Revealing the unusual rigid diamond net analogues in superhard titanium carbides
Chunhong Xu, Kuo Bao*, Shuailing Ma, Da Li, Defang Duan, Hongyu Yu, Xilian Jin, Fubo Tian, Bingbing Liu, Tian Cui*
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

Figure S1. The simulated power X-ray diffraction (\(\lambda = 0.5608\) Å and the diffraction data are obtained from powder diffraction and not single crystal) for experiment structures (a) cubic TiC and (c) cubic Ti\(_2\)C at ambient pressure, our predicted corresponding structures (b) TiC and (d) Ti\(_2\)C at ambient pressure.
Table S1. Lattices parameters and atomic coordinates of Ti$_2$C, Ti$_3$C$_2$, Ti$_6$C$_5$, TiC-TiC$_4$ at ambient pressure.

Space Group	Lattice Parameters (Å,°)	Atoms	x	y	z	
Ti$_2$C	Fd-3m	a=b=c=8.641	Ti(32e)	-0.6312	0.1312	0.1312
			C(16c)	-0.8750	0.3750	0.3750
Ti$_3$C	R-3m	a=b=3.087,c=14.471	Ti(6c)	0.3333	0.6667	0.4212
			C(3b)	0.3333	0.6667	0.1667
Ti$_3$C	I4/m	a=b=5.551,c=4.555	Ti(8h)	0.6604	0.8258	0.5
			C(4e)	0	0	0.3249
Ti$_3$C	I4/m	a=b=5.552,c=4.554	Ti(8h)	0.340	0.174	0
			C(4e)	0	0	0.825
Ti$_3$C$_2$	C2/m					
Ti$_3$C$_2$	P4/mmb	a=b=5.315,c=2.855	Ti(2b)	0	0	0.5
			Ti(4g)	0.1821	0.6821	0
			C(4h)	0.1029	0.3972	0.5
Ti$_3$C$_2$	P4/mmb	a=b=5.940,c=3.076	Ti(2a)	0	0	0
			Ti(4g)	0.1579	0.6579	0.5
			C(4h)	0.1520	0.3480	0
Ti$_4$C$_5$	C2/m	a=b=5.532,c=6.139	Ti(8j)	-0.0065	-0.1752	0.2544
			Ti(4i)	0.0260	-0.5	0.2632
			C(4h)	1.0	0	0.5
			C(4g)	1.0	-0.3335	0.5
			C(4g)	-0.5	-0.1666	0
Ti$_4$C$_5$	C2/m	a=b=5.234,c=5.523	Ti(8j)	0.2410	0.1736	0.2462
			Ti(4i)	0.7603	0	0.2390
			C(4h)	0	0.1665	0.5
			C(4g)	0	0.3332	0
TiC	Fm-3m	a=b=c=4.336	Ti(4a)	0.5	0.5	0
			C(4b)	0.5	0	0
TiC	Fm-3m	a=b=c=4.328	Ti(4a)	0	0	0
			C(4b)	0.5	0.5	0.5
TiC$_2$	R-3m	a=b=2.649,c=11.959	Ti(3b)	0.3333	0.6667	0.1667
			C(6c)	0	0	0.3137
TiC$_3$	R-3m	a=b=2.603,c=30.670	Ti(6c)	0	0	0.1013
			C(6c)	0.6667	0.3333	0.3075
			C(6c)	0.6667	0.3333	0.1594
			C(6c)	0.3333	0.6667	0.0421
TiC$_4$	P-3m	a=b=2.588,c=12.299	Ti(2d)	0.3333	0.6667	0.1633
			C(2d)	0.3333	0.6667	0.9818
			C(2d)	0.3333	0.6667	0.4796
			C(2c)	0	0	0.6893
Ref 1. C. Jiang and W. S. Jiang, Pressure–composition phase diagram of Ti–C from first principles, *Phys. Status Solidi B.*, 2014, **251**, 533–536.

Ref 2. P. A. Korzhavyi, L. V. Pourovskii, H. W. Hugosson, A. V. Ruban, and B. Johansson, Ab initio study of phase equilibria in TiC(x), *Phys. Rev. Lett.*, 2002, **88**, 015505.

Ref 3. G. Amirthan, K. Nakao, M. Balasubramanian, H. Tsuda and S. Mori, Influence of N and Fe on α-Ti precipitation in the in situ TiC–titanium alloy composites, *J. Mater. Sci.*, 2011, **46**, 1103-1109.

Figure S2. The curves of phonon dispersion for TiC$_n$ (n>1) compounds. TiC$_2$ (a) at 0 GPa, (b) at 100 GPa; TiC$_3$ (c) at 0 GPa, (d) at 100 GPa; TiC$_4$ (e) at 0 GPa, (f) at 100 GPa, respectively.
Figure S3. The calculated three-dimensional representations of linear compressibility, Poisson’s ratio, shear ratio and Young’s modulus for the TiC structure.

Figure S4. The calculated three-dimensional representations of linear compressibility, Poisson’s ratio, shear ratio and Young’s modulus for the TiC₃ structure.

Figure S5. The calculated three-dimensional representations of linear compressibility, Poisson’s ratio, shear ratio and Young’s modulus for the TiC₄ structure.

Table S2. The calculated formation enthalpies ΔH of TMC₄ (TM= V, Zr, Nb, Hf and Ta).

	VC₄	ZrC₄	NbC₄	HfC₄	TaC₄
ΔH (eV/atom)	-0.46234	-0.39428	-0.17959	-0.71717	-0.14002
Table S3. Calculated elastic constants C_{ij} (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young's modulus Y (GPa), B/G and Poisson's ratio ν of TMC$_4$ (TM= V, Zr, Nb, Hf and Ta).

	C_{11}	C_{33}	C_{44}	C_{56}	C_{12}	C_{13}	B	G	Y	B/G	ν
VC$_4$	881	687	315	357	166	126	362	332	762	0.92	0.15
ZrC$_4$	720	623	269	298	125	102	301	282	645	1.07	0.14
NbC$_4$	727	567	264	265	197	172	342	256	615	0.75	0.20
HfC$_4$	739	632	272	304	131	96	305	288	656	1.06	0.14
TaC$_4$	736	576	255	273	190	174	345	257	617	0.74	0.20

Figure S6. The curves of phonon dispersion for TMC$_4$ (TM= V, Zr, Nb, Hf and Ta) at ambient pressure. (a) VC$_4$, (b) ZrC$_4$, (c) NbC$_4$, (d) HfC$_4$ and (e) TaC$_4$.
Table S4. The optimized lattices parameters and atomic coordinates of TMC₄ (TM= V, Zr, Nb, Hf and Ta) at ambient pressure.

Space Group	Lattice Parameters (Å)	Atoms	x	y	z
VC₄	P-3m1 a=b=2.5600, c=12.0099		0.66667	0.33333	0.52106
			0.66667	0.33333	0.01867
			0.33333	0.66667	0.34908
		C (2c)	0.33333	0.66667	0.35865
		V (2d)	0.66667	0.33333	0.84012
ZrC₄	P-3m1 a=b=2.6833, c=13.0102		0.66667	0.33333	0.51939
			0.66667	0.33333	0.01657
			0.66667	0.33333	0.36162
		C (2c)	0.66667	0.33333	0.67810
		Zr (2d)	0.66667	0.33333	0.83111
NbC₄	P-3m1 a=b=2.6529, c=12.7689		0.66667	0.33333	0.51979
			0.66667	0.33333	0.01824
			0.33333	0.66667	0.35865
		C (2c)	0.33333	0.66667	0.68201
		Nb (2d)	0.66667	0.33333	0.83333
HfC₄	P-3m1 a=b=2.6740, c=12.8550		0.66667	0.33333	0.51966
			0.66667	0.33333	0.01780
			0.33333	0.66667	0.36005
		C (2c)	0.33333	0.66667	0.68065
		Hf (2d)	0.66667	0.33333	0.83245
TaC₄	P-3m1 a=b=2.6577, c=12.7097		0.66667	0.33333	0.51992
			0.66667	0.33333	0.01958
			0.66667	0.33333	0.35818
Table S5. Calculated bond parameters and Vicker hardness of TMC$_4$(TM= V, Zr, Nb, Hf and Ta) structures.

Crystals	bond type	d(Å)	v_b(Å3)	P	f_m	H_{Vicker}(GPa)
VC$_4$	C-C	1.544	1.296	0.90		50.3
	C-C	1.560	1.337	0.79		
	C-C	1.562	1.342	0.87		
	C-C	1.568	1.357	0.88		
	V-C	2.250	4.011	0.08	1.157×10^{-3}	
	V-C	2.290	4.228	0.08	1.157×10^{-3}	
ZrC$_4$	C-C	1.548	1.202	0.80		41.9
	C-C	1.609	1.350	0.85		
	C-C	1.630	1.404	0.83		
	C-C	1.634	1.414	0.83		
	Zr-C	2.514	5.149	0.08	1.848×10^{-4}	
	Zr-C	2.519	5.180	0.08	1.848×10^{-4}	
NbC$_4$	C-C	1.554	1.249	0.80		43.9
	C-C	1.605	1.376	0.84		
	C-C	1.613	1.397	0.84		
	C-C	1.618	1.410	0.85		
	Nb-C	2.431	4.783	0.09	1.054×10^{-3}	
	Nb-C	2.463	4.974	0.08	1.054×10^{-3}	
HfC$_4$	C-C	1.527	1.616	0.79		49.3
	C-C	1.608	1.356	0.86		
	C-C	1.622	1.391	0.83		
	C-C	1.627	1.404	0.84		
	Hf-C	2.484	5.688	0.12	3.907×10^{-4}	
Table S6. The different bond length d (Å) within the Ti-C and C-C bonds and their corresponding integrated crystal orbital Hamiltonian population values (ΔICOHP, eV per bond).

Bond	d (Å)	ICOHP (eV)
TiC		
Ti-C1	2.168	2.99
TiC$_2$		
Ti-C1	2.228	1.42
Ti-C1	2.331	1.55
C1-C1	1.600	8.65
TiC$_3$		
Ti-C2	2.228	1.42
Ti-C1	2.315	0.97
Ti-C2	2.329	1.50
Ti-C3	2.357	1.54
C1-C1	1.586	8.39
C2-C2	1.568	9.12
C1-C3	1.584	9.06
TiC$_4$		
Ti-C1	2.232	1.40
Ti-C1	2.328	1.49
Ti-C3	2.330	0.90
Ti-C4	2.350	1.58
C1-C1	1.559	9.26
C2-C2	1.576	9.22
C3-C4	1.560	9.11
Table S7. Bader charge analysis using supercell calculations 2×2×2 of TiC, 2×2×2 of TiC$_2$, 2×2×1 of TiC$_3$ and 2×2×2 of TiC$_4$ at ambient pressure.

Structure	Atom (Number)	Charge value (e)	δ(e)
TiC	Ti (32)	8.34	1.66
	C (32)	5.66	-1.66
TiC$_2$	Ti (24)	8.99	1.01
	C (24)	4.50	-0.50
	C (24)	4.51	-0.51
TiC$_3$	Ti (24)	9.01	0.99
	C (12)	4.02	-0.02
	C (12)	4.06	-0.06
	C (24)	4.46	-0.46
	C(9)	4.48	-0.48
	C (15)	4.49	-0.49
TiC$_4$	Ti (16)	9.01	0.99
	C(8)	3.99	0.01
	C (8)	4.49	-0.49
	C (8)	4.00	0
	C(16)	4.03	-0.03
	C (24)	4.48	-0.48