The growth performance of dwarf banana Cavendish from SE Sulawesi under natural shading

Muhidin¹, A Nurmas¹, GR Sadimantara¹, S Leomo² and D N Yusuf²

¹Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University Kendari, Southeast Sulawesi, 93232 Indonesia
²Department of Soil Science, Faculty of Agriculture, Halu Oleo University Kendari, Southeast Sulawesi, Indonesia, 93232 Indonesia

E-mail : muhidinunhalu@gmail.com

Abstract: In Indonesia, bananas are an important crop, and demand tends to increase. On the other hand, due to limited land availability, production capacity is limited. The growth of banana as an interplanting plant under the estate forestry plant was the promising solution. The study aimed to identify the tolerant banana cultivar under natural shading. The research was carried out in a field experiment Faculty of Agriculture, University of Halu Oleo. The study used a randomized block design (RBD) with shade treatment consisting of two levels, namely no shade treatment and using natural shade treatment. Plant height, number of leaves, length of leaves and width of leaves were the parameters observed in vegetative growth. It is concluded that shading treatment has no significant effect on the vegetative growth but tend to increase the plant height, leaf length, number of leaves and leaves width of banana cavendish.

1. Introduction
Bananas are a very important commodity and are widespread throughout the world. Bananas are a major source of food in tropical countries [1–3]. Apart from being a source of carbohydrates, bananas are also a source of minerals including potassium, magnesium, phosphorus, iron and calcium [4-7]. The need for bananas increases every year due to increased levels of consumption, population growth and due to technological diversification, so that bananas can be processed into various sources of food [8]

The need for bananas in Indonesia for various uses, both for eating bananas and for processed bananas, reaches 9 million tons annually. Meanwhile, the domestic banana production capacity only reaches 7 million tons. Various attempts have been made to increase production, but have not yet reached the maximum effort.

The main obstacle to increasing banana production in Indonesia is the low level of banana productivity due to the fact that banana cultivation has not been used as the main source of income, but is still limited to a side business. In addition, there is limited land that can be used for banana cultivation. Most of the available land has generally been used for the development of other commodities, be it annuals, annual crops or mixed crops.

Therefore, a strategy is needed to overcome the constraints of limited land in banana cultivation. One of them is by developing banana plants as a secondary crop on existing agricultural land, especially on land developed for plantation or forestry crops [9]. The main obstacle to cultivating
bananas as a secondary plant is the limited availability of light, which can affect the growth and production of bananas. Therefore, it is necessary to develop bananas that are tolerant of lack of light, so that they can be used as insertion plants.

Some research results show that generally plants that lack light or get low light intensity can experience a drastic decrease in production. However, for some tolerant crop commodities, even though light stress can reduce plant growth and production. The decline is not significant so that growth and crop production can still occur. The results of this study were found in some commodities such as in rice [10-15], soybean [16-17] and maize [18-19].

Therefore, various efforts have been made to get shade-tolerant banana cultivars, which can be used as secondary crops for plantation or forestry crops [20]. The aim of the study to determine the effect of differences in light intensity on banana growth during the vegetative period.

2. Materials and methods
The research was conducted in the field laboratory Faculty of Agriculture, Halu Oleo University. The source of germplasm of dwarf Cavendish banana selected from Southeast Sulawesi. The study used a randomized block design (RBD) with shade treatment consisting of 2 levels, namely n1=no shade treatment and n2=using natural shade treatment under the stand plant of *Glyricidia sepium* servations were made on the vegetative parameter include plant height and number of leaves that were measured every month. The leaf characters include leaf length and leaf width, measured from one plant. The observed data was then analysed using variance analysis. To see the impact of different shading on vegetative components, Duncan's Multiple Range Test (DMRT) was performed at a 95 percent confidence level.

3. Results and discussion

3.1. Plant height and leaf length
The results show there were no significant different the plant height and leaf length that grow under natural shade and without any shading (table 1). From the data it indicates that natural shade could increase plant height and leaf length. On the plant height, founded that there were no significant differences on natural shading and without shading treatment. The same condition also found on the leaf length parameter where there were no significant different the leaf length under natural shade and without shading.

Age (month)	Plant height (cm)	Leaf length (cm)		
	No Shade	Natural Shade	No Shade	Natural Shade
1	23.76	28.90	37.68	41.77
2	45.40	49.09	53.78	51.79
3	46.51	53.03	62.12	57.68
4	49.83	57.56	64.18	65.35
5	67.22	75.81	68.95	69.32
6	84.84	99.87	77.93	79.91
7	114.63	120.33	78.72	82.29
8	152.89	173.44	81.23	87.63

3.2. Number of leaf and leaf width
The results show that there were significant differences on number of leaves and leaves width that grow under natural shade and without shading treatment (table 2). The result showed that the shade treatment in the beginning tend decrease number of leaves, but at the end of the vegetative phase, number of leaves tend to increase on the shading condition. On the other side, on the leaves width
parameter that the natural shade treatment tends to increase leaves width since the beginning the vegetative growth until the end of vegetative phase (table 2).

Table 2. The effect of differential shade on number of leaves and leaves width on the plant age up to 8 months after the transfer (MAT).

Age (month)	Number of leaves	Leaves Width (cm)		
	No Shade	Natural Shade	No Shade	Natural Shade
1	3.30	3.03	17.64	20.74
2	4.26	3.61	28.55	32.17
3	4.32	3.83	30.90	34.16
4	4.98	4.33	31.71	38.66
5	5.35	5.26	37.59	39.77
6	6.06	6.13	39.10	40.93
7	6.29	6.87	41.16	43.25
8	6.98	7.87	44.19	44.70

From the vegetative growth, it appears that the shading treatment tends to increase of plant height, leaf length and leaves width. While on the number leaves parameter, the shading treatment tend to decrease number of leaves but on the last of vegetative growth the shading treatment could increase of leaf number. The shade levels generally have affected the vegetative growth and productivity.

4. Conclusion

It could be concluded that shading treatment has no significant on the vegetative growth but tend to increase the plant height, leaf length, number of leaves and leaves width of banana cavendish.

Acknowledgments

The authors extend their gratitude to the Directorate-General of Science, the Ministry of Education of the Republic of Indonesia and the Rector of Halu Oleo University for the sponsorship of this study under the PTUPT scheme in fiscal year 2020.

References

[1] Samson J A 1986 Tropical fruits 2nd edition. Tropical Agricultural series

[2] Ploetz R C, Kepler A K, Daniells J and Nelson S C 2007 Banana and plantain—an overview with emphasis on Pacific island cultivars *Species profiles Pacific Isl. Agrofor.* 21–32

[3] Aurore G, Parfait B and Fahrasmane L 2009 Bananas, raw materials for making processed food products *Trends Food Sci. Technol.* **20** 78–91

[4] Englberger L, Lyons G, Foley W, Daniells J, Aalbersberg B, Dolodolotawake U, Watoto C, Iramu E, Taki B, Wehi F, Warito P and Taylor M 2010 Carotenoid and riboflavin content of banana cultivars from Makira, Solomon Islands *J. Food Compos. Anal.* **23** 624–32

[5] Horie K, Hossain M S, Morita S, Kim Y, Yamatsu A, Watanabe Y, Ohgitani E, Mazda O and Kim M 2020 The potency of a novel fermented unripe banana powder as a functional immunostimulatory food ingredient *J. Funct. Foods* **70** 103980

[6] Anyasi T A, Jideani A I O and Mchau G R A 2018 Phenolics and essential mineral profile of organic acid pretreated unripe banana flour *Food Res. Int.* **104** 100–9

[7] Borges C V, Maraschin M, Coelho D S, Leonel M, Gomez H A G, Belin M A F, Diamante M S, Amorim E P, Gianeti T, Castro G R and Lima G P P 2020 Nutritional value and antioxidant compounds during the ripening and after domestic cooking of bananas and plantains *Food Res. Int.* **132** 109061

[8] Singh R, Kaushik R and Gosewade S 2018 Bananas as underutilized fruit having huge potential as raw materials for food and non-food processing industries: a brief review *Pharma Innov.*
J. 7 574–80

[9] Muhidin, Sadimantara G R, Leomo S, Rakian T C, Arma M J and Suliartini N W S 2016 The Response of Dwarf Banana Cavendish Growth and Production under Natural Shade Int. J. ChemTech Res. 9 541–8

[10] Nuraida W O, Pitra Pradipta R, Sri Suliartini N W, Wijayanto T, Muhidin and Sadimantara G R 2020 Production and quality of upland red rice under the shade stress Int. J. Sci. Technol. Res. 9 5016–9

[11] Muhidin, Kamaruzaman J, Elwakib S, Yunus M, Kaimuddin, Meisanti A, Sadimantara G R and La Rianda B 2013 The development of upland red rice under shade trees World Appl. Sci. J. 24 23–30

[12] Sadimantara G R, Febrianti E, Suliartini N W S, Sutariati G A K and Yusuf D N 2020 Grain yield and yield attributes response of four upland rice (Oryza sativa L.) promising lines to shade stress E&ES 454 12188

[13] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara G R, Usman, Leomo S and Rakian T C 2018 Shading effect on generative characters of upland red rice of Southeast Sulawesi, Indonesia IOP Conference Series: Earth and Environmental Science vol 157 p 012017

[14] Muhidin, Syam’Un E, Kaimuddin, Musa Y, Sadimantara G R, Usman, Leomo S and Rakian T C 2018 The effect of shade on chlorophyll and anthocyanin content of upland red rice IOP Conference Series: Earth and Environmental Science

[15] Sadimantara G R, Alawyah T, Suliartini N W S, Febrianti E and Muhidin 2019 Growth performance of two superior line of local upland rice (Oryza sativa L.) from SE Sulawesi on the low light intensity IOP Conference Series: Earth and Environmental Science vol 260 (IOP Publishing) p 12145

[16] Fan Y, Chen J, Cheng Y, Raza M A, Wu X, Wang Z, Liu Q, Wang R, Wang X and Yong T 2018 Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system PLoS One 13 e0198159

[17] Yang C, Hu B, Iqbal N, Yang F, Liu W, Wang X, Yong T, Zhang J, Yang W and Liu J 2018 Effect of shading on accumulation of soybean isoflavonoid under maize-soybean strip intercropping systems Plant Prod. Sci. 21 193–202

[18] Jia S-F, Li C-F, Dong S-T and Zhang J-W 2011 Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level Agric. Sci. China 10 58–69

[19] Yang Y, Xu W, Hou P, Liu G, Liu W, Wang Y, Zhao R, Ming B, Xie R and Wang K 2019 Improving maize grain yield by matching maize growth and solar radiation Sci. Rep. 9 1–11

[20] Muhidin, Sadimantara G R, Leomo S, Yusuf D N and Rakian T C 2019 Characterizing the vegetative and fruit of local dwarf banana cavendish from SE Sulawesi IOP Conference Series: Earth and Environmental Science vol 260 (IOP Publishing) p 12175