Dark matter, dark radiation and Higgs phenomenology in the hidden sector DM models

Pyungwon Ko
School of Physics, KIAS, Seoul 130-722, Korea

Abstract

I present a class of hidden sector dark matter (DM) models with local dark gauge symmetries, where DM is stable due to unbroken local dark gauge symmetry, or due topology, or it is long-lived because of some accidental symmetries, and the particle contents and their dynamics are completely fixed by local gauge symmetries. In these models, one has two types of natural force mediators, dark gauge bosons and dark Higgs boson, which would affect DM and Higgs phenomenology in important ways. I discuss various phenomenological issues including the \sim GeV scale γ-ray excess from the galactic center (GC), (in)direct detection signatures, dark radiation, Higgs phenomenology and Higgs inflation assisted by dark Higgs.

Keywords: dark matter, dark gauge symmetry, dark radiation, Higgs boson

1. Introduction

The standard model (SM) has been tested from atomic scale up to $\sim O(1)$ TeV scale by many experiments, and has been extremely successful. However, there are some observational facts which call for new physics beyond the SM (BSM): (i) baryon number asymmetry of the universe (BAU), (ii) neutrino masses and mixings, (iii) nonbaryonic dark matter (DM) and (iv) inflation in the early universe.

In this talk, I will concentrate on the DM, assuming that BAU and neutrino masses and mixings are accommodated by the standard seesaw mechanism by introducing heavy right-handed (RH) neutrinos and that the SM Higgs field drives a successful inflation. This talk is based on a series of my works with collaborators [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

For the inflation, I assume that the Higgs inflation is a kind of minimal setup, and I show that the dark Higgs from hidden sectors can modify the standard Higgs inflation in such a way that a larger tensor-to-scalar ratio $r \sim O(0.01 \sim 0.1)$ independent of precise values of the top quark and the SM Higgs boson mass [13].

2. Basic assumptions for DM models

2.1. Relevant questions for DM

So far the existence of DM was confirmed only through the astrophysical and cosmological observations where only gravity play an important role. described by quantum field theory (QFT). We have to seek for the answers to the following questions for better understanding of DM: (i) how many species of DM are there in the universe? (ii) what are their masses and spins? (iii) are they absolutely stable or very long-lived? (iv) how do they interact among themselves and with the SM particles? (v) where do their masses come from? In order to answer (some of) these questions, we have to observe its signals from colliders and/or various (in)direct detection experiments.

The most unique and important property of DM (at least, to my mind) is that DM particle should be absolutely stable or long-lived enough, similarly to the case of electron and proton in the SM. Let us recall that electron stability is accounted for by electric charge conservation (which is exact), and this implies that there should be massless photon, associated with un-
broken $U(1)_{\text{em}}$ gauge symmetry. On the other hand, the longevity of proton is ascribed to the baryon number which is an accidental global symmetry of the SM, broken only by dim-6 operators. We would like to have DM models where DM is absolutely stable or long-lived enough by similar reasons to electron and proton. And this special property of DM has to be realized in the fundamental Lagrangian for DM in a proper way in QFT, similarly to QED and the SM. Local dark gauge symmetry will play important roles, by guaranteeing the stability/longevity of DM, as well as determine dynamics in a complete and mathematically consistent manner.

2.2. Hidden sector DM and local dark gauge symmetry

Any new physics models at the electroweak scale are strongly constrained by electroweak precision test and CKM phenomenology, if new particles feel SM gauge interactions. The simplest way to evade these two strong constraints is to assume a weak scale hidden sector which is made of particles neutral under the SM gauge interaction. A hidden sector particle could be a good candidate for nonbaryonic dark matter of the universe, if it is absolutely stable or long lived. Note that hidden sectors are very generic in many BSMs, including SUSY models. The hidden sector matters may have their own gauge interactions, which we call dark gauge interaction associated with local dark gauge symmetry G_{hidden}. They can be easily thermalized if there are suitable messengers between the SM and the hidden sectors. We also assume all the singlet operators such as Higgs portal or $U(1)$ gauge kinetic mixing play the role of messengers.

Another motivation for local dark gauge symmetry G_{hidden} in the hidden sector is to stabilize the weak scale DM particle by dark charge conservation laws, in the same way electron is absolutely stable because it is the lightest charged particle and electric charge is absolutely conserved.

Finally note that all the observed particles in Nature feels gauge interactions in addition to gravity. Therefore it looks very natural to assume that dark matter of the universe (at least some of the DM species) also feels some (new) gauge force, in addition to gravity.

2.3. EFT vs. Renormalizable theories

Effective field theory (EFT) approaches are often adopted for DM physics. For example, let us consider a singlet fermion DM model in EFT:

$$\mathcal{L}_{\text{fermionDM}} = \overline{\psi} \left(i \gamma \cdot \beta \gamma_5 - m_\psi \right) \psi - \frac{\lambda_{\text{Higgs}}}{\Lambda} H^\dagger H \overline{\psi} \psi \quad (1)$$

with ad hoc discrete Z_2 symmetry under $\psi \rightarrow -\psi$. However this could be erroneous for a number of reasons.

Let us consider one of its UV completions [4]:

$$\mathcal{L}_{\text{DM}} = \frac{1}{2} \left(\partial_\mu S \partial^\mu S - m_S^2 S^2 \right) - \mu_S^2 S - \frac{\lambda_S}{3} S^3$$

$$- \frac{\lambda_{\text{Higgs}}}{2} S H^\dagger H - \frac{\lambda_{\text{Higgs}}}{4} S^2 H^\dagger H. \quad (2)$$

We have introduced a singlet scalar S in order to make the model (1) renormalizable. There will be two scalar bosons H_1 and H_2 (mixtures of H and S) in our model, and the additional scalar S makes the DM phenomenology completely different from those from Eq. (1). This is also true for vector DM models [6][12].

For example, the direct detection experiments such as XENON100 and LUX exclude thermal DM within the EFT model (1), but this is not true within the UV completion (2), because of generic cancellation mechanism in the direct detection due to a generic destructive interference between H_1 and H_2 contributions for fermion or vector DM [4][6]. Also the direct detection cross section in the UV completion is related with that in the EFT by [14]

$$\sigma_{\text{SI}}^{\text{ren}} = \sigma_{\text{SI}}^{\text{EFT}} \left(1 - \frac{m_1^2}{m_1^2} \right)^2 \cos^4 \alpha, \quad (3)$$

which includes the cancellation mechanism and corrects the results reported by ATLAS and CMS. Here m_1 is the mass of the singlet-like scalar boson and m_{123} is the Higgs mass found at the LHC. Note that the EFT result is recovered when $\alpha \rightarrow 0$ and $m_1 \rightarrow \infty$.

2.4. Dark Higgs mechanism for the vector DM

The Higgs portal VDM model is usually described by

$$\mathcal{L}_{\text{VMD}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} m_V^2 V_\mu V^\mu$$

$$- \frac{\lambda_{\text{Higgs}}}{4} V_\mu V^{\mu} |H|^2 - \frac{\lambda_V}{4!} V^4 \quad (4)$$

with an ad hoc Z_2 symmetry, $V_\mu \rightarrow -V_\mu$. Although all the operators are either dim-2 or dim-4, this Lagrangian breaks gauge invariance, and is neither unitary nor renormalizable.

One can consider the renormalizable Higgs portal vector DM model by introducing a dark Higgs Φ that generate nonzero mass for VDM by the usual Higgs
3. Stable DM with unbroken dark gauge symmetries: case with local Z_3 scalar DM

Let us assume the dark sector has a local $U(1)_X$ gauge symmetry spontaneously broken into local Z_3 á la Krauss and Wilczek. This can be achieved with two complex scalar fields ϕ_X and X in the dark sector with the $U(1)_X$ charges equal to 1 and 1/3, respectively [10][15]. Here ϕ_X is the dark Higgs that breaks $U(1)_X$ into its Z_3 subgroup by nonzero VEV. Then one can write down renormalizable Lagrangian for the SM fields and the dark sector fields, \tilde{X}_μ, ϕ_X and X:

$$
\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} \tilde{X}_\mu \tilde{X}^{\mu\nu} - \frac{1}{2} \sin \theta \tilde{X}_\mu \tilde{E}^{\mu\nu} + D_\mu \phi_X^\dagger D^\mu \phi_X + D_\mu X^\dagger D^\mu X - V(H, X, \phi_X)
+ \mu_1^2 |H|^2 + \lambda_1 |H|^4 - \mu_2^2 |\phi_X|^2 + \lambda_2 |\phi_X|^4
+ \mu_3^2 |X|^2 + \lambda_3 |X|^4 + \lambda_4 |\phi_X|^2 |X|^2 + \lambda_5 |\phi_X|^4 |X|^2 + \lambda_6 |X|^6 + \lambda_7 |X|^2 |\phi_X|^4 + H.c.
$$

where the covariant derivative associated with the gauge field ϕ_X is defined as $D_\mu \equiv \partial_\mu - i g X \gamma_\mu X$.

We are interested in the phase with the following vacuum expectation values for the scalar fields in the model:

$$
\langle H \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v_h \end{array} \right), \quad \langle \phi_X \rangle = \frac{v_\phi}{\sqrt{2}}, \quad \langle X \rangle = 0,
$$

where only H and ϕ_X have non-zero vacuum expectation values(vev). This vacuum will break electroweak symmetry into $U(1)_{em}$, and $U(1)_X$ symmetry into local Z_3, which stabilizes the scalar field X and make it DM. The discrete gauge Z_3 symmetry stabilizes the scalar DM even if we consider higher dimensional nonrenormalizable operators which are invariant under $U(1)_X$. This is in sharp contrast with the global Z_3 model considered in Ref. [17]. Also the particle contents in local and global Z_3 models are different so that the resulting DM phenomenology are distinctly different from each other, as summarized in Table 1.

In Fig. [2] I show the Feynman diagrams relevant for thermal relic density of local Z_3 DM X. If we worked in global Z_3 DM model instead, we would have diagrams only with H_1 in (1),(b) and (c). For local Z_3 model, there are two more new fields, dark Higgs H_2 and dark photon Z, which can make the phenomenology of local Z_3 case completely different from that of global Z_3 case. In fact, this can be observed immediately in Fig. [3] where the open circles are allowed points in global Z_3 model, whereas the triangles are allowed in local Z_3 case. The main difference is that in global Z_3 case, the same Higgs
Figure 2: Feynman diagrams for dark matter semi-annihilation. Only (a), (b), and (c) with H_1 as final state appear in the global Z_3 model, while all diagrams could contribute in local Z_3 model.

![Feynman Diagrams](image)

Figure 3: Illustration of discrimination between global and local Z_3 symmetry. We have chosen $M_{H_1} = 20\text{GeV}$, $M_{H_2} = 1\text{TeV}$ and $\lambda_3 < 0.02$ as an example. Colors in the scattered triangles and circles indicate the relative contribution of semi-annihilation, r defined in Eq. (9). The curved blue band, together with the circles, gives correct relic density of X in the global Z_3 model. And the colored triangles appears only in the local Z_3 model.

![Illustration](image)

The table shows the comparison between the global and the local Z_3 scalar dark matter models. Here X is a complex scalar DM, H is the observed SM-Higgs like boson, and ϕ is the dark Higgs from $U(1)_X$ breaking into Z_3 subgroup.

Local Z_3 dark matter is also another interesting case, and easily compared with the usual global Z_3 scalar DM model. It would be have similar aspects as in local Z_3 model, and the detailed discussions can be found in Ref. [16]. Also one can consider unbroken $U(1)_X$ dark gauge symmetry with scalar DM and the RH neutrinos decay both to the SM and the dark sector particles. See Ref. [7] for more details.

4. Stable DM due to topology: Hidden sector monopole and vector DM, dark radiation

In field theory there could be a topologically stable classical configuration. The most renowned example is the ’t Hooft-Polyakov monopole. This object in fact puts a serious problem in cosmology, and was one of the motivations for inflationary paradigm. In Ref. [9], we revived this noble idea by putting the monopole in the hidden sector and introducing the Higgs portal interaction to connect the hidden and the visible sectors. Let us consider $SO(3)_X$-triplet real scalar field Φ with the following Lagrangian implemented to the SM:

$$L_{\text{new}} = \frac{1}{4} V_{\mu \nu} V^{\mu \nu} + \frac{1}{2} D_{\mu} \Phi \cdot D^{\mu} \Phi - \frac{\lambda_6}{4} \left(\Phi \cdot \Phi - v_\phi^2 \right)^2 - \frac{\lambda_{6H}}{2} \left(\Phi \cdot \Phi - v_\phi^2 \right) \left(H^+ H - \frac{v_H}{2} \right).$$

The Higgs portal interaction is described by the λ_{6H} term, which is a new addition to the renounced ’t Hooft-Polyakov monopole model.

After the spontaneous symmetry breaking of $SO(3)_X$ into $SO(2)_X (\cong U(1)_X)$ by non-zero vacuum expectation value (VEV) of Φ with $\langle \Phi(x) \rangle = (0, 0, v_\phi)$, hidden sector particles are composed of massive dark vector.
bosons V_μ^\pm with masses $m_V = g_X v q$ (which are stable due to the unbroken subgroup $SU(2)_\chi \approx U(1)_\chi$), massless dark photon $\gamma_{h,\mu} \equiv V_\mu^0$, topologically stable heavy (anti-)monopole with mass $m_M \sim m_V/\alpha_X$, and massive real scalar ϕ (dark Higgs boson) mixed with the SM Higgs boson through the Higgs portal term.

Note that there is no kinetic mixing between γ_h and the SM $U(1)_Y$-gauge boson unlike the $U(1)_\chi$-only case, due to the non Abelian nature of the hidden gauge symmetry. Also the VDM is stable even in the presence of nonrenormalizable operators due to the unbroken subgroup $U(1)_\chi$. This would not have been the case, if the $SU(2)_\chi$ were completely broken by a complex $SU(2)_\chi$ doublet, where the stability of massive VDM is not protected by $SU(2)_\chi$ gauge symmetry. Non-renormalizable interactions would make the VDM decay in general [18]. Of course, it would be fine as long as the lifetime of the decaying VDM is long enough so that it can still be a good CDM candidate. In the VDM model with a hidden sector monopole, the unbroken $U(1)_\chi$ subgroup not only protects the stability of VDM V_μ^\pm, but also contributes to the dark radiation at the level of ~ 0.1. We refer the readers to the original paper on more details of phenomenology of this model [9] (see also Ref. [19]).

5. EWSB and CDM from Strongly Interacting Hidden Sector: long-lived DM due to accidental symmetries

Another nicey of models with hidden sector is that one can construct a model where all the mass scales of the SM particles and DM are generated by dimensional transmutation in the hidden sector [1][2][3]. Basically the light hadron masses such as proton or ρ meson come from confinement, which is derived from massless QCD through dimensional transmutation. One can ask if all the masses of observed particles can be generated by quantum mechanics, in a similar manner with the proton mass in the massless QCD. The most common way to address this question is to employ the Coleman-Weinberg mechanism for radiative symmetry breaking. Here I present a new model based on nonperturbative dynamics like technicolor or chiral symmetry breaking in ordinary QCD.

Let us consider a scale-invariant extension of the SM with a strongly interacting hidden sector:

$$\mathcal{L} = \mathcal{L}_{SM,kin} + \mathcal{L}_{SM,Yukawa} - \frac{\lambda_h}{4} (H^\dagger H)^2$$

$$- \frac{\lambda_{\chi}}{2} S^2 H^\dagger H - \frac{\lambda_{\chi}}{4} S^4 - \frac{1}{4} G_{\mu\nu}^a G^{\mu\nu}_a$$

$$+ \sum_{k=1,...,f} Q_k [iD \cdot \gamma - \lambda_k S] Q_k. \quad (11)$$

Here Q_k and $G_{\mu\nu}^a$ are the hidden sector quarks and gluons, and and the index k is the flavor index in the hidden sector QCD.

Note that the real singlet scalar S plays the role of messenger connecting the SM Higgs sector and the hidden sector quarks.

In this model, dimensional transmutation in the hidden sector will generate the hidden QCD scale and chiral symmetry breaking with developing nonzero $\langle Q_k | Q_k \rangle$. Once a nonzero $\langle Q_k | Q_k \rangle$ is developed, the $\lambda_{\chi} S^4$ term generate the linear potential for the real singlet S, leading to nonzero $\langle S \rangle$. This in turn generates the hidden sector current quark masses through λ_k terms as well as the EWSB through $\lambda_k S^4$ term. Then the Nambu-Goldstone boson π_k will get nonzero masses, and becomes a good CDM candidate. Also hidden sector baryons B_k will be formed, the lightest of which would be long lived due to the accidental h-baryon conservation. See Ref. [3] for more details.

6. Light mediators and Self-interacting DM

Another nice feature of the dark matter models with local dark gauge symmetry is that the model includes new degrees of freedom, dark gauge bosons and dark Higgs boson(s), that can play the role of force mediators from the beginning because of the rigid structure of the underlying gauge theories. In fact one can utilize the light mediators in order to explain the GeV scale γ-ray excess or the self-interacting DM which would solve three puzzles in the CDM paradigm: (i) core-cusp problem, (ii) missing satellite problem and (iii) too-big-to-fail problem. These would have been simply impossible if we adopted the EFT approach for DM physics.

In the EFT approach for the DM, these new degrees of freedom are very heavy compared with the DM mass as well as the energy scale we are probing the dark sector (e.g., the collider energy scale). However, we don’t know anything about the mass scales of these mediators, and it would be too strong an assumption. Without these
light mediators, we could not explain the GeV scale γ-ray excess as described in this talk, or have strong self-interacting DM. This illustrates one of the limitations of DM EFT approaches.

7. Higgs inflation assisted by the Higgs portal

The final issue related with DM models with local dark gauge symmetries is the Higgs inflation in the presence of the Higgs portal interaction to the dark sector:

$$\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{1}{2\kappa} \left[1 + \xi \frac{h^2}{M_{\text{Pl}}^2} \right] R + \mathcal{L}_h + \lambda_{h\phi}\phi^2 h^2$$

in the unitary gauge, where $\kappa = 8\pi G = 1/M_{\text{Pl}}^2$ with M_{Pl} being the reduced Planck mass, and \mathcal{L}_h is the Lagrangian of the SM Higgs field only. Here ϕ denotes a generic dark Higgs field which mixes with the SM Higgs field after dark and EW gauge symmetry breaking.

In the presence of the Higgs portal interaction, we have recalculated the slow-roll parameters. Relegating the details to Ref. [13], I simply show the results: at a bench mark point for Fig. 2 of Ref. [13], we get the following results:

$$n_s = 0.9647 \ , \ r = 0.0840 \ ,$$

for $N_e = 56$, $h_s/M_{\text{Pl}} = 0.72$, $\alpha = 0.07422199$ and $\xi = 12.8294$ for a pivot scale $k_s = 0.05\text{Mpc}^{-1}$. There is a parameter space where the spectral running of n_s is small enough at the level of $|n_s| < 0.01$. It is amusing to notice that the r could be as large as $\sim O(0.1)$ in the presence of the Higgs portal interactions to a dark sector, independent of the top quark and the Higgs boson mass in the standard Higgs inflation scenario.

8. Higgs phenomenology, EW vacuum stability, and dark radiation

Now let us discuss Higgs phenomenology within this class of DM models. Due to the mixing effect between the dark Higgs and the SM Higgs bosons, the signal strengths of the observed Higgs boson will be universally reduced from “1” independent of production and decay channels [4][6]. Also the 125 GeV Higgs boson could decay into a pair of dark Higgs and/or a pair of dark gauge boson, which is still allowed by the current LHC data [8]. These predictions will be further constrained by the next round experiments.

Also the dark Higgs can make the EW vacuum stable up to the Planck scale without any other new physics [5][6], and this was very important in the Higgs-portal assisted Higgs inflation discussed in the previous section.

In most cases, there is generically a singlet scalar which is nothing but a dark Higgs, which would give a new motivation to consider singlet extensions of the SM. Traditionally a singlet scalar was motivated mainly by why-not or $\Delta\rho$ constraint, or the strong first order EW phase transition for electroweak baryogenesis. Being a singlet scalar, the dark Higgs will satisfy all these motivations, as well as stability of DM by local dark gauge symmetry. It would be important to seek for this singlet-like scalar at the LHC or the ILC, but the colliders cannot cover the entire mixing angle down to $\alpha \sim 10^{-6}$ relevant to DM phenomenology.

Massless dark gauge boson or light dark fermions in hidden sectors could contribute to dark radiation of the universe In a class of models we constructed, the amount of extra dark radiation is rather small by an amount consistent with the Planck data due to Higgs portal interactions [7][9][11].

9. Acknowledgements

The author is grateful to G. Ricciardi and M. Neubert for organizing this workshop and the support. He also thanks S. Baek, T. Hur, D.W.Jung, W.I. Park, E. Senaha, Y. Tang for enjoyable collaborations on the subjects presented in this talk. This work is supported in part by the NRF Research Grant 2012R1A2A1A01006053.

References

[1] T. Hur, D. W. Jung, P. Ko and J. Y. Lee, Phys. Lett. B 696 (2011) 262.
[2] P. Ko, Int. J. Mod. Phys. A 23 (2008) 3348.
[3] T. Hur and P. Ko, Phys. Rev. Lett. 106 (2011) 141802.
[4] S. Baek, P. Ko and W. I. Park, JHEP 1202 (2012) 047.
[5] S. Baek, P. Ko, W. I. Park and E. Senaha, JHEP 1211 (2012) 116.
[6] S. Baek, P. Ko, W. I. Park and E. Senaha, JHEP 1305 (2013) 036.
[7] S. Baek, JCAP 1310 (2013) 013.
[8] S. Chou, S. Jung and P. Ko, JHEP 1401 (2014) 025.
[9] S. Baek, P. Ko and W. I. Park, JCAP 1405 (2014) 067.
[10] P. Ko and Y. Tang, JCAP 1405 (2014) 047.
[11] P. Ko and Y. Tang, Phys.Lett. 1409 (2014) 013.
[12] P. Ko, W. I. Park and Y. Tang, JCAP 1409 (2014) 013.
[13] P. Ko and W. I. Park, arXiv:1405.1635 [hep-ph].
[14] S. Baek, P. Ko and W. I. Park, Phys. Rev. D 90 (2014) 055014.
[15] P. Ko and Y. Tang, JCAP 1501 (2015) 023.
[16] S. Baek, P. Ko and W. I. Park, arXiv:1407.6588 [hep-ph].
[17] G. Belanger, K. Kannike, A. Pukhov and M. Raidal, JCAP 1301 (2013) 022.
[18] T. Hambye, JHEP 0901 (2009) 028.
[19] V. V. Khoze and G. Ro, JHEP 1410 (2014) 61.