Original Research Article

Novel switchable ECF sigma factor transcription system for improving thaxtomin A production in *Streptomyces*

Xuejin Zhao<sup>a,b,1</sup>, Weijia Wei<sup>a,d,1</sup>, Yeqing Zong<sup>a,d</sup>, Chaoxian Bai<sup>a</sup>, Xian Guo<sup>a,d</sup>, Hua Zhu<sup>c,**</sup>, Chunbo Lou<sup>c,d,**</sup>

<sup>a</sup> State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China

<sup>b</sup> CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China

<sup>c</sup> Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

<sup>d</sup> College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100149, China

**Corresponding author.** Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

*Corresponding author.*

**E-mail addresses:** h.zhu0505@gmail.com (H. Zhu), cb.lou@siat.ac.cn (C. Lou).

These authors contributed equally to this work.

1. Introduction

Thaxtomin A is a nitrated diketopiperazine bio-herbicide produced by the potato scab pathogens *Streptomyces acidiscabies*, *Streptomyces scabies*, and *Streptomyces turgidiscabies* [1–3]. Considering its attractive environmental compatibility and rapid degradation in natural environment, the US Environmental Protection Agency has approved thaxtomin A as key active constituent of bio-herbicides for sale for pre-and post-emergence weed control in 2012 [4]. Unfortunately, the low yields in the native producers of thaxtomins have greatly limited their applications in agriculture. Over the past years, efforts have been investigated on heterologous expression of thaxtomin gene cluster in different hosts to achieve overproduction of thaxtomin A and the highest reported yield has climbed to 168 mg/L [5], but still lag far behind the demand of industrialization. The most substantial issue is therefore design and construction of pathways lead to the optimal production of target

**Keywords:**

Streptomycetes

ECF17 sigma factor

Heterologous expression

Thaxtomin A

Transcription system

**ARTICLE INFO**

**ABSTRACT**

The application of the valuable natural product thaxtomin A, a potent bioherbicide from the potato scab pathogenic *Streptomyces* strains, has been greatly hindered by the low yields from its native producers. Here, we developed an orthogonal transcription system, leveraging extra-cytoplasmic function (ECF) sigma (σ) factor 17 (ECF17) and its cognate promoter P<sub>ecf17</sub>, to express the thaxtomin gene cluster and improve the production of thaxtomin A. The minimal P<sub>ecf17</sub> promoter was determined, and a P<sub>ecf17</sub> promoter library with a wide range of strengths was constructed. Furthermore, a cumate inducible system was developed for precise temporal control of the ECF17 transcription system in *S. venezuelae* ISP5230. Theoretically, the switchable ECF17 transcription system could reduce the unwanted influences from host and alleviate the burdens introduced by overexpression of heterologous genes. The yield of thaxtomin A was significantly improved to 202.1 ± 15.3 μg/mL using the switchable ECF17 transcription system for heterologous expression of the thaxtomin gene cluster in *S. venezuelae* ISP5230. Besides, the applicability of this transcription system was also tested in *Streptomyces* albus J1074, and the titer of thaxtomin A was raised to as high as 239.3 ± 30.6 μg/mL. Therefore, the inducible ECF17 transcription system could serve as a complement of the generally used transcription systems based on strong native constitutive promoters and housekeeping σ factors for the heterologous expression of valuable products in diverse *Streptomyces* hosts.

Peer review under responsibility of KeAi Communications Co., Ltd.

<sup>1</sup> These authors contributed equally to this work.

https://doi.org/10.1016/j.synbio.2022.05.010

Received 13 March 2022; Received in revised form 30 May 2022; Accepted 31 May 2022

Available online 6 June 2022

2405-805X/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
metabolites. Synthetic biology tools enable the reconstruction of biosynthetic gene clusters in a predictable manner. As the first dedicated phase of gene expression, transcription frequently serves as the target for gene regulation. As such, promoter engineering has been widely used for strain improvement and metabolites elicitation. Various constitutive promoters, including \( \text{ermEp} \) \[^{[6]}\], SF14p \[^{[7]}\], \( \text{kasOp^*} \) \[^{[8]}\], and their derivatives, have already been used in the successful production of different natural products \[^{[9]}\]. These constitutive promoters are generally controlled by housekeeping \( \sigma \) factors, e.g., the transcription initiations of SF14p and \( \text{kasOp^*} \) are dependent on HrdB, a \( \sigma 70 \) regulates a large number of housekeeping genes involved in the primary metabolism of \textit{Streptomyces} \[^{[10]}\]. Competition with the essential endogenous genes for available \( \sigma \) factors would affect the maximum activities of those promoters \[^{[11]}\], which is unfavorable for the high production of valuable products in most cases. Besides housekeeping \( \sigma \) factors, cells encode a number of alternative \( \sigma \) factors responsible for sensing intercellular and intracellular signals to maintain their homeostasis \[^{[12,13]}\]. These \( \sigma \) factors are usually under tight control by corresponding anti-\( \sigma \) factor \[^{[14]}\]. Group 4 alternative \( \sigma \) factors, also known as ECF \( \sigma \) factors, have the simplest structure with only \( \sigma 4 \) and \( \sigma 2 \) two domains. Upon activation, the two domains bind to the promoter’s –35 and –10 regions separately and recruit RNA polymerase core enzyme to initiate transcription \[^{[15]}\]. In general, ECF \( \sigma \) factors only regulate their cognate promoters because of the different promoter recognition and unwinding mechanisms \[^{[16]}\] and the inefficient promoter melting ability \[^{[17]}\]. It was believed that there is little cross-talk between the ECF \( \sigma \) factors and the endogenous housekeeping \( \sigma \) factor \[^{[18–21]}\], which makes ECF \( \sigma \) factors and their cognate promoters appropriate orthogonal candidates for engineering genetic switches to reduce the unwanted influences from \textit{Streptomyces} hosts.

In addition, constitutive high expression of heterologous genes might cause a growth burden to the host cells \[^{[22]}\]. To achieve dynamic control of gene expression in \textit{Streptomyces}, inducible promoters were usually employed. Besides the naturally occurring promoters like \( \text{tipAp} \) induced by thiostrepton \[^{[23]}\], \( \text{gylP} \) induced by glycerol \[^{[24]}\], \( \text{nitAp} \) induced by caprolactam \[^{[25]}\], \( \text{Potr^*} \) induced by oxytetracycline \[^{[26]}\], and \( \text{xylAp} \) induced by D-xylose \[^{[27]}\], there are several artificial inducible promoters constructed by combining constitutive promoters with repressors such as TetR \[^{[28]}\], CymR \[^{[29]}\] and RolR \[^{[29]}\] that respond to anhydrotetracycline, cumate, and resorcinol, respectively. Generally, the artificial inducible promoters like the CymR-based promoters exhibited much better dynamic ranges and stringencies than the naturally occurring ones \[^{[30,31]}\].

In this work, we first developed a heterologous transcription system based on the ECF17 \( \sigma \) factor and its cognate promoter \( P_{ecf17} \) in \textit{Streptomyces venezuelae} ISP5230. A \( P_{ecf17} \) promoter library with a wide range of strengths was then constructed by minimizing the \( P_{ecf17} \) promoter and performing saturation mutations of the –35 region to –10 region sequence. The transcriptional activity of the strongest \( P_{ecf17} \) promoter mutant is approximately 12-fold higher than that of the constitutive strong \( \text{kasOp^*} \) promoter. Further, we employed a cumate inducible system to switch off/on the expression of the ECF17 \( \sigma \) factor to realize temporal control of the ECF17 transcription system. Using the switchable ECF17 transcription system to refactor the thaxtomin gene cluster, the thaxtomin A yield was improved to 202.1 ± 15.3 \( \mu \)g/mL in \textit{S. venezuelae} ISP5230 (Fig. 1). We also demonstrated the applicability of this system in another \textit{Streptomyces} host, \textit{S. albus} J1074, and gained a thaxtomin A yield as high as 239.3 ± 30.6 \( \mu \)g/mL.

---

**Fig. 1.** Overall scheme of the novel switchable ECF17 transcription system for improving thaxtomin A production.
2. Materials and methods

2.1. Strains, media, and reagents

Strains and plasmids used in this study are listed in Table 1. Escherichia coli DH10B was used for molecular cloning and plasmid propagation. E. coli ET12567/pU28002 [32] was used for E. coli-Streptomyces conjugation. E. coli strains were cultured in LB medium supplemented with appropriate antibiotics (50 mg/L apramycin, 50 mg/L hygromycin, 25 mg/L naldixic acid). Streptomyces acidiscabies ATCC 49003 and S. albus J1074 [33] were grown on MS plates (20 g/L soybean flour, 20 g/L mannitol, and 20 g/L agar) for spore preparation. S. venezuelae ISP5230 was grown on MYM plates (4.2 g/L D-(+)-maltose monohydrate, 4 g/L yeast extract, 4 g/L malt extract, and 20 g/L agar) for spore preparation. For seed cultivation, S. venezuelae was grown in liquid MYM medium, while S. acidiscabies and S. albus were grown in TSB medium (30 g/L tryptic soy broth (BD)). For fermentation cultivation, S. venezuelae and S. acidiscabies were cultured in oat bran broth (OBB) medium (20 g/L oat, pH 7.2), and S. albus was grown in OBB or B medium (5 g/L soluble starch, 2 g/L tryptone, 2 g/L yeast extract, 10 g/L soybeans, 4 g/L NaCl, 0.5 g/L K₂HPO₄, 0.5 g/L MgSO₄·7H₂O, and 2 g/L CaCO₃). Phosphated buffered saline (PBS) buffer (8 g/L NaCl, 0.2 g/L KCl, 1.44 g/L Na₂HPO₄ and 0.24 g/L KH₂PO₄) and P10 buffer (sucrose 10.3%, K₂SO₄ 1.43 mM, MgCl₂ 9.9 mM, KH₂PO₄ 0.367 mM, CaCl₂ 25 mM, 2-(N-Morpholinio)ethanesulfonic acid, MES 10 mM) were used for protoplast preparation.

2.2. Construction of the basic clone vectors

We built three shuttle vectors for the conjugation from E. coli into the S. venezuelae and S. albus containing the cognate attB site for the convenience of molecular cloning. Each shuttle vector contains four separate modules, including E. coli origin of replication, a selectable antibiotic resistance cassette, the integrase and its corresponding attP site, RP4 origin of transfer (oriT) [34]. Further, each vector was designed to contain the BsaI restriction site for Golden gate assembly [35]. Specifically, the pTHS vector contains pSC101 origin of replication, hygromycin resistance, and TG1 integration system (TG1 integrase-attDTr) [36]; the pPAP-PT vector contains P15A origin of replication, apramycin resistance, and φC31 integration system (φC31 integrase—attBφC31) [37], a ribosome Riboj [36], a RBS (BBa_B0034 (RBS, http://parts.igem.org/Part:BBa_B0034)) and the sfgfp reporter gene (Fig. S1A).

2.3. Functional analysis of ECF σ factor/Pecf pairs in Streptomyces

We used the pTHS plasmid to construct the ECF₁₇ plasmid. Specifically, the kasOp* promoter, rbs-100 ribosome binding site (RBS), codon-optimized ECF genes (Table S1), and two flanking BsaI restriction sites were synthesized by the GenScript company, and assembled on the pTHS plasmid via Golden gate method to generate eight pTHS-ECFx plasmids (Fig. S1B). Pecf promoters (Table S1) synthesized by GenScript company were assembled on the pPAP-PT plasmid via Golden gate assembly to generate 8 pPAP-Pecf plasmids. The kasOp* promoter was inserted directly in front of the Riboj-BBa_B0034-sfgfp cassette of pPAP-PT to generate the pPAP-kasOp* plasmid as a positive control.

2.4. Construction of the Pecf₁₇ promoter library

To identify the minimal Pecf₁₇ promoter, the truncated versions of Pecf₁₇ promoter were ordered from GenScript company, and inserted into the pPAP-PT plasmid via Golden gate assembly to generate varied pPAP-Pecf₁₇-No. plasmids (Fig. S1C), here the No.130 bp, 105 bp, 85 bp, 65 bp, 55 bp, 45 bp, 35 bp, 25 bp, 20 bp, 15 bp, 10 bp, 5 bp, and 0 bp denote the DNA lengths upstream of the –35 region (TGAAAC) (Table S1). After the minimal Pecf₁₇ promoter was determined, a Pecf₁₇ promoter library was...
constructed by saturation mutagenesis. Specifically, the −35 box was divided into two parts (5′-TGA and 5′-ACA); the −10 box was also divided into two parts (5′-CG and 5′-AC); and the 15 bp spacer sequence between −35 box and −10 box was divided into five parts (5′-CG, 5′-CC, 5′-GCAC, 5′-TTCG, and 5′-GT) (Fig. S1D). A pECF17 promoter library was then constructed by synthesizing degenerate primers (S1–F/R, S2–F/R, S4–F/R, S5–F/R, S6–F/R, S7–F/R, S8–F/R, S9–F/R, respectively) (Table S2) containing 5′-NN(N)N(4) to replace any of the regions mentioned above, and using overlap extension PCR to obtain the complete promoter sequences, which were then assembled on the pPAP-PT plasmid via Golden gate to generate a series of pPAP-P ECFS17 promoter repator with CymR to generate the pTHS-CymR plasmid. As a control, we replaced the CymR* repressor with CymR* to generate pTHS-CymR*. As a control, we replaced the CymR* repressor with CymR* to generate pTHS-CymR*. As a control, we replaced the CymR* repressor with CymR* to generate pTHS-CymR*. As a control, we replaced the CymR* repressor with CymR* to generate pTHS-CymR*.

2.5. Construction of the switchable ECF17 transcription system

The cumulative inducible system containing a hybrid PCymR* promoter and a CymR* repressor was first constructed to realize temporal control in Streptomyces. The hybrid cumulative inducible PCymR* promoter was obtained by inserting two CymR operator binding sites (CuO) into the up- and down-stream of the SP43 constitutive promoter (Table S1, Fig. S2). The CymR* repressor was generated by fusing the CI434 oligomerization domain to the C-terminus of the CymR repressor as described [38], which was controlled by the SP08 promoter [39] (Table S1). The PCymR* promoter, and the CymR* expression cassette together with RiboJ-BBa_B0034-sgfp were inserted into the pTHS plasmid via Gibson assembly to generate pTHS-CymR*. As a control, we replaced the CymR* repressor with CymR to generate the pTHS-CymR plasmid.

The cumulative-inducible system was then used to control the expression of the ECF17 σ factor. We tested 4 different RBSs (SR3, SR15, SR33, and SR41) [39] (Table S1) to fine-tune the translation initiation rate [40] and the expression level of ECF17 σ factor, and the Riq-OJ-BBa_B0034-sgfp sequence was replaced with the RBS-ECFS17 sequence via Gibson assembly to generate pTHS-CymR*-switch-x. (SR3:pTHS-CymR*-Switch 1; SR15:pTHS-CymR*-Switch 2; SR33: pTHS-CymR*-Switch 3; SR41: pTHS-CymR*-Switch 4).

2.6. Reconstruction of the thaxtomin gene cluster with PIA or PECF17 promoter

Two CRISPR/Cas9 target protospacer sequences were selected from ttxE and ttxA promoter regions in the thaxtomin A cluster. The DNA templates of sgRNA-ttxE-F and sgRNA-ttxA-R were generated via overlap extension of sgRNA-ttxE-sgRNA-ttxA guide RNA-F plus guide RNA-R (Table S2), and sgRNA-ttxE-F and sgRNA-ttxA-R were transcribed in vitro with HіSсrіbе™ T7 Quick High Yield RNA Synthesis Kit(NEB). Then, sgRNAs were purified using the RNAPure Rapid RNA Kit (Bio-Med). The Cas9 expression and purification were performed following established protocols [41]. The exchanged bidirectional SP42-SP43 promoter PIA or the bidirectional PECF17 promoter (combination of wild type PECF17 with the minimal PECF17 promoter) containing two ~30 bp overlaps with the corresponding ends of the thaxtomin gene cluster were ordered from GenScript company (Table S1). The pPAS-thax plasmid [41] harboring the thaxtomin gene cluster from S. acidiscabinis ATCC 49003 (~10 μg) was digested with Cas9 guided by sgRNA-ttxE-F and sgRNA-ttxA-R at 37 °C for 2 h (Fig. S2). The digested DNA was then ethanol precipitated and resuspended in 20 μL DNase-free water. The exchanged bidirectional SP42-SP43 promoter PIA or the bidirectional PECF17 promoter (combination of wild type PECF17 with the minimal PECF17 promoter) (Table S1) containing two ~30 bp overlaps with the corresponding ends of the thaxtomin gene cluster was ligated separately with the recovered pPAS-thax fragments by Gibson assembly to generate the pPAS-thax-PIA and pPAS-thax-PECF17 (Fig. S3). The correct clones were verified by colony PCR with p-FF and p-PR primers (Table S1).

2.7. Construction of the thaxtomin gene cluster expressing strains

The pPAS-thax plasmid was transferred into E. coli ET12567/pUZ8002, and then conjugated into S. venezuelae IPS5230 and S. albus J1074 to generate S.v/thax and S.a/thax, respectively. The pPAS-thax-PIA plasmid was introduced into S. venezuelae IPS5230 and S. albus J1074 by the same way to generate S.v/thax-PIA and S.a/thax-PIA, respectively. S.v/ECF17 and S.a/ECF17 were constructed using the pTHS-kaszop*-ECF17 plasmid similarly. The pPAS-thax-PECF17 plasmid was conjugated into S.v/ECF and S.a/ECF to generate S.v/ECF17-thax-PECF17 and S.a/ECF17-thax-PECF17, respectively. S.v/ECF17-Switch and S.a/ECF17-Switch were constructed by introducing the pTHS-CymR*-Switch plasmid into S. venezuelae IPS5230 and S. albus J1074, respectively. The pPAS-thax-PECF17 plasmid was then conjugated into S.v/ECF17-Switch and S.a/ECF17-Switch to generate S.v/ECF17-Switch: thax-PECF17 and S.a/ECF17-Switch: thax-PECF17, respectively.

2.8. Determination of cell growth and sfGFP expression using the multimode Varioskan LUX microplate reader

Spor suspensions of S. venezuelae strains were inoculated into 15 mL liquid MYM and incubated for 48 h as a seed culture, and 200 μL of seed cultures were transferred into 2 mL of MYM medium in 24 deep plate. Samples were taken and detected at different time points. The biomass was measured by OD600 and promoter activity was monitored by Tecan Infinite 200 Pro plate reader (Thermo Scientific) with excitation at 485/9 nm and emission at 515/20 nm. The experiments were performed with three biological replicates.

2.9. Thaxtomin A production and HPLC analysis

S. venezuelae were cultured in MYM and S. albus strains were cultured in TSB medium at 30 °C for 48 h, and 2 mL of the resultant seed cultures were used to inoculate 50 mL of OB or B medium in 250 mL flasks. The cultures were incubated at 30 °C, 250 rpm for 5 days. For thaxtomin A detection, 1 mL of fermentation broth was extracted with 10 mL of methanol, and the mycelium was removed by centrifugation at 8,000 rpm for 10 min. The supernatants were filtered through a 0.22 μm filter membrane (JIN TENG) and subjected to an Agilent 1100 HPLC system (C18 column: 5 μm × 250 mm × 4.6 mm (Agilent); Mobile phase: acetonitrile: water (40:60), 1 mL/min; Detected at 380 nm). We purchased thaxtomin A standard from Sigma (catalog: SML1456) and established a calibration curve, the concentration of thaxtomin A was calculated based on their corresponding peak area under HPLC trace.

Table 1 (continued)

| Strain or Plasmid | Relevant genotype | Reference or source |
|-------------------|------------------|---------------------|
| pTHS-CymR*-Switch | pTHS-CymR* with sfGFP reporter replaced by ECF17 σ factor with different RBSs (SR3: pTHS-CymR*-Switch 1; SR15: pTHS-CymR*-Switch 2; SR33: pTHS-CymR*-Switch 3; SR41: pTHS-CymR*-Switch 4) | This study |
| pTHS-CymR*-Switch | pTHS-CymR* with SR33-ECF17 σ factor under the control of cumate-inducible Pcumast promoter | This study |
| pPAS | shuttle vector, containing E.coli origin of replication, pSC101, aminomycin resistance, pC31 integration system | This study |
| pPAS-thax | pPAS harboring thaxtomin gene cluster | This study |
| pPAS-thax-PIA | pPAS harboring bidirectional PIA promoter refactored thaxtomin gene cluster | This study |
| pPAS-thax-PECF17 | pPAS harboring bidirectional PECF17 promoter refactored thaxtomin gene cluster | This study |
backbones, pTHS and pPAP-PT (with an sfGFP encoding gene down
generate pTHS-
 factors and their corresponding promoters were cloned into two plasmid-
X. Zhao et al.
Streptomyces
P

taxonomically closer to the host strain
ECF34_1384, and ECF38_1322) from S. coelicolor A3(2), which is

venezuelae
tivity. Data were analyzed using GraphPad Prism 9 and presented as
CV, coefficient of variation; FV, relative (-fold) variation determined by

In addition, we chose four
monas syringae
Vibrio parahaemolyticus RIMD 2210633, ECF11_3276 from
selected four pairs with high transcriptional activities (ECF11_987 from

2.12. Statistical analysis
To measure the Pecf17 promoter activities and to identify the minimal
Pecf17 promoter, we used ImageJ to process the fluorescence picture as
follows: (i) select the whole fluorescent area and measure the “Inte-
grated intensity”; (ii) select a region that has no fluorescence as back-
ground intensity. Relative promoter activity = \left(\frac{\text{integrated intensity−(selected area \times mean fluorescence of background)}}{\text{integrated intensity}}\right) × selected area.

To identify the sensitivities of Pecf17 promoter to sequence variations,
we used one-way analysis of variance (ANOVA) for each mutated region.
CV, coefficient of variation; FV, relative (-fold) variation determined by
the ration of maximal promoter activity to the minimal promoter ac-
tivity. Data were analyzed using GraphPad Prism 9 and presented as
mean ± standard deviation.

3. Results

3.1. Development of a heterologous ECF transcription system for S. venezuelae

From the 20 well-characterized ECF σ factor/promoter pairs [18], we
selected four pairs with high transcriptional activities (ECF11_987 from
Vibrio parahaemolyticus RIMD 2210633, ECF11_3276 from Pseudomonas
syringae pv. tomato str. DC3000, ECF16_973 from Pseudomonas
putida KT2440, and ECF16_3622 from Pseudomonas entomophila L48).
In addition, we chose four σ factors (ECF17_1458, ECF27_4256,
ECF34_1384, and ECF38_1322) from S. coelicolor A3(2), which is
taxonomically closer to the host strain S. venezuelae ISP5230. The σ
factors and their corresponding promoters were cloned into two plasmid
backbones, pTHS and pPAP-PT (with an sfGFP encoding gene down-
stream the promoter), respectively, via one-step Golden gate assembly to

generate pH5S-kaosOp*-ECFx and pPAP-Pecf (Table 1, Fig. S1B). Each
pTHS-kaosOp*-ECFx and its cognate pPAP-Pecf plasmid pair was intro-
duced into S. venezuelae ISP5230, and the expression levels of sfGFP
were quantified using confocal fluorescent microscopy. To exclude po-
tential interfer of the ECF promoters by the host transcriptional
machinery, we introduced the pPAP-Pecf plasmid to S. venezuelae ISP5230

soley as a negative control. The sfGFP gene cloned downstream of the
kaosOp* promoter was employed as a positive control (Fig. 2A).

As shown in Figs. 2B and S4A, among the eight tested ECF σ factor/

promoter pairs, only two of them from S. coelicolor A3(2) were active in
S. venezuelae ISP5230. The ECF σ factor/promoter pair ECF17/Pecf17
exhibited a strong activity, and the ECF38/PECf38 pair showed relatively
weak activity. While, in the negative control strain without the plasmid
expressing ECF17 σ factor, the cognate promoter Pecf17 was silent,
indicating that this promoter could not be activated by the σ factors from
S. venezuelae ISP5230 in these conditions (Fig. S4A). Flow cytometry
was then used to quantify the activity of ECF17/Pecf17 precisely in
S. venezuelae, which showed that the expression level of sfGFP reporter
under the control of ECF17/Pecf17 was approximately 5-fold higher than
that of kasOp*, a frequently used strong promoter in Streptomyces (Fig.
2C).

To facilitate the subsequent modifications of Pecf17 promoter, we
delineated the minimal promoter sequence, which usually contains the
up −35 element, −35 box, −10 box, and a possible transcription starting
site. It could also eliminate the unnecessary DNA regions that might
affect the promoter activity [42] and alleviate the homologous recom-
bination problem caused by using this promoter sequence repetitively
[43,44]. By a serial truncation experiment upstream of the proposed
−35 region (TGAAC), we found that when the truncation process
reached 20 bp upstream of the −35 region, the fluorescence intensity
decreased significantly. Thus, the minimal Pecf17 promoter was nar-
rrowed to a DNA sequence with a total length of 80 bp (from 25 bp up-
stream of the −35 region to 28 bp downstream of the −10 region) (Fig.
3A, Fig. S4B).

A Pecf17 Promoter library was then constructed based on the 80 bp
minimal promoter sequence to meet the demand of fine-tune gene
expression [45]. We split the sequence from −35 region to −10 region
into nine sections and performed saturation mutation for each section to
obtain a series of candidates with different strengths. Since the 2 bp
sequence upstream of the −10 region is sensitive to mutation, we
incorporated them into the −10 region. The critical functional parts of
the Pecf17 promoter were determined to be TGAACA (N12CTCGTAC
(Fig. 3B). Ten different promoters from the mutation libraries were
chosen for precise quantification in E. coli DH10B and S. venezuelae
ISP5230 using flow cytometry. These promoter mutants displayed a wide
range of strength and had rank-order consistency in both hosts (Fig. 3C,
Table S3), indicating that they have good modularity and portability.
In S. venezuelae ISP5230, the lowest promoter activity of the minimal
Pecf17 mutant (M10) was approximately 1% that of wild-type Pecf17; while
the highest one (M1) was raised to about 2.5 fold of that of
wild-type Pecf17, which was 12 fold higher than that of kasOp*.

3.2. Production of thaxtomin A in S. venezuelae ISP5230

The ECF17 transcription system was then applied to reconstruct the
thaxtomin gene cluster in S. venezuelae ISP5230 (Fig. 4A). The native
promoters of txaA and txaR were replaced with Pecf17 bidirectional pro-
cessor cassette or the strong constitutive promoter cassette SP43-SP42 as
a positive control, and the pathway-specific transcriptional activator
gene txaR was excluded from the gene cluster, yielding the pPAS-thax-
Pecf17 and pPAS-thax-Pecf17 (Fig. 4A, Fig. S3). Introduction of pPAS-thax-
PEA into S. venezuelae ISP5230 obtained S.v/thax-PEA, which gained the
capacity to synthesize thaxtomin A (48 ± 9.3 μg/mL) (Fig. 4B), excluding the possibility that the cloned thaxtomin gene cluster was
malfonctional. pPAS-thax-Pecf17 was introduced into S. venezuelae
ISP5230 and S. venezuelae/ECF17 harboring the plasmid for ECF17 σ
factor expression to generate S.v/thax-Pecf17 and S.v/ECF17/thax-Pecf17
respectively. As anticipated, S.v/thax-Pecf17 without ECF17 σ factor
could not produce thaxtomin A; S.v/ECF17/thax-Pecf17 could synthesize
thaxtomin efficiently with the thaxtomin A titer reaching 71.5 ± 5.0 μg/

mL, about 50% higher than that in S.v/thax-PEA (Fig. 4B).
3.3. Improving the production of thaxtomin A using the cumate-inducible ECF17 transcription system

High biosynthesis of heterologous genes in the primary growth impose heavy burdens to the hosts. Besides, constitutive expression of ECF17σ factor is probably toxic to the hosts because of its competition with the housekeeping σ factors for core RNA polymerase along with the growth. So, introduction of an inducible system could alleviate the problems and realize temporal control of gene expression. It has been demonstrated that the engineered CymR* (fusing the oligomerization domain of CI434 to CymR) [38] is able to work cooperatively to generate a sigmoidal response curve in E. coli and is appropriate for use as a rigorous genetic switch. A genetic switch based on CymR* was therefore constructed to control the ECF transcription system in S. venezuelae ISP5230. The CI434 oligomerization domain was fused to the C terminus of CymR to generate CymR*. A hybrid cumate inducible promoter (P_{CymR}) was obtained by inserting two cumate operators (CuO) into the up- and down-stream of SP43 promoter (Fig. S5). The CymR*-P_{CymR} induction system was then tested in S. venezuelae ISP5230 together with the wild-type CymR system as a control. As shown in Fig. 5B, the CymR* inducible system displayed a much wider dynamic range (>200 fold) than that of the wild-type CymR system (~85 fold), indicating it could be used as a rigorous genetic switch. Subsequently, the ECF17 σ factor encoding gene was put under the control of the CymR*-P_{CymR} induction system to construct a switchable ECF σ factor transcription system in S. venezuelae ISP5230 (Fig. 5C). Four different RBSs (SR3, SR15, SR33, SR41) with varied strengths [39] were tested for fine-tuning ECF17 gene expression. The time-course experiment revealed that it was appropriate to add the cumate inducer at 4 h (Fig. S5). After the design-build-test cycle, the version named CymR*-Switch 3 (containing RBS SR33) outperformed the other combinations (Fig. S4C). Thus, CymR*-Switch 3 was used to control the expression of ECF17. The expression levels of sfGFP were quantified with flow cytometry, of which the P_{ecf17} activity had a 60 fold on/off ratio. The P_{ecf17} promoter activity observed with ECF17σ factor controlled by the CymR*-Switch 3 was much higher than that of the constitutively expressed ECF17σ factor (Fig. 5D). Meantime, the growth rates of the S.v/ECF17+P_{ecf17} and S.v/Switch-on + P_{ecf17} were determined. As shown in Fig. S6A, both strains exhibited lower biomass than wild-type strain. But the S.v/Switch-on + P_{ecf17} showed higher biomass than S.v/ECF17+P_{ecf17}. These results demonstrate that the cume-inducible ECF transcription system can indeed decrease the toxicity to the host caused by constitutive expression of ECF17σ factor. The switchable ECF17 transcription system was then used for thaxtomin A production by introducing CymR*-Switch 3 into S.v/thax-P_{ecf17} to generate S.v/ECF17-Switch-on:thax-P_{ecf17} (Fig. 6A). As anticipated, the thaxtomin A yield was as high as 202.1 ± 15.3 µg/mL (Fig. 6B), representing an almost 4 fold improvement compared to the constitutively expressed ECF17 system. The transcriptional levels of the thax genes were investigated by real-time PCR and the result confirmed that all the expressed ECF7 system. The transcriptional levels of the thax gene clusters in Streptomyces. (ECF

3.4. Production of thaxtomin A using the inducible ECF17 transcription system in S. albus J1074

To test the applicability of the ECF17 transcription system in other Streptomyces strains, pTHS-ECF17 and its cognate pPAP-P_{ecf17} plasmid were introduced into another frequently used Streptomyces host S. albus
Fig. 3. Identifying and Engineering the minimal \( P_{ecf17} \) promoter. 

A, Identification of the minimal \( P_{ecf17} \) promoter by serial truncation. Shown here are the relative activities of promoters truncated upstream of the \(-35\) region compared to the wild-type \( P_{ecf17} \) promoter, which were monitored by confocal fluorescence microscopy and processed by ImageJ software. 

B, Effects of random mutagenesis on the activity of \( P_{ecf17} \). Each dot represents a randomly selected mutant containing mutations in the corresponding region. FV means fold variation, CV means coefficient of variation, the results indicated that S1, S2, S7, S8 corresponding to \(-35\) and \(-10\) regions are essential for maintaining promoter activity (FV \( > 5.9 \), CV \( > 0.5 \)); S9 is located between the \(-10\) region and transcriptional start site, it is crucial for promoter activity. \( P_{ecf17} \) activity is insensitive to the mutation of S3, S4, S5, and S6 regions (FV \( < 3.9 \), CV \( < 0.3 \)). 

C, A \( P_{ecf17} \) promoter library generated by random mutation of the \(-10\) and \(-35\) box sequences and their relative activities in \( E. coli \) and \( S. venezuelae \) were monitored by Tecan Infinite 200 Pro plate reader with excitation at 485/9 nm and emission at 515/20 nm. 

a.u. means arbitrary unit.

Fig. 4. Reconstruction and heterologous expression of the thaxtomin gene cluster. 

A, Genetic organizations of the thaxtomin gene cluster from \( S. acidabies \) ATCC 49003 and the refactored thax-P\(_{EA}\) and thax-P\(_{ecf17}\) thaxtomin gene clusters (the \( P_{ecf17} \) promoter activity depends on the presence of ECF17 \( \sigma \) factor). 

B, Comparison of the thaxtomin A yields in different \( S. venezuelae \) heterologous expression strains in OBB medium. ND, not detected. Three different exconjugants from each strain were used in the experiment, and the reported values represent the means ± SD from three biological replicates.
Fig. 5. Design and evaluation of the CymR*-P<sub>CymR</sub> switch. A, Schematic representation of the cumate-inducible CymR*-P<sub>CymR</sub> system. The blue rectangles mean CymR (CymR*) binding site CuO (the same below). Addition of cumate inducer would derepress the P<sub>CymR</sub> promoter and lead to the expression of sfGFP reporter. B, The corresponding response curves of derepression of CymR or CymR* by adding cumate inducer, which were monitored by flow cytometry. C, Fine-tuning the ECF17 expression level with RBSs of different strengths. All the CymR*-Switches were monitored by confocal fluorescence microscopy. D, Characterization of the CymR*-Switch 3 (containing SR33) with flow cytometry. The constitutively expressed ECF17 was used for comparison. a.u. means arbitrary unit. The data represent the means ± SD from at least three biological replicates.

Fig. 6. Improvement of thaxtomin A production using the inducible ECF17 transcription system. A, Genetic layout of the engineered gene cluster using the ECF17-Switch system. B, Thaxtomin A productions in <i>S. venezuelae</i> heterologous expression strains in OBB medium. C, Thaxtomin A productions in <i>S. albus</i> heterologous expression strains in OBB medium. In addition, we also fermented <i>S.a</i>/ECF17-Switch:thax-P<sub>ecf17</sub> in B medium. The data represent the means ± SD from three biological replicates.
J1074. The confocal fluorescent microscopy results revealed that this system worked well in *S. albus* J1074 and the P_{ecf17} promoter activity depended on the presence of the ECF17 σ factor (Fig. 5D). The ECF17 transcription system was then used to produce thaxtomin A in *S. albus* J1074. The pPAS-thax-P_{ecf17} plasmid harboring the engineered thaxtomin gene cluster controlled by P_{ecf17} was introduced into *S. albus* J1074, *S. albus*/ECF17 with pH3-ksop”-ECF17, and *S. albus*/ECF17/Switch with the switchable ECF17 to generate S.a./thax-P_{ecf17}, S.a./ECF17:thax-P_{ecf17} and S.a./ECF17/Switch:thax-P_{ecf17}, respectively. In addition, plasmid pPAS-thax-P_{ek} that harbors the engineered thaxtomin gene cluster controlled by the constitutive promoter pair SP43-SP42 was introduced into *S. albus* J1074 to construct a positive control strain S.a./thax-P_{ek}. After 5 days of fermentation in OBB medium, the yield of thaxtomin A in S.a./ECF17/thax-P_{ecf17} is 136.5 ±13.4 µg/mL, which was approximately 37% higher than that in S.a./thax-P_{ek} (99.3 ±12.3 µg/mL). For S.a./ECF17/Switch/thax-P_{ecf17}, addition of 50 µM cuminate switched on the expression of the ECF17 σ factor and led to 148.4 ±8.4 µg/mL (Fig. 6C). In our early work, we found that B medium is the optimal fermentation medium for thaxtomin A production in *S. albus* host (data not shown). So, we also fermentedated S.a./ECF17/Switch/thax-P_{ecf17} in B medium, and the thaxtomin A researched 239.3 ± 30.6 µg/mL. It was even higher than that in S.v/ECF17/Switch/thax-P_{ecf17} (Fig. 6C). Overall, these results demonstrate that the ECF17 transcription system developed for *S. venezuelae* ISP5230 has a great potential to be applied in the other *Streptomyces* strains.

4. Discussion

The fundamental difficulty in manipulating the biosynthesis of target metabolites arises from the inherent complex metabolic regulation of living cells [46–48]. Moreover, the behavior of synthetic elements strongly depends on the cellular context, which significantly limits their engineering applications. Therefore, many engineered gene circuits may work in unexpected ways or even completely lose their function when placed in different genetic backgrounds [49–51]. To overcome these shortcomings, a wide range of orthogonal and well-characterized elements that have minimal undesired cross-talk with the host cells were developed in *E. coli* [20,51,52]. However, very few of these orthogonal systems were used to *Streptomyces*, a genus that contains some of the most important sources of natural products applied in human medicine, animal health and plant crop protection. In this study, we constructed an orthogonal ECF17 σ factor based transcription system and tested it in two common heterogeneous hosts *S. venezuelae* ISP5230 and *S. albus* J1074. In both strains, the cognate promoter of ECF17 σ factor, P_{ecf17}, was inactive unless ECF17 σ factor was expressed, indicating that P_{ecf17} could not be recognized by the endogenous σ factors. So such a transcription system will significantly reduce the unwanted influences from the hosts during heterologous expression processes. Furthermore, we designed a novel genetic switch with tight regulation and high activity based on ECF17 transcription activator and cumate-inducible system, which allows fine-tuning of gene expression to desired levels. More importantly, it could be used for driving the expression of large geng cluster. In the case of thaxtomin A, refactoring the thaxtomin gene cluster using the transcription system lead to a dramatic increase in heterogeneous hosts *S. venezuelae* ISP5230 and *S. albus* J1074.

In conclusion, our work suggests a new efficient regulatory system for engineering secondary metabolites gene clusters, and contributes a step forward toward the industrialization of thaxtomin A bio-herbicide. We expect that the novel cumate-inducible transcription system established in this study will facilitate the production of important natural drugs in *Streptomyces*.

Declaration of competing interest

We have no conflict of interest to declare.

Availability of data and material

Data that supports the finding of this study is available in the main text and the supplementary materials. Ethical approval This article does not contain studies with human participants or animals performed by any of the authors.

Consent for publication

All listed authors have approved the manuscript before submission, including the names and order of authors.

CRediT authorship contribution statement

Xuejin Zhao: Data curation, Formal analysis, Methodology, Writing – original draft. Weijia Wei: Data curation, Formal analysis, Methodology, Writing – original draft. Yeqing Zong: Data curation, Methodology, Software. Chaoxian Bai: Data curation. Xian Guo: Data curation. Hua Zhu: Supervision, Writing – review & editing. Chunbo Lou: Supervision, Project administration.

Acknowledgements

We thank professor Yihua Chen for helpful discussions. This work was supported by the National Key Research and Development Program of China (2018YFA0900700); Natural Science Foundation of China [31900901 and 31500069], the Chinese Academy of Sciences [No. QYZDB-SSW-SMC050, No. XIYB1801 of the Strategic Priority Research Program], and the Shenzhen Science and Technology Innovation Committee.

No. JCYJ20181050718214844, JCHZ20200005, DWKF20190009.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.synbio.2022.05.010.

References

[1] Healy FG, Wach M, Kransoff SB, Gibson DM, Loria R. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for pyrrolo-thaxtomin A production and pathogenicity. Mol Microbiol 2000;38: 794–804. https://doi.org/10.1046/j.1365-2958.2000.02170.x.

[2] Johnson EG, Krasnoff SB, Bignell DRD, Chung WC, Tao T, Parry RJ, Loria R, Gibson DM. 4-Nitrotirosytophan is a substrate for the non-ribosomal peptide synthetase Thx in the thaxtomin A biosynthetic pathway. Mol Microbiol 2009;73: 409–18. https://doi.org/10.1111/j.1365-2958.2009.06780.x.

[3] King RR, Calhoux LA. The thaxtomin phototoxins: sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 2009;70:833–41. https://doi.org/10.1016/j.phytochem.2009.04.012.

[4] Zhang Y, Jiang G, Ding Y, Loria R. Genetic background affects pathogenicity island function and pathogen emergence in Streptomyces. Mol Plant Pathol 2018;19: 1733–41. https://doi.org/10.1111/mpp.12656.

[5] Jiang G, Zhang Y, Powell MM, Zhang P, Zuo R, Zhang Y, Kallifidas D, Tieu AM, Luesch H, Loria R, Ding Y. High-yield production of herbicidal thaxtomin and thaxtomin analogs in a nonpathogenic Streptomyces strain. Appl Environ Microbiol 2018;84. https://doi.org/10.1128/AEM.00164-18.

[6] Bibb MJ, White J, Ward JM, Janssen GR. The mRNA for the 23S rRNA methylase encoded by the ermC gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 1994;14:533–45. https://doi.org/10.1111/j.1365-2958.1994.tb02187.x.

[7] Labes G, Bibb M, Wohlleben W. Isolation and characterization of a strong promoter element from the Streptomyces griseus gnhA gene phase 119 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter. Microbiology (Reading) 1997;143 (Pt 5):1503–12. https://doi.org/10.1099/00221287-143-5-1503.

[8] Wang W, Li X, Wang J, Xiang S, Feng X, Yang K. An engineered strong promoter for streptomycetes. Appl Environ Microbiol 2013;79:4484–92. https://doi.org/10.1128/AEM.00985-13.

[9] Myronovskiy M, Luzhetsky A. Native and engineered promoters in natural product discovery. Nat Prod Rep 2016;33:1006–19. https://doi.org/10.1039/cfnp00002a.

[10] Sun D, Liu C, Zhu J, Liu W. Connecting metabolic pathways: sigma factors in Streptomyces spp. Front Microbiol 2017b;8:2546. https://doi.org/10.3389/fmicb.2017.02546.
[30] Palazzotto E, Tong YJ, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. https://doi.org/10.1016/j.biotechadv.2019.03.005. ARTN.

[31] Ji CH, Kim H, Kang HS. Synthetic inducible regulatory systems optimized for the modulation of secondary metabolite production in Streptomyces. ACS Synth Biol 2019; 8:577-86. https://doi.org/10.1021/acsbio.9b00091.

[32] Flett F, Mersinius V, Smith CP. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomyces. FEMS Microbiol Lett 1997; 155:223-9. https://doi.org/10.1016/S0378-1097(97)00392-5.

[33] Chater KW, Wilde LC. Restriction of a bacteriophage of albus G involving endonuclease salI. J Bacteriol 1976; 128:644-50. https://doi.org/10.1128/jb.128.4.644-650.1976.

[34] Lanka E, Wilkins BM. DNA processing reactions in bacterial conjugation. Annu Rev Biochem 1995; 64:141-69. https://doi.org/10.1146/annurev.bi.64.070195.001041.

[35] Engler C, Gruetzer R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type II restriction enzymes. PLoS One 2009; 4:e5553. https://doi.org/10.1371/journal.pone.0005553. ARTN.

[36] Morita K, Yamamoto T, Fusada N, Komatsu M, Ibeda H, Hirano N, Takahashi H. The site-specific recombination system of actinophage T4. FEMS Microbiol Lett 2009; 297:234-40. https://doi.org/10.1111/j.1574-6968.2009.01683.x.

[37] Combes P, Till R, Bee S, Smith MCM. The Streptomyces genome contains multiple pseudo-attB sites for the phi C3I-encoded site-specific recombination system. J Bacteriol 2002; 184:5746-52. https://doi.org/10.1128/jb.184.10.5746-5752.2002.

[38] Hou JR, Zeng WQ, Zong YQ, Chen ZH, Miao CS, Wang BJ, Lou CB. Engineering the ultrasensitive transcription factors by fusing a modular oligomerization domain. ACS Synth Biol 2018; 7:1188-94. https://doi.org/10.1021/acssynbio.7b00414.

[39] Bai CX, Zhang Y, Zhao XJ, Hu YL, Xiang SH, Miao J, Lou CB, Zhang XL. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. In: Proceedings of the national Academy of Sciences of the United States of America, 112; 2015. p. 12181-6. https://doi.org/10.1073/pnas.1511027112.

[40] Salis HM, Michaels EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 2009; 27:946. https://doi.org/10.1038/nbt.1573.

[41] Zhao XJ, Zong YQ, Wei WJ, Lou CB. Multiplexed promoter engineering for improving thaxtomin A production in heterologous Streptomyces hosts. Life 2012; 2: https://doi.org/10.3390/life205010504.

[42] Perez-Rueda E, Collado-Vides J. The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 2000; 28:1838-47. https://doi.org/10.1093/nar/28.8.1838.

[43] Brophy JAN, Voigt CA. Principles of genetic circuit design. Nat Methods 2014; 11: 508-20. https://doi.org/10.1038/nmeth.2926.

[44] Reis AC, Halper SM, Vezeau GE, Cetnar DP, Hossain A, Clauer PR, Salis HM. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat Biotechnol 2019; 37:1294. https://doi.org/10.1038/s41587-019-0286-9.

[45] Hammer K, Mijakovic I, Jensen PR. Synthetic promoter libraries - tuning of gene expression. Trends Biotechnol 2006; 24:53-5. https://doi.org/10.1016/j.tibtech.2005.12.002.

[46] Crane H, Whitfield G. Towards a new science of secondary metabolism. J Antimicrob Chemother 2013; 68:367-40. https://doi.org/10.1093/jac/dkt325.

[47] Liu G, Chater KW, Chandra G, Niu GQ, Tan HR. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 2013;77:112-43. https://doi.org/10.1128/MMBR.00545-12.

[48] van Wezel GP, McKenzie NL, Dodwell JR. Applying the genetics of secondary metabolism to model actinomycetes to discover new antibiotics, complex enzymes in microbial natural product biosynthesis. Part A: Over Artic Pept 2009; 458:117. https://doi.org/10.1016/S0076-6879(09)04805-8.

[49] Guet CC, Elovitz MB, Hsing WH, Leibler S. Combinatorial synthesis of genetic networks. Science 2002; 296:1466-70. https://doi.org/10.1126/science.1067407.

[50] Morey KJ, Astrunes MS, Barrow MJ, Solorzano FA, Haves KL, Smith JJ, Medford J. Crosstalk between endogenous and synthetic components - synthetic signaling meets endogenous components. Biotechnol J 2012; 7:846-55. https://doi.org/10.1002/biot.201100487.

[51] Stanton BC, Nielsen AAK, Tamirz A, Clancy K, Peterson T, Voigt CA. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol 2014; 10:99-105. https://doi.org/10.1038/nchembio.1411.

[52] Temme K, Hill R, Segall-Shapiro TH, Moser F, Voigt CA. Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res 2012;40:8773-81. https://doi.org/10.1093/nar/gks597.