Induction of dwarf and early flowering phenotypes in Tricyrtis sp. by ectopic expression of LEAFY from Arabidopsis thaliana

Darunmas Sankhuan1,2, Meiqiao Ji1, Sota Takanashi1, Yuto Imamura1, Shoichi Sato1, Kanyaratt Supaibulwatana2, Masahiro Otani1, Masaru Nakano1,*

1Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan; 2Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
*E-mail: mnakano@agr.niigata-u.ac.jp Tel & Fax: +81-25-262-6858

Received December 15, 2021; accepted January 18, 2022 (Edited by K. Aoki)

Abstract LEAFY (LFY), which encodes a plant-specific transcription factor, plays an important role in the transition from vegetative to reproductive development. Ectopic expression of LFY has been reported to induce dwarfism and early flowering in some model plants. In order to examine the possibility of using LFY for molecular breeding of ornamental plants, we produced and characterized transgenic plants ectopically expressing LFY from Arabidopsis thaliana (AtLFY) in the liliaceous ornamental plant Tricyrtis sp. Nine independent transgenic plants have been obtained, and all of them exhibited dwarf phenotypes compared with the vector control. These transgenic plants could be classified into three types according to the degree of dwarfism: one showed an extremely dwarf phenotype with smaller leaves (Type I); two showed moderately dwarf phenotypes (Type II); and six showed slightly dwarf phenotypes (Type III). All of Type I, Type II and Type III transgenic plants produced flower buds 1–3 weeks earlier than the vector control. Vector control and Type III transgenic plants produced 1–4 apical flower buds, whereas Type I and Type II transgenic plants produced only a single apical flower bud. Type I and Type II transgenic plants often produced non-fully-opened flowers. Quantitative real-time reverse transcription-polymerase chain reaction analysis showed that the AtLFY expression level generally correlated with the degree of dwarfism. These results indicate that morphological alterations observed in the transgenic plants was induced by ectopic expression of AtLFY. Lower levels of ectopic expression of LFY may be valuable for producing dwarf and early flowering ornamental plants.

Key words: LEAFY (LFY), liliaceous ornamental plant, morphological alteration, transgenic plant.

LFY, which encodes a plant-specific transcription factor, plays an important role in the transition from vegetative to reproductive development (Weigel et al. 1992). In a lfy mutant of Arabidopsis thaliana, the first flower was converted into leafy shoots and some abnormal flowers were subsequently produced (Weigel et al. 1992). On the other hand, ectopic expression of LFY-homologous genes has been reported to induce several phenotypic alterations such as dwarfism and early flowering in Arabidopsis thaliana and Nicotiana tabacum (Ahearn et al. 2001; Weigel and Nilsson 1998).

Dwarfness and early-flowering are attractive traits especially for ornamental plants. To date, production of dwarf plants has been reported for several ornamental plants (Christensen et al. 2008; Godo et al. 1997; Hoshino and Mii 1998; Koike et al. 2003) by transformation with wild-type strains of Agrobacterium rhizogenes or rol genes from A. rhizogenes. Dwarf plants have also been produced in Torenia fournieri (Niki et al. 2006) and Tricyrtis sp. (Otani et al. 2013) by transformation with genes for gibberellin 2-oxidase, which catalyzes bioactive gibberellins or their immediate precursors to inactive forms. However, almost of these transgenic plants exhibited undesirable morphologies such as decreased apical dominance, wrinkled leaves, and/or only small or no flowers in addition to dwarfness. On the other hand, only a few papers have described production of early-flowering transgenic ornamental plants: transgenic Oncidium sp. overexpressing Oncidium-derived MADS-box gene (Thiruvengadam et al. 2012), transgenic Sinningia speciosa with suppressed miR159 (Li et al. 2013), and transgenic Lilium longiflorum overexpressing FT (Leegangers et al. 2018). Although LFY may be an alternative gene for producing dwarfness and/or early flowering transgenic ornamental plants, it has been shown that LFY may affect other plant developmental processes such as morphogenesis and flowering time.
flowering transgenic plants, there have been only few reports on genetic transformation of ornamental plants with LFY.

Tricyrtis spp., liliaceous geophytes native to Japan, have recently become popular as ornamental plants for pot and garden uses. We have been using Tricyrtis spp. as model plants in liliaceous ornamental plants for basic and applied researches for the following reasons: high transformation efficiencies, relatively small plant sizes, ease of cultivation, and taking only one year from in vitro regeneration to flowering (Nakano and Otani 2020).

In the present study, we produced and characterized transgenic Tricyrtis sp. plants ectopically expressing LFY from A. thaliana (AtLFY). The results obtained in the present study showed a possibility of genetic transformation with LFY for producing dwarf and early flowering monocot ornamental plants.

Tepal-derived embryogenic callus cultures of a tetraploid somaclonal variant of Tricyrtis sp. ‘Shionome’ (Nakano et al. 2006) were induced and maintained as previously described (Nakano and Otani 2020). A. tumefaciens strain EHA101/pIG-AtLFY was used for transformation. The T-DNA region of the binary vector pIG-AtLFY contains AtLFY (accession number NM125579 in the GenBank/EMBL/DDBJ databases) under the control of the CaMV35S promoter, NPTII under the control of the NOS promoter, and HPT under the control of the CaMV35S promoter. A. tumefaciens strain EHA101/pG121-Hm (accession number AB489142 in the GenBank/EMBL/DDBJ databases) was also used as a vector control. Cultivation of embryogenic calli with Agrobacterium selection of transgenic cells and tissues, and regeneration of transgenic plants were performed as previously described (Nakano and Otani 2020). Transgenic plants and the vector control plants were transplanted to pots and cultivated in a growth chamber at 25°C under a 16-h photoperiod. After two years of cultivation, morphological characterization was performed during the flowering season. Transgene transcripts in young leaves of transgenic plants were quantified by real-time RT-PCR analysis as previously described (Otani et al. 2013). The primer sets used were an AtLFY-specific primer set, AtLFY RT-F1 (5′-CCG CGT CAT TTT GTA CTC TTC 3′) and AtLFY RT-R2 (5′-TCG GTC CCA GTA ACC ACT TCC 3′); and a Thact2 (actin gene of Tricyrtis sp.; accession number AB196261 in the GenBank/EMBL/DDBJ databases)-specific primer set, Thact1-F (5′-CCG ACT CCC TCA TGA AAA TCC 3′) and Thact2-R (5′-CTC GAG CTC CTG TTC GTA GTC A-3′). The relative amount of AtLFY transcripts was calculated using the comparative cycle threshold method, and the results were normalized to Thact2.

A total of nine independent transgenic lines were obtained. All of them showed dwarf phenotypes and were distinguishable from the vector control plants. Transgenic plants were classified into three types according to the degree of dwarfism (Table 1; Figure 1): an extremely dwarf Type I line (L1); moderately dwarf Type II lines (L2 and L3); and slightly dwarf Type III lines (L4, L5, L6, L7, L8 and L9). All morphological characteristics of vegetative organs of Type I plants differed significantly from the vector control plants. Type I plants had the shortest shoot length of 5.7 cm, which was only 26% of the vector control plants. Moreover, Type I plants had the smallest number of nodes per shoot, stem diameter and leaf size. Type II plants had a shoot length of 11.2 cm, which was approximately half of the vector control plants. Reduction in stem diameter and leaf size were also observed in Type II lines, but the degree of alterations was lower than Type I plants. Type III plants exhibited less dwarfism compared with Type I and Type II plants. All of Type I, Type II and Type III plants produced flowers 1–3 weeks earlier than the vector control plants (Table 1). Vector control and Type III transgenic plants produced 1–4 apical flowers, whereas Type I and Type II transgenic plants produced only a single apical flower. Non-fully-opened flowers were often observed in Type I and Type II transgenic plants. No differences in the length and diameter of fully opened flowers were observed between all three types of transgenic plants and the vector control plants.

Relative expression level of AtLFY in transgenic plants was determined by quantitative real-time RT-PCR analysis (Figure 2). AtLFY transcripts were detected in all of Type I, Type II and Type III plants, but not in the vector control plants. Among nine transgenic lines, the highest expression level of AtLFY was observed in Type I line, followed by Type II and Type III lines. Thus the AtLFY expression level generally correlated with the degree of dwarfism. These results indicate that the morphological alterations observed in transgenic Tricyrtis sp. plants was resulted from ectopic expression of AtLFY. Although transformation with wild-type strains of A. rhizogenes, rol genes from A. rhizogenes and giberrellin 2-oxidase genes frequently induced wrinkled leaves or small flowers in addition to dwarfastness (Christensen et al. 2008; Godo et al. 1997; Hoshino and Mii 1998; Koike et al. 2003; Niki et al. 2006; Otani et al. 2013), no such morphological alterations were observed in the present study.

Despite the successful introduction of dwarf and early flowering traits, Type I and Type II transgenic plants with higher levels of AtLFY expression produced less and non-fully-opened flowers, which greatly reduce the ornamental value. On the other hand, no such unfavorable characteristics were observed in Type III transgenic plants with lower levels of AtLFY expression. Thus rather low levels AtLFY expression may be necessary for producing dwarf and early flowering
Table 1. Morphological characteristics of transgenic plants containing AtLFY and the vector control plants of Tricyrtis sp. at the flowering stage.

Plant lines	Shoot length (cm)	No. of nodes per shoot	Internode length (cm)	Stem diameter (cm)	Leaf length (cm)	Leaf width (cm)	Flowering date	No. of flowers per shoot	Flower length (cm)	Flower diameter (cm)
Vector control	21.7±0.7 a	10.0±0.6 a	2.2±0.1 a	3.5±0.3 ab	7.4±0.2 a	2.9±0.1 a	Sep. 25	1.7±0.3 a	2.5±0.1 a	3.6±0.1 a
Type I transgenic line										
L1	57.1±0.3 c	6.0±0 b	0.9±0.1 c	1.5±0.2 c	3.4±0 d	1.8±0 f	Sep. 3	1.0±0 a	2.4±0 a	3.4±0 a
Type II transgenic lines										
L2	11.2±0.3 bc	7.3±0.3 ab	1.3±0.1 bc	2.0±0.2 c	4.5±0.4 bc d	2.0±0.1 ef	Sep. 5	1.0±0 a	2.5±0 a	3.6±0 a
L3	11.2±0.3 bc	7.0±0.5 a	1.0±0.1 bc	2.3±0.3 bc	4.2±0.6 bc	2.3±0 cde	Aug. 30	1.0±0 a	2.4±0 a	3.5±0 a
Type III transgenic lines										
L4	15.1±0.3 b	8.7±0.2 ab	1.4±0.1 bc	2.8±0.2 ab	6.7±0.2 abc	2.5±0.1 bcd	Aug. 29	2.3±0.3 a	2.5±0.1 a	3.6±0.2 a
L5	15.1±0.3 b	9.7±0.3 ab	1.4±0.1 bc	2.2±0.2 bc	5.7±0.4 abc	2.3±0 cde	Sep. 11	2.0±0.6 a	2.5±0.1 a	3.6±0.2 a
L6	15.3±0.2 b	8.2±0.9 ab	1.3±0.1 ab	2.7±0.4 ab	7.0±0.4 ab	2.5±0 bc	Sep. 7	2.7±0.7 a	2.4±0.2 a	3.6±0.1 a
L7	16.1±0.4 ab	9.3±0.3 a	1.7±0.1 bc	2.3±0.4 ab	7.0±0.1 ab	2.5±0 bc	Sep. 5	2.7±0.7 a	2.5±0.2 a	3.6±0.2 a
L8	16.2±0.4 ab	9.3±0.7 a	1.8±0.1 ab	2.3±0.3 bc	7.1±0.4 ab	2.9±0.1 ab	Sep. 12	2.0±0.5 a	2.6±0.2 a	3.7±0.3 a
L9	16.4±0.7 ab	9.0±0.6 ab	1.8±0.1 ab	4.0±0.2 a	5.4±0.3 bc	2.5±0.1 abc	Sep. 16	1.7±0.3 a	2.5±0.3 a	3.6±0.2 a

*Values represent the mean±standard error of clonally propagated three plants for each line. Values within the same column followed by different letters are significantly different at the 0.01 level with the Tukey–Kramer's test. The longest shoot was investigated for each plant. The most basal internode of the longest shoots was measured for each plant. The middle position of the longest shoots was measured for each plant. Randomly selected three expanded leaves of the longest shoots were investigated for each plant. The first flower among three plants for each line. All of fully opened flowers were investigated for each plant. Type I and Type II transgenic plants often produced non-fully-opened flowers.

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research (Nos. 15K02027 and 15K02028) from the Ministry of Education, Science, Sports, Science and Technology, Japan. The authors would like to thank the Japan Society for the Promotion of Science and Science and Technology, Japan. The authors would like to thank the Thailand Research Fund and the Royal Golden Jubilee Ph.D. Program (grant no. PHD/0200/2557) for providing research grants.
Transformation of Tricyrtis with Arabidopsis LEAFY

a scholarship to D. Sankhuan. We also acknowledge the partial financial assistance from the Graduate School of Science and Technology, Niigata University (NU), Japan that is supported through the Global Circus Project for PhD Double Degree Program between Niigata University and Mahidol University.

References

Ahearn KP, Johnson HA, Weigel D, Wagner DR (2001) NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristem initiation and floral structure. Plant Cell Physiol 42: 1130–1139

Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchee blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27: 1485–1495

Godo T, Tsuji O, Ishikawa K, Mii M (1997) Fertile transgenic plants of Nierembergia scoparia Sendtner obtained by a mikimopine type strain of Agrobacterium rhizogenes. Sci Hortic (Amsterdam) 68: 101–111

Hoshino Y, Mii M (1998) Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L) transformed by Agrobacterium rhizogenes. Plant Cell Rep 17: 256–261

Koike Y, Hoshino Y, Mii M, Nakano M (2003) Horticultural characterization of Angelonia salicariifolia plants transformed with wild-type strains of Agrobacterium rhizogenes. Plant Cell Rep 21: 981–987

Leeggangers HACF, Rosilio-Brami T, Bigas-Nadal J, Rubin N, van Dijk ADJ, Nunez de Caceres Gonzalez FF, Saandon-Shitrit S, Nijveen H, Hilhorst HWM, Immink RGH, et al. (2018) Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control. Plant Cell Physiol 59: 90–106

Li X, Bian H, Song D, Ma S, Han N, Wang J, Zhu M (2013) Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111: 791–799

Nakano M, Nomizu T, Mizunashi K, Suzuki M, Morri S, Kuwayama S, Hayashi M, Umeheara H, Oka E, Kobayashi H, et al. (2006) Somaclonal variation in Tricyrtis hirta plants regenerated from 1-year-old embryogenic callus cultures. Sci Hortic (Amsterdam) 110: 366–371

Nakano M, Otani M (2020) Plant regeneration and Agrobacterium-mediated genetic transformation systems in liliaceous ornamental plants. Plant Biotechnol 37: 129–140

Niki T, Hisamatsu T, Aida R, Koshioka M, Nishijima T (2006) Production of dwarf plant by genetic engineering in transgenic torenia introduced GA 2-oxidase gene from Torenia. In: Abstracts of 27th International Horticultural Congress and Exhibition 2006, p 338

Otani M, Meguro S, Gondaira H, Hayashi M, Saito M, Han D-S, Inthima P, Supaibulwatana K, Mori S, Iikumaru Y, et al. (2013) Overexpression of the gibberellin 2-oxidase gene from Torenia fournieri induces dwarf phenotypes in the liliaceous monocotyledon Tricyrtis sp. Acta Physiol Plant 34: 1295–1302

Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859

Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500