MANOBRAS DE RECRUTAMENTO ALVEOLAR EM CRIANÇAS COM CÂNCER E SÍNDROME DO DESCONFORTO RESPIRATÓRIO AGUDO: UM ESTUDO DE VIABILIDADE

Alveolar recruitment maneuvers for children with cancer and acute respiratory distress syndrome: a feasibility study

Marcela Salvador Galassia, Rodrigo Genaro Arduin, Orlei Ribeiro de Araújo, Rosa Masssa Kikuchi Sousa, Antonio Sergio Petrilli, Dafne Cardoso Bourguignon da Silva,*

ABSTRACT

Objective: Acute respiratory distress syndrome (ARDS) can be a devastating condition in children with cancer and alveolar recruitment maneuvers (ARMs) can theoretically improve oxygenation and survival. The study aimed to assess the feasibility of ARMs in critically ill children with cancer and ARDS.

Methods: We retrospectively analyzed 31 maneuvers in a series of 12 patients (median age of 8.9 years) with solid tumors (n=4), lymphomas (n=2), acute lymphoblastic leukemia (n=2), and acute myeloid leukemia (n=4). Patients received positive end-expiratory pressure from 25 up to 40 cmH\textsubscript{2}O, with a delta pressure of 15 cmH\textsubscript{2}O for 60 seconds. We assessed blood gases pre- and post-maneuvers, as well as ventilation parameters, vital signs, hemoglobin, clinical signs of pulmonary bleeding, and radiological signs of barotrauma. Pre- and post-values were compared by the Wilcoxon test.

Results: Median platelet count was 53,200/mm3. Post-maneuvers, mean arterial pressure decreased more than 20% in two patients, and four needed an increase in vasoactive drugs. Hemoglobin levels remained stable 24 hours after ARMs, and signs of pneumothorax, pneumomediastinum, or subcutaneous emphysema were absent. Fraction of inspired oxygen decreased significantly after ARMs (FiO\textsubscript{2}; p=0.003). Oxygen partial pressure (PaO\textsubscript{2})/FiO\textsubscript{2} ratio increased significantly (p=0.0002), and the oxygenation index was reduced (p=0.01), but all these improvements were transient. Recruited patients’ 28-day mortality was 58%.

Conclusions: ARMs, although feasible in the context of thrombocytopenia, lead only to transient improvements, and can cause significant hemodynamic instability.

Keywords: Respiratory insufficiency; Neoplasms; Acute respiratory distress syndrome; Child.
INTRODUÇÃO

Insuficiência respiratória aguda é uma condição comum em crianças com câncer internadas na Unidade de Terapia Intensiva (UTI). Aquelas que desenvolvem síndrome do desconforto respiratório agudo (SDRA) e precisam de ventilação mecânica (VM) têm prognóstico desfavorável.1 A mortalidade em 28 dias pode chegar a 58% em pacientes com neoplasias, choque séptico e SDRA.2 Estudos com tomografia computadorizada (TC) de pulmão mostraram que a SDRA apresenta múltiplas áreas de atelectasia dependentes de gravidade, as quais estão mais suscetíveis à desobstrução com as manobras de recrutamento alveolar (MRAs).1 A extensão da área de recrutamento é influenciada pelo tempo transcorrido desde o aparecimento da SDRA; assim sendo, as MRAs funcionam melhor quanto mais cedo forem iniciadas pois, nos estágios mais avançados da doença, pode ocorrer o desenvolvimento de fibrose no pulmão afetado. Em pulmões que desenvolvem resistência crescente, a alta pressão expiratória final positiva (PEEP) durante as MRAs pode levar a complicações, especialmente instabilidade hemodinâmica.4

Poucos estudos analisaram o recrutamento alveolar na população pediátrica e nenhum incluiu a subpopulação oncológica. Este estudo teve como objetivo avaliar a viabilidade das MRAs em pacientes pediátricos com câncer gravemente doentes e que desenvolveram insuficiência respiratória aguda causada pela SDRA.

MÉTODO

Estudo retrospectivo aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal de São Paulo (UNIFESP) (protocolo nº 12802/2009), sem necessidade de obtenção do termo de consentimento informado. Foram avaliados os dados nos prontuários eletrônicos dos pacientes de 0 a 17 anos de idade, internados em uma UTI Pediátrica oncológica de 11 leitos, de 1º de janeiro de 2010 a 31 de dezembro de 2011, com diagnóstico de SDRA de acordo com a Conferência de Consenso Europeia-Americana.5 Os critérios de exclusão foram: instabilidade hemodinâmica de acordo com a Conferência de Consenso de 1º de janeiro de 2010 a 31 de dezembro de 2011, com diagnóstico de SDRA de acordo com a Conferência de Consenso Europeia-Americana.5 Os critérios de exclusão foram: instabilidade hemodinâmica grave no momento das MRAs; assim sendo, as MRAs funcionam melhor quanto mais cedo forem iniciadas pois, nos estágios mais avançados da doença, pode ocorrer o desenvolvimento de fibrose no pulmão afetado. Em pulmões que desenvolvem resistência crescente, a alta pressão expiratória final positiva (PEEP) durante as MRAs pode levar a complicações, especialmente instabilidade hemodinâmica.4

Poucos estudos analisaram o recrutamento alveolar na população pediátrica e nenhum incluiu a subpopulação oncológica. Este estudo teve como objetivo avaliar a viabilidade das MRAs em pacientes pediátricos com câncer gravemente doentes e que desenvolveram insuficiência respiratória aguda causada pela SDRA.

RESULTADOS

Analisamos 31 manobras realizadas em 12 pacientes, com idade mediana de 8,9 anos (variando de 9 meses a 16 anos). A Tabela 1 apresenta os diagnósticos: quatro pacientes tinham tumores sólidos e oito apresentavam neoplasias hematológicas (um deles já tinha sido submetido a um transplante de medula óssea). As manobras foram realizadas em pacientes com mediana de 53.200 plaquetas/mm³ (P25–75=32.200–122.530). Durante as MRAs, o valor mínimo de PEEP foi 25 e o máximo, 40 cmH₂O [intervalo interquartil (IIQ) 27–75: 35–40 cmH₂O]. PPI máximo foi de 55 cmH₂O (IIQ: 50–55 cmH₂O) e a frequência respiratória média foi de 4,7 respirações por minuto [desvio padrão (DP): 3].
Tabela 1 Diagnósticos de câncer e síndrome do desconforto respiratório agudo nos 12 pacientes. O tempo da doença é contado até o momento das manobras de recrutamento.

Paciente	Doença subjacente	Diagnóstico associado à SDRA	Idade (anos)	Tempo do diagnóstico de câncer (meses)	Tempo do diagnóstico de SDRA (dias)	Óbito
1	Glioma bulbomedular	Pneumonia por aspiração/choque séptico	8,6	2	2,4	Não
2	Glioma óptico	Neutropenia febril/choque séptico	1,1	1	3	Não
3	LMA	Choque séptico	1,2	8	2,5	Sim
4	Hepatoblastoma	Pneumonia/choque séptico	2	17	3,2	Sim
5	Linfoma de Hodgkin	Pneumonia/choque séptico	16,3	10	1,8	Sim
6	LMA	Neutropenia febril/choque séptico	10,5	4	3	Sim
7	LLA	Neutropenia febril/choque séptico	10,9	10	2	Sim
8	LLA	Choque séptico	15	72	1,8	Não
9	Linfoma não-Hodgkin	Choque séptico	9	7	2,7	Sim
10	Fibrossarcoma	Síndrome pós-parada cardiorrespiratória	0,7	1	2,6	Não
11	LMA	Síndrome do ácido retinoico	11	8	1,9	Não
12	LMA/transplante de células-tronco hematopoéticas	Choque séptico	16	2	2,4	Sim

SDRA: síndrome do desconforto respiratório agudo; LMA: leucemia mieloide aguda; LLA: leucemia linfoblástica aguda.

Figura 1 Escalada e titulação da pressão positiva expiratória final durante a manobra de recrutamento alveolar.
Não foram encontradas diferenças significativas na frequência cardíaca durante a MRA (média pré-MRA: 136,7 batimentos por minuto, DP: 26,5; pós-MRA: 137,3, DP: 20,8). Em sete manobras realizadas em cinco pacientes, a PAM caiu mais de 5% (12,9 mmHg em média, DP: 8,1), levando a aumento nas taxas de infusão de drogas vasoativas em quatro deles (33%). Em dois pacientes (16,6%), a redução da PAM foi maior que 20%. Durante seis MRAs realizadas em dois pacientes (16,6%), identificamos um aumento transitório da PAM maior que 5% (média: 23,7 mmHg, DP: 27,5). A PAM média foi de 79 mmHg (DP: 16,8) antes e 80,2 mmHg (DP: 18,5) depois do recrutamento alveolar (p=0,93).

Nenhuma das crianças teve redução nos níveis de hemoglobina nas 24 horas após as MRAs. Não foram detectados vazamentos de ar como pneumotórax, pneumomediastino e/ou enfisema subcutâneo.

FiO₂ e IO tiveram redução significativa depois das MRAs (p=0,003 e p=0,01, respectivamente); a razão PaO₂/FiO₂ teve aumento estatisticamente significativo (p=0,002). Essas melhorias na oxigenação não se mantiveram por mais de 2 horas após as MRAs, com redução da saturação de oxigênio e novo aumento na FiO₂. Todos os parâmetros gasométricos analisados (pH, pressão parcial do dióxido de carbono, bicarbonato, saturação de oxigênio) não mostraram sinais de melhoria significativa após as manobras. A complacência dinâmica pulmonar também não foi afetada.

Os níveis de PEEP se mantiveram altos após as MRAs (p=0,02). Outros parâmetros ventilatórios (pressão inspiratória, mPwa, tempo inspiratório e volume corrente) não demonstraram diferenças significativas. A Tabela 2 descreve os parâmetros de VM e seus respectivos valores p. A Figura 2 mostra os diagramas de caixa com as alterações significativas.

Também analisamos a primeira MRA de cada paciente. Considerando somente essas 12 MRAs, houve diferenças significativas na FiO₂ pré e pós-manobras (pré: 0,80±0,24; pós: 0,58±0,22; p=0,05, de acordo com o teste de Wilcoxon) e também na relação PaO₂/FiO₂ pré e pós-manobras (pré: 95,3±49,3 e pós: 158,5±72,7; p=0,03). Infelizmente, não realizamos outras análises dessas primeiras MRAs por conta do tamanho limitado da amostra.

| Tabela 2 Parâmetros ventilatórios e valores de gasometria antes e depois das manobras de recrutamento. |
|---|-----------------|-----------------|-----------------|
| Pressão de pico | Média | DP | p-valor* | IC99% para o p-valor** |
| Antes | 32,6 | 8,8 | 0,630 | 0,630–0,650 |
| Depois | 33,6 | 10,5 | 0,630 | 0,630–0,650 |
| PEEP (cmH₂O) | | | | |
| Antes | 14,6 | 5,2 | 0,026 | 0,021–0,029 |
| Depois | 17,3 | 6,1 | 0,026 | 0,021–0,029 |
| Pressão média (cmH₂O) | | | | |
| Antes | 22,3 | 7,7 | 0,270 | 0,270–0,290 |
| Depois | 20,8 | 6,4 | 0,270 | 0,270–0,290 |
| Volume de ventilação pulmonar (mL/kg) | | | | |
| Antes | 188,1 | 119,9 | 0,090 | 0,084–0,099 |
| Depois | 176,3 | 107,3 | 0,090 | 0,084–0,099 |
| Complacência dinâmica (mL/cmH₂O) | | | | |
| Antes | 11,0 | 7,7 | 0,840 | 0,850–0,870 |
| Depois | 11,1 | 6,6 | 0,840 | 0,850–0,870 |
| FiO₂ | | | | |
| Antes | 0,8 | 0,2 | 0,003 | 0,001–0,003 |
| Depois | 0,6 | 0,2 | 0,003 | 0,001–0,003 |
| pH | | | | |
| Antes | 7,3 | 0,1 | 0,180 | 0,170–0,190 |
| Depois | 7,3 | 0,1 | 0,180 | 0,170–0,190 |
| Bicarbonato (mmol/L) | | | | |
| Antes | 26,3 | 9,7 | 0,059 | 0,052–0,064 |
| Depois | 23,9 | 7,2 | 0,059 | 0,052–0,064 |
| Saturação de O₂ (%) | | | | |
| Antes | 91,4 | 6,6 | 0,580 | 0,570–0,590 |
| Depois | 92,0 | 6,3 | 0,580 | 0,570–0,590 |
| PaCO₂ (mmHg) | | | | |
| Antes | 56,6 | 21,9 | 0,190 | 0,180–0,200 |
| Depois | 59,5 | 18,2 | 0,190 | 0,180–0,200 |
| PaO₂ (mmHg) | | | | |
| Antes | 73 | 18,8 | 0,320 | 0,330–0,350 |
| Depois | 77,6 | 7,2 | 0,320 | 0,330–0,350 |
| IO | | | | |
| Antes | 25,8 | 16,4 | 0,019 | 0,014–0,021 |
| Depois | 21,4 | 19,6 | 0,019 | 0,014–0,021 |
| PaO₂/FiO₂ | | | | |
| Antes | 107,1 | 48,4 | 0,000 | 0,000–0,000 |
| Depois | 150,3 | 72,4 | 0,000 | 0,000–0,000 |

DP: desvio padrão; IC: intervalo de confiança; *teste de Wilcoxon; **Método de Monte Carlo; PEEP: pressão positiva expiratória final; FiO₂: fração inspirada de oxigênio; PaCO₂: pressão parcial de dióxido de carbono em sangue arterial; PaO₂: pressão parcial do oxigênio em sangue arterial; IO: índice de oxigenação.

DISCUSSÃO

No nosso pequeno grupo de pacientes críticos, as manobras de recrutamento levaram a algum grau de melhora nos parâmetros de oxigenação, mas essas melhorias foram passageiras. O fato de que um terço dos pacientes precisou de mais drogas vasoativas é fator de preocupação. Não encontramos estudos na literatura a respeito de MRAs nesta população, impossibilitando a comparação de resultados.
Pacientes pediátricos com câncer que apresentam SDRA são gravemente doentes e têm altas taxas de mortalidade. Ben-Abraham et al. avaliaram 17 crianças com SDRA e neoplasias hematológicas sob VM; 11 delas morreram (64,7%).1 Outro estudo reportou 29 crianças com câncer e SDRA relacionada à sepse: somente 5 pacientes sobreviveram por mais de 60 dias. Dentre eles, 31% morreram como consequência direta da hipoxemia refratária e o restante por falência múltipla de órgãos e choque refratário às catecolaminas.2 As taxas de mortalidade por SDRA nesta subpopulação são inaceitavelmente altas e nenhuma terapia efetiva, incluindo agentes farmacológicos,12 foi descrita até o momento.

As manobras de recrutamento podem melhorar a hipoxemia, mas seu uso em crianças gravemente doentes com câncer gera preocupações devido à frequente trombocitopenia e o risco de hemorragia pulmonar. O melhor método para realizar as MRAs ainda precisa ser definido.13 O método do delta de pressão fixo utilizado aqui aparenta permitir mais estabilidade hemodinâmica em comparação ao método sequencial.8,14 A redução lenta da PEEP também parece manter a estabilidade alveolar por mais tempo.15,16 Estudos em adultos demonstraram que otimizar a PEEP depois das MRAs é essencial para melhorar a oxigenação,16 o que foi obtido em nossos pacientes ao se estabelecer a PEEP acima do ponto de dessaturação, pressu-pondo que este ponto corresponderia ao colapso alveolar parcial. Boriosi et al.17 identificaram melhora na relação PaO$_2$/FiO$_2$ que poderia durar até 12 horas após as manobras. Porém, em nosso estudo, a melhora não se manteve por mais do que 2 horas, mostrando a eficácia passageira das MRAs, também reportada por Kheir e colegas.18

Não foram observadas diferenças significativas na frequência cardíaca dos pacientes. Cruces et al. indicaram a hipotensão como um efeito colateral comum da MRA, demonstrando redução na PAM de 9,2%.19 Em nosso estudo, a redução da PAM levou ao aumento da infusão de vasopressores em quatro pacientes (33,3%), o que enfatiza a necessidade de cuidado extremo ao realizar MRAs. Nenhum sangramento ou complicações nas vias aéreas foram reportados no período subsequente de 24 horas.

Como as MRAs melhoram a saturação de oxigênio por um curto período de tempo, os profissionais da saúde podem se sentir tentados a realizá-las com frequência. Porém nenhum dado

Figura 2 Gráfico dos valores da razão da pressão parcial de oxigênio/fração inspirada de oxigênio, índice de oxigenação, e pressão positiva expiratória final, pré e pós-manobra de recrutamento.
Manobras de recrutamento alveolar em crianças com câncer e SDRA

disponível em estudos controlados permite tirar conclusões sobre eficácia, segurança e consequências de longo prazo nas crianças.20

A principal limitação do nosso estudo é o tamanho limitado da amostra para determinar todos os aspectos da segurança da MRA. Assim sendo, foi realizado como um estudo piloto para avaliar a viabilidade das MRAs em pacientes graves.

Um ensaio clínico recente e amplo, com adultos, resultou não somente em sucesso limitado mas em mortalidade mais alta em 28 dias no grupo submetido à MRA;21 A MRA máxima poderia até se associada à parada cardíaca. O interessante é que a mortalidade em 28 dias foi maior neste grupo do que na população com câncer e SDRA.21 Assim, ao avaliar as evidências atuais, a MRA deve ser reservada para aqueles pacientes em hipoxemia refratária, já sob pressão inspiratória ou pressão de pico e FiO2 altas e não protetoras, e não como tratamento de rotina nas UTIs.

Concluindo, as MRAs, embora sejam viáveis, têm restrições ligadas à sua efetividade em crianças com câncer e SDRA, com melhorias transitórias na oxigenação, mas sem levar à melhora na complacência pulmonar. Apesar de não haver complicações relacionadas ao sangramento, mesmo em crianças plaquetopênicas, a instabilidade hemodinâmica é motivo de grande preocupação.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declararam não haver conflito de interesses.

REFERÊNCIAS

1. Ben-Abraham R, Weinbroum AA, Augerten A, Toren A, Harel R, Vardi A, et al. Acute respiratory distress syndrome in children with malignancy—can we predict outcome? J Crit Care. 2001;16:54-8. https://doi.org/10.1053/jccr.2001.25232

2. Arduini R, Araujo O, Silva D, Senerchia A, Petritelli A. Sepsis-related acute respiratory distress syndrome in children with cancer: the respiratory dynamics of a devastating condition. Rev Bras Ter Intensiva. 2016;28:436-43. https://doi.org/10.5935/0103-507x.20160077

3. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775-86. https://doi.org/10.1056/nejmoa052052

4. Godet T, Constantin JM, Jaber S, Futier E. How to monitor a recruitment maneuver at the bedside. Curr Opin Crit Care. 2015;21:253-8. https://doi.org/10.1097/mcc.000000000000195

5. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee. J Crit Care. 1994;9:72-81. https://doi.org/10.1016/0883-9441(94)90033-7

6. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-8. https://doi.org/10.1056/NEJM200005043421801

7. Neves VC, Koliski A, Giraldi DJ. Alveolar recruitment maneuver in mechanic ventilation pediatric intensive care unit children. Rev Bras Ter Intensiva. 2009;21:453-60. https://doi.org/10.1590/S0103-507X20090000400017

8. Rzezinski AF, Oliveira GP, Santiago VR, Santos RS, Ornellas DS, Morales MM, et al. Prolonged recruitment maneuver improves lung function with less ultrastructural damage in experimental mild acute lung injury. Respir Physiol Neurobiol. 2009;169:271-81. https://doi.org/10.1016/j.resp.2009.10.002

9. Amato MB, Carvalho CR, Isola A, Vieira S, Rotman V, Moock M, et al. Mechanical Ventilation in Acute Lung Injury (ALI)/ Acute Respiratory Discomfort Syndrome (ARDS). J Bras Pneumol. 2007;33(Suppl 2):S119-27. https://doi.org/10.1590/ S1806-37132007000800007

10. Ortiz RM, Clilrey RE, Bartlett RH. Extracorporeal membrane oxygenation in pediatric respiratory failure. Pediatr Clin North Am. 1987;34:39-49. https://doi.org/10.1016/s0031-3955(16)36179-x

11. Morrow B, Futter M, Argent A. A recruitment maneuver performed after endotracheal suction does not increase dynamic compliance in ventilated pediatric patients: a randomized controlled trial. Aust J Physiother. 2007;53:163-9. https://doi.org/10.1097/s0004-9514(07)70023-5

12. Fuller BM, Mohr NM, Hotchkiss RS, Kollef MH. Reducing the burden of acute respiratory distress syndrome: the case for early intervention and the potential role of the emergency department. Shock. 2014;41:378-87. https://doi.org/10.1097/shk.0000000000000142

13. Rotta AT, Piva JP, Andreolio C, Carvalho WB, Garcia PC. Progress and perspectives in pediatric acute respiratory distress syndrome. Rev Bras Ter Intensiva. 2015;27:266-73. https://doi.org/10.5935/0103-507X.20150035

14. Iannuzzi M, Sio A, De Robertis E, Piazza O, Servillo G, Tufano R. Different patterns of lung recruitment maneuvers in primary acute respiratory distress syndrome: effects on oxygenation and central hemodynamics. Minerva Anestesiol. 2010;76:692-8.
15. Girgis K, Hamed H, Khater Y, Kacmarek RM. A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care. 2006;51:1132-9.

16. Lim CM, Jung H, Koh Y, Lee JS, Shim TS, Lee SD, et al. Effects of alveolar recruitment maneuver in early acute respiratory distress syndrome according to antiderecruitment strategy, etiological category of diffuse lung injury, and body position of the patient. Crit Care Med. 2003;31:411-8. https://doi.org/10.1097/01.ccm.0000048631.88155.39

17. Boriosi JP, Sapru A, Hanson JH, Asselin J, Gildegoring G, Newman V, et al. Efficacy and safety of lung recruitment in pediatric patients with acute lung injury. Pediatr Crit Care Med. 2011;12:431-6. https://doi.org/10.1097/pcc.0b013e3181fe329d

18. Kheir JN, Walsh BK, Smallwood CD, Retting JS, Thompson JE, Gómez-Laberge C, et al. Comparison of 2 lung recruitment strategies in children with acute lung injury. Respir Care. 2013;58:1280-90. https://doi.org/10.4187/respcare.01808

19. Cruces P, Donoso A, Valenzuela J, Díaz F. Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study. Pediatr Pulmonol. 2013;48:1135-43. https://doi.org/10.1002/ppul.22729

20. Arun TB. Alveolar recruitment maneuvers in ventilated children: caution required. Indian J Crit Care Med. 2011;15:141. https://doi.org/10.4103/0972-5229.83005

21. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura EA, Laranjeira LN, Paisani DM, Damiani LP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs Low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318:1335-45. https://doi.org/10.1001/jama.2017.14171