Construction of retroviral vectors to induce a strong expression of human class interferon gene in human hepatocellular carcinoma cells in vitro

Guang-Wen Cao, Jun-Gao, Ping Du, Zhong-Tian Qi, Xian-Tao Kong

Guang-Wen Cao, Jun-Gao, Ping Du, Zhong-Tian Qi, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
Xian-Tao Kong, Department of Experimental Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 20003, China
Guang Wen Cao, Associate Professor, having 36 papers and 2 books published, Director of the Division of Tumor & Virus Gene Therapy, the Department of Microbiology, Second Military Medical University, Shanghai 200433, China

Author contributions: All authors contributed equally to the work.
Supported by the National Natural Science Foundation of China (No:39500147, 39600172).

Original title: China National Journal of New Gastroenterology (1995-1997) renamed World Journal of Gastroenterology (1998-)
Correspondence to: Dr. Guang Wen Cao, Associate Professor, Department of Microbiology, Second Military Medical University, Shanghai 204433, China Fax:86-21-65490555
Received: February 7, 1997
Revised: April 10, 1997
Accepted: May 15, 1997
Published online: September 15, 1997

Abstract
AIM: To establish the hepatoma cell–specific expression of human interferon (IFN) gene mediated by retroviral vectors
METHODS: Human interferon α and interferon β complementary DNA (IFN cDNA) were cloned into the polylinker site of pMNSM retroviral vector to construct recombinant retroviral vectors pMNSIFNA and pMNSIFNB, with the transcription of IFN gene being driven by Simian virus 40 early region promoter (SV40) early region promoter. IFN cDNAs were also cloned into pMNAIFNA, pMNASIFNA, and pMNAIFNB, with the transcription of IFN gene being driven by SV40 early region promoter regulated by α-fetoprotein enhancer. Next, the retroviral constructs were introduced into retroviral amphotropic packaging cells using the lipofectamine-mediated gene transfer procedure. The rate of plasmid transfection was (4–40) × 10^4 colonies/μg DNA/10^6 PA317 cells. The rate of retrovirus infection was (5–500) × 10^4 colony forming units (CFU)/mL. Further, the recombinant retroviruses were used to infect human hepatoma cells, renal carcinoma cells, and melanoma cell lines in the presence of 4 μg/mL polybrene.
RESULTS: Northern and Dot hybridization of total RNA from the neomycin-resistant colonies and IFN expression assay indicated that human α fetoprotein enhancer induced efficient and specific transcription and expression of IFN genes driven by the promoter of different origins in human hepatoma cells, leading to high production of α fetoprotein.

CONCLUSION: Ci active element of α-fetoprotein gene can drive specific expression of IFN genes in human hepatoma cells, which provides some valuable data for the hepatoma-specific immune gene therapy.

Key words: Interferon alpha; Interferon beta; Retroviridae; Carcinoma, hepatocellular; Liver neoplasms; Genes, regulatory; Gene expression; Gene therapy
© The Author(s) 1997. Published by Baishideng Publishing Group Inc. All rights reserved.

Cao GW, Gao J, Du P, Qi ZT, Kong XT. Construction of retroviral vectors to induce a strong expression of human class interferon gene in human hepatocellular carcinoma cells in vitro. World J Gastroenterol 1997; 3(3): 139-142. Available from: URL: http://www.wjgnet.com/1007-9327/full/v3/i3/139.htm DOI: http://dx.doi.org/10.3748/wjg.v3.i3.139

INTRODUCTION
Class I interferon (IFN) is a potent immune-modulating factor in vivo that plays an important role in activating anti-tumor cytotoxic T lymphocytes and non-specific effector cells such as natural killer (NK) cells. IFN genes and many other cytokine genes have been introduced into tumor cells, tumor interstitial cells, and tumor-infiltrating lymphocytes in order to sustain an effective anti-tumor concentration of cytokine located at tumor sites. It has been shown that some cytokine-gene-modified tumor cells lost their tumorigenicity and inhibited the growth of parental tumor in animal models. Practical antitumor effects were obtained in the protocol. The morbidity of hepatoma is relatively high in China, and no effective procedure is currently available for the treatment of advanced hepatoma. In this study, hepatoma-specific IFN retroviral vectors were prepared and in vitro expression assays were conducted to establish an effective gene therapy against hepatoma and prevent the possible adverse effects of class I INF expression in non-tumoral tissues in addition to verifying the possibility of the enhancer of α-fetoprotein (AFP) “house-keeping gene” regulating viral promoter in retroviral vector.

MATERIALS AND METHODS
Plasmids
Plasmids pCXS261 containing human leukocyte interferon (IFN-α) cDNA were obtained from the American Type Culture Collection (ATCC), (Rockville, United States). pSGNHiFNβ10 carrying the HuIFN-β-cDNA was purchased from LMBP (Gent University, Belgium).

World Journal of Gastroenterology 1997 September 15; 3(3): 139-142
ISSN 1007-9327 (print) ISSN 2219-2840 (online)
© 1997 Baishideng Publishing Group Inc. All rights reserved.
Belgium). Plasmid pAF5.1-CAT containing the AFP enhancer and plasmid pGEM7z-APFe containing human AFP enhancer core sequence were kindly provided by Professor Tamaki (Calgary University, Canada). Retroviral vector pMNSM containing the neomycin phosphotransferase and the SV40 early region promoter was a gift from Dr. Tsuchiya (Tokyo Medical and Dental University, Japan).

Cells
Amphotropic retrovirus packaging cell line PA317, retrovirus tethering cell line NIH3T3TK, human hepatoma cell lines HepG2 and Hep3B, and IFN bioassay cell line WISH were obtained from ATCC. Human renal carcinoma cell line RZ94602 was established at our laboratory.

Main reagents
Tdr, dNTP, polybrene, PEG8000, guanidine isothiocyanate, PVP2500, and MTT were from Sigma. New generation liposome transfection reagent LIPOFECTAMINE[12], RPMI-1640, DMEM, FCS, random primers DNA labeling system, and G418 were from Gibco. Herring sperm DNA, restriction enzymes, T4 ligase, DNA polymerase Klenow fragment, and CIP were from Promega. α [32P]-dCTP was from Beijing Yahui Biomedical Co. Nicotrocellulose membrane was from Amersham.

Construction of retroviral vectors
Plasmids extraction with alkali lysis, enzymes digestion, ligation, isolation and Harvest of DNA fragments and transformation of Escherichia coli was carried out according to the standard methods[13]. The procedures of construction are as follows. The plasmids pSPGHIFNB10, pCGS2621, pAF5.1-CAT, pGEM7z-APFe, and pMNSM were identified with enzyme digestion. pMNSM was linearized with Hind III/BamHI I digestion. pSPGHIFNB10 was digested with Hind III/BamHI I to release 1.06-kb IFN-β DNA. IFN-β DNA was linked to the linearized pMNSM to construct pMNSIFNB. pAF5.1-CAT was fully digested with Aat II/Spe I/BamHI I to release 5.5-kb human AFP enhancer sequence and blunt with Klenow. pMNSIFNB was linearized with EcoR I digestion and blunt with Klenow. The enhancer was linked with the linearized pMNSIFNB to construct pMNAIFNB. pMNSIFNB and pMNAIFNB were constructed using the above construction procedure with some modifications. The human IFN-β gene was replaced with human IFN-α gene, and 5.5-kb AFP enhancer sequence was replaced with 0.7-kb AFP enhancer core sequence. As for the construction of pAMNSIFNA, an 0.7-kb AFP enhancer core sequence was inserted into the long terminal repeat (LTR) region of the retroviral vector. Then, 1.1-kb human IFN-α gene was cloned into the polylinker site of pMNSM and under transcriptional control of SV40 early region promoter.

The identity of all the retroviral constructs were confirmed by restricted digestion.

Lipofectamine-mediated gene transfer
Packaging cells were pretreated with 2 μg/mL Tdr to induce simultaneous cell division. Psi2 cells were transfected with the retroviral constructs by using the lipofectin-mediated gene transfer procedure, which was performed as per the manufacturer's instructions. After full selection with G418, the supernatant of the modified Psi2 cells was harvested, tittered, and used to infect PA317 cells. Measurement of plasmid transfection and retrovirus infection rates was carried out according as described previously[14].

Expression assay of IFNs
Northern blot and dot hybridization were performed using a previously described method[17]. The IFN bioactivities in the supernatant of 105 modified cells were calculated per 24 h. IFN bioassay was performed according to the routine procedure of our laboratory.

RESULTS
Construction of the retroviral vectors MNSIFNB and MNAIFNB
All the retroviral constructs are outlined in Figure 1. IFN genes in pMNSIFB and pMNSIFNB were controlled by SV40 early region promoter. IFN genes derived from SV40 early region promoter in pMNAIFNB and pMNAIFNB were controlled by [WTBZ] AFP enhancer. Then, 0.7-kb AFP enhancer core sequence was inserted into the LTR region in order to enactive the intrinsic enhancer element located in the region and diminish the intervention of the intrinsic enhancer on AFP enhancer.

Preparation of recombinant retroviruses
PA317 cells with division synchronized with Tdr pretreatment were infected with the supernatants of Psi2 cells containing MNSM, MNSIFNB, MNAIFNB, MNSIFNA, and MNSIFNA retroviruses, and the infection rate of the retroviruses in the PA317 supernatants harvested on the third day after the infection were 5.0 × 104, 6.0 × 104, 4.5 × 104, 8.0 × 104, 1.0 × 105, and 5.0 × 105 CFU/mL, respectively. Psi2 cells were transfected with the retroviral constructs by using a lipofectamine-mediating procedure. The modified Psi2 cells were split 1/20 onto medium containing 400 μg/mL active G418. After 10 d selection, the corresponding transfection rates were as follows: 2.5 × 103, 8.5 × 103, 4.0 × 103, 2.3 × 103, 3.6 × 103, and 3.4 × 104 CFU/μg DNA/106 PA317 cells. The greater the genome of the vectors, the lower the infection and transfection rates. However, all the highest retroviruses producing PA317 colonies of 6 different groups could produce 106 CFU recombinant retroviruses per 105 PA317 cells per 24 h. After being frozen in liquid nitrogen for one month, the modified PA317 did not show any significant decrease in the retrovirus production (P > 0.05).

Transcription of IFNs cDNA in the modified tumor cells
All the retroviral constructs by using the lipofectin-mediated gene transfer procedure. The modified Psi2 cells were split 1/20 onto medium containing 400 μg/mL active G418. After 10 d selection, the corresponding transfection rates were as follows: 2.5 × 103, 8.5 × 103, 4.0 × 103, 2.3 × 103, 3.6 × 103, and 3.4 × 104 CFU/μg DNA/106 PA317 cells. The greater the genome of the vectors, the lower the infection and transfection rates. However, all the highest retroviruses producing PA317 colonies of 6 different groups could produce 106 CFU recombinant retroviruses per 105 PA317 cells per 24 h. After being frozen in liquid nitrogen for one month, the modified PA317 did not show any significant decrease in the retrovirus production (P > 0.05).

Expression of IFNs
Northern blot and dot hybridization were performed using a previously described method[17]. The IFN bioactivities in the supernatant of 105 modified cells were calculated per 24 h. IFN bioassay was performed according to the routine procedure of our laboratory.

Construction of the retroviral vectors MNSIFNB and MNAIFNB
All the retroviral constructs are outlined in Figure 1. IFN genes in pMNSIFB and pMNSIFNB were controlled by the SV40 early region promoter. IFN genes derived from SV40 early region promoter in pMNAIFNB and pMNAIFNB were controlled by [WTBZ] AFP enhancer. Then, 0.7-kb AFP enhancer core sequence was inserted into the LTR region in order to enactive the intrinsic enhancer element located in the region and diminish the intervention of the intrinsic enhancer on AFP enhancer.

Preparation of recombinant retroviruses
PA317 cells with division synchronized with Tdr pretreatment were infected with the supernatants of Psi2 cells containing MNSM, MNSIFNB, MNAIFNB, MNSIFNA, and MNSIFNA retroviruses, and the infection rate of the retroviruses in the PA317 supernatants harvested on the third day after the infection were 5.0 × 104, 6.0 × 104, 4.5 × 104, 8.0 × 104, 1.0 × 105, and 5.0 × 105 CFU/mL, respectively. Psi2 cells were transfected with the retroviral constructs by using a lipofectamine-mediating procedure. The modified Psi2 cells were split 1/20 onto medium containing 400 μg/mL active G418. After 10 d selection, the corresponding transfection rates were as follows: 2.5 × 103, 8.5 × 103, 4.0 × 103, 2.3 × 103, 3.6 × 103, and 3.4 × 104 CFU/μg DNA/106 PA317 cells. The greater the genome of the vectors, the lower the infection and transfection rates. However, all the highest retroviruses producing PA317 colonies of 6 different groups could produce 106 CFU recombinant retroviruses per 105 PA317 cells per 24 h. After being frozen in liquid nitrogen for one month, the modified PA317 did not show any significant decrease in the retrovirus production (P > 0.05).

Transcription of IFNs cDNA in the modified tumor cells
All the retroviral constructs by using the lipofectin-mediated gene transfer procedure. The modified Psi2 cells were split 1/20 onto medium containing 400 μg/mL active G418. After 10 d selection, the corresponding transfection rates were as follows: 2.5 × 103, 8.5 × 103, 4.0 × 103, 2.3 × 103, 3.6 × 103, and 3.4 × 104 CFU/μg DNA/106 PA317 cells. The greater the genome of the vectors, the lower the infection and transfection rates. However, all the highest retroviruses producing PA317 colonies of 6 different groups could produce 106 CFU recombinant retroviruses per 105 PA317 cells per 24 h. After being frozen in liquid nitrogen for one month, the modified PA317 did not show any significant decrease in the retrovirus production (P > 0.05).

Transcription of IFNs cDNA in the modified tumor cells
All the retroviral constructs by using the lipofectin-mediated gene transfer procedure. The modified Psi2 cells were split 1/20 onto medium containing 400 μg/mL active G418. After 10 d selection, the corresponding transfection rates were as follows: 2.5 × 103, 8.5 × 103, 4.0 × 103, 2.3 × 103, 3.6 × 103, and 3.4 × 104 CFU/μg DNA/106 PA317 cells. The greater the genome of the vectors, the lower the infection and transfection rates. However, all the highest retroviruses producing PA317 colonies of 6 different groups could produce 106 CFU recombinant retroviruses per 105 PA317 cells per 24 h. After being frozen in liquid nitrogen for one month, the modified PA317 did not show any significant decrease in the retrovirus production (P > 0.05).
intermediate levels of AFP, the difference in the IFN-β-cDNA transcription level between the two infection groups was not so significant as that in the HepG2 cells, indicating that the enhancing effect of the IFN enhancer on the SV40 early region promoter in the genome of the hepatoma cells correlated with the level of AFP produced in the hepatoma cells.

Expression of interferon in the gene-modified tumor cells
HepG2, Hep3B, SMMC7721, R294602, and M21 tumor cells were infected with MNSM, MNSIFNB, MNSIFNA, MNAIFNB, and MNAIFNA retroviruses, respectively, and fully selected with G418, probed with 32P-labeled HuIFN-β-cDNA. Lane 1: Tumor cells infected with MNSIFNB retroviruses; Lane 2: Tumor cells infected with MNSIFNA retroviruses; Lane 3: Tumor cells infected with MNAIFNB retroviruses; Lane 4: Tumor cells infected with MNAIFNA retroviruses; Lane 5: M21 cells infected with MNSIFNB retroviruses; Lane 6: M21 cells infected with MNSIFNA retroviruses; Lane 7: R294602 cells infected with MNSIFNB retroviruses; Lane 8: R294602 cells infected with MNSIFNA retroviruses.

Expression of interferon in the gene-modified tumor cells
HepG2, Hep3B, SMMC7721, R294602, and M21 tumor cells, which did not produce AFP, was inhibited after infection with MNAIFNB, MNAIFNA, and MNSIFNA retroviruses.

DISCUSSION
In vivo gene therapy for cancer is more practicable than the ex vivo protocol in clinical trials. As for the in vivo protocol, the major problem is to induce the guaranteed specific expression of the gene of interest in tumor cells. In vivo gene therapy can be guaranteed if the transcription regulatory sequences (TRS) of “house-keeping gene” of the tumor characteristic proteins are employed to regulate gene expression. First, high expression levels of the gene of interest can be achieved if the gene is controlled by the TRS.

Table 1 Human interferon gene expression in supernatants of gene modified human tumor cells at 20th day after infection with recombinant retroviruses (x ± s)

Cell lines	Origin	AFP	Genetic alteration	G418 resistant	Interferon bioactivity (unit/10⁶ cells)
HepG2	Human	2044	Parental	0	0
HepG2 (ρ = 5)	hepatic	2044	MNSM	+	0
HepG2 (ρ = 5)		2044	MNSIFNB	+	218 ± 102
HepG2 (ρ = 5)		2044	MNAIFNB	+	818 ± 35
HepG2 (ρ = 5)		2044	MNSIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	MNAIFNA	+	808 ± 180
HepG2 (ρ = 5)		2044	AMNSIFNA	+	1208 ± 36
HepG2 (ρ = 5)		2044	MNSIFNB	+	130 ± 36
HepG2 (ρ = 5)		2044	MNSIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	MNAIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	AMNSIFNA	+	1208 ± 36
HepG2 (ρ = 5)		2044	MNSIFNB	+	130 ± 36
HepG2 (ρ = 5)		2044	MNSIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	MNAIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	AMNSIFNA	+	1208 ± 36
HepG2 (ρ = 5)		2044	MNSIFNB	+	130 ± 36
HepG2 (ρ = 5)		2044	MNSIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	MNAIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	AMNSIFNA	+	1208 ± 36
HepG2 (ρ = 5)		2044	MNSIFNB	+	130 ± 36
HepG2 (ρ = 5)		2044	MNSIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	MNAIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	AMNSIFNA	+	1208 ± 36
HepG2 (ρ = 5)		2044	MNSIFNB	+	130 ± 36
HepG2 (ρ = 5)		2044	MNSIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	MNAIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	AMNSIFNA	+	1208 ± 36
HepG2 (ρ = 5)		2044	MNSIFNB	+	130 ± 36
HepG2 (ρ = 5)		2044	MNSIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	MNAIFNA	+	128 ± 36
HepG2 (ρ = 5)		2044	AMNSIFNA	+	1208 ± 36

*Expressed as ng secreted per mg of cell protein per 4 d, based on historical data; 1Unmodified parental tumor cell lines; ND: Undetermined
concentration of interferon or expression of IFN gene at the tumor location is correlated with the antitumor effect17. Second, possible microenvironmental disorders caused by the expression of Class I IFN gene in non-tumoral tissues can be prevented. This is of great significance in cancer gene therapy.

Human IFN α and IFN β bind to the same receptors and are called class I interferon. Class I IFN plays an important role \textit{in vivo} in tumor immunosurveillance and tumor biotherapy. In the present study, human IFN α and IFN β genes were individually introduced into the established hepatoma, renal cell carcinoma, and melanoma cell lines by means of the retrovirus. Expression of IFN genes, under the transcription control of AFP enhancer, was in the hepatoma-cell-specific manner, and correlated with the AFP production levels in the hepatoma cells. Some transcription regulatory proteins existing in the nuclei of the hepatoma cells are believed to be related to the hepatoma-specific gene expression. In the AFP-producing hepatoma cells, the transcription regulatory sequence of AFP "house-keeping gene" is controlled by the tissue-specific transcription regulatory proteins. After the transcription regulatory sequence carried by the retroviruses is integrated into the genome of the hepatoma cells, the regulatory proteins could also activate AFP enhancer in the same manner. Since enhancer is not dependent on origin and orientation, AFP enhancer may transactivate the promoter of viral origin and increase the transcription rate of the promoter in certain cell types.

Promoter interference between heterologous promoter and retroviral promoter has been documented. Retroviral LTR promoter and enhancer may silence some internal heterologous promoters17. In this study, construction of PAMNS-IFNA was carried out by the insertion of AFP enhancer core sequence into retroviral LTR region in order to silence LTR enhancer activity and increase the hepatoma cell-specific expression of human IFN-α gene. However, the hepatoma cells-specific expression was not significantly increased after the treatment. It was demonstrated that enhancer elements in retroviral LTR region did not significantly interfere with the function of AFP "house-keeping" gene enhancer.

Tumor-tissue-specific gene therapy is carried out in the thymidine kinase prodrug transformation gene therapy, but not in cytokine gene therapy and other immune gene therapies. It has been recently demonstrated that the transcription regulatory sequences of AFP, carcinoembryonic antigen, and tyrosinase "house-keeping gene" regulated the thymidine kinase gene specifically expressed in the hepatocellular carcinoma, gastric cancer and melanoma cells18-20. Tumor tissue specific gene therapy is considered to be an important direction of gene therapy against cancer in the near future. Probability of helper virus production, which is generated by homologous recombination, is expected to be decreased on the condition of the transcription regulatory sequences existing in the recombinant retrovirus. The future of gene therapy is subsequently guaranteed.

REFERENCES

1. Cao GW, Du P. Modern cancer biotherapology. Beijing: People Military Medical Publisher, 1995: 179-288
2. Colombo MP, Forni G. Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? \textit{Immunol Today} 1994; 15: 48-51 [PMID: 8155261 DOI: 10.1016/0167-5699(94)90131-7]
3. Mizuno M, Yoshida J, Sugita K, Hayashi Y, Yagi K. [Basic research for interferon gene therapy against malignant glioma]. \textit{No Shinkei Geka} 1992; 20: 547-551 [PMID: 15981360]
4. Hwu P, Yannelli J, Kriegler M, Anderson WF, Perez C, Chiang Y, Schwarz S, Cowherd R, Delgado C, Malé J. Functional and molecular characterization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-alpha cDNA for the gene therapy of cancer in humans. \textit{J Immunol} 1993; 150: 4104-4115 [PMID: 8473732]
5. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. A laboratory manual. 2nd ed. New York: Cold Spring Harbar Laboratory Press, 1989: 1-500
6. Miller AD, Miller DG, Garcia IV, Lynch CM. Use of retroviral vectors for gene transfer and expression. \textit{Methods Enzymol} 1993; 217: 581-599 [PMID: 8386297 DOI: 10.1016/0076-6879(93)70900-R]
7. Gunzburg WH, Salmons B. Retroviral vectors. In: Lemoine NR, Cooper DN, eds. Gene therapy. London: Bios Scientific Publisher, 1996: 33-53
8. Huber BE, Richards CA, Krenitsky TA. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. \textit{Proc Natl Acad Sci USA} 1991; 88: 8039-8043 [PMID: 1654555 DOI: 10.1073/pnas.88.18.8039]
9. Tanaka T, Kanai F, Okabe S, Yoshida Y, Waki moto H, Hamada H, Shiratori Y, Lan K, Isihito M, Omata M. Adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing human gastric carcinoma cells \textit{in vitro}. \textit{Cancer Res} 1996; 56: 1341-1345 [PMID: 8640823]
10. Vile RG, Hart IR. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. \textit{Cancer Res} 1993; 53: 3860-3864 [PMID: 8395331]
