Tissue-specific expression of p73 C-terminal isoforms in mice

Francesca Grespi,1,2,3† Ivano Amelio,1,2,3† Paola Tucci,1,4 Margherita Annicchiarico-Petruzzelli5 and Gerry Melino1,2,3,5*

1Medical Research Council; Toxicology Unit; Leicester University; Leicester, UK; 2Department for Molecular Biomedical Research; VIB; Ghent University; Ghent, Belgium; 3Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium; 4Department of Pharmaco-Biology; University of Calabria; Rende, Cosenza, Italy; 5Biochemistry IDI-IRCCS Laboratory and Department of Experimental Medicine and Surgery; University of Rome "Tor Vergata;" Rome, Italy

†These authors contributed equally to this work.

Abbreviations: TA, TA\(\gamma\)p73; \(\Delta N\), \(\Delta Np73\); SAM, sterile alfa motif; eto, etoposide; cispl, cisplatin; untr, untreated; FWD, forward; REV, reverse; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PBS, phosphate buffered saline; PARP, poly (ADP-ribose) polymerase; ORF, open reading frame; AEC, ankyloblepharon-ectodermal dysplasia-clefting; SHFM, split-hand-foot malformation

p73 is a p53 family transcription factor. Due to the presence in the 5' flanking region of two promoters, there are two N-terminal variants, TA\(\gamma\)p73, which retains a fully active transactivation domain (TA), and \(\Delta Np73\), in which the N terminus is truncated. In addition, extensive 3' splicing gives rise to at least seven distinctive isoforms; TA\(\gamma\)p73-selective knockout highlights its role as a regulator of cell death, senescence and tumor suppressor. \(\Delta Np73\)-selective knockout, on the other hand, highlights anti-apoptotic function of \(\Delta Np73\) and its involvement in DNA damage response. In this work, we investigated the expression pattern of murine p73 C-terminal isoforms. By using a RT-PCR approach, we were able to detect mRNAs of all the C-terminal isoforms described in humans. We characterized their in vivo expression profile in mouse organs and in different mouse developmental stages. Finally, we investigated p73 C-terminal expression profile following DNA damage, ex vivo after primary cultures treatment and in vivo after systemic administration of cytotoxic compounds. Overall, our study first elucidates spatio-temporal expression of mouse p73 isoforms and provides novel insights on their expression-switch under triggered conditions.

Introduction

p73 is a p53-related transcription factor with fundamental roles in development,1-4 tumor suppression5-11 and senescence.12-23 Transcription from two different promoters on the TRp73 gene results in generation of TA\(\gamma\)p73 and \(\Delta Np73\) isoforms with opposing pro- and anti-apoptotic functions.24-28 Although p73 shares tumor-suppression functions with p53,29-44 it plays some very distinctive roles in development.45-47 Mice lacking p73 show neurodevelopmental malformation1-4 and consequent domain functionality.66 Similar observation was pointed out in this study, regarding the isoform p73\(\gamma\) lacking exon 11 and 13 and p73\(\alpha\) retaining all the exons coding for SAM domain, the splicing event at exon 11 produces a shift of the reading frame, leading to a premature STOP codon.69 Stimulation of human peripheral blood led to identification of two additional isoforms, p73\(\varepsilon\) and p73\(\zeta\), with p73\(\varepsilon\) lacking exon 11 and 13 and p73\(\zeta\) excluding exons 11 and 12.62,66 Elucidation of p73\(\zeta\) isoform clarifies that this splicing variant includes most of the SAM domain, although it misses a hydrophobic residue that seems to be fundamental for stability and consequent domain functionality.66 Similar observation was pointed out in this study, regarding the isoform p73\(\varepsilon\). In this case, the deletion covers the first three amino acids of an \(\alpha\)-helix, negatively influencing proper folding of the domain. Even if p73\(\gamma\) encodes for all the exons involved in the SAM domain, due
to the splicing at exon 11, the open reading frame is different.\(^{65,67}\)

Here, we investigated the tissue spatiotemporal expression profile of all p73 isoforms in mice and their expression switch under stressed conditions.

Results

Identification of mouse p73 C-terminal isoforms. Figure 1A reports a schematic representation of the alternative splicing occurring in the C-terminal region of human p73 gene. Based on this, we tried to understand whether all the isoforms identified in human were also present in the mouse. There are commercial antibodies available, sensitive enough to detect p73 and its N-terminal variants;\(^ {68,69}\) however, these antibodies fail to discriminate C-terminal isoforms at endogenous levels in the mouse. For this reason, we monitored mRNA levels. Organs from adult (2-mo-old) C57Bl/6 mice were collected and RNA was extracted. cDNA derived from kidney was then used for PCR in saturating conditions (40 cycles). PCR was performed by using forward and reverse primers designed, respectively, on exons 10 and 14. As an empty control we used RNase DNase-free water. We were able to detect all the isoforms, although the signal deriving from some of them was much weaker than others (Fig. 1B). To overcome this problem and to further prove the existence of all isoforms, we performed a PCR using isoform-specific primers designed at the specific exon-exon junctions. Through this strategy, we generated a specific PCR for each C-terminal splicing variant. As shown in Figure 1C, all the isoforms were easily detected. Identity of the isoforms was further confirmed by DNA sequencing on PCR products.

Analysis of organ-specific expression of mouse p73 C-terminal isoforms. The expression of human p73 variants has been characterized in different tissues and cell lines.\(^ {55,66,70,71}\) Since the expression pattern in the mouse has still not been investigated, we analyzed different organs using the same strategy used in Figure 1B and performing PCR in saturating conditions (40 cycles) in order to detect all possible isoforms. We found out that C-terminal variants of p73 are expressed in all the organs tested, even if at different levels, with p73\(\alpha\) being the most abundant (Fig. 2). Since we detected also products at unexpected mobility shifts, we sequenced all of them, but we failed to identify brand new isoforms, while we confirmed presence of all the variants previously described in human.

Analysis of isoforms expression at different developmental stages. We then focused on expression upon different developmental stages, since p73 seems to be a key regulator in this process.\(^ {60,72-75}\) We started from embryonic up to adult stages (2-mo-old). In this case, we performed a semi-quantitative RT-PCR (30 cycles). Quantification was done in relationship with starting levels (E12). Also in this system, p73\(\alpha\) was the most abundant isoform, even if it did not undergo major changes, while p73\(\zeta\), but also to a smaller extent, p73\(\epsilon\) and p73\(\delta\), were upregulated over time (Fig. 3A and B). p73\(\gamma\), on the other hand, was downregulated during development (Fig. 3A and B). We also monitored levels of TA and \(\Delta N\)p73 (25 cycles) and \(\Delta N\)p73 (30 cycles); we determined that TA was more abundant than \(\Delta N\)p73, even if, on the other hand, there was no significant regulation during development of any of the N-terminal variants (Fig. 3A and C). This type of analysis also revealed other migrating bands at unexpected sizes (Fig. 3A), which were sequenced, but revealed to be not specific.

Analysis of isoforms expression upon DNA damage in vitro. Since p73 is induced upon DNA damage and its loss confers resistance to cell death,\(^ {38,76-78}\) we checked whether cytotoxic drug treatments, with cisplatin\(^ {79,80}\) or etoposide,\(^ {81-84}\) affected expression levels of C-terminal isoforms in the N2a cell line. In semi-quantitative RT-PCR, \(\alpha\)-isoform results slightly increased, while p73\(\beta\) and p73\(\zeta\) appeared strongly decreased (Fig. 4A–C). In another system instead, the expression levels of the isoforms varied slightly. Indeed, in spleen-derived primary splenocytes, p73\(\gamma\) and p73\(\epsilon\) were the two most upregulated isoforms upon DNA damage, while p73\(\zeta\) was downregulated, consistently with the results in N2a cells (Fig. 5A and B). In this scenario, we also monitored levels of N-terminal isoforms. TA levels at 24 h were lower than untreated cells, while \(\Delta N\) levels were comparable between treated vs. untreated at 24 h. Levels of TA and \(\Delta N\) were lower at 24 h than at 6 h, probably due to ongoing massive apoptotic events, as demonstrated by PARP cleavage.\(^ {85-89}\) (Fig. S1).
Analysis of isoforms expression upon DNA damage in vivo. Finally, we investigated the effects on levels of p73 C-terminal isoforms in vivo upon DNA damage. We treated adult mice intra-peritoneally and analyzed levels of C-terminal isoforms 20 h after treatment. We had different outcomes in relation to the tissue analyzed, probably due to the ability of the drug to reach different organs but most likely also depending on starting endogenous levels of p73. In some organs, such as in the lung, all the isoforms were induced (Fig. 6A–C), while in other organs, there were no detectable effects of p73 levels, such as in the heart (data not shown). Moreover, in other tissues there were varying effects depending on the treatment that the animal received; in the spleen for example, etoposide was capable of inducing all isoforms (Fig. 6D and E), while cisplatin was causing a shift from α-isoform toward p73γ and p73δ (Fig. 6D and F).
of these two models. For example, both TAp73−/− and ΔNp73−/− show mild neurological defects, while the full p73−/− displays a more penetrant phenotype; besides, the strong immunological defect found in the full p73−/− mice is absent in the TAp73−/− or ΔNp73−/−, leading to the conclusion that other factors might be involved. We may speculate that TAp73 and ΔNp73 could have overlapping functions that allow one isoform to overcome the absence of the other and vice versa. Moreover, C-terminal domains might play a role in this, since in the N-terminal KO models they were still expressed and functional in the remaining N-terminal isoform. As support to this theory, there is the presence of a sterile alpha motif (SAM) at the C terminus of p73.

SAM domains are small putative protein-protein interaction domains,90 and in the mouse, this region overlaps exons 12–14 of p73;63 therefore, only α encodes a fully functional SAM domain and hypothetically could have an unique pool of interaction partners. Moreover, it has been shown that p73 SAM domain, but also the extreme C terminus, are able to regulate negatively the transcriptional activity of the protein, 91,92 while on the other hand, deletion of SAM domain and extreme C terminus enhances transactivation and DNA-binding activity but inhibits apoptosis.92 Thus, it is striking that in all the tissues analyzed, we identified α as the most abundant. It could possibly have some involvement with control of proliferation, since presence of a fully functional SAM domain apparently inhibits it. This could be an incredibly interesting and still not described aspect of control of p73. In fact, the p73β, rather than α, variant has an interesting potential to transactivate target genes.65 This similarity retains from p63, where the C-terminal domains (TI and SAM) have been proved to act as dominant transcription repression modules.93-99 Many mutations found in the AEC syndrome have been shown to destabilize or modify the structure of one of the helices of this region, leading to a loss of function and a consequent deregulation in transactivation and growth suppression.100-104 These findings clearly state a connection between functionality of the SAM domain and AEC syndrome, opening possible new hints of investigation for its p73 homolog. In absence of triggers, the most preferred isoform transcribed could be p73α, due to its low transactivation potential, while upon a specific stimulus there could be a shift toward other isoforms, as we were able to highlight at developmental stages but also upon DNA damaging agents. Another interesting new aspect was highlighted by our work: no striking differences between TAp73 and ΔNp73 levels were detected during development or upon stresses. Instead C-terminal isoforms resulted to be tightly regulated; for example, during development, p73ε, p73ζ and to a lesser extent p73δ, were specifically, induced while γ was downregulated. Also, upon DNA damage in vitro and in vivo, we highlighted specific regulation of each isoform, suggesting that every C-terminal variant could play specific roles, possibly depending on the tissue or cell system analyzed. In line with this, interesting observations have been made on the C terminus of p63; in fact, mutations leading to premature stop codon in exon 14 of p63 are correlated with limb mammary syndrome and SHFM (split-hand-foot malformation).105-107 For these reasons, a further analysis should be done in order to clarify aspects regarding p73 functions correlated with

Discussion

Here, we identified and characterized the tissue-specific expression of C-terminal isoforms of murine p73. This has been partly published regarding human p73, while investigation on its murine counterpart has been totally neglected. The isoform-specific KO mice models focused only on the characterization of p73 N terminus.58,55,56 These tools yield a lot of insight into understanding functions and roles of the specific N-terminal isoforms of p73; however, they leave some unsolved questions, since not all the defects displayed by the full p73−/− mouse5 were represented in one of these two models. For example, both TAp73−/− and ΔNp73−/− show mild neurological defects, while the full p73−/− displays a more penetrant phenotype; besides, the strong immunological defect found in the full p73−/− mice is absent in the TAp73−/− or ΔNp73−/−, leading to the conclusion that other factors might be involved. We may speculate that TAp73 and ΔNp73 could have overlapping functions that allow one isoform to overcome the absence of the other and vice versa. Moreover, C-terminal domains might play a role in this, since in the N-terminal KO models they were still expressed and functional in the remaining N-terminal isoform. As support to this theory, there is the presence of a sterile alpha motif (SAM) at the C terminus of p73.

SAM domains are small putative protein-protein interaction domains,90 and in the mouse, this region overlaps exons 12–14 of p73;63 therefore, only α encodes a fully functional SAM domain and hypothetically could have an unique pool of interaction partners. Moreover, it has been shown that p73 SAM domain, but also the extreme C terminus, are able to regulate negatively the transcriptional activity of the protein, 91,92 while on the other hand, deletion of SAM domain and extreme C terminus enhances transactivation and DNA-binding activity but inhibits apoptosis.92 Thus, it is striking that in all the tissues analyzed, we identified α as the most abundant. It could possibly have some involvement with control of proliferation, since presence of a fully functional SAM domain apparently inhibits it. This could be an incredibly interesting and still not described aspect of control of p73. In fact, the p73β, rather than α, variant has an interesting potential to transactivate target genes.65 This similarity retains from p63, where the C-terminal domains (TI and SAM) have been proved to act as dominant transcription repression modules.93-99 Many mutations found in the AEC syndrome have been shown to destabilize or modify the structure of one of the helices of this region, leading to a loss of function and a consequent deregulation in transactivation and growth suppression.100-104 These findings clearly state a connection between functionality of the SAM domain and AEC syndrome, opening possible new hints of investigation for its p73 homolog. In absence of triggers, the most preferred isoform transcribed could be p73α, due to its low transactivation potential, while upon a specific stimulus there could be a shift toward other isoforms, as we were able to highlight at developmental stages but also upon DNA damaging agents. Another interesting new aspect was highlighted by our work: no striking differences between TAp73 and ΔNp73 levels were detected during development or upon stresses. Instead C-terminal isoforms resulted to be tightly regulated; for example, during development, p73ε, p73ζ and to a lesser extent p73δ, were specifically, induced while γ was downregulated. Also, upon DNA damage in vitro and in vivo, we highlighted specific regulation of each isoform, suggesting that every C-terminal variant could play specific roles, possibly depending on the tissue or cell system analyzed. In line with this, interesting observations have been made on the C terminus of p63; in fact, mutations leading to premature stop codon in exon 14 of p63 are correlated with limb mammary syndrome and SHFM (split-hand-foot malformation).105-107 For these reasons, a further analysis should be done in order to clarify aspects regarding p73 functions correlated with
has been suggested to play a role in regulation of transcription through lipid interaction.121-123 Studying interactions with new partners, with powerful techniques such as TAP tag124,125 or MAPPIT,126,127 could lead to some clarifications of p73’s still unknown functions, related, for example, to strong defects in brain and chronic inflammation.

To conclude, this work identifies the C-terminal isoforms transcribed in the mouse, upon endogenous and challenging conditions. It underlines the extreme importance of studying these isoforms more in detail, since they could play a fundamental and still-not-investigated role in pathologies such as cancer, degeneration and development.

Its C terminus. Moreover, it is now becoming crucial to generate C-terminal isoform-specific KO models, which could also become powerful tools for studying potential human diseases correlated by p73 misfunctions, such as neurodegeneration108-113 and cancer.34,114-120

Our work also underlined the incredible necessity of developing an antibody with enough sensitivity to detect endogenous p73 C-terminal isoforms, as well as an antibody specific for the SAM domain. This would open a wide range of new directions, including screening for interaction partners, due to the putative function of the SAM. It would be intriguing to investigate influences of the SAM on tetramerization of p73, since this domain has been suggested to play a role in regulation of transcription through lipid interaction.121-123 Studying interactions with new partners, with powerful techniques such as TAP tag124,125 or MAPPIT,126,127 could lead to some clarifications of p73’s still unknown functions, related, for example, to strong defects in brain and chronic inflammation.

To conclude, this work identifies the C-terminal isoforms transcribed in the mouse, upon endogenous and challenging conditions. It underlines the extreme importance of studying these isoforms more in detail, since they could play a fundamental and still-not-investigated role in pathologies such as cancer, degeneration and development.
Materials and Methods

Cells cultures, primary cells and reagents. Cells were cultured at 37°C in 5% CO₂ in culture medium. N2a were purchased from ATCC (#CCL-131) and maintained in a mix of 45% DMEM high glucose, 45% Optimem (Gibco) and 10% fetal bovine serum, 250 mM L-glutamine, 1 U/ml penicillin/streptomycin (all Gibco). Splenocytes were generated as already been described128 and cultured in RPMI 1640 medium (Gibco), supplemented with 10% FCS, 250 mM L-glutamine, 50 mM 2-mercaptoethanol, penicillin/streptomycin (1 U/ml), non-essential amino acids and 1 mM pyruvate (all Invitrogen).

Western blotting. Western blotting was performed as previously described.129 In brief, proteins were extracted with RIPA buffer containing cocktail inhibitors (Roche), and concentration was determined using a Bradford dye-based assay (Biorad). Total protein (30 μg) was subjected to SDS-PAGE followed by immunoblotting with appropriate antibodies at the recommended dilutions. The blots were then incubated with peroxidase-linked secondary antibodies followed by enhanced-chemiluminescent detection using Super Signal chemiluminescence kit (Thermo Scientific). Antibodies: mouse monoclonal anti PARP (1:1,000; Alexis), mouse monoclonal anti GAPDH (1:10,000; Sigma-Aldrich).

DNA damage in vivo. C57Bl/6 mice (2-mo-old) were injected i.p and sacrificed 20 h after treatment. Organs were collected and frozen on dry ice. Tissue homogenization was performed in 750 μl of TRizol using a tissue grinder (Precellys). Mice were then processed and semi-quantitative RT-PCR (24 cycles for C-terminal p73, 20 cycles for GAPDH) was performed and samples were run on a 10% acrylamide gel. An example of results deriving from lung is depicted in A. Densitometry analysis of at least three blots was achieved, showing levels of C-terminal isoforms upon etoposide or cisplatin treatment (C). The same was done for the spleen (D) and quantification upon etoposide or cisplatin (E) is shown. Cispl, cisplatin; Eto, etoposide; untr., untreated; TA, TA-p73; Δn, ΔNp73; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Figure 6. C-terminal isoforms expression upon DNA damage in vivo. C57Bl/6 mice (2-mo-old, n ≥ 6 per group) were treated i.p. with 10 mg/kg etoposide or 5 mg/kg cisplatin or with PBS (control group). Animals were sacrificed after 20 h and tissues were then processed. Semi-quantitative RT-PCR (24 cycles for C-terminal p73, 20 cycles for GAPDH) was performed and samples were run on a 10% acrylamide gel. Example of results deriving from lung is depicted in A. Densitometry analysis of at least three blots was achieved, showing levels of C-terminal isoforms upon etoposide or cisplatin treatment (C). The same was done for the spleen (D) and quantification upon etoposide or cisplatin (E) is shown. Cispl, cisplatin; Eto, etoposide; untr., untreated; TA, TA-p73; Δn, ΔNp73; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
bred and subjected to listed procedures under the project license released from the United Kingdom Home Office.

RNA extraction, reverse transcription and PCR analysis. RNA was extracted using TRizol (Invitrogen) and following manufacturer’s guidelines. After extraction, RNA was quantified with NanoDrop 2000 (Thermo Scientific) and 5 μg were treated with DNase I (Sigma) in order to eliminate DNA contamination. cDNA was reversed transcribed using RevertAid H Minus First Strand cDNA synthesis kit (Fermentas) and gene-specific primers (RT FWD and RT REV for C-terminal p73, GAPDH as internal control). Semi-quantitative PCR was performed using GoTaq DNA Polymerase (Promega) and the following cycle conditions: 5 min at 95°C; 30 sec at 95°C, 1 min at 58°C, 10 min at 72°C; cycle number varied in relationship with the organ/cell type analyzed. PCR product was run on a 10% acrylamide gel (BioRad) and stained afterwards for densitometry analysis. Densitometry analysis was achieved using ImageJ software.

Primers.

RT FWD 5’-GCT TGT GCC CCA GCC TTT G-3’

RT REV 5’-CCC CTC CAG ATG GTC ATA CG-3’

mp73-X10 FWD 5’-GAG ATC TTG ATG AAA GTC AAG G-3’

mp73-X10–11 FWD 5’-CAG AGG CCG AGT CAC CTG-3’

mp73-X10–12 FWD 5’-TAC AGA GGC CGG TTC GGG-3’

mp73-X10–13 FWD 5’-CAG AGG CCT TTT TGT ACA GAG G-3’

mp73-X14 REV 5’-CTC ACA GAG GCC GCC CCA CTT GG-3’

mp73-X14 REV 5’-GCC TCG TCA GGA CCT TGG G-3’

mp73-X13–14 REV 5’-GCA TTT CCG TGT GCG CCA C-3’

mp73-X13–14 REV 5’-GCC TCG TGA GCC TGA TTA CTG-3’

RT FWD along with GAPDH FWD and REV were used to reverse transcribe cDNA. Primers mp73-X10 FWD and mp73-X14 REV were used to amplify by PCR all C-terminal isoforms. Primers mp73-X10–11 FWD and mp73-X13–14 REV were used to amplify p73α specifically. Primers mp73-X10–12 FWD and mp73-X12–14 REV were used to amplify p73β specifically. Primers mp73-X10–12 FWD and mp73-X13–14 REV were used to amplify p73γ specifically. Primers mp73-X10–13 FWD and mp73-X14 REV were used to amplify p73δ specifically.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work has been supported by the Medical Research Council, United Kingdom; MIUR, MinSan, RF73, RF57, ACC12; Odysseus Grant (G.0017.12) from the Flemish government and Flanders Institute for Biotechnology, Belgium.

Supplemental Materials

Supplemental materials may be found here: www.landesbioscience.com/admin/article/22787/
33. Gao W, Shi J, Bui K, Nigro G, Chen J. The p53 tumor suppressor mediates cell senescence response to 5-fluorouracil. Aging Cell 2011; 10:301-7; PMID:21239506; http://dx.doi.org/10.1111/j.1474-9726.2010.00512.x.

34. Leontieva OV, Blagosklonny MV. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of p19ARF is associated with conversion to senescence. Aging (Albany NY) 2010; 2:924-35; PMID:21212243.

35. Ho H, Harris RJ. The requirement of p53 for maintaining chromosomal stability during tetraploidization. Oncotarget 2010; 1:583S-95; PMID:21317454.

36. Koster R, Timmer-Bosscha H, Biischoff R, Gietema JA, de Jong S. Disruption of the MDM2-p53 interaction strongly dependent on p53 in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis 2011; 2:e148; PMID:21590308; http://dx.doi.org/10.1038/ods.2011.33.

37. Holzel M, Burger K, Muhl B, Orban M, Kellner E, Eck D. The tumor suppressor p53 connects ribosome biogenesis to cell cycle control: a double-edged sword. Oncotarget 2010; 1:43-7; PMID:21293062.

38. Aoubala M, Murray-Zmijewski F, Khoury MP, Fernandes R, Perrier S, Bernard H, et al. Pharmacological activation of p53 in ovarian carcinoma by blocking apoptosis signaling via death receptors and mitochondria. Cell Cycle 2010; 9:2629-36; PMID:20657036; http://dx.doi.org/10.4161/cc.9.14.11814.

39. Schuster A, Schilling T, De Laurenzi V, Koch A, Seitz A, Poon RY. The requirement of p53 for maintaining chromosomal stability during tetraploidization. Oncotarget 2010; 1:583S-95; PMID:21317454.

40. Mumpani N, Nyman U, Joseph B. TAp73alpha protects small cell lung carcinoma cells from caspase-2 induced mitochondrial mediated apoptotic cell death. Oncotarget 2011; 2:948-57; PMID:22488668.

41. Napoli M, Girardini JE, Piazza S, Del Sal G. Reversion of transcription factors modulate cell survival and tumor development in vivo. Proc Natl Acad Sci USA 2010; 107:16871-6; PMID:20058838; http://dx.doi.org/10.1073/pnas.0903191106.

42. Steelman LS, Martelli AM, Nicoletti F, McCubrey JA. Exploiting p53 status to enhance effectiveness of chemotherapy by lowering associated toxicity. Oncotarget 2011; 2:1145-54; PMID:22201672.

43. Sorscher SM, Hill AE, Belizaire R, Sorscher EJ. DeltaNp73beta puts the p53 family into quiescence by regulating feedback too, via TRF2. Aging (Albany NY) 2011; 3:26-32; PMID:21266744; http://dx.doi.org/10.4161/cc.10.9.15383.

44. Lane DP, Madhumalar A, Lee AP, Tay BH, Verma C, Anichini A, et al. Pharmacological activation of p53 tumor suppressor functions. Genes Dev 2008; 22:2677-91; PMID:18085998; http://dx.doi.org/10.1101/gad.1695308.

45. Grob TJ, Novak U, Maise C, Barcanzi D, Lütthi AU, Perna F, et al. Human deltaNp73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 2001; 8:1213-23; PMID:11753560; http://dx.doi.org/10.1038/sj.cdd.4400692.
4482 Cell Cycle Volume 11 Issue 23

65. De Laurenzi V, Costanzo A, Barcaroli D, Terrazzini A, Melino G, Annicchiarico-Petruzzelli M, et al. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 1998; 188:1763-8; PMID:9802988; http://dx.doi.org/10.1084/jem.188.9.1763.

66. De Laurenzi VD, Catani MV, Terrazzini A, Corazzari M, Melino G, Costanzo A, et al. Additional complexity in p73: induction by mitogenes in lymphoid cells and identification of two new splicing variants epsilon and zeta. Cell Death Differ 1999; 6:389-90; PMID:10381648; http://dx.doi.org/10.1038/sj.clld.4400521.

67. Courtadin D, Lohr F, Niesen FH, Ikeda T, Weber TA, Schafer B, et al. Conformational stability and activity of p73 require a second helix in the transactivation domain. Cell Death Differ 2009; 16:1582-9; PMID:19763140; http://dx.doi.org/10.1038/cdd.2009.139.

68. Rosenbluth JM, Johnson K, Triplett T, FIREPA et al. Evaluation of p73 and p73 antibodies for breast cancer. Cell Cycle 2009; 8:3702-6; PMID:19855172; http://dx.doi.org/10.4161/cc.8.22.10036.

69. Sayan AE, Paradisi A, Voytesek B, Knight RA, Melino G, Candi E. New antibodies recognizing p73: comparison with commercial antibodies. Biochem Biophys Res Commun 2005; 330:186-93; PMID:15718249; http://dx.doi.org/10.1016/j.bbrc.2005.02.145.

70. Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG Jr., Levery M, et al. The tyrosine kinase c-Ab1 is p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999; 399:806-9; PMID:10391249; http://dx.doi.org/10.1038/21690.

71. De Laurenzi V, Raschellà G, Barcaroli D, Annicchiarico-Petruzzelli M, Ranalli M, Catani MV, et al. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J Biol Chem 2000; 275:15226-31; PMID:10809758; http://dx.doi.org/10.1074/jbc.275.20.15226.

72. Conforti F, Sayan AE, Sreekumar R, Sayan BS. Regulation of p73 activity by post-translational modifications. Cell Death Diff 2012; 19:2285; PMID:22421194; http://dx.doi.org/10.1038/cdd.2012.27.

73. Gonzalez-Cano L, Herrera-Villanueva M, Fernandez-Alonso R, Ayuso-Sacido A, Meyer G, Garcia-Verdugo JM. p73 acetate affinity results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53. Cell Death Differ 2010; 1:109; PMID:20368881; http://dx.doi.org/10.1038/cdd.2010.87.

74. Stoppini Z, Davoli C, Seska V, Seková J, Dipp S, Fan H, El-Dahr SS. Spatiotemporal switch from DeltaNp73 to TAp73 isoforms during neoplasia: impact on differentiation gene expression. J Biol Chem 2005; 280:23094-102; PMID:15805112; http://dx.doi.org/10.1074/jbc.M415475200.

75. Dötsch FB, Courtadin D, Candi E, Melino G, p63 and p73, the Ancestors of p53, Cold Spring Harb Perspect Biol 2010; 00:004887.

76. Wang X, Zeng L, Wang J, Chau JE, Lai KP, Jia D, et al. A positive role for c-Ab1 in Aem and Art activation in DNA damage response. J Biol Chem 2011; 18:5; PMID:20798688; http://dx.doi.org/10.1083/jbc.2010.10.106.

77. Toh WH, Siddique MM, Boominathan L, Lin KW, Sabapathy K. c-Jun regulates the stability and activity of p73. J Biol Chem 2004; 279:44713-22; PMID:15302867; http://dx.doi.org/10.1074/jbc.M406772200.

78. Sevior EG, Lin SY. The DNA damage response: Balancing the scale between cancer and ageing. Aging (Albany NY) 2010; 2:990-7; PMID:21911948.

79. Pendegast AM, Cruer-Hennequart S, Shaw G, Barry FP. Carry MP. Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or γ-irradiation. Cell Cycle 2011; 10:5768-77; PMID:22053798; http://dx.doi.org/10.4161/cc.10.21.17972.

80. Galluzzi L, Serrónilla L, Vitale I, Michels J, Martíns I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene 2011; 31:1869-83; PMID:21892204; http://dx.doi.org/10.1038/onc.2011.384.

81. De Zuo D, Agostini G, Longo D, Ferraro E, Mora E, et al. The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage. Cell Death Differ 2011; 18:516-27; PMID:20966096; http://dx.doi.org/10.1038/cdd.2010.125.

82. Zalkev Y, Nell J, Rolf, S, Ber, Y, Rubinstein AD, Mor I, et al. A system level strategy for analyzing the cell death network: implication in exploring the apoptosis/apoptoge network connection. Cell Death Differ 2010; 17:1244-53; PMID:20519096; http://dx.doi.org/10.1038/cdd.2010.87.

83. Bialik S, Zalckvar E, Ber Y, Rubinstein AD, Kimchi A. Systems biology analysis of programmed cell death. Trends Biochem Sci 2010; 35:556-64; PMID:20537543; http://dx.doi.org/10.1016/j.tibs.2010.04.008.

84. Meley D, Sprotter DG, White MR, McDowell H, Pirat B, Sée V, p53-mediated delayed NF-κB activity enhances etoposide-induced cell death in medulloblastoma. Cell Death Dif 2010; 1:14; PMID:21236468; http://dx.doi.org/10.1038/cdd.2010.16.

85. Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, et al. MER1486 promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Dif 2011; 18:1702-10; PMID:21445521; http://dx.doi.org/10.1038/cdd.2011.28.

86. Boehler C, Dunster F, PARP-3, a DNA-dependent PARP with emerging roles in double-strand break repair and mitotic progression. Cell Cycle 2011; 10:423-4; PMID:21358266; http://dx.doi.org/10.4161/cc.7.15.15169.

87. Straten P, Andersen MH. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated anti-tumor targets. Oncotarget 2010; 1:2395-45; PMID:21304176.

88. van Vuurden DG, Hulleman E, Meijer OL, Wedekind R. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated anti-tumor targets. Oncotarget 2010; 17:896-907; PMID:21227502; http://dx.doi.org/10.4161/ccli.2010.159.

89. Forrester N, Ellison EW, Notch signaling mediates p63-induced quiescence: a new facet of p63/Notch cross talk. Cell Cycle 2011; 10:3632-3; PMID:22041817; http://dx.doi.org/10.4161/cc.10.21.18182.

90. Kim DA, Lee BL, Suk EH. Ionizing radiation-induced TAp63α phosphorylation of C-terminal S/TQ motifs requires the N-terminal transcriptional (TQ) domain motifs. Cell Cycle 2011; 10:840-9; PMID:21325887; http://dx.doi.org/10.4161/ccli.10.15.15008.

91. Lee J, Hwang YJ, Boo JH, Han D, Kwon OK, Todora K, et al. Dysregulation of upstream binding factor-1 acetylation at K288 is linked to impaired ribosomal DNA transcription in Huntington’s disease. Cell Death Differ 2011; 18:1726-35; PMID:21549095; http://dx.doi.org/10.1038/cdd.2011.38.

92. Penas C, Font-Nieves M, Monés J, Fregueig V, Planas A, Navarro X, et al. Autochagy, and BIP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ 2011; 18:1617-27; PMID:21436843; http://dx.doi.org/10.1038/cdd.2011.24.
110. Rass U, Abol I, West SC. Defective DNA repair and neurodegenerative disease. Cell 2007; 130:991-1004; PMID:17889645; http://dx.doi.org/10.1016/j.cell.2007.08.043.

111. Nisoli I, Chauvin JP, Napoleono F, Calamita P, Zanin V, Fanto M, et al. Neurodegeneration by polyglutamine Atrophin is not rescued by induction of autophagy. Cell Death Differ 2010; 17:1577-87; PMID:20339376; http://dx.doi.org/10.1038/cdd.2010.31.

112. Ciavardelli D, Silvestri E, Del Viscovo A, Bomba M, De Gregorio D, Moreno M, et al. Alterations of brain and cerebellar proteomes linked to Aβ and tau pathology in a female triple-transgenic murine model of Alzheimer's disease. Cell Death Dis 2010; 1:e96; PMID:21368865; http://dx.doi.org/10.1038/cddis.2010.68.

113. Stanga S, Lanni C, Govoni S, Uberti D, D'Orazzi G, Racchi M. Unfolded p53 in the pathogenesis of Alzheimer's disease: is HIPK2 the link? Aging (Albany NY) 2010; 2:545-54; PMID:20876941.

114. Olsson M, Zhivotovsky B. Caupases and cancer. Cell Death Differ 2011; 18:1441-9; PMID:21455218; http://dx.doi.org/10.1038/cddis.2011.30.

115. Kelly PN, Strasser A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 2011; 18:1414-24; PMID:21415859; http://dx.doi.org/10.1038/cddis.2011.17.

116. Ahmed A, Yang J, Maya-Mendoza A, Jackson DA, Ashcroft M. Pharmacological activation of a novel p53-dependent S-phase checkpoint involving CHK1. Cell Death Dis 2011; 2:e160; PMID:21593792; http://dx.doi.org/10.1038/cddis.2011.42.

117. Smit MA, Popper DS. Epithelial-mesenchymal transition and senescence: two cancer-related processes are crossing paths. Aging (Albany NY) 2010; 2:735-41; PMID:20975209.

118. Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R, et al. Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ 2011; 18:1046-56; PMID:21233847; http://dx.doi.org/10.1038/cdd.2010.177.

119. Mallette FA, Calabrese V, Langumaran S, Ferbeyre G. SOCS1, a novel interaction partner of p53 controlling oncogene-induced senescence. Aging (Albany NY) 2010; 2:445-52; PMID:20622265.

120. Agostini M, Tucci P, Melino G. Cell death pathology: perspective for human diseases. Biochem Biophys Res Commun 2011; 414:451-5; PMID:21976290; http://dx.doi.org/10.1016/j.bbrc.2011.09.081.

121. Rufini A, Agostini M, Grespi F, Tomaiini R, Sayan BS, Nilsen-Chiuri MV, et al. p73 in Cancer. Genes Cancer 2011; 2:491-502; PMID:21779517; http://dx.doi.org/10.1177/1947601911408890.

122. Rufini S, Lena AM, Cadot B, Mele S, Amelio I, Terrinoni A, et al. The sterile alpha-motif (SAM) domain of p63 binds in vitro monoasialoganglioside (GM1) micelles. Biochem Pharmacol 2011; 82:1262-8; PMID:21820419; http://dx.doi.org/10.1016/j.bcp.2011.07.087.

123. Barrera FN, Poveda JA, Gonzalez-Ros JM, Neira JL. Binding of the C-terminal sterile alpha morif (SAM) domain of human p73 to lipid membranes. J Biol Chem 2003; 278:46878-85; PMID:12934612; http://dx.doi.org/10.1074/jbc.M307846200.

124. Drakas R, Prisco M, Baezga R. A modified tandem affinity purification tag technique for the purification of protein complexes in mammalian cells. Proteomics 2005; 5:132-7; PMID:15602709; http://dx.doi.org/10.1002/pmic.200400919.

125. Knuesel M, Wan Y, Xiao Z, Holinger E, Lowe N, Wang W, et al. Identification of novel protein-protein interactions using a versatile mammalian tandem affinity purification expression system. Mol Cell Proteomics 2003; 2:1225-33; PMID:12963786; http://dx.doi.org/10.1074/mcp.T300007-MCP200.

126. Eyckerman S, Lemmens I, Lievens S, Van der Heyden J, Verhee A, Vandekerckhove J, et al. Design and use of a mammalian protein-protein interaction trap (MAPPIT). Sci STKE 2002; 2002:pl18; PMID:12476003; http://dx.doi.org/10.1126/stke.2002.162.pl18.

127. Tavernier J, Eyckerman S, Lemmens I, Van der Heyden J, Vandekerckhove J, Van Ostade X. MAPPIT: a cytokine receptor-based two-hybrid method in mammalian cells. Clin Exp Allergy 2002; 32:1397-404; PMID:12372116; http://dx.doi.org/10.1046/j.1365-2745.2002.01520.x.

128. Grespi F, Ottina E, Yannoutsos N, Geley S, Villunger A. Generation and evaluation of an IPTG-regulated version of Vav-gene promoter for mouse transgenesis. PLoS One 2011; 6:e18051; PMID:21445314; http://dx.doi.org/10.1371/journal.pone.0018051.

129. Amelio I, Lena AM, Viticchiè G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, et al. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J Cell Biol 2012; 199:347-63; PMID:23071155; http://dx.doi.org/10.1083/jcb.201203134.