Comparative evaluation of incretin-based antidiabetic medications and alternative therapies to be added to metformin in the case of monotherapy failure†

Michael A Nauck*, Irfan Vardarli

ABSTRACT
Aims/Introduction: To compare clinical consequences of using incretin-based medications versus conventional antidiabetic agents as add-on to metformin in case of monotherapy failure in patients with type 2 diabetes.

Materials and Methods: The medical literature including recent abstracts from international diabetes conferences was searched for reports from clinical trials with incretin mimetics (GLP-1 receptor agonists), inhibitors of dipeptidyl peptidase-4 (DPP-4, incretin enhancers) and conventional antidiabetic drugs coadministered with metformin after monotherapy failure. A scoring system is suggested to compare the clinical utility of using incretin-based versus conventional antidiabetic agents in this situation.

Results: Incretin mimetics and DPP-4 inhibitors on top of metformin treatment help achieve glycaemic control comparable to other efficient antidiabetic drugs, both if separate or head-to-head trials were considered. Incretin-based antidiabetic drugs did not cause hypoglycaemia (different from sulfonylureas, meglitinides and insulin) and weight gain (different from sulfonylureas, meglitinides, thiazolidinediones, and insulin). DPP-4 inhibitors were weight neutral, incretin mimetics lead to weight loss. The clinical profile of incretin-based medications received the highest scores, followed by α-glucosidase inhibitors, with far lower scores assigned to insulin, glitazones, and sulfonylureas (in this order).

Conclusions: Based on the results from clinical trials, incretin-based medications have been shown to be efficacious antidiabetic drugs with a favourable adverse event and tolerability profile. This leads to high scores using a novel system paying attention to multiple facets contributing to the selection of antidiabetic drugs for general recommendation and individual treatment choices.

(J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00004.x, 2010)

KEY WORDS: DPP-4 inhibitors, GLP-1 receptor agonists, Incretin-based antidiabetic drugs

INCRETIN-BASED ANTIDIABETIC MEDICATIONS
Two novel classes of antidiabetic medications make use of the antidiabetic properties of the incretin hormone glucagon-like peptide-1 (GLP-1)1–4, the GLP-1 receptor agonists (or incretin mimetics) and inhibitors of the protease dipeptidyl peptidase-4 (DPP-4; ‘incretin enhancers’)5. The first representatives of these classes introduced into the USA and European markets were exenatide (USA, 2005)6–8 and sitagliptin (2007)9,10, followed by vildagliptin (Europe, 2008)11,12. More compounds have been approved13 or are in development14.

In the case of incretin mimetics, novel programs aim towards using compounds minimally different from the parent hormone, GLP-1, (to avoid antibody formation) and longer intervals between injections (from once daily to up to once weekly). Clinical studies (phase 3, the LEAD program) have been presented at recent diabetes conferences in regard to liraglutide (Figure 1), and most of these liraglutide studies have been published15–19. The situation is similar for an extended-release preparation of exenatide (exenatide LAR)20,21. Earlier in development (phase 2 results reported) are lixisenatide (AVE 0010; Sanofi-Aventis, Paris, France) and taspoglutide (Ro 1583; Roche Pharma, Basel, Switzerland)22.

Regarding DPP-4 inhibitors, phase 3 studies have been reported for alogliptin (Takeda Pharma, Osaka, Japan)23,24, and phase 3 studies have also been presented in the case of saxagliptin (AstraZeneca, London, UK and Bristol-Myers Squibb, New York City, NY, USA)13,25.
THEORETICAL PROPERTIES OF MEDICATIONS BASED ON THE BIOLOGY OF GLP-1

Incretin-based antidiabetic medications have attractive properties that are tightly linked to the multiple mechanisms of antidiabetic actions of GLP-1. Because the biology of GLP-1 with regard to its role as a parent compound of antidiabetic medications has been highlighted elsewhere, only some important features will be presented here. Among insulino-tropic agents, especially in comparison to sulfonylureas, GLP-1 is unique in that it stimulates insulin secretion in a highly glucose-dependent fashion. Below approximately 65 mg/dL glucose, no stimulation occurs at all. Until glucose levels of 110 mg/dL are reached, insulin secretion is stimulated to a very limited extent and only with higher glucose concentrations, the augmentation through GLP-1 can be called potent. Sulfonylureas, in contrast, lead to stimulated insulin secretion even at rather low glucose concentrations, a mechanism potentially leading to hypoglycaemia. Exenatide and liraglutide share this glucose-dependence (as assessed by hypoglycaemic clamp studies).
At the level of the endocrine pancreas, GLP-1 stimulates (pro-)insulin biosynthesis\(^{32}\) and, thereby, prevents the depletion of insulin stores\(^{33}\). In addition, GLP-1 suppresses glucagon secretion\(^ {34}\).

The ability of GLP-1, even when administered into the peripheral circulation, to have an influence on brain centres involved in the regulation of appetite and satiety\(^ {35}\), and to limit energy intake in human subjects with\(^ {36}\) and without\(^ {37}\) type 2-diabetes has led to the unique property of incretin mimetics as being the only insulinotropic antidiabetic agents not leading to weight gain, but rather, to weight loss\(^ {38}\).

The last point concerns the ability of GLP-1, incretin mimetics and DPP-4 inhibitors to promote growth of pancreatic endocrine \(\beta\)-cells, either in the form of replication/proliferation\(^ {39,40}\), or as differentiation from precursor cells\(^ {41}\). In addition, GLP-1 has been shown to at least partially prevent apoptosis when \(\beta\)-cells or islets were incubated with compounds such as free fatty acid\(^ {42}\), cytokines\(^ {42}\) or hydrogen peroxide\(^ {43}\), agents that trigger apoptosis. In animal experiments, this has led to a rather rapid enhancement of \(\beta\)-cell mass, when GLP-1\(^ {44}\), exenatide\(^ {40}\), liraglutide\(^ {42}\), sitagliptin\(^ {45}\), or vildagliptin\(^ {46}\) have been used in rodents over periods from 48 h\(^ {44}\) up to several weeks. These observations have fostered hope that treatment with incretin mimetics and DPP-4 inhibitors will lead to similar changes in the human endocrine pancreas when used long enough. However, to date proof is lacking that there are persisting alterations in \(\beta\)-cell function or mass\(^ {47}\). Basically, this can be regarded as an open question, because \(\beta\)-cell turnover is known to be much slower in human islets, and any detectable change will require periods of treatment longer than studies that have been reported so far. In the end, these properties might be the basis to expecting more ‘durability’, for example, a stable glycemic control with these new agents over a long period of time\(^ {48}\).

INCRETIN-BASED ANTIDIABETIC MEDICATIONS IN RECOMMENDED TREATMENT ALGORITHMS FOR TYPE 2 DIABETES

Based on these properties, incretin-based antidiabetic medications are regarded to be true innovations with a potential for broader use in the population of type 2 diabetic patients\(^ {5}\). According to conventional reasoning, metformin should be used as the first-line antidiabetic drug in the typical overweight patient with type 2 diabetes, because it is cheap, does not lead to weight gain and hypoglycemia, and has proven a substantial reduction in cardiovascular events (e.g. myocardial infarction) to the extent that survival has been improved during the United Kingdom Prospective Diabetes Study\(^ {49}\), with a similar benefit persisting up to 10 years after the intervention\(^ {50}\). Any other antidiabetic drug competing for the position of recommended initial treatment would need to show benefits of a similar quality. What to do when metformin monotherapy fails, is a far more difficult question. Basically, there are several options; sulfonylureas (glibenclamide [glyburide], glimepiride, glipizide, gliclazide and other less often prescribed drugs), meglitinides (repaglinide, nateglinide), \(\alpha\)-glucosidase inhibitors (acarbose, miglitol), thiazolidinediones (rosiglitazone, pioglitazone), insulin (basal insulin added to oral antidiabetic agents, conventional insulin treatment (i.e. twice daily premixed insulin) intensified regimens with multiple daily injections of fast-acting insulin with and without basal insulin), and incretin-based antidiabetic medications. Current guidelines (e.g. as issued by the German Diabetes Association, Deutsche Diabetes-Gesellschaft\(^ {51}\)) list all available drugs (or classes), and leave it to the individual situation for the decision to be made as to which drug combination should be used for a given patient. Older guidelines (issued before 2006) often don’t mention GLP-1 receptor agonists or DPP-4 inhibitors at all, because at the time of their writing, these agents had not been available at all or the experience with their use was limited. Of particular impact is the treatment algorithm authorized by both the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) that was published in 2006\(^ {52}\). It presents a rather restricted approach as only three treatment recommendations are seriously considered; insulin, if the most potent blood glucose-lowering effect is needed; sulfonylureas, when drug costs are of primary concern; and thiazolidinediones, when hypoglycemia needs to be strictly avoided. This leaves no space for incretin-based antidiabetic agents. The first author of the present position statement, David Nathan, has a critical opinion of the quality and quantity of data from clinical studies that have lead to the approval of incretin-based antidiabetic drugs\(^ {53}\), and thus has made it clear that he would not consider a broader recommendation at this point in time. Nevertheless, a recent update of the position statement of experts acting in the name of the ADA and EASD has now mentioned GLP-1 receptor agonists as ‘tier 2 (less well-validated therapies)’ recommendations\(^ {54}\).

LITERATURE SEARCH STRATEGY AND METHODS OF ANALYSIS

The present overview is a relatively systematic compilation of results from clinical studies involving GLP-1 receptor agonists and DPP-4 inhibitors, and of potential competitors for the position as second-line add-on to metformin in the case of monotherapy failure. For that purpose, a literature search was carried out looking for publications, with the name of the drug in question in the title and ‘metformin’ in the abstract. In addition, abstracts from the 2007 and 2008 annual meetings of the ADA and EASD were screened with the help of the respective indices. Changes in HbA\(_1c\), and fasting glucose concentrations from baseline, the percentage of patients reaching an HbA\(_1c\) <7\%, changes in bodyweight (\(\Delta\) baseline), the percentage of patients experiencing episodes of hypoglycemia, and the percentage reporting nausea and/or vomiting were collected and depicted as proportions (in %) or mean ± SEM. Important baseline characteristics (HbA\(_1c\), body mass index),...
the doses of the study drugs used and study duration were also recorded. A uniform color code was used in figures with sulfonylureas in (different shades of) red, thiazolidinediones in brown, premixed or NPH-insulin in dark grey, insulin glargine in violet, incretin mimetics in green, and DPP-4 inhibitors in blue. α-glucosidase inhibitors were also considered. Four comparisons were made, all from patients who received metformin as the background medication, as follows: (i) incretin mimetics versus placebo; (ii) DPP-4 inhibitors versus placebo; (iii) sulfonylureas and thiazolidinediones versus placebo; and (iv) direct comparisons of incretin mimetics or DPP-4 inhibitors with any of the comparator drugs. In the latter case, only the highest dose of the incretin-based medication was reported, if more than one dose had been part of the protocol. Statistical analysis was taken from the original reports. If no standard errors of the mean (SEM) were reported, if more than one dose had been part of the protocol. All incretin mimetics led to weight loss. The extent of which depended on the duration of the studies, with larger weight loss after longer treatment periods.

Hypoglycemia was not reported at a rate higher than for placebo. The one apparent exception (exenatide LAR, Kim et al.20) was based on a small number of patients afflicted.

Nausea and/or vomiting were a common finding. For reasons of simplicity, proportions of patients reporting either nausea or vomiting were added for the purpose of preparing the figures. This method does not take into account that often nausea and/or vomiting occurred in the same subjects, and leads to higher figures than strictly analysing patients with either nausea or vomiting galore. The latter information, however, was not available from most of the study reports. It should be noted, that the high percentage of patients reporting nausea and vomiting contrasts with the much smaller number of patients withdrawing from the studies as a result of unbearable adverse gastrointestinal events. Uniformly, all studies reported side-effects to be mostly mild to moderate in severity, and to occur primarily when initiating treatment9,62,63, with a much lower incidence with chronic treatment. There might be reduction in the incidence of gastrointestinal side-effects with longer-acting incretin mimetics19.

Incretin mimetics and DPP-4 inhibitors

INCRETIN IMIMETICS VS PLACEBO (METFORMIN BACKGROUND)
The molecular nature of the incretin mimetics that are part of the present clinical analysis are shown in Figure 1, along with the primary structure of the parent compound, GLP-1. Exenatide is used with twice-daily injection of 5–10 μg6–8,85,56. Liraglutide is a minimally modified GLP-1 with a free fatty acid attached to promote binding to albumin as the mechanism for protracted action61. It should be used with once-daily dosing at 1.2 to 1.8 mg, with a 0.6 mg dose for initial treatment (slow up titration to avoid side-effects)9,10,15. Lixisenatide C AVE 0010 is recommended for once-daily dosing based on the study shown in Figure 294,59. Its complete molecular structure has not been disclosed. Exenatide LAR is exenatide with a retarded action profile as a result of microencapsulation, that is, the incagement of the active compound into a network of self-dissolving polymer fibres21,60. Taspoglutide is GLP-1 with two amino acids (in positions 2 and 35) replaced by α-amino butyric acid. Zinc chloride is added for retarded absorption22. Like exenatide LAR, it needs to be injected once weekly.

From Figure 2, a pattern of the clinical effects of adding a GLP-1 receptor agonist or placebo to metformin is obvious; HbA1c is consistently lowered by approximately 1% in the case of relatively short-acting incretin mimetics, and by up to 2% for exenatide LAR, a long-acting preparation. Taspoglutide was studied for only 8 weeks, so the drop in HbA1c underestimated the full effect seen after reaching a steady state22. Effects on fasting glycemia follow a similar pattern, suggesting that a more profound effect on fasting glucose concentrations with better pharmacokinetic 24 h coverage61 adds to improved HbA1c concentrations.

The proportions of patients reaching a HbA1c <7% mirrors the ability of the compounds to lower average glycemia, with an impressive percentage (approximately 70–80%) for long-acting incretin mimetics9,19,22. The proportions of patients reaching a HbA1c <7% mirrors the ability of the compounds to lower average glycemia, with an impressive percentage (approximately 70–80%) for long-acting incretin mimetics9,19,22. The
proportion reaching a HbA1c <7% was variable, in part depending on baseline conditions. In the case of insulin treatment, only approximately 50% reached this goal, despite the substantial drop versus baseline.

Uniformly, the patients gained weight with sulfonylurea, thiazolidinedione and insulin treatment, with up to 3 kg on average with insulin treatment.

As expected, hypoglycaemic episodes occurred with sulfonylurea and, more often, with insulin treatment, but not with thiazolidinedione treatment. Gastrointestinal side-effects were no issue with any of these medications.

DIRECT COMPARISONS OF INCRETIN-BASED ANTIDIABETIC MEDICATIONS (INCRETIN MIMETICS OR DPP-4 INHIBITORS) AND SULFONYLUREAS, THIZOLIDINEDIONES, OR INSULIN (METFORMIN BACKGROUND)

As a rule, in direct comparisons, DPP-4 inhibitors (sitagliptin and vildagliptin) were tested against other oral antidiabetic drugs, and incretin mimetics (exenatide and liraglutide) were tested against different insulin regimens (Figure 5). One exception to this rule is a study comparing liraglutide and glimepiride. In none of the comparisons was the DPP-4 inhibitor of incretin
mimetic weaker in terms of lowering HbA1c. Insulin glargine was more potent in reducing fasting glycemia than exenatide55, but not compared with liraglutide18. Given the similar effect on HbA1c, and the lower ability to reduce fasting glucose, this is compatible with the short duration of action of unretarded exenatide (and, consecutively, a comparatively weak effect on fasting glycemia) and its decelerating effect on gastric emptying70, virtually abolishing postprandial rises in glycemia after the meals that exenatide had been administered before19. The relatively weak effect on fasting glucose, thus, is compensated for by exenatide’s postprandial glucose-lowering activity. There were no significant differences between any of the incretin-based antidiabetic medications and the comparators in the ability to reach a HbA1c <7%.

In contrast to the similar effects on glycemic control, there were clear differences in bodyweight, which increased with sulfonylureas, thiazolidinediones and insulin, but remained unchanged or was slightly reduced with DPP-4 inhibitors, and was consistently and substantially reduced with incretin mimetics (both exenatide and liraglutide).

Neither sitagliptin nor liraglutide caused significant hypoglycemia in any of the studies with a strict metformin background medication, whereas glipizide10 and glimepiride (sulfonylureas)17 treatment was accompanied by hypoglycemia in a significantly higher proportion of patients. In studies that allowed sulfonylureas (and metformin) as background medication (indicated by a light grey background area)18,55,56, this unique advantage of incretin mimetics was lost, although a weak trend towards less...
hypoglycemia remained. This is compatible with the known biological interaction of GLP-1 and sulfonylureas at the level of the endocrine pancreatic β-cell; once the ATP-dependent potassium channel is closed (by a sulfonylurea), the stimulation of insulin secretion is no longer glucose-dependent and can lead to hypoglycemia.29,71

Gastrointestinal adverse events occurred with incretin mimetics, but not with any other drug class. Based on the data from clinical studies presented so far, it was obvious that the comparisons were not at all unfavourable for incretin-based medications in patients no longer well controlled with metformin. Effects on HbA\textsubscript{1c} and fasting plasma glucose, the proportion of patients reaching a HbA\textsubscript{1c} <7.0%, changes in bodyweight, patients experiencing hypoglycemia or reporting nausea and/or vomiting are shown. Bars represent the change from baseline (error bars representing standard errors of the mean) or proportions. *Flatulence. Data are taken from Marre et al65, Feinglos et al66, Holman et al76, Charbonnel et al67, Umpierrez68, and Fonseca et al69, Rosenstock et al77, Yki-Järvinen et al78 and Yki-Järvinen et al79.

A COMPREHENSIVE SCORING SYSTEM TO JUDGE THE CLINICAL VALUE OF USING DIFFERENT ANTIDIABETIC DRUGS

A meaningful score should allow judging multiple facets of the consequences of using a particular drug (combination). It should focus on aspects that might be important contributors to the decision of which drug to choose or to recommend as part of treatment algorithms/guidelines or in the choice of drugs for an individual patient. It should be sensitive to differences in environmental conditions, which differ between countries. In the end, the score should make clear whether the overall assessment is positive, neutral or negative.

The suggested score presented here is composed of the following 12 items: (i) the potency to lower glycemia as judged by
HbA1c determinations; (ii) the proven ability to prevent microvascular; (iii) the proven ability to prevent macrovascular complications; (iv) the overall attractiveness of the mode(s) or action for the drug in question; (v) the potential to elicit life-threatening adverse events; (vi) the potential to cause unpleasant, but harmless, side-effects; (vii) cardiovascular safety (as assessed by appropriately sized long-term clinical trials assessing cardiovascular outcome); (viii) effects on bodyweight; (ix) the potential to provoke episodes of hypoglycemia; (x) the necessity to use (and spend additional) money for blood glucose self-monitoring; (xi) the potential for supporting a long-term ‘durability’ of glycemic control; and (xii) last but not least, costs. For each item, a maximum of two scoring points can be given for the best possible influence this drug has on the parameter in question; 0 points indicating a neutral (average) influence, negative scores indicating an estimate below average, and positive scores supporting better than average influence. The reference should be the totality of alternative treatment options available, but only with respect to this particular parameter. In principle, this scoring system is flexible and other parameters could be added, and some parameters could be removed if necessary. A further refinement is the assignment of different weights to any given parameter so that, for example, in an environment where costs have a heavy influence on the choice of drugs, this can be adopted by assigning a heavy weight to costs and to de-emphasise other parameters that are thought to not contribute as much to the overall treatment choice. We have asked some renowned experts in the field (for their names and places of origin, see acknowledgements) to contribute their personal opinion on calculating a summary score that allows to compare the preference for different antidiabetic

Figure 5 | Direct comparison of incretin-based antidiabetic medications (GLP-1 receptor agonists or DPP-4 inhibitors) and other antidiabetic drugs (oral agents or insulin) in patients no longer well controlled on metformin treatment alone. Effects on HbA1c, and fasting plasma glucose, the proportion of patients reaching a HbA1c <7.0%, changes in bodyweight, patients experiencing hypoglycemia or reporting nausea and/or vomiting are shown. Bars represent the change from baseline (error bars representing standard errors of the mean) or proportions. Data are taken from Nauck et al.10, Bolli et al100, Heine et al55, Nauck et al56, Barnett et al81, Nauck et al17 and Russell-Jones18.
Table 1 | Scoring system to describe the value of different antidiabetic drug classes when combined with metformin

Drug class parameter	Sulfonylureas	Thiazolidinediones	α-Glucosidase inhibitors	Insulin	DPP-4 inhibitors	Incretin mimetics	P-value	
Efficacy regarding glycemic control	1.1 ± 0.1^{cd}	1.1 ± 0.2^{cd}	0.0 ± 0.2^{abcd}	0.0 ± 0.2^{abcd}	1.9 ± 0.1^{abcd}	0.7 ± 0.2^{cd}	14 ± 0.2^{cd}	<0.001
Prevention of microvascular complications	12 ± 0.2^{abcd}	0.5 ± 0.2^{cd}	0.2 ± 0.1^{bd}	0.2 ± 0.1^{bd}	1.9 ± 0.1^{abcd}	0.7 ± 0.1^{abcd}	14 ± 0.2^{cd}	<0.001
Potential for macrovascular complications	-0.4 ± 0.1^{bcdf}	0.4 ± 0.2^a	0.6 ± 0.2^{ae}	0.6 ± 0.2^{ae}	0.0 ± 0.1^{cd}	0.1 ± 0.1^{cd}	0.1 ± 0.1^a	<0.001
Attractive mode(s) of action	-0.4 ± 0.3^{bcdef}	0.9 ± 0.2^a	0.3 ± 0.1^{ae}	0.8 ± 0.2^a	1.2 ± 0.1^{ac}	1.4 ± 0.2^{ac}	<0.001	
Potential for seriously harmful AE	0.3 ± 0.3^{ace}	-0.7 ± 0.3^{ace}	1.2 ± 0.2^{abdf}	0.0 ± 0.4^{ce}	0.9 ± 0.2^{bdf}	0.0 ± 0.2^{ce}	<0.001	
Potential to cause unpleasant SE	0.0 ± 0.2^e	-0.9 ± 0.3^e	-0.8 ± 0.4^e	-0.2 ± 0.3^e	1.3 ± 0.3^{abcde}	-0.6 ± 0.2^e	<0.001	
Proven cardiovascular safety	-0.3 ± 0.2^{cd}	-0.4 ± 0.2^{cd}	0.9 ± 0.2^{abdf}	0.6 ± 0.2^{abdf}	-0.2 ± 0.2^{cd}	-0.1 ± 0.1^{cd}	<0.001	
Effects on bodyweight	-13 ± 0.1^{bca}	-19 ± 0.1^{acde}	0.4 ± 0.1^{abcd}	-15 ± 0.2^{de}	0.2 ± 0.1^{abcd}	18 ± 0.1^{abcd}	<0.001	
Potential to cause hypoglycemia	-15 ± 0.1^{bca}	13 ± 0.2^{ad}	14 ± 0.2^{ad}	-19 ± 0.1^{bca}	14 ± 0.2^{ad}	14 ± 0.2^{ad}	<0.001	
Need for glucose self-monitoring	-10 ± 0.1^{bca}	13 ± 0.2^{ac}	13 ± 0.2^{bacdf}	-19 ± 0.1^{ac}	14 ± 0.2^{ac}	14 ± 0.2^{ac}	<0.001	
Potential for durability of glycemic control	-13 ± 0.2^{bca}	12 ± 0.2^{ac}	0.0 ± 0.2^{abcd}	0.6 ± 0.2^{ac}	0.6 ± 0.1^{abcd}	0.9 ± 0.2^{ac}	<0.001	
Drug costs per day	19 ± 0.1^{abcd}	-0.9 ± 0.2^{abcd}	0.3 ± 0.2^{ab}	-0.4 ± 0.2^{ab}	-13 ± 0.1^{ac}	-18 ± 0.1^{bcd}	<0.001	
Σ	-18 ± 0.8	19 ± 1.1	5.7 ± 1.0	0.5 ± 0.9	64 ± 0.6	64 ± 0.5	<0.001	
Rank	6	4	3	5	1	1	<0.001	

Grading system: −2, the worst possible; −1, moderately negative; 0, neutral; 1, moderately positive; 2, the best possible influence on the parameter in question. Assigning weight, the importance of the given parameter is expressed as a number between 1 (least important) and 5 (very important).

In conclusion, when comparing potential medications to be added to metformin when treatment needs to be intensified, drugs that can be added to metformin in the case of monotherapy failure. Surprisingly, we received opinions pointing to a rather uniform judgement, allowing the detection of significant differences between different candidate drugs, both with respect to individual parameters analysed separately and with respect to an overall summary score, that might help in identifying preferences for certain drug choices (Table 1). The weights assigned to the different items varied between 2.4 ± 0.3 (lowest weight for ‘attractive mode(s) of action’) and 4.8 ± 0.1 (highest weight for both ‘efficacy regarding glycemic control’ and ‘prevention of microvascular complications’). These differences were highly significant (P < 0.0001 by ANOVA). In the lower part of Table 1, each score from the upper part of the Table (unweighted) was multiplied by the individual weight assigned by the same diabetes specialist. Thus, individual and summary scores paying attention to both the raw score and the weight are displayed. With both methods, incretin-based medications and α-glucosidase inhibitors rank highest in the opinion of our experts, whereas insulin, thiazolidinediones and especially sulfonylureas receive the lowest scores.

When comparing potential medications to be added to metformin when treatment needs to be intensified,
incretin-based medications have proven that their efficacy has
been at least comparable with competing antidiabetic drugs.
This, together with other properties (no promotion of hypo-
glycemia and weight gain), makes them a serious contender as a
good choice when treatment needs to be intensified at the stage
of metformin failure. Certainly, this conclusion will be supported
if long-term studies add evidence that these medications
have the potential to prevent diabetic complications and
maintain adequate glycemic control over a long period of time
(durability).

ACKNOWLEDGEMENTS
We thank Jens J. Holst, Copenhagen, Denmark; Baptist Gallwitz,
Tübingen, Germany and Juris J. Meier, Bochum, Germany for
helpful discussions. We thank Drs Tina Vilsbøll, Copenhagen,
Denmark; Dr Bo Ahren, Lund, Sweden; Dr Bernard Charbon
nel, Nantes France; Dr Hans DeVries, Amsterdam, The Nether-
lands; Dr Stefano DelPrato, Pisa, Italy; Dr Baptist Gallwitz,
Tübingen, Germany; Dr Markolf Hanefeld, Dresden, Germany;
Dr Thure Krarup, Copenhagen, Denmark; Dr Lawrence Leiter,
Toronto, Ontario, Canada; Dr Michel Marre, Paris, France;
Dr Juris J. Meier, Bochum, Germany; Dr Robert Ratner, Wash-
ington, DC, USA; Dr Itamar Raz, Jerusalem, Israel; Dr Julio Rosenstock, Dallas, TX, USA and Dr Bernard Zinman,
Toronto, ON, Canada for providing us with scores regarding
their preferred antidiabetic medications to be added to metfor-
min in the case of monotherapy failure. The results of these
scores are summarized in Table 1. M.N. has received research
grants from Bayer Vital Pharma, Leverkusen, Germany; Eli Lilly
& Co. Indianapolis, IN, USA; Menarini/Berlin-Chemie, Berlin,
Germany; Merck, Sharp Dohme, Munich, Germany; Novartis
Pharma, Basel, Switzerland and NovoNordisk, Copenhagen,
Denmark. He has accepted honoraria for membership in advis-
atory boards and consulting, and has received honoraria for
speaking on incretin-based antidiabetic medications from Amy-
lin Pharmaceuticals San Diego, CA, USA; AstraZeneca, Mjölin-
dal, Sweden; Bayer Vital Pharma, Leverkusen, Germany; Berlin
Chemie/Menarini, Berlin, Germany; Biovitrum, Stockholm,
Sweden; Eli Lilly & Co., Indianapolis, IN, USA; Glaxo, Smith,
Kline, Munich, Germany; Hoffman La Roche, Basel, Switzerland;
Novartis Pharma, Basel, Switzerland/Nürnberg, Germany;
NovoNordisk, Copenhagen, Denmark; Sanofi-Aventis Pharma,
Bad Soden/ Taunus, Germany and Takeda, Deerfield, IL, USA.

REFERENCES
1. Nauck MA, Meier JJ. Glucagon-like peptide 1 (GLP-1) and its
derivatives in the treatment of diabetes. Regul Pept 2005;
124(Suppl.): 135–148.
2. Nauck M, Smith U. Incretin-based therapy: how do incretin
mimetics and DPP-4 inhibitors fit into treatment algorithms
for type 2 diabetic patients? Best Pract Res Clin Endocrinol
Metab 2009; 23: 513–523.
3. Deacon CF. Incretin-based treatment of type 2 diabetes:
glucagon-like peptide-1 receptor agonists and dipeptidyl
peptidase-4 inhibitors. Diabetes Obes Metab 2007; 9(Suppl. 1):
23–31.
4. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP.
Gastroenterology 2007; 132: 2131–2157.
5. Drucker DJ, Nauck MA. The incretin system: glucagon-like
peptide-1 receptor agonists and dipeptidyl peptidase-4
inhibitors in type 2 diabetes. Lancet 2006; 368: 1696–1705.
6. Buse JB, Henry RR, Han J, et al. Effects of exenatide (exendin-
4) on glycemic control over 30 weeks in sulfonylurea-treated
patients with type 2 diabetes. Diabetes Care 2004; 27: 2628–
2635.
7. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron
AD. Effects of exenatide (exendin-4) on glycemic control and
weight over 30 weeks in metformin-treated patients with
type 2 diabetes. Diabetes Care 2005; 28: 1092–1100.
8. Kendall DM, Riddle MC, Rosenstock J, et al. Effects of exena-
tide (exendin-4) on glycemic control over 30 weeks in
patients with type 2 diabetes treated with metformin and a
sulfonylurea. Diabetes Care 2005; 28: 1083–1091.
9. Charbonnel B, Karasik A, Liu J, Wu M, Meiningher G. Efficacy
and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin
added to ongoing metformin therapy in patients with type
2 diabetes inadequately controlled with metformin alone.
Diabetes Care 2006; 29: 2638–2643.
10. Nauck MA, Meiningher G, Sheng D, Terranella L, Stein PP.
Efficacy and safety of the dipeptidyl peptidase-4 inhibitor,
sitagliptin, compared with the sulfonylurea, glipizide, in
patients with type 2 diabetes inadequately controlled on
metformin alone: a randomized, double-blind, non-inferiority
trial. Diabetes Obes Metab 2007; 9: 194–205.
11. Schweizer A, Couturier A, Foley JE, Dejager S. Comparison
between vildagliptin and metformin to sustain reductions in
HbA1c over 1 year in drug-naïve patients with Type 2 dia-
betes. Diabet Med 2007; 24: 955–961.
12. Ferrannini E, Fonseca V, Zinman B, et al. Fifty-two-week
efficacy and safety of vildagliptin vs. glimepiride in patients
with type 2 diabetes mellitus inadequately controlled on
metformin monotherapy. Diabetes Obes Metab 2009; 11:
157–166.
13. DeFronzo RA, Hissa MN, Garber AJ, et al. The efficacy and
safety of saxagliptin when added to metformin therapy in
patients with inadequately controlled type 2 diabetes in
metformin alone. Diabetes Care 2009; 32: 1649–1655.
14. Deacon CF, Carr RD, Holst JJ. DPP-4 inhibitor therapy: new
directions in the treatment of type 2 diabetes. Front Biosci
2008; 13: 1780–1794.
15. Garber A, Henry R, Ratner R, et al. Liraglutide versus glimepi-
ride monotherapy for type 2 diabetes (LEAD-3 Mono): a
randomised, 52-week, phase III, double-blind, parallel-treat-
ment trial. Lancet 2009; 373: 473–481.
16. Marre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily
human GLP-1 analogue, added to a sulphonylurea over
26 weeks produces greater improvements in glycaemic and
weight control compared with adding rosiglitazone or
placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med 2009; 26: 268–278.

17. Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 2009; 32: 84–90.

18. Russell-Jones D, Vaag A, Schmitz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia 2009; 52: 2046–2055.

19. Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374: 39–47.

20. Kim D, MacConell L, Zhuang D, et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007; 30: 1487–1493.

21. Drucker DJ, Buse JB, Taylor K, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008; 372: 1240–1250.

22. Nauck MA, Ratner RE, Kapita C, Berria R, Boldrin M, Balena R. Treatment with the human once-weekly glucagon-like peptide-1 analog taspoglutide in combination with metformin improves glycemic control and lowers body weight in patients with type 2 diabetes inadequately controlled with metformin alone: a double-blind placebo-controlled study. Diabetes Care 2009; 32: 1237–1243.

23. Rosenstock J, Rendell M, Gross J, Fleck P, Wilson C, Mekki Q. Alogliptin added to insulin therapy in patients with type 2 diabetes reduces HbA1c without increasing weight gain or hypoglycemia (abstract). Diabetes 2008; 57(Suppl. 1): A 132.

24. Nauck MA, Ellis GC, Fleck PR, Wilson CA, Mekki Q. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract 2009; 63: 46–55.

25. Rosenstock J, Sankoh S, List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naïve patients with type 2 diabetes. Diabetes Obes Metab 2008; 10: 376–386.

26. Nauck MA. Unraveling the science of incretin biology. Am J Med 2009; 6(Suppl.): S3–S10.

27. Kreymann B, Williams G, Gheati MA, Bloom SR. Glucagon-like peptide-1 [7-36]: a physiological incretin in man. Lancet 1987; 2: 1300–1304.

28. Nauck MA, Heimesaat MM, Behle K, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsuli-
cells into insulin-producing cells. Endocrinology 2002; 143: 3152–3161.
42. Sturis J, Gotfredsen CF, Rømer J, et al. GLP-1 derivative liraglutide in rats with beta-cell deficiencies: influence of metabolic state on beta-cell mass dynamics. Br J Pharmacol 2003; 140: 123–132.
43. Hui H, Nourparvar A, Zhao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 2003; 144: 1444–1455.
44. Farilla L, Hui H, Bertolotto C, et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 2002; 143: 4397–4408.
45. Mu J, Woods J, Zhou YP, et al. Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes 2006; 55: 1695–1704.
46. Duttaroy A, Voelker F, Zhang X, et al. The DPP-4 inhibitor vildagliptin increases pancreatic beta cell mass in rodents (abstract 481). Diabetologia 2005; 48(Suppl. 1): A 178.
47. Bunck MC, Diamant M, Corner A, et al. One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 2009; 32: 762–768.
48. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355: 2427–2434.
49. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–843.
50. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577–1588.
51. Matthaëi S, Bierwirth R, Fritsche A, et al. Medikamentöse antihyperglyämische Therapie des Diabetes mellitus Typ 2. In: Scherbaum WA, Haak T (eds). Evidenzbasierte Leitlinien der Deutschen Diabetes-Gesellschaft, 2008: http://www.deutsche-diabetes-gesellschaft.de/leitlinien/EBL_Dm_Typ2_Update_2008.pdf.
52. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2006; 49: 1711–1721.
53. Nathan DM. Finding new treatments for diabetes – how many, how fast... how good? N Engl J Med 2007; 356: 437–440.
54. Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2009; 52: 17–30.
55. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widdop RR, Bendsen NG, Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005; 143: 559–569.
56. Nauck MA, Duran S, Kim D, et al. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia 2007; 50: 259–267.
57. Bjerre Knudsen L, Agero H, Benjening C, et al. GLP-1 derivatives as novel compounds for the treatment of type 2 diabetes: selection of NN2211 for clinical development. Drugs Future 2001; 26: 677–685.
58. Rosenstock J, Ratner RE, Boka G. Dose range effects of the new once daily GLP-1 receptor agonist AVE0010 added to metformin in type 2 diabetes (abstract). Diabetologia 2008; 51(Suppl. 1): S66.
59. Ratner RE, Rosenstock J, Boka G, on behalf of the DR16012 study investigators. A dose-finding study of the new GLP-1 agonists AVE0010 in type 2 diabetes insufficiently controlled with metformin (abstract). Diabetes 2008; 57(Suppl. 1): A129.
60. Kim D, MacConnell L, Zhuang D, et al. Safety and efficacy of a once-weekly, long-acting release formulation of exenatide over 15 weeks in patients with type 2 diabetes (abstract 487-P). Diabetes 2006; 55(Suppl. 1): A116.
61. Agerø H, Vicini P. Pharmacodynamics of NN2211, a novel long acting GLP-1 derivative. Eur J Pharm Sci 2003; 19: 141–150.
62. Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J. Five weeks of treatment with the GLP-1 analog exenatide improves glycemic control and lowers body weight in subjects with Type 2 diabetes. Exp Clin Endocrinol Diabetes 2006; 114: 417–423.
63. Fineman MS, Shen LZ, Taylor K, Kim DD, Baron AD. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes. Diabetes Res Clin Pract 2004; 68: 411–417.
64. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 2007; 30: 1979–1987.
65. Marre M, Howlett H, Lehert P, Allaouane T. Improved glycemic control with metformin-glibenclamide combined tablet therapy (Glucovance) in Type 2 diabetic patients inadequately controlled on metformin, Diabet Med 2002; 19: 673–680.
66. Feinglos M, Dailey G, Cefalu W, et al. Effect on glycemic control of the addition of 2.5 mg glipizide GITS to metformin in patients with T2DM. Diabetes Res Clin Pract 2005; 68: 167–175.
67. Charbonnel B, Schernthaner G, Brunetti P, et al. Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes. *Diabetologia* 2005; 48: 1093–1104.

68. Umpierrez G, Issa M, Vlajnic A. Glimepiride versus pioglitazone combination therapy in subjects with type 2 diabetes inadequately controlled on metformin monotherapy: results of a randomized clinical trial. *Curr Med Res Opin* 2006; 22: 751–759.

69. Fonseca V, Rosenstock J, Patwardhan R, Salzman A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. *J Am Med Ass* 2000; 283: 1695–1702.

70. Linnebjerg H, Kothare PA, Skrivanek Z, et al. Exenatide: effect of injection time on postprandial glucose in patients with Type 2 diabetes. *Diabet Med* 2006; 23: 240–245.

71. Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P. Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. *Diabetes* 1998; 47: 57–65.

72. Ratner R, Maggs D, Nielsen LL, et al. Long-term effects of exenatide therapy over 82 weeks on glycemic control and weight in over-weight metformin-treated patients with type 2 diabetes mellitus. *Diabetes Obes Metab* 2006; 8: 419–428.

73. Scott R, Loeys T, Davies MJ, Engel SS. Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. *Diabetes Obes Metab* 2008; 10: 959–969.

74. Raz I, Chen Y, Wu M, et al. Efficacy and safety of sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes. *Curr Med Res Opin* 2008; 24: 537–550.

75. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber A. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. *Diabetes Care* 2007; 30: 890–895.

76. Holman RR, Cull CA, Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). *Diabetes Care* 1999; 22: 960–964.

77. Rosenstock J, Brown A, Fischer J, et al. Efficacy and safety of acarbose in metformin-treated patients with type 2 diabetes. *Diabetes Care* 1998; 21: 2050–2055.

78. Yki-Järvinen H, Ryysy L, Nikkila K, Tulokas T, Vanamo R, Heikila M. Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. A randomized, controlled trial. *Ann Intern Med* 1999; 130: 389–396.

79. Yki-Järvinen H, Kauppinen-Makelin R, Tiikkainen M, et al. Insulin glargine or NPH combined with metformin in type 2 diabetes: the LANMET study. *Diabetologia* 2006; 49: 442–451.

80. Bolli G, Dotta F, Rochotte E, Cohen SE. Efficacy and tolerability of vildagliptin vs. pioglitazone when added to metformin: a 24-week, randomized, double-blind study. *Diabetes Obes Metab* 2008; 10: 82–90.

81. Barnett AH, Burger J, Johns D, et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period, crossover noninferiority trial. *Clin Ther* 2007; 29: 2333–2348.