Venezia, 7 March ‘07

Models of Neutrino Masses and Mixings: a Progress Report

G. Altarelli
Universita' di Roma Tre/CERN
The exp. situation for masses and mixing is still unclear

- LSND: true or false? -> MiniBooNE soon (??) will tell
- what is the absolute scale of ν masses? θ_{13}? (θ_{23}-45°) ?
- no detection of 0νββ (proof that ν’s are Majorana)......

Different classes of models are still possible:

If LSND true

sterile ν(s)??
CPT violat’n??
ν_{sterile}

If LSND false

3 light ν's are OK

• Degenerate (m^2 >> Δm^2)
 m^2 < o(1)eV^2

• Inverse hierarchy
 m^2 ~ 10^{-3} eV^2

• Normal hierarchy
 m^2 ~ 10^{-3} eV^2
Model building: Quality factors for models:
(higher standards by now!)

- Based on the most general lagrangian compatible with some simple symmetry or dynamical principle

- Should be complete: address at least charged leptons and neutrinos \((U^\text{P-NMS} = U^+_e U^v, \text{and the gauge symmetry connects ch. leptons and LH neutrinos}) \)

- As many as possible small parameters (masses and mixings) should be naturally explained as a consequence.

- The necessary vev configuration should be a minimum of the most general potential for a region of parameter space

- The stability under radiative corrections and higher dim operators must be checked

- Simplicity, economy of fields and parameters, predictivity...
Some recent work by our group
G.A., F. Feruglio, I. Masina, hep-ph/0402155,
G.A., F. Feruglio, hep-ph/0504165, hep-ph/0512103,
G.A, R. Franceschini, hep-ph/051220,
G.A., F. Feruglio, Y. Li hep-ph/0610165;
F. Feruglio, C. Hagedorn, Y. Li, L. Merlo, hep-ph/0702194

Reviews:
G.A., F. Feruglio, New J. Phys. 6:106, 2004 [hep-ph/0405048],
G.A., hep-ph/0410101, F. Feruglio, hep-ph/0410131,
G.A, hep-ph/0611117.
General remarks

• After KamLAND, SNO and WMAP.... not too much hierarchy is needed for ν masses:

$$r \sim \Delta m_{\text{sol}}^2 / \Delta m_{\text{atm}}^2 \sim 1/30$$

Only a few years ago could be as small as 10^{-8}!

Precisely at 2σ: $0.025 < r < 0.049$

or

$$m_{\text{heaviest}} < 0.2 \text{ - } 0.7 \text{ eV}$$

$$m_{\text{next}} > \sim 8 \times 10^{-3} \text{ eV}$$

For a hierarchical spectrum: $\frac{m_2}{m_3} \approx \sqrt{r} \approx 0.2$

Comparable to $\lambda_c = \sin \theta_c$:

$$\lambda_c \approx 0.22 \text{ or } \sqrt[3]{\frac{m_\mu}{m_\tau}} \approx 0.24$$

Suggests the same “hierarchy” parameters for q, l, ν

(smaller powers of λ_c) \rightarrow e.g. θ_{13} not too small!
• Still large space for non maximal 23 mixing

\[2-\sigma \text{ interval } 0.32 < \sin^2 \theta_{23} < 0.62\]

Maximal \(\theta_{23}\) theoretically hard

• \(\theta_{13}\) not necessarily too small
 probably accessible to exp.

Very small \(\theta_{13}\) theoretically hard

"Normal" models: \(\theta_{23}\) large but not maximal, \(\theta_{13}\) not too small (\(\theta_{13}\) of order \(\lambda_\text{C}\) or \(\lambda_\text{C}^2\))

"Exceptional" models: \(\theta_{23}\) very close to maximal and/or \(\theta_{13}\) very small
or: a special value for \(\theta_{12}\)....
Natural models of the “normal” type are not too difficult to build up (with normal or inverse or degenerate hierarchy)

Review: G.A., F. Feruglio, New J.Phys.6:106,2004 [hep-ph/0405048],

It is reasonable to attribute hierarchies in masses and mixings to differences in some flavour quantum number(s).

A simplest flavour (or horizontal) symmetry is $U(1)_F$
For example, simple models based on see-saw and $U(1)_F$
work for all quarks and leptons, explain all small numbers,
are natural and compatible with (SUSY) GUT’s, e.g $SU(5) \times U(1)_F$
(accommodation rather than prediction).

Larger flavour symmetry groups have also been studied.
They are more predictive but less flexible.
The problem of the "best" flavour group is still open.

The most ambitious models try to combine (SUSY) $SO(10)$ GUT's with a suitable flavour group
Here we concentrate on “exceptional” models, in particular on models for “tri-bimaximal” mixing.

The most general mass matrix for $\theta_{13}=0$ and θ_{23} maximal is given by (after ch. lepton diagonalization!!):

\[
 m_\nu = \begin{bmatrix}
 x & y & y \\
 y & z & w \\
 y & w & z
 \end{bmatrix}
\]

Neglecting Majorana phases it depends on 4 real parameters (3 mass eigenvalues and 1 mixing angle: θ_{12}).

Inspired models based on $\mu-\tau$ symmetry

Grimus, Lavoura..., Ma,..., Mohapatra, Nasri, Hai-Bo Yu
Tri-bimaximal Mixing

A simple mixing matrix compatible with all present data

\[U = \begin{pmatrix}
\sqrt{2} & 1 & 0 \\
\sqrt{3} & \sqrt{3} & 0 \\
-1 & 1 & -1 \\
-1 & 1 & 1 \\
\sqrt{6} & \sqrt{3} & \sqrt{2}
\end{pmatrix} \]

In the basis of diagonal ch. leptons:

\[m_\nu = U \text{diag}(m_1, m_2, m_3) U^T \]

Eigenvectors:

\[m_3 \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \quad m_2 \rightarrow \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad m_1 \rightarrow \frac{1}{\sqrt{6}} \begin{pmatrix} 4 \\ -2 \\ -2 \end{pmatrix} \]

Note: mixing angles independent of mass eigenvalues
Comparison with experiment:

At 1σ:

Fogli et al ‘05

$\sin^2\theta_{12} = 1/3 : 0.290-0.342$

$\sin^2\theta_{23} = 1/2 : 0.39-0.53$

$\sin^2\theta_{13} = 0 : < 0.02$

The HPS mixing is clearly a very good approx. to the data!

Also called:
Tri-Bimaximal mixing

$v_3 = \frac{1}{\sqrt{2}}(-v_\mu + v_\tau)$

$v_2 = \frac{1}{\sqrt{3}}(v_e + v_\mu + v_\tau)$
For the HPS mixing matrix all mixing angles are fixed to particularly symmetric values

It is interesting to construct models that can naturally produce this highly ordered structure

Models based on the A4 discrete symmetry (even permutations of 1234) are very interesting (minimal solution)

Ma...;	GA, Feruglio hep-ph/0504165, hep-ph/0512103
	GA, Feruglio hep-ph/0610165

Alternative models based on SU(3)$_F$ or SO(3)$_F$

Verzielas, G. Ross, King

......
A4 is the discrete group of even perm’s of 4 objects.
(the inv. group of a tetrahedron). It has $4!/2 = 12$ elements.

An element is $abcd$ which means $1234 \rightarrow abcd$

C_1: 1 = 1234
C_2: T = 2314 ST = 4132 TS = 3241 STS = 1423
C_3: $T^2 = 3124$ $ST^2 = 4213$ $T^2S = 2431$ TST = 1342
C_4: S = 4321 $T^2ST = 3412$ TST$^2 = 2143$

Thus A4 transf.s can be written as:

1, T, S, ST, TS, T^2, TST, STS, ST^2, T^2S, T^2ST, TST2

with: $S^2 = T^3 = (ST)^3 = 1$ [(TS)$^3 = 1$ also follows] x, x' in same class if

C_1, C_2, C_3, C_4 are equivalence classes [x' ~ gxg^{-1}] g: group element
A4 has only 4 irreducible inequivalent representations: \(1, 1', 1'', 3\)

Table of Multiplication:
\(1' \times 1' = 1''\); \(1'' \times 1'' = 1'\); \(1' \times 1'' = 1\)
\(3 \times 3 = 1 + 1' + 1'' + 3 + 3\)

A4 is well fit for 3 families!

Ch. leptons \(l \sim 3\)
\(e^c, \mu^c, \tau^c \sim 1, 1', 1''\)

\(S\)	\(T\)
\(a_1, -a_2, -a_3\)	\(a_2, a_3, a_1\)

In the (S-diag basis) consider \(3\): \((a_1, a_2, a_3)\)

For \(3_1 = (a_1, a_2, a_3)\), \(3_2 = (b_1, b_2, b_3)\) we have in \(3_1 \times 3_2\):

\[
1 = a_1 b_1 + a_2 b_2 + a_3 b_3 \\
1' = a_1 b_1 + \omega^2 a_2 b_2 + \omega a_3 b_3 \\
1'' = a_1 b_1 + \omega a_2 b_2 + \omega^2 a_3 b_3
\]

\[1'' = a_1 b_1 + \omega a_2 b_2 + \omega^2 a_3 b_3 \rightarrow a_2 b_2 + \omega a_3 b_3 + \omega^2 a_1 b_1 = \]

\[= \omega^2 [a_1 b_1 + \omega a_2 b_2 + \omega^2 a_3 b_3] \]

\(\bigoplus\) while, under \(S\), \(1''\) is inv.
Three singlet inequivalent representations:

Recall:
\[S^2 = T^3 = (ST)^3 = 1 \]

\[
\begin{align*}
1: & \quad S=1, \ T=1 \\
1': & \quad S=1, \ T=\omega \\
1'': & \quad S=1, \ T=\omega^2
\end{align*}
\]

The only independent 3-dim representation is obtained by:

\[
S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \quad T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}
\]

(S-diag basis)

An equivalent form:

\[
S' = \frac{1}{3} \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix} = VSV^\dagger \quad \quad T' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix} = VTV^\dagger
\]

(T-diag basis)

\[
\omega = \exp i \frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}
\]

\[
\omega^3 = 1 \\
1 + \omega + \omega^2 = 0 \\
\omega^2 = \omega^*\]

\[
VV^\dagger = V^\dagger V = 1
\]

\[
V = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega \\ 1 & \omega^2 & \omega^2 \end{bmatrix}
\]

Cabibbo '78
What can be the origin of A4? G.A., F. Feruglio, Y. Li hep-ph/0610165

A4 (or some other discrete group) could arise from extra dimensions (by orbifolding with fixed points) as a remnant of 6-dim spacetime symmetry.

\[z = x_5 + ix_6 \]

A torus with identified points:

- \(z \rightarrow z + 1 \)
- \(z \rightarrow z + \gamma \quad \gamma = \exp(i\pi/3) \)

and a parity \(z \rightarrow -z \)

leads to 4 fixed points (equivalent to a tetrahedron).

There are 4D branes at the fixed points where the SM fields live (additional gauge singlets are in the bulk)

\(\bigoplus \) A4 interchanges the fixed points
Under A4 the most common classification is:

lepton doublets $l \sim 3$

$e^c, \mu^c, \tau^c \sim 1, 1', 1''$ respectively

gauge singlet flavons $\phi, \phi', \xi, (\xi') \sim 3, 3, 1,(1)$ respectively
driving fields (for SUSY version) $\phi_0, \phi'_0, \xi_0 \sim 3, 3, 1$

Additional symmetries: broken $U(1)_F$ symmetry (ch. lepton masses) with e^c, μ^c, τ^c charges $(3$ or $4,2,0)$

and a discrete symmetry (dep. on versions): for example

$z: (e^c, \mu^c, \tau^c) \rightarrow -i (e^c, \mu^c, \tau^c), l \rightarrow il, \phi \rightarrow \phi, (\xi,\phi') \rightarrow -(\xi,\phi')$
Structure of the model

\[\mathcal{L}_Y = y_e e^c(\varphi l) + y_\mu \mu^c(\varphi l)' + y_\tau \tau^c(\varphi l)' + x_a \xi(ll) + x_d (\varphi' ll) + h.c. + ... \]

shorthand: Higgs and cut-off scale \(\Lambda \) omitted, e.g.:

\begin{align*}
 y_e e^c(\varphi l) &\sim y_e e^c(\varphi l) h_d / \Lambda, \\
 x_a \xi(ll) &\sim x_a \xi(lh_u lh_u) / \Lambda^2
\end{align*}

\[
\langle \varphi' \rangle = (v', 0, 0) \\
\langle \varphi \rangle = (v, v, v) \\
\langle \xi \rangle = u
\]

the big plus of A4

\[m_l = v_d \frac{v}{\Lambda} \begin{pmatrix}
 y_e & y_e & y_e \\
 y_\mu & y_\mu \omega^2 & y_\mu \omega \\
 y_\tau & y_\tau \omega & y_\tau \omega^2
\end{pmatrix} \]

Spectrum free. Diagonalized by \(U_e \):

\[m_\nu = \frac{v_u^2}{\Lambda} \begin{pmatrix}
 a & 0 & 0 \\
 0 & a & d \\
 0 & d & a
\end{pmatrix} \quad l \rightarrow \frac{1}{\sqrt{3}} \begin{pmatrix}
 1 & 1 & 1 \\
 1 & \omega^2 & \omega \\
 1 & \omega & \omega^2
\end{pmatrix} l = Vl
\]

From here it follows that \(U_{\text{HPS}} \) is the mixing matrix
\(m_\nu \) in the basis of diagonal charged leptons is:

\[
m_\nu \big|_{\text{diag}} \sim V^* \begin{bmatrix} a & 0 & 0 \\ 0 & a & d \\ 0 & d & a \end{bmatrix} V^* = \begin{pmatrix} a + 2d/3 & -d/3 & -d/3 \\ -d/3 & 2d/3 & a - d/3 \\ -d/3 & a - d/3 & 2d/3 \end{pmatrix}
\]

which in turn can be written as:

\[
V = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}
\]

\[
m_\nu \big|_{\text{diag}} \sim U^T \begin{bmatrix} a + d & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & -a + d \end{bmatrix} U
\]

with:

\[
U = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & +1/\sqrt{2} \end{pmatrix}
\]
The crucial issue is to guarantee the strict alignment

\[
\langle \varphi' \rangle = (v', 0, 0) \\
\langle \varphi \rangle = (v, v, v) \\
\langle \xi \rangle = u
\]

We have constructed a number of completely natural versions of the model, e.g.:
- a version in 5 dimensions (economic in flavon fields)
- a SUSY version in 4-dim (with more fields)
The model has 1 compactified extra dim. and 2 branes
(crucial issue: guarantee and protect the vev alignment)

\begin{align*}
\langle \phi \rangle &= v(1,1,1) \\
\langle \phi' \rangle &= v'(1,0,0) \\
\langle \xi \rangle &= u
\end{align*}

different U(1) charges for e^c, μ^c, τ^c
lead to the ch. lept. mass hierarchy
In lowest approximation the action is:

\[
S = \int d^4 x d y \left\{ \left[i F_1 \sigma^\mu \partial_\mu F_1 + i F_2 \sigma^\mu \partial_\mu F_2 + \frac{1}{2} (F_2 \partial_y F_1 - \partial_y F_2 F_1 + h.c.) \right] \\
- M (F_1 F_2 + \bar{F}_1 \bar{F}_2) \\
+ V_0 (\varphi) \delta (y) + V_L (\varphi', \xi) \delta (y - L) \\
+ [Y_e e^c (\varphi F_1) + Y_\mu \mu^c (\varphi F_1)'' + Y_\tau \tau^c (\varphi F_1)' + h.c.] \delta (y) \\
+ \left[\frac{x^a}{\Lambda^2} \xi (ll) h_u h_u + \frac{x^d}{\Lambda^2} (\varphi' ll) h_u h_u + Y_L (F_2 l) h_d + h.c. \right] \delta (y - L) \right\} + ... \\
\]

a Z-parity has also been imposed

\((f^c, l, F, \varphi, \varphi', \xi) \xrightarrow{Z} (-if^c, il, iF, \varphi, -\varphi', -\xi)\)

After integrating out of the F fields one obtains the required effective 4-dim action

\[
\mathcal{L}_Y = y_e e^c (\varphi l) + y_\mu \mu^c (\varphi l)'' + y_\tau \tau^c (\varphi l)' + x^a \xi (ll) + x^d (\varphi' ll) + h.c. + ...
\]
In the flavour basis:

\[
m_\nu = \frac{v_u^2}{\Lambda} \begin{pmatrix}
a + \frac{2d}{3} & -\frac{d}{3} & -\frac{d}{3} \\
-\frac{d}{3} & 2\frac{d}{3} & a - \frac{d}{3} \\
-\frac{d}{3} & a - \frac{d}{3} & 2\frac{d}{3}
\end{pmatrix}
\]

\[m_\nu = U \text{ diag}(a+d,a,-a+d) U^\top \text{ (in units of } v_u^2/\Lambda \text{) and } U=U_{\text{HPS}}\]

In terms of physical parameters (moderate normal hierarchy):

\[|m_1|^2 = \left[-r + \frac{1}{8 \cos^2 \Delta (1 - 2r)} \right] \Delta m_{atm}^2 \sim (0.017 \text{ eV})^2\]

\[|m_2|^2 = \frac{1}{8 \cos^2 \Delta (1 - 2r)} \Delta m_{atm}^2 \sim (0.017 \text{ eV})^2\]

\[|m_3|^2 = \left[1 - r + \frac{1}{8 \cos^2 \Delta (1 - 2r)} \right] \Delta m_{atm}^2 \sim (0.053 \text{ eV})^2\]

\[\oplus \text{ A moderate fine tuning is needed for } r\]
A version with see-saw is also possible

\(\nu_R \) is a triplet of A4: \(\nu^c \sim 3 \) No change for ch leptons

\[
\omega_l = \ldots + y(\nu^c l) + x_A \xi(\nu^c \nu^c) + x_B (\varphi_T \nu^c \nu^c)
\]

[Discrete parity Z: \(\omega, \omega^2, \omega^2, \omega^2 \) for \(l, \nu^c, \phi_T, \xi \) respectively]

\[
m^D_v \sim 1 \quad M_{RR} \sim \begin{bmatrix}
A & 0 & 0 \\
0 & A & D \\
0 & D & A
\end{bmatrix} \quad m_v = m^D_v M_{RR}^{-1} m^D_v \sim M_{RR}^{-1}
\]

The mass matrix appears just as the inverse of what was before, so that the mixing matrix is the same.

Eigenvalues are the inverse: one can produce inverse hierarchy with realistic \(\theta_{12}, \theta_{23} \) and very small \(\theta_{13} \)
The model crucially depends on the precise vev alignment.

The extra dimension with 2 branes allows the decoupling of the ϕ and ξ,ϕ' potentials. A discrete symmetry is also essential: a separate continuous rotation symmetry on the 2 branes would make any disalignment illusory.

An alternative in 4 dimensions is a SUSY model with driving fields and a superpotential where all terms allowed by symmetry are present (with added fields $\xi', \phi_0, \phi'_0, \xi_0$).

In our models

• all terms allowed by symmetry are present

• all correct’ns are under control and can be made negligible
The 4-dim SUSY version (written in the T-diag basis)

In this basis the ch. leptons are diagonal!

\[w_l = y_e e^c(\varphi_T l) + y_\mu \mu^c(\varphi_T l)' + y_\tau \tau^c(\varphi_T l)'' + (x_a \xi + \tilde{x}_a \tilde{\xi})(ll) + x_b (\varphi_S ll) + h.c. + ... \]

One more singlet is needed for vacuum alignment

The superpotential (at leading order):

\[
 w_d = M(\varphi_0^T \varphi_T) + g(\varphi_0^T \varphi_T \varphi_T) \\
 + g_1(\varphi_0^S \varphi_S \varphi_S) + g_2 \tilde{\xi}(\varphi_0^S \varphi_S) + g_3 \xi_0(\varphi_S \varphi_S) + g_4 \xi_0 \xi^2 + g_5 \xi_0 \tilde{\xi} + g_6 \xi_0 \tilde{\xi}^2
\]

and the potential

\[V = \sum_i \left| \frac{\partial w}{\partial \phi_i} \right|^2 + m_i^2 |\phi_i|^2 + ... \]

The assumed simmetries are summarised here

Field	l	e^c	\mu^c	\tau^c	h_{u,d}	\varphi_T	\varphi_S	\xi	\tilde{\xi}	\varphi_0^T	\varphi_0^S	\xi_0
A_4	3	1	1'	1''	1	3	3	1	1	3	3	1
Z_3	\omega	\omega^2	\omega^2	\omega^2	1	1	\omega	\omega	1	\omega	\omega	\omega
U(1)_R	1	1	1	1	0	0	0	0	0	2	2	2

\[U(1)_F \quad 2q \quad q \quad 1 \]
The driving field have zero vev. So the minimization is:

\[
\begin{align*}
\frac{\partial w}{\partial \varphi_{01}} &= M \varphi_{T1} + \frac{2g}{3} (\varphi_{T1}^2 - \varphi_{T2}\varphi_{T3}) = 0 \\
\frac{\partial w}{\partial \varphi_{02}} &= M \varphi_{T3} + \frac{2g}{3} (\varphi_{T2}^2 - \varphi_{T1}\varphi_{T3}) = 0 \\
\frac{\partial w}{\partial \varphi_{03}} &= M \varphi_{T2} + \frac{2g}{3} (\varphi_{T3}^2 - \varphi_{T1}\varphi_{T2}) = 0 \\
\frac{\partial w}{\partial \bar{\xi}} &= g_2 \bar{\xi} \varphi_{S1} + \frac{2g_1}{3} (\varphi_{S1}^2 - \varphi_{S2}\varphi_{S3}) = 0 \\
\frac{\partial w}{\partial \xi} &= g_2 \bar{\xi} \varphi_{S3} + \frac{2g_1}{3} (\varphi_{S2}^2 - \varphi_{S1}\varphi_{S3}) = 0 \\
\frac{\partial w}{\partial \bar{\xi}_0} &= g_2 \bar{\xi} \varphi_{S2} + \frac{2g_1}{3} (\varphi_{S3}^2 - \varphi_{S1}\varphi_{S2}) = 0
\end{align*}
\]

\[
\frac{\partial w}{\partial \xi_0} = g_4 \xi^2 + g_5 \xi \bar{\xi} + g_6 \bar{\xi}^2 + g_3 (\varphi_{S1}^2 + 2\varphi_{S2}\varphi_{S3}) = 0
\]

Solution:

\[
\varphi_T = (v_T, 0, 0) , \quad v_T = -\frac{3M}{2g}
\]

\[
\bar{\xi} = 0
\]

\[
\xi = u
\]

\[
\varphi_S = (v_S, v_S, v_S) , \quad v_S^2 = -\frac{g_4}{3g_3}u^2
\]

In the paper \(w \) at NLO is also studied
NLO corrections studied in detail

1st non trivial correction at $o(1/\Lambda^3)$

$$\frac{x_c}{\Lambda^3}(\varphi_T \varphi_S)'(ll)''h_u h_u \quad \frac{x_d}{\Lambda^3}(\varphi_T \varphi_S)'(ll)'h_u h_u \quad \frac{x_e}{\Lambda^3} \xi(\varphi_T ll)h_u h_u$$

$$\langle \varphi_T \rangle \rightarrow (\nu_T' + \delta \nu_T, \delta \nu_T, \delta \nu_T)$$
$$\langle \varphi_S \rangle \rightarrow (\nu_S + \delta \nu_1, \nu_S + \delta \nu_2, \nu_S + \delta \nu_3)$$
$$\langle \xi \rangle \rightarrow u$$
$$\langle \tilde{\xi} \rangle \rightarrow \delta u'$$

$\delta \nu_T, \delta \nu_S, \delta \nu_i, \delta u' \sim o(1/\Lambda)$

All observables get a correction of order $1/\Lambda$

From exp (eg θ_{12}) must be less than 5%

$$0.0022 < \frac{\nu_S}{\Lambda} \approx \frac{\nu_T}{\Lambda} \approx \frac{u}{\Lambda} < 0.05$$

In particular $\theta_{13} < \sim 0.05$, $|\tan^2 \theta_{23}-1| < \sim 0.05$
Extension to quarks

If we take all fermion doublets as 3 and all singlets as 1, 1', 1'' (as for leptons): \(Q_i \sim 3, \ u^c, d^c \sim 1, \ c^c, s^c \sim 1', \ t^c, b^c \sim 1'' \)

Then u and d quark mass matrices are BOTH diagonalised by

\[
U_u, U_d \sim \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix}
\]

As a result VCKM is unity: \(V_{CKM} = U_u^+ U_d \sim 1 \)

So, in first approx. (broken by loops and higher dim operators), \(\nu \) mixings are HPS and quark mixings \(\sim \text{identity} \)

Corrections are far too small to reproduce quark mixings eg \(\lambda_c \)
(for leptons, corrections cannot exceed \(o(\lambda_c^2) \). But even those
are essentially the same for u and d quarks)
Note: NOT straightforward to embed these models in a GUT: with these assignments A4 does not commute with SU(5)

If \(l \sim 3 \) then all 5* \(\sim 3 \), so that \(d^c_i \sim 3 \)
if \(e^c, \mu^c, \tau^c \sim 1, 1', 1'' \) then all \(10_i \sim 1, 1', 1'' \)

Realistic quark mass matrices are not easy to obtain from these assignments

For example, for u quarks at leading order:

\[
m_u \sim 1.1 + 1'.1'' + 1''.1' \sim a u_1 u_1 + b (u_2 u_3 + u_3 u_2)
\]

or

\[
m_u \sim \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & b \\ 0 & b & 0 \end{pmatrix}
\]

Which implies \(|m_c| = |m_t| \)
and maximal \(U_{23} \)
Recent directions of research:

• Different (larger) finite groups
 Ma;
 Kobayashi et al;
 Luhn, Nasri, Ramond [$\Delta(3n^2)$];

• Trying to improve the quark mixings
 Carr, Frampton
 Feruglio et al

• Construct GUT models with approximate tri-bimaximal mixing
 Ma, Sawanaka, Tanimoto; Ma;
 Morisi, Picarello, Torrente Lujan;
 de Madeiros Verzielas, King, Ross [$\Delta(27)$];
 King, Malinsky [$SU(4)_C \times SU(2)_L \times SU(2)_R$];

Better quarks: use T' (also called $\text{SL}_2(F_3)$) the double covering group of A_4 (A_4 is not a subgroup of T')

24 transformations.
Irreducible representations: 1, 1', 1'', 2, 2', 2'', 3

Equivalent to A_4 for leptons. For quarks use 1 (3rd family) + 2, 2', 2'' (1st & 2nd families)

• t, b masses at renormalizable level (unsuppressed)
• V_{cb}, V_{ts} from doublet flavons (do not couple to leptons)
• 1st generation masses and mixings from subleading effects

Similar to old $U(2)$ models

Aranda, Carone, Lebed Carr, Frampton Feruglio et al
Barbieri, Dvali, Hall ’96
Barbieri, Hall, Raby, Romanino ’97
Barbieri, Hall, Romanino ’97
GUT-compatible A4-models

All doublets ~ 3 and all singlets $\sim 1, 1', 1''$ for quarks and leptons is not compatible with SU(5), SO(10).

It is OK with $SU(4)_C \times SU(2)_L \times SU(2)_R$ (Pati-Salam)

King, Malinsky

SU(5)-compatible classifications have been tried:

$5^* \sim 3, 10 \sim 1, 1', 1''$

Ma, Sawanaka, Tanimoto

all in 3

Ma;
Morisi, Picarello, Torrente Lujan;

Problem still open
Conclusion

From experiment: a good first approximation for quarks:

$$V_{\text{CKM}} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and for neutrinos

$$U = \begin{pmatrix} \sqrt{2} & 1 & 0 \\ \sqrt{3} & \frac{1}{\sqrt{3}} & 0 \\ -1 & 1 & -1 \\ \sqrt{6} & \sqrt{3} & \sqrt{2} \\ -1 & 1 & 1 \\ \sqrt{6} & \sqrt{3} & \sqrt{2} \end{pmatrix}$$

Models based on A4 indeed lead to this pattern

All this is highly non trivial but no real illumination has followed!!