Nordhaus-Gaddum bounds for locating domination

C. Hernando*, M. Mora*, I. M. Pelayo*;

*Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

A dominating set S of graph G is called metric-locating-dominating if it is also locating, that is, if every vertex v is uniquely determined by its vector of distances to the vertices in S. If moreover, every vertex v not in S is also uniquely determined by the set of neighbors of v belonging to S, then it is said to be locating-dominating. Locating, metric-locating-dominating and locating-dominating sets of minimum cardinality are called β-codes, η-codes and λ-codes, respectively. A Nordhaus-Gaddum bound is a tight lower or upper bound on the sum or product of a parameter of a graph G and its complement \overline{G}. In this paper, we present some Nordhaus-Gaddum bounds for the location number β, the metric-location-domination number η and the location-domination number λ. Moreover, in each case, the graph family attaining the corresponding bound is fully characterized.

Keywords: Domination, Location, Locating domination, Nordhaus-Gaddum

1. Introduction

Given a graph $G = (V, E)$, the (open) neighborhood of a vertex $v \in V$ is $N_G(v) = N(v) = \{u \in V : uv \in E\}$. The distance between vertices $v, w \in V$ is denoted by $d_G(v, w)$, or $d(v, w)$ if the graph G is clear from the context. The diameter $\text{diam}(G)$ is the maximum distance between any two vertices of G. Let $S = \{x_1, \ldots, x_k\}$ be a set of vertices and let $v \in V \setminus S$. The ordered k-tuple $c_j(v) = (d(v, x_1), \ldots, d(v, x_k))$ is called the vector of metric coordinates of v with respect to S. For further notation see [4].

A set $D \subseteq V$ is a dominating set if for every vertex $v \in V \setminus D$, $N(v) \cap D \neq \emptyset$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set of cardinality $\gamma(G)$ is called a γ-code [8].

A set $D = \{x_1, \ldots, x_k\} \subseteq V$ is a locating set if for every pair of distinct vertices $u, v \in V$, $c_D(u) \neq c_D(v)$. The location number (also called the metric dimension) $\beta(G)$ is the minimum cardinality of a locating set of G [7, 14].

A locating set of cardinality $\beta(G)$ is called a β-code. A metric-locating-dominating set, a MLD-set for short, is any set of vertices that is both a dominating set and a locating set. The metric-location-domination number $\eta(G)$ is the minimum cardinality of a metric-locating-dominating set of G. A metric-locating-dominating set of cardinality $\eta(G)$ is called a η-code [10].

A set $D \subseteq V$ is a locating-dominating set, an LD-set for short, if for every two vertices $u, v \in V(G) \setminus D$, $\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$. The location-domination number $\lambda(G)$ is the minimum cardinality of a locating-dominating set. A locating-dominating set of cardinality $\lambda(G)$ is called a λ-code [15]. A complete and regularly updated list of papers on locating dominating codes is to be found in [13].

*Corresponding author
Email addresses: carmen.hernando@upc.edu (C. Hernando), merce.mora@upc.edu (M. Mora), ignacio.m.pelayo@upc.edu (I. M. Pelayo)
Clearly, every locating-dominating set is locating and also dominating. Moreover, both location and domination are hereditary properties. Particularly, if for two sets $S_1, S_2 \subseteq V$, S_1 is locating and S_2 is dominating, then $S_1 \cup S_2$ is both locating and dominating. Hence, for every graph G, $\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\gamma(G) + \beta(G), \lambda(G)\}$ [2].

A Nordhaus-Gaddum bound is a tight lower or upper bound on the sum or product of a parameter of a graph G and its complement \overline{G} [11, 9, 12]. For example, in [5] it was shown that for any graph G of order n, $\gamma(G) + \gamma(\overline{G}) \leq n + 1$, the equality being true only if $\{G, \overline{G}\} = \{K_n, K_n\}$. In this paper, we present some Nordhaus-Gaddum bounds on the sum of the location number β, the metric-location-domination number η and the location-domination number λ. In all cases, the classes of graphs attaining both bounds are characterized.

2. Nordhaus-Gaddum bounds

Unless otherwise stated, along this section $G = (V; E)$ is a, not necessarily connected, nontrivial graph of order n. A graph G is called doubly-connected if both G and its complement \overline{G} are connected. As usual, K_n, C_n and P_n denote respectively the complete graph, the cycle and the path on n vertices.

2.1. Location number

Theorem 1. For every nontrivial graph G, $2 \leq \beta(G) + \beta(\overline{G}) \leq 2n - 1$. Moreover,

- $\beta(G) + \beta(\overline{G}) = 2$ if and only if $G = P_4$.
- $\beta(G) + \beta(\overline{G}) = 2n - 1$ if and only if $\{G, \overline{G}\} = \{K_n, \overline{K}_n\}$.

Proof. Every graph satisfies $1 \leq \beta(G)$, which means that $2 \leq \beta(G) + \beta(\overline{G})$. Moreover, the equality $\beta(G) + \beta(\overline{G}) = 2$ is only true for $G = P_4$, since paths P_n are the only graphs with location number 1 [3], and $P_4 = \overline{P}_4$ is the only nontrivial path whose complement is also a path. The upper bound immediately follows from these facts: (1) the graph \overline{K}_n is the only graph with location number n and (2) $\beta(K_n) = n - 1$. Finally, claims (1) and (2) also allows us to derive that equality $\beta(G) + \beta(\overline{G}) = 2n - 1$ only holds when $\{G, \overline{G}\} = \{K_n, \overline{K}_n\}$.

![Figure 1: Solid lines are edges in G and dashed lines are edges in \overline{G}.](image)
Lemma 1. Every doubly-connected graph G of order $n \geq 6$ such that $\text{diam}(G) = \text{diam}(\overline{G}) = 2$ contains a locating set of cardinality $n - 4$.

Proof. Let p be an induced path of order 4 in G, whose existence is guaranteed since, as was proved in [2], the complement of every nontrivial P_4-free graph is not connected. Assume that $V(p) = \{a, b, c, d\}$ and $E(p) = \{ab, bc, cd\}$. Since, $\text{diam}(G) = 2$, there exists a vertex $e \in V(G)$ such that $d_G(a, e) = d_G(e, d) = 1$. We distinguish three cases.

Case 1: $eb, ec \notin E(G)$ (see Figure 1 left). In this case, the set $\{a, b, c, d, e\}$ determines an induced cycle Γ in G and also an induced cycle $\overline{\Gamma}$ in \overline{G}. Let f a vertex not belonging to $\{a, b, c, d, e\}$. Either in G or in \overline{G}, f has at most two neighbors in $\{a, b, c, d, e\}$. Without loss of generality we may suppose that $N_G(f) \cap \{a, b, c, d, e\} \subseteq 2$ (otherwise we interchange labels G and \overline{G}), which means that there exist in $\{a, b, c, d, e\}$ a pair of non-consecutive vertices non-adjacent to f. Again w.l.o.g. we assume that $N_G(f) \cap \{a, c\} = \emptyset$. Certainly, the set $V(G) \setminus \{b, d, e, f\}$ is a locating set of G since $c_{\{a,e\}}(b) = (1, 1), c_{\{a,e\}}(d) = (2, 1), c_{\{a,e\}}(e) = (1, 2)$ and $c_{\{a,e\}}(f) = (2, 2)$.

Case 2: e is adjacent to exactly one vertex of $\{b, c\}$. Let us assume that $eb \in E(G)$ and $ec \notin E(G)$ (see Figure 1 center). In this case, $d_G(e, b) = 1$, which means that $\text{diam}(\overline{G}) = 2$. Therefore, there exists a vertex $f \notin \{a, b, c, d, e\}$ such that $d_G(e, f) = d_G(f, b) = 1$. This means that $d_G(e, f) = d_G(f, b) = 2$ as $\text{diam}(G) = 2$. Hence, the set $V(G) \setminus \{a, c, d, f\}$ is a locating set of G since $c_{\{b,e\}}(a) = (1, 1), c_{\{b,e\}}(c) = (1, 2), c_{\{b,e\}}(d) = (2, 1)$ and $c_{\{b,e\}}(f) = (2, 2)$.

Case 3: $eb, ec \in E(G)$ (see Figure 1 right). Since $d_G(b, c) = 1$, we have $d_G(b, c) = 2$. Therefore, there exists a vertex $f \notin \{a, b, c, d, e\}$ such that $d_G(f, b) = d_G(f, c) = 1$. This means that $d_G(f, b) = d_G(f, c) = 2$. Hence, the set $V(G) \setminus \{a, d, e, f\}$ is a locating set of G since $c_{\{b,e\}}(a) = (1, 2), c_{\{b,e\}}(d) = (2, 1), c_{\{b,e\}}(e) = (1, 1)$ and $c_{\{b,e\}}(f) = (2, 2)$.

Take a connected graph G of order n, and assume that $V(G) = \{1, \ldots, n\}$. Let $G[H_i^{(r)}]$ denote the graph obtained from G by replacing vertex i by a given graph H and joining every vertex of H to every neighbor of vertex i in G. Similarly, $G[H_1^{(1)}, H_2^{(2)}]$ denotes the graph obtained from G by replacing vertex i by a graph H_1 and vertex j by a graph H_2 and joining every vertex of H_1 (resp. vertex of H_2) to every neighbor of vertex i (resp. j) in G and, just if $ij \in E(G)$, also every vertex of H_1 to every vertex of H_2. Finally, B denotes the bull graph shown in Figure 2.

Theorem 2. For any doubly-connected graph G with $n \geq 4$, $2 \leq \beta(G) + \beta(\overline{G}) \leq 2n - 6$. Moreover,

- $\beta(G) + \beta(\overline{G}) = 2$ if and only if $G = P_4$.
- $\beta(G) + \beta(\overline{G}) = 2n - 6$ if and only if $G \in \Omega_1 \cup \Omega_2 \cup \Omega_3$, where
 \[\begin{align*}
 &\Omega_1 = \{P_4, C_5, B\} \\
 &\Omega_2 = \{P_4[K^{(1)}_{n-3}], P_4[\overline{K}^{(1)}_{n-3}], P_4[K^{(2)}_{n-3}], P_4[\overline{K}^{(2)}_{n-3}]\} \\
 &\Omega_3 = \{P_4[K^{(1)}_{n-r}], K^{(2)}_{n-r-2} : 1 \leq r \leq n-3\} \cup \{P_4[\overline{K}^{(1)}_{r}, \overline{K}^{(3)}_{n-r-2} : 1 \leq r \leq n-3\}
 \end{align*} \]

Proof. In [3], it was proved that a connected graph G satisfies $n - 2 \leq \beta(G) \leq n - 1$ if and only if, for some $1 \leq h \leq n - 1$, $G \in \{K_n, K_{n-h}, K_h + \overline{K}_{n-h}, K_h + (K_1 \cup K_{n-h-1})\}$. It is a routine exercise to check that the complement of any of these
graphs is not connected. Hence, every doubly-connected graph \(G \) of order \(n \geq 4 \) satisfies \(1 \leq \beta(G) \leq n - 3 \), i.e., \(2 \leq \beta(G) + \beta(\overline{G}) \leq 2n - 6 \). Moreover, according to Theorem [1] the lower bound 2 is attained only for \(G = P_4 \), since \(P_4 = P_4 \).

Let \(G \) be a doubly-connected graph of order \(n \geq 4 \) verifying \(\beta(G) + \beta(\overline{G}) = 2n - 6 \), i.e., such that \(\beta(G) = \beta(\overline{G}) = n - 3 \). In [3], it was proved that the order of a graph \(G \) of diameter \(D \) and location number \(\beta \) is at least \(\beta + D \). This means, that if \(\beta(G) = n - 3 \), then \(2 \leq D \leq 3 \), since \(\beta(K_n) = n - 1 \). In [11], the set of graphs with \(n \) vertices, diameter \(D \) and location number \(n - D \) were characterized for all feasible values of \(n \) and \(D \). In particular, we have the set of graphs with \(n \geq 4 \) vertices, diameter \(diam(G) = D = 3 \) and location number \(n - 3 \), all of them being doubly-connected and verifying \(diam(\overline{G}) = 3 \). Among them, we are just interested in those graphs \(G \) for which \(\beta(G) = n - 3 \). It is a routine exercise to check that as well as the path \(P_4 \) and the bull graph \(B \), the only doubly-connected graphs of diameter 3 satisfying \(\beta(G) = \beta(\overline{G}) = n - 3 \) are those belonging to \(\Omega_3 \cup \Omega_3 \). Hence, according to Lemma [1] to finalize the proof it suffices to check that the only doubly-connected graph of order 4 \(\leq n \leq 5 \) having both itself and its complement diameter 2 is the cycle \(C_5 \). □

\[\begin{align*}
\text{H} & \quad \text{B} & \quad \text{E} & \quad \text{F} \\
\text{Figure 2: House graph } H = \overline{P}_4, \text{ bull graph } B = \overline{K}_3, \text{ graph } E \text{ and graph } F = \overline{E}. \end{align*} \]

2.2. Metric-location-domination number

Theorem 3. For every nontrivial graph \(G \), \(3 \leq \eta(G) + \eta(\overline{G}) \leq 2n - 1 \). Moreover,

- \(\eta(G) + \eta(\overline{G}) = 3 \) if and only if \(\{G, \overline{G}\} = \{K_2, \overline{K}_2\} \).

- \(\eta(G) + \eta(\overline{G}) = 2n - 1 \) if and only if \(\{G, \overline{G}\} = \{K_n, \overline{K}_n\} \).

Proof. The only nontrivial graph \(G \) such that \(\eta(G) = 1 \) is \(G = K_2 \), which means that for every graph \(G \), \(3 \leq \eta(G) + \eta(\overline{G}) \). Moreover, the equality \(\eta(G) + \eta(\overline{G}) = 3 \) is only true when either \(G \) or \(\overline{G} \) is \(K_2 \), since \(\eta(K_2) = 2 \). The rest of the proof is similar to that of Theorem [1] □

Given two positive integers \(r, s \), let \(K_2(r, s) \) denote the so-called double star, obtained after joining the central vertices of the stars \(K_{1,r} \) and \(K_{1,s} \). If \(2 \leq s \leq r - 1 \), let \(K^s_{1,r} \) represent the graph obtained by adding a new vertex adjacent to \(s \) leaves of the star \(K_{1,r} \). Finally, \(\overline{K}_2(r, s), \overline{K}^s_{1,r} \) denote the complements of \(K_2(r, s), K^s_{1,r} \), respectively, and graphs \(B, H, E \) and \(F \) are shown in Figure [2]
Theorem 4. For any doubly-connected graph G with $n \geq 5$, $4 \leq \eta(G) + \eta(\overline{G}) \leq 2n - 5$. Moreover,

- $\eta(G) + \eta(\overline{G}) = 4$ if and only if $G \in \{P_5, C_5, B, H, E, F\}$.
- $\eta(G) + \eta(\overline{G}) = 2n - 5$ if and only if $G \in \{K_2(r, s), \overline{K_2(r, s)}, K^r_{1,s}, \overline{K^r_{1,s}}\}$.

Proof. Every doubly-connected graph G of order at least 5 satisfies $2 \leq \eta(G)$, since the unique nontrivial graph such that $\eta(G) = 1$ is $G = P_2$. In other words, for every nontrivial doubly-connected graph G, $4 \leq \eta(G) + \eta(\overline{G})$. In [2], it was proved that there are exactly 51 connected graphs satisfying $\eta(G) = 2$, any of them having an order between 3 and 8. It is a routine exercise to check that the only doubly-connected graphs G with order at least 5 of this family whose complement verify also $\eta(\overline{G}) = 2$ are exactly the graphs belonging to the set $\{P_5, C_5, B, H, E, F\}$.

In [10], it was proved that if G is a connected graph such that $\eta(G) = n - 1$, then G is either the complete graph K_n or the star $K_{1,n-1}$. Hence, every doubly-connected graph G of order $n \geq 4$ satisfies $\eta(G) \leq n - 2$, since both K_n and $\overline{K_{1,n-1}}$ are not connected. Also in [10], all connected graphs G for which $\eta(G) = n - 2$ were completely characterized. It is a routine exercise to check that the complement of any graph G verifying $\eta(G) = n - 2$ is not connected unless G is either a double star $K_2(r, s)$ or a graph $K^r_{1,s}$. As $\eta(\overline{K_2(r, s)}) = \eta(\overline{K^r_{1,s}}) = n - 3$, we conclude first, that every doubly-connected graph G of order $n \geq 5$ satisfies $\eta(G) + \eta(\overline{G}) \leq 2n - 5$ and second, that these four families are the only ones attaining this upper bound.

\square

2.3. Location-domination number

Theorem 5. For every nontrivial graph G, $3 \leq \lambda(G) + \lambda(\overline{G}) \leq 2n - 1$. Moreover,

- $\lambda(G) + \lambda(\overline{G}) = 3$ if and only if $\{G, \overline{G}\} = \{K_2, K_\overline{2}\}$.
- $\lambda(G) + \lambda(\overline{G}) = 2n - 1$ if and only if $\{G, \overline{G}\} = \{K_n, \overline{K_n}\}$.

Proof. It is similar to that of Theorem 3.

\square

Theorem 6. For any doubly-connected graph G with $n \geq 5$, $4 \leq \lambda(G) + \lambda(\overline{G}) \leq 2n - 5$. Moreover,

- $\lambda(G) + \lambda(\overline{G}) = 4$ if and only if $G \in \{P_5, C_5, B, H\}$.
- $\lambda(G) + \lambda(\overline{G}) = 2n - 5$ if and only if $G \in \{K_2(r, s), \overline{K_2(r, s)}, K^r_{1,s}, \overline{K^r_{1,s}}\}$.

Proof. Every doubly-connected graph G of order at least 5 satisfies $2 \leq \lambda(G)$, since the unique nontrivial graph such that $\lambda(G) = 1$ is $G = P_2$. In other words, for every nontrivial doubly-connected graph G, $4 \leq \lambda(G) + \lambda(\overline{G})$. In [2], it was proved that there are exactly 16 connected graphs satisfying $\lambda(G) = 2$, any of them having an order between 3 and 5. It is a routine exercise to check that the only doubly-connected graphs G of this family whose complement verify also $\lambda(\overline{G}) = 2$ are the 5-path P_5, the 5-cycle C_5, the bull graph B and the house graph H (see Figure 2). The rest of the proof is similar to that of Theorem 4 since for every graph G, if $\lambda(G) = n - 1$, then G is either the complete graph K_n or the star $K_{1,n-1}$ [15] and, $\lambda(G) = n - 2$ if and only if $\eta(G) = n - 2$ [2].

\square
Observe that the only doubly-connected graph of order at most 4 is \(P_4 \), and notice also that \(\overline{P}_4 = P_4 \) and \(\eta(P_4) = \lambda(P_4) \), which means that \(\eta(P_4) + \eta(\overline{P}_4) = \lambda(P_4) + \lambda(\overline{P}_4) = 4 \).

Finally, we present a further Nordhaus-Gaddum-type result for the parameter \(\lambda \), which is a direct consequence of the fact that LD-sets in a graph \(G \) are very strongly related to LD-sets in its complement \(\overline{G} \).

Proposition 1. If \(S \) is an LD-set of a graph \(G \) then \(S \) is also an LD-set of \(G \), unless there exists a vertex \(w \in V \setminus S \) such that \(S \subseteq N_G(w) \), in which case \(S \cup \{w\} \) is an LD-set of \(G \).

Proof. Take \(u, v \in V \setminus S \). Since \(S \) is an LD-set of \(G \), \(S \cap N_G(u) \neq \emptyset \) and \(S \cap N_G(v) \neq \emptyset \). Hence, \(S \cap N_G(u) = S \setminus S \cap N_G(u) \neq S \setminus N_G(v) = S \cap N_{\overline{G}}(v) \). At this point we distinguish two cases: if there exists a vertex \(w \in V \setminus S \) such that \(S \subseteq N_G(w) \), or equivalently, such that \(S \cap N_G(w) = \emptyset \), then it is unique as \(c_2(w) = (1 \ldots 1) \), and thus \(S \cup \{w\} \) is an LD-set. Otherwise, for every vertex \(w \), \(S \cap N_{\overline{G}}(w) \neq \emptyset \), which means that \(S \) is also an LD-set of \(G \).

Theorem 7. For every graph \(G \), \(|\lambda(G) - \lambda(\overline{G})| \leq 1 \).

Proof. According to Proposition 1, if \(S \) is an \(\lambda \)-code of \(G \), then there exists an LD-set of \(G \) of cardinality at most \(\lambda(G) + 1 \), which means that \(\lambda(\overline{G}) \leq \lambda(G) + 1 \). Similarly, it is derived that \(\lambda(G) \leq \lambda(\overline{G}) + 1 \), as \(G = \overline{\overline{G}} \).

Corollary 1. Every graph \(G \) satisfies: \(2\lambda(G) - 1 \leq \lambda(G) + \lambda(\overline{G}) \leq 2\lambda(G) + 1 \).

Acknowledgements

Research partially supported by grants Gen.Cat.DGR 2009SGR1040, MEC MTM2009-07242, MTM2011-28800-C02-01 and by the ESF EUROCORES programme EuroGIGA -ComPoSe IP04- MICINN Project EUI-EURC-2011-4306.

References

[1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, *Discrete Appl. Math.*, doi:10.1016/j.dam.2011.12.018.

[2] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, Locating dominating codes: bounds and extremal cardinalities, 2012. http://arxiv.org/abs/1205.2177.

[3] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, *Discrete Appl. Math.* 105 (1-3) (2000) 99–113.

[4] Chartrand, G., Lesniak, L., P. Zhang, Graphs and digraphs, fifth edition, CRC Press, Boca Raton (FL), (2011).

[5] E. J. Cockayne, S. T. Hedetniemi, Towards a theory of domination in graphs, *Networks* 7 (3) (1977) 247–261.

[6] D. G. Corneil, H. Lerchs, L. Stewart Burlingham, Complement reducible graphs, *Discrete Appl. Math.* 3 (3) (1981) 163–174.

[7] F. Harary and R. A. Melter, On the metric dimension of a graph, *Ars Combin.* 2 (1976) 191–195.

[8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.

[9] M. A. Henning, E. J. Joubert, J. Southey, Nordhaus-Gaddum bounds for total domination, *Appl. Math. Lett.* 24 (2011) 987–990.

[10] M. A. Henning, O. Oellermann, Metric-locating-dominating sets in graphs, *Ars Combin.* 7 (2004) 129–141.

[11] C. Hernando, M. Mora, I. M. Pelayo, C. Seara, D. R. Wood, Extremal graph theory for metric dimension and diameter, *Electron. J. Combin.* 17 (2010) R30.
[12] G. Joret, D. R. Wood, Nordhaus-Gaddum for treewidth, European J. of Combin. 33 (2012) 488-490.

[13] A. Lobstein, Watching systems, identifying, locating-dominating ans discriminating codes in graphs, http://www.infres.enst.fr/~lobstein/debutBIBideeido.pdf

[14] P. J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549–559.

[15] P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22 (1988) 445–455.