confirmed numerically. Each ground state of $h_i^{(k)}$, $(k = 1, 2, 3)$ is a direct product of the diagonal singlets. The spin twist ϕ introduced into $h_i^{(k)}$, $(k = 2, 3)$ can be gauged-out. This fact leads to $\gamma_d = \pi$. That is, a local object corresponding to $\gamma_d = \pi$ of $h_i^{(k)}$, $(k = 2, 3)$ is the direct product of two diagonal singlets in the sense that the local object for $\gamma_r = \pi$ of H_{RS} is a localized rung singlet. Note that the spin twist ϕ introduced into H_{RS} is also able to be gauged-out.

In summary, it has been shown that the Berry phase for the Haldane phase γ_h is useful for a frustrated two-leg ladder as γ_l, γ_r, and γ_d are useful in the previous study[15]. Topological identification is established by adiabatic transformation to the models with exact ground states.

I.M. acknowledges discussions with S. Miyahara. This work has been supported in part by Grants-in-Aid for Scientific Research, No. 20340098, 20654034 from JSPS and No. 220029004, 20046002 on Priority Areas from MEXT. Some numerical calculations were carried out on Altix3700BX2 at YITP in Kyoto University and the facilities of the Supercomputer Center, Institute for Solid State Physics, University of Tokyo.

[1] Matsuda M, Katsumata K and Eccleston R S 2000 Phys. Rev. B 62 8903
[2] Nunnen T S, Brune P, Kopp T, Windt M and Grüniger M 2002 Phys. Rev. B 66 180404
[3] Notbohm S, Ribeiro P, Lake B, Tennant D A, Schmidt K P, Uhrig G S, Hess C, Klingeler R, Behr G, Buchner B, Reehuis M, Bewley R I, Frost C D, Manuel P and Eccleston R S 2007 Phys. Rev. Lett. 98 027403
[4] Lauchli A, Domene J C, Lhuillier C, Sindzingre P and Troyer M 2005 Phys. Rev. Lett. 95 137206
[5] Shannon N, Momoi T and Sindzingre P 2006 Phys. Rev. Lett. 96 207213
[6] Momoi T, Sindzingre P and Shannon N Phys. Rev. Lett. 97 257204
[7] Hikihara T, Momoi T and Hu X 2003 Phys. Rev. Lett. 90 087204
[8] Hikihara T and Yamamoto S 2008 J. Phys. Soc. Jpn. 77 014709
[9] Momoi T, Hikihara T, Nakamura M and Hu X 2003 Phys. Rev. B 67 174410
[10] Laechuchi A, Schmid G and Troyer M 2003 Phys. Rev. B 67 100409
[11] J L Song S J Gu H Q L 2007 arXiv:quant-ph/0606207
[12] Gritsev V, Normand B and Baeriswyl D 2004 Phys. Rev. B 69 094431
[13] Sato M 2007 Phys. Rev. B 76 054427
[14] Song J L, Gu S J and Lin H Q 2006 Phys. Rev. B 74 155119
[15] Maruyama I, Hirano T and Hatsugai Y 2008 AX.0806.4416
[16] Berry M V 1984 Proc. R. Soc. A392 45
[17] Hatsugai Y 2004 J. Phys. Soc. Jpn. 73 2604
[18] Hatsugai Y 2005 J. Phys. Soc. Jpn. 74 1374
[19] Hatsugai Y 2006 J. Phys. Soc. Jpn. 75 123601
[20] Hatsugai Y 2007 J. Phys.: Condens. Matter 19 145209
[21] Hirano T, Katsura H and Hatsugai Y 2008 Phys. Rev. B 77 094431
[22] Kuge Y, Maruyama I and Hatsugai Y 2008 AX.0802.2425
[23] Maruyama I and Hatsugai Y 2007 J. Phys. Soc. Jpn. 76 113601
[24] Kolezhuk A K and Mikeska H J 1998 Int. J. Mod. Phys. B 12 2325
[25] Xian Y 1995 Phys. Rev. B 52 12485
[26] Kitatani H and Oguchi T 1995 J. Phys. Soc. Jpn. 65 1387
[27] Barnes T, Dagotto E, Riera J and Swanson E S 1993 Phys. Rev. B 47 3196
[28] White S R, Noack R M and Scalapino D J 1994 Phys. Rev. Lett. 73 886
[29] Sushkov O P and Kotov V N 1998 Phys. Rev. Lett. 81 1941