Anticipation of summer monsoon rainfall over India by Artificial Neural Network with Conjugate Gradient Descent Learning

Surajit Chattopadhyay
Department of Information Technology
Pailan College of Management and Technology
Affiliated to West Bengal University of Technology
Bengal Pailan Park
Kolkata 700 104
West Bengal
E-mail: surajit_2008@yahoo.co.in

Abstract
Present study aims to develop a predictive model for the average summer monsoon rainfall amount over India. The dataset made available by the Indian Institute of Tropical Meteorology, Pune, has been explored. To develop the predictive model, Backpropagation method with Conjugate Gradient Descent algorithm has been implemented. The Neural Net model with the said algorithm has been learned thrice to reach a good result. After three runs of the model, it is found that a high prediction yield is available. Ultimately, Artificial Neural Network with Conjugate Gradient Descent based Backpropagation algorithm is found to be skillful in predicting average summer monsoon rainfall amount over India.

Key words: average summer monsoon rainfall, prediction, Artificial Neural Network, Conjugate Gradient Descent

2000 AMS Subject Classifications: 82C32, 37M10

Introduction

Artificial neural networks (ANN) are parallel computational models; comprising closely interconnected adaptive processing units. The important characteristic of neural networks is their adaptive nature, where ‘learning by example replaces programming’. This feature makes the ANN techniques very appealing in application domains for solving highly non-linear phenomena. During last four decades, various complex problems like weather prediction, stock market prediction etc has been proved to be areas with ample scope of application of this sophisticated mathematical tool. A multilayer neural network can approximate any smooth, measurable function between input and output vectors by selecting a suitable set of connecting weights and transfer functions.

Weather forecasting is one of the most urgent and challenging operational responsibilities carried out by meteorological services all over the world. It is a complicated procedure that includes numerous specialized fields of know-how [4]. Several authors (i.e. [1], [3], [26], [27] and many others) have discussed the uncertainty associated with the weather systems. Chaotic features associated with the atmospheric phenomena also have attracted the attention of the modern scientists (Refs [17], [22], [23], [24]). Different scientists over the globe have developed stochastic weather models which are basically statistical models that can be used as random number generators whose output resembles the weather data to which they have been fit [27].

Amongst all weather happenings, rainfall plays the most crucial role in human life. Human civilization to a great degree depends upon its frequency and amount to various scales ([4], [6]). Several stochastic models have been attempted to forecast the occurrence of rainfall, to investigate its seasonal variability, to forecast monthly/yearly rainfall over some given geographical area. Daily precipitation occurrence has been viewed through Markov chain by Chin, 1977 [2]. Gregory et al (1993) [3] applied a chain-dependent stochastic model, named as Markov chain model to investigate inter annual variability of area average total precipitation. Wilks (1998) [27] applied mixed exponential distribution to simulate precipitation amount at multiple sites exhibiting realistic spatial correlation. Hu (1964) [10] initiated the implementation of ANN in weather forecasting. Since the last few decades, voluminous development in the application field of ANN has opened up new avenues to the forecasting task involving atmosphere related phenomena (Refs [7],

Michaelides et al (1995) [16] compared the performance of ANN with multiple linear regressions in estimating missing rainfall data over Cyprus. Kalogirou et al (1997) [12] implemented ANN to reconstruct the rainfall time series over Cyprus. Lee et al (1998) [15] applied Artificial Neural Network in rainfall prediction by splitting the available data into homogeneous subpopulations. Wong et al (1999) [27] constructed fuzzy rule bases with the aid of SOM and Backpropagation neural networks and then with the help of the rule base developed predictive model for rainfall over Switzerland using spatial interpolation.

Despite so much of emphasis given to the application of ANN in prediction of different weather events all over the globe, Indian meteorological forecasters did not put much precedence on the application this potent mathematical tool in atmospheric prediction. Author of the present papers thinks that summer monsoon rainfall, a highly influential weather phenomenon in Indian agro economy, may be an area that can be immensely developed with application of ANN. After a thorough literature survey, this author found only one application by Guhathakurta (2006) [4] in predicting Indian summer monsoon rainfall. But, Guhathakurta (2006) [4] confined his study within a state of India. Present contribution deviates from the study of Guhathakurta (2006) [4] in the sense that instead of choosing a particular state; the author implements ANN to forecast the average summer-monsoon rainfall over the whole country.

Data analysis and problem description

This paper develops ANN model step-by-step to predict the average rainfall over India during summer-monsoon by exploring the data available at the website http://www.tropmet.res.in published by Indian Institute of Tropical Meteorology. The problem discussed in this paper is basically a predictive problem. In this paper, four predictors have been used with one predictand. The four predictors are

- Homogenized Indian rainfall in June
- Homogenized Indian rainfall in July
- Homogenized Indian rainfall in August
- Homogenized average summer-monsoon rainfall in India

All these four predictors are considered for the year Y to predict the average summer-monsoon rainfall in India in the year $(Y+1)$. The whole data set comprises the rainfall data
of the years 1871-1999. The detailed statistics of the data are given in Table 01. This
table shows high values of variance showing chaotic nature dataset. Thus, ANN is found
to be a suitable method for handling this dataset.

First step towards development of an ANN model is to divide the whole dataset into
training and test sets. The training data are taken from 1871 to 1971. The test data are
taken from 1972 to 1999.

Methodology

In the present paper, an ANN based predictive model is developed for the homogenized
average monsoon rainfall using the Backpropagation learning through the method of
conjugate gradient descent. The Backpropagation learning is based on the gradient
descent along the error surface ([5], [11], [14]). That is, the weight adjustment is
proportional to the negative gradient of the error with respect to the weight. In
mathematical words [14]

\[w_{k+1} = w_k + \eta d_k \]

(1)

Where, \(w_i \) denotes the weight matrix at epoch \(l \). the positive constant \(\eta \), which is selected
by the user, is called the learning rate.

The direction vector \(d_k \) is negative of the gradient of the output error function \(E \)

\[d_k = -\nabla E(w_k) \]

(2)

There are two standard learning schemes for the BP algorithm: on-line learning and batch
learning. In on-line learning, the weights of the network are updated immediately after
the presentation of each pair of input and target patterns. In batch learning all the pairs of
patterns in the training sets are treated as a batch, and the network is updated after
processing of all training patterns in the batch. In either case the vector \(w_k \) contains the
weights computed during \(k \)th iteration, and the output error function \(E \) is a multivariate
function of the weights in the network [14]:

\[E(w_k) = \begin{cases} E_p(w_k)_{on-line} \\ \sum_p E_p(w_k)_{Batch} \end{cases} \]

(3)
Where, $E_p(w_k)$ denotes the half-sum-of-squares error functions of the network output for a certain input pattern p. The purpose of the supervised learning (or training) is to find out a set of weight that can minimize the error E over the complete set of training pair. Every cycle in which each one of the training patterns is presented once to the neural network is called an epoch (for details see [13], [18], [19], [20], [29]).

The direction vector d_k, expressed in terms of error gradient depends upon the choice of activation function. When the sigmoid function i.e. $f(x) = (1 + \exp(-x))^{-1}$ is adopted, the BP algorithm becomes ‘Back propagation for the Sigmoid Adaline’ [28].

Normally, the Backpropagation learning uses the weight change proportional to the negative gradient of the instantaneous error. Thus it uses the only the first derivative of the instantaneous error with respect to the weight. A more effective method [29] can be derived by starting with the following Taylor series expansion of the error as a function of the weight vector

$$E(w + \Delta w) = E(w) + g^T \Delta w + \frac{1}{2} \Delta w^T H \Delta w + \ldots$$ \hspace{1cm} (4)

Where, $g = \frac{\Delta E}{\Delta w}$ is the gradient vector, and $H = \frac{\partial^2 w}{\partial w^2}$ the Hessian matrix. Newton’s method of Backpropagation learning uses this Hessian matrix as a component of weight update.

Conjugate Gradient Descent method, adopted in the present paper, provides a better learning algorithm for Backpropagation method. In this method, the increment of the weight at mth step is given by [29]:

$$\Delta w = w(m + 1) - w(m) = \eta(m)d(m) \ldots \hspace{1cm} \ldots \hspace{1cm} \ldots$$ \hspace{1cm} (5)

Where the direction of the increment $d(m)$ in the weight is a linear combination of the current gradient vector and the previous direction of the increment in the weight. That is

$$d(m) = -g(m) + \alpha(m-1)d(m-1) \hspace{1cm} \ldots \hspace{1cm} \ldots \hspace{1cm} \ldots$$ \hspace{1cm} (6)

Where, $\alpha(m) = \frac{g^T(m+1)[g(m+1) - g(m)]}{g^T(m)g(m)}$ \hspace{1cm} \ldots \hspace{1cm} \ldots$ \hspace{1cm} (7)
Implementation and results

The available data set are first scaled according to

\[z_i = 0.1 + 0.8 \times \left(\frac{x_i - x_{\min}}{x_{\max} - x_{\min}} \right) \quad \ldots \quad \ldots \] (8)

Where, \(z_i \) denotes the transformed appearance of the raw data \(x_i \).

After the modeling is completed, the scaled data are reverse scaled according to

\[P_i = x_{\min} + \left(\frac{1}{0.8} \right) \times \left[(y_i - 0.2) \times \left(x_{\max} - x_{\min} \right) \right] \quad \ldots \quad \ldots \] (9)

Where, \(P_i \) denotes the prediction in original scale, and the corresponding scaled prediction is \(y_i \).

The whole dataset is then divided into training and test sets. The first 75% of the whole dataset is taken as the training set and the last 25% of the data are taken as the test set. Using Conjugate Gradient Descent algorithm, the data are trained three times up to 1000 epochs. After training the ANN is tested over the test set. Evolution of mean squared error during the training process (three runs) is presented in Figure 01. Table 02 depicts the test year, the predictor values and the predicted values of average summer monsoon rainfall over India. The actual and predicted summer monsoons in the test years are presented in Figure 02. The figure shows a close association between actual rainfall amounts and those predicted by ANN with Conjugate Gradient Descent Backpropagation. In Figure 03, the error of prediction (%) in each test case is presented. It is observed that in 78% of the test cases, the prediction error lies below 20% and in 61% cases the prediction error lies below 10%. This proves a high prediction yield by the Backpropagation ANN with Conjugate Gradient descent learning.

Conclusion

The study proves the nimbleness of ANN as a predictive tool for average summer monsoon rainfall in India. Furthermore, Conjugate Gradient Descent is proved to be an efficient Backpropagation algorithm that can be adopted to predict the average summer monsoon rainfall time series over India.
References

[1] Brown, B.G. & Murphy, A.H. (1988) The economic value of weather forecasts in wildfire suppression mobilization decisions. *Canadian Journal of Forest Research* **18**: 1641-1649.

[2] Chin, E.H (1977) Modeling daily precipitation occurrence process with Markov chain. *Water Resources Research* **13**: 949-956.

[3] Elsner, J.B. & Tsonis, A.A. (1992) Non-linear prediction, chaos, and noise. *Bulletin of American Meteorological Society* **73**: 49-60.

[3] Gregory, J.M., Wigley, T.M.L. & Jones, P.D. (1993) Application of Markov models to area average daily precipitation series and inter annual variability in seasonal totals. *Climate Dynamics* **8**: 299-310.

[4] Guhathakurta, P (2006) Long-range monsoon rainfall prediction of 2005 for the districts and sub-division Kerala with artificial neural network. *Current Science* **90**:773-779.

[5] Gallant, S.I., (1988) Connectionist Expert Systems, Journal of Associative Computational Machinery, **31**: 152-169.

[6] Gadgil, S., Rajeevan, M. & Nanjundiah, R., (2005) Monsoon prediction – Why yet another failure? *Current Science* **88**: 1389-1499.

[7] Gardner, M.W.&Dorling, S.R. (1998) Artificial Neural Network (Multilayer Perceptron)- a review of applications in atmospheric sciences. *Atmospheric Environment* **32** : 2627-2636.

[8] Gevrey, M., Dimopoulos, I. & Lek, S. (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. *Ecological Modeling*, **160**: 249–264.

[9] Hsieh, W. W. & Tang, T. (1998) Applying Neural Network Models to Prediction and Data Analysis in Meteorology and Oceanography. *Bulletin of the American Meteorological Society* **79**: 1855-1869.

[10] Hu, M.J.C. (1964) *Application of ADALINE system to weather forecasting*, Technical Report, Stanford Electron.
[11] Haykin, S. (2001) Neural Networks: A Comprehensive Foundation, second ed. Pearson Education Inc., New Delhi, India.
[12] Kalogirou, S.A., Constantinos, C.N., Michaelides, S.C. & Schizas, C.N. (1997) A time series construction of precipitation records using Artificial Neural Networks. EUFIT '97, September 8-11: 2409-2413.
[13] Kartalopoulos, S.V. (1996) Understanding Neural Networks and Fuzzy Logic- Basic Concepts and Applications, Prentice Hall, New-Delhi
[14] Kamarthi, S. V. and Pittner, S. (1999) Accelerating neural network training using weight extrapolation, Neural Networks, 12, 1285-1299.
[15] Lee, S., Cho, S. & Wong, P.M. (1998) Rainfall prediction using Artificial Neural Network. Journal of Geographic Information and Decision Analysis 2: 233-242.
[16] Michaelides, S.C., Neocleous, C.C. & Schizas, C.N (1995) Artificial Neural Networks and multiple linear regression in estimating missing rainfall data. Proceedings of the DSP95 International Conference on Digital Signal Processing, Limassol, Cyprus. 668-673.
[17] Men, B., Xiejing, Z. & Liang, C. (2004) Chaotic Analysis on Monthly Precipitation on Hills Region in Middle Sichuan of China. Nature and Science 2: 45-51.
[18] Nagendra, S.M.S. & Khare, M. (2006) Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecological Modeling 190: 99-115.
[19] Perez, P. & Reyes, J. (2001) Prediction of Particulate air pollution using neural techniques. Neural Computing and Application 10 :165-171.
[20] Perez, P., Trier, A. & Reyes, J. (2000) Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment 34: 1189-1196
[21] Pal, S. K. & Mitra, S. (1999) Neuro-Fuzzy Pattern recognition, Wiley Interscience Publication, USA.
[22] Sivakumar, B. (2000) Chaos theory in hydrology: important issues and interpretations. Journal of Hydrology 227: 1–20.
[23] Sivakumar, B., Liong, S.Y., Liaw, C.Y. & Phoon, K.K. (1999) Singapore rainfall behavior: Chaotic? J. Hydrol. Eng., ASCE. 4: 38–48.
[24] Sivakumar, B. (2001) Rainfall dynamics in different temporal scales: A chaotic perspective. *Hydrology and Earth System Sciences* 5: 645-651.

[25] Sejnowski, T. J. & Rosenberg, C.R. (1987) Parallel networks that learn to pronounce English text. *Complex Systems*, 1: 145-168.

[26] Wilks, D.S. (1991) Representing serial correlation of meteorological events and forecasts in dynamic decision-analytic models. *Monthly Weather Review* 119:1640-1662.

[27] Wilks, D.S. (1998) Multisite generalization of a daily stochastic precipitation generation model. *Journal of Hydrology* 210: 178-191.

[27] Wong, K.W., Wong, P.M., Gedeon, T.D. & Fung, C.C. (1999) Rainfall prediction using neural fuzzy technique. URL: www.it.murdoch.edu.au/~wong/publications/SIC97.pdf, 213-221.

[28] Widrow, B. & Lehr, M.A. (1990) 30 years of Adoptive Neural Networks; Perceptron, Madaline, and Back propagation. *Proceedings of the IEEE* 78: 1415-1442.

[29] Yegnanarayana, B (2000) *Artificial Neural Networks*, Prentice-Hall of India Pvt Ltd, New Delhi, India.

[30] Zhang, M. & Scofield, A. R. (1994) Artificial Neural Network techniques for estimating rainfall and recognizing cloud merger from satellite data. *International Journal of Remote Sensing*, 16: 3241-3262.
Table 01-Detailed statistical properties of the time series pertaining to average rainfall over India in the summer monsoon months

	June	July	August
Mean	127.5705426	259.4666667	223.4472868
Median	128.5	256.1	221
Mode	177.1	251.6	168.6
Standard Deviation	43.73563586	56.81155711	59.52120956
Sample Variance	1912.805844	3227.553021	3542.774387
Kurtosis	-0.582420137	0.3709231	-0.762070931
Skewness	0.036895646	-0.316501162	0.159888472
Range	196.8	294.2	256.7
Minimum	30	94.5	88.8
Maximum	226.8	388.7	345.5
Sum	16456.6	33471.2	28824.7
Count	129	129	129
Largest(1)	226.8	388.7	345.5
Smallest(1)	30	94.5	88.8
Table 02- Tabular presentation of the predictors and the predictands in the test years

Test Year (Y+1)	June rain year Y (mm)	July rain year Y (mm)	August rain year Y (mm)	Average rain year Y (mm)	Average rain year (Y+1) (mm)	ANN Predicted rain year (Y+1) (mm)
1972	196.1	225.5	210.6	210.7333333	154.2333333	200.9549209
1973	96.8	150.1	215.8	154.2333333	237.9666667	234.3711035
1974	85.3	294.8	333.8	237.9666667	160.4	214.2280936
1975	72.3	205.3	203.6	160.4	227.5333333	224.769791
1976	149.5	260	273.1	227.5333333	228.5666667	198.2542725
1977	125.3	287.2	273.2	228.5666667	232.0333333	201.9250574
1978	178.6	291.7	225.8	232.0333333	242.8333333	193.6718046
1979	174.3	276.7	277.5	242.8333333	177.9666667	194.5932308
1980	123.5	179.6	230.8	177.9666667	230.3	217.9035457
1981	202.1	235.8	253	230.3	192.2333333	193.933663
1982	111.1	253.8	211.8	192.2333333	182.5666667	202.1781142
1983	79.5	219.1	249.1	182.5666667	229.1	213.0060783
1984	118.4	266.7	302.2	229.1	192.8333333	207.761418
1985	95.4	217.5	265.6	192.8333333	176.6	209.6381144
1986	97.9	230.8	201.1	193.8333333	193.8333333	205.5389094
1987	163.3	221.1	197.1	193.8333333	150.6	211.4320826
1988	83.4	157.8	210.6	150.6	221.2333333	236.7569004
1989	115.9	321	226.8	221.2333333	205.1666667	198.4402201
1990	150.1	232.6	232.8	205.1666667	235.4666667	200.7099469
1991	155.5	227.6	323.3	235.4666667	201.8666667	203.9973342
1992	138.8	260.8	206	201.8666667	196.6666667	201.9776989
1993	94.8	187.5	307.7	196.6666667	204.0666667	220.7533005
1994	135.1	287	190.1	204.0666667	261.7666667	202.0665298
1995	206.6	322.1	256.6	261.7666667	175.9333333	192.1425691
1996	73.0	285.7	169.1	175.9333333	205.0333333	191.1645972
1997	142.3	243.1	229.7	205.0333333	204.2333333	200.3300993
1998	150.3	219.2	243.2	204.2333333	183.6	201.7475505
1999	131.6	219.2	200	183.6	169.6333333	209.2529582
Fig. 01 - Schematic of the evolution of the mean squared errors (averaged over three runs) with increase in the number of epochs.
Fig.02- Schematic showing the actual and predicted average monsoon rainfall amounts (mm) in the test years,
Fig. 03- Percentage errors of prediction in the test years.