Elevated CO₂ modulates airway contractility

Masahiko Shigemura and Jacob I. Sznajder

Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA

Cite this article: Shigemura M, Sznajder JI. 2021 Elevated CO₂ modulates airway contractility. Interface Focus 11: 20200021. https://doi.org/10.1098/rsfs.2020.0021

Accepted: 9 December 2020

One contribution of 13 to a theme issue ‘Carbon dioxide detection in biological systems’.

Subject Areas:
biochemistry, chemical biology

Keywords:
carbon dioxide (CO₂), hypercapnia, respiratory acidosis, lung airways, airway smooth muscle contractility

Author for correspondence:
Jacob I. Sznajder
e-mail: j-sznajder@northwestern.edu

Carbon dioxide (CO₂), a primary product of oxidative metabolism, can be sensed by eukaryotic cells eliciting unique responses via specific signalling pathways. Severe lung diseases such as chronic obstructive pulmonary disease are associated with hypoventilation that can lead to the elevation of CO₂ levels in lung tissues and the bloodstream (hypercapnia). However, the pathophysiological effects of hypercapnia on the lungs and specific lung cells are incompletely understood. We have recently reported using combined unbiased molecular approaches with studies in mice and cell culture systems on the mechanisms by which hypercapnia alters airway smooth muscle contractility. In this review, we provide a pathophysiological and mechanistic perspective on the effects of hypercapnia on the lung airways and discuss the recent understanding of high CO₂ modulation of the airway contractility.

1. Introduction

Cells and tissues sense and respond to changes in the concentration of gaseous molecules through specific signalling pathways. Oxygen- and nitric oxide-activated cellular signalling pathways have been extensively studied [1–3], but much less is known about the mechanisms by which non-excitable cells sense and respond to changes in carbon dioxide (CO₂) concentrations [3–5]. CO₂ is a primary product of oxidative metabolism and its physiological levels in mammals are significantly higher than atmospheric levels (approx. 5% versus approx. 0.04%, https://scripps.ucsd.edu/programs/keelingcurve/) [4,6], suggesting that CO₂ is inextricably linked to physiological conditions. In humans, the elevation of CO₂ levels in tissues and the bloodstream (hypercapnia) is a consequence of inadequate alveolar gas exchange in patients with lung diseases such as the acute respiratory distress syndrome (ARDS) [7–9], chronic obstructive pulmonary disease (COPD) [10–12] and others [13–15]. In clinical situations, hypercapnia has been initially proposed to be benign or even protective in the lung since hypercapnia and its associated acidosis have been shown to attenuate systemic cytokine response in mechanically ventilated patients with acute lung injury and ARDS [7,8,16]. However, it is becoming increasingly evident that elevated CO₂ conditions have deleterious pathophysiological effects on various organs, including the lung [9,17–19], skeletal muscles [20–22] as well as innate immunity system [18,23–27]. In the lung, recent studies suggest that high concentrations of CO₂ activate specific gene expression [19,28,29] and signal transduction pathways with adverse consequences on alveolar epithelial function (alveolar fluid clearance) [17,30–35] and epithelial cell repair [36–39].

Hypercapnia is also reported to modulate the tone of lung airways which is a dynamic equilibrium between various excitatory and inhibitory mechanisms. The effects of hypercapnia on the airways and airway smooth muscle are controversial, as there are reports attesting to it causing increased airway contractility [19,40–49] or airway relaxation [50–61]. Here, we review recent advances in our understanding of how elevated CO₂ conditions modulate the airway tone, focusing on the effects of hypercapnia and respiratory acidosis.
2. Hypercapnia-induced bronchoconstriction

Evidence suggesting that changes in the level of CO₂ in the blood influence the airway tone was first reported by Einthoven in 1892 [40]. He described that inhalation of high concentrations of carbonic acid (CO₂-rich mixtures) caused bronchoconstriction in dogs, which was confirmed in various models of normoxic hypercapnia-exposed dogs [41–45] and cats [46,47]. Airway tone is regulated by interaction of the sympathetic and parasympathetic nerves [46,62] and the stimulation of vagal efferent nerves can increase the tone, resulting in bronchoconstriction [46,62–64]. As the hypercapnia-induced bronchoconstriction was abolished by blocking the vagus nerve, it was understood to be dependent on the integrity of vagal conduction [40–44,46,47]. In healthy humans, there have been few reports describing that the inhalation of high CO₂ concentrations decreases specific airway or pulmonary conductance which is the mathematical inverse of airway resistance [48,49]. The increases in airway resistance during high CO₂ exposure were interpreted as extrathoracic airway narrowing [48] such as larynx narrowing [49], because the hypercapnic effect was not blocked by atropine or β₁/β₂...
adrenergic receptor agonists. However, the direct studies of laryngeal resistance during high CO₂ exposure indicated no change in anaesthetized animals [65] and healthy human subjects [66]. Furthermore, several reports of bronchoconstriction in the hypercapnia-exposed animals [42,44,46] showed that the blockage of the vagus nerve did not entirely abolish the bronchoconstrictor response to the high CO₂ exposure. These reports suggest that other mechanisms can contribute to the airway response to hypercapnia. Recently, we have reported that CO₂ operates as a signalling molecule that increases contraction of mouse and human airway smooth muscle cells [19]. We found that high concentrations of CO₂ independently of hypoxia and extracellular pH, increased acetylcholine (ACh)-induced cell contraction, which is both time- and dose-dependent in cultured cells (figure 1a). In a murine model, the exposure to normoxic hypercapnia, particularly chronic hypercapnia, increased ACh-induced airway contraction in precision lung cut slices (figure 1b) as well as airway resistance (figure 1c). Furthermore, we found that, in a small cohort of patients with chronic COPD, patients with hypercapnia had higher airway resistance (figure 1d), which improved after correction of hypercapnia (figure 1e). Our study also provided novel insights into the molecular mechanisms by which hypercapnia promotes airway smooth muscle cell contractility via calcium-calpain signalling. The signalling was mediated by caspase-7, which by cleaving the transcription factor myocyte-specific enhancer factor 2D (MEF2D) that reduces miR-133a expression, thereby increasing Ras homologue family member A (RhoA) abundance and MLC phosphorylation. Reproduced from [19]. Copyright © 2018 American Association for the Advancement of Science.

3. Respiratory acidosis-related bronchodilation

There have been studies reporting that hypercapnia shows airway relaxation [50–61]. We have reported that airway smooth muscle relaxation occurs during acute hypercapnia-associated acidosis, but it was transient and modest [19]. We reason that hypercapnia may acutely contribute to bronchodilatation when the tone of airways is previously increased by various constrictor stimuli such as drugs [52–54], hypoventilation [55,67–69] or when the reduction of ventilation in one lung following the occlusion of its pulmonary artery leads to bronchoconstriction in response to local airway ischaemia [70] and hypocapnia [50–52,71]. The inhalation of high CO₂ concentrations reduces constriction of airways as well as the tension developed by isolated bronchial rings caused by drugs such as 5-hydroxytryptamine [52–54]. It also reverses the airway constriction associated with pulmonary artery occlusion in ventilated animal models [50,52]. In humans, the administration of high CO₂ can relax the constriction of airways in the patient with unilateral pulmonary artery occlusion [51] and young asthmatic adults with hyperventilation (hypocapnia) [55] or exercise-induced bronchoconstriction [55,56]. These in vivo and in vitro effects of hypercapnia were not stimulated by the nerve reflexes and were understood to be a result of changes in extracellular/intracellular pH level, possibly elevated CO₂-related acidosis (respiratory acidosis) in airway smooth muscle cells. Many of the cellular responses to CO₂ elevation are thought to be a consequence of acidosis because of the rapid conversion of CO₂ in solution into H₂CO₃ and subsequently HCO₃⁻ and H⁺ [5,72]. Several

Figure 2. Schematic of calcium-calpain signalling in airway smooth muscle cell contraction during hypercapnia. Hypercapnia promotes airway smooth muscle contractility through an increase in intracellular calcium (Ca²⁺) and consequent activation of calpain which cleaves caspase-7. Cleaved caspase-7, in turn, cleaves the transcription factor myocyte enhancer factor 2D (MEF2D) that reduces miR-133a expression, thereby increasing Ras homologue family member A (RhoA) abundance and MLC phosphorylation. Reproduced from [19]. Copyright © 2018 American Association for the Advancement of Science.
in vitro reports show that respiratory or normocapnic (metabolic) acidosis produced a reversible reduction in active tension of bronchial rings [53,54,57,58]. Extracellular pH can alter airway smooth muscle tone by changing the levels of pH and intracellular calcium (Ca\(^{2+}\)) [58,59,73]. Intracellular acidification has been reported to decrease intracellular Ca\(^{2+}\) levels through voltage-dependent Ca\(^{2+}\) channels in the potassium-induced contractile model, thereby inhibiting airway smooth muscle cell contraction [60]. On the other hand, an in vitro study reported that high concentrations of CO\(_2\), independently of extracellular pH, enhanced airway smooth muscle relaxation via the epithelium-dependent mechanism induced by substance P in the model of methacholine-precontracted bronchial smooth muscle [61]. Several reports suggest that the hypocapnic response involves additional contribution of cholinergic reflexes in the airways [67,68]. The cellular mechanisms involved in local airway response to hypocapnia are likely dependent on intracellular alkalosis elicited by hypocapnia on airway smooth muscle cells. In vitro studies suggest that intracellular alkalosis can increase airway smooth muscle contractility [77] by increasing intracellular Ca\(^{2+}\) levels through voltage-dependent calcium channels in airway smooth muscle [60,73,76].

4. Effect of hypocapnia on airway contractility

Low levels of CO\(_2\) (hypocapnia) have been also reported to increase airway constriction in humans with pulmonary artery occlusion [51,71], hyperventilation [67,68] and exercise-induced asthma attacks [55,56] and other models in vivo [50,52,70,74] and in vitro [59,61,75,76]. The bronchoconstrictor effect of hypocapnia is largely attributed to local mechanisms on the bronchial smooth muscle since it was not abolished by vagotomy or atropine in intact animals [50,70] and asthmatic patients [55,56]. Several reports suggest that the hypocapnic response involves additional 

5. Conclusion

A proposed model for the effects of CO\(_2\) levels on the airway tone, airway smooth muscle contractility or relaxation, is presented in figure 3. Lung airway cells appear to sense and respond to changes in CO\(_2\) levels via specific mechanisms of the vagus reflexes, molecular CO\(_2\) and pH effects. Thus, the effect of elevated CO\(_2\) levels to lung diseases is somewhat controversial. Hypercapnia is associated with worse outcomes in patients with obstructive lung diseases such as asthma [13], obesity hypoventilation syndrome [14] and COPD [10–12]. Furthermore, the recently reported strategy of mechanical ventilation aimed at reducing the partial pressure of CO\(_2\) in arterial blood can provide beneficial effects including improvement of airway resistance, health-related quality of life and mortality for patients with COPD and hypercapnia [11,12,19]. Understanding the elevated CO\(_2\) effects on airway contractility is of significant clinical interest for those patients and could help with the design of innovative therapeutic approaches.
alone on hospital readmission or death after an acute COPD exacerbation: a randomized clinical trial. JAMA 317, 2177–2186. (doi:10.1001/jama.2017.4451)

13. Mountain RD, Sahn SA. 1988 Clinical features and outcome in patients with acute asthma presenting with hypercapnia. Am. Rev. Respir. Dis. 138, 535–539. (doi:10.1164/ajrccm/138.3.535)

14. Piper A. 2015 Obesity hyperventilation syndrome: weighing in on therapy options. Chest 149, 856–868. (doi:10.1378/chest.15-0681)

15. Bharat A, Graf N, Muller A, Kanter J, Andrei AC, Sporn PH, DeCamp MM, Sznajder JI. 2016 Pleural hypercarbia after lung surgery is associated with persistent alveoleopulmonary fistulae. Chest 149, 220–227. (doi:10.1378/chest.15-1591)

16. Shigemura M, Homma T, Sznajder JI. 2020 Hypercapnia: an aggravating factor in asthma. J. Clin. Med. 9, 3207. (doi:10.3390/jcm9110207)

17. Vadaz I et al. 2008 AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. J. Clin. Invest. 118, 752–762. (doi:10.1172/JCI29723)

18. Bates KL, Howell HA, Nair A, Vohwinkel CJ, Welch LC, Beitel GJ, Hauser AR, Sznajder JI, Sporn PH. 2013 Hypercapnia impairs lung neutrophil function and increases mortality in murine pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol. 49, 821–828. (doi:10.1165/rcmb.2012-0487OC)

19. Shigemura M et al. 2018 Hypercapnia increases alveolar smooth muscle contractility via caspase-7-mediated miR-133a-RhoA signaling. Cell Transplant. Med. 10, eaat1662. (doi:10.1126/sctransmed.aat1662)

20. Jaitovich A et al. 2015 High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific ring finger protein 1 (MuRF1). J. Biol. Chem. 290, 9183–9194. (doi:10.1074/jbc.M114.625715)

21. Kordonay TC, Balnis J, Vincent CE, Singer DV, Chopra RP, Sznajder JI, Beittel GJ, Sporn PH. 2010 Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J. 24, 2178–2190. (doi:10.1096/fj.09-136895)

22. Cummins EP et al. 2010 NF-kappaB links CO2 sensing to innate immunity and inflammation in mammalian cells. J. Immunol. 185, 4439–4445. (doi:10.4049/jimmunol.1000701)

23. Wang N, Gates KL, Trejo H, Favoerta Jr S, Schleimer RP, Sznajder JI, Beittel GJ, Sporn PH. 2010 Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J. 24, 2178–2190. (doi:10.1096/fj.09-136895)

24. Cummins EP et al. 2010 NF-kappaB links CO2 sensing to innate immunity and inflammation in mammalian cells. J. Immunol. 185, 4439–4445. (doi:10.4049/jimmunol.1000701)

25. Oliver KM, Lenihan CR, Bruning U, Cheong A, Laffey JG, McGoughlin P, Taylor CT, Cummins EP. 2012 Hypercapnia induces clearance and nuclear localization of RelB protein, giving insight into CO2 sensing and signaling. J. Biol. Chem. 287, 14 004–14 011. (doi:10.1074/jbc.M1123477971)

26. Casilino-Matsuda SM, Nair A, Beittel GJ, Gates KL, Sporn PH. 2015 Hypercapnia inhibits autophagy and bacterial killing in human macrophages by increasing expression of Bcl-2 and Bcl-xL. J. Immunol. 194, 5388–5396. (doi:10.4049/jimmunol.1500150)

27. Lu Z, Casilino-Matsuda SM, Nair A, Buchbinder A, Budinger GRS, Sporn PHS, Gates KL. 2018 A role for heat shock factor 1 in hypercapnia-induced inhibition of inflammatory cytokine expression. FASEB J. 32, 3614–3622. (doi:10.1096/fj.201711648R)

28. Casilino-Matsuda SM et al. 2018 Hypercapnia alters expression of immune response, nucleosome assembly and lipid metabolism genes in differentiated human bronchial epithelial cells. Sci. Rep. 8, 13508. (doi:10.1038/s41598-018-32008-x)

29. Shigemura M et al. 2019 Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Sci. Rep. 9, 18251. (doi:10.1038/s41598-019-45683-0)

30. Briva A et al. 2007 High CO2 levels impair airway epithelial function independently of pH. PLoS ONE 2, e1238. (doi:10.1371/journal.pone.0001238)

31. Vadaz I et al. 2012 Evolutionary conserved role of c-Jun-N-terminal kinase in CO2-induced epithelial dysfunction. PLoS ONE 7, e46696. (doi:10.1371/journal.pone.0046696)

32. Welch LC, Lecuona E, Briva A, Trejo HE, Dada LA, Sznajder JI. 2010 Extracellular signal-regulated kinase (ERK) participates in hypercapnia-induced Na,K-ATPase downregulation. FEMS Lett. 584, 3985–3989. (doi:10.1016/j.femsle.2010.08.002)

33. Dada LA et al. 2015 High CO2 leads to Na,K-ATPase endocytosis via c-Jun amino-terminal kinase-induced LMO7β phosphorylation. Mol. Cell. Biol. 35, 3962–3973. (doi:10.1128/MCB.00813-15)

Acknowledgements. The authors thank Lynn C. Welch for support and insightful discussions and Atsuko Shigemura for assistance with drawing figure 3.
34. Lecuona E, Sun H, Chen J, Trejo HE, Baker MA, Snajder JI. 2013 Protein kinase A-lipha regulates Na,K-ATPase endocytosis in alveolar epithelial cells exposed to high CO2 concentrations. Am. J. Respir. Cell Mol. Biol. 48, 626–634. (doi:10.1165/rcmb.2012-0373OC)

35. Keytenko V, Wessendorf M, Morty RE, Heriald S, Seejer W, Vagin O, Dada LA, Snajder JI, Vadas I. 2020 Hypercapnia impairs Na,K-ATPase function by inducing endoplasmic reticulum retention of the beta-subunit of the enzyme in alveolar epithelial cells. Int. J. Mol. Sci. 21, 1467. (doi:10.3390/ijms21041467)

36. Doer C, Gajic O, Benos JC, Caples S, Abdel M, Lym J, Hubmayr RD. 2005 Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Am. J. Respir. Crit. Care Med. 171, 1371–1377. (doi:10.1164/rccm.200309-1223OC)

37. O’Toole D, Hassett P, Contreras M, Higgins BD, McKeown SE, McAuley DF, Brien T, Laffey JG. 2006 Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-kappaB dependent mechanism. Thorax 64, 976–982. (doi:10.1136/thx.2006.093040)

38. Vohwinkel CU, Lecuona E, Sun H, Sommer N, Vadasz I, Chandel NS, Sznajder JI. 2011 Role of cholinergic neural transmission on gas mixtures on ventilation of dogs with different gas mixtures on pulmonary vascular occlusion. J. Auton. Nerv. Syst. 2000 Role of cholinergic neural transmission on ventilation of dogs with different gas mixtures on pulmonary vascular occlusion. J. Clin. Invest. 117, 708–712. (doi:10.1152/ajplegacy.1957.191.2.411)

39. Keske K, Morty RE, Herold S, Vadasz I, Chandel NS, Sznajder JI. 2010 CO2 levels cause mitochondrial dysfunction and impair cell proliferation. J. Biol. Chem. 285, 11323–11333. (doi:10.1074/jbc.M109.077998)

40. Dinich H, Stein J, van der Meer FJ, Hubmayr RD. 2011 CO2 levels cause mitochondrial dysfunction and impair cell proliferation. J. Biol. Chem. 286, 25913–25922. (doi:10.1074/jbc.M111.274196)

41. DeVerey B, Tillman BJ, Parchman ML, Winters KD, Brien T, Laffey JG. 2009 Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-kappaB dependent mechanism. Thorax 64, 976–982. (doi:10.1136/thx.2006.093040)

42. Lecuona E, Sun H, Chen J, Trejo HE, Baker MA, Snajder JI, Vadas I. 2013 Protein kinase A-lipha regulates Na,K-ATPase endocytosis in alveolar epithelial cells exposed to high CO2 concentrations. Am. J. Respir. Cell Mol. Biol. 48, 626–634. (doi:10.1165/rcmb.2012-0373OC)

43. Keytenko V, Wessendorf M, Morty RE, Heriald S, Seejer W, Vagin O, Dada LA, Snajder JI, Vadas I. 2020 Hypercapnia impairs Na,K-ATPase function by inducing endoplasmic reticulum retention of the beta-subunit of the enzyme in alveolar epithelial cells. Int. J. Mol. Sci. 21, 1467. (doi:10.3390/ijms21041467)

44. Doer C, Gajic O, Benos JC, Caples S, Abdel M, Lym J, Hubmayr RD. 2005 Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Am. J. Respir. Crit. Care Med. 171, 1371–1377. (doi:10.1164/rccm.200309-1223OC)

45. O’Toole D, Hassett P, Contreras M, Higgins BD, McKeown SE, McAuley DF, Brien T, Laffey JG. 2006 Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-kappaB dependent mechanism. Thorax 64, 976–982. (doi:10.1136/thx.2006.093040)

46. Vohwinkel CU, Lecuona E, Sun H, Sommer N, Vadasz I, Chandel NS, Sznajder JI. 2011 Role of cholinergic neural transmission on gas mixtures on ventilation of dogs with different gas mixtures on pulmonary vascular occlusion. J. Auton. Nerv. Syst. 2000 Role of cholinergic neural transmission on ventilation of dogs with different gas mixtures on pulmonary vascular occlusion. J. Clin. Invest. 117, 708–712. (doi:10.1152/ajplegacy.1957.191.2.411)

47. Keske K, Morty RE, Herold S, Vadasz I, Chandel NS, Sznajder JI. 2010 CO2 levels cause mitochondrial dysfunction and impair cell proliferation. J. Biol. Chem. 285, 11323–11333. (doi:10.1074/jbc.M111.274196)

48. Dinich H, Stein J, van der Meer FJ, Hubmayr RD. 2011 CO2 levels cause mitochondrial dysfunction and impair cell proliferation. J. Biol. Chem. 286, 25913–25922. (doi:10.1074/jbc.M111.274196)