Synthesis, crystal structures, and Hirshfeld analysis of three hexahydroquinoline derivatives

Scott A. Steiger,*‡ Chun Li,b Allen G. Oliverc and Nicholas R. Natela*a

*Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Missoula, MT 59812, USA, bDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA, and cDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. *Correspondence e-mail: Nicholas.Natala@mso.umt.edu

Three hexahydroquinoline derivatives were synthesized and crystallized in an effort to study the structure–activity relationships of these calcium-channel antagonists. The derivatives are ethyl 4-(2-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C22H27NO4, (I), ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C22H27NO4, (II), and ethyl 4-(3,4-dihydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C21H24NO5, (III). In these hexahydroquinoline derivatives, common structural features such as a flat-boat conformation of the 1,4-dihydropyridine (1,4-DHP) ring, an envelope conformation of the fused cyclohexanone ring, and a substituted phenyl group at the pseudo-axial position are retained. Hydrogen bonds are the main contributors to the packing of the molecules in these crystals.

1. Chemical context

4-Aryl-1,4-dihydropyridines (DHPs) that bind the L-type voltage-gated calcium channels (VGCC) have been applied in general medical practice for over three decades (Zamponi, 2016). Many modifications on 1,4-DHP have been performed to obtain active compounds such as calcium-channel agonists or antagonists (Martin et al., 1995; Rose, 1990; Rose & Draeger, 1992; Trippier et al., 2013). One such modification is fusing a cyclohexanone ring to form hexahydroquinoline (HHQ), in which the orientation of the carbonyl group of the ester substituent at the 5-position in the 1,4-DHP ring has been fixed. This class of compounds has been shown to have calcium-channel antagonistic activity (Aygün Cevher et al., 2019), inhibit the multidrug-resistance transporter (MDR) (Shahraki et al., 2017, 2020), as well as possessing anti-inflammatory and stem-cell differentiation properties, and have been implicated in slowing neurodegenerative disorders (Trippier et al., 2013). Recently, specific substitutions of the cyclohexanone ring were found to have distinct selectivity profiles to different calcium channel subtypes (Schaller et al., 2018). Another report also showed that the 4-aryl-hexahydroquinolines, especially the ones containing a methoxy moiety, exhibit good antioxidant property as radical scavengers (Yang et al., 2011). In a continuation of our study on the structure–activity relationship of this class of 4-aryl-hexahydroquinolines (Steiger et al., 2014, 2018, 2020), and to understand stereoelectronic effects, which define selectivity, as well as to explore the scope and limitations of our synthetic methodologies (Steiger et al., 2016), we report herein the
2. Structural commentary

The asymmetric unit of the title compound I contains one independent molecule, which crystallizes in the triclinic \(P \overline{1} \) space group (Fig. 1). Compounds II and III both crystallize in the monoclinic space group \(P2_1/n \). The asymmetric unit of compound II contains two independent molecules, \(A \) and \(B \) (Fig. 2), while compound III has only one independent molecule in the asymmetric unit (Fig. 3). Similar to the other 4-aryl-hexahydroquinoline derivatives that we have reported (Steiger, et al., 2014; 2018; 2020), compounds I, II, and III all share the common structural features such as a flattened boat conformation on the 1,4-DHP ring, envelope conformation of the cyclohexanone ring, and the pseudo-axial position of the 4-aryl group.

The shallow-boat confirmation of the 1,4-DHP ring is one of the factors that leads to higher calcium-channel activity (Linden et al., 2004). The shallowness of the boat conformation in these three compounds are indicated by the marginal displacements of atom N1 and C4 from the mean plane (the base of the boat) defined by the two double bonds (\(\text{C2=}=\text{C3 and C9}=-\text{C10} \)). The distances between N1 and the mean plane formed by \(\text{C2}/\text{C3}/\text{C9}/\text{C10} \) are 0.159 (3), 0.110 (2), 0.110 (3), and 0.181 (2) \(\text{Å} \) for compounds I, IIA, IIB, and III, respectively. The corresponding distances between C4 and the same mean plane are 0.341 (3), 0.295 (3), 0.253 (3), and 0.399 (2) \(\text{Å} \) for compounds I, IIA, IIB, and III, respectively.

The pseudo-axial position of the C4-aryl group to the 1,4-DHP ring is another key factor that is essential for pharmacological activity (Langs et al., 1987). In the title compounds, the substituted phenyl rings are almost orthogonal to the base of the 1,4-DHP ring, with the mean plane normal to normal angles being 89.09 (7), 92.52 (6), 93.52 (6), and 90.59 (5) \(\text{°} \) for compounds I, IIA, IIB, and III, respectively (see Table 1 for calculated parameters). It is noteworthy that the para-methoxy group on the phenyl ring is flexible and can be either anti- or syn- periplanar to the H atom on C4, i.e. pointing either to (IIA) or away from (IIB) the 1,4-DHP ring.
In all three compounds, the cyclohexanone rings adopt the envelope conformation, which can be quantified using Cremer & Pople’s ring-puckering parameters. Ideally, the envelope conformation would have $\psi = 54.7^\circ$ (or $\psi = 125.3^\circ$ in the case of an absolute configuration change) and $\theta = n \times 60^\circ$. The θ and ψ values of the title compounds are very close to the ideal angles with deviations less than 10° and are listed in Table 2.

Although the carbonyl on the ester group is conjugated to the adjacent endocyclic double bond and is co-planar to the 1,4-DHP mean plane, the whole ester group is flexible. The $\text{C}=\text{O}$ bond can be either cis (I, IIA and IIB) or trans (III) to the adjacent double bond, and the extended or curled orientations of the ethyl group are observed in these crystal structures. The disordered ethyl groups in compound I and compound II also indicate the flexibility of the ester group.

Table 1
Calculated parameters (Å, °) related to the 1,4-DHP ring.

Compound	1,4-DHP mean plane (C2/C3/C10/C9) r.m.s.d	N to ring mean plane distance	C to ring mean plane distance	Phenyl ring to 1,4-DHP mean planes normal-to-normal angle	N1—C4—C17—C18 torsion angle
I	0.015	0.159 (3)	0.341 (3)	89.09 (7)	173.28 (16)
IIA	0.005	0.110 (2)	0.295 (3)	92.52 (6)	1.16 (18)
IIB	0.005	0.110 (3)	0.253 (3)	93.52 (6)	13.41 (14)
III	0.001	0.181 (2)	0.399 (2)	90.59 (5)	18.38 (15)

Table 2
Parameters (Å, °) related to the envelope conformation on the cyclohexanone ring.

Compound	Mean plane (C5/C6/C8–C10) r.m.s.d	C7 to mean plane distance	C11—C7—C4—C17 torsion angle	Q	θ	ψ
I	0.025	0.636 (3)	2.53 (18)	0.458 (2)	60.7 (3)	117.2 (3)
IIA	0.015	0.644 (2)	7.96 (14)	0.4616 (18)	56.1 (2)	115.7 (3)
IIB	0.019	0.645 (3)	13.85 (14)	0.4638 (19)	121.2 (2)	303.0 (3)
III	0.028	0.6408 (19)	0.8 (1)	0.4623 (15)	56.53 (19)	111.1 (2)

3. Supramolecular features

In compound I, hydrogen bonds between N1—H1 and O1 form a chain perpendicular to the (100) plane. Short contact C23—H23A \cdots O2 links alternate enantiomers to form a pair perpendicular to the (001) plane (Table 3, Fig. 4).

In compound II, hydrogen bonds N1A\cdotsH1A\cdotsO1B and N1B\cdotsH1B\cdotsO1A link the two independent molecules A and B to form a chain perpendicular to the (010) plane. Close contacts C23B\cdotsH23B\cdotsO2A and C23A\cdotsH23D\cdotsO2B link the two independent molecules zigzaggedly along the c-axis direction (Table 4, Fig. 5).

In compound III, a chain is formed by hydrogen bonds N1—H1 \cdotsO1i and O4—H4 \cdotsO2i between alternating...
enantiomers and runs perpendicular to the (101) plane. Hydrogen bond O5—H5···O1′ links the molecules in a chain perpendicular to the (100) plane and cross-links the other chain to form a sheet of molecules parallel to the (010) plane (Table 5, Fig. 6).

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed, and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated to quantify the intermolecular interactions using Crystal Explorer 21.5 (Spackman et al., 2021). The Hirshfeld surface of the title compound I is mapped over \(d_{	ext{norm}} \) in a fixed color scale of 0.5596 (red) to 1.4022 (blue) arbitrary units (Fig. 7). The N—H···O hydrogen bond is apparent as red spots on the surface. A \(\pi \)-interaction between the ester ethyl group and the phenyl ring is noticeable. The delineated two-dimensional

Table 3
Hydrogen-bond geometry (Å, °) for I.

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1···O1′	0.88 (2)	2.01 (2)	2.870 (2)	165 (2)
C13—H13B···O2	0.96	2.13	2.846 (3)	131
C13—H13C···O4′	0.96	2.59	3.300 (3)	131
C23—H23A···O2’	0.96	2.57	3.492 (3)	161

Symmetry codes: (i) \(x + 1, y, z \); (ii) \(x + 1, y + 1, z + 1 \).

Table 4
Hydrogen-bond geometry (Å, °) for II.

D—H···A	D—H	H···A	D···A	D—H···A
N1A—H1A···O1B	0.82 (2)	2.02 (2)	2.827 (2)	167 (2)
N1B—H1B···O1A’	0.87 (2)	1.95 (2)	2.8167 (19)	172 (2)

Symmetry code: (i) \(x, y − 1, z \).

Table 5
Hydrogen-bond geometry (Å, °) for III.

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1···O1′	0.876 (18)	1.971 (19)	2.8378 (15)	169.8 (16)
O4—H4···O2	0.87 (2)	1.82 (2)	2.6894 (14)	175 (2)
O5—H5···O1’	0.85 (2)	2.33 (2)	3.0293 (14)	140 (2)

Symmetry codes: (i) \(x − \frac{1}{2}, −y + \frac{1}{2}, z \); (ii) \(x + 1, y, z \).

Figure 6
The packing of title compound III. Intermolecular hydrogen bonds (shown in dashed lines) cross link the molecules to form a sheet parallel to the (010) plane. H atoms not involved in these hydrogen bonds are removed for clarity.

Figure 7
Hirshfeld surface of I mapped over \(d_{	ext{norm}} \). Short and long contacts are indicated as red and blue regions, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. A \(\sigma-\pi \) interaction between C15—H15 and phenyl ring is shown as green dashed lines. Hydrogen bond C23—H23A···O2 is shown as red dashed lines.

Figure 8
The two-dimensional fingerprint plots for I delineated into (a) H···H contacts, (b) H···O/O···H contacts, (c) H···C/C···H contacts. Other contact contributions less than 1% are omitted.
fingerprint plots (Fig. 8) show that the contributions to the overall Hirshfeld surface area arise from H–H contacts (65.3%), O–H/O–H–O contacts (17.7%), and C–H/H–C interactions (16.4%).

For compound II, the Hirshfeld surface analysis was performed with two independent molecules, in a fixed color scale of 0.6119 (red) to 1.7055 (blue) arbitrary units. In addition to hydrogen bonds, σ–π interactions are also identifiable between C6A–H6AB and double bond C2A–C3A (Fig. 9). The delineated two-dimensional fingerprint plots shown in Fig. 10 indicate that H···H contacts (65.6%) make the main contribution to the overall Hirshfeld surface area. The O···H/H···O contacts and C···H/H···C interactions contribute 19.4% and 14.0% of the Hirshfeld surface, respectively.

The Hirshfeld surface of the title compound III is mapped over d_{norm} in a fixed color scale of −0.7001 (red) to 3.4800 (blue) arbitrary units (Fig. 11). Besides the obvious short contacts from hydrogen bonds, a short contact of 2.6137 (14) Å between H8A and C20 is also observed, indicated as red and blue regions, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. The close contact between H8A and C20 is shown as a dashed line.
cating a σ-π- interaction between C8—H8A and ring C17–C22. The delineated two-dimensional fingerprint plots shown in Fig. 12 indicate that two main contributions to the overall Hirshfeld surface area arise from H···H contacts (61.2%) and O···H/H···O contacts (24.3%). C···H/H···C interactions contribute 13.1% of the Hirshfeld surface.

5. Database survey
A search for 4-phenyl-5-oxo-hexahydroquinoline-3-carboxylate in the Cambridge Structural Database (CSD version 5.43, November 2021 update; Groom et al., 2016) resulted in 53 hits, of which a meta-methoxyl-substituted 4-phenyl-5-oxo-hexahydroquinoline-3-carboxylate (refcode TANVUC; Li, 2017) should be mentioned. Similar to the title compounds I and IIA, the meta-methoxyl group in TANVUC is exo to the 1,4-DHP ring and carbonyl group on the ester is in a cis orientation to the endocyclic double bond. All of the resulting hits display common structural features, such as the flat-boat conformation of the 1,4-DHP ring, the envelope conformation of the fused cyclohexanone ring, and the substituted aryl ring at the pseudo-axial position to the 1,4-DHP ring.

6. Synthesis and crystallization
An oven-dried 100 ml round-bottom flask equipped with a magnetic stir bar was charged with 10 mmol of dimedone, 10 mmol of ethyl acetoacetate and 5 mol % of ytterbium(III) acetate in the Cambridge Structural Database (CSD version 5.43, November 2021 update; Groom et al., 2016) resulted in 53 hits, of which a meta-methoxyl-substituted 4-phenyl-5-oxo-hexahydroquinoline-3-carboxylate (refcode TANVUC; Li, 2017) should be mentioned. Similar to the title compounds I and IIA, the meta-methoxyl group in TANVUC is exo to the 1,4-DHP ring and carbonyl group on the ester is in a cis orientation to the endocyclic double bond. All of the resulting hits display common structural features, such as the flat-boat conformation of the 1,4-DHP ring, the envelope conformation of the fused cyclohexanone ring, and the substituted aryl ring at the pseudo-axial position to the 1,4-DHP ring.

An oven-dried 100 ml round-bottom flask equipped with a magnetic stir bar was charged with 10 mmol of dimedone, 10 mmol of ethyl acetoacetate and 5 mol % of ytterbium(III) trifluoromethanesulfonate. The mixture was then taken up in 30 ml of absolute ethanol, capped and put under an inert atmosphere of argon, after which the solution was allowed to stir at room temperature for 20 min. The appropriate corresponding benzaldehyde (10 mmol) and 10 mmol of ammonium chloride were added, and the mixture was allowed to stir at room temperature for 48 h. Reaction progress was monitored via TLC. Once the reaction was complete, excess solvent was removed via rotary evaporation. The solution was then purified via silica column chromatography. The products were crystallized from hexane and ethyl acetate (1:4 v/v) as white-to-yellow crystalline solids.

Crystal data, data collection and structure refinement details are summarized in Table 6. Carbon-bound hydrogen atoms on all three compounds were fixed geometrically and treated as riding with C—H = 0.95–0.98 Å and refined with Uiso(H) = 1.2Ueq (CH, CH2) or 1.5Ueq (CH3). Hydrogen atoms attached to nitrogen and oxygen were found in difference-Fourier map and refined freely. Eight reflections (010, 001, 011, 100, 001, 002, and 002) in compound I and eight reflections (040, 020, 123, 723, 076, 031, 112, and 516) in compound III were omitted because of poor agreement between the observed and calculated intensities.

Data of compound I were acquired at room temperature due to the disintegration of the crystals at low temperatures. The sample measured was identified as two crystals, mis-oriented by 0.24° approximately about the [001] reciprocal-space axis. For the purposes of data collection and subsequent structure refinement, the structure was treated using facilities for handling twinning by non-merohedry, namely HKLF5 data entry 78 applied to bond lengths on the atoms of the ester as well.

The crystals of compound II were found to be pseudo-merohedric twins by a 180° rotation about the c axis. Application of the twin operation (−1, 0, 0, 0, −1, 0, 0, 0, 1) yielded a twin component ratio of 0.6938 (8):0.3062 (8). The ester group on molecule B is also disordered. Atomic displacement equivalency restraints and bond-length restraints (Sheldrick, 2015) were applied to the carbon atoms and the single-bond oxygen atom of the disordered ester group.

The crystals of compound II were found to be pseudo-merohedric twins by a 180° rotation about the c axis. Application of the twin operation (−1, 0, 0, 0, −1, 0, 0, 0, 1) yielded a twin component ratio of 0.6938 (8):0.3062 (8). The ester group on molecule B is also disordered. Atomic displacement equivalency restraints and bond-length restraints (Sheldrick, 2015) were applied to the carbon atoms and the single-bond oxygen atom of the disordered ester group.

Compound III was co-crystallized with hexanes. However, being a mixture of disordered hexane isomers, the refinement around the hexanes did not give satisfactory results. The
Table 6
Experimental details.

	I	II	III				
Crystal data	C$_2$H$_2$NO$_4$	C$_2$H$_2$NO$_4$	C$_2$H$_2$NO$_4$				
M_r	369.44	369.44	371.42				
Crystal system, space group	Triclinic, $P\bar{T}$	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$				
Temperature (K)	300	120	100				
a, b, c (Å)	7.2941 (2), 9.6773 (3), 14.4302 (4)	15.3492 (15), 14.0314 (14), 18.3862 (18)	90, 90, 0834 (17), 90				
α, β, γ (°)	82.1997 (17), 88.3216 (16), 75.9397 (16)	90, 90, 0834 (17), 90					
ν (mm$^{-1}$)	0.09	0.09	0.08				
Crystal size (mm)	0.35 × 0.19 × 0.14	0.35 × 0.15 × 0.14	0.64 × 0.13 × 0.06				
Data collection	Refinement	Refinement	Refinement				
No. of measured, independent and observed $	F	> 2\sigma(F)$ reflections	34490, 34490, 22410	66519, 8085, 7121	40175, 5517, 4263
R_{int}	0.067	0.055	0.046				
$\sin \theta/\lambda_{max}$ (Å$^{-1}$)	0.670	0.625	0.668				
Refinement							
$R(F^2)$	0.055, 0.145, 1.03	0.039, 0.093, 1.04	0.045, 0.123, 1.04				
No. of reflections	34490	8085	5517				
No. of observations	285	536	260				
No. of parameters	39	39	0				
No. of restraints							
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement				
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å$^{-3}$)	0.25, −0.17	0.33, −0.30	0.41, −0.21				

OLEX2 SMTBX (Rees et al., 2005) solvent-masking procedure was used to calculate and mask the solvent-accessible void. There are 192 electrons found in a volume of 464 Å3 in one void per unit cell. This is consistent with the presence of one C$_2$H$_13$ molecule per asymmetric unit, which accounts for 200 electrons per unit cell.

Acknowledgements

The authors thank the University of Montana for grant 325490. CL thanks all the faculty in the ACA Summer Course 2016, from whom CL has learned a lot in refining disordered and twinned structures. The authors also thank Eric Schultz for mass spectra, supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award No. P30GM140963.

Funding information

Funding for this research was provided by: University of Montana (grant No. 325490 to Nicholas R. Natale); National Institutes of Health, National Institute of General Medical Sciences (grant No. P30GM140963 to Nicholas R. Natale).

References

Aygün Cevher, H., Schaller, D., Gandini, M. A., Kaplan, O., Gambeta, E., Zhang, F. X., Çelebi, M., Tahir, M. N., Zamponi, G. W., Wolber, G. & Gündüz, M. G. (2019). Bioorg. Chem. 91, 103187.

Buker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Buker (2016). SÁINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Langs, D. A., Strong, P. D. & Triggie, D. J. (1987). Acta Cryst. C43, 707–711.

Li, J. (2017). Z. Kristallogr. New Cryst. Struct. 232, 251–252.

Linden, A., Şafak, C. & Aydin, F. (2004). Acta Cryst. C60, o711-o713.

Martin, N., Quinteiro, M., Soto, J., Mora, A., Suárez, M., Ochoa, E., Morales, A. & Bosque, J. (1995). J. Heterocycl. Chem. 32, 235–238.

McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.

Rees, E., Jenner, L. & Yusupov, M. (2005). Acta Cryst. D61, 1299–1301.

Rose, U. (1990). Arch. Pharm. Pharm. Med. Chem. 333, 281–286.

Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243.

Schaller, D., Gündüz, M. G., Zhang, F. X., Zamponi, G. W. & Wolber, G. (2018). Eur. J. Med. Chem. 155, 1–12.

Shahraki, O., Edraki, N., Khoshneviszadeh, M., Zargari, F., Ranjbar, S., Saso, L., Firuzi, O. & Miri, R. (2017). Drug. Des. Devel. Ther. 11, 407–418.

Shahraki, O., Khoshneviszadeh, M., Dehghani, M., Mohabbati, M., Tavakkoli, M., Saso, L., Edraki, N. & Firuzi, O. (2020). Molecules, 25, 1839.

Shelldorf, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015). *Acta Cryst.* C71, 3–8.
Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm* 11, 19–32.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
Steiger, S. A., Li, C., Campana, C. F. & Natale, N. R. (2016). *Tetrahedron Lett.* 57, 423–425.
Steiger, S. A., Li, C., Gates, C. & Natale, N. R. (2020). *Acta Cryst.* E76, 125–131.

Steiger, S. A., Li, C. & Natale, N. R. (2018). *Acta Cryst.* E74, 1417–1420.
Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). *Acta Cryst.* C70, 790–795.
Trippier, P. C., Jansen Labby, K., Hawker, D., Mataka, J. & Silverman, R. (2013). *J. Med. Chem.* 56, 3121–3147.
Yang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). *Arkivoc*, x, 327–337.
Zamponi, G. (2016). *Nat. Rev. Drug Discov.* 15, 19–34.
Acta Cryst. (2022). E78, 1089-1096 [https://doi.org/10.1107/S2056989022009495]

Synthesis, crystal structures, and Hirshfeld analysis of three hexahydroquinoline derivatives

Scott A. Steiger, Chun Li, Allen G. Oliver and Nicholas R. Natale

Computing details

For all structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 4-(2-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (I)

Crystal data

C_{22}H_{27}NO_{4} \quad Z = 2
M_r = 369.44
Triclinic, \(P \overline{1} \)
\(a = 7.2941 (2) \) Å
\(b = 9.6773 (3) \) Å
\(c = 14.4302 (4) \) Å
\(\alpha = 82.1992 (17) \)°
\(\beta = 88.3216 (16) \)°
\(\gamma = 75.9397 (16) \)°
\(V = 978.92 (5) \) Å³

Data collection

Bruker SMART BREEZE CCD diffractometer
Radiation source: 2 kW sealed X-ray tube
\(\phi \) and \(\omega \) scans
34490 measured reflections
34490 independent reflections

Refinement

Refinement on \(F^2 \)
Least-squares matrix: full
\(R[F > 2\sigma(F)] = 0.055 \)
\(wR(F^2) = 0.145 \)
\(S = 1.03 \)
34490 reflections
285 parameters
39 restraints

Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
\(w = 1/[\sigma(F_c^2) + (0.0533P)^2 + 0.1957P] \)
where \(P = (F_c^2 + 2F_s^2)/3 \)
\(\Delta_r \rho_{\text{max}} < 0.001 \)
\(\Delta \rho_{\text{max}} = 0.25 \) e Å\(^{-3} \)
\(\Delta \rho_{\text{min}} = -0.17 \) e Å\(^{-3} \)
Special details

Geometry. All e.s.d.s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.s are taken into account individually in the estimation of e.s.d.s in distances, angles and torsion angles; correlations between e.s.d.s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.s is used for estimating e.s.d.s involving l.s. planes.

Refinement. Refined as a 2-component twin. Twin law (-1 0 0 0 1 0 0.0123 -0.407 1) was applied and the structure was refined using HKLF5 data, yielding a ratio of 0.866 (2):0.134 (2) for the two twin components.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U(eq)	Occ. (<1)
O1	0.25132 (18)	0.32563 (17)	0.92561 (11)	0.0527 (4)	
O2	0.6827 (3)	0.6344 (2)	0.60678 (12)	0.0767 (6)	
O4	0.2571 (2)	0.3067 (2)	0.67486 (12)	0.0678 (5)	
N1	0.8600 (2)	0.39276 (19)	0.87300 (13)	0.0423 (5)	
H1	0.973 (3)	0.384 (2)	0.8957 (16)	0.059 (7)*	
C2	0.8111 (3)	0.4770 (2)	0.78765 (15)	0.0392 (5)	
C3	0.6490 (3)	0.4763 (2)	0.74504 (14)	0.0367 (5)	
C4	0.5269 (3)	0.3751 (2)	0.78681 (13)	0.0353 (5)	
H4	0.393905	0.425869	0.777076	0.042*	
C5	0.4146 (3)	0.3084 (2)	0.95350 (14)	0.0356 (5)	
C6	0.4605 (3)	0.2630 (2)	1.05554 (14)	0.0428 (5)	
H6A	0.385700	0.195992	1.080077	0.051*	
H6B	0.421654	0.346858	1.087912	0.051*	
C7	0.6677 (3)	0.1929 (2)	1.07869 (14)	0.0415 (5)	
C8	0.7858 (3)	0.2895 (2)	1.02836 (14)	0.0415 (5)	
H8A	0.772188	0.373330	1.060330	0.050*	
H8B	0.917788	0.238044	1.031904	0.050*	
C9	0.7317 (3)	0.3380 (2)	0.92783 (14)	0.0343 (5)	
C10	0.5631 (2)	0.3384 (2)	0.89123 (13)	0.0332 (5)	
C11	0.7238 (3)	0.0433 (2)	1.04788 (19)	0.0628 (7)	
H11A	0.646747	-0.015615	1.079713	0.094*	
H11B	0.854309	0.000489	1.063006	0.094*	
H11C	0.705584	0.051153	0.981582	0.094*	
C12	0.7000 (4)	0.1791 (3)	1.18439 (16)	0.0682 (8)	
H12A	0.667684	0.272852	1.204085	0.102*	
H12B	0.830489	0.134601	1.198617	0.102*	
H12C	0.622130	0.121222	1.216662	0.102*	
C13	0.9461 (3)	0.5694 (3)	0.75745 (17)	0.0561 (6)	
H13A	0.928499	0.645503	0.795594	0.084*	
H13B	0.922670	0.609745	0.693126	0.084*	
H13C	1.073547	0.512033	0.764320	0.084*	
C14	0.5891 (3)	0.5687 (2)	0.65630 (15)	0.0449 (5)	
C17	0.5638 (3)	0.2400 (2)	0.73826 (14)	0.0390 (5)	
C18	0.4292 (3)	0.2107 (2)	0.68159 (15)	0.0457 (5)	
C19	0.4721 (4)	0.0891 (3)	0.63638 (17)	0.0579 (7)	
H19	0.382214	0.071800	0.597968	0.069*	
C20	0.6446 (4)	-0.0051 (3)	0.64774 (18)	0.0659 (7)	
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
O1	0.0281 (8)	0.0690 (11)	0.0605 (10)	−0.0152 (7)	−0.0053 (7)	0.0009 (8)
O2	0.0943 (14)	0.0879 (14)	0.0531 (11)	−0.0447 (12)	0.0001 (10)	0.0141 (10)
O4	0.0469 (10)	0.0883 (13)	0.0737 (12)	−0.0127 (9)	−0.0184 (8)	−0.0322 (10)
N1	0.0260 (9)	0.0524 (12)	0.0487 (11)	−0.0131 (8)	−0.0046 (8)	0.0003 (9)
C2	0.0344 (11)	0.0393 (12)	0.0436 (13)	−0.0091 (9)	0.0055 (9)	−0.0055 (10)
C3	0.0365 (11)	0.0347 (11)	0.0378 (12)	−0.0062 (9)	0.0022 (9)	−0.0060 (9)
C4	0.0275 (10)	0.0407 (12)	0.0367 (12)	−0.0062 (8)	−0.0040 (8)	−0.0039 (9)
C5	0.0297 (10)	0.0340 (11)	0.0438 (12)	−0.0080 (8)	−0.0012 (9)	−0.0066 (9)
C6	0.0383 (12)	0.0474 (13)	0.0429 (13)	−0.0111 (10)	0.0027 (10)	−0.0057 (10)
C7	0.0412 (12)	0.0423 (12)	0.0394 (12)	−0.0084 (10)	−0.0043 (9)	−0.0016 (10)
C8	0.0352 (11)	0.0449 (13)	0.0447 (13)	−0.0093 (10)	−0.0094 (9)	−0.0054 (10)
C9	0.0292 (10)	0.0357 (11)	0.0386 (12)	−0.0083 (8)	−0.0011 (9)	−0.0061 (9)
C10	0.0275 (10)	0.0351 (11)	0.0367 (11)	−0.0064 (8)	−0.0034 (8)	−0.0053 (9)
C11	0.0600 (15)	0.0419 (14)	0.0818 (19)	−0.0060 (12)	−0.0071 (14)	−0.0017 (13)
C12	0.0687 (17)	0.090 (2)	0.0428 (15)	−0.0203 (15)	−0.0092 (12)	0.0054 (14)
C13	0.0487 (14)	0.0604 (15)	0.0646 (16)	−0.0262 (12)	0.0055 (12)	−0.0040 (13)
C14	0.0553 (15)	0.0398 (13)	0.0385 (13)	−0.0086 (11)	0.0041 (11)	−0.0074 (10)
C17	0.0411 (12)	0.0416 (12)	0.0352 (12)	−0.0130 (10)	−0.0012 (9)	−0.0027 (10)
C18	0.0457 (13)	0.0524 (14)	0.0432 (13)	−0.0196 (11)	−0.0011 (10)	−0.0066 (11)
Geometric parameters (Å, º)

C19	0.0748 (18)	0.0606 (16)	0.0493 (15)	−0.0332 (15)	−0.0029 (13)	−0.0142 (13)
C20	0.095 (2)	0.0472 (15)	0.0603 (17)	−0.0204 (15)	0.0043 (15)	−0.0175 (13)
C21	0.0742 (18)	0.0518 (16)	0.0733 (19)	0.0020 (13)	−0.0064 (15)	−0.0167 (14)
C22	0.0511 (14)	0.0502 (14)	0.0563 (15)	−0.0044 (11)	−0.0088 (11)	−0.0130 (12)
C23	0.0526 (15)	0.135 (3)	0.0679 (19)	−0.0298 (17)	−0.0130 (14)	−0.0334 (18)
O3	0.052 (2)	0.048 (5)	0.042 (2)	−0.010 (2)	−0.0128 (16)	0.003 (3)
C15	0.067 (3)	0.060 (3)	0.041 (2)	−0.015 (2)	−0.0144 (19)	0.003 (2)
C16	0.083 (3)	0.058 (3)	0.063 (3)	−0.009 (2)	−0.0144 (19)	0.006 (2)
O3A	0.062 (5)	0.057 (9)	0.044 (5)	0.004 (6)	−0.010 (4)	0.008 (6)
C15A	0.077 (9)	0.057 (10)	0.038 (7)	−0.005 (8)	−0.009 (6)	0.012 (7)
C16A	0.104 (19)	0.10 (2)	0.074 (16)	−0.016 (18)	−0.034 (14)	0.016 (18)

C1—C5 1.233 (2) C13—H13A 0.9600
O2—C14 1.200 (2) C13—H13B 0.9600
O4—C18 1.366 (3) C13—H13C 0.9600
O4—C23 1.420 (3) C14—O3 1.382 (10)
N1—H1 0.88 (2) C14—O3A 1.25 (3)
N1—C2 1.386 (3) C15—H15A 1.399 (3)
N1—C9 1.366 (2) C15—H15B 1.378 (3)
N1—C2 1.350 (3) C15—C16 1.388 (3)
C2—C3 1.502 (3) C2—C3 1.520 (3)
C2—C13 1.502 (3) C2—C13 1.502 (3)
C3—C4 1.532 (3) C3—C4 1.547 (3)
C3—C14 1.471 (3) C3—C14 1.474 (3)
C4—H4 0.9800 C20—C21 1.366 (3)
C4—C10 1.516 (3) C20—H20 0.9300
C4—C17 1.529 (3) C20—H20 0.9300
C5—C6 1.502 (3) C21—C22 1.383 (3)
C5—C10 1.446 (3) C21—H21 0.9600
C6—H6A 0.9700 C21—H21 0.9600
C6—H6B 0.9700 C21—H21 0.9600
C6—H6C 0.9700 C21—H21 0.9600
C7—C8 1.525 (3) O3—C15 1.460 (10)
C7—C11 1.528 (3) C15—H15A 0.9700
C7—C12 1.533 (3) C15—H15B 0.9700
C8—H8A 0.9700 C15—H15B 0.9700
C8—H8B 0.9700 C15—H15B 0.9700
C8—H8C 0.9700 C15—H15B 0.9700
C9—C10 1.351 (2) C15—C16 1.501 (8)
C11—H11A 0.9600 C15—H15C 0.9700
C11—H11B 0.9600 C15—H15C 0.9700
C11—H11C 0.9600 C15—H15D 0.9700
C12—H12A 0.9600 C15—H15D 0.9700
C12—H12B 0.9600 C16A—H16E 0.9600
C12—H12C 0.9600 C16A—H16E 0.9600
C18—O4—C23 118.3 (2) H13A—C13—H13B 109.5
Bond/Distance/Angle	Value	Bond/Distance/Angle	Value
C2—N1—H1	118.3 (15)	H13A—C13—H13C	109.5
C9—N1—H1	118.9 (15)	H13B—C13—H13C	109.5
C9—N1—C2	122.25 (17)	O2—C14—C3	126.6 (2)
N1—C2—C13	112.68 (18)	O2—C14—O3	123.1 (5)
C3—C2—N1	119.51 (18)	O2—C14—O3A	116.9 (14)
C3—C2—C13	127.6 (2)	O3—C14—C3	110.0 (5)
C2—C3—C4	120.45 (17)	O3A—C14—C3	115.2 (11)
C2—C3—C14	120.91 (19)	C18—C17—C4	122.77 (19)
C14—C3—C4	118.61 (18)	C22—C17—C4	120.36 (18)
C3—C4—H4	108.2	C22—C17—C18	116.9 (2)
C10—C4—C3	109.37 (15)	O4—C18—C17	116.32 (19)
C10—C4—H4	108.2	O4—C18—C19	123.2 (2)
C10—C4—C17	111.63 (16)	C19—C18—C17	120.5 (2)
C17—C4—C3	111.17 (16)	C18—C19—H19	119.7
C17—C4—H4	108.2	C20—C19—C18	120.6 (2)
O1—C5—C6	119.83 (18)	C20—C19—H19	119.7
O1—C5—C10	121.75 (18)	C19—C20—H20	119.9
C10—C5—C6	118.34 (16)	C19—C20—C21	120.2 (2)
C5—C6—H6A	108.4	C21—C20—H21	120.3
C5—C6—H6B	108.4	C20—C21—C22	119.3 (2)
C5—C6—C7	115.67 (17)	C20—C21—C22	120.3
H6A—C6—H6B	107.4	C22—C21—H21	120.3
C7—C6—H6A	108.4	C17—C22—C21	122.5 (2)
C7—C6—H6B	108.4	C17—C22—H22	118.7
C6—C7—C11	110.41 (18)	C21—C22—H22	118.7
C6—C7—C12	109.80 (18)	O4—C23—H23A	109.5
C8—C7—C6	107.87 (16)	O4—C23—H23B	109.5
C8—C7—C11	110.68 (19)	O4—C23—H23C	109.5
C8—C7—C12	109.10 (18)	H23A—C23—H23B	109.5
C11—C7—C12	108.95 (19)	H23A—C23—H23C	109.5
C7—C8—H8A	108.9	H23B—C23—H23C	109.5
C7—C8—H8B	108.9	C14—C15—O3	118.3 (9)
H8A—C8—H8B	107.7	C14—C15—H15A	109.1
C9—C8—C7	113.37 (16)	O3—C15—H15B	109.1
C9—C8—H8A	108.9	O3—C15—C16	112.5 (9)
C9—C8—H8B	108.9	H15A—C15—H15B	107.8
N1—C9—C8	116.06 (17)	C16—C15—H15A	109.1
C10—C9—N1	119.62 (18)	C16—C15—H15B	109.1
C10—C9—C8	124.19 (18)	C15—C16—H16A	109.5
C5—C10—C4	120.18 (16)	C15—C16—H16B	109.5
C9—C10—C4	120.76 (17)	C15—C16—H16C	109.5
C9—C10—C5	119.03 (18)	H16A—C16—H16B	109.5
C7—C11—H11A	109.5	H16A—C16—H16C	109.5
C7—C11—H11B	109.5	H16B—C16—H16C	109.5
C7—C11—H11C	109.5	C14—O3A—C15A	111 (2)
H11A—C11—H11B	109.5	O3A—C15A—H15C	111.3
H11A—C11—H11C	109.5	O3A—C15A—H15D	111.3
H11B—C11—H11C	109.5	H15C—C15A—H15D	109.2
C7—C12—H12A	109.5	C16A—C15A—O3A	102 (2)
C7—C12—H12B	109.5	C16A—C15A—H15C	111.3
C7—C12—H12C	109.5	C16A—C15A—H15D	111.3
H12A—C12—H12B	109.5	C15A—C16A—H16D	109.5
H12A—C12—H12C	109.5	C15A—C16A—H16E	109.5
H12B—C12—H12C	109.5	C15A—C16A—H16F	109.5
C2—C13—H13A	109.5	H16D—C16A—H16E	109.5
C2—C13—H13B	109.5	H16D—C16A—H16F	109.5
C2—C13—H13C	109.5	H16E—C16A—H16F	109.5
O1—C5—C6—C7	158.59 (18)	C6—C5—C10—C4	175.97 (18)
O1—C5—C10—C9	−7.4 (3)	C6—C5—C10—C9	−6.2 (3)
O1—C5—C10—C10	170.39 (19)	C6—C7—C8—C9	−47.3 (2)
O2—C14—O3—C15	−6 (2)	C7—C8—C9—N1	−163.74 (17)
O2—C14—O3A—C15A	10 (4)	C7—C8—C9—C10	20.4 (3)
O4—C18—C19—C20	−178.1 (2)	C8—C9—C10—C4	−173.83 (18)
N1—C2—C3—C4	−4.4 (3)	C8—C9—C10—C5	8.4 (3)
N1—C2—C3—C14	177.57 (19)	C9—N1—C2—C3	−17.4 (3)
N1—C9—C10—C4	10.5 (3)	C9—N1—C2—C3	158.14 (19)
N1—C9—C10—C5	−167.32 (18)	C10—C4—C17—C18	125.8 (2)
C2—N1—C9—C8	−161.64 (19)	C10—C4—C17—C22	−55.3 (2)
C2—N1—C9—C10	14.4 (3)	C10—C5—C6—C7	−24.7 (3)
C2—C3—C4—C10	25.1 (3)	C11—C7—C8—C9	73.6 (2)
C2—C3—C4—C17	−98.6 (2)	C12—C7—C8—C9	−166.52 (19)
C2—C3—C14—O2	11.7 (3)	C13—C2—C3—C4	−179.3 (2)
C2—C3—C14—O3	−174.2 (9)	C13—C2—C3—C4	2.7 (3)
C2—C3—C14—O3A	−155 (3)	C14—C3—C4—C10	−156.85 (17)
C3—C4—C10—C5	149.48 (17)	C14—C3—C4—C17	79.4 (2)
C3—C4—C10—C9	−28.3 (2)	C14—O3—C15—C16	−93.5 (15)
C3—C4—C17—C18	−111.8 (2)	C14—O3A—C15A—C16A	179 (5)
C3—C4—C17—C22	67.1 (2)	C17—C4—C10—C5	−87.1 (2)
C3—C14—O3—C15	179.4 (11)	C17—C4—C10—C9	95.2 (2)
C3—C14—O3A—C15A	178 (2)	C17—C18—C19—C20	1.2 (3)
C4—C3—C14—O2	−166.3 (2)	C18—C17—C22—C21	0.4 (3)
C4—C3—C14—O3	7.7 (9)	C18—C19—C20—C21	−0.2 (4)
C4—C3—C14—O3A	27 (3)	C19—C20—C21—C22	−0.7 (4)
C4—C17—C18—O4	−3.0 (3)	C20—C21—C22—C17	0.5 (4)
C4—C17—C18—C19	177.7 (2)	C22—C17—C18—O4	178.08 (19)
C5—C6—C7—C8	50.3 (2)	C22—C17—C18—C19	−1.3 (3)
C5—C6—C7—C11	−70.8 (2)	C23—O4—C18—C17	174.8 (2)
C5—C6—C7—C12	169.07 (19)	C23—O4—C18—C19	−5.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1···O1i	0.88 (2)	2.01 (2)	2.870 (2)	165 (2)
C13—H13B···O2	0.96	2.13	2.846 (3)	131
C13—H13C···O4i 0.96 2.59 3.300 (3) 131
C23—H23A···O2ii 0.96 2.57 3.492 (3) 161

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1.

Ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II)

Crystal data

C22H27NO4

F(000) = 1584
Mr = 369.44

P21/n

a = 15.3492 (15) Å
b = 14.0314 (14) Å
c = 18.3862 (18) Å
β = 90.0834 (17)°

V = 3959.8 (7) Å3
Z = 8

F(000) = 1584
Dx = 1.239 Mg m−3
Mo Kα radiation, λ = 0.71073 Å

Cell parameters from 9980 reflections

θ = 2.3–26.4°
μ = 0.09 mm−1

T = 120 K
Rod, colourless
0.35 × 0.15 × 0.14 mm

Data collection

Bruker APEXII CCD
diffractometer

θmax = 26.4°, θmin = 1.3°

h = −19→19
k = −17→17
l = −22→22

66519 measured reflections
8085 independent reflections
7121 reflections with I > 2σ(I)

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.039
wR(F2) = 0.093
S = 1.04

8085 reflections
536 parameters
39 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0433P)2 + 1.0284P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001
Δρmax = 0.33 e Å−3
Δρmin = −0.30 e Å−3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. Application of the twin law (-1, 0, 0, -1, 0, 0, 1) yielded a twin domain ratio of 0.6938 (8):0.3062 (8).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

	x	y	z	Ueq	Occ. (<1)
O1A	0.45938 (8)	1.14027 (8)	0.37758 (7)	0.0261 (3)	
O2A	0.83266 (9)	0.94867 (10)	0.38491 (8)	0.0353 (3)	
O3A	0.76656 (8)	1.07646 (9)	0.33709 (7)	0.0239 (3)	
O4A	0.58302 (9)	1.01706 (9)	0.04318 (7)	0.0279 (3)	
N1A	0.57551 (10)	0.83505 (11)	0.40985 (8)	0.0195 (3)	
Atom	x	y	z	U_eq	
-------	----------	----------	----------	------	
H1A	0.5659 (13)	0.7789 (15)	0.4186 (11)	0.023 (5)*	
C2A	0.66070 (11)	0.86446 (12)	0.39877 (9)	0.0196 (4)	
C3A	0.67643 (11)	0.95409 (12)	0.37482 (9)	0.0186 (4)	
C4A	0.60238 (10)	1.01965 (12)	0.35175 (9)	0.0175 (3)	
H4A	0.616041	1.085397	0.369398	0.021*	
C5A	0.44879 (11)	1.05602 (12)	0.39480 (9)	0.0182 (4)	
C6A	0.36366 (11)	1.02348 (12)	0.42708 (10)	0.0200 (4)	
H6AA	0.315982	1.062202	0.406008	0.024*	
H6AB	0.364850	1.035734	0.480100	0.024*	
C7A	0.34314 (11)	0.91751 (12)	0.41443 (9)	0.0193 (4)	
C8A	0.42224 (11)	0.85979 (12)	0.43937 (9)	0.0186 (3)	
H8AA	0.424860	0.860609	0.493173	0.022*	
H8AB	0.414748	0.792748	0.423785	0.022*	
C9A	0.50663 (11)	0.89679 (12)	0.40982 (9)	0.0170 (3)	
C10A	0.51830 (11)	0.98787 (12)	0.38714 (9)	0.0167 (3)	
C11A	0.32322 (12)	0.90078 (13)	0.33413 (10)	0.0248 (4)	
H11D	0.275190	0.942331	0.318973	0.037*	
H11E	0.306604	0.834047	0.326715	0.037*	
H11F	0.375071	0.915231	0.305108	0.037*	
C12A	0.26398 (12)	0.88893 (13)	0.45999 (11)	0.0266 (4)	
H12D	0.276470	0.900163	0.511574	0.040*	
H12E	0.251289	0.821217	0.452347	0.040*	
H12F	0.213502	0.927113	0.445243	0.040*	
C13A	0.72712 (12)	0.79058 (13)	0.41851 (11)	0.0263 (4)	
H13D	0.752914	0.806281	0.465804	0.039*	
H13E	0.772869	0.789171	0.381402	0.039*	
H13F	0.699027	0.727966	0.421239	0.039*	
C14A	0.76640 (11)	0.98918 (13)	0.36709 (9)	0.0214 (4)	
C15A	0.85044 (12)	1.11883 (14)	0.32108 (11)	0.0289 (4)	
H15E	0.893385	1.068708	0.308859	0.035*	
H15F	0.872177	1.154790	0.363730	0.035*	
C16A	0.83761 (13)	1.18449 (14)	0.25765 (12)	0.0352 (5)	
H16G	0.811091	1.149255	0.217271	0.053*	
H16H	0.894095	1.210040	0.242322	0.053*	
H16I	0.799255	1.237092	0.271891	0.053*	
C17A	0.59364 (10)	1.02320 (12)	0.26930 (9)	0.0177 (4)	
C18A	0.57574 (11)	0.93988 (12)	0.23039 (9)	0.0214 (4)	
H18A	0.565952	0.882052	0.255969	0.026*	
C19A	0.57207 (11)	0.94030 (13)	0.15539 (10)	0.0218 (4)	
H19A	0.560018	0.882987	0.129776	0.026*	
C20A	0.58598 (11)	1.02449 (13)	0.11729 (9)	0.0217 (4)	
C21A	0.60189 (11)	1.10830 (13)	0.15485 (10)	0.0232 (4)	
H21A	0.610207	1.166456	0.129332	0.028*	
C22A	0.60553 (11)	1.10619 (12)	0.23063 (10)	0.0216 (4)	
H22A	0.616536	1.163699	0.256321	0.026*	
C23A	0.58707 (15)	1.10334 (15)	0.00256 (11)	0.0359 (5)	
H23D	0.581901	1.088987	−0.049428	0.054*	
H23E	0.642866	1.135061	0.011879	0.054*	
Atom	x	y	z	U ‖	U ‖
------	-------	-------	-------	------	------
H23F	0.539242	1.145358	0.017281	0.054*	
O1B	0.53248 (9)	0.63931 (8)	0.41653 (7)	0.0275 (3)	
O2B	0.16407 (8)	0.44710 (11)	0.34002 (8)	0.0367 (3)	
O4B	0.45174 (10)	0.69033 (9)	0.07234 (7)	0.0325 (3)	
N1B	0.41867 (10)	0.33580 (11)	0.37064 (9)	0.0232 (3)	
H1B	0.4275 (14)	0.2749 (16)	0.3763 (12)	0.037 (6)*	
C2B	0.33400 (11)	0.36815 (12)	0.36142 (10)	0.0224 (4)	
C3B	0.31849 (11)	0.46259 (13)	0.35623 (10)	0.0226 (4)	
C4B	0.39216 (11)	0.53471 (12)	0.35400 (10)	0.0201 (4)	
H4B	0.375782	0.589307	0.386149	0.024*	
C5B	0.54390 (12)	0.55231 (12)	0.41031 (9)	0.0207 (4)	
C6B	0.62933 (12)	0.50822 (13)	0.43392 (10)	0.0236 (4)	
H6BA	0.629257	0.502553	0.487587	0.028*	
H6BB	0.677155	0.552131	0.420484	0.028*	
C7B	0.64891 (12)	0.41011 (13)	0.40149 (10)	0.0223 (4)	
C8B	0.56843 (11)	0.34979 (12)	0.41231 (10)	0.0221 (4)	
H8BA	0.576211	0.287574	0.385247	0.026*	
H8BB	0.562928	0.332075	0.464561	0.026*	
C9B	0.48608 (11)	0.39520 (12)	0.38717 (10)	0.0195 (4)	
C10B	0.47532 (11)	0.49112 (12)	0.38389 (10)	0.0190 (4)	
C11B	0.67057 (13)	0.41894 (14)	0.32069 (10)	0.0290 (4)	
H11A	0.681145	0.355422	0.300374	0.044*	
H11B	0.722849	0.458254	0.314753	0.044*	
H11C	0.621608	0.448806	0.295120	0.044*	
C12B	0.72593 (12)	0.36470 (15)	0.44191 (12)	0.0314 (5)	
H12A	0.711607	0.358440	0.493620	0.047*	
H12B	0.777587	0.405106	0.436484	0.047*	
H12C	0.737796	0.301528	0.421460	0.047*	
C13B	0.26813 (12)	0.28863 (14)	0.35968 (12)	0.0323 (5)	
H13A	0.297954	0.227423	0.365980	0.048*	
H13B	0.237582	0.289167	0.312845	0.048*	
H13C	0.226000	0.297564	0.399095	0.048*	
C14B	0.22780 (13)	0.49593 (14)	0.34891 (12)	0.0317 (4)	
C17B	0.40645 (11)	0.57381 (12)	0.27734 (10)	0.0204 (4)	
C18B	0.41311 (12)	0.51382 (13)	0.21751 (10)	0.0235 (4)	
H18B	0.407494	0.446967	0.224204	0.028*	
C19B	0.42785 (12)	0.54948 (13)	0.14796 (10)	0.0247 (4)	
H19B	0.432202	0.507346	0.107685	0.030*	
C20B	0.43611 (11)	0.64698 (13)	0.13795 (10)	0.0231 (4)	
C21B	0.42916 (11)	0.70792 (12)	0.19706 (10)	0.0231 (4)	
H21B	0.434268	0.774830	0.190398	0.028*	
C22B	0.41482 (12)	0.67106 (12)	0.26552 (10)	0.0220 (4)	
H22B	0.410556	0.713382	0.305688	0.026*	
C23B	0.46826 (19)	0.62980 (17)	0.01175 (12)	0.0469 (6)	
H23A	0.481787	0.668742	−0.031018	0.070*	
H23B	0.416580	0.590883	0.001799	0.070*	
H23C	0.517779	0.588112	0.022755	0.070*	
O3B	0.2269 (3)	0.5956 (3)	0.3723 (4)	0.0335 (6)	0.432 (8)
Atomic displacement parameters (Å²)

	U¹¹	U¹²	U¹³	U¹²	U¹³	U¹³
O1A	0.0244 (6)	0.0130 (6)	0.0411 (8)	0.0011 (5)	0.0035 (6)	0.0025 (5)
O2A	0.0192 (7)	0.0410 (8)	0.0458 (9)	0.0025 (6)	−0.0023 (6)	0.0152 (7)
O3A	0.0159 (6)	0.0237 (7)	0.0323 (7)	−0.0027 (5)	0.0006 (5)	0.0033 (5)
O4A	0.0322 (7)	0.0335 (7)	0.0180 (7)	−0.0002 (6)	−0.0006 (5)	0.0040 (5)
N1A	0.0205 (7)	0.0116 (7)	0.0264 (8)	0.0011 (6)	−0.0005 (6)	0.0012 (6)
C2A	0.0206 (9)	0.0202 (9)	0.0180 (9)	0.0027 (7)	−0.0015 (7)	−0.0033 (7)
C3A	0.0174 (8)	0.0211 (9)	0.0172 (8)	0.0029 (7)	−0.0001 (7)	−0.0001 (7)
C4A	0.0176 (8)	0.0147 (8)	0.0201 (9)	−0.0010 (6)	−0.0002 (7)	−0.0001 (7)
C5A	0.0211 (9)	0.0153 (8)	0.0182 (8)	−0.0009 (7)	−0.0017 (7)	−0.0008 (7)
C6A	0.0211 (9)	0.0169 (9)	0.0221 (9)	0.0026 (7)	0.0024 (7)	−0.0022 (7)
C7A	0.0186 (8)	0.0176 (8)	0.0216 (9)	−0.0006 (7)	0.0004 (7)	0.0010 (7)
C8A	0.0219 (9)	0.0146 (8)	0.0194 (9)	−0.0019 (7)	0.0000 (7)	−0.0005 (6)
C9A	0.0210 (8)	0.0145 (8)	0.0156 (8)	0.0015 (7)	−0.0021 (7)	−0.0002 (7)
C10A	0.0181 (8)	0.0160 (8)	0.0161 (8)	0.0009 (7)	−0.0015 (7)	−0.0010 (7)
C11A	0.0224 (9)	0.0259 (10)	0.0260 (10)	0.0016 (7)	−0.0045 (7)	−0.0046 (8)
C12A	0.0227 (9)	0.0234 (10)	0.0337 (11)	−0.0014 (8)	0.0040 (8)	0.0002 (8)
C13A	0.0242 (9)	0.0229 (9)	0.0325 (11)	0.0054 (7)	−0.0024 (8)	0.0009 (8)
C14A	0.0212 (9)	0.0249 (9)	0.0189 (9)	0.0015 (7)	−0.0019 (7)	−0.0001 (7)
C15A	0.0172 (9)	0.0315 (10)	0.0380 (11)	−0.0060 (8)	0.0015 (8)	−0.0021 (9)
C16A	0.0258 (10)	0.0281 (11)	0.0518 (13)	−0.0037 (8)	0.0069 (9)	0.0071 (10)
C17A	0.0137 (8)	0.0190 (9)	0.0204 (9)	0.0022 (7)	0.0005 (7)	0.0008 (7)
C18A	0.0221 (9)	0.0171 (9)	0.0249 (9)	0.0007 (7)	0.0005 (7)	0.0027 (7)
C19A	0.0215 (9)	0.0202 (9)	0.0236 (9)	0.0013 (7)	−0.0013 (7)	−0.0018 (7)
C20A	0.0162 (8)	0.0305 (10)	0.0183 (9)	−0.0004 (7)	0.0003 (7)	0.0035 (7)
C21A	0.0209 (9)	0.0232 (9)	0.0253 (10)	−0.0046 (7)	−0.0007 (7)	0.0066 (8)
C22A	0.0210 (9)	0.0199 (9)	0.0240 (9)	−0.0032 (7)	−0.0016 (7)	0.0012 (7)
C23A	0.0439 (12)	0.0408 (12)	0.0230 (10)	−0.0123 (10)	0.0000 (9)	0.0099 (9)
O1B	0.0316 (7)	0.0147 (6)	0.0361 (8)	−0.0032 (5)	0.0028 (6)	−0.0020 (6)
O2B	0.0181 (7)	0.0555 (10)	0.0366 (8)	−0.0001 (7)	−0.0001 (6)	0.0014 (7)
Geometric parameters (Å, °)

Bond/Angle	Distance	Angle
O1A—C5A	1.235 (2)	
O2A—C14A	1.210 (2)	
O3A—C14A	1.343 (2)	
O3A—C15A	1.449 (2)	
O4A—C20A	1.367 (2)	
O4A—C23A	1.424 (2)	
N1A—H1A	0.82 (2)	
N1A—C2A	1.386 (2)	
N1A—C9A	1.367 (2)	
C2A—C3A	1.354 (2)	
C2A—C13A	1.498 (2)	
C3A—C4A	1.522 (2)	
C3A—C14A	1.473 (2)	
C4A—H4A	1.0000	
C4A—C10A	1.513 (2)	
C4A—C17A	1.523 (2)	
C5A—C6A	1.507 (2)	
C5A—C10A 1.440 (2) C7B—C12B 1.534 (3)		
C6A—H6AA 0.9900 C8B—H8BA 0.9900		
C6A—H6AB 0.9900 C8B—H8BB 0.9900		
C6A—C7A 1.538 (2) C8B—C9B 1.500 (2)		
C7A—C8A 1.529 (2) C9B—C10B 1.357 (2)		
C7A—C11A 1.526 (2) C11B—H11A 0.9800		
C7A—C12A 1.530 (2) C11B—H11B 0.9800		
C8A—H8AA 0.9900 C11B—H11C 0.9800		
C8A—H8AB 0.9900 C12B—H12A 0.9800		
C8A—C9A 1.498 (2) C12B—H12B 0.9800		
C9A—C10A 1.356 (2) C12B—H12C 0.9800		
C11A—H11D 0.9800 C13B—H13A 0.9800		
C11A—H11E 0.9800 C13B—H13B 0.9800		
C11A—H11F 0.9800 C13B—H13C 0.9800		
C12A—H12D 0.9800 C14B—O3B 1.464 (5)		
C12A—H12E 0.9800 C14B—O3C 1.305 (4)		
C12A—H12F 0.9800 C17B—C18B 1.389 (3)		
C13A—H13D 0.9800 C17B—C22B 1.388 (2)		
C13A—H13E 0.9800 C18B—H18B 0.9500		
C13A—H13F 0.9800 C18B—C19B 1.392 (3)		
C15A—H15E 0.9900 C19B—H19B 0.9500		
C15A—H15F 0.9900 C19B—C20B 1.386 (2)		
C15A—C16A 1.499 (3) C20B—C21B 1.387 (3)		
C16A—H16G 0.9800 C21B—H21B 0.9500		
C16A—H16H 0.9800 C21B—C22B 1.379 (3)		
C16A—H16I 0.9800 C22B—H22B 0.9500		
C17A—C18A 1.398 (2) C23B—H23A 0.9800		
C17A—C22A 1.377 (2) C23B—H23B 0.9800		
C18A—H18A 0.9500 C23B—H23C 0.9800		
C18A—C19A 1.380 (2) O3B—C15B 1.480 (5)		
C19A—H19A 0.9500 C15B—H15A 0.9900		
C19A—C20A 1.390 (3) C15B—H15B 0.9900		
C20A—C21A 1.385 (3) C15B—C16B 1.495 (7)		
C21A—H21A 0.9500 C16B—H16A 0.9800		
C21A—C22A 1.395 (3) C16B—H16B 0.9800		
C22A—H22A 0.9500 C16B—H16C 0.9800		
C23A—H23D 0.9800 O3C—C15C 1.461 (4)		
C23A—H23E 0.9800 C15C—H15C 0.9900		
C23A—H23F 0.9800 C15C—H15D 0.9900		
O1B—C5B 1.239 (2) C15C—C16C 1.454 (6)		
O2B—C14B 1.205 (2) C16C—H16D 0.9800		
O4B—C20B 1.372 (2) C16C—H16E 0.9800		
O4B—C23B 1.424 (3) C16C—H16F 0.9800		
C14A—O3A—C15A 117.37 (14) C2B—C3B—C14B 118.97 (17)		
C20A—O4A—C23A 117.16 (15) C14B—C3B—C4B 119.29 (15)		
C2A—N1A—H1A 119.1 (14) C3B—C4B—H4B 107.9		
C9A—N1A—H1A 118.1 (14) C3B—C4B—C17B 111.84 (15)		
C9A—N1A—C2A 122.74 (15) C10B—C4B—C17B 110.35 (14)		
N1A—C2A—C13A 113.58 (15) C10B—C4B—H14B 107.9		
C3A—C2A—N1A 119.53 (15) C10B—C4B—C17B 110.91 (14)		
C3A—C2A—C13A 126.84 (16) C17B—C4B—H14B 107.9		
C2A—C3A—C4A 121.22 (15) O1B—C5B—C6B 119.96 (16)		
C2A—C3A—C14A 120.62 (15) O1B—C5B—C10B 120.96 (16)		
C14A—C3A—C4A 118.09 (15) C10B—C5B—C6B 119.02 (15)		
C3A—C4A—H4A 108.1 C5B—C6B—H6BA 108.5		
C3A—C4A—C17A 111.21 (14) C5B—C6B—H6BB 108.5		
C10A—C4A—C3A 109.82 (13) C10B—C5B—C7B 115.26 (15)		
C10A—C4A—H4A 108.1 H6BA—C6B—H6BB 107.5		
C10A—C4A—C17A 111.34 (14) C7B—C6B—H6BA 108.5		
C17A—C4A—H4A 108.1 C7B—C6B—H6BB 108.5		
O1A—C5A—C6A 120.38 (15) C6B—C7B—C12B 109.67 (16)		
O1A—C5A—C10A 120.86 (16) C8B—C7B—C11B 110.52 (15)		
C10A—C5A—C6A 118.72 (14) C8B—C7B—C12B 110.84 (15)		
C5A—C6A—H6AA 108.7 C11B—C7B—C6B 114.03 (15)		
C5A—C6A—H6AB 108.7 C11B—C7B—C12B 109.64 (15)		
C5A—C6A—C7A 114.27 (14) C11B—C7B—C12B 109.64 (15)		
H6AA—C6A—H6AB 107.6 C7B—C8B—H8BA 109.0		
C7A—C6A—H6AA 108.7 C7B—C8B—H8BB 109.0		
C7A—C6A—H6AB 108.7 C7B—C8B—H8BB 109.0		
C8A—C7A—C6A 107.72 (13) C9B—C8B—H8BA 112.93 (14)		
C8A—C7A—C12A 109.13 (14) C9B—C8B—H8BB 109.0		
C11A—C7A—C6A 109.63 (14) C10B—C9B—C8B 115.97 (15)		
C11A—C7A—C8A 111.51 (14) C10B—C9B—C8B 120.28 (16)		
C11A—C7A—C12A 109.35 (14) C10B—C9B—C8B 123.67 (16)		
C12A—C7A—C6A 109.46 (14) C5B—C10B—C4B 119.68 (15)		
C7A—C8A—H8AA 108.9 C9B—C10B—C4B 121.19 (15)		
C7A—C8A—H8AB 108.9 C8B—C10B—C4B 109.0		
H8AA—C8A—H8AB 107.7 C5B—C10B—C11B 110.5		
C9A—C8A—C7A 113.21 (14) C7B—C11B—H11A 109.5		
C9A—C8A—H8AA 108.9 C7B—C11B—H11B 110.5		
C9A—C8A—H8AB 108.9 C7B—C11B—H11C 109.5		
N1A—C9A—C8A 116.70 (14) H11A—C11B—H11B 109.5		
C10A—C9A—N1A 119.66 (15) H11A—C11B—H11C 109.5		
C10A—C9A—C8A 123.56 (15) H11B—C11B—H11C 109.5		
C5A—C10A—C4A 118.62 (14) C7B—C12B—H12A 109.5		
C9A—C10A—C4A 121.53 (15) C7B—C12B—H12B 109.5		
C9A—C10A—C5A 119.83 (15) C7B—C12B—H12C 109.5		
C7A—C11A—H11D 109.5 C12A—C12B—H12C 109.5		
C7A—C11A—H11E 109.5 H12A—C12B—H12C 109.5		
C7A—C11A—H11F 109.5 H12B—C12B—H12C 109.5		
H11D—C11A—H11E 109.5 C2B—C13B—H13A 109.5		
H11D—C11A—H11F 109.5 C2B—C13B—H13B 109.5		
H11E—C11A—H11F 109.5 C2B—C13B—H13C 109.5		
C7A—C12A—H12D 109.5 H13A—C13B—H13B 109.5		
C7A—C12A—H12E 109.5 H13A—C13B—H13C 109.5		
Bond/Angle	Bond/Angle	Bond/Angle
---	---	---
C7A—C12A—H12F	109.5	H13B—C13B—H13C
H12D—C12A—H12E	109.5	O2B—C14B—C3B
H12D—C12A—H12F	109.5	O2B—C14B—O3B
H12E—C12A—H12F	109.5	O2B—C14B—O3C
C2A—C13A—H13D	109.5	O3B—C14B—C3B
C2A—C13A—H13E	109.5	O3C—C14B—C3B
C2A—C13A—H13F	109.5	C18B—C17B—C4B
H13D—C13A—H13E	109.5	C22B—C17B—C4B
H13D—C13A—H13F	109.5	C22B—C17B—C18B
H13E—C13A—H13F	109.5	C17B—C18B—H18B
C2A—C14A—C3A	127.20 (17)	O2B—C14B—C3B
C2A—C14A—C3A	110.28 (14)	O2B—C14B—O3B
O3A—C14A—C3A	110.3	O3B—C14B—O3C
O3A—C15A—H15E	110.3	O3C—C14B—C3B
O3A—C15A—H15F	110.3	C18B—C17B—C4B
O3A—C15A—H15E	107.13 (15)	C22B—C17B—C4B
H15E—C15A—H15F	108.5	C22B—C17B—C18B
C16A—C15A—H15E	110.3	C17B—C18B—C19B
C16A—C15A—H15F	110.3	C17B—C18B—H18B
C16A—C15A—H15E	109.5	C17B—C18B—C19B
C15A—C16A—H16G	110.3	C17B—C18B—H18B
C15A—C16A—H16H	109.5	C17B—C18B—C19B
C15A—C16A—H16I	109.5	C18B—C19B—H18B
C15A—C16A—H16I	110.3	C18B—C19B—C18B
C16G—C16A—H16I	109.5	C20B—C19B—C18B
H16G—C16A—H16I	109.5	C20B—C19B—H19B
H16H—C16A—H16I	109.5	C20B—C21B—C20B
C18A—C17A—C4A	119.95 (15)	C20B—C21B—H21B
C22A—C17A—C4A	122.03 (15)	C20B—C21B—H21B
C22A—C17A—C18A	117.99 (16)	C22B—C21B—H21B
C17A—C18A—H18A	119.5	C17B—C22B—H22B
C19A—C18A—C17A	121.04 (16)	C17B—C22B—H22B
C19A—C18A—C17A	119.5	C17B—C22B—H22B
C18A—C19A—H19A	120.0	C17B—C22B—H22B
C18A—C19A—C20A	120.08 (17)	C18B—C15B—H15A
C20A—C19A—H19A	120.0	O3B—C15B—C15A
O4A—C20A—C19A	115.63 (16)	O3B—C15B—C15A
O4A—C20A—C21A	124.56 (16)	O3B—C15B—H15B
C21A—C20A—H19A	119.81 (16)	O3B—C15B—H15B
C20A—C21A—H21A	120.4	C15B—C16B—H16A
C20A—C21A—C22A	119.13 (16)	C15B—C16B—H16A
C22A—C21A—H21A	120.4	C15B—C16B—H16A
C17A—C22A—C21A	121.92 (17)	C15B—C16B—H16A
C17A—C22A—H22A	119.0	H16A—C16B—H16C
C21A—C22A—H22A	119.0	H16B—C16B—H16C
C21A—C22A—H22A	119.0	H16B—C16B—H16C
O4A—C23A—H23D	109.5	O4B—C23B—H23A
O4A—C23A—H23E	109.5	O4B—C23B—H23B
O4A—C23A—H23F	109.5	O4B—C23B—H23C
H23D—C23A—H23E	109.5	H23A—C23B—H23B
H23D—C23A—H23F	109.5	H23A—C23B—H23B

Acta Cryst. (2022), E78, 1089-1096
H23E—C23A—H23F 109.5
C2B—O4B—C23B 117.05 (15)
C2B—N1B—H1B 118.7 (15)
C9B—N1B—H1B 117.1 (15)
C9B—N1B—C2B 122.57 (15)
N1B—C2B—C13B 112.90 (15)
C3B—C2B—N1B 119.68 (16)
C2B—C2B—C13B 127.41 (17)
C2B—C3B—C4B 121.67 (15)
O1A—C5A—C6A—C7A 153.92 (16)
O1A—C5A—C10A—C4A 106.2 (2)
O1A—C5A—C10A—C9A 176.67 (16)
O4A—C20A—C21A—C22A 178.33 (16)
N1A—C2A—C3A—C4A 6.9 (2)
N1A—C2A—C3A—C14A 176.06 (15)
N1A—C9A—C10A—C4A 8.8 (2)
N1A—C9A—C10A—C5A 172.28 (16)
C2A—N1A—C9A—C14A 176.06 (15)
C2A—N1A—C9A—C10A 106.2 (2)
C2A—C3A—C4A—C10A 22.8 (2)
C2A—C3A—C4A—C17A 100.92 (19)
C2A—C3A—C14A—O2A 5.7 (3)
C2A—C3A—C14A—O3A 174.96 (15)
C3A—C4A—C10A—C5A 157.86 (15)
C3A—C4A—C10A—C9A 23.8 (2)
C3A—C4A—C14A—C10A 10.6 (2)
C3A—C4A—C14A—O2A 22.8 (2)
C3A—C4A—C14A—O3A 174.96 (15)
C4A—C3A—C14A—O2A 5.7 (3)
C4A—C3A—C14A—O3A 174.96 (15)
C5A—C6A—C7A—C8A 51.96 (19)
C5A—C6A—C7A—C11A 69.55 (18)
C5A—C6A—C7A—C12A 170.51 (15)
C6A—C5A—C10A—C4A 177.41 (15)
C6A—C5A—C10A—C9A 0.9 (2)
C6A—C7A—C8A—C9A 48.74 (18)
C7A—C8A—C9A—N1A 160.18 (15)
C7A—C8A—C9A—C10A 23.2 (2)
C8A—C9A—C10A—C4A 174.68 (15)
C8A—C9A—C10A—C5A 3.6 (3)
C9A—N1A—C2A—C3A 11.6 (2)
C9A—N1A—C2A—C13A 166.11 (2)
C10A—C4A—C17A—C18A 62.3 (2)
C10A—C4A—C17A—C22A 119.77 (17)
C10A—C5A—C6A—C7A 28.5 (2)
C11A—C7A—C8A—C9A 71.59 (18)
\[C12A-C7A-C8A-C9A -167.50 (14)\]
\[C10B-C4B-C17B-C22B -103.88 (18)\]
\[C13A-C2A-C3A-C14A -1.3 (3)\]
\[C11B-C7B-C8B-C9B -70.53 (19)\]
\[C14A-O3A-C15A-C16A 151.27 (16)\]
\[C14B-O3B-C15B-C16B -91.8 (6)\]
\[C15A-O3A-C14A-O2A 4.7 (3)\]
\[C14B-O3B-C15B-C16B 173.67 (18)\]
\[C17A-C4A-C10A-C5A -78.52 (19)\]
\[C17B-C4B-C10B-C5B 76.8 (2)\]

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1A—H1A···O1B	0.82 (2)	2.02 (2)	2.827 (2)	167 (2)
N1B—H1B···O1A'	0.87 (2)	1.95 (2)	2.8167 (19)	172 (2)

Symmetry code: (i) x, y−1, z.

Ethyl 4-(3,4-dihydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III)

Crystal data

\[C_{21}H_{25}NO_{5}\]

\[M_r = 371.42\]

Monoclinic, \(P2_1/n\)

\[a = 9.2745 (3) \text{ Å}\]

\[b = 22.1655 (7) \text{ Å}\]

\[c = 11.3475 (4) \text{ Å}\]

\[\beta = 108.2014 (17)°\]

\[V = 2216.03 (13) \text{ Å}^3\]

\[Z = 4\]

\[D_r = 1.113 \text{ Mg m}^{-3}\]

Mo Kα radiation, \(\lambda = 0.71073 \text{ Å}\)

Cell parameters from 9215 reflections

θ = 2.5–28.3°

θ max = 28.4°, θ min = 2.5°

\[h = -12 \rightarrow 12\]

\[k = -29 \rightarrow 29\]

\[l = -15 \rightarrow 15\]

4263 reflections with \(I > 2\sigma(I)\)

\(R_{int} = 0.046\)

θ min = 28.4°, θ min = 2.5°

\(h = -12 \rightarrow 12\)

\(k = -29 \rightarrow 29\)

5517 independent reflections

Data collection

Bruker SMART BREEZE CCD diffractometer

2 kW sealed X-ray tube

\(\varphi\) and \(\omega\) scans

40175 measured reflections

Acta Cryst. (2022). E78, 1089-1096
Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.045$

$wR(F^2) = 0.123$

$S = 1.04$

5517 reflections

260 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_o^2) + (0.0628P)^2 + 0.7593P]$ where $P = (F_o^2 + 2F_c^2)/3$

$\Delta/\sigma)_{\text{max}} < 0.001$

$\rho_{\text{max}} = 0.41 \text{ e Å}^{-3}$

$\rho_{\text{min}} = -0.21 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Disordered hexanes molecules were identified in the final stage of refinement. The disorder of the hexanes was dealt with by application of the Olex2/smbx_masks (Rees, et al., 2005), which allows for the mathematical compensation of the electron contribution of disordered solvent contained in the voids to the calculated diffraction intensities.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso*/Ueq
O1	1.16874(11)	0.16574(4)	0.51737(9)	0.0186(2)
O2	0.97871(12)	0.34503(5)	0.68766(9)	0.0208(2)
O4	0.45936(11)	0.14086(5)	0.41764(10)	0.0240(2)
O5	0.49133(12)	0.12980(5)	0.65976(10)	0.0218(2)
O3	0.87314(12)	0.41878(4)	0.55338(9)	0.0216(2)
N1	0.78891(13)	0.29217(5)	0.26502(10)	0.0156(2)
C5	1.08644(15)	0.18180(6)	0.41329(12)	0.0149(3)
C8	0.89609(15)	0.21511(6)	0.16440(12)	0.0160(3)
H8A	0.958420	0.240536	0.127373	0.019*
H8B	0.792707	0.212750	0.104128	0.019*
C4	0.93969(14)	0.25570(6)	0.50871(11)	0.0139(3)
H4A	1.037134	0.257551	0.578628	0.017*
C6	1.10852(15)	0.15446(6)	0.29827(12)	0.0174(3)
H6A	1.148756	0.113046	0.318085	0.021*
H6B	1.185931	0.178302	0.275254	0.021*
C17	0.82560(15)	0.21896(6)	0.55115(12)	0.0149(3)
C18	0.69686(15)	0.19536(6)	0.46308(12)	0.0160(3)
H18	0.684531	0.200209	0.377301	0.019*
C22	0.84222(16)	0.21058(6)	0.67665(12)	0.0177(3)
H22	0.930164	0.225397	0.737945	0.021*
C20	0.60235(15)	0.15836(6)	0.62458(13)	0.0173(3)
C9	0.88732(14)	0.24475(6)	0.28105(12)	0.0145(3)
C2	0.79999(15)	0.33426(6)	0.35723(12)	0.0155(3)
C19	0.58740(15)	0.16513(6)	0.49897(12)	0.0169(3)
C3	0.88223(15)	0.31999(6)	0.47602(12)	0.0149(3)
Atomic displacement parameters (Å²)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
O1	0.0193 (5)	0.0216 (5)	0.0118 (5)	0.0028 (4)	0.0004 (4)	0.0001 (4)
O2	0.0256 (5)	0.0223 (5)	0.0116 (5)	0.0036 (4)	0.0016 (4)	−0.0014 (4)
O4	0.0182 (5)	0.0382 (6)	0.0143 (5)	−0.0089 (4)	0.0033 (4)	−0.0007 (5)
O5	0.0209 (5)	0.0285 (6)	0.0175 (5)	−0.0020 (4)	0.0084 (4)	0.0032 (4)
O3	0.0317 (6)	0.0170 (5)	0.0131 (5)	0.0018 (4)	0.0024 (4)	−0.0023 (4)
N1	0.0169 (5)	0.0181 (6)	0.0089 (5)	0.0018 (4)	0.0000 (4)	0.0000 (4)
C5	0.0150 (6)	0.0160 (6)	0.0128 (6)	−0.0027 (5)	0.0031 (5)	−0.0007 (5)
C8	0.0165 (6)	0.0198 (7)	0.0101 (6)	0.0003 (5)	0.0018 (5)	−0.0002 (5)
C4	0.0132 (6)	0.0173 (6)	0.0090 (6)	0.0014 (5)	0.0002 (5)	−0.0004 (5)
C6	0.0154 (6)	0.0216 (7)	0.0135 (6)	0.0037 (5)	0.0020 (5)	−0.0017 (5)
C17	0.0159 (6)	0.0148 (6)	0.0135 (6)	0.0027 (5)	0.0041 (5)	0.0010 (5)
C18	0.0167 (6)	0.0199 (7)	0.0109 (6)	0.0018 (5)	0.0035 (5)	0.0014 (5)
C22	0.0197 (6)	0.0192 (7)	0.0123 (6)	0.0011 (5)	0.0021 (5)	−0.0009 (5)
C20	0.0187 (6)	0.0179 (7)	0.0163 (7)	0.0025 (5)	0.0068 (5)	0.0024 (5)
C9	0.0134 (6)	0.0161 (6)	0.0136 (6)	−0.0030 (5)	0.0034 (5)	−0.0010 (5)
C2	0.0152 (6)	0.0170 (7)	0.0141 (6)	−0.0008 (5)	0.0042 (5)	0.0003 (5)
C19	0.0154 (6)	0.0192 (7)	0.0142 (6)	0.0016 (5)	0.0021 (5)	0.0002 (5)
Geometric parameters (Å, °)

Bond/Angle	Length/Distance	Angle
O1—C5	1.2413 (16)	
O2—C14	1.2240 (16)	
O4—C19	1.3662 (16)	
O4—H4	0.87 (2)	
O5—O5	1.3701 (17)	
O5—H5	0.85 (2)	
O3—C14	1.4578 (17)	
N1—C9	1.3666 (17)	
N1—C2	1.3814 (17)	
N1—C1	0.876 (18)	
C5—C6	1.5099 (18)	
C8—H8A	0.9900	
C8—H8B	0.9900	
C8—C9	1.5026 (18)	
C8—C7	1.5317 (19)	
C4—H4A	1.0000	
C4—C17	1.5275 (18)	
C4—C3	1.5260 (19)	
C4—C10	1.5153 (18)	
C6—H6A	0.9900	
C6—H6B	0.9900	
C6—C7	1.5336 (18)	
C17—C18	1.3973 (18)	
C17—C22	1.3961 (18)	
C18—H18	0.9500	
C19—O4—H4	108.5 (14)	
C20—O5—H5	109.9 (15)	
C14—O3—C15	116.21 (11)	
C9—N1—C2	122.01 (11)	
C9—N1—H1	117.7 (12)	
C2—N1—H1	116.6 (12)	
O1—C5—C6	119.89 (12)	

Acta Cryst. (2022), E78, 1089-1096

sup-19
Bond/Distance	Value 1	Value 2	Value 3
O1—C5—C10	122.08	(12)	
C10—C5—C6	118.01	(11)	
H8A—C8—H8B	107.7		
C9—C8—H8A	108.9		
C9—C8—H8B	108.9		
C9—C8—C7	113.23	(11)	
C7—C8—H8A	108.9		
C7—C8—H8B	108.9		
C17—C4—H4A	108.4		
C3—C4—H4A	108.4		
C3—C4—C17	110.54	(11)	
C10—C4—C4—C17	112.27	(11)	
C10—C4—C3	108.83	(11)	
C5—C6—H6A	108.6		
C5—C6—H6B	108.6		
C5—C6—C7	114.61	(11)	
H6A—C6—H6B	107.6		
C7—C6—H6A	108.6		
C7—C6—H6B	108.6		
C18—C17—C4	119.69	(11)	
C22—C17—C4	121.73	(12)	
C22—C17—C18	118.51	(12)	
C17—C18—H18	119.5		
C19—C18—C17	120.91	(12)	
C19—C18—H18	119.5		
C17—C22—H22	119.8		
C21—C22—C22	120.41	(12)	
O5—C20—C19	120.20	(12)	
O5—C20—C21	120.70	(12)	
C21—C20—C19	119.10	(13)	
N1—C9—C8	115.90	(11)	
C10—C9—N1	119.90	(12)	
C10—C9—C8	124.20	(12)	
N1—C2—C13	112.97	(11)	
C3—C2—N1	118.61	(12)	
C3—C2—C13	128.42	(13)	
O4—C19—C18	123.80	(12)	
O4—C19—C20	115.81	(12)	
C18—C19—C20	120.38	(12)	
O1—C5—C6—C7	150.87	(13)	0.8
O1—C5—C10—C4	−4.0	(2)	−17.94
O1—C5—C10—C9	178.22	(13)	161.87
O5—C20—C19—O4	−1.13	(19)	−47.01
O5—C20—C19—C18	178.15	(13)	−165.35
O5—C20—C21—C22	−178.88	(13)	73.93
N1—C9—C10—C5 \ -173.59 (12)
N1—C9—C10—C4 \ 8.57 (19)
N1—C2—C3—C4 \ -9.26 (19)
N1—C2—C3—C14 \ 174.56 (12)
C5—C6—C7—C8 \ 53.26 (15)
C5—C6—C7—C12 \ 171.44 (12)
C5—C6—C7—C11 \ -67.84 (15)
C8—C9—C10—C5 \ 5.3 (2)
C8—C9—C10—C4 \ -172.52 (12)
C4—C17—C18—C19 \ -176.06 (12)
C17—C4—C3—C14 \ 84.38 (13)
C17—C4—C3—C10 \ -86.21 (14)
C17—C4—C3—C2 \ 91.60 (15)
C17—C18—C19—O4 \ -179.79 (13)
C17—C18—C19—C20 \ 1.0 (2)
C17—C22—C21—C20 \ 0.5 (2)
C18—C17—C22—C21 \ -1.6 (2)

Hydrogen-bond geometry (\AA, °)

D—H	H···A	D···A	D—H···A	
N1—H1···O1i	0.876 (18)	1.971 (19)	2.8378 (15)	169.8 (16)
O4—H4···O2i	0.87 (2)	1.82 (2)	2.6894 (14)	175 (2)
O5—H5···O1ii	0.85 (2)	2.33 (2)	3.0293 (14)	140 (2)

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) x-1, y, z.