Comparative Analysis of the Near- and Far-Field Optical Response of Thin Plasmonic Nanostructures

Lauren Zundel, Paul Gieri, Stephen Sanders, and Alejandro Manjavacas*

Nanostructures made of metallic materials support collective oscillations of their conduction electrons, commonly known as surface plasmons. These modes, whose characteristics are determined by the material and morphology of the nanostructure, couple strongly to light and confine it into subwavelength volumes. Of particular interest are metallic nanostructures for which the size along one dimension approaches the nanometer or even the subnanometer scale, since such morphologies can lead to stronger light–matter interactions and higher degrees of confinement than regular three-dimensional nanostructures. Here, the plasmonic response of metallic nanodisks of varying thicknesses and aspect ratios is investigated under far- and near-field excitation conditions. It is found that, for far-field excitation, the strength of the plasmonic response of the nanodisk increases with its thickness, as expected from the increase in the number of conduction electrons in the system. However, for near-field excitation, the plasmonic response becomes stronger as the thickness of the nanodisk is reduced. This behavior is attributed to the higher efficiency with which a near-field source couples to the plasmons supported by thinner nanodisks. The results of this work advance the understanding of the plasmonic response of thin metallic nanostructures, thus increasing their potential for the development of novel applications.

1. Introduction

Metallic nanostructures are known to support surface plasmons, collective oscillations of their conduction electrons,[1] which couple strongly to electromagnetic radiation, confine it into subwavelength volumes, and produce large field enhancements around the nanostructure.[2,1] Thanks to these abilities, surface plasmons are being exploited to develop applications as diverse as ultrasensitive optical sensing,[4–6] efficient solar energy harvesting,[7,8] photocatalysis,[9,10] and nanoscale light emission,[11,12] to cite a few.

In recent years, the isolation of graphene[13] and the discovery of the extraordinary plasmonic properties this material has when doped with carriers[14–19] has inspired significant interest in studying the plasmons supported by metallic nanostructures with thicknesses ranging from several nanometers down to monolayers.[20–34] These nanostructures support very strong fields that lead to increased light–matter interaction[14,24,35–39] and produce a higher degree of confinement than regular 3D structures, enabling, for instance, the enhancement of higher-order multipolar transitions.[40–42] Furthermore, the reduced dimensionality of these nanostructures makes it easier to modify their optical response by altering their distribution of free carriers, as has been both theoretically proposed[21,43] and experimentally demonstrated.[44]

When analyzing the optical response of a metallic nanostructure, we can distinguish two different regimes depending on the position of the source with respect to the nanostructure. Specifically, far-field excitation corresponds to the situation in which the distance d between them is much larger than the wavelength λ, while the opposite limit (i.e., $d \ll \lambda$) is known as near-field excitation. The former scenario applies when the nanostructure is excited by a propagating electromagnetic field and, therefore, is relevant for applications centered on controlling the propagation of electromagnetic radiation, as is the case for metasurfaces,[45] improved solar energy harvesting devices,[46] and photocatalysis,[47] to cite a few. On the other hand, near-field excitation occurs when the nanostructure is excited by a localized source, such as an atom, molecule, or quantum dot, placed in its vicinity. Therefore, characterizing this regime is important for applications in which the nanostructure is used to enhance and control the interaction between localized emitters and light.[48–50] Importantly, far- and near-field sources are, in general, not able to excite every single mode of the nanostructure. A paradigmatic example is the so-called dark modes, whose name originates from the fact that, due to their symmetry, they are not efficiently excited by propagating electromagnetic fields.[51,52] Because of this, and since many applications, such as ultrasensitive optical sensing, involve both far- and near-field excitation, a complete

L. Zundel, P. Gieri, S. Sanders, A. Manjavacas
Department of Physics and Astronomy
University of New Mexico
Albuquerque, NM 87106, USA
E-mail: a.manjavacas@csic.es
A. Manjavacas
Instituto de Optica (IO-CSIC)
Consejo Superior de Investigaciones Científicas
Madrid 28006, Spain

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adom.202102550.

© 2022 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

DOI: 10.1002/adom.202102550

understanding of both the near- and far-field optical response of metallic nanostructures is essential to leverage their full potential.

Here, we investigate how the thickness of a metallic nanostructure affects its near- and far-field optical response. To that end, we present rigorous solutions of Maxwell’s equations for metallic nanodisks under near- and far-field excitation as a function of the thickness of the nanodisk when either its aspect ratio or cross-sectional area is kept fixed. In both cases, we find that the strength of the far-field response of the nanodisks increases with their thickness, a result that is anticipated due to the increased volume and therefore larger number of carriers present in the nanostructure. In sharp contrast, the near-field response of the nanodisks decreases with thickness, a behavior that we attribute to the larger coupling to near-field sources displayed by thinner nanodisks. Our results shed light into the plasmonic response of thin metallic nanostructures and thus display the way toward applications such as highly-integrated electro-optical modulators, for which low-dimensional systems are ideal due to their increased susceptibility to the modulation of their optical response.\cite{21,44}

2. Results and Discussion

The system under consideration is a metallic nanodisk of thickness t and diameter D, lying in the xy-plane and surrounded by vacuum, as depicted in the insets of Figure 1a,b. Since we are interested in analyzing the optical response arising from the plasmon resonances supported by the nanodisk, we describe its dielectric function using a Drude model $\varepsilon(\omega)=1-\omega_p^2/(\omega^2+i\gamma)$, with $\hbar\omega_p=6eV$ and $\gamma=0.06eV$. However, we later extend our calculations to analyze the role played by interband transitions by using a tabulated dielectric function. All of the results shown in this work are obtained by rigorously solving Maxwell’s equations using the finite element method (FEM) (see Supporting Information for details about the FEM calculations). Moreover, all of the nanodisks that we consider in this work have sufficiently large dimensions that nonlocal and quantum effects play a minor role.\cite{21,12}

We first consider the response of the nanodisks to far-field excitation by a plane wave that is linearly polarized along the x-axis and propagates in the z-direction. Specifically, we calculate the extinction cross-section $\sigma_{ext}(\omega)$, which quantifies the fraction of light that is either scattered or absorbed by the nanodisk. The results of this calculation, normalized to the area of the nanodisks $A=\pi D^2/4$, are plotted in Figure 1a. The gray curve shows $\sigma_{ext}(\omega)/A$ for a nanodisk with $t=2nm$ and $D=50nm$, which supports a strong dipolar resonance, with a peak value of $=5.59$ located at an energy of $\hbar\omega = 1.17eV$. To analyze how $\sigma_{ext}(\omega)/A$ changes with the thickness of the nanodisk, we first vary t while holding $D=50nm$ constant. Doing so results in an increase of the extinction cross-section, as shown with blue, cyan, and green curves for $t=5$, 10, and 20 nm, respectively. At the same time, the energy of the resonance blueshifts significantly, with the $t=20nm$ nanodisk having its first mode at $\hbar\omega = 2.54eV$. We can avoid the blueshift in the

Figure 1. Far- and near-field optical response of metallic nanodisks as a function of their thickness. a) Extinction cross-section $\sigma_{ext}(\omega)$, normalized to the cross-sectional area $A=\pi D^2/4$, for nanodisks of diameter D and thickness t, under illumination by a plane wave, as depicted in the inset schematics. b) Induced LDOS calculated at a distance $d=10nm$ above the center of the surface of the nanodisk, as shown in the schematics, normalized to the LDOS of vacuum, $\text{LDOS}_{\text{vac}}(\omega) = \omega^2/(3\pi^2c^2)$, for the same nanodisks as in (a). c) Peak value of $\sigma_{ext}(\omega)/A$ (solid bars, left axis) and number of conduction electrons in the nanodisk N_{e} (striped bars, right axis) as a function of t. d) Peak value of the normalized LDOS$^{\text{ind}}(t,\omega)$ (solid bars, left axis) and value of the integrated LDOS$^{\text{ind}}(t,\omega)$ divided by E_0 (striped bars, right axis) as a function of t. In both (c) and (d), the upper plot corresponds to the nanodisks with constant diameter, while the lower one shows the results for the nanodisks with fixed aspect ratio.
resonance energy by, instead, increasing \(t \) and \(D \) simultaneously, keeping a fixed aspect ratio. This case is shown by the yellow, orange, and red curves, which display, respectively, the normalized extinction cross-section for nanodisks with \(t = 3, 4, \) and \(5 \) nm and an aspect ratio of \(D/t = 25 \). In the electrostatic limit, the resonance energy of a nanodisk depends only on its aspect ratio and not on its overall size.\(^\text{[53]}\) However, for the nanodisks under consideration here, there is a slight redshift of the resonance energy that grows with their size and, therefore, we attribute it to the effect of retardation.

When the nanodisks of Figure 1a are instead subject to near-field excitation, their response is drastically different. In order to characterize it, we use the local density of photonic states (LDOS), which, as expected from its name, quantifies the number of photonic states per unit of frequency and volume for a given system.\(^\text{[54–59]}\) This quantity also describes the modification of the decay rate of an emitter due to the presence of the nanodisk and thus adequately measures the response of the system to near-field excitation.\(^\text{[54,60,61]}\) Using Gaussian units, the LDOS projected along the direction \(\hat{n} \) at a point \(\mathbf{r} \) is given by\(^\text{[54,59]}\)

\[
\text{LDOS}_{\text{ind}}(\mathbf{r}, \omega) = \frac{1}{2\omega} \left\{ \text{Im} \left[\mathbf{G}(\mathbf{r}, \mathbf{r}', \omega) \cdot \hat{n} \right] \right\}
\]

where \(\mathbf{G}(\mathbf{r}, \mathbf{r}', \omega) \) is the Green tensor of Maxwell's equations, defined as the solution of

\[
\nabla \times \nabla \times \mathbf{G}(\mathbf{r}, \mathbf{r}', \omega) - k^2 \varepsilon(\mathbf{r}, \omega) \mathbf{G}(\mathbf{r}, \mathbf{r}', \omega) = 4\pi k^2 \delta(\mathbf{r} - \mathbf{r}') \mathbf{I}
\]

with \(\varepsilon(\mathbf{r}, \omega) \) being the dielectric function of the system and \(k = \omega/c \) the wave number. In our particular case, we are interested in the response of the nanodisk when excited by an \(x \)-polarized dipole placed a distance \(d \) above the center of its surface, as depicted in the schematics of Figure 1b. Therefore, we focus on the induced part of the LDOS projected along the \(x \)-axis, which, normalized to the LDOS of vacuum, \(\text{LDOS}_{\text{ind}}(\omega) = \omega^2/(3\pi e^2) \), can be calculated as

\[
\frac{\text{LDOS}_{\text{ind}}(\mathbf{r}, \omega)}{\text{LDOS}_{\text{ind}}(\omega)} = \frac{3}{2k^3} \text{Im} \left[G_{\text{ext}}^\text{ind}(\mathbf{r}, \mathbf{r}, \omega) \right]
\]

Here, \(G_{\text{ext}}^\text{ind}(\mathbf{r}, \mathbf{r}, \omega) \) represents the \(xx \)-component of the induced part of the Green tensor, that is, the contribution to the Green tensor solely due to the nanodisk without that of vacuum. Importantly, with the definition of \(G_{\text{ext}}^\text{ind}(\mathbf{r}, \mathbf{r}, \omega) \) that we use here (which differs by a factor of \(-4\pi \sigma_0^2 \) from our previous work\(^\text{[59]}\)), \(G_{\text{ext}}^\text{ind}(\mathbf{r}, \mathbf{r}, \omega) \) is exactly the \(xx \)-component of the field produced by the nanodisk at a position \(\mathbf{r} \) in response to an \(x \)-polarized unit dipole located at that position.

The spectrum of the induced LDOS for \(d = 10 \) nm is shown in Figure 1b for the same nanodisks analyzed in Figure 1a. Clearly, all of them display a strong peak located at approximately the same spectral position as the extinction peak. Interestingly, higher-order dipolar modes that were not efficiently excited by the plane wave are also visible in the spectra of the nanodisks with fixed aspect ratio, although, here, we restrict our analysis only to the first dipolar mode (see Figure S1, Supporting Information for an analysis of the higher-order dipolar modes of the nanodisks). Importantly, in sharp contrast with the behavior of the extinction cross-section, the induced LDOS decreases as the thickness of the nanodisk grows, both for the nanodisks with fixed diameter \(D = 50 \) nm and for those with fixed aspect ratio \(D/t = 25 \).

We analyze these opposing trends in more detail in Figure 1c,d. Specifically, in Figure 1c, we plot, using solid bars and the left scale, the peak value of \(\sigma_{\text{ext}}(\omega) \) for all of the nanodisks in Figure 1a. The upper and lower plots show, respectively, the results for the nanodisks with fixed diameter and fixed aspect ratio. As discussed before, in all of the cases, the peak value of \(\sigma_{\text{ext}}(\omega) \) grows with \(t \), a behavior that is completely consistent with the Thomas–Reiche–Kuhn sum rule.\(^\text{[62–64]}\) This sum rule, also known as the \(f \)-sum rule, states that the integral over frequencies of the extinction cross-section of a nanostucture made of a material that can be described by a local, causal, and linear dielectric function satisfies\(^\text{[64]}\)

\[
\int_0^\infty d\omega \sigma_{\text{ext}}(\omega) = \frac{2\pi^2 e^2}{m_c} N_e = 1.67 \times 10^{-5} N_e \text{[m}^2\text{s}^{-1}] \tag{4}
\]

with \(m_c \) and \(e \) being the electron mass and charge, respectively. Applied to our nanodisks, this means that their integrated extinction cross-section is proportional to the number of conduction electrons \(N_e \) that they contain and hence to their volume. Since the spectrum of \(\sigma_{\text{ext}}(\omega) \) is dominated by the lowest-order dipolar mode, the same behavior can be expected for its peak value.

The striped bars and right scale of Figure 1c show the value of \(N_e \) computed from the plasma frequency \(\omega_p \) that we use for the dielectric function of the nanodisks \(N_e = m_o \omega_p^2 A_t / \{4\pi e^2\} \). We have checked these results numerically by directly computing the integral of the extinction cross-section over a sufficient range of frequencies. Interestingly, comparing \(N_e \) and the peak value of \(\sigma_{\text{ext}}(\omega) \), we observe that the former quantity grows more quickly with \(t \), which indicates that both the contribution of higher-order modes to the extinction spectrum as well as the width of the resonances increase for the thicker nanodisks.

We can apply a similar analysis to the near-field response studied in Figure 1b since, as shown in ref. \(^\text{[59]}\), the LDOS induced by the nanodisks also satisfies a sum rule

\[
\int_0^\infty d\omega \sigma_{\text{ind}}(\omega) = \frac{E_x^\text{ind}(\mathbf{r})}{4\pi} \tag{5}
\]

with \(E_x^\text{ind}(\mathbf{r}) \) being the \(x \)-component of the field at position \(\mathbf{r} \) produced by an \(x \)-polarized, static (i.e., for \(\omega = 0 \)), unit dipole located at that position, due to the presence of the nanodisk. Figure 1d compares the peak value of the normalized \(\text{LDOS}_{\text{ind}}(\mathbf{r}, \omega) \) (left scale, solid bars) with the integrated \(\text{LDOS}_{\text{ind}}(\mathbf{r}, \omega) \) (right scale, striped bars) divided by \(E_0 = (32\pi(10 \text{nm})^3)^{-1} \). This quantity is \((4\pi)^{-1} \) times the electric field produced, at its own position, by an \(x \)-polarized, static, unit dipole placed a distance \(d = 10 \) nm from a semi-infinite, perfectly conducting, medium. For the systems under consideration here, which satisfy \(D \gg d, 4\pi E_0 \) is an excellent approximation of \(E_x^\text{ind}(\mathbf{r}) \).\(^\text{[59]}\) as we have confirmed numerically by integrating the induced LDOS. Importantly, this also means that the integrated LDOS\(^\text{ind}(\mathbf{r}, \omega) \) has a constant value for all of the nanodisks under consideration, in sharp contrast with the peak value of the \(\text{LDOS}_{\text{ind}}(\mathbf{r}, \omega) \) which clearly decreases as \(t \) grows. Therefore, while the sum rule of the extinction cross-section and its peak value have a consistent behavior as the thickness of the nanodisk is varied, that is not
the case for the induced LDOS. This highlights the more complex behavior of the near-field response and motivates the further analysis we present below.

One aspect of the optical response that can give additional insight is the induced charge on the nanodisks, which we analyze in Figure 2. Specifically, in Figure 2a, we show the spatial distribution of the induced charge on the nanodisks with \(t = 2 \text{ nm} \) and \(D = 50 \text{ nm} \) (gray outlines), \(t = 5 \text{ nm} \) and \(D = 125 \text{ nm} \) (red outlines), and \(t = 20 \text{ nm} \) and \(D = 50 \text{ nm} \) (green outlines) under both plane wave illumination (upper plots) and dipole excitation at \(d = 10 \text{ nm} \) (lower plots). In all cases, the charge distributions are calculated at the energy of the first peak in the corresponding spectrum and the color scale is saturated to ±80% of its maximum magnitude. Clearly, the charge distributions of all of the nanodisks show a dipolar pattern and are identical for near- and far-field excitation, thus confirming that, in both cases, the first peak in the spectrum corresponds to the lowest-order dipolar plasmon.

In order to gain further insight, we analyze the total induced charge in the nanodisks, which is shown in Figure 2b,c for the nanodisks with \(D = 50 \text{ nm} \) and \(D/t = 25 \), respectively. In both cases, solid bars represent the results for the plane wave excitation, while striped bars correspond to the dipole excitation. Since the nanodisks are electrically neutral, the induced charge over the entire surface must be zero. Therefore, we integrate the absolute value of the charge over the entire surface. Moreover, since the overall value depends on the strength of the excitation source, we normalize all of the calculations to the value obtained for the \(t = 2 \text{ nm} \) nanodisk excited by the same source.

As expected from the growth in the extinction, when the dipolar plasmon of the nanodisks is excited by a plane wave, the total induced charge grows with \(t \). For the nanodisks with \(D/t = 25 \), this growth is much more rapid, with the \(t = 5 \text{ nm} \), \(D = 125 \text{ nm} \) (red) nanodisk having approximately a fivefold enhancement over the \(t = 2 \text{ nm} \) nanodisk (gray). This can be attributed to the fact that, for the fixed aspect ratio, all of the dimensions of the nanodisk are simultaneously increased. In contrast, when the nanodisks are excited by a dipole, the charge decreases as the size of the nanodisks grows, with both the \(t = 5 \text{ nm} \), \(D = 125 \text{ nm} \) (red) and the \(t = 20 \text{ nm} \), \(D = 50 \text{ nm} \) (green) nanodisks having approximately half of the total induced charge as the \(t = 2 \text{ nm} \) one. Since the strength of the dipolar plasmon of the nanodisks is expected to increase with their number of free carriers, and therefore their volume, these results suggest that the trend with thickness observed for the near-field excitation scenario has to be connected to the efficiency with which a near-field source excites the dipolar plasmon of the nanodisks. This efficiency is ultimately determined by the spatial distribution of the electromagnetic fields of the source and the plasmon of the nanodisk.

In order to explore this hypothesis, we analyze, in Figure 3a, the near-field response of the nanodisks as we vary the distance separating them from the dipole source. In particular, we focus on nanodisks with \(t = 2 \text{ nm} \), \(D = 50 \text{ nm} \) (gray dots), \(t = 5 \text{ nm} \), \(D = 125 \text{ nm} \) (red dots), and \(t = 20 \text{ nm} \), \(D = 50 \text{ nm} \) (green dots), and calculate the peak value of LDOS\(^{(\omega)}\)(\(\mathbf{r}, \omega\)) as a function of \(d \) at the energy corresponding to the first dipolar plasmon for \(d = 10 \text{ nm} \) (see Figure 1b). As expected, in all cases, the induced LDOS decreases rapidly with \(d \), although this does not happen at the same rate for the different nanodisks. Indeed, although the thinnest nanodisk displays the largest induced LDOS for all the distances under consideration, its value approaches that of the \(t = 5 \text{ nm} \), \(D = 125 \text{ nm} \) nanodisk as \(d \) grows. It is worth noting that a similar behavior occurs for metallic nanospheres\(^{[56]}\) and ellipsoids\(^{[58]}\).

Interestingly, it is possible to explain these trends by calculating an approximate value of the induced LDOS within the dipolar and electrostatic limits. Specifically, assuming that the nanodisk can be modeled as a point dipole with polarizability \(\alpha(\omega) \) located at \(\mathbf{r} \), we can approximate \(\text{Im}[G_{\text{ind}}^{(\omega)}(\mathbf{r}, \mathbf{r'}, \omega)] \) by \(\text{Im}[G_{\text{vac}}^{(\omega)}(\mathbf{r}, \mathbf{r'}, \omega)] \). Here, \(G_{\text{vac}}^{(\omega)}(\mathbf{r}, \mathbf{r'}, \omega) \) represents the vacuum Green tensor connecting points \(\mathbf{r} \) and \(\mathbf{r'} \), which, in the electrostatic limit \(k|\mathbf{r} - \mathbf{r'}| \ll 1 \), reduces to \(G_{\text{vac}}^{(\omega)}(\mathbf{r}, \mathbf{r'}) = 3(x-x')^2/(|\mathbf{r} - \mathbf{r'}|^3 - 1)/|\mathbf{r} - \mathbf{r'}|^3 \). Therefore, using these expressions, we can approximate Equation (3) as

\[
\frac{\text{LDOS}^{(\omega)}(\mathbf{r}, \omega)}{\text{LDOS}^{(\omega)}(\omega)} \approx \frac{3\text{Im}[\alpha(\omega)]}{2k^3}[G_{\text{vac}}^{(\omega)}(\mathbf{r}, \mathbf{r'})]^2
\]

(6)
To analyze the coupling efficiency, we plot, in Figure 3b, the value of $\langle |\mathcal{G}^{\alpha}_{xx}\rangle^2 \rangle$ (dashed curves) and $\langle |\mathcal{G}^{\alpha}_{xx}\rangle^2 \rangle$ (solid curves) as a function of d for nanodisks with $t = 20 \text{ nm}$, $D = 50 \text{ nm}$ (gray curves), $t = 5 \text{ nm}$, $D = 125 \text{ nm}$ (red curves), and $t = 20 \text{ nm}$, $D = 50 \text{ nm}$ (green curves). Examining these results, we observe that the thinnest nanodisk displays the largest values of both $\langle |\mathcal{G}^{\alpha}_{xx}\rangle^2 \rangle$ and $\langle |\mathcal{G}^{\alpha}_{xx}\rangle^2 \rangle$ for all distances under consideration, which can be attributed to a larger degree of confinement. As a consequence, the increased value of $\langle |\mathcal{G}^{\alpha}_{xx}\rangle^2 \rangle$ and $\langle |\mathcal{G}^{\alpha}_{xx}\rangle^2 \rangle$ is sufficient to compensate for the smaller value of $\langle |\mathcal{G}^{\alpha}_{xx}\rangle^2 \rangle$ displayed by the thinner nanodisks, as inferred from the extinction cross-section results shown in Figure 1a and, therefore, produce a larger peak value of the induced LDOS. Therefore, from this analysis, we can conclude that the decrease of the near-field response of nanodisks with their thickness is a consequence of the change in the efficiency with which the near-field source couples with the dipolar plasmon mode of the nanodisk.

So far, we have considered nanodisks made of an ideal metal with a dielectric response described by a Drude model, which exclusively accounts for the effect of conduction electrons. This has allowed us to study how the plasmonic response of the nanodisks changes with their thickness t under near- and far-field excitation conditions. However, the dielectric response of real metals also contains a contribution from interband transitions associated with bound electrons, which mostly produces an increase in the absorption losses of the material. Therefore, it is important to understand the impact that interband transitions have on our analysis of the different thickness dependence of the near- and far-field response of metallic nanodisks. To this end, in Figure 4, we study the same three nanodisks of Figure 3 but using tabulated data for the dielectric function of gold compiled in ref. [67]. Specifically, Figure 4a,b show, respectively, the extinction cross-section and the induced LDOS.

Comparing the results for the nanodisks with $t = 20 \text{ nm}$, $D = 50 \text{ nm}$ (gray curves) and $t = 5 \text{ nm}$, $D = 125 \text{ nm}$ (red curves), we observe that they behave as expected: the peak value of $\sigma_{\text{ext}}(0)$ is larger for the thicker nanodisk, while the opposite is true for $\text{LDOS}^{\text{ind}}(t, \mathbf{r}, \omega)$. However, the peak value of the extinction cross-section of the nanodisk with $t = 20 \text{ nm}$, $D = 50 \text{ nm}$ (green curves) is significantly smaller than that of the thinnest nanodisk. This can be explained from the fact that, while the lowest-order dipolar plasmons of the $t = 20 \text{ nm}$, $D = 50 \text{ nm}$ and $t = 5 \text{ nm}$, $D = 125 \text{ nm}$ nanodisks are located well below the interband transition threshold ($\approx 2.3 \text{ eV}$) and therefore are not affected by them, the resonance of the $t = 20 \text{ nm}$, $D = 50 \text{ nm}$ nanodisk clearly falls within it. As a consequence, the plasmon resonance suffers a larger level of losses that increases its width and consequently reduces its peak value. Therefore, we conclude that our analysis based on the Drude dielectric function remains valid for nanodisks made of real metals, as long as their plasmon resonances do not overlap with the interband transitions.
In summary, using rigorous solutions of Maxwell’s equations, we have analyzed the near- and far-field response of metallic nanodisks with varying thicknesses. We have found that, while the far-field response, quantified by the extinction cross-section, increases with the thickness, the opposite is true for the near-field response measured using the induced LDOS. This interesting behavior is observed both in cases where the thickness of the nanodisk is increased while its diameter is held constant and when, instead, its aspect ratio is kept fixed and thus there is a minimal shift in its resonance energy. Through an analysis of the induced charges on the surface of the nanodisks, we have shown that both near- and far-field sources excite the exact dipolar plasmon, and, therefore, the different dependence with thickness can be attributed to the efficiency with which the mode is excited. To confirm this hypothesis, we have presented a simple model of the induced LDOS derived within the dipolar and electrostatic approximations. Using this model, which allows us to separate the intrinsic strength of the plasmon mode from the efficiency with which it couples to the source, we have shown that the coupling efficiency of thinner nanodisks is sufficiently large to overcome the inherently stronger response of thicker nanodisks and therefore produce a larger near-field response. The results of our work provide fundamental insight into the optical properties of metallic nanostructures with high aspect ratios and thus can help to leverage these systems for applications that rely on both near- and far-field responses.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
L.Z. and P.G. contributed equally to this work. This work was sponsored by Grant No. TEM-FLU PID2019-109502CA-I00 funded by MCIN/AEI/10.13039/501100011033 and the U.S. National Science Foundation (Grant No. DMR-1941680). L.Z. acknowledges support from the Department of Energy Computational Science Graduate Fellowship (Grant No. DE-SC0020347). P.G. thanks financial support from the UNM NSMS program through the Whitten Family Fellowship and the Graduate Assistance in Areas of National Need (GAANN) fellowship.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords
2D materials, far-field excitation, nanodisks, near-field excitation, plasmonic response, sum rule, thin metallic nanostructures

Received: November 23, 2021
Revised: February 7, 2022
Published online: March 16, 2022

1. S. A. Maier, *Plasmonics: Fundamentals and Applications*, Springer, New York 2007.
2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, *Nat. Mater.* 2010, 9, 193.
3. R. A. Álvarez-Puebla, L. M. Liz-Marzán, F. J. García de Abajo, *J. Phys. Chem. Lett.* 2010, 1, 2428.
4. H. Xu, E. J. Bjerneld, M. Käll, L. Börjesson, *Phys. Rev. Lett.* 1999, 83, 4357.
5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, *Nat. Mater.* 2008, 7, 442.
6. S.-Y. Ding, E.-M. You, Z.-Q. Tian, M. Moskovits, *Chem. Soc. Rev.* 2017, 46, 4042.
7. K. R. Catchpole, A. Polman, *Opt. Express* 2008, 16, 27193.
8. H. A. Atwater, A. Polman, *Nat. Mater.* 2010, 9, 205.
9. G. Baffou, R. Quidant, *Chem. Soc. Rev.* 2014, 3838.
