Effects of Perinatal Exposure to Bisphenol A on Play Behavior of Female and Male Juvenile Rats

Francesco Dessì-Fulgheri, Stefania Porrini, and Francesca Farabollini

Department of Animal Biology and Genetics, University of Firenze, Firenze, Italy; Institute of Human Physiology, University of Siena, Siena, Italy

In higher vertebrates, estrogen can exert an organizational effect on sexually dimorphic areas of the central nervous system (CNS) during the perinatal phase of development. The possibility that estrogenic pollutants may mimic estrogen action on the CNS during development and produce long-lasting or irreversible effects is an issue of great concern. Bisphenol A (BPA), a compound widely used in the food industry and in dentistry, has proven estrogenic actions. To study its potential developmental effects on behavior, we gave female Sprague-Dawley rats 40 µg/kg/day BPA from conception to weaning postnatal day 21 and 400 µg/kg/day BPA from gestation day 14 to postnatal day 6. After exposure, we studied social behavior in a play situation in juvenile male and female offspring. The attempt to use play behavior to study the effects of BPA yielded some interesting results. We observed an early action of BPA on several behavioral categories in both males and females. In particular we observed a masculinization of female behavior in two behavioral categories (play with females and sociosexual exploration), an effect probably mediated by the estrogenic activity of BPA in the CNS. These long-lasting effects of BPA could have important consequences at individual and population levels.

Key words: bisphenol A, environmental estrogens, play behavior, rat, sex differences, social behavior. Environ Health Perspect 110(suppl 3):403–407 (2002).

http://ehpnet1.niehs.nih.gov/docs/2002/suppl-3/403-407/dessi-fulgheri/abstract.html

In higher vertebrates, estrogens exert an organizational effect on the central nervous system (CNS) during the perinatal phase of development, and estrogen is the main hormone responsible for sex differences in behavior (1,2). There is great concern that estrogenic pollutants, at low concentrations, may mimic the action of estrogens on the CNS at an early age and produce long-lasting or irreversible effects on behavior (3–5). Bisphenol A (BPA) is a compound widely used in the food industry for polycarbonate bottles and linings of cans, as well as in dentistry as a hardener for sealants and for tooth enamel used in the food industry for polycarbonate. BPA is a compound widely used in the food industry for polycarbonate bottles and linings of cans, as well as in dentistry as a hardener for sealants and for tooth enamel used in the food industry for polycarbonate. Bisphenol A (BPA) is a compound widely used in the food industry for polycarbonate bottles and linings of cans, as well as in dentistry as a hardener for sealants and for tooth enamel used in the food industry for polycarbonate. Bisphenol A (BPA) is a compound widely used in the food industry for polycarbonate bottles and linings of cans, as well as in dentistry as a hardener for sealants and for tooth enamel used in the food industry for polycarbonate.

To study the potential effects of BPA on behavior, we administered it to dams in two treatments: long periods of exposure to a low-dosage regimen, from conception to weaning of their pups, and short periods of exposure to a high-dosage regimen, from gestation day (GD) 14, when the differentiation of many sexual characters begins (10), to postnatal day (PND) 6. The two dosages are in the range of human environmental exposure to BPA and are below concentrations generally considered in toxicological studies. The lower concentration for a longer period of time can be encountered in human food; the higher concentration for a shorter period of time in human saliva after dental interventions (17,18). We then studied the behavior of the offspring of the treated mothers in a play situation and considered all behaviors expressed.

Materials and Methods

Subjects

We used 84 immature Sprague-Dawley rats (42 females and 42 males) that were born and bred in the Department of Animal Biology, University of Florence (Florence, Italy), and were the offspring of mothers treated during gestation and lactation, as described below. The subjects were separated into three groups on the basis of their exposure to BPA during the perinatal period: a) high-dose treatment, 15 males and 15 females offspring of mothers treated with short periods of exposure to a high dosage of BPA; b) low-dose treatment, 12 male and 12 female offspring of mothers treated with long periods of exposure to a low dosage of BPA; and c) control, 15 female and 15 male offspring of vehicle-treated mothers. The litters were weaned on PND 21. For each treatment group, the animals were randomly chosen from different litters and housed in groups of three males and three females in polysulfone cages, 42 × 26 × 15 cm (Tecniplast, Italy), under a natural light–dark cycle. No cage contained siblings. Food and water were available ad libitum.

Treatments

Bisphenol A (Fluka Ltd., Buchs, Switzerland) dissolved in arachis oil was administered daily at two dosages (40 and 400 µg/kg body weight) to two groups of mothers during pregnancy and lactation.

Thirty-one female rats of reproductive age were randomly allocated to three groups and subjected to the following treatments: a) low dose (n = 11), receiving 40 µg/kg/day BPA, administered from day 10 before mating with a mature male until weaning of the pups (PND 21); b) high dose (n = 11), receiving arachis oil from day 10 before mating until GD 13, followed by 400 µg/kg BPA from GD 14 (± 1 day) to PND 6, and then arachis oil again until weaning; c) control (n = 9), receiving arachis oil from day 10 before mating until weaning. BPA was dissolved in arachis oil at 5.32 and 53.2 µg/mL, for the low-dose and high-dose modalities. Controls received a comparable amount of oil, according to body weight. BPA was administered orally with a pipette. Because the animals enjoyed receiving the oil, the procedure was not stressful. For all females, mating took place 10 days after the beginning of treatment: they were housed three days.
per cage for 48 hr with a sexually mature male and then transferred to single cages. The litters were culled to eight at birth and weaned at PND 21. For each treatment group, the pups were randomized and housed in groups of three males and three females such that no cage contained siblings.

Behavioral Testing

Behavioral observations were conducted at PNDs 35, 45, and 55 between 1500 and 1900 under artificial dim white light. Rats belonging to the same cage were tested individually marked with cosmetic dye.

Table 1. List of social and nonsocial behaviors considered.

Nonsocial behaviors	Social behaviors
Air-smelling	Approaching
Exploration of the environment	(moving toward another)
Rearing	Crawl-over
Ground exploration	Crawl-undr
Digging	Social investigation
Self-grooming	(moving under another)
Crouching	Anogeot sniffing
Behavioral observations took place in a neutral arena (36 x 61 x 34 cm) with the floor covered with clean sawdust. The six cages were transferred directly to the arena from the home cage and video-recorded with a Sony Hi8 video recorder for 6 min, starting after 1 min of familiarization. The video recordings were then analyzed by one observer blind to treatment, using Noldus Observer in combination with Noldus Video Tape Analysis System (Version 3.0; Noldus Information Technology, The Netherlands). All behaviors were recorded and the actor and receiver identified for social interactions. For the purposes of the present research, only the frequency of behaviors displayed during min 2 and min 3 of each session were considered.	

Play, defined as "any activity involving exaggerated movements and inhibited attacks; it appears to achieve no obvious goal," was identified according to the description of Poole and Fish (19), while those behaviors similar to adult behavior were identified according to the description of Grant and Mackintosh (20). Table 1 lists the behaviors we considered.

Statistical Analysis

Principal component analysis (PCA) (21), with varimax rotation and Kaiser normalization (SPSS software), was performed on frequencies of behaviors of all experimental subjects. Individual factor scores of each principal factor were subsequently used as independent variables in a three-way analysis of variance (ANOVA) considering treatment, sex, and age.

When appropriate, post hoc analysis (Fisher least significant difference test) separately in males and females for comparison of the treatment groups.

Animal Welfare

Experimental procedures followed the regulations of the European Communities Council Directive 86/609/EEC (22).

Table 2. Results of PCA applied to behaviors of immature rats: rotated component matrix (varimax) (total variance explained: 89.3%).

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8
Approach	—	—	—	—	—	—	—	—
Crawl-over	—	—	—	—	—	—	—	—
Crawl-under	—	—	—	—	—	—	—	—
Social investigation	—	—	—	—	—	—	—	—
Anogent sniffing	—	—	—	—	—	—	—	—
Allogrooming	—	—	—	—	—	—	—	—
Aggressive grooming	—	—	—	—	—	—	—	—
Pouncing	—	—	—	—	—	—	—	—
Charging	—	—	—	—	—	—	—	—
Chasing	—	—	—	—	—	—	—	—
Riding	—	—	—	—	—	—	—	—
Sideways posture	—	—	—	—	—	—	—	—
Nape	—	—	—	—	—	—	—	—
Pounce	—	—	—	—	—	—	—	—
Chase	—	—	—	—	—	—	—	—
Nape-f	—	—	—	—	—	—	—	—
Withdraw-f	—	—	—	—	—	—	—	—
Air smelling	—	—	—	—	—	—	—	—
Rearing	—	—	—	—	—	—	—	—
Sideways posture-m	—	—	—	—	—	—	—	—
Withdraw-m	—	—	—	—	—	—	—	—
Crawl under-f	—	—	—	—	—	—	—	—
Crawl under-m	—	—	—	—	—	—	—	—
Anogent sniffing-f	—	—	—	—	—	—	—	—
Social investigation-f	—	—	—	—	—	—	—	—
Self-grooming	—	—	—	—	—	—	—	—
Digging	—	—	—	—	—	—	—	—
Ground exploration	—	—	—	—	—	—	—	—
Approach-m	—	—	—	—	—	—	—	—
Approach-f	—	—	—	—	—	—	—	—

Abbreviations: f, female directed; m, male directed.

Only largest correlation coefficients of each behavior are reported. Percentage of total variance accounted for by each factor is given in parentheses.

Table 3. Three-way ANOVA applied to factor scores.

Treatment × Sex	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8
f p	1.13 NS	3.46 <0.03	2.13 NS	2.69 NS	5.15 <0.01	0.74 NS	14.69 <0.000	3.24 <0.1
f p	9.28 <0.000	5.88 <0.003	9.23 <0.000	9.02 <0.000	5.00 <0.007	0.28 NS	11.30 <0.000	3.24 <0.1
Age (df = 2, 234)	1.15 NS	0.17 NS	0.99 NS	1.88 NS	0.07 NS	1.96 NS	0.53 NS	2.46 <0.05
Treatment × Sex × Age (df = 4, 234)	1.26 NS	0.70 NS	1.60 NS	1.72 NS	0.09 NS	2.09 NS	0.29 NS	2.57 <0.1
Treatment × Age (df = 2, 234)	2.63 <0.1	0.86 NS	0.82 NS	0.19 NS	0.08 NS	0.29 NS	0.26 NS	0.89 NS
Treatment × Sex × Age (df = 4, 234)	0.27 NS	0.64 NS	0.48 NS	0.68 NS	0.56 NS	0.26 NS	0.76 NS	0.89 NS

Abbreviations: df, degrees of freedom; NS, not significant, p > 0.1.
Results

Principal component analysis, excluding infrequent behaviors, shows eight principal factors (Table 2), explaining 69.3% of the variance. Factor 1 groups play behaviors directed to males; factor 2, play behaviors directed to females; factor 3, nonsocial exploration; factor 4, defensive behavior; factor 5, low-intensity mating elements; factor 6, socioeconomic exploration; factor 7, ground exploration; factor 8, social interest. Three-way ANOVA conducted for each factor, using individual factor scores as variables, reveals significant effects of treatment, sex, and age. BPA administration can significantly modify behaviors grouped under factors 2, 5, 6, and 8 (Table 3); this is generally true for both the high-dose and low-dose modalities (Table 4). Significant sex differences are evident for factors 2, 5, 6, and 7 (Table 3). As expected, during this period of development, the effects of age are pervasive and significantly affect all but factor 7 (ground exploration). Factors 5 and 8 yield a significant treatment × age interaction. Sex × treatment interaction is not significant.

To have a general view of the effects of treatment on each factor, we pooled the three age groups and performed statistical comparisons among mean factor scores (Table 4). To better understand and visualize the magnitude and direction of the effect, we drew graphs for each factor, considering the total frequency of the behaviors with a factor loading > 0.5.

The frequency of play behavior directed to females (grouped under factor 2) was increased by BPA—the low-dose treatment being more effective in females and the high-dose treatment being more effective in males (although not significantly) (Figure 1, Table 4). The frequency of crawl-under behavior in females and males, grouped under factor 5 (low-intensity mating elements), was decreased by the high-dose and low-dose modes in both males and females (Figure 2, Table 4). The frequency of sociosexual exploration (genital sniffing and body sniffing, grouped under factor 6) was decreased by both modalities in males, whereas the two modalities produced opposite effects in females (Figure 3, Table 4). The frequency of social interest (approach to females and approach to males, grouped under factor 8) was decreased in both sexes by the high-dose modality (Figure 4, Table 4). We evaluated by one-way ANOVA the effect of treatment on behavior around the critical age of vaginal opening, considering subjects at PND 35 to be of age. A significant increase of social interaction (factor 8) is evident in females (F = 5.35, p < 0.01, df = 2, 39) (Figure 5) and in males (F = 4.48, p < 0.02, df = 2, 39) (Figure 6) with the low-dose modality. Crawl-under behavior (factor 5) is significantly depressed in females (F = 3.76, p < 0.03, df = 2, 39) (Figure 5) and marginally in males (p < 0.01) (Figure 6) by both treatments. In males, we observed a significant decrease in sociosexual exploration (factor 6) due to both treatments (F = 3.34, p < 0.05, df = 2, 39) (Figure 6).

Discussion

Principal component analysis allowed us to group the different behavioral elements in a play situation in immature rats under coherent factors, indicating eight general categories of behavior (Table 2): play with males (factor 1), play with females (factor 2),...
These behaviors were more frequent in con-
stantly combines social and sexual interest.
neous in their components, each including
more homoge-
noeous in their components, each including
somatic or single behaviors. Factor 6 includes
Factors 5, 6, and 8 are more homoge-
eous in their components, each including
5). Sociosocial exploration (factor 6), ground exploration (factor 7), and
sociosexual exploration, and ground explo-
neous in different behavioral cate-
gories, suggesting the possibility that these
acter 6 (significant for factor 6) (Figure 6). The
alteration of the pace of maturation is not
neuroendocrine subsystems.
In summary, in controls we observed sex
differences in four behavior categories (play
with females, low-intensity sexual behavior,
sociosocial exploration, and ground explo-
and temporal window of developmental
sensitivity. More pronounced effects seem
related to the high-dose modality, corre-
sponding also to a shorter period of adminis-
tration. However, we found the effect of
masculinization of females for factors 2 and 6
with the low-dose modality. This could be
due to the longer period of treatment,
because it is possible that the two sexes have
different temporal windows of sensitivity to
the substance and that a longer treatment
can compensate for the lower dosage.
An interesting study by Howdeshell et al.
(10) found an advancement of puberty in
female mice treated prenatally with BPA.
In the present study, we found an increase,
compared with controls, at PND 35 in
females for social interest (factor 8; low-dose
modality), a behavior that includes interac-
tion with males and females (Figure 5); in
contrast, low-intensity mating elements (fac-
tor 5) are depressed by both treatments
(Figure 5). These results are not contrary to
those of Howdeshell et al. (10): we do not
know how first estrus and these behaviors are
related. Recent results from our laboratories
show in females rats treated perinatally with
BPA a significant advancement of the first
estrus (23). Males at PND 35 show a similar
increase due to treatment (low-dose modal-
ity) for social interest (factor 8) and a
decrease for behaviors under factors 2, 5, and
6 (significant for factor 6) (Figure 6).
These behaviors are under the control of different
neuroendocrine subsystems.
In summary, in controls we observed sex
differences in four behavior categories (play
with females, low-intensity sexual behavior,
sociosocial exploration, and ground explo-
and in groups treated with two dif-
ferent doses of BPA, we observed a
masculinization of female behavior in two of
these categories (play with females and socio-
Figure 5. Effects of two different modalities of BPA administration on imma-
ture behavior of PND-35 female rats. Graphs are calculated on the frequen-
cy of behavioral components with loading > 0.5 (mean ± SE).
Figure 6. Effects of two different modalities of BPA administration on imma-
ture behavior of PND-35 male rats. Graphs are calculated on the frequen-
cy of behavioral components with loading > 0.5 (mean ± SE).

nonsexual exploration (factor 3), defensive
behavior (factor 4), low-intensity mating ele-
ments (factor 5), sociosocial exploration
(factor 6), ground exploration (factor 7), and
social interest (factor 8). The subsequent
ANOVA using single factors as variables
revealed significant effects of BPA treatment
(Table 3). Clear sexual differences and
effects of age were evident. Both results were
expected and they provide a good starting
point to study the action of a potential
endocrine disruptor. We found significant
effects of BPA on the behavior of juvenile
rats of both sexes, including social, mild sex-
ual and explorative behavior. Both modal-
ities of perinatal administration—high dose
and low dose—proved to be effective.
PCA analysis split elements of rough-
and-tumble play into two different factors (1
and 2). This is interesting because rough-
and-tumble play is considered to be medi-
at by nonaromatizable androgens (13,14).
In contrast, factors 1 and 2 responded differ-
ently to BPA administration, revealing an
estrogenic action of BPA on factor 2. Play
behavior with males (factor 1), which
include elements of rough-and-tumble play,
particular when males interact with males,
was far more frequent in control males than
in control females. Play behavior with
females (factor 2) was, as expected, more
frequent in control males than in control
females (Figure 1, Table 4). It was increased
in females by the low-dose modality and in
male the high-dose modality, although
not significantly. The effect of BPA on this
factor appears to be a slight masculinization
in both sexes, as expected if BPA has an early
estrogen-like action.
Factors 5, 6, and 8 are more homoge-
neous in their components, each including
lower or single behaviors. Factor 6 includes
female genital and body sniffing and appar-
ently combines social and sexual interest.
These behaviors were more frequent in
control males than in control females (Figure 3,
Table 3). We observed an increase of this
behavior in females after low-dose BPA
treatment, suggesting a slight masculiniza-
tion of females. In contrast, these behaviors
were decreased in males by high-dose BPA
administration, suggesting a demasculiniza-
tion. Both factors 2 and 6, which include
elements directed to females and are sexually
differentiated in controls, are masculinized
by BPA in females.
A different pattern has been found for
factors 5 and 8. The behaviors under these
factors are directed to both sexes and are per-
formed in control females and control males
at a similar frequency (Figures 2 and 4, Table
4). Factor 5 includes crawl-under behavior in
females and males, which we interpret, after
Grant and Mackintosh (20), as low-intensity
mating elements. The frequency of this
behavior is significantly reduced in both sexes
after BPA. This could be interpreted as a
lowering of sexual interest (but not of sexual
orientation, because treated males and
females interacted with both sexes with simi-
lar frequencies). However, we believe that at
a prepubertal age, other components of this
behavior could be important (e.g., affiliative
and submissive).
Factor 8 includes only approach behav-
ior, directed to both males and females,
and we interpret it as general social orien-
tation because it precedes a variety of inter-
active behaviors. The frequency of this
behavior, similarly to factor 5, was
decreased by BPA in both sexes, high-dose
treatment being more effective than low
dose. The strongest effect of BPA treat-
ment was on approach ($p < 0.0001$).
However, because of the broad meaning of
this behavior and the lack of a sex differ-
ce in controls, we are unable to explain
this effect in terms of sociosexual behavior.
In general, differences between the
high-dose and low-dose modalities were not clear-
cut or systematic. The two modalities
differed in dosage, duration of treatment,
sexual exploration). Moreover, in one category (play with females), we observed an intensification of male behavior in males due to BPA. Both BPA doses were below concentrations generally considered in toxicologic studies. Our results appear to agree with the hypothesis of an early action of BPA mediated by its estrogenic activity at the CNS.

Conclusions

We have attempted to use a complex behavior model—play behavior—to study the effects of potential endocrine disruptors on behaviors controlled by sex steroids during development. Using this approach, we observed many significant effects of the environmental estrogen BPA. The action of BPA was long-lasting. Our research suggests that very important mechanisms underlying certain behaviors are involved, and thus, in the long run, even small changes can have consequences on individual fitness and on population structure. The mechanisms underlying the observed effects need to be clarified by further research.

References and Notes

1. Arnold AP, Gorski RA. Gonadal steroid induction of structural sex differences in the central nervous system. *Annu Rev Neuroscience* 7:413–442 (1984).
2. Arnold AP, Breedlove SM. Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. *Horm Behav* 16:469–498 (1985).
3. Colborn T. Environmental estrogens: health implication for humans and wildlife. *Environ Health Perspect* 103:125–136 (1995).
4. Colborn T, Dumanoski D, Myers JP. Our Stolen Future. New York:Dutton, 1996.
5. Feldman D. Editorial: estrogens from plastic—are we being exposed? *Endocrinology* 138:1777–1779 (1997).
6. Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D. Bisphenol-A: an estrogenic substance released from polycarbonate flasks during autoclaving. *Endocrinology* 132:2279–2286 (1993).
7. Steinmetz R, Brown NG, Allen DL, Bigsby RM, Ben Othman M, Taylor PI. Bisphenol A stimulates prolactin release in vitro and in vivo. *Endocrinology* 138:1780–1786 (1997).
8. D’Alessandro G, D’Antine E, D’Enza M, Allegri M, Bueti D. Bisphenol A interacts with the estrogen receptor α in a distinct manner from estradiol. *Mol Cell Endocrinol* 142:203–214 (1998).
9. Farabolini F, Porini S, Dossi-Fulgheri F. Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. *Pharmacol Biochem Behav* 64:687–694 (1999).
10. Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenberg JG, Vom Saal FS. Exposure to bisphenol A advances puberty. *Nature* 401:763–764 (1999).
11. Nagao T, Saito Y, Usumi K, Kuwagata M, Imai K. Influenza di xenoestrogeni (bisfenolo A) sul sistema a SRIF in alcune aree limbiche di rats. *Biologia Animale* 45:413–442 (1995).
12. Fagen R. Animal Play Behaviour. *Biobehav Rev* 21:246–259 (1997).
13. Pellis SM, Field EF, Smith LR, Pellis VC. Mice differ in the play fighting of male and female rats. Implication for the causes and function of play. *Neurosci Biobehav Rev* 21:105–120 (1997).
14. Meany MJ, Stewart J, Poulin P, McEwen BS. Sexual differentiation of social play in rat pups is mediated by the neonatal androgen-receptor system. *Neuroendocrinology* 37:85–90 (1983).
15. Vanderschuren LJM, Niesink RJM, van Rees JM. The neurobiology of social play behavior in rats. *Neurosci Biobehav Rev* 21:309–326 (1997).
16. von Saal FS, Montano MN, Wang HS. Sexual differentiation in mammals. In: Chemically Induced Alterations in Sexual and Functional Development: The Wildlife-Human Connection (Colborn T, Clement C, eds). Princeton, NJ:Princeton Scientific Publications, 1992;77–83.
17. Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N. Xenoestrogens released from lacquer coatings in food cans. *Environ Health Perspect* 103:308–312 (1995).
18. Olea N, Pulgar R, Perez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A, Pedraza V, Sato AM, Sunnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. *Environ Health Perspect* 104:298–305 (1996).
19. Poile TB, Fish J. An investigation of playful behavior in *Rattus norvegicus* and Mus musculus (Mammalia). J Zool Lond 175:61–71 (1975).
20. Grant EC, Mackintosh JH. A comparison of social postures of some common laboratory rodents. *Behaviour* 21:246–259 (1963).
21. Norusis MJ. SPSS/PC+ Professional Statistic, v. 5.0. Chicago:SPSS, 1983.
22. Council Directive 86/609/EEC. Approximation of laws, regulations, and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. *Off J Eur Commun* L58:1–29 (1986).
23. Faccio B, Mesi R, Margiotta A, Oricchio P, Canelli A, Canocone M. Bisphenol A and estradiol in food cans. *Environ Health Perspect* 103:608–612 (1995).
24. Novello-Fertrell A, Pedraza V, Sato AM, Sunnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. *Environ Health Perspect* 104:298–305 (1996).
25. Pellis SM, Field EF, Smith LR, Pellis VC. Mice differ in the play fighting of male and female rats. Implication for the causes and function of play. *Neurosci Biobehav Rev* 21:105–120 (1997).
26. Meany MJ, Stewart J, Poulin P, McEwen BS. Sexual differentiation of social play in rat pups is mediated by the neonatal androgen-receptor system. *Neuroendocrinology* 37:85–90 (1983).
27. Vanderschuren LJM, Niesink RJM, van Rees JM. The neurobiology of social play behavior in rats. *Neurosci Biobehav Rev* 21:309–326 (1997).
28. von Saal FS, Montano MN, Wang HS. Sexual differentiation in mammals. In: Chemically Induced Alterations in Sexual and Functional Development: The Wildlife-Human Connection (Colborn T, Clement C, eds). Princeton, NJ:Princeton Scientific Publications, 1992;77–83.
29. Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N. Xenoestrogens released from lacquer coatings in food cans. *Environ Health Perspect* 103:308–312 (1995).
30. Poile TB, Fish J. An investigation of playful behavior in *Rattus norvegicus* and Mus musculus (Mammalia). J Zool Lond 175:61–71 (1975).
31. Grant EC, Mackintosh JH. A comparison of social postures of some common laboratory rodents. *Behaviour* 21:246–259 (1963).
32. Norusis MJ. SPSS/PC+ Professional Statistic, v. 5.0. Chicago:SPSS, 1983.
33. Council Directive 86/609/EEC. Approximation of laws, regulations, and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. *Off J Eur Commun* L58:1–29 (1986).