Method parameters’ impact on mortality and variability in rat stroke experiments: a meta-analysis

Jakob O Ström1*, Edvin Ingberg1, Annette Theodorsson1,2 and Elvar Theodorsson1

Abstract

Background: Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains.

Methods: We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability.

Results: The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method.

Conclusions: The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.

Keywords: Brain infarction, Middle cerebral artery occlusion, Rats, Methods, Mortality, Variability

Background

Ischemic stroke is amongst the leading causes of death and disability in the world and has been the subject of massive research efforts during recent years. Even though these efforts have resulted in more than 600 treatments reported effective in preclinical studies [1], clinically proven treatment options are still few. There are reasons to believe that this apparent translational roadblock may inter-alia be due to methodological confounding factors, including high mortality and large outcome variability, in the preclinical studies [2-4].

The usual approach in experimental stroke studies, used in hundreds of publications each year, is that A) focal cerebral ischemia is inflicted in rodents [5,6], B) some type of treatment is administered and C) the infarct sizes are assessed. Even though this setup may seem straight forward, there are infinite numbers of methodological variants, and there is a profound lack of consensus regarding the ideal methodology to be used in experiments of this kind. A small number of studies aiming to optimize the infarct induction regarding the important aspects of mortality and variability, for example by testing various rodent strains and sizes [7-9], surgical procedures [10-13] or occluding intraluminal filaments [14], have been published. However, these studies have rendered conflicting results, and are too few and too small to provide comprehensive understanding of how the different methodological parameters interact.

Hence, it was thought of interest to investigate the influence of different methodological factors on infarct variability and mortality in rat stroke models using a hypothesis-driven meta-analytical approach where their

* Correspondence: jakob.strom@liu.se
1Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden
Full list of author information is available at the end of the article

© 2013 Ström et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
interactions and complexity could be embraced rather than disregarded. The meta-analytical approach seemed attractive since such a vast number of studies with the abovementioned experimental setup are published, and since control/vehicle/placebo groups (hereby referred to as “control groups”), suitable for inter-study comparisons, are almost invariably included. A study of this kind has, to the best of our knowledge, not been published previously. Even though other animals, not least mice, are also well-used in experimental stroke research, rats were due to space restrictions chosen to be the sole focus of the current article.

The aim of the current meta-analysis was to investigate chosen methodological variables' effects on infarct size variability and mortality. An a priori hypothesis of six main factor-outcome relations (1A-3B) was established:

1. Rat strain affects (A) infarct size variability and (B) mortality.
2. Type of focal ischemia procedure affects (A) infarct size variability and (B) mortality.
3. In studies using the intraluminal filament method, the type of filament affects (A) infarct size variability and (B) mortality.

Methods

Article inclusion

To identify articles to be included in the meta-analysis, Medline was searched with the line (mcao or “middle cerebral artery occlusion” or “MCA occlusion” or “stroke” or “cerebral ischemia” or “brain ischemia”) and (rat or rats), resulting in more than 19,000 hits. Starting with the latest article the 10th of June 2011 [15], the articles were consecutively, in order of PubMed identifier, assessed for inclusion in the study.

The inclusion criteria were:

A. Article written in English
B. Original research article
C. Experiments performed in living adolescent, adult or elderly rats
D. Infarcts inflicted one single focal cerebral ischemic lesion
E. Infarct size assessed and results presented
F. Inclusion of a control group, untreated except for vehicle treatments
G. Sufficient description of fundamental aspects of the experiment (after e-mail correspondence)

Data extraction

Data about the control groups were extracted from all included articles. If an article included more than one control group, differing in for example euthanasia time-point, all control groups were separately included and assessed independently of each other. When extracting the method data, we adhered strictly to the principle "If it is not described, it was not performed". Registered factors and outcome measures are listed in Table 1.

Because many of the included articles/control groups lacked information about for example mortality rate, the researchers of those articles were contacted via e-mail with a gentle request to provide this information. In total, the authors of 310 articles were e-mailed, of which 183 (59%) complied.

Since power calculations for large multiple regression analyses are extremely complex to perform a priori, a saturation principle was adopted to determine a sufficient number of control groups to be included. After information from 300 control groups had been extracted, an interim analysis was performed, and then re-performed every 40-50 new control groups included. When the results had stabilized (no changes in overall trends, and only minor changes in p-values), no more articles were included. 502 control groups from 346 articles were finally included in the study [11,15-359] while 1084 articles were excluded (Figure 1).

Processing of data

Category refinement

After extraction of data, categories represented by less than 5 control groups (corresponding to less than 1% of the material) were included in the Others-categories. This approach was motivated by the fact that these small categories otherwise would run the risk of being attributed high explanatory values that were not statistically substantiated, thus obscuring the influence of other categories.

In the Other strain category, the following variants were included: Long Evans rats, T-cell deficient nude rats, SHRSP, Fischer rats, Zucker rats, Hooded Wistar rats, Lewis rats, Holtzmann rats and Swiss albino rats.

The variable Sex finally contained four categories, since males formed the first category, females that were not explicitly ovariectomized were separated from ovariectomized females in a second and third category, and control groups using mixed or unspecified animals were grouped in a fourth category.

Fifteen various anesthesia regimens were reduced to four main categories and one Others category (in which for example methohexital sodium, medetomidin and unspecified regimens were included). All inhalation anesthetics (isoflurane, halothane, sevoflurane, fluothane and enfurane) were included in the first category, while chloral hydrate was used frequently enough (and was not appreciably similar to any other category) to deserve a category of its own. The third category, Ketamine, included all ketamine containing regimens, such as ketamine/ xylazine, ketamine/rumpun or ketamine only. Finally, all
Table 1 Extracted factors and outcome measures

Factor/Outcome measure	Data type	Final categories* or unit	Reference category for regression analyses
Rat property factors			
Strain	Category	I. Sprague Davley	Sprague Davley
		II. Wistar	
		III. SHR	
		IV. WKY	
		V. Other strains	
Sex	Category	I. Male	Male
		II. Female	
		III. Ovx female	
		IV. Mix or not specified	
**Elderly rats **	Category, Binomial	[No]	[No]
Weight	Continuous	Grams	NA
Animal exclusion rate	Continuous	%	NA
Anesthesia factors			
Type of anesthetic	Category	I. Inhalation anesthetic	Inhalation anesthetic
		II. Chloral hydrate	
		III. Ketamine	
		IV. Barbiturates and benzodiazepines	
		V. Other anesthetics	
Intubation	Category, Binomial	[No]	[No]
Awakening of rats during occlusion	Category, Binomial	[No]	[No]
Temperature feedback system	Category, Binomial	[No]	[No]
Electroencephalographic surveillance	Category, Binomial	[No]	[No]
Blood pressure monitored	Category, Binomial	[No]	[No]
Heart rate monitored	Category, Binomial	[No]	[No]
Blood gases/O2 saturation analyzed	Category, Binomial	[No]	[No]
Blood hemoglobin concentration analyzed	Category, Binomial	[No]	[No]
Blood glucose concentration analyzed	Category, Binomial	[No]	[No]
Postoperative antibiotics	Category, Binomial	[No]	[No]
Focal ischemia procedure factors			
Type of middle cerebral artery occlusion procedure	Category	I. Intraluminal filament	Intraluminal filament
		II. Direct, mechanical***	
Anesthetic regimens pertaining to the barbiturate or bensodiazepine groups, such as pentobarbital and diazepam, formed a fourth category.

The variable Blood gases/O₂ saturation analyzed was initially registered as the separate variables Blood pH analyzed, Blood oxygen saturation analyzed and Blood carbon dioxide analyzed, however these three were so highly correlated that they were thought better to be represented by only one variable.

Regarding the techniques for causing focal ischemic lesions, all intraluminal filament procedures were reduced to one single category. All direct occlusion techniques, based on craniectomy followed by physical occlusion of the MCA by means of a clip, suture, hook or cauterizer, formed the Direct category, while emboli techniques were clumped up in a third category. Photothrombotic procedures and methods of endothelin injection defined the fourth and fifth categories, respectively. It should however be noted that the occlusion time was accounted for in another variable and that the choice of different filaments were analyzed separately.

Table 1 Extracted factors and outcome measures (Continued)

Occlusion duration****	Category	I. Short transient (up to 60 minutes)	Short transient (up to 60 minutes)
		II. Long transient (>60 min)	
		III. Permanent	

Occluding filament type (Only studies using the intraluminal filament method)	Category	I. Uncoated	Uncoated
	II. Silicon coated		
	III. Poly-L-Lysine coated		
	IV. Other coatings		

Analysis procedure factors

Time after focal ischemia for evaluation of damage	Continuous	Hours	NA
Type of infarct size evaluation	Category	I. TTC	TTC
	II. Radiology		
	III. Acidic/Basic stain or silver stain histology		
	IV. Immunohistology		

Edema correction used	Category, Binomial	[No]	[No]
		[Yes]	
		[No]	[No]
		[Yes]	
Blinding of infarct size determination procedure	Category, Binomial	I. None	None
	II. Observed absence of cerebral blood flow reduction		
	III. Lack of functional deficit		
	IV. Too small infarct		
	V. Other pathology in animal		

Outcome measures

Infarct size coefficient of variation	Continuous	%	NA
Mortality rate	Continuous	%	NA

* Only categories represented by at least 5 control groups were included in the analysis to avoid statistically inadequate attribution of explanatory value to too small categories. Categories represented by less than 5 control groups were in the analysis included in an Others category. Further, some other reductions in number of categories were performed, as presented below.

** Elderly rats were defined as being >12 months of age at time of ischemic insult.

*** Direct, mechanical refers to all MCAo procedures where the MCA is mechanically occluded from the outside, for example by clips, cauteronizor or ligature.

**** Only methods including actions taken to ensure reperfusion (such as removing the occluding intraluminal filament or arterial clip) were considered transient.
first category, while silicone and resin coating were put in the Silicone category. Poly-L-Lysine formed a category of its own, while other rare coating techniques (including for example heparin coating, “glue coating” and paraffin coating) were put in a separate category together with unspecified coating techniques.

The procedures used for infarct evaluation were reduced to four categories. The most frequently used technique, 2,3,5-triphenyltetrazolium chloride staining, defined the first category, while radiologic methods (in the majority of cases magnetic resonance imaging, but in a few cases computed tomography) were put in a Radiology category. Various acidic/basic staining techniques (such as hematoxylin/eosin, cresyl violet and thionine) was, together with silver staining (used in only one of the included studies), included in category number three, while immunohistological methods were put in a fourth category.

Edema correction can be performed in different ways [360,361]. It was initially the intention to register not only if, but also which type of, edema correction was used. However, it soon turned out that this was not specified in a sufficient number of articles to perform a meaningful analysis. It was therefore only registered if edema correction had been used or not.

Concerning the exclusion procedures, the first category included all control groups in which no exclusion
criteria were explicitly adopted. In the second category, control groups in which surveillance of blood flow reduction (for example using laser-doppler), with the plausible aim to exclude the absence of such, were put. The third, fourth and fifth categories contained control groups from articles in which lack of functional deficit, too small infarct size or other pathology (including intracerebral hemorrhage), respectively, were stated to be exclusion criteria. It should be noted that control groups from articles accounting for multiple exclusion criteria were registered in more than one of the exclusion categories.

Definition of continuous variables

Animal exclusion rate was defined as the percentage of rats excluded due to other reasons than mortality from induction of focal cerebral ischemia until the final infarct size assessment. Time after focal ischemia for evaluation of damage was defined as the time from cerebral blood flow obstruction until sacrifice. The outcome Infarct size coefficient of variation was defined as the standard deviation of the infarct volume divided by the average infarct volume. Irrespective of how the infarct size is presented; as percentage of the whole brain, as percentage of the hemisphere or in cubic millimeters, this calculation provides a strictly defined, and inter-comparable, measure of the infarct size variability. The other outcome, Mortality, was defined as the unintended mortality in the control group, from induction of focal cerebral ischemia until infarct size assessment, as a percentage of the whole group.

Statistical analyses

A priori, six main hypotheses (1A-3B) were put (as aforementioned):

1. Rat strain affects (A) infarct size variability and (B) mortality
2. Type of focal ischemia procedure affects (A) infarct size variability and (B) mortality.
3. In studies using the intraluminal filament method, the type of filament affects (A) infarct size variability and (B) mortality.

Obviously, several additional hypotheses could be tested in the information compiled from the studies, but the higher number of hypotheses, the higher the risk of finding falsely significant results due to multiple comparisons (type I errors). However, due to the risk of type II-errors, corrections for multiple comparisons were not performed, calling for separate assessment of the six hypotheses.

All category variables were dummy-converted before analysis (Table 1). For categorical variables with more than two categories, the most common category was chosen to be the reference category. For binary variables, it does not matter which one is made the reference, why [No] (in other words, the lack of a specific methodological ingredient) was consistently chosen. The data were subsequently analyzed using multiple regression analyses with backward variable exclusion. This step identified which factors significantly affected the outcomes Infarct size coefficient of variation and Mortality, respectively. Next, an enter model, in which the variables from the backward procedure were complemented by lacking dummy variables, was performed (the enter models with the variables found significant in the backward analyses are presented in Tables 2, 3, 4, 5). The analyses were weighted according to the number of animals used in each group; hence, a study including 5 animals in the control group was given less impact than a study including 20 animals. In total, four large multiple regression models (one for hypotheses 1A and 2A, one for hypotheses 1B and 2B, one for hypothesis 3A and one for hypothesis 3B) were set up, testing the combined effects of all available factors on the respective outcome measure (Infarct size coefficient of variation or Mortality rate). Hence, all models controlled for the factors listed in Table 1 when testing the stated hypotheses. All statistical calculations were performed in SPSS (Version 20, IBM Corporation, Armonk, NY, USA). P-values <0.05 were considered statistically significant. Data were presented as mean ± standard deviation or, when presenting results from the meta-analysis, with 0.95 confidence interval shown within brackets. It should be noted that the percent changes (regression coefficients) in Infarct size coefficient of variation and Mortality rate are presented in absolute, not relative, terms. In other words, if a certain variable decreases Mortality rate with 10%, it means that the mortality would decrease from for example 40% to 30%, and not merely from 40% to 36%.

Protocol violations

It was originally planned to include the variable Exclusion rate to control for this confounder; however, too few articles presented the needed information. Even after all persistent e-mail correspondence, such a high number of studies lacked this variable that including it would have seriously hampered the analyses’ power. The variable was therefore omitted.

Electroencephalographic surveillance was only utilized in one of the included studies, and this variable could thus not be analyzed. It was therefore omitted.

Results

Impact of rat strain on infarct size coefficient of variation and mortality: Hypotheses 1A-B

Strain significantly affected both Infarct size coefficient of variation and Mortality rate. Wistar had the strongest
negative regression coefficient, and rendered significantly lower variability (−6.2%, 0.95 CI: −11.5 to −0.9%, p = 0.023) than the well-used Sprague Dawley, while the category Other strains had significantly higher variability (+20.7%, 0.95 CI: +10.7 to +30.8%; p = 0.000; Figure 2; Table 2).

The only effect of Strain on Mortality rate was that SHR seemed to render lower percentages (−6.9%, 0.95 CI: −12.8 to −0.87%; p = 0.025; Figure 2; Table 3).

The multiple regression analysis addressing hypotheses 1A and 2A included 469 control groups, while the analysis for hypotheses 1B and 2B included 351 control groups (Figure 1). These regression formulae had r^2 of 0.34 and 0.31, respectively, meaning that they explained 34% and 31% of the variation in the outcomes Infarct size coefficient of variation and Mortality rate.

Impact of focal ischemia procedure on infarct size coefficient of variation and mortality: Hypotheses 2A-B

Regarding Infarct size coefficient of variation, all analyzed surgical procedures had positive regression coefficients, indicating higher variability than in the intraluminal filament method, here chosen to be the reference. This trend was significant for the Emboli (+14.7%, 0.95 CI: +3.4 to +26.0%;

Table 2 Regression formula for hypotheses 1A and 2A

Variable (reference category)	Variable categories	Regression coefficient	0.95 confidence interval for regression coefficient	p-value	
Constant	NA	23.1	8.3	38.0	0.002
Strain (Sprague Dawley)	Wistar	−6.2	−11.5	−0.9	0.023
	SHR	−1.7	−11.0	7.5	0.710
	WKY	19.0	−0.8	38.8	0.059
	Other Strains	20.7	10.7	30.8	0.000
Type of middle cerebral artery occlusion procedure (Intraluminal filament)	Direct, mechanical	4.2	−3.4	11.8	0.274
	Embolic	14.7	3.4	26.0	0.011
	Photothermotic	10.1	−5.2	25.5	0.196
	Endothelin injection	23.1	9.3	36.9	0.001
Sex (Male)	Female	−0.6	−19.7	18.5	0.951
	Ovx female	2.3	−16.7	21.4	0.810
	Mix or not specified	−11.5	−21.5	−1.5	0.024
Elderly rats	[Yes]	−23.6	−39.6	−7.7	0.004
Weight	[Continuous; Grams]	0.1	0.0	0.1	0.001
Type of anesthetic (Inhalation anesthetic)	Chloral Hydrate	−11.5	−16.9	−6.1	0.000
	Ketamine	2.9	−4.4	10.2	0.430
	Barbiturates and benzodiazepines	−8.4	−17.6	0.9	0.076
	Other anesthetic	−13.6	−22.6	−4.6	0.003
Awakening of rats during occlusion (No)	[Yes]	8.8	0.9	16.7	0.028
Temperature feedback system (No)	[Yes]	−6.9	−12.4	−1.5	0.013
Blood hemoglobin concentration analyzed (No)	[Yes]	10.9	3.0	18.8	0.007
Occlusion duration (Short transient)	Long transient	1.9	−3.9	7.8	0.519
	Permanent	−16.6	−24.1	−9.1	0.000
Time after focal ischemia for evaluation of damage	[Continuous; Hours]	0.0051	0.0005	0.0096	0.030
Criteria for excluding rats (None)	Observed absence of cerebral blood flow reduction	−7.7	−12.4	−2.9	0.002
	Lack of functional deficit	−2.9	−8.6	2.7	0.310
	Too small infarct	0.1	−9.6	9.9	0.981
	Other pathology in animal	18.6	12.7	24.6	0.000

Variables excluded by statistical software due to too low explanatory value: Intubation, Postoperative antibiotics, Blood pressure monitoring, Heart rate monitoring, Blood gases/O2 saturation analyzed, Blood glucose concentration analyzed, Type of infarct size evaluation, Edema correction used, Blinding of infarct size determination procedure.
p = 0.011) and *Endothelin* (+23.1%, 0.95 CI: +9.3 to +36.9%; p = 0.001) categories (Figure 3, Table 2).

The emboli (+12.1%, 0.95 CI: +6.9 to +17.3%; p = 0.000) method rendered higher mortality than the intraluminal filament method, while the direct (−10.7%, 0.95 CI: −15.1 to −6.2%; p = 0.000) and endothelin (−9.7%, 0.95 CI: −16.8 to −2.6%; p = 0.000) methods resulted in lower mortality (Figure 3, Table 3).

Impact of type of filament on infarct size coefficient of variation and mortality: Hypotheses 3A-B

In studies in which the intraluminal filament method had been used, silicone coating of the occluding filament substantially and significantly lowered *Infarct size coefficient of variation* compared to uncoated filaments (−12.7%, 0.95 CI: −18.3 to −7.0%; 0.000). It should also be noted that *Poly-L-Lysine* had a positive regression coefficient, indicating a slight trend of increased rather than decreased variability in comparison with the reference category (Figure 4, Table 4).

The choice of filament coating had no significant effects on mortality, and regression coefficients were generally small (Figure 4, Table 5).

The multiple regression analyses addressing hypotheses 3A and 3B included 383 and 265 control groups, respectively, all using the intraluminal filament technique (Figure 1). These regression formulae had r^2 of 0.40 and 0.27.

Background data

In the 502 control groups finally included, the *Infarct size coefficient of variation* were on average 28.9 ± 21.3%, with a
range from 1.7 to 148%. Mortality rate, the other outcome variable, averaged 15.1 ± 13.5%, ranging from 0 to 60.4%.

The average number of animals in the 502 control groups, which was used for weighing the studies’ impact in the analyses, was 9.0 ± 7.7, with a range from 3 to 145. Mean rat body weight in the included studies was 294.9 ± 61.0 g, ranging from group means of 190 to 779 g. Cerebral damage was evaluated on average 165.5 ± 506.3 hours after ischemic insult, but this data was heavily skewed, with a median of 24 hours. The exclusion rate (due to other reasons than mortality) averaged 8.9 ± 9.8% in the few studies in which this information was available. Frequencies of the different classifications in the registered categorical variables are presented in Figure 5.

Discussion

The most important findings in the current hypothesis-driven meta-analysis was that the Wistar strain and

Table 4 Regression formula for hypothesis 3A
Regression formula for the effect of Occluding filament type on Infarct size coefficient of variation (hypothesis 3A)
Variable (reference category)

Constant
Occluding filament type (Uncoated)
Strain (Sprague Dawley)
Sex (Male)
Elderly rats
Type of anesthetic (inhalation anesthetic)
Awakening of rats during occlusion (No)
Temperature feedback system (No)
Blood pressure monitored (No)
Heart rate monitored (No)
Blood gases/O2 saturation analyzed (No)
Blood hemoglobin concentration analyzed (No)
Occlusion duration (Short transient)
Time after focal ischemia for evaluation of damage
Blinding of infarct size determination procedure (No)
Criteria for excluding rats (None)
Other pathology in animal

Variables excluded by statistical software due to too low explanatory value: Weight, Intubation, Postoperative antibiotics, Blood glucose concentration analyzed, Type of infarct size evaluation, Edema correction used.
intraluminal filament procedure using a silicone coated filament resulted in smallest infarct size variability. The direct and endothelin methods rendered the lowest mortality rates, while the emboli method increased mortality when compared to the intraluminal filament method. A number of interesting observations regarding the control variables were also made, such as the significant impact of the exclusion criterion Observed absence of cerebral blood flow reduction on variability (Table 2) and the effect of awakening the rats during occlusion on mortality (Table 3). However, since these accidental findings were not part of the original hypothesis, we refrain from drawing any conclusions about them, and refer to Tables 2, 3, 4, 5 for the interested reader.

The high infarct size variability in rodent focal ischemic models is a problem that burdens the entire experimental stroke field, and has been commented in several reviews [2,362]. The problem with high outcome variability is that a higher number of animals is needed to

Variable (reference category)	Variable categories	Regression coefficient	0.95 confidence interval for regression coefficient	p-value
Constant	NA	16.8	13.2 20.4	0.000
Occluding filament type (Uncoated)	Silicon coated	−1.2	−4.7 2.4	0.516
	Poly-L-Lysine coated	3.0	−1.3 7.4	0.171
	Other coatings	−3.6	−9.0 1.8	0.188
Type of anesthetic (Inhalation anesthetic)	Chloral Hydrate	5.0	0.57 9.4	0.027
	Ketamine	3.1	−1.6 7.8	0.198
	Barbiturates and benzodiazepines	6.6	−0.91 14.1	0.085
	Other anesthetic	5.6	−0.04 11.2	0.052
Awakening of rats during occlusion (No)	[Yes]	9.7	4.5 14.8	0.000
Heart rate monitoring (No)	[Yes]	−6.5	−10.8 −2.2	0.003
Type of infarct size evaluation (TTC)	Radiology	13.3	6.5 20.1	0.000
	Acidic/Basic stain or silver stain histology	−1.2	−5.2 2.9	0.576
	Immunohistology	10.8	1.6 20.0	0.022
Criteria for excluding rats (None)	Observed absence of cerebral blood flow reduction	−5.5	−8.6 −2.4	0.001
	Lack of functional deficit	.39	−3.5 4.2	0.843
	Too small infant	−7.4	−14.2 −5.6	0.034
	Other pathology in animal	−1.2	−5.3 2.9	0.577
Variables excluded by statistical software due to too low explanatory value: Strain, Sex, Elderly rats, Weight, Intubation, Temperature feedback system, Blood pressure monitoring, Blood gases/O2 saturation analyzed, Blood hemoglobin concentration analyzed, Blood glucose concentration analyzed, Postoperative antibiotics, Occlusion duration, Time after focal ischemia for evaluation of damage, Edema correction used, Blinding of infarct size determination procedure.				

Figure 2 The choice of strain significantly affected the Infarct size coefficient of variation, so that the Wistar rendered lower variability than Sprague Dawley, which was chosen as the reference category. The Other strains category increased variability in comparison to Sprague Dawley. Regarding mortality rate, the effects of animal strain was limited to a slight decrease from using SHR. N = 469 and 351, respectively, in the two analyses/graphs. The bars represent 0.95 confidence intervals.
get an adequate statistical power, which is problematic from both an ethical and economical point of view. The pressure from ethical boards on the researcher to minimize the number of animals used may be the main reason that the power of stroke experiments is often low. In the current meta-analysis, the average infarct size coefficient of variation was 28.9%, while the average number of animals included in the control groups were 9.0. If we assume that the animals in the included studies often are equally distributed between the treatment groups and control groups, these numbers can provide an estimate of the average statistical power in the studies. Given the abovementioned numbers and an alpha of 0.05, the chance of detecting a 20% difference between the groups would be merely 54.6% (if non-parametric tests are used instead or if more than two groups are included in the comparison, the power would be even lower). Under these circumstances, a negative result is marginally more interesting that tossing a coin. The use of low power designs risks serious publication bias which also makes meta-analyses of experimental stroke studies difficult to interpret properly, since there is probably an unknown number of unpublished studies that cannot be weighed in. In addition to using means to decrease variability, it is of fundamental importance to use a sufficient number of animals/replicates to render an acceptably high power.

Mortality can be another confounding factor in experimental stroke research, at least if it is not reported in the article. With parametric statistical methods, incorporating mortality in for example the infarct size calculations is not uncomplicated from a statistical point of view, which is probably why the mortality is often simply not mentioned. Non-parametric models may offer an alternative approach [363], but irrespective of how the main outcome is statistically assessed, the importance of reporting mortality and other exclusion criteria cannot be over-emphasized. For example, if mortality rate is omitted, a substance that kills all rats with large infarcts may seem to decrease infarct sizes, since only the animals with small infarcts will survive in the treatment group. Unfortunately, mortality rate is usually not
Figure 5 Frequencies of registered categories in the 502 included control groups. The specific exclusion criteria are presented separately in the last 4 bars. Many of the variable names are abbreviated in the figure; for extended description, see Table 1. *Histology* in the bar “Type of infarct evaluation” refers to acidic/basic stain or silver stain histology. EEG = Electroencephalography, B = Blood, Hb = Hemoglobin.
reported in experimental stroke studies. In fact, for only 35.3% of the included control groups an account of unintended deaths was provided; and this was the most frequently requested item in our e-mail correspondence.

A few previous studies have assessed the influence of the rat strain on experimental stroke outcomes, however with conflicting results. Spontaneously hypertensive rats (SHR) have, probably because of the implications of hypertension in stroke pathophysiology, attracted some attention. Since this strain often sustains larger infarcts [364], the infarct size coefficient of variation has in a few studies been shown to be relatively low [8,365,366]. Others have argued that the use of another inbred strain – Fischer-344 rats – give the most consistent results [7,367,368], however this type may because of its variable vascular anatomy be unsuitable for the well-used intraluminal filament model [369]. Long Evans rats have also been proposed as a good model animal, because of the relatively consistent decrease in cerebral blood flow after intraluminal filament MCAo [370]. Many other studies have investigated differences between rat strains, however not focusing on variability, but rather on infarct sizes per se [371-373]. Except for the study emphasizing the unsuitability of Fischer-344 for intraluminal filament MCAo [369], we are only aware of one study aiming to compare mortality between strains. In this study, an intraluminal filament model rendered higher mortality in Fischer-344 rats than in Wistar and Sprague-Dawley rats [7]. It is not easy to summarize the conclusions in the existing literature, since the mentioned experiments have been performed under such different circumstances, but it seems that SHR might be attractive because of their low variability. In the current meta-analysis, there was a slight trend towards lower variability in the SHR strain compared to the reference category Sprague-Dawley, which however was far from reaching statistical significance. Regarding Long Evans and Fischer-344, these strains were used too rarely to be analyzed separately. As abovementioned, the strain that we found to render the lowest variability was the relatively well-used Wistar strain.

Very few studies have compared different methods of inducing focal cerebral ischemia. This is perhaps not surprising given that the effort of introducing an entirely new MCAo method in a laboratory is large enough to make many researchers reluctant to switch once a technique has been mastered. This lack of relevant studies underscores the importance of a meta-analysis as the current one. However, in a study by Gerriets et al. [10], an embolization technique was compared to an intraluminal filament procedure. The take-home message from that article was that even though infarct variability tended to be higher from the emboli method, as corroborated by the current study, it did not affect body temperature to the same extent as the filament method did. In another article, the use of microsurgical direct occlusion was advocated over the intraluminal filament method because the latter was thought to not only compromise blood flow to the MCA territory, but rather a larger part of the ICA territory [374]. Different types of filaments for the intraluminal method are much easier to compare, and have been assessed in several studies. Most of these studies have argued that silicone coated rather than uncoated or poly-L-lysine coated filaments should be used, because of a more consistent blood flow reduction [375], lower incidence of sub-arachnoid hemorrhage [14,376], higher success rate [376-378], lower mortality [377] and lower variability [368,376], even if arguments based on low variability also have been used to encourage the use of poly-L-lysine coating [379]. In the current analysis, it was found that silicone coated filaments are superior in terms of reducing infarct size variability, while no effects on mortality were found. Another study compared different brands of blunted nylon filaments, and found Ethilon to be superior to Nitcho [380].

Strengths and weaknesses

The main strength of the current study is that it, based on hundreds of published studies, provides a composite understanding of how different methodological factors interact to affect outcome variability and mortality. However, since this method-investigating meta-analytical approach is relatively novel, we consider it important to highlight and discuss some aspects of the design:

- A multiple regression analysis assumes that the variables are linearly related, which evidently is not always true. For example, the effect of average body weight on variability could theoretically be U-shaped, with higher variability in young, not fully developed, rats and very old animals, than in adult animals. This is an inherent drawback, but multiple regression analysis still seemed the most attractive statistical method for the current purpose.

- There is a problem in investigating coefficients of variation in published studies, and weighing the impact of the included control groups by number of animals, since important sources of bias come into play. Researchers that know that their model render large variability will compensate by including more animals, thus giving more weight in the meta-analysis to studies with larger variability. We however believe that weighing the analysis by number of animals is the fairest alternative. Another problem is publication bias, since the studies rendering the largest coefficients of variation probably to large part remain unpublished, and cannot be assessed.

- Even if this meta-analysis controls for many confounders by its broad approach, there is
complexity and heterogeneity in the underlying experiments that is far beyond our reach. For example, the impact of different rat vendors [381], the skill of the surgeon and the suitability of using specific rat strains for certain surgical procedures are not accounted for. For mathematical reasons, categories have also, as stated in the Materials and Methods section, been reduced to larger categories, meaning that differences within categories may be lost. There are for example numerous variations within the different MCAo techniques, and it is likely that the best embolization procedure renders a lower variability than the worst intraluminal filament paradigm, even if the last-mentioned method proved superior on a general level.

- The meta-analysis includes 502 control groups from only 346 published reports, meaning that several studies described more than one control group. We have in the statistical analysis regarded control groups from the same study as independent, which is not statistically stringent. However, if categories had been created for all separate studies, the entire analysis would have been impossible to perform, and thus this imperfection is an inevitable problem with the chosen approach.

Conclusions
The choice of methodological parameters, such as rat strain and infarct surgical procedures, is of utmost importance for consistent and reliable results. As found in the meta-analysis, the effect sizes were large, with many parameters by themselves increasing or decreasing variability and mortality with more than 10% (in absolute terms).

Finally, it deserves to be emphasized that this analysis does not encompass all perspectives on the suitability of focal stroke models. Even if infarct size coefficient of variation and mortality are important components, other aspects, not least similarity of the model to the clinical situation, emphasizing the importance of the embolic model [382], must be taken into consideration when planning experiments.

Abbreviations
MCAo: Middle cerebral artery occlusion; MCA: Middle cerebral artery; SHR: Spontaneously hypertensive rat; WKY: Wistar Kyoto rats; Ovx: Ovariectomized; CV: Coefficient of variation, calculated as [standard deviation/average]; CI: Confidence interval; ECG: Electroencephalography; Hb: Hemoglobin.

Competing interests
The authors declared that they have no competing interests.

Authors’ contributions
JOS contributed to designing the study, extracted data, performed the outcome analyses and drafted the manuscript. EI contributed to designing the study, extracted data and revised the manuscript. AT and ET contributed to designing the study and revised the manuscript. All authors read and approved the final manuscript version before submission.

Acknowledgements
First and foremost, we would like to express our sincere gratitude towards our fellow researchers who embodied scientific good-will by generously sharing unpublished details concerning their experiments. We also gratefully acknowledge the expert advice of statistician Karl Wahlin PhD. This study was supported by the County Council of Östergötland, Sweden.

Author details
1Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden. 2Department of Clinical and Experimental Medicine, Neurosurgery, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.

Received: 29 November 2012 Accepted: 22 March 2013
Published: 1 April 2013

References
1. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW: 1,026 experimental treatments in acute stroke. Ann Neurol 2006, 59(3):467–477.
2. Macleod MR, Fisher M, O’Collins V, Sena ES, Dimagi U, Bath PM, Buchan A, van der Worp HB, Traystman RJ, Minematsu K, et al: Reprint: Good laboratory practice: preventing introduction of bias at the bench. J Cereb Blood Flow Metab 2009, 29(2):221–222.
3. van der Worp HB, de Haan P, Morema E, Kalkman CJ: Methodological quality of animal studies on neuroprotection in focal cerebral ischaemia. J Neural 2005, 252(9):1108–1114.
4. Philip M, Benatar M, Fisher M, Savitz SJ: Methodological quality of animal studies of neuroprotective agents currently in phase II/III acute ischemic stroke trials. Stroke 2009, 40(2):577–581.
5. Longa EZ, Weinstein PR, Carlson S, Cummins R: Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989, 20(1):84–91.
6. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD: Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 1996, 27(9):1616–1622. discussion 1623.
7. Aspey BS, Taylor FL, Tetului M, Harrison Mj: Temporary middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke and reperfusion. Neuropathol Appl Neurobiol 2000, 26(3):232–242.
8. Barone FC, Price WJ, White RF, Willette RN, Feuerstein GZ: Genetic hypertension and increased susceptibility to cerebral ischemia. Neurosci Bobohev Rev 1992, 16(2):219–233.
9. Menzies SA, Hoff JT, Betz AL, Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosci 1992, 31(1):100–106. discussion 106–107.
10. Geniets T, Li F, Silva MD, Meng X, Brevard M, Sotak CH, Fisher M: The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Meth 2003, 122(2):201–211.
11. Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Goldsmith T, Kotz R, Leibowitz A, Sheiner E, Shapira Y, et al: An experimental model of focal ischemia using an internal carotid artery approach. J Neurosci Meth 2010, 193(2):246–253.
12. Chen ST, Hsu CT, Hogan EL, Maricq H, Balentine JD: A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 1986, 17(4):738–743.
13. Dittmar M, Spruss T, Schuierer G, Horn M: External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke 2003, 34(9):2522–2527.
14. Schmidt-Elsaesser R, Zausinger R, Hungerhuber E, Baethmann A, Reulen HJ: A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 1998, 29(10):2162–2170.
15. Sheng H, Spasojevic I, Tse HM, Jung JY, Hong J, Zhang Z, Piganelli JD, Batnin-Haberl I, Warner DS: Neuroprotective efficacy from a lipophilic redox-modulating Mn(lII) N-Hexylpyridylporphyrin, MnTnHex-2-PyP.
rodent models of ischemic stroke and subarachnoid hemorrhage. J Pharmacol Exp Ther 2011, 338(3):906–916.

16. Ye R, Xong X, Yang Q, Zhang Y, Han J, Li P, Xiong L, Zhao G. Ginsenoside rd in experimental stroke: superior neuroprotective efficacy with a wide therapeutic window. Neurotherapeutics 2011, 8(3):515–525.

17. Sun J, Li Y, Fang W, Mao L. Therapeutic time window for treatment of focal cerebral ischemia reperfusion injury with XQ-1 in rats. Eur J Pharmacol 2011, 661(1–3):105–110.

18. Rau TF, Kothiwal A, Zhang L, Ulatowski S, Jacobson S, Brooks DM, Cardozo-Pelaye F, Chopp M, Poulsen DJ. Low dose methamphetamine mediates neuroprotection through a P38K-ARK pathway. Neuropharmacology 2011, 61(4):677–686.

19. Maheshwari A, Badgajar J, Phukan B, Bodhankar SL, Thakurdesai P. Protective effect of Etoricoxib against middle cerebral artery occlusion induced transient focal cerebral ischemia in rats. Eur J Pharmacol 2011, 667(1–3):230–237.

20. Ceulemans AG, Zagvac T, Koelmans J, Hachimi-Idrissi S, Sarre S, Michotte Y. The Akt/GSK-3beta pathway mediates flurbiprofen-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats. Biochem Biophys Acta 2011, 1808(9):808–813.

21. Sun B, Chen L, Wei X, Yang L, Liu X, Zhang X. The Akt/GSK-3beta pathway mediates flurbiprofen-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats. Eur J Pharmacol 2011, 661(1–3):105–110.

22. Suda S, Shimazaki K, Ueda M, Ito K. Combination therapy with bone marrow stromal cells and FK506 enhanced amelioration of ischemic brain damage in rats. Life Sci 2011, 89(1–2):50–56.

23. Yang J, Song TB, Zhao ZH, Qiu SD, Hu XD, Chang L. Vasoactive intestinal peptide protects against ischemic brain damage induced by focal cerebral ischemia. Brain Res 2011, 1389:94–101.

24. Andres RH, Horie N, Sikker W, Keren-Gill H, Zhan K, Sun G, Manley NC, Pereira MP, Sheikh LA, McMillan EL et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 2011, 134(Pt 8):1772–1789.

25. Ma S, Yin H, Chen L, Liu H, Zhao M, Zhang X. Neuronal, glial and endothelial cells in the animal model of ischemic stroke. J Stroke 2012, 6(1):25–31.

26. Lammer AB, Beck A, Grumich M, Freier U, Krugel T, Schniedereit B, Schneider D, Illes P, Franke H, Krugel U. The eNOS/p38 MAPK signaling pathway mediates flurbiprofen-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats. Eur J Pharmacol 2011, 661(1–3):105–110.

27. Suda S, Shimazaki K, Ueda M, Ito K. Combination therapy with bone marrow stromal cells and FK506 enhanced amelioration of ischemic brain damage in rats. Life Sci 2011, 89(1–2):50–56.

28. Sun B, Chen L, Wei X, Yang L, Liu X, Zhang X. The Akt/GSK-3beta pathway mediates flurbiprofen-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats. Eur J Pharmacol 2011, 661(1–3):105–110.

29. Yang J, Song TB, Zhao ZH, Qiu SD, Hu XD, Chang L. Vasoactive intestinal peptide protects against ischemic brain damage induced by focal cerebral ischemia. Brain Res 2011, 1389:94–101.

30. Andres RH, Horie N, Sikker W, Keren-Gill H, Zhan K, Sun G, Manley NC, Pereira MP, Sheikh LA, McMillan EL et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 2011, 134(Pt 8):1772–1789.

31. Ma S, Yin H, Chen L, Liu H, Zhao M, Zhang X. Neuronal, glial and endothelial cells in the animal model of ischemic stroke. J Stroke 2012, 6(1):25–31.

32. Lammer AB, Beck A, Grumich M, Freier U, Krugel T, Schniedereit B, Schneider D, Illes P, Franke H, Krugel U. The eNOS/p38 MAPK signaling pathway mediates flurbiprofen-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats. Eur J Pharmacol 2011, 661(1–3):105–110.

33. Suda S, Shimazaki K, Ueda M, Ito K. Combination therapy with bone marrow stromal cells and FK506 enhanced amelioration of ischemic brain damage in rats. Life Sci 2011, 89(1–2):50–56.

34. Yang J, Song TB, Zhao ZH, Qiu SD, Hu XD, Chang L. Vasoactive intestinal peptide protects against ischemic brain damage induced by focal cerebral ischemia. Brain Res 2011, 1389:94–101.

35. Drozdzik A, Badgajar J, Phukan B, Bodhankar SL, Thakurdesai P. Protective effect of Etoricoxib against middle cerebral artery occlusion induced transient focal cerebral ischemia in rats. Eur J Pharmacol 2011, 667(1–3):230–237.

36. Ceulemans AG, Zagvac T, Koelmans J, Hachimi-Idrissi S, Sarre S, Michotte Y. Mild hypothermia causes differential, time-dependent changes in cytokine expression and glosis following endothelin-1-induced transient focal cerebral ischemia. J Neuroinflammation 2011, 8:60.

37. Sun B, Chen L, Wei X, Yang L, Liu X, Zhang X. The Akt/GSK-3beta pathway mediates flurbiprofen-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats. Biochem Biophys Acta 2011, 1808(9):808–813.

38. Suda S, Shimazaki K, Ueda M, Ito K. Combination therapy with bone marrow stromal cells and FK506 enhanced amelioration of ischemic brain damage in rats. Life Sci 2011, 89(1–2):50–56.

39. Yang J, Song TB, Zhao ZH, Qiu SD, Hu XD, Chang L. Vasoactive intestinal peptide protects against ischemic brain damage induced by focal cerebral ischemia. Brain Res 2011, 1389:94–101.
54. Zhang L, Li Y, Zhang C, Chopp M, Gosewisch A, Hong K: Delayed administration of human umbilical tissue-derived cells improved neurofunctional recovery in a rodent model of focal ischemia. Stroke 2011, 42(5):1437–1444.

55. Choi Y, Kim SK, Choi HY, Ju C, Nam KW, Hwang S, Kim BW, Yoon MJ, Won MH, Park YK, et al: Amelioration of cerebral infarction and improvement of neurological deficit by a Korean herbal medicine, modified Bo-Yang-Hwan-O-Tang. J Pharm Pharmacol 2011, 63(5):695–706.

56. Kuboyama K, Harada H, Tozaki-Saitoh H, Tsuda M, Ushijima K, Inoue K: Astrocystic P2Y(1) receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia. J Cereb Blood Flow Metab 2011, 31(9):1930–1941.

57. Tovota E, Ostrowski RP, Adamo A, Badarut J, Lalas S, Ghost NV, Vikolinsky R, Zhang JH, Obeunais A: Brain irradiation improves focal cerebral ischemia recovery in aged rats. J Neuro Sci 2011, 306(1–2):143–153.

58. Yan LG, Lu Y, Zheng SZ, Wang AV, Li MQ, Ruan JS, Zhang L: Injectable caltrop fruit saponin protects against ischemia-reperfusion injury in rat brain. Am J Chin Med 2011, 39(2):325–333.

59. Hu Q, Ma Q, Zhan Y, He Z, Tang J, Zhou C, Zhang J: Isoflurane enhanced hemorrhagic transformation by impairing antioxidant enzymes in hyperglycemic rats with middle cerebral artery occlusion. Stroke 2011, 42(6):1750–1756.

60. Ahmad A, Khan MM, Hoda MN, Raza SS, Khan MB, Javed H, Ishrat T, Ashafaq I: Protective effects of a novel water-soluble poly(ADP-ribose) polymerase-1 inhibitor, MP-124, in vitro and in vivo models of cerebral ischemia. Brain Res 2011, 1389:169–176.

61. Svalbe B, Zvejniece L, Ververs M, Liepinsh E, et al: Amino Acids, 2011, 34(4):433–437.

62. Langdon KD, Clarke J, Corbett D: Long-term exposure to high fat diet is bad for your brain: exacerbation of focal ischemic brain injury. Neuroscience 2011, 182(2):5–11.

63. Belalayev L, Kheourzov M, Atkins KD, Eady TN, Hong S, Lu Y, Obeunais A, Bazan NG: Docosahexaenoic Acid Therapy of Experimental Ischemic Stroke. Stroke 2011, 42(1):33–41.

64. EgI Y, Matsuura S, Maruyama T, Fujio M, Yuki S, Akira T: Neuroprotective effects of a novel water-soluble poly(ADP-ribose) polymerase-1 inhibitor, Tropisetron ameliorates inflammatory response pathways after permanent middle cerebral artery occlusion. Mol Med Report 2011, 4(2):319–324.

65. Turer RJ, Helps SC, Thornton E, Vink R: Isoflurane enhanced anti-inflammatory cytokines after embolic stroke in rats. Neurochem Res 2011, 36(8):1360–1371.

66. Wang J, Zhao Y, Liu C, Jiang C, Zhao C, Zhu Z: Progesterone inhibits inflammatory response pathways after permanent middle cerebral artery occlusion in rats. Mol Med Rep 2011, 4(2):319–324.

67. Ahmad A, Khan MM, Hoda MN, Raza SS, Khan MB, Javed H, Ishrat T, Ashafaq I: Protective effects of a novel water-soluble poly(ADP-ribose) polymerase-1 inhibitor, MP-124, in vitro and in vivo models of cerebral ischemia. Brain Res 2011, 1389:169–176.

68. Chauveau F, Cho TH, Perez M, Guichardant M, Riou A, Aguettaz P, Picq M, Ström et al. BMC Neuroscience 2013, 14:41 http://www.biomedcentral.com/1471-2202/14/41
transient middle cerebral artery occlusion in rats. Crit Care Med 2011, 39(6):1448–1453.

93. Cao XL, Hu XM, Hu JQ, Zheng WX: Myocardin-related transcription factor-A promoting neuronal survival against apoptosis induced by hypoxia/ ischemia. Brain Res 2011, 1385:263–274.

94. Yang L, Zhang B, Yin L, Cai B, Shan H, Zhang L, Lu Y, Bi Z: Tanshinone IIA prevented brain iron dyshomeostasis in cerebral ischemic rats. Cell Physiol Biochem 2011, 27(1):123–130.

95. Jiao H, Wang Z, Liu Y, Wang P, Xue Y: Specific role of tight junction proteins Claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 2011, 44(2):130–139.

96. Mao X, Yin W, Liu M, Ye M, Liu P, Liu J, Qian X, Xu S, Pi R: Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral preconditioning. Brain Res 2011, 1385:275–280.

97. Lee JI, Hsu WH, Yen TL, Chang NC, Luo YJ, Hsiao G, Sheu JR: Traditional Chinese medicine, Xue-Fu-Zhu-Yu decocction, potentiates tissue plasminogen activator activator against thromboembolic stroke in rats. J Ethnopharmacol 2011, 134(3):824–830.

98. Kanazawa M, Igarashi H, Kawamura K, Takahashi T, Katakta A, Takahashi H, Nakada T, Nishizawa M, Shimohata T: Inhibition of VEGF signaling pathway attenuates hemorrhage after I/ P treatment. J Cereb Blood Flow Metab 2011, 31(4):1461–1474.

99. Valsecchi V, Pignataro G, Del Prete A, Sirabella R, Matrone C, Boscia F, Scorzelli A, Sisalli MJ, Esposito E, Zambrano N et al: NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke, 2011, 42(3):754–763.

100. Chen TY, Tai SH, Lee EJ, Huang CC, Lee AC, Huang SY, Wu TS: Cinnamophyllin offers prolonged neuroprotection against gray and white matter damage and improves functional and electrophysiological outcomes after transient focal cerebral ischemia. Crit Care Med 2011, 39(5):1139–1147.

101. Chen J, Chen X, Qin J: Effects of polysacharides of the Euphorbia Longan (Lour) Steud on focal cerebral ischemia/reperfusion injury and its underlying mechanism. Brain Res 2011, 15(2):292–299.

102. Wei Y, Yemisci M, Kim HH, Yung LM, Shin HW, Kang SY, Guo S, Qin T, Alsharif N, Brinkmann V, et al: Finkolomod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 2011, 69(1):119–129.

103. Lee HJ, Park J, Yoon OJ, Kim HW, Lee do Y, Kim do H, Lee WS, Lee NE, Bonventre JV, Kim SS: Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol 2011, 6(2):121–125.

104. Ruscher K, Shamlo M, Rickham M, Ludunga I, Soriano L, Gisselsson L, Toresson H, Rufin-Lutris L, Okenberg D, Urfer R, et al: The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain 2011, 134P:1:372–376.

105. Dang J, Mitkian B, Kipp M, Beyer C: Combined prostaglandin E1 and lithium exert potent neuroprotection in a rat model of cerebral ischemia. Acta Pharmocol Sin 2011, 32(3):303–310.

106. Encarnacion A, Horie N, Keren-Gil B, Blas TS, Steinberg GK, Shamlo M: Long-term behavioral assessment of function in an experimental model for ischemic stroke. J Neurosci Meth 2011, 196(2):247–257.

107. Yuan LB, Dong HL, Zhang HP, Zhao RN, Gong G, Chen XM, Zhang LN, Xiong L: Neuroprotective effect of orexin-A is mediated by an increase of hypoxia-inducible factor-1 activity in rat. Anesthesiology 2011, 114(2):340–354.

108. Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, Chen Y, Li P, Liu J, Shi M, et al: Ginsenoside R2 attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neurosci 2011, 178:169–180.

109. Zhang Z, Jin D, Yang Z, Shen B, Liu M: Effects of 17beta-estradiol pre-treated adult neural stem cells on neuronal differentiation and neurological recovery in rats with cerebral ischemia. Brain Res 2011, 15(2):227–236.

110. Lee JS, Choi HS, Kang SW, Chung JH, Park HK, Ban JY, Kwon OY, Hong HP, Ko YG: Therapeutic effect of Korean red ginseng on inflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury. Am J Chin Med 2011, 39(1):83–94.

111. Jung HW, Mahesh R, Bae HS, Kim YH, Kang JS, Park YK: The antioxidant effects of Joongpogtang GS on brain injury after transient focal cerebral ischemia in rats. J Nat Med 2011, 65(2):322–329.

112. Tai SH, Hung YC, Lee EJ, Lee AC, Chen TY, Shen CC, Chen HY, Lee MY, Huang SY, Wu TS: Melatonin protects against transient focal cerebral ischemia in both reproducitively active and estrogen-deficient female rats: the impact of circulating estrogen on its hormeric dose–response. J Neurol Sci 2011, 303(2):292–303.

113. Yang YC, Liu BS, Shen CC, Lin CH, Chiao MT, Cheng HC: Transplantation of adipose tissue-derived stem cells for treatment of focal cerebral ischemia. Curr Neuromusc Res 2011, 8(1):131–137.

114. Danielissova V, Burda J, Nemethova M, Gottlieb M: Aminoquinuadine administration ameliorates hippocampal damage after middle cerebral artery occlusion in rat. Neurochem Res 2011, 36(6):476–486.

115. Watanarathorn J, Jittiwat T, Tonquag S, Mukhamapa S, Ingkaninan K: Zingiber officinale Mattilgates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat. Evid Based Complement Altern Med 2011, 2012:429505.

116. Wang H, Lu S, Yu Q, Liang W, Gao H, Li P, Gan Y, Chen J, Gao Y: Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Front Biosci (Elite Ed) 2011, 6:804–815.

117. Huang YY, Liu BS, Shen CC, Lin CH, Chiao MT, Cheng HC: Transplantation of adipose tissue-derived stem cells for treatment of focal cerebral ischemia. Curr Neuromusc Res 2011, 8(1):131–137.

118. Zhao G, Zang SY, Jiang ZH, Chen YY, Wu JH, Qi GW, Guo LH: Postsischemic administration of liposome-encapsulated luteolin prevents against ischemia-reperfusion injury in a rat middle cerebral artery occlusion model. J Neurochem 2011, 2012:1092–936.

119. Zhang HL, Xu M, Wei C, Qin AP, Liu CF, Hong LZ, Zhao XY, Liu J, Qin ZH: Neuroprotective effects of pioglitazone in a rat model of permanent focal cerebral ischemia are associated with peroxosome proliferator-activated receptor gamma-mediated suppression of nuclear factor-kappaB signaling pathway. Neurosci 2011, 176:381–395.

120. Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, Li P, Liu J, Shi M, Xiong L, et al: Ginsenoside Rb2 attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 2011, 58(3):391–398.

121. Richard MJ, Connell BJ, Khan BV, Saleh TM: Cellular mechanisms by which lipic acid confers protection during the early stages of cerebral ischemia: a possible role for calcium. Neurosci Res 2011, 69(2):299–307.

122. Shono Y, Yokota C, Kuge Y, Kido S, Harada A, Kokame K, Inoue H, Hotta M, Hiraoka K, Saji H, et al: Gene expression associated with an enriched neuronal gene signature in cerebral ischemia in both reproducitively active and estrogen-deficient female rats: the impact of circulating estrogen on its hormeric dose–response. J Neurol Sci. 2011, 303(2):292–303.

123. Wang Q, Li X, Chen Y, Wang F, Yang Q, Chen S, Min Y, Xiong L: Activation of epsilon protein kinase C-mediated anti-apoptosis is involved in rapid tolerance induction by electroacupuncture pretreatment to cannabinoid receptor type 1. Stroke, 2011, 42(2):389–396.

124. Mohagheghi F, Bigdeli MR, Rasoulian B, Hashemi F, Pour MR: The neuroprotective effect of olive leaf extract is related to improved blood—
brain barrier permeability and brain edema in rats with experimental focal cerebral ischemia. *Pharmacology, 2011, 82(2–3):170–175.

Nishi S, Lee SH, Shih KY, Lee CK, Cho IH, Kim HS, Suh YH. SP-8203 reduces oxidative stress via SOD activity and behavioral deficit in cerebral ischemia. *Pharmacol Biochem Behav, 2011, 98(1):150–154.

Connell BJ, Saleh M, Khan BV, Saleh YM. Lipocic acid protects against reperfusion injury in the early stages of cerebral ischemia. *Brain Res, 2011, 1473:128–136.

Ramos-Cabrer P, Aguila J, Argibay B, Perez-Mato M, Castillo J. Serial MRI of the enhanced therapeutic effects of liposome-encapsulated citicoline in cerebral ischemia. *Int J Pharm, 2011, 405(1–2):228–233.

Mohanan A, Deshpande S, Jamadarkhana PG, Kumar P, Gupta RC. Intravenous human umbilical cord blood transplantation for stroke: a small molecule HSP70 inducer. *Neurotherapeutics, 2011, 8(6):991–999.

Moyanova SG, Mastroiacovo F, Kortenska LV, Mitreva RG, Fardone E, Genovese T, Mazzon E, Paterniti I, Esposito E, Bramanti P, Cuzzocrea S. The novel VEGF receptor antagonist, VGF1135, reduces edema, decreases infarct and improves neurological function after stroke in rats. *Kobe J Med Sci, 2011, 56(1):E1–E11.

Qu WS, Wang YH, Ma JF, Tian DS, Zhang Q, Pan DJ, Yu ZY, Xie MJ, Wang JP, Wang W. Galectin-1 attenuates astrogliosis-associated injuries and improves recovery of rats following focal cerebral ischemia. *J Neurochem, 2011, 116(2):217–226.

Chen J, Huang RB. Protective effect of Yulangsan polysaccharide on focal cerebral ischemia/reperfusion injury in rats and its underlying mechanism. *Neurosciences (Riyadh), 2009, 14(4):343–348.

Koya M, Miyake S, Sasayama T, Chiba Y, Kondoh T, Kojura M. The novel VEGF receptor antagonist, VGLE1, reduces edema, decreases infarct and improves neurological function after stroke in rats. *Kobe J Med Sci, 2010, 56(1):E1–E11.

Yu SS, Zhao J, Lei SP, Lin XM, Wang LL, Zhao Y. Neuroprotective by the Traditional Chinese Medicine, Tao-Hong-Si-Wu-Gan, against Middle Cerebral Artery Occlusion-Induced Cerebral Ischemia in Rats. *Evid Based Complement Alternat Med, 2011, 2011:830135.

Koyama J, Miyake S, Sasayama T, Chiba Y, Kondoh T, Kojura M. The novel VEGF receptor antagonist, VGF1135, reduces edema, decreases infarct and improves neurological function after stroke in rats. *Kobe J Med Sci, 2011, 56(1):E1–E11.

Yu SS, Zhao J, Lei SP, Lin XM, Wang LL, Zhao Y. Neuroprotective by the Traditional Chinese Medicine, Tao-Hong-Si-Wu-Gan, against Middle Cerebral Artery Occlusion-Induced Cerebral Ischemia in Rats. *Evid Based Complement Alternat Med, 2011, 2011:830135.
171. Yuan Y, Guo Q, Ye Z, Pingping X, Wang N, Song Z. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res. 2011, 1367:85–93.

172. Nakamura T, Tanaka S, Hirooka K, Toyoshima T, Kawai N, Tamiya T, Shiraga F, Tokuda M, Kepp RS, Iancu T, et al. Anti-oxidative effects of D-alloso, a rare sugar, on ischemia-reperfusion damaged focal cerebral ischemia in rat. Neurosci Lett. 2011, 487(1):103–106.

173. Cespedes-Rubio A, Jurado FW, Gorden-Gomez GP. p120 catenin/alphaN-catenin are molecular targets in the neuroprotection and neuronal plasticity mediated by atorvastatin after focal cerebral ischemia. J Neurosci Res. 2010, 88(6):3621–3634.

174. Britton GL, Kim H, Kee PH, Aronowski J, Holland CK, McPherson DD, Huang SL. In vivo therapeutic gas delivery for neuroprotection with echogenic liposomes. Circulation 2010, 122(16):1578–1587.

175. Kim SJ, Kim BK, Ko YJ, Bang MS, Kim MH, Han TR. Functional and histologic changes after repeated transcrainal direct current stimulation in rat stroke model. J Korean Med Sci. 2010, 25(10):1499–1505.

176. Ou Y, Yu S, Kanoeko Y, Takti N, Bae EC, Chhedha SH, Stahl CE, Yang F, Lui K, et al. Intravenous infusion of qGDNP gene-modified human umbilical cord blood CD34+ cells protects against cerebral ischemic injury in spontaneously hypertensive rats. Brain Res. 2010, 1366:217–225.

177. Hyun H, Lee J, Hwang Y, Sun S, Hyun DK, Choi JS, Lee JK, Lee M. Combinational therapy of ischemic brain stroke by delivery of heme oxygenase-1 gene and dexamethasone. Biomaterials. 2011, 32(10):306–315.

178. Jin Z, Wu J, Chen X, Wang B. The effect of stress on stroke recovery in a photoboothric stroke animal model. Brain Res. 2010, 1363:191–197.

179. Chan SJ, Wong WS, Wong PT, Bian JS. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol. 2010, 161(3):668–679.

180. Calonni RL, Winker BC, Ricci G, Poletto MG, Homero WM, Serafini EP, Corleta OC. Transient middle cerebral artery occlusion in rats as an experimental model of brain ischemia. Acta Cir Bras. 2010, 25(8):428–433.

181. Spratt NJ, Donnan GA, McLeod HD, Howells DW. ’Salvaged’ stroke ischaemic penumbra shows significant injury: studies with the hypoxia tracer FMISO. J Cereb Blood Flow Metab. 2011, 31(3):934–943.

182. Zhou J, Li J, Rosenbaum DM, Barone FC. Thrombopoietin protects the brain and improves sensorimotor functions: reduction of stroke-induced MMP-9 upregulation and blood–brain barrier injury. J Cereb Blood Flow Metab. 2011, 31(9):924–933.

183. Chao X, Zhou J, Chen T, Liu W, Dong W, Qu Y, Jiang X, Ji X, Zhen H, Fei Z. Neuroprotective effect of osthole against acute ischemic stroke on ischemic injury mediated by improving brain energy metabolism and alleviating oxidative stress in rats. Neuropharmacology. 2011, 60(2–3):252–258.

184. Sun M, Gu Y, Zhao X, Xu C. Protective functions of taurocholic acid in experimental stroke by preventing mitochondrial-mediated cell death in rats. Amino Acids. 2011, 40(3):1419–1429.

185. Tu XK, Yang WZ, Shi SS, Chen X, Wang CH, Chen CM, Chen Z. Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia. Inflammation. 2011, 34(5):463–470.

186. Taguchi A, Zhu P, Cao F, Kikuchi-Taura A, Kasahara Y, Stern DM, Soma T, Matsuyama T, Hata R. Reduced ischemic brain injury by partial reperfusion of blood manore cells in aged rats. J Cereb Blood Flow Metab. 2011, 31(8):855–867.

187. Zhang C, Chopp M, Cui Y, Wang L, Zhang R, Zhang L, Liu M, Szolad A, Doppler E, Hirtz M, et al. Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke. J Neurosci Res. 2010, 88(5):3275–3281.

188. Overgaard K, Rasmussen RS, Johansen FF. The site of emblization related to infant size, oedema and clinical outcome in a rat stroke model - further translational stroke research. Esp Transt Stroke Med. 2010, 2:117.

189. Lu YP, Liu SY, Sun H, Wu XM, Li JJ, Zhu L. Neuroprotective effect of astaxanthin on H2O2(2)-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Res. 2010, 1360:40–48.

190. Han Z, Zhang XH, Tian JS, Zheng RY, Hou ST. 2-[(2-benzofuran-2-yl)-2-imidazolone induces Bcl-2 expression and provides neuroprotection against transient cerebral ischemia in rats. Brain Res. 2010, 1363:62–62.
213. Menn B, Bach S, Beivids TL, Campbell M, Meijer L, Timst M. Delayed treatment with systemic (S)-roscovitine provides neuroprotection and inhibits in vivo CDK5 activity increase in animal stroke models. PLoS One 2010, 5(8):e12117.

214. Wang JK, Yu LN, Zhang FJ, Yang MI, Yu J, Yan M, Chen G. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain Res 2010, 1357:142–151.

215. Yao H, Nabika T. Characterizing photothermal distal middle cerebral artery occlusion and YAG laser-induced reperfusion model in the Iuozo strain of spontaneously hypertensive rats. Cell Mol Neurobiol 2011, 31(5):157–63.

216. Savos AV, Gee JM, Zierath D, Becker KJ. alpha-MSH: a potential neuroprotective and immunomodulatory agent for the treatment of stroke. J Cereb Blood Flow Metab 2011, 31(3):606–613.

217. Leasure JL, Gilder M. The effect of mild post-stroke exercise on reactive neurogenesis and recovery of somatosensation in aged rats. Exp Neurol 2010, 226(1):58–67.

218. Gamboa J, Blankenship DA, Niemi JP, Landreth GE, Karl M, Hilow E, Leasure JL, Grider M. Characterization of neuroprotective and immunomodulatory effects of the GABAergic antagonist BIC of injection in the Iuozo strain of spontaneously hypertensive rats. Cell Mol Neurobiol 2011, 31(5):157–63.

219. Rong ZT, Gong XJ, Sun HB, Li YM, Ji H. Protective effects of oleanolic acid on cerebral ischemic damage in vivo and H(2)O(2)-induced injury in vitro. Pharm Biol 2011, 49(1):78–85.

220. Zhao H, Mayhan WG, Arrick DM, Xiong W, Sun H. Neuroprotective effects of acetyl-L-carnitine reduces the infarct size and Lpidial glutamate outflow following focal cerebral ischemia in rats. Ann N Y Acad Sci 2010, 1199:95–104.

221. Pei L, Zhang Y, Chu X, Zhang J, Wang R, Liu M, Zhu X, Yu W. Micronutrient and functional food ingredients as novel therapeutic targets for cerebral ischemia: a review of recent advances. Front Integr Neurosci 2010, 4:174–181.

222. Liang J, Zhang Y, Zhang X, Gao J, Mao X, Sun B, Liao J, Qiu J, Zhang J, Sun H. Neuroprotective effects of oleanolic acid in rats with middle cerebral artery occlusion. Neuropharmacology 2010, 59(1):72–79.

223. Wang W, Xu J, Li L, Wang P, Ji X, Ai H, Zhang L. Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res Bull 2010, 83(3):196–201.

224. Cui L, Zhang X, Yang R, Liu L, Wang L, Li M, Du W. Baicalin is neuroprotective in rat MCAO model: role of 12/15-lipoxygenase, mitogen-activated protein kinase and cytosolic phospholipase A2. Pharnmacol Biochem Behav 2010, 90(4):468–475.

225. Yuan Z, Liu W, Liu B, Schnell A, Liu KJ. Norbomac hyperoxia delays and attenuates early nitric oxide production in focal cerebral ischemic rats. Brain Res 2010, 1352:248–254.

226. Airavaara M, Chiocco MJ, Howard DB, Zuchowski KL, Peranen J, Liu C, Fang X. Investigation of the role of alpha-synuclein in neuronal cell death following focal cerebral ischemia in rats. PLoS One 2010, 5(8):e11764.

227. Zhao H, Mayhan WG, Arrick DM, Xiong W, Sun H. Neuroprotective effects of acetyl-L-carnitine reduces the infarct size and Lpidial glutamate outflow following focal cerebral ischemia in rats. Ann N Y Acad Sci 2010, 1199:95–104.

228. Ma Y, Sullivan JC, Scheirhofer DA. Dietary genistin and equol (4’, 7 isoflavandiol) reduce oxidative stress and protect rats against focal cerebral ischemia. Am J Physiol Regul Integr Comp Physiol 2010, 299(3):R871–R877.

229. Pignataro G, Esposito E, Cuzzo M, Sinabellla R, Bosca F, Guida N, Di Renzo G, Annunziato L. The NCK3 isofrom of the Na(+)-Ca(2+) exchanger contributes to neuroprotection elicited by ischemic postconditioning. J Cereb Blood Flow Metab 2011, 31(2):362–370.

230. Sepramaniam S, Armurugam A, Lim KY, Karolina DS, Tan JR, Joycehead K. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutics target in cerebral ischemia-reperfusion injury. J Mol Cell Cardiol 2010, 48(4):623–230.

231. Morris DC, Chopp M, Zhang L, Lu M, Zhang ZG. Thrombin beta4 improves functional neurological outcome in a rat model of embolic stroke. Neurosci 2010, 169(2):674–682.

232. Cui L, Zhang X, Yang R, Wang L, Liu L, Liu M, Du W. Neuroprotection and underlying mechanisms of oxfamates in cerebral ischemia of rats. Neuro Res 2011, 33(3):319–324.

233. Gao B, Cam E, laerer H, Zuruaneqiu C, Santhein J, Bassetti CL. Reduction of beta-secretase activity by the chemically modified pentasaccharides on cerebral ischemic injury in rats. Life Sci 2010, 35(1):527–539.

234. Gulum KZ, Lapchak PA. Comparison of the post-embolization effects of tissue-plasminogen activator and simvastatin on neurological outcome in a clinically relevant rat model of acute ischemic stroke. Brain Res 2010, 1354:206–216.

235. Jia L, Chopp M, Zhang L, Lu M, Zhang Z. Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke. Stroke 2010, 41(9):2071–2076.

236. Farr TD, Seeheru IU, Nelles M, Hoehn M. Challenges towards MR imaging of the peripheral inflammatory response in the subacute and chronic stages of transient focal ischemia. NMR Biomed 2011, 24(1):335–45.

237. Narayanan A, Nagai A, Shekh AM, Masuda J, Kobayashi S, Yamasnchi G, Kim SJ. Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 2010, 5(8):e11746.

238. Hu B, Wang Q, Chen Y, Du J, Zhu X, Lu Y, Xiong L, Chen S. Neuroprotective effect of WIN 55,212-2 pretreatment against focal cerebral ischemia through activation of extracellular signal-regulated kinases in rats. Eur J Pharmacol 2010, 645(1–3):102–107.

239. Zhao H, Mayhan WG, Artick DM, Xiong W, Sun H. Alcohol-induced exacerbation of ischemic brain injury: role of NAD(P)H oxidase. Alcohol Clin Exp Res 2010, 34(11):1948–1955.

240. Du J, Wang Q, Hu B, Peng Z, Zhao Y, Ma L, Xiong L, Lu Y, Zhu X, Chen S. Involvement of ERK 1/2 activation in electroacupuncture pretreatment via cannabinoid CB1 receptor in rats. Brain Res 2010, 1360:1–7.

241. Pei L, Zhang Y, Xiu C, Zhang J, Wang R, Liu M, Zhu X, Yu W. Peroxisome proliferator-activated receptor gamma promotes neuroprotection by modulating cyclin D1 expression after focal cerebral ischemia. Can J Physiol Pharmacol 2010, 88(7):716–723.

242. Letoumear A, Roussel S, Toutain J, Bernaudin M, Touzani O. Impact of genetic and renovascular chronic arterial hypertension on the acute spatiotemporal evolution of the ischemic penumbra: a sequential study with MRI in the rat. J Cereb Blood Flow Metab 2011, 31(2):504–513.

243. Kim J, Kim MH, Ku KH, Moon S, Jamakmittel-Pandit A, Cho H, Kim H, Bu Y. Key compound groups for the neuroprotective effect of roots of Polygonum cuspidatum on transient middle cerebral artery occlusion in Sprague–Dawley rats. Nat Prod Res 2010, 24(13):1214–1226.

244. Brilay S, Gulati A. Endothelin-A receptor antagonist BQ123 potentiates acetaminophen induced hypothermia and reduces infarction following focal cerebral ischemia in rats. Eur J Pharmacol 2010, 644(1–3):73–79.
255. Lay CC, Davis MF, Chen-Bee CH, Frostig RD: Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke. PloS One 2010, 5(6):e11270.

256. Tang C, Xue H, Bai C, Fu R, Wu A: The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine 2010, 17(1-2):145–149.

257. Shen CC, Lin CH, Yang YC, Chiao MT, Cheng WW, Ko JL: Intravenous implanted neural stem cells migrate to injury site, reduce infarct volume, and improve behavior after cerebral ischemia. Curr Neurovasc Res 2010, 7(3):167–179.

258. Shehadah A, Chen J, Zacharek A, Cui Y, Ion M, Roberts C, Kapke A, Chopp M: Nispan treatment induces neuroprotection after stroke. Neurobiol Dis 2010, 40(4):277–283.

259. Cho GW, Kho SH, Kim MH, Yoo AR, Noh MY, Oh S, Kim SH: The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res 2010, 1353:1–13.

260. Tang X, Liu KJ, Ramu J, Chen Q, Li T, Liu W: The effects of Tetramethylpyrazine on improved neurogenesis by tetramethylpyrazine in adult rat brain after reperfusion in the rat. Neurobiol Dis 2010, 38(3):223–229.

261. Ren L, Wang YK, Fang YN, Zhang AW, Li X: Effect of electroacupuncture therapy on the expression of Nav1.1 and Nav1.6 in rat after acute cerebral ischemia. Neurol Res 2010, 32(10):1110–1116.

262. Wang F, Luo Y, Ling F, Wu H, Chen J, Yan F, He Z, Goel G, Ji X, Ding Y: Comparison of neuroprotective effects in ischemic rats with different hypothermia procedures. Neurol Res 2010, 32(4):378–383.

263. Peng S, Kuang Z, Zhang Y, Xu H, Cheng Q: The protective effects and potential mechanism of Calpain inhibitor Calpeptin against focal cerebral ischemia-reperfusion injury in rats. Mol Biol Rep 2011, 38(2):905–912.

264. Wang F, Luo Y, Ling F, Wu H, Chen J, Yan F, He Z, Goel G, Ji X, Ding Y: Effect of mastication on functional recoveries after permanent middle cerebral artery occlusion in rats. J Stroke Cerebrovasc Dis 2010, 19(5):398–403.

265. Jiang WT, Tian JW, Fu FH, Zhu HB, Hou J: Neuroprotective efficacy and therapeutic window of Forsythoside B: In a rat model of cerebral ischemia and reperfusion injury. Eur J Pharmacol 2010, 640(1–3):75–81.

266. Chang C, Kwan AL, Howong SL: 6-Mercaptopurine exerts an immunomodulatory and neuroprotective effect on permanent focal cerebral occlusion in rats. Acta Neurochir (Wien) 2010, 152(8):1383–1390. discussion 1390.

267. Goyagi T, Horiguchi T, Nishikawa T, Tobe Y: Post-treatment with selective beta1 adrenoceptor antagonists provides neuroprotection against transient focal cerebral ischemia in rats. Brain Res 2010, 1343:213–217.

268. Shehadah A, Chen J, Cui X, Roberts C, Lu M, Chopp M: Combination treatment of experimental stroke with Nispan and Simvastatin reduces axonal damage and improves functional outcome. J Neurol Sci 2010, 294(1–2):107–111.

269. Zhang S, Liu Y, Zhao Z, Xue Y: Effects of green tea polyphenols on cavelin-1 of microvessels fragments in rats with cerebral ischemia. Neurosci Res 2010, 62(9):963–970.

270. Bora KS, Sharma A: Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J Ethnopharmacol 2010, 129(3):403–409.

271. Connell BJ, Saleh TM: A novel rodent model of reperfusion injury following occlusion of the middle cerebral artery. J Neurosci Methods 2010, 190(1):28–33.

272. Gai H, Xu X, Liu Z, Wang Q, Feng G, Li Y, Xu C, Liu G, Li Z: The effects of calcitonin gene-related peptide on bFGF and AQP4 expression after focal cerebral ischemia reperfusion in rats. Pharmazie 2010, 65(4):274–278.

273. Hung YC, Chou YS, Chang CH, Lin HW, Chen HY, Chen TY, Tai SH, Lee EI: Early reperfusion improves the recovery of contralateral electrophysiological diaschisis following focal cerebral ischemia in rats. Neurosci Res 2010, 62(8):828–834.

274. Sun L, Zhou W, Mueller C, Sommer C, Heiland S, Bauer AT, Marti HH, Veltkamp R: Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J Cereb Blood Flow Metab 2010, 30(5):1651–1660.

275. Chen CH, Maneniko A, Zhan Y, Liu WW, Ostowick RP, Tang J, Zhang JH: Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model. Neuroscience 2010, 169(2):402–414.

276. Vemula R, Mishra V, Saras G, Raghubir R: Pharmacological evaluation of glitamulate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. Eur J Pharmacol 2010, 638(1–2):365–371.

277. Osmond JM, Mintz JD, Stepp DW: Preventing increased blood pressure in the obese Zucker rat improves severity of stroke. Am J Physiol Heart Circ Physiol 2010, 299(1):H53–H61.

278. Liu L, Zhang X, Wang L, Yang R, Cui L, Li M, Du W, Wang S: The neuroprotective effects of Tanshinone IIA are associated with induced nuclear translocation of TORC1 and upregulated expression of TORC1, pCREB and BDNF in the acute stage of ischemic stroke. Brain Res Bull 2010, 82(3–4):228–233.

279. Zhang X, Deguchi K, Yamashta T, Ohta Y, Shang J, Tian F, Liu N, Panin ML, Ikeda Y, Matsuzuka T, et al: Thioctic acid and spatial differences of multiple protein expression in the ischemic penumbra after transient MCAO in rats. J Neurosci Res 2010, 134(3):143–152.

280. Emerich DF, Silva E, Ali O, Mooney D, Bell W, Yu SJ, Kaneko Y, Borlongan C: Injectable VEGF hydrgogens produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplant 2010, 19(10):1063–1071.
Ström et al. BMC Neuroscience 2013, 14:41
http://www.biomedcentral.com/1471-2202/14/41
Page 22 of 24

297. Greenhalgh AD, Galea J, Denes A, Tyrell PJ, Rothwell NJ: Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection. Br J Pharmacol 2010, 160(1):153–159.

298. Lin GH, Lin L, Liang HW, Ma X, Wang JT, Wu LP, Jiang HD, Bruce KC, Xia Q: Antioxidant action of a Chrysanthemum morifolium extract protects rat brain against ischemia and reperfusion injury. J Med Food 2010, 13(3):306–311.

299. Zhuang P, Ji H, Zhang YH, Min ZL, Ni QQ, You R. ZJM-289, a novel nitric oxide donor, alleviates the cerebral ischaemia-reperfusion injury in rats. Clin Exp Pharmacol Physiol 2010, 37(3):e121–e127.

300. Lim SH, Kim HS, Kim YK, Kim TM, Im S, Chung ME, Hong BY, Ko YJ, Kim HW, Lee J: The functional effect of epigallocatechin gallate on ischemic stroke in rats. Acta Neurol Exp (Wars) 2010, 70(1):40–46.

301. Porritt MJ, Chen M, Rewell SS, Dean RG, Burrell LM, Howells DW: ACE inhibition reduces infarction in normotensive but not hypertensive rats: correlation with cortical ACA activity. J Cereb Blood Flow Metab 2010, 30(8):1520–1526.

302. Nagel S, Papadakis D, Chen R, Hoyte LC, Brooks KJ, Galichan D, Sibson NR, Pugh C, Buchan AM: Neuroprotection by dimethylxoylglycine following permanent and transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2011, 31(1):132–143.

303. Nateghi M, Shaveisi K, Shabanazadeh AP, Sadr S, Parviz M, Ghabaee M: Systemic hyperthermia masks the neuroprotective effects of MK-801, but not nosiglitazone in brain ischemia. Basic Clin Pharmacol Toxicol 2010, 107(3):724–729.

304. Wu Y, Ye XH, Guo PP, Xu SP, Wang J, Yuan SY, Yao SL, Shang Y: Neuroprotection of effect of Lipox A4 methyl ester in a rat model of permanent focal cerebral ischemia. J Mol Neurosci 2010, 42(2):226–234.

305. Zhang T, Pan BS, Sun GC, Sun X, Sun FY: Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain. Neurochem Int 2010, 56(9):955–961.

306. Kollmar R, Henninger N, Urbanek C, Schwab S: Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res 2010, 1334:84–92.

307. Keltien J, Larsen MH, Sorensen JC, Moller A, Frokiaer J, Nielsen S, Nyengaard JR, Mikkelsen JD, Rasmussen JC: Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools. Exp Trans Stroke Med 2010, 28.

308. Plotnikov EY, Slachev DN, Chupyrkina AA, Shikhi K, Kubo T, Ikii H, Abe T, Kobayashi H: The phosphatidylinositol-3 kinase/Akt pathway mediates geranylgeranylaceotide-induced neuroprotection against cerebral ischemia and reperfusion in rats. Brain Res 2010, 1330:151–157.

309. Ku TK, Wang WZ, Wang CH, Shi SS, Zhang YL, Chen CM, Yang YK, Jin CD, Wen S: Zileuton reduces inflammatory reaction and brain damage following permanent cerebral ischemia. Inflammation 2010, 33(3):344–352.

310. Zhang L, Zhang ZG, Buller B, Jiang J, Jiang Y, Zhao D, Liu X, Morris D, Chopp M: Combination treatment with VELCADE and low-dose tissue plasminogen activator provides potent neuroprotection in aged rats after embolic focal ischemia. Stroke 2010, 41(5):1001–1007.

311. Diansan S, Shiferen Z, Zhen G, Heming W, Xiangui W: Reversion of the nerves bundle from the sphenopallangine ganglia tend to increase the infarction volume following middle cerebral artery occlusion. Neuro Sci 2010, 31(4):431–435.

312. A L, Lautur LL, Rueter CA, Hallenbeck JM, Spatz M, Warach S, Henning EC: Increased plasma and tissue MMP levels are associated with BCSFB and BBB disruption evident on post-contrast FLAIR after experimental stroke. J Cereb Blood Flow Metab 2010, 30(6):1188–1199.

313. Prapaita KD, Sharma SS, Roy N: Upregulation of albumin expression in focal ischemic rat brain. Brain Res 2010, 1327:118–124.

314. Chen SJ, Chang CM, Tsai SK, Chang YL, Chou SH, Huang SS, Tai LK, Chen YC, Ku HH, Li HY, et al: Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev 2010, 19(11):1757–1767.

315. Maddahi A, Edvinsson L: Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J Neuroinflammation 2010, 7:14.

316. Wang GJ, Jiang ZL, Chen ZZ, Li P: Neuroprotective effect of L-serine against temporary cerebral ischemia in rats. J Neurosci Res 2010, 88(9):2035–2045.

317. Shang J, Deguchi K, Yamashita T, Ohta Y, Zhang H, Morimoto N, Liu N, Zhang X, Tian F, Matsuura T, et al: Antipaptotic and antiphlogistic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J Neurosci Res 2010, 88(10):2197–2206.

318. Srivastava AK, Dohare P, Ray M, Panda G: Design, synthesis and biological evaluation of new ionone derivatives as potential neuroprotective agents in cerebral ischemia. Eur J Med Chem 2010, 45(5):1964–1971.

319. Cui L, Zhang X, Yang R, Wang L, Liu L, Li M, Du W: Neuroprotection of early and short-time applying atovastatin in the acute phase of cerebral ischemia: down-regulated 12/15-LOX, p38MAPK and cPLA2 expression, ameliorated BBB permeability. Brain Res 2010, 1325:164–173.

320. Chen C, Ostrowski RP, Zhou C, Tang J, Zhang H: Suppression of hypoxia-inducible factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic transformation in a rat model of cerebral ischemia. J Neurosci Res 2010, 88(9):2046–2055.

321. Ya BL, Li CY, Zhang L, Wang W, Li L: Cornel iridoid glycoside inhibits inflammation and apoptosis in brains of rats with focal cerebral ischemia. Neurochem Res 2010, 35(5):773–781.

322. Bu Y, Kwon S, Kim YT, Kim MY, Choi H, Kim JG, Jamarkettal-Pandit N, Doore S, Kim SH, Kim H: Neuroprotective effect of HT008-1, a prescription of traditional Korean medicine, on transient focal cerebral ischemia model in rats. Pthoher Res 2010, 24(8):1207–1212.

323. Adhikary RM, Hatcher JF: Protection by D609 through cell-cycle regulation after stroke. Mol Neurobiol 2010, 41(2):206–217.

324. Prongay KD, Lewis AD, Hurn PD, Murphy SJ: Dietary soy may not confound acute experimental stroke infarct volume outcomes in ovariectomized female rats. Lab Anim 2010, 44(3):238–246.

325. Rek C, Roy S, Khan M, Ananth P, Kuppusamy P, Sen CK, Khanna S: Oxygen-sensitive outcomes and gene expression in acute ischemic stroke. J Cereb Blood Flow Metab 2010, 30(7):1275–1287.

326. Ye XH, Wu Y, Guo PP, Wang J, Yuan SY, Shang Y, Yao SL: Lipoxin A4 analogue protects brain and reduces inflammation in a rat model of focal cerebral ischemia reperfusion. Brain Res 2010, 1323:174–183.

327. Kang KA, Shin ES, Hur J, Hazan MR, Lee H, Park HJ, Park HK, Kim YJ: Acupuncture attenuates neuronal cell death in middle cerebral
artery occlusion model of focal ischemia. Neurol Res 2010, 32(Suppl 1):84–87.

339. Tang NY, Liu CH, Hsieh CT, Hsieh CL: The anti-inflammatory effect of paeonol on cerebral infarction induced by ischemia-reperfusion injury in Sprague–Dawley rats. Am J Chin Med 2010, 38(1):51–64.

340. Lu J, Cheng C, Zhao X, Liu Q, Yang F, Wang Y, Luo G: PEG-sculliarin prodrug synthesis, water solubility and protective effect on cerebral ischemia/reperfusion injury. Eur J Med Chem 2010, 45(6):1731–1738.

341. Sun M, Zhao Y, Gu Y, Xu C: Neuroprotective actions of aminoguanidine involves the activation of calpain and caspase-3 in a rat model of stroke. Neurochem Int 2010, 56(4):634–641.

342. Wang J, Jiang C, Li X, Chen N, Hao Y: Neuroprotective effects of prostaglandin following stroke in aged rats. Behav Brain Res 2010, 209(1):119–122.

343. Gao F, Wang S, Guo Y, Wang J, Lou M, Wu J, Ding M, Tian M, Zhang H: Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischemia: a microPET study. Eur J Nucl Med Mol Imaging 2010, 37(5):954–961.

344. Iishi T, Asai T, Utakami T, Oku N: Accumulation of macromolecules in brain parenchyma in acute phase of cerebral infarction/reperfusion. Brain Res 2010, 1321:164–168.

345. Zwagerman N, Sprague S, Davis MD, Daniels B, Goel G, Ding Y: Pre-ischemic exercise preserves cerebral blood flow during reperfusion in stroke. Neurol Res 2010, 32(5):523–529.

346. Yamane K, Kistamura Y, Yanagida T, Takata K, Yanagisawa D, Taniguchi T, Taira T, Aron H: Oxidative neurodegeneration is prevented by UCPO053703, an allosteric modulator for the reduced form of DJ-1, a wild-type of familial Parkinson’s disease-linked PARK7. Int J Mol Sci 2009, 10(11):4789–4804.

347. David HJN, Haelewyn B, Risso JJ, Colloc'h N, Abraini JH: Estradiol involvement reduced the activation of calpain and caspase-3 in a rat model of stroke. J Cereb Blood Flow Metab 2010, 30(4):718–728.

348. Sang N, Yun Y, Li H, Hou L, Han M, Li G: SO2 inhalation contributes to the development and progression of ischemic stroke in the brain. Toxicol Sci 2010, 114(2):226–236.

349. Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C, Rogers R, Curry A, Jimenez O, Ding J: Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neurosci Lett 2010, 466(4):1091–1000.

350. Ruscher K, Erickson A, Kuric E, Inacio AR, Wieloch T: Neuroprotective actions of aminoguanidine involves the activation of calpain and caspase-3 in a rat model of stroke. Neurochem Int 2010, 56(4):634–641.

351. Hom S, Fleegal MA, Egletan RD, Campos CR, Hawkins BT, Davis TP: Comparative changes in the blood–brain barrier permeability of SHR and WKY rats. J Cereb Blood Flow Metab 2010, 30(4):448–461.

352. Dettmar MS, Vatanbakh M, Fehm NP, Schulerer G, Bödahn U, Hom M, Lackechetzki F: Fischer-344 rats are unsuitable for the MCAO filament model due to their cerebrovascular anatomy. J Neurosci Meth 2008, 166(4):1091–1000.

353. Morel D, Barcelo C, Barcelo J: Comparison between coated vs. uncoated suture middle cerebral artery occlusion in the rat as assessed by perfusion/diffusion weighted imaging. Stroke 2009, 40(2):3864–3868.

354. Prieto R, Cancelier F, Fatta MA: Intraluminal thread model revisited: rat strain differences in local cerebral blood flow. Neurol Res 2005, 27(1):47–52.

355. Barlowber M, Stolz E, Muller C, Friedrich C, Rotgert C, Blaes F, Kaps M, Fischer M, Bachmann G, Ghersi E: Experimental stroke: ischemic lesion volume and oedema formation differ among rat strains (a comparison between Wistar and Sprague–Dawley rats using MRI). Lab Anim 2006, 40(1):1–8.

356. McCabe C, Gallagher L, Geiss W, Graham D, Dominiczak AF, Mac Rae IM: Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Stroke 2009, 40(2):3864–3868.

357. Bartetzky J, Shen Q, Henninger N, Bouley D, Duong TQ, Fisher M: Differences in ischemic lesion evolution in different rat strains using diffusion and perfusion imaging. Stroke 2005, 36(9):2000–2005.

358. Kametuki H, Nakagomi T, Takamura T, Tsachiya T, Kono G, Sano K: Differences in the extent of primary ischemic damage between middle cerebral artery coagulation and intraluminal occlusion models. J Cereb Blood Flow Metab 2002, 22(10):1196–1204.

359. Bouley J, Fisher M, Henninger N: Comparison between coated vs. uncoated suture middle cerebral artery occlusion in the rat as assessed by perfusion/diffusion weighted imaging. Neurosci Lett 2007, 412(3):185–190.

360. Laing RI, Jakubowski J, Laing RW: Middle cerebral artery occlusion without cranectomy in rats. Which method works best? Stroke 1993, 24(2):294–297. discussion 297–298.

361. Spratt NJ, Fernandez J, Chen M, Rewell S, Cox S, van Raay L, Hogan L, Howells DW: Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J Neurosci Meth 2006, 155(2):285–290.
378. Bavik CO, Eriksson U, Allen RA, Peterson PA: Identification and partial characterization of a retinal pigment epithelial membrane receptor for plasma retinol-binding protein. *J Biol Chem* 1991, 266(23):14978–14985.

379. Lourbopoulos A, Karacostas D, Artemis N, Milonas I, Grigoriadis N: Effectiveness of a new modified intraluminal suture for temporary middle cerebral artery occlusion in rats of various weight. *J Neurosci Meth* 2008, 173(2):225–234.

380. Kuge Y, Minematsu K, Yamauchi T, Miyake Y: Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. *Stroke* 1995, 26(9):1655–1657. discussion 1658.

381. Oliff HS, Weber E, Eilon G, Marek P: The role of strain/vendor differences on the outcome of focal ischemia induced by intraluminal middle cerebral artery occlusion in the rat. *Brain Res* 1995, 675(1–2):20–26.

382. Sena ES, Briscoe CL, Howells DW, Donnan GA, Sandercock PA, Macleod MR: Factors affecting the apparent efficacy and safety of tissue plasminogen activator in thrombotic occlusion models of stroke: systematic review and meta-analysis. *J Cereb Blood Flow Metab* 2010, 30(12):1905–1913.

doi:10.1186/1471-2202-14-41
Cite this article as: Ström et al.: Method parameters’ impact on mortality and variability in rat stroke experiments: a meta-analysis. *BMC Neuroscience* 2013 14:41.