Supplementary Data

Solution structure of stem-loop α of the hepatitis B virus
post-transcriptional regulatory element

Martin Schwalbe¹#, Oliver Ohlenschläger¹, Aliaksandr Marchanka¹$, Ramadurai Ramachandran¹, Sabine Häfner¹, Tilman Heise²+ and Matthias Görlach¹,*

¹Leibniz-Institut für Altersforschung/Fritz-Lipmann-Institut, Beutenbergstr. 11, D-07745 Jena, Germany
²Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Martinistr. 52, D-20251 Hamburg, Germany
#current addresses: Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
$current address: Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim, Germany
+current address: Medical University of South Carolina, 173 Ashley Avenue, Charleston SC 29425, USA

*Corresponding author:
e–mail: mago@fli–leibniz.de, phone: +49-3641-656220, fax: +49-3641-656225
Selected strips from 2D homo- and 3D heteronuclear NOE spectra of HSLAap. (A) Strip displaying the contacts of G13 H1 to the Watson-Crick base paired C10 amino protons H41/42. (B) Strip displaying the the H1 contacts of G17 to the Watson-Crick base paired C7 amino protons H41/42. (C) Strip from the 3D (1H,1H,13C)-NOESY-HSQC recorded for the aromatic region of HSLAap showing the H8 NOE contacts of G6. Multiple NOE contacts for one cross peak here were assigned based on the individual cross peaks at the carbon plane of the respective ribose CH group in the 3D (1H,1H,13C)-NOESY-HSQC. Asterisks indicate peaks arising from resonances centered at a neighbouring plane.
Supplementary Figure S2

Imino region of the 2D \((^1H,^1H)-\text{NOESY}\) of HSLAap. 1D spectrum of the same region on top. Connectivities are indicated by lines and the assignments are indicated with the residue type and number.
Sequential walk (red lines) indicated by the H6/8\textsubscript{r}-H1'\textsubscript{r}-H6/8\textsubscript{r+1} connectivities in the 3D 1H,1H,13C)-NOESY-HSQC recorded for the ribose region of HSLAap. Strips corresponding to the individual C1'H1' carbon planes are labelled by nucleotide name and number. Blue square: weak crosspeak detectable at lower threshold.
Supplementary Figure S4

Comparison of experimentally determined residual dipolar couplings (RDC$_{\text{measured}}$) with those back-calculated (RDC$_{\text{calculated}}$) using PALES for the HSLAap NMR solution structure.; RDCs are given in Hz for the imino 15NH groups of the helical region and G13 of the apical loop. Black: regression line; red: diagonal.
(\(^{1}H,^{13}C\)-CT-HSQC of HSLAap. The C1’H1’ region is shown; residue numbers are indicated.

Note that the signals for the loop residues (C10, A11, G12, G13, U14) and the bulged G6 (residue number in red) are well separated from those of the helical residues.
NOE contacts between H8 and H1' protons of G residues in HSLAap as detected in the 3D (1H,1H,13C)-NOESY-HSQC recorded for the aromatic region of HSLAap. Strips corresponding to the individual C8H8 carbon planes are labelled by nucleotide name and number. All strips were plotted at the same intensity level for the C8H8 diagonal peaks..
Relaxation study:

T_1, $T_{1\rho}$ and ^{1}H-^{13}C steady-state heteronuclear NOE (HETNOE) were measured using gradient-enhanced pulse sequences to minimise water saturation (Farrow et al., 1994). T_1 and $T_{1\rho}$ relaxation data for aromatic (sugar moieties) were typically collected as 2048 (2048) in t2 per 128 (256) complex points in t1 with 16 (16) transients, respectively. HETNOE experiments were recorded as 2048 (t2) per 300 (t1) real data points, with 96 transients per increment. The 1H and ^{13}C spectral widths for aromatic and sugar regions were 13, 30 and 60 ppm, respectively. 12 experiments were performed for T_1 measurements with increasing values for the relaxation delay (0, 0.01, 0.02, 0.1, 0.25, 0.3, 0.5, 0.6, 0.75, 0.9, 1.0 and 1.5 s). $T_{1\rho}$ data sets were obtained using the following relaxation delays: 0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 s. As control for estimation of peak intensity uncertainties and for evaluation of the experimental error the zero value experiment was run in triplicate for each relaxation set. The recycle delay between transients was set to 3 seconds in the pulse sequences for T_1 and $T_{1\rho}$ measurements. In the HETNOE experiments a 5 s recycle delay was used with or without proton saturation. The uncertainty in the HETNOE values was set to 5% of their values (Viles et al., 2001). The relaxation data were Fourier transformed after application of a cosine-squared apodisation function to yield a matrix of 2048*1024 data points. T_1 and $T_{1\rho}$ rates were determined by fitting the peaks intensities at multiple relaxation delays to the equation $I = I_0 \exp(-\tau/T_1)$ (Viles et al., 2001) using RELAXFIT (Fushman et al., 1997). The data were analysed using a model-free dynamics formalism (Lipari & Szabo, 1982a,b) as implemented in ROTDIF (Walker et al., 2004) and DYNAMICS (Fushman et al., 1997). A CSA value for C1’ of 40 ppm was used representing a weighted mean between the values for C3’-endo and C2’-endo ribose puckers found in DFT calculations (Dejaegere & Case, 1998) and experimental data (Bryce et al., 2005). For the
aromatic C6 of pyrimidines and for the aromatic C2 and C8 of purines CSA values according to Shajani & Varani (2005) were used.

Supplementary Figure S7

Order parameter S^2 per residue of HSLAap derived from the relaxation study. Values derived from the aromatic carbons are given in blue, values from ribose C1’ in magenta. Data points are omitted for residues for which no reliable extraction of experimental data due to e.g. signal overlap or ridges was possible.
References

Bryce, D.L., Grishaev, A. and Bax, A. (2005). Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy. *J.Am.Chem.Soc.*, 127, 7387-7396.

Dejaegere, A.P. and Case, D.A. (1998). Density functional study of ribose and deoxyribose chemical shifts. *J.Phys.Chem.A*, 102, 5280-5289.

Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994). Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. *Biochemistry*, 33, 5984-6003.

Fushman, D., Cahill, S. and Cowburn, D. (1997). The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. *J.Mol.Biol.*, 266, 173-194.

Fushman, D., Cahill, S. and Cowburn, D. (1997). The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. *J.Mol.Biol.*, 266, 173-194.

Lipari, G. and Szabo, A. (1982a). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. *J.Am.Chem.Soc.*, 104, 4546-4559.

Lipari, G. and Szabo, A. (1982b). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. *J.Am.Chem.Soc.*, 104, 4559-4570.

Shajani, Z. and Varani, G. (2005). 13C NMR relaxation studies of RNA base and ribose nuclei reveal a complex pattern of motions in the RNA binding site for human U1A protein. *J.Mol.Biol.*, 349, 699-715.

Viles, J.H., Duggan, B.M., Zaborowski, E., Schwarzinger, S., Huntley, J.J., Kroon, G.J., Dyson, H.J. and Wright, P.E. (2001). Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods. *J.Biomol.NMR*, 21, 1-9.

Walker, O., Varadan, R. and Fushman, D. (2004). Efficient and accurate determination of the overall rotational diffusion tensor of a molecule from (15)N relaxation data using computer program ROTDIF. *J.Magn.Reson.*, 168, 336-345.