Cervical lymphadenectomy in a high-risk patient under superficial cervical plexus block as an alternative to general anesthesia

Dear Editor,

A 55-year-old male with a known case of diabetes mellitus, coronary artery disease, and moderate chronic obstructive pulmonary disease (COPD) presented for diagnostic lymph node biopsy (4*3 cm in size) of the right side of the neck. The patient had type 2 diabetes mellitus for 15 years and was taking combination of metformin 1000 mg and dapagliflozin 50 mg once a day (OD), glimepiride 2 mg twice daily, and insulin lente 22 units at bedtime. The patient was a known case of coronary artery disease with hypertension for 15 years and was managed with oral carvedilol 3.125 mg OD and lasilactone 50 mg OD. The patient had undergone off-pump coronary artery bypass graft surgery for four-vessel coronary disease a year back. The patient was on oral aspirin 75 mg, rosuvastatin 20 mg, and clopidogrel 75 mg. The patient had an episode of heart failure with chest pain 2 months back with shortness of breath. Dyspnea was of modified British Medical Research Council Grade 3. The patient was a chronic smoker with 1.5 packs per day for 25 years but had stopped 1 week back. The pulmonary function test revealed moderate COPD. On respiratory examination, there was bilateral wheeze. The patient was put on inhalation capsules as formoterol tartrate 12 µg and glycopyrrolate 12.5 µg and after 1-week therapy, the patient had no wheeze on chest auscultation. Chest X-ray showed emphysematous changes with no active chest infection. In electrocardiogram, old Q wave changed with ST-T strain pattern. Echocardiography revealed moderate left ventricular systolic dysfunction with ejection fraction of 40%. Premedication modification of treatment drugs was done. Neck lymph node biopsy is a low-risk surgery and anesthetic plan was discussed with the patient and surgeon. After obtaining written informed consent and attaching all monitors, the patient was positioned in supine position with neck turned to the left side. Superficial cervical plexus block (SCP) was performed under strict asepsis, using a high-frequency ultrasound probe. A volume of 5 ml of 0.2% ropivacaine and 1 ml of 4 mg dexamethasone were injected in plane at the midpoint of posterior border of sternocleidomastoid muscle. The patient received IV midazolam 1 mg and IV fentanyl 50 µg titrated to effect. The excision lasted 40 min [Figure 1]. The patient received Tab paracetamol 500 mg thrice daily for postoperative pain relief. The perioperative period was uneventful.

The role of ultrasound in the head and neck has increased safety and accuracy in real-time.1 SCP in the present case blocked the sensory and sympathetic nociceptive inputs. SCP constitutes ascending and descending loops of C 1-4 and blocks the cutaneous sensory supply of skin on the head, neck, and chest in addition to muscular and communicating branches arising with cervical plexus. The SCP communicates with sympathetic fibers derived from superior, middle, and inferior cervical ganglia. In addition to this, cervical plexus communicates with X, XI, and XII cranial nerves.2 Motor supply of sternocleidomastoid muscle from accessory muscle and sensory supply from cervical plexus. Scalene muscles receive sensory supply from C4–C6. This was supplemented with midazolam and fentanyl to reduce anxiety and analgesia.

In the present case, we chose adequate analgesia with SCP as an alternative to general anesthesia (GA) for lymph node biopsy as GA could have increased the perioperative risk for respiratory and cardiac complications. In an earlier study, authors studied bilateral superficial plexus block versus GA in neck surgeries using 12–14 ml of 0.5% ropivacaine using the landmark technique.3 Meta-analysis supports the use of perineural dexamethasone with local anaesthetic as compared to intravenous dexamethasone in upper limb surgeries as it reduces analgesic consumption, increases analgesia by 3 h, and reduces pain intensity at 12 and 24 h postoperatively.4

Preoperative team planning and choice of SCP as an alternate to GA provided a successful perioperative outcome.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient(s) has/have given his/her/their consent for his/her/their images

Figure 1: Showing neck lymph node excision biopsy being performed by a surgeon and the excised lymph node
and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Vanita Ahuja, Manju Sharma, Anjuman Chander, Deepak Thapa, Kumar Abhishek
Departments of Anesthesia and Intensive Care and General Surgery, Government Medical College and Hospital, Chandigarh, India

Address for correspondence: Dr. Vanita Ahuja, Department of Anesthesia and Intensive Care, Government Medical College and Hospital, Chandigarh - 282 003, India. E-mail: vanitaanupam@yahoo.co.in

References
1. Kim JS, Ko JS, Bang S, Kim H, Lee SY. Cervical plexus block. Korean J Anesthesiol 2018;7:274-88.
2. Hakim TA, Shah AA, Teli Z, Farooq S, Kosar S, Younis M. The safety and effectiveness of superficial cervical plexus block in oral and maxillofacial surgery as an alternative to general anesthesia in selective cases: A clinical study. J Maxillofac Oral Surg 2019;18:23-9.
3. Mukhopadhyay S, Niyogi M, Dutta M, Ray R, Gayen GC, Mukherjee M, et al. Bilateral superficial cervical plexus block with or without low-dose intravenous ketamine analgesia: effective, simple, safe, and cheap alternative to conventional general anesthesia for selected neck surgeries. Local Reg Anesth 2012;5:1-7.
4. Pehora C, Pearson AM, Kaushal A, Crawford MW, Johnston B. Dexamethasone as an adjuvant to peripheral nerve block. Cochrane Database Syst Rev 2017;11:CD011770.

Large left ventricular thrombus with malignant left MCA infarct for emergency decompressive craniectomy

Dear Editor,

Left ventricular thrombus (LVT) is an established cause of stroke, especially in the setting of ischemic and nonischemic cardiomyopathies.[1] The management of such patients requiring neurosurgery is rare and highly challenging. These patients need to be treated through a multidisciplinary team to provide effective care.

A 35-year-old male patient presented with sudden onset of right-sided weakness, inability to speak, and deviation of angle of mouth to left. His Glasgow coma scale (GCS) was E2M5V A with right upper motor neuron facial palsy and right hemiplegia. His CT brain showed left middle cerebral artery territory infarct with significant mass effect and midline shift [Figure 1a]. His ECG showed old anteroseptal wall myocardial infarction. Bedside transthoracic echocardiography (TTE) revealed hypokinesia of anterior-apical segment and free-floating thrombus in the left ventricle [Figure 1b]. After the discussion of risks and benefits of emergency decompressive craniectomy including perioperative complications anticipated, a decision to operate was made in the operating room. Standard monitoring was initiated. After preoxygenation, the patient was induced with IV (intravenous) fentanyl 2 mcg/kg and titrated doses of IV thiopentone 1–2 mg/kg.

For obtundation of intubation response lignocaine 2% (1.5 mg/kg) and esmolol 0.5 mg/kg were used. Anesthesia was maintained with oxygen, air, and sevoflurane 1.5–2%. Intraoperative fluid administration was guided by pulse pressure variation. The intraoperative period was uneventful. Immediate postoperative GCS was E3M5VT. He was electively ventilated in ICU and was extubated the next day. After 48 h, the CT brain showed adequate decompression with no hemorrhage. IV heparin 5000 units S/C QID and...