Effects of guavira fruit (*Campomanesia adamantium*) peel extract on performance and meat quality of broilers

M.L. Lohmann¹, C. Eyng¹⁶, R.V. Nunes¹, E.J.S. Argandona², C.A.C. Correia², T.L. Köhler¹ & A.P.G.C. Costa¹

¹Western Paraná State University, – Unióeste, Department of Animal Science, Marechal Cândido Rondon, Paraná, Brazil.
²Federal University of Grande Dourados (UFGD), Department of Animal Science, Dourados, Mato Grosso do Sul, Brazil.

(Submitted 6 July 2020, Accepted 10 October 2020, Published 6 January 2021)

Abstract

This article assessed the performance, carcass yield, and meat quality of finishing broilers fed increasing levels of hydroethanolic extract of guavira fruit peel (HEGP) were assessed. A total of 480, three-weeks-old male broilers were randomly allocated to dietary levels of HEGP (0, 100, 200, 300, 400, and 500 mg/kg), with five replicates and 16 birds each. There was a quadratic effect of HEGP inclusion on weight gain (WG) and feed conversion ratio (FCR), with the greatest WG and FCR being calculated at levels of 319 mg/kg HEGP, respectively. Broilers fed diets containing the extract had better performance than those fed an extract-free diet. There was no effect of extract inclusion on carcass yield and cuts. There was a quadratic effect of HEGP inclusion on a* (redness) of thigh meat at 15 min post-mortem, and on water-holding capacity (WHC), with the lowest and highest values being calculated at 270 mg/kg and 263 mg/kg HEGP, respectively. There was a quadratic influence of HEGP inclusion on the malonaldehyde content at 30-day storage, with highest value being calculated at 218 mg/kg HEGP. Dietary inclusion of 219 mg/kg of HEGP resulted in better FCR for broilers in the finishing phase but without improvement in meat quality.

Keywords: Cerrado fruit, feed additives, flavonoids, meat quality.

*Corresponding author: cinthiaeyng@hotmail.com

Introduction

For decades it has been common practice in the poultry industry to manipulate the intestinal health of broiler chickens with antibiotics in subtherapeutic concentrations. The dietary inclusion of these substances contributed to efficient nutrient absorption and assimilation, thereby favouring productive performance and reducing feed costs (Oleforuh-Okoloh *et al.*, 2015). Despite these benefits, the use of antibiotics to enhance broiler performance was correlated with the development of bacterial resistance in humans, which is a public health concern (Garcia-Migura *et al.*, 2014).

Mechanisms of action have been observed in natural extracts containing polyphenols and flavonoids that are similar to those of performance-enhancing antibiotics (Surai *et al.*, 2014). Plant extracts are natural non-toxic products that could be used as natural feed additives without inducing the resistance of microorganisms (Huyghebaert *et al.*, 2011). Guavira (*Campomanesia adamantium*) fruit extracts are among these potential natural additives. This fruit from the Cerrado biome has aroused interest among researchers because of its significant levels of proteins, vitamins, minerals, and fatty acids (Vallillo *et al.*, 2006).

In addition to its nutritional value, guavira contains bioactive substances such as ascorbic acid and phenolic compounds. Flavonoids, a class of polyphenolic compounds, are the major constituents, and include isoquercetin and quercetin (Pascoal *et al.*, 2011). These substances may have antioxidant, antimicrobial, or immunostimulant activity (Pereira *et al.*, 2012; Viecili *et al.*, 2014; Capeletto *et al.*, 2016). Phenolic compounds may inhibit the adhesion of pathogenic bacteria to the intestinal epithelia (Jamroz *et al.*, 2006; Windsch *et al.*, 2008), influence digestive processes (Ader *et al.*, 2000), and modulate the animal's immune system (Kamboh *et al.*, 2015), with consequent improvements in performance. Moreover, these compounds can improve meat quality by acting as antioxidant agents, reducing the lipid oxidation process by...
neutralizing reactive oxygen molecules and preventing toxin formation during meat processing and cooking (Jiang & Xiong, 2016).

Although guavira contains these compounds, the effects of using it in broiler nutrition have not yet been reported. Therefore, this study aimed to evaluate the effects of feeding increasing levels of HEGP on the performance, carcass yield, and meat quality of finishing broilers. The authors hypothesized, therefore, that the bioactive substances of guavira fruit peel extract will improve the performance and meat quality of broilers.

Material and Methods

The experiment was carried out at the Poultry Study Centre of Western Paraná State University, Unioeste, Marechal Cândido Rondon Campus, PR, Brazil. The birds were cared for according to ethical principles for animal experimentation established by the Brazilian Society of Laboratory Animal Science (SBCAL) and National Council for the Control of Animal Experimentation (CONCEA). The protocol of this experiment was approved by the Committee on Ethics in the Use of Animals of Western Paraná State University (Protocol #38/17). All efforts were made to minimize animal suffering.

A total of 600 one-day-old Cobb 500® male broiler chickens were housed in an experimental shed, divided into 1.95 m² pens (experimental unit), with a concrete floor and pine wood shavings reused five consecutive times. Each unit had access to a tubular feeder and a nipple-type drinker. The lighting programme followed the lineage manual recommendations. The temperature and relative humidity were measured daily by digital thermo-hygrometers (Instrutemp, ITHT 2250, São Paulo, Brazil) at bird height inside the facility. The temperature inside the shed was controlled with exhaust fans and evaporative cooling pads, set at maximum and minimum temperatures of 24.80 °C and 21.51 °C and maximum and minimum humidity of 74.99% and 63.82%.

For the first 21 days of rearing, all birds were kept under the same nutritional, management, and environmental conditions. The diets were formulated according to Rostagno et al. (2017) for intermediate-performance male broilers. On day 21, birds were weighed individually, divided into weight classes, and 480 birds, with an average weight of 1.007 ± 6.5 g, were redistributed in a manner that equalized pen weights and variances into a completely randomized design with six dietary treatments, with five replicates and 16 birds per unit. The treatments consisted of increasing levels of HEGP (0, 100, 200, 300, 400, and 500 mg/kg).

Guavira fruit was purchased in Ponta Porã - MS, Brazil and processed at the Faculty of Biological Sciences of the Federal University of Grande Dourados in Dourados - MS, Brazil. The fruits were washed and immersed in a sanitized solution of 0.66% sodium dichloroisocyanurate dehydrate (Diversey Chemical Industry, São Paulo, Brazil) for 15 min. Afterwards, the fruit was pulped, and the peel was dried in an oven at 40 °C with an airflow of 0.5 m³/s for 36 hours. The dried material was packaged in low-density polyethylene package and stored at room temperature (25 °C) until the extract was produced. The extract was obtained by Soxhlet extraction using 150 g of the sample and 750 mL of 70% absolute ethyl alcohol (1:5 w/v ratio) (Synth, São Paulo, Brazil). The extraction was carried out at 80 °C for three hours, and then the solvent was removed under vacuum using a rotary evaporator (Fisatom model 810) to yield the aqueous extract, which was stored in amber glass vials at 7 °C until analysis.

The bioactive compounds were extracted according to Singleton and Rossi (1965), with modifications to determine the total polyphenol and flavonoid content of the extract. Two millilitres of the extract were homogenized with 2 mL of methanol (Sigma Aldrich, São Paulo, Brazil) in Falcon tubes. Subsequently, the tubes were placed in a homogenizer (Criemaq C38, São Paulo, BR) for 10 min and then centrifuged (Centrifuge Kasvi K14-4000, Kasvi, São Paulo, BR) at 3000 rpm for 20 min. The supernatant was used directly for the measurements.

The total concentration of phenolic compounds in HEGP was determined according to Singleton and Rossi (1965), with modifications. An aliquot of the supernatant (125 μL) was homogenized with 125 μL of Folin–Ciocalteu reagent (Sigma Aldrich, São Paulo, Brazil) (1:1 v/v deionized water) and sodium carbonate (Sigma Aldrich, São Paulo, Brazil) (28 g/L) in a total volume of 2.25 mL. After incubation in the dark at room temperature (25 °C) for 30 min, absorbance was measured in a spectrophotometer (Evolution™ 300 e Thermo Scientific) at 750 nm. The results were expressed as milligrams of gallic acid equivalents (GAE) per litre of HEGP (mg GAE/L), using a standard curve constructed with gallic acid (Dinâmica Química Contemporânea LTDA, São Paulo, Brazil) at 0 - 300 mg/L. All analyses were performed in triplicate.

The flavonoid content was established with the aluminium chloride (AlCl₃) method (Buriol et al., 2009) with modifications. Briefly, 300 μL of the supernatant was mixed with 150 μL AlCl₃ (5% w/v in methanol) (Sigma Aldrich, São Paulo, Brazil), and the volume was made up to 3000 μL with methanol (Sigma Aldrich, São Paulo, Brazil). After incubation in the dark at room temperature (25 °C) for 30 min, absorbance was measured in a spectrophotometer (Evolution™ 300 e Thermo Scientific) at 425 nm. A quercetin (Sigma
Aldrich, São Paulo, Brazil) standard curve was prepared, and the results were expressed as milligrams of quercetin equivalents (QE) per litre of HEGP (mg QE/L).

The experimental isoproteic and isocaloric diets were based on corn and soybean meal according to Rostagno et al. (2017) for intermediate-performance male broilers (Table 1). The HEGP was added to the diets by replacing kaolin and by mixing it into the soybean oil. The basal diet was formulated with Super Crac® 6.2 Premium software. The birds had ad libitum access to water and feed in the mash form in both periods (1 - 21 and 22 - 42 days).

Table 1 Feed ingredients and nutrient contents of basal diet

Ingredients	g/kg	Nutrients
Corn	639.00	Metabolizable energy, MJ/kg 13.25
Soybean meal, 45% crude protein	279.98	Crude protein, g/kg 180.00
Soybean oil	41.59	Calcium, g/kg 7.17
Monocalcium phosphate	13.14	Available phosphorus, g/kg 3.49
Limestone	9.08	Sodium, g/kg 2.04
NaCl	4.84	Digestible lysine, g/kg 10.88
DL-methionine, 98%	3.09	Digestible methionine + cysteine, g/kg 8.05
L-lysine sulphate, 50.7%	5.03	Digestible threonine, g/kg 7.18
L-threonine, 98%	1.15	Digestible tryptophan, g/kg 1.98
Vitamin supplement¹	1.50	
Mineral supplement²	0.50	
Kaolin³	0.50	
Choline chloride	0.60	

¹(per kg of the diet) vitamin A: 16.500 UI, vitamin D₃: 60.000 UI, vitamin E: 825 UI, vitamin K₃: 4.5 mg, vitamin B₁: 3.45 mg, vitamin B₂: 10.5 mg, vitamin B₆: 6 mg, vitamin B₁₂: 37.5 mcg, pantothenic acid: 18 mg, nicotinic acid: 90 mg, folic acid: 3 mg, biotin: 0.375 mg, selenium: 0.45 mg
²Iron: 150 mg, copper: 30 mg, manganese: 195 mg, zinc: 195 mg, iodine: 3 mg
³The hydroethanolic extract of guavira peel replaced kaolin.

At 21 and 42 days old, the birds were weighed, as well as the leftover feed at 42 days to calculate average feed intake (AFI), weight gain (WG), and feed conversion ratio (FCR). Mortality was recorded daily for later correction of data on AFI and FCR (Sakomura & Rostagno, 2016). The mortality rate was considered normal for this facility, being less than 2% for all groups.

At 42 days old, two representative birds per experimental unit (mean weight ± 5%) were selected to determine yields of carcass and special cuts. The birds were weighed individually, slaughtered by electronarcosis (CONCEA normative resolution no. 37 of 15 February 2018) and then bled, plucked, and eviscerated. The carcass yield was calculated as the proportion of eviscerated carcass weight (without head, feet, neck, and abdominal fat) to live weight. The yields of cuts (breast, legs, and wings) were calculated relative to the eviscerated carcass weight. Abdominal fat was regarded as all adipose tissue around the cloaca and attached to the gizzard. Concomitantly, the right breast muscle and thigh were used for pH and meat colour evaluation. Afterwards, the cooking loss (CL), water-holding capacity (WHC), and shear force (SF) were determined using the breast muscle. The left thigh was used to determine lipid oxidation (TBARS).

Meat colour and pH were determined at 15 min and again at 24 hours post mortem. pH determination was performed directly on the breast muscle (Pectoralis major) and thigh muscle, using a 250 Testo® pH meter (Testo Argentina S.A., Buenos Aires, Argentina). Meat colour was determined with a CR-400 Konica Minolta colorimeter. CIELab values of L* (lightness - from 0 = black to 100 = white), a* (redness = +a*; greenness = -a*), and b* (yellowness = +b*; blueness = -b*) were evaluated in three regions of the upper, middle, and lower inner breast and inner thigh (Honikel, 1998).

Water-holding capacity was analysed according to Nakamura and Katok (1985). One-gram samples of raw breast muscle were wrapped in filter paper and centrifuged (Centrífuge Kasvi K14-4000, Kasvi, São Paulo, BR) at 1500 rpm for 4 min. The samples were then weighed and oven-dried at 70 °C for 12 hours.
Then the dried samples were weighed again to determine the WHC as a percentage (weight of the meat sample after centrifugation - weight of the sample after drying/initial weight of the raw sample × 100).

Breast fillets were weighed, wrapped in aluminium foil, and kept on an electrically heated plate at 180 °C until the internal temperature of the breast reached 80 °C to determine CL. The fillets were weighed after cooling to room temperature to obtain the post-cooking weight (Honikel, 1998).

The SF analysis was performed with the same steaks. The samples were trimmed, cut into three pieces (1.0 × 1.0 × 1.3 cm), and sheared perpendicular to the muscle fibre orientation with a TA.XT2i texturometer (Stable Micro Systems, Jarinu, Brazil) coupled to a calibrated 29 Warner–Bratzler SF mechanical probe, with 5-kg capacity and crosshead speed set at 20 cm/min (Fronning & Uijttenboogaart, 1988), providing the measurement of the SF in kilogramme force (kgf/cm²).

The determination of TBARS in the thigh meat was performed immediately after slaughter (day 0) and after storage for 7, 30, and 60 days at -20 °C. The analyses were performed according to the procedures of Jorgensen (1996). The aldehydes were extracted by mixing 10 mL of trichloroacetic acid solution (7.5%) (Inlab, São Paulo, Brazil) and BHT (0.2%) (Sigma Aldrich, São Paulo, Brazil) with 2.5 g sample. The resultant supernatant was mixed through qualitative filter paper, and then 3 mL of thiobarbituric acid solution (0.02 M) (Sigma Aldrich, São Paulo, Brazil) was added to 3 mL of the solution (1:1 v/v). This solution was kept in a water bath at 80 °C for 40 min, and absorbance was measured using a spectrophotometer (Evolution™ 300 e Thermo Scientific) at 538 nm. A calibration curve was plotted with 1,1,3,3-tetraethoxypropane (Sigma Aldrich, São Paulo, Brazil), and the results were expressed as malonaldehyde (MDA)/mg meat.

The results were submitted to analysis of variance (ANOVA) and polynomial regression. Dunnett’s test (P>0.05) was used to compare the control (0 mg/kg HEGP) with the treatment groups (100, 200, 300, 400, and 500 mg/kg HEGP) using SAS® university edition statistical software (2017) (SAS Inst., Inc., Cary, NC, USA). Data on TBARS were subjected to ANOVA using the PROC GLM procedure of SAS (2017) to test the individual effects of HEGP inclusion levels and storage time, and their interaction. Significant interactions (P<0.05) were revealed by applying polynomial regression equations to evaluate the HEGP inclusion levels at 0, 7, 30, and 60 days of storage.

Results and Discussion

The levels of total polyphenols and flavonoids in the HEGP were 47.80 mg GAE/L and 10.99 mg QE/L, respectively.

There was a quadratic effect of dietary HEGP inclusion (P<0.05) on WG and FCR of broilers from 21 to 42 days old. According to the adjusted equations, HEGP levels of 314 and 219 mg/kg resulted in greater WG and better FCR, respectively. The AFI increased (P<0.05) with rising extract levels in diets. Moreover, broilers fed diets containing 200 to 500 mg/kg of HEGP had greater WG compared with animals fed with extract-free diet, and animals fed diets containing 100, 200, 300, and 500 mg/kg of HEGP had greater AFI compared with control broilers (Table 2).

There was no effect of HEGP inclusion (P>0.05) on carcass yield, the yield of special cuts (wings, legs, and breast) and abdominal fat percentage. No significant difference (P>0.05) was observed for all yield traits when comparing each HEGP inclusion level with the control treatment (Table 3).

There was a quadratic effect of HEGP inclusion (P<0.05) on WHC, with the greatest WHC calculated at 263 mg/kg extract. The CL increased (P<0.05) with increasing extract levels in diets. No significant difference (P>0.05) was observed for WHC and CL when comparing each HEGP inclusion level with the control treatment. The SF was not affected (P>0.05) by the inclusion of HEGP in diets (Table 4).

There was a quadratic effect of HEGP inclusion (P<0.05) on a* (redness/greenness) of thigh meat at 15 min post-mortem, with the lowest redness calculated at the level of 270 mg/kg HEGP. No significant difference (P>0.05) was observed for pH and meat colour traits when each HEGP inclusion level was compared with the control (Table 5).
Table 2 Performance of broiler chickens from 21 to 42 days old fed diets containing various levels of hydroethanolic extract of guavira peel

HEGP Inclusion, mg/kg	WG (g)	AFI (g)	FCR
0	1935	3511	1.817
100	2042*	3702*	1.813
200	2119*	3712*	1.751
300	2124*	3789*	1.785
400	2085*	3675	1.762
500	2075*	3772*	1.818

Standard error 8.70 10.75 0.172
P-value 0.012 0.018 0.132
P-value: regression on HEGP level 0.003(Q) 0.015(L) 0.029(Q)
Equations
WG = 1942.10764 + 1.175963x - 0.0000187x^2
R^2 = 0.95 314 mg/kg 2126
FI = 3600.651067 + 0.37117x
0.49
FCR = 1.8267 - 0.000438x + 0.000001x^2
0.61 219 mg/kg 1.769

*significant difference (P=0.05) between control and experimental group

Table 3 Carcass, portion yield (%), and abdominal fat (%) of broiler chickens at 42 days old fed diets containing levels of hydroethanolic extract of guavira peel

HEGP Inclusion, mg/kg	Carcass	Wings	Thigh and leg	Breast	Abdominal fat
0	69.80	10.38	32.66	41.41	2.40
100	69.67	10.17	33.52	40.13	2.68
200	71.20	10.17	33.03	41.19	2.51
300	70.02	10.28	33.13	40.99	2.76
400	70.77	10.04	32.43	41.19	2.41
500	70.13	10.05	32.14	41.83	2.73

SEM 0.771 0.362 0.711 0.752 0.404
P-value 0.697 0.528 0.343 0.565 0.718
P-value regression on HEGP level 0.550 0.800 0.734 0.595 0.506

HEGP: hydroethanolic extract of guavira peel
Table 4 Water-holding capacity, cooking loss and shear force values of breast meat of broiler chickens at 42 days old fed diets containing levels of hydroethanolic extract of guavira peel

HEGP inclusion, mg/kg	WHC (%)	CL (%)	SF (kgf/cm²)
0	75.46	27.09	3.03
100	78.70	27.19	3.04
200	82.51	26.95	3.24
300	78.51	29.00	3.02
400	78.17	29.74	2.79
500	76.09	30.36	2.61

SEM 1.577 1.225 0.467
P-value 0.256 0.230 0.904
P regression 0.032(Q) 0.021(L) 0.318
Equation R^2 HEGP Result
WHC = 76.8458 + 0.0368x - 0.00007x² 0.73 262.86 mg/kg 81.68
CL = 26.576 + 0.0066x 0.80

HEGP: hydroethanolic extract of guavira peel, WHC: water-holding capacity, CL: cooking loss, SF: shear force
Table 5 Colour and pH values of breast and thigh meat of broilers, at 42 days old, fed diets containing levels of hydroethanolic extract of guavira peel excised at 15 min and 24 hours post-mortem

HEGP inclusion, mg/kg	pH	15 min	24 h	L*	15 min	24 h	a*	15 min	24 h	L*	15 min	24 h	a*
0		6.07	5.88	6.83	45.91	49.35	52.44	51.30	3.438	4.99	3.49	4.43	5.21
100		6.26	5.99	5.50	46.22	51.21	55.21	52.67	2.703	3.33	1.77	3.23	3.23
200		6.08	5.91	5.65	44.74	50.07	52.29	51.92	3.553	3.72	2.62	4.77	2.62
300		6.18	5.94	5.69	45.72	50.32	53.63	52.38	3.053	3.58	2.27	3.29	2.27
400		6.14	5.98	5.57	48.84	48.87	52.32	50.82	3.614	3.56	4.26	3.28	4.26
500		6.16	5.96	5.50	47.97	48.77	53.90	50.84	3.712	4.55	3.12	4.67	3.12

SEM 0.265 0.177 0.299 0.272 1.239 0.971 1.082 0.888 0.624 0.811 0.94 0.095
P-value 0.553 0.671 0.071 0.123 0.215 0.274 0.473 0.627 0.392 0.116 0.023 0.107
P-value regression on HEGP level 0.313 0.505 0.930 0.226 0.410 0.488 0.224 0.728 0.284 0.012(L) 0.281 0.129
Equation R² HEGP
a* Thigh 15 min= 4.7668-0.0108x+0.00002x² 0.76 270 mg/kg

L*: Lightness, a*: redness, b*: yellowness, L: linear
An interaction ($P < 0.05$) between inclusion levels of extract and storage period was observed for TBARS. Overall, the sliced data show that within each storage time there was only a quadratic influence ($P < 0.05$) of the dietary inclusion levels of the extract on the malonaldehyde (MDA) contents at 30-day storage, with the highest MDA value being calculated at 218 mg/kg HEGP (Table 6).

Table 6 Values of thiobarbituric acid reactive substances (mg malonaldehyde/kg meat) of thigh meat of broiler chickens at 42 days old fed diets containing levels of hydroethanolic extract of guavira peel and evaluated at various storage times (0, 7, 30 and 60 days)

HEGP inclusion, mg/kg	Storage times	0	7	30	60	Average	SE
0		0.264	0.468	0.225	0.110	0.267	0.0037
100		0.254	0.430	0.236	0.109	0.257	0.0038
200		0.262	0.433	0.237	0.109	0.260	0.0039
300		0.266	0.447	0.241	0.109	0.266	0.0037
400		0.269	0.444	0.234	0.108	0.264	0.0037
500		0.287	0.444	0.207	0.108	0.262	0.0038
Average		0.267	0.444	0.230	0.109		
SEM		0.0034	0.0029	0.0029	0.0029		
P-values		HEGP level = 0.432, Time < 0.001, Interaction = 0.006					
Regression of TBARS at 30 days (y) on HEGP level (x)	R^2	HEGP	Result				
$y = 0.223 + 0.00172x - 0.000001x^2$	0.91	218 mg/kg	0.230				

TBARS: thiobarbituric acid reactive substances, HEGP: hydroethanolic extract of guavira peel

Bioactive compounds such as polyphenols and flavonoids are known for their antioxidant, anti-inflammatory, and antimicrobial effects (Viecili et al., 2014; Capeletto et al., 2016). Thus, the levels of total polyphenols and flavonoids in HEGP show the potential of this extract as a natural additive (Auharek et al., 2013).

Bioactive compounds may stimulate the digestive process, thus providing higher feed digestibility and nutrient absorption (Ader et al., 2000; Perić et al., 2009). Recent studies identified correlations between natural substances and modulation of growth performance, intestinal microbiota and intestinal quality (Fascina et al., 2017; Zhu et al., 2019). The anti-inflammatory and immunomodulatory properties of these compounds must also be considered. Natural extracts could reduce the gene expression of cytokines involved in the inflammatory response at intestinal level (Herrero-Encinas et al., 2020), leading to improved animal performance.

In terms of performance data, a dose-dependent effect was observed in this study, which was associated with the compounds remaining in the intestinal lumen, with local action, since the absorption rate of phenolic compounds is considered low in chickens (Brenes et al., 2009). Recent studies reported a reduction in productive parameters, correlating the capability of phenolic compounds with alteration of carbohydrate metabolism and interference with monosaccharide absorption. Thus, attention should be paid to the dietary inclusion level of natural extracts in broiler diets.

In addition, the presence of these substances was correlated with improved meat quality owing to their antioxidant action (Starčević et al., 2015), which influences sensory characteristics.

In this study a reduction on thigh muscle redness (a') at 15 min post-mortem was observed in response to inclusion of HEGP. Myoglobin is responsible for meat colour and contains an iron molecule in the ferrous state (Fe II). When exposed to oxygen, Fe II is transformed into Fe III, a state named metmyoglobin, which is accompanied by changes in meat colour and quality (Papuc et al., 2017). Inai et al. (2014) demonstrated the in vitro ability of polyphenols to control the redox state of myoglobin. However, the presumably low bioavailability of these substances in humans and animals may have impaired their
antioxidant action. Thus, the protective action of polyphenols may be reduced when added to feeds because it is dependent on the processes of digestion, absorption, metabolism, and tissue deposition (Surai et al., 2014). Despite the influence at 15 min post-mortem, the colour of meat samples at 24 hours post-mortem was considered normal (Barbut, 1997) as the dietary inclusion of HEGP did not affect the quality of the final product.

Meat tenderness is associated directly with WHC and CL, and consumers regard these attributes as fundamental traits. An increased muscle pH was correlated with enhanced WHC and meat tenderness, resulting in better quality meat (Selim et al., 2013). Although no influence of extract levels on pH and SF was observed, there was an improvement in WHC. The active compounds in extracts can reduce protein oxidation and modulate the action of the enzymatic complex formed by calpain (Guttmann & Johnson, 1998; Huff-Lonergan & Lonergan, 2005) through their antioxidant action. These factors are related directly to WHC, affecting the quality of the final product.

Oxidation of meat lipid and protein components, which generates free radicals, is responsible for the quality deficiency owing to the loss of colour pigmentation, reduction in shelf life, the formation of toxic compounds, and deficit of nutrients (Contini et al., 2014; Falowo et al., 2014). Polyphenols are potent antioxidant agents that are capable of scavenging free radicals, largely by acting as metal ion-chelating molecules that catalyse oxidation reactions, delaying this process. In this context, phenolic groups donate hydrogen ions and prevent free radical generation, with the formation of stable end products (Zhang et al., 2016).

Despite evidence for the antioxidant property of phenolic compounds and their ability to be incorporated in meat products (Saleh et al., 2017), no reduction in meat lipid oxidation was observed when HEGP was included in the diets, rejecting the hypothesis that the inclusion of guavira extract in broiler diets could improve meat quality. The absorption of flavonoids depends on their physico-chemical properties, and the metabolism of these components involves processes of hydrolyzation, glucuronidation, sulfation, and methylation, which seems similar to mammal uptake (Rupasinghe et al., 2010; Fotakis et al., 2017). The mechanism of action of extracts may be related to the absorption and deposition of the phenolic compounds because, when absorbed, they are quickly metabolized, and a large part is eliminated by the kidneys (Lee et al. 2004). Kamboh et al. (2019) emphasized that the unabsorbed flavonoids from the small intestine, and some of the absorbed compounds, are secreted with bile, being after being degraded in the large intestine by the microbiota. Rupasinghe et al. (2010) observed that quercetin glucosides, which belong to a subgroup of flavonoids, can be absorbed and metabolized by broiler chickens. However, the absorption of the component was not sufficient to elevate the antioxidant capacity of the tissues (Rupasinghe et al., 2010). In this sense, the direct use of these compounds in raw meat reduced lipid oxidation, increasing the shelf life of meat products (Krishnan et al., 2014; Nikmaram et al., 2018). Nunes et al. (2019) observed a reduction in lipid oxidation in eggs of laying quails fed diets containing dehydrated bocaiuva (Acrocomia aculeata) pulp, emphasizing that the antioxidants added to feed were preferentially incorporated in eggs rather than meat because the biological priority is to ensure the development of the embryo.

Conclusions

The dietary inclusion of 219 mg/kg of hydroethanolic extract of guavira fruit peel resulted in better FCR for broilers in the finishing phase but without changing the carcass characteristics. However, in terms of meat quality, it was not possible to verify the antioxidant capacity of this extract.

Acknowledgements

Funding was provided by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil) (Finance code 001) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazil).

Authors’ Contributions

CE and RVN designed the study and were the supervisors. EJSA and CAC sourced laboratory analysis. TLK and APGCC participated in management and discussion of the results, statistical analysis and writing, and corrected the manuscript.

Conflict of Interest Declaration

The authors declare that they have no conflicts of interest relative to the content of this paper.

References

Ader, P., Wessmann, A. & Wolffram, S., 2000. Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic. Biol. Med. 28, 1056-1067. https://doi.org/10.1016/s0891-5849(00)00195-7

Auharek, S.A., Vieira, M.C., Cardoso, C.A.L., Oliveira, R.J. & Cunha-Laura, A.L., 2013. Reproductive toxicity of Campomanesia xanthocarpa (Berg.) in female Wistar rats. J. Ethnopharmacol. 148, 341-343. https://doi.org/10.1016/j.jep.2013.04.010
Barbut, S., 1997. Problem of pale soft exudative meat in broiler chickens. Br. Poult. Sci. 38, 355-358. https://doi.org/10.1080/00071669708418002

Brenes, A., Viveros, A., Goni, I., Centeno, C., Sayago-Ayerdi, S.G., Arjila, I. & Saura-Calixto, F., 2008. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 87, 307-316. https://doi.org/10.3382/ps.2007-00297

Buriol, L., Finger, D., Schmidt, E.M., Santos, J.M.T., Rosa, M.R., Quináia, S.P., Torres, Y.R., Santa, H.S.D., Pessoa, C., Moraes, M.O., Costa-Lotufo, L.V., Ferreira, P.M.P., Sawaya, A.C.H.F. & Eberlin, M.N., 2009. Chemical composition and biological activity of oil própolis extract: An alternative to ethnical extract. Quim. Nova. 32, 296-302. https://doi.org/10.1590/S0100-40422009000200006 (in Portuguese, English abstract)

Capeletto, C., Conterato, G., Scapinello, J., Rodrigues, F.S., Copini, M.S., Kuhn, F., Tres, M.V., Magro, J.D. & Oliveira, J.V., 2016. Chemical composition, antioxidant and antimicrobial activity of guavírova (Campomanesia xanthocarpa Berg) seed extracts obtained by supercritical CO2 and compressed n-butane. J. Supercrit. Fluids. 110, 32-38. https://doi.org/10.1016/j.supflu.2015.12.009

Contini, C., Alvarez, R., O’Sullivan, M., Dowling, D.P., Gargan, S.O. & Monahan, F.J., 2014. Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat. Meat Sci. 96, 1171-1176. https://doi.org/10.1016/j.meatsci.2013.11.007

Eyng, C., Murakami, A.E., Duarte, C.R.A. & Santos, T.C., 2014. Effect of dietary supplementation with an ethanolic extract of propolis on broiler intestinal morphology and digestive enzyme activity. J. Anim. Physiol. Anim. Nutr. 98, 393-401. https://pubmed.ncbi.nlm.nih.gov/23904988/

Falowo, A.B., Fayemi, P.O. & Muchenie, V., 2014. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 64, 171-181. https://doi.org/10.1016/j.foodres.2014.06.022

Fascina, V.B., Pasquale, G.A.M., Carvalho, F.B., Muro, E.M., Vercese, F.I., Aoyagi, M.M., Pezzato, A.C., Gonzales, E. & Sartori, J.R., 2017. Effects of phytogenic additives and organic acids, alone or in combination, on the performance, intestinal quality and immune responses of broiler chickens. Braz. J. Poult. Sci. 19(5), 497-508. https://doi.org/10.1590/1806-90612016-0422

Fotakis, C., Lantzouraki, D.Z., Goliomytis, M., Simitzis, P.E., Charisiadou, M., Deligeorgis, G. & Zoumpoulakis, P. 2017. NMR metabolomics investigates the influence of flavonoid-enriched rations on chicken plasma. J. AOAC Int. 100(2), 315-322. https://doi.org/10.5740/jaoacint.16-0405

Fronning, G.W. & Uijttenboogaard, T.G., 1988. Effect of postmortem electrical stimulation on color, texture, pH and cooking losses of hot and cold deboned chicken broiler meat. Poult. Sci. 67, 1536-1544. https://doi.org/10.3382/ps.0671536

García-Migura, L., Hendriksen, R.S., Fraile, L. & Aarestrup, F.M., 2014. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine. Vet. Microbiol. 170, 1-9. https://doi.org/10.1016/j.vetmic.2014.01.013

Guttman, R.P. & Johnson, G.V., 1998. Oxidative stress inhibits calpain activity in situ. J. Biol. Chem. 273(21), 13331-13338. https://doi.org/10.1074/jbc.273.21.13331

Herrero-Encinas, J., Blanch, M., Pastor, J.J., Mereu, A., Ipharraguerre, I.R. & Menoyo, D., 2020. Effects of a bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult. Sci. 99(1), 1-9. https://doi.org/10.3382/ps/pez467

Honikel, K.O., 1998. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 49, 447-457. https://doi.org/10.1016/S0300-9572(98)00034-5

Huff-Lonergan, E. & Lonergan, S.M., 2005. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 71, 194-204. https://doi.org/10.1016/j.meatsci.2005.04.022

Huyghebaert, G., Dacatelle, R. & Van Immerseel, F., 2011. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187(2), 182-188. https://doi.org/10.1016/j.vetj.2010.03.003

Inai, M., Miura, Y., Honda, S., Masuda, A. & Masuda, T., 2014. Metmyoglobin reduction by polyphenols and mechanism of the conversion of metmyoglobin to oxymyoglobin by quercetin. J. Agric. Food Chem. 62(4), 893-901. https://doi.org/10.1021/jf404357h

Jamroz, D., Wertelecki, T., Houszka, M. & Kamel, C., 2006. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J. Anim. Physiol. Anim. Nutr. 90(5-6), 255-268. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0396.2005.00603.x

Jiang, J. & Xiong, Y.L., 2016. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: a review. Meat Sci. 120, 107-117. https://doi.org/10.1016/j.meatsci.2016.04.005

Kamboh, A.A., Arain, M.A., Mughal, M.J., Zaman, A., Arain, Z.M. & Soomro, A.H., 2015. Flavonoids: Health promoting phytochemicals for animal production – A review. J. Anim. Health Prod. 3(1), 6-13. http://doi.org/10.14737/journal.jahp.2015/3.1.6.13

Kamboh, A.A., Leghari, R.A., Khan, M.A., Kaka, U., Naseer, M., Sazili, A.Q.O. & Malhi, K.K., 2019. Flavonoids supplementation – An ideal approach to improve quality of poultry products. Worlds Poult. Sci. J. 75(1), 115-126. http://doi.org/10.1017/S0043933918000703

Krishnan, K.R., Babuskin, S., Babu, P.A.S., Sasikala, M., Sivarajan, M. & Sukuma, M., 2014. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 171, 32-40. https://doi.org/10.1016/j.iflfoodmicro.2013.11.011

Kwon, O., Eck, P., Chen, S., Corpe, C.P., Lee, J.H., Kruhak, M. & Levine, M., 2007. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 21(2), 366-377. https://doi.org/10.1096/fj.06-6620com
Lee, K.W., Everts, H. & Beynen, A.C., 2004. Essential oils in broiler nutrition. International Journal of Poul. Sci. 3(12), 738-752. https://doi.org/10.3923/ijps.2004.738.752

Nakamura, M. & Katok, K., 1985. Influence of thawing method on several properties of rabbit meat. Bull. Ishika Prefect. Coll. Agric. 11, 45-49.

Nikmaram, N., Budaraju, S., Barba, F.J., Lorenzo, J.M., Cox, R.B., Mallikarjunan, K. & Roohineja, S., 2018. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 145, 245-255. https://doi.org/10.1016/j.meatsci.2018.06.031

Nunes, K.C., Eung, C., Pinto, P.T.M., Garcia, R.G., Murakami, A.E., Vital, A.C.P., Nunes, R.V. & Nesello, P.O., 2019. Dietary inclusion of dehydrated bocaiuva pulp increases the antioxidant potential of quail eggs. J. Anim. Physiol. Anim. Nutr. 103(1), 64-71. https://doi.org/10.1111/jpn.13003

Oleforuh-Okeoleh, V.U., Ndofor-Foleng, H.M., Oloranleke, S.O. & Uguru, J.O., 2015. Evaluation of growth performance, hematological and serum biochemical response of broiler chickens to aqueous extract of ginger and garlic. J. Agric. Sc. 7, 167-173. https://doi.org/10.5539/jas.v7n7p167

Papuc, C., Goran, G.V., Predescu, C.N., Nicorescu, V. & Stefan, G., 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. F. 16(6), 1243-1268. https://doi.org/10.1111/1541-4337.12298

Pascoal, A.C.R.F., Ehrenfried, C.A., Eberlin, M.N., Stefanello, M.E.A. & Salvador, M.J., 2011. Free radical scavenging activity, determination of phenolic compounds and HPLC-DAD/ESI-MS profile of Campomanesia adadamantium leaves. Nat. Prod. Commun. 6(7), 969-972.

Pereira, M.C., Steffens, R.S., Jablonski, A., Hertz, P.F., Rios Ade, O., Vizzotto, M. & Flöres, S.H., 2012. Characterization and antioxidant potential of Brazilian fruits from the Myrtaceae family. J. Agric. Food Chem. 60(12), 3061-3067. https://doi.org/10.1021/jf205263f

Perić, L., Zikic, D. & Lukić, M., 2009. Application of alternative growth promoters in broiler production. Biotech. Anim. Husbandry, 25, 387-397. https://www.researchgate.net/publication/247874085_Application_of_alternative_growth_promoters_in_broiler_production

Rostagno, H.S., Albino, L.F.T., Hannas, M.I., Donzele, J.L., Sakomura, N.K., Perazzo, F.G., Saraiva, A., Teixeira, M.V., Rodrigues, P.B., Oliveira, R.F., Barreto, S.L.T. & Brito, C.O., 2017. Brazilian tables for poultry and swine: food composition and nutritional requirements. 4 nd ed. Universidade Federal de Viçosa, Viçosa, MG. 488p.

Rupasinghe, H.P.V., Ronalds, C.M., Rathgeber, B. & Robinson, R.A. 2010. Absorption and tissue distribution of dietary quercetin and quercetin glycosides of apple skin in broiler chickens. J. Sci. Food Agric. 90, 1172-1178. https://doi.org/10.1002/ijfs.3944

Sakomura, N.K. & Rostagno, H.S., 2016. Monogastric nutrition research methods. 2nd ed. Jaboticabal: Funep. 262 p.

Saleh, H., Golan, A., Kermanshahi, H. & Mirakzehi, M.T., 2017. Effects of dietary α-tocopherol acetate, pomegranate peel, and pomegranate peel extract on phenolic content, fatty acid composition, and meat quality of broiler chickens. J. Appl. Anim. Res. 45(1), 629-636. https://doi.org/10.1080/09712119.2016.1248841

Selim, N.A., Nada, S.A., Abdel-Salam, A.F. & Youssef, S.F., 2013. Evaluation of some natural antioxidant sources in broiler diets: 2-effect on chemical and microbiological quality of chilled and frozen broiler meat. Int. J. Poul. Sci. 12(10), 572-581. https://doi.org/10.3923/ijps.2013.572.581

Singleton, V.L. & Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144-158.

Sorensen, G. & Jørgensen, S.S., 1996. A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Z. Lebensm. Unters. Forsch. 202, 205-210.

Starčević, K., Krstulović, L., Brozić, D., Maurić, M., Stojčević, Z., Mikulec, Ž., Bajić, M. & Mašek, T., 2015. Production performance, meat composition and oxidative susceptibility in broiler chicken feed with different phenolic compounds. J. Sci. Food Agric. 95(6), 1172-1178. https://doi.org/10.1002/jsfa.6605

Surai, P.F., 2014. Polyphenol compounds in the chicken/animal diet: from the past to the future. J. Anim. Physiol. Anim. Nutr. 98(1), 19-31. https://doi.org/10.1111/jpn.12070

Valillo, M.I., Lamardo, L.C.A., Gablerotti, M.L., Oliveira, E. & Moreno, P.R.H., 2006. Chemical composition of Campomanesia adadamantum (Cambessédés) O. berg’ fruits. Ciênc. Tecnol. Aliment. 26(4), 805-810. https://doi.org/10.1590/S0101-20612006000400015 (in Portuguese, English abstract).

Viecelli, P.R.N., Borges, D.O., Kirsten, K., Malheirois, J., Viecelli, E., Melo, R.D., Trevisan, G., Silva, M.A., Bochi, G.V., Moresco, R.N. & Klafke, J.Z., 2014. Effects of Campomanesia xanthocarpa on inflammatory processes, oxidative stress, endothelial dysfunction and lipid biomarkers in hypercholesterolemic individuals. Atherosclerosis. 234(1), 85-92. https://doi.org/10.1016/j.atherosclerosis.2014.02.010

Vyncke, W., 1970. Direct determination of the thiobarbituric acid value in trichloroacetic acid extracts of fish as a measure of oxidative rancidity. Eur. J. Lipid Sci. Technol. 72, 1084-1087. https://doi.org/10.1002/ipli.19700721218

Windsch, W., Schedele, K., Piltner, G. & Kroismayr, A. 2008. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86(14 Suppl.), 140-148. https://doi.org/10.2527/jas.2007-0459

Zhang, H., Wu, J. & Guo, X., 2016. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness. 5, 39-48. https://doi.org/10.1016/j.fshw.2015.11.003

Zhu, N., Wang, J., Yu, L., Zhang, Q., Chen, K. & Baosheng, L., 2019. Modulation of growth performance and intestinal microbiota in chickens fed plant extracts or virginiamycin. Front. Microbiol. 10, 1-16. https://doi.org/10.3389/fmicb.2019.01333