Leptoquark-vectorlike quark model for the CDF m_W, $(g-2)_\mu$, $R_K^{(*)}$ anomalies and neutrino mass

Talal Ahmed Chowdhury1,2,* and Shaikh Saad3,†

1Department of Physics, University of Dhaka, P.O. Box 1000, Dhaka, Bangladesh
2The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014, Trieste, Italy
3Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

Very recently, a substantial 7σ deviation of the W-boson mass from the Standard Model (SM) prediction has been reported by the CDF collaboration. Furthermore, the Muon g-2 Experiment recently confirmed the longstanding tension in $(g-2)_\mu$. Besides, the updated result from the LHCb collaboration found evidence for the breaking of lepton universality in beauty-quark decays, which shows a 3.1σ discrepancy and is consistent with their previous measurements. Motivated by several of these drawbacks of the SM, in this work, we propose a model consisting of two scalar leptoquarks and a vectorlike quark to simultaneously address the W-boson mass shift, the $(g-2)_\mu$, and anomalies in the neutral current transitions of the B-meson decays. The proposed model also sheds light on the origin of neutrino mass and can be fully tested at the future colliders.

I. INTRODUCTION

The W-boson mass, M_W, is a precisely measured quantity, and even a slight deviation from the predicted value would hint toward physics beyond the Standard Model (SM). The SM predicts $M_W^{\text{SM}} = (80.357 \pm 0.004)$ GeV, which agrees with the most up-to-date PDG value $M_W^{\text{PDG}} = (80.379 \pm 0.012)$ GeV at the 2σ confidence level [1]. Very recently, the CDF collaboration has reported a new precision measurement of M_W using their full 8.8 fb$^{-1}$ data set that yields [2]

$$M_W^{\text{CDF-2022}} = (80.4335 \pm 0.0094) \text{ GeV},$$

which deviates from the SM prediction by 7σ, clearly indicating the presence of new physics (NP) [3–71].

The muon’s anomalous magnetic moment (AMM) $\Delta a_\mu = (g-2)_\mu/2$, is another quantity that has recently been measured with unprecedented accuracy in the Muon g-2 experiment [72]. The result from this experiment is in complete agreement with the previously measured value at BNL [73]. When these two results are combined, it shows a large 4σ discrepancy compared to the SM prediction [74] (for original works, see Refs. [75–94]):

$$\Delta a_\mu = (2.51 \pm 0.59) \times 10^{-9},$$

hinting towards physics beyond the SM (BSM); for a recent review, see e.g. [95].

In addition, lepton flavor universality (LFU) violating B-meson decays have been persistently observed in a series of experiments [96–100]. The most noteworthy deviation is observed in neutral-current transitions associated with the $R_K - R_{K^*}$ ratios, which are defined as:

$$R_K = \frac{BR(B \to K\mu^+\mu^-)}{BR(B \to K\nu\bar{\nu})}, \quad R_{K^*} = \frac{BR(B \to K^*\mu^+\mu^-)}{BR(B \to K^*\nu\bar{\nu})}. \quad (3)$$

LFU in the SM predicts these ratios to be unity with uncertainties less than 1%. However, the most precise measurement by LHCb [100] finds a deficit with a significance of 3.1σ for R_K-ratio. There are several other related observables for which LHCb also found deficits with respect to the SM prediction, which are of order $O(1.5 - 3.5)\sigma$; for a comprehensive list, see e.g. [101]. However, if only the theoretically clean observables: R_K, R_{K^*} ratios and $BR(B_s \to \mu^+\mu^-)$ are taken into account, the data is found to be in 4.2σ tension with the SM [102], for a recent review, see [103]. On the other hand, when both theoretically clean and dirty observables are considered, global analyses show preferences compared to the SM hypothesis with pulls more than 7σ (see [102, 104–110] for theoretical assumptions and data included in these fits).

On top of these downsides mentioned above, neutrinos remain massless in the SM. On the contrary, several experiments discovered non-zero masses of the neutrinos via observations of neutrino oscillations [111–117]. This work proposes a simultaneous explanation of the W-boson mass shift, the tension in the $(g-2)_\mu$, and the anomalies in the neutral current transitions in the B-meson decays, as well as neutrino oscillation data. The proposed model employs two scalar leptoquarks (LQs [118, 119]): $R_2 \sim (3, 2, 1/6)$ and $S_3 \sim (\bar{3}, 3, 1/3)$ and a vectorlike quark (VLQ) $\psi \sim (3, 2, -5/6)$. Non-zero mixing between R_2 and S_3 LQs leads to loop corrections to W-boson self-energy explaining the CDF anomaly. Utilizing this same mixing, the $(g-2)_\mu$ receives a large NP contribution via the mass flip of the VLQ inside the loop. The S_3 LQ, with its interactions with the SM fermions, addresses the discrepancies in the rare decays of B-mesons based on the neutral current $b \to s\ell\ell$ transitions. Furthermore, non-zero mixing between R_2 and S_3 LQs is also responsible for generating neutrino mass at the one-loop order, and the model put forward in this work can be tested in the ongoing and future experiments.
II. PROPOSAL

In this work, we propose a new leptoquark-vectorlike quark model that contains three BSM particles: (i) an iso-doublet LQ, \(\tilde{Q}_2(3, 2, 1/6) \), (ii) an iso-triplet LQ, \(S_3(3,3,1/3) \), and (iii) an iso-doublet vectorlike quark, \(\psi(3,2,-5/6) \). Here, the quantum numbers are shown under the SM gauge group \(SU(3) \times SU(2) \times U(1) \). Furthermore, we assign a baryon number of \(1/3 \) to \(\psi, \tilde{Q}_2 \) (\(S_3 \)). The corresponding component fields of these particles are defined in the following way:

\[
\begin{align*}
\tau.S_3 & = \left(S^{1/3}_{L} \sqrt{2} S^{4/3}_{L} - S^{1/3}_{L} \right), \\
\tilde{R}_2 & = \left(R^{-2/3}_{L} \sqrt{2} R^{-1/3}_{L} \right).
\end{align*}
\]

Yukawa sector:– The relevant part of the Yukawa Lagrangian is given by,

\[
\mathcal{L}_y \supset \bar{y}_{\ell}^c \tilde{Q}_{L} \ell (\tau.S_3) L + \bar{y}_{\ell}^c \tilde{Q}_{R} \ell R + y_{\psi}^c \bar{\psi} \tilde{R}_2 \ell + \bar{y}_{\ell}^c \bar{\psi} \tilde{R}_2 \ell \\
+ \bar{y}_{\ell}^c L (\tau.S_3) \psi_R + m_{\psi} \bar{\psi} \psi_R + h.c.
\]

One more term is allowed by the gauge symmetries: \(\sqrt{2} y_{\psi}^c \bar{\psi} \tilde{R}_2 H^* \). Once the EW symmetry is broken, it generates a mixing between \(\bar{\psi} \psi \) and \(\tilde{R}_2 \ell \) for the Yukawa coupling to be negligibly small. Therefore, the mass generation of the SM fermions remains unaltered. Note that, baryon number assignments as described above forbid two terms: \(\mathcal{L}_y \supset \bar{\psi} \tilde{R}_2 h.R \) and \(\mathcal{L}_y \supset \bar{\psi} \tilde{R}_2 \ell (\tau.S_3) Q_L \).

First we focus on a muon-phobic scenario, then the Yukawa couplings in Eq. (6) take the following form:

\[
y^S = \begin{pmatrix}
0 & 0 & 0 \\
0 & y^S_{\mu} & 0 \\
0 & y^S_{\mu} & 0
\end{pmatrix}, \quad \tilde{y}^c_{\ell} = \begin{pmatrix}
0 \\
y^c_{\mu} \\
0
\end{pmatrix}, \quad \tilde{y}^c_{\ell} = \begin{pmatrix}
0 \\
y^c_{\psi} \\
0
\end{pmatrix}.
\]

These forms of \(y^S_{\mu} \) are required to avoid excessive cLFV and provide large NP contribution to \((g - 2)_\mu \). The texture of \(y^S \) is chosen to explain the anomalies in the neutral current transitions, to be discussed later in the text. For the simplicity of our work, we take all model parameters to be real.

Scalar sector:– The relevant terms in the scalar potential take the following form:

\[
\mathcal{V} \supset m_{\tilde{R}_2}^2 \tilde{R}_2 \tilde{R}_2 + m_{S_3}^2 S_3 \bar{S}_3 + \left\{ \mu H^\dagger (\tau.S_3) \tilde{R}_2 + h.c. \right\}.
\]

The cubic coupling \(\mu \) leads to mixing between \(\tilde{R}_2 \) and \(S_3 \) components, which is crucial in addressing both the \(W \)-boson mass and \((g - 2)_\mu \) anomalies within the proposed model. Remarkably, the existence of this cubic term also allows neutrinos to have non-zero masses at the one-loop order. In this theory, \(\mu \) is one of the most important parameters, and in the limit \(\mu \to 0 \), one gets \(\Delta m_W \to 0 \), \(\Delta a_\mu \to 0 \), as well as \(m_\nu \to 0 \). Note that, to reduce the number of parameters and for the simplicity of our study, scalar quartic couplings are assumed to be somewhat smaller and are not included in Eq.(8). Consequently, all mass splittings are only a function of the trilinear coupling \(\mu \). From the above potential, the mass matrices in the \((S^Q,R^Q)\) basis are given by,

\[
M^2_{2/3} = \begin{pmatrix}
m_S^2 & \mu v/\sqrt{2} \\
\mu v/\sqrt{2} & m_R^2
\end{pmatrix}, \quad M^2_{1/3} = \begin{pmatrix}
m_S^2 & -\mu v/\sqrt{2} \\
-\mu v/\sqrt{2} & m_R^2
\end{pmatrix},
\]

with \(v = 246 \text{ GeV} \). We denote the weak and mass eigenstates with \(X \) and \(\tilde{X} \), respectively, which are related by,

\[
\begin{align*}
S^\pm = c_\theta \tilde{S}^\pm - s_\theta \tilde{R}^\pm, \\
R^\pm = s_\theta \tilde{S}^\pm + c_\theta \tilde{R}^\pm,
\end{align*}
\]

with \(x = \theta, \phi \) for \(Q = 2/3,1/3 \). Masses and mixing for \(X^Q \) states then take the form,

\[
m_2^2, R_Q = \frac{1}{2} \left\{ m_S^2 + m_R^2 \pm [(m_S^2 - m_R^2)^2 + a_Q \mu^2 v^2]^{1/2} \right\},
\]

(12)

\[
sin 2x = \frac{b_Q}{m_S^2 - m_R^2},
\]

(13)

where, \(a_Q(b_Q) = 4(2) \) and \(2(-\sqrt{2}) \) for \(Q = 2/3 \) and \(1/3 \), respectively. In the above analysis, we have adopted the convention of \(m_S > m_R \).

W-boson mass shift:– The effects of NP phenomena on the electroweak (EW) gauge sector are parameterized in terms of oblique parameters \([120, 121]\) \(S \), \(T \), and \(U \). Then, the shift in the \(W \)-boson mass from the NP can be calculated as a function of these oblique parameters \([122]\),

\[
m_W^2 = m_{W,SM}^2 + \left\{ 1 + \frac{\alpha_{em}}{2} \left(\frac{c_{w}^2 T - \frac{1}{2} S + \frac{c_{w}^2 s_{w}^2}{4 s_{w}^2} U}{c_{w}^2 - s_{w}^2} \right) \right\}.
\]

(14)

When the new CDF data is taken into account in a global electroweak precision fit, the oblique parameters would deviate from their previous (PDG) SM predictions, which several studies have already analyzed \([15, 23, 26]\), and updated the 2\sigma allowed ranges for \(S \), \(T \), and \(U \) parameters in light of the CDF result. By incorporating these new sets of values of oblique parameters in our numerical analysis, we find that for our model with TeV scale LQs, the mass splitting of the mixed LQ states must be of order \(\Delta m_{LQ} \sim O(100) \text{ GeV} \) to be compatible with the result reported by CDF collaboration. It is noteworthy to mention that while the CDF II data alone shows a 7\sigma deviation; taking the World Average that includes previous measurements (that are compatible with the SM) from the Tevatron and LEP experiments as well...
as LHC would reduce the tension somewhat (for quantitative analysis, see, for example [15, 23, 26]).

In our model, NP contributions to these parameters originate from the mass splittings among the component fields as a result of mixing between the same charged states from \tilde{R}_2 and S_3. We obtain the following one-loop correction to the T-parameter for our model,

$$
\Delta T = \frac{N_c}{16\pi^2 s_W m_W} \left\{ \left(s_\phi s_\theta - \sqrt{2} c_\phi c_\theta \right)^2 \hat{F} \left[m_{\tilde{S}^{-2/3}, m_{\tilde{S}^{-1/3}}} \right] + \left(s_\phi c_\theta + \sqrt{2} c_\phi s_\theta \right)^2 \hat{F} \left[m_{\tilde{R}^{-2/3}, m_{\tilde{S}^{-1/3}}} \right] + \left(c_\phi s_\theta + \sqrt{2} c_\phi s_\theta \right)^2 \hat{F} \left[m_{\tilde{S}^{-2/3}, m_{\tilde{R}^{-1/3}}} \right] + \left(c_\phi s_\theta - \sqrt{2} c_\phi c_\theta \right)^2 \hat{F} \left[m_{\tilde{R}^{-2/3}, m_{\tilde{R}^{-1/3}}} \right] + \left(\sqrt{2} c_\phi \right)^2 \hat{F} \left[m_{\tilde{S}^{-1/3}, m_{\tilde{S}^{-4/3}}} \right] + \left(-\sqrt{2} s_\phi \right)^2 \hat{F} \left[m_{\tilde{R}^{-1/3}, m_{\tilde{S}^{-4/3}}} \right] - \frac{c_\phi s_\theta + \sqrt{2} c_\phi c_\theta}{2} \hat{F} \left[m_{\tilde{S}^{-1/3}, m_{\tilde{R}^{-1/3}}} \right] + \frac{c_\phi c_\theta + \sqrt{2} c_\phi s_\theta}{2} \hat{F} \left[m_{\tilde{S}^{-1/3}, m_{\tilde{R}^{-1/3}}} \right] \right\}. \tag{15}
$$

with,

$$
\hat{F}(m_1, m_2) = m_1^2 + m_2^2 - \frac{2m_1^2 m_2^2}{m_1^2 - m_2^2} \log \left(\frac{m_1^2}{m_2^2} \right). \tag{16}
$$

In contrast, we find that the NP contribution to ΔS is small compared to ΔT, which in our model, takes the following form:

$$
\Delta S = \frac{N_c}{\pi m_Z^2} \left\{ \frac{1}{3} \mathcal{B}_{22} \left[m_Z^2, m_{\tilde{Z}^{4/3}}, m_{\tilde{Z}^{4/3}} \right] + \frac{1}{48} (3 + c_{2\phi})(1 + 3c_{2\phi}) \mathcal{B}_{22} \left[m_Z^2, m_{\tilde{Z}^{2/3}}, m_{\tilde{Z}^{2/3}} \right] - \frac{1}{96} (9 - 20c_{2\phi} + 3c_{4\phi}) \mathcal{B}_{22} \left[m_Z^2, m_{\tilde{Z}^{4/3}}, m_{\tilde{Z}^{4/3}} \right] - \frac{1}{24} (1 + 3c_{2\phi}) s_\phi^2 \mathcal{B}_{22} \left[m_Z^2, m_{\tilde{Z}^{1/3}}, m_{\tilde{Z}^{1/3}} \right] + \frac{1}{24} (-1 + 3c_{2\phi}) c_\phi \mathcal{B}_{22} \left[m_Z^2, m_{\tilde{Z}^{1/3}}, m_{\tilde{Z}^{1/3}} \right] + \frac{1}{8} s_{2\phi} \mathcal{B}_{22} \left[m_Z^2, m_{\tilde{Z}^{1/3}}, m_{\tilde{Z}^{1/3}} \right] + \frac{1}{8} s_{2\phi} \mathcal{B}_{22} \left[m_Z^2, m_{\tilde{Z}^{1/3}}, m_{\tilde{Z}^{1/3}} \right] \right\}, \tag{17}
$$

here, the expression for the loop function $\mathcal{B}_{22}(q^2, m_1^2, m_2^2)$ is defined as [123] (with $x_k = m_k^2/q^2$):

$$
\mathcal{B}_{22}(q^2, m_1^2, m_2^2) = \frac{g^2}{24} \left\{ 2 \ln q^2 + \ln(x_1 x_2) + \left[(x_1 - x_2)^3 - 3 \left(x_1^2 - x_2^2 \right) + 3 \left(x_1 - x_2 \right) \right] \ln \frac{x_1}{x_2} - 2(x_1 - x_2)^2 - 8(x_1 + x_2) + \frac{10}{3} \right\} - \left[(x_1 - x_2)^2 - 2(x_1 + x_2) + 1 \right] h(x_1, x_2) - 6H(x_1, x_2), \tag{18}
$$

with

$$
H(x_1, x_2) = \frac{x_1 + x_2}{2} - \frac{x_1 x_2}{x_1 - x_2} \ln \frac{x_1}{x_2}, \tag{19}
$$

and

$$
h(x_1, x_2) = \begin{cases}
-\frac{2\sqrt{\Delta}}{\tan^{-1} \frac{x_1 - x_2 + 1}{\sqrt{\Delta}}} - \tan^{-1} \frac{x_1 - x_2 - 1}{\sqrt{\Delta}}, & \Delta > 0, \\
0, & \Delta = 0, \\
\sqrt{-\Delta} \ln \frac{x_1 + x_2 - 1 + \sqrt{-\Delta}}{x_1 + x_2 - 1 - \sqrt{-\Delta}}, & \Delta < 0,
\end{cases} \tag{20}
$$

for $\Delta > 0$, $\Delta = 0$, and $\Delta < 0$, respectively. For previous works on leptoquarks effects in EW oblique parameters, see, for example, Refs. [124–128].

Figure 1. Leading order NP contribution to muon AMM (in the weak basis). Photon can be attached to either fermion line or the scalar line.

Muon AMM: In this theory, the AMM of the muon receives NP contributions as shown in Fig. 1, which can be expressed as [129, 130],

$$
\Delta a_{\mu} = -\frac{m_\mu N_c}{4\pi^2} \sum_k \left\{ \Gamma_k^{L} \Gamma_k^{R} \frac{m_\psi}{m_{\phi_k}} F_k \left(\frac{m_\psi}{m_{\phi_k}} \right) + \left[\frac{1}{2} \left| \Gamma_k^{L} \right|^2 + \left| \Gamma_k^{R} \right|^2 \right] \frac{m_\psi}{m_{\phi_k}} G_k \left(\frac{m_\psi}{m_{\phi_k}} \right) \right\}, \tag{22}
$$

here sum is taken over $k = \{ \tilde{S}^{2/3}, \tilde{R}^{2/3}, \tilde{S}^{4/3}, \tilde{R}^{4/3} \}$ for which we define $\{ \Gamma_k^{L}, \Gamma_k^{R} \} = \{ y_\mu^L s_\theta, \sqrt{2} y_\mu^R c_\theta \}, \{ y_\mu^L c_\theta, -\sqrt{2} y_\mu^R s_\theta \}, \{ y_\mu^L s_\theta, -y_\mu^R c_\theta \}$, and $\{ y_\mu^L c_\theta, y_\mu^R s_\theta \}$, respectively. While $X^{2/3}$ is propagating in the loop $\phi = -1/3$, and for $X^{-1/3}$ it is $Q_\psi = -4/3$. And the functions
\[F(x), G(x) \] are given by,

\[
F(x) = f(x) + Q_\psi g(x), \quad G(x) = \tilde{f}(x) + Q_\psi \tilde{g}(x),
\]

\[
f(x) = \frac{x^2 - 1 - 2x \log x}{4(x - 1)^3}, \quad g(x) = \frac{x - 1 - \log x}{2(x - 1)^2},
\]

\[
\tilde{f}(x) = \frac{2x^3 + 3x^2 - 6x + 1 - 6x^2 \log x}{24(x - 1)^4}, \quad \tilde{g}(x) = \frac{1}{2} f(x).
\]

By considering only the dominant chirally-enhanced terms, \((g - 2)_\mu\) takes the following simpler form:

\[
\Delta a_\mu = \frac{3m_\mu m_\psi y_\psi y_\rho^2}{8\pi^2} \left\{ s_{2\phi} \left[F\left(\frac{m_\mu^2}{m_{S_3/3}^2}\right) - F\left(\frac{m_\mu^2}{m_{R_1/3}^2}\right) \right] \right. \\
- \left. \sqrt{2}s_{2\phi} \left[F\left(\frac{m_\mu^2}{m_{S_3/3}^2}\right) - F\left(\frac{m_\mu^2}{m_{R_1/3}^2}\right) \right] \right\}.
\]

If the external photon leg is removed from the Feynman diagram Fig. 1, then the corresponding diagram contributes to the muon mass. Such a chirally-enhanced contribution can in principle generate a large mass correction \(\delta m_\ell\) to the lepton [95, 131, 132]. Theoretically, this can be absorbed by adjusting the pole mass of the lepton, \(m_\ell^0\), which, however, introduces large degree of fine-tuning. To avoid fine-tuned solution, in this work, we adopt the criterion \(\delta m_\ell \lesssim m_\ell^0\) [133].

As aforementioned, for the AMM of the muon, we adopt the theoretical estimate Eq. (2) quoted in the 2020 White Paper [74]. The SM prediction given in [74] is based on the estimate of the leading-order hadronic vacuum polarization (HVP) contribution \((\nu_\mu^{\text{hvp}})\), evaluated from a data-driven approach (using dispersion integral involving hadronic cross-section data). This method has an error of 0.6%, subject to experimental uncertainties associated with measured cross-section data. On the other hand, lattice QCD calculations for \(a_\mu^{\text{hvp}}\) generally face numerous technical challenges. Despite that, a recent lattice computation, namely by the BMW collaboration [134] quotes an error of only 0.8%. If this computation of \(a_\mu^{\text{hvp}}\) is considered, then the combined measurement from E989 and E821, when compared to the SM prediction, reduces to 1.5\(\sigma\) from 4.2\(\sigma\). Moreover, two more groups, CLS/Mainz group [135] and ETMC [136] just recently released their lattice computations which show consistency with the BMW result. However, the results of [135] is somewhat in tension with the previous lattice computations for light-quarks by the RBC/UKQCD collaboration [137] and ETMC [138]. Instead of considering the HVP from the data-driven method, if the result from [135] is adopted, the tension between the SM prediction for \((g - 2)_\mu\) and experiment would be reduced to 2.9\(\sigma\). Concerning the other new lattice result of [136], it agrees with the BMW (CLS/Mainz) group at the level of 1.0\(\sigma\) (1.3\(\sigma\)). However, if these new lattice results hold, they point towards a large ~ 4.2\(\sigma\) discrepancy with the low-energy \(e^+e^-\) → hadrons cross-section data with respect to Standard Model (SM) predictions (see also [139–142]).

\[
R_K - R_K^* \text{ anomalies:} \quad \text{The effective Hamiltonian responsible for processes of the form } B \to K^{(*)}\ell^+\ell^- \text{ can be described by,}
\]

\[
\mathcal{H}_{\text{eff}}^{\ell\ell} = -\frac{4G_F}{\sqrt{2}} V_{ij} V_{i*} \left(\sum_{X=9,10} C^{ij,\ell\ell}_X \mathcal{O}_X^{ij,\ell\ell} \right) + \text{h.c.},
\]

where the effective operators are defined as,

\[
\mathcal{O}_9^{ij,\ell\ell} = \frac{\alpha}{4\pi} \left(\bar{d}_i \gamma^\mu P_L d_j \right) \left(\bar{\ell} \gamma_\mu \ell' \right),
\]

\[
\mathcal{O}_{10}^{ij,\ell\ell} = \frac{\alpha}{4\pi} \left(\bar{d}_i \gamma^\mu P_R d_j \right) \left(\bar{\ell} \gamma_\mu \gamma_5 \ell' \right).
\]

Now, the part of the Lagrangian relevant for \(R_K - R_K^*\) observable is the first term given in Eq (6). We choose to work with the ‘down-type diagonal’ flavor ansatz for which the CKM matrix enters in the interactions associated with the up-type quarks. Then \(S_3\) couplings to SM fermions contain a term of the form:

\[
\mathcal{L}_{S_3} \supset \left(-\sqrt{2}y^S_{ij} \right)_{ij} \bar{d}_L i\mu L_j S^{3/3} + \text{h.c.},
\]

which leads to \(b \to s\mu^+\mu^-\) transition as shown in Fig 2. After integrating out the heavy leptoquark and combining the Yukawa part of the Lagrangian associated to \(S_3\) as given above, the relevant Wilson coefficients containing in Eq. (27) at the LQ mass scale generating such neutral current processes take the form:

\[
\Delta C_9^{\mu\mu} = -\Delta C_{10}^{\mu\mu} = \frac{e^2}{V_{ts} V_{ts}^*} \frac{\pi}{\alpha_{em}} \frac{y_{\mu\mu} S^{3/3}}{M_{S_3}^2}.
\]

A global fit to the data that includes all \(b \to s\mu\mu\) observables, the \(R_{K^{(*)}}\) ratios, and \(B_s \to \mu^-\mu^+\) branching ratio prefers \(\Delta C_9^{\mu\mu} = -\Delta C_{10}^{\mu\mu} = -0.39 \pm 0.07\) [104] (see also [102, 143]).

\textbf{Neutrino mass:} Non-zero mixing between the \(\bar{R}_2\) and \(S_3\) LQs and BSM Yukawa interactions of the SM fermions with these LQs give rise to neutrino oscillations
in this theory (for LQ effects in leptonic processes, see e.g. [146, 147]). Feynman diagram that leads to non-zero neutrino mass is shown in Fig. 3, and the neutrino mass formula takes the following form [144]:

$$\mathcal{M}_{ij}^\nu = \frac{\sin 2\phi}{32\pi^2} \sum_{k=d,s,b} m_k \left[(y^R)_{ki}(y^S)_{kj} + (y^L)_{kj}(y^R)_{ki} \right]$$

$$\times \left[\frac{m_{S_{1/3}}^2}{m_{S_{1/3}}^2 - m_{S_{1/3}}^2} \ln \frac{m_{S_{1/3}}^2}{m_{S_{1/3}}^2} - \frac{m_{S_{1/3}}^2}{m_{S_{1/3}}^2} - \frac{m_{S_{1/3}}^2}{m_{S_{1/3}}^2} \right].$$

(32)

Since down-type quark masses are much smaller than the LQ masses, the above formula can be further simplified,

$$\mathcal{M}_{ij}^\nu \approx \frac{\sin 2\phi}{16\pi^2} \log \left(\frac{m_{S_{1/3}}^2}{m_{S_{1/3}}^2} \right) \left\{ (y^R)^T m_D y^S + (y^S)^T m_D y^R \right\}.$$

(33)

Collider constraints: At LHC, \tilde{R}_2 and S_3 LQs can be pair produced [148, 149] via gluon-fusion $pp \rightarrow LQ LQ^\dagger$. Once produced, each of these LQs would decay to SM fermions. Several searches for LQ pairs have been made at ATLAS and CMS for different final states with or without neutrinos. The strongest constraints for our scenario come from decay of these LQs to a third generation quark and a second generation charged lepton, namely $b\mu$ and $t\mu$. For 100% branching ratio to $pp \rightarrow b\mu^+\mu^- (pp \rightarrow t\mu^+\mu^-)$ channel, LHC provides a lower bound of $m_{LQ} \gtrsim 1.7$ (1.5) TeV [150, 151]. For similar processes with third generation charged lepton, the corresponding bounds are $m_{LQ} \gtrsim 1$ TeV ($pp \rightarrow b\tau^+\tau^-$) and $m_{LQ} \gtrsim 1.4$ TeV ($pp \rightarrow t\tau^+\tau^-$), respectively [152, 153].

The single production of LQ becomes relevant for larger Yukawa couplings to the first and second-generation quarks, which is not the case in our scenario. For a similar reason, non-resonant diphoton searches at the LHC do not provide strong constraints for the parameter space we are interested in.

VLQs can also be pair produced at the LHC through gluon-fusion. If LQs are lighter than VLQs, then each VLQ would mostly decay to a muon and a LQ leading to $pp \rightarrow t\mu^+\mu^-\ell^-\ell^-$, $b\mu^+\mu^-\ell^-\ell^-$. Processes of these types have been previously considered in Ref. [154]. We take the LHC bounds on VLQ from [155, 156] that typically correspond to $m_{\psi} \gtrsim 1.3 - 1.4$ TeV.

On the other hand, if LQs are heavier, then pair produced VLQs would still decay to SM fermion final states as mentioned above, via effective 4-fermion operator of the form $y^L y^L Q^2 (\bar{q}q)$; for details see Ref. [154]; where $y^L Q$ and y^ν represent generic Yukawa couplings of the LQs and VLQ. For TeV scale VLQ with order one couplings, the decay is prompt even for LQ masses as heavy as 100 TeV. However, if the corresponding LQ couplings with the SM fermions are very small, then the VLQ can become long-lived and form R-hadrons [157]. For such a scenario, by comparing with the limits on production cross-sections for gluinos and squarks, lower bound of $m_{\psi} \gtrsim 1.5$ TeV on the VLQ mass is obtained in Ref. [158].

Future collider prospects: Here we point out that future experiments such as multi-TeV muon collider (MuC) [159–162] and 100 TeV future circular hadron collider (FCC-hh) [163–165] will probe the entire parameter space of the theory relevant for B-meson anomaly. The most efficient way to probe this scenario is via the predominant LQ interactions with the muons since the new physics cannot appear at an arbitrarily high energy scale ($2 \rightarrow 2$ fermion scattering amplitudes associated to $b \rightarrow s\ell\ell$ transitions saturate the unitarity bound below 80 TeV [166]).

From pair-production, FCC-hh will rule out LQ masses almost up to 10 TeV [167]. On the other hand, Drell–Yan (DY) $pp \rightarrow \mu\mu$ from non-resonant t-channel contribution, a large portion of the parameter space in the Yukawa mass plane will be ruled out [167] leaving part of the parameter space unconstrained (corresponding to $y_{b\mu} \approx y_{t\mu}$ that minimizes the contribution $pp \rightarrow \mu\mu$).

For muon colliders, the Inverted Drell-Yan (IDY) chan-
nel $\mu p \rightarrow jj$ will constrain the Yukawa - mass plane, which is similar to FCC-hh scenario (with DY processes). Remarkably, MuC could directly observe an s-channel resonance in the $\mu q \rightarrow \mu j$ (due to the quark content inside the muon) for masses up to $\sim g_{0}^{1/2}$, which would be the most promising on-shell process at muon colliders. When the LQ pair-production, IDY, and $\mu \mu \rightarrow \mu j$ processes are combined, MuC10 will probe the entire parameter space [167].

Results and Discussion: One of the most important parameters in this model is the scalar cubic coupling μ, which mixes the two LQs. As described above, for $\mu \rightarrow 0$, $(g - 2)_{\mu}, \Delta m_{W}, m_{\psi} \rightarrow 0$. First, we explicitly demonstrate the required range of μ to correctly reproduce the electroweak oblique parameters ($\Delta T, \Delta S$) consistent with the recent CDF II measurement. This is portrayed in Fig. 4 by randomly varying the LQ mass parameters in the ranges $m_{R} \in (1, 5) \text{ TeV}$, $m_{S} - m_{R} \in (1, 500) \text{ GeV}$. In making this plot, μ is restricted to vary in the range $\mu \lesssim 0.7 \text{ TeV}$; this upper bound is chosen here for the sake of clarity and illustration. The 1σ and 2σ ranges that favor CDF II data in the ($\Delta T, \Delta S$) plane are taken from Ref. [15] that performed a global fit to the electroweak data. This figure shows that $\mu \gtrsim 350 \text{ GeV}$ is essential to resolve the anomaly. Note that in our scenario with only the μ parameter responsible for splitting the masses of the LQ states, CDF anomaly can only be addressed at the 2σ confidence limit (C.L.). It is because the ΔS-parameter given in Eq. (17) turns out to be always tiny, however, addressing CDF anomaly within 1σ C.L. demands $\Delta S \in [0.03, 0.27]$, whereas it is $\Delta S \in [-0.048, 0.35]$ within 2σ C.L. In this figure, the red star represents a particular benchmark scenario discussed later in the text.

![Figure 5](image1.png)

Figure 5. Dependence of $(g - 2)_{\mu}$ on the scalar cubic coupling μ. See text for details.

The non-trivial functional dependence of $(g - 2)_{\mu}$ on μ is given in Eq. (26), which we graphically illustrate in Fig. 5. Here (for Figs. 5, 6, and 8), we randomly scan over the relevant parameters in the ranges: $m_{S,R} \in [1,15] \text{ TeV}$, $\mu \in [0.1,5] \text{ TeV}$, $m_{\psi} \in [1,10] \text{ TeV}$, and $-y_{L}^{\psi} \cdot y_{R}^{\psi} \in [10^{-5},1]$. The points in green (yellow) correspond to solutions that simultaneously satisfy the $(g - 2)_{\mu}$ anomaly at the 1σ (2σ) and the CDF anomaly at the 2σ C.L. The red points that are consistent with CDF anomaly at the 2σ C.L., however, fail to reproduce the muon AMM within its 2σ values. As can be seen from Fig. 5, reproducing correct value of Δa_{μ} requires μ in between $O(0.5)$ to $O(3) \text{ TeV}$. As shown in [168], even though the current LHC measurements [169, 170] of $h \rightarrow \mu \mu$ allow a large trilinear coupling, future colliders such as the FCC may be able to measure this coupling and constrain the theory parameter space.

Moreover, in Fig. 6, we depict the correlations between the product of the Yukawa couplings $|y_{L}^{\psi} \cdot y_{R}^{\psi}|$ and the mass m_{ψ} of the VLQ. See text for details.

![Figure 6](image2.png)

Figure 6. Correlations between the product of the Yukawa couplings $|y_{L}^{\psi} \cdot y_{R}^{\psi}|$ and the mass m_{ψ} of the VLQ. See text for details.

![Figure 7](image3.png)

Figure 7. Unique signature of the proposed model.
VLQs will lead to a unique signature $pp \to 4\mu + t\bar{t}$, either via on-shell or off-shell leptoquarks (see discussion above), as shown in Fig. 7. However, a dedicated collider study is beyond the scope of this work. Branching ratios to other up-type quark final states are expected to be suppressed by CKM elements, and diagrams with neutrinos in the final states are not shown.

Even though both $(g-2)_\mu^\prime$ and W-boson mass shift heavily depend on the μ-parameter, they are largely insensitive to the scale of the LQ masses. From a naive estimation, $\Delta a_\mu \sim 3m_\mu m_{\psi}^{2}\theta_{LQ}^{2}/(16\pi^{2}m_{LQ}^{4})\ln(m_{\psi}^{2}/m_{LQ}^{2})$, where a sum over all LQ contributions must be taken with appropriate signs (the relative signs play important role). Then, for TeV scale VLQ, with order unity Yukawa couplings and maximal mixing, LQ masses as heavy as $m_{LQ} \sim O(10) \text{ TeV}$ still provide correct order Δa_{μ}, as depicted in Fig. 8.

Finally, we exemplify how this model can address the anomaly in the neutral current transitions of the B-meson decays as well as incorporate neutrino oscillation data. This, however, requires a careful fit to neutrino observables via minimization of a χ^{2}-function; a random scan over the parameters is not sufficient. This is why, we demonstrate the viability of our model with a specific benchmark for which we choose $m_{S} = 2$ TeV, $m_{R} = 1.8$ TeV and mass of the VLQ is $m_{\psi} = 1.5$ TeV and $\mu = 0.62$ TeV. This specific benchmark point along with $g_{\mu}^{\prime 5,6} y^{\prime 5,6} = -0.3$ corresponds to $\Delta a_{\mu} = 2.5 \times 10^{-9}$ (consistent with Eq. (2) at the 1σ C.L.) and $|\Delta T, \Delta S| = [0.14038, -8 \cdot 10^{-6}]$ (this point represents the red star shown in Fig. 4). Note, however, that this fitting procedure is highly non-trivial since the same Yukawa couplings addressing the $R_{K} - R_{K^{*}}$ anomalies also enter in neutrino observables. In fact, with the texture for y^{S} with only two non-zero elements as given in Eq. (7), neutrino masses and mixings utilizing the formula Eq. (33) cannot be accommodated. To generate viable neutrino masses and mixings, a few more entries must be introduced in y^{S}, which would lead to both charged lepton flavor violation as well as flavor violations in the quark sector [171–173] (see also [145, 174–183]).

Our detailed numerical analysis shows that a non-zero 23-block in y^{S} is insufficient to satisfy neutrino oscillation data. Therefore, we also introduce a non-zero 31-entry, which is constrained from $\mu - e$ transition (through CKM rotations). The most crucial cLFV for the given texture is $\tau \to \mu \gamma$, via which this model may be probed at the upcoming experiment [185]. In addition, various other flavor violating processes are considered in our numerical analysis that includes $Z \to \ell\ell, \ell \to \ell \ell''$, τ decays into mesons, and several meson decay observables as well as meson-antimeson oscillations; for details, see e.g. [171, 172]. The observables that provide the most stringent constraints on the model parameters are summarized in Appendix-A. As aforementioned, the 23-block in y^{S} plays an important role in fitting neutrino observables; some of its entries address the $R_{K^{(*)}}$ anomalies and are required to be sizable. By randomly varying these couplings, interrelations between $BR(\tau \to \mu \gamma)$ and $B \to K(\ast)\nu\bar{\nu}$ observables are depicted in Fig. 9 along with their respective experimental bounds. Clearly, the prospective measurement of $B \to K(\ast)\nu\bar{\nu}$ signal at Belle II experiment shows a promising avenue to test our model.

In addition to the above-mentioned parameters, from a combined fit, we obtain the following Yukawa couplings

Figure 8. Correlations between the μ parameter and the masses of the LQs; see text for details. For an example, here we have chosen $Q = 2/3$; the other case with $Q = -1/3$ shows indistinguishable behavior.

Figure 9. The results of random scans showing the correlations between $BR(\tau \to \mu \gamma)$ and $R_{K^{(*)}}^{\pi}$. Current (future) bound on $BR(\tau \to \mu \gamma)$ from BaBar Collaboration [184] (Super B Factory [185]) is shown by shaded light-gray area (vertical dashed white line). For the observable $R_{K^{(*)}}^{\pi}$, current experimental limit from Belle collaboration [186] is presented by shaded light-gray area. The regions bounded by dotted, dot-dashed, and dashed white (horizontal) lines depict the projected reach (1 ± 0.25 for $R_{K^{(*)}}^{\pi}$ at Belle II [187] for 5 ab$^{-1}$ of data with $1\sigma, 2\sigma$, and 3σ C.L., respectively, assuming the best-fit value is SM-like.)
addressing $R_K - R_{K*}$ anomalies as well as neutrino oscillation data:

$$y^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0.01216 & 0 & 0 \\ 0.07729 & 0.19480 & 0.07439 \end{pmatrix},$$ (34)

$$y^H = 10^{-7} \begin{pmatrix} 1.2583 & 0.29906 & -0.72677 \\ 0.21836 & -0.60107 & -0.03121 \\ 0.12504 & -0.88446 & -1.49160 \end{pmatrix}.$$ (35)

This fit corresponds to the following neutrino observables:

$$(m_1, m_2, m_3) = (1.59 \times 10^{-2}, 8.60, 50.27) \text{ meV},$$ (36)

$$(\sin^2 \theta_{12}, \sin^2 \theta_{23}, \sin^2 \theta_{13}) = (0.309, 0.574, 0.02224).$$ (37)

which are in excellent agreement with experimental data and satisfy all flavor constraints.

UV completion—Before concluding, we briefly discuss the possible ultraviolet (UV) complete model of the proposed scenario. For demonstration, we choose $SU(5)$ GUT, which is the minimal simple group containing the entire SM gauge group, i.e., $SU(5) \supset SU(3)_C \times SU(2)_L \times U(1)_Y$. As well known, the minimal $SU(5)$ GUT, namely, the Georgi–Glashow model [188] is incompatible with SU GUT, which is the minimal simple group containing the standard model fermions, and satisfy all flavor constraints.

In this work, we proposed a simple new physics scenario to simultaneously address several puzzles that cannot be accounted for by the Standard Model alone. The model is comprised of two scalar leptoquarks and a vectorlike quark. One of the most crucial parameters in this theory is the mixing parameter between the two leptoquarks. This mixing generates neutrino masses via quantum corrections at one loop, provides additional contributions to the V-boson mass consistent with recent CDF measurement, and plays a non-trivial role in incorporating the longstanding tension in the muon anomalous magnetic moment. The vectorlike quark, assisted with both the leptoquarks, gives rise to the required sizeable new physics contributions to the $(g - 2)_\mu$ via chirally enhanced terms proportional to its mass. Furthermore, the iso-triplet leptoquark is responsible for accounting for the deviations observed persistently in the $R_{K^{(*)}}$ ratios. By performing a numerical analysis, we have illustrated how to consistently resolve all these mysteries mentioned above by keeping flavor violations under control. Moreover, the model is within reach of the current and future upgrades of the LHC and has the potential to be fully probed by the future colliders such as future circular hadron collider and multi-TeV muon collider.

III. CONCLUSION

In this work, we proposed a simple new physics scenario to simultaneously address several puzzles that cannot be accounted for by the Standard Model alone. The model is comprised of two scalar leptoquarks and a vectorlike quark. One of the most crucial parameters in this theory is the mixing parameter between the two leptoquarks. This mixing generates neutrino masses via quantum corrections at one loop, provides additional contributions to the V-boson mass consistent with recent CDF measurement, and plays a non-trivial role in incorporating the longstanding tension in the muon anomalous magnetic moment. The vectorlike quark, assisted with both the leptoquarks, gives rise to the required sizeable new physics contributions to the $(g - 2)_\mu$ via chirally enhanced terms proportional to its mass. Furthermore, the iso-triplet leptoquark is responsible for accounting for the deviations observed persistently in the $R_{K^{(*)}}$ ratios. By performing a numerical analysis, we have illustrated how to consistently resolve all these mysteries mentioned above by keeping flavor violations under control. Moreover, the model is within reach of the current and future upgrades of the LHC and has the potential to be fully probed by the future colliders such as future circular hadron collider and multi-TeV muon collider.
Appendix A: Constraints on model parameters

In this appendix, we provide relevant expressions of all the NP contributions to various flavor violating processes. Since the Yukawa couplings of the R_2 LQ are small as required for neutrino mass generation, here we focus on the constraints associated with the S_3 LQ. Since we have chosen flavor conserving Yukawa couplings of the vectorlike-quark, ψ does not lead to flavor violation.

LFV: $\ell \to \ell' \gamma$

In our model, the dominant LFV process arise from $\ell \to \ell' \gamma$. The effective Lagrangian leading to such radiative decays of the charged leptons is given by [191],

$$L_{\ell \to \ell' \gamma} = \frac{e^2}{2} \bar{\ell} i \sigma^{\mu \nu} F_{\mu \nu} \left(\sigma_{\ell \ell}^\ell P_L + \sigma_{\ell \ell}^{\ell'} P_R \right) \ell. \quad (A1)$$

Then the branching ratios associated to these process are calculated by the following formula [191]:

$$Br(\ell \to \ell' \gamma) = \frac{\tau_\ell m_\ell^3}{4}\left(|\sigma_{\ell \ell}^\ell|^2 + |\sigma_{\ell \ell}^{\ell'}|^2\right), \quad (A2)$$

where τ_ℓ is the lifetime of the initial state lepton. The expressions of $\sigma_{\ell \ell \gamma}$ are as follows [119, 191]:

$$\sigma_{\ell \ell, S_3}^{ij} = \frac{i N_c}{16\pi^2 M_3^3} m_i \left\{ (V y^S)^{ij}_\ell (V y^S)_j q_i \frac{-1}{12} + (y^S)^{ij}_\ell y^{\ell}_q \frac{1}{3} \right\}, \quad (A3)$$

$$\sigma_{\ell \ell, S_3}^{ij} = \frac{i N_c}{16\pi^2 M_3^3} m_j \left\{ (V y^S)^{\ell j}_\ell (V y^S)_j q_i \frac{-1}{12} + (y^S)^{\ell j}_\ell y^{\ell}_q \frac{1}{3} \right\}. \quad (A4)$$

Here V is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix. The current experimental limits on these processes are [192, 193]:

$$Br(\mu \to e \gamma) < 4.2 \times 10^{-13}, \quad (A5)$$

$$Br(\tau \to e \gamma) < 3.3 \times 10^{-8}, \quad (A6)$$

$$Br(\tau \to \mu \gamma) < 4.4 \times 10^{-8}. \quad (A7)$$

Among these, $\tau \to \mu \gamma$ provides the most stringent constraint in our scenario, and the respective future sensitivity is of order $BR[\tau \to \mu \gamma] \sim 10^{-9}$ [185].

Z decays: $Z \to \ell \ell'$

Leptonic decays of the Z-boson receive contributions from the LQs that constraint the Yukawa couplings. These processes are explained with the following effective Lagrangian:

$$\delta L_{Z \to \ell \ell'} = \frac{g}{c W} \sum_{f, \gamma} f j_\gamma^\ell P_L + g j_{\ell \ell}^\ell P_R f j Z_\mu. \quad (A8)$$

Here g is the $SU(2)_L$ gauge coupling; g^ij are dimensionless couplings measured with great accuracy at the LEP [194] that provide stringent constraints on the associated Yukawa couplings for a fixed LQ mass. NP contributions to these dimensionless couplings can be expressed as follows [195]:

$$Re \left[\delta g_{L,R}^{ij} \right] = \frac{3 w_{ij}^u (w_{ij}^3)^*}{16 \pi^2} \left[\left(g_{u_{L,R}} - g_{u_{R,L}} \right) x_l \left(x_l - 1 - \log x_l \right) \right]$$

$$+ \frac{x_Z}{16 \pi^2} \sum_{q = u, c} w_{qj}^u (w_{qj}^3)^* \left[\left(g_{u_{L,R}} - \log x_Z - \frac{1}{6} \right) g_{u_{L,R}} \right]$$

$$+ \frac{x_Z}{16 \pi^2} \sum_{q = d, s, b} w_{qj}^d (w_{qj}^3)^* \left[g_{d_{L,R}} \left(\log x_Z - \frac{1}{6} \right) + g_{d_{L,R}} \right]. \quad (A9)$$

For δg_L (δg_R), $w_{ij}^u = -(V^* y^S)_{ij}$, $w_{ij}^d = -\sqrt{2} y^S_i (w_{ij}^3 = 0$, $w_{ij}^d = 0$) for S_3 LQ. The LEP collaboration provides the following limits on these NP contributions [196]:

$$Re[\delta g_L^{ij}] \leq 3.0 \times 10^{-4}, \quad (A10)$$

$$Re[\delta g_R^{ij}] \leq 1.1 \times 10^{-3}, \quad (A11)$$

$$Re[\delta g_{LL}^{ij}] \leq 5.8 \times 10^{-4}. \quad (A12)$$

$\mu \to e$ conversion

The S_3 LQ mediates $\mu \to e$ transition in nuclei at the tree-level, and the rate of which can be calculated from the following formula [197]:

$$CR(\mu \to e) = \frac{\Gamma^{\mu \to e}}{\Gamma^{\text{capture}}(Z)}, \quad (A13)$$

$$\Gamma^{\mu \to e} = 2 G_F^2 \left| (2V^{(u)} + g_{LV}^{(u)} V^{(u)}) g_{LV}^{(u)} \right|^2, \quad (A14)$$

$$g_{LV}^{(u)} = -2e^2 \frac{m_{S_3}^2}{m_{S_3}^2} \left(V^{(u)} y^S u e \right) \left(V^{(u)} y^S u e^* \right). \quad (A15)$$

Here, $\Gamma^{\text{capture}}(Z)$ is the total capture rate for a nucleus with atomic number Z, which is 13.07×10^9 s^{-1} for gold, and the corresponding nuclear form factors in units of $m_{\mu}/2$ are given by $V^{(u)} = 0.0974$, $V^{(u)} = 0.146$ [197]. The current sensitivity implies [198],

$$CR(\mu \to e) < 7 \times 10^{-13} \quad (A16)$$

whereas the future projected sensitivity is expected to make almost four orders of magnitude improvement over the current limit, i.e., $CR(\mu \to e) < 10^{-16}$ [199–205].

$B \to K^{(*)} \nu \nu$ decays

Contributions to the left-handed currents in the $b \to s \ell \ell$ process unavoidably imply contributions to $B \to K^{(*)} \nu \nu$.

$$B \to K^{(*)} \nu \nu \quad \text{decays}$$

$K^{(*)}\nu\bar{\nu}$ decays which are well constrained by experiments. The S_3 LQs can induce $B \to K^{(*)}\nu\bar{\nu}$ decay at the tree-level via $d_K \to d_L\nu\bar{\nu}$ processes. The Wilson coefficient responsible for such decays associated with $b\to s$ transition takes the form,

$$C_L^{eff} = \frac{\pi v^2}{2V_{td}\alpha} \frac{y_{3\nu}^S (y_{3\nu}^S)_{sf}}{M_3^2}. \tag{A17}$$

Then the branching ratio for $B \to K^{(*)}\nu\bar{\nu}$ can be expressed as [206]:

$$R_{K^{(*)}} = \frac{1}{3C_L^{SM}} \sum_{i,f=1}^3 \left| \delta^f_i C_L^{SM} + C_L^{NP} \right|^2, \tag{A18}$$

where $C_L^{SM} = -1.47/\sin^2\theta_W$ is the SM contribution. The Belle collaboration limits these ratios to be $R_{K^0} < 3.9$ and $R_{K^*} < 2.7$ [207].

$B^0 - \bar{B}^0$ oscillation

S_3 contributes to meson-antimeson mixing, and this NP contribution to $B^0 - \bar{B}^0$ mixing can be described by the following effective Lagrangian [208]:

$$\mathcal{L}_{eff}^{\Delta B_s^2} = -(C_1^{SM} + C_1^{NP}) (\bar{s}_L \gamma_\mu s_L)^2. \tag{A19}$$

Here the SM part is $C_1^{SM} = 2.35/(4\pi^2)} (V_{ub}V_{cb}^*G_Fm_W)^2 [209]$ and the NP contribution at the heavy scale (Λ) is given by [119, 208, 210, 211],

$$C_1^{NP} = \frac{1}{128\pi^2} \frac{5}{M_3^2} \left(\sum_{\ell} |y_{3\ell}^S|^2 \right)^2. \tag{A20}$$

Here we neglect the evolution of C_1^{NP} from high scale to the m_w scale, which is only relevant for precision calculation. Then the mass difference is given by:

$$\Delta m_B^{SM+NP} = \Delta m_B^{SM} \left| 1 + \frac{C_1^{NP}}{C_1^{SM}} \right|, \tag{A21}$$

where the SM prediction is $\Delta m_B^{SM} = (18.3 \pm 2.7) \times 10^{-2}$ GeV [212, 213]. This mass difference has been measured in the experiments [194, 214] with great accuracy, leading to strong constraints on the NP contribution [215]:

$$|C_1^{NP}| < 2.01 \times 10^{-5}\text{ TeV}^{-2}. \tag{A22}$$
excess,” arXiv:2204.10156 [hep-ph].

[54] A. Addazi, A. Marciano, A. P. Morais, R. Pasechnik, and H. Yang, “CDF II W-mass anomaly faces first-order electroweak phase transition,” arXiv:2204.10315 [hep-ph].

[55] J. Heeck, “W-boson mass in the triplet seesaw model,” arXiv:2204.10274 [hep-ph].

[56] H. Abouabid, A. Arhrib, R. Benbrik, M. Krab, and M. Ouchenhou, “Is the new CDF M_W measurement consistent with the two higgs doublet model?”, arXiv:2204.12018 [hep-ph].

[57] A. Batra, S. K. A, S. Mandal, H. Prajapati, and R. Srivastava, “CDF-II W Boson Mass Anomaly in the Canonical Scotogenic Neutrino-Dark Matter Model,” arXiv:2204.11945 [hep-ph].

[58] R. Benbrik, M. Boukid, and B. Manaut, “W extended model for the simultaneous explanation of the muon g-2 anomaly in type-X 2HDM,” arXiv:2204.02787 [hep-ph].

[59] C. Cai, D. Qiu, Y.-L. Tang, Z.-H. Yu, and H.-H. Zhang, “Corrections to electroweak precision observables from mixings of an exotic vector boson in light of the CDF W-mass anomaly,” arXiv:2204.11570 [hep-ph].

[60] Q. Zhou and X.-F. Han, “The CDF W mass, muon g-2, and dark matter in a $U(1)_{L\tau-L\mu}$ model with vector-like leptons,” arXiv:2204.13027 [hep-ph].

[61] R. S. Gupta, “Running away from the T-parameter solution to the W mass anomaly,” arXiv:2204.13690 [hep-ph].

[62] J.-W. Wang, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, “Electroweak dark matter model accounting for the CDF W-mass anomaly,” arXiv:2205.00783 [hep-ph].

[63] B. Barman, A. Das, and S. Sengupta, “New W-Boson mass in the light of doubly warped braneworld model,” arXiv:2205.01699 [hep-ph].

[64] J. Kim, S. Lee, P. Sanyal, and J. Song, “CDF M_W and the muon $g-2$ through the Higgs-phobic light pseudoscalar in type-X two-Higgs-doublet model,” arXiv:2205.01701 [hep-ph].

[65] J. Kim, “Compatibility of muon $g-2$, W mass anomaly in type-II 2HDM,” arXiv:2205.01437 [hep-ph].

[66] R. Dcruz and A. Thapa, “W boson mass, dark matter and $(g-2)_\mu$ in ScottoZee neutrino mass model,” arXiv:2205.02217 [hep-ph].

[67] J. Isaacson, Y. Fu, and C. P. Yuan, “ResBos2 and the CDF W Mass Measurement,” arXiv:2205.02788 [hep-ph].

[68] F. J. Botella, F. Cornet-Gomez, C. Miró, and M. Nebot, “Muon and electron $g-2$ anomalies in a flavor conserving 2HDM with an oblique view on the CDF M_W value,” arXiv:2205.01115 [hep-ph].

[69] S.-P. He, “Leptoquark and vectorlike quark extended models as the explanation of the muon g-2 anomaly,” Phys. Rev. D 105 no. 3, (2022) 035017, arXiv:2112.13490 [hep-ph].

[70] S.-P. He, “A leptoquark and vector-like quark extended model for the simultaneous explanation of the W boson mass and muon $g-2$ anomalies,” arXiv:2205.02088 [hep-ph].

[71] O. Popov and R. Srivastava, “The Triplet Dirac Seesaw in the View of the Recent CDF-II W Mass Anomaly,” arXiv:2204.08568 [hep-ph].

[72] Muon g-2 Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 no. 14, (2021) 141801, arXiv:2104.03281 [hep-ex].

[73] Muon g-2 Collaboration, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D73 (2006) 072003, arXiv:hep-ex/0602035 [hep-ex].

[74] T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1–166, arXiv:2006.04822 [hep-ph].

[75] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, “Complete Tenth-Order QED Contribution to the Muon g-2,” Phys. Rev. Lett. 109 (2012) 111808, arXiv:1205.5370 [hep-ph].

[76] T. Aoyama, T. Kinoshita, and M. Nio, “Theory of the Anomalous Magnetic Moment of the Electron,” Atoms 7 no. 1, (2019) 28.

[77] A. Czarnecki, W. J. Marciano, and A. Vainshtein, “Refinements in electroweak contributions to the muon anomalous magnetic moment,” Phys. Rev. D67 (2003) 073006, arXiv:hep-ph/0212229 [hep-ph]. [Erratum: Phys. Rev.D73,119901(2006)].

[78] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, “The electroweak contributions to $(g-2)_\mu$ after the Higgs boson mass measurement,” Phys. Rev. D 88 (2013) 053005, arXiv:1306.5546 [hep-ph].

[79] M. Davier, A. Hoecker, B. Malacescu, and Z. Zhang, “Reevaluation of the hadronic vacuum polarization contributions to the Standard Model predictions of the muon $g-2$ and $\alpha(m_Z^2)$ using newest hadronic cross-section data,” Eur. Phys. J. C 77 no. 12, (2017) 827, arXiv:1706.09436 [hep-ph].

[80] A. Keshavarz, D. Nomura, and T. Teubner, “Muon $g-2$ and $\alpha(M_Z^2)$: a new data-based analysis,” Phys. Rev. D 97 no. 11, (2018) 114025, arXiv:1802.02995 [hep-ph].

[81] G. Colangelo, M. Hoferichter, and P. Stoffer, “Two-pion contribution to hadronic vacuum polarization,” JHEP 02 (2019) 006, arXiv:1810.00007 [hep-ph].

[82] M. Hoferichter, B.-L. Hoid, and B. Kubis, “Three-pion contribution to hadronic vacuum polarization,” JHEP 08 (2019) 137, arXiv:1907.01556 [hep-ph].

[83] M. Davier, A. Hoecker, B. Malacescu, and Z. Zhang, “A new evaluation of the hadronic vacuum polarization contributions to the muon anomalous magnetic moment and to $\alpha(m_Z^2)$,” Eur. Phys. J. C 80 no. 3, (2020) 241, arXiv:1908.00921 [hep-ph]. [Erratum: Eur.Phys.J.C 80, 410 (2020)].

[84] A. Keshavarz, D. Nomura, and T. Teubner, “$g-2$ of charged leptons, $\alpha(M_Z^2)$, and the hyperfine splitting of muonium,” Phys. Rev. D 101 no. 1, (2020) 014029, arXiv:1911.00367 [hep-ph].

[85] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, “Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order,” Phys. Lett. B 784 (2014) 144–147, arXiv:1403.6400 [hep-ph].

[86] K. Melnikov and A. Vainshtein, “Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited,” Phys. Rev. D70 (2004) 113006, arXiv:hep-ph/0312226 [hep-ph].
P. Masjuan and P. Sanchez-Puertas, “Pseudoscalar-pole contribution to the \(g_\mu - 2 \): a rational approach,” \textit{Phys. Rev. D} \textbf{95} no. 5, (2017) 054026, \texttt{arXiv:1701.05829 [hep-ph]}.

G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, “Dispersion relation for hadronic light-by-light scattering: two-pion contributions,” \textit{JHEP} \textbf{04} (2017) 161, \texttt{arXiv:1702.07347 [hep-ph]}.

M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, “Dispersion relation for hadronic light-by-light scattering: pion pole,” \textit{JHEP} \textbf{10} (2018) 141, \texttt{arXiv:1808.04823 [hep-ph]}.

A. Gérardin, H. B. Meyer, and A. Nyffeler, “Lattice calculation of the pion transition form factor with \(N_f = 2 + 1 \) Wilson quarks,” \textit{Phys. Rev. D} \textbf{100} no. 3, (2019) 034520, \texttt{arXiv:1903.09471 [hep-lat]}.

J. Bijnens, N. Hermanos-Trueddson, and A. Rodríguez-Sánchez, “Short-distance constraints for the HLLB contribution to the muon anomalous magnetic moment,” \textit{Phys. Lett. B} \textbf{798} (2019) 134994, \texttt{arXiv:1908.03351 [hep-ph]}.

G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, “Longitudinal short-distance constraints for the hadronic light-by-light contribution to \(g-2 \) with large-N\(_c\) Regge models,” \texttt{arXiv:1910.13432 [hep-ph]}.

T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, “The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD,” \texttt{arXiv:1911.08123 [hep-lat]}.

G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer, “Remarks on higher-order hadronic corrections to the muon \(g-2 \),” \textit{Phys. Lett. B} \textbf{735} (2014) 90–91, \texttt{arXiv:1403.7512 [hep-ph]}.

P. Athron, C. Balázis, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and H. Stöckinger-Kim, “New physics explanations of \(a_\mu \) in light of the FNAL muon \(g-2 \) measurement,” \textit{JHEP} \textbf{09} (2021) 080, \texttt{arXiv:2104.03691 [hep-ph]}.

\textbf{LHCb Collaboration}, R. Aaij \textit{et al.}, “Test of lepton universality with \(B^0 \to K^{*}\ell^+\ell^- \) decays,” \textit{JHEP} \textbf{08} (2017) 055, \texttt{arXiv:1705.05802 [hep-ex]}.

\textbf{LHCb Collaboration}, R. Aaij \textit{et al.}, “Search for lepton-universality violation in \(B^+ \to K^{*}\ell^+\ell^- \) decays,” \textit{Phys. Rev. Lett.} \textbf{122} no. 19, (2019) 191801, \texttt{arXiv:1903.09252 [hep-ex]}.

\textbf{Belle Collaboration}, A. Abdesselam \textit{et al.}, “Test of Lepton-Flavor Universality in \(B \to K^{*}\ell^+\ell^- \) Decays at Belle,” \textit{Phys. Rev. Lett.} \textbf{126} no. 16, (2021) 161801, \texttt{arXiv:1904.02440 [hep-ex]}.

\textbf{BELLE Collaboration}, S. Choudhury \textit{et al.}, “Test of lepton flavor universality and search for lepton flavor violation in \(B \to K\ell\ell \) decays,” \textit{JHEP} \textbf{03} (2021) 105, \texttt{arXiv:1908.01848 [hep-ex]}.

\textbf{LHCb Collaboration}, R. Aaij \textit{et al.}, “Test of lepton universality in beauty-quark decays,” \textit{Nature Phys.} \textbf{18} no. 3, (2022) 277–282, \texttt{arXiv:2103.11769 [hep-ex]}.

J. M. Camalich and M. Patel, “New lepton non-universal forces in flavor physics?,” \textit{Science Bulletin} \textbf{67} no. 1, (2022) 1–4. \url{https://www.sciencedirect.com/science/article/pii/S2095927321006307}.

\textbf{K2K Collaboration}, M. H. Ahn \textit{et al.}, “Indications of neutrino oscillation in a 250 km long baseline experiment,” \textit{Phys. Rev. Lett.} \textbf{90} (2003) 041801, \texttt{arXiv:hep-ex/0212007}.
[149] I. Dorˇsner and A. Greljo, “Leptoquark toolbox for precision collider studies,” JHEP 05 (2018) 126, arXiv:1801.07641 [hep-ph].

[150] ATLAS Collaboration, G. Aad et al., “Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in \(\sqrt{s} = 13 \) TeV pp collisions with the ATLAS detector,” JHEP 10 (2020) 112, arXiv:2006.05872 [hep-ex].

[151] ATLAS Collaboration, G. Aad et al., “Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton–proton collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector,” Eur. Phys. J. C 81 no. 4, (2021) 313, arXiv:2010.02098 [hep-ex].

[152] ATLAS Collaboration, M. Aaboud et al., “Searches for third-generation scalar leptoquarks in \(\sqrt{s} = 13 \) TeV pp collisions with the ATLAS detector,” JHEP 06 (2019) 144, arXiv:1902.08103 [hep-ex].

[153] ATLAS Collaboration, G. Aad et al., “Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a \(\tau \)-lepton in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector,” JHEP 06 (2021) 179, arXiv:2101.11582 [hep-ex].

[154] B. A. Dobrescu and F. Yu, “Exotic Signals of Vectorlike Quarks,” J. Phys. G 45 no. 8, (2018) 08LT01, arXiv:1612.01909 [hep-ph].

[155] CMS Collaboration, A. M. Sirunyan et al., “Search for vector-like T and B quark pairs in final states with leptons at \(\sqrt{s} = 13 \) TeV,” JHEP 08 (2018) 177, arXiv:1806.04758 [hep-ex].

[156] ATLAS Collaboration, M. Aaboud et al., “Search for pair production of heavy vector-like quarks decaying into high-\(p_T \) W bosons and top quarks in the lepton-plus-jets final state in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector,” JHEP 08 (2018) 048, arXiv:1806.01762 [hep-ex].

[157] G. R. Farrar and P. Fayet, “Phenomenology of the Production, Decay, and Detection of New Hadronic States Associated with Supersymmetry,” Phys. Lett. B 76 (1978) 575–579.

[158] J. C. Criado and M. Perez-Victoria, “Vector-like quarks with non-renormalizable interactions,” JHEP 01 (2020) 057, arXiv:1908.08964 [hep-ph].

[159] International Muon Collider Collaboration, D. Stratakis et al., “A Muon Collider Facility for Physics Discovery,” arXiv:2203.08033 [physics.acc-ph].

[160] S. Jindariani et al., “Promising Technologies and R&D Directions for the Future Muon Collider Detectors,” in 2022 Snowmass Summer Study. 3, 2022, arXiv:2203.07224 [physics.ins-det].

[161] C. Aime et al., “Muon Collider Physics Summary,” arXiv:2203.07256 [hep-ph].

[162] Muon Collider Collaboration, J. de Blas et al., “The physics case of a 3 TeV muon collider stage,” arXiv:2203.07261 [hep-ph].

[163] FCC Collaboration, A. Abada et al., “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur. Phys. J. C 79 no. 6, (2019) 474.

[164] FCC Collaboration, A. Abada et al., “FCC-hh: The Hadron Collider; Future Circular Collider Conceptual Design Report Volume 3,” Eur. Phys. J. ST 228 no. 4, (2019) 755–1107.

[165] G. Bernardi et al., “The Future Circular Collider: a Summary for the US 2021 Snowmass Process,” arXiv:2203.06520 [hep-ex].

[166] L. Di Luzio and M. Nardecchia, “What is the scale of new physics behind the B-flavour anomalies?,” Eur. Phys. J. C77 no. 8, (2017) 536, arXiv:1706.01868 [hep-ph].

[167] A. Azatov, F. Garosi, A. Greljo, D. Marzocca, J. Salko, and S. Trifinopoulos, “New Physics in \(b \to s \mu \mu \): FCC-hh or a Muon Collider?,” arXiv:2205.13552 [hep-ph].

[168] M. J. Baker, P. Cox, and R. R. Volkas, “Radiative muon mass models and \((g-2)_\mu \),” JHEP 05 (2021) 174, arXiv:2103.13401 [hep-ph].

[169] CMS Collaboration, A. M. Sirunyan et al., “Evidence for Higgs boson decay to a pair of muons,” JHEP 01 (2021) 148, arXiv:2009.04363 [hep-ex].

[170] ATLAS Collaboration, G. Aad et al., “A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector,” Phys. Lett. B 812 (2021) 135980, arXiv:2007.07830 [hep-ex].

[171] S. Saad and A. Thapa, “Common origin of neutrino masses and \(R_{D(\tau)}(\mu), R_{K(\tau)}(\mu) \) anomalies,” Phys. Rev. D 102 no. 1, (2020) 015014, arXiv:2004.07880 [hep-ph].

[172] S. Saad, “Combined explanations of \((g-2)_\mu, R_{D(\tau)}, R_{K(\tau)} \) anomalies in a two-loop radiative neutrino mass model,” Phys. Rev. D 102 no. 1, (2020) 015019, arXiv:2005.04352 [hep-ph].

[173] J. Julio, S. Saad, and A. Thapa, “Marriage between neutrino mass and flavor anomalies,” arXiv:2203.15499 [hep-ph].

[174] H. Pää and E. Schumacher, “Common origin of \(R_K \) and neutrino masses,” Phys. Rev. D92 no. 11, (2015) 114025, arXiv:1510.08757 [hep-ph].

[175] K. Cheung, T. Nomura, and H. Okada, “Testable radiative neutrino mass model without additional symmetries and explanation for the \(b \to s\ell^+\ell^- \) anomaly,” Phys. Rev. D 94 no. 11, (2016) 115024, arXiv:1603.02322 [hep-ph].

[176] F. F. Deppisch, S. Kulkarni, H. Pää, and E. Schumacher, “Leptoquark patterns unifying neutrino masses, flavor anomalies, and the diphoton excess,” Phys. Rev. D94 no. 1, (2016) 013003, arXiv:1603.07672 [hep-ph].

[177] Y. Cai, J. Gargalionis, M. A. Schmidt, and R. R. Volkas, “Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass,” JHEP 10 (2017) 047, arXiv:1704.05849 [hep-ph].

[178] S.-Y. Guo, Z.-L. Han, B. Li, Y. Liao, and X.-D. Ma, “Interpreting the \(R_{K^*}(\mu) \) anomaly in the colored Zee–Babu model,” Nucl. Phys. B928 (2018) 435–447, arXiv:1707.00522 [hep-ph].

[179] C. Hati, G. Kumar, J. Orloff, and A. M. Teixeira, “Reconciling B-meson decay anomalies with neutrino masses, dark matter and constraints from flavour violation,” JHEP 11 (2018) 011, arXiv:1806.10146 [hep-ph].

[180] A. Datta, D. Sachdeva, and J. Waite, “Unified explanation of \(b \to s\ell^+\ell^- \) anomalies, neutrino masses, and \(B \to \pi K \) puzzle,” Phys. Rev. D100 no. 5, (2019) 055015, arXiv:1905.04046 [hep-ph].

[181] O. Popov, M. A. Schmidt, and G. White, “\(R_\tau \) as a single leptoquark solution to \(R_{D(\tau)} \) and \(R_{K(\tau)} \),” Phys.
K. S. Babu, S. Jana, and A. Thapa, "Unified explanation of flavor anomalies, radiative neutrino mass and ANITA anomalous events in a vector leptoquark model," arXiv:2004.09464 [hep-ph].

L. Lavoura, "General formulae for Belle et al. T. Aushev et al., "Searches for Lepton Flavor Violation in the Decays tau+ → e+ gamma and tau+ → μ+ gamma," Phys. Rev. Lett. 104 (2010) 021802, arXiv:0908.2381 [hep-ex].

T. Aushev et al., "Physics at Super B Factory," arXiv:1002.5012 [hep-ex].

Belle Collaboration, J. Grygier et al., "Search for $B \rightarrow h\bar{v}$ decays with semileptonic tagging at Belle," Phys. Rev. D 96 no. 9, (2017) 091101, arXiv:1702.03224 [hep-ex]. [Addendum: Phys.Rev.D 97, 099902 (2018)].

Belle-II Collaboration, W. Altmannshofer et al., "The Belle II Physics Book," PTEP 2019 no. 12, (2019) 123C01, arXiv:1808.10567 [hep-ex]. [Erratum: PTEP 2020, 029201 (2020)].

H. Georgi and S. L. Glashow, "Unity of All Elementary Particle Forces," Phys. Rev. Lett. 32 (1974) 438-441.

H. Georgi and C. Jarlskog, "A New Lepton - Quark Mass Relation in a Unified Theory," Phys. Lett. B 86 (1979) 297-300.

S. Saad, "Origin of a two-loop neutrino mass from SU(5) grand unification," Phys. Rev. D 99 no. 11, (2019) 115016, arXiv:1902.11254 [hep-ph].

L.avoura, "General formulae for $f(1) \rightarrow f(2)\gamma$," Eur. Phys. J. C29 (2003) 191-195, arXiv:hep-ph/0302221 [hep-ph].

MEG Collaboration, A. M. Baldini et al., "Search for the lepton flavour violating decay $\mu^+ \rightarrow e^+\gamma$ with the full dataset of the MEG experiment," Eur. Phys. J. C76 no. 8, (2016) 434, arXiv:1605.05081 [hep-ex].

BaBar Collaboration, B. Aubert et al., "Searches for Lepton Flavor Violation in the Decays $\tau^\pm \rightarrow e^\pm\gamma$ and $\tau^\pm \rightarrow \mu^\pm\gamma$," Phys. Rev. Lett. 104 (2010) 021802, arXiv:0908.2381 [hep-ex].

Particle Data Group Collaboration, M. Tanabashi et al., "Review of Particle Physics," Phys. Rev. D98 no. 3, (2018) 030001.

P. Arnan, D. Becirevic, F. Mescia, and O. Sumensari, "Probing low energy scalar leptoquarks by the leptonic W and Z couplings," JHEP 02 (2019) 109, arXiv:1901.06315 [hep-ph].

ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., "Precision electroweak measurements on the Z resonance," Phys. Rept. 427 (2006) 257-454, arXiv:hep-ex/0509008.

R. Kitano, M. Koike, and Y. Okada, "Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei," Phys. Rev. D66 (2002) 096002, arXiv:hep-ph/0203110 [hep-ph]. [Erratum: Phys.Rev.D76.059902(2007)].

SINDRUM II Collaboration, W. H. Bertl et al., “A Search for muon to electron conversion in muonic gold,” Eur. Phys. J. C47 (2006) 337-346.

COMET Collaboration, A. Kurup, “The COherent Muon to Electron Transition (COMET) experiment,” Nucl. Phys. Proc. Suppl. 218 (2011) 38-43.

COMET Collaboration, Y. G. Cui et al., "Conceptual design report for experimental search for lepton flavor violating mu- e- conversion at sensitivity of 10**(16) with a slow-extracted bunched proton beam (COMET)."

C.-H. Chang, S.-L. Chen, T.-F. Feng, and X.-Q. Li, “The Lifetime of B_ℓ meson and some relevant problems,” Phys. Rev. D64 (2001) 014003, arXiv:hep-ph/0007162 [hep-ph].

COMET Collaboration, R. Abramishvili et al., “COMET Phase-I Technical Design Report,” arXiv:1812.09018 [physics.ins-det].

Mu2e Collaboration, L. Bartoszek et al., “Mu2e Technical Design Report,” arXiv:1501.05241 [physics.ins-det].

Mu2e Collaboration, G. Pazzullo, “Mu2e: A Search for Charged Lepton Flavor Violation in $\mu N \rightarrow e N$ Conversion with a Sensitivity $< 10^{-16}$,” PoS ICHEP2018 (2019) 583.

Mu2e Collaboration, R. Bonventre, “Searching for muon to electron conversion: The Mu2e experiment at Fermilab,” SciPost Phys. Proc. 1 (2019) 038.

A. J. Buras, J. Girrbach-Noe, C. Niehoff, and D. M. Straub, “$B \rightarrow K^{(*)}\nu\bar{\nu}$ decays in the Standard Model and beyond,” JHEP 02 (2015) 184, arXiv:1409.4557 [hep-ph].

Belle Collaboration, J. Grygier et al., "Search for $B \rightarrow h\bar{v}$ decays with semileptonic tagging at Belle," Phys. Rev. D 96 no. 9, (2017) 091101, arXiv:1702.03224 [hep-ex]. [Addendum: Phys.Rev.D 97, 099902 (2018)].

D. Marzocca, “Addressing the B-physics anomalies in a fundamental Composite Higgs Model," JHEP 07 (2018) 121, arXiv:1803.10972 [hep-ph].

A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch, C. Kauflhold, H. Lacker, S. Monteil, V. Niess, and S. T’Jampens, “Anatomy of New Physics in $B \rightarrow B$ mixing and rare Kaon processes," Phys. Rev. D 83 (2011) 036004, arXiv:1008.1593 [hep-ph].

C. Bobeth and A. J. Buras, “Leptoquarks meet ε'/ε and rare Kaon processes," JHEP 02 (2018) 101, arXiv:1712.01295 [hep-ph].

A. Crivellin, D. Müller, and F. Saturnino, “Flavor Phenomenology of the Leptoquark Singlet-Triplet Model," arXiv:1912.04224 [hep-ph].

UTfit Collaboration, M. Bona et al., “Constraints on new physics from the quark mixing unitarity triangle," Phys. Rev. Lett. 97 (2006) 151803, arXiv:hep-ph/0605213.

T. Jubb, M. Kirk, A. Lenz, and G. Tetlalmatzi-Xolocotzi, “On the ultimate precision of meson mixing observables," Nucl. Phys. B 915 (2017) 431-453, arXiv:1603.07770 [hep-ph].
[215] UTfit Collaboration, M. Bona et al., “Model-independent constraints on $\Delta F = 2$ operators and the scale of new physics,” \textit{JHEP} \textbf{03} (2008) 049, \texttt{arXiv:0707.0636 [hep-ph]}.