INTRODUCTION

Human filariasis is caused by members of the Filaridae family, including species of *Dirofilaria, Brugia, Wuchereria, Onchocerca, Dipetalonema, Loa*, and *Meningonema*; it is transmitted to humans by various kinds of insect vectors [1]. Dirofilaria is typically a disease of animals, which can also be easily transmitted to humans by mosquitoes of the genera *Anopheles, Culex*, and *Aedes* [2]. All of these mosquitoes are found in Vietnam. Of the 30 different species of *Dirofilaria*, *D. repens* and *D. immitis* are the 2 most common species that frequently infect humans [3]. Other *Dirofilaria* species have also been reported to infect Vietnamese carnivore species [4].

There have been over 1,000 cases of dirofilariasis, reported throughout the world, including 300 cases involving the lungs or viscera and over 800 cases involving the subcutaneous tissues or eyes [1]. Most of these were caused by *D. immitis* or *D. repens*. *D. immitis* is a parasite of dogs and cats and it can occasionally become a causative agent of lung and subcutaneous dirofilariasis in humans. *D. repens* can also infect humans and is associated with diseases of various organs, including the conjunctiva, lungs, soft tissues (including the breast), brain, liver, intestine, lymphatic glands, and muscles [5,6].

In some cases, identification of *Dirofilaria* spp. based only on the morphology is difficult. Therefor, the use of molecular methods, such as PCR, is necessary for effective species identification [7]. Nuclear and mitochondrial genes are useful for the identification of helminth species, and especially the latter genes have been frequently used for identification of *Dirofilaria* spp. [8-10].

Given that there has been an increasing number of patients suffering from *D. repens* infection, further research is required on this newly emerging zoonotic disease as a public health threat in Vietnam. Accurate diagnosis, proper identification, and control measures are therefore needed to control human dirofilariasis in Vietnam.

CASE RECORD

During 2006 to 2010, a total of 9 patients with a swelling...
mass under their conjunctiva admitted to the National Eye Hospital (NEH), and a patient with a swelling in the subcutaneous tissue admitted to the Military Hospital 108. By surgery, live parasites were collected from these patients and species identification was tried. The total 10 patients, 27-77 years old, were from 4 provinces in the North Vietnam, including Hanoi City (4 patients), Ninh Binh province (2 patients), Ha Nam province (2 patients), and Hung Yen province (1 patient) (Table 1). Nine of them had similar symptoms, such as a painful, itchy, swollen, and tangible nodule in the eye; 6 cases involved the right eye and 3 involved the left. Another patient, 36-year-old, had a tumor (3 × 4 cm) in the left subcutaneous tissue, which appeared as a red nodule and itchy. Surgical biopsies were performed on all patients and living parasites were recovered from each patient.

Parasites measured 4.0-12.5 cm in length and 0.5–0.6 mm in width. The worms were identified by the morphology, and pictures were taken (Fig. 1). Among the worms, 3 were chosen (2 from the conjunctiva and 1 from the subcutaneous tissue), marked as GCA-VN1, GCH-VN2, and GCD-VN3, respectively, and analyzed by molecular methods.

Table 1. Information of worms collected from patients

Serial no. cases	Sex	Age (years)	Province	Parasitic place	Worm length (cm)
1	Female	50	Hanoi	Right conjunctiva	4.0
2	Male	47	Hanoi	Left conjunctiva	8.0
3	Female	27	Hanoi	Left conjunctiva	10.0
4	Male	49	Hanoi	Right conjunctiva	5.0
5	Male	77	Ninh Binh	Right conjunctiva	11.0
6	Female	60	Ninh Binh	Right conjunctiva	15.0
7	Female	55	Ninh Binh	Right conjunctiva	11.0
8	Female	50	Hung Yen	Right conjunctiva	10.0
9	Male	50	Ha Nam	Left conjunctiva	12.5
10	Male	36	Ha Nam	Left subcutaneous side	12.0

Fig. 1. *Dirofilaria repens* collected from the conjunctiva (A, B) and subcutaneous tissue (C, D) of humans in Vietnam. (A) A female worm from the conjunctiva of a patient. (B) Another specimen from another patient. (C) Anterior end of a worm showing the mouth and esophagus (×100). (D) Posterior part of a female worm extracted from the subcutaneous tissue of a patient (×40).

Table 2. Sequencing of the portion cox1 of different filarial species from GenBank compared with *Dirofilaria repens* in Vietnam

Notation	Origin	Host	Length	Species	GenBank	Author
GCA-VN1	Vietnam	Human	461 bp	*Dirofilaria repens*	-	De, Le, and Chai*
GCH-VN2	Vietnam	Human	461 bp	*Dirofilaria repens*	-	De, Le, and Chai*
GCD-VN3	Vietnam	Human	461 bp	*Dirofilaria repens*	-	De, Le, and Chai*
Drep (ITA1)	Italy	-	461 bp	*Dirofilaria repens*	AJ271614	[8]
Drep (ITA2)	Italy	-	461 bp	*Dirofilaria repens*	DG358814	Serini et al. (GenBank)
Dimm	Australia	Dog	461 bp	*Dirofilaria immitis*	AJ537512	[14]
Bmal	GenBank	-	461 bp	*Brugia malayi*	AF538716	[15]
Ovol	GenBank	-	461 bp	*Onchocerca volvulus*	AF015193	[16]

aResults of the present study.
Fig. 2. Comparison of 461 nucleotide (A) and 153 amino acids (B) of portion cox1 mitochondrial genome between Vietnamese Dirofilaria and other species of the family Filaridae, including the Italian Dirofilaria repens (Drep [ITA1] and Drep [ITA2]), Australian D. immitis (Dimm), Brugia malayi (Bmal), and Onchocerca volvulus (Ovol). Note differences between the Vietnamese Dirofilaria (GCA-VN1; GCH-VN2; GCD-VN3) and other species showed by sign nucleotide (or amino acid) of them; mark (.) is similar each other in nucleotide (or amino acid).

5’GGTCTTGGTGAACGTCTATTCTTATC3’ and UCO1r2: 5’CC-
AACCATAAACATATGATGAGCCCA3’.

PCR products purified using a QIAquick Purification Kit (Qiagen) were subjected to direct sequencing using the BigDye Terminator Cycle Sequencing technology on an automated sequencer, ABI 3100 Avant Genetic Analyzer (Applied Biosystems, Foster City, California, USA). Sequences were then edited using SeqEdv1.03, aligned using Assembly LIGNv1.9c, and analyzed using the MacVector 8.2 package (Accelrys Inc., San Diego, California, USA). Sequences were searched against the GenBank database, using the NCBI BLAST program (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi), and approximately 500
Table 3. Percentage identity of nucleotide (above diagonal) and amino acid homology (below diagonal) of cox1 sequences of Vietnamese Dirofilaria repens and other Filaridae in GenBank.

	GCA-VN1	GCH-VN2	GCD-VN3	Drep (ITA1)	Drep (ITA2)	Dimm	Bmal	Ovol
GCA-VN1	100	100	95	95	89	87	91	
GCH-VN2	100	100	95	95	89	87	91	
GCD-VN3	100	100	95	95	89	87	91	
Drep (ITA1)	100	100	100	99	90	87	92	
Drep (ITA2)	99	99	99	99	90	87	92	
Dimm	96	96	96	96	89			
Bmal	94	94	94	94	92			86
Ovol	98	98	98	98	97	96	95	

The phylogenetic analysis results are shown in Fig. 3. The phylogenetic tree based on a portion of cox1 sequence of Dirofilaria isolates and nematode strains, including 3 collected in Vietnam. Topology was constructed by MEGA 4.1 using the neighbor-joining method [17]. Dirofilaria repens from this study and 2 from Italy are shown by the vertical bar. The length of the cox1 sequence is indicated in brackets. Bootstrap values (%) are indicated in numerals from 1,000 replicates. GCA-VN1, GCH-VN2, and GCD-VN3 = Vietnamese Dirofilaria; Drep (ITA1) and Drep (ITA2) = Italian Dirofilaria repens (GenBank no. AJ271614 and DQ358814); Dimm: Dirofilaria immitis (GenBank no. AJ537512); Bmal: Brugia malayi (GenBank no. AF538716); Ovol: Onchocerca volvulus (GenBank no. AF015193).

Fig. 3. The phylogenetic tree based on a portion of cox1 sequence of Dirofilaria isolates and nematode strains, including 3 collected in Vietnam. Topology was constructed by MEGA 4.1 using the neighbor-joining method [17]. Dirofilaria repens from this study and 2 from Italy are shown by the vertical bar. The length of the cox1 sequence is indicated in brackets. Bootstrap values (%) are indicated in numerals from 1,000 replicates. GCA-VN1, GCH-VN2, and GCD-VN3 = Vietnamese Dirofilaria; Drep (ITA1) and Drep (ITA2) = Italian Dirofilaria repens (GenBank no. AJ271614 and DQ358814); Dimm: Dirofilaria immitis (GenBank no. AJ537512); Bmal: Brugia malayi (GenBank no. AF538716); Ovol: Onchocerca volvulus (GenBank no. AF015193); St-st = Strongyloides stercoralis (GenBank no. AJ558163); As-sui = Ascaris sum (GenBank no. X54253); An-duo = Ankylostoma duodenale (GenBank no. AJ417718); Ne-ane = Neocatam americanus (GenBank no. AJ417719); Tr-spi = Trichinella spiralis (GenBank no. AF293969).

DISCUSSION

In this study, 10 Dirofilaria worm specimens from humans, including 9 from the conjunctiva and 1 from the subcutaneous tissue, were identified by the morphology and molecular methods as D. repens. In Vietnam, the filarial worm of this species was first reported from a human conjunctiva in 2008 [12], and another was reported from the human subcutaneous tissue in 2010 [13]. This is the 3rd report of human D. repens infection in Vietnam which involved the conjunctiva or subcutaneous tissue.

This species is parasitic in dogs, cats, and wild animals [1], and together with D. immitis it can cause complicated epidemiology in zoonotic diseases. Dirofilaria is transmitted to humans by mosquitoes, including Anopheles, Culex, and Aedes [2], and these mosquitoes are common in Vietnam. Feeding dogs and cats are very common in the whole country. Thus, a high risk for human dirofilariosis is existing everywhere in Vietnam.
ACKNOWLEDGMENTS

The authors acknowledge the funds supported from the National Foundation for Science and Technology Development (NAFOSTED) in Vietnam (No. 106.12-2011.13 to Nguyen Van De) and cooperation of researchers from the Hanoi Medical University (HMU), Institute of Biotechnology (IBT), and the National Eye Hospital (NEH) of Vietnam.

REFERENCES

1. Pampiglione S, Rivasi F. Human dirofilariasis due to *Dirofilaria* (Nochtiella) *repens*: An update of world literature from 1995 to 2000. Parasitologia 2000; 42: 231-254.

2. Cancrini G, Scaramozzino P, Gabrielli S, Di Paolo M, Toma L, Romi R. *Aedes albopictus* and *Culex pipiens* implicated as natural vectors of *Dirofilaria repens* in central Italy. J Med Entomol 2007; 44: 1064-1066.

3. Canestri TG, Pampiglione S, Rivasi F. The species of the genus *Dirofilaria* Railliet & Henry, 1911. Parasitology 1997; 110: 369-374.

4. Hoa LV, Ty LT. Comparative study of *Dirofilaria macacae*, Sandground 1933, a parasite of primates, and *Dirofilaria repens*, Raillet and Henry 1911, a parasite of Vietnamese carnivora. Bull Soc Pathol Exot Filiales 1971; 64: 347-360.

5. Dujic MP, Mitrovic BS, Zec IM. Orbital swelling as a sign of live *Dirofilaria repens* in subconjunctival tissue. Scand J Infect Dis 2003; 35: 430-431.

6. Raniel Y, Machamudov Z, Zec IM. Subcutaneous swelling due to *Dirofilaria repens* in Vietnam. J Trop Med Hyg 1987; 90: 205-207.

7. Dujic MP, Mitrovic BS, Zec IM. Orbital swelling as a sign of live *Dirofilaria repens* in subconjunctival tissue. Scand J Infect Dis 2003; 35: 430-431.

8. Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Genchi C. A phylogenetic analysis of filarial nematodes: Comparison with the phylogeny of *Wolbachia* endosymbionts. Parasitology 2011; 132: 93-103.

9. Hu M, Gasser RB. Mitochondrial genomes of parasitic nematodes: progress and perspectives. Trends Parasitol 2006; 22: 78-84.

10. Le TH, Blair D, McManus DP. Mitochondrial genomes of parasitic flatworms. Trends Parasitol 2002; 18: 206-213.

11. Miyazaki I. An Illustrated Book of Helminthic Zoonoses. International Medical Foundation of Japan, Tokyo, Japan. Southeast Asian Medical Information Center. 1991, p 422-435.

12. De NV, Le TH, Chau HTM, Huan LQ. Human dirofilariasis in the world and the first identification for species in Vietnam. J Pharmaceut Med 2008; 3: 11-15 (in Vietnamese with English abstract).

13. Dang TCT, Nguyen TH, Dung DT, Uga S, Morishima Y, Sugiyama H, Yamashita H. A human case of subcutaneous dirofilariasis caused by *Dirofilaria repens* in Vietnam: Histologic and molecular confirmation. Parasitol Res 2010; 107: 1003-1007.

14. Hu M, Gasser RB, Abs El-Osta YG, Chilton NB. Structure and organization of the mitochondrial genome of the canine heartworm, *Dirofilaria immitis*. Parasitology 2003; 127: 37-51.

15. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guilianio DB, Miranda-Sanvedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pettea M, Pop M, White O, Barton CJ, Carlow CK, Crawford MJ, Dubu J, Dimmic MW, Estes CE, Foster JM, Ganatra M, Gregory WE, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li BW, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DM, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Perez-Giraldez JM, Poole C, Ren Q, Saunders L, Studer AF, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL. Draft genome of the filarial nematode parasite *Brugia malayi*. Science 2007; 317: 1756-1760.

16. Keddie EM, Higazi T, Unnasch TR. The mitochondrial genome of *Onchocerca volvulus*: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 1998; 95: 111-127.

17. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2007; 104: 11030-11035.
