Exploring Nucleon Structure with the Self-Organizing Maps Algorithm

Evan M. Askanazi,1,∗ Katherine A. Holcomb,2 † and Simonetta Liuti1,3,‡

1Department of Physics, University of Virginia, Charlottesville, VA 22901, USA.
2University of Virginia Alliance for Computational Science and Engineering, University of Virginia, Charlottesville, VA 22901, USA.
3Laboratori Nazionali di Frascati, INFN, Frascati, Italy

We discuss the application of an alternative type of neural network, the Self-Organizing Map to extract parton distribution functions from various hard scattering processes.

PACS numbers: 13.60.Hb, 13.40.Gp, 24.85.+p

I. INTRODUCTION

Artificial Neural Networks (ANNs) are an algorithm model inspired by the human brain’s capacity to perform the complex operations of learning, memorizing and generalizing. The goal of ANNs is, however, to solve objective problems which are by far less complex relatively to the human brain capabilities. Their basic units are sets of nodes that are defined as neurons because they can take sets of input parameters and either retain or communicate a signal in a similar way to how signals propagate from one neuron to the other as the neurons get activated/fire. This procedure is defined via learning algorithms. Its main success is in that it allows one to estimate non-linear functions of input data.

ANNs consist of a set of initial data forming an input layer, a process by which the input data are evolved and trained (hidden layers), and a resulting set of output data, or the output layer (Figure 1). Researchers currently utilize ANNs in data visualization, function modeling and approximating values of functions, data processing, robotics and control engineering. In the past twenty years ANNs have also established their role as a remarkable computational tool in high energy, nuclear and computational physics analyses. Important applications have been developed, for instance, as classification methods for off-line jet identification and tracking, on-line process control or event trigger and mass reconstruction, and optimization techniques in e.g. track finding and classification [1].

Neural networks are used for modeling in these fields of physics because they can utilize the principle of learning with regards to data sets and models. The learning can be supervised or unsupervised.

FIG. 1: Artificial neural networks based on supervised learning (left), and unsupervised learning (right).
FIG. 2: Example of SOM. Each cell in the SOM represents χ^2 values obtained in a fitting procedure. One can clearly see how the data cluster in low χ^2 values (dark areas) and high χ^2 values (light areas).

In supervised learning, the input data, x_i in Fig.1 (left), determine the final output: a set of training examples is first formed by matching the input data (vectors) to the desired output; the learning algorithm, by proceeding through the training examples, produces a function that generalizes the mapping of the input to output vectors; this function allows one to predict correctly an output for subsequently given input data.

In unsupervised learning, Fig.1 (right), the training proceeds with no matching between the initial vectors and the output: a sample of initial data forms the training set; these are compared to a distinct set of input data, and clustered according to similarities. The connection between the clustering of the initial data and the output is regulated by latent variables, thus extending and generalizing, in this respect, the definition of the learning function. The unsupervised learning-type algorithms allow one to uncover correlations among the input data features. The set of patterns and clustering properties seen among the data is called self-organization [2]. A most important aspect of self-organizing algorithms is in their ability to project high dimensional input data onto lower dimensional representations while preserving the topological features present in the training data. Because results using unsupervised learning are most often represented as 2D geometrical configurations where a neighborhood of nodes get simultaneously updated while reproducing the clustering of the data's features, the new algorithm is defined as a “map”, or a Self-Organizing Map (SOM). In Figure 2 we show an example of a SOM where each cell corresponds to χ^2 values from a fitting procedure. From the figure one can clearly distinguish clusters of low vs. high χ^2 data. By examining the content of each cell, i.e. looking at the curves that produced the given χ^2 value for the cell, one can reconstruct the features of the curves that lead to the χ^2 distribution in a more efficient way than by using any standard/back propagation based method.

When new data are processed through SOMs they will be compared and matched through the same similarity criterion, using the data features which were determined in the training. This aspect makes SOMs a valuable method for searching for patterns and non-linear correlations in multivariable dependent datasets.

Supervised learning based ANNs have been used to extract Parton Distribution Functions (PDFs) from high energy scattering processes [3-5]. The set of PDFs parametrizations called Neural Networks PDFs (NNPDFs), were obtained from global fits to a comprehensive set of deep inelastic scattering and collider data. The NNPDF analysis differs from standard global analyses in that they avoid the bias that is associated with giving an analytical parametric functional form for the PDFs. This can be alternatively replaced by a functional form produced by a neural network with a redundant set of 37 free parameters which are given by the ANN’s weights. The PDFs obtained this way are fitted to the experimental data, and their χ^2 is minimized, by using a genetic algorithm approach [4]. Several estimators where studied in [4] to assess the quality of the ANN training. These include a “convergence condition”, or “stopping criterion”, which marks the duration of the training phase by the onset of a stage where the neural network begins to “overlearn”, or to reproduce the statistical fluctuations of the data rather than their underlying physical law.

The advantage of having eliminated the user’s bias or the initial model dependence in extracting PDFs from experimental data is in that no theoretical assumption is used for determining the shape of the parametrization, rather the Bjorken x dependence of the PDFs is inferred directly from the data in terms of smoothed out curves. The inherent unbiasedness of this approach is a consequence of supervised learning meaning that the approach will strictly work quantitatively only in kinematical regions where experimental data exist. NNPDFs do not work efficiently, or they have a low performance, for extrapolating or predicting the behavior of the parton distribution functions.

The ability to extrapolate and predict is however, often a desirable feature in the performance of a fit to high
energy physics data. In particular, the new generation of experiments that include both unpolarized and polarized semi-inclusive and exclusive high energy scattering processes off hadronic targets (see Refs. [6, 7] for a review) is appreciably more challenging to analyze than inclusive scattering. These experiments involve a larger number of observables and kinematical variables, and their kinematical coverage is by far less complete than in the inclusive sector. A parametrization that is free from the bias implicit in choosing an initial form, and at the same time it enables us to extrapolate where data are not available, becomes a much sought after tool in this sector.

SOMs can provide a complementary algorithm to NNPDFs.

In our SOM-based analysis we are inspired by pioneering work also using SOMs for the analysis of high energy physics data introduced in Ref. [8]. A new parametrization PDFs parametrization, SOMPDF, was presented in Ref. [9]. The initial results were aimed at proving the viability of the method as a fitting procedure, by successfully generating χ^2 values that decreased with the increasing number of iterations. These studies did not focus, however, on the specific clustering properties of the map.

Significant restructuring of the original code was subsequently introduced in Ref. [10] allowing us to develop a quantitative analysis of PDFs that goes beyond the original goal of “developing and observing the unconventional usage of the SOM as a part of an optimization algorithm” [9]. Two important changes were introduced with respect to the original code: 1) a new initialization procedure was defined where the initial set of PDFs is taken as bundles of parametric forms whose parameters get randomly varied. This replaced the operation of varying the values of PDFs at each value of x and Q^2 of the data, and it allowed us to obtain smooth or continuous solutions in the initial stages of the fit; ii) a fully quantitative error analysis was applied to our extracted PDFs.

The new code is now sufficiently flexible so that it can be applied to different multivariable dependent observables, including, in particular, the structure functions for deeply virtual exclusive scattering (the Generalized Parton Distributions, GPDs), semi-inclusive scattering (the Transverse Momentum Distributions, TMDs), and other related processes. Since on one side these processes are characterized by a larger number of kinematical variables and observables as compared to inclusive scattering, and, on the other, the extraction of hadronic structure from data depends on several model dependent theoretical assumptions, it is important to develop an ANN-based algorithm that can handle feature/pattern recognition problems.

The PDFs analysis performed in [10] did not directly make use of the pattern recognition features of SOMs. Here we present results on the performance of the new SOMPDF code specifically for this aspect, by focusing on the extraction of PDFs at large Bjorken x. This constitutes an intermediate step before addressing the extraction of more complicated objects – the GPDs and TMDs – from data. The large x behavior of the proton’s structure functions from inclusive scattering is difficult to track down since many effects, ranging from Target Mass Corrections (TMCs), Large x resummation (LXR), and Higher Twists (HTs), affect the extraction of the PDFs from data by modifying the Q^2 dependence of the structure functions from pure Perturbative QCD (PQCD) evolution.

This paper is organized as follows: in Section II we give an overview the SOMPDF method; in Section III we review the results of our PDFs analysis, and we describe in detail the clustering performance for a specific pattern recognition problem at large x; in Section III B we introduce and discuss the extension to multi-variable distributions, and in Section IV we draw our conclusions.

II. OVERVIEW OF THE SOMPDF APPROACH

The basic SOM algorithm is best described as a non linear extension of Principal Component Analysis (PCA) [11]. In PCA one applies an orthogonal transformation to convert a set of data that are possibly correlated into sets of values that are linearly uncorrelated. The new sets of values constitute the principal components. The first principal component exhibits the largest variance, i.e. it is a straight line that minimizes the sum of the squared distances from the data points (least squares approximation) of the data set by a line. The second principal components is obtained by subtracting from the original data vectors their projections onto the first principal component and by finding a new straight line approximation. The procedure is applied to the following components recursively. PCA is useful for interpreting the behavior of high dimensional data because, by allowing one to represent the dominant data sets in a linear form, and by simultaneously discarding the sub-dominant components, PCA can reduce the number of dimensions of the problem. However, PCA cannot account for nonlinear relationships among data. Furthermore, it has poor visualization properties in cases where more than two dimensions are important.

1 Restructuring the code included re-defining its architecture using Fortran 90. A usable version of the code will be soon available on an upcoming website.
The essential feature that sets the SOM algorithm apart from PCA and similar data reduction methods is that the lines resulting from PCA can be effectively replaced by lower dimensional manifolds in the SOM method. Because of their flexibility, these can catch features of the data that the PCA would not. In addition, SOMs have enhanced visualization features to represent higher dimensional data, while visualization for more than two or three components is unrealistic for PCA [12].

Another attractive feature of SOMs is that they are particularly relevant algorithms in systems theory, as they model the emergence of a collective ordering in a composite system through the competition of its constituents. We can foresee a number of future applications to complex nuclear and high energy data using this aspect of the SOM method. The development of our method is in fact motivated by a similar problematic to the one addressed in Ref. [13] where the type an number of measurements which impact the extraction of physical observables in a specific example was estimated by defining and detecting variations in the Shannon entropy, or the information content from the measurements. The specific example considered in [13] was polarized photoproduction of pseudoscalar mesons.

In our approach we combine a SOM algorithm to project high dimensional input data onto lower dimensions representations while preserving the topological features present in the training data and a Genetic Algorithm (GA) to fit input models to final data sets generated from high energy scattering experiments.

The data used to train the SOM are sets of PDFs obtained by varying randomly various pre-defined parametric forms in such a way that a sufficient degree of random variation is ensured while keeping the the program efficient by spanning a finite set of varied PDFs. From the PDFs one constructs the measurable quantities, or structure functions of deep inelastic processes in QCD. In this paper we focus on (see Ref. [14] for detailed definitions),

$$F_2(x, Q^2) = \sum_{q, \overline{q}} e_q^2 \int_{x^i}^{1} dy C_q(y, \alpha_S) \frac{x}{y} + \int_{x^i}^{1} dy C_g(y, \alpha_S) \frac{x}{y},$$

where $q = u, d, s, c, b$; e_q is the quark charge; g is the gluons distribution; the intrinsic heavy quarks component start at $Q^2 \geq m_b^2$; $C_{q,g}$ are the coefficient functions in the MS scheme, and $\alpha_S(Q^2)$ is the running strong coupling.

The observables of interest in this paper are the DIS proton and neutron electromagnetic structure functions, $F_2^{p,n}$. PDFs have been extracted at NLO and NNLO from deep inelastic lepton-nucleon scattering data, and to NLO from collider measurements, in an ever growing range of x and Q^2 – from the large x multi-GeV region fixed target measurements at Jefferson Lab [15–18], to the range of LHC precision measurements of W^\pm, $t\bar{t}$. Several groups have determined the parameterizations for the unpolarized PDFs. A summary of all current PDFs parametrizations and their uncertainties is given in [19].

Throughout this paper we will compare our results with global analyses performed by CT [20], ABM [21], and CJ [15, 16]. CT, ABM, CJ use a parametric form for the PDFs with several free parameters per parton distribution type, at an input scale, Q^2, which varies for the different fitting forms. The SOMP PDF approach consists of the following basic components:

- Initialization
- Training
- Mapping
- Genetic Algorithm

A. Initialization

In the initialization phase we take a set of n-dimensional input data vectors as the set of data to be processed and we refer to them as code vectors. We form an $N \times N$ map where each cell, or node, $i = 1...N^2$ represents a neuron. We then consider a second set of vectors – the weight vectors V_i – with same dimension n as the input vectors,

$$V_i = [v_i^{(1)}, ..., v_i^{(n)}].$$

The set V_i represents a stimulus to the neurons. Each node i is made correspond to the weights of dimension n: V_i are given spatial coordinates, i.e. one defines the geometry/topology of a 2D map that gets populated randomly with V_i. In our case each one of these vectors consists of a randomized value of the type of data that is to be represented. We refer to these initial vectors as map vectors. Figure 3 illustrates the initialization step schematically.
In our case, the vectors are sets of candidate PDFs, \(V_i(x_m) \rightarrow f_i(x_m, Q^2_0) \) \((f = q, \bar{q}, g, i, \text{is the map index}) \) which are randomly generated to form an initial bundle/envelope; \(\{x_m\} \) is a vector of \(m \) Bjorken \(x \) values; each PDF is evaluated at the initial scale, \(Q^2_0 \).

Both sets of code vectors and map vectors undergo NLO PQCD evolution to the \(Q^2 \) of the “external” experimental data as the competitive process that we describe below is started. Note, however, that at this stage the experimental data are not used: the network self-organizes itself, in an unsupervised way, through latent variables, displaying natural patterns in the data. External data are used only later, in the GA stage of the fitting procedure.

The PDFs envelope is constructed in such a way that the PDFs behavior in \(x \) varies sufficiently randomly to meet the criterion of unbiasedness, and at the same time it somewhat loosely follows the experimental data. The latter criteria were met by performing a set of “experiments” in a detailed study in Ref. [10]. For instance, we found that using the NLO parametric form \([22, 23]\) at \(Q^2_0 = 0.34 \text{ GeV}^2 \),

\[
xf_j = A_j x^B_1(1-x)^B_2(1 + C_1\sqrt{x} + C_2 x)
\]

where \(j = u_v, d_v, \bar{u}, \bar{d}, s, c, g \), several parameters had very little impact on the range of the overall result when they were varied within reasonable ranges, while others easily drove the computed PDF to overflow without a compensating improvement in the envelope of the resulting PDFs. In this example the parameters that were varied so as to accomplish the best bracketing of our entire set of experimental data were instead \(A_i \), and all the exponential parameters, namely \(B_{1j}, B_{2j} \). In order to compute a vector for the SOM, we multiplied each parameter, \(P \equiv (A_j, B_{1j}, B_{2j}) \), by a random variable from a normal distribution with a mean of 1 and a specified standard deviation,

\[
P_{\text{new}} = P \pm \Delta P,
\]

where \(\Delta P \) corresponds to the distribution with \(\sigma = 0.1 \). This procedure was repeated using other parametric forms \(e.g. \) [20, 21] and the final envelope was generated by mixing results from each form according to,

\[
f_{j}^{\text{env}} = C_1 f_1^j + C_2 f_2^j + C_3 f_3^j,
\]

where each coefficient, \(C_k, k = 1, 2, 3 \), is a uniform random number; \(f_k^j \) are PDF forms which are randomized using Eq. [1]. To mix the three parametric forms they have to be brought to a common initial \(Q^2 \). We accomplished this by letting the parameters depend on the variable,

\[
s = \log \frac{Q^2}{\Lambda^2}
\]

as suggested in early PDF analyses \(\text{see e.g.} \ [24] \text{ and references therein}. \) We then imposed the constraints from the baryon number and momentum sum rules on each PDF,

\[
\int_0^1 dx \, u_v = 2, \quad \int_0^1 dx \, d_v = 1
\]

\[
\int_0^1 dx \, [(u_v + 2\bar{u}) + (d_v + 2\bar{d}) + 2s + 2c + g] = 1
\]
Notice that the capacity of the PDFs generated above to properly fit existing data, are important for constructing the envelope since at this stage we just require that the bundle of input functions can encompass the data. This step of our analysis requires a very careful study of the PDFs behavior since it is not always obvious which parameters should be chosen in the baseline parametrization formulae, Eq. (4), to bracket newer data.

An example of an envelope is given in Figure 4. Each generated PDF now contains a mixture of up to three different x and Q^2 dependent parametric forms whose parameters were varied in order to assure both randomness and the observance of physical constraints. A set of these makes up a vector for a particular cell; the number generated for each cell is a parameter of the code. Once the envelope is formed, we proceed with the training and the final part of our analysis, or the implementation of the GA. In fact, the resulting envelope of PDFs that effectively wrapped around the experimental data from above and below was constructed so that it minimizes the bias in determining the lowest χ^2 values used in the final stage.

B. Training

In the next step we select PDFs from the envelope to: \(i) \) generate training data, or the code vectors; \(ii) \) place vectors on the map (map vectors). The training proceeds through competitive learning which has each of the data vectors on the map competing with one other to be the best fit for a given set of training data.

An input vector

$$\xi = [\xi^{(1)}_i, \ldots, \xi^{(n)}_i],$$

is presented to the map. ξ is isomorphic to $V_i \equiv f_i$. The elements of V_i and ξ are each compared/matched onto one another (see Fig. 3) using a similarity metric. In our case the metric is the Euclidean norm, for given k-dimensional vectors x and y, where $x \rightarrow f_{i\text{ code}}(x_1, Q^2) \cdots f_{i\text{ code}}(x_m, Q^2)$, a code vector is compared to $y \rightarrow f_{i\text{ map}}(x_1, Q^2) \cdots f_{i\text{ map}}(x_m, Q^2)$, the map vectors, by calculating the difference between the two functions for each Bjorken x value at the same Q^2,

$$L_2(x, y) = \sqrt{\sum_{j=1}^{k} (x_j - y_j)^2}. \quad \text{(8)}$$

During an iteration, the entire set of code vectors is presented to the map vectors. The node whose map vector is most similar to the input vector (an input PDF in our case) is defined as the Best Matching Unit or (BMU), or “winning” PDF. The weights, V_i, of the BMU and of the surrounding nodes form a neighborhood, N, of a defined radius. The weights of the set of map vectors in N are then modified so that the map vectors move closer, according to the given metric, to the input vector. The way the vectors adjust their values is described by the following algorithm,

$$V_i(n+1) = V_i(n) + h_{ci}(n)[\xi(n) - V_i(n)], \quad \text{(9)}$$

where n is the iteration number, and $h_{ci(n)}$ is the neighborhood function defining the radius on the map which decreases
with both n, and the distance between the BMU and node i. In our case we use square maps of size L_{MAP}, and

$$h_{ci}(n) = 1.5 \left(\frac{n_{\text{train}} - n}{n_{\text{train}}} \right) L_{MAP}$$

(10)

where n_{train} is the total number of iterations. After all nodes have been adjusted and the neighborhood radius has been reduced according to the rule specified in Eq. (10), the training procedure is repeated. The unsupervised part of SOMs training takes place as the cells that are closest to the BMU activate each other in order to “learn” from ξ.

C. Mapping

Finally, we proceed to the mapping stage. Once the learning process is complete, each new set of PDFs will be associated with the location of its BMU. The various map parameters that need to be fixed at this stage include the size and shape of the map, the number of iterations, the number of PDFs used in each training cycle, and the initial learning rate. The map parameters values are presented and discussed in detail in Ref. [10]. At the end of a properly trained SOM, cells that are topologically close to each other will contain PDFs which are similar to each other. In the final phase clusters can emerge. Note that the specific location of the clusters on the map is not relevant and will not necessarily be the same from one run to another; only the clustering properties are important.

The visualization associated with clustering in the previous step allows us to isolate the individual properties of the input data functions we use and create more accurate models of them (see Fig. 2). Our SOMs appear as two dimensional arrays. Since each map vector now represents a class of similar objects, the SOM is an ideal tool to visualize high-dimensional data, by projecting it onto a low-dimensional map clustered according to some desired similarity feature.

D. Genetic Algorithm

After the map is trained we use a Genetic Algorithm (GA) whereupon we construct new envelopes which contain sets of PDFs that are generated from each previous iteration, and that are selected based on their χ^2 values so that, after a number of iterations we minimize it. The new map PDFs, or the input PDFs, are analyzed relative to known experimental data for the observable values. The χ^2 is evaluated for each (evolved) map cell; PDFs with the lowest χ^2 values are used as seeds for the next set of input PDFs. This process is repeated for N iterations; over the course of these iterations the χ^2 values eventually asymptotically approach a given value, which is referred to as the saturation value. Reaching the saturation values defines the “stopping” criterion for the fitting procedure in our case.

III. STUDY OF UNPOLARIZED DIS DATA

The SOMPDF analysis has been applied so far to extract unpolarized PDFs from inclusive DIS type processes. The general method was developed in Ref. [10]. The approach described in [10], however, does not explicitly interpret either the clustering properties, or the pattern recognition features of SOMs. In order to explore the performance of SOMPDF for these aspects, as a case study, we consider the extraction of the d/u ratio from the proton and neutron structure functions at $x \rightarrow 1$. A precise knowledge of the PDFs at high x is important: the behavior of the PDFs in this region is largely undetermined in spite of the fact that several theoretical predictions can be made for d/u at $x = 1$. A more precise knowledge of both the d quarks and the gluons distributions and of their correlations will give also essential information to compute the QCD cross sections for collider experiments (see e.g. discussion in Ref. [15, 25, 26]). The large x behavior of the proton’s structure functions from inclusive scattering is difficult to track down since many possibly mutually interfering effects, ranging from Target Mass Corrections (TMCs), Large x resummation (LxR), and Higher Twists (HTs), affect the extraction of the PDFs from data.

This problematic makes the extraction of the d/u ratio ideal to be studied with the SOMPDF analysis. The ultimate goal of this analysis will be to extend our method, including a full usage of the SOMs pattern recognition features, to extract more complicated observables such as GPDs and TMDs from data.

We proceed by first showing how our approach makes use of SOMs plus GA in a minimization procedure, thus producing a set of PDFs with errors. We subsequently focus on the map training and its clustering properties, exploring how the SOMs classification of input patterns can help identify the factors governing the high x behavior.

Differently from extractions performed at intermediate and small values of Bjorken x where abundant high-precision proton and deuteron structure function data exist, beyond $x \approx 0.5$ it becomes much harder to constrain the PDFs, in
particular the d quark distribution. The PDFs extraction is hampered by various uncertainties which introduce extra Q^2 dependences beyond PQCD evolution including Target Mass Corrections, Large x resummation, and possible flavor dependent higher twists [18]. For the d quarks furthermore, one has uncertainties associated with the nuclear corrections in the extraction of neutron structure function [15, 25]. Recent data from the BONUS collaboration at Jefferson Lab reduced these uncertainties for $x \leq 0.7$ by using spectator tagging measurements [27]. However, because of the limited range in Q^2 attainable at Jefferson Lab, the large x data have low invariant mass, W, i.e. they lie in the resonance region. The additional hypothesis of parton-hadron duality is therefore needed.

The standard procedure in this situation is to assess the impact of the various Q^2 dependent and nuclear effects on the extraction of the d-quark and gluon PDFs, by a critical study in which these effects are considered one by one until a satisfactory definition of the uncertainty of the extraction is achieved. SOMs provide an ideal tool to optimize this procedure by unraveling, using their pattern recognition feature, the various trends in the data that lead to the Q^2 dependent effects as $x \to 1$.

A. Unpolarized SOMPDF set

The SOMPDF algorithm provides first of all a viable minimization procedure that allowed us to extract PDFs from experimental data. Both the extraction procedure and the associated error analysis are described in detail in Ref.[10].

The set of data that we used in the present analysis is shown in Figure 5. The most recent set of PDF parameterizations as determined by various collaborations is listed in Ref.[19]. Several of the analyses in Refs.[19] implement both DIS data and collider data. Similarly to the analyses in [21–23], we focus instead on the most precise, or “highest quality” DIS data on lepton-proton and lepton-deuteron scattering from SLAC [28], BCDMS [29], NMC [30], Fermilab E665 [31], H1 [32], ZEUS [33] and Jefferson Lab [34]. At this stage of our analysis, with the aim of treating the large x region, this set of data allows test the working of our method in the cleanest way, avoiding the complications associated with the treatment of different types of hard processes and inclusive observables.

The starting point of our approach is the construction of the PDFs envelope which defines the SOMPDFs initialization procedure (see Section II A). Once the maps are initialized, the training procedure begins. At the end of a training section the various PDFs are organized on the map.

In Ref.[10] we studied the number of map parameters that can be adjusted during the initialization and mapping stages. We found that the best choice of map parameters guaranteeing both an optimal speed of convergence, and a precise evaluation of clustering properties is as follows: 6×6 or 7×7 for the size of the SOM maps; $n_{PDF} = 1 - 3$, for the number of PDF types to be used for mixing; $n_{cell} = 2$, for the number of PDFs per cell; $n_{gen} = 4$, for the number of PDFs to be generated for each cycle during training; $n_{NEW} = 10$, for the number of new PDFs to be generated each cycle, $n_{step} = 5$, for the number of steps to be used in training each SOM; $L^2 = 1$, for the initial learning rate; $N_{MAX} = 250$, for the maximum number of GA iterations. Finally, the slope parameter based on the number of previous χ^2 values to look at when checking whether the χ^2 curve had flattened out yet, $s_{flat} = 2 \times 10^{-3}$.

For the initialization procedure, the parameters of the PDFs were varied by multiplying with a normally-distributed random number with mean of 1 and standard deviation of 1/10 the magnitude of the original parameter value. A
larger standard deviation of 4/10 and 6/10 was applied for greater variation but this has not resulted in the χ^2 values dropping below 2.5 after 200 iterations.

We calculated the χ^2 for the PDFs represented on the map (for each map cell) following the definition in [35, 36],

$$\chi^2 = \sum_{i_{\text{exp}}} \sum_{j_{\text{data}}} \left(\frac{N_{i_{\text{exp}}} D_{j_{\text{data}}}^i - T_{j_{\text{data}}}^i}{\sigma_{j_{\text{data}}}^i} \right)^2 + \left(\frac{1 - N_{i_{\text{exp}}}}{\sigma_{i_{\text{exp}}}^j} \right)$$

(11)

where $\sigma_{i_{\text{exp}}}^j$ is the correlated error, in the normalization of the different data sets; $N_{i_{\text{exp}}}$ ($N_{i_{\text{exp}}} = 1$, for no offset of the normalization); $D_{j_{\text{data}}}^i$ and $T_{j_{\text{data}}}^i$ refer to the data points (D) and theoretical estimate (T) at each given (x, Q^2); $\sigma_{j_{\text{data}}}^i$ is the statistical uncertainty. Subsequent maps are run using the GA described in Section II B namely, we populate the pool of randomized PDFs forming the envelope in each GA iteration with selected PDFs showing the best χ^2 values from the previous iteration. As Fig.6 shows, at each GA iteration the χ^2 decreases. We use the flattening of the χ^2 as a stopping criterium for our procedure.

Notice that the SOM’s clustering properties are an important component even when considering only the minimization procedure, that is even before specifically searching for patterns in the data. The GA would not be sufficient on its own because it misses the SOM intermediate step (that can be compared to the supervised ANN intermediate layers where the weight fixing takes place) in which the PDFs that get represented on the map cluster according to latent variables/non-linear statistical connections. Even if a minimum χ^2 is reached using a GA algorithm only, since important statistical connections are missed, one cannot rule out that the solutions obtained in this case might only represent a local minimum. Nevertheless to check this point a quantitative analysis was performed in Ref.[10], that confirm that the map clustering property improves – even if by small amounts – the efficiency of the fit, or the trend and speed with which the χ^2 is minimized. The χ^2 obtained in the two cases, i.e. using a 6 × 6 map, and the only the GA, equivalent to iterating 36 times a 1 × 1 map, are shown in Figure 6 plotted vs. the number of iterations of the GA.

For the error analysis we used the Lagrange Multipliers method. This is most indicated for SOMs because it uses directly the observables, therefore making it possible to circumvent the fact that we have no analytic forms with tunable parameters. The application of the Lagrange Multiplier method to PDFs global analyses was outlined in Ref.55. In Ref.[10] we give a detailed description of our approach. This method evaluates the variation of the χ^2 along a specific direction defined by the maximum variation of a given physical variable. In our case the physical variables are the proton (deuteron) structure functions $F_2^{p(d)}$. We take $F_2^{p(d)}$ as determined by the SOMPDF code along with their χ^2 values calculated from the comparison with the experimental data, F_2^{\exp}. We then define an interval for the Lagrange multipliers, $\lambda \in [-200, 200]$, and we increase λ in increments of 10. We generate sets of “pseudo experimental data” by shifting $F_2^{p(d)}$ for each given x and Q^2 bin by $\pm \Delta F$, and we repeat the SOMPDF fit for each new data set. The new structure functions are defined by a corresponding set of new individual PDFs,
FIG. 7: Values of χ^2 represented on 6×6 maps for the initial GA iteration (left) and the final one i.e. after $N = 250$ iterations (right). The values of χ^2 are lowest for the darker squares. One can see both the working of the clustering property of the map (PDFs with similar χ^2 are located in neighboring map cells), and the GA (the χ^2 is sensibly lower).

The difference between the individual PDFs from the limiting upper and lower $F_2^{exp. NEW}$ values define then the Lagrange error for each of the individual PDFs for the original $F_2^{d(u)}$. The uncertainties obtained with the Lagrange multipliers method, are not only more physically sensible, but they also differ quantitatively from a simple statistical analysis applied to the joint set of final envelope PDFs and map PDFs (the uncertainty is smaller and asymmetric). PQCD evolution at NLO was taken into account in order to compare all the envelope PDFs to data given at specific Q^2 values. Notice, in this respect, that the value of $\alpha_s(M_Z)$ which was allowed to vary in the range $\alpha_s(M_Z) = 0.1135 - 0.1195$ consistently with other PDF extractions. The correlation between α_s and the PDFs uncertainty [37] is implicitly taken into account in our approach.

The PDFs extracted with the SOMPDF algorithm are presented in Figures 8, 9, 10, 11, 12. In each figure we compare our analysis to results from various collaborations: CT10 [20], ABM [21], and CJ [3] at $Q^2 = 150$. The error bands were calculated using the Lagrange multipliers method (see [10] for details). Results obtained using the GA only, skipping the map construction, are also shown in the figures (labeled as 1×1). In Fig.8 and Fig.12 we also show the pull ratio, $R_{pull} = (u + d)_{SOM}/(u + d)_{Collab} - 1$, of the SOMPDFs calculated using the same PDFs from Fig.8 to the different collaboration results, CT [20], ABM [21], CJ [15, 16] at $Q^2 = 150$ GeV2, labeled as $Collab$.

These results show that SOMPDF is a viable method which is capable of yielding quantitative results, consistent with current analyses on the extraction of PDFs from high energy inclusive data.

B. Training and Clustering Properties SOMPDF Determination of Large x features

The analysis we conducted so far represents a first necessary step which validates SOMPDF as a method to quantitatively analyze deep inelastic structure functions, and to extract the various PDFs from experimental data. The SOM algorithm is flexible, and it can be applied similarly to a variety of processes and observables, from the same structure functions at $x \to 1$ to deeply virtual exclusive and semi-inclusive processes. For these processes the pattern recognition features and clustering properties of the SOM algorithm turn out to be an important aspect to both facilitate extracting information, or gaining insight into the different features of the data.

A recent thorough study by the CJ collaboration [15] points out that for an accurate extraction of the d quark PDF at large x, among the different processes and sets of data which have been explored recently for their sensitivity to this distribution, standard DIS on deuteron is still the most reliable source. The extraction therefore has an additional uncertainty from the nuclear corrections. Since the u quark at large x is largely obtained from proton data, and it is therefore not affected by nuclear corrections, an efficient way of representing the possible variations in the d quark distribution is through the ratio d/u. At leading order (with no flavor mixing in the higher twist terms), keeping only
FIG. 8: Color online) Left: NLO $u_\nu + d_\nu$ at $Q^2 = 150$ GeV2 calculated with a 6×6 map, using 250 GA iterations. The uncertainty band was evaluated using the Lagrange multipliers method described in the text. Our results are compared with NLO results from [20, 21]: Right: the pull, $(u_\nu + d_\nu)_{\text{SOM}}/(u_\nu + d_\nu)_{\text{Collab}} - 1$, of the SOMPDFs calculated using the same PDFs from Fig.8 to the different collaboration results, CT [20], ABM [21], CJ [15, 16] at $Q^2 = 150$ GeV2, labeled as Collab. The error band around 0 is the SOMPDF σ uncertainty.

FIG. 9: (Color online) Same as Fig.8 (Left) for the \bar{u} component.

FIG. 10: (Color online) Same as Fig.8 (Left) for $\bar{d} - \bar{u}$.
the u and d distributions which are dominant at large x, one can get the ratio from the observables as,

$$
\frac{d}{u} = \frac{4 \frac{F_n}{F_p} - 1}{4 - \frac{F_n}{F_p}} \quad (12)
$$

Besides facilitating the extraction of the large x d quark distribution, the value of d/u at $x \to 1$ is an interesting theoretical quantity in its own merit since it is one of the cleanest examples where non-perturbative quantum-field-theory-based/QCD methods – Lattice QCD, Generalized Parton Distributions, and Dyson-Schwinger Equations approaches – and the various non-perturbative low energy QCD models for the flavor and spin structure of the nucleon can provide distinctive predictions (see e.g. [38] for a review).

Our analysis includes data at larger values of x by extending the kinematical range of the final state invariant mass, W^2, to $W^2 \gtrsim 2$ GeV2 [39], i.e. into the nucleon resonance region. To obtain smooth curves in the resonance region, we developed a method that interpolates the data with Bernstein polynomials [40]. This allows us to include in the analysis bins at very large x ($x > 0.9$) for a range of Q^2 values in the multi-GeV region.

The goal of the SOMPDF analysis is to simultaneously take into account, compare, and study the correlations among various theoretical contributions that affect the extraction of PDFs at large x: Target Mass Corrections (TMCs), Large x resummation effects (LxR), and nuclear corrections. As a first result in Figure 13 we present our extraction in two different Q^2 regions, namely $Q^2 \gtrsim 12$ GeV2, which is not affected by resonances up to $x \approx 0.85$ (the experimental data were taken from [41]), and $Q^2 = 7$ GeV2, where the resonance structure becomes important.
at $x \gtrsim 0.7$. The results presented in the figure were obtained by applying only the nuclear corrections with variable x and Q^2 dependent smearing factors, $S_{p(n)}$ such that,

$$F_2^d(x, Q^2) = \frac{1}{2} \left(S_p(x, Q^2) F_2^p(x, Q^2) + S_n(x, Q^2) F_2^n(x, Q^2) \right)$$

(13)

From the figure one can see that both TMCs and LxR produce an effect on the Q^2 dependence, i.e. they do not seem to cancel in the ratio. An important point of the analysis is the error determination. The data at $Q^2 = 7$ GeV2 lie in the resonance region at large x, leading to a less precise determination of the structure function with respect to the $Q^2 = 12$ GeV2 data. In addition to that, both regions are largely affected by nuclear smearing. These, namely the larger errors in the resonance region and the presence of the in principle unknown smearing factors, are the reasons why in the $x \rightarrow 1$ limit, i.e. for $x \geq 0.9$, despite there are no bins at $Q^2 = 12$ GeV2, while we introduced more bins at $Q^2 = 7$ GeV2, the errors become both comparable to each other and large.

The purpose of Fig. 13 is indeed to illustrate how the various components of the analysis contribute to make the uncertainty large as $x \rightarrow 1$. The subsequent steps of the analysis involve introducing all corrections: TMCs, LxR and nuclear effects. These can be considered either individually, introducing them one by one, as well as simultaneously. However, even after completion of a full analysis, and after extending the set of data to the largest x available, the uncertainty remains large due to the fact that it is very taxing to pin down all the various effects, their correlations, and the correlations among the PDFs. The most visible correlations were already pointed out in the pioneering work in Ref. [42]. A more accurate analysis was more recently performed in Ref. [15] where the correlation between the d quark distribution and nuclear effects was studied in detail. There it was also observed that despite the interference between nuclear effects and the size of the d quark PDF is rather predictable, this carries over indirectly, essentially through Q^2 evolution, to the large x gluon PDF.

This situation calls for a different approach. An approach that will allow us to discern patterns in complex data sets. In upcoming work using the SOMPDF method we explore how to discriminate more efficiently among different models, and among different features of models. More specific work in the large x sector, where many effects such as target mass corrections, large x resummation, higher twists, and nuclear dynamics corrections are simultaneously present, is in preparation [40].

IV. CONCLUSIONS AND OUTLOOK

We presented an overview of a new method to extract PDFs from hard scattering processes. PDFs analyses are complex notwithstanding the large amount of experimental data that have been collected throughout the years, and the fact that theoretical developments in this sector can be considered in a mature stage. The main challenge is to separate in a statistically significant way the various theoretical components by which PDFs are embedded into proton’s structure.
Recently, SOMs, a neural network that is based on an unsupervised learning algorithm has been proposed as a tool to explore classification patterns in high energy physics problems, including jet identification, and PDFs fitting (SOMPDF). In this respect, similarly to NNPDF, SOMPDF provides parameterizations that are not biased by the choice of a specific functional form for the PDFs. The way a generic neural network approach functions is by increasing the flexibility of the functional form used to fit the data by handling a much larger number of parameters given by the network’s weights. The price to pay for the increased flexibility and unbiasedness is given by the intractability of kinematical regions where experimental data that are necessary to train the network are scarce. Through the self-organizing procedure, or the ability to create its own classification of the input data, SOMs achieve a greater predictive power compared to generic ANN-based fits. At the same time, since SOM works by exploiting latent correlations existing among data SOMPDF can be used to explore patterns among PDFs and to pin down correlations both among different PDFs, and among PDFs and theoretical components.

In this paper we showed how the SOMPDF method works quantitatively. We illustrated the features of a parameterization for PDFs at NLO. The error analysis which was carried out using the Lagrange multipliers method. Our method can parallel and support the ANN based effort.

As a case study, we illustrated the specific issues that arise in the study of PDFs such at large Bjorken x. Future applications of our method will include its application to hard exclusive scattering experiments. These will include, for instance, both recent and forthcoming measurements at Jefferson Lab and at CERN (COMPASS) which are aimed at disentangling eight Generalized Parton Distributions (GPDs) depending on two extra kinematical variables (these allow us to describe transverse spatial partonic configurations). An even larger number of higher twist distributions will also play an important role in the interpretation of experimental data. GPD analyses clearly involve many more degrees of freedom, and therefore a higher degree of complexity in the treatment of the hadronic structure. This makes it a daunting task to perform fully quantitative fits including a precise treatment of the uncertainty. SOMPDFs provide an ideal tool for analyzing these complex observables owing to the various features that were discussed in this paper. Most importantly, differently from a standard neural network they will allow us to extrapolate to regions where data are scarce due to the unsupervised learning algorithm.

We conclude that SOMs due to their unique capability of handling correlations which appear in the analysis of nucleon structure provide a promising tool to obtain enhanced information on the new complex, multivariable dependent phenomena explored in hadronic physics.

Acknowledgments

We thank Donal Day for support and discussions about data sets, and John Arrington for providing us with details of his analysis of PDFs at large Bjorken x. We are also indebted to UVACSE for assistance with code development and resource utilization. This work was supported by the U.S. Department of Energy grants DE-FG02-01ER4120 (E.M.A. and S.L.), and DE-FG02-96ER40950 (E.M.A.).

[1] C. Peterson, T. Rognvaldsson, L. Lonnblad, Comput. Phys. Commun. 81, 185-220 (1994); C. Peterson, in Proceedings of Workshop on “New Computing Techniques in Physics Research II ”, Edited by D. Perret-Gallix. River Edge, N.J., World Scientific, 1992.
[2] T. Kohonen, “Self-organizing Maps” (Springer, New York, 2001), 3rd. ed.
[3] R. D. Ball, L. Del Debbio, S. Forte, A. Guiffanti, J. I. Latorre, J. Rojo and M. Ubiali, Nucl. Phys. B 838 (2010) 136; JHEP 1005, 075 (2010); Nucl. Phys. B 823, 195 (2009); Nucl. Phys. B809, 1 (2009), Erratum-ibid. B816, 293 (2009).
[4] L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione and J. Rojo [NNPDF Collaboration], JHEP 0703, 039 (2007); ibid JHEP 0503, 080, (2005).
[5] S. Forte, L. Garrido, J. I. Latorre and A. Piccione, JHEP 0205, 062 (2002).
[6] M. Diehl, Phys. Rept. 388, 41 (2003)
[7] A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418, 1 (2005)
[8] L. Lonnblad, C. Peterson, H. Pi, T. Rognvaldsson, Comput. Phys. Commun. 67, 193-209 (1991).
[9] H. Honkanen, S. Liuti, J. Carnahan, Y. Loitiere, P. R. Reynolds, Phys. Rev. D 79, 034022 (2009)
[10] E. M. Askanazi, K. A. Holcomb and S. Liuti, [arXiv:1309.7085] [hep-ph].
[11] H. Abdij and L.J. Williams, L.J., Wiley Interdisciplinary Reviews: Computational Statistics 2, 433 (2010).
[12] S. Haykin, Neural Networks and Learning Machines, (Pearson, New Jersey, 2009), 3rd ed.
[13] D. G. Ireland, Phys. Rev. C 82, 025204 (2010)
[14] R. K. Ellis, W.J. Stirling, and B.R. Webber, “QCD and Collider Physics”, (Cambridge University Press, Cambridge, UK, 1996).
[15] A. Accardi, W. Melnitchouk, J. F. Owens, M. E. Christy, C. E. Keppel, L. Zhu, J. G. Morfin Phys. Rev. D 84, 014008 (2011), arXiv:1102.3686 [hep-ph]
[16] J. F. Owens, A. Accardi and W. Melnitchouk, Phys. Rev. D 87, 094012 (2013)
[17] A. Courtoy and S. Liuti, arXiv:1302.4439 [hep-ph], to be published in Phys. Lett. B; ibid arXiv:1307.4211 [hep-ph].
[18] N. Bianchi, A. Fantoni and S. Liuti, Phys. Rev. D 69, 014505 (2004)
[19] R. D. Ball, S. Carrazza, L. Del Debbio, S. Forte, J. Gao, N. Hartland, J. Huston and P. Nadolsky et al., JHEP 1304, 125 (2013)
[20] H. -L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin and C. -P. Yuan, Phys. Rev. D 82, 074024 (2010)
[21] S. Alekhin, J. Blumlein and S. Moch, Phys. Rev. D 86, 054009 (2012).
[22] M. Glück, P. JimenezDelgado, E. Reya, Eur. Phys. J. C 53, 355 (2008)
[23] P. JimenezDelgado and E. Reya, Phys. Rev. D 80, 114011 (2009); ibid Phys. Rev. D 79, 074023 (2009).
[24] M. Gluck, E. Reya and A. Vogt, Z. Phys. C 48, 471 (1990).
[25] J. Arrington, J. G. Rubin and W. Melnitchouk, Phys. Rev. Lett. 108, 252001 (2012)
[26] R. J. Holt and C. D. Roberts, Rev. Mod. Phys. 82, 2991 (2010)
[27] S. Tkachenko et al. [CLAS Collaboration], Phys. Rev. C 89, 045206 (2014)
[28] L. W. Whitlow, E. M. Riordan, S. Dasu, S. Rock and A. Bodek, Phys. Lett. B 282, 475 (1992).
[29] A. C. Benvenuti et al. [BCDMS Collaboration], Phys. Lett. B 223, 485 (1989); ibid Phys. Lett. B 237, 592 (1990).
[30] M. Arneodo et al. [New Muon Collaboration], Nucl. Phys. B 483, 3 (1997).
[31] Adams et al., Phys.Rev.D 54, 3006 (1996).
[32] T. Ahmed et al. [H1 Collaboration], Nucl. Phys. B 439, 471 (1995)
[33] M. Derrick et al. [ZEUS Collaboration], Z. Phys. C 65, 379 (1995).
[34] S. Malace et al., Phys.Rev.C 80, 035207 (2009).
[35] D. Stump, J. Pumplin, R. Brock, D. Casey, J. Huston, J. Kalk, H. L. Lai and W. K. Tung, Phys. Rev. D 65, 014012 (2001).
[36] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung, JHEP 0207, 012 (2002)
[37] H. -L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump and C. -P. Yuan, Phys. Rev. D 82, 054021 (2010)
[38] R. J. Holt and C. D. Roberts, Rev. Mod. Phys. 82, 2991 (2010)
[39] A. Accardi, M. E. Christy, C. E. Keppel, P. Monaghan, W. Melnitchouk, J. G. Morfin and J. F. Owens, Phys. Rev. D 81, 034016 (2010)
[40] E. Askanazi, S.Liuti et al., in preparation.
[41] J. Arrington, F. Coester, R. J. Holt and T.-S. H. Lee, J. Phys. G 36, 025005 (2009), and J. Arrington, private communication.
[42] S. I. Alekhin, S. A. Kulagin and S. Liuti, Phys. Rev. D 69, 114009 (2004)