Recent developments in orally disintegrating mini tablets

Sachin Sarashetti, Vikas Jain*, Gowda D V, Pooja Mallya, Satish Babu

Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivaramreshwara Nagar, Mysuru – 570015, Karnataka, India

Article History:
Received on: 02 Jan 2020
Revised on: 06 Feb 2020
Accepted on: 08 Feb 2020

Keywords:
Bio adhesive, Gastro retentive, Encapsulated mini tablets, Mini Tablets, Multiple unit dosage forms

ABSTRACT
Solid oral dosage forms are most suitable dosage forms; preferably tablets are widely accepted by people of different age groups. Mini tablets are tablets with a diameter equal to or smaller than 2–3 mm. Mini tablets are multiple unit dosage forms and are advantageous than pellets or any other oral dosage forms as they are easy to manufacture and stability problems are less. Many types of mini tablets are there like bio adhesive mini tablets, pH responsive mini tablets, gastro retentive mini tablets, paediatric mini tablets, oral disintegrating mini tablets. Current ODT developments meet multiple pharmaceutical and patient needs, including better life-cycle management to easy treatment for paediatric, geriatric and psychiatric dysphagic patients. Orally disintegrating dosage forms are suitable for patients, especially who find it inconvenient to swallow traditional tablets and capsules with an 8-oz glass of water for one reason or another. These essentially reduce the variation between subjects. Mini tablets which disintegrate orally can be evaluated by testing for dissolution, disintegrating testing and hardness. The need for non-invasive delivery systems continues due to the poor acceptance and enforcement by patients of current delivery schemes, limited market space for drug companies and product usage, coupled with high disease management costs. The review emphasizes on advantages of mini tablets, types, methods of manufacturing and modes of administration and evaluation of mini tablets.

*Corresponding Author
Name: Vikas Jain
Phone: +91 8527655100
Email: vikasjain@jssuni.edu.in

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11i3.2520

INTRODUCTION
Solid dosage forms (tablets) are widely used forms of dosage forms. There are many inventions which have taken place in delivery of drugs, but ingestion is identified as best site for administering because of its best properties like ease of administration, therapy is low, dose is accurate and is also intensive of patient conformity, particularly for geriatrics patients as well as paediatrics. The most common form of dosage used in pediatrics is liquid dosage form because it is safe and easy form of administration for children. But in some cases liquid dosage forms have difficulties in formulation in conditions like taste maskin, bitter drugs. Mini tablets and pellets (oral dosage form) are said to be novel method for pediatric delivery. The diameter size of mini tablets are between 2 and 5 mm (Lennartz and Mielck, 1998). Orally disintegrating mini tablets are new type of dosage forms which disintegrate in mouth (1 to 3 min) devoid of the requirement of water distinct different forms of oral-solid dose forms (Abdelbary et al., 2005). Orally Disintegrating Mini Tablets (ODMTs) are known as “quickly disintegrating”, “quickdissolve”, “crunchmelt”, “bitedispersible”, “mouthdissolve”, of API that breakdown rapidly generally within 1 minute once located on
tongue.” ODTs disintegration and “oro-dispersible” tablets (Habib et al., 2000). USFDA outlined ODTs as “A solid dosage form comprising time usually varies from seconds to about a minute. United States Pharmacopoeia (USP) approves the terminology of these dosage forms as ODTs. In recent times, EP has been made use of the word oro-dispersible tablet which dissolves immediately and inside 3 minutes in buccal cavity prior to swallowing (Fu et al., 2004). These also emphasizes on classification, advantages, disadvantages, categories, characteristics, and method of preparation of mini tablets.

CLASSIFICATION OF ODT’S

ODTs are classified into three categories such as first, second and third generation ODTs (Reddy et al., 2009). Table 1 depicts the methodology involved in preparation of ODTs along with its advantages and disadvantages (Bangale et al., 2011; Ghosh et al., 2011).

Advantages

Advantages of mini tablets are as follows
a) Helps in maintaining steady plasma levels
b) Required strengths and required sizes can be prepared (Pich and Moest, 1989)
c) Helps in masking the bitter taste which is useful for infants (Munday and Fassihi, 1989)
d) Mini tablets have quick dissolving time of drug and absorption generate faster onset
f) Mini tablets gives high drug loading and lesser risk of dose dumping (Mastoi, 2018)

Disadvantages

a) The drugs with high dose can not be administered through mini tables.
b) Flow gets affected due to the smaller size of powders and it may even get stuck to the die or punches (Preis, 2015)

Different categories of Mini-tablets

Table 2 depicts the types of mini tablets along with the advantages and disadvantages.

Pediatric mini tablets

Pediatric mini tablet is administered mainly to small children. As when compared with regular tablets which are larger in size and has problems to swallow. To overcome these problems preparation of mini tablets helps in patient receiving.

Floating-mini tablets or Gastro-retentive mini tablets

GRMT are administered to discharge the drug in GIT for longer duration. Gas generating agents helps tablet to float on gastro intestinal fluid content. To increase the drug loading gas generating agents like sodium bicarbonate are used for coating purpose. Mini tablet coating is mainly done by fluid bed processor technique (Thomson et al., 2009).

Bioadhesive Vaginal Mini orally disintegrating Tablets

These dosage forms lead to less retention time, leakage, and less patient compliance. To avoid these type of problems the use of bio-adhesive polymers is better. Bio adhesive polymers are easily soluble and helps in overcoming these type of problems (but in larger size tablet loss is reported) (Biradar and Bhatagavi, 2005).

pH responsive orally disintegrating mini tablets

PH of GIT varies (small intestine 4-5), (stomach 1-3), (colon 5.7-6.8), (ileum 6.6-7.6). Mainly used polymers are Eudragit L100 and Eudragit S 100

Oral dispersable mini tablets

These are suitable for infants because of their characters like smaller size and faster disintegration but the condition is that they have to disintegrate in mouth without the use of water. Soft paste or suspensions helps in providing smooth swallowing and also good feel to the mouth (Singh et al., 2018).

ODTs are categorised into Pediatric mini tablets, Gastro retentive mini tablets and Bio adhesive mini tablets etc and its advantages and disadvantages are
Table 1: ODT’s Classification.

Methodology	1st generation ODTs	2nd generation ODTs	3rd generation ODTs
Advantages	Rapid disintegration of ODTs	Rapid disintegration of ODTs	1. low hardness of tablets 2. High porosity Low density
Disadvantages	1. Handling was difficult 2. moisture sensitive 3. No taste masking 4. Low density and hardness	1. low hardness of tablets	1. High porosity 2. Low density 3. low hardness

Table 2: Type of OTDs

Sl/No	Type	Advantages	Dis-Advantages
1	Pediatric mini tablets	Simpler to administer	Microbial instability
2	Gastro retentive mini tablets	Can generate gas when administered	Patient compliance is an issue
3	Bio adhesive mini tablets	High dose accuracy	Vaginal disintegration is low
4	Bi-phase mini tablets	Simpler to administer	Patient compliance is an issue
5	Oral disintegrating mini tablets	Rapidly disintegrates	Taste masking is an issue

Table 3: Examples of Coloring agent.

FD & C Approved Color	Common Name
YELLOW5	Tartrazine
YELLOW6	Sunset Yellow
RED3	Erythrosine

Glidants: Talc, PEG 400, Paraffin, Mg-stearate, Zn-stearate, etc

Table 4: Weight Variation (IP)

Avg.wt	% variation
≤ 80 miligrams	±10 percentage
≥ 80 miligrams to ≤ 250 miligrams	±7.5 percentage
≥ 250 miligrams	±5 percentage

EXCIPEINT USED IN THE PREPARATION OF MINI-TABLET

The below excipients were required in development of ODTs (Pahuwa et al., 2010; Nagar et al., 2011).

Super disintegrants

Microcrystalline cellulose, Sodium starch glycolate, Crospovidone, Cross Carmellose Sodium, Pregelatinized starch, Calcium CMC and Modified corn starch.

Bulking agents

CaCO₃, MgCaCO₃, Mannitol, CaSO₄ etc

Emulsifying Agents

PEG-Ester, Alkyl sulfates, Sucrose ester etc.

Sweetening agent

Natural-Dextrose, Sucrose, Mannitol, Lactose.

Artificial-Cyclamate, Aspartame, saccharin.

Flavoring agent

Glicine, Natural-Colorants etc.
Table 5: List of mini tablets available in market

Sl/No	Generic Name	Brand Name
i.	Zaflrlukast	Accolate
ii.	Pancrelipase	Ultresa
iii.	Donepezil Hydrochloride	Aricept
iv.	GalantamineHBr ER	Razadyne ER
v.	Fenoϑibric Acid(Capsules)	Trilipix
vi.	Levonorgestrel and Ethinyl Estradiol	Alesse
vii.	Prasugrel(Tables)	Effient
viii.	Olanzapine	Zyprexa, ZyprexaZydis
ix.	Sumatriptan and Naproxen Sodium Tablets	Treximet
x.	Warfarin Sodium tabs	Coumadin
xi.	Vorapaxar Tablets	Zontivity
xii.	Hydromorphone HCLExtended Release Tablets	Exalgo

Table 6: Encapsulated mini tablets available in the market

Sl/No	Generic- Name	Brand Name
1	Pancrelipase	Ultresa
2	GalantamineHBr ER	Razadyne ER
3	Fenoϑibric Acid Capsules	Trilipix

Strawberry, Vanilla, Fruit essence, Peppermint oil, menthol etc.

Surface Active agents
SLS, Polyoxyethylene sorbitol fatty acid esters etc.

Binders
HPMC, PVP, PVA.

Colorings Agents
FD and C approved colors include tartrazine, sunset yellow, erythrosine as described in Table 3.

Methods to Manufacturing Mini Tablets
Mini tablets can be prepared by Direct compression, wet granulation, dry granulation and melt extrusion techniques as shown in Figure 1 based on the excipients used and class of drug.

Direct- compression method
The method involves pressing the tablets directly from powder blend comprising Active pharmaceutical ingredient and adjuvants into biconvex mini tablet (Rao et al., 2011).

Wet granulation method
The technique involves granulation attained in a fluid media utilizing polyvinyl pyrrolidone k-30 (PVP K30) as a primary binder in a blend (Bandelin, 1989). The granular part produced are pulverized in an Erweka FGS oscillator mill (sieve 0.6 mm).

Dry granulation method
This method involves the use of instrument called roller compactor. The compacted substance is decreased to the appropriate size to obtain granules that are blended with inert adjuvant and ultimately compressed on a rotary compression equipment (Lopes et al., 2006).

Melt-Extrusion technique
In melt-extruder device variables such as screw speed, feeding rate and temp are maintained in melting point range of substance. The obtained granules are then packed together to mini tablets using compression machine (Karthikeyan et al., 2013). As a result, tablets with different content, doses and release properties can be manufactured (Shaikh et al., 2018).

Coating of mini tablets
Polymers are used in coating of mini tablets for modifying the release of the drug in a sustained manner enterically. Some of the polymers used in enteric coating include cellulose derivatives, acrylate polymers and phthalates (Keerthi et al., 2014).

Polymers control the release of the drug from the dosage form by acting as a reservoir of the drug. Commonly used polymers in the fabrication of ODTs have been picturised in Figure 2.

Mini tablets can be administered by direct administration, filling in hard gelatin capsules or automatic dose dispensing device (Chauhan, 2017).
Figure 2: Polymers used to prepare ODMTs

Filling in hard gelatin capsules
Mini tablets handling is difficult as they are smaller in size so they are filling in hard capsule (gelatin) and administered (Bechgaard and Nielsen, 1978).

Dose dispensing device (Automatic)
Helps in dispensing tablets of required dose (Rps, 2006).

EVALUATION STUDY OF FAST DISSOLVING MINI TABLET

Preformulation studies mini-tablets
Preformulation study is seen by techniques such as angle of repose, bulk density and tapped density, Carr’s index and Hauser’s ratio (Priyanka et al., 2018).

Compatibility studies of drug excipients
By DSC and FT-IR studies (Abdelmaqsoud et al., 2019).

POST-COMPRESSION STUDIES

1. **Tablet thickness**
y using Vernier Callipers

2. **Weight variation**
From the prepared batch twenty tablets were taken randomly for weighing to check for variation of weight as shown in Table 4. (Patil et al., 2010).

3. **Friability**
The test for friability is done using Roche friabulator (B et al., 2010).

\[
\text{%Friability} = \frac{\text{Final weight}}{\text{Initial weight}} \times 100
\]

4. **Hardness**
The limit for hardness of uncoated tablet is 3-5 kg/cm2 (Songa et al., 2013).

5. **Drug content (uniformity)**
Absorbance of drug is calculated at their respective wavelength by using Ultra violetvisible spectrophotometer (Morita et al., 2002).

6. **Disintegration time**
Disintegration time is observed at 25 rpm, 37°C. (Bajaj et al., 2012)

7. **In vivo disintegration time**
A panel of healthy human volunteers is used to perform this test. The time taken by volunteers to disintegrate by retaining the tablet in mouth is noted.

8. **In-vitro Dissolution Studies**
This study was done using USP type 2 apparatus at particular temperature and RPM for exact point in time in appropriate buffer solution.

9. **Stability Studies**
Storage conditions

\[40°C \pm 2°C/ 75\%RH; \quad 25°C \pm 2°C/ 60\%RH \pm 5\%RH\] (Tehseen and Rao, 2013)

The generic and brand names of the mini tablets available in the market is depicted in Table 5.

The generic and brand names of encapsulated mini tablets available in the market are shown in Table 6.
CONCLUSIONS

The overview of mini tablet formulation has resolved number of the issues encountered in administration of medication to the paediatric and aged patients, who constitute a larger proportion of the world’s population. Nowadays, ODTs are available in market has OTC products to treat flu symptoms, cold and allergies. These ODTs were formulated as full porous in structure of the tablet for rapid dissolution of tablet matrix with pleasant taste and with appropriate mechanical strength. Therefore for rapid disintegration of tablets, super disintegrating agents were used in different concentration depending on the drugs. The research work is still going on and more number of manufactures are formulating fast dissolving tablets. More number of ODTs products was marketed and which are formulated by utilizing advanced innovative technologies. Therefore, ODTs were formulating for more number of drugs and for various treatment of disease in future.

Mini Tablets offer great advantage over single unit dosage forms. Accurate dose of drug can be given to patients to increase the efficiency. Inter and intra subject variability can be decreased by using mini tablets. The toxic effects of potent drug overdose while using conventional dosage forms can be reduced by mini tablets. Dose dumping and local irritation can be avoided by the use of mini tablets. For those drugs whose absorption is more in small intestine mini tablet dosage form is beneficial as they can easily pass through the duodenum independent of gastric emptying and intestinal motility. Bio adhesive mini tablets show increased bio adhesion and increased effect than that of single unit bio adhesive tablets. Mini tablets are more acceptable in children and elderly people as they are easy to swallow. Mini tablets can be used as a solution for the shortcomings of single unit dosage forms. Although manufacturing cost is more and problems like sticking, handling may arise during manufacturing of mini tablets, they are effective alternative solution for single unit dosage forms.

Conflict of Interest
None.

Funding Support
None.

REFERENCES

Abdelbary, G., Eouani, C., Prinderre, P., Joachim, J., Reynier, J., Piccerelle, P. 2005. Determination of the in vitro disintegration profile of rapidly disintegrating tablets and correlation with oral disintegration. International Journal of Pharmaceutics, 292(1-2):29–41.

Abdelmaqsoud, D., Mohsen, M., Hassan, A., Ismail, A., Mahmoud, K., sayed, F. E. 2019. Effect of Gamma irradiation on the nanofree volume and electrical properties of PVA/PEG/reduced graphene oxide nanocomposites. Arab Journal of Nuclear Sciences and Applications, 52(4):175–189.

B, S., N., G, A, J., R, A, B., & N, K, P. 2010. Isolation and evaluation of mucilage of Artocarpus heterophyllus as a tablet binder. Journal of Chemical and Pharmaceutical Research, 2(6):161–166.

Bajaj, S., Singla, D., S, N. 2012. Stability testing of pharmaceutical products. Journal of Applied Pharmaceutical Science, 2(3):129–138.

Bandelin, F. J. 1989. Compressed tablets by wet granulation. 1:131–193.

Bangale, G. S., Yadav, G. J., Shinde, G., Benjamin, S. 2011. New generation of orodispersible tablets: Recent advances and future prospects. Int. J. Pharm. Pharm. Res, 1:52–62.

Bechgaard, H., Nielsen, G. H. 1978. Controlled-Release Multiple-Units and Single-Unit Doses a Literature Review. Drug Development and Industrial Pharmacy, 4(1):53–67.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.

Biradar, S., Bhagavati, I. K. 2005. Fast dissolving drug delivery systems: a brief overview. The Internet Journal of Pharmacology, 4(2):26–30.
J. Pharm. Sci. Rev Res, 28(1):214–221.

Lennartz, P., Mielck, J. B. 1998. Minitableting: improving the compactability of paracetamol powder mixtures. International Journal of Pharmaceutics, 173(1-2):75–85.

Lopes, C. M., Lobo, J. M. S., Costa, P., Pinto, J. F. 2006. Directly Compressed Mini Matrix Tablets Containing Ibuprofen: Preparation and Evaluation of Sustained Release. Drug Development and Industrial Pharmacy, 32(1):95–106.

Mastoi, S. M. 2018. Comparison of antidyssplasic potential of 80 milligrams of fenofibrated with 8 grams of nigella sativa seeds daily. Universal Journal of Pharmaceutical Research, 2(6):50–52.

Morita, Y., Tsushima, Y., Yasui, M., Termoz, R., Ajikin, J., Takayama, K. 2002. Evaluation of the Disintegration Time of Rapidly Disintegrating Tablets via a Novel Method Utilizing a CCD Camera. Chemical & pharmaceutical bulletin, 50(9):1181–1181.

Munday, D., Fassihi, A. 1989. Controlled release delivery: Effect of coating composition on release characteristics of mini-tablets. International Journal of Pharmaceutics, 52(2):109–114.

Nagar, P., Singh, K., Chauhan, I., Verma, M., Khan, M. Y. A., S. R., G. N. 2011. Orally disintegrating tablets: formulation, preparation techniques and evaluation. Journal of Applied Pharmaceutical Science, 1(4):35–45.

Pahwa, R., Piplani, M., Sharma, P. C., Kaushik, D., Nanda, S. 2010. Orally disintegrating tablets—Friendly to pediatrics and geriatrics. Archives of applied science research. 2:35–48.

Patil, B. S., Kulkarni, U., Bhavik, P., Soodam, S. R., Korwar, P. G. 2010. Formulation and evaluation of mouth dissolving tablets of nimesulide by new coprocessed technique. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 1(4):587–592.

Pich, C. H., Moest, T. 1989. Magensaftresistent überzogene zylindrische Pankreatin-Mikrotabletten. EU Patent EP, 0(315).

Preis, M. 2015. Orally Disintegrating Films and Mini-Tablets—Innovative Dosage Forms of Choice for Pediatric Use. AAPS PharmSciTech, 16(2):234–241.

Priyanka, P., Kumar, K., Teotia, D. 2018. A comprehensive review on pharmaceutical mini tablets. Journal of Drug Delivery and Therapeutics, 8(6):382–390.

Rao, N. G. R., Hadi, M. A., Panchal, H. A. 2011. A Novel approach to sustained Montelukast sodium release: Differentially coated mini-tablets in HPMC capsules. International Journal of Pharmaceutical and Biomedical Research (IJPBR), 2(2):90–97.

Reddy, D., Pillay, V., Choonara, Y. E., du Toit, L. C. 2009. Rapidly disintegrating oramucosal drug delivery technologies. Pharmaceutical Development and Technology, 14(6):588–601.

Rs, R. 2006. Low high-density lipoprotein cholesterol and cardiovascular disease: risk reduction with statin therapy. Am Heart J, 151(3):556–563.

Shaikh, S. C., Sanap, D., Bhusari, D. V., Jain, S., Kochar, P. P., Sanchati, V. N. 2018. Formulation and evaluation of ibuprofen gastro-retentive floating tablets. Universal Journal of Pharmaceutical Research, 3(4):20–25.

Singh, S., Virmani, T., Virmani, R., Mahlawat, G., Kumar, P. 2018. Fast dissolving drug delivery systems: formulation, preparation techniques and evaluation. Universal Journal of Pharmaceutical Research, 3(4):60–69.

Songa, A. S., Meka, V. S., Nali, S. R., Ch., M., venkata ramana murthy kolapalli 2013. A Biphasic Release System of Lornoxicam Based on [Tablets in Capsule] Device. Jordan Journal of Pharmaceutical Sciences, 6(1):9–22.

Tehseen, N., Rao, M. A. H. 2013. Design and characterization of twice daily mini-tablets formulation of pregabalin. International Journal of Pharmacy and Pharmaceutical Sciences, 5(1):168–175.

Thomson, S. A., Tuleu, C., Wong, I. C. K., Keady, S., Pitt, K. G., Sutcliffe, A. G. 2009. Minitablets: New Modality to Deliver Medicines to Preschool-Aged Children. Pediatrics, 123(2):e235–e238.