Efficacy of Enhanced External Counterpulsation in Patients With Chronic Refractory Angina on Canadian Cardiovascular Society (CCS) Angina Class

An Updated Meta-Analysis

Chunmei Zhang, MD, Xiangjuan Liu, PhD, Xiaomeng Wang, MD, Qi Wang, MD, Yun Zhang, PhD, and Zhiming Ge, PhD

Abstract: A growing number of patients with chronic artery disease suffer from angina, despite the optimal medical management (ie, β-blockers, calcium channel blockers, and long-acting nitrates) and revascularization. Currently, enhanced external counterpulsation (EECP) therapy has been verified as a noninvasive, safe therapy for refractory angina. The study was designed to evaluate the efficacy of EECP in patients with chronic refractory angina according to Canadian Cardiovascular Society (CCS) angina class.

We identified systematic literature through MEDLINE, EMBASE, the Cochrane Clinical Trials Register Database, and the ClinicalTrials.gov Website from 1990 to 2015. Studies were considered eligible if they were prospective and reported data on CCS class before and after EECP treatment. Meta-analysis was performed to assess the efficacy of EECP therapy by at least 1 CCS angina class improvement, and proportion along with the 95% confidence interval (CI) was calculated. Statistical heterogeneity was calculated by I² statistic and the Q statistic. Sensitivity analysis was addressed to test the influence of trials on the overall pooled results. Subgroup analysis was applied to explore potential reasons for heterogeneity.

Eighteen studies were enrolled in our meta-analysis. Pooled analysis showed 85% of patients underwent EECP had a reduction by at least one CCS class (95%CI 0.81–0.88, I² = 58.5%, P < 0.001). The proportion of patients enrolled at primarily different studies with chronic heart failure (CHF) improved by at least 1 CCS class was about 84% after EECP (95%CI 0.81–0.88, I² = 32.7%, P = 0.1668). After 3 large studies were excluded, the pooled proportion was 82% (95%CI 0.79–0.86, I² = 18%, P = 0.2528). funnel plot indicated that some asymmetry while the Begg and Egger bias statistic showed no publication bias (P = 0.1495 and 0.2859, respectively).

Our study confirmed that EECP provided an effective treatment for patients who were unresponsive to medical management and/or invasive therapy. However, the long-term benefits of EECP therapy needed further studies to evaluate in the management of chronic refractory angina.

Abbreviations: CAGB = coronary artery bypass graft, CAD = coronary artery disease, CCS = Canadian Cardiovascular Society, CHF = chronic heart failure, CI = confidence interval, DM = diabetes mellitus, EECP = enhanced external counterpulsation, MACE = major adverse cardiovascular events, NO = nitric oxide, PCI = percutaneous coronary intervention.

INTRODUCTION

With the improvements in cardiovascular care, an increasing number of patients, particularly those with advanced coronary artery disease (CAD), have severe symptom of angina pectoris that intractable to treatment of optimal medical therapy. It is estimated that between 600,000 and 1.8 million patients in the United States suffer from chronic refractory angina with about 50,000 new cases emerging per year, and in continental Europe approximately 30,000 to 50,000 new cases are diagnosed each year.¹ Due to the increase of CAD-related survival rate and population age, the incidence and prevalence of these patients will continue to rise. Therefore, the care of these patients is challenging. In order to better manage the population group, the definition of the refractory angina is vital important. The ESC Joint Study Group on the Treatment of Refractory Angina and Canadian Cardiovascular Society (CSS)/Canadian Pain Society Joint Guidelines defined this condition as “chronic duration more than 3 months characterized by the presence of angina caused by coronary insufficiency in the presence of CAD which is refractory to a combination of medical therapy, angioplasty/percutaneous interventions, and coronary bypass surgery in patients with evidence of ischemia.”¹²³ As the conventional therapy has limitation, this is an urgent need to search for new treatment for patients. The current therapies of refractory angina including pharmacology (ie, Nicorandil, Ivabradine, Ranolozine, Allopurinol, Perhexilene), noninvasive therapy compromise enhanced external counterpulsation (EECP) and extracorporeal shockwave therapy, invasive therapy, neuromodulation, and others.⁴⁵ According to current studies, EECP as a noninvasive therapy has been proven to be a promising treatment for relieving angina, and it has been given II a Class Recommendation in the 2013 ESC guidelines on the management of stable CAD.⁵

EECP therapy, a nonpharmacologic, noninvasive outpatient treatment, has been approved by the U.S. Food and Drug Administration (FDA) in patients with stable or unstable angina
induced ST-segment depression and improved quality of life, increased exercise capacity as well as enhanced the time to exercise-induced ST-segment depression and improved myocardial perfusion. In 1 trial, the persistent reduction free of major adverse cardiovascular events (MACE) for up to 5 years treatment.

Despite the greatest improvement in treatment modalities for CAD more than 40 years, the data from different observation trials cannot provide strong evidence to prove the effectiveness of EECP. The CCS class of angina severity, ranging form class I to class IV, was widely used in clinic to evaluate activity status and has been recognized as a significant predictor of long-term mortality. The meta-analysis was to assess the efficacy of EECP on CCS angina class in patients with chronic refractory angina.

METHODS

Search Strategy

We searched MEDLINE (source, PubMed, 1990 to March 2015), EMBASE (1990 to March 2015), the Cochrane Clinical Trials Register Database (though March 2015), and the ClinicalTrials.gov Website (though March 2015) using the terms “enhanced external counterpulsation,” “EECP,” and “external counter-pulsation.” No language restriction was performed. In addition, we manually searched the abstracts of annual scientific sessions that relevant to the subject. Potentially relevant articles were then screened by at least 2 independent reviewers; disagreements were resolved by discussion or upon consensus from the 3rd reviewer.

Inclusion and Exclusion Criteria

First, we conducted an initial screening of titles and/or abstracts. Second, reevaluation was performed on the basis of full-text review. The studies were included in our meta-analysis if they met the following criteria: the trial was a prospective design; the trial was conducted in patients with stable angina pectoris; the outcome interest was the adequate data on CCS angina class that reported before and after the 35 1-hour EECP sessions. Although meta-analysis of randomized controlled trials would provide more robust evidence, the feature of the EECP procedure makes it difficult, so the studies that we identified were prospectively planned studies. In order to avoid data duplication and artificial inflation such the sample size, we excluded studies from the International EECP Patient Registry (IEPR) and the EECP consortium. Data unpublished or published as case reports, case series, or abstracts were ruled out unless they met with the inclusion criteria mentioned. In addition, those studies reporting CCS in the form of mean baseline angina class before and after completion EECP treatment were also excluded.

Data Extraction

Data extraction was performed by 2 independent authors (CMZ and XJL) using a standardized data collection form. Disagreements between the reviewers were resolved through discussion by or the 3rd reviewer (XMW). For each study, the basic characteristics extracted included name of the first author, year of publication, location of the study, sampling size, study patient population, duration of patient follow-up, duration of EECP therapy, and adequate data on CCS.

Statistical Analysis

We used data from CCS class reported as the proportion of patients improving by at least 1 CCS angina class. Data were compared before and after EECP treatment. The impact of pooled proportion of EECP treatment was calculated using the Metaprop module in the R version 3.1.3 statistical software package. Proportion and 95%CI for outcome were separately calculated for each trial, and the proportion reported in each study was logit transformed prior to computing the pooled proportion. The selection of a Desimoni and Laird random-effect model versus Inverse of Variance fixed-effect model in the meta-analysis remains controversial. Tests of heterogeneity were applied to decide which method would be used to pool the results. Statistical heterogeneity was performed by I² statistic (the percentage of total variation across studies that is due to heterogeneity rather than chance) and the Q statistic. When the I² statistic was less than 50% and the P-value for the test of heterogeneity was ≥0.10, we used a fixed-effect model to compute the pooled total proportion, whereas the heterogeneity was considered statistical significance, and a random-effect model was addressed to compute the pooled total proportion.

When heterogeneity was present, subgroup analyses were performed to explore potential reasons based on baseline CCS class and age at enrollment. In addition, to inspect differences in EECP therapy among differing patient demographic, we analyzed the studies that had at least 60% of patients having previously undergone percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) or having a previous myocardial infarction (MI). Moreover, the studies that had at least 30% of patients having diabetes mellitus (DM) were analyzed as well.

Sensitivity analysis was carried out to evaluate the influence of individual trials on the overall pooled results. Moreover, we excluded the studies that had large sample size to verify the robustness of the pooled proportion. To evaluate potential publication bias, funnel plots and the Beggs rank correlation test and Egger linear regression test were used. P-value less than 0.10 level was considered significance.

RESULTS

Search Results

We initially identified 762 potentially relevant articles. Seventy-one articles were considered to be of eligibility and were retrieved for full-text review. Fifty-three articles were excluded, and finally 18 studies reporting data on CCS class were included in our meta-analysis. A flow diagram of study selection is presented (Fig. 1).
Previous publication of EECP therapy on CCS class showed that 86% of 949 patients improved by at least 1 CCS functional class. In our meta-analysis, 85% of the patients undergoing EECP treatment had a reduction by at least 1 CCS class. The result was consistent with another report from an EECP consortium. In that study, an improvement was found in 74% of 2289 patients who were in CCS angina classes III–IV at baseline by one functional class. Nearly 40% of the patients in class III and IV improved 2 or more classes. It was to our interest that both men and women responded to the EECP treatment equally. It indicated that this treatment could be generalized to include women and advanced those who had chronic refractory angina. Because this population group were at increased complications and many had less durable results, patients with at least 60% enrollment patients were also shown in Table 2.

Sensitivity analysis was conducted to inspect the potential sources of heterogeneity. Exclusion of any single study did not change the overall pooled proportion, with a range from 84% (95% CI 0.81–0.87, I² = 30.6%) to 86% (95% CI 0.82–0.89, I² = 56.5%) (Fig. 3). We excluded 3 large studies to compute the overall pooled proportion with a fixed effects model, the pooled proportion was 82% (95% CI 0.79–0.86, I² = 18%, P = 0.2528) (Fig. 4).

**Publication Bias**

To evaluate potential publication bias, funnel plot was drawn, and Begg rank correlation test as well as Egger linear regression test was conducted. Funnel plot (Fig. 5) showed some asymmetry, but the Begg rank correlation test and Egger linear regression test showed no publication bias (P = 0.1495 and 0.2859, respectively).

**DISCUSSION**

The EECP therapy has been studied for almost a half century now. It is considered as a valuable, safe, and low-cost outpatient treatment for refractory angina. The technique of EECP consists of 3 pairs of pneumatic cuffs that were wrapped around the lower extremities, lower and upper thighs, and buttocks. The cuffs are inflated sequentially, applying 250 to 300 mmHg of external pressure during early of diastole, producing an improvement in coronary perfusion and thus increasing venous return and cardiac output. On the onset of systole, the cuffs are then deflated reducing peripheral resistance and left ventricular afterload. A typically treatment sessions are 1 hour daily over 7 weeks for a total treatment course of 35 hours. A finger plethysmogram and electrocardiograph are utilized to monitor parameters.

**Outcome Analysis**

Our results suggested that angina class improved by at least 1 CCS class in 85% of patients from before to after EECP treatment (95% confidence interval [CI] 0.81–0.88, I² = 58.5%, P < 0.001) (Fig. 2). The degree of benefit in studies enrolling patients with baseline CCS classes I–IV, II–IV, and III–IV were 87% (95% CI 0.82–0.90), 82% (95% CI 0.77–0.86), and 88% (95% CI 0.68–0.96), respectively (Table 2). The results of subgroup analysis by at least 60% enrollment patients were also shown in Table 2.

Sensitivity analysis was conducted to inspect the potential sources of heterogeneity. Exclusion of any single study did not change the overall pooled proportion, with a range from 84% (95% CI 0.81–0.87, I² = 30.6%) to 86% (95% CI 0.82–0.89, I² = 56.5%) (Fig. 3). We excluded 3 large studies to compute the overall pooled proportion with a fixed effects model, the pooled proportion was 82% (95% CI 0.79–0.86, I² = 18%, P = 0.2528) (Fig. 4).

**FIGURE 1.** Flow diagram of study selection for meta-analysis.
| First Author | Publication Year | FU, months | Patients, No. | Mean Age, years | Male, % | Baseline CCS | Duration of EECP, weeks | Previous MI, % | Previous PCI, % | Previous CABG, % | Previous DM, % | No. of Patients With CCS ≥1 Improvement, n (%) |
|--------------|------------------|------------|---------------|-----------------|---------|--------------|-------------------------|---------------|-----------------|-----------------|---------------|---------------------------------------------|
| Stys20       | 2001             | NA         | 395           | 66.1            | 80      | I–IV         | 35/7                    | NA            | NA              | NA              | NA            | 349(88)                                    |
| Stys21       | 2002             | NA         | 175           | 61              | 89      | I–IV         | 35/7                    | 51            | 75              | 41              | 21            | 149(85)                                    |
| Shechter22   | 2003             | 1          | 23            | 66              | 96      | NA           | 35/7                    | 74            | 74              | 91              | 39            | 17(74)                                     |
| Bonetti23    | 2003             | NA         | 20            | 68              | 75      | III–IV       | 35                      | 70            | 60              | 50              | 35            | 20(100)                                    |
| Tartaglia24  | 2003             | NA         | 25            | 68              | 92      | II–IV        | 35/7                    | NA            | 32              | 64              | 20            | 24(96)                                     |
| Henrikson25  | 2004             | NA         | 28            | 62              | 79      | II–IV        | 35/7                    | 79            | 61              | 68              | 46            | 23(82)                                     |
| Michaels26   | 2005             | 1          | 34            | 61              | 81      | II–IV        | 35/7                    | 70            | 54              | 66              | 49            | 27(79)                                     |
| Nichols27    | 2006             | NA         | 20            | 62              | 80      | NA           | 35/7                    | 30            | 60              | 70              | 35            | 20(100)                                    |
| Loh28        | 2006             | 12         | 58            | 66              | 89      | II–IV        | 35/4–7                  | 71            | 20              | 80              | 16            | 50(86)                                     |
| Novo29       | 2006             | 6          | 25            | 65              | 96      | II–IV        | 35                      | 64            | 64              | 68              | 36            | 21(84)                                     |
| El-Sakka30   | 2007             | NA         | 44            | 100             | NA      | III–IV       | 35/7                    | NA            | NA              | NA              | NA            | 34(77)                                     |
| Michaels31   | 2007             | 1          | 24            | 62              | 71      | III–IV       | 35                      | 63            | 88              | 63              | 44            | 22(92)                                     |
| Erdling32    | 2008             | 24         | 78            | 66              | 81      | II–IV        | 35                      | 60            | 58              | 73              | 21            | 62(79)                                     |
| Soran33      | 2012             | 12         | 78            | 61.3            | 76      | I–IV         | 35                      | 35            | 70              | NA              | 32            | 71(91)                                     |
| Wu34         | 2012             | 6          | 34            | 66              | 91      | I–IV         | 35/7–8                  | 56            | 76              | 62              | 32            | 26(76)                                     |
| Bozorgi35    | 2013             | 6          | 20            | 61.5            | 95      | II–IV        | 35/7                    | NA            | 15              | 65              | 25            | 15(75)                                     |
| Gandhi36     | 2014             | 42         | 637           | 60.7            | 82      | NA           | 35/7                    | 39            | 11              | 7               | 47            | 586(92)                                    |
| May37        | 2015             | 12         | 50            | 62.5            | 72      | II–IV        | 35/7                    | 58            | 58              | 8               | 24            | 41(82)                                     |

CABG = coronary artery bypass graft, CCS = Canadian Cardiovascular Society, DM = diabetes mellitus, EECP = enhanced external counterpulsation, FU = follow-up, MI = myocardium infarction, NA = not available, PCI = percutaneous coronary intervention.  
*No. of patients those who completed the course of EECP treatment.
et al. reported effect of EECP in patients with DM. Despite a high-risk profile among the DM group than nondiabetes (ND), post-EECP angina reduction was reported on the CCS class in the majority of patients (DM vs ND, 69 vs 72%, P = NS).

Quality of life was significantly improved and 1-year mortality was similar to coronary intervention.

To the best of our knowledge, no head-to-head prospective, randomized, controlled studies have been performed to compare the effect of elective invasive procedures with EECP treatment on CCS class. One study compared patients enrolled in the IEPR with National Heart, Lung, and Blood Institute Dynamic Registry of patients who underwent elective PCI. After 1-year follow-up, the survival rate was similar in both cohorts. The data were come from 2 registries enrolling at primarily different centers, so presence of the potential bias was inevitable. In another report, 4,454 of patients with prior PCI and/or CABG compared with 215 of patients who were suitable for PCI and/or CABG, but chose EECP as their initial revascularization treatment. After EECP treatment, improvements in CCS, anginal episodes, and nitroglycerin use were seen in 2 cohorts, which sustained 6 months.

The mechanism underlying the benefit of EECP-derived is under investigation. The possible mechanisms include improvement in endothelial function, development of collateralization, regression of atherosclerosis, and peripheral "training effects" similar to exercise. The acute hemodynamic effect produced shear stress which could lead to increased endothelial cell production of nitric oxide (NO) and prostacyclin, powerful factors of vasodilatation. The studies reported that the level of NO increased, brain natriuretic peptide and serum endothelin-1 concentration reduced after EECP treatment.12,49 Sessa et al. found that chronic exercise promotes NO synthesis gene expression and coronary NO production in dog model. This process was initiated post-EECP with improved their exercise tolerance. Masuda et al. showed an improvement in both resting and post-exercise perfusion. This may indirectly promote by opening preexistent collaterals or developing new ones via increased transmyocardial pressure gradients during EECP.51,52

**LIMITATIONS**

Firstly, the aim of this meta-analysis was to assess the effect of immediately after EECP treatment. Therefore, the

---

**TABLE 2. Subgroup Analysis**

| Subgroup               | No. of Studies | Patients, No. | Effect Size | 95% CI  | I², %  | Q    | P      |
|-----------------------|---------------|---------------|-------------|---------|--------|------|--------|
| Age, years            |               |               |             |         |        |      |        |
| <65 patients          | 9             | 1066          | 0.87        | 0.81–0.91| 61.2   | 20.60| 0.0083 |
| ≥65 patients          | 8             | 658           | 0.84        | 0.78–0.89| 46.9   | 13.17| 0.0068 |
| Baseline CCS          |               |               |             |         |        |      |        |
| I–IV                  | 4             | 682           | 0.87        | 0.82–0.90| 45.1   | 5.47 | 0.1407 |
| II–IV                 | 8             | 318           | 0.82        | 0.77–0.86| 0      | 4.55 | 0.7149 |
| III–IV                | 3             | 88            | 0.88        | 0.68–0.96| 54.8   | 4.42 | 0.1095 |
| NA                    | 3             | 680           | 0.89        | 0.70–0.96| 77.5   | 8.88 | 0.0118 |
| Previous CABG         |               |               |             |         |        |      |        |
| <60% Patients         | 4             | 882           | 0.88        | 0.81–0.93| 74.5   | 11.75| 0.0083 |
| ≥60% Patients         | 11            | 369           | 0.81        | 0.77–0.85| 0      | 9.97 | 0.4433 |
| Previous MI           |               |               |             |         |        |      |        |
| <60% Patients         | 5             | 916           | 0.87        | 0.78–0.92| 76.8   | 17.21| 0.0018 |
| ≥60% Patients         | 9             | 368           | 0.84        | 0.79–0.88| 15.5   | 9.47 | 0.3041 |
| Previous PCI          |               |               |             |         |        |      |        |
| <60% patients         | 7             | 902           | 0.85        | 0.77–0.91| 74     | 23.05| 0.0011 |
| ≥60% patients         | 8             | 349           | 0.84        | 0.78–0.88| 17.1   | 8.44 | 0.2951 |
| Previous DM           |               |               |             |         |        |      |        |
| <30% Patients         | 6             | 406           | 0.83        | 0.79–0.87| 0      | 4.99 | 0.4177 |
| ≥30% Patients         | 10            | 923           | 0.87        | 0.80–0.91| 62.1   | 23.76| 0.0047 |
| CHF                   | 8             | 432           | 0.84        | 0.81–0.88| 32.7   | 10.40| 0.1668 |

CABG = coronary artery bypass graft, CCS = Canadian Cardiovascular Society, CHF = chronic heart failure, CI = confidence interval, DM = diabetes mellitus, I², Q = heterogeneity test, MI = myocardial infarction, NA = not available, PCI = percutaneous coronary intervention.
long-term maintenance of improved on CCS needs further investigation. Secondly, because the nature of EECP procedure makes performing a randomized, controlled, blinded trial difficult. We enrolled studies with the feature of prospective, nonrandomized-controlled. The first and an only multicenter, prospective, randomized, blinded placebo (sham) controlled trial was conducted in MUST-EECP.\textsuperscript{13} In addition, EECP, as a new treatment for refractory angina, attracted patients more enthusiasm, so the device placebo effect cannot be excluded. In generally, more further randomized controlled trials are necessary to assess the impact of EECP for the treatment of patients with chronic CAD.

**CONCLUSIONS**

Our meta-analysis suggested that 85% of the patients those underwent EECP therapy improved by at least 1 CCS class immediately post-EECP treatment. The CCS angina class is a relatively minor predictor of prognosis and freedom from events, so our results are noteworthy and the studies evaluated long-term benefit of EECP therapy are warranted. Currently, EECP treatment provides a safe, well-tolerated, valuable option for patients who were unresponsive to maximal medical management and/or invasive therapy. Of note, in combination with other antianginal drugs, the FDA approved Ranolazine to treatment for chronic angina in 2002.

**ACKNOWLEDGMENTS**

The authors thank the National Natural Science Foundation of China (No. 81270175, No.81470404) and the Natural Science Foundation of Shandong Province, China (No.ZR2014HM107) for the support.

**REFERENCES**

1. McGillion M, Arthur HM, Cook A, et al. Management of patients with refractory angina: Canadian Cardiovascular Society/Canadian Pain Society Joint Guidelines. Can J Cardiol. England: 2012 Canadian Cardiovascular Society. Published by Elsevier Inc;2012:S20-S41.
2. Mannheimer C, Camici P, Chester MR, et al. The problem of chronic refractory angina; report from the esc joint study group on the treatment of refractory angina. \textit{Eur heart J.} 2002:355–370; England.
3. Henry TD, Satran D, Jolicoeur EM. Treatment of refractory angina in patients not suitable for revascularization. \textit{Nat Rev Cardiol.} 2014;11:78–95.
4. Manchanda A, Aggarwal A, Aggarwal N, et al. Management of refractory angina pectoris. \textit{Cardiol J.} 2011;18:343–351.
5. Montalescot G, Sechtem U, Achenbach S, et al. 2013 esc guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the european society of cardiology. \textit{Eur Heart J.} 2013;34:2949–3003.
6. Soran O. Treatment options for refractory angina pectoris: enhanced external counterpulsation therapy. \textit{Curr Treat Options Cardiovasc Med.} 2009;11:54–60.
7. Michaels AD, Linnemeier G, Soran O, et al. Two-year outcomes after enhanced external counterpulsation for stable angina pectoris (from the international eecp patient registry iep). \textit{Am J Cardiol.} 2004;93:461–464.
8. Soran O, Kennard ED, Kfoury AG, et al. Two-year clinical outcomes after enhanced external counterpulsation (eep) therapy in patients with refractory angina pectoris and left ventricular dysfunction (report from the international eep patient registry). \textit{Am J Cardiol.} 2006;97:17–20.
9. Yavari M, Montazeri HR. Effects of enhanced external counterpulsation on anginal symptoms and improvements in objective measures of myocardial ischaemia. *Cardiovasc J Afr*. 2007;18:154–156.

10. Kumar A, Aronow WS, Vadenker A, et al. Effect of enhanced external counterpulsation on clinical symptoms, quality of life, 6-minute walking distance, and echocardiographic measurements of left ventricular systolic and diastolic function after 35 days of treatment and at 1-year follow up in 47 patients with chronic refractory angina pectoris. *Am J Ther*. 2009;16:116–118.

11. Urano H, Ikeda H, Ueno T, et al. Enhanced external counterpulsation improves exercise tolerance, reduces exercise-induced myocardial ischemia and improves left ventricular diastolic filling in patients with coronary artery disease. *J Am Coll Cardiol*. 2001;93–99.United States.

12. Masuda D, Nohara R, Hirai T, et al. Enhanced external counterpulsation improved myocardial perfusion and coronary flow reserve in patients with chronic stable angina-evaluation by n-13-ammonia positron emission tomography. *Eur Heart J*. 2001;22:1451–1458.

13. Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (must-eeCP): effect of eCP on exercise-induced myocardial ischemia and anginal episodes. *J Am Coll Cardiol*. 1999;33:1833–1840.

14. Lawson WE, Hui JCK, Cohn PF. Long-term prognosis of patients with angina treated with enhanced external counterpulsation: five-year follow-up study. *Clin Cardiol*. 2000;23:254–258.

15. Kaul P, Naylor CD, Armstrong PW, et al. Assessment of activity status and survival according to the canadian cardiovascular society angina classification. *Can J Cardiol*. 2009;25:E225–E231.

16. Wan Y, Hu Q, Li T, et al. Prevalence of autism spectrum disorders among children in china: a systematic review. *Shanghai Arch Psychiatry*. 2015;70–80; China.

17. Luo M, Tan H, Zhou Q, et al. Implement meta-analysis of a single rate in the R software. *J Evidence-Based Med*. 2013;13:181–184188 (in Chinese).

18. Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *Br Med J*. 2003;327:557–560.

19. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315:629–634.

20. Stys T, Lawson WE, Hui JCK, et al. Acute hemodynamic effects and angina improvement with enhanced external counterpulsation. *Angiology*. 2001;52:653–658.

21. Stys TP, Lawson WE, Hui JCK, et al. Effects of enhanced external counterpulsation on stress radionuclide coronary perfusion and exercise capacity in chronic stable angina pectoris. *Am J Cardiol*. 2002;89:822–824.

22. Shechter M, Matetzky S, Feinberg MS, et al. External counterpulsation therapy improves endothelial function in patients with refractory angina pectoris. *J Am Coll Cardiol*. 2003;42:2090–2095.

23. Bonetti PO, Barness GW, Keelan PC, et al. Enhanced external counterpulsation improves endothelial function in patients with symptomatic coronary artery disease. *J Am Coll Cardiol*. 2003;41:1761–1768.

24. Tartaglia J, Steenerson J, Chanrey R, et al. Exercise capability and myocardial perfusion in chronic angina patients treated with enhanced external counterpulsation. *Clin Cardiol*. 2003;26:287–290.

25. Henrikson CA, Chandra-Strobos N. Enhanced external counterpulsation therapy: significant clinical improvement without electrophysiologic remodeling. *Ann Noninvasive Electrocardiol*. 2004;9:265–269.

26. Michaels AD, Raisinghani A, Soran O, et al. The effects of enhanced external counterpulsation on myocardial perfusion in patients with stable angina: a multicenter radionuclide study. *Am Heart J*. 2005;150:1066–1073.

27. Nichols WW, Estrada JC, Brath RW, et al. Enhanced external counterpulsation treatment improves arterial wall properties and wave reflection characteristics in patients with refractory angina. *J Am Coll Cardiol*. 2006;48:1208–1214.

28. Loh PH, Louis AA, Windram J, et al. The immediate and long-term outcome of enhanced external counterpulsation in treatment of chronic stable refractory angina. *J Inter Med*. 2006;259:276–284.

29. Novo G, Bagger JP, Carta R, et al. Enhanced external counterpulsation for treatment of refractory angina pectoris. *J Cardiovasc Med*. 2006;7:335–339.

30. El-Sakka AI, Morsy FM, Faghi Bl. Enhanced external counterpulsation in patients with coronary artery disease-associated erectile dysfunction. Part ii: Impact of disease duration and treatment courses. *J Sex Med*. 2007;4:1448–1453.

31. Michaels AD, Bart BA, Pinto T, et al. The effects of enhanced external counterpulsation on time- and frequency-domain measures of heart rate variability. *J Electrocardiol*. 2007;515–521.United States.

32. Erdling A, Bondesson S, Pettersson T, et al. Enhanced external counter pulsation in treatment of refractory angina pectoris: two year outcome and baseline factors associated with treatment failure. *BMC Cardiovasc Disord*. 2008;8:39.

33. Soran O, Ikizler C, Sengul A, et al. Comparison of long term clinical outcomes, event free survival rates of patients undergoing enhanced external counterpulsation for coronary artery disease in the united states and turkey. *Turk Kardiyl Dern Ars*. 2012;40:323–330.

34. Wu E, Martensson J, Brostrom A. Enhanced external counterpulsation in patients with refractory angina pectoris: a pilot study with six months follow-up regarding physical capacity and health-related quality of life. *Eur J Cardiovasc Nurs*. 2013;12:437–445.

35. Bozorgi A, Mehrabi Nasab E, Sardari A, et al. Effect of enhanced external counterpulsation (eeCP) on exercise time duration and functional capacity in patients with refractory angina pectoris. *J Tehran Heart Cent*. 2014;9:33–37.

36. Gandhi P, Subramanian R, Mittal M. Primary utilization of ecp in chronic stable angina patients with left ventricular dysfunction and long time follow up. *Global Heart*. 2014;9:e194.

37. May O, Lynnggaard V, Mortensen JCA, et al. Enhanced external counterpulsation – effect on angina pectoris, qol and exercise capacity after 1 year. *Scand Cardiovasc J*. 2015;49:1–6.

38. Taguchi I, Ogawa K, Oda A, et al. Comparison of hemodynamic effects of enhanced external counterpulsation and intra-aortic balloon pumping in patients with acute myocardial infarction. *Am J Cardiol*. 2000;86:1139–1141.

39. Bonetti PO, Holmes DR, Lerman A, et al. Enhanced external counterpulsation for ischemic heart disease – what’s behind the curtain? *J Am Coll Cardiol*. 2003;41:1918–1925.

40. Shah SA, Shapiro RJ, Mehta R, et al. Impact of enhanced external counterpulsation on Canadian cardiovascular society angina class in patients with chronic stable angina: a meta-analysis. *Pharmacotherapy*. 2010:30:639–645.

41. Lawson WE, Hui JCK, Lang G. Treatment benefit in the enhanced external counterpulsation consortium. *Cardiology*. 2000;94:31–35.

42. Barness G, Feldman AM, Holmes DR, et al. The international ecp patient registry (iepr): design, methods, baseline characteristics, and acute results. *Clin Cardiol*. 2001;24:435–442.

43. Lawson WE, Hui JCK, Kennard ED, et al. Two-year outcomes in patients with mild refractory angina treated with enhanced external counterpulsation. *Clin Cardiol*. 2006;29:69–73.
44. Lawson WE, Kennard ED, Holubkov R, et al. Benefit and safety of enhanced external counterpulsation in treating coronary artery disease patients with a history of congestive heart failure. *Cardiology*. 2001;96:78–84.

45. Soran O, Fleishman B, Demarco T, et al. Enhanced external counterpulsation in patients with heart failure: a multicenter feasibility study. *Congest Heart Fail (Greenwich, Conn)*. 2002;8:204–227.

46. Linnemeier G, Rutter MK, Barsness G, et al. Enhanced external counterpulsation for the relief of angina in patients with diabetes: safety, efficacy and 1-year clinical outcomes. *Am Heart J*. 2003;146:453–458.

47. Holubkov R, Kennard ED, Foris JM, et al. Comparison of patients undergoing enhanced external counterpulsation and percutaneous coronary intervention for stable angina pectoris. *Am J Cardiol*. 2002;89:1182–1186.

48. Fitzgerald CP, Lawson WE, Hui JC, et al. Enhanced external counterpulsation as initial revascularization treatment for angina refractory to medical therapy. *Cardiology*. 2003;129–135; Switzerland.

49. Akhtar M, Wu G-F, Du Z-M, et al. Effect of external counterpulsation on plasma nitric oxide and endothelin-1 levels. *Am J Cardiol*. 2006;98:28–30.

50. Sessa WC, Pritchard K, Seyed N, et al. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. *Circ Res*. 1994;74:349–353.

51. Flynn MS, Kern MJ, Donohue TJ, et al. Alterations of coronary collateral blood flow velocity during intraaortic balloon pumping. *Am J Cardiol*. 1993;71:1451–1455.

52. Kern MJ, Aguirre FV, Tatineni S, et al. Enhanced coronary blood flow velocity during intraaortic balloon counterpulsation in critically ill patients. *J Am Coll Cardiol*. 1993;21:359–368.