Clinical heterogeneity of pediatric hepatocellular carcinoma

Amber M. D’Souza1 | Alexander J. Towbin2 | Anita Gupta3 | Maria Alonso4 | Jaimie D. Nathan4 | Alex Bondoc4 | Greg Tiao4 | James I. Geller1

1 Division of Pediatric Hematology/Oncology, University of Illinois College of Medicine at Peoria, Peoria, Illinois
2 Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
3 Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
4 Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio

Correspondence
James I. Geller, Division of Pediatric Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7018, Cincinnati, OH 45229.
Email: james.geller@chmc.org

Abstract

Background: Hepatocellular carcinoma (HCC) is often a chemoresistant neoplasm with a poor prognosis. Pediatric HCC may reflect unique biological and clinical heterogeneity.

Procedure: An IRB-approved retrospective institutional review of patients with HCC treated between 2004 and 2015 was undertaken. Clinical, radiographic, and histologic data were collected from all patients.

Results: Thirty-two patients with HCC, median age 11.5 years (range 1-20) were identified. Seventeen patients had a genetic or anatomic predisposition. Histology was conventional HCC (25) and fibrolamellar HCC (7). Evans staging was 1 (12); 2 (1); 3 (10); 4 (9). Sixteen patients underwent resection at diagnosis and five patients after neoadjuvant chemotherapy. Surgical procedures included liver transplantation (LT, 11), hemihepatectomy (9), and segmentectomy (1). Eighteen patients had medical therapy (13 neoadjuvant, 5 adjuvant). Most common initial medical therapy included sorafenib alone (7) and cisplatin/doxorubicin-based therapy (8). Overall, 14 (43.8%) patients survived with a median follow-up of 58.8 months (range 26.5-157.6). Cause of death was most often linked to lack of primary tumor surgery (11). Of the survivors, Evans stage was 1 (11), 2 (1), and 3 (2, both treated with LT). Four of 18 patients (22%) who received medical therapy, 8 of 17 patients with a predisposition (47%), and 14 of 21 patients (66%) who underwent surgery remain alive.

Conclusions: Genetic and anatomic predisposing conditions were seen in over half of this cohort. Evans stage 1 or 2 disease was linked to improved survival. LT trended toward improved survival. Use of known chemotherapy agents may benefit a smaller group of pediatric HCC and warrants formal prospective study through cooperative group trials.

KEYWORDS

chemotherapy, hepatocellular carcinoma, heterogeneity, liver transplantation, pediatric, sorafenib

1 | INTRODUCTION

Hepatocellular carcinoma (HCC) is an aggressive, chemoresistant neoplasm. HCC survival depends on surgical resection, although only 30% of pediatric patients are resectable at diagnosis.1,2 Adjuvant chemotherapy has been studied in various cooperative group trials, with minimal success.3,4 Response rates to chemotherapy are roughly 20% in adults and 40% in children, suggesting discrepant biologically driven chemoresistance.5 Biologically diverse molecular pathways drive carcinogenesis in HCC,6 the strongest example being...
fibrolamellar carcinoma that is associated with a specific molecular signature.\(^7\) Notable biological differences between pediatric and adult HCC include risk factors and presence of background liver disease.\(^5\)-\(^8\) Unfortunately, despite slightly better chemosensitivity, the 5-year overall survival in children remains low at 13\%-\(28\%\),\(^8\)-\(^10\).

No large series that define pediatric and adolescent HCC subtype and clinical heterogeneity exist in the literature. A recent publication did comment on the molecular heterogeneity of pediatric HCC by genetically profiling 15 pediatric tumors.\(^11\) Presence of background liver disease, surgical resectability, and response to medical therapy varies between patients. The purpose of this study was to retrospectively characterize HCC in children and adolescents treated at a single institution, to better characterize pediatric HCC heterogeneity.

2 | METHODS

Following institutional review board approval, a retrospective analysis was performed of patients with HCC \(< 21\) years of age treated at our institution between January 1, 2004 and December 31, 2015. Demographics, preexisting conditions, treatment, and outcomes were reviewed. Abernathy malformation was defined as a congenital portosystemic shunt with the absence of a portal vein. The histopathology, radiographic, and surgical data were reviewed by a pathologist (AG), radiologist (AJT), and surgeons (AB, JDN, MA, and GT).

Histopathology was classified according to WHO Classification of Tumors of the Digestive System.\(^12\) Computed tomography scan and/or magnetic resonance imaging obtained at diagnosis were reviewed to determine the size and the number of liver lesions and the PRETEXT score, based on Children's Oncology Group (COG) modifications to the 2005 PRETEXT guidelines.\(^13\) Evans surgical staging\(^9\) and TNM staging (as per the American Joint Committee on Cancer) were obtained.\(^14\) The Child-Pugh,\(^15\) pediatric end-stage liver disease (PELD) (for children \(< 12\) years),\(^16\) and model for end-stage liver disease (MELD) scores (for children \(\geq 12\) years)\(^17\) were collected. Imaging response were classified as complete response (CR) (100\%), partial response (PR) (\(> 30\%\) but less than CR), progressive disease (PD) (\(\geq 20\%\) increase in tumor size), and stable disease (SD) (not qualifying for PR or PD). Second-line therapy and salvage therapy were defined as subsequent therapy for SD or PD or relapsed disease, respectively.

Kaplan-Meier curves were created using GraphPad Prism. A log-rank (Mantel-Cox) test was used to calculate P-values.

3 | RESULTS

3.1 | Patient characteristics

From 2004 to 2015, 32 patients with HCC were treated at our institution: median age was 11.5 years (range 1-20); 18 patients (56\%) were females; and 24 (75\%) were Caucasians (Table 1). Preexisting conditions were present in 53\%.

TABLE 1 Demographics and presenting features

Number of patients	32
Age	
1-6 y	6
6-12 y	10
\(> 12\) y	16
Gender	
Male	14
Female	18
Ethnicity	
Caucasian	24
African American	3
Middle Eastern	2
Hispanic	1
Unknown	2
Evans stage	
1	12
2	1
3	10
4	9
Histology	
Conventional	25
Fibrolamellar	7
Cirrhosis present	10
Preexisting conditions	
Alagille	3
PFIC-2	2
A1AT	1
Wilson disease	1
Fanconi anemia	2
Cryptogenic cirrhosis	2
Fatty liver disease	1
Fontan	1
Abernethy malformation	2
Portal venous thrombosis	2

Abbreviations: A1AT, alpha-1 antitrypsin; PFIC-2, progressive familial intrahepatic cholestasis type 2.

3.2 | Histopathology

The primary site of disease was the right lobe (17), left lobe (4), dome (1), and bilobar (10). Histology included early HCC (2), well-differentiated (Wd) HCC (15), moderately differentiated HCC (8), and fibrolamellar HCC (7). Cirrhosis was present in 10 patients, all of whom had prior liver disease, including one with fibrolamellar HCC secondary to a Fontan-related circulation/fibrosis. Of those that underwent primary tumor surgery (16), 6 patients had solitary tumors and 10 had multifocal disease. The largest tumor by pathology ranged from 0.5 to 15.2 cm (median 7 cm).

3.3 | Staging and risk factors

Evans stage was 1 (12), 2 (1), 3 (10), and 4 (9). PRETEXT stage was 1 (6), 2 (15), 3 (3), and 4 (8). Evans stage in those with versus without a predisposition were 1 (8 vs 4), 2 (0 vs 1), 3 (6 vs 4), and 4 (3 vs 6). All patients tested negative for Hepatitis B and C viruses. The Child-Pugh score was as follows: Class A (9), Class B (12), and Class C (1). MELD
TABLE 2 Characteristics of patients with HCC treated with liver transplantation

Patient (n = 11)	Clinical and pathologic data	Milan criteria									
	Clinical and pathologic data										
	Evens stage	TMN stage	Preexisting liver disease	Cirrhosis	One lesion with diameter ≤ 5 cm	Up to three lesions each with diameter ≤ 3 cm	Vascular or extra-hepatic involvement	Exceeded Milan criteria	Reason for exceeding Milan criteria	Survival Outcome	
1			T2N0Mx	PFIC-2	Y	+	Absent	No	-	Alive	
2			T1N0Mx	A1AT	Y	–	N/a	Absent	Yes	Solitary lesion > 5 cm	Alive
3			T1N0Mx	PFIC-2	Y	+	N/a	Absent	No	Alive	
4			T2N0Mx	Abernethy	N	–	Absent	Yes	> 3 foci with largest focus > 3 cm	Alive	
5			T2N0Mx	Alagille	Y	–	Absent	Yes	> 3 foci with largest focus > 3 cm	Alive	
6			T3aN0Mx	Mesocaval shunt, PVT	N/a	–	Absent	Yes	> 3 foci with largest focus > 3 cm	Alive	
7			T3aN0Mx	Mesocaval shunt, PVT	N/a	–	Absent	Yes	> 3 foci with largest focus > 3 cm	Alive	
8			T2N0Mx	Alagille	Y	+	N/a	Absent	No	Dead	
9			T3aN0Mx	–	N	–	Absent	Yes	> 3 foci with largest focus > 3 cm	Alive	
10			T3aN0Mx	–	N	–	Absent	Yes	> 3 foci with largest focus > 3 cm	Alive	
11			T2N0Mx	Alagille	Y	+	Absent	No	-	DOD	

Abbreviations: A1AT, alpha-1 antitrypsin; DOD, died of disease; HCC, hepatocellular carcinoma; PFIC-2, progressive familial intrahepatic cholestasis type 2; PVT, portal vein thrombosis; Y, yes; N, no; N/a, not applicable; cm, centimeter.

a Patients diagnosed with HCC post-LT.
b Patient died of complications from dialysis.
c Patient relapsed in lung and abdomen.

score ranged from 6 to 15 (median 10); PELD score ranged from 0 to 47 (median 10).

3.4 Surgical treatment

Sixteen patients underwent primary surgical resection and five after neoadjuvant chemotherapy. Surgery included liver transplantation (LT, 11), hemihepatectomy (9), and segmentectomy (1). Nine had a conventional resection and were either PRETEXT I (4) or II (5). Eight had negative parenchymal margins, however three had either metastatic lung disease, regional lymph node disease, or intrabiliary tract and lymphovascular invasion. Other local control treatments included Yttrium-90 radioembolization (4), radiofrequency ablation (3), and abdominal radiation (1). Yttrium-90 radioembolization was utilized in patients with SD after chemotherapy prior to proceeding with additional chemotherapy. Radiofrequency ablation was performed at the time of biopsy in two patients and at the time of resection in another, due to concerns for margin status. One patient with multifocal disease received 50 Gy of palliative radiation as a bridge to phase I clinical trials. Five of nine patients did not receive postoperative adjuvant therapy (all Evans stage 1 cases) and are alive as previously reported.18

Five patients who underwent delayed surgery (conventional (1); LT (4)) had Evans stage 3 disease and were PRETEXT II (3) or IV (d2). Of the remaining 11 patients who did not have surgery performed, Evans stage was 3 (3) and 4 (8). Two patients with stage 4 disease had local control of their metastatic disease with thoracoscopic lung nodule resections; both progressed in the lung and liver and died of disease.

Of the 11 patients who underwent LT (Table 2), 4 had end-stage liver disease due to a preexisting condition, and 3 had anatomic predispositions (2 suffering from portal hypertension and variceal bleeding; 1 had previously undergone a right hemihepatectomy for an adenoma). These latter three patients had previous biopsies showing a WD hepatocellular neoplasm, confirmed to have HCC in the explants. Four patients with Evans stage 3 disease had a delayed LT, including two with the Alagille syndrome and two with de novo HCC. One patient with the Alagille syndrome received 2 weeks of oral chemotherapy, discontinued due to toxicity. The other patient with the Alagille syndrome had an SD with neoadjuvant chemotherapy. Both patients with de novo HCC had a PR with chemotherapy prior to LT and remain alive.
Patient	Age	Stage	Preexisting disease	Histology	Neoadjuvant chemo	Upfront surgery	Parenchymal margins/LN status	Adjuvant chemo	Metastectomy	Salvage therapy	Outcome
1	18	1	No	WD	N/a	R hemi-hepatectomy	−/−	Cis/5-FU × 2 cycles	−	No	Alive
2	17	2	No	FL	N/a	R hepatectomy	−/−	Sorafenib × 6 cycles	−	No	Alive
3	15	3	No	Md	N/a	L hemi-hepatectomy	+/−	Sorafenib¹	−	No	Dead
4	5	4	No	Md	N/a	R hepatectomy	−/+	Cis/Dox + sorafenib ×ur 6 cycles	Yes	Gem/Ox	Dead
5	11	3	No	FL	N/a	R hepatectomy	−/+	Cis/Dox + sorafenib × 7 cycles; sorafenib alone × 4 cycles	−	JX-594, IMC-A12 + temsirolimus, erlotinib + avastin, Gem/Ox	Dead
6	9	3	Alagille	WD	Sorafenib × 2 weeks	SD	LT	No	−	No	Dead¹
7	12	3	No	WD	C5V × 4 cycles	PR	LT	C5D × 2 cycles, sorafenib¹	−	No	Alive
8	6	4	No	WD	VI × 2 cycles, C5VD × 2 cycles	PD	No	−	Yes	No	DOD
9	15	4	Fontan	FL	Sorafenib × 1 week	PD	No	−	No	No	DOD
10	11	4	No	WD	C5D × 2 cycles	SD	No	−	No	ICE, Gem/Doce, sorafenib	DOD
11	17	4	No	FL	Cis/Dox × 2 cycles	SD	No	−	No	Gem/Ox, Gem, sorafenib, Cyclo/Topo crizotinib, capecitabine, everolimus	DOD
12	7	3	No	Md	C5VD × 2 cycles	PR	LT	C5VD × 2 cycles	−	No	Alive
13	3	3	Alagille	Md	Cis/5-FU × 2 cycles	SD	LT	−	PIAF, Gem/Ox	DOD	
14	11	3	Fanconi Anemia	WD¹	Sorafenib²	PD	No	−	No	No	DOD
15	13	4	No	FL	Sorafenib × 10 cycles	PD	No	−	No	No	DOD

(Continues)
TABLE 3 (Continued)

Patient	Age	Stage	Preexisting disease	Histology	Neoadjuvant chemo	Upfront surgery	Parenchymal margins/LN status	Adjuvant chemo	Metastectomy	Salvage therapy	Outcome
16	16	3	No	FL	PIAF × 3 cycles	SD	L hepatectomy	Sorafenib × 3 cycles	–	c-Met/ALK inhibitor, VITAC	DOD
17	17	4	No	Md	Sorafenib × 8 cycles	PD	No	–	No	JX-594, Gem/Ox	DOD

Note. Unresectable disease at diagnosis.

Abbreviations: Cis/5-FU, cisplatin and 5-flourouracil; Cis/Dox, cisplatin and doxorubicin; C5V, cisplatin, 5-flurouracil, and vincristine; C5VD, cisplatin, 5-FU, vincristine, and doxorubicin; Cyclo/Topo, cyclophosphamide and topotecan; DOD, died of disease; FL, fibrolamellar; Gem/Doce, gemcitabine and docetaxel; Gem/Ox, gemcitabine and oxaliplatin; ICE, ifosfamide, carboplatin, and etoposide; IMC-A12, anti-insulin-like growth factor-I receptor monoclonal antibody; JX-594, Pexa-Vec (oncolytic virus); LN, lymph node; LVI, lymphovascular invasion; Md, moderately differentiated; PD, progressive disease; PIAF, cisplatin, interferon α-2b, doxorubicin, and fluorouracil; SD, stable disease; VI, vincristine and irinotecan; VITAC, vincristine, irinotecan, temozolomide, bevacizumab; Wd, well differentiated.

*Patient also had chronic GVHD of the liver.
*Duration of sorafenib treatment unknown.
*Cisplatin was discontinued after the first two cycles due to ototoxicity.
*Died from dialysis complication.

Seven of the 11 patients who underwent LT exceeded Milan criteria (MC) (Table 2). One patient had a solitary lesion >5 cm and six had more than three foci with the largest being >3 cm. The rationale to transplant outside of MC was due to concern for impending liver failure or complications from preexisting liver disease as detailed above.

3.5 | Medical treatment

Five patients received adjuvant chemotherapy and 13 received neoadjuvant chemotherapy or chemotherapy alone (Table 3). Common upfront medical therapy was sorafenib alone (7) and a cisplatin/doxorubicin-based regimen (8; 3 with concurrent sorafenib). Three patients discontinued sorafenib due to rash (3) and pancreatitis (1). Other platinum-based regimens used upfront included cisplatin and 5-fluorouracil (Cis/5-FU; 2), cisplatin, 5-FU, and vincristine (C5V; 1), gemcitabine/oxaliplatin (Gem/Ox; 1) and cisplatin, interferon, doxorubicin, and fluorouracil (PIAF; 1). Of note, one patient with Fanconi anemia required reduced-intensity conditioning allogeneic stem cell transplantation for myelodysplastic syndrome 2 months after upfront HCC tumor resection and subsequently died of transplant-related complications. This patient did not receive HCC-directed medical therapy.

Four patients received second- and subsequent-line chemotherapy, most commonly a gemcitabine-based regimen (4) or sorafenib (2). One patient received ifosfamide, carboplatin, and etoposide (ICE; 1) and one patient was treated on a phase I trial with intratumoral injection of the oncolytic virus JX-594. Three patients received salvage therapy after relapse, including Gem/Ox (2), temsirolimus (1), VITAC (vincristine, irinotecan, temsirolimus, bevazcumab; 1). Two of these patients were also treated on phase I trials including crizotinib (1); JX-594 (1); IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor receptor (1). Two patients with HCC in the setting of cryptogenic cirrhosis did not receive any therapy due to poor clinical status and died of disease.

3.6 | Outcomes

Overall, 14 patients (43.8%) survived (Figure 1; median follow-up of 58.8 months (range 26.5–157.6)). Cause of death for the other 18 patients were PD (12—primary surgery not performed (11), subtotal resection (1)), relapse (4), Fanconi bone marrow transplant complication (1), and dialysis complication (1). Of the survivors, Evans stage was 1 (11), 2 (1), and 3 (2), with a statistically significant difference in overall survival in Evans stage 1 to 2 disease compared to Evans stage 3 or 4 (Figure 2A; P < 0.0001). There was no difference in median survival between those with PRETEXT I/II disease (35.9 months) versus PRETEXT III/IV disease (20.3 months) (Figure 2B; P > 0.43). There was also no difference in median survival based on age <15 years (35.9 months) compared to ≥15 years (20.1 months) (Figure 2C; P > 0.22). Of the 17 patients with preexisting liver disease, 8 (47%) are alive (Figure 2D). Causes of death for the remaining nine patients were nononcologic issues (2), progression without any therapy (2), progression despite therapy (4), and relapse after medical therapy.
FIGURE 2 Other Outcome measures in HCC cohort. (A) Overall survival based on Evans stage. Evans stage 1 and 2 patients had significantly improved survival compared to stages 3 and 4 (P < 0.0001). (B) Overall survival based on PRETEXT. There was no difference in survival between PRETEXT I/II and III/IV (P > 0.43). (C) Overall survival based on age. Patients 15+ years of age had slightly worse outcomes compared to younger patients, although this was not statistically significant (P > 0.25). (D) Overall survival based on genetic predisposition. Patients with preexisting liver disease had no difference in outcome compared to those with no genetic or anatomic predisposition (P > 0.98). (E) Overall survival based on histology. There was no difference between outcomes for conventional versus fibrolamellar HCC (P > 0.41). (F) Overall survival based on surgical therapy. There was a trend to improved survival for patients treated with liver transplantation compared to conventional resection (P > 0.08). (G) Overall survival based on Evans stage and surgical modality. Stage was the most prognostic factor, however in patients with higher stage disease (Evans stages 3 and 4), liver transplantation lead to better survival compared to conventional resection (P < 0.0012).
and LT (1). Two of 7 patients (28%) with fibrolamellar HCC and 12 of 25 patients (48%) with conventional HCC remain alive (Figure 2E; $P > 0.41$).

Only 4 of 18 patients (22%) who received medical therapy survived. There was a trend to improved survival in patients who underwent LT (9/11; 82%) versus conventional resection (5/10; 50%), although not statistically significant (Figure 2F; $P > 0.08$). Patients with advanced stage disease who underwent LT did better than those treated with conventional resection (Figure 1G; $P < 0.0012$).

4 DISCUSSION

HCC is an aggressive neoplasm with age-dependent differences in epidemiology, baseline liver function, histology, and response to therapy, suggesting biological differences. A recent publication on the genomic heterogeneity of pediatric HCC did note a molecularly distinct pattern of 15 sequenced tumors. 11 Moreover, there is clinical heterogeneity of HCC comparing younger children to adolescents and young adults, thus far not well described.

Both genetic and anatomic predispositions to HCC are seen in pediatric patients, especially younger children. $^{19-22}$ While previous data suggested that 30% of pediatric HCC in the Western world is associated with a predisposition, 19 53% of our cohort had a genetic or anatomic predisposition, reflective of data from a large, tertiary care center. There was no difference in survival between patients with a predisposition versus those without.

The cornerstone for HCC-directed therapy is a complete surgical resection, however two-thirds of pediatric patients with HCC present with unresectable disease. In our cohort, patients with complete surgical resectability and no evidence of regional or distant disease had a favorable outcome, as evidenced by survival based on Evans stage, consistent with prior reports. 7,18

Given frequent chemoresistance and challenges with conventional resection, the role of LT in pediatric HCC continues to evolve. Some studies have shown improved disease-free survival (range 63-89%) with LT, especially in children with background cirrhosis due to an underlying predisposition. $^{23-29}$ The Pediatric Liver Unresectable Tumor Observatory Registry presented interim data in 2015, examining 53 patients <18 years of age with HCC treated with LT, including 29 with underlying liver disease. Long-term survival was excellent in all patients with chronic liver disease, and cure was still demonstrated in two-thirds of patients with unresectable HCC and no background liver disease. 30 In our cohort, there was a trend toward improved survival with LT, but not significant (Figure 1E). It is important to note that both patients who relapsed after LT did so outside of the liver (lung and abdominal cavity) and both who relapsed after conventional resection had local relapses in the liver in the setting of narrow negative margins (0.2-0.3 mm). While the issue of adequate margins remains debatable, $^{31-34}$ these data support LT being a practical method to control local disease in the absence of metastatic disease and in settings where a conventional surgery is challenging.

There is currently no distinct pediatric criteria to determine the best candidate for transplant. The MC is widely used in adult HCC management algorithms, which prognosticates transplant outcomes based on the number and size of tumors, as well as the presence of extrahepatic disease or vascular extension. While these criteria have significantly improved recurrence-free survival in adult HCC, $^{35-37}$ they have not been validated in pediatrics. In fact, several papers have shown good outcomes in patients exceeding MC, supporting the need for specific pediatric criteria. 24,26,28,29,38 In our cohort, 11 patients underwent LT, and 7 of 11 (63%) patients exceeded the original MC, all of whom remain alive and disease free (Table 2).

Despite increasing experience with medical management of HCC, there is no convincing evidence to suggest that chemotherapy improves survival. The North American Intergroup Hepatoma study (INT-0098) studied the role of chemotherapy by postoperatively randomizing pediatric patients with HCC to receive a combination of C5V (Regimen A) or cisplatin and continuous-infusion doxorubicin (Regimen B). 9 There was no difference in response or survival rates between the two treatment regimens, with the best outcome in patients with complete tumor excision at the time of diagnosis (stage 1, 5-year event-free survival (EFS) = 88%) and uniformly poor outcomes in patients with advanced-stage disease (stage 3, 5-year EFS = 23%; stage 4, 5-year EFS = 10%). The International Childhood Liver Tumor Study (SIOPEN 1) also studied the role of chemotherapy by administering a combination of cisplatin and doxorubicin (PLADO) in the neoadjuvant setting and showed similarly discouraging results with a 5-year EFS of 17%. 8 Eighteen of 37 patients (49%) had a PR to chemotherapy. Complete tumor resection was achieved in 36% of patients (a minority of which became resectable as a result of neoadjuvant chemotherapy); 51% never became operable. Long-term survival was only seen in patients with complete surgical excision. Subsequently, SIOPEN 2 and 3 investigated the concept of a dose-intensified platinum- and doxorubicin-based regimen and showed no improvement in survival. 39

Sorafenib, a receptor tyrosine kinase inhibitor, is one of the few FDA-approved drugs for pediatric HCC, 40 and the most commonly utilized in our cohort, both as a single agent and in combination with PLADO (Table 3). The next most common upfront regimen was PLADO-based therapy without sorafenib. Of the 13 patients with unresectable disease at diagnosis who received medical therapy, only two had a PR to chemotherapy and subsequently underwent LT. All other patients who had neoadjuvant chemotherapy had SD or PD. Alternate treatment regimens utilized predominately as second/subsequent-line or salvage therapy included vincristine and irinotecan, Gem/Ox, PIAF, ICE, and Cyclo/Topo. While these drugs have been described in the adult literature, pediatric data regarding response rates remain scarce.

There are several limitations of this retrospective review. As a single institutional study from a large tertiary care center, our epidemiological data may not be generalizable to other centers. Additionally, surgical guidelines vary between institutions and may lead to differing outcomes. Our cohort, while the largest single institutional study in the literature to date, remains small and as such, limits extensive analytics.
In summary, pediatric HCC is often a chemoresistant neoplasm in which complete surgical resection by either conventional methods or LT remains the best chance for cure. There is significant heterogeneity in pediatric HCC in regard to risk factors, background liver disease, and resectability, suggesting the need for tailored therapy, rather than a uniform treatment approach to all pediatric and adolescent HCC. The Pediatric Hepatic International Tumor Trial (PHITT), (COG AHEP1531; JCCG - JPLT4; SIOPEL - PHITT), is the first prospective, multicohort group international trial studying outcomes in patients with HCC using standardized therapy arms based on having resectable or unresectable and/or metastatic disease, as well as the presence or absence of preexisting conditions. Importantly, a major aim of the study will be to analyze the biology of HCC in order to develop biomarkers of clinical heterogeneity in effort to optimize individualized treatment, as well as to advance novel therapeutics.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

ORCID

Amber M. D’Souza https://orcid.org/0000-0002-0552-6947
Alexander J. Towbin https://orcid.org/0000-0003-1729-5071
James I. Geller https://orcid.org/0000-0001-5181-116X

REFERENCES

1. Chen JC, Chen CC, Chen WJ, Lai HS, Hung WT, Lee PH. Hepatocellular carcinoma in children: clinical review and comparison with adult cases. J Pediatr Surg. 1998;33(9):1350-1354.
2. Exelby PR, Filler RM, Grosfeld JL. Liver tumors in children in the particular reference to hepatoblastoma and hepatocellular carcinoma: American Academy of Pediatrics Surgical Section Survey-1974. J Pediatr Surg. 1975;10(3):329-337.
3. Pazdur R, Bready B, Cangir A. Pediatric hepatic tumors: clinical trials conducted in the United States. J Surg Oncol Suppl. 1993;3:127-130.
4. Weinblatt ME, Siegel SE, Siegel MM, Stanley P, Weitzman JJ. Preoperative chemotherapy for unresectable primary hepatic malignancies in children. Cancer. 1982;50(6):1041-1064.
5. Czauderna P. Adult type vs. Childhood hepatocellular carcinoma—are they the same or different lesions? Biology, natural history, prognosis, and treatment. Med Pediatr Oncol. 2002;39(5):519-523.
6. Franzvea E, Paradiso A, Antonaci S, Giannelli G. HCC heterogeneity: molecular pathogenesis and clinical implications. Cell Oncol Off J Int Soc Cell Oncol. 2009;31(3):227-233.
7. Cornella H, Alsinet C, Sayols S, et al. Unique genomic profile of fibrolamellar hepatocellular carcinoma. Gastroenterology. 2015;148(4):806-818.e10.
8. Czauderna P, Mackinlay G, Perilongo G, et al. Hepatocellular carcinoma in children: results of the first prospective study of the International Society of Pediatric Oncology group. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(12):2798-2804.
9. Katzenstein HM, Krailo MD, Malagolowkin MH, et al. Hepatocellular carcinoma in children and adolescents: results from the Pediatric Oncology Group and the Children’s Cancer Group intergroup study. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(12):2789-2797.
10. Malagolowkin MH, Rangaswami A, ONeill A, Plaschke J, Zimmermann A. Liver tumors in: Bleyer A, Barr R, Ries L, Whelan J, Ferrari A, eds. Cancer in Adolescents and Young Adults. 2nd ed. Berlin: Springer; 2017:473-476.
11. Haines K, Sarabia SF, Alvarez KR, et al. Characterization of pediatric hepatocellular carcinoma reveals genomic heterogeneity and diverse signaling pathway activation. Pediatr Blood Cancer. 2019;66(7):e27745. https://doi.org/10.1002/pbc.27745.
12. Theise ND, Curado MP, Franceschi S, et al. Hepatocellular carcinoma. WHO Classification of Tumours of the Digestive System. 4th ed. Geneva, Switzerland: World Health Organization; 2010.
13. Roebuck DJ, Aronson D, Clapuyt P, et al. 2005 PRETEXT: a revised staging system for primary malignant liver tumours of childhood developed by the SIOPEL group. Pediatr Radiol. 2007;37(2):123-132.
14. Amin MB, Greene FL, Edge SB, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-99.
15. Cholongitas E, Papatheodoridis GV, Vangelii M, Terreni N, Patch D, Burroughs AK. Systematic review: the model for end-stage liver disease—should it replace Child-Pugh’s classification for assessing prognosis in cirrhosis. Aliment Pharmacol Ther. 2005;22(11-12):1079-1089.
16. McDiarmid SV, Merion RM, Dykstra DM, Harper AM. Selection of pediatric candidates under the PELD system. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 2004;10(Suppl 2):S23-S30.
17. Wiesner R, Edwards E, Freeman R, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology. 2003;124(1):91-96.
18. D’Souza AM, Shah R, Gupta A, et al. Surgical management of children and adolescents with upfront completely resected hepatocellular carcinoma. Pediatr Blood Cancer. 2018;65(11):e27923.
19. Kelly D, Sharif K, Brown RM, Morland B. Hepatocellular carcinoma in children. Clin Liver Dis. 2015;19(2):433-447.
20. Pichon N, Maisonnef F, Pichon-Lefèvre F, Valleix D, Pillegand B. Hepatocarcinoma with congenital agenesis of the portal vein. Jpn J Clin Oncol. 2003;33(6):314-316.
21. Asrani SK, Asrani NS, Freese DK, et al. Congenital heart disease and the liver. Hepatol Baltim Md. 2012;56(3):1160-1169.
22. Meyers R, Czauderna P, Haeberle B. Liver tumors in children. In: Carrachi R, Grosfeld JL, Azmy AF, eds. The Surgery of Childhood Tumors. Berlin: Springer; 2015.
23. Austin MT, Leys CM, Feurer ID, et al. Liver transplantation for childhood hepatic malignancy: a review of the United Network for Organ Sharing (UNOS) database. J Pediatr Surg. 2006;41(1):182-186.
24. Ismail H, Broniszczzak D, Kaliciński P, et al. Liver transplantation in children with hepatocellular carcinoma. Do Milan criteria apply to pediatric patients?. Pediatr Transplant. 2009;13(6):682-692.
25. Malek MM, Shah SR, Atri P, et al. Review of outcomes of primary liver cancers in children: our institutional experience with resection and transplantation. Surgery. 2010;148(4):778-782.
26. Pham TA, Gallo AM, Concepcion W, Esviquel CO, Bonham CA. Effect of liver transplant on long-term disease-free survival in children with hepatoblastoma and hepatocellular cancer. JAMA Surg. 2015;150(12):1150-1158.
27. Reyes JD, Carr B, Dvorichik I, et al. Liver transplantation and chemotherapy for hepatoblastoma and hepatocellular cancer in childhood and adolescence. J Pediatr. 2000;136(6):795-804.
28. Beaumoyer M, Vanatta JM, Oghira M, et al. Outcomes of transplantation in children with primary hepatic malignancy. Pediatr Transplant. 2007;11(6):655-660.
29. Vinayak R, Cruz RJ, Ranganathan S, et al. Pediatric liver transplantation for hepatocellular cancer and rare liver malignancies: u5 multicenter and single-center experience (1981-2015). Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 2017;23(12):1577-1588.
30. Otte JB. Intern Registry Report: PLUTO. Presented at: The International Pediatric Transplant Association Eight Congress on
31. Shi M, Guo R-P, Lin X-J, et al. Partial hepatectomy with wide versus narrow resection margin for solitary hepatocellular carcinoma: a prospective randomized trial. *Ann Surg.* 2007;245(1):36-43.

32. Salloum C, Castaing D. [Surgical margin status in hepatectomy for liver tumors]. *Bull Cancer (Paris).* 2008;95(12):1183-1191.

33. Poon RT, Fan ST, Ng IO, Wong J. Significance of resection margin in hepatectomy for hepatocellular carcinoma: a critical reappraisal. *Ann Surg.* 2000;231(4):544-551.

34. Field WBS, Rostas JW, Philips P, Scoggins CR, McMasters KM, Martin RCG. Wide versus narrow margins after partial hepatectomy for hepatocellular carcinoma: balancing recurrence risk and liver function. *Ann Surg.* 2017;214(2):273-277.

35. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. *N Engl J Med.* 1996;334(11):693-699.

36. Bismuth H, Chiche L, Adam R, Castaing D, Diamond T, Dennison A. Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients. *Ann Surg.* 1993;218(2):145-151.

37. Leung JY, Zhu AX, Gordon FD, et al. Liver transplantation outcomes for early-stage hepatocellular carcinoma: results of a multicenter study. *Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc.* 2004;10(11):1343-1354.

38. de Ville de Goyet J, Meyers RL, Tiao GM, Morland B. Beyond the Milan criteria for liver transplantation in children with hepatic tumors. *Lancet Gastroenterol Hepatol.* 2017;2(6):456-462.

39. Murawski M, Weeda VB, Maibach R, et al. Hepatocellular carcinoma in children: does modified platinum- and doxorubicin-based chemotherapy increase tumor resectability and change outcome? Lessons learned from the SIOPEL 2 and 3 studies. *J Clin Oncol Off J Am Soc Clin Oncol.* 2016;34(10):1050-1056.

40. Schmid I, Häberle B, Albert MH, et al. Sorafenib and cisplatin/doxorubicin (PLADO) in pediatric hepatocellular carcinoma. *Pediatr Blood Cancer.* 2012;58(4):539-544.

How to cite this article: D’Souza AM, Towbin AJ, Gupta A, et al. Clinical heterogeneity of pediatric hepatocellular carcinoma. *Pediatr Blood Cancer.* 2020;67:e28307. https://doi.org/10.1002/pbc.28307