Tuberculosis in Children with Rheumatic Diseases Treated with Biologic Disease-Modifying Anti-Rheumatic Drugs

Chengappa Kavadichanda, MB Adarsh, Sajal Ajmani, Ilaria Maccora, Balan S, Ramanan AV, Vikas Agarwal, Latika Gupta

Mediterr J Rheumatol 2021;32(4):290-315
Tuberculosis in Children with Rheumatic Diseases on Biologic Disease-Modifying Anti-Rheumatic Drugs: A Narrative Review

Chengappa Kavadichanda1, MB Adarsh2, Sajal Ajmani3, Ilaria Maccora4, Balan S5, Ramanan AV6, Vikas Agarwal7, Latika Gupta7

1Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India, 2Department of Medicine, Government Medical College, Kasaragod, India, 3Arthritis and Rheumatology Clinic, Delhi, 4University of Florence, School of Health Science, Rheumatology Unit, Meyer Children's University Hospital, Florence, Italy, 5Department of Paediatric Rheumatology, Amrita Institute of Medical Sciences, Kochi, India, 6Bristol Royal Hospital for Children & University of Bristol, United Kingdom, 7Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

ABSTRACT

Chronic rheumatic diseases entail the use of biologics in children. Immunosuppressive effects of drug therapy put children at risk of various infections including tuberculosis (TB). Even though TB is a major concern among individuals on biological DMARDs, the incidence and distribution among children on these drugs is not known. Hence, we performed a literature search to ascertain the prevalence of tuberculosis amongst children with rheumatic disorders treated with biological agents. Articles available on MEDLINE and SCOPUS published on or after January 1, 2010 to 1 October 2019 were reviewed and collated. We found that published data on TB infections in children with rheumatic disorders on biologics is scant even from regions with highest TB burden. Tuberculosis was reported on occasion (0-5 cases per country) in the developed world with most reports being from Turkey. While most of the retrospective studies suggest that TB risk is minimal in the paediatric rheumatology patients, prospective studies suffer from a short observation period. Most registries focus on response to therapy rather than complications. In this review we have then discussed about the variation in screening strategies for latent TB and the role of bacille Calmette-Guerin (BCG) vaccination. Based on the dearth of data and inconsistency in data collection, we propose a way forward in the form of establishing well-designed long-term prospective national registries from countries with high background prevalence of TB with focus not only on treatment efficacy but also on adverse events and infections.

Keywords: tuberculosis, biologics, rheumatology, paediatrics

INTRODUCTION

Despite the advent of glucocorticoids and immunosuppressive therapies, chronic rheumatic diseases of childhood such as Juvenile Idiopathic Arthritis (JIA), Systemic Lupus Erythematosus (SLE), Idiopathic Inflammatory Myositis (IIM), Auto-inflammatory Syndromes (AIS) and Paediatric Vasculitis (PV) result in significant morbidity; and, at times, even mortality.1-3 In the developing world, infections are the leading con-
Tuberculosis (TB) is one such infection, which remains a particular challenge in these parts of the world. The emergence of drug-resistant tubercular strains and polypharmacy, in the setting of chronic illnesses further compounds the problem. Recent estimates suggest the prevalence of TB in India to be 3.2 cases per thousand population. The presence of rheumatic disorders (RDs) entails treatment with glucocorticoids and immunosuppressive drugs for prolonged periods, more so in cases of lupus, vasculitis and myositis. Some patients with JIA, lupus, vasculitis, and, rarely, IIM, also have underlying antibody deficiencies or complement pathway defects, further increasing their infection risk. Over the past years, there have been efforts towards decreasing usage of glucocorticoids in rheumatic disorders and advocating rational use of immunosuppressive agents. In addition to this, public health initiatives have attempted to address the issues of adequate treatment of TB. The changing dynamics of therapeutic practices could have a bearing on the prevalence of TB in these diseases, and also influence the ways this problem can be addressed. Thus, it is important to understand the prevalence, risk factors, and outcomes of TB infection among children with RDs on biologics. In this review, we have performed a literature search on the prevalence, screening strategies, and global reporting patterns of TB across various studies among children with RDs on biological DMARDs. We have then summarised the available literature and discussed the possibilities that could explain our findings. Finally, we have suggested the way ahead to obtain more robust information from underrepresented countries.

REVIEW STRATEGY

The search strategy for writing review articles as proposed by Gasparyan et al. was followed. Articles available on MEDLINE and Scopus, published on or after January 1, 2010, until October 1, 2010 were reviewed using search words “juvenile” and “dermatomyositis” and “biologics” (n=71); “paediatric” AND “Lupus” AND “biologics” (n=81); “paediatrics” AND “Vasculitis” AND “Biologics” (n=55).

In addition, the literature review on registry data in paediatric rheumatology, Scopus searches were conducted combining “registry” with each of the following: “paediatric” AND “Lupus” (n=100), “juvenile” and “myositis” (n=40); “juvenile” and “arthritis” (n=368); biologics AND “Rheumatology” (n=359) and “Autoinflammatory” AND “syndromes” (n=50).

Also, select review articles on the subject were cross-referenced to obtain additional references. Figure 1 summarises the search results.

Articles with data on outcomes in children of treatment with biologics were included. Review articles, systematic reviews, case reports, and articles without data in children, and those in languages other than English, and where full-text was not available were excluded. Congress abstracts did not feature in the searches. Studies which had TB where there was no clear separation between those receiving bDMARDs vs those on csDMARDs were excluded. Serious infections were defined as per the publishing author’s definitions. The Zotero software, an open-source tool, was used for references management and citations.

Figure 1. Number of articles obtained after searching through MEDLINE and Scopus.
Juvenile Idiopathic Arthritis and Tuberculosis

Juvenile idiopathic arthritis is a chronic rheumatic disorder consisting of polyarticular (rheumatoid factor positive and negative), oligoarticular, systemic-onset JIA, enthesitis-related-arthritis, psoriatic and undifferentiated subtypes. The occurrence of infections is known and associated with poor outcomes. Tuberculosis is a chronic infection that can result in significant morbidity and mortality in children with JIA. Data in JIA consists of mixed cohorts of various subtypes of arthritis. Interestingly, most series report no occurrence of Tuberculosis (Tables 1, 2 and 3). Tuberculosis has been reported in four prospective studies, involving 2 each from Turkey and Portugal, and 1 each from Brazil and a multicentre trial. The follow-up duration in these studies ranged over 1-5 years. Of the various biologic registries screened, the only two cases of Tuberculosis reported are from Turkey. This is in contrast to minimal or no reports of Tuberculosis from UK, most European countries (France, Germany, Italy, and Greece) and Canada. The general prevalence of tuberculosis in Turkey is 26/100,000 (2005). Brazil has one of the highest TB burdens with over 70,000 incident cases per year (Figure 2D). Portugal has the highest TB prevalence in Western Europe at 23 per 10,000 population, which resonates with the 2 cases reported of two studies in 232 patients. Interestingly, a study from India which has one of the highest background prevalence of Tuberculosis in the world, reported no Tuberculosis though the follow-up duration was 11 months. Plotting data available from various studies in paediatric rheumatology on a world map reveals the distribution is primarily limited to regions with low TB prevalence (Figure 2A). There is sizeable risk of confirmation biases regarding the safety of biologics resulting from absence of data from high TB incident parts of the world (Figure 2 C).

On the contrary, in adults, there are reports of greater tuberculosis on anti-TNFs, with the risk being highest with IFX (cumulative incidence 0.5% within the first 500 days of registration) as compared with ETA (0.2%). It is worthwhile considering if BCG vaccination practices in children could explain differences between children and adults. Usage of biologics also induces an immunosuppressant state, and there is known risk of higher extra-pulmonary forms of TB in such a setting. Diagnosing these could be a challenge, particularly so in the absence of a robust biomarker for extrapulmonary forms of tuberculosis.

Juvenile Lupus and Tuberculosis

Data on tuberculosis in paediatric lupus is scant, being limited to 7 retrospective and 2 prospective studies (Supplementary Table S1). While most described the use of Rituximab, one prospective study on Belimumab featured 39 cases over 6 months of follow-up. The maximum duration of follow-up was 3 years and the largest series of 104 was from the United States in 2015. Whilst none of the series reported any tuberculosis, the largest series had overall 22 infections, of which 20 were major infections. Of note, most patients were on concomitant immnosuppressants or steroids during the study period. However, literature is replete with case reports of tuberculosis in lupus. We have previously found TB in 6% of children with LN. Thus, poor tuberculosis reporting could be from use of biologics in patients with less severe disease (minor organ manifestations), early mortality or underreporting. Previously use of high-dose cyclophosphamide (CYC) has been identified as a risk factor for infections in lupus. The risk of infections could possibly be lower with biologics such as belimumab and RTX but this needs to be confirmed in larger studies.

Juvenile inflammatory myositis and tuberculosis

Out of the various studies on inflammatory myositis, none looked at data on Tuberculosis specifically (Supplementary Table S2) suggesting dire need to collect information relevant to this in future studies. On the other hand, we have 4 papers previously describing high prevalence of tuberculosis in myositis, suggesting the need for careful assessment of this aspect in prospective cohorts with longer term follow-up. We have described TB in 17.1% children from India with myositis (n=35, unpublished data). Unfortunately, biologics use is limited in this part of the world due to insurance policies and consequent financial constraints further leading to dearth of data.

Juvenile Vasculitis and Tuberculosis

Data on paediatric vasculitis is scant, being limited to 5 retrospective series, most being on Behcet’s disease, Takayasu’s arteritis, and Polyarteritis nodosa from Turkey, UK and Canada, overall reporting 35 cases (Supplementary Table S3). No serious infections were reported over the longest study period of 2.1 years.

Autoinflammatory syndromes and Tuberculosis

Although there is emerging data from registries including the Eurofever registry on various auto-inflammatory syndromes, most focus on treatment regimens and response to therapy with dearth of data on infections. In the limited studies available (Supplementary Table 4), no Tuberculosis was reported.
Choice of biologics and risk of TB in children

Children with rheumatic disorders might be predisposed to Tuberculosis due to the intrinsic mechanism of action of biologics, anti-TNFs in particular, as they target TNF-α, the key cytokine for the Th1 axis. Experience from the biologic usage in adult rheumatic diseases has shown higher chances of TB reactivation with anti-TNF agents. We identified 37 episodes of TB in 34 patients out of the 14,218 patients treated with anti-TNF agents. In the non-TNF biologic group, a single case of TB has been reported with tocilizumab (OR-6.92 95% CI 0.95, 50.56) (Table 4). Anti-TNF therapy may not be a cause for TB reactivation among children with autoimmune diseases on biological agents. The role of TNF in controlling TB infection is reflected by the mice models deficient in TNF. These rodents are unable to control M. tuberculosis infection and form granulomas in their lungs.24 TNF-α is required in the protective immune response against M. tuberculosis (MTB) in mice.25 TNF is an important signal for macrophage activation in conjunction with IFN-γ. This cytokine has a key role in the immune responses to MTB, because it is involved in multiple processes, such as macrophage activation and cell recruitment to the sites of infection (natural killer cells, granulocytes, fibroblasts, and T cells), which either leads to granuloma formation or kills the pathogen. Furthermore, it activates CD8+ T cell that could directly kill the bacteria, TNF-α additionally activates CD8+ cytotoxic T cells (CTLs) that may be important because these cells release granulysin and directly kill intracellular bacteria. TNF-α also promotes the maturation of monocytes to dendritic cells (DCs) and/or macrophages, inducing the antigen presentation of intracellular mycobacteria. TNF-α produced in a local infection site allows macrophages, natural killer (NK) cells and yδ T cells gather at the infection site and bring their activation.26 The activated CTL cells have the ability to produce perforin protein and TNF-α by itself, which guide TB-infected monocytes to apoptosis, which involves intracellular living TB bacilli, and to induce the autophagy of infected cells via activated.24 The other possibility is an increased risk due to the presence of an autoimmune disease. The risk of infections seems to be increased in rheumatic diseases not only from the drugs used, but also the presence of T lympho-

Figure 2. Global distribution of cases.

A. Data available on children with paediatric rheumatic disorders on biologics. B. Number of tuberculosis cases reported from studies summarised in Figure 2A. C. Number of incident tuberculosis cases worldwide. D. Global incidence of tuberculosis per 10000 people.
cytes dysfunction and cytokine imbalance. Azfar et al. have shown that lupus patients have suppressed reactive oxygen species and tumour necrosis factor-alpha activity in human monocytes in response to mycobacterium TB.27 Previously, the risk of TB has been shown to be increased in children with JIA independent of the use of anti-TNFs.28,29 However, in this study, the risk of TB was equal to the general population for children who either received anti-TNFs, or non TNF biological agents. This in sharp contrast to numerous other reports of TB in adults, suggesting that anti-TNFs might be safer in children than reported adults. Though this could also be attributed to smaller numbers in subgroup analysis, and remains to be confirmed.

Presence of other infections can be risk factors for subsequent infections, though there is limited data from the current searches to substantiate that. One of the children who had CMV infection also had TB. In addition, primary immunodeficiencies such as X-linked agammaglobulinemia can mimic JIA and put the children at risk for infections.30,31

Causes for low TB in children in current data set
Low numbers due to studies in regions with low incidence of TB
The number of studies from the various countries along with the reported number of TB cases, are plotted on a world map (Figure 2A,B). This pictorial view of the geographic distribution of the data obtained shows the stark distinction where most of the studies are concentrated in the affluent European and North American countries. Understandably, the reports of TB (Figure 2B) available are also from these countries. It is evident that the countries with the highest burden of TB (Figure 2C) have hardly any data on the biological use in children with RDs. Our literature search has brought out the inequalities in data availability across the world, and this has resulted in the probable assumption of low risk of TB among children with RDs on bDMARDs. Although the data review here suggested limited cases of TB on biologics, closer examination of the worldwide prevalence of TB makes paucity of data to be a possibility. The data from the PharmaChild registry had 17 episodes of TB in 14 children receiving biologicals for JIA.32 All the cases were reported from children on TNF inhibitors. TB was most reported from Asian patients - 52%, followed by 37% among the European patients, and 11% in the children treated at the centres in the USA. Since the registry covered 32 countries across the globe, the data seem to point at the fact that the low incidence of TB in other studies seen in Figure 2, is due to a concentration of studies from countries which are not endemic to TB.33 Studies from areas with moderate TB burden like Turkey and Brazil did report tuberculosis (Figure 2).

Low number of TB cases as consequence of the methodologies used to collect data
Moreover, the low reporting of adverse events could be relevant to the kind of data collected. Many articles in paediatric rheumatology focus on response to therapy. Thus, data recording of infections takes a backseat. Two cases of tuberculosis were reported in a single study from Turkey, with the use of etanercept and adalimumab, which focused on collecting infection related data (Table 4). The total numbers of infections reported were also remarkably higher in this study, suggesting possible geographic influence as well as methods/intent of data collection. Both developed TB despite a negative latent TB infection (LTBI) screen. Recently, a survey was conducted amongst physicians treating children with rheumatic disorders in India, that suggested a high incidence of TB, more so while the children were on biologics than after they were stopped.34 Thus, it seems here that what we see in Turkey is just the tip of the iceberg, and the problem might be much severe in areas of TB endemicity. In the current era of biosimilars, data from post marketing surveillance records in the developed world can be mined to gain insight into TB incidence rates.35

Varied screening strategies before administering biologics
On a different note, low number of TB cases could also be due to varied TB and LTBI screening strategies before using bDMARDs. However, the recent survey from Indian rheumatologists suggests screening is universally practiced, though there is no consensus on the optimum method of screening.34 Thus, a closer look into the prevalent practices and cost-benefit ratios of the strategy used for screening might be insightful in the future. Recently, Hassanzadeh et al. established that blanket screening for TB using the TB Spot assay increased the risk of polypharmacy, adverse drug effects and increased cost manifold.36 Glasgow, an area of low TB prevalence and high BCG vaccination. Chest radiograph and clinical interview were used to identify risk factors for LTBI. The annual risk of TB was calculated using tables from BTS recommendations and then compared to the risk of drug-induced hepatitis. All patients were given a T-SPOT according to current local policy. Indeterminate T-SPOTs were recorded and repeated. Results. For 130 patients, a total of 160 tests were required resulting in a cost of £24,000. 99 (76%) A recent systematic review confirmed the lack of consensus in screening strategies for TB in the immunosuppressed in guidelines across countries.37 Thus, region-specific data needs to be gathered before implementing screening strategies in rheumatology as the risk and cost efficacy ratios might differ significantly according to TB incidence rates.37

Shorter follow-up duration in children
Moreover, studies can be marred by short follow-up
CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
1. Hiraki LT, Feldman CH, Marty FM, Winkelmaier WC, Guan H, Costenbader KH. Serious Infection Rates Among Children With Systemic Lupus Erythematosus Enrolled in Medicaid. Arthritis Care Res 2017 Nov;69(11):1650-6.
2. Muhammed H, Gupta L, Zanwar AA, Misra DP, Lawrence A, Agarwal V, et al. Infections Are Leading Cause of In-Hospital Mortality in Indian Patients with Inflammatory Myopathy. J Clin Rheumatol 2019 Dec;
3. Al-Mayouf SM, Fallatah R, Al-Tiwajery M, Alayed T, Alsonbul A. Outcome of children with systemic rheumatic diseases admitted to pediatric intensive care unit: An experience of a tertiary hospital. Int J Pediatr Adolesc Med 2019 Dec;6(4):142-5.
4. TB India Report 2018: Ministry of Health and Family Welfare [Internet]. [cited 2020 Mar 27]. Available from: https://tbcindia.gov.in/showfile.php?lid=3314
5. Gupta L, Srivastava P, Agarwal V, Aggarwal A, Able L, Misra R, et al. High incidence of Tuberculosis in SLE patients [Internet]. Conference Abstract APLAR 2015 [cited 2020 Mar 27]. Available from: https://www.researchgate.net/publication/284448018_High_incidence_of_Tuberculosis_in_SLE_patients#fullTextFile-Content
6. Gasparyan AY, Ayvazyan L, Blackmore H, Kittas GD. Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 2011 Nov 29;31(11):1409-17.
7. Moomy LN, Peterson MG, Hasselt AL, Lehman TJ. Burden of childhood-onset arthritis. Pediatr Rheumatol 2010 Dec 8;8(1):20-1.
8. Hsin Y-C, Zhuang L-Z, Yeh K-W, Chang C-W, Hwang J-T, Huang J-L. Risk of Tuberculosis in Children with Juvenile Idiopathic Arthritis: A Nationwide Population-Based Study in Taiwan. Doherty TM, editor. PLOS ONE 2015 Jun 5;10(6):e0128768.
9. Tuberculosis surveillance and monitoring in Europe 2016 [Internet]. [cited 2020 Mar 27]. Available from: http://www.euro.who.int/__data/assets/pdf_file/0019/310087/TB-surveillance-report-2016-Portugal.pdf?ua=1
10. Sartori NS, Picon P, Papke A, Nayeloff JL, da Silva Chaker RM. A population-based study of tuberculosis incidence among rheumatic disease patients under anti-TNF treatment. Abu-Shakra M, editor. PLOS One. 2019 Dec 2;14(12):e0224963.
11. Dixon WG, Hynich KL, Watson KD, Lunt M, Galloway J, Ustianowski A, et al. Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register (BSRBR). Ann Rheum Dis 2010 Mar;69(3):522-8.
12. Machuca I, Vidal E, de la Torre-Cisneros J, Rivero-Román A. Tuberculosis en pacientes inmunodeprimidos. Enfermedades Infecc Microbiol Clinica 2018 Jun;36(6):366-74.
13. Lee JY. Diagnosis and Treatment of Extrapulmonary Tuberculosis. Tuberc Respir Dis 2015;78(2):47.
14. Lao M, Chen D, Wu X, Chen H, Qiu Q, Yang X, et al. Active tuberculosis in patients with systemic lupus erythematosus from Southern China: a retrospective study. Clin Rheumatol 2019 Feb 23;38(2):535-43.
15. Danza A, Ruiz-Irastorza G. Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus 2013 Oct 4;22(12):1286-94.
16. Pehlivan Y, Kisack B, Bosnak VK, Onat AM. Rituximab seems to be a safer alternative in patients with active rheumatoid arthritis with tuberculosis. Case Rep 2013 Jan 21;bor2012006585–bor2012006585.
17. Marie I, Hachulla E, Chéron P, Hellot M-F, Hersson S, Levesque S, et al. Opportunistic infections in polymyositis and dermatomyositis. Arthritis Care Res 2005 Apr 15;53(2):155-65.
18. Aino A, Kauppi M, Kautiainen H, Hakala M, Kinnula V.
association of mycobacterial infections with polyomatosis in a
non-endemic country for tuberculosis. Ann Rheum Dis 2007 Oct
1;66(10):1404-5.
19. Chen I-J, Tsai W-P, Wu Y-JJ, Luo S-F, Ho H-H, Liu L-B, et al. Infections in polyomatosis and dermatomyositis: analysis of 192 cases. Rheumatology 2010 Dec 1;49(12):2429-37.
20. Hernández-Cruz B, Sifuentes-Osornio J, Ponce-de-León Gorduño A, Díaz-Jouanen E. Mycobacterium tuberculosis infection in patients with systemic rheumatic diseases: a case-series. Clin Exp Rheumatol 1999;17(3):289-96.
21. Gattorno M, Hofer M, Federici S, Vanoni F, Bovis F, Akceptijevič I, et al. Classification criteria for autoimmune inflammatory recurrent fevers. Ann Rheum Dis 2019 Aug;78(8):1025-32.
22. Levy R, Gérard L, Kuemmerle-Deschner J, Lachmann HU, Koné-Paut I, Cantarini L, et al. Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever Registry. Ann Rheum Dis 2015 Nov;74(11):2043-9.
23. Ozen S, Demirkaya E, Amaryan G, Koné-Paut I, Polat A, Woo P, et al. Results from a multicentre international registry of familial Mediterranean fever: impact of environment on the expression of a monogenic disease in children. Ann Rheum Dis 2014 Apr;73(4):662-7.
24. Lin PL, Pessner HL, Voitenok NN, Flynn JL. Tumor Necrosis Factor and Tuberculosis. J Investig Dermatol Symp Proc 2007 May;12(1):22-5.
25. Flynn JL, Goldstein MM, Chan J, Treibold KJ, Pfeffer K, Lowenstein C, et al. Tumor necrosis factor-α is required in the protective immune response against mycobacterium tuberculosis in mice. Immunity 1995 Jun;2(6):652-71.
26. Sia JK, Fangelaraj J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr 2019 Jul 5(4).
27. Azfar SF, Islam N. Suppression of Mycobacterium Tuberculosis Induced Reactive Oxygen Species and Tumor Necrosis Factor-Alpha Activity in Human Monocytes of Systemic LupusErythematosus Patients by Reduced Glutathione. Oman Med J 2012 Jan 16;27(1):11-9.
28. Yasui K. Immunity against Mycobacterium tuberculosis and the risk of bioactive anti-TNF-α reagents. Pediatr Rheumatol 2014 Dec 2;12(1):45.
29. Hsin Y-C, Zhuang L-Z, Yeh K-W, Chang C-W, Horng J-T, Huang J-L. Risk of Tuberculosis in Children with Juvenile Idiopathic Arthritis: A Nationwide Population-Based Study in Taiwan. Doherty TM, editor. PLOS One 2015 Jun 5;10(6):e0128768.
30. Zhu Z, Kang Y, Lin Z, Huang Y, Lv H, Li Y. X-linked agammaglobulinemia combined with juvenile idiopathic arthritis and invasive Klebsiella pneumoniae polysacritic septis arthritis. Clin Rheumatol 2015 Feb 25;34(2):397-401.
31. GARRARD P, RICHTER C, ANDERSEN AB, MADSEN HO, MTONI I, SVEJGAARD A, et al. Mannan-Binding Lectin in the Sub-Saharan HIV and Tuberculosis Epidemics. Scand J Immunol 1997 Aug 3;46(2):204-8.
32. Swart J, Giancane G, Horneff G, Magnusson B, Hofer M, Alexeeva E, et al. Pharmacovigilance in juvenile idiopathic arthritis patients treated with biologic or synthetic drugs: combined data of more than 15,000 patients from Pharmachild and national registries. Arthritis Res Ther 2014 Dec 27;16(1):285.
33. Swart J, Giancane G, Horneff G, Magnusson B, Hofer M, Alexeeva E, et al. Pharmacovigilance in juvenile idiopathic arthritis patients treated with biologic or synthetic drugs: combined data of more than 15,000 patients from Pharmachild and national registries. Arthritis Res Ther 2018 Dec 27;20(1):285.
34. Kavadiachanda C, Gupta L, Balan S. Survey on Tuberculosis in children on biologics for rheumatic illnesses. Indian J Rheumatol 2020;15(2):130-3.
35. Kolke T, Hangai M, Ishiguro N, Inokuma S, Takei S, Takeuchi T, et al. Safety and effectiveness of adalimumab in Japanese rheumatoid arthritis patients: postmarketing surveillance report of the first 3,000 patients. Mod Rheumatol 2012 Aug 13;22(4):498-508.
pathic arthritis on biologic agents: A 1-year prospective study. Clin Rheumatol 2019 Apr 17;38(4):1025-30.

53. Mourão AF, Santos MJ, Melo Gomes JA, Martins FM, Mendonça SC, Oliveira Ramos F, et al. Effectiveness and long-term retention of anti-tumour necrosis factor treatment in juvenile and adult patients with juvenile idiopathic arthritis: data from Reuma.pt. Rheumatology 2016 Apr;55(4):697-703.

54. Horneff G, Foeldvari I, Minden K, Trauzeddel R, Kümmerle-Deschner J, et al. Efficacy and Safety of Etanercept in Patients With the Enthesitis-Related Arthritis Category of Juvenile Idiopathic Arthritis: Results From a Phase III Randomized, Double-Blind Study. Arthritis Rheumatol 2015 May;67(8):2240-9.

55. Giannini EH, Ilovite NT, Lovell DJ, Wallace CA, Rabinovich CE, Reiff A, et al. Long-term safety and effectiveness of etanercept in children with selected categories of juvenile idiopathic arthritis. Arthritis Rheum 2009 Sep;60(9):2794-804.

56. Prince FHM, Twilt M, Cate R ten, van Rossum MAJ, Armbrust W, Hoppenreis EPAH, et al. Long-term follow-up on effectiveness and safety of etanercept in juvenile idiopathic arthritis: the Dutch national register. Ann Rheum Dis 2009 May;68(5):635-41.

57. Ruperto N, Lovell DJ, Quartier P, Paz E, Rubio-Pérez N, Silva CA, et al. Long-term safety and efficacy of abatacept in children with juvenile idiopathic arthritis. Arthritis Rheum 2010 Feb 26;62(2):1792-802.

58. Constantin T, Foeldvari I, Vojinovic J, Horneff G, Burgos-Vargas R, Nikishina I, et al. Two-year Efficacy and Safety of Etanercept in Pediatric Patients with Extended Oligoarthritis, Enthesitis-related Arthritis, or Psoriatic Arthritis. J Rheumatol 2016 Apr;43(4):816-24.

59. Imagawa T, Yokota S, Mori M, Miyamae T, Takei S, Imanaka H, et al. Efficacy, pharmacokinetics, and safety of adalimumab in patients with juvenile idiopathic arthritis. Mod Rheumatol 2016 Apr;26;2(2):133-41.

60. Brunelli JB, Schmidt AR, Sallum AME, Goldenstein-Schainberg et al. Experience with etanercept, tocilizumab and adalimumab in pediatric patients with juvenile idiopathic arthritis in Japan. Clin Rheumatol 2018 Mar 4;28(2):264-70.

61. Tarkianen M, Tynjälä P, Vähäsalo P, Lahdenne P. Occurrence of adverse events in patients with JIA receiving biologic agents: long-term follow-up in a real-life setting. Rheumatology 2015 Jul;54(7):1170-6.

62. Kingsbury DJ, Bader-Meunier B, Patel G, Arora V, Kalabic J, Kupper H. Safety, effectiveness, and pharmacokinetics of adalimumab in children with polyarticular juvenile idiopathic arthritis aged 2 to 4 years. Clin Rheumatol 2014 Oct 2;33(10):1433-41.

63. Imagawa T, Takei S, Umebayashi H, Yamaguchi K, Itoh Y, Kawai et al. Long-term follow-up on effectiveness and safety of etanercept in juvenile idiopathic arthritis patients with juvenile idiopathic arthritis: the Dutch registry. Arthritis Rheumatol 2015 Jun;70(6):1038-45.

64. Horneff G, Schulz AC, Klotzsche J, Hospach A, Minden K, Foeldvari I, et al. Experience with etanercept, tocilizumab and interleukin-1 inhibitors in systemic onset juvenile idiopathic arthritis patients from the BIKER registry. Arthritis Rheum Ther 2017 Dec 22;19(1):256.

65. Sevcik K, Orban I, Brodszky V, Basio A, Balogh Z, Pál G, et al. Experiences with tumour necrosis factor-inhibitors in patients with juvenile idiopathic arthritis: Hungarian data from the National Institute of Rheumatology and Physiotherapy Registry. Rheumatology 2011 Jul 1;50(7):1337-40.

66. Otten MH, Princ FH, Twilt M, van Cate R, Armbrust W, Hoppenreis EPAH, et al. Tumor Necrosis Factor-blocking Agents for Children with Enthesitis-related Arthritis — Data from the Dutch Arthritis and Biologicals in Children Register, 1999–2010. J Rheumatol 2011 Oct;38(10):2258-63.

67. Kearsley-Fleet L, Sampath S, McCann L, Ebi, H. Efficacy of adalimumab in refractory pediatric systemic lupus erythematosus nephritis: a single-center experience of Northern Greece. Rheumatol Int 2013 Mar 19;33(3):809-13.

68. Aaltonen A, Al-Sobon A, Al-Mayouf SM. Safety and efficacy of combined cyclophosphamide and rituximab treatment in recalcitrant childhood lupus. Rheumatol Int 2014 Apr 12;34(4):529-33.

69. Dale RC, Brilot F, Duffy L V, Twilt M, Waldmann AT, Narula S, et al. Utility and safety of rituximab in pediatric autoimmune and inflammatory CNS diseases. Neurology 2014 Jul 8;83(2):142-50.

70. Olaf M, Silverman ED, Levy DM. Rituximab therapy has a rapid and durable response for refractory cytophenia in childhood-onset systemic lupus erythematosus. Lupus 2015 Aug 24;24(9):966-72.

71. Reis J, Aguier F, Brito I. Anti CD20 (Rituximab) therapy in refractory pediatric rheumatic diseases. Acta Reumatol Port 2011;41(1):45-55.

72. Tambra, M, Beuleman T, Christen R, Stoll ML. Safety and Efficacy of Rituximab in Childhood-onset Systemic Lupus Erythematosus and Other Rheumatic Diseases. J Rheumatol 2015 Mar;42(3):541-6.

73. Watson L, Beresford MW, Maynes C, Pilkington C, Marks SD, Glaikin Y, et al. The indications, efficacy and adverse events of rituximab in a large cohort of patients with juvenile-onset SLE. Lupus 2015 Jan 12;24(1):10-7.

74. Hui-Yuan JS, Reddy A, Taylor J, L X, Eichenfield AH, Bermudez LM, et al. Safety and Efficacy of Belimumab to Treat Systemic Lupus Erythematosus in Academic Clinical Practices. J Rheumatol 2015 Dec;42(12):2288-95.

75. Lehmna TJ, Singh C, Ramanathan A, Alperin R, Adams A, Bannister L, et al. Prolonged improvement of childhood systemic lupus erythematosus following systematic administration of rituximab and cyclophosphamide. Pediatr Rheumatol 2014 Dec 14;12(1):3.

76. Odds C V, Reed AM, Aggarwal R, Rider LG, Ascherman DP, Levesque MC, et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: A randomized, placebo-phase trial. Arthritis Rheum 2013 Feb;65(2):314-24.

77. Elefteridou D, Dillon MJ, Tullus K, Marks SD, Pilkington CA, Roebuck DJ, et al. Systemic Polymyalgia Nodosa in the Young: A Single-Center Experience Over Thirty-Two Years. Arthritis Rheum 2013 Sep;65(9):2476-85.

78. Elefteridou D, Varner G, Dolezalova P, McMahon A-M, Al-Obaidi M, Brogan PA. Takayasu arteritis in childhood: retrospective experience from a tertiary referral centre in the United Kingdom. Arthritis Res Ther 2015 Dec 25;17(1):36.
86. Aeschlimann FA, Eng SWM, Sheikh S, Laxer RM, Hebert D, Noone D, et al. Childhood Takayasu arteritis: disease course and response to therapy. Arthritis Res Ther 2017 Dec 22;19(1):255.

87. Sahin S, Hopurcuoglu D, Bektas S, Belhan E, Adrovic A, Barut K, et al. Childhood-onset Takayasu arteritis: A 15-year experience from a tertiary referral center. J Rheum Dis 2019 Jan;22(1):132-9.

88. Poddighe D, Mukusheva Z, Dauvey K, Assybeikova M. Adalimumab in the treatment of pediatric Behcet’s disease: case-based review. Rheumatol Int 2019 Jun 11;39(6):1107-12.

89. Markomichelakis NN, Aissopoulou EK, Maslos S, Tugal-Tutkan I, Sifakis PP. Biologic Treatment Options for Retinal Neovascularization in Behcet’s Disease. Ocul Immunol Inflamm 2019 Jan 2;27(1):51-7.

90. Acar M, Sütçü M, Aktürk H, Hançeri-Torun S, Erol OB, Salman N, et al. Tuberculosis screening in pediatric patients receiving tnf-alpha inhibitor therapy. Turk J Pediatr 2017;59(5):503.

91. Suwannamalai P, Authavekiat P, Udomsuppayakul U, Jaravitayanutj S. The infectious profiles of anti-tumor necrosis factor agents in a Thai population: a retrospective study at the university-based hospital. J Int Rheum Dis 2009 Jul;12(2):118-24.

92. Stoll ML, Grubbs JA, Beukelman T, Mannion ML, Jester TW, Cron RQ, et al. Risk of tuberculosis among Alabama children and adolescents treated with tumor necrosis factor inhibitors: a retrospective study. Pediatr Rheumatol 2017 Dec 9;15(1):79.

93. Calzada-Hernández J, Anton-López J, Bou-Torrent R, Iglesias-Jiménez E, Ricart-Campos S, Martín de Carpi J, et al. Tuberculosis in pediatric patients treated with anti-TNFα drugs: a cohort study. Pediatr Rheumatol 2015 Dec 3;13(1):54.

94. Galeotti C, Meinzer U, Quartier P, Rossi-Semerrano L, Bader-Meunier B, Pillet P, et al. Efficacy of interleukin-1-targeting drugs in mevalonate kinase deficiency. Rheumatology 2012 Oct 1;51(10):1855-9.

95. Neven B, Marvillet I, Terrada C, Ferster A, Boodaert N, Coulouignier V, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 2010 Jan;62(1):258-67.

96. Lepore L, Paloni G, Caorsi R, Alessio M, Rigante D, Ruperto N, et al. Follow-Up and Quality of Life of Patients with Cryopyrin-Associated Periodic Syndromes Treated with Anakinra. J Pediatr. 2010 Aug;157(2):310-15.e1.

97. Arostegui JI, Anton J, Calvo I, Robles A, Iglesias E, López-Montesinos B, et al. Open-Label, Phase II Study to Assess the Efficacy and Safety of Canakinumab Treatment in Active Hyperimmunoglobulinemia D With Periodic Fever Syndrome. Arthritis Rheumatol. 2017 Aug;69(8):1679-88.

98. Hawkins PN, Lachmann HJ, Aganna E, McDermott MF. Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum 2004 Feb;50(2):607-12.

99. De Benedetti F, Gattorno M, Antón J, Ben-Chetrit E, Frenkel J, Hoffman HM, et al. Canakinumab for the Treatment of Autoinflammatory Recurrent Fever Syndromes. N Engl J Med 2018 May 17;378(20):1908-19.

100. Kuenen-Meuleman JB, Hachulla E, Kartwright R, Hawkins PN, Tran TA, Bader-Meunier B, et al. Two-year results from an open-label, multicentre, phase III study evaluating the safety and efficacy of canakinumab in patients with cryopyrin-associated periodic syndrome across different severity phenotypes. Ann Rheum Dis 2011 Dec 1;70(12):2065-102.

101. Kuenen-Meuleman JB, Tyrell PN, Koetter I, Wittkowski H, Bialkowski A, Tzaribachev N, et al. Efficacy and safety of anakinra therapy in pediatric and adult patients with the autoinflammatory Muckle-Wells syndrome. Arthritis Rheum 2011 Mar;63(3):840-9.

102. Sibley CH, Plass N, Snow J, Wiggs EA, Brewer CC, King KA, et al. Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: A cohort study to determine three- and five-year outcomes. Arthritis Rheum 2012 Jul;64(7):2375-86.
SUPPLEMENTARY TABLES

Details of Selection of articles

Screening by title

The Scopus searches were imported into Zotero, and articles were first screened by title by one author, and those without relevance, systematic reviews, meta-analysis, narratives, and in languages other than English were removed (Figure 1).

Screening by abstract

The list of articles remaining after the initial screen was passed on to another author, to screen the individual abstracts for relevance, type of study and study population (children or adults). During the article screening, the initial rounds of elimination by screening titles and abstracts was done by one author each and subsequent rounds by two different authors.

Screening by reading full-text

The full text of articles obtained after two rounds of exclusions was then accessed. Those deemed irrelevant at this stage or where full-text was not available on the internet were then excluded. Similar screening strategy as delineated above was followed. The approach was mostly inclusive. Randomised placebo-controlled studies or any other controlled trials, retrospective case series, published data from registries, correspondence with data from more than 3 patients were included for data synthesis. Case reports, systematic reviews and metanalysis were excluded. Predesigned data extraction form (DEF), Table 1 was used to record data from the articles obtained after the above three stages of screening. The DEF was devised by two rheumatologists individually who then discussed and merged the variables suggested by each. Differences were resolved by consensus between two rheumatologists. DOI numbers, year and author names were recorded to avoid duplication of studies. TB was defined as in the individual studies.

Further, the number of studies from the various countries was tabulated and the number of participants, as well as TB cases, reported recorded for each. These were plotted on a world map (Figures 1A,B) to get a pictorial view of the geographic distribution of the data obtained. Multicentre studies were excluded from the above figure as attributions to individual countries were not possible. Tables 1, 2 and 3 summarise data on tuberculosis in different paediatric rheumatic diseases, while Table 4 summarises data obtained from various registries. Furthermore, the quality of evidence of each study was recorded and summarised as a Table 2, disease wise, to understand the weightage that can be accorded to each of these.
Table 1. Data of tuberculosis in retrospective studies of patients with Juvenile arthritis on biologics.

Retrospective	Country	Year	Author	Tuberculosis-No of patients	Type of article/ paper
	Italy	2012	Bracaglia42	0	Retrospective analysis of a cohort
	Taiwan	2015	Hsin29	1	Nested case control analysis of Taiwan National Health Insurance Research Database
	Italy	2017	Favalli43	0	Data extracted from local registry looking at the causes for anti TNF withdrawal
	Turkey	2010	Ayaz44	0	Retrospective chart review
	Canada	2015	Hugle45 with a median follow-up period of 7.2 years. Prospective data was collected according to a standardized protocol. Outcomes examined were TEC, TAJC, markers of inflammation (ESR, CRP)		

Type of JIA	N=25	N=111	N=360	N=36	N=16
PA-RF+	3(12)	NA	31	6(16.7)	0
PA-RF -	1(4)	NA	75	0	0
OA	3(12)	NA	101	0	0
OA Extended	9(36)	NA	70	3(8.3)	0
ERA	0	NA	26	12 (33.3)	16
SJIA	8(32)	NA	48	14 (38.9)	0
PsA	1(4)	NA	9	1(2.8)	0
Undiff	0	NA	0	0	0

| Duration of follow-up (Median) | 10 months (2-41) | 3.49 ± 1.79 years (Mean) | 10 years | 36 months (range 4-216 months) | 7.2 years (4.5 – 12.1) 117.1 patient-years |
| N total whose complete data is available | 25 | 111 | 354 | 36 | 16 |

| Drug | ETN 25 | Anti TNF (Mainly ETN)-111 | IFX-89 ETN- 205 ADA-66 | ETN-36 | IFX, ADA and ETN combinations-16 IFX alone 8 ETN alone 5 ETN followed by ADA 1 IFX followed by ADA 1 IFX followed by ETN, then by ADA 1 |
| | | | | | |

Biologic Doses received	ETN0.8–1 mg/kg once weekly	Anti TNF (No data on individual drugs)	NA	NA	NA

| Duration of biologic treatment | 23 months (mean) | Max 6 years | NA | 11.5 months (3-48 months) | NA |
| Concomitant drugs | M TX 24 (96%) CYS 3 (1.6%) | M TX (number NA) | NA | NA | NA |

| Steroids | 10 952.6% | NA | NA | NA | NA |

continues on next page
Table 1. Data of tuberculosis in retrospective studies of patients with Juvenile arthritis on biologics. (continued)

Country	Year	Author	Type of article/paper
Brazil	2012	Bracaglia42	Retrospective analysis of a cohort
Turkey	2015	Hsin29	Retrospective chart review
Italy	2017	Favalli43	Retrospective Multicentre Italian Paediatric Rheumatology Study Group led chart-based review
Turkey	2010	Ayaz44	Retrospective chart review
Canada	2015	Hugle45	Research letter
Brazil	2017	Saini50	Retrospective chart review
Turkey	2016	B A Atikan51	Retrospective chart review of patients who were given biologicals and had received BCG vaccines
Poland	2011	Brunelli46	Retrospective chart review
Italy	2011	Kilic47	Retrospective chart review
Taiwan	2016	Żuber48	Retrospective chart review
Turkey	2016	Verazza49	Retrospective chart review
India	2016	Saini50	Retrospective chart review
Turkey	2016	B A Atikan51	Retrospective chart review

Data extracted from local registry looking at the causes for anti TNF withdrawal	Type of JIA	No of patients
Polish registry data collected between January 2003 and March 2010	PA-RF+	3 (12)
Retrospective Multicentre Italian Paediatric Rheumatology Study Group led chart-based review	PA-RF-	1 (4)
Retrospective chart review	OA	3 (12)
Retrospective chart review	OA Extended	9 (36)
Retrospective chart review	ERA	0
Retrospective chart review	SJIA	8 (32)
Retrospective chart review	PsA	1 (4)
Retrospective chart review	Undiff	0

Duration of follow-up (Median)	N total whose complete data is available
10 months (2-41)	25
3.49 ± 1.79 years (Mean)	111
10 years	354
36 months (range 4-216 months)	36
7.2 years (4.5 – 12.1)	16
117.1 patient-years	69
2.9 years(0.3–24.6)	132
Mean ±SD	132
5.86 ± 3.77 years	188
Range- 2–183 months	1038

Drug	Biologic Doses received	Duration of biologic treatment
ETN	ETN0.8–1 mg/kg once weekly	23 months (mean) Max 8 years
ADA	ETN-35 ETN switched to ADA	NA
IFX	ADA-21	NA
ABA	ETN-115 ETN-188	NA
ETN	ETN-1038 ETN-5	NA
IFX	TZZ-5 ABA-1 (switched from TCZ)	NA
ADA	ETN-115 IFX-17	NA
ADA	ADA-21 CANA-5 TZZ-4	NA
ETN	IFX + ETN + ADA	NA
ADA	ETN + ADA	NA
IFX	ETN + ADA	NA
ADA	ETN	NA
IFX	IFX	NA
ADA	ETN	NA
IFX	ADA	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	ETN	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
ADA	ADA	NA
IFX	IFX	NA
Table 2. Data of tuberculosis in prospective studies of patients with juvenile arthritis on biologics.

Prospective	Country	Year	Author	Tuberculosis-No of patients	Type of article/paper	Type of JIA	Duration of JIA before biologics (Median, IQR)	Duration of follow-up (Median)
						N =307	13.7 (10.1) years	12 months
						N=227	2.4 ± (2.1) years	At least 12 months
						N=41	4.0 ±41.7 ETN+MTX	48 weeks
						N=397	2.5 years per patient, (range 0.3 to 7.3 years)	
						N=146	589 days	
						N=186	96-weeks	
						N=127	47 weeks* all except 2	
						N=19	4.7 yrs (1-17)	

continues on next page
Table 2. Data of tuberculosis in prospective studies of patients with juvenile arthritis on biologics. (continued)

Country	Multicentre	Multicentre	Germany	Multicentre – North America, South America and Europe										
Brazil	Finland	USA and EU	Japan	Multicentre										
2017	2015	2014	2012	2008	2008	2015								
Brunelli52	Maart Tankainen56	Mourão53	Horneff54	Giannini55	Prince56	Ruperto57	Constantin58	Imagawa59	Brunelli60	Maarit Tarkiainen61	Kingsbury62	Imagawa63	Lovell64	Lovell65
1- With TCZ	0	1 case of MAC with ADA	0	0	0	0	0	1 Lung infiltrate with negative sputum AFB						
Longitudinal data of patients with JIA receiving at least 8 weeks of biological agent documented between August 2004 to March 2016														

N=107	N=348	N=32	N=25	N=58	n=171	N=20	N=117
52(48.6%)	16 (4.6%)	1(3.1)	17(68)	5	40(23.4)	0	117
175(50.3%)	20(62.5)	8(32)	0	131(76.6)	0	0	
19(17.8%)	30 (8.8%)	0	0	34	0	0	0
65 (18.7%)	8(25)	0	0	0	0	0	
7 (6.5%)	22 (6.3%)	0	0	0	0	0	20
28 (26.2)	19 (5.5%)	2(6.3)	0	19	0	0	0
10.9	0	0	0	0	0	0	0
0	1(0.3%)	1(3.1)	0	0	0	0	0
Median 4.8 years (0.1–21)	NA	12.3 (9.3) mean months	4.7 (3.72) mean years	8 years	4.0±3.7 3.6±4.0 Years in ADA+MTX and ADA arms	2.4 ± (2.1) years	NA
median 3.0 years (0.15–11.5)	50.5 months (range 1.015-4.7)	Max-120 weeks	80 weeks	58	48 weeks	48 weeks	52 weeks

continues on next page
Table 2. Data of tuberculosis in prospective studies of patients with juvenile arthritis on biologics. (continued)

Prospective Exposure in patient years	NA	706.92 patient-years	35.6 patient years	NA	436.1 patient years	NA	NA	NA
N total whose complete data is available	307	227	38	397	146	153	109	17
Drug	ETN 189 ADA 80 ANK 22 CAN 12 IFX 11 TCZ 13	ETN 157 ADA 29 ABA 8 TCZ 2 ANK 11 IFX 19 RTX 1	ETN 41 ETN-397 ETX only 103 ETN+ MTX -294	ETN-146 ABA-186	ETN-127 TCZ-19			
Biologic Doses received	NA	NA	ETN treatment (0.8 mg/kg BW, maximum dose 50 mg/week)	ETN 0.8 mg/kg/week, maximum dose 50 mg	0.8 mg/kg once weekly	10mg/kg ABA q4W	ETN 0.8 mg/kg once weekly (QW; max dose, 50 mg) for up to 96 weeks	8 mg/kg TCZ every 4 weeks.
Duration of biologic treatment	42.11 ± 35.78 months (range 2-380 months)	4.5 (3.1) Years	48 weeks	NA	1.7 years (range 0.1 to 6.8 years)	NA	96 weeks	48 weeks
Concomitant drugs	NA	MTX-170 patients SSZ 16	SSZ was allowed	MTX 294 Dose-12.6 ±5.3 (ETN) 16.9±5.9(MTX+ETN)	MTX-113 (77)	MTX in 74% 57 (30%) Prior biologics	NA	MTX 100%
Steroids (%)	NA	NA	No	NA	90 (62)	NA	NA	NA
Other	NA							

continues on next page
Table 2. Data of tuberculosis in prospective studies of patients with juvenile arthritis on biologics. (continued)

Propective Exposure in patient years	45.1 PY	NA	NA	NA	29.9 patient year	NA			
ETN	348	26	25	9	128	19			
ADA	ETN 213	ADA31	ADAG4	RTX9	ADA25	ETN58	ADA171	ETN 20	IFX-117
ADA	NA	24 mg/m2 (maximum = 20 mg/dose) every other week up to 120 weeks	20 mg for patients weighing <30 kg, and 40 mg for patients weighing ≥30 kg eow	ETN 0.8 mg/kg/week	fixed dose based on body weight (20 mg for patients weighing <30 kg, and 40 mg for patients weighing ≥30 kg) eow	NA	6mg/kg and 3mg/kg standard protocol		
ADA	NA	515 (245) days	24 weeks	318 PY	48 weeks	48 weeks	52 weeks and 38 weeks		
ADA	NA	MTX 27 (84.4)	MTX-20(80)	MTX-85(49.7)	NA				
ADA	NA	20(62.5)	NA	22 (38%)	NA	NA	NA		
ADA	NA	NA	NA	NA	NA	NA	NA		
Table 3. Data from studies on cohorts/registries of children with Juvenile arthritis on biologics.

Country	Germany	UK	Multicenter member centres 32 countries	Germany
Year	2019	2011	2018	2014
Author	A Klein67	Southwood68	J Swart69	Schmeling66
Registry Name	BIKER	Biologics and New Drugs Registry (BNDR)	PharmaChild	German Biologics JIA Registry
Tuberculosis- No of patients	0	0	24 over all 14 on biologics Total 17 Tb in 14 patients on biologics	0
Type of article/ paper	long-term data from the German BIKER registry	Prospectively collected Data	Combined data form PharmaChild registry along with German and Swedish registries	The registry is a longitudinal multicentre observational study that has been maintained since 2000
Biological agent	ADA 584	ETN-483	ETN-3800 ADA- 1778 IFX- 705 CER- 33 GOL- 161 TCZ-633 ABA- 420 RTX 103 ANK- 339 CAN- 145	ADA-289
Rheumatological condition	JIA N=584	JIA N=483	JIA N= 8274	JIA N=289
PA-RF+	34 (5.6)	48 (8)	322 (3.9)	17 (6.2)
PA-RF -	203 (34.7)	157 (33)	2183 (26.4)	101 (34.9)
OA	42	11 (2)	2011 (24.5)	28 (9.6)
OA Extended	0	79 (16)	1060 (12.8)	68 (23.5)
ERA	98	38 (8)	924 (11.2)	39 (13.5)
SJIA	0	77 (16)	911 (11)	8 (2.7)
PsA	49	30 (6)	285 (3.4)	14 (4.8)
Undiff	11	36 (7)	578 (7.0)	14 (4.8)
Unclassified	0	7 (1)	0	0
Duration of follow-up (Median)	NA	NA	NA	NA
Follow-up in patient years	1082 patient-years (PY)	941 patient-years of follow-up	435.7 patient-years	
N total whose complete data is available	584	483	5173	289

continues on next page
Country	Germany	Hungary	The Netherlands	UK
Year	2017	2011	2011	2019
Author	Hornoff56	Sevcic57	Otten57	Fleet58
Registry Name	BIKER	National Institute of Rheumatology and Physiotherapy Registry; Hungary	Dutch Arthritis and Biologics in Children Register	Biologics for Children with Rheumatic Diseases (BCRD) study
No of patients	0	0	24 over all	14 on biologics
Total No of patients	0	0	14 patients on biologicals	17 Tb in 14 patients on biologicals
Type of article/paper	long-term data from the German BIKER registry	Prospectively collected Data Combined data form PharmaChild registry along with German and Swedish registries	The registry is a longitudinal multicentre observational study that has been maintained since 2000	Cohort of children receiving Tumour Necrosis Factor-blocking Agents for in JIA-ERA —collected between 1999-2010
Biological agent	ADA- 1778	ETN-483	ETN-3600	ADA-289
Rheumatological condition	JIA N=584	JIA N=483	JIA N=8274	JIA N=289
PA-RF+	34 (5.8)	48 (9)	322 (3.9)	17 (6.2)
PA-RF -	203 (34.7)	157 (33)	2183 (26.4)	101 (34.9)
OA	42 11 (2)	2011 (24.3)	28 (9.6)	0
OA Extended	0 79 (16)	1060 (12.8)	68 (23.5)	0
ERA	98 38 (8)	924 (11.2)	39 (13.5)	0
SJIA	0 77 (16)	911 (11)	8 (2.7)	245
PsA	49 30 (6)	285 (3.4)	14 (4.8)	0
Undiff	11 36 (7)	578 (7.0)	14 (4.8)	0
Unclassified	0 7 (1)	0 0	0 0	0
Duration of follow-up (Median)	NA	NA	NA	177 days (IQR 109–398)
Follow-up in patient years	1082 patient-years (PY)	941 patient-years of follow-up	435.7 patient-years	38.7 patient years
N total whose complete data is available	584	483	5173	245

Table 3. Data from studies on cohorts/registries of children with Juvenile arthritis on biologics. *(continued)*
Table 3. Data from studies on cohorts/registries of children with Juvenile arthritis on biologics. (continued)

Treatment duration and drugs	15.1 ± 12.8 months ADA	15.2 ± 13.3 months ADA+ MTX	ETN- 719 (300–1338) days ADA- 442 (174–927) days IFX- 425 (160–951) days TCZ-351 (126–742) days ABA- 342 (156–715) days ANK- 299 (94–837) days GOL- 270 (106–623) days CAN-351 (133–1032) days RTX-42 (24–87) days CER-166 (106–309) days	1.2 years (IQR 0.56–1.88) in Biologics naïve groups and 1.13 years (IQR 0.61–1.94) in previous biologic usage group
Concomitant drugs	MTX in 356 patients	NA	NA	MTX- 171 (59.2) LEF-13 (4.5) SSZ- 6 (2.1)
Steroids	NA	NA	NA	102 (35.3)

Continues on next page
Table 3. Data from studies on cohorts/registries of children with Juvenile arthritis on biologics. (continued)

Drug/disease	JIA	Lupus	Myositis	Autoinflammatory syndromes	Vasculitis
Infliximab	783(A)	547(B)	0	0	10(C)9(B)
Adalimumab	2925 (A)	489(B)	0	0	1(B)11(C)
Etanercept	6974 (A)	2019(B)	0	0	1(C)
Certolizumab	70 (A)0(B)	0	0	0	
Golimumab	385 (A)3(B)	0	0	0	
Rituximab	210 (A)51(B)	75(B)	48(E)185(C)	3(C)	
Belimumab	90(A)0(B)	39(B)	0	0	
Anakinra	810 (A)63(B)	0	0	29(A)27(B)1(D)	0
Canakinumab	241 (A)	0	0	4(A)109(E)	0
Tocilizumab	998 (A)	0	0	2(B)9(C)	
Abatacept	521 (A)	0	0	0	
Combination of anti TNFs	3(A)	0	0	0	

*Drug/disease column:**
- JIA: Juvenile idiopathic arthritis
- Lupus: Systemic lupus erythematosus
- Myositis: Inflammatory myopathy
- Autoinflammatory syndromes: Autoinflammatory diseases
- Vasculitis: Vascular disease

A: Registry data; B: Cohort; C: Case series; D: Anecdotal reports; E: Trials.

Table 4. Summary of available data that could be analysed for tuberculosis incidence in paediatric rheumatology with various biologics.

Drug/disease	JIA	Lupus	Myositis	Autoinflammatory syndromes	Vasculitis
Infliximab	783(A)	547(B)	0	0	10(C)9(B)
Adalimumab	2925 (A)	489(B)	0	0	1(B)11(C)
Etanercept	6974 (A)	2019(B)	0	0	1(C)
Certolizumab	70 (A)0(B)	0	0	0	
Golimumab	385 (A)3(B)	0	0	0	
Rituximab	210 (A)51(B)	75(B)	48(E)185(C)	3(C)	
Belimumab	90(A)0(B)	39(B)	0	0	
Anakinra	810 (A)63(B)	0	0	29(A)27(B)1(D)	0
Canakinumab	241 (A)	0	0	4(A)109(E)	0
Tocilizumab	998 (A)	0	0	2(B)9(C)	
Abatacept	521 (A)	0	0	0	
Combination of anti TNFs	3(A)	0	0	0	
Supplementary Table 1. Data of tuberculosis in paediatric lupus and myositis on biologics.

Drug	RTX	RTX	RTX+CYC	RTX	RTX
Country	Greece	Greece	Saudi-Arabia	Australia, Canada	Canada
Year	2011	2011	2013	2014	2015
Author	Maria Trachana\(^7\)	Maria Trachana\(^7\)	Ashwaq\(^7\)	Dale\(^7\)	MOfat\(^7\)

Tuberculosis- No of patients	0	0	0	0	0
Type of article/ paper	Case series				
N with complete data	4	4	16	18	24
Disease classification	SLE-LN	SLE-LN	SLE	NPSLE	Hematologic SLE
Duration of follow-up (Median, IQR, years)	1.33	1.33	3.2	2.5	3.6 (1.9–5.7)
Total no of infection events	0	0	2	NA	1
Major/ serious Infections- Number of events	0	0	2	NA	1
Opportunistic infections	0	0	NA	NA	NA
Minor Infections- Number of events	0	0	NA	NA	NA
Death	0	0	0	0	0
Biologic Doses received	375/m\(^2\), 4 doses	375/m\(^2\), 4 doses	375mg/m\(^2\), 2 doses	NA	375/m\(^2\), 4 doses
Duration of biologic treatment	One cycle	One cycle	One cycle for 12, 2 cycle for 2, 4 cycles for 2. Each 6 months apart	NA	NA
Concomitant drugs	MMF (all)	MMF (all)	CYC, HCQ	NA	MMF (5), CYC (1)
Steroids	Yes (all)	Yes (all)	NA	Yes (all)	Yes, in 17

continues on next page
Supplementary Table 1. Data of tuberculosis in paediatric lupus and myositis on biologics. (continued)

Propective	Retrospective		
Drug	**Country**	**Year**	**Author**
RTX	USA	2011	Maria Tracha
RTX	UK	2011	Maria Tracha
RTX	USA	2013	Ashwaq
Belimumab	USA	2014	Dale
RTX	USA	2015	Olfat
RTX	Multicenter		Reis

- RTX: Rituximab; CYC: Cyclophosphamide; USA: United States of America; UK: United Kingdom; SLE: Systemic lupus erythematosus; NPSLE: neuropsychiatric systemic lupus erythematosus; JIA: Juvenile idiopathic arthritis; LN: Lupus nephritis; AIRD: Autoimmune inflammatory rheumatic diseases; IQR: Interquartile range; NA: Not available; CMV: Cytomegalovirus; ILD: Interstitial lung diseases; MMF: Mycophenolate mofetil; HCQ: hydroxychloroquine; AZA: Azathioprine; JDM: Juvenile dermatomyositis; BSA: Body surface area. *cannot differentiate between data from adult and juvenile DM
Supplementary Table 2. Data of tuberculosis in paediatric vasculitis on biologics.

Retrospective	IFX 5	IFX 3	IFX 9	TCZ 6	ADA-9	IFX 1
Drug	ETN 1	ADA 2	ADA 1	TCZ 2		
Country	UK	Canada	Turkey	Kazakhstan	Turkey	
Year	2013	2015	2017	2018	2019	2017
Author	Despina Eleftheriou81	Despina Eleftheriou82	Florence A. Aeschlimann83	SezginSahin84	Dimitri Poddighe85	Nikos N. Markomichelakis86
Tuberculosis- No of patients	0	0	0	0	0	0
Type of article/ paper	Retrospective	Prospective				
Disease	Polyarteritis nodosa	Takayasu arteritis	Takayasu arteritis	Takayasu arteritis	Bechet’s Disease	Bechet’s Disease
Duration of follow-up (Median, years)	3 (2.1-5)	NA	2.1 (IQR1.2–5.5)	NA	0.25-2	1
Total no of infection events	NA	NA	0	NA	NA	NA
Major/ serious Infections- No of events	NA	NA	0	NA	NA	NA
Opportunistic infections	NA	NA	NA	NA	NA	NA
Minor Infections- No of events	NA	NA	NA	NA	NA	NA
Tuberculosis- No of patients	NA	NA	0	NA	0	0
Duration of biologic treatment (months)	NA	NA	Variable, 3-20	NA	3-24	3-24
Concomitant drugs	NA	NA	MTX (3), AZA (1)	NA	MMF (1), AZA (1)	AZA
Steroids	Yes, all	Yes, in 3	NA	NA	Yes	

IFX: Infliximab; ETN: Etanercept; RTX: Rituximab; ADA: Adalimumab; TCZ: Tocilizumab; UK: United Kingdom; USA: United States of America; IQR: Interquartile range; NA: Not available.
Supplementary Table 3. Data from paediatric biologic registries.

Country	Turkey	Thailand	Alabama, USA	Spain		
Year	2017	2009	2017	2015		
Author	Acar87	SuwanNAlai88	Stoll M89	Hernández90		
Tuberculosis- No of patients	1 (JIA) on ADA	0	1 (IBD) on ADA	0		
Type of article/ paper	Retrospective analysis	Retrospective analysis of data from single centre	Retrospective analysis	Cohort observational study		
Total number	N=73	N=5	N=1033	n=214		
Type of AIRD						
JIA	16 (21.9)	3	613	163 (73.6)		
SLE	0	0	13	0		
Vasculitis (Including BD)	3 (4.1)	0	5	0		
SSc/MCTD	0	0	0	0		
Sarcoidosis	3 (4.1)	0	17	0		
IIM	0	1	3	0		
PSS	0	0	7	0		
Uveitis	39 (53.4)	0	31	8 (3.7)		
IBD	8 (11)	0	265	46 (20.8)		
Autoinflammatory	0	1	11	3 (1.5)		
Others	4 (5.5)	0	35	0		
Duration of follow-up (Median)	18 (6-60) months	NA	1564 person-years	641 patients-year, Median- IQR 2.3 years (1.4-4.3)		
N total whose complete data is available	73	5	1033	214		
Total no of infection events	NA	NA	NA	NA		
Major/ serious Infections- No of events	NA	NA	NA	NA		
Opportunistic infections	NA	NA	NA	NA		
Minor Infections- No of events	NA	NA	NA	NA		
Drug	ADA-39	ETN-22	IFX-527 ADA-469 ETN-324 CER-9 GOL-6	ETN-51.7% ADA (51.0 %) IFX-17.3%		
Biologic Doses received	NA	NA	NA	NA		
Duration of biologic treatment	NA	NA	IFX- 840.6 ADA- 495.3 ETN-194.6 CER-2.0 GOL-1.5 Patient years	ETN 1.9 [1.8-3.7]; ADA 1.8 [1.2-2.6]; and IFX 2.1 [1.4-3.3] patient years		
Concomitant drugs	MTX-37 (50.7)	CYS-13 (17.8)	AZA-9 (12.3)	NA	NA	NA
Steroids	45 (61.6)	NA	NA	NA		
Other	NA	NA	NA	NA		
Supplementary Table 4. Prevalence of tuberculosis in paediatric autoinflammatory diseases.

Retrospective	Prospective
Country	
France	France
Italy	USA
Year	
2012	2009
2010	2017
Author	
Galeotti91	Neven92
Lepore93	Arostegui94
Tuberculosis- No of patients	0
Type of article/ paper	E-mail survey among the members of the French Paediatric Society for Paediatric Rheumatology (SOFRMIP) - Registry based
Disease classification	MKD n=6
NOMID/CINCA n=8	
CINCA/MWS-n=17	
HIDS n=6	
Duration of follow-up (Median, IQR, years)	11-21 months
26–42 months	
37.5 months (range, 12 to 54 months)	
Max-24 months	
Total no of infection events	2
0	
NA	
NA	
Major/ serious Infections- Number of events	1
0	
NA	
NA	
Opportunistic infections	0
0	
0	
0	
Minor Infections- Number of events	1
0	
NA	
NA	
Death	0
0	
0	
Drug	CAN-4
ANK- 4	
ANK-8	
ANK-17	
CAN-6	
Biologic Doses received	ANK-1 to 5 mg/kg/day
CAN-2 to 7 mg/kg every 8 weeks	
ANK-3-10 mg/kd/day	
ANK-starting dosage of 1 mg/ kg/d (maximum, 100 mg)	
300 mg (or 4 mg/ kg for patients weighing<40 kg)	
Duration of biologic treatment	15 (4–72) months
26-42 months	
NA	
NA	
Concomitant drugs	NA
Steroids	1
NA	
NA	
NA	
NA	

MKD: Mevalonate kinase deficiency; NOMID: Neonatal-onset multisystem inflammatory disease; CINCA: Chronic infantile neurologic, cutaneous, articular syndrome; MWS: Muckle-Wells Syndrome; crFMF: Colchicine resistant familial Mediterranean fever; TRAPS: Tumor necrosis factor associated periodic fever syndrome; RTX: Rituxinab; CYC: Cyclophosphamide; USA: United States of America; UK: United Kingdom; SLE: Systemic lupus erythematosus; NPSLE: neuropsychiatric systemic lupus erythematosus; JIA: Juvenile idiopathic arthritis;
Supplementary Table 4. Prevalence of tuberculosis in paediatric autoinflammatory diseases. (continued)

Country	Multicenter Canada, USA, Germany, Ireland, Spain, Turkey, Switzerland, Russia, Japan	Multicenter Germany USA	2004	2011	2011	2012
Hawkins⁵⁶	Benedetti⁵⁶	Kuemmerle-Deschner⁵⁶	Kuemmerle-Deschner⁵⁶	Sibley⁵⁶		
Prospective follow-up	Randomised controlled trial followed by an open label follow-up	open-label, phase III study conducted at 33 centres	Single centre observational study	Cohort-5 year follow-up		
1	53	46	5	20		
MWS-n=1	crFMF-n=14	MKD-n=28	TRAPS-n=14	FCAS-5	MWS-5	NOMID-22
3 months	16 weeks	290 days (29–625 days)	11 months (range 5–14 months)	Max-5 years	148.1 patient-year	
0	NA	NA	5	NA		
0	8 cr-FM-3/100 PY	MKD-7/100 PY	TRAPS-0/100 PY	NA	0	3
0	0	0	0	0		
0	NA	NA	5	NA		
0	0	0	0	0		

ANK-1

- CAN-56
- CAN-47
- ANK-5
- ANK-22

ANK-100 mg once daily

- CAN-150 mg, or 2 mg per kilogram of body weight for patients weighing ≤40 kg every week
- 150 mg or 2 mg/kg (≤40 kg) every 8 weeks for up to 2 years
- 1–2 mg/kg in patients weighing <40 kg and 100 mg for patients weighing >40 kg started at 1 mg/kg by daily subcutaneous injection. Stepwise dose increases of 0.5–1 mg/kg per injection were made as frequently as every 2 weeks to achieve laboratory and organ inflammation remission
- Exposure in PY crFMF: 45.6 MKD: 51.0 TRAPS-39.2

3 months

- 290 days (29–625 days)
- At least 2 weeks
- 60 months

NA, Colchicine (100%)

LN: Lupus nephritis; **AIIRD:** Autoimmune inflammatory rheumatic diseases; **IQR:** Interquartile range; **NA:** Not available; **CMV:** Cytomegalovirus; **ILD:** Interstitial lung diseases; **MMF:** Mycophenolate mofetil; **HCQ:** Hydroxychloroquine; **AZA:** Azathioprine.