ON THE HESSIAN-CSCK EQUATIONS

BIN GUO, KEVIN SMITH AND FREID TONG

Abstract. In this paper, we propose a coupled system of complex Hessian equations which generalizes the equation for constant scalar curvature Kähler (cscK) metrics. We show this system can be realized variationally as the Euler-Lagrange equation of a Hessian version of the Mabuchi K-energy in an infinite dimensional space of k-Hessian potentials, which can be seen as an infinite dimensional Riemannian manifold with negative sectional curvature. Finally, we prove an a priori C^0-estimate for this system which depends on the Entropy, which generalizes a fundamental result of Chen and Cheng [1] for cscK metrics.

1. Introduction

There has been increasing interest in recent years in two directions in the theory of geometric partial differential equations: on one hand, on systems consisting of a non-linear equation coupled with its linearization, of which the constant scalar curvature Kähler metric (cscK) is an example in complex geometry [1], and the affine Plateau problem an example from real geometry [16]; on the other hand, consideration of other elliptic equations besides the most familiar examples of the Laplacian and the Monge-Ampère equations (e.g. Harvey and Lawson on the Lagrangian equation [9], Collins-Yau on the deformed HYM equation [3], Phong-Picard-Zhang on the Fu-Yau equation [11]). In this paper, we consider a coupled system which stands at the crossroads of the above two broad lines of development, namely the coupled system of a complex Hessian equation with its linearization. We show that this system admits a natural interpretation in terms of a generalized notion of curvature, and that this notion of curvature admits, just as the standard notion, an interpretation in terms of Deligne pairings [13]. We establish the C^0 estimate for this Hessian coupled system, and give an interpretation of this coupled system as a variational problem for an energy functional in an infinite dimensional Riemannian manifold of negative sectional curvature, generalizing the constructions of Donaldson [4], Mabuchi [10], and Semmes [15].

We now describe the coupled system we are interested in. Let (X, ω) be a compact Kähler manifold. We consider the following coupled system of equations for a pair of smooth functions (φ, F):

\[
\begin{align*}
(\omega + \sqrt{-1} \partial \bar{\partial} \varphi)^k \wedge \omega^{n-k} &= e^F \omega^n, \quad \sup_X \varphi = 0 \\
\Delta_G F &= -\overline{\alpha} + \text{tr}_G \alpha,
\end{align*}
\]

where $G^{ij} = k \frac{\sqrt{-1}}{\omega^n} \frac{d_{\omega}^{i} \wedge d_{\bar{\omega}}^{\bar{j}} \wedge \omega_{\varphi}^{k-1} \wedge \omega^{n-k}}{\omega^k \wedge \omega^{n-k}}$ and $\Delta_G = G^{ij} \partial_i \partial_j$ is the linearized operator associated to the nonlinear operator $\varphi \mapsto \log \frac{\omega^k \wedge \omega_{\varphi}^{n-k}}{\omega^n}$. α is a smooth $(1,1)$-form and $\overline{\alpha} = \frac{1}{V} \int_X \alpha \wedge \omega_{\varphi}^{k-1} \wedge \omega^{n-k}$ is a constant making the second equation of (1.1) compatible. For this system to be...
elliptic (i.e. $G^{ij} > 0$), we require φ to be admissible, which means it satisfies the condition
$$(\omega + \sqrt{-1} \partial \bar{\partial} \varphi)^j \wedge \omega^{n-j} > 0 \text{ for } j = 1, \ldots, k.$$Alternatively, φ is admissible if and only if the eigenvalues of $\omega + \sqrt{-1} \partial \bar{\partial} \varphi$ with respect to the Kähler metric ω is in the Γ_k-cone, where $\Gamma_k \subset \mathbb{R}^n$ is given by
$$\Gamma_k = \{ \lambda \in \mathbb{R}^n : \sigma_1(\lambda) > 0, \ldots, \sigma_k(\lambda) > 0 \}$$and σ_k is the elementary symmetric polynomial of degree k on \mathbb{R}^n. It is important to note that in general, the condition of being admissible for $k < n$ will depend on the background Kähler metric ω, in particular, it may not be invariant under biholomorphic maps.

We state some basic well-known properties of the cone Γ_k which will be used later. For a more thorough description of the properties of Γ_k, we refer the readers to [17].

Lemma 1. For $\lambda \in \Gamma_k$, we have
\begin{itemize}
 \item[(1)] $\sigma_{k-1,i}(\lambda) > 0$ for any $1 \leq i \leq n$, where $\sigma_{k-1,i}(\lambda) = \sigma_{k-1}(\lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_n)$.
 \item[(2)] (Garding’s inequality) For any $\mu, \lambda \in \Gamma_k$, we have the inequality
$$\sum_{i=1}^n \mu_i \frac{\partial \sigma_k(\lambda)}{\partial \lambda_i} \geq C(n, k) \sigma_k(\mu)^{\frac{1}{k}} \sigma_k(\lambda)^{\frac{k-1}{k}}.$$for some explicit constant $C(n, k)$.
\end{itemize}

2. Energy functionals

A key aspect about the cscK equation is that the equation for a cscK metric can be realized as the Euler-Lagrange equation of a Mabuchi K-energy in the space of Kähler potentials. This is true for the system (1.1) as well. In this section, we will introduce the analogue of the Mabuchi K-energy and show that it is critical points correspond precisely the solutions of (1.1).

Definition 1. We define the (generalized) Ricci curvature of ω_φ (relative to ω) as
$$\widehat{\text{Ric}}(\omega_\varphi) = -\sqrt{-1} \partial \bar{\partial} \log \omega_\varphi^k \wedge \omega^{n-k} = -\sqrt{-1} \partial \bar{\partial} f + \text{Ric}(\omega)$$where $f = \log \frac{\omega_\varphi^k \wedge \omega^{n-k}}{\omega^n}$ and $\text{Ric}(\omega)$ is the usual Ricci curvature of ω.

The generalized Ricci curvature of ω_φ lies in the first Chern class $c_1(X)$. In fact, the equation (1.1) can be viewed as an equation for the generalized Ricci curvature $\widehat{\text{Ric}}(\omega_\varphi)$. Indeed (1.1) is equivalent to the equation
$$\text{tr}_G(\widehat{\text{Ric}}(\omega_\varphi) - \text{Ric}(\omega) + \alpha) = \bar{\alpha},$$(2.1)

Viewing $\text{tr}_G(\widehat{\text{Ric}}(\omega_\varphi))$ as the generalized Scalar curvature, we can define the analogue of the Mabuchi energy, whose critical points are precisely potentials of constant generalized Scalar curvature. We will write $SH_k(X, \omega)$ the set of functions φ such that $\omega^{-1} \cdot \omega_\varphi \in \Gamma_k$ on X.

Definition 2. Given a constant \(\lambda \in \mathbb{R} \), we define the Hessian Mabuchi energy \(\mu_k \) by its variation: for a family of \(\phi_t \in SH_k(X, \omega) \), we have

\[
\frac{d}{dt} \mu_k(\phi_t) = -k \int_X \phi_t (\hat{Ric}(\omega_{\phi_t}) - \lambda \omega_{\phi_t}) \wedge \omega^{k-1}_{\phi_t} \wedge \omega^{n-k}_{\phi_t}. \tag{2.2}
\]

Since we can always add a constant to \(\mu_k \) without changing the variation, we will often also choose a normalization so that \(\mu_k(0) = 0 \).

It’s clear from this definition that the critical points of \(\mu_k \) is precisely the solution of equation 2.1 with \(\alpha = Ric(\omega) \), which is exactly those \(\omega_{\phi} \) with constant generalized Scalar curvature. However, it is not clear from this definition that \(\mu_k \) is well-defined. The following Theorem shows that \(\mu_k(\cdot) \) is well-defined and gives and explicit formula for \(\mu_k \).

Theorem 1. \(\mu_k(\varphi) \) can be expressed as follows:

\[
\mu_k(\varphi) = \frac{1}{V} \int_X \left(\log \frac{\omega^k_{\varphi} \wedge \omega^{n-k}_{\varphi}}{\omega^n_{\varphi}} + \lambda \varphi \right) \omega^k_{\varphi} \wedge \omega^{n-k}_{\varphi} - \frac{\lambda}{V(k+1)} \left(\int_X \varphi \sum_{j=0}^k \omega_{\varphi}^{k-j} \wedge \omega^{n-k+j}_{\varphi} \right)
- \frac{1}{V} \int_X \varphi \sum_{j=1}^k (Ric(\omega) - \lambda \omega) \wedge \omega_{\varphi}^{k-j} \wedge \omega^{n-k+j-1} \tag{2.3}
\]

We remark that the first integral in (2.3) corresponds to the “entropy term”, the second one to the usual \(J \)-functional, and the last one to the \(J_{Ric(\omega)-\lambda \omega} \)-functional in Kahler geometry.

Proof. It suffices for us to show the variation of \(\mu_k \) is given by the formula 2.2. For simplicity we omit the subscript \(t \) in \(\phi_t \) and write \(\phi = \phi_t \), then we compute the variation of \(\mu_k \) as defined above

\[
\frac{d}{dt} \mu_k(\phi_t) = \frac{1}{V} \int_X (\Delta_G \phi + \lambda \phi) \omega^k_{\phi} \wedge \omega^{n-k}_{\phi} + \frac{1}{V} \int_X \Delta_G \phi \left(\log \frac{\omega^k_{\phi} \wedge \omega^{n-k}_{\phi}}{\omega^n_{\phi}} + \lambda \phi \right) \omega^k_{\phi} \wedge \omega^{n-k}_{\phi}
- \frac{1}{V} \left(\int_X \lambda \phi \omega^k_{\phi} \wedge \omega^{n-k}_{\phi} \right) - \frac{1}{V} \int_X \phi \sum_{j=1}^k (Ric(\omega) - \lambda \omega) \wedge \omega^{k-j}_{\phi} \wedge \omega^{n-k+j-1}
- \frac{1}{V} \int_X \phi (Ric(\omega) - \lambda \omega) \wedge (k \omega^{k-1}_{\phi} \wedge \omega^{n-k}_{\phi} - \sum_{j=1}^k \omega^{k-j}_{\phi} \wedge \omega^{n-k+j-1})
= \frac{k}{V} \int_X \phi (Ric(\omega) - \hat{Ric}(\omega_{\phi}) + \lambda \sqrt{-1} \partial \bar{\partial} \phi) \wedge \omega^{k-1}_{\phi} \wedge \omega^{n-k}_{\phi}
- \frac{k}{V} \int_X \phi (Ric(\omega) - \lambda \omega) \wedge \omega^{k-1}_{\phi} \wedge \omega^{n-k}_{\phi}
= -\frac{k}{V} \int_X \phi (\hat{Ric}(\omega_{\phi}) - \lambda \omega_{\phi}) \wedge \omega^{k-1}_{\phi} \wedge \omega^{n-k}_{\phi} \]

\[\square\]
Given the definition of $\frac{d}{dt} \mu_k$ in (2.2), we can also compute the second variation of μ_k, which is given by

$$\frac{d^2}{dt^2} \mu_k(\varphi_t) = -\frac{k}{V} \int_X \phi \left(\widehat{\operatorname{Ric}}(\omega_\varphi) - \lambda \omega_\varphi \right) \wedge \omega_\varphi^{-k} \wedge \omega^{n-k} - \frac{k}{V} \int_X \phi \left(-\sqrt{-1} \partial \bar{\partial} \Delta_G \phi - \lambda \sqrt{-1} \partial \bar{\partial} \phi \right) \wedge$$

$$\wedge \omega_\varphi^{-k} \wedge \omega^{n-k} - \frac{k(k-1)}{V} \int_X \phi \left(\widehat{\operatorname{Ric}}(\omega_\varphi) - \lambda \omega_\varphi \right) \wedge \sqrt{-1} \partial \bar{\partial} \phi \wedge \omega_\varphi^{-2} \wedge \omega^{n-k}$$

$$= -\frac{k}{V} \int_X \phi \left(\widehat{\operatorname{Ric}}(\omega_\varphi) - \lambda \omega_\varphi \right) \wedge \omega_\varphi^{-k} \wedge \omega^{n-k} + \frac{1}{V} \int_X \Delta_G \phi \left(\Delta_G \phi + \lambda \phi \right) \omega_\varphi^k \wedge \omega^{n-k}$$

$$- \frac{k(k-1)}{V} \int_X \phi \left(\widehat{\operatorname{Ric}}(\omega_\varphi) - \lambda \omega_\varphi \right) \wedge \sqrt{-1} \partial \bar{\partial} \phi \wedge \omega_\varphi^{-2} \wedge \omega^{n-k}$$

$$= -\frac{k}{V} \int_X \left(\phi - |\partial \phi|^2_G \right) \left(\widehat{\operatorname{Ric}}(\omega_\varphi) - \lambda \omega_\varphi \right) \wedge \omega_\varphi^{-k} \wedge \omega^{n-k} + \frac{1}{V} \int_X |\Delta_G \phi|^2 \omega_\varphi^k \wedge \omega^{n-k}$$

$$+ \frac{k(k-1)}{V} \int_X \sqrt{-1} \partial \bar{\partial} \phi \wedge \bar{\operatorname{Ric}}(\omega_\varphi) \wedge \omega_\varphi^{-2} \wedge \omega^{n-k} - \frac{k}{V} \int_X |\partial \phi|^2_G \bar{\operatorname{Ric}}_G \wedge \omega_\varphi^{-1} \wedge \omega^{n-k}$$

(2.4)

Remark 1. More generally, we can also consider the α-twisted Hessian Mabuchi energy (with $\lambda = \bar{\alpha}/k$)

$$\mu_{\alpha,k}(\varphi) = \mu_k(\varphi) + \frac{k}{V} \int_0^1 \int_X \phi \left(\operatorname{Ric}(\omega) - \alpha \right) \wedge \omega_\varphi^{-k} \wedge \omega^{n-k}$$

$$= \frac{1}{V} \int_X \left(\log \frac{\omega_\varphi^k \wedge \omega^{n-k}}{\omega^n} + \alpha \varphi \right) \omega_\varphi^k \wedge \omega^{n-k} - \frac{\lambda}{V(k+1)} \left(\int_X \varphi \sum_{j=0}^k \omega_\varphi^{-j} \wedge \omega^{n-k+j} \right)$$

$$- \frac{1}{V} \int_X \varphi \sum_{j=1}^k (\alpha - \lambda \varphi) \wedge \omega_\varphi^{-j} \wedge \omega^{n-k+j-1}.$$

(2.5)

whose variation is given by

$$\frac{d}{dt} \mu_{k,\alpha}(\phi_t) = -\frac{k}{V} \int_X \phi_t \left(\widehat{\operatorname{Ric}}(\omega_{\phi_t}) - \lambda \omega_{\phi_t} - \operatorname{Ric}(\omega) + \alpha \right) \wedge \omega_{\phi_t}^{-k} \wedge \omega^{n-k}.$$

(2.6)

It follows that an ω_φ satisfying (2.1) is a critical point of $\mu_{k,\alpha}$.

2.1. The Deligne pairing and the energy μ_k.

Similar to the interpretation of the Mabuchi K-energy as the metric of some line bundle from the Deligne pairing, as shown in Phong and Sturm [13, 14] (see also [12]), we explain in this section that when X is a projective manifold, the energy functional $\mu_k(\cdot)$ in (2.2) can be regarded as the metric on some \mathbb{R}-line bundle from the Deligne pairing. Suppose L_0, \ldots, L_n are holomorphic Hermitian line bundles on X, then the Deligne pairing

$$\langle L_0, \ldots, L_n \rangle$$
is a Hermitian line bundle over a point (for the precise definition, we refer to [13]). The change of metric formula (c.f. (2.10) in [14]) states that

$$\langle L_0 \otimes O(\phi_0), \ldots, L_n \otimes O(\phi_n) \rangle = \langle L_0, \ldots, L_n \rangle \otimes O(E)$$

where $O(f)$ denotes the trivial line bundle equipped with the Hermitian metric he^{-f}, and E is given by

$$E = \int_X \sum_{j=0}^n \phi_j \wedge_{k<j} c_1(L_k \otimes O(\phi_k)) \wedge \wedge_{j<k \leq n} c_1(L_k)$$

and $c_1(L \otimes O(\phi)) = c_1(L) + \sqrt{-1} \partial \bar{\partial} \log h \in c_1(L)$. Let K_X be the canonical line bundle on X. The Kähler metric ω induces a metric $\frac{1}{V} \langle L, \ldots, L \rangle$ on K_X. We define a metrized \mathbb{R}-line bundle

$$\mathcal{M}_{k,h} = \langle K_X, L, \ldots, L \rangle^{1/V} \langle L, \ldots, L \rangle^{\lambda k/V(1+k)}$$

where L is given the metric h and K_X is equipped with the metric $\frac{1}{\omega^n}$. With the help of the formula (2.6), we can easily verify that

$$\langle K_X \otimes O(\Theta), L, \ldots, L \rangle^{k \text{ terms}} \langle L, \ldots, L \rangle^{(k+1 \text{ terms})}$$

$$= \langle K_X, L, \ldots, L \rangle^{1/V} \langle L, \ldots, L \rangle^{\lambda k/V(1+k)} \otimes O(\mu_k(\varphi)),$$

where $\Theta = \log \frac{\omega^k \wedge \omega^{n-k}}{\omega^n} \in C^\infty(X, \mathbb{R})$, and $L_\varphi = L \otimes O(\varphi)$ is the line bundle L equipped with the Hermitian metric $he^{-\varphi}$. From (2.7) and (2.3) we see that the functional $\mu_k(\varphi)$ can be interpreted as the change of a Hermitian metric on the Deligne pairing line bundle $\mathcal{M}_{k,h}$.

2.2. Space of k-Hessian potentials. Following [10], we can define a Riemannian structure on the space of k-potentials and investigate its geometry. For simplicity we will assume in this section that $\int_X \omega^n = 1$. Set

$$\mathcal{H}_k(X, \omega) = \{ u \in C^\infty(X) \mid \omega^j_u \wedge \omega^{n-j} > 0 \text{ for } j = 1, \ldots, k \}. \quad (2.8)$$

This is an open set of $C^\infty(X)$, hence we can identify the tangent space $T_u \mathcal{H}_k$ with the space of smooth functions on X. Let us define an inner product of two tangent vectors $\varphi, \psi \in T_u \mathcal{H}_k$ by

$$\langle \varphi, \psi \rangle = \int_X \varphi \psi \omega^k_u \wedge \omega^{n-k}. \quad (2.9)$$

With this inner product, we can formally view \mathcal{H}_k as an infinite dimensional Riemannian manifold.
2.3. Geodesic equation. Now we want to define a connection D that is compatible with (2.9). This means that if φ, ψ are tangent vector fields along a curve $u_t \in \mathcal{H}_k$, we should require

$$\frac{d}{dt} \langle \varphi, \psi \rangle = \langle D_{\dot{u}} \varphi, \psi \rangle + \langle \varphi, D_{\dot{u}} \psi \rangle. \quad (2.10)$$

Integrating by parts shows that

$$\frac{d}{dt} \langle \varphi, \psi \rangle = \int_X \left\{ \left(\dot{\varphi} - \frac{1}{2} G_{p\bar{q}}(\dot{u}_p \varphi_p + \varphi_p \dot{u}_p) \right) \psi + \varphi \left(\dot{\psi} - \frac{1}{2} G_{p\bar{q}}(\dot{u}_p \psi_p + \psi_p \dot{u}_p) \right) \right\} \omega^k_u \wedge \omega^{n-k}. \quad (2.11)$$

Combining (2.10) and (2.11) motivates the following definition of a connection on $\mathcal{H}_k(X, \omega)$:

$$D_{\dot{u}} \varphi = \dot{\varphi} - \frac{1}{2} G_{p\bar{q}}(\dot{u}_p \varphi_p + \varphi_p \dot{u}_p). \quad (2.12)$$

Thus we see that the equation $D_{\dot{u}} \ddot{u} = 0$ for a geodesic in this setting is

$$\ddot{u} - G_{p\bar{q}} \dot{u}_p \dot{u}_p = 0. \quad (2.13)$$

Similar to [10, 15, 4], we can recast this as a degenerate Hessian equation on a product manifold of dimension $n + 1$. First we complexify the time variable t by adding an imaginary part, and assume everything is independent of the imaginary part of t. Then multiplying equation (2.13) by the term $\sqrt{-1} dt \wedge d\bar{t} \wedge \omega^k_u \wedge \omega^{n-k}$, we get

$$(u_{\bar{t}} - G_{p\bar{q}} u_{\bar{q}} u_p) \sqrt{-1} dt \wedge d\bar{t} \wedge \omega^k_u \wedge \omega^{n-k} = 0,$$

which is equivalent to the following degenerate, homogenous Hessian equation on the product manifold $M \times \mathbb{C}_t$:

$$(\omega + \sqrt{-1} \partial \bar{\partial} u)^{k+1} \wedge \omega^{n-k} = 0. \quad (2.14)$$

Thus equation for geodesics segments joining two potentials φ_0, φ_1 can be formulated as the following boundary value problem for a homogenous degenerate Hessian equation.

$$\begin{cases}
(\omega + \sqrt{-1} \partial \bar{\partial} u)^{k+1} \wedge \omega^{n-k} = 0 \\
u(\cdot, t) = \varphi_0 \text{ for } \text{Re } t = 0 \\
u(\cdot, t) = \varphi_1 \text{ for } \text{Re } t = 1
\end{cases} \quad (2.15)$$

There are some major analytic difficulties for solving the geodesic equation arising from the fact that it is degenerate in two different ways: not only is data on the right hand side of the equation is zero, but also the $(1,1)$-form ω is also degenerate in the t direction. This causes a lot of analytic difficulties, and we plan to investigate the existence and regularity of geodesics for this system in a subsequent work.

2.4. Curvature of \mathcal{H}_k. In the rest of this section, we compute the curvature of D and prove the following theorem.

Theorem 2. The sectional curvature of D on \mathcal{H}_k is non-positive.
Proof. First we write the connection on H_k as

$$D_q \varphi = \dot{\varphi} - Q(\nabla \dot{u}, \nabla \varphi).$$

where

$$Q(\nabla \dot{u}, \nabla \psi) = \frac{1}{2} G^{pq}(u_q \varphi_p + \varphi_q \dot{u}_p) = \frac{k \sqrt{-1(\partial \varphi \wedge \bar{\partial} \varphi + \partial \varphi \wedge \bar{\partial} \bar{\partial} \varphi)} \wedge \omega^{-k} \wedge \omega^{n-k}}{\omega^{k} \wedge \omega^{n-k}}.$$

Suppose that $u(x, t, s)$ is a family of k-potentials, and let R be the curvature of D, then we compute $R(u_t, u_s)\eta$,

$$R(u_t, u_s)\eta = D_t(\eta_t - Q(\nabla \eta, \nabla u_t)) - D_s(\eta_t - Q(\nabla \eta, \nabla u_t))$$

$$= -\frac{\partial}{\partial t} Q(\nabla \eta, \nabla u_t) + Q(\nabla u_t, \nabla (\eta_t - Q(\nabla \eta, \nabla u_t)))$$

$$+ Q(\nabla u_t, \nabla (\eta_t - Q(\nabla \eta, \nabla u_t)))$$

$$= \frac{k(k-1)}{2} \frac{\sqrt{-1(\partial \eta \wedge \bar{\partial} \eta_t + \partial \eta_t \wedge \bar{\partial} \eta) \wedge \sqrt{-1\partial \bar{\partial} u_s \wedge \omega^{-k} \wedge \omega^{n-k}}}{\omega^{k} \wedge \omega^{n-k}}$$

$$- \frac{k(k-1)}{2} \frac{\sqrt{-1(\partial \eta \wedge \bar{\partial} u_t + \partial u_t \wedge \bar{\partial} \eta) \wedge \sqrt{-1\partial \bar{\partial} u_s \wedge \omega^{-k} \wedge \omega^{n-k}}}{\omega^{k} \wedge \omega^{n-k}}$$

$$+ Q(\nabla \eta, \nabla u_t) \Delta_G u_t - Q(\nabla \eta, \nabla u_t) \Delta_G u_s$$

$$+ Q(\nabla u_t, \nabla Q(\nabla \eta, \nabla u_s)) - Q(\nabla u_t, \nabla Q(\nabla \eta, \nabla u_t))$$

$$= \int_X u_t \sqrt{-1(\partial u_s \wedge \bar{\partial} u_t + \partial u_t \wedge \bar{\partial} u_s) \wedge \sqrt{-1\partial \bar{\partial} u_s \wedge \omega^{-k} \wedge \omega^{n-k}}}$$

$$- k(k-1) \int_X u_t \sqrt{-1} \partial u_s \wedge \bar{\partial} u_s \wedge \sqrt{-1}\partial \bar{\partial} u_s \wedge \omega^{n-k}$$

$$+ \int_X (Q(\nabla u_s, \nabla u_t)^2 - Q(\nabla u_s, \nabla u_s) Q(\nabla u_t, \nabla u_t)) \omega^{k} \wedge \omega^{n-k}$$

$$= k(k-1) \int_X (\sqrt{-1} \partial u_s \wedge \bar{\partial} u_s) \wedge (\sqrt{-1} \partial u_t \wedge \bar{\partial} u_t) \wedge \omega^{k-2} \wedge \omega^{n-k}$$

$$+ \int_X (Q(\nabla u_s, \nabla u_t)^2 - Q(\nabla u_s, \nabla u_s) Q(\nabla u_t, \nabla u_t)) \omega^{k} \wedge \omega^{n-k}$$

If we fix a normal coordinate where $g_{ij} = \delta_{ij}$, $u_{ij} = (\lambda_{i} - 1) \delta_{ij}$ and $\partial u_t = X_t$, $\partial u_s = Y_t$, then we have

$$\langle R(u_t, u_s)u_s, u_t \rangle = k(n-k)! \int_X \sum_{ij} \sigma_{k-2,ij} \frac{1}{2}(|X_i|^2|Y_j|^2 + |X_j|^2|Y_i|^2 - X_i Y_i Y_j X_j - Y_i X_i X_j Y_j)$$

$$+ k(n-k)! \int_X \sum_{ij} \sigma_{k-1,ij} \frac{1}{4} \sigma_k (X_i Y_i X_j Y_j + X_i Y_j X_j Y_i + Y_i X_i X_j Y_j + Y_i X_j X_j Y_i).$$
\[-k!(n-k)! \int_X \sum_{ij} \frac{\sigma_{k-1,i} \sigma_{k-1,j}}{\sigma_k} |X_i|^2 |Y_j|^2 \]
\[= k!(n-k)! \int_X \sum_{ij} \sigma_{k-2,ij} (|X_i|^2 |Y_j|^2 - X_i \bar{Y}_j X_j) \]
\[+ k!(n-k)! \int_X \sum_{ij} \frac{\sigma_{k-1,i} \sigma_{k-1,j}}{2\sigma_k} (\text{Re}(X_i \bar{Y}_i X_j Y_j) + X_i \bar{Y}_i Y_j X_j) \]
\[= k!(n-k)! \int_X \sum_{ij} \left(\sigma_{k-2,ij} - \frac{\sigma_{k-1,i} \sigma_{k-1,j}}{\sigma_k} \right) \left(\frac{1}{2} (|X_i|^2 |Y_j|^2 + |Y_i|^2 |X_j|^2) - X_i \bar{Y}_i Y_j X_j) \right) \]

Lemma 2. For any \(i, j\), the terms
\[\sigma_{k-2,ij} - \frac{\sigma_{k-1,i} \sigma_{k-1,j}}{\sigma_k}\]
are non-positive.

Proof. The inequality we have to show is equivalent to
\[\sigma_{k-2,ij} \sigma_k \leq \sigma_{k-1,i} \sigma_{k-1,j}.\]
If we expand both sides, the terms on each side that contains either a multiple \(\lambda_i\) or a multiple of \(\lambda_j\) will cancel, and it suffices to look at only terms that doesn’t contain \(\lambda_i\) or \(\lambda_j\). Therefore the inequality is equivalent to
\[\sigma_{k-2,ij} \sigma_{k,ij} \leq \sigma_{k-1,ij}^2\]
which follows from Newton’s inequality. \(\square\)

We remark that Lemma 2 is stronger than the well-known fact that \(\log \sigma_k(\lambda)\) is concave in \(\Gamma_k\). By Young’s inequality, for each \(i, j\) we have
\[\frac{1}{2} (|X_i|^2 |Y_j|^2 + |X_j|^2 |Y_i|^2) \geq |X_i||Y_j||Y_i||X_j|\]
Therefore each term in the sum
\[\sum_{ij} \left(\sigma_{k-2,ij} - \frac{\sigma_{k-1,i} \sigma_{k-1,j}}{\sigma_k} \right) \left(\frac{1}{2} (|X_i|^2 |Y_j|^2 + |Y_i|^2 |X_j|^2) - \text{Re}(X_i \bar{Y}_i Y_j X_j) \right)\]
is non-positive, and hence the sectional curvature \(R\) of the \(L^2\) metric on \(\mathcal{H}_k\) is non-positive, which proves Theorem 2. \(\square\)

3. \(C^0\)-estimate

In this section, we prove a \(C^0\) estimate for the system (1.1) depending on a generalized entropy. The main result of this section is a direct counterpart of Theorem 5.1 in [1].

Theorem 3. Let \((\varphi, F)\) be a smooth solution to (1.1), then a bound on \(\int_X e^{\text{tr} F} |F| \omega^n\) implies a bound for \(\|F\|_\infty\) and \(\|\varphi\|_\infty\).
Before we present the proof, let us remark that by a result from [5, 6], using just the first equation in (1.1), we can bound the L^∞ norm of φ if the e^F is bounded in L^p for $p > \frac{n}{k}$. However, this estimate fails when $p = \frac{n}{k}$. Our result can be seen as a refinement of their result for the coupled system.

3.1. Proof. We begin with the following lemma which gives a lower bound on $\det G^{ij}$.

Lemma 3. There is a constant $C = C(n, k)$ such that

$$\det(G^{ij}) \geq C(n, k)\sigma_k^{-\frac{n}{k}}.$$

Proof. We denote the eigenvalues of ω_φ (w.r.t. ω) by $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Gamma_k$. Then $G^{ij} = \sigma_k(\lambda)^{-1} \frac{\partial \sigma_k(\lambda)}{\partial \lambda_i} \delta_{ij}$. By Garding’s inequality (Lemma 1) we know that if $\mu = (\mu_1, \ldots, \mu_n) \in \Gamma_k$, then

$$\sum_{i=1}^n \mu_i \frac{\partial \sigma_k}{\partial \lambda_i} \geq C(n, k)\sigma_k(\mu)^{\frac{1}{n}}\sigma_k(\lambda)^{-\frac{k}{n}}.$$

Taking infimum over all $\mu \in \Gamma_n$ with $\prod_{i=1}^n \mu_i = 1$, we see the LHS of the above becomes $n(\prod_{i=1}^n \frac{\partial \sigma_k(\lambda)}{\partial \lambda_i})^{1/n}$, and the RHS is bounded below by

$$C(n, k)\sigma_n(\mu)^{\frac{1}{n}}\sigma_k(\lambda)^{-\frac{k-1}{n}} = C(n, k)\sigma_k(\lambda)^{-\frac{k-1}{n}}.$$

Combining these inequalities the lemma follows straightforwardly.

As in [1], we introduce an auxiliary complex Monge-Ampère equation to prove the C^0 estimate. For notation convenience we denote $\Phi(F) = \sqrt{F^2 + 1}$ and

$$A_F = \int_X e^{\frac{n}{2} F} \Phi(F) \omega^n.$$

A_F is bounded by our assumption. We consider the complex MA equation

$$\begin{cases}
\omega^n = \frac{e^{\frac{n}{2} F} \Phi(F)}{A_F} \omega^n, & \sup_X \psi = 0 \\
\omega_\psi = \omega + \sqrt{-1} \partial \bar{\partial} \psi > 0,
\end{cases}$$

which admits a unique solution by Yau’s theorem [18]. The lemma below is the key step to obtain the L^∞ estimate of φ, and the proof follows closely the ABP-type argument in [1] (see also [6]).

Lemma 4. For any $\varepsilon > 0$, there exist constants $\lambda > 0$ and $C = C(n, k, \varepsilon) > 0$ such that

$$F + \varepsilon \varphi - \lambda \varphi \leq C.$$

Proof. For notation convenience we denote $\phi(t) = \phi_\delta(t) = t + \sqrt{t^2 + \delta} > 0$ which converges to $\max(t, 0)$ as $\delta \to 0$. Here $\delta > 0$ is a small number which will go to zero. We also denote $f := F + \varepsilon \varphi - \lambda \varphi$ for notation simplicity and we will look at $\phi(f)$ which converges to f_+ as $\delta \to 0$ and is a regularization of $2f_+$.
We define a \textit{smooth} function

\[H = \phi(f)^q, \]

where \(q = 1 + \frac{1}{2n} > 1 \) is constant. Since \(X \) is compact, we may assume \(H \) achieves its maximum at \(x_0 \) and \(\max_X H = M > 1 \). Let \(r = r(X, \omega) > 0 \) be the injectivity radius of \((X, \omega)\) as a Riemannian manifold. So we can identify the geodesic ball \(B_r(x_0) \) as the Euclidean ball \(B_{\mathbb{C}^n}(0, r) \) for simplicity. Let \(\theta \in (0, 1) \) be

\[\theta := \min\left\{ \frac{r^2}{1000M^1/n}, \frac{1}{10n} \right\} < \frac{1}{10}. \] (3.2)

Choose an auxiliary smooth function \(\eta \) defined on \(B_r(x_0) \) so that \(\eta = 1 \) on \(B_{r/4}(x_0) \) and \(\eta = 1 - \theta \) on \(B_{3r/4}(x_0) \), and \(\eta \) also satisfies

\[|\nabla \eta|_g^2 \leq \frac{100\theta^2}{r^2}, \quad |\nabla^2 \eta|_g \leq \frac{10\theta}{r^2}, \]

where we identify \(\omega \) with its associated Riemannian metric \(g \).

We calculate

\[\Delta_G(H \eta) = \eta \Delta_G H + H \Delta_G \eta + 2\text{Re}(G^{j\bar{i}} \nabla_j \nabla_i \eta). \] (3.3)

Observe that (below for a function \(f \), \(|\nabla f|_G^2 = G^{j\bar{i}} \nabla_j f \nabla_i f \))

\[H \Delta_G \eta = H \text{tr}_G \sqrt{-1} \partial \bar{\partial} \eta \geq -H \frac{10\theta}{r^2} \text{tr}_G \omega. \]

And

\[\text{Re}(G^{j\bar{i}} \nabla_j \nabla_i \eta) = q \phi(f)^q - 1 \text{Re}(G^{j\bar{i}} \nabla_j \phi(f) \nabla_i \eta) \]

\[\geq - \frac{q(q - 1)}{4} \phi(f)^{q-2} |\nabla \phi(f)|_G^2 - \frac{q}{q - 1} \phi(f)^q |\nabla \eta|_G^2; \]

\[\geq - \frac{q(q - 1)}{4} \phi(f)^{q-2} |\nabla \phi(f)|_G^2 - \frac{q}{q - 1} \phi(f)^q \frac{10\theta^2}{r^2} \text{tr}_G \omega. \]

And

\[\eta \Delta_G H = q \eta \phi(f)^q - 1 \Delta_G \phi(f) + q(q - 1) \eta \phi(f)^{q-2} |\nabla \phi(f)|_G^2; \]

\[= q \eta \phi(f)^q - 1 \phi'(f) \Delta_G f + q \eta \phi(f)^{q-1} \phi''(f) |\nabla f|_G^2 + q(q - 1) \eta \phi(f)^{q-2} |\nabla \phi(f)|_G^2. \]

We note that the middle term above is nonnegative due to the fact that

\[\phi''(t) = \frac{1}{\sqrt{t^2 + \delta}} - \frac{t^2}{(\sqrt{t^2 + \delta})^3} > 0 \]

For the first term we calculate

\[\Delta_G f = \Delta_G (F + \epsilon \psi - \lambda \varphi) = \text{tr}_G \alpha - \bar{\alpha} + \epsilon \text{tr}_G \omega \psi - \epsilon \text{tr}_G \omega - \lambda k + \lambda \text{tr}_G \omega \]

\[\geq (\lambda - \epsilon) \text{tr}_G \omega + \text{tr}_G \alpha - C(n, k, \alpha) + \epsilon n (\text{det} G \cdot \det \omega_\psi)^{1/n} \]

\[\geq (\lambda - \epsilon) \text{tr}_G \omega + \text{tr}_G \alpha - C(n, k, \alpha) + \epsilon n (\text{det} G \cdot \text{det} \Phi(F) A_F^{-1})^{1/n} \]

\[\geq (\lambda - \epsilon) \text{tr}_G \omega + \text{tr}_G \alpha - C(n, k, \alpha) + c(n, k) \epsilon \Phi(F)^{1/n} A_F^{-1/n}, \]
where in the second inequality we use Lemma 3. Plugging these inequalities into (3.3), if we choose \(\lambda = 10 + \sup_X |\alpha|_\omega \)

\[
\Delta_G(H\eta) \geq -\frac{10\theta}{r^2} \phi(f)^q \text{tr}_G \omega - \frac{q}{q-1} \phi(f)^q \frac{10\theta^2}{r^2} \text{tr}_G \omega \\
+ q\phi(f)^{q-1}\phi'(f) (\text{tr}_G((\lambda - \varepsilon)\omega + \alpha) + c(n, k)\varepsilon\Phi(F)^{1/n}A_F^{-1/n} - C)
\]

\[
\geq q\phi(f)^{q-1}\left(2\phi'(f) \text{tr}_G \omega - \frac{10\theta}{r^2} \phi(f) \text{tr}_G \omega \right)
\]

\[
- \frac{10\theta^2}{(q-1)r^2} \phi(f) \text{tr}_G \omega + c(n, k)\phi'(f)\varepsilon\Phi(F)^{1/n}A_F^{-1/n} - C\phi'(f).
\]

To deal with RHS in the equation (3.4), note that on the set \(\{ f \leq 0 \} \)

\[
\phi(f) = f + \sqrt{f^2 + \delta} = \frac{\delta}{\sqrt{f^2 + \delta} - f} \leq \sqrt{\delta}.
\]

and

\[
1 \geq \phi'(f) = 1 + \frac{f}{\sqrt{f^2 + \delta}} = \frac{\phi(f)}{\sqrt{f^2 + \delta}} \geq 0.
\]

So the in the set \(\{ f \leq 0 \} \) RHS of (3.4) is

\[
\geq q\phi(f)^{q-1}\left(\frac{10\theta}{r^2} \sqrt{\delta} \text{tr}_G \omega - \frac{10\theta^2}{(q-1)r^2} \sqrt{\delta} \text{tr}_G \omega - C\right)
\]

On the other, on the set \(\{ f > 0 \} \), we know \(\phi'(f) > 1 \), so the RHS of (3.4) is

\[
\geq q\phi(f)^{q-1}\left(c(n, k)\varepsilon\Phi(F)^{1/n}A_F^{-1/n} - C\right),
\]

where in the last inequality we use the choice of \(\theta \) in (3.2) and the fact that \(\phi(f) \leq M^{1/q} \).

Combining the above two cases, we obtain that

\[
\Delta_G(H\eta) \geq q\phi(f)^{q-1}(c(n, k)\varepsilon\Phi(F)^{1/n}A_F^{-1/n} - C)\chi_{\{f > 0\}}
\]

\[
- q\phi(f)^{q-1} \left(\frac{10\theta}{r^2} \sqrt{\delta} \text{tr}_G \omega + \frac{10\theta^2}{(q-1)r^2} \sqrt{\delta} \text{tr}_G \omega + C\right)\chi_{\{f \leq 0\}},
\]

where \(\chi_E \) denotes the characteristic function of a given set \(E \).

We now apply the ABP maximum principle ([8]) on the (Euclidean) ball \(B_r(x_0) \), and we get

\[
\sup_{B_r(x_0)} (H\eta) \leq \sup_{\partial B_r(x_0)} (H\eta) + C(n)r \left\{ \int_{B_r(x_0) \cap \{ f > 0 \}} \left(\frac{\phi(f)^{q-1}}{(\det G)^2}\right)^{2n} + \int_{B_r(x_0) \cap \{ f \leq 0 \}} \left(\frac{\phi(f)^{q-1}}{(\det G)^2}\right)^{2n} \right\}^{1/2n}
\]

\[
+ \left\{ \int_{B_r(x_0) \cap \{ f > 0 \}} \left(\frac{\phi(f)^{q-1}}{(\det G)^2}\right)^{2n} + \int_{B_r(x_0) \cap \{ f \leq 0 \}} \left(\frac{\phi(f)^{q-1}}{(\det G)^2}\right)^{2n} \right\}^{1/2n}
\]

\[
+ C(n, F, G, \omega)\delta^{n(q-1)} \right\}^{1/2n}
\]

\[e^{-2nF/k}\]
where the constant $C(n, F, G, \omega)$ is not uniformly bounded, but this is not a concern, since later on we will let $\delta \to 0$. We observe that the integral above is in fact integrated over the set where $c(n, k) \varepsilon \Phi(F)^{1/n} A_F^{-1/n} - C < 0$ and $F + \varepsilon \psi - \lambda \varphi > 0$, and over this set $F \leq C(n, k, A_F, \varepsilon)$ by the definition of $\Phi(F) = \sqrt{F^2 + 1}$. On the other hand, on this set $F + \varepsilon \psi - \lambda \varphi \leq C - \lambda \varphi$.

Therefore, we have

$$M = \sup_{B_r(x_0)} (H \eta) \leq (1 - \theta) \sup_{\partial B_r(x_0)} H + C \left(\int_{B_r(x_0)} (C - \lambda \varphi) \omega^n + C(n, F, G, \omega) \delta^{n(q-1)} \right)^{1/2n}$$

$$\leq (1 - \theta) M + C + C(n, F, G, \omega) \delta^{(q-1)/2}$$

where we have use the inequality that $\int_{X} (-\varphi) \omega^n \leq C$ which follows by the Green formula, $n + \Delta \omega \varphi > 0$ and the normalization condition $\sup_X \varphi = 0$. Hence we conclude that

$$M^{1 - \frac{1}{q}} \leq C + C(n, F, G, \omega) \delta^{(q-1)/2}, \Rightarrow M \leq C + C(n, F, G, \omega) \delta^{2q},$$

which says that

$$\sup_X 2 f^+ \leq \sup_X \phi(f) \leq C + C(n, F, G, \omega) \delta^{2q}$$

letting $\delta \to 0$ gives the desired estimate.

\[\square\]

Proof of Theorem 3. Lemma 4 shows that for any $p > n/k$, we have

$$e^{p F} = e^{p(F + \varepsilon \psi - \lambda \varphi) - p \varepsilon \psi + p \lambda \varphi} \leq C e^{-p \varepsilon \psi},$$

if ε is chosen small enough so that $p \varepsilon < \alpha(X, \omega)$, the α-invariant of the Kahler manifold (X, ω). We can get the L^∞ bound of φ by a result of Dinew-Kolodziej ([5], see also [6, 7]). Kolodziej’s L^∞-estimate for complex MA equations implies the L^∞-bound of ψ. Plugging these estimates to Lemma 4 again, we get the upper bound of F, i.e. $F \leq C$.

To see the lower bound of F, we calculate (if we take $A = 1 + \sup |\alpha|_\omega$)

$$\Delta_G(F + A \varphi) = \text{tr}_G \alpha - \alpha + A \text{tr}_G \bar{\omega} - A \text{tr}_G \omega$$

$$\leq - \text{tr}_G \omega + Ak - \alpha$$

$$\leq - n (\det G \cdot \det \omega)^{1/n} + Ak - \alpha$$

$$\leq - c(n, k) e^{- \frac{K}{n}} + Ak - \alpha.$$

At the minimum of $F + A \varphi$, we have $F > -C(n, k, \omega, \alpha)$. Then the lower bound of F follows easily from the L^∞ estimate of φ.

\[\square\]

Acknowledgement: We would like to thank Prof. D.H. Phong for many helpful suggestions, and for his continuous and generous support and encouragement. F.T. would like to thank Harvard CMSA for supporting his work.
References

[1] Chen, X.-X. and J. Cheng On the constant scalar curvature Kähler metrics I - a priori estimates, J. Amer. Math. Soc. (2021) DOI: https://doi.org/10.1090/jams/967, arXiv: 1712.06697.

[2] Collins, T.C. and S. Picard, The Dirichlet Problem for the k-Hessian Equation on a complex manifold, preprint, arXiv:1909.00447

[3] Collins, T.C. and S.T. Yau, Moment Maps, Nonlinear PDE and Stability in Mirror Symmetry, I: Geodesics, Ann. PDE 7, 11 (2021)

[4] Donaldson, S. K. Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Amer. Math.Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence RI, 1999, 13–33.

[5] Dinew, S. and S. Kołodziej A priori estimates for complex Hessian equations. Anal. PDE 7 (2014), no. 1, 227 – 244.

[6] Guo, B., D.H. Phong, and F. Tong, On L^∞ estimates for complex Monge-Ampère equations, preprint, arXiv:2106.02224

[7] Guo, B., D.H. Phong and F. Tong, Stability estimates for the complex Monge-Ampère and Hessian equations, preprint, arXiv:2106.03913

[8] Gilbarg, D. and N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp.

[9] Harvey, F. R. and H. B. Lawson, Jr. Dirichlet duality and the nonlinear Dirichlet problem. Comm. Pure Appl. Math. 62 (2009), no. 3, 396 - 443.

[10] Mabuchi, T. Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24, 1987, 227–252.

[11] Phong, D.H., S. Picard and X. Zhang Fu-Yau Hessian equations, J. Differential Geom. 118 (2021), no. 1, 147-187.

[12] Phong, D.H., J. Ross and J. Sturm Deligne pairings and the Knudsen-Mumford expansion, J. Differential Geom. 78 (2008) no. 3, 475-496.

[13] Phong, D.H. and J. Sturm, Scalar curvature, moment maps, and the Deligne pairing. Amer. J. Math. 126 (2004), no. 3, 693 - 712.

[14] Phong, D.H. and J. Sturm The Futaki Invariant and the Mabuchi Energy of a Complete Intersection, Comm. Anal. Geom. 12 (2004), no. 1-2, 321–343.

[15] Semmes, S. Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495–550.

[16] Trudinger, N. and X.-J. Wang The affine Plateau problem., J. Amer. Math. Soc. 18 (2005), no. 2, 253–289.

[17] Wang, X.-J. The k-Hessian Equation., In: Chang SY., Ambrosetti A., Malchiodi A. (eds) Geometric Analysis and PDEs. Lecture Notes in Mathematics, vol 1977. (2009) Springer, Berlin, Heidelberg.

[18] Yau, S.-T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411

Bin Guo
Department of Mathematics & Computer Science, Rutgers University, Newark, NJ 07102
bguo@rutgers.edu

Kevin Smith
Department of Mathematics, Columbia University, New York, NY 10027
kjs@math.columbia.edu

Freid Tong
Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138
ftong@cmsa.fas.harvard.edu