Segregation of information about emotional arousal and valence in horse whinnies

Elodie F. Briefer¹, Anne-Laure Maigrot¹−²*, Roi Mandel¹−³*, Sabrina Briefer Freymond², Iris Bachmann² & Edna Hillmann¹

¹ETH Zürich, Institute of Agricultural Sciences, Universitätsstrasse 2, 8092 Zürich, Switzerland, ²Agroscope - Swiss National Stud Farm, Les Longs Prés, P.O. Box 191, 1580 Avenches, Switzerland, ³Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot 76100, Israel.

Studying vocal correlates of emotions is important to provide a better understanding of the evolution of emotion expression through cross-species comparisons. Emotions are composed of two main dimensions: emotional arousal (calm versus excited) and valence (negative versus positive). These two dimensions could be encoded in different vocal parameters (segregation of information) or in the same parameters, inducing a trade-off between cues indicating emotional arousal and valence. We investigated these two hypotheses in horses. We placed horses in five situations eliciting several arousal levels and positive as well as negative valence. Physiological and behavioral measures collected during the tests suggested the presence of different underlying emotions. First, using detailed vocal analyses, we discovered that all whinnies contained two fundamental frequencies ("F0" and "G0"), which were not harmonically related, suggesting biphonation. Second, we found that F0 and the energy spectrum encoded arousal, while G0 and whinny duration encoded valence. Our results show that cues to emotional arousal and valence are segregated in different, relatively independent parameters of horse whinnies. Most of the emotion-related changes to vocalizations that we observed are similar to those observed in humans and other species, suggesting that vocal expression of emotions has been conserved throughout evolution.

Expression of emotions and perception of emotional states play an important role in social species. Indeed, emotion expression informs individuals about the probable intention of behaviors of others and therefore, regulates social interactions⁵. Vocal expression of emotions has been extensively studied in humans ("affective prosody"⁶–⁹). However, human voice also depends on socio-cultural and linguistic conventions that can act as confounding factors in the study of affective prosody⁴. In most non-human animals, vocalizations are assumed to be under lower voluntary control than in humans. Animal vocalizations should thus reflect emotions more directly than human voice⁵, and could serve as valuable models for studies on human affective prosody. They could also serve as ideal non-invasive tools to assess emotions in animals, in which the subjective, conscious component of emotions cannot be accessed⁶.

A promising approach to study animal emotions is through their two main dimensions ("dimensional approach"⁷); 1) emotional arousal (excitation, e.g. calm versus excited) and 2) emotional valence (negative or positive, e.g. sad versus happy)⁶. Vocal correlates of emotional arousal have been relatively well studied (see reviews⁶⁹). Vocalizations usually become longer, louder, and are produced at faster rates, with higher and more variable frequencies when arousal increases⁶. By contrast, there is considerably less knowledge on vocal indicators of valence (i.e. differentiating between negative and positive state)⁶. Several types of vocalizations have been shown to indicate either positive or negative emotions⁵⁶–⁵⁷. However, changes in vocal parameters according to emotional valence have rarely been investigated⁶. Another limitation of the research on vocal expression of emotions in animals is that very few studies investigated vocal correlates of both emotional arousal and valence in the same species (but see⁵⁸–⁵⁹). In addition, the emotional situations that have been used often differ in both their valence and their arousal, and the effects of these two dimensions on vocal parameters are not tested independently. Therefore, more studies are needed to investigate how emotions are encoded in vocalizations, and to advance our understanding of the phylogenetic continuity of vocal correlates of emotional arousal and valence between humans and other animals.
We hypothesized that, in order to be effectively encoded within vocalizations, cues to emotional arousal and valence could be segregated in different acoustic features or in temporally distinct vocal segments (segregations of information\(^24\)). Segregation of information such as individual identity and group membership, body weight or size and condition, social status and hormonal state, exists in the vocalizations of several species (e.g. rock hyrax, *Procavia capensis*\(^24\); banded mangoose, *Mungos mungo*\(^24\)). Alternatively, arousal and valence could be encoded in the same parameters, in which case a trade-off would exist between the two dimensions, resulting in one dimension being more accurately communicated than the other (e.g. identity and quality in fallow deer, *Dama dama*, sexually selected vocalizations\(^24\)).

To test whether the encoding of the two emotional dimensions is in accordance with the segregations of information hypothesis\(^24\), or if they are encoded in the same parameters (trade-off hypothesis\(^24\)), we investigated vocal correlates of emotional arousal and valence in domestic horses, *Equus caballus*. Horses are very social animals that, in the wild, live in harems (stallion, females and foals) or in bachelor bands (young or old stallions without a harem)\(^20\). Vocal expression of emotions should benefit horses by regulating social interactions within groups. Horse vocalizations have been rarely investigated. This species produces several types of calls; whinnies, nickers, squeals, blows, snores, snorts, roars, and groans\(^21,22\). Squeals have been shown to contain information about dominance rank\(^23\), and whinnies about sex, body size and individuality\(^24\). A recent study showed that the overall structure of whinnies differs between negative and positive situations\(^25\). However, this study did not specifically test which vocal parameters are affected or not by valence.

We combined new frameworks recently adapted from human to animal research to analyze vocalizations (source-filter theory\(^26\)) and emotions\(^3\). We placed horses in one control situation and four social situations, triggered by our situations (i.e. indicative of emotional arousal)\(^29\). In the absence of well-established valence indicators, we inferred the valence of our situations from knowledge of the function of emotions on horse behavior. We focused our analyses on whinnies, which are produced in both separation (negative valence) and greeting (positive valence) contexts to maintain or regain contact with affiliates or offspring\(^24,21,22\). We tested the hypothesis that the emotional arousal and valence experienced by horses are indicated by particular vocal profiles. Our vocal analyses systematically revealed two fundamental frequencies in all whinnies, suggesting biphonation, a rare phenomenon among mammals that had not been described in previous studies in horse vocalizations\(^21,23,24\). We thus first ruled out potential alternative explanations to biphonation, before testing the effect of emotional arousal and valence on vocal parameters, including those related to the two fundamental frequencies. Additionally, in order to confirm underlying emotions, we tested if the resulting emotional arousal levels, as well as the presupposed valence of the situations, were accompanied by physiological and behavioral changes measured during the tests\(^23,24,25\). We defined the parameters that changed according to increased arousal levels as reliable cues to arousal. Similarly, we defined the parameters that changed consistently from negative to positive valence as reliable cues to valence\(^25\).

Results and discussion

We tested 20 privately owned horses of various breeds and age, housed in five different farms (3–5 horses per farm; Table 1). We designed four situations potentially eliciting different levels of emotional arousal and characterized by negative or positive valence, which were likely to trigger whinnies. These situations involved separation (supposedly of negative valence\(^20\)) and reunion (supposedly of positive valence\(^25\)) with either all group members (supposedly high emotional arousal) or only one group member (supposedly moderate emotional arousal). In the negative situation “All-Leave”, all the other horses from the farm (2–4 horses depending on the farms; hereafter “group members”) were removed, while the subject was kept in its home box or paddock alone. In the positive situation “All-Return”, all the group members were brought back towards the

Farm	Horse Breed	Sex	Age (years)	Weight (kg)	Number of whinnies
1	Swiss Pony	G	20	338	4
2	English Thoroughbred	G	31	416	21
3	Swiss Halfbred	F	23	569	35
4	Swiss Halfbred	G	7	502	22
2	Swiss Halfbred	F	16	498	8
3	Swiss Halfbred	F	15	594	7
4	Swiss Halfbred	F	7	536	2
4	Irish Sport Horse	F	23	326	2
3	Akhal-Teke	F	21	404	9
2	Dartmoor Pony	F	9	267	12
3	Camargue Horse	F	14	358	18
4	Quarter Horse	F	12	499	24
4	French Saddlebred	G	23	593	29
2	Welsh Pony	G	12	477	25
3	Swiss Halfbred	F	7	498	5
5	Swiss Halfbred	F	10	525	0
2	Swiss Halfbred	G	10	508	10
3	English Thoroughbred	F	22	516	0
4	Swiss Halfbred	G	19	403	32
5	Comtois Horse	G	6	560	2

*Horse body weight was estimated following\(^64\).
in the wild, potentially threaten fitness through greater exposure to predators. On the other hand, reunion with group members triggers greeting vocalizations between affiliated pairs of horses\(^2\)\(^2\)\(^3\), and this situation could enhance fitness by lessening exposure to predators. Furthermore, the small numbers of individuals per farm (3 to 5 horses) in our study ensured strong familiarity and potentially close bonds between horses. The valence of the situations was thus assumed to be negative for the situations involving group members leaving (All-Leave and Companion-Leaves), neutral for the Control situation (Control), and positive for the situations where group members were coming back (All-Return or Companion-Returns). We then verified that the arousal levels and valence of our situations were accompanied by consistent physiological and behavioral changes measured during the tests (see Supplementary Results).

Vocal structure of whinnies. Whinnies are the longest, loudest and most common horse vocalization. Three parts have previously been described; 1) the “introduction”, which is tonal and high in frequency; 2) the “climax”, which is a long, often frequency and amplitude modulated part; and 3) the “end”, which is low in frequency and amplitude, and composed of a pulse-train structure (Figure 2; Audio S1)\(^4\). According to the source-filter theory of speech production\(^4\), vocalizations are generated by vibrations of the vocal folds (source, determining the fundamental frequency), and are subsequently filtered by the supralaryngeal vocal tract (filter, producing amplified frequencies called “formants”)\(^5\). In order to extract both source- and filter-related vocal parameters of whinnies, we assumed that vocal production in horses is fundamentally similar to humans and to other mammals on which this framework has been successfully applied\(^6\). In total, we extracted 19 source- and filter-related vocal parameters as well as intensity and duration measures (see Table 2 for abbreviations, and Supplementary Methods for analysis description) from 267 whinnies produced by 18 horses (2 horses did not produce whinnies; Table 1).

Previous studies on whinnies only measured the fundamental frequency in the highly tonal introduction part (easily identifiable fundamental frequency), and argued that this parameter is not always identifiable in the climax and end parts\(^7\). However, after carrying out detailed analyses, we noticed that the climax part is always (i.e. 100% of whinnies) composed of a second, lower fundamental frequency and its corresponding harmonics (Figure 2; Audio S1), suggesting biphonation (i.e. presence of two independent fundamental frequencies that are not integer multiples\(^5\)). As biphonation is a rare phenomenon in mammals and had not been previously described in horses, we first carried out a detailed vocal analysis to rule out alternative explanations to biphonation, before testing the effect of emotional arousal and valence on the structure of whinnies. We measured the two fundamental frequencies throughout the introduction and climax parts. These frequencies are not clearly visible in the end part of the whinnies, which is characterized by a more chaotic-like pulse-train structure, with pulses potentially corresponding to the vibrations of the vocal folds\(^7\), suggesting a drop in fundamental frequency (Figure 2). The lower fundamental frequency (399.22 ± 99.39 Hz, range = 52–1050 Hz, \(n = 267\) whinnies), starting at the beginning of the climax, is hereafter referred as “F0”. We referred to the higher fundamental frequency (1543.26 ± 326.45 Hz, range = 493–3012 Hz, \(n = 260\) whinnies), starting at the beginning of the whinny, as “G0” (Figure 2)\(^5\).

In order to rule out alternative explanations to biphonation, we first verified that F0 does not simply result from a register transition (i.e. abrupt change in fundamental frequency)\(^8\)\(^9\). In this case, G0 and F0 should not overlap. However, in horse whinnies, G0, which starts at the beginning of the whinny, can be observed and measured throughout the introduction and climax, even after F0 appears at the beginning of the climax (Figures 2 and 3). G0 and F0 thus overlap over 79.40 ± 20.52% of the call on average ([Dur-DurIntro/Dur]; \(n = 267\) whinnies; Table S1). Secondly, we verified that F0 and G0 are

Figure 1 | Heart rate as a function of the emotional situations. Heart rate (raw values) for each of the experimental situations; box plot: the horizontal line shows the median, the box extends from the lower to the upper quartile and the whiskers to 1.5 times the interquartile range above the upper quartile or below the lower quartile; circles indicate outliers. Same letters (a, b, c) indicate that situations did not significantly differ (linear mixed-effects models compared with likelihood-ratio tests; log transformed heart rate values controlled for sex, age and body weight of the horses, order of the situations (All or Companion tests first), day of experiment, individual and farm identity). Based on these results, situations marked with “a” received an emotional arousal level of 0, situations marked with “b” received an arousal level of 1, including All-Return situation, and the All-Leave situation (marked with “c”) was considered of arousal level of 2. Resulting emotional arousal levels (0–2) and valence (Negative, Neutral and Positive) corresponding to the situations are indicated below each box (arousal level / valence).

Situation	Heart rate (beats/min)			
0 / Neutral	0 / Positive	1 / Negative	1 / Positive	2 / Negative
Control	Companion Returns	Companion Leaves	All Return	All Leave

Table 2 for abbreviations, and Supplementary Methods for analysis description. From 267 whinnies produced by 18 horses (2 horses did not produce whinnies; Table 1).
Figure 2 | Spectrograms of two whinnies. (a) and (b) spectrograms (above), oscillograms (below) and 100 Hz cepstral-smoothed spectra (right; frequency versus amplitude) of two whinnies produced by different horses. Whinny (a) contains the three typical parts; the introduction, the climax and the end, where putative formants (F1-F4) could be measured. Whinny (b) contains only the introduction and the climax, which is frequency modulated. The end part is not present and putative formants could not be measured in this kind of whinny. For both whinnies (a and b), F0 (lower fundamental frequency) and G0 (higher fundamental frequency) are indicated on the spectrograms and cepstral-smoothed spectra, as well as the harmonics (i.e. multiples) of F0 (Hn(F0)) and of G0 (Hn(G0)). As shown on the cepstral-smoothed spectra, the harmonics of F0 and G0 do not occur at the same frequencies. These whinnies are available as audio files (Audio S1).

Table 2 | Abbreviations for the vocal parameters.

Abbreviation	Parameter
Dur [s]	Duration of the whinny
DurIntro [s]	Duration of the introduction part
G0start [Hz]	Frequency value of G0 at the start of the whinny
G0max [Hz]	Maximum G0 frequency value across the whinny
G0mean [Hz]	Mean G0 frequency value across the whinny
F0start [Hz]	Frequency value of F0 at the start of the climax part
F0max [Hz]	Maximum F0 frequency value across the whinny
F0mean [Hz]	Mean F0 frequency value across the whinny
TimeF0max [%]	Percentage of the total whinny duration when F0 is maximum
AmpVar [dB/s]	Cumulative variation in amplitude divided by the total whinny duration
AMrate [s-1]	Number of complete cycles of amplitude modulation per second
AMextent [dB]	Mean peak-to-peak variation of each amplitude modulation
Q25% [Hz]	Frequency value at the upper limit of the first quartiles of energy
Q50% [Hz]	Frequency value at the upper limit of the second quartiles of energy
Q75% [Hz]	Frequency value at the upper limit of the third quartiles of energy
F1mean [Hz]	Mean frequency value of the first putative formant
F2mean [Hz]	Mean frequency value of the second putative formant
F3mean [Hz]	Mean frequency value of the third putative formant
F4mean [Hz]	Mean frequency value of the fourth putative formant
not harmonically related (i.e. not integer multiples of each other). For instance, F0 could be a sub-harmonic of G0 that appears following a bifurcation (i.e. change in regime from normal phonation, where vocal folds are synchronized, to sub-harmonic regime, where one vocal fold is moving faster than the other and having twice or more the period of the other). If they were harmonically related, G0 and F0 should have been positively correlated with each other both between horses (i.e. be the product of one another; $G0 = n \times F0$), as well as over time within each whinny (i.e. have the same frequency over time ("contour"); r^2 between G0 and F0 contour approaching 1). G0 was 4.39 ± 2.24 times higher than F0 on average ($n = 260$ whinnies). The average G0mean and F0mean were not correlated between horses (Spearman’s rank correlation: $r^2 = 0.002$, $p = 0.88$, $n = 18$ horses). This suggests that horses with a higher G0 do not necessarily have a higher F0 and vice versa. G0 and F0 contours measured in 71 whinnies, in which we had been able to extract these contours throughout the entire introduction and climax, were significantly correlated for 63 of them (positively correlated in 56 whinnies and negatively correlated in 7 whinnies). When the correlation was significant ($p < 0.034$), r^2 ranged from 0.06 to 0.92 (Spearman’s rank correlation: $r^2 = 0.51 \pm 0.23$, $n = 63$ whinnies). F0 and G0 are thus neither the product of one another, not fully correlated over time (r^2 close to 1), indicating that they are not harmonically related.

Next, we ruled out various spectrogram artifacts (aliasing, clipping and reverberation), which could be mistaken for biphonation or

Figure 3 | Negative and positive whinnies. (a) and (c) spectrograms (above) and oscillograms (below) of whinnies produced during the negative situations by two different horses; (b) and (d) spectrograms (above) and oscillograms (below) of whinnies produced during the positive situations by the same two horses (different horses than for Figure 2). F0 (lower fundamental frequency) and G0 (higher fundamental frequency) are indicated, as well as the first harmonics (i.e. multiples) of F0 (H1(F0)) and of G0 (H1(G0)). Positive whinnies (b) and (d) are shorter in duration and have a lower G0 (start and mean) than negative whinnies (a) and (c). These whinnies are available as audio files (Audio S2).
Our analyses of vocal parameters as a function of the emotions triggered by the experimental situations revealed 12 parameters that were influenced by emotional arousal (Table 3; see Table S1 for raw values). Dur (duration), G0start, G0max, G0mean (G0-related parameters), F0start, F0max (F0-related parameters), Q24%, Q50% and Q75% (energy quartiles) all increased with arousal levels, while AMextend and AmpVar (amplitude-related parameters) decreased (see Table 2 for abbreviations and definitions). F0mean was also affected by arousal, but did not change consistently with increasing arousal levels (level 0 > 1 < 2). F4mean (fourth putative formant) tended to increase, but not significantly, with arousal. Ten parameters were influenced by valence (Table 3; see Table S1 for raw values). Dur, G0start, G0max, G0mean, F0max, Q24%, Q50% and Q75% all decreased from negative to positive valence, while AMextend and AmpVar increased. F0start and AMrate tended to decrease from negative to positive valence, but these effects were only marginally significant (0.05 < p < 0.06). The other parameters were neither affected by arousal, nor by valence (Table 3).

When a parameter was significantly affected by both emotional arousal and valence, we used a model selection procedure based on Akaike’s information criterion (AIC), to identify which of arousal or valence best explained the variation in each parameter value. We used AIC adjusted for small sample sizes (AICc), because AICc converges to AIC as the sample size increases and should thus be used by default. The model (including arousal or valence) with the lowest AICc can be considered as the best model. This model selection procedure revealed that the variation in F0max, AmpVar, Q24%, Q50% and Q75% was better explained by arousal than valence (Table 4). Conversely, the variation in Dur, G0start, G0max, G0mean and AMextend was better explained by valence than arousal levels (Table 4). For F0max, AmpVar, G0max and AMextend, the difference between the AICc values of the two models (AICc) was lower than 3, indicating that the models including arousal and valence were competitive. The model including arousal had 78% and 62% chance to be the best model for F0Max and AmpVar, respectively. The model including valence had 81% and 73% chance to be the best model for G0max and AMextend, respectively. For Q25%, the ΔAICc was lower than 4, indicating that the model including valence had less support by the data than the model including arousal, which had 88% chance to be the best model.

To summarize, according to our criteria, F0start, Q50% and Q75% were reliable cues to arousal, because they were changing consistently with arousal and were clearly more affected by arousal than valence (AICc > 7). By contrast, Dur, G0start and G0mean were clearly more affected by valence than arousal (AICc > 7) and were therefore reliable cues to valence. Similar analyses carried out on physiological and behavioral parameters measured during the tests showed that the emotional arousal and valence of our situations were reflected by physiological and behavioral changes in the horses, suggesting underlying emotions (see Supplementary Results).

In order to examine clustering among parameters, we then carried out a principal component analysis (PCA), including all the vocal parameters measured in five randomly selected whinnies per horses (n = 9 horses, i.e. horses that produced at least 5 whinnies in which all 19 parameters were successfully measured; Table 1). The PCA generated six principal components (PCs) that exceeded Kaiser’s criterion (eigenvalues >1) and accounted for 83% of the variation in the original data set. Among the six vocal parameters selected as good cues to horse emotions, those indicating arousal (F0start, Q50%, Q75%) were clustered in PC1, while those indicating valence (G0start and G0mean) were clustered in PC2. Finally, Dur, which also indicated valence, loaded highly on PC6 (Table S2).

Our study revealed that whinnies produced during high emotional arousal situations have a higher F0 (F0start) and energy distribution (i.e. energy quartiles; Q50% and Q75%) than those produced during low arousal situations. These results could be explained by 1) an
Table 3 | Effect of emotional arousal level and valence on vocal parameters. Residuals of the linear mixed-effects models controlled for sex, age and body weight of the horses, order of the situations (All or Companion tests first), day of experiment, individual and farm identity (mean ± SD; raw values are listed in Table S1), along with statistical results (likelihood-ratio tests: χ^2 values, sample size (n) and pvalues). The direction is indicated for the significant (p < 0.05) and marginally significant (0.05 < p < 0.06) effects (“<” indicates an increase with emotional arousal levels or from negative to positive valence, whereas “>” indicates a decrease; NC indicates that the effect was not consistent, i.e. increase followed by decrease or vice-versa). Significant results are shown in bold (** indicates p < 0.001). See Table 2 for abbreviations of the parameters.

Parameter	0	1	2	χ^2 (n)	p	Negative	1	2	χ^2 (n)	p
Dur	-0.15	0.60	-0.03	0.49	0.06	0.42	8.81	267	**0.003	<
DurIntro	0.01	0.22	-0.03	0.17	0.02	0.16	1.22	267	0.07	<
G0start	-84.69	239.29	-24.21	237.38	40.03	259.79	12.22	260	**0.0005	<
G0max	-35.73	156.73	-7.25	148.83	14.70	147.73	5.09	260	**0.004	<
G0mean	-44.03	137.21	4.92	144.18	7.89	121.30	3.90	260	**0.008	<
F0start	-17.03	92.51	16.74	109.66	17.72	93.99	9.00	267	**0.003	<
F0max	-12.08	71.03	-9.42	70.05	10.65	80.58	6.66	267	**0.001	<
F0mean	-6.98	59.23	-10.01	62.23	9.74	74.80	5.42	267	**0.002	NC
TimeF0max	-2.48	15.13	0.28	14.54	0.45	13.31	1.17	267	0.28	<
AmpVar	2.19	9.55	0.78	9.60	-1.20	7.40	7.57	267	**0.006	<
AMrate	-0.19	1.92	0.00	1.61	0.05	1.71	0.84	267	0.36	<
AMexttent	0.08	0.32	0.02	0.34	-0.04	0.31	0.57	267	**0.017	<
Q25%	-63.79	241.79	-31.83	287.20	42.15	266.57	8.54	267	**0.003	<
Q50%	-89.50	273.94	-25.36	268.96	43.99	263.68	11.71	267	**0.006	<
Q75%	-0.07	0.16	-0.03	0.17	0.04	0.15	26.65	267	**0.003	<
F1mean	3.20	36.30	-0.60	28.19	-0.83	34.43	0.15	97	0.70	<
F2mean	-17.36	41.94	15.20	47.43	-9.45	41.67	0.56	97	0.45	<
F3mean	4.67	32.04	0.63	40.99	-1.87	35.00	0.31	131	0.57	<
F4mean	-1.33	36.55	-8.42	39.32	13.22	44.78	3.75	106	**0.053	NC
increase in sub-glottal pressure and/or vocal fold tension producing an increase in F0, and 2) an increase in pharyngeal constriction or a less pronounced retraction of the larynx, resulting in a higher energy distribution, with an increase in arousal levels2,35,47. A raise in F0 and an increase in sub-glottal pressure and/or vocal fold tension producing an increase in G0, we would need to find the source of production of this increase in G0, which requires further examination. A decrease in duration (Dur) and had a lower G0 (G0start and G0max) than those produced during negative situations (Figure 3; Audio S2). The duration (Dur) and had a lower G0 (G0start and G0max) than those produced during negative situations (Figure 3; Audio S2). The whinnies produced during positive situations were shorter in duration (Dur) and had a lower G0 (G0start and G0max) than those produced during negative situations (Figure 3; Audio S2). The change in duration can be explained by shorter expirations, resulting in shorter whinny duration during positive situations, compared to negative ones. However, in order to explain valence-related changes to G0, we would need to find the source of production of this parameter, which requires further examination. A decrease in duration between negative and positive situations, as revealed in our study, was also found in dogs51, and squirrel monkey31. These results are in accordance with the motivation-structural rules29, which states that calls produced during appeasing contexts are generally of shorter durations than those produced during aggressive contexts31. A lower pitch (G0 in our case) in positive compared to negative situations was highlighted in squirrel monkey31, and African elephant (Loxodonta africana45). This suggests that vocal correlates of emotional valence could have been, similarly as those of emotional arousal, conserved throughout evolution. Alternatively, vocal correlates of emotional arousal could have been highly conserved, while those of valence could be more species specific. This latter hypothesis is supported by the fact that none of the vocal cues to valence found in goats (Capra hircus), in which a similar experimental procedure was used45, are similar to those that we found in horses.

Our results suggest that vocal expression of emotions in horses is in accordance with the hypothesis of segregation of information about emotional arousal and valence in different vocal parameters. Indeed, F0start, Q50%, Q75% were found to be good cues to emotional arousal, while Dur, G0start and G0mean were found to be good cues to valence. A PCA including all 19 measured vocal parameters revealed a segregation of cues to emotional arousal (F0start, Q50%, Q75%) and valence (Dur, G0start and G0mean) in different PCs, suggesting their independence. Emotional arousal and valence are therefore encoded in different parameters, which seem to be relatively independent of each other.

We found that putative formant frequencies were affected by body weight (decrease in frequencies with weight increase; Figure S2 and Table S3). A similar negative correlation between body weight/size and formant frequencies has been found in most mammals studied to date, because of the strong dependency of vocal tract length on body size (e.g. goat44; koala, Phascolarctos cinereus3). However, apart from the mean frequency of the fourth putative formant (F4mean), which tended to change with emotional arousal, these frequencies measured in horse whinnies were neither affected by arousal nor by valence. This could be due to the fact that we were able to measure putative formants only when the end part of whinny was present (53% of the whinnies of each horse on average; see Supplementary Methods). Therefore, our sample size was smaller for putative formant frequencies than for other vocal parameters and might not have been sufficient to detect a link with emotions.

Conclusions

We discovered that horse whinnies were composed of two fundamental frequencies (F0 and G0), suggesting biphonation. F0 and the energy spectrum indicated emotional arousal, while G0 and whinny duration indicated emotional valence. The function of non-linear phenomena (i.e. biphonation, subharmonics and deterministic chaos41) is not clear, but these particularities could allow individuals to generate highly complex and unpredictable vocalizations41. Biphonation has been suggested to enhance, among others, identity cues41,56,57. Our results show that the presence of two fundamental frequencies can also function as a means of emotion expression, with each frequency encoding one emotional dimension (i.e. arousal and valence). As emotional arousal and valence are each encoded by vocal parameters that seem relatively independent of each other, vocal expression of emotions in horses corresponds more to the segregation of information hypothesis49 than the trade-off hypothesis57. This suggests that emotional arousal and valence can both be effectively and simultaneously communicated in this species. Vocal communication of emotions could allow horses to regulate social interactions within groups. Further playback experiments could test if conspecifics perceive these emotional-related changes to the acoustic structure of whinnies45,49. Our approach allowed us to identify clearly which parameters were mostly influenced by each emotional dimension. We believe that this approach will lead to better knowledge of vocal correlates of emotions in animals, which could help to understand the phylogenetic continuity of emotion expression between animals and humans, through cross-species comparisons29.

Methods

Subjects and management conditions. Twenty horses were tested in May and June 2013 (Table 1). All the horses had been in their respective farm for at least 6 months. For each tested horse, we identified the group member that, according to the farm owner, elicited the highest number of vocalizations during separation.
“Companion”). During the night, the horses were housed in single boxes (n = 5 horses) or in groups of two or three horses (n = 5 horses). During the day, they were kept outdoors, either individually in adjacent fields (n = 6 horses) or in groups of two to four horses (n = 14 horses).

Experimental procedure. For each farm, the experiment was conducted on four successive days. The first day (“habitation day”) consisted of a habituation to the physiological measurement equipment (heart-rate monitor; see below Response measures for details) and to the situations, in order to minimize stress linked to novelty. Each of the second, third and fourth day (“test days”) consisted of a repetition of the four emotional situations (All/Companion “Leave/Return”). This repetition allowed us to increase the sample size of whinnies produced during the situations.

The procedure was similar for the four days (i.e. habituation day and three test days). The horses were tested one by one, as follows: we placed the heart-rate monitor on the subject and waited five minutes (habituation day) or two minutes (test day) for the horse to get used to it. Following this time period, the “Leave” situation started (i.e. All-Leave or Companion-Leave). Two to four experimenters (depending on the number of horses at the farm) took all the other horses (“All tests”) or only the companion (“Companion tests”; in a counterbalanced order between and within horses; i.e. All tests followed by Companion tests or Companion tests followed by All tests) on a halter and walked away from the tested horse’s home box/paddock. The direction in which the experimenters walked away with the group member(s) changed between days to lessen the potential habituation. When out of sight of the tested the horse, the experimenters waited one minute (habituation day and first test day), two minutes (second test day) or five minutes (third test day) before coming back. This increase in time out of sight across days reduced habituation to the situation, thus maintaining a high emotional arousal level throughout the three days of tests and increasing the probability of eliciting whinnies. After the time out of sight elapsed, the “Return” situation started (i.e. All- or Companion-Return). The experimenters walked back with the group member(s) towards the subject’s home box/paddock and released it (them) in its (their) home box/paddock. Then, the subject was left alone again for five minutes, which allowed us to resume monitoring its activities and its heart rate to reach baseline values, as displayed on the physiological analysis software. After this interval, the second pair of negative and positive situations started, and only the companion or all the other horses were moved away from the tested horse, depending on which tests had been carried out first (All or Companion tests). The procedure for the second pair of situations (Leave and Return) was identical to the one described above.

During the situations, two experimenters were standing 5–10 m away from the subject to operate the camera, the sound recorder and the physiological analysis software. For horses kept in paddocks, the access to the box was prevented to allow the experimenters to easily follow the behavior of the horse. The whole control situation was carried out on one of the four days of the experiment (one or two horses per farm per day), before the emotional situations started. We equipped the subject with the heart-rate monitor and waited two minutes for the horse to go back to normal activities. The situation then lasted 4 min. It did not elicit any whinny. However, this situation allowed us to obtain baseline values for physiological and behavioral data.

Determination of the emotional arousal of the situations. To determine emotional arousal levels, we tested for differences in heart rate between situations (Figure 1). The heart rate of the horses differed according to the situation (linear mixed-effects model (LMM): X^2 (5) = 35.00, p < 0.001). The lowest heart rate was measured during the Control situation.

Experimental procedure. For the second pair of situations (Leave and Return), we attributed an arousal level of 0 (lowest) to these two situations. The heart rate values measured during the Companion-Returns situation were significantly lower than those measured during the Companion-Leaves situation (Companion-Returns vs Companion-Leaves; LMM: X^2 = 10.28, p = 0.001), which, in turn, were similar to the values measured during the All-Return situation (Companion-Leaves vs All-Return; LMM: X^2 = 1.59, p = 0.211). Companion-Leaves and All-Return situations were thus assigned an arousal level of 1 (intermediate). The heart rate values for the Leave situation were significantly different from those obtained for the All-Return situation (arousal level = 1) after Bonferroni correction (All-Return vs All-Leave; LMM: X^2 = 4.58, p = 0.032; Bonferroni, α = 0.001). However, because the values for the Leave situation were significantly higher than those measured during the Companion-Leaves situation (Companion-Leaves vs Companion-Returns; LMM: X^2 = 11.08, p = 0.0009), we attributed an arousal level of 2 (highest) to the All-Leave situation.

Response measures. Vocalizations were recorded during the tests at distances of 5–10 m from the vocalizing animal using a Sennheiser MKH-70 directional microphone, connected to a Marantz PMD-671 recorder using a sampling rate of 44.1 kHz. The recorded signal was segmented in WAV format using a 16-bit amplitude resolution. We used Praat v.5.3.41 DSP Package and Weavsecrev for subsequent analyses. Calls were visualized on spectrograms in Praat (FFT method, window length = 0.03 s, time steps = 1000, frequency steps = 250, Gaussian window shape, dynamic range = 60 dB). They were classified as whinny, nicker, squeal or sigh according to their acoustic characteristics21,22. We analyzed all good quality whinnies (n = 380 whinnies produced during the situations). The vocal parameters measured are listed in Table 2 and detailed in the Supplementary Methods.

Physiological measures. Physiological measures were collected using a wireless non-invasive monitor (MLTI20X BioFarness Telemetry System, Zephyr), fixed to a surcingle placed around the subject’s heart girth. ECG gel was applied on the electrodes before each test. The data (continuous ECG trace and breathing wave, i.e. inhalation/exhalation cycle) were transmitted and stored in real time to a laptop using LabChart software v.7.2 (ADInstruments) for later analyses. During the tests, one experimenters entered comments in the software indicating when the group member(s) was(were) leaving and returning. This allowed us to measure the following physiological parameters at the exact moment when these events occurred: heart rate, root mean square of successive inter-beat interval differences (RMSSD), respiration rate and skin temperature (Table S4).

We analyzed these parameters, when possible (i.e. good quality signal, clearly visible heart beats on the ECG trace and inhalation/exhalation on the breathing wave), for up to 30 s during the Leave tests (starting when all the doors of the boxes were closed, and when the experimenters were visible out of sight) and for 1 min with all group members or with only the companion) and Return tests (starting from the time when the group member(s) was(were) visible and when the subject was oriented in its(their) direction). This duration (30 s) corresponded to the minimum duration taken by the experimenters to lead the group member(s) out of sight of the subject or to return. During the control situations, heart rates were analyzed over up to 1 min of good quality signal (total situation duration = 4 min).

For each selection, we ensured that the software tracked the heart beats (ECG trace) and the inspiration–expiration cycles (breathing wave) correctly. Parts of the ECG trace when an atrio-ventricular block could be observed (i.e. usually while resting; one heart beat missing every 3–4 beats) were excluded. Then, the heart rate (beats/minute) was calculated based on the length of each segment. On average, for each horse and test condition (i.e. for each test on each farm) and for each parameter, values were obtained automatically from the software. Individual inter-beat intervals (ms) were also extracted, in order to assess heart-rate variability by calculating RMSSD (ms). When the parameters had to be averaged over several selections inter-spaced by noisy recording, a weighed arithmetic mean was calculated based on the length of each segment. On average, for each test and situation (i.e. for each test condition), the physiological data over 21.30 ± 7.87 s during the All-Leave situation, 21.80 ± 6.07 s during the All-Return situation, 23.60 ± 6.87 s during the Companion-Leave situations, 22.05 ± 6.39 s during the Companion-Returns situation. We obtained physiological data over 55.37 ± 8.62 s during the Control situation (n = 20 horses; see Supplementary Results for the better accuracy of each parameter or statistic). The vocal parameters were scored from the videos of the tests, filmed using a Canon Legria FS2000 camcorder. We scored behavioral parameters that had been performed by at least 50% of the horses (i.e. 10 horses) during the tests (listed in Table S4). They were scored using The Observer software XT v.11 (Noldus), similarly as the physiological parameters, for 30 s during the Leave and Return tests, and for 1 min during the Control situation. During these periods, behaviors were scored either as occurrence (for discrete behaviors; “Point Events”) or as duration (for behavior lasting in time; “State Events”). We then calculated the frequency of occurrence per minute for the Point Events (indicated in min^-1 in Table S4), and the proportion of the behavior present for State Events. The analyses were carried out on these frequencies of occurrence or proportions (see Supplementary Results for the effect of emotions on behavioral parameters).

Statistical analysis. We tested for differences in heart rate between situations using a linear mixed-effects model (lmer function, lme4 library) in R 3.0.2 software. This model included heart rate as a response variable, and the sex, age and height of the horse, as well as the order of the situations (i.e. if Companion tests or All tests were carried out first or second each day), as fixed factors to control for their effect. The situation (All-Leave, All-Return, Companion-Leaves, Companion-Returns and Control) was included as a fixed factor. Finally, horse identity nested within the farm was included as a random effect. We performed this control for repeated measurements of the same subjects, and for farm and day differences (e.g. differences linked to increased time spent out of sight throughout the three days of tests). Then, two-by-two comparisons between the emotional situations were carried out using linear mixed-effects models including the same fixed and random factors. We attributed an arousal level of 1 to the Leave situation, and 0 to each of the other situations (Companion-Leaves, Companion-Returns, Control and farm). We then calculated the frequency of occurrence per minute for the Point Events (indicated in min^-1 in Table S4), and the proportion of the behavior present for State Events. The analyses were carried out on these frequencies of occurrence or proportions (see Supplementary Results for the effect of emotions on behavioral parameters).
one triggering the lowest heart rate. Situations that did not differ in heart rate were considered to be of the same arousal level (Figure 12). After establishing arousal levels for all of the emotional situations, we carried out further models to test the effect of arousal and valence on the other vocal, physio-
ological, and behavioral parameters measured (Table 2 and S4 for a list of parameters). Each model included the parameter as a response variable (one model per parameter) and the fixed factors arousal and valence such as sex of the horse, as well as the order of the situations as fixed factors - see Table S3 for results of these control factors; identity of the horses nested within farm, and the date of the test, as crossed random factors. The proportion of time spent moving was also included as a fixed factor for the physiological parameters, to control for its effect. For models including skin temperature as a response variable, we additionally added the outdoor temperature for each test day as a fixed factor to control for its effect. We ran one first set of models with arousal level as a fixed effect and another set with valence as a fixed effect. Then, for each parameter that was significantly affected by both arousal and valence, we used a model selection procedure based on Akaike’s information criteria (AICc) to find small sets of parameters which included arousal or valence best explained the variation in each parameter value. The model with the lowest AICc is considered as the best model. When the difference between the AICc values of two models (AICc1 - AICc2) is less than 2 units, both models have support and can be considered competitive. Models with AICc1 ranging from 3 to 7 have considerably less support by the data, models with AICc1 > 10 are poorly supported, and AICc > 20 have no empirical support. AIC weights (wi) indicate the probability that a particular model has more or less support from the data among those included in the candidate models.

The residuals were checked graphically for normal distribution and homoscedas-
ticity. To satisfy assumptions, we used a log transformation for Q75%, AMextend and the same control and random factors as listed above (sex, age and body weight of the horse). For the variables that were logit-transformed (EarsForward, EarsHorizontal, EarsAsymetric and LookForward). These log- or behavioral parameters measured in proportions were logit-transformed (DurIntro, HR, RMSSD, RespRate (see Table 2 and S4 for abbreviations). Some of the parameters (see sample sizes in Table 3 and S5). All statistical analyses were performed with in R 3.0.2 software. The significance level was set at 0.05; apart for Locomotion (%) and HeadMov (min).

Handbook of Mammalian Vocalization – An Integrative Neuroscience Approach [Brudzynski, S.M. (ed.)] [201–208] (Academic Press, London, 2009).

Scientific Reports 5: 9989 | DOI: 10.1038/srep09989

Ethical note. All experiments were carried out in accordance with the current laws of Switzerland. The protocol was approved by the Federal Veterinary Office (approval number VD 2689). The negative situations lasted not more than 5 min each (i.e. from the time the group member(s) leave(s) and until it(they) return(s)). Furthermore, we used situations that are likely to be experienced by horses in their everyday life (e.g. when one of the horses in the group is being ridden). In case of high levels of stress experienced by a horse during one of the situation on the habituation or test day, we immediately stopped the test. In S4 for a list of parameters. Each model included the parameter as a response variable (one model per parameter) and the fixed factors arousal and valence such as sex of the horse, as well as the order of the situations as fixed factors - see Table S3 for results of these control factors; identity of the horses nested within farm, and the date of the test, as crossed random factors. The proportion of time spent moving was also included as a fixed factor for the physiological parameters, to control for its effect. For models including skin temperature as a response variable, we additionally added the outdoor temperature for each test day as a fixed factor to control for its effect. We ran one first set of models with arousal level as a fixed effect and another set with valence as a fixed effect. Then, for each parameter that was significantly affected by both arousal and valence, we used a model selection procedure based on Akaike’s information criteria (AICc) to find small sets of parameters which included arousal or valence best explained the variation in each parameter value. The model with the lowest AICc is considered as the best model. When the difference between the AICc values of two models (AICc1 - AICc2) is less than 2 units, both models have support and can be considered competitive. Models with AICc1 ranging from 3 to 7 have considerably less support by the data, models with AICc1 > 10 are poorly supported, and AICc > 20 have no empirical support. AIC weights (wi) indicate the probability that a particular model has more or less support from the data among those included in the candidate models.

The residuals were checked graphically for normal distribution and homoscedas-
ticity. To satisfy assumptions, we used a log transformation for Q75%, AMextend and the same control and random factors as listed above (sex, age and body weight of the horse). For the variables that were logit-transformed (EarsForward, EarsHorizontal, EarsAsymetric and LookForward). These log- or behavioral parameters measured in proportions were logit-transformed (DurIntro, HR, RMSSD, RespRate (see Table 2 and S4 for abbreviations). Some of the parameters (see sample sizes in Table 3 and S5). All statistical analyses were performed with in R 3.0.2 software. The significance level was set at 0.05; apart for Locomotion (%) and HeadMov (min). To test if the vocal parameters determined as good cues to emotional arousal and valence were independent from each other, we used a PCA. This analysis allowed us to examine clustering among parameters within the generated principal components. As PCA requires a random sample from the population, with each individual con-
tributing equally, we considered only horses that had produced at least 5 whinnies in which the 19 parameters (Table 2) had been successfully measured (n = 9 horses). For horses with more of such whinnies, we selected five of them pseudo-randomly, in a way that would maximize the number of calls produced under each emotional arousal level and that would maximize the number of whinnies for each emotional arousal level.

Three horses were not tested with all of the Remove-All situations because they elicited stress levels that were too high (see below in Ethical Note). Due to problems encountered with measuring devices, one horse could not be filmed entirely during the Companion tests on one of the days. Therefore, sample sizes differ between parameters (see sample sizes in Table 3 and S5). All statistical analyses were performed with in R 3.0.2 software. The significance level was set at $\alpha = 0.05$. All means are given with standard deviations.

Ethical note. All experiments were carried out in accordance with the current laws of Switzerland. The protocol was approved by the Federal Veterinary Office (approval number VD 2689). The negative situations lasted not more than 5 min each (i.e. from the time the group member(s) leave(s) and until it(they) return(s)). Furthermore, we used situations that are likely to be experienced by horses in their everyday life (e.g. when one of the horses in the group is being ridden). In case of high levels of stress experienced by a horse during one of the situation on the habituation or test day, we immediately stopped the test. In S4 for a list of parameters. Each model included the parameter as a response variable (one model per parameter) and the fixed factors arousal and valence such as sex of the horse, as well as the order of the situations as fixed factors - see Table S3 for results of these control factors; identity of the horses nested within farm, and the date of the test, as crossed random factors. The proportion of time spent moving was also included as a fixed factor for the physiological parameters, to control for its effect. For models including skin temperature as a response variable, we additionally added the outdoor temperature for each test day as a fixed factor to control for its effect. We ran one first set of models with arousal level as a fixed effect and another set with valence as a fixed effect. Then, for each parameter that was significantly affected by both arousal and valence, we used a model selection procedure based on Akaike’s information criteria (AICc) to find small sets of parameters which included arousal or valence best explained the variation in each parameter value. The model with the lowest AICc is considered as the best model. When the difference between the AICc values of two models (AICc1 - AICc2) is less than 2 units, both models have support and can be considered competitive. Models with AICc1 ranging from 3 to 7 have considerably less support by the data, models with AICc1 > 10 are poorly supported, and AICc > 20 have no empirical support. AIC weights (wi) indicate the probability that a particular model has more or less support from the data among those included in the candidate models.

The residuals were checked graphically for normal distribution and homoscedas-
ticity. To satisfy assumptions, we used a log transformation for Q75%, AMextend and the same control and random factors as listed above (sex, age and body weight of the horse). For the variables that were logit-transformed (EarsForward, EarsHorizontal, EarsAsymetric and LookForward). These log- or behavioral parameters measured in proportions were logit-transformed (DurIntro, HR, RMSSD, RespRate (see Table 2 and S4 for abbreviations). Some of the parameters (see sample sizes in Table 3 and S5). All statistical analyses were performed with in R 3.0.2 software. The significance level was set at $\alpha = 0.05$. All means are given with standard deviations.

1. Scherer, K. R. Vocal affect expression: a review and a model for future research. Psychol. Bull. 99, 143–165 (1986).
53. August, P. V. & Anderson, J. G. Mammal sounds and motivation – structural

52. Morton, E. S. On the occurrence and significance of motivation-structural rules in

51. Taylor, A. M., Reby, D. & McComb, K. Context-Related Variation in the Vocal

38. Titze, I. R. A framework for the study of vocal registers. J. Voice 2, 183–194 (1988).

37. Vannoni, E. & McElligott, A. G. Individual acoustic variation in fallow deer (Dama

dama) common and harsh groans: a source-filter theory perspective. Ethology 113, 223–234 (2007).

36. Wilden, I., Herzl, H., Peters, G. & Tombrock, G. Subharmonics, biphonation, and

deterministic chaos in mammal vocalization. Bioacoustics 9, 171–196 (1998).

35. Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel

34. Briefer, E. & McElligott, A. G. Indicators of age, body size and sex in goat kid calls

33. Elemans, C. P. H., Heeck, K. & Muller, M. Spectrogram analysis of animal sound

32. Lilly, L. Pathophysiology of Heart Disease (Lippincott Williams and Wilkins,

Philadelphia, 2006).

31. Tabachnick, B. G. & Fidell, L. S. Using Multivariate Statistics (Allyn and Bacon,

Boston, , Massachusetts, 2001).

30. Carroll, C. L. & Huntington, P. J. Body condition scoring and weight estimation of

horses. Equ. Vet. J. 20, 41–45 (1988).

29. Schehka, S., Eisser, K.-H. & Zimmermann, E. Acoustical expression of arousal in

conflict situations in tree shrews (Tupaia belangeri). J. Comp. Physiol. 193, 845–852 (2007).

28. Perez, E. C. et al. The acoustic expression of stress in a songbird: Does corticosterone

drive isolation-induced modifications of zebra finch calls? Horm. Behav. 61, 573–581 (2012).

27. Fitch, W. T. The phonetic potential of nonhuman vocal tracts: comparative

cineradiographic observations of vocalizing animals. Phonetica. 57, 205–218 (2000).

26. Banta Lavenex, P. Vocal production mechanisms in the budgerigar (Melopsittacus

undulatus): The presence and implications of amplitude modulation. J. Acoust.

Soc. Am. 106, 491–505 (1999).

25. Beecher, M. D. Spectrographic analysis of animal vocalizations: implications of the ‘uncertainty principle’. Bioacoustics 1, 187–208 (1988).

24. Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel

inference and model averaging in behavioural ecology using Akaike’s information

criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

23. Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a

practical information-theoretic approach (Springer, New York, 2002).

22. Fitch, W. T. The phonetic potential of nonhuman vocal tracts: comparative

cineradiographic observations of vocalizing animals. Phonetica. 57, 205–218 (2000).

21. Taylor, A. M., Reby, D. & McComb, K. Context-Related Variation in the Vocal

Growing Behaviour of the Domestic Dog (Canis familiaris). Ethology 115, 905–915 (2009).

20. Morton, E. S. On the occurrence and significance of motivation-structural rules in

some bird and mammal sounds. Am. Nat. 111, 855–869 (1977).

19. August, P. V. & Anderson, J. G. T. Mammal sounds and motivation – structural

rules: a test of the hypothesis. J. Mammal. 68, 1–9 (1987).

18. Briefer, E. & McElligott, A. G. Indicators of age, body size and sex in goat kid calls

revealed using the source-filter theory. Appl. Anim. Behav. Sci. 133, 175–185 (2011).

17. Charlton, B. D. et al. Cues to body size in the formant spacing of male koala

(Phascolarctos cinereus) bellows: honesty in an exaggerated trait. J. Comp. Physiol.

A 207, 341–342 (2011).

16. Aubin, T., Jouventin, P. & Hildebrand, C. Penguins use the two–voice system

to recognize each other. Proc. R. Soc. B 267, 1081–1087 (2000).

15. Volodina, E. V., Volodin, I. A., Isaeva, I. V. & Unck, C. Biphonation may function

to enhance individual recognition in the dhole, Cuon alpinus. J. Exp. Biol. 214,

3414–3422 (2011).

14. Wilden, I., Herzel, H., Peters, G. & Tombrock, G. Subharmonics, biphonation, and

deterministic chaos in mammal vocalization. Bioacoustics 9, 171–196 (1998).

13. Vannoni, E. & McElligott, A. G. Individual acoustic variation in fallow deer (Dama

dama) common and harsh groans: a source-filter theory perspective. Ethology 113, 223–234 (2007).

12. Titze, I. R. A framework for the study of vocal registers. J. Voice 2, 183–194 (1988).

11. Alipour, F., Finnegon, E. M. & Scherer, R. C. Aerodynamic and acoustic effects of

abrupt frequency changes in excised larynges. J. Speech Lang. Hear. Res. 52,

465–481 (2009).

10. Fitch, W. T., Neubauer, J. & Herzel, H. Calls out of chaos: the adaptive significance

of nonlinear phenomena in mammalian vocal production. Anim. Behav. 65,

407–418 (2002).

9. Volodin, I. A. & Volodina, E. V. Biphonation as a prominent feature of dhole

Cuon alpinus sounds. Bioacoustics 13, 105–120 (2002).

8. Elemans, C. P. H., Heeck, K. & Muller, M. Spectrogram analysis of animal sound

production. Bioacoustics 16, 183–212 (2008).

7. Banta Lavenex, P. Vocal production mechanisms in the budgerigar (Melopsittacus

undulatus): The presence and implications of amplitude modulation. J. Acoust.

Soc. Am. 106, 491–505 (1999).

6. Beecher, M. D. Spectrographic analysis of animal vocalizations: implications of the ‘uncertainty principle’. Bioacoustics 1, 187–208 (1988).

5. Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel

inference and model averaging in behavioural ecology using Akaike’s information

criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

4. Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a

practical information-theoretic approach (Springer, New York, 2002).

3. Fitch, W. T. The phonetic potential of nonhuman vocal tracts: comparative

cineradiographic observations of vocalizing animals. Phonetica. 57, 205–218 (2000).

2. Schrader, L. & Todt, D. Vocal quality is correlated with levels of stress hormones in

domestic pigs. Ethology 104, 859–876 (1998).

1. Schehka, S., Eisser, K.-H. & Zimmermann, E. Acoustical expression of arousal in

conflict situations in tree shrews (Tupaia belangeri). J. Comp. Physiol. 193,

845–852 (2007).

Acknowledgments

We are grateful to Thierry Aubin, Roland Frey, Tcumseh Fitch, David Reby, Megan Wyman and Branka Zei-Pollerman for their advice on acoustic analyses, and to Benjamin Pitcher for helpful comments on the manuscript. We thank Solveig Pletscher, Anne-Sylvie and Andre Thevez, Franziska and Beatrice Wohlfender, and Anja, Laurence and Alex Zollinger, for their help and access to the animals. EFB and A-LM are funded by a Swiss National Science Foundation fellowship, and RM by a fellowship from the Universities Federation for Animal Welfare.

Author contributions

EFB designed the study, collected the data, analyzed the vocal parameters, carried out the statistics and wrote the paper. A-LM helped to design the study, collected the data, analyzed the behavioral parameters and commented on the paper. RM helped to design the study, analyzed the physiological parameters and helped to write the paper. SFB designed the study, participated in the data collection, and commented on the paper. IB helped to design the study and commented on the paper. EIB helped to design the study and commented on the paper. All authors read and approved the final manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare that they have no competing financial interests.

How to cite this article: Briefer, E.F. et al. Segregation of information about emotional arousal and valence in horse whinnies. Sci. Rep. 4, 9898; DOI:10.1038/srep09898 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Erratum: Segregation of information about emotional arousal and valence in horse whinnies

Elodie F. Briefer, Anne-Laure Maigrot, Roi Mandel, Sabrina Briefer Freymond, Iris Bachmann & Edna Hillmann

Correction to: Scientific Reports https://doi.org/10.1038/srep09989; published online 21 April 2015; updated 19 March 2018

The original version of this Article contained a typographical error in the volume number ‘5’ was incorrectly given as ‘4’. This error has now been corrected in the PDF and HTML versions of the Article.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2018