A Sharp Convergence Rate for the Asynchronous Stochastic Gradient Descent

Yuhua Zhu* Lexing Ying†

Abstract

We give a sharp convergence rate for the asynchronous stochastic gradient descent (ASGD) algorithms when the loss function is a perturbed quadratic function based on the stochastic modified equations introduced in [An et al. Stochastic modified equations for the asynchronous stochastic gradient descent, arXiv:1805.08244]. We prove that when the number of local workers is larger than the expected staleness, then ASGD is more efficient than stochastic gradient descent. Our theoretical result also suggests that longer delays result in slower convergence rate. Besides, the learning rate cannot be smaller than a threshold inversely proportional to the expected staleness.

Keywords. Asynchronous Stochastic Gradient Descent; Stochastic Modified Equations; Distributed Learning.

1 Introduction

Thanks to the availability of large datasets and modern computing resources, optimization-based machine learning has achieved state-of-the-art results in many applications of artificial intelligence. As the datasets continue to increase, distributed optimization algorithms have received more attention for solving large scale machine learning problems. Parallel stochastic gradient descent (SGD) is arguably the most popular one among them.

Based on the interaction between different working nodes, there are two types of parallel SGD algorithms: synchronous v.s. asynchronous SGD (SSGD v.s. ASGD). Both methods compute the gradient of the loss function for a given mini-batch on local workers. In SSGD, the local workers pause the training process until the gradients from all local works have been added into the shared parameter variable. While in ASGD, the local workers interact with the shared parameter independently without any synchronization, i.e., each local worker continues to compute the next gradient right after their own gradients have been added to the shared parameter. Therefore, ASGD is presumably more efficient than SSGD since the overall training speed is not affected by the slow local workers. On the other hand, ASGD can potentially suffer from the problem of delayed gradients, i.e., the gradients that a local worker sends to the shared parameter are often computed with respect to the parameter of an older version of the model. Therefore, extra stochasticity is introduced in ASGD due to this delay. An interesting mathematical problem is how the delayed gradient affects the training process.

*Department of Mathematics, Stanford University. (yuhuazhu@stanford.edu)
†Department of Mathematics, Stanford University. (lexing@stanford.edu)
There have been a few papers in the literature that analyze the convergence rate of ASGD, but most of them from an optimization perspective. For example, [11, 4, 9] proved that ASGD can achieve a nearly optimal rate of convergence when the optimization problem is sparse; [10] studies the relationship between ASGD and momentum SGD.

This note follows a perspective based on partial differential equation (PDE) and stochastic differential equation (SDE). In [7], Li et al first introduced the stochastic modified equations (SME) for modeling the dynamics of SGD in a continuous time approximation. Following this work, there have been quite a few papers along this direction [6, 8, 3, 5] for SGD. Recently, in [1], An et al applied the SME approach to the study of ASGD.

This note studies the convergence rate of the time-dependent probability distribution function (PDF) of ASGD to its steady state distribution by using PDE techniques of the stochastic modified equation. The main focus is on the case where the loss function is a perturbed quadratic function. There are mainly two difficulties in this analysis. The first one is that asynchrony results in a degenerate diffusion operator in the corresponding PDE. No trivial analysis is able to give an exponential decay rate for the convergence to the steady state. Thanks to the association of a degenerate diffusion operator and a conservative operator, the decay rate can be recovered through “hypocoercivity” [12]. The key here is to construct a Lyapunov functional to prove the exponential decay of this functional. The second difficulty is to obtain a sharp convergence rate. Such a sharp rate is important to understand the influence of the asynchrony quantitatively. Though our analysis is based on the framework introduced by [2], the current case is more complicated because one has to bound extra terms introduced by the perturbed loss function around the quadratic function. The main observations of this paper are the following:

- We give a sharp convergence rate for ASGD when the loss function is a perturbed quadratic function.
- For a fixed learning rate, longer delays result in slower convergence rate.
- The learning rate should not be smaller than a threshold and the threshold is inversely proportional to the staleness rate. See Remark 3.3 for details.
- When the number of local workers is larger than the expected staleness, then ASGD is more efficient than SGD. See Remark 3.4 for details.

The rest of the paper is organized as follows. Section 2 summarizes the results of [1] and derives the PDE for the probability density function (PDF) of ASGD based on these results. Section 3 presents the main results, while the proof of the main theorem is given in Section 4.

2 PDE for the probability density function of ASGD

We consider the minimization problem,

$$\min_{\theta \in \mathbb{R}^d} f(\theta) := \frac{1}{n} \sum_{i=1}^{n} f_i(\theta).$$ \hspace{1cm} (2.1)

where θ represents the model parameters, $f_i(\theta)$ denotes the loss function at the i-th training sample and n is the size of the training sample set. In the asynchronous stochastic gradient
differential equation (SDE) the parameter \(\theta \) is updated with
\[
\theta_{k+1} = \theta_k - \eta \nabla \phi f(\theta_{k-\tau_k}),
\]
where \(\gamma_k \) is i.i.d. uniform random variable from \(\{1, 2, \cdots, n\} \) and \(\theta_{k-\tau_k} \) is the delayed read of the parameter \(\theta \) used to update \(\theta_{k+1} \) with a random staleness \(\tau_k \).

In [1], An et al derived the modified stochastic differential equation for the algorithm, under the assumption that \(\tau_k \) follows the geometric distribution, i.e., \(\tau_k = l \) with probability \((1 - \kappa)\kappa^l \) for \(\kappa \in (0, 1) \). We call \(\kappa \) the staleness rate. Note that if \(\kappa \) is larger, then there is a longer delay. Besides, the expectation of the random staleness \(\tau_k \) is \(\frac{1}{1-\kappa} \), so we call \(\frac{1}{1-\kappa} \) the expected staleness.

By introducing
\[
y_k = -\sqrt{\frac{\eta}{1-\kappa}} \mathbb{E}_{\tau_k} \nabla f(\theta_{\tau_k}),
\]
when the learning rate \(\eta \) is small, \((\theta_k, y_k) \) can be approximated by time discretizations of a continuous time stochastic process \((\Theta_{k\delta_t}, Y_{k\delta_t}) \) for \(\delta_t = \sqrt{\eta/(1-\kappa)} \). \((\Theta_t, Y_t) \) satisfies the stochastic differential equation (SDE)
\[
\begin{align*}
d\Theta_t &= Y_t dt + \tau dB_t, \\
dY_t &= -\nabla f(\Theta_t) dt - \gamma Y_t dt,
\end{align*}
\]
where \(\tau = \eta^{3/4}/(1-\kappa)^{1/4} \Sigma, \gamma = \sqrt{(1-\kappa)/\eta} \), and \(\Sigma \) is the covariance matrix conditioned on \(\tau_k \), which is assumed to be a constant.

We first formally derive the partial differential equation for the probability density function \(\psi(t, \theta, y) \) of \((\Theta_t, Y_t) \). For any compactly supported \(C^\infty \) function \(\phi(\theta_t, y_t) \), by Itô’s formula,
\[
d\phi(\theta_t, y_t) = \left(y_t \cdot \nabla \phi + (-\nabla f(\theta_t) - \gamma y_t) \cdot \nabla_y \phi + \frac{1}{2} \tau^2 \nabla_y \cdot \nabla_y \phi \right) dt + \tau \nabla_y \phi dB_t.
\]
Taking expectation of this equation and integrating over \([t, t+h]\) leads to
\[
\frac{1}{h} \mathbb{E} (\phi(\theta_{t+h}, y_{t+h}) - \phi(\theta_t, y_t)) = \frac{1}{h} \int_t^{t+h} \mathbb{E} \left(y_s \cdot \nabla \phi + (-\nabla f(\theta_s) - \gamma y_s) \cdot \nabla_y \phi + \frac{\tau^2}{2} \nabla_y \cdot \nabla_y \phi \right) ds,
\]
which further gives,
\[
\frac{1}{h} \int_t^{t+h} \phi(\theta, y) (\psi(t+h, \theta, y) - \psi(t, \theta, y)) d\theta dy = \frac{1}{h} \int_t^{t+h} \left(y \cdot \nabla \phi + (-\nabla f(\theta) - \gamma y) \cdot \nabla_y \phi + \frac{\tau^2}{2} \nabla_y \cdot \nabla_y \phi \right) \psi(t, \theta, y) d\theta dy ds.
\]
Integrating by parts and letting \(h \to 0 \) results in
\[
\int \phi(\theta, y) \partial_t \psi d\theta dy = \int \phi \left(-y \cdot \nabla \psi + \nabla f(\theta) \cdot \nabla_y \psi + \nabla_y \cdot (\gamma y \psi) + \frac{\tau^2}{2} \nabla_y \cdot \nabla_y \psi \right) d\theta dy,
\]
which is true for any test function. Therefore, the PDF \(\psi(t, \theta, y) \) satisfies
\[
\partial_t \psi + y \cdot \nabla \psi - \nabla f(\theta) \cdot \nabla_y \psi = \nabla_y \cdot (\gamma y \psi) + \frac{\tau^2}{2} \nabla_y \cdot \nabla_y \psi.
\]
In what follows, we consider the case where \(\nabla f \) is a perturbed linear function,
\[
\nabla f(\theta) = \omega_0^2 \theta + \varepsilon(\theta).
\]
A further change-of-variable of
\[x = y, \quad v = -\omega_0^2 \theta - \gamma y, \]
turns (2.3) into
\[
\partial_t g + v \cdot \nabla_x g - \omega_0^2 x \cdot \nabla_v g = \gamma \nabla_v \left(v g + \frac{1}{\beta} \nabla_v g \right) + \varepsilon \left(-\frac{1}{\omega_0^2} (v + \gamma x) \right) \cdot (\nabla_x g - \gamma \nabla_v g) \tag{2.4}
\]
with \(g(t, x, v) = \psi \left(t, -\frac{1}{\omega_0} (v + \gamma x), x \right), \beta = \frac{2\gamma}{\omega_0^2}. \)

3 Main results and proof sketch

When \(\varepsilon = 0 \), the steady state \(M(x, v) \) of (2.4),
\[
M(x, v) = M_x M_v := \left(\frac{1}{Z_1} e^{-\frac{\beta^2}{2} |x|^2} \right) \left(\frac{1}{Z_2} e^{-\frac{\beta^2}{2} |v|^2} \right), \tag{3.1}
\]
where \(Z_1, Z_2 \) are the normalization constants such that \(\int M_v dv = \int M_x dx = 1 \). However, for general \(f(\theta) \), unfortunately there is no explicit form of the steady state. By denoting \(F(x, v) \) as the steady state of (2.4), the weighted fluctuation function
\[
h(t, x, v) = \frac{1}{M} \left[g(t, x, v) - F(x, v) \right]
\]
satisfies the following equation,
\[
\partial_t h + Th = Lh + Rh, \tag{3.2}
\]
where
\[
T = v \cdot \nabla_x - \omega_0^2 x \cdot \nabla_v \text{ is the transport operator;}
\]
\[
L = \gamma \left(-v \cdot \nabla_v + \frac{1}{\beta} \nabla_v \cdot \nabla_v \right) = \gamma \beta M \nabla_v \cdot (M \nabla_v) \text{ is the Linearized Fokker Planck operator;}
\]
\[
Rh = \varepsilon \cdot (\nabla_x h - \gamma \nabla_v h) - \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) h \text{ is the perturbation terms.}
\]
The above equation (3.2) is typically called the \textit{microscopic equation} in the literature. It is also convenient for the forthcoming analysis to define the inner product \(\langle \cdot, \cdot \rangle \) and the norm \(\| \cdot \| \ast \) as
\[
\langle h, g \rangle \ast = \int h g M dx dv, \quad \| h \| \ast = \langle h, h \rangle \ast . \tag{3.4}
\]
In addition, \(\| \cdot \|^2 \) is the standard \(L^2 \) norm with respect to the Lebesgue measure.

Under the above Gaussian measure \(M \), the following Poincare inequality holds
\[
\| h \| \ast^2 \leq \frac{1}{d \beta \min \{ \omega_0^2, 1 \} } \left(\| \nabla_x h \| \ast^2 + \| \nabla_v h \| \ast^2 \right), \quad \text{for } \forall h \text{ s.t. } \int h M dx dv = 0 \tag{3.5}
\]
The following key assumption ensures various bounds of the perturbation \(\varepsilon(\theta) \).

Assumption 3.1. There exists a small constant \(\varepsilon_0 > 0 \), such that,
\[
\max_i \| \varepsilon_i \|_{L_{\infty}^x}, \| \varepsilon \cdot x \|_{L_{\infty}^x}, \| \varepsilon \cdot v \|_{L_{\infty}^x}, \text{ d max } \| \varepsilon' \|_{L_{\infty}^x}, \sum_i \| \varepsilon_i' \|_{L_{\infty}^x}, \| \varepsilon' \cdot x \|_{L_{\infty}^x}, \| \varepsilon' \cdot v \|_{L_{\infty}^x} \leq \varepsilon_0
\]
The following theorem states an exponential decay bound for the fluctuation h.

Theorem 3.2. Under Assumption 3.1 with ϵ_0 small enough, the fluctuation h decay exponentially as follows,

$$\|h(t)\|^2 \lesssim e^{-2(\mu-\epsilon)t}H(0),$$

where $H(0) = \|\nabla_x h(0)\|^2 + C\|\nabla_v h(0)\|^2 + 2\hat{C}\langle\nabla_x h(0), \nabla_v h(0)\rangle$, $\epsilon = \epsilon_0 C_1$ for a constant C_1 depending on ω_0, γ and

$$
\begin{cases}
\text{when } \gamma < 2\omega_0 : & \mu = \gamma, \ C = \omega_0^2, \ \hat{C} = \gamma/2; \\
\text{when } \gamma > 2\omega_0 : & \mu = \gamma - \sqrt{\gamma^2 - 4\omega_0^2}, \ C = \gamma^2/2 - \omega_0^2, \ \hat{C} = \gamma/2; \\
\text{when } \gamma > 2\omega_0 : & \text{for } \forall \delta > 0, \text{ there exists } C(\delta), \hat{C}(\delta), \text{ such that the decay rate } \mu = \gamma - \delta.
\end{cases}
$$

More specifically $C_1 = \left(11 + 11C + 15\hat{C}\right)\epsilon_0 \cdot C_2^2 \cdot \frac{\max\{1,C\}}{C-C_2}$, where $C_2 = \frac{\max\{1,\gamma^2,\beta\gamma,\beta\omega_0^2\}}{\min\{1,\omega_0^2\}}$.

Remark 3.3. How the learning rate and staleness affect the convergence rate? When the perturbation ϵ_0 is small, the decay rate is dominated by $e^{-2\mu t}$. By the definition of δ_t, one has $t = k\delta_t = k\sqrt{\eta(1-\kappa)}$ with k the number of steps, η the learning rate and κ the staleness rate. Inserting the definition of $\gamma = \sqrt{(1-\kappa)/\eta}$ into (3.6), the dominated decay rate $e^{-2\mu t}$ can also be written as,

$$
\begin{cases}
\text{when } \eta > \frac{1}{4\omega_0^2}(1-\kappa) : & \mu t = (1-\kappa)k; \\
\text{when } \eta < \frac{1}{4\omega_0^2}(1-\kappa) : & \mu t = (1-\kappa)k - \left(\sqrt{(1-\kappa)^2 - 4\omega_0^2(1-\kappa)\eta}\right)k.
\end{cases}
$$

From the above discussion, we make two observations:

- The learning rate should not be smaller than $\frac{1}{4\omega_0^2}(1-\kappa)$. For a fixed staleness rate κ, when the learning rate is larger than the threshold $\frac{1}{4\omega_0^2}(1-\kappa)$, the convergence rate is a constant only depending on $(1-\kappa)$. While the learning rate is smaller than this threshold, the convergence rate will become slower as the learning rate becomes smaller.

- Longer delays result in slower convergence rate. For a fixed learning rate, the optimal decay rate $e^{-2(1-\kappa)k}$ only relates to the staleness of the system. If the system has more delayed readings from the local workers, i.e., $(1-\kappa)$ is smaller, then the convergence rate is slower.

All the above discussion is based on the assumption that η is small enough so that the SME-ASGD is a good approximation for ASGD. In other words, we assume ω_0 is large here, hence the threshold $\frac{1}{4\omega_0^2}(1-\kappa)$ is still in the valid regime.

Remark 3.4. When is ASGD more efficient than SGD? Assume we have m local workers and the learning rate is larger than the threshold $\eta > \frac{1}{4\omega_0^2}(1-\kappa)$. When the perturbation ϵ_0 is small, for single batch SGD, the decay rate is e^{-2k} after k steps, while for ASGD, the decay rate is $e^{-2(1-\kappa)k}$ after calculating k gradients. Since now we have m local workers, for the same amount of time, the decay rate for ASGD becomes $e^{-2(1-\kappa)mk}$. Therefore, as long as $(1-\kappa)m > 1$, ASGD will be more efficient than SGD. Since the expectation of the random staleness τ_k is $\frac{1}{1-\kappa}$, in other words, when the number of local workers is larger than the expected staleness, then ASGD is more efficient than SGD.
The proof of the theorem is given in Section 4. The main ingredient of the proof is the following Lyapunov functional $H(t)$,

$$H(t) = ||\nabla_x h||_x^2 + C ||\nabla_v h||_x^2 + 2\hat{C} \langle \nabla_x h, \nabla_v h \rangle_*$$

(3.8)

where C, \hat{C} are constants to be determined later. Note that,

$$\frac{d}{dt} H(t) = \frac{d}{dt} \left(||\nabla_x h||_x^2 + C ||\nabla_v h||_x^2 \right) + 2\hat{C} \frac{d}{dt} \langle \nabla_x h, \nabla_v h \rangle_* .$$

(3.9)

The first two terms can be estimated with an energy estimation given in Lemma 4.2 of $\nabla_x (3.2)$ and $\nabla_v (3.2)$, while the estimation of the last term is given in Lemma 4.3. Combining the result in Lemmas 4.2 and 4.3 leads to,

$$\frac{1}{2} \partial_t H(t) + \hat{C} H(t) \leq 0.$$

(3.10)

Finally, the exponential decay of $||h(t)||_x^2$ can be derived from this inequality and the relationship between $H(t)$ and $||h(t)||_x^2$.

4 Proof of Theorem 3.2

The following proposition summarizes a few equalities and inequalities, which will be used frequently in the proof of the main theorem. The proofs are provided in Appendix A.

Proposition 4.1. For $g(t, x, v), h(t, x, v)$, the following statements hold

(a) $\langle Tg, h \rangle_* = -\langle Th, g \rangle_*$, $\langle Th, h \rangle_* = 0.$

(b) $\langle Lg, h \rangle_* = -\frac{2}{\beta} \langle \nabla_v g, \nabla_v h \rangle_*$.

(c) $\langle Rg, g \rangle_* \leq \epsilon_0 C_2 ||g||_x^2$, $\langle Rh, h \rangle_* + \langle Rh, g \rangle_* \leq \epsilon_0 C_2 \left(||g||_x^2 + ||h||_x^2 \right)$, where $C_2 = \frac{\max(1, \gamma^2, \beta \gamma, \beta \omega_0^2)}{\min(1, \omega_0^2)}$.

(d) $\langle \nabla_x (Rh), \nabla_x h \rangle_* \leq \frac{11}{2} \epsilon_0 C_2^2 ||\nabla_x h||_x^2 + 2\epsilon_0 C_2^2 ||\nabla_v h||_x^2$.

(e) $\langle \nabla_v (Rh), \nabla_v h \rangle_* \leq \frac{11}{2} \epsilon_0 C_2^2 ||\nabla_v h||_x^2 + 2\epsilon_0 C_2^2 ||\nabla_v h||_x^2$.

(f) $\langle \nabla_x (Rh), \nabla_v h \rangle_* + \langle \nabla_v (Rh), \nabla_x h \rangle_* \leq \frac{15}{2} \epsilon_0 C_2^2 ||\nabla_x h||_x^2 + \frac{15}{2} \epsilon_0 C_2^2 ||\nabla_v h||_x^2$.

The following lemma is the energy estimation of $\nabla_x (3.2)$ and $\nabla_v (3.2)$.

Lemma 4.2. The weighted fluctuation function $h(t, x, v)$ satisfies

$$\frac{d}{dt} \left(||\nabla_x h||_x^2 + C ||\nabla_v h||_x^2 \right) + \frac{\gamma}{\beta} \sum_i \int \left(M(\partial_{v_i} \nabla_x h)^2 + C |\partial_{v_i} \nabla_v h|^2 \right) dv$$

$$\leq -2(C - \omega_0^2) \langle \nabla_x h, \nabla_v h \rangle_* - 2\gamma C ||\nabla_v h||_x^2 + (11 + 4C) \epsilon_0 C_2 ||\nabla_x h||_*^2 + (4 + 11C) \epsilon_0 C_2 ||\nabla_v h||_*^2 .$$

Proof. After taking ∇_x and ∇_v to (3.2), multiplying them with $\nabla_x hM$ and $\nabla_v hM$ respectively, and integrating over $dxdv$, one obtains

$$\frac{1}{2} \frac{d}{dt} ||\nabla_x h||_x^2 + \langle T \nabla_x h, \nabla_x h \rangle_* - \omega_0^2 \langle \nabla_v h, \nabla_x h \rangle_* = \langle L \nabla_x h, \nabla_x h \rangle_* + \langle \nabla_x (Rh), \nabla_x h \rangle_* .$$

$$\frac{1}{2} \frac{d}{dt} ||\nabla_v h||_x^2 + \langle T \nabla_v h, \nabla_v h \rangle_* + \langle \nabla_x h, \nabla_v h \rangle_* = \langle L \nabla_v h, \nabla_v h \rangle_* - \gamma \langle \nabla_v h, \nabla_v h \rangle_* + \langle \nabla_v (Rh), \nabla_v h \rangle_* .$$
By invoking Proposition 4.1(a), the second term of the LHS of each equation vanishes. Multiplying these two equations with 1 and C respectively and adding them together gives rise to

$$
\frac{1}{2} \frac{d}{dt} \left(\|\nabla_x h\|^2 + C \|\nabla_x h\|^2 \right) \leq - \left(C - \omega_0^2 \right) \langle \nabla_x h, \nabla_x h \rangle + \gamma C \|\nabla_x h\|^2 + \langle \nabla_x (Rh), \nabla_x h \rangle.
$$

(4.1)

After applying Proposition 4.1(b), (d), (e), one obtains

$$
\frac{1}{2} \frac{d}{dt} \left(\|\nabla_x h\|^2 + C \|\nabla_x h\|^2 \right) + \frac{\gamma}{\beta} \left(\sum_i \|\partial_{v_i} \nabla_x h\|^2 \right) \leq - \left(C - \omega_0^2 \right) \langle \nabla_x h, \nabla_x h \rangle - \gamma C \|\nabla_x h\|^2 + \frac{11}{2} \left(\|\nabla_x h\|^2 + 2 + \frac{11}{2} C \right) \epsilon_0 C_2 \|\nabla_x h\|^2.
$$

(4.2)

Lemma 4.3.

$$
\frac{d}{dt} \langle \nabla_x h, \nabla_v h \rangle + 2 \frac{\gamma}{\beta} \sum_i \langle \partial_{v_i} \nabla_x h, \partial_{v_i} \nabla_v h \rangle \leq - \gamma \langle \nabla_x h, \nabla_v h \rangle + \omega_0^2 \|\nabla_v h\|^2 - \|\nabla_x h\|^2 + \frac{15}{2} \epsilon_0 C_2 \|\nabla_x h\|^2 + \frac{15}{2} \epsilon_0 C_2 \|\nabla_v h\|^2.
$$

Proof. Taking ∇_x and ∇_v to (3.2), multiplying them by $\nabla_v hM$ and $\nabla_x hM$ respectively, and integrating over $dx dv$, one obtains

$$
\langle \frac{d}{dt} \nabla_x h, \nabla_v h \rangle + \langle T \nabla_x h, \nabla_v h \rangle = \langle L \nabla_x h, \nabla_v h \rangle + \langle \nabla_x (Rh), \nabla_v h \rangle.
$$

(4.3)

$$
\langle \frac{d}{dt} \nabla_v h, \nabla_x h \rangle + \langle T \nabla_v h, \nabla_x h \rangle = \langle L \nabla_v h, \nabla_x h \rangle - \gamma \langle \nabla_v h, \nabla_x h \rangle + \langle \nabla_v (Rh), \nabla_x h \rangle.
$$

(4.4)

From Proposition 4.1(a), the sum of the second terms on the LHS of both equations vanishes. Applying Proposition 4.1(b) to the first term on the RHS of both equations combine them into a single term. Finally, summing the above two equations and applying Proposition 4.1(f) to the last terms leads to

$$
\frac{d}{dt} \langle \nabla_x h, \nabla_v h \rangle + 2 \frac{\gamma}{\beta} \sum_i \langle \partial_{v_i} \nabla_x h, \partial_{v_i} \nabla_v h \rangle \leq - \gamma \langle \nabla_x h, \nabla_v h \rangle + \omega_0^2 \|\nabla_v h\|^2 - \|\nabla_x h\|^2 + \frac{15}{2} \epsilon_0 C_2 \|\nabla_x h\|^2 + \frac{15}{2} \epsilon_0 C_2 \|\nabla_v h\|^2.
$$

(4.5)

The proof of Theorem 3.2. By combining the results in Lemma 4.2 and Lemma 4.3, one concludes that

$$
\frac{d}{dt} H(t) + \int [\nabla_x h, \nabla_v h] K [\nabla_x h, \nabla_v h] \frac{1}{M} dx dv + \int \frac{2\gamma}{\beta} \sum_i \langle \partial_{v_i} \nabla_x h, \partial_{v_i} \nabla_v h \rangle P [\partial_{v_i} \nabla_x h, \partial_{v_i} \nabla_v h] \frac{1}{M} dx dv
$$

$$
\leq \left(11 + 4C + 15\hat{C} \right) \epsilon_0 C_2 \|\nabla_x h\|^2 + \left(4 + 11C + 15\hat{C} \right) \epsilon_0 C_2 \|\nabla_v h\|^2.
$$
where
\[
K = \begin{bmatrix}
2\hat{C}I_d & (C - \omega_0^2 + \gamma\hat{C})I_d \\
(C - \omega_0^2 + \gamma\hat{C})I_d & (2\gamma C - 2\omega_0^2\hat{C})I_d
\end{bmatrix},
\]
\[
P = \begin{bmatrix}
I_d & \hat{C}I_d \\
\hat{C}I_d & CI_d
\end{bmatrix}.
\tag{4.5}
\]

Note that \(K \) can be decomposed as,
\[
K = QP + PQ^\top,
\]
with
\[
Q = \begin{bmatrix}
0I_d & I_d \\
-\omega_0^2I_d & \gamma I_d
\end{bmatrix}.
\tag{4.6}
\]

By invoking Lemma 4.3 in [2], we know that there exists a positive definite matrix \(P \) such that,
\[
K = QP + Q^\top P \geq 2\mu P,
\]
with \(\mu = \min \{\text{Re}(\lambda) : \lambda \text{ is an eigenvalue of } Q\} \).

The value of \(\mu, C, \) and \(\hat{C} \) can be separated into three cases.

- **case 1:** \(\gamma < 2\omega_0 \) :
 \[\mu = \gamma, \quad C = \omega_0^2, \quad \hat{C} = \gamma/2\]

- **case 2:** \(\gamma > 2\omega_0 \) :
 \[\mu = \gamma - \sqrt{\gamma^2 - 4\omega_0^2}, \quad C = \gamma^2/2 - \omega_0^2, \quad \hat{C} = \gamma/2\]

- **case 3:** \(\gamma = 2\omega_0 \) : For \(\forall \delta > 0 \), there exists \(\mu = \gamma - \delta, C(\delta), \hat{C}(\delta) \), such that (4.7) holds.

Inserting \(K \geq 2\mu P \) and using the fact that
\[
H(t) = \int [\nabla_x h, \nabla_v h] P[\nabla_x h, \nabla_v h]^\top \frac{1}{M} dx dv,
\]
we can bound the second term in (14.3) from below by \(2\mu H(t) \). By the positive definiteness of \(P \), the third term is always positive. Therefore,
\[
\frac{d}{dt}H(t) + 2\mu H(t) \leq \left(11 + 4C + 15\hat{C}\right) \epsilon_0 C_2^2 \|\nabla_x h\|^2_\epsilon + \left(4 + 11C + 15\hat{C}\right) \epsilon_0 C_2^2 \|\nabla_v h\|^2_\epsilon,
\]
\[
\frac{d}{dt}H(t) + 2(\mu - \epsilon)H(t) \leq -2\epsilon H(t) + \left(11 + 11C + 15\hat{C}\right) \epsilon_0 C_2^2 \left(\|\nabla_x h\|^2_\epsilon + \|\nabla_v h\|^2_\epsilon\right),
\]
\[
\frac{d}{dt}H(t) + 2(\mu - \epsilon)H(t) \leq -\epsilon \left\|\nabla_x h + \hat{C} \nabla_v h\right\|^2_\epsilon - \epsilon \left\|\sqrt{C} \nabla_v h + \frac{\hat{C}}{\sqrt{C}} \nabla_x h\right\|^2_\epsilon - \epsilon \left(C - \hat{C}^2\right) \|\nabla_v h\|^2_\epsilon
\]
\[
\leq \epsilon \left(C - \hat{C}^2\right) \|\nabla_x h\|^2_\epsilon + \left(11 + 11C + 15\hat{C}\right) \epsilon_0 C_2^2 \left(\|\nabla_x h\|^2_\epsilon + \|\nabla_v h\|^2_\epsilon\right).
\]

The RHS is less than 0 for all \(\nabla_x h, \nabla_v h \) if
\[
\left(11 + 11C + 15\hat{C}\right) \epsilon_0 C_2^2 \leq \epsilon(C - \hat{C}^2) \min \left\{1, \frac{1}{C}\right\},
\]
which implies that as long as \(\epsilon_0 \) is sufficiently small one has
\[
\frac{d}{dt}H(t) + 2(\mu - \epsilon)H(t) \leq 0 \tag{4.8}
\]
for \(\epsilon = \left(11 + 11C + 15\hat{C}\right) \epsilon_0 C_2^2 \max \left\{\frac{1}{C}, 1\right\} \). By integrating (4.8) over time and applying Grownwall’s inequality to it, we obtain
\[
H(t) \leq H(0)e^{-2(\mu - \epsilon)t}.
\]

By the Poincare inequality (3.5) and the positive definiteness of \(P \), one can bound \(H(t) \) from below by \(\|h\|^2_\epsilon \) up to a constant,
\[
H(t) \gtrsim (\|\nabla_x h\|^2_\epsilon + \|\nabla_v h\|^2_\epsilon) \gtrsim \|h\|^2.
\]

Therefore, we can conclude
\[
\|h(t)\|^2_\epsilon \lesssim H(0)e^{-2(\mu - \epsilon)t}.
\]

8
Appendices

A The proof of Proposition 4.1

Proof. (a)

The first equation can be proved via integration by parts,
\[
\langle Tg, h \rangle_* = \int (v \cdot \nabla_x g - \omega_0^2 x \cdot \nabla_v g) \, hM \, dx \, dv
\]
\[
= \int (-v \cdot \nabla_x h + \omega_0^2 x \cdot \nabla_v h) \, g + gh(-v \cdot \nabla_x M + \omega_0^2 x \cdot \nabla_v M) \, dx \, dv
\]
\[
= -\langle Th, g \rangle_* + \int gh(v \cdot (\beta \omega_0^2 x) - \omega_0^2 x \cdot (\beta v)) \, dx \, dv = -\langle Th, g \rangle_* .
\]

The second equation is directly followed by \(\langle Th, h \rangle_* = -\langle Th, h \rangle_* \).

(b)

This equation can be obtained also by integration by parts,
\[
\langle Lg, h \rangle_* = \gamma \beta \int \frac{1}{M} \nabla_v \cdot (M \nabla_v g)hM \, dx \, dv = -\gamma \beta \int M \nabla_v g \cdot \nabla_v h \, dx \, dv = -\frac{\gamma}{\beta} \langle \nabla_v g, \nabla_v h \rangle_* .
\]

(c)

The first equation can be written as
\[
\langle Rg, g \rangle_* = \langle \varepsilon \cdot (\nabla_x g - \gamma \nabla_v g) , g \rangle_* - \langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) g , g \rangle_*
\]
\[
= \frac{1}{2} \langle \varepsilon , (\nabla_x - \gamma \nabla_v) g^2 \rangle_* - \frac{1}{2} \langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) , g^2 \rangle_* \quad (A.1)
\]

By integrating by parts the first term and using the definition of \(\varepsilon = \varepsilon \left(-\frac{1}{\omega_0^2} (v + \gamma x) \right) \), \(M = \exp(-\beta \omega_0^2 |x|^2/2 + \beta |v|^2/2) \), one has
\[
\frac{1}{2} \langle \varepsilon , (\nabla_x - \gamma \nabla_v) g^2 \rangle_* = -\frac{1}{2} \langle (\nabla_x - \gamma \nabla_v) \cdot \varepsilon , g^2 \rangle_* - \frac{1}{2} \langle \varepsilon \cdot (\nabla_x - \gamma \nabla_v)M , g^2 \rangle_*
\]
\[
= -\frac{1}{2} \langle -\frac{\beta}{\omega_0^2} \nabla \cdot \varepsilon - \gamma (-\frac{1}{\omega_0^2}) \nabla \cdot g^2 \rangle_* + \frac{1}{2} \langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) , g^2 \rangle_* = \frac{1}{2} \langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) , g^2 \rangle_* .
\]

Inserting the above equation into (A.1) gives rise to
\[
\langle Rg, g \rangle_* = -\frac{1}{2} \langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) , g^2 \rangle_* \leq \frac{\epsilon_0}{2} (\beta \omega_0^2 + \beta \gamma) \| g \|_*^2 \leq \epsilon_0 C_2 \| g \|_*^2 ,
\]

where we use the assumption \(\| \varepsilon \cdot x \|_{L^\infty} : \| \varepsilon \cdot v \|_{L^\infty} \leq \epsilon_0 \) in Assumption 3.1 at the first inequality.

Now we estimate \(\langle Rg, h \rangle_* + \langle Rh, g \rangle_* \). First, similar to (A.2), by the definition of \(\varepsilon, M \), one has
\[
\langle Rg, h \rangle_* = \langle \varepsilon \cdot (\nabla_x g - \gamma \nabla_v g) , h \rangle_* - \langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) g , h \rangle_*
\]
\[
= -\langle (\nabla_x - \gamma \nabla_v) \varepsilon g , h \rangle_* - \langle \varepsilon g , (\nabla_x - \gamma \nabla_v) h \rangle_* - \langle \varepsilon (\nabla_x - \gamma \nabla_v) M g , h \rangle_*
\]
\[
= -\langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) g , h \rangle_*
\]
\[
= 0 - \langle \varepsilon g , (\nabla_x - \gamma \nabla_v) h \rangle_* + 0.
\]
Hence,
\[\langle Rg, h \rangle_* + \langle Rh, g \rangle_* = -\langle \varepsilon(\nabla_x - \gamma \nabla_v)h, g \rangle_* + \langle \varepsilon \cdot (\nabla_x h - \gamma \nabla_v h), g \rangle_* - \langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) h, g \rangle_* \]
\[= -\langle \beta \varepsilon \cdot (\omega_0^2 x - \gamma v) h, g \rangle_* \leq \frac{\epsilon_0}{2} (\beta \omega_0^2 + \beta \gamma) \left(\|h\|_*^2 + \|g\|_*^2 \right) \]
\[\leq \epsilon_0 C_2 \left(\|h\|_*^2 + \|g\|_*^2 \right). \]

(d)

By the definition of \(R \) in (3.3),
\[\langle \nabla_x (Rh), \nabla_x h \rangle_* = \langle R \nabla_x h, \nabla_x h \rangle_* + \langle \nabla_x \varepsilon(\nabla_x h - \gamma \nabla_v h), \nabla_x h \rangle_* \]
\[- \beta \langle \nabla_x \varepsilon(\omega_0^2 x - \gamma v)h, \nabla_x h \rangle_* + \beta \omega_0^2 \langle \varepsilon h, \nabla_x h \rangle_* \]
\[\leq \epsilon_0 C_2 \| \nabla_x h \|_*^2 + \langle \nabla_x \varepsilon(\nabla_x h - \gamma \nabla_v h), \nabla_x h \rangle_* \]
\[- \beta \langle \nabla_x \varepsilon(\omega_0^2 x - \gamma v)h, \nabla_x h \rangle_* + \frac{1}{2} \beta \omega_0^2 \epsilon_0 (d \|h\|_*^2 + \|\nabla_x h\|_*^2), \text{ (A.3)} \]

where we apply the inequality (c) to the first term and Assumption 3.1 \[\max_i \| \varepsilon_i \|_{L^\infty} \leq \epsilon_0 \] to the last term of the above inequality. We will then estimate the second and third terms.
\[\langle \nabla_x \varepsilon(\nabla_x h - \gamma \nabla_v h), \nabla_x h \rangle_* = \sum_{i,j} \langle \partial_{x_i} \varepsilon_i(\partial_{x_j} h - \gamma \partial_{x_j} v), \partial_{x_i} h \rangle_* \]
\[= -\frac{\gamma}{\omega_0} \sum_{i,j} \langle \partial_{x_i} \varepsilon_i(\partial_{x_j} h - \gamma \partial_{x_j} v), \partial_{x_i} h \rangle_* \leq \frac{\gamma}{\omega_0} \sum_{i,j} \| \varepsilon_i \|_{L^\infty} \left(\frac{1}{2} \| \partial_{x_j} h \|_*^2 + \frac{d}{2} \| h \|_*^2 + \| \partial_{x_j} h \|_*^2 \right) \]
\[\leq \frac{\gamma}{\omega_0} \epsilon_0 \left(\frac{1}{2} \| \nabla_x h \|_*^2 + \frac{d}{2} \| \nabla_x h \|_*^2 + \frac{d}{2} \| \nabla_v h \|_*^2 \right) \leq \epsilon_0 C_2 \left(\frac{3}{2} \| \nabla_x h \|_*^2 + \frac{1}{2} \| \nabla_v h \|_*^2 \right) \text{ (A.4)} \]

where \(d \max_i \| \varepsilon_i \|_{L^\infty}, \sum_i \| \varepsilon_i \|_{L^\infty} \leq \epsilon_0 \), are used in the second inequality from last. The third term in (A.3) can be bounded by,
\[- \beta \langle \nabla_x \varepsilon(\omega_0^2 x - \gamma v)h, \nabla_x h \rangle_* = -\beta \sum_{i,j} \langle \partial_{x_i} \varepsilon_i(\omega_0^2 x_i - \gamma v_i)h, \partial_{x_j} h \rangle_* \]
\[= -\frac{\gamma \beta}{\omega_0} \sum_{i,j} \left(\sum_i \langle \partial_{x_i} \varepsilon_i(\omega_0^2 x_i - \gamma v_i), \partial_{x_j} h \rangle_+ \right) \leq \frac{\gamma \beta}{\omega_0} \epsilon_0 \left(\frac{d}{2} \omega_0^2 \| h \|_*^2 + \frac{d}{2} \| \nabla_v h \|_*^2 + \| \nabla_x h \|_*^2 \right) \text{ (A.5)} \]
\[\leq \epsilon_0 C_2 \left(d \beta \| h \|_*^2 + \| \nabla_x h \|_*^2 \right), \]

where \(\| \varepsilon' \cdot x \|_{L^\infty}, \| \varepsilon' \cdot v \|_{L^\infty} \leq \epsilon_0 \) are used in last inequality. Then inserting (A.4), (A.5) into (A.3) leads to
\[\langle \nabla_x (Rh), \nabla_x h \rangle_* \leq 4\epsilon_0 C_2 \| \nabla_x h \|_*^2 + \frac{1}{2} \epsilon_0 C_2 \| \nabla_v h \|_*^2 + \frac{3}{2} \epsilon_0 C_2 \left(d \beta \| h \|_*^2 \right). \text{ (A.6)} \]

Now applying the Poincare inequality (3.5) under the Gaussian measure to (A.6) gives rise to
\[\langle \nabla_x (Rh), \nabla_x h \rangle_* \leq \left(4\epsilon_0 C_2 + \frac{3}{2} \epsilon_0 C_2 \right) \| \nabla_x h \|_*^2 + \left(\frac{1}{2} \epsilon_0 C_2 + \frac{3}{2} \epsilon_0 C_2 \right) \| \nabla_v h \|_*^2. \]
Similar to the proof of (d), one has
\[
\langle \nabla v(Rh), \nabla v h \rangle_* = \langle R \nabla v h, \nabla v h \rangle_* + \langle \nabla v \varepsilon(\nabla_x h - \gamma \nabla_v h), \nabla_v h \rangle_* \\
- \beta \langle \nabla v \varepsilon(\omega_0^2 x - \gamma v) h, \nabla_v h \rangle_* + \beta \gamma \langle \varepsilon h, \nabla_v h \rangle_* \\
\leq \epsilon_0 C_2 \|\nabla_v h\|^2_* + \epsilon_0 C_2 \left(\frac{1}{2} \|\nabla_x h\|^2_* + \frac{3}{2} \|\nabla_v h\|^2_* \right) \\
+ \epsilon_0 C_2 \left(d\beta \|h\|^2_* + \frac{1}{2} \|\nabla_v h\|^2_* \right) + \epsilon_0 C_2 \left(\frac{1}{2} d\beta \|h\|^2_* + \frac{3}{2} \|\nabla_v h\|^2_* \right) \\
\leq \left(4\epsilon_0 C_2 + \frac{3}{2} \epsilon_0 C_2^2 \right) \|\nabla_v h\|^2_* + \left(\frac{1}{2} \epsilon_0 C_2 + \frac{3}{2} \epsilon_0 C_2^2 \right) \|\nabla_x h\|^2_*.
\]

Similar to the proof of (d), one has
\[
\langle \nabla_x(Rh), \nabla_x h \rangle_* + \langle \nabla_v(Rh), \nabla_x h \rangle_* \\
= (\langle R \nabla_x h, \nabla_x h \rangle_* + \langle R \nabla_v h, \nabla_x h \rangle_*) + \langle \nabla_x \varepsilon(\nabla_x h - \gamma \nabla_v h), \nabla_v h \rangle_* - \beta \langle \nabla_x \varepsilon(\omega_0^2 x - \gamma v) h, \nabla_v h \rangle_* \\
- \beta \omega_0^2 \langle \varepsilon h, \nabla_x h \rangle_* + \langle \nabla_v \varepsilon(\nabla_x h - \gamma \nabla_v h), \nabla_x h \rangle_* - \beta \langle \nabla_v \varepsilon(\omega_0^2 x - \gamma v) h, \nabla_x h \rangle_* + \beta \gamma \langle \varepsilon h, \nabla_x h \rangle_* \\
\leq \left(\frac{9}{2} \epsilon_0 C_2 + 3 \epsilon_0 C_2^2 \right) \|\nabla_x h\|^2_* + \left(\frac{9}{2} \epsilon_0 C_2 + 3 \epsilon_0 C_2^2 \right) \|\nabla_v h\|^2_*.
\]

References

[1] Jing An, Jianfeng Lu, and Lexing Ying. Stochastic modified equations for the asynchronous stochastic gradient descent. [arXiv:1805.08244], 2018.

[2] Anton Arnold and Jan Erb. Sharp entropy decay for hypocoercive and non-symmetric fokker-planck equations with linear drift. [arXiv:1409.5425], 2014.

[3] Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks. In 2018 Information Theory and Applications Workshop (ITA), pages 1–10. IEEE, 2018.

[4] John Duchi, Michael I Jordan, and Brendan McMahan. Estimation, optimization, and parallelism when data is sparse. In Advances in Neural Information Processing Systems, pages 2832–2840, 2013.

[5] Wenqing Hu, Chris Junchi Li, Lei Li, and Jian-Guo Liu. On the diffusion approximation of nonconvex stochastic gradient descent. Annals of Mathematical Sciences and Applications, 4(1):3–32, 2019.

[6] Stanisaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos Storkey. Three factors influencing minima in sgd. [arXiv:1711.04623], 2017.
(7) Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and adaptive stochastic gradient algorithms. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2101–2110. JMLR. org, 2017.

(8) Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate bayesian inference. The Journal of Machine Learning Research, 18(1):4873–4907, 2017.

(9) Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. arXiv:1507.06970, 2015.

(10) Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets moment, with an application to deep learning. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 997–1004. IEEE, 2016.

(11) Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Advances in neural information processing systems, pages 693–701, 2011.

(12) Cédric Villani. Hypocoercivity. Memoirs of the American Mathematical Society, 202(950), 2009.