Review Article

Loop-Mediated Isothermal Amplification for *Salmonella* Detection in Food and Feed: Current Applications and Future Directions

Qianru Yang, Kelly J. Domesle, and Beilei Ge

Abstract

Loop-mediated isothermal amplification (LAMP) has become a powerful alternative to polymerase chain reaction (PCR) for pathogen detection in clinical specimens and food matrices. Nontyphoidal *Salmonella* is a zoonotic pathogen of significant food and feed safety concern worldwide. The first study employing LAMP for the rapid detection of *Salmonella* was reported in 2005, 5 years after the invention of the LAMP technology in Japan. This review provides an overview of international efforts in the past decade on the development and application of *Salmonella* LAMP assays in a wide array of food and feed matrices. Recent progress in assay design, platform development, commercial application, and method validation is reviewed. Future perspectives toward more practical and wider applications of *Salmonella* LAMP assays in food and feed testing are discussed.

Keywords: LAMP, *Salmonella*, detection, food, feed

Introduction

NONTYPHOIDAL *SALMONELLA* is a Gram-negative zoonotic pathogen of substantial public health concern (WHO, 2017). In the 2015 World Health Organization (WHO) estimates of the global burden of foodborne diseases, *Salmonella* ranked first among 22 bacterial, protozoal, and viral agents, reflecting its ubiquitous nature and the severity of illnesses (Kirk *et al.*, 2015).

In the United States, over 75% of *Salmonella* outbreak-associated illnesses were broadly attributed across multiple food categories, including produce, eggs, chicken, pork, and beef (IFSAC 2015, 2017). *Salmonella* is also recognized as a major microbial hazard in animal food, which includes pet food, animal feed, and raw materials and ingredients (EFSA, 2008; FAO/WHO, 2015; FDA, 2017b). Multistate outbreaks of human salmonellosis linked to tainted pet food have been reported (CDC, 2018). Moreover, some *Salmonella* serovars are also major animal pathogens, for example, *Salmonella* Dublin in cattle and *Salmonella* Gallinarum in poultry, resulting in considerable loss in livestock production (Uzzau *et al.*, 2000; FDA, 2013).

To prevent or reduce *Salmonella* outbreaks/illnesses from contaminated human or animal food, vigilant product testing and environmental monitoring for pathogens are critical, as underscored by the Food Safety Modernization Act (FSMA) regulations on preventive controls (FDA, 2017a, b). This highlights the importance and urgency to develop rapid, reliable, and robust methods for *Salmonella* detection in a variety of food and feed matrices.

According to a recent report, the global food microbiology testing for pathogens totaled 280 million tests in 2016, a market valued at $1.8 billion (Ferguson, 2017). This represents an increase of 23.2% in testing volume over a 3-year period. Not surprisingly, *Salmonella* was the target in 43% of all tests performed, followed by *Listeria* and *Listeria monocytogenes* (41%), pathogenic *Escherichia coli* (14%), and *Campylobacter* (2%). A clear shift from traditional methods to rapid methods (e.g., polymerase chain reaction [PCR]) has been the trend observed for all four priority pathogens in the past two decades (Ferguson, 2017).

Loop-mediated isothermal amplification (LAMP) (Notomi *et al.*, 2000) is a novel nucleic acid amplification test (NAAT) that has recently emerged as a powerful alternative to PCR for the rapid detection of various bacterial, fungal, parasitic, and viral agents (Niessen *et al.*, 2013; Li *et al.*, 2017). The first LAMP assay targeting *Salmonella* was reported in 2005 (Hara-Kudo *et al.*, 2005). Since then, dozens of new...
Salmonella LAMP assays have been developed, leading to broad applications in human food and more recently in animal feed.

This review aims to capture international efforts in the past decade on the development and application of Salmonella LAMP assays in food and feed matrices. Future perspectives toward even more practical and wider applications of such assays in food and feed testing are discussed.

LAMP in a Nutshell

LAMP was invented in 2000 by a group of Japanese scientists (Notomi et al., 2000). The mechanism is based on the production of a stem-loop DNA structure during initiation steps, which serves as the starting material for second-stage LAMP cycling (refer to this site (Eiken Chemical Co. Ltd., 2005) for LAMP diagrams and animation). Unlike PCR (Table 1) that relies on thermal cycling to denature DNA and enable amplification by Taq DNA polymerase, LAMP uses a strand-displacing Bst DNA polymerase, which allows autocycling amplification under a constant temperature (60–65°C). This obviates the need for a sophisticated thermocycler. There are four to six specially designed LAMP primers (Nagamine et al., 2002), which target six to eight regions of the template DNA, compared to two primers in PCR (plus one or more probes in real-time PCR where amplification and detection occur simultaneously), ensuring a highly specific assay.

LAMP amplifies the target DNA rather efficiently, with \(10^9\) copies generated within an hour (Notomi et al., 2000). PCR or real-time PCR generally takes 1–2 h (although speedier versions are available now) and the amount of DNA produced is almost 20 times less (Mashooq et al., 2016). LAMP is highly tolerant to biological substances (Kaneko et al., 2007) with robustness demonstrated in both clinical and food applications (Francois et al., 2011; Yang et al., 2014). PCR, on the other hand, is generally susceptible to various assay inhibitors present in complex food or feed matrices (Abu Al-Soud and Radstrom, 2000; Maciorowski et al., 2005). LAMP is also more versatile in terms of amplicon detection methods, which include naked eye, colorimetry, turbidity, fluorescence, and bioluminescence, among many others (Zhang et al., 2014).

These attractive features of LAMP appear to align well with the WHO-outlined ASSURED (which stands for affordable, sensitive, specific, user friendly, rapid and robust, equipment free, and delivered to those who need it) criteria for an ideal diagnostic test (Mabey et al., 2004). As such, LAMP has become a mainstream isothermal NAAT used for low-cost point-of-care (POC) diagnostics and has reached a high level of maturity (Niemz et al., 2011; de Paz et al., 2014). In August 2016, WHO issued a recommendation for a TB-LAMP (LAMP for detection of Mycobacterium tuberculosis) method as a rapid, accurate, and robust replacement test for smear microscopy to diagnose tuberculosis in peripheral health centers (WHO, 2016).

Applications of LAMP also extend to many other fields beyond in vitro diagnostics, as summarized in several recent reviews, such as species authentication and microbiological quality/safety assessment in meats (Kumar et al., 2017), and testing for genetically modified organisms (GMOs), allergens, pesticides, and drug resistance (Kundapur and Nema, 2016). A quick PubMed search using the term “loop-mediated isothermal amplification” returned \(>1,200\) articles, highlighting the great interest in LAMP within the scientific community.

The popularity of LAMP is also reflected in the development of many commercially available systems (Fig. 1). Along with these exciting developments, the LAMP technology has been explored by researchers around the globe for the rapid, reliable, and robust detection of Salmonella in human food and animal food, which is the focus of this review.

Table 1. Technical Comparison Between Loop-Mediated Isothermal Amplification and Polymerase Chain Reaction (or Real-Time Polymerase Chain Reaction)

Assay step	Component	LAMP	PCR or real-time PCR
Amplification	Enzyme	Bst DNA polymerase or equivalent ones	Taq DNA polymerase or equivalent ones
		High strand displacement activity	Thermal cycling requirement (95°C/55°C/72°C)
		Autocycling DNA amplification	
		Isothermal (60–65°C)	
	Primer	Four to six, two are longer ones	Two, plus one or more probes
		(double length, ~40 bp)	(real-time PCR)
	Other reagents	dNTP, buffer, Mg\(^{2+}\), water	dNTP, buffer, Mg\(^{2+}\), water
Detection	Platform	Gel electrophoresis, turbidity, naked eye, colorimetric, fluorescence, bioluminescence, etc.	Gel electrophoresis, fluorescence (real-time PCR)

LAMP, loop-mediated isothermal amplification; PCR, polymerase chain reaction.
Kudo et al. both overlapping with the region (371–655 bp) targeted by a FIP/BIP on the target gene, illustrates the positions of these primers (or components of to accelerate the reaction (Nagamine
rate two loop primers (LF, loop forward; LB, loop backward)
can be used to design two separate LAMP assays for
ery serovar Enteritidis, while
is used to detect Salmonella enterica Enteritidis, while
yph was used to specifically detect Salmonella Typhimurium (Kumar et al., 2014). The sefA gene has been explored to design a LAMP assay for both Salmonella Enteritidis and Salmonella Gallinarum (Gong et al., 2016). An insertion element IS200/ IS1351 gene was used to detect Salmonella O9 serogroup (Okamura et al., 2008), prf (rfbS) for serogroup D (i.e., O9) (Ravan and Yazdanparast 2012a, b), and rfbJ for O4 serogroup (Okamura et al., 2009).

Platform development
LAMP amplicons can be detected through multiple platforms/methods, as reviewed by Zhang et al. (2014), including naked eye, gel electrophoresis, colorimetry, turbidity, fluorescence, bioluminescence, electrochemical sensors/chips.
Study type	Year	Country	Target organism	Target gene	Platform	Detection	Sensitivity	Specificity	Nature or spike	Sensitivity in matrix	References	
1, 3	2005	Japan	Salmonella spp.	invA	Real-time thermal cycler (ABI7700)	Real-time fluorescence (YO-PRO-1 iodide); naked eye (turidity); gel electrophoresis	2.2–10.5 CFU	10×	Liquid eggs	28 CFU/test (500 CFU/mL)	Hara-Kudo et al. (2005)	
3	2005	Japan	Salmonella spp.	invA	Real-time thermal cycler (ABI7700)	N/A	N/A	N/A	Liquid eggs	Natural	1–25 CFU/25 g	Ohtsuka et al. (2005)
1	2008	China	Salmonella spp.	invA	Unspecified	Gel electrophoresis	100 fg	10×	Liquid eggs	N/A	Wang et al. (2008b)	
1, 3	2008	China	Salmonella spp.	invA	Unspecified	Gel electrophoresis; naked eye (turidity)	12 CFU	1000×	Liquid eggs	N/A	Zhu et al. (2008)	
1, 5	2008	Japan	Salmonella O9 group	IS200/IS135I gene	Loopamp realtime turbidimeter	Real-time turbidity	12 CFU	1000×	Chickenecal dropping	N/A	Okamura et al. (2008)	
1, 3	2008	China	Salmonella spp.	invA	Unspecified	Gel electrophoresis	N/A	0.01×	Raw milk	>10CFU/mL	N/A	Wang et al. (2008b)
2, 3	2009	China	Salmonella spp.	invA	In situ LAMP	Inverted fluorescence microscopy (Cy3)	10 CFU	N/A	Eggshell	N/A	Ye et al. (2009)	
1	2009	Japan	Salmonella O4 group	rfbJ	Loopamp realtime turbidimeter	Real-time turbidity	10^6 CFU	100×	N/A	N/A	Okamura et al. (2009)	
3	2009	Japan	Salmonella spp.	invA	Loopamp realtime turbidimeter	Real-time turbidity	N/A	N/A	Various food	N/A	Ueda and Kawanabara (2009)	
1	2009	China	Salmonella spp.	invA	EMA-LAMP	Naked eye (colorimetry-SYBR Green I)	100 fg	>1000×	N/A	N/A	N/A	Lu et al. (2009)
1, 3	2009	China	Salmonella spp.	phoP	Heat block	Naked eye (turidity and colorimetry-SYBR Green I; gel electrophoresis)	35 CFU	N/A	Minced pork and raw milk	Both	Li et al. (2009)	
1	2010	Korea	Salmonella spp.	invA	Thermal cycler (GeneAmp 2700)	Gel electrophoresis	0.21CFU	10,000× × (Real-time PCR)	N/A	N/A	N/A	Ahn et al. (2010)
3	2010	United States	Salmonella spp.	invA	RT-LAMP	Naked eye (turidity); gel electrophoresis	500 CFU (gel electrophoresis); 0.05 CFU (naked eye)	N/A	N/A	Pork	Both	Techathuvanan et al. (2010)
3	2010	China	Salmonella spp.	Unspecified	Water bath	Naked eye (colorimetry-SYBR Green I)	N/A	N/A	Raw meat and dairy product	Both	He et al. (2010)	

(continued)
Study type	Year	Country	Target organism	Target gene	Platform	Detection	Sensitivity	Specificity	Inclusivity	Exclusivity	Nature or spike	No enrichment	With enrichment	Agreement with culture or PCR	References	
1, 3	2010	China	Salmonella	sfdI	Water bath	Naked eye (turbidity and colorimetry-SYBR Green I; gel electrophoresis)	4 CFU	100% (5)	100% (8)	Pork and chicken	Natural	N/A	N/A	100% Agreement with real-time PCR	Yang et al. (2010)	
1	2010	China	Salmonella spp.	iinA	Water bath, heat block	Naked eye (colorimetry and fluorescence-SYBR Green I; gel electrophoresis)	100 CFU or 1 pg	100%	97.8% (225)	100% (28)	N/A	N/A	N/A	N/A	N/A	Zhao et al. (2010)
3	2011	United States	Salmonella spp.	iinA	RT-LAMP	Naked eye (turbidity); gel electrophoresis	N/A	N/A	N/A	Pork carcass and environment	Both	10^6 CFU/500 mL	10^6 CFU/500 mL	Same sensitivity as culture and real-time PCR	Techathuvanan et al. (2011)	
2, 3	2011	China	Salmonella spp.	iinA	In situ LAMP	Inverted fluorescence microscopy (Cy3)	10 CFU	50×	100% (1)	N/A	Eggshell	Spiked	N/A	1 CFU/cm^2	Ye et al. (2011)	
1, 3	2011	United States	Salmonella spp.	iinA	PMA-LAMP on Looppamp real-time turbidimeter (LA-320C)	Real-time turbidity; naked eye (colorimetry and fluorescence-SYBR Green I; gel electrophoresis)	3.4–34 CFU	100% (28)	100% (25)	Produce (cantaloupe, spinach, and tomatoes)	Spiked	6.1 × 10^3–6.1 × 10^6 CFU/g	40 CFU/g	Comparable to PMA-real-time PCR	Chen et al. (2011)	
1, 3	2011	China	Salmonella spp., Shigella spp.	iinA, ipaH	Multiplex LAMP-RFLP	Naked eye (turbidity); gel electrophoresis; RFLP	100 fg	10×	100% (8)	100% (12)	Milk	Spiked	N/A	5 CFU/10 mL	N/A	Shao et al. (2011)
3	2011	United States	Salmonella spp.	iinA	Thermal cycler (Bio-Rad)	Real-time fluorescence (SYTO-82)	10^4 CFU	0.01 × (Real-time PCR)	99% (19)	100% (48)	Produce	Spiked	N/A	2 CFU/25 g	100% Agreement with BAM, real-time PCR, and RT-PCR	Zhang et al. (2011)
1, 2	2011	United States	Salmonella spp. and five other water-borne pathogens	iinA, phoB	Microfluidic chip and film heater, real-time thermal cycler (Opticon)	CCD camera; real-time fluorescence (SYTO-82)	N/A	Ahmad et al. (2011)								
1, 2, 3	2011	United States	Salmonella spp.	iinA	Handheld device with assimilating probes	Real-time fluorescence (FAM)	76 fg	N/A	N/A	N/A	Chicken	Both	25 CFU	N/A	Comparable to real-time PCR without enrichment; agreeable with PCR and culture in a natural sample after enrichment	Jenkins et al. (2011)
1, 3	2012	China	Salmonella spp.	fimY	Looppamp real-time turbidimeter (LA-320C)	Real-time turbidity; naked eye (colorimetry-SYBR Green I; gel electrophoresis)	13 CFU	10×	100% (81)	100% (20)	Deli meat (chicken, pork, beef, shrimp, and muton)	Both	N/A	6.3 × 10^3 CFU/5 g	100% Agreement with culture, superior than PCR	Zhang et al. (2012b)
1, 5	2012	China	Salmonella spp.	fimY	Unspecified	Gel electrophoresis; naked eye (colorimetry-SYBR Green I)	4.8–6 CFU	10×	100% (86)	100% (23)	Duck organ	Both	6 CFU	N/A	100% Agreement with culture, superior than PCR	Tang et al. (2012)

(continued)
Study type^a	Year	Country^b	Target organism	Target gene^c	Platform	Detection	Sensitivity	Specificity²	Inclusivity¹ (No. of strains)	Exclusivity¹ (No. of strains)	Matrix	Nature or spike	No enrichment	With enrichment	Agreement with culture or PCR	Sensitivity in matrix	References
3	2012	United States	Salmonella spp.	imA	RT-LAMP	Gel electrophoresis	5×10^2 CFU	N/A	N/A	N/A	Both	Liquid whole eggs	10^4 CFU/25 mL	10^6 CFU/25 mL	Higher sensitivity in culture	N/A	Techathivanan and D'Souza (2012), Hsieh et al. (2012)
2	2012	United States	Salmonella spp.	imA	Microfluidic chip and heat block	Electrochemical reporter (methylene blue); gel electrophoresis	16 CFU	N/A	N/A	100% (2)	N/A	N/A	N/A	N/A	N/A	Superior performance than PCR	
1, 3	2012	Iran	Salmonella spp.	pv (rfbS)	Thermal cycler (Veriti), water bath	Naked eye (turbidity); gel electrophoresis	10 CFU	10^2 x	100% (5)	100% (4)	Chicken meat	Spiked	N/A	1–5 CFU/250 mL	N/A	Ravan and Yazdanparast (2012b)	
1, 3	2012	China	Salmonella spp.	hisI	Thermal cycler (Veriti), water bath	Naked eye (turbidity and colorimetry - SYBR Green I); gel electrophoresis	16 CFU	10^2 x	100% (79)	100% (23)	Pork, chicken, and vegetable	Natural	N/A	N/A	N/A	Superior performance than PCR	
2, 3	2012	Iran	Salmonella spp.	pv (rfbS)	LAMP-ELISA; gel electrophoresis	4 CFU	10^2 x	100% (5)	100% (4)	Meat	Spiked	10^2 CFU/mL, 10^4 CFU/mL	N/A	Ravan and Yazdanparast (2012a), Jiang et al. (2012)			
1, 3	2012	China	Salmonella spp., Shigella spp., X. aureus	imA	Multiplex LAMP-sequencing	Naked eye (turbidity); gel electrophoresis	10 fg	10,000 \times	100% (14)	100% (19)	Milk, pork, egg, and chicken	Natural	N/A	N/A	N/A	Superior performance than PCR	
2	2012	United States	Salmonella spp., Campylobacter jejuni, Shigella, Vibrio cholerae	imA, phoP	Microfluidic chip and chip cartridge	Real-time fluorescence (SYTO-82)	10 CFU (imA), 10^2 CFU (phoP)	N/A	Jiang et al. (2012)								
6	2012	Greece	Salmonella spp.	imA	Thermal cycler (MJ Mini)	Gel electrophoresis; naked eye colorimetry and fluorescence)	N/A	N/A	100% (50)	100% (10)	N/A	Ziros et al. (2012)					
1, 3	2013	China	Salmonella spp.	imA	Unspecified	Gel electrophoresis	N/A	N/A	100% (7)	100% (13)	Raw milk	Both	6–9 CFU	N/A	Without enrichment, 89.5% concordance with ISO 6579, 100% concordance with enrichment		
3	2013	Italy	Salmonella spp.	imA	3M MDS (prototy)	Real-time bioluminescence	N/A	N/A	N/A	N/A	Retail meat (fresh and prepared)	Natural	N/A	<0.3–2.1 MPN/g	78.9% for LAMP and 90.5% for ISO 6579	Bonardi et al. (2013)	
2, 3	2013	United States	Salmonella spp.	imA	Noninstrumented nucleic acid amplification (NINA) device (Thermos bottle)	Endpoint fluorescence (FAM)	92 fg	N/A	N/A	N/A	Milk	Spiked	2.8×10^4 CFU/mL	1.4 CFU/mL	Kubota et al. (2013)		

(continued)
Study type	Year	Country	Target organism	Target gene	Platform	Detection	Sensitivity	Specificity	Nature or spike	References					
1, 2, 5	2013	United States	Salmonella spp.	recF	IMED chip and E-DNA sensor	N/A	N/A	N/A	Whole blood of mice	Patterson et al. (2013)					
1, 3	2013	Korea	Salmonella spp.	imA	OptiGene Genie II	3.2 CFU	100×	100% (56) 100% (12)	Duck carcass	Both	3.2 × 10^3 CFU/mL 3.2 CFU/mL	Cho et al. (2013)			
2	2013	United States	Salmonella spp., Escherichia coli O157, Listeria monocytogenes	imA	Microfluidic chip and heater	N/A	Duarte et al. (2013)								
3	2013	United States	Salmonella spp.	imA	Loopamp real-time turbidimeter (LA-320C)	1 CFU	100×	100% (33)	Shell egg	Spiked	10^4 CFU/25 mL 10^5 CFU/25 mL	Yang et al. (2013)			
3, 4	2013	United States	Salmonella spp.	imA	3M MDS	Real-time bioluminescence	N/A	N/A	N/A	Ground beef and wet dog food	Spiked	N/A	0.72 CFU/375 g	No significant difference in the number of positive samples compared to USDA or FDA reference methods	Bird et al. (2013)
6	2013	Papua New Guinea	Salmonella spp., Shigella spp., V. cholerae	phoP	Loopamp endpoint turbidimeter	48 CFU	0.1 × (Real-time PCR)	N/A	Soj et al. (2013)						
1, 3	2014	India	Salmonella Typhimurium	typh	Unspecified	2 pg	100×	100% (28) 100% (28)	Chicken meat	Natural	N/A	100% Agreement with culture and PCR	Kumar et al. (2014)		
3	2014	United States	Salmonella spp.	imA	Loopamp real-time turbidimeter (LA-320C)	N/A	N/A	N/A	Meat, chicken, egg, peanut butter, and produce	Spiked	N/A	N/A	More robust than PCR or real-time PCR for food applications	Yang et al. (2014)	
2	2014	United States	Salmonella spp.	imA	UDG-LAMP	Naked eye (colorimetry and fluorescence-calcine); gel electrophoresis	4 × 10^4 CFU	N/A	Hsieh et al. (2014)						
3	2014	United States	Salmonella spp.	imA	Loopamp real-time turbidimeter (LA-501)	N/A	N/A	N/A	Meat and produce	Spiked	N/A	1 CFU/test portion	100% Agreement with LAMP in contrast to 24 samples positive by PCR (different DNA extracts were used)	Bapanpally et al. (2014)	
6	2014	South Africa	Salmonella spp., Listeria, E. coli O157:H7	imA	3M MDS	Real-time bioluminescence	N/A	N/A	N/A	Wastewater and river water	Natural	N/A	N/A	8 Samples positive by LAMP in contrast to 24 samples positive by PCR (different DNA extracts were used)	Loff et al. (2014)

(continued)
Study type	Year	Country	Target organism	Target gene	Sensitivity	Specificity	Inclusivity (No. of strains)	Exclusivity (No. of strains)	Matrix	Nature or spike	No enrichment	With enrichment	Agreement with culture or PCR	References		
1	2014	China	Salmonella spp., *invA* E. coli O157, Listeria, *Pseudomonas aeruginosa*, Vibrio para-hamolyticus	Unspecified	N/A	N/A	100% (40)	100% (22)	N/A	N/A	N/A	N/A	N/A	Deng et al. (2014)		
2	2015	United States	Salmonella spp., *invA*	3M MDS Real-time bioluminescence	N/A	N/A	N/A	N/A	N/A	Ground beef and wet dog food	Spiked	N/A	N/A	Bird et al. (2014)		
3	2015	Malaysia	Salmonella spp., *fadA*	Loopamp real-time turbidimeter (LA-500) Duplex LAMP on real-time thermal cycler (qQ5) Microfluidic CD and heater	5 CFU	10×	100% (44)	100% (9)	N/A	N/A	N/A	N/A	N/A	Zhuang et al. (2014)		
4	2015	Denmark	Salmonella spp., *invA*	Microfluidic chip and heater	N/A	N/A	N/A	N/A	N/A	Pork	N/A	N/A	N/A	Uddin et al. (2015)		
5	2015	United States	Salmonella spp., *invA*	Loopamp real-time turbidimeter (LA-320C)	1.8–4 CFU	1–10×(Real-time PCR)	100% (151)	100% (27)	Produce (cantaloupe, pepper, lettuce, sprout, and tomato)	Spiked	10^6 CFU/25 g	$1.1–2.9$ CFU/25 g	Yang et al. (2015)			
6	2015	United States	Salmonella spp., *invA*	Unspecified	N/A	N/A	100% (102)	100% (57)	Pork	Both	220 CFU/g	2 CFU/g	Srisawat and Panbangred (2015)			
7	2015	Thailand	*Salmonella* spp, *stn*	Real-time thermal cycler (Applied Biosystems StepOne)	5 fg, 1 CFU	N/A	100% (102)	100% (57)	Pork	Both	220 CFU/g	2 CFU/g	Srisawat and Panbangred (2015)			
8	2015	China	*Salmonella* spp., *invE*, *fliC*, *lygD*, STM495	1 pg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Wang et al. (2015)			
9	2015	China	*Salmonella* spp., *invE*, *fliC*, *lygD*, STM495	13.3–20 CFU/mL	10–100×	100% (3)	100% (7)	Pork	Spiked	16.7–26.7 CFU/mL	N/A	Chen et al. (2015)				
Study type	Year	Country	Target organism	Target gene	Platform	Detection	Sensitivity	Specificity	Inclusivity (No. of strains)	Exclusivity (No. of strains)	Matrix	Nature or spike	No enrichment	With enrichment	Agreement with culture or PCR	References
------------	------	---------	-----------------	-------------	----------	-----------	-------------	------------	----------------------------	-----------------------------	--------	----------------	--------------	----------------	---------------------------	------------
2	2015	United States	*Salmonella* spp., *E. coli*, viruses, human sequences	*invA*	LAMP-PIBA	Optical detection of PIBA using a cell phone	N/A	DeVall et al. (2015)								
3	2015	Singapore	*Salmonella* spp., *imA*	*invA*	3M MDS	Real-time bioluminescence	N/A	N/A	N/A	N/A	Duck wing, mung bean sprout, and fishball produce	Both	N/A	10⁰ CFU/25g	Lim et al. (2015)	
3	2015	Greece	*Salmonella* spp., *L. monocytogenes*	*invA*	Real-time thermal cycler (Roche Light Cycler Nano)	Real-time fluorescence; gel electrophoresis; naked eye (fluorescence-SYBR Green I)	N/A	N/A	100% (3)	RTE produce	Spiked	2×10⁴–1×10⁷ CFU/g	1–3 CFU/g	N/A	Birmpa et al. (2015a)	
3	2015	United States	*Salmonella* spp., *imA*	*invA*	Real-time thermal cycler (MJ DNA Engine Opticon 2)	Real-time fluorescence; gel electrophoresis; naked eye (fluorescence-SYBR Green I)	4 CFU	N/A	N/A	Lettuce	Spiked	4 CFU/g (10 CFU/reaction)	N/A	N/A	Wu and Levin (2015)	
2, 3	2015	Greece	*Salmonella* spp., *L. monocytogenes, adenovirus*	*invA*	Custom-made LAMP platform	Real-time fluorescence; gel electrophoresis; naked eye (fluorescence-SYBR Green I)	N/A	N/A	N/A	RTE produce	Spiked	10⁶–10⁷ CFU/g	N/A	N/A	Birmpa et al. (2015b)	
6	2015	United States	*Salmonella* spp., *imA*	*invA*	Real-time thermal cycler (MJ DNA Engine Opticon 2)	Real-time fluorescence (Midori Green); end-point turbidity; gel electrophoresis	7 CFU	N/A	Wu et al. (2015a)							
3	2015	China	*Salmonella* spp., *imA*	*invA*	EMA-LAMP and PMA-LAMP on real-time thermal cycler (MJ DNA Engine Opticon 2)	Real-time fluorescence (Midori Green); gel electrophoresis	N/A	N/A	N/A	Lettuce	Spiked	25 CFU/50 g (6 CFU/reaction)	N/A	N/A	Wu et al. (2015b)	
4	2015	United Kingdom	*Salmonella* spp., *imA*	*serA*	Duplex LAMP on OptiGene Genie II	Real-time fluorescence	3.3×10⁴ CFU	N/A	N/A	Animal feed ingredient	Both	N/A	N/A	100% Agreement with ISO 6579:2002	D’Agostino et al. (2015)	
6	2015	Poland	*Salmonella* spp., *imA*	*serA*	Unspecified	Gel electrophoresis	N/A	Futoma-Koloch et al. (2015)								
1, 3	2015	China	*Salmonella* spp., *Shigella* spp., *imA*	*invA*	Loopamp realtime turbidimeter (LA-320C)	Real-time fluorescence (HEX); naked eye (colorimetry-calcium); gel electrophoresis	125 fg	100% (15)	100% (39)	Milk	Spiked	3.2×10² CFU/mL	N/A	10× (Real-time PCR)	D’Agostino et al. (2015)	
1, 2	2016	Korea	*Salmonella* spp., *serA*	*serA*	Microfluidic device (centrifugal) and lab oven	Naked eye (EBT); UV-Vis spectrophotometry	N/A	Oh et al. (2016b)								
1	2016	China	*Salmonella* spp., *imA*	*lmoA*	Unspecified	Naked eye (colorimetry and fluorescence); gel electrophoresis	200 CFU	100% (4)	100% (7)	N/A	N/A	N/A	N/A	N/A	Xiong et al. (2016)	

(continued)
Study type	Year	Country	Target organism	Target gene	Platform	Detection	Sensitivity	Specificity	Nature or spike	Sensitivity in matrix	References					
2, 3	2016	Canada	*Salmonella* Enteritidis	*salB*	LAMP-SERS	SERS; gel electrophoresis	0.132 CFU	100×	100% (4)	Milk Spiked	6×10^{1} CFU/mL	N/A	Draz and Lu (2016)			
1, 3	2016	China	*Salmonella* spp.	*gen-02181533*	Unspecified	Naked eye (turbidity and colorimetry-calcein); gel electrophoresis	1.586 CFU, 11.52 g	100-10,000×	100% (32)	Milk and meat	Both	0.81 CFU/mL	Li et al. (2016)			
1, 5	2016	China	*Salmonella* Enteritidis, *Salmonella* Gallinarum	*sefA*	Loopamp real-time turbidimeter (LA-500)	Real-time turbidity; gel electrophoresis	4 CFU	10×	100% (163)	Chicken feces Spiked	400 CFU	N/A	Gong et al. (2016)			
2	2016	Spain	*Salmonella* spp., *E. coli*	*invA*	In-disc LAMP (iD-LAMP)	Naked eye (turbidity-direct and PEI); UV-Vis spectrophotometry	5 CFU	N/A	100% (7)	N/A	N/A	N/A	Santiago-Felipe et al. (2016)			
1, 2, 3	2016	Korea	*Salmonella* spp., *E. coli O157:H7*, *L. monocytogenes*, *V. parahaemolyticus*	*invA*	Microfluidic device (centrifugal) and miniaturized rotary instrument with heat blocks	Naked eye (colorimetry-EBT); UV-Vis spectrophotometry	N/A	N/A	N/A	Milk Spiked	N/A	N/A	Oh et al. (2016a)			
1, 2, 3	2016	Malaysia	*Salmonella* spp.	*invA*	Microfluidic CD and hot air gun	Naked eye (colorimetry-SYBR Green I)	12.5 pg	N/A	100% (6)	Tomato Spiked	3.4×10^{6} CFU/mL	N/A	Sayad et al. (2016)			
2	2016	China	*Salmonella* spp., *Bacillus cereus*, *E. coli*, *Vibrio fluvialis*, *V. parahaemolyticus*	*invA*	Microfluidic chip (SlipChip) and custom heater	Naked eye (fluorescence-calcein); CCD camera; inverted fluorescence microscope; gel electrophoresis	N/A	N/A	N/A	N/A	N/A	N/A	Xia et al. (2016)			
1, 2, 3, 4	2016	United States	*Salmonella* spp.	*invA*	3M MDS	Real-time bioluminescence	36 CFU	N/A	100% (15)	Food and feed Spiked	103-106 CFU/25 g	N/A	Yang et al. (2016)			
3	2016	United States	*Salmonella* spp.	*invA*	3M MDS	Real-time bioluminescence	N/A	N/A	N/A	Ground beef and peanut butter Spiked	1-3 CFU/25 g	N/A	Bird et al. (2016)			
1, 5	2016	India	*Salmonella* spp.	*invA*	Real-time thermal cycler (Agilent Mx3000P)	Real-time fluorescence; naked eye (turbidity, colorimetry, and fluorescence-SYBR Green I)	10 CFU	10× (Real-time PCR)	100% (12)	Fecal sample Natural	N/A	N/A	Masood et al. (2016)			
Study type	Year	Country	Target organism	Target gene	Platform	Detection	Sensitivity	Specificity	Inclusivity (No. of strains)	Exclusivity (No. of strains)	Matrix	Nature or spike	No enrichment	With enrichment	Agreement with culture or PCR	References
-----------	------	---------	-----------------	-------------	----------	-----------	------------	------------	-----------------------------	-----------------------------	--------	----------------	-------------	--------------	--------------------------	------------
3	2016	Poland	Salmonella spp.	invA	3M MDS	Real-time bioluminescence	N/A N/A	N/A N/A	Various food	Natural	Natural	N/A	N/A	N/A	100% Agreement with ISO culture method	Sarowska et al. (2016)
4	2016	United Kingdom	Salmonella spp.	invA	Duplex LAMP on OptiGene Gene II	Real-time fluorescence	N/A N/A	99% (100) 100% (30)	Animal feed ingredient (soya meal)	N/A	1 CFU/100 g	N/A	N/A	Full agreement (RLOD of 1) with ISO 6579 culture method	D’Agostino et al. (2016)	
3	2016	Malaysia	Salmonella spp.	invA	3M MDS	Real-time bioluminescence	N/A N/A	N/A N/A	Poultry and processing environment	Natural	N/A	N/A	N/A	N/A	Substantial agreement with ISO culture method	Abibami et al. (2016)
2	2017	China	Salmonella spp., E. coli, L. monocytogenes, P. aeruginosa, V. parahaemolyticus	invA	Colony LAMP	Naked eye (colorimetry-SYBR Green I); gel electrophoresis	100 CFU 100–1000×	100% (15) 100% (101)	Chicken carcass rinse Human serum	Spiked	1 × 10^5 CFU/mL	N/A	N/A	Full agreement with ISO culture method	Yan et al. (2017)	
1, 3	2017	Korea	Salmonella spp.	invA	PMA-LAMP on OptiGene Gene II	Real-time fluorescence	80 CFU 10×	100% (140) 100% (27)	Chicken carcass rinse Human serum	Spiked	1.3 × 10^4 CFU/mL	N/A	N/A	Youn et al. (2017)		
2, 5	2017	China	Salmonella spp., E. coli, Proteus hauseri, V. parahaemolyticus	invA	In-gel LAMP (gLAMP)	Inverted fluorescence microscopy-calcine	2 CFU/L	N/A N/A	100% (3)	N/A	Spiked					
1, 2	2017	Korea	Salmonella spp., invE E. coli O157:H7, S. aureus	PMA-LAMP on OptiGene Gene II	Real-time fluorescence	CMOS integrated system	N/A N/A	N/A N/A	N/A	N/A	N/A					
6	2017	China	Salmonella spp., becD V. parahaemolyticus	LAMP	Real-time fluorescence	Duplex LAMP	20 pg 1×	100% (7) 100% (12)	N/A	N/A	N/A					
1, 2, 3	2017	China	Salmonella spp.	invA	DNAzyme LAMP (dLAMP)	Naked eye (colorimetry-DNAzyme); gel electrophoresis	0.5 pg	N/A N/A	100% (2)	Pork	Spiked					
3	2017	United States	Salmonella spp.	invA	3M MDS	Real-time bioluminescence	N/A N/A	N/A N/A	Egg products (20 types)	Spiked	1.63–4.18 CFU/25 g	Complete agreement with BAM culture and ANSR (continued)	Hu et al. (2017)			
2, 3	2017	Korea	Salmonella spp., invA V. parahaemolyticus	Salmonella spp.	LAMP-LFD	Lateral flow strip	50 CFU	N/A N/A	Milk	Spiked	10^4 CFU/mL	N/A				
1, 2, 3	2017	China	Salmonella spp.	invA	Integrated rotor microfluidic system	LFD; gel electrophoresis	7.4 × 10^3 CFU 100×	100% (21) 100% (31)	Powdered infant formula	Spiked	2.2 CFU/g	N/A	100% Accuracy	Zhao et al. (2017)		
2	2017	Korea	Salmonella spp., invA E. coli O157:H7, V. parahaemolyticus	Salmonella spp.	Microfluidic device (centrifugal) and lab oven	N/A	N/A N/A	Poultry and eggs	Spiked	4–10 CFU/25 g	>97% Agreement with culture	Garrido-Maestu et al. (2017b)				

(continued)
Study type	Year	Country	Target organism	Target gene	Platform	Detection	Sensitivity	Specificity	Inclusivity (No. of strains)	Exclusivity (No. of strains)	Matrix	Nature or spike	No enrichment	With enrichment	Agreement with culture or PCR	References
2, 3	2017	Portugal	Salmonella spp.	invA	Microfluidic chip and incubator	Naked eye (colorimetry-AuNP); gel electrophoresis	1.3–28 CFU	100% (247)	100% (53)	Chicken, turkey, and eggs	Spiked	N/A	10 CFU/25 g	100% Agreement with culture	Garrido-Maestu et al. (2017a)	
4	2018	United States	Salmonella spp.	invA	OptiGene Genie II, loopamp real-time turbidimeter (LA-500)	Real-time fluorescence; real-time turbidity	2 × 10^3 CFU/mL	N/A	Domesle et al. (2018)							
2	2018	China	Salmonella spp.,	invA	Microfluidic device (hand-powered centrifugal) and pocket warmers	Real-time fluorescence; gel electrophoresis	100% (8)	100% (20)	Chicken meat	Spiked	30 fg/μL	N/A	N/A	Sayad et al. (2018)		
1, 2, 3	2018	Malaysia	Salmonella spp., P. aeruginosa, Streptococcus iniae, Vibrio alginolyticus, V. parahaemolyticus, Vibrio vulnificus	invA	Microfluidic device (centrifugal)	Naked eye (colorimetry-calcine)	1.2–12 CFU	97.4% (114)	100% (69)	Egg products (22 types)	Spiked	N/A	1–5 CFU/25 g	100% Agreement with BAM and real-time PCR	Hu et al. (2018)	
2, 3	2018	Greece	Salmonella spp.	invA	Integrated micro-nano-bio acoustic system	Surface acoustic wave sensor; gel electrophoresis	2 CFU	N/A	N/A	Milk	Spiked	N/A	1 CFU/25 mL	N/A	Papadakis et al. (2018)	
1, 3	2018	China	Salmonella spp.	invA	PMA-LAMP on heat block, real-time thermal cycler (CFX96)	Naked eye (colorimetry-calcine)	1.6 CFU	100% (3)	100% (28)	Eggs, tomato, cucumber, lettuce, dried squid, skim milk powder, and meat	Both	6.3 × 10^3 CFU/mL	6.3 × 10^1 CFU/mL	100% Agreement with BAM and real-time PCR	Fang et al. (2018)	

aStudies focusing on assay development (1), platform development (2), application in food (3), application in feed (4), application in clinical samples (5), and other developments/applications (6).

bWhen authors were from multiple countries, only the corresponding author’s country is listed.

cBy default, the sensitivity (limit of detection) comparison was made to PCR unless specified otherwise.

ANSR, amplified nucleic single temperature reaction; AuNP, gold nanoparticle; BAM, FDA’s Bacteriological Analytical Manual; CCD, charge-coupled device; CFU, colony-forming unit; CMOS, Complementary metal-oxide-semiconductor; EBT, Eriochrome Black T; E-DNA, Electrochemical DNA; ELISA, enzyme-linked immunosorbent assay; EMA-LAMP, ethidium monooxide loop-mediated isothermal amplification; HNB, hydroxy napthol blue; IMED, integrated microfluidic electrochemical DNA; LAMP, loop-mediated isothermal amplification; LFD, lateral flow dipstick; MDS, Molecular Detection System; MPN, most probable number; PCR, polymerase chain reaction; PEl, polyethyleneimine; PiBA, product-inhibited bead aggregation; PMA, propidium monooxide; RFLP, restriction fragment length polymorphism; RGB, red green blue; RLOD, relative level of detection; RTE, ready to eat; RT-LAMP, reverse transcriptase-LAMP; rt-RT-PCR, real-time reverse transcriptase PCR; SERS, surface-enhanced Raman spectroscopy; STIC, Stiga toxin-producing E. coli; UDG-LAMP, Uracil-DNA-glycosylase-supplemented LAMP; UV-Vis, ultraviolet and visible.
lateral flow dipstick (LFD), and enzyme-linked immunosorbent assay (ELISA). Among them, detection by turbidity derived from magnesium pyrophosphate formation (white precipitate) has been the cornerstone of the LAMP technology (Mori et al., 2001).

Recently, we have seen explosive growth in the development and commercialization of LAMP-based microchips and microdevices for POC molecular diagnostics, many using optical and electrochemical methods (Safavieh et al., 2016). Some platforms are geared toward endpoint detection, while others focus on real-time detection. Given the large amount of DNA (10–20 μg/25 μL reaction mix) generated in a LAMP run (Kokkinos et al., 2014), platforms that allow closed-tube detection are highly recommended to prevent cross-contamination.

As shown in Table 2, various platforms/methods have been developed for or adopted by Salmonella LAMP assays over the years. Figure 3 illustrates several examples of the monitoring methods used. In earlier studies, Salmonella LAMP reactions were run in water baths, heat blocks, or thermal cyclers, and detected by naked eye and gel electrophoresis (Table 2). Naked eye monitoring was generally performed in three ways (Zhang et al., 2014): first by observing the white precipitate (turbidity) formed in a LAMP reaction tube (Fig. 3a, top), second by observing the color change post-amplification after adding DNA-binding dyes such as SYBR Green I, either under normal air (colorimetry) or ultraviolet (fluorescence) (Fig. 3a, middle), and third by observing the color change or fluorescence in the LAMP reaction tube with metal indicators (e.g., calcein and hydroxy naphthol blue [HNB]) added during assay preparation (Fig. 3a, bottom). Gel electrophoresis was done postamplification by running an agarose gel and observing the characteristic ladder-like banding pattern of LAMP amplicons (Fig. 3b). Despite being widely used, concerns of introducing ambiguity (in the case of naked eye) or contamination (for gel electrophoresis) render these methods less desirable (Zhang et al., 2014).

Real-time turbidity and real-time fluorescence have gained wide popularity as closed-tube or “one-pot” monitoring methods for Salmonella LAMP, especially with the recent availability of small, portable, robust, and user-friendly instruments (Fig. 1). The LAMP reaction proceeds, turbidity or fluorescence readings are displayed in real time (amplification curves) and corresponding derivative values are plotted automatically at the completion of the run (derivative curves) (Fig. 3c, d). Results are interpreted based on whether these derivative values have reached thresholds set by the machine or user. While no modification to the LAMP reaction mix is needed for turbidity monitoring, to enable fluorescence detection, fluorophores are usually incorporated into the reaction mix or primers.

For turbidimetry-based Salmonella LAMP assays, Loopamp Realtime Turbidimeters LA-320 and LA-500 are commonly used platforms, whereas real-time PCR machines and Genie II have been used to develop several fluorescence-based Salmonella LAMP assays (Table 2). It is noteworthy that on the Genie II platform, an anneal step (from 98°C to 80°C with 0.05°C decrement per second) is included in each run to determine the annealing temperature of LAMP amplicons, which serves as an extra specificity check (Fig. 3d, bottom). Another closed-tube method used recently to monitor Salmonella LAMP reactions is based on bioluminescent assay in real time (BART) (Bird et al., 2013, 2014, 2016; Yang et al., 2016) (Fig. 3e) and performed in small platforms.
FIG. 3. Monitoring methods used to detect LAMP amplicons. (a) Naked eye observation based on white precipitate (Hara-Kudo et al., 2005), DNA dye (SYBR Green I) (Mashooq et al., 2016), and colorimetric indictor (calcein) (Li et al., 2016), respectively; (b) gel electrophoresis (Hara-Kudo et al., 2005); (c) real-time turbidity (Domesle et al., 2018); (d) real-time fluorescence (Domesle et al., 2018); (e) BART (Yang et al., 2016); (f) ELISA (Ravan and Yazdanparast, 2012); (g) LFD (Zhao et al., 2017); and (h) electrochemical method (Hsieh et al., 2012). BART, bioluminescent assay in real-time; ELISA, enzyme-linked immunosorbent assay; LAMP, loop-mediated isothermal amplification; LFD, lateral flow dipstick. Figure reprinted from Hsieh K, et al. 2012, Angewandte Chemie International Edition. Reproduced by permission of John Wiley & Sons, Inc.
such as the 3M Molecular Detection System (MDS) (Fig. 1g). BART monitors the dynamic changes in the level of pyrophosphate produced in a LAMP reaction, which is converted to adenosine triphosphate (ATP) and utilized by firefly luciferase to emit light (Gandelman et al., 2010).

Several platforms also pair Salmonella LAMP assays with other novel detection methods downstream. Referred to as “open-tube” reactions, the process involves transferring LAMP amplicons to a second tube or platform for endpoint detection. Ravan and Yazdanparast (2012a) developed a LAMP-ELISA to detect Salmonella serogroup D by generating digoxigenin-labeled LAMP amplicons followed by hybridization to serogroup-specific oligonucleotide probes coated on a microtiter plate and ELISA readout (Fig. 3f). Draz and Lu (2016) combined LAMP with surface-enhanced Raman spectroscopy (LAMP-SERS) for the specific detection of Salmonella Enteritidis. To enable SERS detection, LAMP amplicons were hybridized with Raman-active Au-nanoprobes followed by nuclease digestion and washes (Draz and Lu, 2016).

More recently, Zhao et al. (2017) explored LFD as a new detection method for Salmonella LAMP (LAMP-LFD) (Fig. 3g). The LAMP FIP and BIP primers were labeled at the 5’ end with biotin and fluorescein isothiocyanate (FITC), respectively. Gold nanoparticles conjugated with anti-FITC antibody were embedded in the conjugate pad during the LFD assembly, whereas streptavidin and anti-mouse secondary antibody were added on the detection region to form the test line and control line, respectively. LAMP amplicons were mixed with a running buffer followed by LFD immersion into the mixture for detection. Noticeably, these open-tube platforms require extensive postamplification manipulations, which are cumbersome, time-consuming, and prone to cross-contamination.

Recently, there have been many LAMP-based microfluidic devices designed for POC and food applications; some have used Salmonella as the model organism to show proof of concept (Table 2). For instance, Hsieh et al. (2012) designed a microfluidic electrochemical quantitative LAMP (MEQ-LAMP) chip (Fig. 4a) that used integrated electrodes to monitor the intercalation of DNA binding dye methylene blue redox reporter molecules into LAMP amplicons in real time. LAMP amplification was correlated with a decrease in the measured current signals (shown in Fig. 3h). Sun et al. (2015) developed an eight-chamber lab-on-a-chip (LOC) system (Fig. 4b) with integrated magnetic bead-based sample preparation and parallel LAMP amplification for Salmonella detection in food. After evaluating several DNA binding dyes, SYTO-62 was chosen for on-chip real-time fluorescence detection. Santiago-Felipe et al. (2016) designed a compact disc microreactor for LAMP (in-disc LAMP, iD-LAMP) (Fig. 4c) and tested Salmonella as proof-of-concept; the reaction was monitored through HNB colorimetry. Park et al. (2017) integrated DNA extraction, LAMP, and colorimetric lateral flow strip into a rotary microfluidic system (Fig. 4d) and demonstrated the parallel detection of Salmonella and Vibrio parahaemolyticus in milk. Very recently, Sayad et al. (2018) developed a centrifugal microfluidic platform (Fig. 4e) by incorporating a calcein-mediated colorimetric and wireless detection method for the parallel detection of E. coli, Salmonella, and Vibrio cholerae in food. Zhang et al. (2018) reported another centrifugal microfluidic platform (Fig. 4f) for parallel detection of six pathogens, Salmonella included, in a hand-powered, electricity-free format. The entire procedure, including nucleic acid purification, LAMP amplification, and visual detection of calcein-based fluorescence signals, is integrated into a microfluidic disc, achieving sample-to-result POC diagnostics (Zhang et al., 2018).

Assay optimization

Attempts to optimize LAMP reagent mix and/or reaction condition have been made in several Salmonella LAMP studies. Upon optimizing all components of a newly developed Salmonella LAMP assay, Chen et al. (2011) concluded that eliminating betaine from the LAMP reagent mix resulted in shorter time-to-positive results and stronger turbidity signals, that is, better amplification efficiency. In another study, the addition of betaine also contributed to a reduction in the amount of LAMP amplicons (Li et al., 2016), whereas Garrido-Maestu et al. (2017b) reported that with betaine, false positive results were generated from nontarget DNA as well as water. Instead, the addition of dimethyl sulfoxide (DMSO) at 7.5% was found to be favorable for LAMP amplification (Garrido-Maestu et al., 2017b).

Multiple Salmonella LAMP studies have confirmed that the incorporation of loop primers significantly decreased the time taken to obtain positive results, often by 20 min or more (Okamura et al., 2009; Zhuang et al., 2014; Mashoor et al., 2016). The reaction time for Salmonella LAMP assays ranges from 25 min to 2 h, and those requiring >60 min usually lacked loop primers (Ye et al., 2011). Running temperatures for the assays fall between 60°C and 65°C, except that 66°C was used in three studies (Gong et al., 2016; Park et al., 2017; Seo et al., 2017).

Assay evaluation

Specificity (inclusivity and exclusivity) and sensitivity (pure culture/DNA and comparison with PCR) evaluations of newly developed Salmonella LAMP assays are usually performed at the time of initial assay development. Unfortunately, these key parameters are missing for quite a few studies, especially those focusing on proof-of-concept POC diagnostics. As shown in Table 2, the number of strains tested for inclusivity (range, 3–247) and exclusivity (range, 1–284) varies vastly among the studies. Many studies did not meet the recommendations of AOAC International (AOAC, 2012) and the International Organization for Standardization (ISO, 2016) on testing at least 100 Salmonella strains of different serovars for inclusivity and at least 30 competitive strains for exclusivity. Although strains belonging to S. enterica subsp. enterica (I) are well represented in inclusivity testing, those belonging to five other subspecies of S. enterica (i.e., salmonae [II], arizonae [IIIa], diarizonae [IIIb], houtenae [IV], and indica [VI]) and Salmonella bongori are seldom tested. Nonetheless, almost all studies uniformly reported 100% inclusivity and 100% exclusivity for respective Salmonella LAMP assays developed, highlighting the highly specific nature of the LAMP technology.

Zhang et al. (2011) reported that one S. enterica subsp. arizonae strain CNM-247 and one S. bongori strain 95-0321 failed to be amplified by the Hara-Kudo’s primer sets, neither did one S. enterica subsp. arizonae strain NCTC 7301 in
FIG. 4. Microfluidic devices designed for LAMP-based detection of Salmonella. (a) MEQ-LAMP (Hsieh et al., 2012); (b) eight-chamber LOC with integrated sample preparation (Sun et al., 2015); (c) iD-LAMP (Santiago-Felipe et al., 2016); (d) integrated rotary microfluidic LAMP (Park et al., 2017); (e) centrifugal microfluidic LAMP (Sayad et al., 2018); and (f) hand-powered centrifugal microfluidic LAMP (Zhang et al., 2018). Figure reprinted in part from Hsieh K, et al. 2012, Angewandte Chemie International Edition. Reproduced with permission of John Wiley & Sons, Inc; and Sun Y, et al. 2015 and Zhang L, et al. 2018. Lab on a Chip. Reproduced with permission of The Royal Society of Chemistry. iD-LAMP, in-disc LAMP; LAMP, loop-mediated isothermal amplification; LOC, lab-on-a-chip; MEQ, microfluidic electrochemical quantitative.
another study (D’Agostino et al., 2016), while successful amplification of seven *S. enterica* subsp. arizonae strains along with 220 *S. enterica* subsp. enterica strains of 39 serovars were shown at the time of assay development (Hara-Kudo et al., 2005). Very recently, Domels et al. (2018) evaluated the specificity of our invA-based *Salmonella* LAMP assay (Yang et al., 2016) (Fig. 2) using 300 bacterial strains (247 *Salmonella* strains of 185 serovars and 53 non-*Salmonella* strains) and demonstrated 100% specificity on both turbidimetry- and fluorescence-based platforms. Eleven *S. enterica* subsp. arizonae strains were tested and when compared to those belonging to other *S. enterica* subspecies, significantly longer time-to-positive results were required for these *S. enterica* subsp. arizonae strains (Domels et al., 2018).

In pure-culture sensitivity testing, the reported limits of detection for all *Salmonella* LAMP assays ranged from 0.132 to 5 × 10^5 colony-forming unit (CFU) per reaction with several reporting a level much lower than 1 CFU (Table 2). Among studies where genomic DNA was tested, the limits of detection fell between 5 fg and 5.6 ng per reaction (Table 2). These are equivalent to a range from 1 CFU to 1 × 10^6 CFU per reaction, assuming one *Salmonella* genome weighs about 5 fg (Malorny et al., 2004). Numerous studies also compared the sensitivity between LAMP and PCR or real-time PCR (Table 2). The superior performance of LAMP (10- to 10,000-fold better sensitivity) over PCR was observed in the majority of studies, while equal (Yang et al., 2010; Liu et al., 2017) or lower sensitivity (0.01-fold) of LAMP to PCR (Wang et al., 2008a) was also reported. On the other hand, real-time PCR had limits of detection rather comparable (within 10-fold difference) to LAMP (Table 2).

Salmonella LAMP Assay Application

Since 2008, the application of *Salmonella* LAMP assays in human food has expanded to numerous food matrices, such as chicken, turkey, pork, beef, produce, and milk. More recently, *Salmonella* LAMP assays have also been applied in animal food, that is, pet food, animal feed, and raw materials and ingredients (D’Agostino et al., 2015; Bird et al., 2016; Yang et al., 2016). Below we present some challenges commonly associated with foodborne pathogen detection and the promise that LAMP offers and some actual applications.

Challenges and promises

Salmonella detection in human and animal food faces many of the same inherent challenges associated with general food testing for pathogens (Ge and Meng, 2009; Wang et al., 2013). Food and feed encompass a wide variety of food matrices, including all the major food categories linked to *Salmonella* outbreak-associated illnesses, for example, produce, eggs, chicken, pork, and beef (IFSAC, 2015, 2017). The most widely adopted assay (in 27 studies) is the one developed by Hara-Kudo et al. (2005) followed by Chen et al. (2011) in 6 studies. While most studies used spiked samples, naturally contaminated samples have been examined. Platforms adopted for these assays are similar to those used in assay development as are the amplicon detection methods (Table 2).

Without enrichment, the reported sensitivity varies greatly, ranging from 2.2 CFU/g to 10^6 CFU/mL (Table 2). Enrichment (4 h to overnight) has been widely adopted and some studies reported probabilities of detection in lieu of limits of detection. The inclusion of an enrichment step clearly increased the ability of LAMP assays to detect *Salmonella* in food; many reported the successful detection of <1 CFU per test portion (in gram or mL) analyzed (Table 2).

Application in food

As shown in Table 2, *Salmonella* LAMP assays have been applied in a wide variety of food matrices, including all the major food categories linked to *Salmonella* outbreak-associated illnesses, for example, produce, eggs, chicken, pork, and beef (IFSAC, 2015, 2017). The most widely adopted assay (in 27 studies) is the one developed by Hara-Kudo et al. (2005) followed by Chen et al. (2011) in 6 studies. While most studies used spiked samples, naturally contaminated samples have been examined. Platforms adopted for these assays are similar to those used in assay development as are the amplicon detection methods (Table 2).

Application in feed

Six recent studies have described the application of *Salmonella* LAMP assays in animal food matrices (Table 2). Notably, the closed-tube Genie II platform for real-time fluorescence detection of LAMP amplicon uses an extra anneal step, which has been explored recently for duplex detection of two targets by using the distinct annealing temperatures of the LAMP products, as described by Liu et al. (2017) for the detection of *Salmonella* and *V. para-haemolyticus* and by D’Agostino et al. (2015) for the detection of *Salmonella* and an internal amplification control (IAC). In the latter study, the IAC sequence was designed so that it could be amplified by the same primer set for *Salmonella*, but with increased G:C content, thereby increasing the annealing temperature of the IAC amplicon by 1.6°C. The assay sensitivity, however, was reduced by 1,000-fold with...
the IAC (D’Agostino et al., 2015). Nonetheless, the ability to incorporate an IAC is especially useful when applying Salmonella LAMP assays in animal food, since it takes longer time to reach positive results in animal food compared to human food, suggesting matrix effects are more pronounced in these matrices (Yang et al., 2016). As in human food applications, with enrichment, Salmonella LAMP assays could detect a few CFUs per animal food portion analyzed (Table 2).

Validation studies

Validation of Salmonella LAMP assays in food and feed matrices (Table 2), which have been put forth to validate the assay performance against well-established reference methods following international guidelines (AOAC, 2012; ISO, 2016). These validation studies, performed at single laboratory, independent laboratory, and collaborative study (inter-laboratory) levels, present rigorous opportunities to test an assay’s inclusivity/exclusivity, sensitivity, and probability of detection in a food or feed matrix (AOAC, 2012; ISO, 2016). For instance, in a dog food matrix study, bulk samples are inoculated at low (0.2–2 CFU/25 g) and high (2–10 CFU/25 g) concentrations, mixed well, and aged for at least 2 weeks to best mimic a natural contamination event (AOAC, 2012). The reference method and the alternative method are then applied to detect Salmonella using either a paired or unpaired study design (ISO, 2016).

In this context, validations of several commercially available Salmonella LAMP detection kits have been completed, including 3M MDA Salmonella in raw ground beef and wet dog food (Bird et al., 2013, 2014), 3M MDA 2—Salmonella in raw ground beef and creamy peanut butter (Bird et al., 2016), and SAS Molecular Tests Salmonella Detection Kit in ground beef, beef trim, ground turkey, chicken carcase rinses, bagged mixed lettuce, and fresh spinach (Bapanpally et al., 2014). Among them, 3M MDA 2—Salmonella has been approved for Official Method of Analysis (OMA) by AOAC International (OMA method No. 2016.01).

It is noteworthy that two Salmonella LAMP assays geared toward applications in animal food have moved forward with such validation efforts. D’Agostino et al. (2016) described the validation of a LAMP/ISO 6579-based method for analyzing soya meal (an animal feed ingredient) for the presence of Salmonella spp. through an interlaboratory trial. The alternative method achieved the same percentage correct identification (full agreement) as the reference method, demonstrating its suitability for adoption as a rapid method for identifying Salmonella in this matrix. In another study (Domesle et al., 2018), we reported the validation of our invA-based Salmonella LAMP assay in multiple animal feed and pet food items by closely following the guidelines (AOAC, 2012; FDA, 2015; ISO, 2016). Compared to the reference method, the relative levels of detection for all animal food items fell within the acceptability limits for an unpaired study (Domesle et al., 2018).

Future Perspectives

In this review, we summarized 100 articles published around the globe between 2005 and 2018 on the development and application of Salmonella LAMP assays in various food and feed matrices (Table 2). LAMP has clearly established itself as a powerful alternative to PCR for the rapid, reliable, and robust detection of Salmonella, with several assays already successfully validated through multilaboratory studies in specific food and feed matrices.

It is a high possibility that scientific and commercial advancements in the LAMP technology, in general, will propel and shape future developments in this field. This includes the development of new LAMP reagents and new platforms to further capitalize on the two most distinctive characteristics of LAMP, that is, rapidity and simplicity (Mori et al., 2013). Already, we have seen many recent developments in new LAMP reagents, particularly enzymes and master mixes, for example, Bst 2.0 and Bst 2.0 WarmStart DNA polymerases (New England Biolabs, Ipswich, MA), GspSSD and Tin DNA polymerases and isothermal master mixes (OptiGene Ltd., West Sussex, United Kingdom), and OmniAmp DNA polymerase and LavaLAMP master mixes (Lucigen Corporation, Middleton, WI), which offer better thermostability, higher amplification efficiency, and are thus more amenable to resource-limited and field conditions. Positive results may be obtained within 5 min using some of these reagents. Lyophilized LAMP reagents have been commercialized for some clinical diagnostic kits (Mori et al., 2013), a reagent format that may be adopted by Salmonella LAMP detection kits for food and feed in the future.

Multiplex LAMP assays are just beginning to be explored (Mayboroda et al., 2018), using release of quenching technology (Tanner et al., 2012), fluorogenic hybridization (Nyan and Swinson, 2015), endonuclease restriction (Wang et al., 2015), assimilating probes (Kubota and Jenkins, 2015), and annealing temperature differentiation (D’Agostino et al., 2015; Liu et al., 2017) to detect multiple targets in a single reaction tube. The latter two techniques have been applied in Salmonella (D’Agostino et al., 2015; Kubota and Jenkins, 2015; Liu et al., 2017). These differ in principle from parallel detection described for many POC microfluidic devices where LAMP reactions for multiple targets are carried out in separate chambers or wells simultaneously. Future developments in chemistries/strategies for multiplex LAMP assays will greatly advance the multiplex LAMP detection of Salmonella (multiple genes or pathogens).

Regarding new platform developments, closed-tube, “one-pot” platforms that allow rapid, sensitive, specific, and real-time amplification and detection in small, portable, robust, and user-friendly instruments will be the mainstream. The development and refinement of microfluidic devices (heat control, fluid manipulation, and monitoring method) will continue at a rather fast speed, focusing on full integration of sample preparation, amplification, and detection on one simple, small, user-friendly microdevice. Improvements in sample throughput and field amenability are also desired.

Special considerations should be given when adopting these new advancements in food and feed testing. In terms of assay development, there is currently a paucity of LAMP primers developed for specific Salmonella serovars other than Salmonella Enteritidis and Salmonella Typhimurium. LAMP assays for Salmonella serovars that are major animal pathogens are also scarce. Progresses in the areas of viable detection (Lu et al., 2009; Chen et al., 2011; Techathuvanan and D’Souza, 2012) and contamination prevention (Hsieh
et al., 2014) have been made and further research is still needed. Simple and effective sample preparation methods, including DNA extraction and storage for field detection are in great demand. Further developments in noninstrumented nucleic acid amplification such as running the assays in a thermos (Kubota et al., 2013) or a pocket warmer (Zhang et al., 2018) will enable field-based food and agricultural diagnostics. Finally, there is an increasing need for matrix-specific validation of newly developed methods. Such validations should follow international guidelines before the methods can be adopted for routine use in food and feed testing.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy of the Department of Health and Human Services, the U.S. Food and Drug Administration, or the U.S. Government. Reference to any commercial materials, equipment, or process does not in any way constitute approval, endorsement, or recommendation by the Food and Drug Administration.

Disclosure Statement
No competing financial interests exist.

References
Abirami N, Nidaullah H, Chuah LO, et al. Evaluation of commercial loop-mediated isothermal amplification based kit and ready-to-use plating system for detection of Salmonella in naturally contaminated poultry and their processing environment. Food Control 2016;70:74–78.
Abu Al-Soud W, Radstrom P. Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J Clin Microbiol 2000;38:4463–4470.
Ahmad F, Seyrig G, Tourlousse DM, Stedtfeld RD, Tiedje JM, Hashsham SA. A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips. Biomed Microdevices 2011;13:929–937.
Ahn Y-C, Cho M-H, Yoon I-K, et al. Detection of Salmonella using the loop mediated isothermal amplification and real-time PCR. J Korean Chem Soc 2010;54:215–221.
AOAC. AOAC INTERNATIONAL Methods Committee Guidelines for Validation of Microbiological Methods for Food and Environmental Surfaces. 2012. Available at: http://www.oma.aoc.org/app_j.pdf Accessed March 1, 2018.
Bapanpally C, Montier L, Khan S, Kasra A, Brunelle SL. Comparison of an isothermal amplification and bioluminescence detection of DNA method and ISO 6579:2002 for the detection of Salmonella enterica serovars in retail meat samples. J Food Prot 2013;76:657–661.
CDC. Reports of Selected Salmonella Outbreak Investigations. 2018. Available at: http://www.cdc.gov/salmonella/outbreaks.html Accessed March 1, 2018.
Chen C, Liu P, Zhao X, Du W, Feng XJ, Liu BF. A self-contained microfluidic in-gel loop-mediated isothermal amplification for multiplexed pathogen detection. Sens Actuators B Chem 2017;239:1–8.
Chen S, Wang F, Beaulieux JC, Stein RE, Ge B. Rapid detection of viable salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification. Appl Environ Microbiol 2011;77:4008–4016.
Chen Z, Zhang K, Yin H, Li Q, Wang L, Liu Z. Detection of Salmonella and several common Salmonella serotypes in food by loop-mediated isothermal amplification method. Food Sci Human Wellness 2015;4:75–79.
Cho AR, Dong HJ, Cho S. Rapid and sensitive detection of Salmonella spp. by using a loop-mediated isothermal amplification assay in duck carcass sample. Korean J Food Sci Anim Resour 2013;33:655–663.
D’Agostino M, Diez-Valcarce M, Robles S, Losilla-Garcia B, Cook N. A loop-mediated isothermal amplification-based method for analysing animal feed for the presence of Salmonella. Food Anal Method 2015;8:2409–2416.
D’Agostino M, Robles S, Hansen F, et al. Validation of a loop-mediated amplification/ISO 6579-based method for analysing soya meal for the presence of Salmonella enterica. Food Anal Method 2016;9:2979–2985.
de Paz HD, Breton P, Munoz-Almagro C. Molecular isothermal techniques for combating infectious diseases: Towards low-cost point-of-care diagnostics. Expert Rev Mol Diagn 2014;14:827–843.
Deng Y, Ji LL, Li L, Li B, Su JY. Development and application of a novel nucleic amplification kit on detection of several pathogens. Appl Mech Mater 2014;618:293–297.
Domesle KJ, Yang Q, Hammack TS, Ge B. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food. Int J Food Microbiol 2018;264:63–76.
Drax MS, Lu X. Development of a loop mediated isothermal amplification (LAMP)—surface enhanced raman spectroscopy (SERS) assay for the detection of Salmonella enterica serotype Enteritidis. Theranostics 2016;6:522–532.
Duarte C, Salm E, Dorvel B, Reddy B Jr., Bashir R. On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification. Biomed Microdevices 2013;15:821–830.
DuVall JA, Borba JC, Shafagati N, et al. Optical imaging of paramagnetic bead-DNA aggregation inhibition allows for low copy number detection of infectious pathogens. PLoS One 2015;10:e0129830.
EFSA. European Commission on Microbiological Risk Assessment in foodstuffs for food-producing animals, Scientific Opinion of the Panel on Biological Hazards on a request from the Health and Consumer Protection Directorate General. EFSA J 2008;7:20–1–84.

Eiken Chemical Co. Ltd. The Principle of LAMP Method. 2005. Available at: http://loopamp.eiken.co.jp/e/lamp/principle.html Accessed March 1, 2018.

Eiken Chemical Co. Ltd. A Guide to LAMP Primer Designing. 2009. Available at: https://primereXplorer.jp/e/v4_manual/pdf/PrimerExplorerV4_Manual_1.pdf Accessed March 1, 2018.

Fang J, Wu Y, Qu D, et al. Propidium monoazide real time loop-mediated isothermal amplification for specific visualization of viable Salmonella in food. Lett Appl Microbiol 2018. [Epub ahead of print].

FAO/WHO. Executive Summary Report of the Joint FAO/WHO Expert Meeting on Hazards Associated with Animal Feed. 2015. Available at: http://www.fao.org/3/a-az851e.pdf Accessed March 1, 2018.

FDA. Compliance Policy Guide Sec. 690.800 Salmonella in Food for Animals. 2013. Available at: https://www.fda.gov/downloads/iceci/compliancemanuals/compliancepolicyguidancemanual/ucm361105.pdf Accessed March 1, 2018.

FDA. Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, 2nd ed. 2015. Available at: https://www.fda.gov/downloads/ScienceResearch/FieldScience/UCM298730 Accessed March 1, 2018.

FDA. 21 CFR Part 117: Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventive Controls for Human Food. Available at: https://www.ecfr.gov/cgi-bin/text-idx?SID=2dae3ed6aff60a1d08b2ce1e41805778&mc=true&node=pt21.2.117&rgn=div5 Accessed June 1, 2018.

FDA. 21 CFR Part 507: Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventive Controls for Food for Animals. Available at: https://www.ecfr.gov/cgi-bin/text-idx?SID=2dae3ed6aff60a1d08b2ce1e41805778&mc=true&node=pt21.2.117&rgn=div5 Accessed June 1, 2018.

Ferguson BS. A look at the microbiology testing market. Food Safety Magazine 2017:14–15. Available at: https://www.foodsafetymagazine.com/magazine-archive/1/february-march-2017/a-look-at-the-microbiology-testing-market/ Accessed March 1, 2018.

Francis P, Tangomo M, Hibbs J, et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol Med Microbiol 2011;62:41–48.

Futoma-Koloch B, Ksiazczyk M, Kozzekwa K, et al. Selection and electrophoretic characterization of Salmonella enterica subsp. enterica biovar resistant to antibiotics. Pol J Vet Sci 2015;18:725–732.

Galan JE, Ginocchio C, Costeas P. Molecular and functional characterization of the Salmonella invasion gene invA: Homology of invA to members of a new protein family. J Bacteriol 1992;174:4338–4349.

Gandelman OA, Church VL, Moore CA, et al. Novel bioluminescent quantitative detection of nucleic acid amplification in real-time. PLoS One 2010;5:e14155.

Garrido-Maestu A, Azinheiro S, Carvalho J, et al. Combination of microfluidic loop-mediated isothermal amplification with gold nanoparticles for rapid detection of Salmonella spp. in food samples. Front Microbiol 2017a;8:2159.

Garrido-Maestu A, Fucinos P, Azinheiro S, Carvalho J, Prado M. Systematic loop-mediated isothermal amplification assays for rapid detection and characterization of Salmonella spp., Enteritidis and Typhimurium in food samples. Food Control 2017b;80:297–306.

Ge B, Meng J. Advanced technologies for pathogen and toxin detection in foods: Current applications and future directions. JALA 2009;14:235–241.

Gong J, Zhuang L, Zhu C, et al. Loop-mediated isothermal amplification of the sefA gene for rapid detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. Foodborne Pathog Dis 2016;13:177–181.

Hara-Kudo Y, Yoshino M, Kojima T, Ikedo M. Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol Lett 2005;253:155–161.

He C, Liu Z, Wang D, Sun Q, Huang J. Applicatio of LAMP to detect Salmonella in animal derived foods. Chin J Food Hyg 2010;5:411–414.

Hsieh K, Mage PL, Csordas AT, Eisenstein M, Soh HT. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem Commun (Camb) 2014;50:3747–3749.

Hsieh K, Patterson AS, Ferguson BS, Plaxco KW, Soh HT. Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop-mediated isothermal amplification. Angew Chem Int Ed Engl 2012;51:4896–4900.

Hu L, Ma LM, Zheng S, et al. Evaluation of 3M Molecular Detection System and ANSR Pathogen Detection System for rapid detection of Salmonella from egg products. Poult Sci 2017;96:1410–1418.

Hu L, Ma LM, Zheng S, et al. Development of a novel loop-mediated isothermal amplification (LAMP) assay for the detection of Salmonella ser. Enteritidis from egg products. Food Control 2018;88:190–197.

[IIFSC] Interagency Food Safety Analytics Collaboration. Foodborne illness source attribution estimates for Salmonella, Escherichia coli O157 (E. coli O157), Listeria monocytogenes (Lm), and Campylobacter using outbreak surveillance data. Washington, DC, 2015. Available at: http://www.cdc.gov/foodsafety/pdfs/IFSAC-project-report-508c.pdf Accessed March 1, 2018.

[IIFSC] Interagency Food Safety Analytics Collaboration. Foodborne illness source attribution estimates for 2013 for Salmonella, Escherichia coli O157, Listeria monocytogenes, and Campylobacter using multi-year outbreak surveillance data. United States. Washington, DC, 2017. Available at: https://www.cdc.gov/foodsafety/pdfs/IFSAC-2013FoodborneillnessSourceEstimates-508.pdf Accessed March 1, 2018.

ISO. ISO 16140-2:2016 Microbiology of the Food Chain—Method Validation—Part 2: Protocol for the Validation of Alternative (Proprietary) Methods Against a Reference Method. Geneva, 2016. Available at: https://www.iso.org/standard/54870.html Accessed March 1, 2018.

Jenkins DM, Kubota R, Dong J, Li Y, Higashiguchi D. Hand-held device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes. Biosens Bioelectron 2011;30:255–260.

Jiang K, Lv QF, Zhang DL, et al. A novel, sensitive, accurate multiplex loop-mediated isothermal amplification method for detection of Salmonella spp., Shigella spp. and Staphylococcus aureus in food. J Food Agric Environ 2012;10:252–256.

Kaneko H, Kawana T, Fukushima E, Suzutani T. Tolerance of loop-mediated isothermal amplification to a culture medium
and biological substances. J Biochem Biophys Methods 2007;70:499–501.

Kirk MD, Pires SM, Black RE, et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med 2015;12:e1001921.

Kokkinos PA, Ziros PG, Bellou M, Vantarakis A. Loop-mediated isothermal amplification (LAMP) for the detection of Salmonella in food. Food Anal Method 2014;7:512–526.

Kubota R, Jenkins DM. Real-time duplex applications of loop-mediated amplification (LAMP) by assimilating probes. Int J Mol Sci 2015;16:4786–4799.

Kubota R, Labarre P, Weigl BH, Li Y, Haydock P, Jenkins DM. Molecular diagnostics in a teacup: Non-instrumented nucleic acid amplification (NINA) for rapid, low cost detection of Salmonella enterica. Chin Sci Bull 2013;58:1162–1168.

Kumar PP, Agarwal RK, Thomas P, et al. Rapid detection of Salmonella enterica subspecies enterica serovar Typhimurium by loop mediated isothermal amplification (LAMP) test from field chicken meat samples. Food Biotechnol 2014;28:50–62.

Kumar Y, Bansal S, Jaiswal P. Loop-mediated isothermal amplification (LAMP): A rapid and sensitive tool for quality assessment of meat products. Compr Rev Food Sci F 2017;16:1359–1378.

Kundapur RR, Nema V. Loop-mediated isothermal amplification: Beyond microbial identification. Cogent Biol 2016;2:1137110.

Li JJ, Zhai LG, Bie XM, et al. A novel visual loop-mediated isothermal amplification assay targeting gene62181533 for the detection of Salmonella spp. in foods. Food Control 2016;60:230–236.

Li X, Zhang S, Zhang H, et al. A loop-mediated isothermal amplification method targets the phoP gene for the detection of Salmonella in food samples. Int J Food Microbiol 2009;133:252–258.

Li YM, Fan PH, Zhou SS, Zhang L. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens. Microb Pathog 2017;107:54–61.

Lim HS, Zheng Q, Miks-Krajnik M, Turner M, Yuk HG. Evaluation of loop-mediated kit based on loop-mediated isothermal amplification for rapid detection of low levels of uninjured and injured Salmonella on duck meat, bean sprouts, and fishballs in Singapore. J Food Prot 2015;78:1203–1207.

Liu N, Zou D, Dong D, et al. Development of a multiplex loop-mediated isothermal amplification method for the simultaneous detection of Salmonella spp. and Vibrio para-haemolyticus. Sci Rep 2017;7:45601.

Loff M, Mare L, de Kwaadsteniet M, Khan W. 3M Molecular Detection System versus MALDI-TOF mass spectrometry and molecular techniques for the identification of Escherichia coli 0157:H7, Salmonella spp. & Listeria spp. J Microbiol Methods 2014;101:33–43.

Lu XY, Yang WQ, Shi L, et al. Specific detection of viable Salmonella cells by an ethidium monoazide-loop mediated isothermal amplification (EMA-LAMP) method. J Health Sci 2009;55:820–824.

Mabey D, Peeling RW, Ustianowski A, Perkins MD. Diagnostics for the developing world. Nat Rev Microbiol 2004;2:231–240.

Maciorowski KG, Pilai SD, Jones FT, Ricke SC. Polymerase chain reaction detection of foodborne Salmonella spp. in animal foods. Crit Rev Microbiol 2005;31:45–53.

Malorny B, Paccassoni E, Fach P, Bunge C, Martin A, Helmuth R. Diagnostic real-time PCR for detection of Salmonella in food. Appl Environ Microbiol 2004;70:7046–7052.

Mashooq M, Kumar D, Niranjan AK, Agarwal RK, Rathore R. Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: A new tool for DNA quantification. J Microbiol Methods 2016;126:24–29.

Mayboroda O, Katakas I, O’Sullivan CK. Multiplexed isothermal nucleic acid amplification. Anal Biochem 2018;545:20–30.

Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP): Recent progress in research and development. J Infect Chemother 2013;19:404–411.

Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 2001;289:150–154.

Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 2002;16:223–229.

Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid amplification for infectious diseases. Trends Biotechnol 2011;29:240–250.

Nissen L, Luo J, Denschlag C, Vogel RF. The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants. Food Microbiol 2013;36:191–206.

Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000;28:E63.

Nyan DC, Swinson KL. A novel multiplex isothermal amplification method for rapid detection and identification of viruses. Sci Rep 2015;5:17925.

Oh SJ, Park BH, Choi G, et al. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. Lab Chip 2016a;16:1917–1926.

Oh SJ, Park BH, Jung JH, et al. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens Bioelectron 2016b;75:293–300.

Ohitsu K, Yanagawa K, Takatori K, Hara-Kado Y. Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Appl Environ Microbiol 2005;71:6730–6735.

Okamura M, Ohba Y, Kikuchi S, et al. Loop-mediated isothermal amplification for the rapid, sensitive, and specific detection of the O9 group of Salmonella in chickens. Vet Microbiol 2008;132:197–204.

Okamura M, Ohba Y, Kikuchi S, et al. Rapid, sensitive, and specific detection of the O4 group of Salmonella enterica by loop-mediated isothermal amplification. Avian Dis 2009;53:216–221.

Papadakis G, Murasova P, Hamiot A, et al. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosens Bioelectron 2018;111:52–58.

Park BH, Oh SJ, Jung JH, et al. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens Bioelectron 2017;91:334–340.

Patterson AS, Heithoff DM, Ferguson BS, Oh SJ, McNamara MJ, Plaxco KW. Microfluidic chip-based detection and intraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice. Appl Environ Microbiol 2013;79:2302–2311.
Ravan H, Yazdanparast R. Development of a new loop-mediated isothermal amplification method in conjunction with an enzyme-linked immunosorbent assay for specific detection of Salmonella. Mol Cell Probes 1992;6:271–279.

Ravan H, Yazdanparast R. Development and evaluation of a loop-mediated isothermal amplification method in conjunction with an enzyme-linked immunosorbent assay for specific detection of Salmonella serogroup D. Anal Chim Acta 2012a;733:64–70.

Ravan H, Yazdanparast R. Development of a new loop-mediated isothermal amplification assay for prt (rfbS) gene to improve the identification of Salmonella serogroup D. World J Microbiol Biotechnol 2012b;28:2101–2106.

Safavieh M, Kanakasabapathy MK, Tarlan F, et al. Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. Biosens Bioelectron 2016;2:278–294.

Santiago-Felipe S, Tortajada-Genaro LA, Carrascosa J, Puclades R, Maqueira A. Real-time loop-mediated isothermal DNA amplification in compact disc micro-reactors. Biosens Bioelectron 2016;79:300–306.

Sarowska J, Frej-Madrzak M, Jama-Kmieck A, Kilian A, Teryks-Wolyniec D, Choroszy-Krol I. Detection of Salmonella in foods using a reference PN-ISO method and an alternative method based on loop-mediated isothermal amplification coupled with bioluminescence. Adv Clin Exp Med 2016;25:945–950.

Sayad A, Ibrahim F, Mukim Uddin S, Cho J, Madou M, Thong KL. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal micro-fluidic platform. Biosens Bioelectron 2018;100:96–104.

Sayad AA, Ibrahim F, Uddin SM, et al. A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection. Sens Actuators B Chem 2016;227:600–609.

Seo JH, Park BH, Oh SJ, et al. Development of a high-throughput centrifugal loop-mediated isothermal amplification microdevice for multiplex foodborne pathogenic bacteria detection. Sens Actuators B Chem 2017;246:146–153.

Shao Y, Zhu S, Jin C, Chen F. Development of multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) to detect Salmonella spp. and Shigella spp. in milk. Int J Food Microbiol 2011;148:75–79.

Soli KW, Kas M, Maure T, et al. Evaluation of colorimetric detection methods for Shigella, Salmonella, and Vibrio cholerae by loop-mediated isothermal amplification. Diagn Microbiol Infect Dis 2013;77:321–323.

Srisawat M, Panbangred W. Efficient and specific detection of Salmonella in food samples using a str-based loop-mediated isothermal amplification method. Biomed Res Int 2015;2015:356401.

Sun Y, Quyen TL, Hung TQ, Chin WH, Wolff A, Bang DD. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples. Lab Chip 2015;15:1898–1904.

Tang T, Cheng A, Wang M, et al. Development and clinical verification of a loop-mediated isothermal amplification method for detection of Salmonella species in suspect infected ducks. Poult Sci 2012;91:979–986.

Tanner NA, Zhang Y, Evans TC, Jr. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. Biotechniques 2012;53:81–89.

Techathuvanan C, D’Souza DH. Reverse-transcriptase loop-mediated isothermal amplification as a rapid screening/monitoring tool for Salmonella enterica detection in liquid whole eggs. J Food Sci 2012;77:M200–M205.

Techathuvanan C, Draughon FA, D’Souza DH. Loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Salmonella Typhimurium from pork. J Food Sci 2010;75:M165–M172.

Techathuvanan C, Draughon FA, D’Souza DH. Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments. J Food Prot 2011;74:294–301.

Tourlousse DM, Ahmad F, Stedtfeld RD, Seyrig G, Tiedje JM, Hashsham SA. A polymer microfluidic chip for quantitative detection of multiple water- and foodborne pathogens using real-time fluorogenic loop-mediated isothermal amplification. Biomed Microdevices 2012;14:769–778.

Uddin SM, Ibrahim F, Sayad AA, et al. A portable automatic endpoint detection system for amplicons of loop mediated isothermal amplification on microfluidic compact disk platform. Sensors (Basel) 2015;15:5376–5389.

Ueda S, Kuwabara Y. The rapid detection of Salmonella from food samples by loop-mediated isothermal amplification (LAMP). Biocontrol Sci 2009;14:73–76.

Uzzau S, Brown DJ, Wallis T, et al. Host adapted serotypes of Salmonella enterica. Epidemiol Infect 2000;125:229–255.

Wang D, Huo G, Wang F, Li Y, Ren D. Drawback of loop-mediated isothermal amplification. Afr J Food Sci 2008a;2:83–86.

Wang D, Wang Y, Xiao F, et al. A comparison of in-house real-time lamp assays with a commercial assay for the detection of pathogenic bacteria. Molecules 2015a;20:9487–9495.

Wang F, Yang Q, Kase JA, et al. Current trends in detecting non-O157 Shiga toxin-producing Escherichia coli in food. Foodborne Pathog Dis 2013;10:665–677.

Wang L, Shi L, Alam MJ, Geng Y, Li L. Specific and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method. Food Res Int 2008b;41:69–74.

Wang T, Kim S, An J.H. A novel CMOS image sensor system for quantitative loop-mediated isothermal amplification assays to detect food-borne pathogens. J Microbiol Methods 2017;133:1–7.

Wang Y, Yang Y, Lan R, et al. Multiple endonuclease restriction real-time loop mediated isothermal amplification: A novel analytically rapid, sensitive, multiplex loop-mediated isothermal amplification detection technique. J Mol Diagn 2015b;17:392–401.

Wang Y, Yang Y, Luo L, et al. Rapid and sensitive detection of Shigella spp. and Salmonella spp. by multiple endonuclease restriction real-time loop-mediated isothermal amplification technique. Front Microbiol 2015c;6:1400.

Wang YZ, Wang DG. Development and evaluation of a loop-mediated isothermal amplification (LAMP) method for detecting foodborn Salmonella in raw milk. Adv Mat Res 2013;647:577–582.

WHO. The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis: Policy Guidance. 2016. Available at: http://www.who.int/tb/publications/lamp-diagnosis-molecular/en/ Accessed March 1, 2018.

WHO. Salmonella (Non-Typhoidal) Fact Sheet. 2017. Available at: http://www.who.int/mediacentre/factsheets/fs139/en/ Accessed March 1, 2018.

Wu GP, Chen SH, Levin RE. Application of ethidium bromide monoazide for quantification of viable and dead cells of

invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 1992;6:271–279.

invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 1992;6:271–279.

invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 1992;6:271–279.
Salmonella enterica by real-time loop-mediated isothermal amplification. J Microbiol Methods 2015a;117:41–48.
Wu GP, Chen SH, Levin RE. Rapid real-time loop-mediated isothermal amplification combined with coated activated carbon for detection of low numbers of Salmonella enterica from lettuce without enrichment. Food Control 2015b;56:47–52.
Wu GP, Levin RE. Rapid and sensitive detection of Salmonella enterica ser. Enteritis retrieved from lettuce using a real-time loop-mediated amplification isothermal assay without enrichment. Food Biotechnol 2015;29:263–275.
Xia Y, Liu ZH, Yan SQ, Yin F, Feng XJ, Liu BF. Identifying multiple bacterial pathogens by loop-mediated isothermal amplification on a rotate & react slipchip. Sens Actuators B Chem 2016;228:491–499.
Xiong ZY, Zhang JP, Kang M. Sensitive and specific detection of foodborne pathogens in pork by a loop-mediated isothermal amplification methodology. Acta Medica Mediterr 2016;32:1143–1147.
Yan M, Li W, Zhou Z, Peng H, Luo Z, Xu L. Direct detection of various pathogens by loop-mediated isothermal amplification assays on bacterial culture and bacterial colony. Microb Pathog 2017;102:1–7.
Yang JL, Ma GP, Yang R, et al. Simple and rapid detection of Salmonella serovar Enteritidis under field conditions by loop-mediated isothermal amplification. J Appl Microbiol 2010;109:1715–1723.
Yang Q, Chen S, Ge B. Detecting Salmonella serovars in shell eggs by loop-mediated isothermal amplification. J Food Prot 2013;76:1790–1796.
Yang Q, Domesle KJ, Wang F, Ge B. Rapid detection of Salmonella in food and feed by coupling loop-mediated isothermal amplification with bioluminescent assay in real-time. BMC Microbiol 2016;16:112.
Yang Q, Wang F, Jones KL, Meng J, Prinyawiwatkul W, Ge B. Evaluation of loop-mediated isothermal amplification for the rapid, reliable, and robust detection of Salmonella in produce. Food Microbiol 2015;46:485–493.
Yang Q, Wang F, Prinyawiwatkul W, Ge B. Robustness of Salmonella loop-mediated isothermal amplification assays for food applications. J Appl Microbiol 2014;116:81–88.
Ye Y, Yamasaki S, Lei S. In situ loop-mediated isothermal amplification technology for rapid detection of food-borne Salmonella. Food Ferment Ind 2009;35:137–141.
Ye YX, Wang B, Huang F, et al. Application of in situ loop-mediated isothermal amplification method for detection of Salmonella in foods. Food Control 2011;22:438–444.
Youn SY, Jeong OM, Choi BK, Jung SC, Kang MS. Application of loop-mediated isothermal amplification with propidiwm monoazide treatment to detect live Salmonella in chicken carcasses. Poult Sci 2017;96:458–464.
Zhang G, Brown EW, Gonzalez-Escalona N. Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Appl Environ Microbiol 2011;77:6495–6501.
Zhao L, Pan ZM, Geng SZ, et al. A loop-mediated isothermal amplification method targets the hisJ gene for the detection of foodborne Salmonella. Eur Food Res Technol 2012a;234:1055–1062.
Zhao L, Tian F, Liu C, et al. Hand-powered centrifugal microfluidic platform inspired by the spinning top for sample-to-answer diagnostics of nucleic acids. Lab Chip 2018;18:610–619.
Zhang X, Lowe SB, Gooding JJ. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron 2014;61:491–499.
Zhang YQ, Shan XX, Shi L, et al. Development of a fimB-based loop-mediated isothermal amplification assay for detection of Salmonella in food. Food Res Int 2012b;45:1011–1015.
Zhao XH, Wang L, Chu J, et al. Development and application of a rapid and simple loop-mediated isothermal amplification method for food-borne Salmonella detection. Food Sci Biotechnol 2010;19:1655–1659.
Zhao Y, Jiang X, Qu Y, et al. Salmonella detection in powdered dairy products using a novel molecular tool. J Dairy Sci 2017;100:3480–3496.
Zhu LJ, Xu YC, Cheng N, et al. A facile cascade signal amplification strategy using DNAzyme loop-mediated isothermal amplification for the ultrasensitive colorimetric detection of Salmonella. Sens Actuators B Chem 2017;242:880–888.
Zhu SM, Wu JJ, Xu C, Qu J, Cheng W, Chen FS. Rapid detection of Salmonella spp. by loop-mediated isothermal amplification method. Mod Food Sci Technol 2008;24:725–730.
Zhuang L, Gong J, Li Q, et al. Detection of Salmonella spp. by a loop-mediated isothermal amplification (LAMP) method targeting bcfD gene. Lett Appl Microbiol 2014;59:658–664.
Ziros PG, Kokkinos PA, Papanotas K, Vantarakis A. Loop-mediated isothermal amplification (LAMP) for the detection of Salmonella spp. isolated from different food types. J Microbiol Biotechnol Food Sci 2012;2:152–161.

Address correspondence to:
Beilei Ge, PhD Division of Animal and Food Microbiology Office of Research Center for Veterinary Medicine U.S. Food and Drug Administration 8401 Muirkirk Road Laurel, MD 20708
E-mail: beilei.ge@fda.hhs.gov