Conversion from calcineurin inhibitors to mTOR inhibitors stabilizes diabetic and hypertensive nephropathy after liver transplant

José M Álamo, Claudia Olivares, Lydia Barrera, Luis M Marin, Gonzalo Suarez, Carmen Bernal, Juan Serrano, Jordi Muntané, Francisco J Padillo, Miguel A Gómez

AIM: To investigate if conversion to the mammalian target of rapamycin inhibitors (mTORi) improves renal function in diabetic and/or hypertensive liver transplant patients immunosuppressed with tacrolimus or cyclosporine.

METHODS: The study included 86 liver graft recipients immunosuppressed with mTORi treatment after orthotopic liver transplantation (OLT), including all liver recipients with worsening renal function before conversion to mTORi (n = 55 patients) and recipients with normal renal function who converted to mTORi for other reasons (n = 31 patients). We identified patients with diabetes mellitus (n = 28), arterial hypertension (n = 27), proteinuria (n = 27) and all three factors (n = 8) (some patients have hypertension and diabetes and no proteinuria). The primary endpoint was evolution in renal function defined as the development in plasma creatinine as a function of diabetes mellitus (DM), hypertension (HT) or proteinuria. We required elevated serum creatinine for at least two weeks to define renal dysfunction.

RESULTS: Only patients that converted because of renal failure with plasma creatinine levels > 1.5 mg/dL showed an improvement of renal function (2.14 to 1.77 mg/dL) (P = 0.02). Patients with DM showed no improvement of serum creatinine levels (1.31 mg/dL to 1.37 mg/dL) compared with non DM patients (1.31 mg/dL to 1.15 mg/dL) (P = 0.01), HT patients (1.48 mg/dL to 1.5 mg/dL) with non HT patients (1.21 mg/dL to 1.08 mg/dL) and patients with proteinuria (1.44 mg/dL to 1.41 mg/dL) and no proteinuria (1.31 mg/dL to 1.11 mg/dL).

CONCLUSION: In OLT recipients with diabetes or hypertensive nephropathy, conversion to mTORi does not improve renal function but stabilizes plasma levels.
of creatinine. Proteinuria is not a contraindication to conversion to mTORI; it also stabilizes renal function. Conversion to mTORI should only be avoided in patients with diabetes, hypertension and proteinuria.

Key words: Mammalian target of rapamytin inhibitors; Liver transplant; Renal dysfunction; Hypertension; Diabetes

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: These results could be useful in choosing an immunosuppressant regimen in liver transplant recipients, especially in patients with diabetes mellitus and/or arterial hypertension with proteinuria and possibly renal dysfunction.

Álamo JM, Olivares C, Barrera L, Marin LM, Suarez G, Bernal C, Serrano J, Muntané J, Padillo FJ, Gómez MA. Conversion from calcineurin inhibitors to mTOR inhibitors stabilizes diabetic and hypertensive nephropathy after liver transplant. World J Transplant 2015; 5(1): 19-25. Available from: URL: http://www.wjgnet.com/2220-3230/full/v5/i1/19.htm DOI: http://dx.doi.org/10.5500/wjt.v5.i1.19

INTRODUCTION

Survival after orthotopic liver transplantation (OLT) is getting better because of improvement in surgical techniques and better management in immunosuppressant therapy. This important survival leads to more side effects from immunosuppression agents so it is very important to identify the best drug regimen for each patient to reduce toxicity[1]. Calcineurin inhibitors (CNI) tacrolimus and cyclosporine have a common (18%-25%) side effect of chronic renal dysfunction[2] and some of these patients will need hemodialysis with the possibility that this renal failure could be the cause of death[3]. Immunosuppressive therapies that reduce or eliminate CNI based treatment should preserve renal function after OLT.

mTOR inhibitors, sirolimus and everolimus (mTORI), block cell proliferation based on interleukin-2 pathway interacting kinases called the mammalian target of rapamytin[4]. CNI inhibit production of cytokines as interleukin-2 in the first phases of the lymphocyte cell cycle[5]. These days, mTORI is being studied more in renal transplant patients and less in liver transplant patients. There are some studies that show that elimination or reduction of CNI and inclusion of mTORI preserve renal function[6-12]. However, there are no controlled studies of the effect of mTORI exposure in liver transplant patients with well-known chronic renal insufficiency because of diabetes and/or hypertension associated with worsening urinary protein excretion and renal function. It is probable that improvement in renal function is reduced in patients with diabetes mellitus (DM), hypertension (HT) and/or proteinuria.

The potential side effects of mTORI, such as hyperlipidemia, hepatic artery thrombosis and a bad wound cicatrization, have been investigated in these patients[13]. No controlled studies have examined these potential effects in the OLT population.

This study attempts to compare outcomes of renal function in cohorts treated with mTORI with diabetes mellitus, hypertension or/and proteinuria.

MATERIALS AND METHODS

Study cohorts

We studied 86 liver recipients immunosuppressed with mTORI treatment after OLT at our center from March 2007 to June 2013. Renal dysfunction was defined as serum creatinine ≥ 1.2 mg/dl for at least two weeks (whenever it occurred at least two months after OLT). We included all liver recipients who were diagnosed with renal dysfunction before conversion to mTORI (n = 55 patients) as well as patients with normal renal function who converted to mTORI for other reasons (n = 31 patients). We identified patients with diabetes mellitus (n = 28), arterial hypertension (n = 27), proteinuria (n = 27), and all three factors (n = 8) (some patients had hypertension and diabetes and no proteinuria).

Definition of variables

Baseline creatinine was determined as plasma creatinine level at the moment of switching to mTORI, then at 6, 12 and 18 mo, and actual creatinine (last drawn serum creatinine) when collected.

DM patients were defined by the American Diabetes Association criteria [Diabetes Care 2005; 28 (suppl 19): 37-42]. HT patients were catalogued as patients with systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg. Proteinuria was defined as the appearance of proteins in urine. There was no difference in severity.

Endpoint

The main endpoint was evolution of renal function, determined by serum creatinine and according to the presence of DM, HT and/or proteinuria. Renal dysfunction was defined by elevated serum creatinine for at least two weeks.

Administration of immunosuppression

The immunosuppressant regimen after OLT was administered inside a wide protocol at our center. Induction drugs at time of OLT were given in cases of well-known renal dysfunction before transplant. Post OLT, tacrolimus was given to obtain serum levels between 7 and 10 ng/mL for 180 d after OLT and levels between 5 and 8 ng/mL for the next 180 d. Cyclosporine was only used in cases of neurotoxicity because of tacrolimus. If cyclosporine was used, the serum level was between...
250-350 lg/L after OLT with a maintenance cyclosporine level of 50-100 lg/L. Prednisone was administered after OLT and generally stopped within the first two months, except in autoimmune, primary biliary and primary sclerosing cholangitis cirrhosis. Mycophenolate mofetil was used in all patients, one gram/day, except in CMV infection.

mTORi has been used in liver grafts recipients with renal dysfunction, patients with tacrolimus and cyclosporine neurotoxicity, in high risk hepatocellular carcinoma (HCC) liver transplant patients to avoid its recurrence, and in patients with “de novo” neoplasia after OLT, adjusting the dosage to obtain levels between 5 and 8 ng/mL. After two to four weeks of double immnosuppressant treatment with tacrolimus, this is usually discontinued. mTORi use is stopped for an elective surgical procedure.

After hospital discharge, patients are visited and blood samples taken every week and after three/four months, patients are visited monthly for laboratory testing. One hundred and eighty days after OLT, visits were every 60 d.

Elevation in serum creatinine, blood pressure and blood sugar or the appearance of proteinuria were registered.

Data collection
Patient information is prospectively registered in an SPSS electronic register on all OLT patients at our center. The database is available only for clinical studies. For this study, data were extracted on mTORi treated patients from this clinical register. Clinical and demographic information contained sex, age, donor age, cause of liver cirrhosis, graft quality, existence of HCC, OLT date, complications, cause of CNI treatment being converted to mTORi, retransplantation and presence of diabetes mellitus and/or hypertension before OLT. Biochemistry and hematological data included baseline plasma creatinine levels (just to conversion to mTORi), at 6, 12, 18 mo, and the last serum creatinine level while taking mTORi treatment. One independent investigator audited 10% of the results and found > 99% data congruity.

Statistical analysis
This analysis used means for parametric data and medians for non-parametric data. We used Fisher’s exact tests for comparisons of categorical variables. We analyzed non-normally distributed variables with Mann-Whitney U-tests and two-sided t-tests were used to compare normally distributed variables.

Linear regression was applied to examine the effect of mTORi exposure on the last serum creatinine at the end of follow-up. mTORi exposure was examined as a continuous and a dichotomous variable.

We applied only confounders which influenced the point estimate by ≥ 10% for adjusted models (19). We considered P value < 0.05 as significant; two-sided tests were used.

RESULTS
mTORi was started at a median 48 mo (DT: 56.8, range = 0-241) after OLT. Recipients were followed on mTORi for a median of 40.6 mo (DT: 18.0, range = 18-76). Reasons for switching to mTORi were avoiding HCC recurrence (n = 27), neurotoxicity because of tacrolimus (limb tremors, headaches, paresthesia) (n = 3), prevention of renal insufficiency (n = 28), acute rejection with tacrolimus/cyclosporine (n = 6), and “de novo” neoplasia (n = 22).

No mTORi patient developed serious adverse effects and there was no hepatic artery thrombosis. The clinical characteristics of the patients converted to mTORi are described in Table 1.

Initial plasma creatinine levels of patients at the moment of initiating mTORi treatment (median 48 mo after OLT) were 1.31 mg/dL. Creatinine was (mg/dL) 1.19, 1.19, 1.22 at 6, 12 and 18 mo and 1.23 mg/dL at the follow-up after the mTORi switch. There was an improvement between the initial and final creatinine levels while taking mTORi, but without statistical significance: 1.31 mg/dL and 1.22 mg/dL (P = 0.92), although this is a global analysis in all patients,

Table 1 Features of patients converted to mammalian target of rapamycin inhibitors

Variable	DM (28)	HT (27)	Prot (27)	DM + HT + prot (8)	P-value
Age (yr)	54.3	55.1	54.8	55.2	0.61
Male	21	23	22	7	0.43
DM prior to OLT	28	8	8	8	0.52
Hypertension prior to OLT	5	19	5	5	0.34
Proteinuria prior to OLT	7	6	19	6	0.42
Etiology of liver disease					
Hepatitis C	11	11	10	3	0.32
Alcohol	14	13	13	4	0.67
Other	3	3	4	1	0.56
Hepatocellular carcinoma	6	5	5	1	0.48
Initial creatinine	1.31	1.48	1.44	1.35	0.23

DM: Diabetes mellitus; HT: Hypertension; Prot: Proteinuria; OLT: Orthotopic liver transplant.
converting because of renal dysfunction or for other
reasons. We can observe the same low difference
when we analyze converted patients with plasma
creatinine levels > 1.3 mg/dL (1.87 mg/dL and 1.73
mg/dL, P = 0.78). Only patients converted because of
renal dysfunction with plasma creatinine levels > 1.5
mg/dL show a statistically significant improvement of
renal function, with initial levels of 2.14 and final ones
of 1.77 mg/dL (P = 0.02) (Figure 1).

We next investigated whether the mTORi effect is
less in recipients with diabetes mellitus and/or high
blood pressure (HT) (Figure 2). Subgroup analysis
of only those mTORi patients with DM shows no
improvement of serum creatinine levels (1.31 mg/dL
to 1.37 mg/dL) compared with non DM patients (1.31
mg/dL to 1.15 mg/dL) (P = 0.01) and it is the same
when comparing HT patients (1.48 mg/dL to 1.5 mg/
dL) with non HT patients (1.21 mg/dL to 1.08 mg/dL)
and patients with proteinuria (1.44 mg/dL to 1.41 mg/
dL) and no proteinuria (1.31 mg/dL to 1.11 mg/dL).

Finally, we considered patients with DM, HT and
proteinuria (Figure 3). Although converting to mTORi,
these patients have worsening renal function (1.35
mg/dL to 2.07 mg/dL) compared with patients when
only one of these factors is present (P = 0.04).

DISCUSSION

Our study shows retrospectively that mTORi conversion
resulted in an improvement in renal function in
patients with plasma creatinine levels above 1.5 mg/
dl. In patients with better renal function, conversion
therapy involves no improvement. This improvement
has been described in several published studies but
none have shown that the worse the renal function,
the greater the improvement after conversion[18].

mTORi was started a median of eight months
after OLT for a variety of reasons. Plasma levels of
creatinine at the start of the study were comparable
in both mTORi and CNI cohorts. A personal history
of risk factors for renal damage, such as diabetes
mellitus and arterial hypertension, was comparable
in both mTORi and CNI cohorts and considered in
a multivariate model. Patients with hepatocellular
carcinoma were adjusted in the mTORi cohort because
treatment with chemotherapy may have affected
serum creatinine. Despite this, it could be possible that
some confounders are distributed unevenly in both
groups. Further randomized trials may be necessary to
avoid this problem.

Furthermore, we have segregated groups of patients
with DM, hypertension and proteinuria and patients with
all three diseases. We have seen how renal function
does not improve after conversion to mTORi in these
patients but it stops the progressive deterioration
secondary to calcineurin inhibitors. However, in patients
with DM, hypertension and proteinuria, renal function
worsens despite conversion to mTORi.

Nephropathy is a major complication of type 1 and
type 2 diabetes mellitus, along with CNI toxicity, end-
stage renal dysfunction and hemodialysis[19]. Chronic
nephropathy is also worsened by arterial hypertension.
Diabetic nephropathy is first characterized by microal-
buminuria and later by glomerular sclerosis. Podocytes
play an important role in preventing proteinuria.
Podocyte damage and reduction in the number of
these cells contribute to the development of diabetic
nephropathy[20]. mTOR plays a very important role in
podocyte growth and size control. This molecule forms
two different functional complexes, mTORC1 and
mTORC2. Sirolimus and everolimus selectively inhibit
mTORC1 but not mTORC2. In the first stages of diabetic
damage in the kidney, an increased mTORC1 activity
and podocyte hypertrophy can be observed. Moreover,
there are some studies that report mTORi treatment
to prevent diabetic nephropathy in animal models.
Paradoxically, sirolimus and everolimus cause proteinuria
and glomerular sclerosis in some patients[21,22]. In our
study, we observed that these experimental findings are
corroborated clinically in liver transplant patients with
diabetic nephropathy.

There are no studies linking mTORi effectiveness in
patients with hypertensive nephropathy. In our series,
we showed how renal function, although not improved
after conversion to mTORi, stabilizes after this change
in immunosuppression regimen.

Proteinuria is a frequent side effect after switching
from CNI to mTORi treatment in another solid trans-
plant patient as a kidney graft recipient[21–26]. Wadie
et al[21] shows that patients who developed massive
proteinuria had a 3.3-fold increased risk of further renal
insufficiency after mTORi conversion and proteinuria less
than 1000 mg/d do not present with this association.
This author indicates that a higher mTORi level after OLT
diabetes and a lower eGFR at time of mTORi switching
were observed with the appearance of very important
urinary protein excretion after mTORi treatment. This
study is in concordance with other articles that show
a dose-dependent effect of mTORi on proteinuria and

![Figure 1 Improvement of serum creatinine (mg/dL) after conversion to
mammalian target of rapamycin inhibitors. Cr: Serum creatinine mg/dL;
Baseline: Serum creatinine just before conversion.](image-url)
podocyte protein expression[12,27-31]. Higher proteinuria before mTORi treatment has also been correlated with massive proteinuria after switching.

Our results do not support these studies as we have shown that in patients with proteinuria, mTORi conversion leads to a stabilization of this proteinuria as well as serum levels of creatinine.

We recognize some limitations in this study. We do not routinely measure eGFR levels with Modification of Diet in Renal Disease or Cockcroft-Gault equations because this measurement is not very precise and not validated in OLT recipients.

In conclusion, we observed that, after OLT, switching from a CNI-based immunosuppression regimen to mTORi-based treatment improves renal function, when compared with recipients who did not switch, when creatinine levels are \(\geq 1.5 \text{ mg/dL} \). In patients with diabetes or hypertensive nephropathy, conversion to mTORi does not improve renal function but stabilizes plasma levels of creatinine. Proteinuria is not a contraindication to conversion to mTORi, it also stabilizes renal function. Only patients with diabetes, hypertension and proteinuria should avoid conversion to mTORi because it worsens. Complete understanding of the effects of mTORi in liver transplant recipients derived from randomized, controlled trials will help better use of this immunosuppression regimen after OLT.

COMMENTS

Background

This study shows how mammalian target of rapamycin inhibitors (mTORi) based immunosuppression therapy in liver transplant recipients with diabetic
Alamo JM et al. Conversion from calcineurin inhibitors to mTOR inhibitors

and/or hypertensive renal dysfunction, even in patients with proteinuria, preserves renal function and plasma levels of creatinine.

Research frontiers

mTORi-based immunosuppression therapy in liver transplant patients and renal chronic disease.

Innovations and breakthroughs

Observational study in diabetic and hypertensive liver transplant patients and those with proteinuria.

Applications

This study helps to choose immunosuppression treatment in patients with renal dysfunction after liver transplant.

Terminology

mTORi (mTOR inhibitors like sirolimus and everolimus, immunosuppression drugs for transplanted patients).

Peer-review

The manuscript observed the effect of mTORi-based immunosuppression therapy on diabetes mellitus, arterial hypertension and proteinuria for analysis of the potency of mTORi to renal function. This may be useful for clinical therapy.

REFERENCES

1 Post DJ, Douglas DD, Mulligan DC. Immunosuppression in liver transplantation. Liver Transplant 2005; 11: 1307-1314 [PMID: 16237688 DOI: 10.1002/lt.20614]

2 Gonwa TA, Mai ML, Melton LB, Hays SR, Goldstein RM, Levy MF, Klintmalm GB. End-stage renal disease (ESRD) after orthotopic liver transplantation (OLTX) using calcineurin-based immunotherapy: risk of development and treatment. Transplantation 2001; 72: 1934-1939 [PMID: 11773892 DOI: 000112270-00012]

3 Pawarode A, Fine DM, Thuluvath PJ. Independent risk factors and natural history of renal dysfunction in liver transplant recipients. Liver Transplant 2003; 9: 741-747 [PMID: 12822756 DOI: 10.1016/S1053-789X(03)00113]

4 Schgal SN. Rapamune (Sirolimus, rapamycin): an overview and mechanism of action. Ther Drug Monit 1995; 17: 660-665 [PMID: 8588237 DOI: 10.1097/00007691-199512000-00019]

5 Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991; 66: 807-815 [PMID: 17152244 DOI: 10.1016/0001-2397(91)90124-H]

6 Dieckmann F, Wainer J, Fritsche L, Dragun D, Neumayer HH, Budde K. Conversion to rapamycin in renal allograft recipients with biopsy-proven calcineurin inhibitor-induced nephrotoxicity. Transplant Proc 2001; 33: 3234-3235 [PMID: 11750386 DOI: 10.1016/S0041-1345(01)02375-2]

7 Johnson RW, Kreis H, Oberbauer R, Brattström C, Claesson K, Eris J. Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure. Transplantation 2001; 72: 777-786 [PMID: 11571437 DOI: 10.1097/00007890-200109150-00007]

8 Groth CG, Bäckman L, Morales JM, Iberer F, Grasser B, Schaffellner S, Tscheliessnigg KH. Sirolimus in patients after liver transplantation. Transplant Proc 2003; 35: 815-816 [PMID: 12644130 DOI: 10.1016/S0041-1345(03)00082-4]

9 Neff GW, Montalbano M, Slapak-Green G, Meyer D, Berney T, Sadfar K, Schiff ER, Tzakis AG. Sirolimus therapy in orthotopic liver transplant recipients with calcineurin inhibitor related chronic renal insufficiency. Transplant Proc 2003; 35: 3029-3031 [PMID: 14697970 DOI: 10.1016/j.transproceed.2003.10.002]

10 Sanchez EQ, Martin AP, Ikegami T, Uemura T, Narasimhan G, Goldstein RM, Levy MF, Chinnakota S, Dawson S, Randall HB, Saracino G, Klintmalm GB. Sirolimus conversion after liver transplantation: improvement in measured glomerular filtration rate after 2 years. Transplant Proc 2005; 37: 4416-4423 [PMID: 16387115 DOI: 10.1016/j.transproceed.2005.10.015]

11 Campbell MS, Rai J, Kozin E, Bloom RD, Markmann JF, Olthoff KM, Shaked A, Rajender Reddy K. Effects of sirolimus vs. calcineurin inhibitors on renal dysfunction after orthotopic liver transplantation. Clin Transplant 2007; 21: 377-384 [PMID: 17488388 DOI: 10.1111/j.1399-0012.2006.00653.x]

12 Neff GW, Montalbano M, Tzakis AG. Ten years of sirolimus therapy in orthotopic liver transplant recipients. Transplant Proc 2003; 35: 2095-216S [PMID: 12742498 DOI: 10.1016/S0041-1345(03)00217-3]

13 Alamo JM, Bernal C, Marin LM, Suárez G, Serrano J, Barrera L, Sousa JM, Padillo FJ, Gómez-Bravo MA. Antimycor effect of mammalian target of rapamycin inhibitor therapy in liver transplant recipients with oncological disease: a case-control study. Transplant Proc 2012; 44: 2089-2092 [PMID: 22974919 DOI: 10.1016/j.transproceed.2012.07.079]

14 Alamo JM, Barrera L, Casado MD, Bernal C, Marin LM, Suárez G, Sanchez-Moreno L, Jimenez R, Suarez-Grau JM, Sousa JM, Cordero E, Gomez-Bravo MA. Efficacy, tolerance, and safety of mammalian target of rapamycin inhibitors as rescue immunosuppressants in liver transplant recipients. Transplant Proc 2009; 41: 2181-2183 [PMID: 19715866 DOI: 10.1016/j.transproceed.2009.06.083]

15 Martínez JM, Pulido LB, Bellido CB, Usero DD, Aguilar LT, Moreno JL, Artacho GS, Diez-Canedo JS, Gómez LM, Bravo MA. Rescue immunosuppression with mammalian target of rapamycin inhibitor drugs in liver transplantation. Transplant Proc 2010; 42: 641-643 [PMID: 20304212 DOI: 10.1016/j.transproceed.2010.02.011]

16 Kushwaha SS, Khalpey Z, Frantz RP, Rodeheffer RJ, Clavel AL, Daly RC, McGregor CG, Edwards BS. Sirolimus in cardiac transplantation: use as a primary immunosuppressant in calcineurin inhibitor-induced nephrotoxicity. J Heart Lung Transplant 2005; 24: 2129-2136 [PMID: 16364861 DOI: 10.1016/j.health.2005.08.015]

17 Rossing P, de Zeeuw D. Need for better diabetes treatment for improved renal outcome. Kidney Int Suppl 2011; (128): S28-S32 [PMID: 21358699 DOI: 10.1038/2010.513]

18 Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, Blattner SM, Ikenoue T, Rüegg MA, Hall MN, Kwiatkowski DJ, Rastaldi MP, Huber TB, Kretzler M, Holzman LB, Wiggins RC, Guan KL. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 2011; 121: 2181-2196 [PMID: 21660597 DOI: 10.1172/JCI44771]

19 Giödel M, Hartleben B, Herbach N, Liu S, Zachiedrich S, Lu S, Debreczeni-Mór A, Lindemeyer MT, Rastaldi MP, Hartleben G, Wiech T, Fornoni A, Nelson RG, Kretzler M, Wanke R, Ravenstäd H, Kerjaschki D, Cohen CD, Hall MN, Rüegg MA, Inoki K, Walz G, Huber TB. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 2011; 121: 2197-2209 [PMID: 21660591 DOI: 10.1172/JCI44774]

20 Wadie HM, Zaky ZS, Keaveny AP, Rossier B, Jones M, Mai ML, Bulatao L, Gonwa TA. Proteinuria following sirolimus conversion is associated with deterioration of kidney function in liver transplant recipients. Transplantation 2012; 93: 1006-1012 [PMID: 22357174]

21 Dieckmann F, Gutiérrez-Dalmau A, López S, Cofán F, Esforzado N, Ricart MJ, Rossich E, Saval N, Torregrosa JV, Oppenheimer F, Campistol JM. Influence of sirolimus on proteinuria in de novo kidney transplantation with expanded criteria donors: comparison of two CNI-free protocols. Nephrol Dial Transplant 2007; 22: 2116-2121 [PMID: 1754213 DOI: 10.1093/ndt/gfm181]

22 Stephany BR, Augustine JJ, Krishnamurthi V, Goldfarb DA, Fialkow PJ, Rodeheffer RJ, Clavell AL, Daly RC, McGregor CG, Edwards BS. Sirolimus in cardiac transplantation: use as a primary immunosuppressant in calcineurin inhibitor-based immunosuppression therapy. Transplant Proc 2003; 35: 1906-1909 [PMID: 12742498 DOI: 10.1016/S0041-1345(03)00217-3]

23 Allibadi AZ, Pohanka E, Seebacher G, Dunkler D, Kammerstätter
D, Wolner E, Grimm M, Zuckermann AO. Development of proteinuria after switch to sirolimus-based immunosuppression in long-term cardiac transplant patients. *Am J Transplant* 2008; 8: 854-861 [PMID: 18261172 DOI: 10.1111/j.1600-6143.2007.02142.x]

25 Morard I, Dumortier J, Spahr L, Hadengue A, Majno P, Morel P, Mentha G, Giostra E. Conversion to sirolimus-based immunosuppression in maintenance liver transplantation patients. *Liver Transpl* 2007; 13: 658-664 [PMID: 17457887 DOI: 10.1002/lt.21116]

26 Thomusch O, Tittelbach-Helmrich D, Seifert G, Pisarski P. Late-onset proteinuria after antithymocyte globulin induction and de novo sirolimus monotherapy in kidney transplant recipients. *Transplantation* 2011; 92: e62-e63 [PMID: 22108426 DOI: 10.1097/TP0b013e3182366423]

27 Stallone G, Infante B, Pontrelli P, Gigante M, Montemurno E, Loverre A, Rossini M, Schena FP, Grandaliano G, Gesualdo L. Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragm-associated proteins. *Transplantation* 2011; 91: 997-1004 [PMID: 21364499 DOI: 10.1097/TP0b013e318211d342]

28 Izzedine H, Brocheriou I, Frances C. Post-transplantation proteinuria and sirolimus. *N Engl J Med* 2005; 353: 2088-2089 [PMID: 16282189 DOI: 10.1056/NEJM200511033531922]

29 Sartele H, Toupane O, Lorenzato M, Fadel F, Noel LH, Lagonotte E, Binembaum P, Chanard J, Rieu P. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. *Am J Transplant* 2005; 5: 2441-2447 [PMID: 16162193 DOI: 10.1111/j.1600-6143.2005.01047.x]

30 Bumbea V, Kamar N, Ribes D, Espósito L, Modesto A, Guittard J, Nasou G, Durand D, Rostaing L. Long-term results in renal transplant patients with allograft dysfunction after switching from calcineurin inhibitors to sirolimus. *Nephrol Dial Transplant* 2005; 20: 2517-2523 [PMID: 15985508 DOI: 10.1093/ndt/gfh957]

31 Letavernier E, Bruneval P, Mandet C, Duong Van Huyen JP, Peraldi MN, Helal I, Noël LH, Legendre C. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. *Clin J Am Soc Nephrol* 2007; 2: 326-333 [PMID: 17699432 DOI: 10.2215/CJN.03751106]

P- Reviewer: He JY, Luo GH S- Editor: Ji FF L- Editor: A E- Editor: Lu YJ
