Influence of outlet channel width to the flow velocity and pressure of a flow focusing microfluidic device

Chin Fhong Soon1,2, Yap Hiung Yin2, Kian Sek Tee3, Mohd Khairul Ahmad1,2, Mohd Zainizan Sahdan1, Nafarizal Nayan2

1Biosensor and Bioengineering Laboratory, MiNT-SRC, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

2Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

soon@uthm.edu.my

Abstract. Microencapsulation using flow focusing microfluidic devices attract great interest because of the simple fabrication technique using polymeric material. Simulation of the microfluidic device provides the advantage of reducing the waste of material before actual implementation of the fabrication. This paper reports the design of a flow focusing microfluidic device based on emulsification of two immiscible fluids. The system was built and simulated in COMSOL Multiphysics software by varying the outlet width in examining the effects of the flow and pressure at the outlet. The simulation results reveal that both the flow rate and the pressure decreased dramatically when the ratio of outlet channel to inlet channel (R) is greater than 2. The width of the outlet is critical in ensuring the flow of microcapsules without accumulation of microcapsules at the output pool due to the poor flow rate at the outlet channel and avoidance of leakage problem. The recommended R to achieve the objective of microencapsulation is between 2 and 4.

1. Introduction

Microfluidic device is a network of microchannels designed to perform specific functions for fluid dilution, mixing and splitting \cite{1, 2}. The technology of microfluidic enables new tools for biomedical engineering, molecular biology, drug delivery and food industry \cite{1, 3, 4}. One of the main applications of microfluidic is in the formation of micro or nanodroplets for containment of organic and inorganic materials for biochemical \cite{5} and tissue engineering \cite{5, 6}. The system gains popularity due to the advantages of providing accurate processing, low energy and reagent consumptions \cite{1}.

Flow focusing which works on the principle of emulsification is one of the mechanisms which can be performed by the microfluidic device to generate droplets. A T-junction or crossed-junction (flow focusing) are the most commonly used geometry to direct continuous flows of two channels that intersect with a downstream channel. In a water-in-oil system, the continuous flow is usually the oil
phase of the higher viscosity while the dispersed flow contains the particles, organism, chemical or
dye in solutions with a lower viscosity [1]. With the streams of the continuous phase at a higher flow
rate, this creates a shear pressure that “pinch off” the disperse phase at a lower flow rate leading to the
formation of droplets at the output channel. The inflow of fluids are usually injected by active infusion
pumps in which, the infusion rates of streams can be controlled. Tice et. al. has investigated the effect
of viscosity to the size of droplets at the T-junction [7]. Other works revealed that the droplet size is
affected by the flow rates of the oil phase [8] and the geometrical dimension of T-junctions [9].

It seemed that the dimension of the channels of the junction could influence the droplets formation.
Hence, optimising the geometry of a flow focusing junction has to be established. The purpose of the
present study is to investigate the width of the outlet channel in influencing the flow focusing junction
designed for producing water-in-oil droplets. Special attention was given to demonstrate how the size
of the outlet can affect the pressure and flow at the crossed junction.

2. Design and simulation of the microfluidic device

The microfluidic pattern was designed in the COMSOL Multiphysics software based on the
requirements to perform emulsification at the crossed junction in which the continuous (paraffin oil)
and disperse (sodium alginate) phases were intersected and combined into a downstream channel
(Figure 1). An inlet (inlet 1) with two splits channels was assigned to flow the two continuous streams
of paraffin oil which will be perpendicular and intercepted with the second inlet (inlet 2) of the
disperse flow of sodium alginate at a crossed junctions, leading to the outlet of the microfluidic device
(Figure 1). The inlet 2 channel is tapered to form the inlet channel at smaller width of 500 µm. The
outlet will be connected to a pool of calcium chloride solution in which the sodium droplets
polymerised into microcapsules of calcium alginate [6]. In the emulsion phase, the minute droplets of
the sodium alginate will be finely dispersed in the miscible oil phase which is a water-in-oil system.

The model for simulation is as shown in Figure 1. Inlet and outlet channels were both designed
with a width of 500 µm initially and a depth of 300 µm. The ratio of the outlet channel width to inlet
channel width is defined as R=In1/In2. The inlet 2 channel has a width of 4000 µm and depth of 300
µm. The crossed junction was designed with a 500 µm of width and 300 µm of depth. Subsequently,
the outlet width was varied to study the effects of different width of outlets to the fluid flow rate and
pressure of the microchannels. The simulations were performed for outlet width varying from 500 to
3000 µm at an increment of 500 µm.

![Figure 1. Initial design of a flow focusing microfluidic device.](image-url)
Table 1. The specification of sodium alginate and paraffin oil [10].

	Density (kg/m3)	Dynamic viscosity (mPa·s)
Sodium alginate	1601	20
Paraffin oil	890	46.96

Based on the computational fluid dynamic (CFD) model, the boundaries of the model were set as no slip condition which is a hydrophobic condition similar to poly-dimethylsiloxane (PDMS). The density (kg/m3) and dynamic viscosity (Pa·s) of the sodium alginate and paraffin oil were set for both inlet 1 and 2 as listed in Table 1 [10]. In the simulation, inlet 1 and inlet 2 were purged with paraffin oil and sodium alginate that were assigned as the continuous and disperse phases, respectively.

The flow rate was pre-fixed before the simulation of the model. For this model, a high flow rate at 5000 µl/min was set for the paraffin oil (continuous phase), while a lower flow rate at 300 µl/min was set for sodium alginate (disperse phase). The two flow rates suggested were the maximum flow rates of continuous and disperse phases that could optimise flow and pressure for a microfluidic device to generate microbeads without failure [11]. In considering the linear channels design, laminar flow was assumed for the simulation of the microfluidic device. The dynamic of the fluid flow can be described by the continuity equation:-

$$A_1 \mu_1 \rho_1 = A_2 \mu_2 \rho_2$$ \hspace{1cm} (1)

where, A is the area (m2), μ is the velocity (m/s) and ρ is the density (kg/m3).

The channel width is expected to have an influence to the velocity of fluid as indicated by equation (1). The pressure of the fluid is associated with the velocity of the fluid as indicated by the Bernoulli’s equation:-

$$\frac{p_1 + \mu_1^2}{\rho g} + \frac{\mu_2^2}{2g} = p_2 + \frac{\mu_2^2}{2g}$$ \hspace{1cm} (2)

where, P is the pressure (kN/m3), μ is the velocity (m/s), ρ is the density of fluid (kg/m3) and g is the gravity (9.81 m/s2).

The subscripts 1 and 2 denote the parameters for estimating velocity and pressure of fluid flow in channel 1 and 2. The parameters discussed are important inputs that were included in the simulation of the microfluidic model established.

3. Results and discussion

Figure 2a shows the simulation results of the fluid focusing microfluidic channel with various channel width of the outlet. Figure 2b shows that the fluid velocity is inversely associated with the ratio of the outlet/inlet width. At an equal width of 500 µm for the inlet and outlet channels (R = 1), the velocity of the downstream outlet channel was indicated with higher flow velocity at approximately 3.23×10^{-4} m/s. A higher flow velocity at the narrow outlet channel than the inlet channel (R=1) is postulated to induce back flow problem. Nonetheless, this design may not be encouraged due to the strong flow velocity and high pressure (Figure 3) at the narrow outlet channel that might cause leakage of the channel in a microfluidic device. At R = 2 (Figure 2b), this situation could be improved in which the flow at the outlet channel decreased drastically to 1.2×10^{-4} m/s. A small area of higher velocity still found at the junction but larger area with lower flow velocity (1.2×10^{-5} m/s) reduced the pressure at
the junction (Figure 3). This agrees with the principal of continuity [12] that the velocity decreased when fluid flows from small to big area.

Figure 2. (a) Effects of the outlet width to the fluid flow velocity in simulations. The arrows indicate the point where the reading was taken. (b) The relationship of fluid velocity and ratio of R to the outlet channel width.
Figure 3. (a) Effects of the outlet width to the pressure in simulations. The arrows indicate the point where the reading was taken. (b) The relationship of the outlet width to the pressure.

The forward flow of both inlets can be focused forward that there should not be back flow issue at the crossed junction of the channels. As the outlet channel further increased (R = 3 to 6 in Figure 2b), the flow velocity of the fluid at the outlet decreased gradually as the width of the outlet increased (Figure
b). Overall, the velocity decreased non-linearly with the change of outlet channel width at a fixed interval. The cross-over point between the ratio of outlet/inlet and the fluid velocity indicated the minimum design limit for the outlet channel width.

The pressure at the channel is important to be controlled in order to ensure that fluid pressure is not high enough to cause leakage which is a common problem in microfluidic device fabrication. Relatively, the decrease in fluid velocity has a relation to the decreased pressure of the channel (Figure 2b and 3b). The pressure decreased when the velocity of the fluid flow decreased and this is in good agreement with the Bernoulli’s equation [20]. In this design, a bottle neck before the crossed junction created high pressure at inlet channel, where, the fluid flew from large to small channel is regulated by equation (1). The pressure remained high regardless of the outlet channel width. The pressure of the outlet channel stabilised at 10.3 Pa once the width is at R = 3. When R = 1, The shear pressure from the continuous phase and inlet were extremely high at approximately 19.3 Pa that may not enable the formation of droplets. The condition in which the shear forces from the lateral channels (continuous phase) higher than the inlet channel (disperse phase) must be satisfied. This can be achieved when R > 1. However, outlet channel with a width larger than 3000 µm that allows spaces for accumulation of droplets my result in clogging of the calcium alginate at the tube immersed in the calcium chloride solution practically. Both simulation results suggested that the width of the outlet between 1000 and 2000 µm could provide lower pressure and velocity of fluid flow which might prevent fluid leakage from the microfluidic device.

4. Conclusion
A microfluidic flow focusing device was designed and simulated to perform emulsification of the continuous and disperse phases of two liquids. The outlet channel with tapered design at the inlet and outlet channels could enable droplets formation. Narrow channels with an outlet/inlet ratio, R, less than 1 could induced high pressure that might cause leakage in the microfluidic device and back flow problem. An outlet width larger than 2000 µm or R > 4 may cause clogging at the output channel. Via the simulation result obtained for the design of the current work, the outlet width between 1000 and 2000 µm (2 < R < 4) was suggested for fabrication of a flow focusing microfluidic device due to the lower pressure and velocity presented.

Acknowledgment
The authors are grateful to the research financial support (Science Fund Vot No.: 0201-01-13-SF0104 or S024) awarded by Malaysia Ministry of Science and Technology (MOSTI) and IGSP grant (Vot No. U567) of Universiti Tun Hussein Onn Malaysia.

References
[1] Hung L and Lee A P 2007 Microfluidic devices for the synthesis of nanoparticles and biomaterials *Journal of Medical and Biological Engineering* **27** 1-6
[2] Duncanson W J, Lin T, Abate A R, Seiffert S, Shah R and Weitz D A 2012 Microfluidic synthesis of advanced microparticles for encapsulation and controlled release *Lab on a Chip* **12** 2135-2145
[3] Vahabzadeh F, Zivdar M and Najafi A 2004 Microencapsulation of orange oil by complex coacervation and its release behavior *IJIE Transactions B: Applications* **17** 333-342
[4] Pakzad H, Alemzadeh I and Kazemii A 2013 Encapsulation of peppermint oil with arabic gum-gelatin by complex coacervation method *IJIE Transactions B: Applications* **26** 807-814
[5] Bhattarai R, Shrestha A and Dhandapani N 2011 Drug delivery using alginate and chitosan beads: An Overview *Chronicles of Young Scientists* **2** 192-196
[6] Wong S C, Soon C F, Leong W Y and Tee K S 2016 Flicking technique for microencapsulation of cells in calcium alginate leading to the microtissue formation *Journal of*
Microencapsulation 33 162-171

[7] Tice J D, Song H, Lyon A D and Ismagilov R F 2003 Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers Langmuir : the ACS journal of surfaces and colloids 19 9127-9133

[8] Lapierre F, Wu N and Zhu Y 2011 Influence of flow rate on the droplet generation process in a microfluidic chip Smart Nano-Micro Materials and Devices, Proceeding of SPIE 8204 82040H82041-82047

[9] Garstecki P, Fuerstman M J, Stone H a and Whitesides G M 2006 Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a chip 6 437-446

[10] Rowe R C, Sheskey P J and Quinn M E 2009 Handbook of Pharmaceutical Excipients (United Kingdom: Pharmaceutical Press)

[11] Yap H Y, Soon C F, Tee K S, Zainal N and Ahmad M K 2016 Customizing a high flow rate syringe pump for injection of fluid to a microfluidic device based on polyimide film ARPN Journal of Engineering and Applied Sciences 11 3849-3855

[12] Batchelor G K 2001 An Introduction to Fluid Dynamics (Cambridge: Cambridge University Press)