2010

Comment on "Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades"

Jeffrey Yepez

George Vahala

Linda L. Vahala
Old Dominion University, lvahala@odu.edu

Min Soe

Follow this and additional works at: http://digitalcommons.odu.edu/ece_fac_pubs

Part of the Engineering Physics Commons

Repository Citation
Yepez, Jeffrey; Vahala, George; Vahala, Linda L.; and Soe, Min, "Comment on "Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades"" (2010). Electrical & Computer Engineering Faculty Publications. Paper 47. http://digitalcommons.odu.edu/ece_fac_pubs/47

Original Publication Citation
Yepez, J., Vahala, G., Vahala, L., & Soe, M. (2010). Comment on "Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades.
Physical Review Letters, 105(12), 1. doi: 10.1103/PhysRevLett.105.129402

This Response or Comment is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Our initial vortices had winding number \(n = 6 \), equivalent to 6 overlapping \(n = 1 \) vortices, a highly unstable configuration as illustrated in Fig. 1. We used ray tracing to image surfaces around the nodal lines \(\psi = 0 \).

Consider an \(L^3 = 2048^3 \) simulation with initial vortex wave number \(k_\ell = 40 \) and vortex-vortex separation \(\ell \sim \sqrt{\frac{L}{k_\ell}} = \frac{2048}{40} = 51 \), using a total vortex length \(L_v = 12nL \).

In the initial linear vortex spectrum, the transitional wave number between \(k^{-1} \) and \(k^{-3} \) related to the inverse coherence length, \(k_{\text{linear}} \), is pronounced. In contrast, in the quantum turbulence spectrum with clean \(k^{-5/3} \) and \(k^{-3} \) power laws, the transitions related to the inverse Kolmogorov scale, \(k_{\text{outer}} = k_\ell \sim \ell^{-1} \), and an inner scale, \(k_{\text{inner}} \), are both pronounced. This is seen in Fig. 2 with \(k_{\text{linear}} = 51^{-1} \ell = 40 \) at \(t = 0 \) (no KWs) and with \(k_{\text{tangle}} = 40 \) at \(t = 20,000 \) in a KW cascade. Thus, we find \(k_{\text{linear}} = k_{\text{tangle}} \), and this similarity also occurred for the 5760\(^3 \) simulation reported in our Letter [2]. We identified the classical to quantum transition region as \(k_{\text{outer}} \leq k_{\text{linear}} \leq k_{\text{inner}} \) and identified the outer scale with the Kolmogorov length \((k_{\text{outer}} = k_\ell) \) and the inner scale with the coherence length. When the \(k^{-3} \) spectrum is absent or significantly diminished, temporally due to intermittency [3], we do not see a vortex tangle with a KW cascade. When the \(k^{-3} \) spectrum at high \(k \geq k_{\text{inner}} \) is present (along with a \(k^{-5/3} \) Kolmogorov spectrum at small \(k \leq k_{\text{outer}} \) marking a vortex tangle), we see distorted vortices supporting KWs undergoing kelvon-kelvon couplings, including \(k > k_{\text{linear}} \).

We believe there is essential dynamics at high wave numbers \(k > k_\ell \). The \(L^3 = 5760^3 \) grid simulation we reported has \(\sim 10^{11} \) microscopic (bit) particles, and a single vortex can contain hundreds of thousands of grid points. The unitary algorithm \(\Psi' = U \Psi \) employs a tensor product state \(\Psi = \psi(x) \otimes L \) separated over the \(L^3 \) points of the system, where each local ket \(\psi(x) \) is a 2-spinor. This gives an exact quantum simulation modulo the lattice cutoff \(\ll \xi \) that accurately solves the Gross-Pitaevskii equation. A fluctuating part of \(\psi(x) \) are quasiparticles

\[
\delta \psi(x) \equiv \epsilon \left(u(x)e^{-i\xi t} - v^*(x)e^{i\xi t} \right)
\]

given by the Bogoliubov–de Gennes (BDG) equations,

\[
h \left(\frac{\partial}{\partial t} \psi^2 - \nabla^2 \psi^2 - g \phi^2 \psi^2 \right) \psi
\]

with a spatial operator \(L \equiv -\frac{k^2}{2m} \nabla^2 + 2g|\phi|^2 \mu \). High \(k \)-space resolution, especially at large \(k \), is vital to ensure these fluctuations are numerically represented inside the cores. Finally, high-\(k \) kelvons are known experimentally [4], and such kelvons have been verified numerically at the BDG level [5,6]. The cutoff \(r_c < \xi \) is inside the core with a modified KW dispersion relation [6].

Jeffrey Yepez,1,* George Vahala,2 Linda Vahala,3 and Min Soe4
1Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts 01731, USA
2Department of Physics, William & Mary, Williamsburg, Virginia 23185, USA
3Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
4Department of Mathematics and Physical Sciences, Rogers State University, Claremore, Oklahoma 74017, USA

Received 29 April 2010; published 13 September 2010
DOI: 10.1103/PhysRevLett.105.129402
PACS numbers: 47.37.+q, 03.67.Ac, 03.75.Kk, 67.25.dk

*To whom correspondence should be addressed.

[1] G. Krstulovic and M. Brachet, preceding Comment, Phys. Rev. Lett. 105, 129401 (2010).
[2] J. Yepez et al., Phys. Rev. Lett. 103, 084501 (2009).
[3] G. Vahala et al., Proc. SPIE Int. Soc. Opt. Eng. 7702, 770207 (2010).
[4] V. Bretn et al., Phys. Rev. Lett. 90, 100403 (2003).
[5] T. Mizushima, M. Ichikawa, and K. Machida, Phys. Rev. Lett. 90, 180401 (2003).
[6] T. P. Simula, T. Mizushima, and K. Machida, Phys. Rev. Lett. 101, 020402 (2008).