Silicone implants have been placed in about 500 million patients worldwide for both aesthetic and reconstructive purposes and are still the most reliable technique for breast augmentation. A normal tissue response consisting of inflammatory infiltration and deposition of collagen fibers forming a collagenous capsule surrounding the foreign material is inevitable regardless of the implant type. Capsular contracture (CC) remains, however, a major yet unpredictable local potential complication. In fact, it is the most commonly reported complication following alloplastic breast augmentation or reconstruction and is one of the most difficult complications to treat. It is mostly unilateral and may be the most significant cause of patient dissatisfaction. The reported incidence of CC over time ranges from 2% to 74%. In 1978, Baker described 4 clinical stages of CC. In severe cases, CC can cause pain, rippling, hardening, and asymmetry of the breasts. Foreign body reaction is not yet fully understood and the pathogenesis of CC is still unclear, but it is believed to...

Dr Costagliola is Emeritus Professor of Plastic, Reconstructive and Aesthetic Surgery, former department chief, Toulouse University, Toulouse, France. Dr Atiyeh is Clinical Professor, Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon. Dr Rampillon is former chief of clinic, Dijon University, Dijon, France, and consultant plastic surgeon, Clinique du Parc, Toulouse, France.

Corresponding Author:
Dr Bishara Shafic Atiyeh, Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon.
Email: batiyeh@terra.net.lb

An Innovative Procedure for the Treatment of Primary and Recurrent Capsular Contracture (CC) Following Breast Augmentation

Michel Costagliola, MD; Bishara Shafic Atiyeh, MD, FACS; and Florence Rampillon, MD

Abstract

Background: Capsular contracture (CC) is the most frequently reported complication following alloplastic breast augmentation. At present, none of the available preventive measures are effective, and various treatment modalities have been advocated. Reduction of the inflammatory process is critical for successful treatment. Late intracapsular glucocorticosteroid (GC) injections have been somewhat effective for the treatment, but the fine balance between the effectiveness of therapeutic GC dosages and their potential serious side effects is of utmost importance.

Objectives: The authors investigate whether instillation of a rapid-acting water-soluble GC in the implant pocket during the early proliferative phase of wound healing is more effective than delayed instillation during the remodeling phase.

Methods: Between 2003 and 2009, 33 consecutive patients presenting with CC (Baker grades III and IV) were managed by capsulectomy with implant replacement and corticosteroid therapy immediately as well as 2 to 3 days later through an indwelling catheter left in place for that period. This delayed but early administration is a novel technique for GC injection.

Results: Complete correction of the contracture with no recurrence was achieved in all patients with a follow-up range of 2 to 10 years.

Conclusions: This GC administration technique avoids the potential complications of long-term, slow corticosteroid release. It has a targeted anti-inflammatory effect, probably at a critical stage of the healing process, and could effectively prevent CC following alloplastic breast augmentation.

Level of Evidence: 4

Keywords

breast augmentation, capsular contracture, intracapsular glucocorticoid, recurrent capsular contracture

Accepted for publication February 14, 2013.
be mostly multifactorial, influenced by patient age, type of implant (shape, surface, and material), silicone leakage, individual susceptibility and propensity for hypertrophic scarring, surgical technique, surgical incision site, and occurrence of postoperative complications such as bleeding and hematoma formation.1,4,7,11-14 Recent evidence suggests that subclinical infection and the presence of a bacterial biofilm on the surface of the implant could be a likely major contributor to CC.15-17 Interestingly, a high bacterial colonization rate of 61\% to 66.7\% has been detected in association with grade III and IV contractures, suggesting that bacterial stimuli may accelerate the process of inflammation and fibrosis.18 In addition to skin bacteria that might contact the breast implant during insertion, endogenous breast flora expressed through the nipple represent a potential source for colonization of the implant surface, producing a nidus for subclinical infection and biofilm formation.14 Suggested procedures to minimize bacterial contamination include preoperative washings with Betadine solution before hospital admission and before transfer to the operating theater and prophylactic antibiotic administration.

Early CC (within the first 2 months after implantation) is likely the result of poor hemostasis, unsterile implant insertion, or traumatic surgical technique. Late contractures that occur months to years later are most probably a result of biofilm activation, bacteremic seeding, or silicone exposure due to implant rupture.7 In both situations, and regardless of the implant type, capsule formation is part of the normal healing process and is the effect of a low-grade chronic proliferative inflammation pattern manifesting initially by the healing process and is the effect of a low-grade chronic proliferative inflammation pattern manifesting initially by the activation and production of extracellular matrix (ECM) proteins and a synovial-like metaplasia of proliferating mesenchymal cells, culminating in a layer of dense hyaline collagenous fibrous connective tissue normally not thicker than 1 mm.2,5,11,15,19-21 The degree of foreign body reaction and local inflammatory response has a positive linear correlation with the severity of CC and is independent of the implant surface.11 Capsular contracture appears to be a manifestation of abnormal scarring, with an abundance of inflammatory cells, collagen, and myofibroblasts.7 In the most contracted capsules, there is increased capsule thickness with a spindle-like, smooth muscle actin–positive layer.7 Although the role of textured-surface implants in reducing the rate of CC remains controversial,4 attention must be drawn to the relatively new phenomena of double capsule and late seroma only seen with Biocell textured-surface implants (Allergan, Inc, Irvine, California).1,22

Reported recommendations to prevent CC include precise hemostasis, sterile surgical technique, placement of the implant beneath the pectoralis major muscle, use of saline implants, use of nipple shields, use of antibiotic-impregnated mesh, and breast massage.1,14,17 At present, none of the available preventive measures are effective.1,12 As for treatment, many modalities have been advocated. Massages or tight immobilization have been described for the treatment of CC in patients with mild symptoms.15 In an attempt to break the capsular scar tissue, closed capsulotomy by manual compression of the breast was performed in the past, but this is a traumatic maneuver associated with increased risk of hematoma, implant rupture, and implant “pseudoherniation.” It has long since been abandoned.23 Surgical open capsulotomy or capsulectomy and implant removal with replacement of a second implant in a retropectoral instead of a retroglandular pocket is indicated only in patients with symptomatic highest degrees of contracture (Baker grades III and IV). The use of textured implants rather than smooth implants has also been suggested.11-13,23-27 Since more extensive surgical dissection is required for capsulectomy and these procedures carry increased associated risks, it is generally recommended that fibrous capsules should be left in place. This issue, however, is far from being resolved and is still subject for debate.23

It is unanimously agreed that reduction of the inflammatory process is critical for the successful treatment of CC.23 Oral administration of leukotriene receptor antagonist has been recently described to be effective in the treatment of CC by dampening inflammation, but evidence provided is very tenuous at best.1,8,23 Flector Tissugel (Laboratoires Génévrier, Sophia Antipolis, France), the only locally active nonsteroidal anti-inflammatory drug available in the form of patches, has been recently reported to downstage CC from Baker grade II or III to Baker grade I when applied no later than 3 months after CC onset.23 Late corticosteroid injections have also been demonstrated to be somewhat effective for the treatment of this condition.27,29,30 To prevent contracture recurrence, systemic or intracapsular delivery of steroids, antineoplastics, antileukotriene, anti–transforming growth factor α, or antibiotics has been described.29,31-33

Glucocorticoids (GC), especially methylprednisolone, are very effective anti-inflammatory drugs. Their pharmacologic effects are based on a wide range of mechanisms of action, and they are being used in numerous inflammatory conditions.34-36 At a lower concentration, the effects of GC are mediated mainly by the classic GC receptor. At higher concentrations, additional nongenomic mechanisms—such as other membrane receptors and activation of secondary messenger systems—may be implicated.35,36 Severe negative effects of GC on the synthesis of collagen fibers and growth factor, and subsequently on wound healing, have been reported.2,37-40 The fine balance between the effectiveness of therapeutic GC dosages and their potential serious side effects is of utmost importance. It depends on the route of administration, plasmatic concentration, tissue distribution, and rate of excretion.2 We describe a novel modality of GC administration for the treatment and prevention of CC recurrence.

METHODS

Between 2003 and 2009, 33 consecutive patients presenting with CC (Baker grades III and IV) in 1 or both breasts were managed with capsulectomy with implant replacement and corticosteroid therapy immediately as well as 2 to 3 days later through an indwelling catheter left in place for
that period. All patients were healthy, and none were diabetic, had any surgical contraindication, or had been given any medication that could potentially affect the rate of CC formation, such as zafirlukast. Details of patient age, weight, previous surgical procedures (including technique and implant details), and CC status (primary or recurrent with grade of contracture and type and size of replacement implants) are shown in Table 1. Age range of the patients was 23 to 48 years. Eighteen patients had primary contractures; 4 of those had undergone 2 previous attempts at correction to no avail. Fifteen patients had recurrent contractures. Eight patients had undergone breast augmentation 1 year earlier, 7 patients had their implants for 2 years, and 3 for 4 years. The size range of the implants was 200 to 350 cc. Two patients had saline inflatable implants. Twelve patients had smooth, silicone gel implants, and 19 had textured implants. There were 4 patients with Ceréform (Ceréplas, France) breast implants, 5 with Sebbin (Groupe Sebbin SAS, Boissy-l’Aillerie, France), 3 with Perthese (Perouse Plastie, Nanterre, France), 7 with Mentor (Santa Barbara, California), 9 with PIP (La Seyne-sur-Mer, France), and 5 with Arion (Mougins Sophia-Antipolis, France). In 26 patients, implants were originally placed in a subglandular pocket. In 7 patients, the pocket was submuscular. All patients underwent bilateral implant replacement (66 breasts) and signed the standard informed consent form provided by the French Society of Aesthetic and Plastic Surgery, to which a specific paragraph describing the procedure being proposed with potential risks of recurrent CC and complications of treatment with antibiotics and corticosteroids was added.

Surgical Technique

Surgical incisions were dictated by the previous surgical approach (periareolar, inframammary, or vertical) whenever initial surgery was associated with mastopexy. After removing the implant, a complete capsulectomy was usually performed unless the posterior leaflet of a subpectoral capsule was strongly adherent to the chest wall. In all cases, partial retention of the capsule in a way that supported the new implant infrafibrously and prevented its displacement, as described by some, was not judged to be indicated. Moreover, no attempt was made to create a new pocket in a different plane. The pocket was infiltrated with 40 mg of gentamycin (1 ampoule) for 20 to 30 minutes, after which saline irrigation was performed as needed. A new implant was then inserted. A suction drain and an 18-gauge catheter usually used for epidural anesthesia were placed and fixed in position, and the surgical incision was closed. Special care was taken to place the tip of the instillation catheter deeply, mostly in a retroprosthetic position. The suction drain was then clamped and a first instillation of corticosteroid (methylprednisolone hemisuccinate: Solu-Medrol; Hospira, Inc, Lake Forest, Illinois) was performed: 40 mg of Solu-Medrol (1 vial) was diluted in 10 mL of injectable water, and 5 mL was then instilled in each breast through the catheter. The suction drain was unclamped 2 to 3 hours later, after the patient was transferred from the recovery room to her room (Figures 1 and 2).

The patients were discharged home the following day, with suction drains and catheters in place. Suction drainage was continued for 2 to 3 days until cessation of serosanguineous drainage, at which time the suction drain was removed. Delayed, same-dose second corticosteroid instillation was then performed with the catheter still in place. The catheter was then removed. This procedure was simple and quick, not necessitating any special expertise. All patients received perioperative antibiotics (cefotaxime 1 g/d) for 3 days. No nipple shields were used; instead, patients were instructed to wash their breasts prior to surgery. Gentle manual breast massage was performed only after the second instillation of the long-acting steroid and removal of the catheters for better drug distribution in the pocket.

RESULTS

In all patients, bilateral implant replacement was performed; a different type of implant was inserted in 26 cases. Of the newly implanted devices, 29 were textured and 4 were smooth. After 2005, all replaced implants were textured. Complete correction of the contracture with no recurrence was achieved in all patients, and follow-up ranged from 2 to 10 years (Figures 3 and 4). Each patient was seen 15 days following surgery and then checked at 1 month and every 6 months thereafter. A single patient (patient 23 in Table 1) had early subcutaneous atrophy in the lower lateral breast quadrant, with bluish skin translucency. This could have been due to pooling of the injected drug with uneven distribution. Fortunately, the condition resolved spontaneously within 6 months (Figure 5). Partial retention of the capsule in some patients who underwent previous subpectoral implant placement did not seem to have affected the final result.

DISCUSSION

Despite extensive discussion in the literature about preventive measures, CC remains an unwelcome and sometimes late complication of alloplastic breast augmentation.9 So far, there is no general agreement about the exact pathophysiology of CC. Naturally, conflicting opinions about its prevention and treatment prevail, without any agreement on a generally accepted modality of treatment.5,9 When it occurs, surgical revision with capsulotomy or capsulectomy and replacement of the implant is still the mainstay of treatment. Unfortunately, efficacy of this therapeutic regimen is limited because of a high recurrence rate.41,42 The incidence of recurrent contracture after capsulotomy alone is 54%.27

It is evident that preventive measures to reduce bacterial contamination have a profound effect on CC incidence
Table 1. Details of Patients’ Age, Weight, Previous Surgical Techniques and Implants, CC Primary or Recurrent With Grade of Contractures, and Type and Size of Replacement Implants.

Year	Age, y	Weight, kg	Previous Implant and Surgical Technique	CC Duration or Recurrence	Baker Grade	New Implant
1	2003	45	PIP Saline SG, IPA	P, 3 y	IV	Mentor Smooth 250 cc
2	33	57	PIP Saline SG, IPA	P, 3 y	IV	Mentor Smooth 220 cc
3	23	59	PIP Smooth SG, IPA	P, 1 y	III	PIP Textured 220 cc
4	42	62	PIP Smooth SG, IPA	P, 1 y	IV	PIP Textured 320 cc
5	46	56	Mentor Smooth SM, IPA	R, 2nd	IV	Sebbin Textured 350 cc
6	37	55	Mentor Smooth SG, IM	R, 2nd	IV	Arion Textured 250 cc
7	36	52	Sebbin Smooth SM, IPA	R, 2nd	IV	Sebbin Textured 350 cc
8	45	58	PIP Smooth SG, IM	R, 2nd	IV	Arion Textured 320 cc
9	2004	48	Sebbin Smooth SM, mastopexy	P, 4 y	III	Mentor Smooth 280 cc
10	33	50	Mentor Smooth SG, IPA	P, 2 y	III	Mentor Smooth 300 cc
11	31	53	PIP Smooth SG, mastopexy	P, 2 y	IV	PIP Textured 250 cc
12	46	52	Mentor Smooth SG, mastopexy	P, 4 y	IV	PIP Textured 220 cc
13	2005	34	PIP Smooth SG, mastopexy	P, 1 y	III	PIP Textured 310 cc
14	38	54	Sebbin Smooth SM, IPA	P, 4 y	III	PIP Textured 350 cc
15	42	57	Mentor Textured SG, IPA	P, 2 y	III	Mentor Textured 280 cc
16	26	58	Mentor Textured SG, IPA	P, 1 y	III	Mentor Textured 300 cc
17	41	60	Arion Textured SG, IM	R, 3rd	IV	Mentor Textured 310 cc
18	39	61	Arion Textured SM, mastopexy	R, 3rd	IV	Sebbin Textured 280 cc
19	2006	27	Mentor Textured SG, IPA	P, 1 y	III	PIP Textured 300 cc
20	32	55	PIP Textured SG, IPA	P, 1 y	III	PIP Textured 300 cc
21	36	57	PIP Textured SG, IPA	R, 3rd	IV	Arion Textured 220 cc
22	38	56	Perthese Textured SG, mastopexy	R, 3rd	IV	Mentor Textured 250 cc

(continued)
and severity. Minimizing contamination with Betadine irrigation and prophylactic antibiotics has been demonstrated to reduce CC incidence.9,43-46 Several medications have also been proposed to modulate the various stages of healing responsible for CC formation.2 Mesna,47 mitomycin C,33,48 pirfenidone,49 halofuginone,50 and zafirlukast (a leukotriene receptor antagonist)8,32,51,52 have all been shown to reduce capsule thickness, fibroblast cell proliferation, and collagen deposition.9,33 With the exception of zafirlukast, approved for the treatment of asthma, these drugs are not common in clinical practice. Anecdotal evidence about the clinical efficacy of oral zafirlukast on CC has not been confirmed. In view of its potentially serious liver toxicity that may outweigh the benefits as a treatment modality for CC, its use is still restricted to severe and recurrent contractures.3,9,23,42

The effects of corticosteroids on all cells involved in the postinjury inflammatory processes and wound healing have been well demonstrated. Corticosteroids suppress inflammatory, endothelial, and epithelial cells as well as fibroblasts; decrease deposition of ground substance and collagen; and reduce contraction.9 However, their role in the treatment and prevention of CC is controversial and not completely understood. Reported evidence of corticosteroid effectiveness remains sparse and contradictory9 despite documented evidence that postoperative injection of corticosteroids reduces the risk and delays the onset of recurrent contracture in high-risk patients and reduces capsular thickness (and discomfort) in patients with Baker grade IV CC.27,29,30,53

![Figure 1. Catheter set for epidural anesthesia (18-gauge).](image)
Interestingly, a reduced incidence of CC has been reported when corticosteroids are instilled in saline inflatable breast implants, without causing any wound complications attributable to the steroids. However, when long-acting corticosteroids are instilled in the pocket intraoperatively, their efficacy in preventing CC is none, as reported

Figure 2. (A) The suction drain is indicated by an arrow, and the catheter is shown in place at the end of the surgical procedure. (B) The suction drain is clamped and Solu-Medrol (Hospira, Inc, Lake Forest, Illinois) is injected (40 mg/2 mL).

Figure 3. (A) This 32-year-old woman presented with Baker grade IV capsular contracture 1 year after subglandular breast augmentation. (B, C) Two years after capsulectomy and corticosteroid treatment immediately and, through an indwelling catheter, 2 to 3 days following replacement with a 300-cc PIP (La Seyne-sur-Mer, France) implant.
by Caffee and Rotator.27,29,30 This is probably because the drug is rapidly eliminated by sponges and/or by early suction drainage, but when steroids are injected percutaneously into the capsule at 4 and 8 weeks postoperatively, they are reported to have a somewhat modest efficacy of less than 50%.

The method for intracapsular percutaneous injection of long-acting corticosteroid as described by Caffee27,30 (20 mg triamcinolone acetonide diluted in 10 mL of saline) or with ultrasound guidance (40 mg triamcinolone acetonide diluted in 10 mL of saline)3 is labor intensive and requires certain expertise. Moreover, postinjection recommendations for frequent massages (6 times per day for 2 weeks) and for the patient to hang inverted while massaging her breast to prevent drug pooling in the lower breast quadrant30 are certainly impractical. It is also not without major complications such as prosthetic puncture, bleeding, or major soft tissue atrophy due either to large corticosteroid doses or, most probably, to poor distribution in the peri-implant space. Implant distortion due to incomplete capsulotomy is also a potential complication.30

Figure 4. (A) This 46-year-old woman presented with second recurrence of left Baker grade IV capsular contracture. (B, C) Three years after capsulectomy and corticosteroid treatment immediately and, through an indwelling catheter, 2 to 3 days following replacement with a 220-cc textured Perthese (Perouse Plastie, Nanterre, France) implant.
Unfortunately, the corticosteroid doses required for the treatment or prevention of CC have resulted in severe adverse effects. Their negative effects on collagen fiber synthesis and growth factor, and subsequently on wound healing, have impaired their current clinical use. Moreover, despite initial excellent results observed with steroid-containing inflatable prostheses, at least over a short period, significant dose-related complications—including prosthesis ptosis, atrophy, thinning of overlying breast tissue, impending extrusion, and even CC—have been observed many years after implantation. It is worth mentioning, however, that the rapid-acting, water-soluble methylprednisolone sodium succinate we have used immediately and 3 days later (instead of the previously described injection of longer-acting, practically insoluble triamcinolone acetonide 6-8 weeks after surgery) may have affected GC distribution and diffusion in the pocket. In fact, with the mostly used textured implants, strong adhesions form between the capsule and the implant membrane that make uniform distribution of the injected GC unlikely, invariably leading to GC pooling at the injection site and an increased complication rate. Interestingly, in the 1 patient who developed early subcutaneous atrophy in our clinical series, the instillation catheter apparently was misplaced superficially, which prevented proper GC distribution within the pocket.

More recently, it was suggested that glucocorticoids implanted in local liposome depots yield a 10-fold reduction in dosage with more efficient continuous release and decreased adverse systemic effects. Local deposition of liposomal prednisolone effectively decreases fibrous capsule thickness around textured silicone breast implants, with no apparent late complications like the ones observed with steroid-containing inflatable prostheses.

Poor results observed with delayed percutaneous intracapsular steroid injection are probably due to the fact that the injection is performed very late to treat an already established contracture or not early enough to modulate a certain critical phase of the wound-healing process. The technique we are describing ensures immediate effect of the long-acting corticosteroid in the fresh surgical pocket by clamping the suction drain for a few hours postoperatively, supplemented with a more sustained action by an additional injection 3 days later through an initially positioned catheter. It seems that early corticosteroid treatment is critical in reducing fibroproliferation and CC formation. As to the most appropriate formulation and dosage of corticosteroid for optimal benefit with minimal side effects, available evidence is still very limited. The selected dose of Solu-Medrol (20 mg/5 mL/breast) was arbitrarily selected based on previously published studies. It is worth mentioning, though, that methylprednisolone sodium succinate’s time to peak effect is 4 to 8 days for intramuscular injection, while triamcinolone acetonide has a sustained duration of action over a period of several weeks. The different pharmacokinetics, in addition to the different timing of injection, may explain the improved results and fewer side effects we have observed compared with what has been previously reported.

The concern that some may have about losing a lifetime warranty that few manufacturers (not all) offer in case of implant rupture, on the assumption that steroids might weaken the implant, is unjustified, because implants removed due to CC, rippling, loss of product integrity caused by cosmetic revision surgery, by open or closed capsulotomy, or as a result of complications other than deflation/rupture are usually not covered by the warranty. A treatment modality that would prevent CC would be greatly welcomed in that context.

The study is limited by being noncomparative (lacking a control group) and not being randomized. Even though it seems that steroid instillation much earlier than 4 to 8 weeks could be valuable, a key question remains: we must determine the exact stage of wound healing beyond which corticosteroids become maximally effective in preventing CC. Another issue is the determination of the minimal effective dosage.
CONCLUSIONS

From the available data, it is obvious that corticosteroids placed intraoperatively in the pocket are not effective for the prevention of CC. Before wound closure, GC may be mostly removed by sponges or eliminated early by suction drainage. Only late administration, either by ultrasound-guided injection or by slow-release liposome depots, has been demonstrated to have value. These 2 modalities, however, necessitate sophisticated resources and certainly require expertise that is not easily attainable.

The clinical efficacy of the simple and safe technique we are proposing is in line with what has already been described. Our decision to clamp the suction drain for a few hours after the first GC instillation and then perform a second delayed instillation after cessation of drainage and removal of the suction drains ensured that proper GC dosage was maintained in the implant pocket to exert its effects. Moreover, this technique avoids potential complications of long-term slow corticosteroid release by favoring a targeted effect at a critical stage of the healing process. Excellent results have been observed so far with this technique. It is currently applied in our practice prophylactically to all alloplastic breast augmentations.

Disclosures

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Funding

The authors received no financial support for the research, authorship, or publication of this article.

REFERENCES

1. Takayanagi S. Augmentation mammoplasty using implants: a review. Arch Plast Surg. 2012;39:448-451.
2. Moreira M, Fagundes DJ, de Jesus Simões M, et al. The effect of liposome-delivered prednisolone on collagen density, myofibroblasts, and fibrous capsule thickness around silicone breast implants in rats. Wound Rep Reg. 2010;18:417-425.
3. Sconfienza LM, Murolo C, Callegari S, et al. Ultrasound-guided percutaneous injection of triamcinolone acetonide for treating capsular contracture in patients with augmented and reconstructed breast. Eur Radiol. 2011;21:575-581.
4. Wong CH, Samuel M, Tan BK, Song C. Capsular contracture in subglandular breast augmentation with textured versus smooth breast implants: a systematic review. Plast Reconstr Surg. 2006;118:1224-1236.
5. Prantl L, Schreml S, Fichtner-Feigl S, et al. Clinical and morphological conditions in capsular contracture formed around silicone breast implants. Plast Reconstr Surg. 2007;120:275-284.
6. Schaub TA, Ahmad J, Rohrich RJ. Capsular contracture with breast implants in the cosmetic patient: saline versus silicone—a systematic review of the literature. Plast Reconstr Surg. 2010;126:2140-2149.
7. Moyer HR, Ghazi BH, Losken A. The effect of silicone gel bleed on capsular contracture: a generational study. Plast Reconstr Surg. 2012;130:793-800.
8. Schlesinger SL, Ellenbogen R, Desvigne MN, et al. Zafirlukast (Accolate): a new treatment for capsular contracture. Aesthetic Surg J. 2002;22:329-336.
9. Marques M, Brown S, Correia-Sá I, MN, et al. The impact of triamcinolone acetonide in early breast capsule formation in a rabbit model. Aesthetic Plast Surg. 2012;36:986-994.
10. Baker JL. Augmentation mammoplasty. In: Owsley JQ, Peterson R, eds. Symposium on Aesthetic Surgery of the Breast. St Louis, MO: Mosby; 1978:125-152.
11. Poeppl N, Schreml S, Lichtenegger F, et al. Does the surface structure of implants have an impact on the formation of a capsular contracture? Aesthetic Plast Surg. 2007;31:133-139.
12. Riccioni G, Bucciarelli T, Mancini B, et al. Antileukotriene drugs: clinical application, effectiveness and safety. Curr Med Chem. 2007;14:1966-1977.
13. Scuder N, Mazzocchi M, Rubino C. Effects of zafirlukast on capsular contracture: controlled study measuring the mammary compliance. Int J Immunopathol Pharmacol. 2007;20:577-584.
14. Wixtrom RN, Stutman RL, Burke RM, et al. Risk of breast implant bacterial contamination from endogenous breast flora, prevention with nipple shields, and implications for biofilm formation. Aesthetic Surg J. 2012;32(8):956-963.
15. Embrey M, Adams EE, Cunningham B, et al. A review of the literature on the etiology of capsular contracture and a pilot study to determine the outcome of capsular contracture interventions. Aesthetic Plast Surg. 1999;23:197-206.
16. Shah Z, Lehman JA Jr, Tan J. Does infection play a role in breast capsular contracture? Plast Reconstr Surg. 1981;68:34-42.
17. Jocobs A, Allan J, Hu H, et al. Prevention of biofilm-induced capsular contracture with antibiotic-impregnated mesh in a porcine model. Aesthetic Surg J. 2012;32:886-891.
18. Schreml S, Heine N, Eisenmann-Klein M, Prantl L. Bacterial colonization is of major relevance for high-grade capsular contracture after augmentation mammoplasty. Ann Plast Surg. 2007;59:126-130.
19. Camirand A, Doucet J, Harris J. Breast augmentation: compression—a very important factor in preventing capsular contracture. Plast Reconstr Surg. 1999;104:529-538.
20. Siggelkow W, Faridi A, Spiritus K, et al. Histological analysis of silicone breast implant capsules and correlation with capsular contracture. Biomaterials. 2003;24:1101-1109.
21. Peled JI. Re: Firestorm fibrosis: the fast fibrotic phenomenon. Ann Plast Surg. 1992;28:502.
22. Hall-Findlay EJ. Breast implant complication review: double capsules and late seromas. Plast Reconstr Surg. 2011;127:56-66.
23. Araco A, Caruso R, Araco F, et al. Capsular contractures: a systematic review. Plast Reconstr Surg. 2009;124:1808-2019.
24. Sugimoto T. Open capsulotomy for capsular contracture: a new procedure for the prevention of recurrence. *Aesthetic Plast Surg.* 1982;6:225-230.

25. Little G, Baker JL Jr. Results of closed compression capsulotomy for treatment of contracted breast implant capsules. *Plast Reconstr Surg.* 1980;65:30-33.

26. Gruber RP, Jones HW. Review of closed capsulotomy complications. *Ann Plast Surg.* 1981;6:271-276.

27. Caffee HH. Capsule injection for the prevention of contracture. *Plast Reconstr Surg.* 2002;110:1325-1328.

28. Le Louarn C, Buis J, Auclair E. Flector tissue gel used to treat capsular contracture after breast augmentation surgery. *Aesthetic Plast Surg.* 2008;32:453-458.

29. Caffee HH, Rotatori DS. Intracapsular injection of triamcinolone for prevention of contracture. *Plast Reconstr Surg.* 1993;92:1073-1077.

30. Caffee HH. Intracapsular injection of triamcinolone for intractable capsule contracture. *Plast Reconstr Surg.* 1994;94:824-828.

31. Stark GB, Gobel M, Jaeger K. Intraluminal cyclosporine A reduces capsular thickness around silicone implants in rats. *Ann Plast Surg.* 1990;24:156-161.

32. Bastos EM, Neto MS, Alves MT, et al. Histologic analysis of zafirlukast’s effect on capsule formation around silicone implants. *Aesthetic Plast Surg.* 2007;31:559-565.

33. Frangou J, Kanellaki M. The effect of local application of mitomycin-C on the development of capsule around silicone implants in the breast: an experimental study in mice. *Aesthetic Plast Surg.* 2001;25:118-128.

34. Gold R, Buttgereit F, Toyka KV. Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. *J Neuroimmunol.* 2001;117:1-8.

35. Brann DW, Hendry LB, Mahesh VB. Emerging diversities in the mechanism of action of steroid hormones. *J Steroid Biochem Mol Biol.* 1995;52:113-133.

36. Beer HD, Fassler R, Werner S. Glucocorticoid regulated gene expression in wound repair. *Vitam Horm.* 2000;59:217-239.

37. Richters CD, Paauw NJ, Mayen I, et al. Administration of presnilolone phosphate-liposomes reduces wound contraction in a rat partial-thickness wound model. *Wound Repair Regen.* 2006;14:602-607.

38. Metselaar JM, Nan Den Berg WB, Holthuysen AE, et al. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. *Ann Rheum Dis.* 2004;63:348-353.

39. Metselaar JM, Wauben MH, Wagenaar-Hilbers JP, et al. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. *Arthritis Rheum.* 2003;48:2059-2066.

40. Schmidt J, Metselaar JM, Wauben MHM, et al. Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. *Brain.* 2004;126:1895-1904.

41. Baran CN, Peker F, Ortak T, et al. A different strategy in the surgical treatment of capsular contracture: leave capsule intact. *Aesthetic Plast Surg.* 2001;25:427-431.

42. Cheng HT, Lin FY, Chang SCN. The effects of antileukotriene agents on capsular contracture: an evidence-based analysis. *Plast Reconstr Surg.* 2012;129:1018e-1020e.

43. Adams WP Jr, Conner WC, Barton FE Jr, Rohrich RJ. Optimizing breast pocket irrigation: an in vitro study and clinical implications. *Plast Reconstr Surg.* 2000;105:334-343.

44. Adams WP Jr, Conner WC, Barton FE Jr, Rohrich RJ. Optimizing breast-pocket irrigation: the post-Betadine era. *Plast Reconstr Surg.* 2001;107:1596-1601.

45. Adams WP Jr, Rios JL, Smith SJ. Enhancing patient outcomes in aesthetic and reconstructive breast surgery using triple antibiotic breast irrigation: six-year prospective clinical study. *Plast Reconstr Surg.* 2006;118:465-525.

46. Marques M, Brown SA, Cordeiro ND, et al. Effects of coagulase-negative staphylococci and fibrin on breast capsule formation in a rabbit model. *Aesthetic Surg J.* 2011;31:420-428.

47. Ajmal N, Riordan CL, Cardwell N, et al. The effectiveness of sodium 2-mercaptoethane sulfonate (mesna) in reducing capsular formation around implants in a rabbit model. *Plast Reconstr Surg.* 2003;112:1455-1463.

48. Seo SH, Sung HW. Treatment of keloids and hypertrophic scars using topical and intralesional mitomycin C. *J Eur Acad Dermatol Venereol.* 2012;26:634-638.

49. Gancedo M, Ruiz-Corro L, Salazar-Montes A, et al. Pirfenidone prevents capsular contracture after mammary implantation. *Aesthetic Plast Surg.* 2008;32:32-40.

50. Zeplin PH, Larena-Avellaneda A, Schmidt K. Surface modification of silicone breast implants by binding the antifibrotic drug halofuginone reduces capsular fibrosis. *Plast Reconstr Surg.* 2010;126:266-274.

51. Grella E, Grella R, D’Andrea F. Histologic analysis of zafirlukast’s effect on capsule formation around silicone implants: some considerations. *Aesthetic Plast Surg.* 2008;32:179-180.

52. Spano A, Palmieri B, Taidelli TP, Nava MB. Reduction of capsular thickness around silicone breast implants by zafirlukast in rats. *Eur Surg Res.* 2008;41:8-14.

53. Scognienza LM, Murolo C, Callegari S, et al. Ultrasound-guided percutaneous injection of triamcinolone acetonide for treating capsular contracture in patients with augmented and reconstructed breast. *Eur Radiol.* 2011;21:575-581.

54. Perrin ER. The use of soluble steroids within inflatable breast prostheses. *Plast Reconstr Surg.* 1976;57:163-166.

55. Ksander GA. Effects of diffused soluble steroid on capsule formation around experimental breast prostheses in rats. *Ann Plast Surg.* 1981;6:271-276.

56. O’Neal RM, Argenta LC. Late side effects related to inflatable breast prostheses containing soluble steroids. *Plast Reconstr Surg.* 1982;69:641-645.

57. Carriero TJ, Cohen IK. Capsular contracture and steroid-related complications after augmentation mammoplasty: a preliminary study. *Plast Reconstr Surg.* 1979;64:377-380.