Interaktive E-Learning-Module in der Humangenetik: Einsatz und Evaluation im Rahmen der Medizinstudierenden- und Humanbiologen-Ausbildung

Zusammenfassung

Einleitung: Die vorliegende Studie beschreibt unser Online-Lehrmaterial Humangenetik im Zusammenhang mit dem k-MED-Projekt (Knowledge in Medical Education) an der Philipps-Universität Marburg. Es besteht aus fünf E-Learning-Modulen: Zytogenetik, Chromosomenstörungen, Formalgenetik, Grundlagen der molekularlen Diagnostik sowie Kongenitale Abnormitäten und Fehlbildungssyndrome. Diese E-Module sollen ein einheitliches Wissensniveau der Studierenden gewährleisten und die Dozenten in der Präsenzlehre entlasten.

Methoden: Die fünf E-Learning-Module Humangenetik wurden auf freiwilliger Basis einer großen Personengruppe von ca. 3300 Studierenden am Fachbereich Humanmedizin der Universität Marburg über eine Dauer von vier Jahren angeboten. Die Teilnehmer bestanden aus Naturwissenschaftlern (Humanbiologie) im 5. Fachsemester und Studierenden der Humanmedizin, die sich entweder in der Vorklinik (1. Semester) oder im klinischen Studienabschnitt (7./8. Semester) befanden. Von diesen wurden Daten zur Akzeptanz in Form von Usertrackingdaten und klausur-begleitenden Fragebögen erhoben.

Ergebnisse und Schlussfolgerung: Die Evaluation zeigte eine breite Akzeptanz unserer Lehrmodule über einen Zeitraum von acht Semestern. Obwohl das Angebot freiwillig ist, werden die Online-Kurse Humangenetik konstant oder sogar in zunehmendem Maße zwischen Wintersemester 2005/06 und Sommersemester 2009 genutzt.

Fazit: Unser E-Learning-Modell Humangenetik wird von Studierenden aus unterschiedlichen Semestern und Studiengängen am Fachbereich Humanmedizin gut angenommen und genutzt. Bei sorgfältiger Pflege der Online-Kurse steigern moderate Anpassungen sowohl Akzeptanz als auch Benutzungshäufigkeit in signifikanter Weise. Die Anwendung der E-Learning Module erscheint uns auch in der Ausbildung von MTAs oder Pflegekräften sinnvoll, um ein ausreichendes Grundwissen in Humangenetik zu gewährleisten.

Schlüsselwörter: Humangenetik, Evaluation, Multimedia, E-Learning

Einleitung

k-MED (Knowledge in Medical Education) ist eine öffentlich geförderte und unabhängige Internet-Lernplattform für biomedizinische Studiengänge. Zusammen mit seinen Vorgängerprojekten wurde k-MED von 1999 bis zum Projektende 2009 vom Hessischen Ministerium für Wissenschaft und Kunst gefördert. Zwischen Januar 2001 und April 2004 wurde es darüber hinaus vom BMBF im Rahmen des Förderprogramms „Neue Medien in der Bildung“ unterstützt. Mittlerweile ist k-MED an den beiden hessischen medizinischen Fachbereichen der Justus-Liebig-Universität Gießen und der Philippus-Universität Marburg als eine Einrichtung der Studiendekanate etabliert und hat sich von einem fachbezogenen Projekt zu einem e-Learning-Dienstleister mit vielseitigen Lehr-Lernangeboten gewandelt [1]. Die k-MED Lernplattform basiert auf dem Open Source Learning Management System ILIAS (Integriertes Lern-, Informations- und Arbeitskooperations-System, http://www.ilias.de/docu/) und unterstützt sowohl multimediale Lernkurse als auch Online-Lehrevaluation, veranstaltungsbegleitende Diskussi-
onsforen und Online-Klausuren [2]. ILIAS wurde 1997/98 im Rahmen des VIRTUS-Projekts an der Universität zu Köln entwickelt. Ziel von VIRTUS waren Ergänzung und Verbesserung der Präsenzlehre durch Einsatz neuer Informations- und Kommunikationstechnologien. Verwendung findet ILIAS zunehmend nicht nur an Hochschulen und Weiterbildungseinrichtungen im In- und Ausland sondern auch in Unternehmen und Verwaltungsorganisationen wie z. B. der Bundesagentur für Arbeit. Gegenwärtig (2010) werden über 200 verschiedene k-MED Lernkurse oder e-Learning-Module angeboten, die von mittlerweile 15.000 Nutzern mit Zugangslogin genutzt werden. Darunter befinden sich 5000 der Universität Marburg. An der medizinischen Fakultät der Universität Marburg werden diese virtuellen Lehrveranstaltungen meist begleitend zur curricularen Präsenzlehre genutzt – an der Universität Gießen in einem rasch steigenden Umfang.

Die ärztliche Approbationsordnung von 2002 wertet das Fach Humangenetik auf und stellt so das beteiligte Lehrpersonal vor neue Herausforderungen. Durch die Aufnahme einer Vorlesung und eines Seminars über klinische Humangenetik in den curricularen Lehrplan stieg die Lehrbelastung bei gleichzeitig stagnierenden oder sogar sinkenden Personalbestand. Die fünf E-Learning-Module Humangenetik können und sollen die Präsenzlehre nicht vollständig ersetzen, sondern zum einen die Dozenten durch das Onlineangebot von jederzeit abrufbaren Lerninhalten entlasten und andererseits Wissensdefizite in Grundlagen der Humangenetik bei den Studierenden ausgleichen. Diese Vorgehensweise wird durch eine Studie über die Einstellung fortgeschrittener Medizinstudenten zur Humangenomforschung an der Universität Leipzig unterstrichen. Demnach wird humangenetische Forschung für relevant gehalten und eine verstärkte Integration humangenetischer Inhalte in die medizinische Ausbildung gefordert [3]. Neben dieser Vermittlung von Grundlagen sollen Dozenten (und Studenten) durch verbesserte Kommunikationsmöglichkeiten wie Online-Tutoring und Bereitstellung eines zentralen Ablageorts für Skripte, Weblinks sowie Lehrveranstaltungstermine entlastet werden.

Methoden

Projektbeschreibung

Aktuell werden fünf - teilweise interaktive E-Learning-Module (siehe Abbildung 1) zur Lehre im Fach Humangenetik eingesetzt: Zygotogenetik, Chromosomenstörungen, Formalgenetik, Grundlagen der Molekulardiagnostik sowie Kongenitale Abnormitäten und Fehlbildungssyndrome (siehe Tabelle 1).

Tabelle 1: Übersicht des Kursumfangs einschließlich Typ und Anzahl der verwendeten Medienbausteine

1. Zytogenetik	2. Chromosomenstörungen	3. Formalgenetik	4. Grundlagen der molekularen Diagnostik	5. Kongenitale Abnormitäten und Fehlbildungssyndrome
Bildschirmseiten: 29	48	40	46	45
Tabellen: 0	1	7	5	4
Fotos: 12	11	2	1	9
Grafiken (nicht interaktiv): 6	14	17	20	2
interaktive Grafiken: 3	3	0	0	0
interaktive Übungsfragen: 6	7	10	10	22

Abbildung 1: Beispiel eines interaktiven E-Moduls: Erstellen eines Online-Karyogramms

Hierbei handelt es sich um Grundlagenkurse, welche die Präsenzlehre ergänzen sollen. In einem Studienjahr (Winter- und Sommersemester) werden ca. 750 - 800 Studierende des Fachbereichs Humanmedizin in Humangenetik unterrichtet und die genannten k-MED-Module sind in der Lehre eingebunden (blended learning). Diese Nutzer setzen sich zusammen aus ca. 50 Studierenden der Humanbiologie, ca. 440 Humanmedizinstudierenden zu Beginn der Vorklinik und 300 Studierenden der Humanmedizin im klinischen Studienabschnitt (7.-8. Fachsemester). In allen drei Bereichen werden die E-Learning-Module der Humangenetik ergänzend zur Präsenzlehre auf freiwilliger Basis angeboten (siehe Tabelle 2). Studierende der Humanbiologie besuchen im 4. Semester die Vorlesung Humanbiologie III (1,3 SWS) und im 7. und 8. Semester die Vorlesung bzw. das Seminar Molekulare Biologie und Humangenetik für Haupt- und Nebenfächer (1 SWS). Eine Entlastung der Lehrenden erfolgt insoweit, dass das Grundwissen in Humangenetik von den Studierenden zu Hause geübt werden kann und die Präsenzlehre sich auf „interessante“ Aspekte konzentrieren kann.
Die angebotenen Lernkurse sind prinzipiell identisch für alle Studierenden, wogegen das zugrunde liegende Lehrkonzept vom jeweiligen Studiengang abhängt: Humanbiologen (Diplomstudiengang) werden das Lernmaterial zur Vorbereitung auf das humangenetische Grundpraktikum und die Abschlussklausur im fünften Semester angeboten. Studierende der Humanmedizin im ersten Semester sollten die gleichen Module zur Nachbereitung ihres Biologiepraktikums sowie zur Vorbereitung auf die Semesterabschlussklausur bearbeiten. Studierende im zweiten (klinischen) Studienabschnitt Humanmedizin nutzen die entsprechenden Module zur Wiederholung der Humangenetik sowie zur Vorbereitung auf Vorlesung und Seminare in klinischer Genetik. Seit dem WS06/07 ersetzt für diese letzte Gruppe das Modul „Kongenitale Abnormalitäten und Fehlbildungssyndrome“ den Online-Kurs „Grundlagen der Molekulardiagnostik“. Dieses Modul zeichnet sich durch eine hohe Anzahl von 22 Übungsaufgaben aus (siehe Tabelle 1). Der Lernstoff sollte durch Übungsaufgaben im Stil der IMPP-Fragen – Forced-Choice-Aufgaben mit einer richtigen Antwort aus fünf möglichen – überprüft und gefestigt werden. Der Nutzer erhält sofort eine Rückmeldung. Bei falscher Antwort wird die korrekte Antwort mit einer Erläuterung eingeblendet. Dazu kommen interaktive Zuordnungsaufgaben, bei denen der Lernende mittels Drag-and-Drop-Technik Karyogramme unterschiedlichen Schwierigkeitsgrades online erstellen kann. Bei falscher Wahl springt das Chromosom zurück, während es nur bei korrekter Zuordnung am Ziel „haften“ bleibt.

Evaluation der E-Learning-Module der Humangenetik

Zur Evaluation der E-Learning-Module wurden die Usertracking-Daten (Anzahl der Zugriffe und durchschnittliche Bearbeitungsdauer) (siehe Tabelle 3 und 4) sowie ein Fragebogen (siehe Abbildung 2) ausgewertet.

Tabelle 2: Organisation der Lehre und Einsatz der E-Learning-Module in Humangenetik am Fachbereich Medizin der Philipps-Universität Marburg
Veranstaltung
VL Biologie für Mediziner, 4 SWS (davon 1/3 Themen der Humangenetik): nur WS
PU Biologie für Mediziner, 5 SWS (davon 1/3 Themen der Humangenetik): nur WS
SE Klinische Humangenetik, 8 SWS: WS + SS
VL Klinische Humangenetik, 1 SWS: WS + SS
PU Grundpraktikum II, 6 SWS (davon 1/3 Themen der Humangenetik): nur WS

Tabelle 3: Nutzungsspezifitäten der Lernmodule laut Usertracking-Evaluation. Kumulative Nutzung am Fachbereich Humanmedizin der Philipps-Universität Marburg: Tabelle 3a präsentiert die Nutzungsspezifitäten pro Kurs für die Gesamträume zum WS05/06 und die entsprechende kumulative Nutzung bis SS07 bzw. SS09 (Datengrundlage: Usertracking der Lernplattform). Herausragende Nutzungsdauern bzw. Zugriffszahlen sind in beiden Teiltabellen farblich markiert.

	Zytogenetik	Chromosomenstörungen	Formale Genetik	Grundlagen molekularer Diagnostik	Konzeptionelle Abnormalitäten*	Erfassungszeitraum
Zugriffe pro Nutzer	2,5	2,7	2,3	2,2	2,6	
Zugriffe pro Nutzer (min)	52	86	87	60	77	
(*) ersetzt „Grundlagen der molekularen Diagnostik“ im 2. Studienabschnitt Medizin seit WS06/07						

Tabelle 4: Nutzungsspezifitäten der Lernmodule laut Usertracking-Evaluation. Nutzung durch Studierende im klinischen Studienabschnitt und Humanbiologen: Tabelle 3b zeigt die Nutzungsspezifitäten bei Medizinern im klinischen Studienabschnitt (Kliniker) zum SS07 bzw. 09 sowie bei Humanbiologen zum WS05/06 und WS08/09
Zugriffe pro Nutzer
Zugriffe pro Nutzer (min)
(* ersetzt „Grundlagen der molekularen Diagnostik“ im 2. Studienabschnitt Medizin seit WS06/07

Als Zugriff wird der Aufruf eines E-Moduls (z. B. Zytogenetik mit 29 Bildschirmseiten) definiert. Aufgrund organisatorisch-technischer Probleme u. a. bedingt durch Implementierung der neuen Open Source Lernplattform ILIAS (Integriertes Lern-, Informations- und Arbeitskooperations-System, http://www.ilias.de/docu/) im September 2005 war eine Filterung der Lernkursnutzung nach Nutzergruppe nicht in allen Semestern möglich (siehe Tabelle 4). Die Usertracking-Daten sind daher vorwiegend kumulativ in Bezug auf die Gesamträume der Nutzer dargestellt (siehe Tabelle 3). Als „Nutzer“ (n) sind Teilnehmer der
Abbildung 2: Evaluation der k-MED-Lernkurse im klinischen Studienabschnitt. Abbildung 2a zeigt die kombinierten Evaluationsdaten von WS05/06 und SS06 (Klausurteilnehmer: 454, Rücklauf: 322 = 71%). Abbildung 2b zeigt die entsprechenden Ergebnisse von WS06/07 und SS07 (Klausurteilnehmer: 306, Rücklauf: Evaluationsfragebogen: 249 = 81%). Die Evaluation des Seminarkonzeptes im SS09 erbrachte vergleichbare Beurteilungen (weniger gut: 12%, eher gut: 56%, sehr gut: 32%) bei 126 Klausurteilnehmern und einer 75%-igen Rücklaufquote an Fragebögen.

Ergebnisse

Der Vergleich der Nutzungsintensitäten zeigt eine konstante oder sogar zunehmende Akzeptanz der verschiedenen Lernkurse vom Wintersemester 2005/06 (Start des k-MED-Kursangebotes Humangenetik) bis zum Sommersemester 2009 (siehe Tabelle 3 und 4). Auf jede der Lerneinheiten der Humangenetik wird im Durchschnitt mehr als zweimal zugegriffen (Ausnahme: Formale Genetik bei Humanbiologen). Abgesehen von der relativ geringen Bearbeitungszeit des Kurses „Formale Genetik“ und „Grundlagen der Molekularen Diagnostik“ bei Humanbiologen (siehe Tabelle 4) beträgt die durchschnittliche Zugriffszeit mehr als 45 Minuten unabhängig vom Studienabschnitt und Semester. Auffallend ist die starke Nutzung des Kurses „Chromosomenstörungen“, der mit seinem betont klinischen Inhalt offensichtlich den Interessen und Lernanforderungen von Medizinstudenten im zweiten Studienabschnitt in besonderem Maße entgegenkommt. Wie Tabelle 3 und 4 zeigen, nutzen sie dieses Modul am intensivsten (z. B. 220 Minuten Nutzungsdauer pro Nutzer bei Klinikern im SS09 gegenüber 105 Minuten durchschnittliche kumulative Nutzungsdauer der Gesamtgruppe). Studierende der Humanbiologie mit einer stärker naturwissenschaftlichen Ausrichtung der Studieninhalte zeigen eine deutlich geringere Nutzungsdauer, die vom WS05/06 bis WS08/09 stabil bleibt (57 bzw. 61 Minuten). Aber auch die anderen Studierende der Humanbiologie (Diplom) fanden keine Akzeptancevaluation statt, um den Aufwand für diese Studie vertretbar zu halten.

Abbildung 2: Evaluation der k-MED-Lernkurse im klinischen Studienabschnitt. Abbildung 2a zeigt die kombinierten Evaluationsdaten von WS05/06 und SS06 (Klausurteilnehmer: 454, Rücklauf Evaluationsfragebogen: 322 = 71%). Abbildung 2b zeigt die entsprechenden Ergebnisse von WS06/07 und SS07 (Klausurteilnehmer: 306, Rücklauf Evaluationsfragebogen: 249 = 81%). Die Evaluation des Seminarkonzeptes im SS09 erbrachte vergleichbare Beurteilungen (weniger gut: 12%, eher gut: 56%, sehr gut: 32%) bei 126 Klausurteilnehmern und einer 75%-igen Rücklaufquote an Fragebögen.
in dieser Gruppe deutlich positiver aus als im WS05/06 bzw. SS06. Dies betrifft sowohl die Nutzungsintensität der einzelnen Kurse (WS05/06 – SS06: 29-34% intensiv damit gelernt; WS06/07 – SS07: 53-57%) als auch die Gesamtbeurteilung des k-MED-Lehrkonzeptes durch die Studierenden (WS05/06 – SS06: 23% sehr gut, WS06/07 – SS07: 38% sehr gut). Die Unterschiede in Nutzungsdauer und –intensität zwischen beiden Gruppen sind signifikant.

Diskussion und Schlussfolgerung

Da diese Erhebung anonym durchgeführt wurde, konnte kein Korrelationskoeffizient bezüglich der in der Befragung angegebenen Nutzungsdauer und –häufigkeit und den aus dem Usertracking ermittelten Daten berechnet werden. Wie eine andere Studie zeigte [4], korreliert die Angaben der Studierenden mit der „wahren“ Nutzungsdauer und –häufigkeit, die sich aus der Analyse der Usertracking-Daten ergeben. Daher gehen wir davon aus, dass Umfrageergebnisse zuverlässige Angaben über das studentische Lernverhalten widerspiegeln.

Die zunehmende Nutzung der Humangenetik-Module ist vermutlich dadurch mit bedingt, dass die k-MED Lernplattform und die dabei angebotenen E-Learning-Module insgesamt, also auch in anderen Fächern, in den letzten Jahren stark zugenommen hat. Für die Studierenden ist das Lernen mit Selbstlern-Modulen der k-MED-Lernplattform eine Selbstverständlichkeit geworden.

Vergleicht man die Akzeptanz der Module „Formale Genetik“ und „Grundlagen der Molekular Diagnostik“ zwischen Naturwissenschaftlern und Medizinern, so scheinen Studierende der Humanbiologie von diesen Kursen nicht im gleichen Maße wie Studierende der Humannmedizin zu profitieren, was durch unterschiedlich konzipierte Studiengänge erklaerbar ist. Die vergleichsweise niedrige Akzeptanz des Moduls „Grundlagen der molekularen Diagnostik“ bei Medizinstudierenden im 7./8. Semester hat höchstwahrscheinlich zwei Gründe: Zum einen wird der Schwierigkeitsgrad dieses Moduls für Studierende im fortgeschrittenen Semester nicht mehr angemessen sein, zum anderen behandelt es Themen (Exon-Intron-Struktur menschlicher Gene, Transkription, Translation), die in der Klausur zur klinischen Humangenetik nicht abgefragt werden. Das Lernmodul „Kongenitale Abnormalitäten und Fehlbildungssyndrome“ eignet sich dagegen besonders zur Klausurintegration, da der Austausch des kaum genutzten E-Moduls wie der Austausch des kaum genutzten E-Moduls zugunsten von Lehr- und Studierende gemacht wurden [6]. Gresty und Mitarbeiter [7] konnten zeigen, dass ein Bewusstsein für die wachsende Bedeutung der Humangenetik und gleichzeitig die Akzeptanz für Online-Lernkurse bei unterschiedlichen Beschäftigtengruppen des Gesundheitswesens besteht. Daher scheinen auch für die Ausbildung medizinisch-technischer Assistentinnen und Assistenten (MTAs) oder von Krankenschwestern die e-Learning-Module Humangenetik geeignet zu sein, was aber durch systematische Evaluation ähnlich wie in dieser Studie nachgewiesen werden müsste. Am Fachbereich Humanmedizin der Universität Marburg sind bereits e-Learning-Module auch im Hinblick auf den Lernerfolg evaluiert worden [8]. Im Rahmen eines Nachfolgeprojektes wäre eine vergleichbare Lernerfolgsstudie eine sinnvolle Ergänzung der hier geschilderten Nutzungs- und Akzeptanzanalyse.

Anmerkung

Teile dieser Studie wurden bereits im Rahmen einer Posterpräsentation auf der 19. Jahrestagung der Deutschen Gesellschaft für Humangenetik (GHG) in Hannover vorgestellt [9].

Danksagung

Wir bedanken uns ganz herzlich bei Frau Dipl.-Psychol. Maria Siegert und Herrn Dipl.-Psychol. Cord Süße vom k-MED-Projekt-Team für ihre unermüdliche Unterstützung. Das Projekt wurde gefördert durch das Hessische Ministerium für Wissenschaft und Kunst.
Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenskonflikte in Zusammenhang mit diesem Artikel haben.

Literatur

1. Wagner R, Zenker D, Schäfer C, Schneider S. k-MED - vom lokalen Projekt zum e-Learning-Dienstleister. GMS Med Inform Biom Epidemiol. 2006;2(3):Doc13. Zugänglich unter/available from: http://www.egms.de/static/de/journals/mibe/2006-2/mibe000032.shtml

2. Henning J, Dewal G, Quenzer M. ILIAS - Die Open Source Lernplattform: Handbuch für Nutzer, Dozenten und Administratoren. Berlin: uni-edition; 2009.

3. Schäfer MS, Weißflog G. Einstellungen von Medizinstudentinnen und -studenten zu humangenetischer Forschung und genetischer Diagnostik. GMS Z Med Ausbild. 2005;22(2):Doc21. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2005-22/zma000021.shtml

4. Schäfer C, Siegert M, Schunk A, Schneider S, Glowalla U, Koolman J. Biochemie/Molekularbiologie für Mediziner: Eine Einführung mit Vorlesung, Seminar und Multimediainhalten. GMS Z Med Ausbild. 2005;22(4):Doc217. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2005-22/zma00021.shtml

5. Gotthardt M, Siegert MJ, Schlieck A, Schneider S, Kohnert A, Groß MW, Schäfer C, Wagner R, Hörmann S, Behr TM, Engenhart-Cabillic R, Kloße JK. How to Successfully Implement E-learning for both Students and Teachers. Acad Radiol. 2006;13(3):379-390. DOI: 10.1016/j.acra.2005.12.006

6. Glowalla U, Schneider S, Siegert M, Gotthardt M, Koolman J. Einsatz wissensdiagnostischer Module in elektronischen Prüfungen. Rostock: DeLFI 2005 3. Deutsche e-Learning Fachtagung Informatik, 13. - 16. September 2005. Zugänglich unter/available from: http://subs.emis.de/LNI/Proceedings/Proceedings66/GI-Proceedings/Proceedings66/GI-
Interactive e-learning courses in human genetics: Usage and evaluation by science and medical students at the faculty of medicin

Abstract

Introduction: This study presents our online-teaching material within the k-MED project (Knowledge in Medical Education) at the university of Marburg. It is currently organized in five e-learning modules: cytogenetics, chromosomal aberrations, formal genetics, fundamentals of molecular diagnostics, and congenital abnormalities and syndromes. These are basic courses intended to do the educational groundwork, which will enable academic teachers to concentrate on more sophisticated topics during their lectures.

Methods: The e-learning modules have been offered to a large group of about 3300 students during four years at the Faculty of Medicine in Marburg. The group consists of science students (human biology) and medical students in the preclinical or the clinical period, respectively. Participants were surveyed on acceptance by evaluating user-tracking data and questionnaires.

Results and Conclusion: Analysis of the evaluation data proofs the broad acceptance of the e-learning modules during eight semesters. The courses are in stable or even increasing use from winter term 2005/06 until spring term 2009.

Conclusion: Our e-learning model is broadly accepted among students with different levels of knowledge at the Faculty of Medicine in Marburg. If the e-learning courses are maintained thoroughly, minor adaptations can increase acceptance and usage even furthermore. Their use should be extended to the medical education of technical assistances and nurses, who work in the field of human genetics.

Keywords: Human genetics, e-Learning, evaluation, multimedia

Introduction

k-MED (Knowledge in Medical Education) is an independent internet based learning platform designed for undergraduate or continuing biomedical education. Together with its predecessors k-MED has been continuously sponsored by the Ministry of Science and Arts of the state of Hessa from 1999 until termination of funding in 2009. From January 2001 up to April 2004 it was additionally supported by a grant from the German Federal Ministry of Education and Research (BMBF) within the support program “New Media in Education”. Meanwhile k-MED has been established as a new institution at the medical deaneries of Hessian Justus-Liebig and Philipps university. It evolved from a single medical subject project to a service provider of comprehensive technology and content for authors and learners [1]. The platform is based upon the sophisticated open source learning management system (LMS) ILIAS (http://www.ilias.de/docu/) and provides multimedia e-learning courses, an online evalu-
ation area (for creating questions and self-assessment), an online discussion forum and online options for testing [2]. ILIAS has been developed at the university of Cologne within the VIRTUS project in 1997/1998. It aimed at improving classical learning scenarios by the means of novel information and communication technologies. ILIAS is more and more applied at universities, other educational institutions, business establishments and administrative facilities such as the German Federal Employment Office. Currently (2011), k-MED offers over 200 different e-learning courses or modules being accessed by approximately 15,000 users, of which 5000 belong to the university of Marburg. At the medical faculty of the university of Marburg and to an increasing extent the university of Giessen the online material is provided within a blended learning scenario supplementing the traditional study concept.

The new “Approbationsordnung für Ärzte” – a federal law regulating medical education für physicians’ licensing, that has come into effect in Oct 1st, 2003 – improves the status of human genetics in medical education. On the other hand teaching staff is being challenged in many ways. Additional lectures and seminars had to be integrated into the curriculum, but personnel was rather reduced. The five e-learning modules in human genetics are not intended to replace the classical teaching units, but they aim at relieving the burden on staff by providing simple-to-use, online options for teaching/learning, testing, and communication. Furthermore, they shall compensate deficits in basic knowledge of human genetics. This rationale is supported by a study about the attitude of medical students towards human genome research at the university of Leipzig. Accordingly, human genetics has been considered as relevant, and an increasing integration of this subject into the medical curriculum has been required [3]. Our material may not only provide a means to enhance learning efficacy, but interactions between teachers and students may also become more intensive using an online communication forum, a central storage place for scripts, links and course schedules.

Methods

Project

Actually our online-teaching material is organized in five partially interactive e-learning modules (see Figure 1): cytogenetics, chromosomal aberrations, formal genetics, fundamentals of molecular diagnostics, and congenital abnormalities and syndromes (see Table 1).

Table 1: Design of the five e-learning modules human genetics including kind and number of employed media types

	(1) cytogenetics	(2) Chromosomal aberrations	(3) Formal genetics	(4) Fundamentals of molecular diagnostics	(5) Congenital abnormalities and syndromes
Pages	20	48	40	45	45
Tables	0	1	7	5	4
Photographs	12	11	2	1	8
Graphics (not interactive)	6	14	17	20	2
Interactive graphics	3	3	0	0	0
Interactive questions for self testing	8	7	10	10	22

Figure 1: Example of an interactive e-learning module: Making of an online karyogram

These are basic courses intended to supplement the traditional learning scenario. During the academic year (winter and summer term) about 750 – 800 students at the faculty of medicin attend courses in human genetics. The aforementioned e-learning modules are integrated in the canonical curriculum within the framework of a new blended learning scenario. The users comprise about 50 students of human biology, about 440 medical students at the beginning of their preclinical study period and approximately 300 medical students in their clinical period (7th – 8th semester). All students received the e-learning modules in human genetics on an explicitly voluntary basis (see Table 2). During the fourth semester students of human biology attend the lecture “Human Biology III (1,3 semester periods per week), while they attend the lecture and an additional seminar “Molecular Biology and Human Genetics (1 semester period per week) in the 7th and 8th semester. This relieves the burden on teaching staff, because the fundamentals of genetics can be learned at home, and teachers may focus on more specific and “interesting” aspects of human genetics.
In principle, all groups receive the same e-learning modules, but the underlying education concept depends from the respective study course:

Students of human biology (diploma) are provided with the online material to prepare for the practical training course in human genetics and the written examination in the 5th semester. Medical students are offered the same modules to perform follow-up course work for their practical training in biology and to prepare for the exam at the end of the 1st semester. Medical students in the second (clinical) period employ the modules to recapitulate basic knowledge in human genetics from the 1st semester and to exercise themselves in clinical genetics. Since winter term 06/07 the e-learning module “congenital abnormalities and syndromes” displaces the module “fundamentals of molecular diagnostics”. Congenital abnormalities and syndromes is endowed with a great number of 22 exercises for self-testing (see Table 1). The learning matter should be tested and consolidated by answering forced choice questions – one correct response out of five possible ones. The user learns from the immediate feedback on his/her answers. In case of a wrong answer the correct response together with some explanation will pop up. This is supplemented by several interactive test items with different levels of difficulty, where the learners can draw online karyograms applying the drag-and-drop technique. If the chosen chromosome is incorrectly assigned it will jump back – only in case of correct mapping the chromosome will “stick” to the respective position in the karyogram.

Evaluation of the e-learning modules in human genetics

To be surveyed on user friendliness and acceptance user-tracking data for the learning modules (number of accesses and averaged duration of access) (see Table 3 and 4) and also questionnaires (see Figure 2) were evaluated.

Table 2: Integration of the e-learning modules in the curriculum of human genetics at the faculty of medicine at the university of Marburg.

teaching unit	target group	recommended e-learning modules
lb biology for medical students	400 – 440 medical students in the preclinical study period (1st semester)	(1) – (5)
4 spp. (heredity 33% human genetics): only wt		
pt biology for medical students	400 – 440 medical students in the preclinical study period (1st semester)	(1) – (5)
6 spp. (heredity 33% human genetics): only wt		
as clinical genetics	180 – 300 medical students in their clinical study period (7th + 8th semester)	(1) (2) (3) (5)
1 spp. wt + st		
lb clinical genetics	180 – 300 medical students in their clinical study period (7th + 8th semester)	(1) (2) (3) (5)
6 spp. (heredity 33% human genetics): only wt		

6: acc. to practical training course, as seminar, spp. per week or ex. wt. = wt. term.

Evaluation of the e-learning modules in human genetics

Table 3: Evaluation of the acceptance of the e-learning modules by user-tracking

Cumulative use at the faculty of medicine in Marburg.
Cumulative use at the faculty of medicine in Marburg.
(1)
accesses
3531
5741
access per user
2.7
2.6
times of use (min)
53
52

(1) cytogenetics, (2) chromosomal aberrations, (3) formal genetics, (4) fundamentals of molecular diagnostics, (5) congenital abnormalities, *displaces “fundamentals of molecular diagnostics” in the clinical study period since winter term 06/07.

Table 4: Evaluation of the acceptance of the e-learning modules by user-tracking

Use by medical students in the clinical period and students of human biology.
Use by medical students in the clinical period and students of human biology.
(1)
accesses
247
25
23
access per user
2.5
2.2
2.3
times of use (min)
73
48
79

* replaces “fundamentals of molecular diagnostics” in the clinical study period since winter term 06/07.

Table 3 presents the intensity of use of the collective group in winter term 05/06 and the respective cumulative use until summer term 07 and 09. (data source: user-tracking performed by the LMS). Outstanding figures are marked in grey.

Table 4 shows the intensity of use of students in the clinical period in spring term 07 and 09, and of students of human biology in winter term 05/06 and 08/09, respectively.

Access is defined as login into a distinct e-learning module (e.g. cytogenetics comprising 29 pages). Due to technical problems – e.g. caused by introduction of the new open source learning platform ILIAS (http://www.ilia.de/docu/) in September 2005 – a distinct evaluation of learning module acceptance and access for each user group (medical students in the preclinical or clinical period, students of human biology) was not possible in all semesters (see Table 3). For that reason the online user tracking data is presented mainly with respect to the collective group in a cumulative way (see Table 4). “Users” are students who attend the respective teaching unit (see Table 2). A time-analysis of user tracking data – to detect possible peaks in the degree of utilisation for example – was compromised by the limited personnel and technical resources.
The questionnaire recorded self-estimated times of use and an evaluation of the overall quality of the e-learning modules. To that end we used a four-step scale for answers (bad, not so good, good, very good). The same standardized questionnaire was handed out five times in winter term 05/06, spring term 06, winter term 06/07, spring term 07, and spring term 09 immediately after the written test covering clinical genetics for medical students in the clinical period (7th and 8th semester). Prior to interpretation the data from the questionnaires was assorted into two groups: Data collected in winter term 05/06 and spring term 06 versus data derived from winter term 06/07 and spring term SS07. The first group holds data having been collected before introduction of the e-module “congenital abnormalities and syndromes”, whereas the second group consists of ratings issued after that introduction. This module replaces “fundamentals of molecular diagnostics”, because according to user tracking the latter one has been hardly used in the clinical study period (data not shown). Due to limited personal ressources at the center of human genetics a similar evaluation (a more accurate analysis of that substitution of modules) in winter term 07/08, spring term 08, and winter term 08/09 was not possible. An evaluation of acceptance was not carried out with medical students in the preclinical (first) semester and with students of human biology to limit time and effort of this study.

Results

The evaluation and comparison of the times of use proves a stable or even increasing acceptance of the e-learning modules from winter term 05/06 (integration of the online modules into the mainstream curriculum of human genetics) until spring term 2009 (see Table 3 and 4). On an average each of our e-learning modules is accessed twice or more – with the exception of “formal genetics” with students of human biology). Apart from the relative short processing time having been spent on the modules “formal genetics” and “fundamentals of molecular diagnostics” in the human biology group (see Table 4) the average access time reaches over 45 minutes – independently from study class or semester, respectively. In this context we note a strikingly high use of the module “chromosomal aberrations”. Obviously, this online teaching unit providing a lot of clinical content satisfies the concerns and learning demands of medical students in the clinical period in a particular way. Table 3 and 4 prove that students in the clinical period use this module most intensively (e. g. 220 minutes average time of use versus 105 minutes cumulative average time of use in the collective group). Students of human biology, who prefer a more scientific focus, display significantly shorter times of use being stable from winter term 05/06 until winter term 08/09 (57 and 61 minutes, respectively). Figure 2 presents a survey of the evaluation during four semesters in the clinical study period. Both of the groups (winter term 05/06 + spring term 06 and winter term 06/07 + spring term 07) differ by the substitution of the module “fundamentals of molecular diagnostics” for “congenital abnormalities”. The rating of our e-learning units is strikingly better when compared to the evaluation of winter term 05/6 and spring term 06, respectively. This applies to the use of distinct modules (WT 05/06 - ST 06: 29-34% intensively used; WT 06/07 – ST 07: 53-
57%) and also to the overall rating of our online teaching scenario (WT 05/06 – ST06: 23% very good; WT 06/07 – ST 07: 38% very good). The differences observed in times of use and intensity of use between both groups are significant.

Discussion and Conclusion

Since this evaluation study has been made anonymously, we could not calculate a coefficient of correlation relating times and intensity of use provided by the questionnaire and the data from online user-tracking. However, another study has already proven that information given by students correlate with the “real” parameters from user-tracking [4]. Hence, we conclude that the questionnaire provides reliable results mirroring the learning and study habits of the interviewees. The growing acceptance of our e-modules in human genetics is probably co-determined by the fact that k-MED together with its e-learning modules has been increasingly used in other study groups during the last years. Some kind of blended e-learning scenarios has already become a matter of course at the universities in Giessen and Marburg. When comparing the acceptance of the modules “formal genetics” and “fundamentals of molecular diagnostics” between natural scientists (students of human biology) and medical students, the latter group seems to benefit significantly more than students of human biology. This observation may be explained by the diverse conception of the two study courses. The relative low acceptance of module “fundamentals of molecular diagnostics” with medical students during the clinical study period has most likely two reasons: On the one hand the low level of difficulty of that module is obviously inappropriate for students in advanced semesters (7th and 8th semester), on the other hand it covers topics (e.g. exon-intron organisation of human genes, transcription, translation) that do not arise in the final written exam in clinical genetics. The e-module “congenital abnormalities and syndromes” appears to be particularly adequate for self-directed learning and preparation for the exam, because it holds a great number of exercises (see Table 1).

Finally, we come to the conclusion that our e-learning scenario is broadly accepted among students with different levels of knowledge (natural scientists and medical students in the preclinical and the clinical period, respectively), although it has been implemented for the optional courses. On the one hand the low level of difficulty of that module is obviously inappropriate for students in advanced semesters (7th and 8th semester), on the other hand it covers topics (e.g. exon-intron organisation of human genes, transcription, translation) that do not arise in the final written exam in clinical genetics. The e-module “congenital abnormalities and syndromes” appears to be particularly adequate for self-directed learning and preparation for the exam, because it holds a great number of exercises (see Table 1).

In the online and the classical teaching courses through new communication forums. Minor adaptations such as the exchange of the barely accessed e-module “fundamentals of molecular diagnostics” for “congenital abnormalities and syndromes” in the clinical study period could heighten acceptance and usage even more (see Figure 2). To our knowledge there is – at least in the German speaking countries - no similar project for teaching the basics in human genetics. Since we know from experience that online tests are highly accepted by teachers and learners at the faculty of medicine in Marburg [6], we recommend the implementation of online options for testing also in human genetics. Gresty and coworkers [7] could show that there is an awareness of the growing importance of human genetics and at the same time a high acceptance of online teaching courses among employees in the health care system. Therefore, our online genetics resource seems suitable for instruction and education of assistant medical technicians and nurses, as well. Surely, this statement has to be verified by evaluation studies similar to this work.

At the faculty of medicine in Marburg e-learning modules have already been evaluated with regard to the students’ success rates in exams and practical courses [8]. In the framework of a successor project such a study appears as an important supplement of the present evaluation of use and acceptance.

Notes

Parts of this work have been presented on the 19th meeting of the German society of human genetics (GfH) at Hannover [9].

Acknowledgement

We are deeply indebted to Mrs. Maria Siegert and Mr. Cord Süße – psychologists of the k-MED community. The project has been funded by the Ministry of Science and Arts of the state of Hessia.

Competing interests

The authors declare that they have no competing interests.

References

1. Wagner R, Zenker D, Schäfer C, Schneider S, k-MED – vom lokalen Projekt zum e-Learning-Dienstleister. GMS Med Inform Biom Epidemiol. 2006;2(3):Doc13. Zugänglich unter/available from: http://www.gems.de/static/de/journals/mibe/2006-2/mibe000032.shtml

2. Henning J, Dewal G, Quenzer M. ILIAS - Die Open Source Lernplattform: Handbuch für Nutzer, Dozenten und Administratoren. Berlin: uni-edition; 2009.
3. Schäfer MS, Weißflog G. Einstellungen von Medizinstudentinnen und -studenten zu humangenetischer Forschung und genetischer Diagnostik. GMS Z Med Ausbild. 2005;22(2):Doc21. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2005-22/zma000021.shtml

4. Schäfer C, Siegert M, Schunk A, Schneider S, Glowalla U, Koolman J. Biochemie/Molekularbiologie für Mediziner: Eine Einführung mit Vorlesung, Seminar und Multimediaelementen. GMS Z Med Ausbild. 2005;22(4):Doc217. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2005-22/zma000217.shtml

5. Gotthardt M, Siegert MJ, Schlieck A, Schneider S, Kohnert A, Groß MW, Schäfer C, Wagner R, Hörmann S, Behr TM, Engenhart-Cabillic R, Klose KJ. How to Successfully Implement E-learning for both Students and Teachers. Acad Radiol. 2006;13(3):379-390. DOI: 10.1016/j.acra.2005.12.006

6. Glowalla U, Schneider S, Siegert M, Gotthardt M, Koolman J. Einsatz wissensdiagnostischer Module in elektronischen Prüfungen. Rostock: DeLFI 2005 3. Deutsche e-Learning Fachtagung Informatik, 13. - 16. September 2005. Zugänglich unter/available from: http://subs.emis.de/LNI/Proceedings/Proceedings66/GI-Proceedings.66-26.pdf

7. Gresty K, Skirton H, Evenden A. Addressing the issue of e-learning and online genetics for health professionals. Nurs Health Sci. 2007;9(1):14-22. DOI: 10.1111/j.1442-2018.2007.00296.x

8. Rost B, Koolman J. Evaluation von multidmedialen e-Lernkursen zur Vorbereitung auf ein biochemisches Praktikum. GMS Z Med Ausbild. 2009;26(1):Doc11. DOI: 10.3205/zma000603

9. Oeffner F, Fuchs A, Rauschendorf M, Mützel T, Fritz B, König R, Kunz J. k-MED: Multimedia Education in Human Genetics. Med Gen. 2008;20:9304.

Corresponding author:
Dr. rer. physiol Frank Oeffner
Philipps-Universität Marburg, Zentrum für Humangenetik, Bahnhofstraße 7a, 35037 Marburg, Deutschland, Tel.: +49 (0)731/98490-40
oeffner@genetikum.de

Please cite as
Oeffner F, Schäfer C, Fritz B, Fuchs AL, Rauschendorf A, König R, Kunz J. Interactive e-learning courses in human genetics: Usage and evaluation by science and medical students at the faculty of medicine. GMS Z Med Ausbild. 2011;28(3):Doc38. DOI: 10.3205/zma000750, URN: urn:nbn:de:0183-zma0007508

This article is freely available from http://www.egms.de/en/journals/zma/2011-28/zma000750.shtml

Received: 2009-09-08
Revised: 2011-01-21
Accepted: 2011-04-04
Published: 2011-08-08

Copyright
©2011 Oeffner et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.