Statistical Features of Earthquake Temporal Occurrence

Álvaro Corral
Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain, Álvaro.Corral@uab.es

The physics of an earthquake is a subject with many unknowns. It is true that we have a good understanding of the propagation of seismic waves through the Earth and that given a large set of seismographic records we are able to reconstruct a posteriori the history of the fault rupture (the origin of the waves). However, when we consider the physical processes which lead to the initiation of a rupture with a subsequent slip and its growth through a fault system to give rise to an earthquake, then our knowledge is really limited. Not only the friction law and the rupture evolution rules are largely unknown, but the role of many other processes such as plasticity, fluid migration, chemical reactions, etc., and the couplings between them, remain unclear [1, 2]. On the other hand, one may wonder about the physics of many earthquakes. How do the collective properties of the set defined by all earthquakes in a given region, or better, in the whole world, emerge from the physics of individual earthquakes? How does seismicity, which is the structure formed by all earthquakes, depend on its elementary constituents –the earthquakes? And which are these properties? Which kind of dynamical process does seismicity constitute? It may be that these collective properties are largely independent on the physics of the individual earthquakes, in the same way that many of the properties of a gas or a solid do not depend on the constitution of its elementary units –the atoms (for a broad range of temperatures it doesn’t matter if we have atoms, with its complicated quantum structure, or microscopic marbles). It is natural then to consider that the physics of many earthquakes has to be studied with a different approach than the physics of one earthquake, and in this sense we can consider the use of statistical physics not only appropriate but necessary to understand the collective properties of earthquakes.

Here, we provide a summary of recent work on the statistics of the temporal properties of seismicity, considering the phenomenon as a whole and with the goal of looking for general laws. We show the fulfillment of a scaling law for recurrence-time distributions, which becomes universal for stationary seismicity and for aftershock sequences which are transformed into stationary
processes by means of a nonlinear rescaling of time. The existence of a decreasing power-law regime in the distributions has paradoxical consequences on the time evolution of the earthquake hazard and on the expected time of occurrence of an incoming event, as we will see. On the other hand, the scaling law for recurrence times is equivalent to the invariance of seismicity under renormalization-group-like transformations, for which the role of correlations between recurrence times and magnitudes is essential. Finally, we relate the recurrence-time densities studied here with the method previously introduced by Bak et al. [3].

1 The Gutenberg-Richter Law and the Omori Law

Traditionally, the knowledge of seismicity has been limited to a few phenomenological laws, the most important being the Gutenberg-Richter (GR) law and the Omori law. The GR law determines that, for a certain region, the number of earthquakes in a long period of time decreases exponentially with the magnitude; to be concrete, \(N(M_c) \propto 10^{-bM_c} \), where \(N(M_c) \) is the number of earthquakes with magnitude \(M \) greater or equal than a threshold value \(M_c \), and the \(b \)-value is a constant usually close to one [4, 5, 6, 7].

If we introduce the seismic rate, \(r(t, M_c) \), defined as the number of earthquakes with \(M \geq M_c \) per unit time in a time interval around \(t \), then, the GR relation can be expressed in terms of the mean seismic rate, \(R(M_c) \), as

\[
R(M_c) = \langle r(t, M_c) \rangle = \frac{1}{T} \int_0^T r(t, M_c) dt = \frac{N(M_c)}{T} = R_0 10^{-bM_c},
\]

where \(T \) is the total time under consideration and \(R_0 \) is the (hypothetical) mean rate in the region for \(M_c = 0 \) (its dependence, as well as that of other parameters, on the region selected for study is implicit and will not be indicated when it is superfluous). In fact, the GR law must be understood as a probabilistic law, and then we conclude that earthquake magnitude follows an exponential distribution, this is, \(\text{Prob}[M \geq M_c] = \frac{N(M_c)}{N} \propto e^{-\ln 10^{bM_c}} \), with \(N \) the total number of earthquakes, of any magnitude. Due to the properties of the exponential distribution, the derivative of \(\text{Prob}[M \geq M_c] \), which is the probability density (with a minus sign), is also an exponential.

In terms of the seismic moment or of the dissipated energy, which are increasing exponential functions of the magnitude, the GR law transforms into a power-law distribution, the usual signature of scale invariance. This means that earthquakes have no characteristic size of occurrence, if we take the seismic moment or the energy as more appropriate measures of earthquake size than the magnitude [4].

The Omori law (in its modified form) states that after a strong earthquake, which is called mainshock, the seismic rate for events with \(M \geq M_c \) in a certain region around the mainshock increases abruptly and then decays in time essentially as a power law; more precisely,
Statistical Features of Earthquake Temporal Occurrence

\[r(t, M_c) = \frac{r_0(M_c)}{(1 + t/c)^p} \]

where \(t \) is the time measured from the mainshock, \(r_0(M_c) \) is the maximum rate for \(M \geq M_c \), which coincides with the rate immediately after the mainshock, i.e., \(r(t = 0, M_c) = r_0(M_c) \). \(c \) is a short-time constant (of the order of hours or a few days), which describes the deviation from a pure power law right after the mainshock, and the exponent \(p \) is usually close to 1. In fact, \(c \) depends to a certain degree on \(M_c \) and, together with \(r_0(M_c) \) and \(p \), depends also on the mainshock magnitude [8, 9, 7].

Nowadays it has been confirmed that the Omori law does not only apply to strong earthquakes, but to any earthquake, with a productivity factor (\(r_0 \)) for small earthquakes which is orders of magnitude smaller than for large events. In this way, the classification of earthquakes in mainshocks and aftershocks turns out to be only relative, as we will have a cascade process in which aftershocks become also mainshocks of secondary sequences and so on. When an aftershock happens to have a magnitude larger than the mainshock a change of roles occur: the mainshock is considered a foreshock and the aftershock becomes the mainshock. Also, the triggering of strong aftershocks may cause that the overall seismic rate departs significantly from the Omori law, as it happens in earthquake swarms.

In any case, the Omori law illustrates clearly the temporal clustering of earthquakes, for which events (aftershocks) tend to gather close (in time) to a strong event (the mainshock), becoming more dilute as time from the mainshocks grows. In addition, the fact that the seismic rate decays essentially as a power law means that the relaxation process has no characteristic time, in opposition to the usual situation in physics (think for instance in radioactive decay). Finally, the Omori law has a probabilistic interpretation, as an all-return-time distribution, measuring the probability that earthquakes occur at a time \(t \) after a mainshock.

\section*{2 Recurrence-Time Distributions and Scaling Laws}

One can go beyond the GR law and the Omori law and wonder about the temporal properties of individual earthquakes (from a statistical point of view), in particular about the time interval between consecutive earthquakes. In this case, it is necessary to assume that earthquakes are point events in time, or at least that their temporal properties are well described by their initiation time. In contrast to the previous approaches, this perspective has been much less studied and no general law has been proposed; rather, the situation is confusing in the literature, where claims range from nearly-periodic behavior for large earthquakes to totally random occurrence of mainshocks (see the citations at Refs. [10, 11]). Furthermore, it can be argued that the times between consecutive earthquakes depend strongly on the selection of the coordinates.
of the region under study and the range of magnitudes selected (which change the sequence of events) and therefore one is dealing with an ill-defined variable. We will see that the existence of universal properties for these times invalidates this objection.

Following the point of view of Bak et al., we have addressed this problem by considering seismicity as a phenomenon on its own. In this way, we will not separate events into different kinds (foreshocks, mainshocks, aftershocks, or microearthquakes, etc.), nor divide the crust into provinces with different tectonic properties, but will place all events and regions on the same footing; in other words, we wonder about the very nature of seismicity as a whole, from a complex-system perspective, in opposition to a reductionist approach [3, 12].

This exposition will concentrate on the temporal properties of seismicity, and their dependence with space and magnitude, but equally important are the spatial properties. It turns out that all the aspects of seismicity are closely related to each other and one cannot study them separately. Although all the events are important, as they are the elementary constituents of seismicity, we will need to consider windows of observation in space, time, and magnitude; of course, this is due to the incompleteness of seismic records but also to the fact that the variation of the quantities we measure with the range of magnitudes selected or with the size of the spatial region under study will allow us to establish self-similar properties for seismicity.

Let us select an arbitrary region of the Earth, a temporal period, and a minimum magnitude M_c, in such a way that only events in this space-time-magnitude window are taken into account. We can consider the resulting events as a point process in time, disregarding the magnitude and the spatial degrees of freedom (this is not arbitrary, as M_c and the size of the region will be systematically varied later on), in this way we can order the events in time, from $i = 1$ to $N(M_c)$ and characterize each one only by its occurrence time, t_i. From here we can define the recurrence time τ (also called waiting time, interevent time, interoccurrence time, etc.) as the time interval between consecutive events, i.e., $\tau_i \equiv t_i - t_{i-1}$. The mean recurrence time, $\langle \tau(M_c) \rangle$, is obviously given by the inverse of the rate, $R^{-1}(M_c)$; however, as the recurrence time is broadly distributed, the mean alone is a poor characterization of the process and it is inevitable to work with the probability distribution of recurrence times. So, we compute the recurrence-time probability density as

$$D(\tau; M_c) = \frac{\text{Prob}[\tau < \text{recurrence time} \leq \tau + d\tau]}{d\tau},$$

(3)

where $d\tau$ has to be small enough to allow D to represent a continuous function but large enough to contain enough data to be statistically significant (note that the spatial dependence of D is not indicated explicitly).
2.1 Scaling Laws for Recurrence-Time Distributions

We can illustrate this procedure with the waveform cross-correlation catalog of Southern California obtained by Shearer et al.1 for the years 1984–2002, containing 26700 events with $M \geq 2.5$ (84209 events with $M \geq 2$). The recurrence-time probability densities for several values of M_c are shown in Fig. 1 (left). First, one can see that τ ranges from seconds to more than 100 days (in fact, we have restricted our analysis to recurrence-times greater than one minute; shorter times do not follow the same trend than the rest, probably due to the incompleteness of the records in that time scale). Also, the different distributions look very similar in shape, although the ranges are different (obviously, the larger M_c, the smaller the number of events $N(M_c)$, and the larger the mean time between them).

![Fig. 1](image)

Figure 1 (right) shows the same distributions but rescaled by the mean rate, as a function of the rescaled recurrence time, i.e., $D(\tau; M_c)/R(M_c)$ versus $R(M_c)\tau$. In this case all the distributions collapse onto a single curve f and we can establish the fulfillment of a scaling law 13.

\begin{equation}
D(\tau; M_c) = R(M_c)f(R(M_c)\tau).
\end{equation}

where f is the scaling function, and corresponds to the recurrence-time density in the hypothetical case $R(M_c) = 1$. Note that we could have arrived to a similar equation by scaling arguments, but there would be no reason for the function f to be independent on M_c. Only imposing the self-similarity of the process in time-magnitude can lead to the fact that f does not depend on M_c and therefore to the fact that f is a scaling function. As $R(M_c)$ verifies the GR law, the scaling law can be written

1Available at http://www.data.scce.org/ftp/catalogs/SHLK/
The GR law can be calculated from the scaling law; just calculate the mean recurrence time, \(\langle \tau(M_c) \rangle = \int_0^\infty \tau D(\tau; M_c) d\tau = 10^{bM_c} \int_0^\infty z f(z) dz \propto 10^{bM_c} \), and as \(\langle \tau(M_c) \rangle \) is the inverse of the mean rate, then, \(R(M_c) \propto 10^{-bM_c} \). But the scaling law does not only include the GR law, it goes one step further, as it implies that the GR law is fulfilled at any time, if times are properly selected; indeed, events separated by recurrence times \(\tau' \) for \(M \geq M'_c \) and \(\tau \) for \(M \geq M_c \) occur at a GR ratio, \(10^{-b(M'_c-M_c)} \), if and only if the ratio of the recurrence times is given by \(10^{b(M'_c-M_c)} \). Notice that the only requirement for the GR law to be fulfilled (for a long period of time) is that \(D(\tau; M_c) \) has a mean that verifies the GR law, i.e., \(\langle \tau(M_c) \rangle = R^{-1}(M_c) = R_0 10^{bM_c} \); therefore, the fulfillment of the GR law at any time is a new feature of seismicity.

To make it more concrete, we can count the number of events in Southern California with \(M \geq 3 \) coming after a recurrence time \(\tau = 100 \) hours and compare with the number of events with \(M \geq 4 \) after the same recurrence time; then the ratio of these numbers has nothing to do with the GR relation. However, if for \(M \geq 4 \) we select events with \(\tau = 1000 \) hours (the \(b \)-value in the GR law is very close to 1 in Southern California) then, the number of these events is about 1/10 of the number of events with \(M \geq 3 \) and \(\tau = 100 \) hours, the same proportion as when we consider all events (no matter the value of \(\tau \)). This could be somehow analogous to the well-known law of corresponding states in condensed-matter physics: two pairs of consecutive earthquakes in different magnitude windows would be in “corresponding states” if their rescaled recurrence times are the same.

\[D(\tau; M_c) = 10^{-bM_c} f(10^{-bM_c} \tau). \] (5)

\[\text{2.2 Relation with the Omori Law} \]

In general, as seismicity is not stationary, the scaling function \(f \) will change with the spatio-temporal window of observation. In the case of Omori aftershock sequences, the scaling function, and therefore the distribution of recurrence times, is related to the Omori law, as we now see. Let us assume, just for simplicity, that the aftershock sequence can be modeled as a nonhomogeneous Poisson process (also called nonstationary Poisson process, this is a Poisson process but with a time-variable rate, in such a way that at any instant the probability of occurrence, per unit time, is not constant but is independent on the occurrence of other events); in this case the rate of occurrence will be given by the Omori law, Eq. (2). Then, the recurrence-time density is a temporal mixture of Poisson processes, which have a density \(D(\tau|\rho(M_c)) = re^{-rt} \), so,

\[D(\tau; M_c) = \frac{1}{\mu} \int_{r_0}^{r_0} r D(\tau|\rho(r; M_c)) dr = \frac{1}{\mu} \int_{r_0}^{r_0} r^2 e^{-rt} \rho(r; M_c) dr, \] (6)

where \(\rho(r; M_c) \) is the density of rates, \(\mu \) is a normalization factor that turns out to be the mean value of \(r \), \(\mu = \langle r(M_c) \rangle = \int r \rho(M_c) dr \) and \(r_0(M_c) \) and
$r_m(M_c)$ the maximum and minimum rate, respectively, assuming $r_0 \gg r_m$; the factor r appears because the probability of a given $D(\tau|\tau)$ to contribute to $D(\tau; M_c)$ is proportional to r.

The density of rates can be obtained by the projection of $r(t; M_c)$ onto the r axis, turning out to be,

$$\rho(r; M_c) \propto \left| \frac{dr}{dt} \right|^{-1} \Rightarrow \rho(r; M_c) = \frac{C}{r^{1+1/p}} \quad \text{for} \quad r_m \leq r \leq r_0 \quad (7)$$

with C just a constant (depending on M_c) that can be obtained from normalization. Substituting, we get

$$D(\tau; M_c) = \frac{C}{\mu} \int_{r_m}^{r_0} r^{-1/p} e^{-r\tau} dr = \frac{C[\Gamma(2 - 1/p, r_m\tau) - \Gamma(2 - 1/p, r_0\tau)]}{\mu\tau^{2-1/p}}, \quad (8)$$

with $\Gamma(\alpha, z) \equiv \int_{2}^{\infty} z^{\alpha-1} e^{-z} dz$ the incomplete gamma function (note that $\Gamma(1, z) = e^{-z}$). It is clear that for intermediate recurrence times, $1/r_0 \ll \tau \ll 1/r_m$, we get a power law of exponent $2 - 1/p$ for the recurrence time density,

$$D(\tau; M_c) \approx \frac{C\Gamma(2 - 1/p)}{\mu\tau^{2-1/p}}, \quad (9)$$

with $\Gamma(\alpha)$ the usual (complete) gamma function. This power-law behavior has been derived before by Senshu and by Utsu for nonhomogeneous Poisson processes [7], but our procedure can be easily extended beyond this case, just defining a different $D(\tau|\tau)$, for which the value of the recurrence-time exponent $2 - 1/p$ is still valid. Notice that the value of this exponent is close to one if the p-value is close to one, but both exponents are only equal if $p = 1$, in any other case we have $2 - 1/p < p$, which means that in general $D(\tau; M_c)$ decays more slowly than $r(t; M_c)$. If we consider large recurrence times, $r_m\tau \gg 1$, we can use the asymptotic expansion $\Gamma(\alpha, z) \rightarrow z^{\alpha-1} e^{-z} + \cdots$ for $z \rightarrow \infty$ [15], to get

$$D(\tau; M_c) \approx \frac{C_{r_m}^{1-1/p} e^{-r_m\tau}}{\mu \tau}, \quad (10)$$

which in the limit we are working is essentially an exponential decay.

Although the equations derived here for a nonhomogeneous Poisson process with Omori rate reproduce well the recurrence-time distribution of after-shock sequences, $D(\tau; M_c)$ [16], the choice of an exponential form for $D(\tau|\tau)$ is not justified, as we will see in the next sections. Nevertheless, for the moment we are only interested in the form of $D(\tau; M_c)$.

2.3 Gamma Fit of the Scaling Function

The fact that the density $D(\tau; M_c)$ for a nonhomogeneous Poisson-Omori sequence is a power law for intermediate times and follows Eq. [10] for long
times suggests that a simpler parameterization of the distribution can be obtained by the combination of both behaviors; in the case of the scaling function f, which must follow the same distribution as D (but with mean equal to one), we can write

$$f(\theta) \propto \frac{e^{-\theta/a}}{\theta^{p-1} (1 + \theta)^{1/p - 1}}.$$

However, as both power laws of θ are very similar and in the long time limit it is the exponential alone what is really important, we can simplify even further and use the gamma distribution to model f; so,

$$f(\theta) = \frac{C}{a \Gamma(\gamma)} \left(\frac{a}{\theta}\right)^{1-\gamma} e^{-\theta/a},$$ \hspace{1cm} (11)

where θ plays the role of a dimensionless recurrence time, $\theta \equiv R \tau$, a is a dimensionless scale parameter, and C is a correction to normalization due to the fact that the gamma distribution may not be valid for very short times; this will allow the shape parameter γ not to be restricted to the case $\gamma > 0$, the usual condition for the gamma distribution (nevertheless, if $\gamma \leq 0$ the factor $\Gamma(\gamma)$ is inappropriate for normalization). As f is introduced in such a way that the mean of θ is $\langle \theta \rangle = 1$, the parameters are not independent; for instance, for $C = 1$, $\langle \theta \rangle = \gamma a$ and in consequence $a = 1/\gamma$. So, essentially, we only have one parameter to fit, γ, to characterize the process. In the case of Omori sequences, $1 - \gamma = 2 - 1/p$ and $a = R/r_m \Rightarrow \gamma \approx r_m/R$, but we will see that the gamma distribution has a wider applicability than just Omori sequences.

A fit of the gamma distribution to the rescaled distribution for Southern-California, shown in Fig. II (right), yields the parameter values $\gamma \approx 0.22$ and $a \approx 3$; this yields a power-law exponent for small and intermediate times $1 - \gamma \approx 0.78$ and allows to calculate a $p-$value $p = (1 + \gamma)^{-1} \approx 0.82$, which can be interpreted as an average for Southern California, and a minimum rate $r_m \approx R/3$. Of course, with our resolution we only can establish $1 - \gamma \approx p \approx 0.8$.

2.4 Universal Scaling Law for Stationary Seismicity

We have mentioned the nonstationary character of seismicity and that in consequence the scaling function f depends on the window of observation. A more robust, universal law can be established if we restrict our study to stationary seismicity. By stationary seismicity we mean in fact homogeneity in time, which implies that the statistical properties of the process do not depend on the time window of observation, in particular, the mean rate must be practically constant in time.

It is obvious that an aftershock sequence following the Omori law (with $p > 0$) is not stationary, but observational evidence shows that in other cases
seismicity can be well described by a stationary process, for example worldwide seismicity for the last 30 years (for which there are reasonably good data) or regional seismicity in between large aftershock sequences. It should be clear that considering stationary seismicity has nothing to do with declustering (the removal of aftershocks from data). We simply consider periods of time for which no aftershock sequence dominates in the spatial region selected for study, but many smaller sequences may be hidden in the data, intertwined in such a way to give rise to an overall stationary seismic rate.

The total number of earthquakes in Southern-California (from Shearer et al.’s catalog) as a function of time since 1984 is displayed in Fig. 2. Clearly, the behavior of the number of earthquakes in time is nonlinear, with episodic abrupt increments which correspond to large aftershock sequences, following the trend prescribed by the Omori law, \(N(M_c, t) = N(M_c, 0) + \int_0^t r_0(M_c)/(1 + t'/c)^p dt' \). However, there exist some periods which follow a linear increase of \(N(M_c, t) \) versus \(t \); in particular, we have chosen for analysis the intervals (in years, with decimal notation) 1984–1986.5, 1990.3–1992.1, 1994.6–1995.6, 1996.1–1996.5, 1997–1997.6, 1997.75–1998.15, 1998.25–1999.35, 2000.55–2000.8, 2000.9–2001.25, 2001.6–2002, and 2002.5–2003. These intervals comprise a total time span of 9.25 years and contain 6072 events for \(M \geq 2.5 \), corresponding to a mean rate \(R(2.5) = 1.7 \) earthquakes/day. Note from the figure that not only the rate of occurrence is nearly constant for each interval, but different intervals have similar values of the rate.

![Fig. 2. Accumulated number of earthquakes in Southern California as a function of time. Some stationary or nearly stationary periods mentioned in the text are specially marked, see subsection 5.3](image-url)
We will study all these stationary periods together, in order to improve the statistics. The probability densities of the recurrence times are calculated from all the periods and the corresponding rescaled distributions appear in Fig. 3(left). The good quality of the data collapse indicates the validity of a scaling law of the type of Eq. (4), although the scaling function f is clearly different than the one for the whole time period 1984-2002, in particular, the power-law is much flatter, which is an indication that the clustering degree is smaller in this case, in comparison, but still exists. Nevertheless, it is remarkable that this kind of clustering is different than the clustering of aftershock sequences, as in this case we are dealing with a stationary process. The figure shows also a plot of the scaling function f parameterized with a gamma distribution with $\gamma = 0.7$ and $a = 1.38$, which indeed implies a power-law exponent $1 - \gamma = 0.3$.

![Graph showing rescaled recurrence-time probability densities](image)

Fig. 3. Rescaled recurrence-time probability densities for the stationary periods explained in the text for Southern California (left) and for worldwide seismicity (right). The solid line is the same function in both cases, showing the universal character of the scaling law fulfilled.

We now present the results for recurrence times in worldwide scale, using the NEIC-PDE worldwide catalog (National Earthquake Information Center, Preliminary Determination of Epicenters) which covers the period 1973-2002 and yields 46055 events with $M \geq 5$. In this case the total number of earthquakes grows linearly in time, which confirms the stationarity of worldwide seismicity. The corresponding rescaled recurrence-time probability densities are shown in Fig. 3(right), together with the scaling function used in the previous case (i.e., Southern-California stationary seismicity). The collapse of the data onto a single curve is again an indication of the validity of a scaling law, and the fact that this curve is well fit by the same scaling function than in the Southern-California stationary case is a sign of universality. We use the term universality with the usual meaning in statistical physics, in which it refers to very different systems (gases or magnetic solids, or in our case seismic occur-

\[\text{Available at } \url{http://wwwneic.cr.usgs.gov/neis/epic/epic_global.html}\]
rence in quite diverse tectonic environments) sharing the same quantitative properties.

In fact, the universality of the scaling law for recurrence-time distributions in the stationary case has been tested for several other regions, namely, Japan, Spain, New Zealand, New Madrid (USA), and Great Britain, with magnitude values ranging from $M \geq 1.5$ to $M \geq 7.5$ (which is equivalent to a factor 10^9 in the minimum dissipated energy), and for spatial areas as small as $0.16^\circ \simeq 20$ km \[14, 17\].

2.5 Universal Scaling Law for Omori Sequences

We now return to nonstationary seismicity to show how the universal scaling law for recurrence times applies there. For this purpose, let us consider the Landers earthquake, with magnitude $M = 7.3$, the largest event in Southern California in the last decades, taking place in 1992, June 28, at 34.12°N, 116.26°W. After the earthquake, seismicity in Southern California followed the usual behavior when large shallow events happen: a sudden enormous increase in the number of earthquakes and a consequent slow decay in time, in good agreement with the Omori law.

The previous universal results for stationary seismicity can be generalized in the nonstationary case by replacing the mean seismic rate $R(M_c)$ by the “instantaneous” seismic rate $r(t; M_c)$ as the scaling factor in Eq. (4). Then, in order to obtain the rescaled, dimensionless recurrence time θ, we will rescale each recurrence time as

$$\theta_i \equiv r(t_i; M_c)\tau_i.$$ \hspace{1cm} (12)

This means that it is the instantaneous rate of occurrence which sets the time scale.

First, we examine the complete seismicity with $M \geq M_c$ for a square region (in a space in which longitude and latitude are considered as rectangular coordinates), the region containing the Landers event (but not centered on it); that is, as in previous sections, we will not separate aftershocks from the rest of events. As expected, after a few days from the mainshock, the seismic rate decreases as a pure power law, which is equivalent to take $t \gg c$ in Eq. (2), so,

$$r(t; M_c) = r_0 \left(\frac{c}{t}\right)^p,$$

which lasts until the rate reaches the background seismic level. This form for $r(t; M_c)$ is fit to the measured seismic rate, see Fig. 4(right). One advantage of analyzing the pure power-law regime only, rather than the whole sequence using the modified Omori law, Eq. (2), is that it is believed that the deviations from power-law behavior for short times are due to the incompleteness of the catalogs after strong events; therefore, in this way we avoid the problem of incompleteness.

Next, using the results of the fit rather than the direct measurement of $r(t; M_c)$ we calculate

\[\theta_i = r_0 \tau_i \left(\frac{\xi}{\tau_i} \right)^p. \]

In fact, this rescaling could be replaced by \(\theta_i = r(t_{i-1}) \tau_i \) or by \(\theta_i = r(t_{i-1} + \tau_i/2) \tau_i \), with no noticeable difference in the results, as the rate varies very slowly at the scale of the recurrence time.

Fig. 4. (left) Seismic rate as a function of the time elapsed since the Landers earthquake for regions of different size \(L \) including the event, using the SCSN catalog. Only events with \(M \geq 2 \) are considered. The straight lines correspond to power laws, with exponents given by the \(p \)-value. (right) Recurrence-time probability densities for the power-law regime of the decay of the rate after the Landers event, rescaled at each time by the rate. The solid line represents the universal scaling function in terms of a gamma distribution.

The probability densities of the rescaled recurrence times \(\theta_i \) obtained in this way are displayed in Fig. 4(right), showing a slow power-law decay followed by a faster decay, in surprising agreement, not only qualitative but also quantitative, with the results for stationary seismicity, in such a way that the universal scaling function for the stationary case is still valid [14, 10]. Therefore, as in that case, the power-law regime in the density is a sign of clustering, but as the primary clustering structure of the sequence has been removed by the rescaling with Omori rate, this implies the existence of a secondary clustering structure inside the main sequence, due to the fact that any large aftershock may generate its own aftershocks [13, 19]. What is remarkable is that this structure seems to be identical to the one corresponding to stationary seismicity.

An important consequence of this is that the time behavior of seismicity depends on just one variable: the seismic rate. Another implication is the fact that aftershock sequences cannot be described as a nonhomogeneous Poisson process, as in that case one should obtain an exponential distribution for \(f(\theta) \). The use of the nonhomogeneous Poisson process previously in this work must be understood only as a first approximation to justify the use of the gamma fit for the distribution of recurrence times in an Omori sequence. Nevertheless, we will see in the next sections that the generalization of the nonhomogeneous
Poisson process taking into account the results explained here leads to similar conclusions for the time distribution in the sequence.

The rescaling of the recurrence times with the seismic rate \(r(t, M_c) \) can be applied also to the occurrence times \(t_i \), in order to transform the Omori sequence (or in general any sequence with a time-variable rate) into a stationary sequence. For this purpose we define the accumulated rescaled recurrence time \(\Theta \), defined as
\[
\Theta_i = \theta_1 + \theta_2 + \cdots + \theta_i,
\]
which plays the role of a stationary occurrence time, in the same way that \(\theta_i \) plays the role of a stationary recurrence time, in general. This allows the complete comparison between stationary seismicity and aftershock sequences.

3 The Paradox of the Decreasing Hazard Rate and the Increasing Time Until the Next Earthquake

Other functions, in addition to the probability density, are suitable for describing the general properties of recurrence times. Although from a mathematical point of view the functions we are going to introduce are fully equivalent to the probability density, they show much clearly some interesting temporal features of seismicity.

3.1 Decreasing of the Hazard Rate

Let us consider first the hazard rate, \(\lambda(\tau; M_c) \), defined for a certain region and for \(M \geq M_c \) as the probability per unit time of an immediate earthquake given that there has been a period \(\tau \) without activity [20],
\[
\lambda(\tau; M_c) \equiv \frac{\text{Prob}[\tau < \tau' \leq \tau + d\tau \mid \tau' > \tau]}{d\tau} = \frac{D(\tau; M_c)}{S(\tau; M_c)},
\]
where \(\tau' \) is a generic label for the recurrence time, while \(\tau \) refers to a particular value of the same quantity, the symbol \(\mid \) denotes conditional probability, and \(S(\tau; M_c) \) is the survivor function, \(S(\tau; M_c) \equiv \text{Prob}[\tau' > \tau] = \int_{\tau}^{\infty} D(\tau'; M_c) \, d\tau' \). Introducing the scaling law [4] for \(D \) in the definitions it is immediate to obtain that both \(S(\tau; M_c) \) and \(\lambda(\tau; M_c) \) verify also scaling relations,
\[
S(\tau; M_c) = g(R\tau) \quad \text{and} \quad \lambda(\tau; M_c) = Rh(R\tau).
\]
If we make use of the gamma parameterization, Eq. [11], with \(C \approx 1 \), we get for the scaling function \(h \),
\[
h(\theta) = \frac{1}{a} \left(\frac{a}{\theta} \right)^{1-\gamma} \frac{e^{-\theta/a}}{\Gamma(\gamma, \theta/a)}.
\]
For short recurrence times this function diverges as a power law,
\[
h(\theta) \approx \frac{1}{\Gamma(\gamma) a^{\gamma} \theta^{1-\gamma}}
\]
(in fact, in this limit the hazard rate becomes indistinguishable from the
probability density). On the other hand, \(h(\theta) \) tends as a power law to
the value \(\frac{1}{a} \) as \(\theta \to \infty \); indeed, making use of the expansion
\(\Gamma(\gamma, z) \to z^{-1}e^{-z}[1 - (1 - \gamma)/z + (1 - \gamma)(2 - \gamma)/z^2 + \cdots] \) \(^{15}\), we get
\[
 h(\theta) = \frac{1}{a} \left[1 + \frac{a(1 - \gamma)}{\theta} + \cdots \right].
\]
The overall behavior for \(\gamma < 1 \) is that \(h(\theta) \) decreases monotonically as \(\theta \)
increases; so, contrary to common belief and certainly counterintuitively, these
calculations allow us to predict that the hazard does not increase with the
elapsed time since the last earthquake, but just the opposite, it decreases up

to an asymptotic value that corresponds to a Poisson process of rate \(R/a \).
This means that although the hazard rate decreases, it never reaches the zero
value, and sooner or later a new earthquake will strike.

If we compare the hazard rate for \(\gamma < 1 \) with that of a Poisson process
with the same mean (given by \(\gamma = a = 1 \), and rate \(R \)), we see that for short
recurrence times the hazard rate is well above the Poisson value, implying that
at any instant the probability of having an earthquake is higher than in the
Poisson case. In contrast, for long times the probability is below the Poisson
value, by a factor \(1/a \). This is precisely the most direct characterization of
clustering in time, for which we can say that events tend to attract each
other, being closer in short time scales and more separated in long time scales
(in comparison with the Poisson process).

In conclusion, we predict that seismicity is clustered independently on the
scale of observation; in the case of stationary seismicity this clustering is much
less trivial than the clustering due to the increasing of the rate in aftershock
sequences. Taking advantage of the self-similarity implied by the scaling law,
we could extrapolate the clustering behavior to the largest events worldwide
\((M \geq 7.5)\) over relatively small spatial scales (hundreds of kilometers) and we
would obtain a behavior akin to the long-term clustering observed by other
means \(^{21}\).

3.2 Increasing of the Residual Time Until the Next Earthquake

Let us introduce now the expected residual recurrence time, \(\epsilon(\tau_0; M_c) \), which
provides the expected time till the next earthquake, given that a period \(\tau_0 \)
without earthquakes (in the spatial area and range of magnitudes considered)
has elapsed \(^{20}\),
\[
 \epsilon(\tau_0; M_c) \equiv \langle \tau - \tau_0 \mid \tau > \tau_0 \rangle = \frac{1}{S(\tau_0; M_c)} \int_{\tau_0}^{\infty} (\tau - \tau_0) D(\tau; M_c)d\tau.
\]
where \(\mid \) denotes that the mean is calculated only when the condition \(\tau > \tau_0 \) is
fulfilled. Again, the scaling law for \(D \) implies a scaling form for this function,
which is $\epsilon(\tau_0) = e(R\tau_0)/R$, and introducing the gamma parameterization we get for the scaling function

$$e(\theta) = a\gamma + a(\gamma + 1, \theta/a) - \theta = a\left[\gamma + \frac{\Gamma(\gamma + 1, \theta/a)}{\Gamma(\gamma, \theta/a)} \right] - \theta,$$

making use of the relation $\Gamma(\gamma + 1, z) = \gamma \Gamma(\gamma, z) + z^\gamma e^{-z}$. For short times we obtain

$$e(\theta) = a\gamma + a(\gamma + 1, \theta/a) - \theta + \cdots;$$

remember that the unconditional mean is $\langle \theta \rangle = \gamma a = 1$, precisely the value obtained for $\theta = 0$. For long times $e(\theta)$ reaches, again as a power law, an asymptotic value equal to a, i.e.,

$$e(\theta) = a\left[1 - a(1 - \gamma) + \cdots\right].$$

The global behavior of $e(\theta)$ is monotonically increasing as a function of θ if $\gamma < 1$. Therefore, the residual time until the next earthquake should grow with the elapsed time since the last one. Notice the counterintuitive behavior that this represents: if we decompose the recurrence time τ as $\tau = \tau_0 + \tau_f$, with τ_f the residual time to the next event, the increase of τ_0 implies the increase of the mean value of τ_f, but the mean value of τ is kept fixed. In fact, this is fully equivalent to the previously reported decreasing-hazard phenomenon and just a more dramatic version of the classical waiting-time paradox \cite{22, 23, 24}.

This result seems indeed paradoxical for any time process, as we naturally expect that the residual recurrence (or waiting) time decreases as time increases; think for instance that you are waiting for the subway: you are confident that the next train is approaching; or when you celebrate your birthday, your expected residual lifetime decreases (at any time, in fact). Of course, for an expert statistician the case of earthquakes is not paradoxical, but only counterintuitive, and he or she can provide the counterexamples of newborns (mainly in underdeveloped countries) or of private companies, which become healthier or more solid as time passes and therefore their expected residual lifetime increases with time. These counterintuitive behaviors can be referred to as a phenomenon of negative aging.

Nevertheless, for the concrete case of earthquakes the increasing of the expected residual recurrence time is still paradoxical, since one naively expects that the longer the time one has been waiting for an earthquake, the closer it will be, due to the fact that as time passes stress increases on the faults and the next earthquake becomes more likely. Nevertheless, note that our approach does not deal with individual faults but with two-dimensional, extended regions, and in this case the evolution of the stress is not so clear. It is worth mentioning that, as far as the author knows, no conclusive study of this kind has been performed for observational data in individual faults, the difficulty on associating earthquakes to faults is one the major problems here.
3.3 Direct Empirical Evidence

Our predictions for earthquake recurrence times follow the line initiated by other authors. Davis et al. [25], pointed out that when a lognormal distribution is a priori assumed for the recurrence times, the expected residual time increases with the elapsed time. However, the increase there was associated to the update of the distribution parameters as the time since the last earthquake (which was taken into account in the estimation) increased, and not to an intrinsic property of the distribution. Sornette and Knopoff [26] showed that the increase (or decrease) depends completely on the election of the distribution, and studied the properties of a number of them. We now will see that the observational data provide direct and clear evidence in favor of the picture of an incoming earthquake which is moving away in time.

![Graph showing rescaled hazard rate and expected residual recurrence time](image)

Fig. 5. Rescaled hazard rate (left) and rescaled expected residual recurrence time (right) as a function of time for Southern California, 1988-1991 (nearly stationary period) and for worldwide seismicity, 1973-2002. The observational data agrees with the scaling functions derived from the gamma distribution. In the right plot the parameter a is not free, but $a = 1/\gamma$ to enforce $c(0) = 1$.

Indeed, in order to rule out the possibility that these paradoxical predictions are an artifact introduced by the gamma parameterization, we must contrast them with real seismicity; in fact, both the hazard rate and the expected residual recurrence time can be directly measured from the catalogs, with no assumption about their functional form. Their definitions provide a simple way to estimate these functions, and in this way we have applied these definitions to the recurrence-time data [17]. From the results displayed in Fig. 5 it is apparent that in all cases the hazard rate decreases with time whereas the expected residual recurrence time increases, as we have predicted. Although both quantities are well approximated by the proposed universal scaling functions, we emphasize that their behavior does not depend on any modeling of the process and in particular is independent on the gamma parameterization. Moreover, the fact that $c(\tau_0)$ is far from being constant at large times means
that the time evolution is not properly described by a Poisson process, even
in the long-time limit.

We conclude stating that the contents of this section can be summarized in
this simple sentence: the longer since the last earthquake, the lowest the hazard
for a new one, which is fully equivalent to this one (although less shocking):
the longer since the last earthquake, the longer the expected time till the next.
Moreover, this happens in a self-similar way, thanks to the scaling laws which
are fulfilled.

4 Scaling Law Fulfillment as Invariance Under a
Renormalization-Group Transformation

It is interesting to realize that the scaling law for the recurrence-time distribu-
tion, Eq. (4), implies the invariance of the distribution under a renormalization-
group transformation. Let us investigate deeper the meaning of the scaling
analysis we have performed and its relation with the renormalization group.

Fig. 6. Magnitude versus time of occurrence of worldwide earthquakes for sev-
eral magnitude-time windows. The rising of the magnitude threshold from 5 to 6
illustrates the thinning or decimation process characteristic of the first step of a
renormalization-group transformation. The second step is given by the extension
(rescaling) of the time axis from one year (1990) to 10 years (1990-2000). Notice the
similarity between the first plot and the last one, which is due to the invariance of
seismicity under this transformation.

Figure 6 displays the magnitude M versus the occurrence time t of all
worldwide earthquakes with $M \geq M_c$ for different periods of time and M_c
values. The top of the figure is for earthquakes with $M \geq 5$ for the year
1990. If we rise the threshold up to $M_c = 6$ we get the results shown in Fig. 6(medium). Obviously, as there are less earthquakes in this case, the distribution of recurrence times (time interval between consecutive “spikes” in the plot) becomes broader with respect to the previous case, as we know. The rising of the threshold can be viewed as a mathematical transformation of the seismicity point process, which is referred to as thinning in the context of stochastic processes [27] and is also equivalent to the common decimation performed for spin systems in renormalization-group transformations [28, 29, 30]; the term decimation is indeed appropriate as only one tenth of the events survive this transformation, due to the fulfillment of the GR law with $b = 1$. Figure 6(bottom) shows the same as Fig. 6(medium) but for ten years, 1990-1999, and represents a scale transformation of seismicity (also as in the renormalization group), contracting the time axis by a factor 10 to compensate for the previous decimation. The similarity between Fig. 6(top) and 6(bottom) is apparent, and is confirmed when the probability densities of the corresponding recurrence times are calculated and rescaled following Eq. (14), see again Fig. 3(right).

4.1 Simple Model to Renormalize

A simple model may illustrate these ideas [31]. Let us assume that seismicity could be described as a time process for which each recurrence time τ_i (which separates event $i - 1$ and i) only depends on M_{i-1}, the magnitude of the last event that has occurred before event i. Any other dependences are ignored, and in particular the values of the magnitudes are generated independently from the rest of the process. It is possible to shown that for this process the recurrence-time density for events above M_{c}', $D(\tau; M_{c}')$, can be related to the recurrence-time density for events above M_c conditioned to $M_{pre} \geq M_{c}'$ or to $M_{pre} < M_{c}'$, which we denote $D(\tau|M_{pre} \geq M_{c}'; M_c)$ and $D(\tau|M_{pre} < M_{c}'; M_c)$, respectively, where M_{pre} refers to the magnitude of the event immediately previous to the recurrence time, and it is assumed that $M_{c}' > M_c$. The relation turns out to be

$$D(\tau; M_{c}') = pD(\tau|M_{pre} \geq M_{c}'; M_c) + qD(\tau|M_{pre} > M_{c}'; M_c) \star D(\tau|M_{pre} < M_{c}'; M_c) + \cdots \tag{14}$$

where \star denotes the convolution product and p is the probability that an earthquake is above M_{c}', given that it is above M_c, i.e.,

$$p = \text{Prob}[M \geq M_{c}'|M \geq M_c] = 10^{-b(M_{c}'-M_c)} \tag{15}$$

using the GR law, whereas $q = \text{Prob}[M < M_{c}'|M \geq M_c] = 1 - p$. Equation (14) enumerates the number of ways in which two consecutive events for $M \geq M_{c}'$ may be separated by a recurrence time τ; these are the number of events with
$M < M'_c$ in between, each one contributing with a probability q, and then the time τ between the two events is in fact a $(k+1)$-th return-time for the process with $M \geq M_c$; from here and the independence between recurrence times the convolutions arise.

Let us translate Eq. (14) to Laplace space, by using $F(s) \equiv \int_0^\infty e^{-s\tau} F(\tau) d\tau$; then, the convolutions turn out to be simple products, i.e.,

$$D(s; M'_c) = pD(s|M_{\text{pre}} \geq M'_c; M_c) \sum_{k=0}^\infty q^k [D(s|M_{\text{pre}} < M'_c; M_c)]^k.$$ (16)

As $qD(s|M_{\text{pre}} < M'_c; M_c) < 1$ the series can be summed, yielding

$$D(s; M'_c) = \frac{pD(s|M_{\text{pre}} \geq M'_c; M_c)}{1 - D(s; M_c) + pD(s|M_{\text{pre}} \geq M'_c; M_c)},$$ (17)

using that $D(s; M_c) = pD(s|M_{\text{pre}} \geq M'_c; M_c) + qD(s|M_{\text{pre}} < M'_c; M_c)$. We have obtained an equation for the transformation of the recurrence-time probability density under the thinning or decimation caused by the raising of the magnitude threshold from M_c to M'_c. The second part in the process is the simple rescaling of the distributions, to make them have the same mean and comparable with each other; we obtain this by removing the effect of the decreasing of the rate, which, due to thinning, is proportional to p, so,

$$D(\tau; M'_c) \to p^{-1} D(p^{-1}\tau; M'_c),$$ (18)

and in Laplace space,

$$D(s; M'_c) \to D(ps; M'_c).$$ (19)

Finally, the renormalization-group transformation \mathbb{T} is obtained by combining the decimation with the scale transformation,

$$\mathbb{T}[D(s; M_c)] = \frac{pD(ps|M_{\text{pre}} \geq M'_c; M_c)}{1 - D(ps; M_c) + pD(ps|M_{\text{pre}} \geq M'_c; M_c)}.$$ (20)

A third step which is usual in renormalization-group transformations is the renormalization of the field, M in this case, but as we are only interested in recurrence times it will not be necessary here. The fixed points of the renormalization-group transformation are obtained by the solutions of the fixed-point equation

$$\mathbb{T}[D(s; M_c)] = D(s; M_c).$$ (21)

This equation is equivalent to the scaling law for the recurrence-time densities, Eq. 4, the only difference is that now it is expressed in Laplace space, as we are not able to provide the form of the operator \mathbb{T} in real space.
4.2 Renormalization-Group Invariance of the Poisson Process

We can get some understanding of the transformation τ by considering first the simplest possible case, that in which there are no correlations in the process; so we have to break the statistical dependence between the magnitude and the subsequent recurrence time. This means that

$$D(\tau|M_{pre} \geq M'_c; M_c) = D(\tau|M_{pre} < M'_c; M_c) = D(\tau; M_c) \equiv D_0(\tau; M_c) \quad (22)$$

and then the renormalization transformation turns out to be

$$\tau[D_0(s; M_c)] = \frac{pD_0(ps; M_c)}{1 - qD_0(ps; M_c)}. \quad (23)$$

if we introduce $\omega \equiv ps$ and substitute $p = \omega/s$ and $q = 1 - \omega/s$ in the fixed-point equation $\tau[D_0(s; M_c)] = D_0(s; M_c)$, we get, separating variables and equaling to an arbitrary constant k

$$\frac{1}{sD_0(s; M_c)} - \frac{1}{s} = \frac{1}{\omega D_0(\omega; M_c)} - \frac{1}{\omega} \equiv k; \quad (24)$$

due to the fact that p and s are independent variables and so are s and ω. The solution is then

$$D_0(s; M_c) = (1 + ks)^{-1}, \quad (25)$$

which is the Laplace transform of an exponential distribution,

$$D_0(\tau; M_c) = k^{-1}e^{-\tau/k}. \quad (26)$$

The dependence on M_c enters by means of k, as $k = \langle \tau(M_c) \rangle$; in the case of seismicity the GR law holds and $k = R^{-1}(M_c) = R_0^{-1}10^{BM_c}$.

Summarizing, we have shown that the only process without correlations which is invariant under a renormalization-group transformation of the kind we are dealing with is the Poisson process. This means that if one considers as a model of seismicity a renewal process (i.e., independent identically distributed return times) with uncorrelated magnitudes, then the recurrence-time distributions will not verify a scaling law when the threshold M_c is raised, except if $D(\tau; M_c)$ is an exponential (which constitutes the trivial case of a Poisson process).

Even further, the Poisson process is not only a fixed point of the transformation, but a stable one (or attractor) for a thinning transformation in which events are randomly removed from the process (random thinning). If magnitudes are assigned to any event independently of any other variable (other magnitudes or recurrence times) the decimation of events after the risen of the threshold M_c is equivalent to a random thinning, and therefore the resulting process must converge to a Poisson process, under certain conditions [27].

The fact that for real seismicity the scaling function f is not an exponential tells us that our renormalization-group transformation is not performing
a random thinning; this means that the magnitudes are not assigned independently on the rest of the process and therefore there exists correlations in seismicity. This of course is not new, but let us stress that correlations are fundamental for the existence of the scaling law \(\text{[4]} \): the only way to depart from the trivial Poisson process is to consider correlations between recurrence times and magnitudes in the process. This is the motivation for the model explained in this section, for which we have chosen the simplest form of correlations between magnitudes and subsequent recurrence times. In fact, Molchan has shown that even for this correlated model the Poisson process is the only possible fixed point, implying that this type of correlations are too weak and one needs a stronger dependence of the recurrence times on history to depart from the Poisson case. After all, this is not surprising, as we know from the study of equilibrium critical phenomena that in order to flow away from trivial fixed points, long-range correlations are necessary. Therefore, the problem of finding a model of correlations in seismicity yielding a nontrivial recurrence-time scaling law is open.

5 Correlations in Seismicity

In the preceding section we have argued that the existence of a scaling law for recurrence time distributions is inextricably linked with the existence of correlations in the process, in such a way that correlations determine the form of the recurrence-time distribution. In consequence, an in-depth investigation of correlations in seismicity is necessary.

Our analysis will be based in the conditional probability density; for instance, for the recurrence time we have,

\[
D(\tau | X) \equiv \frac{\text{Prob}[\tau < \text{recurrence time} \leq \tau + d\tau | X]}{d\tau},
\]

where \(| X \) means that the probability is only computed for the cases in which the condition \(X \) is fulfilled. If it turns out to be that \(D(\tau | X) \) is indistinguishable from the unconditional density, \(D(\tau) \), then, the recurrence time is independent on the condition \(X \); on the contrary, if both distributions turn out to be significantly different, this means that the recurrence time depends on the condition \(X \) and we could define a correlation coefficient to account for this dependence, although in general we might be dealing with a nonlinear correlation.

Moreover, as we will compare values of the variables in different times (for example, the dependence of the recurrence time \(\tau_i \) on the value of the preceding recurrence time, \(\tau_{i-1} \), for all \(i \)), we introduce a slight modification in the notation, particularly with respect the previous section, including the subindices denoting the ordering of the events in the probability distributions. Further, in order to avoid complications in the notation, we will drop the dependence of the conditional density on \(M_c \) when unnecessary.
5.1 Correlations between recurrence times

Let us start with the temporal sequence of occurrences, for which we obtain the conditional distributions $D(\tau_i|\tau_a \leq \tau_{i-1} < \tau_b)$; in particular we distinguish two cases: short preceding recurrence times, $D(\tau_i|\tau_{i-1} < \tau_a)$, where τ_a is small, and long preceding recurrences, $D(\tau_i|\tau_{i-1} \geq \tau_a)$, with τ_a large. The results, both for worldwide seismicity and for Southern-California stationary seismicity, turn out to be practically the same, see Fig. 6 of Ref. [11]. For short τ_{i-1}, a relative increase in the number of short τ_i and a decrease of long τ_i is obtained, in comparison with the unconditional distribution, which leads to a steeper power-law decay of the conditional density for short and intermediate times. In the opposite case, long τ_{i-1}’s imply a decrease in the number of short τ_i and an increase in the longer ones, in such a way that a flatter power-law exists here. In any case, the behavior for long τ_i is exponential. So, short τ_{i-1}’s imply an average reduction of τ_i and the opposite for long τ_{i-1}’s, and then both variables are positively correlated.

This behavior corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events, while longer times tend also to be next each other. This clustering effect is different from the clustering reported in previous sections, associated to the non-exponential nature of the recurrence-time distribution, but is similar, in some sense, to the usual clustering of aftershock sequences, as these sequences also show this kind of correlations, although mainly due to the time-variable rate.

In fact, the case of nonstationary seismicity was studied by Livina et al. for Southern California [32, 33], with the same qualitative behavior. These authors explain their results in terms of the persistence of the recurrence time, which is a concept equivalent to the kind of clustering we have described. The results could be also similar to the long-term persistence observed in climate records.

The effect of correlations can be described in terms of a scaling law, which constitutes a generalization of the scaling law for (unconditioned) recurrence time distributions, Eq. (4). In this way, we can write the conditional recurrence-time distribution in terms of a scaling function which depends on two variables, $R\tau_i$ and $R\tau_a$, or $R\tau_i$ and $R\tau_b$, see Ref. [33]. Further, the study of correlations between recurrence times can be studied beyond consecutive events, i.e., we can measure the distribution of τ_i conditioned to τ_{i-2}, or τ_{i-3}, etc. The results for these distributions show no qualitative difference, at least up to $i - 10$, in comparison with what we have explained for $i - 1$.

The main results of this subsection can be summarized in one single sentence, reflecting the positive correlation between recurrence times: the shortest the time between the two last earthquakes, the shortest the recurrence of the next one, on average.
5.2 Correlations between recurrence time and magnitude

If magnitudes are taken into account, there are two main types of correlations with the recurrence times. First, we consider how the magnitude of one event influences the recurrence time of a future event, in particular the next one, measuring $D(\tau_i|\M_{i-1} \geq \M'_i)$. The results for the case of worldwide seismicity and for Southern California (in a stationary case) are again similar and show a clear (negative) correlation between \M_{i-1} and τ_i [34].

Figure 7(left) shows, for Southern-California in the stationary case, how larger values of the preceding magnitudes, given by $\M_{i-1} \geq \M'_1$, lead to a relative increase in the number of short τ_i and a decrease in long τ_i, implying that \M_{i-1} and τ_i are anticorrelated. For the cases for which the statistics is better, the densities show the behavior typical of the gamma distribution, with a power law that becomes steeper for larger \M'_i; the different values of the power-law exponent are given at the figure caption.

Remarkably, this behavior can be described by a scaling law for which the scaling function depends now on the difference between the threshold magnitude for the $i - 1$ event, \M'_i, and the threshold for i, \M_c, i.e.,

$$D(\tau_i|\M_{i-1} \geq \M'_i; \M_c) = R(\M_c, \M'_i)f(R(\M_c, \M'_i)\tau_i, \M'_i - \M_c)$$

with $R(\M_c, \M'_i) \equiv 1/(\gamma(M_c, M'_i))$ and $\langle \tau_i(M_c, M'_i) \rangle$ the mean of the distribution $D(\tau_i|\M_{i-1} \geq \M'_i; \M_c)$. The original scaling law for unconditioned distributions, Eq. (3), is recovered taking the case $\M'_c = \M_c$. Figure 7(right)
illustrates this scaling law both for worldwide and for Southern-California stationary seismicity.

The second kind of correlations deals with how the recurrence time to one event τ_i influences its magnitude M_i, or, equivalently, how the recurrence time to one event depends on the magnitude of this event. For this purpose, we measure $D(\tau_i|M_i \geq M'_c)$; the results for Southern-California stationary seismicity are shown in Fig. 8(left). It is clear that in most of their range the distributions are nearly identical, and when some difference is present this is inside the uncertainty given by the error bars. However, there is one exception: very short times, $\tau_i \approx 3$ min, seem to be favored by larger magnitudes, or, in other words, short times lead to larger events; nevertheless, due to the short value of the time involved, we can ignore this effect. Then, the recurrence time and the magnitude after it can be considered as independent from a statistical point of view, with our present resolution (it might be that a very weak dependence is hidden in the error bars of the distributions).

Further, as in the previous subsection, we have gone several more steps backwards in time, measuring conditional distributions up to $D(\tau_i|M_{i-10} \geq M'_c)$, and also we have extended the conditional distributions to the future, measuring $D(\tau_i|M_j \geq M'_c)$ with $j > i$. The results are not qualitatively different than what is described previously, with the first type of distributions dependent on M'_c and the second type independent. From here we can conclude the dependence of the recurrence time and the independence of the magnitude with the sequence of previous recurrence times, at least with our present statistics and resolution.

Two sentences may serve to summarize the behavior of seismicity described here. First, the bigger the size of an earthquake, the shortest the time till next, due to the anticorrelation between magnitudes and forward recurrence times. Note that in the case of stationary seismicity this result is not trivially derived from the law of aftershock productivity. Second, the belief that the longer the recurrence time for an earthquake, the bigger its size, is false, as the magnitude is uncorrelated with the previous recurrence times. This shows clearly the time irreversibility of seismicity.

5.3 Correlations between magnitudes

Although not directly related with the temporal properties, we study the correlations between consecutive magnitudes, M_{i-1} and M_i, by means of the distribution $D(M_i|M_{i-1} \geq M'_c)$. As the analysis of the 1994-1999 period for Southern California did not provide enough statistics for the largest events, we considered a set of stationary periods, these being: Jan 1, 1984 - Oct 15, 1984; Oct 15, 1986 - Oct 15, 1987; Jan 1, 1988 - Mar 15, 1992; Mar 15, 1994 - Sep 15, 1999; and Jul 1, 2000 - Jul 1, 2001; all of them visible in Fig. 2.

Again we find that both worldwide seismicity and stationary Southern-California seismicity share the same properties, but with a divergence for short times. Figure 10 of Ref. [11] shows the distributions corresponding to the two
regions, and whereas for the worldwide case the differences in the distributions for different M_c' are compatible with their error bars, for the California case there is a systematic deviation, implying a possible correlation.

In order to find the origin of this discrepancy we include an extra condition, which is to restrict the events to the case of large enough recurrence times, so we impose $\tau_i \geq 30$ min. In this case, the differences in Californian distributions become no significant, see Fig. 8(right), which means that the significant correlations between consecutive magnitudes are restricted to short recurrence times. Therefore, we conclude that the Gutenberg-Richter law is valid independently of the value of the preceding magnitude, provided that short times are not considered. This is in agreement with the usual assumption in the ETAS model, in which magnitudes are generated from the Gutenberg-Richter distribution with total independence of the rest of the process. Of course, this independence is established within the errors associated to our finite sample. It could be that the dependence between the magnitudes is weak enough for that the changes in distribution are not larger than the uncertainty. With our analysis, only a much larger data set could unmask this hypothetical dependence.

The deviations for short times may be an artifact due to the incompleteness of earthquake catalogs at short time scales, for which small events are not recorded. Helmut et al. [35] propose a formula for the magnitude of completeness in Southern California as a function of the elapsed time since a mainshock and its magnitude; applying it to our stationary periods, for which the larger earthquakes have magnitudes ranging from 5 to 6, we obtain that a time of about 5 hours is necessary in order that the magnitude of completeness reaches a value below 2 after a mainshock of magnitude 6. After
mainshocks of magnitude 5.5 and 5 this time reduces to about 1 hour and 15 min, extrapolating Helmstetter et al.’s results. In any case, it is perfectly possible that large mainshocks (not necessarily the preceding event) induce the loss of small events in the record and are the responsible of the deviations from the Gutenberg-Richter law at small magnitudes for short times. If an additional physical mechanism is behind this behavior, this is a question that cannot be answered with this kind of analysis.

As in the previous subsection, we have performed measurements of the conditional distributions for worldwide seismicity involving different M_i and M_j, separated up to 10 events, with no significant variations in the distributions, as expected. This confirms the independence of the magnitude M_i with its own history.

These results, together with those of the previous subsection allow to state that an earthquake does not “know” how big is going to be (at least from the information recorded at the catalogs, disregarding spatial structure, and with our present resolution) [34, 11].

5.4 Correlations between recurrence times and distances

Up to now we have considered seismicity as a point process in time, marked by the magnitude. If, in addition to this, we take into account the spatial degrees of freedom, these new variables allow to study other types of correlations. Of outstanding importance will be the distances between earthquakes, and specially the distances between consecutive earthquakes, which we may call jumps.

The correlations between jumps and recurrence times have been investigated in Ref. [36], and they show a curious behavior. There are two kinds of recurrence time distributions conditioned to the distance, one for short distances, which can be represented by a gamma distribution with a decaying power law of exponent around 0.8, and the distribution for long distances, which is an exponential. It is clear then that in one case we are dealing with aftershocks and in the other with Poissonian events. The particularity of these distributions is that they are independent on the distances, provided that the set of values of the distances are short, or long. For worldwide earthquakes, the difference between short and long distances is around 2° (200 km), whereas for Southern California this value is 0.1°, approximately.

We may note that the (unconditional) distribution of recurrence times is then a mixture of these two kind of conditional distributions, and therefore, the existence of a universal recurrence-time distribution is a consequence of a constant proportion of short and long distances in seismicity, or of aftershocks and uncorrelated events.
6 Bak et al.’s Unified Scaling Law

Bak, Christensen, Danon, and Scanlon introduced a different way to study recurrence times in earthquakes [3]. They divided the region of Southern California into approximately equally-sized squared subregions (when longitude and latitude are taken as rectangular coordinates), and computed the series of recurrence times for each subregion. The main difference with the procedure explained in the previous sections is that Bak et al. included all the series of recurrence times into a unique recurrence-time distribution, performing therefore a mixing of the distributions for all subregions. As seismic rate displays large variations in space (compare the rates of occurrence in Tokyo and in Moscow, and the same happens at smaller scales) Bak et al.’s procedure leads to a very broad distribution of recurrence times.

It was found that the recurrence-time densities defined in this way, $D(\tau; M_c, \ell)$, for different magnitude thresholds M_c and different linear size ℓ of the subregions, verify the following scaling law (see Fig. 9(left)),

$$D(\tau; M_c, \ell) = R F(\mathcal{R}\tau),$$

which was named unified scaling law, where F is the scaling function, showing a power-law decay with exponent close to 1 for small recurrence times and a different power-law decay for long times, with exponent around 2.2 [37], whereas $\mathcal{R}(M_c, \ell)$ is the spatial average of the mean seismic rate, i.e., the average of $R_{xy}(M_c, \ell)$ for all the regions with seismic activity (labeled by xy), so, $\mathcal{R} = \sum_{xy} R_{xy} / n$, where n is the number of such regions. Note that \mathcal{R} is the inverse of the mean of D. From the GR law for each region, $R_{xy} = R_{xy0}10^{-bM_c}$ and from the fractal scaling of n with ℓ, $n = (L/\ell)^d_f$, we get, $\mathcal{R} = R_0(\ell/L)^d_f10^{-bM_c}$, with $R_0(L) = \sum_{xy} R_{xy0}(\ell)$ and L a rough measure of the linear size of the total area under study. Therefore we can write the scaling law as

$$D(\tau; M_c, \ell) = \ell^{d_f}10^{-bM_c} \tilde{F}(\ell^{d_f}10^{-bM_c}\tau),$$

which relates the recurrence-time density, defined in the Bak et al.’s way, with the GR law and with the fractal distribution of epicenters, and from here the name of unified scaling law. Molchan and Kronrod have studied this law in the framework of multifractals [38].

Later it was found that the unified scaling law holds beyond the case of Southern California, for instance for Japan, Spain, New Zealand, New Madrid (USA), or Iceland, as well as worldwide [39] [40]. However, it turned out that the scaling function is not universal, as there are differences for different regions, mainly in the crossover between short and long times, although the value of the long-time power-law exponent seems to be in all cases 2.2, and therefore universal, see Fig. 9(left). The deviations from the hyperbolic-like behavior (exponent close to one) for very short times have also been studied [40].

It is clear that the short-time exponent must be related (but not identical!) to the Omori p–value; on the other hand, the long-time exponent is a
consequence of a power law distribution of seismic rates in space, as we now show. Therefore, with the purpose of understanding the relation of Bak et al.’s results with the rest of this work, let us generalize the nonhomogeneous Poisson-Omori process previously introduced, in order to include the universal scaling law for Omori sequences. We have explained that these sequences can be characterized by an $r-$dependent recurrence-time probability density of the form $D(\tau|\tau) \propto r^{\gamma-1}e^{-r/a}$ (note that this includes the nonhomogeneous Poisson process, given by $\gamma = a = 1$, but for real field data $\gamma \approx 0.7$). We expect that, for a given spatial area, this is valid not only for Omori sequences but also for a general time-varying rate; then the overall probability density of the recurrence times, independently of r, is given by the mixing of all $D(\tau|\tau)$

$$D(\tau|r_m) = \frac{1}{\mu} \int_{r_m}^{r_0} rD(\tau|\tau)\rho(r)dr,$$

(27)

in fact, this is just Eq. (6): we recall that $\rho(r)$ is the density of rates, μ is the mean rate, r_0 is the maximum rate, and r_m is the minimum rate, related to the background seismicity level. Note that we have emphasized the dependence of the resulting distribution on r_m.

Let us consider that the distribution of rates comes essentially from Omori sequences, then, as we already know, $\rho(r) = C/r^{1+1/p}$. The analysis is sim-

Fig. 9. (left) Mixed recurrence-time densities (defined in the way of Bak et al.) and rescaled by R, for several values of ℓ and M_c. The different sets of curves correspond, from top to bottom, to (i) Southern California, 1984–2001; (ii) Northern California, 1985–2003; (iii) Stationary seismicity: Southern California, 1988–1991; worldwide, 1973–2002; Japan, 1995–1998; and Spain, 1993–1997; (iv) Stationary seismicity: New Zealand, 1996–2001, and New Madrid, 1975–2002; A total of 84 distributions are shown, ℓ ranging from 0.039 to 45°, and $1.5 \leq M_c \leq 6$. The distributions are shifted to the bottom for clarity sake. All the left tails are fit by a (decreasing) power-law with exponent 2.2, the right part of the distributions are fit by a power law with exponent 0.95 or 0.9, see Ref. [39]. (right) Distribution of mean rates of occurrence sequences, then, as we already know, $ρ$ of the resulting distribution on r background seismicity level. Note that we have emphasized the dependence of the recurrence times, independently of r, is given by the mixing of all $D(\tau|\tau)$

$$D(\tau|r_m) = \frac{1}{\mu} \int_{r_m}^{r_0} rD(\tau|\tau)\rho(r)dr,$$
plified for $\gamma = 1/p$, although the conclusions will be of general validity, so, in this case,
\[
D(\tau|\tau_{m}) \propto \frac{C}{\mu} \frac{(e^{-\tau_{m}\tau/a} - e^{-\tau_{0}\tau/a})}{\tau^{2-1/p}},
\]
where, in the same way as for a nonhomogeneous Poisson process, the minimum rate r_{m} determines the exponential tail of $D(\tau|\tau_{m})$ for large τ, which is preceded by a decreasing power law with exponent $2 - 1/p$ if $r_{0} \gg r_{m}$.

Up to now we have arrived to a slightly different, more convenient variation of the distribution corresponding to a nonhomogeneous Poisson process. Next step is to take into account the spatial degrees of freedom, fundamental in Bak et al.’s approach. In fact, as we have explained, their approach performs a mixing of recurrence times coming from different spatial areas (or subregions), which are characterized by disparate seismic rates. In particular, each area will have a different r_{m}, depending on its background seismicity level. As the minimum rate is difficult to measure (it depends on the size of the time intervals selected), we assume that the minimum rate r_{m} is somehow proportional to the mean rate of the sequence μ, which in turn is in correspondence with the mean rate in the area, R. This spatial heterogeneity of seismicity can be well described by a power-law probability density of mean rates R, $p(R) \propto 1/R^{1-\alpha}$, with $\alpha \approx 0.2$, see Fig. 9(right) and Ref. 37; then,
\[
p(r_{m}) \propto 1/r_{m}^{1-\alpha}
\]
and therefore the recurrence-time probability density comes from the mixing,
\[
D(\tau) \propto \int_{r_{mm}}^{r_{MM}} r_{m}D(\tau|\tau_{m})p(r_{m})dr_{m}
\]
where r_{m} varies between r_{mm} and r_{MM}. Integration, taking into account that C/μ depends on r_{m}, leads, for $r_{mm}\tau < 1 < r_{MM}\tau$, to
\[
D(\tau) \propto 1/\tau^{2+\alpha}
\]
In this way the power law for long times, reflects the spatial distribution of rates. The universal value of the exponent $2 + \alpha$ 391, would imply the universality of seismicity spatial heterogeneities. In consequence, Bak et al.’s unified scaling law provides a way to measure these properties. Further, Eq. 391 shows that the change of exponent in $D(\tau)$ appears for τ larger than $1/r_{MM}$, which corresponds, for the area of highest seismicity, to the mean of events that are in the tail of the Omori sequence, or in background seismicity, and therefore at the onset of correlation with the mainshock. It is in this sense that the change of exponent separates events with different correlation. On the other hand, the power law for short times is not affected by the spatial mixing and therefore $D \propto 1/\tau^{2-1/p}$.
7 Conclusions

We hope we have convinced the reader about the interest to study of the temporal features of seismicity. The research of the author was illuminated by the ideas and philosophy of the late Per Bak.

References

1. *Earthquake Science and Seismic Risk Reduction*, ed by F. Mulargia, R. J. Geller (Kluwer, Dordrecht, 2003)
2. J. B. Rundle, D. L. Turcotte, R. Shcherbakov, W. Klein, C. Sammis: Rev. Geophys. 41, 1019 (2003)
3. P. Bak, K. Christensen, L. Danon, T. Scanlon: Phys. Rev. Lett. 88, 178501 (2002)
4. Y. Y. Kagan: Physica D 77, 160 (1994)
5. D. L. Turcotte: *Fractals and Chaos in Geology and Geophysics* (Cambridge University Press, Cambridge 1997)
6. T. Utsu: Pure Appl. Geophys. 155, 509 (1999)
7. T. Utsu: Statistical Features of Seismicity. In: *International Handbook of Earthquake and Engineering Seismology, Part A*, ed by W. H. K. Lee, H. Kanamori, P. C. Jennings, C. Kisslinger (Academic Press, Amsterdam 2002) pp 719-732
8. P. A. Reasenberg, L. M. Jones: Science 243, 1173 (1989)
9. T. Utsu, Y. Ogata, R.S. Matsu’ura: J. Phys. Earth 43, 1 (1995)
10. A. Corral: Nonlinear Proc. Geophys. 12, 89 (2005)
11. A. Corral: Tectonophys., accepted (2006)
12. P. Bak: *How Nature Works: The Science of Self-Organized Criticality* (Copernicus, New York, 1996)
13. P. Shearer, E. Hauksson, G. Lin, D. Kilb: Eos Trans. AGU 84 (46): Fall Meet. Suppl., Abstract S21D–0326 (2003)
14. A. Corral: Phys. Rev. Lett. 92, 108501 (2004)
15. *Handbook of Mathematical Functions*, ed by M. Abramowitz, I. A. Stegun (Dover, New York, 1965)
16. R. Shcherbakov, G. Yakovlev, D. L. Turcotte, J. B. Rundle: Phys. Rev. Lett. 95, 218501 (2005)
17. A. Corral: Phys. Rev. E 71, 017101 (2005)
18. Y. Ogata: Pure Appl. Geophys. 155, 471 (1999)
19. A. Helmstetter, D. Sornette: Phys. Rev. E 66, 061104 (2002)
20. J. D. Kalbfleisch, R. L. Prentice: *The Statistical Analysis of Failure Time Data* (Wiley, New York 1980)
21. Y. Y. Kagan, D. D. Jackson: Geophys. J. Int. 104, 117 (1991)
22. W. Feller: *An Introduction to Probability Theory and Its Applications*, 2nd edn, vol 2 (Wiley, New York 1971)
23. G. J. Székely: *Paradoxes in Probability Theory and Mathematical Statistics* (Reidel, Dordrecht 1986)
24. M. Schroeder: *Fractals, Chaos, Power Laws* (Freeman, New York 1991)
25. P. M. Davis, D. D. Jackson, Y. Y. Kagan: Bull. Seismol. Soc. Am. 79, 1439 (1989)
26. D. Sornette, L. Knopoff: Bull. Seismol. Soc. Am. 87, 789 (1997)
27. D. J. Daley, D. Vere-Jones: \textit{An Introduction to the Theory of Point Processes} (Springer, New York 1988)
28. L. P. Kadanoff: \textit{Statistical Physics: Statics, Dynamics and Renormalization} (World Scientific, Singapore 2000)
29. W. D. McComb: \textit{Renormalization Methods} (Clarendon Press, Oxford 2004)
30. K. Christensen, N. R. Moloney: \textit{Complexity and Criticality} (Imperial College Press, London 2005)
31. A. Corral: Phys. Rev. Lett. 95, 028501 (2005)
32. V. Livina, S. Tuzov, S. Havlin, A. Bunde: Physica A 348, 591 (2005)
33. V. N. Livina, S. Havlin, A. Bunde: Phys. Rev. Lett. 95, 208501 (2005)
34. A. Corral: Phys. Rev. Lett. 95, 159801 (2005)
35. A. Helmstetter, Y. Y. Kagan, D. D. Jackson: Bull. Seismol. Soc. Am. 96, 90 (2006)
36. A. Corral: Universal earthquake-occurrence jumps, correlations with time, and anomalous diffusion. Submitted (2006)
37. A. Corral: Phys. Rev. E 68, 035102 (2003)
38. G. Molchan, T. Kronrod: Geophys. J. Int. 162, 899 (2005)
39. A. Corral: Physica A 340, 590 (2004)
40. J. Davidsen, C. Goltz: Geophys. Res. Lett. 31, L21612 (2004)
41. A. Corral, K. Christensen: Phys. Rev. Lett. 96, accepted (2006)