SARS – COV-2 (COVID-19) Pandemic: A Critical Review on Novel Coronavirus Pathogenesis, Clinical Diagnosis and Treatment

Ruchi Jain¹, Nilesh Jain² and Surendra Kumar Jain¹, Ram C Dhakar³

¹ Sagar Institute of Research & Technology-Pharmacy, Ayodhya Bypass Road, Bhopal, Madhya Pradesh, India – 462041
² Sagar Institute of Research Technology & Science-Pharmacy, Ayodhya Bypass Road, Bhopal, Madhya Pradesh, India – 462041
³ SRG Hospital & Medical College, Jhalawar, Rajasthan, India-326001

ABSTRACT

The 2019-nCoV is officially called SARS-CoV-2 and the disease is named COVID-19. The Novel coronavirus (SARS-CoV-2) caused pneumonia in Wuhan, China in December 2019 is a highly contagious disease. The World Health Organization (WHO) has declared it as a global public health emergency. This is the third serious Coronavirus outbreak in less than 20 years, following SARS in 2002–2003 and MERS in 2012. Currently, the research on novel coronavirus is still in the primary stage. It is currently believed that this deadly Coronavirus strain originated from wild animals at the Huanan market in Wuhan by Bats, snakes and pangolins have been cited as potential carriers. On the basis of current published evidence, we systematically summarize the epidemiology, clinical characteristics, diagnosis, treatment and prevention of COVID-19. This review in the hope of helping the public effectively recognize and deal with the novel coronavirus (SARS-CoV-2) and providing a reference for future studies.

Keywords: SARS-CoV-2, COVID-19, Coronavirus, pneumonia, Respiratory infection

1. Introduction

There is a current worldwide outbreak of the novel coronavirus Covid-19 (coronavirus disease 2019; the pathogen called SARS-CoV-2; previously 2019-nCoV), which originated from Wuhan in China and has now spread to 7 continents including 102 countries. Governments show their concern to stop the outbreak spreading into a global health emergency. Coronavirus, a large family of single-stranded RNA viruses, can infect animals and also humans, causing respiratory, gastrointestinal, hepatic, and neurologic diseases. As the largest known RNA viruses, CoVs are further divided into four generation: alpha-coronavirus, beta-coronavirus, gamma-coronavirus and delta-coronavirus. Now days there are six human coronaviruses (HCoVs) has been identified, including the alpha-CoVs HCoVs-229E and HCoVs-29E, and the beta-CoVs HCoVs-Oc43, HCoVs-HKU1, severe acute respiratory syndrome-CoV (SARS-CoV), and Middle East respiratory syndrome-CoV (MERS-CoV). New coronaviruses appear to emerge periodically in humans, mainly due to the high prevalence and wide distribution of coronaviruses, the large genetic diversity and frequent recombination of their genomes, and the increasing of the human-animal interface activities.

2. Structure and genomes of Coronavirus

Coronaviruses (CoVs) have crown-like spikes on their surface and belong to the family Coronaviridae within the order Nidovirales. Corona viruses broadly infect vertebrates including humans, birds, bats, snakes, mice and other wild animals. Corona viruses (HCoVs) have been identified since mid-1960s. Four commonly detected HCoVs are 229E, OC43, NL63 and HKU1. In one study, 229E and OC43 accounted for approximately 15–29% of respiratory pathogens with relatively low virulence in humans. Another epidemiological study in adults estimates that coronavirus causes about 15% of common colds. Other significant causes of upper respiratory infections include influenza virus, rhinovirus, parainfluenza virus, Group A Streptococci, EBV and respiratory syncytial virus (RSV).

The three other strains of HCoVs, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have a different pathogenicity and lead to higher mortality rates in human populations. MERS-CoV was isolated from a male patient who died from acute pneumonia and renal failure in Saudi Arabia in 2012.
CoVs is the largest known genome among RNA viruses contains an envelope with a non-segmented, positive-sense, single-strand RNA, with size ranging from 26,000 to 37,000 bases. All coronavirus genomes are arranged similarly with the replicase locus encoded within the 5′ end and the structural proteins encoded in the 3′ third of the genome. The genome of SARS-CoV-2 is 5′-UTR-orf1a-orf1ab-S (Spike)-E (Envelope)-M (Membrane)-N (Nucleocapsid)-3′UTR poly(A). Accessory genes are interspersed within the structural genes at the 3′ end of genome. The pp1a protein encoded by the orf1a gene and the pp1ab protein encoded by the orf1ab gene contains 10 nsps (nsp1-nsp10). The pp1ab protein also includes nsp12-nsp16.

3. Genetic Diversity
The genome RNA shown in Fig. 2 is complexed with the N protein to form a helical cased within the viral membrane, HE, hemagglutinin esterase; S, spike; E, small membrane envelope; M, membrane are all transmembrane proteins. The genomic structure of SARS-CoV-2 is 5′-UTR-orf1a-orf1ab-S (Spike)-E (Envelope)-M (Membrane)-N (Nucleocapsid)-3′UTR poly(A) tail. Accessory genes are interspersed within the structural genes at the 3′ end of genome. The pp1a protein encoded by the orf1a gene and the pp1ab protein encoded by the orf1ab gene contains 10 nsps (nsp1-nsp10). The pp1ab protein also includes nsp12-nsp16.

The various CoVs of animal origin undergo evolution and genetic recombination, thereby resulting in mutated CoVs that may be highly pathogenic and potentially be more deadly to humans. The mutation rate in the SARS-CoV genome was estimated to be 0.80–2.38 × 10⁻³ nucleotide substitutions per site per year, which are similar to that of other RNA viruses. The various CoVs of animal origin undergo evolution and genetic recombination either within the host species or upon jumping from one species to another. Such changes thus have the potential to lead to variants that have high pathogenic potential when transmitted to humans. Recently, two mutations of the S protein and N protein SARS-CoV-2 may explain its zoonotic transmission. Genomic alignment of 54 SARS-CoV-2 genomes identified two hotspots of hypervariability at positions 8789 (synonymous variant) and 28,151 (Ser/Leu change), located in the polyprotein and ORF8 genes respectively.

3. Mode of Transmission of Coronavirus
SARS-CoV originated from bats of the Hipposideridae family before dissemination to humans. CoVs can transmit across species barriers. The earliest patients infected with SARS-CoV-2 in Wuhan ultimately caused the epidemic known as CoronaVirus Disease 2019 (COVID-2019). Some of these patients had a history of contact with a wholesale seafood market in the early stages, suggesting animal-to-person spread. Subsequently, a large number of patients reportedly did not have exposure to the markets, suggesting the development of person-to-person.

There are three ways to transmit the virus, including:

1. Close person-to-person contact
2. Aerosol transmission
3. Transmission by touch

It also thought that the virus to be transmitted to other people by

A respiratory droplet means coughing or sneezing. Droplet spread can occur when an infected person sneezes or coughs, whereupon virus containing droplets are propelled up to 3 feet through the air and are deposited on the mucous membranes of the mouth, nose, or eyes of persons who are nearby.

1. Transmission through the ocular surface is also possible.
2. Shaking hands with an infected person,
3. Touching an infected object/surface,
4. Frequent touching of the nose or mouth or coming into contact with a patient’s excreta.

5. Another way is through “hidden transmission”, in which asymptomatic infected individuals or carriers unknowingly transmit the virus to unsuspecting contacts.

4. The pathogenesis of COVID-19

Current understanding of the pathogenesis of HCoVs infection is still limited, especially for SARS-CoV-2. Before 2019, there were six CoVs that could infect humans and cause respiratory disease. HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 are sometimes attributed to the “common cold”, but in rare cases can cause severe infections in infants, young children and elderly people. On the other hand, SARS-CoV and MERS-CoV can infect the lower respiratory tract and cause a severe respiratory syndrome in human. The new coronavirus SARS-CoV-2 is similar to SARS-CoV and MERS-CoV and can infect lower respiratory tract and cause severe pneumonia.

The origin of SARS-CoV-2 was thought to be wild animals in the Huanan Seafood Market in Wuhan. However, not all cases have an apparent connection with the Wuhan Huanan Seafood Wholesale Market. It is evident now that SARS-CoV-2 is capable of person-person transmission. We list the major pathogenic CoVs in Table 1 for better understanding of the pathogenesis of HCoVs.

The term “cell pyroptosis” was first proposed in 200133. In recent decades, there has been increasing evidence suggesting that “pyroptosis” is a novel inflammatory form of programmed cell death. In 2019, Chen et al. found that SARS-CoV Viroporin 3a triggered the activation of the NLRP3 inflammasome and the secretion of IL-1β in bone marrow-derived macrophages, suggesting SARS-CoV induced cell pyroptosis.34 The pathways involved in the activation of the signaling between NLRP3m IL-1β, IL-10 and GSDMD are illustrated in Fig. 3 and are a subject of study in samples from SARS-CoV-2 patients.

The COVID-19 may be linked to cell pyroptosis, especially in lymphocytes through the activation of the NLRP3 inflammasome. Morphological changes in lymphocytes and macrophages, nucleic acid and protein levels in classical and non-classical cells, detection of NLRP3 and GSDMD, and the role of inflammatory cytokines IL-1β and IL-18 requires further research.

5. Clinical Manifestation

The patients with SARS-CoV-2 shows a wide range of clinical manifestations are seen in from mild, moderate, to severe and rapidly progressive. Most of the patients with SARS-CoV-2 were normal and mild, and their mortality was lower than SARS-CoV and MERS-CoV.

5.1 Transmission: person-to-person, primarily via respiratory droplets (sneezing and coughing)

- Direct contact transmission: especially hand-to-face contact
- Fomite transmission: not documented but conceivably possible, especially with objects and surfaces that may have recently come into contact with infected individuals
- Transmission via mail and packaged (imported) goods: There is no evidence to suggest that mail and packaged (imported) goods pose a risk for the spread of COVID-19.
- Fecal-oral transmission: Evidence that both SARS-CoV and MERS-CoV are excreted fecally suggests that fecal-oral transmission is possible36.

5.2 Incubation Period

The mean incubation period of CoVid-19 was a little bit different. The study with 138 patients, reported that the median durations from first symptoms to dyspnea, hospital admission, and Acute severe respiratory syndrome (ARDS)
were 5 days (range, 1-10), 7 days (range, 4-8), and 8 days (range, 6-12), respectively. The mean time from symptom onset to hospitalization was between 2 and 8 days, but was shorter toward the later phase of the epidemic. The mean time from symptom onset to need for invasive mechanical ventilation (IMV) and to death was 11 and 23.7 days, respectively.

5.3 Symptom of CoVID-19

Symptom of CoVID-19 can range from no symptoms (asymptomatic) to severe pneumonia and death. The patients were initially diagnosed with the outbreak found that the most common symptoms were fever (98%), cough (76%), myalgia or fatigue (44%), and atypical symptoms included sputum (28%), headache (8%), hemoptysis (5%) and diarrhea (3%). About half of the patients had dyspnea (the median from onset to dyspnea was 8 days). Lymphocytopenia was observed in 63% of patients. All patients had pneumonia. Complications included acute respiratory distress syndrome (29%), acute heart injury (12%), and secondary infections (10%); 32% of patients require to be treated in the ICU. The patients presented ground-glass shadow on chest CT. Recent studies indicate that patients≥60 years of age are at higher risk than children who might be less likely to become infected or, if so, may show milder symptoms or even asymptomatic infection.

Before the first outbreak of SARS, a limited number of HCoVs such as HCoV-229E were frequently found to infect humans, and were widely circulating in human populations causing only mild illnesses like the common cold. However, SARS, MERS and SARS-CoV-2 present with a spectrum of disease severity ranging from flu-like symptoms to acute respiratory distress syndrome.

6. Early Detection and Diagnosis

The SARS-CoV-2 infected cases have symptoms like fever, fatigue, dry cough, dyspnea etc., with or without nasal congestion, runny nose or other upper respiratory symptoms. Early identification of suspect cases is the key to inhibiting the spread of the virus. Rapid identification of the viral genome and the development of rapid diagnostic tests will facilitate the isolation of those who are confirmed as infected.

Diagnotic criteria

The diagnostic criteria of suspected and confirmed cases were summarized in Table 2.

Case	Diagnostic criteria
Suspected case	Anyone with a history of epidemiology and any two of the clinical manifestations or anyone without epidemiological history and three of the clinical manifestations is considered to be a suspected case:
	(1) Epidemiological history:
	1) within 14 days before the disease onset, there is a travel history or living history in Wuhan or other areas with local cases
	2) within 14 days before the disease onset, there is contact with patients who had fever or respiratory symptoms from Wuhan or other areas with local cases
	3) a clustering of patients or a contact with patients infected with the SARS-CoV-2
	(2) Clinical manifestations:
	1) fever and/or respiratory symptoms
	2) with the above-mentioned imaging characteristics of pneumonia
	3) the total number of leukocytes in the early stage of the disease is normal or decreased, or the lymphocyte count is decreased
Confirmed case	Any suspected case with one of the following pathogenic features is reclassified as a confirmed case:
	(1) Positive results of SARS-CoV-2 nucleic acids by RT-PCR* of respiratory or blood specimens
	(2) DNA highly homologous to SARS-CoV-2 by genetic sequencing of viral genes in respiratory or blood specimens

*RT-PCR: real-time reverse-transcriptase polymerase-chain-reaction.

6.1 Physical examination

Patients with mild symptoms may not be present positive signs. Patients in severe condition may have shortness of breath, moist rales in lungs, weakened breath sounds, dullness in percussion, and increased or decreased tactile speech tremor, etc.

6.2 CT imaging examination

The imaging finding vary with the patient’s age, immunity status, disease stage at the time of scanning, underlying diseases, and drug interventions. Chest X-ray examination in the early stage of pneumonia cases, chest images show multiple small patchy shadows and interstitial changes. Severe cases can further develop to bilateral multiple ground-glass opacity, infiltrating shadows, and pulmonary consolidation, with infrequent pleural effusion.

6.3 Laboratory Diagnosis

Laboratory diagnosis mainly used to distinguished from other known viral virus of pneumonia, such as parainfluenza virus, influenza viruses, respiratory syncytial virus, rhinovirus, SARS-CoV, adenovirus, etc.; and also, from chlamydia pneumonia, mycoplasma pneumonia, and bacterial pneumonia. In addition, it should be distinguished
from non-infectious diseases, such as dermatomyositis, vasculitis, and organizing pneumonia\(^5\). So, laboratory diagnosis is necessary. Identification of CoVID-19 mainly includes virus isolation and viral nucleic acid detection. A variety of specimens (such as swabs, nasal swabs, nasopharynx or trachea extracts, sputum or lung tissue, blood and feces) were used for testing in timely manner, which gives a higher rate of positive detection of lower respiratory tract specimens\(^5\). The Patients suspected SARS-CoV-2 infection for diagnosis by real time RT-PCR method\(^4\).

7. **Prevention and Treatment of SARS-CoV-2 infection**

Novel coronavirus infection is a new communicable disease which affects almost all populations with all age group\(^5\).

SARS-CoV-2 infection has been classified as category B infectious disease legally but managed as category A infectious disease by Chinese government. It is paramount to implement infection control practices by infection source controlling, transmission route blocking, and susceptible population protection. The unprecedented flurry of activity by WHO and other global public health bodies has mainly focused on preventing transmission, infection control measures, and screening of travelers\(^5\).

There is no clear, unified and effective treatment plan for COVID-19. Most guidelines emphasize early identification, early isolation, early diagnosis, and early treatment. The treatment and management of SARS-CoV-2 pneumonia mainly include the following aspects\(^5\)–\(^6\) Fig. 4.

7.1 General protective measures

1. **Hand hygiene**
 - Hands should be washed with soap and water or disinfected with a virucidal hand disinfectant after contact with potentially virus-contaminated objects and infected persons.
 - Avoid touching the face: i.e., the eyes, nose, and mouth.

2. **Respiratory hygiene and cough etiquette**
 - Avoid coughing or sneezing in the direction of others!
 - Use tissues and discard these after use.
 - If tissues are unavailable, coughing and sneezing into the crook of the arm can help keep hands free of contamination.
 - Maintain 3–6 ft (at least an arm’s length) distance to coughing or sneezing persons.

3. **Avoid exposure**
 - Avoid crowds of people (public transport, train stations, airports, mass events).
 - Avoid travel to areas of outbreak.

4. **Masks**
 - In individuals with confirmed and suspected infection: useful for preventing the diffusion of respiratory secretions, e.g., during patient transports.
 - In healthcare facilities (HCFs) or home care settings: crucial for health workers and persons taking care of an infected individual in close settings (in a HCF or at home).

Fig. 4. The treatment and management of COVID-19 pneumonia. ICU: intensive care unit; ECMO: extracorporeal membrane oxygenation.
Jain et al

Surgical masks do not provide adequate protection in the setting of invasive diagnostics or those at high risk of exposure.

- N95 respirators and protective eyewear are recommended for health care personnel that are potentially exposed to airborne and fluid hazards (e.g., during invasive procedures).
- Confirmed COVID-19 patients and PUIs can use standard N95 respirators.
- If N95 respirator bottlenecks occur, unvalved N95 respirators may be used with a face shield.
- Respirators and masks should be used resourcefully with special consideration for HCF needs.
- In the general population: Surgical masks are most likely ineffective and may even pose an additional risk of infection.

7.2 Intensive care

- **Indications:** Admit to ICU and initiate intubation if any of the following are present:
 - Signs of respiratory failure
 - Dyspnea with hypoxemia
 - Tachypnea (RR > 30/min)

- **Airway management:** Considering health-care workers have an increased risk of developing COVID-19, especially during high-risk procedures such as intubation, aerosol-generating procedures should be avoided whenever possible.
 - Endotracheal intubation: Rapid-sequence induction is preferred, especially as it minimizes the spreading of infectious aerosols.
 - To avoid aerosolizing the virus, noninvasive ventilation, high-flow oxygen therapy, bronchoscopy, and nebulizer treatment should be avoided unless there is an absolute indication.
 - If NIPPV is indicated (e.g., COPD, asthma, DNI status): attempt with a helmet (vs. face mask) interface

- **Mechanical breathing:** Ventilation with lower tidal volumes (LT) as with ARDS
 - Moderate tidal volume (6 mL/kg)
 - Plateau pressure < 30 cm H2O
 - Permissive hypercapnia (target pH > 7.3)
 - PEEP and FiO2 settings: adjust as needed according to ARDSnet protocol
 - See therapy of ARDS for more information.

7.3 Medical therapy and Treatment

Early on, these patients are usually treated with conventional medications which had no clinical benefit, resulting in spread to health care personnel. For those with flu-like symptoms or even more severe disease, it would not be immediately evident that this is an atypical and virulent form of a coronavirus. For comparison, influenza has an estimated mortality rate of 0.07%–0.2%. A high index of suspicion is helpful but not foolproof.

The general strategies include bed rest and supportive treatment, including antiviral therapy, antibiotics, application, immunomodulating therapy, organ function support, respiratory support, bronchoalveolar lavage (BAL), blood purification and extracorporeal membrane oxygenation (ECMO).

Potential target structures and agents: A variety of agents are being tested, and clinical studies are being conducted.

- Inhibition of adhesion and invasion
- Camostat (protease inhibitor)
- Inhibition of fusion
- Chloroquine or less toxic hydroxychloroquine
- Hydroxychloroquine in combination with azithromycin is being intensely tested
- Umifenovir
- Inhibition of protease
- Lopinavir-ritonavir (possibly in combination with umifenovir)
- Remdesivir
- RNA polymerase inhibitors and nucleotide analogs
- Favipiravir (brand name: Avigan®; approved in Japan)
- Remdesivir
- Baloxavir marboxil
- Antibody therapy and biologicals
- Tocilizumab, especially in the phase of ARDS when IL-6 and CRP are increased
- Recombinant ACE2 (rhACE2, APN01)
- Passive immunization through serum therapy
- Immunized individuals (already had COVID-19) donate serum
- Especially a potential option for risk groups

7.3.1 Antiviral therapy

To date, there is no anti-viral therapeutics that specifically targets human coronaviruses, so treatment is only supportive. In vitro, interferons (IFNs) are only partially effective against coronaviruses. In vivo, the effectiveness of IFNs combined with ribavirin requires further evaluation. A variety of other agents, including antiviral peptides and corticosteroids have been shown to be effective in vitro and/or in animal models. However, clinical evidence does not support the use of corticosteroid treatment for SARS-CoV-2 lung injury.

Antiviral agents and immunomodulators tested against SARS-CoV in animals and in vitro shown in Table 3.
Table 3. Antiviral agent(s) and/or immunomodulator(s) Used in Treatment of Covid-19

Antiviral agent(s) and/or immunomodulator(s)	Study setting and methods (virus strain)	Main findings
IFN-αB/D (hybrid IFN)	BALB/c mice (Urbani)	I.p. IFN-αB/D once daily for 3 days beginning 4 h after virus exposure reduced SARS-CoV replication in lungs by 1 log10 at 10,000 and 32,000 IU; at the highest dose of 100,000 IU, virus lung titers were not detectable
Ampligen [poly(C:U24)]	BALB/c mice (Urbani)	I.p. Ampligen at 10 mg/kg 4 h after virus exposure reduced virus lung titers to undetectable levels
Pegylated IFN-α as prophylactic treatment	Cynomolgus macaques (Macaca fascicularis) (patient 5668)	Significantly reduced viral replication and excretion, viral antigen expression by type 1 pneumocytes, and pulmonary damage; postexposure treatment with pegylated IFN-α yielded intermediate results
IFN-α2b (Intron A)	Vero (FFM-1, HK isolate)	Mean (SD) EC50 = 4,950 (890) IU/ml (SI of >2) for FFM-1 isolate; mean (SD) EC50 = 6,500 (980) IU/ml (SI of >105) for HK isolate
IFN-β1b (Betaferon)	Vero (FFM-1, HK isolate)	Mean (SD) EC50 = 95 (17) IU/ml (SI of >105) for FFM-1 isolate; mean (SD) EC50 = 105 (21) IU/ml (SI of >95) for HK isolate
IFN-γ1b (Imukin)	Vero (FFM-1, HK isolate)	Mean (SD) EC50 = 2,500 (340) IU/ml (SI of >4) for FFM-1 isolate; mean (SD) EC50 = 1,700 (290) IU/ml (SI of >105) for HK isolate
IFN-β1a	Vero E6 (Tor2, Tor7, and Urbani)	IFN with p.i. IC50 = 50 IU/ml; IFN added postinfection IC50 = 500 IU/ml
IFN-β, IFN-α, IFN-γ	Vero, MxA-expressing Vero (FFM-1)	SARS-CoV strongly inhibited by IFN-β (with p.i.) and less so with IFN-α and IFN-γ; MxA does not interfere with viral replication
IFN-α, IFN-β	FRhK-4 (NM)	I intracellular viral RNA copies; IFN-α IC50 = 25 U/ml; IFN-β IC50 = 14 U/ml
IFN-α2b	Vero E6 (Tor2, Tor3, Tor7, and Tor684)	IC50 = ~500 IU/ml
Leu-IFN-α	FRhK-4 (HKU39849)	EC50 at 48 h = 5,000 μg/ml
IFN-α (p.i. for 16 h before viral inoculation)	Vero E6 (HKU39849)	E50 at 48 h = 19.5 μg/ml
IFN-α (p.i. for 16 h before viral inoculation)	FRhK-4 (HKU39849)	EC50 at 48 h = 39 μg/ml
IFN-β	Vero E6 (HKU39849)	E50 at 48 h = 19.5 μg/ml
IFN-β (p.i. for 16 h before viral inoculation)	FRhK-4 (HKU39849)	EC50 at 48 h = 200 μg/ml
IFN-β (p.i. for 16 h before viral inoculation)	Vero E6 (HKU39849)	E50 at 48 h = 106 μg/ml
IFN-β (p.i. for 16 h before viral inoculation)	FRhK-4 (HKU39849)	E50 at 48 h = 625 μg/ml
IFN-β1b (Betaferon)	Vero E6 (HKU39849)	EC50 at 48 h = 19.5 μg/ml
IFN-α3 (Alferon)	Vero E6 (2003VA2774)	IC50 = 0.2 IU/ml; IC95 = 8 IU ml
Human leukocyte IFN-α (Multiferon)	Vero E6 (2003VA2774)	IC50 = 0.8 IU/ml; IC95 = 200 IU/ml
IFN-β	Vero E6 (FFM-1)	IC50 = 110 IU/ml at 10 TCID50; IC50 = 625 IU/ml at 100 TCID50
Multiferon	Vero E6 (FFM-1)	IC50 = 540 IU/ml at 10 TCID50; IC50 = 2,400 IU/ml at 100 TCID50
IFN-α2b	Vero E6 (FFM-1)	IC50 = >3,125 IU/ml at 10 TCID50; IC50 = >3,125 IU/ml at 100 TCID50
IFN-α2a	Vero E6 (FFM-1)	IC50 = >3,125 IU/ml at 10 TCID50; IC50 = >3,125 IU/ml at 100 TCID50
IFN-αalfacon1 (Infergen)	Vero (Urbani)	IC50 = 0.001 μg/ml
IL-4 and IFN-γ	Vero E6 (HKU39849)	IL-4 and IFN-γ downregulated cell surface expression of ACE2; ACE2 mRNA levels were also decreased after treatment
IFN-β and rihavirin	Caco2 (FFM-1)	Mean (SD) CI = 0.45 (0.07)
HR2-8 (HR2-derived peptide)	Vero 118 (NM)	EC₅₀ = 17 μM
-------------------------------	----------------	----------------------
CP-1 (HR2-derived peptide)	Vero E6 (WHU)	IC₅₀ = 19 μmol/liter
HR1-1 (HR1-derived peptide)	Vero E6 (BJ01 and pseudovirus)	EC₅₀ = 3.68 μM for wild-type virus assay; EC₅₀ = 0.14 μM for pseudotyped virus assay
HR2-18 (HR2-derived peptide)	Vero E6 (BJ01 and pseudovirus)	EC₅₀ = 5.22 μM for wild-type virus assay; EC₅₀ = 1.19 μM for pseudotyped virus assay
HR2	Vero E6 (WHU)	CPE inhibition IC₅₀ = 0.5-5 nM (synthetic HR2 peptide) and 66.2-500 nM (fusion HR2 peptide)

Peptides representing various regions of ACE2
- TELCeB6, HeLa, and VeroE6 (pseudovirus)

Peptides analogous to viral spike protein
- Vero E6, L2 (Urbani)

siRNA, RL004, RL005
- Vero E6 (Y3)

siRNA targeting viral RP
- Vero (NM)

RNA interference targeting viral RP
- Vero E6, 293, HeLa (SARS-CoV-p9)

siRNA targeting S gene
- Vero E6, 293T (BJ01)

siRNAs targeting S gene and 3’ untranslated region
- Vero E6 (HK strain)

Glycyrrhizin
- Vero (FFM-1, FFM-2)

Mizoribine
- Vero E6, FFM-1 (HKU 39849)

Ribavirin
- Vero E6 (FFM-1)

Rimantidine
- FRhK-4 (HKU 39849)

Lopinavir
- Vero E6 (HKU 39849)

Baicalin
- FRhK-4 (HKU 39849)

Aurintricarboxylic acid
- Vero (NM)

Reserpine
- Vero E6 (HK strain)

Aescin
- Vero E6 (HK strain)

Valinomycin
- Vero E6 (HK strain)

Niclosamide
- Vero E6 (Taiwan strain)

Nelfinavir
- Vero E6 (FFM-1)

Chloroquine
- Vero E6 (FFM-1)

Indomethacin
- Vero E6 (Tor2)

3C-like proteinase inhibitors
- Cinanserin (SQ 10,643)
- TG-0205221
- Octapeptide AVLQSGFR
7.3.2. Immuno enhancement therapy

Synthetic recombinant interferon α has proven to be effective in treatment of SARS patients in clinic trials. Pulmonary X-ray abnormal remission time was reduced by 50% in the interferon-treated group compared with the glucocorticoid-treated group alone. Interferon was also found to be an effective inhibitor of MERS-CoV replication. Those findings suggested that interferon could be used in the treatment of COVID-19. Intravenous immunoglobulin might be the safest immunomodulator for long-term use in all ages, and could help to inhibit the production of proinflammatory cytokines and increase the production of anti-inflammatory mediators. Moreover, Thymosin alpha-1 (Ta1) can be an immune booster for SARS patients, effectively controlling the spread of disease. Intravenous immunoglobulin and Ta1 may also be considered as therapeutics for COVID-19.

A retrospective review analyzed 21 patients in which tocilizumab was added to standard COVID-19 therapy. Preliminary data suggest tocilizumab may have clinical benefit as adjunctive therapy. Tocilizumab is Interleukin-6 (IL-6) Receptor-Inhibiting Monodonal Antibody that can cause Cytokine release syndrome may be a component of severe disease in COVID-19 patients. The Mechanism of Action of said that it inhibits IL-6-mediated signaling by competitively binding to both soluble and membrane-bound IL-6 receptors. IL-6 is a proinflammatory cytokine that is involved in diverse physiological processes such as T-cell activation, immunoglobulin secretion induction,
hepatic acute-phase protein synthesis initiation, and hematopoietic precursor cell proliferation and differentiation stimulation. IL-6 is produced by various cell types, including T- and B-cells, lymphocytes, monocytes, and fibroblasts.

7.3.3. Convalescent plasma therapy
When there are no sufficient vaccines and specific drugs, convalescent plasma therapy could be an effective way to alleviate the course of disease for severely infected patients\(^9\). Plasma collected from persons who have recovered from COVID-19 that may contain antibodies to SARS-CoV-2 Clinical trials are being conducted to evaluate the use of COVID-19 convalescent plasma to treat patients with severe or immediately life-threatening COVID-19 infections. Moreover, from the perspective of immunology, most of the patients recovered from COVID-19 would produce specific antibodies against the SARS-CoV-2, and their serum could be used to prevent reinfection. At the same time, antibodies can limit the virus reproduction in the acute phase of infection and help clear the virus, which is conducive to the rapid recovery of the disease\(^9\).

Corticosteroids therapy: Corticosteroid therapy is not recommended for viral pneumonia; however, use may be considered for patients with refractory shock or acute respiratory distress syndrome.

7.3.4. Vaccine Development
Vaccines that have been developed are either not effective, or in some cases have been reported to be involved in the selection of novel pathogenic CoVs via recombination of circulating strains. Vaccine development can be a challenge. It is noteworthy that almost 20 years after SARS, there is still no vaccine for coronavirus. After SARS, development of a vaccine appeared to be the best approach to prevent future SARS-CoV epidemics. However, there were many obstacles in SARS vaccine development. Firstly, researchers did not have a comprehensive understanding of the pathogenic mechanism of SARS-CoV. Secondly, animal models of SARS-CoV infection could not simulate human disease because of an incongruent pathogenesis. Thirdly, in order to test the efficacy, many people must be tested in areas where the virus is endemic. Although several candidate vaccines against SARS-CoV have been produced and tested, at present, unfortunately, there is no FDA approved vaccine against SARS\(^9\).

8. Rigorous infection control
1. Contact tracing, strict isolation of actively ill patients and quarantine of close contacts should be implemented early\(^9\).
2. Environmental hygiene in medical sectors and personal hygiene of health care workers should be maintained\(^9\).
3. Training in the use of personal protective equipment protects the safety of HCWs\(^9\).
4. Establishing fever clinics, setting up designated hospital wards and SARS hospitals reduced human-to-human transmission\(^9\).
5. Education of the public on communicable diseases and what measures to take on a personal basis to prevent spread.

9. Conclusion and Recommendation
Looking ahead, the most feasible options that should be further evaluated in clinical trials for the ongoing Covid 19 epidemic. The COVID-19 pandemic is spreading across the globe at an alarming rate. It has caused more infections and deaths as compared with SARS or MERS. The rapid spread of disease warrants intense surveillance and isolation protocols to prevent further transmission. No confirmed medication or vaccine has been developed. Current treatment strategies are aimed at symptomatic care and oxygen therapy. Prophylactic vaccination is required for the future prevention of COVID-related epidemic or pandemic. To reduce the risk of transmission in the community, individuals should be advised or recommended to wash hands diligently, practice respiratory hygiene (eg, cover their cough), and avoid crowds and close contact with ill individuals, if possible. Facemasks are not routinely recommended for asymptomatic individuals to prevent exposure in the community. Social distancing is advised, particularly in locations that have community transmission. The strict control of cross-infection in medical institutions is also key to preventing the further spread of the epidemic.

Acknowledgements
The authors are thankful to Dr. Surendra Kumar Jain Director SIRTSP for their help.

References
1. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nature reviews microbiology. 2009; 7:439-50.
2. Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus research. 2015 3; 206:120-33.
3. Drosten C, Günther S, Preiser W, Van Der Werf S, Bötttger RR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England journal of medicine. 2003; 348:1967-76.
4. Cotten M, Lam TT, Watson SJ, Paier AL, Petrova V, Grant P, Pybus OG, Rambaut A, Guan Y, Pillay D, Kallam P. Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerging infectious diseases. 2013; 19:736-42.
5. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Xiao Z, Huang B, Shi W, Lu R, Niu P. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. 2020: 24.
6. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology. 2019; 17:181-92.
7. Macalchan NJ, Dubovi EJ, editors. Fenners’ veterinary virology. Academic press; 2010:26.
8. Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in microbiology. 2016; 24:490-502.
9. Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, Rashed N, Xue M. The emergence of a novel coronavirus (SARS-CoV-2), their biology and therapeutic options. Journal of clinical microbiology. 2020.
10. Isaacs D, Flowers D, Clarke JR, Valman HB, MacNaughton MR. Epidemiology of coronavirus respiratory infections. Archives of disease in childhood. 1983; 58:500-3.
11. Greenberg SB. Update on human rhinovirus and coronavirus infections. InSeminars in respiratory and critical care medicine 2016;3:555-571.
12. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine. 2012; 367:1814-20.
13. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev. 2005; 69:635-64.
14. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang W, Wang J, Sheng J. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell host & microbe. 2020.
15. Sabir JS, Lam TT, Ahmed MM, Li L, Shen Y, Abo-Abse SE, Qureshi MI, Abu-Zeid M, Zhang Y, Khayami MA, Alharbi NS. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science. 2016; 351:84-1.
Jain et al.

17. Woo PC, Lau SK, Yuen KY. Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections and novel coronaviruses in 2019. JDDTAO. 2020; 251:241-252.

18. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu J, Shan H, Lei CL, Hui DS, Du B. Clinical characteristics of 2019 novel coronavirus infections in 2019. JDDTAO. 2020; 251:335-7.

19. Li Q, Guan X, Wu P, Wang W, Zhao L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY, Xing E. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine. 2020.

20. Yin Y, Wunderink RG, MERS, SARS and other coronaviruses as a asset of knowledge and policy. JDDTAO. 2020; 251:330-7.

21. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. JDDTAO. 2020; 251:349-56.

22. Jain N, Zhou M, Dong X, Qi J, Gao F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Yu T. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020; 251:507-15.

23. Qiao J. What are the risks of COVID-19 infection in pregnant women? The Lancet. 2020; 251:760-2.

24. Yi Y, Lagnotin PN, Ye S, Li E, Xu RH. COVID-19: what has been learned and to be learned about the novel coronavirus disease. International Journal of Biological Sciences. 2020; 16:1753.

25. Song F, Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome: the 2003 SARS pandemic and the 2020 epidemic. Emerging 2019 novel coronavirus (2019-nCoV) infections in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine. 2020; 251:73-80.

26. Song F, Shi N, Shan F, Zhang Z, Shen J, Liu J, Hu L, Ling Y, Jiang Y, Shi Y. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020; 251:20274.

27. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, Fang C, Huang D, Huang LQ, Huang Q, Han Y. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research. 2020; 251:201 Jan 1.

28. Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes and Infection. 2020 Feb 1.

29. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Nilles E, Offermanns S, Powderly W, Rott R, Schmitz H, Stürmer C, Swaminathan S, Tegner Y, Zöllner H. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020;25.1:8.

30. Burki T. Outbreak of coronavirus disease 2019. The Lancet Infectious Diseases. 2020; 20:292-3.

31. Yan Y, Shin WI, Pang YX, Meng Y, Lai Y, Ou C, Zhao H, Lester E, Wu T, Pang CH. The First 75 Days of Novel Coronavirus (SARS-CoV-2) Outbreak: Recent Advances, Prevention, and Treatment. International Journal of Environmental Research and Public Health. 2020; 17:2323.

32. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, Wang Y, Xiao GF, Yan B, Shi ZL, Zhou P. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging microbes & infections. 2020; 9:E488.

33. Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, Sun J, Chang C. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of autoimmunity. 2020; 251:102434.

34. Cao W, Liu X, Bai T, Fan H, Kong H, Song H, Han Y, Lin L, Ruan L, Li T. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with Coronavirus Disease 2019. In Open Forum Infectious Diseases 2020; 7.

35. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona
virus disease—2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents. 2020; 1059:24.

62. C. H. Prevention New Coronavirus Pneumonia and Control Program (fifth ed.). China National Health Commission. 2020, 2020.

63. Chang D, Xu H, Rebaa A, Sharma L, Cruz CS. Protecting healthcare workers from subclinical coronavirus infection. The Lancet Respiratory Medicine. 2020; 8:e13.

64. Cheung LT, Cheng JY, Chan EY, Lam KN. Staff safety during emergency airway management for COVID-19 in Hong Kong. The Lancet Respiratory Medicine. 2020.

65. Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Canadian Journal of Anesthesia/Canadian anesthésistes. 2020; 1-9.

66. Network AR, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000; 342:1301-8.

67. ARDSnet. NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary. 2020.

68. Arabi YM, Almotan A, Balhy HH, Al-Dawood A, Aljohani S, Al Harbi S, Kojan S, Al Jarify M, Deeb AM, Assiri AM, Al-Hameed F. Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-alfa2b (MIRACLE trial) study protocol for a randomized controlled trial Trials. 2018;8:18

69. Arabi YM, Mandourah Y, Al-Hameed F, Sindi AA, Almekhlafi GA, Hussein MA, Jose J, Pinto R, Al-Emari A, Khabara A, Almotairi A. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome: preliminary report. European Journal of Respiratory and Critical Care Medicine 2018; 197:57-67.

70. Chen ZM, Fu JF, Shu Q, Chen YH, Hua CZ, Li FB, Lin R, Tang LF, Wang TL, Wang W, Wang YS. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World Journal of Pediatrics. 2020:1-7.

71. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020; 1059:32.

72. Lu H. Drug treatment options for the 2019 novel coronavirus (2019-nCoV). BioScience trends. 2020 Feb 29; 14:69-71.

73. Yao Y, Ye F, Zhang M, Cui C, Huang R, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infections Diseases. 2020.

74. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020; 1059:32.

75. Cortegeani A, Ingolia G, Impollito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Clinical Research. 2020.

76. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery. 2020; 6:1-4.

77. Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, Doudier B, Courjon J, Gordanengo V, Vieira VC, Dupont HT, Honore S. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents. 2020; 1059:49.

78. Xu K, Chen Y, Yuan J, Yi P, Ding C, Wu W, Li Y, Ni Q, Zhou R, Li X, Xu M. Clinical efficacy of Arbidol in patients with 2019 novel coronavirus-infected pneumonia: a retrospective cohort study. InternationJ of Antimicrobial Agents. 2020; 1059:49.

79. Young BE, Ong SW, Kalimuddin S, Low LG, Tan SY, Loh J, Ng OT, Marimuthu K, Ang LW, Mak TM, Lau SK. Epidemiological features and clinical outcome of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020.

80. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, Kao RO, Poon LL, Wong CL, Guan Y, Peiris JS. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59(3):252-6.

81. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song R, Bai Y, Wei M, Li X. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine 2020.