Supplementary information

An ultrahot Neptune in the Neptune desert

In the format provided by the authors and unedited
Supplementary Table 1: Stellar properties of LTT 9779

Alternative Names	TIC 183985250	TESS
	HIP 117883	HIPPARCOS
	2MASS J23544020-3737408	2MASS
	TYC 8015-1162-1	TYCHO

Catalogue Data

RA (J2000)	23h54m40.60s	TESS
DEC (J2000)	-37d37m42.18s	TESS
pm^RA (mas yr^-1)	247.615±0.076	GAIA
pm^DEC (mas yr^-1)	-69.801±0.062	GAIA
π (mas)	12.403±0.049	GAIA

Photometric Data

T (mag)	9.10±0.02	TESS
B (mag)	10.55±0.04	TYCHO
V (mag)	9.76±0.03	TYCHO
G (mag)	9.6001±0.0003	GAIA
J (mag)	8.45±0.02	2MASS
K (mag)	8.15±0.02	2MASS
Ks (mag)	8.02±0.03	2MASS
WISE1 (mag)	7.94±0.02	WISE
WISE2 (mag)	8.02±0.02	WISE
WISE3 (mag)	8.00±0.02	WISE

Spectroscopic, Photometric and Derived Properties

T_\text{eff} (K)	5445±84	SPECIES
log g (dex)	4.43±0.31	SPECIES
[Fe/H] (dex)	+0.25±0.08	SPECIES
v sin i (km s^-1)	1.06±0.37	SPECIES
Parameter	Species	ZASPE	SPC	Ariadne	SPECIES + MIST	YY + GAIA	ARIADNE	GAIA + this work	ARIADNE	SPECIES + MIST	YY + GAIA	ARIADNE	SPECIES + MIST	YY + GAIA	ARIADNE	SPECIES + MIST	YY + GAIA	ARIADNE	SPECIES + MIST	YY + GAIA	ARIADNE	SPECIES + MIST	YY + GAIA	ARIADNE			
v_{mac} (km s$^{-1}$)	1.98±0.29																										
T_{eff} (K)	5496±80																										
log g (dex)	4.51±0.01																										
[Fe/H] (dex)	+0.24±0.05																										
v sin i (km s$^{-1}$)	1.7±0.5																										
T_{eff} (K)	5499±50																										
log g (dex)	4.47±0.10																										
[m/H] (dex)	+0.31±0.08																										
v sin i (km s$^{-1}$)	2.2±0.5																										
T_{eff} (K)	5443$^{+14}_{-13}$																										
log g (dex)	4.35$^{+0.16}_{-0.12}$																										
[Fe/H] (dex)	+0.27±0.03																										
M_* (M$_\odot$)	1.03$^{+0.03}_{-0.04}$																										
M_* (M$_\odot$)	1.00$^{+0.02}_{-0.03}$																										
M_* (M$_\odot$)	0.77$^{+0.29}_{-0.21}$																										
R_* (M$_\odot$)	0.95±0.01																										
R_* (M$_\odot$)	0.92±0.01																										
R_* (M$_\odot$)	0.949±0.006																										
L_* (M$_\odot$)	0.68±0.04																										
L_* (M$_\odot$)	0.71±0.01																										
MV (mag)	5.30±0.07																										
Age (Gyr)	2.1$^{+2.2}_{-1.4}$																										
Age (Gyr)	1.9$^{+1.7}_{-1.2}$																										
ρ_* (g cm$^{-3}$)	1.81$^{+0.06}_{-0.07}$																										
Spectral Type	G7V																										
$<S_{HARPS}>$	0.148±0.008																										
$<logR'_{HK,HARPS}>$	-5.10±0.04																										
$P_{\text{rot,vsini}}$ (days) & 45 & This work \\

Supplementary Table 2: Radial velocities of LTT 9779

JD - 2450000	RV (m s$^{-1}$)	Uncertainty (m s$^{-1}$)	Instrument
8429.51804	-10.59	0.86	HARPS
8430.54022	-16.91	0.74	HARPS
8430.59553	-9.41	0.68	HARPS
8430.67911	1.99	0.79	HARPS
8430.76201	13.40	1.21	HARPS
8431.51068	6.71	0.61	HARPS
8431.64346	16.09	0.83	HARPS
8431.69130	14.98	0.87	HARPS
8431.73217	8.41	0.55	HARPS
8432.50941	12.77	0.73	HARPS
8432.65689	-7.23	0.94	HARPS
8432.69804	-13.45	1.06	HARPS
8432.72573	-18.32	4.02	HARPS
8464.53817	-25.17	1.02	HARPS
8464.64153	-16.81	1.11	HARPS
8464.68616	-10.08	1.27	HARPS
8465.53024	0.00	0.85	HARPS
8465.59314	10.82	0.84	HARPS
8465.64411	12.09	0.86	HARPS
8465.68104	15.61	1.12	HARPS
8466.52022	14.89	1.03	HARPS
8466.58232	8.12	0.90	HARPS
8466.63157	2.49	1.09	HARPS
Time	Value 1	Value 2	Instrument
--------	---------	---------	------------
8466.66865	-2.85	1.10	HARPS
8481.53213	14.93	0.94	HARPS
8481.57805	12.72	0.84	HARPS
8482.53643	-8.75	0.74	HARPS
8482.57255	-11.89	0.82	HARPS
8482.60140	-16.09	0.90	HARPS
8483.52686	-24.82	0.80	HARPS
8483.59338	-20.68	1.12	HARPS
8483.61557	-18.95	0.93	HARPS
8438.56440	-14.80	4.50	CORALIE
8438.62857	-7.40	4.60	CORALIE
8438.72084	10.40	5.00	CORALIE
8439.56828	35.30	5.60	CORALIE
8439.64481	3.80	4.80	CORALIE
8439.70910	-11.70	5.20	CORALIE
8440.56824	4.90	4.70	CORALIE
8440.64498	-13.20	4.70	CORALIE
8440.70927	-27.70	5.00	CORALIE
8441.57027	-16.30	4.20	CORALIE
8441.66132	-17.50	4.60	CORALIE
8441.74898	1.00	4.50	CORALIE
8442.56932	-0.60	4.50	CORALIE
8442.64202	11.60	4.90	CORALIE
8442.70651	0.60	5.00	CORALIE
8443.57400	20.10	5.00	CORALIE
8443.64711	-0.70	4.70	CORALIE
8443.71686	5.60	4.80	CORALIE