Research article

Overexpression of β_1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases

Manabu Fujita1, Natalya M Khazenzon1, Shikha Bose2, Kiyotoshi Sekiguchi3, Takako Sasaki4, William G Carter5, Alexander V Ljubimov6, Keith L Black1 and Julia Y Ljubimova1

1Maxine Dunitz Neurosurgical Institute, Cedars–Sinai Medical Center, Los Angeles, California, USA
2Department of Pathology, Cedars–Sinai Medical Center, Los Angeles, California, USA
3Institute of Protein Research, Osaka University, Osaka, Japan
4Max-Planck-Institut für Biochemie, Martinsried, Germany
5Fred Hutchinson Cancer Research Center and Department of Pathobiology, University of Washington, Seattle, Washington, USA
6Ophthalmology Research Laboratories, Cedars–Sinai Medical Center, Los Angeles, California, USA

Corresponding author: Julia Y Ljubimova, ljubimovaj@cshs.org

Received: 12 Nov 2004 Revisions requested: 27 Jan 2005 Revisions received: 9 Feb 2005 Accepted: 17 Feb 2005 Published: 6 Apr 2005

Abstract

Introduction Laminins are the major components of vascular and parenchymal basement membranes. We previously documented a switch in the expression of vascular laminins containing the $\alpha 4$ chain from predominantly laminin-9 ($\alpha 4\beta 2\gamma 1$) to predominantly laminin-8 ($\alpha 4\beta 1\gamma 1$) during progression of human brain gliomas to high-grade glioblastoma multiforme. Here, differential expression of laminins was studied in blood vessels and ductal epithelium of the breast.

Method In the present study the expressions of laminin isoforms $\alpha 1$–$\alpha 5$, $\beta 1$–$\beta 3$, $\gamma 1$, and $\gamma 2$ were examined during progression of breast cancer. Forty-five clinical samples of breast tissues including normal breast, ductal carcinomas in situ, invasive ductal carcinomas, and their metastases to the brain were compared using Western blot analysis and immunohistochemistry for various chains of laminin, in particular laminin-8 and laminin-9.

Results Laminin $\alpha 4$ chain was observed in vascular basement membranes of most studied tissues, with the highest expression in metastases. At the same time, the expression of laminin $\beta 2$ chain (a constituent of laminin-9) was mostly seen in normal breast and carcinomas in situ but not in invasive carcinomas or metastases. In contrast, laminin $\beta 1$ chain (a constituent of laminin-8) was typically found in vessel walls of carcinomas and their metastases but not in those of normal breast. The expression of laminin-8 increased in a progression-dependent manner. A similar change was observed from laminin-11 ($\alpha 5\beta 2\gamma 1$) to laminin-10 ($\alpha 5\beta 1\gamma 1$) during breast tumor progression. Additionally, laminin-2 ($\alpha 2\beta 1\gamma 1$) appeared in vascular basement membranes of invasive carcinomas and metastases. Chains of laminin-5 ($\alpha 3\beta 3\gamma 2$) were expressed in the ductal epithelium basement membranes of the breast and diminished with tumor progression.

Conclusion These results suggest that laminin-2, laminin-8, and laminin-10 are important components of tumor microvessels and may associate with breast tumor progression. Angiogenic switch from laminin-9 and laminin-11 to laminin-8 and laminin-10 first occurs in carcinomas in situ and becomes more pronounced with progression of carcinomas to the invasive stage. Similar to high-grade brain gliomas, the expression of laminin-8 (and laminin-10) in breast cancer tissue may be a predictive factor for tumor neovascularization and invasion.

Introduction Identification of new markers for human breast cancer development, progression and metastases is important for successful breast tumor therapy and management. Ductal carcinoma in situ (DCIS)/ductal intraepithelial neoplasia is a proliferation of malignant epithelial cells within the mammary ductal system without evidence of infiltration. However, incomplete understanding of the natural history of DCIS and inability to identify predictive factors for the development of invasive carcinoma have resulted in a confusing variety of treatments for the
Angiogenesis (the formation of new blood vessels) is a fundamental process associated with normal development but also with tumor growth, invasion, and metastasis. Primary and metastatic breast tumors are dependent on angiogenesis, and they exhibit the greatest angiogenic activity at the beginning of tumor development [3,4]. Therefore, antiangiogenic therapy is currently regarded as a promising and relatively new approach to cancer treatment; a number of antiangiogenic drugs were recently developed, and a new antiangiogenic basis for emerging metronomic therapy is also being established [5]. Unlike dose-dense chemotherapy, which mostly targets proliferating tumor cells, frequent or continuous metronomic chemotherapy mainly targets endothelial cells [6]. It is important to identify novel targets for this therapy, which will probably be combined with classic chemotherapeutic drugs.

Angiogenesis is critical to solid tumor growth and invasion. Newly formed blood vessels participate in tumor formation and provide nutrients and oxygen to the tumor. Angiogenesis, a response to tumor growth, is a dynamic process that is highly regulated by signals from surrounding environment, including growth factors/cytokines and extracellular matrix (ECM). Their cooperative regulation is essential for angiogenesis accompanying the growth of solid tumors [7-9].

The ECM and its specialized structures, basement membranes (BMs), play important roles in tumor progression as barriers to invasion, migration substrata for tumor cells, and as components of tumor blood vessels. Penetration of vascular BMs occurs during tumor dissemination and metastasis. Laminins are major BM components and are important for cell adhesion, migration, and angiogenesis. Dysregulated cell–matrix laminin interactions are major traits of various cancers. In many solid tumors, including breast cancer, BMs are often discontinuous or absent, which correlates with invasive properties [10-14]. The distributions of laminin chains α1, α3, α5, β1–β3, γ1, and γ2, as well as of type IV collagen chains, have been studied in various types of carcinomas and in normal tissues. Corroborating their widespread distribution in normal epithelial tissues, laminin-5 and laminin-10 are the most abundant laminins in the corresponding carcinomas [15]. Recent studies suggest that the expression of laminin-5 receptor, αvβ3 integrin, may be a poor prognostic factor for invasive breast carcinoma [16]. Furthermore, the utilization of siRNA to reduce the expression of αvβ3 integrin may be a useful approach to prevent carcinoma progression [17]. Cleavage of laminin-5 by matrix metalloproteinases (MMPs) produces a fragment (DIII) that binds to epidermal growth factor receptor and stimulates downstream signaling through mitogen-activated protein kinase, MMP-2 expression, and cell migration. These findings indicate that ECM cues may operate via direct stimulation of receptor tyrosine kinases (e.g. epidermal growth factor receptor) in tissue remodeling and, possibly, cancer invasion [18].

Laminin-8 (α4β1γ1) plays important roles in angiogenesis and migration of endothelial cells [19-21]. Laminin α4-chain-deficient mice exhibit impaired newborn capillary maturation [22]. These reports support the hypothesis on the pivotal role of laminin-8 in the process of neovascularization. In addition, our previous work has shown that laminin-8, a vascular BM component, was overexpressed in high-grade gliomas and their adjacent tissues as compared with normal brain, which correlated with shorter time to glioblastoma recurrence and patient survival [23,24]. Blocking laminin-8 expression resulted in the inhibition of glioma invasion in vitro [25].

Here, we studied the expression of laminins, in particular laminin-8 and laminin-9, in human breast tumors, such as DCIS, invasive ductal carcinoma, and metastases of IDC, in comparison with corresponding normal breast tissues.

Materials and methods

Tissue samples

Samples of breast cancers, breast cancer metastases to the brain, and samples of normal breast were obtained from the Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center. The study protocol was approved by the institutional review board and conformed with the guidelines of the 1975 Declaration of Helsinki. Immediately after surgery, each sample was frozen in liquid nitrogen and stored at -80°C until protein extraction or embedding in OCT (optimal cutting temperature) compound for cryosectioning. Before protein extraction, each frozen sample was morphologically evaluated, in accordance with the World Health Organization classification of breast tumors.

A total of 45 samples were analyzed by Western blot analysis and immunohistochemistry, including normal breast tissues (n = 14), DCIS (n = 5), primary IDC, not otherwise specified (n = 23), and carcinomas metastatic to the brain (n = 3). Twenty-seven samples were analyzed using both methods to confirm laminin-8 and laminin-9 chain expression.

Immunohistochemistry

Sections of 38 specimens (14 normal breast, five DCIS, 16 IDC, and three brain metastases of cancer) were analyzed. Tissue samples were snap-frozen in liquid nitrogen by a pathologist immediately after surgery, embedded in OCT compound, and 8 µm sections were cut on a cryostat. Indirect immunofluorescence, photography, and routine negative controls were as described previously [23,24]. Briefly, we used well-characterized polyclonal and mAbs to laminin chains α1–αα5, β1–β3, γ1, and γ2 (Table 1) [26-31]. Secondary cross-species
absorbed fluorescein- and rhodamine-conjugated goat anti-mouse, anti-rat, and anti-rabbit antibodies were obtained from Chemicon International (Temecula, CA, USA). Polyclonal antibodies to human von Willebrand factor (Sigma-Aldrich Corp., St. Louis, MO, USA) were used for endothelial cell detection. Mouse mAbs to cytokeratin-8 and cytokeratin-18 (Biomeda, Foster City, CA, USA) were used for epithelial cell detection. The overwhelming majority of carcinomas also expressed these cytoskeletal proteins. mAbs were used as straight hybridoma supernatants or at 10–20 µg/ml when purified, and polyclonal antibodies were used at 20–30 µg/ml. Sections were viewed and photographed using an Olympus BH-40 fluorescence microscope equipped with 6 megapixel Magnafire digital camera. Routine specificity controls (without primary or secondary antibodies) were negative. At least two independent experiments were performed for each marker, with identical results.

Quantitation of tissue staining intensity
Staining intensity was graded as follows: -, no staining; +, weak staining; ++, distinct staining; ++++, bright staining; ++++, very strong staining; and /, when vessels in the same specimen exhibited two different categories of staining. The immunofluorescent staining was independently analyzed by three researchers in each case.

Western blot analysis
Twenty-eight tissue samples were analyzed (10 normal breast tissues, four DCIS, 11 IDC, and three brain metastases of breast cancer). Tissue samples were snap-frozen in liquid nitrogen by a pathologist immediately after surgery. Proteins were separated using 10% Tris-glycine SDS-PAGE (Invitrogen, Carlsbad, CA, USA) under reducing conditions. Lysates of human glioma T98G, known to express laminin-8 but not laminin-9 [25,30], were used as positive control. The gels were blotted onto nitrocellulose membrane (Invitrogen). The membranes were probed with primary mAbs followed by chemiluminescent detection using the Immun-Star™ AP kit with alkaline phosphatase-conjugated secondary antibodies (Bio-Rad, Hercules, CA, USA). Antibodies (Table 1) were used to laminin α4 chain (mAb 8B12), β1 chain (mAb LT3), and b2 chain (mAb C4). Antibody to β-actin (Table 1) was used to control for equal loading of gel lanes.

Table 1

Antigen	Antibody	Reference/source
Laminin α1 chain	Rabbit pAb 1057 (V/V)	[26]
Laminin α2 chain	Mouse mAb 1F9	[27]
Laminin α3 chain	Mouse mAb D2-1	[28]
	Mouse mAb C2-5	
Laminin α4 chain	Rabbit pAb 1129 (Il/la)	[29]
	Mouse mAb 8B12	[30]
Laminin α5 chain	Mouse mAb 4C7	Chemicon Interna
Laminin β1 chain	Rat mAb LT3	Upstate
	Mouse mAb LN26-7	
Laminin β2 chain	Mouse mAb C4	Developmental Stu
Laminin β3 chain	Mouse mAb A2-2	[28]
Laminin γ1 chain	Rat mAb A5	[31]
Laminin γ2 chain	Mouse mAbs B22.1 & B23.1	Biomedica
Cytokeratin-8 and -18	Mouse mAbs B22.1 & B23.1	
β-actin	Mouse mAb AC15	Sigma-Aldrich
von Willebrand factor	Rabbit pAb	Sigma-Aldrich

mAb, monoclonal antibody; pAb, polyclonal antibody.

Statistical analysis
Results of the immunostaining data were analyzed by the two-sided Fisher’s exact test using the InStat software program (GraphPad Software, San Diego, CA, USA). To this end [23], the number of cases with a certain staining pattern in one experimental group (e.g. normal) was compared with the number of cases with the same staining pattern in another
Immunohistochemistry of human breast tissues including normal, DCIS, primary IDC and metastases. (a) Panels A–D: hematoxylin and eosin staining of normal breast, DCIS, IDC and metastatic tissues, respectively. Panels E–H: double immunostaining with laminin α4 (red) and an endothelial marker, von Willebrand factor/factor-8 (F8; green). Panels I–L: double immunostaining with laminin β1 (red) and an endothelial marker von Willebrand factor (F8, green). Panels M–P: double immunostaining for laminin β2 (red) and F8 (green). For each representative case, serial sections are shown. (b) Panels A–D: hematoxylin and eosin staining (same as in Fig. 1a, panels A–D). Panels Q–T: double immunostaining for laminin α4 chain (red) and lining epithelium markers cytokeratins (CK)-8/18 (green). Panels U–X: double immunostaining for laminin β1 (red) and CK-8/18 (green). For each case, serial sections to Fig. 1a are shown. Because of lack of appropriate antibodies, no double staining could be performed for laminin β2 chain and CK-8/18. In normal breast tissues, laminin-9 chains α4 and β2 are expressed in BMs of mammary gland ducts (arrows in Fig. 1a, panels E and M, and Fig. 1b, panel Q) and blood vessels. In DCIS laminin α4 chain starts disappearing from ductal BMs (Fig. 1a, panel F, and Fig. 1b, panel R) but β2 chain is present (Fig. 1a, panel N [arrows]). Laminin-8 chains α4 and β1 and laminin-9 chains α4 and β2 colocalize in some microvessels. In all invasive ductal carcinomas, laminin-8 α4 and β1 chains are both found in BMs of F8-positive microvessels (Fig. 1a, panels G and K). Laminin-9 is absent (no β2 chain; Fig. 1a, panel O). In metastases of breast carcinoma, laminin-8 chains are seen in microvascular BMs (Fig. 1a, panels H and L; Fig. 1b, panels T and X) but laminin-9 is absent again (no β2 chain; Fig. 1a, panel P). BM, basement membrane; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma.
Table 2

Expression of laminin-8 and laminin-9 chains in breast tissue blood vessel basement membranes

Sample	Diagnosis	Ln-α4	Ln-β1	Ln-β2	Ln-γ1	Ln typeα
7	Normal	+	-	+++	+++	9
9	Normal	++	+	+++	+++	9
11	Normal	+	++	++++	+++	9
17	Normal	++	-	+++	++	9
21	Normal	-	-	+++	+++	9
25	Normal	+	-	+++	+++	9
32	Normal	++	+/-	+++	+++	9
75	Normal	+	+/-	+	++	9
77	Normal	+++	-	+++	+++	9
79	Normal	++	-	+	++	9
64	Normal	+	++	+	+++	8/9
65	Normal	+	+/-	-	++	9
66	Normal	++	+	-	+++	8
67	Normal	+	+	+	++	9
8	DCIS	++	++	+++	+++	8/9
22	DCIS	+++	+++	-	+++	8
32	DCIS	++	+/-	+++	+++	9
38	DCIS	++	+	++	++	9
41	DCIS	++	+	+++	+++	8/9
1	IDC	+++	++++	-	+++	8
2	IDC	+++	+++	-	+++	8
3	IDC	+++	+++	-	+++	8
5	IDC	++	++	-	++	8
6	IDC	++++	+++	-	+++	8
12	IDC	+	-	+	+++	9
14	IDC	++	+	++	+++	9
20	IDC	++++	++++	-	+++	8
22	IDC	+++	++	-	+++	8
24	IDC	++++	+++	++	+++	8/9
28	IDC	+++	++++	-	+++	8
experimental group (e.g. breast cancer or brain metastasis). P < 0.05 was considered statistically significant.

Results

Laminin β1 chain is overexpressed in capillary basement membranes during tumor progression

To study laminin chain expression, serial sections of human breast tumor and normal tissues were stained either with hematoxylin and eosin for morphological observation (Fig. 1a, panels A–D; duplicated in Fig. 1b, panels A–D) or by indirect immunofluorescence with antibodies to different laminin chains. Some sections were double stained using antibodies to an endothelial marker, von Willebrand factor/factor-8 (F8; Fig. 1a, panels E–P), or epithelial cytokeratin-8 and cytokeratin-18 (CK; Fig. 1b, panels Q–X). We first concentrated on chains of laminin-8 (α4β1γ1) and laminin-9 (α4β2γ1) that underwent distinct changes during brain tumor progression [23,24] but that have not previously been studied in breast cancer.

The expression of laminin α4 chain in normal breast and DCIS was detected in the BMs of cytokeratin-8/18-positive epithelial cells of ductal and lobular structures (weak to negative in DCIS), as well as in BMs of factor-8-positive blood vessels (Table 2; Fig. 1a, panels E–P; Fig. 1b, panels Q and R). In invasive tumors, weak epithelial BM staining was only seen in the remnants of pre-existing ducts (not shown) and not around invading groups of epithelial cells (Fig. 1b, panel S). Vascular BMs were positive for α4 chain in all IDCs and metastatic tumors with distinct colocalization of α4 chain and factor-8 (Table 2; Fig. 1a, panels G and H). The staining intensity of α4 chain in vascular BMs of many primary and metastatic carcinomas was stronger than in normal tissue.

In normal breast, the epithelial or vascular expression of laminin β1 chain was nearly absent (Table 2; Fig. 1a, panel I; Fig. 1b, panel U). In DCIS, IDC and metastases, β1 chain appeared in the BMs of tumor vessels (Table 2; Fig. 1a, panels J–L; Fig. 1b, panels V–X).

Laminin β2 chain expression is decreased during tumor progression

In contrast to β1 chain, the expression of β2 chain was readily detected mainly around epithelial structures of normal breast tissue, with some vascular BM staining (Fig. 1a, panel M). This pattern was preserved in all DCIS cases (Fig. 1a, panel N) except one in which β2 chain was not detected. Additionally, β2 chain expression was not observed around invasive carcinoma cells or in vascular BMs of most IDCs and of all metastases (Table 2; Fig. 1a, panels O and P). In these cases, β2 chain could only be detected around remnant ducts within carcinomas.

The data summarized in Table 3 show that laminin-9 (α4β2γ1) is predominant in the vascular BMs of normal breast and DCIS. However, a switch from β2 to β1 chain leads to predominant expression of laminin-8 (α4β1γ1) in IDCs and especially in their metastases.

The expression of laminin-2 and laminin-10 increases in capillary basement membranes during tumor progression, similar to laminin-8

The expression of other laminin chains α1, α2, α3, α5, β3, γ1, and γ2 was also studied in normal and malignant breast tissues (Table 4). The α1 chain was only seen in three cases altogether, either in epithelial (one case; not shown) or in vascular (two cases; Table 4) BMs. The α2 chain, in accordance with previous data obtained in other tumors, was upregulated in vascular BMs of DCIS, invasive breast carcinomas, and metastases compared with normal breast (Table 4). Taking into account the expression of β1 chain, this finding indicates the appearance of laminin-2 (α2β1γ1) in tumor vascular BMs.

Chains of laminin-5 (α3β3γ2) were mainly seen in ductal structures but not in blood vessel BMs (Table 4). The ubiquitous laminin α5 chain was seen in both epithelial and vascular BMs...
Laminins are heterotrimeric glycoproteins composed of α, β, and γ chains, and are commonly found as structural elements of all BMs. To date, five α, three β, and three γ chains have been identified and are known to give rise to at least 15 laminin isoforms [32,33]. Although the functions of laminins may vary by isoform, they serve not only as structural elements and as a scaffold for cell attachment, but also as signaling molecules through their interactions with cell surface receptors [32-34]. Specific transitions of laminin isoforms occur in various tissues at specific stages of development [35-39]. In invasive cancers, laminins usually become discontinuous or absent around tumor foci, which is attributed to either increased degradation or reduced synthesis. At the same time, previously documented changes in the expression of lamin isoforms concerned only α2-chain-containing laminins in basal cell carcinomas, medullary thyroid carcinomas, Schwannomas, and hepatocellular carcinomas [38,40-42]. We have now confirmed these data in breast tumors and their metastases (Table 4).

Discussion

Angiogenesis is essential for tumor growth and metastasis [43]. Tumor capillaries develop in a dynamic process, starting at the sites of local degradation of the vascular endothelial BMs. Afterward, endothelial cells migrate, proliferate, and differentiate to form a capillary sprout, while interacting with newly secreted ECM proteins from cancer cells and/or endothelial cells [34,43]. This remodeling of the vascular BMs by host endothelial cell is essential for tumor angiogenesis.
It is generally accepted that tumor cells secrete various angiogenic factors that enable endothelial cells to migrate into the tumor tissue and form new capillaries [34]. These factors may provide a mechanism for the observed switch of laminin-9 and laminin-11 in normal vascular BMs to laminin-8 and laminin-10 (plus appearance of laminin-2) in the microvascular BMs of invasive ductal breast carcinomas and of their metastases. In molecular terms, this switch relates to the change in expression of \(\beta_2 \) to \(\beta_1 \) laminin chain during breast cancer progression. This change may reflect the remodeling process of vessel BMs during progression from normal and DCIS to invasive carcinoma or metastasis. It has been shown that cleavage of laminin-5 \(\gamma_2 \) chain by MMP-2 facilitates cell migration [44]. It may be suggested that, in breast carcinoma vessels, laminin \(\beta_2 \) chain may also be degraded by some tumor-derived proteinases, which may trigger a compensatory upregulation of laminin-8 and laminin-10 to replace the 'normal' laminin-9 and laminin-11 in tumor tissue, which in turn would promote angiogenesis [9].

Another possible mechanism of laminin \(\beta_2 \) to \(\beta_1 \) chain switch in breast carcinomas may be related to different regulation of their expression. The TESS database analysis of laminin \(\beta_1 \) and \(\beta_2 \) chain gene promoter sequences [45] shows that \(\beta_2 \) but not \(\beta_1 \) promoter has a putative binding site for the early growth response protein Egr-2. This zinc finger DNA-binding transcription factor is a tumor suppressor and is decreased in various cancers [46,47]. Interestingly, Egr-2 expression is upregulated by tumor suppressor PTEN, which may play an important role in cell growth suppression [48,49]. Furthermore, the chromosomal loci of these two respective genes are very close to each other (Egr-2, 10q21-q22; PTEN, 10q23.31). Loss of heterozygosity of this chromosome 10 region and reduced PTEN expression are associated with poor outcome of invasive ductal breast carcinoma [50-52]. It may be suggested that the sequential downregulation of laminin \(\beta_2 \) chain after the inactivation of PTEN and its downstream transcription factor Egr-2 in invasive breast cancer may bring about a compensatory increase in \(\beta_1 \) chain expression, with the appearance of new laminin isoforms laminin-2, laminin-8, and laminin-10. Further experimentation is needed to support this mechanism.

A change from \(\beta_2 \)-containing to \(\beta_1 \)-containing laminins may present a special advantage for breast cancer cells. Laminin-8 and laminin-10 can promote endothelial cell attachment, migration, and tube formation on a BM matrix. Antisense inhibition of laminin-8 expression reduced glioma cell invasion

Sample	Diagnosis	Ln-\(\alpha_1 \)	Ln-\(\alpha_2 \)	Ln-\(\alpha_3 \)	Ln-\(\alpha_5 \)	Ln-\(\beta_3 \)	Ln-\(\gamma_1 \)	Ln-\(\gamma_2 \)
16	Normal	+	-	-	+++	-	+++	-
17	Normal	-	-	-	+++	-	+++	-
75	Normal	-	+	-	+++	-	+++	+
77	Normal	-	-	-	+	-	+++	++
67	Normal	-	-	-	+++	-	+++	-
22	DCIS	-	-	-	+++	-	+++	-
38	DCIS	++	++	-	+++	-	++	-
41	DCIS	-	+	-	+++	-	+++	-
50	DCIS	-	++	-	+++	-	+++	-
20	IDC	-	++/+++	-	+++	-	+++	-
30	IDC	-	-	-	+	-	+++	-
28	IDC	-	++	-	+++	-	+++	-
52	IDC	-	-	-	+++	-	+++	-
54	IDC	-	++	-	+++	-	+++	-
121	Metastasis	-	+++	-	+++	-	+++	-
146	Metastasis	-	+++	-	+++	-	+++	-
157	Metastasis	-	++	-	+++	-	+++	-

Table 4

Expression of different laminin chains in breast tissue blood vessel basement membranes

membranes Ln, laminin; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma. Staining intensity was graded as follows: -, no staining; +, weak staining; ++ distinct staining; ++++, bright staining; ++++, very strong staining; /, some vessels in the same sample are in one category and some are in another category.
Available online http://breast-cancer-research.com/content/7/4/R411

through a BM matrix in vitro [25]. Therefore, accumulation of laminin-2, laminin-8, and laminin-10 in tumor vascular BMs might facilitate invasion of tumor cells through these BMs and subsequent metastasis. Indirect evidence in favor of laminin-10 as another modulator of glioma invasion was obtained in our experiments. Antisense oligonucleotides to β1 chain were more effective than those to laminin α4 chain in inhibiting glioma invasion in vitro [25]. Whereas the α4 antisense would downregulate only laminin-8, the β1 antisense would reduce both laminin-8 and laminin-10, thus supporting the role for laminin-10 in tumor invasion. Additional studies are needed to determine whether laminin-10 indeed has invasion-promoting activity. It would be interesting to determine whether other malignant tumors also have increased expression of laminin-2, laminin-8, and laminin-10. For the purposes of pathological diagnosis and prognosis, only the relative expression of β1 versus β2 chain may need to be determined. Antibodies, antisense oligonucleotides, or siRNA to laminin β1 chain might be useful for future treatment of solid tumors of various sites. In the case of breast cancers, such reagents may complement the existing and clinically useful herceptin antibody to HER-2/neu [53-55].

Conclusion
It may be concluded that laminin-2, laminin-8, and laminin-10 are important components of breast cancer microvessels, and that lack of laminin-9 and laminin-11 may play a role in remodeling of new vessels in breast cancer. The expression of laminin-2, laminin-8, and laminin-10 in cancer microvasculature may be related to the development of breast cancer-induced neovascularization and tumor progression. Similar to high-grade brain gliomas, a switch from vascular laminin-9 and laminin-11 to laminin-8 and laminin-10 in breast cancer tissue (from β2 to β1 chain) may be a predictive factor for tumor neovascularization and a possible target for antiangiogenic therapy. Because expressions of laminin-8 and laminin-10 have now been observed during progression of both gliomas and ductal breast carcinomas, they may have general predictive value in solid human tumors.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
MF conducted immunostaining and Western blot analysis experiments. NMK processed tissues and conducted immunostaining experiments. SB provided tissue samples and made diagnoses. KS provided antibodies to laminin α4 chain for Western analysis and participated in manuscript writing. TS provided antibodies to laminin α4 chain for immunohistochemistry and participated in manuscript writing. WGC provided antibodies to laminin α3 and β3 chains and participated in manuscript writing. AVL provided antibody to laminin γ1 chain, participated in study design and conception, and in manuscript writing. KLB participated in study design and conception. JYL conceived the study, participated in its design.
and coordination, and in the writing of the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements

This work was supported by the grants from the Maxine Dunit Neurosurgical Institute, Cedars-Sinai Medical Center. The antibody C4 to laminin β2 chain produced by Dr Joshua Sanes was obtained from the Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa (Iowa City, IA, USA), under contract N01-HD-2-3144 from the NICHD.

References

1. Nakhis F, Morrow M: Ductal carcinoma in situ. Surg Clin North Am 2003, 83:821-839.
2. Morrow M, Schnitt SJ: Treatment selection in ductal carcinoma in situ. JAMA 2000, 283:453-455.
3. Weidner N, Folkman J, Pozza F, Bevilacqua P, Alred EN, Moore DH, Meli S, Gasparini G: Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992, 84:1875-1887.
4. Rahman MA, Masakazu T: Angiogenic therapy in breast cancer. Biomed Pharmacother 2005, 57:463-470.
5. Kerbel RS, Kamen BA: The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004, 4:423-436.
6. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS, Folkman J: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000, 60:1878-1886.
7. Sivridis E, Giatromanolaki A, Koukourakis MI: The vascular network of tumours: what is it for? J Pathol 2003, 201:173-180.
8. Hasan J, Byers R, Jayson GC: Intra-tumoural microvessel density in human solid tumours. Br J Cancer 2002, 86:1566-1577.
9. Engvall E, Earwicker D, Haaparanta T, Ruoslahti E, Sanes J: The laminin alpha chains: expression, function and role in tumour angiogenesis. J Cell Biol 1999, 143:1-6.
10. Lipson MA, Masakazu T: Ductal carcinoma in situ. Surg Clin North Am 2003, 83:821-839.

21. Gonzales M, Weksler B, Tsuruta D, Goldman RD, Yoon KJ, Hopkinson SB, Flitney FW, Jones JCR: Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol Biol Cell 2001, 12:85-100.
22. Thiboll Y, Kortesmaa J, Rao C, Soininen R, Wang L, Iivanainen A, Sorokin L, Rietel M, Cao Y, Tryggvason K: Deletion of the laminin α4 chain leads to impaired microvesSEL maturation. Mol Cell Biol 2002, 22:1134-1140.
23. Ljubimova JY, Laskher AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, Sorokin LM, Ljubimov AV, Black KL: Overexpression of α4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res 2001, 61:5601-5610.
24. Ljubimova JY, Fujita M, Khazaenson NM, Das A, Pikul BB, Newman D, Sekiguchi K, Sorokin LM, Sasaki T, Black KL: Association between laminin-8 and glial tumor grade, recurrence, and patient survival. Cancer 2004, 101:604-612.
25. Ljubimova AV, Bartek J, Muomin JH, Laskher AJ, Fujita M, Fujihara W, Sekiguchi K, Sorokin LM, Petajatomi N, Vraniten I, Black KL, Ljubimov AV: Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol Cancer Ther 2003, 2:985-994.
26. Nöring W, Gehringer W, Sasaki T, Mann K, Timpl R: The N-terminal globular domain of the laminin α1 chain binds to α2β1 and α3β1 integrins and to the heparan sulfate-containing domains of perlec an. FEBS Lett 1998, 430:217-221.
27. Engvall E, Earwichker D, Haaparanta T, Rietel M, Arguedas D, Cao Y, Tryggvason K: Purification and characterization of human laminin-8. J Biol Chem 2001, 276:14861-14869.
28. Sigle RO, Gil SG, Bhattacharya M, Ryan MC, Yang TM, Brown TA, Boutilier A, Miyashita Y, Olerud J, Carter WG: Global domains 4/5 of the laminin α3 chain mediate deposition of precursor laminin 5. J Cell Sci 2004, 117:1481-1494.
29. Sasaki T, Mann K, Timpl R: Modification of the laminin α4 chain by chondroitin sulfate attachment to its N-terminal domain. FEBS Lett 2001, 503:173-179.
30. Fujiwara H, Kikkawa Y, Sanzen N, Sekiguchi K: Purification and characterization of human laminin-8. J Biol Chem 2002, 276:17550-17558.
31. Miner JH, Yurchenco PD: The laminin family of heterotrimers. Dev Dyn 2000, 218:213-234.
32. Varkai J, Pervosvskich AE, Krukovskikh VA: Distribution of individual components of basement membrane in human colon polyps and adenocarcinomas as revealed by monoclonal antibodies. Int J Cancer 1992, 50:562-566.
33. Pauwels S, Deobald H, Yurchenco PD: Identification of heterotrimeric laminins 8-11, and cloning of the laminin α1 isoform. J Cell Biol 1997, 137:685-701.
34. Miner JH, Paton DL, Cohen KS, Whiddon RK, Boulton SL, Cleveland JD, Yurchenco PD: The laminin family of heterotrimers. Dev Dyn 1997, 201:213-234.
35. Miner JH, Yurchenco PD: Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 2004, 20:255-284.
36. Patranyo M, Tryggvason K, Vraniten I: Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 2002, 12:197-207.
37. Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR: The laminin alpha chains: expression, developmental transitions, and chromosomal locations of α1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel α3 isoform. J Cell Biol 1997, 137:685-701.
38. Ljubimova JY, Fujita M, Schmidt J, Vraniten I, Black KL, Sekiguchi K: Developmental and homeostatic expression of laminin-α1 chain during mouse kidney development. Dev Dyn 1997, 210:446-462.
39. Tipton OF, Goodman MF, Pedrosa-Dormell F, Thorell LE, Ekblom P, Guilberg D: Presence of laminin α5 chain and lack of laminin α1 chain during human muscle development and in muscular dystrophies. J Biol Chem 1997, 272:28590-28595.
40. Seeberger T, Medina JL, Bade EG: Laminin α5, a major transcript of normal and malignant rat liver epithelial cells, is differentially expressed in developing and adult liver. Exp Cell Res 1997, 237:70-76.
41. St John PL, Wang R, Yin Y, Miner JH, Robert B, Abrahamsson DR: Glomerular laminin isoforms transitions: errors in metanephric development. J Am Soc Nephrol 2000, 12:575-580.
42. Collberg S, Peltonen J, Utto J: Differential expression of laminin isoforms and αβ integrin epitopes in the basement membrane zone of normal human skin and basal cell carcinomas. J Invest Dermatol 1992, 88:864-867.
41. Hsiao LL, Engvall E, Peltonen J, Uitto J: Expression of laminin iso-
forms by peripheral nerve-derived connective tissue cells in
culture. Comparison with epitope distribution in normal
human nerve and neural tumors in vivo. Lab Invest 1993,
68:100-108.
42. Lekmine F, Feracci H, Milhaud G, Treilhou-Lahille F, Jeanne N:
Expression of laminin-2 by normal and neoplastic rat C cells
during the development of medullary thyroid carcinoma. Vir-
chows Arch 1999, 434:325-332.
43. Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med
1998, 49:407-424.
44. Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V: Role
of cell surface metalloprotease MT1-MMP in epithelial cell
migration over laminin-5. J Cell Biol 2000, 148:615-624.
45. Schug J: Using TESS to predict transcription factor binding
sites in DNA sequence. In Current Protocols in Bioinformatics
Edited by: Baxevanis AD, Davison DB, Page RDM, Petsko GA,
Stein LD, Stormo GD. New York: John Wiley & Sons, Inc; 2003.
unit 2.6.
46. Unoki M, Nakamura Y: EGR2 induces apoptosis in various can-
cer cell lines by direct transactivation of BNIP3 and BAK.
Oncogene 2003, 22:2172-2185.
47. Nakahara Y, Shiraishi T, Ōkamoto H, Mineta T, Oishi T, Sasaki K,
Tabuchi K: Detrended fluctuation analysis of genome-wide
copy number profiles of glioblastomas using array-based
comparative genomic hybridization. Neuro-oncology 2004,
6:281-289.
48. Matsushima-Nishiu M, Unoki M, Ono K, Tsunoda T, Minaguchi T,
Kuramoto H, Nishida M, Satoh T, Tanaka T, Nakamura Y: Growth
and gene expression profile analyses of endometrial cancer
cells expressing exogenous PTEN. Cancer Res 2001,
61:3741-3749.
49. Unoki M, Nakamura Y: Growth-suppressive effects of BPOZ and
EGR2, two genes involved in the PTEN signaling pathway.
Oncogene 2001, 20:4457-4465.
50. Garcia JM, Silva JM, Dominguez G, Gonzalez R, Navarro A, Car-
rretero L, Provencio M, Espana P, Bonilla F: Allelic loss of the
PTEN region (10q23) in breast carcinomas of poor pathophenotype. Breast Cancer Res Treat 1999, 57:237-243.
51. Leighton X, Srikantan V, Pollard HB, Sukumar S, Srivastava M:
Significant allelic loss of ANX7 region (10q21) in hormone
receptor negative breast carcinomas. Cancer Lett 2004,
210:239-244.
52. Chung MJ, Jung SH, Lee BJ, Kang MJ, Lee DG: Inactivation of the
PTEN gene protein product is associated with the invasive-
ness and metastasis, but not angiogenesis, of breast cancer.
Pathol Int 2004, 54:10-15.
53. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE,
Levin WJ, Stuart SG, Udove J, Ullrich A: Studies of the HER-2/
neu proto-oncogene in human breast and ovarian cancer. Sci-
cence 1989, 244:707-712.
54. Pegram MD, Pienkowski T, Northfelt DW, Eiermann W, Patel R,
Fumoleau P, Quan E, Crown J, Toppmeyer D, Smylie M, et al.: Re-
sults of two open-label, multicenter phase II studies of
docetaxel, platinum salts, and trastuzumab in HER2-positive
advanced breast cancer. J Natl Cancer Inst 2004, 96:758-769.
55. Nahta R, Hung MC, Esteva FJ: The HER-2-targeting antibodies
trastuzumab and pertuzumab synergistically inhibit the sur-
vival of breast cancer cells. Cancer Res 2004, 64:2343-2346.