A POSITIVE SOLUTION FOR AN ASYMPTOTICALLY CUBIC QUASILINEAR SCHröDINGER EQUATION

XIANG-DONG FANG

School of Mathematical Sciences
Dalian University of Technology, 116024 Dalian, China

(Communicated by Xuefeng Wang)

Abstract. We consider the following quasilinear Schrödinger equation

\[-\Delta u + V(x)u - \Delta(u^2)u = q(x)g(u), \quad x \in \mathbb{R}^N,\]

where \(N \geq 1, 0 < q(x) \leq \lim_{|x| \to \infty} q(x), \) \(g \in C(\mathbb{R}^+, \mathbb{R}) \) and \(g(u)/u^3 \to 1, \) as \(u \to \infty. \) We establish the existence of a positive solution to this problem by using the method developed in Szulkin and Weth [27, 28].

1. Introduction. In this paper, we are concerned with the following quasilinear Schrödinger equation

\[-\Delta u + V(x)u - \Delta(u^2)u = q(x)g(u), \quad x \in \mathbb{R}^N.\] (1)

This equation is related to the modified Schrödinger equation

\[i\frac{\partial \psi}{\partial t} = -\Delta \psi + W(x)\psi - q(x)h(|\psi|^2)\psi - \kappa \Delta(|\psi|^2)\psi,\] (2)

where \(\psi : \mathbb{R} \times \mathbb{R}^N \to \mathbb{C}, \) \(W = W(x), x \in \mathbb{R}^N \) is a given potential, \(\kappa \) is a positive constant and \(h \) is a real function. The form of (2) has been derived as models of several physical phenomena, see e.g. [19, 22]. We are interested in the standing wave solutions of the form: \(z(t, x) = u(x)e^{i\lambda t}. \) Observe that \(z(t, x) \) solves (2) if and only if \(u(x) \) satisfies (1) with \(V(x) = W(x) - \lambda \) and \(g(u) = h(u^2)u. \)

The existence of solutions of (1) has been studied widely. A positive ground state solution of problem (1) with \(q(x)g(u) = |u|^{p-2}u, 4 \leq p < 2 \cdot 2^*, N \geq 3 \) has been obtained in [20] using a constrained minimization method. In [19], the quasilinear problem was reduced to a semilinear one by using a change of variables and an Orlicz space framework was used to prove the existence of a positive solution. This method was also employed by [9], but the usual Sobolev space \(H^1(\mathbb{R}^N) \) was used.

The semilinear equation (i.e., \(\kappa = 0 \) in (1)) with asymptotically linear nonlinearity has been extensively studied. The existence of a positive solution has been proved in [26] with assuming radial symmetry. In [10] and [16], for the non symmetric asymptotically linear case, they obtained a Mountain Pass positive solution. Later in [18], under restrictive conditions on the potential \(V, \) the existence of a

\[2000 \text{ Mathematics Subject Classification. Primary: 35J20, 35J62; Secondary: 49J35.}\]

\[\text{Key words and phrases. Quasilinear Schrödinger equation, positive solution, asymptotically cubic, Nehari manifold.}\]

\[\text{This project is supported by National Natural Science Foundation of China (Grant No. 11601057) and the Fundamental Research Funds for the Central Universities (Grant. DUT18LK05).}\]
positive solution corresponding to higher energy levels was shown, see also [17]. Subsequently, the result in [17] was extended to the quasilinear Schrödinger problem (see [5]). In a recent paper [8], they proved a positive bound state with the nonlinearity \(f \in C^3 \). The existence of sign-changing solutions was proved for an asymptotically linear Schrödinger equation with deepening potential well in [21].

We consider the problem

\[-\Delta u + V(x)u - \Delta(u^2)u = q(x)g(u), \quad u \in H^1(\mathbb{R}^N). \tag{3}\]

Setting \(G(u) := \int_0^u g(s)ds \), we suppose that \(V \), \(q \) and \(g \) satisfy the following assumptions:

1. \(V \in C(\mathbb{R}^N), \lim_{|x| \to \infty} V(x) = V_\infty > 0 \), and \(\inf_{x \in \mathbb{R}^N} V(x) > 0 \).
2. \(q \in C(\mathbb{R}^N), \lim_{|x| \to \infty} q(x) = q_\infty > 0 \), \(\inf_{x \in \mathbb{R}^N} q(x) > 0 \) and \(q(x) \leq q_\infty \), for all \(x \in \mathbb{R}^N \), with the strict inequality holding on a subset of positive Lebesgue measure in \(\mathbb{R}^N \).

3. \(V_\infty < q_\infty \).
4. \(\sup_{x \in \mathbb{R}^N} [(V(x) - V_\infty) + q_\infty - q(x)] < \mu \), where \((V(x) - V_\infty)^+ := \max\{V(x) - V_\infty, 0\} \) and \(\mu \) is the number in the right side of the inequality in Lemma 3.15.
5. \(g \in C([0, \infty)) \) and \(g(u) = o(u) \), as \(u \to 0 \).
6. \(g(u)/u^3 \to 1 \), as \(u \to \infty \).
7. \(u \to g(u)/u^3 \) is positive for \(u \neq 0 \), nondecreasing on \((0, \infty) \).

Theorem 1.1. Suppose that \((V), (Q), (R_1), (R_2) \) and \((g_1)\)-(\(g_3)\) hold and the following hypothesis holds

- \((H) \) the least energy level \(c_\infty \) of \((7) \) is an isolated critical level for \(I_\infty \). Then \((3) \) has a positive solution.

Remark 1. The functions \(V(x) \equiv V_\infty \) and \(q(x) = q_\infty - \frac{d}{2} e^{-|x|^2} \), for \(x \in \mathbb{R}^N \), satisfies \((V), (Q), (R_1) \) and \((R_2) \), where \(V_\infty < q_\infty \) and \(\mu = 2 \cdot \frac{e^{-c_\infty}}{||u||_{L^4}^4} \) is in Lemma 3.15. Note that \(\mu \) is independent of the particular choice of \(V(x) \) and \(q(x) \) by (11) and the definition of \(c_\infty \).

In [19], it is stated that \(V(x) \leq V_\infty \) for all \(x \in \mathbb{R}^N \) (see (V4) there) and the nonlinearity is autonomous, that is, \(q(x)g(u) := \lambda |u|^{p-1}u, 4 \leq p < 2 \cdot 2^* \). In our paper \((V) \) is weaker. It may be possible that \(V(x) > V_\infty \) in our case. But we need an additional condition \((R_2) \) to have delicate estimates for the energy of the functional. The existence of a ground state solution was proved in [19], while the minimal energy level need not be attained in our case (see Proof of Theorem 1.1).

To our knowledge, there is only a paper [5] concerned with the existence of solutions to quasilinear Schrödinger equations when the nonlinearity is asymptotically cubic at infinity and the potential \(q(x) \leq q_\infty \) (or \(V(x) \geq V_\infty \) equivalently). The conditions on the potential in [5] (see \((a_1)-(a_4)\) there) are somewhat stronger than ours. For the nonlinearity, an example is the function \(g(u) = u^3 \) satisfying our assumptions but not the condition \((g_2)\) in [5], since there \(Q(u) = \frac{1}{4}g(u)u - G(u) \equiv 0 \), for all \(u > 0 \).

Remark 2. Since the solutions set of the limiting equation might be complicated, we need the hypothesis \((H)\) which comes from [3] (see also [5]) in order to make sure that our minimax value will not coincide with the critical values of \((7)\).

According to Theorems 1.2 and 1.3 in [2] (take \(p = 3 \) there), it is easy to see that the ground state solution for the limiting problem \((7)\) is unique and non-degenerate with \(g(u) = u^3 \) (see also [1, 23]).
Notation. C, C_1, C_2, \ldots will denote different positive constants whose exact value is inessential. $B_{\rho}(y) := \{ x \in \mathbb{R}^N : |x - y| < \rho \}$. The usual norm in the Lebesgue measure $L^p(\mathbb{R}^N)$ is denoted by $\|u\|_p$. E denotes the Sobolev space $H^1(\mathbb{R}^N)$ with the norm

$$\|u\| := \left(\int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2 \right)^{1/2}$$

and S is the unit sphere in E. For $y \in \mathbb{R}^N$, let $y \ast u$ for the translate of $u \in E$, that is, $(y \ast u)(x) := u(x - y)$.

2. Preliminary results. We observe that formally the problem (3) is the Euler-Lagrange equation corresponding to the functional

$$J(u) := \frac{1}{2} \int_{\mathbb{R}^N} (1 + 2u^2)|\nabla u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)u^2 - \int_{\mathbb{R}^N} q(x)G(u).$$

(4)

Obviously the presence of the second order nonhomogeneous term $\Delta(u^2)u$ prevents us to work directly with the functional J in E. To overcome this difficulty, we employ an argument developed in [9]. We make a change of variables $v := f^{-1}(u)$, where f is defined by

$$f'(t) = \frac{1}{(1 + 2f^2(t))^{1/2}} \text{ on } [0, +\infty) \text{ and } f(t) = -f(-t) \text{ on } (-\infty, 0].$$

Let us collect some properties of f, which have been proved in [9, 11, 12, 15, 30].

Lemma 2.1. The function f satisfies the following properties:

1. f is uniquely defined, C^∞ and invertible;
2. $|f'(t)| \leq 1$ for all $t \in \mathbb{R}$;
3. $|f(t)| \leq |t|$ for all $t \in \mathbb{R}$;
4. $f(t)/t \to 1$ as $t \to 0$;
5. $f(t)/\sqrt{t} \to 2^{1/4}$ as $t \to +\infty$;
6. $f(t)/t \leq t f'(t) \leq f(t)$ for all $t > 0$;
7. $|f(t)| \leq 2^{1/4} |t|^{1/2}$ for all $t \in \mathbb{R}$;
8. $f^2(t) - f(t)f'(t)t \geq 0$ for all $t \in \mathbb{R}$;
9. There exists a positive constant C such that $|f(t)| \geq C|t|$ for $|t| \leq 1$ and $|f(t)| \geq C|t|^{1/2}$ for $|t| \geq 1$;
10. $|f(t)f'(t)| < 1/2$ for all $t \in \mathbb{R}$;
11. the function $f(t)f'(t)t^{-1}$ is decreasing for $t > 0$;
12. the function $f^p(t)f'(t)t^{-1}$ is increasing for $p \geq 3$ and $t > 0$.

Therefore, after the change of variables, we have the following functional

$$I(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)v^2 - \int_{\mathbb{R}^N} q(x)G(f(v)), \quad (5)$$

which is well defined on E and belongs to C^1 under the assumptions (V), (Q), (g_1) and (g_2). Moreover, the critical points of I correspond to the weak solutions of the Euler-Lagrange equation

$$-\Delta v + V(x)f(v)f'(v) = q(x)g(f(v))f'(v), \quad v \in E.$$

According to [9], if $v \in E$ is a critical point of the functional I, then $u = f(v) \in E$ is a solution of (3).

Define the Nehari manifold

$$\mathcal{M} := \{ v \in E \setminus \{0\} : \langle I'(v), v \rangle = 0 \}. \quad (6)$$
Set $c_0 := \inf_M I$. Let $g(u) := -g(-u)$ for $u < 0$ and then g is odd.

For the limiting problem

$$ -\Delta v = \tilde{g}(v) $$

(7)

where $\tilde{g}(v) = q_\infty g(f(v))f'(v) - V_\infty f(v)f'(v)$, we define the functional and the corresponding Nehari manifold

$$ I_\infty(v) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V_\infty f^2(v) - \int_{\mathbb{R}^N} q_\infty G(f(v)),$$

$$ \mathcal{M}_\infty := \{v \in E \setminus \{0\} : \langle I'_\infty(v), v \rangle = 0\}. $$

(8)

and set $c_\infty := \inf_{\mathcal{M}_\infty} I_\infty$.

Note that (R_1) guarantees that (1.3) in [4] holds. It is easy to see that \tilde{g} satisfies all assumptions of Theorem 1 in [4], so there exists a radially symmetric positive ground state solution $u_\infty \in C^2(\mathbb{R}^N)$ associated to equation (7).

Let

$$ E := \left\{ v \in E : \int_{\mathbb{R}^N} |\nabla v|^2 < \int_{\mathbb{R}^N} q(x)v^2 \right\} $$

and

$$ E_\infty := \left\{ v \in E : \int_{\mathbb{R}^N} |\nabla v|^2 < \int_{\mathbb{R}^N} q_\infty v^2 \right\}. $$

By the condition (Q), we have $E \subset E_\infty$ and $E \neq \emptyset$. Obviously, not all functions in E_∞ belong to E, while we can prove that the modified functions do (see Lemma 3.10).

Under our assumptions, we can not make sure whether or not M is of class C^1, so we take the methods developed by [27, 28].

3. Proof of Theorem 1.1.

Lemma 3.1.

(1) For each $\varepsilon > 0$, there is $C_\varepsilon > 0$ such that

$$ |g(u)| \leq \varepsilon |u| + C_\varepsilon |u|^{p-1} \text{ for all } u \in \mathbb{R}, $$

where $4 < p < 2 \cdot 2^* = 2N/(N-2)$ if $N \geq 3$, $2^* := \infty$ if $N = 1$ or 2.

(2) $G(u) \geq 0$ and $\frac{1}{2}g(u)u \geq G(u)$.

This follows easily from (g_1)-$\,(g_3)$. Set $h_u(t) := I(tu)$, $t > 0$.

Lemma 3.2.

(1) For every $u \in E$, there is a unique $t_u > 0$ such that $t_u u \in M$. Moreover, $I(t_u u) = \max_{t \geq 0} I(tu)$.

(2) If $u \notin E$, then $tu \notin M$ for any $t > 0$.

Proof. (1) For every $u \in E$, note that

$$ \frac{h_u(t)}{t^2} = \frac{1}{2} \int_{u \neq 0} |\nabla u|^2 + V(x) \frac{f^2(tu)}{(tu)^2} u^2 - \int_{u \neq 0} q(x)G(f(tu)) \frac{f^4(tu)}{(tu)^4} \frac{u^2}{tu}. $$

By (g_2) and (g_3), we have $\frac{G(s)}{s^2} \leq \frac{1}{4}$, for any $s \in \mathbb{R}$. It follows from Lemma 2.1-(4),(5) and the Lebesgue dominated convergence theorem that $\lim_{t \to 0} \frac{h_u(t)}{t^2} = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2 > 0$ and $\lim_{t \to \infty} \frac{h_u(t)}{t^2} = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 - q(x)u^2 < 0$. Note also that $h_u'(t) = (I'(tu), u) = 0$ is equivalent to

$$ \int_{\mathbb{R}^N} |\nabla u|^2 = \int_{u \neq 0} \left[\frac{q(x)g(f(tu))f'(tu)}{tu} - \frac{V(x)f(tu)f'(tu)}{tu} \right] u^2. $$
Set \(Y(s) := \frac{g(x)g(f(s))f'(s) - V(x)f(s)f'(s)}{s}\). Using \((g_3)\) and Lemma 2.1-(12), we get \(g(f(s))f'(s) = \frac{g(f(s))}{f'(s)}\), \(\frac{f'(s)f'(s)}{f'(s)}\) is increasing for \(s > 0\). Then \(Y(s)\) is increasing for \(s > 0\) by Lemma 2.1-(11). This completes the proof.

(2) Arguing by contradiction, suppose \(tu \in M\) for some \(t > 0\). Since \(h_u(t) = 0\), \((g_2)\) and \((g_3)\), we obtain that

\[
\int_{\mathbb{R}^N} |\nabla u|^2 = \int_{u \neq 0} \left[\frac{q(x)g(f(tu))f'(tu)}{tu} - \frac{V(x)f(tu)f'(tu)}{tu} \right] u^2 \leq \int_{u \neq 0} \frac{q(x)f^3(tu)f'(tu)}{tu} u^2 \leq \int_{\mathbb{R}^N} q(x)u^2.
\]

The last inequality above holds from Lemma 2.1-(5), (10), (12), hence a contradiction with \(u \notin E\).

Lemma 3.3.

(1) There exists \(\rho > 0\) such that \(\inf_M I \geq \inf_{S_\rho} I > 0\), where \(S_\rho := \{u \in E : \|u\| = \rho\}\).

(2) \(\|u\|^2 \geq \inf_M I\) for all \(u \in M\).

(3) If \(V\) is a compact subset of \(E\), there exists \(R > 0\) such that \(I \leq 0\) on \((\mathbb{R}^N)^+ \setminus B_R(0)\).

Proof. (1) For every \(u \in M\), there is \(s > 0\) such that \(su \in S_\rho\), then \(I(u) = I(tu,u) \geq I(su)\) by Lemma 3.2-(1). Hence \(\inf_M I \geq \inf_{S_\rho} I\). We claim that there exist \(C_1, \rho > 0\) such that

\[
\int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)f^2(u)) \geq C_1 \|u\|^2 \text{ whenever } \|u\| \leq \rho.
\]

Arguing by contradiction, there is \(u_n \to 0\) in \(E\) such that

\[
\int_{\mathbb{R}^N} (|\nabla u_n|^2 + V(x)v_n^2) + \int_{\mathbb{R}^N} V(x) \left(\frac{f^2(u_n)}{u_n^2} - 1 \right) v_n^2 \leq \frac{1}{n},
\]

where \(v_n := \frac{u_n}{\|u_n\|^r}\). Since \(u_n \to 0\) in \(L^2(\mathbb{R}^N)\), for fixed \(\varepsilon > 0\), the measure

\[
|\{x \in \mathbb{R}^N : |u_n(x)| > \varepsilon\}| \to 0
\]
as \(n \to \infty\). Using the Hölder inequality,

\[
\int_{|u_n| > \varepsilon} v_n^2 \leq \|\{x \in \mathbb{R}^N : |u_n(x)| > \varepsilon\}\|^{(r-2)/r} \|v_n\|^2 \to 0,
\]

where \(r = 2^*\) if \(N \geq 3\) and \(r > 2\) if \(N = 1\) or \(2\). So we have by Lemma 2.1-(4),

\[
\int_{\mathbb{R}^N} V(x) \left(\frac{f^2(u_n)}{u_n^2} - 1 \right) v_n^2 \to 0.
\]

Hence \(\|v_n\| = 1\) and \(v_n \to 0\) in \(E\), a contradiction.

By \((Q)\), Lemma 3.1-(1), Lemma 2.1-(3), (7) and the Sobolev inequality, we obtain that

\[
\int_{\mathbb{R}^N} q(x)G(f(u)) \leq C_2 \varepsilon \|u\|^2 + C_3 C_\varepsilon \|u\|^{p/2}.
\]
Take \(\varepsilon \) small enough, such that for small \(\rho \), \(I(u) \geq C_4\|u\|^2 - C_5\|u\|^{p/2} \) and \(\inf_{S_{\rho}} I > 0 \).

(2) By Lemma 3.1-(2) and Lemma 2.1-(3), for \(u \in \mathcal{M} \),
\[
\inf_{\mathcal{M}} I \leq \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x)f^2(u) \leq \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2 = \frac{1}{2}\|u\|^2.
\]

(3) Without loss of generality, we may assume that \(\mathcal{V} \subset S \). Suppose by contradiction that there exist \(u_n \in \mathcal{V} \) and \(w_n = t_n u_n \), such that \(u_n \to u \), \(t_n \to \infty \) and \(I(w_n) \geq 0 \). It follows from \((g_2)\) and Lemma 2.1-(5) that
\[
\int_{u_n \neq 0} \left(V(x) \frac{f^2(t_n u_n)}{(t_n u_n)^2} - 2q(x) \frac{G(f(t_n u_n))}{f^2(t_n u_n)} + f^4(t_n u_n) \right)^2 u_n^2 \to - \int_{\mathbb{R}^N} q(x)u^2,
\]
as \(n \to \infty \). Note that \(u \in \mathcal{E} \), so we have
\[
0 \leq \frac{2I(t_n u_n)}{t_n^2} \to \int_{\mathbb{R}^N} |\nabla u|^2 - \int_{\mathbb{R}^N} q(x)u^2 < 0,
\]
a contradiction. \(\square \)

The above follows from a similar argument as Lemmas 3.3 and 4.4 in [15], so we omit it.

Lemma 3.4. If \((u_n) \subset \mathcal{M} \) is a Palais-Smale sequence, then \((u_n) \) is bounded.

Proof. Arguing indirectly, suppose \(\|u_n\| \to \infty \) and \(v_n := \frac{u_n}{\|u_n\|} \). If
\[
\sup_{y \in \mathbb{R}^N} \int_{B_1(y)} |v_n|^2 \to 0,
\]
then \(v_n \to 0 \) in \(L^{p/2}(\mathbb{R}^N) \) for \(2 < p/2 < 2^* \) by P.L. Lions’ lemma (cf. [29], Lemma 1.21). It follows from Lemma 3.1-(1) and Lemma 2.1-(3),(7) that \(G(f(tv_n)) \to 0 \) for every \(t > 0 \). Since \((u_n) \subset \mathcal{M} \) is a Palais-Smale sequence, there exists \(d > 0 \) such that \(d \geq I(u_n) \geq I(tv_n) \) for every \(t > 0 \) and using Lemma 2.1-(9)
\[
I(tv_n) = \frac{1}{2} \int_{\mathbb{R}^N} t^2 |\nabla v_n|^2 + V(x)f^2(tv_n) + o(1)
\]
\[
\geq \frac{t^2}{2} \int_{\mathbb{R}^N} |\nabla v_n|^2 + \frac{C^2t^2}{2} \int_{|v_n| \leq 1} V(x)v_n^2 + o(1)
\]
\[
= \frac{t^2}{2} \int_{\mathbb{R}^N} |\nabla v_n|^2 + C^2t^2 \int_{\mathbb{R}^N} V(x)v_n^2 - \frac{C^2t^2}{2} \int_{|v_n| > 1} V(x)v_n^2 + o(1)
\]
\[
\geq \frac{t^2}{2} \min\{1, C^2\} - \frac{C^2}{2} \int_{|v_n| > 1} V(x)(tv_n)^{p/2} + o(1)
\]
\[
= \frac{t^2}{2} \min\{1, C^2\} + o(1),
\]
where \(o(1) \to \infty \), as \(n \to \infty \). We have a contradiction with \(t \) large enough. Then there is a sequence \((y_n) \subset \mathbb{R}^N \) and \(\delta > 0 \) such that
\[
\liminf_{n \to \infty} \int_{B_1(0)} (y_n * v_n)^2 \geq \delta.
\]
If the sequence \((y_n) \) is bounded in \(\mathbb{R}^N \), going if necessary to a subsequence, \(v_n \rightharpoonup v \neq 0 \) by the local compactness of the Sobolev embedding theorem. Note that
\[\langle I'(u_n), \varphi \rangle \to 0, \text{ for every } \varphi \in C_0^\infty(\mathbb{R}^N). \] So \(\frac{\langle I'(u_n), \varphi \rangle}{n_{\|u_n\|}} \to 0 \), that is,

\[
\int_{u_n \neq 0} \nabla v_n \nabla \varphi + \frac{V(x)f(u_n)f'(u_n)}{u_n} v_n \varphi = \int_{u_n \neq 0} \frac{q(x)g(f(u_n))f'(u_n)}{u_n} v_n \varphi + o(1). \]

Let \(x \in \mathbb{R}^N \) be such that \(v(x) \neq 0 \). Then \(u_n(x) \to \infty \). It follows from \((g_2)\) and Lemma 2.1-(5) that

\[
\frac{g(f(u_n))f'(u_n)}{n_{\|u_n\|}} = \frac{f^3(u_n)}{f^3(u_n)} \to 1. \]

By the Lebesgue dominated convergence theorem, \(\int_{\mathbb{R}^N} \nabla v_n \nabla \varphi = \int_{\mathbb{R}^N} q(x) v_n \varphi \). Since the essential spectrum of \(-\Delta - q \) is \([-q, \infty) \) (cf. Theorem 3.15 in [25]), a contradiction.

Then \(|y_n| \to \infty \), we can assume that \(y_n \ast v_n \to w \neq 0 \). Similarly, we obtain that \(\int_{\mathbb{R}^N} \nabla w \nabla \varphi = \int_{\mathbb{R}^N} q \ast w \phi \), a contradiction. The conclusion follows.

The above lemmas also follow for the limiting functional \(I_\infty \) except that \(M \) and \(E \) should be replaced by \(M_\infty \) and \(E_\infty \). Let \(U := E \cap S \) (recall that \(S \) is the unit sphere in \(E \)) and define the mapping \(m : U \mapsto M \) by \(m(w) := t_w w \), where \(t_w \) is as in Lemma 3.2-(1). Since \(E \) is open in \(U \), \(U \) is an open subset of \(S \). Similarly, \(U_\infty := E_\infty \cap S \) and define the mapping \(m_\infty : U_\infty \mapsto M_\infty \) by \(m_\infty (w) := t_w w \).

Lemma 3.5. Assume \(w_n \in U, \ w_n \to w_0 \in \partial U \) and \(m(w_n) := t_n w_n \). Then \(t_n \to \infty \) and \(I(m(w_n)) \to I(w) \).

Proof. Taking the same argument as Lemma 4.6 in [15], we have that \(t_n \to \infty \).

Note that \(\int_{\mathbb{R}^N} |\nabla w| \geq \int_{\mathbb{R}^N} q(x) w_0^2 \). Using \((g_2)\) and \((g_3)\), we get \(\frac{G(s)}{s^2} \leq \frac{1}{2} \). Then according to Lemma 2.1-(7),

\[
I(tw_0) = \frac{1}{2} \int_{\mathbb{R}^N} t^2 |\nabla w_0|^2 + V(x) f^2(tw_0) - \int_{\mathbb{R}^N} q(x) G(f(tw_0)) = \frac{1}{2} \int_{\mathbb{R}^N} t^2 q(x) \left[\frac{1}{2} - \frac{G(f(tw_0))}{f^2(tw_0)} \right] f^2(tw_0) \]
\[
\geq \frac{1}{2} \int_{\mathbb{R}^N} V(x) f^2(tw_0). \]

So \(I(tw_0) \to \infty \), as \(t \to \infty \). Given \(C > 0 \), take \(t > 0 \) such that \(I(tw_0) \geq C \). Therefore

\[
\lim_{n \to \infty} \inf I(t_n w_n) \geq \lim_{n \to \infty} I(t_n w_n) = I(tw_0) \geq C. \]

Lemma 3.6. The map \(m : U \mapsto M \) is continuous.

Proof. Assume \(w_n \to w_0 \) with \(w_n \in U \). Let \(m(w_n) := t_n w_n \). If \(w_0 \in \partial U \), by Lemma 3.5, \(t_n \to \infty \) and \(I(m(w_n)) \to \infty \). It has a contradiction with Lemma 3.3-(3). In the following, we need to prove that \(m(w_n) \to m(w_0) \). According to Lemma 3.3-(3), \((t_n) \) is bounded. We may assume \(t_n \to t_0 \), up to a subsequence. Note that \(0 = \langle I'(t_n w_n), t_n w_n \rangle \to \langle I'(t_0 w_0), t_0 w_0 \rangle \), then \(t_0 w_0 = m(w_0) \). The proof is complete.

By Lemma 3.2, the mapping \(m \) is bijective and the inverse of \(m \) is given by \(m^{-1} : M \mapsto U \), \(m^{-1}(u) = \frac{\psi}{\|\psi\|} \).

Lemma 3.7. The mapping \(m^{-1}(u) \) is Lipschitz continuous.
Proof. Taking an argument as in [27], we have by Lemma 3.3, for all $u, v \in \mathcal{M}$,
\[
\|m^{-1}(u) - m^{-1}(v)\| = \left\| \frac{u - v}{\|u\|} + \frac{(||v| - \|u||)v}{\|u\|\|v\|} \right\| \leq C\|u - v\|.
\]

So we have the following lemma.

Lemma 3.8. The map m is a homeomorphism between U and \mathcal{M}.

Define the functional $\Psi : U \to \mathbb{R}$ by
\[
\Psi(w) := I(m(w)).
\]
According to Lemma 4.8 in [15], the following lemma follows from Lemmas 3.2 and 3.3.

Lemma 3.9.

(1) $\Psi \in C^1(U, \mathbb{R})$ and
\[
\langle \Psi'(w), z \rangle = \|m(w)\|\|I'(m(w)), z\rangle \quad \text{for all } z \in T_w(U).
\]

(2) If (w_n) is a Palais-Smale sequence for Ψ, then $(m(w_n))$ is a Palais-Smale sequence for I. If $(u_n) \subset \mathcal{M}$ is a bounded Palais-Smale sequence for I, then $(m^{-1}(u_n))$ is a Palais-Smale sequence for Ψ.

(3) w is a critical point of Ψ if and only if $m(w)$ is a nontrivial critical point of I. Moreover, the corresponding values of Ψ and I coincide and $\inf_U \Psi = \inf_{\mathcal{M}} I$.

Lemma 3.10. $c_0 \leq c_\infty$.

Proof. Let $u_\infty \in \mathcal{M}_\infty$ such that $I_\infty(u_\infty) = c_\infty$. It is obvious that $u_\infty \in \mathcal{E}_\infty$. In our case we cannot make sure that $u_\infty \in \mathcal{E}$. But we prove the modified function does. Let $u_\infty^g := y * u_\infty$. Using Lemma 2.1-(5),(10), (g2) and the translation invariance, we obtain that
\[
\frac{J_\infty(ru_\infty^g)}{y^2} = \int_{\mathbb{R}^N} |\nabla u_\infty^g|^2 + \int_{\mathbb{R}^N} V_\infty \frac{f(\frac{ru_\infty^g)}{ru_\infty^g})f'(\frac{ru_\infty^g)}{ru_\infty^g} (u_\infty^g)^2}{ru_\infty^g} - \int_{\mathbb{R}^N} q_\infty \frac{g(\frac{ru_\infty^g)}{ru_\infty^g})}{f^3(\frac{ru_\infty^g)}{ru_\infty^g})} \frac{f^3(\frac{ru_\infty^g)}{ru_\infty^g})f'(\frac{ru_\infty^g)}{ru_\infty^g} (u_\infty^g)^2}{ru_\infty^g} = \int_{\mathbb{R}^N} |\nabla u_\infty|^2 - \int_{\mathbb{R}^N} q_\infty u_\infty^2 < 0,
\]
as $r \to \infty$. So there exist $\eta < 0$ and $R > 0$ such that $\frac{J_\infty(ru_\infty^g)}{r^2} \leq \eta$, for $r \geq R$. It follows from (V), Lemma 2.1-(3) and the Lebesgue dominated convergence theorem that
\[
\lim_{|y| \to \infty} \int_{\mathbb{R}^N} [V(x + y) - V_\infty] \frac{f(\frac{ru_\infty^g)}{ru_\infty^g})f'(\frac{ru_\infty^g)}{ru_\infty^g} (u_\infty^g)^2}{ru_\infty^g} = 0.
\]
Similarly,
\[
\lim_{|y| \to \infty} \int_{\mathbb{R}^N} [q_\infty - q(x + y)] \frac{g(\frac{ru_\infty^g)}{ru_\infty^g})}{f^3(\frac{ru_\infty^g)}{ru_\infty^g})} \frac{f^3(\frac{ru_\infty^g)}{ru_\infty^g})f'(\frac{ru_\infty^g)}{ru_\infty^g} (u_\infty^g)^2}{ru_\infty^g} = 0,
\]
by (Q), (g2), (g3) and Lemma 2.1-(7). Then $\frac{J(\frac{ru_\infty^g)}{r^2})}{r^2} = \frac{J_\infty(\frac{ru_\infty^g)}{r^2})}{r^2} + o(1)$, where $o(1) \to 0$, as $|y| \to \infty$. So there is $S > 0$ such that $\frac{J(\frac{ru_\infty^g)}{r^2})}{r^2} \leq \frac{\eta}{2} < 0$, for $r \geq R$ and $|y| \geq S$.

Note that $J(\frac{ru_\infty^g)}{r^2}) > 0$ for r small enough, and the similar argument as in the proof of Lemma 3.2-(1) shows that $\frac{J(\frac{ru_\infty^g)}{r^2})}{r^2}$ is strictly decreasing in $r \in (0, \infty)$.

\[\Box\]
Then, there exists a unique \(T^y \in (0, R) \) such that \(J(T^y u_\infty^y) = 0 \), i.e. \(T^y u_\infty^y \in \mathcal{M} \) for \(|y| \geq S \) (By Lemma 3.2-(2), we have \(u_\infty^y \in \mathcal{E} \) for \(|y| \geq S \)). Therefore

\[
\int_{\mathbb{R}^N} |\nabla u_\infty|^2 = \int_{\mathbb{R}^N} \frac{q(x+y)g(f(T^y u_\infty))f'(T^y u_\infty)}{T^y u_\infty} u_\infty^2 \\
- \int_{\mathbb{R}^N} \frac{v(x+y) f(T^y u_\infty) f'(T^y u_\infty)}{T^y u_\infty} u_\infty^2 \\
= \int_{\mathbb{R}^N} \frac{q_\infty g(f(T^y u_\infty)) f'(T^y u_\infty)}{T^y u_\infty} u_\infty^2 \\
- \int_{\mathbb{R}^N} \frac{V_\infty f(T^y u_\infty) f'(T^y u_\infty)}{T^y u_\infty} u_\infty^2 + o(1),
\]

where \(o(1) \to 0 \), as \(|y| \to \infty \). Since \(\frac{q_\infty g(f(s)) f'(s)}{s} - \frac{V_\infty g(f(s)) f'(s)}{s} \) is strictly increasing for \(s > 0 \), we get \(T^y \to 1 \), as \(|y| \to \infty \). Hence \(c_0 \leq I(T^y u_\infty^y) \to c_\infty \). \(\square \)

In the following, we describe a splitting lemma on \(\mathcal{M} \).

Lemma 3.11. If there exists \((u_n) \subset \mathcal{M} \) such that

\[
I(u_n) \to c, \quad I'(u_n) \to 0 \quad \text{in} \quad H^{-1}(\mathbb{R}^N),
\]

then replacing \(\{u_n\} \) if necessary by a subsequence, there exists a solution \(u^0 \in \mathcal{E} \) of

\[
-\Delta v + V(x) f(v) f'(v) = q(x) g(f(v)) f'(v),
\]

a finite sequence \(u^1, \ldots, u^k \in \mathcal{E} \) of solutions of

\[
-\Delta v + V_\infty f(v) f'(v) = q_\infty g(f(v)) f'(v),
\]

and \(k \) sequences \((y_n^j) \subset \mathbb{R}^N \) satisfying

\[
|y_n^j| \to \infty, \quad |y_n^j - y_n^{j'}| \to \infty, \quad j \neq j', \quad n \to \infty,
\]

\[
\int_{\mathbb{R}^N} |\nabla(u_n - u^0 - \sum_{j=1}^k u^j(\cdot - y_n^j))|^2 + f^2(u_n - u^0 - \sum_{j=1}^k u^j(\cdot - y_n^j)) \to 0,
\]

\[
\int_{\mathbb{R}^N} |\nabla u_n|^2 + f^2(u_n) \to \sum_{j=0}^k \int_{\mathbb{R}^N} |\nabla u^j|^2 + f^2(u^j),
\]

\[
I(u^0) + \sum_{j=1}^k I_\infty(u^j) = c.
\]

Proof. By Lemma 3.4, \((u_n) \) is bounded in \(\mathcal{E} \). Going if necessary to a subsequence, \(u_n \to u^0 \) in \(\mathcal{E} \). We claim that \(\int_{\mathbb{R}^N} f^2(u_n) - f^2(u_n - u^0) - f^2(u^0) \to 0, \)

\(\int_{\mathbb{R}^N} [f(u_n) f'(u_n) - f(u_n - u^0) f'(u_n - u^0)] \varphi \to 0 \), uniformly in \(||\varphi|| \leq 1 \) as \(n \to \infty \).

We prove the second. Note that \([f(s) f'(s)]' \leq [f'(s)]^2 \leq 1 \). For \(R > 0 \), using the mean value theorem and the Hölder inequality,

\[
\left| \int_{|x| > R} [f(u_n) f'(u_n) - f(u_n - u^0) f'(u_n - u^0)] \varphi \right| \leq ||\varphi|| \left(\int_{|x| > R} |u|^2 \right)^{1/2}.
\]

Thus, for every \(\varepsilon > 0 \), there exists \(R > 0 \) such that

\[
\left| \int_{|x| > R} [f(u_n) f'(u_n) - f(u_n - u^0) f'(u_n - u^0)] \varphi \right| \leq \varepsilon ||\varphi||.
\]
It follows from the Rellich theorem and Hölder inequality that
\[\left| \int_{|x| \leq R} [f(u_n) f'(u_n) - f(u_n - u^0) f'(u_n - u^0) - f(u^0) f'(u^0)] \phi \right| \leq \varepsilon \| \phi \|. \]
The first is similar.

Note that for \(s \geq C > 0 \), using Lemma 2.1-(6),(7) and (g2),
\[g(f(s)) f'(s) = \frac{g(f(s)) f'(s) s}{s} \leq \frac{g(f(s)) f(s)}{s} \leq C_1 f^p(s) \leq C_2 s^{p/2 - 1}, \quad (9) \]
where \(4 < p < 2 \cdot 2^* \). Taking a similar argument as in Proposition A.1 in [13], we get by (g1), (g2), Lemma 2.1-(7) and (9), \(\int_{\mathbb{R}^N} G(f(u_n)) - G(f(u_n - u^0)) - G(f(u^0)) \, dx \rightarrow 0 \), \(\int_{\mathbb{R}^N} [g(f(u_n)) f'(u_n) - g(f(u_n - u^0)) f'(u_n - u^0) - g(f(u^0)) f'(u^0)] \phi \, dx \rightarrow 0 \), uniformly in \(\| \phi \| \leq 1 \) as \(n \rightarrow \infty \) (see also Lemmas 3.4 and 3.5 in [31]). Hence \(I(u_n - u^0) = I(u_n) - I(u^0) + o(1) \), \(I_\infty(u_n - u^0) = I_\infty(u_n) - I_\infty(u^0) + o(1) \), \(I'(u_n - u^0) = I'(u_n) - I'(u^0) + o(1) \), \(I'_\infty(u_n - u^0) = I'_\infty(u_n) - I'_\infty(u^0) + o(1) \).

Let \(u^1_n := u_n - u^0 \). Then \(u^1_n \rightarrow 0 \) in \(L^p_{\text{loc}}(\mathbb{R}^N) \) by the local compactness of the Sobolev embedding theorem. According to (V), (Q) and Lemma 2.1-(3),(7), we have \(I_\infty(u^1_n) = I(u_n) - I(u^0) + o(1) \) and \(I'_\infty(u^1_n) = I'(u_n) - I'(u^0) + o(1) \). Let
\[\delta := \limsup_{n \rightarrow \infty} \left(\sup_{g \in \mathbb{R}^N} \int_{B_1(g)} |u^1_n|^2 \right) \]
If \(\delta = 0 \), then \(u^1_n \rightarrow 0 \) in \(L^2(\mathbb{R}^N) \) by P.L. Lions’ Lemma (cf. [29], Lemma 1.21), where \(p \) is in Lemma 3.1-(1). For every \(\varepsilon > 0 \) there is \(C_\varepsilon > 0 \) such that, using Lemma 2.1-(6),(3),(7) and Lemma 3.1-(1),
\[\int_{\mathbb{R}^N} g(f(u^1_n)) f'(u^1_n) u^1_n \leq \int_{\mathbb{R}^N} g(f(u^1_n)) f(u^1_n) \leq \varepsilon \int_{\mathbb{R}^N} |u^1_n|^2 + C_\varepsilon \int_{\mathbb{R}^N} |u^1_n|^p/2. \]
It follows from \((I'_\infty(u^1_n), u^1_n) = o(1) \) and Lemma 2.1-(6) that
\[\frac{1}{2} \int_{\mathbb{R}^N} |\nabla u^1_n|^2 + V_\infty f^2(u^1_n) \leq \int_{\mathbb{R}^N} |\nabla u^1_n|^2 + V_\infty f(u^1_n) f'(u^1_n) u^1_n \rightarrow 0, \]
and we finish the proof.

If \(\delta > 0 \), there exists \((y^1_n) \subset \mathbb{R}^N \) such that \(\int_{B_1(0)} [(-y^1_n) * u^1_n]^2 > \delta/2 \). By the local compactness of the Sobolev embedding theorem, \((-y^1_n) * u^1_n \rightarrow u \neq 0 \). Since \(u^1_n \rightarrow 0 \) in \(E \), we have \((y^1_n) \) is unbounded. We may assume that \(|y^1_n| \rightarrow \infty \). It is easy to see that \(I'_\infty \) is weakly sequentially continuous and invariant under translation, then \(I'_\infty(u^1_n) = 0 \in H^{-1}(\mathbb{R}^N) \).

Let \(u^2_n := u_n - (-y^1_n) * u^1_n \), we have \(u^2_n \rightarrow 0 \) in \(E \) and take the same argument as above except that \(I \) should be replaced by \(I_\infty \). Since \(I_\infty(u) \geq c_\infty > 0 \) for every nontrivial critical point \(u \) of \(I_\infty \), the iteration must terminate after a finite number of steps with \((I(u_n)) \) is bounded.

Lemma 3.12. If \((u_n) \) is bounded in \(E \), then there exist \(C_1, C_2 > 0 \) such that
\[C_1 \| u_n \|^2 \leq \int_{\mathbb{R}^N} |\nabla u_n|^2 + \int_{\mathbb{R}^N} V(x) f^2(u_n) \leq C_2 \| u_n \|^2, \]
where \(C_1 \) and \(C_2 \) depend on the bound on \(\| u_n \| \) and \(V(x) \).

Proof. See Lemma 3.2 of [14] in detail. For the sake of completeness, we include a sketch of it. Obviously, we have by Lemma 2.1-(3), \(\int_{\mathbb{R}^N} |\nabla u_n|^2 + V(x) f^2(u_n) \leq \| u_n \|^2 \).
Arguing by contradiction, assume $u_n \neq 0$ such that
\[
\int_{\mathbb{R}^N} |\nabla w_n|^2 + \int_{u_n \neq 0} V(x)\frac{f^2(u_n)}{u_n^2} w_n^2 \to 0,
\]
where $w_n := \frac{u_n}{\|u_n\|}$. Since $\int_{\mathbb{R}^N} |\nabla w_n|^2 \to 0$, we get
\[
\int_{\mathbb{R}^N} V(x)w_n^2 \to 1. \quad (10)
\]
Set $A_n := \{x \in \mathbb{R}^N : |u_n(x)| \geq C \}$ and $B_n := \mathbb{R}^N \setminus A_n$, for a given $C > 0$. Note that (u_n) is bounded in E, for $\varepsilon > 0$ there exists C large enough such that $|A_n| \leq \varepsilon$. It follows from Lemma 2.1-(6) that the function $\frac{f(t)}{t}$ is decreasing for $t > 0$. Hence
\[
\frac{f^2(C)}{C^2} \int_{B_n} V(x)w_n^2 \leq \int_{B_n} V(x)\frac{f^2(u_n)}{u_n^2} w_n^2 \to 0.
\]
Take ε small enough, then we have by Hölder inequality and (V)
\[
\int_{A_n} V(x)w_n^2 \leq C_1 \varepsilon^{(2^* - 2)/2^*} \leq \frac{1}{2},
\]
a contradiction with (10).

\[\square\]

Proposition 1. Assume that (V), (Q), (R_1), (g_1)-(g_3) are satisfied. If $c_0 < c_\infty$, then (3) has a nontrivial ground state solution.

Proof. Though Ekeland’s variational principle (cf: Theorem 4.8.1 in [7]) follows in a complete metric space, it still holds in U by Lemma 3.5 (the possibility that the limit reaches the boundary of U is ruled out). So there exists $(w_n) \subset U$ satisfying $\Psi(w_n) \to c_0$ and $\Psi'(w_n) \to 0$. Let $u_n := m(w_n)$. Then (u_n) is a Palais-Smale sequence for the functional I at level c_0 by Lemma 3.9, and moreover (u_n) is bounded in E by Lemma 3.4. According to Lemma 3.11 and $c_0 < c_\infty$, we have $\int_{\mathbb{R}^N} |\nabla(u_n - u^0)|^2 + f^2(u_n - u^0) \to 0$. Lemma 3.12 implies that $\|u_n - u^0\| \to 0$. Using $I(m(w_n)) \to I(u^0)$, $m^{-1}(u^0) \in U$ and then $u^0 \in M$ in view of Lemmas 3.5 and 3.8.

In the following, we assume that $c_0 = c_\infty$. Next we introduce the barycenter map β of a given function $u \in E \setminus \{0\}$ which has been constructed in [3] and [6]. Set $\tau(u)(x) = \frac{1}{|B_1|} \int_{B_1(x)} |u(y)|dy$, $\tau(u) \in L^\infty$ and is continuous; $\hat{u}(x) = [\tau(u)(x) - \frac{1}{2} \max \tau(u)]^+$, $\hat{u} \in C_0(\mathbb{R}^N)$; we define the barycenter of u by setting
\[
\beta(u) = \frac{1}{|\hat{u}|_{L^1}} \int_{\mathbb{R}^N} x\hat{u}(x)dx \in \mathbb{R}^N.
\]
Since \hat{u} has compact support, $\beta(u)$ is well defined. The function β has the following properties:

1. β is continuous in $E \setminus \{0\}$.
2. If u is radial, $\beta(u) = 0$.
3. For every $t > 0$, $u \in E \setminus \{0\}$, $\beta(tu) = \beta(u)$.
4. Given $y \in \mathbb{R}^N$, $\beta(y + u) = \beta(u) + y$.

Now we define $b := \inf_{u \in M} \beta(u) = 0 \quad I(u) = \inf_{w \in U} \beta(m(w)) = 0 \Psi(w)$. It is easy to see that $b \geq c_0 = c_\infty$.

Proposition 2. Assume that (V), (Q), (R_1), (g_1)-(g_3) are satisfied. If $b = c_0 = c_\infty$, then (3) has a nontrivial ground state solution.
Proof. By the definition of b, we get a minimizing sequence $(v_n) \subset U$ of Φ with $\beta(m(v_n)) = 0$ at level b. According to Ekeland’s variational principle, we can find some $(w_n) \subset U$ such that $\Phi(w_n) \to b, \Phi'(w_n) \to 0, \|w_n - v_n\| \to 0$. Put $u_n := m(w_n)$, then $(u_n) \subset \mathcal{M}$ is a Palais-Smale sequence for I at level b. Using Lemma 3.4, (u_n) is bounded and $u_n \to u^0$ after passing to a subsequence. It follows from the property (1) of β that $\beta(u_n)$ is bounded in \mathbb{R}^N.

We claim $u^0 \neq 0$. In fact, if $u^0 = 0$, we have in view of Lemma 3.11

$$\int_{\mathbb{R}^N} |\nabla (u_n - u^1(\cdot - y_n^1))|^2 + f^2(u_n - u^1(\cdot - y_n^1)) \to 0.$$

Using Lemma 3.12, we obtain that $\|u_n - u^1(\cdot - y_n^1)\| \to 0$. Since $|\beta(u^1(\cdot - y_n^1))| = |y_n^1| \to \infty$ by the properties (2), (4) of β, a contradiction with the boundedness of $\beta(u_n)$.

According to the claim, we have $u_n \to u^0$ in E by Lemmas 3.11 and 3.12. Taking the same argument in Proposition 1, $u^0 \in \mathcal{M}$.

Next, we consider the case $b > c_0 = c_\infty$. By the proof of Lemma 3.10, there exist $S > 0$ and $T^y \in (0, R)$ for some fixed $R > 1$ such that $T^yu^y_\infty \in \mathcal{M}$, for $|y| \geq S$. It is clear that $T^y \to 1$, as $|y| \to \infty$ and is continuous with respect to y, and moreover

$$\sup_{|y| \geq S} T^y < R (11)$$

is independent of the particular choice of $V(x)$ and $q(x)$. Now define the continuous operator $\Gamma : \mathbb{R}^N \to \mathcal{M}$ as $\Gamma[y] := T^yu^y_\infty \in \mathcal{M}$, for $|y| \geq S$. It follows from the properties of β that

$$\beta(\Gamma[y]) = y. (12)$$

Lemma 3.13. $I(\Gamma[y]) \to c_\infty$, if $|y| \to \infty$.

Proof. By the translation invariance of the limiting functional I_∞, it is easy to see that $I(\Gamma[y]) \to I_\infty(u_\infty) = c_\infty$.

Lemma 3.14. There exists some $\delta > 0$ (with $c_\infty + \delta < b$) such that $\beta(u) \neq 0$ for every $u \in \mathcal{M} \cap I^{-\infty + \delta}$, where $I^{-c} := \{u \in E : I(u) \leq c\}$.

Proof. According to the definition of b and $b > c_0 = c_\infty$, it is obvious that the conclusion holds.

Let $c_* := \inf\{c > c_\infty : c$ is a critical value of $I_\infty\}$ and $\tilde{c} := \min\{c_* , 2c_\infty\}$. According to the hypothesis (H), we have $c_\infty < \tilde{c} \leq 2c_\infty$.

Lemma 3.15. If $\sup_{x \in \mathbb{R}^N} [(V(x) - V_\infty)^+ + q_\infty - q(x)] < 2 \cdot \frac{\tilde{c} - c_\infty}{R^2\|u_\infty\|_2^2}$, where R is in (11), then $I(\Gamma[y]) < \tilde{c}$.

Proof. In view of (g_2) and (g_3), $G(s) \leq \frac{1}{4}s^4$, for any $s > 0$. We have by Lemma 2.1-(3),(7),

$$I(\Gamma[y]) = I_\infty(\Gamma[y]) + \int_{\mathbb{R}^N} \frac{1}{2} (V(x) - V_\infty) f^2(T^yu^y_\infty) + (q_\infty - q(x)) G(f(T^yu^y_\infty))$$

$$\leq c_\infty + \int_{\mathbb{R}^N} \frac{1}{2} (V(x) - V_\infty)^+(T^yu^y_\infty)^2 + \frac{1}{2} (q_\infty - q(x))(T^yu^y_\infty)^2$$

$$< c_\infty + \frac{\tilde{c} - c_\infty}{R^2\|u_\infty\|_2^2} \int_{\mathbb{R}^N} (T^yu^y_\infty)^2 = \tilde{c}.$$

\square
Proof of Theorem 1.1. By Lemma 3.10, we have $c_0 \leq c_\infty$. If $c_0 < c_\infty$, we get a nontrivial solution of (3) in view of Proposition 1. In the case $b = c_0 = c_\infty$, Proposition 2 gives the desired conclusion. So we will consider the case $b > c_0 = c_\infty$.

Arguing by contradiction, suppose the functional I does not have a critical value in (c_∞, \bar{c}). By [24] P.86, there exists a decreasing flow η with $\eta : \Psi^c \setminus K_{\bar{c}} \mapsto \Psi^{c_\infty+\delta}$ (rule out the possibility that the flow η reaches at boundary of U by Lemmas 3.5 and 3.9), where $\Psi^c := \{ w \in U : \Psi(w) \leq c \}$, $K_{\bar{c}} := \{ w \in U : \Psi'(w) = 0 \text{ and } \Psi(w) = c \}$ and δ is as in Lemma 3.14. Moreover, $\eta(u) = u$ for every $u \in \Psi^{c_\infty+\delta}$.

By Lemmas 3.13 and 3.14, there exists $\rho_1 \geq S > 0$ such that for every $\rho > \rho_1$

$$c_\infty < \max_{|y|=\rho} I(\Gamma[y]) = \max_{|y|=\rho} \Psi(m^{-1}(\Gamma[y])) < c_\infty + \delta < b.$$

Define a continuous map $h : B_\rho(0) \mapsto \partial B_{\rho}(0)$ as

$$h(y) = \rho \cdot \frac{\beta \circ m \circ \eta \circ m^{-1}(\Gamma[y])}{|\beta \circ m \circ \eta \circ m^{-1}(\Gamma[y])|}.$$

According to (12), $h(y) = y$ for $y \in \partial B_{\rho}(0)$, a contradiction with D.11 in [29]. Arguing as Lemma 2.4 in [8], it is easy to see that the solution u^0 does not change sign. The elliptic regularity theory implies that $u^0 \in C^2(\mathbb{R}^N)$ (see Lemma 1.30 in [29]). It follows from the strong maximum principle that u^0 is positive. \hfill \square

Acknowledgments. We thank the referee for carefully checking the manuscript and for helping to improve it.

REFERENCES

[1] S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonl. Anal., 75 (2012), 819–833.
[2] S. Adachi, M. Shibata and T. Watanabe, Global uniqueness results for ground states for a class of quasilinear elliptic equations, Kodai Math. J., 40 (2017), 117–142.
[3] A. Ambrosetti, G. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear elliptic equations, J. Funct. Anal., 254 (2008), 2816–2845.
[4] H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345.
[5] P. C. Carrião, R. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in \mathbb{R}^N via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165–183.
[6] G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var., 17 (2003), 257–281.
[7] K. C. Chang, Methods in Nonlinear Analysis, Springer-Verlag, Berlin, 2005.
[8] M. Clapp and L. A. Maia, A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Diff. Eq., 260 (2016), 3173–3192.
[9] M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonl. Anal., 56 (2004), 213–226.
[10] D. G. Costa and H. Tehrani, On a class of asymptotically linear elliptic problems in \mathbb{R}^N, J. Diff. Eq., 173 (2001), 470–494.
[11] J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Comm. Pure Appl. Anal., 9 (2009), 621–644.
[12] J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var., 38 (2010), 275–315.
[13] G. Evéquoz and T. Weth, Entire solutions to nonlinear scalar field equations with indefinite linear part, Adv. Nonlinear Stud., 12 (2012), 281–314.
[14] X. D. Fang and Z. Q. Han, Existence of a Ground State Solution for a Quasilinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 941–950.
[15] X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Diff. Eq., 254 (2013), 2015–2032.
[16] L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on \mathbb{R}^N autonomous at infinity, ESAIM Control Optim. Calc. Var., 7 (2002), 597–614.

[17] R. Lehrer and L. A. Maia, Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266 (2014), 213–246.

[18] R. Lehrer, L. A. Maia and R. Ruviaro, Bound states of a nonhomogeneous nonlinear Schrödinger equation with non symmetric potential, Nonlinear Diff. Equ. Appl., 22 (2015), 651–672.

[19] J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, II, J. Diff. Eq., 187 (2003), 473–493.

[20] J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, I, Proc. Amer. Math. Soc., 131 (2003), 441–448.

[21] X. Q. Liu, Y. S. Huang and J. Q. Liu, Sign-changing solutions for an asymptotically linear Schrödinger equation with deepening potential well, Adv. Diff. Eq., 16 (2011), 1–30.

[22] M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var., 14 (2002), 329–344.

[23] A. Selvitella, Nondegeneracy of the ground state for quasilinear Schrödinger equations, Calc. Var., 53 (2015), 349–364.

[24] M. Struwe, Variational Methods, second ed., Springer-Verlag, Berlin, 1996.

[25] C. A. Stuart, An introduction to elliptic equation on \mathbb{R}^N, in Nonlinear Functional Analysis and Applications to Differential Equations (A. Ambrosetti, K.-C. Chang and I. Ekeland eds.), World Scientific, Singapore, 1998.

[26] C. A. Stuart and H. S. Zhou, Applying the mountain pass theorem to an asymptotically linear elliptic equation on \mathbb{R}^N, Comm. Partial Diff. Eq., 24 (1999), 1731–1758.

[27] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822.

[28] A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, Int. Press, (2010), 597–632.

[29] M. Willem, Minimax Theorems, in Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser Boston, Inc., Boston, (1996), x–162.

[30] Y. J. Wang and W. M. Zou, Bound states to critical quasilinear Schrödinger equations, Nonl. Diff. Eq. Appl., 19 (2012), 19–47.

[31] M. B. Yang and Y. H. Ding, Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in \mathbb{R}^N, Ann. Mat. Pura Appl., 192 (2013), 783–804.

Received August 2017; revised April 2018.

E-mail address: fangxd0401@dlut.edu.cn