No evidence for the blue-tilted power spectrum of relic gravitational waves

Qing-Guo Huang and Sai Wang

State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190, China
E-mail: huangqg@itp.ac.cn, wangsai@itp.ac.cn

Received February 13, 2015
Revised May 12, 2015
Accepted May 22, 2015
Published June 10, 2015

Abstract. In this paper, we constrain the tilt of the power spectrum of relic gravitational waves by combining the data from BICEP2/Keck Array and Planck (BKP) and the Laser Interferometer Gravitational-Waves Observatory (LIGO). Supposing the linearly uniform priors for both the tensor-to-scalar ratio r and the tensor tilt n_t, we find $n_t = 0.66^{+1.83}_{-1.44}$ at the 68% confidence level from the data of BKP B-modes. By further adding the LIGO upper limit on the intensity of stochastic gravitational-wave background, the constraint becomes $n_t = -0.76^{+1.37}_{-0.52}$ at the 68% confidence level by assuming that the tensor amplitude has the similar order of the upper bounds from current CMB experiments. We find that there is no evidence for a blue-tilted power spectrum of relic gravitational waves and either sign of the index of tensor power spectrum is compatible with the current data.

Keywords: inflation, gravitational waves and CMBR polarization

ArXiv ePrint: 1502.02541
The primordial gravitational waves can be generated during inflation [1–5]. The simplest inflation models show the power spectrum of primordial gravitational waves to be adiabatic, Gaussian and nearly scale-invariant. The primordial gravitational waves contribute to both the total intensity and polarizations for the anisotropy of the cosmic microwave background (CMB) [6–12]. Especially, the effects of primordial gravitational waves on the B-mode polarization might be detectable at the range $\ell \lesssim 150$. Recently, Background Imaging of Cosmic Extragalactic Polarization (BICEP2) [13] reported an excess of B-mode power over the base lensed-ΛCDM expectation at the range $30 < \ell < 150$ with a significance of more than 5σ. However, there were debates on whether the B-mode signals detected by BICEP2 are resulted from the primordial gravitational waves or from the interstellar dust polarization [14–17]. Actually, the power of dust polarization has the same magnitude as the BICEP2 B-mode signals [18]. Most recently, a joint analysis of the B-mode data from BICEP2/Keck Array and Planck (BKP) [19] yielded

$$r = 0.048^{+0.035}_{-0.032}$$

at 68% confidence level, and $r_{0.05} < 0.12$ at the 95% confidence level (C.L.) which is compatible with the Planck temperature-only limit [20]. The significance is too low to claim a detection of primordial gravitational waves.

The tilt of power spectrum of relic gravitational waves is used to measure the feature of the tensor power spectrum. In general, the tensor tilt n_t is defined by

$$P_t(k) = A_t \left(\frac{k}{k_p} \right)^{n_t},$$

where $P_t(k)$ denotes the amplitude of the primordial tensor power spectrum at scale k, and k_p is the pivot scale which is fixed to be $k_p = 0.01\text{Mpc}^{-1}$ in this note. In the canonical single-field slow-roll inflation models, the tensor tilt is related to the tensor-to-scalar ratio by the consistency relation between r and n_t, namely, $r = -8n_t$ [21]. In this scenario, because of the upper limit $r_{0.05} < 0.12$, the spectrum of relic gravitational waves is nearly scale-invariant. In the inflation model, the tensor tilt is generally predicted as $n_t = -2\epsilon$ [21, 22]. The inflation requires $\ddot{a}/a = H^2(1 - \epsilon)$ where $\epsilon = H/H^2$, and thus $-2 < n_t < 0$. However, there are also some alternatives to the inflation model, which predict different tensor tilts. For example, the ekpyrotic model [23] predicts a blue-tilted tensor power spectrum, i.e. $n_t = 2$. Here we take the tensor tilt n_t as a fully free parameter in our analysis. Even though the current datasets are not good enough to check the consistency relation of canonical single-field slow-roll inflation, we hope that the data can be used to test the ekpyrotic scenario.

In this paper, we shall make a joint analysis of the CMB B-mode polarization and Laser Interferometer Gravitational wave Observatory (LIGO) [24] data to constrain the tensor tilt n_t. The CMB B-mode polarization data coming from a joint analysis of the BKP data [19] can be used to constrain the tilt of the power spectrum of relic gravitational waves at large angular scales. In this paper, we are just interested in the BB bandpowers $1 - 5$ which are taken between BICEP2/Keck Array and the 217 and 353 GHz bands of Planck. As a complement, the data of LIGO place an upper limit on the intensity of stochastic gravitational-wave background Ω_{GW} at the specific frequency band around 100Hz. Here we do not prefer to use the CMB TT and TE datasets because C^{TT}_ℓ and C^{TE}_ℓ are dominated by the scalar perturbations, and then the analysis will strongly depend on the shape of the power spectrum.
of scalar perturbations which is model-dependent. In this sense, our results given by fitting C^{BB}_ℓ only from BKP and the combination with LIGO are model-independent.

The data of LIGO refers to the upper limit on the intensity of stochastic gravitational-wave background

$$\Omega_{GW} < 5.6 \times 10^{-6}$$

at the frequency band around 100Hz at the 95% C.L. \[24\]. In general, the intensity of stochastic gravitational-wave background at the wavenumber k is determined by \[25, 27\]

$$\Omega_{GW}(k) = \frac{P_t(k)}{12H_0^2} \left(\frac{\dot{T}(\eta_0, k)}{\dot{T}(\eta_0, k)} \right)^2,$$

where η_0 denotes the conformal time today, H_0 is the Hubble parameter today, $\dot{T}(\eta, k)$ is the transfer function of tensor perturbations, and the overdot denotes a cosmic time derivative d/dt. The wavenumber k of relic gravitational waves is related to the frequency f by $f = k/2\pi$. The tensor transfer function $T(\eta, k)$ describes the evolution of relic gravitational waves in the universe. It has an analytical approximation, namely, \[25–28\]

$$\dot{T}(\eta_0, k) = -\frac{3j_2(k\eta_0)\Omega_m}{\eta_0} \sqrt{1 + 1.36 \left(\frac{k}{k_{eq}} \right)^2 + 2.50 \left(\frac{k}{k_{eq}} \right)^2},$$

where the conformal time today $\eta_0 = 1.41 \times 10^4$ Mpc, and $k_{eq} = 0.073\Omega_m h^2$ Mpc$^{-1}$ denotes the wavenumber relating to the Hubble horizon at the time of matter-radiation equality. Here Ω_m and h denote the matter density parameter and the reduced Hubble parameter today, respectively. Since LIGO is sensitive to the relic gravitational waves of the wavenumber $k \gg k_{eq}$, the intensity of stochastic gravitational-wave background today is given by \[27\]

$$\Omega_{GW}(k) \simeq \frac{15}{16} \frac{\Omega_m^2 A_s r}{H_0^2 \eta_0^3 k_{eq}^2} \left(\frac{k}{k_p} \right)^{n_t}$$

where A_s is the amplitude of scalar power spectrum. The data of LIGO are a complement to the CMB data, since both observations refer to two quite different cosmological scales. Recently a multi-wavelength constraint on the tensor tilt was done in \[29\] where the contribution to the CMB B-mode from polarized thermal dust emission was not taken account.\[1\]

We add a prior into the public Markov Chain Monte Carlo sampler (CosmoMC) \[30\] to account for the LIGO upper limit on the intensity of stochastic gravitational-wave background. We consider two combined datasets: one is the BKP B-mode data; the other refers to a combination of the BKP data and the LIGO upper limit (BKP+LIGO). We just consider the BKP B-mode data with the bandpowers $1-5$ ($20 < \ell < 200$). Actually, the extra four bandpowers of BKP would lead little changes on our final results. The cosmological model considered here is the base lensed-ΛCDM model+tensor cosmology. The parameters of the base lensed-ΛCDM model are fixed as the “BKP cosmology parameters” in the CosmoMC, namely, $(\Omega_b h^2, \Omega_s h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s) = (0.0220323, 0.1203761, 1.0411, 0.0924518, 3.16, 0.9619123)$. Thus, the parameter space just includes the tensor-to-scalar ratio (r) and the tensor tilt (n_t).

\[1\]Our paper was submitted to arXiv on 9 Feb., 2015. The authors in \[29\] revised their paper and also “added BICEP2/KECK Planck cross analysis” in the third version on 16 Feb., 2015, and their result is consistent with ours. Here we stress that the results in \[29\] depend on the assumption of the shape of power spectrum of scalar perturbations because they adopted the CMB TT and TE power spectra data as well.
Because of the absence of the knowledge of the tensor amplitude, the constraint on the tensor tilt is expected to be prior-dependent. In this paper, we suppose the linearly uniform priors for both the tensor-to-scalar ratio and the tensor tilt, i.e. \(r \in [0, 1] \) and \(n_t \in [-4, 6] \). Our results are summarized in table 1. The marginalized contour plot and the likelihood distributions of the parameters \(r \) and \(n_t \) are illustrated in figure 1. If the BKP dataset is just considered, the constraints on the tensor-to-scalar ratio \(r \) and the tensor spectral index \(n_t \) are \(r < 0.099 \) (95% C.L.) and \(n_t = 0.66^{+1.83}_{-1.44} \) (68% C.L.), respectively. It is different from that in [31] where a blue-tilted tensor power spectrum is preferred at around 3\(\sigma \) level without taking into account the contribution to the B-mode from the polarized dust. If the BKP+LIGO dataset is considered, the constraints become \(r < 0.106 \) (95% C.L.) and \(n_t = -0.76^{+1.37}_{-0.52} \) (68% C.L.), respectively. Our results indicate that a scale-invariant power spectrum of relic gravitational waves is compatible with the data, and the canonical single-field slow-roll inflation is within 1\(\sigma \). One should note that the result is sensitive to the prior on \(r \), since there is only an upper bound on the tensor amplitude (i.e., \(r \lesssim 0.1 \)). As both constraints from BKP and LIGO are consistent with \(r = 0 \), the true tensor amplitude can be negligibly small. Our result could be changed if the order of the actual tensor amplitude is far below the current upper bound. The spectral property can be properly constrained once the tensor amplitude is determined.

In this paper, we make a constraint on the tilt of power spectrum of relic gravitational waves by combining the data of BKP B-mode and LIGO where the linearly uniform priors for both the tensor-to-scalar ratio and the tensor tilt are supposed. The bounds on the tensor tilt are given by \(n_t = 0.66^{+1.83}_{-1.44} \) at 68% C.L. for the BKP dataset, and \(n_t = -0.76^{+1.37}_{-0.52} \) at 68% C.L. for the BKP+LIGO dataset. We find that there is no evidence for the blue-tilted tensor power spectrum, and either sign of the tilt of tensor spectrum is expected to be prior-dependent. In this paper, we suppose the linearly uniform priors for both the tensor-to-scalar ratio and the tensor tilt, i.e. \(r \in [0, 1] \) and \(n_t \in [-4, 6] \). The spectral property can be properly constrained once the tensor amplitude is determined.

Table 1. The 68% and 95% limits for the parameters \(r \) and \(n_t \) from the BKP only and BKP+LIGO datasets. Here the pivot scale is \(k_p = 0.01 \text{Mpc}^{-1} \).

parameter	BKP 68% C.L.	BKP 95% C.L.	BKP+LIGO 68% C.L.	BKP+LIGO 95% C.L.
\(r \)	\(< 0.055 \)	\(< 0.099 \)	\(< 0.059 \)	\(< 0.106 \)
\(n_t \)	\(0.66^{+1.83}_{-1.44} \)	\(0.66^{+2.92}_{-3.32} \)	\(-0.76^{+1.37}_{-0.52} \)	\(-0.76^{+1.63}_{-2.21} \)

In figure 1, the dominant contribution to the tensor power spectrum is suppressed on the very small scales corresponding to the LIGO and then the combination with LIGO does not affect the constraint on the negative \(n_t \). See the 2 and 3-\(\sigma \) contour plot in figure 1 in the region of \(n_t < 0 \). By contrast, the lower bound on \(n_t \) is still quite loose. The temperature auto-correlations are sensitive to the negative value of the tilt of tensor power spectrum [31, 32]. Thus, the constraint on the negative part of the tensor tilt will be significantly improved once the the CMB TT spectrum is taken into account. Even though we obtain certain constraints on the tensor tilt just from CMB B-mode and LIGO datasets, it is worthwhile to further combining other datasets, such as the Planck TT spectrum, to make a more stringent constraint on the tilt of tensor power spectrum in the near future.
Figure 1. The marginalized contour plot and likelihood distributions of the parameters r and n_t from the BKP only (red) and BKP+LIGO (blue) datasets. Here the pivot scale is $k_p = 0.01\text{Mpc}^{-1}$.

Acknowledgments

We acknowledge the use of ITP and Lenovo Shenteng 7000 supercomputer in the Supercomputing Center of CAS for providing computing resources. S.W. thanks for useful discussion with Xin Li. This work is supported by the project of Knowledge Innovation Program of Chinese Academy of Science and grants from NSFC (grant NO. 11322545 and 11335012).

References

[1] A.A. Starobinsky, *Spectrum of relict gravitational radiation and the early state of the universe*, JETP Lett. 30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719] [hep-th/9301027].

[2] A.A. Starobinsky, *A new type of isotropic cosmological models without singularity*, Phys. Lett. B 91 (1980) 99 [hep-th/9301027].
[3] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, *Phys. Rev. D* **23** (1981) 347 [INSPIRE].

[4] A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, *Phys. Lett. B* **108** (1982) 389 [INSPIRE].

[5] A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, *Phys. Rev. Lett.* **48** (1982) 1220 [INSPIRE].

[6] L.P. Grishchuk, Amplification of gravitational waves in an isotropic universe, *Sov. Phys. JETP* **40** (1975) 409 [Zh. Eksp. Teor. Fiz. **67** (1974) 825] [INSPIRE].

[7] A.A. Starobinsky, Spectrum of relic gravitational radiation and the early state of the universe, *JETP Lett.* **30** (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. **30** (1979) 719] [INSPIRE].

[8] V.A. Rubakov, M.V. Sazhin and A.V. Veryaskin, Graviton creation in the inflationary universe and the grand unification scale, *Phys. Lett. B* **115** (1982) 189 [INSPIRE].

[9] R. Crittenden, J.R. Bond, R.L. Davis, G. Efstathiou and P.J. Steinhardt, The imprint of gravitational waves on the cosmic microwave background, *Phys. Rev. Lett.* **71** (1993) 324 [arXiv:astro-ph/9303014] [INSPIRE].

[10] M. Kamionkowski, A. Kosowsky and A. Stebbins, A probe of primordial gravity waves and vorticity, *Phys. Rev. Lett.* **78** (1997) 2058 [astro-ph/9609132] [INSPIRE].

[11] M. Kamionkowski, A. Kosowsky and A. Stebbins, Statistics of cosmic microwave background polarization, *Phys. Rev. D* **55** (1997) 7368 [astro-ph/9611125] [INSPIRE].

[12] W. Hu, U. Seljak, M.J. White and M. Zaldarriaga, A complete treatment of CMB anisotropies in a FRW universe, *Phys. Rev. D* **57** (1998) 3290 [astro-ph/9709066] [INSPIRE].

[13] BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, *Phys. Rev. Lett.* **112** (2014) 241101 [arXiv:1403.3985] [INSPIRE].

[14] M.J. Mortonson and U. Seljak, A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty, *JCAP* **10** (2014) 035 [arXiv:1405.5857] [INSPIRE].

[15] R. Flauger, J.C. Hill and D.N. Spergel, Toward an understanding of foreground emission in the BICEP2 region, *JCAP* **08** (2014) 039 [arXiv:1405.7351] [INSPIRE].

[16] W.N. Colley and J.R. Gott, Genus topology and cross-correlation of BICEP2 and Planck 353 GHz B-modes: further evidence favouring gravity wave detection, *Mon. Not. Roy. Astron. Soc.* **447** (2015) 2034 [arXiv:1409.4491] [INSPIRE].

[17] C. Cheng, Q.-G. Huang and S. Wang, Constraint on the primordial gravitational waves from the joint analysis of BICEP2 and Planck HFI 353 GHz dust polarization data, *JCAP* **12** (2014) 044 [arXiv:1409.7022] [INSPIRE].

[18] PLANCK collaboration, R. Adam et al., Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high galactic latitudes, arXiv:1409.5738 [INSPIRE].

[19] BICEP2, PLANCK collaboration, P. Ade et al., Joint analysis of BICEP2/Keck Array and Planck data, *Phys. Rev. Lett.* **114** (2015) 101301 [arXiv:1502.00612] [INSPIRE].

[20] PLANCK collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].

[21] A.R. Liddle and D.H. Lyth, COBE, gravitational waves, inflation and extended inflation, *Phys. Lett. B* **291** (1992) 391 [astro-ph/9208007] [INSPIRE].

[22] J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, *Phys. Lett. B* **458** (1999) 219 [hep-th/9904176] [INSPIRE].
[23] J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, *The ekpyrotic universe: colliding branes and the origin of the hot big bang*, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239] [inSPIRE].

[24] LIGO Scientific and VIRGO collaborations, J. Aasi et al., *Improved upper limits on the stochastic gravitational-wave background from 2009–2010 LIGO and Virgo data*, Phys. Rev. Lett. 113 (2014) 231101 [arXiv:1406.4556] [inSPIRE].

[25] M.S. Turner, M.J. White and J.E. Lidsey, *Tensor perturbations in inflationary models as a probe of cosmology*, Phys. Rev. D 48 (1993) 4613 [astro-ph/9306029] [inSPIRE].

[26] S. Kuroyanagi, C. Gordon, J. Silk and N. Sugiyama, *Forecast constraints on inflation from combined CMB and gravitational wave direct detection experiments*, Phys. Rev. D 81 (2010) 083524 [Erratum ibid. D 82 (2010) 069901] [arXiv:0912.3683] [inSPIRE].

[27] W. Zhao, Y. Zhang, X.-P. You and Z.-H. Zhu, *Constraints of relic gravitational waves by pulsar timing arrays: forecasts for the FAST and SKA projects*, Phys. Rev. D 87 (2013) 124012 [arXiv:1303.6718] [inSPIRE].

[28] Y. Watanabe and E. Komatsu, *Improved calculation of the primordial gravitational wave spectrum in the standard model*, Phys. Rev. D 73 (2006) 123515 [astro-ph/0604176] [inSPIRE].

[29] P.D. Meerburg, R. Hložek, B. Hadzhiyska and J. Meyers, *Multiwavelength constraints on the inflationary consistency relation*, Phys. Rev. D 91 (2015) 103505 [arXiv:1502.00302] [inSPIRE].

[30] A. Lewis and S. Bridle, *Cosmological parameters from CMB and other data: a Monte Carlo approach*, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436] [inSPIRE].

[31] C. Cheng and Q.-G. Huang, *Constraints on the cosmological parameters from BICEP2, Planck and WMAP*, Eur. Phys. J. C 74 (2014) 3139 [arXiv:1403.7173] [inSPIRE].

[32] C. Cheng, Q.-G. Huang, X.-D. Li and Y.-Z. Ma, *Cosmological interpretations of consistency relation of inflation models with current CMB data*, Phys. Rev. D 86 (2012) 123512 [arXiv:1207.6113] [inSPIRE].