Electrochemical immunosensor with Cu(I)/Cu(II)-chitosan-graphene nanocomposite-based signal amplification for the detection of Newcastle disease virus

Jiaoling Huang1, Zhixun Xie1*, Yihong Huang2, Liji Xie3, Sisi Luo1, Qing Fan1, Tingting Zeng1, Yanfang Zhang1, Sheng Wang1, Minxiu Zhang1, Zhiqin Xie1 & Xianwen Deng1

An electrochemical immunoassay for the ultrasensitive detection of Newcastle disease virus (NDV) was developed using graphene and chitosan-conjugated Cu(I)/Cu(II) (Cu(I)/Cu(II)-Chi-Gra) for signal amplification. Graphene (Gra) was used for both the conjugation of an anti-Newcastle disease virus monoclonal antibody (MAb/NDV) and the immobilization of anti-Newcastle disease virus polyclonal antibodies (PAb/NDV). Cu(I)/Cu(II) was selected as an electroactive probe, immobilized on a chitosan-graphene (Chi-Gra) hybrid material, and detected by differential pulse voltammetry (DPV) after a sandwich-type immune response. Because Gra had a large surface area, many antibodies were loaded onto the electrochemical immunosensor to effectively increase the electrical signal. Additionally, the introduction of Gra significantly increased the loading amount of electroactive probes (Cu(I)/Cu(II)), and the electrical signal was further amplified. Cu(I)/Cu(II) and Cu(I)/Cu(II)-Chi-Gra were compared in detail to characterize the signal amplification ability of this platform. The results showed that this immunosensor exhibited excellent analytical performance in the detection of NDV in the concentration range of $10^{0.13}$ to $10^{5.13}$ EID$_{50}$/0.1 mL, and it had a detection limit of $10^{0.68}$ EID$_{50}$/0.1 mL, which was calculated based on a signal-to-noise (S/N) ratio of 3. The resulting immunosensor also exhibited high sensitivity, good reproducibility and acceptable stability.

Newcastle disease virus (NDV) is a viral disease of poultry that belongs to avian paramyxovirus 1. It is a single-strand, non-segmented, and negative-sense RNA virus1, and it is a great threat to the poultry industry2. The first important step in NDV prevention and control is to develop a rapid and sensitive method for diagnosis. Currently, several methods for detecting NDV, included virus isolation3, reverse transcription polymerase chain reaction (RT-PCR)4, real-time RT-PCR5, immunochromatographic strip (ICS) tests6, and reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays7, have been reported. However, these diagnostic methods had some disadvantages; for example, virus isolation is the gold standard for the detection of NDV, but the procedure is time-consuming. For RT-PCR, appropriate laboratory facilities and a trained technician are needed. Real-time RT-PCR requires complicated operations as well as expensive reagents and equipment. Therefore, these diagnostic methods are limited in practical applications.

Electrochemical immunosensors are powerful tools that have good specificity, high sensitivity, good precision, and simple instrumentation; give rapid and reliable responses; and are relatively low cost. Their use in clinical diagnosis, food analysis, environmental monitoring and archaeological studies should be highly valuable. Furthermore, electrochemical immunosensors are based on antibody-antigen reactions. Therefore, immobilizing antibodies or antigens on a transducer as a biorecognition element plays a very important role in the construction of electrochemical immunosensors. Different methods for immobilizing antibodies/antigens on a transducer, including chemical and physical adsorption, have been discussed8. It has been reported that chitosan (Chi) is a...
suitable matrix for immobilizing biorecognition elements due to its biocompatibility, hydrophilicity, mouldability, chemical reactivity, and biodegradability. However, Chi is non-conductive and has low solubility in different solutions; thus, many kinds of nanomaterials have been combined with Chi to increase its conductivity for the fabrication of electrochemical immunosensors. Modifying transducers with conductive materials enhances the electron transfer between the electrode surface and electrolyte. Furthermore, modifying them with nano-materials provides a rougher surface that enables the biorecognition element to attach closely to the electrode surface. Many kinds of nanomaterials, including Gra, multi-walled carbon nanotubes, gold nanoparticles, magnetic nanoparticles, quantum dots, and hybrid nanostructures, have been used in immunosensors.

Gra has a one-atom-thick planar structure composed of sp2 hybridized carbon atoms packed in a honeycomb-like lattice. Due to this unique structure, Gra has an exceptionally high surface-to-volume ratio, electrical conductivity, and thermal conductivity and good mechanical properties. Gra has been used to improve the sensitivity and stability of immunosensors many times. However, the direct immobilization of protein molecules on Gra is difficult. As previously mentioned, Chi can easily immobilize protein molecules and form a film on transducers. Due to these properties, nanocomposites consisting of Chi and Gra are an ideal immunosensor material, and our group successfully synthesized a silver nanoparticle-chitosan-graphene composite to construct an electrochemical immunosensor.

However, copper is much less expensive than silver nanoparticles, and Cu(II) ions can be adsorbed by Chi from aqueous solutions via chelation because of its unique three-dimensional structure. Additionally, the synthesis of CuO (Cu(II)) and Cu2O (Cu(I)) using Chi as a stabilizing and reducing agent has been reported. Furthermore, Cu(II) ions provide a good stripping voltammetric signal. In addition, Cu(I) has a direct band gap of 2.0 eV and is a p-type semiconductor that is very important in superconductors and electrode materials. As previously mentioned, Cu(I) and Cu(II) can be used as electroactive materials. The more electroactive a material carried by an immunosensor is, the more sensitive the immunoassay is. Therefore, in this study, Gra, which has a high loading capacity, was used to load a large amount of electroactive probes on an immunosensor. Hybrid Cu(I)/Cu(II)-modified Gra effectively amplifies signals. In this work, a sandwich-type electrochemical immunosensor was designed using a gold nanoparticle-chitosan-graphene (AuNP-Chi-Gra) nanocomposite as the platform and a Cu(I)/Cu(II)-chitosan-graphene (Cu(I)/Cu(II)-Chi-Gra) nanocomposite as the label for detecting NDV with a low detection limit (100.68 EID50/0.1 mL) and high sensitivity in a relatively wide linear range (from 101 to 105 EID50/0.1 mL). The developed immunosensor shows potential for applications in the clinical screening of other pathogenic microorganisms and point-of-care diagnostics.

Results and discussion

Morphological characterization of the nanocomposites. Figure 1 shows scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) analyses of Gra, Chi-Gra and Cu(I)/Cu(II)-Chi-Gra. The image of Gra confirms that its structure had many folds (a). After Gra was modified with Chi, the folded structure was filled with Chi, and the surface of the Chi-Gra composite became smooth (b). The presence of Chi on Gra was confirmed by EDS analysis (e). N was observed in the sample because Chi is a natural, biocompatible polymer with many amino groups. Interestingly, the Cu(I)/Cu(II)-Chi-Gra nanocomposite exhibited many upturned folded edges and had a porous matrix (c). Due to this characteristic structure, the exposed surface of the Cu(I)/Cu(II)-Chi-Gra nanocomposite was larger than those of the Chi-Gra composite and Gra. The active surface area increased, resulting in a high surface/volume ratio for antibody immobilization. Furthermore, this porous structure facilitated electrochemical signal amplification. The successful incorporation of Cu(I)/Cu(II) into the Chi-Gra surface was also confirmed by EDS analysis (f).

Chemical characterization of the nanocomposites. Fourier transform infrared (FT-IR) spectra of Chi, Gra, Chi-Gra, CuSO4, and Cu(I)/Cu(II)-Chi-Gra are presented in Fig. 2. As shown in Fig. 2a (black line, Chi), the stretching vibrations of the –OH bonds in Chi were observed at 3,425 cm−1, and this band overlapped with the NH2 stretching peaks. The signals originating from the C–H stretching vibrations were observed at approximately 2,920 cm−1 and 2,878 cm−1. The NH2 group and γ-NH2 bending vibrations appeared at 1,653 cm−1 and 1,596 cm−1, respectively. Furthermore, the peak at 1,424 cm−1 was attributed to the OH bending vibration. The stretching vibrations of the C–C–O bonds in the Chi backbone were observed at approximately 1,154 cm−1, 1,081 cm−1 and 1,034 cm−1. As shown in Fig. 2a (red line), the characteristic absorption bands of pure Gra appeared at 1,555 cm−1, 1,459 cm−1, and 1,420 cm−1 (benzene ring backbone stretching vibrations); 1,659 cm−1 (C=O stretching vibration); 2,916 cm−1 (C–H stretching vibration); and 3,406 cm−1 (O–H stretching vibration). Chi adsorption on Gra resulted in the appearance of the characteristic absorption bands of pure Gra in the FT-IR spectrum of Chi-Gra (Fig. 2a; blue line), but compared with pure Gra, the characteristic absorption bands of Chi-Gra had lower intensities, which helped confirm that Chi was successfully adsorbed on Gra. Comparing the spectra of Chi-Gra and Cu(I)/Cu(II)-Chi-Gra (Fig. 2b; red and blue lines) revealed some changes in the intensities and shifts in the peaks. Furthermore, the main absorption peaks of pure CuSO4 (Fig. 2b; black line) were also observed in the FT-IR spectrum of Cu(I)/Cu(II)-Chi-Gra (Fig. 2b; blue line), providing evidence of the interaction between CuSO4 and Cha. Chi-Gra binds Cu2+ well because Chi-Gra contains many negatively charged groups (carboxylic (O=C–OH), hydroxyl (–C–OH) and carbonyl (–C=O)) that can strongly interact with the positively charged Cu2+ ion in CuSO4.

In addition, X-ray photoelectron spectroscopy (XPS) was used to identify the valence state of Cu. The XPS spectrum of Cu(I)/Cu(II)-Chi-Gra is shown in Fig. 3a. The formation of CuO was confirmed by the presence of the Cu 2p3/2 peak at 931.73 eV and the Cu 2p1/2 peak at 951.39 eV. Furthermore, the presence of Cu 2p3/2 and Cu 2p1/2 peaks with binding energies of 933.26 eV and 953.14 eV, respectively, proved the formation of Cu2O. The presence of CuSO4 was confirmed by the Cu 2p3/2 peak at 934.91 eV and Cu 2p1/2 peak at 954.62 eV.
In addition, to obtain a clearer XPS survey, 10 times the amount of CuSO$_4$ was added to Chi-Gra to prepare rich[Cu(I)/Cu(II)]-Chi-Gra, and the XPS spectrum of rich[Cu(I)/Cu(II)]-Chi-Gra shown in Fig. 3b confirmed that the valence states of the Cu element were Cu$^+$ (Cu(I)) and Cu$^{2+}$ (Cu(II)). The concentration of Cu(II) in rich[Cu(I)/Cu(II)]-Chi-Gra was higher than that in Cu(I)/Cu(II)-Chi-Gra because the ability of Chi to chelate Cu$^{2+}$ is stronger than the ability of Chi to reduce Cu$^{2+}$ to Cu$^+$. Additionally, the presence of Cu$_4$, Cu$_4'$, Cu$_5$ and Cu$_5'$ in rich[Cu(I)/Cu(II)]-Chi-Gra might be due to the different Cu$^{2+}$-chelating abilities of the various functional groups in Chi-Gra. Under competitive conditions, functional groups with a stronger Cu$^{2+}$-chelating ability chelate Cu$^{2+}$ first, and functional groups with a weaker Cu$^{2+}$-chelating ability chelate Cu$^{2+}$ last. When the amount of Cu$^{2+}$ is too low, the functional groups with a weaker Cu$^{2+}$-chelating ability lose Cu$^{2+}$, but these functional groups can chelate Cu$^{+}$ when a sufficient amount of Cu$^{2+}$ is present. Therefore, Cu$_4$, Cu$_4'$, Cu$_5$ and Cu$_5'$ were present in rich[Cu(I)/Cu(II)]-Chi-Gra, but absent in Cu(I)/Cu(II)-Chi-Gra.

Electrochemical characterization of the immunosensor. Cyclic voltammetry (CV) was used to investigate the surface of the glassy carbon electrode (GCE) during the process. The electrochemical behaviour was monitored in 5 mM Fe(CN)$_6^{3-}$/4$^-$ (1:1) and 0.01 M phosphate-buffered saline (PBS) (pH = 7.4, containing 0.1 M KCl) in the potential range of −0.2 to 0.6 V at a scan rate of 50 mV/s$^{-1}$, and the results are shown in
Fig. 4a. A pair of well-defined voltammetric peaks was obtained for the bare GCE (curve a-1). Coating the bare GCE with AuNP-Chi (curve a-2) and AuNP-Chi-Gra (curve a-3) caused an increase in the redox peak current. A comparison of the curves indicated that the AuNPs and Gra had good conductivity and electrocatalytic effects. After attaching MAb/NDV to the modified GCE (curve a-4), the current decreased. This decrease can be explained by the following two factors: (i) AuNP-Chi-Gra could conjugate MAb/NDV via Au–S covalent bonds, and (ii) electron transfer was hindered by MAb/NDV. Subsequently, BSA was used to block the immunosensor.

Figure 2. FT-IR spectra of (a) Chi, Gra, and Chi-Gra and (b) Chi-Gra, CuSO₄, and Cu(I)/Cu(II)-Chi-Gra.

Figure 3. XPS spectra of (a) Cu(I)/Cu(II)-Chi-Gra and (b) rich[Cu(I)/Cu(II)]-Chi-Gra.
and the redox peaks decreased even further (curve a-5), because BSA is hydrophobic and electron transfer was further inhibited.

To investigate the immunosensor detection programme, CV was performed in 0.01 mmol/L PBS (pH = 7.4) containing 0.1 mmol/L KCl, and the results are shown in Fig. 4b. For CV curve b-1 in Fig. 4b, which was obtained with the BSA-MAb/NDV-AuNP-Chi-Gra film-modified GCE, the background current was low, and no CV redox waves were observed because of the absence of electrochemically active substances in the working solution. After the immunosensor was incubated with $10^5.13$ EID$_{50}$/0.1 mL NDV (F48E9), the immunosensor conjugated with PAb/NDV-Cu(I)/Cu(II)-Chi-Gra (curve c-3) exhibited a greater current shift than the immunosensor conjugated with PAb/NDV-Cu(I)/Cu(II)-Chi (curve c-2). The increase in the current observed (Fig. 4c) indicated the efficient redox activity of Cu(I)/Cu(II)-functionalized Gra.

Comparison of different signal amplification strategies. Signal amplification strategies are very important for immunosensors. Two signal label materials (PAb/NDV-Cu(I)/Cu(II)-Chi and PAb/NDV-Cu(I)/Cu(II)-Chi) were prepared, and differential pulse voltammetry (DPV) was performed from −0.3 to 0.4 V at a 50 mV/s scan rate using a 10^{13} EID$_{50}$/0.1 mL sample to evaluate the effects of the signal amplification materials. The results are shown in Fig. 4c. As indicated by curve c-1, in the absence of a signal labelling material, a low background current was obtained, and no anodic peak was observed for the immunosensor. In contrast, the immunosensor conjugated with PAb/NDV-Cu(I)/Cu(II)-Chi-Gra (curve c-3) exhibited a greater current shift than the immunosensor conjugated with PAb/NDV-Cu(I)/Cu(II)-Chi (curve c-2). The increase in the current observed indicated the efficient redox activity of Cu(I)/Cu(II)-functionalized Gra.
Detection currents were as low as that for the negative control (Fig. 6a (sample a-1): ddH₂O). The immunosen-
sor responses of the fabricated immunosensor to 10⁵.13 and 10³.13 EID₅₀/0.1 mL NDV solutions containing other
interferents (Fig. 6a (samples a-2 ~ a-10): AAV, IBV, ILTV, AIV H7, ARV, IBD, glucose, vitamin C, and BSA), the
investigated. The results are depicted in Fig. 6a. When the fabricated immunosensor was exposed to possible
interfering substances were measured (Fig. 6a (samples a-12 ~ a-15, a-17 ~ a-20)), and the current variation due
to the interfering substances was less than 5% of that obtained without interferences. The results show that the
devolved immunosensor had good selectivity for NDV.

Optimization of the experimental conditions. During NDV capture and the specific reaction with the
signal labelling material (PAb/NDV-Cu(I)/Cu(II)-Chi-Gra), the incubation time is an important factor. Thus, the incubation times of NDV and PAb/NDV-Cu(I)/Cu(II)-Chi-Gra were optimized separately. To optimize the
NDV incubation time, different incubation times (5, 10, 15, 20, 30, 40, 50, and 60 min) were used, and after incub-
ating with NDV, the immunosensors were incubated with PAb/NDV-Cu(I)/Cu(II)-Chi-Gra for 40 min. Finally, the
immunosensors were used for DPV detection. Each test was repeated five times. The results are shown in
Fig. 4d, curve d-1. As the NDV incubation time was increased up to 30 min, the electrochemical response current
increased; after 30 min, a constant value was reached, indicating that the immunoreaction was complete, and
all the NDV in the sample was captured by the immunosensor. Thus, the optimal incubation time for NDV was
30 min.

To optimize the PAb/NDV-Cu(I)/Cu(II)-Chi-Gra incubation time, the immunosensors were first incubated
with NDV (10⁵.13 EID₅₀/0.1 mL) for 30 min and then incubated with PAb/NDV-Cu(I)/Cu(II)-Chi-Gra for 5, 10, 15, 20, 30, 40, 50, and 60 min, respectively. Finally, the immunosensors were used for DPV detection. Each
was repeated five times. The results are shown in Fig. 4d, curve d-2. In the second immunoreaction step,
as the PAb/NDV-Cu(I)/Cu(II)-Chi-Gra incubation time was increased, the electrochemical response current
increased, reaching a steady-state value at 40 min, which indicates that the reaction between NDV and PAb/
NDV-Cu(I)/Cu(II)-Chi-Gra was complete. Thus, the optimal incubation time for PAb/NDV-Cu(I)/Cu(II)-Chi-Gra
was 40 min. Compared with NDV, PAb/NDV-Cu(I)/Cu(II)-Chi-Gra required more time to complete the
reaction, which might be due to the greater steric hindrance of PAb/NDV-Cu(I)/Cu(II)-Chi-Gra.

Analytical performance of the immunosensor. The response of the prepared immunosensor was
measured at different concentrations of NDV (F48E9) under the optimal experimental conditions. The results
are shown in Fig. 5a. The electrochemical response current increased as the concentration of NDV increased,
and the peak of the electrochemical response current was proportional to the concentration in the range of
10⁰.13 to 10⁵.13 EID₅₀/0.1 mL. The linear regression equation, which is shown in Fig. 5b, was I (μA) = 0.75 log
EID₅₀/0.1 mL + 1.05, with a correlation coefficient of 0.97075, and the limit of determination for NDV was 10⁰.08
EID₅₀/0.1 mL, which was calculated based on a signal-to-noise ratio of 3 (S/N = 3). These results demonstrated
that the immunosensor was sensitive enough to qualitatively monitor NDV.

The results for the immunosensor with PAb/NDV-Cu(I)/Cu(II)-Chi-Gra as the signal label were compared
with those for the immunosensor with PAb/NDV-Cu(I)/Cu(II)-Chi as the signal label, and the results obtained
with PAb/NDV-Cu(I)/Cu(II)-Chi are shown in Fig. 5c. The electrochemical response current increased linearly
with increasing NDV concentration, and the calibration curve in the range of 10⁰.13 to 10⁵.13 EID₅₀/0.1 mL
(Fig. 5d) was: I (μA) = 0.15 log EID₅₀/0.1 mL + 1.10. The limit of determination for NDV was 10⁰.08 EID₅₀/0.1 mL
(S/N = 3). This result indicated that Gra can improve the immunosensor sensitivity. In addition, as shown in
Fig. 5c (curve c-2), the background signal was high when PAb/NDV-Cu(I)/Cu(II)-Chi was used as the signal label
because without Gra, the excess Chi could not be removed from PAb/NDV-Cu(I)/Cu(II)-Chi by centrifugation,
and the excess Chi chelated with Cu(I)/Cu(II) was attached to the GCE by non-specific binding.

Comparison of methods. The results of a comparative study between the designed method and other
methods for NDV detection are summarized in Table 1a. The table shows that the developed electrochemical
immunosensor has acceptable sensitivity and advantages over the other methods in terms of rapid detection,
intuitiveness, user-friendliness and cost.

Selectivity, repeatability, reproducibility and stability of the immunosensor. Selectivity is a sig-
nificant parameter for an immunosensor. Therefore, to determine the selectivity of the fabricated immunosen-
sor, some possible interferents, including aviadenovirus group I (AAV, 10⁶.37 EID₅₀/0.1 mL), infectious bronchitis
virus (IBV, 10⁶.30 EID₅₀/0.1 mL), infectious laryngotracheitis virus (ILT, 10⁶.34 EID₅₀/0.1 mL), avian influenza
virus subtype H7 (AIV H7, 10⁶.45 EID₅₀/0.1 mL), avian reovirus 1 (ARV, 10⁶.51 EID₅₀/0.1 mL), infectious bursal
disease (IBD, 10⁷.34 EID₅₀/0.1 mL), glucose (1.0 mg/mL), vitamin C (1.0 mg/mL) and BSA (1.0 mg/mL), were
investigated. The results are depicted in Fig. 6a. When the fabricated immunosensor was exposed to possible
interferents (Fig. 6a (samples a-2 ~ a-10): AAV, IBV, ILTV, AIV H7, ARV, IBD, glucose, vitamin C, and BSA), the
determination currents were as low as that for the negative control (Fig. 6a (sample a-1): ddH₂O). The immunosen-
sor exhibited a higher signal when incubated with a sample including NDV (Fig. 6a (samples a-11, a-16)) than
when incubated with samples containing the possible interferents (Fig. 6a (samples a-2 ~ a-10)). Additionally,
the reproducibility of the fabricated immunosensor to 10⁵.13 and 10³.13 EID₅₀/0.1 mL NDV solutions containing other
interfering substances were measured (Fig. 6a (samples a-12 ~ a-15, a-17 ~ a-20)), and the current variation due
to the interfering substances was less than 5% of that obtained without interferences. The results show that the
developed immunosensor had good selectivity for NDV.

Under the optimal experimental conditions, equivalently prepared immunosensors were used to detect 10⁵.13
EID₅₀ NDV 20 times to evaluate the repeatability of the developed immunosensor, and the results are shown in
Fig. 6b. The relative standard deviation was 2.58%, demonstrating the good repeatability of the immunosensor.
The reproducibility of the immunosensor was evaluated by preparing six different batches of the immunosensor.
independently. A series of six different batches of the immunosensor were prepared for the detection of $10^{3.13}$ EID$_{50}$ NDV, and the results are shown in Fig. 6c. The relative standard deviation was found to be 2.84%, showing the excellent reproducibility.

Long-term storage stability tests show the robustness of an immunosensor. The current responses of the developed immunosensor were periodically checked to evaluate its stability. The immunosensor was stored in PBS (pH = 7.4) at 4 °C when it was not in use. Every week, electrochemical measurements were performed with the developed immunosensor, and the average value was calculated based on five assays. The results shown in Fig. 6d indicated that the immunosensor response current decreased by only 4.1% after 2 weeks. After four weeks, the immunosensor current response decreased by 9.5% relative to its initial current, which indicated that the immunosensor had acceptable storage stability.

Application of the proposed immunosensor for the detection of NDV. Oral and cloacal swab samples, which were gently collected from fowls at different live bird markets in Guangxi Province, were used as clinical samples. A viral transport medium composed of 0.05 mmol/L PBS containing 10 mg/mL gentamycin, 10 mg/mL kanamycin, 10 mg/mL streptomycin, 5% (v/v) foetal bovine serum and 10,000 units/mL penicillin was used to prepare the clinical samples, and the clinical samples were placed in an ice box.

With the permission of the owners of the live bird markets, a total of 120 clinical samples were collected from chickens. The samples were assayed using the proposed immunosensor, and seven NDV-positive samples were detected. Virus isolation3 was employed to confirm the test results. The positive results detected by the developed immunosensor were in agreement with the results of virus isolation, and the results are summarized in Table 1b,c. To test the recovery by the proposed immunosensor, NDV standards were added to the clinical samples that had been confirmed as positive. The results (Table 1d) showed that the fabricated immunosensor

![Figure 5.](image-url)

Figure 5. (a) Typical DPV signals acquired in the presence of different concentrations of NDV with PAb/NDV-Cu(I)/Cu(II)-Chi-Gra as the label: (a-1) 0, (a-2) $10^{0.13}$ EID$_{50}$/0.1 mL, (a-3) $10^{1.13}$ EID$_{50}$/0.1 mL, (a-4) $10^{2.13}$ EID$_{50}$/0.1 mL, (a-5) $10^{3.13}$ EID$_{50}$/0.1 mL, and (a-7) $10^{5.13}$ EID$_{50}$/0.1 mL. (b) Relationship between the antigen concentration and sensor current response corresponding to (a). (c) Typical DPV signals before incubation with NDV (c-1) and in the presence of different concentrations of NDV ((c-2) 0, (c-3) $10^{0.13}$ EID$_{50}$/0.1 mL, (c-4) $10^{1.13}$ EID$_{50}$/0.1 mL, (c-5) $10^{2.13}$ EID$_{50}$/0.1 mL, (c-6) $10^{3.13}$ EID$_{50}$/0.1 mL, (c-7) $10^{4.13}$ EID$_{50}$/0.1 mL, and (c-8) $10^{5.13}$ EID$_{50}$/0.1 mL) with PAb/NDV-Cu(I)/Cu(II)-Chi as the label. (d) Relationship between the antigen concentration and sensor current response corresponding to (c). Error bar = ± standard deviation.
had acceptable recovery (96.28 ~ 104.49). Considering the acceptable recovery in real samples, the immunosensor was found to be practical for sample detection.

Materials and methods

Reagents and materials. MAb/NDV and PAb/NDV were purchased from Abcam (Cambridge, UK). Copper sulfate (CuSO₄), hydrochloroauric acid (HAuCl₄), graphite powder (< 45 mm), KMnO₄, NaNO₃ and H₂SO₄ were supplied by the Guoyao Group Chemical Reagents Co., Ltd., Shanghai. Bovine serum albumin (BSA) was purchased from Sigma (USA). All chemicals used were of analytical reagent grade. Double-distilled deionized water was used in all experiments. In addition, 10 mmol/L PBS (pH = 7.4) was prepared by mixing stock solutions of 10 mmol/L NaH₂PO₄ and 10 mmol/L Na₂HPO₄.

Instruments. SEM was performed on a HITACHI UHR FE-SEM SU8000 Series (SU8020) instrument. FT-IR spectra were collected on a Nicolet IS10 instrument. XPS analysis was performed on an X-ray photoelectron spectrometer (ESCALAB 250Xi, Thermo Scientific). A CHI660D electrochemical workstation (Beijing CH Instruments, Beijing, China) with a standard three-electrode cell (a working electrode, an SCE as the reference electrode and a platinum wire as the auxiliary electrode) was employed to study the electrochemical characteristics. Electrochemical detection was performed at room temperature (25 ± 0.5 °C).

Gra synthesis. A modified Hummers method was used to prepare Gra oxide. In short, NaNO₃ (2.5 g) and graphite powder (1.0 g) were added to concentrated H₂SO₄ (100 mL) and stirred for 2 h. KMnO₄ (5 g) was slowly added to the mixture under continuous stirring, and the mixture was then cooled with ice. Next, the mixture was stirred at 35 °C for 24 h. Double-distilled deionized water (100 mL) was slowly added to the reacted slurry, which was then stirred at 80 °C for another 3 h. Next, more double-distilled deionized water (300 mL) was added to

| Table 1. Comparison of the proposed immunosensor with other sensors for NDV detection (a); results of clinical samples (b); analysis data sheet of positive samples (c); recovery results of clinical samples with different concentrations of NDV (d). |
|---|---|---|---|
| (a) Method | Detection time | Detection limit | References |
| Virus isolation | 4–7 days | 1 EID₃₀/ML | ³ |
| RT-PCR | 5 h | 10⁰-⁰⁵ EID₃₀/0.1 mL | ⁴ |
| Real-time RT-PCR | 3 h | 10² EID₃₀/μL | ³ |
| ICS | 15 min | 10⁰-⁰⁵ EID₃₀/0.1 mL | ⁴ |
| RT-LAMP | 3 h | 1.3 Haemagglutination units | ⁷ |
| Proposed immunosensor | 70 min | 10⁻⁰⁵ EID₃₀/0.1 mL | This study |

(b) Method	Total number of samples	Number of positive samples	Positive rate/%
Proposed immunosensor	120	7	5.8
Virus isolation	120	7	5.8

(c) NO	Measured concentration/ EID₃₀/0.1 mL	Average/EID₃₀/0.1 mL	RSD/% (n = 5)	Results of virus isolation
1	40.74, 39.90, 41.27, 39.15, 42.65	40.74	3.28	Positive
2	92.47, 90.73, 93.04, 91.38, 94.31	92.39	1.52	Positive
3	107.46, 105.92, 108.17, 110.29, 109.67	108.30	1.61	Positive
4	367.41, 370.35, 361.91, 374.34, 354.73	365.75	2.09	Positive
5	409.32, 417.93, 406.78, 423.32, 428.46	417.16	2.19	Positive
6	742.16, 737.59, 731.81, 749.19, 728.94	737.94	1.10	Positive
7	1,490.28, 1,481.38, 1,463.57, 1,447.34, 1,452.85	1,467.08	1.25	Positive

(d) NO	Initial NDV concentration in sample/EID₃₀/0.1 mL	Added NDV amount/ EID₃₀/0.1 mL	Total found	Average/EID₃₀/0.1 mL	RSD/% (n = 5)	Recovery rate/% (n = 5)
1	40.74	50	87.36	2.74	96.28	
2	92.51	100	190.83	2.38	99.13	
3	108.30	500	610.17	2.38	100.31	
4	365.75	1,000	1,363.72	1.47	99.85	
5	417.16	5,000	5,421.03	2.39	100.07	
6	737.94	10,000	11,219.82	3.56	104.49	
7	1,467.08	50,000	50,734.94	2.71	98.58	
the reacted slurry. Then, 6 mL of H₂O₂ (30%) was added (bubbles appeared, and the slurry immediately turned bright yellow). The resulting solution was continuously stirred for 3 h and then precipitated for 24 h at room temperature. The supernatant was subsequently decanted. The resulting yellow slurry was washed with 0.5 mol/L HCl (500 mL) and centrifuged. The solution was washed with double-distilled deionized water and centrifuged until the pH of the solution was neutral (pH = 7.0). Gra oxide was obtained after the solution was ultrasonicated for 2 h. To obtain Gra, Gra oxide was reduced at 95 °C for 3 h using NaBH₄ as a reducing agent.

Preparation of the Chi-Gra nanocomposite. Chi-Gra was prepared according to a previously reported method. Briefly, Chi powder was dissolved in a 1.0% (v/v) acetic acid solution under stirring for 0.5 h at room temperature until it was completely dispersed. The Chi solution (0.5 wt.%) was thus prepared. Then, Gra (10 mg) was added to the Chi solution (10 mL), ultrasonicated for 1 h, and stirred for 24 h at 25 °C. Finally, the Chi-Gra nanocomposite was obtained.

Preparation of the AuNP-Chi-Gra nanocomposite. The AuNP-Chi-Gra nanocomposite was prepared as previously described. Furthermore, 0.5 mL of HAuCl₄ (1 mM) was added to Chi-Gra (5 mL) under stirring at 25 °C for 4 h. Then, the solution was incubated at 80 °C for 1 h with vigorous stirring. Au³⁺ was subsequently reduced to AuNPs by Chi at 80 °C. Finally, the AuNP-Chi-Gra nanocomposite was obtained.

Preparation of the Cu(I)/Cu(II)-Chi-Gra nanocomposite. The Cu(I)/Cu(II)-Chi-Gra nanocomposite was prepared according to the method used to prepare the AuNP-Chi-Gra nanocomposite with certain modifications. CuSO₄·5H₂O was used as the source of copper. First, 10 mg of CuSO₄·5H₂O was added to 5 mL of the Chi-Gra nanocomposite under continuous stirring at 25 °C for 8 h. Then, the mixture was incubated at 95 °C for 4 h under continuous stirring. Finally, the Cu(I)/Cu(II)-Chi-Gra nanocomposite was obtained.
Preparation of PAb/NDV-Cu(I)/Cu(II)-Chi-Gra nanocomposite bioconjugates. First, 5 mL of the Cu(I)/Cu(II)-Chi-Gra nanocomposite obtained from the above preparation method was centrifuged (12,000 rpm, 10 min), the supernatant was discarded, and the residue was washed with double-distilled deionized water three times to remove the excess Chi, Cu²⁺ and SO₄²⁻ that did not combine with Gra. Then, 5.0 mL of a PBS buffer (pH = 7.4) was added to the residue to disperse the Cu(I)/Cu(II)-Chi-Gra nanocomposite, and the mixture was sonicated for 10 min to obtain a homogeneous suspension. Next, 1 mL of PAb/NDV (10 µg/mL) was added to the homogeneous suspension, and the mixture was vigorously stirred for 5 min at 4 °C. Then, 1 mL of 1% glutaraldehyde was slowly added to the solution under continuous stirring. The solution was subsequently incubated at 4 °C for 8 h. The reaction mixture was washed with PBS (pH = 7.4) and centrifuged (12,000 rpm, 10 min) three times. The supernatant was discarded, the resulting mixture was dispersed in PBS (5.0 mL, pH = 7.4), and 1 mL of a 2.0% (w/v) BSA solution was added to the suspension, which was then incubated at 4 °C for 8 h. The obtained PAb/NDV-Cu(I)/Cu(II)-Chi-Gra nanocomposite was stored at 4 °C for further use.

Fabrication of the electrochemical immunosensor. First, 0.05 mm alumina was used to polish a GCE (Ø = 3 mm) until it had a mirror-like surface. Then, the GCE was rinsed with double-distilled deionized water and ultrasonicated in baths of double-distilled deionized water, ethyl alcohol, and double-distilled deionized water to remove any physically adsorbed substances. Next, the GCE was placed in H₂SO₄ (0.05 M) and chemically cleaned until the background signal stabilized. Finally, the GCE was thoroughly rinsed with double-distilled deionized water and dried with nitrogen gas to obtain a clean GCE.

Electrochemical immunosensor detection. A well-known sandwich immunoassay was used to detect NDV. First, the MAb/NDV-AuNP-Chi-Gra modified electrode was incubated with 15 μL of the sample for 30 min and then washed with a PBS buffer (pH = 7.4) to remove non-specifically adsorbed conjugates. Next, the modified electrode was incubated with 200 μL of the PAb/NDV-Cu(I)/Cu(II)-Chi-Gra nanocomposite for 8 h. The resulting electrode (MAb/NDV-AuNP-Chi-Gra-GCE) was immersed in a 1.0% (w/w) BSA solution for 1 h at 37 °C to block the remaining active sites. The final modified electrode was stored at 4 °C when not in use.

Figure 7. Preparation procedures of AuNP-Chi-Gra, Cu(I)/Cu(II)-Chi-Gra (a) and the immunosensor (b).
40 min and washed with a PBS buffer (pH = 7.4). Finally, the resulting electrode was placed in a 0.01 mol/L PBS (pH = 7.4) KCl solution, and DPV experiments were performed (−0.3 to 0.4 V, 50 mV/s) to detect NDV.

Ethics statement. The authors confirm that relevant guidelines were followed for the care and use of animals. This work was approved and conducted by the Animal Ethics Committee of the Guangxi Veterinary Research Institute, which supervises all live bird markets in Guangxi Province. Oral and cloacal swab samples, which were gently collected from fowls at different live bird markets in Guangxi Province, were used as clinical samples. Before sampling, the fowls were not anesthetized, and after sampling, they were returned to their cages and observed for 30 min.

Conclusions

In summary, AuNP-Chi-Gra was used as a platform, and PAb/NDV-Cu(I)/Cu(II)-Chi-Gra was used as a label for signal amplification in this work. Based on the well-known sandwich immunoreaction, a novel electrochemical immunosensor was developed for the quantitative detection of NDV. It exhibited a linear response over a wide range (10^0.13 to 10^13 EID_{50}/mL), had a low detection limit (10^0.68 EID_{50}/0.1 mL), and was more sensitive than an immunosensor with PAb/NDV-Cu(I)/Cu(II)-Chi as the signal label (the limit of detection for NDV was 10^2.00 EID_{50}/0.1 mL). This newly designed immunosensor might have widespread application potential because it had acceptable reproducibility, selectivity and stability; could be obtained by a facile fabrication procedure; and was ultrasensitive for the detection of NDV.

Received: 22 January 2020; Accepted: 12 May 2020

References

1. Brown, V. R. & Bevins, S. N. A review of virulent Newcastle disease viruses in the United States and the role of wild birds in viral persistence and spread. *Vet. Res.* **48**, 68. https://doi.org/10.1186/s13567-017-0475-9 (2017).

2. Ganar, K., Das, M., Sinha, S. & Kumar, S. Newcastle disease virus: Current status and our understanding. *Virus Res.* **184**, 71–81. https://doi.org/10.1016/j.virusres.2014.02.016 (2014).

3. Liu, X. F., Wan, H. Q., Ni, X. X., Wu, Y. T. & Liu, W. B. Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985–2001. *Adv. Virol.* **148**, 1387–1403. https://doi.org/10.1007/s00705-003-0014-z (2003).

4. Ali, A. & Reynolds, D. L. A multiplex reverse transcription-polymerase chain reaction assay for Newcastle disease virus and avian pneumovirus (Colorado strain). *Avian Dis.* **44**, 938–943 (2000).

5. Fratnik Steyer, A., Rojs, O. Z., Krapez, U., Slavec, B. & Barlic-Maganja, D. A diagnostic method based on MGB probes (pH = 7.4). Finally, the resulting electrode was placed in a 0.01 mol/L PBS (pH = 7.4) KCl solution, and DPV experiments were performed (−0.3 to 0.4 V, 50 mV/s) to detect NDV.

6. Liu, X. F., Wan, H. Q., Ni, X. X., Wu, Y. T. & Liu, W. B. Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985–2001. *Adv. Virol.* **148**, 1387–1403. https://doi.org/10.1007/s00705-003-0014-z (2003).

7. Tuteja, S. K. Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985–2001. *Adv. Virol.* **148**, 1387–1403. https://doi.org/10.1007/s00705-003-0014-z (2003).

8. Hosu, O., Selvolini, G., Cristea, C. & Marrazza, G. Electrochemical immunosensors for disease detection and diagnosis. *Curr. Med. Chem.* **25**, 4119–4137. https://doi.org/10.2174/0929867324666170727104429 (2018).

9. Felix, F. S. & Angnes, L. Electrochemical immunosensors—a powerful tool for analytical applications. *Biosens. Bioelectron.* **102**, 470–478. https://doi.org/10.1016/j.bios.2017.11.029 (2018).

10. Aydin, E. B., Aydin, M. & Sezginturk, M. K. Ethrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection. *Biosens. Bioelectron.* **121**, 80–89. https://doi.org/10.1016/j.bios.2018.09.008 (2018).

11. Aydin, E. B., Aydin, M. & Sezginturk, M. K. A highly selective electrochemical immunosensor based on conductive carbon black and star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva. *Biosens. Bioelectron.* **117**, 720–728. https://doi.org/10.1016/j.bios.2018.07.010 (2018).

12. Wang, B. et al. An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. *Biosens. Bioelectron.* **55**, 113–119. https://doi.org/10.1016/j.bios.2013.12.004 (2014).

13. Bhattarai, I. K. et al. Preparation, modification, characterization, and biosensing application of nanoporous gold using electrochemical techniques. *Nanomaterials* https://doi.org/10.3390/nano8030171 (2018).

14. Sun, D. et al. Electrochemical immunosensors with AuPt-verticale graphene/glassy carbon electrode for alpha-fetoprotein detection based on label-free and sandwich-type strategies. *Biosens. Bioelectron.* **132**, 68–75. https://doi.org/10.1016/j.bios.2019.02.045 (2019).

15. Rezaei, B. et al. An electrochemical immunosensor for cardiac Troponin I using electropun carboxylated multi-walled carbon nanotube-whiskered nanofibres. *Talanta* **182**, 178–186. https://doi.org/10.1016/j.talanta.2018.01.046 (2018).

16. Sun, B. et al. Investigate electrochemical immunosensor of cortisol based on gold nanoparticles/magnetic functionalized reduced graphene oxide. *Biosens. Bioelectron.* **88**, 55–62. https://doi.org/10.1016/j.bios.2016.07.047 (2017).

17. Tuteja, S. K. et al. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). *Biosens. Bioelectron.* **86**, 548–556. https://doi.org/10.1016/j.bios.2016.07.052 (2016).

18. Bhardwaj, H., Pandey, M. K. & Rajesh, S. G. Electrochemical Aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. *Microchim. Acta* **186**, 592. https://doi.org/10.1007/s00604-019-3701-5 (2019).

19. Stankovich, S. et al. Graphene-based composite materials. *Nature* **442**, 282–286. https://doi.org/10.1038/nature04969 (2006).

20. Geim, A. K. & Novoselov, K. S. The rise of graphene. *Nat. Mater.* **6**, 183–191. https://doi.org/10.1038/nmat1849 (2007).

21. Liu, J. et al. Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. *Biosens. Bioelectron.* **65**, 281–286. https://doi.org/10.1016/j.bios.2014.10.016 (2015).

22. Li, L., Zhang, L., Yu, J., Ge, S. & Song, X. All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. *Biosens. Bioelectron.* **71**, 108–114. https://doi.org/10.1016/j.bios.2015.04.032 (2015).

23. Huang, J. et al. Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. *Anal. Chim. Acta* **913**, 121–127. https://doi.org/10.1016/j.aca.2016.01.050 (2016).
Copyright 2020 The Author(s)

Acknowledgements
This research project was funded by the Guangxi Science and Technology Projects (AB16380054), Guangxi Science Base and Talents Special Program (AD17195083), Guangxi Shi Bai Qian Talents Engineering Base and Talents Special Program (AD17195083), Guangxi Science Great Special Program (AA17204057), and Guangxi BaGui Scholars Program Foundation (2019-79) and Guangxi Shi Bai Qian Talents Engineering Foundation ((2020)24).

Author contributions
J.L.H. and Z.X.X. designed and conceived the experiments; J.L.H., Z.X.X., Y.H.H. and L.J.X. performed the experiments; and J.L.H., S.S.L., Q.F., T.T.Z., Y.F.Z., S.W., M.X.Z., Z.Q.X., and X.W.D. analysed the data and contributed reagents/materials/analysis tools. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020