Data Article

Data for β-lactoglobulin conformational analysis after (-)-epigallocatechin gallate and metal ions binding

Liangliang Zhanga,*, Indra Dev Sahub, Man Xua, Yongmei Wanga, Xinyu Huaa

a Key Lab. of Biomass Energy and Material, Jiangsu Province; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
b Chemistry and Biochemistry Department, Miami University, Oxford, OH 45056, USA

\textbf{Article history:}
Received 2 December 2016
Received in revised form 7 December 2016
Accepted 12 December 2016
Available online 21 December 2016

\textbf{Abstract}
This data article contains complementary results related to the paper “Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin” (Zhang et al., 2017) [1]. Data was obtained by circular dichroism (CD) spectroscopy to investigate potential β-lactoglobulin (β-Lg) conformational changes with different concentrations of EGCg and Cu2+ or Al3+ added to β-Lg. 500 μL of the 25 μM β-Lg solution containing EGCg (25 μM) or metal ions (0–500 μM) were measured, and the spectra were recorded. CD spectroscopy data present in this article indicated that the β-Lg-Cu, β-Lg-Al and β-Lg-EGCg interaction resulted in unfolding of the secondary structure of β-Lg.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

\section*{Specifications Table}

Subject area	Chemistry
More specific subject area	Polyphenol chemistry

DOI of original article: http://dx.doi.org/10.1016/j.foodchem.2016.11.158
* Corresponding author.
E-mail address: zhll20086@163.com (L. Zhang).

http://dx.doi.org/10.1016/j.dib.2016.12.021
2352–3409© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Type of data	Figure
How data was acquired | MOS-500 spectropolarimeter (Bio-Logic, France)
Data format | Analyzed
Experimental factors | CD spectroscopy was performed with the method of Li et al. [2].
Experimental features | All samples were prepared in 20 mM PBS buffer at pH 7.4. 500 µL of the 25 µM β-Lg solution containing EGCg (25 µM) or metal ions (0–500 µM) were measured, and the spectra were recorded.
Data source location | Nanjing, China
Data accessibility | Data is with this article

Value of the data

- The data provides some additional data on the effects of metal ions on the binding reaction of EGCg to β-Lg.
- The data indicated the conformational change of β-Lg after binding with EGCg or metal ions Cu, Al.
- The interaction between [β-Lg-Cu] and [β-Lg-Al] results in unfolding of the secondary structure of β-Lg.
- This data provide insights in understanding the effects of metal ions on the binding reaction of polyphenol compounds to β-Lg.

1. Data

Fig. 1 reports the CD spectra of β-Lg with different concentrations of EGCg or Cu²⁺ or Al³⁺. The negative bands at 222 nm could indicate the α-helix structure of the proteins [1,3].

2. Experimental design, materials and methods

2.1. Materials

EGCg (≥ 95%) and β-Lg (A variant, purity ≥ 90%) were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Working solutions of EGCg (0.25 mM) were prepared by dissolving the EGCg in a 50% methanol solution. The working solution of β-Lg (25 µM) was prepared in 20 mM PBS buffer, pH 7.4 and stored in a refrigerator prior to use. The β-Lg and EGCg concentrations were determined spectrophotometrically by their extinction coefficients: \(\varepsilon_{280}(\beta-Lg) = 17600 \text{ M}^{-1} \text{ cm}^{-1}\) and \(\varepsilon_{280}(\text{EGCg}) = 9700 \text{ M}^{-1} \text{ cm}^{-1}\) at 280 nm [4,5]. For in vitro experiments, the working solutions of Cu²⁺ and Al³⁺ (1.0 mM) were prepared by dissolving CuCl₂·2H₂O and AlCl₃, respectively, in double-distilled water containing 0.1 M HCl to facilitate dissolution. All other reagents and solvents were of analytical reagent grade and used without further purification. All aqueous solutions were prepared using freshly double-distilled water.

2.2. Experimental design

CD spectroscopy was performed using a MOS-500 spectropolarimeter (Bio-Logic, France) with the modified method of Li et al. [2]. The CD spectra of the β-Lg, [β-Lg-EGCg] and [β-Lg-metal] systems were recorded between 190 and 250 nm by scanning the spectrum at 25 °C, with a scanning speed of 100 nm min⁻¹, 2 s response time, and 1.0 nm step size. All samples were prepared in 20 mM PBS buffer at pH 7.4. To investigate the effect of EGCg, Cu²⁺ and Al³⁺ on the secondary structure of β-Lg, 500 µL of the 25 µM β-Lg solution containing EGCg (25 µM) or metal ions (0–500 µM) were measured, and the spectra were recorded. The samples were loaded into a rectangular quartz cuvette with a path...
length of 1 mm. The spectra of three consecutive scans were averaged and corrected by subtracting the solvent/buffer spectra.

Acknowledgements

This work was supported by the Key Lab. of Biomass and Energy and Material Jiangsu Province (KLBE) (JSBEM-S-201707) and National Key Research and Development Plan (2016YFD0600806).

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.12.021.

References

[1] L.L. Zhang, I.D. Sahu, M. Xu, Y.M. Wang, X.Y. Hu. Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin, Food Chem. 221 (2017) 1923–1929.
[2] R.F. Li, Z.F. Lu, Y.N. Sun, S.H. Chen, Y.J. Yi, H.R. Zhang, S.Y. Yang, G.H. Yu, L. Huang, C.N. Li, Molecular design, structural analysis and antifungal activity of derivatives of peptide CGA-N46, Interdiscip. Sci. Comput. Life Sci. 8 (2016) 319–326.

[3] K. Shiraki, K. Nishikawa, Y. Goto, Trifluoroethanol-induced stabilization of the α-helical structure of β-lactoglobulin: implication for non-hierarchical protein folding, J. Mol. Biol. 245 (1995) 180–194.

[4] M. Li, A.E. Hagerman, Role of the flavan-3-ol and galloyl moieties in the interaction of (-)-epigallocatechin gallate with serum albumin, J. Agric. Food Chem. 62 (2014) 3768–3775.

[5] J. Yang, J.R. Powers, S. Clark, A.K. Dunker, B.G. Swanson, Hydrophobic probe binding of β-lactoglobulin in the native and molten globule state induced by high pressure as affected by pH, KI03 and N-ethylmaleimide, J. Agric. Food Chem. 50 (2002) 5207–5214.