A complete h-vector for convex polytopes

Jonathan Fine
15 Hanmer Road, Milton Keynes, MK6 3AY, United Kingdom
email: jfine@pytex.org
30 November 2009

Abstract
This note defines a complete h-vector for convex polytopes, which extends the already known toric (or mph) h-vector and has many similar properties. Complete means that it encodes the whole of the flag vector.

First we define the concept of a generalised h-vector and state some properties that follow. The toric h-vector is given as an example. We then define a complete generalised h-vector, and again state properties.

Finally, we show that this complete h-vector and all with similar properties will sometimes have negative coefficients.

Most of the proofs, and further investigations, will appear elsewhere.

1 Generalised h-vectors

This note defines a complete h-vector for convex polytopes, and states some of its properties. Background, motivation and most of the proofs will be given elsewhere [3]. Prior knowledge of the toric h-vector, for example as in [6] or [2, §4.1], will help the reader. Throughout Δ will denote a convex polytope of dimension d. We study linear functions $h = h(\Delta)$ of the flag vector $f = f(\Delta)$ of Δ. When conversely $f(\Delta)$ can be computed from $h(\Delta)$ we say that h is complete.

Let δ be a face of Δ, of dimension i. Associated with $\delta \subseteq \Delta$ there is the link L_δ, a convex polytope of dimension $d - i - 1$, which encodes the local geometry of Δ around δ. For example, if δ is a vertex then around that vertex Δ looks like CL_δ, when C is the cone or pyramid operator. Although L_δ is determined only up to projective equivalence, its flag vector is an invariant of $\delta \subseteq \Delta$. It is convenient to set $L_{\Delta} = \emptyset$ and $C\emptyset = pt.$

Throughout C and I denote the cone and cylinder (or pyramid and prism) operators, and we think of $D = IC - CC$ (1)

and I and C as operators on flag vectors. The total link vector $\ell = \ell(\Delta)$ has components $\ell_i = \sum_{\dim L_\delta = i} f(L_\delta)$. Many of the results rely on $\ell(I \Delta) = (1 + 2C)\ell(\Delta)$ and $\ell(C \Delta) = (1 + C)\ell(\Delta) + f(\Delta)$. In [3] the author shows $DI = ID$. This is a partial expression of the next result, upon which the definition of h relies.

Theorem 1 (Bayer-Biller [1], generalised Dehn-Sommerville). The flag vectors produced by applying all words W in C and D to a point are a basis for the vector space spanned by all convex polytope flag vectors.

Proposition 2. Suppose g is a linear function of flag vectors. Then
$$h(\Delta) = \sum_{\delta \subseteq \Delta} (x - y)^{\dim \delta} g(L_\delta)$$

is also a linear function of flag vectors.

Definition 3. If $h(\Delta)$ is as in Proposition [2] and in addition both of

1. $g(\emptyset) = 1$ (or equivalently $h(pt) = 1$).
2. $g(CL) = yg(L)$.

hold then we will say that h is a generalised h-vector.
Proposition 4. Suppose \(h \) is a generalised \(h \)-vector and \(\Delta \) is a convex polytope. Then

1. \(h(I\Delta) = (x + y)h(\Delta) \).
2. \(h(C\Delta) = g(\Delta) + x h(\Delta) \), and thus we can define \(g \) from \(h \).
3. \(h(D\Delta) = x y h(\Delta) \) (which follows from the two previous statements).
4. If \(\Delta \) is simple then \(h(\Delta) = \sum_{i=0}^{d} (x - y)^i y^i f_i(\Delta) \), the usual formula for simple polytopes.
5. If \(\Delta_1 \) is simple and \(\Delta_2 \) is any convex polytope then \(h(\Delta_1 \times \Delta_2) = h(\Delta_1) h(\Delta_2) \).

Corollary 5. Suppose there is a complete generalised \(h \)-vector. Then as operators on flag vectors \(DI = ID \).

Proof. We have \(h(DI\Delta) = h(ID\Delta) \). If \(h \) is complete \(f \) is a linear function of \(h \) and so \(f(DI\Delta) = f(ID\Delta) \).

Proposition 6. Suppose \(h \) is a linear function of flag vectors with \(h(pt) = 1 \), \(h(I\Delta) = (x + y)h(\Delta) \) and \(h(D\Delta) = x y h(\Delta) \) for any convex polytope \(\Delta \). Then \(h \) is a generalised \(h \)-vector (with \(g(\Delta) = h(C\Delta) - xh(\Delta) \)).

Proposition 7. Suppose \(g(DW pt) \) is known for all words \(W \) in \(C \) and \(D \). Then \(g \) determines a unique generalised \(h \)-vector. (This follows from Theorem \[4\] \(g(CL) = yg(L) \), \(g(\emptyset) = 1 \) and linearity.)

Proposition 8. The formula

\[
g(DL) = xy g(L)
\]

defines the toric (or middle perversity intersection homology or mpih) \(h \)-vector, as in \[6\] or \[2\] §4.1.

2 A complete \(h \)-vector

For simple polytopes \(h(x, y) = h(y, x) \) or in other words \(h \) is palindromic. This is a very important property. We will use the following notation. We denote, for example, \(ay^2 + bxy + c^2x \) by \([a, b, c] \), and \([1, 1, 1] \) by \([2]\). We denote \((xy)^i[j] \) by \([i, j] \). Thus \([0, j] = [j] \) and \([1, 0] = [0, 1, 0] = xy \).

Definition 9 (Keyed and palindromic generalised \(h \)-vectors). Suppose a generalised \(h \)-vector has the form

\[
h(\Delta) = \sum h_k(\Delta) w_k
\]

where each \(h_k \) is a homogeneous polynomial, each \(k \) is a key as defined below and \(w_k \) its associated symbol. Suppose also that \(\dim \Delta = \deg h_k + \deg k \). If all this holds, we say that \(h \) is a keyed generalised \(h \)-vector. If each \(h_k \) is palindromic we say that \(h \) is palindromic.

For the rest of this note \(h \) denotes the palindromic keyed generalised \(h \)-vector we are about to define. Recall that by Proposition \[7\] it is enough to define \(g \) on polytopes of the form \(g(DW pt) \).

Definition 10 (Complete generalised \(h \)-vector). Suppose \(h(v) = [i, j] w_k \). Then

\[
g(Dv) = (xy)^{i+j+1} w_k + w_{k'}
\]

where \(k' \) is as below. This we extend linearly to \(h(v) = \sum \lambda_{ijk}[i, j] w_k \) and so to \(v = W pt \).

It is clear that \(\deg k' = \deg k + 2i + j + 3 \). The definition assumes that \(h(W pt) \) is palindromic. It turns out to be the same as \[3\] except for the addition of \(w_k \). This addition has, of course, recursive consequences. The author has developed software \[4\] for \(h \)-vector computations. In particular \[4\] contains a human and machine readable table of \(h \)-vectors for \(CD \) polytopes up to dimension 10.

Definition 11 (\(h \)-key). If \(k = ((d_1, \ldots, d_r), (c_1, \ldots, c_r)) \) then \(k' = ((i, d_1, \ldots, d_r), (j, c_1, \ldots, c_r)) \). As a shorthand we sometimes write, for example, \(k = ((1, 3, 2), (0, 2, 1)) \) as \(132:021 \). We write \(e \) for the empty key \(((),())\), and set \(w_e = 1 \). Thus, \(h(pt) = [0, 0] w_e = 1 \). We use \(deg k = 2 \sum d_i + \sum c_i + 3r \) to define the degree of \(k \).
Example 12. Suppose \(h(v) = [1, 1]w_k \), which we can write as \([0, 1]w_k\). Then
\[
g(Dv) = (xy)^3y^2w_k + w_{k'} = [0, 1, 0, 0, 0]w_k + w_{k'} \tag{6}
\]
\[
h(CDv) = g(DV) + xh(Dv) = [0, 1, 0, 0, 0]w_k + w_{k'} + [0, 0, 1, 1, 0]w_k \\
= [0, 1, 1, 1, 0]w_k + w_{k'} = [1, 2]w_k + w_{k'} \tag{7}
\]

Proposition 13. If \(h(v) = [i, j]w_k \) then \(h(CDv) = [i + 1, j + 1]w_k + w_{k'} \).

Proposition 14. If \(h(Cv) = \lambda_{ijk} [i, j]w_k \) then \(h(CCv) = \lambda_{ijk} [i, j + 1]w_k \).

Example 15. If \(h(v) = w_{0, 0} \) then \(v = (CD - DC)pt \), because \(h(CDpt) = [1, 1] + w_{0, 0} \) and \(h(DCpt) = [1, 1] \). We write \(w_{0, 0} \) as \([0, 0]w_{0, 0}\). We now have
\[
h(CCDpt) = [1, 2] + [0, 1]w_{0, 0} \tag{9}
\]
\[
h(CDCpt) = [1, 2] + w_{0, 1} \tag{10}
\]
\[
h(Cv) = [0, 1]w_{0, 0} - w_{0, 1} \tag{11}
\]

This shows that sometimes \(h(v) = [i, j]w_k \) does not imply \(h(Cv) = [i, j + 1]w_k \).

Proposition 16 (Converse to Proposition 13). If \(h(Cv) = \sum \lambda_{ijk} [i, j + 1]w_k \) then \(v = Cv' \) for some \(v' \).

Theorem 17. Let \(g \) be as in Definition 10. Then
1. There is a unique extension of \(g \) to a generalised h-vector \(h \).
2. \(h(\Delta) \) is palindromic.
3. \(h_c \) is the toric h-vector.
4. The matrix for \(g \), for the \(CD \) and \([i, j]w_k \) bases, is upper triangular with ones along the diagonal.
5. \(h \) is complete.
6. Theorem 1 can be proved as part of the \(g \)-h recursion.

Unlike the toric/mpih h-vector, the complete h-vector \(h \) can have negative coefficients. This is unavoidable.

Example 18 (Bayer, personal communication). Let \(P \) be the bipyramid on the 3-simplex. Then
\[
h(P) = [1, 4, 10, 4, 1] + [6, 6]w_{0, 0} + [-4]w_{0, 1} \tag{12}
\]

Proposition 19. Suppose \(h' \) is a complete palindromic keyed generalised h-vector. Let \(P \) be as in Example 18 and let \(Q \) be \(CICCpt \). Write \(h'_{0,1}(P) = [a] \) and \(h'_{0,1}(Q) = [b] \). Then \(a > 0 \) and \(b < 0 \) or vice versa.

Sketch of proof. The general form of \(h'(\Delta) \) for \(\Delta = 3 \) is \([a_0, a_1, 1, a_0] + [b_0]w_{0, 0} \) and Proposition 1 determines \(h' \) on \(CCCpt \) and \(DCpt \). Both have \(b_0 = 0 \) and so, for \(h' \) to be complete, \(h'(CDpt) \) has \(b_0 = 0 \). Similarly the general form of \(h'(\Delta) \) for \(\Delta = 4 \) is \([a_0, a_1, a_2, a_1, a_0] + [b_0, b_1]w_{0, 0} + [c_0]w_{0, 1} \) and Proposition 1 determines \(h' \) on \(CCCCpt \) \(DCCpt \), \(DDpt \). They all have \(c_0 = 0 \). Proposition 14 shows the same for \(CDpt \).

For \(h' \) to be complete \(c_0 \) must be non-zero for some convex polytope. Think of \(c_0 \) as a linear function on 4-polytope flag vectors. It is non-zero and vanishes on the hyperplane \(H \) spanned by \(f(CCCCpt) \) \(f(DCCpt) \), \(f(DDpt) \) and \(f(CDpt) \). Finally, by a calculation we omit, \(f(P) \) and \(f(Q) \) are separated by \(H \). The result follows.

References

[1] M.M. Bayer and L.J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Invent. Math. 79 (1985), no. 1, 143–157.

[2] M.A.A. de Cataldo and L. Migliorini, The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 4, 535–633.
[3] J. Fine, *A complete h-vector for convex polytopes II: The g-h recursion*, In preparation, to be placed on the arXiv.

[4] ______, *Python modules for computations on convex polytope h-vectors*, http://code.google.com/p/python-hvector

[5] ______, *The Mayer-Vietoris and IC equations for convex polytopes*, Discrete and Computational Geometry 13 (1995), no. 1, 177–188.

[6] R.P. Stanley, *Generalized H-vectors, intersection cohomology of toric varieties, and related results*, Commutative algebra and combinatorics (Kyoto, 1985) (Amsterdam-New York), Adv. Stud. Pure Math., vol. 11, North-Holland, 1987, pp. 187–213.