Effect of antisense oligodeoxynucleotide of telomerase RNA on telomerase activity and cell apoptosis in human colon cancer

Ying-An Jiang, He-Sheng Luo, Li-Fang Fan, Chong-Qing Jiang, Wei-Jin Chen

INTRODUCTION
Colorectal cancer is one of the most common malignancies both in the world and in China[1]. More and more patients with early colorectal cancer can now be found due to the improvement in the diagnostic techniques. Although surgery and chemotherapy are effective on patients with localized tumors, the prognosis of patients with advanced or metastatic tumors is not ideal. As a result, it is absolutely necessary to explore a novel treatment modality, namely the gene therapy. Just like other kinds of cancer, colorectal cancer is now recognized as a genetic disease. Colon cancer cells contain many genetic alterations which accumulate as tumor develops. This makes it possible to treat cancer with gene therapy[2,3].

Telomerase is a ribonucleoprotein consisting of two components, RNA and protein. The RNA gene of telomerase is termed as human telomerase RNA (hTR). Two protein subunits have been found, which were named as human telomerase-associated protein (TPEP1) and human telomerase catalytic subunit or human telomerase reverse transcriptase (hTERT)[4,5]. Telomerase activity in humans has been detected in germline and tumor tissues as well as in established cultured cell lines[6]. In normal somatic cells, the absence or low expression of telomerase is thought to result in progressive telomeric shortening with each cell division[7,8,9]. Therefore, it has been suggested that reactivation of telomerase is a critical step in tumorigenesis and that interference with the regulation of telomerase activity may serve as a basis for cancer therapy[9,10]. However, to our knowledge, whether antisense gene therapy directing against hTERT is effective on colon cancer is unknown. We reported here the effect of antisense oligodeoxynucleotide of telomerase RNA on human colon cancer cell line, and investigated the potential value of telomerase as a target for antisense gene therapy of colon cancer.

MATERIALS AND METHODS
Cell culture
SW480 cells, a human colon cancer cell line, were provided by Department of Biology, Wuhan University, China, and maintained in RPMI 1640-10% fetal bovine serum supplemented with 1 mmol/L L-glutamine, 100 U/ml of penicillin plus 100 µg/ml of streptomycin at 37 °C under 5% CO2.

Cell counting
SW480 cells were counted with 5 g/L of trypan blue staining.

Oligodeoxynucleotide synthesis
Two oligodeoxynucleotides were synthesized as described by Feng et al and Norton et al[11,12]. Antisense oligodeoxynucleotides (As-ODN) with the sequence 5’TAGGGTTAGACAA-3’, which can recognize the RNA template region of telomerase, and missense oligodeoxynucleotide (Ms-ODN) with the sequence 5’TGTAAAGAACCTAG 3’ were synthesized by Beijing SBS Biotechnology Engineering Company using the 391 DNA synthesizer. The synthesized oligodeoxynucleotides were subjected to electrophoresis (PAGE) and purified (300V, 1.5 h).

Transfection of oligodeoxynucleotides
Transfection of phosphorothiate oligodeoxynucleotides (ODNs) was carried out with liposomal transfection reagent DOSPER (Roche Diagnostic GmbH) according to the manufacturer’s protocol. Briefly, cells were plated onto 6-well plates and incubated until the cells reached 70-80% confluence. The DOSPER was diluted with serum-free medium the day before transfection. Then, the desired amount of ODNs was added dropwise into 900 µl of serum-free RPMI 1640. After incubated for 6 hours at 37 °C, 1 ml of RPMI 1640 containing 20% FBS was added into each well.
Table 1 Inhibitory effect of telomerase activity by ODNs (mean±SD)

Groups	24 h	48 h	72 h	96 h	120 h
As-ODN 10 μmol/L	0.87±0.194	0.40±0.232	0.38±0.146	0.37±0.203	0.29±0.213
Ms-ODN 10 μmol/L	1.06±0.249	1.28±0.179	0.95±0.273	0.19±0.243	1.24±0.178
Positive control	1.72±0.267	1.57±0.418	1.24±0.186	1.23±0.235	1.09±0.347
Negative control	0.34±0.092	0.31±0.076	0.28±0.089	0.06±0.072	0.05±0.023

RESULTS

Inhibitory effect of antisense hTR ODNs on telomerase activity

SW480 cells were transfected with As-ODN (1.0 μmol/L) and Ms-ODN (1.0 μmol/L), and collected at 24, 48, 72, 96 and 120 hours after transfection respectively. Telomerase activities were measured by TRAP-ELISA. Following results were found. The telomerase activity of SW480 cells transfected with As-ODN was greatly inhibited compared with that in the Ms-ODN. The telomerase activity of SW480 cells transfected with As-ODN at 72 and 96 hours after transfection was significantly lower than that both at 24 hours and in positive control as shown in Table 1. These findings suggested that this inhibitory action was sequence specific and in a time-dependent manner.

Effect of antisense hTR ODNs on induction of SW480 cell apoptosis

Cytologic morphological changes

SW480, transferred with 1 μmol/L As-ODN for 3 days, cytologic morphology was observed under Olympus optical microscope and Hitach transmission electron microscope. It was found that cells rounded up off the plasids, exhibiting cytoplasmic blebbing, fragmentation and chromatin condensation, features of apoptosis. No apoptotic features (normal morphology) were observed in SW480, transfected with 1 μmol/L As-ODN for 3 days, cytologic morphology was observed under Olympus optical microscope and Hitach transmission electron microscope. It was found that cells rounded up off the plasids, exhibiting cytoplasmic blebbing, fragmentation and chromatin condensation, features of apoptosis.

Table 2 Effect of ODNs on induction of SW480 cell apoptosis (mean±SD)

Groups	48 h	72 h	96 h
As-ODN 1 μmol/L	4.99±0.54	8.63±0.59	9.96±0.41
Ms-ODN 1 μmol/L	3.86±0.39	4.88±0.57	4.92±0.67
HRT blank	1.57±0.18	1.79±0.21	1.71±0.32

Detection of apoptotic cells

To determine the apoptotic rate, SW480 cells were transfected with 1 μmol/L As-ODN and Ms-ODN for 2 days. After permeablization, the cells were stained with propidium iodide and analysed by flow cytometry. The apoptotic rate of SW480 cells transfected with As-ODN increased (4.99±0.54, 8.63±0.59,
and 9.96±0.41 at 48 h, 72 h and 96 h, respectively, *P*<0.001), but no significant changes of apoptosis were observed in SW480 cells transfected with 1 μmol/L Ms-ODN as shown in Table 2, indicating that this apoptotic induction was sequence specific and in a time-dependent manner.

DISCUSSION

Compared with normal somatic cells, cancer cells have an unlimited replicating capacity. This important characteristic of cancer, named immortality, has been gaining more and more attention, seeing that cancer cells might achieve cellular immortality through only a major pathway, the activation of telomerase[15]. Telomerase has been found to play an important role in carcinogenesis, thus becoming the basis of the widely held view of telomerase as a highly selective target for antisense gene therapy of cancer[14].

The RNA component of telomerase (hTR) was crucial to the telomerase activity[16-17]. Human cell lines expressing hTR mutated in the template region could generate the predictive mutant telomerase activity. Recent experiments have shown that antisense gene therapy directing against telomerase RNA component could effectively inhibit telomerase activity and induce apoptotic cell death in ovarian cancer, prostate cancer, bladder cancer, malignant gliomas and human breast epithelial cells[18-22]. However, whether such an anti-cancer effect can be obtained in human colon cancer is still unknown. Therefore, we examined the effect of antisense hTR oligodeoxynucleotide on human colon cancer cell line. As the results showed, our experiment clearly demonstrated that antisense-hTR oligodeoxynucleotide could significantly inhibit telomerase activity and induce apoptosis of human colon cancer cells, which was supported by the results obtained in our previous experiment[23]. All these findings provide the strong evidence that telomerase may be an ideal target for antisense gene therapy of human colon cancer.

Recently, it has been showed that telomerase activity was the dominant mechanism providing telomere maintenance to human immortalized cells. However, the exact mechanisms of how telomerase activity is regulated in tumour cells remain poorly understood. Some researchers have shown that telomerase activity correlated with the growth rate of immortal cells[24-26], whereas others found no significant association between telomerase activity and proliferation index in tissue specimens from breast carcinoma[27], gastric carcinoma[28], and Wilms’ tumour[29].

Inhibition of telomerase activity has been proposed as a potential method for the treatment of human malignancies. It is suggested that telomerase inhibition may serve as an effective tool for eliminating tumour cells that have short telomeres. Such tumours may provide reasonable targets for agents that inhibit telomerase. These experiments await the development of specific inhibitors for the components of telomerase complex.

REFERENCES

1. Parkin DM, Global cancer statistics in the year 2000. Lancet Oncol 2001; 2: 533-543
2. Tominaga K, Suto R, Sasaki E, Watanabe T, Fujiwara Y, Higuchi K, Arakawa T, Shokei K. Gene therapy for colon cancer. Jpn J Clin Oncol 2003; 33(Suppl 7): 490-494
3. Wang YQ, Ugam S, Shimozato O, Yu L, Kawamura K, Yamamoto H, Yamaguchi T, Saisho H, Tagawa M. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer 2003; 105: 820-824
4. Blackburn EH. Structure and function of telomeres. Nature 1991; 350: 569-573
5. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277:955-990
6. Holt SE, Shay JW, Wright WE. Refining the telomere-telomerase hypothesis of aging and cancer. Nat Biotechnol 1996; 14: 836-839
7. Hoos A, Hepp HH, Kauli S, Ahlert T, Bastert G, Wallwiener D. Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int J Cancer 1998; 79: 8-12
8. Kyo S, Takakura M, Tanaka M, Kanaya T, Inoue M. Telomerase activity in cervical cancer is quantitatively distinct from that in its precursor lesions. Int J Cancer 1996; 69: 65-70
9. Dachs R, Fiedler W, Ernst G. Telomeres and telomerase: biological and clinical importance. Clin Chim Acta 1997; 43: 708-714
10. Yam P, Conidire JM, Benhattar J, Bosman FT, Guillou L. Telomerase activity and human telomerase reverse transcriptase mRNA expression in soft tissue tumors: correlation with grade, histology, and proliferative activity. Cancer Res 1999; 59: 3166-3170
11. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J. The RNA component of human telomerase. Science 1995; 269: 1236-1241
12. Norton JC, Piatyszek MA, Wright WE, Shay JW, Corey DR. Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol 1996; 14: 615-619
13. Shamuas MA, Simmons CG, Corey DR, Shmookler Reis RJ. Telomerase inhibition by peptide nucleic acids reverses "immortal" state of transformed human cells. Oncogene 1999; 18: 6191-6200
14. Neidle S, Kelland LR. Telomerase as an anti-cancer target: current status and future prospects. Anticancer Drug Des 1999; 14: 341-347
15. Weilbaecher RG, Lundblad V. Assembly and regulation of telomerase. Curr Opin Chem Biol 1999; 3: 573-577
16. Gilley D, Blackburn EH. The telomerase RNA pseudoknot is critical for the stable assembly of a catalytically active ribonucleoprotein. Proc Natl Acad Sci U S A 1999; 96: 6621-6625
17. Liu JP. Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J 1999; 13: 2091-2104
18. Kushner DM, Paranjape JM, Bandyopadhyay B, Cramer H, Leaman DW, Kennedy AW, Silverman RH, Cowell JK. 2-S� antisense directed against telomerase RNA produces apoptosis in ovarian cancer cells. Gynecol Oncol 2000; 76: 183-192
19. Kondo Y, Koga S, Komata T, Kondo S. Treatment of prostate cancer in vitro and in vivo with 2-SA-anti-telomerase RNA component. Oncogene 2000; 19; 2205-2211
20. Koga S, Kondo Y, Komata T, Kondo S. Treatment of bladder cancer cells in vitro and in vivo with 2-SA antisense telomerase RNA. Gene Ther 2000; 8: 654-658
21. Mukai S, Kondo Y, Koga S, Komata T, Barna BP, Kondo S. 2-SA antisense telomerase RNA therapy for intracranial malignant gliomas. Cancer Res 2000; 60: 4461-4467
22. Herbert BS, Pitts AE, Baker SL, Hamilton SE, Wright WE, Shay JW, Corey DR. Inhibition of human telomerase in immortal human cells leads to progressive telomere shorting and cell death. Proc Natl Acad Sci U S A 1999; 96: 14276-14281
23. Jiang Y, Luo HS, Zhang YY, Fan LF, Jiang CQ, Chen WJ. Telomerase activity and cell apoptosis in colon cancer cell by human telomerase reverse transcriptase gene antisense oligodeoxynucleotide. World J Gastroenterol 2003; 9: 1961-1964
24. Belair CD, Yeager TR, Lopez PM, Reznikoff CA. Telomerase activity: a biomarker of cell proliferation, not malignant transformation. Proc Natl Acad Sci U S A 1997; 94: 13677-13682
25. Holt SE, Glinsky VV, Ivanova AB, Glinsky GV. Resistance to apoptosis in human cells conferred by telomerase function and telomere stability. Int J Carcinog 1999; 25: 241-248
26. Greider WC. Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci U S A 1998; 95: 90-92
27. Bednarik AK, Sahn A, Brenner AJ, Johnston DA, Aldaz CM. Analysis of telomerase activity levels in breast cancer: positive detection at the in situ breast carcinoma stage. Clin Cancer Res 1997; 3: 11-16
28. Okusa Y, Shimoniya N, Ichikura T, Machizuki H. Correlation between telomerase activity and DNA ploidy in gastric cancer. Cancer Res 1995; 55: 6191-6200
29. Dome JS, Chung S, Bergemann T, Umbricht CB, Saji M, Carey LA, Grundy PE, Perelman EJ, Breslow NE, Sukumar S. High telomerase reverse transcriptase (hTERT) messenger RNA level correlates with tumor recurrence in patients with favourable histology Wilms’ tumor. Cancer Res 1999; 59: 4301-4307

Edited by Wang XL and Zhang JZ