Manish Kumar and RK Naik

DOI: https://doi.org/10.22271/chemi.2020.v8.i3p.9365

Abstract

In Chhattisgarh, maize is a kharif season crop and second most important crop next to paddy in terms of both area and production. Ridging of maize crop 30 day after sowing (DAS) is a very important operation as the major chunk of maize acreage of the state is rainfed. Maize ridging is conventionally done by manually which involves extensive labours compared to other operations, this result in higher cost of cultivation and required higher drudgery. There is a need to popularize low cost ridging technology which is suitable for small and medium farmer under stress environments. The crop, machine and operational parameters were identified and selected and the animal drawn maize ridger was developed and evaluated for its performance in actual field conditions. The ridge dimensions were optimized top width, bottom width and ridge height 12.75cm, 43.75cm and 16cm respectively with total volume of soil cover 452.31cm³ considering plant height and row to row spacing. The average draft of the ridger 69.81 kg-f was observed during ridging operation. The field capacity of the maize ridger was 0.06ha/h with field efficiency of 74.46 percent. The cost of operation of maize ridger for ridging maize was found to be 1737.79 Rs/ha.

Keywords: Maize, ridger, ridging technology, Bullock

Introduction

Maize (Zea mays L.) is one of the world-leading cereal crops with the global area under cultivation of 183Mha with a production of 1065 MT and productivity of 5.82 tonnes/ha in 2016-17. The United States and China are the largest maize producers followed by Brazil, Argentina, and India, respectively. In India, maize is the third most important cereal crop after rice and wheat, accounting for ~9% of total food grain production. It was cultivated in an area of 9.6 Mha during 2016-17 with a production of 26.00 MT and productivity of 2.71 tonnes/ha (Anonymous, 2017) [1]. Karnataka, Andhra Pradesh, Bihar, Madhya Pradesh, Rajasthan, Maharashtra, Tamil Nadu, Uttar Pradesh and Chhattisgarh are major maize growing states in India. Major sources of farm power include both animate (humans and draught animals) as well as inanimate sources such as diesel engines, tractors and electric motors. Bullock is one of the cheapest and oldest sources of draught power for all types of agricultural operation. Bullocks are mainly used for tillage and sowing operations. Though the population of draught animal is declining but still more than 50 percent net sown area is cultivated by animal power source. Chhattisgarh state of India, which has a large cultivable area, good natural resources, also has very large cattle population. These animals are small to medium size (250 to 450 kg) with a draught ability of 10 to 12 percent of their body weight (AICRP on UAE Report 2008). Most of the marginal and small farmers in this region depend on animal power for farm operations like tillage, sowing and threshing operations.

Khan et al. (2010) [3], Thakur et al. (2003) [4], Memon et al. (2011), Ranawat et al. [6] worked on maize tillage management and improves the crop condition as well as yield. Sowing on ridge may provide better condition for aeration and also require less irrigation water. Labor scarcity delays these agricultural operations which has adverse effects on crop production. Therefore, there is a need to mechanize the ridging operation of maize and other crops which will result in saving of time, money and labor. Thomas and Kaspar (1997) [1] reported that improved understanding of maize (Zea mays L.) nodal root response to soil ridging is needed to allow farmers to maximize the benefits of ridge tillage systems. Birkas et al. (1998) [3] were carried out study in order to determine the effect of traditional and ridge tillage systems on soil
status yield and weed cover for three years. Ahmad et al. (2000) [2] conducted a field study pertaining to different inter-tillage practices on maize. Ridging of maize crop is an essential operation 30 DAS. This prevents the plant from lodging with better stand ability. Moreover, it also provides anchorage of the lower whorls of adventitious roots above the soil level which then function as absorbing roots. Ridging improves yield but is labour intensive and it is done by hand with a hoe, spade etc. by farmers.

Materials and Methods

The Bullock drawn ridging equipment was designed with various features like provision to vary the spacing of the ridge width, suitable mechanism to maintain the depth of soil penetration to optimize the crop parameter to achieve the desired plant growth. Designs requiring machining processes were generally avoided so as to make the technology accessible to rural artisans and manufacturers, who normally do not have expensive machinery such as lathes and milling machines. No alloy steels were used, but mild steel, which is locally available were used for fabrication of the various parts of implement shown in Table 1: unnecessary weight, which leads to added strain for the draught animals as well as for the user controlling the implement, was avoided. Enough clearance provided to allow proper ridging and weeding with already established crops up to knee height without plant damage. Adjustments were limited to the practical ones so as to keep the design as simple as possible and easy to use. Designs and technologies associated with high tooling costs, in particular machining, were avoided in order to keep the cost of production. In addition, the bolt sizes chosen were generally the same as those used on the animal drawn mould-board plough so as to avoid the acquisition of extra spanners.

Design of frame for the ridger:

\[
D = \text{Knab} \\
= \frac{K \times a \times b}{2}
\]

Where,
- \(K\) = Unit draft, kg/cm²;
- \(n\) = Number of bottom = 2;
- \(a\) = Depth of ploughing, cm = 10 cm; and
- \(b\) = Width of furrow slice, cm.

For, medium soil \(K = 0.5\) kg/cm²

\[
D = \frac{0.5 \times 10 \times 7}{2} = 17.5 \text{ kgf}
\]

Constructional Details

The locally available suitable materials were used for the fabrication of different components of the adjustable animal drawn ridging implement. The main components of the adjustable animal drawn ridging implement are as follows: Mainframe, Handle, Hitch and beam, Tyne, Share, Mouldboard, Landside, Frog.

Table 1: Selection of material for various component of bullock drawn maize ridger

S. No.	Parts	Material	Size, mm
1	Frame	Angle Iron	35x35x5
2	Hitch	MS flat	40 x 5
3	Handle	MS flat	40 x 5
		MS pipe (Dia.)	30
4	Tyne	MS angle Iron	25x25x5
5	Furrow openers		
	a) Mould board	MS sheet	3
	b) Share	MS sheet	5
	c) Frog	MS sheet	3
	d) Landside	MS flat	40 x 5
6	Beam	MS pipe	
	i. Dia.	60	
	ii. length	3060	

The plant height and row spacing were affected the performance of ridging operation which were considered for the design of the maize ridger. The unit was designed to ridging single rows of maize crop with adjustable spacing between two furrow openers (31.5 to 51 cm). The machine offers the apparent advantage of timely ridging, weeding, saving of time, and labour costs and therefore, helps reducing the cost of production besides reducing the drudgery of the task. Considering the factors discussed above, an animal drawn maize ridger was developed with a set of functional components including Main frame, share, mould-board and landside-frog assembly. Ridges and furrows can be effectively formed by using animal drawn ridgers. The soil thrown by the wings of the ridgers covers the root and stem zone of the plants. Two opposite mould board bottoms were selected for the formation of ridger.

Fig 1: Orthographic view of Developed maize ridger

Design of frame for the ridger:

\[
D = \text{Knab} = \frac{K \times a \times b}{2}
\]

Where,
- \(K\) = Unit draft, kg/cm²;
- \(n\) = Number of bottom = 2;
- \(a\) = Depth of ploughing, cm = 10 cm; and
- \(b\) = Width of furrow slice, cm.

For, medium soil \(K = 0.5\) kg/cm²

\[
D = \frac{0.5 \times 10 \times 7}{2} = 17.5 \text{ kgf}
\]

Assuming vertical component of pull = 25% for medium soil

\[
V = 0.25 \times 70 = 17.5 \text{ kgf}
\]

Assume the weight of MB (W) = 5 kg × 2 = 10 kg

Weight of soil over MB surface = \(V-W = 17.5-10 = 7.5 \text{ kg}\)

Total pull exerted by the machine is given by

\[
P = \frac{(D^2 + (V-W)^2)^{1/2}}{2}
\]

\[
= \frac{(70^2 + (17.5 - 10)^2)^{1/2}}{2}
\]

\[
= 70.40 \text{ kg}
\]

Horizontal component of soil reaction (Rh) = \(Ph = 70 \text{ kg}\)

Vertical component of pull (Pv) = \(V = 17.5 \text{ kg}\)

Vertical component of soil reaction (Rv) = \(Pv-W = 17.5-10 = 7.5 \text{ kg}\)

\[
Rv \times 48 - Rh \times 48 + Rxx \times 48 = 0 \text{ (let Rv act at 48 cm)}
\]

\[
Rxx = 62.5 \text{ kg}
\]
\[\frac{S_s}{Y} = \frac{T_o}{I} \quad (3) \]

\[I = \frac{bd^3}{12} = \frac{d^4}{12} \quad (as \ b = d) \quad (4) \]

\[I = \frac{d^4}{12} \times Y = \frac{d^4}{12} (d/2) \]

\[\frac{S_s}{Y} = \frac{P}{I} \]

\[\frac{L}{Y} = \frac{P}{S_s} \]

\[\frac{d^4}{12} - \frac{P}{S_s} \]

\[d^3 = \frac{6P}{S_s} \]

\[d^3 = \frac{6 \times 70.40}{350} \]

\[d = 1.06 \text{ cm} \]

Fig 2: Calculation of Forces acting on frame

Taking factor of safety the d may be increased to 2.5 times and according to availability of material the angle iron having size 2.5 x 2.5 x 0.5 may be taken as square section.

Experimental Details

The field performance tests were carried out obtains actual data on overall implement performance and work capacity in the field. The field trials of animal drawn implements were conducted in the field of I.G.K.V., Raipur, which is situated at the south-eastern part of Chhattisgarh and lies between 21016'N latitude and 81036'E longitudes with an altitude of 298m above the mean sea level. The soil of the experimental field was clay loam in texture. The average initial bulk density and moisture content were observed as 1.85 t/m³ and 14.98% (db), respectively, for the depth of 0-150 mm.

Results and Discussion

The performance of designed and fabricated maize ridger was tested in the laboratory as well as in the actual field condition for maize crop, to examine the performance of maize ridger. A pair of bullock/buffalos was used to draw the implements throughout the experiment. During the field trial proper spacing between two furrows openers to obtain proper ridge dimensions with minimum plant damage through the implement were optimized. During field trial it was observed that higher ridge dimensions bottom width (43.5 cm), top width (12.75 cm), ridge height (16.88 cm) was obtained with T3 (inclined mould-board with 44.50 cm spacing between two furrow openers of developed ridger). The dimension of the ridge at various spacing and with different treatments were measured during field trial and presented in Table: 2 and suitable spacing for ridging was optimized.

Fig 3: Functional requirement of developed maize ridger
Table: 2 Height, width and soil handled obtained by different types of mould board with different furrow spacing.

Parameter	T1=SMB*	T2=STMB**	T3=IMB***	
S1=31.50	Height, cm	12.5	13.88	17.63
S2=38.00	Width, cm	30.63	30.88	30.75
S3=44.50	Volume, cm³	239.48	267.34	347.54
S4=51.00	Height, cm	10.75	13.25	16.88
	Width, cm	49.75	43.38	43.5
	Volume, cm³	328.04	335.12	393.88
	Mean	11.56	12.63	13.38

*SMB = Steep mould-board, **STMB = Standard mould-board, ***IMB = Inclined mould-board and S1 to S4 spacing of furrow openers in cm

Fig. 4 Different types of mould board designed for optimization of developed maize ridger for ridging

The field test of developed ridger was carried out at an average plant height of 35.54 cm. The average moisture content at 2.5 to 20 cm depth was 16.69 % at dry basis, 14.30% at wet basis and the bulk density during trail was found to be 1.85t/m³. The height of plant of maize crop, moisture content and bulk density of soil during ridging operation is presented in Table: 3.

The maximum theoretical field capacity was observed with S4–51cm (0.09 ha/h) followed by S3–44.5 cm (0.08 ha/h), S2–38 cm (0.07 ha/h) and S1–31.5 (0.05 ha/h) cm respectively. It was also observed that variation in effective field capacity of the developed ridger during field test with respect to different spacing. The maximum effective field capacity was observed with S4–51cm (0.06 ha/h) followed by S3–44.5 cm (0.06 ha/h), S2–38 cm (0.051 ha/h) and S1–31.5 (0.042 ha/h) cm respectively. The detailed data were shown in Table: 4.

Table: 3 Plant height, moisture content and bulk density of soil during testing

S.No.	Plant height, cm	Moisture content, % wb*	Moisture content, % db**	Bulk density, t/m³
Range	34-38	13- 15.25	14.94-18.20	1.79-1.91
Mean	35.54	14.3	16.69	1.85
SD	25.70	32.42	7.18	0.043

*wb = wet basis, **db = dry basis

Table: 4 Field capacity and field efficiency of developed ridger at different spacing

Parameter	EFC- Effective field capacity	TFC- Theoretical field capacity	FE- Field efficiency
S1=31.50	0.04	0.05	72.49
S2=38.00	0.05	0.07	74.46
S3=44.50	0.06	0.08	74.74
S4=51.00	0.07	0.09	74.74
Mean	0.05	0.07	73.87

Note- S1 to S= Spacing in cm

Table: 5 Draft and power requirement of developed ridger at different spacing

S. N	Parameters	Draft, kg-f	Power requirement, hp
1	S1=31.50	68.54	0.48
2	S2=38.00	69.12	0.48
3	S3=44.50	70.15	0.49
4	S4=51.00	71.42	0.5
5	Mean	69.81	0.49
The cost of operation of developed maize ridger was carried out as shown in Table: 6. The total cost of operation of developed bullock drawn maize ridger 30 DAS was found 1737.79 Rs/ha.

S. No.	Particular	Maize ridger
1	Cost of machine, Rs	2960
2	Life of the machine (year)	5
3	Annual use (h)	240
4	Depreciation, Rs/year @10%	532.8
5	Interest, Rs/year @12%	195.36
	Total (4+5) Fixed cost (Rs/Year)	728.16
A	Fixed cost (Rs/h)	3.03
B	Operational cost	
1	Wage of 1 operator (200 Rs/day*), Rs/h	25
2	Hiring charges of bullock (300 Rs/day*), Rs/h	75
3	Repair and maintenance, Rs/h	1.23
	Total operational cost, Rs/h	101.23
	(A+B) Machinery cost, (Rs/h)	104.27
	Machine capacity	0.06
	Total machinery cost in, (Rs/ha)	**1737.79**

*1 day i.e. 8 hour of work

References

1. Anonymous, 2017. http://agricoop.nic.in/recentinitiatives/pocket-book-agricultural-statistics-2017.
2. Ahmad W, Ahamad AUH, Zamir MSI, Afzal MA, Mohsin U, Khalid F et al. Qualitative and quantitative response of forage maize cultivars to sowing methods under subtropical conditions. The Journal of Animal & Plant Sciences, 2012; 22(2):318-323.
3. Birkas M, Gyuricza C, Percze A, Szalai T. Experiments with ridge tillage for maize in a brown forest soil. Novenyterme, 1998; 47(5):559-57.
4. Thakur HS, Girothia OP, Holkar S, Sharma RA. Effect of Land Treatments on Productivity of Rainfed Maize (Zea Mays L.) Varieties Grown on Vertisols of Madhya Pradesh. Crop Resesrch Hisar. 2003; 26(1):75-78.
5. Khan JN, Dixit J, Shakla RM. Mechanization possibilities of maize cultivation in hilly regions of Jammu and Kashmir state of India. Agricultural mechanization in Asia, Africa, and Latin America. 2010, 41(3).
6. Ranawat Y, Ram H, Sisodia SS, NK. Panjabi 2011. Adoption of improved maize cultivation practices by trained and untrained farmers of kvk, Udaipur. Raj. J. Extn. Edu., 19144-147.
7. Thomas AL, Kaspar TC. Maize nodal root response to time of soil Ridging. Agronomy journal, 1997; 89(2):195-200.
8. Raghavendra, Veerangouda M, Prakash KV, Palled VK, Hiregoudar SK, Maski D. Development and evaluation of ridge planter for cotton. Karnataka J. Agric. Sci., 2013; 26(1):88-91.