A Novel Method for Estimating Low-Density Lipoprotein (LDL) Levels: Total Cholesterol and Non-High-Density Lipoprotein (HDL) Can Be Used to Predict Abnormal LDL Level in an Apparently Healthy Population

Authors: Guo-Ming Zhang*, Shu-Mei Bai*, Gao-Ming Zhang, Xiao-Bo Ma, Hemant Goyal

Corresponding Authors: Guo-Ming Zhang, e-mail: zly52120@163.com, Hemant Goyal, e-mail: doc.hemant@yahoo.com

Source of support: Departmental sources

Background: We aimed to predict the abnormal LDL level by using TG, TC, HDL, and non-HDL in this study.

Material/Methods: Triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) data were obtained from the Laboratory Information System (LIS) for 4 years (Oct 1, 2013 to Sept 30, 2017) from among 34,270 healthy Chinese patients at Shuyang People’s Hospital. TG, TC, HDL, and LDL (direct clearance method) were measured using a TBA2000FR biochemical analyzer. The non-HDL was calculated as TC minus HDL. Correlations between TG, TC, non-HDL, and LDL were analyzed using Spearman’s rank correlation. Receiver operating characteristics (ROC) curve analysis was used to evaluate the predictive utility of TG, TC, and non-HDL for the abnormal LDL level (<130 mg/dL).

Results: Both TC (r=0.870) and non-HDL (r=0.893) were significantly positively correlated with LDL. The area under curve of TC and non-HDL can be used to predict abnormal LDL levels. Optimal thresholds were 182.5 mg/Dl (4.72 mmol/L) for TC and 135.3 mg/Dl (3.50 mmol/L) for non-HDL. Based on these optimal thresholds, less than 0.5% and 0.4% of tests with elevated LDL were missed using TC and non-HDL, respectively, but the value of these missed LDL levels was not very high (<147.3 mg/dL).

Conclusions: If the value of non-HDL is less than 135.3 mg/Dl (3.50 mmol/L) and/or TC is less than 182.5 mg/Dl (4.72 mmol/L) for the apparently healthy populations, the LDL level will be less than 130 mg/Dl (3.36 mmol/L). TC and non-HDL can be used to predict the abnormal LDL level in apparently healthy populations.

MeSH Keywords: Cholesterol, HDL • Cholesterol, LDL • Embolism, Cholesterol

Abbreviations: TC – total cholesterol; non-HDL – non-high-density lipoprotein cholesterol; LDL – low-density lipoprotein cholesterol; HDL – high-density lipoprotein cholesterol

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/909226

© Med Sci Monit, 2018; 24: 1688-1692
DOI: 10.12659/MSM.909226

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]
Background

Triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) are commonly used in clinical practice as a part of routine lipid evaluation [1]. Testing of cholesterol is vital in patients with diabetes, stroke, and heart diseases [3]. Normally, tests for serum TG, TC, HDL, and LDL are ordered together in the clinical laboratory. Since LDL is a component of the TC and the change of LDL is closely correlated to TC in most cases, we hypothesized that LDL testing might not be necessary, especially if both TC and non-HDL are within normal limits. Thus, we proposed that serum abnormal LDL level could be predicted by using TC and non-HDL as reflex tests. Reflex testing was defined as automatically adding or removing a test by the biochemical analyzer for saving clinical laboratory costs. For example, serum total bilirubin (TBIL) and conjugated bilirubin (CBIL) are highly correlated and approximately 87% of CBIL test results are lower than TBIL test results [4]. Most labs in Europe and the United States use automated technology to perform lipid profiles with automatic calculation of LDL by Friedewald method; however, all LDL levels are measured using a direct clearance method on auto biochemical analyzers in China. The results of LDL by Friedewald equation are often discordant with the direct clearance method results, and the cost of the direct clearance method is higher than for the indirect method. LDL may not accurately reflect the true level of LDL [3] and the elevated LDL should be measured by direct method. Hence, we searched for a novel method for estimating LDL levels. In this study, we analyzed the correlation between TG, TC, non-HDL, and LDL.

Material and Methods

Study cohort and data extraction

TG, TC, HDL, and LDL data were obtained from the Laboratory Information System (LIS). There were 34 270 subjects (21 651 males and 12 619 females) (Table 1) who came for routine health check-ups from October 1, 2013, to September 30, 2017 in Shuyang People’s Hospital. Since these individuals denied any complaints and did not have any medical history, we considered them as apparently healthy individuals. Data on age, sex, fasting serum TG (GPO-PAP no correction), TC (cholesterol oxidase method), HDL (direct clearance method), and LDL (direct clearance method) were extracted from the LIS. TG, TC, HDL, and LDL were measured using a TBA2000FR biochemical analyzer (Toshiba® Co., Ltd., Japan). Regular quality control procedures are conducted daily in the Laboratory Medicine Unit of Shuyang People’s Hospital. The external quality assessment scheme of Jiangsu Center for Clinical Laboratories is performed twice a year to validate the quality of these results.

Table 1. The characteristics of the participants.

Parameters	Female	Male
	12619	21651
Age		
(30–48)	35	43
	(31–55)	
Total cholesterol (mmol/L)	152.0–197.2	156.6–203.0
Triglycerides (mmol/L)	64.6–131.9	86.8–179.8
LDL (mmol/L)	80.8–119.1	88.6–126.1
Non-HDL (mmol/L)	100.2–144.6	111.4–156.2
HDL (mmol/L)	43.3–58.0	38.7–51.8

All data is represented by median and interquartile range.

The Ethics Committee of Shuyang People’s Hospital approved this study on Feb 15, 2017.

Statistical analysis and calculation

Non-HDL was calculated as TC minus HDL [1] and their relationship was analyzed using Spearman’s correlation. For abnormal LDL level, receiver operating characteristics (ROC) curve analysis was used to evaluate the predictive accuracy of TG, TC, HDL, and non-HDL. LDL was considered to be abnormal if >130 mg/dL (3.36 mmol/L) [5,6]. All statistical analyses were performed using EXCEL® 2007 (Microsoft Corporation, Beijing, China) and MedCalc® 15.2.2 (MedCalc Software, Ostend, Belgium). A p value less than 0.05 was considered statistically significant.

Results

The characteristics of the subjects

The data on 34 270 pairs of cholesterol and triglyceride tests between October 1, 2013, and September 30, 2017 were extracted from the Health Examination Center of Shuyang People’s Hospital, including 21 651 males and 12 619 females (Table 1).

Correlation among TG, TC, HDL, and non-HDL, and LDL

Both TC (r=0.870, p<0.0001) and non-HDL (r=0.893, p<0.0001) were significantly positively correlated with LDL (Figure 1).
The optimal threshold of TC and non-HDL in predicting abnormal LDL level

Figure 2 shows the ROC curves of TG, TC, HDL, and non-HDL for predicting abnormal LDL level (<130 mg/dL). Areas under the curve (AUC) were 0.675, 0.950, 0.541, and 0.957 for TG, TC, HDL, and non-HDL, respectively. As listed in Table 2, non-HDL was markedly better than TC for predicting abnormal LDL level in terms of diagnostic performance and leakage in different TG levels. At these threshold values of TC and non-HDL, <2.6% and 1.8% of tests with elevated LDL would have been missed, but the missing elevated LDL was not very high (<147.3 mg/dL = 3.81 mmol/L). As listed in Table 3, when the non-HDL is <135.3 mg/dL (3.50 mmol/L) and/or TC is <182.5 mg/dL (4.72 mmol/L), the LDL will be <130 mg/dL for the population. If the non-HDL is under 139.2 mg/dL (3.60 mmol/L) and/or TC is under 182.5 mg/dL (4.72 mmol/L), the LDL will be low 130 mg/dL for the population (the TG is less than 400 mg/dL).

Discussion

In this study, we analyzed serum TG, TC, non-HDL, LDL and their correlations in a large Chinese cohort of apparently healthy
subjects, and we found that TC and non-HDL were positively correlated with LDL. Healthy individuals who have low TC and non-HDL levels usually also have low LDL levels and vice versa. The results of ROC for predicting abnormal LDL level supported our hypothesis. The AUC was >0.95 for both TC and non-HDL, indicating that TC and non-HDL have high accuracy for predicting abnormal LDL level. Therefore, normal LDL levels (<130 mg/dL) were easily predicted using TC and non-HDL. Given the diagnostic performance and the proportion of elevated LDL, non-HDL is notably better than TC for predicting abnormal LDL levels. Two optimal thresholds of TC and non-HDL for predicting abnormal LDL level were 182.5 mg/dL (4.72 mmol/L) and 139.2 mg/dL (3.60 mmol/L) (given TG is <400 mg/dL). If TC is <182.5 mg/dL and/or non-HDL is <139.2 mg/dL, the LDL level is abnormal. The optimal threshold and accuracy of total cholesterol and non-high density lipoprotein cholesterol, and its performance in predicting abnormal low-density lipoprotein cholesterol.

TG levels	Less than 400 mg/dL	Less than 300 mg/dL	200–400 mg/dL			
	TC	NonHDL	TC	NonHDL	TC	NonHDL
AUC	0.954	0.963	0.955	0.966	0.940	0.946
	0.951–0.956	0.961–0.965	0.953–0.957	0.964–0.968	0.933–0.947	0.939–0.952
Thresholds (mg/dL)	196.8	148.1	196.8	147.3	205.7	162
Sensitivity	87.1	87.7	87.7	87.9	84.9	84.6
	86.7–87.5	87.3–88.1	87.3–88.1	87.5–88.3	83.6–86.1	83.3–85.9
Specificity	90.0	93.2	89.7	93.6	88.2	89.7
	89.3–90.8	92.5–93.8	88.9–90.4	93.0–94.2	86.4–89.8	88.0–91.2
The percentage of predicting abnormal LDL level (less than 130 mg/dL)	72.2%	71.9%	73.0%	72.3%	62.2%	61.5%
	24173/33486	24090/33486	23666/32427	23458/32427	2875/4624	2843/4624
Sensitivity	2.6%	1.7%	2.6%	1.6%	5.7%	5.0%
	616/24173	407/24090	611/23666	368/23458	165/2875	143/2843
Specificity	90.5	94.8	92.2	93.8	92.0	95.9
	90.5–92.1	94.2–95.4	91.4–93.2	92.9–94.5	90.4–93.4	94.7–96.9
The percentage of predicting abnormal LDL level (less than 130 mg/dL)	72.7%	73.4%	74.2%	77.9%	81.2%	83.5%
	20993/28862	21178/28862	17946/24181	18840/24181	11922/14674	12253/14674
Sensitivity	2.0%	1.2%	1.5%	1.1%	0.8%	0.4%
	409/20993	245/21178	262/17946	213/18840	100/11922	53/12253
Specificity	91.3	94.8	92.2	93.8	92.0	95.9
	90.5–92.1	94.2–95.4	91.4–93.2	92.9–94.5	90.4–93.4	94.7–96.9
The percentage of predicting abnormal LDL level (less than 130 mg/dL)	72.7%	73.4%	74.2%	77.9%	81.2%	83.5%
	20993/28862	21178/28862	17946/24181	18840/24181	11922/14674	12253/14674
Sensitivity	2.6%	1.7%	2.6%	1.6%	5.7%	5.0%
	616/24173	407/24090	611/23666	368/23458	165/2875	143/2843
Specificity	90.5	94.8	92.2	93.8	92.0	95.9
	90.5–92.1	94.2–95.4	91.4–93.2	92.9–94.5	90.4–93.4	94.7–96.9

Table 2. The optimal threshold and accuracy of total cholesterol and non-high density lipoprotein cholesterol, and its performance in predicting abnormal low-density lipoprotein cholesterol.

* Compare with TC and nonHDL groups; TC – total cholesterol; nonHDL – non- high density lipoprotein cholesterol; LDL – low-density lipoprotein cholesterol.

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]

© Med Sci Monit, 2018; 24: 1688-1692

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Zhang G.-M. et al.: A novel method for estimating LDL levels...
Table 3. The optimal threshold total cholesterol and non-high density lipoprotein cholesterol, and their performance in predicting abnormal low-density lipoprotein cholesterol.

TG levels	Total	Less than 400 mg/dL	200–400 mg/dL	Less than 200 mg/dL				
	TC	nonHDLC	TC	nonHDLC	TC	nonHDLC		
The optimal thresholds	182.5	135.3	182.5	139.2	186.8	147.7	181.4	138.4
The percentage of predicting abnormal LDLC level (less than 130 mg/dL)	56.0%	61.7%	57.3%	62.7%	40.7%	44.2%	59.4%	66.5%
Elev. LDLC (≥130 mg/dL) &	87/19175	83/21138	87/19175	83/20995	11/1884	11/2043	71/17132	65/19206
95% total double-side(mg/dL)	130.3–147.3	130.3–145.3	130.3–147.3	130.3–145.3	130.3–139.6	130.3–145.3	130.3–147.3	130.3–145.3

TC – total cholesterol; nonHDLC – non-high density lipoprotein cholesterol; LDLC – low-density lipoprotein cholesterol.

is <139.2 mg/dL, the LDL will be <130 mg/dL (3.36 mmol/L). According to these thresholds, only <0.5% and 0.4% of elevated LDL (>130 mg/dL) would have been missed, and these missed values were not very high (Tables 2, 3).

In this study, we found that approximately 56% of direct LDL tests or calculations could have been avoided. The price of a LDL test is approximately 4RMB (0.65 USD) [4] in China, thus, the expense of an LDL test would be greatly reduced. If non-HDL is used as a reflex test for LDL (when elevated LDL is >130 mg/dL), approximately 11.3 million LDL tests would have been avoided, which corresponds to savings of almost 7.2 million USD. The direct LDL test can be automatically performed when the predicting LDL level is not at a normal level. This saves physician time by not needing to order the direct LDL test, saves patient time by not needing to draw another blood sample, and expedites obtaining accurate LDL results. In contrast to the Friedewald formula [7], which is considered inaccurate (TG level is more than 220 mg/dL) [8], in this study we took into account the cost savings but also screened out the abnormal LDL level, and it was not affected by triglyceride levels.

Conclusions

There are some limitations to this study. First, this was a single-center study on individuals who came from routine health check-ups. Second, some individuals (<0.5%) with abnormal LDL levels can still be missed.

The results of present study indicate that almost all abnormal LDL levels can be predicted by using TC and/or non-HDL. To the best of our knowledge, this study is the first to predict LDL level by using ROC curve analysis. The approach of this study may be suited for other subjects. However, because of differences in the detection system and subjects, optimal threshold should be based on local data for using TC and/or non-HDL to predict abnormal LDL level.

References:

1. Zhang GM, Goyal H, Zhang GM et al: The “bad” cholesterol can predict abnormal apolipoprotein B levels in a large unselected outpatient cohort. Oncotarget, 2017; 9(8): 8011–15
2. https://medlineplus.gov/magazine/issues/summer12/articles/summer-12pg6-7.html/ Accessed Mar 18. 2017
3. Brunzell JD, Davidson M, Furberg CD et al: Lipoprotein management in patients with cardiometabolic risk. J Am CollCardiol, 2008; 51: 1512–24
4. Zhang G-M, Hu Z-D: Conjugated bilirubin as a reflex test for increased to
5. https://labtestsonline.org/understanding/analytes/lipid/tab/test/ Accessed Mar 18. 2017.

4. Zhang G-M, Hu Z-D: Conjugated bilirubin as a reflex test for increased to
5. https://labtestsonline.org/understanding/analytes/lipid/tab/test/ Accessed Mar 18. 2017.

6. Chinese Joint Committee of prevention and treatment of dyslipidemia of Revision of guidelines. Guidelines for prevention and treatment of dyslipidemia in Chinese adults (revised 2016). Chinese Journal of Cardiology, 2016; 44(10): 833–53
7. Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem, 1972; 18(6): 499–502
8. Sniderman AD, Blank D, Zakarian R et al: Triglycerides and small dense LDL: The twin Achilles heels of the Friedewald formula. Clin Bioch, 2003; 36(7): 499–504