Technical innovations

11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma

Cristina Nanni¹, Elena Zamagni², Michele Cavo², Domenico Rubello*³, Paola Tacchetti², Cinzia Pettinato¹, Mohsen Farsad¹, Paolo Castellucci¹, Valentina Ambrosini¹, Gian Carlo Montini¹, Adil Al-Nahhas⁴, Roberto Franchi¹ and Stefano Fanti¹

Address: ¹Nucler Medicine, PET Unit, Policlinico S. Orsola-Malpighi, Bologna University, Italy, ²Haematology and Oncology "Seràgnoli Institute", Policlinico S. Orsola-Malpighi, Bologna University, Italy, ³Nuclear Medicine, PET Unit, S. Maria della Misericordia Rovigo Hospital, Istituto Oncologico Veneto (IOV)-IRCCS, Italy and ⁴Department of Nuclear Medicine, Hammersmith Hospital, London, UK

Email: Cristina Nanni - rubello.domenico@azisanrovigo.it; Elena Zamagni - rubello.domenico@azisanrovigo.it; Michele Cavo - rubello.domenico@azisanrovigo.it; Domenico Rubello* - rubello.domenico@azisanrovigo.it; Paola Tacchetti - rubello.domenico@azisanrovigo.it; Cinzia Pettinato - rubello.domenico@azisanrovigo.it; Mohsen Farsad - rubello.domenico@azisanrovigo.it; Paolo Castellucci - rubello.domenico@azisanrovigo.it; Valentina Ambrosini - rubello.domenico@azisanrovigo.it; Gian Carlo Montini - rubello.domenico@azisanrovigo.it; Adil Al-Nahhas - rubello.domenico@azisanrovigo.it; Roberto Franchi - rubello.domenico@azisanrovigo.it; Stefano Fanti - rubello.domenico@azisanrovigo.it

* Corresponding author

Abstract

Background: Multiple Myeloma (MM) is a B cell neoplasm causing lytic or osteopenic bone abnormalities. Whole body skeletal survey (WBSS), Magnetic resonance (MR) and 18F-FDG PET/CT are imaging techniques routinely used for the evaluation of bone involvement in MM patients.

Aim: As MM bone lesions may present low 18F-FDG uptake; the aim of this study was to assess the possible added value and limitations of 11C-Choline to that of 18F-FDG PET/CT in patients affected with MM.

Methods: Ten patients affected with MM underwent a standard 11C-Choline PET/CT and an 18F-FDG PET/CT within one week. The results of the two scans were compared in terms of number, sites and SUV\textsubscript{max} of lesions.

Results: Four patients (40%) had a negative concordant 11C-Choline and 18F-FDG PET/CT scans. Two patients (20%) had a positive 11C-Choline and 18F-FDG PET/CT scans that identified the same number and sites of bone lesions. The remaining four patients (40%) had a positive 11C-Choline and 18F-FDG PET/CT scan, but the two exams identified different number of lesions. Choline showed a mean SUV\textsubscript{max} of 5 while FDG showed a mean SUV\textsubscript{max} of 3.8 (P = 0.042). Overall, 11C-Choline PET/CT scans detected 37 bone lesions and 18F-FDG PET/CT scans detected 22 bone lesions but the difference was not significant (P = 0.8).

Conclusion: According to these preliminary data, 11C-Choline PET/CT appears to be more sensitive than 18F-FDG PET/CT for the detection of bony myelomatous lesions. If these data are confirmed in larger series of patients, 11C-Choline may be considered a more appropriate functional imaging in association with MRI for MM bone staging.
Background

Multiple myeloma (MM) is a B cell neoplasm involving bones in more than 80% of cases. Patients frequently present with a single or multiple lytic bone lesions causing bone pain, pathological fractures and hypercalcaemia [1-5]. Bone abnormalities (lytic or osteopenic) are one of the myeloma related organ dysfunction [6] and are responsible for low quality of life due to severe pain and high incidence of fractures, and this is particularly dangerous if located in the spine. The incidence of vertebral fractures can be reduced with bisphosphonates that are now available in the therapeutic armamentarium of MM.

Bone lesions are usually evaluated with a spectrum of imaging techniques, among which whole body skeletal survey (WBSS) and spine and pelvis Magnetic Resonance Imaging (MRI) are the most widely used. [7].

WBSS is known to be relatively insensitive for bone damage detection as only those lesions characterized by a high re-absorption rate (therefore appearing at a late stage) are visible. Furthermore, WBSS, being a planar technique, can easily underestimate bone involvement especially within the spine where overlying tissues and rib cage hinder the assessment of osteolysis. In addition, WBSS cannot distinguish between idiopathic osteoporotic vertebral fractures and fractures due to MM and is not suitable to assess the response to therapy.

Spine MRI, which was recently integrated in the Durie and Salmon PLUS staging system, is proved to have a very good sensitivity compared to WBSS especially at disease onset [8-13]. The main limitations of MRI are the inability to perform the scan in the presence of metallic prosthesis or in case of severe claustrophobia. More importantly, MRI is limited by the partial field of view that includes only the spine and the pelvis. The skull, femura, humeri, clavicles and ribs are often affected by lytic lesions but are not included in MRI field of view. Whole Body MRI is now available for a complete skeletal survey, but is rarely employed on a routine basis.

Nuclear medicine imaging techniques were also used to assess MM bone involvement. 99mTc-diphosphonate bone scan and 67Ga-citrate scan were found to be unreliable due to minimal osteoblastic activity and hypovascularity of lesions. 99mTc-Sestamibi whole-body scan is more accurate but the low spatial resolution limits the identification of small lesions. Furthermore, the image interpretation can be difficult due to the low tracer uptake within the lesions and to the high physiological liver uptake that can mask vertebral and right rib lesions. Therefore, nuclear medicine tests have not gained widespread acceptance [14-20].

In recent years, 18F-FDG PET and PET/CT were used as possible novel strategy for MM evaluation. 18F-FDG PET is a total body imaging technique that can detect both medullary and extra-medullary lesions and has been found useful for improving staging accuracy. Durie et al. in 2002 demonstrated that a negative 18F-FDG PET scan predicts stable monoclonal gammapathy of indeterminate significance (MGIS), identifies small lesions not detected by WBSS, identifies extra-medullary lesions related to poor prognosis and predicts an early relapse if it was positive after therapy [21]. These results were confirmed by other recent publications [22,23].

As stated before, 18F-FDG PET/CT is useful to correctly stage MM with increased accuracy of bone lesion detection at disease onset. It is more sensitive than WBSS and includes all the bones located out of the MRI field of view [24].

Despite its sensitivity, the uptake of FDG assessed with the maximum Standardized Uptake Value (SUV max) can be very low, sometimes even comparable to the SUV max of a benign lesion. Distinguishing between a benign lesion and a low-metabolic MM lesion can therefore be difficult to achieve.

11C-Choline is a radiolabelled PET tracer compound that is clinically used for the evaluation of relapse of prostate cancer. As with MM, prostate cancer does not show a significant increase of 18F-FDG uptake, but is characterized by a high 11C-Choline uptake [25]. Interestingly, a recently published case report has shown increased 11C-Choline uptake in a solitary plasmacytoma of bones [26].

The aim of our study was to assess the possible added value and limitations of 11C-Choline compared with 18F-FDG PET/CT in patients affected by MM.

Patients and methods

Between November 2004 and June 2006, we studied 10 patients (7 males and 3 females, mean age 58 years) affected with MM. They underwent 11C-Choline PET/CT and 18F-FDG PET/CT within one week (in most cases on the same day). Four of the patients were evaluated at completion of initial therapy, 2 during follow-up and 4 at disease relapse. At disease onset, all the patients were in Durie and Salmon stage III due to the presence of bone lesions. For the 11C-Choline scan, all patients provided informed consent for participation and anonymous publication of data.

Patients were injected with 5.3 MBq/Kg 11C-Choline iv and scanned after an uptake period of 5 minutes. Data acquisition was performed with a dedicated PET/CT tomograph (GE, Discovery). Images were acquired in 2D
mode for 4 min per bed position, and attenuation correction was performed with a CT-based method (120 kV, 80 mA). Each PET/CT scan was read by two nuclear medicine physicians and the reports agreed upon by consensus. Each visible area of focal 11C-Choline uptake in bone (excluding joints) was considered positive for a myelomatous lesion. The SUV$_{\text{max}}$ was calculated using the following formula:

\[
\text{Tissue concentration (MBq/g)} / \text{injected dose (MBq)} / \text{body weight (g)}
\]

At least 4 hours after the 11C-Choline scan, the patients were injected with 5.3 MBq/Kg 18F-FDG iv. None of the patients was diabetic and the fasting time required for 18F-FDG studies was at least 4 hours. The uptake time was 60–90 minutes and the data acquisition was performed as for the 11C-Choline scan.

11C-Choline scan results were compared to 18F-FDG scan results in terms of number of lesions and SUV$_{\text{max}}$. The SUV$_{\text{max}}$ cut-off was 1.0 for 11C-Choline studies (the higher uptake that we measured in normal bones) while all the areas of focal uptake were interpreted as positive for myeloma in 18F-FDG scan unless they were at sites of known accumulation. The latter include the kidneys and bladder, gastrointestinal tract, and skeletal areas showing symmetric joint uptake, especially within the shoulder girdle [21]. A mild diffuse increase in bone marrow activity was not interpreted as positive for myeloma as it is a frequent finding even in normal patients [27].

The CT attenuation correction map was not used as a reference diagnostic tool. Several bone lesions are normally detected by PET at an early stage before these are detectable with morphological imaging such as CT since density alteration occurs much later than metabolic activity. Furthermore, patients evaluated after being treated with a specific therapy may present with persistent osteolytic lesions on CT that do not show significant metabolic activity any more.

All patients had at least one-year follow-up and underwent several imaging procedures according to the clinical decision and needs.

Statistical analysis

Statistical significance of differences in 11C-Choline SUV$_{\text{max}}$ and 18F-FDG SUV$_{\text{max}}$ was determined using the Student’s T-Test. A two-tailed Mann-Whitney test was used to compare the number of lesions detected with 11C-Choline and 18F-FDG. The minimal level of significance was a $P < 0.05$.

Results

The mean number of lesions detected per patient in the entire group was 3.7 for 11C-Choline and 2.2 for 18F-FDG ($P = 0.8$). Considering only positive patients, the mean number of lesions detected per patient was 7.4 for 11C-Choline and 3.7 for 18F-FDG (Table 1).

In 4/10 patients (40%) there was a negative concordant 11C-Choline and 18F-FDG PET/CT scans. These findings were consistent with clinical, laboratory and radiological data indicating a complete remission at the time of imaging. Of those four patients, three were evaluated after therapy and one during follow-up.

In 2/10 patients (20%), evaluation was performed due to suspicion of disease relapse and both 11C-Choline and 18F-FDG PET/CT scans were positive. In this group, both techniques identified the same number and sites of bone lesions.

The remaining 4/10 (40%) patients had a positive 11C-Choline and 18F-FDG PET/CT scans, but the two techniques identified a different number of lesions. In 3/4 patients, 11C-Choline identified more lesions compared to 18F-FDG (8 vs. 1; 2 vs. 1; 10 vs. 2), while in 1/4 patient 18F-FDG detected a disease relapse within the pelvis that was negative with 11C-Choline. Of these four patients, 2/4 were evaluated due to suspicion of disease relapse, 1/4 following therapy and 1/4 during follow-up.

Table 2 shows the SUV$_{\text{max}}$ on a lesion by lesion basis for 11C-Choline scans and 18F-FDG scans (Table 2). 11C-Choline showed a mean SUV$_{\text{max}}$ of 5, while 18F-FDG showed a mean SUV$_{\text{max}}$ of 3.8 and the difference was statistically significant ($P = 0.042$). The SUV$_{\text{max}}$ of visually detectable lesions ranged from 1.1 to 19.2 for 11C-Choline and from 2 to 13.7 for 18F-FDG. (Table 2).

Table 1: Number of bone lesions detected by 11C-Choline PET/CT and 18F-FDG PET/CT patient by patient.

Patient	11C-Choline PET/CT	18F-FDG PET/CT
1	0	0
2	8	1
3	0	0
4	2	1
5	0	0
6	11	11
7	10	2
8	0	0
9	6	6
10	0	1
Total	**37**	**22**
Overall, 11C-Choline PET/CT scans detected 37 bone lesions while 18F-FDG PET/CT scans detected 22 bone lesions. This difference, however, was not statistically significant and the P value was 0.8.

All the patients underwent a follow-up (1 month to 1 year long) by repeating 18F-FDG PET/CT, MRI or CT. No false positive findings were observed for the 18F-FDG or 11C-Choline.

Discussion

Our preliminary results show that 11C-Choline PET/CT detected more myelomatous lesions than 18F-FDG PET/CT in our group of 10 patients. Although the difference between the two tracers was not statistically significant in terms of mean number of lesions detected, it is interesting to note that 11C-Choline detected more lesions than 18F-FDG in patient 2 and 7 (8 vs 1 and 10 vs 2), radically changing these patients' management.

| Patient number | Gender | Age (years) | Disease stage | Therapy | Indication to PET | Follow-up (months) | Confirmation of lesions | Number of lesions | Site of lesions | SUVmax | SUVmax
| patient | | | | | | | | | | | PET | PET |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | Male | 61 | IgA/lambda | IIIA | Chemotherapy + double autotransplant | Post-therapy | 19 | Clinical follow-up | 0 | pleura | 7.0 | 1.0 |
| 2 | Male | 55 | IgA/lambda | IIIA | Chemotherapy + autotransplant | Suspect relapse | 20 | Clinical follow-up | 1 | soft tissues | 4.2 | 2.0 |
| 3 | Male | 56 | IgA/lambda | IIIA | Chemotherapy + autotransplant | Post-therapy | 8 | Whole body X-rays | 9 | sacrum | 5.6 | 2.8 |
| 4 | Male | 72 | Solitary plasmacytoma of bones | Radiotherapy | Follow-up | 31 | Magnetic resonance imaging | 0 | 0 | 2.0 | 1.0 |
| 5 | Male | 62 | IgG/K IIA | Chemotherapy + autotransplant | Follow-up | 16 | Clinical follow-up | 0 | 0 | 3.5 | 3.5 |
| 6 | Female | 55 | IgG/lambda | IIIA | Chemotherapy + autotransplant | Suspect relapse | 16 | Clinical follow-up | 11 | skull | 1.3 | 3.5 |
| 7 | Female | 57 | IgG/lambda | IIIA | Chemotherapy + autotransplant | Suspect relapse | 16 | FDG PET/CT | 22 | scapula | 1.3 | 3.5 |
| 8 | Male | 59 | IgG/lambda | IIA | Chemotherapy + autotransplant | Post-therapy | 8 | FDG PET/CT | 32 | skull | 1.3 | 3.5 |
| 9 | Female | 49 | IgA/K IIA | Chemotherapy + autotransplant | Post-therapy | 8 | FDG PET/CT | 32 | skull | 1.3 | 3.5 |
| 10 | Male | 53 | Solitary plasmacytoma of bones | Radiotherapy | Post-therapy | 1 | Magnetic resonance imaging | 0 | 0 | 2.5 | 2.5 |

Table 2: Sites of lesions and SUV_{max} (11C-Choline and 18F-FDG) on a lesion by lesion basis. Bold: SUV_{max} of positive lesions. Non Bold: SUV_{max} of negative areas.

Overall, 11C-Choline PET/CT scans detected 37 bone lesions while 18F-FDG PET/CT scans detected 22 bone lesions. This difference, however, was not statistically significant and the P value was 0.8.

All the patients underwent a follow-up (1 month to 1 year long) by repeating 18F-FDG PET/CT, MRI or CT. No false positive findings were observed for the 18F-FDG or 11C-Choline.
One patient turned out positive for several pleural lesions, soft tissue involvement and bone lesions on 11C-Choline, while 18F-FDG detected only the soft tissue lesion (Figure 1). Another patient turned out positive for several bone lesions on 11C-Choline scan, while 18F-FDG detected only a rib and a sternal lesion. On average, SUV\textsubscript{max} was significantly higher for 11C-Choline-positive lesions compared to 11F-FDG-positive lesions (5.0 vs. 3.8), and this is an unusual finding as 11C-Choline and 18F-FDG-positive lesions behave in different ways.

It is not clear why myelomatous lesions demonstrate such high 11C-Choline uptake compared to 18F-FDG. Sasagawa \textit{et al.}, in a series of 16 patients affected by MM, demonstrated that the serum levels of lysophospholipids were significantly increased compared to normal patients [28]. Recently, Hideshima \textit{et al.} showed that perifosine, an alkylphospholipid, is active in-vitro against myelomatous cells by inhibiting the phosphatidilinositol 3-kinase/Akt, a mitogen-activated protein kinase which mediates MM cell resistance to conventional therapies [29].

These data suggest that phospholipids are strongly involved in the metabolism of myelomatous cells, especially in the modulation of intracellular growth signal transduction pathways.

Choline is a small molecule precursor of phospholipids and its uptake is increased in proliferating cells because it is involved in membrane metabolism and growth (increased during the mitotic process) that is significantly altered in MM lesions.

The additional value of sensitive bone imaging techniques in patients affected with MM is still not well defined, but remains part of the routine assessment of disease activity. However, recent studies suggest that the number of bone lesions is related to the prognosis and that the functional measurement of reduction in metabolism is a long term predictive parameter of therapy response [30].

If this concept is confirmed in studies with larger number of patients, the role of a sensitive technique that assesses the whole body, such as 11C-Choline, could acquire importance in patients affected by MM. In particular, it may help to customise an early aggressive therapy in case of multiple bone lesions to prevent a disease relapse or loss of bone mineral density resulting in multiple fractures.

The main disadvantage of 11C-Choline is the physiological liver uptake that prevents detection of hepatic lesions that may occur, though rarely, in MM patients. Furthermore, the role of 11C-Choline PET for the detection of infiltrative pattern of the spine, not characterized by distinct focal lesions, needs further assessment as our small series did not include any patient with such pattern on MRI. This may prove to be useful as 18F-FDG PET is not sensitive in the identification of infiltrative pattern of the spine.

One patient had a positive 18F-FDG PET scan showing a focal area of increased uptake located in the pelvis and a negative 11C-Choline PET scan (Figure 2). The significance of this mismatch is difficult to assess due to the short period of follow up. It has been suggested that a lesion with an initially negative 18F-FDG scan that shows uptake at a later stage may have developed de-differentiation of cancer cells and this may explain this discordant finding. The prognosis in such cases is inversely correlated with the SUV\textsubscript{max} [31,32].

Conclusion

According to our preliminary data, 11C-Choline PET/CT appears to be more sensitive than 18F-FDG PET/CT for the detection of bone myelomatous lesions. If these data can be confirmed in a larger series of patients, 11C-Choline could be the most appropriate functional imaging in combination with MRI for MM bone staging.
Competing interests
The author(s) declare that they have no competing interests.

Authors' contributions
EZ, MC, PT managed the patients and performed clinical and biochemical examinations. CN, RF, VA participated in the design of the study. CP performed the quality controls of the PET/CT system. MF, PC, GCM performed the PET/CT examinations and drafted the manuscript. SF, DR, AA participated to the coordination of the study and helped to draft the study. All authors read and approved the final manuscript.

Figure 2

18F-FDG PET scan (A) a small area of minimal uptake is detectable in the pelvis (black arrow) B) 11C-Choline PET scan of a MM patient. no Choline uptake is shown.

References
1. Lecouvet FE, Malghem J, Michaux L: Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 1999, 106:35-39.
2. Umeda M, Adachi Y, Tomiyama J: Bone lesions in elderly multiple myeloma. Nippon Ronen Igakkai Zasshi 2002, 39:631-638.
3. Kitano M, Ogata A, Sekiguchi M, Hamano T, Sano H: Biphasic antosteoclastic action of intravenous alendronate therapy in multiple myeloma bone disease. J Bone Miner Metab 2005, 23:48-52.
4. Harousseau JL, Shaughnessy J Jr, Richardson P: Multiple myeloma. Hematology (Am Soc Hematol Educ Program) 2004, 44:237-256.
5. Terpos E, Politou M, Rahemtulla A: New insights into the pathophysiology and management of bone disease in multiple myeloma. Br J Haematol 2003, 123:758-769.
6. Kyle RA: Clinical aspects of multiple myeloma and related disorders including amyloidosis. Pathol Biol (Paris) 1999, 47:148-157.
7. Ghanem N, Loehrman C, Engelhardt M, Pache G, Uhl M, Sauermann U: Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol 2006, 16:1005-1014.
8. Durie BG, Kyle RA, Belch A: Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Haematol J 2003, 4:379-398.
9. Durie BG, Salmon SE: A clinical staging system for multiple myeloma: correlation of measured myeloma cell mass with presenting clinical features, response to treatment and survival. Cancer 1975, 36:842-854.
10. Angeuaco EJ, Fassas AB, Walker R, Sechi R, Barlogie B: Multiple myeloma: clinical review and diagnostic imaging. Radiology 2004, 231:11-23.
11. Lecouvet FE, Malghem J, Michaux L: Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 2001, 106:35-39.
12. Walker RE, Eustace SJ: Whole-body magnetic resonance imaging: techniques, clinical indications and future applications. Semin Musculoskeletal Radiol 2001, 5:5-19.
13. Vogler JB, Murphy WA: Bone marrow imaging. Radiology 1988, 168:679-693.
14. Hubner KF, Andrews GA, Hayes RL, Poggenburg JK, Solomon A: The use of rare-earth radionuclides and other bone seekers in the evaluation of bone lesions in patients with multiple myeloma or solitary plasmacytoma. Radiology 1977, 125:171-176.
15. Vahner HW, Kyle RA, Beabout JW: Scintigraphic evaluation of the skeleton in multiple myeloma. Mayo Clin Proc 1980, 55:739-746.
16. Scutellari PN, Spanedda R, Feggi LM, Cervi PM: The value and limitations of total body scan in the diagnosis of multiple myeloma: a comparison with conventional skeletal radiography. Haematologica 1985, 70:136-142.
17. Ampil FL, Mills GM: Bone scintigraphy in plasma cell myeloma. Eur J Orthop Surg Traumatol 1999, 9:59-60.
18. Tirovola EB, Biassoni L, Britton KE, Kaleva N, Kouykin V, Malpas JS: The use of 99m-Tc-MIBI scanning in multiple myeloma. Br J Cancer 1996, 74:1815-1820.
19. Piwnica-Worms D, Holman L: Noncardiac applications of hexakis(alkylisothiuronium) 99m-Tc complexes. J Nucl Med 1990, 31:1166-1167.
20. Chiu ML, Kronauge JF, Piwnica-Worms D: Effect of mitochon- drial and plasma membrane potentials on accumulation of hexakis(2-methoxyisobutylisonitril) technetium in cultured mouse fibroblast. J Nucl Med 1990, 31:1646-1653.
21. Durie BG, Waxman AD, D’Agnole A, Williams CM: Whole-Body 18F-FDG PET identifies high-risk myeloma. J Nucl Med 2002, 43:1457-1463.
22. Jadvar H, Conti PS: Diagnostic utility of FDG PET in multiple myeloma. Skeletal Radiol 2002, 31:690-694.
23. Andrell MA, Steinbach L, Caputo G, Segall H, Hawkins R: Value of FDG PET in the assessment of patients with multiple myeloma. AJR 2005, 184:1199-1204.
24. Nanni C, Zamagni E, Farsad M, Franchi R, Fanti S: Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging 2006, 33:525-531.
25. Sanz G, Rioja J, Zudaire JJ, Beria’n JM, Richter JA: PET and prostate cancer. World J Urol 2004, 22:351-352.
26. Ambrosini V, Farsad M, Nanni C, Rubello D, Fanti S: Image of the month: Incidental finding of a 11C-Choline PET positive solitary plasmacytoma lesion. Eur J Nucl Med Mol Imaging 2006 in press.
27. Sugawara Y, Fisher SJ, Zasadny KR, Kisson PV, Baker LH, Wahl RL: Preclinical and clinical studies of bone marrow uptake of fluoro-l-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 1998, 16:173-180.
28. Sasagawa T, Okita M, Murakami J, Kato T, Watanabe A: Abnormal serum lysophospholipids in multiple myeloma patients. Lipids 1999, 34:7-21.
29. Hideshima T, Catley L, Yasui H: Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006, 107:4053-4062.
30. Baur A, Stablerr A, Nagel D, Lamerz R, Barth R, Hiller E: Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 2002, 95:1334-1345.
31. Lind P, Kohlfurst S: Respective roles of thyroglobulin, radiiodine imaging, and positron emission tomography in the assessment of thyroid cancer. Semin Nucl Med 2006, 36(1):194-205.
32. Pottgen C, Levegrun S, Theegarten D, Marnitz S, Greil S, Pink R: Value of 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res 2006, 12:97-106.

Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright