Hole spin relaxation in p-type (111) GaAs quantum wells

L. Wang and M. W. Wu

Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China

(Dated: May 5, 2014)

Hole spin relaxation in p-type (111) GaAs quantum wells is investigated in the case with only the lowest hole subband, which is heavy-hole like in (111) GaAs/AlAs and light-hole like in (111) GaAs/InP quantum wells, being relevant. The subband Löwdin perturbation method is applied to obtain the effective Hamiltonian including the Dresselhaus and Rashba spin-orbit couplings. Under a proper gate voltage, the total in-plane effective magnetic field in (111) GaAs/AlAs quantum wells can be strongly suppressed in the whole momentum space, while the one in (111) GaAs/InP quantum wells can be suppressed only on a special momentum circle. The hole spin relaxation due to the D’yakonov-Perel’ and Elliott-Yafet mechanisms is calculated by means of the fully microscopic kinetic spin Bloch equation approach with all the relevant scatterings explicitly included. For (111) GaAs/AlAs quantum wells, extremely long heavy-hole spin relaxation time (upto hundreds of nanoseconds) is predicted. In addition, we predict a pronounced peak in the gate-voltage dependence of the heavy-hole spin relaxation time due to the D’yakonov-Perel’ mechanism. This peak originates from the suppression of the unique inhomogeneous broadening in (111) GaAs/AlAs quantum wells. Moreover, the Elliott-Yafet mechanism influences the spin relaxation only around the peak area due to the small spin mixing between the heavy and light holes in quantum wells with small well width. We also show the anisotropy of the spin relaxation. In (111) GaAs/InP quantum wells, a mild peak, similar to the case for electrons in (111) GaAs quantum wells, is also predicted in the gate-voltage dependence of the light-hole spin relaxation time. The contribution of the Elliott-Yafet mechanism is always negligible in this case.

PACS numbers: 72.25.Rb, 71.70.Ej, 71.55.Eq, 73.21.Fg

I. INTRODUCTION

Spin dynamics in semiconductor quantum wells (QWs) has been intensively investigated in recent years due to the fast development of semiconductor spintronics. In III-V zinc-blende QW systems, spin relaxation is mainly determined by the D’yakonov-Perel’ (DP) mechanism, which results from the momentum scattering together with the momentum-dependent effective magnetic field induced by the Dresselhaus and/or Rashba spin-orbit couplings (SOCs). So far, most studies focus on the (001) QWs and (110) QWs. In these works, many efforts have been devoted to obtain a long spin relaxation time (SRT)\cite{11,14,15,18,22,24,27,29,33,34} In (001) QWs, when the strengths of the Dresselhaus and Rashba terms are comparable, electron spin relaxation along the [110] or [11\bar{1}] direction can be strongly suppressed\cite{11,14,15,18,22,24,27,29,33,34}. For (110) symmetric QWs, the effective magnetic field due to the Dresselhaus term is oriented along the growth direction, which leads to an absent DP relaxation for electron spins along this direction\cite{29,33,34}.

Recently, some attention has been devoted to (111) QWs where electron spin relaxation also shows rich properties\cite{36,39,40}. Cartoixà \textit{et al.}\cite{36} pointed out that to the first order in the momentum, the effective magnetic field from both the Dresselhaus and Rashba terms $\Omega_\alpha = (\alpha_D + \alpha_R)(k_y - k_x, 0)$ (with $z\parallel[111], x\parallel[112]$ and $y\parallel[110]$, can be suppressed to zero by setting the Rashba coefficient α_R to cancel with the Dresselhaus coefficient α_D and hence the DP spin relaxation becomes absent for all three spin components. However, this strict cancellation can not occur due to the existence of the cubic Dresselhaus term $\Omega_3 = \sqrt{3}(k^2 k_y - k^3_y)$. Sun \textit{et al.}\cite{38} showed that with this cubic term included, the cancellation occurs only for the in-plane effective magnetic field on a special momentum circle, which may lead to a peak in the density or temperature dependence of the SRT. Experimentally, Balocchi \textit{et al.}\cite{39} measured the gate-voltage dependence of the SRT and a two-order of magnitude increase of the SRT can be observed, reaching values larger than 30 ns by applying an external electric field of 50 kV/cm along the growth direction of the QW. However, to the best of our knowledge, there are still no reports on hole spin relaxation in (111) zinc-blende QWs.

In the present work, we investigate the hole spin relaxation in p-type (111) GaAs QWs with only the lowest subband being relevant. In GaAs/AlAs QWs, the lowest hole subband is heavy-hole (HH) like. The Dresselhaus and Rashba SOC terms of the lowest HH subband $\Omega_{D(R)}$ can be written as

\begin{align}
\Omega_{D}^x &= \beta_x^h(3k^2_yk_y - k^3_y), \\
\Omega_{D}^y &= \beta_y^h(3k^2_yk_y - k^3_y), \\
\Omega_{D}^z &= \beta_z^h(3k^2_yk_y - k^3_y),
\end{align}

\begin{align}
\Omega_{R}^x &= \alpha_x^h(3k^2_yk_y - k^3_y), \\
\Omega_{R}^y &= \alpha_y^h(3k^2_yk_y - k^3_y), \\
\Omega_{R}^z &= \alpha_z^h(3k^2_yk_y - k^3_y)eE_z,
\end{align}

respectively, which are obtained by the subband Löwdin partitioning method\cite{41,44}. The coefficients are given in
the predicted properties. The EY mechanism is demonstrated to be negligible to the case in (111) GaAs/AlAs QWs. The contribution of the peak becomes less pronounced compared withGaAs/InP QWs, a peak is also pronounced in the SRT where the SRT can be greatly suppressed. By tuning the gate voltage, we predict a pronounced peak in the SRT due to both the DP and EY mechanisms in the present work. For (111) GaAs/AlAs QWs, we find that the SRT due to the lowest hole subband in (111) GaAs/AlAs QWs can be greatly suppressed. By tuning the gate voltage, the cancellation gate voltages \(\Omega_{D1}^{h} \) respectively. One finds that similar to the case of electrons in (111) QWs, the in-plane components of these two terms can be suppressed to zero only on a single momentum circle. The out-of-plane component can also be suppressed to zero under an unrealistic gate voltage.

In Appendix A, we derive the kinetic Bloch equation (KSBE) approach,41-43 which is the source of the Rashba SOC.44-46 Their expressions are given in Appendix B. \(V(z) \) is the confinement applied along the growth direction within the infinite-depth well potential approximation and \(L_4 \) is a 4 \times 4 unit matrix. \(E_{n,z}^{h} \) represents the electric field term, which is the source of the Rashba SOC.44

By solving the Schrödinger equation of \(H_0 = H_{(0)} + V(z)I_4 + H_eI_4 \), the subband energies for the HH and LH are given by

\[
E_{n,z}^{h,l} = \frac{n_z^2 \hbar^2}{2m_i} + E_0^2 + \frac{1}{2}
\]

where \(n_z \) stands for the subband index along the growth direction, \(a \) is the well width and \(m_i^{h,l} = \frac{m_0}{1+\gamma_{13}^2} \) represents the effective masses of the HH and LH along the \(z \)-axis. \(\gamma_{13} \) and \(m_0 \) stand for the Kohn-Luttinger parameters and the free electron mass, respectively. The contributions of the strain \(E_{0z} \) and \(E_{0x} \) are given in Eqs. (B3) and (B5) in Appendix B. It is noted that \(E_{0x} \) is just an energy shift for all the HH and LH subbands and can be neglected in the present calculation. For GaAs/AlAs QWs, the contribution of the strain is neglected due to the extremely small lattice mismatch and hence the lowest hole subband is HH like. However, for GaAs/InP QWs, due to the existence of strain, the lowest hole subband is LH like. In our calculation, we focus on the case with only the lowest hole subband being relevant while other subbands have much higher energies.

We first construct the effective Hamiltonian of the lowest hole subband in (111) GaAs QWs by the subband Löwdin partitioning method11,42 up to the third order of the in-plane momentum. The effective Hamiltonian of the lowest hole subband in (111) GaAs/AlAs QWs can be written as

\[
H_{\text{eff}}^{h} = \frac{E_{0z}^{h}}{2} + \left(\Omega_{D1}^{h} + \Omega_{R}^{h} \right) \cdot \sigma_z.
\]
Here, $\varepsilon_{k}^{\parallel} = \frac{k_{x}^{2} + k_{y}^{2}}{2m_{k}^{\parallel}}$ with the in-plane effective mass m_{k}^{\parallel} given in Appendix A and σ are the Pauli matrices. The Dresselhaus and Rashba SOC terms $\Omega_{D(R)}^{k}$ are given in Eqs. 11 and 12. To facilitate the understanding of the effective magnetic field from these SOC terms, we plot the in-plane components around an arbitrary equal-energy surface under the cancellation gate voltage E_{g}^{c} [Eq. 3] in Fig. 1. It is shown that the Dresselhaus term almost completely cancels with the Rashba one, leading to a strong suppression of the total in-plane effective magnetic field.

Similarly, the effective Hamiltonian of the lowest hole subband in (111) GaAs/AlAs QWs reads

$$H_{\text{eff}}^{\parallel} = \varepsilon_{k}^{\parallel} + (\Omega_{D}^{l} + \Omega_{R}^{l}) \cdot \frac{\sigma}{2},$$

in which $\varepsilon_{k}^{\parallel} = \frac{k_{x}^{2} + k_{y}^{2}}{2m_{k}^{\parallel}}$ and m_{k}^{\parallel} stands for the in-plane effective mass with its form given in Appendix A. The Dresselhaus and Rashba SOC terms $\Omega_{D(R)}^{l}$ of the LH are given in Eqs. 11 and 12.

We then construct the microscopic KSBEs to study the hole spin relaxations in GaAs/AlAs and GaAs/InP QWs, respectively. The KSBEs read

$$\hat{\rho}_{k,\sigma} = \hat{\rho}_{k,\sigma}^{\text{coh}} + \hat{\rho}_{k,\sigma}^{\text{scat}},$$

where $\hat{\rho}_{k,\sigma}^{\text{coh}}$ represent the density matrix elements of holes with the diagonal ones $\hat{\rho}_{k,\sigma}^{\text{coh}} = f_{k\sigma}$ ($\sigma = \pm 1/2$) describing the distribution functions and the off-diagonal ones $\hat{\rho}_{k,\sigma}^{\text{coh}} = f_{k\sigma}^{\pm 1/2}$ $\hat{\rho}_{k,1/2 - 1/2} = \hat{\rho}_{k,1/2}$ denoting the spin coherence. $\hat{\rho}_{k,\sigma}^{\text{coh}}$ are the coherent terms describing the coherent spin precession due to the effective magnetic field from both the Dresselhaus and Rashba terms while the Hartree-Fock Coulomb interaction is neglected due to the small spin polarization. Their expressions are given by

$$\begin{align*}
\frac{\partial f_{k,\sigma}}{\partial t} &= -2\sigma|\Omega_{x}(k)\text{Im}\rho_{k} + \Omega_{y}(k)\text{Re}\rho_{k}|, \\
\frac{\partial \rho_{k}}{\partial t} &= \frac{1}{2}i\Omega_{x}(k) + \Omega_{y}(k)(f_{k1/2} - f_{k-1/2}) - i\Omega_{z}(k)\rho_{k}.
\end{align*}$$

Here, Ω_{i} ($i = x, y, z$) are the three components of the effective magnetic field from both the Dresselhaus and Rashba terms. $\hat{\rho}_{k,\sigma\sigma'}|_{\text{coh}}$ are the scattering terms including the spin conserving ones, i.e., the hole-hole (U_{q}^{\parallel}), hole-impurity (U_{q}^{\parallel}), hole-acoustic-phonon ($|M_{Q,AC}|^{2}$), polar hole-longitudinal-optical-phonon ($|M_{Q,LO}^{\parallel}|^{2}$) and non-polar hole-optical-phonon ($|M_{Q,LO}^{\parallel}|^{2}$) scatterings with $\lambda = \text{LO/TO}$ denoting longitudinal-optical/transverse-optical phonon and the spin-flip ones due to the EY mechanism. Their detailed expressions can be found in Ref. 48. (Note the scatterings in Ref. 48 are given in bulk and one needs to transform them to two-dimensional cases). The scattering matrix elements $V_{q}^{\parallel} = \frac{\sum q_{z}v_{q}v_{q}^{\parallel}(i\epsilon_{q})(i\epsilon_{q})}{\epsilon_{q}^{2} + \epsilon_{q}^{2}}$ and $U_{q}^{\parallel} = \frac{\sum q_{z}v_{q}v_{q}^{\parallel}(i\epsilon_{q})(i\epsilon_{q})}{\epsilon_{q}^{2} + \epsilon_{q}^{2}}$ are the coherent terms describing the scattering terms including the spin conserving ones, i.e., the hole-hole (U_{q}^{\parallel}) and the bare Coulomb potential $V_{q}^{\parallel} = \frac{4\pi e^{2}}{\epsilon_{q}^{2}}$ with $\epsilon_{q}^{2} = \epsilon_{q}^{2} + \epsilon_{q}^{2}$; and the form factor $|I(qz_{q})|^{2} = \pi^{2} \sin y/y|y'(y^{2} - \pi^{2})|^{2}$ with $y = q_{z}/2$. $|M_{Q,LO}^{\parallel}|^{2} = \frac{2\pi e^{2}\omega_{LO}^{2}/(q_{z}^{2} + q_{z}^{2})(\kappa_{\parallel}^{2} - \kappa_{0}^{2})}{\epsilon_{q}^{2} + \epsilon_{q}^{2}}$ with ω_{LO} denoting the LO phonon energy and κ_{0} being the static (optical) dielectric constant $|M_{Q,LO}^{\parallel}|^{2} = \frac{3\pi \epsilon_{q}^{2}}{2\epsilon_{q}^{2} + \epsilon_{q}^{2}}$ for the nonpolar HH-optical-phonon scatterings and $|M_{Q,AC}^{l}|^{2} = \frac{\eta \varepsilon_{q}^{2}}{2\epsilon_{q}^{2} + \epsilon_{q}^{2}}$ for the nonpolar LH-optical-phonon ones with $d_{0}, d_{c}, q_{0}, \omega_{LO}$ and ω_{TO} representing the optical deformation potential, the mass density, the lattice constant of GaAs, the TO phonon energy, and the TO phonon energy, respectively. $\eta = 1$ for $\lambda = \text{LO/TO}$. The matrix element for the hole-acoustic phonon scattering due to the deformation potential reads $|M_{Q,AC}^{\parallel}|^{2} = \frac{2\pi e^{2}}{\epsilon_{q}^{2} + \epsilon_{q}^{2}}|I(qz_{q})|^{2}$ with Ξ denoting the deformation potential and v_{st} being the velocity of the longitudinal sound wave. For the hole-acoustic phonon scattering due to the piezoelectric coupling, $|M_{Q,AC}^{p}|^{2} = \frac{3\pi \epsilon_{q}^{2}}{2\epsilon_{q}^{2} + \epsilon_{q}^{2}}|I(qz_{q})|^{2}$ for the longitudinal phonon and $|M_{Q,AC}^{p}|^{2} = \frac{3\pi \epsilon_{q}^{2}}{2\epsilon_{q}^{2} + \epsilon_{q}^{2}}|I(qz_{q})|^{2}$ for the transverse phonon, with $q_{z}' = \frac{1}{\sqrt{2}} q_{x} - \frac{1}{\sqrt{2}} q_{y} + \frac{1}{\sqrt{2}} q_{z}$, $q_{y}' = \frac{1}{\sqrt{2}} q_{x} + \frac{1}{\sqrt{2}} q_{y} + \frac{1}{\sqrt{2}} q_{z}$ and $q_{z}' = \frac{1}{\sqrt{2}} q_{x} + \frac{1}{\sqrt{2}} q_{y} + \frac{1}{\sqrt{2}} q_{z}$. v_{st} represents the velocity of the longitudinal sound wave and ε_{14} is the piezoelectric constant. The spin mixing $\hat{\Delta}_{k,k'}$ for the lowest HH and
TABLE I: Parameters used in the calculation (from Ref. 42 unless otherwise specified)

Parameter	Value
γ_1	6.85
γ_2	2.10
γ_3	2.90
b_{41}	-81.93 eVÅ3
b_{42}	1.47 eVÅ3
b_{21}	-0.98 eVÅ3
D_s	4.67 eV
a_{AlAs}	5.66 Å
a_{InP}	5.87 Å
C_{12}	5.32
C_{44}	5.94
d	5.31 g/cm3
e_{14}	1.41×10^9 V/m^{-1}
κ_∞	10.8
Ξ	8.5 eV
ν_{th}	5.29×10^3 m/s
ν_{at}	2.48×10^3 m/s
κ_0	12.9

LH subbands in the spin-flip scattering terms are detailed in Appendix C.

III. NUMERICAL RESULTS

We present our results obtained by numerically solving the KSBEs. All the parameters used in our calculation are listed in Table I. The initial spin polarization is along the KSBEs. All the parameters used in our calculation are listed in Table I. The initial spin polarization is along the KSBEs.

![Figure 2](image_url)
FIG. 2: (Color online) HH SRT along the z-axis τ_{sz} and the inverse of the inhomogeneous broadening (Ω_y^{-1}) of the lowest hole subband in (111) GaAs/AlAs QWs against the gate voltage E_g. Red solid (blue dashed) curve represents the SRT due to the DP (both DP and EY) mechanism. The temperature $T = 30$ K, the hole density $N_h = 3 \times 10^{11}$ cm$^{-2}$ and the impurity density $N_i = 0$. Note the scale of (Ω_y^{-1}) is on the right-hand side of the frame.

A. HH spin relaxation in GaAs/AlAs QWs

Before a full investigation by numerically solving the KSBEs, we start from an analytical analysis of the DP spin relaxation of the lowest hole subband, which is HH like, in (111) GaAs/AlAs QWs. In the strong scattering limit, the evolution of spin polarization along the z-axis can be approximated by

$$\dot{S}_z = -\frac{\tau_p^*}{\Omega_y^{-1}}[S_z(\Omega_z^2 + \Omega_y^2) - S_y(\Omega_x \Omega_z - S_y(\Omega_y \Omega_z))],$$

with τ_p^* standing for the effective momentum scattering time contributed by the hole-hole, hole-impurity and hole-phonon scatterings. The evolutions of the in-plane components S_x and S_y can be obtained by index permutation. It is noted that unlike (001) III-V zincblende QWs where Ω_z is absent and the inhomogeneous broadening of the spin polarization along the z-axis is determined by $\Gamma_z = (\Omega_z^2 + \Omega_y^2)^{1/2}$ for (111) QWs, Ω_z and $\Omega_y \Omega_z$ are nonzero under the effective magnetic field from both the Dresselhaus and Rashba terms given in Eqs. (13) and (14).

The exact solutions are given in Appendix C. Specially by setting the initial spin polarization along the z-axis as $S_z(0)$, we obtain $S_z = S_z(0)e^{-t/\tau_{sz}}$ approximately by considering that $\langle \Omega_z^2 \rangle$, $\langle \Omega_y^2 \rangle$ and $\langle \Omega_x \Omega_z \rangle$ are much smaller than $\langle \Omega_y^2 \rangle$ in our investigation. The SRT along the z-axis reads

$$\tau_{sz} = \tau_p^{-1}(\Omega_y^{-1}),$$

with $\langle \Omega_y^2 \rangle$ being the inhomogeneous broadening. This inhomogeneous broadening is unique in (111) QWs and has not been reported in the literature.

We then numerically calculate the spin relaxation of the lowest hole subband, which is HH like, in (111) GaAs/AlAs QWs where the well width is chosen to be 8 nm. We first investigate the SRT due to the DP mechanism and plot the gate-voltage dependence of the SRT along the z-axis at $T = 30$ K with the hole density $N_h = 3 \times 10^{11}$ cm$^{-2}$ by red solid curve in Fig. 2. It is seen that the SRT can be effectively modulated by the gate voltage and a peak appears at $E_g \approx 22$ kV/cm. Under this gate voltage, the SRT is as long as 283 ns which is about four orders of magnitude larger than the one without any bias. This peak results from the suppression of the inhomogeneous broadening (Ω_y^2) as shown by green dotted curve in Fig. 2. This suppression originates from the cancellation of the y-component of the effective magnetic field Ω_y [Eq. (13)].

Since the suppression of the DP spin relaxation is determined by the cancellation of the y-component of the
It is further noted that the EY mechanism is usually more important at the cancellation gate voltage, we also plot in Fig. 3(a) the hole density, temperature and impurity density dependences of the SRT due to both the EY and DP mechanisms under this gate voltage (blue curves with ●). We find that the peaks in the hole density and temperature dependences disappear since the SRT caused by the EY mechanism decreases with the hole density and temperature. Moreover, the SRT due to the EY mechanism also decreases with the impurity density. However, away from the cancellation field, the spin relaxation is determined by the DP mechanism only and the peaks still exist in the corresponding temperature and density dependences.

Finally, we address the anisotropy of the spin relaxation with respect to the spin polarization direction. The SRT along the z-axis τ_{sz} is given in Eq. (17). Similarly, one obtains the SRTs along the x- and y-axes as

$$
\tau_{sx} = \tau_{sx}^{-1} \left(\Omega_x^2 + \Omega_y^2 + \Omega_z^2 \right)^{-1},
$$

$$
\tau_{sy} = \tau_{sy}^{-1} \left(\Omega_x^2 + \Omega_y^2 \right)^{-1},
$$

by setting the initial spin polarizations along the x- and y-axes correspondingly. By comparing Eqs. (18) and (19), one finds a strong anisotropy between the out-of- and in-plane spin relaxation, since Ω_z is about one order of magnitude larger than the in-plane components Ω_x and Ω_y in (111) QWs with small well width. In addition, a marginal anisotropy also arises between the in-plane spin relaxations from Eqs. (18) and (19). The numerical result of the SRT along the x(y)-axis τ_{sx} (τ_{sy}) is shown in Fig. 3(d) by red curve with x (blue one with □). One finds from the figure that both τ_{sx} and τ_{sy} are about two orders of magnitude smaller than τ_{sz}.

B. LH spin relaxation in GaAs/InP QWs

We also investigate the spin relaxation of the lowest hole subband, which is LH like, in (111) GaAs/InP QWs with the well width $a = 20$ nm. The gate-voltage dependence of the SRT along the z-axis due to the DP mechanism under different temperatures is shown in Fig. 4 and a peak is also observed. We find that the peak becomes less pronounced than that in GaAs/AlAs QWs since the cancellation only occurs on a special momentum circle. The location of the peak is insensitive to the gate voltage just the same as the case for electrons in (111) QWs.
FIG. 4: (Color online) LH SRT along the z-axis τ_z of the lowest hole subband in (111) GaAs/InP QWs against the gate voltage E_g. Red curve with \times (blue one with \Box) stands for the case with temperature $T = 40$ (60) K. The hole density $N_h = 1 \times 10^{12}$ cm$^{-2}$ and impurity density $N_i = 0$.

IV. SUMMARY

In summary, we have investigated the hole spin relaxations in p-type (111) GaAs/AlAs and GaAs/InP QWs with only the lowest hole subband being relevant. The lowest hole subband is HH like in the former case while LH like in the latter one. In both systems, we utilize the subband L"{o}wdin perturbation method to obtain the effective Hamiltonian including the Dresselhaus and Rashba SOCs. Under a proper gate voltage, the total in-plane effective magnetic field in (111) GaAs/AlAs QWs can be strongly suppressed in the whole momentum space, while the one in (111) GaAs/InP QWs can only be suppressed to zero on a special momentum circle. Therefore, tuning the gate voltage is an efficient way to modulate the hole spin relaxation in (111) QWs.

We calculate the hole spin relaxation due to the DP and EY mechanisms by numerically solving the KSBEs with all the relevant scatterings explicitly included. For (111) GaAs/AlAs QWs, the contribution of the EY mechanism is negligible unless the DP mechanism is strongly suppressed. In addition, we predict a pronounced peak in the gate voltage-dependence of the HH SRT where an extremely long SRT (upto hundreds of nanoseconds) can be reached. This peak comes from the suppression of the unique inhomogeneous broadening in (111) GaAs/AlAs QWs, specifically, the cancellation of the y-component of the effective magnetic field. The suppression of the spin relaxation is robust against the hole density, temperature and impurity density. A strong anisotropy between the out-of- and in-plane spin relaxations is also addressed. In (111) GaAs/InP QWs, a peak is also predicted in the gate-voltage dependence of the LH SRT. However, the peak becomes less pronounced compared with the case in (111) GaAs/AlAs QWs since the cancellation only occurs on a special momentum circle in GaAs/InP QWs. The contribution of the EY mechanism is always negligible in this case. This investigation suggests that the HH in (111) GaAs/AlAs QWs offers unique properties for the spintronic devices and calls for experimental investigations.

Acknowledgments

This work was supported by the National Basic Research Program of China under Grant No. 2012CB922002 and the National Natural Science Foundation of China under Grant No. 10725417.

Appendix A: EFFECTIVE MASS AND SPIN-ORBIT COUPLING COEFFICIENTS

The in-plane effective mass m_i^h in Eq. (8) and the Dresselhaus (Rashba) strengths β_i^h (α_i^h) ($i = x, y, z$) of the lowest hole subband, which is HH like, in Eqs. (1) and (2) are given by

$$\frac{1}{m_i^h} = \gamma_1 + \gamma_3 - \sum_{n_z \neq 1} \frac{2B^2_1Q_{1n_z}^2}{\hbar^2\Delta_{n_z}^h} - \frac{2C_1^2}{\hbar^2\Delta_{11}^h},$$

$$\beta_x^h = \frac{b_{12}}{\sqrt{3}} - \frac{4(C_1B_3 + B_2C_3)}{\Delta_{11}^h},$$

$$\beta_y^h = \frac{-b_{52} + b_{62}}{\sqrt{3}} + \frac{4(C_1B_3 - B_2C_3)}{\Delta_{11}^h},$$

$$\beta_z^h = -\frac{\sqrt{6}}{2}b_{11} + \frac{23\sqrt{6}}{24}b_{12} + \frac{4(C_3B_3 - C_1B_2)}{\Delta_{11}^h},$$

$$\alpha_x^h = \sum_{n_z \neq 1} \frac{Q_{1n_z}1_{1n_z}}{\Delta_{n_z}^h\Delta_{11}^h}(B_1B_3 - C_1C_4 n_z^2 + 2B_2^2 - C_2C_3 n_z^2) + \sum_{n_z \neq 1} \frac{4P_{1n_z}Q_{1n_z}}{\Delta_{n_z}^h}\left(\frac{1}{\Delta_{n_z}^h} - \frac{1}{\Delta_{n_z}^h}
ight) \times (B_1B_3 - C_1C_4 + 2B_2^2 - C_2C_3),$$

$$\alpha_y^h = \sum_{n_z \neq 1} \frac{Q_{1n_z}1_{1n_z}}{\Delta_{n_z}^h\Delta_{11}^h}(B_1B_3 - C_1C_4 n_z^2 - 2B_2^2 + C_2C_3 n_z^2) + \frac{C_2C_3 n_z^2}{\Delta_{11}^h},$$

$$\alpha_z^h = \sum_{n_z \neq 1} \frac{4P_{1n_z}Q_{1n_z}}{\Delta_{n_z}^h\Delta_{11}^h}\left(\frac{1}{\Delta_{n_z}^h} - \frac{1}{\Delta_{n_z}^h}\right) \times (B_1B_3 - C_1C_4 - 2B_2^2 + C_2C_3).$$
\[
\alpha^h_z = \sum_{n_z \neq 1} \frac{4P_{1n_z}Q_{1n_z}}{\Delta_{n_z}^h \Delta_{n_z-1}^h} (B_1B_2 - C_1C_2n_z^2 - 2B_2B_3 \\
+ C_3C_3n_z^2) + \sum_{n_z \neq 1} \frac{4P_{1n_z}Q_{1n_z}}{\Delta_{n_z}^h \Delta_{n_z-1}^h} \left(\frac{1}{\Delta_{n_z}^h} - \frac{1}{\Delta_{n_z-1}^h} \right) \\
\times (B_1B_2 - C_1C_2 - 2B_2B_3 + C_3C_4). \tag{A7}
\]

The in-plane effective mass \(m^l_i \) in Eq. (9), the Dresselhaus strengths \(\beta^{\sigma, \delta}_x \), \(\beta^l_x \) and the Rashba strengths \(\alpha^{h, l}_x \) of the lowest hole subband, which is LH like, in Eqs. (11) and (15) read
\[
\frac{1}{m^l_1} = \frac{\gamma_1 - \gamma_3}{m_0} - \frac{2(C_2^2 + C_3^2)}{2\Delta_{n_z}^{hl}} - \sum_{n_z \neq 1} \frac{2}{n_z^2 \Delta_{n_z}^{hl}} \\
\times (B_1^2 + 4B_2^2)Q_{1n_z}^2, \tag{A8}
\]
\[
\beta^{\sigma, \delta}_x = \frac{4b_{41} + 7b_{42}}{4\sqrt{3}} - \frac{\sqrt{3}}{2} \left(b_{51} + b_{52} \right) - \frac{4}{\Delta_{n_z}^{hl}} (B_2C_3) \\
- C_1B_3 \right) + \sum_{n_z \neq 1} \frac{4(-B_1C_4 + 2C_2B_3)Q_{1n_z}^2}{\Delta_{n_z}^{hl}}, \tag{A9}
\]
\[
\beta^l_x = \frac{-4\sqrt{3}b_{41}}{3} - \frac{7\sqrt{3}b_{42}}{3} - \sqrt{3}b_{52}, \tag{A10}
\]
\[
\beta^l_z = \frac{-\sqrt{3}b_{41}}{6} - \frac{13\sqrt{3}b_{42}}{24} - \frac{4}{\Delta_{n_z}^{hl}} \left(C_1B_2 + C_3B_3 \\
+ \sum_{n_z \neq 1} \frac{4(B_1C_2 + 2B_2C_4)Q_{1n_z}^2}{\Delta_{n_z}^{hl}} \right), \tag{A11}
\]
\[
\alpha^l_x = \sum_{n_z \neq 1} \frac{4P_{1n_z}Q_{1n_z}}{\Delta_{n_z}^l \Delta_{n_z-1}^l} (B_1B_3 - C_1C_4n_z^2 - 2B_2^2 \\
+ C_2C_3n_z^2) + \sum_{n_z \neq 1} \frac{4P_{1n_z}Q_{1n_z}}{\Delta_{n_z}^l \Delta_{n_z-1}^l} \left(\frac{1}{\Delta_{n_z}^l} - \frac{1}{\Delta_{n_z-1}^l} \right) \\
\times (B_1B_3 - C_1C_4 - 2B_2^2 + C_2C_3), \tag{A12}
\]
\[
\alpha^l_z = -\sum_{n_z} \frac{4W_1P_{1n_z}Q_{1n_z}n_z^2}{\Delta_{n_z}^l \Delta_{n_z-1}^l} - \sum_{n_z} \frac{4W_1P_{1n_z}Q_{1n_z}n_z^2}{\Delta_{n_z}^l \Delta_{n_z-1}^l} \\
- \sum_{n_z \neq 1} \frac{4P_{1n_z}Q_{1n_z}}{\Delta_{n_z}^l \Delta_{n_z-1}^l} (-B_1B_2 + C_1C_2 - 2B_2B_3 \\
+ C_3C_4) + \sum_{n_z \neq 1} \frac{4P_{1n_z}Q_{1n_z}}{\Delta_{n_z}^l \Delta_{n_z-1}^l} \left(B_1B_2 - C_1C_2n_z^2 \\
+ 2B_2B_3 - C_3C_4n_z^2 \right). \tag{A13}
\]

In above equations, \(\gamma_i \) are Kohn-Luttinger parameters; \(b_{41,42,51,52} \) stand for the coefficients of the Dresselhaus SOC of the valence band; \(\Delta_{n_z}^{hl} \) is the energy difference between \(n_z \)-th and \(n_z-1 \)-th subbands of HH (LH); \(\Delta_{n_z}^{hl} \) is the energy difference between \(n_z \)-th HH and \(n_z-1 \)-th LH subbands. \(B_1 = \sqrt{3\gamma_2^2(2\gamma_2 + \gamma_3)} \), \(B_2 = \sqrt{3\gamma_2^2(-2\gamma_2 + \gamma_3)} \), and \(B_3 = \sqrt{3\gamma_2^2(2\gamma_2 + \gamma_3)^2} \). \(C_1 = (b_{41} + \frac{1}{2}b_{42} - 2b_{51} + b_{52}) \frac{3}{2} \), \(C_2 = \frac{\sqrt{7}}{4}(b_{41} + \frac{9}{2}b_{42} - b_{51} + b_{52}) \), \(C_3 = \frac{\sqrt{3}}{4\pi^2}((2b_{42} + b_{52}) \), and \(C_4 = \frac{1}{2}(b_{42} + b_{51} - b_{52}) \). \(P_{n_z} = \frac{4\gamma_1n_z((-1)^{n_z+2} + 1)}{(-\gamma_1 + n_z)}, Q_{n_z} = \frac{2\gamma_1n_z((-1)^{n_z+2} + 1)}{(-\gamma_1 + n_z)^2}, \) and \(W_1 = \frac{3\sqrt{3}}{\pi d^2}((b_{41} + \frac{5}{2}b_{42} + b_{51} - b_{52}) + \frac{1}{2}b_{42}) \).

Appendix B: Luttinger Hamiltonian for (111)-oriented III-V zinc-blende crystal

The Luttinger Hamiltonian \(H_L \), the Dresselhaus SOC \(H^l_{\text{soc}} \), and the strain Hamiltonian \(H_s \) in Eq. (11) are given in the following. The Luttinger Hamiltonian \(H_L \) can be written as
\[
H_L = \begin{pmatrix}
F & H & I_0 \\
H^* & G & I \\
I^* & 0 & G & -H \\
0 & I^* & -H^* & F
\end{pmatrix}
\tag{B1}
\]
in the basis of the eigenstates of \(J_z \) with eigenvalues \(\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, \) and \(-\frac{3}{2} \) in sequence, where \(F = \frac{\gamma_1}{2m_0}((\gamma_1 + \gamma_3)(k_x^2 + k_y^2) + (\gamma_1 - 2\gamma_3)k_z^2) \), \(H = \frac{\gamma_3}{2m_0}((\gamma_3 - \gamma_1)(k_x^2 + k_y^2) + (\gamma_1 + 2\gamma_3)k_z^2) \), \(G = \frac{\gamma_2}{2m_0}((\gamma_2 - \gamma_3)(k_x^2 + k_y^2) + 2\gamma_2k_z^2) \), \(I = \frac{\gamma_1}{2m_0}((\gamma_2 + \gamma_3)k_x^2 + 2\gamma_2k_z^2) \), and \(I_0 = \frac{\gamma_1}{2m_0}((\gamma_2 - \gamma_3)k_x^2 + 2\gamma_2k_z^2) \), with \(k_{x,y,z} = k_x \pm ik_y \). \(H^l_{\text{soc}} \) is the spin-\(3/2 \) angular momentum matrices and \(cp \) denotes the cyclic permutation of the preceding terms.

The Bir-Pikus strain Hamiltonian \(H_s \) reads
\[
H_s = \text{diag}(-E_1^s, E_2^s, E_3^s, -E_3^s, -E_1^s), \tag{B3}
\]
\[
E_1^s = 2D_d\epsilon_a, \tag{B4}
\]
\[
E_2^s = 3D_d\epsilon_b, \tag{B5}
\]
\[
\epsilon_a = \frac{1}{3} \left(1 + \frac{1}{\sigma_{(111)}} \right) \epsilon_{||}, \tag{B6}
\]
\[
\epsilon_b = \frac{1}{3} \left(2 - \frac{1}{\sigma_{(111)}} \right) \epsilon_{||}, \tag{B7}
\]
\[
\sigma_{(111)} = C_{11} + 2C_{12} + 4C_{44} \tag{B9}
\]
\[
\sigma_{(111)} = \frac{C_{11} + 2C_{12} + 4C_{44}}{2C_{11} + 4C_{12} - 4C_{44}} \tag{B9}
\]
Here, D^\prime_α and D_α stand for the deformation potential constants; ϵ_α and $\epsilon_{\alpha'}$ denote the diagonal and off-diagonal components of the strain tensor; a_α and $a_{\alpha'}$ represent the lattice constants of epilayer (GaAs) and substrate materials (AlAs/InP); and C_{11}, C_{12} and C_{44} are the stiffness constants.42,47

Appendix C: SPIN MIXING $\hat{\Lambda}_{k,k'}$ FOR THE LOWEST HH AND LH SUBBANDS

The spin mixing $\hat{\Lambda}_{k,k'}$ in the spin-flip scattering induced by the EY mechanism reads $\hat{\Lambda}_{k,k'} = \hat{I} - \frac{1}{2} \sum_n (S^{(1)}_{k,1\downarrow} \hat{S}^{(1)}_{k',1\uparrow} \hat{S}^{(1)}_{k',1\uparrow} + S^{(1)}_{k,1\uparrow} \hat{S}^{(1)}_{k',1\downarrow} \hat{S}^{(1)}_{k',1\uparrow} + S^{(1)}_{k,1\uparrow} \hat{S}^{(1)}_{k',1\downarrow} \hat{S}^{(1)}_{k',1\downarrow})$, with \hat{I} being a 2×2 unit matrix. For the lowest hole subband, which is HH like, in GaAs/InP QWs, $S^{(1)}_{k,1\uparrow}$ is given by

$$S^{(1)}_{k,1\uparrow} = \left(\begin{array}{cc} 0 & -\frac{\Delta_{H}^{h}}{\Delta_{L}^{h}} \\ -\frac{\Delta_{H}^{h}}{\Delta_{L}^{h}} & 0 \end{array} \right), \quad (C1)$$

$H^{h}_{ij} = \langle 1 | H_{ij} | n_z \rangle$ in which 1 (n_z) stands for the first (n_z-th) subband and H_{ij} represents the i-th row and j-th column of the Hamiltonian matrix $H_{4 \times 4}$ in Eq. [1]. Δ^{h}_{H} is the energy difference between the first and n_z-th HH subbands and Δ^{h}_{L} is the energy difference between the first HH and n_z-th LH subbands.

For the lowest hole subband, which is LH like, in GaAs/InP QWs, $S^{(1)}_{k,1\downarrow}$ is given by

$$S^{(1)}_{k,1\downarrow} = \left(\begin{array}{cc} 0 & -\frac{\Delta_{H}^{l}}{\Delta_{L}^{l}} \\ -\frac{\Delta_{H}^{l}}{\Delta_{L}^{l}} & 0 \end{array} \right), \quad (C2)$$

where Δ_{L}^{h} is the energy difference between the first and n_z-th LH subbands. It is noted that $S^{(1)}_{k,1\downarrow}$ can be obtained by replacing k in $S^{(1)}_{k,1\uparrow}$ with k'. 17

Appendix D: EXACT SOLUTIONS OF Eqs. (14) TO (16)

$$S_z = \frac{S_z(0)}{2u} \left[\left(\frac{\Omega_x^{2} - \Omega_z^{2}}{\Omega_x^{2} + \Omega_z^{2}} \right) + \frac{S_z(0)}{2u} \left(\frac{(\Omega_x^{2} - \Omega_z^{2}) + u e^{-\lambda_1 t^{*}} + e^{-\lambda_2 t^{*}}}{\Omega_x^{2} + \Omega_z^{2} + u} \right) \right],$$

$$S_y = \frac{S_y(0)}{2u} \left[\left(\frac{\Omega_x^{2} - \Omega_z^{2}}{\Omega_x^{2} + \Omega_z^{2}} \right) + \frac{S_y(0)}{2u} \left(\frac{(\Omega_x^{2} - \Omega_z^{2}) + u e^{-\lambda_1 t^{*}} + e^{-\lambda_2 t^{*}}}{\Omega_x^{2} + \Omega_z^{2} + u} \right) \right],$$

$$S_x = \frac{S_x(0)}{2u} \left[\left(\frac{\Omega_x^{2} - \Omega_z^{2}}{\Omega_x^{2} + \Omega_z^{2}} \right) + \frac{S_x(0)}{2u} \left(\frac{(\Omega_x^{2} - \Omega_z^{2}) + u e^{-\lambda_1 t^{*}} + e^{-\lambda_2 t^{*}}}{\Omega_x^{2} + \Omega_z^{2} + u} \right) \right],$$

with $\lambda_{1,2} = \frac{1}{4} (\Omega_x^{2} + 2\Omega_y^{2} + \Omega_z^{2}) \pm u$ and $u = (\Omega_x^{2} + \Omega_z^{2})/2$. 17

* Author to whom correspondence should be addressed; Electronic address: mwwu@ustc.edu.cn.

1. F. Meier and B. P. Zakharchenya, *Optical Orientation* (North-Holland, Amsterdam, 1984).
2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Mohnár, M. L. Roukes, A. Y. Chichkeladze, and D. M. Treger, *Science* 294, 1488 (2001).
3. *Semiconductor Spintronics and Quantum Computation*, edited by D. D. Awschalom, D. Loss, and N. Samarth (Springer-Verlag, Berlin, 2002); *Spin Physics in Semiconductors*, edited by M. I. D’yakonov (Springer, Berlin, 2008).
4. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. **76**, 323 (2004); J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Phys. Slov. **57**, 565 (2007).
5. M. W. Wu, J. H. Jiang, and M. Q. Weng, Phys. Rep. **493**, 61 (2010), and references therein.
6. T. Korn, Phys. Rep. **494**, 415 (2010).
7. *Handbook of Spin Transport and Magnetism*, edited by E. Y. Tsymbal and I. Žutić (Chapman & Hall/CRC, Boca Raton, FL, 2011).
8. M. I. D’yakonov and V. I. Perel’, Zh. Eksp. Teor. Fiz. **60**, 1954 (1971) [Sov. Phys. JETP **33**, 1053 (1971)].
9. G. Dresselhaus, Phys. Rev. **100**, 580 (1955).
10. Y. A. Bychkov and E. I. Rashba, J. Phys. C **17**, 6039 (1984); Pis’ma Zh. Eksp. Teor. Fiz. **39**, 66 (1984) [JETP Lett. **39**, 78 (1984)].

11. N. S. Averkiev and L. E. Golub, Phys. Rev. B **60**, 15582 (1999).
12. M. W. Wu and H. Metiu, Phys. Rev. B **61**, 2945 (2000).
13. A. Malinowski, R. S. Britton, T. Grevatt, R. T. Harley, D. A. Ritchie, and M. Y. Simmons, Phys. Rev. B **62**, 13034 (2000).
14. N. S. Averkiev, L. E. Golub, and M. Willander, J. Phys.: Condens. Matter **14**, R271 (2002).
15. J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. **90**, 146801 (2003).
16. M. Q. Weng and M. W. Wu, Phys. Rev. B **68**, 075312 (2003); M. Q. Weng, M. W. Wu, and L. Jiang, *ibid.* **69**, 245320 (2004).
17. J. Kainz, U. Rössler, and R. Winkler, Phys. Rev. B **68**, 075322 (2003).
18. J. Schliemann and D. Loss, Phys. Rev. B **68**, 165311 (2003).
19. R. Winkler, Phys. Rev. B **69**, 045317 (2004).
20. S. I. Erlingsson, J. Schliemann, and D. Loss, Phys. Rev. B **71**, 035319 (2005).
21. N. S. Averkiev, L. E. Golub, A. S. Gurevich, V. P. Evtikhiev, V. P. Kochereshko, A. V. Platonov, A. S. Shkolnik, and Y. P. Efimov, Phys. Rev. B **74**, 033305 (2006).
22. J. L. Cheng and M. W. Wu, J. Appl. Phys. **99**, 083704 (2006).
23. J. Zhou, J. L. Cheng, and M. W. Wu, Phys. Rev. B **75**, 045305 (2007); J. Zhou and M. W. Wu, *ibid.* **77**, 075318 (2008).
