Abstract

This study examined sensations of air temperature variability and mitigation strategies in the Niger Delta, Nigeria using the cross-sectional and descriptive research designs. This study purposively selected the Capital Cities of the nine states in the study area; while the simple random sampling technique was used to select the study elements. Taro Yamane (1967) formula was employed in determining the study sample size of 400 which was apportioned to each of the cities based on proportional allocation with respect to the population of the cities, hence forming the basis for the distribution of the survey questionnaire. The results show that majority were aware of the impacts of temperature and rated the temperature in the neighborhood as high, but not aware of the comfort threshold of air temperature. Majority had never taken personal steps to mitigate high temperature and at the same time not satisfied with the level of temperature in their urban environment. Urban growth and rise in population, construction materials of urban surfaces, removal of trees/vegetation, manmade heat, air pollutants emission, congestion of buildings and time of season were found to stimulate high temperatures in the cities. Human discomfort, excessive heat, illness and diseases, soil aridity/lack of water in soil, poor air quality, increase in diseases vectors, increase in energy demand and usage, and dehydration of the body and regular thirst for water were found to be impacts and problems associated with high temperature. The prevailing strategies adopted to mitigate impacts of high temperature were only the use of electric fans (63.50%) and drinking of plenty water (92.50%). Therefore, the study recommends among others that planting and preservation of trees should be encouraged, mass awareness campaign on practices that exacerbate high temperature should be sponsored by the authorities, and regulatory agencies should strictly control urban growth and be committed to the enforcement of environmental policies.

Keywords: Climate Change; Sensations; Air Temperature; Variability; Mitigation Strategies; Niger Delta.

1. Introduction

More than half of the world's population (55%) and many of its socioeconomic activities are concentrated in cities, and this population is expected to grow to 68% by 2050 (United Nations, Department of Economic and Social Affairs, Population Division (UN DESA, 2014 and 2018)) [1-3]. However, a significant portion of this population and economic activities are threatened by global climate change and extreme weather, including a significant amount of global greenhouse gas emissions produced by these concentrated urban-based residents and their undertakings [4]. The natural covering of the urban environment consisting of vegetation, bare soils, water bodies, wetlands and open spaces...
land use types like buildings, roads, pavements and other artificial structures made of different materials such as asphalt, metals and bricks, which in their rights can absorb heat in the day and thereafter release same at night; all together leading to rise in the surface temperature of the urban milieu and this in turn donates to the development of the Urban Heat Island (UHI) phenomenon [5-9].

The UHI is an indicator of warmer temperature in urban environments as opposed to cooler temperatures in adorning rural areas due to increased temperature of the urban surface [8, 9]. These scenarios experienced in urban environments are expected to be worse in time, given the fact that the world is still urbanising, except conscious efforts and frantic commitments are made towards reordering the paradigm by all means disposable. Universally air temperature (AT) or land surface temperature (LST) can be denoted as the temperature of the air as observed at between 1.2 m and 2m above the ground surface [10, 11], which according to Voogt and Oke (1997) in Unger et al. (2009) is the overall surface temperature which cannot be determined straight-away or from a particular direction, but rather can be considered or assessed as an outcome of the radiations coming from the totality of surfaces, both from plane and plumb directions [12, 13].

The urban microclimate is impacted by various biophysical elements of the urban environment such as surface materials, city structure, introduction of heat, air pollution, disposition of precipitation and urban vegetation [14, 15] dense building developments, landuse changes and plenty other human activities (Hong Kong Observatory, 2018) [16]. Studies have identified several other factors that influence temperature variability such as seasonal variances in solar radiation [17]; anthropogenic emissions (Intergovernmental Panel on Climate Change IPCC, 2018) [18]; weather conditions, latitude, time, topography, stability, wind, cloudiness, snow cover, artificial heat sources and street geometry [19]; seasonal differences in rainfall and prolonged dry or wet seasons [58]; climate change [20]; land use change and urbanisation process [15, 21-27]; and thermal characteristics of the construction materials in the cities [28].

A close look at these variables reveals that urbanisation and its features and man’s quest for survival and comfort are focal drivers of high air temperatures. Even in the face of supposed natural phenomena as advanced by Saadatabad & Bidokhti (2011) [19], Feulner et al. (2013) [17], Ayanlade (2016) [5] and Igou (2017) [8]; man’s inherent proclivity to adjust and adapt to these phenomena with all his paraphernalia all in the bid for his continuous wellbeing and sustenance make him the fulcrum of air temperatures variability.

The effects of climate-related risks such as high temperature may be short-termed, longer or irreversible as in the case of the loss of some ecosystems, contingent on the proportion, peak and length of warming (IPCC, 2018) [18]. Nonetheless, some of the effects include protracted hot season [14]; upsurge in energy demand, usage and thus spending in addition to degrading the air quality via the emission of more heat from vehicles and air-conditioners intended to bring comfort [14, 29, 30]; reduced agricultural produce [14]; numerous health impacts including heat stress, heat cramps, heat exhaustion, heatstroke (Harmon, 2010 [31]; Canadian Centre for Occupational Health and Safety (CCOHS), 2019 [32]), hyperthermia and hypothermia, cardiovascular, kidney, and respiratory and Premature deaths [33].

However, high temperature can be mitigated by good legislations; tree planting; suitable zoning policies that will develop road networks and industries that will support efficient burning of fossil fuel; environmental awareness; compliance to development regulations [22]; conservation of the urban ecosystems and planning small, detached, and stretched cities which are better [34]; and provision of complementary urban amenities [8]. In addition, reorientation of citizens attitude and sincere commitment of the authorities to provide and strictly enforce planning regulations and instil friendly environmental practices and behaviours, especially in less developed and developing countries, will to a large extent complement any other mitigation actions.

Truly datasets on trustworthy air temperature files are limited, just as the number of weather stations that produce time series recordings are limited; therefore deficient in being representative of wider areas; and thereby giving rise to application of satellites [10, 11, 35]. The foregoing not only implies that there are numerous studies previously conducted in the general sphere of air temperature variability, but also that there is fundamentally meagre attention towards public perception on factors of urban air temperature variability. Whereas, what people feel, belief and how they behave build their culture which in turn reveals possible events in their environment, as well as where and how to track them and further actions to be taken on them (Ingold, 2000 [36]; Danielson, 2015 [37]); and for the aptitude of humans to competently handle and control the natural resources of the environment to increase, the opinions and sensations of the population of the related immediate environment necessarily have to be taken into consideration along with those of experts or administrators (UNESCO, 1977) [38]. It is against these backdrops that this study was undertaken to examine the perceived causes and impacts of high air temperature sensations and assess the strategies adopted by the urban residents to mitigation high air temperature in the capital cities of Niger Delta States.
2. Materials And Methods

2.1. Study Area

This study was carried out in the Niger Delta Region (NDR) of Nigeria located between latitudes 4.15°N and 7.17°N and longitudes 5.05°E and 8.68°E at the southern belt of forest soils [39]. It comprises Abia, Akwa Ibom, Bayelsa, Cross Rivers, Delta, Edo, Imo, Ondo and Rivers States and collectively covers a land area of 112,110 km², which is 12% of the total land area of Nigeria (NDDC, 2006) [40]. It falls within the tropical rainforest climate and a warm humid sea to land seasonal wind, characterising wet and dry seasons [41]. The mean annual rainfall is between 2000mm to 4500mm around the northern fringe to the coastal margin [42] and average temperature of 27°C along the coastal fringe to about 28°C in the interiors [42]. The soil is rich in vast alluvial basin consisting of medium to coarse unconsolidated sands, silt, clay, shale and peat which cut across its flat, low-lying swampy basin that is traversed by a solid web of winding rivers and creeks characterising a ridge and valley topography (NDDC 2006). The region is rich in flora and fauna which are spread in five major ecological zones, namely; mangrove swamp forest eco-zone, fresh water swamp forest eco-zone, tropical (lowland) rainforest zone, derived savannah eco-zone, and montane region eco-zone (NDDC, 2006). It is richly endowed with abundant crude oil and gas reserves, which collectively accounts for about 90% of the nation’s earnings, as well as other minerals (NDDC, 2006). The region is dominated by significant proportion of young people with over 62% of the population below the age of 30 years spreading across its 185 local government areas and 40 ethnic nationalities speaking over 250 indigenous languages and dialects (NNDC 2006).

Predominant activities in the region beside the oil and gas sector include fishing, farming, trading and traditional arts (NDDC, 2006).

![Figure 1. Niger Delta Region showing states](image)

2.2. Methods

This study adopted the cross-sectional and descriptive research designs, while the target population of the study comprised the nine states that make up the Niger Delta region of Nigeria with a projected population 51,778,831 people as at 2021. The Capital Cities of all the nine states that make up the Niger Delta Region, namely; Akure, Asaba, Benin, Calabar, Owerri, Port Harcourt, Umuanha, Uyo, and Yanegoa where purposively selected for the study; while the simple random sampling technique was used to select the study subjects. The primary data emanated from administration of a multiple-option questionnaire; while the secondary data were obtained from available literature on the subject matter from books, journals, and newspapers. For sake of ease of computation and presentation, the
selected cities were encoded as follows: Akure - AKU; Asaba - ASA; Benin - BEN; Calabar - CAL; Owerri, - OWE; Port Harcourt - PHC; Umuahia - UMU; Uyo - UYO and Yenagoa - YEN. Table 1 shows the population of the selected cities, the study sample size which was derived with the Taro Yamane (1967) formula \[n = \frac{N}{1+N(e^2)} \text{,} \]

Where; \(n \) is sample size required; \(N \) is total population; \(e \) is level of significance (0.05)\(^2 \) or level of tolerance; Thus:

\[n = \frac{7,800,194}{1 + \frac{7,800,194 (0.05)^2}{7,800,194 (0.0025)}} = 400 \]

Table 1. Sample Size Determination and Distribution for Each Selected Urban Area

S/N	States selected by purposive sampling	Population of Urban Areas by 1991 census	Population of Urban Areas by 2006 census	Population of Urban Areas by 2021 projected from 2006	Distribution of sample size by proportional allocation
1	Akure	239,124	425,000	671,550	34
2	Asaba	49,725	149,603	244,322	13
3	Benin	762,719	1,140,000	1,729,839	89
4	Calabar	310,839	375,196	583,152	30
5	Owerri	119,711	390,000	635,014	33
6	Port Harcourt	703,421	1,480,000	2,464,631	126
7	Umuahia	147,167	250,230	391,003	20
8	Uyo	244,762	315,000	532,495	27
9	Yenagoa	N/A	352,285	548,188	28
	Total	2,577,468	4,886,314	7,800,194	400

NB: (a). The growth rates for the states are Abia = 2.74%, Akwa Ibom = 3.5%, Bayelsa = 2.96%, Cross River = 2.94%, Delta = 3.27%, Edo = 2.78%, Imo = 3.25%, Ondo = 3.05%, Rivers = 3.47%. (b). Population figures are based on the National Population Commission 1991 census and 2006 national census final results; (c). The 2021 population is based on the researcher’s projections estimated from 2006 national census figures.

3. Results and Discussions

3.1. Socio-Economic and Demographic Characteristics

The results on the socio-economic and demographic characteristics of the respondents in the Niger Delta Region are presented in Table 2. The result shows that male respondents were more in number (63.50%) than their female counterparts (36.50%); while the major age bracket was 26-35 years (32.25%); followed in rank by age brackets 36-45 years (26.25%); 18-25 years (22.00%); 56 years and above (10.25%); and 46-55 years (9.25%). This finding on age suggests that majority of the residents in the cities are mainly composed of youth population, and this verifies an earlier report of the Niger Delta Development Commission (NDDC) (2006) which proclaimed that the Niger Delta region is dominated majorly by greater population of youths with over 62% of the population being below the age of 30 years, whereas adults in the age group of 30-69 years (which also includes some young people) constitute only 36% while the remaining 2% of the population are those aged of 70 years and above (NNDC, 2006).

It was revealed that on the highest level of education attained by the respondents those with Bachelor of Science (BSc) degree were in majority (33.75%); those with West African Senior Secondary Certificate/Senior Secondary Certificate (WASSC/SSC) and its equivalents followed with 15.5%; those that possess Master of Science (MSc) degree were 15.25%; Higher National Diploma (HND) holders were 13.50%; National Diploma (ND) holders constituted 12.75%; First School Leaving Certificate (FSLC) holders covered 5.0%; Doctor of Philosophy (PhD) holders were 3.25%; while those without any educational qualification were a meagre 1.0%. This finding signifies that these states where some residents did not obtain any educational qualifications seem to be the educationally disadvantaged in the region.

The findings on occupation of residents in hierarchy show that greater proportion of the respondents were civil/public servants (44.5%); while the skilled/self-employed covered 17.0%; students represented 14.0%; trader/businessmen took 13.5%; those engaged in farming/fishing covered 7.5%; and the unemployed residents were 3.5%. It follows from this results that agrarian activities are almost non-existing in the urban environments. Regarding annual income, it was reveals that ₦216,000\(^* \) and below was the popular annual income bracket of the respondents

\[^* N = 0.0024 \]
(34.0%); followed in succession by income brackets ₦217,000 - ₦400,000 (18.5%); ₦1,000,000 and above (16.75%); ₦801,000 - ₦1,000,000 (12.75%); ₦601,000 - ₦800,000 (7.0%); while income bracket ₦401,000 - ₦600,000 and those that do not earn any income represented 5.5% each. This finding on income presupposes that majority of the residents in the Niger Delta are living below the extant national minimum wage of ₦30,000 which would translate to ₦360,000 per annum and this scenario culminates to the fact that poverty rate in the Niger Delta region is very high.

Table 2. Socio-Economic and Demographic Characteristics

Gender	AKU	ASA	BEN	CAL	OWE	PHC	UMU	UYO	YEN	Total freq.	%
Male	22	3	51	19	22	84	12	20	21	254	63.50
Female	12	10	38	11	11	42	8	7	7	146	36.50
Total	34	13	89	30	33	126	20	27	28	400	100
Age											
18-25	7	2	15	6	7	33	4	6	8	88	22.00
26-35	5	4	21	9	11	55	4	8	12	129	32.25
36-45	12	7	32	10	9	13	9	9	4	105	26.25
46-55	8	0	13	3	5	3	2	3	0	37	9.25
56 & above	2	0	8	2	1	22	1	1	4	41	10.25
Total	34	13	89	30	33	126	20	27	28	400	100
Highest Educational Qualification											
FSLC	0	0	10	2	0	3	0	5	0	20	5.00
WASC/SSC	0	2	19	8	0	12	0	8	13	62	15.50
ND	0	3	18	4	6	12	3	5	0	51	12.75
HND	16	2	17	6	0	0	4	4	5	54	13.50
BSc	9	5	16	5	16	65	9	3	7	135	33.75
MSc	6	0	6	2	8	31	4	1	3	61	15.25
PhD	3	0	3	1	3	3	0	0	0	13	3.25
None	0	1	0	2	0	0	1	0	0	4	1.00
Total	34	13	89	30	33	126	20	27	28	400	100
Occupation											
Student	0	0	14	7	0	17	5	7	6	56	14.00
Farming/Fishing	6	0	11	2	0	6	0	5	0	30	7.50
Civil/Public Service	19	13	25	9	15	75	8	8	6	178	44.50
Trading/Business	4	0	16	5	12	7	4	3	3	54	13.50
Skilled/Self Employed	5	0	15	4	6	21	3	3	11	68	17.00
Unemployed	0	0	8	3	0	0	1	2	0	14	3.50
Total	34	13	89	30	33	126	20	27	28	400	100
Income Per Annum											
216,000 & below	5	6	21	11	5	64	6	6	12	136	34.00
217,000 - 400,000	3	2	15	8	10	20	0	11	5	74	18.50
401,000 - 600,000	0	2	11	3	3	0	0	3	0	22	5.50
601,000 - 800,000	5	1	14	3	3	0	0	2	0	28	7.00
801,000 - 1,000,000	3	2	8	1	7	21	3	2	4	51	12.75
1,000,000 & above	18	0	4	1	5	21	11	2	5	67	16.75
None	0	0	16	3	0	0	0	1	2	22	5.50
Total	34	13	89	30	33	126	20	27	28	400	100

3.2. Perception of Air Temperature by Residents

The result on perception of air temperature in Table 3 shows that above three quarters of the sampled population (77.5%) were aware of the impacts of temperature in the urban environment; while 16.0% were not; and 6.5% were undecided. Also, majority of the residents rated the temperature in the neighborhood as high (49.25%); 44.5% rated it...
as moderate; 3.5% rated it as cool; 2.75% rated it as extremely high; while none rated it as extremely cold. It was also found that above half of the residents were not aware of the comfort threshold of air temperature (50.50%); while 44.25% were aware; and 5.25% were neutral.

The findings indicate that majority of the respondents (59.0%) were aware of the health effects of temperature; while 38.25% were not aware; and 2.75% were neutral. Nonetheless, not being aware of the health impacts of high temperature may overlap to not taking any mitigation measures, which may afterwards lead to more adverse conditions. Again, more than half of the sampled population (64.50%) had never taken personal steps to lessen high temperature; while 33.0% had taken; and 2.75% were neutral. This adamant posture in taking personal actions to mitigate the high temperature sensations could be as a result of the respondents’ high level of ignorance towards comfort threshold and health impacts of high temperatures. It was also found that majority of the residents covering 60.25% were not satisfied with the level of temperature in their urban environment; while 36.25% were satisfied; and 3.50% were neutral. This high temperature sensations experienced in the Niger Delta confirms the report of the National Oceanic and Atmospheric Administration (NOAA) cited in the 2020 temperature evaluation report of the Nigerian Meteorological Agency (NiMet) (2020) [44], that to date 2020 remains the second warmest year since 141 years.

Table 3. Perception on Air Temperature

Urban Areas	AKU	ASA	BEN	CAL	OWE	PHC	UMU	UYO	YEN	Total freq.	%
Awareness of the impacts of temperature in the urban environment											
Yes	28	9	81	16	4	121	10	17	24	310	77.50
No	6	2	5	12	29	0	0	10	0	64	16.00
Undecided	0	2	3	2	0	5	10	0	4	26	6.50
Total	34	13	89	30	33	126	20	27	28	400	100
Rating of temperature in the neighborhood											
Extremely high	3	0	0	0	0	8	0	0	0	11	2.75
High	11	10	43	14	25	63	10	13	8	197	49.25
Moderate	20	0	46	16	8	55	10	11	12	178	44.50
Cool	0	3	0	0	0	0	0	3	8	14	3.50
Extremely cold	0	0	0	0	0	0	0	0	0	0	0.00
Total	34	13	89	30	33	126	20	27	28	400	100
Awareness of the comfort threshold of temperature											
Yes	18	3	24	14	24	46	20	11	17	177	44.25
No	13	7	60	14	9	74	0	16	9	202	50.50
Undecided	3	3	5	2	0	6	0	0	2	21	5.25
Total	34	13	89	30	33	126	20	27	28	400	100
Awareness of the health effect of temperature											
Yes	19	11	30	14	27	92	10	9	24	236	59.00
No	13	1	56	16	6	31	10	18	2	153	38.25
Neutral	2	1	3	0	0	3	0	0	2	11	2.75
Total	34	13	89	30	33	126	20	27	28	400	100
Taken personal steps to lessen high temperature											
Yes	12	9	18	8	20	21	20	10	14	132	33.00
No	19	2	71	22	13	102	0	17	12	258	64.50
Neutral	3	2	0	0	0	3	0	0	2	10	2.50
Total	34	13	89	30	33	126	20	27	28	400	100
Satisfaction with the level of temperature in the urban environment											
Yes	11	5	19	12	17	59	0	8	14	145	36.25
No	21	4	70	18	14	65	18	19	12	241	60.25
Neutral	2	4	0	0	2	2	2	0	2	14	3.50
Total	34	13	89	30	33	126	20	27	28	400	100

3.3. Perceived Causes of High Air Temperature

Table 4 shows the result on the perceived causes of high air temperature in the Niger Delta, and indicates that 3/4 majority of the respondents (75.0%) agreed that urban growth and rise in population contribute to high temperature
levels in the cities; while (18.0%) disagreed and 6.5% was neutral. Also, 61.0% of the respondents agreed that construction materials of surfaces (roads, roofs, buildings etc.) are implicated to high temperatures in the urban areas; 36.25% disagreed; while 2.75% was neutral. The result also shows that more than 2/3 of the respondents agreed that removal of trees and other vegetation leads to increase in the urban temperature; while 26.25% disagreed and 6.25% was neutral. On city structure/street layout (that is, street geometry), above half of the respondents representing 54.5% disagreed that street geometry play any role in increase in the cities’ temperature; while 40.5% agreed and 5.0% was neutral.

It is also discovered that majority of the respondents (76.25%) agreed that manmade heat (e.g., bush/waste/material burning) lead to increase in the temperature of the cities; 17.25% disagreed; while 6.5% was neutral. Similarly, 75.0% of the respondents agreed that emission of air pollutants (greenhouse gases, generator fumes, vehicle etc.) contributes to high temperature regimes in the urban areas; while 18.5% disagreed and 6.5% was neutral. Regarding dense concentration/congestion of buildings, majority (50.25%) indicated the affirmative; while 44.75% disagreed; and 5.0% was neutral. Again, majority of the respondents (82.5%) agreed that time of season influences high temperatures in the urban areas; 11.0% disagreed while 6.5% was neutral.

Perceived Causes of High Air Temperature	Total Freq.	%											
Urbanisation (City growth and population)	**400**	**100**											
Agree	34	89	30	33	126	20	27	28	400	100			
Neutral	13	34	19	11	30	14	27	92	10	9	24	244	61.00
Disagree	13	34	14	27	92	10	9	24	244	61.00			
Construction materials of surfaces (roads, roofs, buildings etc.)	**400**	**100**											
Agree	34	89	30	33	126	20	27	28	400	100			
Neutral	13	34	19	11	30	14	27	92	10	9	24	244	61.00
Disagree	13	34	14	27	92	10	9	24	244	61.00			
Removal of trees and other vegetation	**400**	**100**											
Agree	34	89	30	33	126	20	27	28	400	100			
Neutral	13	34	19	11	30	14	27	92	10	9	24	244	61.00
Disagree	13	34	14	27	92	10	9	24	244	61.00			
City structure/street layout	**400**	**100**											
Agree	34	89	30	33	126	20	27	28	400	100			
Neutral	13	34	19	11	30	14	27	92	10	9	24	244	61.00
Disagree	13	34	14	27	92	10	9	24	244	61.00			
Mannmade heat (e.g., bush/waste/material burning)	**400**	**100**											
Agree	34	89	30	33	126	20	27	28	400	100			
Neutral	13	34	19	11	30	14	27	92	10	9	24	244	61.00
Disagree	13	34	14	27	92	10	9	24	244	61.00			
Emission of air pollutants (greenhouse gases, generator fumes, vehicle etc.)	**400**	**100**											
Agree	34	89	30	33	126	20	27	28	400	100			
Neutral	13	34	19	11	30	14	27	92	10	9	24	244	61.00
Disagree	13	34	14	27	92	10	9	24	244	61.00			
Dense/congestion of buildings	**400**	**100**											
Agree	34	89	30	33	126	20	27	28	400	100			
Neutral	13	34	19	11	30	14	27	92	10	9	24	244	61.00
Disagree	13	34	14	27	92	10	9	24	244	61.00			
Time of season	**400**	**100**											
Agree	34	89	30	33	126	20	27	28	400	100			
Neutral	13	34	19	11	30	14	27	92	10	9	24	244	61.00
Disagree	13	34	14	27	92	10	9	24	244	61.00			
3.4. Impacts and Problems Associated with Increasing Temperature

The analyses in Table 5 indicates that nearly all the respondents (95.50%) strongly agreed that human discomfort is a problem associated with increasing temperature; while 4.50% agreed; and none of them disagreed or strongly disagreed. It also shows that more than 2/3 of the respondents covering 71.50% strongly agreed that high temperature causes excessive heat; 25.75% agreed; 2.0% of them were neutral; while 0.75% disagreed and none strongly disagreed. Furthermore, the result reveals that above 2/3 of the sampled population (67.50%) agreed that high temperature causes ill health and diseases; 14.0% of them disagreed; 6.75% strongly agreed; 6.25% was neutral; while 5.5% strongly disagreed. Again, the findings show that majority of the respondents representing (46.75%) disagreed that high temperature leads to death; 25.0% agreed; 10.50% strongly disagreed; 9.50% was neutral; while 8.25% strongly disagreed. The analyses again, reveals that majority of the respondents (36.0%) agreed that high temperature exacerbate human discomfort; 25.75% agreed; 2.0% of them were neutral; while 0.75% disagreed and none strongly disagreed.

Concerning the impact of high temperature on forest/bush fires, 34.75% being the majority of the respondents was neutral on whether or not high temperatures is implicated in forest/bush fires; 27.25% agreed that high temperature exacerbate forest/bush fires; 24.50% strongly agreed; 11.0% disagreed; while 4.75% strongly disagreed. Also, while majority (33.50%) agreed that high temperature leads to increase in diseases vectors; 27.75% of them disagreed; 19.50% was neutral; 12.75% strongly agreed; and 6.50% strongly disagreed. Furthermore, the result reveals that above 2/3 of the respondents covering 71.50% strongly agreed that high temperature increases energy demand and usage; 36.50% strongly agreed; 13.75% disagreed; 7.0% was neutral; while 5.5% strongly disagreed. Also, while majority (33.50%) agreed that high temperature leads to increase in diseases vectors; 27.75% of them disagreed; 19.50% was neutral; 12.75% strongly agreed; and 6.50% strongly disagreed.

The result again reveals that majority of the sampled population (42.75%) agreed that high temperature is implicated in forest/bush fires; 24.50% strongly agreed; 11.0% disagreed; while 4.75% strongly disagreed. Also, while majority (33.50%) agreed that high temperature leads to increase in diseases vectors; 27.75% of them disagreed; 19.50% was neutral; 12.75% strongly agreed; and 6.50% strongly disagreed.

Urban Areas	AKU	ASA	BEN	CAL	OWE	PHC	UMO	UYO	YEN	Total freq.	%
Human discomfort											
Strongly agree	34	6	89	30	30	126	18	27	22	382	95.50
Agree	0	7	0	0	3	0	2	0	6	18	4.50
Neutral	0	0	0	0	0	0	0	0	0	0	0.00
Disagree	0	0	0	0	0	0	0	0	0	0	0.00
Strongly Disagree	0	0	0	0	0	0	0	0	0	0	0.00
Total	34	13	89	30	33	126	20	27	28	400	100
Excessive heat											
Strongly agree	16	5	64	22	25	126	4	10	14	286	71.50
Agree	12	6	25	8	6	0	15	17	14	103	25.75
Neutral	3	2	0	0	2	1	1	0	0	8	2.00
Disagree	3	0	0	0	0	0	0	0	0	3	0.75
Strongly Disagree	0	0	0	0	0	0	0	0	0	0	0.00
Total	34	13	89	30	33	126	20	27	28	400	100
Illness/disease											
Strongly agree	2	4	3	0	14	0	2	0	2	27	6.75
Agree	18	6	72	16	11	108	17	12	10	270	67.50
Neutral	2	3	2	3	3	1	4	4	4	25	6.25
Disagree	10	0	6	7	5	13	0	6	9	56	14.00
Strongly Disagree	2	0	6	4	0	2	0	5	3	22	5.50
Total	34	13	89	30	33	126	20	27	28	400	100
Death of humans	Strongly agree	Agree	Neutral	Disagree	Strongly Disagree	Total					
-----------------	----------------	-------	---------	----------	-------------------	-------					
Strongly agree	0	2	6	10	13	0					
Agree	17	2	25	5	7	37					
Neutral	2	7	2	1	9	3					
Disagree	13	2	47	20	7	60					
Strongly Disagree	2	0	9	4	0	13					
Total	34	13	89	30	33	126					

Aridity/lack of water in soil for plant growth	Strongly agree	Agree	Neutral	Disagree	Strongly Disagree	Total
Strongly agree	10	4	34	4	5	55
Agree	15	3	26	16	16	33
Neutral	3	3	4	2	6	6
Disagree	6	3	20	5	3	26
Strongly Disagree	0	0	5	3	3	6
Total	34	13	89	30	33	126

Forest/bush fires	Strongly agree	Agree	Neutral	Disagree	Strongly Disagree	Total
Strongly agree	6	2	29	6	4	38
Agree	14	6	20	14	8	28
Neutral	7	5	35	6	1	60
Disagree	7	0	5	4	12	0
Strongly Disagree	0	0	0	8	0	0
Total	34	13	89	30	33	126

Poor air quality	Strongly agree	Agree	Neutral	Disagree	Strongly Disagree	Total
Strongly agree	0	4	12	0	14	15
Agree	20	5	36	12	17	56
Neutral	3	4	11	4	2	20
Disagree	11	0	30	14	0	35
Strongly Disagree	0	0	0	0	0	2
Total	34	13	89	30	33	126

Increase in diseases vectors	Strongly agree	Agree	Neutral	Disagree	Strongly Disagree	Total
Strongly agree	0	5	8	0	12	22
Agree	18	3	31	12	5	44
Neutral	4	5	16	4	12	13
Disagree	10	0	30	12	4	33
Strongly Disagree	2	0	4	2	0	14
Total	34	13	89	30	33	126

Increase in energy/electricity demand and usage	Strongly agree	Agree	Neutral	Disagree	Strongly Disagree	Total
Strongly agree	10	4	29	8	16	48
Agree	16	6	42	16	7	52
Neutral	3	1	6	2	3	8
Disagree	5	2	12	4	7	18
Strongly Disagree	0	0	0	0	0	0
Total	34	13	89	30	33	126

Dehydration of the body/regular thirst for water	Strongly agree	Agree	Neutral	Disagree	Strongly Disagree	Total
Strongly agree	18	10	61	22	28	80
Agree	10	3	28	8	4	46
Neutral	6	0	0	0	1	0
Disagree	0	0	0	0	0	0
Strongly Disagree	0	0	0	0	0	0
Total	34	13	89	30	33	126
3.5. Measures Taken to Mitigate Impact of High Temperature

Table 6 shows the result of the individual measures taken by residents of the selected urban areas to mitigate the impact of increasing temperature in their respective cities. The analysis reveals that majority of the respondents (50.25%) had not adopted strict compliance to development regulations as measure to mitigate high temperature; while 40.25% had; and 9.50% were neutral. This non-compliance to regulations will only exacerbate the already worsening temperature sensations of these residents. Again, more than half of the population sampled (50.75%) had not used air-conditioners to mitigate impact of high temperature; whereas 44.75% had used; and 4.50% were neutral. Also, greater proportion (63.50%) had used electric fans to mitigate high temperature; 34.75% had not; and 1.75% were neutral. It should be pointed out that the degree of usage of air-conditioners and electric fans is to some extent predicated on income status, personal preference and availability of energy supply, especially from the public mains. However, the sparse usage of air-conditioners and popular usage of electric fans may not necessarily be predicated on issues of affordability but majorly on the irregular public power supply which pushes majority of the residents to resort to smaller electricity generating sets whose capacity cannot run air-conditioners but only fans.

More than 4/5 of the population (92.50%) had adopted drinking of plenty water to mitigate high temperature; 5.0% had not; and 2.50% were neutral. The result again reveals that above 2/3 majority of the respondents (66.50%) have not planted trees and other vegetation as high temperature mitigation strategy; 28.75 of them had; while 9.25% were neutral. Majority (47.25%) had not allowed enough space between buildings as a measure to mitigate high temperature; 38.75% had; and 15.0% were neutral. While nearly all the respondents had taken at least one or more of the mitigation measures, the analysis further shows that greater proportion of the respondents (38.0%) have not taken actions to reduce the release of air pollutants/greenhouse gases; while 37.25% had; and 24.75% were neutral. It was found that majority of the respondents (62.0%) had not adopted creation of open spaces within their neighbourhhoods as a mea
ture to cushion high temperatures, except in Akure and Owerri where majority of the respondents have planted trees. The result again reveals that above 2/3 majority of the respondents (66.50%) had not adopted reduction in the release of air pollutants/greenhouse gases; while 37.25% had; and 17.0% were neutral. Again, greater proportion of the respondents (46.25%) had not allowed enough space between buildings as a measure to mitigate high temperature; 29.75% had; and 3.75% were neutral. The result again reveals that above 2/3 majority of the respondents (66.50%) had not planted trees and other vegetation as high temperature mitigation measure; 29.75% had; and 3.75% were neutral. It should be pointed out that the degree of usage of air-conditioners and electric fans is to some extent predicated on income status, personal preference and availability of energy supply, especially from the public mains. However, the sparse usage of air-conditioners and popular usage of electric fans may not necessarily be predicated on issues of affordability but majorly on the irregular public power supply which pushes majority of the residents to resort to smaller electricity generating sets whose capacity cannot run air-conditioners but only fans.

While an overwhelming majority of the sampled population (92.50%) have applied drinking of plenty water as a mitigation plan, slightly above 2/3 majority of the respondents (66.50%) have never planted trees and other vegetation to cushion high temperatures, except in Akure and Owerri where majority of the respondents have planted trees. The analysis further shows that greater proportion of the respondents (38.0%) have not taken actions to reduce the release of air pollutants/greenhouse gases; but in Akure and Owerri, majority of the respondents, as part of their high temperature alleviation strategy, have taken steps to reduce the release of air pollutants/greenhouse gases.

Urban Areas	AKU	ASA	BEN	CAL	OWE	PHC	UMU	YO	YEN	Total	Freq.	%
Strict compliance to development regulations and controls												
Yes	26	10	34	10	23	40	6	7	5	161	40.25	
Neutral	4	0	5	3	4	6	8	5	3	38	9.50	
No	4	3	50	17	6	80	6	15	20	201	50.25	
Total	34	13	89	30	33	126	20	27	28	400	100	
Use of air conditioner												
Yes	10	8	39	12	23	58	7	10	12	179	44.75	
Neutral	3	2	0	4	2	0	7	0	0	18	4.50	
No	21	3	50	14	8	68	6	17	16	203	50.75	
Total	34	13	89	30	33	126	20	27	28	400	100	
Use of electric fans												
Yes	26	10	55	24	27	72	10	13	17	254	63.50	
Neutral	1	0	0	0	0	2	2	2	0	7	1.75	
No	7	3	34	6	6	52	8	12	11	139	34.75	
Total	34	13	89	30	33	126	20	27	28	400	100	
Drinking of plenty water												
Yes	32	11	86	25	26	123	19	23	25	370	92.50	
Neutral	2	0	3	0	0	2	1	2	0	10	2.50	
No	0	2	0	5	7	1	0	2	3	20	5.00	
Total	34	13	89	30	33	126	20	27	28	400	100	
4. Conclusions and Recommendations

This study was carried out in the Capital Cities of the nine states that constitute the Niger Delta Region with the aim of evaluating the factors of air temperature variability and mitigation strategies. The findings indicate that majority of the residents of the Niger Delta cities were aware of the impacts of high temperature in the cities and though sensed the temperature in their milieus as high they were at the same time not aware of the comfort threshold of air temperature but aware of the health effects of temperature, just as they had never taken personal steps to mitigate high temperature. This high level of ignorance towards the comfort threshold and health impacts of high temperatures may be responsible for the residents’ negligence or adamant posture to applying personal mitigation measures, which may subsequently lead to more adverse conditions. The major factors perceived to be implicative to high temperature in the cities include urban growth and rise in population, construction materials of surfaces, removal of trees and other vegetation, manmade heat, emission of air pollutants, dense concentration/congestion of buildings, and time of season.

The findings indicate that the major factors perceived to be implicative to high temperature are the reduction in releasing air pollutants/greenhouse gases, planting of trees and other vegetation, manmade heat, emission of air pollutants, dense concentration/congestion of buildings, and time of season.

The major factors perceived to be implicative to high temperature may be responsible for the residents’ negligence or adamant post
Human discomfort, excessive heat, illness and diseases, soil aridity/lack of water in soil for plant growth, poor air quality is a problem, increase in diseases vectors, increase in energy/electricity demand and usage, and dehydration of the body and regular thirst for water found to be the major impacts and problems associated with high temperature. The dominant measures adopted by residents to mitigate impacts of high temperature were only the use of electric fans and drinking of plenty water; while other viable measures were sparingly and scarcely applied. The study concludes that the majority of the residents of the region showed strong dissatisfaction towards the level of temperature in their cities amid the fact that they had never taken personal steps to mitigate high temperature in their neighbourhoods, borne out of their lack of knowledge and negligence which may subsequently lead to more adverse situations. Thus, this study offers the following recommendations:

- The planting and preservation of trees and other vegetation should be encouraged.
- Public enlightenment and awareness campaign on practices that exacerbate high temperature should be sponsored by the authorities.
- Regulatory agencies should strictly enforce planning regulations and control urban growth and be committed to the enforcement of environmental policies. This is more so because adequate spaces between buildings, street layout and/or geometry, neighbourhood open spaces and cross ventilation are implicative to high temperature and its mitigation.
- The electricity infrastructure in the urban areas should be made sufficient and effective so as to promptly be applied in mitigating high temperature regimes via the use of air-conditioners and electric fans.
- The reorientation of citizens’ attitude and encouragement of friendly environmental practices and behaviours will to a large extent complement any other mitigation actions.

5. Declarations

5.1. Author Contributions

Conceptualization, A.P.S.; V.E.W.; M.O.N. and O.S.E.; methodology, A.P.S.; V.E.W., M.O.N. and O.S.E.; software, O.S.E.; validation, V.E.W., M.O.N. and O.S.E.; formal analysis, A.P.S.; investigation, A.P.S.; resources, A.P.S.; data curation, A.P.S.; writing—original draft preparation, A.P.S.; writing—review and editing, A.P.S. and O.S.E.; visualization, A.P.S and O.S.E.; supervision, V.E.W.; M.O.N. and O.S.E.; project administration, A.P.S.; funding acquisition, A. P.C. All authors have read and agreed to the published version of the manuscript.

5.2. Data Availability Statement

The data presented in this study are available in article.

5.3. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

5.4. Declaration of Competing Interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript. In addition, the ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancies have been completely observed by the authors.

6. References

[1] United Nations, Department of Economic and Social Affairs (UN DESA), Population Division (2014a) World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). doi:10.18356/527e5125-en.

[2] United Nations, Department of Economic and Social Affairs (UN DESA), Population Division (2014b): 2014 Revision of the World Urbanization Prospects. The Population Division of the Department of Economic and Social Affairs of the United Nations, 10 July 2014, New York.

[3] United Nations, Department of Economic and Social Affairs (UN DESA), Population Division (2018): 2018 Revision of World Urbanization Prospects. The Population Division of the Department of Economic and Social Affairs of the United Nations, 16 May 2018, New York.

[4] Revi, A., Satterthwaite, D. E., Aragon-Durand, F., Corfee-Morlot, J., Kiunsi, R. B. R., Pelling, M., Roberts, D. C., Solecki, W., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., … L.L. (2014). Urban Areas. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 535–612).
[5] Ayanlade, A. (2016). Variation in diurnal and seasonal urban land surface temperature: landuse change impacts assessment over Lagos metropolitan city. Modeling Earth Systems and Environment, 2(4), 1–8. doi:10.1007/s40808-016-0238-z.

[6] Gill, S., Handley, J., Emmos, A., & Pauleit, S. (2007). Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environment, 33(1), 115–133. doi:10.2148/benv.33.1.115.

[7] Fortuniak, K. (2009). Global environmental change and urban climate in Central European cities. in the southern Baltic region, 65.

[8] Igun, E. (2017). Analysis and Sustainable Management of Urban Growth’s Impact on Land Surface Temperature in Lagos, Nigeria. Journal of Remote Sensing & GIS, 06(04), 2469–4134. doi:10.4172/2469-4134.1000212.

[9] Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769–779. doi:10.1016/0004-6981(73)90140-6.

[10] Flores P. F., & Liljo S. M. (2010). Simple Air Temperature Estimation Method from MODIS Satellite Images on a Regional Scale. Chilean Journal of Agricultural Research, 70(3), 436–445. doi:10.4067/s0718-58392010000300011.

[11] Hooker, J., Duveiller, G., & Cescatti, A. (2018). Data descriptor: A global dataset of air temperature derived from satellite remote sensing and weather stations. Scientific Data, 5. doi:10.1038/sdata.2018.246.

[12] Voogt, J. A., & Oke, T. R. (1997). Complete Urban Surface Temperatures, Journal of Applied Meteorology, 36(9), 1117-1132.

[13] Unger, J., Gal, T., Rakonczai, J., Musci, L., Szatmari, J., Tobok, Z., Van Leeuwen, B., & Fiała, K. (2009). Air Temperature versus Surface Temperature in Urban Environment. The Seventh International Conference on Urban Climate, July, 3–6.

[14] Guan, K. (2011). Surface and ambient air temperatures associated with different ground material: a case study at the University of California, Berkeley. In Surface and Air Temperatures of Ground Material. University of California.

[15] Srivanit, M., & Hokao, K. (2012). Thermal infrared remote sensing for urban climate and environmental studies: An application for the city of Bangkok, Thailand. Journal of Architectural/Planning Research and Studies (JARS), 9(1), 83-100.

[16] Hong Kong Observatory (2018) Climate Change: Urbanization Effect. The Government of Hong Kong, Special Administrative Region; last revision date is on 22 Jan 2019.

[17] Feulner, G., Rahmstorf, S., Levermann, A., & Volkwardt, S. (2013). On the origin of the surface air temperature difference between the hemispheres in earth’s present-day climate. Journal of Climate, 26(18), 7136–7150. doi:10.1175/JCLI-D-12-00636.1.

[18] IPCC: Intergovernmental Panel on Climate Change (IPCC) (2018): Summary for Policymakers. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. In A. P. Shukla, W. Moufouma-Okia, C. Péan, R. Picciotto, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), IPCC – Sr-15 (Vol. 2, Issue October, pp. 17–20).

[19] Saadatabad, A. R., & Bidokhti, A. A. (2011). Urbanization Effects on Local Climate in Tehran Megapolis. Research Journal of Environmental Sciences, 5(1), 1–21. doi:10.3923/rjes.2011.1.121.

[20] Aina, Y. A., Adam, E. M., & Ahmed, F. (2017). Spatiotemporal Variations in the Impacts of Urban Land Use Types On Urban Heat Island Effects: The Case Of Riyadh, Saudi Arabia. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W2, 9–14. doi:10.5194/isprs-archives-xlii-3-w2-9-2017.

[21] Weng, Q. (2003). Fractal analysis of satellite-detected urban heat island effect. Photogrammetric Engineering and Remote Sensing. American Society for Photogrammetry and Remote Sensing 69(5), 555–566. doi:10.14358/PERSEN.69.5.555.

[22] Manu, A., Twumasi, Y., & Coleman, T. (2006). Is it global warming or the effect of urbanization? The rise in air temperature in two cities of Ghana. Ecosystem.

[23] Dos Santos, T. O., De A Moura, G. B., Da Silva, B. B., De Oliveira, L. M. M., & Machado, C. C. C. (2013). Influence of urbanization on land surface temperature in Recife city. Engenharia Agricola, 33(6), 1234–1244. doi:10.1590/S0100-69162013000600016.

[24] Zhang, J., & Wu, L. (2017). Influence of human population movements on urban climate of Beijing during the Chinese New Year holiday. Scientific Reports, 7(45813). doi:10.1038/srep45813.

[25] Lima, G. N. de, & Mågaia Rueda, V. O. (2018). The urban growth of the metropolitan area of Sao Paulo and its impact on the climate. Weather and Climate Extremes, 21, 17–26. doi:10.1016/j.wace.2018.05.002.

[26] Peace, N., & Ezikorwor, W. (2018). Urban Warming in Port Harcourt Metropolis and Environs. Journal of Geography, Environment and Earth Science International, 14(4), 1–12. doi:10.9734/jgeesi/2018/41123.
[27] Peace, N. (2019). Geo-Spatial Dynamics of Land Surface Temperature of Port Harcourt Metropolis and Environments: Implication for Heat Disaster Management. Earth Sciences, 8(3), 169. doi:10.11648/j.earth.20190803.15.

[28] Trusilova, K., Jung, M., Churkina, G., Karsten, U., Heimann, M., & Claussen, M. (2008). Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR mesoscale model (MM5). Journal of Applied Meteorology and Climatology, 47(5), 1442–1455. doi:10.1175/2007JAMC1624.1

[29] Baker, L. A., Brazel, A. J., Selover, N., Martin, C., McIntyre, N., Steiner, F. R., … Musacchio, L. (2002). Urbanization and Warming of Phoenix (Arizona, USA): Impacts, feedbacks and mitigation, Urban Ecosystems, 6(3), 183–203. doi:10.1023/a:1026101528700.

[30] Arifwidodo, S. D., & Tanaka, T. (2015). The Characteristics of Urban Heat Island in Bangkok, Thailand. Procedia - Social and Behavioral Sciences, 195, 423–428. doi:10.1016/j.sbspro.2015.06.484.

[31] Harmon, K. (2010). How Does a Heat Wave Affect the Human Body? Scientific American, July 23, 2010.

[32] Canadian Centre for Occupational Health and Safety (CCOHS) (2019): Hot Environments - Health Effects and First Aid. and available online: https://www.ccohs.ca/oshanswers/phys_agents/heat_health.html (accessed on May 2019).

[33] Crimmins, A., Balbus, J., Gamble, J. L., Beard, C. B., Bell, J. E., Dodgen, D., Eisen, R. J., Fann, N., Hawkins, M., Herring, S. C., Jantarasami, L., Mills, D. M., Saha, S., Sarofim, M. C., Trianj, J., & Ziska, L. (2016). The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. In U.S. Global Change Research Program. U.S. Global Change Research Program. doi:10.7030/JOMG7MDX.

[34] Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. Scientific Reports, 7(1). doi:10.1038/s41598-017-04242-2.

[35] Liu, S., Su, H., Zhang, R., Tian, J., & Wang, W. (2016). Estimating the Surface Air Temperature by Remote Sensing in Northwest China Using an Improved Advection-Energy Balance for Air Temperature Model. Advances in Meteorology, 2016, 11. doi:10.1155/2016/4294219.

[36] Ingold, T. (2000). The perception of the environment: Essays on livelihood, dwelling and skill. London: Routledge. Ireland, P. (2008). Comparing responses to ethnic segregation in urban Europe. Urban Studies, 45(7), 1333.

[37] Danielson, S. (2015). Overview of Human Geography: Environmental Perception. Department of Geography, Geology, and the Environment. Slippery Rock University of Pennsylvania.

[38] United Nations Educational, Scientific and Cultural Organization (UNESCO) (1977) Intergovernmental Programme on Man and the Biosphere (MAB), Project 13 (“Perception of environmental quality”). United Nations Educational, Scientific and Cultural Organization, 7 Place de Fontenot, 75700 Paris.

[39] E. Ite, A., J. Ibok, U., U. Ite, M., & W. Petters, S. (2013). Petroleum Exploration and Production: Past and Present Environmental Issues in the Nigeria’s Niger Delta. American Journal of Environmental Protection, 1(4), 78–90. doi:10.12691/env-1-4-2.

[40] Commission, N. D. D. (2006). Niger Delta Development Master Plan (NDRDMP), the Popular Version; Adapted from the main Niger Delta Development Master Plan (NDRDMP) document by South-Sea Datcomm Limited.

[41] Ayoade, J. O (2004) Introduction to climatology for the tropics. In Indiana University Press; Spectrum books, Lagos, Nigeria.

[42] Adejuwon, Joseph O. (2012). Rainfall seasonality in the Niger Delta Belt, Nigeria. Journal of Geography and Regional Planning, 5(2). doi:10.5897/jgrp11.096.

[43] Yamane, T. (1967). Statistics, an Introductory Analysis, 2nd ed., Harper and Row, New York. 1967.

[44] Nigerian Meteorological Agency (NIMET) (2021). “2021 Seasonal Rainfall Prediction (SCP)”. Available online: https://fscluster.org/sites/default/files/documents/2021_seasonal_climate_prediction_0.pdf (accessed on April 2021).

[45] Organsation for Economic Co-operation and Development (OECD) (2008) Household Behaviour and the Environment: Reviewing the Evidence. Available online: https://www.oecd.org/environment/consumption-innovation/42183878.pdf (accessed on April 2021).