Backward Orbit Conjecture for Lattès Maps

Vijay Sookdeo*

Department of Mathematics, The Catholic University of America, Washington, DC

*Corresponding author: sookdeo@cua.edu

Received March 14, 2015; Revised May 15, 2015; Accepted July 12, 2015

Abstract For a Lattès map \(\phi: \mathbb{P}^1 \to \mathbb{P}^1 \) defined over a number field \(K \), we prove a conjecture on the integrality of points in the backward orbit of \(P \in \mathbb{P}(\overline{K}) \) under \(\phi \).

Keywords: backward orbit conjecture, Lattès maps

Cite This Article: Vijay Sookdeo, “Backward Orbit Conjecture for Lattès Maps.” Turkish Journal of Analysis and Number Theory, vol. 3, no. 3 (2015): 75-77. doi: 10.12691/tjant-3-3-1.

1. Introduction

Let \(\phi: \mathbb{P}^1 \to \mathbb{P}^1 \) be a rational map of degree \(\geq 2 \) defined over a number field \(K \), and write \(n_{\phi} \) for the \(n \)th iterate of \(\phi \). For a point \(P \in \mathbb{P}^1 \), let \(\phi^+(P) = \{ P, \phi(P), \phi^2(P), \ldots \} \) be the forward orbit of \(P \) under \(\phi \), and let

\[
\phi^-(P) = \bigcup_{n \geq 0} \phi^{-n}(P)
\]

be the backward orbit of \(P \) under \(\phi \). We say \(P \) is \(\phi \)-preperiodic if and only if \(\phi^+(P) \) is finite.

Viewing the projective line \(\mathbb{P}^1 \) as \(\mathbb{A}^1 \cup \{ \infty \} \) and taking \(P \in \mathbb{A}^1(K) \), a theorem of Silverman [4] states that if \(\infty \) is not a fixed point for \(\phi^2 \), then \(\phi^+(P) \) contains at most finitely many points in \(\mathcal{O}_K \), the ring of algebraic integers in \(K \). If \(S \) is the set of all archimedean places for \(K \), then \(\mathcal{O}_K \) is the set of pointsDefinition of Integrality

In [6], Conjecture 1.1 was shown true for the powering map \(\phi(z) = z^d \) with degree \(d \geq 2 \), and consequently for Chebyshev polynomials. A generalized version of this conjecture, which is stated over a dynamical family of maps \([\phi] \), is given in [1], Sec. 4. Along those lines, our goal is to prove a general form of Conjecture 1.1 where \([\phi] \) is the family of Lattès maps associate to a fixed elliptic curve \(E \) defined over \(K \) (see Section 3).

2. The Chordal Metric and Integrality

2.1. The Chordal Metric on \(\mathbb{P}^N \)

Let \(M_K \) be the set of places on \(K \) normalized so that the product formula holds: for all \(\alpha \in K^\times \),

\[
\prod_{v \in M_K} |\alpha|_v = 1.
\]

For points \(P = [x_0 : x_1 : \cdots : x_N] \) and \(Q = [y_0 : y_1 : \cdots : y_N] \) in \(\mathbb{P}^N(\overline{\mathbb{F}}) \), define the \(v \)-adic chordal metric as

\[
\Delta_v(P, Q) = \max_{i,j} \left(\frac{|x_i y_j - x_j y_i|_v}{\max_i \left(|x_i|_v \right) \cdot \max_j \left(|y_j|_v \right)} \right).
\]

Note that \(\Delta_v \) is independent of choice of projective coordinates for \(P \) and \(Q \), and \(0 \leq \Delta_v(P, \cdot) \leq 1 \) (see [2]).

2.2. Integrality on Projective Curves

Let \(C \) be an irreducible curve in \(\mathbb{P}^N \) defined over \(K \) and \(S \) a finite subset of \(M_K \) which includes all the archimedean places. A divisor on \(C \) defined over \(\overline{K} \) is a formal sum \(\sum n_i Q_i \) with \(n_i \in \mathbb{Z} \) and \(Q_i \in C(\overline{K}) \). The divisor is effective if \(n_i > 0 \) for each \(i \), and its support is the set \(\text{Supp}(D) = \{ Q_1, \cdots, Q_r \} \).

A conjecture for finiteness of integral points in backward orbits was stated in [6], Conj. 1.2.

Conjecture 1.1. If \(Q \in \mathbb{P}^1(\overline{K}) \) is not \(S \)-preperiodic, then \(\phi^-(P) \) contains at most finitely many points in \(\mathbb{P}^1(\overline{K}) \) which are \(S \)-integral relative to \(Q \).
Let $\lambda_{D,v}(P) = -\log \Delta_v(P,Q)$ and $\lambda_{D,v}(P) = \sum n_i \lambda_{Q_i,v}(P)$ when $D = \sum n_i Q_i$. This makes $\lambda_{D,v}$ an arithmetic distance function on C (see [3]) and as with any arithmetic distance function, we may use it to classify the integral points on C.

For an effective divisor $D = \sum n_i Q_i$ on C defined over \overline{K}, we say $P \in C(\overline{K})$ is S-integral relative to D, or P is a S-integral point, if and only if $\lambda_{D,v}(P) = 0$ for all embeddings $\sigma, \tau : K \to \overline{K}$ and for all places $v \notin S$. Furthermore, we say the set $\mathcal{R} \subset C(\overline{K})$ is S-integral relative to D if and only if each point in \mathcal{R} is S-integral relative to D.

As an example, let C be the projective line $\mathbb{P}^1 \cup \{\infty\}$, S be the Archimedean place of $K = \mathbb{Q}$, and $D = \infty$. For $P = x/y$, with x and y relatively prime in \mathbb{Z}, we have $\lambda_{D,v}(P) = -\log |y|_v$ for each prime v. Therefore, P is S-integral relative to D if and only if $y = \pm 1$; that is, P is S-integral relative to D and only if $P \in \mathbb{Z}$. From the definition we find that if $S_1 \subset S_2$ are finite subsets of M_K which contains all the archimedean places, then P is a (D,S_2)-integral point implies that P is a (D,S_1)-integral point. Similarly, if $\text{Supp}(D_1) \subset \text{Supp}(D_2)$, then P is a (D_2,S)-integral point implies that P is also a (D_2,S)-integral point. Therefore enlarging S or $\text{Supp}(D)$ only enlarges the set of (D,S)-integrals points on $C(\overline{K})$.

For $\phi : C_1 \to C_2$ a finite morphism between projective curves and $P \in C_2$, write

$$\phi^* P = \sum_{Q \in \phi^{-1}(P)} e_{\phi}(Q) \cdot Q$$

where $e_{\phi}(Q) \geq 1$ is the ramification index of ϕ at Q. Furthermore, if $D = \sum n_i Q_i$ is a divisor on C, then we define $\phi^* D = \sum n_i \phi^* Q_i$.

Theorem 2.1 (Distribution Relation). Let $\phi : C_1 \to C_2$ be a finite mor-phism between irreducibly smooth curves in $\mathbb{P}^N(\overline{K})$. Then for $Q \in C_1$, there is a finite set of places S, depending only on ϕ and containing all the archimedean places, such that $\lambda_{\phi^* P,v} = \lambda_{\phi,v}(\phi^* P)$ for all $v \notin S$.

Proof. See [3], Prop. 6.2b and note that for projective varieties the $\lambda_{\overline{\phi^* P},v}$ term is not required, and that the big-O constant is an M_K-bounded constant not depending on P and Q.

Corollary 2.2. Let $\phi : C_1 \to C_2$ be a finite morphism between irreducibly smooth curves in $\mathbb{P}^N(\overline{K})$, let $P \in C_1(\overline{K})$, and let D be an effective divisor on C_2 defined over K. Then there is a finite set of places S, depending only on ϕ and containing all the archimedean places, such that $\phi(P)$ is S-integral relative to D if and only P is S-integral relative to $\phi^* D$.

Proof. Extend S so that the conclusion of Theorem 2.1 holds. Then for $D = \sum n_i Q_i$ with each $n_i > 0$ and $Q_i \in C_2(\overline{K})$, we have that

$$\lambda_{\phi^* D,v}(P) = \lambda_{D,v}(\phi(P)) = \sum n_i \lambda_{Q_i,v}(\phi(P)).$$

So $\lambda_{\phi^* D,v}(P) = 0$ if and only if $\lambda_{Q_i,v}(\phi(P)) = 0$.

3. Main Result

Let E be an elliptic curve, $\psi : E \to E$ a morphism, and $\pi : E \to \mathbb{P}^1$ be a finite covering. A Lattès map is a rational map $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ making the following diagram commute:

$$\begin{array}{ccc}
E & \xrightarrow{\psi} & E \\
\downarrow & & \downarrow \\
\mathbb{P}^1 & \xrightarrow{\pi} & \mathbb{P}^1
\end{array}$$

For instance, if E is defined by the Weierstrass equation $y^2 = x^3 + ax^2 + bx + c$, $\psi = [2]$ is the multiplication-by-2 endomorphism on E, and $\pi(x,y) = x$, then

$$\phi(x) = \frac{x^4 - 2bx^2 + 2cx + b^2 - 4ac}{4x^3 + 4ax^2 + 4bx + 4c}.$$

Fix an elliptic curve E defined over a number field K, and for $P \in \mathbb{P}^1(\overline{K})$, define:

$$[\phi] = \left\{ \phi : \mathbb{P}^1 \to \mathbb{P}^1 \text{ and finite covering } \pi : E \to \mathbb{P}^1 \text{ such that } \pi \circ \psi = \phi \circ \pi \right\}$$

$$\Gamma_0 = \bigcup_{\phi \in [\phi]} \phi^*(P)$$

$$\Gamma = \bigcup_{\phi \in [\phi]} \phi^*(\Gamma_0)$$

A point Q is $[\phi]$-preperiodic if and only if Q is ϕ-preperiodic for some $\phi \in [\phi]$. We write $\mathbb{P}^1(\overline{K})_{[\phi]}^{-\text{preper}}$ for the set of $[\phi]$-preperiodic points in $\mathbb{P}^1(\overline{K})$.

Theorem 3.1. If $Q \in \mathbb{P}^1(\overline{K})$ is not $[\phi]$-periodic, then Γ contains at most finitely many points in $\mathbb{P}^1(\overline{K})$ which are S-integral relative to Q.

Proof. Let Γ_0' be the $\text{End}(E)$-submodule of $E(\overline{K})$ that is finitely generated by the points in $\pi^{-1}(P)$, and let $\Gamma' = \{ \xi \in E(\overline{K}) \mid \lambda(\xi) \in \Gamma_0' \text{ for some non-zero } \lambda \in \text{End}(E) \}$.
Then $\pi^{-1}(\Gamma) \subset \Gamma'$. Indeed, if $\pi(\xi) \in \Gamma$ is not $[\phi]$-preperiodic, then ξ is non torsion and $(\phi \circ \pi)(\xi) \in \Gamma_0$ for some Lattès map ϕ. So $(\phi \circ \pi)(\xi) \in \Gamma_0$ for some morphism $\psi : E \to E$, and this gives $(\pi \circ \psi_1)(\xi) \in \phi_1(\mathcal{P})$ for some Lattès map ϕ_1. Therefore $\psi_1(\xi) \in \left(\pi^{-1} \circ \phi_1\right)(\mathcal{P}) = (\psi_2 \circ \pi^{-1})(\mathcal{P})$ for some morphism $\psi_2 : E \to E$. Since any morphism $\psi : E \to E$ is of the form $\psi(X) = \alpha(X) + T$ where $\alpha \in \text{End}(E)$ and $T \in E_{\text{tors}}$ (see [5, 6.19]), we find that there is a $\lambda \in \text{End}(E)$ such that $\lambda(\xi)$ is in Γ_0, the $\text{End}(E)$-submodule generated by 1. So $\psi_2(\xi) \in \Gamma_0$ for some morphism $\psi_2 : E \to E$. Since $\lambda(\xi)$ is in Γ_0, the $\text{End}(E)$-submodule generated by 1, we find that there is a $\lambda \in \text{End}(E)$ such that $\lambda(\xi)$ is in Γ_0, the $\text{End}(E)$-submodule generated by 1. Hence $\pi^{-1}(\Gamma) \subset \Gamma'$.

Let D be an effective divisor whose support lies entirely in $\pi^{-1}(\mathcal{Q})$, let \mathcal{R}_D be the set of points in Γ which are S-integral relative to \mathcal{Q}, and let \mathcal{R}_D' be the set of points in Γ' which are S-integral relative to D. Extending S so that Theorem 2.1 holds for the map $\pi : E \to \mathbb{P}^1$, and since $\text{Supp}(D) \subset \text{Supp}(\pi \ast D)$, we have: if $\gamma \in \Gamma$ is S-integral relative to \mathcal{Q}, then $\pi^{-1}(\gamma)$ is S-integral relative to D. Therefore $\pi^{-1}(\mathcal{R}_D) \subset \mathcal{R}_D$. Now π is a finite map and $\pi(E(\mathcal{K})) = \mathbb{P}^1(\mathcal{K})$, so to complete the proof, it suffices to show that D can be chosen so that \mathcal{R}_D' is finite.

From [5, Prop. 6.37], we find that if Λ is a nontrivial subgroup of $\text{Aut}(E)$, then $E/\Lambda \cong \mathbb{P}^1$ and the map $\pi : E \to \mathbb{P}$ can be determined explicitly. The four possibilities for π, which are $\pi(x, y) = x, x^2, x^3$, or y correspond respectively to the four possibilities for Λ, which are $\Lambda = \mu_2, \mu_4, \mu_6$, or μ_3, which in turn depends only on the j-invariant of E (Here, μ_N denotes the Nth roots of unity in \mathbb{C}.)

First assume that $\pi(x, y) \neq y$. Since \mathcal{Q} is not $[\phi]$-preperiodic, take $\xi \in \pi^{-1}(\mathcal{Q})$ to be non torsion. Then $-\xi \in \pi^{-1}(\mathcal{Q})$ since $\Lambda = \mu_2, \mu_4, or \mu_6$, and $\xi - (-\xi) = 2\xi$ is non-torsion. Taking $D = (\xi) + (-\xi)$, [11], Thm. 3.9(i) again gives that \mathcal{R}_D' is finite.

Suppose that $\pi(x, y) = y$. Then $\pi(x, y) = [\xi, \xi', \xi'']$ where $\xi + \xi' + \xi'' = 0$ and ξ is non-torsion since \mathcal{Q} is not $[\phi]$-preperiodic. Assuming that both $\xi - \xi'$ and $\xi - \xi''$ are torsion give that 3ξ is torsion, and this contradicts the fact that ξ is torsion. Therefore, we may assume that $\xi - \xi'$ is non-torsion. Now taking $D = (\xi) + (\xi')$, [11], Thm. 3.9(i) again gives that \mathcal{R}_D' is finite. Hence \mathcal{R}_D', the set of points in Γ which are S-integral relative to D, is finite.

References

[1] David Grant and Su-Ion Ih, Integral division points on curves, Compositio Math-ematica 149 (2013), no. 12, 2011-2035.
[2] Shu Kawaguchi and J. H. Silverman, Nonarchimedean green functions and dynam-ics on projective space, Mathematische Zeitschrift 262 (2009), no. 1, 173-197.
[3] J. H. Silverman, Arithmetic distance functions and height functions in Diophantine geometry, Mathematische Annalen 279 (1987), no. 2, 193-216.
[4] Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. 71 (1993), no. 3, 793-829.
[5] The arithmetic of dynamical systems, Graduate Text in Mathematics 241, Springer, New York, 2007.
[6] V. A. Sookdeo, Integer points in backward orbits, J. Number Theory 131 (2011), no. 7, 1229-1239.