ON A CONJECTURE OF HARVEY AND LAWSON

JOHN WERMER

1. Introduction

Let \(\gamma \) be a smooth simple closed curve in complex projective space \(\mathbb{P}^n \).

Question: Under what conditions on \(\gamma \) does there exist a 1-complex dimensional analytic variety \(V \) in \(\mathbb{P}^n \) such that \(\gamma \) is the boundary of \(V \)?

Dolbeault and Henkin in [1], and Harvey and Lawson in [2] have studied this problem. Harvey and Lawson introduced the notion of the projective hull \(\hat{K} \) of a compact set \(K \) in \(\mathbb{P}^n \), which is defined as follows: Fix a point \(x \) in \(\mathbb{P}^n \) with homogeneous coordinates \([Z] = [Z_0, \ldots, Z_n] \) Let \(P \) be a homogeneous polynomial on \(\mathbb{C}^{n+1} \) of degree \(d \). Define
\[
||P(x)|| = \frac{|P(Z)|}{||Z||^d}, \text{ where } ||Z||^2 = \sum |Z_j|^2.
\]

Fix a compact set \(K \) in \(\mathbb{C}^n \). We define the set \(\hat{K} \) as the collection of points \(x \) in \(\mathbb{P}^n \) such that there exists a constant \(C_x \) such that
\[
(1) \quad ||P(x)|| \leq C_x \cdot \sup_K ||P||
\]

for each homogeneous polynomial \(P \) on \(\mathbb{C}^{n+1} \) of degree \(d \), and for all \(d \).

It follows from this definition that if \(x \) is a point in \(\mathbb{C}^n \), then \(x \in \hat{K} \) if and only if there exists a constant \(c \) such that
\[
(2) \quad |p(x)| \leq c^d \cdot \sup_K |p|
\]

for every polynomial \(p \) in \(C[z_1, \ldots, z_n] \) of degree \(\leq d \).

Harvey and Lawson made the following Conjecture:

"If \(\gamma \) is a real-analytic closed curve in \(\mathbb{C}^n \), and if \(\hat{\gamma} \neq \gamma \) then \(\hat{\gamma} \setminus \gamma \) is a 1-complex dimensional analytic subvariety of \(\mathbb{P}^n \setminus \gamma \)."

If this holds, then \(\hat{\gamma} \) is either an algebraic curve which contains \(\gamma \) or \(\hat{\gamma} \) is a variety having \(\gamma \) as its boundary.

The motivation for requiring real-analyticity of \(\gamma \), rather than merely smoothness, is given in [2].

Let next \(X \) be a complex manifold, and denote by \(H(X) \) the space of all holomorphic functions on \(X \). Let \(K \) be a compact subset of \(X \). The **hull of \(K \) in \(X \)**, denoted \(h_X(K) \), is defined as the set of points \(x \) in \(X \) such that
\[
(3) \quad |F(x)| \leq \sup_K |F| \quad \text{for all } F \in H(X)
\]
Theorem 1.1. Let γ be a smooth closed curve in \mathbb{C}^n. Assume

(i) $\hat{\gamma}$ is closed in \mathbb{P}^n, and

(ii) Ω is a Stein domain in \mathbb{P}^n with $\hat{\gamma}$ contained in Ω.

Then $\hat{\gamma} = h_\Omega(\gamma)$

2. Proof of Theorem 1.1

Proof. By hypothesis, there exists a Stein domain Ω in \mathbb{P}^n with $\hat{\gamma}$ contained in Ω. Also, $\hat{\gamma}$ is closed by hypothesis, and hence compact.

We now define A as the uniform closure on $\hat{\gamma}$ of $H(\Omega)$, restricted to $\hat{\gamma}$. Since Ω is Stein, $H(\Omega)$ separates points of $\hat{\gamma}$, and so A is a uniform algebra on $\hat{\gamma}$.

Let y_0 be a peak-point of A on $\hat{\gamma}$, i.e., y_0 is a point of $\hat{\gamma}$ such that there exists $F^* \in A$, with $F^*(y_0) = 1$ and $|F^*| < 1$ on $\hat{\gamma} \setminus y_0$.

We claim that y_0 is in γ. Suppose not. Then we can choose an open neighborhood U of y_0 in \mathbb{P}^n with U compact and $U \cap \gamma = \emptyset$. Without loss of generality, U is contained in an affine subspace W of \mathbb{P}^n and $\hat{\gamma}$ is polynomially convex in W.

Theorem 12.8 in [2] now yields

\begin{equation}
\hat{\gamma} \cap U \text{ is contained in the polynomial hull of } \hat{\gamma} \cap \delta U
\end{equation}

It follows that if P is a polynomial on W, then

$$|P(y_0)| \leq \max |P| \text{ over } \hat{\gamma} \cap \delta U.$$

Since \tilde{U} is polynomially convex in W, every F in $H(\Omega)$ is uniformly approximable on \tilde{U} by polynomials on W. So for F in $H(\Omega)$, we have

\begin{equation}
|F(y_0)| \leq \max |F| \text{ over } \hat{\gamma} \cap \delta U.
\end{equation}

Our function F^* above satisfies $F^*(y_0) = 1$ and $|F^*| < 1$ on $\hat{\gamma} \cap \delta U$. We choose F in $H(\Omega)$ so close to F^* on $\hat{\gamma}$ that

\begin{equation}
|F(y_0)| > \max |F| \text{ over } \hat{\gamma} \cap \delta U.
\end{equation}

Assertions (5) and (6) are in contradiction. So y_0 is in γ, as claimed.

Choose now an element F in A. By Th. 12.10 in [3], there exists a peak-point p of A such that $\max |F|$ over $\hat{\gamma}$ equals $|F(p)|$.

By the preceding, p is in γ. Hence, $\max |F|$ over $\hat{\gamma}$ $\leq \max |F|$ over γ. This holds in particular for F in $H(\Omega)$. So we have

\begin{equation}
\hat{\gamma} \subset h_\Omega(\gamma).
\end{equation}

To prove Theorem 1.1 we need to prove the reverse inclusion. Fix a point x in $h_\Omega(\gamma)$, We choose a complex hyperplane l of \mathbb{P}^n such that x is not in l. Let z_1, \ldots, z_n be affine coordinates on the affine space $\mathbb{P}^n \setminus l$. Each z_j extends as a meromorphic function to \mathbb{P}^n, with pole set l.

Since Ω is a Stein manifold, there exists a holomorphic function Λ on Ω such that Λ vanishes on $l \cap \Omega$ and $\Lambda(x) \neq 0$. It follows that, for all j, $\Lambda \times z_j$ is holomorphic on $l \cap \Omega$, and hence is holomorphic on all of Ω.

Let J denote the multi-index (j_1, \ldots, j_n), and let z^J denote the product of the monomials z_r^j for $r = 1, \ldots, n$. Let P be the polynomial which is the sum of terms $c_J z^J$ taken over the multi-indices J, where c_J is a scalar. Let $d = \text{deg} P$. Then if $c_J \neq 0$, we have $\sum_{s=1}^n j_s \leq d$. Hence

$$\Lambda^d \times P = \sum c_J \Lambda^d z^J = \sum c_J (\Lambda z_1)^{j_1} \cdots (\Lambda z_n)^{j_n} \Lambda^d \cdot S,$$
where \(S = \sum_{i=1}^{n} j_i \). Hence \(\Lambda^d \times P \) is holomorphic on \(\Omega \). Also, \(\Lambda(x) \neq 0 \). Since \(x \) is in \(h_{\Omega}(\gamma) \), we have

\[
(8) \quad |(\Lambda^d P)(x)| \leq \max |\Lambda^d P| \text{ over } \gamma.
\]

We now argue as in [2], proof of Proposition 2.3: It follows from (8) that

\[
|\Lambda(x)|^d \times |P(x)| \leq (\max |\Lambda|)^d \times \max |P|,
\]

where the maxima are taken over \(\gamma \). We now put

\[
C_x = \frac{\max |\Lambda|}{|\Lambda(x)|}.
\]

Then

\[
(9) \quad |P(x)| \leq C_x^d \max |P(x)|
\]

Since (9) holds for all \(P \), we have that \(x \) is in \(\hat{\gamma} \). Thus \(h_{\Omega}(\gamma) \subset \hat{\gamma} \). So \(h_{\Omega}(\gamma) = \hat{\gamma} \), and we are done.

\[\square\]

3. The Hull of a Curve in a Stein Manifold

Theorem 3.1. Let \(X \) be a Stein manifold, and let \(\beta \) be a real-analytic closed curve in \(X \). Then

\[
h_X(\beta) = \beta \cup V
\]

where \(V \) is a 1-complex dimensional subvariety of \(X \setminus \beta \), \(\beta \) and \(V \) are disjoint, and \(\beta \) is the boundary of \(V \).

Proof. Theorem 3.1 follows from the fact that it holds when \(X = \mathbb{C}^n \) ([4]), together with the following well-known properties of a Stein manifold \(X \).

(a) \(X \) admits a biholomorphic embedding \(\Phi \) into \(\mathbb{C}^N \) for some \(N \).

(b) Every holomorphic submanifold \(Y \) of \(\mathbb{C}^N \) is the zero set of some vector-valued entire function on \(\mathbb{C}^N \), and

(c) Every holomorphic function on \(Y \) admits a holomorphic extension to an entire function on \(\mathbb{C}^N \).

\[\square\]

Note 1: If the Conjecture is true, then conditions (i) and (ii) in Theorem 1.1 are satisfied by \(\gamma \). We see this as follows:

Put \(V = \hat{\gamma} \setminus \gamma \). Assume that \(V \) is a subvariety of \(\mathbb{P}^n \setminus \gamma \), with boundary \(\gamma \). Then \(\hat{\gamma} = V \cup bdV \), and so \(\hat{\gamma} \) is closed in \(\mathbb{P}^n \). So (i) holds.

Since \(\gamma \) is real-analytic, \(\gamma \) lies on some Riemann surface “collar” \(S \), and \(S \) fits together with \(V \) to form a holomorphic subvariety \(V^* \) of some open subset \(O \) of \(\mathbb{P}^n \), with \(V^* \) a relatively closed subset of \(O \). Then \(V^* \) is a Stein subspace of \(O \). Hence by a result of Siu, [6], \(V^* \) admits a Stein neighborhood \(\Omega \) in \(O \). Then \(\hat{\gamma} = V \cup \gamma \subset V^* \subset \Omega \), so (ii) holds.

Note 2: In Theorem 3.1, with \(\beta \) assumed real-analytic, \(\beta \) is the boundary of \(V \) in the sense of “manifold with boundary”. If \(\beta \) is merely assumed smooth, \(\beta \) is the boundary of \(V \) in a more general sense. (See, [5], Th. 7.2).
References

[1] P. Dolbeault and G. Henkin Surfaces de Riemann de bord donne dans CP^n, Contributions to Complex Analysis and Analytic Geometry, Aspects of Math., E 26, Viehweg, Braunschweig,(1994), 163-187

[2] F.R. Harvey and H.B. Lawson Projective Hulls and the Projective Gelfand Transform, Asian J. Math., 10, No.3,(2006),607-646

[3] T.W. Gamelin Uniform Algebras, Prentice-Hall, Inc (1969)

[4] J. Wermer The Hull of a Curve in /C^n, Ann of Math., 68 (1958),550-561

[5] F.R. Harvey and H.B. Lawson On Boundaries of Complex Analytic Varieties I, Ann. of Math. 102 (1975), 223-290

[6] Siu, Y.T. Every Stein Subvariety admits a Stein Neighborhood, Invent. Math. 38 (1976), 89-100