Random integral currents.

M. Zyskin

Abstract

For nice functions, invariant means over integral currents (certain generalized surfaces), can be uniquely defined. That may have applications to define Nambu-like string theory.

1 Currents (generalized surfaces).

Let K be a compact set in \mathbb{R}^n. Let Ω^m be a space of C^∞ differential forms on K, with C^∞ norm. Space of m currents T_m is the space of continuous linear functionals on Ω^m. Polyhedral chains are particular cases of currents, linear functionals on forms they define are integrals over polyhedral chains.

For $\omega \in \Omega^m$,

$$M(\omega) = \sup_{x \in K} \| \omega(x) \|,$$

where for $\xi \in \Lambda^m$, $\| \xi \| = \sup_{|\gamma| \leq 1} (\xi \cdot \gamma)$, γ a simple m-vector.

Let $M(T)$ be the dual of $M(\omega)$,

$$M(T) = \sup_{\omega \in \Omega^m, M(\omega) \leq 1} (T(\omega))$$

Space of normal currents N is a linear space of currents with $M(T) + M(\partial T) < \infty$.

Rectifiable currents R are currents which may be approximated in M semi-norm by integer Lipschitz chains, images under Lipschitz maps of polyhedral chains with integer coefficients.

Integral currents I are normal currents such that T and ∂T are rectifiable currents. Integral currents form an abelian group. We equip integral currents with flat semi-norm $\| \|_F$

$$\| T \|_F = \inf (M(R) + M(S)), \quad T = R + \partial S, \quad R, S \text{ are rectifiable}$$

It is clear that $\| T \|_F \leq M(T)$.
Addition-invariant measure on integral currents I_m

Let $f(X), X \in I_m$ be a bounded uniformly continuous function on space of integral $m-$currents I_m with flat semi-norm. Let

$$O_f = \{ f(X + Y) | Y \in I_m \}$$

be its I_m orbit.

Lemma 1. A sequence in O_f has a subsequence convergent point-wise in I_m to a bounded continuous function on I_m.

Let $B_m \Lambda = \{ T \in I_m | M(T) + M(\partial T) \leq \Lambda \}$. $B_m \Lambda$ is compact in the flat semi-norm $\| \cdot \|_F$. Using diagonal argument, it follows that a sequence in O_f has a point-wise convergent subsequence on I_m. Indeed, let $n_1(k)$ be a subsequence uniformly convergent on $B_m \Lambda$, $n_2(k)$ a subsequence of n_1 uniformly convergent on $B_{2\Lambda}$, ... $n_p(k)$ a subsequence of $n_{p-1}(k)$ uniformly convergent on $B_{p\Lambda}$. Let $\hat{k} = n_k(k)$. Then $f_{\hat{k}}(X) \to h(X)$ point-wise, $X \in I_m$.

Lemma 2.
1) The orbit O_f is relatively compact in the weak topology.
2) Weakly closed convex hull of O_f is weakly compact.

A space dual to the space of continuous bounded functions on a normal topological space S is the space B of regular Borel measures on the field of closed sets, and with norm being total variation. I_m is a space with a semi-norm $\| \cdot \|_F$, and it is normal. A sequence in O_f has a point-wise convergent subsequence $f_{\hat{k}}(X)$, and $f_{\hat{k}}(X)$ is uniformly bounded. By dominated convergence theorem, for any measure $\mu \in B$, $\int f_{\hat{k}}(X)d\mu$ is convergent. Therefore the orbit O_f is relatively sequentially compact in the weak topology.

Theorem 1. Let $f(X), X \in I_m$ be a bounded uniformly continuous function on space of integral $m-$currents I_m with flat semi-norm. There is unique mean of $f(X)$ over $X \in I_m$, invariant under addition in I_m. That is, there is uniquely defined constant $<f>$, $<f(\cdot + Y)> = <f(\cdot)>$, such that for any $\epsilon > 0$ there exists $\{ \lambda_i \in \mathbb{R}, Y_i \in I_m | \lambda_i \geq 0, \sum_{i=1}^{N} \lambda_i = 1 \}$, such that

$$\sup_X \left| \sum_{i=1}^{N} \lambda_i f(X + Y_i) - <f> \right| < \epsilon$$

I_m is an abelian group and acts on continuous bounded functions by shifts; such action is distal. From Markov-Kakutani theorem [4], [5], there is a unique fixed point of the action of I_m on weakly compact convex hull of the orbit O_f.

2
An easy modification of the above argument can be used to compute mean over currents with prescribed boundary, by averaging over currents with zero boundary:

Theorem 2. Let \(I^0_m \) be space of integral \(m \)-currents \(T \) with zero boundary, \(\partial T = 0 \). Let \(f(X), X \in I^0_m \) be a bounded uniformly continuous function. There is unique mean of \(f(X) \) over currents in \(I^0_m \), invariant under addition in \(I^0_m \).

Motivated by applications, we give an example of a family of functions for which an invariant mean can be defined:

Proposition 1.

Let \(k \) be a \(C^\infty \) 2-form on \(\mathbb{R}^n \) with compact support, and with \(\max \{ ||k||, ||dk|| \} < \infty \). Let

\[
g_k(X) = \exp \left(i \int k|X\right) \exp \left(i||X||_F\right), X \in I_2. \tag{3} \]

(where \(\int k|X \) is an integral of a 2-form \(k \) over integral current \(X \in I_2 \)). Let \(G_k \) be the \(I_2 \) orbit of \(g_k(X) \),

\[
G_k = \{ g_k(X + Y)|X, Y \in I_2 \}. \tag{4} \]

Functions in \(G_k \) are uniformly bounded, and equicontinuous, therefore the \(I_2 \) mean \(<g_k> \) can be uniquely defined.

Indeed, \(|g_k| \leq 1 \), and

\[
|g_k(X + Y) - g_k(\bar{X} + Y)| = \\
\left| \exp \left(i \int k|(X + Y)\right) \exp \left(i||X + Y||_F\right) \left(1 - \exp \left(i \int k|(X - \bar{X})\right) \exp \left(i||\bar{X} + Y||_F - i||X + Y||_F\right) \right) \right| \\
\leq | \int k|\left(X - \bar{X} \right) | + ||X - \bar{X}||_F \\
\leq (1 + \max \{ ||k||, ||dk|| \}) ||X - \bar{X}||_F
\]

(we used that \(|1 - e^{i\alpha}| \leq |\alpha|, \alpha \in \mathbb{R} \).

References

[1] H. Federer. Geometric measure theory, Springer-Verlag 1969.

[2] J. Glimm, A. Jaffe. Quantum Physics, a Functional Integral Point of View, Springer-Verlag 1982, 1987.

[3] D. Weingarten. Pathological lattice field theory for interacting strings, Phys. Letters 90 B,280-284, 1980.
[4] N. Dunford, J. Schwartz. Linear operators. Part 1. Interscience publishers, 1964.

[5] Ryll-Nardzewski, C. Generalized random ergodic theorems and weakly almost periodic functions. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10, 271-275, 1962.