The Pseudomonas aeruginosa protease LasB directly activates IL-1β.
The *Pseudomonas aeruginosa* protease LasB directly activates IL-1β

Josh Sun, Doris L. LaRock, Elaine A. Skowronski, Jacqueline M. Kimney, Joshua Olson, Zhenze Jiang, Anthony J. O’Donoghue, Victor Nizer, Christopher N. LaRock

A R T I C L E I N F O

Article History:
Received 11 May 2020
Revised 17 August 2020
Accepted 18 August 2020
Available online xxx

Keywords:
Pseudomonas aeruginosa
Proteolysis
Inflammation
Lung
IL-1β
Metalloprotease inhibitor

A B S T R A C T

Background: Pulmonary damage by *Pseudomonas aeruginosa* during cystic fibrosis lung infection and ventilator-associated pneumonia is mediated both by pathogen virulence factors and host inflammation. Impaired immune function due to tissue damage and inflammation, coupled with pathogen multidrug resistance, complicates the management of these deep-seated infections. Pathological inflammation during infection is driven by interleukin-1β (IL-1β), but the molecular processes involved are not fully understood.

Methods: We examined IL-1β activation in a pulmonary model infection of *Pseudomonas aeruginosa* and in vitro using genetics, specific inhibitors, recombinant proteins, and targeted reporters of protease activity and IL-1β bioactivity.

Findings: Caspase-family inflammasome proteases can directly regulate maturation of this proinflammatory cytokine, but we report that plasticity in IL-1β proteolytic activation allows for its direct maturation by the pseudomonal protease LasB. LasB promotes IL-1β activation, neutrophilic inflammation, and destruction of lung architecture characteristic of severe *P. aeruginosa* pulmonary infection.

Interpretation: Preservation of lung function and effective immune clearance may be enhanced by selectively controlling inflammation. Discovery of this IL-1β regulatory mechanism provides a distinct target for anti-inflammatory therapeutics, such as matrix metalloprotease inhibitors that inhibit LasB and limit inflammation and pathology during *P. aeruginosa* pulmonary infections.

Funding: Full details are provided in the Acknowledgements section.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Pseudomonas aeruginosa is a prominent cause of severe opportunistic pulmonary infections associated with mechanical ventilation and the genetic disease cystic fibrosis (CF). *P. aeruginosa* infection is often refractory to antibiotic therapy due to multidrug resistance, making it a World Health Organization and U.S. Centers for Disease Control priority pathogen for therapeutic development. *P. aeruginosa* infection destroys lung architecture and function due to inflammatory- and neutrophil-mediated degradation of mucus layers and structural proteins of the pulmonary connective tissue [1, 2]. Cytokines such as IL-1β [3, 4] and IL-8 [5], the latter itself regulated by IL-1β [6], initiate and maintain this neutrophil-dependant inflammatory cycle in contrast to their normally host-protective roles [7-9]. Anti-inflammatory agents can mitigate tissue destruction to preserve pulmonary function during *P. aeruginosa* pneumonia [10] and CF [11,12].

Newly synthesized IL-1β (pro-IL-1β) is inactive and requires proteolytic processing into a mature active form. Canoniclly, this is carried out by the inflammasome, a macromolecular complex of intracellular pattern recognition receptors and the proteases caspase-1 or caspase-11 [13]. During infection, inflammasomes are formed upon detection of pathogen-associated molecular patterns (PAMPs), including many present in *P. aeruginosa* such as flagellin (FlIc), the type III secretion basal body rod (Pscl), the type IV pilin (PilA), RhsT, exolysin (ExlA), exotoxin A (ExoA), cyclic 3′–5′ diguanylate (c-di-GMP), and lipopolysaccharide (LPS), which are variingly detected by NLRC4, NLRP3, or caspase-11 [7,14-22]. Some pathogens limit inflammation by targeting the inflammasome [23], and *P. aeruginosa* dampens inflammasome activation via the effector ExoU [21].
Research in Context

Evidence before this study

Inflammation is highly damaging during lung infections by the opportunistic pathogen *Pseudomonas aeruginosa*. The proinflammatory cytokine IL-1β is a pivotal contributor, but the mechanisms of its maturation are unclear.

Added value of this study

Pseudomonas encodes numerous factors that can potentially redundantly activate the inflammasome, the canonical regulator of IL-1β. Yet the inflammasome is not required for IL-1β activation during *Pseudomonas* infection, leaving the mechanism of activation unclear. This work demonstrates that the *Pseudomonas* LasB protease directly cleaves IL-1β in a manner that activates its activity independently from the inflammasome, leading to pathological inflammation.

Implications of all the available evidence

Our findings show that inhibition of IL-1β conversion by LasB protects against neutrophilic inflammation and destruction of the lung. Adjunctive therapeutics that limit pathological inflammation induced by infection would be beneficial for treating pulmonary infections when used in combination with conventional antibiotics.

Despite the multitude of inflammasome-activating signals that *P. aeruginosa* express, caspsases, NLRP3, and NLRC4 are not essential for pro-IL-1β maturation in macrophages, epithelial cells, or neutrophils infected with *P. aeruginosa* [24,25]. Correspondingly, *P. aeruginosa*-infected caspase-1−/− and caspase-11/−/− mice succumb to a destructive neutrophilic pulmonary inflammation against which IL-1 receptor (IL-1R1)−/− mice are protected [26]. This is at least partially mediated by IL-1α for strains that express ExoU, a minority of clinical isolates that are nonetheless associated with more severe disease; for strains lacking ExoU this is exclusively mediated by IL-1β and not IL-1α [26]. These observations highlight the contribution of IL-1β to *P. aeruginosa* infection but suggest there are mechanisms for its maturation other than the inflammasome.

The pathological cascade of protease dysregulation and activation seen during severe *P. aeruginosa* lung infections provide a possibility for IL-1β maturation by alternative mechanisms. Caspase-8 [27–29], and the neutrophil granule proteases elastase (NE) and proteinase 3 (PR3) [34,30], cleave pro-IL-1β, but this does not always result in maturation to active cytokine [31]. Bronchial secretions, however, also possess abundant protease activity from microbial sources [2]. Here we find that IL-1β is not exclusively matured by host proteases, and that *P. aeruginosa* protease LasB also drives this inflammatory pathway. Targeting this bacterial protease may, therefore, provide supportive therapy to limit inflammatory pathology in pulmonary infection.

2. Materials and methods

Bacterial strains and plasmids. All bacterial strains, plasmids, and primers used in this study are listed in Table 1. lasB and the upstream 260 bp regulatory region in PA01 were cloned into pUC18T-mini-Tn7-hph [32] using Polymerase Incomplete Primer Extension (PIPE) cloning [33] with primers lasB-F, lasB-R, Tn7-F, and Tn7-R. Transformants into Top10 cells were selected on LB agar plates containing 100 μg/mL Hygromycin B (Life Technologies). Stable complementation into PA01 ΔlasB was performed as previously described [32], and transformants selected with 400 μg/mL Hygromycin B. pET-LasB with a C-terminal His-tag was constructed by sequential PIPE cloning with the primers LasB-A, LasB-B, LasB-C, and LasB-D, and proteins were expressed and purified by conventional methods as previously described [34]. pET-pro-IL-1β and the purification of pro-IL-1β have been previously described [34]. pro-IL-1β cleavage experiments were carried out in PBS, 1 mM CaCl₂, 0.01% Tween-20, and examined by SDS-PAGE or IL-1R reporter cells, as detailed [34]. Constructs for the expression of IL-1β mutants were generated by PIPE cloning from pET-pro-IL-1β [34] with the corresponding primers sets in Table 1, and proteins were expressed and purified in the same manner as for pro-IL-1β previously [34]. Bacteria were routinely propagated in Luria broth (LB) medium at 37 °C. For infections, bacterial cultures were grown to late exponential phase (OD₆₀₀ 1.2) then washed and diluted in PBS.

Animal Experiments. Eight-to-ten week old male or female C57Bl/6 and isogenic caspase-1−/− mice (006644 and 016621, Jackson labs) were assigned to experimental groups, each using 15 mice broken into three independent experiments containing five mice each; none were excluded from analysis. Sample size is based on power function of effect size established in our previous studies [34,35]. The effect size (difference in means) and variance in data was expected to be consistent with this prior work, since similar biological processes were being examined. The mouse and bacterial genotypes, infectious doses, and time points was consistent to not confound these comparisons. Microsoft Excel Rand() function was used for all randomization. Mice were anesthetized with ketamine/xylazine intraperitoneally, then 10⁷ CFU PAO1 inoculated intratracheally in 30 μl of 1x PBS, 25 μg/kg lonomastat, and 25 μg/kg Marimastat (2983 and 2631; Tocris). Mice were euthanized 24 h post-infection by CO₂ asphyxiation, and bronchial lavage fluid or lung homogenate were weighed for normalization and dilution plated onto LB agar plates for CFU enumeration, or quantification of cytokines or proteolysis. Bronchial lavage fluid cells were counted on a hemocytometer with cytologic examination on cytospin preparations fixed and stained using Hema 3 (Fisher HealthCare™). Histologic sections were prepared from formalin-fixed and paraffin-embedded lungs, stained with hematoxylin and eosin (H&E). Cytospin and histology slides were imaged on a Hamamatsu Nanozoomer 2.0HT Slide Scanner.

In vitro infection models. Macrophages were generated from femur exudates of wild-type C57Bl/6 or caspase-1/11−/− mice previously [34]. THP-1, HL60, and A549 cells (ATCC TIB-202, CCL-240, and CCL-185) were acquired from ATCC, which regularly authenticate lines by STR profiling. Cells were propagated by standard protocols, and regularly checked for morphology and characteristics typical of their cell type; THP-1 were differentiated 72 h with 200 nM Anakinra (Kineret; Amgen), 100 ng/mL FMK004, FMK007; R&D Systems), 10 μM caspase inhibitors zVAD-fmk, zVAD-fmk, DEVD-fmk, and IETD-fmk (FMK001, FMK005, FMK004, FMK007; R&D Systems), 10 μg/mL complete protease inhibitor cocktail (11697498001; Roche), 1x protease inhibitors AEBSF, Antipain, Aprotinin, Bestatin, EDTA, E-64, Phosphoramidon, Pepstatin, and PMSF (786–207; G-Biosciences). Except when noted otherwise, cells were routinely infected by co-incubation with *P. aeruginosa* at a multiplicity of infection of 10, spun into contact for 3 min at 300 g, and cells or supernatants were harvested for analysis after 2 h.

Cytokine measurements. Relative IL-1 signalling by cells was measured in 50 μl of supernatant from infected or treated cells, then incubated with 1 μM okadaic acid 30 min before transfer onto...
transgenic IL-1R reporter cells (hkb-il1r; Invivogen). Each experiment is normalized to by subtracting background from media only, then making all comparisons relative to wild-type PAO1-infected wildtype cells. Controls of recombinant IL-1α and IL-1β (200-LA, 201-LB; R&D Systems), and neutralising antibodies for each (A15032A, Biolegend and AF-200-NA, R&D Systems) were used following manufacturer protocol (hkb-il1r; Invivogen) to confirm reporter sensitivity, and protein and antibody activity. No cross-reactivity between cytokines and neutralising antibodies was observed. After 18 h, reporter cell supernatants were analysed for secreted alkaline phosphatase activity using HEK-Blue Detection reagent (Invivogen) as previously [35]. Cytokines were quantified by enzyme-linked immunosorbent assay following the manufacturer’s protocol (DY400, DY401, DY410, DY453 DY406; R&D Systems). Expression was examined in cells lysed with RIPA (Millipore). RNA was isolated (Qiagen), cDNA synthesized with SuperScript III and Oligo(dT)20 primers (Invitrogen), and qPCR performed with KAPA SYBR Fast (Kapa Biosystems) with primers for \(\text{il1a} \) and \(\text{il1b} \) and relative expression normalised to \(\text{gapdh} \) and compared by \(\Delta \Delta C_t \) as previously [37].

In vitro transcription/translation was performed with the corresponding primers in Table 1 using pET-

Table 1	Bacterial strains, plasmids, and primers used in this study.	
Strains	**Relevant feature(s) or sequence**	**Reference or Source**
P. aeruginosa		
PAO1	WT reference strain (NC_002516.2)	[58]
PAO1 lasB⁺	lasB transposon insert	[58]
PAO1 flic⁺	flic transposon insert	[58]
PAO1 lasA⁺	lasA transposon insert	[58]
PAO1 psv⁺	psv transposon insert	[58]
PAO1 lasB⁺: lasB transposon inserted into mTn7T⁺	This study	
MDR-P4	WT strain	G. Sakoulas
PA103	WT strain, ATCC 29260	ATCC
23712	WT strain, ATCC 27312	ATCC
27864	WT strain, ATCC 27864	ATCC
10145	WT strain, ATCC 10145	ATCC
CRN697	WT strain	G. Sakoulas
Hanity	WT strain	G. Sakoulas

Plasmid	**Relevant feature(s) or sequence**	**Reference or Source**
pET-proIL-1β	Vector for expression of recombinant human pro-IL-1β	[34]
pET-LasB	Vector for expression of recombinant LasB	This study
pUC18T-mTn7T	LasB insertion in mini-Tn7T for complementation	This study

Oligonucleotides	**Relevant feature(s) or sequence**	**Reference or Source**
lasB-F		
lasB-R		
pET-LasB-A		
pET-LasB-B		
pET-LasB-C		
pET-LasB-D		
lasB CT His-1		
lasB CT His-2		
Tn7-F		
Tn7-R		
il1b⁻-F		
il1b⁻-R		
gapdh⁻-F		
gapdh⁻-R		
IVTIL1b-term		
IVTIL1b-1		
IVTIL1b-12		
IVTIL1b-24		
IVTIL1b-36		
IVTIL1b-48		
IVTIL1b-60		
IVTIL1b-72		
IVTIL1b-84		
IVTIL1b-87		
IVTIL1b-90		
IVTIL1b-93		
IVTIL1b-96		
IVTIL1b-99		
IVTIL1b-102		
IVTIL1b-105		
IVTIL1b-108		
IVTIL1b-111		
IVTIL1b-114		
IVTIL1b-117		
IVTIL1b-120		
IVTIL1b-122		
IVTIL1b-123		
IVTIL1b-126		
pro-IL-1β as a template and following the manufacturer’s recommenda-
tions in 10 µl reaction volumes (TNT Coupled Reticulocyte Lysate; Promega). Loading for IL-1R reporter assays was normalised by total
IL-1β product measured by enzyme-linked immunosorbent assay as
above.

Substrate specificity profiling. 10 nM LasB was incubated in trip-
llicate with a mixture of 228 synthetic tetradecapeptides (0.5 µM each) in PBS, 2 mM DTT as described previously [38]. After 15, 60, 240 and 1200 min, aliquots were removed, quenched with 6.4 M GuHCl, immediately frozen at −80 °C. Controls were performed with LasB treated with GuHCl prior to peptide exposure. Samples were
acidified to pH<3.0 with 1% formic acid, desalted with C18 LTS tips
(Rainin), and injected into a Q-Exactive Mass Spectrometer (Thermo)
equipped with an Ultimate 3000 HPLC. Peptides separated by reverse
phase chromatography on a C18 column (1.7 µm; 50 cm, 1.0 mm ID, 240 and 1200 min, aliquots were removed, quenched with 6.4 M GuHCl and the cleavage products desalted and analysed by mass spectrometry as described above, except using a 20-min linear gradient from 5% to 50% B and only selecting top 5 peptides for MS/MS. For measurements of protease activity from *in vitro* infections, samples normalised by lung weight were homoge-
nised in PBS 0.01% Tween-20, passed through 0.2 µm-filter, and dilu-
tions incubated with each peptide at 5 µM and the maximum kinetic
velocity calculated as previously [34].

Ethics. All animal use was approved by the Institutional Animal Care and Use Committees (IACUC) of UCSD or Emory University fol-
lowing Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) and the Office for Laboratory Animal Welfare (OLAW) guidelines.

Statistics. Graphical results and statistical tests were performed with GraphPad Prism 8 using 1-way or 2-way t-test or ANOVA as
appropriate. No blinding or exclusion criteria were applied. Tukey post-tests were used to correct for multiple comparisons. Statistical
significance is indicated as (*, P < 0.05; **, P < 0.005; ***, P < 0.0005). All error bars show the mean and the standard deviation (s.d.). Data are representative of at least three independent experiments.

Role of Funders. The funders had no role in writing of the manu-
script nor in the decision to publish. The authors have not been paid to write this article by any agency.

3. Results

3.1. IL-1 signalling drives neutrophilic inflammation during *P. aeruginosa* lung infection

Inflammation drives poor clinical outcomes during *P. aeruginosa* lung infection [39]. C57Bl/6 mice infected intratracheally with *P. aerugi-
 nosa* had markedly disrupted airway architecture within 24 h, concurrent with neutrophil infiltration into the lung tissue and bron-
choalveolar lavage fluid (BAL) (Fig. 1a). We examined the contribu-
tion of pro-inflammatory cytokines to this process using the FDA-
approved IL-1 receptor (IL-1R1) antagonist anakinra, which directly
inhibits both IL-1β and IL-1α, but not other critical proinflammatory
cytokines such as KC/CXCL1. IL-6, or TNFα (Fig. 1b). As observed
during human infections, *P. aeruginosa* persisted in the BAL (Fig. 1c) and lung tissue (Fig. 1d) despite significant neutrophil infiltration that
was partially IL-1-dependent (Fig. 1e).

IL-1β is typically released by secretion or cell lysis and requires additional maturation, activities which are all mediated by the inflamma-
some proteases caspases –1 or –11 [13]. CFU and release of IL-1α was unaltered in *P. aeruginosa*-infected caspase-1/11−/− C57Bl/6 mice, but surprisingly, IL-1β release was also only modestly attenu-
ated (Fig. 1f). This pool of extracellular IL-1β has the potential to mediate proinflammatory signalling as an IL-1R1 agonist when the
inhibitory pro-domain has been removed. Neutrophil granular pro-
tases may provide such activation [3,4,18,24], however, since neu-

trophil recruitment is itself IL-1-dependent (Fig. 1a, 1e), and these
neutrophils themselves may later inactivate IL-1β [31], we reasoned that additional proteases initiate the process.

3.2. *P. aeruginosa* induces IL-1β maturation independent of the inflamma-
some

To more specifically measure only IL-1β that is active, we made use of transgenic reporter cells expressing luciferase under the con-
trast, an ionophore that activates the NLRP3 inflammasome, nigeri-
cin, was completely dependent on caspases for the activation of IL-1
signalling. Monoclonal antibodies specific to IL-1R1 or IL-1β, but not IL-1α, inhibited IL-1 signal from caspase-1/11-/- BMM (Fig. 2c). This also suggested no significant contribution from IL-1α in IL-1R1 signalling. The absolute quantity of each cytokine measured by enzyme-linked immunosorbent assay (pro- and mature- forms) remained unchanged (Fig. 2c). Furthermore, _P. aeruginosa_ infection of human cell lines relevant to lung infection (macrophages, THP-1; neutrophils, HL60; type II alveolar epithelial cells, A549) still stimulated IL-1 signalling in the presence of the caspase-1/11-specific inhibitor YVAD-cmk (Fig. 2d). Together, these results indicate that _P. aeruginosa_ stimulates IL-1 signalling through a pool of extracellular IL-1β that is active and matured independently of caspase-1/11.

3.3. IL-1β is activated by the _P. aeruginosa_ LasB protease

Proteases contributing to IL-1β activation were evaluated using small molecule inhibitors specific to each protease class. Inhibition of metalloproteases, and not cysteine proteases (e.g. caspases-1, 11, and 8) or serine proteases (e.g. NE and PR3), abrogated IL-1β signalling in _P. aeruginosa_-infected caspase-1/11-/- BMM (Fig. 3a). _P. aeruginosa_ encodes several secreted metalloproteases, and by examining mutants of each (ΔlasA, ΔlasB, ΔaprA), we found LasB to be the most active protease overall as measured by hydrolysis of casein during agar plate growth (Fig. 3b), and was the major contributor to caspase-1/11-independent IL-1β signalling (Fig. 3c). Complementation with the LasB coding sequence under its native promoter restored the ability of _P. aeruginosa_ to induce IL-1β signalling in infected caspase-1/11-/- BMM (Fig. 3d). Furthermore, activation was independent of _il1a_ or _il1b_ expression (Fig. 3e) or IL-1α or IL-1β secretion (Fig. 3f). These data show that LasB induces IL-1 signalling independently of caspase-1/11.

3.4. LasB-activated IL-1β is active

Incubation with recombinant LasB was sufficient to convert recombinant human pro-IL-1β into an active form (Fig. 4a). Further examination of pro-IL-1β cleavage by LasB, again using recombinant forms of each protein, showed several intermediate cleavage products which accumulate as a stable product that is degraded no further (Fig. 4b), similar to what occurs upon IL-1β maturation by caspase-1 [40]. Analysis of these fragments by Edman sequencing identified cleavage sites that were all in the N-terminus of pro-IL-1β. Examination of N-terminal truncated IL-1β by _in vitro_ transcription/translation showed a defined region flanking the caspase-1 cleavage site (N-term fragment 117) is sufficient to generate active cytokine (Fig. 4c).

We determined the substrate specificity profile for LasB using a mass spectrometry-based substrate profiling assay previously validated with other microbial proteases [41,42], which showed a distinct...
pathological in

3.5. Metalloprotease inhibitors of LasB prevent IL-1-mediated pathological inflammation

Since IL-1β inhibition protects against lung damage (Fig. 1a, 1b), and because LasB drives IL-1β maturation (Fig. 3c, 4d), we examined whether protease inhibitors active against LasB limit lung injury. Two investigational hydroxamate-based anti-neoplastic metalloprotease inhibitors, marimastat and ilomastat, inhibited LasB cleavage of the IL-1β-derived substrate (Fig. 5a) and P. aeruginosa activation of IL-1β (Fig. 5b) at sub-antimicrobial concentrations (Fig. 5c). During murine pulmonary infection, marimastat and ilomastat each showed therapeutic effects to reduce P. aeruginosa growth (Fig. 5d), neutrophil recruitment (Fig. 5e), IL-1β (Fig. 5f), pulmonary pathology (Fig. 5g), and invasion (Fig. 5h). Together this data suggests that inhibiting LasB, but also including other metalloproteases of the lung such as matrix metalloproteases, can reduce inflammation during infections by P. aeruginosa.

4. Discussion

Opportunistic P. aeruginosa lung infections can destroy tissue structure and impair organ function. Our findings reveal a mechanism by which a bacterial protease, LasB, contributes to pathological inflammation by directly activating IL-1β. LasB is one of the most abundant virulence factors in the lung microenvironment during P. aeruginosa infection and can cleave numerous host factors [43], even exerting broadly anti-inflammatory influences through destructive proteolysis of PAMPs such as flagellin [44], and various cytokines and immune effectors including IFN, IL-6, IL-8, MCP-1, TNF, trappin-2 and RANTES[45-48]. Consequently, LasB-deficient bacteria may preferentially induce a KC, IL-6, and IL-8 dominant inflammatory responses [45], whereas previous reports and our findings show that wild-type LasB-expressing P. aeruginosa induce a strong IL-1β response [49].
Fig. 3. IL-1β is activated by the P. aeruginosa LasB protease. (a) Relative IL-1 signalling by caspase-1/11Δ−/− BMM 2 h post-infection by PAO1 that were previously incubated 1 h with the indicated protease inhibitors classes (Aspartyl, Pepstatin; Cysteine, E64; Metallo, Phosphoramidon; Serine, PMSF; Tryptic, Benzamidine). (b) Visualisation of bacterial proteolytic activity by decreased media opacity on LB agarose plates containing casein. (c) Relative IL-1 signalling by caspase-1/11Δ−/− BMM 2 h post-infection with isogenic mutant strains of PAO1. (d) Relative IL-1 signalling by caspase-1/11Δ−/− BMM 2 h post-infection by PAO1, ΔlasB, or plasmid-complemented ΔlasB. (e) il1a and il1b expression by real-time quantitative PCR and (f) secretion by ELISA. Error bars show mean ± s.d, n = 4, and represent at least 3 independent experiments. Statistical analysis by ANOVA with Tukey post-test, *P < 0.05, **P < 0.005, ***P < 0.0005.

Fig. 4. LasB-activated IL-1β is active. (a) IL-1 signalling activity by 100 ng human pro-IL-1β after 2 h incubation with titrations of recombinant LasB. (b) SDS-PAGE analysis of the kinetics of cleavage and maturation of recombinant human pro-IL-1β (1 μg) by recombinant LasB (50 ng). (c) Signalling activity of recombinant IL-1β N-terminal truncations generated using in vitro transcription/translation from the human il1b gene with coding beginning at the indicated codon, 1 is full-length pro-IL-1β, 117 corresponds to the fragment generated by caspase-1 cleavage. (d) Cleavage of internally-quenched fluorescent IL-1β peptide fragments (amino acids 103−123 of human IL-1β) by recombinant LasB or caspase-1. (e) IceLogo frequency plot showing amino acids significantly enriched (above X-axis) and de-enriched (below X-axis) in the P2 to P2′ positions following incubation of LasB with a mixture of 228 tetradecapeptides. Cleavage occurs between P1 and P1′. Lowercase “n” is norleucine. (f) Cleavage of internally-quenched fluorescent IL-1β peptide fragments by proteases within BAL collected from C57Bl/6 or casp-1/11Δ−/− mice 24 h post-intratracheal infection with 107 CFU of PAO1 or ΔlasB. Error bars show mean ± s.d, n = 4 (a-e), n = 5 (f), and represent at least 3 independent experiments. Statistical analysis by ANOVA with Tukey post-test, *P < 0.05, **P < 0.005, ***P < 0.0005.
LasB activates IL-1β through direct proteolytic removal of its inhibitory amino-terminal pro-domain, bypassing the necessity for host caspases. The LasB and caspase-1 mechanisms for generating mature IL-1β are distinguishable by substrate specificity (a hydrophobic P1' vs aspartic acid P1 site), enzyme class (metalloprotease vs cysteine protease), and cellular source (microbial vs host). LasB activation of pro-IL-1β in both the intra- and extracellular milieu is entirely feasible, given the abundance of intracellular proteins released by pyroptosis and necrosis during infections[13,50] and the abundance of LasB[51]. We recently hypothesized that IL-1β evolved...
as a sensor of diverse proteases [34], a model further supported by the present discovery of a P. aeruginosa protease with this activity.

In lung infection, LasB activation of IL-1β augments neutrophil recruitment and promotes destruction of the pulmonary tissue. IL-1β inhibition protects against this pathology, however, clinical interventions to date have used expensive biologics (e.g. IL-1R1 antagonists) associated with increased risk for severe infections [34,52].

The proteolytic activation of IL-1β may be a more tractable pharmacological target, made possible by disambiguation of the molecular networks involved and, perhaps amenable to the repurposing existing protease inhibitors. Alpha-1-antitrypsin suppresses NE-mediated degradation of the CF lung [53,54], potentially also limiting pro-LasB maturation by NE [30]. This strategy may also act against pro-IL-1β maturation by LasB, which is also inhibited by alpha-1-antitrypsin [55]. Indeed, while inhibiting IL-1 signalling with Anakinra limited inflammation and pathology, mutation or inhibition of LasB also limited bacterial replication, consistent with this protease having other contributions to pathogenesis.

Our results indicate metalloprotease inhibitors such as this protease and α1-antitrypsin may also be beneficial in treating P. aeruginosa pulmonary infections through the inhibition of LasB. These drugs were developed to inhibit matrix metalloproteases, which may separately contribute to inflammation and pathology during P. aeruginosa pulmonary infections and CF [56]. While there may be therapeutic benefit to cross-inhibition of multiple metalloprotease targets, this can give pro- and anti-inflammatory depending on the cell target and model, and most matrix metalloprotease inhibitors have failed clinical trials due to toxicity and off-target effects [57]. Thus, more targeted inhibitors of LasB or IL-1β may be necessary to avoid these issues.

Declaration of Competing Interest

C.N.L. has a research agreement with Antabio during the conduct of this study examining inhibitors of LasB. The remaining authors declare no competing financial interests.

Acknowledgments

We thank Christopher Lietz (UCSD) for assistance with mass spectrometry and data analysis and Jason Mungia (UCSD) for technical assistance with Pseudomonas infections.

Data Sharing

The mass spectrometry dataset is available at ftp://massive.ucsd.edu/MSV000081623. Additional materials are available upon request.

Funding sources

This work was supported by shared instrumentation subsidised by NIH/NINDS P30 core Grant NS047101 and a Pseudomonas transposon mutant library generated under NIH/NIDDK P30 DK089507. J.S. received support from NIH/NCIG+ T32 GM007752, E.A.S. from NIH/NCI T32 CA121938, J.M.K. from a UC President’s Postdoctoral Fellowship, Z.J. from the UC San Diego Chancellor’s Research Excellence Scholarship, A.J.O. from NIH/NIBIB AI133393, V.N. from NIH/NICHHD Grant U54 HD090259 and NIH/NHLBI R01 HL125352, and C.L. the A.P. Giannini Foundation and NIH/NIAID K22 AI130223.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ebiom.2020.102984.

References

[1] Suter S, Schaad UB, Roux L, Nydegger UE, Waldvogel FA. Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis 1984;149(4):523–31.
[2] Twigg MS, Brockbank S, Lowry P, FitzGerald SP, Taggart C, Weldon S. The role of serine proteases and antibiotics in the cystic fibrosis lung. Mediators Inflamm 2015;2015:293053.
[3] Coershott C, Ohnermus C, Pilyavsky A, Ross S, Wieszorek M, Kroona H, et al. Comparison between enzyme-independent release of tumor necrosis factor α and IL-1β from a stimulated human monocyte cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci U S A 1999;96:6261–6.
[4] Greten FR, Arck CN, Bollrath J, Hsu L-C, Goode J, Mietlich C, et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmaceutical inhibition of IKKβ. Cell 2007;130(5):918–31.
[5] Nakamura H, Yoshikura K, McElvany NG, Crystal RG. Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest 1992;90(5):1478.
[6] Labrouse D, Perret M, Hayez D, Da Silva S, Badiou C, Couzin F, et al. Kinetics of IL-1β blockade in cystic fibrosis due to monogenic mutations in IL-1RN. PLoS ONE 2014;9(6):e097546.
[7] Descamps D, Le Gars M, Balloy V, Barbier B, Maschalidi S, Tohme M, et al. Toll-like receptor 5 (TLR-5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing. Proc Natl Acad Sci USA 2010;109(5):1619–24.
[8] Dubin PJ, Martz A, Eisenstatt JR, Fox MD, Logar A, Kolls JK. Interleukin-23-Mediated inflammation in -Pseudomonas aeruginosa--Cystic Fibrosis Pulmonary Infection. Influen Immunity 2012;80(1):398–409.
[9] Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Resistance to -Pseudomonas aeruginosa--Cystic Fibrosis lung. J Clin Invest 2012;129(8):902–13.
[10] Konstan MW, Byard PJ, Hoppel CL, Davis PB. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995;332(13):848–54.
[11] LaRock CN, Cookson BT. The role of Pseudomonas aeruginosa in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am J Physiol - Lung Cell Mol Physiol 2002;282(2):L285–90.
[12] Fritzsching B, Zhou-Suckow Z, Trojanek JB, Schubert SC, Schatterney J, Hirtz S, et al. Hypoxia-induced epithelial necrosis triggers neutrophil infiltration via IL-1 receptor signaling in cystic fibrosis lung disease. Am J Respir Crit Care Med 2015;191(8):902–13.
[13] Lin AE, Byard PJ, Hoppel CL, Davis PB. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995;332(13):848–54.
[14] LaRock CN, Cookson BT. Burning down the house: cellular dynamics during pyroptosis. PLoS Pathog 2013;9(12):e1003793.
[15] Abdul-Sater AA, Tattoli I, Jin L, Grazkowski A, Levi A, Koller BH, et al. Cyclic-di-GMP and cyclic-di-AMP activate the NLRC3 inflammasome. EMBO Rep 2013;14(10):900–6.
[16] Lindseter Arlehamn CS, Evans TJ. Pseudomonas aeruginosa pilin activates the inflammasome. Cell Microbiol 2011;13(3):388–401.
[17] Basso P, Raggio M, Elsen S, Reboud E, Golovkine G, Solonov A, et al. Pseudomonas aeruginosa pore-forming exotoxin and Type IV Pili cooperate to induce host cell lysis. MBio 2017;8(1):e02250-16.
[18] Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nuñez G. Critical role for Ripc1 in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 2007;37(11):3305–5.
[19] Lin AE, Bealey FC, Keller N, Hollands A, Urbanos R, Trowell ER, et al. A group A streptococcus ADP-Ribosyltransferase toxin stimulates a protective interleukin-1β-dependent macrophage immune response. mBio. 2015;6(2):e00133-15.
[20] Miao EA, Ernst RK, Dors M, Miao DP, Aderem A. Pseudomonas aeruginosa activates caspase 1 through Ilpaf. Proc Natl Acad Sci 2008;105(7):2562–7.
[21] Miao EA, Mao DP, Yudkovsky N, Beneau R, Loring CG, Warren SE, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 2010;107(17):7306–7.
[22] Sutterwala FS, Mijares LA, Li L, Oguya Y, Kazmierczak BJ, Havel RA. Immune recognition of Pseudomonas aeruginosa mediated by the IFAP/NLRC4 inflammasome. J Exp Med 2007;204(11):2199–21.
[23] Kung VL, Khaire S, Stehlik C, Bacon EM, Hughes AH, Hauser AR. An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci USA 2012;109(1):1275–80.
[24] LaRock CN, Cookson BT. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 2012;16(6):799–805.
[25] Parmar SK, Menon J, Bhattacharjee S, Ghosh S, Jana A, Saha K. The role of Pseudomonas aeruginosa in chronic lung infection requires cystic fibrosis. Mediators Inflamm 2013;2013:447969.
[26] Parmar SK, Menon J, Bhattacharjee S, Ghosh S, Jana A, Saha K. The role of Pseudomonas aeruginosa in chronic lung infection requires cystic fibrosis. Mediators Inflamm 2013;2013:447969.
[27] Parmar SK, Menon J, Bhattacharjee S, Ghosh S, Jana A, Saha K. The role of Pseudomonas aeruginosa in chronic lung infection requires cystic fibrosis. Mediators Inflamm 2013;2013:447969.
clinical isolates from acute infections and IL-1β secretion in a model of human THP-1 monocytes. Pathog Dis 2015;73(7):ftv049.

[Al Moussawi K, Kazmierczak BL. Distinct Contributions of interleukin-1α (IL-1α) and IL-1β to innate immune recognition of Pseudomonas aeruginosa-induced inflammation in the lung. Infect Immun 2014;82(10):4204–11.

[2] Ganeas S, Rathinam VAK, Bossaller L, Arutyunova E, Wang SC, Lemieux MJ, et al. Caspase-8 modulates death-1 and complement receptor 3-driven IL-1β production in response to beta-glucans and the fungal pathogen, Candida albicans. J Immunol 2014;193(3):2519–30.

[3] Maelfait J, Vercammen E, Janssens S, Schotte P, Haegman M, Magez S, et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8. J Exp Med 2005;200(10):1667–73.

[4] Van Opdenbosch N, Van Gorp H, Verdonck M, Saavedra PH, de Vacsconcelos NM, Gonçalves A, et al. Caspase-1 engagement and TLR4-induced cFLIP expression suppress ASC/caspase-8-dependent apoptosis by inflammatory sensors NLRP1b and NLRCA. Cell Rep 2017;21(12):3247–44.

[5] Hsu L-C, Enzler T, Seita J, Timmer AM, Lee C-Y, Lai T-Y, et al. IL-1β-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKβ. Nat Immunol 2011;12(2):144–50.

[6] Clancy DM, Morin GP, Moran HBT, Henry CM, Reeves EP, McElvaney NG, et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep 2018;22(11):2937–50.

[7] Choi KH, Schweizer HP, mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 2006;1(1):153.

[8] Kloock HE, Lesley SA. The Polymerase Incomplete Primer Extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis. High Throughput Protein Exp Purif: Methods Protoc 2009;90:91–103.

[9] LauRoCK CN, Todd J, LauRoCK D, Olson J, dOnOghuie AJ, Robertson AAB, et al. IL-1β is an innate immune sensor of microbial proteolysis. Sci Immunol 2016;1(2).

[10] LauRoCK DL, Russell R, Johnson AF, Wilde S, LauRoCK CN. Group A streptococcus infection of the nasopharynx requires proinflammatory signaling through the interleukin-1 receptor. Infect Immun 2020 Ian 00356-20.

[11] LauRoCK CN, Dohrmann S, Todd J, Corrêdas R, Olson J, Janssensen T, et al. Group A streptococcal M1 protein sequesters cathelicidin to evade innate immune killing. Cell Host Microbe 2015;18(6):1–7.

[12] LauRoCK DL, Sands JS, Ettouati E, Richard M, Buschway PJ, Adler ED, et al. Inflammasome inhibition blocks cardiac glycose cardiotoxicity. J Biol Chem 2019;294(34):12846–54.

[13] dOnOghuie AJ, Knudsen GM, Reemkn C, Perry JA, Johnson AD, DeRisi JL, et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proceed Natl Acad Sci 2015;112(24):7478–83.

[14] Conese M, Copredini E, Di Gioia S, De Rinaldis P, Fumurato R. Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease. J Cyst Fibros 2003;2(2):129–35.

[15] Howard AD, Kostura MJ, Thornbery N, Ding GJ, Limjuco G, Weidner J, et al. IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1β precursor at two distinct sites and does not cleave 31-kDa IL-1 α. J Immunol 1991;147(9):2964.

[16] Lapek Jr. JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, et al. Quantitative multiplex substrate profiling of peptides by mass spectrometry. Mol Cell Proteom 2019;18(5):968–81.

[17] Xu JH, Jiang Z, Solania A, Chatterjee S, Suzuki R, Lietz CB, et al. A commensal dipeptidyl aminopeptidase with specificity for N-terminal glycine degrades human-produced antimicrobial peptides in vitro. ACS Chem Biol 2018;13(9):2513–21.

[18] Beaufort N, Corvazier E, Mlaioandrou D, de Bentzmann S, Pidard D. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: implication of matrixolin and receptor cleavage. PLoS ONE 2013;8(9):e75708.

[19] Casilag F, Lorenz A, Krueger J, Klawonn F, Weiss S, Hausler S. The Laββ-ELastase of Pseudomonas aeruginosa acts in concert with alkaline protease Apr to prevent flagellin-mediated immune recognition. Infect Immun 2016;84(1):162–71.

[20] LaRoFy TE, Houle D, Beaudoin T, Wojewodka G, Radzioch D, Hoffman LR, et al. Cystic fibrosis-β-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses. Sci Adv 2015;1(6):e1500199.

[21] Mathieson NR, Potempa J, Travis J. Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8. Bioll Chem 2006;387(7):911–5.

[22] Parmely M, Gale A, Cibaukh M, Horvat R, Zhou WW. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect Immun 1990;58(9):3099–14.

[23] Saint-Croix V, Villeret B, Bastara F, Kheir S, Hatton A, Cazes I, et al. Pseudomonas aeruginosa Lasβ protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator—IL-6—antimicrobial—repair pathway. Thorax 2017 thoraxjnl-2017-210298.

[24] Bastara F, Kheir S, Saint-Croix V, Villeret B, Dang PM-C, El-Benna J, et al. Pseudomonas aeruginosa LasB subverts alveolar macrophage activity by interfering with bacterial killing through downregulation of innate immune defense, reactive oxygen species generation, and complement activation. Front Immunol 2018;9(1675).

[25] Afonina IS, Müller C, Martin SJ, Bejayr R. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity 2015;42(6):991–1004.

[26] Jafar-Bandjee MC, Lazdunski A, Bally M, Carrière J, Charazille JP, Galabert C. Production of elastase, exotoxin A, and alkaline protease in spu surgical pulmonary exacerbation of cystic fibrosis in patients chronically infected by Pseudomonas aeruginosa. J Clin Microbiol 1995;13(4):924–9.

[27] Cabral VP, CAFd Andrade, Passos SRL, MdlPM Martins, Hökerberg YHM. Severe infection in patients with rheumatoid arthritis taking anakinra, rituximab, or abatacept: a systematic review of observational studies. Rev Bras Reumatol 2016;56(6):543–50.

[28] Cantin AM, Woods DE. Aerosolized prolastin suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med 1999;160(4):1130–5.

[29] Martin SL, Downey D, Bilton D, Kengen MT, Edgar J, Elborn JS. Safety and efficacy of recombinant alpha-1 antitrypsin therapy in cystic fibrosis. Pediatr Pulmonol 2006;41(2):177–83.

[30] O’Connor CM, Gaffney K, Keane J, Southey A, Byrne N, O’Mahoney S, et al. —1-Proteinase inhibitor, elastase activity, and lung disease severity in cystic fibrosis. Am Rev Respir Dis 1993;148:1665.

[31] Gagger A, Hector A, Bratcher PE, Mall MA, Griese M, Harl D. The role of matrix metalloproteinases in cystic fibrosis lung disease. Eur Respir J 2011;38(3):721–7.

[32] Vandenbroucke R, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014;13(12):904–27.

[33] Jacobs MA, Alwood A, Thaipisutitkul I, Spencer D, Haugen E, Ernst S, et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proceed Natl Acad Sci 2003;100(24):14339–44.