Conventional Therapeutic Drugs and Traditional Herbal Medicine in Prevention and Treatment of Novel Corona Virus (COVID-19): An Update

Ramakant Yadav1* and Yogesh Chand Yadav2

1Department of Neurology, Uttar Pradesh University of Medical Sciences, Saifai, Etawah – 206130, Uttar Pradesh, India; rkyadav_2003@yahoo.com

2Department of Pharmacology, Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah – 206130, Uttar Pradesh, India

*Author for correspondence

Abstract

Background: Since December 2019, severe acute respiratory syndrome coronavirus to developing severe acute respiratory disease originated from Wuhan, China, and further spread rapidly all over the world except very few counties. On 30th January 2020, The WHO confirmed the epidemic as a community health crisis all over world. No drug was approved for treatment but some conventional and traditional medicinal plants are being used against COVID-19 infections. Objective: The present review is to illustrate current updates on conventional and traditional herbal medicine used for deterrent and treatment of SARS-CoV-2 infection. Methods: Search engines like Scopus, Pubmed, and World Health Organization (WHO) literature on current advances about novel coronavirus (COVID-19) were reviewed. Discussion and Conclusion: Current research data indicated that the outbreaks caused by SARS MERS and COVID-19 have produced substantial community health problems. Currently, there are no vaccines for prevention or specific treatments however it can be managed by using oxygen therapy, convalescent plasma therapy, antimalarial drugs, and broad-spectrum antiviral drugs. Many traditional herbal and Chinese medicines may be useful.

Keywords: Conventional Drugs, COVID-19, Diagnosis, Traditional Herbal Medicine

1. Introduction

Recently (December 2019), a novel virus with the potential to cause respiratory illness like symptoms was discovered in urban center town, Hubei province, China1. This virus modified as a more advanced type of virus called SARS-CoV-2 is responsible for respiratory syndrome2. On 30th January 2020, the WHO confirmed the epidemic as a community health crisis all over the world3. COVID-19 infected patients were characterized by cough, fever, and different symptoms like fatigue, myalgia, and diarrhea4,5. On 6th May 2020, 3,595,662 were infected by COVID-19, of which, 247,652 patients died in 205 countries around the World6. SARS-CoV-2 speedily spread via droplet and physical contact7. SARS-CoV-2 is associated with nursing engulfed single-stranded ribonucleic acid (ssRNA)8. Coronaviruses have prominent Ribonucleic Acid (RNA) genome and their normal size ranges from 27 to 34 kilobases9. It may be recognized by using RTPCR (real-time polymerase chain reaction) and some extent by chest computed tomography scan. Presently, there is no medicine that has proven to be the cure for COVID-19 patients10,11. In the present review we have discussed the efficiency of drugs in clinical management of novel corona virus infected patients and about some medications that are recommended for curing such patients however; their efficacy has not been proven via clinical trials.

*Author for correspondence

Article Received on: 19.07.2020 Revised on: 22.09.2020 Accepted on: 29.10.2020
2. Epidemiology

Since its emergence, the virus has spread to two hundred countries within 3-4 months. It originated from China but it affected most of the developed counties like the U.S., U.K., Germany, Spain, etc.12.

3. Transmission of COVID-19

Respiratory droplets generated by sneezing and coughing can transmit it. Infected people might spread to a number of people when they come in contact. COVID-19 may also transmit by touching the contaminated surfaces and subsequently touching one's own mouth, nose, or eyes. It may spread via the feces of COVID-19 patients. Feline coronavirus (FCoV) can spread by contact feces. It has been well documented that angiotensin-converting enzyme-2 receptor mediates spreading SARS coronavirus13.

4. Clinical Manifestations

The clinical features are inconsistent from person to person. It may be symptomatic or asymptomatic. The symptoms can be found within three to fourteen days after infection. It includes high body temperature, shortness of breath, dry cough, joints pain, diarrhea, etc.14. In an advanced stage, many clinical symptoms may appear like shortness of breath, persistent pressure with chest pain, blue-black lips or face, metabolism syndrome, and renal failure15. However, some cases may be observed as asymptomatic.

5. Diagnosis

COVID-19 patients suffer a deficiency of lymphocytes level. Whereas, many blood parameters like clotting factor time, creatinine and liver function parameters may be in high levels. Chest X-ray of COVID-19 patient usually shows bilateral infiltrates. CT scan is sensitive and specific than X-ray for the same observation. CT scans are utilized to identify symptomless COVID-19 infected patients17.

Suspected COVID-19 patient samples are collected from the upper and lower respiratory tract by a healthcare provider. These samples are analyzed by real time reverse transcription enzyme chain reaction (rRT-PCR)18,19 method to detect COVID-19.

6. Prevention

Coronavirus can be prevented by using many measures that include washing hands by soap for 20 to 40 seconds and by using alcohol-based sanitizer for cleaning hands. People should avoid touching eyes, nose, and mouth with unclean hands. People should avoid contact with the infected patient and should follow the social distance rule (about two meters distance). People should cover their face with tissue paper during a cough or sneeze. Disinfection should be practiced on a daily routine basis. People should home quarantine themselves when they feel unwell. If they feel feverish, are coughing or sneezing, and experience shortness of breath, they must consult general practitioners20.

7. Treatment with Predictable Medical Care and Medicines

No drug has been discovered to cure COVID-19, however, some drugs can be used to manage COVID-19 patients. Due to the deficiency of precise antiviral drug or immunizing agent, the core treatment approach for this infection can treatment with broad-spectrum antimicrobial agents, medical care, convalescent plasma, antiviral, and corticosteroids (as shown in Table 1).

Table 1. Predictable clinical management of SARS-CoV-2 infection patients

Approaches of clinical management	Curative agents
Oxygen therapy	Invasive and non-invasive mechanical ventilation
Convalescent plasma	Convalescent plasma
Antiviral	Chloroquine, Favipiravir, Oseltamivir, Remdesivir, Interferon, Ribavirin
Corticosteroids	Methylprednisolone
7.1 Oxygen Therapy
Oxygen therapy is a first-line medical care during hypoxia condition of respiratory illness of COVID-19 patients. The aim of clinical management is to maintenance saturation >90%21.

7.2 Convalescent Plasma Medical Care
Yoo (2020) has reported that convalescent plasma could also be used for management of Corona Virus -1922.

7.3 Chloroquine
Chloroquine, an antimalarial drug is also used in the treatment. In-vitro studies have suggested that chloroquine might inhibit COVID-1923. On 21st March 2020, the Indian Council of Medical Research has suggested that hydroxychloroquine can be used as prophylaxis.

7.4 Remdesivir
It is mainly to treat the Ebola virus. Many studies have reported that remdesivir is highly effective against the novel coronavirus in isolated cells24.

7.5 Lopinavir and Protease Inhibitor
They are used for HIV positive patient management. Lopinavir, protease inhibitor, and ribavirin combination have a synergistic impact. Recently, it was reported that lopinavir and protease inhibitor or alone had no significant efficacy. However, a combination of these three drugs showed good efficacy25.

7.6 Favilavir
In China, favilavir has been approved for the treatment of COVID-19. It was mainly used in the treatment of nose and throat inflammation. It may interrupt the transcription SARS-CoV-2 virus because it has an RNA genome. Recently it was accepted for the treatment of COVID-19 in some counties26.

7.7 Steroids
Most patients recovered with steroid therapy unless critical. Steroids can be prescribed as a preventive impact at an initial stage of infection. Dexamethasone reduces fluid accumulation in the body at a normal therapeutic dose27.

7.8 Tocilizumab
It is a monoclonal antibody and is used for treating rheumatoid arthritis. It blocks the functions of interleukin-6. It has been well documented that interleukin-6 participates as an inflammation mediator and further leading to chronic disease. Thus, this drug may be used to manage cytokine mediated respiratory diseases. Therefore, tocilizumab can make a significant effect in COVID-19 patients28.

8. Treatment with Traditional Herbal Medicine
Out of some traditional herbal medicines, thirteen were reported to have a significant effect on COVID-1929 and twenty-six herbs were significantly effective for the treatment of virus causing respiration metastasis infections30. Twenty-two, herbal extracts were analyzed and reported to have significant inhibition against Mouse Infectious disease Virus (MHV). These products might be used as anti-COVID medicine31. It was well documented that Litchi seed flavonoids could exploit or inhibit SARS-CoV protease because this flavonoid inhibits the peptidase activity of coronavirus32. Many studies mention about traditional medicines like San Wu Huangqin boiling, Lianhuaqingwen Capsule, and Yinhuapinggan grain, rule Qiao San, Yu Ping Feng San, Ma Xin Gan Shi Tang, Shuang Huang Lian - all these possess antiviral effects, which may inhibit proliferation and replication of virus mediated respiratory illness33–36. It was also reported that traditional Chinese flavoring medicines have significant strength to prevent and treat respiratory illness37–39. Further the combination drug of traditional medicinal plant with synthetic regime minimized unfavorable effects40, 41. Novel herbal products can be isolated from traditional medicinal plants that are used for the prevention and cure of various human disorders52. Researchers have reported many herbal formulæ containing traditional medicinal plants for clinical management of the SARS-CoV disease (Table 2).
As we know, COVID-19 is modified from SARS-CoV, so these drugs may also be used for the treatment. It was found that 3-chymotrypsin-like proteolytic enzyme (3CLpro) plays a significant role in virus replication. So, this enzyme has been targeted by using some natural products for clinical management of SARS-CoV. Many scientific studies indicated that traditional Chinese medicines extract has significant potential to reduce the proteolytic enzyme 3CLpro activity. Houttuynia cordata extract and litchi seeds were used for the extraction of flavonoids which have significantly inhibited respiratory syndrome. These natural products are significantly inhibiting 3CLpro enzyme leading to the treatment against respiratory infections. It has also been reported that many flavonoids specifically like isobavaschalcone, herbacetin, 3-β-D-glucoside, and quercetin significantly impair the proteolytic enzyme 3CL activity of MERS-CoV. Yu et al. have documented well about natural product scutellarein and myricetin, which have powerfully impaired helicase enzyme of SARS-CoV. Whereas, helicase enzyme helps replication of the virus. Wu et al. carried out huge-level screening of drugs, traditional medicinal plant products, and synthetic drugs for their effectiveness against SARS-CoV through virus and Vero E6 cell line assay. They found that ginsenoside-Rb1, aescin of horse chestnut, Sandril, and Japanese honeysuckle were inhibiting replication of SARS-CoV.

Table 2. Treatment SARS-CoV infection by using herbal formulation

Herbal formulation	Compositions	Therapeutic effect
Yin Qiao San^{42, 43}	It is composed of many traditional Chinese medicine such as Rhizoma Phragmitis, Herba Schizonepetae, Fructus arctii, Radix Platycodonis, Lonicerae, Herba Lophatheri, Fermented soybean, Radix Glycyrrhizae, Herba Mentheae, and Fructus Forsythiae,	Improved the functions of the upper respiratory tract
Yu Ping Feng San^{44–46}	It is composed of many traditional medicine which includes Astragalus membranaceus, Saposhnikoviae Radix, Astragali radix and Atractylodes macrocephala,	It regulates immune system and acts as antiviral, anti-inflammatory.
Sang Ju Yin and Yu Ping Feng San⁴⁷	It composed of Hrysanthemum, mulberry leaves along with six other herbs.	Its inhibited viral infection and improved immune regulation
Lian Hua Qing Wen Capsule⁴⁸	It has many herbal ingredient like Glycyrrhizae, uralensis, Dryopteris crassirhizoma, Gypsum Fibrosom, Mentha haplocalyx isatis indigotica, Forsythia suspensa, Pogostemon cablin, Rheum palmatum, Houttuynia cordata, Ephedra sinica, Rhodiola rosea, Armeniaca sibirica and Lonicera japonica	It inhibited viral infection and improved immune suppression
Shuang Huang Lian⁴⁹	It is made by using herbs like Forsythia Suspense, Lonicera japonica, and Scutellaria baicalensis,	It inhibited SARS-CoV-2 and improved immunity
Ma Xin Gan Shi Tang^{50, 51}	It is also combinations of many herbs which includes Anemarrhenae rhizoma, Ephedrae herba, Dioscoreae rhizoma, Glycyrrhizae radix, Gypsum fibrosom, Arecae semen, Magnoliace officinalis cortex, Tsaoke fructus, Da Yuan Yin, Scutellariae radix and Armeniacae semenamarum	It assisted to air away ventilation passage to the lung and have anti-SARS-CoV activity

9. Conclusion

It is concluded that the novel coronavirus (COVID-19) is extremely infectious and it spreads via droplets from person to person. It may be prevented by personal quarantine and maintaining social distance to break the cycle. Currently, there are no specific vaccines reported till now, but this infection might well be treated by predictable medical aid, drugs, some traditional flavoring medication.
10. References

1. Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020; 12(2):E135. https://doi.org/10.3390/v12020135. PMid:31991541 PMCid:PMC7077245

2. Burki TK. Coronavirus in China. Lancet Respiratory Medicine. 2020. https://doi.org/10.1016/S2213-2600(20)30056-4

3. World Health Organization. WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020.

4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; S0140-6736(0120):30183–5.

5. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv; 2020. https://doi.org/10.1101/2020.02.06.20020974

6. World Health Organization COVID-19 Coronavirus Pandemic [Internet]. 2019. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

7. Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; S0140-6736(0120):30154–9.

8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020; 395(10223):507–13. https://doi.org/10.1016/S0140-6736(0120):30183–5.

9. Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. Journal of Virology. 2016; 90(16):7415–28. https://doi.org/10.1128/JVI.00080-16. PMid:27279608 PMCid:PMC4984655

10. Emery SL, Erdman DD, Bowen MD et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerging Infectious Diseases. 2004; 10:311–16. https://doi.org/10.3201/eid1002.030759. PMid:15030703 PMCid:PMC3322901

11. Gaunt ER, Hardie A, Claas EC et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. Journal of Clinical Microbiology. 2010; 48:2940–7. https://doi.org/10.1128/JCM.00636-10. PMid:20554810 PMCid:PMC2916580

12. Jan H, Faisal S, Khan A, Khan S, Usman H, Liaqat R, et al. COVID-19: Review of epidemiology and potential treatments against 2019 novel coronavirus. Discoveries (Craiova). 2020; 26; 8(2):e108. https://doi.org/10.15190/d.2020.5. PMid:32377559 PMCid:PMC199242

13. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005; 309 (5742):1864–8. https://doi.org/10.1126/science.1116480. PMid:16166518

14. Wang, Wu Q, Xu W, Qiao B, Wang J, Zheng H, et al. Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan. medRxiv preprint; 2020. p. 1–18. https://doi.org/10.1101/2020.02.12.20022327

15. Symptoms of novel coronavirus (2019-nCoV) | CDC [Internet]. (cited 2020 Mar 18). Available from: www.cdc.gov. 2020.

16. WHO Coronavirus Disease 2019 (COVID-19). WHO. Health topic/Cora virus; 2020.

17. Singhal T. A review of coronavirus disease-2019 (COVID-19). The Indian Journal of Pediatrics. 2020; 87(4):281–6. https://doi.org/10.1007/s12098-020-03263-6. PMid:32166607 PMCid:PMC7090728

18. Emery SL, Erdman DD, Newton BR, Winchell JM, Meyer RF, et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerging Infectious Diseases. 2004; 10:311–16. https://doi.org/10.3201/eid1002.030759. PMid:15030703 PMCid:PMC3322901

19. Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. Journal of Clinical Microbiology. 2010; 48:2940–7. https://doi.org/10.1128/JCM.00636-10. PMid:20554810 PMCid:PMC2916580

20. Ip VHY, Sondekoppam RV, Ozelsel TJP, Tsui BCH Coronavirus disease 2019 (COVID-19) pandemic: International variation of Personal Protective Equipment (PPE) and Infection Prevention and Control (IPC) guidelines. Anesthesia & Analgesia. 2020; 10(1213):1–6.

21. Whittle JS, Pavlov I, Sacchetti AD, Atwood C, Rosenberg MS. Respiratory support for adult patients with COVID-19. The Indian Journal of Pediatrics. 2020; 2020. https://doi.org/10.1126/science.1116480. PMid:16166518

22. Yoo JH. Convalescent plasma therapy for coronavirus infection in Wuhan. medRxiv preprint; 2020. p. 1–18. https://doi.org/10.1101/2020.02.12.20022327

23. Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacology Research & Perspectives. 2017; 5(1):e00293 https://doi.org/10.1002/prp2.293. PMid:28596841 PMCid:PMC5461643
24. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research. 2020; 30(3):269–71. https://doi.org/10.1038/s41422-020-0282-0. PMid:32020029 PMCid:PMC7054408

25. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 3:10. 1001. https://doi.org/10.1001/jama.2020.3204. PMid:32125362 PMCid:PMC7054855

26. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial Virological and Clinical Findings. Thorax. 2004; 59(3):252–6. https://doi.org/10.1136/thorax.2003.012658. PMid:14985565 PMCid:PMC1746980

27. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. Journal of Medical Virology. 2020; 92(5):479–90. https://doi.org/10.1002/jmv.25707. PMid:32052466 PMCid:PMC7166986

28. Lee N, Chan KCA, Hui DS, Ng EK, Wu A, Chiu RW, et al. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. Journal of Clinical Virology. 2004; 31(4):304–9. https://doi.org/10.1016/j.jcv.2004.07.006. PMid:15494274 PMCid:PMC7108313

29. Ferrey AJ, Choi G, Hanna RM, Chang Y, Tantisattamo E, Ivaturi K, et al. A case of novel coronavirus disease 19 in a chronic hemodialysis patient presenting with gastroenteritis and developing severe pulmonary disease. American Journal of Nephrology. 2020; 28:1–6. https://doi.org/10.1159/000507417. PMid:32227213 PMCid:PMC7179539

30. Hu W, Fu W, Wei X, Yang Y, Lu C, Liu Z. A network pharmacology study on the active ingredients and potential targets of Tripterygium wilfordii Hook for treatment of rheumatoid arthritis. Evidence-Based Complementary and Alternative Medicine. 2019; 5276865:1–16. https://doi.org/10.1159/2019/5276865. PMid:31118961 PMCid:PMC6500618

31. Zhang W, Huai Y, Miao Z, Qian A, Wang Y. Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery. Frontiers in Pharmacology. 2019; 10(9743):1–6. https://doi.org/10.3389/fphar.2019.00743. PMid:31379563 PMCid:PMC6657703

32. Yang Y, Islam MS, Wang J, Li Y, Xin C. Traditional Chinese medicine in the treatment of patients infected with 2019-novel coronavirus (SARS-CoV-2): A review and perspective. International Journal of Biological Sciences. 2020; 16:1708–17. https://doi.org/10.7150/ijbs.45538. PMid:32226288 PMCid:PMC7098036

33. Zhang H, Chen Q, Zhou W, Gao S, Lin H, Ye S, et al. Chinese medicine injection shuanghuanglian for treatment of acute upper respiratory tract infection: A systematic review of randomized controlled trials. Evidence-Based Complementary and Alternative Medicine. 2013; 2013:987326. https://doi.org/10.1155/2013/987326. PMid:23606893 PMCid:PMC3625553
44. Lau J T, Leung P C, Wong E L, Fong C, Cheng K F, Zhang S C, et al. The use of an herbal formula by hospital care workers during the severe acute respiratory syndrome epidemic in Hong Kong to prevent severe acute respiratory syndrome transmission, relieve influenza-related symptoms, and improve quality of life: a prospective cohort study. Journal of Alternative and Complementary Medicine. 2005; 11:49–55. https://doi.org/10.1089/acm.2005.11.49. PMid:15750363

45. Du CY, Zheng KY, Bi CW, Dong TT, Lin H, Tsim KW. Yu Ping Feng San, an ancient Chinese herbal decoction, induces gene expression of anti-viral proteins and inhibits neuraminidase activity. Phytotherapy Research. 2015; 29:656–61. https://doi.org/10.1002/ptr.5290. PMid:25586308

46. Gao J, Li J, Shao X, Jin Y, Lu X W, Ge J E, et al. Antiinflammatory and immunoregulatory effects of total glucosides of Yupingfeng powder. Chinese Medical Journal (Engl). 2009; 122:1636–41.

47. Poon PM, Wong C K, Fung K P, Fong C Y, Wong E L, Lau J T, et al. Immunomodulatory effects of a traditional Chinese medicine with potential antiviral activity: a self-control study. American Journal of Chinese Medicine. 2006; 34:13–21. https://doi.org/10.1142/S0192415X0600359X. PMid:16437735

48. Dong L, Xia J W, Gong Y, Chen Z, Yang H-H, Zhang J, et al. Effect of Lianhuaqingwen capsules on airway inflammation in patients with acute exacerbation of chronic obstructive pulmonary disease. Evidence-Based Complementary and Alternative Medicine. 2014; 2014:1–11. https://doi.org/10.1155/2014/637969. PMid:24971150 PMCID:PMC4058171

49. Gao Y, Fang L, Cai R, Zong C, Chen X, Lu J, et al. Shuang-Huang-Lian exerts anti-inflammatory and anti-oxidative activities in lipopolysaccharide-stimulated murine alveolar macrophages. Phytomedicine. 2014; 21:461–9. https://doi.org/10.1016/j.phymed.2013.09.022. PMid:24192210

50. Xiao G L, Song K, Yuan C J, et al. A literature report on the treatment of SARS by stages with traditional Chinese medicine. J Emerg Chin Med Hunan. 2005: 53-5.

51. Bao L, J M. Research progress of Da Yuan Yin on the treatment of infectious diseases. Emerg Tradit Chin Med. 2010; 2:263–87.

52. Cragg G M, Newman D J. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta. 2013; 1830:3670–95. https://doi.org/10.1016/j.bbagen.2013.02.008. PMid:23428572 PMCID:PMC3672862

53. Luo W, Su X, Gong S, Qin Y, Liu W, Li J, et al. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. BioScience Trends. 2009; 3.