A facile and effective strategy to synthesize orthorhombic
Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ with blue-green persistent luminescence

Juan Han1, Ziqiu Jiang1, Wenyan Zhang1,4, Lingyun Hao1, Yaru Ni2,3, Chunhua Lu3, and Zhongzi Xu2,3

1College of Material Engineering, Jinling Institute of Technology, Nanjing, China
2Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, PR China
3State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, PR China

E-mail: wiseyanyan@jit.edu.cn

Abstract. Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ is known as a high efficient material for generating persistent luminescence. Due to its low structural stability, it is a challenge to prepare such orthorhombic material in large scale. In this work, a facile and effective strategy was designed for the preparation of Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ with high purity by combining the advantages of solid state reaction and chemical vapor deposition method. The prepared Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ could effectively store the UV light energy and emit blue-green luminescence for 240 min by slow liberation of photo-excited electrons. Its blue-green afterglow was composed of two luminescent emissions which released from the Eu centers located in different crystal fields.

1. Introduction

Afterglow materials have attracted a great deal of interest since ancient years. Owning to its special ability to store and release light energy, such material could be applied widely for the rewritable optical memory media, security signs, traffic signage, dial markers and medical diagnostics[1, 2]. Persistent luminescence of materials depends not only on their crystal structure but on the distribution and concentration of luminescent centers inside the materials. Consequently, the development of afterglow material was rather slow until the discovery of SrAl$_2$O$_4$:Eu$^{2+}$,Dy$^{3+}$ in 1996, which made a significant breakthrough in this field as it extended the afterglow duration from minutes to tens of hours[3]. From then on, people found it the key to enhance the persistent luminescence is to construct appropriate trap levels inside the materials to realize effective capturing, storing and slowly releasing of excited carriers (electron and hole). After that, extensive research was triggered on inventing new persistent phosphors as well as bringing out reasonable mechanism models of long-lasting luminescence. Silicates, germinate, gallate and titanate materials were also found to be promising hosts for storing and releasing photo-generated carriers with high efficiency[1-6]. However, the aluminates phosphors are still recognized to be the most effective afterglow material at present due to its high brightness, long phosphorescence time, suitable chemical stability, non-toxicity, and low cost.

Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ is a “mysterious” species in the family of aluminates afterglow phosphors. Due to its low structural stability, such material could only be prepared in narrow and strict synthesis conditions. Smets et al. firstly reported the synthesis of Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$ and suggested that it was a single phase with similar crystal structure like Sr$_{1.33}$Pb$_{0.67}$Al$_6$O$_{11}$, which could yield high efficient
luminescence [7]. Wang et al. named such material as “so-called Sr2Al6O11:Eu2+” because their work indicated that the Sr2Al6O11:Eu2+ was not a single-phase crystal but a mixture of SrAl2O4 and Sr2Al6O15 [8]. Furthermore, it is ambiguous that whether Sr2Al6O11 is an appropriate matrix for the generation of persistent luminescence. Takashi et al. studied the optical properties of Sr2Al6O11:Eu2+,Dy3+ and found that the material could not yield persistent luminescence[9]. Song et al. also reported that the Sr2Al6O11:Eu2+ didn’t show obvious persistent luminescence whereas the Sr2Al6O11:Eu2+,Er3+ could emit blue phosphorescence longer than 14 h [10]. Xue et al. investigated the effects of sintering temperature on the phase formation and luminescent properties of Sr2Al6O11:Eu2+,Dy3+ [11]. However, as the phosphor they synthesized was a mixture of SrAl2O4:Eu2+,Dy3+, Sr2Al6O11:Eu2+,Dy3+ and Sr4Al14O25:Eu2+,Dy3+. Though Sr2Al6O11 was main phase in the mixture, the afterglow luminescence they reported was actually a mingled emission of those three phosphors [11]. After that, little progress was got about the structure and optical property of Sr2Al6O11:Eu2+,Dy3+.

To make clear about the optical property of Sr2Al6O11:Eu2+,Dy3+, it is necessary to obtain such “mysterious” species with high purity and favorable quality. In this work, an effective and moderate strategy was proposed for the synthesis of such phosphor. Sr2Al6O11:Eu2+,Dy3+ with high purity could be obtained by that strategy which combined the advantages of solid state reaction and chemical vapor deposition method. The prepared Sr2Al6O11:Eu2+,Dy3+ exhibited favorable persistent luminescence at room temperature.

2. Material and Experiments
Al2O3, Eu2O3 (99.9%), Dy2O3 (99.9%), H3BO3 (99.5%), SrCO3 (99.5%), urea (99.5%) and active carbon (99.5%) were purchased from Guoyao Corporation. Reactant ratio for Sr2Al6O11:Eu2+,Dy3+ were 0.01Eu2O3+0.02Dy2O3+0.97SrCO3+1.5Al2O3+0.4H3BO3+1urea (mol%). A blank sample, the Sr2Al6O11, was prepared by the same reactant ratio of Sr2Al6O11:Eu2+,Dy3+ but without the addition of Eu2O3 and Dy2O3. Then the reactants were ground in an agate mortar to mix them together, and pressed into pellets.

As shown in Figure 1, solid state reaction was carried out in a tubular oven. The tubular hearth is made up of two regions which were regulated by independent temperature-control system. Active carbon particles were placed at the first region and heated at 700 °C to produce large amount of thermal CO gas (2C+O2→CO). The pellets were located at the second region and the second region was then heated at 1000 °C for 2h. Ar gas flew from the first region to the second region continuously to deliver the CO gas to the pellets.

![Figure 1. Scheme of synthesis process.](image)

Material structures were investigated by X-ray diffraction (Thermal ARL X’TRA) and Fourier transforming infrared spectra (FTIR, Nicolet IS-10, 4000-400 cm⁻¹). Photo-luminescence (PL) and afterglow spectra were analyzed by fluorescence spectrometer (Edinburghinstruments FS5). Optical properties were also studied by incident reflection (UV-Vis-NIR spectrometer, Shimadzu, UV 3101PC). Thermal behavior was analyzed by the DSC-TG characterization (NETZSCH STA 409 PC).
3. Results and discussion

DSC-TG curves indicated the Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ could be obtained at 1000°C as there were neither weight loss nor thermal variation above that temperature (Figure 2(a)). XRD pattern shows the prepared Sr$_2$Al$_6$O$_{11}$ has high purity as all the diffraction peaks matched well with the crystal planes of orthorhombic Sr$_2$Al$_6$O$_{11}$ (JCPDS#72-7796, Figure 2(b)). The orthorhombic Sr$_2$Al$_6$O$_{11}$ structure was made up by two kinds of planes: the AlO$_4$ plane which was connected by corner-shared AlO$_4$-tetrahedra groups, and the AlO$_6$ plane which was connected by edge-shared AlO$_6$-octahedra groups (Figure 2 (c))[7, 9]. The AlO$_4$ and AlO$_6$ planes are cross-linked by AlO$_4$-tetrahedra. FTIR spectra reveal the existence of the two planes, as shown in Figure 2(d). The FTIR bands at 850, 780 and 643 cm$^{-1}$ corresponds to the stretching vibration of AlO$_4$-tetrahedra. The 523, 476 and 430 cm$^{-1}$ bands are assigned to the vibration of AlO$_6$-octahedra[12].

In fact, the orthorhombic Sr$_2$Al$_6$O$_{11}$ is fairly unstable as its zigzag AlO$_4$ planes tends to transform spontaneously to release its structural stress[9]. That enhanced the difficulty in stabilizing the Sr$_2$Al$_6$O$_{11}$ structure during the synthesis process. So the Sr$_2$Al$_6$O$_{11}$ structure could only be synthesized in narrow and strict conditions. Herein, as the CO gas was produced from the oxidation of carbon, they provided the pellets with not only a reductive atmosphere but high thermal energy to accelerate the crystallization of Sr$_2$Al$_6$O$_{11}$ phase (Figure 1). Intermediate products, such as CO$_2$ and volatile boric acid, have little influence on the crystallization of Sr$_2$Al$_6$O$_{11}$ as they were removed from the reaction system with the flow of CO gas. Thus the preparation strategy in this work could facilitate the formation of high purity Sr$_2$Al$_6$O$_{11}$ by taking advantages of solid state reactions and CVD method. The 909 cm$^{-1}$ band is assigned to the vibration of residual amorphous boron oxygen compounds, indicating that the boric acid could help to prevent the transformation of Sr$_2$Al$_6$O$_{11}$ and improve its stability during the reaction.

Under 365 nm excitation, Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ exhibited a broad emission band in 375-650 nm (Figure 2(a, b)). The blue-green emission band centered at 492 nm is mainly attributed to the 4f65d-4f7 electron transition of Eu$^{2+}$ ions. Excitation band of Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ overlapped with the emission band at 375-450 nm, indicating the emission light at 375-450 nm could be applied by the Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ to excite second emission lights (Figure 2(a)). That was supported by the reflection spectra, which show that the Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ could absorb 340-475 nm light whereas

![Figure 2](image-url)
the Sr2Al6O11 without doping have no absorption at that range (Figure 2(c)). Those absorbed light was captured by the Eu2+ ions to generate its 4f5d-4f6 electron transitions. In addition, the weak absorption at 797-1655 nm are assigned to the Dy3+ f-f electron transitions and confirms the doping of Dy3+ ions (Figure 2(c,d)).

The 492 nm emission band is asymmetric and could be de-convoluted into two Gaussian bands at 485 and 521 nm (Figure 2(b)). The splitting of 492 nm band originated from the variation of crystal fields around the Eu(1) and Eu(2) sites, as the 4f5d-4f6 electron transitions of Eu2+ ions are very sensitive to coordinate environments. The 492 nm emission of Sr2Al6O11:Eu2+,Dy3+ could still be detected after 240 min (Figure 2(e)) [7,9,13]. The profile of 492 nm emission did not change with the decay of emission intensity, indicating the Eu(1) and Eu(2) sites both contribute to the blue-green persistent luminescence (Figure 2(f, g)).

Figure 3. Excitation and emission spectra of Sr2Al6O11:Eu2+,Dy3+ (λex=365nm, λem=492nm); (b) Gaussian fitting of 492 nm emission band; (c) UV-vis-NIR spectra of Sr2Al6O11:Eu2+,Dy3+ and Sr2Al6O11; (d) Scheme for the electron levels of Dy ions; (e) Persistent luminescence as a function of time for Sr2Al6O11:Eu2+,Dy3+ (Inset, CIE chromaticity diagram of Sr2Al6O11:Eu2+,Dy3+); (f) Emission spectrum of Sr2Al6O11:Eu2+,Dy3+ (1 min after excitation); (g) Emission spectrum of Sr2Al6O11:Eu2+,Dy3+ (240 min after excitation)
Modified Clabau theory is recognized to be a reasonable model to explain the afterglow mechanism of Eu$^{2+}$,Dy$^{3+}$ doped aluminates[14-16]. According to that theory, the afterglow emission process of Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ could be speculated as follows (Figure 4): (1) the doping of Eu$^{2+}$ and Dy$^{3+}$ ions generated V$_o$ and V$_{Sr}$ defects; (2) Under UV irradiation, the electrons excited from Eu$^{2+}$ 4f7 to 4f65d1 level could move into conductive band (CB), while some electrons were excited from valence band (VB) to Eu$^{3+}$ 4f7 level; (3) V$_o$ defects trapped the electrons released from CB, while V$_{Sr}$ defects trapped the holes from VB; (4) The trapped electrons and holes were released slowly from V$_o$ and V$_{Sr}$ to yield the blue-green persistent luminescence.

![Figure 4. Proposed afterglow mechanism for Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$](image)

4. Conclusion

In this work, we report the synthesis and optical properties of a distinctive afterglow material Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$. It was simple and effective to synthesize the orthorhombic Sr$_2$Al$_6$O$_{11}$:Eu$^{2+}$,Dy$^{3+}$ with high purity. Under UV excitation, the special aluminates exhibit broad emissions at 375–650 nm and the 375-450 nm emission lights could be utilized by the material to excite second emission. The Eu(1) and Eu(2) sites in Sr$_2$Al$_6$O$_{11}$ lattice both contribute to the blue-green persistent luminescence.

Acknowledgments

This work is supported by Jiangsu Provincial Natural Science Foundation for Youths (No. BK20130095), Educational Commission of Jiangsu Province (15KJD430014), National Natural Science Foundation of China (No.51502143), Innovation Foundation for scientific research (2014-jit-n-06), and Key University Science Research Project of Jiangsu Province (No.15KJB430022).

References

[1] Li Y, Gecevicius M, Qiu JR 2016 Chem. Soc. Rev. 45 2090.
[2] Pan ZW, Lu YY, Liu F 2012 Nat. Mater. 11 58.
[3] Matsuzawa T, Aoki Y, Takeuchi N, et al. 1996 J. Electrochem. Soc. 143 2670.
[4] Zhang X, Xu XH, He QL, et al. 2013 J. Solid State Sci. Technol. 2 R225.
[5] Ueda J, Shinoda T, Tanabe S 2013 Opt. Mater. Express 3 787.
[6] Zhuang YX, Katayama Y, Ueda 2014 J. Electrochem. Soc. 136 2119.
[7] Wang D, Wang MQ 1999 J. Mater. Sci. Lett. 18 1433.
[8] Takeda T, Kasori T, Uheda K, et al. 2002 J. Japan Soc. Power and Power Metall. 49 1128.
[10] Song HH, Liu WF 2008 Rare Metal Mater. Eng. 37 1167.
[11] Xue HW, Cui C, Huang P, et al. 2009 J. Synth. Cryst. 38 1384.
[12] Tarte P 1967 Spectrochim. Acta Part A 23 2127.
[13] Huang P, Cui CE, Hao HZ 2009 J. Sol-Gel Sci. Technol. 50 308.
[14] Clabau F, Rocquefelte X, Jobic S, et al. 2005 Chem. Mater. 17 3904.
[15] Clabaua F, Rocquefeltea X, Jobica S, et al. 2007 Solid State Sci. 9 608.
[16] Ngaruiyaa JM, Nieuwoudt S, Ntwaeaborwa OM, et al. 2008 Mater. Lett. 62 3192.