Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Kidney transplant patients with SARS-CoV-2 infection: The Brescia Renal COVID task force experience

Nicola Bossini¹ | Federico Alberici¹,² | Elisa Delbarba¹ | Francesca Valerio¹ |
Chiara Manenti¹ | Stefano Possenti¹ | Laura Econimo¹ | Camilla Maffei¹ |
Alessandra Pola¹ | Vincenzo Terlizzi¹ | Chiara Salviani¹ | Marianna Moscato¹ |
Stefano Pasquali¹ | Nicole Zambetti¹ | Michela Tonoli¹ | Stefania Affatato¹ |
Paola Pecchini³ | Fabio B. Viola¹ | Fabio Malberti³ | Giorgio Depetri⁴ |
Mario Gaggiotti¹ | Francesco Scolari¹,² | on behalf of the Brescia Renal COVID task force

¹Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Brescia, Italy
²Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
³Nephrology Unit, ASST Cremona, Cremona, Italy
⁴Nephrology Unit, ASST Crema, Crema, Italy

Correspondence
Federico Alberici
Email: federico.alberici@unibs.it

The outcome of kidney transplant patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still unclear. Here we describe the clinical characteristics, disease outcome, and risk factors for acute respiratory distress syndrome (ARDS) and death of a cohort of 53 kidney transplant patients with coronavirus disease 2019 (COVID-19). Eight of 53 have been handled as outpatients because of mild disease, on average with immunosuppression reduction and the addition of hydroxychloroquine and azithromycin; no patients required admission, developed ARDS, or died. Because of severe symptoms, 45/53 required admission: this cohort has been managed with immunosuppression withdrawal, methylprednisolone 16 mg/d, hydroxychloroquine, and antiviral drugs. Dexamethasone and tocilizumab were considered in case of ARDS. About 33% of the patients developed acute kidney injury, 60% ARDS, and 33% died. In this group, thrombocytopenia was associated to ARDS whereas lymphopenia at the baseline, higher D-dimer, and lack of C-reactive protein reduction were associated with risk of death. In the overall population, dyspnea was associated with the risk of ARDS whereas lymphopenia at the baseline, higher D-dimer, and lack of C-reactive protein reduction were associated with risk of death. In the overall population, dyspnea was associated with the risk of ARDS and age older than 60 years and dyspnea were associated with the risk of death with only a trend toward an increased risk of death for patients on tacrolimus. In conclusion, SARS-CoV-2 infection may have a variable outcome in renal transplant patients, with higher risk of ARDS and death in the ones requiring admission.

KEYWORDS
clinical research/practice, infection and infectious agents – viral, infectious disease, kidney disease: infectious
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the general population may present a variable outcome ranging from mild to severe/life-threatening forms. We have recently described the first cohort of kidney transplant patients with coronavirus disease 2019 (COVID-19) treated with a therapeutic approach based on immunosuppression withdrawal, higher-dose steroids, antivirals, hydroxychloroquine, and dexamethasone with or without tocilizumab for the subgroup developing acute respiratory distress syndrome (ARDS) with progressive respiratory failure; the mortality rate of this population was 25%. Since our preliminary report and at the time of the first version of this paper (end of April 2020), 2 further monocentric case series of kidney transplant patients had been published with variable outcomes: the Columbia and the Montefiore Medical Center cohorts, which included, respectively, 15 and 36 patients with mortality rates of 7% and 28%. In both of these cohorts, the antimetabolite was withdrawn, while the calcineurin inhibitors (CNIs) cessation was restricted to severe cases. The vast majority of the Columbia cohort patients received hydroxychloroquine and azithromycin, whereas these drugs were employed, respectively, in 86% and 46% of the Montefiore Medical Center cohort. Tocilizumab was administered only in a few cases.3,4

Here we describe the clinical characteristics and outcomes of a cohort of 53 kidney transplant patients (KTx) with COVID-19 followed within 3 centers of the Brescia Renal COVID task force and try to identify prognostic factors for poor outcome. The manuscript includes 20 patients already described in another report1 with extended follow-up and 33 patients who have not been, until now, the subject of publication.

2 | METHODS

From March 1 to April 16, 2020, we enrolled all KTx with SARS-CoV-2 infection admitted within 3 centers of the Brescia Renal COVID task force (Spedali Civili of Brescia, Cremona Hospital, and Crema Hospital) and all the kidney transplant outpatients with proven SARS-CoV-2 infection followed at Spedali Civili of Brescia. To be eligible for this study, patients had to have symptoms compatible with COVID-19 and a positive reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV2; no asymptomatic patients identified during contact screening have been included in this survey.

The indication on patients’ management (inpatients vs outpatients) was based only on symptom severity as well as the presence of signs or symptoms of ongoing pneumonia.

The therapeutic strategy followed our protocol.2 Antiviral therapy with lopinavir/ritonavir associated with hydroxychloroquine (with dose adjusted according to kidney function) was considered for all patients requiring admission, if not contraindicated, for a treatment length of a minimum of 7 days up to a maximum of 15 according to clinical evolution or treatment with glucocorticoids and/or tocilizumab. In case of shortage of lopinavir/ritonavir, darunavir and ritonavir were employed.

Patients experiencing clinical deterioration after at least 7 days following symptom onset, or no fever for >72 hours, with escalating oxygen requirements, progression of the chest X-ray, and no signs of bacterial infection, were considered for dexamethasone (20 mg/daily for 5 days, then 10 mg/daily for 5 days) and up to 2 tocilizumab infusions at an interval of 12-24 hours (8 mg/kg of body weight, maximum dose per infusion 800 mg).

Considering the well-known potential of lopinavir/ritonavir and hydroxychloroquine for increasing QTc, a baseline electrocardiogram was performed before therapy commencement and, afterwards, every 2-3 days; in case of QTc prolongation a reduction or discontinuation of treatment was considered in a case-by-case manner.

The outpatients were monitored daily, using a telemedicine approach; in this subgroup baseline blood tests were not performed in order to promote social distancing.

Low dose of glucocorticoids was defined as methylprednisolone 4 mg or equivalent; medium dose of glucocorticoids was defined as 16 mg of methylprednisolone or equivalent. ARDS was defined as per previous publications.5

Ethical approval for this study was obtained according to Italian regulations.

2.1 | Statistical analyses

Statistical analysis was performed using R software (https://www.r-project.org) and GraphPad Prism 7. Results are expressed as the number and percentage for categorical variables and the median (interquartile range [IQR]) for continuous variables.

Changes in variables were compared by a related sample Wilcoxon test, proportions of patients were compared using a chi-square or Fisher test, as appropriate.

Univariate and multiple logistic regression models were used to assess the ability of some predefined clinical characteristics to predict the risk of ARDS or death. All the statistically significant predictors at univariate analysis were entered in a multivariate model; age at disease diagnosis was added to the multivariate models as a factor likely to play an a priori role.6 Finally, the best multivariate model was identified by adopting a stepwise selection approach. Odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated from logistic regression analysis. \(P < .05 \) (2-tailed) were considered significant.

3 | RESULTS

Fifty-three patients were included in this study; all the patients had symptoms suggestive for COVID-19 and had been assessed in the emergency room or in our clinics. In both settings, patients received the swab and were then admitted in case of severe symptoms and/or low blood oxygen levels or managed as outpatients in the case of mild symptoms and normal blood oxygen levels. For all the patients,
La diagnóstico ha sido establecido mediante RT-PCR de swabs nasofaringeos. De los 53 pacientes, 42 han sido manejados como ingresados y 11 como outpatients; de la última categoría, 3 fueron admitidos en un período de 3 días desde el diagnóstico debido a la presencia de síntomas y fueron considerados en el grupo de ingreso. De los 45 pacientes admitidos, 28 fueron atendidos en el Spedali Civili de Brescia, 13 en el Cremona hospital, y 4 en el Crema hospital. Las características del paciente se muestran en la Tabla 1.

3.1 | Outpatients’ cohort

Este grupo incluyó a 8 pacientes; el tiempo medio transcurrido desde el inicio de los síntomas hasta el diagnóstico fue de 4,5 días (IQR 2,8-8). Solo 1 paciente de este grupo tenía una radiografía de tórax disponible que mostraba infiltrados unilaterales; los análisis de sangre se encuentran disponibles para este grupo. Las características principales se muestran en la Tabla 1. Los cambios en el esquema inmunosupresor y los glucocorticoides están representados en la Figura 1, panel A.

En este grupo, los antivirales no se administraron, mientras que todos los pacientes recibieron hidroxicloroquina durante 10 días desde el inicio de los síntomas y azitromicina para un tiempo medio de 5 días (IQR 5-6) después de 5 días (IQR 4-10) desde el inicio de los síntomas. No se produjeron eventos adversos debido a la administración de los nuevos medicamentos.

El tiempo medio de seguimiento en este grupo fue de 26 días (IQR 23-29) durante el cual 6/8 pacientes experimentaron el inicio de nuevos síntomas comparados al inicio: tos en 4/6, malestar o fatiga en 3/6 y síntomas gastrointestinales en 2/6. Cinco de 8 pacientes experimentaron el negativo RT-PCR después de un período de 21 días (IQR 19-27) desde el inicio de los síntomas y 14 días (IQR 13-16) después del diagnóstico. No se requirieron medicamentos inmunosupresores o desarrollaron síntomas de ARDS. A la revisión del seguimiento, 5/8 pacientes estaban en el esquema inmunosupresor y no requirieron hospitalización en el contexto de los nuevos medicamentos.

3.2 | Admitted cohort

Cuarenta y cinco de los 53 pacientes requirieron hospitalización; el tiempo medio desde el inicio de los síntomas hasta el ingreso fue de 7 días (IQR 4-10), mientras que el tiempo desde el inicio de los síntomas hasta el negativo RT-PCR fue de 6 días (IQR 3-9). Las características principales se muestran en la Tabla 1. Todos los pacientes experimentaron cambios en los medicamentos inmunosupresores después de 7 días (IQR 3-9) desde el inicio de los síntomas. El esquema terapéutico está representado en la Figura 1, panel B; los cambios inmunosupresores permanentes se produjeron en el contexto del inicio de nuevos medicamentos.

Durante un período medio de estancia hospitalaria de 11 días (IQR 7-16), 27/45 (60%) desarrollaron síntomas de ARDS y 10/45 (22%) requirieron cuidado en la unidad de cuidados intensivos (ICU). De estos pacientes, 8/9 (90%) requirieron ventilación mecánica y de estos pacientes 8/9 (90%) requirieron ventilación mecánica. El tratamiento antiviral fue asociado con un aumento del riesgo de muerte (respectivamente, OR 2,1, P = .0007 y OR 33,1, P = .002). Se consideraron los pacientes que tuvieron ARDS, 7/17 (41%) después de 14 días; de estos 7 pacientes, 6 no fueron considerados para el tratamiento con ICU debido a la presencia de comorbilidades y 1 no recibió tratamiento con ICU. En el grupo de 45 pacientes, 15 (33%) desarrollaron AKI y 3/15 (20%) requirieron hemodiálisis.

Cinco de 45 (33%) pacientes murieron; de 14/15 el tiempo de muerte fue igual a 14 días. Entre los 45 pacientes, 15 murieron por sufrimiento respiratorio (proteínas de reacción C-reactiva [CRP], alto procalcitonin en el contexto de ARDS).

Para el tratamiento de ARDS y en el contexto de la disfunción respiratoria, 18/45 (40%) recibieron dexametasona: 10/18 (56%) murieron, y 6/18 (33%) fueron descalificados. Veintiún (50%) de estos pacientes 3/8 murieron y 3/8 (38%) fueron descalificados. Seis de 8 (63%) pacientes fueron admitidos y recibieron dexametasona y tocilizumab. Seis de 18 pacientes (44%) mejoraron en términos de radiografía de tórax o disfunción respiratoria. Tres de 18 pacientes (17%) murieron y 6/18 (33%) fueron descalificados.

Al final del seguimiento, 27/45 pacientes murieron (60%) fueron descalificados. En el momento de la revisión, todos los pacientes continuaron el esquema inmunosupresor durante la hospitalización (Tabla 1). Entre los descalificados, 20/27 tuvieron un seguimiento medio de 19 días (IQR 15-22). Durante este seguimiento, el esquema inmunosupresor fue modificado en 17/20: 13/17 aumentó la dosis de prednisona a 8 mg/d y introdujo la CNI a la dosis total comparada con el diagnóstico, 2/17 aumentó la dosis de prednisona a 8 mg/d y introdujo el CNI y los inmunosupresores a la dosis de 16 mg/d y redujo el CNI y los inmunosupresores a la dosis de 16 mg/d y redujo el CNI y los inmunosupresores a la dosis de 16 mg/d y redujo la inhibición de la efectividad del RX-575.

3.3 | Blood tests

Los análisis de sangre de los 45 pacientes ingresados se muestran en la Tabla 1. Los pacientes con conteo de plaquetas menor a 160 × 10³/µL fueron encontrados con un aumento del riesgo de ARDS (OR 6: 95% CI, 1,5-29,5; P = .02), mientras que los pacientes con conteo de linfocitos menor a 0,6 × 10³/µL mostraron un aumento del riesgo de muerte en el contexto de la disfunción respiratoria (OR 4,9: 95% CI, 0,95-37,8; P = .078) (Tabla 2). De los pacientes que fueron admitidos presenta un aumento del contenido creatínico de 21% (IQR 7%-30%) comparado con el basale, mientras que el contenido máximo creatinico
TABLE 1 Baseline clinical characteristics of 53 kidney transplant patients affected by SARS-CoV-2 infection and followed within 3 centers of the “Brescia Renal COVID task force”

Characteristics	All patients (53)	Outpatients (8)	Admitted (45)
Male/female	42 (79%)	6 (75%)	36 (80%)
Age (y)	60 (IQR 50-67)	62 (IQR 52-71)	60 (IQR 50-67)
Cause of ESRD			
ADPKD	12 (23%)	1 (13%)	11 (24%)
Not determined	17 (32%)	2 (25%)	15 (33%)
IgA	8 (15%)	3 (38%)	5 (11%)
CAKUT	5 (9%)	0	5 (11%)
Other glomerulonephritis	6 (11%)	0	6 (13%)
Other	5 (9%)	2 (25%)	3 (7%)
Comorbidities			
Hypertension	42/53 (79%)	6/8 (75%)	36/45 (80%)
Cardiac diseases	10/53 (19%)	1/8 (13%)	9/45 (20%)
Previous DVT	4/53 (8%)	0/8 (0%)	4/45 (9%)
Diabetes	11/53 (21%)	1/8 (13%)	10/45 (22%)
Other	4/53 (8%)	0/8 (0%)	4/45 (9%)
Type of transplant			
Dead donor – single kidney	45/53 (85%)	8/8 (100%)	37/45 (82%)
Live donor	5/53 (9%)	0	5/45 (11%)
Other ^b	3/53 (6%)	0	3/45 (7%)
Induction			
Thymoglobulin	17/38 (45%)	4/8 (50%)	14/32 (44%)
Basiliximab	14/38 (37%)	3/8 (38%)	12/32 (38%)
Alemtuzumab	6/38 (16%)	0	6/32 (19%)
Other	1/38 (3%)	1/8 (13%)	0
Baseline immunosuppression			
Cyclosporine	17/53 (32%)	3/8 (38%)	14/45 (31%)
Tacrolimus	31/53 (58%)	3/8 (38%)	28/45 (62%)
mTORi	6/53 (11%)	1/8 (13%)	5/45 (11%)
MMF	32/53 (60%)	6/8 (75%)	26/45 (58%)
Low dose glucocorticoids^a	30/53 (57%)	6/8 (75%)	24/45 (53%)
Baseline creatinine (mg/dL)	1.83 (1.5–2.4)	2.1 (1.8–2.5)	1.8 (1.5–2.4)
Transplant age (y)	9.2 (IQR 4–16)	15 (IQR 4–17)	9 (IQR 4–15)
SARS-CoV-2 infection symptoms at disease onset			
Temperature (>37.5°C)	51/53 (96%)	7/8 (88%)	44/45 (98%)
Cough	26/53 (49%)	3/8 (38%)	23/45 (51%)
Gastrointestinal symptoms	9/53 (17%)	2/8 (25%)	7/45 (16%)
Pharyngitis	7/53 (13%)	0/8	7/45 (16%)
Shortness of breath	15/53 (28%)	0/8	15/45 (33%)
Myalgia	18/54 (33%)	2/8 (25%)	16/45 (36%)
Baseline chest X-ray			
No infiltrates	–	–	1/39 (3%)
Unilateral infiltrates	12/40 (30%)	1/1 (100%)	11/39 (28%)
Bilateral infiltrates	–	–	27/39 (69%)
Baseline chest CT			

(Continues)
during the stay in hospital compared to baseline was 0% (IQR 0%-13%); for the discharged patients, the serum creatinine compared to the baseline was −8% (IQR −20% to 7.1%); creatinine changes during admission and compared to baseline for the subgroup of 28 patients admitted in the Spedali Civili of Brescia are shown in Figure 2.

For the subgroup of 28 patients admitted in the Spedali Civili of Brescia, longitudinal blood tests have been available (Figure 3). In the subgroup of patients who eventually died, baseline lymphocyte count was significantly lower (P = .008, Figure 3, panel A), baseline D-dimer was significantly higher (P = .02, Figure 3, panel F) and the CRP tended to remain higher during the follow-up, although the difference was statistically significant only at the time point “Days 13-15” (P = .018, Figure 3, panel D). The through levels of tacrolimus and cyclosporine tended to slowly decrease during the follow-up, despite CNIs were withdrawn at admission (Figure 3, panel H).

3.4 Clinical characteristics associated to the risk of ARDS and death

In the overall population of 53 patients, at univariate analysis, the only clinical characteristic associated to the risk of developing ARDS was shortness of breath at disease onset (OR 5.9; 95% CI, 1.6-29; P = .015). A trend for increased risk of ARDS was recorded in patients on tacrolimus (OR 2.77; 95% CI 0.91-8.9; P = .077) and in patients with pharyngitis at disease onset (OR 6.9; 95% CI, 0.76-61.7; P = .09), whereas a protective trend toward the risk of ARDS was a transplant vintage >10 years (OR 0.37; 95% CI, 0.12-1.1; P = .078) and the presence of gastrointestinal symptoms at disease onset (OR 0.21; 95% CI, 0.04-1.1; P = .07) (Table 3). At the multivariate analyses including age as risk factor identified a priori, dyspnea at disease onset was associated with the risk of development of ARDS (OR 6.61; 95% CI, 1.7-35; P = .013) (Table 4).

Clinical characteristics associated to the risk of death at univariate analysis were immunosuppression with tacrolimus (OR 4; 95% CI, 1.1-19.7; P = .05) and shortness of breath at disease onset (OR 7.75; 95% CI, 2.1-32.2; P = .003) (Table 3). At multivariate analysis including age as risk factor identified a priori, age >60 and shortness of breath have been identified as risk factors for death (OR 1.12; 95% CI, 1.03-1.24; P = .01 and OR 13.7; 95% CI, 2.7-68.9; P = .004, respectively); only a trend as risk factor for treatment with tacrolimus has been identified (OR 4.8; 95% CI, 0.97-32; P = .07) (Table 4).

4 DISCUSSION

The first version of this paper was drafted at the end of April 2020 when, apart from our preliminary cohort of 20 patients, reports of only 2 further cohorts of kidney transplant patients had been published; at that
stage the outcome of this population was still relatively unclear with mortality ranging from 7% to 28%. Since then, further data became available and the mortality of kidney transplant patients with SARS-CoV-2 infection appears now to have been consistently described as around 25%-28% across different cohorts with a sufficient sample size and follow-up.1,3,4,7-9 Our findings suggest a clear difference in terms of outcome according to disease severity; patients with mild symptoms and manageable at home experienced a benign disease course, whereas patients requiring hospitalization experienced a mortality rate of 33%; the overall fatality rate of our population was 28%. Of interest, this wide spectrum of disease severity is in keeping with what is described in the general population as well as in other KTx transplant

FIGURE 1 Therapeutic approach in a cohort of 53 kidney transplant patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and followed within 3 centers of the “Brescia Renal COVID task force”

TABLE 2 Univariate analyses of the association between baseline blood tests and the risk of ARDS or death in 45 kidney transplant patients admitted for SARS-CoV-2 infection in 3 centers of the “Brescia Renal COVID task force”

Variable	Outcome ARDS	Outcome death
WBC (≤6 vs >6 ×10^9/µL)	0.5 (0.13-1.89)	0.078 (0.16-3.3)
Lymphocytes (≤0.6 vs >0.6 ×10^9/µL)	3.1 (0.76-13.9)	4.9 (0.95-37.8)
Platelets (≤160 vs >160 ×10^3/µL)	6 (1.5-28.5)	1.4 (0.34-6)
LDH (>260 vs ≤260 U/L)	0.8 (0.15-4.16)	1.25 (0.24-6.79)
Ferritin (>450 vs ≤450 µg/L)	0.8 (0.06-9.3)	1.25 (0.11-14.8)
D-dimer (>400 vs ≤400 ng/mL)	1.7 (0.19-15.7)	1.2 (0.13-12.8)
CRP (>40 vs ≤40 mg/L)	1.41 (0.38-5.34)	1.4 (0.34-6)
Creatinine (>2.5 vs ≤2.5 mg/L)	1.25 (0.33-4.9)	0.78 (0.17-3.27)

Abbreviations: ARDS, acute respiratory distress syndrome; CI, confidence interval; CRP, C-reactive protein; LDH, lactate dehydrogenase; OR, odds ratio; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WBC, white blood cells.

Bold values: statistically significant.
cohorts\(^{10}\) although the mortality rate of the latter group, when presenting with severe disease, appears to be higher;\(^ {11}\) of note, this variability has been observed also in the hemodialysis population.\(^ {12}\)

In our admitted kidney transplant population, we adopted from day one a policy based on immunosuppression cessation, introduction/increase of the glucocorticoid dose to methylprednisolone 16 mg or equivalent dose of prednisone, antivirals, and hydroxychloroquine.\(^ {2}\) In our outpatient population, we opted, on average, to withdraw the antiproliferative, reduce the CNI dose, and start hydroxychloroquine and azithromycin. Of note, in both our subgroups adverse events due to the therapeutic approach were rare and no cardiac toxicity has been documented. The interaction between antivirals and CNIs metabolism has been well documented and this may explain the slow reduction rates of cyclosporine and tacrolimus in our population; the impact of this on kidney function evolution as well as the overall outcome is unclear. The combined approach of protease inhibitors start and CNIs withdrawn seems reasonable because of the interactions in the metabolism of the 2 drugs; however, caution in terms of CNIs withdrawn in different clinical contexts where protease inhibitors are not employed should be advised. Of note, heterogeneous approaches in terms of CNIs management for renal transplant patients during COVID-19 outbreaks have been described ranging from our approach to their maintenance.\(^ {3}\)

In the general population, the role of antivirals is debated. Remdesivir seems a promising option\(^ {13}\) while the benefits of lopinavir/ritonavir are contradictory;\(^ {14,15}\) of note, for the latter a trend toward a reduced risk of death was observed in a randomized controlled trial in the general population although the difference was not statistically significant compared to placebo. It should be stressed that the viral load may represent a risk factor for severe disease\(^ {16}\) and impacting on this might reduce the risk of ARDS.\(^ {15}\) The mortality rate of our cohort was similar to that of one of the other kidney transplant case series\(^ {9}\) and of interest was higher compared to carriers of liver transplant.\(^ {17}\) Of interest, case fatality rate was similar to that of the Montefiore Medical Center, where no antivirals were employed;\(^ {4}\) this might be...
interpreted as in support for a lack of role for the antivirals commercially available at the moment. However, in our opinion, data are still scarce and more information is needed including long-term outcomes in terms of patients’ survival, renal outcome, and residual lung damages as a consequence of the infection.

An inflammatory syndrome is likely to be central in the development of ARDS and progressive respiratory failure in a subgroup of patients. Longitudinal blood tests showed persistently high CRP levels in the subgroup that would die compared to the one with a more favorable outcome. In this context, a role for anti-inflammatory approaches have been proposed: in our cohort patients with ARDS were treated with high-dose steroids, with or without tocilizumab. Although this subgroup experienced, on average, an unfavorable outcome, the combination of these 2 drugs was associated with higher rates of chest X-ray and respiratory failure improvements compared to the use of dexamethasone alone (63% vs 40%); these results are too preliminary to draw conclusions on the potential role of combining tocilizumab with glucocorticoids in this clinical setting and further studies will be needed to clarify this aspect.

Variable	Outcome ARDS OR (95% CI)	P value	Outcome death OR (95% CI)	P value
Sex	0.52 (0.12-1.99)	.35	0.62 (0.15-2.74)	.51
Age (>60 vs ≤60)	1.47 (0.5-4.41)	.49	2.06 (0.62-7.29)	.24
History of hypertension	0.83 (0.21-3.18)	.79	0.38 (0.08-1.3)	.93
History of cardiac disease	1.57 (0.39-6.89)	.53	1.94 (0.43-8.15)	.37
History of DVT	3.13 (0.37-65.6)	.34	2.77 (0.31-25.1)	.33
History of diabetes	3.23 (0.81-16.34)	.12	1.61 (0.36-6.48)	.51
Number of comorbidities (0-1 vs >1)	0.94 (0.3-3)	.92	0.96 (0.25-3.34)	.95
CNIs last follow-up	1.63 (0.25-13.2)	.61	5.1 (0.26-98)	.99
Cyclosporin last follow-up	0.39 (0.11-1.26)	.122	0.43 (0.09-1.64)	.24
Tacrolimus last follow-up	2.77 (0.91-8.9)	.077	4 (1.1-19.7)	.05
mTORI last follow-up	0.96 (0.16-5.64)	.96	0.47 (0.02-3.3)	.51
MMF last follow-up	1.25 (0.41-3.81)	.7	2.23 (0.63-9.2)	.23
Low dose steroids last follow-up	1.7 (0.57-5.19)	.343	1.8 (0.53-6.71)	.36
Baseline creatinine (≤2 vs >2 mg/dL)	1.37 (0.46-4.2)	.58	1.03 (0.29-3.56)	.96
Age transplant (>10 vs ≤10 y)	0.37 (0.12-1.1)	.078	0.5 (0.13-1.69)	.28
Cough at disease onset	1.17 (0.39-3.5)	.78	1.76 (0.53-6.24)	.36
Pharyngitis at disease onset	6.9 (0.76-61.7)	.09	2.06 (0.36-10.7)	.39
Shortness of breath at disease onset	5.9 (1.6-29.1)	.015	7.75 (2.1-32.2)	.003
Myalgia or fatigue at disease onset	1.25 (0.4-4)	.703	0.6 (0.14-2.14)	.45
Gastrointestinal symptoms at disease onset	0.21 (0.04-1.1)	.07	0.26 (0.01-1.62)	.22
Chest X-ray (bilateral infiltrates vs unilateral or no infiltrates)	1.7 (0.46-6.7)	.44	3.24 (0.68-23.7)	.18
Time from symptoms to antiviral (>5 vs ≤5 d)	0.82 (0.22-2.95)	.76	0.8 (0.20-3)	.74
Antiviral therapy	2.38 (0.78-7.6)	.133	1.45 (0.43-5.43)	.56
Hydroxychloroquine	1.56 (0.46-5.54)	.48	0.98 (0.26-4.2)	.98

Abbreviations: ARDS, acute respiratory distress syndrome; CI, confidence interval; CNI, calcineurin inhibitor; DVT, deep vein thrombosis; MMF, mofetil mycophenolate; mTORI, inhibitors of the mammalian target of rapamycin; OR, odds ratio; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; Bold values: statistically significant.
Moreover, in the light of recent reports, the role of glucocorticoids in COVID-19 patients is debated and on average discouraged during the viremic phase; however, our approach has been to employ moderate dose of glucocorticoids only in the patients with ARDS and progressive respiratory failure at distance from the likely viremic phase. Of note, the benefits of such approach has been confirmed in the preliminary results of the RECOVERY trial that showed a role for dexamethasone in reducing mortality in mechanically ventilated patients and in the ones receiving oxygen. It should, however, be stressed that, although in our therapeutic protocol moderate doses were reserved only to the subgroup with ARDS, lower doses have been employed from the day of admission because of the concerns of increased risk of rejection secondary to the reduction of the immunosuppression; the impact of this change at early stages of hospitalization will need to be clarified.

Our study provides some information on the role of baseline and longitudinal blood tests on the outcome. Low platelets and lymphocytes were found, respectively, associated with an increased risk of ARDS and to a trend toward an increased risk of death. In a subgroup of 28 patients, the ones who eventually died had lower baseline lymphocyte counts compared to the rest of the population; of interest the trend toward a further reduction of the lymphocyte count during follow-up was similar in the two groups. In the same population, D-dimer at admission was higher. These findings are in keeping with what was already described in the general population. The mechanisms causing lymphopenia are still to be clarified and range from potential direct viral infection of the lymphocytes to a possible role for the inflammatory milieu associated with the disease.

With the first wave of SARS-CoV-2 infections diminishing in Italy, the focus is now moving to how to routinely manage renal transplant patients in the COVID-19 era with a special focus on how and if modifications of the baseline immunosuppression would be required in the entire transplant population. In our cohort, the use of tacrolimus as baseline CNI showed a trend as a risk factor for ARDS and a significant association as a risk factor for death at univariate analysis; the latter maintained a trend as a risk factor also after multivariate analysis. In a model of multivariate analyses not shown in the results and including baseline therapy with tacrolimus, age, transplant vintage, and dyspnea at disease onset, the trend of treatment with tacrolimus as a risk factor for death has been maintained (OR 6.9; 95% CI, 0.99-67; \(P = .07 \)). The reasons for this association are unclear. For both cyclosporine and tacrolimus, an antiviral effect in general, and toward the coronaviruses more specifically, was described in vitro. However, data in vivo or regarding their effects on SARS-CoV-2 are not available and importantly this should be balanced against the higher potency of tacrolimus compared to cyclosporine. Of note, this finding may be a consequence of our population characteristics; however, of interest, a benign outcome of COVID-19 during a cyclosporine-based therapy in kidney transplant patients has been proposed also in other cohorts. Despite that, this result will need to be interpreted with caution and further investigations will be required in order to provide confirmation.

Our study has some strengths: it includes a big cohort of kidney transplant patients, the therapeutic approach has been homogenous allowing robust data interpretation and comparisons with other published cohort with similar consistent approaches.

Limitations need to be acknowledged: despite the cohort size, this is still a relatively small study; moreover, our population has on average a severe disease profile and therefore our findings may not necessarily be extended to subgroups with mild symptoms or even who are asymptomatic at the moment of the diagnosis. Importantly, our findings are restricted to a short follow-up time and long-term observations will need to be performed in order to better clarify the outcome of kidney transplant patients with COVID-19. Of note, the mortality rates of the patients with ARDS managed in ICU and in the ward (respectively, 80% and 41%) may be a consequence of the different disease severity in the 2 subgroups; however, an impact for delayed ICU referral as well as reduced ICU availability at some stages of the emergency may have played a role in the overall fatality rates of our population with ARDS. It is necessary to underline, however, that among the 7 patients with ARDS and managed in the ward who would later die, 6 had not been considered eligible for ICU because comorbidities and therefore an unfavorable risk benefit balance; however, it should be acknowledged that this happened in the context, at least at some point of the emergency, of reduced resources. One of these 7 patients refused ICU care.

Of note, Italy in general and the province of Brescia in particular has been among the first western areas hit by this epidemic, urging physicians in employing treatment protocols based on partial evidence. At the moment of the writing, data do not further support a role for hydroxychloroquine in preventing the development of severe disease or in preventing the development of symptoms as postexposure prophylaxis; however, protocols designed before this publication have extensively employed this approach in kidney transplant population.
It should also be underlined that data on the general population may not necessarily be applicable to the kidney transplant population.

In conclusion, renal transplant patients may experience a heterogeneous range of disease severity; the ones requiring admission may experience a poor outcome with high ARDS and mortality rates. The ideal therapeutic approach other than supportive care is still unclear and the impact of the single interventions to be determined.

DISCLOSURE
The authors of this manuscript have no conflict of interest to disclose as described by the American Journal of Transplantation.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Federico Alberici https://orcid.org/0000-0002-1686-5709

REFERENCES
1. Alberici F, Delbarba E, Manenti C, et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney Int. 2020;97(6):1083-1088. In press.
2. Alberici F, Delbarba E, Manenti C, et al. Management of patients on dialysis and with kidney transplantation during the SARS-CoV-2 (COVID-19) pandemic in Brescia, Italy. Kidney Int Rep. 2020;5(5):580-585. In press.
3. The Columbia University Kidney Transplant Program. Early description of coronavirus 2019 disease in kidney transplant recipients in New York. JASN. 2020;31(6):1150-1156. In press.
4. Akalin E, Azzi Y, Bartash R, et al. Covid-19 and kidney transplantation. N Engl J Med. 2020;382(25):2475-2477.
5. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526-2533.
6. McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020;382(21):2005-2011.
7. Tschopp J, L’Huillier AG, Mombelli M, et al. First experience of SARS-CoV-2 infections in solid organ transplant recipients in the Swiss Transplant Cohort Study. Am J Transplant. 2020. https://doi.org/10.1111/ajt.16062
8. Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. Am J Transplant. 2020;20(7):1800-1808.
9. Maggiore U, Abramowicz D, Crespo M, et al. How should I manage immunosuppression in a kidney transplant patient with COVID-19? An ERA-EDTA DESCARTES expert opinion. Nephrol Dial Transplant. 2020;35(6):899-904.
10. Hussein SA, Dube G, Morris H, et al. Early outcomes of outpatient management of kidney transplant recipients with coronavirus disease 2019. Clin J Am Soc Nephrol. 2020. https://doi.org/10.2215/CJN.05170420
11. Onder G, Rezza G, Brusaferrro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020. https://doi.org/10.1001/jama.2020.4683
12. Alberici F, Delbarba E, Manenti C, et al. A report from the Brescia Renal COVID Task Force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. Kidney Int. 2020;98(1):20-26. In press.
13. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - preliminary report. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2007764
14. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-1799.
15. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020:e200994. https://doi.org/10.1001/jamainternmed.2020.0994
16. Liu Y, Yan L-M, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020;20(6):656-657.
17. Becchetti C, Zambelli MF, Pasulo L, et al. COVID-19 in an international European liver transplant recipient cohort. Gut. 2020. https://doi.org/10.1136/gutjnl-2020-321923
18. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-475.
19. Statement from the Chief Investigators: low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19. https://www.recoverytrial.net/files/recovery_dexamethasone_statement_160620_v2final.pdf. Accessed 25 June, 2020 [press release].
20. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10223):1054-1062.
21. Tan Li, Wang Qi, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33.
22. de Wilde AH, Zevenhoven-Dobbe JC, van der Meer Y, et al. Cyclosporin A inhibits the replication of diverse coronaviruses. J Gen Virol. 2011;92(11):2542-2548.
23. Carbajo-Lozoya J, Muller MA, Kallies S, Thiel V, Drosten C, von Brunn A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012;165(1):112-117.
24. Winkler M, Christians U. A risk-benefit assessment of tacrolimus in cyclosporin A inhibiting the replication of diverse coronaviruses. J Gen Virol. 2011;92(11):2542-2548.
25. Rodríguez-Cubillo B, Moreno de la Higuera MA, Lucena R, et al. Should cyclosporine be useful in renal transplant recipients affected by SARS-CoV-2? Am J Transplant. 2020. https://doi.org/10.1111/ajt.16141
26. Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382(25):2411-2418.
27. Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2016638

How to cite this article: Bossini N, Alberici F, Delbarba E, et al. Kidney transplant patients with SARS-CoV-2 infection: The Brescia Renal COVID task force experience. Am J Transplant. 2020;20:3019–3029. https://doi.org/10.1111/ajt.16176
APPENDIX 1.

The Brescia Renal COVID task force
Federico Alberici1,2, Elisa Delbarba2, Chiara Manenti2, Laura Econimo2, Francesca Valerio2, Alessandra Pola2, Camilla Maffei2, Stefano Possenti2, Vincenzo Terlizzi2, Mattia Zappa2, Chiara Saccà2, Elena Pezzi2, Eleonora Calcaterra2, Paola Piarulli2, Marianna Moscato2, Stefano Pasquali2, Margherita Venturini2, Nicole Zambetti2, Alice Guerini2, Francesca Boni2, Agnese Gallico2, Michela Tonoli2, Alberto Mucchetti2, Stefania Affatato2, Sergio Bove3, Martina Bracchi4, Ester M. Costantino5, Fabio Malberti6, Giorgio Depetri7, Roberto Zubani1,2, Corrado Camerini2, Paola Gaggia2, Ezio Movilli2, Nicola Bossini2, Mario Gaggiotti2, Francesco Scolari1,2

1Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia Italy
2Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Brescia, Italy
3Nephrology Unit, Montichiari Hospital, ASST Spedali Civili di Brescia, Montichiari, Italy
4Nephrology Unit, ASST Franciacorta, Chiari, Italy
5Nephrology Unit, ASST del Garda, Manerbio, Italy
6Nephrology Unit, ASST di Cremona, Cremona, Italy
7Nephrology Unit, ASST di Crema, Crema, Italy