Genetically predicted circulating vitamin C in relation to cardiovascular disease

Shuai Yuan, 1 Ju-Sheng Zheng, 2,3 Amy M. Mason, 4,5 Stephen Burgess, 6,7 and Susanna C. Larsson 1,8*

1 Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobelväg 13, Stockholm 17177, Sweden; 2 Westlake Laboratory of Life Sciences and Biomedicine, Shilongshan Road 18, Cloud Town, Xihu District, Hangzhou, China; 3 Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Shilongshan Road 18, Cloud Town, Xihu District, Hangzhou, China; 4 British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Wort’s Causeway, Cambridge, CB1 8RN, UK; 5 National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Hills Road, Cambridge CB2 0QQ, UK; 6 MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus Cambridge, CB2 0SR, UK; 7 Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK; and 8 Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, ingång 78, tr 751 85 Uppsala, Sweden.

Received 3 February 2021; revised 4 April 2021; editorial decision 24 April 2021; accepted 26 April 2021.

Aim

We conducted a two-sample Mendelian randomization (MR) study to assess the associations of genetically predicted circulating vitamin C levels with cardiovascular diseases (CVDs).

Methods and results

Ten lead single-nucleotide polymorphisms associated with plasma vitamin C levels at the genome-wide significance level were used as instrumental variables. Summary-level data for 15 CVDs were obtained from corresponding genetic consortia, the UK Biobank study, and the FinnGen consortium. The inverse-variance-weighted method was the primary analysis method, supplemented by the weighted median and MR-Egger methods. Estimates for each CVD from different sources were combined. Genetically predicted vitamin C levels were not associated with any CVD after accounting for multiple testing. However, there were suggestive associations of higher genetically predicted vitamin C levels (per 1 standard deviation increase) with lower risk of cardioembolic stroke (odds ratio, 0.79; 95% confidence interval (CI), 0.64, 0.99; P = 0.038) and higher risk of atrial fibrillation (odds ratio, 1.09; 95% CI, 1.00, 1.18; P = 0.049) in the inverse-variance-weighted method and with lower risk of peripheral artery disease (odds ratio, 0.76, 95% CI, 0.62, 0.93; P = 0.009) in the weighted median method.

Conclusion

We found limited evidence with MR techniques for an overall protective role of vitamin C in the primary prevention of CVD. The associations of vitamin C levels with cardioembolic stroke, atrial fibrillation, and peripheral artery disease need further study.

Keywords

Cardiovascular disease • Mendelian randomization • Vitamin C

Introduction

Vitamin C as an antioxidant has been proposed to alleviate oxidative stress and affect vascular remodelling, endothelial function, and lipid peroxidation, thereby potentially having a protective role in cardiovascular disease (CVD). 1–3 Observational data have indicated that a high circulating level or intake of vitamin C is associated with a reduced risk of CVD and corresponding mortality. 4–8 Several biological processes and signalling pathways have been proposed to be involved in the potential therapeutic effects of vitamin C on CVD. 9 However, the cardio-protective effect of vitamin C has not been validated in randomized controlled trials (RCTs) of supplementation.
with vitamin C alone or together with other antioxidative vitamins. Thus, any causal relationship between vitamin C and CVD remains unestablished given potential confounding in previous observational findings and certain limitations of RCTs (e.g., a small sample size, imbalanced baseline characteristics, combined supplementation of vitamin C with other nutrients, and low compliance to intervention).

Utilizing genetic variants as instrumental variables for an exposure (e.g., plasma vitamin C levels) allows the Mendelian randomization (MR) design to more plausibly investigate causal inferences by minimizing residual confounding and other biases. Here, we conducted a two-sample MR study to assess the associations of genetically predicted circulating vitamin C levels with risk of a wide range of CVDs.

Methods

Outcome data sources

We included 15 cardiovascular endpoints with numbers of cases ranging from 3373 (large artery stroke) to 139 364 (coronary artery disease). Summary-level data for these outcomes were obtained from large genetic consortia, the UK Biobank study, and the FinnGen consortium. Detailed descriptions on data sources are presented in Table 1.

Instrument selection

Eleven lead single-nucleotide polymorphisms (SNPs) associated with vitamin C levels at the genome-wide significance level (P < 5 × 10^{-8}) were identified from a meta-analysis of genome-wide association studies (GWASs) including up to 52 018 individuals of European descent. These SNPs explained approximately 1.8% of variance in circulating vitamin C levels. Rs33972313 in the SLC23A1 gene region encodes the sodium-dependent vitamin C transporter 1 and explained most of the variance in circulating vitamin C levels. One additional effect allele of this variant is associated with an 11% higher plasma vitamin C level. Rs174547 in FADS1 gene region was excluded from analyses due to pleiotropic effects on plasma phospholipid fatty acids leaving 10 SNPs leveraged as instrumental variables (Table 2).

Statistical analysis

The multiplicative random-effects inverse-variance-weighted method was used as the main statistical method to assess the association between genetically predicted circulating vitamin C levels and CVDs. MR estimates for each CVD outcome from different data sources were combined using the fixed-effects meta-analysis method. We used two supplementary analyses, the weighted median approach and MR-Egger regression, to examine the robustness of the results and possible pleiotropy. The weighted median method can provide consistent causal estimates provided that ≥50% of the weight comes from valid SNPs. MR-Egger regression can detect horizontal pleiotropy by P-value for its intercept and generate estimate after correction for pleiotropy. The I² statistic was calculated to assess the degree of heterogeneity among estimates of SNPs in each analysis. All reported odds ratios (ORs) and corresponding 95% confidence intervals (CIs) of CVDs were scaled to 1 standard deviation increase in genetically predicted circulating levels of vitamin C. The Bonferroni method was used to adjust for multiple testing (15 CVDs). Associations with P-values of <0.003 were regarded as significant associations and associations with P-values between 0.05 and 0.003 were deemed as suggestive associations. All analyses were two-sided and performed using the mrrobust package in Stata/15.0.

Results

The associations of genetically predicted circulating vitamin C levels (per 1 SD increase) with the 15 CVDs in the main analysis are presented in Figure 1. We observed suggestive inverse associations of genetically predicted vitamin C levels with risk of any stroke in UK Biobank (OR, 0.84; 95% CI, 0.73, 0.97; P = 0.018) and cardioembolic stroke in MEGASTROKE (OR, 0.79; 95% CI, 0.64, 0.99; P = 0.038). However, the association for any stroke was not replicated in the MEGASTROKE and FinnGen consortia and did not persist in the meta-analysis. There was no association between genetically predicted vitamin C and atrial fibrillation in the GWAS meta-analysis by Nielsen et al. or in the FinnGen consortium, but the meta-analysis results revealed a suggestive positive association (OR 1.09, 95% CI, 1.00, 1.18; P = 0.049). Genetically predicted vitamin C levels were not associated with the other studied CVDs in the main analysis.

Results of the supplementary analyses based on the weighted median and MR-Egger methods showed no association of genetically predicted vitamin C levels with any CVD (Table 3), with the exception for a suggestive inverse association with peripheral artery disease in the FinnGen consortium (OR, 0.71; 95% CI, 0.52, 0.97; P = 0.030) and the meta-analysis (OR, 0.76; 95% CI, 0.62, 0.93; P = 0.009). We observed the modest heterogeneity in several analyses; however, the P-values for the intercept in corresponding MR-Egger regression were >0.05 (Table 3). In a supplementary analysis using rs33972313 in the SLC23A1 gene region as instrumental variable, the associations of genetically predicted vitamin C levels with peripheral artery disease (OR, 0.67, 95% CI, 0.46, 1.00; P = 0.048) and other CVDs (data not shown) were consistent with the findings from the analyses based on all instrumental variables.

Discussion

This MR study found no clear pattern of associations between genetically predicted vitamin C levels and risk of CVDs (Figure 2). However, genetically predicted vitamin C levels showed suggestive inverse associations with cardioembolic stroke and peripheral artery disease but a suggestive positive association with atrial fibrillation (Figure 2).

The overall lack of support for a protective association between vitamin C and CVDs in the present MR study was consistent with most RCTs and some observational studies. A recent review article concluded that findings differed between RCTs and observational studies.
Data source	Cardiovascular disease	Cases	Controls	Population	Covariates adjusted in GWAS
GWAS meta-analysis (Nielsen et al.)	Atrial fibrillation	60,620	970,216	European	Birth year, sex, genotype batch, and 1–4 principal components
CARDIoGRAMplusC4D plus UKBB	Coronary artery disease	122,733	424,528	Mixed	NA
HERMES consortium	Heart failure	47,309	930,014	European	Age and sex, and principal components in individual studies where applicable
MEGASTROKE consortium	Stroke	40,585	406,111	European	Age and sex
	Ischaemic stroke	34,217	NA		
	Large artery stroke	3373	406,111		
	Small vessel stroke	5386	406,111		
	Cardioembolic stroke	7193	406,111		
ISGC	Intracerebral hemorrhage	3223	3725	European	Age, sex, and principal components
The UK Biobank study (UKBB)	Aortic aneurysm	2261	365,300	European	Age, sex, and 10 genetic principal components
	Aortic valve stenosis	3528	364,033	European	Age, sex, and 10 genetic principal components
	Stroke	12,036	355,525	European	Age, sex, and 10 genetic principal components
	Intracerebral hemorrhage	1504	366,057	European	Age, sex, and 10 genetic principal components
	Subarachnoid hemorrhage	1292	366,269	European	Age, sex, and 10 genetic principal components
	Ischaemic stroke	6566	360,995	European	Age, sex, and 10 genetic principal components
	Transient ischaemic attack	4813	362,748	European	Age, sex, and 10 genetic principal components
	Venous thromboembolism	16,412	351,149	European	Age, sex, and 10 genetic principal components
	Peripheral vessel disease	4593	362,968	European	Age, sex, and 10 genetic principal components
The FinnGen consortium	Aortic aneurysm	1919	167,843	European	Age, sex, the first 10 genetic principal components, and genotyping batch
	Atrial fibrillation	17,325	97,214	European	Age, sex, and 10 genetic principal components
	Coronary artery disease	16,631	160,268	European	Age, sex, and 10 genetic principal components
	Heart failure	9576	159,286	European	Age, sex, and 10 genetic principal components
	Stroke	14,171	133,027	European	Age, sex, and 10 genetic principal components
	Intracerebral hemorrhage	1224	163,533	European	Age, sex, and 10 genetic principal components
	Subarachnoid hemorrhage	1019	163,508	European	Age, sex, and 10 genetic principal components
	Ischaemic stroke	8046	164,286	European	Age, sex, and 10 genetic principal components
	Transient ischaemic attack	6729	164,286	European	Age, sex, and 10 genetic principal components
	Venous thromboembolism	6913	169,986	European	Age, sex, and 10 genetic principal components
	Peripheral vessel disease	5323	167,843	European	Age, sex, and 10 genetic principal components

CARDIoGRAMplusC4D, Coronary ARtery Disease Genome-wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics; GWAS, genome-wide association study; HERMES; Heart Failure Molecular Epidemiology for Therapeutic Targets; ISGC, International Stroke Genetic Consortium; NA, not available. The UK Biobank was included in Consortium (Nielsen et al.), HERMES consortium, and ISGC.
for vitamin C supplementation with null findings and observational studies on dietary vitamin C intake suggesting a protective association. Several signalling pathways were highlighted using the network pharmacology approach, whereas no evidence was found to support that vitamin C supplementation reduced the risk of CVD in healthy participants in a systematic review of RCTs. This discrepancy may be caused by residual confounding by other cardio-protective nutrients, such as magnesium, from foods rich in vitamin C (e.g. fruit and vegetables), or healthy lifestyle behaviours among individuals with a vitamin C-rich diet. Even though the present MR study did not support cardiovascular benefits of increasing circulating vitamin C levels, our findings did not hint any information on possible health benefits from a diet abundant in vitamin C, suggested by previous evidence. Instead, the present study did not justify vitamin C supplementation as a primary prevention strategy for CVD.

Higher plasma vitamin C levels were associated with a reduced risk of total stroke in cohort studies. Nevertheless, a daily supplementation of 500 mg of vitamin C together with 400 IU of vitamin E did not decrease the risk of total stroke in an RCT involving 14 641 US males followed-up for a mean of 8 years. Data on cardioembolic stroke are sparse. Likewise, few studies have investigated whether vitamin C status was associated with incident peripheral artery disease, although a clinical study revealed that acute vitamin C administration might restore peripheral endothelial function in patients with coronary artery disease. Plasma vitamin C was inversely associated with risk of atrial fibrillation in middle-aged women with low baseline intake but not in men and might prevent post-operative atrial fibrillation albeit with heterogeneous findings.

Our study, on the contrary, found a possible positive association of genetically predicted circulating vitamin C levels with atrial fibrillation, a finding that needs to be verified in other studies.

A previous MR study found no association between plasma vitamin C proxied by rs33972313 in the SLC23A1 gene region and ischaemic heart disease, which is consistent with our findings. In addition, genetically proxied plasma vitamin C was not associated with certain cardiovascular risk factors, such as type 2 diabetes and urate.

The major strength of the present study is the MR design, which diminished residual confounding and other biases, thereby strengthening the causal inference. In addition, we examined the association of genetically predicted vitamin C levels with CVDs using several data sources and the consistency of results the consistency of results supports the robustness of our findings. Along with the use of multiple independent SNPs as instrumental variables for plasma vitamin C, combining results for one outcome from different data sources increased the statistical power to detect weak associations even though we might have overlooked associations for certain outcomes with small number of cases. We confined the analyses to individuals of European ancestry, with the exception for the analysis for coronary artery disease based on consortium data where >80% of participants are individual of European descent. Thus, our findings were less likely to be influenced by population structure bias. Nonetheless, the population confinement limited the generalizability of our findings.

A potential limitation in MR studies is horizontal pleiotropy. We excluded an SNP (rs174547) with pleiotropic effects in the analysis to minimize bias from horizontal pleiotropy. Results were broadly consistent across sensitivity analyses and no evidence of horizontal pleiotropy was detected by MR-Egger regression. We also examined the association of plasma vitamin C with CVD using rs33972313 in the SLC23A1 gene, which encodes the sodium-dependent vitamin C transporter 1, as instrumental variable and found consistent results. No evidence of bias from horizontal pleiotropy was detected.

Table 2 Information on instrumental variables

SNP	Chr	Position	Nearby gene	EAX	NEAX	EAF	Beta	SE	P-value
rs6693447	1	2330190	RER1	T	G	0.551	0.039	0.006	6.25E-10
rs13028225	2	220031255	SLC23A3	T	C	0.857	0.102	0.009	2.38E-30
rs33972313	5	138715502	SLC23A1	C	T	0.968	0.360	0.018	4.61E-90
rs10051765	5	176799992	RGS14	C	T	0.342	0.039	0.007	3.64E-09
rs7740812	6	52725787	GSTA5	G	A	0.594	0.038	0.006	1.88E-09
rs117885456	12	96249111	SNRPF	A	G	0.087	0.078	0.012	1.70E-11
rs2559850	12	102093459	CHPT1	A	G	0.598	0.058	0.006	6.30E-20
rs10136000	14	10523581	AKT1	A	G	0.283	0.040	0.007	1.33E-08
rs56738967	16	79740541	MAF	C	G	0.321	0.041	0.007	7.62E-10
rs9895661	17	59456589	BCAS3	T	C	0.817	0.063	0.008	1.05E-14

Chr, chromosome; EA, effect allele; EAF, effect allele frequency; NEA, non-effect allele; SE, standard error; SNP, single-nucleotide polymorphism.
Data source	CVD	Cases	OR (95% CI)	P
UKBB	Aortic aneurysm	2,261	1.12 (0.82, 1.53)	0.47
FinnGen	Aortic aneurysm	1,919	0.93 (0.59, 1.46)	0.74
Meta-analysis	Aortic aneurysm		1.06 (0.82, 1.36)	0.68
UKBB	Aortic valve stenosis	3,528	1.09 (0.85, 1.40)	0.48
GWAS meta-analysis (Nielsen et al)	Atrial fibrillation	60,620	1.07 (0.98, 1.17)	0.13
FinnGen	Atrial fibrillation	17,325	1.18 (0.95, 1.48)	0.13
Meta-analysis	Atrial fibrillation		1.09 (1.00, 1.18)	0.05
CARDiogramplusC4D+UKBB	Coronary artery disease	122,733	1.00 (0.92, 1.09)	0.95
FinnGen	Coronary artery disease	16,631	1.05 (0.89, 1.23)	0.57
Meta-analysis	Coronary artery disease		1.01 (0.94, 1.09)	0.84
HERMES	Heart failure	47,309	0.98 (0.90, 1.07)	0.68
FinnGen	Heart failure	9,576	0.96 (0.79, 1.17)	0.68
Meta-analysis	Heart failure		0.98 (0.91, 1.06)	0.59
MEGASTROKE	Any stroke	40,585	1.00 (0.92, 1.10)	0.96
UKBB	Any stroke	12,036	0.84 (0.73, 0.97)	0.02
FinnGen	Any stroke	14,171	1.12 (0.96, 1.31)	0.16
Meta-analysis	Any stroke		0.98 (0.92, 1.05)	0.62
ISGC	Intracerebral hemorrhage	3,223	1.14 (0.62, 2.50)	0.75
UKBB	Intracerebral hemorrhage	1,504	0.85 (0.59, 1.24)	0.41
FinnGen	Intracerebral hemorrhage	1,224	1.36 (0.86, 2.16)	0.10
Meta-analysis	Intracerebral hemorrhage		1.04 (0.79, 1.37)	0.77
UKBB	Subarachnial hemorrhage	1,292	0.77 (0.48, 1.24)	0.28
FinnGen	Subarachnial hemorrhage	1,019	0.94 (0.44, 2.01)	0.87
Meta-analysis	Subarachnial hemorrhage		0.82 (0.55, 1.22)	0.32
MEGASTROKE	Ischemic stroke	34,217	0.95 (0.85, 1.06)	0.38
UKBB	Ischemic stroke	6,566	0.88 (0.73, 1.05)	0.16
FinnGen	Ischemic stroke	8,046	1.00 (0.78, 1.28)	0.99
Meta-analysis	Ischemic stroke		0.94 (0.86, 1.03)	0.16
MEGASTROKE	Large artery stroke	3,373	0.94 (0.67, 1.31)	0.70
MEGASTROKE	Small vessel stroke	5,386	0.92 (0.67, 1.26)	0.60
MEGASTROKE	Cardioembolic stroke	7,193	0.79 (0.64, 0.99)	0.04
UKBB	Transient ischemic attack	4,813	0.81 (0.66, 1.00)	0.06
FinnGen	Transient ischemic attack	6,729	1.16 (0.94, 1.42)	0.17
Meta-analysis	Transient ischemic attack		0.97 (0.84, 1.13)	0.73
UKBB	Venous thromboembolism	18,412	0.96 (0.81, 1.11)	0.53
FinnGen	Venous thromboembolism	6,913	1.06 (0.82, 1.36)	0.58
Meta-analysis	Venous thromboembolism		0.98 (0.86, 1.13)	0.79
UKBB	Peripheral arterial disease	4,593	0.84 (0.65, 1.08)	0.17
FinnGen	Peripheral arterial disease	5,323	0.83 (0.61, 1.11)	0.21
Meta-analysis	Peripheral arterial disease		0.83 (0.69, 1.01)	0.06

Figure 1 Associations of genetically predicted circulating vitamin C levels with risk of cardiovascular disease. CARDiogramplusC4D, Coronary ARtery Disease Genome-wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics; CVD, cardiovascular disease; HERMES; Heart Failure Molecular Epidemiology for Therapeutic Targets; ISGC, International Stroke Genetic Consortium; LB, lower bound of 95% confidence interval; OR, odds ratio; UKBB, UK Biobank; UB, upper bound of 95% confidence interval. The UK Biobank was included in the GWAS meta-analysis for atrial fibrillation (Nielsen et al.), HERMES consortium, and ISGC.
Table 3 Supplementary analyses of the associations of genetically predicted circulating vitamin C with cardiovascular disease

Data source	Cardiovascular disease	Cases	Controls	Weighted median method	MR-Egger regression	P-intercept	OR (95% CI)	P	OR (95% CI)	P	
CARDIoGRAMplusC4D + UKBB	Aortic aneurysm	2261	365	330	0	1.05	0.71, 1.56	0.801	0.96	0.58, 1.59	0.880
CARDIoGRAMplusC4D + UKBB	Coronary artery disease	3528	333	0	0	1.12	0.82, 1.53	0.482	1.22	0.89, 1.64	0.326
CARDIoGRAMplusC4D + UKBB	Heart failure	47309	930	144	0	0.97	0.82, 1.21	0.658	1.13	0.81, 1.58	0.456
CARDIoGRAMplusC4D + UKBB	Stroke	10238	164	32	0	1.06	0.84, 1.34	0.536	1.07	0.83, 1.36	0.513
CARDIoGRAMplusC4D + UKBB	Subarachnoid hemorrhage	122733	245	248	0	1.04	0.84, 1.31	0.633	1.04	0.84, 1.31	0.633
CARDIoGRAMplusC4D + UKBB	Transient ischaemic attack	3223	3725	47	0	0.98	0.91, 1.05	0.462	1.03	0.96, 1.10	0.397
CARDIoGRAMplusC4D + UKBB	Venous thromboembolism	360959	34	0	0	0.97	0.85, 1.13	0.630	1.00	0.86, 1.17	0.944

Notes:
- CI, confidence interval; CVD, cardiovascular disease; HERMES, Heart Failure Molecular Epidemiology for Therapeutic Targets (UKBB); ISGC, International Stroke Genetic Consortium; OR, odds ratio; SNP, single-nucleotide polymorphism; UKBB, UK Biobank. The I² statistic was used to present the heterogeneity among estimates for each SNP in one analysis. The P-value for the intercept in the MR-Egger regression was used to present the pleiotropy (P < 0.05). The UK Biobank was included in GWAS meta-analysis (Nielsen et al.), HERMES consortium, and ISGC.
Another limitation is that we could not assess potential interaction effects of vitamin C with other antioxidants (e.g., vitamin E and β-carotene) on CVD. Our findings were based on generally healthy population and therefore cannot be generalized to populations with special features, such as individuals with vitamin C deficiency, patients with diabetes or kidney disease, and heavy smokers. There was small sample overlap in certain analyses. This overlap might have caused minor bias in the estimates towards the observational associations. Potential non-linear associations could not be examined in this MR study based on summary-level data.

In conclusion, this MR study suggests that elevating circulating vitamin C levels may not benefit the primary prevention of most CVDs. Whether increased vitamin C levels may decrease the risk of cardioembolic stroke and peripheral artery disease needs confirmation.

Acknowledgments
Genetic association estimates for CVDs were obtained from a GWAS meta-analysis of atrial fibrillation (Nielsen et al.), CARDIoGRAMplusC4D (Coronary ARtery Disease Genome-wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics), HERMES (Heart Failure Molecular Epidemiology for Therapeutic Targets) consortium, MEGASTROKE, ISGC (International Stroke Genetic Consortium), the UK Biobank study, and the FinnGen consortium. The authors thank all investigators for sharing these data. The MEGASTROKE project received funding from sources specified at http://www.megastroke.org/acknowledgements.html. The author list of MEGASTROKE is listed in https://www.megastroke.org/authors.html. Analyses of UK Biobank data were performed under application 29202.

Ethical approval
All studies included in cited genome-wide association studies had been approved by a relevant review board. The present MR analyses were approved by the Swedish Ethical Review Authority (2019-02793).

Data availability
All data analysed in this study are available OSF data respiratory (https://osf.io/6qd8f/).

Funding
A.M.M. is supported by EC-Innovative Medicines Initiative (BigData@Heart). S.B. is supported by Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (204623/Z/16/Z). J.S.Z. is supported by the National Natural Science Foundation of China.
Role of the funder

Funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Conflict of interest: The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

1. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin C. J Nutr 2017;147:2171–2184.
2. Munzel T, Gori T, Brună RM, Tadde S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010;31:2741–2748.
3. Moas MA, Chun OK. Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci 2016;17:1328.
4. Khaw K-T, Bingham S, Welsh A, Luben R, Wareham N, Oakes S, Day N. Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. European Prospective Investigation into Cancer and Nutrition. Lancet 2001;357:657–663.
5. Ogisanik SK, Stampfer MJ, Rimm E, Spiegelman D, Hu FB, Manson JE, Willett WC. Vitamin C and risk of coronary heart disease in women. J Am Coll Cardiol 2003;42:246–252.
6. Pfeifer R, Sharp SJ, Luben R, Wareham NJ, Khaw K-T. Plasma vitamin C predicts incident heart failure in men and women in European Prospective Investigation into Cancer and Nutrition–Norfolk prospective study. Am Heart J 2011;162:246–253.
7. Simön JA, Hudes ES, Tice JA. Relation of serum ascorbic acid to mortality among US adults. J Am Coll Nutr 2001;20:255–263.
8. Morelli MB, Gambardella J, Castellanos V, Trimarco V, Santulli G. Vitamin C and cardiovascular disease: an update. Antioxidants (Basel) 2020;9.1227.
9. Zhu N, Huang B, Yang W. Targets of vitamin C with therapeutic potential for cardiovascular disease and underlying mechanisms: a study of network pharmacology. Front Pharmacol. 2020;11:591337.
10. Al-Khudairy L, Flowers N, Wheelhouse R, Ghannam O, Hartley L, Stranges S, Denaxas S, Doney AS, Do R, Ullrich-Ivanov A, Vlasek AA, Wang Y, Wareham NJ, Waterworth D, White EE, Weiss R, Wiggins KL, Xing H, Yerges-Armstrong LM, Yu B, Zannad F, Zhao JH, Hemingway H, Samani NJ, McMurray JJV, Yang J, Visscher PM, Newton-Cheh C, Malarstig A, Holm L, Lubitz SA, Sattar N, Holmes MM, Cavalla TP, Aspelberg PS, Hingrondi AG, Kucherbaek K, Ellinor PT, Lang CC, Stefansson K, Smith JG, Vasen RS, Swerdlow DI, Lamber RT. Regeneron Genetics Center. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun 2020;11:1663.
Vitamin C and cardiovascular disease

24. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 2015;44:512–525.

25. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–1558.

26. Spiller W, Davies NM, Palmer TM. Software application profile: mrrobust—a tool for performing two-sample summary Mendelian randomization analyses. Genet Epidemiol 2019;43:512–525.

27. Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Consumption of vitamin E and the risk of prostate cancer. N Engl J Med 1993;328:1450–1456.

28. Ascherio A, Rimm EB, Hernán MA, Giovannucci E, Kawachi I, Stampfer MJ, Willett WC. Relation of consumption of vitamin E, vitamin C, and carotenoids to risk for stroke among men in the United States. Am Intern Med 1999;130:963–970.

29. Larsson SC, Burgess S, Michaëlsson K. Serum magnesium levels and risk of coronary artery disease: Mendelian randomisation study. BMC Med 2018;16:68.

30. Larsson SC, Traylor M, Burgess S, Boncoraglio GB, Jern C, Michaëlsson K, Markus HS. MEGASTROKE project of the International Stroke Genetics Consortium. Serum magnesium and calcium levels in relation to ischemic stroke: Mendelian randomization study. Neurology 2019;92:e944–e950.

31. Pearson J, Pullar J, Wilson R, Spittlehouse J, Vissers M, Skidmore P, Willis J, Cameron V, Carr A. Vitamin C status correlates with markers of metabolic and cognitive health in 50-year-olds: findings of the CHALICE cohort study. Nutrients 2017;9:831.

32. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, Greenwood DC, Riboli E, Vatten LJ, Tonstad S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017;46:1029–1056.

33. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014;349:g4490.