Abstract

Coupling is a challenge in software engineering, because errors or failures compromise the whole software execution. To address this issue in the healthcare domain, a Decoupled Health Software Architecture (DHSA) is proposed in this paper. This study presents the development of three components, a tool, and a formal metric. The Connector, Container and Archetype-based microservice (Archemicro) components make the DHSA, which is dynamically generated by the Microservice4EHR tool. For assessing, a legacy software used in Brazilian hospitals is migrated to the DHSA. A comparison is performed between three tools (MARCIA, Template4EHR, and EhrScape). The Archetype-based Software Architecture Coupling (ASAC) is a formal metric to measure the coupling level of Health software architectures. As a result, DHSA increases by 66.6% the decoupling index of the healthcare software. The healthcare domain therefore is benefited with a software architecture that maintains the software operation even if a component from the software architecture causes errors.
References

1. Pressman, R., Maxim, B. (2019) Software Engineering: A Practitioner's Approach. McGraw-Hill Education, ISBN: 1259872971.
2. Bass, L., Clements, P. and Kazman, R. (2012). Software Architecture in Practice (3rd ed.). Addison-Wesley Professional.
3. Cha, J., Kim, J., and Jeong, Y. (2016). "Architecture Based Approaches Supporting Flexible Design of Self-Adaptive Software," 2016 Int. Conf. on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, pp. 1424-1425. doi: 10.1109/CSCI.2016.0280.
4. Bjuhr, O., Segeljakt, K., Addibpour, M., Heiser, F. and Lagerström, R. (2017) "Software Architecture Decoupling at Ericsson," 2017 IEEE Int. Conference on Software Architecture Workshops (ICSAW), Gothenburg, 2017, pp. 259-262. doi: 10.1109/ICSAW.2017.7.
5. Knoche, H. and Hasselbring, W. (2018) "Using Microservices for Legacy Software Modernization," in IEEE Software, vol. 35, no. 3, pp. 44-49, May/June 2018. doi: 10.1109/MS.2018.2141035.
6. Qian, K., Liu, J., and Tsui, F. (2006) "Decoupling Metrics for Services Composition," 5th IEEE/ACIS Int. Conference on Computer and Information Science and 1st IEEE/ACIS Int. Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR'06), Honolulu, HI, 2006, pp. 44-47. doi: 10.1109/ICIS-COMSAR.2006.30.
7. Megha Mayreddy and B. Tarakeswara Rao. (2015) Secure SOA Framework for Multi-Cloud Storage and Computing. International Journal of Computer Applications 114(8):10-16, March.
8. Kakivaya, G., Xun, L., Hasha, R., et al., (2018) "Service fabric: a distributed platform for building microservices in the cloud," in Proceedings of the 13 EuroSys Conf. (EuroSys '18). ACM, New York, NY, USA, 2018, Article 33, 15 pages. DOI: 10.1145/3190508.3190546.
9. OpenEHR Foundation (2020). OpenEHR. Accessed on: Apr. 26, 2020. [Online]. Available: https://www.openehr.org.
10. Think!EHR Platform (2017) EHR Scape. Accessed on: Apr. 26, 2020. [Online]. Available: https://www.ehrscape.com.
11. Gomes, F., Paiva, J., Bezerra, A. et al. (2018) "MARCIA: Applied Clinical Record Management : Electronic Health Record Applied with EHRServer," 2018 IEEE 20th Int. Conf. on e-Health Networking, Applications and Services (Healthcom), Ostrava, 2018, pp. 1-6. doi: 10.1109/HealthCom.2018.8531096.
12. Araujo, A., Times, V. and Silva, M. (2020) "A Tool for Generating Health Applications Using Archetypes," in IEEE Software, vol. 37, no. 1, pp. 60-67, Jan.-Feb. 2020. doi: 10.1109/MS.2018.110162508.
13. Brazil Ministry of Health (2002). Ordinance No. 2048. Accessed on: Apr. 26, 2020. [Online]. Available: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2002/pert2048_05_11_2002.html (in Portuguese).
14. Moner, D., Maldonado, J.A., Robles, M. (2018) "Archetype modeling methodology," J. of Biomedical Informatics, Volume 79, 2018, Pages 71-81, ISSN 1532-0464, https://doi.org/10.1016/j.jbi.2018.02.003.
15. Chaitanya K Rudrabhatla. (2018) A Systematic Study of Micro Service Architecture Evolution and their Deployment Patterns. International Journal of Computer Applications 182(29):18-24, November.
16. Larrucea, X., Santamaria, I., Colomo-Palacios, R., et al. (2018), "Microservices," in IEEE Software, vol. 35, no. 3, pp. 96-100, May/June 2018. Doi: 10.1109/MS.2018.2141030.

17. Duftschmid, G., Chaloupka, J. and Rinner, C. (2013) "Towards plug-and-play integration of archetypes into legacy electronic health record systems: the ArchiMed experience," BMC Med Info Decis Mak; 13: 11. doi: 10.1186/1472-6947-13-11.

18. Sundvall, E., Nystrom, M., and Karlsson, D. (2013) "Applying representational state transfer (REST) Architecture to archetype-based electronic health record systems". BMC Medical Informatics and Decision Making. 13:57. DOI: 10.1186/1472-6947-13-57.

19. Frade, S., Freire, S. M., Sundvall, E. et al., (2013) "Survey of openEHR storage implementations," Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, 2013, pp. 303-307. Doi: 10.1109/CBMS.2013.6627806.

20. Araújo, A., Times, V., Silva, M. (2016) "PolyEHR: A Framework for Polyglot Persistence of the Electronic Health Record," 2016 Int. Conf. Internet Computing and Internet of Things. ISBN: 1-60132-439-1. CSREA Press.

21. Muslim, A., Puspitodjati, S., Mutiara, A.B., et al. (2017) "Web services of transformation data based on OpenEHR into Health Level Seven (HL7) standards," 2017 Second International Conference on Informatics and Computing (ICIC), Jayapura, 2017, pp. 1-4. Doi: 10.1109/IAC.2017.8280571.

22. Araújo, A., Times, V., Silva, M. (2018) "A Cloud Service for Graphical User Interfaces Generation and Electronic Health Record Storage". In: Latifi S. (eds) Information Technology - New Generations. Advances in Intelligent Systems and Computing, vol 558. Springer. 2018. Print ISBN: 978-3-319-54977-4.

23. Reis, L. F., Ferreira, D. G., Maranhao, P. A. et al. (2018) "Integration through mapping — An OpenEHR based approach for research oriented integration of health information systems," 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres, 2018, pp. 1-5. doi: 10.23919/CISTI.2018.8399258.

24. Ripple Foundation (2019) Ether CIS. Accessed on: Feb. 02, 2020. [Online]. Available: http://ethercis.org.

25. CaboLabs (2020) CloudEHRServer. Accessed on: Feb. 02, 2020. [Online]. Available: https://cloudehrserver.com.

Index Terms

Computer Science
Information Sciences

Keywords

Health Information Systems (HIS); Distributed Software Architecture; Electronic Health Record (EHR); OpenEHR Archetypes; Microservices.