The BackMAP Python module: how a simpler Ramachandran number can simplify the life of a protein Simulator

Ranjan Mannige
Corresp. 1

1 The Multiscale Institute, Berkeley Lake, GA, United States

Corresponding Author: Ranjan Mannige
Email address: ranjanmannige@gmail.com

Protein backbones occupy diverse conformations, but compact metrics to describe such conformations and transitions between them have been missing. This report re-introduces the Ramachandran number \(\mathcal{R} \) as a residue-level structural metric that could simply the life of anyone contending with large numbers of protein backbone conformations (e.g., ensembles from NMR and trajectories from simulations). Previously, the Ramachandran number \(\mathcal{R} \) was introduced using a complicated closed form, which made the Ramachandran number difficult to implement. This report discusses a much simpler closed form of \(\mathcal{R} \) that makes it much easier to calculate, thereby making it easy to implement. Additionally, this report discusses how \(\mathcal{R} \) dramatically reduces the dimensionality of the protein backbone, thereby making it ideal for simultaneously interrogating large number of protein structures. For example, two hundred distinct conformations can easily be described in one graphic using \(\mathcal{R} \) (rather than two hundred distinct Ramachandran plots). Finally, a new Python-based backbone analysis tool -- PlotMAP -- is introduced, which reiterates how \(\mathcal{R} \) can be used as a simple and succinct descriptor of protein backbones and their dynamics.
The BackMAP Python Module: How a Simpler Ramachandran Number Can Simplify the Life of a Protein Simulator

Ranjan V. Mannige¹,*

¹ Multiscale Institute, Berkeley Lake, GA 30092, U.S.A.
ranjanmannige@gmail.com

ABSTRACT

Protein backbones occupy diverse conformations, but compact metrics to describe such conformations and transitions between them have been missing. This report re-introduces the Ramachandran number (R) as a residue-level structural metric that could simply the life of anyone contending with large numbers of protein backbone conformations (e.g., ensembles from NMR and trajectories from simulations). Previously, the Ramachandran number (R) was introduced using a complicated closed form, which made the Ramachandran number difficult to implement. This report discusses a much simpler closed form of R that makes it much easier to calculate, thereby making it easy to implement. Additionally, this report discusses how R dramatically reduces the dimensionality of the protein backbone, thereby making it ideal for simultaneously interrogating large number of protein structures. For example, two hundred distinct conformations can easily be described in one graphic using R (rather than two hundred distinct Ramachandran plots). Finally, a new Python-based backbone analysis tool – BACKMAP – is introduced, which reiterates how R can be used as a simple and succinct descriptor of protein backbones and their dynamics.

INTRODUCTION

Proteins are a class of biomolecules unparalleled in their functionality (Berg et al., 2010). A natural protein may be thought of as a linear chain of amino acids, each normally sourced from a repertoire of 20 naturally occurring amino acids. Proteins are important partially because of the structures that they access: the conformations (conformational ensemble) that a protein assumes determines the functions available to that protein. However, all proteins are dynamic: even stable proteins undergo long-range motions in their equilibrium states; i.e., they have substantial diversity in their conformational ensemble (James and Tawfik, 2003b,a; Oldfield et al., 2005; Tokuriki and Tawfik, 2009; Schad et al., 2011; Vértesy and Orosz, 2011; Mannige, 2014). Additionally, a number of proteins undergo conformational transitions, without which they may not properly function. Finally, some proteins – intrinsically disordered proteins – display massive disorder with conformations that dramatically change over time (Uversky, 2003; Fink, 2005; Midic et al., 2009; Espinoza-Fonseca, 2009; Uversky and Dunker, 2010; Tompa, 2011; Sibille and Bernado, 2012; Kosol et al., 2013; Dunker et al., 2013; Geist et al., 2013; Baruah et al., 2015), and whose

Figure 1. Degrees of freedom available to a protein backbone. Backbone conformational degrees of freedom dominantly depend on the dihedral angles ϕ and ψ (green), and to a smaller degree depend on the third dihedral angle (ω; red) as well as bond lengths and angles (unmarked).
Figure 2. Ramachandran plots allow for the per-residue representation of backbone conformation. Panel (a) represents regions in the plot that are occupied by backbones describing particular regular secondary structures. Panel (b) represents the positions of a twelve residue peptide, with one circle per residue. Panel (c) represents trajectory within which the backbone conformation is allowed to change. Here, each curve represents the evolution of each residue, with corners representing discrete states. While the Ramachandran plot is useful for getting a qualitative sense of peptide backbone structure (a, b), it is not a convenient representation for exploring peptide backbone dynamics (c). Secondary structure keys used here and throughout the document: ‘α’ – α-helix, ‘3_10’ – 3_10-helix, ‘β’ – β-sheet/extension, ‘ppII’ – polyproline II helix.

Large-scale changes in a protein occur due to changes in protein backbone conformations. Fig. 1 is a cartoon representation of a peptide/protein backbone, with the backbone bonds themselves represented by darkly shaded bonds. Ramachandran et al. (1963) had recognized that the backbone conformational degrees of freedom available to an amino acid (residue) i can be almost completely described by only two dihedral angles: ϕ_i and ψ_i (Fig. 1, green arrows). Today, Ramachandran plots are used to qualitatively describe protein backbone conformations.

The Ramachandran plot is recognized as a powerful tool for two reasons: 1) it serves as a map for structural ‘correctness’ (Laskowski et al., 1993; Hooft et al., 1997; Laskowski, 2003), since many regions within the Ramachandran plot space are energetically not permitted (Momen et al., 2017); and 2) it provides a qualitative snapshot of the structure of a protein (Berg et al., 2010; Alberts et al., 2002; Subramanian, 2001; Lovell et al., 2003). For example, particular regions within the Ramachandran plot indicate the presence of particular secondary locally-ordered structures such as the α-helix and β-sheet (see Fig. 2a).

While the Ramachandran plot has been useful as a measure of protein backbone conformation, it is not popularly used to assess structural dynamism and transitions (unless specific knowledge exists about whether a particular residue is believed to undergo a particular structural transition). This is because of the two-dimensionality of the plot: describing the behavior of every residue involves tracking its position in two-dimensional (ϕ, ψ) space. For example, a naïve description of positions of a peptide in a Ramachandran plot (Fig. 2b) needs more annotations for a per-residue analysis of the peptide backbone’s structure. Given enough residues, it would be impractical to track the position of each residue within a plot. This is compounded with time, as each point in (b) becomes a curve (c), further confounding the situation. The possibility of picking out previously unseen conformational transitions and dynamism becomes a logistical impracticality. As indicated above, this impracticality arises primarily from the fact that the Ramachandran plot is a two-dimensional map.

Beyond Ramachandran plots, tracking changes in a protein trajectory is either overly detailed or overly holistic: an example of an overly detailed study is the tracking of exactly one or a few atoms over time (this already poses a problem, since we would need to know exactly which atoms are expected to partake in a transition); an example of a holistic metric is the radius of gyration (this also poses a problem, since we will never know which residues contribute to a change in radius of gyration without additional interrogation). With our understanding of protein dynamics undergoing a new renaissance – especially due
to intrinsically disordered proteins and allostery — having hypothesis-agnostic yet detailed (residue-level) metrics of protein structure has become even more relevant. But unfortunately, there has been no single compact descriptor of protein structure. This impedes the naïve or hypothesis-free exploration of new trajectories/ensembles.

It has recently been shown that the two Ramachandran backbone parameters \((\phi, \psi)\) may be conveniently combined into a single number — the Ramachandran number \(R(\phi, \psi)\) or simply \(R\) — with little loss of information (Fig. 3; Mannige et al. (2016)). In a previous report, detailed discussions were provided regarding the reasons behind and derivation of \(R\) (Mannige et al., 2016). This report provides a simpler version of the equation previously published (Mannige et al., 2016), and further discusses how \(R\) may be used to provide information about protein ensembles and trajectories. Finally, this report introduces a software package — BackMAP — that can be used to produce pictograms that describe the behavior of a protein backbone within user-inputted conformations, structural ensembles and trajectories. Given that each pictogram provides a picture of the whole protein backbone (i.e., all \(\phi\) and \(\psi\) angles), these pictograms are named multi-angle pictures (or MAPs). BackMAP is presently available on GitHub (https://github.com/ranjanmannige/BackMAP).

INTRODUCING THE SIMPLIFIED RAMACHANDRAN NUMBER \((R)\)

The Ramachandran number is both an idea and an equation. Conceptually, the Ramachandran number \((R)\) is any closed form that collapses the dihedral angles \(\phi\) and \(\psi\) into one structurally meaningful number (Mannige et al., 2016). Mannige et al. (2016) presented a version of the Ramachandran number (shown in the appendix as Eqn. 7) that was complicated in closed form, thereby reducing its utility. Here, a simpler and more accurate version of the Ramachandran number is introduced. The appendix shows how this simplified form was derived from the original closed form (Eqns. 7).

Given arbitrary limits of \(\phi \in [\phi_{\text{min}}, \phi_{\text{max}}]\) and \(\psi \in [\psi_{\text{min}}, \psi_{\text{max}}]\), where the minimum and maximum values differ by \(360^\circ\), the most general and accurate equation for the Ramachandran number is

\[
R(\phi, \psi) = \frac{\phi + \psi - (\phi_{\text{min}} + \psi_{\text{min}})}{(\phi_{\text{max}} + \psi_{\text{max}}) - (\phi_{\text{min}} + \psi_{\text{min}})}.
\]

(1)

For consistency, we maintain throughout this paper that \(\phi_{\text{min}} = \psi_{\text{min}} = -180^\circ\) or \(-\pi\) radians, which makes

\[
R(\phi, \psi) = \frac{\phi + \psi + 2\pi}{4\pi}.
\]

(2)
Figure 4. Relationships between \mathcal{R} and other structural features. The Ramachandran number \mathcal{R} displays smooth relationships with respect to radius of gyration (R_g; a), end-to-end distance (R_e; b) and chirality (χ; c), as calculated within Mannige (2017). Light blue lines are average trends, dark blue horizontal lines are error bars. Average positions of dominant secondary structures are shown to the right. These trends explain why \mathcal{R} is a useful and compact structural measure. Structural measures R_g, R_e, and χ were obtained by computationally generating polyglycine peptides of length 10 for all possible ϕ and $\psi \in [-180, -175, \ldots, 175, 180]$. This was done using the Python library PeptideBuilder (Tien et al., 2013). Values for R_g, R_e, and χ were obtained for each peptide and binned with respect to its $\mathcal{R}(\phi, \psi)$ (each bin represents a region in \mathcal{R} space that is 0.01 \mathcal{R} in width). Given that actual values for R_g and R_e mean little (since one rarely deals with polyglycines of length 10), actual values are omitted. χ ranges from -1 to +1.

As evident in Fig. 3, the distributions within the Ramachandran plot are faithfully reflected in corresponding distributions within Ramachandran number space. This paper shows how the Ramachandran number is both compact enough and informative enough to generate immediately useful graphs (multiple pictures or MAPs) of a dynamic protein backbone.

REASON TO USE THE RAMACHANDRAN NUMBER

Ramachandran numbers are structurally meaningful

In addition to resolving positions of secondary structures (Fig. 3), \mathcal{R} corresponds well to structural measures such as radius of gyration (R_g), end-to-end distance (R_e) and chirality (χ). These relationships are shown in Fig. 4. Note that chirality comes in many forms, e.g., one could be talking about different stereo-isomers, such as L vs D amino acids, or one could be concerned with left-twisting versus right-twisting backbones, i.e., handedness Mannige (2017). This report will primarily be focused on chirality in context of backbone twist/handedness.

The trends in Fig. 4 show that as one progresses from low to high \mathcal{R}, various structural properties also progress smoothly. Additionally, backbones that display similar \mathcal{R} also show little variation in structural properties, as evidenced by the small standard deviation bars. It is also important to note that the standard deviations shown in Fig. 4 were calculated by first populating every possible region of (ϕ, ψ)-space. However, in reality, most regions of (ϕ, ψ)-space are unoccupied due to steric/electrostatic constraints, which means that these error bars are likely to be even smaller than depicted. Finally, the \mathcal{R} number is calculated by taking ‘sweeps’ of the (ϕ, ψ)-space in lines that are parallel to the negatively-sloping diagonal. Interestingly, such ‘sweeps’ encounter only one major (dense) region within (ϕ, ψ)-space (e.g., \mathcal{R}’s in the general vicinity of 0.34 represent structures that resemble α helices). This means that \mathcal{R} can also be used to assess the types of secondary structure present in a protein conformation.
Figure 5. Two types of \mathcal{R}-codes. Digesting protein structures (a) using \mathcal{R} numbers either as histograms (b) or per-residue codes (c) allow for compact representations of salient structural features. For example, a single glance at the histograms indicate that protein 1mba is likely all α-helical, while 2acy is likely a mix of α-helices and β-sheets. Additionally, residue-specific codes (c) not only indicate secondary structure content, but also exact secondary structure stretches (compare to d), which gives a more complete picture of how the protein is linearly arranged.

Ramachandran codes are stackable

An important aspect of the Ramachandran number (\mathcal{R}) lies in its compactness compared to the traditional Ramachandran pair (ϕ, ψ). The value of the conversion from (ϕ, ψ)-space to \mathcal{R}-space is that the structure of a protein can be described in various one-dimensional arrays (per-structure “Ramachandran codes” or “\mathcal{R}-codes” or multi-angle maps); see, e.g., Fig. 5.

In addition to assuming a small form factor, \mathcal{R}-codes may then be stacked side-by-side for visual and computational analysis. There lies its true power.

For example, the one-\mathcal{R}-to-one-residue mapping means that the entire residue-by-residue structure of a protein can be shown using a string of \mathcal{R}s (which would show regions of secondary structure and disorder, for starters). Additionally, an entire protein’s backbone makeup can be shown as a histogram in \mathcal{R}-space (which may reveal a protein’s topology). The power of this format lies not only in the capacity to distill complex structure into compact spaces, but in its capacity to display many complex structures in this format, side-by-side (stacking).

Peptoid nanosheets (Mannige et al., 2015) will be used here as an example of how multiple structures, in the form of \mathcal{R}-codes, may be stacked to provide immediately useful pictograms. Peptoids are stereoisomers of peptides, where the sidechain is attached to the backbone nitrogen rather than the α carbon atom. Since both peptoids and peptides share identical backbone connectivity, the analysis described below could be applied to both peptides and peptoids.

Peptoid nanosheets are a recently discovered peptide-mimic that, in one molecular dynamics simulation (Mannige et al., 2015), were shown to display a novel secondary structure. In the reported model (Mannige et al., 2015), each peptoid within the nanosheet displays backbone conformations that alternate in chirality, causing the backbone to look like a meandering snake that nonetheless maintains an overall linear direction. This secondary structure was discovered by first setting up a nanosheet where all peptoid backbones were restrained to be fully extended, after which the restraints were energetically softened and completely released. Fig. 6a shows snapshots of each of these states. As evident in Fig. 6b and Fig. 6c, the two types of \mathcal{R}-code stacks display salient information at first glance: 1) Fig. 6b shows that the extended backbone first undergoes some rearrangement with softer restraints, and then becomes more binary in
Figure 6. **Stacked R-codes provide useful information at a glance.** Each panel represents a molecular dynamics simulation of a peptoid nanosheet (Mannige et al., 2016), where each peptoid backbone was held (energetically restrained) in extended state in the beginning, upon which each backbone was allowed to relax by lifting the restraints. Panel (a) displays representative structures from each stage of the simulation. Panel (b) represents how the per-residue structure of the peptide evolved over ‘time’ (the progression of time is represented as increasing frame number). Panel (c) represents how the general distribution of backbone conformations in the peptoid (as evident by the R histogram) evolves over time.

1) Fig. 6a shows the general distribution of backbone conformations and 2) Fig. 6c shows that lifting restraints on the backbone causes a dramatic change in backbone topology, namely a birth of a bimodal distribution evident in the two parallel horizontal bands.

By utilizing R, maps such as those in Fig. 6 provide information about every ϕ and ψ within the backbone. As such, these maps are dubbed MAPs, for Multi Angle Pictures. A Python package called BACKMAP created Fig. 6a and b, and is provided as a GitHub repository at https://github.com/ranjanmannige/BackMAP. BACKMAP takes in a PDB structure file containing a single structure, or multiple structures separated by the code ‘MODEL’.

Case study: picking out subtle differences from high volume of data

This section expands on the notion that R-numbers – due to their compactness/stackability – can be used to pick out backbone structural trends that would be hard to decipher using any other metric. For example, it is well known that prolines (P) display unusual backbone behavior: in particular, proline backbones occupy structures that are close to but distinct from α-helical regions. Due to the two-dimensionality of Ramachandran plots (Fig. 7a), such distinctions are hard to visually pick out from Ramachandran plots. However, stacking per-amino-acid R-codes side by side make such differences patent (Fig. 7b; see arrow).
Figure 7. Combining Ramachandran plots for all amino acids into one graph. Panel (a) shows the per-amino acid backbone behavior of an average protein found in the protein databank (PDB). While these plots are useful, it is difficult to compare such plots. For example, it is hard to pick out the change in the \(\alpha \)-helical region of the proline plot (P). However, when we convert Ramachandran plots to Ramachandran lines [by converting \((\phi_i, \psi_i) \rightarrow R_i\)], we are able to conveniently “stack” Ramachandran lines calculated for each residue. Then, even visually, it is obvious that proline does not occupy the canonical \(\alpha \)-helix region, which is not evident to an untrained eye in (a).

Figure 8. How residue neighbors modify structure. Similar to Fig. 7b, Panel (a) represents the behavior of an amino acid ‘X’ situated before a leucine (XL; assuming that we are reading a sequence from the N terminal to the C terminal). Panel (b) similarly represents the behavior of specific amino acids situated before a proline (XP). While residues preceding a leucine behave similarly to their average behavior (Fig. 7a), most residues preceding prolines appear to be enriched in structures that change ‘direction’ or backbone chirality (this is evident by many amino acids switching from \(R < 0.5 \) to \(R > 0.5 \)). Panels (c) and (d) show the behavior of individual amino acids when situated before and after each of the 20 amino acids, respectively. Panels (c) and (d) show a major benefit of side-by-side Ramachandran line “stacking”: general trends become much more obvious. For example, it is evident that prolines dramatically modify the structure of an amino acid preceding it (compared to average behavior of amino acids in Fig. 7b), while residues following glycines also have a higher prevalence of \(R > 0.5 \) conformations (both trends are indicated by small arrows). Such trends, while previously discovered (see text), would not be accessible when naively considering Ramachandran plots because one would require 400 (20 \(\times \) 20) distinct Ramachandran plots to compare. Note that the statistics for each \(R \)-line in (c) and (d) are dependent on the joint prevalence of the residues being considered. For this reason, some \(R \)-lines (e.g., those associated with cysteines) look rough or ‘dotty’ than others.
It is also known that amino acids preceding prolines display unusual shifts in backbone twist/chirality. For example, Fig. 8c shows that amino acids appearing before prolines behave differently than they would otherwise (see the upward-facing arrow). Additionally, amino acids following glycines also appear to have their structures modified (Fig. 8d; upward arrow). Note that these results are not new, and it has already been confirmed that, e.g., nearest neighbors affect the conformational behavior of an amino acid as witnessed within Ramachandran plots (Ting et al., 2010), and proline changes the backbone conformation of the preceding residue (Gunasekaran et al., 1998; Ho and Brasseur, 2005). However, Figs. 7 and 8 indicate that such information can be more concisely shown/identified when structures are stacked side-by-side in the form of R-codes. Such subtle changes are often witnessed when protein backbones transition from one state to another.

USING THE BACKMAP PYTHON MODULE

Installation

BackMAP may either be installed locally by downloading the GitHub repository, or installed directly by running the following line in the command prompt (assuming that pip exists): > pip install backmap

Usage

The module can either be imported and used within existing scripts, or used as a standalone package using the command ‘python -m backmap’. First the in-script usage will be discussed.

In-script usage I: first simple test

The simplest test would be to generate Ramachandran numbers from (ϕ, ψ) pairs:

```python
# Import module
import backmap
# Convert (phi, psi) to R
print backmap.R(phi=0, psi=0)  # Expected output: 0.5
print backmap.R(-180, -180)  # Expected output: 0.0
print backmap.R(180, 180)  # Expected output: 1.0 (equivalent in meaning to 0)
```

In-script usage II: basic usage for creating Multi-Angle Pictures (MAPs)

The following code shows how Multi-Angle Pictures (MAPs) of protein backbones can be generated:

1. **Select and read a protein PDB structure**

 Each trajectory frame must be a set of legitimate protein databank "ATOM" records separated by "MODEL" keywords (distinct models show up as distinct frames on the x-axis or abscissa).

   ```python
   import backmap
   import matplotlib.pyplot as plt
   # Pyplot is needed for drawing graphs
   import numpy as np
   # Numpy is needed for data transformations
   pdbfn = './tests/pdbs/1xqq.pdb'  # Set pdb name
   data = backmap.read_pdb(pdbfn)  # READ PDB in the form of a matrix with columns
   ``

   Here, `data` is a 2d array with four columns [‘model’, ‘chain’, ‘resid’, ‘R’]. The first row of ‘data’ is the header (i.e., the name of the column, e.g., ‘model’), with values that follow.

2. **Select color scheme (color map)**

   In addition to custom colormaps listed in the next section, one can also use traditionally available colormaps at matplotliblib (e.g., ‘Reds’ or ‘Reds_r’).

   ```python
 # setting the name of the colormap
 cmap = "SecondaryStructure"
 ``

3. **Draw per-chain MAPs**

   ```python
   # Grouping by chain
   grouped_data = backmap.group_data_by(data, group_by='chain', columns_to_return=['model', 'resid', 'R'])
   for chain in grouped_data.keys():  # Going through each chain
   ```
Figure 9. In-script examples. Two examples of pictures generated using code in sections ‘In-script usage I’ (a) and ‘In-script usage II’. Panels (a) and (b) respectively represent a residue-level and histogram-level representation of backbone structure.

Running the module as a standalone script would produce all these graphs automatically. `plt.show()` would result in Fig. 9a being rendered.

Additionally, by changing how one assigns values to ‘X’ and ‘Y’, one can easily construct and draw other types of graphs such as time-resolved histograms, per-residue fluctuations when compared to the first (D_1) and previous structure ($D_{−1}$) within the trajectory, etc.

In-script usage III: Creating custom graphs

Other types of graphs can be easily created by modifying part three of the code above. For example, the following code creates histograms of R, one for each model (starting from line 8 above).

```python
# Getting the X,Y,Z values for each entry
models, residues, Rs = grouped_data[chain]
# Finally, creating (but not showing) the graph
backmap.draw_xyz(X = models , Y = residues , Z = Rs)
    .xlabel = 'Frame #', ylabel = '$\mathcal{R}$, zlabel = '$\mathcal{P}'(\mathcal{R})$
    .cmap = cmap , title = 'Chain: "+chain+"'
    .vmin=0,vmax=1)
# Now, we display the graph:
plt.show() # ... one can also use plt.savefig() to save to file
```

The code above results in Fig. 9b.
In-script usage IV: Available color schemes (CMAPs)

Aside from the general color maps (cmaps) that exist in matplotlib (e.g., ‘Greys’, ‘Reds’, or, god forbid, ‘jet’), BACKMAP provides two new colormaps: ‘Chirality’ (key: +-twists – red; –ve twists: blue), and ‘SecondaryStructure’ (key: potential helices – red; sheets – blue; ppII helices – cyan). Right twisting backbones are shown in red; left twisting backbones are shown in blue). Fig. 10 shows how a single protein ensemble may be described using these schematics. As illustrated in Fig. 10b, cmaps available within the standard matplotlib package do not distinguish between major secondary structures well, while those provided by BACKMAP do. In case it is known that the protein backbone accesses non-traditional regions of the Ramachandran plot, a four-color schematic will be needed (see below for more discussions).

Figure 10. A protein ensemble (a) along with some MAPs colored with different themes (b-d). Panels (c) and (d) are provided by the BACKMAP module. In Panel (c), β-sheets are shown in blue and all helices are shown in red. In Panel (d), right-handed and left-handed backbone twists are shown as red and blue respectively.

Stand Alone Usage

BACKMAP can be used as a stand alone package by running ‘> python -m backmap -pdb <pdb_dir_or_file>’.

The sections below describe the expected outputs and how they may be interpreted.

Stand Alone Example I: A Stable Protein

Panels (b) through (f) of Fig. 11 below were created by running ‘> python -m backmap ./tests/pdbs/1xqq.pdb’ (Panel (a) was created using VMD). These graphs indicate that protein 1xqq describes a conformationally stable protein, since each residue fluctuates little in color (structure) over ‘time’ (c,d; here and below, it is assumed that discrete models represent distinct states of the protein over ‘time’), show little change in the \(R \) histogram over time (b) and show few enduring fluctuations (e,f; see Methods).

In particular, each column in Panel (b) describes the histogram in Ramachandran number (\(R \)) space for a single model/frame. These histograms show the presence of both α-helices (at \(R \approx 0.34 \)) and β-sheets (at \(R \approx 0.52 \)). Additionally, Panels (c) and (d) describe per-residue conformational plots (colored by two different metrics or CMAPs), which show that most of the protein backbone remains relatively stable over time (e.g., few fluctuations in state or ‘color’ are evident over frame #). Finally, Panel (e) describes the extent towards which a single residue’s state has deviated from the first frame, and Panel (f) describes the extent towards which a single residue’s state has deviated from its state in the previous frame. All these graphs, show that this protein is relatively conformationally stable.
Figure 11. Protein 1xqq describes a stable protein. Panel (a) represents the entire ensemble, Panel (b) represents a histogram distribution of R, Panels (c) and (d) represent two ways to color per-residue R plots, and Panels (e) and (f) are two ways to describe backbone fluctuation over time.

Figure 12. Protein 2fft describes an intrinsically disordered protein. While most of the backbone is intrinsically disordered, one region – a stable helix – is shown in red (a). Descriptions of each panel are identical to that of Fig. 11.

Stand Alone Example II: An Intrinsically Disordered Protein

Fig. 12 is identical to Fig. 11, except that the panels pertain to an intrinsically disordered protein 2fft whose structural ensemble describes dramatically distinct conformations.

As compared to the conformationally stable protein above, protein 2fft is much more flexible. Panel (b) shows that the states accessed per model are diverse and dramatically fluctuate over the entire range of R (this is especially true when compared to a stable protein, see Fig. 11b).

The diverse states occupied by each residue (Panels (c) and (d)) confirm the conformational variation displayed by most of the backbone (Panels (e) and (f) similarly show how most of the residues fluctuate dramatically).

Yet, interestingly, Panels (c) through (f) also show an unusually stable region – residues 15 through 25 – which consistently display the same conformational (α-helical) state at $R \approx 0.34$ (interpreted as the color red in Panel (c)). This trend would be hard to recognize by simply looking at the structural ensemble (Panel (a)).

A signed Ramachandran number for ‘misbehaving’ backbones

The Ramachandran number increases in value from the bottom left of the Ramachandran plot to the top right in sweeps that are parallel to the negative sloping diagonal. As discussed in Mannige et al. (2016), this method of mapping a two-dimensional space into one number is still structurally meaningful and descriptive because 1) most structural features of the protein backbone – e.g. radius of gyration (Mannige et al., 2016), end-to-end distance (Mannige et al., 2016), and chirality (Mannige, 2017) – vary little along lines parallel to the negatively-sloping diagonal (this is indicated by relatively small standard
Figure 13. **Signed \(R \)s are required for non-chiral backbones.** Panels (a), (b), and (c) describe histogram distributions in \((\phi, \psi)\)-space for all residues, glycine, and proline, respectively. Panel (d) shows the same distributions, but as \(R \)-codes. While the backbones of most amino acids occupy the top of the positively sloped diagonal (dashed in a), non-chiral amino acids such as Glycines (or their N-substituted variants – peptoids) display no such preference, which causes distinct secondary structures that lie on the same ‘sweep’ to be localized at similar regions in \(R \) (e.g., in d, polyproline-II and \(\alpha_D \) helices both localize at \(R \approx 0.6 \)). However, a signed Ramachandran number \((R_S) \) solves this problem by multiplying those \(R \)'s derived from backbones with \(\phi > \psi \) by \(-1\). The resolving power of \(R_S \) is evident by the separation of polyproline-II and \(\alpha_D \) helices (f). The mapping of \((\phi, \psi)\) to \(R \) and \(R_S \) are respectively shown in Panels (e) and (g).

\[
R_S = \begin{cases}
R, & \text{if } \phi \geq \psi \\
R \times -1, & \text{if } \phi < \psi
\end{cases}
\]
Signed ramachandran numbers are calculated by adding ‘-signed’ within the command line implementation or by adding ‘signed=True’ when making backmap.R() calls.

As an example of the utility of R_S, Fig. 13f shows that R_S easily distinguishes αP from ppII.

Note that the signed R_S, while useful, would be important in very limited scenarios, as more than 96% of the amino acids in the Protein Databank (PDB) occupy the upper-left region of the Ramachandran plot (with the 3% of ‘rule breakers’ contributed mostly by glycines).

CONCLUSION

A simpler Ramachandran number is reported – $R = (\phi + \psi + 2\pi)/(4\pi)$ – which, while being a single number, provides much information. For example, as discussed in Mannige et al. (2016), R values above 0.5 are left-handed in twist, while those below 0.5 are right handed, R values close to 0, 0.5 and 1 are extended, β-sheets occupy R values at around 0.52, and right-handed α-helices hover around 0.34.

Given the Ramachandran number’s ‘stackability’, single graphs can hold detailed information of the progression/evolution of molecular trajectories. Indeed, Fig. 8 shows how 400 distinct Ramachandran plots can easily be fit into one graph when using R. Finally, a python script/module (BACKMAP) has been provided in an online GitHub repository to promote the utility of R as a universal metric.

MATERIALS

Statistics about single amino acid conformations and secondary structures (excluding polyproline II helices) were derived from the Structural Classification of Proteins or SCOPe website [Release 2.06; Fox et al. (2014)]. This database, currently available at http://scop.berkeley.edu/downloads/pdbstyle/pdbstyle-sel-gs-bib-40-2.06.tgz, contains 13,760 three-dimensional protein conformations (one domain per conformation) with lower than 40% sequence identity. Secondary structure annotations were assigned using the DSSP algorithm (Kabsch and Sander, 1983), although the STRIDE algorithm (Frishman and Argos, 1995) provides qualitatively identical distributions. These statistics were used to produce distributions within Fig. 2a and Fig. 3a,c.

Given the absence of polyproline II helix (ppII) annotation in the present version of DSSP, statistics for polyproline II helices (used to generate the ppII distributions in Fig. 2a and Fig. 3a,c) were obtained from segments within 16,535 proteins annotated by PolyprOnline (Cheberek et al., 2014) to contain three or more residues of the secondary structure.

Fig. 6 represents a trajectory of a portion of a single peptoid backbone within a ‘relaxing’ peptoid nanosheet bilayer. The conformation of this backbone – derived from work by Mannige et al. (2015) and Mannige et al. (2016) – is also available as ‘/tests/pdbs/nanosheet_birth_U7.pdb’ within the companion GitHub repository.

The following protein structures were obtained from the Protein DataBank (PDB): 1mba, 2acy, 1xqq, and 2fft. The first two in the list (1mba, 2acy) describe single conformations and the last two (1xqq, 2fft) describe ensembles. R-based multi-angle pictures (MAPs) were created for each structure $X \in$ [nanosheet_birth_U7.pdb, 2fft, 2acy, 1xqq, 1mba] using the following command line code:

```
> python -m backmap -pdb tests/pdbs/X.pdb
```

The output of this command line implementation were used in panels (b) onwards of Figs. 5, 6, 10, 11 and 12.

In order to describe changes in structure, this report uses two metrics for structural deviation: deviation in present structure when compared to the first conformation in the trajectory (D_1), and deviation in structure compared to the previous conformation in the trajectory (D_{-1}). For any residue r at time t, these equations can be described as follows:

$$D_1 = |R_t - R_1|, \quad D_{-1} = |R_t - R_{t-1}|.$$ \hspace{2cm} (4)

All three-dimensional representations of proteins (Panel (a) in Figs. 5, 6, 10, 11 and 12) were created using VMD (Humphrey et al., 1996). Finally, all other figures – excepting Fig. 1 that is derived from Mannige et al. (2016) – were created using helper Python scripts available within manuscript/python_generators/ within the companion GitHub repository.
ACKNOWLEDGMENTS

RVM thanks Alana Canfield Mannige for her input. The notion of the signed Ramachandran number emerged from discussions with Joyjit Kundu and Stephen Whitelam while at the Molecular Foundry at Lawrence Berkeley National Laboratory (LBNL).

APPENDIX

Simplifying the Ramachandran number (R)

This section will derive the simplified Ramachandran number presented in this paper from the more complicated looking Ramachandran number introduced previously (Mannige et al., 2016).

Assuming the bounds $\phi \in [\phi_{\text{min}}, \phi_{\text{max}}]$ and $\phi \in [\psi_{\text{min}}, \psi_{\text{max}}]$, the previously described Ramachandran number takes the form

$$ R(\phi, \psi) \equiv \frac{R_Z(\phi, \psi) - R_Z(\phi_{\text{min}}, \phi_{\text{max}})}{R_Z(\phi_{\text{max}}, \phi_{\text{max}}) - R_Z(\phi_{\text{min}}, \phi_{\text{min}})}, $$

where, $R(\phi, \psi)$ is the Ramachandran number with range $[0, 1]$, and $R_Z(\phi, \psi)$ is the unnormalized integer-spaced Ramachandran number whose closed form is

$$ R_Z(\phi, \psi) = \left(\phi - \psi + \lambda \right) \sigma / \sqrt{2} \left(\phi + \psi + \lambda \right) \sigma / \sqrt{2}. $$

Here, $[x]$ rounds x to the closest integer value, σ is a scaling factor, discussed below, and λ is the range of an angle in degrees (i.e., $\lambda = \phi_{\text{max}} - \phi_{\text{min}}$). Effectively, this equation does the following: 1) It divides up the Ramachandran plot into $(360^\circ \sigma^{1/\sigma})^2$ squares, where σ is a user-selected scaling factor that is measured in reciprocal degrees [see Fig. 8b in Mannige et al. (2016)]; 2) It then assigns integer values to each square by setting the lowest integer value to the bottom left of the Ramachandran plot ($\phi = -180^\circ$, $\psi = -180^\circ$) and proceeding from the bottom left to the top right by iteratively slicing down -1/2 sloped lines and assigning increasing integer values to each square that one encounters; 3) Finally, the equation assigns any (ϕ, ψ) pair within $\phi, \psi \in [-\phi_{\text{min}}, \phi_{\text{max}}]$ to the integer value (R_Z) assigned to the divvied-up square that they it exists in.

Combining the two equations (Eqns. 5 and 6) results in the following, rather imposing, equation for the Ramachandran number:

$$ R(\phi, \psi) = \frac{\left([(\phi - \psi + \lambda) \sigma / \sqrt{2}] + \sqrt{2} \lambda \sigma \right) \left(\phi_{\text{max}} + \psi_{\text{max}} + \lambda \right) \sigma / \sqrt{2} - \left([(\phi_{\text{min}} - \psi_{\text{min}} + \lambda) \sigma / \sqrt{2}] + \sqrt{2} \lambda \sigma \right) \left(\phi_{\text{min}} + \psi_{\text{min}} + \lambda \right) \sigma / \sqrt{2}}{\left(\phi_{\text{max}} - \psi_{\text{max}} + \lambda \right) \sigma / \sqrt{2} - \left(\phi_{\text{min}} - \psi_{\text{min}} + \lambda \right) \sigma / \sqrt{2}}. $$

Figure 14. Relating old and new closed forms that describe R. The increase in the accuracy measure (σ) for the original Ramachandran number (Eqn. 6) results in values that tend towards the new Ramachandran number proposed in this paper (Eqn. 2).
However useful Eqn. 7 is, the complexity of the equation may be a deterrent towards utilizing it. This paper reports a simpler equation that is derived by taking the limit of Eqn. 7 as \(\sigma \) tends towards \(\infty \). In particular, when \(\sigma \to \infty \), Eqn. 7 becomes

\[
\mathcal{R}(\phi, \psi) = \lim_{\sigma \to \infty} \mathcal{R}(\phi, \psi) = \frac{\phi + \psi - (\psi_{\min} + \psi_{\max})}{(\phi_{\max} + \psi_{\max}) - (\phi_{\min} + \psi_{\min})}.
\]

Assuming that \(\phi, \psi \in [-180^\circ, 180^\circ] \) or \([\pi, \pi]\),

\[
\mathcal{R}(\phi, \psi) = \frac{\phi + \psi + 2\pi}{4\pi}.
\]

Conformation of this limit is shown numerically in Fig. 14. Since larger \(\sigma \)s indicate higher accuracy, \(\lim_{\sigma \to \infty} \mathcal{R}(\phi, \psi) \) represents an exact representation of the Ramachandran number. Using this closed form, this report shows how both static structural features and complex structural transitions may be identified with the help of Ramachandran number-derived plots.

Assuming, a different range (say, \(\phi, \psi \in [0, 2\pi] \)), the Ramachandran number in that frame of reference will be

\[
\mathcal{R}(\phi, \psi)_{\phi, \psi \in [0, 2\pi]} = \frac{\phi + \psi}{4\pi}.
\]

However, in changing the ranges, the meaning of the Ramachandran number will change. This manuscript assumes that all angles \((\phi, \psi, \omega)\) range between \(-\pi (-180^\circ)\) and \(\pi \ (180^\circ)\).

REFERENCES

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular biology of the cell. New York: Garland science.

Baruah A, Rani P, Biswas P. 2015. Conformational entropy of intrinsically disordered proteins from amino acid triads. Scientific reports 5.

Beck DA, Alonso DO, Inoyama D, Daggett V. 2008. The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins. Proceedings of the National Academy of Sciences 105(34):12259–12264.

Berg JM, Tymoczko JL, Stryer L. 2010. Biochemistry, International Edition. WH Freeman & Co., New York, 7 edition.

Chebrek R, Leonard S, de Brevern AG, Gelly JC. 2014. Polyproline: polyproline helix ii and secondary structure assignment database. Database 2014:bau102.

Dunker A, Babu M, Barbar E, Blackledge M, Bondos S, Dosztányi Z, Dyson H, Forman-Kay J, Fuxreiter M, Gsponer J, Han KH, Jones D, Longhi S, Metello S, Nishikawa K, Nussinov R, Obradovic Z, Pappu R, Rost B, Selenko P, Subramaniam V, Sussman J, Tompa P, Uversky V. 2013. What’s in a name? why these proteins are intrinsically disordered? Intrinsically Disordered Proteins 1:e24157.

Espinoza-Fonseca LM. 2009. Reconciling binding mechanisms of intrinsically disordered proteins. Biochemical and biophysical research communications 382(3):479–482.

Fink AL. 2005. Natively unfolded proteins. Curr Opin Struct Biol 15(1):35–41.

Fox NK, Brenner SE, Chandonia JM. 2014. Scope: Structural classification of proteins–extended, integrating scop and astral data and classification of new structures. Nucleic Acids Res 42(Database issue):D304–D309. doi:10.1093/nar/gkt1240.

Frishman D, Argos P. 1995. Knowledge-based protein secondary structure assignment. Proteins: Structure, Function, and Bioinformatics 23(4):566–579.

Geist L, Henen MA, Haiderer S, Schwarz TC, Kurzbach D, Jawadzka-Kazimierzuk A, Saxena S, Żerko S, Koziński W, Hinderberger D, Konrat R. 2013. Protonation-dependent conformational variability of intrinsically disordered proteins. Protein Science 22(9):1196–1205.

Gunasekaran K, Nagarajaram H, Ramakrishnan C, Balaram P. 1998. Stereochemical punctuation marks in protein structures: glycine and proline containing helix stop signals. Journal of molecular biology 275(5):917–932.
Manuscript to be reviewed

Ho BK, Brasseur R. 2005. The ramachandran plots of glycine and proline. BMC structural biology 5(1):1.

Hooft RW, Sander C, Vriend G. 1997. Objectively judging the quality of a protein structure from a ramachandran plot. Computer applications in the biosciences: CABIos 13(4):425–430.

Humphrey W, Dalke A, Schulten K. 1996. VMD – Visual Molecular Dynamics. Journal of Molecular Graphics 14:33–38.

James LC, Tawfik DS. 2003a. Conformational diversity and protein evolution—a 60-year-old hypothesis revisited. Trends Biochem Sci 28(7):361–368.

James LC, Tawfik DS. 2003b. The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci 12(10):2183–2193.

Kabsch W, Sander C. 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637. doi:10.1002/bip.360221211.

Kosol S, Contreras-Martos S, Cedeño C, Tompa P. 2013. Structural characterization of intrinsically disordered proteins by nmr spectroscopy. Molecules 18(9):10802–10828.

Laskowski RA. 2003. Structural quality assurance. Structural Bioinformatics. Volume 44 pages 273–303.

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. Procheck: a program to check the stereochemical quality of protein structures. Journal of applied crystallography 26(2):283–291.

Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC. 2003. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3):437–450. ISSN 1097-0134. doi:10.1002/prot.10286.

Mannige RV. 2014. Dynamic new world: Refining our view of protein structure, function and evolution. Proteomes 2(1):128–153.

Mannige RV. 2017. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness (h). PeerJ 5:e3327. ISSN 2167-8359. doi:10.7717/peerj.3327.

Mannige RV, Haxton TK, Proulx C, Robertson EJ, Battigelli A, Butterfoss GL, Zuckermann RN, Kosol S, Contreras-Martos S, Cedeño C, Tompa P. 2015. Peptoid nanosheets exhibit a new secondary structure motif. Nature 526:415–420.

Mannige RV, Kundu J, Whitelam S. 2016. The Ramachandran number: an order parameter for protein geometry. PLoS One 11(8):e0160023.

Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. 2009. Protein disorder in the human diseaseome: unfoldomics of human genetic diseases. BMC Genomics 10 Suppl 1:S12. doi:10.1186/1471-2164-10-S1-S12.

Momen R, Azizi A, Wang L, Yang P, Xu T, Kirk SR, Li W, Manzhos S, Jenkins S. 2017. The role of weak interactions in characterizing peptide folding preferences using a quaiin interpretation of the ramachandran plot (φ-Ψ). International Journal of Quantum Chemistry.

Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK. 2005. Comparing and combining predictors of mostly disordered proteins. Biochemistry 44(6):1989–2000.

Ramachandran G, Ramakrishnan C, Sasisekharan V. 1963. Stereochemistry of polypeptide chain configurations. Journal of molecular biology 7(1):95–99.

Schad E, Tompa P, Hegyi H. 2011. The relationship between proteome size, structural disorder and organism complexity. Genome Biol 12(12):R120.

Sibille N, Bernardo P. 2012. Structural characterization of intrinsically disordered proteins by the combined use of nmr and saxs. Biochemical society transactions 40(5):955–962.

Subramanian E. 2001. Gn ramachandran. Nature Structural & Molecular Biology 8(6):489–491.

Tien MZ, Sydýkova DK, Meyer AG, Wilke CO. 2013. Peptidebuilder: A simple python library to generate model peptides. PeerJ 1:e80.

Ting D, Wang G, Shapovalov M, Mitra R, Jordan MI, Dunbrack RL Jr. 2010. Neighbor-dependent ramachandran probability distributions of amino acids developed from a hierarchical dirichlet process model. PLOS Computational Biology 6(4):1–21. doi:10.1371/journal.pcbi.1000763.

Tokuriki N, Tawfik DS. 2009. Protein dynamism and evolvability. Science 324(5924):203–207.

Tompa P. 2011. Unstructural biology coming of age. Curr Opin Struct Biol 21(3):419–425. doi:10.1016/j.sbi.2011.03.012.

Uversky VN. 2003. Protein folding revisited. a polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60(9):1852–1871.

Uversky VN, Dunker AK. 2010. Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264.
Vértessy BG, Orosz F. 2011. From “fluctuation fit” to “conformational selection”: evolution, rediscovery, and integration of a concept. *Bioessays* 33(1):30–34.
Figure 1 (on next page)

Degrees of freedom available to a protein backbone.

Backbone conformational degrees of freedom dominantly depend on the dihedral angles ϕ and ψ (green), and to a smaller degree depend on the third dihedral angle (ω; red) as well as bond lengths and angles (unmarked).
Figure 2 (on next page)

Ramachandran plots allow for the per-residue representation of backbone conformation.

Panel (a) represents regions in the plot that are occupied by backbones describing particular regular secondary structures. Panel (b) represents the positions of a twelve residue peptide, with one circle per residue. Panel (c) represents trajectory within which the backbone conformation is allowed to change. Here, each curve represents the evolution of each residue, with corners representing discrete states. While the Ramachandran plot is useful for getting a qualitative sense of peptide backbone structure (a, b), it is not a convenient representation for exploring peptide backbone dynamics (c). Secondary structure keys used here and throughout the document: 'α' -- α-helix, '3_{10}' -- 3_{10}-helix, 'β' -- β-sheet/extension, 'pΠI' -- polyproline II helix.
Figure 3 (on next page)

Mapping of ϕ and ψ to R.

Panel (a) describes the distribution of dominant regular secondary structures. Panel (b) shows the mapping between the (ϕ, ψ) and R. In particular, R increases in negative-sloping sweeps from the bottom left to the top right of the Ramachandran plot. Panel (c) describes the distribution of secondary structures in R space. Both Ramachandran plots (a) and Ramachandran ‘lines’ (c) equally resolve the secondary structure space, thereby making R a compact yet faithful representation of backbone structure (Mannige et al., 2016).
Figure 4 (on next page)

Relationships between R and other structural features.

The Ramachandran number R displays smooth relationships with respect to radius of gyration (R_g; a), end-to-end distance (R_e; b) and chirality (χ; c), as calculated within Mannige (2017). Light blue lines are average trends, dark blue horizontal lines are error bars. Average positions of dominant secondary structures are shown to the right. These trends explain why R is a useful and compact structural measure. Structural measures R_g, R_e, and χ were obtained by computationally generating polyglycine peptides of length 10 for all possible ϕ and $\psi \in [-180, -175, \ldots, 175, 180]$. This was done using the Python library PeptideBuilder (Tien et al., 2013). Values for R_g, R_e, and χ were obtained for each peptide and binned with respect to its R(ϕ, ψ) (each bin represents a region in R space that is 0.01 R in width). Given that actual values for R_g and R_e mean little (since one rarely deals with polyglycines of length 10), actual values are omitted. χ ranges from -1 to +1.
Two types of R-codes.

Digesting protein structures (a) using R numbers either as histograms (b) or per-residue codes (c) allow for compact representations of salient structural features. For example, a single glance at the histograms indicate that protein 1mba is likely all α-helical, while 2acy is likely a mix of α-helices and β-sheets. Additionally, residue-specific codes (c) not only indicate secondary structure content, but also exact secondary structure stretches (compare to d), which gives a more complete picture of how the protein is linearly arranged.
Figure 6 (on next page)

Stacked R-codes provide useful information at a glance.

Each panel represents a molecular dynamics simulation of a peptoid nanosheet (Mannige et al., 2016), where each peptoid backbone was held (energetically restrained) in extended state in the beginning, upon which each backbone was allowed to relax by lifting the restraints. Panel (a) displays representative structures from each stage of the simulation. Panel (b) represents how the per-residue structure of the peptide evolved over ‘time’ (the progression of time is represented as increasing frame number). Panel (c) represents how the general distribution of backbone conformations in the peptoid (as evident by the R histogram) evolves over time.
Combining Ramachandran plots for all amino acids into one graph.

Panel (a) shows the per-amino acid backbone behavior of an average protein found in the protein databank (PDB). While these plots are useful, it is difficult to compare such plots. For example, it is hard to pick out the change in the α-helical region of the proline plot (P). However, when we convert Ramachandran plots to Ramachandran lines [by converting \((\phi, \psi) \rightarrow R_i\)], we are able to conveniently “stack” Ramachandran lines calculated for each residue. Then, even visually, it is obvious that proline does not occupy the canonical α-helix region, which is not evident to an untrained eye in (a).
Figure 8 (on next page)

How residue neighbors modify structure.

Similar to Fig. 7b, Panel (a) represents the behavior of an amino acid ‘X’ situated before a leucine (XL; assuming that we are reading a sequence from the N terminal to the C terminal). Panel (b) similarly represents the behavior of specific amino acids situated before a proline (XP). While residues preceding a leucine behave similarly to their average behavior (Fig. 7a), most residues preceding prolines appear to be enriched in structures that change ‘direction’ or backbone chirality (this is evident by many amino acids switching from $R < 0.5$ to $R > 0.5$). Panels (c) and (d) show the behavior of individual amino acids when situated before and after each of the 20 amino acids, respectively. Panels (c) and (d) show a major benefit of side-by-side Ramachandran line “stacking”: general trends become much more obvious. For example, it is evident that prolines dramatically modify the structure of an amino acid preceeding it (compared to average behavior of amino acids in Fig. 7b), while residues following glycines also have a higher prevalence of $R > 0.5$ conformations (both trends are indicated by small arrows). Such trends, while previously discovered (see text), would not be accessible when naively considering Ramachandran plots because one would require 400 (20×20) distinct Ramachandran plots to compare. Note that the statistics for each R-line in (c) and (d) are dependent on the joint prevalence of the residues bein
Motif studied: XL

Motif studied: XP

Motif studied: XY

Motif studied: YX
Figure 9 (on next page)

In-script examples.

Two examples of pictures generated using code in sections ‘In-script usage I’ (a) and ‘In-script usage II’. Panels (a) and (b) respectively represent a residue-level and histogram-level representation of backbone structure.
Figure 10

A protein ensemble (a) along with some MAPs colored with different themes (b-d).

Panels (c) and (d) are provided by the BackMAP module. In Panel (c), β-sheets are shown in blue and all helices are shown in red. In Panel (d), right-handed and left-handed backbone twists are shown as red and blue respectively.
Figure 11

Protein 1xqq describes a stable protein.

Panel (a) represents the entire ensemble, Panel (b) represents a histogram distribution of R, Panels (c) and (d) represent two ways to color per-residue R plots, and Panels (e) and (f) are two ways to describe backbone fluctuation over time.
Figure 12

Protein 2fft describes an intrinsically disordered protein.

While most of the backbone is intrinsically disordered, one region – a stable helix – is shown in red (a). Descriptions of each panel are identical to that of Fig. 11.
Figure 13 (on next page)

Signed Rs are required for non-chiral backbones.

Panels (a), (b), and (c) describe histogram distributions in \((\varphi, \psi)\)-space for all residues, glycine, and proline, respectively. Panel (d) shows the same distributions, but as R-codes. While the backbones of most amino acids occupy the top of the positively sloped diagonal (dashed in a), non chiral amino acids such as Glycines (or their N-substituted variants – peptoids) display no such preference, which causes distinct secondary structures that lie on the same ‘sweep’ to be localized at similar regions in \(R\) (e.g., in d, polyproline-II and \(\alpha_D\) helices both localize at \(R \approx 0.6\)). However, a signed Ramachandran number \((R_s)\) solves this problem by multiplying those \(R\)’s derived from backbones with \(\varphi > \psi\) by \(-1\). The resolving power of \(R_s\) is evident by the separation of polyproline-II and \(\alpha_D\) helices (f). The mapping of \((\varphi, \psi)\) to \(R\) and \(R_s\) are respectively shown in Panels (e) and (g).
Ramachandran plots

(a) all residues (*)
(b) glycine (G)
(c) proline (P)

\[R \] codes

(d) \[R \] (\(\Phi, \Psi \))
(e) Mapping from (\(\Phi, \Psi \)) to \(R \)

(f) (signed) \(R \) codes (\(R_S \))
(g) Mapping from (\(\Phi, \Psi \)) to \(R_S \)
Figure 14 (on next page)

Relating old and new closed forms that describe R.

The increase in the accuracy measure (σ) for the original Ramachandran number (Eqn. 6) results in values that tend towards the new Ramachandran number proposed in this paper (Eqn. 2).
Manuscript to be reviewed

\[|R_1(\sigma) - R_2| \]

\[\log_{10}(|R_1(\sigma) - R_2|) \]

\[\log_{10}(\sigma) \]