Терапевтичне опромінення хворих онкогінекологічного профілю та можливість прогнозу променевих ускладнень

Іванкова В. С., Михайлєнко В. М., Дьоміна Е. А., Хруленко Т. В., Барановська Л. М., Грінченко О. О.,

1 Національний інститут раку Міністерства охорони здоров’я України, Київ, Україна;
2 Інститут експериментальної патології, онкології і радіобіології ім. Р. С. Кавецького Національної академії наук України, Київ, Україна

Для цитування: крові, апоптичні клітини лівості, лімфоцити периферичної

doi.org/10.46879/ukroj.2.2021.34-51

Терапевтичне опромінення хворих онкогінекологічного профілю

Ключові слова:
вторинний рак вагіни, високоенергетична HDR брахітерапія, джерела високої потужності дози 192Ir та 60Co, біомаркери радіочутливості, лімфоцити периферичної крові, апоптичні клітини

Для цитування: Іванкова В. С., Михайлєнко В. М., Дьоміна Е. А., Хруленко Т. В., Барановська Л. М., Грінченко О. О.

1 Національний інститут раку Міністерства охорони здоров’я України, Київ, Україна;
2 Інститут експериментальної патології, онкології і радіобіології ім. Р. С. Кавецького Національної академії наук України, Київ, Україна

Для кореспонденцій:
Іванкова Валентина Степанівна
Національний інститут раку Міністерства охорони здоров’я України; вул. Ломоносова, буд. 33/43, м. Київ, Україна, 03022; e-mail: valentina_ivankova@ukr.net

РЕЗЮМЕ
Актуальність. На сьогодні використання променевої терапії (ПТ) в лікуванні як первинного, так і вторинного раку вагіни (ВРВ) займає пріоритетне місце в арсеналі спеціалізованих методів лікування онкологічних хворих. Вторинні пухлини вагіни частіше виникають при раку шийки матки (РШМ), де 6 – 33% хворих та у 8–10% хворих на рак тіла матки (РТМ), які лікувалися хірургічним, комбінованим чи променевим методами. Тому у 80% випадків лікування первинного, і тим більше, ВРВ, є ПТ. При використанні навіть найсучаснішої радиотерапевтичної апаратури найновіших технологій існує загроза розвитку променевих ускладнень з боку здорових органів і тканин, що потрапляють у зону опромінення. Знання основних радіобіологічних парадигм надають можливість не тільки прогнозувати ймовірність резорбції пухлини після дії іонізуючого випромінювання, але й оцінити біологічну ефективність поглиненої дози його, а також – ризик виникнення пізніх променевих ускладнень.

Мете роботи – підвищити ефективність і оцінити токсичність променевого лікування хворих на ВРВ шляхом визначення оптимальних методик брахітерапії (БТ) в залежності від виду джерела іонізуючого випромінювання і вивчення можливості прогнозування променевих ускладнень на основі молекулярно-біологічних властивостей пухлин.

Матеріали та методи. У клініці Національного інституту раку у відділенні радіаційної онкології проводилось клінічне дослідження за допомогою апарату радіотерапевтичної групи іврит-192 (HDR) іридій-192 (192Ir). За розробленими методиками БТ проведено лікування 106 хворих на ВРВ, які до цього лікувались з приводу захворювання на рак шийки матки, гістологічно у більшості діагностовано плоскоклітинний рак – 65 хворих, у хворих на рак тіла матки гістологічно переважала аденокарцинома різного ступеня диференціації – 41 пацієнка. Хворі

Original research
Key words: secondary vaginal cancer, high-dose rate (HDR) brachytherapy, ^{192}Ir and ^{60}Co high dose-rate sources, radiosensitivity biomarkers, peripheral blood lymphocytes, apoptotic cells.

For citation: Ivankova VS, Mikhailenko VM, Domina EA, Khrulenko TV, Baranovska LM, Hrinchenko OO. Therapeutic irradiation in the management of gynecological cancer and predictability of radiation-induced complications. *Ukrainian journal of radiology and oncology*. 2021;29(2):34–51. DOI: https://doi.org/10.46879/ukroj.2.2021.34-51

For correspondence: Ivankova Valentina Stepanivna, National Cancer Institute Ministry of Health of Ukraine; 33/43, Lomonosova Str., Kyiv, 03022, Ukraine e-mail: valentina_ivankova@ukr.net

ABSTRACT

Background. Today, applying radiotherapy (RT) in management of both primary and secondary vaginal cancer (SVC) take pride of place in the spectrum of specialized treatments for cancer patients. Secondary vaginal tumors are more common (6% to 33%) in cervical cancer (CC) patients, while in uterine cancer (UC) occur in 8–10% of cases treated either surgically, or by means of radiotherapy, otherwise via a combination approach. Therefore, RT is administered in about 80% of primary vaginal cancer and particularly SVC patients. When using even the most advanced radiotherapy equipment implying the cutting-edge technologies, there is a risk of radiation-induced complications in healthy organs and tissues that fall under the irradiation area. Keeping in mind the key radiobiological paradigms makes it possible not only to predict the probability of tumor resorption upon radiation exposure, but also to assess the biological effectiveness of absorbed dose, as well as the risk of late radiation complications.

Purpose – to enhance the effectiveness and assess the toxicity of SVC RT via ascertaining BT (brachytherapy) most suitable techniques depending on the type of ionizing radiation and exploring predictability of radiation-induced complications in terms of biomolecular cell properties.

Materials and methods. Clinical study was performed at the National Cancer Institute Clinic (Radiation Oncology Department), using a high-energy BT unit with a HDR ^{192}Ir source. The SVC patients ($n = 106$) were treated according to the developed BT methods. They had been pretreated for the CC ($n = 65$) with squamous cell carcinoma histologically diagnosed in the most cases or UC ($n = 41$) with histologically prevalent adenocarcinoma of a variable grade. Patients had a locally advanced pelvic tumor process with tumor staging II–III, T2-3N0-1M0. Along with clinical study the radiobiological research was conducted to count the apoptotic cells in both intact and irradiated peripheral blood lymphocytes (PBL), as well as the level of SH-groups of plasma proteins.
Зв’язок роботи з науковими програмами, планами і темами

Робота виконана в рамках планової науково-дослідної роботи науково-дослідного відділення радіаційної онкології Національного інституту руху Міністерства охорони здоров’я України “Визначити оптимальні методики високоенергетичної брахітерапії з джерелом іонізуючого випромінювання іридій-192 при лікуванні хворих на вторинний рак вагіни з урахуванням молекулярно-біологічних особливостей пухлин”. Номер державної реєстрації 0117U000406.

ВСТУП

На сьогодні використання терапевтичного опромінення в лікуванні як первинного, так і вторинного раку вагіни (ВРВ) займає пріоритетне місце в арсеналі спеціалізованих методів лікування онкологічних хворих. Показання до хірургічного лікування виникають рідко. Так, у жінок молодого і середнього віку при локалізації пухлини в верхній третині вагіни ефективні розширення гістеректомія з видаленням частини вагіни. Хірургічна екстрадація часто неможлива, оскільки близькість розташування сечового міхура і прямої кишки потребує екстенсивності для здійснення радикальної хірургічної операції. Тому у 80% випадків методом лікування первинного, і тим більше ВРВ, є променева терапія (ПТ) [1–6].

Вторинні пухлини вагіни частіше виникають при рaku шийки матки (РШМ) у 6–33% хворих, та 8–10% хворих на рак тіла матки (РТМ), які лікувались хірургічним, комбінованим чи променевим методами [7–11]. Оперативне втручання, як правило, таким хворим не проводиться, у зв’язку з наявністю іонізуючого випромінювання іридій-192 ионізуючого випромінювання іридій-192

and peptides in gynecological cancer patients and healthy donors to predict the risk of radiation-induced complications.

Results and discussion. Given the delayed effect of RT, the treatment effectiveness was analyzed immediately after RT session and also 3 months upon completion of the conservative therapy. Thus, positive tumor response upon three months of observation over time was registered in 67.9 ± 5.2% of patients in study group I, in 72.5 ± 6.9% in study group II, and in 51.3 ± 6.8% in comparison group. Hence the values in study groups were higher than in comparison group by 16.6% and 21.2% respectively. All patients tolerated BT satisfactorily. Neither general nor local rectum or bladder severe (above grade II) toxicities were noted both during treatment and over the next 3 months upon its completion in all the patients regardless of study group. Results obtained in radiobiological studies correlated with clinical and literature data.

Conclusions. Decrease in manifestations of RT toxicity, namely of the early radiation reactions from interfacing critical organs was established in groups I and II vs comparison group I, especially in group I where a high-energy 192Ir source was used in the SBD irradiation mode of 3 Gy twice a week. The obtained results of the experimental study suggest that the content of SH-groups in blood plasma and the level of PBL apoptosis can be considered as additional predictive measures of radiosensitivity of non-malignant cells from the irradiated tumor environment.
На теперішній час вітчизняні клініки устаткуються сучасною апаратурою для контактної променевої терапії методом remote afterloading джерелами високої активності (high-dose rate, HDR-терапія). У відділенні радиології онкології Національного інституту рaku проводиться використання джерела гамма-випромінювання високої активності ірідія-192 (\(^{192}\text{Ir}\)) на апарат HDR «Gamma Med plus IX» (Німеччина). Ця установка є апаратом нового покоління для контактної ПТ, що дозволяє проводити внутрішньопорожнику променеву терапію (ВІППТ) методом remote afterloading у поєднанні фракцій і одночасної іонізації. Така технологія дистанційного завантаження джерела іонізуючого випромінювання (ДІВ) після установки аплікатора дає можливість скорегувати дозиметричний розрахунок до моменту установки джерела і початку опромінення. У апараті є одне джерело \(^{192}\text{Ir}\), яке рухається по ендостату з кроком 2,5 або 5 мм. Максимальна кількість активних позицій в ендостаті складає 48, що дозволяє широко змінювати розмір опромінюваної мішені (до 12 см завдовжки) з проведением подальшого дозиметричного планування і оптимізації дозового розподілу в умовах фракціонованого опромінення. Важливою перевагою ВІППТ є можливість підведення максимальних доз опромінення безпосередньо на пухлини осередок з мінімальною дією і суміжних органів. До протоколу лікування ВРВ, окрім БТ, входити дистанційна променева терапія (ДІПТ), а поєднання цих двох методів у світі є «золотим стандартом» лікування пухлин репродуктивної системи у жінок. За останні десятиліття – це високотехнологічний, ефективний, органеоберігаючий, найбільш точний компонент радикального променевого лікування гінекологічного рaku, здатній значно зменшити променеве навантаження на критичні і суміжні органи [14, 16–19]. Хіміотерапія використовується лише як компонент комплексного лікування та як паліативний антинеопластичний засіб при неможливості проведення ПТ.

Внаслідок проведення ПТ у 14–80% пацієнтів хворих на ВРВ, окрім БТ, входять дистанційна променева терапія (ДІПТ), а поєднання цих двох методів у світі є “золотим стандартом” лікування пухлин репродуктивної системи у жінок. За останні десятиліття – це високотехнологічний, ефективний, органеоберігаючий, найбільш точний компонент радикального променевого лікування гінекологічного рaku, здатній значно зменшити променеве навантаження на критичні і суміжні органи [14, 16–19]. Хіміотерапія використовується лише як компонент комплексного лікування та як паліативний антинеопластичний засіб при неможливості проведення ПТ.

Проблема уражень нормальних клітин, що потрапляють у зону терапевтичного опромінення онкологічних хворих, привертає увагу не тільки радіаційних онкологів, але й клінічних радіобіологів. Незважаючи на конформну стратегію променевого лікування, частинна нормальних клітин із оточення пухлин неодмінно are more often localized on the anterior wall of vagina and in its lower third, it is also relevant due to the risk of bladder or rectum injury. Therefore, patients who have received RT can as a result experience a significant number of local radiation reactions of varying intensity, which worsen the quality of life, lead to forced breaks in treatment, and affect its results [20].

The issue dealing with affecting normal cells that fall under the area of therapeutic irradiation of cancer patients draws attention not only of radiation oncologists, but also clinical radiobiologists. Despite the conformal strategy of radiation therapy, some normal cells from the tumor environment are inevitably exposed to radiation, which can lead to the development of distant radiation-induced complications, including secondary cancer [7, 12, 21–25]. Molecular, chromosomal and other abnormalities in healthy cells of primary cancer patients change the functional status of these cells, including radiosensitivity, and consequently afford ground to consider them to be only conditionally normal [26–30]. Additional radiation-induced
загає опромінення, що може обумовити розвиток віддалених променевих ускладнень, у тому числі, вторинного раку [7, 12, 21–25]. Молекулярні, хромосомні та інші аномалії у здорових клітинах первинних онкологічних хворих змінюють функціональний стан цих клітин, зокрема, радіочутливість, і тому надають підстави вважати їх лише умовно нормальними [26–30]. Додаткові радіаційно-індукувані пошкодження в цих клітинах внаслідок терапевтичного опромінення можуть сприяти високому ризику виникнення віддалених променевих ускладнень з боку здорових органів та тканин, з оточення пухлини, в тому числі клітин циркулюючого нуду крові. Тому подальше визначення біомаркерів є доцільним, для прогнозу ступеня важкості радіаційного ушкодження здорових тканин із оточення пухлини, враховуючи біохімічні, біофізичні та інші аспекти процесу патогенезу радіаційного ушкодження [31–36].

До таких біомаркерів правомірно віднести сульфгідрільні (SH) групи білків і низкомолекулярних сполук, що відіграють важливу роль у численних біологічних процесах, зокрема в процесах апоптозу, проліферації, метаболізму та регуляції транскрипції. Було встановлено, що обмін тіолсульфіду відіграє важливу роль у згортанні білка (фолдингу) його стабільністі [37, 38], а також впливає на окисно-відновний стан клітин і білків [39]. Особливе значення у цих процесах мають активні форми кисню та азоту (АФОН), які відбуваються як у нормальних фізіологічних процесах функціонування клітин, так і відповідь на дію шкідливих, зокрема, радіаційних факторів та передує утворення генетичної нестабільності клітин. Поряд з цим обґрунтовано кореляцію між апоптоз-асоційованими змінами в клітинах та їх радіочутливістю [40–42]. Підвищення інтенсивності хромосомних аберацій і утворення мікроядер в лімфоцитах онкологічних хворих після опромінення у випадках in vitro в порівнянні зі здоровими, які спостерігалися в численних вивчениях [43, 44], може пояснюватися, в багатьох випадках, порушенням апоптозу як механізму елімінації клітин з пошкодженою ДНК та підтримки генетичної стабільності.

Мета роботи – підвищити ефективність i оцінити токсичність променевого лікування хворих на ВРВ та відповідно здатність оптимальних методів BT в залежності від виду ДІВ і вивчення можливості прогнозування променевих ускладнень на основі молекулярно-біологічних властивостей пухлини.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ

Для ВРВ існують відповідні рекомендації, які в основному враховують розмір пухлини і методику первинного променевого лікування. Між дистанційним опроміненням і BT немає принципових відмінностей у механізмі променевої дії, яка призводить до загибелі клітин, пошкодження нормальних тканин і зниження пухлини. Радіобіологічні основи обох варіантів радіотерапії мають багато спільного, разом з тим істотно відрізняються їх фізичні особливості просторового і почасового розподілу дози. Основні положення, які damage in these cells due to therapeutic irradiation may contribute to a high risk of distant radiation complications from the healthy tissues, organs surrounding the tumor, including circulating blood pool cells. Therefore, further determination of biomarkers is appropriate to predict the severity of radiation damage to healthy tissues from the tumor environment, taking into account biochemical, biophysical and other aspects of radiation damage pathogenesis process [31–36].

The sulfhydryl (SH-) groups of proteins and low molecular weight compounds can be appropriately attributed to such biomarkers. They are of a key role in many biological processes, particularly in apoptosis, proliferation, metabolism and regulation of transcription. The exchange of thiol- disulfide has been found to play an important role in protein folding of its stability [37, 38] as well to affect the redox potential of cells and proteins [39]. The active forms of oxygen and nitrogen (AFON) being essential in these processes are produced both in normal physiological pathways of cellular function and in response to harmful factors, including radiation, and precede the formation of cellular genetic instability. Herewith a correlation between the apoptosis-associated changes in cells and their radiosensitivity was substantiated [40–42]. The increased induction of chromosomal aberrations and formation of micronuclei in lymphocytes of cancer patients after irradiation in vitro by contrast with healthy donors, which was observed in a number of studies [43, 44], may be explained in many cases by apoptosis as a mechanism of elimination of cells with damaged DNA and maintaining the genetic stability.

Purpose – to enhance the effectiveness and assess the toxicity of SVC RT via ascertaining BT (brachytherapy) most suitable techniques depending on the type of ionizing radiation and exploring predictability of radiation-induced complications in terms of biomolecular cell properties.

MATERIALS AND METHODS

There are appropriate guidelines for SVC, which mainly take into account the tumor size and method of primary RT. There are no fundamental differences between EBRT and BT in the mechanism of radiation effect, which leads to cell death, damage to normal tissues and tumor destruction. Radiobiological basis of both RT variants have a lot in common, however, their physical features of spatial and temporal dose distribution differ significantly. The main provisions defining BT effectiveness are the dose-rate value of contact radia-
визначають ефективність БТ – це величина потужності дози контактного опромінення з низькою потужністю дози (low-dose rate – LDR) і моделі фракціонованого опромінення при використанні джерел високої потужності дози – HDR. Опромінення джерелом середньої потужності дози позначається, як MDR. При застосуванні опромінення LDR значно збільшується час курсу ПТ. Використання фракціонованої БТ з високою потужністю дози приводить до більшого пошкодження клітин нормальних тканин в порівнянні з пухлиними клітинами. Подовження часу курсу радіотерапії зменшує частоту ранніх променевих реакцій, проте погіршує результати місцевого лікування, при цьому не впливає на кількість пізніх променевих ускладнень [13, 16]. Для БТ вибір ДІВ, сумарні осередкові дози (СОД), режим її фракціонування зумовлюється поширеністю процесу, апаратним забезпеченням установи та попереднім дістанційним опроміненням. Методика радіотерапії пухлин вагіни відрізняється великою варіабельністю, що у значній мірі зумовлює вибір найбільш оптимального для кожної конкретної хворої варіанту [14, 16–19].

Для вивчення ефективності нового джерела випромінювання – 192Ir при контактній ПТ у клінічні Національного інституту рукаві у відділенні радіаційної онкології проводилось дослідження за допомогою апарат для високонергетичної БТ з джерелом гамма-випромінювання високої активності. У дослідження були включені 106 хворих з вторинними пухлинами вагіни, які до цього лікувалися з приводу захворювання на РШМ – 65 хворих, захворювання на РТМ – 41 пацієнтки. Переважну кількість пацієнтів досліджуваної групи склали хворі з місцевопоширеним пухлинним процесом у малому тазі II–III стадії поширеності, T2-3N0-1M0.

Клінічний діагноз у всіх хворих підтверджений результатами гістологічного дослідження. У більшості пацієнтів, вторинний рак у яких виник після РШМ, був виявлений плоскоклітинний рак, а у хворих після РТМ – adenocarcinoma.

З метою визначення меж пухлинного процесу, його особливостей, стану критичних органів, наявності/відсутності супутньої патології усім хворим було проведено комплексне обстеження, яке включало: клінічний огляд для визначення візуальних та пальпаторних параметрів первинного пухлинного вогнища; комплексне ультразвукове обстеження, комп’ютерну томографію (КТ) органів грудної, черевної порожнини і малого таза, магнітно-резонансну томографію (МРТ) органів малого таза; цистоскопію та фіброректосигмоскопію (визначення поширеності і наявності/відсутності патологічних процесів, які можуть ускладнити проведення хімопрепаративної терапії (ХІТ) та/або призвести до небажаних токсичних ускладнень і зумовлюють необхідність редукції доз); лабораторні дослідження.

Під час проведення поєднаної променевої терапії (ПІІТ) з використанням радіоактивного 192Ir враховувалися показання та протипоказання до внутрішньопорожнинної гамма-терапії. В ході лікування
досліджуваних хворих застосовувалась ДПТ. Доза опромінення планувалась з урахуванням раніше проведенного променевого лікування.

Після комплексного обстеження усім хворим проводили ППТ: конфігура ДПТ на апараті лінійний прискорювач електронів і контактна ПТ. Конфігуру ДПТ здійснювали на апараті лінійний прискорювач електронів Clinac 2100 CD з обов’язковою передпроменевою 3D топометричною підготовкою на КЛ. Лікування проводили за режимом резонансної осередкової дозою (РОД) 2 Гр 5 разів на тиждень до СОД 42 – 46 Гр з урахуванням дози опромінення, отриманої під час попереднього лікування. На другому етапі радіотерапії проводили БТ за допомогою високо-енергетичного HDR апарату GammaMed з джерелами випромінювання 192Ir. Першій основній групі (37 хворих) БТ здійснювали за режимом опромінення: РОД 3 Гр х 2 рази на тиждень, до СОД 30 Гр за 10 фракцій. Другій основній групі (34 хворих) застосовували режим опромінення РОД 6 Гр х 1 раз на тиждень, до СОД 30 Гр за 5 фракцій. Групі порівняння (35 хворих) після ДПТ проводили МDR BT джерелами 60Co. Відповідно до розробленого протоколу BT здійснювали за режимом опромінення: РОД 6 Гр х 2 рази на тиждень до СОД 40–42 Гр. При ураженні зон дистанційної гамма-терапії. При цьому обов’язково враховували дози від проведеного раніше ІТ.

Хворим усіх груп ППТ проводили на тлі використання хіміорадіомодифікуючих засобів: тегафури було відповідно до розмірів групи, взаємозв'язку між дозами від проведеного раніше ПТ. Другій основній групі (34 хворих) застосовували режим опромінення РОД 6 Гр х 1 раз на тиждень, до СОД 30 Гр за 5 фракцій. Групі порівняння (35 хворих) після ДПТ проводили МDR BT джерелами 60Co. Відповідно до розробленого протоколу BT здійснювали за режимом опромінення: РОД 6 Гр х 2 рази на тиждень до СОД 40–42 Гр. При ураженні зон дистанційної гамма-терапії. При цьому обов’язково враховували дози від проведеного раніше ІТ.

Статистична обробка отриманих клінічних результатів включаляла: розрахунок первинних статистичних показників; виявлення відмінностей між групами за певними параметрами; встановлення взаємозв’язку між змінними за допомогою параметричного та непараметричного кореляційного аналізу за методом Вальда–Вольфовиця [45].

Водночас з клінічними проводили радіобіологічні дослідження, що спрямовані на визначення кількості апоптичних клітин в інтактних та опромінених лімфоцитах периферичної крові (ЛПК), а також рівня SH-груп плазми крові в онкогінекологічних хворих та умово здорових осіб (УЗО).

Дослідження передбачало з’єднання і, в подальшому, прогнозування характеру променевих порушень, що розвивалися в клітинах тканин із оточення пухлин, зокрема, ЛПК, які також зазнали опромінення [15, 46].

Було вирішено проводити дослідження, що спрямовані на визначення впливу радіомодифікатора метформіну (МФ) ex vivo, який за даними літератури підсилює чутливість клітин пухлин до опромінення [47]. Автори припускають, що його протипухлинний ефект пов’язаний з інгібуванням 1-го дихального комплексу окиснювального фосфорилювання мітохондрій. В дослідженні [48] встановлено, що МФ безпосередньо підсилює протипухлинну цитотоксичність лімфоцитів крові.

Statistical processing of the obtained clinical findings included calculation of primary statistical parameters, identification of intergroup differences by the statistical criteria, establishing the relationship between variables using parametric and non-parametric correlation analysis by means of the Wald–Wolfowitz test [45].

Along with clinical study, the radiobiological research was conducted to count the apoptotic cells in tissue cells from the tumor environment, including PBL, which are also exposed to radiation [15, 46].

Decision was taken to carry out the study applying metformin (MET) radiomodifier ex vivo, which, according to the literature, increases the sensitivity of tumor cells to radiation [47]. The authors suggest that its antitumor effect is associated with inhibition of the 1st respiratory complex of oxidative mitochondrial phosphorylation. The study [48] has made clear that MET directly increases antitumor cytotoxicity of blood lymphocytes.

Accompanying radiobiological studies were performed on blood samples obtained from patients with newly diagnosed UC (ND UC) and nominally healthy individuals (NHI), who provided an informed consent in accordance with the principles of biomedical research set out in the Helsinki Declaration of the World Medical Association. Peripheral blood was sampled in the standard sterile 6 ml Vacutainer tubes with Li-heparin anticoagulant. Blood samples were stored and transported at 3–5°C. Each blood sample was divided into 15 parts (groups): 1 – with no exposure to radiation; 2 – irradiation at a dose of 0.5 Gy; 3 – at 1.0 Gy; 4 – at 2.0 Gy; 5 – at 3.0 Gy. The blood samples of groups 6–10 were incubated for 1 hour with 2 mM of metformin (MF), and in groups 11–15 – 20 mM of MF at a room temperature followed by being irradiated the same way as groups 1–5. MF was
Супроводжуючи радіобіологічні дослідження виконували на зразках крові отриманих від пацієнтів, у яких був первинно діагностований РТМ (ПД РТМ) та УЗО, від яких отримано інформовану згоду відповідно до принципів проведення біомедичних досліджень, що викладено в Гельсінській Декларації Всесвітньої медичної асоціації. Периферичну кров збирали в стандартні стерильні пробірки Vacutainer об’ємом 6 мл із антикоагулянтом Li-гепарин. Зразки крові зберігали і транспортували при 3–5°С. Кожен зразок крові розділяли на 15 частин (групи): 1 – без опромінення; 2 – опромінення в дозі 0,5 Гр; 3 – опромінення в дозі 1,0 Гр; 4 – опромінення в дозі 2,0 Гр; 5 – опромінення в дозі 3,0 Гр. Зразки крові в групах із 6 по 10 протягом 1 год інкубували із 2 мМ метформіну (МФ), а в групах 11 – 15 із 20 мМ МФ при кімнатній температурі, після чого опромінювали аналогічно зразкам 1–5 групи. МФ вносили в кров у вигляді розчину у PBS (1:20) для досягнення в зразках крові кінцевої концентрації МФ – 2 мМ та 20 мМ. Зразки опроміненої крові обережно (без активного перемішування) транспортували протягом 10–12 хв. при 4°С в світлонепроникному термостаті (активного перемішування) транспортували протягом 10–12 хв. при 4°С. Інгібітори SH-груп білків і пептидів в плазмі крові (SH-тест) проводили спектрофотометричним методом у модифікації [51]. Статистичну обробку результатів проводили з використанням загальноприйнятих методів варіаційної статистики, кореляційних та регресійного аналізу. Різницю між одержаними значеннями прийняли за значимою при р ≤ 0,05 [52].

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Ефективність застосування ППТ у хворих на ВРВ з використанням радіоактивного 192Ir аналізували з урахуванням темпів регресії пухлин, наявності у хворих променевих реакцій і ускладнень, які виникали у процесі лікування і після його завершення.

Згідно з рекомендаціями Всесвітньої організації охорони здоров’я (ВООЗ), ретерсію пухлин визначали за даними динамічного моніторингу клінічних показників пухлинного процесу у зіставленні з даними, отриманими за допомогою сучасних засобів візуалізації (комплексне сонографічне обстеження, КТ, МРТ).

Динаміка регресії екзофітного компонента та інфільтративних змін первинних пухлин в умовах HDR наступала, як правило, до кінця курсу ВППТ на рівні доз 30 Гр.

Відлук на проведену ППТ безпосередньо після завершення повного курсу лікування (сумарний позитивної
токсичності з боку сечового міхура та прямої кишки.

Відмічено тяжких (вище II ступеня) загальних проявів вання і в найближчі 3 місяці після його завершення, не у всіх пацієнток з екзофітним компонентом пухлини частіше відмічали у хворих з обтяженим анам-

Таким чином, згідно з отриманими результатами ППТ хворих на ВРВ встановлено, що застосування HDR BT з використанням високоенергетичного джерела 192Ir за розробленими методиками у хворих I і II основних груп порівняно з пацієнтами групи порівняння, яким проводили MDR BT з використання джерела 60Co за класичним режимом фракціонування дози оправданим, збільшувало частоту та ступінь регресії пухлин.

Токсичність проведеного променевого лікування оцінювали за класифікацією RTOG/EORTC, 1995 [11]. Прояви токсичності лікування за кількістю і ступенем їх проявів у досліджуваних групах онкогеніологічних хворих мало відрізнялися від групи порівняння і не перевищували ІІ ступеня. Що до загальної токсичної, то у хворих основних груп на ВППT відсутні. При лікуванні у місцевих реакціях у переважної більшості хворих відсутні. Під час лікування пацієнтам проводили МDR BT з використання джерела 60Co за класичним режимом фракціонування дози оправданим, збільшувало частоту та ступінь регресії пухлин.

Променеві реакції слизової вагіни, що належать до місцевих реакцій, у переважної більшості хворих усіх досліджуваних груп мали слабкий або помірний ступінь виразності і проявлялися у вигляді гіперемії слизової або обмеженого плівчастого епітелію (ІІ ступінь токсичності). Плівчасті епітеліїтів бувле частіше відмічали у хворих з обмеженням анамезом, у пацієнтів з екзофітним компонентом пухлин у стадії розпаду, що супроводжувалося наявністю патогенної флори. Було зазначено, що у хворих основних груп променеві реакції ІІ ступеня практично не відмічали в місцевих реакціях у переважної більшості хворих.

Всі пацієнтки задовільно переносили ВППТ. У жодної з них, незалежно від групи, упродовж лікування до його завершення не відмічено тяжких (вище ІІ ступеня) загальних проявів токсичності з боку сечового міхура та прямої кишки.

was more pronounced in patients of the study groups. In particular, the analysis of effectiveness of 192Ir sources in HDR BT and of follow-up data during the CRT course showed that the positive tumor response (complete + partial regression) upon the full course had increased by 12.7% in group I and by 15.9% in group II compared with the use of 60Co MDR in BT.

Given the delayed effect of RT, the effectiveness of treatment was also analyzed 3 months upon completion of conservative therapy. Specifically, after a three-month follow-up a positive tumor response was registered in 67.9 ± 5.2% of patients in group I, in 72.5 ± 6.9% of subjects in group II, and in 51.3 ± 6.8% of cases in the comparison group.

Thus, according to the obtained findings of CRT administration in SVC patients, it was found that providing HDR BT via a high-energy 192Ir source according to the developed techniques, increased the frequency and degree of tumor regression in the main groups I and II vs comparison group receiving the MDR BT using a 60Co radiation sources.

The toxicity of the performed RT was evaluated according to the RTOG/EORTC (1995) classification [11]. The treatment toxicity in the number and degree of its manifestations in the groups of oncogynecological patients differed a little from the comparison group and did not exceed grade II. As for the general toxicity, there was a slight nausea requiring no medical correction within treatment period in the vast majority of SVC patients in all study groups. Neither severe neutropenia nor thrombocytopenia were observed. The patient’s condition returned to normal in about a month after treatment. No manifestations of the late general toxicity were observed in any patient at examination up to 6 months upon treatment.

Radiation reactions of vaginal mucosa attributed to the local reactions were mild or moderate and manifested as hyperemia of mucosa or limited membranous epithelitis (grade II of toxicity) in the vast majority of patients in all study groups. Membrane epithelitis of vagina was more often observed in patients with a compromised history, patients with an exophytic component of the tumor in destruction stage, which was accompanied by the contamination with pathogenic flora. It was noted that radiation reactions of grade II were almost absent in the main groups. Sanitation of vagina with antibacterial preparations was administered to the patients during treatment, which allowed continuing the RT course until its completion.

All patients tolerated the IRT satisfactorily. There were no severe (above grade II) general manifestations of toxicity from bladder or rectum during treatment and in the next 3 months upon its completion in any patient, regardless of group.

Due to the experimental studies it was found that the level of spontaneous or X-ray-induced (0.5–3 Gy dose) apoptotic cell death, as assessed by the percentage of
В експериментальних дослідженнях було встановлено, що рівень спонтанної або індукуваної рентгенівським опроміненням в дозах 0,5 – 3 Гр апоптичної загибелі клітин, оцінюваної за відсотком гіподиплоїдних клітин, визначали у ЛПК УЗО та хворих з ПД РТМ. Типові гістограми розподілу інтенсивності флуоресценції ЛПК подані на рисунку 1.

Рівень апоптозу в ЛПК здорових донорів становив 1,91±0,38 %. За умов терапевтичного опромінення (ТО) середньо-груповий рівень апоптозу ЛПК збільшувався лінійно та пропорційно дої опромінення, перевищуючи значення інтенсивного контролю від 24% до 52% (р ≤ 0,05) (рис. 2, А).

Рівень апоптозу в ЛПК у хворих онкогінекологічного профілю становив 3,50±0,29 %, що в 1,8 рази (р ≤ 0,05) перевищував значення у УЗО. Однак, за дії ТО середньо-груповий рівень апоптозу ЛПК хворих, на відміну від УЗО, майже не змінювався при збільшенні дози опромінення (рис. 2, Б).

The PBL apoptosis level in healthy donors was 1.91 ± 0.38%. The mean group level of PBL apoptosis under TI (therapeutic irradiation) increased linearly and in proportion to radiation dose, exceeding the value of intact control from 24% to 52% (р ≤ 0.05) (Fig. 2, A).

The level of PBL apoptosis in the oncogynecological patients was 3.50 ± 0.29%, being 1.8 (р ≤ 0.05) times higher than in the NHI. However, under the influence of TI the average group level of apoptosis of PBL in patients, in contrast to NHI, almost did not change with dose increase (Fig. 2, B).

Вивчення впливу протекторів на механізми формування радіочутливості проводили із використанням...
різних доз МФ, менша з яких є наближено до тера-
певної, а більша знаходиться в діапазоні доз, вико-
ристовуваних в експериментах на культурах клітин.
Інкубація зразків крові УЗО із МФ в концентрації
2 мМ значно підвищувала (в 2,0 рази, р ≤ 0,05), а за
концентрацію 20 мМ в 1,7 разі (р ≤ 0,05) відсоток
гіподиплоїдних клітин (рис. 2, А).

Інша закономірність змін рівня апоптозу спосте-
рігалась у ЛПК хворих за впливу різних доз МФ.
Тенденція підвищення рівня апоптозу на 12% (р ≤ 0,05)
спостерігалась при інкубації ЛПК із 2 мМ МФ, однак
при використанні більшої дози препарату відсоток
гіподиплоїдних клітин, навпаки, зменшувався на 30%
(p≤0,05) порівняно з інконтактними ЛПК хворих (рис. 2, Б).

Підрахунок кількості життєздатних клітин, за вику-
ристання супервітального забарвлення тріпановим
синім, не показав достовірної різниці між інконтактними
ЛПК та інкубованими із МФ. Порівняння даних
із загальної виживаності ЛПК та рівня апоптозу
в них опосередковано свідчить про вплив МФ на
пригнічення процесів дихання в мітохондріях та
глюконеогенезу в клітинах, а саме на інгібування
комплексу I дихального ланцюга мітохондрій [53].
В результаті цього зменшується фосфорилювання
та знижується вміст АТФ, що в свою чергу є
одним із проапототичних сигналів.

За сумісної дії різних доз МФ та TO кількість апоп-
тичних клітин в ЛПК УЗО збільшувалась аналогічно
змінам, зареєстрованим у групі порівняння (рис. 2, А).
Так, відсоток гіподиплоїдних клітин збільшувався
лінійно та пропорційно дозі опромінення, пере-
вищуючи значення неопроміненого контролю від
12% до 48% (р ≤ 0,05). Інкубація крові хворих із
різними дозами МФ та наступне TO не супроводжувалась
зростанням рівня апоптозу у ЛПК, як і в
клітинах, які опромінювали без додавання МФ
(рис. 2, Б). Навпаки, спостерігалась тенденція до
зниження відсотка гіподиплоїдних клітин в інкубо-
ваних із МФ групах при різних дозах опромінення.

Таким чином, за сумісного впливу МФ та TO in vitro
на зразки крові УЗО, зареєстровано лінійний характер
збільшення відсотка гіподиплоїдних клітин у стані апоптозу, що свідчить
про суттєвий вплив МФ на активність різних зв’язків
на зразки крови УЗО, зареєстровано лінійний характер
збільшення відсотка гіподиплоїдних клітин у стані апоптозу, що свідчить
про пригнічення процесів дихання, зменшення вмісту
ATФ, що в свою чергу є одним із проапототичних
сигналів.

Дослідження вмісту сумарних SH-груп у плазмі
крові проводили із огляду на її важливу роль у регулюванні
окисно-відновної рівноваги, як в нормі, так і у стані
глюконеогенезу в клітинах, а саме на інгібування
комплексу I дихального ланцюга мітохондрій [53].
В результаті знижується окисне фосфорилювання
та знижується вміст АТФ, що в свою чергу є
одним із проапототичних сигналів.

Дослідження вмісту сумарних SH-груп у плазмі
крові проводили із огляду на їх важливу роль у регулюванні
окисно-відновної рівноваги, як в нормі, так і у стані
глюконеогенезу в клітинах, а саме на інгібування
комплексу I дихального ланцюга мітохондрій [53].
В результаті знижується окисне фосфорилювання
та знижується вміст АТФ, що в свою чергу є
одним із проапототичних сигналів.

Дослідження вмісту сумарних SH-груп у плазмі
крові проводили із огляду на їх важливу роль у регулюванні
окисно-відновної рівноваги, як в нормі, так і у стані
глюконеогенезу в клітинах, а саме на інгібування
комплексу I дихального ланцюга мітохондрій [53].
В результаті знижується окисне фосфорилювання
та знижується вміст АТФ, що в свою чергу є
одним із проапототичних сигналів.
і хворих за вмістом забарвленого аніона 2-нітро-5-
тиобензоату із максимумом поглинання при 412 нм.

Вміст сульфгідрильних груп білків і пептидів у
плазмі крові онкогінекологічних хворих був зниженим
у порівнянні із УЗО (рис. 3). Виявлено, що в плазмі
крові хворих середньо значення вмісту сульфгідрильних
груп становило 0,42±0,024 mM, що на 18% менше, ніж
в групі УЗО (0,51±0,014 mM). При опроміненні зразків
крові хворих спостерігалося незначне збільшення
(до 4%) кількості SH-груп порівняно із їх значенням
у зразках без TO, що корелювало із даними у УЗО,
de збільшення вмісту SH-груп становило 6% (рис. 3).

Концентрація SH-груп у плазмі як хворих, так і
здорових осіб, не змінювалась за ex vivo інкубації з
різними дозами МФ, а також за in vitro опромінення
(0,5; 1; 2; 3 Гр) зразків крові із МФ.

Таким чином, незначні зміни вмісту SH-груп в
плазмі крові УЗО при TO в діапазоні доз 0,5–3,0 Гр
пояснюються проявом компенсаторних можливос-
tей антиоксидантної системи організму, завдяки якій
нейтралізується надлишок АФКА, що утворився за
dії рентгенівського опромінення. Плазма крові дослідж
уваних хворих містила меншу кількість SH-груп
порівняно з УЗО, що свідчить про зміни окисно-
відновної рівноваги у бік оксидантних процесів.

ВИСНОВКИ

1. В результаті проведеного дослідження встановлено зменшення проявів токсичності ІТТ, а саме ранніх
променевих реакцій у відповідності до пушливої критичних органів у хворих І і ІІ основних груп, порівняно
з пацієнтками груп порівняння, особливо в І основній групі, де використовували високо-
енергетичне джерело 192Ir у режимі опромінення ROD = 3 Гр х 2 рази на тиждень. Застосування менших
разових доз опромінення знижує частоту ранніх
променевих реакцій, при цьому маловпливає на кількість
пізніх променевих ускладнень, що має значення
при прогнозуванні їх під час лікування. Зменшення
відсотка й ступеня ранніх місцевих променевих реакцій

Plasma concentration of the SH-groups both in patients and healthy individuals did not change during the ex vivo incubation with MF in different doses, as well as under in vitro irradiation (0.5, 1, 2, and 3 Gy) of blood samples with added MF.

Thuswise, insignificant changes in content of SH-groups in plasma of the NHI under TI in a dose range of 0.5–3.0 Gy are explained by manifestation of compensatory capabilities of the antioxidant system, which neutralizes the AFON excess formed by X-ray exposure. The blood plasma of patients contained a lower number of SH-groups in comparison with NHI, indicating the redox balance change towards oxidative processes.

The content of sulphydryl groups of proteins and peptides in the blood plasma of oncogynecological patients was reduced in comparison with NHI (Fig. 3).

It was found that the average value of content of sul-
phhydryl groups in the blood plasma of patients was
0.42 ± 0.024 mM, which was by 18% less than in the NHI
group (0.51 ± 0.014 mM). When irradiating blood samples from patients, there was a slight increase (up to 4%) in
the number of SH-groups compared to their value in
samples without TI, correlating with data in NHI, where
the increase in SH-groups was 6% (Fig. 3).

CONCLUSIONS

1. The study has made it possible to ascertain decreased
RT toxicity manifestations, i.e. early radiation reactions
from tumor-adjacent critical organs in groups I and II
compared with comparison group, especially in group I,
where a high-energy 192Ir radiation source was used at
SFD = 3 Gy twice a week. Applying lower single doses
of radiation has led to a decreased incidence of early
radiation reactions with a little effect on the number of late
radiation complications, which is important in predicting
them during treatment. Decrease in percentage and
grade of early local radiation reactions on vaginal mucosa,
as well as their number and grade in critical organs when
providing 192Ir HDR BT is most likely due to a sharp
на слизовій вагіни, а також їх кількість і ступені з боку критичних органів при використанні 192 Ir HDR БТ найвірогідніше зумовлено кругим спадом дози іонізуючого випромінювання, що притаманне жерелу 192 Ir, на відміну від джерела 60Co.

2. Показано, що онкогінекологічні хворі, на відміну від УЗО, характеризуються значним збільшенням (в 1,8 разі) рівня спонтанного апоптозу у лімфоцитах та сниженням (на 18%) вмісту SH-груп у плазмі SH-груп у плазмі периферичної крові. Тестуюче in vitro рентгенівське опромінення крові в діапазоні до 0,5–3,0 Гр викликало пропорційне збільшення на 24–56% апоптичної загибелі ЛПК умово здорових донорів, однак не впливало на рівень апоптозу ЛПК хворих. Паралельно зареєстровано незначне збільшення кількості SH-груп у плазмі крові як хворих і УЗО (4 та 6%). Визначено особливості дії антидіабетичного препарату метформіну на рівень гіпоплідоїдних клітин в популяції лімфоцитів та вміст SH-груп у плазмі крові хворих онкологічного профілю в порівнянні з УЗО. Захисна дія МФ при ТО крові хворих проявлялася у збереженні нормальної концентрації SH-груп у плазмі крові як хворих, так і УЗО, які рівень апоптозу збільшувався пропорційно дозі збільшення.

3. Одержані результати свідчать, що вміст SH-груп в плазмі крові та рівень апоптозу у ЛПК можна вважати додатковими прогностичними показниками радіочутливості важливих пухлин, що можна враховувати при прогностичному прогнозуванні променевих ускладнень здорових тканин.

Список використаної літератури

1. Воробьева Л. И., Неспрядько С. В., Гончарук И. В., Гаврилюк О. Н., Бакай О. А., Ганич А. В. Рак влагалища: современное состояние проблемы. Клиническая онкология. 2014; 1(13). С. 46–50.

2. Курмышкаина О. В., Белова Л. Л., Ковчур П. И., Волькова Т. О. Ремоделирование ангиогенеза и лимфангитогенеза при развитии рака шейки матки. Биомедицинская химия. 2015; 5. С. 579–597.

3. Eifel P. J. Chemoradiotherapy in the treatment of cervical cancer. Seminars in radiation oncology. 2006; 16(3):177–85. DOI: https://doi.org/10.1016/j.semradi.2006.02.007

4. Osman M. The role of neoadjuvant chemotherapy in the management of locally advanced cervical cancer: a systematic review. Oncology reviews. 2014; Vol. 8, № 2. 250 р. DOI: https://doi.org/10.4081/oncol.2014.250

5. Туркевич В. Г. Лучевое лечение первичного и метастатического рака влагалища. Практическая онкология. 2006. Т. 7, № 4. С. 236–245.

6. Филатова Е. И. Первичный рак влагалища. Диагностика и лечебная тактика. Практическая онкология. 2006. Т. 7, № 4. С. 228–234.

7. Абисатов Х. А. Цикл лекций по онкологии. Алматы. 2012. 180 с.

8. Коржевская Е. В., Кузнец В. В., Грицай А. Н. Злокачественные опухоли влагалища. Клиническая Практическая онкология. Алматы. 2012. 180 с.

REFERENCES

1. Vorob’eva LI, Nespyrdako SV, Goncharuk IV, Gavriluk ON, Bakai OA, Ganich AV. Vaginal cancer: current state of the problem. Clinical oncology. 2014;1(13):46–50. (In Russian).

2. KurmyskhinaOV,BelovaLL,KovchurPI,VolkovaTO. Remodeling of angiogenesis and lymphangiogenesis in the development of cervical cancer. Biomedical chemistry. 2015;5:579–97. (In Russian).

3. Eifel PJ. Chemoradiotherapy in the treatment of cervical cancer. Seminars in radiation oncology. 2006;16(3):177–85. (In English). DOI: https://doi.org/10.1016/j.semradi.2006.02.007

4. Osman M. The role of neoadjuvant chemotherapy in the management of locally advanced cervical cancer: a systematic review. Oncology reviews. 2014;8(2):250. (In English). DOI: https://doi.org/10.4081/oncol.2014.250

5. Turkevich VG. Radiation treatment of primary and metastatic vaginal cancer. Practical oncology. 2006;7(4):236–45. (In Russian).

6. Filatova EI. Primary vaginal cancer. Diagnostics and treatment strategies. Practical oncology. 2006;7(4):228–34. (In Russian).

7. Abisatov KHA. Cycle of lectures on oncology. Almaty. 2012;180. (In Russian).

8. Korzhevskaya EV, Kuznetsov VV, Gritsay AN. Malignant tumors of the vagina. Clinical gynecological
Оригінальні дослідження

1. Каприн А. Д., Галкин В. Н. Брахитерапия в лечении рака влагалища. Вестник ОНЦ. 2012. № 3. 55 с.
2. Domina E., Philchenkov A., Dubrovskaya A. Individual Response to Ionizing Radiation and Personalized Radiotherapy. Critical Review in Oncogenesis. 2018;23(1–2):69–92. (In English). DOI: https://doi.org/10.1615/CritRevOncog.2018026308
3. Levine D. A., De Los Santos J. et al. Handbook for Principles and Practice of Gynecologic oncology. 9th ed. Lippincott Williams & Wilkins. 2011. P. 1311–1344.
4. Краевец О. А., Морхов К. Ю., Новикова О. В., Хохлова С. В. Клинические рекомендации по диагностике и лечению больных раком влагалища. Вестник ОНЦ. 2014. № 4. 60 с.
5. Levine DA, De Los Santos J et al. Handbook for Principles and Practice of Gynecologic oncology. Wilters Kluwer health. 2010;288. (In English).
6. Tyuva NV, Lukyanchuk OV. Personalization of children before the plan of one exchange therapy in ailments for musculoskeletal cancer of the ureter cervix. Ukrainian Radiological Journal. 2014;XXII(4):63–5. (In Ukrainian).
7. Creasman W, De Geest K, Di Saia P, Zaino RJ. Significance of true surgical pathologic staging: a Gynecologic Oncology Group Study. American journal of obstetrics and gynecology. 2016;5:31–4. (In English). DOI: https://doi.org/10.1016/s0002-9378(99)70431-x
8. Creasman W, De Geest K, Di Saia P, Zaino RJ. Significance of true surgical pathologic staging: a Gynecologic Oncology Group Study. American journal of obstetrics and gynecology. 2016;5:31–4. (In English). DOI: https://doi.org/10.1016/s0002-9378(99)70431-x
9. Domina E, Philchenkov A, Dubrovskaya A. Individual response to ionizing radiation and personalized radiotherapy. Critical reviews in oncogenesis. 2018;23(1–2):69–92. (In English). DOI: https://doi.org/10.1615/CritRevOncog.2018026308
10. Каприн А. Д., Галкин В. Н. Брахитерапия в лечении рака влагалища. Вестник ОНЦ. 2012. № 3. 55 с.
11. Levine D. A., De Los Santos J. et al. Handbook for Principles and Practice of Gynecologic oncology. Wilters Kluwer health. 2010;288. (In English).
12. Tyuva NV, Lukyanchuk OV. Personalization of children before the plan of one exchange therapy in ailments for musculoskeletal cancer of the ureter cervix. Ukrainian Radiological Journal. 2014;XXII(4):63–5. (In Ukrainian).
13. Creasman W, De Geest K, Di Saia P, Zaino RJ. Significance of true surgical pathologic staging: a Gynecologic Oncology Group Study. American journal of obstetrics and gynecology. 2016;5:31–4. (In English). DOI: https://doi.org/10.1016/s0002-9378(99)70431-x
14. Domina E, Philchenkov A, Dubrovskaya A. Individual response to ionizing radiation and personalized radiotherapy. Critical reviews in oncogenesis. 2018;23(1–2):69–92. (In English). DOI: https://doi.org/10.1615/CritRevOncog.2018026308
15. Suit H., Goldberg S., Niemierko A. et al. Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiation research. 2007;167(1):12–42. (In English). DOI: https://doi.org/10.1667/RR0527.1
16. Kucera H., Mock U., Knocke TH et al. Radiotherapy alone for invasive vaginal cancer: outcome with intracavitary high dose rate brachytherapy versus oncology: A guide for physicians / ed. VP. Kozachenko. Binom Publishing House. 2016;97–108. (In Russian).
17. Levine D. A., De Los Santos J. et al. Handbook for Principles and Practice of Gynecologic oncology. Wilters Kluwer health. 2010;288. (In English).
18. Tyuva NV, Lukyanchuk OV. Personalization of children before the plan of one exchange therapy in ailments for musculoskeletal cancer of the ureter cervix. Ukrainian Radiological Journal. 2014;XXII(4):63–5. (In Ukrainian).
19. Creasman W, De Geest K, Di Saia P, Zaino RJ. Significance of true surgical pathologic staging: a Gynecologic Oncology Group Study. American journal of obstetrics and gynecology. 2016;5:31–4. (In English). DOI: https://doi.org/10.1016/s0002-9378(99)70431-x
20. Domina E, Philchenkov A, Dubrovskaya A. Individual response to ionizing radiation and personalized radiotherapy. Critical reviews in oncogenesis. 2018;23(1–2):69–92. (In English). DOI: https://doi.org/10.1615/CritRevOncog.2018026308
21. Suit H., Goldberg S., Niemierko A. et al. Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiation research. 2007;167(1):12–42. (In English). DOI: https://doi.org/10.1667/RR0527.1
intracavitary high dose rate brachytherapy versus conventional low dose rate brachytherapy. *Acta obstetricia et gynecologica Scandinavica.* 2001. Vol. 80. P. 355–360.

23. Tewari K. S., Cappuccini F., Puthawala A. A. et al. Primary invasive carcinoma of the vagina: treatment with interstitial brachytherapy. *Cancer.* 2001. Vol. 91. P. 758–770. DOI: https://doi.org/10.1002/1097-0142(20010215)91:4<758::aid-cncr1062>3.0.co;2-u

24. Panьшин Г. А. Основные этапы развития методов лучевой терапии и современная подготовка онкологических больных к проведению конформного облучения. *Вестнік РНЦРР МЗ РФ.* 2012. № 12. С. 212–223.

25. Жариков А. А., Терехов О. В. Онкологическая заболеваемость органов малого таза, лучевые повреждения и их диагностика (обзор литературы). *Радиация и риск.* 2013. № 22(3). С. 57–64.

26. Lacombe J., Azria D., Mange A., Solassol J. Proteomic approaches to identify biomarkers predictive of radiotherapy outcomes. *Expert review of proteomics.* 2013. Vol. 10. № 1. P. 33–42. DOI: https://doi.org/10.1586/erp.12.68

27. Shulenina LV et al. MicroRNAs in the blood of patients with and without severe side effects after radiotherapy. *International journal of radiation biology.* 2012. Vol. 88. № 5. P. 405–13. DOI: https://doi.org/10.3109/09553002.2012.666002

28. Brzozowska K., Pinkawa M., Eble M. J., Müller W. et al. In vivo versus in vitro individual radiosensitivity analysed in healthy donors and in prostate cancer patients with and without severe side effects after radiotherapy. *International journal of radiation biology.* 2012. Vol. 88, № 5. P. 405–13. DOI: https://doi.org/10.3109/09553002.2012.666002

29. Dёmiна Э. А. Хромосомные аномалии в лимфоцитах крови онкологических больных в постчернобыльском периоде. *Scientific Journal «Science-Rise: Biological Science».* 2016. № 1. С. 20–25.

30. Дьоміна Е. А. Біохімічні та цитогенетичні показники лімфоцитів периферичної крові хворих на рак передміхурової залози. *Доповіді Національної Академії наук України.* 2018. № 4. С. 102–109.

31. Ивankoва В. С., Дьоміна В. А. Проблемы резистентности к проведению конформного облучения. *Здоров'я.* 2012. 192 с.

32. Mazurik В. К., Moroz В. Б. Проблемы радиобиологии и белок Р53. *Радиационная биология. Радиоэкология.* 2001;41(5):548–54.

33. Главин О. А., Дьоміна Е. А., Михайленко В. М., Маковецька Л. І., Дружа М. О., Гринченко О. О. Метформин як модифікатор окисного стану периферичної крові та життєздатності лімфоцитів людини під дією іонізуючого випромінювання. *Онкология.* 2020. Т. 22, № 1–2. С. 84–91.

34. Бурковская В. А. Радиационные (лучевые) поражения кишечника. *Гастроэнтерология Санкт-Петербурга.* 2013. № 3–4. С. 18–24.

35. Демидова Л. В., Дунеева Е. А., Бойко А. В., Новикова Е. Г., Дубовецкая О. Б. Осложнения
лучевой терапии при комбинированном лечении больных раком тела матки I стадии. Вестник РОНЦ им. Н. Н. Блохина РАМН. 2011. Т. 22, №4. С. 39–45.

36. Сычева И. В., Пасов В. В. Лучевые повреждения органов малого таза после лечения ранних стадий рака предстательной железы. Радиация и рис. 2014. Т. 23, № 4. С. 99–115.

37. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annual review of biochemistry. 1990. № 59. P. 631–660. DOI: https://doi.org/10.1146/annurev.bi.59.070190.003215

38. Freedman R. B. The formation of protein disulphide bonds. Current opinion in structural biology. 1995. № 5. P. 85–91. DOI: https://doi.org/10.1016/0959-440x(95)80013-q

39. Everett S.A., Wardman P. Perthiols as Antioxidants: Radical-Scavenging and Pro-oxidative Mechanisms. Methods in Enzymology: Biothiols, Part A: Monothiols and Dithiols, Protein Thiols, and Thiyl Radicals. 1995. Vol. 251. P. 55–69. DOI: https://doi.org/10.1016/0076-6879(95)51110-5

40. Hendry J.H., Potten C.S. Intestinal cell radiosensitivity: a comparison for cell death assayed by apoptosis or by alossofclonogenicity.International journal of radiation biology and related studies in physics, chemistry, and medicine. 1982. Vol. 42, № 6. P. 621–628. DOI: https://doi.org/10.1080/0955308214551601

41. Stephens L. C., Ang K. K., Schultheiss T. E. et al. Apoptosis in irradiated murine tumors. Radiation research. 1991. Vol. 127, № 3. P. 308–316.

42. Macklis R. M., Beresford B. A., Palayoor S. et al. Cell cycle alterations, apoptosis, and response to low-dose-rate radioimmunotherapy in lymphoma cells. International journal of radiation oncology, biology, physics. 1993. Vol. 27, № 3. P. 643–650. DOI: https://doi.org/10.1016/0360-3016(93)90391-8

43. Rached E., Schindler R., Beer K. T. et al. No predictive value of the micronucleus assay for patients with severe acute reaction of normal tissue after radiotherapy. European journal of cancer. 1998. Vol. 34, № 3. P. 378–383. DOI: https://doi.org/10.1016/s0959-8049(97)00373-0

44. Scott D. Chromosomal radiosensitivity, cancer predisposition and response to radiotherapy. Strahlentherapie und Onkologie. 2000. Vol. 176, № 5. P. 229–234. DOI: https://doi.org/10.1007/s000660050005

45. Antomonov M. Yu. Matematicheskaya obrabotka i analiz mediko-biologicheskikh danniy. MITs «Medinform». 2018. 579 p.

46. Джойнер М., Когель А. Основы клинической радиобиологии. Лаборатория знаний. 2013. 600 ц.

47. Troncone M., Cargnelli S. M., Villani L. A. et al. Targeting metabolism and AMP-activated kinase with metformin to sensitize non-small cell lung cancer (NSCLC) to cytotoxic therapy; translational biology and rationale for current clinical trials. Oncotarget. 2017. Vol. 8, № 34. P. 57733–57754. DOI: https://doi.org/10.18632/oncotarget.17496

48. cancer of the uterus. Bulletin of the Russian Oncology Center N.N.Blokhina RAMS. 2011;22(4):39–45. (In Russian).

49. Сычева IV, Пасов ВV. Radiation injuries of the pelvic organs after treatment of early stages of prostate cancer. Radiation and risk. 2014;23(4):99–115. (In Russian).

50. Kim PS, Baldwin RL. Intermediates in the folding reactions of small proteins. Annual review of biochemistry. 1990;59:631–60. (In English). DOI: https://doi.org/10.1146/annurev.bi.59.070190.003215

51. Freedman RB. The formation of protein disulphide bonds. Current opinion in structural biology. 1995;5:85–91. (In English). DOI: https://doi.org/10.1016/0959-440x(95)80013-q

52. Everett S.A., Wardman P. Perthiols as Antioxidants: Radical-Scavenging and Pro-oxidative Mechanisms. Methods in Enzymology: Biodehydrogen, Part A: Monothiols and Dithiols, Protein Thiols, and Thiyl Radicals. 1995. Vol. 251. P. 55–69. (In English).DOI: https://doi.org/10.1007/6879(95)51110-5

53. Hendry JH, Potten CS. Intestinal cell radiosensitivity: a comparison for cell death assayed by apoptosis or by a loss of clonogenicity. International journal of radiation biology and related studies in physics, chemistry, and medicine. 1982;42(6):621–8. (In English). DOI: https://doi.org/10.1080/0955308214551601

54. Stephens LC, Ang KK, Schultheiss TE et al. Apoptosis in irradiated murine tumors. Radiation research. 1991;127(3):308–16. (In English).

55. Macklis RM, Beresford BA, Palayoor S et al. Cell cycle alterations, apoptosis, and response to low-dose-rate radioimmunotherapy in lymphoma cells. International journal of radiation oncology, biology, physics. 1993;27(3):643–50. (In English). DOI: https://doi.org/10.1016/0360-3016(93)90391-8

56. Rached E, Schindler R, Beer KT et al. No predictive value of the micronucleus assay for patients with severe acute reaction of normal tissue after radiotherapy. European journal of cancer. 1998;34(3):378–83. (In English). DOI: https://doi.org/10.1016/s0959-8049(97)00373-0

57. Scott D. Chromosomal radiosensitivity, cancer predisposition and response to radiotherapy. Strahlentherapie und Onkologie. 2000;176(5):229–34. (In English). DOI: https://doi.org/10.1007/s000660050005

58. Antomonov MYu. Matematicheskaya obrabotka i analiz mediko-biologicheskikh danniy. MITs «Medinform». 2018;579. (In English).

59. Joyner M, Kogel A. Fundamentals of Clinical Radiobiology. Knowledge laboratory. 2013;600. (In Russian).

60. Troncone M, Cargnelli SM, Villani LA et al. Targeting metabolism and AMP-activated kinase with metformin to sensitize non-small cell lung cancer (NSCLC) to cytotoxic therapy; translational biology and rationale for current clinical trials. Oncotarget. 2017;8(34):57733–54. (In English). DOI: https://doi.org/10.18632/oncotarget.17496
Відомості про фінансування
Конфлікт інтересів
Інформація про фінансування

Відомості про авторів

Іванкова Валентина Степанівна – доктор медичних наук, професор, завідувач кафедри науково-дослідного відділення радіаційної терапії НЦОІ РНПМ. НЧМУ МОЗ України, вул. Ломоносова, буд. 33/43, м. Київ, Україна, 03022; e-mail: valentina_ivankova@ukr.net
моб.: +38 (050) 958-33-43.

Внесок автора: загальне керівництво проведеним клінічним дослідженням, розробка концепції клінічного розділу дослідження, написання тексту статті.

Інформація про авторів

Іванкова Валентина Степанівна – Doctor of Medical Science, Professor, Head of Radiation Oncology Research Department, National Cancer Institute of the Ministry of Health of Ukraine; 33/43, Lomonosov Str., Kyiv, Ukraine, 03022; e-mail: valentina_ivankova@ukr.net
моб.: +38 (050) 958-33-43

Author’s contribution: general management of clinical research, development of the study clinical section concept, writing the manuscript.
Михайлєно Віктор Михайлович – кандидат біологічних наук, старший науковий співробітник відділу біологічних ефектів іонізуючого і неіонізуючого випромінювання Інституту експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького Національної академії наук України; вул. Васильківська, буд. 45, м. Київ, Україна, 03022; e-mail: mvmik@yahoo.com mob.: +38 (050) 206-48-41.

Внесок автора: виконання експериментальних досліджень, статистична обробка отриманих даних, аналіз отриманих результатів, написання тексту статті.

Доміна Емілія Анатоліївна – доктор біологічних наук, професор, завідувачка відділу біологічних ефектів іонізуючого і неіонізуючого випромінювання Інституту експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького Національної академії наук України; вул. Васильківська, буд. 45, м. Київ, Україна, 03022; e-mail: edjomina@ukr.net mob.: +38 (067) 402-55-78.

Внесок автора: корегування радіобіологічного розділу виконаної роботи, аналіз та інтерпретація отриманих результатів.

Гринченко Ольга Олександрівна – провідний інженер відділу біологічних ефектів іонізуючого і неіонізуючого випромінювання Інституту експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького Національної академії наук України; вул. Васильківська, буд. 45, м. Київ, Україна, 03022; e-mail: griniiola@gmail.com mob.: +38 (093) 504-02-14.

Внесок автора: опромінення зразків крові, аналіз даних літератури стосовно препарату метформін.

Крulenко Тетяна Валеріївна – кандидат медичних наук, лікар з променевої терапії відділення клінічної радіоонкології з блоком брахітерапії Национального інституту раку Міністерства охорони здоров'я України; вул. Ломоносова, буд. 33/43, м. Київ, Україна, 03022; e-mail: khrulenko@ukr.net mob.: +38 (099) 904-01-73.

Внесок автора: статистичне опрацювання тексту статті, підбір літературних джерел.

Барановська Лідія Михайлівна – кандидат медичних наук, старший науковий співробітник, завідувачка клінічної радіоонкології з блоком брахітерапії Национального інституту раку Міністерства охорони здоров'я України; вул. Ломоносова, буд. 33/43, м. Київ, Україна, 03022; e-mail: lidabaranska@ukr.net mob.: +38 (067) 402-55-78.

Внесок автора: участя в організації та проведення експериментальних досліджень в рамках виконаної роботи, аналіз та коректування тексту статті, набір пацієнтів за темою виконаної роботи.

Hrinchenko Olha Oleksandrivna – Senior Engineer, Department of Biological Effects of Ionizing and Non-Ionizing Radiation, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine; 45, Vasylykivska Str., Kyiv, Ukraine, 03022; e-mail: grinolia@gmail.com ph: +38 (093) 504-02-14.

Author’s contribution: irradiation of blood samples, analysis of literature data on the drug metformin, participation in biochemical studies.