Ethnopharmacologic survey of medicinal plants used to treat human diseases by traditional medical practitioners in Dega Damot district, Amhara, Northwestern Ethiopia

Muluken Wubetu1*, Tefera Abula2 and Getye Dejenu3

Abstract

Background: One of the services that plants provide for human beings is their wider medicinal application. Although it is not fully assessed, the practice and wider use of traditional medicine is frequent in Ethiopia. Studies conducted previously are confined to the perceptions of modern and traditional health practitioners about traditional medicine. A total of 45 informants were selected purposefully from the study area. For collecting the data, semi-structured interviewees, observation and field walks were employed from August 10 to September 30/2014. To summarize the information, descriptive statistical methods were applied.

Results: Sixty species of medicinal plants distributed in 42 families were collected and identified applied locally for the treatment of 55 human disorders. The most commonly treated ones were evil eye, malaria, wound, peptic ulcer disease and rabies. According to this study, leaves were the commonly used plant parts (36.5%) and 39% of the preparations were decoctions. Oral route, 43 (44%) was the commonly used route of application whereas most (54.8%) of the formulations was contraindicated for pregnant patients. Only seventeen percent of the formulations possessed drug food interactions. Most preparations were stored within clothes, 31 (29.8%). There exists a high (ICF = 0.8) evenness of plant use among healers for treating respiratory problems. Allium sativum (FI = 0.75) for evil eye, Phytolacca dodendrandra (FI = 0.8) for rabies and Croton macrostachus (FI = 0.78) for treating malaria were medicinal plants with highest fidelity levels showing consistency of knowledge on species best treating power. This study also documented that drought, overgrazing and firewood collection are major threats.

Conclusion: Dega Damot district is loaded in its medicinal plant diversity and indigenous knowledge though plants are highly affected by drought, overgrazing and firewood collection. Therefore awareness activities must be created among the district’s population by concerned governmental and nongovernmental organizations about the value of medicinal plants and conservation of these plants. The healing potential and associated adverse issues of the claimed medicinal plants should be assessed before proposing for a broader utilization.

Keywords: Medicinal plants, Traditional medical practitioner, Ethnopharmacology

*Correspondence: mulukenwubetu1986@gmail.com
1 Pharmacy Department, Debre Markos University, Gojam, Ethiopia
Full list of author information is available at the end of the article
Background

According to world health organization, traditional medicine (TM) is the sum total of the knowledge, skills and practices based on the theories, beliefs and experiences indigenous to different cultures and nations. It is used in the maintenance of health, prevention, diagnosis, or treatment of disorders [1, 2]. Under TM, health practices, remedies, approaches, and beliefs incorporating plant, animal and mineral products, spiritual therapies are all included [3]. Traditional medicine is popular in the developing world and its use is rapidly spreading in the developed nations. In China, traditional herbal preparations account for 30–50% of the total drug consumption. In Ghana, Mali, Nigeria and Zambia, the first choice for 60% of children with high fever resulting from malaria is the use of herbal medicines. In Ethiopia up to 80% of the population uses TM due to the cultural acceptability of healers and local pharmacopeias, the relatively low cost of TM and difficult access to modern health facilities [4].

In Ethiopia, TM plays both preventive and curative roles. Vegetables are the abundant sources of traditional remedies. Various parts of plants like leaves, flowers, seeds, bark, sap and roots are used. Honey, butter, and sheep fat are TM sources from animals. In Ethiopia, traditional medical practitioners put much emphasis on the supernatural force as a source of wisdom for healing various illnesses. Even though practitioners practically deal with tangible problems like bone setting, simple traditional surgery, historical evidence shows that there were many prayers for the prevention and cure of various ailments [1, 5–8]. Despite its continued use over many countries, its popularity and extensive use, TM has not been officially recognized in most countries. As a result, training and research in this area have not been conducted intensively on the various aspects of TM. The safety and efficacy of data on TM are not sufficient to meet the criteria required to support its worldwide use [4, 5, 9, 10].

In Dega Damot district about 90% of the population relies on traditional health products (unpublished data from the district) for primary health care aspects. There have been no studies conducted in the study area on the use and practice of TM. For policies regarding TM ultimately geared towards integration of TM into the national health service to be formed and implemented, results of this study will be able to protect the interest of those making use of this health care option.

Methods

Description of the study district

This study involved traditional medical practitioners residing in Dega Damot district, Northwestern Ethiopia. It shares borders with the districts of Bibugn in the north, Dembecha in the east, Kuarit and Hulet eju enesie in the west and Jabitehnan in the South (Fig. 1).

Fig. 1 Map of the Dega Damot district (the officials who gave permission to use the respective maps were: personnel of Dega Damot district communication office, west Gojjam zonal communication office and Amhara regional state communication beau rue)
The district’s administrative town, Feres Bet, is located at about 400 km north western of the capital, Addis Ababa. According to 2013 data, the population of the district is about 170,575. The district is administratively divided into 32 kebeles and Amharic which belongs to the Semitic language family is the language of the population. In Ethiopia, Kebele is the smallest administrative unit. In the district, barley, maize, potato and wheat are the main crops cultivated, off which, potato is exported to neighboring towns of the Amhara region like Burie, Bahirdar and Gondar.

According to 2004–2013 rainfall data, the District has a high rainfall distribution between July and August and a smaller rainfall between January and May. The mean monthly rainfall and mean annual rainfall of the District are 60.24 and 708.54 mm, respectively (National Meteorological Service Agency, Bahirdar Branch Office, unpublished data). According to data from the health personnel of the district, the top ten diseases in 2014 are malaria, diarrhea, helmenthiasis, pneumonia, acute upper respiratory diseases, dyspepsia, typhoid, eye infection, urinary tract infection and skin infection respectively.

Selection of study subjects
Data were collected from the traditional medical practitioners (TMPs) who were purposively chosen with the help of community leaders and local authorities. The informants selected were the most knowledgeable ones as recommended by community leaders and local authorities who involved in the selection process. The ages of the TMPs ranged between 22 and 80 years. A total of 45 (40 male and 5 female) TMPs were included in this study from August 10 to September 30/2014.

Data collection techniques
Semi-structured interviews, observation and field walks were used to collect the research data. To collect information about local names of plants used, their threats, part(s) used, preparations methods, routes of remedy administration and diseases treated, individual interviews were conducted (Additional file 1). Interviews were carried out in Amharic, language that is spoken by the practitioners. For claimed plant, specimen was collected, and identified and voucher was reserved at University of Gondar. Field observations were performed to document habitat of each medicinal plant. As this study has been conducted on wild plants, permission was mandatory to perform the survey. Hence, Dega Damot district agricultural office was informed and asked permission to conduct the study and collect the medicinal plants. The study was also ethically approved by the Graduate Program Evaluation Committee of the College of medicine and health sciences, University of Gondar.

Prior to the initiation of the data collection, the objective of the survey was clarified to the TMPs, verbal consent was obtained from them. Letter of collaboration was sent to district officials of the study area and biology department at University of Gondar.

Data analysis
Descriptive statistic procedures like percentage and frequency distribution were applied for analyzing and summarizing the data. To check the level of homogeneity among information provided by traditional practitioners, the informants’ consensus factor, ICF [11] was computed

\[
ICF = \frac{N_r - N_t}{(N_r - 1)}
\]

where, \(N_r = \) number of use reports from informants for a particular plant-use category; \(N_t = \) number of taxa or species that are used for that plant use category for all informants. ICF values vary between 0 and 1, where ‘1’ represents the highest level of consensus. The fidelity level (FL), which shows for the percentage of informants claiming the use of a certain plant species for the same major purpose, was calculated for the commonly reported disorders as:

\[
FL(\%) = \left(\frac{N_p}{N}\right) \times 100
\]

where: \(N_p = \) number of traditional practitioners that claim a use of a plant to treat a certain disease; \(N = \) number of informants that use the plants as a remedy to treat an ailment [12].

Results
Socio-demographic data of the informants
Totally, 45 TMPs out of which 40 (88.8%) and 5 (11.2%) males and females, respectively, were involved in this study and 55.6% were illiterate. Most of them were married (86.7%) and 37.8% were older than 56 years. Thirty-one (68.9%) were farmers and all TMPs were Ethiopian orthodox tewahido Christian followers.

Forty percent of healers indicated that they acquired their healing wisdom from their family, whereas 26.6% assumed it as a gift from God. Other sources of wisdom are religious Institutions (22.2%) and preceding sickness and corresponding use (11.2%). About 67% of the practitioners had practiced their healing activities for more than 25 years.

Diseases treated and medicinal Plants used
About 55 human diseases are treated by TMPs of the district. The most commonly treated ones being evil eye, malaria, wound; peptic ulcer disease and rabies (Table 1). This study revealed that about 60 plant species find
Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
Acacia Senegal (L.) Wild.	Leguminosae	MW-053	Grar	Tree	Resin	Stabbing pain	Powder of resin taken mixed with molten butter
Agrostis semiverticillata (Forssk.) Christm.	Gramineae	MW-049	Serdo	Grass	Leaf	Tinea decalvans	Fresh pulverized leaf is applied once daily
Albizia gummifera (J.F. Gmel) C.A.Sm	Leguminosae	MW-039	Sesa	Tree	Bark	Rectal prolapsed	About 80 ml of Powder of bark mixed with little water (decoction) taken once daily
Allium sativum L.	Alliaceae	MW-001	Nech Shinkurt	Bulb	Seed	Evil eye	Crushing the seed with seeds of *Lepidium sativum* L. and *Ruta chalepensis* L. and inhale it
					Fruit	Common cold	Inhal the smell of the fruit
					Fruit	Malaria	Crushing the fruit and boil it, finally drink it with much amount of milk for 1 day
					Seed	Dry cough	Crushing the seed and drink with adulterated butter
Aloe pulcherrima Gilbert & Sibsebe	Aloaceae	MW-002	Eret	Tree	Latex	Wound	Applying the latex to the wound for 2 days
Artemisia afra Jack. ex Wild.	Asteraceae	MW-003	Chikugn	Shrub	Leaf	Common cold	Inhaling the smell of the leaf
					Leaf	Urine retention	Powder of leaf taken once mixed with mead
					Leaf	Haematuria	Milk decoction of leaf taken once
					Seed	Wound	Drying the seed then crushing, then apply on the wound till the wound cures
Avena sativa L.	Poaceae	MW-004	Ankerdad	Grass	Seed	Ascariasis	Crushing the leaf and drink it
					Leaf	Infertility	Crushing its root with the roots of *Pterolobium stellatum* (Forsk.) Brenan, *Carissa spinarum* L. and *Clausena anisata* (Wild) Benth. and inhale it
Bersama abyssinica Fresen.	Meliaceae	MW-005	Azamira	Tree	Root	Snake bite	Crushing the seed and apply on the infected area
Brucea antidysenterica J. F. Mill.	Simaroubaceae	MW-006	Abalo	Tree	Root	Leprosy	Handful of fresh leaf grounded to make a paste and to it add small quantity of honey or butter and it is applied externally until cure
					Leaf	Anthrax	Crushing the leaf with leaves of *Veronica amygdalina* Del. and eat it on empty stomach once
					Leaf	Infertility	Small quantities of fruit chewed and swallowed once
Capsicum annuum L.	Solanaceae	MW-007	Berbere	Shrub	Leaf	Evil eye	Crushing the root with the fruit of garlic and the fruit of *Ruta chalepensis* L. finally inhale it
					Leaf	Snake bite	Crushing the root and bandage on the site of bite for 1 day
Carissa spinarum L.	Apocynaceae	MW-008	Agam	Shrub	Root	Hypertension	Crushing the leaf and drying it, finally drinking it as tea
Citrus aurantiifolia	Rutaceae	MW-036	Lomi	Tree	Leaf	Mental illness/exorcism	Stem powder boiled with butter applied daily
Clausena anisata (Wild) Benth.	Rutaceae	MW-059	Limch	Tree	Stem	Bone dislocation	The juice of whole plant is employed for bathing
Table 1 continued

Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
Clematis simensis Fresen.	Ranunculaceae	MW-009	Azo Hareg	Climber	Leaf	Hemorrhoids	Drying the leaf then crushing it and mixing with butter finally apply to area once
					Leaf	Skin cancer	Crushing the leaf and apply it to the area of infection
					Leaf	Eczema	Drying the leaf, crushing it and then mixing it with benzene and wood charcoal
Cordia africana Lam.	Boraginaceae	MW-058	Wanza	Tree	Leaf	Nightmare	Powder of the semi-parasite worn as amulet against startling dreams
Coriandrum sativum L.	Umbelliferae	MW-052	Dinblal	Herb	Seed	Menorrhagia	Handful of seeds from each pounded with onions and taken once mixed with milk of black cow
Croton macrostachyus Del.	Euphorbiaceae	MW-035	Bisana	Tree	Leaf	Malaria	Crushing leaf and drink with either *Guizotia abyssinica* (L.F.) Cass. or milk
					Root	Tuberculosis	Root powder taken pasted with honey or taken dissolved with mead
Cussonia austinii Chiov.	Araliaceae	MW-048	Getem	Tree	Bark	Syphilis	An inside part of the bark is pounded into powder which is then taken once mixed with a glass of local beer
Cynoglossum coeruleum Hochst. A. Rich. DC.	Boraginaceae	MW-010	Shingug	Shrub	Leaf	Acute febrile illness	Crushing the leaf with fresh water
Datura stramonium L.	Solanaceae	MW-054	Astenagir	Shrub	–	Headache	Unspecified part of the plant pounded mixed with ink and placed under the skin of the head
					Leaf	Mumps	Fresh leaf is tied on to the site of the problem
Dovyalis abyssinica (A. Rich.) Warb.	Flacourtiaeae	MW-011	Koshim	Tree	Seed	Decayed teeth	Brushing the decayed teeth with the yellow seed of the plant
Echinops kebericho Mesfin	Asteraceae	MW-012	Kebericho	Shrub	Stem	Evil eye	Drying, crushing and adding the seed on fire to smell
					Stem	Tape worm	Drying and crushing then drink by mixing with *Capsicum annuum* L. and salt
					Stem	Common cold	Burning the root and inhale it
Embelia schimperi Vatke	Myrsinaceae	MW-013	Enkoko	Shrub	Seed	Acute febrile illness	Burning the root on fire and fumigate
					Stem	Anthrax	Burning the root with the seeds of *Guizotia abyssinica* (L.F.) Cass. and eat with honey
					Seed	Tape worm	Crushing the seed and drink with alcohol
Englerina woodfordioides (Schweinf.) M. Gilbert	Loranthaceae	MW-014	Teketsila	Shrub	Leaf	Cutaneous leishmaniasis	Crushing the leaf and apply it topically
Eragrostis tef (Zucc.) Trotter	Gramineae	MW-045	Nech tef	Herb	Seed	Diarrhea	Porridge of the floor eaten three times daily
Erythrina brucei Schweinf.	Fabaceae	MW-015	Korch	Tree	Leaf	Wound	Crushing its leaf with the leaves of *Solanum inca-num* L. and *Phytolacca dodecandra* L'Hér., finally apply it to the wound once for 3 days
Eucalyptus globulus Labill.	Myrtaceae	MW-016	Nech Bahirzaf	Tree	Leaf	Common cold	Burning the leaf on fire and inhale it
Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
-----------------	-------------	-------------	--------------	-------	-----------	---------	-----------------------------------
Euphorbia abyssinica J.F.Gmel.	Euphorbiaceae	MW-034	Kulkual	Tree	Latex	Jaundice	Mixing the latex with teff powder and putting it in fire till it becomes semidy
					Root	Rabies	Crushing the root and mixing with powder of wheat or teff, finally drying it on fire
					Leaf	Cutaneous leishmaniasis	Crushing the leaf and mixing it with butter
					Latex	Skin cancer	Applying the latex to the affected area
					Root	Malaria	Crushing the root and drink with milk
					Bark	Rabies	Crushing the root and drink with milk
					Leaf	Cutaneous leishmaniasis	Crushing the leaf and mixing it with butter
					Latex	Skin cancer	Applying the latex to the affected area
					Root	Rabies	Crushing the root and drink with milk
					Bark	Malaria	Crushing the root and drink with milk
					Root	Frequent miscarriage	Root and leaf powder taken once mixed with milk

Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
Ficus vasta Forssk.	Moraceae	MW-038	Shola	Tree	Bark	Epilepsy	Fumigate the patient once daily with the smoke of the bark
					Root	Frequent miscarriage	Root and leaf powder taken once mixed with milk
					Leaf	Rabies	Washing hair with the latex of the bark
					Seed	Dry cough	A cup of seed powder decoction is given orally in the morning and evening for a week
					Seed	Retained placenta	Boil the oil of the seed together with onions and egg and allow the steam to get into the vagina cavity

Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
Hagenia abyssinica (Brae.) J. F. Gmel.	Rosaceae	MW-018	Koso	Tree	Leaf	Tape worm	Crushing the fresh leaves and mix with water and drink it once
							Drying the seed on fire and eat
							Fruit juice applied as ear drops
							Powder of fried resin taken orally mixed with water
Hordeum vulgare	Gramineae	MW-033	Gebs	Grass	Seed	Peptic ulcer disease	Crushing the leaf and mix with fresh water drink it once on empty stomach
							Drying the seed on fire and eat
Hypericum revolutum (Forssk.) Vahl	Guttiferae	MW-056	Amja	Shrub	Fruit	Earache	Crushing the leaf and eat it
							Drying the seed on fire and eat
Juniperus procera Hochst.	Cupressaceae	MW-057	Tsid	Tree	Resin	Congestive heart failure	Crushing the leaf and eat it
							Drying the seed on fire and eat
Justicia schimperiana (Hochst.Nees) T. Anders.	Acanthaceae	MW-019	Simeza	Tree	Leaf	Anthrax	Crushing the leaf and eat it
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat

Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
Kalanchoe petiolaris A.Rich.	Crassulaceae	MW-020	Andahula	Herb	Stem	Hemorrhoids	Putting the stem on fire till it becomes hot then putting it on the area of infection
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat

Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
Lathyrus sativus L.	Leguminosae	MW-044	Guaya	Herb	Seed	Constipation	Seeds eaten cooked at least once daily to overcome evacuation problem
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat

Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
Lepidium sativum L.	Cruciferae	MW-050	Feto	Herb	Seed	Wound	Powder of seed mixed with latex of *Euphorbia abyssinica* and bandaged once daily every other day
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat
							Drying the seed on fire and eat
Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
---------------------------------	-------------	-------------	--------------	--------	----------	------------------------------------	---
Linum usitatissimum L.	Linaceae	MW-021	Telba	Shrub	Seed	Anthrax	Crushing the seed with the seeds of Lepidium sativum L. or Guizotia abyssinica (L. F.) Cass. Then eating with honey on empty stomach
Lupinus albus L.	Fabaceae	MW-041	Gibto	Herb	Seed	Peptic ulcer disease	Seed
Myrica salicifolia Hochst; ex A.Rich	Myricaceae	MW-060	Shinet	Tree	Root	Headache	Pain during delivery
Olinia rochetiana A. Juss.	Oliniaceae	MW-023	Chile	Tree	Leaf	Teeth ache	Putting the seed in water till it becomes semisolid and drink it
Oxyris quadripartite Decn.	Santalaceae	MW-042	Keret	Tree	Leaf	Jaundice	Seed
Phytolacca dodecandra L’Hérit	Phytolaccaceae	MW-024	Mekan Endod	Climber	Leaf	Anthrax	Small quantity of seed and fruit is grounded with water, filtered. The resultant juice is given orally in the morning for 1 month
Phytolacca dodecandra L’Hérit	Phytolaccaceae	MW-024	Mekan Endod	Climber	Leaf	Scabies	Crushing the leaf and washing the area of infection with the crushed leaf
Phytolacca dodecandra L’Hérit	Phytolaccaceae	MW-024	Mekan Endod	Climber	Leaf	Jaundice	Powder of bark taken once mixed with diluted local beer
Phytolacca dodecandra L’Hérit	Phytolaccaceae	MW-024	Mekan Endod	Climber	Leaf	Rabies	Crushing the root and drink with honey
Phytolacca dodecandra L’Hérit	Phytolaccaceae	MW-024	Mekan Endod	Climber	Leaf	Wound	Crushing the leaf and apply it to the wound till the wound cures
Phytolacca dodecandra L’Hérit	Phytolaccaceae	MW-024	Mekan Endod	Climber	Leaf	Epitaxis	Leaf powder taken mixed with own urine
Ricinus communis L.	Euphorbiaceae	MW-047	Chakma	Shrub	Leaf	Appendicitis	Fresh pulverized leaf infused in water solution of safflower powder and one glass taken only once
Rumex nepalensis Spreng.	Polygonaceae	MW-027	Yewusha Milas	Herb	Leaf	Acute febrile illness	Crushing leaf with fresh water and wash with it
Rumex nervosus Vahl	Polygonaceae	MW-028	Ambacho	Shrub	Leaf	Wound	Crushing the leaf and mixing with benzene, then boil it, finally washing the wound with it
Ruta chalepensis L.	Rutaceae	MW-029	Tiladam	Shrub	Seed	Evil eye	Crushing the seed with the seeds of garlic and apply it on the nostril
Ruta chalepensis L.	Rutaceae	MW-029	Tiladam	Shrub	Leaf	Epitaxis	Crushing the seed with the seeds of garlic and apply it on the nostril
Skebergia capensis Sparrm.	Meliaceae	MW-046	Lol	Tree	Bark	Malaria	Powder of root and garlic mixed with water
Snowdenia polystachya (Fresen).Pilg.	Graminaceae	MW-051	Muja	Herb	Whole plant	Menorrhagia	Decoction of fresh pulverized root applied externally
Scientific name	Family name	Voucher no.	Amharic name	Habit	Part used	Used for	Preparation, dose and application
-----------------	-------------	-------------	--------------	-------	-----------	---------	---------------------------------
Solanum incanum L.	Solanaceae	MW-055	Embuay	Climber	Seed	Attention deficient disorder	Powder of seed given in small amount through the nose to help a child to be a fast learner and intelligent
Syzygium guineense (Wild.) Dc.	Myrtaceae	MW-043	Dokma	Tree	Root and leaf	Syphilis	A decoction is made from each one teaspoon of root and leaf powder and a cup of this decoction is given orally three times a day for 7 days
Trigonella foenum-graecu	Fabaceae	MW-037	Absh	Herb	Seed	Peptic ulcer disease	Putting in water, drying it, crushing and the eating by mixing with water and sugar
					Seed	Dry cough	Crushing the seed and boil with milk
					Seed	Weight loss	Putting in water, drying it, crushing and the eating by mixing with water and sugar
Descopodium penninervum Hochst.	Solanaceae	MW-022	Aluma	Tree	Seed	Wound	Crush the dried seed and apply the powder to the affected area for 3 days
Urtica simensis	Urticaceae	MW-025	Sama	Herb	Root	Peptic ulcer disease	Boil the semi-crushed leaf and eat it for 2 or 3 days
					Leaf	Malaria	The root will be crushed and dried the mixed with fresh water, drink one glass of it and drink much amount of milk
Vernonia amygdalina Del.	Asteraceae	MW-030	Gitawa	Tree	Leaf	Bladder distention	Crushing the leaf with water and drink about one glass once
Zehneria scabra (Linn. f.) Sond.	Cucurbitaceae	MW-031	Haregresa	Climber	Leaf	Diarrhea	Crushing the leaf and mix with some fresh water, finally drink one cup of it
					Leaf	Acute febrile illness	Boil the leaf in water till it evaporates and then fumigate with it
					Leaf and root	Sexual dysfunction	Bathe in the infusion of leaf and root for 7 days
					Root, bark and leaf	Gout	Decoction of root, bark and leaf and excrement of hyena employed for bathing
Zingiber officinalne Roscoe.	Zingiberaceae	MW-032	Zingibl	Bulb	Root	Bladder distention	Crushing the root with fresh water and drink about one glass once
					Root	Abdominal cramp	Crushing the root and mixing with some water then drink the filtrate
applications by the TMPs of the district. Those plants were identified and distributed in 42 families. Families, Gramineae and Solanaceae each accounts 4 (9.5%) medicinal plants followed by Fabaceae and Leguminosae, 3 (7%) each. Most of the plants collected and identified from the study area were trees (40%), followed by herbs (30%) and shrubs (25%) and (Fig. 2).

Plant parts used
According to this survey, the commonly used plant part was leaf (36.5%), followed by seed (21.2%) (Fig. 3).

![Fig. 2 Frequency distribution of growth form of medicinal plants](image)

Method of preparation, routes of administration and dose
Traditional medical practitioners used simpler techniques like crushing and powdering with the help of easily available materials like water, honey and milk for preparation of remedies to treat various human ailments as shown in Table 1. This survey also documented that most of the remedies were given orally, (44%). Topical (26.5%), nasal (25.5%), rectal (2%), vaginal (1%) and subcutaneous (1%) routes are also used. This study showed that TMPs in the district were not aware of the exact dose of remedies to be administered. They easily determined the dose depending on mainly age. The doses of 24 preparations were not determined. Healers expressed doses as a glass of, half a cup of or a teaspoon full of.

![Fig. 3 Frequency distribution of plant parts used to prepare remedies](image)

Dosage forms and frequency of administration
The documented 60 species of medicinal plants were reported to be formulated in various forms. Majority of dosage forms were decoctions 35 (38.9%) followed by liquid preparations 18 (20%) as shown in Fig. 4. Most of the preparations were given only once (Fig. 5).

![Fig. 4 Frequency distribution of dosage forms of plant remedies](image)

Solvents and additives
Forty-three percent of the formulations did not require any additive or solvent. Of the formulations that involve the use of solvents, water accounted 25 (42.4%) followed
by milk 8 (13.6). Different additives like butter, honey, sugar and others were also incorporated (Table 2).

Contraindications and side effects

According to TMPs of the area, 42 (40.4%) of the formulations were contraindicated for pregnant patients. No contraindication was indicated for 35 (33.6%) of the formulations (Table 3). Twelve (11.5%) of the preparations were free from any side effect (Table 4).

Drug food interactions

According to this study, only 17% of the formulations possessed drug food interactions, of which 12 (66.7%) were exhibited by preparations for gastrointestinal problems. Synergistic reactions were observed in poly herbal preparations like in the case of remedies for evil eye.

Storage

Asked on how they store plant remedies, healers responded that they don't normally store plant preparations; rather they collect fresh material and formulate remedies. For those medicinal plants which are not easily available and which are seasonal, they collect and store in papers, horns or and in bottles. Only three percent of the total preparations were stored in cool and dry places (Fig. 6).

Informant’s consensus

Depending on the data obtained, seven use-categories (Table 5) were set in which 127 use reports were documented. As depicted below, informant consensus factor values and the mean ICF are close to 1. There is high uniformity in plant consumption for respiratory diseases.

Fidelity level

In the survey, the FL values were analyzed for seven plants in treating three medical conditions (Table 6).
Croton macrosacht(hus) (FL = 0.78) is reported by high number of informants (36%) in treating malaria. Allium sativum (FL = 0.75) is more preferable than Echinops kebericho (FL = 0.64) in treating evil eye.

Table 5 Informants’ consensus score

Use category	Species (n)	Use-reports (Ur)	ICF (nUr/nUt - 1)
Gastrointestinal problems	7	15	0.57
Central nervous system disorders	9	18	0.53
Respiratory problems	2	6	0.8
Urinary tract problems	7	15	0.57
Skin problems	8	13	0.42
Cardiovascular disorders	13	28	0.55
Other organ problems	14	32	0.58
Mean ICF			0.57

Table 6 FI for plant species used to treat evil eye, malaria and rabies

Ailments	Percentage of informants	Species	Np	N	FI (Np/N)
Evil eye	30	Allium sativum	6	8	0.75
	34	Echinops kebericho	7	11	0.64
Rabies	9	Guizotia abyssinica	4	5	0.8
	34	Phytolacca dodecandra	8	9	0.89
Malaria	19	Urtica simensis	10	15	0.67
	36	Croton macrosacht(hus)	7	9	0.78
	5	Euphorbia abyssinica	5	12	0.42

Np number of TMPs who used the medicinal plant for the same purpose, N number of TMPs who used the medicinal plant for various purposes.

Table 7 Threats to medicinal plants

Threats to medicinal plants	% of TMPs
Drought	55.6
Overgrazing	22.2
Firewood collection	15.6
Agricultural expansion	4.4
Soil erosion	2.2

Discussion

This study revealed that about 60 plant species find applications by the TMPs of the woreda. Those plants were identified and distributed in 42 families. Families, Graminae and Solanaceae each accounts 4 (9.5%) medicinal plants followed by Fabaceae and Leguminosae, 3 (7%). But Fabaceae was the dominant family according to the conducted in Hawasa [13], Wayu Tuka District of Oromiya region [14] and Benshangul-Gumuz [15]. In addition a study done in Spain [16], Korea [17] and Loma and Gena Bosa Districts [18] showed that Asteraceae has the highest number of medicinal plants. Caesalpiniaceae was the family with higher number of plants according to the study in Nigeria [19].

The ailments reported to be handled by the TMPs of the district are those disorders most prevalent in the district. According to the result of this study, the majority of plants were reported to treat wound followed by malaria, evil eye and anthrax. However, a study done in Hawasa [13] showed that stomach ache is the disease treated by large number of medicinal plants. In addition a study done in Sheko ethnic group of Ethiopia [8] showed that skin and gastrointestinal problems were the commonly treated diseases. According to a study in Lebanon [20], most medicinal plants were used to treat gastrointestinal disorders, kidney and urinary diseases as well as blood and cardiovascular diseases. Diarrhea was the commonly treated disease in Benshangul-Gumuz [15]. This discrepancy may be the result of the difference in the climatic, ethnic, and hygienic conditions the areas. The current study is also unlike the one done in Israel [21]. Mental illnesses were commonly treated according to the study in Kenya [22].

The most commonly used plant part was leaf in this study area which is in agreement with other studies. [8, 13, 15, 18, 19, 21, 23–26]. Considerable threat to the mother plant radiates to the various parts of the plant. However, root was the commonly used plant part according to a study done in Benshangul-Gumuz [15]. Medicinal plants were formulated in various forms using various solvents and additives. They were formulated as decoctions, liquid preparations and pastes. This is supported by a study done in Korea [17], Israel [21], Gondar zuria woreda [24] and Hawasa [13]. However, in a study done in Chencha [18] and Tewledere districts [27], the majority of remedies were formulated as concoctions. Practitioners prepare remedies in such a simple manner without further processing which may be due to lack of education and processing instruments. TMPs of the current study area used butter, charcoal, sugar, milk and salt as additives to increase the efficacy and potency of the remedies. The rationale behind the use of honey and sugar is just to make the formulation palatable. This is supported by a study done in Israel [17] and Hawasa [13].
This study showed that there was no harmony in measurement or unit used among practitioners. Most informants stated measuring units like cup, spoon, bottle and handful which lack accuracy. This problem was also observed in studies done elsewhere which may be due to lack of education [13, 14, 19, 28].

This study revealed that higher sizes of preparations were given orally which agrees with results of other studies [11–13, 15, 17, 22–25, 27–29]. Practitioners prefer simple routes like topical and oral due to their inability to administer remedies in other routes like intravenous. Oral administration allows relatively fast physiological action of remedies on pathogens and enhance its efficacy. However, studies conducted in Sheko ethnic group in Southwest Ethiopia [8] revealed that most preparations were prescribed for administration to the cutaneous route. According to the result of the current study, most formulations were given only once. This may be due to the fact that most practitioners do not know the actual dose to be given and fear the risk that comes at the end of the treatment due to overdose and continuous administration.

One-third of the medicinal plants recorded were trees. However, other research works indicate the abundant use of herbs [8, 22, 24, 25, 27, 30]. The availability of most woody plants in the area might have enforced the local inhabitants to rely on trees.

Most of the formulations were contraindicated for pregnant patients. This is due to the healers’ belief that it may harm the fetus. No contraindication is indicated for one-third of the formulations. Most preparations taken orally cause nausea, vomiting and abdominal cramp whereas, some of the preparations are free from any side effect which may be due to the lack of follow up of patients by healers once they gave remedies and due to illiteracy of the patients.

This study revealed that, only some of the formulations possessed drug food and drug–drug interactions, this may be because most practitioners are illiterate, they do not know about the interaction of their remedies with modern medicines. In addition practitioners do not follow the progress of their patients, hence have little information on drug food interaction. Synergistic reactions were observed in poly herbal preparations like in the case of remedies for evil eye.

According to this study, practitioners do not normally store remedies which is in contrast to the study done in Addis Ababa [28]. For those medicinal plants which are not easily available and which are seasonal, practitioners collect and store in papers, horns and with in bottles. Only three percent of the total preparations are stored in cool and dry places. This may be due to the lack of modern education about drug storage and other health related issues.

A total of 127 URs from 60 species of plants were recorded which were assigned to seven use categories. Analysis of ICF shows that there exists a high evenness of plant consumption among the population which is in harmony with the study in Chencha [18]. The low ICF for skin problems may because of a multifaceted preparation of plants required to treat disease. Majority of plant species have a number of medicinal values, which result in higher variety of use reports.

Croton macrostachyus (FL = 0.78) is reported by high number of informants (36%), hence more preferable than *Euphorbia abyssinica* (0.42) and *Urtica simensis* (0.67) in treating malaria. However, despite *Allium sativum* (FL = 0.75) is reported by less figures of informants (30%), than *Echinops kebericho* (FL = 0.64) which is mentioned by relatively higher percentage of practitioners (34%), it seems that *Allium sativum* is more preferable than *Echinops kebericho* in treating evil eye. But a study done in Sheko [8] indicated that *Ocimum lamiifolium*, *Phytolacca dodecandra*, *Amaranthus dubius* and *Amaranthus graecizans* were the medicinal plants assigned with the highest FL values. This discrepancy may be the result of the differences in the type of diseases dominating the areas, and the level of availability of the medicinal plants.

According to the results of this study, drought is the most serious threat to medicinal plants followed by overgrazing. This is in conformity with the survey conducted in Gemad district [25] and Kilte Awulalo [27], but according to a study done in Loma and Gena Bosa [26], agricultural expansion was the major threat followed by timber and other demands. This is probably due to the increasing number of population. However, study done in Hawasa city [13] indicated urbanization as the most serious threat for medicinal plants.

Conclusion

Dega Damot district is loaded in its medicinal plant diversity and indigenous knowledge though plants are highly affected by drought, overgrazing and firewood collection. Therefore awareness activities must be created among the district’s population by concerned governmental and nongovernmental organizations about the value of medicinal plants and conservation of these plants. The healing potential and associated adverse issues of the claimed medicinal plants should be assessed before proposing for a broader utilization.

Additional file

Additional file 1. Semi-structured interview questions.
Abbreviations
HIV: human immunodeficiency virus; ICF: informant’s consensus factor; PUD: peptic ulcer disease; TM: traditional medicine; TMPs: traditional medical practitioners; UR: use-report.

Authors’ contributions
All of the authors had magnificient contribution in the design of the study, data collection and analysis and preparation of the manuscript. MW and TA played a pivotal role in writing the proposal and designing the study. MW was instrumental during the data collection, analysis and manuscript preparation. GD involved in the discussion as well as manuscript preparation of this paper. All authors read and approved the final manuscript.

Author details
1 Pharmacy Department, Debre Markos University, Gojjam, Ethiopia. 2 School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia. 3 Public Health Department, Debre Markos University, Gojjam, Ethiopia.

Acknowledgements
We are indebted to the people of Dega Damot district for their unreserved collaboration and hospitality. We have appreciated the Dega Damot district offices of Rural Agricultural Development, Health, Administration and Plan and Finance for their provision of information during data collection. We thank university of Gondar and Debre Markos University for their support to conduct our study and biology department, university of Gondar for the provision of some facilities during identification of plants. Our gratitude also goes to Mr. Abyu Eniyew, a botanist at University of Gondar, who identified the plants. The role of the west Gojjam zone communication office and Amhara region communication beaurue was also instrumental.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data and materials will be available on request at any time.

Ethical approval and consent to participate
The study was ethically approved by the Graduate Program Evaluation Committee of the College of medicine and health sciences, University of Gondar. Prior to the initiation of the data collection, the objective of the study was clarified to the TMPs, verbal consent was obtained from them. Letter of collaboration was sent to district officials of the study area and biology department at University of Gondar.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 December 2015 Accepted: 5 April 2017 Published online: 18 April 2017

References
1. Dejene T. An overview of the role of traditional medicine in Ethiopia. J Res Arts Educ. 2011;2(4):34–40.
2. Dawn M. Traditional medicine in contemporary context protecting and respecting indigenous knowledge and medicine. J Aborig Health. 2003;3(1):22–30.
3. Tefeni O, Sundara R. Demand for traditional health care services in rural Ethiopia. Middle East J Sci Res. 2013;13:01–10.
4. Kebede D, Alemayehu A, Binyam G, Yusuf M. A historical overview of traditional medicine practices and policy in Ethiopia. Ethiop J Health Dev. 2006;20(2):128–34.
5. Abebe D, Ayehu A. Medicinal plants and enigmatic health practices of northern Ethiopia. Addis Ababa, Ethiopia: B.S.P.E, 1993 [Original from the University of California].
6. Arnold N. Modernity in traditional medicine: women’s experiences and perceptions in the Kamba health district, SW region, Cameroon. UMEA Univ. 2011;4(2):15–42.
7. Wondwosen T. Impacts of urbanisation on the traditional medicine of Ethiopia. Anthropologist. 2005;8(1):43–52.
8. Mirutse G, Zemedra A, Zerihun W. Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. J Ethnopharmacol. 2010;132:75–85.
9. Elias A, Tesfaye G, Bizatu M. Aspects of common traditional medical practices applied for under-five children in Ethiopia, Oromia region, eastern-Harargie district, Dadar Woreda. Commun Min Health Educ. 2013;3(6):1–8.
10. Sara A, et al. Traditional healing practices among American muslims: perceptions of community leaders in southeast Michigan. J Immigr Minor Health. 2011;13(5):17–28.
11. Bhat JA, Kumar M, Negi A, Todaria N. Informants’ consensus on ethnomedicinal plants in Kedarnath Wildlife Sanctuary of Indian Himalayas. J Med Plants Res. 2013;7(4):148–54.
12. Alexiades MN. Collecting ethnobotanical data: an introduction to basic concepts and techniques. Adv Econ Bot. 1996;10:53–96.
13. Reta R. Assessment of indigenous knowledge of medicinal plant practice and mode of service delivery in Hawassa city, southern Ethiopia. J Ethnopharmacol. 2013;14(9):517–35.
14. Moa M, et al. An ethnobotanical study of medicinal plants in Wayu Tuka district, East Welega zone of Oromia regional State, West Ethiopia. J Ethnobiol Ethnomed. 2013;9:68.
15. Tefeni F, Tefeni G, Kaleb A. Ethnomedical survey of Berta ethnic group Assosa Zone, Benishangul-Gumuz regional state, mid-west Ethiopia. J Ethnobiol Ethnomed. 2009;5:14.
16. Gorka M, et al. Medicinal plants traditionally used in the Northwest Spain. J Ethnopharmacol. 2013;14(9):01–22.
17. Mi-Jang S. Ethnopharmacological survey of medicinal plants in Jeju Island, Korea. J Ethnobiol Ethnomed. 2013;9:48.
18. Mohammed A, Seyoum G. Medicinal plants biodiversity and local health-care management system in Chencha district; Gamo Gofa, Ethiopia. J Pharmacogn Phytochem. 2013;2(1):284–93.
19. Abubakar M, Musab A, Ahmeda M. The perception and practice of traditional medicine in the treatment of cancers and inflammations by the Hausa and Fulani tribes of Northern Nigeria. J Ethnopharmacol. 2007;11:625–9.
20. Taha D, et al. Survey of medicinal plants currently used by herbalists in Lebanon. Pak J Bot. 2013;45(2):543–55.
21. Said O, et al. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J Ethnopharmacol. 2002;83:251–65.
22. David M, et al. Traditional healers and their provision of mental health services in cosmopolitan informal settlements in Nairobi, Kenya. Afr Technol Policy Stud Netw. 2013;67:228–57.
23. Gidley Y, Samuel Z. Ethnobotanical study of traditional medicinal plants in Gindeberet district, western Ethiopia. Mediterr Med. 2011;5(26):49–54.
24. Muthuswamy R, Mequente S. The study of spiritual remedies in orthodox rural churches and traditional medicinal practice in Gondar Zuria district, Northwestern Ethiopia. Phycoled. 2009;3(1):176–83.
25. Kalayu M, Gebru T, Teklemichael T. Ethnobotanical study of traditional medicinal plants used by indigenous people of Gemad district, Northern Ethiopia. J Med Plants Stud. 2013;1(4):32–7.
26. Mathewos A, Sebsebe D, Zemedha A. Ethnobotany of medicinal plants in Loma and Geni Bosa districts of Dawro Zone, southern Ethiopia. Trop Cl J Herb Med. 2013;2(9):194–212.
27. Abrahata T, Balchaa A, Minurse G. An ethnotraditional study of medicinal plants used in Kitale Awulaelo district, Tigray region of Ethiopia. J Ethnobiol Ethnomed. 2013;9:65.
28. Wubet B, Mirutse G, Tilahun T. The contribution of traditional healers’ clinics to public health care system in Addis Ababa, Ethiopia: a cross-sectional study. J Ethnobiol Ethnomed. 2011;7:39.
29. Roy L. The effect of Russian traditional medicine on the health care of Russian immigrants to America. An honors thesis. Submitted to University Honors College, Texas Tech University. 2011.
30. Mohammed A, Berhanu A. Ethnobotanical survey of traditional medicinal plants in Tehuledere district, South Wollo, Ethiopia. J Ethnopharmacol. 2013;7(4):201–6.