A Significantly off-center 56Ni Distribution for the Low-Luminosity Type Ia Supernova SN 2016brx from the 100IAS survey *

Subo Dong,† Boaz Katz, Juna A. Kollmeier, Doron Kushnir, N. Elias-Rosa, Subhash Bose, Nidia Morrell, J. L. Prieto, Ping Chen, C.S. Kochanek, G. M. Brandt, T. W.-S. Holoien, Avishay Gal-Yam, Antonia Morales-Garoffolo, Stuart Parker, M. M. Phillips, Anthony L. Piro, B. J. Shappee, Joshua D. Simon, and K. Z. Stanek

1 Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871, China
2 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
3 Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA
4 Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA
5 Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, USA
6 Department of Applied Physics, University of Cádiz, Campus of Puerto Real, E-11510 Cádiz, Spain
7 Parkdale Observatory, 225 Warren Road, RDI Oxford, Canterbury 7495, New Zealand
8 Backyard Observatory Supernova Search (BOSS)
9 Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We present nebular-phase spectra of the Type Ia supernova (SN Ia) 2016brx, a member of the 1991bg-like subclass that lies at the faint end of the SN Ia luminosity function. Nebular spectra are available for only three other 1991bg-like SNe, and their Co line centers are all within $\lesssim 500$ km/s of each other. In contrast, the nebular Co line center of SN 2016brx is blue-shifted by > 1500 km/s compared to them and by ≈ 1200 km/s compared to the rest frame. This is a significant shift relative to the narrow nebular line velocity dispersion of $\lesssim 2000$ km/s of these SNe. The large range of nebular line shifts implies that the 56Ni in the ejecta of SN 1991bg-like events is off-center by ≈ 1200 km/s rather than universally centrally confined as previously suggested. With the addition of SN 2016brx, the Co nebular line shapes of 1991bg-like objects appear to connect with the brighter SNe Ia that show double-peaked profiles, hinting at a continuous distribution of line profiles among SNe Ia. One class of models to produce both off-center and bi-modal 56Ni distributions is collisions of white dwarfs with unequal and equal masses.

Key words: supernovae – general

1 INTRODUCTION

SNe Ia are believed to be the result of thermonuclear explosions of white dwarfs (WDs), but the triggering mechanism of the explosion and progenitor systems are unknown (e.g., see the reviews by Maoz et al. 2014; Wang 2018). Nebular-phase spectra can probe the inner region of the SN ejecta.

* This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
† E-mail: dongsubo@pku.edu.cn

© 2018 The Authors
because the material is optically thin. Nebular spectra of SNe Ia are dominated by Co and Fe emission lines, both of which are decay products of the 56Ni synthesized in the explosion. In particular, the identification of Co and its decay through the 56Ni nebular emission lines near 5900 Å provide important evidence that SNe Ia are powered by the decay chain 56Ni \rightarrow^{56}Co \rightarrow^{56}Fe (Axelrod 1980; Kuchner et al. 1994; Childress et al. 2015). Since they can only be obtained several months to years after the explosion, nebular spectra are also challenging to obtain because the supernovae are optically faint at these late phases. Owing to this, there are few published nebular spectra (see, e.g., Maeda et al. 2010; Dong et al. 2015; Graham et al. 2017; Maguire et al. 2018).

The least luminous SNe Ia on the width-luminosity relation (Phillips 1993), the so-called 1991bg-like events named after the prototype SN 1991bg (Filippenko et al. 1992; Leibundgut et al. 1993; Turatto et al. 1996), are also the most challenging objects for obtaining nebular spectra. The nebular spectra of SN 1991bg have narrow line widths (velocity dispersion $\sigma_v \approx 1000$ km/s), allowing for precise line identification (Turatto et al. 1996).

The 56Ni nebular emission feature near 5900 Å consists of two lines at 5888 Å and 5906 Å (wavelength in air, NIST ASD 2018; Smillie et al. 2016). The 5888 Å line is expected to be about 3-4 times stronger than the 5906 Å line and the expected (weighted) mean line position is at $(5888 \times 3.5 + 5906)/4.5 = 5892$ Å. Any deviation from the theoretically expected position could either imply a misunderstanding of the atomic physics or a Doppler shift due to an off-center distribution of 56Ni in the ejecta. It came as a surprise that in the nebular spectrum of SN 1991bg the feature peaked at 5906 Å, coinciding with the theoretically expected weaker line of the two. This led Mazzali et al. (1997) to suggest that the 5906 Å line may instead be dominant and thus 56Ni is centrally concentrated in the ejecta of SN 1991bg. There are two other 1991bg-like events with nebular spectra, namely SN 1999by (Garnavich et al. 2004; Silverman et al. 2012) and SN 2005ke (Folatelli et al. 2013), and like 1991bg, they have both narrow line widths ($\sigma_v \lesssim 2000$ km/s) and line centers within ~350 km/s of 5906 Å.

Here we examine two nebular spectra of the 1991bg-like event SN 2016brx. For this fourth 1991bg-like SN with nebular spectra, the ~5900 Å $^{[\text{Co} \text{iii}]}$ nebular feature peaks at 5870 Å, which is blue-shifted by nearly 2000 km/s compared to 5906 Å. Taken together with the other three SNe in this class, it supports the theoretically expected central wavelength of 5892 Å for the ~5900 Å $^{[\text{Co} \text{iii}]}$ feature, and suggests that 1991bg-like SN Ia have asymmetric 56Ni ejecta with typical centroid velocities (blue- or red-shifted) of ~1000 km/s.

1 The radiative rate (Einstein A coefficient) of the 5888 Å line is about 2.6 times larger than that of the 5906 Å line (e.g. Axelrod 1980; Storey & Sochi 2016) and the non-LTE occupation of the upper level of the transition for the 5888 Å line is higher than that of the 5906 Å line by a factor of $[1.15-1.5]$ across a broad range of electron densities (10^2-3 cm^{-3} to 10^3-5 cm^{-3}) and temperatures (5000K to 10000K) (Brandt & Katz, in prep.). This results in an expected ratio of $2.6 \times [1.15-1.5] = [3-4]$ between the lines.

Table 1. $^{[\text{Co} \text{iii}]}$ nebular velocity shifts and widths for four 1991bg-like SNe Ia. Best-fit Gaussian profiles using a line ratio of 3.5 between 5888 Å and 5906 Å lines are reported.

SN	phase (d)	v_{shift} [km/s]	σ_v [km/s]
2016brx	120	-1070	2350
2016brx	190	-1220	2100
2005ke	120	540	2150
1999by	183	1050	1550
1991bg	143	770	1200
1991bg	203	640	1000

2 OBSERVATION

SN 2016brx was discovered by Stuart Parker in the elliptical galaxy NGC 7391 ($\z = 0.010167$; Jones et al. 2009) at UT 2016-04-19 17:18:51 (Parker 2015). It was classified as a SN Ia based on a du Pont/WFCCD spectrum taken on UT 2016-06-17 (Morrell & Shappee 2016). The supernova was also detected by the All-Sky Automated Survey for Supernovae (ASAS-SN, Shappee et al. 2014) in V-band (Holoien et al. 2017). In Appendix A, we show that the du Pont spectrum and light curve are consistent with a SN 1991bg-like event.

Late-time spectra of SN 2016brx were obtained at the 10.4m Gran Telescopio Canarias (GTC) and the 6.5m Magellran Clay telescope as part of the nebular spectra for 100 type Ia Supernovae (100IAS) survey. The goal of 100IAS is to systematically obtain nebular spectra from a volume-limited sample of low-\z SNe Ia primarily based on ASAS-SN SN discoveries and/or recoveries, where the survey completeness can be quantified based on ASAS-SN detections.

The late-time spectra of SN 2016brx were obtained using the GTC OSIRIS (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy) spectrograph on UT 2016-08-13 and the Magellan Clay LDSS3 (Low Dispersion Survey Spectrograph 3) on UT 2016-10-20. According to the peak time derived in Appendix A, their post-maximum phases are approximately at $\approx +120$ days and $\approx +190$ days, respectively. The integration times for the GTC (OSIRIS) and Magellan (LDSS3) spectra were 3600 s and 12600 s, obtained in 1800 s exposures, and the spectral resolutions were R ≈ 540 and R ≈ 650. We follow standard calibration and reduction procedures using IRAF tasks. The spectra are available on WiseREP (Yaron & Gal-Yam 2012).

3 RESULTS

In Fig. 1, we show the rest-frame Magellan spectrum of SN 2016brx (phase ≈ 190 days, red solid line) along with the nebular spectrum of the 1991bg-like event SN 1999by (phase ≈ 184 days, blue solid line; Silverman et al. 2012). The emission lines in the two spectra have similar line profiles and ratios, confirming the 1991bg-like nature of SN 2016brx. Remarkably, however, the spectral features of SN 2016brx are blue-shifted relative to those of SN 1999by. In particular, the Fe and Co spectral features in the range 4500 – 7000 Å are systematically shifted in velocity between the two supernovae.

The $^{[\text{Co} \text{iii}]}$ feature near 5900 Å is particularly useful for studying the underlying 56Ni velocity distribution (e.g.,
Mazzali et al. 1997; Dong et al. 2015) since it has little contamination from other lines\(^2\) (Axelrod e.g. 1980; Maguire et al. e.g. 2018; Brandt & Katz in prep.). As discussed in §1, the centroid position of this feature in previous 1991bg-like SNe were puzzlingly close to the (theoretically expected) weaker 5906 Å line rather than the stronger line at 5888 Å, and it was suggested that the 5906 Å line might actually be the stronger one (Mazzali et al. 1997).

The inset of Fig. 1 shows the region around 5900 Å, showing that the [Co\textsc{iii}] feature in 2016brx at \(\approx 190\) days (red solid lines) is centered at \(\approx 5870\) Å. The GTC spectrum of 2016brx taken at \(\approx 120\) days is shown as a black solid line. We model the spectra in the range of 5700 – 6000 Å with Gaussian profiles, and the best-fit line centers are at 5868 Å and 5871 Å for the Magellan and GTC spectra, respectively. The line widths of the two spectra are also similar with \(\sigma_{v,190d} = 2100\) km/s and \(\sigma_{v,120d} = 2350\) km/s. The consistency in line centers and shapes of the ~5900 Å features over the two epochs demonstrates that the stability of the [Co\textsc{iii}] feature. Taking the theoretically expected value of 5892 Å as the reference wavelength (see §1), the feature in SN 2016brx is blue-shifted by about 1200 km/s, while in SN 1999by it is red-shifted by about 1100 km/s. The rest-frame line center of [Co\textsc{iii}] at 5892 Å is marked by a magenta solid line.

\(^2\) There are claims in the literature for a significant contribution of Na I D (e.g. Mazzali & Hachinger 2012), but this interpretation is not supported by the studies of Dessart et al. (2014); Childress et al. (2015); Maguire et al. (2018) and Brandt & Katz (in prep.)

Figure 1. The rest-frame nebular-phase spectra of SN 2016brx. The \(\approx 190\) days Magellan nebular spectrum of SN 2016brx is shown in red solid lines. It has similar line profiles and ratios to the spectrum of the 1991bg-like event SN 1999by at a similar phase of 184 days (Silverman et al. 2012) shown in blue solid lines. However, the Fe and Co nebular features (essentially all prominent lines between \(\sim 4500 – 7000\) Å) of SN 2016brx are systematically blue-shifted compared to SN 1999by. The \(\sim 5900\) Å [Co\textsc{iii}] feature is shown in the inset, and the line center for 2016brx (marked with red dashed line) is blue-shifted by \(\approx 2300\) km/s relative to 1999by (marked with blue dashed line). The inset also includes the \(\approx 120\) days GTC spectrum of SN 2016brx (black solid line). The line centers of both the Magellan and GTC spectra are consistently blue-shifted by \(\sim 1200\) km/s with respect to the rest frame, while that of the SN 1999by is red-shifted by \(\sim 1100\) km/s. The rest-frame line center of [Co\textsc{iii}] at 5892 Å is marked by a magenta solid line.

The [Co\textsc{iii}] features at \(\sim 5900\) Å for both Magellan and GTC spectrum of 2016brx have velocity dispersions of \(\sigma_{v} \approx 2200\) km/s, consistent with the low values measured for the other 1991bg-like events (\(\sigma_{v} \approx 1100\) km/s for 1991bg, \(\sigma_{v} \approx 1600\) km/s for 1999by and \(\sigma_{v} \approx 2200\) km/s for 2005ke). In comparison, we measure the \(\sigma_{v}\) of 2011fe, a “normal” SN Ia, and it is \(\approx 4000\) km/s.
Figure 2. A possibly continuous distribution of nebular [Co\textsc{iii}] line profiles for SNe Ia. The [Co\textsc{iii}] nebular features at 5900 Å are shown for 2016brx and all the nebular spectra of the faint half of the sample from Dong et al. (2015). The bottom four SN 1991bg (Turatto et al. 1996), SN 1999by (Silverman et al. 2012), SN 2005ke (Silverman et al. 2012) and SN 2016brx (this work, shown in red) are 1991bg-like events – the 1991bg-like events – are isolated or connected with the brighter SNe Ia. Key clues may lie in objects whose luminosities are between 1991bg-like events ($M_B > -18$) and “normal” SNe Ia ($-19.7 \lesssim M_B \lesssim -19$). Many of the objects in this intermediate luminosity range of $-19 \lesssim M_B \lesssim -18$ are called “transitional” objects in the literature (e.g., Branch et al. 2006; Pastorello et al. 2007; Gall et al. 2018). Their photometric properties appear to connect 1991bg-like events with the rest of SNe Ia population on a continuum (e.g. Burns et al. 2014).

In Fig. 2, we show the \sim 5900 Å [Co\textsc{iii}] nebular features of the fainter half ($M_B > -19$) of the SNe Ia sample from Dong et al. (2015) along with 2016brx (red solid line). The 1991bg-like events (the bottom 4 in Fig. 2) are all single peaks with narrow widths (σ_V ranging from $\sim 1000 - 2000$ km/s), while the rest in the sample are wider (by a factor of > 2) and have heterogeneous morphologies including double-peaked profiles with both blue- and red-shifted components (Dong et al. 2015; Mazzali et al. 2018). Are 1991bg-like events distinct?

1991bg-like events 1991bg and 1999by have [Co\textsc{iii}] line width and shape that are starkly different from the brighter 2007on and 2005am with their double-peaked profiles. In particular, the brighter objects are wider than the former by a factor of several. However, the 1991bg-like events

3 We have added the early nebular spectrum of 2005ke at 120 days, which was not included in Dong et al. (2015) because it did not satisfy the criterion of phase > 170 days.

Figure 3. A comparison of the [Co\textsc{iii}] nebular features at \sim 5900 Å of 2016brx and 2003gs. The flux is normalized to the line maximum.

4 A CONTINUOUS DISTRIBUTION OF NEBULAR LINE MORPHOLOGIES?

There is evidence that type Ia supernovae have a continuous distribution of observational properties, including their light-curves (e.g. Phillips 2012; Burns et al. 2014), early spectra (e.g. Nugent et al. 1995; Branch et al. 2009) and nebular line widths (e.g Mazzali et al. 1998; Kushnir et al. 2013). An intriguing yet unresolved question is whether the least luminous sub-class of SNe Ia – the 1991bg-like events – are isolated or connected with the brighter SNe Ia. Key clues may lie in objects whose luminosities are between 1991bg-like events ($M_B > -18$) and “normal” SNe Ia ($-19.7 \lesssim M_B \lesssim -19$). Many of the objects in this intermediate luminosity range of $-19 \lesssim M_B \lesssim -18$ are called “transitional” objects in the literature (e.g., Branch et al. 2006; Pastorello et al. 2007; Gall et al. 2018). Their photometric properties appear to connect 1991bg-like events with the rest of SNe Ia population on a continuum (e.g. Burns et al. 2014).

In Fig. 2, we show the \sim 5900 Å [Co\textsc{iii}] nebular features of the fainter half ($M_B > -19$) of the SNe Ia sample from Dong et al. (2015) along with 2016brx (red solid line). The 1991bg-like events (the bottom 4 in Fig. 2) are all single peaks with narrow widths (σ_V ranging from $\sim 1000 - 2000$ km/s), while the rest in the sample are wider (by a factor of > 2) and have heterogeneous morphologies including double-peaked profiles with both blue- and red-shifted components (Dong et al. 2015; Mazzali et al. 2018). Are 1991bg-like events distinct?

The 1991bg-like events 1991bg and 1999by have [Co\textsc{iii}] line width and shape that are starkly different from the brighter 2007on and 2005am with their double-peaked profiles. In particular, the brighter objects are wider than the former by a factor of several. However, the 1991bg-like events
2005ke and 2016brx have wider profiles, and along with the brighter event 2003gs with its non-equal double peaks, bridge much of the gap. In Fig. 3, the spectrum of 2016brx is compared to 2003gs. While 2003gs shows two peaks, the flux is dominated by the blue-shifted component, which happens to have a nearly identical shape (including width and blue shift) to the profile of 2016brx. The difference between the two appears to be the presence of a weaker red-shifted component in 2003gs. Furthermore, the photometric properties of 2005ke bridge the gap between 1991bg and the transitional events (Phillips 2012).

It is thus possible that the nebular profiles of 1991bg-like and the brighter objects do not form distinct groups but rather form a continuum roughly along a sequence ordered by [Co iii] line width (which is correlated with luminosity, Kushnir et al. 2013). 1991bg represents the faintest event with the narrowest width. 1999by and 2005ke/2016brx are progressively wider. 2003gs is brighter, and its dominant component of the nebular profile is similar to the profile of 2016brx (both in width and shift) but has a small extra red-shifted component. Then objects like 2007on have different combinations of blue-shifted and red-shifted components. Even brighter objects such as 2008Q and 2005am are wider and possibly transition to “normal” SNe Ia. More observations are needed to probe the nebular spectra landscape of sub-luminous objects to verify the continuity.

5 DISCUSSION
The shifted [Co iii] lines in the 1991bg-like events provide direct evidence for significant deviation of ~1000 km/s from spherical symmetry in the distribution of the 56Ni produced in these explosions. Maeda et al. (2010) claimed to find asymmetry in stable iron-group elements (e.g., 58Ni and 54Fe) of SNe Ia by deriving velocities from [Fe ii] and [Ni ii] nebular lines, especially the spectral feature at ~7200 Å that they attribute to [Fe ii]4715 and [Ni ii]4738. However, possibly significant contamination from [Ca ii] lines can introduce model-dependent uncertainties (e.g., Botyánszki & Kasen 2017). The large width of the ~7200 Å feature in 2016brx likely indicates a blend of [Fe ii], [Ni ii] and [Ca ii], and thus detailed models are needed to derive reliable centroid velocities from this feature.

A simple possibility to account for the 56Ni centroid shift is the velocity of the exploding WD. Motion within the galaxy is typically much slower than 1000 km/s and thus unlikely to explain the observed shifts. In particular, the central velocity dispersion of NGC 7391, which hosts 2016brx, is 250 km/s (Simien & Prugniel 1998), which is much smaller than the observed shift of ~1200 km/s. If the WD explodes during a merger with another less massive WD in a tight orbit shrinking due to gravitational-wave radiation (e.g., Iben & Tutukov 1984; Guillochon et al. 2010; Pakmor et al. 2013; Shen et al. 2018; note that an ignition has not been demonstrated to occur), it may reach the observed shift velocity of 1000 km/s if its lighter WD companion is heavier than ~0.5M⊙ (see Fig. B1 in Appendix B).

An orbital-frequency origin for the shift cannot account for the double-peaked profiles seen in supernovae brighter than 1991bg-like events, implying that a different explanation for these deviations from spherical symmetry is required. Deviations from spherical symmetry may arise due to asymmetries in the explosion itself (e.g., Maeda et al. 2010; Raskin et al. 2010; Kushnir et al. 2013; Dong et al. 2015; Bulla et al. 2016). In particular, bi-modal 56Ni distributions were shown to occur naturally in 3D simulations of collisions of equal-mass white dwarfs (Dong et al. 2015). We are not aware of any other model that has so far been demonstrated to produce such a feature (see, e.g., van Rossum et al. 2016). Given that a shifted single peak does not have the mirror-symmetry expected in an equal mass collision, a collision interpretation for the shifted lines of 1991bg-like events would require an unequal mass collision. Future 3D calculations of the collisions will allow this question to be addressed in more detail.

Both velocity shifts and double-peaked profiles are indicative of asphericity, which provide important clues for the explosion mechanism of SNe Ia. Whether or not they are related is a key issue for identifying their physical origin. More nebular spectra of SNe Ia fainter than ~19 are required to map the diverse landscape of 56Ni morphologies and address this issue observationally. In particular, a large and complete sample of these spectra are required to understand their distribution and whether they form a continuous distribution. This is a primary goal of the 100IAS survey.

ACKNOWLEDGEMENTS
We thank S. Benetti and P. Garnavich for helping with archival spectra. S.D., S.B. and P.C. acknowledge Project 11573003 supported by NSFC. S.B. is partially supported by China postdoctoral science foundation grant No. 2016M600848. B.K. is supported by the I-CORE Program (1829/12) and the Beracha Foundation. J.L.P. is supported in part by FONDECYT through the grant 1151445 and by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. A.M.G. acknowledges financial support by the University of Cádiz grant PR2017-64. Partly based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. ASAS-SN is supported by the Gordon and Betty Moore Foundation through grant GBMF5490 to the Ohio State University and NSF grant AST-1515927. Development of ASAS-SN has been supported by NSF grant AST-0908816, the Mt. Cuba Astronomical Foundation, the Center for Cosmology and AstroParticle Physics at the Ohio State University, the Chinese Academy of Sciences South America Center for Astronomy (CAS-SACA), the Vilium Foundation, and George Skestos.

REFERENCES
Axelrod, T. S. 1980, Ph.D. Thesis
Blondin, S., & Tonry, J. L. 2007, ApJ, 666, 1024
Botyánszki, J., & Kasen, D. 2017, ApJ, 845, 176
Branch, D., Dang, L. C., Hall, N., et al. 2006, PASP, 118, 560
Branch, D., Chau Dang, L., & Baron, E. 2009, PASP, 121, 238
Bulla, M., Sim, S. A., Kronmer, M., et al. 2016, MNRAS, 462, 1039
Burns, C. R., Stritzinger, M., Phillips, M. M., et al. 2014, ApJ, 789, 32
Childress, M. J., et al. 2015, MNRAS, 454, 3816
Dong, S., Katz, B., Kushnir, D., & Prieto, J. L. 2015, MNRAS, 454, L61
Dessart, L., et al. 2014, MNRAS, 439, 3114
Eggleton, P. P. 1983, ApJ, 268, 368
Filippenko, A. V., Richmond, M. W., Branch, D., et al. 1992, AJ, 104, 1543
Folatelli G., et al., 2013, ApJ, 773, 53
Gall, C., Stritzinger, M. D., Ashall, C., et al. 2018, A&A, 611, A58
Garnavich, P. M., et al. 2004, ApJ, 613, 1120
Graham, M. L., et al. 2017, MNRAS, 472, 3437
Guillochon, J., et al. 2010, ApJ, 709, L64
Holoien, T. W.-S., et al. 2017, MNRAS, 471, 4966
Iben, I., Jr., & Tutukov, A. V. 1984, ApJS, 54, 335
Jones, D. H., Read, M. A., Saunders, W., et al. 2009, MNRAS, 399, 683
Kuchner, M. J., et al. 1994, ApJ, 426, 89
Kushnir, D., Katz, B., Dong, S., et al. 2013, ApJ, 778, L37
Leibundgut, B., Kirshner, R. P., Phillips, M. M., et al. 1993, AJ, 105, 301
Leloudas, G., Stritzinger, M. D., Sollerman, J., et al. 2009, A&A, 505, 265
Leonard, D. C. 2007, ApJ, 670, 1275
Maeda, K., Benetti, S., Stritzinger, M., et al. 2010, Nature, 466, 82
Maguire, K., Sim, S. A., Shingles, L., et al. 2018, MNRAS,
Maoz, D., Mannucci, F., & Nelemans, G. 2014, ARA&A, 52, 107
Mazzali, P. A., Chugai, N., Turatto, M., et al. 1997, MNRAS, 284, 151
Mazzali, P. A.,., et al. 1998, ApJ, 499, L49
Mazzali, P. A., & Hachinger, S. 2012, MNRAS, 424, 2926
Mazzali, P. A., Ashall, C., Pian, E., et al. 2018, MNRAS, 476, 2905
Morrell, N., & Shappee, B. J. 2016, The Astronomer’s Telegram, 9170
Kramida, A.,Ralchenko, Yu., Reader, J. and NIST ASD Team (2018). https://physics.nist.gov/asd [Wed Apr 11 2018].
Nugent, P., et al. 1995, ApJ, 455, L147
Pakmor, R., et al. 2013, ApJ, 770, L8
Parker, S. 2016, Transient Name Server Discovery Report, No. 1943
Pastorello, A., Mazzali, P. A., Pignata, G., et al. 2007, MNRAS, 377, 1331
Pereira, R., Thomas, R. C., Aldering, G., et al. 2013, A&A, 554, A27
Phillips, M. M. 1993, ApJ, 413, L105
Phillips, M. M. 2012, PASA, 29, 434
Prieto, J. L., Rest, A., & Suntzeff, N. B. 2006, ApJ, 647, 501
Raskin, C., Scannapieco, E., Rockefeller, G., et al. 2010, ApJ, 724, 111
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Shappee, B. J., et al. 2013, ApJ, 762, L5
Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48
Shen, K. J., Kasen, D., Miles, B. J., & Townsley, D. M. 2018, ApJ, 854, 52
Silverman, J. M., et al. 2012, MNRAS, 425, 1789
Simien, F., & Prugniel, P. 1998, A&AS, 131, 287
Smillie, D. G., et al. 2016, ApJS, 223, 12
Storey, P. J., & Sochi, T. 2016, MNRAS, 459, 2558
Turatto, M., Benetti, S., Cappellaro, E., et al. 1996, MNRAS, 283, 1
van Rossum, D. R., Kashyap, R., Fisher, R., et al. 2016, ApJ, 827, 128
Wang, B. 2018, RAA, 18, 49
Yaron, O., & Gal-Yam, A. 2012, PASP, 124, 668
APPENDIX A: CLASSIFICATION AND PHASE ESTIMATES OF SN 2016BRX

The du Pont/WFCCD spectrum, taken on UT 2016-06-18 (Morrell & Shappee 2016) is shown in Fig. A1 (black). The best match from SNID (Blondin & Tonry 2007) is SN 1991bg at 53 days after B_{max} (Turatto et al. 1996, shown in Fig. A1 as a red line). The spectrum of SN 1991bg at a later phase of 91 days (Filippenko et al. 1992, blue) is also shown. The spectrum of SN 2016brx appears to be at an intermediate phase between the two SN 1991bg epochs while closer to 53 days than 91 days. We also compare it with the spectrum of the normal SN 2011fe at an intermediate phase of 74 days (Pereira et al. 2013, green), and the spectral features of SN 2016brx are more similar with SN 1999by than SN 2011fe.

The available photometric data for SN 2016brx are sparse. The photometric measurements from the clear-filter discovery image, the ASAS-SN V-band data and the du Pont WFCCD R-band are reported in Table A1. Next we check whether the photometric properties are consistent with 1991bg-like objects by matching them to the available SN 1991bg light curves with the same filters (Turatto et al. 1996; Prieto et al. 2006), and derive the best-fit magnitude shift ($+1.69$ in R and V) and peak time (B_{max} at JD = 2457494 for SN 2016brx). As shown in Fig. A2, the photometric match is satisfactory. The best-fit peak time from the photometry suggests a phase for the du Pont/WFCCD spectrum of 62 days after B_{max}, which is consistent with the spectral comparison discussed above. The photometric fits suggest an apparent maximum of $B_{\text{max}} \approx 16.4$ (adopting $B_{\text{max}} = 14.7$ for SN 1991bg according to Phillips 1993). Adopting a distance modulus of $\mu = 33.2$ based on Hubble's Law and a Galactic B-band extinction of $A_B = 0.35$ (Schlafly & Finkbeiner 2011) suggests an absolute magnitude of $M_B = -17.2$, which is consistent with those of known 1991bg-like supernovae. We adopt B_{max} at JD = 2457494 from the best-fit 1991bg template as the reference epoch for SN 2016brx throughout the paper.

This estimate of peak time is quite uncertain given the sparse photometric coverage. Note that the GTC and Magellan spectra are taken 115 and 183 days after the discovery at JD=2457498.22, and since the typical rise time of SN Ia is about ~ 15 days, we can put stringent lower limits for the GTC and Magellan phases at $\gtrsim 100$ days and $\gtrsim 170$ days, respectively. Therefore, it is secure that the phases of these spectra are late. In addition, as shown in Fig. A3, the emission line profiles of the two spectra are similar, suggesting that the SN is in its nebular phase.

APPENDIX B: ORBITAL VELOCITY SHIFT DUE TO A SIMPLE BINARY WD MERGER MODEL

We consider a merging WD-WD binary with a primary more massive than the secondary $M_{\text{primary}} > M_{\text{secondary}}$. The veloc-
The Magellan and GTC spectra are shown in red and black lines. Their fluxes are normalized to the maximum of the [Co\textsc{iii}] feature at \~5900 Å.

Table A1. Photometry of SN 2016brx

JD-2450000	Filter	m (mag)	Instrument
7498.22	clear	≈ 16.1	30cm AT12RC/ST10
7507.12	V	16.80 ± 0.16	ASAS-SN/Brutus
7521.09	V	17.42 ± 0.14	ASAS-SN/Brutus
7601.74	R	20.68 ± 0.15	du Pont/WFCCD

The orbital velocity of the primary WD during a WD-WD merger due to gravitational wave emission at the onset of mass transfer as a function of the secondary (donor) mass. It is assumed that the two WDs are on a circular orbit, and that the secondary fills its Roche lobe (see Equation B1). WDs are assumed to have a carbon oxygen (CO) composition for masses $> 0.45 M_\odot$ and helium (He) for masses $< 0.45 M_\odot$.

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.

4 “Adiabatic Temperature Gradient White Dwarfs” webpage by F.X.Timmes: http://cococubed.asu.edu/code_pages/adiabatic_white_dwarf.shtml