We prove a conjecture of Callan in [1] that OEIS sequence A006012 counts a certain kind of permutation. Call this sequence \((a_n)_{n=1}^{\infty} \); then \(a_n \) is defined by \(a_1 = 1, a_2 = 2, \) and \(a_n = 4a_{n-1} - 2a_{n-2} \) (the actual sequence in the OEIS is offset by one, so \(a_0 = 1, a_1 = 2, \) and the recursion is the same). The conjecture states that \(a_n \) is equal to the number of permutations of length \(n \) for which no subsequence \(abcd \) has the following two properties: \(c = b + 1 \) and \(\max\{a, c\} < \min\{b, d\} \).

We can rewrite this conjecture in the language of pattern avoidance, in particular, using the dashed notation for generalized pattern avoidance introduced in [2]. Therefore, we define a pattern to be a permutation \(\pi \) to be a permutation if it does not contain any occurrence of the pattern, and a permutation avoids a pattern if it does not contain any occurrence of any of them. If \(A \) is a set of patterns, we will write \(\text{Av}(A) \) for the set of permutations which avoid them, and \(\text{Av}_n(A) \) for the set of length-\(n \) permutations which avoid them. The following two examples should help clarify these definitions.

Example: The permutation 251346 contains the subsequence 5146 which is an occurrence of the pattern 3-1-24 because the elements of the subsequence occur in the same relative order as 3124, and the 4 and 6 are consecutive in the original permutation (the 5 and 1 are also consecutive - that is allowed but not necessary).

Example: The permutation 251346 avoids 32-1-4 (i.e. \(251346 \in \text{Av}_n(\{32-1-4\}) \subseteq \text{Av}(\{32-1-4\}) \)).

Using this notation, we rewrite the conjecture as \(a_n = |\text{Av}_n(\{1-32-4, 1-42-3, 2-31-4, 2-41-3\})| \).

We will prove two propositions. The first is that if \(A = \{1-32-4, 1-42-3, 2-31-4, 2-41-3\} \) and \(B = \{1-3-2-4, 1-4-2-3, 2-3-1-4, 2-4-1-3\} \), then \(\text{Av}(A) \) and \(\text{Av}(B) \) are the same set. The second proposition is that \(|\text{Av}_n(B)| \) follows the defining recurrence of \(a_n \), i.e. \(|\text{Av}_1(B)| = 1, |\text{Av}_2(B)| = 2, |\text{Av}_n(B)| = 4|\text{Av}_{n-1}(B)| - 2|\text{Av}_{n-2}(B)| \).

Proposition 1: Let \(A = \{1-32-4, 1-42-3, 2-31-4, 2-41-3\} \) and \(B = \{1-3-2-4, 1-4-2-3, 2-3-1-4, 2-4-1-3\} \). The sets \(\text{Av}(A) \) and \(\text{Av}(B) \) are the same.

Proof: We will show that any permutation containing an occurrence of an element of \(B \) must also contain an occurrence of an element of \(A \) (the converse is immediately clear). Let \(\pi \) be a permutation. First, note that a subpermutation \(\pi_a\pi_b\pi_c\pi_d \) of \(\pi \) is an occurrence of a pattern in \(A \) if and only if \(c = b + 1 \) and \(\max\{\pi_a, \pi_c\} < \min\{\pi_b, \pi_d\} \) (in fact, this is the definition Callan provides in the OEIS). Similarly, a subpermutation \(\pi_a\pi_b\pi_c\pi_d \) of \(\pi \) is an occurrence of a pattern in \(B \) if and only if \(\max\{\pi_a, \pi_c\} < \min\{\pi_b, \pi_d\} \).
Choose any element of B, and suppose that π contains an occurrence of this element. As noted above, this means that we can find $a < b < c < d$ such that $\max\{\pi_a, \pi_c\} < \min\{\pi_b, \pi_d\}$. Let e be the largest index less than c such that $\pi_e > \max\{\pi_a, \pi_c\}$, i.e. $e = \max\{i: i < c, \pi_i > \max\{\pi_a, \pi_c\}\}$. Because b is an element of $\{i: i < c, \pi_i > \max\{\pi_a, \pi_c\}\}$, it follows that e exists and $a < b \leq e < e + 1 \leq c < d$. Now, we claim that $\pi_a \pi_e \pi_{e+1} \pi_d$ is an occurrence of a pattern in A. Obviously $e + 1 = e + 1$, and so it remains to check that $\max\{\pi_a, \pi_{e+1}\} < \min\{\pi_e, \pi_d\}$. Because $\max\{\pi_a, \pi_e\} < \min\{\pi_b, \pi_d\}$, we conclude that $\pi_a < \pi_d$ and by the choice of e, we also have $\pi_a < \pi_e$. Now, either $e + 1 = c$, in which case $\pi_{e+1} = \pi_c$, or else $\pi_{e+1} < \max\{\pi_a, \pi_c\}$ because otherwise we would have chosen $e + 1$ as the $\max\{i: i < c, \pi_i > \max\{\pi_a, \pi_c\}\}$ instead of e. It follows that $\pi_{e+1} \leq \max\{\pi_a, \pi_e\} < \pi_d, \pi_e$ for the same reasons as π_a. Therefore, $\max\{\pi_a, \pi_{e+1}\} < \min\{\pi_e, \pi_d\}$ and $\pi_a \pi_e \pi_{e+1} \pi_d$ is an occurrence of a pattern in A. We conclude that the permutations avoiding the patterns of A are the same as the permutations avoiding the patterns of B.

Proposition 2: The number of permutations of length n avoiding all patterns in B (and hence in A) satisfies the recurrence $a_1 = 1, a_2 = 2, a_n = 4a_{n-1} - 2a_{n-2}$.

Proof: Since $Av_1(B) = \{1\}$ and $Av_2(B) = \{12, 21\}$, the initial conditions hold. Our strategy will be as follows: given $Av_n(B)$, define four maps which, when all of them are applied to all the permutations of $Av_{n-1}(B)$, will generate all of the permutations of $Av_n(B)$. Then, we will count how many permutations of $Av_n(B)$ are double counted in this way, and find that there are two for every element of $Av_{n-2}(B)$, thereby establishing the recurrence.

Note that, for a permutation to avoid all patterns of A, it must be the case that either 1 and 2 occur consecutively (not necessarily in that order) or either 1 or 2 is the last element of the permutation. This observation motivates the following definitions of the four maps $f_{\text{before}}, f_{\text{after}}, f_{\text{end}}, f_{\text{bump}}$. Let f_{before} be the function that inputs a permutation and outputs that permutation with all elements increased by 1 and a 1 inserted immediately before the new 2. Let f_{after} be the function that also inputs a permutation and outputs that permutation with all the elements increased by 1 and a 1 inserted immediately after the new 2. Similarly, let f_{end} be the function that inputs a permutation, increases all its elements by 1 and puts a 1 at the end of it, and let f_{bump} be the function that inputs a permutation, increases all its elements by 1, replaces the new 2 with a one and puts a 2 at the end. The following example gives a concrete illustration of the four functions.

Example: Let $\pi = 31542$. Then $f_{\text{before}}(\pi) = 412653, f_{\text{after}}(\pi) = 421653, f_{\text{end}}(\pi) = 426531,$ and $f_{\text{bump}}(\pi) = 416532$. Note that $\pi \in Av(B)$, and so are all its images.

We claim that (i) these four functions all map elements of $Av_{n-1}(B)$ to elements of $Av_n(B)$ and (ii) $f_{\text{before}}(Av_{n-1}(B)) \cup f_{\text{after}}(Av_{n-1}(B)) \cup f_{\text{end}}(Av_{n-1}(B)) \cup f_{\text{bump}}(Av_{n-1}(B)) \supseteq Av_n(B)$ (by claim (i), we could replace the ‘\supseteq’ in claim (ii) with ‘$=$’). To verify the first claim, choose some $\sigma \in Av_{n-1}(B)$, and consider each function in turn. If $f_{\text{before}}(\sigma)$ or $f_{\text{after}}(\sigma)$ contains an occurrence of a pattern in A, then this occurrence must use no more than 1 of the elements 1 and 2 (because they are consecutive in both $f_{\text{before}}(\sigma)$ and $f_{\text{after}}(\sigma)$ but can’t be in any pattern in A). Therefore, either this occurrence fails to use 1 and would have already been an occurrence of the pattern in σ, or else it fails to use 2, in which case it could have used
2 instead of 1 and been an occurrence of the pattern in σ. Thus, no such occurrence is possible in $f_{\text{before}}(\sigma)$ or $f_{\text{after}}(\sigma)$. In addition, if $f_{\text{end}}(\sigma)$ or $f_{\text{bump}}(\sigma)$ contains an occurrence of a pattern in A, then this occurrence cannot use the last element because that element is either a 1 or a 2, and patterns in A only end with 3 or 4. So, this occurrence would already be an occurrence of the pattern in σ, and therefore cannot exist.

To verify the second claim, chose some $\pi \in \text{Av}_n(B)$. As previously noted, either 1 and 2 occur consecutively in π, or else either 1 or 2 is the final element of π. Let π' be π with the 1 removed and each element decreased by 1. We have introduced no new patterns, and so $\pi' \in \text{Av}_{n-1}(B)$. Suppose that 1 occurs immediately before 2 in π, then $f_{\text{before}}(\pi') = \pi$. If the 1 occurs immediately after 2 in π, then $f_{\text{after}}(\pi') = \pi$. If the 1 occurs at the end of π, then $f_{\text{end}}(\pi') = \pi$. If the 2 occurs at the end of π, then we will need to define π'' which is π with the 1 removed, the 2 moved the position where the 1 used to be, and each element decreased by 1. Again, we have introduced no new patterns, and so $\pi'' \in \text{Av}_{n-1}(B)$, and $f_{\text{bump}}(\pi'') = \pi$.

If these four functions all had disjoint ranges, we could conclude that $a_n = 4a_{n-1}$. Unfortunately, some permutations are counted twice. Each f outputs a certain kind of permutation: f_{before} outputs permutations where 1 immediately precedes 2, f_{after} outputs permutations where 2 immediately precedes 1, f_{end} outputs permutations where 1 occurs at the end, and f_{bump} outputs permutations where 2 occurs at the end. If a permutation fulfills two of these criteria it will be double-counted. Such permutations must be counted once by either f_{before} or f_{after} and again by either f_{end} or f_{bump} because no permutation can be counted by both f_{before} and f_{after} or both f_{end} and f_{bump}. Thus, the final two elements of such permutations are 1 and 2 (not necessarily in that order). Let $g : \text{Av}_n(B) \to \text{Av}_{n-2}(B)$ be defined as the function which takes a permutation, removes from it the elements 1 and 2, and reduces all other elements by 2. If we restrict g to those permutations which end in either 12 or 21, g becomes a 2-to-1 map from the double-counted permutations of $\text{Av}_n(B)$ to the permutations of $\text{Av}_{n-2}(B)$, and so the number of double-counted permutations is twice a_{n-2}. It follows that $a_n = 4a_{n-1} - 2a_{n-2}$.

The author would like to thank his (intended) advisor Doron Zeilberger for introducing him to the conjecture and fixing typos in the original draft.

References

[1] OEIS Foundation Inc. (2017), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A006012

[2] E. Babson and E. Steingrímsson (2000). “Generalized permutation patterns and a classification of the Mahonian statistics,” *Sém. Lothar. Combin.* 44, Art: B44b