Anodized Dental Implant Surface

Abstract

Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

Keywords: Branemark rough surface implants, controlled oxide texture implant, oxidized implants

Introduction

Branemark implant system was introduced to clinical dentistry in 1965. Since then, these machined dental implants have shown high success rate in implant-supported oral rehabilitation.[1,2] Machined surface implants were used almost till 2000.[3] One of the key factors for the success of dental implants is the amount of primary stability they achieve immediately after their surgical placement, and to achieve the required primary stability, thread design and surface roughness are the contributing factors.[4-6] Dental implants with moderately rough surface created by anodization were introduced in 2000 by the name TiUnite (TU), a commercial name from Nobel Biocare, Sweden. Anodized implant surfaces were having a combination of controlled oxide texture and porosity for an enhanced biologic effect and to improve the environment for better osseointegration. It was documented that anodized implant surface increases the amount of surrounding bone formation, and the initial healing process increases the adsorption of protein and also accumulation and activation of platelets with fibrin retention.[7,8] However, certain researchers documented that, when the implants are exposed in the oral cavity, the surface roughness on them will enhance plaque accumulation, which can lead to peri-implantitis.[9-11]

With the aim to understand the influence of anodized surface in enhancing osseointegration, the present systematic review was planned through documented literature in terms of its clinical success rate and the response of the bone to its stimulation.

Materials and Methods

Source of data and search strategies

The present systematic review was designed based on the PRISMA guidelines.[12] A broad electronic search of MEDLINE and PubMed databases was performed for articles published within the present systematic review was planned through documented literature. The following key words were used in the search strategy: “TiUnite dental implants,” “TiUnite implants,” “oxidized TiUnite implants,” “anodized implants” and “prospective study,” “TiUnite” and “retrospective study,” and “anodized surface implants.”

Address for correspondence:
Dr. Ramesh Chowdary, Department of Maxillofacial Prosthodontics and Implantology, Peoples College of Dental Sciences and Research Centre, Bhopal, Madhya Pradesh, *Department of Maxillofacial Prosthodontics and Implantology, Rajarajeswari Dental College and Hospital, Bengaluru, Karnataka, India

E-mail: drramc@yahoo.co.in

Access this article online
Website: www.ijdr.in
DOI: 10.4103/ijdr.IJDR_386_16

Access this article online

How to cite this article: Mishra SK, Kumar MA, Chowdary R. Anodized dental implant surface. Indian J Dent Res 2017;28:76-99.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

© 2017 Indian Journal of Dental Research | Published by Wolters Kluwer - Medknow
The titles and abstracts were first read by all the authors for identifying studies meeting the eligibility criteria. The articles which fulfill the inclusion criteria were included for the full-text reading. Manual searches of the references of all full-text articles selected from the electronic search were also performed for additional papers that might meet the eligibility criteria for inclusion in the study. If there was any disagreement regarding the inclusion or exclusion of the selected articles, it was resolved by a discussion between reviewers.

Inclusion criteria

Only articles related to anodized implant surface were included. Both abstract and full-text articles were included. The inclusive criteria of the search were limited to articles written in English only.

Inclusion criteria for each study group were included as follows:

Group 1

In vivo studies (animal studies) on peri-implant soft tissue responses around anodized implants, studies investigating the tissue response around anodized implants, histomorphometric analysis of animal experiments and torque analysis, and histological analysis of peri-implant soft tissue were included.

Group 2

Group 2 included in vitro studies on the surface properties of anodized implant including those on cell adhesion and bacterial adhesion onto this implant surface. Anodized as material or substrate for cell adhesion and bacterial adhesion had a description not only about the microbiologic analysis but also about the surface topography of the substrate or material.

Group 3

Clinical trials with follow-up of 2 years and above were only included. The included studies reported clinical results of anodized surface and had a minimum number of 14 participants at the baseline examination. Both prospective and retrospective studies were included.

Exclusion criteria

Studies composed of languages other than English were excluded. Simple case report articles and review articles were excluded although references to potentially pertinent articles were noted for further follow-up. Articles unrelated to the topic of anodized implants were excluded. Studies not meeting any of the inclusion criteria were excluded from the review.

Outcomes and variables

For each of the selected article included in this review, the following data were obtained and presented: Year of publication, type of study, number of implants, observation period, implant type, area of implant placement, years of follow-up, number of patients, age range, type of prosthesis, number of failed implants, mean marginal bone loss, and success rate.

Results

Initial search of articles in MEDLINE and PubMed databases with the given key words resulted in 581 articles on anodized implant surface. The reviewers independently screened the abstracts for the articles related to this surface. The initial screening of titles and abstracts resulted in 112 full-text papers, out of which 40 articles were animal studies [Table 1].[13-52] 16 studies were on cell adhesion and bacterial adhesion on anodized implants [Table 2].[53-68] and 47 were related to human studies [Table 3 and Figure 1].[3,69-114] Nine studies, which did not fulfill the inclusion criteria, were excluded.

Animal studies showed that anodized surface exhibits osteoconductive properties with benefits of rough surfaces.[15,19] Results were not very clear as studies described that the bone-to-implant contact was significantly higher for the anodized implants, but other studies showed additional bone loss after treatment.[28,32] In studies where implants with different surfaces were connected together, the implants placed distally with machined surface showed more bone loss.[69]

An in vitro study showed the bone growth into the porous structure of the coating of anodized implants and also the surface that reduced the adhesion of *Streptococcus mitis* compared to the machined surface implants.[94,64] Anodized surface has showed a potential to prevent long-term implant failure due to corrosion in a complex in vivo environment.[68]

Human clinical trial on patients treated with immediately loaded anodized implants and restored with single crown showed 94% success rate after 3 years and 95% after 5 years.[75,89] Another clinical trial on complete maxillary arch rehabilitated with anodized implant supported fixed prostheses showed a survival rate of 98.6% in comparison to machined surface implants (92.1%) after 3-year follow-up and 97.3% and 94%, respectively, after 5 years of follow-up.[69,90] A 2-year prospective study showed 100% success rate of implant-supported mandibular overdenture.[78] Seven-to-eight years of follow-up of delayed loaded anodized implant showed no failure of implants.[100] Immediately loaded anodized implants on patients treated in postextraction site showed a cumulative survival rate of 100% in 5-year follow-up and 96.52% at 10-year follow-up.[95,97] Ten percent higher success rate was obtained in a study following immediate loading of fixed partial dentures (FPDs) in the posterior mandible supported by TiU implants.[101] A study found that oxidized surface implants are more suitable for patients who are...
Table 1: Animal studies on peri-implant soft tissue responses around anodized implants

Authors	Type of study	Number of implants	Purpose	Observation period	Implant type	Animal	Area	Type/site/others	Conclusions
Zechner et al. (2003)	PCS	72	Study the time course of local bone formation following the application of PRP during implant placement	3-12 weeks	Mk III, replace, Mk III, TiU	Minipigs	Mandibular premolar region	Immediate and healed	PRP has significant effect on peri-implant bone healing
Weibrich et al. (2004)	PCS	40	Effect of the platelet count in PRP on bone regeneration in vivo	1-28 days	Branemark Mk III TiU	New Zealand Rabbits (male)	Distal femur	Immediate and healed	Advantageous biological effects seem to occur
Xiropaidis et al. (2005)	PCS	40	Evaluate osteoconductivity by comparing bone-implant contact	3-8 weeks	TiU (TO) and calcium phosphate (CO) coated	Hound Labrador mongrel dogs	Mandibular premolar and molar region	Healed	TO surface exhibits osteoconductive properties exceeding that of the CP surface
Sul et al. (2006)	PCS	60	Compared the speed and strength of osseointegration and osteoconductivity of different implants	3-6 weeks	Mg implant, TiU implant, OSSEOTITE implant	Rabbits	Tibiae	Immediate and healed	More rapid and stronger osseointegration of the Mg implants
Al-Nawas et al. (2006)	PCS	160	Compare insertion torque and resonance frequency analysis of different implant systems	8 weeks to 3 months	Bränemark implants and Straumann implants	Beagle dogs	Various regions	Healed	Judge implants with caution on the basis of resonance frequency analysis and torque
Wikesjö et al. (2006)	PCS	72	Characteristics and use of the critical size, supraalveolar, peri-implant defect model	3-8 weeks	TiU	Hound Labrador mongrel dogs	Mandibular third and fourth premolar region	Healed	Models were rigorous tool for alveolar reconstruction and osseointegration of implants
Al-Nawas et al. (2008)	PCS	196	Osseointegration with respect to optimum BIC in a loaded animal model	8 weeks to 3 months	Minimally rough control; Bränemark machined Mk III; TiU; Mk III and Mk IV; ZLTi cer; Straumann SLA; rough control: TPS	Beagle dogs	Various	Healed	The benefit of rough surfaces relative to minimally rough ones in this loaded animal model was confirmed histologically
De Maeztu et al. (2008)	PCS	72	To compare CO ion implantation as a surface treatment with diamond-like carbon and commercially treated implants	3-6 months	OSSEOTITE, TiU, SLA	Beagle dogs	Mandible	Healed	No significant differences were observed between the three groups of commercially treated implants
Authors	Type of study	Number of implants	Purpose	Observation period	Implant type	Animal	Area	Type/site/others	Conclusions
------------------	---------------	--------------------	---	-------------------	---	----------------	--	------------------	---
Albouy et al. (2008)	RCS	4	Tissue reactions to plaque formation at implants exposed to experimental peri-implantitis - radiographical observation	36 weeks	Implant Group A (turned), B (TiO blast), C (sandblasted acid-etched; SLA), and D (TiU)	Labrador dogs	Mandibular premolars and maxillary anterior premolars on both sides		The bone loss during the “active breakdown” period varied between 3.5 and 4.6 mm. Progression was most pronounced at implants of type D (TiU surface).
Albouy et al. (2009)	RCS	4	Tissue reactions to plaque formation at implants exposed to experimental peri-implantitis Histological observation	36 weeks	Implant Group A (turned), B (TiO blast), C (sandblasted acid-etched; SLA), and D (TiU)	Labrador dogs	Mandibular premolars and maxillary anterior premolars on both sides		Overall surface area of the infiltrated connective tissues were larger at implants of Group D. Progression of peri-implantitis is associated with severe inflammation and tissue destruction.
Lee et al. (2009)	PCS	80	Nano-technology-modified, micro-structured zirconia implant surfaces relative to local bone formation and osseointegration	3-6 months	Surface-modified (CaP) zirconia implants, micro-structured zirconia implants (ZiUnite), and Ti porous oxide implants (TiU)	New Zealand White rabbits (male)	Hind legs		Addition of CaP nano-technology to the ZiUnite surface does not enhance the already advanced osteoconductivity displayed by the TiU and ZiUnite implant surfaces. Modified Ti implants showed higher mean ISQ values than did topographically changed implants.
Sul et al. (2009)	PCS	6	Resonance frequency measurements of topographically changed and/or surface chemistry-modified implants	6 weeks	Oxidized, cation-incorporated implants (Mg and MgMp implants); TiU, OSSEOTITE, SLA, and TiO blast	Rabbits	Tibia		MgMp implants showed the most significant mean ISQ. Modified Ti implants showed higher mean ISQ values than did topographically changed implants.
Carmagnola et al. (2009)	PCS	8	Evaluate the early phases of bone healing around two different implant surfaces	3 days to 7 weeks	ITI sandblasted/acid-etched and Branemark TiU	Minipigs	Maxillae		Replacement of blood clot and bone debris with a provisional connective tissue in the first few weeks. Both rough surfaces allowed for “contact osteogenesis” to take place.
Gedrange et al. (2009)	PCS	20	Hard tissue integration of two different implant types	70 days	TiU; Nobel Replace Tapered Groovy and Replace Select Tapered	German domestic pigs	Canine and premolar region of mandible		The immediate loading of the different implant types does not have any negative effect on the bone apposition.
Table 1: Contd...

Authors	Type of study	Number of implants	Purpose	Observation period	Implant type	Animal	Area	Type/site/others	Conclusions	
Al-Ahmad et al. (2010)	PCS	-	Evaluation of biofilm formation on Ti and zirconia implants	3 and 5 days	Machined Ti (Ti-m), modified Ti (TiU), modified zirconia (ZiUnite), etc.	Bovine	Enamel slabs	Immediate	The influence of roughness and material on biofilm formation was compensated by biofilm maturation.	
Albouy et al. (2011)	PCS	24	Effect of surgical treatment of peri-implantitis without systemic antibiotics at different types of implants	4 weeks	Turned (Biomet 3i), TiO blast (Astra Tech AB), SLA (Straumann AG), and TiU (Nobel Biocare AB)	Dogs	Mandible	Resolution of peri-implantitis was achieved in tissues surrounding implants with turned and TiOblast surfaces	At TiU implants, additional bone loss was found after treatment	
Jimbo et al. (2011)	PCS	30	In vivo bone apposition during the early stages of osseointegration	2-6 weeks	TiU; Surface-modified TiU implants (ModTiU)	Rabbits	Tibiae	ModTiU demonstrated a significantly greater degree of bone-to-metal contact than TiU	Photo-induced hydrophilicity of the NH4F-HF (2)-modified anodized implants promoted bone apposition during the early stages of osseointegration	
Grüner et al. (2011)	PCS	13	Investigation of implants with a brittle porous oxide layer and of bone/implant interfaces	4 weeks	Nobel Biocare TiU	Minipigs	Various	Characterization is possible with energy dispersive X-ray spectrometry	Bone growth into small pores (<1 µm) can be unambiguously confirmed.	
Kang and Cho (2011)	PCS	10	Compare the removal torques of LT surface of dental implants with TiU	8 weeks	LT and commercial porous TiU	Rabbits	Femoral metaphysis	The mean removal torque was 32.83 and 48.5 for anodized and LT screws, respectively	The removal torque of the LT Ti implant was stronger	
Jimbo et al. (2011)	PCS	20	PCA to evaluate osseointegration	6 weeks	OSSEOTITE and TiU	Rabbits	Tibiae	PCA analysis helps to interpret and correlate results obtained	The bone-to-implant contact was significantly higher for the TiU	
Poulos et al. (2011)	PCS	80	Evaluation of osseointegration of a novel CaP-coated Ti porous oxide implant surface	2-4 weeks	TiU and CaP-coated Ti porous oxide-surface implants	New Zealand White rabbits (male)	Tibiae	Immediate and healed	Novel CaP-coated surface effectively supports osseointegration	
Authors	Type of study	Number of implants	Purpose	Observation period	Implant type	Animal	Area	Type/site/others	Conclusions	
-------------------------	---------------	--------------------	--	--------------------	--	---------------------	---------------------------	-----------------------------------	--	
Gostovic et al. (2012)	PCS	32	Immediate loading protocol in implant systems with different surface properties	6 months	Mk III TiU, ITI TPS, 31-OSSÉOTITE and XiVE Cell-Plus	Mongrel dogs, Maxillary and mandibular premolar regions	Resonance frequency was significantly higher for mandibular implant	Endoseal implants did not show different degrees of osseointegration		
Albouy et al. (2012)	RCS	20	Progression of ligature-induced peri-implantitis at implants with different surface characteristics	6 months	Turned and TiU	Dogs, Maxilla and mandible	The amount of bone loss was significantly larger at TiU surface	Implant surface characteristics influence progression of peri-implantitis		
Manfrin Arnez et al. (2012)	PCS	20	Osteogenic potential of angiogenic latex proteins (LP for improved bone formation and osseointegration)	4-12 weeks	TiU Mk III	Dogs, Mandible	LPP showed bone regeneration similar to BG and Cg	Treatment with LPP exhibits no advantage in terms of osteogenic potential		
Choi et al. (2012)	PCS	10	Investigated whether bioactive surfaces were more favorable to bone than bioinert surfaces	2 weeks	Bioactive fluoride-modified implants (OsseoSpeed) and bioinert oxidized implants (TiU)	New Zealand white rabbits (male), Tibia	No significant differences in bone-to-implant contact and bone area	Bioactive fluoride-modified surface shows no superiority in early bone response		
Gottlow et al. (2012)	PCS	90	Compare the bone tissue responses and implant stability between two commonly used dental implants	10 days to 6 weeks	Replace Select Tapered, TiU (OX) and Standard Plus, SLActive (HSBA)	Rabbits, Distal femur and tibia	Higher BIC for HSBA implants after 10 days and 3 weeks, Significantly higher BIC for OX implants after 6 weeks	The HSBA implant showed significantly higher shear strength after 3 and 6 weeks		
Carcuac et al. (2013)	RCS	20	Analyze the tissue reactions following ligature removal in experimental periodontitis and peri-implantitis	10 weeks	Mk III NP; (implant group A; turned surface and implant group B; TiU surface)	Dogs, Maxillary premolar region and mandibular molar region	Bone loss was significantly larger at implants with a modified surface	Implant surface characteristics influence the inflammatory process		
Gomes et al. (2013)	PCS	32	Demonstrate the degree of stability of dental implants at early implantation times	8 weeks	Straumann SLActive surface and Nobel Speedy Replace RP with TiU surface	Beagle dogs, Mandibular premolar and molar regions	Interfacial bone remodeling and initial woven bone formation around both implants	The biomechanical stability of dental implants initially decreased and subsequently increased		
Park (2013)	PCS	32	Comparison of Grit-blasted Ti implants with commercially available phosphate-incorporated clinical implants.	4 weeks	Hydrophilic phosphate-incorporated grit-blasted Ti implant (P) and TiU	New Zealand White rabbits (male), Femoral condyle	P implants exhibited significantly higher bone-implant contact percentages	Phosphate-incorporated Ti oxide surface obtained by hydrothermal treatment achieves rapid osseointegration		

Table 1: Contd...
Authors	Type of study	Number of implants	Purpose	Observation period	Implant type	Animal	Area	Type/site/others	Conclusions
Al-Ahmad et al. (2013)	PCS	6	Study of the initial bacterial adhesion on different implant materials	30 and 120 min	Ti-m, TiU, ZiUnite, ATZ-m, ATZ-s, TZP-A-m	Bovine	Enamel slabs		The highest level of colonization was on ZiUnite
Charalampakis et al. (2014)	RCS	20	Analyze the microbial profile around teeth and implants in experimental periodontitis and peri-implantitis	10-25 weeks	Implant A: Tumed/implant B: TiU; Nobel Biocare AB	Dogs	Mandible		Total bacterial load increased during the period following ligature removal
Stockholm et al. (2014)	PCS	24	Bone reaction around immediate-loaded non-splinted single implants versus delayed loaded nonsplinted single implants placed in healed ridges	3-6 months	Replace Select Tapered with a moderately rough surface (TiU)	Macaca fascicularis monkeys	Mandible		Large variation in regard to the microbial profiles
Dagher et al. (2014)	PCS	32	Compare RFA, IT, and BIC of different implant surfaces	1-2 months	SLA, SLActive, Euroteknika, and TiU	Sheep	Mandible		No statistically significant differences between groups
Carcuac et al. (2014)	RCS	24	Evaluate the effect of surgical treatment of experimental peri-implantitis at implants with different surfaces	3 months	TiO blast, OsseoSpeed, AT-I, TiU	Labrador dogs	Mandible		Significant difference was found in RFA between the four surfaces
Stübinger et al. (2015)	PCS	72	Performance of local cancellous bone amelioration by a 70:30 poly-(L-lactide-co-D, L-Lactide) copolymer	4 and 12 weeks	Conditioned, sandblasted, thermal acid-etched micro-rough surface implants (TH) and highly crystalline and phosphate-enriched anodized Ti oxide surface implants (NB)	Sheep	Pelvic bone		Local use of chlorhexidine has minor influence on treatment outcome
Lee et al. (2015)	PCS	10	Combined effects of physical and chemical surface factors on in vivo bone responses	1 week	Chemically modified hydrophilic sandblasted, large-grit, acid-etched (modSLA) and anodically oxidized hydrophobic implant surfaces	Rabbits	Tibia		Enhanced primary stability of dental implants after local amelioration without long-term sequelae and irrespective of implant design

Contd...
Authors	Type of study	Number of implants	Purpose	Observation period	Implant type	Animal	Area	Type/site/others	Conclusions
Koretake et al. (2015) [49]	PCS	20	Investigate how the connection of superstructures to implants with different surface properties affects the surrounding bone	24 weeks	Machined and anodized implants	Dogs	Mandibular premolar and molar regions		The removal torque values were significantly different between the distal anodized and distal machined implants, implants at the most distal sites might be a potential risk factor for implant-bone binding
Kohal et al. (2016) [50]	PCS	56	The histological and biomechanical behavior of moderately roughened implants	14 and 28 days	ATZ; electrochemically anodized Ti (TiU)	Rats	Femoral bone		The mean mineralized bone-to-implant contact showed the highest values of TiU (58%/75%) compared to ATZ (24%/41%)
Sharma et al. (2016) [51]	PCS	40	Effect of anodizing the surface of TiZr discs with respect to osseointegration	4 weeks	Ti; TiZr; anodized Ti and Anodized TiZr	Sheep	Femurs		The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces, surface modification of Ti-zirconium by anodization is similar to anodized Ti. It enhances early osseointegration compared to machined implant surfaces
Duncan et al. (2016) [52]	PCS	30	Compare commercially available sandblasted (RBM) implants, treated with hydrothermal anodization	1 month	Ti with RBM surface (control) and Ti with RBM + anodized surface	Sheep	Maxillary sinuses		Early integration of RBM implants placed into thin maxillary sinus walls was not enhanced by hydrothermal anodization of implant surfaces

PCS=Prospective study, RCS=Retrospective study, ATZ=Alumina-toughened zirconia, BIC=Bone-to-implant contact, PCA=Principal component analysis, LT=Laser-treated, PRP=Platelet-rich plasma, TiU=TiUnite, Mg=Magnesium, BIC=Bone-implant contact, TPS=Titanium plasma sprayed, CO=Carbon-oxygen, CaP=Calcium phosphate, ISQ=Implant stability quotient, Ti=Titanium, RFA=Resonance frequency analysis, Ti-Zr=Titanium-zirconium, SLA=Sandblasted acid-etched, RBM=Resorbable blast media, IT=Insertion torque, HSBA=Hydrophilic sand-blasted and acid etched
Mishra, et al.: Anodized dental implant surface

Table 2: In vitro studies on the surface properties of anodized implant including those on cell adhesion and bacterial adhesion on to this implant surface

Authors	Type of study	Purpose	Results
Göransson et al. (2006)	In vitro	Investigate whether placement into bone causes enough mechanical damage to alter implant corrosion properties	The highest number of adhered mononuclear cells were seen on anodized implants
Giannuzzi et al. (2007)	In vitro	Analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy	Bone was observed to grow into the porous structure of the coating, yielding direct evidence of a mechanical locking mechanism of the bone/implant interface
Sawase et al. (2007)	In vitro	Studied the characteristics of porous Ti oxide implants	An amorphous layer that was about 10 mm thick was observed on the TiU implant surface
Jarmar et al. (2008)	In vitro	To identify and separate out a particular set of surface features of the implant surfaces that can contribute as factors in the osseointegration process	The provision of osseointegration is not exclusively linked to a particular set of surface features if the implant surface character is a major factor in that process
Sul et al. (2008)	In vitro	Investigate surface properties of surface-modified Ti implants in terms of surface chemistry, morphology, pore characteristics, oxide thickness, crystal structure, and roughness	Well-defined surface characterization may provide a scientific basis for a better understanding of the effects of the implant surface on the biological response. The surface-engineered implants resulted in various surface characteristics, as a result of different manufacturing techniques
Kang et al. (2009)	In vitro	Demonstrate the major differences of surface properties, mainly dependent on the surface treatment used	TiU implants contain >7% of P in oxide layer and higher amounts of hydroxides compared to the other implants in XPS analysis
Messer et al. (2010)	In vitro	Investigate whether placement into bone causes enough mechanical damage to alter implant corrosion properties	The current study suggests that the corrosion risk of the enhanced oxide implant is lower than its machined surface Ti implant counterpart under simulated conditions of inflammation, elevated dextrose concentrations, and after implantation into bone
Dohan Ehrenfest et al. (2011)	In vitro	Describe the chemical and morphological characteristics of 14 implant surfaces available on the market and to establish a simple and clear ID card for all of them	From a chemical standpoint, of the 14 different surfaces, 10 were based on a commercially pure Ti, 3 on a Ti-aluminum alloy and one on a calcium phosphate core. Nine surfaces presented different forms of chemical impregnation and 3 surfaces were covered with residual alumina blasting particle
Chang et al. (2011)	In vitro	Evaluation of the effect of a cordless retraction paste material, Expasyl (Acteon), on TiU (Nobel Biocare) implant surfaces	Alteration of the initial surface after exposure to Expasyl was identified, with the implant collar showing the most changes
Chai et al. (2012)	In vitro	To examine the ultrastructural features of soft tissue attachment to various Ti implant surfaces	There was evidence of hemidesmosome-like structures at the interface on the four types of Ti surfaces, which suggests that the tissue-engineered oral mucosa formed epithelial attachments on the Ti surfaces that were not significantly different
Chai et al. (2012)	In vitro	Compares the quality of the BS achieved for four types of Ti surfaces: polished, machined, sandblasted, and anodized (TiU)	The biological seal of the tissue-engineered oral mucosa around the four types of Ti surface topographies was not significantly different
Caous et al. (2013)	In vitro	Investigated if different pH, atmosphere, and surface properties could restrict bacterial adhesion to Ti surfaces used in dental implants	The anodized surface reduced the adhesion of Streptococcus mitis compared to the machined surface
Liu et al. (2015)	In vitro	To compare surface properties of four commercial dental implants and to compare those implant systems’ cell adhesion	Implant systems’ distinct differences in surface properties

Contd...
Table 2: Contd...

Authors	Type of study	Purpose	Results
Liu et al. (2015)	In vitro	To improve the antibacterial and mammalian cell compatibility properties of TNTs anodized into Ti	Improved antibacterial properties and, at the same time, greater stem cell osteogenic capacity when decorating TNTs with nanosized TiO₂ particles, which may significantly improve implant efficacy
Sharma et al. (2015)	In vitro	To anodize TiZr and study its surface characteristics	Proliferation, alkaline phosphatase activity, and calcium deposits were significantly higher on anodized surfaces compared to machined surfaces. Anodization of TiZr resulted in a more nanoporous and hydrophilic surface than aTi, and osteoblast biocompatibility appeared comparable to a Ti
Grotberg et al. (2016)	In vitro	Determine the effects of electrochemical anodization (60 V, 2 h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V	Anodized surface has a potential to prevent long-term implant failure due to corrosion in a complex in vivo environment

XPS=X-ray photoelectron spectroscopy, ID=Identification, TNTs=Titania nanotubes, Ti=Titanium, TiZr=Titanium-zirconium, BS=Biological seal, aTi=Anodized titanium, TiU=TiUnite

Figure 1: Flow chart presenting the screening of articles on anodized implant surface in MEDLINE and PubMed databases to be included in the review

smokers and are susceptible to periodontitis.[76,106] Another follow-up study from 1985 to 2011 found the success rate of TiU as 95.4% and machined surface as 84.9%. TiU implant has played a critical role in single-stage implant survival rate.[105]

Discussion

The original Branemark protocol underwent many modifications to increase the success of implant treatment. One of the modifications was the introduction of anodized,
Table 3: Human follow-up studies on TiUnite implant. The included studies reported results of anodized surface implants in terms of their clinical success rate and bone response in patients

Author/year	Design of study	Total number of patients (available for follow-up)	Age (years), range (mean)	Implant type	Follow-up (mean)	Type of prosthesis	Total implant placed (available for follow-up)	Failed implants (n)	Mean marginal bone loss (mm), range or SD	Success rate (%)
Balshi et al. (2005)²⁵	Prospective study	82	13-86 (58.1)	840	3 (2.6)	Complete fixed maxillary prostheses	840	14 (n=11 TiU implants, n=3 zygoma implants)	98.6% (TiU implants, 93.5%, zygoma implants excluding pterygomaxillary positions Ti oxide implants 99.0%, machined surface implant 93.0%)	
Brechter et al. (2005)²⁶	Prospective study	47 (45)	17-77 (53)	Mk III, TiU	2 years, 6 months (12-48 months)	Implant-supported bridges	200	3	2.2 (0.5) after 1 year	98.5%
Glauser et al. (2005)²⁷	Prospective study	38 (36)	19-77 (51)	Branemark System Mk IV TiU	42-58 months (4 years)	Implant-supported fixed prostheses	102 (93)	3	1.3±0.9	97.1%
Renouard and Nisand (2005)²⁷	Retrospective study	85	58.6	Branemark System, machined (n=54) Oxidized TiU (n=42)	2 (37.6 months)	Single crowns and partial restorations	96	5 (n=4 machined surface, n=1 oxidized surface)	0.44±0.52	92.0% machined surface; 97.6% oxidized surface
Alam and Nowzar (2005)²⁸	Prospective study	(74)	23-80 (52.8±14.2)	n=58 TiU implants; n=52 OSSEOTITE implants; n=88 machined implants	2	Single unit, fixed partial dentures, overdentures	(198)	None	Greater coronal bone loss in the TiU group was detected	100%
Degidi et al. (2006)²⁹	Prospective study	29	23-65 (52)	TiU implant n=127 Mk III and n=15 Mk IV	3	Fixed restorations	142 immediate loaded	None	1.0	100%
Turkyılmaz et al. (2006)³⁰	Prospective study	19	20-53 (39±10.5)	Branemark System Mk III RP TiU implants n=60 anodized, n=64 machined-surface	3	Single tooth crowns/immediate loading	36	2	0.97	94%
Watake et al. (2006)³¹	Retrospective study	50 (31)	52-86 (67.55)	29.8-47.4 months (35.94 months)	124	n=1 anodized surface implant	59	3 (test group n=2, control group n=1)	Smokers showed -1.83 mm bone loss around machined surface implants versus -1.08 mm around anodized surface implants	100% machined surface; 98.4% anodized surface
Turkyılmaz et al. (2007)³²	Prospective study	29	20-60 (40±11)	Branemark System Mk III TiU implants	4	Implant-supported single crowns	59	3	1.11	Test group 94.4%; control group 95.7%

Contd...
Author/year	Design of study	Total number of patients (available for follow-up)	Age (years), range (mean)	Implant type	Follow-up (mean)	Type of prosthesis	Total implant placed (available for follow-up)	Failed implants (n)	Mean marginal bone loss (mm), range or SD	Success rate (%)
Turkylmaz and Tumer (2007)	Prospective study	20	62	TiU surface implants	2	Maxillary complete denture and mandibular implant supported over denture	40	None	1.1±0.3	100%
Balkhi et al. (2007)	Retrospective study	(39)	29-82 (58.5)	44 (n=24 TiU; n=20 machined-surface)	6 months to 11 years (4.05)	Partial or complete prosthesis/n=15 immediate loading; n=29 delayed loading	459	8 (n=2 TiU; n=6 machined surface)	-	82% (TiU 91.7%; machined-surface 70%)
Alsaidi et al. (2007)	Retrospective study	2004	-	n=6316 machined; n=630 TiUs surface	-	-	6946	252 (n=228 machined; n=24 TiUs surface)	-	The TiUs surface did not influence the outcome as no statistical difference was found
Maio et al. (2007)	Retrospective and Prospective study	184	22-86 (56)	n=283 TiU; n=150 machined surface	6 months to 8 years (44 months)	Single restoration, short-/long-span FPD, fixed complete dentures	433	14 (n=2 TiU; n=12 machined-surface)	1.7 (1.0)	Oxidized surface (more osseoconductive) there is a tendency for higher bone levels
Alsaidi et al. (2008)	Retrospective study	412	-	n=198 anodized surfaces; 2 n=1316 machined surface	-	-	1514	101 (n=8 anodized surface; n=93; machined-surface)	-	No significant difference in late failure rate; yet there is a trend for more implant loss with machined surface
Ostman et al. (2008)	Prospective study	77	32-82	n=77 turned; n=180 TiU implants	4	Fixed partial dentures	257	n=3 turned; n=1 TiU implants	Turned implants 0.5 mm (0.8); oxidized implants 0.7 (0.8)	98.4%
Balshe et al. (2009)	Retrospective study	(1498)	51.3±18.5 (smooth surface) n=2425 rough surface; n=2182 smooth surface	5	-	-	4607	n=85 rough surface; n=111 smooth-surface	-	96.1% and 99.4% for turned and oxidized implants, respectively Rough surface 94.5%; smooth-surface 94% Rough surface implants performed better in the maxilla.

Contd...
Table 3: Contd...

Author/year	Design of study	Total number of patients (available for follow-up)	Age (years), range (mean)	Implant type	Follow-up (mean)	Type of prosthesis	Total implant placed (available for follow-up)	Failed implants (n)	Mean marginal bone loss (mm), range or SD	Success rate (%)	
Eliasson et al. (2009)	Retrospective study	109 (83)	51-90 (70) early loaded; 47-89 (69) delayed loaded	n=117 TiU; n=253 machined surface; n=74 TiO blast; n=46 mono-type SLA	3.5	Fixed prosthesis	490 (378)	n=7 TiU implants, n=9 machined surface	No significant differences in bone losses in the different implant systems	94.4% with early loading and 97.9% with delayed loading	
Friberg and Jemt (2010)	Retrospective study	111 (84)	17-87 (59.4)	Mixed group (n=110 turned and n=68 TiU implants); TiU group (n=212)	5	Implant-supported prosthesis	390 (286)	6 (n=1 turned, n=2 TiU implants in mixed group and n=3 implants of the TiU group)	Mixed group (turned 0.6 TiU implants, 0.7) TiU group (0.8)	TiU group (98.4%)	
Lee et al. (2010)	Prospective study	54 (50)	36-78 (57.6)	n=37 (Branemark TiU Mk III); n=38 (Restore; Lifecore); n=45 (Hexplant)	3	Single or 2-3 units	135 (120)	None	Hexpant 0.59±0.30	100%	
Liddelow and Henry (2010)	Prospective study	35	50-89 (68)	n=27 anodized; n=8 machined surface	3	Single implant mandibular overdenture	35	n=3 machined surface	2 machined surface; 0.63 oxidized surface	100% oxidized implants; 57.1% machined surface implants	95%
Calandriello and Tomatis (2011)	Prospective study	33	27-72 (52)	TiU wide platform Mk III implants	5	Implant-supported single molars	40 immediate loading	2	1.17±0.90	95%	
Jemt et al. (2011)	Retrospective study	185 (148)	Early group (60.1) Late group (65.1)	Early group (450 turned implants), late group (360 turned and 310 TiU implants)	5	Fixed prostheses supported by implants	1120 (906)	45 (n=29 early group, n=16 late group)	Early group 0.5±0.46 and late group 0.7±0.76	93.4% and 97.3% for the early and late groups, respectively	
Hatano et al. (2011)	Retrospective study	132 (109)	35-85 (62.6)	n=253 oxidized; n=143 machined surface	1-10 (5)	Fixed bridge/Immediate loaded	396	n=3 oxidized; n=10 machined surface	More machined than oxidized implants failed, 7% versus 1.2%	95.1%	
Malo and de Araújo Nobre (2011)	Retrospective study	147	26-77 (47.5)	n=127 machined; n=120 TiU surface	1-11 (5)	Fixed prosthetic implant-supported rehabilitations in the posterior region of the jaw	247	12 (n=3 TiU and n=9 machined)	1.74	95.73% (TiU 96.03%; machined surface 92.31%)	
Balshi et al. (2011)	Prospective study	140	15-88 (45)	n=151 (TiU); n=13 (machined surface)	5.5	Single crowns/ immediate provisionalization	164	7 (n=6 TiU); n=1 (machined surface)	-	95.73% (TiU 96.03%; machined surface 92.31%)	

Contd...
Author/year	Design of study	Total number of patients (available for follow-up)	Age (years), range (mean)	Implant type	Follow-up (mean)	Type of prosthesis	Total implant placed (available for follow-up)	Failed implants (n)	Mean marginal bone loss (mm), range or SD	Success rate (%)	
Bahat et al (2012)	Retrospective study	39 (27)	-	Mk IV, TiU	3-7	Fixed partial denture, delayed loaded	103 (80)	3	1.21±0.86	97.08%	
Degidi et al. (2012)	Prospective study	59 (48)	18 and above (49.9)	Porous anodized TiU surfaces	10	Fixed prosthesis/ immediate loading	210 (158)	5 (peri-implantitis)	Healed site 98.05% and postextraction sites 96.52%		
Mabó et al. (2012)	Retrospective clinical study	242 (222)	25-87 (55.4)	Porous anodized TiU surfaces	3-5	Fixed complete arch maxillary all acrylic prostheses	Immediate loading	19 (n=5 Mk IV, n=14 Nobel speedy)	1.52 (3 years)	100% Mk III, 85.7% Mk IV, Nobel speedy 94.1%	
Mura (2012)	Retrospective study	56 (48)	21-76 (50.9)	Replace select tapered TiU implants	5	43 patients’ single implants and 13 patients’ splinted implants	None	79 (66)	0.56	100%	
Nicu et al (2012)	Prospective randomized controlled trial	14	62.1	Turned implant and TiU implant	3	Fixed bridges and overdentures	78 (n=39 turned; n=39 TiU)/ delayed loaded	None	53.8% turned implants and 64.1% of the TiU implants	100%	
Sánchez-Garcés et al. (2012)	Retrospective study	136	-	n=80 anodized; n=154 machined-surface	18 months to 12 years (81 months)	Delayed loaded	273 (n=6 anodized surface implant; n=13 machined surface)	None	-	8.4% failure rate of machined surface; 5.9% nonmachined surface	94.8%
Gelb et al. (2015)	Retrospective study	57 (52)	35-82	Branemark System TiU Implants (n=11 Mk IV, n=96 Mk III)	7-8 (7.33±0.47)	n=38 (single tooth restoration)	107 (n=70 healed sites)	None	1.49±0.03 for 77 implants (no data for 30 implants)	94.3%	
Amlhart et al. (2013)	Retrospective study	114 (47)	71.2±9.8	n=136 anodized surfaces; n=52 machined surface	64-117 months (85.5 months)	Delayed loading	188 (n=2 anodized; n=2 machined surface)	Overdenture/delayed loaded	Anodized surface had peri-implant bone level (1.53±0.25 mm) than turned surface implants (2.42±0.34 mm) more favorable considering vertical bone changes	Anodized 98.53%; machined surface 96.15%; roughened implant surfaces are more favorable	
Rocci et al. (2013)	Prospective study	(44)	20-69 (51)	121 (n=66 TiU; n=55; machined surface)	9	Fixed prosthesis/ immediate loaded	121 (n=3 TiU; n=8 machined surface)	TiU 0.1 (0.4); machined surface 0.2 (0.5)	TiU 95.5%; machined surface 85.5%	94.8%	

Contd...
Author/year	Design of study	Total number of patients (available for follow-up)	Age (years), range (mean)	Implant type	Follow-up (mean)	Type of prosthesis	Total implant placed (available for follow-up)	Failed implants (n)	Mean marginal bone loss (mm), range or SD	Success rate (%)	
Mozzati et al. (2013)	Retrospective study	90	21-82 (55.9)	Brånemark TiU implants (Mk III or Mk IV TiU)	11.0 (9.6-12.4)	Single-tooth and partial restorations	209	6	0.60±1.17	97.1%	
Pettersson and Sennerby (2015)	Retrospective study	88 (51)	65±12	Replace (Select Tapered, Nobel Biocare AB) with an oxidized surface (TiU, Nobel Biocare AB)	5	Single tooth replacements, fixed full bridges, fixed implant, and tooth connected bridges	271 (160) (n=244 healed sites; n=27 extraction sockets) n=262 immediate loading; n=9 delayed loading	1	0.1±2.4	99.0%	
Bakshi et al. (2013)	Retrospective study	(981)	14-90 (58)	n=898 TiU; n=710 machined surface Pterygomaxillary implants	From year 1985 to 2011	All acrylic provisional prosthesis/immediate loaded	1608	n=41 TiU; n=107 machined surface, -	TIU 95.4%; machined surface 84.9%; TiU implant has played a critical role in single-stage implant survival rate 96.2% for oxidized implants and 84.9% for turned implants in smokers		
Sayardoust et al. (2013)	Retrospective study	80 (n=40 smokers, n=40 nonsmokers)	53.5-54.2 smokers 59.8-63.2 nonsmokers	Smokers (n=56 oxidized and 78 turned in); nonsmokers (n=52 oxidized and 66 turned in) n=257 turned and n=243 TiU implants	5	Partial/full arch superstructure	252	17 (n=4 oxidized and n=13 turned)	1.54 (0.21) mm at turned and 1.16 (0.24) mm at oxidized implants in smokers		
Polizzi et al. (2013)	Retrospective study	122 (96)	23-81 (59)	Brånemark System Mk III (n=146); Mk IV TiU (n=22)	10 (7.3-7.5) TiU implants	Full arch, partial, and single tooth fixed prosthesis	500	23 (n=19 turned implants and n=4 TiU implant)	-1.36 for TiU implants and -2.13 for turned implants	90.3% turned implants and 96.6% TiU implant	
Jokstad and Alkumru (2014)	RCT	42 (35)	18 years and above	Brånemark System Mk III (n=146); Mk IV TiU (n=22)	5	Permanent 10-12 units FDP for both groups	168	4	1.2±0.7 both groups	Immediate loading may be associated with a slightly higher risk of unsuccessful osseointegration	Contd...
Table 3: Contd...

Author/year	Design of study	Total number of patients (available for follow-up)	Age (years), range (mean)	Implant type	Follow-up (mean)	Type of prosthesis	Total implant placed (available for follow-up)	Failed implants (n)	Mean marginal bone loss (mm), range or SD	Success rate (%)
Jungner et al. (2014)	Retrospective study	103	32-90 (67.4)	n=133 turned surface Mk III; n=154 oxidized surface Mk III, TiU, Nobel Biocare	60-93 months (82 months)	Single crowns, partial bridges, full bridges	287 Early loading protocol (14 patients/54 implants), a one-stage protocol (32 patients/59 implants), or a two-stage protocol (57 patients/174 implants)	8 (n=7 turned implants, n=1 oxidized implant)	1.8±0.8 for turned and 2.0±0.9 for oxidized implants	Turned implants 94.7%
Wagenberg and Froum (2015)	Retrospective study	312	-	Anodic oxidized surface (TiU) implants	2-12 (7.4)	-	312 immediate extraction sockets	-	0.4±0.80mm	Mesial - distal bone loss of anodic oxidized surface (TiU) implants was significantly less compared with machined implants 95.7% for turned implants and 97.7% for oxidized implants CSR ranging between 97.0% and 99.7%
Jungner et al. (2014)	Retrospective study	(28)	57-82 (69)	n=45 oxidized; n=47 turned	5-19 (10)	Delayed loaded	92 3 (n=1 oxidized, n=2 turned)	1.4±0.7 mm turned and 1.7±0.7 mm oxidized implants 1.8 (0.72) and 1.7 (0.72) in the younger and the older patient groups, respectively		
Friberg and Jemt (2015)	Retrospective study	385 (2.9)	36-98 (70)	n=750 anodized; n=1088 machined surface	5	Fixed prosthesis	1838 (1230)	n=9 anodized surface implant; n=22 machined surface implants n=3 anodized surfaces; n=5 machined surface	1.89 (0.81) at 10 years Cumulative implant survival rate 98.5% after 10 years (99.1% anodized implants)	
Måké et al. (2015)	Retrospective study	199	26-84 (53)	n=374 anodized surfaces; n=107 machined surface	1-13.5 (7)	Fixed partial rehabilitation/immediate loaded	481	n=2719 turned; n=131 TiU	-	Introduction of moderately rough implant surfaces reduced mean annual bone loss Early failures 2.3% for TiU and 2.4% for other surfaces
Jemt et al. (2015)	Retrospective study	8528	9-99 (55.7)	n=27,914 turned; n=10,774 TiU	January 1986 to December 2013	-	39,077	n=2719 turned; n=131 TiU	-	Introduction of moderately rough implant surfaces reduced mean annual bone loss Early failures 2.3% for TiU and 2.4% for other surfaces
Måké et al. (2015)	Retrospective study	332 (2.78)	16-82 (47)	n=424 anodized; n=170 machined surface	10	Single crown/immediate loaded	594	n=15 anodized surface implant; n=10 machined surface	1.75	95.7%
porous implant surface. The questions raised during this systematic review were answered with the help of literature which included in vivo, in vitro, and clinical studies published on anodized surface implants.

In vivo studies (animals)

Many animal studies on peri-implant soft tissue responses around anodized implants were conducted and the main question raised was whether anodized implant surface promotes bone growth. A study by Xiropaidis et al. in Labrador dogs showed TiO₂ surface exhibiting osteoconductive properties more than that of the calcium phosphate-coated implant surface. Histological studies in Beagle dogs showed benefit of rough surfaces relative to minimally rough ones. The bone growth was seen into small pores (<1 µm) of anodized implants placed in minipigs. Gedrange et al. in their study in German domestic pigs found that the immediate loading of the different implant types does not have any negative effect on the bone apposition. In a study done by Jimbo et al., the bone-to-implant contact was significantly higher for the anodized implants, whereas result of another study done by Stokholm et al. in monkeys found no statistically significant differences between anodized implants for bone reaction around immediate-loaded and delayed-loaded nonsplinted single implants. Result of a study demonstrated that the removal torque of the laser-treated titanium implant placed in rabbits was stronger than anodized implants. Albouy et al. in their study in dogs found that the amount of bone loss was significantly larger in implants with an anodized surface than in implants with a turned surface when the plaque was accumulated. The histological analysis showed that there was increase in vertical size of the lesion at anodized implants. The pocket epithelium and extension of the biofilm apically were significantly larger at anodized implants than at turned implants. When implants with different surface properties are connected, machined implants at the most distal sites might be a potential risk factor for implant–bone binding. A study showed that surface modification of titanium–zirconium by anodization is similar to anodized titanium. It enhances early osseointegration compared to machined implant surfaces. Animal studies provide mixed result on the success of anodized surface implants, so further investigation with the help of clinical trials and in vitro studies is required to comment on anodized surface implants.

In vitro studies

Surface properties and microbiologic response of anodized implants were analyzed in different in vitro studies. In a study by Giannuzzi et al., the bone growth was seen in the porous structure of the coating of anodized implants, yielding direct evidence of a mechanical locking mechanism of the bone/implant interface. The anodic-oxidized surface has inherent photocatalytic activity, which can enhance osseointegration. Under simulated conditions of inflammation, elevated dextrose concentrations, and after implantation into bone, the corrosion risk of the enhanced oxide implant is lower than machined surface titanium implant counterpart. The biological seal of the tissue-engineered oral mucosa around the four types of titanium surface (polished, machined, sandblasted, and anodized) in an in vitro study was not significantly different. Another in vitro study showed that the anodized surface reduced the adhesion of S. mitis compared to the machined surface. Proliferation, alkaline phosphatase activity, and calcium deposits were significantly higher on anodized surfaces compared to machined surfaces. Improved antibacterial properties, and at the same time, greater stem cell osteogenic capacity seen, when decorating titania nanotubes with nanosized TiO₂ particles, may significantly improve implant efficacy. The results obtained in in vitro studies were quite encouraging about anodized surface implants.

Clinical studies

Many clinical questions were raised in this review and an attempt was made to find how anodized implants perform in various clinical situations.

Success rate of anodized implants in maxillary posterior quadrant

Maxillary posterior quadrant presents many problems and limitations to implant placement such as poor bone quality and quantity, pneumatization of the maxillary sinus, and difficulty in accessibility of the area. Sinus floor bone grafting may provide sufficient bone quantity and quality for implant placement; however, it is a costlier affair to the patient and there is a risk of morbidity when compared to other alternate treatment options available such as zygomatic implants. As mentioned earlier, titanium oxide-surfaced implants can be used successfully in the ptgromaxillary region for achieving successful osseointegration. In a study, ptgromaxillary region had shown 8% more survival rate with anodized surface implants. Glauser et al. in their prospective clinical study mentioned that immediately loaded anodized Branemark System Mk IV had a success rate of 97.1% after a 4-year follow-up even though the majority of all implants were placed in posterior regions (88%) and in soft bone conditions (76%). It was found that in regions exhibiting soft bone, modified implant surface texture had shown a successful treatment alternative. Renouard Nisand evaluated the survival rate of short implants (6–8.5 mm) in the resorbed maxilla, four out of five lost implants had a machined surface and one had an oxidized surface, giving survival rates of 92.6% and 97.6% for the different surfaces, respectively. A 5-year cross-sectional retrospective study by Friberg and Jemt mentioned that one turned and two anodized implants failed in the mixed group, thus indicating no significant difference of anodized
surface in compromised bone. Rocci et al.\[102\] found 10% higher success rate following immediate loading of FPDs in the posterior mandible supported by TiU implants. Combination of controlled oxide texture and porosity in anodized surface has made it unique for an enhanced biologic effect. There is increase in initial healing process due to textured surface of anodized implants. Increase in the bone surrounding the implant was observed due to the adsorption of protein and also there was accumulation of platelets and their activation and fibrin retention.\[7\] Microtextured surface is produced by anodic oxidation of the titanium, resulting in increased thickness of the native oxide layer and provides good primary stability in areas of soft bone quality and thus leads to better secondary stability of implants.\[8\]

Success rate of anodized implants in grafted sites

Patients with insufficient bone volume may require bone reconstructive procedures before implant placement. Sinus floor augmentation and onlay bone grafting are commonly used in cases of severely resorbed maxilla.\[122-127\] To achieve and maintain primary stability in such cases is a very difficult challenge. Brechter et al.\[70\] studied the survival and stability of anodized implants placed in patients with reconstructive jaw surgery. In a mean follow-up period of 30 months, there was successful outcome of 200 consecutive oxidized implants in various reconstruction situations, with only three failures. Grafting of the maxillary sinus floor with intraorally harvested bone and delayed placement of either turned or oxidized implants result in equally high long-term survival rates (95.7% for turned implants and 97.7% for oxidized implants).\[100\] Bahat et al.\[98\] studied the radiographic outcome of Branemark Mk IV implants in compromised and grafted bone after 3–7-year follow-ups. Long-term clinical outcome of oxidized titanium oxide surface implants were very predictable and successful. They observed that in case of poor bone quality and grafted sites, anodized Branemark MK IV implants inserted with a modified surgical protocol were successful. MK IV implants are fully body-tapered implants and they distribute progressive forces more uniformly into the bone then the parallel-walled self-tapping implants.

Immediate loading of anodized implants

The standard protocols in implant dentistry recommend a healing period of 6 months for the maxilla.\[128\] However, sometimes, patients did not opt for implant treatment due to more time required for treatment and additional surgical procedures required in case of two-stage implant surgery.\[6\] An immediate or early loading protocol of dental implants has overcome these patients’ problems and has given a good treatment option to them. Some reports indicate that immediate loading in soft bone was very discouraging.\[129,130\] but many recent studies have demonstrated encouraging results for immediately loaded anodized implants, where bone quantity and quality were not sufficient for implant placement.\[71,74,75,78,89\] Degidi et al.\[74\] did a 36-month follow-up study of immediately loaded implants with a porous anodized surface. All implants appeared to be osseointegrated. Immediate-loaded implants with a porous anodized surface in the long-term were found to work well with a success rate of 100%. In a prospective study by Turkyilmaz,\[75\] Branemark System MK III TiU implants were placed in the maxilla. The success rates for both implant and prosthesis were 94% after 3 years. Results showed that early loading of anodized surface implants in the maxilla may offer an alternative treatment option to the standard loading protocol. Turkyilmaz and Tumer\[78\] carried out another prospective study of 2 years on early versus late loading of unsplinted TiU surface implants supporting mandibular overdentures. The results of the study showed that 1-week early loading approach for implants supporting mandibular overdentures does not adversely influence their clinical performance. No implant was lost, and 100% implant success with both early and delayed loading protocols was obtained. Calandriello and Tomatis\[89\] did a follow-up study for 5 years, for the clinical and radiological performance of anodized Branemark System wide platform implant-loaded immediately supporting single molars in the lower jaw. The cumulative success rate at 5 years was 95.0%. The results of this study encourage the use of immediately loaded anodized implants. Anodized implants with pore diameter of <8 mm facilitate the growth of bone into the pores and thus show better osseointegration and can be successfully used for immediate loading of implants.\[133\] Maló et al.\[112\] in their long-term study (1–13.5 years) found that anodized implants inserted using an immediate function protocol to support fixed partial rehabilitations (FPR) in both jaws is a viable and safe concept. The cumulative survival rate of anodized implants for ten years in their study was 99.1%. Liddelow and Henry\[89\] found that immediately loaded overdenture with oxidized implants provides beneficial treatment outcome with 100% success rate of oxidized implants and 57.1% that of machined surface implants.

Anodized implants, marginal bone loss, and peri-implantitis

Many longitudinal studies have shown the marginal bone level to resorb to the first thread after functional loading. This phenomenon could be explained as biomechanical adaptation of bone to the occlusal loading. The problem with rough-surfaced implants was that they accumulate more plaque than smooth-surfaced implants.\[132-136\] Many studies showed low levels of plaque and marginal bone loss around anodized implants in spite of early concerns of increased plaque accumulation on rough-surfaced implants when compared to machined implants.\[3,87,96-98,100,103,108,109\] Lee et al.\[87\] in their 3-year prospective radiographic study evaluated the level of marginal bone around different implant systems. They found that functionally loaded rough surface implants with microthread might
maintain marginal bone level more positively than anodized implants and hybrid of smooth and rough surface implants. Gelb et al.[100] studied 7–8 year functional loading performance of anodized surface Branemark implants by clinical and radiographic analyses. No implant failure was found. It was found that around 95% of implants in the peri-implant mucosa was healthy. Caous et al.[64] concluded in an in vitro study that the anodized surface reduced the adhesion of S. mitis compared to the machined surface. Mozzati et al.[103] studied the long-term clinical and radiological results in a group of patients having single-tooth and partial restorations supported by Branemark TiU implants, they showed an excellent survival rate of anodized implants; the marginal bone response and soft tissue conditions to anodized implants were favorable. Jungner et al.[108] compared the clinical performance of turned and oxidized implants after more than 5 years of loading. Seven turned implants and one oxidized implant failed, with an overall cumulative survival rate of 94.7 and 99.4%, respectively. After 5 years of function, there was no difference in the rate of implant failure and marginal bone loss around oxidized implants when compared to turned titanium implants. Polizzi et al.[3] in their study found a small but significant difference in bone level in favor of the TiU implants. Thus, the current data are in contrast with other studies reporting similar bone remodeling values for turned and moderately rough surface implants or, most frequently, showing better outcomes for turned implants.[6,137] Wagenberg and Froum[109] retrospectively evaluated bone stability around implants with anodic oxidized surfaces and compared this with variables which were compared in a previous study. They found that the mesiodistal bone loss of anodic oxidized surface (TiU) implants over a period of 2–12 years was significantly less when compared with machined implants placed with the same immediate implant placement protocol. Watzak et al.[76] in their study found less peri-implant bone loss around rough implant surfaces, which had beneficial effects at distal implants and in smokers. Nicu et al.[98] did a 3-year prospective randomized controlled trial. They compared the clinical, microbiological, and biochemical results of minimally turned (machined) and moderately rough (anodized) implant surfaces in a split-mouth design. In patients more prone to periodontitis, the moderately rough, TiU implants placed in both postextractive and healed areas demonstrated similar clinical results when compared with the smoother, turned implants in 10 years of clinical performance. Five of over 210 implants included in this study (2.38%) were treated for recurrent peri-implantitis, but were lost because treatment failed to completely eradicate the infection.[99] Good treatment outcome with regard to implant survival, condition of the soft tissue, and response of marginal bone was obtained when implants were immediately loaded in postextraction sockets.

Success rate of anodized implants in postextraction sites
Balshi et al.[69] in their complete arch maxillary prospective study evaluated the survival rates of anodized Branemark implants and also compared them with similar study on machined surface implants. Implants were placed in immediate extraction or healed sites. TiU implants had a significantly higher survival rate of 98.6% in comparison to 92.1% for machined surface implants. Degidi et al.[95] in their prospective study evaluated 10-year performance of TiU implant-supported fixed prostheses with an immediate loading protocol in both postextracted and healed regions. The implants placed in healed sites obtained a cumulative survival rate of 98.05%, and in postextractive sites, it was 96.52%. In a 5-year retrospective study by Mura,[97] it was found that there was no implant failure when immediately loaded in postextracted sites, which could be because of anodized surface favoring faster bone healing without either soft or hard tissue problems.

Conclusion
The findings of the systematic review on anodized surface can be concluded as follows:

- Animal studies showed mixed result. There was increase in bone loss after treatment with anodized surface implants. However, when implants with different surfaces were connected in such cases, distal implant with machined surface showed more bone loss
- Favorable results were obtained in in vitro studies with bone growth into the porous structure of the coating of anodized implants. Proliferation, alkaline phosphatase activity, and calcium deposits were significantly higher on anodized surfaces compared to machined surfaces
- Long-term clinical studies on anodized surfaced implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surface commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success with more than 95% of clinical success. Anodized surface did show plaque accumulation in marginal bone losses when compared to machine surfaces in one study, but several other studies showed decreased levels of plaque and reduced marginal bone loss around anodized implants. Many recent studies have demonstrated encouraging results for immediately loaded anodized implants where bone quantity and quality were not sufficient for implant placement with success rate of more than 94%.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Mishra, et al.: Anodized dental implant surface
References

1. Bränemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.

2. Bränemark PI. Introduction to osseointegration. In: Bränemark PI, Zarb G, Albrektsson T, editors. Tissue-Integrated Prosthesis. Osseointegration in Clinical Dentistry. Chicago: Quintessence; 1985. p. 11-76.

3. Polizi G, Gualini F, Fribeg B. A two-center retrospective analysis of long-term clinical and radiologic data of TiUnite and turned implants placed in the same mouth. Int J Prosthodont 2013;26:350-8.

4. Karlsson U, Gottfredsen K, Olsson C. A 2-year report on maxillary and mandibular fixed partial dentures supported by Astra Tech dental implants. A comparison of 2 implants with different surface textures. Clin Oral Implants Res 1998;9:235-42.

5. Cordioli G, Majzoub Z, Piattelli A, Scarano A. Removal torque and histomorphometric investigation of 4 different titanium surfaces: An experimental study in the rabbit tibia. Int J Oral Maxillofac Implants 2000;15:668-74.

6. Gotfredsen K, Karlsson U. A prospective 5-year study of fixed partial prostheses supported by implants with machined and TiO2-blasted surface. J Prosthodont 2001;10:2-7.

7. Larsson C, Thomsen P, Aronsson BO, Rodahl M, Laussmaa J, Kasemo B, et al. Bone response to surface-modified titanium implants: Studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 1996;17:605-16.

8. Hall J, Laussmaa J. Properties of a new porous oxide surface on titanium implants. Appl Osseointegration Res 2000;1:5-8.

9. Raysesdal AK, Ambjørnsen E, Stavne S, Haanaes HR. A comparative clinical study of three different endosseous implants in edentulous mandibles. Int J Oral Maxillofac Implants 1998;13:500-5.

10. Wennerberg A, Senneryby L, Kultje C, Lekholm U. Some treatment outcome in periodontally susceptible and non-susceptible patients: A prospective long-term study. Clin Oral Implants Res 2009;20:1341-50.

11. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6:e1000097.

12. Zechner W, Tangl S, Tepper G, Fürst G, Bernhart T, Haas R, et al. Influence of platelet-rich plasma on osseous healing of dental implants: A histologic and histomorphometric study in minipigs. Int J Oral Maxillofac Implants 2003;18:15-22.

13. Weibrich G, Hansen T, Kleis W, Buch R, Hütler WE. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone 2004;34:665-71.

14. Xiropaidis AV, Qahash M, Lim WH, Shanaman RH, Rohrer MD, Wikesjö UM, et al. Bone-implant contact at calcium phosphate-coated and porous titanium oxide (TiUnite)-modified oral implants. Clin Oral Implants Res 2005;16:532-9.

15. Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 2006;19:319-28.

16. Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 2006;19:319-28.

17. Al-Nawas B, Wagner W, Grötz KA. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants 2006;21:726-32.

18. Wikesjö UM, Susin C, Qahash M, Polimeni G, Leknes KN, Shanaman RH, et al. The critical-size supraaellite peri-implant defect model: Characteristics and use. J Clin Periodontol 2006;33:846-54.

19. Al-Nawas B, Groetz KA, Goetz H, Duschnner H, Wagner W. Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin Oral Implants Res 2008;19:1-8.

20. De Maert MA, Braceras I, Alava JL, Gay-Escoda C. Improvement of osseointegration of titanium dental implant surfaces modified with CO ions: A comparative histomorphometric study in beagle dogs. Int J Oral Maxillofac Surg 2008;37:441-7.

21. Albouy JP, Abrahamsson I, Persson LG, Berglundh T. Spontaneous progression of peri-implantitis at different types of implants. An experimental study in dogs I: Clinical and radiographic observations. Clin Oral Implants Res 2008;19:997-1002.

22. Albouy JP, Abrahamsson I, Persson LG, Berglundh T. Spontaneous progression of ligature induced peri-implantitis at implants with different surface characteristics. An experimental study in dogs II: Histological observations. Clin Oral Implants Res 2009;20:366-71.

23. Lee J, Sieweke JH, Rodriguez NA, Schüpbach P, Lindström H, Susin C, et al. Evaluation of nano-technology-modified zirconia oral implants: A study in rabbits. J Clin Periodontol 2009;36:610-7.

24. Sul YT, Jönsson J, Yoon GS, Johansson C. Resonance frequency measurements in vivo and related surface properties of magnesium-incorporated, micropatterned and magnesium-incorporated TiUnite, Osseotite, SLA and TiOblast implants. Clin Oral Implants Res 2009;20:1146-55.

25. Carmagnola D, Abati S, Addis A, Ferrieri G, Chiapasco M, Romeo E, et al. Time sequence of bone healing around two implant systems in minipigs: Preliminary histologic results. Int J Periodontics Restorative Dent 2009;29:549-55.

26. Gedrange T, Gredev T, Gredev M, Allegirni MR, Borsos G, Vég A, et al. Comparative animal study on hard tissue integration and bone formation of different Nobel Biocare implants. J Physiol Pharmacol 2009;60 Suppl 8:117-21.

27. Al-Ahmad A, Wiedmann-Al-Ahmad M, Faust J, Bächle M, Follo M, Wolkewitz M, et al. Biofilm formation and composition on different implant materials in vivo. J Biomed Mater Res B Appl Biomater 2010;95:101-9.

28. Albouy JP, Abrahamsson I, Persson LG, Berglundh T. Implant surface characteristics influence the outcome of treatment of peri-implantitis: An experimental study in dogs. J Clin Periodontol 2011;38:58-64.

29. Jimbo R, Ono D, Hirakawa Y, Odatu T, Tanaka T, Sawase T. Accelerated photo-induced hydrophilicity promotes osseointegration: An animal study. Clin Implant Dent Relat Res 2011;13:79-85.

30. Grüner D, Fäldt J, Jansson K, Shen Z, Argon ion beam polishing: A preparation technique for evaluating the interface of osseointegrated implants with high resolution. Int J Oral Maxillofac Implants 2011;26:547-52.

31. Kang SH, Cho SA. Comparison of removal torques for laser-treated titanium implants with anodized implants. J Craniofac Surg 2011;22:1491-5.
32. Jimbo R, Fernandez-Rodriguez J, Sul YT, Johansson CB. Principal component analysis: A novel analysis to evaluate the characteristics of osseointegration of different implant surfaces. Implant Dent 2011;20:364-8.

33. Papkos NM, Rodriguez NA, Lee J, Ruegggeber FA, Schüpbach P, Hall J, et al. Evaluation of a novel calcium phosphate-coated titanium porous oxide implant surface: A study in rabbits. Int J Oral Maxillofac Implants 2011;26:731-8.

34. Gostovic AS, Todrovic A, Lazic V, Todrovic A, Milinkovic L, Lekovic V. Immediate implant loading with fixed dental restorations – An animal model study. Vojnosanit Pregl 2012;69:181-9.

35. Alboury JP, Abrahamsson I, Berglundh T. Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics: An experimental study in dogs. J Clin Periodontol 2012;39:182-7.

36. Manfrin Arnez MF, Xavier SP, Pinto Faria PE, Pedrosa Júnior WF, Cunha TR, de Mendonça RJ, et al. Implant osseointegration in circumferential bone defects treated with latex-derived proteins or autogenous bone in dog’s mandible. Clin Implant Dent Relat Res 2012;14:135-43.

37. Choi JY, Lee HJ, Jang JU, Yeo IS. Comparison between bioactive fluoride modified and bioinert anodically oxidized implant surfaces in early bone response using rabbit tibia model. Implant Dent 2012;21:124-8.

38. Gottlow J, Barkermo S, Sannerby L. An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res 2012;14 Suppl 1:e204-12.

39. Carcuac O, Abrahamsson I, Alboury JP, Linder E, Larsson L, Berglundh T. Experimental periodontitis and peri-implantitis in dogs. Clin Oral Implants Res 2013;24:363-71.

40. Gomes JB, Campos FE, Marin C, Teixeira HS, Bonfante EA, Suzuki M, et al. Implant biomechanical stability variation at early maturation times in vivo: An experimental study in dogs. Int J Maxillofac Implants 2013;28:e128-34.

41. Park JW. Osseointegration of two different phosphate ion-containing titanium oxide surfaces in rabbit cancellous bone. Clin Oral Implants Res 2013;24 Suppl 1:A100:145-51.

42. Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A, Follo M, Hellwig E, Bächle M, et al. In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol 2013;58:1139-47.

43. Charalampakis G, Abrahamsson I, Carcuac O, Dahlén G, Berglundh T. Microbiota in experimental periodontitis and peri-implantitis in dogs. Clin Oral Implants Res 2014;25:1094-8.

44. Stokholm R, Isidor F, Nyengaard JR. Histologic and histomorphometric evaluation of peri-implant bone of immediate or delayed occlusal-loaded non-splinted implants in the posterior mandible – An experimental study in monkeys. Clin Oral Implants Res 2014;25:1311-8.

45. Dagher M, Mokbel N, Jabbour G, Naaman N. Resonance frequency analysis, insertion torque, and bone to implant contact of 4 implant surfaces: Comparison and correlation study in sheep. Implant Dent 2014;23:672-8.

46. Carcuac O, Abrahamsson I, Charalampakis G, Berglundh T. The effect of the local use of chlorhexidine in surgical treatment of experimental peri-implantitis in dogs. J Clin Periodontol 2015;42:196-203.

47. Stübinger S, Waser J, Hefi T, Drechsler A, Sidler M, Klein K, et al. Evaluation of local cancellous bone amelioration by poly-L-DL-lactide copolymers to improve primary stability of dental implants: A biomechanical study in sheep. Clin Oral Implants Res 2015;26:572-80.
64. Caous JS, Löwenklev M, Fälth J, Langton M. Adhesion of Streptococcus mitis and Actinomyces oris in co-culture to machined and anodized titanium surfaces as affected by atmosphere and pH. BMC Oral Health 2013;13:4.

65. Liu R, Lei T, Dusevich V, Yao X, Liu Y, Walker MP, et al. Surface characteristics and cell adhesion: A comparative study of four commercial dental implants. J Prosthodont 2013;22:641-51.

66. Liu W, Su P, Chen S, Wang N, Wang J, Liu Y, et al. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO$_2$ nanoparticle-decorated TiO$_2$ nanotubes. Nanomedicine (Lond) 2015;10:713-23.

67. Sharma A, McQuillan AJ, Sharma LA, Waddell JN, Shibata Y, Duncan WJ. Spark anodization of titanium-zirconium alloy: Surface characterization and bioactivity assessment. J Mater Sci Med 2015;26:221.

68. Grothøj J, Hamlekanha, Butt A, Patel S, Royman D, Shokuhfar T, et al. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V. Mater Sci Eng C Mater Biol Appl 2016;59:677-89.

69. Balshi SF, Wolfinger GJ, Balshi J. Analysis of 164 titanium oxide-surface implants incompletely edentulous arches for fixed prosthesis anchorage using the pterygomaxillary region. Int J Oral Maxillofac Implants 2005;20:946-52.

70. Brechting M, Nilson H, Lundgren S. Oxidized titanium implants in reconstructive jaw surgery. Clin Implant Dent Relat Res 2005;7 Suppl 1:S86-95.

71. Gläuser R, Ruhstaller P, Windisch S, Zembic A, Lundgren A, Gottlow J, et al. Immediate occlusal loading of Bränemark System TiUnite implants placed predominantly in soft bone: 4-year results of a prospective clinical study. Clin Implant Dent Relat Res 2005;7 Suppl 1:S52-9.

72. Renouard F, Nisand D. Short implants in the severely resorbed maxilla: A 2-year retrospective clinical study. Clin Implant Dent Relat Res 2005;7 Suppl 1:S104-10.

73. Aalam AA, Nowzari H. Clinical evaluation of dental implants with surfaces roughened by anodic oxidation, dual acid-etched implants, and machined implants. Int J Oral Maxillofac Implants 2005;20:793-8.

74. Degidi M, Perrotti V, Piattelli A. Immediately loaded titanium implants with a porous anodized surface with at least 36 months of follow-up. Clin Implant Dent Relat Res 2006;8:169-77.

75. Turkyilmaz I. A 3-year prospective clinical and radiologic analysis of early loaded maxillary dental implants supporting single-tooth crowns. Int J Prosthodont 2006;19:389-90.

76. Watzak G, Zechner W, Buserlechner D, Arnhart C, Gruber R, Watzek G. Radiological and clinical follow-up of machined- and anodized-surface implants after mean functional loading for 33 months. Clin Oral Implants Res 2006;17:651-7.

77. Turkyilmaz I, Avci M, Kuran S, Ozbek EN. A 4-year prospective clinical and radiological study of maxillary dental implants supporting single-tooth crowns using early and delayed loading protocols. Clin Implant Dent Relat Res 2007;9:222-7.

78. Turkyilmaz I, Tumer C. Early versus late loading of unplanted TiUnite surface implants supporting mandibular overdentures: A 2-year report from a prospective study. J Oral Rehabil 2007;34:773-80.

79. Balshi SF, Wolfinger GJ, Balshi TJ. A retrospective analysis of 44 implants with no rotational primary stability used for fixed prosthesis anchorage. Int J Oral Maxillofac Implants 2007;22:467-70.

80. Alsaadi G, Quirynen M, Komárek A, van Steenberghde D. Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection. J Clin Periodontol 2007;34:610-7.
postextraction sockets: Retrospective analysis of the 5-year clinical outcome. Clin Implant Dent Relat Res 2012;14:565-74.

98. Nicu EA, Van Assche N, Coucke W, Teughels W, Quirynen M. RCT comparing implants with turned and anodically oxidized surfaces: A pilot study, a 3-year follow-up. J Clin Periodontol 2012;39:1183-90.

99. Sánchez-Garcés MA, Costa-Berenguer X, Gay-Escoda C. Short implants: A descriptive study of 273 implants. Clin Implant Dent Relat Res 2012;14:508-16.

100. Gelb D, McAllister B, Nunnikoski P, Del Fabbro M. Clinical and radiographic evaluation of Brånemark implants with an anodized surface following seven-to-eight years of functional loading. Int J Dent 2013;2013:583567.

101. Arnhart C, Dvorak G, Treff C, Huber C, Watzek G, Zechner W. Impact of implant surface topography: A clinical study with a functional loading time of 85 months. Clin Oral Implants Res 2013;24:1049-54.

102. Rocci A, Rocci M, Rocci C, Scoccia A, Gargari M, Martignoni M, et al. Immediate loading of Brånemark system TiUnite and machined-surface implants in the posterior mandible, part II: A randomized open-ended 9-year follow-up clinical trial. Int J Oral Maxillofac Implants 2013;28:891-9.

103. Mozzati M, Gallesio G, Del Fabbro M. Long-term (9-12 Years) outcomes of titanium implants with an oxidized surface: A retrospective investigation on 209 implants. J Oral Implantol 2015;41:437-43.

104. Pettersson P, Sennenby L. A 5-year retrospective study on Replace Select Tapered dental implants. Clin Implant Dent Relat Res 2015;17:286-95.

105. Balshi TJ, Wolfinger GJ, Slauch RW, Balshi SF. A retrospective comparison of implants in the pterygomaxillary region: Implant placement with two-stage, single-stage, and guided surgery protocols. Int J Oral Maxillofac Implants 2013;28:184-9.

106. Sayardoust S, Gröndahl K, Johansson E, Thomsen P, Slotte C. Implant survival and marginal bone loss at turned and oxidized implants in periodontitis-susceptible smokers and never-smokers: A retrospective, clinical, radiographic case-control study. J Periodontol 2013;84:1775-82.

107. Jokstad A, Alkumru H. Immediate function on the day of surgery compared with a delayed implant loading process in the mandible: A randomized clinical trial over 5 years. Clin Oral Implants Res 2014;25:1325-35.

108. Jungner M, Lundqvist P, Lundgren S. A retrospective comparison of oxidized and turned implants with respect to implant survival, marginal bone level and peri-implant soft tissue conditions after at least 5 years in function. Clin Implant Dent Relat Res 2014;16:230-7.

109. Wagenberg B, Froum SJ. Long-term bone stability around 312 rough-surfaced immediately placed implants with 2-12-year follow-up. Clin Implant Dent Relat Res 2015;17:658-66.

110. Jungner M, Legrell PE, Lundgren S. Follow-up study of implants with turned or oxidized surfaces placed after sinus augmentation. Int J Oral Maxillofac Implants 2014;29:1380-7.

111. Friberg B, Jent T. Rehabilitation of edentulous mandibles by means of osseointegrated implants: A 5-year follow-up study on one or two-stage surgery, number of implants, implant surfaces, and age at surgery. Clin Implant Dent Relat Res 2015;17:413-24.

112. Maló P, de Araújo Nobre M, Lopes A, Queridinha B, Ferro A, Gravito I. Axial implants in immediate function for partial rehabilitation in the maxilla and mandible: A retrospective clinical study evaluating the long-term outcome (Up to 10 Years). Implant Dent 2015;24:557-64.

113. Jent T, Olsson M, Franke Stenport V. Incidence of first implant failure: A retrospective study of 27 years of implant operations at one specialist clinic. Clin Implant Dent Relat Res 2015;17 Suppl 2:e501-10.

114. Maló P, de Araújo Nobre M, Lopes A, Ferro A, Gravito I. Single-tooth rehabilitations supported by dental implants used in an immediate-provisionalization protocol: Report on long-term outcome with retrospective follow-up. Clin Implant Dent Relat Res 2015;17 Suppl 2:e511-9.

115. Lekholm U, Adell R, Brånemark PI. Possible complications. In: Brånemark PI, Zarb GA, Albrektsson T, editors. Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence; 1985. p. 233-40.

116. Wallace SS, Froum SJ. Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol 2003;8:328-43.

117. Tatum H Jr. Maxillary and sinus implant reconstructions. Dent Clin North Am 1986;30:207-29.

118. Brånemark PI, Gröndahl K, Ohrnell LO, Nilsson P, Petruson B, Svensson B, et al. Zygooma fixture in the management of advanced atrophy of the maxilla: Technique and long-term results. Scand J Plast Reconstr Surg Hand Surg 2004;38:70-85.

119. Ivanoff CJ, Widmark G, Johannson C, Wenerberg A. Histologic evaluation of bone response to oxidized and turned titanium micro-implants in human jawbone. Int J Oral Maxillofac Implants 2003;18:341-8.

120. Knobloch L, Larsen PA, Rashid B, Carr AB. Six-month performance of implants with oxidized and machine surfaces restored at 2, 4, and 6 weeks postimplantation in adult beagle dogs. Int J Oral Maxillofac Implants 2004;19:350-6.

121. Massaro C, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, et al. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: Chemical composition. J Mater Sci Mater Med 2002;13:535-48.

122. Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg 1980;38:613-6.

123. Sailer HF. A new method of inserting endosseous implants in totally atrophic maxillae. J Craniomaxillofac Surg 1989;17:299-305.

124. Adell R, Lekholm U, Gröndahl K, Brånemark PI, Lindstrom L, Jacobsson M. Reconstruction of severely resorbed edentulous maxillae using osseointegrated fixtures in immediate autologous bone grafts. Int J Oral Maxillofac Implants 1990;5:233-46.

125. Lundgren S, Nyström E, Nilson H, Gunne J, Lindhagen O. Bone grafting to the maxillary sinuses, nasal floor and anterior maxilla in the atrophic edentulous maxilla. A two-stage technique. Int J Oral Maxillofac Surg 1997;26:428-34.

126. Nyström E, Lundgren S, Gunne J, Nilson H. Interpositional bone grafting and Le Fort I osteotomy for reconstruction of the atrophic edentulous maxilla. A two-stage technique. Int J Oral Maxillofac Surg 1997;26:423-7.

127. Cicchino G, Lundgren S. Donor site morbidity in two different approaches to anterior iliac crest bone harvesting. Clin Implant Dent Relat Res 2003;5:161-9.

128. Morton D, Jaffin R, Weber HP. Immediate restoration and loading of dental implants: Clinical considerations and protocols. Int J Oral Maxillofac Implants 2004;19 Suppl 1:103-8.

129. Glauser R, Rée A, Lundgren A, Gottlow J, Hämmmerle CH, Schärer P. Immediate occlusal loading of Brånemark implants applied in various jawbone regions: A prospective, 1-year clinical study. Clin Implant Dent Relat Res 2001;3:204-13.

130. Rocci A, Martignoni M, Gottlow J. Immediate loading in the maxilla using flapless surgery, implants placed in predetermined positions, and prefabricated provisional restorations: A
retrospective 3-year clinical study. Clin Implant Dent Relat Res 2003;5 Suppl 1:29-36.
131. Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res 2002;13:252-9.
132. Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416.
133. Jung YC, Han CH, Lee KW. A 1-year radiographic evaluation of marginal bone around dental implants. Int J Oral Maxillofac Implants 1996;11:811-8.
134. Jemt T, Lekholm U, Gröndahl K. 3-year followup study of early single implant restorations ad modum Brånemark. Int J Periodontics Restorative Dent 1990;10:340-9.
135. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant – A three-dimensional finite element analysis. J Oral Rehabil 2005;32:279-86.
136. Berglundh T, Gotfredsen K, Zitzmann NU, Lang NP, Lindhe J. Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: An experimental study in dogs. Clin Oral Implants Res 2007;18:655-61.
137. Wennström JL, Ekestubbe A, Gröndahl K, Karlsson S, Lindhe J. Oral rehabilitation with implant-supported fixed partial dentures in periodontitis-susceptible subjects. A 5-year prospective study. J Clin Periodontol 2004;31:713-24.