Chloroethylclonidine Discriminates between α_{1A}- and α_{1B}-Adrenoceptors in the Presence of Guanosine 5'-Triphosphate in Rabbit Thoracic Aorta

Mitsutoshi Satoh, Noriko Kokubu and Issei Takayanagi*

Department of Chemical Pharmacology, Toho University School of Pharmaceutical Sciences, Miyama 2-2-1, Funabashi, Chiba 274, Japan

Received January 5, 1993 Accepted May 26, 1993

ABSTRACT—Studies on the displacement of $[^{3}H]$prazosin binding by the α_{1}-agonist phenylephrine revealed the presence of at least high- and low-affinity binding sites in membrane preparations prepared from rabbit thoracic aorta. Although the low-affinity site was reduced by the pretreatment of tissues with chloroethylclonidine, this site was unaffected by the same pretreatment of membrane preparations that did not contain the GTP analog. However, in membrane preparations with the metabolically stable GTP analog GTPγ-S (10^{-5} M) and single cell preparations, the low-affinity site was completely eliminated by the chloroethylclonidine pretreatment. Displacement studies with the α_{1}-antagonist WB4101 also revealed high- and low-affinity binding sites labeled by $[^{3}H]$prazosin. Displacement curves of WB4101 obtained from membrane preparations in the presence of GTPγ-S (10^{-5} M) did not differ from those in the absence of GTPγ-S. These results suggest that the low affinity phenylephrine binding site labeled by $[^{3}H]$prazosin was selectively bound by the chloroethylclonidine used to pretreat the tissues, membrane preparation containing GTPγ-S and single cells, and that chloroethylclonidine is able to recognize these two distinct subtypes of α_{1}-adrenoceptors only when GTPγ-S is present.

Keywords: GTPγ-S, Chloroethylclonidine, Thoracic aorta (rabbit)
MATERIALS AND METHODS

Animals and experimental procedure
Male albino rabbits weighing 2.0–3.0 kg were stunned by a blow on the head and killed by bleeding from the neck. The thoracic aorta was quickly removed and dissected free of excess fat and connective tissue in oxygenated Krebs solution of the following composition: 118 mM NaCl, 1.2 mM MgCl₂, 2.5 mM CaCl₂, 1.2 mM KH₂PO₄, 25 mM NaHCO₃ and 11.0 mM glucose dissolved in distilled water (pH 7.4 at 37°C). To determine the effects of chloroethylclonidine, an irreversible antagonist of α₁-adrenoceptors, tissues were treated with chloroethylclonidine (10⁻⁴ M) for a total of 60 min; following the initial application, the antagonist was renewed every 10 min by washing the tissue with fresh Krebs solution containing 10⁻⁴ M chloroethylclonidine. Membrane preparations and single cell preparations were treated with chloroethylclonidine (10⁻⁴ M) for 30 min, and then these preparations were rinsed at least four times with 10 ml of fresh buffer.

Membrane preparations
Tissues were homogenized in 100 vol. of buffer (25 mM sucrose containing 10 mM Tris-HCl, pH 7.4) by a polytron (Kinematica, Lucerne, Switzerland) (setting 8, 15 sec × 2). The homogenates were filtered through four layers of cheesecloth and centrifuged at 5,000 × g for 20 min at 4°C. The supernatant was centrifuged at 100,000 × g for 60 min at 4°C. The pellets were resuspended in the same volume of assay buffer (Tris-HCl 50 mM, pH 7.4), incubated for 10 min at 37°C, and again centrifuged as above. The following procedures were carried out in ice-cold buffers. The final pellets were resuspended in assay buffer and used for the binding assay. Protein was measured by the method of Lowry et al. with bovine serum albumin as the standard (10).

Preparation of single cells
Single smooth muscle cells from rabbit thoracic aorta were prepared by the method of Momose and Gomi (11), with modifications. Slices of the tissue were incubated in a medium containing 0.2% collagenase (Amano), 0.05% elastase (Sigma Type IV) and 1.0% bovine serum albumin at 32°C for 60 min, followed by centrifugation at 1,000 × r.p.m. for 5 min. The pellets were resuspended in the incubation medium at 32°C for 15 min. Thereafter, the single cells could be readily separated from the muscle by gently pipetting the muscle strips in the same solution through a wide-pore Pasteur pipette. The suspension was filtered through nylon mesh. The viability of the single cells could be readily separated from the muscle strips in the same solution through a wide-pore Pasteur pipette. The suspension was filtered through nylon mesh. The viability of the single cells was assessed by the trypan blue exclusion test (12, 13). This involved the addition of 20 µl of 0.4% trypan blue solution into a Burker-Turk hemocytometer. The total number of viable single smooth muscle cells was then determined. The single cells prepared from rabbit thoracic aorta had a viability of 91.25±1.61%.

Binding assay
The membrane preparations were incubated with 0.2 nM [³H]prazosin in the presence or absence of GTPγ-S (10 µM) in 50 mM Tris buffer for 30 min at 32°C. The reaction was terminated by rapid filtration (Cell Harvester; Brandel Co., Gaithersburg, MD, USA) through Whatman GF/B glass fiber filters, and the filters were rinsed 3 times with 4 ml of ice-cold buffer. Membrane bound radioactivity was extracted from the filters overnight in scintillation fluid and the level determined by a liquid scintillation counter. Specific [³H]prazosin binding was determined experimentally from the difference between the counts in the absence and presence of 10 µM phenolamine. All assays were conducted in duplicate. The apparent dissociation constant (Kd) and maximum binding site density (Bmax) for [³H]prazosin were estimated by Scatchard analysis of the saturation data over a concentration range of 0.01 to 1.0 nM (14). The ability of phenylephrine to inhibit specific [³H]prazosin binding was expressed as the IC₅₀ value, which was the molar concentration of unlabeled drug necessary to displace 50% of the specific binding. Data obtained from competition studies were analyzed by the weighted least-squares iterative curve fitting program LIGAND (15). The data were first fitted to a one- and then a two-site model; and if the residual sums of squares were statistically less for a two-site fit of the data than for a one-site fit, as determined by an F-test comparison, then the two-site model was accepted. The value of the inhibition constant (Kİ) was calculated from the equation Kİ = IC₅₀/(1+L/Kd) (16), where L equals the concentration of [³H]prazosin used. The Hill coefficients for the saturation data of [³H]prazosin and inhibition by a drug were obtained by Hill plot analysis.

Statistical analyses
All numerical data are expressed as means±S.E. with the number of observations. Values were considered significant when the P value was less than 0.05 by Student's t-test or Duncan's new multiple range test as appropriate.

Drugs
Drugs used were phenylephrine (Wako-Junyaku, Osaka); collagenase (Amano, Nagoya); elastase and guanosine 5'-3-O-(thio)triphosphate (GTPγ-S) (Sigma, St. Louis, MO, USA); WB4101 and chloroethylclonidine (Research Biochemicals Inc., Natick, MA, USA), all in powder form; and [³H]prazosin (specific activity 82 Ci/mmol; NEN, Boston, MA, USA). Other chemicals used were of analytical grade.
RESULTS

Effects of chloroethylclonidine on displacement of the binding of [3H]prazosin by phenylephrine in membrane fractions

Specific binding of [3H]prazosin (0.01–1.0 nM) in the membrane preparations was saturable, forming a plateau between 0.5 and 0.6 nM [3H]prazosin. The Scatchard plot was linear, suggesting a single population of binding sites with a KO value of 0.17 ± 0.05 nM and a Bmax of 49.2 ± 1.64 fmol/mg protein. The inhibition curves for the agonist phenylephrine are shown in Fig. 1A. The Hill coefficient for the drug obtained from the Hill plot (Fig. 1B) was 0.28 ± 0.09 (n = 6) for phenylephrine, suggesting that this agent interacts with high- and low-affinity sites labeled by [3H]prazosin. The Ko values obtained by computer analysis of the competition curves are shown in Table 1. The Hill coefficient was increased, and the low affinity site of the displacement curve was reduced by chloroethylclonidine (10⁻⁴ M) pretreatment of the tissues that contained sufficient activating factors such as GTP (Fig. 1). The pretreatment with 10⁻⁴ M chloroethylclonidine decreased the [3H]prazosin specifically bound to approximately 42% of the control level determined in the absence of chloroethylclonidine.

Effects of GTPγ-S on the displacement [3H]prazosin binding by phenylephrine in membrane fractions treated or untreated with chloroethylclonidine

Chloroethylclonidine (10⁻⁴ M) pretreatment of mem-

![Fig. 1. Effects of chloroethylclonidine in tissue on phenylephrine displacement curves for [3H]prazosin binding sites in microsomal membranes prepared from rabbit aorta. A, Inhibition of the binding of 0.2 nM [3H]prazosin to the membrane prepared from thoracic aorta by phenylephrine. B, Pseudo-Hill plots obtained from their displacement curves. I, Inhibitory percentage of each point. , tissue not treated with chloroethylclonidine; , 10⁻⁴ M chloroethylclonidine-pretreated tissue. Data shown are the means ± S.E. of at least three separate experiments.](image)

| Table 1. Effects of GTPγ-S (10 µM) on inhibition of the [3H]prazosin binding by chloroethylclonidine in the membrane fractions of rabbit thoracic aorta |
|---|---|---|---|---|
n	pIC50	nH	High (α1A)	Low (α1B)
---	---	---	---	---
Tissue				
Untreated	6	5.14 ± 0.15	0.28 ± 0.04*	5.55 ± 0.22
CEC	4	5.09 ± 0.10	0.74 ± 0.08*	5.55 ± 0.17
Membrane				
CEC	3	5.11 ± 0.05	0.29 ± 0.03*	5.83 ± 0.29
CEC & GTPγ-S	3	5.21 ± 0.31	1.02 ± 0.02	5.65 ± 0.31

Membrane preparations were incubated with 0.2 nM [3H]prazosin and different concentrations of phenylephrine. The IC50 value is the molar concentration of unlabeled drug necessary to displace 50% of the specific binding. pIC50, negative logarithm of the IC50 value. Negative logarithm of the Ko value (pKo) and Bmax for the high- and low-affinity binding sites were calculated from the IC50 values according to Cheng and Prusoff (16). Percentage of low-affinity binding sites (Bmax Low (%)) was calculated from the equation Bmax Low (%) = Bmax Low/(Bmax High + Bmax Low) × 100. n, number of experiments; nH, pseudo Hill coefficient; CEC, chloroethylclonidine treatment. The values represent means ± S.E. *: significant difference from unity (P < 0.05). †: significantly different from the value in untreated membranes at P < 0.05.
Fig. 2. Effects of chloroethylclonidine in the membrane preparation on phenylephrine displacement curves for $[^3H]$prazosin binding sites in microsomal membranes prepared from rabbit aorta. A, Inhibition of the binding of 0.2 nM $[^3H]$prazosin to the membrane prepared from thoracic aorta by phenylephrine. B, Pseudo-Hill plots obtained from their displacement curves. I, inhibitory percentage of each point. ●, membrane preparation not treated with chloroethylclonidine; ○, 10^{-4}M chloroethylclonidine-pretreated membrane preparation. Data shown are the means±S.E. of at least three separate experiments.

Fig. 3. Effect of chloroethylclonidine on phenylephrine displacement curves for $[^3H]$prazosin binding sites in microsomal membranes prepared from rabbit aorta, where GTPγ-S was added. A, Inhibition of the binding of 0.2 nM $[^3H]$prazosin to the membrane prepared from thoracic aorta by phenylephrine. B, Pseudo-Hill plots obtained from their displacement curves. I, inhibitory percentage of each point. ●, 10^{-5}M GTPγ-S; ○, 10^{-4}M chloroethylclonidine-pretreated membrane preparation with 10^{-5}M GTPγ-S. Data shown are the means±S.E. of at least three separate experiments.

Fig. 4. Effect of chloroethylclonidine on phenylephrine displacement curves for $[^3H]$prazosin binding sites in single cells prepared from rabbit aorta. A, Inhibition by phenylephrine of the binding of 0.2 nM $[^3H]$prazosin to the single cells prepared from thoracic aorta. B, Pseudo-Hill plots obtained from their displacement curves. I, Inhibitory percentage of each point. ●, single cells not treated with chloroethylclonidine; ○, 10^{-4}M chloroethylclonidine-pretreated single cells. Data shown are the means±S.E. of at least three separate experiments.
brane preparations that did not contain activating substances such as GTP had no effect on the displacement curve of phenylephrine, and the value of the Hill coefficient was the same as that obtained in the preparations not treated with chloroethylclonidine (Fig. 2). Effects of GTPγ-S on the displacement curve of phenylephrine were determined. In the chloroethylclonidine-pretreated membrane preparations to which GTPγ-S (10 pM) had been added, however, the Hill coefficient for the displacement curve was not different from unity, and the low-affinity sites of the curve were completely eliminated (Fig. 3, Table 1). In 10 pM GTPγ-S-containing membrane fraction, the pretreatment with chloroethylclonidine decreased the [3H]prazosin specifically bound to approximately 31% of the control level determined in the absence of chloroethylclonidine. However, the same treatment of the membrane preparation not containing GTPγ-S did not change the amount of specific binding so that it remained the same as that of the untreated preparation.

Effect of chloroethylclonidine on inhibition of the binding of [3H]prazosin by phenylephrine in single cells

Furthermore, in single cells prepared from rabbit thoracic aorta, which retain receptor-second messenger systems such as intracellular receptor-G protein coupling in the intact condition, for which the inhibition curves for phenylephrine are shown in Fig. 4A, the Hill coefficient was significantly different from unity (nH = 0.39 ± 0.14), suggesting that phenylephrine interacted with both the high- and low-affinity sites in this preparation. Pretreatment of the single cells with 10⁻⁴ M chloroethylclonidine selectively eliminated the low affinity sites for phenylephrine (Fig. 4 and Table 2), and it decreased the specifically bound [3H]prazosin to approximately 26% of the control level determined in the absence of chloroethylclonidine.

Inhibition curves of the binding of [3H]prazosin to membrane preparations by the competitive inhibitor WB4101

The inhibition curves for the competitive inhibitor

![Fig. 5. Displacement curves of WB4101 for [3H]prazosin binding sites in microsomal membranes prepared from rabbit aorta in the absence (○) and the presence (△) of GTPγ-S. A, Inhibition by WB4101 of the binding of 0.2 nM [3H]prazosin to the membrane prepared from thoracic aorta. B, Pseudo-Hill plots obtained from their displacement curves. I, Inhibitory percentage of each point. Data shown are the means of triplicate determinations in representative experiments.](image)

| Table 2. Effects of chloroethylclonidine on [3H]prazosin binding in single cells prepared from rabbit thoracic aorta |
|---|---|---|---|---|
| | n | pIC₅₀ | nH | High (α_{HA}) | Low (α_{LA}) | B_{max} Low (%) |
| | | | | pK_i (10⁻⁴ B_{max} fmol/cell) | pK_i (10⁻⁴ B_{max} fmol/cell) | |
| Single cell | | | | | | |
| Untreated | 3 | 5.41 ± 0.18 | 0.39 ± 0.14* | 5.82 ± 0.16 | 0.98 ± 0.43 | 4.59 ± 0.19 |
| CEC | 3 | 5.58 ± 0.24 | 1.04 ± 0.28 | 5.91 ± 0.24 | 0.89 ± 0.18 | 2.43 ± 0.43 | 71.30 ± 12.6 |

Single cells were incubated with 0.2 nM [3H]prazosin and different concentrations of phenylephrine. The IC₅₀ value is the molar concentration of unlabeled drug necessary to displace 50% of the specific binding. pIC₅₀, negative logarithm of the IC₅₀ value. Negative logarithm of the K_i value (pK_i) and B_{max} for the high- and low-affinity binding sites were calculated from the IC₅₀ values according to Cheng and Prusoff (16). Percentage of low-affinity binding sites (B_{max} Low (%)) was calculated from the equation B_{max} Low (%) = B_{max} Low / (B_{max} High + B_{max} Low) × 100. n, number of experiments; nH, pseudo Hill coefficient; CEC, chloroethylclonidine treatment. The values represent means ± S.E. *: significant difference from unity (P < 0.05).
Table 3. Inhibition of the [3H]prazosin binding by WB4101 in the membrane fractions of rabbit thoracic aorta in the absence and the presence of GTPγ-S (10 μM)

	High (α1a)	Low (α1b)	Bmax Low (%)					
	pKᵣ	Bmax (fmol/mg protein)	pKᵣ	Bmax (fmol/mg protein)				
WB4101	3	8.13±0.13	0.62±0.02*	9.04±0.44	8.48±1.13	7.43±0.29	45.20±1.13	87.20±2.10
GTPγ-S & WB4101	3	8.07±0.14	0.60±0.01*	9.31±0.67	8.59±2.17	7.50±0.20	42.82±2.17	83.47±4.23

Membrane preparations were incubated with 0.2 nM [3H]prazosin and different concentrations of WB4101. The IC₅₀ value is the molar concentration of unlabeled drug necessary to displace 50% of the specific binding. pIC₅₀, negative logarithm of the IC₅₀ value. Negative logarithm of the Kᵣ value (pKᵣ) and Bmax for the high- and low-affinity binding sites were calculated from the IC₅₀ values according to Cheng and Prusoff (16). Percentage of low-affinity binding sites (Bmax Low (%)) was calculated from the equation Bmax Low (%) = Bmax Low/(Bmax High + Bmax Low) × 100. n, number of experiments; nH, pseudo Hill coefficient; GTPγ-S, 10 μM GTPγ-S. The values represent means ± S.E. *: significant difference from unity (P<0.05).

WB4101 in the membrane fractions of rabbit thoracic aorta in the absence and the presence of GTPγ-S (10 μM) are shown in Fig. 5A. The Hill coefficient for the drug obtained from the Hill plot (Fig. 5B) was 0.62±0.02 for WB4101, suggesting that this agent interacts with both the high- and low-affinity sites labeled by [3H]prazosin. The Kᵣ values and maximum binding sites (Bmax values) obtained by computer analysis of the competition curves are shown in Table 3: The Hill coefficient, pKᵣ values and Bmax values obtained from the membrane preparation in the presence of GTPγ-S did not differ significantly from those obtained in the absence of GTPγ-S. In the GTPγ-S containing membrane fraction, the pretreatment with chloroethylclonidine completely eliminated the low-affinity sites of the curve, and the level of [3H]prazosin specifically bound was reduced to approximately 28% of the control level determined without chloroethylclonidine pretreatment (data not shown).

DISCUSSION

α₁-Adrenoceptors in membrane prepared from rabbit thoracic aorta were selectively labeled by [3H]prazosin, and then the labeled receptors were displaced by the α₁-agonist phenylephrine. The computer analysis of the displacement curve showed the presence of high-affinity and low-affinity sites (Fig. 1A, Table 1). The low-affinity sites were selectively eliminated by the pretreatment with chloroethylclonidine of the tissue preparation, and the displacement curves obtained from the chloroethylclonidine-pretreated membrane in the absence of GTPγ-S did not differ from those obtained from the untreated preparations. However, in membrane preparations containing GTPγ-S, the low-affinity sites were completely eliminated by chloroethylclonidine pretreatment. Furthermore, in single cell preparations, the pretreatment with chloroethylclonidine also eliminated the low-affinity sites for phenylephrine. These results show that phenylephrine interacts with at least two different α₁-adrenoceptor binding sites in the membrane preparations and single cell preparations from rabbit thoracic aorta. The low-affinity sites are α₁B-subtypes and the other are α₁A-subtypes, because chloroethylclonidine selectively inactivated the low-affinity sites for phenylephrine. There were no differences between the drug-receptor interactions of [3H]prazosin in the membrane preparations and single cell preparations.

Johnson et al. (17) reported that the α₁-adrenergic agonist phenylephrine stimulated GTPγ-S binding to Gₛ and Gᵢ in rat aortic membranes, and the degree of stimulation was reduced in desensitized vessels. It is known that the guanine nucleotide-induced conversion of drug binding sites was typically from the high-affinity to the low-affinity state. The alterations in binding states in the presence of guanine nucleotides reflect an interaction between the receptors and G-protein. In the presence of a high concentration of GTPγ-S or GTP, the phenylephrine competition curve was shifted to the right (18). In the present studies, a low concentration of GTPγ-S (10 μM) did not affect the phenylephrine competition curve, and the irreversible antagonist chloroethylclonidine selectively eliminated the low-affinity sites of α₁-adrenoceptors in the presence of GTPγ-S or GTP and in the single cell preparations. Kokubu et al. (6) reported that in the tissue and GTPγ-S-containing membrane fraction derived from rabbit thoracic aorta, the pretreatment with the irreversible antagonist phenoxybenzamine selectively eliminated the low-affinity sites, but the same treatment of the membrane preparation not containing GTPγ-S did not affect the low-affinity sites of the displacement curves. They proposed that phenoxybenzamine interacts more selectively with the α₁B-subtype in the presence of GTP or its analog and in the single cell preparations, but not in the absence of either of them. Their findings support the present results that chloroethylclonidine selectively eliminated the α₁B-adrenoceptor subtype in the presence of GTPγ-S or GTP. Our findings obtained from the present study sug-
suggest that GTP-related regulatory proteins intracellularly modulate the affinities or properties of α_1-adrenoceptors, and they also show that GTP plays an important role in the specificity of α_1-adrenoceptor subtypes and that GTPγ-S causes some populations of the receptor sites to become sensitive to chloroethylclonidine.

The competitive antagonist WB4101 discriminates between two subtypes (α_{1A} and α_{1B}) (19). The high-affinity site for WB4101 is an α_{1A}-subtype and the low-affinity site is an α_{1B}-subtype eliminated irreversibly by chloroethylclonidine pretreatment, while the high-affinity site is unaffected by chloroethylclonidine. In contractile experiments with thoracic aorta strips, Takayanagi et al. (4) reported that WB4101 is a competitive antagonist of the two sites for the full agonist phenylephrine. Morrow and Creese (20) and Kinami et al. (21) also reported that WB4101 clearly distinguishes between the two different binding sites in membrane preparations. These findings demonstrate that WB4101 acts as a competitive antagonist of a drug-receptor interaction with different affinities toward two distinct α_1-adrenoceptors (α_{1A} and α_{1B}). In the present experiments, the competitive binding studies with WB4101 also revealed the high- and low-affinity binding sites labeled by $[^3H]$prazosin (Fig. 5 and Table 3), and the displacement curves of WB4101 obtained from membrane preparations containing GTPγ-S did not differ from those in the absence of GTPγ-S. These findings suggest that mechanisms of the inhibitory action, including the G-protein, are different between β-haloethylamines and competitive inhibitors. The present studies indicate that rabbit thoracic aorta contains two distinct α_1-adrenoceptor subtypes, and one of them, the α_{1B}-subtype, mainly couples with the G-protein. Although further studies on the molecular basis of the drug-receptor interaction and its modulation by guanine nucleotides are needed, our experiments illustrate a pharmacological approach of general applicability for resolving the mechanisms involved in the discrimination of receptors in tissues containing heterologous populations of receptor subtypes.

In conclusion, chloroethylclonidine distinguishes between α_{1A}- and α_{1B}-adrenoceptors only when GTPγ-S is present.

REFERENCES

1. Han, C., Li, J. and Minneman, K.P.: Subtypes of α_1-adrenoceptors in rat blood vessels. Eur. J. Pharmacol. 199, 97–104 (1990)
2. Minneman, K.P., Han, C. and Abel, P.W.: Comparison of α_1-adrenergic receptor subtypes distinguished by chloroethylclonidine and WB4101. Mol. Pharmacol. 33, 509–514 (1988)
3. Suzuki, E., Tsujimoto, G., Tamura, K. and Hashimoto, K.: Two pharmacologically distinct α_1-adrenoceptor subtypes in the contraction of rabbit aorta: Each subtype couples with a different Ca$^{2+}$ signalling mechanism and plays a different physiological role. Mol. Pharmacol. 38, 725–736 (1990)
4. Takayanagi, I., Harada, M., Koike, K. and Satoh, M.: Differences in α_1-adrenoceptor mechanisms for phenylephrine and tizanidine in rabbit thoracic aorta and common iliac artery. Can. J. Physiol. Pharmacol. 49, 1819–1824 (1991)
5. Satoh, M., Kojima, C. and Takayanagi, I.: Pharmacological characterization of contractile responses induced by α_1-agonists, norepinephrine and clonidine, by selective antagonists of their subtypes in rabbit thoracic aorta. J. Pharmacol. 60, 169–177 (1992)
6. Kokubu, N., Satoh, M. and Takayanagi, I.: Effects of guanosine 5'-triphosphate on the specificity of irreversible α_1-antagonisms by phenoxybenzamine in rabbit thoracic aorta. J. Pharmacol. 60, 299–302 (1992)
7. Takayanagi, I., Hisayama, T., Kiuchi, Y. and Sudo, H.: Propylbenzilylcholine mustard discriminates between two subtypes of muscarinic cholinceptors in guinea-pig taenia caecum. Arch. Int. Pharmacodyn. Ther. 298, 210–219 (1989)
8. Takayanagi, I., Ohitsu, H., Saito, K., Koike, K. and Satoh, M.: Propylbenzilylcholine mustard (PrBCM)-sensitive cholinceptors and contractile response to partial agonist in guinea pig ileal muscle. Japan. J. Pharmacol. 56, 151–158 (1991)
9. Kiuchi, Y., Kumagai, N., Hisayama, T. and Takayanagi, I.: Guanosine 5'-triphosphate converts some populations of muscarinic cholinceptor sites to sites resistant to the drug in intestinal smooth muscle. Japan. J. Pharmacol. 55, 329–338 (1991)
10. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)
11. Momose, K. and Gomi, Y.: Studies on isolated smooth muscle cells. IV. Isolation and acetylcholine-contraction of single smooth muscle cells from taenia coli of guinea pig. J. Pharmacobiodynam. 1, 184–191 (1978)
12. Bagby, R.M., Young, A.M., Dotson, R.S., Fisher, B.A. and McKinnon, K.: Contraction of single smooth muscle cells from Bufo marinus stomach. Nature 234, 351–352 (1971)
13. Johns, A. and Riehl, R.M.: A simple method for preparing single cell suspensions of heart and smooth muscle for radio-receptor labeling studies. J. Pharmacol. Methods 7, 153–159 (1982)
14. Scatchard, G.: The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660–672 (1949)
15. Munson, P.J. and Rodbard, D.: LIGAND; A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220–239 (1980)
16. Cheng, Y.-C. and Prusoff, W.H.: Relationship between the inhibition constant (K) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973)
17. Johnson, M.D., Wang, H.-Y., Ciechanowski, D. and Friedman, E.: Reduced G protein function in desensitized rat aorta. J. Pharmacol. Exp. Ther. 259, 255–259 (1991)
18. Jagadeesh, G. and Deth, R.C.: Phorbol ester-induced modulation of agonist binding to alpha-1 adrenoceptors in bovine aortic membranes. J. Pharmacol. Exp. Ther. 247, 196–202 (1988)
19. Satoh, M., Kojima, C. and Takayanagi, I.: Characterization of α_1-adrenoceptor subtypes labeled by $[^3H]$prazosin in single cells prepared from rabbit thoracic aorta. Eur. J. Pharmacol. 221,
Morrow, A.L. and Creese, I.: Characterization of α_1-adrenergic receptor subtypes in rat brain: A reevaluation of $[^{3}\text{H}]$WB4101 and $[^{3}\text{H}]$prazosin binding. Mol. Pharmacol. 29, 321–330 (1986)

Kinami, J., Tsuchihashi, H., Baba, S., Mano, F., Maruyama, K. and Nagatomo, T.: α_1-Adrenoceptor subtypes in the rat ventricular muscle. J. Pharm. Pharmacol. 44, 97–100 (1991)