Generalized Parton Distributions in Holographic QCD

Majid Dehghani

Particle Physics Group, Faculty of Physics, Yazd University, Yazd, Iran
e-mail:m.dehghani56@stu.yazd.ac.ir

January 13, 2015

Keywords: Holographic soft-wall model; Generalized Parton Distributions; DGLAP equations; AdS/QCD

Abstract

Holographic soft-wall model is successful in the phenomenology of hadrons. Here with the use of generalized parton distributions (GPDs) obtained from AdS/QCD, perturbative effects are entered into the formalism. Perturbations are incorporated in the formalism through the evolution of GPDs according to the DGLAP like equations. Evolved proton GPDs are compared with a phenomenological model to show that we can get some improvements.

1 Introduction

Quantum chromodynamics (QCD) is the accepted fundamental theory of strong interactions. Perturbative QCD is successful in the phenomenology of hadron physics at high energies. But it is not yet possible to describe hadrons in terms of its quark and gluon degrees of freedom. Perturbative calculations in quantum field theory (QFT) is based on the mathematical formulation of Feynman diagrams, and many observables of theory are in agreement with these calculations. Continuation of perturbative calculations to low energies (large distances) is not possible due to the increase in coupling constant and breakdown of perturbation theory. There are also other indications that we have to deal with nonperturbative phenomena in QCD. Several methods to handle non-perturbative quantum field theories have been invented and this active field has witnessed an enormous progress. But there are still challenging open problems such as confinement, and determination of each parton species contribution to hadron characteristics such as mass and spin.

For many years nonperturbative methods in QFT were at the front line to solve QCD dilemmas. In recent years another idea from string theory, the AdS/CFT correspondence [1], becomes the most important tool in describing strongly coupled
field theories. The AdS/CFT formalism in its original form can’t be applied to real QCD. As will be explained in next section, it is the modified form that can be applied to QCD, the so called AdS/QCD models. Two main divisions of AdS/QCD models are: top-down approaches in which D-brane constructions are used, and bottom-up approaches where builds the model in a 5-dimensional space that contains gravity.

The importance of bottom-up approaches among the other AdS/QCD models lies in their phenomenological success. Bottom-up approaches are based on the existence of a local effective action on AdS background that reproduces desired properties of QCD in the 4D boundary theory. The holographic soft-wall model is in this category with some good physical and mathematical features, that will be concerned here. Holographic soft-wall model is a semiclassical first approximation to QCD [13]. In the boundary gauge theory, perturbations are important and causes many observable effects. Some examples are running of coupling constant, running of effective mass and DGLAP equations in deep inelastic scattering (DIS) formalism. Although of a different nature, running of coupling constant is automatically incorporated in holographic soft-wall model, as will be explained in Sec.4. Here the implications of another perturbative effect, the DGLAP equations, will be considered. As will be explained in Sec.4, DGLAP equations result from the fact that we need the PDFs to be independent of scale parameter. Scale parameter separates perturbative and nonperturbative scales. The same role as PDFs in DIS formalism, is played by generalized parton distribution functions (GPDs) in exclusive processes such as deeply virtual Compton scattering (DVCS). In an exclusive process also, there is a scale parameter that separates perturbative and nonperturbative regimes. Scale independence of nonperturbative part, also results in DGLAP like equations in exclusive events.

From the phenomenological point of view also, there are different observables to probe the nucleon content. The most famous observables are structure functions and form factors that unravel the momentum distribution and charge distribution of hadrons, respectively. Both approaches are complementary, but they are not appropriate ones for a nonperturbative treatment of hadron structure. Generalized parton distributions (GPDs) are unique tools to describe hadrons in terms of its fundamental degrees of freedom, i.e. quarks and gluons [16, 17]. GPDs relate different classes of physical observables and collect them in a single framework. The above mentioned ideas and their combination, have been successful in describing some aspects of strongly interacting particles. We will elaborate on how perturbative corrections enter into the formalism of soft-wall model.

The idea of this work is taken from DIS formalism, where perturbative application of QCD results in the evolution of parton distribution functions (PDFs) according to DGLAP equations. First GPDs of holographic soft-wall model are obtained by a matching procedure, and then evolve them according to DGLAP like equations. Evolved GPDs incorporate the perturbative effects and can be used for a direct comparison with experimental data or relate them to hadronic observ-
ables through sum rules. We use a simpler method, that is to compare the results with the GPDs of a phenomenological model. Because phenomenological models are arranged to fit experimental data, this is a simple and effective method to see how much we can get closer to data by evolved quantities. To do perturbative calculations, we need the gauge theory side coupling constant, that is the dual of the gravity side. Light-front holography is used to obtain the physical coupling constant of the gauge theory side in soft-wall model. Then the GPDs are evolved according to DGLAP like equations for valence quarks and discussing the implications.

The organization of the paper is as follows: section 2 contains a brief survey of holographic soft-wall model and the form factors of nucleons which are the tools to obtain GPDs. GPDs have a central role in our perturbative calculations, so they will be introduced in section 3 along with a phenomenological model. Section 4 is the main part of the report, first light-front holography is used to obtain the coupling constant of boundary gauge theory and then GPDs are evolved according to DGLAP equations. Finally, the resulting changes of proton GPDs are compared with a phenomenological model.

2 Holographic Soft-Wall Model and Nucleon Form Factor

Beginning of AdS/CFT conjecture was a correspondence between type IIB string theory and $N = 4$ supersymmetric Yang-Mills (SYM) theory in the large N_c limit [2, 1]. $N = 4$ SYM theory is a conformal theory and the AdS metric on gravity side is also conformal. Real QCD in not a conformal theory so the original AdS metric is modified in AdS/QCD models to take into account the nonconformality. AdS/QCD models connect theories living in higher dimensional AdS space to 4-dimensional QCD-like theories. Top-down AdS/QCD models [3, 4, 5] are based on finding D-brane configurations with features similar to QCD, where bottom-up models[6, 7, 8], rely on the existence of a local effective action on AdS background that reproduces the desired properties of QCD in the 4-dimensional boundary theory.

Holographic soft-wall model is an important member of bottom-up approaches and is the base of this work. As explained above, we need to break conformal invariance in order to incorporate confinement in the formalism, and there are different ways to do it. In holographic soft-wall model, breaking of conformal invariance is based on the introduction of additional warp factor or, equivalently a dilaton background, on the 5D gravity side.

The metric of soft-wall model restricts the interactions to a limited region of AdS space, so it is a built-in confined theory. In this model a dilaton profile of the form $e^{\kappa z^2}$ results in a monotonic potential. In the soft-wall model, for the boson and fermion states of 4D gauge theory one introduces explicit bosonic and fermionic fields in the 5D lagrangian, respectively. The terms in the 5D Lagrangian
are chosen based on simplicity, symmetries and its relevance to the problem [11]. Then AdS/QCD duality relates normalizable solutions of 5D gravity side to the states of the 4D boundary gauge theory.

Nucleons are particles of spin-1/2 and in the present approach an explicit fermion field in five dimensional AdS space needs to be introduced. Fermions in a soft-wall model for nucleon form factors, was first introduced by Abidin and Carlson [11]. We continue with a brief introduction to the formalism of soft-wall model. The five dimensional space of the gravity side is an anti-de Sitter space with the metric in Poincare (conformal) coordinate without additional warp factor of the form:

\[
\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1), \quad \mu\nu = 0, 1, 2, 3 \quad \text{and} \quad z \text{ the holographic radial coordinate extended from zero to } \infty \text{ with the boundary at } z = 0. \]

The soft-wall model infrared cutoff results from the introduction of an exponential dilaton field. Here notice that, as discussed in [13], the essential physics in holographic soft-wall model doesn’t depend on the dilaton profile sign and that they can be related to each other by a field redefinition. Results of the positive and negative profile sign differ from each other by a surface term. But as will be discussed in Sec [13] to have a physical coupling constant for the gauge theory side, a positive sign dilaton profile is preferred. So we conveniently use either of two signs, except in the discussions of coupling constant. Inserting an overall exponential dilaton field in the formalism leads to an infrared cutoff for bosons, but it doesn’t work for fermions. This can be resolved by adding a dilaton interaction to the mass term. So the effective action of gravity side that generates the nucleon form factors is of the form [11]:

\[
S = \int d^4x dz \sqrt{g} e^{-\kappa z^2} (\bar{\psi}_e^M \Gamma^A V_M \psi + i/2 \eta_{S,V} \bar{\psi}_e^M e_B^N [\Gamma^A, \Gamma^B] F^{(S,V)}_{MN} \psi) \tag{2}
\]

where \(g = |\det g_{MN}|; \quad \Gamma^A = (\gamma^\mu, -i\gamma^5); \quad e^A_M = z\delta^M_A \text{ is inverse vielbein in AdS space; } F_{MN} = \partial_M V_N - \partial_N V_M; \quad \text{the parameter } \eta_S \text{ is for iso-scalar component and } \eta_V \text{ for iso-vector component of vector field and they are fixed by experimental values of the proton and neutron magnetic moments } \eta_{P,N} = (\eta_V \pm \eta_S)/2.

In the soft-wall formalism the profile function or bulk-to-boundary propagator is obtained from the quadratic action of vector field. The non-normalizable solutions of the equation of motion gives the bulk to boundary propagator [15]. The action of vector field is given by:

\[
S_{vec} = \int d^4x dz \sqrt{g} e^{-\kappa z^2} (F_{MN} F^{MN}) \tag{3}
\]

In general the non-normalizable solution of above action, or the bulk-to-boundary propagator in axial gauge, is given by the confluent hypergeometric functions of first and second kind. But in order to get the GPDs in soft-wall model, one needs the integral representation of bulk-to-boundary propagator [15], given by:
\[V(Q, z) = \kappa^2 z^2 \int_0^1 \frac{dx}{(1-x)^2} \frac{Q^2}{4x^4} e^{-\kappa^2 z^2 x} \]

Finally, nucleon form factors in the soft-wall model are given by [11]:

\[
\begin{align*}
F_p^p(Q^2) &= C_1(Q^2) + \eta_p C_2(Q^2) \\
F_p^p(Q^2) &= \eta_p C_3(Q^2) \\
F_n^p(Q^2) &= \eta_n C_2(Q^2) \\
F_n^p(Q^2) &= \eta_n C_3(Q^2)
\end{align*}
\]

(5)

where \(Q^2 = -t \) and \(C_i(Q^2) \) are:

\[
\begin{align*}
C_1(Q^2) &= \int dze^{-\phi} \frac{V(Q, z)}{2z^3} (\psi_L^2(z) + \psi_R^2(z)) \\
C_2(Q^2) &= \int dze^{-\phi} \frac{\partial_z V(Q, z)}{2z^2} (\psi_L^2(z) - \psi_R^2(z)) \\
C_3(Q^2) &= \int dze^{-\phi} \frac{2m_N V(Q, z)}{2z^2} (\psi_L(z) \psi_R(z))
\end{align*}
\]

(6)

where \(\psi_L(z) \) and \(\psi_R(z) \) are dual to the left-handed and right-handed nucleon fields:

\[\psi_L(z) = \kappa^3 z^4, \quad \psi_R(z) = \sqrt{2} \kappa^2 z^3 \]

(7)

This was a brief introduction to holographic soft-wall model. In our approach the perturbative effects are entered into the formalism through the generalised parton distributions (GPDs). So in the next section we introduce the GPDs and then the way they are obtained in soft-wall formalism [12].

3 Generalized Parton Distributions

From perturbative QCD formalism we know that parton distribution functions (PDFs) are appropriate tools in formulation of deep inelastic scattering (DIS) observables, such as structure functions. Structure functions in deep inelastic scattering (DIS) processes, are the most important observables in probing the nucleon content [16]. Deep inelastic scattering is an inclusive reaction, so limited information is contained in it. In exclusive processes kinematical parameters of all initial and final particles are detected and so contain much more information. GPDs are entered into the description of exclusive deep inelastic scatterings, such as deeply virtual Compton scattering (DVCS) [17].

For exclusive processes, similar to the inclusive DIS case, factorization to long and short distances is valid. Factorization scheme will be explained in next section, here we only note that in the factorized form, the long distance nonperturbative parts are GPDs. Mathematically GPDs are defined as matrix elements of the same
operator as PDFs, except between states with different momenta\cite{15}. For twist-2 operators there exist two kinds of helicity independent GPDs. The GPDs for valence quarks in the nucleon are $H^q(x, \xi, t)$ and $E^q(x, \xi, t)$, where $t = q^2 = -Q^2$ is momentum transfer squared, ξ is skewness and x the light cone momentum fraction. As a consequence of Lorentz invariance, the ξ dependence of GPDs drops out in the sum rule for the form factors of quark vector and axial vector currents \cite{14}, so our discussion will be restricted to the case: $\xi = 0$ and changing the notation to the form: $H^q(x, \xi, t) \rightarrow H^q(x, t)$. Now quoting some useful limits of GPDs that we need for the description of hadronic properties later. In the forward limit GPDs reduce to PDFs \cite{17}:

\[H^q(x, 0, 0) = q(x) \quad \text{for } x > 0 \]
\[H^q(x, 0, 0) = -\bar{q}(x) \quad \text{for } x < 0 \]
(8)

where $q(x)$ and $\bar{q}(x)$ are distribution functions for quarks and anti-quarks, respectively. With the above mentioned properties, for the valence quark we have \cite{20}:

\[H^q_v(x, t) = H^q(x, t) + H^q(-x, t) \]
(9)

This is the combination entering the proton and neutron Dirac form factors. In analogy to above equation the valence GPDs $E^q_v(x, t)$, are introduced as:

\[E^q_v(x, t) = E^q(x, t) + E^q(-x, t) \]
(10)

The sum rules that relates GPDs and form factors are:

\[F^p_1(t) = \int_0^1 dx \left(\frac{2}{3} H^u_v(x, t) - \frac{1}{3} H^d_v(x, t) \right) \]
\[F^n_1(t) = \int_0^1 dx \left(\frac{2}{3} H^d_v(x, t) - \frac{1}{3} H^u_v(x, t) \right) \]
\[F^p_2(t) = \int_0^1 dx \left(\frac{2}{3} E^u_v(x, t) - \frac{1}{3} E^d_v(x, t) \right) \]
\[F^n_1(t) = \int_0^1 dx \left(\frac{2}{3} E^d_v(x, t) - \frac{1}{3} E^u_v(x, t) \right) \]
(11)

The forward limit($t = 0$) of the GPDs $E^q_v(x, \xi, t)$, that gives rise to F_2 structure function of nucleons cannot be expressed in terms of any known parton densities\cite{20}. Now with the use of above relation we can obtain form factors and GPDs in the soft-wall model. First the integral representation of bulk-to-boundary propagator\cite{14} is inserted into Eqs.\,(5) and \,(6), then performing the integration over coordinate z.

6
Finally matching the expressions in Eq. (5) and Eq. (11), under the x-integration, gives the desired result [12]:

$$H_v^q(x, Q^2) = q(x)x^a$$

$$E_v^q(x, Q^2) = \varepsilon^q(x)x^a$$

(12)

where $a = \frac{Q^2}{4\kappa^2}$; and:

$$q(x) = \alpha^q \gamma_1(x) + \beta^q \gamma_2(x), \quad \varepsilon^q(x) = \beta^q \gamma_3(x)$$

(13)

with flavor couplings α^q and β^q given by:

$$\alpha^u = 2, \quad \alpha^d = 1, \quad \beta^u = 2\eta_p + \eta_n, \quad \beta^d = \eta_p + 2\eta_n$$

(14)

and:

$$\gamma_1(x) = \frac{1}{2}(5 - 8x + 3x^2)$$

$$\gamma_2(x) = 1 - 10x + 21x^2 - 12x^3$$

$$\gamma_3(x) = \frac{6\sqrt{2}m_N}{\kappa}(1 - x)^2$$

(15)

numerical values of parameters are [11]: $\kappa = 230 MeV, \eta_p = 0.224$ and $\eta_n = -0.239$.

Now we continue by introducing a phenomenological model proposed in Ref. [20], and this is the model that our results are compared with. It is the modified version of Gaussian ansatz model for a better fit to experimental data at small and large momentum transfer, i.e. to be Regge like and satisfy Drell-Yan relation, respectively. The nonforward densities for proton are [20]:

$$H^q(x, t) = q_v(x)x^{-\alpha'(1-x)t}$$

$$E^q(x, t) = \varepsilon^q(x)x^{-\alpha'(1-x)t}$$

(16)

where $q_v(x)$ and $\varepsilon_q(x)$ are given in Appendix [A] and $\alpha' = 1.105 GeV^{-2}$.

We finish this section with a discussion of impact parameter dependent GPDs. It is shown by Burkardt [18], that for GPDs at $\xi = 0$, a density interpretation is obtained in the mixed representation of longitudinal momentum and transverse position in the infinite momentum frame [14]. GPDs in impact parameter space (i.e. Impact parameter dependent PDFs) is obtained by:

$$q_v(x, b) = \int \frac{d^2\Delta}{(2\pi)^2} e^{-ib\Delta} H_v^q(x, t = -\Delta^2)$$

(17)

which gives the probability to find a quark with longitudinal momentum x and impact parameter b minus the corresponding probability to find an anti quark [14]. In Eq. (17), the impact parameter b is the transverse distance between struck parton
and the center of momentum (center of momentum is like center of mass but with momentum fractions instead of masses) of the hadron. So Fourier transforming the GPDs (in zero skewness limit) with respect to \(t \) gives access to the spatial distributions of partons in the transverse plane. We will show that how the perturbative effects will change the transverse distribution.

4 Generalized Parton Distributions Evolution

In this section we explain the factorization of GPDs and its perturbative evolution using the DGLAP equations. In the DIS formalism imposing the condition that physical quantities must be independent of factorization scale leads to DGLAP equation, which is the fundamental equation of perturbative QCD. The same factorization procedure occurs for GPDs, and it is the scale which the partons are resolved. We pointed out that in the factorization of exclusive processes to short and long distance, the long distance parts are GPDs and they are evolved also according to the usual DGLAP equations for valence quarks \[14\]. Usually in the literature the scale dependence of the GPDs is implicit in the formalism. The dependence to the factorization scale will be shown explicitly in this section. In both exclusive and inclusive processes there is a perturbatively calculable part which is scattering of virtual photon from parton, and a nonperturbative uncalculable part which is the rest of the hadron. The scale parameter \(\mu \) separates the perturbative short-distance and nonperturbative long-distance physics. It is a very hard task to determine The scale parameter \(\mu \) exactly (like the QCD scale parameter \(\Lambda_{QCD} \)), but we know that the physical observables must be independent of the choice. The independence from the scale parameter \(\mu \), results in the following DGLAP like equation for valence quark GPDs \(H_v^q \) \[14\]:

\[
\mu^2 \frac{d}{d\mu^2} H_v^q(x, t, \mu^2) = \int_x^1 \frac{dz}{z} [P(\frac{x}{z})]_+ H_v^q(z, t, \mu^2) = \frac{\alpha_s(t)}{2\pi} P \otimes H_v^q(t, \mu^2)
\]

(18)

where \([...]+\) is the so-called “+ prescription” for regularization of splitting function and \(P(z) = \frac{\alpha_s}{2\pi} C_f \frac{1+z^2}{1-z^2} \) is the quark splitting function which gives the probability that a quark, having radiated a gluon is left with fraction \(z \) of the original momentum. The Evolution equations for \(E_v^q(z, t, \mu^2) \), is the same as the Eq.\[18\] for \(H_v^q(z, t, \mu^2) \). At a fixed value of \(t \), Eq.\[18\] is a convolution integral that gives the perturbative changes of GPDs as a function of momentum fraction \(x \). Note that in the usual DGLAP equations there is a term correspond to gluon splitting function, which is absent here because only valence quarks contribute to GPDs sum rules.

To carry out the calculation of the quark splitting function in Eq.\[18\], one needs the coupling constant at different energies, i.e. we need the running of coupling constant in the boundary gauge theory side. From AdS/CFT correspondence we
know that the radial coordinate of the bulk theory (z) is related to the energy scale of the conformal boundary theory. So a z dependent coupling of the bulk theory is translated to an energy dependent coupling constant of boundary theory. But here we need an exact physical mapping between the gravity and gauge theory sides. Following the method of Ref. [22], light-front holography is used for a precise mapping of the gravity theory coupling in AdS_5 to the 4D gauge theory coupling. To establish the connection, first we should identify the effective coupling of the classical gravity theory. We rewrite the gauge field action of Eq. (3) but do not absorb the five dimensional gauge coupling by field strength redefinition:

$$S_{vec} = \int d^4x dz \sqrt{g} e^{\varphi(z)} \frac{1}{g_5^2} (F^2)$$ \hspace{1cm} (19)

where $\varphi(z) = \kappa^2 z^2$. Now the effective coupling is identified with the prefactor, as:

$$g_5^{-2}(z) = e^{\varphi(z)} g_5^{-2}$$ \hspace{1cm} (20)

It is known in the context of light-front holography that the AdS_5 radial coordinate z is identified with the invariant impact separation variable ζ of light-front Schrodinger equation [23]. Using the same identification here, we have: $g_5(z) \rightarrow g_{YM}(\zeta)$. Thus:

$$\alpha_{AdS}^2(\zeta) = g_{YM}^2(\zeta)/4\pi \propto e^{-\kappa^2 \zeta^2}$$ \hspace{1cm} (21)

Now the main step of Ref. [22] is to identify the two dimensional Fourier transform of $\alpha_{AdS}^2(\zeta)$ with respect to (ζ, ϕ), as the physical coupling measured at the scale Q, where ζ and ϕ are the two dimensional transverse light-front coordinates. Now with the ansate that Q^2 is the square of the space-like four-momentum transferred to the hadron in the $q^+ = 0$ light-front frame, Fourier transformation of Eq. (21) results in:

$$\alpha_{s}^{AdS}(Q^2) = \alpha_{s}^{AdS}(0) e^{-Q^2/4\kappa^2}$$ \hspace{1cm} (22)

So $\alpha_{s}^{AdS}(Q^2)$ is the physical nonperturbative running coupling constant of boundary gauge theory. The obtained $\alpha_{s}^{AdS}(Q^2)$ is the same as the QCD coupling constant up to $Q^2 \sim 1 Gev^2$ but falls-off faster for higher energies. Calculation of quark splitting function in Eq. (18), using either of $\alpha_{s}^{AdS}(Q^2)$ and $\alpha_{s}^{QCD}(Q^2)$, gives vanishing contribution above the $Q^2 \sim 1 Gev^2$. So their difference is small and we can use either of them to do the calculations.

Now that we have obtained the coupling constant of the boundary theory, GPDs can be evolve according to the Eq. (18). For a fixed value of t, it is a convolution integral that gives the evolved GPDs as a function of x. Convolution integral can be solved numerically, or by using Mellin transformations. Mellin transformations convert the integral equations into algebraic equations, and after solving the algebraic equations in order to get them back to momentum fraction space (x), an inverse
Figure 1: evolved soft wall GPDs (continuous line) compared with original soft-wall GPDs (dashed) and phenomenological model of Ref. [20] (dashdot) for proton. Agreement between evolved and phenomenological GPDs decreases from lower to higher values of $-t$.

Mellin transform is needed. Both of the mentioned methods (numerical integration and Mellin transformation) gives the resulting evolved GPDs as a three dimensional data points (numbers) in Q and x plane. In order to extract the physics, we need the 3D data points to be expressed in terms of functions of x and Q. A 3D fitting method is not a good one, because after fitting a function in two variables, there remains some arbitrariness in the functional form. Here we use a lengthy but more accurate method. First at each value of t we fit a proper function of x, then doing the same thing in the other way, i.e. for each value of x we fit a proper function of t. The calculations are done point by point and the final result is obtained by joining the points.

First we start to discuss the evolution of GPDs according to Eq. (18) as a function of x for different fixed values of t. In Fig. 1 we have shown the original and evolved proton GPDs for different values of t and also compared with the phenomenological model of Ref. [20], which was introduced in previous section. Here some points need to be mention about Fig. 1. Figures show that the evolved GPDs tend to smaller values of x, which is the same thing that occurs for PDFs. The reason is that the probability to radiate a gluon is higher for a quark with higher values of momentum fraction, so the distributions incline toward lower x values.

Also it can be seen from Fig. 1 that perturbative effects are more important at
Figure 2: impact parameter dependent proton GPDs in b for two fixed values of x. Up: left and right figures are plots for $H^u(x,b)$. Down: left and right are plots for $E^u(x,b)$.

lower energies, and at $Q^2 = 0.3 GeV^2$ peaks of phenomenological and evolved GPDs are approximately in the same region of x. Note that because of the limitations of perturbative schemes, we can’t go arbitrarily down to $Q \to 0$ region. As discussed in Ref.[21], the perturbative calculations are reliable at most down to $Q^2 = 0.3 GeV^2$.

Now we investigate the implications of evolution on impact parameter dependent GPDs. As explained in Sec.3 Fourier transforming the GPDs to impact parameter space, makes it possible to interpret them as distributions. Again we compare the evolved GPDs in impact parameter space with the original and phenomenological ones. Two different cases will be considered for the impact parameter dependent GPDs, first the GPDs will be considered as functions of impact parameter b and fixed value of x as shown in Fig.[2]. The results are shown for impact parameter dependent proton GPDs $H^u(x,b)$ and $E^u(x,b)$, at two fixed values of x. Fig.[2] shows that there are more changes for bigger x value. Also it can be seen that the three mentioned GPDs have different behavior at lower values of impact parameter b and they coincide as b increases. In the other case, GPDs are considered as functions of x for fixed values of impact parameter b, Fig.[3], and again for the two impact parameter dependent GPDs $H^u(x,b)$ and $E^u(x,b)$. Fig.[3] shows the previously mentioned results in a different way. It shows how the x dependent parton distributions at different values of transverse position (b) are affected by the perturbative evolution. Again it is evident that the evolution changes are to some
Figure 3: Impact parameter dependent proton GPDs in x for two different fixed values of b. Up: left and right are plots for $H^u(x,b)$. Down: left and right are plots for $E^u(x,b)$.

extent toward the phenomenological values. For the GPDs in an impact parameter space, we can say that the evolution causes bigger changes in partonic distributions at smaller values of transverse position parameter b_\perp.

5 SUMMARY

We studied perturbative effects in the context of holographic soft-wall model. We entered the effects through the evolution of GPDs. The coupling constant of QCD like dual theory was obtained using the light-front holography. The GPDs were Fourier transformed to impact parameter space where it is possible to interpret them as distributions. It was shown that how different regions of kinematical variables are affected by perturbations. The method can be used to realize the contribution of evolved GPDs on physical observables, for example through sum rules. Also it can be applied to the phenomenological model itself for a better fit to experimental data by rearranging the parameters.
A Appendix

The unpolarized parton distribution from Ref. [24] at inputscale $\mu^2 = 1 GeV^2$:

\begin{align*}
 u_v &= 0.262x^{-0.69}(1 - x)^{3.50}(1 + 3.83x^{0.5} + 37.65x) \\
 d_v &= 0.061x^{-0.65}(1 - x)^{4.03}(1 + 49.05x^{0.5} + 8.65x)
\end{align*}

(A.1)

$\varepsilon^q(x)$ are given by:

\begin{align*}
 \varepsilon_u(x) &= \frac{\kappa_u}{N_u}(1 - x)^{\eta_u} u_v(x) \\
 \varepsilon_d(x) &= \frac{\kappa_d}{N_d}(1 - x)^{\eta_d} d_v(x)
\end{align*}

(A.2)

where $\eta_u = 1.713$, $\eta_d = 0.566$, N_u and N_d are normalization constants.

References

[1] J. M. Maldacena, Int. j. theor. phys. 38, 1113 (1999).
[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phy. Lett. B 428, 105 (1998).
[3] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005).
[4] I. R. Klebanov and M. J. Strassler, JHEP 2000, 052 (2000).
[5] J. Babington, J. Erdmenger, N. Evans, Z. Guralnik and I. Kirsch, Phys. Rev. D 69, 066007 (2004).
[6] J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005).
[7] L. Da Rold and A. Pomarol, Nuc. Phys. B 721, 79 (2005).
[8] J. Hirn and V. Sanz, JHEP 2005, 030(2005).
[9] S. J. Brodsky and G. F. de Teramond, arXiv: hep-ph/0802.0514.
[10] Z. Abidin and C. E. Carlson, Phys. Rev. D 80, 115010 (2009).
[11] Z. Abidin and C. E. Carlson, Phys. Rev. D 79, 115003 (2009).
[12] A. Vega, I. Schmidt, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D 83, 036001(2011).
[13] G. F. de Teramond and S. J. Brodsky, arXiv: hep-ph/1203.4025, (2012).
[14] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Eur. Phys. J. C 39, 1 (2005).
[15] H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 76, 095007 (2007).
[16] A. V. Belitsky and A. V. Radyushkin, Phys. Rep. 418, 1 (2005).
[17] M. Diehl, Phys. Rep. 388, 41 (2003).
[18] M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003).
[19] M. Diehl, Nuc. Phys. B Proc. Supp. 161, 49 (2006).
[20] M. Guidal, M.V Polyakov, A. V. Radyushkin and M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005).
[21] M. Glück E. Reya and A. Vogt, Z. Phys. C 67, 433 (1995).
[22] S. J. Brodsky and G. F. de Téramond, and A. Deur, Phys. Rev. D 81, 096010 (2010).
[23] G. F. de Téramond and S. J. Brodsky, Phys. Rev. Lett. 102, 081601 (2009).
[24] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Phy. Lett. B 531, 216 (2002).