Fine and hyperfine splitting of the 2P state in Li and Be^+

Mariusz Puchalski[1] and Krzysztof Pachucki[1]

Institute of Theoretical Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland

Accurate calculations of the fine and hyperfine splitting of the 2P state in Li and Be^+ isotopes using the explicitly correlated Hylleraas basis set are presented. Theoretical predictions including the mixing of P_{1/2} and P_{3/2} states, relativistic and quantum electrodynamics effects on hyperfine interactions, are compared with experimental values. It is concluded that precise spectroscopic determination of the nuclear magnetic moments requires elimination of nuclear structure effects by combining measurements for two different states.

PACS numbers: 31.30.Gs, 31.15.aj, 21.10.Ky

I. INTRODUCTION

The calculation of relativistic effects in the atomic structure is most often performed with the explicit use of the Dirac equation, as in relativistic configuration interaction [1], many body perturbation theory [2], relativistic coupled-cluster [3], or multi-configuration Dirac-Fock [4] methods. For light atomic systems the more accurate approach is based on the expansion of the energy in the fine structure constant α. This method allows for a systematical inclusion of relativistic and QED contributions, as each correction can be expressed in terms of the expectation value of some operator with the nonrelativistic wave function. With the use of explicitly correlated basis functions, the nonrelativistic Schrödinger equations for few electron systems can be solved very accurately. The high precision is achieved also for relativistic and QED corrections, provided more complicated integrals with inverse powers of inter-atomic distances can be performed. Such calculations, which rely on expansion in α, have been performed for hydrogen and hydrogen-like ions up to the very high order of mα^6 [5]. Slightly lower precision was achieved for the helium fine structure and for other helium energy levels, all terms up to mα^6 order have been obtained with approximate inclusion of dominant mα^7 corrections [6]. For 3- and 4-electron atoms calculations have reached the order mα^5 with partial inclusion of mα^6 terms, which come from the electron self-energy. The complete calculation of the mα^6 contribution for 3-electron systems has not been performed so far.

In this work we present accurate calculation of the fine and hyperfine splittings in Li and Be^+ ions through mα^4 and mα^5 orders including the finite nuclear mass corrections. Lithium fine structure has already been calculated in Hylleraas functions by Yan and Drake in [7], but in a relatively small basis and with the neglect of P_{1/2} and P_{3/2} mixing, which we find to play a significant role in the isotope shift. The hyperfine splitting of F-states was calculated in many works using explicitly relativistic methods [1, 2, 3, 4] and with the nonrelativistic multi-configuration Hartree-Fock method in [8, 9]. We find by a comparison with our results, that the most accurate previous calculation was that performed by Yerokhin in [1]. For the comparison with experimental values we include O(α^2) relativistic corrections from [1], known O(α^2) QED corrections and draw a conclusion that a largest uncertainty comes from the not well known nuclear structure effects.

II. FINE AND HYPERFINE OPERATORS

Let us briefly start with the description of the fine and hyperfine operators. For con-venience of further calculations we express H_{fs} in terms of 4 elementary operators f_{ia} in atomic units, namely

where g is the free electron g-factor, which includes here all QED corrections, Z is the nuclear charge in units of the elementary charge e, m, m_N are the electron and nuclear masses respectively, finally s_{ia} is the electron spin operator. For convenience of further calculations we express H_{fs} in terms of F_{ia} and 4 elementary operators f_{ia} in atomic units, namely

where f_{ia} is the electron spin operator. For convenience of further calculations we express H_{fs} in terms of F_{ia} and 4 elementary operators f_{ia} in atomic units, namely

\begin{align}
H_{fs} &= -i \sum_{a} s_{ia} \cdot \vec{F}_{ia} \\
F_{ia} &= \varepsilon \left[\frac{Z}{2} f_{ia} + \frac{Z}{2} \frac{m}{m_N} f_{2ia} + \frac{g}{2} f_{fia} \right] \\
& \quad - \left(\frac{g-1}{2} f_{fia} \right),
\end{align}
where \(\varepsilon = m \alpha^4 \) and

\[
\begin{align*}
\tilde{f}_{1a} &= \frac{\vec{r}_a}{r_a^3} \times \vec{\nabla}_a, \\
\tilde{f}_{2a} &= \frac{\vec{r}_a}{r_a^3} \times \sum_b \vec{\nabla}_b, \\
\tilde{f}_{3a} &= \sum_{b \neq a} \frac{\vec{r}_{ab}}{r_{ab}^3} \times \vec{\nabla}_b, \\
\tilde{f}_{4a} &= \sum_{b \neq a} \frac{\vec{r}_{ab}}{r_{ab}^3} \times \vec{\nabla}_a.
\end{align*}
\]

The hyperfine structure, neglecting relativistic \(O(\alpha^2) \) corrections, is given by \(H_{\text{hfs}} \) operator in Eq. (8). We will treat the nucleus as any other particle with mass \(m_N \) and with the \(g \)-factor \(g_N \) which is related to the magnetic moment \(\mu \) by the formula

\[
g_N = \frac{m_N}{Z m_p} \frac{\mu}{\mu_N} \frac{1}{I^2},
\]

where \(\mu_N \) is the nuclear magneton and \(I \) is the nuclear spin. Nuclear masses, spins, magnetic dipole and electric quadrupole moments of Li and Be isotopes are taken from literature and are all presented in Table I. With the help of \(g_N \) \(H_{\text{hfs}} \) can be written as

\[
H_{\text{hfs}} = \sum_a \left[\frac{2}{3} \frac{Z \alpha g_N}{m_N} s_a \cdot \vec{I} \pi \delta^3(\vec{r}_a) - \frac{Z \alpha g_N}{4 m_N} \frac{s_a}{r_a^3} \left(\delta_{ij} - \frac{r_i r_j}{r_a^2} \right) \right] \frac{\vec{r}_a}{r_a^3} \times \vec{p}_a
\]

\[
+ \frac{Z \alpha g_N}{2 m_N} \frac{\vec{I}}{r_a^3} \times \vec{r}_a - \frac{Z \alpha (g_N - 1)}{2 m_N} \frac{\vec{I}}{r_a^3} \times \vec{p}_N
\]

\[
+ \frac{Q \alpha}{6 r_a^3} \left(\delta_{ij} - \frac{r_i r_j}{r_a^2} \right) \frac{\vec{I}}{r_a^3} \times \vec{p}_N
\]

\[
\equiv \vec{I} \cdot \vec{G} + \frac{H^{ij}}{6} \frac{3 I^j I^j}{(2 I - 1)}
\]

where \(Q \) is the electric quadrupole moment. For convenience of further calculations we express \(H_{\text{hfs}} \) in terms of \(H_a, H_{a}^{ij}, H^i, \) and \(H^{ij} \) operators, namely

\[
G^i = \sum_a s_a^i H_a + \sum_a s_a^i H_a^{ij} - i H^i,
\]

\[
H_a = \varepsilon Z g_N m \frac{\alpha}{m_N} \frac{g}{6} \frac{h_a}{h_a},
\]

\[
H_{a}^{ij} = -\varepsilon Z g_N m \frac{\alpha}{m_N} \frac{g}{4} \frac{h_a^{ij}}{h_a},
\]

\[
H^i = \varepsilon \left[\frac{Z}{2} g_N m \frac{h_i}{m_N} - \frac{Z}{2} (g_N - 1) \frac{m_N^2 h_i^2}{m_N^2} \right],
\]

\[
H^{ij} = \varepsilon m^2 Q \frac{h^{ij}}{h_i^2}.
\]

where \(h \) operators (in atomic units) are

\[
\hat{h}_1 = \sum_a \frac{\vec{r}_a}{r_a^3} \times \vec{\nabla}_a,
\]

\[
\hat{h}_2 = \sum_a \frac{\vec{r}_a}{r_a^3} \times \sum_b \vec{\nabla}_b,
\]

\[
\hat{h}_a = 4 \pi \delta^3(\vec{r}_a),
\]

\[
\hat{h}_{ij}^{\alpha} = \frac{1}{r_a^3} \left(\delta_{ij} - \frac{r_i r_j}{r_a^2} \right),
\]

\[
\hat{h}^{\alpha ij} = \sum_a \frac{1}{r_a^3} \left(\delta^{ij} - \frac{r_i r_j}{r_a^2} \right).
\]

III. MATRIX ELEMENTS

Matrix elements of the fine and hyperfine operators are evaluated with the nonrelativistic wave function. This function is obtained by solving the Schrödinger equation in the 3-electron Hylleraas basis set. Finite nuclear mass corrections are included by reduced mass scaling and perturbative treatment of the mass polarization correction. All matrix elements are expressed in terms of Hylleraas integrals, which are obtained with the help of recursion relations [11, 12, 13]. The high accuracy is achieved by the use of a large number of about 15000 Hylleraas functions, and we have already demonstrated the advantages of this approach by the calculation of the isotope shift in Li [14] and Be\(^+\) ions [15].

The nonrelativistic wave function is the antisymmetrized product of spacial and spin functions of the form

\[
\psi_a^{\alpha} = \mathcal{A}[\phi_a^{\alpha}(r_1, r_2, r_3)] \chi,
\]

\[
\phi_a^{\alpha}(r_1, r_2, r_3) = r_a^{n_1} e^{-(r_1 - r_2 - r_3)} \frac{\pi^{n_1} i^{n_2} r_1^{n_3} r_2^{n_4} r_3^{n_5}}{r_a^{n_1 + n_2 + n_3 + n_4 + n_5}}
\]

\[
\chi = [\alpha(1) \beta(2) - \beta(1) \alpha(2)] \alpha(3),
\]

where \(\sigma_a(\alpha) = \alpha(\cdot) \) and \(\sigma_2(\beta) = -\beta(\cdot) \). Matrix elements of each operator, after eliminating spin variables can take the standard form

\[
\langle i | H(j) | S \rangle = \langle \phi^{ij}(r_1, r_2, r_3) | H | 2 \phi^{ij}(r_1, r_2, r_3) + 2 \phi^{ij}(r_2, r_1, r_3) - \phi^{ij}(r_1, r_2, r_3) - \phi^{ij}(r_3, r_2, r_1) \rangle
\]

and, what we call, the Fermi form

\[
\langle i | H_a(j) | F \rangle = \langle \phi^{ij}(r_1, r_2, r_3)| 2 H_3 [\phi^{ij}(r_1, r_2, r_3) + \phi^{ij}(r_2, r_1, r_3) - (H_1 - H_2 + H_3) \times [\phi^{ij}(r_2, r_3, r_1) + \phi^{ij}(r_3, r_2, r_1)] - (H_2 - H_1 + H_3) [\phi^{ij}(r_1, r_3, r_2) + \phi^{ij}(r_3, r_2, r_1)]] \rangle
\]

with the assumption that the norm is \(\sum_a \langle i | i \rangle = 1. \) The
TABLE I: Data for Lithium and Beryllium isotopes. Atomic binding energy of $E_{\text{Li}} = -7.281$ au, $E_{\text{Be}} = -14.669$ au. The value for the quadrupole moment of 7Be is a theoretical estimate [10].

Isotope	Atomic Mass [u]	Ref.	I^m	$\mu[\mu N]$	Ref.	$Q[\text{fm}^2]$	Ref.	r_E	Ref.
6Li	6.015129744(16)	[19]	1^+	0.822473(6)	[20, 21]	$-0.0806(6)$	[22]	2.540(28)	[33]
9Li	9.062790(31)	[19]	2^+	3.43678(6)	[20, 21]	$-3.06(2)$	[23]	2.185(33)	[33]
11Li	11.04372361(69)	[19]	3^+	3.6712(3)	[20, 21]	$-3.33(3)$	[24]	2.426(34)	[33]
7Be	7.0169298(11)	[19]	2^+	$-1.39928(2)$	[29]	-6.11	[17]	2.646(14)	[33]
9Be	9.01218240(43)	[27]	3^+	$-1.17743(2)$	[30, 31]	$-5.288(38)$	[32]	2.519(12)	[37]
11Be	10.01353352(43)	[27]	0^+	$1.26813(5)$	[33, 34]	$-7.36(4)$	[35]	2.463(16)	[33]
13Be	11.02165155(63)	[27]	0^+	$1.6813(5)$	[33, 34]	$-0.24(4)$	[35]	2.463(16)	[33]
11Be	12.0269215(16)	[27]	0^+	$1.26813(5)$	[33, 34]	$-7.36(4)$	[35]	2.463(16)	[33]

Matrix element of the fine structure Hamiltonian becomes

$$
\langle H_{\text{fs}} \rangle_J = \langle -i \sum_a \vec{s}_a \cdot \vec{F}_a \rangle_J = e^{ijk} \langle i | F^j_a | k \rangle_F \left\{ \frac{1}{2}, J = 1/2 \right\} - \frac{3}{4}, J = 3/2
$$

and the fine splitting is

$$
E_{\text{fs}} = \langle H_{\text{fs}} \rangle_{3/2} - \langle H_{\text{fs}} \rangle_{1/2} = -\frac{3}{4} e^{ijk} \langle i | F^j_a | k \rangle_F.
$$

The matrix elements of the hyperfine structure Hamiltonian take the form

$$
\langle H_{\text{hfs}} \rangle_J = \left\langle \vec{I} \cdot \vec{G} + \frac{3 I^1 I^2}{I(I-1)} \frac{H_{ij}^{1}}{6} \right \rangle
$$

$$
= A_J \vec{I} \cdot \vec{j} + B_J \frac{3 (I^1 J^2) (I^2 J^2)}{6} \frac{1}{2} \frac{1}{2} J \left(J - 1 \right),
$$

where A_J and B_J are magnetic dipole and electric quadrupole hyperfine constants. They are all expressed in terms of standard and Fermi matrix elements, namely

$$
A_J = \frac{1}{J(J+1)} \langle \vec{J} \cdot \vec{G} \rangle_{J},
$$

$$
A_{1/2} = -\frac{1}{3} \langle k | H_a | k \rangle_F - \frac{2}{3} e^{ijk} \langle i | H^j_a | k \rangle_S + \frac{2}{3} \langle i | H^a_{ij} | j \rangle_F,
$$

$$
A_{3/2} = \frac{1}{3} \langle k | H_a | k \rangle_F - \frac{1}{3} e^{ijk} \langle i | H^j_a | k \rangle_S - \frac{1}{15} \langle i | H^j_{ij} | j \rangle_F,
$$

$$
B_J = \frac{2}{(2J+3)(J+1)} \langle J^1 I^2 H_{ij} \rangle_J,
$$

$$
B_{1/2} = 0,
$$

$$
B_{3/2} = -\frac{1}{5} \langle i | H^j_ij \rangle_S.
$$

Numerical values for all matrix elements involved in these calculations are presented in Table II. They have been obtained by extrapolation to infinite basis set and uncertainties reflect the numerical convergence. Matrix elements of the fine structure operators have been derived previously by Yan and Drake in [28] and later by us in [29]. Small differences with results of [28] come from the not very large number of basis functions used in that work. The hyperfine operators have been previously obtained in several works, i.e. [1, 9, 39] and we compare our result with the most accurate one from [11] with which we agree well.

IV. THE SECOND ORDER CONTRIBUTION

The hyperfine Hamiltonian H_{hfs} mixes $2^2 P_{1/2}$ with $2^2 P_{3/2}$ what leads to additional contributions to fine and hyperfine splittings [40]. Since this mixing is not very large one can use the second order perturbative formula which involves off-diagonal matrix elements

$$
\delta E(P_{1/2})_{m_1,m_2} = \sum_{m} \frac{\langle P_{1/2}, m_1 | H_{\text{hfs}} | P_{3/2}, m \rangle \langle P_{3/2}, m | H_{\text{hfs}} | P_{1/2}, m_2 \rangle}{E(P_{1/2}) - E(P_{3/2})}
$$

$$
\delta E(P_{3/2})_{m_1,m_2} = \sum_{m} \frac{\langle P_{3/2}, m_1 | H_{\text{hfs}} | P_{1/2}, m \rangle \langle P_{1/2}, m | H_{\text{hfs}} | P_{3/2}, m_2 \rangle}{E(P_{3/2}) - E(P_{1/2})}
$$

To calculate them one can use Clebsch-Jordan coefficients and Racah algebra [41]. In the simpler approach presented here, we introduce the operator K, such that $\langle J, m | K | J, m' \rangle = 0$ for $J = 1/2, 3/2$, but does not change L nor S, namely

$$
K = \vec{S} - \frac{1}{2} - \frac{5}{8 J(J+1)}.
$$

Then the off-diagonal matrix elements can be transformed to the form

$$
\langle P_{J, m_1} | H_{\text{hfs}} | P_{J', m_2} \rangle = \langle J, m_1 | K^{i,j} | J', m_2 \rangle + \frac{3 I^1 I^2}{2} \frac{Y}{I(I-1)} \langle J, m_1 | H^j_{ij} | J', m_2 \rangle
$$

with X and Y coefficients being

$$
X = \langle k | H_a | k \rangle_F + \frac{e^{ijk}}{2} \langle i | H^j_a | k \rangle_S + \frac{1}{4} \langle i | H^j_{ij} | j \rangle_F
$$

$$
Y = -\frac{3}{5} \langle i | H^j ij \rangle_S.
$$
The second order correction to energy due to H_{hfs} in Eqs. (30) neglecting the small Y^2 term becomes

$$
\delta E(P_{1/2}) = -\frac{X^2}{E_{fs}} \frac{I^1 I^j (K^j K^j)_{J=1/2}}{I(2I-1)} - \frac{XY}{E_{fs}} \frac{I^k I^j (K^k (L^L L^J)^{(2)})_{J=1/2}}{I(2I-1)}
$$

$$
= -\frac{X^2}{E_{fs}} \frac{2}{9} \left(\delta^2 + \delta \cdot J \right) + \frac{XY}{E_{fs}} \frac{2I+3}{9I} \delta J, J,
$$

(35)

$$
\delta E(P_{3/2}) = \frac{X^2}{E_{fs}} \frac{I^1 I^j (K^j K^j)_{J=3/2}}{I(2I-1)} - \frac{XY}{E_{fs}} \frac{I^k I^j (K^k (L^L L^J)^{(2)})_{J=3/2}}{I(2I-1)}
$$

$$
= \frac{X^2}{E_{fs}} \frac{1}{9} \left[\delta^2 - \delta \cdot J + (I^1 I^j)^{(2)} (J^1 J^j)^{(2)} \right] + \frac{XY}{E_{fs}} \left[\frac{(2I+3)}{90I} \delta J + \frac{1}{18} \frac{3(I^1 I^j)^{(2)}}{I(2I-1)} \right.
$$

$$
\left. \times (J^1 J^j)^{(2)} \right],
$$

(36)

where we omitted the magnetic octupole coupling, the so-called C_J coefficient. Resulting corrections to the fine and hyperfine splittings are

$$
\delta E_{fs} = \frac{X^2}{E_{fs}} \frac{I(I+1)}{3},
$$

(37)

$$
\delta A_{1/2} = \frac{2X^2}{9E_{fs}} + \frac{2I+3}{9I} \frac{XY}{E_{fs}},
$$

(38)

$$
\delta A_{3/2} = -\frac{X^2}{9E_{fs}} - \frac{2I+3}{90I} \frac{XY}{E_{fs}},
$$

(39)

$$
\delta B_{3/2} = -\frac{2}{9} \left(\frac{I(2I-1)}{2} \right) \frac{X^2}{E_{fs}} + \frac{1}{3} \frac{XY}{E_{fs}}.
$$

(40)

V. RESULTS

Numerical results for the fine splitting in Li and Be$^+$ isotopes are shown in Table III. $E_{fs}^{(0)}$ is the leading contribution with the exact electron g-factor, but in the infinite nuclear mass limit, $E_{fs}^{(1)}$ is the finite nuclear mass correction, and δE_{fs} is the $P_{1/2} - P_{3/2}$ mixing term. The higher order relativistic and QED corrections are not known, as they have not yet been evaluated. Finally ΔE_{fs} is the isotope shift with respect to 7Li and 8Be$^+$. Our result for this isotope shift in the fine structure ΔE_{fs} of Li differs significantly from the previous calculations in [7] due to the inclusion of the important second order contribution δE_{fs}. However, it differs also from all the experimental values, see Table III.

Numerical values of all significant contributions to the hyperfine constants of the $^2P_{1/2}$ and $^2P_{3/2}$ states in Li and Be$^+$ isotopes are shown in Tables IV and V $A_{1/2}^{\text{rel}}$ according to Eq. (8) involves the exact electron g-factor, and thus includes the leading QED corrections. The relativistic corrections $A_{1/2}^{\text{rel}}$ and $B_{3/2}^{\text{rel}}$ have been calculated by Yerokhin in [1] in terms of G_{M_1} and G_{E_2} functions. G_{M_1} is defined by

$$
A_J = \epsilon \frac{Z^3}{8} \frac{m_p}{m} \mu \sqrt{\frac{1}{3} J (J+1)} \frac{1}{G_{M_1}},
$$

(41)

where relativistic corrections to G_{M_1} are equal to 0.000015 for $^2P_{1/2}$, -0.000039 for $^2P_{3/2}$ states of Li, and 0.00153 for $^2P_{1/2}$, -0.000161 for $^2P_{3/2}$ states of Be$^+$. These number include also the so-called negative-energy contributions. G_{E_2} is related to B_J coefficient by

$$
B_{3/2} = \epsilon m^2 Z^3 Q \frac{3}{60} G_{E_2},
$$

(42)

where relativistic corrections to G_{E_2} for $^2P_{3/2}$ are equal to 0.000004 in Li and -0.000013 in Be$^+$. These relativistic corrections can in principle be evaluated within NRQED approach [51] but so far we have not been able to obtain analytic formula for all Hylleraas integrals involved in matrix elements. The next to leading radiative (QED) correction $A_{1/2}^{\text{rel}}$ (beyond the anomalous magnetic moment) is proportional to the Fermi contact interaction and is known from hydrogenic atoms. In terms of the H_a operator it is

$$
H_a^{\text{rel}} = H_a \frac{2}{g} Z \alpha^2 \left(\ln 2 - \frac{5}{2} \right).
$$

(43)
shown are uncertainties due to inaccuracies of magnetic dipole and electric quadrupole moments. Of final theoretical predictions are due to higher order corrections and the approximate treatment of the nuclear structure contribution. Not with respect to TABLE III: Fine splitting of 2P-states in Li and Be isotopes in MHz with $\epsilon = 2Rc\alpha^2 = 6.579 \times 10^6$ MHz. ΔE_{ls} is the isotope shift with respect to 7Li and 7Be. It is not clear whether the experimental value of Orth et al. [43] for the 7Li fine structure includes δE_{ls} due to their diagonal and off-diagonal parametrization of hyperfine matrix elements.

6Li	7Li	8Li	9Li	10Li	
$E^{(0)}_{ls}$	10.053.707(2)/(3)	10.053.707(2)/(3)	10.053.707(2)/(3)	10.053.707(2)/(3)	10.053.707(2)/(3)
$E^{(1)}_{ls}$	$-2.786.8(6)$	$-2.389.1(5)$	$-2.089.3(4)$	$-1.856.8(4)$	$-1.517.7(3)$
δE_{ls}	$0.012.17$	$0.159.16$	$0.036.93$	$0.177.23$	$0.202.21$
ΔE_{ls}	$-0.544.7(1)$	$10.051.477(8)$	$0.177.6(1)$	$0.550.4(1)$	$0.594.5(2)$
expt.	-0.396	$10.051.235(12)$	0.298	0.529	0.851
7Be$^+$	$0.863.79(79)$	$10.051.184(58)$	$0.367(7)$	$3.965(1)$	$7.589(1)$
9Be$^+$	$-0.155.77(77)$	$10.053.39(21)$	2.13	3.878	

TABLE IV: Hyperfine splitting of the 2P-states in Li isotopes MHz. Results of Yerokhin [1] are corrected by inclusion of δA and δB, and by the use of more accurate electric quadrupole moments for 6Li and 7Li. Results of Orth et al. [42, 47] for A and B constants in 7Li are shifted by δA and δB, as these authors parametrized results of their measurement by diagonal and off-diagonal parts separately. Uncertainties of final theoretical predictions are due to higher order corrections and the approximate treatment of the nuclear structure contribution. Not shown are uncertainties due to inaccuracies of magnetic dipole and electric quadrupole moments.

6Li	7Li	8Li	9Li	10Li	
A_{ls}^{rel}	$17.404.70(4)$	$45.963.7(11)$	$15.042.4(4)$	$48.052.5(11)$	$51.815.18(12)$
$\delta A_{1/2}$	$-0.004.05$	$-0.027.29$	$-0.004.37$	$-0.030.69$	$-0.035.00$
$A_{3/2}$	$-0.004.01$	$-0.027.0$	$-0.004.36$	$-0.030.69$	$-0.035.00$
$A_{1/2}$	$-0.001.53$	$0.009.32$	$0.003.55$	$0.009.84$	$0.010.51$
$A_{3/2}$	$-0.001.08$	$-0.002.86$	$-0.001.99$	$-0.003.01$	$-0.003.22$
$A_{3/2}^{\text{fns}}$	$-0.001.36$	$-0.003.39$	$-0.001.23$	$-0.003.27$	$-0.003.88$
$A_{1/2}$	$17.401.7(4)$	$45.930.2(11)$	$17.501.4(1)$	$48.480.4(11)$	$51.780.16(13)$
expt.	$17.401.78(4)$	$45.930.1(3)$	$17.501.3(3)$	$48.480.2(13)$	$51.780.16(13)$
B_{ls}^{rel}	$-1.155.32(2)$	$-3.042.14(4)$	$-1.158.31(2)$	$-3.209.24(4)$	$-3.427.19(4)$
$\delta B_{1/2}$	$-0.002.03$	$-0.014.25$	$-0.002.03$	$-0.015.84$	$-0.018.07$
$B_{3/2}$	$-0.002.01$	$-0.014.21$	$-0.002.01$	$-0.015.83$	$-0.018.07$
$B_{3/2}^{\text{fns}}$	$0.001.08$	$-0.004.86$	$-0.001.85$	$-0.003.3$	$-0.003.88$
$B_{3/2}$	$0.001.36$	$-0.003.39$	$0.001.23$	$0.003.27$	$0.003.88$
$B_{3/2}$	$-1.153.7(4)$	$-3.055.0(11)$	$-1.159.8(4)$	$-3.228.3(11)$	$-3.443.6(13)$
expt.	$-1.155.0(5)$	$-3.058(1)$	$-1.158(8)$	$-3.060(14)$	$-3.078(14)$

The last significant contribution is the finite nuclear size correction, the extended electric and magnetic distribution within nucleus. It is given by the formula

$$H_{ns}^a = H_a (-2Z \alpha m r_Z),$$

where

$$r_Z = \int d^3r d^3r' \rho_E(r) \rho_M(r') |r - r'|.$$

Using exponential parametrization of electric and magnetic formfactors

$$\rho_E(r) = \frac{3\sqrt{3}}{\pi r_E^2} e^{-2\sqrt{3}r/r_E},$$

$$\rho_M(r) = \frac{3\sqrt{3}}{\pi r_M^2} e^{-2\sqrt{3}r/r_M},$$

TABLE III: Fine splitting of 2P-states in Li and Be$^+$ isotopes in MHz with $\epsilon = 2Rc\alpha^2 = 6.579 \times 10^6$ MHz. ΔE_{ls} is the isotope shift with respect to 7Li and 7Be. It is not clear whether the experimental value of Orth et al. [43] for the 7Li fine structure includes δE_{ls} due to their diagonal and off-diagonal parametrization of hyperfine matrix elements.
the Zemach radius \(r_Z \) is
\[
r_Z = \frac{35 (r_E + r_M)^4 + 14(r_E^2 - r_M^2)^2 - (r_E - r_M)^4}{32 \sqrt{3}(r_E + r_M)^3}.
\]
(48)

For all but \(^{11}\)Be nuclei we assume \(r_E = r_M \), thus
\[
r_Z = \frac{35 r_E}{16 \sqrt{3}} = 1.263 r_E,
\]
(49)

and take charge radii from the recent isotope shift measurements in Li \(^{7}\) and Be\(^{+}\) \(^{33}\) supplemented with isotope shift calculations in \(^{15}\)O. For the Gaussian distribution one obtains \(r_Z = 1.30 r_E \) what demonstrates a weak dependence of \(r_Z \) on an arbitrarily assumed shape of the charge distribution, with one exception. The \(^{11}\)Be nucleus has a single neutron halo, what means that \(r_M \) is much larger than \(r_E \) and the nuclear finite size becomes much larger. We employ here the result of direct calculations from \(^{52}\), which is
\[
H_{\text{a}}^{\text{fin}} = H_a (-0.000 717).
\]
(50)

At the same time the nuclear polarizability correction is also much larger and of the opposite sign to the finite size effect. Since it is very difficult to estimate, it will be neglected here. The final results for \(A_{1/2}, A_{3/2} \), and \(B_{1/2}, B_{3/2} \) include the uncertainty coming from the higher order corrections, which we estimate to be 25% of \(A_{\text{fin}} \) and the uncertainty due to the approximate treatment of the nuclear structure which we estimate to be 25% of \(A_{\text{fin}} \) and the uncertainty due to the approximate treatment of the nuclear structure which we

VI. CONCLUSIONS

In comparison to experimental values we observe significant discrepancies for the isotope shift in the fine structure, see Table \([1]\). Although the theoretical fine structure of \(^{7}\)Li is consistent with experimental values, the differences can be associated to \(O(a^2) \) relativistic corrections. The isotope shift, as it has already been noted in \(^{7}\)Li, \(^{3}\)He, \(^{3}\)Li differs significantly between different experiments and theoretical predictions. In view of the recent determination of the nuclear charge radii from the isotope shift of \(2S_{1/2} - 2P_{1/2} \) transition in Be\(^{+}\) ions, it is important to resolve these discrepancies. In this respect, we note the recent critical examinations \(^{53}\) of all experimental values of the fine structure and isotope shift measurements in \(^{7}\)Li. Considering hyperfine splittings we observe good agreement with the previous calculations of Yerokhin in \([1]\), particularly for the \(A_{1/2} \) coefficients. Slight discrepancies with experiments for the \(A \) coefficients of the \(2P \) state indicate that the magnetic moment obtained from the hfs measurement for the \(2S \) state may not be as accurate as claimed. This is because the treatment of the nuclear structure corrections by the elastic charge and magnetic formfactors is very approximate, and the accuracy of this approximation is not known. We think that the more accurate approach shall employ the effective nuclear Hamiltonian using the so called chiral perturbation theory. Then the nuclear structure correction to the atomic hfs consists of the leading Low correction, Zemach corrections from individual nucleons and the nuclear vector polarizability \(^{54}\). Unfortunately, the explicit calculations for nuclei with more than 3 nucleons is difficult and has not been performed so far. Certainly the nuclear vector polarizability correction is significant for halo nuclei, and it would be worth to calculate it. At present, without detailed knowledge of nuclear structure, the determination of magnetic moments from atomic spectroscopy measurements can be uncertain. Therefore, better accuracy can be achieved when two measurements are combined in such a way, that this nuclear structure correction, proportional to the Fermi interaction cancels out, for example in \(A_{1/2} + A_{3/2} \) of the \(P \) state of Li and Be\(^{+}\). Theoretical accuracy for this combination is limited only by higher order QED corrections and knowing both \(A \) constants, we shall be able to derive magnetic moments with relative precision of about \(10^{-5} \) without referencing to magnetic moments of stable isotopes, or with precision of the magnetic moment of the reference nucleus.

Acknowledgments

Authors wish to acknowledge fruitful discussions with Vladimir Yerokhin. This work was supported by NIST through Precision Measurement Grant PMG 60NANB7D6153.
[1] V.A. Yerokhin, Phys. Rev. A 78, 012513 (2008).
[2] W.R. Johnson, U.I. Safronova, A. Derevianko, and M.S. Safronova, Phys. Rev. A 77, 022510 (2008).
[3] A. Derevianko, S.G. Porsev, and K. Beloy, Phys. Rev. A 78, 010503(R) (2008).
[4] J. Bieroń, P. Jónsson, and C.F. Fischer, Phys. Rev. A 60, 3547 (1999).
[5] U.D. Jentschura, A. Czarnecki, and K. Pachucki, Phys. Rev. A 72, 062510 (2005).
[6] K. Pachucki, Phys. Rev. A 74, 062510 (2006).
[7] Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 79, 1646 (1997).
[8] N. Yamanaka, J. Phys. Soc. Jpn. 68, 2561 (1999).
[9] M. Godefroid, C. Froese Fischer, and P. Jónsson, J. Phys. B 34, 1079 (2001).
[10] K. Pachucki, M. Puchalski and E. Remiddi, Phys. Rev. A 70, 032502 (2004).
[11] K. Pachucki and M. Puchalski, Phys. Rev. A 71, 032514 (2005).
[12] M. Puchalski and K. Pachucki, Phys. Rev. A 73, 022503 (2006).
[13] K. Pachucki and M. Puchalski, Phys. Rev. A 77, 032511 (2008).
[14] M. Puchalski, A.M. Moro, and K. Pachucki, Phys. Rev. Lett 97, 133001 (2006).
[15] M. Puchalski and K. Pachucki, Phys. Rev. A 78, 052511 (2008).

The quadrupole moment of ^7Be has not been measured yet. We use the theoretical result from [17], as the other theoretical calculations [18] are not conclusive.

[17] K. Arai et al., Prog. Theor. Phys. Suppl. 142, 97 (2001).
[18] C. Forssén, E. Caumer, and P. Navrátil, arXiv:0901.0453 (2008).
[19] M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008).
[20] P. Raghavan, At. Data Nucl. Data Tables 42, 189 (1989).
[21] N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
[22] J. Cederberg et al., Phys. Rev. A 57, 2539 (1998).
[23] S. Nagy et al., Phys. Rev. Lett. 96, 163004 (2006).
[24] H. G. Voelk and D. Fick, Nucl. Phys. A530, 475 (1991).
[25] D. Borremans et al., Phys. Rev. C 72, 044309 (2005).
[26] R. Neugart et al., Phys. Rev. Lett. 100, 132502 (2008).
[27] G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003), http://amdc.in2p3.fr/web/masseval.html
[28] R. Ringle et al., unpublished.

[29] K. Okada et al., Phys. Rev. Lett. 101, 212502 (2008).
[30] D.J. Wineland, J.J. Bollinger, and W.M. Itano, Phys. Rev. Lett. 50, 628 (1983).
[31] W.M. Itano, Phys. Rev. B 27, 1906 (1983).
[32] D. Sundholm and J. Olsen, Chem. Phys. Lett. 177, 91 (1991).
[33] W. Nörtershäuser et al., e-print arXiv:0809.2607.
[34] S. Kappertz et al., in “Proceedings of the 2nd International Conference on Exotic Nuclei and Atomic Masses (ENAM98)”, Michigan, 1998.
[35] R. Sánchez et al., Phys. Rev. Lett. 96, 033002 (2006).
[36] C.W. de Jager, H. deVries, and C. deVries, At. Data Nucl. Data Tables 14, 479 (1974).
[37] J.A. Jansen, R. Th. Peerdeman, and C. de Vries, Nucl. Phys. A 188, 337 (1972).
[38] Z.-C. Yan, D.K. McKenzie, and G.W.F. Drake, Phys. Rev. A 54, 1322 (1996).
[39] X.-X. Guan and Z.-W. Wang, Eur. Phys. J. D 2, 21 (1998).
[40] K. Beloy and A. Derevianko, Phys. Rev. A 78, 032519 (2008).
[41] K. Beloy, A. Derevianko, and W.R. Johnson, Phys. Rev. A 77, 012512 (2008).
[42] H. Orth, H. Ackermann, and E.W. Otten, Z. Phys. A 273, 221 (1975).
[43] Z.-C. Yan, W. Nörtershäuser, and G.W.F. Drake, Phys. Rev. Lett. 100, 243002 (2008).
[44] D. Das and V. Natarajan, Phys. Rev. A 75, 052508 (2007).
[45] G.A. Noble, B.E. Schultz, H. Ming, and W.A. van Wijngaarden, Phys. Rev. A 74, 012502 (2006).
[46] W. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31 (1996).
[47] H. Orth, R. Veit, H. Ackermann, and E.W. Otten (1974), as cited in A. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[48] J. Walls, R. Ashby, J. Clarke, B. Lu, and W. van Wijngaarden, Eur. Phys. J. D 22, 159 (2003).
[49] D. Das and V. Natarajan, J. Phys. B 40, 035001 (2008).
[50] J.J. Bollinger, J.S. Wells, D.J. Wineland, and W.M. Itano, Phys. Rev. A 31, 2711 (1985).
[51] K. Pachucki, Phys. Rev. A 66, 062502 (2002).
[52] T. Fujita, K. Ito, and T. Suzuki, Phys. Rev. C 59, 210 (1999).
[53] G.A. Noble and W.A. van Wijngaarden, Can. J. Phys. in print.
[54] K. Pachucki, Phys. Rev. A 76, 022508 (2007).