Comparison between theoretical four-loop predictions and Monte Carlo calculations in the two-dimensional N-vector model for $N = 3, 4, 8$

Sergio Caracciolob,*, Robert G. Edwardsb, Tereza Mendesc, Andrea Pelissettod and Alan D. Sokalc

aDipartimento di Fisica and INFN, Università degli Studi di Lecce, Lecce 73100, ITALIA
bSCRI, Florida State University, Tallahassee, FL 32306 USA
cDepartment of Physics, New York University, 4 Washington Place, New York, NY 10003 USA
dDipartimento di Fisica and INFN, Università degli Studi di Pisa, Pisa 56100, ITALIA

We have computed the four-loop contribution to the beta-function and to the anomalous dimension of the N-vector model. This allows the determination of the second perturbative correction to various long-distance quantities like the correlation lengths and the susceptibilities. We compare these predictions with new Monte Carlo data for $N = 3, 4, 8$. From these data we also extract the values of various universal nonperturbative constants, which we compare with the predictions of the $1/N$ expansion.

The N-vector model describes configurations of classical spins taking values on the unit sphere $S^{N-1} \subset \mathbb{R}^N$. We consider here the standard nearest-neighbor action

$$\mathcal{H}(\sigma) = -\beta \sum_{\{xy\}} \sigma_x \cdot \sigma_y .$$

(1)

The perturbative renormalization group predicts that when $\beta \not\to \infty$, the (infinite-volume) long-distance quantities of lattice theory should give the same results as the continuum theory in the $\overline{\text{MS}}$ normalization, provided that one rescales lengths by the factor

$$\Lambda = e^{-2\pi\beta/(N-2)} \left(\frac{2\pi\beta}{N-2} \right)^{\frac{N-2}{2}} 2^{5/2} \pi^{(N-2)/2} .$$

(2)

For the isovector and isotensor two-point functions

$$G_V(x, y) = \langle \sigma_x \cdot \sigma_y \rangle$$

(3)

$$G_T(x, y) = \langle (\sigma_x \cdot \sigma_y)^2 \rangle - \frac{1}{N}$$

(4)

we shall consider the RG predictions for the correlation lengths

$$\xi_\#(\beta) = \tilde{C}_\# \Lambda^{-1} \left[1 + \sum_{i=1}^{\infty} \frac{d_i}{\beta^i} \right]$$

(5)

and the susceptibilities

$$\chi_V(\beta) = C_{\chi_V} \Lambda^{-2} \left(\frac{2\pi\beta}{N-2} \right)^{-\frac{N-2}{2}} \left[1 + \sum_{i=1}^{\infty} \frac{b_i}{\beta^i} \right]$$

$$\chi_T(\beta) = C_{\chi_T} \Lambda^{-2} \left(\frac{2\pi\beta}{N-2} \right)^{-\frac{N-2}{2}} \left[1 + \sum_{i=1}^{\infty} \frac{d_i}{\beta^i} \right]$$

(6)

Here the constants $\tilde{C}_\#$ are universal but nonperturbative, while the coefficients a_i, b_i and d_i can be determined at the $(i+2)$-th order of the perturbative expansion. There is a prediction [1] for the exponential correlation length (= inverse mass gap) in the isovector channel:

$$\tilde{C}_\#(\nu_{\nu}) = \left(\frac{e}{8} \right)^{1/(N-2)} \Gamma \left(1 + \frac{1}{N-2} \right) .$$

(7)

As the model should not have bound states, in the isotensor channel one expects

$$\tilde{C}_\#(\nu_{\nu}) = \frac{1}{2} C_{\chi_T(\nu_{\nu})} .$$

(8)

The constants related to the second-moment correlation lengths and the susceptibilities are known analytically only in the large-N expansion.

*Speaker at the conference.
namely, through order $1/N$ both in the isovector [2] and isotensor [3] sectors. In particular,

$$\frac{\tilde{C}_{(2)\text{corr}}}{C_{(2)\text{corr}}} = 1 - \frac{0.003225}{N} + O(1/N^2),$$

(10)

so that even for $N = 3$ this ratio differs only marginally from 1 (in good agreement with Monte Carlo simulations [4]).

We can also try an improved expansion parameter [5,6] based on the isovector energy $E_V = \langle \sigma_{\#,0} \cdot \sigma_{1,0} \rangle$; we define

$$\beta_{\text{eff}} \equiv \frac{N - 1}{4(1 - E_V)} = \beta + O(1).$$

(11)

This β_{eff} has the property that at $N \to \infty$ with $\beta \equiv \beta/N$ fixed, there are only exponentially small corrections to the two-loop predictions for correlation lengths and susceptibilities.

A precise confirmation from Monte Carlo simulations of (5) with the correct nonperturbative constant (8)/(10) would be good evidence in favor of the conventional asymptotic-freedom picture [7], which has been criticized [8]. At the last Lattice conference [9] we presented data for the case $N = 3$ at infinite-volume correlation lengths ξ_∞ up to $\approx 10^5$ [10], obtained by using finite-size-scaling extrapolation at fixed β [11]. The discrepancy of these data from the three-loop predictions [12,6] was already quite small ($\sim 4\%$), and in the “improved expansion parameter” the agreement was even better. For this reason we considered it worthwhile to compute the next-order perturbative correction, in order to see whether the remaining discrepancy — which is nevertheless larger than the estimated statistical error — can be removed. We therefore computed the four-loop contributions to the beta-function and the anomalous dimension of the field for the lattice model (1); from these we derived the $1/\beta^2$ corrections to the correlation lengths and the general spin-n susceptibility [13]. For example, we have

$$a_2 = \frac{0.0688 - 0.0286 N + 0.007 N^2 - 0.0129 N^3}{(N - 2)^2}.$$

(12)

In Figure 1 we plot $\xi^{(2)}_{\text{estimates}}/\xi^{(2)}_{\text{theor}}$ versus β for the $O(3)$ model. Error bars are one standard deviation (statistical error only). There are five versions of $\xi^{(2)}_{\text{theor}}$: standard perturbation theory in $1/\beta$ gives points \circ (2-loop), \times (3-loop) and \otimes (4-loop); “improved” perturbation theory in $1/\beta_{\text{eff}}$ gives points \square (2-loop) and \bigcirc (3-loop).

Figure 1. $\xi^{(2)}_{\text{estimates}}/\xi^{(2)}_{\text{theor}}$ versus β for the $O(3)$ model. Error bars are one standard deviation (statistical error only). There are five versions of $\xi^{(2)}_{\text{theor}}$: standard perturbation theory in $1/\beta$ gives points \circ (2-loop), \times (3-loop) and \otimes (4-loop); “improved” perturbation theory in $1/\beta_{\text{eff}}$ gives points \square (2-loop) and \bigcirc (3-loop).

(points \circ, \times and \otimes) or by the “improved” two-loop and three-loop predictions (points \square and \bigcirc). The four-loop truncation of (5) is now fully compatible with our last extrapolated point. It falls roughly halfway between the three-loop truncations in $1/\beta$ and $1/\beta_{\text{eff}}$.

A similar result is obtained for $N = 4$, where the central estimate of our last point (which is at the rather small correlation length $\xi_\infty \approx 155$) differs from the theoretical four-loop prediction by only $4-5\%$; and for $N = 8$ [14], where the central estimate of our last point (which is at $\xi_\infty \approx 650$) shows an extremely good agreement (better than 1%).

We have also tried to take into account higher-loop corrections by using information from the $1/N$-expansion. Let

$$a_n^{(1/N)}(N) = N^{n-1} \bar{a}_n,$$

(13)

be the leading contribution to a_n in the limit $N \to \infty$. We computed \bar{a}_n up to $n = 8$ [13]. How good is the approximation in which only such a term is retained? We can compare with the known
coefficients a_1 and a_2. For $N = 4$, we have

$$\frac{a_1(4)}{a_1^{(1/N)}(4)} = 3.73; \quad \frac{a_2(4)}{a_2^{(1/N)}(4)} = 2.88;$$

while for $N = 8$, we have

$$\frac{a_1(8)}{a_1^{(1/N)}(8)} = 1.91; \quad \frac{a_2(8)}{a_2^{(1/N)}(8)} = 1.58.$$

The convergence seems slow; indeed, only at $N \gtrsim 50$ are the first two coefficients correct to within 10%. Let us now define k_n by

$$a_n(8) = k_n 8^{-n-1} a_n.$$

Already at $\beta = 5.80$ ($\xi \approx 33$) the Monte Carlo value \[14,15\] is in good agreement with the theoretical predictions. Indeed we get

$$\frac{\xi_{MC}/\xi_{th}}{\xi_{8-loop}} = \begin{cases} 0.998 & \text{when } k_n = 1 \forall n \\ 1.001 & \text{when } k_n = 2 \forall n \end{cases}$$

with a statistical error of ± 0.002. For larger values of β this ratio remains roughly constant, although the error bars grow. We can thus claim a nice control of (5) for $N = 8$.

Having verified (5), we can now extract from the Monte Carlo data a numerical evaluation of the nonperturbative universal constants C. For the limiting ratio $\xi^{(2)}/\xi^{(1)}$ we have the numerical results 3.51 for $N = 3$, 3.14 for $N = 4$, and 2.77 for $N = 8$, with error bars less than ± 0.01, which can be compared with the $1/N$-expansion prediction \[3\]

$$\frac{C_{\xi^{(2)}}}{C_{\xi^{(1)}}} = \sqrt{6} \left[1 + \frac{1.1999}{N} + \cdots \right]$$

$$\approx \begin{cases} 3.43 & \text{for } N = 3 \\ 3.18 & \text{for } N = 4 \\ 2.82 & \text{for } N = 8 \end{cases}$$

To extrapolate the asymptotic value of the isovector susceptibility, we found it convenient to study the dimensionless ratio

$$\frac{\chi_V}{(\xi_V^{(2)})^2} = \frac{C_{\chi_V}}{C_{\xi_V^{(2)}}} \left(\frac{2 \pi \beta}{N - 2} \right)^{\frac{8}{15}} \left[1 + \sum_{i=1}^{\infty} \frac{c_i}{\beta^i} \right]$$

because our knowledge of the lattice beta and gamma functions at four loops allows the determination of the first three coefficients c_i \[6,13\]. We

Figure 2. Estimate of \tilde{C}_{χ_V} [from (20)/(8)/(10)] versus β for the $O(8)$ model. Error bars (one standard deviation, statistical error only) shown for clarity only on one set of points. There are seven versions of $\chi_V/(\xi_V^{(2)})^2$: standard perturbation theory in $1/\beta$ gives points + (leading), × (with c_1), ♦ (c_{1,2}) and ◊ (c_{1,2,3}); “improved” perturbation theory in $1/\beta_{eff}$ gives points □ (leading), ◯ (c_1') and □ (c_1').

then use the exact formula (8)/(10) to estimate \tilde{C}_{χ_V}; see Figure 2 for $N = 8$. We find

$$\tilde{C}_{\chi_V} = \begin{cases} 10.8 \pm 0.8 & \text{for } N = 3 \\ 5.9 \pm 0.1 & \text{for } N = 4 \\ 5.6 \pm 0.1 & \text{for } N = 8 \end{cases}$$

which can be compared with the $1/N$-expression \[2\]

$$\tilde{C}_{\chi_V} = 2\pi \left[1 + \frac{4 + 3\gamma_C - 3\gamma_E - 7\log 2}{N} \right]$$

$$\approx \begin{cases} 3.67 & \text{for } N = 3 \\ 4.32 & \text{for } N = 4 \\ 5.30 & \text{for } N = 8 \end{cases}$$

where γ_E is Euler’s constant and

$$\gamma_C = \log \frac{\Gamma(1/3)\Gamma(7/6)}{\Gamma(2/3)\Gamma(5/6)}.$$

Clearly the $O(1/N^2)$ corrections are significant! We have made the wild guess that the exact ex-
pression for $\tilde{C}_{\chi V}$ is

\[
\tilde{C}_{\chi V} = 2\pi \left(\frac{e^{4+3\gamma_e}}{128} \right)^{\frac{1}{N-2}} \Gamma^3 \left(1 + \frac{1}{N - 2} \right),
\]

in analogy with (8). In Figure 3 we compare our Monte Carlo results with the $1/N$-prediction (22) and the wild guess (25). The result for $N = 3$ is close to the guessed formula but outside the statistical errors, while the values for $N = 4, 8$ follow the Ansatz nicely. It would be interesting to test (25) by computing the $O(1/N^2)$ term in (22).

The agreement with the $1/N$-expansion is much poorer for the isotensor susceptibility: our Monte Carlo data yield

\[
\tilde{C}_{\chi T} = \begin{cases}
1200 \pm 100 & \text{for } N = 3 \\
23 \pm 2 & \text{for } N = 4 \\
4.7 \pm 0.2 & \text{for } N = 8
\end{cases}
\]

compared to the $1/N$-expansion result [3]

\[
\tilde{C}_{\chi T} = \pi \left[1 - \frac{0.0296}{N} + \ldots \right].
\]

Clearly the $O(1/N^2)$ and higher corrections must have a drastic effect for $N \lesssim 20$.

The authors’ research was supported by CNR, INFN, DOE contracts DE-FG05-89ER25000 and DE-FG05-89ER40742, NSF grant DMS-9200719, and NATO CRG 910251.

REFERENCES

1. P. Hasenfratz, M. Maggiore and F. Niedermayer, Phys. Lett. B245 (1990) 522; P. Hasenfratz and F. Niedermayer, Phys. Lett. B245 (1990) 529.
2. H. Flyvbjerg, Nucl. Phys. B348 (1991) 714; P. Biscari, M. Camponorzi and P. Rossi, Phys. Lett. B242 (1990) 225.
3. S. Caracciolo and A. Pelissetto, in preparation.
4. S. Meyer, private communication.
5. G. Martinelli, G. Parisi and R. Petronzio, Phys. Lett. B100 (1981) 485; S. Samuel, O. Martin and K. Moriarty, Phys. Lett. B153 (1985) 87; G.P. Lepage and P.B. Mackenzie, Phys. Rev. D48 (1993) 2250.
6. S. Caracciolo and A. Pelissetto, Nucl. Phys. B420 (1994) 141.
7. A.M. Polyakov, Phys. Lett. B59 (1975) 79; E. Brézin and J. Zinn-Justin, Phys. Rev. B14 (1976) 3110; W.A. Bardeen, B.W. Lee and R.E. Shrock, Phys. Rev. D14 (1976) 985.
8. A. Patrascioiu and E. Seiler, Max-Planck-Institut preprint MPI-Ph/91-88 (1991); Nucl. Phys. B (Proc. Suppl.) 30 (1993) 184.
9. S. Caracciolo, R.G. Edwards, A. Pelissetto and A.D. Sokal, Nucl. Phys. B (Proc. Suppl.) 42 (1995) 752.
10. S. Caracciolo, R.G. Edwards, A. Pelissetto and A.D. Sokal, Phys. Rev. Lett. 75 (1995) 1891; and in preparation.
11. S. Caracciolo, R.G. Edwards, S.J. Ferreira, A. Pelissetto and A.D. Sokal, Phys. Rev. Lett. 74 (1995) 2969.
12. M. Falconi and A. Treves, Nucl. Phys. B265 (1986) 671.
13. S. Caracciolo and A. Pelissetto, University of Pisa preprint IFUP-TH 28/95, Nucl. Phys. B (to appear).
14. Talk by Tereza Mendes at this conference.
15. U. Wolff, Phys. Lett. B248 (1990) 335.