From topological insulators to superconductors and confinement

M Cristina Diamantini, Pasquale Sodano and Carlo A Trugenberger

1 INFN and Department of Physics, University of Perugia, via A Pascoli, I-06100 Perugia, Italy
2 Perimeter Institute of Theoretical Physics, 31 Caroline St North, Waterloo, Ontario, N2L2Y5, Canada
3 International Institute of Physics, Federal University of Rio Grande do Norte, Av Odilon Gomes de Lima 1722, Capim Macio, Natal-RN 59078-400, Brazil
4 SwissScientific, chemin Diodati 10, CH-1223 Cologny, Switzerland
E-mail: cristina.diamantini@pg.infn.it, pasquale.sodano@pg.infn.it and ca.trugenberger@InfoCodex.com

New Journal of Physics 14 (2012) 063013 (8pp)
Received 1 February 2012
Published 14 June 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/6/063013

Abstract. Topological matter in three dimensions (3D) is characterized by the presence of a topological BF term in its long-distance effective action. We show that, in 3D, there is another marginal term that must be added to the action in order to fully determine the physical content of the model. The quantum phase structure is governed by three parameters that drive the condensation of topological defects: the BF coupling, the electric permittivity and the magnetic permeability of the material. For intermediate levels of electric permittivity and magnetic permeability, the material is a topological insulator. We predict, however, new states of matter when these parameters cross critical values: a topological superconductor when the electric permittivity is increased and the magnetic permeability is lowered and a charge confinement phase in the opposite case of low electric permittivity and high magnetic permeability. Synthetic topological matter may be fabricated as 3D arrays of Josephson junctions.

5 On leave of absence from: INFN and Department of Physics, University of Perugia, via A Pascoli, I-06100 Perugia, Italy.
1. Introduction

The last decade has seen a surprising development. Topological field theories [1], originally invented as background-independent theories of quantum gravity, have found a beautiful realization in strongly correlated condensed matter states.

The general idea, pioneered by Wen [2], is to write the conserved matter current describing the fluctuations about such topologically ordered states as the curl of a gauge field and to formulate the low-energy effective field theory for the fluctuations as a gauge theory. In two spatial dimensions, the dominant gauge action at long distances is the famed Chern–Simons term [3, 4], which describes incompressible quantum Hall fluids and their edge excitations.

Based on exactly the same idea, we showed [5, 6] how effective field theories with a topological BF term [1] provide a unified description of topological matter in any space–time dimensions. The relevance of the BF term for topological insulators has recently been derived in [7, 8].

The BF term [1] is a $P$- and $T$-conserving, higher-dimensional generalization of the Chern–Simons terms. In two spatial dimensions it reduces to a mixed Chern–Simons term, which, for non-compact gauge groups, can be diagonalized into the sum of two standard Chern–Simons terms of opposite chiralities: such theories have often been referred to as doubled Chern–Simons models in the literature [5, 6, 9]. In two spatial dimensions, the topological Chern–Simons term dominates the long-distance effective theory. In three spatial dimensions, instead, there is another marginal term that co-determines the infrared behavior and must be added to the action: this is the standard Maxwell term.

What distinguishes the different possible phases of this model is the role of the topological defects ensuing from the compactness of the $U(1)$ gauge group. The compactness of this group and its consequences are often overlooked in the literature on this subject. It requires an unavoidable ultraviolet (UV) cutoff in the formulation of the model [10] and it is this UV cutoff that prevents the diagonalization of compact mixed Chern–Simons terms [6].

In this paper, we show that the $T = 0$ quantum phase structure of topological matter is determined by three parameters: the electric permittivity and the magnetic permeability of the material and the topological coupling constant. For intermediate levels of electric permittivity and magnetic permeability the material is a topological insulator [7]. We predict, however, new states of matter when these parameters cross critical values: a topological superconductor when the electric permittivity is increased and the magnetic permeability is lowered and a dual-charge confinement phase in the opposite case of low electric permittivity and high magnetic permeability.

Our results raise the possibility of turning a topological insulator into a superconductor if a mechanism can be devised to lower the magnetic permeability and increase the electric permittivity, while preserving the topological entanglement of the ground state. Equally interesting would be the realization of a charge confinement phase for high magnetic permeability and low electric permittivity. We also point out that these results can be studied in the synthetic BF matter, constituted by fabricated three-dimensional (3D) Josephson junction arrays.

Let us write the conserved charge fluctuations above the topological ground state in terms of a Kalb–Ramond [11] two-form gauge field $b_{\mu\nu}$ as $j_{\mu} = (k/2\pi)\epsilon_{\mu\nu\alpha\beta} \partial_\nu b_{\alpha\beta}$. We also consider an effective statistical gauge field $a_\mu$ describing the braiding of charged particles and vortex lines. The corresponding field strength is the pseudo-tensor $\phi_{\mu\nu} = (k/2\pi)\epsilon_{\mu\nu\alpha\beta} \partial_\alpha a_\beta$.
describing the current of vortex excitations. Then the BF term is the topological action \(\frac{i}{2\pi} \int d^4x \, a_\mu \epsilon_{\mu
u\alpha\beta} \partial_\nu b_{\alpha\beta}\). Since \(a_\mu\) and \(b_{\alpha\beta}\) have canonical dimensions [mass] and [mass]^2 (we use units \(c = \hbar = 1\)), respectively, \(k\) is the dimensionless BF coupling. In applications to topological matter the BF term represents the effective action for the matter degrees of freedom, obtained by integrating out all microscopic interactions, including electromagnetism.

Contrary to the case of two spatial dimensions, however, in three spatial dimensions, the topological BF term is not the only action term dominating the infrared behavior. Another marginal term can be added to the action: this is a Maxwell-like term constructed from the gauge field \(a_\mu\). We shall thus consider condensed matter systems with the following long-distance Euclidean effective action:

\[
S = \frac{ik}{2\pi} \int d^4x \, a_\mu \epsilon_{\mu
u\alpha\beta} \partial_\nu b_{\alpha\beta} + \int d^4x \left( \frac{1}{2e^2\lambda} \mathbf{e}^2 + \frac{1}{2e^2\eta} \mathbf{b}^2 \right),
\]

where \(\mathbf{e}\) and \(\mathbf{b}\) are the effective electric and magnetic fields constructed from the gauge field \(a_\mu\), \(e\) is the electron charge and \(\eta\) and \(\lambda\) are two dimensionless couplings. The effects of the possible topological term \(\propto \int d^4x \, \mathbf{e} \cdot \mathbf{b}\) will be discussed elsewhere. This has to be considered as the full matter effective action, after all interactions, including the electromagnetic one, have been integrated out.

In what follows, we will also add to the action an infrared-irrelevant kinetic term for \(b_{\mu\nu}\):

\[
S \to S + \int d^4x \left[ \frac{1}{2g^2\eta} f_0 f_0 + \frac{1}{2g^2\lambda} f_i f_i \right],
\]

with \(f_\mu = \frac{i}{b} \epsilon_{\mu
u\alpha\beta} f_{\nu\alpha}\beta\), \(f_{\mu\nu} = \partial_\mu b_{\nu\alpha} + \partial_\nu b_{\mu\alpha} + \partial_\rho b_{\mu\nu} \) being the Kalb–Ramond field strength, and \(g\) a parameter with the dimensions of mass. This serves only as an ultraviolet regulator for Gaussian integrals. It describes the massive modes that live on short length scales \(\ll \frac{1}{m} = \frac{\pi}{keg\sqrt{\lambda\eta}}\).

First of all, let us analyze the meaning of the parameters \(\lambda\) and \(\eta\). To this end, we introduce the coupling with an external electromagnetic field: \(ij_\mu A_\mu = \frac{ik}{2\pi} A_\mu \epsilon_{\mu
u\alpha\beta} \partial_\nu b_{\alpha\beta}\), in (1). Gaussian integration over \(a_\mu\) and \(b_{\alpha\beta}\) induces the electromagnetic effective action. At long distances (\(\gg \frac{1}{m}\)) this is given by

\[
S_{AE} = \int d^4x \, \frac{1}{2e^2} \left[ \frac{1}{\lambda} \mathbf{E}^2 + \frac{1}{\eta} \mathbf{B}^2 \right],
\]

where \(\mathbf{E}\) is the physical electric field and \(\mathbf{B}\) the magnetic one. This shows that the model (1) describes a topological insulator and identifies the parameters of the low-energy effective action as the inverse electric permittivity and magnetic permeability, respectively,

\[
\epsilon = \frac{1}{\lambda}, \quad \mu = \eta.
\]

One of the main characteristics of topological insulators is the appearance of the so-called axion-electrodynamics term \([12, 13]\):

\[
S = \int d^4x \, \frac{i\theta}{16\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu} = \int d^4x \, \frac{i\theta}{4\pi^2} \mathbf{E} \cdot \mathbf{B},
\]

in their action when time-reversal symmetry is broken, the parameter \(\theta\) being quantized in odd multiples of \(\pi\): \(\theta = (2n + 1)\pi, n \in \mathbb{Z}\) \([12]\), \(\tilde{F}^{\mu\nu}\) is the field strength of \(A_\mu\) and \(\tilde{F}^{\mu\nu}\) its dual.

We will now show how this term arises naturally in our model due to a (T-symmetry breaking) direct coupling of the statistical gauge field to electromagnetic fields. This is
represented by the additional term $\frac{i}{\sqrt{2}} \phi F_{\mu \nu}$ in the action (1). Gaussian integration over the matter fields $a_\mu$ and $b_{\mu \nu}$ induces, at long distances ($\gg \frac{1}{m}$), the axion electromagnetic term with parameter $\theta = \frac{k \phi}{\pi}$. Requiring a T-invariant partition function $\exp(-S)$ is equivalent to the Dirac quantization condition $\frac{k \phi}{2\pi} = \text{integer}$. Note that the BF coupling $k$ plays the same role as the charge of the condensate in spontaneous symmetry breaking. As we show below, $k$ is indeed an integer.

The action (1) has two $U(1)$ gauge symmetries under the transformations:

$$a_\mu \rightarrow a_\mu + \partial_\mu \xi, \quad b_{\mu \nu} \rightarrow b_{\mu \nu} + \partial_\mu \xi_\nu - \partial_\nu \xi_\mu.$$  

The important point is that these gauge symmetries are compact and the compactness of the $U(1)$ gauge group, as usual, leads to the presence of topological defects. As is beautifully explained in [10], the compactness of $U(1)$ gauge groups inevitably introduces a length scale, the compactification radius of the gauge fields. There are essentially only two ways of introducing this UV cutoff in a gauge-invariant manner: either one embeds the $U(1)$ group in a larger, non-Abelian compact group and one breaks the symmetry down to $U(1)$ on a given scale or one formulates the entire theory on a lattice. We choose the latter.

The lattice we consider is a hypercubic lattice in four Euclidean dimensions, with lattice spacings $l$. On this lattice, we define the following forward and backward derivatives and shift operators:

$$d_\mu f(x) \equiv \frac{f(x + l \hat{\mu}) - f(x)}{l}, \quad S_\mu f(x) \equiv f(x + l \hat{\mu}),$$

$$\hat{d}_\mu f(x) \equiv \frac{f(x) - f(x - l \hat{\mu})}{l}, \quad \hat{S}_\mu f(x) \equiv f(x - l \hat{\mu}).$$

Summation by parts interchanges the two derivatives, with a minus sign, and the two shift operators. We also introduce the three-index lattice operators [5]:

$$K_{\mu \nu \alpha} = S_\mu \epsilon_{\mu \nu \rho \alpha} d_\rho, \quad \hat{K}_{\mu \nu \alpha} = \epsilon_{\mu \nu \rho \alpha} \hat{d}_\rho \hat{S}_\alpha.$$  

These operators are gauge-invariant in the sense that

$$K_{\mu \nu \alpha} d_\alpha = K_{\mu \nu \alpha} d_\nu = \hat{d}_\mu K_{\mu \nu \alpha} = 0,$$

$$\hat{K}_{\mu \nu \alpha} d_\alpha = \hat{d}_\mu \hat{K}_{\mu \nu \alpha} = \hat{d}_\nu \hat{K}_{\mu \nu \alpha} = 0.$$  

Moreover, they satisfy the equations:

$$\hat{K}_{\mu \nu \alpha} K_{\alpha \lambda \omega} = K_{\mu \nu \alpha} \hat{K}_{\alpha \lambda \omega}$$

$$\equiv O_{\mu \nu \lambda \omega} = - (\delta_{\mu \lambda} \delta_{\nu \omega} - \delta_{\mu \omega} \delta_{\nu \lambda}) d_\rho \hat{d}_\rho$$

$$+ (\delta_{\mu \lambda} d_\nu \hat{d}_\omega - \delta_{\mu \omega} d_\nu \hat{d}_\lambda + (\delta_{\nu \omega} d_\mu \hat{d}_\lambda - \delta_{\nu \lambda} d_\mu \hat{d}_\omega),$$

$$\hat{K}_{\mu \nu \alpha} K_{\nu \omega \lambda} = K_{\mu \nu \alpha} \hat{K}_{\nu \omega \lambda}$$

$$\equiv 2 D_{\mu \nu} = -2 (\delta_{\mu \nu} d_\rho \hat{d}_\rho - d_\mu \hat{d}_\nu).$$  

The expressions $O_{\mu \nu \lambda \omega}$ and $D_{\mu \nu}$ are lattice versions of the Kalb–Ramond and Maxwell kernels, respectively.
On the lattice, the gauge fields $a_\mu$ and $b_{\mu\nu}$ become link and plaquette variables, respectively. The compactness of the gauge groups implies that they are angular variables, invariant under the shifts:

$$a_\mu \to a_\mu + \frac{2\pi}{l} n_\mu, \quad b_{\mu\nu} \to b_{\mu\nu} + \frac{2\pi}{l^2} n_{\mu\nu}; \quad n_\mu, n_{\mu\nu} \in \mathbb{Z},$$

where $\frac{2\pi}{l}$ is the radius of the $U(1)$ group. In order to implement this invariance, one introduces in the Euclidean partition function integer link and plaquette variables $Q_\mu$ and $M_{\mu\nu}$ as follows:

$$Z = \sum_{\{Q_\mu\}} \int \mathcal{D}a_\mu \int \mathcal{D}b_{\mu\nu} \exp(-S),$$

$$S = \sum_x \frac{l^4}{4e^2\lambda} \tilde{f}_{ij} \tilde{f}_{ij} + \frac{l^4}{4e^2\eta} \tilde{f}_{0i} \tilde{f}_{0i} + \frac{l^4}{2g^2\eta} f_{0i} f_{0i} + \frac{l^4}{2g^2\lambda} f_i f_i - \frac{l^4}{2\pi} a_\mu K_{\mu\alpha\beta} b_{\alpha\beta}$$

$$+ i k (l Q_\mu a_\mu) + i k (l M_{\mu\nu} b_{\mu\nu}),$$

where $\tilde{f}_{\mu\nu} \equiv \hat{K}_{\mu\nu\alpha} a_\alpha$ and $f_\mu \equiv \frac{i}{2} K_{\mu\alpha\beta} b_{\alpha\beta}$.

The integer-valued variables $Q_\mu$ and $M_{\mu\nu}$ appearing in (12) represent topological excitations whose role is to make the BF term periodic. They satisfy $\hat{d}_\mu Q_\mu = 0$ and $\hat{d}_\mu M_{\mu\nu} = \hat{d}_\nu M_{\mu\nu} = 0$. In Euclidean space, they represent closed electric lines and compact magnetic surfaces. The corresponding physical excitations in Minkowski space are the world lines of quasiparticle charges $Q_0$ and the world surfaces of magnetic vortex lines $M_{0i}$. These topological excitations are the singularities in the two field strengths due to the compactness of the two gauge symmetries. It can be shown [14] that they represent chargeons and spinons in 3D. As we now show, the physics of a compact, $U(1)$ BF term is much richer than that of its non-compact cousin with gauge group $\mathbb{R}$.

The phase structure of our model is determined by the statistical mechanics of a coupled gas of lattice loops and surfaces. Its partition function can be easily obtained by a Gaussian integration over the gauge fields $a_\mu$ and $b_{\mu\nu}$ in (12):

$$Z_{\text{Top}} = \sum_{\{Q_\mu\}} \exp(-S_{\text{Top}}),$$

$$S_{\text{Top}} = \sum_x \frac{e^2 k^2 \lambda}{2l^2} Q_0 \frac{1}{m^2 - \nabla^2} Q_0 + \frac{e^2 k^2 \eta}{2l^2} Q_i \frac{1}{m^2 - \nabla^2} Q_i + g^2 k^2 \lambda M_{0i} \frac{1}{m^2 - \nabla^2} M_{0i}$$

$$+ g^2 k^2 \eta M_{ij} \frac{1}{m^2 - \nabla^2} M_{ij} + \frac{i \pi k m^2}{l} Q_\mu \frac{K_{\mu\alpha\beta}}{\sqrt{2\pi}} M_{\alpha\beta},$$

with the mass $m$ defined by $m^2 = \frac{e^2 k^2 \lambda \eta}{\pi^2}$ and $\nabla^2 = (\lambda/\eta) d_0 d_0 + d_i \hat{d}_i$, the lattice Laplacian. Here $\sqrt{\lambda/\eta} = 1/\sqrt{e\mu}$ is the speed of light in the topological medium. This partition function can be interpreted as the Euclidean partition function for a lattice model of interacting particles (whose world lines are parametrized by the closed loops $Q_\mu$) and closed vortex strings (whose world sheets are parameterized by the compact surfaces $M_{\mu\nu}$). By choosing the analogue of the Landau–Ginzburg parameter $\alpha = ml \geq O(1)$ the Yukawa interactions in (13) reduce essentially.
to contact terms expressing the self-interactions of topological defects. If the imaginary terms in the action are absent, the model (13) can be treated by standard statistical mechanics techniques. This is realized when \( k \) is an integer, \( k = n, n \in \mathbb{Z} \).

In order to derive the quantum phase structure of the model at \( T = 0 \), we consider the free energy of static (\( Q_i = M_{ij} = 0 \)) charges and vortex lines. This is given by

\[
F = \sum_{x} \left[ \frac{k^2e^2\lambda}{\alpha^2} Q_0^2 + \frac{\pi^2}{e^2} M_0^2 \right] - \left[ S_Q + S_M \right],
\]

where \( S_Q \) and \( S_M \) denote the entropies of closed lines and compact surfaces on the lattice, respectively. These are proportional to the length of world lines (for quasi-particles) and assumed to be proportional to the area of world surfaces for vortex lines. The exact form of their entropy is not known although these are the well-defined confining strings introduced by Polyakov [15]. We can thus derive only qualitative results.

For \( k^2\lambda \) small, the entropy of electric strings dominates their self-energy and the electric part of the free energy is minimized by configuration in which long electric strings condense. The contrary is true for large \( k^2\lambda \) in which case electric strings are dilute. The same reasoning indicates the condensation of magnetic surfaces for large values of \( \eta \), whereas they are dilute for small \( \eta \).

Altogether, we find an electric condensation phase for \( k^2\lambda \ll \alpha^2/e^2 \) and \( \eta \ll \pi^2/e^2 \) and a magnetic condensation phase for \( k^2\lambda \gg \alpha^2/e^2 \) and \( \eta \gg \pi^2/e^2 \). In between we have the original topological insulator phase, in which both types of topological excitations are dilute.

In order to distinguish the various phases, we introduce the typical order parameters of lattice gauge theories [10], namely the Wilson loop for an electric charge \( q \) and the ’t Hooft surface for a vortex line with flux \( \phi \):

\[
L_W \equiv \exp i \left( \sum_x l^{\text{ex}}_{\mu} a_\mu \right), \quad S_H \equiv \exp i \phi \left( \sum_x l^{\text{ex}}_{\mu\nu} b_{\mu\nu} \right),
\]

where \( l^{\text{ex}}_{\mu} \) vanishes everywhere except on the links of a closed loop, in which it takes the value 1, and where \( l^{\text{ex}}_{\mu\nu} \) vanishes everywhere except on the plaquettes of a compact surface, in which it takes the value 1. Since the loops are closed and the surfaces are compact, they satisfy \( \delta l^{\text{ex}}_{\mu} = \delta l^{\text{ex}}_{\mu\nu} = 0 \).

The expectation values of \( \langle L_W \rangle \) and \( \langle S_H \rangle \) can be used to characterize the various phases. These expectation values are given by

\[
\langle L_W \rangle = \frac{Z_{\text{Top}}(Q_\mu + \frac{q}{k} l^{\text{ex}}_{\mu}, M_{\mu\nu})}{Z_{\text{Top}}(Q_\mu, M_{\mu\nu})},
\]

\[
\langle S_H \rangle = \frac{Z_{\text{Top}}(Q_\mu, M_{\mu\nu} + \frac{\phi^{\text{ex}}_{\mu\nu}}{k})}{Z_{\text{Top}}(Q_\mu, M_{\mu\nu})},
\]

where the notation is self-explanatory. The dominant contributions are given by [5]

\[
\langle L_W \rangle_{\text{m.c.}} = \sum_x \frac{e^2 q^2 \lambda}{2l^2} j_0^{\text{ex}} + \frac{1}{-\nabla^2} j_0^{\text{ex}} + \frac{e^2 q^2 \eta}{2l^2} j_i^{\text{ex}} + \frac{1}{-\nabla^2} j_i^{\text{ex}},
\]

\[
\langle S_H \rangle_{\text{e.c.}} = \sum_x g^2 \phi^2 \lambda \phi_0^{\text{ex}} + \frac{1}{-\nabla^2} \phi_0^{\text{ex}} + g^2 \phi^2 \eta \phi_{ij}^{\text{ex}} + \frac{1}{-\nabla^2} \phi_{ij}^{\text{ex}}.
\]
As is evident from these expressions, the effect of the condensation of topological defects is to transform the original short-range Yukawa interactions of chargeons and spinons into long-range Coulomb interactions. The consequences of this are best appreciated by expressing the ’t Hooft surface and the Wilson loop in terms of external gauge potentials $A_\mu$ and $B_{\mu\nu}$, respectively, $\phi_{\mu}^{ex} \propto \hat{K}_{\mu\nu}^A A_\nu$ and $j_{\mu}^{ex} \propto \hat{K}_{\mu\nu}^B B_{\nu\lambda}$. Then the induced charge and vortex currents can be computed as

$$j_i^{\text{ind}} \propto \frac{\delta}{\delta A_i} \langle S_H(A) \rangle_{\text{e.c.}} \propto A_i,$$

$$\phi_{ij}^{\text{ind}} \propto \frac{\delta}{\delta B_{ij}} \langle L_W(B) \rangle_{\text{m.e.}} \propto B_{ij}.$$  

(18)

These are London equations for the induced charge and spin currents, which express perfect charge conductivity and a photon mass in the electric condensation phase and perfect spinon conductivity, electric screening and a photon mass [16] in the magnetic condensation phase. In both phases the origin of the photon mass is topological since no symmetry breaking is involved and, correspondingly, no local order parameter exists. It can be shown [19] that the photon effective action contains the topological BF mass term [20–22]. We thus conclude that the electric condensation phase is a topological superconductor, whereas the magnetic condensation phase is a topological charge confinement phase (spinon or dual superconductor). As explained above, these topological superconductors are characterized by a flux quantization condition $\phi = 2\pi/k$. The charge confinement phase is the exact dual of the superconducting phase [17]. The photon becomes massive due to the St"uckelberg mechanism, electric fields are expelled and restricted to thin flux tubes between particle–antiparticle pairs and no charged excitations can be observed. In both these phases, the presence of a BF term in the photon effective action [19] implies ground state degeneracy on topologically non-trivial spaces [22]. Note that the original $2\pi$ periodicity in $\theta$ of topological insulators is lost in the confinement phase. Altogether, this amounts to the following $T = 0$ quantum phase structure:

$$\epsilon \gg \frac{k^2e^2}{\alpha^2}, \quad \mu \ll \frac{\pi^2}{e^2} \rightarrow \text{top. superconductor};$$

$$\text{intermediate regime} \quad \rightarrow \text{top. insulator};$$

$$\epsilon \ll \frac{k^2e^2}{\alpha^2}, \quad \mu \gg \frac{\pi^2}{e^2} \rightarrow \text{top. confinement}.$$  

(19)

As we have shown in [5], topological matter can be simulated in synthetic materials constructed as arrays of Josephson junctions. In what we called the self-dual approximation, such arrays are governed exactly by the model (12) with $k = 2$ and:

$$\epsilon = \frac{e^2}{4ECL}, \quad \mu \rightarrow \infty, \quad g^2 = \frac{\pi^2e^2}{8} \frac{E_J}{ECL^2},$$  

(20)

where $E_J$ and $E_C$ are the Josephson coupling and the charging energy of the array, respectively. In this case, the phases correspond to the superconducting, metallic and insulating phases of the array. The phase transitions have to be analyzed by varying $E_J$ and $E_C$ at fixed $ml = \sqrt{8E_CE_CL^2} \geq O(1)$ and are due to the competition between the superconducting junction favoring a global phase lock-in and the charging energy favoring the localization of charges on the islands.

Note also that a phase structure analogous to (19) was found in [18] in the compact BF formulation of 2D doped Mott insulators.
References

[1] For a review, see Birmingham D, Blau M, Rakowski M and Thompson G 1991 Phys. Rep. 209 129
[2] For a review, see Wen X-G 1995 Adv. Phys. 44 405 (arXiv:cond-mat/9506066)
[3] Jackiw R and Templeton S 1981 Phys. Rev. D 23 2291
    Deser S, Jackiw R and Templeton S 1982 Phys. Rev. Lett. 48 975
    Deser S, Jackiw R and Templeton S 1982 Ann. Phys. 140 372
[4] Witten E 1989 Commun. Math. Phys. 121 351
[5] Diamantini M C, Sodano P and Trugenberger C A 1995 Nucl. Phys. B 448 505
    Diamantini M C, Sodano P and Trugenberger C A 1996 Nucl. Phys. B 474 641
[6] Diamantini M C, Sodano P and Trugenberger C A 2006 Eur. Phys. J. B 53 19
    Diamantini M C, Sodano P and Trugenberger C A 2006 J. Phys. A: Math. Gen. 39 253
[7] For a review see, Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
    Hasan M Z and Moore J E 2010 Annu. Rev. Condens. Matter Phys. 2 55
[8] Cho G Y and Moore J E 2011 Ann. Phys. 326 1515
[9] Freedman M, Nayak C, Shtengel K, Walker K and Wang Z 2004 Ann. Phys. 310 428
    Kou S P, Weng Z Y and Wen X G 2007 Frontiers Phys. China 1 31
[10] For a review see, Polyakov A M 1987 Gauge Fields and String (New York: Harwood Academic)
[11] Kalb M and Ramond P 1974 Phys. Rev. D 9 2273
[12] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
[13] Qi X L, Huges T L and Zhang S C 2008 Phys. Rev. B 78 195424
[14] Diamantini M C and Trugenberger C A 2011 Charge Spin Separation in 3D arXiv:1112.3281
[15] Polyakov A M 1997 Nucl. Phys. B 486 23
[16] Quevedo F and Trugenberger C A 1997 Nucl. Phys. B 501 143
[17] For example, see ’tHooft G 2005 Fifty Years of Yang–Mills Theory (Singapore: World Scientific)
[18] Pe Y, Tian C-S, Qi X-L and Weng Z-Y 2011 Phys. Rev. Lett. 106 147002
[19] Diamantini M C and Trugenberger C A 2011 Phys. Rev. B 84 094520
[20] Allen T J, Bowick M J and Lahiri A 1991 Mod. Phys. Lett. A 6 559
[21] Balachandran A P and Teotonio-Sobrinho P 1993 Int. J. Mod. Phys. A 8 723
[22] Bergeron M, Semenoff G W and Szabo R J 1995 Nucl. Phys. B 437 695