Meta-analyses of non-Hodgkin's lymphoma and farming
by Khuder SA, Schaub EA, Keller-Byrne JE

Key terms: farmer; infection; pesticide

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/9754856
Meta-analyses of non-Hodgkin's lymphoma and farming

by Sadik A Khuder, PhD, Eric A Schaub, MD, Jane E Keller-Byrne, PhD

Khuder SA, Schaub EA, Keller-Byrne JE. Meta-analyses of non-Hodgkin's lymphoma and farming. Scand J Work Environ Health 1998;24(4):255-261.

Objectives This study examined the association between non-Hodgkin's lymphoma (NHL) and farming.

Methods A series of meta-analyses of peer-reviewed studies was performed using 36 studies published between 1982 and 1997. Prior to the meta-analyses, all the studies were reviewed and evaluated for heterogeneity and publication bias. Combined relative risks (RR) were calculated using the random effect model.

Results The combined RR was 1.10 [95% confidence interval (95% CI) 1.03-1.19] for all the studies and 0.93 (95% CI 0.82-1.06) for studies involving female farmers. Significant heterogeneity was detected for study design and country of study among the studies. Significantly elevated RR values were obtained for case-referent studies (combined RR 1.19, 95% CI 1.06-1.33) and for studies conducted on farmers residing in the United States (combined RR 1.26, 95% CI 1.15-1.37). These findings were not influenced by a publication bias.

Conclusions The findings suggest that male farmers residing in the United States have a slightly elevated risk of contracting NHL. Commonly experienced exposures that might contribute to the occurrence of NHL in this group include infectious microorganisms, herbicides, and insecticides.

Key terms farmers, infections, pesticides.

Non-Hodgkin's lymphoma (NHL) is a group of cancers that arise from the neoplastic clone of the B- and T-lymphocyte differentiation pathways (1). NHL is increasing rapidly in the United States and most industrialized countries. Between 1973 and 1991, the incidence of NHL in the United States increased at the rate of 3.3% per year, making it the third fastest-growing cancer. In recent years, AIDS (acquired immunodeficiency syndrome) patients have contributed to this trend, but a steady rise in the incidence of NHL was apparent long before the AIDS epidemic (2).

The reported increases in the incidence of NHL in industrialized countries suggest that exposures related to occupational and environmental hazards might be associated with the disease. Inconsistent results of comparisons of the incidence of the disease in urban areas to the incidence of the disease in rural areas suggest, however, that exposures found in both urban and rural environments might contribute to the increase in incidence (3). Pickle et al (4) noted that, in the United States, the rising mortality from NHL has been the most pronounced in the farming states of the country.

Farmers are a group uniquely suited for assessing the potential contribution of a given exposure to the occurrence of a disease. Since farmers use alcohol and tobacco less than the general population (5) and their work requires more physical activity than do most other occupations, excesses of a given disease in this group suggest that the relative contributions of smoking and alcohol to the occurrence of the disease are minimal. Most farmers live in nonmetropolitan areas with limited exposure to urban environmental pollution, and excesses of a disease in this group suggest that risk factors relatively specific to farming are associated with the disease.

Risk factors potentially associated with NHL include microorganisms (6, 7), antigenic stimulation (8, 9), pesticides (10—19), and solvents (19—21). Since farmers experience all of these exposures (22), assessing their contribution to the occurrence of the disease can be accomplished by examining the association between NHL and farming. To assess the potential contributions of these exposures to the occurrence of NHL, a series of meta-analyses of studies examining the association between farming and NHL was performed.
Materials and methods

The Medical Abstract and Cancer Abstracts data bases were searched for articles about farming and NHL. The search of MEDLINE data was from 1981 until 30 June 1997. The Cancer Abstracts data base search included articles published from 1980 until 30 June 1997. References cited in the studies found by examining the 2 data bases were also included in the meta-analyses. Articles were excluded from the analyses for any one of the following reasons: (i) occupations other than farming were included in the definition of exposure and no data specific to farmers were published, (ii) insufficient data for determining an estimator of relative risk or a confidence interval were published, (iii) the group studied was included in another study of similar design examining a greater number of subjects, (iv) the disease studied was not specifically designated as NHL.

The remaining articles were then examined and estimates of the relative risks (RR) were extracted independently by the authors. The estimators of RR were odds ratios (OR) for case-referent studies, standardized mortality ratios (SMR) or standardized incidence ratios (SIR) or proportional mortality ratios (PMR) for cohort and mortality and morbidity studies.

Once the studies had been selected, a series of meta-analyses was conducted, and the results were evaluated in the context of the published literature. The homogeneity of the estimators of relative risk was tested using Cochran’s Q statistics. This is a chi-square test with degrees of freedom equal to the number of studies minus one; it tests the null hypothesis that the within-study estimates of relative risk are homogeneous across studies. Significant heterogeneity was detected within the groups of studies; therefore, the random effects model (23) was used to obtain the combined risk ratio and its standard error (SE).

The first meta-analysis examined all the studies that met the criteria for inclusion. A 2nd meta-analysis was restricted to female farmers (studies reporting on farmers who were female or were female relatives of farmers who assisted in farming). Additional meta-analyses were

Table 1. Description of the studies included in the meta-analysis of non-Hodgkin’s lymphoma among farmers.

Reference	Country	Study period	Method	Exposed cases	Relative risk	95% CI
Case-referent studies						
Francheschii et al, 1993 (6)	Italy	1986—1991	Interview	46	0.80	0.60—1.10
Brownson et al, 1986 (8)	United States	1984—1988	Medical record	63	1.40	1.04—1.85
Bumiller et al, 1995 (10)	United States	1994—1978	Death certificate	1101	1.26	1.19—1.54
Cantor, 1982 (11)	United States	1968—1976	Death certificate	175	1.22	0.98—1.51
Cantor et al, 1995 (12)	United States	1980—1983	Interview	356	1.20	1.00—1.40
Hear et al, 1998 (13)	United States	1976—1982	Interview	133	1.40	0.90—2.10
Wood et al, 1987 (14)	United States	1981—1984	Interview	173	1.33	0.93—1.97
Persson et al, 1989 (20)	Sweden	1964—1986	Questionnaire	7	0.60	0.29—1.26
Forastiere et al, 1993 (43)	Italy	1988—1988	Interview	8	0.80	0.50—1.29
Keller & Hoeve, 1994 (44)	United States	1988—1988	Medical record	58	1.09	0.77—1.55
Pearce et al, 1987 (45)	New Zealand	1977—1981	Cancer register	81	1.00	0.77—1.31
Finnham et al, 1992 (46)	Canada	1983—1989	Questionnaire	53	0.98	0.71—1.33
Raff et al, 1989 (47)	New Zealand	1980—1984	Cancer register	92	1.24	0.99—1.56
Schumacher, 1983 (48)	United States	1969—1982	Death certificate	24	1.30	0.84—2.32
Zahn et al, 1983 (56)	United States	1983—1986	Interview	119	1.00	0.70—1.40
Amadori et al, 1989 (60)	Italy	1997—1990	Interview	51	1.66	1.13—2.51
La Vecchia et al, 1989 (66)	Italy	1980—1986	Questionnaire	38	2.10	1.33—3.40
Dabrow et al, 1988 (61)	United States	1980—1970	Death certificate	15	1.60	0.89—3.40

Mortality and morbidity studies

Reference	Country	Study period	Method	Exposed cases	Relative risk	95% CI
Blair et al, 1993 (39)	United States	1984—1988	Death certificate	881	1.19	1.11—1.27
Eriksson et al, 1992 (40)	Sweden	1979—1984	Census data	428	1.00	0.89—1.05
Delzell et al, 1985 (49)	United States	1970—1978	Death certificate	47	1.00	0.81—1.20
Gallacher et al, 1984 (50)	United States	1970—1976	Death certificate	102	0.98	0.81—1.20
Mallin et al, 1989 (51)	United States	1979—1984	Death certificate	91	1.60	1.47—2.15
Linet et al, 1984 (52)	United States	1961—1979	Census data	55	0.90	0.69—1.17
Walker et al, 1993 (53)	United States	1986—1990	Census data	148	1.00	0.94—1.16
Wiklund, 1983 (54)	Sweden	1961—1973	Census data	475	1.05	0.96—1.15
Inskip & et al, 1996 (55)	United Kingdom	1970—1990	Death certificate	773	1.14	1.06—1.22
Skov & et al, 1991 (56)	Denmark	1970—1980	Census data	187	1.00	0.88—1.16

Cohort studies

Reference	Country	Study period	Method	Exposed cases	Relative risk	95% CI
Wile & et al, 1990 (57)	Canada	1980—1979	Agriculture census	103	0.92	0.75—1.11
Gunnander & et al, 1993 (54)	Iceland	1994—1998	Farm pension	19	1.42	0.77—2.94
Stark et al, 1990 (55)	United States	1980—1983	Farm bureau	22	0.79	0.52—1.21
Fosom et al, 1996 (58)	United States	1986—1992	Questionnaire	58	1.28	0.90—2.12
Wikelund & et al, 1994 (60)	Sweden	1983—1989	Census	94	0.78	0.63—0.96
Kristensen et al, 1996 (63)	Norway	1994—1998	Agriculture census	89	0.86	0.69—1.07
Ronco et al, 1992 (64)	Denmark & Italy	1985—1976	Cancer register	190	1.03	0.89—1.20
Wiklund & et al, 1995 (65)	Sweden	1980—1988	Census	508	0.99	0.91—1.08
conducted following the guidelines of Blair et al (24), to reduce the heterogeneity within the groups of studies. These meta-analyses accounted for possible sources of heterogeneity among studies, such as study design and place and time of publication.

Potential publication bias due to study size was explored by plotting the natural logarithm of the estimator of the relative risk (In RR) versus the inverse of the standard error (1/SE). An adjusted rank correlation test (25) was used to test for potential bias due to study size. The absence of significant correlation is reassuring that the studies have been selected in an unbiased manner.

Results

Fifty studies examining the association between farming and NHL and published after 1980 were identified. Seven of these studies (7, 26–31) were excluded from the meta-analyses because the exposure studied was not restricted to occupational exposure as a farmer. Three studies (32–34) were excluded because the cases studied were not exclusively NHL. Four more studies (35–38) were excluded because the cases examined were included in other studies of similar design (8, 10, 39, 40) that examined greater numbers of cases. The remaining 36 studies included in the meta-analyses are listed in table 1.

Twenty-one of the studies included in the meta-analyses were restricted to white males (8, 10–15, 43–56). Four studies were restricted to female farmers (57–60), and 7 studies reported results for both male and female farmers (6, 39, 40, 61–64). Four studies (20, 53, 65, 66) lacked information about gender.

Out of the 36 studies included, 4 studies reported no association between NHL and farming, and 11 studies reported a negative association. The estimator of relative risk for the negative studies ranged from 0.59 to 0.99 and included from 7 to 508 exposed cases. Only 1 of these studies was significant (confidence interval not including 1).

Twenty-one studies reported a positive association between NHL and farming and included from 10 to 1101 exposed cases. The estimator of relative risk ranged from 1.03 to 2.10, and 8 of these estimators were significant.

A plot of ln RR versus 1/SE showed no relation between relative risk and study size (figure 1). The test for publication bias indicated no evidence of bias due to study size (P=0.78). The homogeneity test revealed significant heterogeneity among the studies, and additional analyses were done to reduce the sources of heterogeneity.

The meta-analysis including all the studies (table 2) yielded a combined RR of 1.10 (95% confidence interval (95% CI) 1.03–1.19). Identical estimates were obtained for studies published before or after 1984. The estimator of relative risk for the case-referent studies was 1.19 (95% CI 1.06–1.33), and it was 1.10 (95% CI 0.99–1.24) for the mortality and morbidity studies. None of the cohort studies reported a significant elevation in relative risk, and the combined estimate was 0.95 (95% CI 0.85–1.07). With regard to place, the highest combined estimate was 1.26 (95% CI 1.15–1.37) for studies conducted in the United States.

Table 3 presents estimates of relative risks for the female farmers. None of the studies reported a significant elevation in relative risk. Inskip et al (61) reported borderline significance (RR 1.43, 95% CI 0.96–2.04). The combined estimate was 0.93 (95% CI 0.82–1.06).

Table 4 describes the risk factors for NHL. Agricultural chemicals, especially herbicides and insecticides, along with animal sources, were the major risk factors associated with NHL among farmers. The highest risk was reported for phenoxyacetic acid herbicides. The combined estimate was 1.41 (95% CI 1.09–1.81).

| Table 2. Results of the meta-analysis of non-Hodgkin's lymphoma among farmers. |
|-----------------|---------------|-------------|-----------|-----------|
| **Stratification** | **Number of studies** | **Exposed cases** | **Relative risk** | **95% CI** |
| **Study design** | | | | |
| Case-referent studies | 18 | 2596 | 1.19 | 1.06–1.33 |
| Mortality and morbidity studies | 10 | 3234 | 1.10 | 0.99–1.24 |
| Cohort studies | 8 | 1044 | 0.95 | 0.85–1.07 |
| **Place** | | | | |
| United states | 15 | 3296 | 1.26 | 1.15–1.37 |
| Europe | 16 | 3147 | 1.02 | 0.93–1.16 |
| Other | 5 | 431 | 1.02 | 0.92–1.13 |
| **Time** | | | | |
| 1982–1984 | 4 | 1854 | 1.14 | 1.01–1.27 |
| After 1984 | 32 | 5020 | 1.10 | 1.01–1.19 |
| All studies | 36 | 6878 | 1.10 | 1.03–1.19 |

Figure 1. Relation between the estimator of relative risk and the standard error in meta-analyses of farming and non-Hodgkin's lymphoma.
Discussion

The significant association between NHL and farming resulting from the meta-analysis of the 36 selected studies suggests that farming might be a weak risk factor for the disease. The preponderance of positive associations and relatively high estimators of relative risk found by the studies examining the greatest numbers of exposed cases also support an association between NHL and farming. Since both the rank test and figure 1 revealed no relation between the estimator of relative risk and study size (inverted funnel-shape), we feel that publication bias due to the preferential publication of large studies with positive findings does not appear to have occurred.

The results of these meta-analyses are inconsistent with the findings of Blair et al (67), whose meta-analysis of farming and NHL did not produce an association between farming and the disease. This difference in results might be due to our inclusion of studies published after Blair et al (67) performed their meta-analysis and our use of several other studies not used by Blair et al (67). We included 15 studies published after 1991, and 8 of them reported positive associations between NHL and farming.

The meta-analysis method has been criticized because it derives a common estimator of relative risk from studies with disparate designs and study populations and is often performed without critical review of the studies used (68). Blair et al (24) recommends stratifying the studies by the source of heterogeneity and conducting separate meta-analyses on the different subgroups. We identified three sources of heterogeneity: design and place and time of publication. The first analysis was for the design of the studies, and the combined relative risk was significantly elevated for case-referent studies only. It is interesting to note that most case-referent studies were conducted in the United States or were restricted to male farmers. The second analysis was for place, and the combined relative risk was significantly elevated for studies conducted in the United States. This result might have been due to differences between the study populations with respect to the proportional distribution of exposures that contribute to NHL.

The insignificant association between the exposure and the disease produced by the meta-analysis limited to female farmers does not support an association between farming and NHL and suggests that exposures other than employment as a farmer are associated with the disease. Although this meta-analysis did not support an association between farming and NHL, the significantly positive association of the meta-analysis limited to male farmers suggests that an association between NHL and exposures selectively experienced by subgroups of farmers might exist. Beside farming, farmers (and specifically male farmers) often serve in the role of mechanic.
A pesticide used extensively in the production of corn risk for infectious diseases, which might have contribut-
because many of these chemicals are known or suspect-
ported that the likelihood of NHL is increased by expo-
 surrogate indicators of exposures experienced by farmers
farmers in the United States using pesticides to produce
corn and soybeans are 86% and
and soybeans is
3. Howe HL, Keller JE, Lehnherr M. Relation between popula-
cation density and cancer incidence, Illinois, 1986—1990. Am J
Epidemiol 1993;138:29—36.
4. Pickle LW, Mason TJ, Howard N, Hoover RN, Fraumeni JR. Atlas of US cancer mortality among whites: 1950—1980. Washing-
ton DC): US Government Printing Office, 1987. NIH publication no 87—2900.
5. Pomrehn PR, Wallace RB, Burmeister LF. Ischemic heart
disease mortality in Iowa farmers: the influence of life-style.
JAMA 1982; 248:1073—6.
6. Francheschini S, Barbone F, Bidoli E, Gaumeri S, Serraino D,
Talamini R. Cancer risk in farmers: results from a multi-site
case-control study in North-eastern Italy. Int J Cancer
References
1. Ersboll J, Schultz H. Non-Hodgkin’s lymphoma: recent con-
cepts in classification and treatment. Eur J Haematol
1989;42:15—29.
2. Harras A. Cancer rates and risks. 4th ed. Bethesda (MD):
National Cancer Institute, 1996:17. NIH publication no 96—
691.
3. Howe HL, Keller JE, Lehnherr M. Relation between popula-
cation density and cancer incidence, Illinois, 1986—1990. Am J
Epidemiol 1993;138:29—36.
4. Pickle LW, Mason TJ, Howard N, Hoover RN, Fraumeni JR. Atlas of US cancer mortality among whites: 1950—1980. Washing-
ton DC): US Government Printing Office, 1987. NIH publication no 87—2900.
5. Pomrehn PR, Wallace RB, Burmeister LF. Ischemic heart
disease mortality in Iowa farmers: the influence of life-style.
JAMA 1982; 248:1073—6.
6. Francheschini S, Barbone F, Bidoli E, Gaumeri S, Serraino D,
Talamini R. Cancer risk in farmers: results from a multi-site
case-control study in North-eastern Italy. Int J Cancer
Meta-analyses of non-Hodgkin's lymphoma and farming

1993;53:740—5.

2. Cartwright RA, McKinney PA, O'Brien C, Richards G, Roberts J, Lander J, et al. Non-Hodgkin's lymphoma: case-control epidemiologic study in Yorkshire. Leuk Res 1988;12:81—8.

3. Brownson RC, Reif JS, Chang JC, Davis JR. Cancer risks among Missouri farmers. Cancer 1989;64:2381—6.

4. Pearce N, Bithwaite P. Increasing incidence of non-Hodgkin's lymphoma: occupational and environmental factors. Cancer Res 1992;52 suppl 19:5496—500s.

5. Burmeister LF, Everett GD, Van Lier SP, Isacson P. Selected cancer mortality and farm practices in Iowa. Am J Epidemiol 1983;118:72—7.

6. Cantor KP. Farming and mortality from non-Hodgkin's lymphoma: a case-control study. Int J Cancer 1982;29:239—47.

7. Cantor KP, Blair A, Everett G, Gibson R, Burmeister LF, Brown LM, et al. Pesticides and other agricultural risk factors for non-Hodgkin's lymphoma among men in Iowa and Minnesota. Cancer Res 1992;52:2447—55.

8. Hoar SK, Blair A, Holmes FF, Boysen CD, Robel RJ, Hoover R, et al. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. JAMA 1986;256:1141—7.

9. Woods JS, Polissar L, Severson RK, Heuner LS, Klunder BG. Soft tissue sarcoma and non-Hodgkin's lymphoma in relation to phenoxy herbicide and chlorinated phenol exposure in Western Washington. JNCI 1987;78:899—910.

10. Wigle DT, Semenciw RM, Wilkins K, Riedel D, Ritter L, Morrison H, et al. Mortality study of Canadian male farm operators: non-Hodgkin's lymphoma mortality and agricultural practices in Saskatchewan. JNCI 1990;82:575—82.

11. Weisenburger DD. Environmental epidemiology of non-Hodgkin's lymphoma in Eastern Nebraska. Am J Ind Med 1990;18:303—5.

12. Zahn SH, Weisenburger DD, Babbitt PA, Saal RC, Vaughn JB, Cantor KP, et al. A case-control study of non-Hodgkin's lymphoma and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in eastern Nebraska. Epidemiology 1990;1:349—56.

13. Corraro G, Celleri M, Celle F, Russo R, Bosia S, Piccioni P. Cancer risk in a cohort of licensed pesticide users. Scand J Work Environ Health 1989;15:203—9.

14. Hardell L, Ericsson M, Lennner P, Lundgren E. Malignant lymphoma and exposure to chemicals, especially organic solvents, chlorophenols, and phenoxy acids: a case-control study. Br J Cancer 1991;64:79—86.

15. Persson B, Dahlander AM, Fredricksson M, Norlund BH, Ohlson CG, Axelsson O. Malignant lymphomas and occupational exposures. Br J Ind Med 1989;46:516—20.

16. Olsson H, Brandt L. Risk of non-Hodgkin's lymphoma among men occupationally exposed to organic solvents. Scand J Work Environ Health 1988;14:246—51.

17. Blair A, Zahn SH. Cancer among farmers. In: Cordes DH, Red DF, editors. Health hazard of farming. Philadelphia (PA): Hanley & Belfus Inc, 1991:335—54. Occupational medicine: state of the art reviews, no 6.

18. DetSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1987;7:177—88.

19. Blair A, Burge J, Foran J, Gibb H, Greenland S, Morris R, et al. Guidelines for application of meta-analysis in environmental epidemiology. Reg Toxicol Pharmacol 1995;22:189—97.

20. Begg CB, Mazumdar M. Operating characteristics of rank correlation test for publication bias. Biometrics 1994;50:1088—101.

21. Giles GO, Lickiss JN, Backie MJ, Loweathall RM, Panton J. Myeloproliferative and lymphoproliferative disorders in Tasmania, 1972—80: occupational and familial aspects. JNCI 1984;72:1223—40.

22. Hardell L. Relation of soft-tissue sarcoma, malignant lymphoma and colon cancer to phenoxy acids, chlorophenols and other agents. Scand J Work Environ Health 1981;7:119—30.

23. Olsen JH, Jensen OM. Occupation and risk of cancer in Denmark: an analysis of 93 810 cancer cases, 1970—1979. Scand J Work Environ Health 1987;13 suppl 1:91p.

24. Pearce NE, Smith AH, Fisher DO. Malignant lymphoma and multiple myeloma linked with agricultural occupations in a New Zealand cancer registry-based study. Am J Epidemiol 1985;121:225—37.

25. Scherr PA, Hatchinson GB, Neiman RS. Non-Hodgkin's lymphoma and occupational exposure. Cancer Res 1992;52 suppl 19:5503s—9s.

26. Schumacher MC, Delzell E. A death-certificate case-control study of non-Hodgkin's lymphoma and occupation in men in North Carolina. Am J Ind Med 1988;13:317—30.

27. Rafnsson V, Gunnarsdottotl H. Mortality among farmers in Iceland. Int J Epidemiol 1989;18:146—51.

28. Saftits AF, Blair A, Cantor KP, Hannah L, Anderson HA. Cancer and other causes of death among Wisconsin farmers. Am J Ind Med 1992;22:29—29.

29. Conner KA, Chang HG, Fitzgerald EF, Riccardi K, Stone RR. A retrospective cohort study of mortality among New York State Farm Bureau members. Arch Environ Health 1987;42:204—12.

30. Brownson RC, Reif JS. A registry-based study of occupational risk for lymphoma, multiple myeloma and leukemia. Int J Epidemiol 1988;17:27—32.

31. Burmeister LF. Cancer mortality in Iowa farmers, 1971—78. JNCI 1981;66:461—4.

32. Figs LW, Dosemeci M, Blair A. United States Non-Hodgkin's lymphoma surveillance by occupation 1984—1989: a twenty-four state death certificate study. Am J Ind Med 1995;27:817—35.

33. Hardell L, Ericsson M, Degerman A. Exposure to phenoxy acetic acids, chlorophenols, or organic solvents in relation to histopathology, stage, and anatomical localization of non-Hodgkin's lymphoma. Cancer Res 1994;54:2386—9.

34. Blair A, Dosemeci M, Heineman EP. Cancer and other causes of death among male and female farmers from twenty-three states. Am J Ind Med 1992;23:729—42.

35. Ericksen M, Hardell L, Malher H, Weimer J. Malignant lympho-proliferative diseases in occupations with potential exposures to phenoxy acetic acids or dioxins: a register-based study. Am J Ind Med 1992;22:305—12.

36. Dubrow R, Paulson J, Indian RW. Farming and malignant lymphoma in Hancock County, Ohio. Br J Ind Med 1988;45:25—8.

37. Wiklund K, Dich J. Cancer risks among male farmers in Sweden. Eur J Cancer Prev 1995;4:81—90.

38. Forastiere F, Quercia A, Mecelli M, Sotinini L, Terenzioni B, Rapi E, et al. Cancer among farmers in central Italy. Scand J Work Environ Health 1993;19:382—9.

39. Keller JE, Howe HL. Case-control studies of cancer in Illinois farmers using data from the Illinois State Cancer Registry and the US Census of Agriculture. Eur J Cancer 1994;30A:469—73.

40. Pearce NE, Sheppard RA, Smith AH, Teague CA. Non-Hodgkin's lymphoma and farming: an expanded case-control study. Int J Cancer 1987;39:155—61.

41. Fincham SM, Hanson J, Berk J. Patterns and risks of cancer in farmers in Alberta. Cancer 1992;69:1276—85.
47. Reif J, Pearce N, Fraser J. Cancer risks in New Zealand farmers. Int J Epidemiol 1989;18:769—74.
48. Schumacher MC. Farming occupations and mortality from non-Hodgkin’s lymphoma in Utah. J Occup Med 1985;27:390—4.
49. Delzell E, Grufferman S. Mortality among white and non-white farmers in North Carolina, 1976—1978. Am J Epidemiol 1985;121:391—402.
50. Gallagher RP, Threlfall WJ, Jeffries E, Band PR, Spinielli J, Coldman AJ. Cancer and aplastic anemia in British Columbia farmers. JNCI 1984;72:1311—5.
51. Mallin K, Robin M, Joo E. Occupational cancer mortality in Illinois white and black males, 1979—1984, for seven cancer sites. Am J Ind Med 1989;15:699—17.
52. Veil JF, Rihardson ST. Lymphoma, multiple myeloma and leukemia among French farmers in relation to pesticide exposure. Soc Sci Med 1993;37:771—7.
53. Wiklund K. Swedish agricultural workers. Cancer 1997;121:391402.
54. Wiklund K, Dich M. Mortality among farmers and their wives in England and Wales 1979—80, a linked registry study. J Occup Med 1994;36:1187—98.
55. Folsom AR, Zhang W, Kushi LH, Cerhan JR. Cancer incidence among women living on farms: Finding from the Iowa women’s health study. J Occup Environ Med 1996;38:1711—6.
56. Wiklund K, Dich J. Cancer risks among female farmers in Sweden. Cancer Cause Cont 1994;4:449—57.
57. Inskip H, Coggon D, Winter P, Amadi S, editors. Cancer risks among farmers in the north-east of Italy: a hospital-based case-control study. Br J Ind Med 1993;50:465—72.
58. Scherr PA, Mueller N. Non-Hodgkin’s lymphoma. In: Schottenfeld D, Fraumeni JF, editors. Cancer epidemiology and prevention. New York (NY): Oxford University Press, 1996:920—45.
59. Pearce NE, Smith AH, Howard JK, Sheppard RA, Giles HG, Gross MR, Stack HF, editors. Malignant lymphoproliferative diseases in HIV-sero-positive patients. Acta Oncol 1995;34:75—82.
60. Franceschi S, Serrainado M, Bidoli E, Talamini R, Tirelli U, Carbone A, et al. The epidemiology of non-Hodgkin’s lymphoma in the north-east of Italy: a hospital-based case-control study. Br J Cancer 1989;15:465—72.
61. Berard CW, Greene MH, Jaffe ES, Magrath I, Ziegler J. A multidisciplinary approach to non-Hodgkin’s lymphomas. Ann Intern Med 1989;94:218—35.
62. Garrett NE, Stack HF, Gross MR, Waters MD. An analysis of the spectra of genetic activity produced by known or suspected human carcinogens. Mutat Res 1984;154:89—111.
63. United States Census Bureau. Census of agriculture, 1954, 1964, 1974, 1982. Washington (DC): Government Printing Office.
64. Benenson AS. Control of communicable diseases manual. Washington (DC): American Public Health Association, 1995.
65. Blair A, Zahn SH. Chronic lymphocytic leukemias and non-Hodgkin’s lymphomas by histological type in farming-animal breeding workers: a population case-control study based on job titles. Occup Environ Med 1995;52:374—9.
66. LaVecchia C, Negri E, D’Avanzo B, Franceschi S. Occupation and lymphoid neoplasms. Br J Cancer 1989;60:385—8.
67. Blair A, Hour Zahn S, Pearce NE, Heineman EF, Fraumeni JF Jr. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health 1992;18:209—15.
68. Blakerstaff BJ, Tweedle RL, Mengersen KL. Passive smoking in the workplace: classical and Bayesian meta-analyses. Int Arch Occup Environ Health 1994;66:269—77.
69. Blair A. Cancer risks associated with agriculture: epidemiologic evidence. Basic Life Sci 1982;21:93—111.
70. Keller-Byrne JE, Khuder SA, Schaub EA, McAfee O. A meta-analysis of non-Hodgkin’s lymphoma among farmers in the central United States. Am J Ind Med 1997;31:442—4.
71. Ribas A, Bellmunt J, Albanell J, Capdevila JA, Ocana I, Gallego OS, et al. Malignant lymphoproliferative diseases in HIV-sero-positive patients. Acta Oncol 1995;34:75—82.
72. Franceschi S, Serrainado M, Bidoli E, Talamini R, Tirelli U, Carbone A, et al. The epidemiology of non-Hodgkin’s lymphoma in the north-east of Italy: a hospital-based case-control study. Br J Cancer 1989;15:465—72.
73. Schott J. Cancer and aplastic anemia in British Columbia farmers. JNCI 1989;61:155—62.
74. Pearce NE, Smith AH, Howard JK, Sheppard RA, Giles HG, Gross MR, Stack HF, editors. Malignant lymphoproliferative diseases in HIV-sero-positive patients. Acta Oncol 1995;34:75—82.
75. Garrett NE, Stack HF, Gross MR, Waters MD. An analysis of the spectra of genetic activity produced by known or suspected human carcinogens. Mutat Res 1984;154:89—111.
76. United States Census Bureau. Census of agriculture, 1954, 1964, 1974, 1982. Washington (DC): Government Printing Office.
77. Benenson AS. Control of communicable diseases manual. Washington (DC): American Public Health Association, 1995.
78. Blair A, Zahn SH. Patterns of pesticide use among farmers: a linked registry study. J Occup Med 1994;36:1187—98.
79. Folsom AR, Zhang W, Saller TA, Zheng W, Kushi LH, Cerhan JR. Cancer incidence among women living on farms: Finding from the Iowa women’s health study. J Occup Environ Med 1996;38:1711—6.
80. Wiklund K, Dich J. Cancer risks among female farmers in Sweden. Cancer Cause Cont 1994;4:449—57.
81. Inskip H, Coggon D, Winter P, Pannet B. Mortality of farmers and their wives in England and Wales 1979—80, 1982—90. Occup Environ Med 1996;53:730—5.
82. Skov T, Lyne G. Non-Hodgkin’s lymphoma and occupation in Denmark. Scand J Soc Med 1991;19:162—9.
83. Kristensen P, Andersen A, Jorgensen M, Laake P, Bye AS. Incidence and risk factors of cancer among men and women in Norwegian agriculture. Scand J Work Environ Health 1996;22:14—26.
84. Ronoco G, Costa G, Lyne G. Cancer risk among Danish and Italian farmers. Br J Ind Med 1992:49:220—5.
85. Amadoro D, Nanni O, Falcini F, Saragoni A, Tison V, Callea A, et al. Chronic lymphocytic leukemias and non-Hodgkin’s lymphomas by histological type in farming-animal breeding workers: a population case-control study based on job titles. Occup Environ Med 1995;52:374—9.
86. LaVecchia C, Negri E, D’Avanzo B, Franceschi S. Occupation and lymphoid neoplasms. Br J Cancer 1989;60:385—8.
87. Blair A, Hour Zahn S, Pearce NE, Heineman EF, Fraumeni JF Jr. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health 1992;18:209—15.
88. Blakerstaff BJ, Tweedle RL, Mengersen KL. Passive smoking in the workplace: classical and Bayesian meta-analyses. Int Arch Occup Environ Health 1994;66:269—77.
89. Blair A. Cancer risks associated with agriculture: epidemiologic evidence. Basic Life Sci 1982;21:93—111.
90. Keller-Byrne JE, Khuder SA, Schaub EA, McAfee O. A meta-analysis of non-Hodgkin’s lymphoma among farmers in the central United States. Am J Ind Med 1997;31:442—4.
91. Ribas A, Bellmunt J, Albanell J, Capdevila JA, Ocana I, Gallego OS, et al. Malignant lymphoproliferative diseases in HIV-sero-positive patients. Acta Oncol 1995;34:75—82.
92. Franceschi S, Serrainado M, Bidoli E, Talamini R, Tirelli U, Carbone A, et al. The epidemiology of non-Hodgkin’s lymphoma in the north-east of Italy: a hospital-based case-control study. Br J Cancer 1989;15:465—72.
93. Schott J. Cancer and aplastic anemia in British Columbia farmers. JNCI 1989;61:155—62.
94. Pearce NE, Smith AH, Howard JK, Sheppard RA, Giles HG, Gross MR, Stack HF, editors. Malignant lymphoproliferative diseases in HIV-sero-positive patients. Acta Oncol 1995;34:75—82.
95. Garrett NE, Stack HF, Gross MR, Waters MD. An analysis of the spectra of genetic activity produced by known or suspected human carcinogens. Mutat Res 1984;154:89—111.
96. United States Census Bureau. Census of agriculture, 1954, 1964, 1974, 1982. Washington (DC): Government Printing Office.
97. Benenson AS. Control of communicable diseases manual. Washington (DC): American Public Health Association, 1995.
98. Blair A, Zahn SH. Patterns of pesticide use among farmers: implications for epidemiologic research. Epidemiology 1993;4:55—62.
99. Blakerstaff BJ, Tweedle RL, Mengersen KL. Passive smoking in the workplace: classical and Bayesian meta-analyses. Int Arch Occup Environ Health 1994;66:269—77.
100. Blair A. Cancer risks associated with agriculture: epidemiologic evidence. Basic Life Sci 1982;21:93—111.