GraVoS: Gradient based Voxel Selection for 3D Detection

Oren Shrout
Technion, Israel
shrout.oren@gmail.com

Yizhak Ben-Shabat
Technion, Israel & ANU, Australia
sitzikbs@technion.ac.il

Ayellet Tal
Technion, Israel
ayellet@ee.technion.ac.il

Figure 1: GraVoS for 3D object detection. Given a 3D point cloud and its associated voxels (cyan), we propose a method that selects a subset of network-dependent meaningful voxels (salmon). The selected voxels mostly belong to the classes with fewer training instances, such as the Cyclists and Pedestrians, which are the more challenging classes. It is shown that considering only this subset improves the performance of numerous voxel-based detectors.

Abstract

3D object detection within large 3D scenes is challenging not only due to the sparse and irregular 3D point clouds, but also due to the extreme foreground-background imbalance in the scene and class imbalance. A common approach is to add ground-truth objects from other scenes. Differently, we propose to modify the scenes by removing elements (voxels), rather than adding ones. Our approach selects the "meaningful" voxels, in a manner that addresses both types dataset imbalance. The approach is general and can be applied to any voxel-based detector; yet the meaningfulness of a voxel is network-dependent. Our voxel selection is shown to improve the performance of several prominent 3D detection methods.

1. Introduction

3D object detection has gained an increasing importance in both industry and academia due to its wide range of applications, including autonomous driving and robotics [8][28]. LiDAR sensors are the de-facto standard acquisition devices for capturing 3D outdoor scenes (Figure 1). They produce sparse and irregular 3D point clouds, which are used in a variety of scene perception and understanding tasks.

There are three prominent challenges in outdoor point cloud datasets for detection. The first is the small size of the datasets, in terms of the number of scenes. The second is the large number of points in the scene vs. the small number of points on the training examples (objects). A single scene might contain hundreds of thousands, or even millions, of points but only a handful of objects. The third is class
imbalance, where some classes might contain significantly more instances than the other classes. This often results in lower predictive accuracy for the infrequent classes [12, 16].

To handle the first challenge, it was proposed to enrich the dataset during training with global operations, applied to the whole point cloud, such as rotation along the Z-axis, random flips along the X-axis, and coordinate scaling [30, 32, 40]. We note that most methods that solve Challenges 2 and 3 indirectly also solve this first challenge.

To solve the second challenge, it is suggested to also augment the scene by local operations, applied to points belonging to individual objects [4, 5]. Local operations include random point drop out, frustum drop out, additive noise added to the object, intra-object mixing and swapping regions between different objects.

To solve the third challenge, as well as the second one, [21, 22, 23, 30] propose to add ground-truth objects from different training point-clouds to the scene, for training. This type of augmentation indeed mitigates the imbalance. It does not take into account the network architecture, though Reuse et al. [20] show, through a series of experiments, that both local and global data augmentation for 3D object detection strongly depends not only on the dataset, but also on the network architecture. Thus, network-dependent augmentations are beneficial.

We present a novel network-dependent data modification approach that addresses the latter two challenges. (We address the first challenge indirectly, similarly to [21, 22, 23].) The key idea is to learn a subset of elements of the scene, which are meaningful for object detection. Inline with 20’s observation, meaningfulness is defined in the context of the network and not only of the scene. Considering only this subset as input will allow us not only to decrease the number of elements in the scene, but also to increase the class balance within a given scene.

To realize this idea, we focus on SoTA detection networks that transform point clouds into voxels as a first step in their pipeline. The main reason behind transforming the input to voxels is reducing the size of the input, as only the occupied voxels are then considered. This enables these systems to work on extremely large scenes. Another reason to work with voxels is the ability to impose structure on the input.

Generally speaking, in this voxel-based setup, meaningful voxels are those for which the model "struggles" to locate the objects. Hence, the gradients play a major role in determining the meaningful voxels.

We will show that when focusing only on the meaningful voxels and removing the non-informative ones, most of the discarded voxels belong to the scene background. Few of the removed voxels are associated with the prevalent classes and almost none are associated with the non-prevalent classes. Our strategy may be contrasted with dropout augmentation techniques, which reduce the number of elements randomly [4, 5].

This class distribution balancing is demonstrated in Figure 1. Given a point cloud (cyan), our selected subset of the meaningful voxels (salmon) contains significantly fewer points from the background (the points are voxel centers here), more points on the objects that belong to the Car class (the most prevalent class), and almost all the points on the objects that belong the Pedestrian and the Cyclist classes.

Our method is general and may be applied to different voxel-based networks. Furthermore, it comes at no additional inference time cost. We show results on four SoTA networks: SECOND [30], Part-A2 [23], Voxel R-CNN [6], and CenterPoint [37] on the well-established KITTI dataset [7, 8]. The performance of all networks improves, in particular when considering the difficult categories of Pedestrian and Cyclist. For instance, the performance of [23] on the benchmark’s moderate subset improves by 2.32% & 1.15% for the non-prevalent classes (Cyclist and Pedestrian), which constitutes an error reduction of 8.20% & 2.77%, respectively.

The main contributions of this paper are hence:

- A novel & generic "meaningful" voxel selection method, called Gradient-based Voxel Selection.
- A training procedure that uses the selected voxels to improve 3D detection without additional data. This procedure combines information from different stages of the model’s training.
- Demonstrating improved performance of four voxel-based SoTA detection methods, successfully coping with both the inherent class imbalance and the foreground-background imbalance.

2. Related Work

3D Object Detection. Object detection methods aim at localizing objects in a given scene and classifying them. 3D detection methods can be categorized into grid-based [3, 6, 14, 23, 30, 31, 32, 36, 37, 38, 39, 40] and point-based methods [21, 22, 24, 33, 35]. See [11] for an excellent survey on deep learning for point clouds in general and for detection in particular.

Grid-based methods first transform the given point cloud into a regular representation, either voxels [3, 6, 14, 23, 30, 36, 37, 38, 39, 40] or a 2D Bird-Eye View (BEV) [31, 32]. This enables processing using a 3D or a 2D Convolutional Neural Networks (CNN), respectively. The resulting voxels, however, have a very sparse spatial distribution [30]. To handle sparsity, sparse convolutions [9, 10] have been proposed. Modifications of the sparse convolution were proposed by [30] for efficient features extraction and by [6, 21, 23] for efficiently generating box proposals. These grid-based approaches provide an efficient and accurate solution, but are limited when the data is imbalanced.
Figure 2: **Training with GraVoS.** An input point cloud (cyan) is voxelized and fed into a pre-trained voxel-based detector at two different training stages, early and late (with frozen weights). These detectors’ losses are computed and are the input of GraVoS, which performs voxel selection. The selected voxels (salmon) are then fed into the late detector, initializing its weights where it left off (θ_l) and continuing training using the selected voxels exclusively.

3. **Gradient-based Voxel Selection (GraVoS)**

Given an input point-cloud of an outdoor scene, 3D detectors aim to localize objects and classify them. We focus on two properties that make typical scenes challenging for detection systems: (1) foreground-background imbalance and (2) class imbalance.

We concentrate on voxel-based detectors, since they are beneficial in handling scenes with a very large number of points. These detectors start by converting the given point-cloud scene into a voxel grid. Then, non-occupied voxels are removed, and points in every occupied voxel are grouped. To address the varying number of points in the voxels, random sampling of points is applied to each voxel. These voxels are then fed into a detection network, which is usually a sparse 3D CNN, followed by a region proposal network (RPN). The detector outputs both bounding box proposals and class predictions. This approach exhibits good performance, in particular in the prevalent classes. However, the performance might deteriorate for other classes.

Training with GraVoS module. We propose to add a selection component to the above approach. Its goal is to select the “meaningful” voxels and to remove the less meaningful ones from the scene, in a manner that addresses the two challenges discussed above.

Figure 2 illustrates how to train an existing 3D voxel-based detector with our Gradient-based Voxel Selection (GraVoS) module. First, a voxel detector $f(\cdot)$ is trained on the dataset without any modification. Its parameters are stored at two different training stages – early stage and late stage, θ_e and θ_l, respectively. Then, the voxels are fed into these pre-trained detectors, $f(V; \theta_e)$, $f(V; \theta_l)$, separately. Each detector’s location loss is fed into our proposed GraVoS module, along with the computational graph and the voxelized scene. Within the GraVoS module, the meaningful voxels of the voxelized scene are found. These become the input to a new copy of the late stage detector $f(V; \theta)$, which is further trained using only this refined subset.

We use two different training stages since they provide
Figure 3: **GraVoS Module.** The voxelized point cloud is fed into the GraVoS module and the pre-trained detector (at two training stages). The detectors’ losses are computed and fed into the GraVoS module. These losses are used to compute the gradient magnitude at each voxel. For each detector stage the voxels are selected based on their gradients’ magnitude (highlighted in salmon). The selected voxels from the two stages are then merged to form the final selected voxels subset S^{mf}.

complementary information regarding voxel meaningfulness. The late stage detector assigns higher values to meaningful and unique voxels and lower values for meaningful voxels in repetitive and easy to learn features. Conversely, in the early stage detector, these "easy" features still maintain a high gradient magnitude. Though learned early on, they are essential for recognizing the objects. Hence, merging the two sets is beneficial, as shown in the ablation study.

GraVoS Module. GraVoS aims at selecting the meaningful voxels and discard the less informative ones. Its structure is illustrated in Figure 3. A voxelized grid of the point cloud scene (cyan) and the detector location losses from the early and the late stages, as well as the computational graphs, are fed into the GraVoS module. Then, for each detector’s loss the gradients’ magnitude are calculated and the meaningful voxels are found (salmon). Finally, the voxels that pass the threshold from each detector’s stage are merged, to create the selected voxels set. We elaborate on the selection process hereafter.

Specifically, the magnitude of the gradients of the losses w.r.t. each input point (each voxel contains its points) is computed. We then aggregate these values for all the points in the voxel, to get a scalar value per voxel. This value will be used later as an informativeness measure. Formally, let L_e, L_l denote the computed location losses for the early and the late stages, respectively. The gradient magnitude per voxel v_i is computed as:

$$G^e_{v_i} = \frac{1}{n_i} \sum_{p_j \in v_i} \left\| \frac{\partial L_e}{\partial p_j} \right\|, \quad G^l_{v_i} = \frac{1}{n_i} \sum_{p_j \in v_i} \left\| \frac{\partial L_l}{\partial p_j} \right\|,$$

where n_i is the number of points p_j in voxel v_i.

For each detector stage, early and late, we use the gradient magnitude to create a subset of meaningful voxels S_e and S_l, respectively. For the late stage detector we assign the voxels with the top-k magnitude values $G^l_{v_i}$ to S_l. For the early stage detector we assign voxels with magnitude values $G^e_{v_i}$ larger than the mean $G^e_{v_i}$ to S_e. The different threshold mechanisms are due to the fact that at the early stages the high gradients are noisy, thus we should not consider only the largest gradients. We show the benefit of the different mechanisms in the ablation study. Formally, the subsets are calculated as described in Equations (2) to (3).

$$S_e = \{ v_i \mid G^e_{v_i} \geq \overline{G^e_{v_i}} \}, \quad (2)$$
$$S_l = \{ v_i \mid G^l_{v_i} \in \text{top-k}(G^l_{v_i}) \}. \quad (3)$$

The parameter k gives the user control over the percentage of voxels that are considered meaningful. It is selected based on two variables, (1) n_{vs}, the number of meaningful voxels in the final selected set (S^{mf}) and (2) ν_{idr}, the intra-detector ratio between the late and the early detectors. It is calculated as $k = \nu_{idr} \cdot n_{vs}$. The parameter n_{vs} is a hyper parameter that can be set by the user. (In practice, it is set to 80% of the number of input voxels).

Next, we merge the subsets above to form the final meaningful voxels subset, by a union operator:

$$S^{mf} = S_l \cup S_e. \quad (4)$$

Finally, the selected voxels of S^{mf} are fed into the pre-trained detector $f(V; \theta)$, which is fine tuned for several epochs using the detector’s original losses. Note that GraVoS does not affect the inference time, since it is only applied at training.

Figure 4 depicts the gradient magnitudes and the resulting S^{mf} for a pre-trained detector (Voxel R-CNN [6]) for the three object classes of KITTI’s benchmarks: Car, Cyclist, and Pedestrian. The background voxels have low gradient magnitudes (b), making them less likely than foreground voxels to be selected for training the detector (c). Conversely,
Figure 4: **Gradient-based voxel selection visualization.** Given an input point cloud (a), the magnitudes of the gradients are computed (b), and the selected voxel subset is computed (c). The magnitude of the gradients is depicted as a colormap from blue to red, representing low to high values. Evidently, the gradients on the background voxels are lower and are therefore less likely to be selected. The objects’ voxels have high gradients and therefore most of their voxels are retained in the final subset. However, there are differences between the classes: The less prominent classes, *Cyclist* (middle) and *Pedestrian* (bottom) retain relatively more points than the prominent class *Car* (top).

Figure 5: **Incorporating GraVoS into two-stage detectors.** Voxel selection is performed during the first stage, as before. Since in two-stage architectures, the detector consists of a proposal generator and a refinement module, we use the detector without the refinement component in the first stage. The last refinement stage (in the second stage) gets the output of the proposal generator (green), as well as the required local data that is bypassed through GraVoS.

many more points on the objects are maintained thanks to their high gradient magnitude. Almost all the voxels of the *Cyclist* and *Pedestrian* objects have high gradients, and are therefore selected to the final subset, compared to the *Car* objects, with a slightly smaller subset.

GraVoS for two-stage detectors. Generally speaking, 3D object detectors can be grouped by the number of stages in their detection pipeline, into single-stage [14, 30, 31, 32, 33, 37, 40] or two-stage detectors [2, 3, 6, 13, 15, 17, 21, 22, 23, 29, 34, 35]. Single-stage approaches are fast since they usually have a single feed-forward network to predict the bounding boxes and classes. However, their main drawback is accuracy, since there is no component that specializes and fine tunes the box orientations. The two-stage approaches have an additional refinement module. This makes them slower and heavier in memory, but the accuracy is improved.

GraVoS is general in the sense that it can be used both for single-stage and for two-stage voxel-based detectors. However, the refinement stage (second stage) requires local information from the original input (point/voxels), which is not available after the selection process. As illustrated in Figure 5, in this case, we apply GraVoS on the first stage.
we explore several design choices for GraVoS. We compare 3D object detection SoTA methods on the well-established KITTI dataset [8], with and without our GraVoS module and training procedure. In addition, in Section 4.2 we explore several design choices for GraVoS.

KITTI dataset. KITTI [8] is the most widely-used 3D object detection dataset for autonomous driving. It contains 7481 examples that are divided into a training subset, containing 3712 examples, and a validation subset, containing 3769 examples [23]. The test set contains 7518 examples. We report results for all three classes in KITTI's benchmarks, Car, Pedestrian and Cyclist, which contain 28742, 4487, and 1627 object instances, respectively.

Evaluation metrics. We report our results using the corrected average precision (AP) metric of Equation 5, which is the de facto standard for evaluating 3D detection [25]:

$$AP = \frac{1}{|R|} \sum_{r \in R} \max_{r' \geq r} \rho(r').$$

Here, $\rho(r)$ is the precision at recall r, $R = [1/40, 2/40, \ldots, 1]$ and $|R| = 40$. For precision and recall we use the standard IoU thresholds of 0.7, 0.5, 0.5 for the Car, Pedestrian and Cyclist classes, respectively.

The evaluation on KITTI is divided into three difficulty categories: Easy, Moderate and Hard, based on the occlusion, the truncation and the object’s distance from the scanner. The more distant and more occluded the object is, the harder it is to detect.

4. Experiments

To evaluate the performance of our method, in Section 4.1 we compare 3D object detection SoTA methods on the well-established KITTI dataset [8], with and without our GraVoS module and training procedure. In addition, in Section 4.2 we explore several design choices for GraVoS.

4.1. Results

To demonstrate the generality and effectiveness of our method, we show that continuing to train four prominent 3D voxel-based object detectors with GraVoS selection yields improved performance on the challenging classes. The four detectors are SECOND [30], Voxel R-CNN [6], Part-A2 [23] and CenterPoint [37].

Table 1 reports the results for the 3D detection benchmark and Table 2 reports the results for the Bird-Eye View (BEV) detection benchmark. Similarly to Table 1, our method is beneficial for all four methods.

Table 1: Performance on the 3D detection benchmark. Each method’s performance is compared with and without our voxel selection. Results are reported for the Easy, Moderate (Mod.) and Hard categories on the three classes. Evidently, GraVoS improves the performance of all the methods for the non-prevalent classes, while it might slightly degrade the performance for the prevalent class. The average performance is always improved.

Method	Car Easy	Car Mod.	Car Hard	Cyclist Easy	Cyclist Mod.	Cyclist Hard	Pedestrian Easy	Pedestrian Mod.	Pedestrian Hard	Average Car	Average Cyclist	Average Pedestrian	Average All
SECOND [30]	90.79	81.87	78.75	81.85	65.42	61.26	54.90	49.84	45.15	69.51	49.96	57.75	45.15
Ours	89.53	81.06	78.07	84.36	66.41	62.61	57.75	51.99	47.54	82.89	71.13	52.43	68.81
Voxel R-CNN[6]	92.62	85.13	82.73	89.83	72.49	68.87	66.94	59.88	54.95	86.83	77.06	60.59	74.83
Ours	92.40	85.41	82.84	91.97	72.98	68.37	68.52	61.63	56.71	86.88	77.77	62.29	75.65
Part-A2 [23]	91.88	82.64	80.21	89.45	71.71	67.74	65.37	58.43	53.62	84.91	76.30	59.14	73.45
Ours	91.68	82.58	81.67	90.64	74.03	69.64	65.82	59.58	54.55	85.31	78.10	59.98	74.47
CenterPoint [37]	89.58	82.09	79.58	80.27	62.85	60.13	56.85	53.17	49.73	83.75	67.75	53.25	68.25
Ours	88.74	81.74	79.53	83.40	64.81	61.42	58.02	54.64	50.94	83.34	69.88	53.53	69.25

Table 2: Performance on the Bird Eye View (BEV) detection benchmark. Similarly to Table 1, our method is beneficial for all four methods.

Method	Car Easy	Car Mod.	Car Hard	Cyclist Easy	Cyclist Mod.	Cyclist Hard	Pedestrian Easy	Pedestrian Mod.	Pedestrian Hard	Average Car	Average Cyclist	Average Pedestrian	Average All
SECOND [30]	92.30	89.68	87.51	87.87	70.91	66.57	60.94	55.73	51.56	89.83	75.12	56.08	73.67
Ours	92.86	89.62	87.26	89.02	70.88	66.77	62.23	56.78	52.63	89.91	75.56	57.21	74.23
Voxel R-CNN [6]	95.96	91.43	90.70	93.63	76.09	72.58	69.97	63.60	59.04	92.70	80.77	64.20	79.22
Ours	95.96	91.96	89.49	94.47	76.32	71.60	72.37	66.24	60.61	92.47	80.80	66.31	79.86
Part-A2 [23]	92.89	90.14	88.17	91.19	75.42	70.97	68.31	61.70	57.33	90.40	79.19	62.45	77.35
Ours	92.85	90.07	88.13	93.13	75.91	72.68	68.51	62.40	58.04	90.35	80.57	62.98	77.97
CenterPoint [37]	92.26	89.30	88.10	83.84	66.40	63.05	61.26	58.08	54.83	89.89	71.10	58.06	73.01
Ours	91.91	88.90	88.00	85.68	68.22	64.51	62.32	59.19	55.80	89.60	72.80	59.10	73.84
Voxel selection ratio. This can be explained by the fact that uninformative voxels are discarded from the training process, allowing the network to focus on more informative voxels. A smaller ratio would reduce the number of training examples substantially, which will over-fit easily and degrade performance on the test set.

Intra-detector ratio. We study the number of voxels that should be taken from each stage (early and late) of the pre-trained detector. For that, we use the intra-detector ratio ν_{idr}, which quantifies the fraction of voxels from the late-stage detector w.r.t. the total number of selected voxels n_{vs}. When all the voxels are taken from the early-stage detector $\nu_{idr} = 0$ and when all the voxels are taken from the late-stage detector $\nu_{idr} = 1$. We start by setting $\nu_{idr} = 30/80$ and received class average accuracy of 67.58%. Then we start to increase the intra-detector ratio ν_{idr} by increments of 10/80, taking more voxels from the late-stage than from the early-stage, up to $\nu_{idr} = 1$, which yields accuracy of 68.48%. The best result is achieved for $\nu_{idr} = 50/80$, with detection accuracy of 68.81%. (For this experiment we use a fixed voxel selection ratio $\nu_{vs} = 0.8$.)

This study shows that selecting voxels mostly from the early-stage does not suffice for fine tuning the original detector (late-stage). Moreover, it shows that the early-stage provides additional information that the late-stage lacks, when a proper ratio is used.

Early-stage detector’s training duration. In our framework, we consider the fully trained detector as the late-stage detector. Therefore, we only have to choose for how long the detector needs to be trained in the early-stage. To this end, we tested different epoch choices for the early-stage. Table 3 shows that the performance is in favor of earlier epochs, where the first epoch achieves the best result. This is expected since after the first epochs, the magnitude of the gradients at meaningful voxels with features that are easy to learn had not yet vanished. However, even for higher epochs using the early-stage is beneficial and achieves better results on average than the original detector (67.76%). (For this ablation study we used $\nu_{vs} = 0.8$ and $\nu_{idr} = 50/80$.)

Class-level voxel balancing with GraVoS. We analyze GraVoS’s effectiveness by inspecting its influence on the

![Comparison to Dropout](image)

Figure 6: Comparison to Dropout. GraVoS is compared to the Dropout approach for different voxel selection ratios. The baseline is the constant performance of the detector (all voxels). When too few voxels are used (< 0.7), the detector misses objects, as expected. For ratios larger than 0.7, GraVoS outperforms other approaches significantly. This is due to the fact that we use the meaningful voxels.

Epoch	AP_{3D}
1	68.81
5	68.59
10	68.59
20	68.58
30	68.34
40	68.27

Table 3: Training duration for the early-stage detector. AP_{3D} is the average over all the classes and difficulty levels for different early-stage detectors. The best result is achieved after a single epoch. This may be attributed to the fact that the gradient magnitudes of easy-to-learn features are still non-negligible.
average number of voxels for each object category. Figure 7 shows that while GraVoS reduces the number of voxels in each object class, not all classes exhibit the same reduction. The background voxels are reduced by 39.58%, the Car category by 13.37%, while Cyclist and Pedestrian are hardly affected with only a 4.69% and 2.36% reduction, respectively. Essentially, GraVoS discards relatively more voxels from the background points than from objects. This inherently differs from the naive Dropout, where the reduction is uniform across the whole scene (80%). This indicates that GraVoS has an object-level data balancing effect.

Early and late detector mechanism choices

We tested three different choices for the early and late detectors: mean, median, and top-k. For the mean and median strategies, the voxels selected are those with gradients’ magnitude higher than the mean or median. For the top-k strategy, we consider two choices for the intra-detector ratio, $\nu_{idr} = 50/80$ and $\nu_{idr} = 30/80$, where 80% of the total voxels were sampled in this experiment.

Table 4 shows that that almost all the different choices improve the baseline detector (SECOND [30]). Selecting the top-k with $\nu_{idr} = 50/80$ for the late detector is the most beneficial, especially with the mean mechanism for the early detector.

Implementation details

We use the 3D detector implementations available in the OpenPCDet toolbox [27]. For a fair comparison, we use the default configurations for all detectors. We set the voxel dimensions to be $(0.05, 0.05, 0.1)$, as provided in the toolbox. For fine-tuning with GraVoS, we continue to train for 60 epochs, 40 epochs using the original detector’s optimizer and 20 epochs using stochastic gradient decent (SGD) and a step decay optimizer. We note that if we continue to train the original detector (without GraVoS) for additional epochs, the results will not improve. More details regarding the scheduler hyper-parameters are provided in the supplemental materials. All the experiments were done on a single NVIDIA A100 GPU.

Limitations

The main drawback of GraVoS is the need of further training, which means longer training times than those of the original detectors. Furthermore, during training, the memory and the computational requirements are higher, due to the additional voxel selection stage. These limitations apply only for the training stage. At inference, the memory and the time are the same as in the original detector.

5. Conclusion

This paper has presented a novel and generic voxel selection method—Gradient-based Voxel Selection (GraVoS). The key idea is to select voxels based on their meaningfulness to the detector. GraVoS was shown to address two fundamental challenges in 3D detection datasets, class-level data imbalance and foreground-background imbalance.

This paper has also proposed a training procedure that uses GraVoS to improve 3D detection without additional data. This is done by utilizing the selected voxels exclusively for fine tuning the detector.

We have demonstrated that training four SoTA voxel-based detectors using our training approach and selected voxels yields a boost in performance. The results are especially good when considering the challenging classes that have relatively few occurrences, regardless of difficulty.

An interesting future direction is to explore similar ideas of element selection on the raw cloud points. This will enable boosting performance for detectors that do not use the voxelization.
References

[1] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi, Huimin Ma, Sanja Fidler, and Raquel Urtasun. 3d object proposals for accurate object class detection. Advances in neural information processing systems, 28. 2015.

[2] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network for autonomous driving. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 1907–1915. 2017.

[3] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point r-cnn. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9775–9784. 2019.

[4] Shuyang Cheng, Zhaoqi Leng, Ekin Dogus Cubuk, Barret Zoph, Chunyan Bai, Jiquan Ngiam, Yang Song, Benjamin Caine, Vijay Vasudevan, Congcong Li, et al. Improving 3d object detection through progressive population based augmentation. In European Conference on Computer Vision, pages 279–294. Springer. 2020.

[5] Jaeseok Choi, Yeji Song, and Nojun Kwak. Part-aware data augmentation for 3d object detection in point cloud. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3391–3397. IEEE. 2021.

[6] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li. Voxel r-cnn: Towards high performance voxel-based 3d object detection. arXiv preprint arXiv:2012.15712, 1(2):4, 2020.

[7] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition, pages 3354–3361. IEEE. 2012.

[9] Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 3d semantic segmentation with submanifold sparse convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9224–9232. 2018.

[10] Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307, 2017.

[11] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep learning for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine intelligence, 43(12):4338–4364, 2020.

[12] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance. Journal of Big Data, 6(1):1–54, 2019.

[13] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L Waslander. Joint 3d proposal generation and object detection from view aggregation. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–8. IEEE. 2018.

[14] Alex H Lang, Sourabha Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12697–12705. 2019.

[15] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. Multi-task multi-sensor fusion for 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7345–7353. 2019.

[16] Kemal Oksuz, Baris Can Cam, Sinan Kalkan, and Emre Akbas. Imbalance problems in object detection: A review. IEEE transactions on pattern analysis and machine intelligence, 43(10):3388–3415, 2020.

[17] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 918–927. 2018.

[18] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660, 2017.

[19] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems, 30. 2017.

[20] Matthias Reuse, Martin Simon, and Bernhard Sick. About the ambiguity of data augmentation for 3d object detection in autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 979–987. 2021.

[21] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. P-rcnn: Point-voxel feature set abstraction for 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10529–10538. 2020.

[22] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-cnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 770–779. 2019.

[23] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From points to parts: 3d object detection in autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 979–987. 2021.

[24] WeiJing Shi and Raj Rajkumar. Point- gnns: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 1711–1719. 2020.

[25] Andrea Simonelli, Samuel Rota Bulo, Lorenzo Porzi, Manuel López-Antequera, and Peter Kontschieder. Disentangling monocular 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1991–1999. 2019.

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[27] OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object detection from point clouds. https://github.com/open-mmlab/OpenPCDet 2020.
[28] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, et al. Stanley: The robot that won the darpa grand challenge. *Journal of Field Robotics*, 23(9):661–692, 2006.

[29] Zhixin Wang and Kui Jia. Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection. In *2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages 1742–1749. IEEE, 2019.

[30] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. *Sensors*, 18(10):3337, 2018.

[31] Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Exploiting hd maps for 3d object detection. In *Conference on Robot Learning*, pages 146–155. PMLR, 2018.

[32] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection from point clouds. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pages 7652–7660, 2018.

[33] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-based 3d single stage object detector. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11040–11048, 2020.

[34] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. IPOD: intensive point-based object detector for point cloud. *CoRR*, abs/1812.05276, 2018.

[35] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Std: Sparse-to-dense 3d object detector for point cloud. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 1951–1960, 2019.

[36] Maosheng Ye, Shuangjie Xu, and Tongyi Cao. Hvnet: Hybrid voxel network for lidar based 3d object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 1631–1640, 2020.

[37] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and tracking. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11784–11793, 2021.

[38] Wu Zheng, Weiliang Tang, Sijin Chen, Li Jiang, and Chi-Wing Fu. Cia-ssd: Confident iou-aware single-stage object detector from point cloud. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pages 3555–3562, 2021.

[39] Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-ssd: Self-ensembling single-stage object detector from point cloud. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14494–14503, 2021.

[40] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4490–4499, 2018.