BRIEF REPORT

Characterization of a new potyvirus infecting *Thevetia ahouai* in Ecuador

Maria G. Cañada-Bautista1 · Edison G. Reyes-Proaño1 · Juan F. Cornejo-Franco2 · Robert A. Alvarez-Quinto3,4 · Dimitre Mollov1,4 · Diego F. Quito-Avila1,2

Received: 9 February 2022 / Accepted: 17 March 2022 / Published online: 26 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract

A new potyvirus was found in *Thevetia ahouai* L. (Fam. Apocynaceae) plants exhibiting white spots on leaves and fruit discoloration in Ecuador. The complete genome sequences of two isolates of this virus, tentatively named “thevetia white spot virus” (ThWSV), were determined and found to be 9,912 (isolate 1) and 9,904 (isolate 2) nucleotides (nt) in length, each encoding a polyprotein of 363 kDa. Sequence comparisons between the two isolates showed 80 and 87% identity at the nt and amino acid (aa) level, respectively, whereas the overall sequence identity between ThWSV and its closest relative was 69% and 71% at the nt and aa level, respectively.

Thevetia ahouai L. is an evergreen shrub with shiny, dark green, ovate leaves and bright, lobed red fruits with milky sap. The shrub belongs to the family Apocynaceae, and is native to South and Central America [1]. *T. ahouai* has been used in traditional medicine as treatment for hemorrhoids, toothache, and rheumatism and has also been shown to have anti-promastigote activity against *Leishmania* [2]. In recent years, there has been an increase in the use of *T. ahouai* as an ornamental in gardens and urban parks or along sidewalks.

In June of 2020, virus-like symptoms including white spots on leaves and fruit discoloration were observed in *T. ahouai* plants at two different locations in Guayaquil, a coastal city of Ecuador. Symptomatic leaves from two selected shrubs, one (sample 1) located in an urban park (GPS coordinates -2.24486, -79.89706) and the second (sample 2) located in Prosperina (GPS coordinates -2.15072, -79.95759), a tropical dry forest on the western side of the city, were collected for virus identification.

As there are no reports on viruses infecting *Thevetia* spp., attempts were made to purify virions from symptomatic leaves as described previously [3]. Partially purified extracts were mounted on carbon-coated formvar (1%) films and negatively stained with 2% phosphotungstic acid at pH 7.0. The films, mounted on grids, were examined using a JEOL JEM-1400plus transmission electron microscope at the University of Minnesota Imaging Center. Flexuous filamentous virion-like particles of approximately 700 nm in length were found in both samples (Online Resource 1).

High-throughput sequencing (HTS) was used to identify viruses in the plants, using double-stranded RNA (dsRNA) from sample 1 and total RNA from sample 2 as the initial templates. The dsRNA was extracted from 15 g of fresh symptomatic leaf tissue following the protocol described by Morris and Dodds [4]. Total RNA was extracted from 100 mg of symptomatic leaf tissue using an RNasey Plant Mini Kit (QIAGEN, Germany) and subjected to plant ribosomal RNA (rRNA) depletion using an Illumina Ribo-Zero Kit before generating the complementary DNA (cDNA) library using a TruSeq Library Prep Kit. Sequencing was done at Macrogen, South Korea, on a NovaSeq6000 Illumina platform with 150-bp paired-end reads.

A total of 22.3 and 21.2 million sequence reads were obtained from samples 1 and 2, respectively. Sequence
data sets were analyzed using HTS-processing tools available from Geneious Prime® 2022.0.1. Raw sequences were trimmed for adapter removal and quality using the BBDuk plugin and assembled de novo using SPAdes. Several thousand contigs were assembled from each sequence set. A BLASTx search identified a 9,528-nt-long contig from sample 1, and a 9,542-nt-long contig from sample 2, both showing sequence similarity to several members of the genus *Potyvirus*. A closer examination of each contig revealed that 15,844 reads (0.07%) were assembled into the potyvirus contig from sample 1, whereas 454,852 reads (2.15%) were assembled into the potyvirus contig from sample 2. BLAST searches of the remaining contigs failed to identify additional virus homologues; instead, they showed homology to several nuclear and chloroplast genes from *Thevetia peruviana*, *T. ahouai*, and *Asclepias* spp. among other plant species in the family Apocynaceae.

The difference in viral contig coverage by the two template types, dsRNA and total RNA, probably resulted from the fact that potyviruses tend to produce a small amount of dsRNA compared to other plant viruses [5]. Given the low coverage of contig 1, a series of overlapping primers were designed to amplify and re-sequence contig 1 by cloning each RT-PCR fragment using the pGEM T-Easy Vector System (Promega, USA) followed by Sanger sequencing.

The original template was used to obtain the 5'- and 3'-terminal sequences using a 5’/3’ RACE Kit, 2nd Generation (Roche, Germany) according to manufacturer instructions. For the dsRNA, an additional denaturation step (96 C for 10 min) was used prior to the reverse transcription reaction. Five RT-PCR amplicons for each terminus were cloned as described above and sequenced in both directions.

The complete genome sequence, excluding the poly(A) tail, consisted of 9,912 nt (accession no. OM263475) and 9,904 nt (accession no. OM263476) for potyvirus sequence 1 and 2, respectively. The identity percentages between the two sequences (80% at the nt level and 86.7% at the amino acid level) suggest that both sequences are isolates of the same potyvirus (hereafter "isolate 1" and "isolate 2") [6].

BLASTn searches revealed that both isolates share up to ~73% nt sequence identity (86% coverage) with their closest relative, a metagenomic potyvirus sequence (UPHV-3) from unidentified weeds in a papaya orchard of Chiapas, Mexico [7] (accession no. MN203192). When the complete genome sequence of this potyvirus was compared to both isolates of the thevetia potyvirus, the identity was 69%. According to the species demarcation criteria for potyviruses [6], at this genomic identity level, it can be inferred that the thevetia virus described here represents a new species in the genus *Potyvirus*.

Symptomatic leaves infected with each virus isolate were used for mechanical inoculation of *T. ahouai* virus-free seedlings (n = 15 for each isolate) as described [8]. White spots were observed on non-inoculated young leaves (n = 7 for isolate 1 and n = 8 for isolate 2) at an average of 15 days post-inoculation, with no differences between the symptoms induced by the two isolates. The presence of the virus in the inoculated plants was confirmed by RT-PCR and Sanger sequencing using the primers Det_F (5’-TCAGGAACGGTCTCGGTTC-3’) and Det_R (5’-CCATCATCACCCAAAA
A new potyvirus infecting *Thevetia ahouai* in Ecuador

CTCCAT-3'), which amplify a 292-bp fragment of the virus coat protein (CP) gene. Inoculated plants were maintained under controlled conditions, and symptoms were monitored for one year. The original symptoms, including white spots on leaves and fruit discoloration, were reproduced in the inoculated plants, and no other virus-like sequences were found in the HTS data sets. Taken together, these findings suggest that the new potyvirus is the causal agent of the described symptomatology (Fig. 1). Hence, the name

Fig. 2 Genome organization and phylogeny of thevetia white spot virus (ThWSV)*. (A) The 5’ and 3’ untranslated regions (UTRs) are represented by a solid line, and the open reading frame (ORF) is represented by an open box with a solid line. Nucleotide positions and putative cleavage sites for each protein are shown. *, genome coordinates and amino acid sites are those corresponding to ThWSV isolate 1. (B) Maximum-likelihood phylogenetic tree (500 bootstrap replicates) based on the putative polyprotein sequences of ThWSV and 34 representative members of the genus *Potyvirus*. The tree was constructed in MEGA X using the LG+G+F+I model. The clade containing the two ThWSV isolates and their closest relatives in the tobacco etch lineage is indicated. Cucumber vein yellowing virus, a member of the genus *Ipomovirus*, family *Potyviridae*, was used as an outgroup. NCBI accession numbers are indicated for each virus sequence used in the analysis.
Table 1 Conserved motifs in the polyprotein of thevetia white spot virus isolates (ThWSV 1 and ThWSV 2) with respect to those of representative potyvirids. The amino acid positions for each motif are shown. An ‘x’ represents any amino acid in that position. Shaded residues indicate a difference with respect to the reference conserved motif. Footnote: * Potyvirus consensus motifs obtained from Worrall et al. 2019

Hypothetical protein	Conserved potyvirus motifs	Putative function*	Motifs in the polyprotein of each isolate of ThWSV, showing amino acid positions	
			ThWSV 1	ThWSV 2
P1	IxFG	Protease activity	5IMFG8	5IMFG8
	Hx5Dx12SGx22RG		355Hx5Dx12SGx22RG114	355Hx5Dx12SGx22RG114
	GxSG		397GMSG400	397GMSG400
	FIVRG		410ILVRG414	410ILVRG414
	Cx6C21C22C23	Zinc finger	456Cx6C21C22C23496	456Cx6C21C22C23496
	IGN	Cell-to-cell and long-distance movement	688IGN460	688IGN460
KITC		Aphid transmission	490KITC493	490KIAC493
PTK			748PTK750	748PTK750
FRNKx12CDNQLD		Cell-to-cell movement	619FRNKx12CDNQLD640	619FRNKx12CDNQLD640
HAKRFF			653HAKRFF568	653HAKRFF568
CCCVT		Long-distance movement	730CCCVT734	730CCCVT734
GYCY			780GFCY783	780GFCY783
NIFLAML		Protease activity	785NIFLAML791	785NIFLAML791
AELPRLVDH			840AELPRLVDH849	840AELPRLVDH849
Cx22H			842C22H55	842C22H55
P3	GAVGSGKST	NTP binding	928QPYx7SPx2LxAx2NxNx2Ex5W958	928QPYx7SPx2LxAx2NxNx2Ex5W958
	EPYx7SPx7LxAx2NxNEx2Ex5W	Protease activity	1372VLLLETRP11401	1372VLLLETRP11401
			1460VLLLETRP11401	1460VLLLETRP11401
			1488VLLLETRP11401	1488VLLLETRP11401
			1539LIY1542	1539LIY1542
			1590VATIVENGT1601	1590VATIVENGT1601
			1631GERIQLRGVR1645	1631GERIQLRGVR1645
			2206Hx5Dx12GxCGx4H2327	2206Hx5Dx12GxCGx4H2327
			2572SLKAEL2577	2572SLKAEL2577
			2647CDADGS2652	2647CDADGS2652
			2709GNNSQPSTVVDN-TIMV27425	2709GNNSQPSTVVDN-TIMV27425
			2752GDD2755	2752GDD2755
			2714QSTVVDN2721	2714QSTVVDN2721
			2605CVDFD2610	2605CVDFD2610
			2594FTAAPID2597	2594FTAAPID2597
			2839AMIESWG2845	2839AMIESWG2845
			2922DAG2929	2922DAG2929
			3114AFDF3117	3114AFDF3117
			3132QMKAAB3139	3132QMKAAB3139
			3033MVWCIENTG53041	3033MVWCIENTG53041
			3047WMMDGE3053	3047WMMDGE3053
			3099PYMPRYG3099	3099PYMPRYG3099
			3159EDTERH3164	3159EDTERH3164
Nia-Pro, Nib	Hx5Dx12GxCGx4H	Proteolytic activity	3030MVWCIENTG53041	3030MVWCIENTG53041
	SLKAEEL	RNA-dependent RNA polymerase activity	3132QMKAAB3139	3132QMKAAB3139
	CHADGS		3033MVWCIENTG53041	3033MVWCIENTG53041
	GNNSQPSTVVDN-TIMV27425		3047WMMDGE3053	3047WMMDGE3053
			2752GDD2755	2752GDD2755
			2714QSTVVDN2721	2714QSTVVDN2721
			2605CVDFD2610	2605CVDFD2610
			2594FTAAPID2597	2594FTAAPID2597
			2839AMIESWG2845	2839AMIESWG2845
			2922DAG2929	2922DAG2929
			3114AFDF3117	3114AFDF3117
			3132QMKAAB3139	3132QMKAAB3139
			3033MVWCIENTG53041	3033MVWCIENTG53041
			3047WMMDGE3053	3047WMMDGE3053
			3099PYMPRYG3099	3099PYMPRYG3099
			3159EDTERH3164	3159EDTERH3164
"thevetia white spot virus" (ThWSV) is proposed and will be used hereafter in this report.

Seed transmission of potyviruses is not uncommon, but the rate at which it occurs can vary significantly depending on the virus. For instance, papaya ringspot potyvirus has a seed transmission rate of 0.15% in papaya, whereas in *Robinia pseudocacia*, an unusual host, seed transmission rates of up to 50% have been observed [9]. Likewise, seed transmission of soybean mosaic potyvirus has been shown to vary from 0 to 64% depending on virus and host genotypes [10]. In order to investigate seed transmission of ThWSV, five symptomatic fruits from a single virus-inoculated plant (one with each virus isolate) were collected, and all 20 seeds (each fruit had 4 seeds) were potted in sterile germination medium. The third true leaf of each seedling was tested for the virus by RT-PCR as described above. None of the plants tested positive for the virus during the study, suggesting that, under our experimental conditions, the rate of seed transmission of ThWSV is no higher than 5%.

The genome organization of ThWSV is identical to that of other potyviruses, containing a long open reading frame (ORF) at nt positions 123-9,671 for isolate 1 and 118-9,663 for isolate 2. The hypothetical polyprotein precursor from isolate 1 has 3,183 amino acids with a predicted molecular mass of 363.5 kDa, while the polyprotein from isolate 2 has 3,182 aa (363.6 kDa), with a single lysine deletion (deletion of an AAA codon) at the N-terminus of the coat protein (CP) compared to isolate 1. Analysis of the hypothetical polyprotein of ThWSV showed that it contains the nine conserved proteolytic cleavage sites described previously for other potyviruses [11], resulting in 10 mature putative proteins (Fig. 2A). In addition, typical potyvirus-conserved motifs [12] were identified in the proteins of ThWSV, with slight differences in a few motifs between the two isolates (Table 1). The putative small ORF termed PIPO was also identified in both isolates (Fig. 2A), overlapping with the P3 coding region through the presence of the highly conserved motif G_1–2A_6–7 at the beginning of the PIPO ORF (isolate 1, 3324GAAAAAT_3330; isolate 2, 3315GAAAAAT_3325). In both isolates, the PIPO ORF is out of frame from P3, suggesting that it is expressed through a -1 ribosomal frameshifting mechanism from the P3 coding region, which would result in a fused protein (P3N-PIPO) as described previously [13].

The phylogeny was inferred from the complete polyprotein amino acid sequences of 36 representative potyviruses and a member of the genus *Ipomovirus* (family *Potyviridae*), which was used as an outgroup. The sequences were aligned using MUSCLE [14], and the best-fitting protein substitution model (LG+G+F+I) was chosen. A phylogenetic tree was generated using the maximum-likelihood method with 500 bootstrap replicates in MEGA X [15]. The topology of the tree was consistent with previous BLAST results, showing the most recent common ancestors of ThWSV to be a potyvirus sequenced from an unidentified weed in Mexico [7] and asclepias virus A, from a perennial herb in the same family (*Apocynaceae*) as *T. ahouai*. Other closely related potyviruses include pokeweed mosaic virus, tobacco vein mottling virus, potato virus A, potato virus B, and other members of the tobacco etch virus lineage [16], most of which were first found in the Americas (Fig. 2B). Amino acid identity values among the most closely related viruses ranged from 51% to 72%.

To the best of our knowledge, this is the first report of a virus infecting *T. ahouai*. ThWSV induced a range of symptoms including white spots on the leaves, darkening and black ringspots on the stems, and fruit discoloration (Fig. 1). Further studies should be conducted to investigate the host range and natural vector of this new virus, especially due to its increased use as an ornamental. Based on the presence of aphid-transmission-related motifs, such as KITC (KIAC in isolate 2) and PTK in the helper component protein (HC-Pro) and DAG in the CP, which are found in most potyviruses (Table 1), it is reasonable to speculate that aphids transmit ThWSV in nature. However, epidemiological studies should focus on identifying the aphid species associated with *T. ahouai* and closely related species, such as *Catharanthus roseus* (L.), which is widely used as an ornamental in tropical regions, as transmission of ThWSV is likely to be non-persistent.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00705-022-05450-6.

Acknowledgements The authors acknowledge Dr. Benham Lockhart and the University of Minnesota Imaging Center for assistance with virus purification and particle visualization at the transmission electron microscopy facility.

Author contributions Study conception and design: DFQ-A. Material preparation, data collection, and analysis were performed by MGC-B, EGR-P, JFC-F, RAA-Q, and DM. The first draft of the manuscript was written by MGC-B and DFQ-A. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data availability The genomic sequences of the two virus isolates reported here have been deposited in the GenBank database under accession numbers OM263475 and OM263476.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors. Plant samples were collected under Genetic Resource Access Permit # MAE-1465
DNB-CM-2018-0098, granted by the Department of Biodiversity of the Ecuadorian Ministry of the Environment.

References

1. Alvarado-Cárdenas LO, Ochoterena H (2007) A phylogenetic analysis of the Cascabela-Thevetia Species Complex (Plumeriaceae, Apocynaceae) based on morphology. Ann Mo Bot Gard 94(2):298–323
2. Calderón ÁI et al (2006) Screening of Latin American plants for cytotoxic activity. Pharm Biol 44(2):130–140
3. Alvarez-Quinto RA et al (2022) Complete genome sequences of two isolates of spiraea yellow leafspot virus (genus Badnavirus) from Spiraea x bumalda ‘Anthony Waterer’. Arch Virol 167:631–634
4. Dodds JA, Morris TJ, Jordan RL (1984) Plant viral double-stranded RNA. Annu Rev Phytopathol 22(1):151–168
5. Valverde RA, Dodds JA, Heick JA (1986) Double stranded RNAs from plants infected with viruses having elongated particles and undivided genomes. Phytopathology 76:7
6. Wylie SJ et al (2017) ICTV Virus Taxonomy Profile: Potyviridae. J Gen Virol 98(3):352–354
7. Alcalá-Briseño RI et al (2020) Network analysis of the papaya Orchard virome from two agroecological Regions of Chiapas, Mexico. mSystems 5:e00423-9(1)
8. Hull R (2009) Mechanical inoculation of plant viruses. Curr Protoc Microbiol 13(1):16B.6.1-16B.6.4
9. Laney AG, Avanzato MV, Tzanetakis IE (2012) High incidence of seed transmission of Papaya ringspot virus and Watermelon mosaic virus, two viruses newly identified in Robinia pseudoacacia. Eur J Plant Pathol 134(2):227–230
10. Hajimorad MR et al (2018) Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. Mol Plant Pathol 19(7):1563–1579
11. Adams MJ, Antoniw JF, Beaudoin F (2005) Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol 6(4):471–487
12. Worrall EA et al (2019) Molecular characterization and analysis of conserved potyviral motifs in bean common mosaic virus (BCMV) for RNAi-mediated protection. Arch Virol 164(1):181–194
13. Vijayapalani P et al (2012) Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog 8(4):e1002639
14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797
15. Kumar S et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549
16. Fuentes S et al (2021) Potato virus A isolates from three continents: their biological properties, phylogenetics, and prehistory. Phytopathology® 111(1):217–226

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.