The Effect of Liquid Organic Fertilizer From Coconut Husk And Dolomite On Shallot (Allium Cepa L.) Growth And Yield

Kamelia Dwi Jayanti 1, Yulinda Tanari1*

1Department of Agrotechnology, Faculty of Agriculture, Universitas Sintuwu Maros. Indonesia
Pulau Timor No. 1 Poso, Sulawesi Tengah, Indonesia
*Corresponding author: yulinda@unsimar.ac.id

ARTICLE HISTORY
Received: 12 July 2021
Revised: 22 September 2021
Accepted: 15 October 2021

KEYWORDS
Potassium;
Calcium;
Magnesium;
Fresh shallot bulbs weight;

ABSTRACT
Shallot is the most produced vegetable in Indonesia. The consumption of shallot per kg/capita/year is continuously increasing, therefore there is a need to ensure enough supply. The lack of nutrients in the soil is a problem in shallot production. Shallot needs macronutrients such as Nitrogen (N), Phosphorus (P), Potassium (K), and Calcium (Ca) to improve its yield and quality. The application of liquid organic fertilizer from coconut husk and dolomite can be the solution. This study was conducted using Factorial Randomized Block Design consisting of two factors, concentration of liquid organic fertilizer (0%, 10%, 20%, and 30%) and dolomite (with dolomite or without). The results showed that the application of 20% liquid organic fertilizer, the application of dolomite, and the combination of both (PxD3) had the highest value on fresh shallot bulbs weight per clumps and bulb weight after storage parameters, and had the lowest value on weight loss percentage parameter.

1. INTRODUCTION
One of nine national research main priorities is to encourage the development and utilization of domestic products, that includes food, plantations, and horticulture (Ristekdikti, 2020). In the horticulture sector, shallot, garlic, and chili pepper are commodities that received attention to be developed.

Shallot is an annual crop with 90% of edible part. The nutrient compositions of shallot per 100 grams are calorie of 39 kcal, protein of 2.50 g, and fat 0.30 g.

Shallot was the highest produced vegetables in Indonesia, followed by cabbage and cayenne pepper (Central Bureau of Statistic 2018), and also placed second in vegetable export in the same year. Shallot productivity in 2018 was 9,59 ton/ha, higher than previous years that was 8,37 ton/ha in 2016 and 9.06 ton/ha in 2017 (CBS 2019). Even the productivity was increasing, it is still important to continue developing this commodity to ensure national food security. According to the Ministry of Agriculture (2019), there was an increase in shallot consumption from 2.57 kg/capita/year in 2017 to 2.76 kg/capita/year in 2018.

One of the national research targets for 2020 - 2024 is to increase the national productivity of shallot (Ristekdikti, 2020). According to data from the Ministry of Agriculture (2018), increasing the productivity of shallots can be done by expanding the planting area and also improving cultivation technology. Improvements in cultivation technology can be done by adding nutrients to the soil and plants. Based on the research results, in addition to the elements N, P and K, shallot plants also need calcium (Ca) to increase yield and quality.

Calcium is an important element in the formation of cell walls. Ca2+ is the link between the pectin chain in the cell wall structure (Taiz and Zeiger 2010; Marschner 2012). Based on this function, it is assumed that the application of calcium will increase the integrity of the shallot cell wall and so that it has a longer shelf life.

One type of fertilizer that has a high amount of Ca is dolomite (CaMg(CO)3). According to Buckman and Brady (1982), dolomite is a farming lime that can add Ca and Magnesium (Mg) to meet the need of plants and can improve the physical property of the soil, and does not leave harmful residue in the soil. According to research results from Handayani (2017) application of 1,5 ton/ha dolomite at 4 weeks before planting resulted in a significantly higher number and weight of bulbs per clump, and significantly lower weight loss compared to an application at planting and application two weeks before planting.

Apart from dolomite, a fertilizer that is thought to
increase the productivity of shallots is liquid organic fertilizer (LOF) made from coconut husk. Coconut husk liquid organic fertilizer contains N of 1.58%, P\textsubscript{2}O\textsubscript{5} of 0.79% and K\textsubscript{2}O of 1.68% (Suriadi 2020).

Based on the description, it was deemed necessary to research the application of coconut husk LOF and dolomite to increase the yield and quality of shallots.

2. MATERIALS AND METHODS

This study was conducted in Ranononcu Sub-district, Poso District, on July – December 2020.

2.1 Experimental Design

This study was arranged using Factorial Randomized Block Design with 2 factors. The first factor (Factor A) was the application of dolomite with two levels of treatments:

- D\textsubscript{0} = control
- D\textsubscript{1} = 10 ton/ha dolomite

The second factor (Factor B) was the application of liquid organic fertilizer consisted of four levels of treatments:

- P\textsubscript{0} = control
- P\textsubscript{1} = LOF concentration of 10%
- P\textsubscript{2} = LOF concentration of 20%
- P\textsubscript{3} = LOF concentration of 30%

There were 8 combinations of treatments. Every combination was replicated three times, so there were 24 experimental units. Each experimental unit consisted of 5 polybags, so there were 120 polybags in total. The parameters observed were plant height, number of leaves per clump, bulb diameter, fresh bulb weight per clump, bulb weight after storage per clump, and the weight loss percentage.

2.2 Production of Coconut Husk Liquid Organic Fertilizer

Chopped coconut husk was mixed with brown sugar and EM4 solution, put in a sealed container, and fermented for two weeks.

2.3 Planting

The bulbs for seed were treated by submerging with dithane-45 solution for 30 minutes. The top third of the bulb was cut before planted. One bulb was planted in each planting hole.

2.4 Statistical Data Analysis

Data collected from the study were analyzed using analysis of variance and continued with further testing using Duncan Multiple Range Test at 5% or 1%.

3. RESULTS AND DISCUSSIONS

3.1 Plant Height

Analysis of variance result showed that treatments applied did not significantly affect plant height. The average plant height is shown in Table 1.

Treatment	Plant Height (cm) at WAP			
	2	3	4	5
Factor A (Concentration of LOF)				
P\textsubscript{0}	18.80	24.45	26.75	29.85
P\textsubscript{1}	20.76	25.37	27.84	29.83
P\textsubscript{2}	20.85	26.50	29.11	30.49
P\textsubscript{3}	19.59	27.06	29.39	30.99
Factor B (Application of Dolomit)				
D\textsubscript{0}	19.81	26.03	28.06	30.00
D\textsubscript{1}	20.20	25.67	28.49	30.59
Factor A x B				
P\textsubscript{0}D\textsubscript{0}	19.13	25.64	27.69	30.27
P\textsubscript{1}D\textsubscript{0}	20.42	25.80	27.85	30.33
P\textsubscript{0}D\textsubscript{0}	21.35	27.20	29.43	30.97
P\textsubscript{0}D\textsubscript{0}	18.32	25.46	27.27	29.42
P\textsubscript{0}D\textsubscript{1}	18.47	23.27	25.81	29.44
P\textsubscript{0}D\textsubscript{1}	21.10	24.93	27.83	30.34
P\textsubscript{0}D\textsubscript{1}	20.35	25.81	28.80	30.02
P\textsubscript{0}D\textsubscript{1}	20.87	28.66	31.52	32.57

Means followed by the same letters are not significantly different based on the DMRT test at 0.05 level

A nutrient that plays an important role in plant growth is Nitrogen. The optimal availability of N will have an impact on better plant growth and yield. Although, when N availability is low, the result would not be different from the control or without the addition of fertilizers. Nitrogen plays the most important role in various physiological processes such as giving plants a dark green color, increasing the number of leaves and stems, as well as the growth and development of other vegetative parts (Leghari et al. 2016). Sufficient Mg nutrient in plants is very important for better efficiency of N use (Cakmak 2013).
3.2 Number of Leaves

Analysis of variance result showed that treatment of a single factor of liquid organic fertilizer and dolomite, as well as the combination of both factors, did not significantly affect the number of leaves. The average number of leaves is presented in Table 2.

Table 2. Average number of leaves at 2,3,4 and 5 WAP

Treatment	2	3	4	5
Factor A				
P₀	8.43	12.60	19.58	23.52
P₁	9.27	13.57	17.61	24.03
P₂	9.43	13.25	19.47	25.70
P₃	8.90	13.80	19.77	26.62
Factor B				
D₀	8.65	13.15	18.85	26.33
D₁	9.37	13.46	19.36	23.60
Factor A x B				
P₀D₀	7.93	13.27	20.53	27.27
P₀D₁	8.67	13.07	15.87	26.40
P₁D₀	10.00	13.60	20.07	25.93
P₁D₁	8.00	12.67	18.93	25.73
P₂D₀	8.93	11.93	18.62	19.77
P₂D₁	9.87	14.07	19.36	21.67
P₃D₀	8.87	12.90	18.87	25.47
P₃D₁	9.80	14.93	20.60	27.50

Means followed by the same letters are not significantly different based on the DMRT test at 0.05 level

A similar result was showed in Sebastian (2019), that the application of coconut husk LOF was not significantly affected the number of leaves, even when combined by Gandasil fertilizer. In contrast with the study by Wilman et al. (2009), N was significantly affected the number of tillers and leaves.

The level of N in coconut husk LOF was presumed to be not optimal to affect the number of leaves, so there was no significant difference from the control.

3.3 Number of Bulbs per Clump, Bulb Diameter, and Fresh Bulb Weight per Clump

Table 3 shows that the treatments did not significantly affect the number of bulbs per clump. While in bulb diameter parameter, only application of dolomite treatment demonstrated a significant effect.

One of the nutrients in dolomite is Magnesium. Magnesium plays a role in carbohydrate synthesis that would be stored in the bulb. Magnesium and Nitrogen are constituents of chlorophyll (Winarso 2005), the proportion is 2,7% of chlorophyll molecule weight and is the activators of many enzymes (Yan and Hou 2018), thus Mg and N affected photosynthesis and carbohydrate partition in a plant (Wang et al. 2019).

The highest fresh bulb weight per clump resulted from the single factor of P₂ (20% of LOF), the application of dolomite (D₁), and the combination of both (P₂D₁). The higher dosage of LOF to 30% resulted in lower fresh bulb weight. Research by Romiyadi and Suñadi (2015) also showed that the higher concentration of liquid coconut husk immersion, the lower the fruit weight yielded.

The potassium level in coconut husk is quite high, so fertilizer made from coconut husk can be the alternative for KCI. Potassium in coconut husk liquid organic fertilizer plays a role in the transportation of photosynthate to the bulbs, thus can increase the fresh weight of shallot. According to Rahma et al. (2019), PPPP (2017), and Torillo Jr and Mihara (2012). Potassium in coconut husk LOF is 2,48% to 10,25%, while N-total and P-total in coconut husk are 0,1138 mg N/g and 0,3037 mg P/g respectively.

3.4 Bulb Weight after Storage and Percentage of Weight Loss

The single factor and interaction of both factors gave a significant effect on bulb weight after storage and percentage of weight loss. The average bulb weight after storage and percentage of weight loss is shown in Table 4.

The treatment of P₂D₁ resulted in the highest bulb weight after storage, while the highest weight loss resulted from control. According to Muchtadi (1992), the weight loss of vegetables and fruits during storage is mainly because of water loss through transpiration. Calcium has several functions, one of which is to maintain the stability of the cell wall and can reduce weight loss. According to Thor (2019), Calcium is an important factor for cell wall and membrane stability. When Ca supply is low or the transportation of Ca is interrupted, local calcium shortage occurs, which can cause membrane damage and/or cell wall failure (Hocking et al. 2016). The high content of K in coconut husk liquid organic fertilizer can increase plant fresh weight through the increase of the number of cells and reduce transpiration (Center for Plantation Research and Development, 2017).
Table 3. Average number of bulbs per clump, bulb diameter and bulb fresh weight per clump

Treatment	Number of Bulbs per Clump (bulb)	Bulb Diameter (mm)	Fresh Bulb Weight per Clump (g)
Factor A (Concentration of LOF)			
P_0	6.08	14.65	16.87b
P_1	5.68	14.66	16.25b
P_2	6.64	15.62	21.19a
P_3	5.68	14.44	15.55b
Factor B (Application of Dolomite)			
D_0	6.19	14.11b	15.24b
D_1	5.85	15.57a	19.69a
Factor A x B			
P_0D_0	7.18	14.79	18.37b
P_1D_0	5.60	13.93	15.30b
P_2D_0	6.80	13.58	13.93b
P_3D_0	5.17	14.13	13.38b
P_0D_1	4.97	14.50	15.30b
P_1D_1	5.75	15.39	17.21b
P_2D_1	6.48	17.65	28.45a
P_3D_1	6.20	14.76	17.73b

Means followed by the same letters are not significantly different based on the DMRT test at 0.05 level.

Table 4. Average of bulb weight after storage and percentage of weight loss

Treatment	Bulb weight (g) at storage duration (WAS)	Percentage of weight loss (%)
Factor A (Concentration of LOF)		
P_0	12.70b	56.35b
P_1	12.84b	45.45b
P_2	18.33a	37.29a
P_3	12.58b	42.79a
Factor B (Application of Dolomite)		
D_0	11.37b	50.90b
D_1	16.85a	40.04a
Factor A x B		
P_0D_0	13.27b	62.86c
P_1D_0	11.50b	50.28b
P_2D_0	10.20b	40.05b
P_3D_0	10.50b	49.84c
P_0D_1	12.13b	40.63ab
P_1D_1	14.18b	24.16a
P_2D_1	26.45a	45.52bc
P_3D_1	14.65b	40.04a

Note: Mean followed by the same letters are not significantly different based on the DMRT test at 0.05 level.

4. CONCLUSIONS

Based on the obtained results, it can be concluded that:

The single factor of application of liquid organic fertilizer and application of dolomite and the combination of both factors were significant to very significant on parameters fresh bulb weight, bulb weight after storage and percentage of weight loss.

The treatment of 20% LOF concentration gave the highest value on fresh bulb weight and bulb weight after storage, and also gave the lowest percentage of weight loss.

The application of dolomite resulted in higher bulb diameter, fresh bulb weight and bulb weight after storage, and also a lower percentage of weight loss compared to without the application of dolomite.

The combination of treatments/interaction between the concentration of 20% liquid organic fertilizer and dolomite application resulted in the highest fresh bulb weight and bulb weight after storage, and also gave the lowest percentage of weight loss.

REFERENCES

[BPS] Badan Pusat Statistik (2018) Statistik Tanaman Sayuran dan Buah-buahan Semusim. Jakarta

[BPS] Badan Pusat Statistik (2019) Statistik Tanaman Sayuran dan Buah-buahan Semusim. Jakarta

Buckman HO and Brady NC (1982) Dasar Ilmu Tanah. Terjemahan [BPS] Badan Pusat Statistik (2019) Statistik Tanaman Sayuran Dan Buah-buahan Semusim. Jakarta

Cakmak, B. (2013). Magnesium in crop production, food quality and human health. Plant Soil, 368, 1–4. doi: 10.1007/s11104-013-1781-2

Handayani R (2017) Pertumbuhan, Hasil Dan Kualitas Bawang Merah (Allium ascalonicum L.) Pada Berbagai Waktu Pemberian Dolomit Dan Dosis Pupuk Organik Granule. [Script]. Universitas Sintuwu Maroso, Poso.

Hocking, B., Teyman, S. D., Burton, R. A., & Gillham, M. (2016). Fruit calcium: transport and physiology. Frontiers in Plant Science, 7, 569. doi: 10.3389/fpls.2016.00569

Kementerian Pertanian (2019) Buletin Konsumsi Pangan. Pusat Data dan Informasi Kementerian Pertanian. Jakarta.

Leghari, S. J., Wahono, N. A., Laghari, G. M., HafeezLeghari, A., MustafaBhabha, G., HussainTalpur, K., Bhuuto, T. A., Wahono, S.A & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209-219.
Marschner, H. (2012). Marschner’s mineral nutrition of higher plants. Vol. 89.

Muchtadi (1992). Fisiologi Pasca Panen Sayuran dan Buah-Buahan. Departemen Pendidikan dan Kebudayaan. Direktorat Jenderal Pendidikan Tinggi. Pusat Antar Universitas. Institut Pertanian Bogor. Bogor.

Pusat Data dan Sistem Informasi Pertanian. 2014. Buletin Konsumsi Pangan Volume 5 No. 1. https://pusdatin.setjen.pertanian.go.id

[PPPP] Pusat Penelitian dan Pengembangan Perkebunan (2017). Pemanfaatan Sabut Kelapa Sebagai Sumber Kalium Organik. Warta Penelitian dan Pengembangan Tanaman Industri, 23(1), 1-4

Rahma, S., Rasyid, B., & Jayadi, M. (2019). Peningkatan Unsur Hara Kelapa dalam Tanah Melalui Aplikasi POC Batang Pisang dan Sabut Kelapa. Jurnal Ecosolum, 8(2), 74-85.

Ristikdikti (2020). Info Grafis Flagship Prn 2020-2024. Kementerian Pendidikan dan Kebudayaan, Jakarta

Romiyadi, R., & Sufiadi, E. (2017). Pengaruh Konsentrasi Air Rendaman Sabut Kelapa dan Dosis Pupuk NPK Terhadap Pertumbuhan dan Hasil Tanaman Melon Varietas Action 434. Paspalam: Jurnal Ilmiah Pendidikan dan Kebudayaan, Sintuwu Maroso. Sulawesi Tengah

Taiz, L., & Zeiger, E. (2010). Ethylene In: Plant physiology, International edn.

Thor, K. (2019). Calcium—Nutrient and messenger. Frontiers in plant science, 10, 440. doi: 10.3389/fpls.2019.00440.

Torillo Jr, J. E., & Mihara, M. A. C. H. I. T. O. (2012). Nitrogen and phosphorus released from coconut husk during retting treatment. International Journal of Environmental and Rural Development, 3(2), 94-98.

Wang, Z., Hassan, M. U., Nadeem, F., Wu, L., Zhang, F., & Li, X. (2020). Magnesium fertilization improves crop yield in most production systems: a meta-analysis. Frontiers in plant science, 10, 1727. doi: 10.3389/fpls.2019.01727.

Wilman, D., Droushiotis, D., Mzamane, M. N & Shim, J. S. (2009). The effect of interval between harvests and nitrogen application on initiation, emergence and longevity of leaves, longevity of tillers and dimensions and weights of leaves and ‘stems’ in Lolium. The Journal of Agricultural Science, 89(1), 65-79. doi: https://doi.org/10.1017/S0021859600027209.

Winarso S (2005) Kesuburan Tanah: Dasar Kesehatan dan Kualitas Tanah. Gava Media. Yogyakarta.

Yan, B., & Hou, Y. (2018, July). Effect of soil magnesium on plants: a review. In IOP Conference Series: Earth and Environmental Science (Vol. 170, No. 2, p. 022168). IOP Publishing. doi:10.1088/1755-1315/170/2/022168.