The phenotype of CD3–CD56$^{\text{bright}}$ and CD3–CD56$^{\text{dim}}$ natural killer cells in systemic lupus erythematosus patients and its relation to disease activity

Dwi Soelistyoningsih1, Hani Susianti2, Handono Kalim3, Kusworini Handono2

1Nursing Program, STIKES Widyagama Husada, Malang, Indonesia
2Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
3Rheumatology and Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia

Abstract

Introduction: Systemic lupus erythematosus (SLE) patients have decreased natural killer (NK) cell counts. The decrease in the number of NK cells has implications for a decrease in the function of NK cells which can affect the progression of SLE disease. The study aim was to determine profiles of CD3–CD56$^{\text{bright}}$ and CD3–CD56$^{\text{dim}}$ NK cells in SLE patients and their relation to disease activity.

Material and methods: This study included 36 patients of SLE who fulfilled the ACR 1997/SLICC 2012 criteria, women aged 18–49 years. Disease activity was assessed by the Mex-SLEDAI. Peripheral blood samples from SLE patients were analyzed by flow cytometry to evaluate NK cell subsets, according to differential expression of the main subset of NK cells, which is CD3–CD56$^{\text{bright}}$ and CD3–CD56$^{\text{dim}}$.

Results: The mean percentage of regulatory NK cell count (CD3–CD56$^{\text{bright}}$) in active SLE patients was significantly lower ($p = 0.000$) than in inactive SLE patients. The mean percentage of cytotoxic NK cell count (CD3–CD56$^{\text{dim}}$) in active SLE patients was significantly ($p = 0.000$) higher than in inactive SLE patients. A correlation was observed between two subsets of NK cells with disease activity ($p = 0.00$). The percentage of CD3–CD56$^{\text{bright}}$ NK cells was negatively correlated with disease activity ($r = -0.766$), whereas the percentage of CD3–CD56$^{\text{dim}}$ NK cells positively correlated with disease activity ($r = 0.761$).

Conclusions: There is a difference in the mean percentage of the number of NK cells (CD3–CD56$^+$) in both a subset of regulatory NK cells (CD3–CD56$^{\text{bright}}$) and cytotoxic NK cells (CD3–CD56$^{\text{dim}}$) in active and inactive SLE patients and it is closely related to SLE disease activity.

Key words: systemic lupus erythematosus, natural killer cells, disease activity.
Natural killer cells in systemic lupus erythematosus

Material and methods

Design and study subjects

This research was a cross-sectional study performed in Saiful Anwar General Hospital, Malang, Indonesia. The subjects of this study were 18–49-year-old female SLE patients who fulfilled the American College of Rheumatology (ACR) 1997 or Systemic Lupus International Collaborating Clinics (SLICC) 2012 criteria and were referred to the Rheumatology Clinic in Saiful Anwar General Hospital, Malang, Indonesia [9].

Patients who were pregnant, breastfeeding, had a previous history of cancer, trauma, or severe infections were excluded from the study. All SLE patients in the clinic were assessed for eligibility by the attending physicians and rheumatologists.

All patients were evaluated for the disease activity using the Mex-SLEDAI score as the routine examination. Patients were classified as active if the Mex-SLEDAI score was ≥ 5 and inactive if the Mex-SLEDAI score was < 5 [10].

In patients who fulfilled the criteria, 15 ml of peripheral venous blood was taken and put in a vacutainer with ethylenediaminetetraacetic acid (EDTA). The minimal number of the subjects was calculated by the following formula: \(n = \frac{2 \times (z_\alpha + z_\beta)^2 S}{(x_1 - x_2)^2} \) [11].

This study used 95% as the confidence interval (CI), with the power of the study being 80%. According to the previous study, the calculation of \(S, x_1, \) and \(x_2 \) was 40.8, 14, and 7 [8].

Thus, the minimal number of participants from each group was 18 SLE patients.

Patients were recruited by a simple random sampling method to minimize bias. In addition, to minimize the information bias, assessment of the disease activity and eligibility of the subjects was carried out by at least two doctors from the clinic.

Peripheral blood mononuclear cell isolation and sorting natural killer cells by flow cytometry

Isolation of PBMC was performed for the determination of NK cell subsets and NK cell surface markers. Peripheral blood mononuclear cells were obtained from 18 mm of blood samples with EDTA from all SLE patients by centrifugation of density Lymphoprep 1.07 (Axis-Shield, Norway), then separated and washed.

The purity of the isolation results was confirmed by FACSMelody (BD Bioscience) by staining PerCP-conjugated anti-CD3 antibody (BioLegend, San Diego, CA) and FITC-conjugated anti-CD56 antibody (BioLegend, San Diego, CA). The number of cells was analyzed by BD Cell Quest software. The analysis resulted in the percentage (%) of cells. According to Lin et al. [12], the population of lymphocytes was gated to confirm CD3− and CD3+ lymphocytes.

Then, the population of CD3−negative lymphocytes was gated for the next analysis of CD56 expression. The results are expressed as the percentage of isolated NK cells (CD3−CD56+). The isolated NK cells were further sorted as CD56dim and CD56bright.

Statistical analysis

The Mann-Whitney \(U \) test was used to analyze differences in the number and expression of NK cell phenotypes between active and inactive SLE patients. Spearman’s test was used to assess the correlation between variables. Data were described as mean ± standard deviation (SD) and considered significant if the \(p \)-value < 0.05. Statistical analysis was performed using SPSS version 21.

Bioethical standards

The Ethics Committee of Saiful Anwar Malang Hospital approved this study (No. 400/231/K.3/302/2019), and informed consent was obtained from all SLE patients.
Results

Patients’ characteristics

The flowchart of the eligibility for the participants in this study is shown in Figure 1. There were 67 SLE patients from the Rheumatology Clinic who were assessed for the study’s eligibility. Twenty-nine (43.2%) participants were excluded from the study because they did not fulfill the inclusion criteria. There were 38 patients enrolled in this study.

However, two (2.9%) were excluded from the analysis because of incomplete data. In the end, 36 patients were included in the analysis (18 active SLE and 18 inactive SLE patients). The characteristics of the patients are shown in Table I.

Mexican SLEDAI in active SLE patients was significantly higher than inactive (8.8 ±2.8 vs. 3.2 ±1.0; p = 0.000). The Mex-SLEDAI score was used to differentiate the status of SLE disease activity between active and inactive patients. Patients with active disease also had a significantly lower mean platelet count compared to the inactive SLE patients (226,388.9 ±83,457.7/µl vs. 317,216 ±71,400.6/µl; p = 0.003). The distribution of medication that was given to the subjects is shown in Table I.

The frequency of glucocorticosteroids (GCs) given in active SLE patients was higher in active patients compared to inactive SLE patients (p = 0.003). The mean dosage of GCs given was also significantly higher in active patients compared to inactive patients (p = 0.001).

On the other hand, there was no significant difference in the frequencies for the other treatments given by both groups.

Percentage of CD3–CD56bright and CD3–CD56dim of systemic lupus erythematosus patients

Natural killer cells expressed as regulatory CD3–CD56+ were sorted into two main subsets, regulatory CD3–CD56bright and cytotoxic CD3–CD56dim NK cells (Fig. 2). There was a difference between the percentages of the regulatory NK cell subset (CD3–CD56bright) and the cytotoxic NK cell subset (CD3–CD56dim).

Table I. Characteristics of active and inactive patients with systemic lupus erythematosus

Characteristic	Active (n = 18) (mean ±SD)	Inactive (n = 18) (mean ±SD)	p-value
Age, mean (range)	31.5 ±7.3 (21–44)	29.3 ±6.3 (19–47)	0.485
Average disease duration [months]	34.6 ±30.8	36.0 ±35.4	0.849
Mex-SLEDAI	8.8 ±2.8	3.2 ±1.0	0.000*
Hemoglobin [g/dl]	10.3 ±2.5	11.1 ±1.5	0.296
Leukocytes [× 10³/µl]	6.523 ±4.055	6.567 ±2.362	0.506
Lymphocytes [× 10³/µl]	0.962 ±0.529	1.401 ±0.638	0.058
Thrombocytes [× 10³/µl]	226.388 ±83,457	317.216 ±71,400	0.003*
Medications [frequency (%)]			
GC	18 (100)	11 (61.1)	0.003*
Methylprednisolone [mg/day]	8.7 ±10.5 (4–48)	2.4 ±2.0 (0–4)	0.001*
Hydroxychloroquine	10 (55.5)	11 (61.1)	0.735
Azathioprine	8 (44.4)	4 (22.2)	0.157
Mycophenolate mofetil	2 (11.1)	1 (5.5)	0.546

* Shows statistical significance with p < 0.05.

GC – glucocorticosteroid, Mex-SLEDAI – Mexican Systemic Lupus Erythematosus Disease Activity Index, SD – standard deviation.
In active SLE patients, the percentage of CD3–CD56bright was lower than CD3–CD56dim (7.5 ±6.6 vs. 91.9 ±6.7; \(p = 0.000\)). No significant difference was found between the percentage of CD3–CD56bright and CD3–CD56dim in inactive patients (41.6 ±16.2 vs. 56.7 ±17.7; \(p = 0.085\)).

Moreover, our data showed some significant differences between the mean percentage of the NK cells in both subsets between active and inactive SLE patients, as shown in Figure 3.

In active SLE patients, the percentage of regulatory CD3–CD56bright was significantly lower than in inactive patients (7.5 ±6.6 vs. 41.6 ±16.2; \(p = 0.000\)). The percentage of cytotoxic NK CD3–CD56dim in active SLE patients was significantly higher compared to inactive patients (91.9 ±6.8 vs. 56.7 ±17.7; \(p = 0.000\)).

Correlation between the number of CD3–CD56bright and CD3–CD56dim natural killer cell subsets in systemic lupus erythematosus patients with systemic lupus erythematosus disease activity

The correlation of the percentages from subsets of regulatory NK cells (CD3–CD56bright) and cytotoxic NK cells (CD3–CD56dim) with SLE disease activity is shown in Figure 4.

The results demonstrated that there was an inverse correlation between the mean percentage of regul-
tory NK cells (CD3–CD56bright) and SLE disease activity ($p = 0.000; r = 0.766$) (Fig. 4 A). There was also a positive correlation between the mean percentage of the cytotoxic NK cell subset (CD3–CD56dim) and SLE disease activity ($p = 0.000; r = 0.761$; Fig. 4 B).

Fig. 3. The difference of NK subsets in active and inactive SLE. The mean percentage of CD3–CD56bright in active was lower than in inactive SLE. The mean percentage of CD3–CD56dim in active was higher than in inactive SLE patients.

Fig. 4. Correlation between SLE disease activity with subset of NK cells. (A) Inverse correlation between disease activity with percentage of CD3–CD56bright; (B) Positive correlation between disease activity with CD3–CD56dim.

Percentages of CD3–CD56bright and CD3–CD56dim according to the medication given in systemic lupus erythematosus patients

Figure 5 A, B shows the comparison between the percentages of CD3–CD56bright and CD3–CD56dim according to the GCs given to the subjects. Systemic lupus erythematosus patients who received GCs had significantly lower CD3–CD56bright percentages (20.2 ±20.5\% vs. 42.6 ±14.9\%, $p = 0.009$) and higher CD3–CD56dim percentages (78.4 ±21.8\% vs. 57.2 ±14.9\%, $p = 0.014$) compared to the subjects who did not receive the GCs.

On the other hand, the dose of GCs given to the SLE patients was significantly correlated with the CD3–CD56bright ($p < 0.001, r = -0.599$) and CD3–CD56dim percentages ($p < 0.001, r = 0.574$), as shown in Figure 5 (C–D).

However, the CD3–CD56bright and CD3–CD56dim percentages did not significantly differ in patients who obtained hydroxychloroquine ($p = 0.776$ and
Discussion

Our study demonstrated that the profile of NK cells, including regulatory NK cells (CD3−CD56bright) and cytotoxic NK cells (CD3−CD56dim), was different between patients with active and inactive disease activity. The average percentage of regulatory NK cell counts (CD3−CD56bright) in active SLE patients was lower than in inactive SLE patients.

In contrast, the mean percentage of cytotoxic NK cell counts (CD3−CD56dim) in active SLE patients was higher than in inactive SLE patients. The low percentage of the number of the two major subsets of NK cells, especially in active SLE patients, suggests that there might be a decrease in the total number of NK cells in autoimmune disease conditions such as SLE.

The lower NK cell count in SLE patients is similar to the previous studies’ findings [5, 8, 13]. In autoimmune conditions, the induction of apoptosis due to excessive antibody production causes the dysregulation and destruction of immune cells, leading to a decreasing number of blood cells, including NK cells.
The decreasing number of NK cells can also later be associated with disease activity. The condition of active SLE indeed contains more antibodies and pro-inflammatory cytokines, which will affect the activity of immune cells, including NK cells, causing a change in the proportion of the NK cell subset [14]. With a reduction of total NK cells in patients with active SLE, the ability of NK cells to proliferate is also lower.

This study demonstrated a significant relationship between the mean percentage of the subset of regulatory NK cells (CD3–CD56bright) and cytotoxic NK cells (CD3–CD56dim) with SLE disease activity. Natural killer cell of CD56bright was reported to be a regulatory NK cell that could suppress the T cell responses through many mechanisms [15].

A previous study also showed that CD56bright was impaired in patients with SLE and the administration of IL-2 was associated with the attenuation of disease activity and improvement of CD56bright populations in the peripheral blood [16].

In contrast to the CD56bright NK cells, CD56dim NK cells were associated with the cytotoxic activity of NK cells. CD56dim was able to secrete pro-inflammatory cytokines, such as IFN-γ [17].

Research by Huang et al. [18] demonstrated that NK cells participated in the pathogenesis of SLE by activation and production of IFN-γ in an amyloid-induced experimental lupus-like syndrome model.

We found that the medications for the SLE patients were correlated with the CD56bright or CD56dim NK cells, especially the GCs. However, it is still not known whether the correlation was directly caused by GCs or another factor, since the dosage of GCs itself was also positively correlated with disease activity.

The role of GCs in the physiology of NK cells remains elusive. Systemic lupus erythematosus patients were documented as having impaired cytotoxicity in NK cell function, showed by decreased CD56dim NK cells.

A previous study showed that the therapy of SLE would increase the number of NK cells [19]. Ni et al. [20] also reported that the administration of a GC or immunosuppressant agent was able to reshape the CD56bright and CD56dim NK cells, changing them from the cytotoxic subset into the regulatory subset.

Study limitations

Our study described the role of NK cells in patients with SLE. However, there were some limitations of this study. The number of subjects was relatively small. This research was carried out during the COVID-19 pandemic, so it was quite difficult to obtain patients according to the inclusion criteria.

This preliminary study also only showed the number of NK cell subsets and did not demonstrate the function of these subsets in SLE patients, for example, the ability to secrete pro-inflammatory cytokines. This study did not use the EULAR/ACR 2019 criteria because we collected the subjects before establishing the EULAR/ACR 2019 criteria. Thus, we used the previous ACR1997/SLICC 2012 criteria during the study.

In addition, to assess the disease activity in this study, the Mex-SLEDAI score was used instead of the SLEDAI-2K because of limitations in the clinical settings. However, a previous study showed that the Mex-SLEDAI score was strongly correlated with the SLEDAI-2K score [10] and could be applied in several settings when complement or anti-dsDNA could not be observed.

Despite several limitations in this study, there is still an open opportunity to develop the study about the role of NK cells in the pathogenesis and treatment of SLE with a bigger sample size and more parameters.

Conclusions

The results of the present study indicate a difference in the mean percentage of the number of NK cells (CD3–CD56+), both subsets of regulatory NK cells (CD3–CD56bright) and cytotoxic NK cells (CD3–CD56dim) in active and inactive SLE patients and a relationship between these NK subsets and SLE activity.

Acknowledgements

The authors would like to thank all patients who participated in this study. Also, they would like to express their gratitude to dr. Rifa’i, dr. Putra, dr. Singgih, dr. Mirza, dr. Ramadi, Mr. Yudha, Ns. Elvira, Mrs. Lilis for their support and technical assistance in the hospital and the laboratory.

The authors declared no conflict of interest.

References

1. Spada R, Rojas JM, Barber DF. Recent findings on the role of natural killer cells in the pathogenesis of systemic lupus erythematosus. J Leukoc Biol 2015; 98: 479–487, DOI: 10.1189/jlb.4RU0315-081RR.
2. Zharkova Q, Celiar T, Catterthwaite AB, et al. Pathway leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56 (Suppl 1): i55–i66, DOI: 10.1093/rheumatology/kew427.
3. Galarza-Maldonado C, Kourilovitch MR, Molineros JE, et al. The administration of low doses of rituximab followed by hydroxychloroquine, prednisone and low doses of mycophenolate mofetil is an effective therapy in Latin American patients.
Natural killer cells in systemic lupus erythematosus. Autoimmun Rev 2010; 10: 108–111, DOI: 10.1016/j.autrev.2010.08.012.
4. Morales IE, Méndez-Martínez S, Jiménez-Hernández C, et al. Factors associated with health-related quality of life in Mexican lupus patients using the LupusQol. PLoS One 2017; 12: e0170209, DOI: 10.1371/journal.pone.0170209.
5. Park YW, Kee SJ, Cho YN, et al. Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1753–1763, DOI: 10.1002/art.24556.
6. Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions. J Allergy Clin Immunol 2013; 132: 536–544, DOI: 10.1016/j.jaci.2013.07.006.
7. Gabrielli S, Claudio O, Del Zotto G, et al. The memories of NK cells: innate-adaptive intrinsic crosstalk. J Immunol Res 2016; 2016: 1376595, DOI: 10.1155/2016/1376595.
8. Henríques A, Teixeira L, Inés L, et al. NK cells dysfunction in systemic lupus erythematosus: relation to disease activity. Clin Rheumatol 2013; 32: 805–813, DOI: 10.1007/s10067-013-2176-8.
9. Low ESH, Krishnaswamy G, Thumboo J. Comparing the 1997 update of the 1982 American College of Rheumatology (ACR-97) and the 2012 Systemic Lupus International Collaborating Clinics (SLICC-12) criteria for systemic lupus erythematosus (SLE) classification: which enables earlier classification of SLE in an urban Asian population? Lupus 2019; 28: 11–18, DOI: 10.1177/0961203318811599.
10. Uribe AG, Vilá LM, McGwin G Jr, et al. The systemic lupus activity measure-revised, the Mexican Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus. J Rheumatol 2004; 31: 1934–1940.
11. Dahlan MS. [Besar sampel dalam penelitian kedokteran dan Kesehatan]. Epidemiologi Indonesia, Jakarta 2016; 283–287 [Article in Indonesian].