Research Article

Sports Action Recognition Based on Particle Swarm Optimization Neural Networks

Rui Zhang

Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China

Correspondence should be addressed to Rui Zhang; zhangrui@byau.edu.cn

Received 25 December 2021; Revised 17 January 2022; Accepted 18 January 2022; Published 10 February 2022

Academic Editor: Xin Ning

Copyright © 2022 Rui Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Video acquisition has become more convenient as science and technology have progressed, and the development of mobile Internet has resulted in a large amount of video data being generated every day. The question of how to analyze these videos automatically has become urgent. Among them, the study of sports movement recognition in video has important theoretical implications in sports research as well as practical application value. This paper proposes a PSO-NN-based sports action recognition model. Kernel principal component analysis is used to extract and analyze the characteristics of sports movements. The improved neural network is used to identify common human postures in sports, and the classification and block background estimation method is used to detect human targets. The feature extraction of targets is completed according to the edge features, and the feature extraction of targets is completed according to the edge features. Finally, the feature vectors are trained using a backpropagation neural network (BPNN), and the parameters of the BPNN are chosen using the PSO algorithm to create a classifier for sports action recognition. The results show that this model improves the accuracy of sports video recognition and is an effective method of sports action recognition when compared to the comparison model.

1. Introduction

With the development of network technology and computer intelligent monitoring technology, a large number of video data came into being [1]. The traditional manual analysis method can no longer meet the current demand for video analysis of specific targets, so intelligent video data processing has emerged as a major issue [2]. The field of vision and sensors is currently the primary research hotspot in motion recognition. Cameras are used to collect data in vision-based motion recognition, but it is expensive, requires a lot of equipment, and is light-sensitive. Motion recognition based on sensors, on the other hand, primarily employs microsensors and processes data using machine learning methods [3]. The majority of sporting performances are achieved by watching sports videos, which is unquestionably time and labor-intensive. The target detection and deep learning (DL) [4] technologies offer new approaches to resolving this issue. Applying them to sports motion detection and efficiently extracting sports motion detection from sports videos can not only improve the viewing experience of sports videos but also help athletes train more effectively.

Human motion recognition is an important field of computer vision research, and its purpose is to analyze the ongoing human activities in the video [5]. With the progress of science and technology, especially the development of mobile Internet, video acquisition is more convenient, and a large number of video data are generated every day. How to analyze these videos automatically has become an urgent problem [6, 7]. In the past research of sports action recognition, the biggest difficulty was how to extract proper feature values [8]. Compared with silhouette features, contour features can better describe the categories of sports movements. Fourier transform is often used to obtain contour features of sports movements. The more the features are, the more unfavorable it is to classify and identify sports movements. It is necessary to reduce the dimension of contour features and select some important features for sports movement identification modeling [9]. The neural
network (NN) model [10] can be directly applied to raw data to automatically extract feature values, eliminating the tedious process of manually extracting feature values. Moreover, due to the characteristics of the NN model, the amount of calculation in the training stage is large, and the amount of calculation in the classification stage is small, which makes the mobile-based action recognition system possible.

With the wide use of video surveillance and the emergence of various video clients, a large amount of video data has been generated in intelligent surveillance, human-computer interaction, and auxiliary medical care, and the key information can be obtained more effectively by identifying and detecting human behavior in video data by machine learning algorithm [11]. Among them, the research on sports movement recognition in video has important theoretical significance in sports research and great application value in practical application, so it has received great attention [12, 13]. In this paper, in order to obtain more ideal sports action recognition results, a sports action recognition model of particle swarm optimization neural network (PSO-NN) is proposed. This model can directly process the time series data, automatically extract feature values, and avoid the tedious process of manually extracting feature values.

2. Related Work

Spriet [14] extracted the silhouette of the human body from each frame and regarded the sequence of the silhouette of the human body in the frame as the “space-time shape.” Extracting local features from the shape can be done by solving a Poisson equation and finally using a template-based nearest neighbor classifier for classification. Xu et al. and Zheng et al. [15, 16] tracked the main joints of the human body, used a parameterized method to represent the rotation and translation of each part of the human body, and used these parameters to express the actions. Poultagari et al. [17] introduced cloud theory and particle swarm algorithm and used particle swarm optimization backpropagation neural network (PSO-BPNN) method for structural damage identification. The simulation test shows that the recognition algorithm can accurately determine the damage location and damage degree, and the result is stable. A sports video recognition model combining multiple features and NN was proposed in [18, 19]. It extracts the static and dynamic features that reflect the sports video, classifies them separately using the RBF neural network, constructs the basic probability assignment of the preliminary recognition results, and uses the evidence theory to fuse the preliminary results to obtain the sports video recognition results. The optical flow filter was used to recognize human actions in [20], and the result is fed into a template-based classifier. Their method could be the first to start at the frame level and perform actions solely through optical flow. To obtain high-level representations, Qi et al. [21] used a set of optical flow filters to extract dense local motion features, which are then combined and compared with complex template features. Finally, the discriminative classifier is fed these high-level representations. Du et al. [22] used a version of the corner detector to represent the entire video sequence as a sparse set of spatiotemporal interest points. A variety of different descriptors are proposed around the space-time window of interest points: gradient histogram, optical flow histogram, gradient projection, and optical flow projection. The classifier then uses nearest neighbor matching to classify a video sequence. The foreground information of the video image was expressed as a binary motion energy map and a scalar motion history map in [23], and action recognition was performed using the template matching method. MHI was combined with two shape feature foreground images and color histograms in [24], and action classification was performed using a support vector machine based on simulated annealing. The human body is represented as a series of 2D or 3D joint points, and motion is represented and recognized by tracking the joint motion trajectory, according to the literature [25]. These methods can analyze human motion in detail and have view invariance, but they require a powerful computer. The components allow you to track the position of human joints accurately. A PSO-DL sports action recognition model was proposed in [26]. To create a classifier for sports action recognition, use the particle swarm optimization (PSO) algorithm to select DL parameters. The feature vector was modeled in [27], and the state transition model for action recognition was established. To improve the accuracy of sports movement recognition, a PSO-NN-based sports movement recognition model is proposed in this paper. Following the pooling layer, an attention network based on time dimension features is added, and the features obtained after pooling are added to the time attention network, as well as the relevance weights of features in video frames, and the weights of features are updated via the iteration of attention mechanism. The corresponding database is used for experimental verification and result analysis.

3. Methodology

3.1. Sports Video Action Recognition Model. With the development of sports, sports video data are increasing day by day. It is more and more important to manage sports video data effectively and help users find sports videos efficiently and quickly. However, classification and identification are the basis of sports video browsing and retrieval, so it is of great significance to improve sports video recognition rate [28]. Among the current motion recognition algorithms, the convolutional neural network (CNN), as the representative algorithm of DL, has the ability of representation learning and has better performance than traditional computer vision technology and expert system in the fields of target detection and recognition, natural language processing, and so on.

Sports video recognition is essentially a multi-classification problem that involves the steps of sports video image collection, preprocessing, feature extraction, and classifier design, with feature extraction and classifier design posing the most challenges. The two key modules in human
behavior recognition in traditional methods are feature extraction and behavior recognition. To model and identify sports video information, traditional methods typically use a single static or dynamic feature. The single feature only describes sports video information from one perspective, making it difficult to comprehensively and accurately describe video category information, as well as guaranteeing identification accuracy and having low identification accuracy [29]. The most important step in traditional target recognition is feature extraction, which is why so many improvements and promotions are centered on it. The goal of feature extraction, which is why so many improvements and promotions are centered on it. The goal of the recognition process is to obtain as distinct features of the target that can be used for classification. The goal of the recognition process is to obtain as few features as possible while also obtaining feature vectors with a low chance of misclassification.

Feature extraction refers to extracting important features from video sequences, converting pixel information into feature information, mapping it to the same representation space, and converting it into feature vectors which are convenient for classifier processing [30]. Action classification refers to training a classification model by using the extracted feature vectors to accurately predict the category of a new action feature. In the process of sports video recognition, texture, color, lens editing, and motion features are independent of each other, and the sports video recognition results of single feature can be fused, and the optimal sports video recognition results can be obtained according to decision rules and decision thresholds. The sports video recognition process is shown in Figure 1.

Feature extraction is the first step of action recognition and a very important link, which directly affects the accuracy and robustness of action recognition. Global feature is a top-down research idea, which first locates the human body by target tracking algorithm and then encodes the whole detected target to form global feature. Local feature is a bottom-up research idea, which firstly detects the spatiotemporal interest points in the video, then calculates feature descriptors based on these interest points, and finally integrates them into feature vectors of the whole action sequence. Local features are independent of algorithms such as human localization, are insensitive to noise, occlusion, angle change, and brightness, and have strong robustness, so they have been widely used.

The related algorithm of DL-based motion recognition method is to let the model independently complete the fitting of data features through training data. The fitting methods mainly include the following: ① motion recognition method based on CNN; ② motion recognition method based on recurrent neural network and related algorithms; ③ motion recognition method based on restricted Boltzmann machine and related algorithms; and ④ motion recognition method based on self-encoder and its improved algorithm.

3.2. PSO Sports Action Recognition Model. The essence of the PSO-NN algorithm is to use cloud theory to optimize the particle velocity, update weight w, and then optimize the process of BPNN’s initial weight threshold. Therefore, we must first establish a BPNN model, then implement the PSO-BPNN algorithm, and finally use the sample data to train the network to complete the prediction. The process is shown in Figure 2.

In a video frame or image, each pixel is made up of a mix of three primary colors. The amount of data read at once during network training is significant, which has a significant impact on the computer’s computing speed. The gray image, on the other hand, has a range of change for each pixel, but it can retain the gradient and other information from the original image. Grayscale data saves memory, and grayscale features are easier to deal with when read by the network. The gray features of human motion can ignore the influence of light, color, and other factors in motion recognition, so they are a factor to consider.

Shot switching is the separation and connection of different shots in a sports video sequence, with switching frequency and switching event ratio serving as editing features. The scanning connected domain labeling algorithm is used to extract the moving area’s running information and feature information, allowing the moving foreground image to be detected. The network is fed with video clips with fixed frame lengths, with time series length having no effect on classification results. As a result, we first train the network with video clips of various frame lengths in order to obtain several feature extractors and then combine the extracted features into a single multi-instance learning package, with each package containing feature information from video clips of various durations. This method effectively avoids the recognition error caused by the similarity of two actions over time.

In the process of sports movement recognition, the athletes’ movements should be detected first. Combined with the characteristics of athletes’ movements, the movement detection is realized by using the method of inter-frame difference, and the detection results are expanded and corroded to strengthen the contour, as follows.

Suppose f(i,j) is the frame image of sports video, the two frames before and after are f_k(i, j) and f_k+1(i, j), and Gray (f_1(i, j)) and Gray (f_2(i, j)) are used as grayscale images. The conversion method is as follows:

\[\text{Gray}(f(i,j)) = 0.11R(i,j) + 0.59G(i,j) + 0.3B(i,j). \]

(1)

The threshold \(\epsilon \) is used to judge the noise in the sports image, and equation (2) is used for the difference operation to obtain a binary image \(D(i,j) \). If \(D(i,j) = 1 \), the pixel position is the location where the action is generated.

\[D(i,j) = \begin{cases} 0, & |f_k(i,j) - f_{k+1}(i,j)| < \epsilon, \\ 1, & |f_k(i,j) - f_{k+1}(i,j)| \geq \epsilon. \end{cases} \]

(2)

The expansion and corrosion processing of the binary image is

\[D = X \oplus S = \{(x, y) | (x, y) \in X, S(x, y) \cap X \neq \emptyset\}, \]

E = X \ominus S = \{(x, y) | (x, y) \in X, S(x, y) \subseteq X \}. \]

(3)

(4)
Gaussian filtering is used to remove the noise in the binary image. The Gaussian function is defined as follows:

\[f(x, y) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}. \]

The obtained raw data are denoised by median filter and third-order low-pass Butterworth filter with cutoff frequency of 20 Hz. Among them, the processing method of missing values adopts the method of mean interpolation of missing values.

Human detection is only the first step of processing in the field of intelligent image monitoring; the second step is feature extraction, and the third step is human target recognition and verification. The most important step is feature extraction of human targets, which involves first separating human targets using edge detection technology, then completing feature extraction of targets based on edge features, and finally completing the identification and classification of sports movements.

\[V_n \in [V_{\text{min}}, V_{\text{max}}]. \]

The location of \(n \) particles:

\[S_n \in [S_{\text{min}}, S_{\text{max}}]. \]

Define the fitness function and update the speed and position according to the following formulas:

\[v_{nd}^{k+1} = wv_{nd}^k + r_1(\xi(p_{nd}^k - s_{nd}^k)) + r_2\eta, \]

\[s_{nd}^{k+1} = s_{nd}^k + v_{nd}^{k+1}, \]

where \(k \) is the current iteration number, \(k = 1, 2, \ldots, K; d = 1, 2, \ldots, D; n = 1, 2, \ldots, N. \ P_n = (P_{n1}, P_{n2}, \ldots, P_{nD}) \) is the coordinate of the particle \(n \) closest to the target. \(P_g = (P_{g1}, P_{g2}, \ldots, P_{gD}) \) is the coordinate of the group closest to the target. \(w \) is the weight of inertia, usually 0.726. \(r_1 \) and \(r_2 \) are non-negative constants, called learning factors, usually 1.49445. \(\xi \) and \(\eta \) are pseudo-random numbers, uniformly distributed in the interval \([0,1]\).

The PSO algorithm uses a certain number of particles to fly and search in the solution space, continuously adjust its flight direction and speed, and finally find the optimal solution to the problem. The speed and position adjustment methods of the particles are as follows:

\[v_{id}^{k+1} = \omega \cdot v_{id}^k + c_1 \cdot \text{rand} \cdot (p_{id}^k - x_{id}^k) + c_2 \cdot \text{rand} \cdot (g_{id}^k - x_{id}^k), \]

\[x_{id}^{k+1} = x_{id}^k + v_{id}^{k+1}, \]

where \(\omega \) is the weight; \(c_1 \) and \(c_2 \) are the learning factors; and \(p_{id}^k \) and \(g_{id}^k \) are the best locations in the history of individuals and populations. PSO-BPNN selects some important features and simultaneously solves the problems of feature selection and classifier parameter optimization, which makes the recognition results of sports movements more reliable.

Sampling it to obtain \(M \) video clips, extracting \(M \) feature vectors, combining these feature vectors into a package in multi-example learning, and performing action classification using the trained classifier, create a video database, sample each video in the training dataset with a step size \(L \), obtain several video clips with a frame length of \(F \), and use each video clip as a training sample for the convolutional neural network to train.

4. Result Analysis and Discussion

In sports action recognition, the input data contain a video frame sequence, and it is necessary to consider not only the spatial representation of actions but also the sequence of atomic actions in the video frame sequence. Traditional 2D convolution network cannot deal with the sequence of atomic actions when dealing with motion recognition in video, which has great limitations. This problem can be solved in 3D convolution network. After training the video feature extractor, we can train the multi-instance learning model based on it. When training the classifier, each video in the video library is regarded as a packet of multi-instance...
learning, and the feature vector extracted from the video by the feature extractor is regarded as an example in the packet to train the multi-instance learning model. In the process of multi-instance learning, each action corresponds to a classifier, and the videos belonging to this action are regarded as positive packets, while other actions are regarded as negative packets.

In order to determine the parameters in the network conveniently and accurately, the grayscale processed video frames are input into the network for training. Because the gray data and the original data are single except the image pixel data, the video length, dataset size, action types, and so on are consistent. Therefore, select gray image to preliminarily determine the training parameters of the network structure. Therefore, in this section, the number of batch data samples and the number of iterations in the process of network training will be determined through the grayscale experiment. In order to verify the action recognition rate of a frame of video, the first frame of each video is taken as a sample. Because there are not many data obtained, all experimental evaluations on this dataset use leave-one-out cross-validation. Figure 3 shows the average recognition rate when the dataset takes different frame lengths.

It can be seen that this has been a good solution for applications requiring accuracy. The recognition rate is maintained at a relatively stable level in the later stage, which shows that the influence of the frame number on the recognition rate is not so obvious at this time.

In order to determine the batch size of network training, based on the iteration times of 1 time, 10 times, 20 times, 30 times, and 40 times, respectively, the batch data are from 10 to 200, and network training is conducted every 10 groups of samples. Finally, the value of batch size is selected by comparing the accuracy change curve of test identification. The effects of different batch sizes on the recognition effect are shown in Figure 4.

According to Figure 4, batch size is negatively correlated with recognition accuracy. In the process of parameter selection, it is found that within a certain range, the correct rate will increase with the increase of iteration times, but it will not increase indefinitely, as shown in Figure 5. Moreover, with the increase of iteration times, the whole model will produce overfitting phenomenon. In addition, in the case of a large amount of data, with the increase of iterations, the training of the model will consume a lot of time and resources.
Foreach action video, we capture several video segments with a length of 16 frames in 32 frames and input these video segments into the trained network, respectively. Each video segment can extract 4096-dimensional feature vectors, and then average these feature vectors and L2 normalize them as the feature vectors of the whole video sequence. After experiments, the recognition results in different scenes are shown in Figure 6.

The outdoor scene (S1,S2,S3) is clearly worse than the indoor scene (S4), owing to the fact that the outdoor scene illumination varies more, whereas the indoor illumination is relatively stable and single. Because of using the zoom lens, S2 gets the worst results. The lens is sometimes far away and sometimes close when shooting video, resulting in a significant change in viewing angle. The scale change is usually preprocessed in this case, but the unprocessed video is fed into the program.

During training, a classifier is used to train each action category; all video samples of the current action are considered positive packets, while other action samples are considered negative packets. When predicting, the category of the sample in the packet with the highest recognition probability is used as the category to which the packet belongs, i.e., the category of the video to be tested. The recognition accuracy is 0.8 when using a combination of gray and original image input. The effect is improved when compared to the gray image, but when compared to the model results trained with only the original image, the original image has a better effect than the gray image and original image combination input. Crop cutting processing is applied to the input data during data enhancement, and the processed results are combined with the original image for training. Because of the first three data combinations, the obtained model has a recognition effect. The sports action recognition model is built using the training samples and then tested using the test samples. The recognition rates of BPNN, KPCA-BPNN, and PSO-BPNN are shown in Figure 7.

From Figure 7, it can be seen that PSO-BPNN has the best effect compared with the other two methods, which further reflects the superiority of this method. Each video in the video library is regarded as a packet of multi-instance learning, and the feature vector extracted from the video by the feature extractor is regarded as an example in the packet, and the multi-instance learning classifier is trained. In the process of multi-instance learning, for each action, we take the action as a positive packet and the other actions as negative packets and train a classifier, respectively. For each test video, we sample it separately and input it into the trained network to calculate its feature vector. Then, the obtained feature vector is averaged and L2 normalized and used as the feature vector of the video. The recognition speed of BPNN, KPCA-BPNN, and PSO-BPNN is shown in Figure 8.

In comparison to the other two methods, PSO-BPNN has the shortest recognition time, as shown in the graph. It demonstrates that this model reduces the time it takes to recognize sports videos and is a useful method for
recognizing sports actions. We treat each action video as a multi-instance learning package, and all of the features extracted from the video using a 3D convolutional neural network are used to train the multi-instance learning model. Each action corresponds to a multi-instance learning, and the videos associated with that action are treated as positive packets, while the rest are treated as negative packets, with the support vector machine being used to train the optimal classification hyperplane. Finally, the highest probability example in the packet determines the category to which the video to be tested belongs. The model uses different frame rates to obtain spatial semantic information and motion information in video, and the two channels of information are fused by lateral connection. After all the features are acquired, the features are input into the timing detection network, the time when the action occurs is located, the key frame information of the action is given, and the behavior identity is designed for the network model to prove the applicability of the network model. Experiments show that this model improves the recognition efficiency and accuracy of sports movements. Compared with other models, it has certain advantages and can meet the requirements of practical application.

5. Conclusions

With the advancement of video technology, sports video data are rapidly increasing, which is critical for detecting sports movements in sports videos. As a result, using a computer’s powerful storage and computing power to recognize and understand video information has a lot of research value and a lot of application potential. A sports action recognition model based on PSO-BPNN is proposed in this paper, with the goal of parameter optimization of the classifier in current sports action recognition modeling. Its effectiveness is verified through test experiments. To construct the NN model, the adaptive weight is first set to update the particle velocity and position to reach the optimal solution, after which it is transformed into the initial weight and threshold of BPNN. The sample space is then trained, and the optimized NN is tested, using static strain data obtained by finite element analysis under no noise. The results show that this algorithm is capable of accurately detecting common human postures in motion. In addition, the execution time is reduced, and the speed at which sports actions are recognized is increased. It can be a valuable resource for physical education instructors and students. It will be necessary to continue to optimize the algorithm and develop an efficient and widely applicable sports action recognition model in future research and work.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

[1] L. I. Ke, N. Tai, and S. Zhang, "Comprehensive optimal dispatch of distribution network based on improved particle swarm optimization algorithm," *Journal of Shanghai Jiaotong University*, vol. 51, no. 8, pp. 897–902, 2017.
[2] A. M. Naraghi and L. M. White, “Imaging of athletic injuries of knee ligaments and menisci: sports imaging series,” *Radiology*, vol. 281, no. 1, pp. 23–40, 2016.
[3] Y. Zhang and L. Wu, “Crop classification by forward neural network with adaptive chaotic particle swarm optimization,” *Sensors*, vol. 11, no. 5, pp. 4721–4743, 2011.
[4] M. Zhao, A. Jha, Q. Liu et al., “Faster Mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking,” *Medical Image Analysis*, vol. 71, Article ID 102048, 2021.
[5] X. Leng, H. Jiang, X. Zou, and X. Zeng, “Motion feature quantization of athletic sports training based on fuzzy neural network theory,” *Cluster Computing*, vol. 22, no. 2, pp. 4631–4638, 2019.

[6] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. O. Ogutunuba, “Action recognition from depth maps using deep convolutional neural networks,” *IEEE Transactions on Human-Machine Systems*, vol. 46, no. 4, pp. 498–509, 2016.

[7] C. Li, Y. Hou, P. Wang, and W. Li, “Joint distance maps based action recognition with convolutional neural networks,” *IEEE Signal Processing Letters*, vol. 24, no. 5, pp. 624–628, 2017.

[8] W. Peng, Y. Cao, C. Shen, L. Liu, and H. T. Shen, “Temporal pyramid pooling based convolutional neural networks for action recognition,” *IEEE Transactions on Multimedia*, vol. 27, no. 12, pp. 2613–2622, 2017.

[9] S. Ch and S. Mathur, “Particle swarm optimization trained neural network for aquifer parameter estimation,” *Ksce Journal of Civil Engineering*, vol. 16, no. 3, pp. 298–307, 2012.

[10] J. Kong, H. Wang, X. Wang, X. Jin, X. Fang, and S. Lin, “Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture,” *Computers and Electronics in Agriculture*, vol. 185, Article ID 106134, 2021.

[11] L. F. D. M. Lopez, N. G. Bias, and A. Arteta, “The optimal combination: grammatical swarm, particle swarm optimization and neural networks,” *Journal of Computational Science*, vol. 3, no. 1, pp. 46–55, 2012.

[12] T. L. Dang and Y. Hoshino, “Hardware/software Co-design for a neural network trained by particle swarm optimization algorithm,” *Neural Processing Letters*, vol. 49, no. 2, pp. 481–505, 2019.

[13] J. Lei, G. Li, J. Zhang, Q. Guo, and D. Tu, “Continuous action segmentation and recognition using hybrid convolutional neural network-hidden Markov model model,” *IET Computer Vision*, vol. 10, no. 6, pp. 537–544, 2016.

[14] L. L. Spriet, “Sports nutrition for optimal athletic performance and health: old, new and future perspectives,” *Sports Medicine (Auckland, N.Z.)*, vol. 49, no. 2, pp. 99–101, 2019.

[15] J. Xu, B. Zhang, X. Lin, B. Li, and Y. Teng, “Application of energy spectrum entropy vector method and RBF neural networks optimized by the particle swarm in high-voltage circuit breaker mechanical fault diagnosis,” *Gaodianya Jishu/High Voltage Engineering*, vol. 38, no. 6, pp. 1299–1306, 2012.

[16] Z. Zheng, G. An, D. Wu, and Q. Ruan, “Spatial-temporal pyramid based convolutional neural network for action recognition,” *Neurocomputing*, vol. 358, no. 9, pp. 446–455, 2019.

[17] I. Poultangari, R. Shahnazi, and M. Sheikhan, “RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm,” *ISA Transactions*, vol. 51, no. 5, pp. 641–648, 2012.

[18] C. Liu, J. Ying, H. Yang, X. Hu, and J. Liu, “Improved human action recognition approach based on two-stream convolutional neural network model,” *The Visual Computer*, vol. 37, no. 6, pp. 1327–1341, 2021.

[19] B. Xu, H. Ye, Y. Zheng, H. Wang, T. Luwung, and Y.-G. Jiang, “Dense dilated network for video action recognition,” *IEEE Transactions on Image Processing*, vol. 28, no. 10, pp. 4941–4953, 2019.

[20] S. Berlemont, G. Lefebvre, S. Duffner, and C. Garcia, “Class-balanced siamese neural networks,” *Neurocomputing*, vol. 273, no. 1, pp. 47–56, 2017.