Electrical Impedance Tomography: Monitoring of Pulmonary Ventilation in Pediatric Cardiac Postoperative

Carolina Vieira de Campos1, Paula Vieira Vincenzi Gaiolla1, Marcelo Bisegli Jatene1, Cintia Johnston* and Werther Brunow de Carvalho1

1Pediatrics Department, Medical University of São Paulo, Brazil

Introduction

The electrical impedance tomography (EIT) is a bedside monitoring tool that noninvasively visualizes local ventilation and arguably lung perfusion distribution. It is a non-invasive radiation-free monitoring technique that provides images based on tissue electrical conductivity of the chest [1]. Some studies [2,3] including adult patients have applied EIT in the context of the preoperative, intraoperative period, extending to the postoperative follow-up of several clinical situations. However, so far there are no scientific publications in this context in the pediatric age group.

Case

We present the case of an 8-month-old girl with unbalanced atrioventricular septal defect, small right-ventricle and non-restrictive atrial and ventricular septal defects, status-post pulmonary artery (PA) banding at 3 months, who underwent a Superior Bilateral Vena Cava anastomosis, atrioventricular valve plasty and PA re-banding (total closure was not possible due to hypoxia). Her post-operative course was complicated by hypoxic spells which lead to a failed extubation and need to increase support through the first week post-operatively. Investigation took place and the hypoxemia was found to be multifactorial: ventricular dysfunction, mild stenosis on the Left Superior Vena Cava anastomosis, borderline PA pressure and atelectasis. In order to find the best ventilation strategy on such a complex case, an electrical impedance tomography (EIT), Enlight 1800®, (Timpel, Brazil) was installed and showed a decrease on left-lung ventilation (Figure 1). An increase in ventilation pressures was safely performed, with satisfactory left lung recruitment and no hemodynamic instability.

Bronchoscopy revealed a mild extrinsic compression on left main bronchus and angio-CT (Figure 2) ruled out malformations that needed to be addressed. After hemodynamic optimization with levosimendan and sildenafil, she was successfully weaned from support and extubated to a high-flow nasal cannula on postoperative day 18. The rest of her clinical course was unremarkable.

*Correspondence to: Cintia Johnston, Clinical Research Assistant Professor of Neonatology and Intensive Care, Pediatrics Department, Medical University of São Paulo - FMUSP, Brazil, E-mail: cintiajohnston@terra.com.br

Received: June 09, 2021; Accepted: June 17, 2021; Published: June 25, 2021
compliance, CRS, P/V curves, as well as alveolar overdistension and collapse can be assessed by EIT dynamically on a regional level [7].

EIT has been shown useful for monitoring of regional lung perfusion as well as stroke volume estimation. Continuous and non-invasive perfusion monitoring can be performed based on the EIT waveforms resulting from cardiac activity in both the heart and lung region, whereas intermittent and invasive monitoring is possible using contrast-agents such as hypertonic saline injected through a central venous line [7,8].

EIT is a promising technique for the perioperative assessment of surgical patients, providing tailored adaptive respiratory and haemodynamic monitoring [8]. Further studies are needed to address the current technological limitations, confirm the findings and evaluate which patients can benefit more from this technology.

References

1. Frerichs I, Amato MB, Van Kaam AH, Tingey DG, Zhao Z, et al. (2017) Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt study group. Thorax 72: 83-93. [Crossref]

2. Bauer M, Opitz A, Filsen J, Jansen H, Meffert RH, et al. (2019) Perioperative redistribution of regional ventilation and pulmonary function: a prospective observational study in two cohorts of patients at risk for postoperative pulmonary complications. BMC Anesthesiol 19: 132. [Crossref]

3. Scaramuzzo G, Spadaro S, Waldmann AD, Böhm SH, Ragazzi R, et al. (2019) Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography. Crit Care 23: 119. [Crossref]

4. Jang GY, Ayouab G, Kim YE, Oh TI, Chung CR, et al. (2019) Integrated EIT system for functional lung ventilation imaging. Biomed Eng Online 18: 83. [Crossref]

5. Tomicic V, Cornejo R (2019) Lung monitoring with electrical impedance tomography: technical considerations and clinical applications. J Thorac Dis 11: 3122-3135. [Crossref]

6. Brunow de Carvalho W, Fonseca MC, Johnston C (2007) Electric impedance tomography, the final frontier is close: the bedside reality. Crit Care Med 35: 1996-1997. [Crossref]

7. Putensen C, Hentze B, Muenster S, Muders T (2019) Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. J Clin Med 8: 1176. [Crossref]

8. Spinelli E, Mauri T, Fogagnolo A, Scaramuzzo G, Rundo A, et al. (2019) Electrical impedance tomography in perioperative medicine: careful respiratory monitoring for tailored interventions. BMC Anesthesiol 19: 140. [Crossref]