DATA NOTE
The genome of the Antarctic-endemic copepod,
Tigriopus kingsejongensis

Seunghyun Kang1,†, Do-Hwan Ahn1,†, Jun Hyuck Lee1,2, Sung Gu Lee1,2, Seung Chul Shin1, Jungeun Lee1,2, Gi-Sik Min3, Hyoungseok Lee1,2, Hyun-Woo Kim4,*, Sanghee Kim5,** and Hyun Park1,2,***

1Unit of Polar Genomics, Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea, 2Polar Sciences, University of Science & Technology, Yuseong-gu, Daejeon, South Korea, 3Department of Biological Sciences, Inha University, Incheon, South Korea, 4Department of Marine Biology, Pukyong National University, Busan, South Korea and 5Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, South Korea

*Correspondence: kimhw@pknu.ac.kr; sangheekim@kopri.re.kr; hpark@kopri.re.kr
†These authors contributed equally to this work.

Abstract

Background: The Antarctic intertidal zone is continuously subjected to extremely fluctuating biotic and abiotic stressors. The West Antarctic Peninsula is the most rapidly warming region on Earth. Organisms living in Antarctic intertidal pools are therefore interesting for research into evolutionary adaptation to extreme environments and the effects of climate change.

Findings: We report the whole genome sequence of the Antarctic-endemic harpacticoid copepod Tigriopus kingsejongensis. The 37 Gb raw DNA sequence was generated using the Illumina Miseq platform. Libraries were prepared with 65-fold coverage and a total length of 295 Mb. The final assembly consists of 48 368 contigs with an N50 contig length of 17.5 kb, and 27 823 scaffolds with an N50 contig length of 159.2 kb. A total of 12 772 coding genes were inferred using the MAKER annotation pipeline. Comparative genome analysis revealed that T. kingsejongensis-specific genes are enriched in transport and metabolism processes. Furthermore, rapidly evolving genes related to energy metabolism showed positive selection signatures.

Conclusions: The T. kingsejongensis genome provides an interesting example of an evolutionary strategy for Antarctic cold adaptation, and offers new genetic insights into Antarctic intertidal biota.

Keywords: Copepoda; Genome; Antarctic; Adaptation; Tigriopus

Data description

Approximately 12 000 species have been described in the diverse copepod subclass [1, 2]. These species dominate the zooplankton community, contributing about 70% of total zooplankton biomass [3], and are an important link between phytoplankton and higher trophic levels in the marine meiothermic food web [4]. Harpacticoid copepods of the genus Tigriopus Norman 1868 are dominant members of shallow supratidal rock pools, distributed worldwide among habitats that vary widely...
in salinity, temperature, desiccation risk, and UV radiation. They are a model system in investigations of osmoregulation [5], temperature adaptation [6, 7] and environmental toxicology [8]. With publicly available copepod genome resources (e.g., Tigriopus californicus [9], T. japonicus [10], Eurytemora affinis [11] and salmon louse Lepeophtheirus salmonis [12]), it is now possible to explore their fundamental biological processes and physiological responses to diverse environments.

Antarctica is not only an extreme habitat for extant organisms, but also a model for research on evolutionary adaptations to cold environments [13, 14]. The Antarctic intertidal zone, particularly in the Western Antarctic Peninsula region, is one of the most extreme, yet fastest warming environments on Earth. Thus, it is a potential barometer for global climate change [15]. Antarctic intertidal species that have evolved stenothermal phenotypes through adaptation to year-round extreme cold may now face extinction by global warming. The response of these species to further warming in Western Antarctica is of serious concern; however, to date, few studies have focused on Antarctic intertidal zone species.

First described in 2014, T. kingsejongensis was recognized as a new species endemic to a rock pool in the Antarctic Peninsula. It is extremely cold-tolerant and can survive in frozen seawater [16]. Compared to the congener T. japonicus, which is found in coastal areas of the Yellow Sea, morphological differences of this species include increased numbers of caudal setae in nauplii, an optimal growth temperature of approximately 8 °C, and differing developmental characteristics. Tigriopus kingsejongensis has evolved to overcome the unique environmental constraints of Antarctica, therefore providing an ideal experimental model for extreme habitat research. This species may represent a case of rapid speciation, since the intertidal zone on King George Island and the surrounding areas did not exist 10 000 years ago [17]. Tigriopus kingsejongensis likely evolved as a distinct species within this relatively short time period. Thus, interspecies and intraspecies comparative analyses of Antarctic Tigriopus species will help to define the trajectory of adaptation to the Antarctic environment, and also provide insights into the genetic basis of Tigriopus divergence and evolution.

Library construction and sequencing

Tigriopus kingsejongensis specimens were collected using handnets from tidal pools in Potter Cove, near King Sejong Station, on the northern Antarctic Peninsula (62°14′S, 58°47′W) (Fig. 1 and Fig. S1) in January 2013. The water temperature was 1.6 ± 0.8 °C during this month. High molecular weight genomic DNA from pooled T. kingsejongensis was extracted using the DNaseasy Blood and Tissue Kit (Qiagen, Venlo, The Netherlands). For Illumina Miseq sequencing, four library types were constructed with 350, 400, 450, and 500 bp for paired-end libraries, and 3 kb and 8 kb for mate-pair libraries, prepared using the standard illumina sample preparation methods (Table 1). All sequencing processes were performed according to the manufacturer’s instructions (Illumina, Carlsbad, USA).

RNA was prepared from pooled T. kingsejongensis and T. japonicus specimens from two different temperature environments (4 °C and 15 °C) using the RNeasy Mini Kit (Qiagen). For Illumina Miseq sequencing, subsequent experiments were carried out according to the manufacturer’s instructions (Illumina). The de novo transcriptome assembly was performed with CLC Genomics Workbench (Qiagen), setting the minimum allowed contig length to 200 nucleotides. The assembly process generated 40 172 contigs with a maximum length of 23 942 bp and an N50 value of 1093 bp. Generated contigs were used as reference sequences to map trimmed reads, and fold-changes in expression for each gene were calculated with a significance threshold of \(P \leq 0.05 \) using the CLC Genomics Workbench (Tables 2 and 3).

Genome assembly

First, k-mer analysis was conducted using jellyfish 2.2.5 [18] to estimate the genome size from DNA paired-end libraries. The estimated genome size was 298 Mb, with the main peak at a depth of ~39× (Fig. 2). Then, assemblies were performed using a Celera Assembler with illumina short reads [19]. Prior to assembly, illumina reads were trimmed using the FASTX-Toolkit [20] with parameters –t 20, –t170 and –Q33, after which a paired sequence from trimmed illumina reads was selected. Finally, trimmed illumina reads with 65-fold coverage (insert sizes 350, 400, 450, and 500 bp) were obtained and converted to the FRG file format (required by the Celera Assembler) using FastqToCA. Assembly was performed on a 96-channel workstation with Intel Xeon X7460 2.66 GHz processors and 1 Tb random access memory (RAM) with the following parameters: overlapr = ovl, unitigger = bogart, utgGraphErrorRate = 0.03, utgGraphErrorLimit = 2.5, utgMergeErrorRate = 0.030, utgMergeErrorLimit = 3.25, ovlErrorRate = 0.1, cnsErrorRate = 0.1, cgwErrorRate = 0.1, merSize = 22, and doOlapBasedTrimming = 1. The initial Celera assembly was 305 Mb, had an N50 contig size of 17 566 bp, and a maximum contig size of 349.5 kb. Scaffolding was completed using the SSPACE 2.0 scf folder using mate-paired data [21]. Subsequently, we closed gaps using Gapfiller version 1.9 with 65× trimmed illumina reads with default settings [22]. De novo assembly of 203 million reads from paired-end and mate-paired libraries yielded a draft assembly (65-fold coverage) with a total length of 295 Mb, and contig and scaffold N50 sizes of 17.6 kb and 159.2 kb, respectively (Table 4 and Fig. 3).

Annotation

MAKER, a portable and easily configurable genome annotation pipeline, was used to annotate the genome [23]. Repetitive elements were identified using RepeatMasker [24]. This masked genome sequence was used with SNAP software [25] for ab initio gene prediction, after which alignment of expressed sequence tags (ESTs) with BLASTn [26] and protein information from tBLASTx [26] were included. The de novo repeat library of T. kingsejongensis from RepeatModeler was used for RepeatMasker; proteins from five species with data from Drosophila melanogaster, Daphnia pulex, T. japonicus, and T. californicus were included in the analysis. RNA-seq-based gene prediction, data were aligned against the assembled genome using TopHat [27], and Cufflinks [28] was used to predict cDNAs from the resultant data. Next, MAKER polished the alignments using the program

![Figure 1. Photograph of an adult Tigriopus kingsejongensis specimen (scale bar = 200 μm)](https://example.com/figure1.png)
The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis

Table 1 DNA library statistics

Library	Reads (n)	Average length (bp)	Sequences (n)	Average length (trimmed) (bp)
Paired-end Sum	99 710 266	300	29 271 916 613	65 644 374
350S1	6 661 392	265	2 005 078 992	4 446 394
350S2	4 933 058	300	1 311 700 122	4 618 711
400S1	6 668 598	300	19 766 247 998	36 863 154
450S1	3 418 988	300	1 029 115 388	2 812 455
450S2	8 009 162	245	1 968 652 020	7 660 814
500S1	11 019 068	289	3 191 122 093	9 242 846
Mate-Paired Sum	103 373 998	75	7 753 049 850	73 515 391
3KS1	8 374 238	75	628 067 850	6 745 546
3KS2	9 250 994	75	693 824 550	5 281 513
3KS3	51 349 594	75	3 851 219 550	39 147 167
3KS4	3 063 232	75	229 742 400	1 740 986
8KS1	9 847 636	75	738 572 700	7 887 612
8KS2	16 322 038	75	1 224 152 850	9 653 293
8KS3	5 166 266	75	387 469 950	3 059 274
Total	203 084 264	289	3 191 122 093	9 242 846

Coverage (folds) 120.7 64.7

Table 2 Transcriptome sequencing and assembly analysis for Tigriopus japonicus

Sequencing	Total reads (n)	37 956 160
Total bases (n)	7 714 415 316	
Trimmed reads (n)	35 577 636	
Trimmed bases (n)	5 989 188 343	

Assembly	Contigs (n)	40 172
Total contig length (bases)	28 850 726	
N50 contig length (bases)	1093	
Max scaffold length (bases)	23 942	

Annotation	With BLAST results	20 392
Without BLAST hits	7 090	
With mapping results	8 172	
Annotated sequences	4 518	

Table 3 RNA-seq statistics analysis for Tigriopus kingsejongensis

Temperature	Total reads (n)	15 786 118
	Total bases (n)	3 567 662 668
	Trimmed reads (n)	14 845 103
	Trimmed bases (n)	2 761 189 158

Figure 2. Estimation of the Tigriopus kingsejongensis genome size based on 33-mer analysis. X-axis represents the depth (peak at 39×) and the y-axis represents the proportion. Genome size was estimated to be 298 Mb (total k-mer number/volume peak).

Exonerate [29], which provided integrated information to synthesize SNAP annotation. Considering all information, MAKER then selected and revised the final gene model. A total of 12 772 genes were predicted in T. kingsejongensis using MAKER. Annotated genes contained an average of 4.6 exons, with an average mRNA length of 1090 bp. Additionally, 12 562 of 12 772 genes were assigned preliminary functions based on automated annotation using Blast2GO (Ver. 2.6.0) [30] (Figs. S2 and S3) with homology sequences from the SwissProt [31], TrEMBL, National Center for Biotechnology Information (NCBI) non-redundant protein databases [32] and REVIGO software was used to cluster related GO terms according to P-value [33]. Infernal version 1.1 [34] and covariance models (CMs) from the Rfam database [35] were used to identify other non-coding RNAs in the T. kingsejongensis scaffold. Putative tRNA genes were identified using tRNAscan-SE [36] (Table S1), which uses a CM that scores candidates based on their sequence and predicted secondary structures. Non-gap sequences occupied 284.8 Mb (96.5%), and simple sequence repeats (SSRs) amounted to 1.2 Mb (0.4%) (Table S2).
Table 4 Genome assembly statistics

Type	Parameter	Assembly size according to Celera Assembler
Scaffold	Total scaffold length (bases)	295 233 602
	Gap size (bases)	10 474 460
	Scaffolds (n)	11 558
	NS0 scaffold length (bases)	159 218
	Max scaffold length (bases)	3 401 446
Contig	Total contig length (bases)	305 712 242
	Contigs (n)	48 368
	NS0 contig length (bases)	17 566
	Max contig length (bases)	349 507

Figure 3. Scaffold and contig size distributions of Tigriopus kingsejongensis. The percentage of the assembly included (y-axis) in contigs or scaffolds of a minimum size (x-axis, log scale) is shown for the contig (red) and scaffold (blue).

Table 5 Tigriopus kingsejongensis genes: general statistics

Genes (n)	Gene length sum (bp)	Exons per genes (n)	mRNA length sum (bp)	Average mRNA length (bp)	Number of tRNA	Number of rRNA
12 772	82 293 116	4.6	43 306 342	1090	1393	215

Transposable elements (TEs) comprised 6.5 Mb; roughly 2.3% of the assembled genome (Tables S2 and S3). On the basis of homology and ab initio gene prediction, the T. kingsejongensis genome contained 12 772 protein-coding genes (Table 5). By assessing the quality of the 12 772 annotated gene models, 11 686 protein-coding genes (91.5%) were supported by RNA-seq data, of which 7325 (63%) were similar to proteins from other species. To estimate genome assembly and annotation completeness, Core Eukaryotic Genes Mapping Approach (CEGMA) [37] and Benchmarking Universal Single-Copy Orthologs (BUSCO) [38] analysis was used (Table 6). The CEGMA report revealed that 193 of 248 CEGMA score genes were fully annotated (77.8% completeness), and 206 of 248 genes were partially annotated (83% completeness). BUSCO, a similar approach used for lineage-specific profile libraries such as eukaryotes, metazoans, and arthropods,
revealed 71% complete and 6% partial Metazoan orthologous gene sets in our assembly; using an arthropod gene set, only 61.1% complete and 10.7% partial genes were assigned. CEGMA and BUSCO gene sets largely comprised insects; other non-insect arthropod genomes obtained similarly low assignment scores. Overall, the T. kingsejongensis genome was moderately complete in non-dipteran arthropod genomes.

Gene families
Orthologous groups were identified from 11 species (T. kingsejongensis, Aedes aegypti, D. melanogaster, Isoxodes scapularis, Mesobuthus martensii, Strigamia martima, Tetanychus urticae, D. pulex, Homo sapiens, Ciona intestinalis, and Caenorhabditis elegans) (Table 7) using OrthoMCL [40] with standard parameters and options; transcript variants other than the longest translation forms were removed. For T. kingsejongensis, the coding sequence from the MAKER annotation pipeline was used. The 1:1 single-copy orthologous genes were subjected to phylogenetic construction and divergence time estimation. Protein-coding genes were aligned using the Probabilistic Alignment Kit (PRANK) and the codon alignment option [41], and poorly aligned sequences with gaps were removed using Gblock under the codon model [42]. A maximum likelihood phylogenetic tree was constructed using RAxML with 1000 bootstrap values [43] and calibrated the divergence time between species with TimeTree [44]. Finally, the average gene gain/loss rate along the given phylogeny was identified using CAFE 3.1 [45].

Orthogonal gene clusters were constructed using four arthropod species (Antarctic copepod, T. kingsejongensis; scorpion, M. martensii; fruit fly, D. melanogaster, and water flea, D. pulex) to compare genomic features and adaptive divergence. In total, 2063 gene families are shared by all four species, and 1028 genes are T. kingsejongensis-specific. T. kingsejongensis shares 4559 (73.5%) gene families with D. pulex, which belongs to the same crustacean lineage, Verirrustacea; 3531 (56.9%) with D. melanogaster; and 3231 (52.1%) with M. martensii (Fig. 4A).

Gene Ontology (GO) analysis revealed the 1028 T. kingsejongensis-specific gene enrichment in transport (single-organism transport, GO:0044765; transmembrane transport, GO:0055085; ion transport, GO:0006811; cation transport, GO:0006812) and single-organism metabolic processes (GO:0044710) (Tables S4 and S5).

Subsequently, gene gain-and-loss was analyzed in 11 representative species: T. kingsejongensis gained 735 and lost 4401 gene families (Fig. 4B). This species exhibits a gene family turnover of 5136, the largest value among the eight arthropods. The second largest value was obtained from T. uticae and the third from M. martensii. Non-insect arthropod genomes were relatively poorly assigned with CEGMA or BUSCO sets (Table 6). The assignment reports of these largely insect-based gene sets tend to have low assignment scores in non-insect or non-dipteran genomes [38, 46, 47]. The presence of many genes of interest in this database indicates that careful examination of gene family turnover is needed in non-insect arthropod genomes, as well as globally approved arthropod orthologous gene sets.

Analysis of gene family expansion and contraction in T. kingsejongensis (Tables S6–S9) revealed 232 significantly expanded gene families, which are significantly overrepresented in amino acid and carbohydrate metabolism pathways, according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) [48].

Genome evolution
Adaptive functional divergence caused by natural selection is commonly estimated based on the ratio of nonsynonymous (dN) to synonymous (dS) mutations. To estimate dN, dS, and the average dN/dS ratio (w), and lineage-specific positively selected genes (PSGs) in T. kingsejongensis and T. japonicus, protein-coding genes from T. japonicus were added to define orthologous gene families among four species (T. kingsejongensis, T. japonicus, D. pulex, and D. melanogaster) using the program OrthoMCL with the same conditions previously described. We identified 2937 orthologous groups shared by all four species; single-copy gene families were used to construct a phylogenetic tree and estimate the time since divergence using the methods described above. Each of the identified orthologous genes was aligned using PRANK, and poorly aligned sequences with gaps were removed using Gblock. Alignments with less than 40% identity and genes shorter than 150 bp were eliminated in subsequent procedures. The values of dN, dS, and w were estimated from each gene using the Codeml program implemented in the Phylogenetic Analysis by Maximum Likelihood (PAML) package with the free-ratio model [49] under F3 × 4 codon frequencies; orthologs with w ≤ 5 and dS ≤ 3 were retained [50]. To examine the accelerated nonsynonymous divergence in either the T. kingsejongensis or T. japonicus lineages, a binomial test [51] was used to determine GO categories with at least 20 orthologous genes. To define PSGs in T. kingsejongensis and T. japonicus, basic and branch-site models were applied, and Likelihood Ratio Tests (LRTs) were used to remove genes under relaxation of selective pressure. To investigate the functional categories and pathways enriched in PSGs, the Database for Annotation, Visualization and Integrated Discovery (DAVID) Functional Annotation [52] was used with Fisher’s exact test (cutoff: P ≤ 0.05).

The average w value from 2937 co-orthologous genes of T. kingsejongensis (0.0027) is higher than that of T. japonicus (0.0022). GO categories that show evidence of accelerated evolution in T. kingsejongensis are: energy metabolism (generation of precursor metabolites and energy, GO:0006091; cellular respiration, GO:0045333) and carbohydrate metabolism (monosaccharide metabolic process, GO:0005996; hexose metabolic process, GO:0019318) (Fig. 5A, Table S10). Branch-site model analysis showed that genes belonging to these functional categories have undergone a significant positive selection process by putative functional divergence in certain lineages. There are 74 and 79 PSGs in T. kingsejongensis (Table S11) and T. japonicus (Table S12), respectively.

The functional categories enriched in T. kingsejongensis, when compared to T. japonicus, support the idea that functional divergence in T. kingsejongensis is strongly related to energy metabolism (oxidative phosphorylation, GO:0006119; energy-coupled proton transport down electrochemical gradient, GO:0015985; ATP synthesis-coupled proton transport, GO 0015986; generation of precursor metabolites and energy, GO:0006091) (Fig. 5B, Tables S13 and S14). In particular, three of the identified genes are involved in the oxidative phosphorylation (OxPhos) pathway, which provides the primary cellular energy source in the form of adenosine triphosphate (ATP). These three genes are nuclear-encoded mitochondrial genes: the catalytic F1 ATP synthase subunit alpha (ATPSA) (Fig. S4), a regulatory subunit acting as an electron transport chain such as ubiquinol-cytochrome c reductase core protein (UQCRCl) (Fig. S5), and an electron transfer flavoprotein alpha subunit (ETF A) (Fig. S6).

Availability of supporting data
T. kingsejongensis genome and transcriptome data are deposited in the Sequence Read Archive (SRA) as BioProjects PRJNA307207
Table 7 Summary of orthologous gene clusters in 11 representative species

Species	Source of data	No. of coding genes	No. of gene families	No. of genes in gene families	No. of orphan genes	No. of unique gene families	Average No. of genes in gene families
Aedes aegypti	Ensembl genome 25	15 797	7958	12 792	7839	854	1.61
Caenorhabditis elegans	Ensembl gene 78	20 447	6536	13 737	13 911	1528	2.10
Ciona intestinalis	Ensembl gene 78	16 671	7017	9058	9654	503	1.29
Daphnia pulex	Ensembl genome 25	30 590	6710	8362	7208	368	1.25
Drosophila melanogaster	Ensembl gene 78	13 918	9673	21 917	20 917	2408	2.27
Homo sapiens	Ensembl gene 78	20 300	8696	17 186	11 604	1065	1.98
Ixodes scapularis	Ensembl genome 25	20 486	8097	11 277	12 389	873	1.39
Mesobuthus martensii	http://lifecenter.sgst.cn/main/en/scorpion.jsp	32 016	8389	19 961	23 627	2276	2.38
Strigamia maritima	Ensembl genome 25	14 992	7727	11 012	7265	583	1.43
Tetranychus urticae	Ensembl genome 25	18 224	6602	11 788	11 622	939	1.79
Tigriopus kingsejongensis	this study	12 772	6205	8813	6567	649	1.42

Figure 4. Comparative genome analyses of the T. kingsejongensis genome. A. Venn diagram of orthologous gene clusters between four arthropod lineages. B. Gene family gain-and-loss analysis. The number of gained gene families (red), lost gene families (blue) and orphan gene families (black) are indicated for each species. Time lines specify divergence times between the lineages.

Additional file

Supplementary data are available at GIGSCI online.

Figure S1. Map showing location of the Tigriopus kingsejongensis sampling site.

Figure S2. BLAST top-hit species distribution of Tigriopus kingsejongensis. Data obtained using BLASTx against the National Center for Biotechnology Information's (NCBI) non-redundant protein database with an E value cutoff of 1e−5.

Figure S3. Gene Ontology distribution of annotated genes. Gene Ontology (GO) annotation of predicted Tigriopus kingsejongensis genes was conducted using the GO annotation. The figure illustrates the number of genes from major GO modules of molecular function (MF), biological process (BP), and cellular component (CC).

Figure S4. Tigriopus kingsejongensis-specific amino acid changes in ATP synthase subunit alpha. A. ClustalX alignment of the amino acid sequences between four species. ClustalX alignment of the amino acid sequences between four species. B. Cartoon of the protein crystal structure of the ATP synthase (PDB ID: 1BMF). C. The specific amino acid change Ala166 is colored in red (in stick form) and positioned within the external loop region of nucleotide-binding domain. The three domains of the ATP synthase subunit alpha illustrated in cartoon form are colored accordingly (blue, beta-barrel domain; green, nucleotide-binding domain; purple: C terminal domain).

Figure S5. Tigriopus kingsejongensis-specific amino acid changes in ubiquinol-cytochrome c reductase core protein I. A. ClustalX alignment of the amino acid sequences between four species. B. Cartoon of the protein crystal structure of ubiquinol-cytochrome c reductase (PDB ID: 1QCR). C. Positions of the specific amino acid changes in ubiquinol-cytochrome c reductase core protein I are colored red (stick form). The insulinase domain is yellow and the peptidase M16 domain is green.

Figure S6. Tigriopus kingsejongensis-specific amino acid changes in electron-transferring flavoprotein. A. ClustalX alignment of the amino acid sequences between four species. Tigriopus kingsejongensis-specific amino acid changes representing positive selections are presented with red boxes. B. Cartoon of the protein crystal structure of the E. T. reductase (PDB ID: 1QCR). C. The specific amino acid change Ala166 is colored in red (in stick form) and positioned within the external loop region of nucleotide-binding domain. The three domains of the ATP synthase subunit alpha illustrated in cartoon form are colored accordingly (blue, beta-barrel domain; green, nucleotide-binding domain; purple: C terminal domain).

and PRJNA307513, respectively. Other supporting data is available in the GigaScience repository, GigaDB [53].
The genome of the Antarctic-endemic copepod, *Tigriopus kingsejongensis* | 7

Figure 5. *Tigriopus kingsejongensis*-specific adaptive evolution. A. Global mean w (ratio of nonsynonymous (dN) to synonymous mutations (dS)) distribution by GO categories of *T. kingsejongensis* and *T. japonicus*. GO categories showing supposedly accelerated nonsynonymous divergence (binomial test, test statistic <0.05) in *T. kingsejongensis* and *T. japonicus* are colored in red and blue, respectively. B. A total of seven enzyme-coding genes were positively selected genes (PSGs) involved in the four metabolic pathways (oval frame) of *T. kingsejongensis*: energy (purple), nucleotide (red), lipid (green), and carbohydrate (blue) metabolic pathways. The three genes belonging to the oxidative phosphorylation pathway (KEGG pathway map00190) (rectangular frame) are presented below the enzymes involved. Solid lines indicate direct processes and dashed lines indicate that more than one step is involved in a process.

Table S10. Gene Ontology (GO) categories displaying w (ratio of nonsynonymous (dN) to synonymous mutations (dS)) in the genomes of *Tigriopus kingsejongensis* and *T. japonicus*.

Table S11. Lists and annotations of positively selected genes in the *Tigriopus kingsejongensis* genome.

Table S12. Lists and annotations of positively selected genes in the *Tigriopus japonicus* genome.

Table S13. Enriched Gene Ontology (GO) categories identified by positively selected genes from the *Tigriopus kingsejongensis* genome. REVIGO software was used to cluster related GO terms (in bold letters) according to P-value.

Table S14. Enriched Gene Ontology (GO) categories identified by positively selected genes from the *Tigriopus japonicus* genome. REVIGO software was used to cluster related GO terms (in bold letters) according to P-value.

List of abbreviations

- ATP: Adenosine triphosphate; BUSCO: Benchmarking Universal Single-Copy Orthologs; CEGMA: Core Eukaryotic Genes Mapping Approach; CM: Covariance model; DAVID: Database for Annotation, Visualization and Integrated Discovery; dN: Nonsynonymous mutations; dS: Synonymous mutations; dN/dS ratio

Competing interests

The authors declare no competing interests.

Funding

This work was supported by the Korea Polar Research Institute-funded the grant ‘Antarctic organisms: cold-adaptation
mechanism and its application' (PE16070), and basic research program (PE14260).

Authors’ contributions
HP, S Kim and HWK conceived and designed experiments and analyses; S Kang, DHA, SGL, SCS, JL, GSM and HL performed experiments and conducted bioinformatics. Seunghyun Kang, HWK, S Kim and HP, wrote the paper. All authors read and approved the final manuscript.

Acknowledgements
We would like to thank Joseph A. Covi for comments and discussion.

References
1. Huys R, Boxshall GA. Copepod evolution. Ray Society; 1991.
2. Humes AG. How many copepods? Hydrobiology 1994;292:1–7.
3. Wells P, Persoone G, Jaspers ECC. Marine ecotoxicological tests with zooplankton. In: Persoone G, Jaspers E, Claus C. (Eds.), Ecotoxicological Testing for the Marine Environment. Brede: Inst. Mar. Sci. Res.; 1984.
4. Ruppert E, Fox R, Barnes R. Invertebrate Zoology, A Functional Evolutionary Approach. Belmont, CA: Brooks/Cole-Thomson Learning; 2003.
5. Goolish E, Burton R. Energetics of osmoregulation in an intertidal copepod: Effects of anoxia and lipid reserves on the pattern of free amino accumulation. Funct Ecol 1989;81–9.
6. Lazzaretto I, Libertini A. Karyological comparison among different Mediterranean populations of the genus Tigriopus (Copepoda Harpacticoida). Boll Zool 2009;53:197–201.
7. Davenport J, Barnett P, McAllen R. Environmental tolerances of three species of the harpacticoid copepod genus Tigriopus. J Mar Biol Assoc UK 1997;77:3–16.
8. Raisuddin S, Kwok KW, Leung KM, Schlenk D, Lee J-S. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 2007;83:161–73.
9. Whole Genome Assembly of Tigriopus californicus provided by the Weizhong Li lab, UCSD Calit2 [http://i5k.nal.usda.gov/Tigriopus_californicus].
10. Lee J-S, Rhee J-S, Hwang D-S, Han J, Choi B-S, Park GS, Kim I-C, Park HG, Lee Y-M. The copepod Tigriopus japonicus genomic DNA information (574Mb) and molecular analyses; S Kang, DHA, SGL, SCS, JL, GSM and HL performed experiments and conducted bioinformatics. Seunghyun Kang, HWK, S Kim and HP, wrote the paper. All authors read and approved the final manuscript.

11. Whole genome assembly of Eurytemora affinis [http://i5k.nal.usda.gov/Eurytemora-affinis].
12. The Salmon Louse Genome Project [http://sealouse.imr.no/]
13. Thorne MAS, Kagoshima H, Clark MS, Marshall CJ, Wharton DA. Molecular analysis of the cold tolerant Antarctic Nematode, Panagrolaimus davidi. PLOS one 2014;9:e104526.
14. Everatt MJ, Worlandb MR, Balea JS, Conveyb P, Haywardb A. Molecular analysis of the cold tolerant Antarctic Nematode, Panagrolaimus davidi. PLOS one 2014;9:e104526.
15. Bromwich DH, Nicolas JP, Monaghan AJ, Lazzara MA, Keller LM, Weidner GA, Wilson AB. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience 2013;6:139–45.
16. Park E-O, Lee S, Cho M, Yoon SH, Lee Y, Lee W. A new species of the genus Tigriopus (Copepoda: Harpacticoida: Harpacticoidea) from Antarctica. Proc Biol Soc Wash 2014;127:138–54.
17. Birkenmajer K. Geology of Admiralty Bay, King George Island (South Shetland Islands). An outline. Pol Polar Res 1980;1:29–54.
18. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011;27:764–70.
19. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mborammy CM, Reinert KH, Remington KA. et al. A whole-genome assembly of Drosophila. Science 2000;287:2196–2204.
20. Gordon A, Hannon G. Fastx-toolkit. FASTQ/A short-reads preprocessing tools (unpublished) [http://hannonlab cshl edu/fastx_toolkit].
21. Boetzer M, Henkel CV, Jansen H, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27:578–9.
22. Nadalín F, Vezzi F, Policriti A. GapFinder: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 2012;13:S8.
23. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 2011;12:491.
24. Smit AFA HR, Green P. RepeatMasker Open-3.0. 1996-2004 [http://www.RepeatMasker.org].
25. Korf I. Gene finding in novel genomes. BMC Bioinformatics 2004;5:59:26.
26. Altschul SF, Madden TL, Schäffer AA, Zhang ZJ, Zhang J, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402.
27. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009;25:1105–11.
28. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech 2010;28:511–5.
29. Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 2005;6:31.
30. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674–6.
31. Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31:365–70.
32. Acland A, Agarwala R, Barrett T, Beck J, Benson DA, Bollin G, Brown G, Bryant SH, Canese K, Church DM. Database resources of the national center for biotechnology information. Nucleic Acids Res 2011;39:D7.
33. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 2011;6:e21800.
34. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics 2009;25:1335–37.
35. Roberts M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674–6.
36. Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31:365–70.
37. Acland A, Agarwala R, Barrett T, Beck J, Benson DA, Bollin G, Brown G, Bryant SH, Canese K, Church DM. Database resources of the national center for biotechnology information. Nucleic Acids Res 2011;39:D7.
38. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 2011;6:e21800.
37. Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007;23:1061–7.
38. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015;btv351.
39. Chipman AD, Ferrier DE, Brena C, Qu J, Hughes DS, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 2014;12:e1002005.
40. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003;13:2178–89.
41. Lötynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A 2005;102:10557–62.
42. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–52.
43. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.
44. Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledgebase of divergence times among organisms. Bioinformatics 2006;22:2971–2.
45. Han MV, Thomas GW, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 2013;30:1987–97.
46. Rider SD, Morgan MS, Arlian LG. Draft genome of the scabies mite. Parasites & Vectors 2015;8:585.
47. Hoy M, Waterhouse R, Wu K, Estep A, Ioannidis P, Palmer W, Pomerantz A, Simão F, Thomas J, Jiggins F. Genome sequencing of the phytoseiid predatory mite Metaseiulus occidentalis reveals completely atomised Hox genes and superdynamic intron evolution. Genome biology and evolution 2016;8:1762–75.
48. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2015: D457–62.
49. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007;24:1586–91.
50. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014;346:1311–20.
51. Consortium TCSaA. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005;437:69–87.
52. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 2008;4:44–57.
53. Kang S, Ahn D, Lee JH, Lee SG, Shin SC, Lee J, Min G, Lee H, Kim H, Kim S, Park H. Supporting data for “The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis”. GigaScience Database. 2016. http://dx.doi.org/10.5524/100249.