Effect of Gaeddongssuk (Artemisia annua L.) Powder on Quality and Shelf Stability of Emulsion Sausages during Refrigerated Storage

Hyoung-Joo Ham1,2, Geun-Ho Kang2, Yun-Sang Choi3, Tae-Jun Jeong1, Ko-Eun Hwang1, and Cheon-Jei Kim1*

1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
2Animal Products and Processing Division, National Institute of Animal Science, Wanju 565-851, Korea
3Food Processing Research Center, Korean Food Research Institute, Seongnam 463-746, Korea

Abstract

The objective of this study was to evaluate effects of Gaeddongssuk powder (GP) on quality characteristics and shelf stability of emulsion sausages during storage. Proximate composition properties showed no significant differences in all treatments (p>0.05). Control showed the highest cooking loss while the treatment with GP showed decreased cooking loss depending on increasing GP content (p<0.05). Apparent viscosity of batter was increased as the amount of GP increased, whereas hardness of emulsion sausages was decreased with increasing GP level. In sensory evaluation, emulsion sausage with 0.1% GP resulted in the highest score in overall acceptability. The pH values of all treatments decreased at the early storage stage, followed by gradual increase. The lightness and redness of treatments were decreased when the level of GP was increased. However, the yellowness of sausages with GP were higher than that of control (p<0.05). The addition of GP inhibited lipid oxidation of emulsion sausages during storage depending on its level. The aerobic bacteria population and VBN was unaffected by addition of GP during the storage (p>0.05). Therefore, Gaeddongssuk powder up to 0.1% has a potential as a natural antioxidant for meat products because it can inhibit lipid oxidation of sausages without decreasing their sensory properties.

Keywords: Gaeddongssuk (Artemisia annua L.), emulsion sausage, quality characteristics, shelf stability

Received December 10, 2015; Revised June 21, 2016; Accepted July 11, 2016

Introduction

Recently, improvement in the economic status and educational level of consumers has led to healthy food choices. Consumers will consider the impact of food on their health as well as the nutritional value of food. Consumers have been avoided synthetic additives that could potentially be harmful to health. So the physiological activity of natural products and their derivatives as functional materials have been intensively studied (Lee and An, 2010; Lee et al., 2002; Ryu and Kwon, 2012).

Most meat products contain lipid and lipid oxidation causes loss of its nutritional value. Various oxidation products can be produced by peroxide oxidation, including aldehydes, hydrogen peroxide. They are potentially toxic to humans and animals (Horton et al., 1987). They can damage DNA and cause cancer. In addition, oxidation products are associated with aging (Zanardi et al., 2004). Synthetic antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) have been used to prevent lipid oxidation. However, these are known that cause of disease such as liver hepatomegaly with increased microsomal enzyme activity has been reported to be toxic or carcinogenic (Branen, 1975). Therefore, it is very important to develop safe and healthy natural antioxidants.

Gaeddongssuk (Artemisia annua L.) is an annual plant belonging to family of Chrysanthemum (Compositae). This plant is mostly distributed in Asia at roadside and riverside (Räth et al., 2004). This plant has been used as traditional herbal medicine. Gaeddongssuk contains various bioactive compounds. It is especially rich in artemisinin (Räth et al., 2004; Towler and Weathers, 2015). In addition, Gaeddongssuk contains flavonoids, phenolics, and purines (Iqbal et al., 2012; Weathers et al., 2011). The antioxidant activity of phenolic compounds in Gaeddongssuk has been reported (Brisibe et al., 2009). It can
protect lipid against peroxidation by inhibiting oxidizing chain reactions (Laguerre et al., 2007). Some studies have reported the effect of Gaeddongssuk added to food and feed (Kang et al., 2012; Lee et al., 2014). However, Gaeddongssuk powder (GP) was not used as natural antioxidants to inhibit lipid oxidation in meat products.

Therefore, the objective of this study was to determine the effect of GP on quality characteristics during refrigerated storage of emulsion sausages as well as to provide effective uses of GP as a natural and functional ingredient in meat products.

Materials and Methods

Preparation of raw materials

Commercial samples of hot air-dried Gaeddongssuk powder (GP) \((L^* = 47.23 \pm 1.33, a^* = -6.82 \pm 0.11, b^* = 24.52 \pm 0.34) \) were purchased from a local market (Jirisan honghwain, Korea). Fresh pork ham, chicken breast and pork back-fat were obtained from a local commercial processor (Korea) 24 h after slaughter.

Manufacturing of emulsion sausage

All subcutaneous, intramuscular fat and visible connective tissues were removed from the fresh ham muscles. Lean meat and pork back fat were ground through a 3 mm plate (Model 7548, Biro MFG. Co, USA). Pork ham, chicken meat, and pork back fat were mixed with curing ingredients (salt, sugar, phosphate) and stored at 4°C overnight (Fig. 1). Five formulations of emulsion sausages; control, one with 0.02% butylated hydroxytoluene (BHT) and three with different GP levels (0.1, 0.3 and 0.5%) and were prepared. Pork ham, chicken meat, water and other ingredients were emulsified by using a silent cutter (CR-40, Spain). After emulsification, the meat batter was stuffed into PVDC casings (Ø 65 mm) using a stuffer, and then were heated until the core temperature reached 71°C for 30 min in smoke house (IT-90404, Intertek, Korea). The cooked sausages were cooled with cold water. The produced samples were aerobically packed in polyethylene bags, and stored at 4°C until testing.

Quality characteristics of emulsion sausage

Proximate composition

The moisture, protein and fat contents of emulsion sausage samples were analyzed using a Food Scan™Lab 78810 (Foss Tecator Co., Ltd., DK), according to the method of Anderson et al. (2007).

Cooking loss

As mentioned above, all emulsion sausages were cooked using water bath at 75±2°C for 30 min. The cooking loss of emulsion sausages were determined by calculating the difference in weight after and before cooking as follows:

\[
\text{Cooking loss} (\%) = \left(\frac{\text{the weight before cooking (g)} - \text{the weight after cooking (g)}}{\text{the weight before cooking (g)}} \right) \times 100
\]

Apparent viscosity

The meat batter viscosity was measured in triplicate with a rotational viscometer (HAKKE Viscotester® 500, Thermo Electron Corporation, Germany) set at 10 rpm. The standard cylinder sensor (SV-2) was positioned in a 25 mL metal cup filled with batter and allowed to rotate under a constant shear rate at \((s^{-1}) \) for 30 s before each reading was taken. Apparent viscosity values in centipoises were obtained. The temperature of each sample at the time (18±1°C) of viscosity testing was also recorded.

Texture profile analysis (TPA)

The texture properties of the emulsion sausages were analyzed using a puncture probe (7 mm diameter) attached to a texture analyzer (Model 4465, Instron Corp, UK) (Seo et al., 2015). For texture analysis, the samples were taken from the central portion of each treatment and cut into 2.54 cm long pieces in cylinder shape. The samples were axially compressed twice until reaching each time 80% of its initial height. The speed of load cell was set at 120
mm/min and the following parameters were calculated: hardness (kg), springiness (mm), and cohesiveness (kg*mm), gumminess (kg) and chewiness (kg*mm).

Sensory evaluation

The sensory evaluations were performed on each evaluation of emulsion sausages by panelist. The panels consisted of 7 trained members (3 females, 4 males; ages 27-32) from Animal Products Processing Division of the National Institute of Animal Science, Suwon, Korea. The samples were cut into 1.5 cm and served to the panels when samples were at room temperature (about 25°C). The emulsion sausages were evaluated for color (1=extremely undesirable, 9=extremely desirable), Gaeddongssuk flavor (1=extremely undesirable, 9=extremely desirable), flavor (1=extremely undesirable, 9=extremely desirable), texture (1=extremely undesirable, 9=extremely desirable) and overall acceptability (1=extremely undesirable, 9=extremely desirable) using a 9-point scales. After evaluation of each sample, the panelists were asked to rinse their mouth with the distilled drinking water and salt-free crackers.

Shelf life of emulsion sausages during storage for 4 weeks at 4°C

pH measurement

The pH values of emulsion sausages samples were determined in triplicates using a pH meter (Model 340, Mettler-Toledo GmbH, Switzerland). The pH was measured after homogenizing 3 g of each sample with 27 mL of distilled water for 30 s using a homogenizer.

Color measurement

Color was determined at 4 defined areas on the cut surface of each emulsion sausages sample using a Minolta Chroma Meter CR-400 (Minolta Camera Co., Ltd., Japan) that was standardized with a white plate (Y = 93.5, X = 0.3132 and y = 0.3198). Color was expressed according to the Commission International d'Eclairage (CIE) system and reported as CIE L* (lightness), CIE a* (redness), CIE b* (yellowness).

Thiobarbituric acid reactive substances (TBARS)

Lipid oxidation was investigated in the emulsion sausages samples by measuring TBARS value using the distillation method, with slight modifications (Pikul et al., 1989). A 10 g sample was blended with 35 mL of trichloroacetic acid (5%) and 1 mL of butylated hydroxytoluene (0.5%) and then transferred to a round-bottom flask. After addition of 100 mL of distilled water, the mixture was distilled using a distillation column and 50 mL of distillate was collected. Five milliliters of distillate was added to a tube containing 5 mL of 2-thiobarbituric acid (0.02 M) and vortexed. The tubes were capped and heated in a boiling water bath for 60 min to develop the pink color and then cooled to room temperature. The absorbance was measured at 532 nm against a blank containing 5 mL of water and 5 mL of TBA (0.02 M) solution. The TBARS values were expressed as milligram malondialdehyde (MDA) per kilo-gram of sample. TEP (1,1,3,3-tetraethoxypropane, Merck) was used for the preparation of standard curve and calculation of TBARS value.

Volatile basic nitrogen (VBN)

Volatile basic nitrogen was determined by the microdiffusion method according to Conway and Byrne (1933), and was expressed as mg% of the sample using the following steps: 10 g of samples were mixed with 90 mL of distilled water for 1 min by filtering through Whatman paper No. 1 (Ø150mm, Cat. No. 1001 150, Whatman International Ltd., England). One mL of filtrate was placed in outer space of Conway unit, and 1 mL of 0.01 N H3BO3 and 200 µL of Conway regent (0.066% methyl red in ethanol : 0.066% bromocresol green in ethanol = 1:1) were added in inner space. The Conway unit was sealed immediately after adding 1 mL of 50% K2CO3 to the outer space. The sealed Conway unit was shaken slowly and incubated at 37°C for 2 h. The 0.02 N H2SO4 was added to inner space for titration. The VBN was calculated using the following equation.

\[
VBN \text{ (mg%)} = \frac{\left(a - b \right) \times \left(f \times 0.02 \times N \times 14.007 \times 100 \times 100 \right)}{S}
\]

\[a = \text{titer for sample}, \quad b = \text{titer for blank}, \quad f = \text{factor of reagent}, \quad N = \text{normality}, \quad S = \text{sample weight (g)}.
\]

Microbial analysis

Emulsion sausages (25 g) were taken aseptically from each batch in each treatment, transferred to sterile plastic pouches and homogenized for 1 min at room temperature with 225 mL of 1% peptone water using a stomacher Lab-Blender 400 (Seward Medical, London). Serial dilutions were made in sterilized diluted solution and aerobic mesophilic bacteria were determined by spreading 1 mL of appropriate dilutions on to 3M Petrifilm Aerobic Count Plate (3M Health Care., USA) incubated for 48 h at 35°C. Each
sample was done in duplicates and total aerobic mesophilic bacteria were expressed as \(\log_{10} \) numbers of colony forming units/gram (CFU/g).

Statistical analysis

All tests were done at three times for each experimental condition and mean values were reported. The statistical analysis of all data was performed by SPSS Ver. 18.0 (SPSS Inc., USA). One-way analysis of variance (ANOVA) tests were carried out on quality characteristics. Two-way analysis of variance (ANOVA) tests were carried out on each variable of treatments and weeks. Duncan’s multiple range comparison were used to find the level of significant differences \((p<0.05)\).

Results and Discussion

Quality characteristics of emulsion sausage

Proximate composition

Proximate composition of emulsion sausages with GP is shown in Table 2. Moisture content of emulsion sausages of control and treatments were, 58.95-59.53%, showing no significant differences among control and treatments \((p>0.05)\). Fat and protein contents of emulsion sausages did not shown significantly different at all treatments \((p>0.05)\). Moon et al., (2003) showed no differences on proximate composition of pork patty among treatment groups within/without addition mugwort powder, as a similar result. This study indicated that addition of GP had no effect on proximate composition.

Cooking loss

Cooking loss of emulsion sausages with GP additive is summarized in Table 3. Cooking loss of the control was higher than T4 \((p<0.05)\). It has been reported that a large amount of dietary fiber (dry 40.09%, wet 6.87%) is contained in mugwort (Hwang et al., 1996). Generally, cooking loss is affected by the types of dietary fiber added to the meat product. Cooking loss of meat products with dietary fiber can be decreased when its contents are increased (Choi et al., 2010a). Jeon et al. (2012) reported that cooking loss of pork patties was decreased when the content of seaweed powder (sea mustard, sea lettuce, and hijikia) was increased, resulting from increased water holding capacity due to dietary fiber in seaweeds. And addition of louts root or louts leaf powder to pork patties result in the low cooking loss compared with control. (Choi et al., 2012). Therefore, dietary fiber in GP added to the sausages might have increased the water absorption ability of

Table 1. The formulation of emulsion sausages with different levels of GP

Ingredients	Control	T1	T2	T3	T4
Pork meat	50	50	50	50	50
Chicken meat	10	10	10	10	10
Corn starch	5	5	5	5	5
Soy protein	5	5	5	5	5
Pork fat	18	18	18	18	18
Ice	10	10	10	10	10
Phosphate	0.2	0.2	0.2	0.2	0.2
Salt	1.3	1.3	1.3	1.3	1.3
Sugar	0.5	0.5	0.5	0.5	0.5
Total	100	100	100	100	100
BHT\(^1\)	0.02				
Gaeddongsuk powder	0.1	0.3	0.5		

\(^1\)BHT: Butylated hydroxytoluene.

Table 2. Comparison on proximate composition of emulsion sausages with different levels of GP

Traits	Control	T1	T2	T3	T4
Moisture (%)	59.42±0.07	59.14±0.06	58.95±0.12	59.52±0.06	59.53±0.13
Fat (%)	16.77±0.10	17.05±0.30	17.13±0.40	16.84±0.80	17.03±0.05
Protein (%)	17.16±0.08	17.06±0.02	17.02±0.10	17.18±0.06	17.15±0.11

All values are mean±standard deviation.

\(^1\)Treatments: Control, no added ingredient; T1, sausage with 0.02% BHT(butylated hydroxytoluene); T2, sausage with 0.1% Gaeddongsuk powder; T3, sausage with 0.3% Gaeddongsuk powder; T4, sausage with 0.5% Gaeddongsuk powder.
Effect of Gaeddongssuk Powder in Emulsion Sausages

emulsion sausages, leading to the reduction in cooking loss.

Apparent viscosity

Apparent viscosity of meat batter with GP is shown in Fig. 2. The control and treatments with GP showed reduction in apparent viscosity as turning time was increased, which is a characteristic of thixotropic material. Initial viscosity of the control had the lowest value at 111 Pa*s while that of the treatment with 0.5% GP (T4) had the highest value at 213 Pa*s. This is thought to be due to the effect of GP on increased viscosity of the emulsion. Nuria et al. (1999) reported that dietary fiber, fat, and water contents can affect the viscosity of meat emulsions. This study showed that decreased fat and high dietary fiber content in batter increased viscosity. Dogan et al. (2005) reported that viscosity of emulsions can exert the largest effect on water absorption of additives. Akras and Genccelep (2006) reported that increased emulsion viscosity is related to increased emulsion stability. Such relationship can serve as a useful standard for manufacturing high-quality emulsion sausages.

Table 3. Comparison cooking loss on emulsion sausages with different GP levels

Traits	Control	T1	T2	T3	T4
Cooking loss (%)	1.31±0.25^a	1.14±0.15^{ab}	1.12±0.14^{ab}	0.84±0.52^b	0.75±0.17^b

All values are mean±standard deviation.

^aTreatments: Control, no added ingredient; T1, sausage with 0.02% BHT(butylated hydroxytoluene); T2, sausage with 0.1% Gaeddongssuk powder; T3, sausage with 0.3% Gaeddongssuk powder; T4, sausage with 0.5% Gaeddongssuk powder.

^bMeans within a row with different letters are significantly different (p<0.05).

Fig. 2. Comparison of apparent viscosity on emulsion sausage with different levels of GP. (●)Control: no added ingredient, (△)T1: sausage with 0.02% BHT(butylated hydroxytoluene), (▲)T2: sausage with 0.1% Gaeddongssuk powder, (○)T3: sausage with 0.3% Gaeddongssuk powder, (■)T4: sausage with 0.5% Gaeddongssuk powder.

Changes in texture properties of emulsion sausages with GP are shown in Table 4. Hardness was decreased as the amount of GP was increased (p<0.05). The springiness value was the highest (18.41 mm) in the control (p<0.05). Han (2010) reported that the hardness of meat products is decreased as the added amount of salted bamboo shoot powder is increased, similar to the results of this study. However, cohesiveness, gumminess, and chewiness showed no significant (p>0.05) differences among treatments. The quality of raw meat and types of additives as well as differences in the extent of protein denaturation based on differences in heating temperature during processing process can lead to changes in histological characteristics (Moon et al., 2003). In addition, dietary fiber in the GP may have effect on hardness and springiness of emulsion sausages by retaining more moisture due to its high water holding capacity as reported in previous studies (Choi et al., 2010a; Jeon et al., 2012).

Sensory evaluation

Sensory characteristics (color, Gaeddongssuk flavor, flavor, texture, and overall acceptability) of emulsion sau-
All values are mean±standard deviation.

Treatments: Control, no added ingredient; T1, sausage with 0.02% BHT (butylated hydroxytoluene); T2, sausage with 0.1% Gaeddongsuk powder; T3, sausage with 0.3% Gaeddongsuk powder; T4, sausage with 0.5% Gaeddongsuk powder.

All values are mean±standard deviation.

Treatments	Control	T1	T2	T3	T4
Color	4.43±1.39A	4.57±0.97A	5.86±1.06B	7.43±0.78A	8.29±0.75A
Gaeddongsuk flavor	1.29±0.48A	1.14±0.37A	4.71±1.70B	6.43±1.51B	7.43±1.13A
Flavor	5.57±1.71	5.29±1.70	4.71±1.89	4.00±1.91	3.71±1.89
Texture	4.86±1.77	4.57±1.61	4.86±1.06	5.14±1.34	5.14±1.57
Overall acceptability	6.14±0.06A	6.14±0.06A	6.29±1.25A	5.00±1.15A	4.71±1.49A

All values are mean±standard deviation.

Treatments: Control, no added ingredient; T1, sausage with 0.02% BHT (butylated hydroxytoluene); T2, sausage with 0.1% Gaeddongsuk powder; T3, sausage with 0.3% Gaeddongsuk powder; T4, sausage with 0.5% Gaeddongsuk powder.

All values are mean±standard deviation.

Storage time (wk)	Control	T1	T2	T3	T4
1	6.78±0.01A	6.77±0.01B	6.79±0.01B	6.81±0.01A	6.82±0.01B
2	6.78±0.01A	6.77±0.01B	6.79±0.01B	6.81±0.01A	6.81±0.01A
3	6.66±0.01B	6.65±0.02B	6.65±0.02B	6.70±0.01B	6.71±0.01B
4	6.62±0.01C	6.65±0.01B	6.66±0.02B	6.71±0.01B	6.70±0.01B

All values are mean±standard deviation.

Treatments: Control, no added ingredient; T1, sausage with 0.02% BHT (butylated hydroxytoluene); T2, sausage with 0.1% Gaeddongsuk powder; T3, sausage with 0.3% Gaeddongsuk powder; T4, sausage with 0.5% Gaeddongsuk powder.

The pH of emulsion sausages with GP added under different storage durations are shown in Table 6. As the storage duration was increased, significant (p<0.05) decrease in pH was found in all treatments. After 4 weeks of storage, the treatments without GP (Control) had significantly the lowest pH value at 6.62 while the treatment with 0.5% GP (T4) had the lowest score (p<0.05). Kim et al. (2009) reported that excessive dietary fiber may cause a decrease in the quality attributes of meat products such as physicochemical, rheological, and sensory properties. Therefore, during manufacture of the sausage, it is preferable to adding GP to less than 0.3% without negative effects.

Shelf life of emulsion sausages during storage for 4 weeks at 4°C

The pH of emulsion sausages with GP added under different storage durations are shown in Table 6. As the storage duration was increased, significant (p<0.05) decrease in pH was found in all treatments. After 4 weeks of storage, the treatments without GP (Control) had significantly the lowest pH value at 6.62 while the treatment with 0.5% GP (T4) had the lowest score (p<0.05).
with 0.5% GP (T4) had significantly the highest pH value at 6.82 (p<0.05). These higher pH of treatment with GP resulted from higher pH value of GP than raw meat. Okonkwo et al. (1992) reported a decreasing trend of pH with an increase in storage duration for meat products. It has been reported that the decrease in pH with increase in storage duration is due to the effect of salt concentration on ionic strength (Bower et al., 2003). Choi et al. (2007) reported that pH of meat products is generally decreased as the storage duration is increased, similar to the results of this study. Affected by manufacture and storage conditions, the pH values of meat products during storage are decreased due to lactic acid produced during the growth of microorganisms (Langloss and Kemp, 1974).

Color evaluations

The additives added to sausage products have been shown to play important roles in meat color during storage (Choi et al., 2010b). Colors of emulsion sausages with GP during storage are shown in Table 7. The CIE L* value indicating the lightness of emulsion sausages in the control was significantly (p<0.05) higher than that of treatments with GP added. As the amount of GP in sausages was increased, the lightness was significantly decreased (p<0.05). The CIE a* value indicating the redness was also higher in the control compared to that in the treatments with GP added. As GP content increased, redness of sausages was significantly decreased (p<0.05). The CIE b* value indicating the yellowness was higher in the treatments with GP compared to that of the control. Lee et al. (2004) reported that lightness and redness values of sausages showed significantly decreasing tendency, when increasing amount of Wormwood (Artemisia absinthium L.) powder added during manufacture of sausages, similar to the results of this study. This was in contrast to the report of Moon et al. (2003) that the addition of 0.3% mugwort powder to patties failed to affect meat product color. The changes in lightness and redness observed in sausages with different amounts of GP in this study could be due to color of GP itself.

Thiobarbituric acid reactive substances (TBARS)

To measure the lipid oxidation of emulsion sausages

Traits	Storage time (wk)	Control	T1	T2	T3	T4
CIE L* (Lightness)	1	82.90±0.85	84.62±0.38	77.06±0.59	73.04±0.59	74.59±0.59
CIE a* (Redness)	1	6.21±0.37	6.17±0.22	5.84±0.29	5.66±0.29	5.42±0.29
CIE b* (Yellowness)	1	14.57±0.45	15.45±0.45	16.10±0.28	16.99±0.26	18.27±0.32

All values are mean±standard deviation.

Treatments: Control, no added ingredient; T1, sausage with 0.02% BHT(butylated hydroxytoluene); T2, sausage with 0.1% Gaeddongsuk powder; T3, sausage with 0.3% Gaeddongsuk powder; T4, sausage with 0.5% Gaeddongsuk powder.

Means within a row with different letters are significantly different (p<0.05).

Means within a column with different letters are significantly different (p<0.05).
with GP added during storage, TBARS values were measured (Fig. 4). During storage, TBARS value of the control was the highest \((p<0.05) \) at 0.99 mg MDA/kg, while the treatment with 0.5% GP (T4) had the lowest TBARS value at 0.32 mg MDA/kg. It has been reported that mugwort contains large amounts of caffeic acid, catechol, and protocatechunic acid, all of which have strong antioxidant properties, allowing for the delay in lipid oxidation (Lee et al., 1992). As storage duration was increased, lipid oxidation of all treatments was significantly increased \((p<0.05) \). Turner (1954) have stated that meat with TBARS value of 1.2 mg/kg or higher is generally considered as rotten. In this study, no treatments showed TBARS value over 1.2 mg/kg during storage. GP might have suppressed lipid oxidation since the TBARS value of the control was higher than that of the treatments GP added. Jung et al. (2003) reported that large amount of antioxidants such as polyphenol in mugwort can lower the TBARS values of sausages when mugwort powder added. Heating of mugwort extracts can contribute to the generation of antioxidants and the conversion of bound polyphenol into free polyphenol, leading to its increased antioxidant activity (Kang and Lee, 2013).

Volatile basic nitrogen (VBN)

VBN is commonly used to evaluate the freshness of meat. Biochemical changes in meat can occur due to enzymes present in muscles and those produced by microorganisms that induce catabolism of proteins into peptides or free amino acids and further breakdown into ammonia, amines, mercaptan, and hydrogen sulfide, causing unpleasant odor (Huang et al., 2015). Such changes in inorganic nitrogen level can reflect the freshness of meat products. In terms of the relationship between VBN formation and food edibility limit, 5-10 mg% indicates fresh state whereas 30-40 mg% indicates early decomposition state (Witte et al., 1970). VBN values of emulsion sausages with GP during storage are shown in Table 8. As storage duration

Table 8. Change in VBN values of emulsion sausages with different levels of GP during refrigerated storage time

Storage time (wk)	Treatments \(^a\)	T1	T2	T3	T4	
1	Control	11.62±0.16^a	12.81±0.32^c	13.09±0.41^b	13.82±0.16^c	14.65±0.31^c
2	T1	12.62±0.47^c	12.08±0.72^e	13.54±0.16^e	14.09±0.16^{de}	16.02±0.31^{ab}
3	T2	14.55±0.28^b	15.01±0.79^{ab}	15.92±0.27^{ab}	16.29±0.15^{ab}	16.38±0.15^{ab}
4	T3	18.21±0.73^{Ab}	16.29±1.19^{Ca}	17.94±0.99^{Ba}	18.12±0.16^{Ab}	19.49±0.16^{La}

All values are mean±standard deviation.

\(^a\)Treatments: Control, no added ingredient; T1, sausage with 0.02% BHT(butylated hydroxytoluene); T2, sausage with 0.1% Gaeddongsuk powder; T3, sausage with 0.3% Gaeddongsuk powder; T4, sausage with 0.5% Gaeddongsuk powder.

^{A-B}Means within a row with different letters are significantly different \((p<0.05) \).

^{a-c}Means within a column with different letters are significantly different \((p<0.05) \).
Effect of Gaeddongssuk Powder in Emulsion Sausages

was increased, VBN values of all treatments were significantly increased ($p<0.05$), in agreement with results of a previous study showing increased VBN concentration with increased storage duration of meat (Terasaki et al., 1965; Jung et al., 2003). During storage, VBN values of all treatments fell into the range of 11.62 to 19.49 mg%, all of which were below 20 mg%, the edible limit, suggesting that sausages can be kept for up to 4 wk of refrigeration storage.

Microbial analysis

The count of aerobic bacteria (AB) of emulsion sausages refrigerated for 4 wk is summarized in Fig. 5. As expected, the number of AB of all treatment groups were constantly increased when storage days were increased. The initial AB in emulsion sausages ranged from 1.8–2.6 Log CFU/g. It was increased to 4.5–6.9 Log CFU/g after 28 d. The maximal recommended limit of microbial content is 7 Log CFU/g in meat (Nottingham, 1982). None of the treatments exceeded the permitted limit of AB at 7 Log CFU/g at the end of storage. Result that AB of emulsion sausage containing GP was slightly lower compared with the control. Jung et al., (1989) observed terpinen-4-ol in essential oils of mugwort is a leaded food microbiology S. cerevisiae, L. mesenteroides, L. plantarum, A. oryzae and B. subtilis and the count of E. coli, the indicator of food contamination also inhibited by far 1000 ppm, so that demonstrated great antimicrobial effect of mugwort. Also, Kim (2011) reported similar result that AB of emulsified sausage containing mugwort was slightly lower compared with the control.

Conclusion

In this study, the addition of GP increased pH and yellowness but decreased lightness, redness and cooking loss on emulsion sausages. In sensory evaluation, the addition of 0.1% GP to emulsion sausage obtained the highest score. Also, emulsion sausage with GP added inhibited lipid oxidation during refrigerated storage. These effects were dependent on the amount of GP added. The AB population and VBN was not significantly different among treatments ($p>0.05$). In addition, GP in emulsion sausages could retard lipid oxidation. GP has the potential to increase shelf stability of meat products. Thus, GP could be used as a natural antioxidant to prevent oxidative damage and improve the sensory properties of meat products.

Acknowledgements

This paper was supported by Animal Products and Processing Division, RDA, Republic of Korea. The authors are grateful to Kim, Da-Yae for her technical inputs.

References

1. Aktas, N. and Gencelelap, H. (2006) Effect of starch type and its modifications on physicochemical properties of bologna-type sausage produced with sheep tail fat. Meat Sci. 74, 404-408.
2. Anderson, S. (2007) Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: Collabo-
1. Hwang, S. H., Kim, J. I., and Sung, C. J. (1996) Analysis die-
2. Huang, X., Lv, R., Yao, L., Guan, C., Han, F., and Teye, E. (2015) Non-destruc-
3. Horton, A. A., Fairhurst, S., and Bus, J. S. (1987) Lipid per-
4. Bransen, A. L. (1975) Toxicological and biochemistry of buty-
5. Brisibe, E. A., Umoren, U. E., Brisibe, F., Magalhaes, P. M., Ferreira J. F. S., Luthria, D., Wu, X., and Prior, R. L. (2009) Nutritional character-
6. Choi, Y. S., Park, H. S., Park, K. S., Lee, K. S., Moon, Y. H., Kim, M. J., and Jung, I. H. (2012) Quality characteristics of pork patty containing lotus root and leaf powder. J East Asian Soc Dietary Life. 22, 33-40.
7. Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Jeong, J. Y., Chung, H. J., and Kim, C. J. (2010a) Effects of re-
8. Choi, Y. S., Jeong, J. Y., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Paik, H. D., and Kim, C. J. (2007) Effect of pack-
9. Choi, Y. S., Jeong, J. Y., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Paik, H. D., and Kim, C. J. (2007) Effect of pack-
10. Conway, E. J. and Byrne, A. (1933) An absorption apparatus for the micro-determination of certain volatile substances: The micro-determination of ammonia. Biochem. J. 27, 419-429.
11. Dogan, S. F., Sahin, S., and Sumnu, G. (2005) Effects of soy and rice flour addition on batter rheology and quality of deep-
12. Han, M. O. (2010) Physicochemical properties of marinated ground pork added with bamboo shoots and changes of their product qualities during refrigerated storage. MS thesis, Chon-
13. Horton, A. A., Fairhurst, S., and Bus, J. S. (1987) Lipid per-
14. Huang, X., Lv, R., Yao, L., Guan, C., Han, F., and Teye, E. (2015) Non-destruc-
15. Hwang, S. H., Kim, J. I., and Sung, C. J. (1996) Analysis die-
16. Iqbal, S., Younas, U., Chan, K. W., Zia-Ul-Haq, M., and Ismail, M. (2012) Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents. Molecules 17, 6020-6032.
17. Jeon, S. Y., Baek, J. H., Jeong, E. J., and Cha, Y. J. (2012) Poten-
tial of onion peel extract as a functional ingredient for functional foods. J Life Sci. 22, 1207-1213.
18. Jung, B. S., Lee, B. K., Shim, S. T., and Lee, J. K. (1989) Ef-
19. Jung, I. C., Kang, S. J., Kim, M. S., Yang, J. B., and Moon, Y. H. (2003) Effects of carcass grade and addition of mug-
20. Kang, J. R., Lee, S. J., Hwang, C. R., Shin, J., Kang, M. J., and Sung, N. J. (2012) Optimization of extraction conditions for mixing beverage development of black garlic and gaeddongs-
21. Kang, K. M. and Lee S. H. (2013) Effects of extraction meth-
ods on the antioxidative activity of Artemisia sp. J Korean Soc Food Nutr. 48, 1249-1254.
22. Kim, H. W., Choi, J. H., Choi, Y. S., Han, D. J., Kim, H. Y., Lee, M. A., Shim, S. Y., and Kim, C. J. (2009) Effects of whe-
23. Kim, Y. S. (2011) Effect of the addition method of mugwort powder on the storage stability of pork sausage. Korean J Food Sci An. 29, 475-481.
24. Kim, Y. S. (2011) Effect of the addition method of mugwort on antioxidative effect, total plate counts, and resi-
25. Langlosis, B. E. and Kemp, J. D. (1974) Microflora of fresh-
26. Lee, G. D., Kim, J. S., Bas O. J., and Yoon, H. S. (1992) Anti-
27. Lee, J. Y. and An, B. J. (2010) Whitening and anti-wrinkle effects of
28. Lee, J. R., Jung J. D., Hah, Y. J., Lee, J. W., Lee J. I., Kim, K.
29. Lee, J. Y. and An, B. J. (2010) Whitening and anti-wrinkle effects of
30. Lee, J. Y. and An, B. J. (2010) Whitening and anti-wrinkle effects of
31. Lee, J. Y. and An, B. J. (2010) Whitening and anti-wrinkle effects of
32. Nottingham, P. M. (1982) Microbiology of carcass meats. In:...
Effect of Gaeddongssuk Powder in Emulsion Sausages

Meat Microbiology. Brown, M. H. (Ed.) Applied science publishers, London, pp. 13-65.

33. Nuria, G. M., Maria Isabel, A. S., and Olga, M. B. (1999) Characterisation of low-fat high-dietary fibre frankfurters. Meat Sci. 52, 257-256.

34. Okonkwo, T. M., Obanu, Z. A., and Ledward, D. A. (1992) Characteristics of some intermediate moisture smoked meats. Meat Sci. 31, 135-145.

35. Pikul, J., Leszczynski, D. E., and Kummerow, F. A. (1989) Evaluation of three modified TBA method for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 37, 1309-1313.

36. Räth, K., Taxis, K., Walz, G., Gleiter, C. H., Li, S. M., and Heide, L. (2004) Pharmacokinetic study of artemisinin after oral intake of a traditional preparation of Artemisia annua L. (annual wormwood). Am. J. Trop. Med. Hyg. 70, 128-132.

37. Ryu, I. H. and Kwon, T. O. (2012) The antioxidative effect and ingredients of oil extracted from Schizandra chinensis seed. Korean J. Med. Crop Sci. 20, 63-71.

38. Seo, H. W., Kang, G. H., Cho, S. H., Ba, H. V., and Seong, P. N. (2015) Quality properties of sausages made with replacement of pork with corn starch, chicken breast and surimi during refrigerated storage. Korean J. Food Sci. An. 35, 638-645.

39. Terasaki, M., Kajikawa, M., Fujita, E., and Ishii, K. (1965) Studies on the flavor of meats. Agric. Biol. Chem. 29, 208-215.

40. Towler, M. J. and Weathers, P. J. (2015) Variations in key artemisinic and other metabolites throughout plant development in Artemisia annua L. for potential therapeutic use. Ind. Crops Prod. 67, 185-191.

41. Turner, A. W. (1954) Bacterial oxidation of arsenite. I. Description of bacteria isolated from arsenical cattle-dipping fluids. Austral. J. Biol. Sci. 7, 452-478.

42. Weathers, P. J., Arsenault, P. R., Covello, P. S., McMickle, A., Toeh, K. H., and Reed, D. W. (2011) Artemisinin production in Artemisia annua: Studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem. Rev. 10, 173-183.

43. Witte, V. C., Krause, G. F., and Bailey, M. E. (1970) A new extraction method for determining 2-thiobarbituric acid values of pork. Food Technol. 8, 326.

44. Zanardi, E., Ghidini, S., Battaglia, S., and Chizzolini, R. (2004) Lypolysis and oxidation in fermented sausage depending on different processing condition and different antioxidants. Meat Sci. 66, 415-423.