Supplementary Information

Feasibility study of MR-guided pancreas ablation using high intensity focused ultrasound in a healthy swine model

MSc. Lukas Christian Sebekea,b, Dr. Pia Rademannc,

Dr. Alexandra Claudia Maulc, Dr. rer. nat. Claudia Schubert-Queckec,

Univ-Prof. Dr. Thorsten Annecked, Dr. Sin Yuin Yeob,e,

Dr. Juan Daniel Castillo-Gómezb, Patrick Schmidtb,

Univ.-Prof. Dr. Holger Grülla,b,*, Dr. Edwin Heijmanb,f

aEindhoven University of Technology, Department of Biomedical Engineering; P.O. Box 513, 5600MB Eindhoven, The Netherlands

bUniversity of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology; Kerpener Str. 62, 50937 Cologne, Germany

cUniversity of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine; Ostmerheimer Str. 200, 51109 Cologne, Germany

dUniversity of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of Anesthesiology and Intensive Care Medicine; Kerpener Str. 62, 50937 Cologne, Germany

eProfound Medical GmbH; Kehrwieder 9, 20547 Hamburg, Germany

fPhilips Research Eindhoven; High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
S1: Technical drawing of compression spacer

Dimensions and annotations are labeled as follows:
- Width: 280 mm
- Length: 280 mm
- Angle: 90°
- Radius: R70
- Additional dimensions and annotations may be present in the drawing.
S2: Acoustic properties

The polyacrylamide material from which the spacers were manufactured was characterized using the finite-amplitude insertion-substitution (FAIS) method. The measurements were performed by the Therapy Ultrasound team of the Joint Department of Physics / Division of Radiotherapy and Imaging at the Institute of Cancer Research, London, UK. Measurements at different temperatures were taken in ascending order up to 50 °C. Two additional measurements were performed during cooldown at 37 °C and 25 °C.

Table 1: Acoustic Properties of the polyacrylamide material used in manufacturing the spacer. The rows “37 down” and “25 down” were measured during cooldown. SoS: Speed of Sound.

Temperature [°C]	Thickness [cm]	SoS [m/s]	Attenuation [dB/cmMHz]	Exponent of attenuation coefficient
20	1.55 ± 0.02	1516 ± 0.5	0.044 ± 0.006	1.75 ± 0.11
25	1.55 ± 0.03	1528 ± 0.7	0.036 ± 0.005	1.83 ± 0.08
30	1.54 ± 0.03	1539 ± 0.8	0.036 ± 0.005	1.69 ± 0.08
37	1.54 ± 0.03	1552 ± 0.9	0.031 ± 0.005	1.78 ± 0.11
50	1.54 ± 0.03	1567 ± 0.8	0.019 ± 0.005	2.03 ± 0.17
37 down	1.58 ± 0.02	1553 ± 0.8	0.031 ± 0.005	1.82 ± 0.08
25 down	1.59 ± 0.02	1529 ± 0.8	0.034 ± 0.004	1.82 ± 0.08