A REMARK ON PERIMETER-DIAMETER AND
PERIMETER-CIRCUMRADIUS INEQUALITIES UNDER
LATTICE CONSTRAINTS

BERNARDO GONZÁLEZ MERINO AND MATTHIAS HENZE

Abstract. In this note, we study several inequalities involving geo-
metric functionals for lattice point-free planar convex sets. We focus on
the previously not addressed cases perimeter–diameter and perimeter–
circumradius.

1. Introduction

Let \mathcal{K}^2 be the set of all planar closed convex sets and denote by \mathbb{Z}^2
the standard integer lattice in \mathbb{R}^2. Some $K \in \mathcal{K}^2$ is called lattice-free if
$\text{int} K \cap \mathbb{Z}^2 = \emptyset$, that is, the interior of K does not contain any lattice point
of \mathbb{Z}^2.

The perimeter, diameter, circumradius, inradius, minimal width and the
area of a convex body $K \in \mathcal{K}^2$ are denoted by $p(K)$, $D(K)$, $R(K)$, $r(K)$,
$\omega(K)$ and $A(K)$, respectively. The study of optimal relations between two
of these functionals (for convex sets of arbitrary dimension) is a classical
problem in Convex Geometry (cf. [BF87, pp. 56–59]).

In the planar case, there is an extensive bibliography if one adds the
extra assumption that K is lattice-free (cf. [CFG94, EGH89, GW93, Ham77,
HCS98, Sco88]). For this situation, Hillock & Scott [HS02] collected the
known best possible inequalities relating pairs of the six functionals above.

The only pairs that are missing in their list are (p, D) and (p, R). They
have not been addressed so far and are the subject of our interest. The fact
that lattice-freeness is not preserved by arbitrary scaling is usually reflected
in the non-homogeneity of the geometric inequalities that are derived. In
this spirit, we propose the study of sharp upper bounds for the non-negative
functionals $p(K) - 2D(K)$ and $p(K) - 4R(K)$, for lattice-free $K \in \mathcal{K}^2$. The
existence of such upper bounds is proven by

\[p(K) - 4R(K) \leq p(K) - 2D(K) \leq 2.65, \]

which follows from $\sqrt{3}D(K)(p(K)-2D(K)) \leq 4A(K)$ (see [Kub24]) together
with $A(K) \leq \lambda D(K)$ (see [Sco74]), $\lambda \approx 1.144$.

We conjecture, however, that the following bounds are the best possible

\[p(K) - 2D(K) \leq 1 + \frac{2}{\sqrt{3}} \approx 2.1547 \quad \text{and} \quad p(K) - 4R(K) \leq 2. \]

2000 Mathematics Subject Classification. Primary 52A10; Secondary 52A40, 52C05.
Key words and phrases. lattice-free sets, geometric inequalities.

BM was supported by MINECO project MTM2012-34037 and by “Programa de Ayudas
a Grupos de Excelencia de la Región de Murcia”, Fundación Séneca, 04540/GERM/06 and
MH by the ESF EUROCORES programme EuroGIGA-VORONOI, (DFG): Ro 2338/5-1.
The equilateral triangle of edge lengths $1 + 2/\sqrt{3}$ for the pair (p, D) and the split $\{x \in \mathbb{R}^2 : 0 \leq x_2 \leq 1\}$ for the pair (p, R) attain equality.

In the following, we prove our conjectured inequalities in various cases, and offer sharp bounds on some non-linear functionals related to these magnitudes. A general proof for (1.1) has to be left as an open problem.

For our first result, we need to recall the notion of an unconditional set: some $K \in \mathcal{K}^2$ that is symmetric with respect to the lines $z + \text{lin}\{e_1\}$ and $z + \text{lin}\{e_2\}$, for a suitable $z \in \mathbb{R}^2$.

Theorem 1.1. Let $K \in \mathcal{K}^2$ be lattice-free and unconditional. Then
\begin{equation}
(p(K) - 2D(K) = p(K) - 4R(K) \leq 2.
\end{equation}
The inequality is best possible.

Often one can apply appropriate Steiner symmetrizations to a general lattice-free K to obtain a lattice-free unconditional set (cf. [Sco74]). Unfortunately, this method usually decreases the functional $p(K) - 4R(K)$ and hence is not applicable in our situation.

Our second result shows the validity of the first conjectured inequality in (1.1) for triangles.

Theorem 1.2. Let $T \in \mathcal{K}^2$ be a lattice-free triangle. Then
\begin{equation}
p(T) - 2D(T) \leq \frac{2}{\sqrt{3}} \left(1 + \frac{\omega(T)}{D(T)}\right).
\end{equation}
In particular, $p(T) - 2D(T) \leq 1 + 2/\sqrt{3}$, and equality holds in (1.3) if and only if T is an equilateral triangle with edge lengths $1 + 2/\sqrt{3}$.

Note that the refined inequality (1.3) is specific to triangles and does not hold for general lattice-free convex sets.

Complementing the partial results above, we found the following sharp, yet weaker inequalities relating the magnitudes of interest.

Theorem 1.3. Let $K \in \mathcal{K}^2$ be lattice-free. Then
\begin{enumerate}
 \item $\frac{D(K) - 1}{D(K)}(p(K) - 2D(K)) < 2$,
 \item $\frac{2R(K) - 1}{2R(K)}(p(K) - 4R(K)) < 2$.
\end{enumerate}
None of the inequalities can be improved.

Observe that our conjectured bound for the pair (p, D) in (1.1) is independent from inequality i) above, whereas the conjectured bound for (p, R) would strengthen inequality ii) by $\frac{2R(K) - 1}{2R(K)}(p(K) - 4R(K)) \leq 2R(K) - 1 \cdot 2 < 2$.

2. Proofs of the inequalities

Proof of Theorem 1.1. First of all, since K is unconditional we have $D(K) = 2R(K)$ and it suffices to show the inequality $p(K) - 4R(K) \leq 2$.

Let $z \in \mathbb{R}^2$ be the center of symmetry of K. Note, that z lies in the interior of K and is at the same time its circumcenter. As \mathbb{Z}^2 is symmetric with respect to the coordinate axes, we may assume that after suitable reflections and translations of K its center z is contained in $[0, 1/2]^2$.

Since $0 \notin \text{int}K$, there exists a supporting line L of K with $0 \in L$. We first suppose that $L \cap [0, 1]^2 \neq \{0\}$. Since $z \in [0, 1/2]^2$, it holds $d(z, L) = \ldots$
min_{y \in L} \|z - y\| \leq 1/2$, where $\| \cdot \|$ denotes the Euclidean norm. Due to the unconditionality of K, the symmetric line L' to L with respect to z supports K as well. Therefore, K is contained in the strip determined by L and L' which has width at most 1, hence $r(K) \leq 1/2$. Using an inequality of Henk & Tsintsifas [HT94], we get $p(K) \leq 4R(K) + 4r(K) \leq 4R(K) + 2$, as desired.

We now consider the case $L \cap [0,1]^2 = \{0\}$. We shoot a ray from z in direction $(-1,-1)$ and let $q \in L$ be the intersection point of this ray and L. Since L has negative slope, $q_1 \geq 0$ if $z_1 \geq z_2$, and $q_2 \geq 0$ if $z_1 \leq z_2$. In both cases, it follows that $0 \neq \lambda = \|z - q\| \leq 1/\sqrt{2}$. Let $K' := (\lambda \sqrt{2})^{-1}(-q + K)$. The functionals p and R are homogeneous of degree 1, and so

$$p(K) - 4R(K) \leq (\lambda \sqrt{2})^{-1}(p(K) - 4R(K)) = p(K') - 4R(K').$$

We observe that K' is unconditional with respect to $(\lambda \sqrt{2})^{-1}(-q + z) = (1/2, 1/2)$, and the line $(\lambda \sqrt{2})^{-1}(-q + L) = L$ supports K'. Moreover, the unconditionality of K' implies that the lines L_1, L_2, and L_3 symmetric to L, with respect to $(1/2, 1/2)$, $(1/2, 1/2) + \text{lin}\{e_1\}$, and $(1/2, 1/2) + \text{lin}\{e_2\}$, respectively, support K'. Thus $K' \subseteq Q$, where Q is the rhombus determined by these four lines and therefore K' is lattice-free. By definition of the circumradius, we have $K' \subseteq (1/2, 1/2) + R(K')[−1,1]^2 = Q'$. Thus $K' \subseteq Q \cap Q'$ and hence $p(K') \leq p(Q \cap Q')$.

In the last step, we show

$$(2.1) \quad p(Q \cap Q') \leq p((1/2, 1/2) + [-R(K'), R(K')] \times [-1/2, 1/2])$$

$$= 4R(K') + 2,$$

which implies the desired inequality (see Figure 1). To this end, we remark that the four vertices of Q cannot all lie in $\text{int}Q'$, as this would mean that $R(Q) < R(K') \leq R(Q)$, a contradiction. Thus, we assume without loss of generality that the two vertices of Q that are contained in the line $(1/2, 1/2) + \text{lin}\{e_2\}$ lie outside of $\text{int}Q'$.

Let N be the intersection point of L and the boundary of Q' with $N_1 \leq 0$, and let M be the intersection point of L with the boundary of $[0,1/2] \times [-R(K') + 1/2, 0]$ with $M_1 \geq 0$. Moreover, we define the following distances of segments in Q and Q' (see Figure 1):

$$a = \|M\|, A = |M_1|, B' = |M_2|, \quad \text{and} \quad b = \|N\|, B = |N_1|, C = |N_2|.$$

By the symmetry of $Q \cap Q'$, it is enough to prove $a + b \leq A + B + C$ in order to get (2.1). Using basic properties of homothetic triangles and Pythagoras’ theorem, we obtain

$$B' \leq B, \quad \frac{a}{A} = \frac{b}{B}, \quad b^2 = B^2 + C^2, \quad \frac{C}{B} = \frac{B'}{A}.$$

Writing $a = bA/B$ and $b = \sqrt{B^2 + C^2}$, the inequality $a + b \leq A + B + C$ becomes

$$\sqrt{B^2 + C^2} (A + B) \leq B(A + B + C).$$

Since $C = BB'/A$, this is equivalent to

$$\sqrt{A^2 + (B')^2} (A + B) \leq A^2 + AB + BB'.$$
Taking squares on both sides gives
\[AB' + 2BB' \leq 2AB + 2B^2, \]
which follows from \(B' \leq B \). Therefore, inequality (2.1) holds and we have \(p(K) - 4R(K) \leq p(Q \cap Q') - 4R(K') \leq 2 \). \(\square \)

Remark 2.1. The first part of the above proof shows that, in general, if \(r(K) \leq 1/2 \) for some \(K \in K^2 \), then \(p(K) - 4R(K) \leq 2 \).

Proof of Theorem 1.2. We start by determining the scaling factor \(\lambda > 0 \) for which \(T' = \lambda T \) is such that the length of the segment \(T' \cap L \) is equal to 1, where \(L \) is the line that is parallel and at distance 1 to the longest edge \(e \) of \(T' \) and on the same side of \(e \) as the vertex of \(T' \) that is not contained in \(e \) (see Figure 2).

Since the diameter of \(T' \) is attained by its longest edge, we get from Thales’ Theorem that
\[\frac{1}{\lambda \omega(T) - 1} = \frac{1}{\omega(T') - 1} = \frac{D(T')}{\omega(T')} = \frac{\lambda D(T)}{\omega(T)} = \frac{D(T)}{\omega(T)}, \]
and thus \(\lambda = (\omega(T) + D(T))/(\omega(T)D(T)) \). Scott [Scn78] showed that for lattice-free \(T \) it holds \((\omega(T) - 1)(D(T) - 1) \leq 1 \). This is equivalent to \(\omega(T)D(T) \leq \omega(T) + D(T) \) and hence \(\lambda \geq 1 \). Therefore, we have \(p(T) - 2D(T) \leq \lambda(p(T) - 2D(T)) = p(T') - 2D(T') \) and we can restrict our attention to the triangle \(T' \).
Therefore, with vertices \((\frac{\ell}{1+\omega}, \frac{\ell+1}{1+\omega})\) the third vertex of \(T'\), and moreover \(\omega(T') = \frac{\ell+1}{1+\omega}\) and \(D(T') = \ell + r + 1\). The vertices \(\left(\frac{\ell}{1+\omega}, \frac{\ell+1}{1+\omega}\right)\) and \((r+1, 0)\) determine an edge of length at most \(D(T')\), and thus

\[
\ell + r + 1 \geq \left(r + 1 - \frac{\ell}{\ell + r} \right)^2 + \left(\frac{\ell + r + 1}{\ell + r} \right)^2.
\]

Taking squares and dividing by \((\ell + r + 1)^2\) we obtain \((\ell + r)^2 \geq r^2 + 1\), and hence \(\ell \geq \sqrt{r^2 + 1} - r\). Together with \(\ell \leq r\), this gives \(r \geq 1/\sqrt{3}\).

As \(p(T') - 2D(T')\) equals the sum of the short edges minus \(D(T')\), we get

\[
p(T') - 2D(T') = \frac{\ell + r + 1}{\ell + r} \left(\sqrt{r^2 + 1} - r + \sqrt{\ell^2 + 1 - \ell} \right)
= \omega(T') \left(\sqrt{r^2 + 1} - r + \sqrt{\ell^2 + 1 - \ell} \right).
\]

Since \(f(r) = \sqrt{r^2 + 1} - r\) is non-increasing and \(\ell \geq \sqrt{r^2 + 1} - r\), we get an upper bound on \(p(T') - 2D(T')\) by substituting \(\ell\) by \(\sqrt{r^2 + 1} - r\) as follows

\[
p(T') - 2D(T') \leq \omega(T') \sqrt{(\sqrt{r^2 + 1} - r)^2 + 1}.
\]

Now, we define \(g(r) = \sqrt{f(r)^2 + 1}\) and we compute that

\[
g'(r) = \left(\frac{\sqrt{r^2 + 1} - 1}{\sqrt{(r - \sqrt{r^2 + 1})^2 + 1}}\right) \leq 0.
\]

Therefore, \(g(r)\) is non-increasing as well, and by \(r \geq 1/\sqrt{3}\), we have \(g(1/\sqrt{3}) = 2/\sqrt{3}\). Using the formula for the scaling factor \(\lambda\), we arrive at

\[
\tag{2.2}
p(T) - 2D(T) \leq p(T') - 2D(T') \leq \frac{2}{\sqrt{3}}\omega(T')
= \frac{2}{\sqrt{3}} \lambda \omega(T) = \frac{2}{\sqrt{3}} \left(1 + \frac{\omega(T)}{D(T)}\right).
\]

It is easy to see that \(\omega(T) \leq \sqrt{3}/2 D(T)\), and hence \(p(T) - 2D(T) \leq 1 + 2/\sqrt{3}\).

Tracing back the inequalities, we see that equality holds in (2.2) if and only if \(\lambda = 1\) and \(\ell = r = 1/\sqrt{3}\). This means that \(T\) is similar to the triangle with vertices \((-1/\sqrt{3}, 0), (1 + 1/\sqrt{3}, 0),\) and \((1/2, 1 + 1/\sqrt{3}/2)\). This triangle is equilateral with edge lengths \(1 + 2/\sqrt{3}\). \(\square\)

Proof of Theorem 1.3. The claimed inequalities are direct consequences of \((2r(K) - 1)(D(K) - 1) < 1\) (see [AS96]), \((2r(K) - 1)(2R(K) - 1) < 1\) (see [SA99]), and \(p(K) \leq 2D(K) + 4r(K) \leq 4R(K) + 4r(K)\) (see [HT94]).

We may assume, that \(D(K) > 1\) and \(R(K) > \frac{1}{2}\), respectively, since i) and ii) are otherwise certainly true. Now, we have

\[
p(K) \leq 2D(K) + 4r(K) < 2D(K) + 2\frac{D(K)}{D(K) - 1},
\]
which shows i), and part ii) follows analogously from
\[
p(K) \leq 4R(K) + 4r(K) < 4R(K) + 2 - \frac{2R(K)}{2R(K) - 1}.
\]

Let’s see why the inequalities are tight. Let \(K_n = \text{conv}\{ (\pm n, 0), (\pm n, 1) \}\), for \(n \in \mathbb{N}\). Clearly, \(K_n\) is lattice-free, \(D(K_n) = 2R(K_n)\), and for \(n \to \infty\),
\[
\frac{D(K_n) - 1}{D(K_n)} \left(p(K_n) - 2D(K_n) \right) = \frac{2R(K_n) - 1}{2R(K_n)} \left(p(K_n) - 4R(K_n) \right)
= \frac{2}{2} \sqrt{n^2 + \frac{1}{4}} - 1
= \frac{2}{2} \sqrt{n^2 + \frac{1}{4}} \left(4n + 2 - 4 \sqrt{n^2 + \frac{1}{4}} \right) \geq 2.
\]

Acknowledgements. The second author gratefully acknowledges the hospitality of the group Convex and Differential Geometry at the University of Murcia where part of this research was carried out. We thank María Hernández Cifre for valuable comments and fruitful discussions.

REFERENCES

[AS96] Poh W. Awyong and Paul R. Scott, New inequalities for planar convex sets with lattice point constraints, Bull. Austral. Math. Soc. 54 (1996), no. 3, 391–396.

[BF87] Tommy Bonnesen and Werner Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987, Translated from the German and edited by L. Boron, C. Christenson and B. Smith.

[CFG94] Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved problems in geometry, Problem Books in Mathematics, Springer-Verlag, New York, 1994, Corrected reprint of the 1991 original, Unsolved Problems in Intuitive Mathematics, II.

[EGH89] Paul Erdős, Peter M. Gruber, and Joseph Hammer, Lattice points, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 39, Longman Scientific & Technical, Harlow, 1989.

[GW93] Peter Gritzmann and Jörg M. Wills, Lattice points, Handbook of convex geometry, Vol. A. B, North-Holland, Amsterdam, 1993, pp. 767–797.

[Ham77] Joseph Hammer, Unsolved problems concerning lattice points, Pitman, London, 1977, Research Notes in Mathematics, No. 15.

[HCS98] María A. Hernández Cifre and Paul R. Scott, An isodiametric problem with lattice-point constraints, Bull. Austral. Math. Soc. 57 (1998), no. 2, 289–294.

[HS02] Poh W. Hillock and Paul R. Scott, Inequalities for lattice constrained planar convex sets, JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 23, 10 pp. (electronic).

[HT94] Martin Henk and George A. Tsintsifas, Some inequalities for planar convex figures, Elem. Math. 49 (1994), no. 3, 120–125.

[Kub24] Tadahiko Kubota, Eine Ungleichheit für die Eilinien, Math. Z. 20 (1924), no. 1, 264–266.

[SA99] Paul R. Scott and Poh W. Awyong, Inradius and circumsradius for planar convex bodies containing no lattice points, Bull. Austral. Math. Soc. 59 (1999), no. 1, 163–168.

[Sco74] Paul R. Scott, Area-diameter relations for two-dimensional lattices, Math. Mag. 47 (1974), 218–221.

[Sco78] Paul R. Scott, Two inequalities for convex sets in the plane, Bull. Austral. Math. Soc. 19 (1978), no. 1, 131–133.

[Sco88] Two inequalities for convex sets in the plane, Bull. Austral. Math. Soc. 29 (1988), no. 1, 13–20.
A REMARK ON INEQUALITIES UNDER LATTICE CONSTRAINTS

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, CAMPUS ESPINARDO,
30100-MURCIA, SPAIN
E-mail address: bgmerino@um.es

INSTITUT FÜR INFORMATIK, FREIE UNIVERSITÄT BERLIN, TAKUSTRASSE 9, 14195
BERLIN, GERMANY
E-mail address: matthias.henze@fu-berlin.de