A NOTE ON HIGHER REGULARITY BOUNDARY HARNACK INEQUALITY

D. DE SILVA AND O. SAVIN

Abstract. We show that the quotient of two positive harmonic functions vanishing on the boundary of a $C^{k,\alpha}$ domain is of class $C^{k,\alpha}$ up to the boundary.

1. Introduction

In this note we obtain a higher order boundary Harnack inequality for harmonic functions, and more generally, for solutions to linear elliptic equations.

Let Ω be a $C^{k,\alpha}$ domain in \mathbb{R}^n, $k \geq 1$. Assume for simplicity that

$$\Omega := \{(x', x_n) \in \mathbb{R}^n \mid x_n > g(x')\}$$

with

$$g : \mathbb{R}^{n-1} \to \mathbb{R}, \quad g \in C^{k,\alpha}, \quad \|g\|_{C^{k,\alpha}} \leq 1, \quad g(0) = 0.$$

Our main result is the following.

Theorem 1.1. Let $u > 0$ and v be two harmonic functions in $\Omega \cap B_1$ that vanish continuously on $\partial \Omega \cap B_1$. Assume u is normalized so that $u(e_n/2) = 1$, then

$$\left\| \frac{v}{u} \right\|_{C^{k,\alpha}(\Omega \cap B_1/2)} \leq C\|v\|_{L^\infty},$$

with C depending on n, k, α.

We remark that if $v > 0$, then the right hand side of (1.1) can be replaced by $v(u(e_n/2)$ as in the classic boundary Harnack inequality.

For a more general statement for solutions to linear elliptic equations, we refer the reader to Section 3.

The classical Schauder estimates imply that u, v are of class $C^{k,\alpha}$ up to the boundary. Using that on $\partial \Omega$ we have $u = v = 0$ and $u_\nu > 0$, one can easily conclude that v/u is of class $C^{k-1,\alpha}$ up to the boundary.

Theorem 1.1 states that the quotient of two harmonic functions is in fact one derivative better than the quotient of two arbitrary $C^{k,\alpha}$ functions that vanish on the boundary. To the best of our knowledge the result of Theorem 1.1 is not known in the literature for $k \geq 1$. The case when $k = 0$ is well known as boundary Harnack inequality: the quotient of two positive harmonic functions as above must be C^α up to the boundary if $\partial \Omega$ is Lipschitz, or the graph of a Hölder function, see [HW, CPMS, JK, HW, F].

A direct application of Theorem 1.1 gives smoothness of $C^{1,\alpha}$ free boundaries in the classical obstacle problem without making use of a hodograph transformation, see [KNS, C].

D. De Silva and O. Savin are supported by the ERC starting grant project 2011 EPSILON. D. D. is supported by NSF grant DMS-1301535. O. S. is supported by NSF grant DMS-1200701.
Corollary 1.2. Let $\partial \Omega \in C^{1,\alpha}$ and let u solve
\[
\Delta u = 1 \quad \text{in } \Omega, \quad u = 0, \quad \nabla u = 0 \quad \text{on } \partial \Omega \cap B_1.
\]
Assume that u is increasing in the e_n direction. Then $\partial \Omega \in C^\infty$.

The corollary follows by repeatedly applying Theorem 1.1 to the quotient u_i/u_n.

Our motivation for the results of this paper comes from the question of higher regularity in thin free boundary problems, which we recently began investigating in [DS].

The idea of the proof of Theorem 1.1 is the following. Let v be a harmonic function vanishing on $\partial \Omega$. The pointwise $C^{k+1,\alpha}$ estimate at $0 \in \partial \Omega$ is achieved by approximating v with polynomials of the type $x_n P$ with $\deg P = k$. It turns out that we may use the same approximation if we replace x_n by a given positive harmonic function $u \in C^{k,\alpha}$ that vanishes on $\partial \Omega$. Moreover, the regularity of $\partial \Omega$ does not play a role since the approximating functions $u P$ already vanish on $\partial \Omega$.

In order to fix ideas we treat the case $k = 1$ separately in Section 2, and we deal with the general case in Section 3.

2. The case $k = 1 - C^{1,\alpha}$ estimates.

In this section, we provide the proof of our main Theorem 1.1 in the case $k = 1$. We also extend the result to more general elliptic operators.

Let $\Omega \subset \mathbb{R}^n$ with $\partial \Omega \in C^{1,\alpha}$. Precisely,
\[
\partial \Omega = \{(x', g(x')) | x' \in \mathbb{R}^{n-1}, \quad g(0) = 0, \quad \nabla_{x'} g(0) = 0, \quad \|g\|_{C^{1,\alpha}} \leq 1\}.
\]
Let u be a positive harmonic function in $\Omega \cap B_1$, vanishing continuously on $\partial \Omega \cap B_1$. Normalize u so that $u(e_n/2) = 1$. Throughout this section, we refer to positive constants depending only on n, α as universal.

Theorem 2.1. Let v be a harmonic function in $\Omega \cap B_1$ vanishing continuously on $\partial \Omega \cap B_1$. Then,
\[
\|v - P\|_{C^{1,\alpha}(\Omega \cap B_{1/2})} \leq C\|v\|_{L^\infty(\Omega \cap B_1)}
\]
with C universal.

First we remark that from the classical Schauder estimates and Hopf lemma, u satisfies
\[
(2.1) \quad u \in C^{1,\alpha}, \quad \|u\|_{C^{1,\alpha}(\Omega \cap B_{1/2})} \leq C, \quad u \nu > c > 0 \quad \text{on } \partial \Omega \cap B_{1/2}.
\]

Thus, after a dilation and multiplication by a constant we may assume that
\[
(2.2) \quad \|g\|_{C^{1,\alpha}(B_1)} \leq \delta, \quad \nabla u(0) = e_n, \quad |\nabla u|_{C^{\alpha}} \leq \delta,
\]
where the constant δ will be specified later.

We claim that Theorem 2.1 will follow, if we show that there exists a linear function
\[
(2.3) \quad P(x) = a_0 + \sum_{i=1}^n a_i x_i, \quad a_n = 0
\]
such that
\[
(2.4) \quad \left| \frac{v}{u}(x) - P(x) \right| \leq C|x|^{1+\alpha}, \quad x \in \Omega \cap B_1
\]
for C universal.

To obtain (2.3), we prove the next lemma.
Lemma 2.2. Assume that, for some \(r \leq 1 \) and \(P \) as in (2.3) with \(|a_i| \leq 1 \),
\[
\|v - uP\|_{L^\infty(\Omega \cap B_r)} \leq r^{2+\alpha}.
\]
Then, there exists a linear function
\[
P(x) = \bar{a}_0 + \sum_{i=1}^{n} \bar{a}_i x_i, \quad \bar{a}_n = 0
\]
such that
\[
\|v - u\bar{P}\|_{L^\infty(\Omega \cap B_{\rho r})} \leq (\rho r)^{2+\alpha},
\]
for some \(\rho > 0 \) universal, and
\[
\|P - \bar{P}\|_{L^\infty(B_r)} \leq C r^{1+\alpha},
\]
with \(C \) universal.

Proof. We write
\[
v(x) = u(x)P(x) + r^{2+\alpha} \tilde{v}\left(\frac{x}{r}\right), \quad x \in \Omega \cap B_r,
\]
with
\[
\|\tilde{v}\|_{L^\infty(\tilde{\Omega} \cap B_1)} \leq 1, \quad \tilde{\Omega} := \frac{1}{r} \Omega.
\]
Define also,
\[
\tilde{u}(x) := u(rx), \quad x \in \tilde{\Omega} \cap B_1.
\]
We have,
\[
0 = \Delta v = \Delta (uP) + r^\alpha \Delta \tilde{v}\left(\frac{x}{r}\right), \quad x \in \Omega \cap B_r,
\]
and
\[
\Delta (uP) = 2\nabla u \cdot \nabla P = 2 \sum_{i=1}^{n-1} a_i u_i, \quad x \in \Omega \cap B_r.
\]
Moreover, from (2.2) we have
\[
\|\nabla u - e_n\|_{L^\infty(\Omega \cap B_r)} \leq \delta r^\alpha.
\]
Thus, \(\tilde{v} \) solves
\[
|\Delta \tilde{v}| \leq 2\delta \quad \text{in } \tilde{\Omega} \cap B_1, \quad \tilde{v} = 0 \quad \text{on } \partial \tilde{\Omega} \cap B_1,
\]
and
\[
\|\tilde{v}\|_{L^\infty(\tilde{\Omega} \cap B_1)} \leq 1.
\]
Hence, as \(\delta \to 0 \) (using also (2.2)) \(\tilde{v} \) must converge (up to a subsequence) uniformly to a solution \(v_0 \) of
\[
\Delta v_0 = 0 \quad \text{in } B_1^+, \quad v_0 = 0 \quad \text{on } \{x_n = 0\} \cap \bar{B}_1^+
\]
and
\[
|v_0| \leq 1 \quad \text{in } B_1^+.
\]
Such a \(v_0 \) satisfies,
\[
\|v_0 - x_n Q\|_{L^\infty(B_1^+)} \leq C \rho^3 \leq \frac{1}{4} \rho^{2+\alpha},
\]
for some \(\rho \) universal and \(Q = b_0 + \sum_{i=1}^{n} b_i x_i, |b_i| \leq C \). Notice that \(b_n = 0 \) since \(x_n Q \) is harmonic.
By compactness, if \(\delta \) is chosen sufficiently small, then

\[
\| \tilde{v} - x_n Q \|_{L^\infty(\tilde{\Omega} \cap B_\rho)} \leq \frac{1}{2} \rho^{2+\alpha}.
\]

From (2.2),

\[
| \tilde{u} - x_n | \leq \delta
\]

thus

\[
\| \tilde{v} - \tilde{u} Q \|_{L^\infty(\tilde{\Omega} \cap B_\rho)} \leq \rho^{2+\alpha}
\]

from which the desired conclusion follows by choosing

\[
\bar{P}(x) = P(x) + r^{1+\alpha} Q \left(\frac{x}{r} \right).
\]

\[\Box \]

Remark 2.3. Notice that, from boundary Harnack inequality, \(\tilde{v} \) satisfies (see (2.5) and recall that \(u(\frac{1}{2}e_n) = 1 \))

\[
| \tilde{v} | \leq C \tilde{u} \text{ in } \tilde{\Omega} \cap B_{1/2},
\]

with \(C \) universal. Thus our assumption can be improved in \(B_{r/2} \) to

\[
| v(x) - uP(x) | \leq Cu(x)r^{1+\alpha} \text{ in } \Omega \cap B_{r/2}.
\]

Moreover,

\[
\left[\frac{\tilde{v}}{\tilde{u}} \right]_{C^{1,\alpha}(\tilde{\Omega} \cap B_{r/4}(\frac{1}{2}e_n))} \leq C
\]

since \(\tilde{u} \) is bounded below in such region. This, together with the identity

\[
\frac{v}{u} = P + r^{1+\alpha} \frac{\tilde{v}}{\tilde{u}} \left(\frac{x}{r} \right) \quad x \in \Omega \cap B_r
\]

implies

\[
(2.6) \quad \left[\nabla \left(\frac{v}{u} \right) \right]_{C^{\alpha}(\Omega \cap B_{r/4}(\frac{1}{2}e_n))} = \left[\frac{\tilde{v}}{\tilde{u}} \right]_{C^{1,\alpha}(\tilde{\Omega} \cap B_{r/4}(\frac{1}{2}e_n))} \leq C.
\]

Proof of Theorem 2.1 After multiplying \(v \) by a small constant, the assumptions of the lemma are satisfied with \(P = 0 \) and \(r = r_0 \) small. Thus, if we choose \(r_0 \) small universal, we can apply the lemma indefinitely and obtain a limiting linear function \(P_0 \) such that

\[
| v - uP_0 | \leq Cr^{2+\alpha}, \quad r \leq r_0.
\]

In fact, from Remark 2.3 we obtain

\[
| \frac{v}{u} - P_0 | \leq C|x|^{1+\alpha}
\]

which together with (2.6) gives the desired conclusion. \[\Box \]

It is easy to see that our proof holds in greater generality. For example, if \(v \) solves \(\Delta v = f \in C^\alpha \) in \(\Omega \cap B_1 \) and vanishes continuously on \(\partial \Omega \cap B_1 \), then we get

\[
\| \frac{v}{u} \|_{C^{1,\alpha}(\Omega \cap B_{r/2})} \leq C(\| v \|_{L^\infty} + \| f \|_{C^\alpha}).
\]

To obtain this estimate it suffices to take in Lemma 2.2 linear functions \(P(x) = a_0 + \sum_{i=1}^n a_i x_i \) satisfying \(2a_n u_n(0) = f(0) \). In fact, the following more general Theorem holds.
Theorem 2.4. Let
\[L u := \text{Tr}(A D^2 u) + b \cdot \nabla u + c u, \]
with \(A \in C^\alpha, b, c \in L^\infty \) and
\[\lambda I \leq A \leq \Lambda I, \quad \|A\|_{C^\alpha}, \|b\|_{L^\infty}, \|c\|_{L^\infty} \leq \Lambda. \]
Assume
\[L u = 0, \quad u > 0 \quad \text{in} \quad \Omega \cap B_1, \quad u = 0 \quad \text{on} \quad \partial \Omega \cap B_1 \]
and
\[L v = f \in C^\alpha \quad \text{in} \quad \Omega \cap B_1, \quad v = 0 \quad \text{on} \quad \partial \Omega \cap B_1. \]
Then, if \(u \) is normalized so that \(\| u \|_{C^{1,\alpha}(\Omega \cap B_{1/2})} = 1 \)
\[\| u \|_{C^{1,\alpha}(\Omega \cap B_{1/2})} \leq C(\|v\|_{L^\infty} + \|f\|_{C^\alpha}) \]
with \(C \) depending on \(\alpha, \lambda, \Lambda \) and \(n \).

Remark 2.5. We emphasize that the conditions on the matrix \(A \) and the right hand side \(f \) are those that guarantee interior \(C^{2,\alpha} \) Schauder estimates. However the conditions on the domain \(\Omega \) and the lower order coefficients \(b, c \) are those that guarantee interior \(C^{1,\alpha} \) Schauder estimates.

Remark 2.6. The theorem holds also for divergence type operators
\[Lu = \text{div}(A \nabla u + bu), \quad A \in C^\alpha, \quad b \in C^\alpha. \]

The proof of Theorem 2.4 follows the same argument of Theorem 2.1. For convenience of the reader, we give a sketch of the proof.

Sketch of the proof of Theorem 2.4. After a dilation we may assume that (2.2) holds and also
\[A(0) = I, \quad \max\{[A]_{C^\alpha}, \|b\|_{L^\infty}, \|c\|_{L^\infty}, [f]_{C^\alpha}\} \leq \delta \]
with \(\delta \) to be chosen later. Again, it suffices to show the analogue of Lemma 2.2 in this context, with the \(x_n \) coefficient of \(P \) and \(\bar{P} \) satisfying
\[2a_n = 2\bar{a}_n = f(0). \]
Define \(\tilde{v} \) as before. Then
\[f = L v = L(uP) + r^\alpha \tilde{L} \tilde{v} \left(\frac{x}{r} \right) \quad x \in \Omega \cap B_r \]
with
\[\tilde{L} \tilde{v} := \text{Tr}(\tilde{A} D^2 \tilde{v}) + \tilde{b} \cdot \nabla \tilde{v} + r^2 \tilde{c} \tilde{v}, \]
\[\tilde{A}(x) = A(rx), \quad \tilde{b}(x) = b(rx), \quad \tilde{c}(x) = c(rx), \quad x \in \tilde{\Omega} \cap B_1. \]

On the other hand,
\[\tilde{L} (uP) = (Lu)P + 2(\nabla u)^T \tilde{A} \nabla P + u b \cdot \nabla P \]
thus, using (2.2)-(2.7) and the fact that \(2a_n = f(0) \)
\[|L(uP) - f| \leq C \delta r^\alpha, \quad x \in \Omega \cap B_r. \]
From this we conclude that
\[|\tilde{L} \tilde{v}| \leq C \delta \quad \text{in} \quad \tilde{\Omega} \cap B_1 \]
and we can argue by compactness exactly as before. \(\square \)
3. THE GENERAL CASE, $k \geq 2$.

Let \(\Omega \subset \mathbb{R}^n \) with \(\partial \Omega \in C^{k, \alpha} \). Precisely,
\[
\partial \Omega = \{(x', g(x')) \mid x' \in \mathbb{R}^{n-1}\}, \quad g(0) = 0, \quad \nabla x'g(0) = 0, \quad \|g\|_{C^{k, \alpha}} \leq 1.
\]

Theorem 3.1. Let
\[
Lu := Tr(AD^2u) + b \cdot \nabla u + cu
\]
with
\[
\lambda I \leq A \leq \Lambda I,
\]
and
\[
\max\{\|A\|_{C^{k-1, \alpha}}, \|b\|_{C^{k-2, \alpha}}, \|c\|_{C^{k-2, \alpha}}\} \leq \Lambda.
\]
Assume
\[
Lu = 0, u > 0 \quad \text{in} \quad \Omega \cap B_1, \quad u = 0 \quad \text{on} \quad \partial \Omega \cap B_1
\]
and
\[
Lv = f \in C^{k-1, \alpha} \quad \text{in} \quad \Omega \cap B_1, \quad v = 0 \quad \text{on} \quad \partial \Omega \cap B_1.
\]
Then, if \(u \) is normalized so that \(u(\frac{1}{2}e_n) = 1 \)
\[
\left\| \frac{\partial}{\partial u} \right\|_{C^{k, \alpha}(\Omega \cap B_{1/2})} \leq C(\|v\|_{L^\infty} + \|f\|_{C^{k-1, \alpha}})
\]
with \(C \) depending on \(k, \alpha, \lambda, \Lambda \) and \(n \).

From now on, a positive constant depending on \(n, k, \alpha, \lambda, \Lambda \) is called universal.

Remark 3.2. If we are interested only in \(C^{k, \alpha} \) estimates for \(\frac{\partial}{\partial u} \) on \(\partial \Omega \cap B_{1/2} \), then the regularity assumption on \(c \) can be weakened to \(\|c\|_{C^{k-3, \alpha}} \leq \Lambda \).

If \(u \) and \(v \) solve (3.1) and (3.2) respectively, the rescalings
\[
\hat{u}(x) = \frac{1}{r_0}u(r_0x), \quad \hat{v}(x) = \frac{1}{r_0}v(r_0x)
\]
satisfy the same problems with \(\tilde{\Omega}, \tilde{A}, \tilde{b}, \tilde{c} \) and \(f \) replaced by
\[
\tilde{\Omega} = \frac{1}{r_0} \Omega, \quad \tilde{A}(x) = A(r_0x), \quad \tilde{b}(x) = r_0b(r_0x), \quad \tilde{c}(x) = r_0^2c(r_0x), \quad \tilde{f}(x) = r_0f(r_0x).
\]

Thus, as in the case \(k = 1 \), we may assume that
\[
\nabla u(0) = e_n, \quad A(0) = I
\]
and that the following norms are sufficiently small:
\[
\max\{\|g\|_{C^{k, \alpha}}, \|A - I\|_{C^{k-1, \alpha}}, \|b\|_{C^{k-2, \alpha}}, \|c\|_{C^{k-2, \alpha}}, \|f\|_{C^{k-1, \alpha}}, \|u - x_n\|_{C^{k, \alpha}}\} \leq \delta,
\]
with \(\delta \) to be specified later.

The proof of Theorem 3.1 is essentially the same as in the case \(k = 1 \). However, we now need to work with polynomials of degree \(k \) rather than linear functions.

We introduce some notation. A polynomial \(P \) of degree \(k \) is denoted by
\[
P(x) = a_m x^m, \quad m = (m_1, m_2, \ldots, m_n), |m| = m_1 + \ldots + m_n,
\]
with the \(a_m \) non-zero only if \(m \geq 0 \) and \(|m| \leq k \). We use here the summation convention over repeated indices and the notation
\[
x^m = x_1^{m_1} \ldots x_n^{m_n}.
\]
Also, in what follows, \(\tilde{i} \) denotes the multi-index with 1 on the \(i \)th position and zeros elsewhere and \(\| P \| = \max |a_m| \).

Given \(u \) a solution to (3.1), we will approximate a solution \(v \) to (3.2) with polynomials \(P \) such that \(\mathcal{L}(uP) \) and \(f \) are tangent at 0 of order \(k - 1 \).

Below we show that the coefficients of such polynomials must satisfy a certain linear system.

Indeed,

\[
\mathcal{L}(uP) = (\mathcal{L}u)P + 2(\nabla u)^T A \nabla P + u \text{tr}(A D^2 P) + u b \cdot \nabla P.
\]

Since \(\mathcal{L}u = 0 \), we find

\[
\mathcal{L}(uP) = g^i P_i + g^{ij} P_{ij}, \quad g^i \in C^{k-2, \alpha}, \quad g^{ij} \in C^{k-1, \alpha}.
\]

Using the first order in the expansions below (l.o.t = lower order terms),

\[
A = I + \text{l.o.t.}, \quad u = x_n + \text{l.o.t.}, \quad \nabla u = e_n + \text{l.o.t.},
\]

we write each \(g^i, g^{ij} \) as a sum of a polynomial of degree \(k - 1 \) and a reminder of order \(O(|x|^{k-1+\alpha}) \). We find

\[
g^i = 2\delta^i_n + \text{l.o.t.}, \quad g^{ij} = \delta_{ij} x_n + \text{l.o.t.}.
\]

In the case \(P = x^m \) we obtain

\[
\mathcal{L}(u x^m) = m_n(m_n + 1)x^{m-\tilde{n}} + \sum_{\tilde{i} \neq \tilde{n}} m_{\tilde{i}}(m_{\tilde{i}} - 1)x^{m-2\tilde{i}+\tilde{n}} + c_{\tilde{i}}^m x^l + w_m(x),
\]

with

\[
c_{\tilde{i}}^m \neq 0 \quad \text{only if } |m| \leq |l| \leq k - 1, \quad \text{and} \quad w_m = O(|x|^{k-1+\alpha}).
\]

Also in view of (3.3)

\[
|c_{\tilde{i}}^m| \leq C\delta, \quad |w_m| \leq C\delta|x|^{k-1+\alpha}, \quad \|w_m\|_{C^{k-2, \alpha}(B_r)} \leq C\delta r.
\]

Thus, if \(P = a_m x^m \), with \(\| P \| \leq 1 \) then

\[
\mathcal{L}(uP) = R(x) + w(x), \quad R(x) = d_l x^l, \quad \text{deg } R = k - 1,
\]

with \(w \) as above and the coefficients of \(R \) satisfying

\[
d_l = (l_n + 1)(l_n + 2)a_{l+\tilde{n}} + \sum_{\tilde{i} \neq \tilde{n}} (l_{\tilde{i}} + 1)(l_{\tilde{i}} + 2)a_{l+2\tilde{i} - \tilde{n}} + c_{\tilde{i}}^m a_m.
\]

Definition 3.3. We say that \(P \) is an approximating polynomial for \(v/u \) at 0 if the coefficients \(d_l \) of \(R(x) \) coincide with the coefficients of the Taylor polynomial of order \(k - 1 \) for \(f \) at 0.

We think of (3.6) as an equation for \(a_{l+\tilde{n}} \) in terms of \(d_l \) and a linear combination of \(a_m \)'s with either \(|m| < |l| + 1 \) or when \(|m| = l + 1 \) with \(m_n < l_n + 1 \). Thus the \(a_m \)'s are uniquely determined from the system (3.6) once \(d_l \) and \(a_m \) with \(m_n = 0 \) are given.

The proof of Theorem 3.1 now follows as in the case \(k = 1 \), once we establish the next lemma.
Lemma 3.4. Assume that for some $r \leq 1$ and an approximating polynomial P for v/u at 0, with $\|P\| \leq 1$, we have

$$\|v - uP\|_{L^\infty(\Omega \cap B_r)} \leq r^{k+1+\alpha}.$$

Then, there exists an approximating polynomial \bar{P} for v/u at 0, such that

$$\|v - u\bar{P}\|_{L^\infty(\Omega \cap B_{\rho r})} \leq (\rho r)^{k+1+\alpha}$$

for $\rho > 0$ universal, and

$$\|P - \bar{P}\|_{L^\infty(B_r)} \leq C r^{k+\alpha},$$

with C universal.

Proof. We write

$$v(x) = u(x)P(x) + r^{k+1+\alpha} \tilde{v} \left(\frac{x}{r} \right), \quad x \in \Omega \cap B_r,$$

with

$$\|\tilde{v}\|_{L^\infty(\tilde{\Omega} \cap B_1)} \leq 1, \quad \tilde{\Omega} := \frac{1}{r} \Omega.$$

Define also,

$$\tilde{u}(x) := \frac{u(rx)}{r}, \quad x \in \tilde{\Omega} \cap B_1.$$

Then

$$f = \mathcal{L}v = \mathcal{L}(uP) + r^{k+\alpha-1} \tilde{\mathcal{L}}\tilde{v} \left(\frac{x}{r} \right) \quad x \in \Omega \cap B_r$$

with

$$\tilde{\mathcal{L}}\tilde{v} := Tr(\tilde{A} D^2 \tilde{v}) + r \tilde{b} \cdot \nabla \tilde{v} + r^2 \tilde{c} \tilde{v},$$

$$\tilde{A}(x) = A(rx), \quad \tilde{b}(x) = b(rx), \quad \tilde{c}(x) = c(rx), \quad x \in \tilde{\Omega} \cap B_1.$$

Using that P is approximating, we conclude that

(3.7) \quad $\tilde{\mathcal{L}}\tilde{v} = \tilde{w}$ in $\tilde{\Omega} \cap B_1$, \quad $\tilde{v} = 0$ on $\partial \tilde{\Omega} \cap B_1$,

with

$$\|\tilde{v}\|_{L^\infty(\tilde{\Omega} \cap B_1)} \leq 1, \quad \|\tilde{w}\|_{C^{k+2,\alpha}} \leq C \delta.$$

By compactness $\tilde{v} \to v_0$ with v_0 harmonic. Thus we find,

$$\|v - x_n Q\|_{L^\infty(\tilde{\Omega} \cap B_1)} \leq C r^{k+2} \leq \frac{1}{2} r^{k+\alpha-1}, \quad \deg Q = k, \quad \|Q\| \leq C,$$

with $x_n Q$ a harmonic polynomial and ρ universal. Thus,

$$\|v - u(P + r^{k+\alpha} Q(\frac{x}{r}))\|_{L^\infty(\Omega \cap B_{\rho r})} \leq \frac{1}{2} (\rho r)^{k+\alpha-1}.$$

However $P + r^{k+\alpha} Q(\frac{x}{r})$ is not approximating for v/u at 0, and we need to modify Q into a slightly different polynomial \bar{Q}.

We want the coefficients \bar{q} of \bar{Q} to satisfy (see (3.6))

(3.8) \quad $0 = (l + 1)(l + 2)\bar{q}_{l+2} + \sum_{i \neq n} (l_i + 1)(l_i + 2)\bar{q}_{l_i+2i-n} + \bar{c}_l^m \bar{q}_m$,

with (see (3.4)-(3.5))

$$\bar{c}_l^m = r^{l_l+1-m} c_l^m, \quad |c_l^m| \leq C \delta.$$
Moreover, since in the flat case i.e. $A = I$, $u = x_n$ and g, b, c, f all vanishing, Q is approximating for v_0/x_n at 0, the coefficients of Q satisfy the system \([3.6]\) with $c_1^n = 0$ and $d_l = 0$, i.e.

$$0 = (l_n + 1)(l_n + 2)q_l + n + \sum_{l \neq n} (l_i + 1)(l_i + 2)q_{l+2i} - n.$$

Thus, by subtracting the last two equations, the coefficients of $Q - \bar{Q}$ solve the system \([3.8]\) with left hand side bounded by $C\delta$, and we can find \bar{Q} such that

$$\|Q - \bar{Q}\|_{L^\infty(B_1)} \leq C\delta.$$

\[\square\]

References

- [BBB] Baeulos, R., Bass, R.F. and Burdzy, K., *Hölder Domains And The Boundary Harnack Principle*, Duke Math. J., 64, 195–200 (1991).
- [C] Caffarelli, L., *The obstacle problem revisited*, Journal of Fourier Analysis and Applications, Volume 4, Issue 4-5, pp 383–402 (1998).
- [CFMS] Caffarelli, L., Fabes, E., Mortola, S., and Salsa, S., *Boundary behavior of non-negative solutions of elliptic operators in divergence form*, Indiana Math. J.,30, 621–640 (1981).
- [DS] De Silva, D., Savin, O., C^∞ regularity of certain thin free boundaries, arXiv:1402.1098. Submitted (2014).
- [F] Ferrari, F., *On boundary behavior of harmonic functions in Hölder domains*, Journal of Fourier Analysis and Applications, 1998, Volume 4, Issue 4-5, pp 447–461 (1988).
- [HW] Hunt, R.A. and Wheeden, R.L., *On the boundary values of harmonic functions*, Trans. Amer. Math. Soc.,132, 307–322 (1968).
- [JK] Jerison, D.S. and Kenig, C.E., *Boundary Behavior of Harmonic Functions in Non-tangentially Accessible Domains*, Adv. Math.,46, 80–147 (1982).
- [KNS] Kinderlehrer D., Nirenberg L., Spruck J., *Regularity in elliptic free boundary problems*, J. Analyse Math. 34 (1978), 86–119 (1979).