Economic comparative advantage of willow biomass in the Northeast USA

Matthew Langholtz©, Laurence Eaton©, Maggie Davis, Magen Shedden and Craig Brandt, Oak Ridge National Laboratory, Energy and Environmental Sciences Directorate, Oak Ridge, TN, USA
Tim Volk, State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
Tom Richard, Pennsylvania State University, Department of Agricultural and Biological Engineering, State College, PA, USA

Received June 22, 2018; revised August 15, 2018; accepted August 20, 2018
View online at October 11, 2018 Wiley Online Library (wileyonlinelibrary.com);
DOI: 10.1002/bbb.1939; Biofuels, Bioprod. Bioref. 13:74–85 (2019)

Abstract: We evaluate the potential economic availability of willow (Salix spp.) short-rotation woody crops in the Northeast USA. Based on results from a 20-year agronomic simulation, the Northeast USA could potentially provide between 2.1 and 9.7 million dry Mg year$^{-1}$, depending on farmgate price and competition with other energy crops. In a diversified biomass energy-crop scenario, willow outperforms other lignocellulosic energy crops in planted area and production at 91% of supply and 83% of planted area in a low-price scenario in the Northeast USA. In a high-price scenario, willow also outperforms competing energy crops at 47% of production and 51% of planted area. In contrast with the rest of the USA, willow comprises the greatest portion of energy crop potential in the Northeast. These results suggest that willow has an agronomic comparative advantage in this region as compared to herbaceous energy crops, with great potential to increase production given adequate market prices. © 2018 The Authors. Biofuels, Bioproducts, and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd.

Keywords: willow; biomass; bioenergy

Introduction

Future demand for biomass in the USA is unknown but may grow in response to biofuels, biopower, and bioproducts markets. In addition to the estimated 331 million Mg of biomass used for energy and coproducts in the USA annually, about 750 million to 1.0 billion Mg of biomass are potentially available while meeting demand for conventional food, feed, and fiber markets.1 Biomass resources vary by region. Agricultural residues, forest resources, and perennial grasses are predominately available in the North Central, Southern Plains, and Southeast...
USA, respectively. Willow (Salix spp.), managed as a short-rotation woody crop, is well adapted for the growing conditions in Northeast and North Central USA.

Willow is grown commercially on about 500 hectares in the Northeast, predominantly for biopower but also for some other markets.\(^2\)–\(^4\) The Northeast, with about 4.5 million hectares of row crops, 1.7 million hectares of pastureland\(^5\) and a population of over 60 million,\(^6\) has the potential to increase both production and consumption of bioenergy and associated co-products. Considering this possible increase in production and use of willow, we evaluate, here, the potential economic availability of biomass from willow in 12 Northeast US states: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and West Virginia.

Background

Willow is a genetically diverse genus used for various products. If cultivated judiciously, willow can provide various environmental benefits.\(^7\)–\(^8\) As a perennial crop with high yields and deep root systems, willow production can provide carbon sequestration while reducing net CO\(_2\) emissions compared to conventional energy sources,\(^7\)–\(^9\)\(^18\) though changes in soil organic carbon attributable to short-rotation woody crop (SRWC) plantations may be difficult to generalize.\(^9\)

Willows can be effective at absorbing contaminants from groundwater and soil.\(^18\)\(^20\)–\(^25\) Willow production may have competitive advantages on less-productive lands\(^26\)–\(^28\) and can be used in land remediation.\(^29\)–\(^31\) As with other energy crops, the economic viability of willow production is subject to local operational costs, markets, and policies.\(^26\)\(^32\)–\(^41\)

The widespread realization of economic and environmental benefits associated with willow production is contingent upon its potential availability and markets to incentivize production. Approaches for biomass resource assessments are developed according to specific study goals, geographic scope, available data, and other criteria.\(^42\)–\(^44\) The 2016 Billion-Ton Report (BT16), which included willow as a SRWC, managed on a 20-year cycle and harvested at 4-year growth stages, estimated that 23 million Mg per year of willow is potentially available in the USA, assuming a farmgate price of $66 per dry Mg.\(^1\) However, this potential supply is subject to assumptions regarding yield, operational cost, market demand, and competition with other crop alternatives.\(^45\) Applying the modeling approach used in the BT16,\(^1\) here we assess the potential economic availability of willow in the Northeast USA with revised yields and operational assumptions.

Methods

Economic model

This study, consistent with the BT16, employs the Policy Analysis System (POLYSYS) to assess the economic availability of willow supplies within the constraints of land resources and competing demands for other crops. POLYSYS is a policy simulation model for the US agricultural sector.\(^46\) Its modeling framework is a variant of an equilibrium displacement model. It has been used to simulate US agricultural policy scenarios. It simulates how commodity markets balance supply and demand through price adjustments based on known economic relationships. POLYSYS can be used to estimate how agricultural producers may respond to new demand for biomass, while considering the impact on other non-energy crops. It was used to quantify potential biomass resources in the US Department of Energy Billion-Ton reports and has been used in other agricultural and biofuels analyses.\(^1\)\(^47\)–\(^55\)

POLYSYS fixes its analyses to the USDA-published baseline of price projections, yield, and acreage for the agriculture sector. It extends the USDA 10-year baseline projection period through 2040 for this analysis.\(^56\) Conventionally cropped crops considered in POLYSYS include corn, soybeans, grain sorghum, oats, barley, wheat, cotton, rice, and hay. These crops comprise approximately 90% of the US agricultural land area. Corn, grain sorghum, oats, barley, and wheat (winter plus spring) are simulated to produce residues under specified conditions. Production costs associated with residue removal from these crops include replacement of embodied nutrients and per-acre harvest costs associated with shredding, raking, baling (with a large square baler; see Appendix C.3 of BT16), and transportation to the field edge. Second-generation dedicated biomass energy crops including switchgrass, miscanthus, poplars, sorghum, energy cane, southern pine, and willow are added to the analysis to respond to simulated demands for biomass. Production costs associated with these energy crops include establishment, maintenance, and per-acre harvest costs – see Appendix C.3 of BT16.\(^1\) Key POLYSYS inputs related to willow production include yields and operational assumptions, described below.

Willow yield model

The yields for the BT16 were derived from modeling activities of the Sun Grant Regional Partnership (RFP), led by South Dakota State University. As reported in Daly et al.,\(^57\) supply estimates of the BT16 include national modeling of eight specific dedicated energy crops, including willow, sorghum, energy cane, eucalyptus, miscanthus, poplar,
switchgrass, and pine. For each of the energy crops, a 30 m gridded suitability index (index ranges from 0 to 100) was generated and transformed to actual yields using a curated set of uniformly managed field trials or historical data as described in Lee et al., Volk et al., and Daly et al.

Actual yields represent the 'best local variety' of each crop, assuming uniformly applied best management practices, or, in the case of willow and poplar, the top three cultivars. To obtain a county-level yield average estimate, the yield estimate is summarized using the zonal stats tool within the ArcMAP (ESRI, Redlands, CA, USA) 10.2.2 spatial analyst toolpak across 3109 counties in the contiguous lower 48 US states. Upon further review after publishing the BT16, one of the willow field trials was deemed unrepresentative, and the yield transformation function was adjusted, and the R² changed from 0.74 to 0.81, which is published in Volk et al.

The county-level yield for 299 counties within the Northeast region is utilized as the mean annual increment (MAI) at harvest for willow on a 4-year cutting cycle.

Field results suggest that genetic selection holds promise for increasing yields. As modeled under work by RFP, yield improvements associated with new willow cultivars typically ranged from 15% to 25%. The yield of the top three willow cultivars across all research sites in the RFP study range from 3.6 to 14.6 dry Mg per ha per year. Willow yields for the study region range from 11.3 to 15.6 dry Mg per ha per year compared to yields used in the BT16 ranging from 12.4 to 14.7 Mg per ha per year. Revised county-level modeled yields are shown in Fig. 1. Consistent with the BT16, yields of planting stock are assumed to improve over time due to a combination of selective breeding and improved production practices. In the reference case, yields are assumed to improve 1%, compounding annually, with yields constant throughout the life of a stand, but realized upon replanting. Thus, for a 20-year rotation, in practice, yields are fixed for a given stand.

Production budgets and operational assumptions

Costs of willow production are a function of operations (establishment, maintenance, and harvest) and yields (dry Mg per hectare at harvest). Consistent with the BT16, we based willow budgets on the EcoWillow model from State University of New York College of Environmental Science and Forestry. Willow is modeled as a coppiced crop over a 20-year period, with harvest every 4 years. Operational assumptions are established and budgeted in the economic model. In the fall before planting, establishment uses brush hogging, plowing, and disking, and a cover crop is planted. In year 1, the cover crop is also killed, willow cuttings are planted at 13 590 per ha, a pre-emergent herbicide is applied after planting, and additional weed control occurs. As the final step in year 1, the willows are cut down but not harvested to encourage multiple coppice stems, and additional weed control occurs. Other operations are consistent with the BT16 (USDOE 2016, Appendix C, section 4), except for the following modifications:

- **Modification from bushhog and tractor harvesting to a forage harvester.**
- **Diesel consumption is based on horsepower.**
- **Willow equipment is updated to a four-wheel-drive tractor associated with a wagon for harvest, and a 2wd 85 hp tractor associated with the step planter.**
- **Limestone application was eliminated because less than 25% of the fields need this fertilizer and, as per the Willow Producer’s Handbook, area is now being used as a source of nitrogen at a rate of 112 kg per ha.**
- **Updated herbicide assumptions are shown in Table 2.**

Due to the multi-year nature of willow production, future costs are discounted to present value. Costs are divided by the present value of harvestable biomass to create a discounted average cost of production at the farm gate. Assuming a discount rate of 5.5%, average costs across the Northeast region are $12.84 per Mg for establishment, $1.63 per Mg for maintenance, and $19.51 per Mg for harvest, to total $34.00 per Mg. The sunk cost of land is excluded. When varying the yield by the Parameter-elevation Relationships on Independent Slopes-Environmental Limitation Model (PRISM-ELM) estimates (Mg per hectare), county-level base-case discounted average production costs ($ per Mg) are shown in Fig. 2.

State	Willow BT16	Willow (this analysis)
Connecticut	14.7	15.6
Delaware	13.4	14.1
Massachusetts	12.4	13.6
Maryland	13.6	14
Maine	12.4	11.3
New Hampshire	12.7	12.7
New Jersey	14	15.6
New York	12.5	13.4
Pennsylvania	13.8	14.7
Rhode Island	14.7	14.5
West Virginia	13.8	15.3

© 2018 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd. | Biofuels, Bioprod. Bioref. 13:74–85 (2019); DOI: 10.1002/bbb
Figure 1. County-level average modeled willow yields.

Table 2. Herbicide application rates.

Herbicide	Price ($ L\(^{-1}\))	Active ingredient (%)	Active ingredient in product (kg L\(^{-1}\))	Desired application rate (kg ha\(^{-1}\))
Stinger	84.48	40.9	0.4	0.2
Goal	18.91	25.2	0.2	1.1
Roundup RT	5.70	41.3	0.5	2.2
Fusilade DX 2E	36.97	24.5	0.2	0.4
Scenarios

Willow supply is modeled in two scenarios. First, the cumulative scenario assumes willow to be one of a mix of biomass energy crops (e.g., switchgrass, poplars, etc.). This scenario can be conceptualized as a market that offers uniform market prices for all biomass crops in competition with conventional crops, with POLYSYS solving for the most profitable mix of crop options. In this scenario, willow competes not only with conventional crops and pasture for land, but also with other energy crops. This scenario is consistent with the cumulative base-case scenario from the BT16, and is best suited for indicating the total potential supply of biomass from a broad mix of energy crops, including both willow and other woody and herbaceous energy crops.

In the second scenario, willow is modeled in the absence of other biomass energy crops. This scenario can be conceptualized as a market that generates demand for biomass from willow while meeting demand for conventional...
crops, but without demand for other woody or herbaceous biomass energy crops. This scenario is better suited for indicating the total potential production of willow, due to the lack of competition with other biomass energy crops.

Results from the cumulative scenario, *ceteris paribus*, can be expected to include more total biomass, but less willow, due to competition with other biomass energy crops. Conversely, the willow-only scenario results in less total biomass availability at a given price, but more potential supply from willow. Prices are reported at $44, 66, and 88 per dry Mg at the farmgate (i.e., as wood chips at the farm gate, but before transportation). In both environments it is assumed that in year 1 of the analysis, prices for long-term contracts are offered to producers.

A sensitivity analysis is subsequently presented to illustrate changes in potential supply with varying yield improvement and cost assumptions. For the yield improvement assumption, availability in the Northeast is presented under 0%, 1% (reference case), and 2% annual yield improvement scenarios.

Results and discussion

The results of production and harvested acres vary by price and scenario. Production for the 20-year simulation are summarized in Table 3. In the Northeast, under the cumulative scenario (i.e., in competition with conventional crops and other energy crops), 2.1, 5.9, and 6.4 million Mg are potentially available at farmgate prices of $44, $66, and $88 per Mg, respectively. In the Northeast under the willow-only scenario (i.e., willow in competition with conventional crops but without other energy crops) 2.4, 8.9, and 9.7 million Mg are potentially available at farmgate prices of $44, $66, and $88 per Mg, respectively. Overall, the quantities in the Northeast represent about 5–9% of the national potential supply, which is largely available in the lake states region. These results for the Northeast indicate willow produced in the cumulative scenario realizes about 66–88% of willow’s potential without other energy crops in the willow-only scenario. In the cumulative scenario, willow comprises 91%, 69%, and 47% of energy crop supplies in the Northeast at farmgate prices of $44, $66, and $88 per dry ton, respectively, while willow comprises 45%, 26%, and 17% of energy crop supplies in the remaining contiguous US states at farmgate prices of $44, $66, and $88 per dry ton, respectively. These results suggest that willow has a competitive agronomic advantage over other energy crops in the Northeast USA. Land area under cultivation associated with this production is shown in Table 4.

The areas in production associated with the results in Table 3 for the 20-year simulation are summarized in Table 4. In the Northeast, under the cumulative scenario, 0.15, 0.41, and 0.46 million hectares are in willow production at farmgate prices of $44, $66, and $88 per dry ton, respectively, with willow comprising 91%, 69%, and 47% of energy crop supplies. In the willow-only scenario, willow comprises 91%, 69%, and 47% of energy crop supplies in the Northeast, representing 66–88% of willow’s potential without other energy crops.

Table 3. Summary of national potential production of willow, other short-rotation woody crops, and herbaceous energy crops under three farmgate prices and two production scenarios, for the Northeast and remaining contiguous USA in parenthesis (million dry Mg) after a 20-year simulation.

Scenario	Farmgate price ($)	Willow (Mg)	Other SRWCs (Mg)	Herbaceous energy crops (Mg)
Cumulative (all energy crops)	44	2.1 (23.5)	0.2 (5.9)	0 (22.6)
	66	5.9 (85.5)	1.4 (26.1)	1.3 (216.5)
	88	6.4 (80.1)	1.3 (28.2)	5.4 (319.9)
Willow only	44	2.4 (27.1)	n/a	n/a
	66	8.9 (131.0)	n/a	n/a
	88	9.7 (179.7)	n/a	n/a

Table 4. Summary of land area under cultivation of willow, other short-rotation woody crops, and herbaceous energy crops under three farmgate prices and two production scenarios, for the Northeast and remaining contiguous USA in parenthesis (million hectares) after a 20-year simulation.

Scenario	Farmgate price ($)	Willow (Mg)	Other SRWCs (Mg)	Herbaceous energy crops (Mg)
Cumulative (all energy crops)	44	0.15 (1.88)	0.03 (0.72)	0.0 (1.44)
	66	0.41 (5.63)	0.12 (2.69)	0.09 (15.43)
	88	0.46 (5.66)	0.10 (3.22)	0.34 (20.78)
Willow only	44	0.17 (2.01)	n/a	n/a
	66	0.62 (8.19)	n/a	n/a
	88	0.75 (13.93)	n/a	n/a
Mg, respectively. In the Northeast under the willow-only scenario 0.17, 0.62, and 0.75 million are in willow production at farmgate prices of $44, $66, and $88 per Mg, respectively. Consistent with production, land area under cultivation illustrates comparative advantages of willow as compared to other energy crops in the Northeast. Potential production and production land area are shown for Northeast states individually, as a region, and compared to the rest of the United States, at 5-year increments, in Tables 5–8.

Table 5. Willow production in a cumulative base case scenario for the Northeast and remaining contiguous USA, in million Mg per year.

State	Farmgate price ($ dry Mg$^{-1}$)	5 years	10 years	15 years	20 years				
Connecticut	$44	$66	$88	$44	$66	$88	$44	$66	$88
Delaware	0.01	0.01	0.01	0.03	0.01	0.02	0.03	0.01	0.02
Maine	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maryland	0.03	0.08	0.45	0.05	0.16	0.61	0.09	0.34	0.78
Massachusetts	0.00	0.02	0.02	0.01	0.04	0.05	0.01	0.05	0.07
New Hampshire	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
New Jersey	0.01	0.10	0.16	0.02	0.17	0.23	0.06	0.23	0.28
New York	0.00	0.15	0.32	0.00	0.34	0.54	0.01	0.49	0.68
Pennsylvania	0.04	0.78	1.43	0.07	1.36	2.32	0.18	2.08	3.05
Rhode Island	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vermont	—	0.01	0.02	0.03	0.02	0.02	0.04	0.03	0.04
West Virginia	0.18	0.49	0.53	0.62	1.33	1.38	1.03	1.88	1.92
Northeast total	0.28	1.63	3.03	0.80	3.44	5.29	1.44	5.19	7.07
Remaining USA	4.47	28.19	48.50	7.39	54.27	75.19	14.08	78.01	94.07
Contiguous USA	4.75	29.83	51.54	8.19	57.71	80.49	15.53	83.21	101.14

Table 6. Willow planted hectares in a cumulative base case scenario for the Northeast remaining contiguous USA, in millions of hectares per year.

State	Farmgate price ($ dry Mg$^{-1}$)	5 years	10 years	15 years	20 years							
Connecticut	$44	$66	$88	$44	$66	$88						
Delaware	0.00	0.00	0.00	0.00	0.00	0.00						
Maine	—	0.00	0.00	0.00	0.00							
Maryland	0.00	0.01	0.03	0.01	0.02	0.04						
Massachusetts	0.00	0.00	0.00	0.00	0.00	0.00						
New Hampshire	0.00	0.00	0.00	0.00	0.00	0.00						
New Jersey	0.00	0.00	0.00	0.00	0.00							
New York	0.00	0.00	0.00	0.00	0.00							
Pennsylvania	0.00	0.00	0.00	0.00	0.00							
Rhode Island	0.00	0.00	0.00	0.00	0.00							
Vermont	—	0.00	0.00	0.00	0.00							
West Virginia	0.03	0.06	0.07	0.05	0.10	0.10						
Northeast Total	0.03	0.17	0.28	0.06	0.27	0.39						
Remaining USA	0.34	2.57	3.92	0.60	3.76	5.00						
Contiguous USA	0.38	2.74	4.20	0.66	4.04	5.39	1.17	5.20	6.17	2.03	5.93	6.06
Table 7. Willow production in a willow-only (no other cellulosic energy crops) scenario for the Northeast and remaining contiguous USA, in million Mg.

Farmgate price ($ dry Mg⁻¹)	Connecticut	Delaware	Maine	Maryland	Massachusetts	New Hampshire	New Jersey	New York	Pennsylvania	Rhode Island	Vermont	West Virginia	Northeast Total	Remaining USA	Contiguous USA
$44	0.01	0.00	—	0.03	0.00	0.00	0.01	0.01	0.05	0.00	0.03	0.14	0.25	4.62	4.87
$66	0.02	0.01	0.01	0.06	0.01	0.01	0.01	0.01	0.06	0.01	0.01	0.06	0.07	34.50	36.59
$88	0.02	0.11	0.02	0.14	0.01	0.01	0.01	0.01	0.06	0.01	0.01	0.10	0.23	81.66	85.98
5 years	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.06	0.04	0.04	1.33	1.71	79.42	87.76
10 years	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.06	0.04	0.04	1.33	1.71	79.42	87.76
15 years	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.06	0.04	0.04	1.33	1.71	79.42	87.76
20 years	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.06	0.04	0.04	1.33	1.71	79.42	87.76

Results are comparable with those reported in the BT16. For the 12 NE states under the cumulative scenario, the results of these analysis are 89%, 79%, and 101% of the potential supplies reported for $44, $66, and $88 per dry Mg reported in the BT16. Under the willow-only scenario, results presented here are 96%, 102%, and 104% of the potential supplies reported for $44, $66, and $88 per dry Mg from a simulation using the BT16 assumptions. A sensitivity analysis was performed to evaluate potential supply sensitivity to assumptions regarding both
yield improvement and costs. For the yield improvement assumption, sensitivity to 0% and 2% annual yield improvement of all energy crops was compared to the reference case (1% annual yield improvement). For costs, sensitivity to plus and minus 10% of willow production budgets was compared to the reference case. For the Northeast States, responses to the 2% yield improvement in the cumulative reference case result in a gain of 3.15 million dry tons (54%) for willow, 0.96 million dry tons (68%) for non-coppice SRWC, and 3.0 million dry tons for herbaceous energy crops (a 139% and 264% increase for switchgrass and miscanthus, respectively). In a pessimistic yield scenario, willow losses are affected less, with a 1.55 million dry ton (26%) reduction. In this pessimistic yield scenario, all other energy crops are affected as well, with losses in non-coppice SRWC at 0.31 million dry tons (22%), and 0.85 million dry tons (62%) for herbaceous energy crops (Fig. 3). The sensitivity to cost in the cumulative reference case is less dramatic but shows, in an optimistic case, that there can be an increase in willow of 1.23 million metric dry tons in year 20, or 14% of total willow production in this region. These gains are offset by a loss in every other crop: 33% non-coppice SRWC, and 47% for herbaceous energy crops (switchgrass and miscanthus). Under a pessimistic cost scenario (+10% for harvest and yearly input costs), the impact on willow production is even more significant: a loss of 1.68 million dry tons in year 20, or 29% of total willow production in this region. In contrast with an optimistic willow cost scenario, other energy crops respond with gains of 33% for non-coppice SRWCs and 38% for herbaceous energy crops (Fig. 4).

Figure 3. Sensitivity to 0, 1, and 2% annual yield improvement scenario assumptions, Northeast region, $66 per dry Mg farmgate price, after 20 years, cumulative scenario.

Figure 4. Sensitivity to ±10% cost assumptions, Northeast region, $66 per dry Mg farmgate price, after 20 years, cumulative scenario.
Conclusions

Under reference-case yields and costs for a 20-year simulation, the Northeast has the potential to produce between 2.1 and 9.7 million dry Mg of willow, depending on the price offered and potential competition with other energy crops. At a farmgate price of $66 per dry Mg, the Northeast states with the greatest potential for willow production include Pennsylvania, West Virginia, New York, and Maryland, producing 39%, 35%, 10%, and 10% of the potential willow supply, respectively. Willow comprises the greatest portion of energy crop potential at all simulated farmgate price levels in the Northeast, indicating that willow has a comparative agronomic advantage over other energy crops in this region. In contrast, in the remaining lower 48 states, the energy crop potential is dominated by herbaceous energy crops. However, willow comprises approximately 45% of the potential energy crops supply of the lower 48 states at the lowest simulated farmgate price, suggesting that willow may have comparative advantages at lower prices, regardless of region. Results are limited by county-level average yields and operational assumptions, and uniform demand for feedstocks across counties. Future work is needed to understand better the impacts of region- or site-specific operational assumptions, operational constraints, annual yield variability, scenario-specific market conditions, and externality tradeoffs.

Acknowledgements

This research was supported by Agriculture and Food Research Initiative Competitive Grant No. 2012-68005-19703 from the USDA National Institute of Food and Agriculture.

References

1. USDOE, Billion-ton report: advancing domestic resources for a thriving bioeconomy, Volume 1: Economic Availability of Feedstocks. Report No.: ORNL/TM-2005/66 Contract No.: ORNL/TM-2016/160. Oak Ridge National Laboratory, Oak Ridge, TN (2016).
2. Heavy JP and Volk TA, Commercial Willow Production for Biopower in Northern NY State. Shrub Willow Renewable Energy & Environmental Benefits. SUNY-ESF, Syracuse, NY (2014).
3. DOE Office of Energy Efficiency & Renewable Energy, Biomass Powering a Military Base in Upstate New York. [Online]. (2017) Available: https://www.energy.gov/eere/bioenergy/articles/biomass-powering-military-base-upstate-new-york. [2 February 2018].
4. Harlow SJ, ReEnergy Holdings: Offering Markets for Biomass in the Northeast. [Online]. (2016). Available: http://articles.extension.org/pages/73637/reenergy-holdings-offering-markets-for-biomass-in-the-northeast [27 February 2018].
5. USDA, Quick Stats. [Online]. USDA National Agricultural Statistics Service, Washington, DC (2018). Available: https://quickstats.nass.usda.gov/ [2 February 2018].
6. US Census Bureau, United States Census 2010. [Online]. (2011). Available: https://www.census.gov/2010census/quickmap/ [2 February 2018].
7. Rowe RL, Street NR and Taylor G, Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renewable Sustainable Energy Rev 13(1):271–290 (2009).
8. Volk T, Verwijst T, Tharakan P, Abrahamson L and White E, Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ 2(8):411–418 (2014).
9. Djomo SN, El Kasmioi O and Ceulemans R, Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. Global Change Biol Bioenergy, 3(3):181–197 (2011).
10. Gonzalez-Garcia S, Mola-Yudego B and Murphy RJ, Life cycle assessment of potential energy uses for short rotation willow biomass in Sweden. Int J Life Cycle Assess 18(4):783–795 (2013).
11. Pacalda RS, Volk TA and Briggs RD, Greenhouse gas potentials of shrub willow biomass crops based on below- and aboveground biomass inventory along a 19-year chronosequence. Bioenergy Res 6(1):252–262 (2013).
12. Caputo J, Balogh SB, Volk TA, Johnson L, Puettmann M, Lippe B et al., Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp.) crops. Bioenergy Res 7(1):48–59 (2014).
13. Agostini F, Gregory AS and Richter GM, Carbon sequestration by perennial energy crops: is the jury still out? Bioenergy Res 8(3):1057–1080 (2015).
14. Milner S, Holland RA, Lovett A, Sunnenberg G, Hastings A, Smith P et al., Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB. Global Change Biol Bioenergy, 8(2):317–333 (2016).
15. Bressler A, Vidon P, Hirschi P and Volk T, Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops. Environ Monit Assess 189(4):1573–2959 (2017).
16. Bressler AS, Vidon PG and Volk TA, Impact of shrub willow (Salix spp.) as a potential bioenergy feedstock on water quality and greenhouse gas emissions. Water Air Soil Pollut 228(4): (2017). Available: https://link.springer.com/article/10.1007/s11270-017-3350-4#citeas
17. Parajuli R, Knudsen MT, Djomo SN, Corona A, Birkved M and Dalgaard T, Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. Sci Total Environ 586:226–240 (2017).
18. Dimitriou I, Mola-Yudego B, Aronsson P and Eriksson J, Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass plantations. Bioenergy Res 8(3):563–572 (2012).
19. Walter K, Don A and Flessa H, No general soil carbon sequestration under Central European short rotation coppices. Global Change Biol Bioenergy 7(4):727–740 (2015).
20. Holm B and Heinsoo K, Municipal wastewater application to short rotation coppice of willows – treatment efficiency and clone response in Estonian case study. Biomass Bioenergy 57:126–135 (2013).
21. Guidi Nissim W, Voicu A and Labrecque M, Willow short-rotation coppice for treatment of polluted groundwater. Ecol Eng 62:102–114 (2014).
22. Stachowicz F, Trzepiecinski T, Wojcik M, Maslon A, Niemiec W and Piech A, Agricultural utilisation of municipal sludge in willow plantation, in 1st International Conference on the Sustainable Energy and Environment Development. E3S Web of Conferences, ed. by Filipowicz M, Dudek M, Olkuski T and Styszko K. EDP Sciences, Les Ulis, France, p. 102016.

23. Lafluer B, Sauve S, Duy SV and Labrecque M, Phytoremediation of groundwater contaminated with pesticides using short-rotation willow crops: A case study of an apple orchard. Int J Phytorem 18(11):1128–1135 (2016).

24. Salam MMA, Kaipiainen E, Mohsin M, Villa A, Kuittinen S, Pulkkinen P et al., Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii) E. L. Wolf and the potential for phytoremediation of heavy metals. J Environ Manage 183:467–477 (2016).

25. Forbes EGA, Johnston CR, Archer JE and McCracken AR, SRC willow as a bioremediation medium for a dairy farm effluent with high pollution potential. Biomass Bioenergy 105:174–189 (2017).

26. Schweier J and Becker G, Economics of poplar short rotation coppice plantations on marginal land in Germany. Biomass Bioenergy 59:494–502 (2013).

27. Stolarski MJ, Krzyzaniak M, Szczukowski S, Tworkowski J and Bieniek A, Short rotation woody crops grown on marginal soil for biomass energy. Pol J Environ Stud 23(5):1727–1739 (2014).

28. Zamora DS, Apostol KG and Wyatt GJ, Biomass production and potential ethanol yields of shrub willow hybrids and native willow accessions after a single 3-year harvest cycle on marginal lands in central Minnesota, USA. Agroforestry Syst 88(4):593–606 (2014).

29. Mosseler A, Major JE and Labrecque M, Growth and survival of seven native willow species on highly disturbed coal mine sites in eastern Canada. Can J Forest Res 44(4):340–349 (2014).

30. Rowe RL, Keith AM, Elias D, Dondini M, Smith P, Oxley J et al. Initial soil C and land-use history determine soil C sequestration under perennial bioenergy crops. Global Change Biol Bioenergy 6(6):1046–1060 (2016).

31. Sylvain ZA and Mosseler A, Use of shrub willows (Salix spp.) to develop soil communities during coal mine restoration. Can J Forest Res 47(12):1687–1694 (2017).

32. Faasch RJ and Patenaude G, The economics of short rotation coppice in Germany. Biomass Bioenergy 45:27–40 (2012).

33. Allen D, McKenney DW, Yemshanov D and Fraleigh S, The economic attractiveness of short rotation coppice biomass plantations for bioenergy in Northern Ontario. For Chron 69(1):66–78 (2013).

34. Buchholz T and Volk T, Profitability of willow biomass crops affected by incentive programs. Bioenergy Res 6(1):53–64 (2013).

35. El Kasmiou O and Ceulemans R, Financial analysis of the cultivation of short rotation woody crops for bioenergy in Belgium: Barriers and opportunities. Bioenergy Res 6(1):336–350 (2013).

36. Hauk S, Knote T and Wittkopf S, Economic evaluation of short rotation coppice systems for energy from biomass – A review. Renewable Sustainable Energy Rev 29:435–448 (2014).

37. Lantz V, Chang WY and Pharo C, Benefit-cost analysis of hybrid willow crop production on agricultural land in eastern Canada: Assessing opportunities for on-farm and off-farm bioenergy use. Biomass Bioenergy 63:257–267 (2014).

38. Stolarski MJ, Rosenqvist H, Krzyzaniak M, Szczukowski S, Tworkowski J, Golaszewski J et al. Economic comparison of growing different willow cultivars. Biomass Bioenergy 81:210–215 (2015).

39. Ssegame H, Zumpf C, Negri MC, Campbell P, Heavey JP and Volk TA, The economics of growing shrub willow as a bioenergy buffer on agricultural fields: A case study in the Midwest Corn Belt. Biofuels Bioprod Biorefin Biofpr 10(6):776–789 (2016).

40. Posavec S, Kajba D, Belian K and Boric D, Economic analysis of short rotation coppice investment: Croatian case study. Austrian J Forest Sci 134:163–176 2017.

41. Stolarski MJ, Olba-Ziety E, Rosenqvist H and Krzyzaniak M, Economic efficiency of willow, poplar and black locust production using different soil amendments. Biomass Bioenergy 106:74–82 (2017).

42. Fischer G, Prieler S, van Velthuizen H, Berndes G, Faalj A, Londo M et al., Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios. Biomass Bioenergy 34(2):173–187 (2010).

43. Noon CE and Daly MJ, GIS-based biomass resource assessment with BRAVO. Biomass Bioenergy 10(2):101–109 1996.

44. Nelson RG, Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States – rainfall and wind-induced soil erosion methodology. Biomass Bioenergy 22(5):349–363 (2002).

45. Frank JR, Brown T, Volk TA, Heavy JP and Malmström RW, A stochastic techno–economic analysis of shrub willow production using EcoWillow. BioFPR 12:846–856 (2018).

46. De La Torre Ugarte DG and Ray D, Biomass and bioenergy applications of the POLYSYS modeling framework. Biomass Bioenergy 18(4):291–308 (2000).

47. Ray D, De La Torre Ugarte D, Dicks M and Tiller K, The POLYSYS Modeling Framework: A Documentation, Agricultural Policy Analysis Center, University of Tennessee, Knoxville, TN (1998).

48. Langholtz MH, Eaton LM, Turhollow A and Hilliard MR, 2013 feedstock supply and price projections and sensitivity analysis. Biofuels Bioprod Biorefin Biofpr 8 (2014).

49. Ray DE, Richardson JW, De La Torre Ugarte DG, Tiller KH, Estimating price variability in agriculture: Implications for decision makers. J Agric Appl Econ 30(1):21–34 (1998).

50. Langholtz M, Graham R, Eaton L, Perlack R, Hellwinkel C and De La Torre Ugarte DG, Price projections of feedstocks for biofuels and biopower in the US. Energy Policy 41:484–493 (2012).

51. Lin W, Westcott P, Skinner R, Sanford S and De La Torre Ugarte D, Supply response under the 1996 Farm Act and implications for the US field crops sector. Contract No.: Technical Bulletin Number 1888. Market and Trade Economics Division, Economic Research Service, United States Department of Agriculture, Washington, DC (2000).

52. De La Torre Ugarte D, English B, Jensen K, Hellwinkel C, Menard J and Wilson B, Opportunities and Challenges of Expanding the Production and Utilization of Ethanol and Biodiesel, Final Report. Study funded by the National Commission on Energy Policy and the Governors’ Ethanol Coalition. Report Number 1, Knoxville, TN, USA (2006).

53. Larson J, Hellwinkel C, English B, De La Torre Ugarte D, West TO and Menard R, Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector. J Soil Water Conserv 65(267–279):12 (2010).
Modeling and Analysis: Economic comparative advantage of willow biomass in the Northeast USA

M Langholtz et al.

54. De La Torre Ugarte D, Walsh M, Shapouri H and Slinkys S, *The Economic Impacts of Bioenergy Crop Production on US Agriculture*. U.S. Dept. of Agriculture, Office of the Chief Economist, Office of Energy Policy and New Uses, Washington, D.C. (2003).

55. USDOE, in *US Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry*, Chapter 4, ed. by Perlack RD and Stokes BJ. Oak Ridge National Laboratory, Oak Ridge, TN, pp. 1–227 (2011).

56. Hellwinkel C, Clark C, Langholtz M and Eaton L, Simulated impact of the renewable fuels standard on US Conservation Reserve Program enrollment and conversion. *GCB Bioenergy* n/a–n/a (2015).

57. Daly C, Halbleib MD, Hannaway DB and Eaton LM, Environmental limitation mapping of potential biomass resources across the conterminous United States. *GCB Bioenergy* (2018). Available: https://doi.org/10.1111/gcbb.12496.

58. Lee DK, Aberle E, Anderson EK, Anderson W, Baldwin BS, Baltensperger D et al., Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership. *GCB Bioenergy* (2018). Available: https://doi.org/10.1111/gcbb.12493.

59. Volk TA, Berguson B, Daly C, Halbleib M, Miller R, Rials T et al., Poplar and shrub willow energy crops in the United States: Field trial results from the multiyear regional feedstock partnership and yield potential maps based on the PRISM-ELM model. *GCB Bioenergy* (2018). Available: https://doi.org/10.1111/gcbb.12498.

60. American Society of Agricultural and Biological Engineers, *Agricultural Machinery Management Data*. ASABE, St. Joseph, MI (2011).

61. Abrahamson LP, Volk TA, Smart LB and Cameron KD. *Willow Biomass Producer’s Handbook*. State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, NY (2010).

Dr Matthew Langholtz is a natural resource economist at Oak Ridge National Laboratory. His research includes biomass resource economics, short-rotation woody crops, and bioenergy from forest resources. He received his PhD in forest economics from the University of Florida in 2005.

Laurence Eaton

Laurence Eaton is an independent energy consultant. An economist by training, he conducts research to support bioenergy forecasting and analysis using economic land-use models and geographic information science.

Maggie Davis

Maggie Davis is a scientist in the environmental sciences division at the Oak Ridge National Laboratory. She employs data science techniques to study forest and agricultural economics and land use implications of a circular carbon economy.

Magen Shedden

Magen Shedden, an industrial engineer at the Y-12 National Security Complex, is a former post-master’s researcher at Oak Ridge National Laboratory in Oak Ridge, Tennessee. She has BS degrees in biosystems engineering and food and agricultural business, and an MS degree in industrial engineering from the University of Tennessee, Knoxville. Her expertise is in harvest and logistics costing, operational efficiency, and equipment reliability. She is an active member of the American Society of Agricultural and Biological Engineers.

Craig Brandt

Mr Brandt is a research staff member in the biosciences division at Oak Ridge National Laboratory. He has a diverse background in data management, statistics, and software development. His research has focused on the application of advanced data-analysis techniques to a variety of problems in bioremediation, biogeochemical cycling and resource analysis.

Timothy Volk

Dr Timothy Volk is a senior research associate in the Department of Forest and Natural Resources Management at SUNY ESF. His research focuses on the development of shrub-willow biomass cropping systems as a feedstock for bioproducts and bioenergy, sustainability assessments of bioenergy systems, and international bioenergy issues.

Tom Richard

Tom Richard is a professor of agricultural and biological engineering and director of the Institutes for Energy and the Environment at Penn State. His research is focused on systems analysis at the interface between sustainable agriculture and the emerging bio-based economy. He has a BS from UC Berkeley, and MS and PhD degrees from Cornell University.