ISOPHOTE CURVES ON TIMELIKE SURFACES IN
MINKOWSKI 3-SPACE

FATIH DOĞAN

ABSTRACT. Isophote comprises a locus of the surface points whose normal vectors make a constant angle with a fixed vector. In this paper, isophote curves are studied on timelike surfaces in Minkowski 3-space E^3_1. The axes of spacelike and timelike isophote curves are found via their Darboux frames. Subsequently, the relationship between isophotes and slant helices is shown on timelike surfaces.

1. INTRODUCTION

Isophote is one of the characteristic curves on a surface such as parameter, geodesic and asymptotic curves or lines of curvature.

Isophote on a surface can be regarded as a nice consequence of Lambert’s cosine law in optics branch of physics. Lambert’s law states that the intensity of illumination on a diffuse surface is proportional to the cosine of the angle generated between the surface normal vector N and the light vector d. According to this law the intensity is irrespective of the actual viewpoint, hence the illumination is the same when viewed from any direction [19]. In other words, isophotes of a surface are curves with the property that their points have the same light intensity from a given source (a curve of constant illumination intensity). When the source light is at infinity, we may consider that the light flow consists in parallel lines. Hence, we can give a geometric description of isophotes on surfaces, namely they are curves such that the surface normal vectors in points of the curve make a constant angle with a fixed direction (which represents the light direction). These curves are successfully used in computer graphics but also it is interesting to study for geometry. Then, to find an isophote on a surface we use the formula

\[
\frac{(N(u,v), d)}{\|N(u,v)\|} = \cos \theta, \quad 0 \leq \theta \leq \frac{\pi}{2},
\]

where d is the light (fixed) vector and θ is the constant angle between the surface normal vector N and d.

Koenderink and van Doorn [9] studied the field of constant image brightness contours (isophotes). They showed that the spherical image (the Gauss map) of an isophote is a latitude circle on the unit sphere S^2 and the problem was reduced to that of obtaining the inverse Gauss map of these circles. By means of this they defined two kind singularities of the Gauss map: folds (curves) and simple cusps (apex, antapex points) and there are structural properties of the field of isophotes that bear an invariant relation to geometric features of the object.

2000 Mathematics Subject Classification. 51B20, 53A35, 53B30.

Key words and phrases. Isophote curve; Spacelike curve; Timelike curve; Timelike surface; Geodesic; Slant helix.
Poeschl [16] used isophotes in car body construction via detecting irregularities along these curves on a free form surface. These irregularities emerge by differentiating of the equation \(\langle N(u,v), l \rangle = \cos \theta = c \) (constant)

\[
\langle N_u, l \rangle \, du + \langle N_v, l \rangle \, dv = 0
\]

\[
\frac{dv}{du} = -\frac{\langle N_u, l \rangle}{\langle N_v, l \rangle}, \quad \langle N_v, l \rangle \neq 0,
\]

where \(l \) (\(d \)) is the light vector.

Sara [18] researched local shading of a surface through isophote properties. By using fundamental theory of surfaces, he focused on accurate estimation of surface normal tilt and on qualitatively correct Gaussian curvature recovery.

Kim and Lee [8] parameterized isophotes for surface of rotation and canal surface. They utilized that both these surfaces decompose into a set of circles where the surface normal vectors at points on each circle construct a cone. Again the vectors that make a constant angle with the fixed vector \(d \) construct another cone and thus tangential intersection of these cones give the parametric range of the connected component isophote.

Dillen et al. [2] studied the constant angle surfaces in the product space \(S^2 \times \mathbb{R} \) for which the unit normal makes a constant angle with the \(\mathbb{R} \)-direction. Then Dillen and Munteanu [3] investigated the same problem in \(\mathbb{H}^2 \times \mathbb{R} \) where \(\mathbb{H}^2 \) is the hyperbolic plane. Again, Nistor [13] researched normal, binormal and tangent developable surfaces of the space curve from standpoint of constant angle surface. Recently, Munteanu and Nistor [12] gave an important characterization about constant angle surfaces and studied the constant angle surfaces taking with a fixed vector direction being the tangent direction to \(\mathbb{R} \) in Euclidean 3-space. Thus, it can be said that all curves on a constant angle surface are isophote curves.

Izumiya and Takeuchi [6] defined a slant helix as a space curve that the principal normal lines make a constant angle with a fixed direction. They displayed that a certain slant helix is also a geodesic on the tangent developable surface of a general helix.

Recently, Ali and Lopez [1] looked into slant helices in Lorentz-Minkowski space \(E^3_1 \). They gave characterizations as to slant helix and its axis in \(E^3_1 \).

More recently, Doğan and Yaylı [4] have investigated isophote curves in the Euclidean space \(E^3 \). Also, they [5] studied isophote curves on spacelike surfaces in \(E^3_1 \). In both papers they viewed that the close relation between isophote curves and special curves on the surfaces. For instance, an isophote can be generated by a curve which is both geodesic and slant helix.

This time we study isophote curves on timelike surfaces in \(E^3_1 \). The present paper is organized as follows. We give basic concepts concerning curve and surface theory in section 2. In section 3 and 4, we focus on finding the axes of spacelike and timelike isophote curves lying on timelike surfaces. Finally, we give main theorems for these curves in section 5.

2. Preliminaries

First of all, we begin to introduce Minkowski 3-space. Later, we mention some fundamental concepts of curves and surfaces in the Minkowski 3-space \(E^3_1 \). The space \(R^3_1 \) is a three dimensional real vector space endowed with the inner product

\[
\langle x,y \rangle = -x_1y_1 + x_2y_2 + x_3y_3.
\]
This space is called Minkowski 3-space and denoted by E^3_1. A vector in this space is said to be spacelike, timelike and lightlike (null) if $\langle x, x \rangle > 0$ or $x = 0$, $\langle x, x \rangle < 0$ and $\langle x, x \rangle = 0$ or $x \neq 0$, respectively. Again, a regular curve $\alpha : I \rightarrow E^3_1$ is called spacelike, timelike and lightlike if the velocity vector α' is spacelike, timelike and lightlike, respectively [10].

The Lorentzian cross product of $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ in R^3_1 is defined as follows.

$$x \times y = \begin{vmatrix} e_1 & -e_2 & -e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1),$$

where δ_{ij} is kronecker delta, $e_i = (\delta_{i1}, \delta_{i2}, \delta_{i3})$ and $e_1 \times e_2 = -e_3, e_2 \times e_3 = e_1, e_3 \times e_1 = -e_2$.

Let $\{t, n, b\}$ be the moving Frenet frame along the curve α with arclength parameter s. For a spacelike curve α, the Frenet-Serret equations are

$$\begin{bmatrix} t' \\ n' \\ b' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\varepsilon\kappa & 0 & \tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b \end{bmatrix},$$

where $\langle t, t \rangle = 1, \langle n, n \rangle = 9 \pm 1, \langle b, b \rangle = -\varepsilon, \langle t, n \rangle = \langle t, b \rangle = \langle n, b \rangle = 0$ and κ is the curvature and τ is the torsion of α. Here, ε determines the kind of spacelike curve α. If $\varepsilon = 1$, then $\alpha(s)$ is a spacelike curve with spacelike principal normal n and timelike binormal b. If $\varepsilon = -1$, then $\alpha(s)$ is a spacelike curve with timelike principal normal n and spacelike binormal b.

If the curve α is a timelike, the Frenet-Serret equations are

$$\begin{bmatrix} t' \\ n' \\ b' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ \kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b \end{bmatrix},$$

where $\langle t, t \rangle = -1, \langle n, n \rangle = \langle b, b \rangle = 1, \langle t, n \rangle = \langle t, b \rangle = \langle n, b \rangle = 0$ [20].

Definition 1 ([14]). Let v and w be spacelike vectors.

(a) If v and w span a timelike vector subspace, then there is a unique non-negative real number $\theta \geq 0$ such that

$$\langle v, \omega \rangle = \|v\| \|w\| \cosh \theta.$$ \hspace{1cm} (2.1)

(b) If v and w span a spacelike vector subspace, then there is a unique non-negative real number $\theta \geq 0$ such that

$$\langle v, \omega \rangle = \|v\| \|w\| \cos \theta.$$ \hspace{1cm} (2.2)

Definition 2 ([14]). Let v be a spacelike vector and w be a timelike vector in R^3_1. Then, there is a unique non-negative real number $\theta \geq 0$ such that

$$\langle v, w \rangle = \|v\| \|w\| \sinh \theta.$$ \hspace{1cm} (2.3)

Definition 3 ([14]). Let v and w be in the same timecone of R^3_1. Then, there is a unique real number $\theta \geq 0$, called the hyperbolic angle between v and w such that

$$\langle v, \omega \rangle = -\|v\| \|w\| \cosh \theta.$$ \hspace{1cm} (2.4)
Lemma 1. In the Minkowski 3-space E^3_1, we have the following [20].
(i) Two timelike vectors cannot be orthogonal.
(ii) Two null vectors are orthogonal if and only if they are linearly dependent.
(iii) A timelike vector cannot be orthogonal to a null (lightlike) vector.

Let M be a regular timelike surface in E^3_1 and let $\alpha : I \subset \mathbb{R} \rightarrow M$ be a unit speed spacelike curve. Then, Darboux frame $\{T, B = N \times T, N\}$ is well-defined and positively oriented along the curve α where T is the tangent of α and N is the unit normal of M. In this case, the Darboux equations are given by

\begin{align*}
T' &= k_g B - k_n N \\
B' &= k_g T + \tau_g N \\
N' &= k_n T + \tau_g B,
\end{align*}

where k_n, k_g and τ_g are the normal curvature, the geodesic curvature and the geodesic torsion of α, respectively and $\langle T, T \rangle = \langle N, N \rangle = \langle n, n \rangle = 1$, $\langle B, B \rangle = -1$.

Then, by using Eq.(2.5) we get

\begin{align*}
\kappa^2 &= k_n^2 - k_g^2 \\
k_g &= \kappa \sinh \phi \\
k_n &= \kappa \cosh \phi \\
\tau_g &= \tau + \phi',
\end{align*}

where ϕ is the angle between the surface normal vector N and the principal normal n of α.

If $\alpha : I \subset \mathbb{R} \rightarrow M$ is a timelike curve, then the Darboux equations are given by

\begin{align*}
T' &= k_g B + k_n N \\
B' &= k_g T - \tau_g N \\
N' &= k_n T + \tau_g B,
\end{align*}

where $\langle T, T \rangle = -1$, $\langle N, N \rangle = \langle B, B \rangle = \langle n, n \rangle = 1$. From Eq.(2.7) we get,

\begin{align*}
\kappa^2 &= k_n^2 + k_g^2 \\
k_g &= \kappa \cos \phi \\
k_n &= \kappa \sin \phi \\
\tau_g &= \tau + \phi',
\end{align*}

where ϕ is the angle between the surface normal vector N and the principal normal n of α.

3. The axis of a spacelike isophote curve on timelike surfaces

Now, we find the fixed vector (axis) of a spacelike isophote curve via its Darboux frame. Let M be a timelike surface and let α be a unit speed spacelike isophote curve on M. Then, there are two cases for the axis d of α.

The Case (1). If the axis d is spacelike vector, then from Definition 1(a) and 1(b) we have

$$\langle N, d \rangle = \cosh \theta \quad \text{or} \quad \langle N, d \rangle = \cos \beta.$$
where θ and β are the constant angles between the surface normal vector N and d, respectively.

\textbf{(a)} Let $\langle N, d \rangle = \cosh \theta$. If we differentiate this equation with respect to s along the curve α, by Eq.(2.5) we get

$$\langle N', d \rangle = 0$$

$$\langle k_n T + \tau_g B, d \rangle = 0$$

$$k_n \langle T, d \rangle + \tau_g \langle B, d \rangle = 0$$

$$(T, d) = -\frac{\tau_g}{k_n} \langle B, d \rangle$$

If we take $\langle B, d \rangle = a$, the axis d can be written as

$$d = -\frac{\tau_g}{k_n} a T - a B + \cosh \theta N,$$

where $\langle T, T \rangle = \langle N, N \rangle = 1$ and $\langle B, B \rangle = -1$. Since d is spacelike, we obtain

$$\langle d, d \rangle = \frac{k^2}{k_n^2} a^2 - a^2 + \cosh^2 \theta = 1$$

$$(1 - \frac{k^2}{k_n^2}) a^2 = \sinh^2 \theta$$

$$a = \mp \frac{k_n}{\sqrt{k_n^2 - \tau_g^2}} \sinh \theta.$$

By substituting this in the expression of d, we get the axis as

$$(3.1) \quad d = \pm \frac{\tau_g}{\sqrt{k_n^2 - \tau_g^2}} \sinh \theta T \pm \frac{k_n}{\sqrt{k_n^2 - \tau_g^2}} \sinh \theta B + \cosh \theta N.$$

If we differentiate N' with respect to s and take inner product with d, we conclude

$$(3.2) \quad N'' = (k'_n + k_n \tau_g) T + (\tau'_g + k_n k_g) B - (k_n^2 - \tau_g^2) N$$

$$\langle N'', d \rangle = \mp \frac{(\tau'_g k_n - k'_n \tau_g) + k_g (k_n^2 - \tau_g^2)^{1/2}}{\sqrt{k_n^2 - \tau_g^2}} \sinh \theta - (k_n^2 - \tau_g^2) \cosh \theta = 0$$

$$\coth \theta = \mp \left[\frac{\tau'_g k_n - k'_n \tau_g}{(k_n^2 - \tau_g^2)^{1/2}} + \frac{k_g}{(k_n^2 - \tau_g^2)^{1/2}} \right]$$

$$(3.3) \quad \frac{k_n^2}{(k_n^2 - \tau_g^2)^{1/2}} \left(\frac{\tau_g}{k_n} \right)' + \frac{k_g}{(k_n^2 - \tau_g^2)^{1/2}}.$$

Indeed, d is a constant vector. If we differentiate the vector d, from Eq.(2.5) we get

$$d' = \pm \sinh \theta \left[\left(\frac{\tau_g}{\sqrt{k_n^2 - \tau_g^2}} \right)' T + \frac{\tau_g}{\sqrt{k_n^2 - \tau_g^2}} (k_g B - k_n N) \right]$$

$$\pm \sinh \theta \left[\left(\frac{k_n}{\sqrt{k_n^2 - \tau_g^2}} \right)' B + \frac{k_n}{\sqrt{k_n^2 - \tau_g^2}} (k_g T + \tau_g B) \right] + \cosh \theta [k_n T + \tau_g B]$$
By Eq.(3.3), we have
\[\cosh \theta = \pm \sinh \theta \left[\frac{k_g' \tau_g - \tau_g' k_n}{(k_n^2 - \tau_g^2)^{\frac{3}{2}}} - \frac{k_g}{(k_n^2 - \tau_g^2)^{\frac{1}{2}}} \right]. \]

The last equality is replaced in the statement of \(d' \), it follows that
\[d' = \pm \sinh \theta \left[\frac{\tau_g' (k_n^2 - \tau_g^2) - \tau_g (k_n' k_n - \tau_g' \tau_g)}{(k_n^2 - \tau_g^2)^{\frac{3}{2}}} + \frac{k_n' \tau_g - k_n \tau_g' \tau_g}{(k_n^2 - \tau_g^2)^{\frac{1}{2}}} \right] T \]
\[\pm \sinh \theta \left[\frac{k_g' (k_n^2 - \tau_g^2) - k_n (k_n' k_n - \tau_g' \tau_g)}{(k_n^2 - \tau_g^2)^{\frac{3}{2}}} + \frac{k_n' \tau_g - k_n \tau_g' \tau_g}{(k_n^2 - \tau_g^2)^{\frac{1}{2}}} \right] B. \]

As can be immediately seen above, the coefficients of \(T \) and \(B \) becomes zero. Then \(d' = 0 \) in other words \(d \) is a constant vector.

(b) Let \(\langle N, d \rangle = \cos \beta \). In that case, by Eq.(2.5) it concludes that
\[\langle T, d \rangle = -\frac{\tau_g}{k_n} \langle B, d \rangle. \]

If we take \(\langle B, d \rangle = a \), the axis \(d \) can be written as
\[d = -\frac{\tau_g}{k_n} a T - a B + \cos \beta N. \]
where \(\langle T, T \rangle = \langle N, N \rangle = 1 \) and \(\langle B, B \rangle = -1 \). Since \(d \) is spacelike, we obtain
\[\langle d, d \rangle = \frac{\tau_g^2}{k_n^2} a^2 - a^2 + \cos^2 \beta = 1 \]
\[a = \pm \frac{k_n}{\sqrt{\tau_g^2 - k_n^2}} \sin \beta. \]

In this case, the axis \(d \) becomes
\[d = \pm \frac{\tau_g}{\sqrt{\tau_g^2 - k_n^2}} \sin \beta T \pm \frac{k_n}{\sqrt{\tau_g^2 - k_n^2}} \sin \beta B + \cos \beta N. \]

From Eq.(3.2) we have,
\[N' = (k_n' + \tau_g k_g) T + (\tau_g' + k_n k_g) B - (k_n^2 - \tau_g^2) N. \]

By taking inner product of \(N' \) and \(d \), we get
\[\langle N', d \rangle = \mp \frac{\tau_g k_g - k_n' \tau_g - k_g (\tau_g' + k_n k_g)}{\sqrt{\tau_g^2 - k_n^2}} \sin \beta + (\tau_g^2 - k_n^2) \cos \beta = 0 \]

(3.5)
\[\cot \beta = \pm \left[\frac{k_n^2}{(\tau_g^2 - k_n^2)^{\frac{1}{2}}} \left(\frac{\tau_g}{k_n} \right)' - \frac{k_g}{(\tau_g^2 - k_n^2)^{\frac{3}{2}}} \right]. \]

If we differentiate Eq.(3.4) and then use Eq.(3.5), we obtain
\[d' = \pm \sin \beta \left[\frac{\tau_g' (\tau_g^2 - k_n^2) - \tau_g (\tau_g' \tau_g - k_n k_n')}{(\tau_g^2 - k_n^2)^{\frac{3}{2}}} + \frac{k_n' \tau_g - k_n \tau_g' \tau_g}{(\tau_g^2 - k_n^2)^{\frac{1}{2}}} \right] T \]
\[\pm \sin \beta \left[\frac{k_g' (\tau_g^2 - k_n^2) - k_n (\tau_g' \tau_g - k_n k_n')}{(k_n^2 - \tau_g^2)^{\frac{3}{2}}} + \frac{k_n' \tau_g - k_n \tau_g' \tau_g}{(k_n^2 - \tau_g^2)^{\frac{1}{2}}} \right] B. \]
Since the coefficients of T and B are zero, $d' = 0$, i.e., d is a constant vector.

The Case (2) If the axis d is a timelike vector, then from Definition 2 we have

$$\langle N, d \rangle = \sinh \gamma,$$

where γ is the constant angle between the surface normal vector N and d. By doing computations similar to the case (1) we get

$$d = \pm \frac{\tau_g}{\sqrt{k_n^2 - \tau_g^2}} \cosh \gamma T \pm \frac{k_n}{\sqrt{k_n^2 - \tau_g^2}} \cosh \gamma B + \sinh \gamma N$$

and again similar to proof of the case (1) it can be showed that d is a constant vector.

From now on, we will obtain the axis of timelike isophote curves on timelike surfaces.

4. The Axis of a Timelike Isophote Curve on Timelike Surfaces

In this section, we find the fixed vector (axis) of a timelike isophote curve via its Darboux frame. Let M be a timelike surface and let α be a unit speed timelike isophote curve on M. Then, there are two cases for the axis d of α.

The Case (3). If the axis d is spacelike, then from Definition 1(b) and 1(a) we have

$$\langle N, d \rangle = \cos \delta \quad \text{or} \quad \langle N, d \rangle = \cosh \xi,$$

where δ and ξ are the constant angles between the surface normal vector N and d, respectively.

(a) Let $\langle N, d \rangle = \cos \delta$. Then, from Eq.(2.7) it follows that

$$\langle T, d \rangle = -\frac{\tau_g}{k_n} \langle B, d \rangle.$$

By taking $\langle B, d \rangle = a$, the axis d can be written as

$$d = \frac{\tau_g}{k_n} aT + aB + \cos \delta N,$$

where $\langle T, T \rangle = -1$ and $\langle N, N \rangle = \langle B, B \rangle = 1$. Since d is spacelike, we obtain

$$a = \pm \frac{k_n}{\sqrt{k_n^2 - \tau_g^2}} \sin \delta.$$

Then we have

$$d = \pm \frac{\tau_g}{\sqrt{k_n^2 - \tau_g^2}} \sin \delta T \pm \frac{k_n}{\sqrt{k_n^2 - \tau_g^2}} \sin \delta B + \cos \delta N$$

and

$$\cot \delta = \mp \left[\frac{k_n^2}{(k_n^2 - \tau_g^2)^{3/2}} \frac{(\tau_g)}{k_n} + \frac{k_g}{(k_n^2 - \tau_g^2)^{3/2}} \right].$$

4. \text{The axis of a timelike isophote curve on timelike surfaces}
Like preceding cases it can be showed that d is a constant vector.

(b) Let $(N, d) = \cosh \xi$. Then we can easily obtain

$$d = \pm \frac{\tau_g}{\sqrt{\tau_g^2 - k_n^2}} \sinh \xi T \pm \frac{k_n}{\sqrt{\tau_g^2 - k_n^2}} \sinh \xi B + \cosh \xi N$$

(4.2) $\coth \xi = \pm \left[\frac{k_n^2}{(\tau_g^2 - k_n^2)^2} \left(\frac{\tau_g}{k_n} \right) + \frac{k_n}{(\tau_g^2 - k_n^2)^2} \right]$.

The Case (4). If the axis d is a timelike vector, then from Definition 2 we have

$$(N, d) = \sinh \nu$$

where ν is the constant angle between the surface normal vector N and d. In this situation, we get

$$d = \pm \frac{\tau_g}{\sqrt{\tau_g^2 - k_n^2}} \cosh \nu T \pm \frac{k_n}{\sqrt{\tau_g^2 - k_n^2}} \cosh \nu B + \sinh \nu N$$

(4.3) $\coth \nu = \pm \left[\frac{k_n^2}{(\tau_g^2 - k_n^2)^2} \left(\frac{\tau_g}{k_n} \right) - \frac{k_n}{(\tau_g^2 - k_n^2)^2} \right]$.

5. Main Theorems

In this section, we give main theorems that characterize isophotes on timelike surfaces. Moreover, we show the relationship between isophote curves and slant helices on timelike surfaces.

Theorem 1. A unit speed spacelike curve on a timelike surface is an isophote curve if and only if one of the following three functions

(1) $\coth \theta = \eta(s) = \mp \left(\frac{k_n^2}{(\tau_g^2 - k_n^2)^2} \left(\frac{\tau_g}{k_n} \right) + \frac{k_n}{(\tau_g^2 - k_n^2)^2} \right)$

(2) $\cot \beta = \mu(s) = \pm \left(\frac{k_n^2}{(\tau_g^2 - k_n^2)^2} \left(\frac{\tau_g}{k_n} \right) - \frac{k_n}{(\tau_g^2 - k_n^2)^2} \right)$

(3) $\tanh \gamma = \psi(s) = \mp \left(\frac{k_n^2}{(\tau_g^2 - k_n^2)^2} \left(\frac{\tau_g}{k_n} \right) + \frac{k_n}{(\tau_g^2 - k_n^2)^2} \right)$

is a constant function (The case 1(a), the case 1(b) and the case 2, respectively).

Proof. (1) Since α is an isophote, the Gauss map along the curve α is a circle on the Lorentzian unit sphere S_1^2. Hence, if we compute the Gauss map $N|_\alpha : I \rightarrow S_1^2$ along the curve α, the geodesic curvature of $N|_\alpha$ becomes $\eta(s)$ as shown below. \[\square]
where \(T \times B = N, \ B \times N = T \) and \(N \times T = B \). Therefore, we obtain

\[
\kappa = \sqrt{ \frac{\langle N'_n \times N''_n, N'_n \times N''_n \rangle}{\|N'_n\|^3}}
= \sqrt{\frac{-(k^2_n - \tau^2_g)^3 + \left(k_g(k^2_n - \tau^2_g) + k^2_n(\frac{\tau_g}{k_n}) \right)^2}{(k^2_n - \tau^2_g)^3}}
= \sqrt{-1 + \frac{\left(k_g(k^2_n - \tau^2_g) + k^2_n(\frac{\tau_g}{k_n}) \right)^2}{(k^2_n - \tau^2_g)^3} \left(\tau^2 - \kappa^2 \right)}
\]

Let \(\bar{k}_g \) and \(\bar{k}_n \) be the geodesic curvature and the normal curvature of the Gauss map \(N_{\alpha} \) on \(S^2_1 \), respectively. Since the normal curvature \(k_n = 1 \), if we substitute \(\bar{k}_n \) and \(\kappa \) in the following equation, we obtain the geodesic curvature \(\bar{k}_g \) as follows.

\[
\kappa^2 = (\bar{k}_g)^2 - (\bar{k}_n)^2
\]

\[
\bar{k}_g(s) = \eta(s) = \coth \theta = \pm \left(\frac{k^2}{(k^2_n - \tau^2_g)^2} \left(\frac{\tau_g}{k_n} \right)' + \frac{k_g}{(k^2_n - \tau^2_g)^2} \left(\frac{\tau_g}{k_n} \right) \right) (s).
\]

where \(\theta \) is the constant angle between the surface normal vector \(N \) and \(d \). In that case, the spherical images (Gauss maps) of isophotes are circles if and only if one of three functions \(\eta(s) \), \(\mu(s) \) and \(\psi(s) \) is a constant. The proofs for (2) and (3) can be done in the same way.

Theorem 2. Let \(\alpha \) be a unit speed spacelike curve in \(E^3_1 \). If the normal vector of \(\alpha \) is spacelike, then \(\alpha \) is a slant helix if and only if one of the two functions

\[
\frac{\kappa^2}{(\tau^2 - \kappa^2)^2} \left(\frac{\tau}{\kappa} \right)' \quad \text{and} \quad \frac{\kappa^2}{(\kappa^2 - \tau^2)^2} \left(\frac{\tau}{\kappa} \right)'
\]

is a constant everywhere \(\tau^2 - \kappa^2 \) does not vanish [1].

Theorem 3. Let \(\alpha \) be a unit speed spacelike isophote curve on a timelike surface (The case 1(a), the case 1(b) and the case 2, respectively). Then,

(a) \(\alpha \) is a geodesic on the timelike surface if and only if \(\alpha \) is a slant helix with the spacelike axis

\[
d = \pm \frac{\tau}{\sqrt{\kappa^2 - \tau^2}} \sinh \theta T \pm \frac{\kappa}{\sqrt{\kappa^2 - \tau^2}} \sinh \theta B + \cosh \theta N.
\]

(b) \(\alpha \) is a geodesic on the timelike surface if and only if \(\alpha \) is a slant helix with the spacelike axis

\[
d = \pm \frac{\tau}{\sqrt{\tau^2 - \kappa^2}} \sin \beta T \pm \frac{\kappa}{\sqrt{\tau^2 - \kappa^2}} \sin \beta B + \cos \beta N.
\]
\(\alpha\) is a geodesic on the timelike surface if and only if \(\alpha\) is a slant helix with the timelike axis

\[
d = \pm \frac{\tau}{\sqrt{\kappa^2 - \tau^2}} \cosh \gamma T \pm \frac{\kappa}{\sqrt{\kappa^2 - \tau^2}} \cosh \gamma B + \sinh \gamma N.
\]

Proof. (a) Since \(\alpha\) is a geodesic, we have \(k_g = 0\). From Eq.(2.6) it follows that \(k_n = \mp \kappa\) and \(\tau_g = \tau\). By substituting \(k_g\) and \(k_n\) in the expression of \(\eta(s)\) we get

\[
\eta(s) = \mp \left(\frac{\kappa^2}{(\kappa^2 - \tau^2)\kappa} \right) (s)
\]

is a constant function. Then, from Theorem 2 \(\alpha\) is a slant helix. Because \(k_n = \mp \kappa\) and \(\tau_g = \tau\), using Eq.(3.1) we obtain the spacelike axis of slant helix as

\[
d = \pm \frac{\tau}{\sqrt{\kappa^2 - \tau^2}} \sin \delta T \pm \frac{\kappa}{\sqrt{\kappa^2 - \tau^2}} \sin \delta B + \cosh \delta N.
\]

Conversely, let \(\alpha\) be a slant helix with the spacelike axis

\[
d = \pm \frac{\tau}{\sqrt{\kappa^2 - \tau^2}} \sin \delta T \pm \frac{\kappa}{\sqrt{\kappa^2 - \tau^2}} \sin \delta B + \cosh \delta N.
\]

Then from Eq.(3.1) we get \(k_n = \mp \kappa\) and \(\tau_g = \tau\). This means that \(k_g = 0\), i.e., \(\alpha\) is a geodesic on the timelike surface.

The proof of (b) and (c) can be done similar to the proof of (a). \(\square\)

Theorem 4. Let \(\alpha\) be a unit speed timelike curve in \(E_3\). Then \(\alpha\) is a slant helix if and only if one of the two functions

\[
\frac{\kappa^2}{(\tau^2 - \kappa^2)\kappa} \left(\frac{\tau}{\kappa} \right)' \quad \text{and} \quad \frac{\kappa^2}{(\kappa^2 - \tau^2)\kappa} \left(\frac{\tau}{\kappa} \right)'
\]

is a constant everywhere \(\tau^2 - \kappa^2\) does not vanish [1].

Theorem 5. A unit speed timelike curve on a timelike surface is an isophote curve if and only if one of the following three functions

1. \(\cot \delta = \sigma(s) = \mp \left(\frac{k_n^2}{(\tau_g^2 - k_n^2)\tau_g} \left(\frac{\tau_g}{k_n} \right)' + \frac{k_g}{(k_n^2 - \tau_g^2)\tau_g} \right) (s)\)
2. \(\coth \xi = \rho(s) = \pm \left(\frac{k_n^2}{(\tau_g^2 - k_n^2)\tau_g} \left(\frac{\tau_g}{k_n} \right)' + \frac{k_g}{(\tau_g^2 - k_n^2)\tau_g} \right) (s)\)
3. \(\coth \nu = \omega(s) = \pm \left(\frac{k_n^2}{(\tau_g^2 - k_n^2)\tau_g} \left(\frac{\tau_g}{k_n} \right)' - \frac{k_g}{(\tau_g^2 - k_n^2)\tau_g} \right) (s)\)

is a constant function (The case 3(a), the case 3(b) and the case 4, respectively).

The proof of Theorem 5 is similar to Theorem 1.

Theorem 6. Let \(\alpha\) be a unit speed timelike isophote curve on a timelike surface (The case 3(a), the case 3(b) and the case 4, respectively). Then,

(a) \(\alpha\) is a geodesic on the timelike surface if and only if \(\alpha\) is a slant helix with the spacelike axis

\[
d = \pm \frac{\tau}{\sqrt{\kappa^2 - \tau^2}} \sin \delta T \pm \frac{\kappa}{\sqrt{\kappa^2 - \tau^2}} \sin \delta B + \cos \delta N.
\]
(b) α is a geodesic on the timelike surface if and only if α is a slant helix with the spacelike axis
\[
d = \pm \frac{\tau}{\sqrt{\tau^2 - \kappa^2}} \sinh \xi T \pm \frac{\kappa}{\sqrt{\tau^2 - \kappa^2}} \sinh \xi B + \cosh \xi N.
\]
(c) α is a geodesic on the timelike surface if and only if α is a slant helix with the timelike axis
\[
d = \pm \frac{\tau}{\sqrt{\tau^2 - \kappa^2}} \cosh \nu T \pm \frac{\kappa}{\sqrt{\tau^2 - \kappa^2}} \cosh \nu B + \sinh \nu N.
\]

The proof of Theorem 6 can be done similar to Theorem 3.

REFERENCES

[1] Ali, A.T. and Lopez, R.: Slant helices in minkowski space E^3_1. J. Korean Math. Soc. 48 (1), 159-167 (2011)
[2] Dillen, F., Fastenakels, J., Veken, V. J., Vrancken, L.: Constant angle surfaces in $S^2 \times \mathbb{R}$. Monatsh. Math. 152, 89–96 (2007)
[3] Dillen, F. and Munteanu, M.I.: Constant angle surfaces in $H^2 \times \mathbb{R}$. Bull. Braz. Math. Soc. 40 (1), 85–97 (2009)
[4] Doğan, F. and Yaylı, Y.: On isophote curve and its characterizations (Submitted to journal)
[5] Doğan, F. and Yaylı, Y.: Isophote curves on spacelike surfaces in Lorentz-Minkowski space E^3_1 (Submitted to journal)
[6] Izumiya, S. and Takeuchi, N.: New special curves and developable surfaces. Turk. J. Math. Vol. 28, 153-163 (2004)
[7] Uğurlu, H.H. and Topal, A.: Relation between Darboux instantaneous rotation vectors of curves on a time-like surface. Mathematical & Computational Applications vol. 1 (2), 149-157 (1996)
[8] Kim, K.-J. and Lee, I.-K.: Computing isophotes of surface of revolution and canal surface. Computer Aided Design 35, 215-223 (2003)
[9] Koenderink, J.J. and van Doorn, A.J.: Photometric invariants related to solid shape. Journal of Modern Optics vol. 27 (7), 981-996 (1980)
[10] Kühnel, W.: Differential Geometry Curves-Surfaces-Manifolds. Friedr. Vieweg & Sohn Verlag, Wiesbaden (2003)
[11] Lopez, R.: Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space. arXiv:0810.3351v1
[12] Munteanu, M.I. and Nistor, A.I.: A new approach on constant angle surfaces in E^3. Turkish J. Math. 33 (2), 1–10 (2009)
[13] Nistor, A.I.: Certain Constant angle surfaces constructed on curves. International Electronic Journal of Geometry vol 4 (1), 79-87 (2011)
[14] O’Neill, B.: Semi Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)
[15] O’Neill, B.: Elementary Differential Geometry. Academic Press, New York (2006)
[16] Poeschl, T.: Detecting surface irregularities using isophotes. Computer Aided Geometric Design 1, 163-168 (1984)
[17] Pressley, A.: Elementary Differential Geometry. Springer-Verlag, New York (2001)
[18] Sara, R.: Local Shading Analysis via Isophotes Properties. Ph.D Thesis, Johannes Kepler University (1994)
[19] http://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/IlluminationModels4up/pdf
[20] Kazaz, M., Uğurlu, H.H., Onder, M., Kahraman, T. Mannheim Partner D-Curves in Minkowski 3-space E^3_1, arXiv:1003.2043v3.
[21] J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion, Computer Aided Geometric Design, 26 (2009), 271-278.

Current Address: Fatih DOĞAN, Ankara University, Department of Mathematics, 06100 Tandoğan, Ankara, Turkey
E-mail address: mathfdogan@hotmail.com