Resistance genes mediate differential resistance to pine defensive substances α-Pinene and H₂O₂ in Bursaphelenchus xylophilus with different levels of virulence

Lin Rui¹,² · Hongbin Liu¹,² · Rui Liang¹,² · Xiaoqin Wu¹,²

Received: 18 April 2020 / Accepted: 20 May 2020 © The Author(s) 2020

Abstract The pine wood nematode (PWN), Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle, is the pathogen of pine wilt disease (PWD) which can devastate forests. PWN can be of high or low severity and the mechanisms underlying the differences in virulence are unclear. Therefore, it is necessary to study the relationship between differentiation of PWN severity and its resistance to the main defensive substances of pine species (i.e., α-pinene and H₂O₂). The feeding rate and fecundity of PWN was examined at different levels of virulence under conditions of α-pinene and H₂O₂ stress. Moreover, the expression patterns of the main resistance genes of PWN with different virulence were determined under conditions of α-pinene and H₂O₂ stress. The feeding rate and fecundity of the high virulence strain AMA3 were higher than those of the low virulence strain YW4. The expression levels of the autophagy gene BxATG5, cytochrome P450 gene BxCYP33D3, and glutathione S-transferase genes BxGST1 and BxGST3 in AMA3 increased significantly upon exposure to α-pinene for 2 h, while these genes showed smaller degrees of upregulation in YW4. Under conditions of H₂O₂ stress, the expression levels of BxATG5, catalase genes Bxy-ctl-1 and Bxy-ctl-2, and the 2-cysteine peroxiredoxin gene BxPrx in AMA3 were higher than those in YW4. These findings suggest that high virulence PWN has greater resistance to pine defensive substances α-pinene and H₂O₂ than low virulence PWN, and resistance genes mediate the differential resistance of PWN strains. This study will contribute to the clarification of the mechanism underlying virulence differentiation of PWN and will advance understanding of the pathogenic mechanism of PWD.

Keywords Pine wood nematode · Virulence · Defensive substances · Autophagy gene · Detoxification gene · Antioxidant gene

Introduction

Pine wilt disease (PWD) is caused by the well-known quarantine pest, the pine wood nematode (PWN), Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle, which belongs to the family Aphelenchoididae, and has a devastating effect on Pinus species (Zhou et al. 2017). PWN infects 58 species of Pinus and 13 other coniferous species (He et al. 2014). The disease originated in North America and is found in Canada, the United States, and Mexico. It also occurs in Spain and Portugal in Europe, and in China, Japan, South and North Korea in Asia (He et al. 2014; Ye 2019). PWD was first discovered in 1982 at the Sun Yat-sen Mausoleum
in Nanjing, China, and has since spread rapidly (Cheng et al. 1983). China is currently the country most threatened by pine wilt disease (Huang et al. 2019; Ye 2019). However, the pathogenic mechanism of PWD is not well understood and it remains difficult to prevent and control (Li et al. 2018).

The life cycle of the disease involves the dispersal phase and the propagative phase (Futai 2013). When encountering adverse environments such as food scarcity or low temperatures, the second stage propagative larvae molt and develop into third-stage dispersal larvae, and then grow into a specific dispersal stage or alternate developmental stage, of dauer larvae (Ogura and Nakajima 2002; Kikuchi et al. 2011). Following dispersal from dead to healthy pines via Monochamus vector beetles (Zhao et al. 2016; Wu et al. 2019), the dauer larvae infect the pine host to feed (Vicente et al. 2013). In the infection process, the pines secrete various defensive substances to attack the nematodes. Pine resin consisting of turpentine (monoterpenes and sesquiterpenes) and resin (diterpenes) is the first line of defense (Zulak and Bohlmann 2010). Monoterpenes, the most essential defensive volatile substances, can help plants resist relevant pathogen and herbivore invasions (Lewinsohn et al. 1993). The monoterpenes secreted by conifers are mainly α-Pinene (Tiao et al. 2006). Li et al. (2019) reported that the reproduction of PWN was dramatically inhibited by 56.3 mg mL⁻¹ of α-pinene. In addition, plants can also produce reactive oxygen species (ROS) to damage organelles and inhibit cell functions in pathogens (Baker and Orlandi 1995). The most abundant and stable ROS in pines is hydrogen peroxide, H₂O₂ (Vellosillo et al. 2010). The resin and ROS levels in pine trees increase markedly during the early stages of the disease in response to invasion by the nematodes (Yang et al. 2003; He et al. 2010; Yu et al. 2013). On the other hand, resistance genes protect the nematodes from damage by pine defensive substances. Autophagy is a subcellular degradation pathway which helps to degrade and cycle aging and damaged organelles and proteins in eukaryotes (Ktistakis et al. 2016). In addition, the autophagy gene BxATG5 shows strong affiliations with the growth and development, stress resistance, and virulence of PWN (Liu et al. 2019a; 2020). The degradation of pine defensive substances by the pine wood nematodes is vital for successful infection. The cytochrome P450 gene BxCYP33D3 is responsible for the detoxification of α-pinene (Xu et al. 2015). PWN responds to the accumulation of α-pinene by upregulating cytochrome P450 gene expression (Wang et al. 2017). Glutathione S-transferase (GST) is an important detoxifying enzyme in eukaryotes. The GST genes, BxGST1 and BxGST3, are closely associated with feeding rate, reproduction, and pathogenicity of the nematodes (Nian 2017). The catalase (CAT) genes, Bxy-ctl-1 and Bxy-ctl-2, and the 2-cysteine peroxiredoxin gene BxPrx were reported to be the main antioxidant genes in PWN, which can convert H₂O₂ to water by regulating the activities of CAT and peroxiredoxin (Li et al. 2011; Vicente et al. 2015; Xu et al. 2019).

PWN can have high or low virulence (Shinya et al. 2012; Ding et al. 2016), and its severity and adaptability to unfavorable environments are strongly correlated with the spread and development of pine wilt disease (Liu et al. 2019b). The degree of virulence of PWN is positively correlated with its reproductive ability in pines and on Botrytis cinerea Pers. or grey mould (Wang et al. 2005; Aikawa and Kikuchi 2007). Eo et al. (2011) reported that the virulence of pine wood nematodes was not correlated with its migration rate. However, the mechanism underlying differences in PWN virulence are unknown. Therefore, in this study, we evaluated the effectiveness of the pine defensive substances α-pinene and H₂O₂ on the feeding, reproduction, and resistance gene expression patterns of PWN at different levels of virulence to explore the relationship between nematode resistance and its virulence differentiation. The results of this study should further our understanding of the mechanism underlying the virulence differentiation of pine wood nematodes and the sophisticated pathogenesis of pine wilt disease.

Materials and methods

Culturing of PWN

The nematode strain AMA3 that exhibited high virulence was isolated from diseased Pinus thunbergii Parl. from Anhui, China; the strain YW4 that showed low virulence was isolated from diseased Pinus keisiya var. langbianensis (A.Chev.) Gaussen ex Bui from Yunnan, China. Both strains were supplied by the Forest Protection Laboratory, Nanjing Forestry University. Experimental nematodes were cultivated on mats of B. cinerea grown on potato dextrose agar (PDA) plates of 7 g of fresh potatoes, 0.7 g of dextrose, 0.7 g of agar, and 30 mL of sterile water at 25 °C. When the hypha was totally consumed, nematodes at various stages were extracted by a Baermann funnel (Viglierchio and Schmitt 1983) and washed three times with M9 buffer (30 g L⁻¹ KH₂PO₄, 60 g L⁻¹ K₂HPO₄, and 50 g L⁻¹ NaCl).

Assay of feeding rate and reproduction of PWN under H₂O₂ and α-pinene stress

Five hundred samples of AMA3 and YW4 treated with double distilled water (ddH₂O), 0.5% Triton X-100, 56.3 mg mL⁻¹ α-pinene, or 15 mM H₂O₂ were inoculated on fungal mats of B. cinerea and incubated at 25 °C in three replicates and photographed periodically. Subsequently, the nematodes were isolated from the plates by the Baermann funnel method and counted under a stereomicroscope (Leica DM500; Leica Microsystems, Heerbrugg, Switzerland).
when at least one of the treatments had completely consumed the hypha.

Collection of PWN treated with α-pinene and H$_2$O$_2$

Organisms usually respond quickly by regulating defense genes after being stressed (Tsyglakova et al. 2019). Therefore hourly treatments time up to five hours were selected. Samples of 7000 AMA3 and 7000 YW4 were soaked in 1 mL of 56.33 mg mL$^{-1}$ α-pinene or 15 mM H$_2$O$_2$ hourly up to five hours in three replicates. The nematodes were washed and stored at -80 °C after rapid freezing by liquid nitrogen.

RNA extraction and cDNA synthesis

Samples were ground into powder by a high-speed tissue grinder and TRIzol reagent (Invitrogen, Carlsbad, CA, USA) added. After shaking and mixing, the samples stood for 5 min, then centrifuged (12,000 rpm), and the supernatants transferred to new tubes. After extraction with chloroform and isopropanol, the samples were washed with 75% ethanol and dried. Total RNA was extracted and dissolved in a volume of 20 μL diethyl pyrocarbonate-treated water at 50 °C for 2 min. The purity of total RNA was electrophoresed and measured on a Nanodrop 2000C spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). cDNA was synthesized from 1 μg of total RNA according to HiScript® II Q RT SuperMix for qPCR (+ gDNA wiper; Vazyme, Nanjing, China).

Quantitative reverse transcription-polymerase chain reaction

The qRT-PCR primers for BxATG5 (MK387710) and BxCYP33D3 (KM973212) were designed according to their coding sequences (https://www.oligoarchitect.com); the products were 80–150 bp. Primers for BxGST1, BxGST3, Bxy-ctl-1, Bxy-ctl-2, and BxPrx were from previous studies (Vicente et al. 2015; Li et al. 2016; Nian 2017). The Actin gene (EU100952) of the pine woody nematode served as an internal control, with the primers listed in Table 1 (Hu et al. 2020).

SYBR Green Master Mix (Vazyme) and a two-step method were used for qRT-PCR; the conditions were as follows: 95 °C for 5 min for initial denaturation, followed by 40 cycles of 95 °C for 10 s and 60 °C for 34 s. Melting curve analysis was performed using the default program: 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 15 s. Relative expression levels were calculated using the 2$^{-ΔΔCt}$ method of ABI Prism 7500 software (Applied Biosystems, Foster City, CA, USA) (Livak and Schmittgen 2001). qRT-PCR was conducted using three biological and technical replicates.

Statistical analysis

All assays had three biological replicates and three technical replicates. Microsoft Excel software (Microsoft Corp., Redmond, WA, USA) was used for the calculation of mean and standard deviation of the three biological replicates. SPSS software (ver. 17.0; IBM China Company Ltd., Beijing, China) calculated statistical significance by conducting the paired Student’s t-test or Tukey’s HSD test. In all analyses, $P < 0.05$ indicated statistical significance.

Results

Feeding rate of High and low virulence PWN under conditions of α-pinene and H$_2$O$_2$ stress

The feeding rates of high virulence AMA3 and low virulence YW4 were first evaluated in the absence of stress. The dark area of the culture medium indicated that the hypha had been consumed. And the results show that both AMA3 and YW4 cultured on B. cinerea consumed all hyphae by day 5 (Fig. 1a). AMA3 and YW4 were next treated with Triton X-100, α-pinene, and H$_2$O$_2$ to evaluate their feeding rates. The results show that feeding rates did not differ between AMA3 and YW4 treated with Triton X-100 as a negative control for α-pinene. Both AMA3 and YW4 treated with α-pinene fed more slowly than those treated with Triton X-100, and α-pinene had a stronger inhibitory effect on YW4 than on AMA3. Under conditions of α-pinene stress, AMA3 began to feed on day 6, while YW4 had not begun. On day 7, AMA3 had almost

Table 1	PCR primers used in the study
Primer names	**Primer sequences (5′–3′)**
Actin-F	GCAACACGGAGTTCGTTGAGA
Actin-R	GTATCGTCACAACTGGAAGTA
qBxATG5-F	CAAACGATGAAACAACCTCCTAT
qBxATG5-R	CGAAGCCGCTGATTACCA
qBx-ctl-1-F	GCCGCAGCTTTCAGCAAGTA
qBx-ctl-1-R	CCAATTCGTCATCGGTGT
qBx-ctl-2-F	CCCAGCTTTCTACAAGGAAC
qBx-ctl-2-R	CTCCTCAGGACCTTTTC
qBxPrx-F	CGACACCAACACACAGAT
qBxPrx-R	GATGAAACAAACAGGAAAG
qBxCYP33D3-F	TTGAACAACACAGGAGAGTA
qBxCYP33D3-R	CCGTTATACACTGCTGGAT
qBxGST1-F	CAAAGCCTTTGCTCAATCTGG
qBxGST1-R	GAAGAAAATGGAAGGTCTCGTC
qBxGST3-F	TGGTACCTCCTAAATCTGG
qBxGST3-R	ATAAACTTTCGGGAATTGCTT
finished feeding whereas YW4 had just begun (Fig. 1b). Under conditions of H₂O₂ stress, AMA3 had consumed a small portion of hyphae on day 5, while YW4 had not begun to feed. By day 6, AMA3 had finished feeding, while YW4 had consumed one quarter of the hyphae (Fig. 1c). Therefore, high virulence pine woody nematodes fed more rapidly than low virulence PWN under conditions of α-pinene and H₂O₂ stress.

Fig. 1 Feeding rates of pine wood nematodes with different levels of virulence inoculated onto Botrytis cinerea with different treatments; dark areas of the culture medium indicates that the hypha has been consumed. a ddH₂O, b α-pinene. Triton X-100 served as negative control. c H₂O₂.

Fecundity of the high virulence PWN compared with the low virulence PWN under conditions of α-pinene and H₂O₂ stress

Levels of reproduction were similar for high virulence AMA3 and low virulence YW4 in the absence of stress (Fig. 2a). AMA3 and YW4 were then treated with Triton X-100, α-pinene, or H₂O₂. The results show that there was negative control. c H₂O₂. Error bars indicate SE (n = 3); letters indicate significant differences at the 5% level by paired Student’s t-test or Tukey’s HSD test.

Fig. 2 Reproduction of pine wood nematodes with different levels of virulence; AMA3 and YW4 treated with ddH₂O, α-pinene, Triton X-100, and H₂O₂. a ddH₂O. b α-pinene. Triton X-100 served as
no difference in reproduction between AMA3 and YW4 treated with Triton X-100 as a negative control for α-pinene. The α-Pinene had no effect on the reproduction of AMA3 but markedly reduced the reproduction of YW4. The reproduction of AMA3 was more than three times higher than YW4 under conditions of α-pinene stress (Fig. 2b). Under H₂O₂ stress, the reproduction of AMA3 was normal while that of YW4 was inhibited. The reproduction of AMA3 was almost two-fold that of YW4 under conditions of H₂O₂ stress (Fig. 2c). Therefore, the fecundity of high virulence PWN was greater than that of low virulence nematodes under conditions of α-pinene and H₂O₂ stress.

Expression levels of BxATG5 in PWN with different virulence levels under conditions of α-pinene and H₂O₂ stress

The autophagy gene BxATG5 was reported to be related to the stress resistance of pine wood nematodes (Liu et al. 2019a). The expression of BxATG5 was examined in high virulence AMA3 and low virulence YW4 exposed to α-pinene and H₂O₂ hourly up to 5 h. The Actin gene (EU100952) of PWN served as an internal control. Under conditions of α-pinene stress, the expression level of BxATG5 in AMA3 showed two peaks at 2 and 4 h, with the first peak being much higher than the second. The expression level of BxATG5 in YW4 peaked at 4 h and was lower than the first peak of AMA3. The expression of BxATG5 in AMA3 was significantly upregulated more than five-fold by exposure to α-pinene for 2 h, but in YW4 it was downregulated almost 0.7-fold (Fig. 3a). These results indicate that the expression variation response to α-pinene of BxATG5 in AMA3 was greater than in YW4. Under conditions of H₂O₂ stress, the expression of BxATG5 showed significant upregulation at 2 h and remained on high level in AMA3. However, the expression of BxATG5 in YW4 increased slightly at 2 h, decreased immediately at 3 h and slowly returned to normal. AMA3 showed upregulated expression of BxATG5 by almost four-fold upon exposure to H₂O₂ for 2 h, while the expression of BxATG5 in YW4 showed less than two-fold increase at the same time point. Moreover, AMA3 showed a higher level of expression of BxATG5 at all time periods compared to YW4 (Fig. 3b). Therefore, the response of BxATG5 to H₂O₂ stress was stronger and of longer duration in high virulence PWN.

Detoxification gene response to α-pinene in high virulence and low virulence PWN

We examined the expression patterns of the cytochrome P450 gene BxCYP33D3 and the GST genes BxGST1 and BxGST3 in high virulence AMA3 and low virulence YW4 exposed to α-pinene by qRT-PCR. Under conditions of α-pinene stress, the expression level of BxCYP33D3 in AMA3 peaked at 2 h and then decreased to the normal level by 5 h. In YW4, a smaller peak was observed at 2 h and then returned to normal by 3 h. AMA3 showed rapid upregulation of BxGST1 expression to a peak at 2 h followed by a decrease to a low level, while the expression of BxGST1 in YW4 remained normal throughout. There was a surge in the expression level of BxGST3 in AMA3 at 2 h, and the expression remained normal at other time points. The expression of BxGST3 in YW4 increased slightly up to 4 h. In AMA3, the expression levels of the detoxification genes BxCYP33D3, BxGST1, and BxGST3 peaked upon exposure to α-pinene for 2 h, showing 1.5-, 2.8-, and 12.7-fold increases, respectively, whereas no such upregulation was detected in YW4 (Fig. 4). These results indicate that AMA3 is more efficient at upregulating detoxification genes to reduce damage by...
α-pinene in comparison with YW4. Therefore, the virulence of PWN was dependent on its ability to upregulate genes related to the detoxification of α-pinene.

Effects of H₂O₂ on the expression of antioxidant genes in high virulence and low virulence PWN

The expression of the CAT genes *Bxy-ctl-1* and *Bxy-ctl-2* and the peroxidase gene *BxPrx* in high virulence AMA3 and low virulence YW4 exposed to H₂O₂ by qRT-PCR were examined. *Bxy-ctl-1* expression patterns were similar in AMA3 and YW4, increasing slowly to peak with H₂O₂ treatment for 4 h followed by a decrease by 5 h under conditions of H₂O₂ stress. However, the overall expression level of *Bxy-ctl-1* in AMA3 was higher than in YW4; the peak of *Bxy-ctl-1* in AMA3 was 1.4-fold higher than in YW4 (Fig. 5a). The expression of *Bxy-ctl-2* in AMA3 increased significantly after exposure to H₂O₂ for 1 h, returned to normal by 4 h, and increased again at 5 h. YW4 showed downregulation of *Bxy-ctl-2* expression at 4 h and upregulation at 5 h under conditions of H₂O₂ stress. Importantly, AMA3 showed a higher expression level of *Bxy-ctl-2* than YW4 throughout the period of hydrogen peroxide treatment (Fig. 5b). The trend of expression by *BxPrx* in AMA3 was consistent with that in YW4 under conditions of H₂O₂ stress, showing a gradual increased to a peak, followed by a decrease, and then increasing again. Importantly, AMA3 also showed a higher expression level of *BxPrx* than YW4 during the period of H₂O₂ treatment. (Fig. 5c), according to the expression of antioxidant genes, suggesting that the antioxidant capacity of high virulence PWN is stronger than that of low virulence PWN.

Discussion

Hydrogen peroxide and α-Pinene are closely related to the resistance of pine species to pine wood nematodes. Therefore, the differences in virulence of PWN are likely related to the responses to these defense molecules. Tan et al. (2009) reported that α-pinene had no effect on the fertility of PWN. However, Li et al. (2019) noted that the reproduction of
Resistance genes mediate differential resistance to pine defensive substances α-Pinene and…

the nematodes was severely inhibited by 56.3 mg mL⁻¹ of α-pinene. In this study, we examined the impact of α-pinene and H₂O₂ on the feeding rate and fecundity of PWN at different levels of virulence and found that both compounds markedly reduced feeding rates and reproduction of YW4, but not of AMA3. These results show that the differential resistance of the nematodes to pine defensive substances is a key factor in their pathogenic differentiation.

The autophagy gene ATG5 is a central factor involved in autophagosome assembly in *Saccharomyces cerevisiae* Desm., and its protein product has an important role in ubiquitin-like modifications in the process of autophagy (Matsushita et al. 2007). Miller et al. (2008) noted that ATG5 has major roles in B cell survival during development. Previous studies showed that α-pinene and ROS production in pine species were induced after infection with PWN (Liu et al. 2008). H₂O₂ and α-Pinene induced significant upregulation of *BxATG5* expression in PWN (Liu et al. 2019a). We treated the nematodes with different virulence levels with α-pinene and H₂O₂ in vitro. The expression of *BxATG5* in high virulence PWN peaked at 2 h, while in low virulence PWN decreased under conditions of α-pinene stress. High virulence PWN retained a higher expression level of *BxATG5* than low virulence PWN when stressed with H₂O₂. Moreover, autophagy assists eukaryotes to degrade aberrant cytoplasmic components for cellular homeostasis (Boya et al. 2013; Liu et al. 2019c). High virulence pine wood nematodes showed significant upregulation of *BxATG5* expression earlier than low virulence PWN under conditions of α-pinene and H₂O₂ stress. Therefore, high virulence PWN may have a greater ability to remove the deleterious effects and recycle α-pinene and H₂O₂ by activating autophagy genes earlier.

The cytochrome P450s of insects can help detoxify pesticides (Yue et al. 2007; Xu et al. 2009). The Ce-GST-p24 of the nematode, *Caenorhabditis elegans* Maupas was closely related to xenobiotic detoxification (Leiers et al. 2003). Tsai et al. (2016) reported transcriptomic differences in PWN from *B. cinerea* and pine species, and Li et al. (2019) conducted a comparative transcriptome analysis of PWN treated with sterile water and α-pinene. Both demonstrated upregulated expression of cytochrome P450 and GST family genes. These genes of PWN show significant roles in responding to α-pinene stress. Moreover, the expression of cytochrome
P450 genes, related to the vitality, transmissibility, reproduction, pathogenicity, and metabolism of toxic substances of PWN, were shown to be involved in the response of PWN to the accumulation of α-pinene in pine species (Xu et al. 2015; Wang et al. 2017). Silencing of BxGST1 and BxGST3 inhibited the feeding, reproduction, and pathogenicity of PWN (Nian 2017). We further found that high virulence pine wood nematodes showed rapid upregulation of BxCYP33D3, BxGST1, and BxGST3 expression upon exposure to α-pinene, while low virulence PWN responded considerably more slowly, suggesting that differential responses to α-pinene in PWN with different virulence are mediated by detoxification genes.

CATs, which are widespread among Animalia, Plantae, and Fungi, are able to reduce H₂O₂ to water and to oxidize it to molecular oxygen (Zamocky et al. 2008). The regulation of CAT gene expression shows significant role in determining the levels of CAT proteins (Kodydkova et al. 2014). In penguè crucian carp (Carassius auratus L.), the content of active oxygen in the liver increases on stimulation with cadmium ions and the expression of CAT is also upregulated, indicating that CAT shows significant role in the antioxidant defense system (Li et al. 2013). In Arabidopsis thaliana (L.) Heynh., CAT1 helps to remove hydrogen peroxide from environmental stresses. CAT2 and CAT3 separately remove H₂O₂ under light and dark conditions to maintain the organism’s balance (Du et al. 2008). The CAT protein family of the fungal entomopathogen Beauveria bassiana (Bals.-Criv.) Vuill consists of CAT-A (spore-specific), CAT-B (secreted), CAT-P (peroxisomal), CAT-C (cytoplasmic), and CAT-D (secreted peroxidase/catalase). These five CAT proteins function redundantly in regulating the tolerance of fungi to hyperosmotic or fungalicil stress (Wang et al. 2013). Kim et al. (1989) discovered that oxidative stress can activate the expression of Peroxiredoxin in S. cerevisiae Desm.. In Haemonchus contortus Rudolphi, HePrx2 can protect the nematode against oxidative damage (Hudson et al. 2011). Previous studies cloned the CAT genes Bxy-ctl-1 and Bxy-ctl-2 and the peroxidase gene BxPrx from PWN, which are related to the elimination of H₂O₂ produced by the host tree (Li et al. 2011; Vicente et al. 2015). We found upregulation of Bxy-ctl-1, Bxy-ctl-2, and BxPrx expression in PWN within 5 h of H₂O₂ stress, and the magnitude of upregulation was greater with high virulence than with low virulence PWN. Vicente et al. (2015) also found that the changes in expression levels of Bxy-ctl-1 and Bxy-ctl-2 in response to different concentrations of H₂O₂ were greater in high virulence than low virulence pine wood nematodes. Therefore, the antioxidant activity of high virulence PWN was stronger than that of low virulence PWN, which may have a significant role in the virulence differentiation mechanism of PWN. The resistance mechanisms of nematodes with different degrees of virulence should be investigated further to better understand virulence differentiation in PWN.

Conclusions

Feeding rate and fecundity of high virulence pine wood nematodes were significantly higher than for low virulence nematodes under conditions of α-pinene and H₂O₂ stress, suggesting that high virulence pine wood nematodes have greater resistance than low virulence PWN. Moreover, the expression levels of the main resistance genes, including autophagy genes, detoxification genes, and antioxidant genes, in high virulence pine wood nematodes were all greater than in low virulence PWN under conditions of α-pinene and H₂O₂ stress. These results suggest that the differential resistance of PWN with different degrees of virulence to α-pinene and H₂O₂ is mediated by nematode resistance genes. This study will increase our understanding of the mechanism of virulence differentiation in PWN, and provides insight into the pathogenic mechanism of pine wood nematodes.

Author contributions Lin Rui designed the study, conducted experiments, analyzed the data and prepared the manuscript; Hong-Bin Liu designed the study and revised the manuscript; Rui Liang conducted experiments; Xiao-Qin Wu designed the study, acquired the data, contributed reagents/materials/analysis tools and approved the final manuscript. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aikawa T, Kikuchi T (2007) Estimation of virulence of Bursaphelenchus xylophilus (Nematoda: Aphelenchoidea) based on its reproductive ability. Nematology 9(3):371–377. https://doi.org/10.1016/S1565-4107(07)78135-2007

Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33(1):299–321

Boya R, Reggiori R, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720. https://doi.org/10.1038/ncb2815

Cheng HR, Lin MS, Li WQ, Fang ZD (1983) Pine wilt disease on Pinus tabuliformis in Nanjing. For Pest Dis 4:1–5 (in Chinese)

Ding XL, Ye JR, Lin SX, Wu XQ, Li DW, Nian B (2016) Deciphering the molecular variations of pine wood nematode Bursaphelenchus
Resistance genes mediate differential resistance to pine defensive substances α-pinene and…

Bacillus pumilus

Lewinsohn E, Savage TJ, Gijzen M, Croteau R (1993) Simultaneous production of a guanidine compound. Biocontrol Sci Technol

He LX, Wu XQ, Ying CX, He LX, Ye JR (2008) Study on superoxide and oxidative enzyme modulation of Pinus thunbergii infected by Bursaphelenchus xylophilus. Nanjing Forestry University, Nanjing

Bursaphelenchus xylophilus

Molecular cloning and characterization of cat, gpx1 and Cu/Zn-sod genes in pengze crucian carp (Carassius auratus var. Pengze) and antioxidant enzyme modulation induced by hexavalent chromium in juveniles. Comput Biochem Physiol Part C Toxicol Pharmacol 157(3):310–321. https://doi.org/10.1016/j.cbpc.2013.02.003

Bursaphelenchus xylophilus, a putative genetic factor facilitating the infestation. Int J Biol Sci 7(6):825–836. https://doi.org/10.7150/ijbs.7.823

Liu HB, Wu F, Wu XQ, Ye JR (2019) Differential effects of rapamycin on Bursaphelenchus xylophilus with different virulence and differential expression of autophagy genes under stresses in nematodes. Acta Biochim Biophys Sin 51:254–262. https://doi.org/10.1093/abbs/gmy172

Liu HB, Wu XQ, Ying CX, He LX, Ye JR (2008) Study on superoxide anion of Pinus thunbergii infected by Bursaphelenchus xylophilus and B. mucronatus in the earlier interaction. J Nanjing For Univ (Nat Sci Edn) 32(6):24–28

Kodikova J, Vavrova L, Kocik M, Zak A (2014) Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol 60(4):153–167. https://doi.org/10.1158/2326-6066.CIR-13-0160

Kistakais Walker SA, Karanasios E (2016) Assembly of early machinery for autophagy induction: novel insights from high resolution microscopy. Oncotarget 7(52):85678–85679. https://doi.org/10.18632/oncotarget.13144

Leiers BR, Kampkotter A, Greveiding CG, Link CD, Johnson TE, Henkle-Duhrsen K (2003) A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic Biol Med 34(11):1405–1415. https://doi.org/10.1016/S0891-5849(03)00102-3

Lewinsohn E, Savage TJ, Gijzen M, Croteau R (1993) Simultaneous analysis of monoterpens and diterpenoids of conifer oleoresin. Phytochem Anal 4(5):220–225. https://doi.org/10.1002/pca.2800040506

Li LL, Tan JJ, Chen FM (2018) Bacillus pumilus strain LYM-C3 shows nematicidal activity against Bursaphelenchus xylophilus via the production of a guanidine compound. Biocontrol Sci Technol

Li M, Zheng Y, Liang HW, Zou LH, Sun JJ, Zhang YY, Qin F, Liu SZ, Wang ZZ (2013) Molecular cloning and characterization of cat, gpx1 and Cu/Zn-sod genes in pengez crucian carp (Carassius auratus var. Pengze) and antioxidant enzyme modulation induced by hexavalent chromium in juveniles. Comput Biochem Physiol Part C Toxicol Pharmacol 157(3):310–321. https://doi.org/10.1016/j.cbpc.2013.02.003

Li YX, Meng FL, Deng X, Wang X, Feng YQ, Zhang W, Pan L, Zhang XY (2019) Comparative transcriptome analysis of the pine wood nematode Bursaphelenchus xylophilus reveals the molecular mechanism underlying its defense response to host-derived α-pinene. Int J Mol Sci 20(4):911. https://doi.org/10.3390/ijms20049011

Li Z, Liu XX, Chu YN, Wang Y, Zhang QW, Zhou XG (2011) Cloning and characterization of a 2-Cys peroxiredoxin in the pine wood nematode, Bursaphelenchus xylophilus, a putative genetic factor facilitating the infestation. Int J Biol Sci 7(6):825–836. https://doi.org/10.7150/ijbs.7.823

Liu HB, Rui L, Feng YQ, Wu XQ (2019) Molecular characterization and functional analysis of three autophagy genes, BxATG5, BxATG9, and BxATG16Bursaphelenchus xylophilus. Int J Mol Sci 20(18):3769. https://doi.org/10.3390/ijms20153769

Liu HB, Rui L, Feng YQ, Wu XQ (2020) Autophagy contributes to resistance to the oxidative stress induced by pine reactive oxygen species metabolism, promoting infection by Bursaphelenchus xylophilus. Pest Manage Sci. https://doi.org/10.1002/pms.5823

Liu HB, Wu F, Wu XQ, Ye JR (2019) Differential effects of rapamycin on Bursaphelenchus xylophilus with different virulence and differential expression of autophagy genes under stresses in nematodes. Acta Biochim Biophys Sin 51:254–262. https://doi.org/10.1093/abbs/gmy172

Liu, J, Wu XQ, Ying CX, He LX, Ye JR (2008) Study on superoxide anion of Pinus thunbergii infected by Bursaphelenchus xylophilus and B. mucronatus in the earlier interaction. J Nanjing For Univ (Nat Sci Edn) 32(6):24–28

Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408. https://doi.org/10.1016/S1046-2023(00)00866-1

Mizushima N, Iwasaki A, He YW, Swat W, Virgin HW (2008) The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4(3):309–314. https://doi.org/10.4161/auto.4574

Miller BC, Zhao ZJ, Stephenson LM, Cadwell K, Pua HH, Lee HK, Mizushima N, Iwaski A, He YW, Swat W, Virgin HW (2008) The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4(3):309–314. https://doi.org/10.4161/auto.4574

Nian B (2017) Cloning and Functional Analysis of Glutathione S-transferase Gene BxGST3 and BxGST1 in Bursaphelenchus xylophilus. Nanjing Forestry University, Nanjing

Ogura N, Nakajima Z (2002) In vitro occurrence of dispersal fourth stage juveniles in Bursaphelenchus xylophilus co-incubated with Monochamus alternatus. Jpn J Nematal 32(2):53–59

Shinya R, Takeuchi Y, Ichimura K, Takemoto S, Futai K (2012) Establishment of a set of inbred strains of the pine wood nematode, Bursaphelenchus xylophilus (Aphelenchina: Aphielenchoididae),
and evidence of their varying levels of virulence. Appl Entomol Zool 47(4):341–350. https://doi.org/10.1007/s13355-012-0124-8
Tao N, Fan JT, Fang YL, Sun JH (2006) Changes in contents of host volatile terpenes under different damaged states and electroantennogram response of Monochamus alternatus. Hope to these volatiles. Acta Entomol Sin 49:179–188. https://doi.org/10.16380/j.kcxb.2006.02.003 (in Chinese)
Tsygakova M, McDaniel D, Hodes GE (2019) Immune mechanisms of stress susceptibility and resilience: Lessons from animal models. Front Neuroendocrinol 54:100771
Velliosillo T, Vicente JL, Kulasekaran S, Hamberg M, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154(2):444–448. https://doi.org/10.1104/pp.110.161273
Vicente CSL, Ikuyo Y, Mota M, Hasegawa K (2013) Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus. BMC Microbiol 13(1):299. https://doi.org/10.1186/1471-2180-13-299
Vicente CSL, Yoriko I, Ryoji S, Mota M, Hasegawa K (2015) Catalases induction in high virulence pinewood nematode Bursaphelenchus xylophilus under hydrogen peroxide-induced stress. PLoS One 10(4):e0123839. https://doi.org/10.1371/journal.pone.0123839
Viglierchio DR, Schmitt RV (1983) On the methodology of nematode extraction from field samples: Baermann funnel modifications. J Nematol 15:438–444
Wang X, Li YX, Liu ZY, Lv Q, Jia XZ, Zhang XY (2017) Relationship between the cytochrome P450 gene of pine wood nematode and the accumulation of pine pinene. Scientia Silvae Sinicae 55(9):1–10 (in Chinese)
Wang ZL, Zhang LB, Ying SH, Feng MG (2013) Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ Microbiol 15(2):409–418
Wu Y, Wickham JD, Zhao L, Sun JH (2019) CO2 drives the pine wood nematode off its insect vector. Curr Biol 29(13):R619–R620
Xu JY, Wang BW, Li DL (2019) Response pattern and functional validation of pine wood nematode (Bursaphelenchus xylophilus) BxPx. J Hum Agric Univ (Nat Sci) 45(5):491–495 (in Chinese)
Xu XL, Wu XQ, Ye JR, Huang L (2015) Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 Genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidea). Int J Mol Sci 16(3):5216–5234. https://doi.org/10.3390/ijms16035216
Yu LZ, Wu XQ, Ye JR, Zhang SN (2013) Relationships between nitric oxide response signal and external factors during the early interaction between Pinus thunbergii and Bursaphelenchus xylophilus. Chin J Appl Ecol 24:646–652 (in Chinese)
Yu LN, Yang YH, Wu SW, Wu YD (2007) Cloning and mRNA expression levels of cytochrome P450 genes CYP6AE12 and CYP9A18 in the cotton bollworm, Helicoverpa armigera (Hübner). Acta Entomol Sin 50(3):234–240 (in Chinese)
Zamocky M, Furtmüller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signaling 10(9):1527–1548. https://doi.org/10.1089/ars.2008.0204
Zhou LF, Chen FM, Xie LY, Pan HY, Ye JR (2017) Genetic diversity of pine-parasitic nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus in China. For Pathol 47(4):e12334. https://doi.org/10.1111/efp.12334
Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52(1):86–97. https://doi.org/10.1111/j.1744-7909.2010.00910.x
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.