Inverted effective SUSY with combined Z' and gravity mediation, and muon anomalous magnetic moment

Jihn E. Kim

Department of Physics and Astronomy and Center for Theoretical Physics,
Seoul National University, Seoul 151-747, Korea, and
GIST College, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea

Effective supersymmetry(SUSY) where stop is the lightest squark may run into a two-loop tachyonic problem in some Z' mediation models. In addition, a large A term or/and a large stop mass are needed to have ~ 126 GeV Higgs boson with three families of quarks and leptons. Thus, we suggest an inverted effective SUSY(IeffSUSY) where stop mass is larger compared to those of the first two families. In this case, it is possible to have a significant correction to the anomalous magnetic moment of muon. A three family IeffSUSY in a Z' mediation scenario is explicitly studied with the Z' quantum number related to $B-L$. Here, we adopt both the Z' mediation and gravity mediation where the Z' mediation is the dominant one for stop, while the gravity mediation is the dominant one for the mufonic leptons and Higgs multiplets. We present a numerical study based on a specific anomaly free model, and show the existence of the parameter region where all the phenomenological conditions are satisfied.

PACS numbers: 12.60.Jv, 14.80.Ly, 11.25.Wx, 11.25.Mj

Keywords: Inverted effective SUSY, Heavy stop, Z' mediation, Muon anomalous magnetic moment

I. INTRODUCTION

The recent LHC reports hint the Higgs boson mass at $125-127$ GeV[1]. This small Higgs boson mass compared to the Planck mass needs a huge hierarchy of mass scales, inviting solutions of the hierarchy problem. Supersymmetry(SUSY) has been considered to be the most attractive one among the hierarchy solutions, but the LHC data is not consistent with the constrained minimal supersymmetric standard model(CMSSM) prediction in the region $M_{\text{glino}} m_{\text{squark}} \lesssim 1$ TeV2. A small Higgs boson mass ($m_h \simeq 0.126$ TeV) needs a large stop mass or/and a large A-term in the CMSSM.

The LHC hints toward large squark masses are usually interpreted as a large mass limit for the first family squarks. The third family squarks have much lower exclusion bound[2] than those of the first two families. The current bound for $m_{\tilde{q}_1,2}$ is usually taken as 1.5 TeV[2]. Thus, the squark masses of the third family can be below 1 TeV in principle, which has been proposed long time ago as the effective SUSY(efSUSY)[4]. So, if Nature has low energy SUSY as a solution to the hierarchy problem, the previously considered attractive models have been the efSUSY where only the third family squarks are in the reach of the LHC search.

Another LHC hint is the possibility of light Higgs boson whose mass is around 126 GeV[1]. However, a light Higgs boson as heavy as 126 GeV is difficult to obtain in the CMSSM, mainly due to the tree level mass bound $m_{\tilde{q}}^{\text{tree}} \lesssim M_Z$. The loop corrections raise the Higgs mass but a fine-tuning is needed to raise it above 120 GeV[3]. This has led to scenarios with a large A-term from the large top Yukawa coupling and/or a large stop mass. The efSUSY through gauge mediation cannot lead to a large A-term since the gravity mediation for the squark mass generation is assumed to be sub-dominant compared to that of the gauge mediation. Also, the efSUSY assumes a relatively small stop mass. If gauge mediation is effectively achieved by a family-dependent Z' mediation[6], then there is another problem that most scalar particles become tachyons, if the two-loop contributions are included.

A large hierarchy of soft masses between different families is easily realized by imposing family dependent Z' charges in the Z' mediation[4]. If the soft masses of some specific family are much smaller than those of another family, the heavy soft mass term contributes to the light soft masses at the two loop level through the SM gauge group interaction[4]. Therefore, if the light scalars are not charged under $U(1)_{Z'}$ in the Z' mediation scenario, they become tachyonic when two loop effects are taken into account. This two-loop tachyonic problem may not be present in the Z' D-term breaking[10]. However, the model building along the D-term breaking may be more complicated than the method we introduce below with three chiral families of quarks and leptons.

The family-dependent Z' mediation is so easily realized in string models[6] that we consider its realization a natural one. As mentioned above, however, we need a large A-term and/or large stop masses from the LHC constraints. Here, we implement the large A-term by the gravity mediation. Both for the Z' mediation and the gravity mediation, the same dynamical SUSY breaking scale applies, which is assumed to be around $\Lambda_k \simeq 10^{13}$ GeV[11]. Gravity mediation with this dynamical SUSY breaking scale sets the scale for the A-term. To radiatively raise the Higgs boson mass sufficiently above M_Z, we need large stop masses. So, the family-dependent Z' mediation is of the form ‘inverted’, in the sense that the 3rd family squarks are heavy compared to the first two family squarks. We call this scenario inverted effective SUSY(IeffSUSY). If stops are the
heaviest sfermions, we use the term IeffSUSY irrespective of the order of the remaining sfermion masses.\(^1\)

In the family-dependent \(Z'\) mediation scenario, the 3rd family members can be made heavy by assigning large \(Z'\) quantum numbers to them while keeping the first two family members to carry very small \(Z'\) quantum numbers, which is the opposite view taken from that of Ref. [6]. So, the first two family squarks obtain masses predominantly via the gravity mediation. [Note that the 3rd family members get the additional contribution through the \(Z'\) mediation.] For the gravity mediation, the messenger scale is considered to be the Planck mass \(M_P = 2.44 \times 10^{18}\) GeV. For the \(Z'\) mediation, the messenger scale is another parameter \(M_{\text{mess}}\). If \(M_{\text{mess}} \lesssim \frac{1}{10} M_P\), we can achieve a reasonable IeffSUSY. The messenger scales and the visible sector masses are depicted schematically in Fig. 1 where the visible and the hidden sectors do not communicate directly as emphasized by the thick brown bar in Fig. 1. Assuming that the lowest messenger scale \(M_{\text{mess}}\) is significantly separated from the other messenger scales, the low energy spectra is dominated by the scale \(M_{\text{mess}}\) of the \(Z'\) mediation. In this sense, we argue that the \(Z'\) mediation arises naturally from an ultraviolet completed theory, as far as the lowest messenger scale \(M_{\text{mess}}\) is sufficiently separated from the other messenger scales.

Now, the two-loop tachyons are made stable by the positive soft mass arising from the gravity mediation. In addition, in this IeffSUSY the muon \(g - 2\) deviation [12] from the SM estimation can be made significant through the light gaugino masses, which arise at the two-loop level in the \(Z'\) mediation [3], and the light smuon (\(\tilde{\mu}\)) and scalar-muon-neutrino (\(\tilde{\nu}_2\)) masses.

![FIG. 1: A schematic view of messenger scales and the IeffSUSY spectra. The lowest scale, assumed to be separated somewhat from the others, is called \(M_{\text{mess}}\).](image)

\[\Delta M_{\tilde{Z}'} = -\frac{g_{\tilde{Z}'}^2}{8\pi^2} M_{\text{mess}} = \frac{\tilde{\alpha}}{2\pi} F \]

where \(\tilde{\alpha} = \frac{g_{\tilde{Z}'}^2}{4\pi}\) and

\[m^2_i = \left(\frac{1}{2}\right)^2 \]

where \(Z'\) is the U(1)\(_{Z'}\) charge and the visible sector gauginos \(g^a\) obtain mass at the two-loop level,

\[\frac{M_a(\mu)}{\alpha_a(\mu)} = -\frac{c_a \tilde{\alpha}(M')}{(2\pi)^2} \Delta M_{\tilde{Z}'(M')} \ln \left(\frac{M_{\text{mess}}}{M'}\right)\]

where \(M'\) is the U(1)\(_{Z'}\) gauge symmetry breaking scale and \(c_a = \sum (Z')^2 T_a\).

II. LARGE CORRECTION TO MUON ANOMALOUS MAGNETIC MOMENT

1. Soft mass scales in the \(Z'\) mediation

As shown in Fig. 1 in the \(Z'\) mediation scenario the soft masses at the messenger scale are generated by \(Z'\) charged matter. At the messenger scale \(M_{\text{mess}}\), the mass splitting of \(Z'\) gauge multiplet, i.e. the superpartner Zprimino mass minus \(Z'\) gauge boson mass, \(\Delta M_{\tilde{Z}'}\), becomes

\[\Delta M_{\tilde{Z}'} = -\frac{g_{\tilde{Z}'}^2}{8\pi^2} M_{\text{mess}} = \frac{\tilde{\alpha}}{2\pi} F \]

where \(\tilde{\alpha} = \frac{g_{\tilde{Z}'}^2}{4\pi}\) and

\[m^2_i = \left(\frac{1}{2}\right)^2 \]

where \(Z'\) is the U(1)\(_{Z'}\) charge and the visible sector gauginos \(g^a\) obtain mass at the two-loop level,

\[\frac{M_a(\mu)}{\alpha_a(\mu)} = -\frac{c_a \tilde{\alpha}(M')}{(2\pi)^2} \Delta M_{\tilde{Z}'(M')} \ln \left(\frac{M_{\text{mess}}}{M'}\right)\]

where \(M'\) is the U(1)\(_{Z'}\) gauge symmetry breaking scale and \(c_a = \sum (Z')^2 T_a\).

2. SUGRA model toward a large correction to \((g - 2)_\mu\)

As commented in Introduction, in the CMSSM with three families of quarks and leptons it is necessary to have a large A-term and/or large stop mass to have a light but somewhat heavier Higgs boson above \(M_Z\) at around 126 GeV. Thus, we introduce the family-dependent IeffSUSY. If quarks and leptons in a family are treated in the simplest way, we consider a \(Z'\) charge assignment related to \(B - L\) as shown in Table II where we introduce two \(Z'\) mediation parameters, \(\lambda_f\) for the quark and lepton superfields and \(\lambda_h\) for the Higgs superfields. In our study here, we set \(\lambda_h = 0\). This model does not have any gauge and gravitational anomalies. Of course, charges may not have this simple form in string compactification.\(^2\)

\(^1\) Here, ‘inverted’ is used just for the heaviest stops since effSUSY has been used for the lightest stops among sfermions [2].

\(^2\) With the spectrum of Ref. [12], \(Z' = Y + Z''\) with \(Z'' = -Q_1/6-Q_4/8+Q_5/8\) gives \(Z' = 0\) for \(\mu^c\), \(H_u\), and \(H_d\). With the spectrum of Ref. [14], the heavy 3rd family and light two families and Higgs doublets, i.e. \(\lambda_f = \lambda_h = 0\) are possible with \(Z' = (0^3-1-1.2)(0^8)'\) in the notation of [16].
Interesting cases are $\lambda_f = \pm 1$ which give the same squark masses. If these squarks are removed at very high energy scale, it is similar to but not the same as the split SUSY \[17\] because scalar muons for $\lambda_f = \pm 1$ and scalar taus for $\lambda_f = -1$ survive to low energy. At a first glance, these light scalar leptons may work against the gauge coupling unification since the 2nd (and the 3rd family) fermions do not form GUT multiplets, but there is the tunable parameter M_{mess} for the gauge coupling unification. These particular cases of λ_f can be called partly-split SUSY. Note also that the $\lambda_f = -1$ case allows the quantum numbers such that a large mixing between ν_μ and ν_τ is not forbidden.\(^3\)

3. The $\sigma_{\mu\nu}$ couplings

The Brookhaven National Laboratory (BNL) has measured $(g - 2)_{\mu}$ with the following discrepancy on the muon anomalous magnetic moment from the SM prediction \[12\]

\[
\Delta a_\mu = a_\mu^\text{exp} - a_\mu^\text{SM} = 287(80) \times 10^{-11}
\]

where the errors including the electroweak and hadronic contributions are combined in the quadature, resulting to the discrepancy of 3.6 σ error.

The experimentally interesting $\mu \to e\gamma$ mode amplitude is inversely proportional to the flavor violation quantum number λ_f^2, viz. $M_\tilde{e}^2 \propto \lambda_f^2$. Since the present bound from $\mu \to e\gamma$ surpasses all the other lepton flavor violation bounds \[18\], we consider only $\mu \to e\gamma$ here for the lepton flavor violation through the $\sigma_{\mu\nu}$ coupling. The $\sigma_{\mu\nu}$ coupling of neutrino was considered long time ago for the neutral current data \[19\], which has a different chirality from the tree level V and A interactions of the SM. So, the $\sigma_{\mu\nu}$ couplings arise at higher orders. It must involve interactions beyond the $V - A$ charged current interactions. If it arise from the tree level V and A interactions, there must be $V + A$ charged current interactions also \[20\]. If we introduce the S and P interactions as in the SUSY extension of the SM, the $\sigma_{\mu\nu}$ couplings can be obtained at one loop level. So, the $\sigma_{\mu\nu}$ couplings are classified into a different chirality class from that of V and A. Now, let us parametrize the one loop $\sigma_{\mu\nu}$ couplings of the charged leptons to the electromagnetic field strength $F_{\mu\nu}$ as

\[
\mathcal{L} = A_{L'R} \bar{l}_L^\dagger \sigma_{\mu\nu} l_R F_{\mu\nu} + A_{R'L} \bar{l}_R \sigma_{\mu\nu} l_L F_{\mu\nu} + (\text{h.c. if } l \neq l').
\]

Note that the real parts of the flavor diagonal A_{lLlR} and A_{lRllL} contribute to $(g - 2)_{\mu}$, the imaginary parts of A_{lLlR} and A_{lRllL} contribute to the muon EDM, and the flavor violating absolute magnitude contributes to BR($\mu \to e\gamma$). Parametrizing $g - 2$, EDM and $\mu \to e\gamma$ Lagrangians with $\sigma_{\mu\nu}$ couplings as \[18\] \[21\]

\[
\begin{align*}
\mathcal{L}_{g-2} &= \frac{e}{2m_\mu} \Delta a_\mu \bar{\mu} \sigma_{\mu\nu} \mu F_{\mu\nu}, \\
\mathcal{L}_{EDM} &= \frac{ie}{2} \bar{\mu} \sigma_{\mu\nu} \gamma_5 \mu \mu F_{\mu\nu}, \\
\mathcal{L}_{\mu\to e\gamma} &= \frac{e}{4m_\mu} \epsilon_{\mu\nu} \bar{\epsilon} \sigma_{\mu\nu} \mu F_{\mu\nu} + \text{h.c.},
\end{align*}
\]

where the $\mu \to e\gamma$ Lagrangian is compared to the $(g - 2)_{\mu}$ Lagrangian with the flavor violating parameter $\epsilon_{\mu\nu}$, and we may factor out e from the muon EDM d_μ: $d_\mu \equiv \epsilon_{\mu\nu}$. Then, we have a chirality relation on the coefficients of $\sigma_{\mu\nu}$ couplings,

\[
4 \Gamma(\mu \to e\gamma) = \frac{\Delta a_\mu^2 + \delta_\mu^2}{\epsilon_{\mu\nu} m_\mu^2}.
\]

The BR($\mu \to e\gamma$) is given by \[18\],

\[
\begin{align*}
\text{BR}(\mu \to e\gamma) &= \frac{48\pi^2}{G_F^2 m_\mu^2} (|A_{\mu e l R}|^2 + |A_{\mu e l L}|^2) \\
&= \frac{24\pi^2 a_{\text{em}} |\epsilon_{\mu\nu}|^2}{G_F^2 m_\mu^2} = 3.2 \times 10^{14} |\epsilon_{\mu\nu}|^2.
\end{align*}
\]

If selectron is heavier than Zino, we estimate $\epsilon_{\mu\nu} \sim g_2^2 m_{\tilde{e}} M_Z^2 \Delta M_\tilde{e}^2 / 32 \pi^2 M_\mu^2 M_e^2$, and obtain

\[
|\epsilon_{\mu\nu}|^2 \sim \frac{a_{\text{em}} m_{\tilde{e}}^2 M_Z^2 (\Delta M_\tilde{e}^2)^2}{64 \pi^2 \sin^2 \theta_W M_\mu^2 M_e^2}.
\]

Therefore, BR($\mu \to e\gamma$) is estimated as

\[
\begin{align*}
\text{BR}(\mu \to e\gamma) &\sim 5.7 \times 10^{2} \left(\frac{M_\mu^2}{M_{\tilde{e}}^2} \right) \left(\frac{\Delta M_\tilde{e}^2}{M_{\tilde{e}}^2} \right)^2.
\end{align*}
\]

\(^3\)For a sizable mixing between ν_e and ν_μ, a large Z' = +1 scalar VEV insertion is needed in the seesaw diagram of neutrino masses.
The details of the first two family Yukawa couplings, which can be accurately addressed in a complete model with the M_μ value for M_μ large enough to satisfy the experimental upper bound 2.4×10^{-12}.

A typical flavor mixing diagram is shown in Fig. 2. If the flavor mixing parameter $\Delta M_{\tilde{e}_R}^2$ is assumed to be $M_{\tilde{e}_R}^2/M_{\tilde{e}_L}^2$, the RHS is proportional to $(M_{\tilde{e}_R}/M_{\tilde{e}_L})^8$ and the selectron mass more than 60 times the muon mass is enough to satisfy the $\mu \rightarrow e\gamma$ upper bound, assuming the order 1 value for $M_{\tilde{e}_R}^2/M_{\tilde{e}_L}^2$. If λ_f is large, selectron mass is few tens times the muon mass. If λ_f is small, e.g. for $\lambda_f = \frac{1}{2}$ the ratio is about 4. But the flavor problem can be accurately addressed in a complete model with the details of the first two family Yukawa couplings, which we do not consider in this paper.

4. Muon anomalous magnetic moment from SUGRA chargino and neutralino

The muon anomalous magnetic moment in the MSSM has been given in Ref. [21]. The anomalous magnetic moment arises from the SUSY diagrams among which the chargino diagram is shown in Fig. 3. We discuss the chargino diagram here in detail in Appendix A because the results can be presented as closed forms. The neutralino diagram also contributes and the approximate form is present in Appendix B. In the mass region of our interest, it is estimated that the contribution of the neutralino diagram is more important compared to that of the chargino diagram, unlike the comments of [21, 23].

\[
a_{\mu}^{\text{SUSY}} \simeq a_{\mu}^{\chi_1^+} + a_{\mu}^{\text{SUSY} \chi_2^+} + a_{\mu}^{\text{SUSY} \chi_1^{0A}} + a_{\mu}^{\text{SUSY} \chi_2^{0A}},
\]

\[
a_{\mu}^{\text{SUSY} \chi_1^+} \simeq -\frac{3m_\mu}{16\pi^2} C_X^{2} C_R^{2} \frac{m_{\chi_1^+}}{m_{\tilde{e}_L}} I^+(x_1),
\]

\[
a_{\mu}^{\text{SUSY} \chi_2^+} \simeq -\frac{3m_\mu}{16\pi^2} C_X^{2} C_R^{2} \frac{m_{\chi_2^+}}{m_{\tilde{e}_L}} I^+(x_2),
\]

\[
a_{\mu}^{\text{SUSY} \chi_1^{0A}} \simeq -\frac{m_\mu}{16\pi^2} N_{AX}^{L} N_{AX}^{R} \frac{m_{\chi_1^{0A}}}{m_{\tilde{e}_L}} I^0(x_{A1}),
\]

\[
a_{\mu}^{\text{SUSY} \chi_2^{0A}} \simeq -\frac{m_\mu}{16\pi^2} N_{AX}^{L} N_{AX}^{R} \frac{m_{\chi_2^{0A}}}{m_{\tilde{e}_L}} I^0(x_{A2}),
\]

where $I^+(x) = (1 - \frac{3}{2}x + \frac{1}{2}x^2 + \frac{3}{4} \ln x)/((1 - x)^3)$, $I^0(x) = (1 - x^2 + 2x \ln x)/(1 - x)^3$, $x_{1,2} \equiv m_{\chi_1^{0A}}^2/m_{\tilde{e}_L}^2$, $x_{A1,2} \equiv m_{\chi_1^{0A}}^2/m_{\tilde{e}_R}^2$, and we calculate $C_X^{L} C_X^{R}$ and $N_{AX}^{L} N_{AX}^{R}$ in Appendices A and B, respectively. Note that $C_X^R = y_\mu (U_{X-})_{2X}$ and $C_X^I = -g_2 (U_{X+})_{1X}$. Thus, we obtain

\[
\sum_{X} C_X^{L} C_X^{R} = y_\mu g_2 (-\sin \epsilon \cos \epsilon' + \cos \epsilon \sin \epsilon').
\]

Here, $C_X^{L} C_X^{R}$ contains a couplings factor $y_\mu g_2 \simeq 6.05 \times 10^{-4} \sqrt{1 + \tan^2 \beta} \times 0.6521 = 3.95 \times 10^{-4} \sqrt{1 + \tan^2 \beta}$. Thus, Eq. (11) becomes

$$
a_{\mu}^{\text{SUSY} \chi_{1,2}} \simeq -2.64 \sqrt{1 + \tan^2 \beta} \left(\cos \epsilon \sin \epsilon' - \sin \epsilon \cos \epsilon' \right) \left(\frac{300 \text{ GeV}}{m_{\tilde{e}_L}} \right) \left(\frac{m_{\chi_{1,2}}}{m_{\tilde{e}_L}} \right) \cdot I^+(x_{1,2})
- 1.32 \tan \beta \sum_{i=\text{lighter \ one}} \left(\frac{\mu}{10 \text{ TeV}} \right) \left(\frac{(300 \text{ GeV})^2}{|M_{LRZ}^2|} \right) \left(\frac{\text{TeV}}{m_{\tilde{e}_L}} \right)^2 \left(\frac{m_{\chi_{1,2}}}{\text{TeV}} \right) \cdot I^0(x_{A1,2})$$

Note that the four possible cases of the chargino contribution give the same sign for the combinations $\cos \epsilon \sin \epsilon'$ and $-\sin \epsilon \cos \epsilon'$, which are of order M_W/μ. From Eq. (13), we note that the neutralino contribution dominates for a
large μ. In our presentation in Sec. III we work for two almost degenerate neutralinos. This degeneracy may be violated by the running of g_2 and g_1 gauge couplings, but our objective on the order estimation will not be changed much even if the running effects are taken into account. Looking at the front numerical factor of Eq. (13), we note that the BNL $(g-2)_\mu$ can be explained by the TeV scale SUSY parameters as we show in Sect. III. This scenario can be achieved with the IeffSUSY Z' quantum numbers shown in Table II where muonic leptons carry the vanishing Z' quantum number such that their scalar partners obtain SUSY breaking masses only through gravity mediation which is of order $m_{3/2}$. These muonic scalar partners are the lightest sfermions. The next order sfermion masses are the first family sfermions and the second family squarks. The heaviest sfermions are the third family members.

III. PHENOMENOLOGICAL BOUNDS

For Table II let the mass scale of the heavy 3rd family squarks is universally given as $\tilde{M}^2_{\tilde{H}}$. Assuming only \tilde{t} and \tilde{b} masses get Z' mediated heavy mass, the two loop running equation for squarks $(i = 1, 2, 3)$, in the limit $m^2_i(\mu) \gg m^2_{\tilde{q}_{1,2}}(\mu)$, is

$$\Lambda \frac{dm^2_i}{d\Lambda} = \frac{\alpha^2_3(\Lambda)}{3\pi^2} m^2_i(\Lambda)$$

(14)

![FIG. 4: The scatter plot in the $m_2 - \mu$ space for $\Lambda_h = 3 \times 10^{13}$ GeV out of 10^7 trial points: (a) for $\lambda_f = \frac{3}{2}$, $\lambda_h = 0$, and (b) for $\lambda_f = -1$, $\lambda_h = 0$. The scanned parameters are μ and $M_{\text{mess}} = (0.1 \sim 10) \times 10^{15}$ GeV. The top quark mass corresponds to $m_t = (173.5 \pm 1.4)$ GeV. The gray dots are the trial points. The green dots are those satisfying the LHC constraints ($m_{\tilde{q}_{1,2}} > 1.5$ TeV and the LHC gluino mass bound) and $m_\mu = (125 \sim 127)$ GeV. The pink dots are filtered by $(g-2)_\mu$. The red dots are those satisfying all the constraints including $(g-2)_\mu$. In the enlarged insets, some selected red points are shown again with more information in blue dots.]

These conditions are much more stronger than the absence of tachyons. Therefore, we use the package SOFTSUSY [24] which includes two-loop evolutions. Given the boundary values of the input parameters such as $m^2_3 = m^2_{\tilde{q}_{1,2}}$ at M_{mess} and $m_{3/2}$ at M_P, the package SOFTSUSY gives the flavor dependent mass spectrum, $\tan \beta$ and m_h at the TeV scale.

where $m^2_{\tilde{b}} = m^2_{\tilde{t}}$ has been assumed. But, the phenomenological requirements we impose is not as strong as $m^2_i(\mu) \gg m^2_{\tilde{q}_{1,2}}(\mu)$ but simply

$$m_{\tilde{q}_{1,2}} > 1.5 \text{ TeV},$$
$$m_t = \text{large enough to give 126 GeV Higgs.}$$

(15)
In our model, there are three parameters: Λ_h, M_{mess}, and μ. Parameters $m_{3/2}$ and A_t are given by $\Lambda^3/\sqrt{3}M_h^2$ and $f_1 m_{3/2}$ (with f_1 chosen within 1σ at the top mass region), respectively, and tan β is calculated through v_u/v_d by solving the running equations of soft terms $m^2_{\tilde{H}_u}$ and $m^2_{\tilde{H}_d}$, which are included in the package SOFTSUSY.

The main constraints we use are: (1) Eq. (15) which is stronger than no tachyon constraints of [9], (2) the LHC bounds on the gluino mass and the first two family squark masses [2, 3], and (3) the 1σ allowed region for the BNL ($g - 2)_\mu$ [12]. The $b \to s\gamma$ constraint [22] is satisfied since we required $m_{\tilde{g}} > 1.5$ TeV. In Fig. 4 we present the scatter plots in the $m_{\tilde{g}}$ vs. μ for the fixed $\Lambda_h = 3 \times 10^{13}$ GeV and the scattered μ and M_{mess} in (a) for $\Lambda_f = \frac{1}{2}$, $\lambda_h = 0$ and in (b) for $\Lambda_f = -1$, $\lambda_h = 0$. The light Higgs scalar are tuned to 125 GeV and the scattered $m_{\tilde{g}}$ and pink dots give the BNL ($g - 2)_\mu$ (a). The red dots are satisfying all the constraints. In the insets, we present some selected red dots with more information in blue dots. For three blue dots in each inset we show the detail information on scalar-muon-neutrino mass, the LSP mass for the case of Fig. 4 (a).

In Fig. 5 we present a scatter plot of the Higgs boson mass for the case of Fig. 4 (a).

A TeV-scale LSP in the MSSM with the R-parity conservation overcloeses the universe. This overclosure problem can be evaded if the R-parity is not exact or there is a singlet heavy particle(s) decaying to the LSP as in the case of the heavy axino [20].

IV. CONCLUSION

In view of the observed 126 GeV Higgs boson [1] which is relatively heavy in the SUSY scenario, we introduced a heavy stop scheme which is the opposite view from the popular effSUSY idea. In the Z' mediation scenario, we achieve this effSUSY explicitly with the $U(1)_{Z'}$ quantum numbers shown in Table I. With the quantum numbers of Table I it is possible to have relatively light smuons (~ 2–3 TeV) and neutralino (~ 1.2 TeV), and hence can find a parameter region where a significant correction to the anomalous magnetic moment of muon can result.

Appendix A

Let us express the chargino mass matrix as $-\mathcal{L} = \tilde{\psi}^+ \mathcal{M}_{\chi^\pm} \tilde{\psi}^-$ where [21]

$$M_{\chi^\pm} = \begin{pmatrix} -m_{G2} & \sqrt{2}M_W \cos \beta \\ -\sqrt{2}M_W \sin \beta & \mu \end{pmatrix},$$

and

$$\tilde{\psi}^+ = \begin{pmatrix} -i\tilde{W}^+ \\ \tilde{H}^+_u \end{pmatrix}, \quad \tilde{\psi}^- = \begin{pmatrix} -i\tilde{W}^- \\ \tilde{H}^-_d \end{pmatrix}.$$

The mass eigenvalues are

$$m_{\chi_1} = \sqrt{\frac{\mu^2 + m_{G2}^2 + 2M_W^2 - \sqrt{D}}{2}},$$

$$m_{\chi_2} = \sqrt{\frac{\mu^2 + m_{G2}^2 + 2M_W^2 + \sqrt{D}}{2}}$$

where

$$D = \mu^4 + 4m_{G2}^4 + 4M_W^4 - 2\mu^2m_{G2}^2 + 4\mu^2M_W^2 + 4m_{G2}^2M_W^2 - 16M_W^4c_\beta^2s_\beta^2 + 16\mu m_{G2}M_W^4c_\beta s_\beta$$

where $c_\beta = \cos \beta$ and $s_\beta = \sin \beta$. For the chargino diagram of Fig. 4 we obtain the closed forms for the mass diagonalizing unitary matrices. The anomalous magnetic moment $a^{\text{SUSY}}_\mu (\chi_+)$ contains these matrix elements $C_{i,j}^X (i = \{A, B\})$ and $C_{i,j}^X (J = \{A', B'\})$ which are calculated as

$$\begin{align*}
& (A) \left\{ \begin{array}{l}
\cos \epsilon = \frac{1}{2} \left(1 \pm \sqrt{E} \right) \\
\sin \epsilon = \frac{1}{2} \left(1 \pm \sqrt{E} \right)
\end{array} \right\}^{1/2} \\
& (B) \left\{ \begin{array}{l}
\cos \epsilon = -\frac{1}{2} \left(1 \mp \sqrt{E} \right) \\
\sin \epsilon = \frac{1}{2} \left(1 \pm \sqrt{E} \right)
\end{array} \right\}^{1/2}
\end{align*}$$

FIG. 5: Same as Fig. 4 (a) except for m_h instead of m_h.

![Graph](https://example.com/graph.png)
(A') \begin{align*}
&\cos \epsilon' = -\left[\frac{1}{2} (1 \pm \sqrt{F})\right]^{1/2} \\
&\sin \epsilon' = \left[\frac{1}{2} (1 \pm \sqrt{F})\right]^{1/2}
\end{align*}
(21)

(B') \begin{align*}
&\cos \epsilon' = \left[\frac{1}{2} (1 \pm \sqrt{F})\right]^{1/2} \\
&\sin \epsilon' = -\left[\frac{1}{2} (1 \pm \sqrt{F})\right]^{1/2}
\end{align*}
(22)

where $E = 1 - 8M_W^2 \cos^2 \beta (\mu + m_{G2} \tan \beta)^2 / D$, $F = 1 - 8M_W^2 \cos^2 \beta (\mu \tan \beta + m_{G2})^2 / D$, $\tan \beta = v_u / v_d$, and m_{G2} is defined in Eq. (10). For $C^L C^R$, we consider four cases of (IJ), where $I = \{A, B\}$ and $J = \{A', B'\}$. Among these (AA') and (BB') give positive sign and (AB') and (BA') give negative sign.

Appendix B

We diagonalize the neutralino mass matrix M_{χ^0},

\[
\begin{pmatrix}
-m_{G1}, & 0, & -M_Z s_W c_\beta, & M_Z s_W s_\beta \\
0, & -m_{G2}, & M_Z c_W c_\beta, & -M_Z c_W s_\beta \\
-M_Z s_W c_\beta, & M_Z c_W c_\beta, & 0, & \mu \\
M_Z s_W s_\beta, & -M_Z c_W s_\beta, & \mu, & 0
\end{pmatrix}
\]
(23)

we obtain

\[
\begin{pmatrix}
-m_{G1}, & 0, & \frac{M_Z}{\sqrt{2}} s_W (-c_\beta + s_\beta), & \frac{M_Z}{\sqrt{2}} s_W (c_\beta + s_\beta) \\
0, & -m_{G2}, & \frac{M_Z}{\sqrt{2}} c_W (c_\beta - s_\beta), & \frac{M_Z}{\sqrt{2}} c_W (c_\beta + s_\beta) \\
\frac{M_Z}{\sqrt{2}} s_W (-c_\beta + s_\beta), & \frac{M_Z}{\sqrt{2}} c_W (c_\beta - s_\beta), & \mu, & 0 \\
\frac{M_Z}{\sqrt{2}} s_W (c_\beta + s_\beta), & \frac{M_Z}{\sqrt{2}} c_W (c_\beta + s_\beta), & 0, & -\mu
\end{pmatrix}
= \mathcal{U} \begin{pmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 & \lambda_2 & 0 & 0 \\
0 & 0 & \lambda_3 & 0 \\
0 & 0 & 0 & \lambda_4
\end{pmatrix} \mathcal{U}^T.
\]
(26)

In the limit $\frac{M_Z}{\mu} \approx 0$ and $\frac{M_{G1}}{m_{G2}} \approx 0$, the mass matrix is almost diagonalized, with the eigenvalues $\lambda_1 \approx m_{G1}$, $\lambda_2 \approx m_{G2}$, $\lambda_3 = -\lambda_4 \approx \mu$. Keeping the small parameters, we notice that there seems to be four small parameters from Eq. (26), $\frac{M_Z}{\sqrt{2} \mu} c_W (c_\beta + s_\beta)$, $\frac{M_Z}{\sqrt{2} \mu} c_W (c_\beta - s_\beta)$, $\frac{M_Z}{\sqrt{2} \mu} s_W (c_\beta + s_\beta)$, and $\frac{M_Z}{\sqrt{2} \mu} s_W (c_\beta - s_\beta)$. A general 4×4 orthogonal matrix has six real parameters. In view of the mass hierarchy $M_Z \ll m_{G1} \ll \mu$, two large parameters and four small parameters can be a good approximate description of the 4×4 orthogonal matrix. Thus, parametrizing \tilde{U} approximately as

\[
\tilde{U} = \begin{pmatrix}
\frac{c_M - \frac{1}{2 \mu} (\epsilon_1^2 + \epsilon_2^2)}{s_M - \frac{1}{2 \mu} (\epsilon_1^2 + \epsilon_2^2)} & s_M - \frac{1}{2 \mu} (\epsilon_1^2 + \epsilon_2^2) & \frac{\epsilon_1}{\mu} - \frac{1}{2 \mu} (\epsilon_1^2 + \epsilon_2^2) & \frac{\epsilon_4}{\mu} - \frac{1}{2 \mu} (\epsilon_1^2 + \epsilon_2^2) \\
-s_M & c_M - \frac{1}{2 \mu} (\epsilon_1^2 + \epsilon_2^2), & \epsilon_2 & \epsilon_3 \\
-c_M & -\epsilon_3 & \epsilon_1 & \epsilon_4 \\
-c_M & -\epsilon_4 & -s_M & -c_M - \frac{1}{2 \mu} (\epsilon_1^2 + \epsilon_2^2)
\end{pmatrix}
, \quad \quad (27)
\]
where the simplified trigonometric notations \(s_i = \sin \theta_i, c_i = \cos \theta_i \), and \(t_i = \tan \theta_i \) are used. Then, the RHS of (26) becomes

\[
\begin{pmatrix}
\lambda_1 + & \lambda_1 & -\lambda_1 & -\lambda_1 \\
\lambda_1 + & \lambda_1 & -\lambda_1 & -\lambda_1 \\
\lambda_1 + & \lambda_1 & -\lambda_1 & -\lambda_1 \\
\lambda_1 + & \lambda_1 & -\lambda_1 & -\lambda_1 \\
\lambda_1 + & \lambda_1 & -\lambda_1 & -\lambda_1 \\
\lambda_1 + & \lambda_1 & -\lambda_1 & -\lambda_1 \\
\lambda_1 + & \lambda_1 & -\lambda_1 & -\lambda_1 \\
\lambda_1 + & \lambda_1 & -\lambda_1 & -\lambda_1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
o(\frac{c_1}{2} + t_1 c_1^2) & \frac{-c_1}{2} & \frac{c_1}{2} & \frac{-c_1}{2} \\
o(\frac{c_1}{2} + t_1 c_1^2) & \frac{-c_1}{2} & \frac{c_1}{2} & \frac{-c_1}{2} \\
o(\frac{c_1}{2} + t_1 c_1^2) & \frac{-c_1}{2} & \frac{c_1}{2} & \frac{-c_1}{2} \\
o(\frac{c_1}{2} + t_1 c_1^2) & \frac{-c_1}{2} & \frac{c_1}{2} & \frac{-c_1}{2} \\
o(\frac{c_1}{2} + t_1 c_1^2) & \frac{-c_1}{2} & \frac{c_1}{2} & \frac{-c_1}{2} \\
o(\frac{c_1}{2} + t_1 c_1^2) & \frac{-c_1}{2} & \frac{c_1}{2} & \frac{-c_1}{2} \\
o(\frac{c_1}{2} + t_1 c_1^2) & \frac{-c_1}{2} & \frac{c_1}{2} & \frac{-c_1}{2} \\
o(\frac{c_1}{2} + t_1 c_1^2) & \frac{-c_1}{2} & \frac{c_1}{2} & \frac{-c_1}{2} \\
\end{pmatrix}
\]

where we used \(m_{G1} = m_{G2} \) so that the small off-diagonal terms of (12) and (34) elements are almost zero, i.e. \(\lambda_1 \approx \lambda_2, \lambda_3 \approx \lambda_4 \). Thus, up to order \(\epsilon_4^2 \), we have

\[
\begin{align*}
\langle -\lambda_1 - \lambda_2 \rangle_1 + 0 - \lambda_1 \lambda_2 \lambda_3 + \lambda_4 \epsilon_{42} = & \left(\frac{M_Z}{\sqrt{2} \lambda_4} \right) W (-c_\beta - s_\beta), \\
-\lambda_1 \lambda_2 \lambda_3 - \lambda_1 \lambda_2 \lambda_4 + 0 + (-\lambda_1 \lambda_3 + \lambda_3 \lambda_4) = & \left(\frac{M_Z}{\sqrt{2} \lambda_4} \right) W (c_\beta - s_\beta), \\
\lambda_1 \lambda_2 \lambda_3 + \lambda_2 \lambda_3 + \lambda_2 \lambda_3 = & \left(\frac{M_Z}{\sqrt{2} \lambda_4} \right) W (c_\beta + s_\beta), \\
0 + (-\lambda_1 \lambda_3 - \lambda_3 \lambda_3) \epsilon_\beta - \lambda_4 \epsilon_{42} e_\beta + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = & \left(\frac{M_Z}{\sqrt{2} \lambda_4} \right) W (-c_\beta - s_\beta),
\end{align*}
\]

Thus, the solutions for \(\epsilon_1 \) in the limit \(|\lambda_4| \gg |\lambda_1| \) are

\[
\begin{align*}
\epsilon_1 & \approx -\frac{M_Z}{\sqrt{2} \lambda_4} s_\mu \left[c_\mu (c_\beta - s_\beta) - s_\mu (c_\beta + s_\beta) \right], \\
\epsilon_2 & \approx \frac{M_Z}{\sqrt{2} \lambda_4} c_\mu \left[c_\mu (c_\beta + s_\beta) + s_\mu (c_\beta - s_\beta) \right], \\
\epsilon_3 & \approx \frac{M_Z}{\sqrt{2} \lambda_4} c_\mu \left[c_\mu (c_\beta + s_\beta) + s_\mu (c_\beta - s_\beta) \right] \\
\end{align*}
\]

For the large parameters \(\theta_M \) and \(\theta_\mu \), we set the (12) and (34) components of Eq. (28) zero, in the limit \(\lambda_1 / \lambda_4 \approx 0 \),

\[
\epsilon_1 \epsilon_3 + \epsilon_2 \epsilon_4 \approx 0 \quad \Rightarrow \quad \epsilon_1 \approx \epsilon_2, \quad \epsilon_3 \approx \epsilon_4
\]

which leads to

\[
\left(c_\mu^2 - t_W^2 e_\beta \right) (c_\beta + s_\beta)^2 + \left(c_\mu^2 - t_W^2 e_\beta \right) (c_\beta - s_\beta)^2 + 2 c_\mu s_\mu (1 + t_W^2) (c_\beta^2 - s_\beta^2) \approx 0.
\]

We notice that this has a solution for \(s_\mu \) which needs not be small. Namely, the elements \((U)_{33,44,43,44} \) are not very small. Now, the original unitary matrix becomes

\[
U_\lambda = \begin{pmatrix}
c_M - \frac{1 - s_M}{2} \epsilon_1 \epsilon_4 & s_M - \frac{1 + s_M}{2} \epsilon_2 \epsilon_3 \\
-\frac{1 + s_M}{2} \epsilon_1 \epsilon_4 & c_M - \frac{1 - s_M}{2} \epsilon_2 \epsilon_3 \\
-\frac{1 + s_M}{2} \epsilon_1 \epsilon_4 & -\frac{1 - s_M}{2} \epsilon_2 \epsilon_3 \\
-\frac{1 + s_M}{2} \epsilon_1 \epsilon_4 & -\frac{1 - s_M}{2} \epsilon_2 \epsilon_3 \\
\end{pmatrix}
\]

The smuon mass matrix is

\[
M_{\mu}^2 = \begin{pmatrix}
m_L^2 + M_Z^2 c_\beta (s_W^2 - \frac{1}{2}), & m_\mu (A_\mu + \mu \tan \beta) \\
& m_R^2 (\mu A_\mu + \mu \tan \beta) \\
& m_L^2 + M_Z^2 c_\beta s_W \\
& m_R^2 - M_Z^2 c_\beta s_W \\
\end{pmatrix}
\]

The eigenvalues of \(M_{\mu}^2 \) are

\[
M_{\mu,1,2}^2 = \frac{1}{2} \left(m_L^2 + m_R^2 - \frac{1}{2} M_Z^2 c_\beta + \sqrt{M_{LRZ}^4 + 4 m_\mu^2 (A_\mu + \mu \tan \beta)^2} \right)
\]

where \(M_{LRZ}^2 = m_L^2 - m_R^2 + M_Z^2 c_\beta (2 s_W^2 - \frac{1}{2}) = |M_{LRZ}^2| \epsilon_{LRZ} \) and \(\epsilon_{LRZ} = \pm 1 \) for the positive and negative \(M_{LRZ}^2 \), respectively. The mass eigenstates \(\tilde{\mu}_{1,2} \) are the mixtures
of the left- and right-smuon states $\tilde{\mu}_{1,2} = \sin \gamma_{1,2} P_L + \cos \gamma_{1,2} P_R$ where $P_L = (1, 0)^T$, $P_R = (0, 1)^T$. The smuon mixing angles are

$$\sin \gamma_{1,2} = \frac{\sqrt{2m_\mu(A_\mu + \mu t_\beta)}}{|M_{LRZ}^2| \sqrt{D_N}},$$

$$\cos \gamma_{1,2} = \frac{\epsilon_{LRZ} \pm \sqrt{1 + 4m_\mu^2(A_\mu + \mu t_\beta)^2 / M_{LRZ}^4}}{2 \sqrt{D_N}}.$$ (37) (38)

where

$$D_N = 1 \pm \sqrt{S} + \frac{4m_\mu^2(A_\mu + \mu t_\beta)^2}{M_{LRZ}^4}.$$ (39)

with

$$S = 1 + \frac{4m_\mu^2(A_\mu + \mu t_\beta)^2}{M_{LRZ}^4}.$$ (40)

So,

$$N_{AX}^{L} = -y_\mu(U_\chi^0)_{3X}(U_\tilde{\mu})_{LA} - \sqrt{2} g_1(U_\chi^0)_{1X}(U_\tilde{\mu})_{RA}$$

$$\simeq -\sqrt{2} g_1(U_\chi^0)_{1X} \cos \gamma_{1,2},$$

$$N_{AX}^{R} = -y_\mu(U_\chi^0)_{3X}(U_\tilde{\mu})_{RA} - \frac{1}{\sqrt{2}} g_2(U_\chi^0)_{2X}(U_\tilde{\mu})_{LA}$$

$$- \frac{1}{\sqrt{2}} \sqrt{2} g_1(U_\chi^0)_{1X}(U_\tilde{\mu})_{LA}$$

$$\simeq -\frac{1}{\sqrt{2}} g_2(U_\chi^0)_{2X} \sin \gamma_{1,2} - \frac{1}{\sqrt{2}} g_1(U_\chi^0)_{1X} \sin \gamma_{1,2}.$$ (41)

Therefore,

$$\sum_X N_{AX}^{L} N_{AX}^{R} \simeq \sum_X \left[g_1 g_2(U_\chi^0)_{1X}(U_\chi^0)_{2X} \right.$$}

$$+ \frac{1}{\sqrt{2}} g_1(U_\chi^0)_{1X}(U_\chi^0)_{1X} \cos \gamma_{1,2} \sin \gamma_{1,2}$$

$$= \cos \gamma_{1,2} \sin \gamma_{1,2} \left[g_1 g_2(U_\chi^0)_{11}(U_\chi^0)_{21} + (U_\chi^0)_{12}(U_\chi^0)_{22} + g_1^2(U_\chi^0)_{11}(U_\chi^0)_{11} + (U_\chi^0)_{12}(U_\chi^0)_{12} \right]$$

$$\rightarrow g_1^2 \cos \gamma_{1,2} \sin \gamma_{1,2}.$$ (42) (43)

Numerically, this becomes

$$G^2 s_W^2 \cos \gamma_{1,2} \sin \gamma_{1,2} = \frac{\epsilon^2}{c_W} \cos \gamma_{1,2} \sin \gamma_{1,2}$$

$$\simeq 0.12 \cos \gamma_{1,2} \sin \gamma_{1,2}.$$ (44)

Note that the $U(1)_Y$ gauge contribution dominates. So, we estimate for $\epsilon_{LRZ} = 1$

$$\frac{a_\mu^{\text{SUSY}}(\chi^0_A)}{1 \times 10^{-9}} \simeq -1.32 t_\beta \sum_{i=\text{lighter one}} \left(\frac{\mu}{10 \text{ TeV}} \right)$$

$$\times \left(\frac{300 \text{ GeV}}{M_{LRZ}^2} \right) \left(\frac{\text{TeV}}{m_{\chi^0_A}} \right)^2 \left(\frac{m_{\chi^0_A}}{\text{TeV}} \right) \cdot I^0(x_{A_i})$$ (45)

where $x_{A_i} = m_{\chi^0_i}^2 / m_{\tilde{\mu}}^2$, and χ^0_A corresponds to two small eigenvalues of the 2×2 matrix elements of the upper left corner of U_{χ^0}. Since χ^0_A and χ^0_A are almost degenerate, the sum over I is already taken into account in Eq. [41]. The sum over i is dominated by the lighter smuon and the coefficient -1.32 corresponds to the lighter smuon. For the heavier smuon, the coefficient is $+1.86$. Since t_β is of order 10, the neutralino contribution gives a correct order of the muon anomalous magnetic moment observed at BNL. To have the positive sign for $a_\mu^{\text{SUSY}}(\chi^0_A)$, the product of signs of $t_\beta, \mu, m_{\chi^0_A}$, and $I^0(x_{A_i})$ should be negative where

$$I^0(x) = \frac{1 - x^2 + 2x \ln x}{(1 - x)^3}.$$ (46)

Acknowledgments: I would like to thank Min-Seok Seo for useful discussions and especially Ji-Haeng Huh for assisting in drawing the scatter plots. This work is supported in part by the National Research Foundation (NRF) grant funded by the Korean Government (MEST) (No. 2005-0093841).

[1] The CMS Collaboration, ‘Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC’ [arXiv:1207.7235]; The ATLAS Collaboration, ‘Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC’ [arXiv:1207.7214].

[2] ATLAS Collaboration, ‘Search for scalar top quark pair production in natural gauge mediated supersymmetry
models with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV,[12] arXiv:[1204.6736]; ‘Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in $4.7 fb^{-1}$ of $\sqrt{s} = 7$ TeV proton-proton collisions,’[12] arXiv:[1206.1760].

[3] CMS Collaboration, ‘Search for supersymmetry at the LHC in events with jets and missing transverse energy,’ Phys. Rev. Lett. 107 (2011) 221804 arXiv:[1109.2352].

[4] S. Dimopoulos and G. G. Giudice, ‘Naturalness constraints in supersymmetric theories with non-universal soft terms,’ Phys. Lett. B357 (1995) 573 [hep-ph/9507282]; A Pomarol and Tommasini, ‘Horizontal symmetries for the supersymmetric flavor problem,’ Nucl. Phys. B466 (1996) 3 [hep-ph/9507462]; A. Cohen, D. B. Kaplan, and A. E. Nelson, ‘The more minimal supersymmetric standard model,’ Phys. Lett. B388 (1996) 588 [hep-ph/9607394]; G. G. Giudice-Nardecchia-Romanino, ‘Hierarchical soft terms and flavor physics,’ Nucl. Phys. B813 (2009) 156 [arXiv:0812.3610 [hep-ph]].

[5] H. E. Haber and R. Hempfling, ‘Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than $m(Z')$?’, Phys. Rev. Lett. 66 (1991) 1815; Y. Okada, M. Yanaguchi and T. Yanagida, ‘Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model.’ Prog. Theor. Phys. 85 (1991) 1; J. Ellis, G. Ridolfi and F. Zwirner, ‘Radiative corrections to the masses of supersymmetric Higgs bosons,’ Phys. Lett. B257 (1991) 83.

[6] K. S. Jeong, J. E. Kim, and M. S. Seo, ‘Gauge mediation to effective SUSY through U(1)s with a dynamical SUSY breaking, and string compactification,’ Phys. Rev. D84 (2011) 075008 arXiv:[1107.5613].

[7] P. Langacker, G. Paz, L.-T. Wang, and I. Yavin, ‘Z’-mediated supersymmetry breaking,’ Phys. Rev. Lett. 100 (2008) 041802 arXiv:[0710.1632 [hep-ph]].

[8] R. N. Mohapatra and S. Nandi, ‘A new messenger sector for gauge mediated supersymmetry breaking,’ Phys. Rev. Lett. 79 (1997) 181 [hep-ph/9702291]; T. Kikuchi and T. Kubo, ‘Radiative $B-L$ symmetry breaking and the Z' mediated SUSY breaking,’ Phys. Lett. B666 (2008) 262 arXiv:[0804.3933 [hep-ph]]; AIP Conf. Proc. 1078 (2009) 402 arXiv:[0809.0111 [hep-ph]].

[9] N. Arkani-Hamed and H. Murayama, ‘Can the supersymmetric flavor problem decouple?’, Phys. Rev. D56 (1997) 6733 arXiv:[hep-ph/9703259].

[10] J. Hisano, K. Kurasawa, and Y. Nomura, ‘Large squark and slepton masses for the first-two generations in the anomalous U(1) SUSY breaking models,’ Phys. Lett. B445 (1999) 316 arXiv:[hep-ph/9810411].

[11] H. P. Nilles, ‘Supersymmetry, supersurergy and particle physics,’ Phys. Rep. 110 (1984) 1, and ‘Dynamically broken supersymmetry and the hierarchy problem,’ Phys. Lett. B115 (1982) 193.

[12] G. W. Bennett et al., ‘Measurement of the positive muon anomalous magnetic moment to 0.7 ppm,’ Phys. Rev. Lett. 89 (2002) 101804, Erratum Phys. Rev. Lett. 89 (2002) 129903; G. W. Bennett et al., ‘Measurement of the negative muon anomalous magnetic moment to 0.7 ppm,’ Phys. Rev. Lett. 92 (2004) 161802; Phys. Rev. Lett. 92, 161802 (2004); G. W. Bennett et al., ‘Final report of the muon E821 anomalous magnetic moment measurement at BNL,’ Phys. Rev. D73 (2006) 072003.

[13] G. Hiller, Y. Hochberg, and Y. Nir, ‘Flavor changing processes in supersymmetric models with hybrid gauge- and gravity-mediation,’ JHEP 0903 (2009) 115 arXiv:[0812.0511].

[14] L. L. Everett, I.-W. Kim, P. Ouyang, and K. M. Zurek, ‘Deflected mirage mediation: A framework for generalized supersymmetry breaking,’ Phys. Rev. Lett. 101 (2008) 101803 arXiv:[0804.0592], and ‘Moduli stabilization and supersymmetry breaking in deflected mirage mediation,’ JHEP 0808 (2008) 102 arXiv:[0806.2330].

[15] J. E. Kim, ‘GMSB at a stable vacuum and MSSM without exotics from heterotic string,’ Phys. Lett. B565 (2007) 207 arXiv:[0707.3292 [hep-ph]].

[16] J.-H. Huh, J. E. Kim and B. Kyae, ‘SU(5)/SU(5) from Z_{2-1}’, Phys. Rev. D80 (2009) 115012 arXiv:[0904.1108].

[17] N. Arkani-Hamed and S. Dimopoulos, ‘Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC,’ JHEP 0506 (2005) 073 [hep-th/0405159]. G. Giudice and A. Romanino, ‘Split supersymmetry,’ Nucl. Phys. B699 (2004) 65 [hep-ph/0406088]; N. Arkani-Hamed, S. Dimopoulos, G. Giudice, and A. Romanino, ‘Aspects of split supersymmetry,’ Nucl. Phys. B709 (2005) 3 [hep-ph/0409232].

[18] C. K. Chua, ‘Implications of $B(\mu \to e\gamma)$ and $\Delta m\nu$ on muonic lepton flavor violating processes,’ arXiv:[1205.3998 [hep-ph]].

[19] J. E. Kim, V. S. Mathur, and S. Okubo, ‘Electromagnetic properties of the neutrino from neutral current experiments,’ Phys. Rev. D9 (1974) 3050. For the WIMP magnetic moment, see, W. S. Cho, J.-H. Huh, J. E. Kim, I.-W. Kim, and B. Kyae, ‘Constraining WIMP magnetic moment from CDMS II experiment,’ Phys. Lett. B687 (2010) 6, and B694 (2011) 496(E) arXiv:[1001.0579 [hep-ph]].

[20] J. E. Kim, ‘Neutrino magnetic moment,’ Phys. Rev. D14 (1976) 3000.

[21] T. Moroi, ‘The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model,’ Phys. Rev. D53 (1996) 6565 arXiv:[hep-ph/9512396].

[22] J. Adam et al., ‘New limit on the lepton-flavour violating decay $\mu \to e\gamma$,’ [MEG Collaboration], Phys. Rev. Lett. 107 (2011) 171801 arXiv:[1107.5547 [hep-ex]].

[23] A. Masiero, S. K. Vempati, and O. Vives, ‘Flavour physics and grand unification,’ arXiv:[0711.2903].

[24] B. C. Allanach, ‘SOFTSUSY: a program for calculating supersymmetric spectra,’ arXiv:[hep-ph/0104145] 17 (2012).

[25] F. M. Borozumati and C. Greub, ‘Two Higgs doublet model predictions for $B \to X_s \gamma$ in NLO QCD,’ Phys. Rev. D58 (1998) 074004 arXiv:[hep-ph/9802391]. M. Neubert, ‘Renormalization-group-improved calculation of the $B \to X_s \gamma$ branching ratio,’ Euro. Phys. J. C40 (2005) 165 [hep-ph/0408179].

[26] K.-Y. Choi, J. E. Kim, H. M. Lee, and O. Seto, ‘Neutrino dark matter from heavy axino decay,’ Phys. Rev. D77 (2008) 123501 [arXiv:0801.0491 [hep-ph]]; J. E. Kim and M.-S. Seo, ‘Mixing of axino and goldstino, and axino mass,’ Nucl. Phys. B864 (2012) 296 arXiv:[1204.5495 [hep-ph]].