The mucolipidosis IV Ca\(^{2+}\) channel TRPML1 (MCOLN1) is regulated by the TOR kinase

Rob U. Onyenwoke*, Jonathan Z. Sexton*, Feng Yan†, Maria Cristina Huertas Díaz‡, Lawrence J. Forsberg‡, Michael B. Major† and Jay E. Brenman†‡

*Biomannufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, U.S.A.
†Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, U.S.A.
‡Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, U.S.A.

INTRODUCTION

Autophagy is a complex pathway regulated by numerous signalling events that recycle macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca\(^{2+}\) efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.

Key words: adenosine 5'-phosphate (AMP)-activated protein kinase, autophagy, lysosomal storage disease, mammalian target of rapamycin, mucolipidosis type IV, transient receptor potential channels.

Autophagy is a pathway required for the degradation of cellular macromolecules [1,2]. During autophagy, double membrane-bound vesicles (autophagosomes) isolate the cytosolic material destined for degradation. Subsequently, autophagosomes fuse with late endosomes to form amphisomes [3,4]. Amphisomes then coalesce with lysosomes, leading to the formation of autolysosomes. Because lysosomes carry degradatory enzymes, the contents of amphisomes are broken down following autolysosome formation, with the produced metabolites partly feeding into catabolic pathways to satisfy the cell’s energy demands [3,4]. Down-regulation of autophagy leads to the accumulation of misfolded proteins and is speculated to be involved in chronic or late-evolving diseases, such as neurodegenerative diseases, including Huntington’s and Parkinson’s disease [5,6].

In yeast, the cellular energy sensor SNF1 (sucrose non-fermenting 1), also known as AMPK (AMP-activated protein kinase), has a role in fully inducing autophagy [7]. However, mammalian studies demonstrate conflicting roles for AMPK in autophagy; there have been several studies indicating that AMPK is an inducer of autophagy [8–10], whereas there is also evidence that AMPK is an inhibitor of autophagy [11,12]. However, energetic stress undoubtedly stimulates both AMPK and autophagy, leading to the degradation of macromolecules and producing, for example, amino acids. Such substrates can then ultimately be funnelled into catabolic processes for energy generation whereas, at the same time, activating feedback loops that limit the extent of autophagy; for example, amino acids stimulate the target of rapamycin (TOR), which in turn, negatively regulates autophagy. TOR is directly activated by an upstream signalling pathway involving the TSC1–TSC2 (tuberous sclerosis complex) heterodimer. AMPK directly phosphorylates TSC2, thereby activating the TSC [13]. There is also evidence suggesting that AMPK might directly target and inhibit TOR [14] and AMPK-silencing (by AMPKα\(^{shRNA}\)) does result in increased TOR activity [15].

While investigating the role of AMPK (by silencing its catalytic subunit, AMPKα, using RNAi) in autophagy and, more specifically, genes that are involved in autophagic dysfunction disorders [16–20], we discovered evidence for a genetic interaction between AMPK and the lysosomal Ca\(^{2+}\) efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1; UniProtKB–Q9GZU1)], also known as MCOLN1. Interestingly, mutations in MCOLN1 (the name of the TRPML1 gene) are solely responsible for the human lysosomal storage disorder (LSD) MLIV (mucolipidosis type IV) [21,22].

First described in 1974 [23], MLIV (MIM 252650) is an autosomal recessive LSD. However, unlike most LSDs, the abnormal accumulation of macromolecules (sphingolipids, phospholipids and mucopolysaccharides) is not caused by a deficiency of lysosomal hydrolases nor related lysosomal proteins [23–30]. Rather MLIV is thought to result from abnormal sorting and/or transport of macromolecules along the late endocytic pathway [25,26]. This late endocytic defect is supported by experiments in which the uptake of radioactive phospholipids in cultured cells is increased in the lysosomes of MLIV compared with normal controls or even cells from individuals with other LSDs, including mucolipidosis types I–III [26,31]. More studies

Abbreviations: AMPK, AMP-activated protein kinase; FDR, false discovery rates; HEK, human embryonic kidney; IP, immunoprecipitation; KD, kinase-dead; LC3, light chain 3; LSD, lysosomal storage disorder; MCOLN1, muckolin 1; MLIV, mucolipidosis type IV; ML-SA1, mucolipin synthetic agonist 1; PI, protease inhibitor; PPA, protein kinase A; RT, room temperature; S6K, S6 kinase; SNF1, sucrose non-fermenting 1; TOR, target of rapamycin; TRP, transient receptor potential; TSC, tuberous sclerosis complex; WT, wild-type.

† To whom correspondence should be addressed (email ronyenwo@nccu.edu).
using a mouse model for MLIV have also supported a late endocytic pathway defect [32–34].

Since TRPML1 pathophysiology results in a very specific LSD [25,26], we attempted to determine if the dysregulation of AMPK signalling might play a role in MLIV by leading to a loss of balance between component transport into lysosomes and their catabolism. However, a MS-based experiment indicated that TOR and not AMPK might be directly regulating TRPML1, even though we initially detected a genetic interaction between AMPK and MCOLN1. We further characterized the MS-identified TOR–TRPML1 interaction and provide evidence that TOR regulates TRPML1 through phosphorylation. The present study provides additional mechanistic information on the regulation of autophagy and may provide a framework to better understand MLIV and other lysosomal and autophagic-related diseases.

EXPERIMENTAL

Materials

All chemicals were of an analytical grade and, unless otherwise noted, from Sigma-Chemical or Fisher Scientific. [γ-32P]ATP (specific activity 3000 Ci/mmol) was from PerkinElmer. The MCOLN1 peptides (RRKCGRDPSKEHSLVN, RRKCGRDPAEHEHSLVN, RRKCGRDPSKEHALLVN) were synthesized by the UNC High-Throughput Peptide Synthesis and Array Facility. MHY1485 was synthesized in-house at North Carolina Central University, as previously described [35]. The antibodies used were as follows: anti-LC3 [1:1000 (in milk); MBL International], anti-ε-Myc [1:40 dilution for 1 mg/ml lysate for immunoprecipitation (IP)]; Developmental Studies Hybridoma Bank, University of Iowa, anti-α-tubulin (clone B-5-1-2; Sigma–Aldrich) and anti-GFP (A11122 for IP and A6455 for Western; Molecular Probes), pEGFPC2-MCOLN1 [full-length, wild-type (WT), human and cloned into the pCMV expression vector as a decoy (40494 total sequences). Search parameters used were a precursor mass between 400 and 4500 amu, up to two missed cleavages, precursor-ion tolerance of 3 amu, accurate mass binning within PeptideProphet, semi-tryptic digestion, a static carbamidomethyl cysteine modification, variable methionine oxidation and variable phosphorylation of serine, threonine and tyrosine residues. False discovery rates (FDR) were determined by ProteinProphet and minimum protein probability cut-offs resulting in a 1% FDR were selected individually for each experiment.

Site-directed mutagenesis

Site-directed mutagenesis of MCOLN1 was carried out using the QuikChange II XL Site-Directed Mutagenesis kit (Agilent Technologies). The primers utilized in the mutagenesis are listed in the Supplementary Materials and Methods.

Fura-2 Ca2+ imaging

Cells were loaded with 5 μM Fura-2 AM (Life Technologies) in the culture medium at 37 °C for 60 min. The cells were then washed three times with modified Tyrode’s solution [150 mm NaCl, 5 mm KCl, 2 mm CaCl2, 1 mm MgCl2, 10 mM NaHCO3, 10 mM glucose (pH 7.4)] and imaged in wide-field fluorescence mode in a 96-well format with a 20×/0.75 NA Olympus UPlanApo objective lens using a BD Pathway 855 bioimager equipped with 37 °C environmental control, liquid handling and a Nikon A1 confocal microscope (Becton Dickinson) within 1 h of processing. EGFP was imaged with a 488/10 nm band-pass excitation filter and a 515 long-pass emission filter. Ratiometric Fura-2 AM (excitation 340 and 380 nm, emission 435 nm long-pass, ratio = 340/380) imaging was used to monitor changes in intracellular [Ca2+] upon
stimulation [38,40]. Laser-based autofocus was performed in each well prior to the collection of EGFP and Fura-2 images. ML-S6A1 (10 μM, a direct and specific TRPML1 agonist) and ionomycin (1 μM) were used to induce Ca2+ flux and as a positive control to induce a maximal response respectively. Time-zero GFP and Fura-2 ratio images were collected prior to the addition of compounds/vehicle controls in 10–100 μl well-volumes using a single-channel automated pipettor followed by the acquisition of 50 additional Fura-2 ratiometric images at approximately three images per second. CellProfiler was used for image processing to tabulate calcium flux traces on a per-cell basis [41].

Kinase assays

Kinase assays were performed according to previously described methods [42,43]. Briefly, the assays with myc-tagged TOR were performed at room temperature (RT, 25 °C) in 25 μl of reaction mixture containing 3–12 μg of protein in kinase buffer (50 mM Hpes at pH 7.4, 100 mM NaCl, 0.5 mM DTT and 10 mM MgCl\textsubscript{2} supplemented with 2% (v/v) glycerol, 0.1 mM EDTA, 200 μM AMP and ATP and 2 μCi of \(\gamma\text{-}^{32}\text{P}\text{ATP}\) with or without the peptide. After a 30-min incubation period, the reaction mixtures were counted in a scintillation counter.

In vitro phosphorylation

HEK293T cells were transfected with either WT full-length GFP–MCOLN1 or full-length GFP–MCOLN1S572A/S576A (S572,576/AA) and myc-TOR (WT), lysed in phosphorylation buffer [50 mM Tris/HCl (pH 7.4), 100 mM NaCl, 0.5 mM DTT and 10 mM MgCl\textsubscript{2}] supplemented with 2% (v/v) Triton X-100 and protease and serine/threonine phosphatase inhibitors, incubated with or without 200 mM rapamycin (20 min, RT), then labelled with 2 μCi of \(\gamma\text{-}^{32}\text{P}\text{ATP}\) (30 min, RT) and immunoprecipitated using the anti-GFP antibody and Protein A/G agarose (washed three times with the phosphorylation buffer). Samples were eluted using Laemmli buffer, separated by electrophoresis, stained with Coomassie Brilliant Blue and subjected to autoradiography.

Western blotting

Protein lysates for immunoblotting were prepared by suspending cell pellets in lysis buffer A plus 1.0% Triton X-100 with shaking for 1 h (4 °C) and centrifuged at 16000 g for 10 min (4 °C) in 1.5-ml microfuge tubes. Supernatants were collected and protein concentrations were determined using the Bio-Rad DC protein assay. Proteins (50 μg) were then boiled in loading buffer and subjected to SDS/PAGE (Invitrogen), followed by Western analyses using the primary antibodies. Secondary antibodies (IRDye infrared antibodies; LI-COR Biosciences) were used at a dilution of 1:2000. Scanning, analysing and quantification of blots were performed via the Odyssey Infrared Imaging System (LI-COR Biosciences). Three or more independent experiments were performed for all immunoblotting data.

Transgene or loss-of-function mutation	AMPK\textalpha{} RNAi rescue (% expected)	AMPK\textalpha{} loss-of-function allele 1 rescue (number rescue/total number scored)	AMPK\textalpha{} loss-of-function allele 2 rescue (number rescue/total number scored)
UAS-S6k (DN)	Yes (11)	Yes (14/130)	Yes (23/122)
UAS-TOR (DN)	Yes (13)	No (0/68)	No (0/42)
UAS-MCOLN (WT)	No (0/1312)	No (0/1081)	No (0/231)
MCOLN1	Yes (16)	Yes (8/958)	Yes (6/80)
MCOLN2	Yes (14)	Yes (6/122)	Yes (10/78)
UAS-MCOLN-RNAI	Yes (18)	Yes (8/130)	Yes (10/156)
UAS-AMPK\textalpha{1}	Yes (100)	Yes (22/65)	Yes (30/75)
UAS-AMPK\textalpha{2}	No	No (0/63)	No (0/94)
UAS-GFP	No	No (0/52)	No (0/77)

Statistical analyses

For all quantified experiments, data are presented as mean ± S.E.M. ANOVA was used to determine the statistical significance with significance set at 0.05. For Western blot quantification, independent experiments (cell preparation, cell harvest and SDS/PAGE/transfer) were performed three times (unless otherwise noted). Indirect immunofluorescent detection of secondary antibody (LI-COR) was scanned and standardized to an
RESULTS

MCOLN1 genetically interacts with AMPK

We initially screened through known *Drosophila* mutations that produce neurodegenerative phenotypes (including *MCOLN*) [18,44] that might interact with AMPK mutants, which also produce neural degeneration-like phenotypes [16–20]. Although there are multiple genes that encode TRPML channels in mammals (*MCOLN1, MCOLN2* and *MCOLN3*, also known as *TRPML1, TRPML2* and *TRPML3*), there is only a single *MCOLN* (TRPML) gene in *Drosophila* with two previously characterized gene deletion lines available for study [45]. We therefore utilized *Drosophila* genetics to examine the functional consequences of altered TRPML activity *in vivo* in a less genetically redundant system than the TRPML vertebrate genome.

We investigated the relationship between *MCOLN* and AMPK gene functions by reducing AMPKα activity through the use of a transgenic RNAi-based expression system. This previously characterized AMPK RNAi system phenocopies genetic loss of AMPKα and only allows *Drosophila* development to reach the late pupal/pharate adult stage without producing eclosing adults [46,47]. Through the use of this transgenic RNAi-based expression system [46,47], we determined that introducing a single *MCOLN* loss-of-function mutation for either *MCOLN* allele rescued otherwise lethal AMPKα knockdown animals to viability/eclosion (Table 1). In addition, heterozygous *MCOLN* loss-of-function alleles were able to rescue previously published [20] null AMPKα lethal loss-of-function alleles to viability as well, an effect otherwise only observed with dominant-negative S6 kinase (S6K; in the TOR pathway), which is known to antagonize AMPK function [48]. In support of these results, increased TRPML1 expression did not rescue AMPKα knockdown or loss-of-function animals but actually significantly antagonized (decreased) the viability of the KD –AMPKα animal [46] (Supplementary Table S1).

Phosphopeptide purification and MS of TRPML1 identifies novel phospho-serine sites

Based upon the finding that *MCOLN1* and AMPK genetically interact, we sought to identify possible sites of interaction (phosphorylation sites) in the TRPML1 protein. Originally, we hypothesized that AMPK might directly phosphorylate TRPML1 to regulate its autophagic function. Using HEK293T cells, we transiently transfected human EGFP–WT–MCOLN1, which leads to its protein localization in late endosomes and lysosomes (its physiological localization), in addition to the plasma membrane (Supplementary Figure S1) [49–51]. We subsequently treated the transfected cells with rapamycin (a TOR antagonist), CoCl2 (an AMPK activator [47,52]) or DMSO (vehicle) followed by IP with a GFP antibody to look for phosphorylation changes in *MCOLN1S572E/S576E* were treated with or without lysosomal PIs (E-64d + Pepstatin A (10 μg/ml of each)) for 12 h. The cells were then lysed and immunoblotted with anti-LC3, anti-GFP (to quantify the GFP–MCOLN1 constructs (~93 kDa)) and anti-α-tubulin (n=4). (C) The quantification of the ratio of LC3BI to LC3BII from (B). A ratio of “1” would indicate equal quantities of LC3BII and LC3BI. (D) The quantification of the relative ratio of GFP to α-tubulin.

Figure 1 The phosphorylation state of C-terminal tail serine residues of TRPML1 (Ser572 and Ser576) regulate autophagy

(A) MS identified unique phosphopeptides in the complete sequence of TRPML1 (UniProtKB – Q9GZU1) that are absent after rapamycin treatment. The identified phosphopeptide sequences are in green, phospho-residues are underlined in red and unique peptides absent when rapamycin was used during cell culture are boxed in magenta. The six predicted transmembrane domains of TRPML1 are included underlined in blue. (B) HEK293T cells transfected with either EGFP-tagged WT–MCOLN1; the S51E construct, MCOLN1S51E; or the S572E/S576E construct, internal standard (tubulin) to calculate and quantify arbitrary units using the Odyssey Infrared Imaging System with a representative Western blot shown in each Figure.
TOR regulates TRPML1

Figure 2 The S572E/S576E TRPML1 phosphomimetic is non-responsive to TRPML1 agonists

Intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\text{\textit{i}}) was investigated using HEK293T cells transfected with either (A) EGFP-tagged WT-MCOLN1; (B) the S572A/S576A construct, MCOLN1\(_{S572A/S576A}\); or (C) the S572E/S576E construct, MCOLN1\(_{S572E/S576E}\) and the TRPML1 agonist ML-SA1. TRPML1 protein expression was monitored by the presence of an EGFP signal measured at an excitation of 488 nm (F\textsubscript{488}). [Ca\(^{2+}\)]\text{\textit{i}} was monitored with Fura-2 ratios (F\textsubscript{340}/F\textsubscript{380}). The extracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\text{\textit{o}}) was 2 mM. (D–F) In WT-MCOLN1- and MCOLN1\(_{S572A/S576A}\)-transfected cells (D and E), the Fura-2 ratios increased in response to ML-SA1 and gradually recovered. The change in the Fura-2 ratio for MCOLN1\(_{S572E/S576E}\) (F) was negligible.
Figure 3 The TOR agonist MHY1485 can deactivate the TRPML1 channel through the phosphorylation of Ser572 and Ser576

Intracellular Ca$^{2+}$ ([Ca$^{2+}$]$_{i}$) was investigated in HEK293T cells transfected with either (A) EGFP-tagged WT–MCOLN1; (B) the S572A/S576A construct, MCOLN1S572A/S576A; or (C) the S572E/S576E construct, MCOLN1S572E/S576E. TRPML1 protein expression was monitored by the presence of an EGFP signal measured at an excitation of 488 nm (F488). [Ca$^{2+}$]$_{i}$ was monitored with Fura-2 ratios (F340/F380). The extracellular Ca$^{2+}$ ([Ca$^{2+}$]$_{o}$) was 2 mM and the [MHY1485] was 10 μM. (D–F) In the WT–MCOLN1-transfected cells (D), the Fura-2 ratios decreased in response to MHY1485 and gradually recovered whereas the Fura-2 ratios of the MCOLN1S572A/S576A-transfected cells (E) were not affected. The change in the Fura-2 ratios for MCOLN1S572E/S576E (F) was negligible; however, these ratios were well below the MCOLN1S572A/S576A-transfected cells and the recovered WT–MCOLN1-transfected cells.

TRPML1 in response to these stimuli. After peptide digestion, followed by phosphopeptide enrichment, the peptides were subjected to MS, whereupon several phosphopeptides were identified (Figure 1A; Supplementary Table S2). Interestingly, two peptides (one N-terminal peptide, containing one predicted phospho-serine residue and one C-terminal peptide, containing two predicted phospho-serine residues) were absent from the peptide pool from the cells treated with the TOR inhibitor rapamycin but present with the other treatments. Based on these results, we proceeded to further investigate the functional consequences of mutating these three serine residues to alanine (non-phosphorylatable) or glutamic acid (a phosphomimetic) residues individually or, in the case of the C-terminal peptide containing two serine residues, both residues. In addition, these findings suggested that TOR, and not AMPK, might be a more direct regulator or TRPML1.

Phosphorylation of the C-terminal TRPML1 serine residues results in decreased autophagic flux

To ascertain the extent of functional autophagy as a metric of TRPML1 activity, we assessed the relative level of microtubule-associated protein 1A/1B-light chain 3 (LC3). LC3 is one of
Figure 4 SS72A/SS76A TRPML1 and the SS72E/SS76E TRPML1 phosphomimetic are non-responsive to rapamycin

Intracellular Ca$^{2+}$ ([Ca$^{2+}$]$_i$) was investigated using HEK293T cells transfected with either (A) EGFP-tagged WT–MCOLN1; (B) the SS72A/SS76A construct, MCOLN1SS72A/SS76A; or (C) the SS72E/SS76E construct, MCOLN1SS72E/SS76E and the TOR antagonist rapamycin. TRPML1 protein expression was monitored by the presence of an EGFP signal measured at an excitation of 488 nm (F$_{488}$). [Ca$^{2+}$]$_i$ was monitored with Fura-2 ratios (F$_{340}$/F$_{380}$). The extracellular Ca$^{2+}$ ([Ca$^{2+}$]$_o$) was 2 mM and the [rapamycin] was 10 μM. (D–F) In the WT–MCOLN1-transfected cells (D), the Fura-2 ratio increased in response to rapamycin and gradually recovered. The changes in the Fura-2 ratios for MCOLN1SS72A/SS76A and MCOLN1SS72E/SS76E (E and F) were negligible.
the relative abundance of LC3-II does correlate with the formation of autophagosomes, it does not indicate whether these autophagosomes are capable of completing functional autophagy. Lysosomal protease inhibitors (PIs), for example, pepstatin A and E-64d, are therefore utilized to allow for the formation of autolysosomes but to partially prevent the functional completion of autophagy [56,57]. In this manner, increased complete autophagy would lead to increased levels of LC3-II in the presence of the PIs compared with the absence of PIs, whereas decreased autophagic flux/turover would result in a similar level of LC3-II with or without the PIs [56].

Using this assay, the combined S572E/S576E phosphomimetic mutation of TRPML1 resulted in an inhibition of autophagic degradation, as evidenced by the increased accumulation of LC3-II (the membrane-bound form of LC3 that is characteristic of autophagosomes) that was similar with and without the PIs; whereas the S51E variant (and S572A/S576A and S51A variants) of TRPML1 resulted in no significant increase in LC3-II accumulation (Figures 1B–1D, Supplementary Figure S2) compared with the WT with or without the PIs. These results suggested that the C-terminal phospho-serines, and not the N-terminal phospho-serine, had profound effects on TRPML1 function.

Calcium imaging indicates that phosphorylation of the C-terminal TRPML1 serine residues results in decreased channel activity

To further ascertain if phosphorylation (at Ser572 and Ser576) may regulate autophagy through the Ca$^{2+}$ influx activity of the TRPML1 channel, we performed real-time calcium imaging using the Ca$^{2+}$-specific reagent Fura-2 AM [38] in HEK293T cells transfected with either EGFP–WT–MCOLN1, the S572E/S576E construct or the S572A/S576A construct. This technique relies upon the fact that the recombinant overexpressed TRPML1 channel is partially localized to the plasma membrane, allowing for an easy demonstration of the Ca$^{2+}$ influx activity of the channel from the media when activated using an appropriate agonist [38,51]. The results illustrate that the S572E/S576E variant was virtually non-responsive to the TRPML1 agonist ML-SA1 (mucolipin synthetic agonist 1, a known specific agonist for TRPML1 [39]) in comparison with both the WT and the S572A/S576A variants (Figure 2, Supplementary Figures S3A, S3B and S4A), whereas the single variants (S572A, S572E, S572S, S572E/S576E) etc.) behave similarly to WT (Supplementary Figure S5A and S5B). Because of the differential response profile with the S572E/S576E variant [and not S572E or S576E (or S572E) alone], the S572E/S576E variants became our primary focus.

When MHY1485 (a TOR agonist previously demonstrated to inhibit autophagy [35]) was utilized in the same assay described above, the activity of the S572A/S576A construct was unaffected by the compound even though the WT channel was obviously inhibited (Figures 3A and 3B; Supplementary Figure S4B). Because rapamycin treatment led to our initial discovery of these novel phospho-serine residues, we also assayed the effect of rapamycin on these channels. Although rapamycin did activate the WT channel, the response compared with the basal activation was not statistically significant and again the S572E/S576E construct was not obviously affected (Figures 4A and 4B; Supplementary Figure S4C). These results again indicated that TOR may regulate the TRPML1 channel through the phosphorylation of these two C-terminal serine residues.
Figure 6 mTOR inhibits TRPML1 activity during autophagy through phosphorylation

The model in (A) explains how mTOR, AMPK and TRPML1 possibly interact whereas the models presented in (B) and (C) attempt to explain: (1) why loss of AMPK activity alone is lethal in relation to (2) why loss of both AMPK and TRPML1 activity resulted in the limited viability in the presented Drosophila genetic studies that served as the basis for the present work respectively. (A) When active (for example, under starvation conditions), AMPK inhibits mTOR (or its downstream effector molecule S6K1) activity, which in turn modulates TRPML1 activity in a feedback loop (i.e., inactive/less active mTOR leads to increased TRPML1 activity; however, activating TRPML1 increases autophagy, leading to increased amino acid production and activating mTOR; a feedback loop that regulates/modulates mTOR, AMPK and TRPML1 activity). (B) In the absence of only AMPK activity (due to a condition/state where there is a loss of AMPK activity and not simply due to nutrient-rich conditions, which can be simply explained by the feedback loop in (A)), negative TOR regulation is significantly lessened (increased TOR activity), probably contributing to the loss of viability that occurs when AMPK activity is lost, i.e. a complete loss of AMPK activity is known to be developmentally lethal [46,47]. Please note: due to increased mTOR activity, there would also probably be a significant accumulation of amphisomes and lysosomes, possibly leading to the neurodegeneration phenotype often accompanying a loss of functional AMPK [16–20] (not pictured). (C) In the absence of both functional AMPK and TRPML1, TOR activity is balanced because (1) the negative regulation of AMPK activity is absent (A), but (2) the positive regulation involving autophagy, i.e. the production of nutrients, such as amino acids, is also absent, leading to a limited viability in the absence of AMPK activity [58,59] (refer to Table 1 for the viability results) and explaining the Drosophila genetic study results described in the present work.
In vitro phosphorylation and kinase assays support a role for the direct phosphorylation of the TRPML1 channel by the TOR kinase

To determine whether TOR could directly phosphorylate TRPML1 in vitro, kinase assays were performed to monitor the incorporation of 32P into modified versions of the TRPML1 C-terminal peptide (refer to the Experimental) for the exact sequences of these peptides; Figures 1A, 5A and SB; Supplementary Figure S6) [42,43]. In brief, either Ser572 or Ser576 (or both) was replaced with an unphosphorylatable alanine residue in the C-terminal TRPML1 peptide for the 32P incorporation assays. The kinase assays revealed that the C-terminal peptide is indeed a robust TOR substrate (Figures 5A and SB), whereas versions of the peptide altered at one or both of the putative serine residues (S572A/S576A) were relatively poor TOR substrates (Supplementary Figure S6).

To further illustrate the direct phosphorylation of TRPML1 by TOR, cells transfected with either the full-length WT channel or the full-length S572,576/AA mutant were 32P-labelled in either the presence or the absence of rapamycin (Figure 5C). The channel was then immunoprecipitated using anti-GFP antibody and visualized by SDS/PAGE and autoradiography. The WT channel was significantly more labelled compared with the S572,576/AA mutant and rapamycin treatment decreased this labelling, i.e. the result indicates TOR phosphorylates TRPML1 at Ser572 and Ser576.

DISCUSSION

Through the present study, we have provided evidence that the TRPML1 channel is directly phosphorylated and regulated by the TOR kinase but that AMPK could still be involved indirectly through activity on the TOR pathway (Table 1, Figure 6; [58,59]). Because AMPK also regulates autophagy, it is possible that we detected the genetic interaction between AMPK and MCOLN1. The general role of TOR in autophagy is well-documented in the literature [60]; however, obtaining mechanistic information on signalling events occurring during autophagy in MLIV is currently a very active area of study [61] and was further elucidated by the present study.

When mutated to phosphomimetic residues (serine to glutamic acid), the C-terminal tail of the channel proved to contain functionally important serine residues (Ser572 and Ser576). This finding validates and expands upon previous studies that have found that activation of PKA with forskolin promotes TRPML1 channel activity, which is a mechanism of autophagy, illustrated by the lack of LC3-II turnover in the S572E/S576E mutant (a characteristic of MLIV patients [72], the MCOLN1−/− mouse model [33,34] and lysosomal storage diseases in general [73]) and by direct Ca2+ imaging using a specific TRPML1 agonist, ML-SA1 [39]. Thus, our results support the typical MLIV pathophysiology and more directly suggest that the phosphorylation of Ser572 and Ser576 regulate the TRPML1 channel.

In general, LSDs, a group of over 60 genetic conditions [74], are due to lysosomal hydrolase deficiencies that lead to accumulations of their corresponding substrates within lysosomes [25,26], with mucolipidosis types I – III falling into this particular and prevalent category of LSDs. This fact makes the occurrence of MLIV the more interesting because it is due to a loss-of-function of a presumed Ca2+ channel, which is a mechanism of autophagy regulation with some support in the literature, i.e. the exocytosis of lysosomal contents is thought to be regulated by the release of intralysosomal Ca2+ into the cytosol [75–77]. Thus, our work expands upon our knowledge of TRP channel regulation by protein kinases in general, an area of study that does exist [78–81] but that is lacking for the TRPM channels, and may aid in the development of treatments for inducing autophagy activation, a proposed therapeutic strategy for the treatment of neurodegenerative diseases [82].

AUTHOR CONTRIBUTION

Rob Onyenwoke designed the experiments, collected the data and wrote the paper. Jonathan Sexton collected and analysed the data and reviewed the manuscript. Feng Yan collected and analysed the data; Maria Díaz collected the data. Lawrence Forsberg collected and analysed the data. Michael Major designed the experiments and reviewed the manuscript. Jay Brennan designed the experiments, wrote the paper and reviewed the manuscript.

ACKNOWLEDGEMENTS

We thank R. Puertollano (NIH, Bethesda, MD) for the pEGFPc2-MCOLN1 construct and D. Kretzschmar (Oregon Health and Science University, Portland, Oregon) and C. Montell (University of California-Santa Barbara, CA) for the UAS-SNFl4 and trpml2 fly lines respectively. We are also indebted to Professor Robert Tarran (UNC-Chapel Hill) for assistance with the confocal imaging experiments. The authors declare that they have no competing interests.

FUNDING

This work was supported by grants from the state of North Carolina (University Cancer Research Fund); and the National Institute of Health [grant number 1-DP2-OD007149-01 (to M.B.M) and NS080108 (to J.E.B)].

REFERENCES

1 Kilinsky, D.J. (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931–937 CrossRef PubMed
2 Rubinstein, D.C. (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 CrossRef PubMed
3 Fader, C.M. and Colombo, M.I. (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16, 70–78 CrossRef PubMed
4 Metcalfe, D. and Isaacs, A.M. (2010) The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. Biochem. Soc. Trans. 38, 1469–1473 CrossRef PubMed
5 Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominnami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 CrossRef PubMed
6 Williams, A., Jahreiss, L., Sarkar, S., Saiki, S., Menzies, F.M., Ravikumar, B. and Rubinstein, D.C. (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr. Top. Dev. Biol. 76, 89–101 CrossRef PubMed
7 Wang, Z., Wilson, W.A., Fujino, M.A. and Roach, P.J. (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21, 5742–5752 CrossRef PubMed
8 Liang, J., Shao, S.H., Xu, Z.X., Hennessy, B., Ding, Z., Leshinsky, S., Srinivas, V. and Shapiro, I.M. (2010) Chondrocyte autophagy regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 9, 218–224 CrossRef PubMed
9 Matsu, Y., Takagi, H., Xu, D., Abdelattif, M., Sakoda, H., Asano, T., Levine, B. and Matsumoto, T. (2005) TOR-mediated cell growth and survival. Cell 115, 577–590 CrossRef PubMed
10 Meley, D., Bauvy, C., Houben-Weerts, J.H., Dubbelhuis, P.F., Helmond, M.T., Codogno, P. and Meijer, A.J. (2006) AMP-activated protein kinase and the regulation of autophagic homeostasis and activity-induced retinal degeneration. J. Neurosci. 26, 6419–6428 CrossRef PubMed
11 Inci, K., Zhu, T. and Guan, K.L. (2003) TSC2 mediates cellular energy response to AMPK activation and regulates cell growth and survival. Cell 115, 577–590 CrossRef PubMed
12 Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominnami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 CrossRef PubMed
13 Bohensky, J., Leshinsky, S., Srinivas, V. and Shapiro, I.M. (2010) Chondrocyte autophagy regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 9, 218–224 CrossRef PubMed
14 Liang, J., Shao, S.H., Xu, Z.X., Hennessy, B., Ding, Z., Leshinsky, S., Srinivas, V. and Shapiro, I.M. (2010) Chondrocyte autophagy regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 9, 218–224 CrossRef PubMed
15 Inoki, K., Zhu, T. and Guan, K.L. (2003) TSC2 mediates cellular energy response to AMPK activation and regulates cell growth and survival. Cell 115, 577–590 CrossRef PubMed
16 Meley, D., Bauvy, C., Houben-Weerts, J.H., Dubbelhuis, P.F., Helmond, M.T., Codogno, P. and Meijer, A.J. (2006) AMP-activated protein kinase and the regulation of autophagic homeostasis and activity-induced retinal degeneration. J. Neurosci. 26, 6419–6428 CrossRef PubMed
17 Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominnami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 CrossRef PubMed
18 Inci, K., Zhu, T. and Guan, K.L. (2003) TSC2 mediates cellular energy response to AMPK activation and regulates cell growth and survival. Cell 115, 577–590 CrossRef PubMed
19 Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominnami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 CrossRef PubMed
20 Meley, D., Bauvy, C., Houben-Weerts, J.H., Dubbelhuis, P.F., Helmond, M.T., Codogno, P. and Meijer, A.J. (2006) AMP-activated protein kinase and the regulation of autophagic homeostasis and activity-induced retinal degeneration. J. Neurosci. 26, 6419–6428 CrossRef PubMed
21 Inci, K., Zhu, T. and Guan, K.L. (2003) TSC2 mediates cellular energy response to AMPK activation and regulates cell growth and survival. Cell 115, 577–590 CrossRef PubMed
22 Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominnami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 CrossRef PubMed
23 Inci, K., Zhu, T. and Guan, K.L. (2003) TSC2 mediates cellular energy response to AMPK activation and regulates cell growth and survival. Cell 115, 577–590 CrossRef PubMed
24 Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominnami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 CrossRef PubMed
25 Inci, K., Zhu, T. and Guan, K.L. (2003) TSC2 mediates cellular energy response to AMPK activation and regulates cell growth and survival. Cell 115, 577–590 CrossRef PubMed

© 2015 Authors, published by Portland Press Limited
