Fatal heart disease in patients with bone and soft tissue sarcoma

Bei Chen1,2,3, Xin Zhao2, Xiying Li2, Jun Liu2* and Juyu Tang1,3*

1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China, 2Department of Musculoskeletal Oncology, Chenzhou No. 1 People’s Hospital, Chenzhou, China, 3Department of Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China

Background/purpose: With improved cancer survivorship, non-cancer events, especially heart disease (HD), have become the underlying cause of death in cancer patients, but the risk of HD mortality in sarcoma patients remains poorly characterized. Therefore, our purpose was to: (1) identify sarcoma patients at the highest risk of fatal HD compared with the general population, (2) identify patients and sarcoma characteristics associated with a higher risk of HD death, and (3) determine if chemotherapy increased the risk of HD death in sarcoma patients.

Methods: From 1975 to 2016, we identified patients diagnosed with bone and soft tissue sarcoma from the Surveillance, Epidemiology, and End Results (SEER) database in the US. Standardized mortality ratios (SMRs) were evaluated using mortality data from the general population collected by the National Center for Health Statistics. This was the largest retrospective cohort study of fatal HD in individuals with sarcoma.

Results: In 80,905 sarcoma patients observed for 530,290 person-years, 3,350 deaths from HD were identified with a mortality of 631.7/100,000 person-years. The SMR of death from HD was 1.38 (95% CI: 1.33–1.42). The highest risks of death from HD were observed in patients with Ewing sarcoma (SMR = 5.44; 95% CI: 3.38–8.75) and osteosarcoma (SMR = 1.92; 95% CI: 1.55–2.38). Patients diagnosed at < 19 years old had the highest SMR in all age subgroups, and a higher risk of fatal HD relative to the general population was observed in sarcoma survivors diagnosed at < 85 years old. In patients diagnosed at < 19 years old, HD plurality occurred in those with Ewing sarcoma (29.4%) and osteosarcoma (32.4%) and at > 35 years old, HD plurality occurred in those diagnosed with liposarcoma (19.0%) and malignant fibro histiocytoma (MFH) (23.6%). For sarcoma survivors, HD mortality risks were highest within the first year after diagnosis (SMR = 1.31; 95% CI: 1.21–1.41), and this risk remained elevated throughout follow-up compared with the general population. Subgroup analyses indicated that chemotherapy significantly increased the risk of fatal HD in patients with localized osteosarcoma (Hazard ratio (HR) = 3.18; 95% CI: 1.24–8.13; P = 0.016), but not in patients with other histological sarcoma subtypes and clinical stages.
Conclusion: The risk of death from HD mainly varied in patients with different histological sarcoma subtypes and clinical stages. Chemotherapy increased the risk of fatal HD in patients with localized osteosarcoma. To lower the risk of fatal HD in patients with sarcoma, we call for enhanced multidisciplinary cooperation, including cardiologists and orthopedic surgeons.

KEYWORDS
sarcoma, chemotherapy, osteosarcoma, heart diseases, standardized mortality ratio

Introduction

Over several decades, heart diseases (HD) have become the first leading cause of death globally, and in 2019, killed approximately nine million individuals, accounting for 9% of all deaths (1). Cancer and HD may occur separately in patients, or cancer may cause HD via non-bacterial thrombotic endocarditis and chemoradiation therapy (2–4). As survival rate of cancer patients improve, medical officers have gradually realized that the risk of death from other non-cancer diseases in cancer patients was higher when compared with the general population (5–7), furthermore, HD as the first leading cause of non-cancer death among cancer patients have attracted more and more attention from clinicians (7–9).

Bone and soft tissue sarcoma comprise several rare malignant tumors which arise from mesenchymal tissue (10), they are responsible for more deaths than testicular cancer, Hodgkin's disease, and thyroid cancer combined due to their more recurrent and metastatic nature (11). The standard therapy for patients with sarcoma is neoadjuvant chemotherapy, surgical resection, and adjuvant chemotherapy (12). Anthracyclines are commonly used chemotherapy drugs, but may cause HD, reduce the quality of life in patients, and increase mortality in sarcoma patients (3). Previous studies reporting the risk of HD in sarcoma patients were limited by small sample sizes and data collected primarily at single institutions (13–16). Currently, limited guidelines are available on fatal HD prevention, identification, or management, specifically in sarcoma patients. One strategy aimed at preventing fatal HD in this group is to identify and target subgroups at greatest HD risk, therefore, retrospective cohort studies such as ours could be used by clinicians to generate survivorship programs and mitigate HD risks in these patients.

In our study, we had the following objectives: (1) to identify sarcoma patients at highest risk of fatal HD compared with the general population, (2) to identify patients and sarcoma characteristics associated with a higher risk of HD death, and (3) to determine if chemotherapy increased the risk of HD death in sarcoma patients.

Materials and methods

In this retrospective cohort study, we used the Surveillance, Epidemiology, and End Results (SEER) database at the National Cancer Institute, which comprised 18 registries and covered approximately 28% of the US general population (17). Given that anthracyclines or cisplatin were discovered in the 1980s, we included patients diagnosed with sarcoma between 1975 and 2016 (18). As a comparison, general population mortality data, spanning 1969–2016 from the National Center for Health Statistics, were used (5, 17, 19). Using exclusion criteria (Figure 1), we identified the final study cohort. Patients whose information was obtained solely from death certificates or autopsies were excluded due to no survival time data (<1.5% of patients). Patients diagnosed with bone and soft tissue sarcoma without a definite socioeconomic status were also excluded (11).

Sarcomas were classified into ten histological subtypes according to the International Classification of Disease for Oncology third revision (ICD-O-3), and included chondrosarcoma, osteosarcoma, Ewing sarcoma, liposarcoma, malignant fibrohistiocytoma (MFH), leiomyosarcoma, fibrosarcoma, synovial sarcoma, Malignant Peripheral Nerve Sheath Tumor (MPNST), and others (ICD-O-3 codes are shown in Table 1) (11).

We extracted demographic data, including age at diagnosis, sex (female, male), race (white, black, and others), calendar year of diagnosis (1975–2016), marital status at diagnosis (married, unmarried, and unknown), insurance status (insured, Medicaid, uninsured, unknown), and socioeconomic indicators (income and educational status). Income (median family income) and educational level (percentage of individuals > 25 years of age with at least a high school degree) from county-level data were calculated by referring to 2000 US census data and categorizing data into tertiles (high, median, low). Tumor-related characteristics included histological subtype, grade (1–IV), clinical sarcoma stage (localized, regional, distant, and unknown), and treatment information (chemotherapy, radiotherapy, and surgery status). Time of follow-up and cause of death were also available and collected. Patients were considered to have committed HD death if the cause of death variable was coded as “Diseases of Heart (50060).”
For objective 1, we calculated standardized mortality ratios (SMRs), which provided the relative risk of HD death for sarcoma patients when compared with all US residents, stratified by histological subgroup. SMRs and 95% confidence intervals (CIs) were calculated as previously described (19, 20). Briefly, SMRs were estimated as the ratio of observed to expected numbers of deaths. The observed number of HD deaths represented the total number of deaths from heart events in sarcoma patients during the follow-up period; the expected number of deaths represented the number of deaths from heart events in the general population with a similar age at diagnosis, sex, race, and calendar year distribution. Five-year age categories and three-year calendar categories were used for standardization (21). Mortality from fatal HD was calculated as the number of deaths from HD divided by person-years at risk (20).

For objective 2, considering other competitive risk events, we plotted cumulative incidence curves and compared them using the Gray test. Furthermore, we constructed logistic regression and multivariate Cox proportional hazards models to identify risk factors associated with a higher risk of HD death in sarcoma patients.

For objective 3, we conducted subgroup analysis by histological subtype and clinical stage to determine if chemotherapy increased the risk of fatal HD in sarcoma patients. The survival time was from sarcoma diagnosis until fatal HD; values recorded as 0 months in the SEER database were converted to one-half of a month according to accepted epidemiological practices (19). Statistical significance was accepted at $P < 0.05$ (two-sided). Analyses were performed using SEER*Stat software version 8.3.6 and R version 3.51 statistical software.

Results

In total, 3,350 HD deaths were identified in 80,905 patients with bone and soft tissue sarcoma over 530,291
TABLE 1 Death from HD among patients with bone and soft tissue sarcomas by demographic and tumor characteristics.

Characteristic	Patients with cancer in SEER	HD death	Person-years accrued	Mortality¹	SMR²	95% CI		
	No.	%	No.	%				
Sex								
Female	36283	45	1353	40	247636	546.4	1.45	1.37–1.53
Male	44622	55	1997	60	282655	706.5	1.33	1.28–1.39
Race³								
White	65618	81	2876	84	433078	664.1	1.35	1.30–1.40
Black	8530	11	303	9	54297	558.0	1.48	1.32–1.66
Other	6757	8	171	5	42915	398.5	1.70	1.47–1.98
American Indian/Alaska Native	553	1	12	1	3762	318.9	2.13	2.11–3.75
Asian or Pacific Islander	5430	7	149	4	33934	439.1	1.70	1.45–2.00
Unknown	774	1	10	1	5218	191.6	1.42	0.77–2.64
Year of diagnosis								
1975–1977	1667	2	194	6	22941	845.6	1.75	1.52–2.02
1978–1980	1797	2	183	5	25057	730.3	1.86	1.61–2.15
1981–1983	1879	2	184	5	25039	734.8	2.00	1.73–2.31
1984–1986	1986	2	180	5	25146	715.8	1.73	1.50–2.00
1987–1989	2055	3	180	5	26061	690.7	1.61	1.39–1.86
1990–1992	2683	3	206	6	31502	653.9	1.65	1.44–1.89
1993–1995	3593	4	237	7	38861	609.9	1.43	1.26–1.62
1996–1998	3984	5	251	7	40156	625.1	1.37	1.21–1.55
1999–2001	7253	9	376	11	63231	594.6	1.37	1.24–1.52
2002–2004	9463	12	372	11	71767	518.3	1.19	0.98–1.20
2005–2007	9997	12	347	10	60811	570.6	1.14	1.03–1.27
2008–2011	14594	18	387	12	64184	603.0	1.19	1.08–1.32
2012–2016	19954	25	253	8	35529	712.1	1.29	1.14–1.46
Marital status								
Married	38650	48	1690	50	257737	655.7	1.24	1.18–1.30
Unknown	4312	5	233	7	26155	890.8	1.57	1.38–1.78
Unmarried	37943	47	1427	43	246397	579.1	1.54	1.47–1.63
Education⁴								
High	26221	32	888	27	137715	644.8	1.39	1.30–1.49
Median	27786	34	1227	37	190351	644.6	1.38	1.30–1.45
Low	26898	33	1235	37	202224	610.7	1.37	1.29–1.44
Income⁴								
High	26657	33	1159	35	191456	605.4	1.32	1.24–1.39
Median	23844	29	910	27	156387	581.9	1.28	1.20–1.37
Low	30404	38	1281	38	182447	702.1	1.52	1.44–1.61
Insurance								
Uninsured	1259	2	13	1	3741	347.5	2.25	1.31–1.88
Any Medicaid	5668	7	73	2	15481	471.5	2.13	1.69–2.68
Insured	29498	36	621	19	95223	652.1	1.13	1.04–1.22
Unknown	44480	55	2643	78	415844	635.6	1.44	1.38–1.49
Histology⁵								
Ewing sarcoma	3055	4	17	1	21430	79.3	5.44	3.38–8.75
Osteosarcoma	6504	8	83	2	46552	178.3	1.92	1.55–2.38
Synovial sarcoma	3171	4	42	1	23181	181.2	1.55	1.14–2.10

(Continued)
TABLE 1 (Continued)

Characteristic	Patients with cancer in SEER	HD death	Person-years accrued	Mortality[^1]	SMR[^2]	95% CI	
	No. %	No. %					
MPNST	2116 3	64 2	11374	562.7	1.57	1.23–2.00	
Chondrosarcoma	5941 7	232 7	50229	461.9	1.37	1.20–1.55	
MFH	8492 10	775 23	66089	1172.7	1.34	1.25–1.44	
Fibrosarcoma	4102 5	185 6	29838	620.0	1.27	1.10–1.47	
Liposarcoma	10819 13	623 19	81894	760.7	1.26	1.16–1.36	
Leiomyosarcoma	7532 9	338 10	41938	805.9	1.18	1.06–1.31	
Chordoma	1605 2	55 2	10147	542.0	1.05	0.81–1.37	
Others	27568 34	936 28	147614	634.1	1.59	1.49–1.69	
Grade at presentation[^6]							
Grade I	9595 12	485 14	84323	575.2	1.22	1.11–1.33	
Grade II	10074 12	438 13	80079	547.0	1.23	1.12–1.35	
Grade III	11701 14	429 13	58801	729.6	1.39	1.27–1.53	
Grade IV	17159 21	559 17	76839	727.5	1.34	1.24–1.46	
Unknown	32376 40	1439 43	230247	625.0	1.51	1.43–1.59	
Stage at presentation							
Localized	42042 52	2152 64	332076	648.0	1.33	1.27–1.38	
Regional	19671 24	706 21	126953	556.1	1.32	1.23–1.42	
Distant	12414 15	199 6	30812	645.8	2.11	1.84–2.42	
Unknown	6778 8	293 9	40448	724.4	1.60	1.42–1.79	
Chemotherapy	No/Unknown	57208 71	3059 91	395330	773.8	1.35	1.31–1.40
	Yes	23697 29	291 9	134960	215.6	1.69	1.51–1.90
Radiotherapy	No/Unknown	52386 65	2314 69	355007	651.8	1.49	1.43–1.56
	Yes	28519 35	1036 31	175283	591.0	1.17	1.10–1.25
Surgery	None	14481 18	427 13	40693	1049.3	2.16	1.96–2.37
	Yes	64412 80	2826 84	476861	592.6	1.29	1.24–1.34
Unknown	2012 2	97 3	12736	761.6	2.04	1.67–2.49	
All sarcoma patients	80905 100	3350 100	530290	631.7	1.38	1.33–1.42	

HD, heart diseases; SEER, Surveillance, Epidemiology, and End Results; SMR, standardized mortality ratio; MFH, malignant fibrohistiocytoma; MPNST, Malignant Peripheral Nerve Sheath Tumor; NOS, not of specific.

[^1]: Per 100,000 person-years.
[^2]: SMRs were estimated as the ratios of observed to expected number of deaths. Observed number of HD death represent the total number of deaths from HD among patients with sarcoma recorded during the study period. Expected death represent the number of individuals who died of HD in the general population with a similar distribution of age at diagnosis (5-year intervals), sex, race (white, black, and other), and calendar year of diagnosis (3-year intervals). The calculation for SMRs were adjusted to the age, sex, race/ethnicity, and calendar year distributions between sarcoma patients and the general population.
[^3]: Others included American Indian/AK Native, Asian/Pacific Islander and unknown race.
[^4]: All sarcoma patients.
[^5]: ICD-O-3: Chondrosarcoma, 9220–9243; Osteosarcoma, 9180–9200; Ewing sarcoma, 9260; Liposarcoma, 8850–8858; MFH, 8830; Leiomyosarcoma, 8890–8891 and 8896; Synovial sarcoma, 9040–9044; MPNST, 9540 and 9561; Chordoma, 9370–9372.
[^6]: Grade I: Well differentiated; Grade II: Moderately differentiated; Grade III: Poorly differentiated; Grade IV: Undifferentiated; anaplastic.

person-years, and provided an age-, sex-, race-, and year-adjusted HD mortality of 631.7/100,000 person-years. The corresponding HD mortality in the general US population was 16.7/100,000 person-years. This generated an SMR = 1.38 (95% CI: 1.33–1.42). The survival time range was 0–39.25 years, with a mean survival time of 7.34 years for sarcoma patients dying from HD.

Sarcoma patient risk of fatal heart disease versus the general population

The characteristics of sarcoma patients and those who died of HD vs. all cancer patients are shown (Table 1). Higher SMRs for fatal HD in patients with sarcoma were associated with the female sex (546.4/100,000 person-years;
TABLE 2 | Risk of fatal HD among patients with sarcoma by age at diagnosis.

Age at diagnosis (years)	Mortality in general population	Mortality in patients with sarcoma	Person-years accrued	No. of deaths	SMR	95% CI
00–19	2.6	32.7	103,970	34	9.46	6.76–13.24
20–29	4.5	42.7	56,215	24	7.24	4.86–10.81
30–34	7.7	76.9	31,216	24	5.59	3.75–8.34
35–39	14.5	113.7	35,173	40	4.11	3.01–5.60
40–44	29.2	170.1	37,626	64	3.09	2.42–3.95
45–49	58.8	217.6	40,893	89	2.17	1.77–2.68
50–54	109.5	330.0	41,213	136	1.96	1.65–2.32
55–59	188.7	481.2	39,694	191	1.71	1.49–1.97
60–64	310.4	709.5	35,173	262	1.60	1.41–1.80
65–69	508.0	1,050.7	33,121	348	1.55	1.40–1.72
70–74	804.0	1,501.6	27,903	419	1.37	1.24–1.51
75–79	1308.2	2,303.0	22,535	519	1.31	1.20–1.43
80–84	2133.1	3,636.1	14,658	533	1.22	1.12–1.33
85+	3586.2	7,295.3	9,142	667	1.04	0.96–1.12

HD, heart diseases; SMR, standardized mortality ratio.

1 Per 100,000 person-years. Reference population: general US population, 1969–2016.

2 Among persons with sarcoma in the populations served by the SEER program.

3 Adjusted to the race and sex distributions between patients and the general population.

SMR = 1.45; 95% CI: 1.37–1.53), the American Indian/Alaskan Native race (318.9/100,000 person-years; SMR = 2.13; 95% CI: 1.21–3.75), and an unmarried status (579.1/100,000 person-years; SMR = 1.54; 95% CI: 1.47–1.63). For patients as a whole, the risk of fatal HD was higher when compared with the general population over the 40 years covered in the SEER data, except for those diagnosed between 2002 and 2004 (518.3/100,000 person-years; SMR = 1.09; 95% CI: 0.98–1.20). Patients with high and low educational levels were equal likely to die from HD: 32% vs. 33%. Patients with low income levels (SMR = 1.52; 95% CI: 1.44–1.61) and an uninsured status (SMR = 2.25; 95% CI: 1.31–3.88) had a higher SMR for fatal HD when compared with those with a high income level (SMR = 1.32; 95% CI: 1.24–1.39) and an insured status (SMR = 1.13; 95% CI: 1.04–1.22). Patients diagnosed at a younger age had a higher SMR for HD, and SMRs gradually declined as patients were diagnosed at later ages (Table 2); patients < 19 years old had an SMR = 9.46 (95% CI: 6.76–13.24, 32.7/100,000 person-years) vs. > 85 years old who had an SMR = 1.04 (95% CI: 0.96–1.12, 7,295.3/100,000 person-years). Fatal HD in sarcoma patients as a function of age group is shown (Figure 2). In patients diagnosed at < 19 years old, HD plurality occurred in those with Ewing sarcoma (29.4%) and osteosarcoma (32.4%). In contrast, in patients diagnosed at > 35 years old, HD plurality occurred in those diagnosed with liposarcoma (19.0%) and MFH (23.6%).
Histological sarcoma subtype is associated with a higher risk of fatal heart disease

The risk of fatal HD in patients with most sarcoma subtypes was higher when compared with the general US population, except for chordoma (542.0/100,000 person-years; SMR = 1.05; 95% CI: 0.81–1.37) (Table 1). The highest SMR was observed in patients with Ewing sarcoma (79.3/100,000 person-years; SMR = 5.44; 95% CI: 3.38–5.75), followed by osteosarcoma (178.3/100,000 person-years; SMR = 1.92; 95% CI: 1.55–2.38), MPNST (562.7/100,000 person-years; SMR = 1.57; 95% CI: 1.23–2.00), and synovial sarcoma (181.2/100,000 person-years; SMR = 1.55; 95% CI: 1.14–2.10). Also, patients with MFH had the highest mortality for fatal HD across all patients (1172.7/100,000 person-years; SMR = 1.34; 95% CI: 1.25–1.44). In patients with Ewing sarcoma, osteosarcoma, MPNST, and MFH with chemotherapy a higher relative risk of fatal HD was observed when compared with the general population (Table 3). However, patients with synovial sarcoma (SMR = 1.69; 95% CI: 0.88–3.52), chondrosarcoma (SMR = 1.10; 95% CI: 0.52–2.30), fibrosarcoma (SMR = 1.28; 95% CI: 0.64–2.56), liposarcoma (SMR = 1.25; 95% CI: 0.83–1.88), leiomyosarcoma (SMR = 1.30; 95% CI: 0.87–1.94), and chordoma (SMR = 0.66; 95% CI: 0.09–4.67), and receiving chemotherapy had an equal risk when compared with the general population.

Risk of heart disease death over time after diagnosis

For all sarcoma subtypes, the risk of death from HD was higher relative to the general population in the first year after a diagnosis, but decreased gradually from 1–5 years, but then increased after this (Table 4). The relative risk of fatal HD in sarcoma patients when compared with the general population was highest in the 10 years after a sarcoma diagnosis (SMR = 2.85; 95% CI: 2.68–3.04). For most sarcoma types, the risk of death from HD was equal to the general population in the first year of diagnosis. For patients with osteosarcoma, the relative risk was higher when compared with the general population in the first year after a sarcoma diagnosis (SMR = 1.73; 95% CI: 1.12–2.69) and after 10 years (SMR = 4.75; 95% CI: 3.43–6.59).

Characteristics associated with a higher risk of fatal heart disease

From multivariable logistic regression (Table 5) of sarcoma patients, older age at diagnosis [odds ratio (OR) = 1.06; 95% CI: 1.05–1.07; P < 0.001], male sex (OR = 1.44; 95% CI: 1.33–1.56; P < 0.001), black race (OR = 1.28; 95% CI: 1.12–1.45;
Histology	Time since diagnosis			
	0–1 Year	1–5 Years	5–10 Years	>10 Years
All				
No. of deaths	675	1016	720	939
Person-years	69,322	181,220	130,829	154,069
SMR	1.31	0.94	1.32	2.85
95%CI	1.21–1.41	0.89–1.00	1.22–1.42	2.68–3.04
Chondrosarcoma				
No. of deaths	27	73	38	94
Person-years	5,388	16,056	12,997	16,202
SMR	0.9	1.05	0.92	2.98
95%CI	0.62–1.31	0.84–1.33	0.67–1.27	2.44–3.65
Chordoma				
No. of deaths	9	16	17	13
Person-years	1,458	4,184	2,643	1,973
SMR	0.84	0.61	1.48	2.77
95%CI	0.44–1.62	0.37–0.99	0.92–2.38	1.61–4.78
Ewing sarcoma				
No. of deaths	1	4	3	9
Person-years	2,804	7,044	4,947	6,844
SMR	1.28	3.42	4.81	15.16
95%CI	0.18–9.09	1.28–9.11	1.55–14.91	7.89–29.13
Fibrosarcoma				
No. of deaths	33	62	38	52
Person-years	3,685	10,331	7,218	8,885
SMR	1.1	0.91	1.17	3.12
95%CI	0.78–1.54	0.71–1.17	0.85–1.61	2.38–4.1
Leiomyosarcoma				
No. of deaths	72	115	77	74
Person-years	6,450	16,327	10,387	9,252
SMR	1.13	0.86	1.25	2.33
95%CI	0.89–1.42	0.72–1.03	1.00–1.57	1.86–2.93
Liposarcoma				
No. of deaths	72	153	162	236
Person-years	9,812	28,926	21,418	22,498
SMR	0.88	0.73	1.28	2.89
95%CI	0.70–1.11	0.62–0.85	1.10–1.49	2.54–3.28
MFH				
No. of deaths	120	250	184	221
Person-years	7,472	20,681	16,734	21,766
SMR	1.06	0.99	1.35	2.60
95%CI	0.89–1.27	0.87–1.12	1.17–1.56	2.28–2.97
MPNST				
No. of deaths	14	19	12	19
Person-years	1,805	4,148	2,872	2,677
SMR	1.62	1.02	1.32	3.8
95%CI	0.96–2.74	0.65–1.60	0.75–2.32	2.43–5.96
Osteosarcoma				
No. of deaths	20	15	12	36
Person-years	5,743	14,378	10,884	15,972

(Continued)
TABLE 4 (Continued)

Histology	Time since diagnosis			
	0–1 Year	1–5 Years	5–10 Years	>10 Years
SMR	1.73	0.96	1.33	4.75
95%CI	1.12–2.69	0.58–1.59	0.76–2.35	3.43–6.59
Synovial sarcoma				
No. of deaths	8	10	7	17
Person-years	2,872	7,842	5,681	7,005
SMR	1.46	0.93	1.12	3.35
95%CI	0.73–2.91	0.50–1.74	0.53–2.35	2.08–5.39
Others				
No. of deaths	299	299	170	168
Person-years	21,827	51,298	35,044	40,989
SMR	1.87	1.12	1.51	2.82
95%CI	1.67–2.09	1.00–1.25	1.30–1.76	2.43–3.28

SMR, standardized mortality ratio; MFH, Malignant fibrohistiocytoma; MPNST, Malignant Peripheral Nerve Sheath Tumor; NOS, not of specific.

1Reference population: general US population, 1969 to 2016. Adjusted to the age, sex and race distributions between patients and the general population.

$P < 0.001$, unmarried status (OR = 1.22; 95% CI: 1.13–1.33; $P < 0.001$), and a low income (OR = 1.16; 95% CI: 1.05–1.29; $P = 0.004$) were associated with significantly greater odds of dying from HD. Neither educational level nor insurance status were associated with a risk of dying from HD in the multivariable model. Moreover, sarcoma patients with distant metastases of sarcoma had a lower OR of fatal HD than patients with localized sarcoma (OR = 0.36; 95% CI: 0.3–0.43; $P < 0.001$).

Receiving chemotherapy was associated with marginally lower odds of fatal HD (vs. without chemotherapy; OR = 0.77; 95% CI: 0.67–0.88; $P < 0.001$). As shown (Table 5 – Cox proportional hazards model in the right panel), the HRs of patients who died of HD are stratified by subgroup. In the Cox regression model, receiving radiotherapy (vs. without radiotherapy; HR = 0.80; 95% CI: 0.74–0.87; $P < 0.001$) and surgery (vs. without surgery; HR = 0.56; 95% CI: 0.50–0.63; $P < 0.001$) was still associated with a lower odds of fatal HD.

Subgroup analysis of the risk of fatal heart disease

We conducted subgroup analysis of the study cohort based on histological sarcoma subtypes. Cumulative incidence curves are shown (Figure 3). Survival analysis indicated that all patients with sarcoma benefited from chemotherapy except those with chordoma ($P = 0.280$) and Ewing sarcoma ($P = 0.555$). To further determine if chemotherapy increased the risk of fatal HD in patients with sarcoma, we conducted subgroup analysis by clinical stage. In the subgroup analysis, chemotherapy could protect patients with regional Ewing sarcoma from dying from HD (Table 6). Moreover, we found that chemotherapy could increase significantly the risk of fatal HD among patients with localized osteosarcoma (HR = 3.18; 95% CI: 1.24–8.13; $P = 0.016$), but not those with regional (HR = 0.63; 95% CI: 0.28–1.40; $P = 0.259$) or advanced osteosarcoma (HR = 0.25; 95% CI: 0.06–1.03; $P = 0.055$). For other subgroups with sarcoma at different clinical stages, chemotherapy did not have any effect on the risk of fatal HD.

Discussion

With the development of multimodality therapy, including advances in imaging techniques and neoadjuvant chemotherapy, sarcoma patient survival has improved significantly (22). In addition to prolonging survival rates, clinicians are now increasingly concerned about complications caused by sarcoma therapy (20, 23). Several small sample or single-center clinical cohort studies reported that antineoplastic agents such as anthracyclines increased the risk of dying from HD in sarcoma patients (14, 15). However, due to low sarcoma incidence rates and limitations with small sample or single center studies, no robust data are available to inform clinical practice. To address this, and to our knowledge, ours is the largest retrospective cohort study on the risk of fatal HD in patients with bone and soft tissue sarcoma.

We performed a contemporary analysis of the risk of fatal HD in >80,000 sarcoma patients and showed that HD risk varied as a function of age, histological subtype, clinical stage, and time after diagnosis. Earlier studies reported that cancers were associated with a high risk of death from HD (4, 6, 7). We first reported that sarcoma patients had a higher risk of fatal HD when compared with the general US population, which was potentially attributed to antineoplastic agents such as anthracycline (24). Anthracyclines are antibiotics discovered...
TABLE 5 Odds ratios and hazard ratios of fatal HD among sarcoma patients.

	Logistic regression model		Cox proportional hazards model			
	Odds ratio	95% CI	P-value	Hazard ratio	95% CI	P-value
Age at diagnosis²	1.06	1.05–1.07	<0.001	1.10	1.09–1.12	<0.001
Sex						
Female	Reference			Reference		
Male	1.44	1.33–1.56	<0.001	1.63	1.51–1.75	<0.001
Race						
White	Reference			Reference		
Black	1.27	1.11–1.45	<0.001	1.33	1.18–1.50	<0.001
Other	0.83	0.70–0.97	0.025	0.79	0.68–0.93	0.003
Year of diagnosis¹	0.94	0.92–0.95	<0.001	0.97	0.96–0.98	<0.001
Marital status						
Married	Reference			Reference		
Unmarried	1.22	1.13–1.33	<0.001	1.48	1.37–1.60	<0.001
Unknown	1.33	1.14–1.55	<0.001	1.27	1.11–1.47	0.001
Income						
High	Reference			Reference		
Medium	1.00	0.91–1.09	0.922	1.02	0.94–1.12	0.592
Low	1.16	1.05–1.29	0.004	1.22	1.11–1.34	<0.001
Education						
High	Reference			Reference		
Medium	0.96	0.86–1.07	0.428	0.97	0.88–1.07	0.542
Low	0.99	0.88–1.11	0.829	0.99	0.89–1.11	0.894
Insurance						
Uninsured	Reference			Reference		
Any Medicaid	1.03	0.58–1.96	0.923	0.94	0.70–2.14	0.831
Insured	0.85	0.51–1.56	0.566	0.59	0.34–1.02	0.060
Unknown	1.27	0.76–2.34	0.399	0.59	0.34–1.03	0.062
Grade at presentation						
Grade I	Reference			Reference		
Grade II	0.90	0.78–1.03	0.127	1.07	0.94–1.22	0.312
Grade III	0.83	0.72–0.96	0.010	1.41	1.23–1.61	<0.001
Grade IV	0.78	0.68–0.89	<0.001	1.35	1.19–1.54	<0.001
Other	0.84	0.75–0.94	0.003	1.21	1.09–1.35	<0.001
Stage at presentation						
Localized	Reference			Reference		
Regional	0.76	0.69–0.84	<0.001	1.02	0.94–1.12	0.589
Distant	0.36	0.31–0.43	<0.001	1.33	1.12–1.53	<0.001
Unknown	0.70	0.61–0.81	<0.001	0.91	0.80–1.04	0.156
Radiotherapy						
No/Unknown	Reference			Reference		
Yes	0.84	0.77–0.91	<0.001	0.80	0.74–0.87	<0.001
Chemotherapy						
No/Unknown	Reference			Reference		
Yes	0.77	0.67–0.88	<0.001	0.97	0.85–1.11	0.659
Surgery						
None	Reference			Reference		
Yes	1.18	1.04–1.33	0.009	0.56	0.50–0.63	<0.001
Unknown	0.53	0.41–0.67	<0.001	0.86	0.63–1.00	0.050

HD, heart diseases; NOS, not of specific.

¹Increase 1 year.

HD, heart diseases; NOS, not of specific.

²Increase 1 year.
approximately 50 years ago, are used as antineoplastic agents, and are the most successful anticancer therapies ever developed for sarcoma (3). However, a worrisome adverse side effect is ventricular dysfunction and heart failure (25). Due to low sarcoma incidence rates, previous cardio-toxicity studies in sarcoma patients receiving chemotherapy were conducted in small sample or at single centers (13–15). In a recent comparative study of 95 patients with sarcoma, approximately 17% developed cardio-toxicity after receiving doxorubicin (26). Indeed, the death rate due to HD in patients receiving chemotherapy was seriously underreported due to inaccurate statistics about cause of death.

The systematic and standardized data collection procedures are used to ensure that the causes of death recoded in SEER are accurate (27); therefore, we believe our study presents a reliable picture of death rates from HD in patients with sarcoma in the US. Using the SEER database, we showed that the incidence rate of fatal HD in sarcoma patients was 631.7/100,000 person-years. In subgroup analyses, chemotherapy for sarcoma only increased the risk of fatal HD in patients with localized osteosarcoma, but not for other subtypes. These subgroups results may be

FIGURE 3

Subgroup analysis: the graph showed cumulative incidence curves of death resulting from heart events. MFH, malignant fibro histiocytoma; MPNST, malignant peripheral nerve sheath tumors.
TABLE 6 Subgroup analysis of fatal HD among patients with sarcoma by histology and clinical stage.

Histology	Clinical stage	HR\(^1\)	95% CI	P-value
Ewing sarcoma				
All	0.97	0.85–1.11	0.659	
Localized	Inf	0.00 – Inf	0.999	
Regional	0.04	0.01–0.29	0.001	
Distant	0.00	0.00 – Inf	1.000	
Osteosarcoma				
All	0.97	0.85–1.11	0.659	
Localized	3.18	1.24–8.13	0.016	
Regional	0.63	0.28–1.40	0.259	
Distant	0.25	0.06–1.03	0.055	
Synovial sarcoma				
All	0.97	0.85–1.11	0.659	
Localized	0.40	0.06–2.86	0.363	
Regional	3.06	0.85–11.11	0.088	
Distant	Inf	0.00–Inf	1.000	
MPNST				
All	0.97	0.85–1.11	0.659	
Localized	4.59	0.85–24.67	0.076	
Regional	0.71	0.05–10.57	0.804	
Distant	0.87	0.18–4.24	0.867	
Chondrosarcoma				
All	0.97	0.85–1.11	0.659	
Localized	0.44	0.10–1.87	0.268	
Regional	1.05	0.30–3.60	0.949	
Distant	0.52	0.10–2.81	0.449	
MFH				
All	0.97	0.85–1.11	0.659	
Localized	1.17	0.83–1.65	0.375	
Regional	0.89	0.51–1.53	0.667	
Distant	0.52	0.07–1.16	0.079	
Fibrosarcoma				
All	0.97	0.85–1.11	0.659	
Localized	0.94	0.36–2.47	0.902	
Regional	1.76	0.38–8.23	0.474	
Distant	1.06	0.06–18.89	0.968	
Liposarcoma				
All	0.97	0.85–1.11	0.659	
Localized	0.84	0.48–1.45	0.523	
Regional	1.33	0.54–3.23	0.534	
Distant	0.49	0.06–3.94	0.504	
Leiomyosarcoma				
All	0.97	0.85–1.11	0.659	
Localized	0.83	0.39–1.77	0.635	
Regional	1.31	0.57–2.97	0.524	
Distant	0.44	0.14–1.39	0.162	
Chordoma				
All	0.97	0.85–1.11	0.659	
Localized	1.66	0.16–17.36	0.673	

(Continued)

HD, heart diseases; HR, hazard ratio; MFH, malignant fibrohistiocytoma; MPNST, Malignant Peripheral Nerve Sheath Tumor.

1 We performed a survival analysis using a Cox proportional hazards model to calculate hazard ratios (HRs), adjusting for demographics: age, sex, race, year of diagnosis, socioeconomic status, insurance status and tumor characteristics: clinical stage, grade at presentation, radiotherapy and surgery status.

attributed to the low incidence rates of Ewing sarcoma in the SEER database.

Apart from chemotherapy, surgery is the main treatment method for sarcoma as it aims to remove all sarcoma traces from patients (22). In 2005, an estimated 18,000 patients underwent amputation due to bone and soft tissue sarcoma, which was the third leading cause of amputation in the US (28). We showed that 79% of patients underwent sarcoma surgery in the study cohort. These patients typically lost a certain degree of physical activity, which is a known risk factor for cardiovascular events (24, 29). Moreover, earlier reports indicated that sarcoma patients presented a certain degree of anxiety and depression which were related to functional and appearance changes (30, 31). Physical inactivity and demoralization are risk factors for HD (32). In our study, the higher relative risk of fatal HD in sarcoma patients to general population in the first year was possibly attributed to chemotherapy, and the relative risk of fatal HD was highest during follow-up after 10 years, which was possibly attributed to combined physical inactivity and demoralization effects. Therefore, clinicians should orchestrate specific rehabilitation care strategies to help long-term sarcoma survivors improve their exercise regimens. Also, evidence now suggests that exercise may inhibit both early and late doxorubicin-induced cardiotoxicity (33). Likewise, psychological assessments such as the Hamilton Depression and Hamilton Anxiety Scales are necessary for long-term sarcoma survivors (20), and can help orthopedic surgeons identify psychological disorders in patients and allow psychologists commence interventions as early as possible.

Cardiovascular events have typically been regarded as age-related disorders, but in our study, younger patients with sarcoma had a higher relative risk of fatal HD when compared with older patients. In the general population aged < 19 years old, HD mortality was very low, at only 2.6/100,000 person-years. But in similar-aged sarcoma patients, this mortality was 32.7/100,000 person-years due to sarcoma and chemotherapy.
Given the high risk of fatal HD among younger patients with sarcoma, clinicians should closely monitor cardiac functions in these younger patients.

Our study had several limitations, most of which were related to the SEER database. Firstly, the database program was limited in terms of detailed information on chemoradiotherapy such as doses and cycles. In a phase III ANNOUNCE trial evaluating cardiotoxicity in patients with soft-tissue sarcoma given doxorubicin, cardiac dysfunction occurred in 2% of patients receiving doses of $<450 \text{ mg/m}^2$, 3% at $450 - <600 \text{ mg/m}^2$, and 1.1% at $\geq 600 \text{ mg/m}^2$ (14). Considering the dose-dependent cardiotoxicity of doxorubicin (34, 35), direct associations must be assessed between chemotherapy dose or cycles and the risk of HD death in sarcoma patients. Future analyses can be augmented by the SEER-Medicare data set, which may elucidate direct relationships with chemotherapy doses and cycles. Secondly, in subgroup analyses, we observed no chemotherapy effects on the risk of fatal HD in other subgroups, such as patients with Ewing sarcoma, inconsistent with previous studies (14, 33, 36). A possible explanation could be the relatively low number of deaths due to cardiovascular events which in turn may have reduced the statistical power of our subgroup analyses, therefore, this requires further investigation. Despite these limitations, ours is the first large sample and population-based study with the longest follow-up times, to explore the risk of HD death in sarcoma patients. Our results are reliable and robust and may be used to guide clinical practice.

Conclusion

This is the first large population-based study on the risk of fatal HD in sarcoma patients, which up to now were rarely reported. Our results suggest that the risk of fatal HD in sarcoma patients is higher than that of the general population, and increases with longer follow-up times. The relative risk of HD to the general population varied in patients with different histological sarcoma subtypes and clinical stage. Subgroup analyses indicated that chemotherapy increased the risk of fatal HD in patients with localized osteosarcoma. To mitigate the risk of fatal HD in sarcoma patients, enhanced multidisciplinary cooperation is warranted, including cardiologists and orthopedic surgeons.

Data availability statement

The original contributions presented in this study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

Ethics statement

Ethical review and approval was not required for this study in accordance with the local legislation and institutional requirements. Written informed consent from the participants was not required for this study in accordance with the local legislation and institutional requirements.

Author contributions

BC and JT: conception and design of study. BC and XZ: acquisition of data. BC, XZ, XL, JL, and JT: analysis and/or interpretation of data. BC, XL, JL, and JT: drafting the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science Foundation of China (81871577 by JT) and the Natural Science Foundation of Hunan Province China (2022JJ30001 by JL).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References

1. World Health Organization [WHO]. The Top 10 Causes of Death. (2020). Available online at: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed December 9, 2020).

2. Rapoportas Roubin S, Cordero A. The two-way relationship between cancer and atherosclerosis. Revista Española de Cardiol. (2019) 72:487–94.

3. Mazevet M, Moulin M, Llach-Martínez A, Chargari C, Deutsch É, Gomez A-M, et al. Complications of chemotherapy, a basic science update. Presse Med. (2013) 42:19 P 2.e352–61.

4. Navi BB, Howard G, Howard VJ, Zhao H, Judd SE, Elkind MSV, et al. New diagnosis of cancer and the risk of subsequent cerebrovascular events. Neurology. (2018) 90:e2025–33.

5. Misono S, Weiss NS, Fann JR, Redman M, Yeh B. Incidence of suicide in persons with cancer. J Clin Oncol. (2008) 26:4731–8.

6. Sturgeon KM, Deng L, Bluhmtham SM, Zhou S, Trilletti DM, Jiang C, et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J. (2019) 40:3889–97.

7. Zaorsky NG, Zhang Y, Tchelbich LT, Mackley HB, Chinchilli VM, Zacharia BE. Stroke among cancer patients. Nat Commun. (2019) 10:5172.

8. Smith GL, Smith BD, Buchholz TA, Giordano SH, Garden AS, Woodward WA, et al. Cerebrovascular disease risk in older head and neck cancer patients after radiotherapy. J Clin Oncol. (2008) 26:5119–25.

9. Henson KE, Realen RC, Winter DL, Bright CJ, Filder MM, Frohlicher B, et al. Cardiac mortality among 20000 five-year survivors of cancer diagnosed at 15 to 39 years of age: the teenage and young adult cancer survivor study. Circulation. (2016) 134:1519–31. doi: 10.1161/CIRCULATIONAHA.116.025314.

10. Smith GM, Johnson GD, Grimer RJ, Wilson S. Trends in presentation of bone and soft tissue sarcomas over 25 years: little evidence of earlier diagnosis. Ann R Coll Surg Engl. (2011) 93:542–7. doi: 10.1017/S0004508511000032.

11. Yu K, Chen Y, Song K, Xiong F, Tian Y, Guan H, et al. Impact of limb salvage on prognosis of patients diagnosed with extremity bone and soft tissue sarcomas. Front Oncol. (2022) 12:73323R. doi: 10.3389/fonc.2022.73323.

12. Argenziano M, Tortora C, Potà E, Di Paola A, Di Martino M, Di Leva C, et al. Osteosarcoma in children: not only chemotherapy. Pharmaceuticatlas. (2021) 14:923.

13. Van Tine BA, Agulnik M, Olson RD, Walsh GM, Klauser A, Frank NE, et al. Phase II clinical study of 13-deoxy, 5-iminodoxorubicin (GPX-150) with metastatic and unresectable soft tissue sarcomas. Cancer Med. (2019) 8:2994–3003. doi: 10.1002/cam4.2136.

14. Jones RL, Wagner AJ, Kawai A, Tamura K, Shahir A, Van Tine BA, et al. Prospective evaluation of doxorubicin cardiotoxicity in patients with advanced soft tissue sarcoma treated in the announce phase III randomized trial. Clin Cancer Res. (2021) 27:3861–6. doi: 10.1158/1078-0432.CCR-20-1492.

15. Van Tine BA, Hurbach AC, Oppelt P, Frith AE, Rathore R, Mitchell JD, et al. Interim analysis of the phase II study: noninferiority study of doxorubicin with upfront dexrazoxane plus olaratumab for advanced or metastatic soft tissue sarcoma. Clin Cancer Res. (2021) 27:3854–60.

16. Vos M, Sleijfer S, Littiere S, Touati N, Duffand F, van der Graaf WT, et al. Association of pazopanib-induced toxicities with outcome of patients with metastatic and unresectable soft tissue sarcoma. J Bone Oncol. (2021) 10:3659–70. doi: 10.21037/tcr-21-306.

17. Chen Y, Yu K, Xiong J, Zhang J, Zhou S, Dai J, et al. Suicide and accidental deaths among patients with primary malignant bone tumors. J Bone Oncol. (2021) 10:3653. doi: 10.1016/j.jbonco.2021.100353.

18. Yu K, Wu B, Chen Y, Kang H, Song K, Dong Y, et al. Suicide and accidental deaths among patients with primary malignant bone tumors. J Bone Oncol. (2021) 27:100353. doi: 10.1016/j.jbonco.2021.100353.

19. Yu K, Chen Y, Kang H, Song K, Dong Y, et al. Suicide and accidental deaths among patients with primary malignant bone tumors. Front Med. (2022) 9.10833965. doi: 10.3389/fmed.2022.833965.

20. Seixas AA, Vallen J, Barnes-Grant A, Butler M, Langford AT, Grandner MA, et al. Mediating effects of body mass index, physical activity, and emotional distress on the relationship between short sleep and cardiovascular disease. Medicine. (2018) 97:e11939. doi: 10.1097/MD.0000000000011939.

21. Oikonomou EE, Kokkinidis DG, Kampaktsa PN, Amir EA, Marwick TH, Gupta D, et al. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol. (2019) 4:1007–18. doi: 10.1001/jamaccardio.2019.2952.

22. Lee S-H, Cho I, You S-C, Cha M-J, Chang J-S, Kim WD, et al. Cancer therapy-related cardiac dysfunction in patients treated with a combination of an immune checkpoint inhibitor and doxorubicin. Cancers. (2022) 14:2320. doi: 10.3390/cancers14092320.

23. Park HS, Lloyd S, Decker RH, Wilson LD, Yu JB. Overview of the surveillance, and end results database: evolution, data variables, and quality assurance. Curr Probl Cancer. (2012) 36:183–90. doi: 10.1016/j.currprobcancer.2012.03.007.

24. Zieglgäuer-Krack K, Mackenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. (2008) 89:422–9.

25. Misu M-L, Prejeanu R, Vermesan D, Haragus H, Niculescu M, Pop DL, et al. Deep vein thrombosis following the treatment of lower limb pathologic bone fractures - a comparative study. BMC Musculoskelet Disord. (2018) 19:213. doi: 10.1186/s12891-018-2141-4.

26. Paredes T, Canavarro MC, Simóes MR. Anxiety and depression in sarcoma patients: emotional adjustment and its determinants in the different phases of disease. Eur J Oncol Nurs. (2011) 15:175–9. doi: 10.1016/j.ejon.2010.06.004.

27. Wiener L, Battles H, Bernstein D, Long L, Derdak J, Mackall CL, et al. Persistent psychological distress in long-term survivors of pediatric sarcoma: the experience at a single institution. Psychonshology. (2006) 15:898–910. doi: 10.1020/pon.1024.

28. Raitt M. Depression and heart diseases: leading health problems. Psychiatr Danub. (2017) 29(Suppl 4):770–7.

29. Wang E, Chandra J, Kleiman EJ. Exercise intervention decreases acute and late doxorubicin-induced cardiotoxicity. Cancer Med. (2021) 10:7572–84. doi: 10.1002/cam4.4283.

30. Zhang H, Weng J, Sun S, Zhou J, Yang Q, Huang X, et al. Ononin alleviates endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity by activating SIRT3. Toxicol Appl Pharmacol. (2022) 452:116179. doi: 10.1016/j.taap.2022.116179.

31. Kim SW, Ahn B-Y, Tran TTV, Pun J-H, Kang J-S, Leem Y-E. PRMT1 suppresses doxorubicin-induced cardiotoxicity by inhibiting endoplasmic reticulum stress. Cell Signal. (2022) 98:110412. doi: 10.1016/j.cellsig.2022.110412.

32. Vitfell-Rasmussen J, Krarup-Hansen A, Vaage-Nilsen M, Kümler T, Zerahn B. Real-life incidence of cardiotoxicity and associated risk factors in sarcoma patients receiving doxorubicin. Acta Oncol. (2022) 61:801–8. doi: 10.1080/0284186X.2022.2082884.