The VIMOS Ultra Deep Survey

The role of HI kinematics and HI column density on the escape of Lyα photons in star-forming galaxies at $2 < z < 4$

L. Guaita$^1$, M. Talia$^{2,13}$, L. Pentericci$^1$, A. Verhamme$^6$, P. Cassata$^3$, B. C. Lemaux$^5$, I. Orlitova$^9$, B. Ribeiro$^4$, D. Schaerer$^6$, G. Zamorani$^3$, B. Garilli$^7$, V. Le Brun$^8$, O. Le Fèvre$^8$, D. Maccagni$^3$, L. A. M. Tasca$^4$, R. Thomas$^1$, E. Vanzella$^1$, E. Zucca$^2$, R. Amorin$^{10,11}$, S. Bardelli$^2$, M. Castellano$^1$, A. Grazian$^1$, N.P. Hathi$^{4,8}$, A. Koekemoer$^8$, and F. Marchi$^1$.

1 INAF - Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monteporzio (RM), Italy
2 INAF - Osservatorio Astronomico di Bologna, Via Gobetti 93/3, 40129 Bologna, Italy
3 Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
4 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
5 Department of Physics, UC Davis, One Shields Avenue, Davis, CA 95616, USA
6 Geneva Observatory, University of Geneva, 51 Ch. des Maillettes, CH-1290 Versoix, Switzerland
7 INAF–IASF, via Bassini 15, I-20133, Milano, Italy
8 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
9 Astronomical Institute of the Czech Academy of Sciences, Boční II/1401, 140 00 Praha 4, Czech Republic
10 Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Avenue, Cambridge CB3 0HE, UK
11 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB30HA, UK
12 Dipartimento di Fisica e Astronomia, Università di Bologna, Via Gobetti 93/2, 40129 Bologna, Italy

Accepted on May 2017

ABSTRACT

Aims. We wish to assess the role of kinematics and neutral hydrogen column density in the escape and distribution of Lyα photons. We selected a sample of 76 Lyα emitting galaxies from the VIMOS Ultra Deep Survey (VUDS) at $2 < z < 4$. We estimated the velocity of the neutral gas flowing out of the interstellar medium as the velocity offset, $\Delta v$, between the systemic redshift ($z_{sys}$) and the center of low-ionization absorption line systems (LIS). To increase the signal to noise of VUDS spectra, we stacked subsamples defined based on median values of their photometric and spectroscopic properties. We measured the systemic redshift from the rest-frame UV spectroscopic data using the CIII$\alpha$1908 nebular emission line, and we considered SiII1526 as the highest signal-to-noise line. We calculated the Lyα peak shift with respect to the $z_{sys}$, the EW(Lyα), and the Lyα spatial extension, Ext(Lyα-C), from the profiles in the 2D stacked spectra.

Methods. The galaxies that are faint in the rest-frame UV continuum, strong in Lyα, with compact UV morphology, and localized in an underdense environment are characterized by outflow velocities of the order of a few hundreds of km sec$^{-1}$. The subsamples with smaller $\Delta v$ are characterized by larger Lyα peak shifts, larger Ext(Lyα-C), and smaller EW(Lyα). In general we find that EW(Lyα) anti-correlates with Ext(Lyα-C) and Lyα peak shift.

Results. The galaxies that are faint in the rest-frame UV continuum, strong in Lyα and CIII], with compact UV morphology, and localized in an underdense environment are characterized by outflow velocities of the order of a few hundreds of km sec$^{-1}$. An ISM with this value of N_H would favour a large amount of scattering events, but when the medium is static, it can explain large values of Ext(Lyα-C) and small EW(Lyα). On the contrary, an ISM with a larger N_H, but large velocity outflows would lead to a Lyα spatial profile peaked at the galaxy center (i.e. low values of Ext(Lyα-C)) and to a large EW(Lyα), as we see in our data. Our results and their interpretation via radiative-transfer models tell us that it is possible to use Lyα to study the properties of the HI gas. Also, the fact that Lyα emitters are characterized by large $\Delta v$ could give hints about their stage of evolution in the sense that they could be experiencing short bursts of star formation that push strong outflows.

Key words. Techniques: spectroscopy – Galaxies: Star-Forming Galaxies, Lyman Alpha Emitters, Scattering – ISM: kinematics

1. Introduction

The production of Lyα photons depends on the on-going star formation. However, the escape depends on a large variety of galaxy properties. It was shown by radiative transfer models, hydrodynamical simulations (Verhamme et al. 2006; Laursen et al. 2011; Orsi et al. 2012; Duval et al. 2014; Gronke & Dijkstra 2016), and observed in high- and low-redshift galaxies (Erb et al. 2014; Rivera-Thorsen et al. 2015; Henry et al. 2015; Trainor et al. 2015) that interstellar medium (ISM) dust is able to absorb Lyα photons and neutral hydrogen (HI) is able to scatter them. The emerging Lyα line profile can present two peaks (Neufeld 1990; Dijkstra et al. 2006; Verhamme et al. 2006). The dominant red
peak can be detected even in low-resolution spectra and its shift with respect to the systemic redshift is related to the neutral hydrogen column density \( N_{\text{HI}} \) and gas kinematics such as stellar outflows.

In medium- and high-resolution spectra, it is also possible to detect a blue peak. Radiative transfer models predict that, for simple geometries, the intensity of the blue peak and the separation between red and blue peaks are also connected with the HI column density (Verhamme et al. 2015) and dust content. Hashimoto et al. (2015) estimated \( N_{\text{HI}} \) in a sample of \( z \sim 2.2 \) galaxies by comparing the Ly\( \alpha \) profiles derived from the 1D spectra with the models described in Schauer et al. (2011). For the Ly\( \alpha \) emitting galaxies that showed a significant blue peak, these authors estimated \( N_{\text{HI}} \) lower than \( 10^{19} \) cm\(^{-2} \). Also, they measured an average velocity offset of the red peak with respect to the systemic redshift of the order of 170 km sec\(^{-1} \) and explained this value by \( N_{\text{HI}} \) as low as \( 10^{18.9} \) cm\(^{-2} \) (see also Verhamme et al. 2017). Shibuya et al. (2014a) investigated the role of the interstellar medium HI kinematics on the escape of Ly\( \alpha \) photons in a similar sample. They inferred the velocity of stellar outflows from the shift of the low-ionization absorption lines with respect to the systemic redshift (redshift of optical emission lines). They did not find any clear correlation between outflow velocity and Ly\( \alpha \) equivalent width and proposed that low \( N_{\text{HI}} \) can make a galaxy appear as a strong Ly\( \alpha \) emitter. However, it is difficult to disentangle the effect of kinematics and \( N_{\text{HI}} \) because a proper kinematics measurement implies a very good knowledge of the galaxy systemic redshift. In addition to this, complicated kinematics in the interstellar and also in the intergalactic medium can influence the Ly\( \alpha \) photon emission. For instance, the data studied in Smit et al. (2017) are consistent with a picture in which outflows of different velocities can shape the Ly\( \alpha \) emission line at different wavelengths starting from the main peak to the wings.

The propagation of Ly\( \alpha \) photons in the circum-galactic medium is also related to the HI properties and its scattering capability. The total size of the Ly\( \alpha \) emission was observed to be generally more extended than the rest-frame UV continuum (Steidel et al. 2011; Hayes et al. 2013; Momose et al. 2014; Guaita et al. 2015; Wisotzki et al. 2016). In a sample of local star-forming galaxies, Pardy et al. (2014) and Hayes et al. (2014) found that an HI gas characterized by \( N_{\text{HI}} > 10^{20} \) cm\(^{-2} \) can efficiently scatter Ly\( \alpha \) photons and produce the most extended Ly\( \alpha \) emissions. They also showed that the Ly\( \alpha \) equivalent width anti-correlates with the HI total mass. Matsuda et al. (2012) proposed that the Ly\( \alpha \) spatial extension strongly depends on environment. In fact, they found that the spatial extension of Ly\( \alpha \) increases as their surface density increases and that the highest values are observed in proto-clusters (see also Steidel et al. 2011). Furthermore, Momose et al. (2016) studied the Ly\( \alpha \) spatial extension as a function of physical properties. They found that the largest Ly\( \alpha \) emission sizes are observed for the galaxies with the smallest Ly\( \alpha \) equivalent width and brightest UV luminosity, which are possibly the most massive (see also Zheng et al. 2016).

In the past 10 years, the physical properties of the Ly\( \alpha \) emitting galaxies and in particular of the LAEs (Ly\( \alpha \) emitting galaxies with EW(Ly\( \alpha \)) > 20 \AA\) as defined for example in Gronwall et al. 2007) have been inferred from the spectral energy distribution analysis and from the multi-wavelength images and spectra. The LAEs tend to occupy the low-mass end of the star-forming galaxy mass distribution; they are compact in the rest-frame UV, characterized by low dust content, low metallicity, high specific star formation rates, and tend to be experiencing bursts of star formation (e.g. Finkelstein et al. 2011; Nakajima et al. 2012; Hashimoto et al. 2013; Shibuya et al. 2014b; Vargas et al. 2014; Hagen et al. 2014). However, Ly\( \alpha \) in emission is also observed for galaxies with a moderate amount of dust (e.g. Kornei et al. 2010; Guaita et al. 2011; Hathi et al. 2016). Also, there is evidence that the largest equivalent width LAEs present high-ionization state and low oxygen abundances (Erb et al. 2010; Nakajima et al. 2013; Trainor et al. 2016; Nakajima et al. 2016; Amorín et al. 2017). In fact, high-ionization absorption, such as the CIV\( \lambda 1550 \), doublet, and strong nebular emission lines, such as the collisionally excited CIII\( \lambda 1907 \), 1909 doublet, are detected in their spectra.

Stark et al. (2014) suggested a correlation between the equivalent width of CIII\( \lambda 1907 \), 1909 and Ly\( \alpha \). They studied a sample of 17 strongly lensed galaxies at \( z \sim 2 \) characterized by EW(CIII\( \lambda 1908 \)) up to 15 Å and EW(Ly\( \alpha \)) up to 150 Å and found that they are characterized by low stellar masses, low metallicity, and specific star formation rates more than 10 times those of typical \( z \sim 2 \) UV-selected star-forming galaxies. More recently, similar results were found by Amorín et al. (2017) (hereinafter A17) for a sample of 10 low-mass galaxies at \( z \sim 3 \), selected by their strong Ly\( \alpha \) (EW(Ly\( \alpha \)) > 45 Å) in the VIMOS Ultra-Deep Survey (Le Fèvre et al. 2015). While their properties closely resemble those typically found in galaxies at higher redshift (\( z > 6 \)); e.g. Smit et al. 2014; Stark et al. 2017, the above studies suggest that low-mass galaxies showing strong CIII\( \lambda 1907 \), 1909 emission might be experiencing a vigorous phase of rapid galaxy growth (e.g. Gawiser et al. 2007). However, other studies just show correlations with some scatter (e.g. Rigby et al. 2015). The model described in Jaskot & Ravindranath (2016), for example, shows a weak trend between the equivalent widths of CIII\( \lambda 1907 \) and Ly\( \alpha \). The scatter between these two quantities depends on the ionization parameter and metallicity of the starburst regions.

Using rest-frame UV spectroscopy of galaxies with both Ly\( \alpha \) and CIII\( \lambda 1907 \), 1909 in emission, we may focus on extreme cases of Ly\( \alpha \) emission, but we can set the systemic redshift just looking at the same spectrum. Knowing the systemic redshift allows us to derive information on the kinematics of the ISM, obtained from low-ionization absorption lines, which trace the HI gas. Therefore, we can disentangle the effect of kinematics and HI column density on the shape of the Ly\( \alpha \) emission line and its spatial extension.

With a large sample of Ly\( \alpha \)+CIII\( \lambda 1907 \), 1909 emitters from the VIMOS Ultra-Deep Survey (VUDS\(^1\); Le Fèvre et al. 2015; Tasca et al. 2017), we aim to study and characterize the spatial versus spectral escape of the Ly\( \alpha \) emission from galaxies to investigate further if scattering is the main powering mechanism of the extended Ly\( \alpha \) emission around galaxies. To do this, we present the Ly\( \alpha \) equivalent width, the shape of the Ly\( \alpha \) emission line, and the Ly\( \alpha \) spatial extension in stacked spectra.

The paper is organized as follows. In Sect. 2 we present the spectroscopic data used in this analysis; in Sect. 3 we describe the method used to estimate the systemic redshift, generate stacked spectra, and measure kinematics features; in Sect. 4 and 5 we show and discuss our results. We summarize our work in Sect. 7. Throughout the paper, we use AB magnitudes and air wavelengths, the equivalent widths are expressed in the rest-frame system, and we adopt a standard cosmology.

\(^1\) http://cesam.lam.fr/vuds/
2. Spectroscopic data

The spectra of the galaxies we analyse in this work are part of the VUDS, which is a deep spectroscopic survey of 10000 star-forming galaxies (SFGs) performed with the Visible MultiObject Spectrograph (VIMOS) instrument at the Very Large Telescope. The survey was designed to provide a complete census of high-redshift galaxies with the scope of studying the history of the global star formation, the build up of the mass function, and very young objects among many others. The VIMOS spectra are obtained with the LRBLUE and LRRERED-grism settings in low-resolution mode (R ~ 300). The survey covers three extragalactic fields: the COSMOS field, the extended Chandra Deep Field South (ECDF-S), and the VVDS-02h field. Each spectrum is the result of 14 hours of integration in a wavelength range between ~4000 and ~9500 Å, which allows the study of SFGs at 2 ≤ z ≤ 7, and is calibrated to air wavelength (for reference $\lambda_{\text{vacuum}}$ ([CIII]) = 1907.71 Å and $\lambda_{\text{air}}$ ([CIII]) = 1907.07 Å). Among the SFGs, we focused on the Ly$\alpha$ emitting galaxies ([EW(Ly$\alpha$)] > 0 Å, based on the EW measurements from Cassata et al. [2015] with reliable redshift (flags 3, 4, corresponding to a probability greater than 95% for the redshift to be correct) at 2 ≤ z ≤ 4.

We excluded the sources detected in the most recent Xray surveys, which are thought to be active galactic nuclei (AGNs). For the COSMOS field, we cross-matched the VUDS Ly$\alpha$ emitting galaxies with the catalogue presented in Civano et al. [2016]. We also double checked any possible Xray emission considering the catalogues by Civano et al. [2012], Kim et al. [2007], and Kalfountzou et al. [2014]. For ECDF-S, we considered the X-ray catalogues from Xue et al. [2013] and from the 3XMM-DR4 survey.[2] We also removed from our sample the sources from the AGN lists by Fiore et al. [2012] and by Xue et al. [2011]. For the VVDS-02h field, we excluded any source found in the XMD/SVVDS 4$\sigma$ Chiappetti et al. [2005] and in the 3XMM-DR4 survey catalogues.

The wavelength range of the spectra at 2 ≤ z ≤ 4 includes Ly$\alpha$, low-ionization interstellar absorption line systems (LIS), such as SII$\lambda$1260, CII$\lambda$1334, SII$\lambda$1526, and spectral features that trace the systemic redshift ($z_{\text{sys}}$). The LIS lines are produced in the ISM by the absorption of the stellar UV radiation and trace the kinematics of the HI gas (e.g. Talia et al. [2012]). The photospheric stellar absorption lines, such as OIV$\lambda$1343, SII$\lambda$1417, and SV$\lambda$1500 (e.g. Talia et al. [2012]), are the most commonly used systemic-redshift sensitive features. However, these lines tend to be very weak and do not reach enough signal to noise to provide the $z_{\text{sys}}$ of our individual spectra. Nebular emission lines, such as the CIII]1907,1909 doublet, are produced around massive stars in HII regions and can also trace the $z_{\text{sys}}$. Talia et al. [in prep] showed concordance between $z_{\text{sys}}$ obtained using stellar photospheric lines and that obtained from CIII for the star-forming galaxies in VUDS.

In the individual spectra of the galaxies in our sample, the CIII doublet is blended and we refer to it as CIII$\lambda$1908 [Stark et al. [2014]]. Even if we are limited by the low resolution, the CIII$\lambda$1908 emission line provides the most reliable systemic redshift when its (integrated flux) signal to noise (SN) is larger than 3. We excluded the cases in which CIII is blended to any OH line or is close to any artificial defect, which are situations that increase the noise locally (see Sec. 3.1).

Starting from 1070 Ly$\alpha$ emitting galaxies at 2 < z < 4, we kept 79 showing SN(CIII)$\lambda$1908 > 3. We then excluded three sources with UV-line ratios consistent with an AGN ionization. We measured CIV$\lambda$1550/CIII$\lambda$1908, CIV$\lambda$1550/HeII$\lambda$1640 and we referred to the figure A.2 in Feltre et al. [2016] for the exclusion. This figure shows CIV$\lambda$1550/HeII$\lambda$1640 versus CIV$\lambda$1550/CIII$\lambda$1908 and highlights the values of those ratios typical of star-forming galaxies and AGN. Finally, we compiled a sample of 76 galaxies. Among these galaxies, about two-thirds are characterized by Ly$\alpha$ equivalent width (EW) larger than 20 Å, the value commonly used to define Ly$\alpha$ emitters (LAEs).

In Fig. [1] we show the distributions of the properties of the 76 galaxies and of the initial 1070 sources. Our sample is not biased with respect to the initial sample in terms of physical properties, such as rest-frame UV magnitude, concentration, and redshift, except for EW(Ly$\alpha$) and stellar mass. The median EW(Ly$\alpha$) value of our sample is significantly larger than that of the 1070 sources. This is not surprising since we are selecting Ly$\alpha$ emitting galaxies that are also CIII emitters with SN(CIII)$\lambda$1908 > 3 and since earlier studies found, in general, a correlation between the CIII and Ly$\alpha$ equivalent widths [Stark et al. [2014]].

We considered the physical parameters obtained with the Le Phare SED fitting code [Arnouts et al. [1999]], which was applied to the VUDS data as outlined in Tasca et al. [2017]. By starting from the best available multiwavelength photometry and fixing VUDS spectroscopic redshift, they applied seven different Bruzual & Charlot [2003] models to obtain the best-fit stellar mass, star formation rate (SFR), age, and dust reddening. The models encompass star formation histories characterized by an exponentially decaying mode and delayed exponentially decaying modes. A Chabrier [2003] initial mass function is used and nebular emission lines are added to the stellar templates [Ilbert et al. [2009]]. The Ly$\alpha$+CIII emitters of our sample are characterized by stellar masses of log(M/M$\odot$) = [8.4-10.9] with a median value of log(M/M$\odot$) = 9.5, dust reddening E(B-V) = [0.0-0.3] with a median value of 0.1, and (uncorrected) SFR = 4-200 M$\odot$ yr$^{-1}$ with a median value of 20 M$\odot$ yr$^{-1}$.

In Fig. [2] we show stellar mass surface density, star formation rate surface density, and concentration versus stellar mass for the 1070 sources and for our 76 Ly$\alpha$+CIII emitters. The median stellar mass of our sample is 30% smaller than that of the initial sample and it is not characterized by extreme values of SFR and star formation rate surface density. Compared with the stellar mass surface density versus stellar mass of all the galaxies in VUDS [Ribeiro et al. [2016], Fig. 2 and 19], our sample occupies the low-mass end.

To summarize, our sample is composed of galaxies that tend to be faint and moderately concentrated in the rest-frame UV continuum. These galaxies are characterized by median rest-frame EW(Ly$\alpha$) = 27 Å, EW(CIII)$\lambda$1908 = 7.9 Å, and a median stellar mass of 2.9 × 10$^8$ M$\odot$ (Fig. [1] and Table [1]).

3. Method

Since the escape and the large-scale propagation of Ly$\alpha$ photons depend on the ISM kinematics, we wish to estimate kinematics features and its dependency with Ly$\alpha$ equivalent width, Ly$\alpha$ line shape, and Ly$\alpha$ spatial extension.

We first measured the systemic redshift of each Ly$\alpha$+CIII emitting galaxy (Sec. 3.1) and we defined six pairs of subsamples (listed in Table [1]) and described in Sec. 3.2, based on physical and spectral properties, i.e. rest-frame UV magnitude, Ly$\alpha$ and CIII$\lambda$1908 equivalent width, rest-frame UV concentration, environment density, and stellar mass; we stacked these pairs to increase the signal to noise of the individual spectra (Sec. 2).

2 http://xmmssc-www.star.le.ac.uk/Catalogue/3XMM-DR4/
Fig. 1. Distribution of $R$ magnitude (top left), EW(Ly$\alpha$) (top right), rest-frame UV concentration (bottom left), redshift (bottom right) of our sample of 76 sources (empty histograms in the inserts). Filled histograms correspond to the distributions of the 1070 Ly$\alpha$ emitting galaxies at $2 < z < 4$. The vertical dashed lines indicate the median value of each histogram. In the top left panel, the dot-dashed vertical lines indicate the median $R$ values of the two bins obtained, separating the sample with respect to the median of the 76-galaxy distribution.

Fig. 2. Stellar mass density (left), star formation rate surface density (middle), and rest-frame UV concentration (right) as a function of stellar mass. To calculate the stellar mass surface density, we used the total-light radius, $r_{100}$, while to calculate the star formation rate surface density, we used the half-light radius, $r_{50}$, according to the definitions in Ribeiro et al. (2016). The size measurements can be performed for a limited number of sources for which the HST coverage is available. Black dots represent the Ly$\alpha$ emitting galaxies at $2 < z < 4$, while red dots correspond to those with SN(CIII$\lambda$1908) > 3.

3.3). Then, we considered the LIS lines that trace the neutral gas to infer the HI kinematics (such as the velocity of stellar inflows/outflows). We quantified the kinematics by evaluating the offset between the systemic redshift and the central wavelength of the highest signal-to-noise LIS (Sec. 3.4).

3.1. Systemic redshift

The rest-frame UV continuum of the Ly$\alpha$ emitting galaxies in our sample is faint with a median $R$ magnitude of 24.5. Stellar photospheric absorption lines, which are intrinsically weak features, have a signal to noise that is too low and cannot be recognized in individual spectra. Therefore, we estimated the systemic redshift ($z_{\text{sys}}$) from the CIII$\lambda$1908 (Fig. 3). To estimate $z_{\text{sys}}$, we started with the VUDS redshift as a guess, and we fit together the CIII$\lambda$1908 emission line and the continuum around it. We used
the \texttt{optimize.leastsq} python function (as applied also in Guaita
et al. 2015) by assuming a Gaussian profile, that the continuum
has a well-defined slope (linear fit), and including the VUDS
noise spectrum in the minimization procedure. This noise con-
tains the information of the observation and the instrumental un-
certainty. In fitting the continuum, we excluded the wavelength
regions occupied by absorption lines that could alter the slope.
We derived the galaxy systemic redshift from the best-fit mean
of the Gaussian profile.

3.2. Definition of the subsamples

From the VUDS spectra, we can compute three complementary
Ly\textalpha quantities: the equivalent width EW(Ly\textalpha), the Ly\textalpha peak
shift compared to systemic redshift, and the spatial extension of
the Ly\textalpha line in the direction perpendicular to the slit (see the
definitions below). The last two quantities are not measurable
with enough accuracy on individual spectra, but on stacks only,
as described later. In order to investigate which physical param-
eter, if any, drives the escape of Ly\textalpha radiation from galaxies, we
computed several physical quantities for our galaxies. Then, we
separated the sample of 76 galaxies in halves, according to the
median values of \( R\) magnitude (representing the rest-frame UV
at \( 2 < z < 4 \)), EW(Ly\textalpha), EW(CIII]1908), and stellar mass as
shown in Table 1.

The equivalent widths of CIII]1908 are consistent with the values
typical of metal-poor galaxies (A17). The equivalent widths of
Ly\textalpha and CIII]1908 were calculated in the 1D spectra
from the flux integrated within the Gaussian fits of the lines
and the fitted level of the local continua. From our total sample
of 76 sources, 34 are located in the fields with HST coverage
(Koekemoer et al. 2007, 2011; Grogin et al. 2011): we consider
the rest-frame UV light concentration, \( C_{UV} \), measure in Ribeiro
et al. (2016) (equations 6, 7, 18, and 21). We generated two sub-
sets, separating the 34 galaxies in halves according to the median
\( C_{UV} \) value (2.4).

A Monte Carlo Voronoi tessellation technique was applied to
the VUDS fields to estimate local (number) densities of galaxies
Lemaux et al. (2016) and Lemaux et al., in prep, where the
technique is adapted for VUDS). We defined the delineation
point for overdense and underdense regions as being the me-
dian density of a sample of VUDS galaxies in the redshift range
\( 2 < z < 4 \) matched in stellar mass to the Ly\textalpha emitting galaxy
sample presented in this study. According to this density defini-
tion, we found that 26 out of 76 Ly\textalpha emitting galaxies are lo-
cated in underdense and 50 in overdense regions. We generated
the stacks of the 26 and 50 sources as shown in Table 1.

3.3. Stacking procedure

To generate the stacked 1D spectra, we normalized each
observed-frame spectrum to the value of its continuum at 1650-
1850 \( \AA \), a wavelength region free of strong absorption lines
(Talia et al. 2012), and we obtained the rest-frame spectra using
their \( z_{sys} \). We took the median of the systemic redshifts within
each subsample as the representative of the subsample stack.
The range in \( z_{sys} \) within each subsample produces a range in
wavelength steps of less than 0.5 \( \AA \) in the rest frame (Fig. [)].
Therefore, we resample each spectrum to a wavelength step of

\[
step_{\lambda} = \frac{5.355}{1 + \text{median}(z_{sys})},
\]

where 5.355 is the nominal VIMOS LR \( \AA \)/pixel scale (of the
observed-frame spectra) and \( \text{median}(z_{sys}) \) is the median \( z_{sys} \)
of a certain subsample. Then, we stack the normalized rest-frame
spectra by performing an average combination. The whole
spectrum of each subset is presented in Appendix A. The noise
of the stacked spectrum is created from the square root of the
sum of the squares of the VUDS noise spectra of the N sources
in a subsample.

\[
noise_{\text{stack}} = \frac{\sqrt{\sum_{N}^{N}(\text{noise}_{i}^{2})}}{N}.
\]

In Fig. A.1 and A.2 we show the stacked 1D spectra of each sub-
sample and we indicate emission and absorption features with
vertical lines. The blue dashed, red dashed, and green solid lines
indicate Ly\textalpha, HeII, and CIII], respectively. The black dashed
lines indicate LIS and the dashed yellow stellar absorption lines.
The stellar features are within the continuum noise. Instead, the
Ly\textalpha and CIII]1908 emission lines and a few ISM absorption
lines present enough signal to noise (larger than 3) to be identi-
fied with certainty. The equivalent widths of the absorption lines
in the stacked spectra are also estimated from the ratio between
the fluxes integrated within the Gaussian-fit curves and the lin-
early fitted continuum levels.

We also analysed the shape of the Ly\textalpha emission line in the
stacked 1D and 2D spectra. Ly\textalpha peaks redward of \( z_{sys} \) and we
estimated the corresponding velocity shift (Ly\textalpha peak shift) by
fitting a Gaussian curve to the Ly\textalpha emission line in the 1D spec-
trum and by taking the best-fit center of the Gaussian (Fig. [i].

To estimate the errors on the Ly\textalpha peak shift, we applied the
bootstrap technique. We adopted this technique because the un-
certainties are calculated directly from the spectra as they are,
without the need of choosing an arbitrary method to perturb the
spectra fluxes, as the usual Monte Carlo technique would re-
quire. Also, it is a random sampling technique that is able to
deal with small samples. Following the bootstrap prescription,
for the stacked spectrum of each subsample we generated 100
fake stacks, each one constructed from a group of galaxies drawn
with a replacement from the subsample that was used for the real
Table I. Characteristics of the sub-sample stacks

| sub-sample property | N | z_{Lyα} median | R_{median} | SFR_{median} M_{\odot} yr^{-1} | M_{median} M_{\odot} |  \Delta(V_{HI}) km sec^{-1} | EW(SII) Å | EW(CIII) Å | EW(Lyα) Å | Ext(Lyα) Å | Lyα peak shift km sec^{-1} |
|---------------------|---|----------------|------------|-------------------------------|---------------------|-----------------------------|------------|-------------|-------------|-------------|-----------------------------|
| R  \leq 24.5        | 38 | 2.9           | 24.7±0.1   | 11.0±3.3                      | 4.4±1.1             | 2.8±0.2                     | -280±100   | -1.6±0.5    | 13.3±1.8   | 58.4±9.0   | 5.3±0.6                    | 17.5±6.2 |
| R  > 24.5           | 38 | 2.5           | 24.0±0.1   | 28.8±8.6                      | 2.8±1.7             | 3.1±2.5                     | -20±80     | -0.9±0.3    | 6.2±0.9    | 22.7±3.8   | 6.0±0.6                    | 428±110  |
| EW(Lyα) \geq 27 Å  | 38 | 2.7           | 24.6±0.1   | 14.0±3.6                      | 4.5±1.5             | 3.1±3.1                     | -30±110    | -2.2±0.4    | 11.8±2.2   | 17.3±100    | 5.3±0.4                    | 196±60   |
| EW(Lyα) < 27 Å     | 38 | 2.6           | 24.3±0.1   | 19.5±8.7                      | 2.9±0.5             | 2.8±1.6                     | -30±60     | -1.6±0.6    | 7.6±1.0    | 9.7±1.3    | 6.4±0.6                    | 51±98    |
| EW(CIII) \geq 79 Å | 38 | 2.7           | 24.7±0.1   | 12.7±8.3                      | 4.1±1.1             | 3.0±0.3                     | -430±180   | -1.2±0.7    | 12.2±2.0   | 58.2±116    | 4.8±0.5                    | 207±80   |
| EW(CIII) < 79 Å    | 38 | 2.5           | 24.2±0.1   | 20.1±5.6                      | 3.3±1.6             | 2.7±0.8                     | -30±50     | -1.8±0.3    | 4.6±0.2    | 22.0±0.3   | 6.3±0.5                    | 307±58   |
| CII \geq 2.5       | 17 | 2.7           | 24.5±0.1   | 17.5±4.9                      | 3.1±1.4             | 3.2±1.8                     | -70±60     | -1.1±0.3    | 8.8±1.0    | 32.3±5.8   | 7.5±0.5                    | 284±76   |
| CII < 2.5          | 26 | 2.6           | 24.4±0.1   | 17.6±11.2                     | 3.5±0.6             | 2.7±3.7                     | -400±170   | -1.6±0.8    | 11.5±3.0   | 58.4±13.8  | 5.0±0.8                    | 160±85   |
| M_{\leq 2.9E+9 M_{\odot}} | 88 | 2.6           | 24.5±0.1   | 14.7±3.3                      | 3.1±0.9             | 1.9±0.2                     | -63±110    | -1.4±0.5    | 8.0±0.8    | 41.0±7.6   | 5.8±0.5                    | 322±69   |

Notes. The columns correspond to (1) the properties that define the sub-samples: R magnitude, Lyα and CIII1909 equivalent widths, rest-frame UV concentration, field density, and stellar mass of the galaxies in our sample; (2) the number of sources in each sub-sample. Some of the sources in each sub-sample we report (3) the median systemic redshift, (4) the median R-band magnitude, (5) the median star-formation rate, obtained from the SED fitting, (6) the median star formation rate density calculated from the SFR and from the PSF-corrected half-light-radius measured in the HST I-band broad-continuum, and (7) the median stellar mass also obtained from the SED fitting. We report the error bars on the median values. It is up to 0.1 for R, of the order of 5 for SFR, 0.5-1.7 for SFR, 0.2-3.7 for M.. Then, we show six quantities calculated in the stacks of the sub-samples: (8) the velocity offset between CIII and SIII1526, (9) the rest-frame equivalent width of the SIII1526 absorption line, (10) the rest-frame equivalent width of CIII1908, (11) the rest-frame equivalent width of Lyα, (12) the 2D Lyα spatial extension, (13) the Lyα peak shift.

stack. On the fake stacks, we performed the same measurements as in the real stack. We estimated the Gaussian-fit parameters in each fake realization and calculated the standard deviation among the 100 realizations. We explored the possibility of fitting the Lyα emission line with more sophisticated curves, such as a skewed Gaussian function with the following form:

\[ f(\lambda) = Ne^{-(\lambda-\bar{\lambda})^2/2\sigma^2} \times [1 + erf((\lambda - \bar{\lambda})/2\sigma)], \]

where \( \bar{\lambda} \) is the skewed parameter. However, given the low resolution of our spectra, the best-fit parameters obtained with this skewed Gaussian function are consistent with those obtained with a normal Gaussian fit. An example is shown in Fig. 4. We can see that symmetric and asymmetric curve fits produce consistent parameters within the bootstrap errors. Therefore, we perform our analysis of the 1D Lyα profiles with the simplest approach (i.e. the Gaussian fit).

To evaluate the spatial extension of the Lyα emission in each sub-sample, we first obtained the rest-frame 2D spectra and we aligned them in the spatial direction (Cassata et al., in prep). We then averaged the aligned 2D spectra via the IRAF task *combine*. The Lyα spatial extension is estimated by fitting a Gaussian curve to the spatial profiles of Lyα and UV continuum around 1500 Å (Fig. 5). We obtain the full width half maximum (FWHM) of the Gaussian best fits (FWHM(Lyα) and FWHM(Cont)). We define the Lyα spatial extension with respect to the continuum as

\[ \text{Ext}(\text{Lyα} - C) = \sqrt{\text{FWHM}(\text{Lyα})^2 - \text{FWHM}(\text{Cont})^2}. \]

When FWHM(Lyα) > FWHM(Cont), the Lyα spatial profile is more extended than the rest-frame UV continuum and Ext(Lyα-C) is defined. We adopt this definition to implicitly consider the deconvolution with the point spread function (PSF) of the observations, which is difficult to quantify in the stacked spectrum. In fact, a subtraction in quadrature of the PSF FWHM from FWHM(Lyα) and FWHM(Cont) cancels out in our formul\[3\].

\[ \text{Ext}(\text{Lyα-C}) \text{ measure could be an lower limit of the true Lyα spatial extension. In fact, VUDS spectra are corrected for slit losses based on continuum magnitudes (Le Fèvre et al. 2015), but additional losses could affect Lyα if its emission is significantly more extended.} \]

Fig. 4. Flux density (f,) normalized to the area below the curves of the Lyα (black dots) emission line. We present the 1D-stack of the sub-sample of the galaxies with EW(Lyα) > 27 Å on the top and with EW(Lyα) < 27 Å on the bottom panel. In the left panels, we show the symmetric (red) and asymmetric (green) Gaussian best fits. In the right panels, we show the best fits of the 100 realizations of the same line generated to calculate the bootstrap uncertainties. For the EW(Lyα) > 27 Å sub-sample, the Lyα peak shift from the symmetric (asymmetric) Gaussian fit is 196 ± 60 km sec^{-1} (163 ± 63 km sec^{-1}). For the EW(Lyα) < 27 Å sub-sample, it is 510 ± 98 km sec^{-1} (516 ± 114 km sec^{-1}) for the symmetric (asymmetric) Gaussian fit.
This definition does not consider the difference in surface brightness of galaxies at different redshifts. This could be a limit of our approach. However, we emphasize that the median $R$ magnitude and $z_{\text{sys}}$ are very similar for all the subsets.

In Table \[1\] we show the properties of each subsample, such as the median systemic redshift, $R$ magnitude, SFR, star formation rate surface density ($\Sigma_{\text{SFR}}$), stellar mass, and SII velocity offset ($\Delta v$), equivalent width of the SII1526 absorption line, CIII$^{1908}$, Ly$\alpha$ equivalent widths, Ly$\alpha$ spatial extension, and Ly$\alpha$ peak shift of the stacks. Star formation rate and stellar mass are obtained from the SED fitting; the star formation rate surface density [Heckman et al. 2015] is obtained from SFR and the PSF-corrected half-light-radius,

$$\Sigma_{\text{SFR}}[M_\odot yr^{-1} kpc^{-2}] = \frac{SFR}{2 \pi R_{1/2}^2},$$

where $R_{1/2}$ is the PSF-corrected half-light radius of a galaxy as defined and estimated in Ribeiro et al. (2016).

The large error bar on the median stellar masses in the table indicate that the galaxies in each subset can be characterized by masses in the entire range of stellar masses, $\log(M_*/M_\odot) = [8.5-11]$.

### 3.4. Kinematics features

To quantify the ISM kinematics, we focused on the velocity offset between the central wavelength of the LIS lines and the systemic redshift of the stacked spectra. We chose the two absorption lines with the highest signal to noise in the majority of our stacked spectra, SII1260 and SII1526 (see Fig. A.1 and A.2).

We first set the systemic rest frame of the stacked spectrum in the following way. We fit the stacked-spectrum CIII$^{1908}$ line by assuming that the ratio between the fluxes of the lines of the doublet is 1.5 (Sec. 2, Keenan et al. 1992).

than the continuum (e.g. Huang et al. 2016). For instance, Ly$\alpha$ emission elongated perpendicularly to the spatial direction will be strongly affected by slit losses. Since we are considering stacks it is reasonable that severe losses will be compensated.

An uncertainty in the flux ratio ($F(1907)/F(1909)$) of the CIII doublet could be translated into an uncertainty in the systemic redshift. As we then fit negative Gaussian+continuum functions to the SII1260 and SII1526 systems. We assumed that the two SII lines have the same velocity because they are transitions of the same element, but a different amplitude, and we searched for the best-fit velocity. We adopted the noise of the stacked spectrum in the minimization procedure.

The velocity offset between the LIS and the systemic redshift is calculated from the best-fit central wavelength of the SII Gaussian fit, $\lambda_{\text{best}}(SII)$,

$$\Delta v(SII) = c \times \frac{\lambda_{\text{best}}(SII) - \lambda_{\text{SII}}^{\text{air}} - z_{\text{sys}}}{\lambda_{\text{SII}}^{\text{air}} - z_{\text{sys}}},$$

where $\lambda_{\text{SII}}^{\text{air}} - z_{\text{sys}}$ is the theoretical wavelength of SII in the air and $c$ is the speed of light in km sec$^{-1}$. There can be a significant negative value of $\Delta v(SII)$. This is interpreted as the fact that the neutral gas is predominantly flowing out of the galaxy; there could be a gas component either at systemic redshift or inflowing, which is hidden within the outflowing gas. A $\Delta v(SII)$ value consistent with $0$ km sec$^{-1}$ can indicate either a static medium or a medium in which there are equal inflowing and outflowing gas components.

To estimate the errors on $\Delta v$, as well as on the equivalent widths, and Ext(Ly$\alpha$), we also applied the bootstrap technique. For the Ly$\alpha$ peak shift, we estimated the Gaussian-fit parameters in each fake realization and calculated the standard deviation among the 100 realizations. The standard deviation of $\lambda_{\text{best}}(SII)$ provides the error on $\Delta v$.

### 4. Results

We present here the measurements obtained applying the methods described in section 3. The measured quantities involved in the 2D stacking of the LIS lines are equivalent widths, gas velocities, and Ly$\alpha$ peak shift, and 2D, such as Ext(Ly$\alpha$), stacks. The scope of these measurements is to study simultaneously the Ly$\alpha$ spectral and spatial escape from the typical galaxy in each subset listed in Table 1.

Fig. 5 shows the significance of the differences of the Ly$\alpha$ parameters and $\Delta v$ within the pairs of subsamples. The subsamples of the galaxies that are faint and concentrated in the rest-frame UV characterized by EW(CIII$^{1908}$) $\geq 7.9$ Å have EW(Ly$\alpha$) more than 2$\sigma$ higher than the paired subsamples. The stacks of the galaxies located in overdense and underdense regions, and those of the most and the least massive galaxies show consistent EW(Ly$\alpha$) values within the uncertainties.

Differences of the order of 2$\sigma$ are observed for $\Delta v$, except for the pairs of subsets separated based on the median value of the stellar mass and the rest-frame UV concentration for which the velocity offsets are consistent. The galaxies brighter than $R = 24.5$ and more extended than the median in the rest-frame UV, which are characterized by EW(Ly$\alpha$) $< 27$ Å, EW(CIII$^{1908}$) $< 7.9$ Å, and localized in overdense regions, have a medium that is consistent with being static. The paired subsamples show a calculated in Keenan et al. (1992).

Fig. 10(F) (F(1907)/F(1909)) varies from 1.5 to 0 for $1.5 < \log(n_{\text{e}}) < 6.5$ cm$^{-3}$ and it is unchanged for $5000 < T_e < 50000$ K (their Fig. 1). For $\log(n_{\text{e}}) < 3.5$ cm$^{-3}$, the ratio is constant as $F(1907)/F(1909) = 1.5$. Sanders et al. (2016) measured the electron density of a sample of 25 star-forming galaxies with SFRs that are consistent with those of our sample. By using the flux ratios of nebular doublets, they infer a typical $n_{e}$ of $\sim 250$ cm$^{-3}$ (their Fig. 3 and section 3.4). Previous measurements had calculated values up to 1000 cm$^{-3}$ for which we can still adopt $F(1907)/F(1909) = 1.5$ (Talia et al. 2012) and infer a reliable $z_{\text{sys}}$. The large error bar on the median stellar masses in the table indicate that the galaxies in each subset can be characterized by masses in the entire range of stellar masses, $\log(M_*/M_\odot) = [8.5-11]$.
medium with a net flow out of the galaxy with a velocity larger than 300 km sec\(^{-1}\).

In terms of Ext(Ly\(\alpha\)-C) and Ly\(\alpha\) peak shifts, differences within pairs can be observed, but tend to be less significant for some subsets. One of the limiting factors is that the spectra are obtained with VIMOS in low-resolution mode with a sampling of about 1 Å/pixel (∼250 km sec\(^{-1}\) at Ly\(\alpha\) and ∼150 km sec\(^{-1}\) at \(\lambda\)CIII\(\lambda\)1908). In addition, the sky subtraction technique (a lower-order spline fit along the slit for each wavelength sampled: Le Pèvre et al. 2015) could produce an over subtraction near strong lines, such as a strong Ly\(\alpha\). The over subtraction (seen as negative pixel values) is particularly evident in stacked spectra and it can limit the accuracy of the spatial extent measurement. The difference of Ext(Ly\(\alpha\)-C) we measure is generally of the order of 1\(\sigma\).

For the subsets of the most/least UV concentrated galaxies, the parameters are consistent. The stacks of the galaxies that are bright in the rest-frame UV, faint in Ly\(\alpha\), and less massive than the median are characterized by Ly\(\alpha\) peak shifts 2\(\sigma\) larger than the UV faint, Ly\(\alpha\) bright, and more massive galaxies.

In general, the error bars of all the measurements in the stacks of the most/least UV concentrated galaxies are large. One of the reasons is the smaller number of sources in comparison to the other subsamples.

Fig. 7 is the most significant figure in the paper: this figure shows the three Ly\(\alpha\) parameters that are outputs of the phenomena that allow the propagation inside and escape out of a galaxy. For the subsets for which the differences in the three parameters are significant (see Fig. 6), EW(Ly\(\alpha\)) anti-correlates with Ext(Ly\(\alpha\)-C) and Ly\(\alpha\) peak shift. This trend is discussed in the following section. The bootstrap error bars of Ext(Ly\(\alpha\)-C) for the galaxies with C\(\text{UV} \leq 2.4\) are the largest. Also, the galaxies in the C\(\text{UV} \leq 2.4\) subset are characterized by a larger variety of Ly\(\alpha\) profiles and EW(Ly\(\alpha\)) than the C\(\text{UV} \geq 2.4\) subset. The median of the EW(Ly\(\alpha\)) measured in the individual spectra of the galaxies belonging to the C\(\text{UV} \leq 2.4\) subset is 13 ± 6 Å, while for the individual spectra of the galaxies in the C\(\text{UV} \geq 2.4\) subset is 83 ± 21 Å.

In Fig. 8 we wish to enlighten any possible trend between physical and Ly\(\alpha\) properties. The first row of the figure shows that large outflow velocities seem to favour large values of EW(Ly\(\alpha\)), small values of Ext(Ly\(\alpha\)-C) and small Ly\(\alpha\) peak shifts. In the following section, we discuss the role of outflows in the generation of a Ly\(\alpha\) emission with certain values of equivalent width, spatial extension, and peak shift. Galaxies that are very concentrated and faint in the rest-frame UV have the largest outflow velocities (Δν ≥ 300 km sec\(^{-1}\)) and EW(Ly\(\alpha\)) ≥ 40 Å. The Ly\(\alpha\) photons emitted from galaxies that are bright in the rest-frame UV show larger Ext(Ly\(\alpha\)-C) values and larger Ly\(\alpha\) peak shifts than the paired subsets. Low-EW(CIII\(\lambda\)1908) sources are characterized by a large HI column density and hence large Ext(Ly\(\alpha\)-C) values. These sources also show larger Ly\(\alpha\) peak shifts than the subset of high-EW(CIII\(\lambda\)1908) galaxies. We do not observe significant trends between Ly\(\alpha\) properties and stellar mass.

5. Discussion

The aim of this work is to investigate the effect of HI gas kinematics and other gas/galaxy properties, such as the HI column density, on the escape and large-scale propagation of Ly\(\alpha\) photons in star-forming galaxies. We investigate the gas kinematics in terms of the velocity of the outflowing HI gas and we study the dependency of the outflow velocity inferred by SiII as a function of the equivalent width, spatial extension, and red peak shift of Ly\(\alpha\) with respect to the systemic redshift.

Before interpreting the kinematics of the gas in the galaxies of our sample, we comment on the dependency of outflow velocity on star formation properties (Sec. 5.1). Then, we propose a model to explain our results (Sec. 5.2) and we interpret the observed trends in Sec. 5.3.

5.1. Star formation properties

Based on a simple model, when the pressure created by supernovae, stellar winds, and the radiation field from the star formation exceed the weight of the galaxy disk, an outflow can be launched perpendicular to the galactic plane. The strength of this outflow depends on the SFR per unit of area. Heckman (2001) proposed the existence of a SFR threshold above which a galaxy would be able to support outflows. Later on, they investigated the scaling relations of the outflow velocity with physical parameters and found that it weakly correlates with stellar mass, but strongly with SFR and S\(\Sigma_{\text{SFR}}\) (Heckman et al. 2015; Alexander et al. 2015; Heckman & Borthakur 2016). Newman et al. (2012) studied the kinematics in a sample of ∼2 star-forming galaxies with SFRs from a few tens to a few hundreds of M\(\odot\) yr\(^{-1}\), where S\(\Sigma_{\text{SFR}}\) > 100 M\(\odot\) yr\(^{-1}\), compact (τ/2 < 3 kpc), face-on galaxies, which, by consequence, are characterized by S\(\Sigma_{\text{SFR}}\) > 1 M\(\odot\) yr\(^{-1}\) kpc\(^{-2}\). Chisholm et al. (2015) showed that the strongest outflows can also arise from merging events.

In Table 1, we report the median values of SFR and S\(\Sigma_{\text{SFR}}\) per unit of area, obtained from the same definition in Heckman et al. (2015). We do not see a clear proportionality between S\(\Sigma_{\text{SFR}}\) and outflow velocity. However, we can see that in the subsamples for which the difference between the Δν values are more significant, there are also notable differences in the S\(\Sigma_{\text{SFR}}\) values. In particular a higher value of Δν is related to a higher value of S\(\Sigma_{\text{SFR}}\) (first three rows of Table 1).

The SFR and size conditions of the typical galaxy of our subsamples could allow the formation of outflows and we want to investigate how much they contribute to the escape and propagation of Ly\(\alpha\) photons.

5.2. Theoretical model

We compare our observational results with the theoretical model by Verhamme et al. (2006). We chose this model because it allows us to predict the quantities we are considering in this work, such as Ly\(\alpha\) equivalent width, spatial extension, and peak shift, with respect to HI column density and outflow velocity.

The model predicts the shape of the Ly\(\alpha\) emission line, by assuming an expanding, spherical, homogeneous, and isothermal shell of neutral hydrogen surrounding a central starburst. The stars emit UV continuum and the Ly\(\alpha\) radiation is produced in the ISM. The expanding shell is characterized by an expansion velocity, V\(_{\text{exp}}\), which can mimic the outflow velocity. By following a Monte Carlo approach, Ly\(\alpha\) photons follow a random path encountering HI atoms and dust grains. The model produces the Ly\(\alpha\) spectrum out of the galaxy depending on the shell parameters, such as V\(_{\text{exp}}\), HI column density, and dust absorption optical depth.

For increasing HI column density, the Ly\(\alpha\) main peak is increasingly red-shifted (Verhamme et al. 2015). However, outflow velocities larger than 300 km sec\(^{-1}\) could allow some of the Ly\(\alpha\)
Fig. 6. Measurements of EW(Lyα) (first panel), Ext(Lyα-C) (second panel), Lyα peak shift (third panel), and ∆v (fourth panel), together with the bootstrapping (see text) error bars for the subsamples listed in Table 1. The symbols correspond to the subsets listed in Table 1: galaxies fainter (brighter) than the median R magnitude of the entire sample are shown as red (blue) triangles; galaxies characterized by EW(Lyα) larger (smaller) than the median value are shown as red (blue) filled circles; galaxies characterized by EW(CIII]1908) larger (smaller) than the median value as red (blue) diamonds; galaxies with rest-frame UV concentration larger (smaller) than the median value as red (blue) hexagons; galaxies with Ext(Lyα-C) larger (smaller) than the median value as red (blue) squares; galaxies in overdense (underdense) regions as red (blue) tilted triangles; and galaxies more (less) massive than the median value as red (blue) pentagons.

Fig. 7. Lyα equivalent width vs. Lyα spatial extension in kpc. The colour coding follows the values of the Lyα peak shift. The symbols represent different subset listed in Table 1 as shown in Fig. 6.

photons to escape at the systemic redshift (the Lyα peak would be significantly red-shifted if N_HI > 10^{20} cm^{-2}; see Fig. 2 in Verhamme et al. 2015). An HI gas characterized by those high velocities and low to moderate N_HI is not efficient in scattering Lyα photons. As a consequence, the majority of the Lyα flux is peaked in the center of the galaxy and does not produce an extended Lyα spatial profile. The models from Barnes & Haehnelt (2010) also indicate that the Lyα emission becomes more centrally peaked with the increase of the velocity of the HI bulk (see also Gronke & Dijkstra 2016).

With the Verhamme et al. (2006) model, it is possible to study Lyα spatial extension and equivalent width at given shell parameters. The model predicts that the Lyα spatial extension is proportional to N_HI and depends on the scattering capability of the HI gas. For N_HI > 10^{19} cm^{-2}, the scattering is efficient. So, a very large V_{exp} would be needed to make a compact Lyα emission. For N_HI < 10^{19} cm^{-2}, the Lyα emission is spatially compact independently on V_{exp} (Verhamme et al. in prep). Also, it is possible to predict that EW(Lyα) increases when the optical depth of the ISM decreases. Since dust completely absorbs Lyα photons, it reduces the amount of photons coming out towards the center and those that are distributed on a large scale. As a consequence EW(Lyα) and Ext(Lyα-C) decreases. On the other hand, the HI gas scatters Lyα photons away from the line of sight (Verhamme et al. in prep).

5.3. Interpretation of the observed small outflow velocity, small Lyα equivalent width, and large Lyα spatial extension

As described in Sec. 4, the subsamples of the galaxies that are bright in UV and faint in Lyα show Lyα peak shifts up to 500 km sec^{-1}, Ext(Lyα-C) larger than 6 kpc, EW(Lyα) < 40 Å, and are characterized by Δv that is consistent with a static medium. Instead, the subsamples of R faint and Lyα bright galaxies, characterized by large Δv, and therefore large outflow velocities,
Fig. 8. Stack physical properties vs. Lyα properties. From the top row: The plots show $\Delta v$, rest-frame UV concentration, rest-frame UV magnitude, EW(CIII)1908, and stellar mass vs. EW(Lyα) (first column), Ext(Lyα-C) (second column), and Lyα peak shift (third column). Symbols are as in Fig. 6. For each subset, $\Delta v$, EW(Lyα), EW(CIII)1908, and Lyα peak shift are measured in the stacks, while $C_{\text{UV}}$, R, and $M_*$ correspond to the median values of the galaxies within the subset. The black star represents a subset of sources with extreme Ext(Lyα-C) in the individual spectra. These sources are characterized by moderate EW(Lyα), Lyα peak shift larger than 300 km sec$^{-1}$ and $\Delta v$ consistent with zero.

However, to investigate if the kinematics alone is enough to explain the trend of large Lyα peak shift, large Ext(Lyα-C), and small EW(Lyα), we compare our results with the theoretical models by Verhamme et al. (2006) (Sec. 5.2). We first simulate the 1D Lyα emission line for different shell expansion velocities and for three HI column densities (Fig. 9 upper row). Expansion velocities of 50-400 km sec$^{-1}$ would produce near-overlapping Lyα peaks if the spectral resolution were comparable to that of VUDS ($R \leq 300$) and $N_{\text{HI}} \leq 10^{19}$ cm$^{-2}$. This tells us that the kinematics alone would have an effect that is too small on the Lyα peak shifts to be seen at VUDS resolution. For small HI column densities, shift differences of the order of 100 km sec$^{-1}$ are not discernible. Increasing $N_{\text{HI}}$, the separation between Lyα peaks at different $V_{\text{exp}}$ enlarges. In this model, the effect of the

...
intergalactic medium (IGM) on the shape of the Ly\(\alpha\) line is not included. It has been shown that the effect of the IGM is marginal in comparison to that of the ISM, even more if the ISM gas is already outflowing (e.g. Dijkstra 2016). In fact, a typical red shift of the Ly\(\alpha\) line is also seen in star-forming galaxies in the local Universe (Orlitova et al. in prep., Henry et al. [2015], Verhamme et al. [2017], Yang et al. [2017] for already published examples). The correlation between Ext(Ly\(\alpha\)−C) and Ly\(\alpha\) peak shift also tells us that Ly\(\alpha\) photons are produced within the galaxy.

Then, we simulate the same line by varying the HI column density (Fig. 9, lower row). The Ly\(\alpha\) peak shift is much larger than the expansion velocity. For velocities of 50-200-300 km sec\(^{-1}\) and \(N_{\text{HI}}\) \(\sim\) \(10^{21}\) cm\(^{-2}\), the Ly\(\alpha\) peak shift is even larger than 1000 km sec\(^{-1}\). Variations of 500 km sec\(^{-1}\) in the shift of the Ly\(\alpha\) peak could be related to a \(\Delta \log(N_{\text{HI}}) = 2\). At VUDS resolution, the strongest variations in the location of the Ly\(\alpha\) peak shift are therefore probably due to variations in \(N_{\text{HI}}\). The profiles in Fig. 9 are shown for stellar reddening, E(B-V)=0.0. The inclusion of dust in the simulation would reduce the entire Ly\(\alpha\) flux, preserving the way the Ly\(\alpha\) profile changes when \(N_{\text{HI}}\) and \(V_{\text{exp}}\) vary.

Our data show that for the subsamples with \(\Delta v\) smaller than 100 km sec\(^{-1}\) and Ly\(\alpha\) peak shifts larger than 300 km sec\(^{-1}\), Ext(Ly\(\alpha\)-C) is larger than 5 kpc. These values can be explained with \(N_{\text{HI}} = 10^{20}-10^{21}\) cm\(^{-2}\) in the framework of the shell model. The scattering of the gas with this \(N_{\text{HI}}\) would favour low EW(Ly\(\alpha\)). On the other hand, for the subsample with \(\Delta v\) larger than 300 km sec\(^{-1}\) and Ly\(\alpha\) peak shifts smaller than 300 km sec\(^{-1}\), Ext(Ly\(\alpha\)-C) is less than 5 kpc. This is consistent with a \(N_{\text{HI}} < 10^{20}\) cm\(^{-2}\) gas. In this case we could expect a large EW(Ly\(\alpha\)).

If kinematics alone was the main cause of the three Ly\(\alpha\) properties, we would note a large Ly\(\alpha\) peak shift and Ly\(\alpha\) spatial extension in the cases of large outflow velocities. This is not observed in our data. Therefore, the HI column density has a key role in shaping the Ly\(\alpha\) emission.

In Fig. 7 and 8, we show that extended Ly\(\alpha\) spatial profiles are most likely to be produced by scattered light. They could also be due to the ionization of the external shell of the circumgalactic medium by the UV background, which recombines and emits Ly\(\alpha\) in situ as fluorescence (e.g. Kollmeier et al. [2010], Cantalupo et al. [2012]). Another scenario is that of the gravitational cooling of the gas falling onto galaxies (e.g. Rosdahl & Blaizot 2012), which may also lead to some level of scattering of the Ly\(\alpha\) photons on their way out. This happens since the Ly\(\alpha\) emissivity is proportional to the density, i.e. higher at the center. The scattering process naturally links the spatial extent with the shift of the Ly\(\alpha\) peak and the small EW(Ly\(\alpha\)). The fluorescence and gravitational cooling scenarios can explain any Ly\(\alpha\) spatial extension, but does not explain the correlation with the shift of the peak nor with the equivalent width.

Here, we considered the interpretation of the data from homogeneous shell models, but it remains to be studied if other geometries would also show the same behaviour. According to Verhamme et al. [2015], a scattering medium with holes would produce the direct escape of Ly\(\alpha\) photons and hence lines at systemic redshift. Our data do not seem to favour the presence of holes. According to Gronke & Dijkstra [2016], clumpy outflows decrease the effective optical depth seen by the Ly\(\alpha\) photons compared to the “real” column density seen by non-resonant photons along the line of sight, and lead to a small peak shift and boosted escape fraction in comparison to a homogeneous medium of the same outflow velocity and same column density. It remains to be studied if a correlation with the spatial extension, as observed in Fig. 7, would be conserved by clumpy geometries.

The galaxies in our sample characterized by a large \(N_{\text{HI}}\) (\(N_{\text{HI}} \approx 10^{20}\) cm\(^{-2}\)) would be those with \(\Delta v\) that is consistent with a static medium, which is bright in UV, faint in Ly\(\alpha\) with

---

**Fig. 9.** Theoretical 1D Ly\(\alpha\) emission line (in velocity space) profiles obtained with the adopted (dust-free) shell model. The Ly\(\alpha\) profiles (I) are normalized to the level of the continuum (I0). The maximum resolution profiles are shown as dashed lines. Solid lines correspond to VUDS resolution, \(R \sim 300\). *Upper row*: we assumed different shell expansion velocities and three HI column densities, \(\log(N_{\text{HI}}) = 19\) (left panel), 20 (middle panel), and 21 (right panel). *Lower row*: we assumed different values of HI column density and three shell expansion velocities, \(V_{\text{exp}} = 50\) (left panel), 200 (middle panel), and 300 (right panel) km sec\(^{-1}\).
characterized by outflow velocities of 200–500 km sec$^{-1}$ and a peak shift of 100–300 km sec$^{-1}$. This is in agreement with the findings in Verhamme et al. (2015), in which they explained that the shift of the Lyα red peak can be related but is not directly proportional to the velocity of the outflowing shell. Rest-frame UV compact sources also tend to be characterized (on average) by outflows of large velocities, which could be favoured by the small size under the same star formation rate activity.

An important consequence of the interpretation of our results is that it is possible to use Lyα emission to trace the HI gas and hence infer about the processes that can regulate the distribution and kinematics of the gas into and out of galaxies during their evolution. If Lyα emitters are characterized by strong outflows and low HI column densities, it is possible that they are seen in moments in which they are experiencing very active phases of star formation that consume the gas very fast (see also A17).

It is, also, interesting and could have implication for the epoch of the re-ionization (Stark et al. 2015), that galaxies with larger EW(Lyα) and EW(CIII$\alpha$1908) are also those with smaller Ext(Lyα-C) and smaller Lyα peak shifts on average. In fact, at $z \approx 7$ Lyα peak shifts of the order of 200 km sec$^{-1}$ could be interpreted as the fact that the intergalactic medium is still ionized (see also Pentericci et al. 2016).

5.4. Comparison with previous studies

The role of kinematics and HI column density in conditioning the escape of Lyα photons and in shaping the Lyα emission line was studied in detail in high-resolution spectra. Hashimoto et al. (2015) found that the $z \approx 2.2$ Lyα emitters of their sample with Lyα peaks close to the systemic redshift had properties consistent with an NH$\rm{I} < 10^{19}$ cm$^{-2}$. Moreover, they observed an anti-correlation between NH$\rm{I}$ and Lyα peak shift. Erb et al. (2014), Trinco et al. (2015), proposed that the shape of the Lyα line at $z \sim 2–3$ is mainly due to the gas column density and covering fraction, while the kinematics would mostly affect the line wings (see also Stiedel et al. 2010). Also, they found no evidence that the shift of the Lyα peak is directly proportional to the outflow velocity and that the Lyα peak shift anti-correlates with EW(Lyα) (see also Shibuya et al. 2014b). These observations are consistent with our results.

At low redshift, the escape of Lyα photons was extensively studied using the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST). Observations of local UV-selected galaxies from the Lyα Reference Sample (LARS, Ostlin et al. 2014) and Green Pea galaxies (Cardamone et al. 2009), a sample of compact, metal-poor starbursts at $z \approx 0.1–0.3$ that are good analogues of high-redshift LAEs (Amorín et al. 2010, 2012; Jaskot & Oey 2013), have shown that outflows are a necessary but not sufficient condition for the Lyα photons to escape star-forming regions (Rivera-Thorsen et al. 2015; Henry et al. 2015). Yang et al. (2016) discovered a significant anti-correlation between Lyα escape fraction and NH$\rm{I}$ by means of fitting the Lyα emission line profile of Green Pea spectra with shell models. Yang et al. (2017) extracted the Lyα spatial extension from the 2D COS spectra and showed a trend for which large escape fraction values correspond to compact Lyα morphology. Our results at high redshift are in agreement with these trends.

The measurements for the subsamples based on density can tell us that large equivalent width Lyα emitting galaxies tend to prefer underdense regions, where they also seem to support larger outflow velocities. Galaxies with lower EW(Lyα) would be mainly located in overdense regions and would be characterized by larger scale Lyα emissions. We speculate that galaxy-galaxy interactions in overdense regions could increase the column density of the HI gas in the close circum-galactic medium. That gas would be able to scatter Lyα photons and reproduce our results. Matsuda et al. (2012); Momose et al. (2016) showed that the size of the Lyα spatial extension is indeed proportional to the density. Gromke & Dijkstra (2016) explored the effect of cold HI and hot HII gas on the Lyα emission. According to their model, the suppression of the flux in the line center and the extended Lyα spatial profile could also be produced by the properties of the gas in the circum-galactic medium. Cooke et al. (2013) identified Lyα as an environment diagnostic. They found that the star-forming galaxies tend to show Lyα in absorption in massive, group-like halos, while Lyα in emission tends to be observed for galaxies in the outskirts of massive halos, maybe on top of filamentary structures. Our results are also in agreement with these observations.

To summarize, our results are consistent with a scenario in which the ISM kinematics helps the escape of Lyα photons in the sense that the EW(Lyα) could be larger than 40 Å, the Lyα peak is red-shifted with respect to the systemic redshift, and the Lyα spatial extension is larger than the continuum. However, an NH$\rm{I} > 10^{20}$ cm$^{-2}$ can produce Lyα peak shifts larger than 300 km sec$^{-1}$ and could allow Ext(Lyα-C) to be up to 7 kpc, especially in a static ISM. There is evidence that kinematics and NH$\rm{I}$ both contribute to explain the trends we see. However, the outflow velocity seems to mainly contribute to EW(Lyα) and the outflow velocity, together with NH$\rm{I}$, also explain the Lyα line shape and large-scale spatial extension. Combined with recent results in the literature, the low NH$\rm{I}$ together with low metallicity and high-ionization capability would make a galaxy a strong Lyα emitter (Trainor et al. 2016).

6. Conclusions

In this work, we have considered a sample of Lyα emitting galaxies from VUDS. We chose the range of redshift of $2 < z < 4$ to be able to study the Lyα emission line and the systemic-redshift sensitive features within one single rest-frame UV spectrum (Sec. 2). This avoids the wavelength calibration uncertainty that is sometimes related to using optical data to study rest-frame UV lines and NIR spectra to infer z$_{sys}$. We measured the systemic redshift of the individual galaxies from the CIII$\alpha$1908 emission line and we obtained stacked spectra of subsamples of galaxies based on the spectroscopic and physical properties listed in the first column of Table 1. Therefore, the sample of sources we consider is composed of Lyα + CIII$\alpha$ emitters. These sources share the same typical stellar mass and stellar mass density as the typical Lyα emitting galaxies in VUDS and are characterized by larger EW(Lyα).
From the stacked spectra, we derived the HI outflow velocities by measuring the velocity offset, Δv, between the systemic redshift and the mean of the Gaussian best fit of the low-ionization absorption lines (SII1260 and SII1526). Also, we studied the spatial extension of the Lyα profile, Ext(Lyα-C), from the 2D spectra (Sect. 3).

In Table 1 and Fig. 5, 7 and 8 we summarize the main results of our analysis, which are as follows:

- The typical galaxies in our subsamples have the ΣSFR conditions to support outflows.
- The subsamples for which we measured large Lyα peak shifts (> 300 km s^{-1}), extended Lyα spatial profiles (up to 7 kpc more extended than the UV continuum, based on our definition), and small EW(Lyα) are characterized by Δv(SII) that is either consistent with a static medium or a medium with an equal contribution of inflows and outflows.
- The subsample of rest-frame UV faint Lyα emitters present less extended Lyα spatial profiles, small Lyα peak shifts, and we measure velocity offsets consistent with outflow velocities of a few hundreds of km s^{-1}. Also they tend to prefer underdense regions.
- By combining our results with the predictions from the radiative-transfer model we can observe that, at VUDS resolution, we are able to notice the effect of HI column density in the escape and spatial extension of Lyα photons. This implies that the origin of the extended Lyα gas. Also, the fact that Lyα is either consistent with a static medium or a medium with an equal contribution of inflows and outflows.
- On the other hand, a large Δv would imply a Lyα spatial profile that is peaked in the galaxy center (i.e. low values of Ext(Lyα-C)), and therefore a large EW(Lyα), as in our data.
- The sources that are more compact in the rest-frame UV are characterized by larger outflow velocities than the paired sample. The galaxies preferentially located in overdense regions also present larger Ext(Lyα-C) values than the paired sample. We speculate that this can be produced by galaxy-galaxy interactions, which could increase the NH in the close circum-galactic medium.

Our results and their interpretation via radiative-transfer models tell us that it is possible to use Lyα to trace the properties of the HI gas. Also, the fact that Lyα emitters are characterized by large Δv could give hints about their stage of evolution. They could be experiencing short bursts of star formation that push strong outflows. More massive star-forming galaxies could be experiencing more normal phases of star formation, which slowly consume the HI gas, and could be showing extended Lyα spatial profiles favoured by the larger HI column density.

We have shown in Fig. 7 the correlation between Lyα spatial and spectral escape from galaxies. It is expected in case of scattering processes. This implies that the origin of the extended Lyα spatial profiles is the scattered light.

To confirm the role of kinematics and of HI column density in favouring the escape and distribution of Lyα photons, we will study higher resolution spectra of galaxies from the VANDELS survey. The VANDELS survey aims to deliver very deep VIMOS spectra (at least 20h exposition on source with a maximum of 80h) of bright 2.5 < z < 5.5 and faint 2.5 < z < 7 star-forming galaxies. We will be able to detect systemic-redshift sensitive features and LIS lines with enough signal to noise to study kinematics in individual spectra. The HI amount and distribution can be different in different density environments. Therefore, within VANDELS we will also study Lyα as a function of environment and infer the processes that can regulate the distribution and kinematics of the gas into and out of galaxies during their evolution.

Acknowledgements. We thank the anonymous referee for giving useful suggestions. We thank Benedetta Vulcani and Bram Venemans for useful discussions. This work is supported by funding from the European Research Council Advanced Grant ERC—2010–AdG—268107—EARLY and by INAF Grants PRIN 2012, 2013 and PICs 2013. This work is based on data products made available at the CESAM data center, Laboratoire d’Astrophysique de Marseille, France. R.A. acknowledges support from the ERC Advanced Grant 695671 “QUENCH” and I.O. from the Czech Science Foundation grant 17-06217Y.

References

Alexandroff, R. M., Heckman, T. M., Borthakur, S., Overzier, R., & Leitherer, C. 2015, ApJ, 810, 104
Amarin, R., Fontana, A., Pérez-Montero, E., et al. 2017, Nature Astronomy, 1, 802
Amarin, R., Pérez-Montero, E., Vilchez, J. M., & Papaderos, P. 2012, ApJ, 749, 185
Amarin, R. O., Pérez-Montero, E., & Vilchez, J. M. 2010, ApJ, 715, L128
Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, MNRS, 310, 540
Barnes, L. A. & Haehnelt, M. G. 2010, MNRS, 403, 870
Bruzual, G. & Charlton, S. 2003, MNRS, 344, 1000
Cantalupo, S., Lilly, S. J., & Haehnelt, M. G. 2012, MNRS, 425, 1992
Cardamone, C., Schawinski, K., Sarzi, M., et al. 2009, MNRS, 399, 1191
Cassata, P., Tasca, L. A. M., Le Fèvre, O., et al. 2015, A&A, 573, A24
Chabrier, G. 2003, PASP, 115, 763
Ciappetti, L., Tajer, M., Trinchieri, G., et al. 2005, A&A, 439, 413
Chisholm, J., Tremonti, C. A., Leitherer, C., et al. 2015, ApJ, 811, 149
Civano, F., Elvis, M., Brusa, M., et al. 2012, ApJS, 201, 30
Civano, F., Marchesi, S., Comastri, A., et al. 2016, ApJ, 819, 62
Cooke, J., Omori, Y., & Ryan-Weber, E. V. 2013, MNRS, 433, 2122
Dijkstra, M. 2016, in Astrophysics and Space Science Library, Vol. 423, Understanding the Epoch of Cosmic Reionization: Challenges and Progress, ed. A. Mesinger, 145
Dijkstra, M., Haiman, Z., & Spaans, M. 2006, ApJ, 649, 14
Duval, F., Schaerer, D., Ostlin, G., & Laursen, P. 2014, A&A, 562, A52
Erb, D. K., Pettini, M., Shapley, A. E., et al. 2010, ApJ, 719, 1168
Erb, D. K., Steidel, C. C., Trรอner, R. F., et al. 2014, ApJ, 795, 33
Feltre, A., Charlot, S., & Guirkin, J. 2016, MNRS, 456, 3354
Finkelstein, S. L., Hill, G. J., Gehrz, K., et al. 2011, ApJ, 729, 140
Fiore, F., Puccetti, S., Grazian, A., et al. 2012, A&A, 537, A16
Gawiser, E., Francke, H., Lai, K., et al. 2007, ApJ, 671, 278
Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35
Gronwall, C., Cardamone, C., Comastri, A., et al. 2016, ApJ, 826, 14
Gronwall, C., Ciardullo, R., Gronwall, C., et al. 2014, ApJ, 786, 59
Hashimoto, T., Ouchi, M., Shimasaku, K., et al. 2013, ApJ, 765, 70
Hashimoto, T., Verhamme, A., Ouchi, M., et al. 2015, ApJ, 812, 157
Hathi, N. P., Le Fèvre, O., Ilbert, O., et al. 2016, A&A, 575, L27
Heckman, T. M. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 240, Gas and Galaxy Evolution, ed. J. E. Hibbard, M. Rupen, & J. H. van Gorkom, 345
Heckman, T. M., Alexandroff, R. M., Borthakur, S., Overzier, R., & Leitherer, C. 2015, ApJ, 809, 147
Heckman, T. M. & Borthakur, S. 2016, ApJ, 822, 9
Henry, A., Scarlata, C., Martin, C. L., & Erb, D. 2015, ApJ, 809, 19
Huang, K.-H., Lemaux, B. C., Schmidt, K. B., et al. 2016, ApJ, 823, 116
Ilbert, O., Capak, P., Salvato, M., et al. 2009, ApJ, 690, 1236
Jaskot, A. E. & Oey, M. S. 2013, ApJ, 766, 91
Jaskot, A. E. & Ravindranath, S. 2016, ApJ, 833, 136
Kajouzontzou, E., Civano, F., Elvis, M., Trimos, M., & Green, P. 2014, MNRS, 445, 1430
Keenan, F. P., Feibelman, W. A., & Berrington, K. A. 1992, ApJ, 389, 443
Kim, M., Kim, D.-W., Wilkes, B. J., et al. 2007, ApJS, 169, 401
Koekemoer, A. M., Aussel, H., Calzetti, D., et al. 2007, ApJS, 172, 196
5 http://vandels.inaf.it/
The following figures show the stacked spectra of the galaxies of each subsample. Stellar features are indicated with yellow, ISM absorption lines with black dashed lines. We clearly see the Ly\(\alpha\) (blue dashed line) and CIII\(\text{[}1908\text{]}\) (green dashed line) emission lines. We can see the HeII (red dashed line) at the \(z_{\text{sys}}\) of the stacks. We verified that the emission line ratios are consistent with those of SFGs (not AGNs) based on the models in Feltre et al. (2016).

Fig. A.3 shows a zoom of the stacked spectra on the Ly\(\alpha\) wavelength. The Ly\(\alpha\) main peak is redshifted with respect to the systemic redshift for all the subsets studied here.
Fig. A.1. Stacked spectra of the subsamples of the galaxies with $R \geq 24.5$ and $R < 24.5$, $EW(\text{Ly}\alpha) \geq 27$ Å and $EW(\text{Ly}\alpha) < 27$ Å, $EW(\text{CIII}\lambda 1908) \geq 7.9$ Å and $EW(\text{CIII}\lambda 19078) < 7.9$ Å. For each subsample we present two panels, one covering the wavelength region with Ly\(\alpha\) (upper) and the other the wavelength region with CIII\λ 1908 (lower).
Fig. A.2. Same as Fig. A.1 for the subsamples of the galaxies with $C_{UV} \geq 2.4$, $C_{UV} < 2.4$, located in over- and underdense regions with $M_* \geq 2.9E+9 M_\odot$, and $M_* < 2.9E+9 M_\odot$. 

Guaita L.: Escape of Ly$\alpha$ photons
Fig. A.3. Zoom on the Lyα emission line of the stacked spectra in Fig. A.1 and A.2. Vertical dashed lines indicate the rest-frame Lyα wavelength, while the vertical solid lines indicate the wavelength of the red peak.