Heritability of retinal drusen in the Copenhagen Twin Cohort Eye Study

Belmouhand, Mohamed; Rothenbuehler, Simon Paul; Hjelmborg, Jacob B.; Dabbah, Sami; Bjerager, Jakob; Sander, Birgit Agnes; Dalgârd, Christine; Larsen, Michael

Published in:
Acta Ophthalmologica

DOI:
10.1111/aos.15136

Publication date:
2022

Document version:
Final published version

Document license:
CC BY-NC-ND

Citation for published version (APA):
Belmouhand, M., Rothenbuehler, S. P., Hjelmborg, J. B., Dabbah, S., Bjerager, J., Sander, B. A., Dalgârd, C., & Larsen, M. (2022). Heritability of retinal drusen in the Copenhagen Twin Cohort Eye Study. Acta Ophthalmologica, 100(8), e1561-e1568. https://doi.org/10.1111/aos.15136

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 15. Sep. 2023
Heritability of retinal drusen in the Copenhagen Twin Cohort Eye Study

Mohamed Belmouhand,1,2 Simon Paul Rothenbuehler,1,3 Jacob B. Hjelmborg,4,5 Sami Dabbah,1,6 Jakob Bjerager,1 Birgit Agnes Sander,1 Christine Dalgard5,7 and Michael Larsen1,2

1Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
2Department of Clinical Medicine, Faculty of Healthy and Medical Science, University of Copenhagen, Copenhagen, Denmark
3Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
4Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
5The Danish Twin Research Center, University of Southern Denmark, Odense, Denmark
6Department of Ophthalmology, Odense University Hospital, Odense, Denmark
7Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark

ABSTRACT.

Purpose: To study age- and sex-adjusted heritability of small hard drusen and early age-related macular degeneration (AMD) in a population-based twin cohort.

Methods: This was a single-centre, cross-sectional, classical twin study with ophthalmic examination including refraction, biometry, best-corrected visual acuity assessment, colour and autofluorescence fundus photography, and fundus optical coherence tomography. Grading and categorization of drusen was by diameter and location.

Results: The study enrolled 176 same-sex pairs of twins of mean (SD) age 58.6 (9.9) years. The prevalence of the four phenotypes ≥20 small hard macular drusen (largest diameter <63 μm), ≥20 small hard extramacular drusen, intermediate drusen (63–125 μm) anywhere, and large drusen (>125 μm) anywhere was 12.4%, 36.4%, 5.8%, and 8.4%, respectively, and the respective heritabilities, adjusted for age and sex, were 78.2% [73.5–82.9], 69.1% [62.3–75.9], 30.1% [4.1–56.1], and 65.6% [26.4–100]. Age trajectory analysis supported a gradual transition to larger numbers of small hard drusen with increasing age. The heritability of ≥20 small hard drusen was markedly lower than the 99% found in the 40% overlapping twin cohort that was seen 20 years earlier.

Conclusion: Numerous (≥20) small hard drusen and larger drusen that fit the definition of dry AMD were highly heritable. Small hard drusen counts increased with age. Decreasing heritability with increasing age suggests that the impact of behavioural and environmental factors on the development of small hard drusen increases with age.

Key words: Copenhagen Twin Cohort Eye Study – drusen – heritability – small hard drusen – twins

ML has consulted, spoken or been a trial investigator for Novartis, Chiesi, Allergan, Bayer, Alcon, AbbVie, Biogen, Novo Nordisk, Eli Lilly, Spark Therapeutics, Biogen, Sanofi and Roche.
identifying any change in heritability regarding ≥20 small hard drusen over a 20-year period in a study population that is young enough to present the transition from pre-AMD to early AMD, including a comparison with a similar cross-sectional study (Hammond et al. 2002), and verify the findings by Hammond et al. in a sex-balanced cohort to exclude any sex biases.

The purpose of the present report is to assess the heritability of the phenotype ≥20 small hard drusen in twins of both sexes, at an age older than in the 1999 study, and the heritability of early AMD phenotypes, with reference to current drusen subclassification practices.

Methods

This observational study enrolled a zygosity-balanced cohort of same-sex pairs of twins from the Danish Twin Registry between March 2019 and June 2020. Half of the participants had previously participated in an eye examination in 1999, which recruited from the prospective GEMINAKAR study of volunteers without diabetes and cardiovascular disease (Schousboe et al. 2003; Munch et al. 2007). The other half of the study population, which was included to achieve statistical target power, was matched on zygosity and sex, whereas no selection was made for diabetes or cardiovascular characteristics. The target age range of the latter group, 30–80 years, was broader than the 44–66 years of the first round participants, because it was deemed value for the assessment of ageing effects. Zygosity was verified using forensic genetic testing. Oral and written informed consent was acquired from all participants. The study was approved by the regional Health Research Ethics Committee (registration number H-18052822) and the Danish Data Protection Agency (registration number VD-2018-434). The study complied with the tenets of the Declaration of Helsinki.

Estimation of tobacco use, height, and weight was self-reported at the study visit. Active or previous tobacco users were considered as ‘smokers’ if ≥1 pack-year (≥20 cigarettes daily for 365 consecutive days). Blood pressure was measured at the beginning of the study visit, and mean arterial pressure was used to evaluate blood pressure. A blood sample was taken from each participant to measure triglycerides, low-density lipoprotein, high-density lipoprotein and total cholesterol—the blood sample was stored in a tube with lithium heparin and analysed with a colorimetric test (VITROS, 5600, Ortho Clinical Diagnostics, USA). Examinations included measurement of refraction and best-corrected visual acuity (BCVA) using an Early Treatment Diabetic Retinopathy Study (ETDRS) chart (4-meter original series, Precision-Vision, La Salle, IL, USA), pupil dilation using tropicamide 1%, slit-lamp biomicroscopy, mydriatic fundus photography, optical coherence tomography (OCT; Spectralis HRA + OCT2, Heidelberg Engineering, Heidelberg, Germany) and four-field 50-degree digital colour fundus photography (TRC-50DX, Topcon Corp., Tokyo, Japan) centred on the fovea, the optic disc, the upper vascular arcade and the lower vascular arcade, and fovea-centred 30-degree blue-light fundus autofluorescence (Spectralis HRA + OCT2). Optical coherence tomography included a dense macular volume scan (20 × 20 degrees, 97 B-scans, high resolution, 20-scan averaging). Axial length was measured using the IOLMaster 700 (Carl Zeiss Meditec AG, Jena, Germany).

Colour- and red-free fundus images were visually inspected for drusen and other elements and annotated using ImageJ software (Fiji ImageJ v. 1.49 software). Drusen were categorized based on the largest diameter size: small hard drusen <63 μm, intermediate drusen 63–125 μm and large drusen >125 μm. The size of drusen ≥63 μm was based on the largest drusen diameter as measured by OCT; small hard drusen were rarely visible on OCT. Small hard drusen were subcategorized according to the number of drusen per eye (average of the two eyes): n = 0–19 small hard drusen per eye or ≥20 small hard drusen per eye. The cut-off value of 20 small hard drusen is arbitrarily defined by previous large epidemiological studies (Bressler et al. 1989) and used by comparable twin studies (Hammond et al. 2002; Munch et al. 2007). Therefore, we found this cut-off point suitable for the present study. One examiner (MB) only, masked to age, sex and zygosity, counted and recounted the number of small hard drusen and drusen ≥63 μm for each eye in each participant. Every single drusen in each eye was marked and compared with the recount, and the recount did not result in a different small hard drusen phenotype grading (<20 versus ≥20) in any participants.

Due to the low variability between meticulous drusen counts and the limited capacity, an additional grader was not considered necessary. Drusen associated with a choroidal nevus were excluded (n = 1). Fundus images were graded twice. A second observer (ML) was consulted if arbitration was needed.

Data analysis included both small hard drusen within and outside the macula (Fig. 1), which was delineated by a fovea-centred circle with a radius extending to the temporal rim of the optic nerve head. Drusen within the circle were categorized as macular drusen. Otherwise, they were classified as extramacular drusen. All drusen were encircled, except when participants had a diffusely stippled peripherally, retina that rendered counting impractical because the number of extramacular bright dots exceeded 500 per eye. In such case, the individual was considered to have ≥20 small hard extramacular drusen. Participants with eye disorders that significantly reduced retinal imaging quality were excluded from analysis.

Statistical analysis

RStudio statistical software (RStudio: Integrated Development Environment for R, Inc., Boston, MA) was used for

![Fig. 1. Red-free fundus photograph of a 57-year-old female with 9 macular (yellow circles) and 6 extramacular (turquoise circles) small hard drusen <63 μm. The red circle delineates the macula. No other small hard extramacular drusen were identified in other images displaying a larger field of the periphery.](image-url)
data analysis. A classical twin study is set upon the comparison of phenotypic discrepancies in monozygotic (MZ) and dizygotic (DZ) twins. It is stipulated that MZ twins share identical genotypes, whereas DZ twins share approximately half of the genotypes. A higher similarity for a given phenotypic presentation among MZ twins indicates a genetic component for the development of that specific phenotype.

A descriptive comparison of MZ and DZ twins was reported as mean (standard deviation) unless otherwise specified—infarence was adjusted for within-pair dependence. A Wald test for continuous variables or a Chi-square test for categorical variables was used to calculate p-values. Likelihood ratio testing showed no significant differences between a saturated model (assuming equal inter-twin variance and correlation) and an unsaturated model (assuming unequal inter-twin variance and correlation); therefore, we used a saturated model. Age trajectory of the proportions of various drusen categories based on the number of small hard drusen was estimated using the proportional odds model for modelling the dependence of ordinal variables. Regarding exposure to risk factors, the group of participants who only participated in 1999 was not significantly different from the group that participated in both 1999 and 2019 when analysed using a linear mixed regression model with fixed effects to adjust for dependencies. Weighted kappa statistics were used to assess the variability of the two drusen counts.

Cumulative incidence and casewise concordance

The risk of having ≥20 small hard drusen before a given age was estimated using the non-parametric cumulative incidence function of age as described elsewhere (Scheike et al. 2014). The casewise concordance of a specific drusen phenotype is the conditional risk of a given phenotype presentation in one twin before a certain age given that the other twin developed a similar phenotype before a certain age. A higher concordance rate between MZ twins than DZ twins is attributable to higher gene sharing and higher heritability of a given phenotype. The casewise concordances were estimated using a liability threshold model (R-package ‘mets’) to test for the genetic component and quantify this effect (Scheike et al. 2014; Holst et al. 2016). The calculations in the present study assume identical environmental effects among twins.

Biometric modelling

Genetic and environmental effects can be estimated by twin modelling assessing the difference in MZ and DZ pair covariance to the total variance in phenotypic risks. A bivariate probit model, the classic liability threshold approach (Holst et al. 2016), using polygenic modelling with random effects was used to estimate these effects for a dichotomous outcome. From this model, the variance components of the polygenic biometric model from quantitative genetics (ACDE model) were calculated. Variance components are additive genetic effects (A), dominant (non-additive) genetic effects (D), common shared environmental effects (C) and unique environmental effects (E). The model with the lowest Akaike information criterion (AIC) value was considered the best fitting according to the principle of parsimony and is highlighted in bold in the presented tables. Genetic pleiotropic bivariate heritability modelling, adjusted for age and sex, was used to estimate broad-sense heritability according to the ratio of genetic effects (A + D) compared with the total variance of all effects (A + D + C + E). Genetic pleiotropy of left- and right eye variation in drusen outcomes was assessed by the joint (full Cholesky) biometric model allowing for AE components as above for each eye and thereby obtaining correlation between additive genetic effects (A of left eye with A of right eye) and similarly correlation of unique environmental effects (between E’s of each eye). We chose this model to estimate true genetic effects more accurately; however, we believe that any discrepancies in genetic effects between the two eyes are results of stochastic drusen counts. Further, this allows for estimating the bivariate heritability of mutual drusen outcomes in eyes (the proportion of the phenotypic variation between the two eyes explained by genetic effects). A p-value <0.05, two-sided, was considered statistically significant.

Results

We invited 429 same-sex twin pairs, of whom 195 pairs responded. Of all who responded, 360 twins from 182 pairs showed up for examination and completed the study protocol, and 176 were available for analysis. Two pairs were excluded due to the inability to dilate pupils in one twin from each pair, preventing mydriatic fundus photography (narrow iridocorneal angle with high intraocular pressure and pregnancy), and the remaining four pairs were excluded due to no-show of a twin from each of the four pair. The study included 91 MZ and 85 DZ same-sex twin pairs, of whom 90 MZ pairs and 83 DZ pairs had gradable scans and were included in data analysis. The mean age of the participants was 58.5 (13.9) years (range, 30–80 years). The MZ and DZ groups were comparable (Table 1), with the exception that the DZ group had more small hard macular drusen and higher cumulative tobacco consumption. There was no association between tobacco consumption and the number of small hard macular drusen among DZ twins (data not shown). All participants were Danish-born and, except for one, resided in Denmark at the time of examination. There was broad agreement between the two courses of drusen number (weighted kappa statistics of 0.70 was found).

In the macula, one or more small hard drusen was found in at least one eye in 305 (87.9%) participants. In the extramacular region, small hard drusen were found in at least one eye in 342 (98.6%) participants. The phenotype ≥20 small hard macular drusen was found in either eye in 59 (17.0%) participants and 136 (39.2%) when examining the extramacular region only. Figure 2 shows the cumulative frequency of ≥20 small hard macular drusen from 30 to 80 years of age. Figure 3 shows an age trajectory of the proportions for various small hard macular drusen categories, with shifts that reflect a general increase in lesion density with age. In the present study, eyes with ≥20 small hard macular drusen were typically not seen in participants younger than 50 years of age (Fig. 2)—the currently adopted cut-off age for an AMD diagnosis. Two-thirds of the study participants were in the early years (50–65 years) of the AMD
Table 1. Demographics, per participant.

	Total	Monozygotic	Dizygotic	p-value
No.	346	180	166	
Age, years	58.6 (9.9)	57.4 (10.1)	59.8 (9.5)	0.12
Women, No. (%)*	190 (54.8%)	98 (54.1%)	92 (55.4%)	0.90
Body mass index, kg/m²	25.3 (4.3)	25.3 (3.9)	25.4 (4.4)	0.95
Smoking, No. (%)*	154 (44.4%)	72 (39.6%)	83 (48.8%)	0.09
Pack years, smokers only, median (interquartile range)†	12.0 (5.0–21.5)	10.8 (5.0–18.5)	14.0 (5.1–25.0)	0.03
Mean arterial blood pressure, mmHg	104.0 (12.8)	104.4 (13.7)	103.6 (11.8)	0.61
Spherical equivalent refraction, right eye, dioptr	-0.20 (2.4)	-0.36 (2.6)	-0.02 (2.2)	0.28
LogMAR, right eye [Snellen equivalent]	-0.04 (0.20) [1.10]	-0.03 (0.24)	-0.05 (0.15)	0.65
Intra ocular pressure, right eye, mmHg	14.2 (3.5)	14.0 (3.5)	14.4 (3.4)	0.33
Axial length, right eye, mm	23.8 (1.2)	23.9 (1.2)	23.7 (1.1)	0.27
Cholesterol mmol/L	5.4 (1.0)	5.3 (1.0)	5.4 (1.0)	0.58
Low-density lipoprotein mmol/L	3.1 (0.9)	3.1 (0.8)	3.1 (0.9)	0.85
High-density lipoprotein mmol/L	1.6 (0.5)	1.6 (0.5)	1.7 (0.5)	0.38
Triglycerides mmol/L	1.5 (0.8)	1.5 (0.8)	1.5 (0.8)	0.87
Small hard macular drusen	303 (87.6%)	169 (93.9%)	134 (80.7%)	<0.001
Small hard macular drusen, n < 20 per eye, No. (%)*	43 (12.4%)	11 (6.1%)	32 (19.3%)	
Small hard extramacular drusen, n ≥ 20 per eye, No. (%)*	126 (36.4%)	59 (32.6%)	67 (40.4%)	0.16
Intermediate drusen, 63–125 μm, No. (%)*	20 (5.8%)	11 (6.1%)	9 (5.4%)	0.98
Large drusen, >125 μm, No. (%)*	29 (8.4%)	14 (7.7%)	15 (9.0%)	0.81

Estimates are mean (standard deviation) unless otherwise indicated. Inference was adjusted for within-pair dependence. A Wald test for continuous variables or a Chi-square test for categorical variables was used to calculate p-values (monozygotic versus dizygotic) for a univariate outcome. Participants who were not part of the initial 1999 study were not significantly different in any of the above-listed parameters when analysed with a linear mixed regression model with fixed effects to adjust for dependencies (not shown).

* Number of participants and percentage.
† Number of pack years were not normally distributed; hence, estimates are median (interquartile range).

Fig. 2. Cumulative frequency (risk) of having ≥20 small hard macular drusen as a function of age and zygosity. Monozygotic twins appeared to have a lower cumulative incidence than dizygotic twins.
age spectrum. Only two individuals (61 and 80 years old, respectively) had late-stage AMD.

The concordance of drusen phenotypes was generally higher for MZ twins than for DZ twins with high heritabilities for \(\geq 20 \) small hard macular drusen, \(\geq 20 \) extramacular drusen and drusen >125 \(\mu \)m (Table 2). The concordance of the phenotype <20 small hard macular drusen per eye was similar between MZ and DZ twins.

A polygenetic model for quantitative genetics for different drusen phenotypes found that the best-fitted model (lowest AIC value) that explains the most amount of variation using fewest variables, although not significant, was an AE model when adjusting for age and sex (Table 3). The genetic effects for \(\geq 20 \) small hard macular drusen were attributable to additive effects (A = 0.79% [95% CI, 0.53%–1.00%]). The ACE and CE models suggest that shared and non-shared environmental factors could explain some of the effects. However, the confidence intervals were rather large. For \(\geq 20 \) small hard extramacular drusen, the genetic effects were similarly attributable to additive effects (A = 0.86% [95% CI, 0.73%–0.99%]). Low numbers of affected individuals resulted in wide confidence intervals.

Genetic pleiotropic bivariate heritability modelling adjusted for age and sex found that an AE model best explains the data distribution (Table 4). The heritability of \(\geq 20 \) small hard macular drusen was 78.2% (95% CI, 73.5%–82.9%) for right eyes and 68.4% (95% CI, 63.4%–73.4%) for left eyes; \(\geq 20 \) small hard extramacular drusen showed similar but slightly lower estimates. Having soft drusen >125 \(\mu \)m was also a heritable trait, 65.6% (95% CI, 26.4%–100%) for right eyes and 58.8% (95% CI, 23.0%–94.6%) for left eyes. Intermediate soft drusen 63–125 \(\mu \)m was the least heritable phenotype. Inter-eye genetic correlation, the genetic influence that is shared between the two eyes, was not 100% for all phenotypes; the random variation between the two eyes was ascribed to stochastic estimates of drusen counts. Stochastic effects would normally fall into the category of unique environmental effects (E).

Discussion

This study of a cohort of twins with a mean age of 58.6 years found high

Table 2. Casewise concordance of drusen phenotypes (n\(_{\text{MZ~pairs}}\) = 90; n\(_{\text{DZ~pairs}}\) = 83).

Phenotype	Zygosity	Concordant pairs (n)	Discordant pairs (n)	Prevalence	Casewise concordance [CI95]
\(\geq 20 \) small hard macular drusen per eye	MZ	2	7	0.03	0.36 [0.27–0.82]
	DZ	7	18	0.10	0.37 [0.20–0.58]
\(\geq 20 \) small hard extramacular drusen per eye	MZ	23	13	0.17	0.78 [0.67–0.88]
	DZ	20	26	0.20	0.61 [0.44–0.71]
<20 small hard macular drusen per eye	MZ	81	7	0.49	0.96 [0.88–0.97]
	DZ	57	18	0.41	0.86 [0.86–0.94]
Intermediate drusen 63–125 \(\mu \)m	MZ	2	7	0.02	0.36 [0.01–0.82]
	DZ	0	9	0	0
Large drusen \(\geq 125 \) \(\mu \)m	MZ	5	4	0.04	0.71 [0.43–0.90]
	DZ	1	13	0.04	0.13 [0.02–0.52]

The phenotypic presentation was based on the average of the two eyes. Drusen \(\geq 63 \) \(\mu \)m were considered present/not present if observed in any of a participant’s two eyes.

CI\(_{95}\) = 95% confidence interval, DZ = dizygotic, MZ = monozygotic.
Table 3. Polygenetic modelling for quantitative genetics of ≥20 small hard drusen per eye.

≥20 small hard macular drusen per eye	Genetic components	Environmental components	Fit Statistics	p-value		
	A [CI95]	D [CI95]	C [CI95]	E [CI95]	AIC	
ACE	0.54 [0.10–1.00]	-	0.23 [0.09–0.98]	0.23 [0.05–0.56]	248.3	
ADE	0.79 [0.53–1.00]	0	-	0.21 [0.04–0.47]	248.1	
AE	0.79 [0.53–1.00]	-	-	0.21 [0.04–0.47]	246.1	0.58
CE	-	-	0.57 [0.31–0.83]	0.43 [0.17–0.69]	246.8	0.32

The confidence intervals are age- and sex-adjusted.

A = additive genetic effects, AIC = Akaike’s information criterion, C = common environment effects, CI95 = 95% confidence interval, D = dominant genetic effects, E = unique environmental effects.

Estimates are proportions attributable to each A, C, D and E factor [95% CI]. Best-fitted model was based on lowest AIC value and shown in bold. p-values are based on a likelihood ratio test (ref. ACE model).

Table 4. Estimates [CI95] of broad-sense inter-eye heritability and environmental effects.

≥20 Small hard macular drusen per eye	Genetic correlation*	c²	Environment correlation*	
	h²			
Right eye	78.2 [73.5–82.9]	88.5 [79.7–97.2]	21.8 [17.1–26.5]	12.8 [0–36.4]
Left eye	68.4 [63.4–73.4]	97.1 [91.9–100]	30.9 [24.1–37.7]	53.1 [49.0–57.2]
≥20 Small hard extramacular drusen per eye				
Right eye	69.1 [62.3–75.9]	98.3 [85.2–100]	69.9 [43.9–95.9]	71.9 [36.1–100]
Left eye	61.3 [54.5–68.1]	86.1 [79.1–91.9]	70.9 [65.7–96.3]	51.6 [17.0–86.3]
Soft drusen, 63–125 μm				
Right eye	30.1 [4.1–56.1]	85.2 [60.2–90.2]	69.9 [43.9–95.9]	71.9 [36.1–100]
Left eye	29.0 [3.7–54.3]	98.3 [85.2–100]	70.9 [65.7–96.3]	51.6 [17.0–86.3]
Soft drusen, > 125 μm				
Right eye	65.6 [26.4–100]	100 [95.7–100]	34.4 [0–73.6]	51.6 [17.0–86.3]
Left eye	58.8 [23.0–94.6]	42.1 [5.4–77.0]	42.1 [5.4–77.0]	51.6 [17.0–86.3]

h² = environmental effect, h² = broad-sense heritability.

Estimates are adjusted for age and sex.

* Nominal genetic and environment correlation (inter-eye correlation).

heritabilities of the phenotypes ≥20 small hard macular drusen per eye, ≥20 small hard extramacular drusen per eye, and large drusen >125 μm. Heritability was primarily explained by additive genetic effects (numerous genes exerting influence or modifying the phenotype). Intermediate drusen, of diameter 63–125 μm, were not significantly heritable, an outcome that may be attributable to this phenotype being a short-lived transient stage of AMD, where even a minor desynchronization within a pair of twins can result in phenotype discordance.

Comparison with a 40% overlapping cohort of twins with a mean age of 34.8 years (Munch et al. 2007) showed a decline in heritability, from 99% for ≥20 small hard drusen per eye to 68%–78% for ≥20 small hard drusen per eye in the macula at a mean age of 58.6 years. The latter is close to the age of the cohorts studied by Meyers (1994) and Hammond et al. (2002) and in the age range near the age where early age-related AMD appears. The decrease is not in absolute heritability, but in genetic effects relative to environmental effects and may thus be affected by non-shared environmental factors (e.g. smoking, dietary habits, lifestyle, and physical activity) that have a cumulative character that grows in proportion to the effect of genetics. This assumption fits the observation that the risk of AMD is strongly related to smoking, fatty foods and a high body mass index, and the role of behaviour and choice in the exposure to such risk factors (Smith et al. 2001; Seddon et al. 2003a, 2003b).

Most people older than 40 years have small hard drusen, but having 5 or more small hard drusen in the macula or a very large area with small hard drusen in the macula is associated with an elevated risk of developing AMD and large drusen (Bressler et al. 1995; van Leeuwen et al. 2003; Klein et al. 2015). Light and electron microscopy of drusen has shown that small hard and soft drusen share many characteristics, but small hard macular drusen are less homogeneous than peripheral small hard drusen and soft drusen (Sarks et al. 1999; Rudolf et al. 2008).

The study of heritability in AMD was pioneered by Meyers et al., who examined 111 twin pairs and found 100% concordance for AMD in 25 MZ twin pairs, compared to 42% in 11 DZ twin pairs (Meyers 1994). The only prior twin study was a case report by Melrose et al. (1985). In a later study of 506 female twin pairs, Hammond et al. (2002) found a concordance for
AMD of 59% and a total heritability of 45%. For the phenotype ≥20 small hard drusen per eye, a heritability of 81% was found. In a study of 391 male twin pairs, who were older and had a higher AMD prevalence, Seddon et al. (2005) observed a heritability for intermediate and late AMD of 67%. In this context, it is worth considering whether small variations in the time of transition between stages and in the time spent in a given stage give rise to large variations in estimated heritability. Seddon et al. studied the phenotype ≥15 small hard but did not report a specific heritability for this phenotype. There are other small twin studies that have found a high concordance rate for late AMD, but they did not include the phenotype numerous small hard drusen (Klein et al. 1994; Gottfredsdottir et al. 1999).

Whereas AMD has been shown repeatedly to be associated with specific risk alleles, notably in CFH (complement factor H) and ARMS2 (age-related maculopathy susceptibility 2) (Edwards et al. 2005; Haines et al. 2005; Klein et al. 2005; Rivera et al. 2005; Fisher et al. 2016), no such associations have been found for small hard drusen (Munch et al. 2010), despite CFH and ARMS2 having been specifically looked for (Klein et al. 2015; Munch et al. 2016). Assuming that this was not because of lack of statistical power, one may infer that the aforementioned genes are not involved in the hypothetical precursor stage of AMD where small hard drusen appear, but in the later stage of manifest AMD (Holliday et al. 2013; Klein et al. 2015). Likewise, the non-genetic risk factors for early AMD may also differ from those of late AMD. In this context, one must consider the possibility that small hard drusen may be precursors of specific subtypes of larger drusen. Of particular interest, besides soft drusen, is the most recently added phenotype numerous small hard drusen among DZ twins, which may lead to overestimation of the heritability of a given phenotype. Furthermore, dietary habits and physical activity, two potential pivotal risk factors, were not systematically recorded.

In conclusion, ≥20 small hard macular and extramacular drusen, and large drusen were found to be highly heritable. Our results confirm that potential AMD precursors are genetically influenced and strengthen the need for genome-wide associations studies to identify likely associations with currently known AMD-related risk genotypes.

References

Bressler NM, Bressler SB, West SK, Fine SL & Taylor HR (1989): The grading and prevalence of macular degeneration in Chesapeake Bay watermen. Arch Ophthalmol 107: 847–852.

Bressler NM, Munoz B, Maguire MG, Vitale SE, Schein OD, Taylor HR & West SK (1995): Five-year incidence and disappearance of drusen and retinal pigment epithelial abnormalities. Waterman study Arch Ophthalmol 113: 301–308.

Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C & Farrer LA (2005): Complement factor H polymorphism and age-related macular degeneration. Science 308: 421.

Fisher DE, Klein BE, Wong TY, Rotter JI, Li X, Shrager S & Cotch MF (2016): Incidence of age-related macular degeneration in a multi-ethnic United States population: the multi-ethnic study of atherosclerosis. Ophthalmology 123: 1297–1308.

Fukuda Y, Sakurada Y, Yoneyama S, Kikushima W, Sugiyama A, Matsubara M & Iijima H (2019): Clinical and genetic characteristics of pachydrusen in patients with exudative age-related macular degeneration. Sci Rep 9: 11906.

Gottfredsdottir MS, Sverrisson T, Musch DC & Stefansson E (1999): Age related macular degeneration in monozygotic twins and their spouses in Iceland. Acta Ophthalmol Scand 77: 422–425.

Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P & Pericak-Vance MA (2005): Complement factor H variant increases the risk of age-related macular degeneration. Science (New York, N.Y.) 308: 419–421.

Hammond CJ, Webster AR, Snieder H, Bird AC, Gilbert CE & Spector TD (2002): Genetic influence on early age-related maculopathy: a twin study. Ophthalmology 109: 736–740.

Holloway EG, Smith AV, Cornes BK, Buitendijk GH, Jensen RA, Sin X & Wang JJ (2013): Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis. PLoS One 8: e53830.

Holst KK, Schieke TH & Hjelmborg JB (2016): The liability threshold model for censored twin data. Comput Stat Data Anal 93: 324–335.

Klein ML, Maudlin WM & Stoumbos VD (1994): Heredity and age-related macular degeneration. Observations in monozygotic twins. Arch Ophthalmol 112: 932–937.

Klein R, Myers CE, Lee KE, Giangoni RE, Sivakumaran TA, Iyengar SK & Klein BE (2015): Small drusen and age-related macular degeneration: the beaver dam eye study. J Clin Med 4: 424–440.

Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C & Hoh J (2005): Complement factor H polymorphism in age-related macular degeneration. Science 308: 385–389.

In conclusion, ≥20 small hard macular and extramacular drusen, and large drusen were found to be highly heritable. Our results confirm that potential AMD precursors are genetically influenced and strengthen the need for genome-wide associations studies to identify likely associations with currently known AMD-related risk genotypes.
Melrose MA, Magargal LE & Lucier AC (1985): Identical twins with subretinal neo-vascularization complicating senile macular degeneration. Ophthalmic Surg 16: 648–651.

Meyers SM (1994): A twin study on age-related macular degeneration. Trans Am Ophthalmol Soc 92: 775–843.

Munch IC, Ek J, Kessel L, Sander B, Almind GW, Brøndum-Nielsen K & Larsen M (2010): Small, hard macular drusen and peripheral drusen: associations with AMD genotypes in the Inter99 Eye Study. Invest Ophthalmol Vis Sci 51: 2317–2321.

Munch IC, Sander B, Kessel L, Hougarda JL, Taarnhøj NC, Sorensen TI & Larsen M (2007): Heredity of small hard drusen in twins aged 20–46 years. Invest Ophthalmol Vis Sci 48: 833–838.

Munch IC, Toft U, Linneberg A & Larsen M (2016): Precursors of age-related macular degeneration: associations with vitamin A and interaction with CFHY402H in the Inter99 Eye Study. Acta Ophthalmol 94: 657–662.

Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T & Weber BH (2005): Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14: 3227–3236.

Rudolf M, Clark ME, Chimento MF, Li CM, Medeiros NE & Curcio CA (2008): Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest Ophthalmol Vis Sci 49: 4538–4549.

Sarks SH, Arnold JJ, Killingsworth MC & Sarks JP (1999): Early drusen formation in the normal and aging eye and their relation to age related maculopathy: a clinicopathological study. Br J Ophthalmol 83: 358–368.

Scheike TH, Holst KK & Hjelmborg JB (2014): Estimating twin concordance for bivariate competing risks twin data. Stat Med 33: 1193–1204.

Schousboe K, Visscher PM, Henriksen JE, Hopper JL, Sorensen TI & Kyvik KO (2003): Twin study of genetic and environmental influences on glucose tolerance and indices of insulin sensitivity and secretion. Diabetologia 46: 1276–1283.

Seddon JM, Cote J, Davis N & Rosner B (2003a): Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch Ophthalmol 121: 785–792.

Seddon JM, Cote J, Page WF, Aggen SH & Neale MC (2005): The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol 123: 321–327.

Takahashi A, Hosoda Y, Miyake M, Miyata M, Oishi A, Tamura H & Tsujikawa A (2021): Clinical and genetic characteristics of pachydrusen in eyes with central serous chorioretinopathy and general Japanese individuals. Ophthalmology Retina 5: 910–917.

van Leeuwen R, Klaver CC, Vingerling JR, Hofman A & de Jong PT (2003): The risk and natural course of age-related maculopathy: follow-up at 6 1/2 years in the Rotterdam study. Arch Ophthalmol 121: 519–526.

Wang JJ, Foran S, Smith W & Mitchell P (2003): Risk of age-related macular degeneration in eyes with macular drusen or hyperpigmentation: the Blue Mountains Eye Study cohort. Arch Ophthalmol 121: 658–663.

Zhang X & Sivaprasad S (2021): Drusen and pachydrusen: the definition, pathogenesis, and clinical significance. Eye (Lond) 35: 121–133.

Received on November 25th, 2021. Accepted on March 12th, 2022.

Correspondence:
Mohamed Belmouhand, MD
Department of Ophthalmology
Rigshospitalet
Valdemar Hansens Vej 13
DK-2600 Glostrup
Denmark
Tel: +45 3863 2381
Fax: +45 3863 4669
Email: mohamed.belmouhand@regionh.dk

The study was supported by the Rigshospitalet (grant E-23334-02), P. Carl Petersens Fond (grant 19102), Helsedon (grant 19-B-0063), Aase og Ejnar Danielsens Fond (grant 18-10-0698), Beckett Fonden (grant 19-2-3490), Einar Willumsen Fonden (grant 500028) and Horizon 2020, the European Union’s Framework Programme for Research and Innovation, under grant agreement no. 780989 (MERLIN). JB was supported by the VELUX Foundation (grant 00028973). SPR was supported by the OPUS Foundation and the Alfred-Vogt Foundation. The funding organizations had no role in the design or conduct of this research.