Meta-analysis of outcomes of patients with COVID-19 infection with versus without gastrointestinal symptoms.

Fahad Gul
Department of Medicine, Einstein Medical Center, Philadelphia, PA, United States

Kevin Bryan Lo
Department of Medicine, Einstein Medical Center, Philadelphia, PA, United States

Julie Peterson
Department of Medicine, Einstein Medical Center, Philadelphia, PA, United States

Peter A McCullough
Division of Cardiology, Baylor University Medical Center, Dallas, TX, United States

Abhinav Goyal
Department of Gastroenterology and Hepatology, Einstein Medical Center, Philadelphia, PA, United States

Follow this and additional works at: https://jdc.jefferson.edu/covid-19

Let us know how access to this document benefits you

Recommended Citation
Gul, Fahad; Lo, Kevin Bryan; Peterson, Julie; McCullough, Peter A; Goyal, Abhinav; and Rangaswami, Janani, "Meta-analysis of outcomes of patients with COVID-19 infection with versus without gastrointestinal symptoms." (2020). COVID-19 Papers, Posters, and Presentations. Paper 1.
https://jdc.jefferson.edu/covid-19/1

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in COVID-19 Papers, Posters, and Presentations by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Meta-analysis of outcomes of patients with COVID-19 infection with versus without gastrointestinal symptoms

Fahad Gul, MD, Kevin Bryan Lo, MD, Julie Peterson, DO, Peter A. McCullough, MD, MPH, Abhinav Goyal, MD, and Janani Rangaswami, MD

ABSTRACT

This systematic review analyzed whether the presence or absence of gastrointestinal symptoms in patients with SARS-COV-2 infection is associated with adverse outcomes. Searching the Cochrane Center Register of Controlled Trials, we included any studies looking at patients with COVID-19 with gastrointestinal symptoms (nausea, vomiting, diarrhea, abdominal pain) compared to those with COVID-19 but without gastrointestinal manifestations as a control group. The final search yielded 186 articles, all of which were individually screened. Seven studies were identified but three were excluded: one due to lack of a control group without gastrointestinal symptoms, one reported as viral RNA in the stool, and one with only non-critically ill patients. Results of the meta-analysis showed a pooled odds ratio for mortality among those with COVID-19 and gastrointestinal symptoms of 0.91 (confidence interval 0.49–1.68) with heterogeneity of 0% and a pooled odds ratio for acute respiratory distress syndrome of 2.94 (confidence interval 1.17–7.40) with heterogeneity of 0%. In conclusion, gastrointestinal symptoms with COVID-19 are associated with a higher risk of acute respiratory distress syndrome, but do not increase the risk for mortality.

KEYWORDS Abdominal pain; acute respiratory distress syndrome; diarrhea; pandemic; SARS-COV-2
that had no comparison or control groups were excluded. We only included studies that reported on mortality and/or ARDS as an outcome with availability of raw data or clinical information on mortality and ARDS data.

Two authors (FG and JP) independently screened each title and abstract. If there was uncertainty with evaluation of those elements, the full text was also reviewed. All screened studies were assessed for inclusion in accordance with the eligibility criteria. Disagreements were resolved by consensus between the two screening authors, and a third author (KL) was consulted when agreement could not be met. The studies were appraised using the Newcastle-Ottawa scale. The two above authors then independently extracted data of the included studies, including country, date of publication, study design, and number of samples.

We calculated pooled odds ratios and confidence interval (CI) estimates using Review Manager. Studies were weighted according to their sample size to produce the final pooled odds ratios. We considered a \(P \) value of \(\leq 0.05 \) as statistically significant. We examined mortality and ARDS as end points. Pooled odds ratios and their 95% CI were calculated using a random-effects model. This model was chosen since the definitions of GI symptoms differed slightly in each study. Assessment of heterogeneity was done using I\(^2\) with low, moderate, and high levels of heterogeneity corresponding to I\(^2\) values of 25%, 50%, and 75% respectively.

RESULTS

The final search yielded 186 articles, all of which were individually screened. A total of seven studies were identified, but three were excluded: one due to lack of a control group without GI symptoms, one reporting viral RNA in the stool, and one with only non-critically ill patients (Figure 1). Four studies were included in both the qualitative and meta-analysis (Table 1):\(^2,7\) all of them had good quality for a non-randomized study, accounting for possible confounders such as demographics and comorbidities. The pooled odds ratio for mortality among those with COVID-19 and GI symptoms was 0.91 (CI 0.49–1.68) with heterogeneity of 0%, while the pooled odds ratio for ARDS was 2.94 (CI 1.17–7.40) with heterogeneity of 0% (Figure 2).

![PRISMA diagram for the meta-analysis](image)

Table 1. Studies included in the meta-analysis

Study	Chinese city	Retrospective design	Inclusion of suspected vs confirmed SARS-COV-2	GI symptom definition	Outcomes	Newcastle Ottawa scale (points)	
Zhou et al, March 2020\(^8\)	Wuhan	+	Suspected	Abdominal pain, nausea, vomiting, or diarrhea	Death: 4/66 ARDS: 2/66	Death: 12/188 ARDS: 3/188	8
Jin et al, March 2020\(^2\)	Zhejiang	+	Confirmed	Nausea, vomiting, or diarrhea	ARDS: 5/74 ARDS: 12/577	8	
Pan et al, March 2020\(^7\)	Hubei	0 (Descriptive, cross-sectional)	Confirmed	Anorexia, vomiting, diarrhea, or abdominal pain	Death: 17/101 Death: 19/103	8	
Lin et al, March 2020\(^9\)	Zhuhai	+	Confirmed	Anorexia, diarrhea, nausea, vomiting, acid reflux, dyspepsia, or hepatic function derangement	Death: 0/58 Severe disease: 14/58	Death: 0/37 Severe disease: 6/37	8

Figure 1. PRISMA diagram for the meta-analysis.

Table 1. Studies included in the meta-analysis
DISCUSSION

A recent epidemiological meta-analysis by Cheung et al found that of the 4243 patients with COVID-19, 17.6% had GI symptoms.10 Another Chinese population study by Tian et al reported that anorexia was the most frequent digestive symptom in adults (30%–50%), while the prevalence of diarrhea ranged from 2% to 50%. Some adults also presented with vomiting, while GI bleeding and abdominal pain were found in more severely ill patients.11 The prevalence of GI symptoms in severely ill and non–severely ill patients is conflicting. Fang et al reported high GI symptom burden in both severely ill and stable patients with an incidence of 85% and 79%, respectively.12 A similar trend was observed in a large study of 1099 patients by Guan et al where they reported no difference in proportion of GI symptoms in severe vs nonsevere cases of COVID-19.1 In contrast, a study by Wang et al showed that the proportion of GI symptoms was significantly higher in patients in the intensive care unit than in other hospitalized patients.13 However, none of these studies looked at the presence of GI signs and symptoms as possible prognostic factors for poor outcomes such as mortality and ARDS.

Comparing patients positive for SARS-CoV-2 with concurrent GI symptoms with those without GI symptoms, our analysis found no significant difference in mortality between the two groups, but those with GI symptoms had a significant risk for development of ARDS. Ling et al and Xiao et al reported persistent viral shedding in stool even after the nasopharyngeal swabs turned negative.14,15 The presence of GI symptoms may lead to increased exposure duration and greater viral burden, and thus GI symptoms may serve as a proxy for a more severely infected patient. Furthermore, studies on ACE2 receptor expression suggest that ACE2 is highly expressed not only in the respiratory tract, but also in the esophagus and absorptive enterocytes from the ileum and colon.3 Thus, the GI tract may be particularly vulnerable to COVID-19 infection, and more extrapulmonary involvement might suggest a more severe disseminated viral course and potentially more inflammation and cytokine release, thereby contributing to multiorgan involvement and ARDS, as was suggested by our findings.16

There are limitations to our meta-analysis. It is based on retrospective observational studies published on this topic at this time; however, given the paucity of literature and conflicting results from available studies on the prognostic significance of GI involvement amidst this unprecedented rapidly evolving pandemic, this can be a source of confusion for clinicians caring for these patients. Our study addresses this important issue of GI tract involvement by SARS-CoV-2 and its impact on clinical outcomes and shows a significant association with ARDS. Our findings will help clinicians triage patients better in resource-limited settings, especially with regards to hospital admission and level of care. Larger prospective studies are necessary to elucidate the complete natural history of this disease and to confirm our findings on a larger scale.

ORCID

Peter A. McCullough http://orcid.org/0000-0002-0997-6355

1. Guan WJ, Ni ZY, Hu Y, et al.; China medical treatment expert group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa2002032.
2. Jin X, Lian JS, Hu JH, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002–1009. doi:10.1136/gutjnl-2020-320926.
3. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv. 2020. doi:10.1101/2020.01.30.927806.

4. Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020;158(6):1518–1519. doi:10.1053/j.gastro.2020.02.054.

5. Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Ottawa, Canada: The Ottawa Hospital Research Institute; 2013. Retrieved from http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

6. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560. doi:10.1136/bmj.327.7414.557.

7. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115(5):766–773. doi:10.14309/aig.0000000000000620.

8. Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of gastrointestinal symptoms on patients infected with COVID-19. Gastroenterology. 2020; doi:10.1053/j.gastro.2020.03.020.

9. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69(6):997–1001. doi:10.1136/gutjnl-2020-321013.

10. Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology. 2020. doi:10.1053/j.gastro.2020.03.065.

11. Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843–851. doi:10.1111/apt.15731.

12. Fang D, Ma J, Guan J, et al. Manifestations of digestive system in hospitalized patients with novel coronavirus pneumonia in Wuhan, China: a single-center, descriptive study. Chin J Dig. 2020 (published online Feb 23). doi:10.3760/cma.j.issn.0254-1432.2020.0005.

13. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China. JAMA. 2020;323(11):1061–1069. doi:10.1001/jama.2020.1585.

14. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020;133(9):1039–1043. doi:10.1097/CM9.0000000000000774.

15. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831–1833.e3. doi:10.1053/j.gastro.2020.02.055.

16. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi:10.1016/S0140-6736(20)30628-0.