Investigating the Clitellata (Annelida) of Icelandic springs with alternative barcodes

Mårten J. Klinth¹, Agnes-Katharina Kreiling² and Christer Erséus¹

Klinth MJ, Kreiling A-K and Erséus C. 2019. Investigating the Clitellata (Annelida) of Icelandic springs with alternative barcodes. Fauna norvegica 39: 119–132.

DNA barcoding is an invaluable tool to identify clitellates, regardless of life stage or cryptic morphology. However, as COI (the standard barcode for animals) is relatively long (658 bp), sequencing it requires DNA of high quality. When DNA is fragmented due to degradation, alternative barcodes of shorter length present an option to obtain genetic material. We attempted to sequence 187 clitellates sampled from springs in Iceland. However, the material had been stored at room temperature for two years, and DNA of the worms had degraded, and only three COI sequences were produced (i.e., <2% success rate). Using two alternative barcodes of 16S (one ca. 320 bp, the other ca. 70 bp long) we increased the number of sequenced specimens to 51. Comparisons of the 16S sequences showed that even the short 70 bp fragment contained enough genetic variation to separate all clitellate species in the material. Combined with morphological examinations we recognized a total of 23 species, where at least 8 are new records for Iceland, some belonging to genera new for Iceland: Cernosvitoviella and Pristina. All the new taxa are included in an updated species list of Icelandic Clitellata. The material revealed some stygophilic species previously known to inhabit springs, but true stygobionts, which are restricted to groundwater habitats, were not found. Our study shows that short 16S fragments can be obtained from DNA too degraded to be used in traditional COI barcoding, and contain enough genetic variation to separate closely related clitellate species.

doi: 10.5324/fn.v39i0.3043. Received: 2019-05-02. Accepted: 2019-09-22. Published online: 2019-11-14. ISSN: 1891-5396 (electronic).

Keywords: Iceland, Oligochaeta, DNA barcodes, 16S, spring fauna

1. Department of Biological & Environmental Sciences, University of Gothenburg, P.O. Box 463, SE-405 30 Gothenburg, Sweden.
2. Department of Aquaculture and Fish Biology, Hólar University College, Háeyri 1, IS-550 Sauðárkrókur, Iceland.

Corresponding author: Mårten J. Klinth
E-mail: marten.klinth@bioenv.gu.se

INTRODUCTION

The clitellate fauna ("oligochaetes" and leeches) of Iceland was early on studied by Černosvitov (1929, 1931, 1936) and Nielsen & Christensen (1959), but also more specifically reviewed by Bruun (1938a, 1938b) for Hirudinea, Backlund (1949) for Lumbricidae, Hrabé (1952) for Lumbriculidae and Naididae (including the former Tubificidae), Christensen (1962) and Nurminen (1973) for Enchytraeidae, and Erséus (1976) for marine Enchytraeidae and Naididae. Since then, a few additional species have been reported in scattered publications on either pure taxonomy or more general biological issues, such as parasitology (for marine leeches) or ecology; for references, see updated species list for Iceland below. The previous studies report clitellates mainly from soils, lakes, rivers and seashores, but not from freshwater springs, which are the focus of this study.

Springs represent ecotones between groundwater and surface water and give rise to specialized invertebrate communities. On the European mainland, groundwater
clitellates are rather well known, with many species endemic to various regions (e.g., Sambugar et al. 1999; Giani et al. 2001, 2011; Achurra & Rodriguez 2008; Bojková et al. 2011; Martin et al. 2015). Groundwater and spring invertebrate communities in Iceland were recently investigated by Govoni et al. (2018) and Kreiling et al. (2018), but these studies focused on insects and crustaceans and the clitellate diversity in Icelandic springs has until now been largely unknown.

In the present study, we examined clitellates collected as a part of a survey on invertebrate fauna in freshwater springs around Iceland. With the intent to save time, we decided to identify the material primarily using molecular data rather than by traditional morphological examination; and to our knowledge, there have not been any published studies of clitellates from Iceland containing genetic sequences, to this date. DNA barcoding (e.g., Hebert et al. 2003, 2004) would allow us to identify juvenile specimens and possible cryptic species. We would then corroborate the identity of the successfully sequenced specimens also by morphological observations. Although this procedure did not work exactly as first intended, the aim to present all the identified species from the springs will still be achieved in this paper. We will also provide an updated list of all species of Clitellata known from Iceland.

Figure 1. Map of the 19 freshwater springs in Iceland from which clitellata have been collected and successfully sequenced in this study.

MATERIAL AND METHODS

Worms were collected from 31 springs during the summer of 2015 as a part of a broader study on spring invertebrates in Iceland (Kreiling et al. in prep.). A Surber sampler (0.093 m2) with 63 µm mesh size was used for collection of clitellates in the benthic substrate of the spring, and electrobugging (Lento & Morin 2014, Kreiling et al. 2018) was used for collection of invertebrates in the spring source. The clitellates were stored in 96 % ethanol at room temperature (~20°C) for about two years before further processing. As described below, identification to species level was unsuccessful for a part of the collection, and in the end, the results of the study were based on material from only 19 of the freshwater springs (Figure 1; Table 1).

The clitellate specimens were first examined under a stereomicroscope and the amputated posterior ends of 187 specimens were used for DNA extraction using the QuickExtract DNA Extraction Solution 1.0 (Epicentre, Madison, WI, USA), following the manufacturer’s instructions.

The original idea was to barcode all selected specimens using the standard animal barcode COI (cytochrome c oxidase subunit I). However, the DNA proved to have deteriorated considerably (probably due to prolonged storage at room temperature, possibly in too low alcohol concentration), as we were unable to obtain COI sequences for a vast majority of the
Table 1. List of the sampling locations with habitat description and some abiotic measurements. Spring names refer either to the name of the water body (stream or lake), or to the surrounding area, or the closest farm. Limnocrene (L) springs form pools of standing water, whereas rheocrene (R) springs originate streams. Elev. = Elevation, O.S. = Oxygen Saturation.

Spring (type)	Habitat	Latitude Longitude (WGS84)	Elev. [m]	Sampling date	Water temp. [°C]	pH	O.S. [%]
Botnar I (R) SE Iceland	Gushing, shallow spring at the edge of lava field; fine sand	63°38.707' N 018°14.749' W	10 July 2015	5.6	8.0	74.2	
Botnar II (L) SE Iceland	Spring emerging from lava field; low primary production; fine sand	63°39.275' N 018°15.142' W	10 July 2015	7.4	7.9	78.2	
Enni (R) NW Iceland	Spring forming a small stream on a grassy hillslope; sand	65°53.371 N 019°19.755' W	19 September 2015	4.5	7.3	75.9	
Galtalækur (R) S Iceland	Spring forming a small stream in wooded area; high density of surrounding vegetation (grasses, shrubs and trees); gravel	64°00.453' N 019°55.148' W	8 July 2015	5.1	7.9	72.3	
Granavatn Norður (L) NE Iceland	Spring on lake shore; gravel and mud	65°32.905' N 016°58.908' W	22 July 2015	6.5	8.9	60.6	
Granavatn Suður (L) NE Iceland	Spring on lake shore; high primary production; lava rock	65°32.205' N 017°00.477' W	22 July 2015	4.5	9.0	63.3	
Hengill IS8 (R) S Iceland	Hot spring forming a stream in geothermal area; high primary production; rock	64°03.414' N 021°18.439' W	13 July 2015	16.6	7.5	66.1	
Herðubreiðarlindir (L) Central Highlands	Big spring in the Central Highlands, forming a deep stream; high density of surrounding vegetation (grasses and shrubs); fine sand	65°11.548' N 016°13.508' W	16 August 2015	5.9	6.8	65.6	
Hruni (L) SE Iceland	Spring in a garden pond; mud and gravel	63°51.547' N 017°44.486' W	11 July 2015	3.5	7.9	75.8	
Kálfaströnd (L) NE Iceland	Spring on lake shore; lava rock and sand	65°33.759' N 016°56.710' W	21 July 2015	5.1	9.2	54.0	
Krákárbotnar (R) Central Highlands	Small, isolated spring in the Central Highlands with almost no surrounding vegetation; sand	65° 19.852 N 017°04.654' W	26 July 2015	8.6	8.8	69.5	
Lón (L) NE Iceland	Hot spring at lake shore; high primary production; lava rock	66°05.785' N 016°55.514' W	24 July 2015	4.9	8.0	77.8	
Lækjarbotnar Hol (R) S Iceland	Spring forming a small stream on meadow; high density of surrounding vegetation (grasses); lava rock and sand	63°57.422' N 020°15.892' W	8 July 2015	5.5	7.9	75.6	
Miðhússaskógur (L) S Iceland	Spring at the shore of shallow pond; low primary production; fine sand and lava rock	64°17.373' N 019°30.706' W	8 July 2015	2.4	9.3	78.1	
Staðarhraun Bær (R) W Iceland	Spring at the edge of lava field, forming a small stream; lava rock and gravel	64°44.610' N 020°05.647' W	28 July 2015	5.1	5.3	79.0	
Staðarhraun Kirkja (R) W Iceland	Spring at the edge of lava field; sand and lava rock	64°44.855' N 020°05.812' W	28 July 2015	4.6	5.3	79.2	
Steinshastir (R) NW Iceland	Hot spring forming a small stream; high primary production; sand and mud	65°28.162' N 019°21.390' W	4 August 2015	40.24	8.47	86.3	
Iverá (L) SE Iceland	Spring in shallow pond; sand	63°52.396' N 017°49.199' W	11 July 2015	5.1	7.5	76.1	
PCR programs

95°C 5 min, (35 cycles of 95°C 40 s, 50°C 45 s 72°C 1 min), 72°C 8 min

95°C 5 min, (35 cycles of 95°C 30 s, 50°C 30 s 72°C 1 min), 72°C 8 min

95°C 5 min, (35 cycles of 95°C 30 s, 58°C 30 s 72°C 10 s), 72°C 5 min

RESULTS

It soon became apparent that the DNA of the samples had degraded substantially, as we obtained successful COI sequences from only three of the 187 selected worms. They were genetically identified as *Bimastos rubidus* (Savigny, 1826) *sensu lato*, *Cernosvitoviella pusilla* Nurminen, 1973, and *Chaetogaster cf. diastrophus* (Gruithuisen, 1828), respectively (Table 3).

The longer (320 bp) of the two 16S barcodes was more successful than the COI barcode, but we still only got results for 54 specimens. Moreover, after examination of the microscope slides, the morphology did not agree with the DNA results for eight of these 54 worms, most likely due to DNA contamination, leaving only 46 individuals confidently identified by both DNA and morphology (Table 3 specifies how each specimen was identified).

Table 2. Primers and PCR programs used to sequence COI and 16S.

Target	Primers	PCR program	Reference
COI	LCO1490 (forward)	95°C 5 min, (35 cycles of 95°C 40 s, 45°C 45 s 72°C 1 min), 72°C 8 min	(Folmer et al. 1994)
658 bp	GGTCAACAAATCATAAAGATATTGG HCO2198 (reverse) TAAACCTTCAAGGTGACCAAAAAATCA		
	Ann16SF (forward)	95°C 5 min, (35 cycles of 95°C 30 s, 50°C 30 s 72°C 1 min), 72°C 8 min	(Sjölin et al. 2005)
16S	GCGGTATCCTGACCGTCAAGGTGACCAAAAAATCA		
ca. 320 bp	Ann16SR (reverse)	TCTAGGTCAGGATACGATGTGACCA	
	ewD (forward)	95°C 5 min, (35 cycles of 95°C 30 s, 58°C 30 s 72°C 10 s), 72°C 5 min	(Bienert et al. 2012)
16S	ATTCGGTGTGGGCGACC ewE (reverse) CTGTTATCCTAAGGTAGCTT		
Table 3. List of Icelandic specimens used in this study with specimen ID's (identification numbers), identification method (B = BOLD; G = Genbank; M = morphology; R = based on match to other non-Icelandic reference material, presented at the end of the table, and with sampling sites specified in material and methods), the spring in which they were collected, Genbank accession numbers and museum voucher ID's. We only deposited the longer 16S fragment. Sequences from the shorter 16S fragment are presented in the text of the Results. More detailed description of the springs in Table 1.

Taxon (Identification method)	Specimen ID	Spring locality	Genbank acc. no.	Voucher ID
		COI 16S (320 bp)	16S (70 bp)	
Enchytraeidae				
Cernosvitoviella aggtelekniensis Dózsa-Farkas, 1970 (GM)	CE30974	Hruni	MK837025	SMNH 176517
Cernosvitoviella cf. minor Dózsa-Farkas, 1990 (GM)	CE31592	Hruni	Sequence in Results	SMNH 176518
Cernosvitoviella pusilla Nurminen, 1973 (M)	CE30979	Botnar II	MK837026	SMNH 176519
Cernosvitoviella pusilla Nurminen, 1973 (B)	CE31607	Staðarhraun Bær	MK837024	SMNH 176520
Cognettia varisetosa (Martinsson, Rota & Erséus, 2015) (M)	CE30958	Hruni	Sequence in Results	SMNH 176522
Enchytraeus buchholzi 1 Vejdovský, 1879 (M)	CE30973	Hruni	MK837028	SMNH 176523
Enchytraeus buchholzi 1 Vejdovský, 1879	CE31564	Botnar I	Sequence in Results	SMNH 176524
Enchytraeus buchholzi 2 Vejdovský, 1879 (M)	CE31504	Langivogur	MK837029	SMNH 176525
Fridericia dura (Eisen, 1879) (R)	CE30963	Krákárbotnar	MK837030	SMNH 176526
Henlea perpusilla Friend, 1911 (G)	CE30978	Botnar II	MK837031	SMNH 176527
Lumbricillus arenarius (Michaelsen, 1889) (GM)	CE31573	Herðubreiðarlindir	MK837032	SMNH 176528
Lumbricillus arenarius (Michaelsen, 1889) (GM)	CE31575	Herðubreiðarlindir	MK837033	SMNH 176529
Lumbricillus arenarius (Michaelsen, 1889) (GM)	CE31577	Herðubreiðarlindir	MK837034	SMNH 176530
Marionina cf. argentea (Michaelsen, 1889) (R)	CE31590	Þverá	MK837035	SMNH 176531
Marionina sp.	CE31579	Herðubreiðarlindir	MK837036	SMNH 176532
Marionina sp.	CE31580	Herðubreiðarlindir	MK837037	SMNH 176533
Marionina sp.	CE31583	Þverá	MK837038	SMNH 176534
Marionina sp.	CE31587	Þverá	MK837039	SMNH 176535
Marionina sp.	CE31589	Þverá	MK837040	SMNH 176536
Marionina sp.	CE31603	Grænavatn Norður	MK837041	SMNH 176537
Mesenchytraeus cf. armatus (Levinsen, 1884) (GM)	CE30954	Miðhúsaskógur	MK837042	SMNH 176538
Mesenchytraeus cf. armatus (Levinsen, 1884) (GM)	CE30968	Grænavatn Suður	Sequence in Results	SMNH 176539
Mesenchytraeus cf. armatus (Levinsen, 1884) (GM)	CE30972	Hruni	MK837043	SMNH 176540
Taxon (Identification method)	Specimen ID	Spring locality	Genbank acc. no.	Voucher ID
-------------------------------	-------------	----------------	-----------------	------------
Mesenchytraeus cf. armatus (Levinsen, 1884) (GM)	CE30986	Botnar II	MK837045	SMNH 176542
Lumbricidae				
Aporrectodea caliginosa (Savigny, 1826) (G)	CE30987	Staðarhraun Bær	MK837046	SMNH 176543
Bimastos rubidus s. lat. (Savigny, 1826) (GB)	CE30982	Botnar II	MK837022	SMNH 176544
Dendrobaena octaedra (Savigny, 1826) (G)	CE30975	Steinsstaðir	Sequence in Results	SMNH 176545
Dendrobaena octaedra (Savigny, 1826) (G)	CE31506	Galtalækur	MK837047	SMNH 176546
Eiseniella tetraedra (Savigny, 1826) (G)	CE30950	Langivogur	MK837048	SMNH 176547
Naididae				
Chaetogaster cf. diastrophus (Gruithuisen, 1828) (G)	CE31491	Staðarhraun Kirkja	MK837023	SMNH 176548
Chaetogaster sp. = langi? (M)	CE31604	Grænavatn Norður	MK837050	SMNH 176549
Nais communis/variabilis spe- cies complex, morphotype A3 (Envall et al. 2012) (G)	CE30951	Langivogur	MK837051	SMNH 176550
Nais elinguis Müller, 1773 (GM)	CE30948	Lón	MK837052	SMNH 176551
Nais elinguis Müller, 1773 (GM)	CE30949	Lón	MK837053	SMNH 176552
Nais elinguis Müller, 1773 (GM)	CE30967	Lækjarbotnar Hol	MK837054	SMNH 176553
Nais elinguis Müller, 1773 (GM)	CE30971	Þverá	MK837055	SMNH 176554
Nais elinguis Müller, 1773 (GM)	CE30980	Botnar II	MK837056	SMNH 176555
Nais elinguis Müller, 1773 (GM)	CE30981	Botnar II	MK837057	SMNH 176556
Nais elinguis Müller, 1773 (GM)	CE30983	Botnar II	MK837058	SMNH 176557
Nais elinguis Müller, 1773 (GM)	CE30984	Botnar II	MK837059	SMNH 176558
Nais elinguis Müller, 1773 (GM)	CE30985	Botnar II	MK837060	SMNH 176559
Nais elinguis Müller, 1773 (GM)	CE31480	Kálfaströnd	MK837061	SMNH 176560
Nais elinguis Müller, 1773 (GM)	CE31493	Staðarhraun Kirkja	MK837062	SMNH 176561
Nais elinguis Müller, 1773 (GM)	CE31581	Lækjarbotnar Hol	MK837063	SMNH 176562
Nais elinguis Müller, 1773 (GM)	CE31582	Grænavatn Suður	MK837064	SMNH 176563
Nais elinguis Müller, 1773 (GM)	CE31605	Staðarhraun Bær	MK837065	SMNH 176564
Nais elinguis Müller, 1773 (GM)	CE31606	Staðarhraun Bær	MK837066	SMNH 176565
Nais elinguis Müller, 1773 (GM)	CE31619	Staðarhraun Bær	MK837068	SMNH 176567
Table 3. Continued.

Taxon (Identification method)	Specimen ID	Spring locality	Genbank acc. no. (COI)	Genbank acc. no. (16S 320 bp)	Genbank acc. no. (16S 70 bp)	Voucher ID
Nais elinguis Müller, 1773 (GM)	CE31620	Staðarhraun Bær	MK837069	SMNH 176568		
Pristina foreli (Piguet, 1907) (M)	CE30943-45	Hengill IS8	SMNH 176569			
Tubifex cf. tubifex (Müller, 1774) (G)	CE31560	Botnar 1	SMNH 176570			
Uncinais uncinata (Orsted, 1842) (M)	CE31593	Hrungi	SMNH 176571			

Non-Icelandic reference material

Taxon	Specimen ID	Spring locality	Genbank acc. no. (COI)	Genbank acc. no. (16S 320 bp)	Genbank acc. no. (16S 70 bp)	Voucher ID
Fridericia dura (Eisen, 1879) (M)	CE19501	Norway	MN395701	MN394410 (478 bp)	ZMBN 110172	
Marionina cf. argentea (Michaelis, 1889) (M)	CE22027	Norway	MN395702	MN394411 (474 bp)	ZMBN 110740	

The shorter 16S barcode (70 bp) only produced 17 successful sequences (Table 3), mostly from specimens already successfully barcoded with the longer 16S fragment, increasing the total number of DNA-barcoded (but non-contaminated) specimens to 51 (27 % of the original 187 specimens). The sequences of the five specimens that were successfully sequenced only for the shorter 16S fragment (i.e., five sequences not overlapping with our longer 16S uploaded on Genbank) are presented here (note that the sequence for CE31592 is incomplete):

CE31592 *Cernosvitoviella cf. minor*
TTGGGGGCACCAAGGAAATAATCATCCTTAATAAAAA AGACATAC;
CE31564 *Enchytraeus buchholzi* 1
ATTCGGTTGGGGCGACCATGGATAAATATCCTCAGTAGTAA AAAAAATAGACAATAATATGCAACCATAGTAACCTAGT AATGCACAGATCAGCTACTCTTAGGGAATAACAGA;
CE30968 Mesenchytraeus cf. armatus
TATTCGGTTGGGGCGACCATGGATAAATATCCTCAGTAGTAA AAAAAATAGACAATAATATGCAACCATAGTAACCTAGT AATGCACAGATCAGCTACTCTTAGGGAATAACAGA;
CE30982 *Dendrodrilus rubidus*
ATTCGGTTGGGGCGACCATGGATAAATATCCTCAGTAGTAA AAAAAATAGACAATAATATGCAACCATAGTAACCTAGT AATGCACAGATCAGCTACTCTTAGGGAATAACAGA;
CE30975 *Dendrobaena octaedra*
ATTCGGTTGGGGCGACCATGGATAAATATCCTCAGTAGTAA AAAAAATAGACAATAATATGCAACCATAGTAACCTAGT AATGCACAGATCAGCTACTCTTAGGGAATAACAGA;

Some worms were thus successfully sequenced only for one or two of the three barcode markers.

In the NJ analyses, both the 320 bp (Figure 2) and 70 bp (Figure 3) 16S barcodes clustered specimens of the same species, and clearly separated the recognized species from each other.

Among the 51 DNA-barcoded individuals we identified 20 different species, at least six of which are new records for Iceland (Table 4): *Cernosvitoviella agttelekiensis* Dózsa-Farkas, 1970, *C*. *cf. minor* Dózsa-Farkas, 1990, *C*. *pusilla*, *Fridericia dura* (Eisen, 1879), *Mesenchytraeus cf. armatus* (Levinsen, 1884), and *Chaetogaster cf. diastrophus*. Among the barcoded worms, we also found a small specimen of *Chaetogaster*, which is possibly *C*. *langi* Bretscher, 1896 (previously known from Iceland; Hrabě 1952), but not yet confidently identified. Its 16S barcode (320 bp) matches a species also found in Sweden, Norway and the Azores (Klinth & Erséus, unpublished data). The species referred to as *Marionina* sp. could also potentially be new to Iceland.

In the barcoded material, most species were represented by a single or a few specimens only, except *Nais elinguis* Müller, 1773, for which we obtained 16S (320 bp) sequences from 18 individuals (Table 3). Some of the other species reported here (Table 3) belong to complexes of closely related, possibly cryptic, species: For the time being, they are identified as the closest name-bearing morpho-species, but may in the future be recognized and described as separate taxa. These taxa are: *Enchytraeus buchholzi* Vejdovský, 1879 (for which we found two separate species matching the general *E. buchholzi* morphology, “*buchholzi* 1” and “2”), *Ch*. *cf. diastrophus*, *Marionina cf. argentea* (Michaelis, 1889), *Mesenchytraeus cf. armatus*, and *Nais communis/variabilis* (Piguet, 1906; i.e., we found here morphotype A3 sensu Envall et al. 2012). Moreover, there is still some uncertainty whether the earthworm *Bimastos rubidus* (Savigny, 1826) should include *B. subrubicundus* (Eisen, 1874), and *B. tenuis* (Eisen, 1874), all three of which have been reported from Iceland.

The material that did not produce any molecular data was examined based on morphology and could in most cases only be determined to genus level; such specimens will not be further
Cognettia varisetosa (Martinsson, Rota & Erséus, 2015), earlier regarded as C. glandulosa (previously recorded from Iceland); C. varisetosa is thus, at least nominally, a new record for Iceland. We also found specimens of Pristina foreli (Piguet, 1907), which represents a genus (Pristina Ehrenberg, 1828) never recorded in Iceland before. Finally, we found Uncinais uncinata (Ørsted, 1842), a taxon already known from the country (see Table 4).

In total, we identified 23 species, of which at least 8 are new records to Iceland. These identified species were collected from 19 of the 31 sites sampled.

DISCUSSION

Clitellates of the Icelandic springs

The species found in the Icelandic springs are a mixture of Lumbricidae, Enchytraeidae and Naididae. Earthworms (Lumbricidae) are mostly terrestrial, but among our four species found, Eiseniella tetraedra is a characteristic inhabitant of running water or wet soils, and common also in caves and springs, in the Western Palaearctic (Sims & Gerard 1985). The other three are terrestrial worms "accidently found in water" (Timm 2009, p. 188).

All Enchytraeidae (13 species) and Naididae (7 species) in the studied springs are known also from continental Europe. This conclusion is largely based on molecular data, as we were able to compare the 16S barcodes of the Icelandic specimens with the corresponding barcodes of <400 species of Enchytraeidae and Naididae from Sweden and Norway (Erséus and Klinth, unpubl.). This enabled us to identify certain (cryptic) forms within the species complexes of some traditional morphospecies (i.e., Cernosvitoviella minor s. lat., Enchytraeus buchholzi s. lat., Marionina argentea s. lat., Chaetogaster diastrophus s. lat., Tubifex tubifex s. lat.) and one small, yet unidentified Chaetogaster species. However, proper binominal names of these cryptic species are not yet established.

Fridericia dura (Enchytraeidae) is typically terrestrial (Dózsa-Farkas 2019), but was found outside its normal habitat in this study. The remaining enchytraeids and all naidids are normally restricted to aquatic or semi-aquatic habitats (Timm 2009; Schmelz & Collado 2010; Klinth et al. 2017b), and they appear as a somewhat impoverished assemblage of the clitellates typical of streams, rivers, lakes and ponds in other parts of Northern Europe.

Springs are windows into the stygofauna, i.e., stygofaunal species are categorized as those restricted to groundwater (stygobites), those inhabiting both surface and ground waters, or preferring a transition zone of these habitats (stygophiles), and those accidentally or occasionally present in groundwater (stygoxenes). No Icelandic clitellates so far known are treated here (this is why not all originally sampled springs are shown in Figure 1 and Table 1). However, we did identify a few additional species in our spring material based on morphology alone. One being Cognettia varisetosa (Martinsson, Rota & Erséus, 2015), earlier regarded as C. glandulosa (previously recorded from Iceland); C. varisetosa is thus, at least nominally, a new record for Iceland. We also found specimens of Pristina foreli (Piguet, 1907), which represents a genus (Pristina Ehrenberg, 1828) never recorded in Iceland before. Finally, we found Uncinais uncinata (Ørsted, 1842), a taxon already known from the country (see Table 4).

In total, we identified 23 species, of which at least 8 are new records to Iceland. These identified species were collected from 19 of the 31 sites sampled.

DISCUSSION

Clitellates of the Icelandic springs

The species found in the Icelandic springs are a mixture of Lumbricidae, Enchytraeidae and Naididae. Earthworms (Lumbricidae) are mostly terrestrial, but among our four species found, Eiseniella tetraedra is a characteristic inhabitant of running water or wet soils, and common also in caves and springs, in the Western Palaearctic (Sims & Gerard 1985). The other three are terrestrial worms “accidently found in water” (Timm 2009, p. 188).

All Enchytraeidae (13 species) and Naididae (7 species) in the studied springs are known also from continental Europe. This conclusion is largely based on molecular data, as we were able to compare the 16S barcodes of the Icelandic specimens with the corresponding barcodes of <400 species of Enchytraeidae and Naididae from Sweden and Norway (Erséus and Klinth, unpubl.). This enabled us to identify certain (cryptic) forms within the species complexes of some traditional morphospecies (i.e., Cernosvitoviella minor s. lat., Enchytraeus buchholzi s. lat., Marionina argentea s. lat., Chaetogaster diastrophus s. lat., Tubifex tubifex s. lat.) and one small, yet unidentified Chaetogaster species. However, proper binominal names of these cryptic species are not yet established.

Fridericia dura (Enchytraeidae) is typically terrestrial (Dózsa-Farkas 2019), but was found outside its normal habitat in this study. The remaining enchytraeids and all naidids are normally restricted to aquatic or semi-aquatic habitats (Timm 2009; Schmelz & Collado 2010; Klinth et al. 2017b), and they appear as a somewhat impoverished assemblage of the clitellates typical of streams, rivers, lakes and ponds in other parts of Northern Europe.

Springs are windows into the stygofauna, i.e., stygofaunal species are categorized as those restricted to groundwater (stygobites), those inhabiting both surface and ground waters, or preferring a transition zone of these habitats (stygophiles), and those accidentally or occasionally present in groundwater (stygoxenes). No Icelandic clitellates so far known are treated here (this is why not all originally sampled springs are shown in Figure 1 and Table 1). However, we did identify a few additional species in our spring material based on morphology alone. One being Cognettia varisetosa (Martinsson, Rota & Erséus, 2015), earlier regarded as C. glandulosa (previously recorded from Iceland); C. varisetosa is thus, at least nominally, a new record for Iceland. We also found specimens of Pristina foreli (Piguet, 1907), which represents a genus (Pristina Ehrenberg, 1828) never recorded in Iceland before. Finally, we found Uncinais uncinata (Ørsted, 1842), a taxon already known from the country (see Table 4).

In total, we identified 23 species, of which at least 8 are new records to Iceland. These identified species were collected from 19 of the 31 sites sampled.

DISCUSSION

Clitellates of the Icelandic springs

The species found in the Icelandic springs are a mixture of Lumbricidae, Enchytraeidae and Naididae. Earthworms (Lumbricidae) are mostly terrestrial, but among our four species found, Eiseniella tetraedra is a characteristic inhabitant of running water or wet soils, and common also in caves and springs, in the Western Palaearctic (Sims & Gerard 1985). The other three are terrestrial worms “accidently found in water” (Timm 2009, p. 188).

All Enchytraeidae (13 species) and Naididae (7 species) in the studied springs are known also from continental Europe. This conclusion is largely based on molecular data, as we were able to compare the 16S barcodes of the Icelandic specimens with the corresponding barcodes of <400 species of Enchytraeidae and Naididae from Sweden and Norway (Erséus and Klinth, unpubl.). This enabled us to identify certain (cryptic) forms within the species complexes of some traditional morphospecies (i.e., Cernosvitoviella minor s. lat., Enchytraeus buchholzi s. lat., Marionina argentea s. lat., Chaetogaster diastrophus s. lat., Tubifex tubifex s. lat.) and one small, yet unidentified Chaetogaster species. However, proper binominal names of these cryptic species are not yet established.

Fridericia dura (Enchytraeidae) is typically terrestrial (Dózsa-Farkas 2019), but was found outside its normal habitat in this study. The remaining enchytraeids and all naidids are normally restricted to aquatic or semi-aquatic habitats (Timm 2009; Schmelz & Collado 2010; Klinth et al. 2017b), and they appear as a somewhat impoverished assemblage of the clitellates typical of streams, rivers, lakes and ponds in other parts of Northern Europe.

Springs are windows into the stygofauna, i.e., stygofaunal species are categorized as those restricted to groundwater (stygobites), those inhabiting both surface and ground waters, or preferring a transition zone of these habitats (stygophiles), and those accidentally or occasionally present in groundwater (stygoxenes). No Icelandic clitellates so far known are
Clitellata of Iceland, an updated species list

In Table 4, >90 taxa of Clitellata reported from Iceland to date are listed. The exact number of species is not yet known, considering that several taxa are species complexes. The present study has added eight binominal species new for Iceland, plus one unidentified Marionina sp. that may be new to science, and the small unidentified Chaetogaster sp., which if not a new species is possibly C. langi. Cernosvitoviella and Pristina are genera that have not been reported from Iceland before.

Barcodes and species identification

This study shows that when traditional (COI) barcoding fails due to DNA degradation, at least part of the material may be identified by targeting a shorter gene fragment (i.e., another barcode). The problem is to decide how short a barcode can be and still be species-specific enough for secure species identification. In theory, when degraded DNA is fragmented into ever-smaller pieces, the smaller the target sequence selected the higher the yield of successful sequences, but at the cost of less genetic information for distinguishing species. In our case, the longer of the two 16S fragments (320 bp), produced significantly more sequences than COI (46 compared to 3), and revealed enough genetic variation to separate closely related species (Figure 2). For some of our taxa, however, species separation was based on only one or a few substitutions in the 16S fragment. It is therefore important to note that we refer to these similar 16S sequences as belonging to separate species, on the basis of other genetic information of other individuals of the same species, mainly from the more variable markers ITS (Internal Transcribed Spacer region) and COI (Erséus and Klinth, unpubl.). To be able to use a short gene fragment such as our 320-bp 16S to identify species it is clear that a large library with multiple sequences from all potential species, representing both inter- and intraspecific variability, is required.

Concerning the 70-bp 16S barcode, we surprisingly found that it did not produce more sequences than the 320-bp one, given the degraded DNA. Instead, it produced fewer successful barcodes. A likely explanation for this is sub-optimal binding of the primers, either due to the annealing temperature, or nucleotide variations in the primer-binding site (also indicated by a lack of bands in the post-PCR electrophoresis gel). The primers were originally designed for earthworms (Bienert et al. 2012), and in the present study they generally worked better for Lumbricidae than for the other families (Table 3), for which modified primers may be needed. It is possible that this very short 16S partition does not contain enough variation to delimit all closely related species of Clitellata, and yet it proved variable enough to distinguish all the 17 successfully sequenced specimens in our current material from each other (Figure 3).

We had problems with contamination in eight of our specimens; their 16S sequences (320 bp) did not match the species revealed by the morphology of the vouchers. In most cases we could attribute this to cross-contamination between samples, or possibly from the extraction lab. There were also some cases where the resulting sequences were those of human or bacterial DNA, but they were directly excluded from the counts of barcoded worms.

The integration of molecular and morphological data is particularly important in the delimitation of clitellate species (e.g., Martinsson et al. 2013; Klinth et al. 2017a). However, using DNA barcoding alone as a reliable shortcut to actual species identification has its pros and cons. In theory, clitellate barcoding is near to perfect when all species have been properly delimited. Moreover, it has the advantages of handling all life stages and even extra-organismal DNA (e.g., DNA from mucus left behind by tunnelling earthworms), and it separates cryptic species. On the other hand, this study has shown that problems occur in practice. We studied samples that suffered from

stygobites. For instance, there are no records of species of the genera typically containing stygobitic (often endemic) taxa in continental Europe, such as Trichodrilus Claparède, 1862 (Lumbriculidae), Aberrantiyadris Martin, 2015, Aktridris Knölker, 1935, Gianius Erséus, 1992, Protuberodrilus Giann & Martinez-Ansemil, 1979, Rhyacodrilus Bretscher, 1901, and Troglodrilus Juget et al., 2006 (all Naididae). However, five meiofaunal species found in the present study (Cernosvitoviella aggetelekiensis, C. pusilla, C. cf. minor, Marionina cf. argentea and Pristina foreli) are associated with surface waters as well as springs and groundwater in Norway and Sweden, and (when in springs) often in various combinations with each other (Erséus & Klinth, unpubl.). These taxa may be regarded as stygophiles, and their small size may be advantageous in springs, where nutrient levels are often low. Moreover, three other taxa (Lumbricillus arenarius, Marionina sp. and Nais elinguis) are normally associated with marine, intertidal habitats. Lumbricillus arenarius is also known from a spring in Northern Svalbard (Klinth et al. 2017b), and Nais elinguis is well known from both springs and coastal streams (e.g., Timm 2009), but the unidentified, possibly new species of Marionina was earlier collected only in marine habitats in Norway and Sweden (Erséus & Klinth, unpubl.).

Enchytraeus buchholzi s. lat., a species complex generally associated with “not too acidic” soils (Schmelz and Collado, 2010), sometimes occurs in freshwater (Timm 2009). The two genetically distinct forms of E. buchholzi found in our study are common in wet soils, including springs, in mainland Scandinavia (Erséus & Klinth, unpubl.). They thus appear to be more aquatic than other members of the complex. As for Tubifex tubifex s. lat., most of the cryptic species studied by us (Erséus & Klinth, including the one from the (Icelandic) Botnar I spring, are occasionally found in springs of other parts of Northern Europe. To conclude, we consider our recorded Lumbricidae spp. (possibly excepting the somewhat “stygophilic” Eiseniella tetraedra), Enchytraeus buchholzi 1 & 2, Henlea perpusilla, Mesenchytraeus cf. armatus, T. cf. tubifex, Cognettia variseta, Chaetogaster spp. and Uncinains uncinata as stygoxenes.

Concerning the 70-bp 16S barcode, we surprisingly found that it did not produce more sequences than the 320-bp one, given the degraded DNA. Instead, it produced fewer successful barcodes. A likely explanation for this is sub-optimal binding of the primers, either due to the annealing temperature, or nucleotide variations in the primer-binding site (also indicated by a lack of bands in the post-PCR electrophoresis gel). The primers were originally designed for earthworms (Bienert et al. 2012), and in the present study they generally worked better for Lumbricidae than for the other families (Table 3), for which modified primers may be needed. It is possible that this very short 16S partition does not contain enough variation to delimit all closely related species of Clitellata, and yet it proved variable enough to distinguish all the 17 successfully sequenced specimens in our current material from each other (Figure 3).

We had problems with contamination in eight of our specimens; their 16S sequences (320 bp) did not match the species revealed by the morphology of the vouchers. In most cases we could attribute this to cross-contamination between samples, or possibly from the extraction lab. There were also some cases where the resulting sequences were those of human or bacterial DNA, but they were directly excluded from the counts of barcoded worms.

The integration of molecular and morphological data is particularly important in the delimitation of clitellate species (e.g., Martinsson et al. 2013; Klinth et al. 2017a). However, using DNA barcoding alone as a reliable shortcut to actual species identification has its pros and cons. In theory, clitellate barcoding is near to perfect when all species have been properly delimited. Moreover, it has the advantages of handling all life stages and even extra-organismal DNA (e.g., DNA from mucus left behind by tunnelling earthworms), and it separates cryptic species. On the other hand, this study has shown that problems occur in practice. We studied samples that suffered from
Table 4. Updated checklist of clitellate species from Iceland. Previously recorded species from Iceland are presented together with the reference paper.

Species sorted by family	References
Enchytraeidae	
Achaeta unibulba Graefe, Dózsa-Farkas & Christensen 2005	Graefe et al. 2005
Bryodrilus parvus Nurminen, 1970	Nurminen 1973
Buchholzia appendiculata (Buchholz, 1862)	Christensen 1962; Nurminen 1973
Cernosvitoviella aggelekiensis Dózsa-Farkas, 1970	This study (new record)
Cernosvitoviella cf. minor Dózsa-Farkas, 1990 (one in a species complex)	This study (new record)
Cernosvitoviella pusilla Nurminen, 1973	This study (new record)
Claparedrilus semifuscoide Klinth, Rota & Erséus, 2017 (previously reported as *L. semifuscoide*)	Christensen 1962; Erséus 1976
Cognettia glandulosa (Michaelson, 1888) previous records could have been *C. glandulosa* or *C. varisetosa* (see Martinsson, Rota & Erséus, 2015a)	Christensen 1962; Nurminen 1973
Cognettia sphagnetorum (Vejdovský, 1877) previous records could have been *C. chalupskyi*, *C. chlorophila*, *C. pseudosphagnetorum* or *C. sphagnetorum* (see Martinson, Rota & Erséus, 2015b)	Christensen 1962; Nurminen 1973
Cognettia varisetosa (Martinsson, Rota & Erséus, 2015a) (previously a part of *C. glandulosa*)	This study (new record)
Enchytraeus albidus Henle, 1837	Christensen 1962; Erséus 1976
Enchytraeus buchholzi Vejdovský, 1879 (species complex)	Christensen 1962; Nurminen 1973; two species found in this study
Enchytraeus coronatus Nielsen & Christensen, 1959	Christensen 1962
Enchytraeus minutus Nielsen & Christensen, 1961	Nurminen 1973
Enchytraeus norvegicus Abrahamsen, 1969	Nurminen 1973
Fridericia bisetosa (Levinsen, 1884)	Christensen 1962; Nurminen 1973
Fridericia bulboides Nielsen & Christensen, 1959	Christensen 1962; Nurminen 1973
Fridericia bulbosa (Rosa, 1887)	Christensen 1962; Nurminen 1973
Fridericia callosa (Eisen, 1878)	Christensen 1962
Fridericia dura (Eisen, 1879)	This study (new record)
Fridericia galba (Hoffmeister, 1843)	Christensen 1962; Nurminen 1973
Fridericia leydigii (Vejdovský, 1877)	Nurminen 1973
Fridericia maculata Issel, 1905	Christensen 1962
Fridericia perrieri (Vejdovský)	Christensen 1962
Fridericia ratzei (Eisen, 1872)	Christensen 1962; Nurminen 1973
Fridericia striata (Levinsen, 1884)	Christensen 1962
Grania postclitellochaeta (Knöllner, 1935)	Rota & Erséus 2003
Henlea glandulifera Nurminen, 1970	Nurminen 1973
Henlea nasuta (Eisen, 1878)	Christensen 1962
Henlea perpusilla Friend, 1911	Christensen 1962; Nurminen 1973; this study
Henlea ventriculosa (Udekem, 1854)	Christensen 1962; Nurminen 1973
Lumbricillus arenarius (Michaelson, 1889)	Christensen 1962, this study
Lumbricillus lineatus (Müller, 1774)	Christensen 1962; Erséus 1976
Lumbricillus macrosthecatus Erséus, 1976	Erséus 1976
Lumbricillus pagenstecheri (Ratzel, 1869)	Christensen 1962; Erséus 1976
Lumbricillus pumilio Stephenson, 1932	Erséus 1976
Lumbricillus reynoldsoni Backlund, 1948	Christensen 1962
Lumbricillus rivalis Levinsen, 1883 emend. Ditlevsen, 1904	Christensen 1962
Table 4. Continued.

Species sorted by family	References
Lumbricillus scoticus Elmhirst & Stephenson, 1926	Christensen 1962; Erséus 1976
Lumbricillus viridis (Stephenson, 1911)	Christensen 1962; Erséus 1976
Marionina argentea (Michaelsen, 1889) (species complex)	Nurminen 1973; one species found in this study
Marionina communis Nielsen & Christensen, 1959	Christensen 1962; Nurminen 1973
Marionina spicula (Leuckart, 1847)	Christensen 1962; Erséus 1976
Marionina sp. This study (unidentified/new species?)	
Mesenchytraeus cf. armatus (Levinsen, 1884) (one in a species complex)	This study (unidentified/new species?)
Mesenchytraeus flavus (Levinsen, 1884)	Christensen 1962; Nurminen 1973

Hirudinea

Species	References
Callobdella nodulifera Malm, 1863	Bruun 1938a
Glossiphonia complanata (Linnaeus, 1758)	Bruun 1938b; Lindegaard 1979
Helobdella stagnalis (Linnaeus, 1758)	Bruun 1938b; Lindegaard 1979
Heptacyclus scorpii (Malm, 1863)	Bruun 1938a
Johanssonia arctica (Johansson, 1899)	Perdiguero-Alonso *et al.* 2008
Oceanobdella microstoma (Johansson, 1896)	Bruun 1938a
Oxytonostoma typica Malm, 1863	Bruun 1938a
Platybdera anarrhicae (Diesing, 1859)	Bruun 1938a
Pontobdella muricata (Linnaeus, 1758)	Bruun 1938a
Theromyzon garjaewi (Livanow, 1903) valid species?	Bruun 1938b
Theromyzon maculosum (Rathke, 1862) valid species?	Fjeldså & Raddum 1973
Theromyzon tessulatum (Müller, 1774)	Bruun 1938b; Lindegaard 1979

Lumbricidae

Species	References
Aporrectodea caliginosa (Savigny, 1826)	Backlund 1949; Lindroth *et al.* 1973; this study
Aporrectodae rosea (Savigny, 1826)	Backlund 1949; Lindroth *et al.* 1973
Bimastos rubidus s. lat. (reported as *Dendrodrilus rubidus* (Savigny, 1826), *Dendrodrilus subrubicundus* (Eisen, 1874), and *Dendrodrilus tenuis* (Eisen, 1874))	Backlund 1949; Lindroth *et al.* 1973; this study
Dendrobaena octaedra (Savigny, 1826)	Backlund 1949; Lindroth *et al.* 1973; this study
Eisenia foetida (Savigny, 1826)	Backlund 1949
Eiseniella tetraedra (Savigny, 1826)	Backlund 1949; Lindroth *et al.* 1973; Lindegaard 1979; this study
Lumbricus castaneus (Savigny, 1826)	Backlund 1949; Lindroth *et al.* 1973
Lumbricus rubellus Hoffmeister, 1843	Backlund 1949; Lindroth *et al.* 1973
Lumbricus terrestris Linnaeus, 1758	Backlund 1949; Lindroth *et al.* 1973
Octolasium cyaneum (Savigny, 1826)	Backlund 1949

Lumbriculidae

Species	References
Lumbricus variegatus (Müller, 1774)	Hrabé 1952; Lindegaard 1979
Stylodrilus heringianus Claparède, 1862	Hrabé 1952; Lindegaard 1979

Naididae

Species	References
Aktoedrus arcticus (Erséus, 1978)	Erséus 1978
Aulodrilus limnobius Bretcher, 1899	Hrabé 1952
Aulodrilus plurisetata (Piguet, 1906)	Hrabé 1952
DNA deterioration, which considerably reduced the number of identified specimens. We also found evidence of DNA contamination, which would have led to the wrong conclusions, had we not compared the morphology of a specimen with the barcode sequence obtained. The conclusion is that any samples to be used for DNA analysis must be handled properly, e.g., kept at low temperature, conserved in high concentration of ethanol or DNA preserving buffers, and minimizing storage time. By doing so, the risk of low sequencing success as well as obtaining erroneous identifications due to contamination will be considerably reduced.

ACKNOWLEDGEMENTS

AKK received funding from the Icelandic Research Fund (RANNÍS), grant nr. 141863-051. The map used for Figure 1 reproduced and modified with permission from d-maps.com (URL: https://d-maps.com/carte.php?num_car=21661&lang=en).

REFERENCES

Achurra A, Rodriguez P. 2008. Biodiversity of groundwater oligochaetes from a karst unit in northern Iberian Peninsula: Ranking subterranean sites for conservation management. Hydrobiologia 605: 159–171. doi: 10.1007/s10750-008-9331-2

Arif IA, Khan HA, Al Sadoon, M, Shobrak M. 2011. Limited efficiency of universal mini-barcode primers for DNA amplification from desert reptiles, birds and mammals. Genetics and Molecular Research, 10(4): 3559–3564. doi: 10.4238/2011.October.31.3

Backlund HO. 1949. Oligochaeta 1. Lumbricidae. The Zoology of Iceland 2, Part 20a: 1–15.

Bely AE, Wray GA. 2004. Molecular phylogeny of naidid worms (Annelida: Clitellata) based on cytochrome oxidase I. Molecular phylogenetics and evolution, 30(1): 50–63. doi: 10.1016/S1055-7903(03)00180-5

Bienert F, De Danieli S, Miquel C, Coissac E, Poillot C, Brun JI, Taberlet P. 2012. Tracking earthworm communities from soil DNA. Molecular Ecology 21: 2017–2030. doi: 10.1111/j.1365-294X.2011.05407.x

Bojková J, Schenková J, Horsák M, Hájek M. 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 667: 159–171. doi: 10.1007/s10750-011-0634-3

Brinkhurst RO. 1963. Notes on the brackish-water and marine species
of Tubificidae [Annelida, Oligochaeta]. Journal of the Marine Biological Association of the United Kingdom 43(3): 709–715. doi: 10.1017/S00253154000025637
Braun AF. 1938a. Marine Hirudinea. The Zoology of Iceland 2, Part 21: 1–5.
Braun AF. 1938b. Freshwater Hirudinea. The Zoology of Iceland 2, Part 22: 1–4.
Černosvitov L. 1929. Communication préliminaire sur les Oligochètes récoltés par MP Remy pendant la croisière arctique effectuée par le « Pourquoi-Pas? » en 1926 sous la direction du Dr. J.-B. Charcot. Bulletin du Muséum National d’Histoire Naturelle, Paris 2(1): 144–149.
Černosvitov L. 1931. Sur quelques Oligochètes de la Région Arctique et des îles Faer-oer. Annales des sciences naturelles, Zoologie 14(10): 65–110.
Černosvitov L. 1936. Oligochaeta from Iceland and Grimsey Island. The Annals and Magazine of Natural History 18(10): 224–226. doi: 10.1080/00222933608655186
Christensen B. 1962. Oligochaeta 3. Enchytraeidae. The Zoology of Iceland 2, Part 20c: 1–11.
Deagle BE, Jarman SN, Coissac E, Pomponio F, Taberlet P. 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology letters, 10(9): 20140562. doi: 10.1098/rsbl.2014.0562
Dózsa-Farkas K. 2019. Enchytraeids of Hungary (Annelida: Pedozoologica Hungarica 7: 1–226. (Eötvös University Press, Budapest).
Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A. 2011 Geneious v5.5, Available from http://www.geneious.com
Envall I, Gustavsson LM, Erőséus C. 2012. Genetic and chaetal variation in Nais worms (Annelida, Clitellata, Naididae). Zoological Journal of the Linnean Society 165(3): 495–520. doi: 10.1111/j.1096-3642.2012.00828.x
Erőséus C. 1976. Littoral Oligochaeta (Annelida, Oligochaeta) from Eyjafjörour, North Coast of Iceland. Zoologica Scripta 5: 5–11. doi: 10.1111/j.1463-6409.1976.tb00677.x
Erőséus C. 1979. Taxonomic Revision of the Marine Genus Phallodrilus Pierantoni (Oligochaeta, Tubificidae), with Descriptions of Thirteen New Species 1. Zoologica Scripta 7(1-4): 263–267. doi: 10.1111/j.1463-6409.1978.tb00609.x
Erőséus C. 1994. The Oligochaeta. In: Blake J.A. & Hilbig B. (Eds.), Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel, Volume 4, Oligochaeta and Polychaeta: Phyllodocida (Phyllodocidae to Paralacydoniidae). Santa Barbara Museum of Natural History, Santa Barbara California. pp 5–38.
Fjeldså J, Ruddum GG. 1973. Three limnic invertebrate species new to Iceland, found in Mývatn in 1969. Náttúrufrædingurinn 43: 103–113.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoeck R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294–299.
Giani N, Sambugar B, Rodriguez P, Martinez-Ansemil E. 2001. Oligochaetae in southern European groundwater: new records and overview. Hydrobiologia 463: 65–74. doi: 10.1023/A:1013183003707
Giani N, Sambugar B, Rodriguez P, Martin P, Schmelz RM. 2011. The groundwater oligochaetes (Annelida, Clitellata) of Slovenia. Subterranean Biology 9: 85–102. doi: 10.3897/subbiol.9.2512
Govoni DP, Kristjansson BK, Ølafsson JS. 2018. Spring type influences invertebrate communities at cold spring sources. Hydrobiologia 808: 315–325. doi: 10.1007/s10750-017-3434-6
Graefe U, Døzza-Farkas K, Christensen B. 2005. Achaeta unilibula sp. n., a widespread European species (Oligochaeta, Enchytraeidae). In Proceedings of the Estonian Academy of Sciences, Biology, Ecology 54(4): 271–278.
Hajibabaei M, Smith MA, Janzen DH, Rodrigue JI, Whitfield JB, Hebert PD. 2006. A minimalist barcode can identify a specimen whose DNA is degraded. Molecular Ecology Notes 6(4): 959–964. doi: 10.1111/j.1471-8286.2006.00470.x
Helgason GV, Erőséus C. 1987. Three new species of Tubificoides (Oligochaeta, Tubificidae) from the North-West Atlantic and notes on geographic variation in the circumtropical T. kozloffii. Sarsia 72(2): 159–169. doi: 10.1080/00364827.1987.10419713
Hebert PDN, Cywinska A, Ball SL, DeWaard JR. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, Biological Sciences 270: 313–321. doi: 10.1098/rspb.2002.2218
Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences 101(41): 14812–14817. doi: 10.1073/pnas.0406166101
Hrabé S. 1952. Oligoachaeta 2. Limicola. The Zoology of Iceland 2, Part 20b: 1–10.
Klinth MJ, Martinsson S, Erőséus C. 2017a. Phylogeny and species delimitation of North European Lumbricillus (Clitellata, Enchytraeidae). Zoologica Scripta 46: 96–110. doi: 10.1111/zsc.12187
Klinth MJ, Rota E, Erőséus C. 2017b. Taxonomy of North European Lumbricillus (Clitellata, Enchytraeidae). ZoonKeys 703: 15–96. doi: 10.3897/zoonkeys.703.13385
Krelling A-K, Ølafsson JS, Pålsson S, Kristjánsson BK. 2018. Chironomidae fauna of springs in Iceland–assessing the ecological relevance behind Tuxen’s spring classification. Journal of Limnology 77: 145–154. doi: 10.1007/s10750-018-1754-Lento J, Morin A. 2014. Filling the gaps in stream size spectra: using electroshocking to collect large macroinvertebrates. Hydrobiologia 732: 1–17. doi: 10.1007/s10750-014-1840-6
Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in zoology, 10(1): 34. doi: 10.1186/1742-9994-10-34
Lindegaard C. 1979. The Invertebrate Fauna of Lake Mývatn, Iceland. Oikos 32: 151–161. doi: 10.2307/3544225
Lindroth CH, Andersson H, Bödvarsson H, Richter SH. 1973. SurtsHEY, Iceland. The development of a new fauna, 1963–1970. Terrestrial invertebrates. Entomologica Scandinavica. Suplementum 5.
Martin P, Schmelz RM, Dole-Olivier M-J. 2015. Groundwater oligochaetes (Annelida, Clitellata) from the Mercantour National Park (France), with the descriptions of one new genus and two new stygobiont species. Zoosystema 37(4): 551–569. doi: 10.5252/z2015n4a2

Martinsson S, Achrulla A, Svensson M, Erséus C. 2013. Integrative taxonomy of the freshwater worm *Rhyacodrilus falciformis* s.l. (Clitellata: Naididae), with the description of a new species. Zoologica Scripta 42: 612–622. doi: 10.1111/zsc.12032

Martinsson S, Rota E, Erseus C. 2015a. On the identity of *Chamaedrilus glandulosus* (Michaelensen, 1888)(Clitellata, Enchytraeidae), with the description of a new species. ZooKeys 501: 1–14. doi: 10.3897/zookeys.501.9279

Martinsson S, Rota E, Erséus C. 2015b. Revision of *Cognettia* (Clitellata, Enchytraeidae): re-establishment of *Chamaedrilus* and description of cryptic species in the sphagnetorum complex. Systematics and Biodiversity, 13(3): 257–277. doi: 10.1080/14772000.2014.986555

Meusnier, I., Singer, G. A., Landry, J. F., Hickey, D. A., Hebert, P. D., & Hajibabaei, M. 2008. A universal DNA mini-barcode for biodiversity analysis. BMC genomics, 9(1): 214. doi: 10.1186/1471-2164-9-214

Nielsen CO, Christensen B. 1959. The Enchytraeidae: critical revision and taxonomy of European species. Natura Jutlandica 8–9: 1–160.

Nurminen M. 1973. Enchytraeidae (Oligochaeta) of Iceland. In: Annales Zoologici Fennici. Societas Biologica Fennica Vanamo. pp. 412–413.

Perdiguero-Alonso D, Montero FE, Raga JA, Kostadinova A. 2008. Composition and structure of the parasite faunas of cod, *Gadus morhua* L. (Teleostei: Gadidae), in the North East Atlantic. Parasites & vectors 1(1): 23. doi: 10.1186/1756-3305-1-23

Rota E, Erseus C. 2003. New records of *Grania* (Clitellata, Enchytraeidae) in the Northeast Atlantic (from Tromso to the Canary Islands), with descriptions of seven new species. Sarsia: North Atlantic Marine Science 88(3): 210–243. doi: 10.1080/00364820310001615

Sambugar B, Giani N, Martinez-Ansemil E. 1999. Groundwater oligochaetes from Southern-Europé. Tubificidae with marine phyletic affinities: new data with description of a new species, review and consideration on their origin. Mémoires de Biospéologie 26: 107–116.

Schmelz RM, Collado R. 2010. A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82: 1–176.

Sims RW, Gerard BM. 1985. Earthworms: keys and notes for the identification and study of the species. Synopsis of the British Fauna (New Series) 31: 1–171. (E. J. Brill/Dr. W. Backhuys, London)

Sjölin E, Erseus C, Källersjö M. 2005. Phylogeny of Tubificidae (Annelida, Clitellata) based on mitochondrial and nuclear sequence data. Molecular Phylogenetics and Evolution 35: 431–441. doi: 10.1016/j.ympev.2004.12.018

Timm T. 2009. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia 66: 1–235.

Vink CJ, Thomas SM, Paquin P, Hayashi CY, Hedin M. 2005. The effects of preservatives and temperatures on arachnid DNA. Invertebrate systematics 19(2): 99–104. doi: 10.1071/IS04039

Editorial responsibility: Torkild Bakken.

This article is open-access and distributed under the terms of the Creative Commons Attribution 4.0 International license. This permits all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).