Impact of host-pathogen-treatment tripartite components on early mortality of patients with Escherichia coli bloodstream infection: Prospective observational study

Eun-Jeong Yoon a, Min Hyuk Choi a, Yoon Soo Park b, Hye Sun Lee c, Dokyun Kim a, Hyukmin Lee a, Kyeong Seob Shin d, Jong Hee Shin e, Young Uh f, Young Ah. Kim b, Jeong Hwan Shin g, Seok Hoon Jeong a,⁎

a Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
b Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
c Department of Laboratory Medicine, Biostatistics Collaboration Unit, College of Medicine, Yonsei University, Seoul, South Korea
d Department of Laboratory Medicine, College of Medicine, Chungbuk National University, Cheongju, South Korea
e Department of Laboratory Medicine, College of Medicine, Yonsei University Wonju, Wonju, South Korea
f Department of Laboratory Medicine, Paik Institute for Clinical Research, College of Medicine, Inje University, Busan, South Korea

A R T I C L E I N F O
Article history:
Received 16 May 2018
Received in revised form 12 August 2018
Accepted 13 August 2018
Available online 20 August 2018

Keywords:
Escherichia coli
Bloodstream infection
Early mortality
ST131
CTX-M ESBL
Delayed definitive treatment

A B S T R A C T
Background: Risk factors affecting early mortality of patients with Escherichia coli bloodstream infection (BSI) were investigated including the host-pathogen-treatment tripartite components.
Methods: Six general hospitals in South Korea participated in this multicentre prospective observational study from May 2016 to April 2017 and a total of 1492 laboratory-confirmed E. coli BSI cases were studied. Cox regression was used to estimate risks of the primary endpoint, i.e., all-cause mortality within 30 days from the initial blood culture. Six multivariate analysis models were constructed in accordance to the clinical importance and intra- and inter-component multicollinearity.
Findings: Among the 1492 E. coli BSI cases, 9.5% (n = 141) patients expired within 30 days. Six models of multivariate analysis indicated risk factors of critical illness, primary infection of peritoneum, and chronic liver disease including cirrhosis for host variables; of phylogenetic group B2, ST131-sublineage H30Rbx multidrug resistance, group 1 CTX-M extended-spectrum beta-lactamase production, and having either of fyuA, afa, and sfa/foc virulence genes for causative E. coli pathogen variables; and of delayed definitive therapy for antimicrobial treatment variables. In addition, as a protective factor, primary urinary tract infection was identified.
Interpretation: Despite decades’ effort searching for the risk factors for E. coli BSI, systemic understanding covering the entire tripartite component is still lacking. This study detailed the organic impact of host-pathogen-treatment tripartite components for early mortality in patients with E. coli BSI.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bloodstream infection (BSI) is a widely aware burden causing morbidity and mortality in patients [1,2] and increasing medical costs [3]. To confirm the BSI [4], polymerase chain reaction (PCR) [5] and Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometer (MALDI-TOF/MS) [6] have been proposed for rapid diagnosis however, blood culture is still a gold standard to verify foreign microorganisms in bloodstream. An antimicrobial susceptibility testing (AST) successive to the blood culture is indeed critical to decide a regimen active in vitro for definitive treatment.

Escherichia coli is among human intestinal microflora which is usually harmless and even has a mutual benefit through its gut habitat. However, certain serotype causes intestinal infections and extra-intestinal pathogenic E. coli (ExPEC) leads opportunistic infections including urinary tract infection (UTI) and BSI [7]. E. coli is a leading BSI-causative pathogen [8,9], and beta-lactams, fluoroquinolones, and sulfonamides are often used to treat the infections. A predominant ExPEC clone sequence type (ST) 131 [10] is commonly resistant to multiple drugs [10]. Of particular, the fluoroquinolone-resistant sublineages H30R and H30Rx frequently harbour the gene for CTX-M-type extended-spectrum beta-lactamases (ESBLs) leading to inappropriate therapy [10].

Evidence before this study

E. coli bloodstream infection (BSI) an interesting research topic not only for the clinicians but also for the clinical microbiologists. Consequently, much research has been carried out in both fields and a lot of information was available out of the reports. Since urinary tract is another habitual target for extra-intestinal pathogenic *E. coli*, the associated host factors were frequently assessed, such as infection of hospital/community origin, sex and age, as well as uropathogenic factors possessed by *E. coli*, and resistance to beta-lactams, fluoroquinolones and sulfonamides useful for both infections of bloodstream and urinary tract. The massive knowledge for the *E. coli* BSI was much enriched, and we now know that which circumstance is critical for the prognosis of the infectious disease. However, any complicated situation, for instance, increased rate of drug resistance and dissemination of a specific bacterial clones, prohibited any further prediction for the prognosis. This could be derived from the simple model estimating the outcomes of *E. coli* BSI using only the host factors.

Added value of this study

For the prospective observational study, we collected the entire *E. coli* blood isolates, together with clinical data, and antimicrobial treatment information from every *E. coli* BSI incidence. This study design allowed us a multidisciplinary analysis for the disease. In addition, owing to a fine layout of multivariate analysis, underestimation of any variables was reduced to minimum. Especially, the strong clonality of pathogen factors frequently eliminated the hazardous value and the antimicrobial resistance had strong correlation with treatment factors. We fractionized the pathogen-, and treatment-associated factors into six and the hazardous value of the factors were able to be ruled in. Finally, worrisome pathogen clones were identified, and antimicrobial resistance, not only for the number of resistant drugs but also for the resistance determinants, were listed as risk factors together with three virulence genes associated with siderophore, adhesion and invasion. In addition, the importance of prompt definitive therapy was highlighted.

Implications of all the available evidence

Collecting the clinical data, identification of the pathogen traits and proper application of antimicrobial treatment seems to be critical for the *E. coli* BSI. Fine prognostic estimation system could be schemed out for better estimating the outcomes of the prevailing infectious disease.

Many efforts have been made to identify the risk factors for *E. coli*B. Male patients, infection of hospital origin (HO) [11], Charlson comorbidity index [12], and Sequential Organ Failure Assessment (SOFA) score are noted host-associated hazardous factors for early mortality. In addition, resistance to fluoroquinolones and to 3rd-generation cephalosporins [13,14], ESBL production [15], and possessing siderophore genes such as *fyuA* [16], and *ireA* [17] are the pathogen-associated risk factors. The drug resistance is a decisive treatment-associated risk factor [11]. However, puzzling out those risk factors for the organic impact of host-pathogen-treatment tripartite components to the disease prognosis is difficult. The studies are often designed lacking one of the three components and the multicollinearity between variables are simply kicked out in favor of the clinically important variables for the main analysis. Hence, a multicentre prospective observational study without the conceptual difficulties was assessed for whole-year incidence of *E. coli* BSI to better understand the tripartite components associated with early mortality.

2. Methods

2.1. Study design

The study was conducted as a prospective observational study for entire episodes of *E. coli* BSI occurred between May 2016 and April 2017 in six general hospitals of 715 to 1050 beds (mean, 849.5 beds) participating in a national surveillance system in South Korea compatible to the Global Antimicrobial Surveillance System (GLASS), namely Kor-GLASS (Fig. 1) [18]. All the local ethical committee approval at each participating hospital was expedited or waived owing to the purely observational nature of the study. Cases were detected through the daily review of blood culture results. Among a total of 67,803 patients subjected for blood culture, *E. coli* isolates were recovered from 1510 patients (Fig. 1) and, following the elimination of 18 episodes of expirations at day 0, 1492 cases were included in the analysis. Of note, 19 follow-up-loss cases either by transfer (n = 12) or by discharge (n = 7) within 2 days of initial blood culture were excluded for the analysis of antimicrobial treatment. For the sequential isolation of duplicate *E. coli* from one patient, first isolate was taken for analysis and the followings were discarded. One investigator of each hospital reviewed the patients’ medical records for demographic characteristics, infection-related clinical data, morbidities and underlying illness. Charlson comorbidity index [19], and SOFA [20] score were calculated at the analyzing centre for the day of initial blood culture. Prognoses were followed-up until hospital discharge or at least for 30 days. All data were recorded on a pre-formatted spreadsheet and submitted via an email to the analyzing centre without monitoring. All blood isolates were transferred to the analyzing centre and the microbiological assessment was carried out in the laboratory. Performing the microbiological assessment was blinded to patient information.

2.2. Definitions

A laboratory-confirmed *E. coli* BSI was defined as positive *E. coli* culture identified from one or more blood specimens [4]. HO infection was specified as the case that a patient admitted for ≥2 calendar days at hospitals including the previous health care facility before transfer at the day of initial blood culture. Early mortality was defined as all-cause mortality within 30 days from the initial blood culture. Critically ill patients were defined as those with SOFA score at ≥9. Non-susceptibility (NS) to a drug class was defined as NS in vitro to at least one drug in a class and the resistance phenotypes were classified as drug susceptible (DS, susceptible to all drugs tested), drug resistant (DR, NS to one or two drug classes) and multidrug resistance (MDR, NS to more than three drug classes but two) following Magiorakos et al. [21] with few modifications. Empirical antimicrobial therapy was defined as an initial therapy without any AST results of the causative pathogen, and definitive antimicrobial therapy as administration of revised antimicrobial regimen based on the AST results. Delayed definitive therapy was if revised antimicrobial regimen was administered after 72 h. Adequate antimicrobial therapy was if the treatment regimen included at least one antimicrobial drug active in vitro and both the dosage and route of administration were in conformity with current medical standards.

2.3. Microbiological assessment

Bacterial species of the collected isolates were identified by MALDI-TOF/MS using Bruker Biotyper® system (Billerica, MA, USA). Strain typing was conducted by multilocus sequence typing (MLST) [22], and by
phylagenetic typing [23] for every E. coli blood isolate and, for ST131 E. coli isolates, sublineage was assessed [24]. Antimicrobial susceptibility was tested by a disk diffusion method [25] for 18 drugs belonging to 12 drug classes, and the beta-lactamase genes were identified by PCR and direct sequencing using gene-specific primers (Appendix Table S1) [26]. Twenty-three virulence-associated genes associated with 12 virulence characteristics were searched for by PCR. Details of the microbiological assessment is available in the Appendix.

2.4. Statistical analysis

All statistical analyses were performed in SPSS statistics (version 23, IBM Corp., Armonk, NY, USA). Data were expressed as mean ± SD or number (%) as appropriate. Categorical variables were compared by Pearson’s chi-square test or Fisher’s exact test and continuous variables were compared by independent two sample t-test. Associations between early mortality and risk factors were evaluated by using univariate and multivariate Cox proportional hazard regression model. For multivariate analysis, variables having P value < 0.1 on the univariate analysis were considered. To avoid multicollinearity, six multivariate Cox models were constructed. All tests of significance were two-tailed; P values < 0.05 were considered to be significant. Proportional-hazards assumption was evaluated by including an interaction term of covariate-log-transformed time and by log-minus-log survival plots (Appendix Fig. S1). Six models for Cox proportional multivariate analysis were constructed considering both clinical importance and multicollinearity between variables evaluated by chi-square test and t-test (Appendix Fig. S2): model 1 including variables selected by stepwise selection method; model 2 to model 5 including fixed host variables and adaptable pathogen variables mandatorily one strain type and one other genotype devoid of multicollinearity; and model 6 including fixed host variables and adaptable pathogen variables and mandatorily a treatment variable devoid of multicollinearity (Appendix Figure).

2.5. Role of the funding source

The funder of the study had no role in the study design, data collection, data analysis, interpretation, and writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

3. Results

3.1. Characteristics of enrolled patients

From six general hospitals, 1492 laboratory-confirmed E. coli BSI cases were enrolled: mean 248.7 ± 91.5 cases/hospital, ranged from 122 to 365 by hospital (Fig. 1). Among the patients with E. coli BSI, 39.7% (n = 592) were male and their age was mean 69.0 ± 15.6 years resulting in 69.7% (n = 1040) being ≥65 years old (Table 1). Of total, 19.4% (290/1492) cases were HO infection, 58.4% (n = 871) were inpatients and 18.4% of those (161/871) stayed in intensive care units (ICUs). SOFA scoring had a mean value of 3.6 ± 3.0 and 7.6% (n = 114) patients were critically ill (SOFA [9]. Charlson comorbidity index was mean 3.3 ± 1.8. Diabetes mellitus was the most observed underlying disease (15.4%, 231/1492), of which 15 with complications, and solid tumor (12.5%, n = 187) was followed. Around half (49.5%, n = 738) of the BSI cases were secondary infection confirmed by culture and the most identified primary site of infection was urinary tract (90.9%, 671/738).

3.2. Characteristics of E. coli blood isolates

3.2.1. Strain type

E. coli blood isolates were characterized as described in the Appendix. More than half of the isolates belonged to the phylogenetic group B2 (55.8%, 833/1492) and the remaining was composed with either the group D (24.7%, n = 368) or A (19.4%, n = 289) (Table 2) with exceptional two isolates (0.1%) of the group B1. Among the identified 338 STs including 212 known-STs and 126 not-yet-numbered STs, ST131 was prevalent (24.1%, 359/1492) followed by ST38 (5.3%, 143/1492), ST196 (4.6%, n = 69), and ST38 (3.8%, n = 56). The ST131-sublineages were comprised of non-H30 (5.3%, 19/359), H30 (11.1%, 40/359), H30R (37.7%, 121/359), and H30Rx (49.9%, 179/359).

3.2.2. Antimicrobial resistance

More than half of the E. coli blood isolates were MDR (58.0%, 865/1492) and the rest was either DR (19.9%, n = 297) or DS (22.1%, n = 330) (Table 2, Appendix). Of total, 31.0% (463/1492) E. coli blood isolates harboured the blaCTX-M gene: 54.9% (254/463) were group 1 blaCTX-M gene and 48.9% (225/460) were group 9 blaCTX-M. Sixteen isolates including 13 ST131-sublineage H30Rx, one ST38, one ST196, and one ST1456 co-carried both genes for groups 1 and 9. Less frequently, 2.5% (34/1492) isolates harboured genes for plasmid-mediated AmpC,

Fig. 1. Flowchart for the case selection of E. coli bloodstream infection for analysis. Number of E. coli blood isolates and the bed size are indicated by hospital with a line-association of the district served by either in gray or in black. BSI, bloodstream infection.
and three isolates overexpressed the chromosomal ampC gene. One isolate carried the blaKPC-2 gene.

3.2.3. Virulence determinants

Among the 23 virulence genes tested, mean 3.3 ± 2.4 were identified per isolate (Table 2). The most identified gene was traT (58.3%, n = 870), and usp (45.6%, n = 681), followed by fyuA (28.2%, n = 421), sat (22.3%, n = 332), vat (20.0%, n = 298), ETTT (19.8%, n = 295), ompT (17.6%, n = 263) and colibactin (16.1%, n = 240).

The ST131 was frequently associated with HO (29.2%, 205/359), especially sublineages H30R (28.9%, 35/121), and H30Rx (34.6%, 62/179). Most of the ST131 carried the

Table 1

Characteristics	Total (n = 1492)	Survival (1351, 90.5%)	Early death (141, 9.5%)	P*
Demographic information				
Sex (male)	592 (39.7%)	520 (38.5%)	72 (51.1%)	0.005
Age (years, mean ± SD)	69±1 ± 15-7	69±1 ± 15-6	70±4 ± 15-8	0.287
Hospital origin	293 (19.6%)	241 (17.8%)	52 (36.9%)	<0.001*
Comorbid condition				
Inpatients	871 (58.4%)	773 (57.2%)	98 (69.5%)	0.005
ICU inpatients	161 (10.8%)	116 (8.6%)	45 (31.9%)	<0.001*
Polymicrobial infection	22 (1.5%)	20 (1.5%)	2 (1.4%)	0.392
Chronic pulmonary diseases	17 (1.1%)	16 (1.2%)	1 (0.7%)	0.392
Dementia	22 (1.5%)	20 (1.5%)	2 (1.4%)	<0.001*
Ulcer	11 (0.7%)	10 (0.7%)	1 (0.7%)	<0.001*
Primary site of infection				
Blood	33 (2.2%)	32 (2.4%)	1 (0.7%)	0.360
Urinary tract	671 (45.0%)	627 (46.4%)	44 (31.2%)	0.001
Biliary tract	26 (1.7%)	25 (1.9%)	1 (0.7%)	0.304
Respiratory tract	15 (1.0%)	9 (0.7%)	6 (4.3%)	0.002
Peritonitis	12 (0.8%)	7 (0.5%)	5 (3.5%)	0.003
Wound	11 (0.7%)	9 (0.7%)	2 (1.4%)	0.279
Others	3 (0.2%)	3 (0.2%)	0 (0%)	<0.001*
Unknown	744 (49.9%)	659 (48.8%)	85 (60.3%)	0.010

Laboratory data (mean ± SD)

Parameter	Total (n = 1492)	Survival (1351, 90.5%)	Early death (141, 9.5%)	P*
WBC (10^5/μL)	12.5 ± 10-9	12.3 ± 8-9	14.2 ± 22	0.038
Hemoglobin (g/dL)	11.5 ± 5-1	11.5 ± 5-1	10.1 ± 2-3	0.001
Total bilirubin (mg/dL)	2.0 ± 3 ± 1	1.8 ± 3-4	3.2 ± 5 ± 0	<0.001*
Creatinine clearance (mg/dL)	1.5 ± 3-3	1.5 ± 3-2	1.9 ± 2-1	0.164
Prothrombin time (seconds)	14.5 ± 5-5	14.2 ± 5-6	18.6 ± 7-1	0.225

SD, standard deviation; WBC, white blood cells.

* The percentage was calculated out of total number of E. coli BSI cases.

** P value is either from Pearson's chi-square test for categorical data or from t-test for continuous data. Bonferroni corrected significance level was considered as P < 0.001 and the significant P values are indicated with asterisks.

* Underlying disease and primary site of infection could be multiple by patient.

* The percentage was calculated out of total number of E. coli BSI cases.

** Underlying disease and primary site of infection could be multiple by patient.

* The percentage was calculated out of total number of E. coli BSI cases.

** Underlying disease and primary site of infection could be multiple by patient.

* The percentage was calculated out of total number of E. coli BSI cases.
Table 2
Pathogen-associated factors related to early mortality in patients with E. coli BSI.

Characteristics	Totala (n = 1492)	Survival 1351 (90-95%)	Early deathb 141 (9-5%)	P
Strain type				
Phylogenetic group A	289 (19-4%)	275 (20-4%)	14 (9-9%)	0-002
B2	833 (55-8%)	741 (54-8%)	92 (65-2%)	0-020
D	368 (24-7%)	333 (24-6%)	35 (24-8%)	0-999
ST131	359 (24-1%)	310 (22-9%)	49 (34-8%)	0-003
Non-H30	19 (1-3%)	17 (1-3%)	2 (1-4%)	0-699
H30	40 (2-7%)	34 (2-5%)	6 (4-3%)	0-264
H30R	121 (8-1%)	108 (8-0%)	13 (9-2%)	0-626
H30Rx	179 (12-0%)	151 (11-2%)	28 (19-9%)	0-004
ST95	143 (9-6%)	135 (10%)	8 (5-7%)	0-131
ST96	128 (8-6%)	117 (8-7%)	11 (7-8%)	0-874
ST1193	96 (6-4%)	83 (6-1%)	13 (9-2%)	0-151
ST73	69 (4-6%)	63 (4-7%)	6 (4-3%)	0-004
ST38	56 (3-8%)	53 (3-9%)	3 (2-1%)	0-359
Antimicrobial resistance categoryd				
Penicillins	1024 (68-6%)	918 (67-9%)	106 (75-2%)	0-086
Penicillins/beta-lactamase inhibitors	546 (36-6%)	476 (35-2%)	70 (49-6%)	0-001
1st-generation cephalosporins	987 (66-2%)	885 (65-5%)	102 (72-3%)	0-112
3rd/4th-generation cephalosporins	524 (33-1%)	457 (33-8%)	67 (47-5%)	0-002
Monobactams	402 (26-9%)	349 (25-8%)	53 (37-6%)	0-004
Cephamycins	77 (5-2%)	69 (5-1%)	8 (5-7%)	0-692
Carbenemems	3 (0-2%)	3 (0-2%)	0 (0%)	0-999
Aminoglycosides	463 (31-0%)	409 (30-3%)	54 (38-3%)	0-056
Fluoroquinolones	590 (39-5%)	521 (38-6%)	69 (48-9%)	0-019
Sulfonamides	494 (33-1%)	445 (32-9%)	49 (34-8%)	0-707
Glycylcyclines	3 (0-2%)	3 (0-2%)	0 (0%)	0-999
Polymyxins	3 (0-2%)	3 (0-2%)	0 (0%)	0-999
Resistance determinant				
CTX-M ESBL	463 (31-0%)	403 (29-8%)	60 (42-6%)	0-003
Group 1	254 (17-0%)	216 (16-0%)	38 (27-0%)	0-002
Group 9	225 (15-1%)	202 (15-0%)	23 (16-3%)	0-710
Plasmid-mediated AmpC	37 (2-5%)	32 (2-4%)	5 (3-5%)	0-388
Carbenenemase	1 (0-1%)	0 (0%)	1 (0-7%)	0-955
Virulence determinants				
No- of virulence determinantsf (mean ± SD)	3±3 ± 2-4	3±3 ± 2-4	3±3 ± 2-5	0-004
Haemolysis				
hlyA, haemolysin A	107 (7-2%)	92 (6-8%)	15 (1-1%)	0-120
hlyE, avian E. coli haemolysin	52 (3-5%)	45 (3-3%)	7 (5-0%)	0-329
Toxins				
sat, serine protease autotransporter	332 (22-3%)	293 (21-7%)	39 (27-9%)	0-111
vat, vacuolating autotransporter	298 (20-0%)	261 (19-3%)	37 (26-2%)	0-059
astA, heat-stable enterotoxin	34 (2-3%)	29 (2-1%)	5 (3-5%)	0-245
Siderophore				
ireA, siderophore receptor	193 (12-9%)	176 (13-0%)	17 (12-1%)	0-895
iro, siderophore esterase	184 (12-3%)	165 (12-8%)	19 (13-5%)	0-686
fyuA, yersiniabactin	421 (28-2%)	366 (27-1%)	55 (39-0%)	0-004
iutA, ion uptake system	120 (8-0%)	105 (7-8%)	15 (10-6%)	0-253
Cytotoxicity				
ETTL, type III secretion system	295 (19-8%)	268 (19-8%)	27 (19-9%)	0-912
Colibactin, genotoxic metabolite	240 (16-1%)	215 (15-9%)	25 (17-7%)	0-549
cnf1, cytotoxic necrotizing factor	173 (11-6%)	151 (11-2%)	22 (15-6%)	0-128
Bacteriocin				
cvcC, colicin V	82 (5-5%)	78 (5-8%)	4 (2-8%)	0-175
Serum resistance				
traT, outer membrane protein	870 (58-3%)	790 (58-3%)	80 (56-7%)	0-720
Invasion	80 (5-4%)	66 (4-9%)	14 (9-9%)	0-017
ibeA, brain microvascular endothelial cell invasion	68 (4-6%)	61 (4-5%)	7 (5-0%)	0-831
ompT, outer membrane protease T	263 (17-6%)	238 (17-6%)	25 (17-7%)	0-999
Encapsulation	142 (9-5%)	123 (9-1%)	19 (13-5%)	0-097
Adhesion				
papA, P fimbriae	28 (1-9%)	25 (1-9%)	3 (2-1%)	0-743
sfe/soc, S fimbriae minor subunit	108 (7-2%)	92 (6-8%)	16 (11-3%)	0-059
Table 2 (continued)

Characteristics	Totala (n = 1492)	Survival (n = 1351)	Early deathb (n = 141)	P*
Others				
usp, uropathogenic protein	681 (45.6%)	601 (44.5%)	80 (56.7%)	0.006
PAI, pathogenic island marker	83 (5.6%)	74 (5.5%)	9 (6.4%)	0.698
Pic, protease involved in intestinal colonization	193 (6.9%)	96 (7.1%)	7 (5.0%)	0.483

SD, standard deviation.

a The percentage was calculated out of total number of E. coli blood isolates.
b All-cause mortality within 30 days from the initial blood culture.

P value is either from Pearson’s chi-square test for categorical data or from t-test for continuous data. Bonferroni corrected significance level was considered as P < 0.0009 and no variable was statistically significant.

c Isolates categorized as XDR and PDR were not identified. DS, drug susceptible; DR, drug resistant; MDR, multi-drug resistant; XDR, extensively drug resistant; PDR, pan-drug resistant.[21]

d Ampicillin and piperacillin for penicillins; amoxicillin-sulbactam for penicillins/beta-lactamase inhibitors; cephaloridine for 1st-generation cephalosporins; cefotaxime, ceftazidime, and cefepime for 3rd/4th-generation cephalosporins; cefoxitin for cefoxitin; aztreonam for monobactams; imipenem, meropenem, and ertapenem for carbapenems; gentamicin and amikacin for aminoglycosides; ciprofloxacin for fluoroquinolones; trimethoprim-sulfamethoxazole for sulfonamides; tigecycline for glycyclines; colistin for polymyxins.

(54·0%, 68/126). Two thirds of the ST1193 were MDR (71·9%, 69/96) and the ST73 possessed much more genes for virulence (mean, 7·1 ± 3·7) compared to the other STs. Finally, ST38 frequently carried the group 9 \textit{bla} \textit{CTX-M} gene (40·7%, 22/54).

3.3. Characteristics of antimicrobial regimen

3.3.1. Antimicrobial regimen for empirical therapy

Among the 1473 antimicrobial treatment follow-up cases, 1443 patients (98·0%) received empirical antimicrobial therapy for Gram-negative bacteria and 1142 of those were adequate (Table 3). The other 30 patients took either not-for-Gram-negative antimicrobial therapies (n = 29) or none by refusal (n = 1). More than half of the patients were treated with 3rd/4th-generation cephalosporins (55·6%, n = 819), and 20·0% (n = 295) with \textit{flu}oroquinolones, followed by carbapenems (14·0%, n = 206), penicillins/beta-lactamase inhibitors (12·9%, n = 190), penicillins (2·4%, n = 35) and 1st-generation cephalosporins (1·0%, n = 14). The rate of adequacy for antimicrobial treatment was greater in combination therapy (90·2%, 138/153) than in monotherapy (81·2%, 1042/1284). Exceptionally, choice of carbapenems, which all but three E. coli isolates were susceptible to, was always adequate for treatment whether they used alone or in combination.

Increased preference of both carbapenems monotherapy (22·5%, 25/111), and penicillins/beta-lactamase inhibitors monotherapy (17·1%, n = 19) were notable for the critically ill patients. On the contrary, \textit{flu}oroquinolones monotherapy (1·8%, n = 2), and 3rd/4th-generation cephalosporines monotherapy (34·2%, n = 38) were less preferred options targeting on those patients than those for total. For ICU inpatients (n = 161), both \textit{flu}oroquinolones monotherapy (4·3%, n = 7), and 3rd/4th-generation cephalosporines monotherapy (42·2%, n = 68) were also less favored. Preference of 3rd/4th-generation cephalosporines was dropped from 55.6% (819/1473) of total to 40·0% (116/290) targeting HO infection.

3.3.2. Antimicrobial regimen for definitive therapy

Among 331 patients taking inadequate empirical therapy, 56·8% (n = 188) were treated with definitive antimicrobial therapy within 72 h. Carbapenems (70·7%, monotherapy:combination therapy = 130:3) were a leading choice for the revision and the followings were 3rd/4th-generation cephalosporins (2·4%, n = 8), penicillins/beta-lactamase inhibitors (12·9%, n = 190), penicillins (2·4%, n = 35) and 1st-generation cephalosporins (1·0%, n = 14). The rate of adequacy for antimicrobial treatment was 90·2% (138/153) and 81·2% (1042/1284) in combination (90·2%, 138/153) and monotherapy (81·2%, 1042/1284). Exceptionally, choice of carbapenems, which all but three E. coli isolates were susceptible to, was always adequate for treatment whether they used alone or in combination.

Fig 2. Genotypic and phenotypic diversity of E. coli blood isolates by six most strain types. The proportion of isolates having the geno/phenotype is indicated and statistical significance (P < 0.05) determined by Pearson’s chi-square test is in bold. A smaller proportion compared to that of total is indicated in blue-gradients and a greater proportion than that of total is indicated in red-gradients. ST, sequence type; DS, drug-susceptible; DR, drug-resistant; MDR, multidrug resistance; ESBL, extended-spectrum beta-lactamase.
Table 3
Empirical antimicrobial therapy for the characteristic patients with *E. coli* BSI.

Antimicrobial choice for empirical therapy	Total	Early mortality	Adequate treatment	Critically ill	ICU inpatients	HD infection					
	n = 1473	n = 141	P<0.001	n = 1142	P<0.001	n = 111	P<0.001	n = 161	P<0.001	n = 290	P<0.001
Penicillins											
Monotherapy	31 (2.1%)	4 (2.8%)	0.531	8 (0.7%)	<0.001*	5 (4.5%)	0.078	14 (8.7%)	<0.001*	14 (4.8%)	<0.001*
Combination therapy	4 (0.3%)	1 (0.7%)	0.332	3 (0.3%)	1.000	0 (0%)	1.000	4 (2.5%)	<0.001*	1 (0.3%)	0.584
Penicillins/beta-lactamase inhibitors											
Monotherapy	161 (10.9%)	22 (15.6%)	0.066	147 (12.9%)	<0.001*	19 (17.1%)	0.039	25 (15.5%)	0.060	5 (1.7%)	0.528
Combination therapy	29 (2.0%)	7 (5.0%)	0.016	27 (2.4%)	0.043	6 (5.4%)	0.018	4 (2.5%)	0.549	9 (3.1%)	0.153
1st-generation cephalosporins											
Monotherapy	7 (0.5%)	0 (0%)	1.000	6 (0.5%)	1.000	0 (0%)	1.000	1 (0.6%)	0.556	4 (1.4%)	0.031
Combination therapy	7 (0.5%)	1 (0.7%)	0.506	7 (0.6%)	0.360	1 (0.9%)	0.423	0 (0%)	1.000	2 (0.7%)	0.630
3rd/4th-generation cephalosporins											
Monotherapy	747 (50.7%)	49 (34.8%)	0.001*	572 (50.1%)	0.383	38 (34.2%)	<0.001*	68 (42.2%)	0.024	116 (40.0%)	<0.001*
Combination therapy	72 (4.9%)	9 (6.4%)	0.408	60 (5.3%)	0.250	11 (9.9%)	0.019	6 (3.7%)	0.565	20 (6.9%)	0.093
Carbapenems											
Monotherapy	165 (11.2%)	25 (17.7%)	0.016	165 (14.4%)	<0.001*	25 (22.5%)	<0.001*	22 (13.7%)	0.290	39 (13.4%)	0.178
Combination therapy	41 (2.8%)	10 (7.1%)	0.004	41 (3.6%)	<0.001*	2 (1.8%)	0.764	3 (1.9%)	0.614	8 (2.8%)	<0.001
Fluoroquinolones											
Monotherapy	165 (11.2%)	4 (2.8%)	<0.001*	98 (8.0%)	<0.001*	2 (1.8%)	<0.001*	7 (4.3%)	<0.001*	26 (9.0%)	<0.001*
Combination therapy	130 (8.8%)	25 (17.7%)	<0.001*	122 (10.7%)	<0.001*	15 (13.5%)	0.081	11 (6.8%)	0.461	30 (10.3%)	0.300
Others											
Not-for-gram-negatives	8 (0.5%)	5 (3.5%)	<0.001*	5 (0.4%)	0.389	1 (0.9%)	0.467	3 (1.9%)	0.047	7 (2.4%)	<0.001*
Refusal of antimicrobial therapy	29 (2.0%)	2 (1.4%)	–	0 (0%)	–	1 (0.9%)	–	3 (1.9%)	–	8 (2.8%)	–

ICU, intensive care unit; HO, hospital-origin.

* Nineteen cases of the follow-up-loss before 2nd day of the treatment were excluded from the analysis. The percentage was calculated out of total number of *E. coli* BSI cases.

* Critically ill patients were defined as those with SOFA score at ≥9.

* *P* value is from Pearson’s chi-square test. Bonferroni corrected significance level was considered as *P* < 0.003 and the significant *P* values are indicated with asterisks.

* Combination fluoroquinolone therapy was always with beta-lactams.

* *Glycylcyclines (n = 4), rifampicin (n = 2), cephamycins (n = 1), and sulfonamides (n = 1) were included.*
4th-generation cephalosporins (14·9%, monotherapy: combination therapy = 26·2%), penicillins/beta-lactamase inhibitor (10·6%, monotherapy: combination therapy = 14·5%), and fluoroquinolones (9·0%, monotherapy: combination therapy = 8·9%).

3.4. Risk factors for early mortality in patients with *E. coli* BSI

3.4.1. Factors associated with early mortality in patients with *E. coli* BSI

Overall early mortality was observed in 9·5% (141/1492) cases. Comparison of the demographic data from all survival and early death patients are summarized in Table 1. Age distribution was similar between survival and early death groups, while patients with early death than those of survival were more likely to be male (51·1% vs. 38·5%, *P* = 0·005). A greater percentage of patients with early death were associated with HO infection (36·9% vs. 17·8%, *P* < 0·001), hospitalization (69·5% vs. 57·2%, *P* = 0·005) and ICU hospitalization (31·9% vs. 8·6%, *P* < 0·001). Patients with early death were more likely to have moderate or severe kidney diseases (9·9% vs. 5·5%, *P* = 0·039), chronic liver diseases including cirrhosis (6·4% vs. 3·0%, *P* = 0·043), and primary infection of peritoneum (3·5% vs. 0·5%, *P* = 0·003), while those were less likely than survivals to be associated with primary UTI (31·2% vs. 46·4%, *P* = 0·001).

Comparison of the microbiological data for causative *E. coli* blood isolates from patient groups of survival and early death are in Table 2. A higher percentage of patients with early death were with MDR *E. coli* (68·8% vs. 56·8%, *P* = 0·007) and CTX-M ESBL-producing *E. coli* (42·6% vs. 29·8%, *P* = 0·003), especially group 1 CTX-M producers (27·0% vs. 16·0%, *P* = 0·002). A greater percentage of patients with early death were with *E. coli* harboring the *fyuA* gene for iron deficiency protein (9·9% vs. 4·9%, *P* = 0·017), and the *usp* gene for uropathogenic protein (56·7% vs. 44·5%, *P* = 0·006). Although patients with early death were more likely to have *E. coli* carrying the *vat* gene for vacuolating autotransporter (26·2% vs. 19·3%) and the *sfa*/foc gene for S fimbriae (11·3% vs. 6·8%), the difference did not reach statistical significance (*P* = 0·059 for both).

Adequacy of empirical antimicrobial treatment had no critical impact on early mortality (Table 3): 9·5% (108/1142) patients treated with adequate empirical therapy and 10·0% (33/331) patients treated with inadequate antimicrobials expired within 30 days. Definitive therapy within 72 h was rather critical to early mortality: 9·2% (13/188) patients taking punctual definitive therapy and 14·2% (20/143) patients treated by delayed definitive therapy expired within 30 days. Even so, adequacy of empirical antimicrobial treatment and punctuality of definitive treatment were neither the risk nor the protective factors for early mortality through the analysis using Cox regression model and only the delayed definitive treatment had the risk tendency of 1·54 [1·96–2·48] with *P* = 0·073 (Appendix Fig. S2, Table 4).

3.4.2. Host-pathogen-treatment tripartite risk factors for early mortality by six multivariate analysis models

In accordance with statistical specification, clinical importance, and multicollinearity between variables, six multivariate models were constructed (Table 4). The model 1 constructed by a stepwise selection method perceived host- and pathogen-associated risk factors, i.e., critically ill (5·85 [4·06–8·42]), primary infection of peritoneum (2·80 [1·10–7·15]) and chronic liver diseases including cirrhosis (2·09 [1·06–4·12]) for patient factors; and group 1 CTX-M ESBL (2·05 [1·40–3·01]), *fyuA* (1·53 [1·08–2·16]) and *sfa* (2·21 [1·27–3·86]) for pathogen factors. Primary infection of urinary tract (0·56 [0·39–0·81]) was the one protective factor associated with patients. The multivariate models 2 to 6 constructed through clinical importance, and multicollinearity discerned risk factors associated with the tripartite component: critically ill, primary infection of peritoneum, and sfa/foc gene for S fimbriae (3·86 [1·00–11·78]) for patient factors; and group 1 CTX-M ESBL (3·14 [1·13–9·07]) and MDR (4·12 [1·02–13·86]) for pathogen factors. Multivariate analysis models for early mortality through the analysis using Cox regression model and only the delayed definitive treatment had the risk tendency of 1·54 [1·96–2·48] with *P* = 0·073 (Appendix Fig. S2, Table 4).

Variables for	Univariate analysis	Multivariate model 1	Multivariate model 2	Multivariate model 3		
	HR [95% CI]	*P*	HR [95% CI]	*P*	HR [95% CI]	*P*
Host						
Critically ill	6·78 [4·75–9·69]	<0·001	5·85 [4·06–8·42]	<0·001	5·76 [3·98–8·35]	<0·001
Polymicrobial infection	1·72 [0·97–3·05]	0·061	1·63 [0·91–2·89]	0·098	1·57 [0·87–2·84]	0·026
Primary infection of peritoneum	4·82 [1·98–11·78]	<0·001	2·80 [1·10–7·15]	0·031	2·85 [1·13–7·18]	0·026
Primary infection of urinary tract	0·54 [0·38–0·77]	<0·001	0·60 [0·39–0·81]	<0·001	0·55 [0·38–0·79]	0·001
Moderate to severe kidney disease	1·81 [1·04–3·14]	0·037				
Chronic liver disease incl. Cirrhosis	1·80 [1·04–3·13]	0·027	2·09 [1·06–4·12]	0·033	1·01 [1·00–1·02]	0·020
White blood cells	1·01 [1·00–1·02]	0·020				
Pathogen						
Phylogenetic group B2	1·50 [1·06–2·12]	0·022	1·69 [1·18–2·42]	0·004	1·06 [1·00–1·02]	0·020
ST131-sublineage H30Rx	1·89 [1·25–2·86]	0·003				
MDR						
Group 1 CTX-M ESBL	1·62 [1·13–2·31]	0·008	2·05 [1·40–3·01]	<0·001	1·53 [1·08–2·16]	0·020
fyuA for siderophore	1·65 [1·18–2·32]	0·004				
afa for invasion	1·99 [1·15–3·45]	0·015	2·21 [1·27–3·86]	<0·005	1·01 [1·19–3·73]	0·010
sfa/foc for adhesion	1·65 [0·98–2·77]	0·060	1·65 [0·95–2·87]	0·074	1·03 [1·00–1·02]	0·020
Treatment						
Delayed definitive therapy	1·54 [0·96–2·48]	0·073				

Table 4
Uni- and multivariate analysis by Cox-regression model for early mortality in patients with *E. coli* BSI.

P = 0·001 indicates statistically significant difference.
and chronic liver disease including cirrhosis among host variables; and phylogenetic group B2, ST131-sublineage H30Rx, MDR, group 1 CTX-M ESBL, *fyuA* and *afa* among pathogen variables. A pathogen variable *sfa/foc* and a treatment variable delayed definitive therapy displayed a risk tendency.

4. Discussions

This prospective observational study for *E. coli* BSI cases was undertaken to evaluate the risk factors through an organic alliance of host-pathogen-treatment tripartite components. Many variables were difficult to place in an analysis panel for a single multivariate model since multicollinearity between variables could underestimate the risks of each variable. Through fine estimation of the multicollinearity, six multivariate models were constructed by taking into account the statistical specification, clinical importance, as well as intra- and inter-component multicollinearities. Those delicate statistical models for multivariate analysis allowed us to examine the risk factors in accordance to the host-pathogen-treatment tripartite components. However, the multiple comparisons could result in false discoveries in the statistical models and multiple corrections were needed through a conservative correction test. The Bonferroni correction test, which set the significance cut-off at \(P < 0.008 \), disclosed critically ill and primary infection of urinary tract for host-associated risk and protective factors, respectively; phylogenetic group B2, group 1 CTX-M ESBL, *fyuA*, and *afa* among pathogen variables. A pathogen variable *sfa/foc* and a treatment variable delayed definitive therapy displayed a risk tendency.

4. Discussions

This prospective observational study for *E. coli* BSI cases was undertaken to evaluate the risk factors through an organic alliance of host-pathogen-treatment tripartite components. Many variables were difficult to place in an analysis panel for a single multivariate model since multicollinearity between variables could underestimate the risks of each variable. Through fine estimation of the multicollinearity, six multivariate models were constructed by taking into account the statistical specification, clinical importance, as well as intra- and inter-component multicollinearities. Those delicate statistical models for multivariate analysis allowed us to examine the risk factors in accordance to the host-pathogen-treatment tripartite components. However, the multiple comparisons could result in false discoveries in the statistical models and multiple corrections were needed through a conservative correction test. The Bonferroni correction test, which set the significance cut-off at \(P < 0.008 \), disclosed critically ill and primary infection of urinary tract for host-associated risk and protective factors, respectively; phylogenetic group B2, group 1 CTX-M ESBL, *fyuA*, and *afa* among pathogen variables. A pathogen variable *sfa/foc* and a treatment variable delayed definitive therapy displayed a risk tendency.

4. Discussions

This prospective observational study for *E. coli* BSI cases was undertaken to evaluate the risk factors through an organic alliance of host-pathogen-treatment tripartite components. Many variables were difficult to place in an analysis panel for a single multivariate model since multicollinearity between variables could underestimate the risks of each variable. Through fine estimation of the multicollinearity, six multivariate models were constructed by taking into account the statistical specification, clinical importance, as well as intra- and inter-component multicollinearities. Those delicate statistical models for multivariate analysis allowed us to examine the risk factors in accordance to the host-pathogen-treatment tripartite components. However, the multiple comparisons could result in false discoveries in the statistical models and multiple corrections were needed through a conservative correction test. The Bonferroni correction test, which set the significance cut-off at \(P < 0.008 \), disclosed critically ill and primary infection of urinary tract for host-associated risk and protective factors, respectively; phylogenetic group B2, group 1 CTX-M ESBL, *fyuA*, and *afa* among pathogen variables. A pathogen variable *sfa/foc* and a treatment variable delayed definitive therapy displayed a risk tendency.

4. Discussions

This prospective observational study for *E. coli* BSI cases was undertaken to evaluate the risk factors through an organic alliance of host-pathogen-treatment tripartite components. Many variables were difficult to place in an analysis panel for a single multivariate model since multicollinearity between variables could underestimate the risks of each variable. Through fine estimation of the multicollinearity, six multivariate models were constructed by taking into account the statistical specification, clinical importance, as well as intra- and inter-component multicollinearities. Those delicate statistical models for multivariate analysis allowed us to examine the risk factors in accordance to the host-pathogen-treatment tripartite components. However, the multiple comparisons could result in false discoveries in the statistical models and multiple corrections were needed through a conservative correction test. The Bonferroni correction test, which set the significance cut-off at \(P < 0.008 \), disclosed critically ill and primary infection of urinary tract for host-associated risk and protective factors, respectively; phylogenetic group B2, group 1 CTX-M ESBL, *fyuA*, and *afa* among pathogen variables. A pathogen variable *sfa/foc* and a treatment variable delayed definitive therapy displayed a risk tendency.

4. Discussions

This prospective observational study for *E. coli* BSI cases was undertaken to evaluate the risk factors through an organic alliance of host-pathogen-treatment tripartite components. Many variables were difficult to place in an analysis panel for a single multivariate model since multicollinearity between variables could underestimate the risks of each variable. Through fine estimation of the multicollinearity, six multivariate models were constructed by taking into account the statistical specification, clinical importance, as well as intra- and inter-component multicollinearities. Those delicate statistical models for multivariate analysis allowed us to examine the risk factors in accordance to the host-pathogen-treatment tripartite components. However, the multiple comparisons could result in false discoveries in the statistical models and multiple corrections were needed through a conservative correction test. The Bonferroni correction test, which set the significance cut-off at \(P < 0.008 \), disclosed critically ill and primary infection of urinary tract for host-associated risk and protective factors, respectively; phylogenetic group B2, group 1 CTX-M ESBL, *fyuA*, and *afa* among pathogen variables. A pathogen variable *sfa/foc* and a treatment variable delayed definitive therapy displayed a risk tendency.

4. Discussions

This prospective observational study for *E. coli* BSI cases was undertaken to evaluate the risk factors through an organic alliance of host-pathogen-treatment tripartite components. Many variables were difficult to place in an analysis panel for a single multivariate model since multicollinearity between variables could underestimate the risks of each variable. Through fine estimation of the multicollinearity, six multivariate models were constructed by taking into account the statistical specification, clinical importance, as well as intra- and inter-component multicollinearities. Those delicate statistical models for multivariate analysis allowed us to examine the risk factors in accordance to the host-pathogen-treatment tripartite components. However, the multiple comparisons could result in false discoveries in the statistical models and multiple corrections were needed through a conservative correction test. The Bonferroni correction test, which set the significance cut-off at \(P < 0.008 \), disclosed critically ill and primary infection of urinary tract for host-associated risk and protective factors, respectively; phylogenetic group B2, group 1 CTX-M ESBL, *fyuA*, and *afa* among pathogen variables. A pathogen variable *sfa/foc* and a treatment variable delayed definitive therapy displayed a risk tendency.

4. Discussions

This prospective observational study for *E. coli* BSI cases was undertaken to evaluate the risk factors through an organic alliance of host-pathogen-treatment tripartite components. Many variables were difficult to place in an analysis panel for a single multivariate model since multicollinearity between variables could underestimate the risks of each variable. Through fine estimation of the multicollinearity, six multivariate models were constructed by taking into account the statistical specification, clinical importance, as well as intra- and inter-component multicollinearities. Those delicate statistical models for multivariate analysis allowed us to examine the risk factors in accordance to the host-pathogen-treatment tripartite components. However, the multiple comparisons could result in false discoveries in the statistical models and multiple corrections were needed through a conservative correction test. The Bonferroni correction test, which set the significance cut-off at \(P < 0.008 \), disclosed critically ill and primary infection of urinary tract for host-associated risk and protective factors, respectively; phylogenetic group B2, group 1 CTX-M ESBL, *fyuA*, and *afa* among pathogen variables. A pathogen variable *sfa/foc* and a treatment variable delayed definitive therapy displayed a risk tendency.
and iv) virulence typing in addition to the routine laboratory testing. To be more informative for the *E. coli* BSI, an enriched panel of routine examination in clinical microbiology laboratories including strain typing and virulence typing for pathogens should be considered. For instance, the results from MLST and virulence typing come out with that of AST will allow more feasible antimicrobial regimen for definitive therapy. For sure, the current study itself cannot provide a clear guide to improve the current antimicrobial stewardship plans. Moreover, a national guidance for the management of *E. coli* BSI would be available out of overall efforts.

This study has several limitations. Primarily, limited races were included. The South Korean population is composed with relatively homogeneous East Asians. We did not even collect the human race data because all but few would be East Asians. Thus, the analyzed data could be restricted by human race. Secondly, only six out of 10 districts in South Korea were covered. Considering population difference by district, over 70% of South Korean population was able to be dealt with. However, the remaining 30% population was out of consideration and one of the four districts has an absolute climate difference. Thirdly, the participating hospitals had limited numbers of hospital beds. Numbers and ratio of in- and outpatients are varied by the number of hospital beds, and the participating hospitals had 500 to 1000 beds. Finally, the study was conducted for one year, which is too short to show sufficient dynamics of the BSI.

In a basis of the results, a scoring system for estimating the prognosis of *E. coli* BSI could be further schemed out. The SOFA scoring system is practical and trustful to predict the outcomes of patients. However, the system only manipulates host-associated factors. Further assessing the BSI cases caused by other bacterial species could impat systemic knowledge for bacterial BSI.

Funding sources

This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention (2017E44001004). The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Declaration of interests

All authors declare no competing interests.

Author contributions

EJY, and SHJ designed the study. EJY, MHC, HSL, and SHJ analyzed the data. EJY, and SHJ wrote the manuscript. YSP, and SHJ interpreted clinical importance. MHC, DK, HL, KSS, JHS [5], YU, YAK, JHS [8], and SHJ collected the clinical data and bacterial isolates. All authors have seen and approved the final version of the report.

Acknowledgements

We thank Hana Yu, and Yena Oh for technical support for microbiological experiments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ebiom.2018.08.029.

References

1. Laupland KB. Incidence of bloodstream infection: a review of population-based studies. Clin Microbiol Infect 2013;19(6):492–500.
2. Chung HC, Lai CH, Lin JN, et al. Bacteremia caused by extended-spectrum-beta-lactamase-producing *Escherichia coli* sequence type ST131 and non-ST131 clones: comparison of demographic data, clinical features, and mortality. Antimicrob Agents Chemother 2012;56(7):3618–22.
3. Tumbarello M, Spanu T, Di Bidino R, et al. Costs of bloodstream infections caused by *Escherichia coli* and influence of extended-spectrum-beta-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010;54(10):4559–61.
4. CDC. Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-Central Line-Associated Bloodstream Infection). Device-associated Module; 2018.
5. Shouval M, Stuhlar D, Rogina P, Kaach A. Non-culture-based methods to diagnose bloodstream infection: does it work? Eur J Microbiol Immunol (Bp) 2013;3(2):97–104.
6. Oplota O, Croxatto A, Prod’hom G, Greub G. Blood culture-based diagnosis of bacteremia: state of the art. Clin Microbiol Infect 2015;21(4):313–22.
7. Russo TA, Johnson JR. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of *Escherichia coli*: ExpE. J Infect Dis 2000;181(5):1753–4.
8. Wilson J, Elgohari S, Livermore DM, et al. Trends among pathogens reported as causing bacteraemia in England, 2004–2008. Clin Microbiol Infect 2011;17(7):451–8.
9. Skogberg K, Lyttikainen O, Ollgren J, Nuorti JP, Ruutu P. Population-based burden of bloodstream infections in Finland. Clin Microbiol Infect 2012;18(6):E170–9.
10. Nicolas-Chanoine MH, Bertrand X, Masede-JV, Escherichia coli ST131, an intriguing evolutionary group. Clin Microbiol Rev 2014;27(3):647–74.
11. Abernethy JK, Johnson AP, Guy R, Hinton N, Sheridan EA, Hope RJ. Thirty day all-cause mortality in patients with *Escherichia coli* bacteraemia in England. Clin Microbiol Infect 2015;21(3):251–8.
12. Jensen US, Knudsen JD, Weihberg S, Gregson DB, Laupland KB. Risk factors for recurrence and death after bacteraemia: a population-based study. Clin Microbiol Infect 2011;17(8):1148–54.
13. Camins RC, Marshall J, Devader SR, Maker DE, Hoffman MW, Fraser VJ. The clinical impact of fluoroquinolone resistance in patients with *E. coli* bacteraemia. J Hosp Med 2011;6(12):344–9.
14. Wong-Beringer A, Hindker J, Loefell M, et al. Molecular correlation for the treatment outcomes in bloodstream infections caused by *Escherichia coli* and *Klebsiella pneumoniae* with reduced susceptibility to ceftazidime. Clin Infect Dis 2002;34(2):135–46.
15. Kang CI, Kim SH, Park WB, et al. Bloodstream infections due to extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae*: risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. Antimicrob Agents Chemother 2004;48(12):4574–81.
16. Mora-Rillo M, Fernandez-Romero N, Francisco CN, et al. Impact of virulence genes on sepsis severity and survival in *Escherichia coli* bacteraemia. Virulence 2015;6(1):93–100.
17. Lefort A, Panhard X, Clermont O, et al. Host factors and portal of entry outweigh bacterial determinants to predict the severity of *Escherichia coli* bacteraemia. J Clin Microbiol 2011;49(3):777–83.
18. Lee H, et al. Kor-Glass system. Euro Surveill 2018.
19. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40(5):373–83.
20. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on Sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med 1995;21(7):354–8.
21. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18(3):268–81.
22. Wirth T, Falush D, Lan R, et al. Sex and virulence in *Escherichia coli*: an evolutionary perspective. Mol Microbiol 2006;60(5):1136–51.
23. Clermont O, Bonacorsi S, Ringen E. Rapid and simple determination of the *Escherichia coli* phylogenetic group. Appl Environ Microbiol 2000;66(10):4555–8.
24. Price LB, Johnson JR, Aziz M, et al. The epidemic of extended-spectrum-beta-lactamase-producing *Escherichia coli* ST313 is driven by a single highly pathogenic subclone, H30-Rx. MBio 2013;4(6):e00377–88.
25. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2015.
26. Poirel L, Walsh TR, Cuvelier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011;70(3):119–23.
27. Rodriguez-Bano J, Picon E, Gijon P, et al. Risk factors and prognosis of nosocomial bloodstream infections caused by extended-spectrum-beta-lactamase-producing *Escherichia coli*. J Clin Microbiol 2010;48(5):1726–31.
28. Banerjee R, Johnston B, Lohse C, et al. The clonal distribution and diversity of extra-intestinal *Escherichia coli* isolates vary according to patient characteristics. Antimicrob Agents Chemother 2013;57(12):5912–7.
29. Petriano G, Pitout JD. Fluoroquinolone-resistant *Escherichia coli* sequence type 131 isolates causing bloodstream infections in a Canadian region with a centralized laboratory system: rapid emergence of the H30-Rx sublineage. Antimicrob Agents Chemother 2014;58(5):2699–703.
Can F, Kurt-Azap O, Nurtop E, Ispir P, Seref C, Ergonul O. Molecular epidemiology of bloodstream associated E. coli ST131 H30-Rx subclone infection in a region with high quinolone resistance. J Med Microbiol 2016;65(4):306–10.

Kang CI, Kim SH, Park WB, et al. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob Agents Chemother 2005;49(2):760–6.