Stable compounds in the CaO-Al2O3 system at high pressures

Ekaterina I. Marchenko1,2 · Artem R. Oganov3 · Efim A. Mazhnik3 · Nikolay N. Eremin1

Received: 14 June 2022 / Accepted: 8 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Using the evolutionary crystal structure prediction algorithm USPEX, we showed that at pressures of the Earth’s lower mantle (24-136 GPa) CaAl2O4 is the only stable calcium aluminate. At pressures above 7.0 GPa it has the CaFe2O4-type structure with space group Pnma. This phase is one of the prime candidate aluminous phases in the lower mantle of the Earth. We show that at low pressures 5CaO • 3Al2O3 (C5A3) with space group Cmc21, CaAl4O7 (with space group C2/c) and CaAl2O4 (space group P21/m) are stable at pressures of up to 2.1, 1.8 and 7.0 GPa, respectively. The previously unknown structure of the orthorhombic "Ca-III" phase is also found in our calculations. This phase is metastable at 0 K and has a layered structure with space group P21212.

Keywords CaO-Al2O3 system · Crystal structure prediction · High pressure · Evolutionary algorithm · USPEX · Earth’s mantle

Introduction
Aluminum is the fifth most abundant element in the Earth’s crust and mantle, the Al/Si ratio being 0.36 in the crust and 0.17 in the mantle (Anderson 1983). Today, it is thought that the lower mantle consists mainly of (Mg,Fe)SiO3 bridgmanite with a perovskite-type (Pv) crystal structure (~ 70 vol.%), (Mg,Fe)O ferropericlase (~ 20 vol.%), and calcium perovskite CaSiO3 (Ca-Pv) (6–12 vol.%) (Ringwood 1975; Irifune 1994; Pushcharovsky and Pushcharovsky 2010). It is known that in rocks of the composition of peridotite and pyrolite, Al is incorporated into bridgmanite and there is no separate aluminous phase at least up to the middle region of the Earth’s lower mantle (Irifune et al., 1994; Kato et al. 1996; Liu et al. 2016). Several potential aluminous phases have been considered for the lower mantle. For example, a solid solution between MgAl2O4 and CaAl2O4 is known (Akaogi et al. 1999). It was also previously shown that Al-rich basalts contain MgAl2O4 with the CaFe2O4-type structure, which could coexist with aluminous bridgmanite in the Earth’s lower mantle (Litasov and Ohtani 2005). Thus, the crystal chemistry of the CaO-MgO-Al2O3 system plays an important role for understand the chemistry of Al in the Earth’s lower mantle.

All experimentally known polymorphic modifications of CaAl2O4 can be divided into low-pressure structures, where which aluminum atoms are in the tetrahedral coordination, and high-pressure phases, with aluminum in five or sixfold coordination. The well-known monoclinic modification with the space group P21/n at normal conditions (Ito et al. 1980) consist of a framework of AlO4 tetrahedra, topologically equivalent to the tridymite structure (SiO2) (Fig. 1a). The voids of the framework are occupied by calcium atoms in three independent crystallographic sites with different coordination numbers: 6 (Ca1), 6 (Ca2) and 9 (Ca3). This modification was first observed in meteorites and the mineral was named crocite (Ma et al. 2011). Another monoclinic modification of CaAl2O4 with space group P21/c (Fig. 1b) crystallizes in the m'-CaGa2O4 structure type (Ito et al. 1980), where the AlO4 distorted tetrahedra form a three-dimensional framework with the tridymite topology, and Ca atoms are seven-coordinate. This phase was also found in meteorites and was named dmitriivanovite (Mikouchi et al.
The monoclinic \(P2_1/c \) phase is slightly denser than \(P2_1/n \), and the transition from \(P2_1/n \) to \(P2_1/c \) is observed at the pressure of 1 GPa and the temperature of 700 °C and at 2 GPa and 1300 °C (Ito et al. 1980). Among other low-pressure modifications of \(\text{CaAl}_2\text{O}_4 \) with \(\text{AlO}_4 \) tetrahedra, a crystal structure with space group \(P6_3 \) has been mentioned (Janáková et al. 2007). However, the authors have questioned the correctness of their structure refinement because of the high R-factor and highly distorted interatomic distances. Most likely, this phase is metastable at low pressures and does not have a stability field in the phase diagram.

With further increase in pressure, the coordination of \(\text{Al} \) atoms changes from tetrahedral to octahedral. Among the \(\text{CaAl}_2\text{O}_4 \) phases with the octahedral coordination of \(\text{Al} \) atoms the best-known orthorhombic \(\text{Pnma} \) modification was first described in 1957 (Decker and Kasper 1957) (Fig. 1c). This phase crystallizes in the \(\text{CaFe}_2\text{O}_4 \) structure type (space group \(\text{Pnma} \)) where edge-sharing \(\text{AlO}_6 \) octahedra forming channels along the \(c \) axis, filled with \(\text{Ca}^{2+} \) cations. Another modification of \(\text{CaAl}_2\text{O}_4 \) is the monoclinic \(P2_1/m \) phase with a layered structure, synthesized by (Lazic et al. 2006) (Fig. 1d). The layers of \(\text{AlO}_6 \) octahedra in this structure are separated by interlayer \(\text{Ca} \) cations. The phase transition \(P2_1/m \rightarrow \text{Pnma} \) has been experimentally discovered at \(P = 4–8 \) GPa (Lazic et al. 2006). In the experimental study of the \(\text{CaAl}_2\text{O}_4~\text{CaGa}_2\text{O}_4 \) system (Ito et al. 1980), yet another modification of \(\text{CaAl}_2\text{O}_4 \), named “CA-III”, and stable in the pressure range of 3–8 GPa, was described. Its crystal structure was not determined, but an orthorhombic cell was established with the parameters \(a = 4.39 \) Å, \(b = 5.07 \) Å, \(c = 6.96 \) Å.

In a recent theoretical paper (Eremin et al. 2016), it has been shown that the phase transition between \(P2_1/m \) and \(\text{Pnma} \) is predicted by \textit{ab initio} calculations at 7–8 GPa, which is in close agreement with the experiment (Lazic et al. 2006). Calculations based on semiclasical interatomic potentials overestimate the phase transition pressure, 18–19 GPa (Eremin et al. 2016). As calculations (Eremin et al. 2016) showed, when pressure increases, \(\text{Pnma} \)-\(\text{CaAl}_2\text{O}_4 \) becomes increasingly more favorable with increasing pressure in the entire range of mantle pressures and temperatures. The \(\text{Cmcm} \) phase of \(\text{CaAl}_2\text{O}_4 \) is always slightly \((0.2–0.5 \text{ eV/f.u.})\) less stable than the \(\text{Pnma} \) phase.

Analyzing recent experimental and theoretical studies, one can conclude that under \(P-T \) conditions of the Earth’s mantle, only two phases of \(\text{CaAl}_2\text{O}_4 \) may exist: monoclinic \(P2_1/m \) and orthorhombic \(\text{Pnma} \), both with the octahedral coordination of the \(\text{Al} \) atoms, and the stability field of the latter covers almost the entire \(P-T \) range of the Earth’s mantle. So far, only the phases of stoichiometry \(\text{CaAl}_2\text{O}_4 \) have been investigated at conditions of the Earth’s mantle, and even there some structures (such as CA-III) remain experimentally unresolved.

In addition to the structural modifications of \(\text{CaAl}_2\text{O}_4 \), literature describes experimentally investigated phases with different stoichiometric ratios where the aluminum atoms have tetrahedral coordination \((\text{Ca}_{12}\text{Al}_{14}\text{O}_{33}) \) (Büssem and Eitel 1936), \(\text{CaAl}_4\text{O}_7 \) (Boyko and Wisnly 1958), \(\text{Ca}_3\text{Al}_2\text{O}_6 \) (Mondal and Jeffery 1975), \(\text{Ca}_3\text{Al}_6\text{O}_{14} \) (Vincent and Jeffery 1978), \(\text{Ca}_4\text{Al}_6\text{O}_{13} \) (Ponomarev et al. 1970). The experimentally known phases in which aluminum atoms in mixed coordination have been described: \(\text{Ca}_2\text{Al}_2\text{O}_5 \) (Kahlenberg et al. 2000b; Lazic et al. 2008) with aluminum in tetrahedra and octahedra; \(\text{Ca}_4\text{Al}_8\text{O}_{13} \) (Kahlenberg et al. 2000a), with aluminum in tetrahedra, octahedra and trigonal bipyramids; \(\text{Ca}_3\text{Al}_6\text{O}_6 \) (Steele and Davey 1929) with \(\text{Al} \) in octahedra and squares, and \(\text{Ca}_1\text{Al}_{12}\text{O}_{19} \) (Kato nd Saalfeld 1968) with aluminum in octahedra and trigonal bipyramids. The mineral mayenite (Hentschel G., 1964), which has a clathrate structure, has a rather complex composition \(\text{Ca}_{12}\text{Al}_{14}\text{O}_{33} \) and the removal of one oxygen atom per formula unit leads to a peculiar metallic electride state (Matsuishi et al. 2003) (Figure S1). Overall, the tetrahedral coordination of aluminum is unstable at pressures above 2–8 GPa (Ito et al. 1980; Irifune and Tsuchiya, 2007; Eremin et al. 2016), therefore, phases with tetrahedral coordination of \(\text{Al} \) atoms in the \(\text{CaO-Al}_2\text{O}_3 \) system cannot exist in the deep mantle.

In this work, we theoretically predicted thermodynamically stable phases in the \(\text{CaO-Al}_2\text{O}_3 \) system at pressures in the range of 0–200 GPa using the \textit{Universal Structure Predictor: Evolutionary Xtallography} (USPEX) algorithm (Oganov and Glass 2006; Oganov et al. 2011; Lyakhov et al. 2013).
Methods

Evolutionary searches for stable phases in the CaO-Al$_2$O$_3$ system were performed using the USPEX code (Oganov and Glass 2006; Oganov et al. 2011; Lyakhov et al. 2013) in its variable-composition mode. In our evolutionary searches, all structures and stoichiometries were allowed with up to 32 atoms in the primitive cell. The first generation contained 200 structures and was produced using symmetric (Lyakhov et al. 2013) and topological (Bushlanov et al. 2019) random structure generators. All subsequent generations had 120 structures. To determine stable compounds, USPEX builds convex hull diagrams (also known as Maxwell construction). Points lying on the hull indicate thermodynamically stable phases. Points lying above the hull are thermodynamically unstable phases. Evolutionary searches were performed at pressures of 25, 50, 100, and 200 GPa. All structures were relaxed using VASP (Kresse and Furthmüller 1996), using density functional theory at the level of generalized gradient approximation, with PBE exchange–correlation functional (Perdew et al. 1996) and PAW method (Blöchl 1994; Kresse and Joubert, 1999), with plane-wave cutoff of 600 eV. Brillouin zone was sampled using uniform k-meshes with reciprocal-space resolution 2π × 0.05 Å$^{-1}$, which ensures that the errors in energy differences are below 1 meV/atom. Low-enthalpy structures predicted using USPEX and experimentally known structures of different stoichiometries were carefully relaxed at pressures ranging from 0 to 200 GPa. The full zero-temperature pressure-composition phase diagram of the CaO-Al$_2$O$_3$ system was constructed. It is worth noting that taking into account thermal contributions to the Gibbs free energy requires a lot of computing resources and is not required in this study, because the entropic factor (TΔS) at the temperatures of the Earth’s mantle is estimated to be much less than k$_B$T (where k$_B$ is the Boltzmann constant). Thus, the entropy contribution under such P–T conditions is negligibly small compared to ΔH and was not taken into account.

Thus, the phase stability is unlikely to be changed qualitatively at temperatures at pressures of the lower mantle. Crystal structures were visualized using the VESTA program (Momma and Izumi 2011).

Results and discussion

Variable-composition USPEX searches allow for a detailed sweep of the entire compositional space in a single simulation. They recovered all known stable structures and phase transitions between them in CaO (Jerebtsov and Mikhailov 2001; Deng et al. 2007) and Al$_2$O$_3$ (Marton and Cohen 1994; Oganov and Ono 2005).

Interestingly, USPEX has also found (as stable or metastable at zero Kelvin) all previously known structures of CaAl$_2$O$_4$ with the octahedral coordination of aluminum atoms, including the marokite-type phase and the "layered" P2$_1$/m modification. As we find, the Pnma modification of CaAl$_2$O$_4$ with a marokite structure type turns out to be stable at pressures from 7.0 to at least 200 GPa (Figs. 2 and 3). It is worth noting that the previously theoretically predicted (Eremin et al. 2016) metastable CaAl$_2$O$_4$ phase with α-PbO$_2$–like structure is strongly inferior in energy to marokite-type phase in the studied pressure range.

At pressures below 7.0 GPa, the P2$_1$/m structure is stable, and below 1.1 GPa the P2$_1$/n structure is stable (Fig. 2). The P2$_1$/c phase is unstable over the entire pressure range. At low pressures, we see yet another two phases as stable: 5CaO • 3Al$_2$O$_3$ (C$_{5}$A$_{3}$) with space group Cmc$_{21}$ (up to 2.1 GPa) and CaAl$_4$O$_7$ with space group C2/c (up to 1.8 GPa) (Fig. 3a). However, the stability of C$_5$A$_3$ phase is marginal: if we include zero-point energy (we did its crude estimate with Debye model), C$_5$A$_3$ phase is no longer thermodynamically stable but is 0.009 eV/block above the convex hull. The convex hull of the CaO-Al$_2$O$_3$ system at pressures of 0 GPa and 100 GPa are shown in Fig. 4. It should be noted that the Ca$_3$Al$_2$O$_6$ (C$_3$A) and CaAl$_{12}$O$_{19}$ (CA$_6$) and Ca$_{12}$Al$_{14}$O$_{33}$ (C$_{12}$A$_7$) phases at low pressures are very close to the convex hull, being just 0.008, 0.027, and 0.008 eV/block, respectively, above it at a pressure of 0 GPa. The calculated fitness (the height above the convex hull, characterizing the degree of instability of a given structure) for these experimental structures as a function of pressure is shown in Figure S3. The calculated enthalpy of different polymorphs with CA composition is shown in Table S2.
We also calculated phase transition pressures for \(\text{CaO} \) and \(\text{Al}_2\text{O}_3 \). For \(\text{CaO} \), the pressure of the phase transition from \(\text{Fm-3m} \) to \(\text{Pm-3m} \) is 67.4 GPa (Figure S2a). For \(\text{Al}_2\text{O}_3 \), the pressure of phase transitions from \(\text{R-3c} \) to \(\text{Pbcn} \) is 93.2 GPa and further from \(\text{Pbcn} \) to \(\text{Cmcm} \) 146.1 GPa (Figure S2b). This compares well with the experiments (Jeanloz et al. 1979) (Funamori and Jeanloz 1997).
and previous theoretical calculations (Oganov and Ono 2005; Deng et al. 2007; Liu et al. 2015).

To find the unknown crystal structure of the "CA-III" phase (Ito et al. 1980) with cell parameters $a = 4.390$ Å, $b = 5.070$ Å, $c = 6.960$ Å, we performed evolutionary USPEX searches with a fixed CaAl$_2$O$_4$ and fixed experimental cell parameters. The resulting structure has indeed the P$_{21}2_12_1$ symmetry, and features layers made of edge- and face-sharing AlO$_6$ octahedra (Fig. 5a), with Ca atoms located in the interlayer space. The coincidence of the main X-ray diffraction peaks ((001), (002), (110), (102), (020) and (112)) of our structural model and the experimental (Ito et al. 1980) diffraction patterns (see Fig. 5b) allows us to conclude that the structure was identified correctly. It should be noted that texturing of the sample in the experiment leads to a difference between the theoretical and experimental diffraction peak intensity ratios. The predicted crystal structure of the "CA-III" phase is metastable at 0 K, being 0.18 eV/atom higher in enthalpy than the monoclinic P$_{21}/n$ phase.

Conclusions

Our systematic evolutionary searches for stable compounds in the CaO-Al$_2$O$_3$ system at pressures 0–200 GPa clearly establish that at pressures above 7.0 GPa (i.e. at all pressures of the Earth’s transition zone and lower mantle) only one calcium aluminate, CaAl$_2$O$_4$ with CaFe$_2$O$_4$ structure (Pnma), is stable. This phase is one of the prime candidate aluminous phases in the lower mantle of the Earth. En route to this conclusion, we have also resolved the old puzzle of the low-pressure (3–8 GPa) metastable phase named "CA-III" – its crystal structure is now established as having the orthorhombic space group P$_{21}2_12_1$, and featuring layers of edge- and face-sharing AlO$_6$ octahedra. Our analysis also reveals that at low pressures 5CaO • 3Al$_2$O$_3$ (C_5A_3) with space group Cmc$_2_1$, CaAl$_2$O$_7$ (C2/c) and CaAl$_2$O$_4$ (P$_{21}/m$) structures are stable up to 2.1, 1.8 and 7.0 GPa respectively.

CaAl$_2$O$_6$, CaAl$_2$O$_9$ and Ca$_{12}$Al$_{14}$O$_{33}$ phases are very close to thermodynamic stability at low pressures and are also known from the experiment. Very rich and complex at low pressures, the chemistry of the cement CaO-Al$_2$O$_3$ system becomes very simple at high pressures.

Competing interests

The authors declare that they have no competing interests.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s00269-022-01221-6.

Acknowledgements

The research is carried out using the Oleg supercomputer of the Materials Discovery Lab of Skoltech and the shared research facilities of HPC computing resources at Lomonosov Moscow State University. Work of A.R.O. and E.A.M. is supported by Russian Science Foundation (grant 19-72-30043).

Author contributions

EI. M: conceptualization, investigation, writing—original draft preparation; AR. O: data curation, writing—reviewing and editing; EA. M: investigation, methodology; NN. E: conceptualization, writing—reviewing and editing.

Declarations

Competing interests

The authors declare no competing interests.
References

Anderson, D. L. (1983) 'Chemical composition of the Mantle', Proceeding of the fourteenth lunar and planetary science conference, PPS(3):3; B41–B52.

Akaogi M, Hamada Y, Suzuki T, Kobayashi M, Okada M (1999) High pressure transitions in the system MgAl2O4–CaAl2O4: a new hexagonal alumino phase with implication for the lower mantle. Phys Earth Planet Inter 115(1):67–77. https://doi.org/10.1016/S0031-9201(99)00076-X

Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

Boyko E, Wisyń LG (1958) The optical properties and structures of CaO2.2Al2O3 and SrO2.2Al2O3. Acta Crystallogr A 11(6):444–445. https://doi.org/10.1107/S0365110x58001183

Bushlanov PV, Blatov VA, Oganov AR (2019) Topology-based crystal structure generator. Comput Phys Commun 236:1–7. https://doi.org/10.1016/j.cpc.2018.09.016

Büssem VW, Eitel A (1936) Die Struktur des Pentacalciumaluminiums. Z Kristallogr 95:175–178. https://doi.org/10.1515/978312441107-005

Decker BF, Kasper JS (1957) The structure of calcium ferrite. Acta Crystallogr A 10(4):332–337. https://doi.org/10.1107/S0365110x5700095x

Deng Y et al (2007) Phase transition and electronic states of CaO from first-principle calculations. Phys B 392(1–2):229–232. https://doi.org/10.1016/j.physb.2006.11.023

Eremín NN, Grechanovsky AE, Marchenko EI (2016) Atomistic and Ab initio modeling of CaAl2O4 high-pressure polymorphs under Earth’s mantle conditions. Crystallogr Rep 61(3):432–442. https://doi.org/10.1134/S0021889816030111

Funamori N, Jeanel R (1997) High-pressure transition of Al2O3. Science 278(7):1109–1111

Hentschel G. (1964) ‘Mayenit, 12CaO·7Al2O3, und Brownmillerit, 2CaO·(Al·Fe)2O3, zwei neue Minerale in den Kalksteineinschlüssen der Lava des Ettringer Bellerberges’, N. Jb. Mineral. Mh., pp. 22–29. Available at: https://scholar.google.com/scholar?hl=ru&as_sdt=0,2&q=Hentschel%20G.%20&btnG. Accessed on 28 May 2022.

Irifune T (1994) Absence of an alumina phase in the upper part of the Earth’s lower mantle. Nature. https://doi.org/10.1038/370131a0

Ito S et al (1980) High-pressure modifications of CaAl2O4 and Ca2Al2O4. Mater Res Bull 15(7):925–932. https://doi.org/10.1016/0025-5408(80)90217-2

Janáková S et al (2007) Preparation and structural investigations of sol-gel derived Eu3+ doped CaAl2O4. J Phys Chem Solids 68(5–6):1147–1151. https://doi.org/10.1016/j.jpcs.2006.12.034

Jeanloz R et al (1979) B1–B2 transition in calcium oxide from shock-wave and diamond-cell experiments. Science 206(420):829–830. https://doi.org/10.1126/science.206.420.829

Jeretbsov DA, Mikhailov GG (2001) Phase diagram of CaO–Al2O3 system. Ceram Int 27(1):25–28. https://doi.org/10.1016/S0272-8842(00)00037-7

Kahlenberg V, Fischer RX, Shaw CSJ (2000a) High-pressure CaAl6O13: an example of a calcium aluminate with three different types of coordination polyhedra for aluminium. Am Miner 85(10):1492–1496. https://doi.org/10.2138/am-2000-1019

Kahlenberg V, Fischer RX, Shaw CSJ (2000b) Rietveld analysis of dicalcium aluminate (Ca2Al2O5)-A new high pressure phase with the Brownmillerite-type structure. Am Miner 85(7–8):1061–1065. https://doi.org/10.2138/am-2000-0722

Kato T, Ohtani E, Ito Y, Onuma K (1996) Element partitioning between silicate perovskites and calcic ultrabasic melt. Phys Earth Planet Inter 96(2–3):201–207. https://doi.org/10.1016/0031-9201(96)03151-2

Kato, K. and Saalfeld, H. (1968) ‘Verfeinerung der Kristallstruktur von CaO (Al2O3)6’. Neues Jahrbuch für Mineralogie-Abhandlungen, 109, pp. 192–200. Available at: https://ci.nii.ac.jp/naid/10005739263/. Accessed on 28 May 2022.

Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B - Condensed Matter and Materials Phys 59(3):1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

Lazić B et al (2006) On the polymorphism of CaAl2O4-structural investigations of two high pressure modifications. Solid State Sci 8(6):589–597. https://doi.org/10.1016/j.solidstatesciences.2005.12.010

Lazić B et al (2008) Incommensurate structure of CaAl2O5 at high temperatures - Structure investigation and Raman spectroscopy. Acta Crystallogr B 64(4):417–425. https://doi.org/10.1107/S0108768108016029

Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150:239–263. https://doi.org/10.1016/j.pepi.2004.10.010

Liu Y et al (2015) Prediction of new thermodynamically stable aluminum oxides. Sci Rep 5:14–18. https://doi.org/10.1038/srep09518

Liu Z, Irfune T, Nishi M, Tange Y, Arimoto T, Shinnei T (2016) Phase relations in the system MgSiO3–Al2O3 up to 52GPa and 2000K. Phys Earth Planet Inter 257:18–27. https://doi.org/10.1016/j.pepi.2016.05.006

Lyakhov AO et al (2013) New developments in evolutionary structure prediction algorithm USPEX. Comput Phys Commun 184(4):1172–1182. https://doi.org/10.1016/j.cpc.2012.12.009

Ma C et al (2011) Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. Am Miner 96(5–6):709–715. https://doi.org/10.2138/am.2011.3693

Marton FC, Cohen RE (1994) Prediction of a high-pressure phase transition in Al2O3. Am Miner 79(7–8):789–792

Matsushi S et al (2003) High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+ (4e-). Science 301(5633):626–629. https://doi.org/10.1126/science.1083842

Mikouchi T et al (2009) Dmitriyavinovite: A new high-pressure calcium aluminum oxide from the Northwest Africa 470 CH3 chondrite characterized using electron backscatter diffraction analysis. Am Miner 94(5–6):746–750. https://doi.org/10.2138/am.2009.3080

Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811033990

Mondal BP, Jeffery JW (1975) The crystal structure of trioctahedral alumin, Ca3Al2O6*. Acta Cryst 31:689

Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys. https://doi.org/10.1063/1.2210932

Oganov AR, Ono S (2005) The high-pressure phase of alumina and implications for Earth’s D* layer. Proc Natl Acad Sci USA 102(31):10828–10831. https://doi.org/10.1073/pnas.0501800102

Oganov AR, Lyakhov AO, Valle M (2011) How evolutionary crystal structure prediction works-and why. Acc Chem Res 44(3):227–237. https://doi.org/10.1021/ar1001318
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868
Ponomarev V.I., Kheiker D.M., Belov, N. V. (1970) 'Crystal structure of tetracalcium trialuminate - the aluminate analog of sodalite', Kristallografiya, pp. 917–921. Available at: https://scholar.google.com/scholar_lookup?title=Crystal structure of tetracalcium trialuminate — The aluminate analog of sodalite&journal=Sov Phys — Crystallogr&volume=15&pages=799–801&publication_year =1971&author=Ponomarev%2CVI&author=Kheiker%2CDM&a uthor. Accessed on 28 May 2022.
Pushcharovsky YM, Pushcharovsky DY (2010) Geology of the Earth’s mantle. GEOS, Moscow, p 140
Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill Company, Newyork. https://doi.org/10.1016/0031-9201(77)90018-8
Steele FA, Davey WP (1929) The crystal structure of tricalcium alu-
minate. J Am Chem Soc 51:2283–2293. https://doi.org/10.1021/ja01944a001
Vincent MG, Jeffery JW (1978) The crystal structure of pentacalcium trialuminate, 5CaO. 3Al2O3. Acta Crystallogr b Struct Crystallogr
Cryst Chem 34:1422–1428

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.