Knowledge Extraction Using Auto Regression Method -
A Tourist Information Extraction and Analytics

Arun Manicka Raja M1, Sumitha T2, Maria Michael Visuwasam L3, *, Rejin Paul N R4

1Assistant Professor, Department of Computer Science and Engineering, R.M.K College of Engineering and Technology, Chennai, India. arunmcse@rmkcet.ac.in
2Assistant Professor, Department of Computer Science and Engineering, R.M.K Engineering College, Chennai, India. sat.cse@rmkec.ac.in
3Assistant Professor, Department of Computer Science and Engineering, Rajalakshmi Institute of Technology, Chennai, India.
4Assistant Professor, Department of Computer Science and Engineering, R.M.K College of Engineering and Technology, Chennai, India. rejinpaulcse@rmkcet.ac.in

Abstract

Data analytics is played a vital role in Information Technology and Information Technology essential services ITeS for making effective decisions. The demand for tourism and prediction of tourist arrivals are important for tourism organisation. In this paper, we analyse tourist and extract information using data analytics process. The web data are processed using travellers’ details and applying an aggregate function to calculate the searching index. Here, we use the autoregression analytics method for accurate prediction. The tourist information is recorded and creates a system log for processing and extracting information. The interaction between each record and their logs are used for data processing and analytics model. This paper uses a recommendation system for the data analytics process and compares the results with existing models. Our proposed method provides good and accurate results for tourism organisation.

Keywords: Data Analytics, Prediction, Decision Making, Autoregression analysis, Aggregation, Knowledge Extraction, Data Scrabber, Aggressive-data sampling.

1. Introduction

The complex network and distributed computing systems emerge in the 1990s, and varieties of applications are developed. It is complicated networks consisting of nodes and edges, where the long ones represent the elements and the edges represent the intersection between objects. People expect to edit online resources at a very clever way and can be done very quickly, accurately, and discreetly to obtain what is needed information [1]. To meet this requirement, an information graph was presented. They strive to organise more information orderly and stable to give users more discerning accessibility, so ordinary users can know more quickly and accurately inform the information themselves require and make certain information mines wise decisions.

In recent years, ideas in-depth learning has achieved great success, and knowledge [2, 3].

The representation study has gradually become the focus of the present research. Learning information representation aims to study structures and relationships based on knowledge. Information to semantic data is presented as a real dimensional real-value value. To process, the semantic relationship between data and tuples are classified by using the regression method [3]. The problem with success, in turn, results in knowledge acquisition, extraction, and decision making for acquisition a great improvement. In this case, semantic mining is applied to finding graphs and representations. This stage, the information is stored in distributed logs. Several nodes multiple times exceeds the order of tens of millions [4].

Traditional recommendation programs are categorised recommendation systems based on content, standard
interactions filtering based on system recommendations, knowledge-based Recommendation systems recommendation programs, and basic hybrid recommendations programs. The data capture section makes extensive use of the Metaseeker tool to get complete, accurate, and timely user ratings as much as possible and uses MetaStudio and DataScraper on toolbar [5]. MetaStudiois an automated production tool website collection rules that describe the data web pages’ structure, which helps users display information. The design of targeted web pages ensures the accuracy of user information structures. Automatic calculation rules for releasing information at the actual establishment information model generate various information that is released instructional files used by the information output engine Data Scraper [6]. This paper will suggest a novel framework for analysing tourism information and tourism to effective decision-making according to the opinions expressed.

When dealing with data diversity in our multifunction recommendation system, the main challenge is commentary / emotional analysis of user reviews. To calculate the polarity score indicating the degree Customer does not like or dislike accommodation or travelled places. A simple Banks usually recommend on previous customer ratings Hotel, properties or features. Still, our specific recommender also uses reviews, numeric rank votes and video Views to take actual results of multitier customer feedback [7]. The score provides the text of user comments about a particular model. To deal with a wide variety of factors the data in the submitted procedure uses numeric data and text data, the great data solution that Hadoop has Used in our policy because it manages data efficiently diversity and diversity of data in the best way [8].

Has us travel type defined (solo, family, business, friends, and so on Couple) is an important part of this research. They are not alone considering different rating parameters and apply the Emotional feature analysis based on user reviews. For example, Trip Advisor allows travellers to rate hotels in several options Such as space, room, cleanliness, service, and staff. The process of collecting comments from text reviews [9]. This is called sentiment analysis/opinion mining. The number of studies currently available in the literature Performs emotional analysis using the latest technology methods to make recommendations. Machine learning classification is highly useful Techniques for the emotional classification of classifiers. The text can be divided into positive, negative, or neutral categories. The machine learning method, training, and examining datasets are very necessary. Using the training dataset to understand documents, the test dataset is used to verify performance [8].

The representation study has gradually become the focus of the present research. Learning information representation aims to study structures and relationships based on knowledge. Information to semantic data is presented as a real dimensional real-value value to process the semantic relationship between data and tuples are classified using the regression method [3]. The problem with success, in turn, results in knowledge acquisition, extraction, and decision making for acquisition a great improvement. In this case, semantic mining is applied to find graphs and representations. This stage, the information is stored in distributed logs. The number of nodes multiple times exceeds the order of tens of millions.

2. Related Works

Cillo Del Giudice et al., based on the assumption that data is run online dignity management (ORM) can help define how a particular tourism product can be made meet the needs of a particular segment of the audience/market is one of the first attempts to explore the real challenges, strategies, and implications of using large data analytics ORM tourist attractions [10]. Orvieto et al., Specifically, based on a multi-case learning approach involving three tourist destinations. The study is growing a framework that considers that Big Data analytics powerful data systems positively impact the development of ORM niche travel strategies and online strategies [11]. Also, the possibility of having advanced ORM strategies and online reputation improves internal competition tourism industry. Several investigators in the tourism and tourism industry have begun using web search data to predict tourism search. The final variance is expressed in terms of the arrival of visitors. For example, Skeete et al., emphasised that the increase in web traffic is cheaper quality predicting tourism demand, based on auto more aggressive-data sampling (AR-MIDAS) sample models [12].

Hung et al., show that Google Trends information for text and image search improves the quality of tourism demand, compared to simple smooth real-time series models or autoregressive models. Li et al., a tourist search engine data, predict with sound processing. Yang et al., shows using the traffic volume of the visitor’s web search Arrival predictions help improve predictability, especially compared to autoregressive average models (ARMA). Bugavedg et al., web search traffic to improve hotel accuracy search. Recently, a study of displays a compact search index linked to a standard variable (GDFM) to visitors [8].

The findings indicate that the method increases the prediction accuracy compared to the time series model and model based on a search index created by the principal genetic analysis. Camacho et al., show that Google’s search volume indices improve speculation of overnight stays in Spain. Thus, practical methods do not include leading indicators Grassani et al., using Google Trends immigration forecast data in Italy. Thus, the test contribution of Google Trends modified items toARIMA standard model and time series recovery a model with seasonal dummies and autoregressive elements. Gindi et al., integrate Google Trends data into online streaming lag (ADL) models predict visitor arrivals in four Austrians cities. More recently, Lay et al. show that a model-based approach using Google Trends data very high in predicting conversion points [7].

Mao et al. suggested that recommendation policies be developed to obtain appropriate and relevant recommendation; however, Customer-friendly recommendation Priority and choice. Generally, the recommendation system uses customer ratings and reviews from previous data based on hotel features or characteristics. So important, the challenge in this paper is to develop an
intelligent approach. Processes and analyses a wide variety of web data to get relevant original recommendations Customer choice. Lopez et al., explained very extensively Recommended filtering technology Cooperative filtering; However, presenting customer preferences and preferences. Their linked points in content-based recommendation System works by collecting user ratings for items in the similarities between a given domain and users or Items to make relevant recommendations [6, 12].

Jio Heeter et al., Describe the use of a cooperative filter a Uses a class of methods and other users’ preferences. They are displayed for similar items to recommend items to the active user, technology will also benefit Customer preferences in all other available domains—random change. User previous data for different products and goods just like hotels, travels, books, and articles are stored in systems. The cooperative filtering algorithm is used. Uses Rank boost algorithm and cluster-based collaborative filter Develop a recommended hotel recommendation system should be recommended according to Humming and Wiley [7].

Customers have their own choice. For quantitative and qualitative analysis, data were obtained from hoteltravel.com., Several systems previously recommended Developed by researchers and developers Collaborative filtering algorithms and methods were used to provide referral service. Uses filtering knowledge based on collaboration and content and assessing users’ interactions with other users Make some reductions in the feature area [12].

This paper is a system recommended by a specific travel review, specifications, and opinions. It works very efficiently and reduces the hotel Feature extraction gap using natural language comment mining Analysis. [13] It aims to address these challenges by proposing the algorithms to recommend personalised travel itineraries for both individuals and tourists based on their interest preferences. This recommendation system’s main approach is to improve the older existing applications by providing various analytical results. To make the best plans and to know multiple details about the unknown places is quite a difficult issue. So our recommendation system helps to solve such problems. [14] design and implement a mobile application for travellers to provide a better guide to save time, cost and increase their satisfaction. In the existing system, the author statically and offline based data aggregation for creating a travel sequence.

This travel sequence recommendation is not efficient in terms of cost and time. Hence, it is motivated to improve the traveller’s satisfaction by providing a self-experience and self-guidance through a novel mobile application (NMA). [15] introduced a Cloud-Based Distributed algorithm named “I Guide You - (IGY)” is designed and developed as a Mobile Application. To access IGY anywhere by anyone, it is designed as a parallel and distributed algorithm for improving efficiency in serving the users [16]-[21]. IGY is a peer-to-peer network application since any device can directly communicate with another device in the network [22].

With information graph design and implementation, they are currently facing three major challenges.

[1] Software comprehension problems caused by different types of software resources. There are many types of software utilities, as well as Software information features for different types of software services are also different
[2] The increase of software size and software complexity, more information needs to be understood and acted upon in software development and reuse, making learning High and high recurring costs.
[3] Software information extracted from various software applications, the number of bodies is many, and the relationships between cognitive frameworks are complex and need to provide a mechanism m to make it easier for users to find and browse information.

Figure 1 shows that information processing graph method of our proposed model. In this model, we used the cross-reference disciplinary collection model and matching each knowledge values. Each stage semantic modelling is used for prediction.

3. Proposed Method – Auto Regression Analysis

Density: Density function is used to measure trained deep learning results and knowledge matching results [23]-[27]. Here the query optimised values are compared with each iterative result and their semantic relations. The variations of inputs like tourist details, logos and characters are classified. To deal with a variation of the search term, as mentioned above, first, standard text-based strategies were developed, i.e., branding, character insert, word completion, and shaping. Second, each question has created a vector of words, based on content search terms, and we calculated similarities based on cosine similarities. The similarity index is calculated as follows,

\[
\text{Similarity}(A,B) = \frac{A \cdot B}{\|A\| \|B\|}
\]
\[\left(\sum_{i=0}^{n-1} A_i B_i / \left(\sum_{i=0}^{n-1} \text{pow}(A_i) \cdot \sum_{i=0}^{n-1} \text{pow}(B_i) \right) \right) \]

Whereas A and B are input vectors, and I represent an iteration process of each occurrence. The semantic mining is applied for measuring trends, covariance, roots, and correlation factors. Compared to existing literature, the standard action step improves the process of finding relevant search terms, aiming to improve prediction power and reduce any type of duplication by deleting search or similar search terms. Search term normalisation works with identify language differences, dictionaries, or meaningless variations resulting from the failure.

After the information graph is established, the information Graphic mines can greatly increase knowledge cover graph information. Information graph is based mining mainly involves two aspects: consultation information and user search mines. Input to software information Open sources project tools software tools such as open-source project code, bug reports, list of addresses, and documents. First, the graph is extracted from these software applications, and viz is called a software knowledge base. Then, the software information business relationships are established, to a graph of independent software information from various types of software resources are programmed together to make software information graph. The LBSN data is called location-based semantic data mining dataset.

Data set: Knowledge extraction filtering algorithm means user acquisition group with the same interests in the targeted user depending on target user preferences and content recommendations group to targeted user to provide customised services of the target user—autoregression algorithm based on available user behaviour data and calculates the similarity between user modes and test statistics. TrailModel, ZoloFM, TRAIT, AgileSpec, SWOTQ are taken real-time data values set and tested using the Amazon Redshift. Test data deep learn trained data and roots are specifies bundles for compared data.

This paper provides a pilot survey of Knowledge Extraction Using Data Analytics. Software comprehension problems caused by different types of software resources. There are many types of software utilities, as well as Software information features for different types of software services are also different. The increase of software size and software complexity, more information needs to be understood and acted upon in software development and reuse, making learning High and high recurring costs.

Software information extracted from various software applications, the number of bodies is many, and the relationships between cognitive frameworks are complex and need to provide a mechanism to make it easier for users to find and browse information. Amazon Redshift tool is used to find the performance. Query Optimisation, Test data, Similarity values are taken into account for finding the results, as shown in figure 2.

![Figure 2. Proposed Tourist Analysis model using Redshirt model](image)

In this model has built-in a structure of analytics system using Redshirt. Location awareness plays a very important role in the journey recommendations, and users make different decisions differently. How to apply a local theme to something find out exactly what user preferences and provide accuracy Personalised recommendations became a hot topic in a study to recommend mobility. This problem is particularly acute for the effectiveness of the recommendation system.

4. Implementation Model

Different inputs are taken from multiple sources and their behavioural values. When they recommend document products, it can use the classification method and content-based output method character characteristics. When they recommend multimedia products, it can then combine technology and knowledge of related fields remove product features. Qualities. As an integral part of the recommendation system, algorithm recommendation detects active user options and usage habits by mining rules in user history data. In summary, look at the following cases.

The job of recommending a travel plan includes various details such as location, weather, annotation, passenger travel, route, hospitality, etc., and recommends alternative alternatives for guests. Here are some tips to help you get started: divided into two types: independent formal recommendation and addition recommendations according to guest preferences.

Independent recommendation to explain the index the amount of weight in the system depending on the good appearance spots and related workplaces configured default view system navigation system, according to visitors’ favourites, to help recommendation, namely, Guest preferences are included about praise, as good places they
want to visit, favourite food, etc., and then combine various tourism data related to the system.

It recommended beautiful places with a few people, smooth driving lanes, easy bus transfers, special places for dining, sitting and playing near a beautiful place spot, and giving appropriate travel suggestions to visitors depending on passenger and weather conditions.

Case 1: The collaborative filtering algorithm also has the problem: it starts to get cold, and it can’t recommend new and new things users. Also, collaborative filtering requires discovery a large amount of historical data from users and there Denied data problem.

Case 2: From the algorithm-based content recommendation to remove object elements, a default feature addition is difficult to use for multimedia data. Simultaneously, user recommended content is limited things like user preferences, effect in poor contrast. New unselected users’ values, there is the first problem of a new user’s information.

Case 3: Hybrid can recommend a method to solve the technical problem of a single recommendation. Various recommendation techniques can be integrated depending on various hybrid techniques, such as weight loss, feature integration, hybrid, etc.

4.1 Recommendations

The job of recommending a travel plan includes various details such as location, weather, annotation, passenger travel, route, hospitality, etc., and recommends alternative alternatives for guests. Here are some tips to help you get started: divided into two types: independent formal recommendation and addition recommendations according to guest preferences.

Independent recommendation to explain the index the amount of weight in the system depending on the good appearance spots and related workplaces configured default view system navigation system; according to visitors’ favourites, to help recommendation, namely, Guest preferences are included about praise, as good places they want to visit, favourite food, etc., and then combine various tourism data related to the system.

It recommended beautiful places with a few people, smooth driving lanes, easy bus transfers, special places for dining, sitting, and playing near a beautiful place spot, and giving appropriate travel suggestions to visitors depending on passenger and weather conditions.

The following table 1 shows that dataset values from Amazon Redshit sources of Tourist information.

Table 1. The dataset from Amazon Redshit with query optimisation values

S.No	Dataset	Query Optimisation	Test data	Similarity
1	TrailModel	2356	345	125
2	ZoloFM	1276	157	189
3	TRAIT	3468	345	313
4	AgileSpec	876	643	432
5	SWOTQ	1290	542	189

![Figure 3. The dataset from Amazon Redshit with query optimisation values](image)

In figure 3, Knowledge extraction filtering algorithm means user acquisition group with the same interests in the targeted user depending on target user preferences and content recommendations group to the targeted user to provide customised services of the target user. Autoregression algorithm based on available user behaviour data and calculates the similarity between user modes and test statistics. The semantic values are calculated as follows,

\[S_k = \frac{1}{\sum_{i=0}^{K-1} (dA_i / dB_i) \ast N} \] (2)

The input features are calculated by using the optimal value of each dataset and similarity. The following is shows that supervised learning method for predicting results of arrival information.

\[X(i,j) = e^{\sum_{i=0}^{n-1} S_k(A,B) \sum_{j=0}^{n-1} S_k(A,B) / K(i,f)} \] (3)

The following table 2 shows that arrival information of each tourist and regression results.

Table 2. Arrival dataset information processing results using the Autoregression method

Dataset	Query Optimised results	Accuracy	Covariance	Trend	S/C (Support & Confidence Factor)
TrailModel	2356	0.89	0.72	2.34	0.01
ZoloFM	1276	0.75	0.45	3.21	0.01
TRAIT	3468	0.65	0.43	1.21	0.01
AgileSpec	876	0.97	0.65	1.67	0.01
SWOTQ	1290	0.56	0.32	2.21	0.01
The above figure 4 shows recommendations for calculating the predicting value of each dataset accuracy, covariance, and trends. The p-factor is calculated as follows:

\[
P-factor(A,B) = \left(\frac{1}{\sum_{i=0}^{n-1} x_i(A,j) \times S_k(i,j)}\right) / N
\]

(4)

Based on the above values the prediction factor is shown in table 3.

Table 3. p-factor result from Redshit tool

Dataset	Test data	roots	p-factor
TrailModel	345	75	0.54
ZoloFM	157	32	0.76
TRAIT	345	19	0.43
AgileSpec	643	120	0.52
SWOTQ	542	98	0.65

Therefore, in figure 5, adding Amazon Redshift data on how to practice predicting the arrival of visitors openly reduces predictive error and, as a result, confirms the following suggestion. i) This shows what guests do the widespread use of Internet search engines, such as Google, in the middle their data collection and travel planning phase, 2) the different search terms may be assigned separately travel planning stages as search terms have a longer time lag, which is a prerequisite for assembling them somewhere search index.

5. Conclusion

Data analytics is used for a variety of area for prediction and making effective decision. In this paper proposed an autoregression method for analysing tourist information and prediction factor. The dataset collected from Amazon Redshift and data model is created by using pre-processing and aggregation methods. We analysed tourist data performance by using arrival, query optimisation, history, trends, and roots. The knowledge extraction graph is created for each input instance values and set of the normalisation process is done. The results are analysed by using Redshit tool and performance is compared. In future, this model can be suggested for artificial neural network applications.

References

[1] W. Höpken, T. Eberle, M. Fuchs, and M. Lexhagen, “Improving Tourist Arrival Prediction: A Big Data and Artificial Neural Network Approach,” Journal of Travel Research, p. 0047287520921244, 2020.
[2] F. Zeng, “Tourism Recommendation System based on Knowledge Graph Feature Learning,” in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), 2020, pp. 110-114.
[3] A. Pitman, M. Zanker, M. Fuchs, and M. Lexhagen, “Web usage mining in tourism a query term analysis and clustering approach,” in Information and Communication Technologies in Tourism 2010, ed: Springer, 2010, pp. 393-403.
[4] H. Song, R. T. Qu, and J. Park, “A review of research on tourism demand forecasting: Launching the Annals of Tourism Research Curated Collection on tourism demand forecasting,” Annals of Tourism Research, vol. 75, pp. 338-362, 2019.
[5] H. R. Varian, “Big data: New tricks for econometrics,” Journal of Economic Perspectives, vol. 28, pp. 3-28, 2014.
[6] Y.-Y. Liu, F.-M. Tseng and Y.-H. Tseng, “Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model,” Technological Forecasting and Social Change, vol. 130, pp. 123-134, 2018.
[7] N. Kamel, A. F. Atiya, N. El Gayar, and H. El-Shishiny, “Tourism demand forecasting using machine learning methods,” ICGST International Journal on Artificial Intelligence and Machine Learning, vol. 8, pp. 1-7, 2008.
[8] E. Kim, J.-A. Lee, Y. Sung, and S. M. Choi, “Predicting selfie-posting behaviour on social networking sites: An extension of the theory of planned behaviour,” Computers in Human Behavior, vol. 62, pp. 116-123, 2016.
[9] P. Kennedy, A guide to econometrics: John Wiley & Sons, 2008.
[10] S. S. Padhi and R. K. Pati, “Quantifying potential tourist behaviour in choice of destination using Google Trends,” Tourism Management Perspectives, vol. 24, pp. 34-47, 2017.

[11] D. R. Osborn, A. Chui, J. P. Smith, and C. Birchenhall, “Seasonality And Ti-le Order Of Integration for Consul/[PTITION,” Oxford Bulletin of Economics and Statistics, vol. 50, p. 4, 1933.

[12] S. Manikandan, M. Chinnadurai, D. M. M. Virnny, and D. Sivabalaselvamani, “Real Time Traffic Flow Prediction and Intelligent Traffic Control from Remote Location for Large-Scale Heterogeneous Networking Using TensorFlow,” International Journal of Future Generation Communication and Networking, vol. 13, pp. 1006-1012, 2020.

[13] L. Maria Michael Visuwasam, D. Paulraj, G. Gayathri, K. Divya, S. Hariprasath, and A. Jayaprakashan, “Intelligent Personal Digital Assistants and Smart Destination Platform (SDP) for Globetrotter,” Journal of Computational and Theoretical Nanoscience, vol. 17, pp. 2254-2260, 2020.

[14] L. M. M. Visuwasam and D. P. Raj, “NMA: integrating big data into a novel mobile application using knowledge extraction for big data analytics,” Cluster Computing, vol. 22, pp. 14287-14298, 2019.

[15] L. M. M. Visuwasam and D. P. Raj, “A distributed intelligent mobile application for analysing travel big data analytics,” Peer-to-Peer Networking and Applications, pp. 1-17, 2019.

[16] Rao, A. N., Vijayapriya, P., Kowsalya, M., & Rajest, S. S. Computer Tools for Energy Systems. In International Conference on Communication, Computing and Electronics Systems (pp. 475-484). Springer, Singapore, 2020.

[17] A. Abu-Rumman, A. Mhasnah, T. Al-Zyout, “Direct and Indirect Effects of TQM on the Patients’ Satisfaction and Loyalty in the Jordanian Health Care Sector.” Management Science Letters, Vol.11, Issue 2, 493–502, Sep. 2020.

[18] Gupta J., Singla M.K., Nijhawan P., Ganguli S., SSR. An IoT-Based Controller Realisation for PV System Monitoring and Control. In: Haldorai A., Ramu A., Khan S. (eds) Business Intelligence for Enterprise Internet of Things. EAI/ Springer Innovations in Communication and Computing. Springer, Cham, 2020.

[19] Haldorai, A., & Kandaswamy, U. Distributed Algorithms for Learning and Cognitive Medium. EAI/ Springer Innovations in Communication and Computing, 87–109, 2019. doi:10.1007/978-3-030-15416-5_5

[20] Sharma M., Singla M.K., Nijhawan P., Ganguli S., Rajest S.S. An Application of IoT to Develop Concept of Smart Remote Monitoring System. In: Haldorai A., Ramu A., Khan S. (eds) Business Intelligence for Enterprise Internet of Things. EAI/ Springer Innovations in Communication and Computing. Springer, Cham, 2020.

[21] H, A., & K, U. (2018). Cooperative Spectrum Handovers in Cognitive Radio Networks. EAI/ Springer Innovations in Communication and Computing, 47–63. doi:10.1007/978-3-319-91002-4_3

[22] A. Abu-Rumman, “Challenging tradition: Exploring the transition towards university entrepreneurialism” Academy of Entrepreneurship Journal, Vol. 25, Issue 2, 1-12. Jun 2019.

[23] Singla M.K., Gupta J., Nijhawan P., Ganguli S., SSR. Development of an Efficient, Cheap, and Flexible IoT-Based Wind Turbine Emulator. In: Haldorai A., Ramu A., Khan S. (eds) Business Intelligence for Enterprise Internet of Things. EAI/ Springer Innovations in Communication and Computing. Springer, Cham, 2020.

[24] D Datta, S Mishra, SS Rajest. “Quantification of tolerance limits of engineering system using uncertainty modeling for sustainable energy” International Journal of Intelligent Networks, Vol.1, 2020, pp.1-8, 2020.

[25] Leo Willyanto Santosoto, Bhopendra Singh, S. Suman Rajest, R. Regin, Karrar Hameed Kadhim, “A Genetic Programming Approach to Binary Classification Problem” EAI Endorsed Transactions on Energy, 2020. DOI: 10.4108/eai.13-7-2018.165523

[26] A. Abu-Rumman, "Project Management: a help or hindrance a collaborative research," Al-Balqa Journal for Research and Studies. Vol 23 Issue 1, Article 9, Nov. 2020

[27] R. Regin & T. Menakadevi, A Novel Rough Set Based Congestion Control Technique for the Effective Routing in WSN, World Applied Sciences Journal, International Digital Organization for Scientific Information, Pakistan, January 2016, 34(11):1512-1518.