Novel Association Between FOXO3 rs2232365 Polymorphism and Late-Onset Preeclampsia: A Case-Control Candidate Genetic Study

Feng Xue Pan
Jilin University First Hospital

Jie Ben Wei
Yinfeng Gene Technology Co Ltd

Hong Wang
Jilin University First Hospital

Yu Ling Ma
Jilin University First Hospital

Li Shao Du
Jilin University First Hospital

Ying Chen (yingchen@jlu.edu.cn)
Jilin University First Hospital
https://orcid.org/0000-0001-5833-2380

Research article

Keywords: Preeclampsia, Single nucleotide polymorphism, rs2232365, BMI, lipid metabolism

DOI: https://doi.org/10.21203/rs.3.rs-72235/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

Read Full License
Abstract

Background

Both genetic susceptibility and dysregulated lipid metabolism are important susceptibilities to preeclampsia. In the study, we devote to investigate the associations of FOXO3 and TLR7 genetic polymorphisms with preeclampsia in a Chinese population.

Methods

This case-control study involved 335 Han Chinese pregnant women, including 177 pregnant women with preeclampsia and 158 healthy controls. The preeclampsia group was further sub-grouped into early-onset preeclampsia (EOPE, n=70) and late-onset preeclampsia (LOPE, n=107). Three single nucleotide polymorphisms (SNPs), including FOXO3 rs2232365, rs3761548, and TLR7 rs3853839 were genotyped by multiplex PCR for targeted next-generation sequencing. The χ^2 test and multiple interaction effect analyses were performed to determine the association of three SNPs with serum lipid levels and thyroid function in women with preeclampsia.

Results

Our study showed that SNP rs2232365 C allele frequencies were significantly associated with the occurrence of LOPE (P=0.022, odds ratio = 1.72 (95 CI: 1.23-2.41)). The genotype (CC vs TT+CT) distribution of rs2232365 revealed a significant association with LOPE (P=0.004, odds ratio = 3.497 (95 CI: 1.498-8.164)). No significant difference was found in the genotype and allele frequencies of rs3761548 and rs3853839 between controls and cases (P>0.05). Moreover, the genotype CC of rs2232365 was significantly correlated with increased TG/HDL levels in the LOPE group (all p=0.014).

Conclusions

The polymorphisms of rs2232365 are associated with the risk of LOPE and may modulate TG/HDL levels in pregnant women with LOPE.

1. Introduction

Preeclampsia (PE) is a pregnancy-specific syndrome and associated with significant maternal and fetal morbidity and mortality. [1] PE averagely affects 6.7% of pregnant women globally and 10.6-11.5% individuals in low-and medium-income countries. [2] The pathogenesis of PE is multifactorial, with acknowledged contributions by genetic susceptibility, inflammatory stimuli, metabolic syndrome, oxidative stress, placental, and vascular dysfunction. [3] According to epidemiological studies, there was a high prevalence of metabolic syndrome in women with PE, [4] otherwise autoimmune diseases and dysregulated lipid metabolism showed a tight association. [5] One of these most important hypotheses of PE is that maternal adequate immunological response is necessary to the existence of the fetus in pregnancy. [6]

Forkhead/winged helix transcription factor FOXP3 is the key transcription factor for Regulatory T cells (Tregs) differentiation and function. [7] Tregs, as a specialized subset of immune cells, plays an important role in the establishment and maintenance of immune tolerance. [8] FOXP3 is responsible for the differentiation of Tregs to a suppressive phenotype and stabilizing their lineage. [9] There are several conserved noncoding sequences, designated as CNS 0-3, in the genomic region of Foxp3 locus. CNS 0-3 holds different signaling pathways respectively and deficiency of Foxp3 will impair the suppressive activity of Tregs. [10] A meta-analysis study showed that forkhead box protein 3 polymorphisms (rs2232365, rs3761548) were associated with the outcome of immune-related pregnancy complications. Immunological incompatibility between mother and fetus is frequently observed in preeclampsia and genetic factors related to the immunological pathway in preeclampsia have been discovered. [11] In Asian, rs3761548 polymorphism was significantly associated with multiple sclerosis, an immune-related central nervous disease. [12] In the Chinese Han population, rs2232365 and rs3761548 polymorphisms confer an important susceptibility to unexplained recurrent spontaneous abortion by altering Foxp3 function and/or its expression. [13]

Toll-like receptors TLRs is critical innate immune activators, which can affect Treg-dependent immune regulation by reducing the number of Tregs. [14] TLRs, as innate immunity sensors, play important roles in the activation of innate and adaptive immune responses. [15] Polymorphisms of TLR7 rs3853839 are associated with the susceptibility to Chikungunya virus (CHIKV) infection in Indian people and the severity of EV71 in Chinese boys. [16]

Although the precise mechanism of preeclampsia is not understood, the disease is thought to occur as soon as the placenta was implanted. [19] Delay in childbearing, obesity, metabolic disorders, and genetic risk are all involved in this development of preeclampsia. [20] This study aimed to investigate whether rs3853839, rs2232365, and rs3761548 located in the X-chromosome are associated with preeclampsia in a Chinese case-control cohort, with a specific focus on the biochemical metabolic parameters.

2. Materials And Methods

2.1 Study subjects

The study included 335 individuals who provided informed written consent, including 177 pregnant women with preeclampsia and 158 healthy controls. The patient group was further classified into two subsets: 70 patients with early-onset preeclampsia (EOPE, defined as preeclampsia diagnosed within 34+0 weeks of gestation) and 107 patients with late-onset preeclampsia (LOPE, defined as preeclampsia diagnosed after 34+0 weeks of gestation) following the latest ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. [21] This research project was performed in accordance with the Declaration of Helsinki, and ethical approval was obtained from the local Ethics Committee of the First Hospital of Jilin University, Changchun, China (Permission number: 2018-401). All individuals were from the Han population in Northeast China and the same region. Thereby, they were considered as ethnically homogeneous. Figure 1 shows a chart of the trial design.
Inclusion and exclusion criterion

Exclusion criteria included patients with diabetes mellitus, chronic hypertension, diseases of the blood system, cardiovascular diseases, renal disease, and cerebrovascular accidents. Pregnant women exhibiting elevated blood pressure without proteinuria were also excluded from the study. All the controls were confirmed with normal blood pressure and without any other chronic diseases.

Patient and Public Involvement

This case-control study was conducted between May 2018 and January 2020 in the department of Obstetrics of the First Hospital of Jilin University in China. Using logistic regression, our study involved 15 explanatory variables, and since the minimum observations required are multiplied by 10 to yield significant results, our studied sample size was determined as above 300 cases. The design of this study was not directly involved in the diagnosis and treatment of patients, and the intervention is not considered to affect the patient's therapy. Patients in hospital were recruited voluntarily when they received medical history collection. The meaningful results for therapeutic effect were disseminated to study participants, such as lipid metabolism and thyroid function, and uncertain genetic information were reserved. In the study, no additional burden were added to those patients themselves for the funding supported the Jilin Province Science Development Plan.

2.2 Measures

Gestational age was calculated by the last menstrual period and the first ultrasound in the first trimester. Systolic blood pressure (SBP), diastolic blood pressure (DBP), height, and weight of each patient were measured before treatment according to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.[22] Venous blood samples (3 mL) from every participant were obtained from the subjects after a 12-hour fast. The circulation levels of thyrotropin, thyroid-stimulating hormone(TSH), triiodothyronine (T3), thyroxine(T4), triglyceride(TG), total cholesterol(TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured by an automatic biochemical analyzer (SEKISUI medical technology Ltd., Tokyo, Japan).

2.3 DNA extraction and genotyping

Genomic DNA was extracted from 3 mL EDTC-anticoagulated blood samples using a Gene JET Whole Blood Genomic DNA Purification kit (Thermo Scientific Co. Ltd.). SNPs were analyzed through multiplex PCR for targeted next-generation sequencing.

2.4 Statistical analysis

All statistical analyses were performed using Microsoft Excel (2007) and IBM SPSS Statistics for Windows (version 18.0, IBM Corporation., Armonk, NY, USA). Genotype numbers were determined by manually counting and allele frequency was determined from the genotype frequencies. The calculation for Hardy-Weinberg equilibrium was performed and genotype distribution was determined. (available at http://ihg.gsf.de/cgi-bin/hw/hwa1.pl). Normality distributed continuous variables were presented as mean ± standard deviation (SD) for parametric variables, and continuous variables with non-normal distribution are represented by the median (Q1-Q3). Non-normal distribution data were compared between the studied groups using U-test. The chi-square test was used to assess the associations of genotypes and alleles with preeclampsia. Haplotype analysis was predicted from genotype data by the computer program Haploview. Multiple logistic regression analysis was also performed to identify independent risks of preeclampsia and linear regression analysis was used for the risk of high TG/HDL in LOPE. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated, and p values < 0.05 were considered significant usually.

3. Results

3.1. Clinical Characteristics

The general characteristics of all participants, including controls, EOPE, and LOPE, were presented in table 1. None of them was missing and all blood samples were tested successfully. There were significant differences in multiple parameters between the PE group and the control group, but the differences were not consistent. Pregnant women with EOPE had higher levels of weight, BMI, TSH, TG, and TG/HDL, but the level of FT3 and height than controls. In the LOPE subgroup, weight, BMI, TSH, FT3, TG, TG/HDL were different from those of the control group (P<0.05 for all).

3.2 Genotype and allele frequencies of cases and controls

Genotype frequencies of cases and controls are shown in Table 2. Hardy-Weinberg equilibrium was tested in the control group, and the result was consistent with the expectation. The dominant (GG vs CC+CG) distribution of rs3853839 revealed a significant association with LOPE (P=0.020). There was no significant difference of other genotypic frequencies between women with PE or EOPE and controls. Although the variants of rs2232365 showed no significant association with LOPE risk (P=0.034, P=0.025 for sub-group significant difference), which was also brought into multiple logistic regressions to analyze the association between LOPE and different parameters.

There was a significant association between the C allele of rs2232365 and LOPE risk in Chinese Han pregnant women (P=0.021, odds ratio = 1.194(0.95 CI:1.021-1.397)). Otherwise, similar associations were not observed in EOPE groups. We did not find any relationships between alleles of SNPs rs3853839 and rs3761548 and PE.

3.3 Association between genotype variants and clinical and biochemical parameters
Table 3 depicted the laboratory parameters according to the significant SNPs in LOPE individuals. LOPE patients with CC genotypes of rs2232365 showed significantly higher levels of HDL and lower TG/HDL compared to TT+CT genotypes. Furthermore, significantly lower levels of T3 were found in the GG genotype of rs3853839 between LOPE patients as compared to the controls (P=0.005); while the parameter showed no association in the analysis of linear regression. However, no significant differences were observed between laboratory factors and SNPs rs3761548 in LOPE subjects (P>0.05 for all comparisons). In EOPE, no significant associations were observed between genotype and biochemical parameters, which was not shown here.

4. Discussion
In this study, we tested the correlation of 3 specific X-chromosome-related SNPs with the susceptibility of PE and identified FOXP3 rs2232365 as a novel risk factor of LOPE. Pregnant women with CC genotype had higher TG/HDL in LOPE, which was the first reported and disclosed implicit relationship. We observed the significant associations between LOPE and rs2232365 (CC), SBMI, TSH, FT4, TG, and TG/HDL by multiple logistic regressions and TG/HDL ratio was higher in LOPE patients with CC genotype. These findings indicate that patients with rs2232365 CC genotype is at an increased risk of LOPE by elevating TG/HDL ratio, which is not observed neither in the EOPE nor the control group. Otherwise, allele C of rs2232365 is also a risk factor to LOPE: p=0.021, OR(95%CI): 1.194/1.021-1.397).

Although multiple studies have investigated mechanisms of PE, and they remain unclear. The balance of immune plays an important role in pregnancy from placentation to delivery. Maternal T lymphocytes play an important role in immune response and keep a transient state of tolerance for paternal alloantigens. [23] It has been demonstrated that Treg cell participates in maintaining homeostasis and preventing maternal immune self-reactivity during normal pregnancy. [24] Loss-of-function mutations of the FOXP3 gene can conduce to the functional deficiency of Treg cells in animal and human models, [25] which can further inhibit natural killer cells, macrophages, and dendritic cells to affecting the maternal immune tolerance. [26] SNP rs2232365 located in a putative binding site for the transcription factor GATA-3 and its polymorphism was likely to contribute to variant(s) in the quantity or quality of FOXP3. [26] FOXP3 gene and pregnancy have been extensively studied and proved to be associated with recurrent pregnancy loss in Egyptian [26] and preterm premature rupture in the Zaporizhzhia population. [27] A meta-analysis about the association between the SNP rs2232365 and immune-related pregnancy complications revealed that allele G and GG or AG genotype were high-risk factors for adverse pregnancy outcomes. [28] In the present study, we identified CC genotype or C allele was associated with a higher risk of LOPE in Northeast women in China and affected the metabolism of lipids.

Immune status is generally correlated with heredity, BMI, lipid metabolism, and nutrition. The level of FOXP3 was markedly elevated in patients with PE who hold abnormal maternal lipids, hyperglycemia, and high BMI. [29] HDL is a vasodilator that interacted with the vascular endothelium and its concentration generally increases throughout the whole pregnancy. [30] HDL carries redundant potentially harmful cholesterol to the liver to excrete reverse cholesterol and protect the maternal vascular endothelium. [31] In the present study, significantly higher levels of serum TG were identified in patients with PE, consistent with previous studies. [29] Therefore, TG/HDL as the risk factor for both EOPE and LOPE, can conveniently reflect the balance between dangerous and protective lipids in patients. We find FOXP3 rs2232365 a novel function of affecting the TG/HDL level in Chinese pregnant women.

FOXP3 rs3761548 was also reported as a risk factor to immune-related pregnancy complications [28] and an important contributor for the progression of PE in Iranian women. [32] While no associations between SNP rs3761548 and preeclampsia were found either in Iranian women [33] or the Turkish population. [34] We thought that the conflicting observations were conducd mainly by ethnic and geographic differences. Mutation of the genotype of rs3761548 mostly affects the expression and activity of FOXP3 protein, which was further involved in many autoimmune diseases including rheumatoid arthritis, [35] allergic rhinitis, [36] and autoimmune thyroid disease. [37] Our study showed that FOXP3 rs3761548 was not related to be reated to preeclampsia in Northeast women of China based on the present date.

Another TLR7 rs3853839 significantly associated with LOPE was found by x^2 test, which was also related to the levels of FT3. But, the difference did not appear after a logistical regression analysis based on present data. Toll-like receptors (TLRs) which are a family of pattern-recognition receptors promote the activation of autoreactive B cell and elicit innate/adaptive immune responses. [38] Female patients with rs3853839 CC genotype might present a pronounced defensive effect against persistent HCV infection [39] and periodontitis [40]. Otherwise, allele C and SNP rs3853839 are associated with severe hand, foot, and mouth disease (HFMD). [41] In Chinese women, there was no association between rs3853839 and preeclampsia, and the relationship of FOXP3 gene rs3853839 and thyroid function need further research involving larger samples.

BMI, Thyroid dysfunctions, and dyslipidemia were enrolled in the control-study, and there were significant associations between those parameters and preeclampsia, including EOPE and LOPE subgroups. Pregnancy women who exposed to dyslipidemia are more prone to developing gestational diabetes, preeclampsia, preterm birth, or cardiovascular diseases (CVD). [42] Thyroid dysfunction, including hypothyroidism and thyrotoxicosis, is associated with preeclampsia, preterm delivery, placental abruptions, and fetal neurologic development. [44] Pre-pregnancy BMI had been identified to be independent risk factors for both EOPE and LOPE, and BMI might be one of the ways to diagnose preeclampsia. [45] Our results are similar to those of previous studies.

Changes in thyroid function profiles in women with preeclampsia were controversial in different studies reported. The levels of T3 and T4 hormones are higher in Sudanese patients with preeclampsia, [46] but not in Iranians. [47] In our study, we got a consistent and stable result: women with preeclampsia had higher levels of TSH and lower FT3 and FT4 hormones. The levels of FT3 and FT4 are associated with the tendency of preeclampsia, although the information regarding thyroid function in preeclampsia was scanty. [48]
Preeclampsia, known as a complex disease, involves multiple risk factors including genetic susceptibility, immunity, hypothyroidism, and environmental factors. To date, no single risk factor as the absolute predictive indicator has been identified. We think that the onset of the disease is based on the cumulative contributions of many risk factors.

China is a multi-nationality county with different genetic information, and Chinese Northern Han populations were our targeted populations. In the present study, we identified different risk factors for EOPE and LOPE through the method of traditional logistic regression. Different risk factors are shown in the study, which means there are different pathogenesis in EOPE and LOPE. We think it is a considerable method to predict the risk of preeclampsia based on the cumulative effect of different risk factors. In the further, we will continue to explore the risk factor of preeclampsia to build a model of preeclampsia.

The major limitation of the present study should be noted. That the sample size is relatively small, which will be expanded in both controls, and PE groups with more environmental and genetic factors for optimization and validation of the predictive model.

5. Conclusions

A novel function was found that pregnant women with CC genotype of FOXO3 rs2232365 had higher TG/HDL in LOPE. C allele and CC genotype of SNP rs2232365 are associated with the risk of LOPE in Chinese northeast women.

Abbreviations

Abbreviation	Description
SNP	Single nucleotide polymorphism
FOXO3	Forkhead/winged helix transcription factor
TLR7	Toll-like receptors
Tregs	Regulatory T cells
PE	Preeclampsia
EOPE	Early-onset preeclampsia
LOPE	Late-onset preeclampsia
BMI	Body mass index
HFMD	Mouth Disease
CVD	Cardiovascular diseases
TSH	Thyroid-stimulating hormone
T3	Triiodothyronine
T4	ThyroxineTC Total cholesterol
TG	Triglycerides
HDL	High-density lipoprotein-cholesterol
LDL-C	Low-density lipoprotein-cholesterol
ROC	Receiver Operating Characteristics
CNS	Central nervous system

Declarations

Ethics approval and consent to participate

This study was approved by the local Ethics Committee of the First Hospital of Jilin University, Changchun, China (Permission number: 2018-401) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication

All authors have read and approved the content, and agree to submit it for consideration for publication in your journal.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Competing Interests

The authors declare that they have no competing interests.

Funding

Funding for this work was provided by the Jilin Province Science Development Plan (grant numbers:20190304125YY).

Authors’ contributions

XP & BW: data curation, formal analysis, Writing- Original draft preparation. HW: data curation. LM: data curation. ZD: SNP analyzed through multiplex PCR. YC: conceptualization and project administration, writing - review, project administration. All authors have read and approved the content, and agree to submit it for consideration for publication in your journal.

Acknowledgements

The authors involved are indebted to all participants and patients involved for their support and cooperation. Acknowledge funding supported by the Jilin Province Science Development Plan (grant numbers:20190304125YY).

References

1. Griffin M, Heazell AEP, Chappell LC, et al. The ability of late pregnancy maternal tests to predict adverse pregnancy outcomes associated with placental dysfunction (specifically fetal growth restriction and pre-eclampsia): a protocol for a systematic review and meta-analysis of prognostic accuracy studies. Systematic reviews 2020;9(1):78 doi: 10.1186/s13643-020-01334-5[published Online First: Epub Date].

2. Macedo TCC, Montagna E, Trevisan CM, et al. Prevalence of preeclampsia and eclampsia in adolescent pregnancy: A systematic review and meta-analysis of 291,247 adolescents worldwide since 1969. European journal of obstetrics, gynecology, and reproductive biology 2020;248:177-86 doi: 10.1016/j.ejogrb.2020.03.043[published Online First: Epub Date].

3. Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: Long-term consequences for mother and child. American journal of physiology Renal physiology 2020 doi: 10.1152/ajprenal.00071.2020[published Online First: Epub Date].

4. Journal of clinical hypertension (Greenwich, Conn) doi: 10.1111/jch.13161[published Online First: Epub Date].

5. Ryu H, Kim J, Kim D, et al. Cellular and Molecular Links between Autoimmunity and Lipid Metabolism. Molecules and cells 2019;42(11):747-54 doi: 10.14348/molcells.2019.0196[published Online First: Epub Date].

6. Rambaldi MP, Weiner E, Mecacci F, et al. Immunomodulation and preeclampsia. Best practice & research Clinical obstetrics & gynaecology 2019;60:87-96 doi: 10.1016/j.bpobgyn.2019.06.005[published Online First: Epub Date].

7. Mitchell J, Kelly J, Kvedaraite E, et al. Foxp3(+) Tregs from Langerhans cell histiocytosis lesions co-express CD56 and have a definitively regulatory capacity. Clinical immunology (Orlando, Fla) 2020;108418 doi: 10.1016/j.clim.2020.108418[published Online First: Epub Date].

8. Zhao H, Liao X, Kang Y. Tregs: Where We Are and What Comes Next? Frontiers in immunology 2017;8:1578 doi: 10.3389/fimmu.2017.01578[published Online First: Epub Date].

9. Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007;445(7129):771-5 doi: 10.1038/nature05543[published Online First: Epub Date].

10. Fontenot JD, Gavin MA, Rudensky AY. Pillars Article: Foxp3 Programs the Development and Function of CD4+CD25+ Regulatory T Cells. Nat. Immunol. 2003; 4: 330-336. Journal of immunology (Baltimore, Md : 1950) 2017;198(3):986-92

11. Lokki AI, Heikkinen-Eloranta JK, Laivuori H. The Immunogenetic Conundrum of Preeclampsia. Frontiers in immunology 2018;9:2630 doi: 10.3389/fimmu.2018.02630[published Online First: Epub Date].

12. Zhang Y, Zhang J, Liu H, et al. Meta-analysis of FOXP3 gene rs3761548 and rs2232365 polymorphism and multiple sclerosis susceptibility. Medicine 2019;98(38):e17224 doi: 10.1097/md.0000000000017224[published Online First: Epub Date].

13. Wu Z, You Z, Zhang C, et al. Association between functional polymorphisms of Foxp3 gene and the occurrence of unexplained recurrent spontaneous abortion in a Chinese Han population. Clinical & developmental immunology 2012;2012:896458 doi: 10.1155/2012/896458[published Online First: Epub Date].

14. Moresco EM, LaVine D, Beutler B. Toll-like receptors. Current biology : CB 2011;21(13):R488-93 doi: 10.1016/j.cub.2011.05.039[published Online First: Epub Date].

15. Hackl D, Loschko J, Spanwasser T, et al. Activation of dendritic cells via TLR7 reduces Foxp3 expression and suppressive function in induced Tregs. European journal of immunology 2011;41(5):1334-43 doi: 10.1002/eji.201041014[published Online First: Epub Date].

16. Xiao W, Liu Z, Lin J, et al. Association of Toll-like receptor 7 and 8 gene polymorphisms with Graves’ disease in Chinese Cantonese population. Tissue antigens 2015;85(1):29-34 doi: 10.1111/tan.12479[published Online First: Epub Date].

17. Dutta SK, Tripathi A. Association of toll-like receptor polymorphisms with susceptibility to chikungunya virus infection. Virology 2017;511:207-13 doi: 10.1016/j.virol.2017.08.009[published Online First: Epub Date].

18. Li Y, Zhai S, Li M, et al. [Polymorphisms of TLR7 rs3853839 and rs179010 are associated with susceptibility to hand, foot and mouth disease caused by enterovirus 71 in male children]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 2017;33(7):953-58
19. Jafri S,Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities. American journal of physiology Regulatory, integrative and comparative physiology 2017;313(6):R693-R705 doi: 10.1152/ajpregu.00259.2017[published Online First: Epub Date].

20. Williams PJ, Searle RF, Robson SC, et al. Decidual leucocyte populations in early to late gestation normal human pregnancy. Journal of reproductive immunology 2009;82(1):24-31 doi: 10.1016/j.jri.2009.08.001[published Online First: Epub Date].

21. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstetrics and gynecology 2019;133(1):e1-e25 doi: 10.1097/aog.0000000000003018[published Online First: Epub Date].

22. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension (Dallas, Texas : 1979) 2003;42(6):1206-52 doi: 10.1161/01.HYP.107251.49515.c2[published Online First: Epub Date].

23. Rasainen J, Girsen A, Lu X, et al. Comprehensive maternal serum proteomic profiles of preclinical and clinical preeclampsias. Journal of proteome research 2010;9(8):4274-81 doi: 10.1021/pr100198m[published Online First: Epub Date].

24. Özkaz ZS, Simsek M, İhan F, et al. Plasma IL-17, IL-35, interferon-γ, SOCS3 and TGF-β levels in pregnant women with preeclampsia, and their relation with severity of disease. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 2014;27(15):1513-7 doi: 10.3109/14767058.2013.861415[published Online First: Epub Date].

25. Georgiev P, Charbonnier LM, Chatila TA. Regulatory T Cells: the Many Faces of Foxp3. 2019;39(7):623-40 doi: 10.1007/s10875-019-00684-7[published Online First: Epub Date].

26. Zidan HE, Abdul-Maksoud RS, Mowafy HE, et al. The association of IL-33 and Foxp3 gene polymorphisms with recurrent pregnancy loss in Egyptian women. Cytokine 2018;108:115-19 doi: 10.1016/j.cytoc.2018.03.025[published Online First: Epub Date].

27. Lyubomirskaya ES, Kamshyyni AM, Krut YY, et al. SNPs and transcriptional activity of genes of innate and adaptive immunity at the maternal-fetal interface in woman with preterm labour, associated with preterm premature rupture of membranes. Wiadomosci lekarskie (Warsaw, Poland : 1960) 2020;73(1):25-30

28. Hosseini Teshnizi S, Ali-Hassanzadeh M, Gharesi-Fard B. Influence of forkhead box protein 3 polymorphisms (rs2232365, rs3761548) with the outcome of pregnancy: A meta-analysis. 2019 doi: 10.1002/jc.28328[published Online First: Epub Date].

29. Cao W, Wang X, Chen T, et al. Maternal lipids, BMI and IL-17/IL-35 imbalance in concurrent gestational diabetes mellitus and preeclampsia. Experimental and therapeutic medicine 2018;16(1):427-35 doi: 10.3892/etm.2018.6144[published Online First: Epub Date].

30. Barrett HL, Dekker Nitert M, McIntyre HD, et al. Normalizing metabolism in diabetic pregnancy: is it time to target lipids? Diabetes care 2014;37(5):1484-93 doi: 10.2337/dc13-1934[published Online First: Epub Date].

31. Kingwell BA, Chapman MJ. Future of high-density lipoprotein infusion therapies: potential for clinical management of vascular disease. Circulation 2013;128(10):1112-21 doi: 10.1161/circulationaha.113.002683[published Online First: Epub Date].

32. Gholami M, Mirfakhraraie R, Pirjani R, et al. Association study of FOXP3 gene and the risk of 0020 pre-eclampsia. Clinical and experimental hypertension (New York, NY : 1993) 2018;40(7):613-16 doi: 10.1080/10641963.2017.141150[published Online First: Epub Date].

33. Norouzian M, Rahimzadeh M, Rajaee M, et al. FoxP3 gene promoter polymorphism affects susceptibility to preeclampsia. Human immunology 2016;77(12):1232-38 doi: 10.1016/j.humimm.2016.09.001[published Online First: Epub Date].

34. Cekin N, Pinarbasi E, Esra Bildirici A. The role of two common FOXP3 gene promoter polymorphisms in preeclampsia in a Turkish population: a case-control study. 2020;40(4):495-99 doi: 10.1080/01443615.2019.1634017[published Online First: Epub Date].

35. Cekin N, Pinarbasi E. FOXP3 rs3761548 polymorphism is associated with knee osteoarthritis in a Turkish population. 2018;21(10):1779-86 doi: 10.1111/1756-185x.13337[published Online First: Epub Date].

36. Fodor E, Garaci E, Polyánka H, et al. The rs3761548 polymorphism of FOXP3 is a protective genetic factor against allergic rhinitis in the Hungarian female population. Human immunology 2011;72(10):926-9 doi: 10.1016/j.humimm.2011.06.011[published Online First: Epub Date].

37. Fathima N, Name P. Association and gene-gene interaction analyses for polymorphic variants in CTLA-4 and FOXP3 genes: role in susceptibility to autoimmune thyroid disease. 2019;94(3):591-604 doi: 10.1007/s12020-019-01859-3[published Online First: Epub Date].

38. Wang T, Marken J, Chen J, et al. High TLR7 Expression Drives the Expansion of CD19(+)CD24(hi)CD38(hi) Transitional B Cells and Autoantibody Production in SLE Patients. Frontiers in immunology 2019;10:1243 doi: 10.3389/fimmu.2019.01243[published Online First: Epub Date].

39. Yue M, Feng L, Tang SD, et al. Sex-specific association between X-linked Toll-like receptor 7 with the outcomes of hepatitis C virus infection. Gene 2014;548(2):244-50 doi: 10.1016/j.gene.2014.07.040[published Online First: Epub Date].

40. Leite FRM, Enevold C, Bendtzen K, et al. Pattern recognition receptor polymorphisms in early periodontitis. Journal of periodontology 2019;90(6):647-54 doi: 10.1002/jper.18-0547[published Online First: Epub Date].

41. Zhang Y, Suo X, Zhang Y. Association of IL-13, S100B, and TLR-7 Gene Polymorphisms with Enterovirus 71 Infection in Hand, Foot, and Mouth Disease in China. Genetic testing and molecular biomarkers 2019;23(3):188-96 doi: 10.1089/gtmb.2018.0239[published Online First: Epub Date].

42. Jin WY, Lin SL, Hou RL, et al. Associations between maternal lipid profile and pregnancy complications and perinatal outcomes: a population-based study from China. BMC pregnancy and childbirth 2016;16:60 doi: 10.1186/s12884-016-0852-9[published Online First: Epub Date].

43. Lekva T, Bollerslev J, Norwitz ER, et al. Aortic Stiffness and Cardiovascular Risk in Women with Previous Gestational Diabetes Mellitus. PLoS one 2015;10(8):e0136892 doi: 10.1371/journal.pone.0136892[published Online First: Epub Date].

44. Alemu A, Terefe B, Abebe M, et al. Thyroid hormone dysfunction during pregnancy: A review. International journal of reproductive biomedicine (Yazd, Iran) 2016;14(11):677-86
45. Robillard PY, Dekker G, Scioscia M, et al. Increased BMI has a linear association with late-onset preeclampsia: A population-based study. PloS one 2019;14(10):e0223888 doi: 10.1371/journal.pone.0223888[published Online First: Epub Date].

46. Elhaj ET, Adam I, Alim A, et al. Thyroid Function/Antibodies in Sudanese Patients with Preeclampsia. Frontiers in endocrinology 2015;6:87 doi: 10.3389/fendo.2015.00087[published Online First: Epub Date].

47. Khadem N, Ayatollahi H, Vahid Roodsari F, et al. Comparison of serum levels of Tri-iodothyronine (T3), Thyroxine (T4), and Thyroid-Stimulating Hormone (TSH) in preeclampsia and normal pregnancy. Iranian journal of reproductive medicine 2012;10(1):47-52

48. Kharb S, Sardana D, Nanda S. Correlation of thyroid functions with severity and outcome of pregnancy. Annals of medical and health sciences research 2013;3(1):43-6 doi: 10.4103/2141-9248.109478[published Online First: Epub Date].

Tables

Table 1: Demographic and clinical features of the study subjects

Variables	Controls\(\text{N}=158\)	PE (n=177)	EOPE (n=70)	LOPE (n=107)
Maternal age (years)	30.00(28.00-33.00)	31.00(27.50-35.00)	33.00(28.00-37.00)	30.00(27.00-33.50)
P Value	0.087	0.001*	0.972	
Gestation at delivery	39.43(38.86-39.86)	35.71(32.86-37.79)	31.86(28.00-37.00)	37.00(35.9314-38.43)
(weeks)	<0.001*			
Height	162.50(159.50-165.00)	162.00(158.00-165.00)	160.00(158.00-164.00)	162.50(159.50-165.00)
Weight	71.00(66.00-80.00)	76.25(70.00-87.25)	75.00(70.00-82.50)	78.00(70.00-89.50)
BMI	27.39(24.95-29.61)	29.22(26.84-32.91)	28.76(26.71-32.23)	29.30(26.89-33.10)
TSH(Ulu/mL)	2.04(1.51-2.89)	3.69(2.27-5.14)	3.66(2.21-4.87)	3.69(2.35-5.31)
FT3	4.75(4.19-5.28)	3.92(3.41-4.45)	3.72(3.31-4.21)	4.01(3.45-4.53)
FT4	10.87(9.92-13.04)	11.82(10.37-13.45)	11.32(10.37-13.45)	12.02(10.59-13.54)
TC (mmol/L)	6.10(5.44-6.96)	6.08(5.21-7.09)	6.14(5.27-7.48)	5.98(5.07-7.00)
TG (mmol/L)	3.05(2.46-3.97)	3.57(2.84-4.56)	3.48(2.65-4.43)	3.57(2.84-4.54)
HDL-C (mmol/L)	1.86(1.65-2.10)	1.71(1.44-2.05)	1.76(1.49-2.11)	1.68(1.39-1.98)
LDL-C (mmol/L)	2.91(2.43-3.49)	3.06(2.56-3.75)	3.10(2.62-3.87)	2.92(2.40-3.70)
TG/HDL-C	1.74(1.32-2.25)	2.15(1.54-2.81)	2.08(1.52-2.65)	2.18(1.57-2.90)
PE represents Preeclampsia, EOPE represents early-onset preeclampsia, LOPE represents late-onset preeclampsia, BMI: body mass index, TSH: thyroid-stimulating hormone, FT3: free triiodothyronine, FT4: free thyroxine, TC: total cholesterol, TG: triglyceride, HDL-C: high-density lipoprotein, LDL-C: low-density lipoprotein. TG/HDL: triglyceride/ high-density lipoprotein				

All the continuous variables were presented as median and the 25th-75th percentile for non-normal distribution tested. P values were analysis using U-test.

* PE vs controls, ** EOPE vs controls, *** LOPE vs controls, * P < 0.05 versus controls.

Table 2: Genotype and allele frequencies between study groups.
Table 3: Association between genotype variants and clinical and biochemical parameters in LOPE groups

SNP ID	Model (n)	Controls	PE	EOSE	EOPES	LOPE					
	N=158 (100%)		N=177(%)	x²	p	N=70(%)	x²	p	N=107(%)	x²	p
rs2232365	CC (25)	21(13.29%)	35(19.77%)	4.016	0.134	10:14.29%	0.799	0.671	25/23.36%	5.682	0.058
	CT	80(50.63%)	93(52.54%)								
	TT	57(36.08%)	49:27.68%								
Genotype	TT+CT/CC	137(86.71%)	142:80.23%	2.520	0.112	60:85.71%	0.041	0.840	82:76.63%	4.513	0.034
	CC	21(13.29%)	35:19.77%								
Allele	C	122(38.61%)	163(47.25%)	0.052		59(42.14%)	0.477		104(48.60%)	0.021*	
	T	194(61.39%)	191:55.36%								
rs3853839	CC	10(6.33%)	15:8.47%	3.731	0.155	7:10.00%	0.949	0.622	8:7.48%	4.690	0.039
	CG	78(49.37%)	69:38.98%								
	GG	70(44.30%)	93:52.54%								
Genotype	CC+CG	88(55.70%)	84:47.46%	2.268	0.132	40:57.14%	0.041	0.839	44:41.12%	5.412	0.020*
	GG	70(44.30%)	93:52.54%								
Allele	C	98(31.01%)	99:28.70%	0.747		47(33.57%)	0.293		52(24.30%)	0.092	
	G	218(68.99%)	255:73.91%								
rs3761548	GG	88(55.70%)	87:49.15%	1.489	0.475	33:47.14%	1.534	0.464	54:50.47%	0.713	0.700
	GT	63(39.87%)	82:46.33%								
	TT	7(4.33%)	8:4.52%								
Genotype	TT+TG	88(55.70%)	87:49.15%	1.433	0.231	33:47.14%	1.425	0.233	54:50.47%	0.701	0.401
	GG	70(44.30%)	90:50.85%								
Allele	G	239(75.63%)	256:74.20%	0.329		100(71.43%)	0.343		156(72.90%)	0.478	
	T	77(24.37%)	98(28.41%)								

PE represents Preeclampsia, EOSE represents early-onset preeclampsia, LOPE represents late-onset preeclampsia. * PE vs controls, † EOSE vs controls, ‡ LOPE vs controls, * P < 0.05; † P < 0.025 for sub-group.

LOPE represents late-onset preeclampsia, BMI: body mass index, TSH: thyroid-stimulating hormone, FT3: free triiodothyronine, FT4: free thyroxine, TC: total cholesterol, TG: triglyceride, HDL-C: high-density lipoprotein.
LDL-C: low-density lipoprotein. TG/HDL: triglyceride/ high-density lipoprotein. *P < 0.05 versus controls.

Table 4: Odds ratios (95% confidence intervals) for the association between PE and different parameters.

Parameters	BMI	TG/HDL	TSH	FT3	TSH(uIU)	BMI	TSH	FT4	TG/HDL
PE	1.189	1.767	1.937	3.497	1.247	4.097	1.222	0.578	4.079
EOPE	1.252	1.795	1.964	0.283	1.247	4.097	1.222	0.578	4.079
LOPE	1.247	1.795	1.964	0.283	1.247	4.097	1.222	0.578	4.079
BMI	1.108	1.300	1.595	0.178	1.122	1.504	1.070	0.361	1.936
TG/HDL	1.274	2.403	2.352	0.451	2.872	2.566	1.396	0.925	8.597

* P<0.05 was considered statistically significant.

Figures

Figure 1
Flow chart showing the steps in participant analysis.

Figure 2

The interactional associations of SNPs and biochemical parameters in LOPE.