JPFSM: Short Review Article

Inner ocular blood flow response to exercise in healthy humans

Tsukasa Ikemura 1* and Naoyuki Hayashi 2

1 Faculty of Commerce, Yokohama College of Commerce, 4-11-1 Higashiterao, Tsurumi-ku, Yokohama, Kanagawa 230-8577, Japan
2 Institute for Liberal Arts, Tokyo Institute of Technology, 2-12-1 Osokaya, Meguro-ku, Tokyo 152-8552, Japan

Received: April 27, 2017 / Accepted: June 2, 2017

Abstract

Inner ocular circulation consists of choroidal and retinal circulation. The inner ocular blood flow nourishes the retina, which plays an important role in vision. It had been thought that inner ocular circulation kept its blood flow constant against circulatory challenges during exercise. Recent studies, however, have revealed that inner ocular blood flow changes during exercise, and that retinal and choroidal circulations show different responses depending on the manner of exercise. This review provides an overview of the responses in inner ocular blood flow to exercise and its relevant factors.

Keywords: ocular circulation, ocular blood flow, exercise

Introduction

The inner ocular circulation consists of the choroidal and retinal circulation, both of which contribute to the nutrition of retinal tissue 1 (Fig. 1). Physiological and pathophysiological studies have demonstrated that adequate inner ocular circulation is essential to visual function 2-5). The regulatory mechanisms of inner ocular blood flow and outer ocular blood flow, i.e., the ophthalmic artery that supplies blood to inner ocular circulation, are different, despite the fact that the inner ocular vessels branch from the ophthalmic artery 6). In addition, retinal and choroidal circulations have different regulatory mechanisms 7).

The inner ocular blood flow response to exercise is an important target to be regulated, since the status of the inner ocular vessels directly reflects circulation to retinal tissue. The inner ocular blood flow dynamics during exercise have long been unclear, since few studies have reported on inner ocular blood flow, and such earlier studies only reported on after exercise. More recently, inner ocular blood flow responses to several exercise conditions have been reported. This short review deals with the current evidence on inner ocular blood flow dynamics during exercise.

Inner ocular blood flow during dynamic exercise

Inner ocular blood flow changes according to the intensity of dynamic exercise and/or perfusion pressure. It has long been believed that inner ocular blood flow could be kept at a constant level of resting baseline during exercise, as inner ocular circulation had an autoregulation against changes in perfusion pressure 1,8,10). Retinal and choroidal blood flow, however, increase during submaximal dynamic exercise, even with mild increases of ocular perfusion pressure (< 10%) 9). Consistent with this observation, the authors also reported that choroidal blood flow increased concomitantly with an increase in mean arterial pressure (MAP) during incremental cycling exercise (Fig. 2) 12). These findings suggested that inner ocular circulation is not constant during exercise, and that its blood flow is reflected by changes in perfusion pressure.

Retinal and choroidal blood flow show different dynamics during both submaximal and exhaustive exercises. Retinal blood flow was maintained during submaximal dynamic exercise (Fig. 2) 12). Choroidal blood flow also kept a constant value during low intensity exercise (< 100 bpm); however, it increased significantly during mild-to-moderate intensity exercise (100-140 bpm) accompanied by an increase in MAP 12). During exhaustive exercise, choroidal blood flow decreased to almost baseline, whereas retinal blood flow was less than the resting baseline, despite an increase in MAP (Fig. 3) 13).

The decreased and/or suppressed blood flow in inner ocular circulation during maximal exercise can be explained by the decrease in arterial partial pressure of CO 2 (PaCO 2) 13). The authors reported that inner ocular blood flow decreased and/or was suppressed with a decrease in PaCO 2 during exhaustive exercise. This is similar to the decrease in blood velocity in the middle cerebral artery observed during exhaustive exercise 14). Inner ocular blood vessels have been known to be highly sensitive to variations in PaCO 2 15,16). A mild increase in PaCO 2 by adding CO 2 to inspired gas increased both retinal and choroidal blood flows 15,16). Choroidal blood flow was also increased by inhaling 95% O 2 + 5% CO 2 gas 16). Inner ocular blood flow is strongly influenced by changes in PaCO 2 during exercise as well as resting.

*Correspondence: ikemura.t@shodai.ac.jp
Limited information has been obtained about choroidal blood flow response to static exercise. Previous studies have reported that choroidal blood flow did not increase against an increase in MAP or ocular perfusion pressure of up to 60-70% during squatting exercise. The authors, in turn, observed an increase in choroidal blood flow occurring concomitantly with an increase in MAP by roughly 15% during handgrip exercise. These inconsistent results can be due to different types of exercise. Thus, the choroidal blood flow dynamics during static exercise needs to be elucidated.
Limited effects of autoregulation on ocular circulation

Choroidal circulation does not seem to be able to stabilize its blood flow, though autoregulation in choroidal circulation is still controversial\(^{1,18,19}\). No change was reported in retinal blood flow despite an increase in MAP during a cold pressor test, whereas choroidal blood flow increased\(^{20}\). Choroidal blood flow increased with an increase in MAP during dynamic exercise, while retinal blood flow remained at resting baseline level\(^{12}\). There are differences between retinal circulation and choroidal circulation in inner ocular blood flow response to submaximal dynamic exercise. The former can be attributed to an effect of autoregulation and the latter can be attributed to pressor response.

The existence of an autoregulation response within several seconds is unclear in ocular circulation. The authors observed the nature of inner ocular blood flow during an acute decrease in MAP obtained immediately after a release of thigh occlusion, to assess the magnitude of autoregulation in a short period in the inner ocular circulation as used to assess it in cerebral circulation\(^{20}\). Vasodilation should have to be obtained as to keep blood flow constant, if the inner ocular circulation had had an autoregulation. We did not observe any sign of vasodilation, either in retinal or choroidal circulation\(^{20}\). Thus we cannot support explicit autoregulation in a short period, based on our finding.

Effects of ambient temperature

Inner ocular blood flow is influenced by ambient environment during dynamic exercise. The decrease in inner ocular blood flow during exhaustive exercise was greater under hyperthermic conditions (35 °C) than in normothermic conditions (20 °C) without any difference in PaCO\(_2\)\(^{21}\). We also reported that inner ocular blood flow decreases during passive heat stress, even without a change in PaCO\(_2\)\(^{21}\). Heat stress itself decreases inner ocular blood flow.

Conclusions

Inner ocular blood flow changes during exercise, according to changes in perfusion pressure and PaCO\(_2\). The choroidal and retinal blood flows showed different responses to dynamic exercise, despite the fact that both of them are components of inner ocular circulation. We were not able to conclude whether the autoregulation of a short period in inner ocular circulation works; however, retinal circulation can relatively stabilize the blood flow against a change in perfusion pressure within a few minutes at least. The inner ocular blood flow response is influenced by exercise intensity and ambient temperature. Types of exercise may also have an influence on inner ocular blood flow response, while the inner ocular blood flow response to static exercise is still controversial.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

References

1) Deleary C and Van de Voorde J. 2000. Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res 32: 249-256.
2) Guan K, Hudson C, Wong T, Kisilevsky M, Nrusimhadevara RK, Lam WC, Mandelcom M, Devenyi RG and Flanagan JG. 2006. Retinal hemodynamics in early diabetic macular edema. Diabetes 55: 813-818.
3) Schmidl D, Garhöfer G and Schmetterer L. 2011. The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 93: 141-155.
4) Paris G, Sponsel WE, Sandovol SS, Elliott WR, Trigo Y, Sanfor DK and Harrison JM. 2001. Sildenafil and ocular perfusion. Int Ophthalmol 23: 355-358.
5) Hayashi N, Ikemura T and Someya N. 2011. Change in ocular blood flow induced by hypo- and hypercapnia relate to static visual acuity in humans. Eye Reports 1: e8.
6) Bill A. 1975. Blood circulation and fluid dynamics in the eye. Physiol Rev 55: 383-417.
7) Dumsky MJ, Eriksen JE, Doré CJ and Kohner EM. 1996. Autoregulation in the human retinal circulation: assessment using isometric exercise, laser Doppler velocimetry, and computer assisted image analysis. Microvasc Res 51: 378-392.
8) Harris A, Arend O, Bohinke K, Kroepfl E, Danis R and Martin B. 1996. Retinal blood flow during dynamic exercise. Graefes Arch Clin Exp Ophthalmol 234: 440-444.
9) Riva CE, Titze P, Hero M, Movaffaghi A and Petrig BL. 1997. Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci 38: 2338-2343.
10) Robinson F, Riva CE, Grunwald JE, Petrig BL and Sinclair SH. 1986. Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 27: 722-726.
11) Okuno T, Sugiyama T, Kohyama M, Kojima S, Oku H and Ikeda T. 2006. Ocular blood flow changes after dynamic exercise in humans. Eye (Lond) 20: 796-800.
12) Hayashi N, Ikemura T and Someya N. 2011. Effects of dynamic exercise and its intensity on ocular blood flow. Eur J Appl Physiol 111: 2601-2606.
13) Ikemura T and Hayashi N. 2012. Ocular circulatory responses to exhaustive exercise in humans. Eur J Appl Physiol 112: 3313-3318.
14) Ogoh S, Dalsgaard MK, Yoshiga CC, Dawson EA, Keller DM, Raven PB and Secher NH. 2005. Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol 288: 1461-1467.
15) Geiser MH, Riva CE, Donner GT, Diermann U, Luksch A and Schmetterer L. 2000. Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia. Curr Eye Res 21: 669-676.
16) Harris A, Arend O, Wolf S, Cantor LB and Martin BJ. 1995.
CO2 dependence of retinal arterial and capillary blood velocity. *Arch Ophthalmol Scand* 73: 421-424.

17) Kiss B, Dallinger S, Polak K, Findl O, Eichler H and Schmetterer L. 2001. Ocular hemodynamics during isometric exercise. *Microvasc Res* 61: 1-13.

18) Polska E, Luksch A, Schering I, Frank B, Imhof A, Fuchsjaeger-Mayrl G, Wolzt M and Schmetterer L. 2003. Propranolol and atropine do not alter choroidal blood flow regulation during isometric exercise in healthy humans. *Microvasc Res* 65: 39-44.

19) Ikemura T, Someya N and Hayashi N. 2012. Autoregulation in the ocular and cerebral arteries during the cold pressor test and handgrip exercise. *Eur J Appl Physiol* 112: 641-646.

20) Ikemura T, Kashima H, Miyaji A and Hayashi N. 2015. Inner ocular blood flow responses to an acute decrease in blood pressure in resting humans. *Physiol Meas* 36: 219-230.

21) Ikemura T and Hayashi N. 2014. Effects of heat stress on ocular blood flow during exhaustive exercise. *J Sports Sci Med* 13: 172-179.

22) Ikemura T, Miyaji A, Kashima H, Yamaguchi Y and Hayashi N. 2013. Ocular blood flow decreases during passive heat stress in resting humans. *J Physiol Anthropol* 32: 23-26.