DEFORMATIONS OF WEIGHTED HOMOGENEOUS POLYNOMIALS
WITH LINE SINGULARITIES AND EQUIMULTIPLICITY

CHRISTOPHE EYRAL AND MARIA APARECIDA SOARES RUAS

ABSTRACT. Consider a family \{f_t\} of complex polynomial functions with line singularities and assume that \(f_0\) is weighted homogeneous. We investigate conditions on the members \(f_t\) of the family that guarantee equimultiplicity. In particular we positively answer the Zariski multiplicity conjecture for new classes of line singularities.

1. INTRODUCTION

Let \(z := (z_1, \ldots, z_n)\) be linear coordinates for \(\mathbb{C}^n (n \geq 2)\), and let
\[f_0: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0), \; z \mapsto f_0(z), \]
be a weighted homogeneous polynomial function. We suppose that \(f_0\) is reduced at 0. A deformation of \(f_0\) is a polynomial function
\[f: (\mathbb{C} \times \mathbb{C}^n, \mathbb{C} \times \{0\}) \to (\mathbb{C}, 0), \; (t, z) \mapsto f(t, z), \]
such that the following two conditions hold:

1. \(f(0, z) = f_0(z)\) for any \(z \in \mathbb{C}^n\);
2. if we write \(f_t(z) := f(t, z)\), then each \(f_t\) is reduced at 0.

Thus a deformation of \(f_0\) may be viewed as a 1-parameter family of polynomial functions \(f_t\) locally reduced at 0 and depending polynomially on the parameter \(t\).

We are looking for easy-to-check conditions on the members \(f_t\) of the family that guarantee equimultiplicity. In the case where the functions \(f_t\) have an isolated singularity at 0, G.-M. Greuel \[\text{[11]}\] and D. O’Shea \[\text{[27]}\] proved the following result.

Theorem 1.1 (Greuel and O’Shea). Suppose that \{\(f_t\)\} is a family of isolated hypersurface singularities such that the polynomial function \(f_0\) is weighted homogeneous with respect to a given system of weights \(w := (w_1, \ldots, w_n)\) with \(w_i \in \mathbb{N} \setminus \{0\}\). Under these assumptions, if furthermore the family \{\(f_t\)\} is \(\mu\)-constant (i.e., if for all sufficiently small \(t\), the Milnor number of \(f_t\) at 0 is independent of \(t\)), then it is equimultiple (i.e., the multiplicity of \(f_t\) at 0 is independent of \(t\) for all sufficiently small \(t\)).

Here, by the multiplicity of \(f_t\) at 0 (denoted by \(\text{mult}_0(f_t)\)) we mean the number of points of intersection near 0 of the hypersurface \(V(f_t) := f_t^{-1}(0) \subseteq \mathbb{C}^n\) with a generic line in \(\mathbb{C}^n\) passing arbitrarily close to, but not through, the origin. As \(f_t\) is reduced at 0, this number coincides with the order of \(f_t\) at 0 (denoted by \(\text{ord}_0(f_t)\)).

2010 Mathematics Subject Classification. 32S15, 32S25, 32S05.
Key words and phrases. Weighted homogeneous polynomials; line singularities; Lê numbers; polar numbers; topological equisingularity; equimultiplicity, Zariski’s multiplicity conjecture.
In the special case where all the weights w_i ($1 \leq i \leq n$) are equal to 1 (i.e., f_0 is a homogeneous polynomial), Theorem [14] was first proved by A. M. Gabriélov and A. G. Kušnirenko in [8].

As the Milnor number is a topological invariant (cf. [14, 24, 29, 31]), Theorem [14] implies that any topologically \mathcal{Y}-equisingular deformation of an isolated hypersurface singularity defined by a weighted homogeneous polynomial function is equimultiple. Thus Theorem [14] partially answers the famous Zariski multiplicity conjecture for this special class of singularities.

We recall that a family $\{f_t\}$ is said to be topologically \mathcal{Y}-equisingular if there exist open neighbourhoods D and U of the origins in \mathbb{C} and \mathbb{C}^n, respectively, together with a continuous map

$$
\varphi: (D \times U, D \times \{0\}) \rightarrow (\mathbb{C}^n, 0)
$$

such that for all sufficiently small t, there is an open neighbourhood $U_t \subseteq U$ of $0 \in \mathbb{C}^n$ such that the map $\varphi_t: (U_t, 0) \rightarrow (\varphi(t \times U_t), 0)$ defined by $\varphi_t(z) := \varphi(t, z)$ is a homeomorphism sending $V(f_0) \cap U_t$ onto $V(f_t) \cap \varphi(U_t)$.

The proof of Theorem [14] relies on a very deep theorem of A. N. Varchenko [32] which says that if the assumptions of Theorem [14] are satisfied, then the deformation family $\{f_t\}$ is upper. The word “upper” is defined as follows. Expand $f(t, z)$ with respect to the deformation parameter t:

$$
f(t, z) = f_0(z) + \sum_{1 \leq j \leq n} t^j g_j(z),
$$

where $g_j: (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0)$ is a polynomial function. We say that $\{f_t\}$ is upper if each $g_j(z)$ is a linear combination of monomials of weighted degree (with respect to the weights w) greater than or equal to the weighted degree of f_0.

In the present paper, we investigate the same question as Greuel and O’Shea for the simplest class of hypersurfaces with non-isolated singularities—namely, the hypersurfaces with line singularities. Certainly, for such singularities, the Milnor number is no longer relevant. However the Lê numbers of D. Massey [19, 22] may be used instead. While these numbers are not topological invariants for arbitrary non-isolated singularities, for line singularities they are constant if the local ambient topological type of $V(f_t)$ at 0 is constant (cf. [17, 18]). In particular, we obtain new partial positive answers to the Zariski multiplicity conjecture for such singularities.

2. Statement of the results

Suppose that $\{f_t\}$ is a family of line singularities. As in [18, §4], by this we mean that for each t near 0 in \mathbb{C} the singular locus Σf_t of f_t near the origin $0 \in \mathbb{C}^n$ is given by the z_1-axis and the restriction of f_t to the hyperplane $V(z_1)$ defined by $z_1 = 0$ has an isolated singularity at the origin. Then, by [21, Remark 1.29], the partition of $V(f_t)$ given by

$$
\mathcal{S}_t := \{V(f_t) \setminus \Sigma f_t, \Sigma f_t \setminus \{0\}, \{0\}\}
$$

is a good stratification for f_t in a neighbourhood of 0, and the hyperplane $V(z_1)$ is a prepolar slice for f_t at 0 with respect to \mathcal{S}_t for all t small enough. In particular, combined with [21, Proposition 1.23], this implies that the Lê numbers $\lambda^t_{0, z}(0)$ and

1The Zariski multiplicity conjecture says that any topologically \mathcal{Y}-equisingular family of (possibly non-isolated) hypersurface singularities is equimultiple (cf. [14]). For a survey on this conjecture and related topics, we refer the reader to [2][3].
Deformations of weighted homogeneous line singularities and equimultiplicity

\(\lambda_{f_\ell, z}(0) \) and the polar number \(\lambda_{f_\ell, z}^l(0) \) of \(f_\ell \) at \(0 \) with respect to the coordinates \(z \) do exist. Note that for line singularities, the only possible non-zero Lê numbers are precisely \(\lambda_{f_0, z}^0(0) \) and \(\lambda_{f_0, z}^1(0) \). All the other Lê numbers \(\lambda_{f_0, z}^k(0) \) for \(2 \leq k \leq n - 1 \) are defined and equal to zero (cf. [21]).

Here is our first result.

Theorem 2.1. Assume that \(\{ f_\ell \} \) is a family of line singularities such that the polynomial function \(f_0 \) is weighted homogeneous with respect to a given system of weights \(w := (w_1, \ldots, w_n) \) with \(w_\ell \in \mathbb{N} \setminus \{0\} \). Also, suppose that the smallest weight \(w_{b_0} := \min\{w_1, \ldots, w_n\} \) divides the weighted degree \(d \) of \(f_0 \). Under these assumptions, if furthermore for all sufficiently small \(t \) the Lê numbers

\[
\lambda_{f_\ell, z}^0(0) \quad \text{and} \quad \lambda_{f_\ell, z}^1(0)
\]

are independent of \(t \) and if

\[
d/w_{b_0} \geq 2 + \lambda_{f_0, z}^0(0),
\]

then the family \(\{ f_\ell \} \) is equimultiplicity.

Theorem 2.1 is proved in Section 4.

By the Iomdine-Lê-Massey formula (cf. [21, Theorem 4.5]), the assumptions of the theorem imply that the function

\[
f_0 + z_{b_0}^{d/w_{b_0}}
\]

has an isolated singularity at \(0 \). Weighted homogeneous polynomials \(f_0 \) for which \(d/w_{b_0} \in \mathbb{N} \) and \(f_0 + z_{b_0}^{d/w_{b_0}} \) defines an isolated singularity also appear, for instance, in Example 4.2.5 of [23] where D. Massey and D. Siersma investigate the Betti numbers of the Milnor fibre of such polynomials.

Theorem 2.1 may be viewed as a partial generalization of Theorem 1.1 to line singularities in the sense that if \(g_0(z_2, \ldots, z_n) \) is a weighted homogeneous polynomial in \(\mathbb{C}^{n-1} \) with respect to a given system of weights \((w_2, \ldots, w_n) \) such that:

- the smallest weight \(w_{b_0} \) divides the weighted degree \(g_0 \);
- \(g_0 \) has an isolated singularity at the origin;

and if \(g(t, z_2, \ldots, z_n) \) is a \(\mu \)-constant deformation of \(g_0 \), then the corresponding family of line singularities in \(\mathbb{C}^n \), defined by

\[
f(t, z_1, z_2, \ldots, z_n) := g(t, z_2, \ldots, z_n),
\]

is such that:

1. \(\lambda_{f_\ell, z}^0(0) = 0 \) for all small \(t \);
2. \(\lambda_{f_\ell, z}^1(0) \) is independent of \(t \) for all small \(t \);
3. \(d/w_{b_0} \geq 2 + \lambda_{f_0, z}^0(0) = 2 \);

and therefore, by Theorem 2.1 the family \(\{ f_\ell \} \) (and hence the family \(\{ g_\ell \} \)) is equimultiple. (Note that \(f_0 \) is weighted homogeneous with respect to \((w_1, w_2, \ldots, w_n) \), where \(w_1 \) is an integer that we have chosen greater than \(w_{b_0} \).) That (1) and (2) hold true is explained by D. Massey in [18, §5]. His argument is as follows. For (1), it suffices to observe that the relative 1st polar variety \(\Gamma_{f_\ell, z}^1 \) of \(f_\ell \) with respect to \(z \)

\[\footnote{For the definitions of good stratifications, prepolar slices, Lê numbers and polar numbers, we refer the reader to Chapter 1 of D. Massey’s book [21]. For the reader’s convenience, we also briefly recall these definitions in the appendices below.}
(see Appendix B for the definition) is empty. For (2), Massey observes that for line singularities,
\[\lambda_{f,t}^1(0) = \bar{\mu}_{f,t}, \]
where \(\bar{\mu}_{f,t} \) is the Milnor number of a generic hyperplane slice of \(f_t \) at a point on \(\Sigma f_t \) sufficiently close to the origin (cf. [15,18,21]). But in our case \(\bar{\mu}_{f,t} \) is nothing but the Milnor number of \(g_t \) at the origin, which is constant. Finally, to show that (3) holds, we argue by contradiction. Suppose that \(d/w_i \) is not constant as \(t \) varies from \(0 \) to \(t=0 \). Thus, by a theorem of J. Milnor and P. Orlik [25], if \(\mu_{\Sigma f_t}(0) \) denotes the Milnor number of \(g_0 \) at \(0 \in \mathbb{C}^n \), we have
\[\mu_{\Sigma f_t}(0) = \prod_{2 \leq i \leq n} \left(\frac{d}{w_i} - 1 \right) = 0 \]
and the origin is not a critical point of \(g_0 \)—a contradiction.

Theorem 2.1 has the following important corollary, which provides a new partial positive answer to the Zariski multiplicity conjecture.

Corollary 2.2. Assume that \(\{ f_t \} \) is a family of line singularities such that the polynomial function \(f_0 \) is weighted homogeneous with respect to a given system of weights \(w := (w_1, \ldots, w_n) \) with \(w_i \in \mathbb{N} \setminus \{0\} \). Also, suppose that the smallest weight \(w_0 := \min\{w_1, \ldots, w_n\} \) divides the weighted degree \(d \) of \(f_0 \). Under these assumptions, if furthermore the family \(\{ f_t \} \) is topologically \(\psi \)-equisingular and if
\[d/w_0 \geq 2 + \lambda_{f_0,t}^0(0), \]
then \(\{ f_t \} \) is equimultiple.

Proof. Suppose that \(\{ f_t \} \) is not equimultiple. Then, by Theorem 2.1 either \(\lambda_{f,t}^0(0) \) or \(\lambda_{f,t}^1(0) \) is not constant as \(t \) varies from \(t_0 \neq 0 \) to \(t=0 \). Thus the corollary follows from the following result of D. Massey (cf. [17,18]). \(\square \)

Theorem 2.3 (Massey). If \(\{ f_t \} \) is a family of line singularities, then the following two conditions are equivalent:

1. The Lê numbers \(\lambda_{f,t}^0(0) \) and \(\lambda_{f,t}^1(0) \) are independent of \(t \) for all small \(t \);
2. The (embedded) topological invariants \(\bar{\mu}_{f,t} \) and \(\tilde{\chi}(F_{f,t},0) \) are independent of \(t \) for all small \(t \).

Here, \(\tilde{\chi}(F_{f,t},0) \) denotes the reduced Euler characteristic of the Milnor fibre \(F_{f,t,0} \) of \(f_t \) at \(0 \). Note that in our case
\[\tilde{\chi}(F_{f,t},0) = (-1)^{n-1}\lambda_{f,t}^0(0) + (-1)^{n-2}\lambda_{f,t}^1(0) \]
(see [18, §4] or [21, Theorem 3.3]).

Our second result is as follows.

Theorem 2.4. Again assume that \(\{ f_t \} \) is a family of line singularities such that the polynomial function \(f_0 \) is weighted homogeneous with respect to a given system of weights \(w := (w_1, \ldots, w_n) \) with \(w_i \in \mathbb{N} \setminus \{0\} \). Also, suppose that the smallest weight \(w_0 := \min\{w_1, \ldots, w_n\} \) divides the weighted degree \(d \) of \(f_0 \). Under these assumptions, if furthermore for all sufficiently small \(t \) the numbers
\[\lambda_{f,t}^1(0) \text{ and } \gamma_{f,t}^1(0) + \lambda_{f,t}^0(0) \]
are independent of t, and if, at least when $t \neq 0$, the relative 1st polar variety $\Gamma^1_{f_i, z}$ of f_i with respect to z is irreducible, then the family \(\{ f_i \} \) is equimultiple.

Theorem 2.4 is proved in Section 5.

The condition (2.1) is already used by D. Massey in [18, §5] in his first partial generalization of the Lê-Ramanujam theorem to line singularities. Indeed, by [21, Proposition 1.23],

$$\gamma^1_{f_i, z} (0) + \lambda^0_{f_i, z} (0) = \left(\Gamma^1_{f_i, z} \cdot [V(f_i)] \right)_0,$$

where $\Gamma^1_{f_i, z}$ and $[V(f_i)]$ denote the analytic cycles associated to $\Gamma^1_{f_i, z}$ and $V(f_i)$, respectively, and where $\left(\Gamma^1_{f_i, z} \cdot [V(f_i)] \right)_0$ is the intersection number at 0 of these two cycles (cf. Appendix B). In [18, Theorem (5.2)], Massey showed that if $n \geq 5$ and if

$$\lambda^1_{f_i, z} (0) \quad \text{and} \quad \left(\Gamma^1_{f_i, z} \cdot [V(f_i)] \right)_0$$

are constant (as t varies)---equivalently, if (2.1) holds---then the diffeomorphism type of the Milnor fibration of f_i at 0 is constant too. Note that in [21, Theorem 9.4], Massey proved a stronger result, namely he showed that if $n \geq 5$ and if $\lambda^0_{f_i, z} (0)$ and $\lambda^1_{f_i, z} (0)$ are constant, then the diffeomorphism type of the Milnor fibration of f_i at 0 is constant. This is stronger because (2.1) implies that the Lê numbers $\lambda^0_{f_i, z} (0)$ and $\lambda^1_{f_i, z} (0)$ are constant. This latter implication is already explained in [18].

For the sake of completeness, let us briefly recall Massey’s argument. By [18, Corollary 2.4], if (2.1) holds, then, for any integer j sufficiently large, the Milnor numbers

$$\mu_{f_i + z_1^i} (0) \quad \text{and} \quad \mu_{f_i V(1)} (0)$$

are both independent of t for all t sufficiently small. Indeed, by the uniform Iomdine-Lê-Massey formulas (see Proposition 2.1 and the relation (2.2) in [18] and Theorem 4.15 in [21]), for all t sufficiently small and all j sufficiently large, $f_i + z_1^i$ has an isolated singularity at the origin and

$$\begin{cases}
\mu_{f_i + z_1^i} (0) = \lambda^0_{f_i, z} (0) + (j-1) \lambda^1_{f_i, z} (0); \\
\mu_{f_i + V(1)} (0) = \gamma^1_{f_i, z} (0) + \lambda^0_{f_i, z} (0) + j \lambda^1_{f_i, z} (0).
\end{cases}$$

Thus, if (2.1) holds, then the sum

$$\mu_{f_i + z_1^i} (0) + \mu_{f_i V(1)} (0)$$

is independent of t, and hence, by the upper-semicontinuity of the Milnor number, $\mu_{f_i + z_1^i} (0)$ and $\mu_{f_i V(1)} (0)$ are both independent of t. It follows that $\lambda^0_{f_i, z} (0)$ and $\gamma^1_{f_i, z} (0)$ do not depend on t.

It would be nice if (as in Theorem 2.4 above or as in [21, Theorem 9.4]) we could replace the condition (2.1) of Theorem 2.4 by the assumption that $\lambda^0_{f_i, z} (0)$ and $\lambda^1_{f_i, z} (0)$ are independent of t for all small t (see also Remark 2.6 below).

Note that requiring that (2.1) holds does not imply the Whitney conditions along the t-axis (cf. [18, §5]). If the family $\{ f_i \}$ were Whitney equisingular (i.e., if there were a Whitney stratification of $V(f) := f^{-1}(0) \subseteq C \times C^n$ with the t-axis as a stratum), then the result would follow immediately from a theorem of H. Hironaka which says that any reduced complex analytic space endowed with a Whitney stratification is equimultiple along every stratum (cf. [13 Corollary (6.2)]).
In [10] Corollary 6.6], T. Gaffney and R. Gassler proved that in the special case where \(\{f_t\} \) is a family of surface singularities in \(\mathbb{C}^3 \), then the family \(\{f_t\} \) is Whitney equisingular if, in addition to the condition (2.1), the second polar number \(\gamma_{f_t, z}^2(0) \) is independent of \(t \) as well. Still in the case of surfaces in \(\mathbb{C}^3 \), they even showed that Whitney equisingularity does hold true if and only if the Lê numbers \(\lambda_{f_t, x}^0(0) \), \(\lambda_{f_t, x}^1(0) \) and the polar numbers \(\gamma_{f_t, x}^1(0) \), \(\gamma_{f_t, x}^2(0) \) are all independent of \(t \) for all small \(t \).

Theorem 2.4 has the following important corollary, which provides another new partial positive answer to the Zariski multiplicity conjecture for line singularities.

Corollary 2.5. Assume again that \(\{f_t\} \) is a family of line singularities such that the polynomial function \(f_0 \) is weighted homogeneous with respect to a given system of weights \(w := (w_1, \ldots, w_n) \) with \(w_i \in \mathbb{N} \setminus \{0\} \). Also, suppose that the following three conditions hold true:

1. \(w_0 := \min\{w_1, \ldots, w_n\} \) divides the weighted degree of \(f_0 \);
2. \(\gamma_{f_t, x}^1(0) \) is independent of \(t \) for all small \(t \);
3. \(\Gamma_{f_t, x}^1(0) \) is irreducible except perhaps when \(t = 0 \).

Under these assumptions, if furthermore the family \(\{f_t\} \) is topologically \(\mathcal{V} \)-equisingular, then it is equimultiple.

Proof. It is similar to the proof of Corollary 2.2. Suppose that \(\{f_t\} \) is not equimultiple. Then, by Theorem 2.4 either \(\lambda_{f_t, x}^1(0) \) or \(\gamma_{f_t, x}^1(0) + \lambda_{f_t, x}^0(0) \) is not constant. As \(\gamma_{f_t, x}^1(0) \) is constant, it follows that either \(\lambda_{f_t, x}^1(0) \) or \(\lambda_{f_t, x}^0(0) \) is not constant. Then again the conclusion follows from Theorem 2.3. \(\square \)

Remark 2.6. If we could replace the assumption (2.1) in Theorem 2.4 by the condition that \(\lambda_{f_t, x}^0(0) \) and \(\lambda_{f_t, x}^1(0) \) are constant, then, by Theorem 2.3 we could also avoid the assumption that \(\gamma_{f_t, x}^1(0) \) is constant in Corollary 2.5.

In the special case where the polynomial \(f_0 \) is homogeneous, the first author [4] proved the following (stronger) theorem which generalizes to line singularities the Gabrièlo-Kušnirenko theorem mentioned in the introduction.

Theorem 2.7 (cf. [4] Theorem 1.6 and Corollary 1.9]). If \(\{f_t\} \) is a topologically \(\mathcal{V} \)-equisingular family of line singularities (or even a family of line singularities with constant Lê numbers) and if the polynomial \(f_0 \) is homogeneous, then \(\{f_t\} \) is equimultiple.

We conclude this section with the following remark about Whitney equisingularity for families of parametrized surface singularities in \(\mathbb{C}^3 \).

Remark 2.8. Suppose that \(\{f_t\} \) is a family of parametrized surface singularities in \(\mathbb{C}^3 \), that is, a family for which there is an analytic map \((\mathbb{C} \times \mathbb{C}^2, \mathbb{C} \times \{0\}) \rightarrow (\mathbb{C} \times \mathbb{C}^3, \mathbb{C} \times \{0\}) \) of the form

\[
(t, (z_1, z_2)) \in \mathbb{C} \times \mathbb{C}^2 \mapsto (t, \psi_t(z_1, z_2)) \in \mathbb{C} \times \mathbb{C}^3
\]

satisfying \(V(f_t) = \text{im}(\psi_t) \). Also, assume there is a neighbourhood \(W \) of the origin in \(\mathbb{C}^2 \) such that the following two conditions hold:

(a) \(W \cap \psi_t^{-1}(0) = \{0\} \);
(b) the only singularities of \(\psi_t(W) \setminus \{0\} \) are transverse double points.
Then, by Mather-Gaffney’s criterion (cf. [33]), \(\varphi_t \) is finitely \(\mathcal{A} \)-determined, and it follows from Theorem 5.3 in [16] (see also [9]) that if \(\tilde{\mu}_f \) and \(\mu(D(\varphi_t), 0) \) are constant, then, in a neighbourhood of the origin, the partition of \(V(f) \) given by

\[
\{ V(f) \setminus \Sigma f, \Sigma f \setminus (C \times \{0\}), C \times \{0\} \}
\]

is a Whitney stratification—in particular, the family \(\{ f_t \} \) is Whitney equisingular. (Here, \(\mu(D(\varphi_t), 0) \) denotes the Milnor number of the double point locus \(D(\varphi_t) = \varphi_t^{-1}(\Sigma f_t) \) of \(\varphi_t \) at the origin. As usual, \(\Sigma f \) is the critical locus of \(f_t \)).

Now if we suppose further that \(\{ f_t \} \) is topologically \(\mathcal{V} \)-equisingular and such that the 1st polar number \(\gamma_{f_t}^1(0) \) is constant, then, by [11] Theorem 6.2] (see also [6]), the Milnor number \(\mu(D(\varphi_t), 0) \) is constant, and it follows from [28] Proposition 3.3] and [16] Lemma 5.2] that \(\tilde{\mu}_f \) is constant too. Therefore, if \(\{ f_t \} \) is a topologically \(\mathcal{V} \)-equisingular family of parametrized surface singularities in \(\mathbb{C}^3 \) with constant first polar number and satisfying the above conditions (a) and (b), then \(\{ f_t \} \) is Whitney equisingular. For examples of such families that have, in addition, line singularities, we refer the reader to [25].

3. APPLICATION TO TOPOLOGICAL EQUISINGULARITY

Corollaries 2.2 and 2.3 may be very useful to decide whether certain families of hypersurfaces with line singularities are not topologically \(\mathcal{V} \)-equisingular—a question which is, in general, extremely difficult to answer. For example, Corollary 2.5 says that in order to show that a family \(\{ f_t \} \) of line singularities, with \(f_0 \) weighted homogeneous, is not topologically \(\mathcal{V} \)-equisingular, it suffices to observe that it is not equimultiple and such that the conditions (1)–(3) enumerated in the corollary are satisfied—four very simple checks.

Example 3.1. Consider the family defined by

\[
f_t(z_1,z_2,z_3) = z_1^2z_2^2 + z_2^4 + z_3^4 + tz_1z_2^2 + r^2z_1^2z_2^2.
\]

A priori, it is far from being obvious to decide whether this family is topologically \(\mathcal{V} \)-equisingular or not. However, this easily follows from Corollary 2.5. Indeed, the polynomial function \(f_0(z_1,z_2,z_3) = z_1^2z_2^2 + z_2^4 + z_3^4 \) is weighted homogeneous with respect to the weights \(w := (6,4,5) \), the singular locus \(\Sigma f_t \) of \(f_t \) near the origin is given by the \(z_1 \)-axis, and the restriction \(f_t|_{V(z_1)} \) has an isolated singularity at the origin. Clearly the smallest weight \(w_{i_0} = 4 \) divides the weighted degree \(d = 20 \) of \(f_0 \). An easy computation also shows that for any \(t \) sufficiently small, the relative 1st polar variety \(\Gamma_{f_t} \) of \(f_t \) with respect to \(z \) is given by

\[
\Gamma_{f_t} = V \left(\frac{\partial f_t}{\partial z_2}, \frac{\partial f_t}{\partial z_3} \right) \setminus \Sigma f_t
\]

\[
= V \left(z_2(2z_1^2 + 5z_3^2 + 2tz_1 + 2r^2z_1^2), 4z_3^4 \right) - V(z_2,z_3)
\]

\[
= V \left(2z_1^2 + 5z_3^2 + 2tz_1 + 2r^2z_1^2, z_3^4 \right),
\]

and hence \(\Gamma_{f_t} \) is irreducible and

\[
\gamma^1_{f_t}(0) = ([\Gamma_{f_t} \cdot V(z_1)])_0 = 9.
\]

As the family \(\{ f_t \} \) is not equimultiple, it follows from Corollary 2.5 that it is not topologically \(\mathcal{V} \)-equisingular.
Remark 3.2. By [5] Corollary 3.7, we know that if \(\{ f_t \} \) is a non-equimultiple family of line singularities of the form \(f_t(z) = f_0(z) + \xi(t)g(z) \), where \(\xi : (\mathbb{C},0) \to (\mathbb{C},0) \) is a non-constant polynomial function and \(g : (\mathbb{C}^n,0) \to (\mathbb{C},0) \) is any polynomial function, then \(\{ f_t \} \) is not topologically \(\mathcal{E} \)-equisingular. The above example is not a consequence of this result.

4. Proof of Theorem 2.1

As \(d/w_0 \geq 2 + \lambda^0_{f_0,z}(0) \) and since the Lê numbers \(\lambda^0_{f_1,z}(0) \) and \(\lambda^1_{f_1,z}(0) \) are constant, we have \(d/w_0 \geq 2 + \lambda^0_{f_1,z}(0) \) for all small \(t \). Thus, by the Iomdine-Lê-Massey formula (cf. [21] Theorem 4.5]), the function

\[
\Gamma_{f_0 + z_0^{d/w_0}}
\]

has an isolated singularity at 0 and the family \(\{ f_t + z_0^{d/w_0} \} \) is \(\mu \)-constant. Now, as for \(t = 0 \) the function \(f_0 + z_0^{d/w_0} \) is weighted homogeneous with respect to \(w = (w_1, \ldots, w_n) \), the Greuel-O’Shea theorem (cf. Theorem 1.1) says that

\[
\text{ord}_0(f_t + z_0^{d/w_0}) := \text{ord}_0(f_0 + z_0^{d/w_0} + \sum_{1 \leq j \leq f_0} t^j g_j(z)) = \text{ord}_0(f_0 + z_0^{d/w_0}),
\]

where, as above, the polynomial functions \(g_j \) are defined by

\[
f_t(z) = f_0(z) + \sum_{1 \leq j \leq f_0} t^j g_j(z).
\]

If \(\text{ord}_0(f_0) \leq d/w_0 \), then the relation (4.1) implies \(\text{ord}_0(f_t) = \text{ord}_0(f_0) \), and the theorem is proved. Now we claim that we always have \(\text{ord}_0(f_0) \leq d/w_0 \). Indeed, take any monomial \(\alpha z_1^{\alpha_1} \cdots z_n^{\alpha_n} \) of the initial polynomial \(\text{in}(f_0) \) of \(f_0 \). Then we have

\[
\sum_{1 \leq i \leq n} \alpha_i = \text{deg in}(f_0) = \text{ord}_0(f_0),
\]

and since \(f_0 \) (and hence \(\text{in}(f_0) \)) is weighted homogeneous with respect to the weights \(w = (w_1, \ldots, w_n) \), we also have

\[
\sum_{1 \leq i \leq n} \alpha_i w_i = d.
\]

As \(w_0 = \min\{w_1, \ldots, w_n\} \), it follows that

\[
d = \sum_{1 \leq i \leq n} \alpha_i w_i \geq \sum_{1 \leq i \leq n} \alpha_i w_0 = w_0 \sum_{1 \leq i \leq n} \alpha_i = w_0 \text{ord}_0(f_0).
\]

5. Proof of Theorem 2.4

As already observed in Section 2 the constancy of \(\lambda^1_{f_1,z}(0) \) and \(\gamma^1_{f_1,z}(0) + \lambda^0_{f_1,z}(0) \) implies that of \(\lambda^0_{f_1,z}(0) \) and \(\gamma^1_{f_1,z}(0) \). Moreover, as \(\gamma^1_{f_1,z}(0) \) is defined, the relative 1st polar variety \(\Gamma_{f_1,z} \) is purely 1-dimensional or empty at 0 and the intersection \(\Gamma_{f_1,z} \cap V(z_1) \) is 0-dimensional or empty at 0. Now the proof divides into two cases depending on whether \(\gamma^1_{f_0,z}(0) \) is zero (i.e., \(\Gamma_{f_0} = \emptyset \)) or not.
5.1. **The case** \(\gamma_{f_0,z}(0) \neq 0 \). If the 1st polar number \(\gamma_{f_0,z}(0) \) is not zero, then, as \(\gamma_{f_0,z}(0) \) is constant, \(\gamma_{f_0,z}(0) \neq 0 \) for all small \(t \), and by [21] Proposition 1.23,\footnote{The reference to [21] and [22] is implied here.}

\[
\rho_0 := \frac{\langle [\Gamma_{f_0,z}] \cdot [V(f_t)] \rangle_0}{\langle [\Gamma_{f_0,z}] \cdot [V(z_1)] \rangle_0} = \frac{\gamma_{f_0,z}(0) + \lambda_{f_0,z}(0)}{\gamma_{f_0,z}(0)}.
\]

Lemma 5.1. For each irreducible component \(\eta \) of \(\Gamma_{f_0,z}(0) \), endowed with its reduced structure, we have the following equalities:

\[
\langle [\eta] \cdot [V(f_0)] \rangle_0 = d \quad \text{and} \quad \langle [\eta] \cdot [V(z_1)] \rangle_0 = w_1.
\]

In particular, \(\rho_0 = d/w_1 \).

Proof. For \(\varepsilon > 0 \) small enough, \(\eta \cap V(z_1 - \varepsilon) \) contains at least one point \(a = (a_1, \ldots, a_n) \). Thus, as \(f_0 \) is weighted homogeneous with respect to the weights \(w = (w_1, \ldots, w_n) \), we may pick a parametrization of \(\eta \) (with its reduced structure) of the form

\[
s \mapsto \phi(s) := (a_1 s^{w_1}, \ldots, a_n s^{w_n}).
\]

Observe that \(\eta \not\subset V(f_0) \). Indeed, the \(\mathbb{C}^* \)-action on \(\Gamma_{f_0,z} \) (or on \(\eta \)) gives

\[
\frac{\partial f_0}{\partial z_i}(\phi(s)) = \frac{\partial f_0}{\partial z_i}(a_1 s^{w_1}, \ldots, a_n s^{w_n}) = s^{d-w_i} \cdot \frac{\partial f_0}{\partial z_i}(a_1, \ldots, a_n) = 0
\]

for all \(i \geq 2 \). Thus, if \(f_0 \circ \phi \) identically vanishes, then, for all \(s \),

\[
0 = (f_0 \circ \phi)'(s) = a_1 w_1 s^{w_1 - 1} \frac{\partial f_0}{\partial z_1}(\phi(s)),
\]

and hence,

\[
\frac{\partial f_0}{\partial z_1}(\phi(s)) = 0.
\]

It follows that \(\eta \) is contained in \(\Sigma f_0 \)—a contradiction. Now, since \(\eta \not\subset V(f_0) \), a classical result in intersection theory shows that

\[
\langle [\eta] \cdot [V(f_0)] \rangle_0 = \text{ord}_0(f_0 \circ \phi(s))
\]

(cf. [7] or [22] Appendix A.9), and clearly \(\text{ord}_0(f_0 \circ \phi(s)) = d \).

Similarly, we show \(\langle [\eta] \cdot [V(z_1)] \rangle_0 = w_1 \).

Now if we write the cycle \([\Gamma_{f_0,z}(0)] \) as \(\sum \kappa \eta \), where the sum is taken over all the irreducible components \(\eta \) of \(\Gamma_{f_0,z}(0) \), then

\[
\rho_0 = \frac{\sum k \eta \langle [\eta] \cdot [V(f_0)] \rangle_0}{\sum k \eta \langle [\eta] \cdot [V(z_1)] \rangle_0} = \frac{d}{w_1}
\]

as desired. \(\square \)

Remark 5.2. Note that the above lemma implies that for each irreducible component \(\eta \) of \(\Gamma_{f_0,z}(0) \) (with its reduced structure), the **polar ratio** of \(\eta \), which is defined by

\[
\frac{\langle [\eta] \cdot [V(f_0)] \rangle_0}{\langle [\eta] \cdot [V(z_1)] \rangle_0},
\]

is equal to \(d/w_1 \).
Since \(\lambda^0_{f_0,z}(0) \) and \(\gamma^1_{f_0,z}(0) \) are constant, it follows from Lemma 5.1 that \(\rho_t \) is constant too equal to \(\rho_0 = d/w_1 \). As \(\Gamma^1_{f_0,z} \) is irreducible when \(t \neq 0 \), the function \(f_t \) has only one polar ratio which is nothing but \(\rho_t \). Thus, since \(w_{i0} \) is the smallest weight (and hence \(d/w_{i0} \geq d/w_1 = \rho_0 \)), it follows from the Iomdine-Lê-Massey formula (cf. [21] Theorem 4.5) that for all \(t \) sufficiently small and for all but a finite number of non-zero numbers \(a \), the function

\[
 f_t + az^{d/w_{i0}}
\]

has an isolated singularity at \(0 \) and the family \(\{ f_t + az^{d/w_{i0}} \} \) is \(\mu \)-constant. Then we conclude exactly as in Theorem 2.1.

5.2. The case \(\gamma^1_{f_0,z}(0) = 0 \). If the 1st polar number \(\gamma^1_{f_0,z}(0) \) vanishes, that is, if the relative 1st polar variety \(\Gamma^1_{f_0,z} \) is empty, then

\[
 0 = (\Gamma^1_{f_0,z} : [V(f_0)])_0 = \gamma^1_{f_0,z}(0) + \lambda^0_{f_0,z}(0) = \lambda^0_{f_0,z}(0).
\]

Again the proof divides into two cases according to either \(d/w_{i0} \geq 2 \) or \(d/w_{i0} = 1 \). If \(d/w_{i0} \geq 2 = 2 + \lambda^0_{f_0,z}(0) \), then, by the Iomdine-Lê-Massey formula, the family \(\{ f_t + az^{d/w_{i0}} \} \) is \(\mu \)-constant and we conclude as above. (We can also apply Theorem 2.1.) If \(d/w_{i0} = 1 \), then the polynomial \(f_0 \) is necessarily of the form \(f_0(z) = cz^i \) for some \(i \) (\(c \) is a constant), that is, \(f_0 \) is homogeneous. In this case the result follows from Theorem 2.7.

Appendix A. Good stratifications and prepolar slices

Let \(h : (\mathbb{C}^n,0) \to (\mathbb{C},0) \) be a polynomial function, let \(\Sigma h \) be its the critical locus, and let \(V(h) := h^{-1}(0) \) be the hypersurface in \(\mathbb{C}^n \) defined by \(h \).

A good stratification for \(h \) at a point \(p \in V(h) \) is an analytic stratification \(\mathscr{S} \) of \(V(h) \) in a neighbourhood \(U \) of \(p \) such that the following two conditions hold:

1. the (trace of the) smooth part of \(V(h) \) is a stratum;
2. \(\mathscr{S} \) satisfies Thom’s \(a_k \) condition with respect to \(U \setminus \Sigma h \), that is, if \(\{ q_k \} \) is a sequence of points in \(U \setminus \Sigma h \) such that

\[
 q_k \to q \in S \in \mathscr{S} \quad \text{and} \quad T_{q_k}V(h-h(q_k)) \to T,
\]

then \(T_{q}S \subseteq T \).

As usual, \(T_{q_k}V(h-h(q_k)) \) denotes the tangent space at \(q_k \) to the level hypersurface defined by \(h(z) = h(q_k) \), and \(T_{q}S \) is the tangent space at \(q \) to the stratum \(S \). Note that good stratifications always exist (cf. [12]).

Now if \(\mathscr{S} \) is a good stratification for \(h \) at a point \(p \in V(h) \), then a hyperplane \(H \) of \(\mathbb{C}^n \) through \(p \) is called a prepolar slice for \(h \) at \(p \) with respect to \(\mathscr{S} \) if it transversely intersects all the strata of \(\mathscr{S} \)—perhaps with the exception of the stratum \(\{ p \} \) itself—in a neighbourhood of \(p \).

For details, see Chapter 1 of Massey’s book [21].

Appendix B. Lê numbers and polar numbers

The Lê numbers generalize to non-isolated hypersurface singularities the data given by the Milnor number for an isolated singularity. They were introduced about 25 years ago by D. Massey [19, 22]. For the convenience of the reader, we
briefly recall the definitions in this appendix. We follow the presentation given in Massey’s book [21].

Throughout, we use the following notation.

Notation B.1. Let \((X, \mathcal{O}_X)\) be a complex analytic space, and let \(\mathcal{I}\) be a coherent sheaf of ideals in \(\mathcal{O}_X\). We denote by \(V(\mathcal{I})\) the complex analytic space defined by the vanishing of \(\mathcal{I}\). If \(W \subseteq X\) is any analytic subset of \(X\), then we denote by \(\mathcal{I}\cap W\) the gap sheaf associated to \(\mathcal{I}\) and \(W\). As usual, the scheme \(V(\mathcal{I}\cap W)\) defined by the vanishing of the gap sheaf will be also denoted by \(V(\mathcal{I})\cap W\). Finally, we write \([X]\) for the analytic cycle associated to \(X\)—that is, the formal sum \(\sum m_V[V]\), where the \(V\)'s run over all the irreducible components of \(X\) and where \(m_V\) represents the number of times the component \(V\) should be counted.

Consider a polynomial function \(h: (U, 0) \to (\mathbb{C}, 0)\), where \(U\) is an open neighbourhood of \(0\) in \(\mathbb{C}^n\), and fix a system of linear coordinates \(z = (z_1, \ldots, z_n)\) for \(\mathbb{C}^n\). As usual, write \(\Sigma h\) for the critical locus of \(h\). For \(0 \leq k \leq n-1\), the relative \(k\)th polar variety of \(h\) with respect to the coordinates system \(z\) is the scheme

\[
\Gamma^k_{h,z} := V\left(\frac{\partial h}{\partial z_{k+1}}, \ldots, \frac{\partial h}{\partial z_n}\right) \cap \Sigma h.
\]

The \(k\)th Lê cycle of \(h\) with respect to \(z\) is the analytic cycle

\[
[A^k_{h,z}] := \left[\Gamma^k_{h,z} \cap V\left(\frac{\partial h}{\partial z_{k+1}}\right)\right] - \left[\Gamma^k_{h,z}\right].
\]

Definition B.2. The \(k\)th Lê number \(\lambda^k_{h,z}(p)\) of \(h\) at \(p = (p_1, \ldots, p_n)\) with respect to the coordinates system \(z\) is defined to be the intersection number

\[
(\lambda^k_{h,z}(p)) := (\lambda^k_{h,z}: [V(z_1-p_1, \ldots, z_k-p_k)])_p
\]

provided that this intersection is 0-dimensional or empty at \(p\); otherwise, \(\lambda^k_{h,z}(p)\) is undefined.

For \(k = 0\), the relation (B.1) means

\[
\lambda^0_{h,z}(p) = ([A^0_{h,z}] : U)_p = \left[\Gamma^1_{h,z} \cap V\left(\frac{\partial h}{\partial z_1}\right)\right]_p.
\]

For any \(k\), with \(\dim_p \Sigma h < k \leq n - 1\), the corresponding Lê number \(\lambda^k_{h,z}(p)\) always exists and is equal to zero. Note that if \(p\) is an isolated singularity of \(h\), then the 0th Lê number \(\lambda^0_{h,z}(p)\) (which is the only possible non-zero Lê number) is equal to the Milnor number \(\mu_h(0)\) of \(h\) at \(p\).

Definition B.3. The \(k\)th polar number \(\gamma^k_{h,z}(p)\) of \(h\) at \(p = (p_1, \ldots, p_n)\) with respect to the coordinates system \(z\) is defined to be the intersection number

\[
\gamma^k_{h,z}(p) := ([\Gamma^k_{h,z}] : [V(z_1-p_1, \ldots, z_k-p_k)])_p
\]

provided that this intersection is 0-dimensional or empty at \(p\); otherwise, \(\gamma^k_{h,z}(p)\) is undefined.

Note that \(\gamma^0_{h,z}(p)\) is always defined and equal to zero.

Remark B.4. For a generic choice of coordinates \(z\), for any point \(p \in V(h)\) near \(0\) and for any \(0 \leq k \leq \dim_p \Sigma h\), the Lê number \(\lambda^k_{h,z}(p)\) and the polar number \(\gamma^k_{h,z}(p)\) do exist (cf. [21] Proposition 10.2 and Theorem 1.28]).
REFERENCES

1. R. Callejas-Bedregal, K. Houston and M. A. S. Ruas, “Topological triviality of families of singular surfaces,” arXiv:math/0611699v1 [math.CV] 22 Nov 2006.
2. C. Eyral, “Zariski’s multiplicity question—a survey,” New Zealand J. Math. 36 (2007) 253–276.
3. C. Eyral, “Topics in equisingularity theory,” IMPAN Lecture Notes 3, Polish Academy of Sciences, Institute of Mathematics, 2016.
4. C. Eyral, “Topologically equisingular families of homogeneous hypersurfaces with line singularities are equimultiple” (to appear); available at arXiv:1506.07996v1 [math.AG] 26 Jun 2015.
5. C. Eyral and M. A. S. Ruas, “Deformations with constant Lê numbers and multiplicity of non-isolated hypersurface singularities,” Nagoya Math. J. 218 (2015) 29–50.
6. J. Fernández de Bobadilla and M. Pe Pereira, “Equisingularity at the normalisation,” J. Topol. 1 (2008), no. 4, 879–909.
7. W. Fulton, “Intersection Theory,” Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 2, Springer-Verlag, Berlin, 1984.
8. A. M. Gabriéllov and A. G. Kušnirenko, “Description of deformations with constant Milnor number for homogeneous functions,” Funkcional. Anal. i Priložen 9 (1975), no. 4, 67–68 (Russian). English translation: Functional Anal. Appl. 9 (1975), no. 4, 329–331.
9. T. Gaffney, “Polar multiplicities and equisingularity of map germs,” Topology 32 (1993), no. 1, 185–223.
10. T. Gaffney and R. Gassler, “Segre numbers and hypersurface singularities,” J. Algebraic Geom. 8 (1999), no. 4, 605–736.
11. G.-M. Greuel, “Constant Milnor number implies constant multiplicity for quasihomogeneous singularities,” Manuscripta Math. 56 (1986), no. 2, 159–166.
12. H. A. Hamm and Lê Dung Tráng, “Un théorème de Zariski du type de Lefschetz,” Ann. Sci. École Norm. Sup. (4) 6 (1973) 317–355.
13. H. Hironaka, “Normal cones in analytic Whitney stratifications,” Inst. Hautes Études Sci. Publ. Math. 36 (1969) 127–138.
14. Lê Dung Tráng, “Topologie des singularités des hypersurfaces complexes,” Singularités à Cargèse (Rencontre Singularités Géom., Inst. Études Sci., Cargèse, 1972), pp. 171–182, Astérisque 7 & 8, Soc. Math. France, Paris, 1973.
15. Lê Dũng Tráng, “Ensembles analytiques complexes avec lieu singulier de dimension un (d’après I. N. Iomdine),” Seminar on Singularities (Paris, 1976/77), pp. 87–95, Publ. Math. Univ. Paris VII, 7, Paris, 1980.
16. W. L. Marar, J. J. Nuño-Ballesteros, G. Peñafort-Sanchis, “Double point curves for corank 2 map germs from \mathbb{C}^2 to \mathbb{C}^3, ” Topology Appl. 159 (2012), no. 2, 526–536.
17. D. Massey, “A reduction theorem for the Zariski multiplicity conjecture,” Proc. Amer. Math. Soc. 106 (1989), no. 2, 379–383.
18. D. Massey, “The Lê-Ramanujam problem for hypersurfaces with one-dimensional singular sets,” Math. Ann. 282 (1989), no. 1, 33–49.
19. D. Massey, “The Lê varieties, I,” Invent. Math. 99 (1990), no. 2, 357–376.
20. D. Massey, “The Lê varieties, II,” Invent. Math. 104 (1991), no. 1, 113–148.
21. D. Massey, “Lê cycles and hypersurface singularities,” Lecture Notes Math. 1615, Springer-Verlag, Berlin, 1995.
22. D. Massey, “Numerical control over complex analytic singularities,” Mem. Amer. Math. Soc. 163 (2003), no. 778.
23. D. Massey and D. Siersma, “Deformation of polar methods,” Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 737–778.
24. J. Milnor, “Singular points of complex hypersurfaces,” Annals of Math. Studies 61, Princeton Univ. Press, Princeton, N. J., Univ. Tokyo Press, Tokyo, 1968.
25. J. Milnor and P. Orlik, “Isolated singularities defined by weighted homogeneous polynomials,” Topology 9 (1970) 385–393.
26. D. Mond, “On the classification of germs of maps from \mathbb{R}^2 to \mathbb{R}^3,” Proc. London Math. Soc. (3) 50 (1985), no. 2, 333–369.
27. D. O’Shea, “Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple,” Proc. Amer. Math. Soc. 101 (1987), no. 2, 260–262.
28. M. A. S. Ruas, “Equimultiplicity of topologically equisingular families of parametrized surfaces in \(\mathbb{C}^3 \),” arXiv:1302.5800v1 [math.CV] 23 Feb 2013.
29. B. Teissier, “Cycles évanescents, sections planes et conditions de Whitney,” Singularités à Cargèse (Recontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), pp. 285–362, Astérisque 7 & 8, Soc. Math. France, Paris, 1973.
30. B. Teissier, “Déformations à type topologique constant,” Quelques problèmes de modules (Sém. de Géométrie Analytique, École Norm. Sup., Paris, 1971/72), pp. 215–249, Astérisque 16, Soc. Math. France, Paris, 1974.
31. B. Teissier, “Introduction to equisingularity problem,” Algebraic geometry (Proc. Sympos. Pure Math. 29, Humboldt State Univ., Arcata, Calif., 1974), pp. 593–632, Amer. Math. Soc., Providence, R.I., 1975.
32. A. N. Varchenko, “A lower bound for the codimension of the \(\mu = \text{const} \) stratum in terms of the mixed Hodge structure,” Vestnik Moskov. Univ. Ser. I Mat. Mekh. 120 (1982), no. 6, 28–31 (Russian). English translation: Moscow Univ. Math. Bull. 37 (1982), no. 6, 30–33.
33. C. T. C. Wall, “Finite determinacy of smooth map-germs,” Bull. London Math. Soc. 13 (1981), no. 6, 481–539.
34. O. Zariski, “Some open questions in the theory of singularities,” Bull. Amer. Math. Soc. 77 (1971) 481–491.

C. EYRAL, INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, ŚNIADECKICH 8, 00-656 WARSAW, POLAND
E-mail address: eyralchr@yahoo.com

M. RUAS, INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO, UNIVERSIDADE DE SÃO PAULO, AVENIDA TRABALHADOR SÃO-CARLENS, 400 - CENTRO, CAIXA POSTAL 668, 13566-590 SÃO CARLOS - SP, BRAZIL
E-mail address: maasruas@icmc.usp.br