H_T-Vertex Algebras

Maarten J. Bergvelt

Abstract. The usual vertex algebras have as underlying symmetry the Hopf algebra $H_D = \mathbb{C}[D]$ of infinitesimal translations. We show that it is possible to replace H_D by another symmetry algebra $H_T = \mathbb{C}[T, T^{-1}]$, the group algebra of the Abelian group generated by T. H_T is the algebra of symmetries of a lattice of rank 1, and the construction gives a class of vertex algebras related to the Infinite Toda Lattice in the same way as the usual H_D-vertex algebras are related to Korteweg-de Vries hierarchies.

1. Introduction

A vertex algebra is, roughly speaking, a singular, commutative, associative, unital algebra with symmetry, see for instance [Bor01] for a proposal to make this vague statement precise.

The usual vertex algebras ([Bor86], [FLM88], [Kac98]) have as symmetry algebra the Hopf algebra $H_D = \mathbb{C}[D]$ of infinitesimal translations ($D = \frac{d}{dz}$, say). The singularities are obtained by localizing the dual $H_D^* = \mathbb{C}[[z]]$ by inverting z, to obtain the Laurent series algebra $K_D = \mathbb{C}[[z]][z^{-1}]$. To emphasize the role of H_D as symmetry algebra we will refer to the usual vertex algebras as H_D-vertex algebras.

We can think of H_D as the universal enveloping algebra of the 1 dimensional (Abelian) Lie algebra generated by D. In this paper I will sketch what a vertex algebra looks like when we take not H_D but H_T as symmetry algebra, where $H_T = \mathbb{C}[T, T^{-1}]$ is the group algebra of the free Abelian group generated by T. More details can be found in [Ber].

A motivation to study H_T-vertex algebras comes from the theory of integrable systems. There are many similarities between Korteweg-de Vries type hierarchies on the one hand, and infinite Toda lattice hierarchies on the other. For instance, both have infinitely many conservation laws, multiple Hamiltonian structures, tau-functions and connections with infinite dimensional Grassmann manifold, and Miura transformations. (See [Kup85] for an overview of lattice hierarchies). It is well known that Korteweg-de Vries type hierarchies are intimately related to H_D-vertex algebras, see for instance [FBZ04]. Now the infinite Toda lattice hierarchy has H_T-symmetry, with the generator T acting as a shift by one step on

2000 Mathematics Subject Classification. 17B69.
the lattice. So it is natural to look for a type of vertex algebras that are related to the infinite Toda lattice in the same way as H_D-vertex algebras are related to Korteweg-de Vries hierarchies.

2. Review of some ingredients for H_D-vertex algebras

We will review the ingredients that go into the definition of H_D-vertex algebras from a slightly unorthodox point of view, in order to prepare the way for replacing H_D as the symmetry algebra by H_T. See also [Bor98] or [Sny].

Let W_1, W_2 be vector spaces. A W_2-valued distribution on W_1 is just a linear map $D: W_1 \to W_2$. We will write $\langle D, w_1 \rangle$ for the value of D on $w_1 \in W_1$. Let M be an H_D-module. For all $m \in M$ we get an M-valued distribution on H_D:

$$Y(m): h \mapsto h.m, \ h \in H_D.$$

We can represent any distribution on H_D by a generating series (or kernel):

$$\lambda(z) = \sum_{n=0}^{\infty} \langle \lambda, D^{(n)} \rangle z^n \in M[[z]], \ D^{(n)} = D^n/n!,$$

and we have

$$\lambda(h) = \epsilon(h.\lambda(z)) = h.\lambda(z)|_{z=0},$$

where $\epsilon: H_D^* \to \mathbb{C}$ is the counit and where $h.$ indicates the action of H_D on its dual H_D^*. In particular we have

$$Y(m)(z) = e^{zD}m.$$

In the theory of vertex algebras one usually writes $Y(m, z)$ as $Y(m, z)$.

It is easy to write down a system of axioms for the holomorphic vertex operators $Y(m, z)$ that is equivalent to the statement that M is a commutative, associative, unital algebra with a derivation. In fact, one can easily define holomorphic vertex algebras for any commutative and cocommutative Hopf-algebra H. These correspond to commutative (etc.) rings with compatible H-action. In case H is not longer cocommutative a holomorphic vertex algebra corresponds to a more general ring (braided for instance) with H-action. In this paper we restrict ourselves to the commutative and cocommutative Hopf algebras H_D and H_T.

We call $Y(m, z)$ holomorphic since it has no singularities, it is a power series. The idea is now to define more general vertex operators, that might contain singularities, while preserving the axioms as much as is possible.

Introduce a singularization of the dual H_D^*:

$$K_D = \mathbb{C}((z)) = K_D^{\text{Hol}} \oplus K_D^{\text{Sing}}, \ K_D^{\text{Hol}} = \mathbb{C}[[z]], \ K_D^{\text{Sing}} = \mathbb{C}[z^{-1}]z^{-1}.$$

Then we have an isomorphism of H_D-modules:

$$\alpha: H_D \to K_D^{\text{Sing}}, \ h \mapsto S(h)\frac{1}{z}.$$

Here $S: H_D \to H_D$ is the antipode, where $D \mapsto -D$. Let $\epsilon: H_D \to \mathbb{C}$ be the counit of H_D, the multiplicative map such that $D \mapsto 0$. Observe then that ϵ corresponds under α to the residue on K_D^{Sing}.

We defined holomorphic vertex operators as distributions on H_D. Using α we can think of them also as distributions on K_D^{Sing}. Then it is obvious how one can introduce singular vertex operators: they should be distributions on all of K_D, not just on K_D^{Sing}.
Another ingredient in the theory of vertex algebras, besides vertex operators and the residue, is the Dirac δ-distribution, which appears in the commutator of vertex operators. It can be described in terms of the singularization K_D of H^*_D, as follows. First of all we have on H^*_D the twisted coproduct $f(z) \mapsto f(z_1 - z_2)$, dual to the S-twisted multiplication $h_1 \otimes h_2 \mapsto h_1 S(h_2)$ on H_D. We can calculate this twisted coproduct in two ways, using S-twisted exponentials:

\[
(2.2) \quad f(z_1 - z_2) = \mathcal{L}_S f(z_1) = \mathcal{R}_S f(z_2), \quad \mathcal{L}_S = e^{-z_2 \partial_1}, \quad \mathcal{R}_S = S e^{z_1 \partial_2}.
\]

If we try to extend the definition of the twisted coproduct from H^*_D to its singularization K_D we see that the actions of \mathcal{L}_S and \mathcal{R}_S no longer give the same answer. We then define the Dirac distribution for $p \in K_D$ as the obstruction to the extension of the twisted coproduct:

\[
(2.3) \quad \delta(p(z)) = \mathcal{L}_S(p(z_1)) - \mathcal{R}_S(p(z_2)).
\]

For instance,

\[
\delta\left(\frac{1}{z}\right) = \delta(z_1, z_2) = \sum_{k \in \mathbb{Z}} z_1^k z_2^{-k-1}
\]

is the usual Dirac δ-distribution.

Now we have formulated some ingredients of H_D-vertex algebras in terms of the symmetry Hopf-algebra H_D and the localization of the dual, we are ready to try to extend the theory to other symmetry algebras.

3. H_T-symmetry and singularities.

Let $H_T = \mathbb{C}[T, T^{-1}]$, and give it a Hopf algebra structure by thinking of it as the group algebra of the free Abelian group generated by T. This group is of course just the (additive) group of integers \mathbb{Z}, and the dual of H_T is the space

\[
H^*_T = \mathbb{C}_Z = \{s: \mathbb{Z} \to \mathbb{C}\}
\]

of arbitrary complex valued functions on \mathbb{Z}, or, equivalently, the space of two-sided infinite sequences $s = (s_n)_{n \in \mathbb{Z}}$. We can expand any element $s \in \mathbb{C}_Z$ as an infinite sum

\[
s = \sum_{n \in \mathbb{Z}} s_n \delta_n,
\]

where δ_n is the Kronecker sequence; as a function on \mathbb{Z} we have $\delta_n: k \mapsto \delta_{kn}$. The natural action of H_T on its dual is given by $T \delta_n = \delta_{n-1}$.

Now we want to find a singularization of H^*_T. Note that it would not be useful to invert some of the Kronecker sequences, as they are zero divisors: $\delta_n \delta_k = \delta_{nk} \delta_n$. To find suitable elements of H^*_T to invert we observe that in the H_D case the powers z^k we invert are the unique solutions of a system of differential equations: if $f_\ell(z) \in H_D^*$ is a solution of

\[
\partial_z f_\ell(z) = \ell f_{\ell-1}(z), \quad f_\ell(z)|_{z=0} = 0, \quad \ell \geq 0,
\]

with $f_0(z) = 1$, then $f_\ell(z) = z^\ell$. Similarly, introduce in H_T the difference operator $\Delta = T - 1$ and consider the system of difference equations for $\tau(\ell) \in H^*_T$, $\ell \geq 1$

\[
\Delta \tau(\ell) = \ell \tau(\ell - 1), \quad \tau(0)|_0 = 0,
\]

where $\tau(0) = 1 = \sum_{n \in \mathbb{Z}} \delta_n$. Then the $\tau(\ell)$s are uniquely determined. We have $\tau = \tau(1) = \sum_{n \in \mathbb{Z}} n \delta_n$, and $\tau(\ell) = \tau(\tau - 1) \ldots (\tau - \ell + 1)$. The $\tau(\ell)$s are the restriction of polynomial functions on \mathbb{C} to the integers.
Now let $C^\text{pol}_\mathbb{Z} = \mathbb{C}[\tau] \subset H^*_\tau$, the space of polynomial functions on \mathbb{Z}. Let then $M \subset C^\text{pol}_\mathbb{Z}$ be the multiplicative set generated by the translates $T^k\tau = \tau + k$ of τ. Then we define the following singularization

$$K_T = M^{-1}C^\text{pol}_\mathbb{Z}.$$

We could have localized all of H^*_τ, but then there would have been no clear distinction between singular and nonsingular elements in the localization, see [Ber] for details.

Let $S : H_T \to H_T$ be the antipode, $T^k \mapsto T^{-k}$. We have, as in the case of H_D, see (2.1), a map

$$\alpha : H_T \to K_T^{\text{Sing}}, \quad h \mapsto S(h)\frac{1}{\tau},$$

but it is not longer an isomorphism, for instance $\frac{1}{\tau}^2$ is not in the image of α. However, when we complete H_T by adjoining to H_T the infinite sum

$$\partial_\tau = \log(T) = \log(1 + \Delta) = \sum_{n=1}^{\infty} (-\Delta)n/n,$$

to define $\hat{H}_T = \mathbb{C}[T, T^{-1}, \partial_\tau]$, then

$$\alpha : \hat{H}_T \to K_T^{\text{Sing}},$$

defined as before, is an isomorphism. The counit $\epsilon : H_T \to \mathbb{C}$ corresponds, via α, to the map, called the trace,

$$\text{Tr} : K_T \to \mathbb{C}, \quad f(\tau) \mapsto \sum_{n \in \mathbb{Z}} \text{Res}_n(f(\tau)d\tau).$$

Associated to H_T we have twisted exponential operators L_S, R_S, analogous to those of (2.2), and we can define Dirac distributions as before. In particular we have the Dirac δ-distribution defined by

$$\delta(\frac{1}{\tau}) = L_S(\frac{1}{\tau_1}) - R_S(\frac{1}{\tau_2}) = \sum_{n \in \mathbb{Z}} \tau(n) \otimes \tau(-n - 1), \quad \tau(-|k|) = \frac{1}{\tau(|k|)}.$$

We have an action of $H_T \otimes H_T$ on such two-variable distributions, and we write $h_1 = h \otimes 1$, $h_2 = 1 \otimes h$. Similarly we write $\tau_1(\ell) = \tau(\ell) \otimes 1$ and $\tau_2(\ell) = 1 \otimes \tau(\ell)$ and we denote the distribution $\delta(\frac{1}{\tau})$ also by $\delta(\tau_1, \tau_2)$. It has the usual properties:

- $h_1 h_2 = S(h_2)h_1$,
- $f(\tau_1)\delta(\tau_1, \tau_2) = f(\tau_2)\delta(\tau_1, \tau_2)$, $f(\tau) \in K_T$.
- $\text{Tr}_{\tau_1}(f) = f(\tau_2)$.
- If a distribution $a(\tau_1, \tau_2)$ is killed by the twisted coproduct of an element $p \in C^\text{pol}_\mathbb{Z}$ then it is a finite sum

\begin{equation}
(3.1) \quad a(\tau_1, \tau_2) = \sum_{n, k} a_{n, k}(\tau_2)e_{n, k}\delta(\tau_1, \tau_2),
\end{equation}

where $\{e_{n, k}\}$ is a basis for \hat{H}_T.

4. Distributions and State-Field correspondence

Let W be a vector space, and let D be a W-valued distribution on K_T. Every such distribution D has a formal expansion:

$$D(\tau) = \sum_{n \in \mathbb{Z}} \langle D, \tau(n) \rangle \tau(-n - 1).$$

If $F \in K_T$ then the value of D on F is a trace:

$$\langle D, F \rangle = \text{Tr}(D(\tau)F).$$

We will often identify a distribution D with its kernel $D(\tau)$. Any distribution has a decomposition in holomorphic and singular part:

$$D = D_{\text{hol}} + D_{\text{sing}},$$

where the kernels of the holomorphic and singular parts have expansion in $\tau(n)$ for n nonnegative, respectively negative. A distribution D is called rational if there is $\phi \in W \otimes K_T$ such that $\langle D, F \rangle = \text{Tr}(\phi F)$ for all $F \in K_T$.

Now let V be a vector space. A field on V is then an $\text{End}(V)$-valued distribution $f = f(\tau)$ such that for all $v \in V$ the V-valued distribution $f(\tau)v$ has rational singular part: $f_{\text{sing}}(\tau)v \in V \otimes K_T^{\text{sing}}$. Denote by $V(\tau)$ the space of fields on V. Then a State-Field Correspondence is a linear map $Y: V \rightarrow V(\tau)$. We write, if $a \in V$ and Y is a state-field correspondence, $Y(a)(\tau) = Y(a, \tau)$ and we call $Y(a, \tau)$ the vertex operator of a, as usual.

Now let $1 = 1_V \in V$ be a distinguished vector, called the vacuum. We say that a state-field correspondence Y satisfies the vacuum axioms (for $1 \in V$) in case

$$Y(1, \tau) = 1_{\text{End}(V)}, \quad Y(f, \tau)1 = f_{\text{hol}}(\tau)1,$$

where f_{hol} is a holomorphic distribution such that acting on the vacuum the constant term is f: $f_{\text{hol}}(\tau)1|_{\tau=0} = f$.

Let $h \in H_T$. Then we define, given a state-field correspondence Y satisfying the vacuum axioms, a linear map $h_Y: V \rightarrow V$ by

$$h_Y f = \langle h, f_{\text{hol}}(\tau) \rangle 1,$$

where \langle , \rangle is the pairing between H_T and H_T^*, extended in the obvious way to an $\text{End}(V)$-valued pairing between H_T and holomorphic distributions. At this point we don’t know that the map $h \mapsto h_Y$ gives an H_T-module structure to V, this is an extra condition on the state-field correspondence.

If $a(\tau), b(\tau)$ are fields on V, they are in particular $\text{End}(V)$-valued distributions, and we can calculate their commutator distribution: this is the distribution (on $K_T \otimes K_T$) that acts on $v \in V$ by

$$[a(\tau_1), b(\tau_2)](F \otimes G)v = \left(a(F)b(G) - b(G)a(F)\right)v, \quad F, G \in K_T.$$

We say that these fields are mutually rational if the commutator distribution $[a(\tau_1), b(\tau_2)]$ has rational singularities, i.e., is killed by some element $m^*_\tau(F)$, for $F \in H_T^*$ and m^*_τ the twisted coproduct on H_T^*. In this case the commutator is a finite sum of differential-differences of the delta distribution, see [3.1].
5. Definition and some properties of H_T-vertex algebras

An H_T-vertex algebra is an H_T-module V with a vacuum vector $1_V \in V$ and a state-field correspondence $f \mapsto f(\tau) = Y(f, \tau)$, satisfying the vacuum axioms and furthermore

- (Compatibility) The action of H_T on V is compatible with the state-field correspondence:
 $$h.f = h_V f,$$
 where the left hand side is the action of H_T on V and the right hand side is defined in (3.1).
- (ad-covariance) For all $f \in V$ and $h \in H_T$
 $$\text{ad}_h^V Y(f, \tau) = h_{K_T} Y(f, \tau).$$
 Here $\text{ad}_h^V (X) = \sum h' XS(h'')$, for $X \in \text{End}(V)$, $h \in H_T$ with coproduct $\Delta(h) = \sum h' \otimes h''$.
- (Mutual Rationality) The vertex operators $Y(f, \tau_1)$ and $Y(g, \tau_2)$ are for all $f, g \in V$ mutually rational.

From these axioms one derives easily properties similar to those of H_D-vertex algebras. For instance we have covariance of the state-field correspondence:

$$Y(h.f, \tau) = h_{K_T} Y(f, \tau),$$

and skew-symmetry of vertex operators:

$$Y(f, \tau) g = R_V(\tau) Y^S(g, \tau) f,$$

where $R_V(\tau)$ is the exponential operator corresponding to the H_T-action on V and Y^S is the antipodal vertex operator: more generally if D is a distribution on K_T then we define its antipode by $\langle D^S, F \rangle = \langle D, S(F) \rangle$.

We can define for $F \in K_T$ the F-product of f, g in an H_T-vertex algebra:

$$f \{ F \} g = \text{Tr} \left(Y(f, \tau) g F(\tau) \right) \in V.$$

Also we can define the F-product of fields by

$$f(\tau_2) \{ F \} g(\tau_2) = \text{Tr}_{\tau_1} \left(f(\tau_1) g(\tau_2) R_S(\tau_2) F(\tau_1) - g(\tau_2) f(\tau_1) L_S(\tau_1) F(\tau_2) \right).$$

Here R_S, L_S are the twisted exponentials already used in (2.3). In particular, for $F = \frac{1}{\tau}$ we obtain the normal ordered product of fields:

$$f(\tau) \{ \frac{1}{\tau} \} g(\tau) =: f(\tau) g(\tau) := f_{\text{hol}}(\tau) g(\tau) - g(\tau) f_{\text{sing}}(\tau).$$

Then we have the fundamental fact that the state-field correspondence is a homomorphism of F-products:

$$Y(f \{ F \} g, \tau) = f(\tau) \{ F \} g(\tau).$$

6. H_T-conformal algebras

For an H_D-vertex algebra V_D we can concentrate on the singular part of the operator expansion to obtain on V_D the structure of conformal algebra (see [Kac98], or [Pr99], where conformal algebras are called vertex Lie algebras). In the same way we can ignore in an H_T-vertex algebra V all F-products $f \{ F \} g$, except for those with $F \in \mathbb{C}_2^{\text{pol}}$, or more generally $F \in H_T^*$. This defines the notion of an H_T-conformal algebra structure on V.

More generally, one can start with an H_T-module C and define an H_T-conformal structure on C as a collection of conformal products $f\{F\}g$, $F \in H_T^*$ for $f, g \in C$, satisfying a number of axioms that we don’t want write down here\(^1\). In particular there is in an H_T-conformal algebra the distinguished product corresponding to the element $F = 1 \in H_T^*$. This product satisfies

\[(Tf)(1)g = f(1)g, \quad f(1)(Tg) = T(f(1)g), \quad f(1)g - g(1)f \in \frak{m}_T C, \quad [f(1), g(1)] = (f(1)g)(1).
\]

Here $\frak{m}_T \subset H_T$ is the augmentation ideal, the kernel of the counit on H_T. It is the ideal generated by $\Delta = T - 1$. We see that the 1-product induces a Lie algebra structure on $C/\frak{m}_T C$, for any H_T-conformal algebra C.

7. Affinization

If C is an H_T-conformal algebra and L is a commutative H_T-Leibniz algebra (i.e., a commutative algebra in the category of H_T-modules), then one can show that also the affinization $LC = C \otimes L$ is canonically an H_T-conformal algebra, and hence we obtain on $\mathcal{LC} = LC/\frak{m}_T LC$ the structure of Lie algebra. In particular we can take $L = K_T$, and we will restrict ourselves to this case. Denote by

\[
\text{Tr}: C \otimes K_T \to \mathcal{LC}
\]

the canonical projection and write, for $p \in K_T$ and $f \in C$,

\[
f(p) = \text{Tr}(f \otimes p) \in \mathcal{LC}.
\]

For an explanation of using the same term for both this map and the trace on K_T, see [Ber]. Then the commutator in \mathcal{LC} is given by

\[
[f(p), g(q)] = \sum (f(\epsilon_i p) g(\epsilon_i q)), \quad (7.1)
\]

where $\{\epsilon_i\}$ is a basis for H_T and $\{\epsilon^*_i\}$ a dual basis for H^*_T. We can define generating series of elements of \mathcal{LC}, called currents, for each $f \in C$ by

\[
f(\tau_2) = \text{Tr}_{\tau_1} (f \otimes \delta(\tau_1, \tau_2)).
\]

Then the commutator of currents is given by

\[
[f(\tau_1), g(\tau_2)] = \sum f(\epsilon^*_i \tau_2) g(\tau_2) \epsilon_{i, 2} \delta(\tau_1, \tau_2).
\]

8. The Toda Vertex algebra

If L is a commutative H_T-Leibniz algebra, then L is automatically an H_T-vertex algebra, giving the simplest examples of them. In this case the vertex operators are holomorphic, see the discussion in Section B so this is not really interesting.

To get a more interesting example we start with the Toda conformal algebra \mathcal{CToda}. This is the free H_T-module generated by B and C, with conformal products

\[
B_\{F\} B = C_\{F\} C = 0, \quad F \in H_T^*, \quad B_\{\delta_n\} C = C_\{\delta_n\} = C(\delta_{n-1} - \delta_{n, 0}), \quad C_\{\delta_n\} B = C\delta_{n, 0} - TC\delta_{n, 1}.
\]

Here the $\delta_n \in H_T^*$ are the Kronecker sequences, see Section B. \mathcal{CToda} is the H_T-conformal algebra corresponding to the first Hamiltonian structure of the infinite algebra, along these lines, see the notion of Lie pseudo algebra in Bakalov, D’Andrea and Kac, [BDK01].
Toda lattice, see [Kup85]. We write \mathcal{L}Toda for the Lie algebra $\mathcal{L}C$Toda associated to the Toda conformal algebra. The current commutator in \mathcal{L}Toda is
\begin{equation}
[B(\tau_1), C(\tau_2)] = C(\tau_2)(T_2^{-1} - 1)\delta(\tau_1, \tau_2).
\end{equation}
We have a decomposition
\begin{equation}
\mathcal{L}$Toda = \mathcal{L}Toda$_{\text{Hol}} \oplus \mathcal{L}Toda$_{\text{Sing}},
\end{equation}
where \mathcal{L}Toda$_{\text{Hol}}$ (respectively \mathcal{L}Toda$_{\text{Sing}}$) is spanned by elements $f_{(p)}$, for $p \in K^T_{\text{Hol}}$ (respectively $p \in K^T_{\text{Sing}}$). By (8.1) each summand in (8.2) is a Lie subalgebra. Let \mathbb{C} be the trivial 1-dimensional \mathcal{L}Toda$_{\text{Hol}}$-module, and let VToda be the induced \mathcal{L}Toda-module:
\begin{equation}
\text{VToda} = \mathcal{U}(\mathcal{L}$Toda) $\otimes \mathcal{U}(\mathcal{L}$Toda$_{\text{Hol}}) \mathbb{C}.
\end{equation}
Then one proves that VToda has an \hat{H}_T-vertex algebra structure (with $1_{\text{VToda}} = 1 \otimes 1$ as vacuum) such that if we write B and C for the elements $B(\frac{1}{k})1_{\text{VToda}}$ and $C(\frac{1}{k})1_{\text{VToda}}$, then we have
\begin{equation}
Y(B(\tau_1), Y(C(\tau_2) = Y(C(\tau_2)(T_2^{-1} - 1)\delta(\tau_1, \tau_2),
\end{equation}
compare with (8.1). We call this the Toda \hat{H}_T-vertex algebra structure on VToda.

Remark 8.1. Note that, since K_T is in fact an \hat{H}_T-module, also VToda will be not just an \hat{H}_T-module, but an \hat{H}_T-module. In general, all non holomorphic \hat{H}_T-vertex algebras seem to be \hat{H}_T-modules. This is in contrast with H_T-conformal algebras, which don’t need to have an \hat{H}_T-modules structure. Now $H_T = H_T[\partial_x]$, if we take $D = \partial_x$, and so we can think of nontrivial \hat{H}_T-vertex algebras as a kind of extension of H_D-vertex algebras, where we allow in the operator product expansion not only singularities in $\tau_1 - \tau_2$ but also at arbitrary shifts $T_2^k(\tau_1 - \tau_2) = \tau_1 - \tau_2 - k$. Currents with such operator products expansions occur in the theory of Yangians, see e.g., [Kho97].

References

[BDK01] Bojko Bakalov, Alessandro D’Andrea, and Victor G. Kac, Theory of finite pseudogebras, Adv. Math. 162 (2001), no. 1, 1–140. MR MR1849687 (2003c:17020)

[Ber] Maarten Bergvelt, \hat{H}_T-Vertex Algebras and the Infinite Toda Lattice, arXiv:math.QA/0605289

[BDK01] Bojko Bakalov, Alessandro D’Andrea, and Victor G. Kac, Theory of finite pseudogebras, Adv. Math. 162 (2001), no. 1, 1–140. MR MR1849687 (2003c:17020)

[Fl86] Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071. MR MR843307 (87m:17036)

[BFZ98] Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, second ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. MR MR2007162 (2004m:17029)

[FBZ04] Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, second ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. MR MR2007162 (2004m:17029)

[FK98] Victor Kac, Vertex algebras for beginners, second ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR MR1651389 (99f:17033)

[Kho97] Sergei M. Khoroshkin, Central extension of the Yangian double, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Sém. Congr., vol. 2, Soc. Math. France, Paris, 1997, pp. 119–135. MR MR1601127 (98j:17015)
[Kup85] B. A. Kuperschmidt, *Discrete Lax equations and differential-difference calculus*, Astérisque (1985), no. 123, 212. MR *MR785802* (86m:58070)

[Pri99] Mirko Primc, *Vertex algebras generated by Lie algebras*, J. Pure Appl. Algebra *135* (1999), no. 3, 253–293. MR *MR1670692* (2000c:17046)

[Sny] Craig T. Snydal, *Equivalence of Borcherds G-Vertex Algebras and Axiomatic Vertex Algebras*, arXiv:math.QA/9904104.

Department of Mathematics, University of Illinois, Urbana-Champaign, Illinois 61801

E-mail address: bergv@uiuc.edu