Knowledge, Prevalence and Risk factors of Carpal Tunnel Syndrome in Young, Adult and Middle-Aged information Technology Professionals

Kethan Umakanth¹, Karthik Ganesh Mohanraj*¹, Smiline Girija A S²

¹Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600077, Tamil Nadu, India
²Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600077, Tamil Nadu, India

Article History:
Received on: 13 Jul 2020
Revised on: 14 Aug 2020
Accepted on: 21 Aug 2020

Keywords:
Carpal tunnel syndrome, computer usage, flick signs, IT professionals, median nerve, work-related health problem

ABSTRACT
Carpal tunnel syndrome (CTS) is one of the most commonly reported nerve entrapment syndromes. There are almost 10 million cases present in India alone. It was also found women were more commonly affected compared to men. Higher prevalence rates of CTS can be found in certain occupational groups, for example, the construction workers. The present study was a cross-sectional study conducted among IT professionals (primarily females). The questionnaire consisted of 7-10 questions and was given to IT professionals. Different populations can be covered online. The sample size of this survey was 100. People seem to have a sufficient amount of knowledge on CTS. However, there is more on CTS that they should be made aware. 70% of people are aware of the carpal tunnel syndrome, but only around 50% are aware of more information on CTS. Thus more research and studies must be further continued on this topic as it is a prevalent problem and millions of people are affected by it, and many might still be unaware of the problem in the world.

*Corresponding Author
Name: Karthik Ganesh Mohanraj
Phone: +91 99405 45168
Email: karthikm.sdc@gmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11iSPL3.3361

INTRODUCTION
Carpal tunnel syndrome (CTS) is a kind of numbness or tingling sensation in the hand/arm which is caused due to a pinched nerve in the wrist. There are many underlying health conditions which are associated with carpal tunnel syndrome. CTS is mainly caused due to a compression in the median nerve present in the wrist (Atroshi et al., 1999; Johnson et al., 2020). CTS is very much prevalent in the general population (Sekar et al., 2019). Carpal tunnel syndrome is one of the significant occupational upper extremity disorders. It is associated with considerable health care costs, etc. (Seppan et al., 2018; Feuerstein et al., 1998). One of the main reasons considered to cause carpal tunnel syndrome is a constant repetition of pressure, a force on the wrist. It is considered as a significant risk factor caused due to occupation (Abbas et al., 1998; Krishna and Babu, 2016). It was also observed that a high rate of CTS symptoms could be found in both dominant and non-dominant hands of experimental dental practitioners (Borhanaghighi et al., 2013; Nandhini et al., 2018).
factors to people (Lam and Thurston, 1998; Sriram et al., 2015). In a recent study in Saudi Arabia, awareness of CTS was sufficient among adult populations. An approximate 30% of the community believed pain in the wrist as the main symptom of CTS (Keerthana and Thenmozhi, 2016).

There are two types of CTS: acute and chronic. Acute is very uncommon. The chronic form is more common, and symptoms can be seen for many months and years (Aroori and Spence, 2008). Carpal tunnel syndrome is mainly seen in pregnant women as well (Keerthana and Thenmozhi, 2016; Pratha and Thenmozhi, 2016). A high repetitive job involves constant wrist movements for at least 50% of work times. Studies have shown a high prevalence of CTS in workers involved in high pressure and repetitive work (Silverstein et al., 1987; Menon and Thenmozhi, 2016). The repetitiveness is considered to be a higher risk factor compared to pressure and force (Silverstein et al., 1987; Hansen et al., 2004). However, in another study done by Chiang et al. force was considered as a more influential factor when compared to repetitiveness (Chiang et al., 1990). CTS can occur in all age groups.

Diabetic patients (due to unhealthy lifestyle) also have higher chances of contracting CTS (Samuel and Thenmozhi, 2015; Becker et al., 2002). Patients have stated that shaking or flicking their wrists helps
in relieving the symptoms (Choudhari and Thenmozhi, 2016; Hafeez and Thenmozhi, 2016). This phenomenon is also called 'flick sign' (Krendel et al., 1986; Kannan and Thenmozhi, 2016). However, it is said that the flick sign cannot be reliable in many cases (Hansen et al., 2004). It was Stevens et al., who found the mean age for diagnosis for men which was around 50 years of age, whereas in women it was around 51 (Stevens et al., 1988). Many studies also state that the occurrence of CTS is related to unhealthy habits and lifestyle (Becker et al., 2002). This was supported by a study which stated that CTS could be caused due to body mass index, age, wrist depth, etc., (Gerr and Letz, 1992). Another study by Nathan et al., suggests that obesity is one of the significant risk factors (Nathan et al., 1992).

MATERIALS AND METHODS

The study was an online survey conducted among IT professionals. The study was based on carpal tunnel syndrome among the IT population. The Institutional Review Board approved the study. A self-structured standard online questionnaire was prepared based on CTS, its prevalence, work-related
Figure 10: Pie chart shows the percentage distribution of awareness of the particular age group more prone to carpal tunnel syndrome.

Figure 11: Pie chart shows the percentage distribution of gender more affected by CTS.

Figure 12: Pie chart shows the percentage distribution of gender more affected by CTS.

RESULTS AND DISCUSSION

In the survey study, the percentage of male participants was 24%, and female participants were 76% (Figure 1). In this present study, 76% were female, and the rest 24% were male.

The association between age group and awareness of carpal tunnel syndrome was done using Chi-square test which showed p=0.046 (p<0.05) and

risk factors, its severity of pain, etc., among the young and middle-aged IT professionals. The questionnaire was uploaded in the online survey portal, and the responses were collected. A total of 100 responses were obtained, and the data were evaluated statistically. Using SPSS, IBM version 23.0, the data were analyzed. The statistical method used is descriptive statistics represented in a frequency distribution. For correlation analysis, Chi-square test was done. The type of analysis used was the Chi-Square test. The dependent variable used for this study was age, occupation, gender. The independent variables considered were location, food habits, and ethnicity. The obtained results were analyzed and
Figure 13: Bar chart representing the association between age group and awareness of gender more prone to CTS.

was found to be a statistically significant association, which indicates that participants in the age group of 17-24 years were aware of carpal tunnel syndrome than the other age groups (Figure 2). Chi-square test showed $p=0.046$ ($p<0.05$) indicating a statistically significant association between age group and awareness of CTS.

From the data, it was found that 70% of the participants are aware / heard of carpal tunnel syndrome whereas 16% are unaware and the rest of 14% have probably heard of the term CTS but not sure about it (Figure 3). 70% are aware of CTS whereas 16% are not aware of it and the rest 14% might have heard about and are not sure about CTS. 57% of the participants have chosen 'IT profession' as one of the repetitive occupations to have the CTS, whereas 30% have chosen dentistry, 12% musicians and 1% are alone for construction based works (Figure 4). 57% of participants responded to the IT profession, 30% have chosen dentistry, 12% of musicians and 1% alone for construction based works.

The association between age group and profession was done using Chi-square test which showed $p=0.005$ ($p<0.05$) and was found to have a statistically significant association between them, which shows that IT professionals of the age group between 17-24 years are more affected than any the other age groups (Figure 5). Chi-square test showed $p=0.005$ ($p<0.05$) indicating a statistically significant association between age group and profession leading to CTS.

It was found that 61% of participants are aware of the area most affected by CTS, whereas 29% are unaware, and the rest 10% have opted for the option probably (Figure 6). 61% are aware, whereas 29% are unaware and the rest 10% have opted for the option probably. The association between age group and region mostly affected by CTS was done using Chi-square test which showed $p=0.016$ ($p<0.05$) and was found to have a statistically significant association, which shows that the age group 17-24 are more aware of the region being affected by CTS (Figure 7). Chi-square test showed $p=0.016$ ($p<0.05$) indicating a statistically significant association between age group and awareness of region mostly affected due to CTS.

51% of participants are unaware of CTS related health disorders whereas 34% are aware and the rest of the 15% have opted for the option probably as they are not sure but may have some idea (Figure 8). 51% of participants are unaware, whereas 34% are aware and the rest 15% have opted for the option probably and are not sure.

Association between age group and health disorders was done using Chi-square test $p=0.011$ ($p<0.05$) and was found to be statistically significant. Thus chi-square showed that there was a significant association between age group and health disorders due to CTS, which shows that participants of the age group between 17-24 years were less aware of health-related disorders due to CTS than other age groups (Figure 9). Chi-square test showed $p=0.0(p<0.05)$ indicating a statistically significant association between age group and awareness of region mostly affected due to CTS.

From the analyzed data, it was found that 49% of participants are aware that a particular age group was more prone to CTS and the other 51% are unaware (Figure 10). 49% of participants are aware of the age group are more prone to carpal tunnel syndrome, and the other 51% are unaware.

The association between age group and awareness of the age group, which are more prone to CTS was done using Chi-square test. It showed $p=0.103$ ($p>0.05$) indicating statistically not significant. Thus this showed there was no significant association between age and awareness of regions mostly affected due to CTS (Figure 11). Chi-square test showed $p=0.103$ ($p>0.05$) indicating statistically no significant association between age and awareness of region mostly affected due to CTS.

It was observed that 56% of participants have opted for the female gender being more affected by CTS, whereas the other 44% have chosen male gender (Figure 12). 56% of participants have opted female gender being more affected by CTS, whereas the other 44% have chosen male gender. The association between age group and awareness of gen-
der more prone to CTS was analyzed. Chi-square test showed p=0.096 (p>0.05) indicating statistically not significant. Thus this comparison showed that there was no significant association between age group and the awareness of gender more prone to CTS (Figure 13). Chi-square test showed p=0.096 (p>0.05) indicating statistically no significant association between age group and awareness of gender more prone to CTS.

According to results, 70% of participants have heard/ know of the term carpal tunnel syndrome. However, not many people know about this disease. According to another survey by Raman et al., there was a possibility that the general population of Kuwait under-recognized or is unaware of carpal tunnel syndrome (Raman et al., 2012). Our survey has a percentage of 61% people who are aware of the area more affected by CTS which is higher when compared to a survey which stated that only 30% were aware of the most affected area (Alyousef et al., 2019). According to the survey, 56% have chosen the female gender to be more affected by CTS. Atroshi I et al., have proved that electrophysiologically CTS have a higher prevalence in females which is around 5.8% and lesser in male (around 0.6%) (Atroshi, 1999). However, also another study suggested that although females are more common to experience CTS, men had more severe impairments due to CTS.

Only 49% of participants are aware of the age group more prone to CTS. In a study by Lam et al., they have stated that CTS is more common and harmful in patients older than 55 years old (Lam and Thurston, 1998). Stevens et al. stated that numerous patients report indications outside the conveyance of the median nerve too, and has been affirmed (Stevens et al., 1999).

According to a study by Hagberg M et al., industrial workers faced the lowest risk factors for CTS and higher in occupations such as butchers, frozen food factory workers etc., (Hagberg et al., 1992). This contradicts the results of the current survey, which states that IT professionals will have a higher risk of contracting CTS.

Limitations of Study

The survey population was less and localized targeted population.

Future of scope

There is a significant scope on this topic as CTS is very much prevalent in the modern IT world as many are using computers or laptops in many ways. People are still unaware of CTS, and its risk factors and harmful effects of its long term use. Further studies on CTS in large scale with different populations and locations are required to acquire more knowledge and create more awareness.

CONCLUSIONS

According to the survey reports, IT professionals know about the prevalence, risk factors of carpal tunnel syndrome, but they do not have an in-depth knowledge of CTS and its effects mostly in long term use. Also, the survey participants did not intend to take any measures to treat it properly. Thus more studies must be required, and more information must be given to people on its harmful effects.

ACKNOWLEDGEMENT

The authors would like to thank the survey study participants for their participation and kind cooperation.

Conflict of interest

The authors declare that they have no conflict of interest

Funding support

The authors declare that they have no funding support for this study

REFERENCES

Abbas, M. A. F., Afifi, A. A., Zhang, Z. W., Kraus, J. F. 1998. A meta-analysis of Published Studies of Work-related Carpal Tunnel Syndrome. International Journal of Occupational and Environmental Health, 4(3):160–167.

Alyousef, Y. Y., Alyousef, F. Y., Almaymoni, S. M., Hazizi, M., Almaymoni, M. M., Alyousef, A. Y., Hazazi, O., Bayamin, A. M. 2019. Awareness of carpal tunnel syndrome among adult population of Al Majmaah city, Saudi Arabia, 2018–2019. Family Medicine and Primary Care, 8(10):3383–3383.

Atroshi, I., Gummesson, C., Johnsson, R., Sprinchorn, A. 1999. Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. The Journal of Hand Surgery, 24(2):398–404.

Becker, J., Nora, D. B., Gomes, L., Stringari, F. F., Seittensus, R., Panosso, J. S., Ehlers, J. A. C. 2002. An evaluation of gender, obesity, age and diabetes mellitus as risk factors for carpal tunnel syndrome. Clinical Neurophysiology, 113(9):1429–1434.
Borhanhaghighi, A., Khosropanah, H., Vahidnia, F., Esmailzadeh, S., & Emami, Z. 2013. Association of dental practice as a risk factor in the development of carpal tunnel syndrome. *Journal of Dentistry*, 14(1):37–40.

Chiang, H. C., Chen, S. S., Yu, H. S., Ko, Y. C. 1990. The occurrence of carpal tunnel syndrome in frozen food factory employees. *Gaoxiong Yi Xue Ke Xue Za Zhi = The Kaohsiung Journal of Medical Sciences*, 6(2):73–80.

Choudhari, S., Thenmozhi, M. S. 2016. Occurrence and Importance of Posterior Condylar Foramen. *Research Journal of Pharmacy and Technology*, 9(8):1083–1083.

Feuerstein, M., Miller, V. L., Burrell, L. M., Berger, R. 1998. Occupational Upper Extremity Disorders in the Federal Workforce. *Journal of Occupational & Environmental Medicine*, 40(6):546–555.

Gerr, F., Letz, R. 1992. Risk Factors for Carpal Tunnel Syndrome in Industry: Blaming the Victim? *Journal of Occupational and Environmental Medicine*, 34(11):1117–1118.

Hafeez, N., Thenmozhi, M. S. 2016. Accessory foramen in the middle cranial fossa. *Research Journal of Pharmacy and Technology*, 9(11):1880–1880.

Hagberg, M., Morgenstern, H., Kelsh, M. 1992. Impact of occupations and job tasks on the prevalence of carpal tunnel syndrome. *Scandinavian Journal of Work, Environment & Health*, 18(6):337–345.

Hansen, P. A., Micklesen, P., Robinson, L. R. 2004. Clinical Utility of the Flick Maneuver in Diagnosing Carpal Tunnel Syndrome. *American Journal of Physical Medicine & Rehabilitation*, 83(5):363–367.

Johnson, J., Lakshmanan, G., M., B., R.M, V., Kalimuthu, K., Sekar, D. 2020. Computational identification of miRNA-7110 from pulmonary arterial hypertension (PAH) ESTs: a new microRNA that links diabetes and PAH. *Hypertension Research*, 43(4):360–362.

Kannan, R., Thenmozhi, M. S. 2016. Morphometric Study of Styloid Process and its Clinical Importance on Eagle’s Syndrome. *Research Journal of Pharmacy and Technology*, 9(8):1137–1137.

Keerthana, B., Thenmozhi, M. S. 2016. Occurrence of foramen of Huschke and its clinical significance. *Research Journal of Pharmacy and Technology*, 9(11):1835–1835.

Krendel, D. A., Jobsis, M., Gaskell, P. C., Sanders, D. B. 1986. The flick sign in carpal tunnel syndrome. *Journal of Neurology, Neurosurgery & Psychiatry*, 49(2):220–221.

Krishna, R. N., Babu, K. Y. 2016. Estimation of stature from physiognomic facial length and morphological facial length. *Research Journal of Pharmacy and Technology*, 9(11):2071–2071.

Lam, N., Thurston, A. 1998. ASSOCIATION OF OBESITY, GENDER, AGE AND OCCUPATION WITH CARPAL TUNNEL SYNDROME. *ANZ Journal of Surgery*, 68(3):190–193.

Menon, A., Thenmozhi, M. S. 2016. Correlation between thyroid function and obesity. *Research Journal of Pharmacy and Technology*, 9(10):1568–1568.

Nandhini, J. S. T., Babu, K. Y., Mohanraj, K. G. 2018. Size, Shape, Prominence and Localization of Gerdy’s Tubercle in Dry Human Tibial Bones. *Research Journal of Pharmacy and Technology*, 11(8):3604–3604.

Nathan, P. A., Keniston, R. C., Myers, L. D., Meadows, K. D. 1992. Obesity as a risk factor for the slowing of sensory conduction of the median nerve in industry. A cross-sectional and longitudinal study involving 429 workers. *Journal of Occupational Medicine: Official Publication of the American College of Occupational Medicine*, 34(4):379–383.

Pratha, A. A., Thenmozhi, M. S. 2016. A Study of Occurrence and Morphometric Analysis on Meningo Orbital Foramen. *Research Journal of Pharmacy and Technology*, 9(7):880–880.

Raman, S. R., Al-Halabi, B., Hamdan, E., Landry, M. D. 2012. Prevalence and risk factors associated with self-reported carpal tunnel syndrome (CTS) among office workers in Kuwait. *BMC Research Notes*, 5(1):289–289.

Samuel, A. R., Thenmozhi, M. S. 2015. Study of impaired vision due to Amblyopia. *Research Journal of Pharmacy and Technology*, 8(7):912–912.

Sekar, D., Lakshmanan, G., Mani, P., Biruntha, M. 2019. Methylation-dependent circulating microRNA 510 in preeclampsia patients. *Hypertension Research*, 42(10):1647–1648.

Seppan, P., Muhammed, I., Mohanraj, K. G., Lakshmanan, G., Premavathy, D., Muthu, S. J., Shimray, K. W., Sathyanathan, S. B. 2018. Therapeutic potential of Mucuna pruriens (Linn.) on ageing induced damage in dorsal nerve of the penis and its implication on erectile function: an experimental study using albino rats. *The Aging Male*, pages 1–14.
Silverstein, B. A., Fine, L. J., Armstrong, T. J. 1987. Occupational factors and carpal tunnel syndrome. *American Journal of Industrial Medicine, 11*(3):343–358.

Sriram, N., Thenmozhi, Yuvaraj, S. 2015. Effects of Mobile Phone Radiation on Brain: A questionnaire based study. *Research Journal of Pharmacy and Technology, 8*(7):867–867.

Stevens, J. C., Smith, B. E., Weaver, A. L., Bosch, E. P., Deen, H. G., Wilkens, J. A. 1999. Symptoms of 100 patients with electromyographically verified carpal tunnel syndrome. *Muscle & Nerve, 22*(10):1448–1456.

Stevens, J. C., Sun, S., Beard, C. M., O’fallon, W. M., Kurland, L. T. 1988. Carpal tunnel syndrome in Rochester, Minnesota. *Neurology, 38*(1):134–134.

Subashri, A., Thenmozhi, M. S. 2016. Occipital Emissary Foramina in Human Adult Skull and Their Clinical Implications. *Research Journal of Pharmacy and Technology, 9*(6):716–716.

Thejeswar, E. P., Thenmozhi, M. S. 2015. Educational Research-iPad System vs Textbook System. *Research Journal of Pharmacy and Technology, 8*(8):1158–1158.