Lipine grain and amido-concentrative additives in young cattle feeding

V F Radchikov¹, V P Tzai¹, M I Slozhenkina², I F Gorlov², A A Mosolov², V N Kurtina¹ and M E Spivak²

¹The Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Husbandry, 11 Frunze street, Zhodzina, 222163, Belarus
²Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, 400131, 6, Rokossovskogo street, Volgograd, Russian Federation
³Vitebsk state academy of veterinary medicine, 11 Dovatora street, Vitebsk, Belarus

E-mail: labkrs@mail.ru

Abstract. The development of intensive forms of animal husbandry and the consistent improvement of their efficiency require solving both technical problems and issues of feeding and using full-fledged and cost-effective feed for all types of bred animals. This article presents data on the use of feed additives containing natural antioxidants in the aspect of influence on the quality indicators of the resulting meat. The assessment was carried out after a control slaughter at the age of 120 days in the amount of 3 heads from each group. The results of physical and chemical tests of rabbit meat of experimental groups are presented, and the positive effect of natural additives "Vitazar" and "Ecostimul" on the quality indicators of raw meat is determined.

1. Introduction
Increase in the efficiency of animal feed usage and in the manufacturing of livestock products, the reduction of its cost can be achieved by feeding animals with balanced rations including such important nutrients as protein, macro- and microelements [1-5].

Protein is one of the main components in the nutrition of farm animals. However, the provision of their diets often does not meet science-based standards. The deficit of the protein is about 10-30% of the needs of animals [6-11].

Along with protein rations must be balanced in terms of a number of macro- and microelements that play an important role in all metabolic processes of the body, they are part of the tissues and body fluids, they take part in the synthesis of organic compounds that enhance the processes of digestion, absorption and assimilation of digested feed nutrients, contribute to creation of an environment in which hormones and enzymes become active [12-15].

The lack of such important nutrients as protein, macro- and microelements in the diets leads to a decrease in the efficiency and the productivity of animal feed and to losses of a significant part of livestock products and an increase in its cost [16-19].

One of the ways to improve the efficiency of feed is the balancing of rations using protein-vitamin-mineral supplements (PVMS), which activate metabolic processes in the body of animals, increase their productivity by 10-15%, and in some cases up to 20% or more [20-23].
PVMS can be prepared in any farm if the appropriate components are available, but it is best to prepare them in plants specializing in production of compound feed. More than 2 million tons of grain fodder, which is not enriched with all necessary nutrients, is used for feeding animals in farms, due to the absence of the necessary components and the impossibility of purchasing them. In this regard, the genetic potential of animal productivity is used only by 60-70%; overconsumption of feed in comparison with scientifically based norms exceeds 30-40% [24-27].

Recently, PVMS, premixes and concentrates have been imported to our republic from France, Germany, Poland, Croatia and other countries. These supplements are very expensive and are purchased for foreign currency. Domestic producer do not manufacture enough PVMS and PVMS for cattle are practically not produced in our country. Therefore, it is necessary to develop new PVMS, which are not less qualitative in their feed value than existing domestic and foreign additives. They should be competitive in quality, productive action, cost and at the same time should be prepared using cheap local raw materials – secondary products of the local processing industry [28-31].

The purpose of the research is to develop protein-vitamin-mineral supplements (PVMS) and to study the effectiveness of their use in feeding young cattle.

The investigation program included the following objectives:

- analysis of the chemical composition of feed rations of young cattle in the farms of the republic;
- development of new PVMS for young cattle on the basis of the existing deficiency of nutrients and biologically active compounds in the diets of livestock;
- study of the effectiveness of feeding the fattening cattle with grain forage enriched with the developed PVMS in a comparative aspect;
- establishment of the economic efficiency of using PVMS in feeding young cattle.

2. Methods and materials

On the basis of the data obtained in the analysis of feed rations of young cattle, new PVMS have been developed (table 1).

Table 1. The composition of PVMS.

Components	Composition I	II	III	IV
Lupine	40	40	40	-
Complex mineral feed additive (CMFA)	30	30	30	70
CMFA №1	20	-	-	20
CMFA №2	-	20	-	-
CMFA №3	-	-	20	-
Premix PKR-2zh	10	10	10	10

Components in 1 kg of PVMS:

- Dry matter, g: 859, 859, 859, 859
- Feed units: 0.57, 0.57, 0.57, 0.38
- Metabolizable energy, MJ: 6.35, 6.35, 6.35, 4.6
- Crude protein, g: 316, 316, 316, 376
- Crude fiber, g: 87, 87, 87, 75
- Starch, g: 120, 120, 120, 133
- Sugar, g: 8, 8, 8, 2
- Crude fat, g: 24.2, 24.2, 24.2, 10.2
- Calcium, g: 26.1, 25.3, 26.1, 25.37
- Phosphorus, g: 9.8, 9.8, 9.8, 7.84
- Magnesium, g: 2.8, 2.8, 2.8, 2.8
- Potassium, g: 6.5, 6.5, 6.5, 3.43
- Sodium, g: 22.2, 24.2, 22.2, 22.5
Sulfur, g
Iron, mg
Copper, mg
Zinc, mg
Cobalt, mg
Manganese, mg
Iodine, mg
Vitamins: A, thousand IU
D, thousand IU
E, mg

The protein part of PVMS in No. 1, 2 and 3 consisted of lupine variety “Mirtan” – 40% and amide concentrate additive (ACA) – 30%, in No. 4 – 70% ACA; the mineral part in the PVMS was represented by the corresponding complex mineral feed additive (CMFA)– 20% and the PKR-2 premix – 10%.

CMFA No. 1 consisted of the following components, in %: halite waste – 26, phosphogypsum–24, dolomite powder–10, tricalcium phosphate–20 and sapropel–20 and was standard. In CMFA No. 2 defluorinated phosphate was used instead of tricalcium phosphate, in CMFA No. 3 sapropel from Lake Kelpenitsa, situated in Baranovichi region of Russia, was used instead of the same amount of sapropel from Lake Sergeevskoye. PVMS No. 4 included a standard CMFA No. 1.

The composition of the PKR-2zh1 premix is shown in table 2.

Table 2. The composition of the premix (per 1 ton).

Components	Unit of measurement	PKR-2zh1
Vitamins: A	million IU	1500
D	million IU	380
E	g	1000
Iron	g	3000
Copper	g	500
Zinc	g	2500
Cobalt	g	90
Manganese	g	4000
Iodine	g	12
Selenium	g	17
Santohin	g	1250
Filler	kg	up to 1000

The scientific and economic experiment was carried out on four groups of bulls, consisting of 12 numbers of cattle in each, with an initial live weight 300-310 kg at the beginning of the research (table 3). The experiment lasted 62 days.

Table 3. The scheme of the experiment.

Groups	Numbers of cattle in a group	Features of the diet
I control group	12	Basic diet (BD) + PVMS №1
II control group	12	BD + PVMS №2
III control group	12	BD + PVMS №3
IV control group	12	BD + PVMS №4

The differences in feeding consisted in the fact that the grain fodder of the young animals of the 1st group included PVMS No. 1, II –PVMS No. 2, III – PVMS No. 3, IV – PVMS No. 4. Grain fodder was...
represented mainly by barley. A protein-vitamin-mineral supplement made up for 20% of the missing protein.

All the experimental livestock were in the same conditions: feeding was carried out twice a day according to the standards of the All-Union Agricultural Academy (1985), drinking was carried out from automatic drinkers. The rations were combined and adjusted according to the needs of the young cattle and the chemical composition of the feed.

During the research, the following indicators were studied:

- chemical composition of the feed – by sampling and analysis;
- feed consumption based on the data of weighing the initial amount of the feed and its leftovers during the control feeding once a decade on two adjacent days;
- morpho-biochemical composition of blood - by taking blood from the jugular vein 2.5-3 hours after morning feeding, stabilizing EDTA- 2Na (2.0-2.5 U/ml) in the blood of 3 individuals from each group (both in scientific and economic, and physiological experiments);
- intensity of animals growth – according to the data of monthly weighing of each bull before feeding;
- economic effect of feeding – by determining the level of consumption of the fodder aimed at obtaining the increase in livestock productivity;
- the economic efficiency of raising and fattening of bulls.

The analysis of the chemical composition of feed and metabolic wastes was carried out in the laboratory of biochemical analyzes of the Republican Unitary Enterprise “The Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Husbandry” according to the generally accepted methods of zootechnical analysis.

The study of the digestibility of nutrients in the diet was carried out in the physiological department of the laboratory. In the scientific and economic experience the live weight of the animals corresponded to accepted norms. The nutritional value of the rations during the physiological experiment was calculated based on the actually consumed feed. The duration of each physiological experiment was 30 days, including 7 days of the reference period. Each group consists of 3 individuals in it.

In physiological experiments, such parameters were studied:

- consumption of feed - by daily weighing of the given feed and its residues;
- processes of cicatricular digestion - by taking and analyzing the contents of the rumen 2-2.5 hours after the morning feeding for two days. Taking the samples of the rumen contents was carried out through a chronic fistula of the rumen using forceps.

In samples of rumen fluid filtered through four layers of gauze, the following parameters were determined:

- concentration of hydrogen ions (pH) - with an electronic potentiometer pH-340;
- total and non-protein nitrogen - according to Kjeldahl method;
- protein nitrogen – by calculation of the difference between total and non-protein nitrogen;
- concentration of ammonia – according to Conway’s microdiffusion analysis;
- total amount of volatile fatty acids — by steam distillation in the steam distillation apparatus by Roy Markham;
- total number of ciliates - by counting in the hemocytometer and diluted with formalin in 1: 4 proportion.
- digestibility and usage of nutrients and minerals - by calculation of the difference between the amount of nutrients received with food and excreted with metabolic wastes;
• hematological indicators – by drawing and analyzing blood.

Morpho-biochemical parameters of blood were determined on analyzers Medonic CA-620 and Cormay Lumen; mineral composition – on an atomic-absorption spectrophotometer AAS-3; oxygen content and vitamin composition of the blood – according to generally accepted methods (photocolorimetric method).

The digital materials of the conducted research were processed by the method of variation statistics using the Microsoft Excel software package. Statistical processing of the analysis results was carried out taking into account the Student's t-test. When evaluating the value of the reliability criterion (td), we proceeded depending on the volume of the analyzed material. The likelihood of differences was considered significant at P <0.05.

3. Main findings of the study
Based on the data of the analysis of the chemical composition of the feed ration of the animals of the farm and the data obtained in earlier experiments, a deficiency in such nutritional elements as protein, phosphorus, magnesium, trace elements and vitamins was revealed. According to this, a protein-vitamin-mineral supplements (PVMS) have been developed.

Due to the fact that the amount of food given to the experimental animals was limited, the diet in all groups was the same (table 4).

Table 4. Rations of experimental bulls according to the actually eaten feed.

Feed, kg	Group	I	II	III	IV
Grain forage	2.38	2.38	2.38	2.48	
PVMS №1	0.62	-	-	-	-
PVMS №2	-	0.62	-	-	-
PVMS №3	-	-	0.62	-	-
PVMS №4	-	-	-	0.52	
Green plants	12	12	12	12	
Straw	2	2	2	2	

The ration contains:

Dry matter, kg	7.84	7.84	7.84	7.82
Feed units	6.27	6.27	6.27	6.23
Metabolizable energy, MJ	76	76	76	75
Crude protein, r	919	919	919	928
Crude fat, g	210	210	210	202
Crude fiber, g	1988	1988	1988	1978
Sugar, g	192	192	192	188
Calcium, g	50.3	49.9	50.4	47.6
Phosphorus, g	28.8	29.2	28.8	27.2
Magnesium, g	19.8	20.7	19.8	19.4
Potassium, g	84	106	84	82
Sodium, g	24.5	25.7	24.5	22.5
Sulphur, g	21.5	21.5	21.5	19.8
Iron, mg	3751	3757	3758	3334
Copper, mg	76.5	76.5	75.8	70.7
Zinc, mg	368	368	366	340
Manganese, mg	698	698	694	610
Cobalt, mg	6.46	6.46	6.46	5.54
Iodine, mg	2.35	2.35	2.35	2.21

Vitamins:

A, thousand IU	93	93	93	78
झ, thousand IU	23	23	23	20
E, mg	275	275	275	265
Differences in nutrient intake in young cattle between the groups were not actually established, except for those components (mainly in the mineral part) that were in defluorinated phosphate and new sapropel (calcium, iron, copper, zinc, manganese, cobalt, phosphorus, magnesium, potassium, sodium).

Young cattle of all groups readily ate food with the PVMS and the daily ration in general. No cases of diseases and feed refusal were identified.

The study of the processes of digestion in the rumen showed that the concentration of hydrogen ions was practically at the same level in the cicatricial contents of animals of all groups. The differences in the concentration of ammonia, volatile fatty acids, total nitrogen, and the number of ciliates in the samples of rumen fluid of young animals from groups I, II, and III were insignificant. In the samples of rumen fluid of animals from group IV, the concentration of ammonia in comparison with I, II and III was higher by 15.58, 23.61 and 21.9%, VFA - by 6.7, 19.4 and 11.1%, total nitrogen - by 3.32, 31.44 and 24.03%, ciliates - by 4.35, 14.29 and 9.09%, respectively (table 5).

Table 5. Composition of the contents of the rumen.

Figure	Group	I	II	III	IV
pH		7.5	7.5	7.5	7.5
Ammonia, mg %	30.8	28.8	29.2	35.6	
VFA, mmol /100 ml	7.5	6.7	7.2	8.0	
Number of ciliates, thousand/ml	460	420	440	480	
Total nitrogen, mg %	78.4	68.7	72.8	90.3	

The intensity of metabolic processes in the body of animals was determined by hematological parameters, which are presented in table 6. As a result of the analysis of the obtained results, it was established that all studied morpho-biochemical blood parameters of the experimental animals were within the physiological norms without significant differences between the groups.

Table 6. Morpho-biochemical composition of blood.

Figure	Group	I	II	III	IV
Hemoglobin, g %	9.4	8.84	9.42	9.16	
Red blood cells, mln/mm3	8.31	7.83	8.07	7.81	
Alkaline reserve, mg %	453	480	467	414	
Carotene, ug %	0.62	0.65	0.72	0.98	
Vitamin A, mg %	0.70	0.69	0.67	0.69	
Calcium, mg %	11.7	11.4	11.6	11.3	
Phosphorus, mg %	6.76	6.74	6.91	6.97	
Total protein, mg %	7.85	7.85	7.85	8.28	

However, it should be noted that there was a tendency to an increase in the amount of carotene by 36.11-58.06% and total protein by 5.48% in the blood of animals from group IV compared to I, II and III groups. The digestibility of dietary nutrients is shown in table 7.

Table 7. Digestibility of nutrients, %.

Figure	Group	I	II	III	IV
Dry matter	68	68	71	70	
Organic matter	70	70	73	72	
Protein	67	63	64	68	
Fat	51	54	57	59	
Cellulose	56	53	54	60	
NFES	74	77	78	81	
The results of the studies showed that the digestibility of all nutrients in animals that consumed different PVMS was at a high level and did not differ much between groups. So, the digestibility of dry and organic matter was within 68-73%, protein – 63-68%, fat – 54-58%, fiber – 53-60%, NFES – 77-81%. It should be noted that the coefficients of digestibility of protein, fiber and NFES were higher in the fourth group by 1-7% compared to the rest (P> 0.05).

The balance of nitrogen, calcium and phosphorus was positive in all groups of animals. A slight increase in nitrogen deposition was found in young animals from group IV (by 4.7-11.9%), which received PVMS with ACA as a source of protein. The use of calcium and phosphorus by animals was practically at the same level.

Studies have established (table 8) that the average daily growth of animals from all groups was within 629-710 g.

Table 8. Live weight, average daily growth and feed costs.

Figure	Group	I	II	III	IV
Live weight, kg:					
at the beginning of the experiment	291	299	302	288	
at the end of the experiment	332	338	342	332	
Growth:					
gross, kg	41	39	40	44	
average daily, g	660	629	645	710	
Feed costs per 1 kg of growth, feed units	9.50	9.97	9.72	8.77	

The average daily growth in group IV of bulls, which consumed PVMS № 4 with ACA as a protein component, was the highest; the second place in terms of growth was occupied by young animals from group I – 660 g, which consumed PVMS № 2 that included lupine, ACA and standard CMFA № 1; PVMS № 3 with defluorinated phosphate, used as a source of phosphorus, ranked last on this indicator – 629 g. Despite this, the difference in growth turned out to be insignificant. Feed costs per 1 kg of gain were the lowest in group IV – 8.77 feed units, in I, II and III higher by 8.32%, 13.68 and 10.83%, respectively.

The analysis of the obtained results showed that the cost of feed for obtaining the growth in the IV group turned out to be lower than in the I, II and III groups by 30.1%, 35.9 and 33.1%, respectively. That is associated with the cost of PVMS, which turned out to be the cheapest in group IV. In this regard, the cost of growth of one bull from this group during the experiment was the lowest.

The cost of sold products received from one animal during the experiment was higher in the bulls, which received PVMS № 4 compared with groups I, II and III by 6.82, 11.36 and 9.1%, respectively.

4. Conclusion

Protein-vitamin-mineral supplements have been developed, 1 kg of which contains 0.38-0.57 feed units, 4.6-6.35 MJ of metabolizable energy, 859 g of dry matter, 316-376 g of crude protein, 25-26.5 g of calcium, 8-11 g of phosphorus, 7-9 of g sulfur, trace elements and vitamins. The use of protein-vitamin-mineral supplements in the feeding of young cattle has a positive effect on the feed intake of the forage, metabolic processes in the body, digestion and health of animals, contributes to obtaining an average daily growth of 629-710 g at a feed cost per 1 kg of an increase is about 8.77-9.97 feed units, to reducing the cost of feed by 20%, the cost of growth – by 30-36%.

Acknowledgement

This work was carried out under the grant of the Russian Science Foundation 19-76-10010, SSI NIIMMP. Grant sponsors were not directly involved in the development, analysis, or writing of this article.
References

[1] Chulkov A and Ganushchenko O 2014 “Scar overclocking” in calves - the foundation for realizing the genetic potential Compound feed 6 51-3

[2] Natynchik T M 2017 The use of the system of pure lactation energy to assess the energy nutritional value of bulky feeds Progressings of the II international scientific and practical conference “Biotechnology: achievements and development prospects” Pinsk 74-5

[3] Lemeshevsky V O et al. 2017 The use of sapropel in feeding cattle Progressings of the II international scientific and practical conference “Biotechnology: achievements and development prospects” 71-4

[4] Kovalevskaia T A, Linnik L M, Zayats O V, Furs N L and Curtina V N 2014 Milk production with tethered and loose-housing methods for dairy herd Scientific notes of the educational institution Vitebsk Order of Honor State Academy of Veterinary Medicine 50(2-1) 287-91

[5] Huuskonen A, Lamminen P and Joki-Tokola E 2009 The effect of concentrate level and concentrate composition on the performance of growing dairy heifers reared and finished for beef production Acta Agr. Scand. Sect. A. 59(4) 220-9

[6] Linkov V V, Bukas V V and Ljovkin E A 2015 Agronomical prospects for the development of peasant (farmer) and personal subsidiary farms of the population of the Republic of Belarus Vitebsk Order of Honor State Academy of Veterinary Medicine 51(2) 136-9

[7] Ganushchenko O F and Sobolev D T 2016 Organization of rational feeding of cows using modern methods to control the usefulness of their food (Vitebsk : VSAVM) p 79

[8] Natynchik T M et al. 2018 Increasing the productive action of corn silage due to the inclusion of complex feed additives Proceedings of the III International Scientific and Practical Conference “Biotechnology: achievements and development prospects” Pinsk 59-62

[9] Radchikov V F et al. 2016 Increasing the productive action of animal feed in the production of beef Agriculture – problems and prospects 35 144-51

[10] Grande P A, Alcalde C R, Lima L S, Macedo V P, Macedo F A F and Matsushita M 2011 Carcass evaluation of Saanenkids fed oil seeds diets Arch.Brasil.Med. Veter.Zootecn. 63(3) 721-8

[11] Huuskonen A and Joki-Tokola E 2010 Performance of growing dairy bulls offered diets based on silages made of whole-cropbarley, whole-cropwheat, hairyvetchandgrass Agricultural and Food Science 19(2) 116-26

[12] Magowan E, Fearon A M, Patterson D C 2010 The effect of supplementary grass silage and standard concentrate on milk fat fatty acid composition and iodine value when cows are fed a whole rapebased-concentrate at pasture Irish J. Agr. Food Res. 49(2) 129-39

[13] Jeroch H 2008 The significance of rapeseed and rapeseed products for animal nutrition and the quality of animal products Zemesukiomokslai 15(4) 40-52

[14] Habeau M, Durand D, Gobert M and Bauchart D 2008 Lipids and fatty acid composition of Longissimus thoracis and Semitendinosus muscles in finishing Normand cows Arch. zootecn. 11(4) 21-9

[15] de Oliveira P T L, Voltolini T V, de Araujo G G L, Pereira L G R, Mistura C, Menezes D R and Turco S H 2011 Physiological responses and performance of sheep on pasture supplemented with different proteinsources Rev.Ceres. 58(2) 185-92

[16] Acedo T S, Detmann E, Valadares Filho S C, Sales M F L, Porto M O and Paulino M F 2011 Protein sources in supplements for bulls in the dry-rainy transition season: nutritional characteristics Arch.Brasil.Med. Veter.Zootecn. 63(4) 895-904

[17] Montiel M D, Elizalde J C, Santini F and Giorda L 2012 Deactivation of tanninin high-moistures orghum grain with polyethylene glycolor urea Arch.Zootecn. 61(234) 235-44

[18] Koksal B N, Sacakli P, Tuncer S D, Selcuk Z and Gene B 2011 Rumen degradation characteristics of glucose-treated canola meal and canolaseed Veterinarjair zootechnka 56(78) 73-9

[19] Bonesmo H, Nordang L and Davies L 2010 Tactical decisions of concentrate level, slaughter age and carcass weight of bulls of five beef breeds under Norwegian conditions Agricultural and Food Science 19(2) 101-15
[20] Kovalevskaya T A, Zayatce O V, Linnik L M and Kurtina V N 2013 Influence of various ways of dairy herd maintenance on the productive qualities of cows and milk production in the conditions of the SEC “Borderland” of the Grodno region Vitebsk Order of Honor State Academy of Veterinary Medicine 49(2-1) 298-304

[21] Huuskonen A, Lamminen P and Jokí-Toholma E 2009 The effect of concentrate level and concentrate composition on the performance of growing dairy heifers reared and finished for beef production ActaAgr. Scand. Sect. A. 59(4) 220-9

[22] Wang C, Liu Q, Meng J, Yang W Z, Yang X M, He D C, Dong K H and Huang Y X 2009 Effects of citric acid supplementation on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers J.Sc.Food Agr. 89(13) 2302-7

[23] Terre M, Tejero C and Bach A 2009 Long-term effects of heifer performance of an enhanced-growth feeding programme applied during the preweaning period J. Dairy Res. 76(3) 331-9

[24] Yatusevich A I et al. 2016 Cultivation and diseases of tropical animals: a practical guide (Vitebsk : VGAVM) p 524

[25] Yatusevich A I et al. 2016 Cultivation and diseases of tropical animals: a practical guide (Vitebsk : VGAVM) p 766

[26] Lemeshevsky V O et al. 2016 The activity of digestion processes in the rumen in bulls with different quality of protein Bulletin of Polesye State University. A series of natural science 1 28-33

[27] Radchikov V F et al. 2018 New in the mineral nutrition of calves Proceedings of the International scientific-practical conference “New approaches to the development of technologies for the production and processing of agricultural products” Volgograd 59-63

[28] Lemeshevsky V O, Kurepin A A and Natynchik T M 2016 Biochemical criteria for cicatricial digestion of cattle under the influence of the quality of feed protein Proceedings of the “Fundamental and applied aspects of farm animal feeding and feed technology” dedicated to the 120th anniversary of M F Tomme Dubrovitsy 346-51

[29] Kovalevskaya T A, Zayatce O V, Linnik L M and Kurtina V N 2013 Influence of various ways of dairy herd maintenance on the productive qualities of cows and milk production in the conditions of the SEC “Borderland” of the Grodno region Scientific notes of the educational institution 49(2-1) 298-304