Decomposing Wealth-Based Inequalities in Under-Five Mortality in West Africa

Aristide Romaric BADO, *Sathiya Susuman APPUNNI

Dept. of Statistics and Population Studies, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa

*Corresponding Author: Email: sappunni@uwc.ac.za

(Received 23 Dec 2014; accepted 17 Apr 2015)

Abstract

Background: This study aimed to analysis the inequalities of mortality of children under 5 years in West Africa by examining the determinants and contributing factors to the overall inequality concentration in these countries.

Method: Data used came from the DHS surveys conducted in the six countries in West Africa: Burkina Faso (2010), Benin (2006), Cote d'Ivoire (2011), Ghana (2008), Mali (2006), Nigeria (2008) and Niger (2012). The concentration index (CI) and Generalized Linear Model (GLM) with logit link were used to access inequality.

Results: The results show that in all countries, the poorest Q1 have the highest proportions of deaths: Nigeria (31.4%), Cote d'Ivoire (30.4%) and Ghana (36.4%), over 30% of deaths of children under 5 years are among the children of the poorest (Q1) and the absolute differences of proportions Q1-Q5 are more than 20 points (25.8 in Ghana and 23.6 in Nigeria). The contributing factors of inequalities of child mortality were birth order, maternal age, parity and household size. Our findings also showed that the intensity of inequality varies from one country to another.

Conclusion: The most important conclusion of this study is to reduce mortality in children under 5 years, it is needed to reduce economic and social inequalities and improve the country's economic and social condition. There is a need for monitoring and assessment inequalities by leading causes of death and morbidity among children in the region in order to advance in understanding the gaps and finding a way to reduce them in West Africa countries.

Keywords: Concentration index Infant mortality, Child mortality, Under five mortality, Family planning

Introduction

The Millennium Development Goals (MDGs) are the world’s biggest promise; that is a global agreement to reduce poverty and human deprivation at historically unprecedented rates through collaborative action (1). Of its many goals, the fourth goal (MDG 4) specifically calls on the international community to reduce mortality in children under 5 (U5) by two thirds between 1990 and 2015 (1). Therefore, the health of children under-five years in general and mortality in particular are a major priority for developing countries. Recent studies indicate that under-five mortality has decreased much during these last decades both in developed and developing countries (2–5). But the fourth MDG goal will not be met by 2015 in many sub-Saharan countries in Africa in the light of progress made (6). Despite the fall in the regional and global child mortality rate, deaths remain alarmingly concentrated in the poorest regions of the world and most notably, sub-Saharan Africa has the highest regional rate of child mortality amongst under-fives. One child out of nine dies before their fifth birthday(5). Similarly, inequalities exist and remain between countries, within each country, between different sub-groups and socio-economic groups (7–12), between place of residence (13,14), between ethnicity (12,15,16), between parental characteristics (8) and children (11). Socio-economic inequalities in childhood mortality are a major public health problem in develop-
ing countries. Childhood mortality is systematically and considerably higher among lower socioeconomic groups within countries (2). Reducing these inequalities by improving child survival up to the level of more advantaged groups within countries would substantially improve population health (2). Specific attention is being devoted into the research on child health inequalities in developing countries (2,13,15,17–28). Some of these researches focused on sub-Saharan Africa by conducting regional and multi-country studies on this topic. But in the case of West Africa to be specific, the literature consulted indicates that research remains low even where this part of Africa has the highest rates of under-five mortality in the world and these countries are among the world's poorest countries(29). What are the determinants of inequalities in mortality among under-five in West Africa? Are there some variations between and within countries?

The objective of this study is to analyze the inequalities of mortality of children under 5 years in West Africa by examining the determinants and contributing factors to the overall inequality concentration in these countries.

Study Design

Previous research’ results found several factors that explain child health inequalities in developing countries. These factors are related to: 1) individual’s characteristics of parents and children; 2) the living conditions of households; 3) the geographical factors and; 4) national policies and reforms especially in the health sector.

Prior research found that a mother’s characteristics such as her education, age during child delivery, parity, food habits and health status could influence the survival of the child(3,15,30–32). Mother’s education level was found in the literature to be strongly associated with child survival and was a determinant factor of inequalities in child health in sub-Saharan Africa(8,33).

Houweling and Kunst (2) argued that maternal education is thought to exert its influence through increased status and decision making power of mothers within the household, increased willingness and ability to travel outside the community, more timely use of health care, greater negotiating power with health care providers, increased knowledge, skills and identification with modern health systems and responsiveness to new ideas. Maternal education is estimated to be accounted for by its association with household wealth, and probably the associated better living conditions and ability to pay for health services.

Socioeconomic environment of households was also found as an important factor of child health inequalities. In fact, the living conditions of households have a direct influence on children's health through the quality of drinking water and hygiene in the household, the use of health services, food and health practices, fashion life (2,34,35). The poverty level of the household(25,35–37), size and household composition (31), the gender of the head of the households(34) have an impact on child mortality.

With regard to community factors, research results show that the contextual effects have an influence on children's health. Indeed, the availability and access to health centers, the availability of qualified staff are often lacking in rural and poor areas thus creating favorable factors to population health inequalities (2,9,35,38). Good hygiene practices are relatively likely to live in remote places, far from health centers thus making accessibility very low in case of health problem(36). Several studies examine the effect of the type of residence (urban/rural) on childhood mortality inequalities(13,14,16,30,34). These studies showed that the location of residence (urban vs rural) had a significant influence on the child survival and so residing in rural areas increased the probability of a child dying before the fifth birthday. Houweling and Kunst (2) study showed that the country level, several factors can impact on the magnitude of mortality inequalities through multiple pathways. Indeed, these authors showed that policies

Available at: http://ijph.tums.ac.ir
at the country level can increase or decrease the inequalities between social groups and influence health policy for the poor. West Africa is one of the poorest parts of the world where health indicators are still poorly reported. Under-five mortality remains high in the region and MDG’s fifth (5th) goal will not be met in many West African countries. Common causes of child mortality and morbidity include diarrhea, acute respiratory infections, measles, and malaria. Studies have shown that many children in Nigeria mainly die from malaria, diarrhea, neonatal tetanus, tuberculosis, whooping cough and broncho-pneumonia (39).

Materials and Methods

We used data from Demographic and Health Surveys (DHS) run in six countries in West Africa including Burkina Faso (DHS, 2010), Benin (DHS, 2006), Cote d’Ivoire (DHS, 2011), Ghana (DHS, 2008), Mali (DHS, 2006), Nigeria (DHS, 2008) and Niger (DHS, 2012).

Data sharing statement Data available for public through internet http://www.measuredhs.com

The outcome variable used was the risk of under-five death (0–59 months), which is defined as the probability of dying between birth and the fifth birthday. Variable socioeconomic status built from household assets is used as the main variable for measuring inequalities in mortality.

Selected variables
Child’s sex: Male and Female
Birth order: 1st birth, 2nd-6th birth and 7th & +
Mother's age: 15-19, 20-24, 25-29, 30-34, 35-39, 40-44 and 45-49
Mother's Occupation: Not working, skilled manual and other occupation
Mother's education: No education, Primary, Secondary
Parity: 1-3, 4-6, 7 & +
Father's occupation: Agriculture, Sales, Skilled Manual and Other Occupation
Father's education: No education, Primary, Secondary, Higher and DK
Household's size: 1-3, 4-6, 7 & +

Household head's sex: Male and Female
Location of residence: Urban and Rural
Wealth index: Q1 (Poorest), Q2 Poorer, Q3 Middle Q4 Rich and Q5 Richest

The socio-economic variable was categorized into 5 categories: Q1 being the Poorest, Q2, Q3, Q4 and Q5 as the Richest. The independent variables included: sex of the child, birth order (1st, 2-6th, 7th and above), the mother’s age at delivery (15-19), parity (1-3, 4-6, 7 and above), educational level (no education, primary, secondary and high) and occupation (not working, agriculture, sale, manual, other occupation) of the mother, educational level (no education, primary, secondary, highest and do not know (DK) and the occupation of the father (agriculture, skilled manual, other occupation), household size (1-3, 4-6, 7 and above), sex of household head and the middle of residence (urban vs. rural).

Statistical analysis
The concentration index (CI) is employed in this paper to measure under 5 mortality inequalities. CI quantifies the degree of income-related inequality in a health variable, and is becoming a standard tool for the measurement of income-related health inequality (Liu, Gao & Yan, 2014).

Detailed information about the methodological tools used is presented in some publications (37,41–44).

\[C = \frac{2}{\eta \mu} \left(\sum_{i=1}^{n} h_i R_i \right) - 1 \]

Where \(h_i \) is the variable of interest for the ith person; \(\mu \) is the mean or proportion of \(h \times n \) is the number of persons; and if the \(n \) individuals are ranked according to their socioeconomic status, beginning with the most disadvantaged, then \(R_i \) is their relative rank, \(i \cdot 0.5/n. \) When there is no inequality (or when inequality is balanced and opposite for equal fractions of the income-ranked population), the concentration index equals 0. If the variable of interest is concentrated at a lower (or higher) socioeconomic level, the concentration index becomes negative (or positive).
Generalized Linear Model (GLM) specifying binomial distribution and identity link was used to perform multivariate analysis. The coefficients from GLM were used subsequently to decomposing and computing the contribution of independent variable to the concentration index. The method used is detailed somewhere (41).

Results

Table 1 presents the proportions of deaths by poverty status and country. The results show that in all countries, the poorest Q1 have the highest proportions of deaths: Nigeria (31.4%), Cote d’Ivoire (30.4%) and Ghana (36.4%), over 30% of deaths of children under 5 years are among the children of the poorest (Q1) and the absolute differences of proportions Q1-Q5 are more than 20 points (25.8 in Ghana, 23.6 in Nigeria and Cote d’Ivoire has 19.3). For Burkina Faso (14.5), Benin (15.7) and Mali (12), the absolute differences of the proportions of deaths of children under-five years between the poorest and the richest is more than 10 points. Niger appears to have the low gaps between poorest and richest with an absolute difference of less than 1 (0.7). The overall concentration index was -0.12 for Burkina Faso in 2010, -0.07 for both Benin in 2006 and for Cote d’Ivoire in 2011. The concentration index was -0.03 for Ghana in 2008 and -0.10 for Mali in 2006. It was -0.12 and -0.07 respectively for Nigeria in 2008 and Niger in 2012.

In all the countries concerned by this study, the value of the concentration index is negative and thus shows that mortality is concentrated among children from poor households (Q1=Poorest) than among children of wealthy households (Q5=Richest). Inequalities in mortality are higher in Burkina Faso, Nigeria and Mali whose concentration index was lower than -0.10. Inequalities in child mortality are less pronounced in Ghana, Niger and Cote d’Ivoire than elsewhere.

Figure 1 presents the proportions of deaths of children under-five years by quintile of socioeconomic and by country. The results of the graph show that the poorest are those with the highest death proportions.

Factors associated with child mortality

Table 2 shows the proportions of deaths for each determinant factor associated with child mortality. The results on factors associated with the mortality of children under the age of 5 years for each country are presented in Table 3. Birth order was significant in all countries in the study. Children with 7th and above were more likely to die before their fifth year than the first child. The variable sex of the child is significant for Nigeria and Cote d’Ivoire and the results showed that girls had less probability to die before their fifth birthday than boys.

Table 1: Proportion of deaths in children under 5 years by socioeconomic quintile and country

Country	Q1(Poorest)	Q2	Q3	Q4	Q5(Richest)	Q5-Q1	(Q5-Q1)/Q1	C(95%CI)	N1	N2
Benin	25.56	22.47	23.91	18.23	9.83	15.72	-0.62	-0.07(-0.10;-0.04)	16075	1393
Cote d'Ivoire	30.39	25.41	19.61	13.54	11.05	19.34	-0.64	-0.07(-0.14;-0.01)	3644	362
Ghana	36.36	17.68	19.19	16.16	10.61	25.76	-0.71	-0.03(-0.11;0.05)	2992	198
Mali	22.77	24.43	21.82	20.21	10.77	11.99	-0.53	-0.10(-0.13;-0.08)	14238	1801
Nigeria	31.38	27.39	19.84	13.66	7.74	23.64	-0.75	-0.12(-0.14;-0.10)	28655	3206
Niger	17.36	22.7	20.5	22.8	16.63	0.73	-0.04	-0.07(-0.10;-0.03)	12358	956

N1=Number of births; N2=Number of deaths; Source: data from Demographic and Health Surveys (DHS) run in six countries in West Africa including Burkina Faso (DHS, 2010), Benin (DHS, 2006), Cote d’Ivoire (DHS, 2011), Ghana (DHS, 2008), Mali (DHS, 2006), Nigeria (DHS, 2008) and Niger (DHS, 2012). Q1Poorest; Q2 Poorer; Q3 Middle; Q4 Richer; Q5 Richest

Available at: http://ijph.tums.ac.ir
The demographic characteristics of the mother such as age and parity have proved significant in the countries in the study and it appeared that the children of elderly mothers and mothers with high parity are more likely to die before their fifth birthday than those of the young mothers (15 and 19 years) who have low parity. The mother’s occupation is only significant in Mali and Cote d’Ivoire. Contrary to our expectations, the mother’s education level was not significant in some countries concerned as observed in the analysis. In Mali and Nigeria, the mother’s education was significantly associated with child mortality of under 5 years.

According to the father’s characteristics, results showed that the father’s occupation is significantly associated with under-five mortality in Benin and Nigeria, while father’s educational level is significant in Ghana, Mali and Niger. Thus, children whose fathers are educated had lower probability of dying than those whose fathers were not going to school.

Household size seemed to be a determinant of under-five year’s mortality in the countries concerned in our analysis. In all countries, the results showed that the probability of dying before the age of five year increased with household size. Thus, children living in large households are more likely to die before their fifth birthday. The results were similar in all countries. Exceptions are in Ghana and Cote d’Ivoire, where the variable sex of the household head was significantly associated to under-five mortality and the results showed that children in households headed by women had a higher probability of dying before their fifth birthday than those belonging to households headed by a man.

Table 4 presents the concentration index for each health outcome by country. The proportions (presented in Table 2 above) are used to calculate the concentration index related to each factor (Table 4). A negative C_k means that the determining factor is more prevalent among the poorest households. To the values of the concentrations of variables, we see that the birth order, maternal age, parity, and household size are potential contributing factors to inequalities in mortality among children under five years.

The mortality of children under five years appears to be higher among children of high birth rank ($C_k = -0.36$ for Ghana, -0.20 for Burkina and Benin and -0.21 for Cote d’Ivoire), among children whose mothers had high parity among children whose mothers are older and among children belonging to in large households.
Table 2: Repartition of death by Explanatory variables and countries

Variables	Burkina n	Benin n	Ghana n	Mali n	Nigeria n	Niger n	Cote d'Ivoire n
Child’s sex							
Male	715	106	945	1,735	513	198	146
Female	613	92	486	1,471	443	164	164
Birth order							
1st	250	44	222	727	265	60	60
2nd-6th	834	121	611	1,031	537	201	103
7th & +	244	33	167	225	286	60	60
Mother's age							
15-19	74	4	2	14	43	9	9
20-24	283	4	2	23	63	16	16
25-29	365	4	2	14	21	4	4
30-34	261	4	2	14	21	4	4
35-39	203	4	2	14	21	4	4
40-49	47	4	2	14	21	4	4
Mother’s Occupation							
Not working	246	23	16	179	23	19	19
Sales	211	22	16	179	23	19	19
Parent’s Occupation							
No education	1184	106	1,020	312	695	90	90
Primary	107	106	1,020	312	695	90	90
Secondary & +	37	31	1,020	312	695	90	90
Parity							
1-3	497	47	1,020	312	695	90	90
4-6	494	47	1,020	312	695	90	90
7+	337	31	1,020	312	695	90	90
Father’s occupation							
Agriculture	1039	106	1,020	312	695	90	90
Sales	108	106	1,020	312	695	90	90
Skilled Manual	111	106	1,020	312	695	90	90
Other Occupation	70	106	1,020	312	695	90	90
Father’s education							
No education	1145	106	1,020	312	695	90	90
Primary	113	106	1,020	312	695	90	90
Secondary & +	48	106	1,020	312	695	90	90
Higher	3	106	1,020	312	695	90	90
DK	5	106	1,020	312	695	90	90
Household size							
1-3	217	106	1,020	312	695	90	90
4-6	441	106	1,020	312	695	90	90
7+	670	106	1,020	312	695	90	90
Household head’s sex							
Male	1249	106	1,020	312	695	90	90
Female	79	106	1,020	312	695	90	90
Location of residence							
Urban	198	106	1,020	312	695	90	90
Rural	1130	106	1,020	312	695	90	90
Socio-economic status							
Q1 (Poorest)	320	106	1,020	312	695	90	90
Q2	338	106	1,020	312	695	90	90
Q3	288	106	1,020	312	695	90	90
Q4	255	106	1,020	312	695	90	90
Q5 (richest)	127	106	1,020	312	695	90	90
N	1,328	106	1,020	312	695	90	90

Source: Demographic and Health Survey (DHS), different censuses in West Africa including Burkina Faso (DHS, 2010), Benin (DHS, 2011), Cote d’Ivoire (DHS, 2011), Ghana (DHS, 2008), Mali (DHS, 2006), Nigeria (DHS, 2008) and Niger (DHS, 2012).

Available at: http://ijph.tums.ac.ir
Table 3: Adjusted associations between infant mortality and its dominants

Variables	Burkina	Benin	Ghana	Mali	Nigeria	Niger	Cote d'Ivoire
	Coef.	Pvalue	Coef.	Pvalue	Coef.	Pvalue	Coef.
Child’s sex (Male)	-0.138	0.019	-0.098	0.086	-0.106	0.491	-0.082
Birth order (1st)							-0.110
2nd-6th	-0.064	0.565	-0.292	0.004	-0.453	0.076	-0.378
7th & +	-0.893	0.000	-0.980	0.000	-1.180	0.014	-1.014
Mother’s age (15-19)							
20-24	-0.040	0.794	-0.105	0.507	1.057	0.094	0.250
25-29	-0.005	0.976	-0.178	0.279	0.866	0.178	0.075
30-34	-0.472	0.011	-0.537	0.003	0.993	0.137	0.127
35-39	-0.499	0.012	-0.426	0.024	1.073	0.113	0.007
40-44	-0.709	0.995	-0.560	0.008	0.831	0.244	0.001
45-49	-0.066	0.795	-0.833	0.002	0.478	0.540	0.031
Mother’s Occupation (Not working)							
Sales	-0.244	0.016	0.174	0.080	0.001	0.998	0.195
Agriculture	-0.216	0.009	0.055	0.892	0.267	0.346	-0.021
Manual	0.111	0.353	0.059	0.688	-0.350	0.364	0.208
Other occupation	0.206	0.333	0.200	0.475	-0.116	0.752	0.213
Mother’s education (No education)							
Primary	-0.179	0.117	0.057	0.498	0.205	0.327	0.000
Secondary & +	-0.266	0.209	-0.302	0.080	0.089	0.710	-0.351
Parity (1-3)	0.741	0.000	0.805	0.000	0.772	0.001	0.483
4-6	1.945	0.000	1.776	0.000	2.176	0.000	1.530
Father’s occupation (agriculture)							
Sales	-0.267	0.020	-0.133	0.166	0.175	0.603	-0.278
Skilled Manual	0.122	0.279	-0.206	0.069	-0.070	0.790	-0.116
Other Occupation	-0.197	0.238	-0.297	0.008	-0.273	0.312	-0.076
Father’s education (No education)							
Primary	-0.201	0.064	-0.133	0.083	0.254	0.348	-0.046
Secondary	-0.092	0.617	-0.045	0.661	-0.863	0.000	-0.363
Higher	0.124	0.845	-0.278	0.336	-0.968	0.028	-0.635
Household’s size (1-3)							
4-6	-1.037	0.000	-0.849	0.000	-1.102	0.000	-0.940
7 & +	-1.215	0.000	-1.128	0.000	0.149	0.000	-1.320
Household head’s size (Male)							
Location of residence(Urban)	0.122	0.247	0.085	0.217	-0.121	0.597	-0.009
Socio-economic status (Q1 (Poorest))	0.036	0.674	0.008	0.920	-0.102	0.667	0.011
Q2	-0.101	0.255	0.129	0.120	0.259	0.356	-0.207
Q3	-0.143	0.127	0.058	0.560	0.157	0.642	-0.172
Q5 (richest)	-0.329	0.025	-0.089	0.513	0.251	0.340	-0.290
Intercept	-1.608	0.000	-1.743	0.000	-2.276	0.001	-1.351

Source: Demographic and Health Surveys (DHS) different countries in West Africa including Burkina Faso (DHS, 2010), Benin (DHS, 2006), Cote d'Ivoire (DHS, 2011), Ghana (DHS, 2008), Mali (DHS, 2006), Nigeria (DHS, 2008) and Niger (DHS, 2012). Q1 Poorest; Q2 Poorer; Q3 Middle; Q4 Richer; Q5 Richest

Available at: http://ijph.tums.ac.ir
Table 4: Decomposition analysis of concentration index of infant mortality by socioeconomic status

Variables	Burkina C_k	Benin C_k	Ghana C_k	Mali C_k	Nigeria C_k	Niger C_k	Côte d'Ivoire C_k
Child's sex (Female)	-0.006	0.004	-0.022	0.011	-0.006	0.005	-0.002
Birth order (1st)	0.009	-0.004	0.000	0.001	-0.007	0.029	-0.030
2nd-6th	-0.209	0.389	-0.203	0.343	-0.357	1.131	0.264
7th & +							-0.182
Mother's age (15-19)	0.056	-0.005	0.018	-0.004	-0.032	-0.108	0.019
25-29	0.034	-0.001	0.025	-0.015	0.029	0.084	0.005
30-34	-0.003	0.004	0.020	-0.023	0.106	0.353	-0.007
35-39	-0.063	0.054	-0.032	0.022	-0.025	-0.101	-0.006
40-44	-0.118	0.068	-0.060	0.024	-0.124	-0.159	0.000
45-49	-0.105	0.003	-0.185	0.033	-0.261	-0.081	-0.001
Mother's Occupation (Not working)							
Sales	0.239	-0.105	0.200	0.148	0.271	0.002	0.055
Agriculture	-0.111	0.144	-0.319	-0.077	-0.459	0.799	0.000
Manual	-0.142	-0.018	0.248	0.009	0.115	-0.039	0.013
Other occupation	0.466	0.027	0.590	0.016	0.391	-0.055	-0.129
Mother's education (No education)							
Primary	0.335	-0.055	0.296	0.030	0.000	0.000	0.062
Secondary & +	0.742	-0.062	0.656	-0.076	0.330	0.141	0.041
Parity (1-3)							
4-6	-0.050	-0.155	-0.062	-0.207	-0.083	-0.364	-0.020
7 & +	-0.205	-1.147	-0.208	-0.868	-0.366	-2.852	-0.146
Father's occupation (agriculture)							
Sales	0.416	-0.102	0.371	-0.086	0.439	0.106	0.386
Skilled Manual	0.263	0.030	0.341	-0.009	0.273	-0.050	0.381
Other Occupation	0.579	-0.068	0.388	-0.135	0.344	-0.290	0.378
Father's education (No education)							
Primary	0.304	-0.060	0.116	-0.036	-0.185	0.082	0.111
Secondary	0.681	-0.026	0.430	-0.026	0.201	-1.018	0.523
Higher	1.000	0.003	0.798	-0.027	0.540	-0.390	0.762
DK	0.295	-0.002	0.212	-0.012	0.019	0.000	0.263
Household's size (1-3)							
4-6	0.029	-0.115	0.026	-0.094	0.061	-0.457	0.046
7 & +	-0.036	0.249	-0.052	0.255	-0.205	1.366	-0.047
Location of residence (Rural)	-0.155	-0.183	-0.178	-0.111	-0.298	0.385	-0.014

Source: Demographic and Health Surveys (DHS) different countries in West Africa including Burkina Faso (DHS, 2010), Benin (DHS, 2006), Côte d'Ivoire (DHS, 2011), Ghana (DHS, 2008), Mali (DHS, 2006), Nigeria (DHS, 2008) and Niger (DHS, 2012)

Available at: http://ijph.tums.ac.ir
Discussion

Results of this study show that the inequalities of the mortality of children under-five remain in West African countries and gaps of under-five mortality between children from wealthy households and those living in poorest household are still important, thus supporting findings of earlier studies (16,37). Findings of the study show that the intensity of inequality varies from one country to another i.e. it is more concentrated in Burkina Faso, Nigeria and Mali and weakly concentrated in Ghana, showing that community or country level conditions can be potential sources of inequalities in mortality and health of children under five years (2,30,31,45). Indeed, Countries involved in this study are all West African countries, where political context, economic development and social policies underway are not the same. These differences could explain differences in inequality of child mortality as observed. Ssewanyana & Kasirye (32) argued that with regard to contextual factors driving health inequalities, political factors are highlighted as major drivers of both income and health inequalities. Findings also showed that socio-economic inequalities of under-five mortality are related to child’s characteristics (birth, gender), to mother’s characteristics (age, the main occupation, parity), the characteristics of the father (education) and to household’s characteristics (size, gender of household head, the standard of living of the household). These variables are been listed in the conceptual frameworks developed for explaining inequality of child mortalities in developing countries (27, 38, 46). Our findings also showed that the birth’s order, mother's age, parity, mother’s occupation and household’s size are major contributors of inequalities of child mortalities by decomposition analysis of concentration index in the countries concerned by the study. Surprisingly, our results do not confirm a strong relationship between the mother’s educational level and location of residence and inequalities in under-five mortality in the countries concerned. Such result was also found in recent research (32,47,48).

Conclusion

The most important conclusion of this study is to reduce mortality in children under 5 years, it is needed to reduce economic and social inequalities and improve the country’s economic and social condition. Tackling under-five inequalities of child mortality could therefore be through specific actions in country level and by stressing family planning programs aimed at promoting the reduction of number of births per women and by increasing women empowerment in economic activities.

Ethical considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Acknowledgements

Authors would like to thank the Macro International for providing latest Demographic and Health Surveys data. Authors would like to thank Tsawe Mluleki, Statistics South Africa for his valuable assistance. The authors declare that there is no conflict of interests.

References

1. Hulme D (2009). The millennium development goals: a short history of the world’s biggest promise. Available from: www.google.com
2. Houweling TAJ, Kunst AE (2010). Socio-economic inequalities in childhood mortality in low- and middle-income countries: a review of the international evidence. Br Med Bull, 93:7–26.
3. Houweling TA, Ronsmans C, Campbell OM, Kunst AE (2007). Huge poor-rich inequalities in maternity care: an international comparative study of maternity and child care in developing countries. Bull World Health Organ, 85(10):745–54.
4. McKinnon B, Harper S, Kaufman JS, Bergevin Y (2014). Socioeconomic inequality in neonatal mortality in countries of low and middle income: a multi country analysis. *Lancet Glob Health*, 2(3):e165–73.

5. UNICEF (2012). S’engager pour la survie de l’enfant: une promesse renouvelée. New York, NY 10017, États-Unis. Available from: http://www.unicef.ca/fr/centre-de-presse/article/publications.

6. Programme des Nations Unies pour le développement (2013). Rapport sur le développement humain 2013. Available from: http://hdr.undp.org/fr/content.

7. Bhattacharya PC, Chikwama C (2012). Economics discussion papers inequalities in child mortality in India: a district-level analysis inequalities in child mortality in India: a district-level analysis. Edinburgh. Report No: 2012-02. http://www.hw.ac.uk/schools/management.

8. Cleland J, Bicego G, Fegan G (1992). Socioeconomic inequalities in childhood mortality: the 1970s to the 1980s. *Health Transition Review*, 1-18.

9. Lauridsen J, Pradhan J (2011). Socio-economic inequality of immunization coverage in India. *Health Econ Rev*, 1(1), 1-6.

10. Minujin A, Delamonica E (2004). Socio-economic inequalities in mortality and health in the developing world. *Demographic Res*, 2(13), 331-354.

11. Mustafa HE, Odimegwu C (2008). Socioeconomic determinants of infant mortality in Kenya: analysis of Kenya DHS 2003. *J Humantit Soc Sci*, 2, 1934-722.

12. Razzaque A, Sistratt PJ, Gwatkin DR (2007). Does health intervention improve socioeconomic inequalities of neonatal, infant and child mortality? evidence from Matlab, Bangladesh. *Int J Equity Health*, 6:4.

13. Akoto E, Tambe A (2002). Socioeconomic inequalities in infant and child mortality among urban and rural areas in sub-Saharan Africa. IUSSP. http://www.demogr.mpg.de/Papers/workshops/020619_paper01.pdf.

14. Fotso JC (2015). Child health inequalities in developing countries: differences across urban and rural areas. *Int J Equity Health*, 5, 10.

15. Adedini SA, Odimegwu CO, Ononokpono D, Ibisomlu I, Bob C, Imasiku E (2012). Regional inequalities in under-five mortality in Nigeria: a multilevel analysis. *Population association of America 2012 annual meeting. San Francisco; 2012, p. 1–32. www.google.com.

16. Antai D (2011). Inequalities in under-5 mortality in Nigeria: do ethnicity and socioeconomic position matter? *J Epidemiol*, 21(1), 13-20.

17. Akinyemi J, Bangboy E, Ayeni O (2013). New trends in under-five mortality determinants and their effects on child survival in Nigeria: a review of childhood mortality data from 1990-2008. *Afr Population Stud.*, 27:1.

18. Amin R, Shah NM, Becker S (2010). Socioeconomic factors differentiating maternal and child health-seeking behavior in rural Bangladesh: a cross-sectional analysis. *Int J Equity Health*, 9(9), 1-12.

19. El Arifeen S, Baqui AH, Victora CG, Black RE, Bryce J, Hoque DME, Siddiqi A (2008). Sex and socioeconomic differentials in child health in rural Bangladesh: findings from a baseline survey for evaluating integrated management of childhood illness. *J Health Population Nutr*, 26(1), 22.

20. Arokiasamy P, Jain K, Goli S, Pradhan J (2013). Health inequalities among urban children in India: A comparative assessment of empowered action group (EAG) and south Indian states. *J Biosocial Sci*, 45(02), 167-185.

21. Arokiasamy P, Pradhan J (2011). Measuring wealth-based health inequality among Indian children: the importance of equity vs efficiency. *Health Policy Plan*, 26(5):429-40.

22. Asamoah BO, Agardh A, Ostergren PO (2013). Inequality in fertility rate and modern contraceptive use among Ghanaian women from 1988–2008. *Int J Equity Health*, 12, 37.

23. Barros FC, Victora CG, Scherpber R, Gwatkin D (2010). Socioeconomic inequalities in the health and nutrition of children in low/middle income countries. *Revista de Saude Publica*, 44(1), 1-16.

24. Kumar A, Singh A (2013). Decomposing the gap in child mortality and nutrition between poor and non-poor in urban India, 2005-06. *PLoS ONE*, 8(5): e64972.

25. Pradhan J, Arokiasamy P (2010). Socio-economic inequalities in child survival in India: a decomposition analysis. *Health Policy*, 98(2), 114-120.

26. Wagstaff A, Van Doorslaer E, Watanabe N (2003). On decomposing the causes of health sector inequalities with an application to malnutrition inequalities in Vietnam. *J Econ*, 112(1), 207-223.

27. O’Donnell O, van Doorslaer E, Wagstaff A, Lindelow M (2007). Analysing health equity using...
household survey data: a guide to techniques and their implementation. Washington, DC: World Bank. Available from: www.google.com.

28. Wagstaff A, Van Doorslaer E (2000). Income inequality and health: what does the literature tell us? *Ann Rev Public Health*, 21(1), 543-567.

29. Fonds international de développement agricole (2001). Evaluation de la pauvreté rurale en Afrique de l’ouest et du Centre. 2001. 130 p. Available from: www.google.com

30. Boco GA. Déterminants individuels et contextuels de la mortalité des enfants de moins de cinq ans en Afrique au sud du Sahara. Analyse comparative des enquêtes démographiques et de santé. [Ph D Thesis]. Université de Montréal; 2011.

31. Fotso JC, Kuate-Defo B (2005). Socioeconomic inequalities in early childhood malnutrition and morbidity: modification of the household-level effects by the community SES. *Health and Place*, 11(3), 205-225.

32. Ssewanyana S, Kasirey I (2012). Causes of health inequalities in Uganda: evidence from the demographic and health surveys. *Afr Develop Rev*, 24(4), 327-341.

33. Måkvist M, Hoa DTP, Thomsen S (2012). Causes and determinants of inequity in maternal and child health in Vietnam. *BMC Public Health*, 12(1), 641.

34. Van de Poel E, O’Donnell O, Van Doorslaer E (2009). Infant mortality: household or community characteristics? *Demography*, 46(4):827-50.

35. Wagstaff A (2002). Inequalities in health in developing countries: swimming against the tide? (Vol. 2795). *World Bank Publications*. Available from: www.google.com.

36. Kanté A, Helleringer S, Honorati Masanja (2012). Socioeconomic inequalities in child mortality in three rural Tanzanian districts. Population association of America 2013, annual meeting. New Orleans, LA: 2013. page 1–4. Available: http://paa2013.princeton.edu/abstracts/131665.

37. Van Malderen C, Van Oyen H, Speybroeck N (2013). Contributing determinants of overall and wealth-related inequality in under-5 mortality in 13 African countries. *J Epidemiol Commun Health*, 67:667-676.

38. Wagstaff A (2002). Pauvreté et inégalités dans le secteur de la santé. Bulletin de l’Organisation mondiale de la santé-recueil d’articles, 7, 100-108.

39. Ogunjuyigbe PO (2004). Under-five mortality in Nigeria: perception and attitudes of the yorubas towards the existence of “Abiku”. *Demographic Res*, 11(2), 43-56.

40. Liu X, Gao W, Yan H (2014). Measuring and decomposing the inequality of maternal health services utilization in western rural China. *BMC Health Services Research*, 14(1), 102.

41. Hosseinpoor AR, Van Doorslaer E, Speybroeck N et al. (2006). Decomposing socioeconomic inequality in infant mortality in Iran. *Int J Epidemiol*, 35(5), 1211-1219.

42. Yiengprugsawan V, Lim LL, Carmichael GA, Siddoreno K, Sleigh AC (2007). Measuring and decomposing inequity in self-reported morbidity and self-assessed health in Thailand. *Int J Equity Health*, 6(1), 23.

43. Yiengprugsawan V, Lim LL, Carmichael GA, Dear K B, Sleigh AC (2010). Decomposing socioeconomic inequality for binary health outcomes: an improved estimation that does not vary by choice of reference group. *BMC Research Notes*, 3(1), 57.

44. Van Malderen C, Ogali I, Khasakhala A et al. (2013). Decomposing Kenyan socio-economic inequalities in skilled birth attendance and measles immunization. *Int J Equity Health*, 12(5), 1-13.

45. Adedini SA, Odimegwu C, Bamiwuye O, Fadeyibi O, De Wet N (2014). Barriers to accessing health care in Nigeria: implications for child survival. *Global Health Action*, 7.

46. Mosley WH, Chen LC (1984). An analytical framework for the study of child survival in developing countries. *Population Develop Rev*, 25:45.

47. Amouzou A, Hill K (2004). Child mortality and socioeconomic status in sub-Saharan Africa. *Afr Population Stud*, 19(1). http://www.medcol.mw/globalhealth/uploads/Amouzou.pdf

48. Amouzou A, Kozuki N, Gwatkin DR (2014). Where is the gap?: the contribution of disparities within developing countries to global inequalities in under-five mortality. *BMC Public Health*, 14(1), 216.

Available at: http://ijph.tums.ac.ir