Enhanced antibacterial activity of TiO$_2$ nanoparticle surface modified with *Garcinia zeylanica* extract

U. L. N. H. Senarathna$^1$, S. S. N. Fernando$^{1,5}$, T. D. C. P. Gunasekara$^1$, M. M. Weerasekera$^1$, H. G. S. P. Hewageegana$^2$, N. D. H. Arachchi$^3$, H. D. Siriwardena$^4$ and P. M. Jayaweera$^3$

Abstract

**Background**: The antibacterial activity of 21 nm TiO$_2$ nanoparticles (NPs) and particles modified with *Garcinia zeylanica* (*G. zeylanica*) against Methicillin resistant *Staphylococcus aureus* was investigated in the presence and absence of light.

**Results**: Surface modification of TiO$_2$ NPs with the adsorption of *G. zeylanica* extract, causes to shift the absorption edge of TiO$_2$ NPs to higher wavelength. TiO$_2$ NPs, *G. zeylanica* pericarp extract showed significant bactericidal activity which was further enhanced in contact with the TiO$_2$ modified *G. zeylanica* extract.

**Conclusions**: The antimicrobial activity was enhanced in the presence of TiO$_2$ NPs modified with *G. zeylanica* and with longer contact time.

**Keywords**: Titanium dioxide, Antibacterial, Methicillin-resistant *Staphylococcus aureus*, *Garcinia*

Background

Nanotechnology is a nascent technology, gaining popularity globally due to its usefulness in various fields. Nanometals ranging from 1 to 100 nm in size have unique physical and chemical properties which can be exploited for various applications [1, 2]. Further these are promising novel therapeutic agents having antimicrobial and antibiofilm activity.

Development of microbial resistance to antibiotics is a major challenge in the medical field. Therefore, the search for drugs with new modes of action is of major interest in the pharmaceutical and research communities. Two potential sources of novel antimicrobial agents are medicinal plants and nanomaterials [3, 4]. The antimicrobial properties of nanomaterials including metal nanoparticles can be attributed to different mechanisms such as generation of reactive oxygen species, inactivation of cellular enzymes and nucleic acids of the microbes resulting in pore formation in the bacterial cell wall [3]. Among the metal nanoparticles TiO$_2$ NPs are known to be cost effective, stable and safe for humans and the environment. A unique property of TiO$_2$ NPs is the photocatalytic property resulting in enhanced microbicidal activity on exposure to light in the UV range [3, 5]. TiO$_2$ NPs exist in three crystalline phases, where the anastase phase demonstrates high photocatalytic and antimicrobial properties [3].

*Garcinia zeylanica* is an endemic plant to Sri Lanka, which belongs to the family Guttiferae (Clusiaceae). Ragunathan et al. [6] reported antibacterial activity of pericarp of *G. zeylanica* extract against MRSA, while it had no antimicrobial activity against *Candida albicans* and *Candida parapsilosis* [7]. Others have reported antimicrobial activity of Garcinia species against *Staphylococcus aureus*, *Streptococcus pyogenes* and some Gram negative bacteria [8]. *Garcinia* species have many important phytochemicals with antimicrobial potential [9, 10]. The phytochemical analysis of *G. zeylanica* which is an endemic plant to Sri Lanka, is not yet documented. This study aimed to determine the antibacterial activity of TiO$_2$ NPs modified with *G. zeylanica* aqueous extract. The combined
synergistic effect of phytochemicals and TiO$_2$ NPs were also investigated.

**Methods**

**Preparation of *Garcinia zeylanica* aqueous extract**

Dried pericarp of *G. zeylanica* was collected locally and authenticated at the Bandaranayaka Memorial Ayurveda Research Institute, Navinna, Maharagama, Sri Lanka. The pericarp was rinsed, dried (6 h at 42 °C) and aqueous extract was prepared using 30 g of plant material in 720 ml distilled water, then boiled under low heat to reduce the volume to 120 ml according to Ayurvedic protocol [11]. The plant extract was filtered using sterile Whatman No 1 filter paper. The filtrate was transferred to a sterile glass container and stored in the refrigerator (4 °C) up to 2 weeks.

**Characterization and surface modification of TiO$_2$ NPs with *G. zeylanica* extract**

Surface modification of 21 nm TiO$_2$ NPs (Sigma Aldrich) with *G. zeylanica* aqueous extract was done by refluxing 25 ml of *G. zeylanica* aqueous extract with 0.30 g of TiO$_2$ (mainly anatase). Solid part was centrifuged and separated. Separated solid was washed with distilled water several times by centrifugation. Washed solid was separated air dried and placed in a vacuum desiccator for 48 h.

Scanning electron microscope (SEM) imaging was performed to understand the surface morphology of TiO$_2$ of the coated petri dishes. SEM imaging was done using FE-SEM (JSM-6320F) at accelerating voltages of 10 kV. Powered X-ray diffraction (XRD) analysis was carried out for the identification of the phase of coated TiO$_2$ using Ultima III (Rigaku) powder diffractometer (Cu-Kα/λ = 0.154 nm). Surface characterization of pure and modified NPs were performed using diffuse reflectance spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Diffuse reflectance spectroscopic studies were carried out using PerkinElmer Lambda 35 spectrophotometer equipped with integrating sphere. ATR-FTIR analysis was carried out using Thermo Scientific Nicolet iS10 FTIR spectrometer.

**Phytochemical analysis of the aqueous *G. zeylanica* extract**

Qualitative analysis of various phytocompounds present in the *G. zeylanica* aqueous extract was done using previously described protocol by Krishnamoorty et al. [12]. Flavanoids, terpenoids, phenols, tannins, cardiac glycosides, carbohydrates, saponins, amino acids, phlobatanin, sterols and alkaloids were detected in this study.

**Microorganisms**

A clinically confirmed isolate of Methicillin resistant *S. aureus* was obtained from the culture collection at the Department of Microbiology, University of Sri Jayewardenepura. The organism was cultured on Nutrient agar at 37 °C for 18 h. Suspensions of organisms were prepared in sterile normal saline to obtain a 0.5 McFarland absorbance corresponding to $10^8$ organisms/ml.

**Determination of antimicrobial activity of 21 nm TiO$_2$ NPs, and TiO$_2$ NPs modified with *G. zeylanica***

TiO$_2$ NPs was used at a concentration of 13.9 g/l in sterile miliq (MQ) water [13]. Suspension of TiO$_2$ was prepared by sonication at 35 kHz for 1 h followed by autoclaving for 30 min at 121 °C. The pH of all solutions was adjusted to pH 5.5 prior to coating of the petri dishes.

A separate plate (A) was used as negative control which contained MQ water. Sterile 3 cm petri dishes were coated with (B) TiO$_2$ only, (C) *G. zeylanica* aqueous extract only and (D) *G. zeylanica* extract modifies with TiO$_2$. Each petri dish was coated by adding 1 ml of solutions of B, C and D to individual petri dishes. The petri dishes were then evaporated to dryness.

One milliliter of MRSA suspension ($10^8$ organisms/ml) was added to each petri dish. The inoculated petri dishes were kept for 1, 4 and 24 h, at room temperature. At the end of each time point 100 µl of suspension was collected from each petri dish and colony forming units/ml (CFU/ml) was determined by spread plate method on Nutrient agar. Further, to determine the enhanced antimicrobial activity due to the photocatalytic activity of TiO$_2$ NPs, one set of petri dishes (tests and control) were incubated for 30 min in sunlight after addition of MRSA suspension and the number of colonies were counted as described above. All experiments were done in triplicates.

**Statistical analysis**

Colony forming units/ml was calculated by multiplying the number of colonies obtained by plating 100 µl of suspension by the dilution factor. This was further multiplied by 10 to obtain CFU/ml. The percentage reduction was calculated as follows:

$$\text{Average reduction} \% = \frac{\text{CFU/ml in MQ} - \text{CFU/ml in TiO}_2}{\text{CFU/ml in MQ}} \times 100$$

The paired t test was used to compare the significant differences between test and control. Significance was tested at $p = 0.05$. 
Results and discussion
SEM and XRD analysis
A scanning electron microscope (SEM) image of the surface of TiO$_2$ coated petri dish is shown in the Fig. 1. Petri dish surface was evenly coated with TiO$_2$. Figure 2 shows the XRD pattern of the coated TiO$_2$. The pattern recorded closely resembles the previously published XRD pattern of the anatase phase and rutile phase of TiO$_2$ [14–16].

Diffuse reflectance, UV–visible and ATR-FTIR study
Diffuse reflectance spectra of TiO$_2$ and TiO$_2$ modified with G. zeylanica aqueous extract are shown in Fig. 3. Alteration of the diffuse reflectance spectrum of TiO$_2$ noticeably indicates the characteristic change of TiO$_2$ surface followed by the adsorption of G. zeylanica extract.

The diffuse reflectance spectra were analyzed using [17] the Kubelka–Munk transformed reflectance spectra according to,

\[ \alpha_{KM} = \left( \frac{1 - R_\infty}{2R_\infty} \right)^2 \]

where $\alpha_{KM}$ is the equivalent absorption coefficient, $R_\infty$ is the reflectance of an infinitely thick sample with respect to a reference at each wavelength. Kubelka–Munk transformed reflectance spectra are shown in the inserted image of Fig. 3. Surface modification of TiO$_2$ NPs with the adsorption of G. zeylanica extract, causes to decrease the band gap energy of TiO$_2$ NPs. Band gap energy of bare TiO$_2$ and G. zeylanica extract adsorbed TiO$_2$ were found to be 3.24 and 2.61 eV, respectively. Lowering the band gap energy of TiO$_2$ is leading to enhancement of photocatalytic activity under visible light [18] which is reflected by change in the colour of the TiO$_2$ surface to buff colour. UV–visible absorption spectrum of dilute solution of G. zeylanica aqueous extract is shown in the image of Fig. 4.

ATR-FTIR spectra of dried pulp of G. zeylanica extract, G. zeylanica extract adsorbed TiO$_2$ and TiO$_2$ are shown in Fig. 5. ATR-FTIR spectrum of dried pulp of G. zeylanica extract closely resembles the previously published FTIR spectrum of dried pulp of G. pedunculata [19]. Adsorption of surface anchoring compounds in G. zeylanica extract on to TiO$_2$ is confirmed by the presence of IR peaks of G. zeylanica extract, for G. zeylanica extract treated TiO$_2$. FTIR frequencies suggested that the presence of –OH group (3351 cm$^{-1}$ for O–H stretching), alkane side chains (2942 cm$^{-1}$ is characteristic for C–H stretching), carbonyl group (1724 cm$^{-1}$ for C=O stretching), and carboxylic group (1402 cm$^{-1}$ is for (COO$^-$) asymmetric
stretching) [19–21]. IR absorption peak at 1724 cm\(^{-1}\) is decreased by the adsorption of \textit{G. zeylanica} extract into TiO\(_2\), which may be due to the deprotonating of carboxylic group [20].

**Phytochemical screening of the aqueous extract of \textit{G. zeylanica}**

Qualitative analysis of \textit{G. zeylanica} extract revealed the presence of tannins, cardiac glycosides, carbohydrates, coumarin and saponins (Table 1). Tannins are a group of polyphenolic compounds and their antimicrobial activity against fungi, bacteria and viruses have been reported [22]. Coumarins which are reported to be present in plant extracts including \textit{Garcinia} species, have antimicrobial and anti-inflammatory activities [23]. Saponin is a glycoside and are present in plants with reported antibacterial and antifungal activity [24].

**Antibacterial activity of TiO\(_2\)**

The colony forming units of MRSA reduced significantly (\(p = 0.0001\)) after 30 min in the presence of TiO\(_2\) following sunlight exposure compared to the control having only MQ water exposed to sunlight. When MRSA suspension (10\(^8\) organisms/ml) was added to TiO\(_2\) coated plates and incubated for 1, 4 and 24 h (without exposure to sunlight), there was a significant reduction in the colony counts (\(p = 0.0002, 0.0022, 0.0322\) respectively) when compared to the control (Fig. 6). The average percentage reduction of MRSA was seen to be 99.1\% after 30 min sunlight exposure when compared to the control. The percentage reduction of colony counts seen after 1, 4 and 24 h, were 48.3, 59.2 and 32.9\% respectively. These results demonstrate that TiO\(_2\) itself has antimicrobial activity which is enhanced in the presence of sunlight. TiO\(_2\) has photocatalytic properties which have been reported to be useful as a microbicide [3]. Our study shows that in the presence of sunlight the antimicrobial activity of TiO\(_2\) is enhanced against MRSA. Several groups have evaluated the antimicrobial activity of

| Phytoconstituents   | Test/reagents       | Observation |
|---------------------|---------------------|-------------|
| Alkaloids           | Mayer’s test        | Negative    |
| Tannins             | Braymer’s test      | Positive    |
| Saponins            | Foam test           | Positive    |
| Anthraquinones      | Benzene, 10\% NH\(_3\) | Negative    |
| Flavonoids          | 1% aluminium solution | Negative    |
| Carbohydrates       | Molisch’s test      | Positive    |
| Amino acids         | Ninhydrin test      | Negative    |
| Steroids            | Salkowski test      | Negative    |
| Terpenoids          | Salkowski test      | Negative    |
| Cardiac glycosides  | Fe\(_{3}\)Cl\(_4\), conc. H\(_2\)SO\(_4\) | Positive |
| Coumarin            | Alcoholic NaOH      | Positive    |

**Fig. 4** UV-Vis absorption spectrum of aqueous extract of \textit{G. zeylanica}

**Fig. 5** ATR-FTIR spectra of a dried \textit{G. zeylanica} extract, b TiO\(_2\) modified with \textit{G. zeylanica} extract, and c TiO\(_2\)

**Fig. 6** Antibacterial activity of TiO\(_2\) against MRSA
TiO₂ against both Gram negative bacteria such as *Escherichia coli* [3], *Salmonella typhimurium* [4], *Pseudomonas aeruginosa* [4, 25], *Bacteroides fragilis* [4] and Gram positive bacteria such as *S. aureus* [25], *Enterococcus faecalis* [26], *Streptococcus pneumoniae* [26], MRSA [26], fungi such as *C. albicans* [27], *Aspergillus niger* and *Trichoderma reesei* [28] and viruses such as HSV-1 [29] and influenza virus [30]. The advantage of TiO₂ as an environmental disinfectant is mainly due to its photocatalytic activity in the presence of UV irradiation. TiO₂, when exposed to light in the UV range (λ < 400 nm) result in generation of redox reactions that produce reactive oxygen species, such as hydroxyl radical (·OH), superoxide radical (·O₂⁻) and singlet oxygen (¹O₂). These free radicals contribute to the biocidal activity by destruction of cellular organic compounds [26]. Hence close proximity of the microorganisms to the TiO₂ NPs is needed for good bactericidal activity.

The antimicrobial activity of TiO₂ even in the absence of photo activation has been well reported [26]. TiO₂ carries a positive charge while the surface of microorganisms carry negative charges resulting in an electromagnetic attraction between microorganisms and the TiO₂ NPs which leads to oxidation reactions. TiO₂ deactivates the cellular enzymes and DNA by coordinating to electron-donating groups, such as: thiols, amides, carbohydrates, indoles, hydroxyls etc. The resulting pits formed in bacterial cell walls lead to increased permeability and cell death [26].

TiO₂ NPs are reported to be non carcinogenic and non-toxic [31] and are used extensively in food packaging [5], textile industry [32], self-cleaning ceramics and glass [33], in the paper industry for improving the opacity of paper [33], cosmetic products such as sunscreen creams [33] etc. Further, TiO₂ NPs are used in commercial products such as water purification plants [34]. The antimicrobial activity of TiO₂ NPs are exploited in medical devices, in order to prevent biofilm formation and sepsis [35–37].

**Antibacterial effect of *G. zeylanica* aqueous extract**

Antimicrobial activity of *G. zeylanica* alone and TiO₂ modified with *G. zeylanica* showed a significant reduction in colony forming units at all time points tested as shown in Fig. 7. When MRSA was treated with the aqueous extract of *G. zeylanica* (0.25 g/ml) and exposed to sunlight for 30 min, a significant reduction of MRSA colony counts were observed, compared to the control (p = 0.0001). Further, when MRSA was incubated without sunlight for 1, 4 and 24 h, a significant reduction (p = 0.0002, 0.0007, 0.0044 respectively) of colony counts was seen compared to the control. This shows that the plant extract itself exhibits strong antimicrobial activity against MRSA. The average percentage reduction of MRSA was seen to be 99.96% after 30 min sunlight exposure when compared to the control. The percentage reduction of colony counts seen after 1, 4 and 24 h, without sunlight were 99.96, 99.93 and 99.84% respectively. The TiO₂ modified with *G. zeylanica* aqueous extract demonstrated remarkably enhanced antimicrobial activity compared to the antimicrobial activity of TiO₂ alone. Dried pericarp of *G. zeylanica* and other *Garcinia* species is widely used as a flavouring and preserving agent in traditional culinary practices in Sri Lanka and other Asian countries. In Ayurvedic practices, *Garcinia* is used in treatment of skin and soft tissue infections. Further, it is included as a component of Ayurvedic wound wash. In this study, the aqueous extract of the pericarp of an endemic plant, *G. zeylanica* was investigated for synergistic microbicidal activity when combined with TiO₂ NPs. While the antimicrobial activity of other *Garcinia* species have been reported in detail, reports on the antimicrobial activity of *G. zeylanica* is not available. Recent study by Ragunathan reports that the aqueous extract of *G. zeylanica* pericarp showed antibacterial activity against MRSA while no activity was detected for Candida species [6]. The *G. zeylanica* aqueous extract was used after adjusting the pH to 5.5 throughout the experiments, which is compatible for use as a wound wash.

*Garcinia zeylanica* extracts from other species have been reported to contain hydroxy citric acid, xanthones, flavonoids and benzophenone derivatives such as garcinol [38]. Previous reports have investigated the antimicrobial activity of *Garcinia Cambogia* [39], and *Garcinia indica* [40].

**Antibacterial effect of TiO₂ modified with *G. zeylanica* aqueous extract**

When the TiO₂ was modified with *G. zeylanica* extract, there was significant antimicrobial activity in the presence of sunlight (p value = 0.001) compared to the control. When the modified extract was incubated with MRSA...
for 1, 4 and 24 h, the antimicrobial activity was seen to be further enhanced with increasing incubation time ($p = 0.0002, 0.0007, 0.0044$). The percentage reduction of colony counts at all four time points were >99.99%. These results show that the antimicrobial activity of TiO$_2$ was significantly enhanced when modified with *G. zeylanica* both in the presence and absence of sunlight as shown in Fig. 7. Exposure to sunlight and prolong contact was seen to further enhance the antimicrobial activity.

On comparison of antimicrobial activity of *G. zeylanica* extract only and TiO$_2$ modified with *G. zeylanica* aqueous extract, a significant enhancement of microbicidal activity was observed in the presence of TiO$_2$ modified with *G. zeylanica* aqueous extract (exposed to sunlight or without sunlight exposure). Further, prolonged contact with TiO$_2$ modified with *G. zeylanica* aqueous extract showed a significant reduction in colony counts compared to *G. zeylanica* alone as shown in Table 2. Figure 8 shows

| Time                        | G. zeylanica aqueous extract (CFU/ml) | TiO$_2$ modified with G. zeylanica aqueous extract (CFU/ml) | p value |
|-----------------------------|--------------------------------------|------------------------------------------------------------|---------|
| After 30 min sunlight exposure | 5467                                 | 167                                                        | 0.0002  |
| After 1 h incubation period  | 5433                                 | 1033                                                       | 0.0006  |
| After 4 h incubation period  | 3633                                 | 400                                                        | 0.0051  |
| After 24 h incubation period | 1500                                 | 13                                                         | 0.0064  |

Fig. 8 MRSA colonies with 1 h incubation **a** MQ water, **b** TiO$_2$, **c** *G. zeylanica* aqueous extract, and **d** TiO$_2$ modified with *G. zeylanica* aqueous extract.
a representative experiment where colony counts were obtained after 1 h contact of MRSA (10^8 cells/ml) with the control (a), TiO_2 coated plate (b), _G. zeylanica_ aqueous extract coated plate (c) and TiO_2 modified with _G. zeylanica_ aqueous extract coated plate (d). A clear reduction in colony counts were observed in plates c (99.96%) and d (99.99%) when compared to the control. The antimicrobial activity of TiO_2 modified with _G. zeylanica_ aqueous extract is thought to be due to multiple mechanisms of the phytochemicals and TiO_2 NPs. Garcinol which is an important phytochemical, is reported to competitively inhibit histone acetyltransferases in cells [10]. It has also been reported to regulate gene expression in HeLa cells. Further, garcinol is able to induce apoptosis in cells making it a potential therapeutic agent in cancer treatment [10]. The combination of _G. zeylanica_ and TiO_2 as a potential antimicrobial agent in medicine may be an important future direction due to the widely reported emergence of multidrug resistance among microbes, which is a major challenge in medicine.

Conclusions

Anatase 21 nm TiO_2 NPs shows antimicrobial activity against MRSA following photoactivation by sunlight. _G. zeylanica_ aqueous extract itself has antimicrobial activity against MRSA. Enhanced antimicrobial activity was observed when the TiO_2 was modified with _G. zeylanica_ aqueous extract. Activity against MRSA was further enhanced when TiO_2 was modified with _G. zeylanica_ aqueous extract with the exposure to the sunlight.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors SSNF, TDCPG, MMW, HGSPH and PMJ designed the study. Authors ULNHS, NDHA and HDS carried out the experiments and bioassays. All authors contributed to the analysis of results, while authors ULNHS, SSNF, TDCPG, MMW and PMJ wrote the first draft manuscript. All authors read and approved the final manuscript.

Author details

1 Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Colombo, Sri Lanka. 2 Department of Nidana Chikitsa, Institute of Indigenous Medicine, University of Colombo, Colombo, Sri Lanka. 3 Department of Chemistry, University of Sri Jayewardenepura, Colombo, Sri Lanka. 4 Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.

Acknowledgements

The authors would like to thank the National Science Foundation in Sri Lanka for the equipment grant (RG/2013/EQ/07). Appreciation also goes to the University of Sri Jayewardenepura grant (ASP/01/RE/MED/2016/42).

Competing interests

The authors declare that they have no competing interests.

Received: 26 July 2016    Accepted: 3 January 2017

Published online: 12 January 2017

References

1. Honkoshi S, Serpone N (2013) Introduction to nanoparticles. Microwaves in nanoparticle synthesis. Wiley, New York, pp 1–24
2. Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 4:9–11
3. Ahmad R, Sardar M (2013) TiO_2 nanoparticles as an antibacterial agents against _E. coli_. Int J Innov Res Sci Eng Technol 2(8):3569–3574
4. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, Larramendi I, Rojo T et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511
5. Othman Sh, Abd Salam NR, Zainal N, Kadir Basha R, Talib RA (2014) Antimicrobial activity of TiO_2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy 2014:6
6. Ragunathan K, Radhika N, Gunathilaka D, Weerasekara M, Hewageegana S, Fernando S, et al (2015) Antimicrobial activities of selected herbs and two herbal decoctions against methicillin resistant _Staphylococcus aureus_ (MRSA). In: Proceedings of annual scientific sessions of faculty of medical sciences, p 36
7. Radhika ND, Gunathilaka DP, Ragunathan K, Gunasekara TM, Weerasekara MM, Fernando SS, Arawawavala LAD, Hewageegana S (2015) Antifungal activities of selected plant extracts against _Candida albicans_ and _Candida parapsilosis_. In: Engineering social transformation through research and development proceedings of annual research symposium, pp 68–69
8. Seangeo CT, Ndip RN (2012) Identification and antibacterial evaluation of bioactive compounds from _Garcinia kola_ (Heckel) seeds. Molecules 17(6):6569–6584. doi:10.3390/molecules17066569
9. Tharachand SI, Avadhani M (2013) Medicinal properties of malabar tamarind [ _Garcinia cambogia_ (Gaertn) DESR]. Int J Pharm Sci Res 19(2):101–107
10. Hemeshkhar M, Sunita K, Santhosh MS, Devaraja S, Kemparaju K, Vishwanath B et al (2011) An overview on genus _Garcinia_ phytochemical and therapeutic aspects. Phytochem Rev 10(3):325–351
11. Pandit Shastri P (1920) Uttara khanda. In: Sharangadhara Samhita. Pandurang Jawaji, Bombay, pp 333–354
12. Krishnamoorthy V, Nigappan P, Sereen AK, Rajendran R (2014) Preliminary phytochemical screening of fruit rind of _Garcinia cambogia_ and leaves of _Bauhinia vaginata_—a comparative study. Int J Curr Microbiol Appl Sci 3(5):479–486
13. Verdièr T, Coutand M, Bertron A, Roques C (2014) Antibacterial activity of TiO_2 photocatalyst alone or in coatings on _E. coli_: the influence of methological aspects. Coatings 4(3):670. doi:10.3390/coatings4030670
14. Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH (2005) Development of surface coating technology of TiO_2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475(1–2):171–177
15. Chang M, Song Y, Zhang H, Sheng Y, Zheng K, Zhou X et al (2015) Hydro-thermal assisted sol-gel synthesis and multisite luminous properties of anatase TiO_2-Eu⁺ nanorods. RSC Adv 5(73):59314–59319
16. Lee CH, Rhee SW, Choi HW (2012) Preparation of TiO_2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells. Nanoscale Res Lett 7(1):1–5
17. Reyes-Coronado D, Rodriguez-Gattorno G, Espinoza-Pesqueda ME, Cab C, de Cos R, Oskam G (2008) Phase-pure TiO_2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605 (PMID: 21817764, Epub 2008/04/09, eng)
18. Luo X, Deng F, Min L, Luo S, Guo B, Zeng G et al (2013) Facile one-step synthesis of inorganic-framework molecularly imprinted TiO_2/WO_3 nanocomposite and its molecular recognitive photocatalytic degradation of target contaminant. Environ Sci Technol 47(13):7404–7412
19. Mudoi T, Deka D, Devi R (2012) In vitro antioxidant activity of _Garcinia pedunculata_, an indigenous fruit of North Eastern (NE) region of India. Int J PharmTech Res 4(1):334–342
20. Mudunkotuwa IA, Grassian VH (2010) Citric acid adsorption on TiO_2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle–nanoparticle interactions. J Am Chem Soc 132(42):14986–14994
21. See I, Ee GC, Teh SS, Kadir AA, Daud S (2014) Two new chemical constituents from the stem bark of Garcinia mangostana. Molecules 19(6):7308–7316 (PubMed PMID: 24901833. Epub 2014/06/06. eng)
22. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30(12):3875–3883
23. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 2(4):564–582 (PMID: PMC88925)
24. Pistelli L, Bertoli A, Lepori E, Morelli I, Panizzi L (2002) Antimicrobial and antifungal activity of crude extracts and isolated saponins from Astragalus verrucosus. Fitosanita 73(4):336–339
25. Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO₂ and Ag-doped TiO₂ against S. aureus, P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345–351
26. Nakano R, Haru M, Ishiguro H, Yao Y, Ochiai T, Nakata K et al (2013) Broad spectrum microbicidal activity of photocatalysis by TiO₂. Catalysts 3(1):310. doi:10.3390/catal3010310
27. Yang JY (2006) Photocatalytic antifungal activity against Candida albicans by TiO₂ coated acrylic resin denture base. J Korean Acad Prosthodont 44(3):284–294
28. Durairaj B, Muthu S, Xavier T (2015) Antimicrobial activity of Aspergillus niger synthesized titanium dioxide nanoparticles. Adv Appl Sci Res 6(1):45–48
29. Markov SL, Vidaković AM (2014) Testing methods for antimicrobial activity of TiO₂ photocatalyst. Acta Period Technol 45:141–152
30. Nakano R, Ishiguro H, Yao Y, Kajikosa J, Fujishima A, Sunada K et al (2012) Photocatalytic inactivation of influenza virus by titanium dioxide thin film. Photochem Photobiol Sci 11(8):1293–1298
31. Runa S, Khanal D, Kemp ML, Payne CK (2016) TiO₂ nanoparticles alter the expression of peroxiredoxin anti-oxidant genes. J Phys Chem C 120(37):20736–20742
32. Senic Z, Baut S, Vitorovic-Todorovic M, Pajic N, Samolov A, Rajic D (2011) Application of TiO₂ nanoparticles for obtaining self-decontaminating smart textiles. Sci Tech Rev 6(13–4):63–72
33. AZoNano (2013) Titanium oxide (Titania, TiO₂) nanoparticles—properties, applications. Retrieved from: http://www.azonano.com/article.aspx. ArticleID= 3357
34. Cermenati L, Pichat P, Guillard C, Albini A (1997) Probing the TiO₂ photocatalytic mechanisms in water purification by use of quinoline, photofenton generated OH radicals and superoxide dismutase. J Phys Chem B 101(14):2650–2658
35. Gupta SM, Tripathi M (2011) A review of TiO₂ nanoparticles. Chin Sci Bull 56(16):1639–1657
36. Ravishankar Rai V, Jamuna Bai A (2011) Nanoparticles and their potential application as antimicrobials. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. University of Mysore, Mysore, pp 197–209
37. Arora H, Doty C, Yuan Y, Boyle J, Petras K, Rabatic B et al (2010) Titanium dioxide nanocomposites. Nanomaterials for the life sciences (series nr. 8). Wiley-VCH, Weinheim, pp 1–42. ISBN 978-3-527-32168-1
38. Tharachand C, Selvaraj CI, Abraham Z (2015) Comparative evaluation of anthelmintic and antibacterial activities in leaves and fruits of Garcinia cambogia (Gaertn.) desr. and Garcinia indica (Dupetit-Thouars) choisy. Braz Arch Biol Technol 58:379–386
39. Jayarathne TU, Vidanarachchi CK, Kalubowila A, Himali SMC (2014) Antioxidant and antimicrobial effect of Garcinia cambogia and Tamarindus indica on minced nematodasa galatheae fish under refrigerated storage. In: Proceedings of the Peradeniya University International Research Sessions (IPURSE 2014). vol 18, Sri Lanka, p 211
40. Sutar R, Mane S, Gosh J (2012) Antimicrobial activity of extracts of dried kokum (Garcinia indica C). Int Food Res J 19(3):1207–1210