CERTAIN COMPLEX REPRESENTATIONS OF $SL_2(\bar{F}_q)$

JUNBIN DONG

Abstract. We introduce the representation category $\mathcal{C}(G)$ for a connected reductive algebraic group G which is defined over a finite field \mathbb{F}_q of q elements. We show that this category has many good properties for $G = SL_2(\bar{F}_q)$. In particular, it is an abelian category and a highest weight category. Moreover, we classify the simple objects in $\mathcal{C}(G)$ for $G = SL_2(\bar{F}_q)$.

1. Introduction

Let G be a connected reductive algebraic group defined over the finite field \mathbb{F}_q of q elements. Let k be another field and all representations in this paper are over k. According to a result of Borel and Tits [1, Theorem 10.3 and Corollary 10.4], we know that except the trivial representation, all other irreducible representations of kG (the group algebra of G) are infinite-dimensional if G is semisimple and k is infinite with char $k \neq$ char \bar{F}_q. Denote by G_{q^a} the set of \mathbb{F}_{q^a}-points of G, then we have $G = \bigcup G_{q^a}$. With this basic fact, N.H. Xi studied the abstract representations of G over k by taking the direct limit of the finite-dimensional representations of G_{q^a} and he got many interesting results in [13]. In particular, he showed that the infinite-dimensional Steinberg module is irreducible when char $k = 0$ or char $k = \text{char} \bar{F}_q$. Afterwards, R.T. Yang proved the irreducibility of the Steinberg module for any field k with char $k \neq \text{char} \bar{F}_q$ (see [14]). Later, motivated by Xi’s idea, the structure of the permutation module $k[G/B]$ (B is a fixed Borel subgroup of G) was studied in [4] for the cross characteristic case and in [5] for the defining characteristic case. We studied the general abstract induced module $M(\theta) = kG \otimes_{kB} k\theta$ in [6] for any field k with char $k \neq \text{char} \bar{F}_q$ or $k = \mathbb{F}_q$, where T is a maximal torus contained in a Borel subgroup B and θ is a character of T which can also be regarded as a character of B through the homomorphism $B \to T$. The induced module
$\mathbb{M}(\theta)$ has a composition series (of finite length) if $\text{char } k \neq \text{char } \overline{\mathbb{F}}_q$. In the case $k = \overline{\mathbb{F}}_q$ and θ is a rational character, $\mathbb{M}(\theta)$ has such composition series if and only if θ is antidominant (see [6] for details). In both cases, the composition factors of $\mathbb{M}(\theta)$ are $E(\theta)_J$ with $J \subset I(\theta)$ (see Section 2 for the explicit setting).

Now we have a large class of irreducible kG-modules. Let kG-Mod be the kG-module category. However, this category is too big and thus in the paper [9], we introduce the principal representation category $\mathcal{O}(G)$ which was supposed to have many good properties. In particular, we conjectured that this category is a highest weight category in the sense of Cline, Parshall and Scott [8]. However, recently X.Y.Chen constructed a counter example (see [3]) to show that this conjecture is not valid in general with the setting given in [9, Section 4]. Thus it deserves to explore other categories besides the category $\mathcal{O}(G)$ in [9]. We hope that there is a category which satisfies certain good properties such as “finite-ness” and “semi-simplicity”, which is also like the BGG category \mathcal{O} in the representations of complex semisimple Lie algebras. In this paper we introduce a full subcategory $\mathcal{C}(G)$ of kG-Mod, whose objects are finitely generated by some T-eigenvectors (see Section 2 for the definition of $\mathcal{C}(G)$). The main part of this paper is devoted to study the category $\mathcal{C}(G)$ for $G = SL_2(\overline{\mathbb{F}}_q)$.

The rest of this paper is organized as follows: Section 2 contains some preliminary results and we also introduce the category $\mathcal{C}(G)$ in this section. From Section 3 to Section 5, we assume that k is an algebraically closed field of characteristic 0 and study the category $\mathcal{C}(G)$ for $G = SL_2(\overline{\mathbb{F}}_q)$. In Section 3, we classify the simple kG-modules with T-stable lines. In particular, we get all the simple objects in $\mathcal{C}(G)$. Then we show that $\mathcal{C}(G)$ is an abelian category and has certain good properties in Section 4. In Section 5 we prove that $\mathcal{C}(G)$ is a highest weight category.

2. Background and preliminary results

Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, the algebraic closure of \mathbb{F}_q, e.g. $G = GL_n(\overline{\mathbb{F}}_q)$, $SL_n(\overline{\mathbb{F}}_q)$. Let B be a Borel subgroup, and T be a maximal torus contained in B, and $U = R_u(B)$ be the unipotent radical of B. We identify G with $G(\overline{\mathbb{F}}_q)$ and do likewise for the various subgroups of G such as B, T, U, etc. We denote by $\Phi = \Phi(G; T)$ the corresponding root system, and by Φ^+ (resp. Φ^-) the set of positive (resp. negative) roots determined by B. Let $W = N_G(T)/T$ be the corresponding
Weyl group. We denote by $\Delta = \{\alpha_i \mid i \in I\}$ the set of simple roots and by $S = \{s_i := s_{\alpha_i} \mid i \in I\}$ the corresponding simple reflections in W. For each $\alpha \in \Phi$, let U_α be the root subgroup corresponding to α and we fix an isomorphism $\varepsilon_\alpha : \bar{F}_q \rightarrow U_\alpha$ such that $t\varepsilon_\alpha(c)t^{-1} = \varepsilon_\alpha(\alpha(t)c)$ for any $t \in T$ and $c \in \bar{F}_q$. For any $w \in W$, let U_w (resp. U'_w) be the subgroup of U generated by all U_α with $w(\alpha) \in \Phi^+$ (resp. $w(\alpha) \in \Phi^-$). One is refereed [2] for more details.

Now let k be an algebraically closed field of characteristic 0 and all the representations in this paper are over k. Let \hat{T} be the set of characters of T. Each $\theta \in \hat{T}$ can be regarded as a character of B by the homomorphism $B \rightarrow T$. Let k_{θ} be the corresponding B-module. We consider the induced module $M(\theta) = kG \otimes_k B k_{\theta}$. Let 1_{θ} be a fixed nonzero element in k_{θ}. We abbreviate $x 1_{\theta} := x \otimes 1_{\theta} \in M(\theta)$ for $x \in G$. It is not difficult to see that $M(\theta)$ has a basis $\{\hat{x} \mid x \in W, u \in U_{w-1}\}$ by the Bruhat decomposition, where \hat{x} is a fixed representative of $w \in W$.

For each $i \in I$, let G_i be the subgroup of G generated by U_α, $U_{-\alpha}$ and set $T_i = T \cap G_i$. For $\theta \in \hat{T}$, define the subset $I(\theta)$ of I by

$$I(\theta) = \{i \in I \mid \theta|_{T_i} \text{ is trivial}\}.$$

The Weyl group W acts naturally on \hat{T} by

$$(w \cdot \theta)(t) := \theta^w(t) = \theta(\hat{w}^{-1} t \hat{w})$$

for any $\theta \in \hat{T}$.

Let $J \subset I(\theta)$, and G_J be the subgroup of G generated by G_i, $i \in J$. We choose a representative $\hat{w} \in G_J$ for each $w \in W_J$ (the standard parabolic subgroup of W). Thus, the element $w 1_{\theta} := \hat{w} 1_{\theta}$ ($w \in W_J$) is well-defined. For $J \subset I(\theta)$, we set

$$\eta(\theta)_J = \sum_{w \in W_J} (-1)^{\ell(w)} w 1_{\theta},$$

where ℓ is the length function on W. Let $M(\theta)_J = kG \eta(\theta)_J$ the kG-module which is generated by $\eta(\theta)_J$.

For $w \in W$, denote by $\mathcal{R}(w) = \{i \in I \mid ws_i < w\}$. For any subset $J \subset I$, we set

$$X_J = \{x \in W \mid x \text{ has minimal length in } xW_J\}.$$

We have the following proposition.
Proposition 2.1. [6] Proposition 2.5] For any \(J \subset I(\theta) \), the \(kG \)-module \(M(\theta)_J \) has the form

\[
M(\theta)_J = \sum_{w \in X_J} kUw\theta(\subscript{}w) = \sum_{w \in X_J} kUw_{Jw^{-1}}w\theta(\subscript{}w).
\]

In particular, the set \(\{uw\theta(\subscript{}w) \mid w \in X_J, u \in U_{w_{Jw^{-1}}} \} \) forms a basis of \(M(\theta)_J \).

For \(J \subset I(\theta) \), define

\[
E(\theta)_J = M(\theta)_J / M(\theta)'_J,
\]

where \(M(\theta)'_J \) is the sum of all \(M(\theta)_K \) with \(J \subset I(\theta) \). We denote by \(C(\theta)_J \) the image of \(\theta(\subscript{}\theta) \) in \(E(\theta)_J \). We also set

\[
Z_J = \{ w \in X_J \mid \mathcal{R}(ww_J) \subset J \cup (I \setminus I(\theta)) \}.
\]

The following proposition gives a basis of \(E(\theta)_J \).

Proposition 2.2. [6] Proposition 2.7] For \(J \subset I(\theta) \), we have

\[
E(\theta)_J = \sum_{w \in Z_J} kw_{Jw^{-1}}wC(\theta)_J.
\]

In particular, the set \(\{uwC(\theta)_J \mid w \in Z_J, u \in U_{w_{Jw^{-1}}} \} \) forms a basis of \(E(\theta)_J \).

The \(kG \)-modules \(E(\theta)_J \) are irreducible and thus we get all the composition factors of \(M(\theta) \) (see [6] Theorem 3.1]). According to [6] Proposition 2.8], one has that \(E(\theta)_1 K_1 \) is isomorphic to \(E(\theta)_2 K_2 \) as \(kG \)-modules if and only if \(\theta_1 = \theta_2 \) and \(K_1 = K_2 \).

For a \(kG \)-module \(M \), an element \(\xi \in M \) is called a \(T \)-eigenvector if \(t\xi = \lambda(t)\xi \) for some \(\lambda \in \widehat{T} \). Set \(M_\lambda = \{ \xi \in M \mid t\xi = \lambda(t)\xi \} \), which is called the weight space corresponding to \(\lambda \in \widehat{T} \). A character \(\lambda \in \widehat{T} \) is called a weight of \(M \) if \(M_\lambda \neq 0 \) and then we denote the weight set of \(M \) by \(Wt(M) \). Let \(M_T = \bigoplus_{\lambda \in \widehat{T}} M_\lambda \) and set \(\mathcal{W}(M) = \dim M_T \). With previous discussion and the form of \(M(\theta)_J \) and \(E(\theta)_J \) (see (2.1) and (2.2)), we are interested in the \(kG \)-module \(M \) which satisfies the following condition:

\(\ast \) \(n = \mathcal{W}(M) < +\infty \) and there exist \(T \)-eigenvectors \(\xi_1, \xi_2, \ldots, \xi_n \) such that \(M \cong \bigoplus_{i=1}^n kU\xi_i \) as \(kB \)-modules.

Let \(\mathcal{C}(G) \) be the full subcategory of \(kG \)-Mod, which consists of the \(kG \)-modules satisfying the condition \(\ast \). From the definition of \(\mathcal{C}(G) \), it seems
very difficult to judge whether it is an abelian category. Naturally, we have the following fundamental questions: (1) Is the category \(\mathcal{C}(G) \) an abelian category? (2) Is this category noetherian or artinian? (3) Classify all the simple objects in \(\mathcal{C}(G) \). We will solve these problems for \(G = SL_2(\overline{F}_q) \) in the following discussion.

3. Simple modules with \(T \)-stable lines.

From now on, let \(G = SL_2(\overline{F}_q) \), \(T \) be the diagonal matrices and \(U \) be the strictly upper unitriangular matrices in \(SL_2(\overline{F}_q) \). Let \(B \) be the Borel subgroup generated by \(T \) and \(U \), which is the upper triangular matrices in \(SL_2(\overline{F}_q) \). As before, let \(N \) be the normalizer of \(T \) in \(G \) and \(W = N/T \) be the Weyl group. We set \(\hat{s} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \), which is the simple reflection of \(W \).

There are two natural isomorphisms
\[h : \overline{F}_q^* \to T, \quad h(c) = \begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix}; \quad \varepsilon : \overline{F}_q \to U, \quad \varepsilon(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \]

which satisfies \(h(c)\varepsilon(x)h(c)^{-1} = \varepsilon(c^2x) \). The simple root \(\alpha : T \to \overline{F}_q^* \) is given by \(\alpha(h(c)) = c^2 \). Moreover, one has that

\[\hat{s}\varepsilon(x)\hat{s} = \varepsilon(-x^{-1})\hat{sh}(-x)\varepsilon(-x^{-1}). \]

(3.1)

In the following we often denote \(\theta(x) := \theta(h(x)) \) simply. For any finite subset \(X \) of \(G \), let \(X := \sum_{x \in X} x \in kG \). This notation will be frequently used later.

In order to understand the irreducible \(kG \)-modules with \(T \)-stable lines, it is enough to study the simple quotients of the induced module \(\text{Ind}^G_T k_{\theta} \) for each \(\theta \in \widehat{T} \). It is not difficult to see that \(\text{Ind}^G_T k_{\theta} \cong \text{Ind}^G_T k_{\theta^*} \) as \(kG \)-modules. We will consider the following two cases: (1) \(\theta \) is trivial; (2) \(\theta \) is nontrivial. When \(\theta \) is trivial, it is easy to see that

\[\text{Ind}^G_T k_{\text{tr}} \cong \text{Ind}^G_N k_+ \oplus \text{Ind}^G_N k_- , \]

where \(k_+ \) is the trivial representation of \(N \) and \(k_- \) is the sign representation of \(W \), which also can be regarded as a representation of \(N \).

In our case \(G = SL_2(\overline{F}_q) \), according to [6, Theorem 3.1], \(\mathcal{M}(\text{tr}) = \text{Ind}^G_T k_{\text{tr}} \) has a unique submodule \(\text{St} \) (the Steinberg module) and the corresponding quotient module is trivial. The Steinberg module \(\text{St} = kU\eta_s \), where \(\eta_s = (1-s)1_{\text{tr}} \). Then we have \(\hat{s}\eta_s = -\eta_s \) and \(\hat{s}\varepsilon(x)\eta_s = (\varepsilon(-x^{-1})-1)\eta_s \) for \(x \not= 0 \)
by (3.1). For any nontrivial character \(\theta \in \hat{T} \), \(M(\theta) = \text{Ind}_B^G \kappa_\theta \) is a simple \(kG \)-module. The main theorem of this section is as following.

Theorem 3.1. (1) The trivial \(kG \)-module \(k_{tr} \) is the unique simple quotient module of \(\text{Ind}_N^G k_+ \) and the Steinberg module \(\text{St} \) is the unique simple quotient module of \(\text{Ind}_N^G k_- \). (2) When \(\theta \) is nontrivial, \(\text{Ind}_T^G k_\theta \) has just two simple quotient modules \(M(\theta) \) and \(M(\theta^*) \).

Proof of Theorem 3.1(1). For convenience, we abbreviate \(x_1^+ := x \otimes 1_+ \in \text{Ind}_N^G k_+ \) and \(x_1^- := x \otimes 1_- \in \text{Ind}_N^G k_- \) for \(x \in G \), where \(1_+ \) (resp. \(1_- \)) is a fixed nonzero element in \(k_+ \) (resp. \(k_- \)). Firstly we consider the simple quotient of \(\text{Ind}_N^G k_+ \). We construct a submodule of \(\text{Ind}_N^G k_+ \) as following

\[
M_+ = \{ \sum_{g \in G} a_g g_1^+ \mid \sum_{g \in G} a_g = 0 \}.
\]

Then it is easy to see that \(\text{Ind}_N^G k_+/M_+ \) is the trivial \(kG \)-module. Now let \(\xi \notin M_+ \) which has the following expression

\[
\xi = \sum_{x, y \in \overline{\mathbb{F}}_q} a_{x,y} \varepsilon(x) \hat{s} \varepsilon(y) 1_+,
\]

where \(\sum_{x, y \in \overline{\mathbb{F}}_q} a_{x,y} \neq 0 \). Firstly there exists an integer \(m \in \mathbb{N} \) such that \(x, y \in \mathbb{F}_{q^m} \) when \(a_{x,y} \neq 0 \). Now let \(n > m \) with \(m \mid n \) and \(u \in \mathbb{F}_{q^n} \setminus \mathbb{F}_{q^m} \). We consider the element \(\eta = \hat{s} \varepsilon(\alpha) \xi \), which has the form

\[
\eta = \sum_{x, y \in \mathbb{F}_q} a_{x,y} \varepsilon(-(u + x)^{-1}) \hat{s} \varepsilon((u + x) - (u + x)^2 y) 1_+.
\]

Choose \(\mathcal{D}_{q^n} \subset T \) such that \(\alpha : \mathcal{D}_{q^n} \to \mathbb{F}_{q^n}^* \) is a bijection. Thus it is easy to check the element

\[
\overline{\mathcal{D}}_{q^n} \hat{U}_{q^n} \eta = \left(\sum_{x, y \in \mathbb{F}_q} a_{x,y} \hat{U}_{q^n} \hat{s} \hat{U}_{q^n} 1_+ \right) \in \mathbb{G} 1_+
\]

which implies that \(\hat{U}_{q^n} \hat{s} \hat{U}_{q^n} 1_+ \in \kappa G \xi \).

On the other hand, we consider the element

\[
\overline{\mathcal{G}}_{q^n} \xi = \left(\sum_{x, y \in \mathbb{F}_q} a_{x,y} \hat{G}_{q^n} 1_+ \right) \in \kappa G \xi.
\]

Noting that

\[
\overline{\mathcal{G}}_{q^n} 1_+ = (q^n - 1)(2\hat{U}_{q^n} 1_+ + \hat{U}_{q^n} \hat{s} \hat{U}_{q^n} 1_+) \in \kappa G \xi,
\]
therefore we have $\mathcal{U}_q^+ \in kG\xi$ and hence $1_+ \in kG\xi$ by [10] Lemma 2.6. Thus for any element $\xi \notin M_+$, we have $kG\xi = \text{Ind}_N^G k_+$. So, the trivial module is the unique simple quotient module of $\text{Ind}_N^G k_+$.

Now we consider the simple quotient modules of $\text{Ind}_N^G k_-$. For convenience, we denote by

$$\Lambda(z) = (\dot{s}\varepsilon(z) + 1 - \varepsilon(-z^{-1}))1_-$$

for each $z \in \bar{F}_q^*$. Then we have $h(c)\Lambda(z) = \Lambda(c^{-2}z)$ for any $h(c) \in T$. Moreover, it is easy to check that

$$(3.2) \quad \begin{align*}
\varepsilon(z)\Lambda(z^{-1}) &= -\Lambda(-z^{-1}), \\
\dot{s}\varepsilon(x)\Lambda(y) &= \varepsilon(-x^{-1})\Lambda(x(xy - 1)) + \Lambda(x) - \Lambda(y^{-1}(xy - 1)),
\end{align*}$$

where $xy \neq 1$. Let M_- be the submodule of $\text{Ind}_N^G k_-$ which is generated by $\Lambda(z), z \in \bar{F}_q^*$. Since we have the equation

$$\dot{s}\varepsilon(z)\eta_s = (\varepsilon(-z^{-1}) - 1)\eta_s$$

in the Steinberg module $St = kU\eta_s$. Thus it is not difficult to see that $\text{Ind}_N^G k_-/M_-$ is isomorphic to the Steinberg module.

Let $\zeta \in \text{Ind}_N^G k_-$ which is not in M_-. According to (3.2), then ζ has the following expression

$$\zeta = \sum_{xy \neq 1} a_{x,y}\varepsilon(x)\Lambda(y)1_- + \sum_{z \in \bar{F}_q^*} b_z\Lambda(z)1_- + \sum_{u \in \bar{F}_q} c_u\varepsilon(u)1_-,$$

where $c_u \neq 0$ for some u. There exists an integer $m \in N$ such that $x, y, z, u \in \bar{F}_q^m$ when $a_{x,y} \neq 0, b_z \neq 0$ and $c_u \neq 0$. Without lost of generality, we can assume that $c_0 \neq 0$. Moreover, we can assume that $\sum_{u \in \bar{F}_q} c_u \neq 0$. Otherwise, we can consider $\dot{s}\zeta$ instead of ζ. Indeed, if we write

$$\dot{s}\zeta = \sum_{xy \neq 1} a'_{x,y}\varepsilon(x)\Lambda(y)1_- + \sum_{z \in \bar{F}_q^*} b'_z\Lambda(z)1_- + \sum_{u \in \bar{F}_q} c'_u\varepsilon(u)1_-,$$

it is easy to see that $\sum_{u \in \bar{F}_q} c'_u = -c_0$ which is nonzero. For the convenience of later discussion, we denote by

$$A = \sum_{xy \neq 1} a_{x,y}, \quad B = \sum_{z \in \bar{F}_q^*} b_z, \quad C = \sum_{u \in \bar{F}_q} c_u.$$

Note that C is nonzero by our assumption.
Now let $n > m$ with $m | n$ and $v \in \mathbb{F}_{q^n} \setminus \mathbb{F}_{q^m}$. We consider the element

$$\dot{s}\varepsilon(v)\zeta := \sum_{xy \neq 1} f_{x,y} \varepsilon(x)\Lambda(y) 1_- + \sum_{z \in \bar{\mathbb{F}}_q^*} g_z \Lambda(z) 1_- + \sum_{u \in \bar{\mathbb{F}}_q^*} h_u \varepsilon(u) 1_-.$$

Then by (3.2), we get

(3.3)

$$\sum_{xy \neq 1} f_{x,y} = A + B, \quad \sum_{z \in \bar{\mathbb{F}}_q^*} g_z = C, \quad \sum_{u \in \bar{\mathbb{F}}_q^*} h_u = 0.$$

Choose $\mathcal{D}_{q^n} \subset T$ such that $\alpha : \mathcal{D}_{q^n} \to \bar{\mathbb{F}}_{q^n}$ is a bijection. Combining (3.3), it is not difficult to get

(3.4)

$$\mathcal{D}_{q^n} \underline{U}_{q^n} \dot{s}\varepsilon(v)\zeta = (A + B + C) \underline{U}_{q^n} \underline{s} \underline{U}_{q^n} 1_- \in kG\zeta.$$

On the other hand, we also have

(3.5)

$$\mathcal{D}_{q^n} \underline{U}_{q^n} \zeta = (A + B) \underline{U}_{q^n} \underline{s} \underline{U}_{q^n} 1_- + (q^n - 1) C \underline{U}_{q^n} 1_- \in kG\zeta.$$

If $A + B + C \neq 0$ and noting that $C \neq 0$, then we get $\underline{U}_{q^n} 1_- \in kG\zeta$ using (3.4) and (3.5). Now assume that $A + B + C = 0$, then by (3.5), we have

$$\zeta' := \underline{U}_{q^n} \underline{s} \underline{U}_{q^n} 1_- - (q^n - 1) \underline{U}_{q^n} 1_- \in kG\zeta.$$

Noting that ζ' can be written as

$$\zeta' = \sum_{z \in \bar{\mathbb{F}}_q^*} \underline{U}_{q^n} \Lambda(z) 1_- - (q^n - 1) \underline{U}_{q^n} 1_-$$

using (3.2), thus it is not difficult to see that the sum of the coefficients in ζ' is $-2(q^n - 1)$. So we can discuss ζ' instead of ζ form the beginning and also have $\underline{U}_{q^n} 1_- \in kG\zeta$.

In conclusion, we have $\underline{U}_{q^n} 1_- \in kG\zeta$ and thus we get $1_- \in kG\zeta$ by [10, Lemma 2.6]. Then for any element $\zeta \notin \mathbb{M}_-$, we see that $kG\zeta = \text{Ind}_N^G k_\zeta$. So, the Steinberg module is the unique simple quotient module of $\text{Ind}_N^G k_\zeta$. Hence Theorem 3.1(1) is proved.

Before the proof of Theorem 3.1(2), we need to introduce some properties of the nontrivial group homomorphisms from $\bar{\mathbb{F}}_q^*$ to k^*, where k is an algebraically closed field of characteristic 0 as before.

Proposition 3.2. Let $\lambda : \bar{\mathbb{F}}_q^* \to k^*$ be a nontrivial group homomorphism and $u_1, u_2, \ldots, u_n \in \bar{\mathbb{F}}_q^*$, which are different from each other. Let x_1, x_2, \ldots, x_n be n variables with values in $\bar{\mathbb{F}}_q^*$. Denote by $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and by
\[x = (x_1, x_2, \ldots, x_n). \] Let \(A_n^\lambda(x) \) be the matrix whose entry in row \(i \) and column \(j \) is \(\lambda(x_i + u_j) \). Thus there exist infinitely many \(x \in (\mathbb{F}_q^*)^n \) such that \(\det A_n^\lambda(x) \neq 0 \).

Proof. The lemma is obvious when \(n = 1 \). Assume that this proposition holds when \(n \leq m \). Now we consider the case for \(n = m + 1 \). We set

\[u^k = (u_1, \ldots, u_{k-1}, u_{k+1}, \ldots, u_{m+1}), \quad x' = (x_1, x_2, \ldots, x_m). \]

\[\det A_n^\lambda(x) = \sum_{k=1}^{m+1} (-1)^{m+1+k} \lambda(x_{m+1} + u_k) \det A_n^\lambda(x'). \]

For each fixed integer \(k = 1, 2, \ldots, m+1 \), we have infinitely many \(x' \in (\mathbb{F}_q^*)^m \) such that \(\det A_n^\lambda(x') \neq 0 \) by the inductive hypothesis. Hence it is enough to show that for any element \(a_1, a_2, \ldots, a_{m+1} \in k^* \), there exists an element \(x_0 \in \mathbb{F}_q^* \) such that

\[a_1 \lambda(x_0 + u_1) + a_2 \lambda(x_0 + u_2) + \cdots + a_{m+1} \lambda(x_0 + u_{m+1}) \neq 0. \]

For an integer \(s \), we let \(\Gamma_s = \lambda(\mathbb{F}_q^*) \), which is a finite cyclic group in \(k^* \). Set \(b_k = -a_k/a_{m+1} \) and we deal with the following equation

\[b_1 y_1 + b_2 y_2 + \cdots + b_m y_m = 1 \]

with solutions \(y = (y_1, y_2, \ldots, y_m) \in (\Gamma_s)^m \). Denote the solution set of this equation by \(S(b, \Gamma_s) \). Then by [21, Theorem 1.1], for any \(s \in \mathbb{N} \), we have \(|S(b, \Gamma_s)| \leq C(m) \) for some integer \(C(m) \) only depends on \(m \). Since \(\lambda : \mathbb{F}_q^* \rightarrow k^* \) is nontrivial and then we can choose the integer \(s \) large enough such that

\[|\Gamma_s/\ker \lambda| > C(m) + m. \]

Thus there exists \(x_0 \in \mathbb{F}_q^* \) such that \(x_0 + u_j \neq 0 \) for any \(j = 1, 2, \ldots, m+1 \) and (3.6) holds. The proposition is proved. \(\square \)

According to the above proof of Proposition 3.2 we get the following corollary immediately.

Corollary 3.3. Let \(\lambda : \mathbb{F}_q^* \rightarrow k^* \) be a nontrivial group homomorphism and \(u_1, u_2, \ldots, u_n \in \mathbb{F}_q^* \), which are different from each other. Given \(a_1, a_2, \ldots, a_n \in k^* \), then there exists infinitely many elements \(x \in \mathbb{F}_q^* \) such that

\[a_1 \lambda(x + u_1) + a_2 \lambda(x + u_2) + \cdots + a_n \lambda(x + u_n) \neq 0. \]
Remark 3.4. Proposition 3.2 and Corollary 3.3 do not hold when \(k = \mathbb{F}_q \).

Indeed, we can choose \(q \) elements \(u_1, u_2, \ldots, u_q \in \mathbb{F}_q^* \), which are different from each other and satisfy \(u_1^q + u_2^q + \cdots + u_q^q = 0 \). Let \(\lambda : \mathbb{F}_q^* \to \mathbb{F}_q^* \) be a group homomorphism such that \(\lambda(x) = x^q \). Then it is easy to see that

\[
\lambda(x + u_1) + \lambda(x + u_2) + \cdots + \lambda(x + u_q) = 0
\]

for any \(x \in \mathbb{F}_q^* \) with \(x + u_i \neq 0 \), which is a counter example to Proposition 3.2 and Corollary 3.3. However I guess that Proposition 3.2 and Corollary 3.3 still hold when \(\text{char } k \neq \text{char } \mathbb{F}_q \). Other methods need to be developed.

With the above preparations, now we prove Theorem 3.1(2).

Proof of Theorem 3.1(2). Let \(\varphi_e : \text{Ind}_T^G k_\theta \to \mathcal{M}(\theta) \) be the natural morphism such that \(\varphi_e(1_\theta) = \hat{1}_\theta \), where \(\hat{1}_\theta \) is a fixed nonzero element in \(\mathcal{M}(\theta)_\theta \). Let \(\varphi_s : \text{Ind}_T^G k_\theta \to \mathcal{M}(\theta^s) \) be the morphism such that \(\varphi_s(1_\theta) = s\hat{1}_\theta^s \). Both \(\mathcal{M}(\theta) \) and \(\mathcal{M}(\theta^s) \) are the simple quotient modules of \(\text{Ind}_T^G k_\theta \). Now let \(\xi \) be a nonzero element in \(\text{Ind}_T^G k_\theta \). We will show that \(\mathbb{G}^G \xi = \text{Ind}_T^G k_\theta \) if \(\xi \notin \ker \varphi_e \) and \(\xi \notin \ker \varphi_s \). Thus \(\text{Ind}_T^G k_\theta \) has no other simple quotient modules except \(\mathcal{M}(\theta) \) and \(\mathcal{M}(\theta^s) \).

Claim (1): One has that \(\bar{U}_q sU_q^* \hat{1}_\theta \in \mathbb{G}^{G} \xi \) when \(\xi \notin \ker \varphi_e \).

Proof of Claim (1): Now we write \(\xi \) as following

\[
\xi = \sum_{x \in \mathbb{F}_q} a_x \varepsilon(x) \hat{1}_\theta + \sum_{y, z \in \mathbb{F}_q} b_{y, z} \varepsilon(y) s\varepsilon(z) \hat{1}_\theta.
\]

Noting that \(\xi \notin \ker \varphi_e \), the following equation

\[
\varphi_e(\xi) = \sum_{x \in \mathbb{F}_q} a_x \hat{1}_\theta + \sum_{y, z \in \mathbb{F}_q} b_{y, z} \varepsilon(y) s\varepsilon(z) \hat{1}_\theta \neq 0
\]

tells us that \(\sum_{x \in \mathbb{F}_q} a_x \neq 0 \) or \(\sum_{z \in \mathbb{F}_q} b_{y, z} \neq 0 \) for some \(y \). Without lost of generality, we can assume that \(\sum_{x \in \mathbb{F}_q} a_x \neq 0 \). Otherwise, it is enough to consider the element \(s^{-1} \varepsilon(-y_0) \xi \) instead of \(\xi \). Moreover, we can also assume that \(\sum_{x \in \mathbb{F}_q} a_x \neq 0 \). Otherwise, we can consider the element \(t\xi \) for some \(t \in T \) instead of \(\xi \). Indeed, it is easy to see that the sum of the coefficients in \(t\xi \) is

\[
(3.7) \quad \theta(t) \sum_{x \in \mathbb{F}_q} a_x + \theta^s(t) \sum_{y, z \in \mathbb{F}_q} b_{y, z}.
\]
Noting that \(\sum_{x \in \mathbb{F}_q} a_x \) and \(\sum_{y,z \in \mathbb{F}_q} b_{y,z} \) are nonzero, we can choose one \(t \in T \) such that (3.7) is nonzero since \(\theta \) is nontrivial.

With the assumption that
\[
\sum_{x \in \mathbb{F}_q} a_x \neq 0 \quad \text{and} \quad \sum_{x \in \mathbb{F}_q} a_x + \sum_{y,z \in \mathbb{F}_q} b_{y,z} \neq 0,
\]
we show that \(U_{q^n} s U_{q^n}^* \in \mathbb{k}G \xi \) for some \(n \in \mathbb{N} \). Firstly there exists \(m \in \mathbb{N} \) such that \(x, y, z \in \mathbb{F}_{q^m} \) when \(a_x \neq 0 \) and \(b_{y,z} \neq 0 \). Let \(n > m \) and \(m|n \).

Given an element \(u \in \mathbb{F}_{q^n} \setminus \mathbb{F}_{q^m} \), then the element \(\eta := s \varepsilon(u) \xi \) has the following form
\[
\eta = \sum_{x \in \mathbb{F}_q} a_x s \varepsilon(u + x) \mathbf{1}_{\theta} + \sum_{y,z \in \mathbb{F}_q} b'_{y,z} \varepsilon(-(u + y)^{-1}) s \varepsilon((u + y)^2 z - (u + y)) \mathbf{1}_{\theta},
\]
where \(b'_{y,z} = b_{y,z} \theta(h(-(u + y))) \). Thus if we denote by \(\eta \) as following
\[
\eta = \sum_{x,y \in \mathbb{F}_q} f_{x,y} \varepsilon(x) s \varepsilon(y) \mathbf{1}_{\theta},
\]
then we get \(f_x := \sum_{y \in \mathbb{F}_q} f_{x,y} \neq 0 \) for some \(x \). Let \(v \in \mathbb{F}_q^* \) such that \(v + x \neq 0 \) when \(f_{x,y} \neq 0 \) and we consider the element
\[
\zeta := s \varepsilon(v) \eta = \sum_{x,y \in \mathbb{F}_q} f_{x,y} \theta(h(-(v + x))) \varepsilon(-(v + x)^{-1}) s \varepsilon((v + x)^2 y - (v + x)) \mathbf{1}_{\theta}.
\]
By Lemma 3.3 we can choose some element \(v \) such that the elements \((v + x)^2 y - (v + x) \) are nonzero when \(f_{x,y} \neq 0 \) and this element \(v \) also makes
\[
f := \sum_{x \in \mathbb{F}_q} f_x \theta(h(-(v + x))) \neq 0.
\]
As before we choose \(\mathcal{C}_{q^n} \subset T \) such that \(\alpha : \mathcal{C}_{q^n} \to \mathbb{F}_{q^n}^* \) is a bijection. Therefore we get
\[
\sum_{t \in \mathcal{C}_{q^n}} \alpha^*(t)^{-1} t U_{q^n} s U_{q^n}^* \mathbf{1}_{\theta} = f U_{q^n} s U_{q^n}^* \mathbf{1}_{\theta}
\]
which implies that \(U_{q^n} s U_{q^n}^* \mathbf{1}_{\theta} \in \mathbb{k}G \xi \). Claim (♣) is proved.

Claim (♠): When \(\xi \notin \ker \varphi_{\alpha} \), one has an element
\[
\xi' = \sum_{x \in \mathbb{F}_q} a_x \varepsilon(x) \mathbf{1}_{\theta} + \sum_{y \in \mathbb{F}_q} b_y \varepsilon(y) s \mathbf{1}_{\theta} + \sum_{u,v \in \mathbb{F}_q, v \in \mathbb{F}_q^*} c_{u,v} \varepsilon(u) s \varepsilon(v) \mathbf{1}_{\theta} \in \mathbb{k}G \xi
\]
such that $\sum_{y \in \overline{F}_q} b_y \neq 0$.

Proof of Claim (♠): Firstly we study the form of the elements in $\ker \varphi_s$. Let

$$\varpi_1 = \sum_{x \in \overline{F}_q} f_x \varepsilon(x)(e + \sum_{u \in \overline{F}_q} f_{x,u} \theta^s(-u) \varepsilon(u) \hat{s} \varepsilon(u^{-1})) \mathbf{1}_\theta,$$

where $\sum_{u \in \overline{F}_q} f_{x,u} + 1 = 0$ for any $x \in \overline{F}_q$ and set

$$\varpi_2 = \sum_{y \in \overline{F}_q} \varepsilon(y) \sum_{v \in \overline{F}_q} g_{y,v} \theta^s(-v) \varepsilon(v) \hat{s} \varepsilon(v^{-1}) \mathbf{1}_\theta,$$

where $\sum_{v \in \overline{F}_q} g_{y,v} = 0$ for any $y \in \overline{F}_q$. Moreover we let

$$\varpi_3 = \sum_{z \in \overline{F}_q} h_z \varepsilon(z) \mathbf{1}_\theta, \quad \text{where} \sum_{z \in \overline{F}_q} h_z = 0.$$

It is easy to check that $\varpi_1, \varpi_2, \varpi_3 \in \ker \varphi_s$. Denote by Ω_i the set of the elements with the form of ϖ_i for $i = 1, 2, 3$. Then it is not difficult to see that each element of $\ker \varphi_s$ is a linear combination of the elements in Ω_1, Ω_2 and Ω_3.

Now let ξ be the following

$$\xi = \sum_{x \in \overline{F}_q} \alpha_x \varepsilon(x) \mathbf{1}_\theta + \sum_{y \in \overline{F}_q} \beta_y \varepsilon(y) \mathbf{1}_\theta + \sum_{u \in \overline{F}_q, v \in \overline{F}_q^*} \gamma_{u,v} \varepsilon(u) \hat{s} \varepsilon(v) \mathbf{1}_\theta$$

If $\sum_{y \in \overline{F}_q} \beta_y \neq 0$, then ξ has already satisfied our requirement. Otherwise, we can write

$$\xi = \varpi + \sum_{u \in \overline{F}_q, v \in \overline{F}_q^*} \tau_{u,v} \varepsilon(u) \hat{s} \varepsilon(v) \mathbf{1}_\theta, \quad \tau_{u,v} \in k$$

such that $\varpi \in \ker \varphi_s$. Since $\xi \notin \ker \varphi_s$, the element

$$\eta := \sum_{u \in \overline{F}_q, v \in \overline{F}_q^*} \tau_{u,v} \varepsilon(u) \hat{s} \varepsilon(v) \mathbf{1}_\theta$$

is not in $\ker \varphi_s$ and in particular, it is not in Ω_2. Now for $x \in \overline{F}_q$, set

$$\Xi_x = \{(u, v) \mid \tau_{u,v} \neq 0 \text{ and } (u - x)v = 1\}.$$

Since $\eta \notin \ker \varphi_s$, there exist an element x_0 such that

$$\sum_{(u, v) \in \Xi_{x_0}} \tau_{u,v} \theta^s(-v) \neq 0$$
by some easy computation. Now we consider the following element

\[\xi' = s \varepsilon(-x_0) \xi = s \varepsilon(-x_0)(\varpi + \eta). \]

Firstly, we have \(s \varepsilon(-x_0) \varpi \in \ker \varphi_s \), which is a linear combination of elements in \(\Omega_1, \Omega_2 \) and \(\Omega_3 \). For the second part \(s \varepsilon(-x_0) \eta \), it is easy to check that when \((u, v) \notin \Xi_{x_0} \), the element

\[s \varepsilon(-x_0) \varepsilon(u) s \varepsilon(v) 1_\theta = \varepsilon(u') s \varepsilon(v') 1_\theta \]

for some \(u' \in \bar{\mathbb{F}}_q \) and \(v' \in \bar{\mathbb{F}}^*_q \). On the other hand, for \((u, v) \in \Xi_{x_0} \), we have

\[s \varepsilon(-x_0) \sum_{(u, v) \in \Xi_{x_0}} \tau_{u,v} \varepsilon(u) s \varepsilon(v) 1_\theta = \sum_{(u, v) \in \Xi_{x_0}} \tau_{u,v} \theta(-v^{-1}) \varepsilon(-v) s 1_\theta. \]

Noting that \(\theta(-v^{-1}) = \theta^s(-v) \) and using (3.8), it is easy to check that \(\xi = s \varepsilon(-x_0) \xi \in kG \xi \) satisfies our requirement.

With Claim (♠) and Claim (♣), now we give the proof of Theorem 3.1(2). Let \(\xi \) be an element such that \(\xi \notin \ker \varphi_e \) and \(\xi \notin \ker \varphi_s \). By Claim (♠), there exists an element

\[\xi' = \sum_{x \in \mathbb{F}_q} a_x \varepsilon(x) 1_\theta + \sum_{y \in \mathbb{F}_q} b_y \varepsilon(y) s 1_\theta + \sum_{u \in \mathbb{F}_q, v \in \mathbb{F}_q} c_{u,v} \varepsilon(u) \varepsilon(v) 1_\theta \in kG \xi \]

such that \(\sum_{y \in \mathbb{F}_q} b_y \neq 0 \). We denote by

\[A = \sum_{x \in \mathbb{F}_q} a_x, \quad B := \sum_{y \in \mathbb{F}_q} b_y, \quad C = \sum_{u \in \mathbb{F}_q, v \in \mathbb{F}_q} c_{u,v} \]

for simple. Let \(n \in \mathbb{N} \) such that \(x, y, u, v \in \mathbb{F}_{q^n} \) when \(a_x \neq 0, b_y \neq 0 \) and \(c_{u,v} \neq 0 \). As before we choose \(\mathcal{D}_{q^n} \subset T \) such that \(\alpha : \mathcal{D}_{q^n} \rightarrow \mathbb{F}_{q^n}^* \) is a bijection. Hence it is not difficult to see that

\[\sum_{t \in \mathcal{D}_{q^n}} \theta^s(t)^{-1} t U_{q^n}^\alpha \xi' = A \sum_{t \in \mathcal{D}_{q^n}} \theta(t^2) 1_\theta + (q^n - 1) B \overline{U_{q^n}}^s s 1_\theta + C \overline{U_{q^n}}^s \overline{U_{q^n}^s} 1_\theta, \]

which is in \(kG \xi \). When \(n \) is big enough and \(\theta \) is nontrivial on \(\mathbb{F}_{q^n}^* \), we have

\[\sum_{t \in \mathcal{D}_{q^n}} \theta(t^2) = 0. \]

By Claim (♣), we have \(U_{q^n}^s \overline{U_{q^n}^s} 1_\theta \in kG \xi \) and then we get \(\overline{U_{q^n}^s} 1_\theta \in kG \xi \) since \(B \) is nonzero. So using [10] Lemma 2.6, we have \(1_\theta \in kG \xi \) and thus \(kG \xi = \text{Ind}_T^G k_\theta \). Therefore the induced module \(\text{Ind}_T^G k_\theta \) has only two simple quotient modules \(M(\theta) \) and \(M(\theta^s) \). The theorem is proved.
4. Abelian category $\mathcal{C}(G)$

In this section, we show that the category $\mathcal{C}(G)$ is an abelian category for $G = SL_2(\mathbb{F}_q)$. For convenience, we denote

$$\text{Irr}(G) = \{k_{\text{tr}}, St, M(\theta) \mid \theta \in \hat{T} \text{ is nontrivial}\}.$$

This is the set of the simple objects in $\mathcal{C}(G)$. By [7, Theorem 2.5], the induced module $\text{Ind}_{T}^{B} k_{\theta}$ has a unique simple k_{B}-submodule

$$S_{\theta} = \{\sum_{x \in \mathbb{F}_q^*} a_x \epsilon(x)1_{\theta} \mid \sum_{x \in \mathbb{F}_q^*} a_x = 0\}$$

and the corresponding quotient module is k_{θ}.

Lemma 4.1. Let $S = S_{\text{tr}}$ be the unique simple k_{B}-submodule of $\text{Ind}_{T}^{B} k_{\theta}$. Then S^n (the direct sum of n-copies of S) can not assign a k_{G}-module structure for any $n \in \mathbb{N}$.

Proof. Firstly, each element $\xi \in S^n$ has the following form

$$\xi = \sum_{j,\mu} f_{j,\mu}(e - \epsilon(x_{j,\mu}))\lambda_j,$$

where each λ_j denotes the trivial character for $j = 1, 2, \ldots, n$. Suppose S^n has a k_{G}-module structure and for each $i = 1, 2, \ldots, n$, we set

$$\dot{s}(e - \epsilon(1))\lambda_i = \sum_{j,\mu} g_{j,\mu}^i (e - \epsilon(x_{j,\mu}^i))\lambda_j,$$

where $x_{j,\mu}^i \in \bar{\mathbb{F}}_q^*$, $g_{j,\mu}^i \in k$.

Using $t \in T$ to act on both sides, then it is not difficult to see that for $y \in \mathbb{F}_q^*$, we have

$$\dot{s}(e - \epsilon(y))\lambda_i = \sum_{j,\mu} g_{j,\mu}^i (e - \epsilon(y^{-1}x_{j,\mu}^i))\lambda_j.$$

Therefore we have

$$\dot{s}(\epsilon(z))\dot{s}(e - \epsilon(1))\lambda_i = \sum_{j,\mu} g_{j,\mu}^i \dot{s}(\epsilon(z) - \epsilon(x_{j,\mu}^i + z))\lambda_j$$

$$= \sum_{j,\mu} g_{j,\mu}^i \sum_{k,\nu} g_{k,\nu}^j (\epsilon(z^{-1}x_{k,\nu}^j) - \epsilon((x_{j,\mu}^i + z)^{-1}x_{k,\nu}^j))\lambda_k$$

(4.1)
for any element $z \in \bar{\mathbb{F}}_q^*$ such that $x_{j,\mu}^i + z \neq 0$. On the other hand, since $s \in \mathbb{Z} \setminus z = \varepsilon(-z^{-1})s\theta(-z)\varepsilon(-z^{-1})$, we get

$$s \varepsilon(z)s = \varepsilon(-z^{-1})s\theta(-z)\varepsilon(-z^{-1}),$$

and

$$\lambda_i = \varepsilon(-z^{-1})s\varepsilon(-z) - \varepsilon(z^2 - z))\lambda_i = \sum_{i,\nu} g_{i,\nu}(\varepsilon(-z^{-1}(1 + x_{j,\nu})) - \varepsilon(z^{-1}(z - 1)^{-1}(x_{j,\nu} - z + 1))\lambda_k.$$

Combining the above two equations (1.1) and (1.2), we get the following

$$\sum_{j,\mu} g_{j,\mu} g_{i,\nu}(\varepsilon(z^{-1}x_{j,\nu}) - \varepsilon((x_{j,\mu} + z)^{-1}x_{k,\nu}))\lambda_k = \sum_{k,\nu} g_{k,\nu}(\varepsilon(-z^{-1}(1 + x_{j,\nu}^i)) - \varepsilon(z^{-1}(z - 1)^{-1}(x_{j,\nu}^i - z + 1)))\lambda_k$$

for any $z \in \bar{\mathbb{F}}_q^*$ such that $x_{j,\mu}^i + z \neq 0$ and $i = 1, 2, \ldots, n$. However it is not difficult to see that (4.3) is not an identity. Indeed, for any fixed $i = 1, 2, \ldots, n$, if there exists $x_{i,\nu}^j \neq -1$, then we can choose one $z_0 \in \bar{\mathbb{F}}_q^*$ such that $z_0^{-1}(z_0 - 1)^{-1}(x_{k,\nu}^i + z_0 + 1)$ is different from the following set

$$\{z_0^{-1}x_{k,\nu}^i, (x_{j,\mu} + z_0)^{-1}x_{k,\nu}^i, -z_0^{-1}(1 + x_{k,\nu}^i) \mid g_{k,\nu}^i \neq 0, g_{j,\mu}^i \neq 0, g_{k,\nu}^i \neq 0\}.$$

If there is only one $x_{k,\nu}^i = -1$ such that $g_{k,\nu}^i \neq 0$, then (4.3) does not hold obviously. Therefore S^n cannot assign a \mathbb{G}-module structure. The lemma is proved.

In general, using the same discussion as in Lemma 4.1, we have the following proposition.

Proposition 4.2. Let S_λ be the unique simple \mathbb{G}-submodule of $\text{Ind}_{\mathbb{F}}^{\mathbb{G}} k_\lambda$ for each $\lambda \in \hat{T}$. One has that $\bigoplus_{\lambda \in \hat{T}} S_\lambda^{n_\lambda}$ can not assign a \mathbb{G}-module structure, where $n_\lambda \in \mathbb{N}$ and only finitely many n_λ are nonzero for $\lambda \in \hat{T}$.

Theorem 4.3. The category $\mathcal{C}(G)$ is an abelian category.

Proof. Recall the definition of $\mathcal{C}(G)$ in Section 1, it is enough to show that $\mathcal{C}(G)$ is closed under taking subquotients. Let M be a \mathbb{G}-module with \mathbb{T}-eigenvectors $\xi_1, \xi_2, \ldots, \xi_n$ such that $M \cong \bigoplus_{i=1}^n \mathbb{U}_i \xi_i$ as \mathbb{G}-modules. Following [7, Theorem 2.5], when $\xi \in M_\theta$, each \mathbb{U}_ξ is isomorphic to $\text{Ind}_{\mathbb{N}}^{\mathbb{G}} k_\theta$ or k_θ. Thus M is a \mathbb{G}-module of finite length. Let N be a simple quotient of M, then N has a \mathbb{T}-eigenvector which implies $N \in \text{Irr}(G)$. The Steinberg module S_t is isomorphic to $\text{Ind}_{\mathbb{T}}^{\mathbb{G}} k_t$ as \mathbb{G}-modules and $M(\theta)$ is isomorphic
to $k_\theta \oplus \text{Ind}_B^T k_\theta$ as kB-modules. However since $\bigoplus_{\lambda \in T} S_{\lambda}$ can not assign a kG-module structure by Proposition 4.2, it is easy to see that the subquotients of M are also in $\mathcal{C}(G)$. The theorem is proved.

\begin{corollary}
The category $\mathcal{C}(G)$ is noetherian and artinian.
\end{corollary}

A kG-module can be regarded as a kT-module (resp. kB-module) naturally. We denote by $\mathcal{C}(G)_T$ (resp. $\mathcal{C}(G)_B$) the full subcategory of kT-Mod (resp. kB-Mod), which consists of the objects in $\mathcal{C}(G)$.

\begin{corollary}
One has that $\text{Hom}_T(k_\theta, -) : \mathcal{C}(G)_T \to \text{Vect}$ is an exact functor for any $\theta \in \hat{T}$. Thus given a short exact sequence

$$0 \to M_1 \to M \to M_2 \to 0$$

in the category $\mathcal{C}(G)$, one has that $M^T \cong M_1^T \oplus M_2^T$ as T-modules. In particular, we have $\text{Wt}(M) = \text{Wt}(M_1) \cup \text{Wt}(M_2)$.

\textit{Proof.} Using the setting in \cite[Section 2]{12}, when k is an algebraically closed field of characteristic zero, kB is a locally Wedderburn algebra. Thus by \cite[Lemma 3]{12}, k_θ is an injective kB-module which implies the exactness of $\text{Hom}_B(-, k_\theta)$. For $M \in \mathcal{C}(G)$, we have $M \cong \bigoplus_{i=1}^n kU\xi_i$ as kB-modules, where $\xi_i \in M_{\lambda_i}$. By \cite[Theorem 2.5]{7}, the induced module $\text{Ind}_T^B k_\theta$ has a unique simple kB-submodule S_{θ} and the corresponding quotient module is k_θ. Thus each $kU\xi_i$ is isomorphic to $\text{Ind}_T^B k_{\lambda_i}$ or k_{λ_i} as kB-modules. Therefore it is easy to see that

$$\text{Hom}_T(k_\theta, M) \cong \text{Hom}_B(M, k_\theta),$$

which implies the exactness of $\text{Hom}_T(k_\theta, -)$. The rest part is obvious. \hfill \Box

\begin{corollary}
Given a short exact sequence in $\mathcal{C}(G)$, then it is split regarded as a short exact sequence in $\mathcal{C}(G)_B$.
\end{corollary}

\textit{Proof.} By the definition of $\mathcal{C}(G)$ and Proposition 4.2 noting that the set of simple objects in the category $\mathcal{C}(G)$ is

$$\text{Irr}(G) = \{k_{\text{tr}}, \text{St}, M(\theta) \mid \theta \in \hat{T} \text{ is nontrivial}\},$$

the corollary is proved. \hfill \Box
5. Highest weight category

In this section, we show that \(\mathcal{C}(G)\) is a highest weight category for \(G = SL_2(\bar{F}_q)\). Firstly we recall the definition of highest weight category (see [8]).

Definition 5.1. Let \(\mathcal{C}\) be a locally artinian, abelian, \(k\)-linear category with enough injective objects that satisfies Grothendieck’s condition. Then we call \(\mathcal{C}\) a highest weight category if there exists a locally finite poset \(\Lambda\) (the “weights” of \(\mathcal{C}\)), such that:

(a) There is a complete collection \(\{S(\lambda)_{\lambda \in \Lambda}\}\) of non-isomorphic simple objects of \(\mathcal{C}\) indexed by the set \(\Lambda\).

(b) There is a collection \(\{A(\lambda)_{\lambda \in \Lambda}\}\) of objects of \(\mathcal{C}\) and, for each \(\lambda\), an embedding \(S(\lambda) \subset A(\lambda)\) such that all composition factors \(S(\mu)/S(\lambda)\) satisfy \(\mu < \lambda\). For \(\lambda, \mu \in \Lambda\), we have that \(\dim_k \text{Hom}_\mathcal{C}(A(\lambda), A(\mu))\) and \([A(\lambda) : S(\mu)]\) are finite.

(c) Each simple object \(S(\lambda)\) has an injective envelope \(I(\lambda)\) in \(\mathcal{C}\). Also, \(I(\lambda)\) has a good filtration \(0 = F_0(\lambda) \subset F_1(\lambda) \subset \ldots\) such that:

(i) \(F_1(\lambda) \cong A(\lambda)\);

(ii) for \(n > 1\), \(F_n(\lambda)/F_{n-1}(\lambda) \cong A(\mu)\) for some \(\mu = \mu(n) > \lambda\);

(iii) for a given \(\mu \in \Lambda\), \(\mu = \mu(n)\) for only finitely many \(n\);

(iv) \(\bigcup F_i(\lambda) = I(\lambda)\).

Actually, to show that \(\mathcal{C}(G)\) is a highest weight category, the main difficulty is to prove that the category \(\mathcal{C}(G)\) has enough injective objects.

Proposition 5.2. For any \(M, N\) in \(\mathcal{C}(G)\) such that \(\text{Wt}(M) \cap \text{Wt}(N) = \emptyset\), we have \(\text{Ext}^1_{\mathcal{C}(G)}(M, N) = 0\).

Proof. Since each object in \(\mathcal{C}(G)\) is of finite length, it is enough to show that \(\text{Ext}^1_{\mathcal{C}(G)}(M, N) = 0\) for any simple object \(M, N \in \mathcal{C}(G)\), where \(\text{Wt}(M) \cap \text{Wt}(N) = \emptyset\). Recall that \(\text{Irr}(G) = \{k_{tr}, St, M(\theta) | \theta \in \hat{T} \text{ is nontrivial}\}\) is the set of simple objects in \(\mathcal{C}(G)\), we will show that

\[
\text{Ext}^1_{\mathcal{C}(G)}(k_{tr}, M(\lambda)) = 0, \quad \text{Ext}^1_{\mathcal{C}(G)}(St, M(\mu)) = 0 \quad \text{and} \quad \text{Ext}^1_{\mathcal{C}(G)}(M(\theta), S) = 0,
\]

where \(S\) is a simple object whose weights are different with \(\theta\) and \(\theta^a\).

(1) \(\text{Ext}^1_{\mathcal{C}(G)}(k_{tr}, M(\lambda)) = 0\). Suppose we have a short exact sequence

\[
0 \rightarrow M(\lambda) \rightarrow M \rightarrow k_{tr} \rightarrow 0 \quad (5.1)
\]

in \(\mathcal{C}(G)\). Then using Corollary [4.6] there exists an element \(\xi \in M\) such that \(z\xi = \xi\) for any \(z \in B\). Noting that \(M_{tr} = k\xi\), thus \(s^a\xi = a\xi\) for some
\(a \in \mathbb{k}^\ast \). However the following equation
\[
\dot{s}\varepsilon(x)\dot{s}\xi = \varepsilon(-x^{-1})\dot{s}h(-x)\varepsilon(-x^{-1})\xi
\]
shows that \(a \) must be 1. Therefore the short exact sequence (5.1) is split which implies that \(\text{Ext}_{\mathcal{C}(G)}^1(k_{tr}, M(\lambda)) = 0 \).

(2) \(\text{Ext}_{\mathcal{C}(G)}^1(St, M(\mu)) = 0 \). Suppose we have a short exact sequence
\[
0 \rightarrow M(\mu) \rightarrow N \rightarrow St \rightarrow 0
\]
in \(\mathcal{C}(G) \). By Corollary 4.6, there exists an element \(\eta \in N_{tr} \) such that \(\dot{s}\eta = b\eta \) for some \(b \in \mathbb{k}^\ast \) and \(\dot{s}\varepsilon(1)\eta = (\varepsilon(-1) - e)\eta + \varpi \) for some \(\varpi \in M(\mu) \). Using \(\dot{s} \) to act on both sides, we get \(b = -1 \). Moreover we have
\[
\dot{s}\varepsilon(x)\eta = (\varepsilon(1))\dot{s}\varepsilon(x)\eta + \varepsilon(-x^{-1}) \dot{s}\varepsilon(x) \varepsilon(1) \eta.
\]
Now we consider the element \(\dot{s}\varepsilon(z)\dot{s}\varepsilon(1)\eta \). Firstly we have
\[
\dot{s}\varepsilon(z)\dot{s}\varepsilon(1)\eta = \varepsilon(-z^{-1})\dot{s}h(-z)\varepsilon(-z^{-1})\dot{s}\varepsilon(1)\eta = \varepsilon(-z^{-1})\dot{s}\varepsilon(z^2 - z)\eta.
\]
On the other hand, we get
\[
\dot{s}\varepsilon(z)\dot{s}\varepsilon(1)\eta = \dot{s}(\varepsilon(z) - \varepsilon(z))\eta + \dot{s}\varepsilon(z)\varpi.
\]
Compare the above two equations (5.3) and (5.4), it is not difficult to get
\[
\dot{s}\varepsilon(z)\varpi = \varepsilon(-z^{-1})h((z^2 - z)^{-\frac{1}{2}}))\varpi + (h(z^{-\frac{1}{2}}) - h((z - 1)^{-\frac{1}{2}}))\varpi
\]
for any \(z \in \overline{F}_q \). Denote by
\[
\varpi = f1_\mu + \sum_{x \in \overline{F}_q} g_x \varepsilon(x)1_\mu, \quad \text{where } f, g_x \in \overline{F}_q.
\]
Then it is easy to see that \(f = 0 \). Moreover if \(g_x \neq 0 \) when \(x \neq 0, -1 \), then (5.5) can not hold for any \(z \in \overline{F}_q \). Substitute \(\varpi = a\dot{s}1_\mu + b\varepsilon(1)\dot{s}1_\mu \) into (5.5) and we get \(\varpi = 0 \). Thus the short exact sequence (5.2) is split which implies that \(\text{Ext}_{\mathcal{C}(G)}^1(St, M(\mu)) = 0 \).

(3) \(\text{Ext}_{\mathcal{C}(G)}^1(M(\theta), S) = 0 \) for some simple object \(S \) whose weights are different with \(\theta \) and \(\theta^s \). Suppose we have a short exact sequence
\[
0 \rightarrow S \rightarrow L \rightarrow M(\theta) \rightarrow 0
\]
in \(\mathcal{C}(G) \). Then by Corollary 4.6, there exists \(\zeta \in L_\theta \) such that \(u\zeta = \zeta \) and thus \(\dot{s}\zeta \in L_{\theta^s} \) since the weights of \(S \) are different with \(\theta \) and \(\theta^s \). Thus the short exact sequence (5.6) is split and we have \(\text{Ext}_{\mathcal{C}(G)}^1(M(\theta), S) = 0 \). □
Proposition 5.3. One has that k_{tr} and $M(\theta)$ are injective objects in the category $\mathcal{C}(G)$ for any $\theta \in T$.

Proof. By [12] Theorem 1, we see that k_{tr} is an injective kG-module and thus it is injective in $\mathcal{C}(G)$. According to Proposition 5.2, it is enough to verify that $\text{Ext}^1(\mathcal{C})$ is injective and we have $\text{Ext}^1(\mathcal{C}, \mathcal{C})$. Noting that $\text{Ext}^1(\mathcal{C}_G(\text{tr}), M(tr)) = 0$, $\text{Ext}^1(\mathcal{C}_G(\text{tr}, St), M(tr)) = 0$, and $\text{Ext}^1(\mathcal{C}_G(\text{tr}, k_{tr}), M(tr)) = 0$, we get a long exact sequence

$$0 \rightarrow \text{Hom}(M(tr), k_{tr}) \rightarrow \text{Hom}(M(tr), St) \rightarrow \text{Hom}(M(tr), k_{tr}) \rightarrow \text{Ext}(\mathcal{C}_G(\text{tr}, St), M(tr)) \rightarrow \text{Ext}(\mathcal{C}_G(\text{tr}, k_{tr}), M(tr)) \rightarrow \text{Ext}(\mathcal{C}_G(\text{tr}, k_{tr}), k_{tr}) \rightarrow \text{Ext}(\mathcal{C}_G(\text{tr}, k_{tr}), k_{tr}) \rightarrow \ldots$$

It is easy to check that $\text{Hom}(M(tr), k_{tr}) = 0$ and $\text{Hom}(M(tr), St) = 0$ because k_{tr} is injective in $\mathcal{C}(G)$, it is enough to verify that $\text{Ext}(\mathcal{C}_G(\text{tr}, St), St) \cong k$. Given a short exact sequence

$$0 \rightarrow St \rightarrow M \rightarrow k_{tr} \rightarrow 0$$

in $\mathcal{C}(G)$, then by Corollary 4.6 we get

$$\text{Hom}(M(tr), M) \cong \text{Hom}(k_{tr}, M) \cong k$$

using Frobenius reciprocity. Thus $M \cong M(tr)$ or $M \cong St \oplus k_{tr}$. Therefore $\text{Ext}(\mathcal{C}_G(\text{tr}, St), M(tr)) \cong k$ and hence $\text{Ext}(\mathcal{C}_G(\text{tr}, M(tr)) = 0$.

(2) $\text{Ext}(\mathcal{C}_G(\text{tr}, St), M(tr)) = 0$. Using the short exact sequence

$$0 \rightarrow St \rightarrow M(tr) \rightarrow k_{tr} \rightarrow 0,$$

we get a long exact sequence

$$0 \rightarrow \text{Hom}(M(tr), St) \rightarrow \text{Hom}(M(tr), M(tr)) \rightarrow \text{Hom}(M(tr), k_{tr}) \rightarrow \text{Ext}(\mathcal{C}_G(\text{tr}, St), M(tr)) \rightarrow \text{Ext}(\mathcal{C}_G(\text{tr}, M(tr)), M(tr)) \rightarrow \text{Ext}(\mathcal{C}_G(\text{tr}, k_{tr}), M(tr)) \rightarrow \text{Ext}(\mathcal{C}_G(\text{tr}, k_{tr}), k_{tr}) \rightarrow \ldots$$

Since k_{tr} is injective and we have $\text{Ext}(\mathcal{C}_G(\text{tr}, k_{tr}), M(tr)) = 0$, it is enough to show that $\text{Ext}(\mathcal{C}_G(\text{tr}, St), St) = 0$. Given a short exact sequence

$$(5.7) \quad 0 \rightarrow St \rightarrow N \rightarrow St \rightarrow 0$$

in $\mathcal{C}(G)$, then there exists $\xi_1, \xi_2 \in N_{tr}$ such that $N \cong kU\xi_1 \oplus kU\xi_2$ as kB-modules and $kU\xi_1$ is isomorphic to the Steinberg module. Firstly it is
easy to see that \(\dot{s}\xi_2 = -\xi_2 + a\xi_1 \) for some \(a \in k \). Using \(\dot{s} \) to act on both sides, we get \(a = 0 \) and thus \(\dot{s}\xi_2 = -\xi_2 \). On the other hand, we have
\[
\dot{s}\varepsilon(1)\xi_2 = (\varepsilon(-1) - e)\xi_2 + \varpi
\]
for some \(\varpi \in kU\xi_1 \). Denote by \(\varpi = \sum_{x \in \mathbb{F}_q} a_x \varepsilon(x)\xi_1 \) and then we get
\[
\dot{s}\varepsilon(y)\xi_2 = (\varepsilon(-y^{-1}) - e)\xi_2 + \sum_{x \in \mathbb{F}_q} a_x \varepsilon(xy^{-1})\xi_1
\]
for any \(y \in \mathbb{F}_q^* \). Now we consider the element \(\dot{s}\varepsilon(z)\dot{s}\varepsilon(1)\xi_2 \). Firstly we have
\[
(5.8) \quad \dot{s}\varepsilon(z)\dot{s}\varepsilon(1)\xi_2 = \varepsilon(-y^{-1})\dot{s}h(-z)\varepsilon(-z^{-1})\varepsilon(1)\xi_2 = \dot{s}\varepsilon(z^2 - z)\xi_2.
\]
On the other hand, we have
\[
(5.9) \quad \dot{s}\varepsilon(z)\dot{s}\varepsilon(1)\xi_2 = \dot{s}(\varepsilon(z - 1) - \varepsilon(z))\xi_2 + \dot{s}\varepsilon(z)\varpi.
\]
Combining \((5.8)\) and \((5.9)\), it is not difficult to get
\[
(5.10) \quad \dot{s}\varepsilon(z) \sum_{x \in \mathbb{F}_q} a_x \varepsilon(x)\xi_1 = \sum_{x \in \mathbb{F}_q} a_x (\varepsilon(x(z^2 - z))^{-1} - z^{-1}) + \varepsilon(xz^{-1}) - \varepsilon(x(z - 1)^{-1})\xi_1
\]
for any \(z \in \mathbb{F}_q \). If \(a_x \neq 0 \) when \(x \neq 0, -1 \), then the equation cannot hold for any \(z \in \mathbb{F}_q \). However, substitute \(\varpi = a\xi_1 + b\varepsilon(-1)\xi_1 \) into \((5.10)\), we get \(\varpi = 0 \) easily. Thus the short exact sequence \((5.7)\) is split and we have \(\operatorname{Ext}^1_{\mathcal{C}(G)}(\text{St}, \text{St}) = 0 \) which implies that \(\operatorname{Ext}^1_{\mathcal{C}(G)}(\text{St}, M(\text{tr})) = 0 \).

(3) \(\operatorname{Ext}^1_{\mathcal{C}(G)}(M(\lambda), M(\theta)) = 0 \) for \(\lambda = \theta \) or \(\theta^s \). Firstly given a short exact sequence
\[
(5.11) \quad 0 \longrightarrow M(\theta) \longrightarrow K \longrightarrow M(\theta) \longrightarrow 0
\]
in \(\mathcal{C}(G) \), then by Corollary 4.6 we have
\[
K \cong k_\theta \oplus k_\theta \oplus \text{Ind}_F^B k_\theta^s \oplus \text{Ind}_F^B k_\theta^s
\]
as \(kB \)-modules and there exists \(\xi_1, \eta_1 \in K_\theta \) and \(\xi_2, \eta_2 \in K_{\theta^s} \) such that \(k\xi_1 + kU\xi_2 \cong M(\theta) \), which is a \(kG \)-submodule of \(K \). We can assume that \(\xi_2 = \dot{s}\xi_1 \). Now suppose
\[
\dot{s}\eta_1 = a\xi_2 + b\eta_2, \quad \dot{s}\eta_2 = c\xi_1 + d\eta_1
\]
for some \(a, b, c, d \in k \). Using \(\dot{s} \) to act on both sides of the two equations, we get \(c = -\frac{a}{b} \) and \(d = \frac{1}{b} \). In particular, \(b \) is nonzero. Now set \(\tilde{\eta}_2 = a\xi_2 + b\eta_2 \).
Thus $k\eta_1 + kU\tilde{\eta}_2$ is isomorphic to $M(\theta)$. So the short exact sequence (5.11) is split which implies that $\text{Ext}^1_{\mathcal{E}(G)}(M(\theta), M(\theta)) = 0$.

Next we consider the short exact sequence
\begin{equation}
0 \longrightarrow M(\theta) \longrightarrow L \longrightarrow M(\theta^* \lambda) \longrightarrow 0
\end{equation}
in $\mathcal{E}(G)$. There exists $\zeta_1, \varrho_1 \in L_\theta$ and $\zeta_2, \varrho_2 \in L_{\theta^*}$ such that $M(\theta) \cong k\zeta_1 + kU\zeta_2$. We can assume that $\zeta_2 = s\zeta_1$. Now suppose
\[s\varrho_1 = a'\zeta_2 + b'\varrho_2, \quad s\varrho_2 = c'\zeta_1 + d'\varrho_1, \]
then we also get $c' = -\frac{a'}{b'}$ and $d' = \frac{1}{b'}$. In particular, b' and d' are nonzero. Set $\varrho_1 = c'\zeta_1 + d'\varrho_1$, then we get $M(\theta^*) \cong k\varrho_2 + kU\varrho_1$. Therefore the short exact sequence (5.12) is split and we also get $\text{Ext}^1_{\mathcal{E}(G)}(M(\theta^* \lambda), M(\theta)) = 0$.

The proposition is proved.

\[\square \]

Theorem 5.4. The category $\mathcal{E}(G)$ has enough injective objects.

Proof. By Proposition 5.3, the injective envelope for each simple object exists in the category $\mathcal{E}(G)$. Thus a standard argument shows that $\mathcal{E}(G)$ has enough injective objects (see [9, Theorem 2.7]).

\[\square \]

Now we show that $\mathcal{E}(G)$ is a highest weight category. In Definition 5.1, the set of weights is $\Lambda = \{(\theta, J) \mid \theta \in \hat{T}, J \subset I(\theta)\}$ and we define the order of the weights by
\[(\theta_1, J_1) \leq (\theta_2, J_2), \text{ if } \theta_1 = \theta_2 \text{ and } J_1 \supseteq J_2.\]
Specifically, for $G = SL_2(\tilde{F}_q)$, $\Lambda = \{(\text{tr}, \emptyset), (\text{tr}, \{s\}), (\theta, \emptyset) \mid \theta \text{ is nontrivial}\}$. Let $S(\text{tr}, \{s\}) = A(\text{tr}, \{s\}) = k_{\text{tr}}$, $S(\text{tr}, \emptyset) = A(\text{tr}, \emptyset) = \text{St}$ and $S(\theta, \emptyset) = A(\theta, \emptyset) = M(\theta)$. By Proposition 5.3, we set $I(\text{tr}, \{s\}) = k_{\text{tr}}$, $I(\text{tr}, \emptyset) = M(\text{tr})$ and $I(\theta, \emptyset) = M(\theta)$. It is not difficult to check that $\mathcal{E}(G)$ with this setting satisfies all the condition in Definition 5.1 and thus we have the following theorem.

Theorem 5.5. The category $\mathcal{E}(G)$ is a highest weight category.

According to the same discussion as [9, Section 4 and Section 5], all the indecomposable modules in $\mathcal{E}(G)$ are St, k_{tr} and $\{M(\theta) \mid \theta \in \hat{T}\}$. Therefore each object in $\mathcal{E}(G)$ is a direct sum of these modules. In particular, the category $\mathcal{E}(G)$ is a Krull–Schmidt category.
Remark 5.6. In [3], X.Y. Chen constructed a complex representation M of $SL_2(\mathbb{F}_q)$, which contains the Steinberg module as a proper submodule and the corresponding quotient module is the trivial module. However M has no B-stable line. So, this gives a negative answer to [9, Conjecture 3.7]. Thus the principal representation category $\mathcal{O}(G)$ introduced in [9] is not a highest weight category. Chen’s work shows that $\mathcal{O}(G)$ is very complicated in general. However the representation M he constructed in [3] is not in the category $\mathcal{C}(SL_2(\mathbb{F}_q))$. Therefore, for general reductive algebraic group G, the category $\mathcal{C}(G)$ may be a good category for further study.

Acknowledgements. The author is grateful to Nanhua Xi, Ming Fang and Xiaoyu Chen for their suggestions and helpful discussions. The work is sponsored by Shanghai Sailing Program (No.21YF1429000) and NSFC-12101405.

References

1. Borel A, Tits J. Homomorphismes "abstraits" de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 99-571.
2. R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Pure Appl. Math. John Wiley and Sons, New York, 1985.
3. Xiaoyu Chen, The principal representation category of infinite reductive groups is not a highest weight category, preprint.
4. Xiaoyu Chen, Junbin Dong, The permutation module on flag varieties in cross characteristic, Math. Z. 293 (2019), 475-484.
5. Xiaoyu Chen, Junbin Dong, The decomposition of permutation module for infinite Chevalley groups, Sci. China Math. 64 (2021), no. 5, 921-930.
6. Xiaoyu Chen, Junbin Dong, Abstract-induced modules for reductive algebraic groups with Frobenius maps, Int. Math. Res. Not. IMRN 2022, no. 5, 3308-3348.
7. Xiaoyu Chen, Junbin Dong, Some infinite-dimensional representations of certain quasi-finite solvable groups, preprint.
8. Cline E, Parshall B, Scott L. Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85-99.
9. Junbin Dong, The principal representations of reductive algebraic groups with Frobenius maps, J. Algebra 591 (2022), 342-359.
10. Junbin Dong, Irreducibility of certain subquotients of spherical principal series representations of reductive groups with Frobenius maps, arXiv: 1702.01888.
11. J.-H. Evertse, H.P. Schlickewei and W.M. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2) 155 (2002), no.3, 807-836.
12. Farkas, D. R., Snider, R. L. Group algebras whose simple modules are injective, Trans. Amer. Math. Soc. 194 (1974), 241–248.
13. Nanhua Xi, *Some infinite dimensional representations of reductive groups with Frobenius maps*, Sci.China Math. 57(2014), 1109-1120.

14. Ruotao Yang, *Irreducibility of infinite dimensional Steinberg modules of reductive groups with Frobenius maps*, J. Algebra 533 (2019), 17-24.

Institute of Mathematical Sciences, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.

Email address: dongjunbin@shanghaitech.edu.cn