Surface roughness influences on the behaviour of flow inside microchannels

M H Farias¹, C S Castro¹, D A Garcia¹² and J S Henrique¹

¹ Fluid Dynamics Metrology Division (Dinam), Directorate of Scientific Metrology and Technology (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Senhora das Graças, 50, Xerém, Duque de Caxias/RJ, 25250-020, Brazil
² Laboratory of Nano and Microfluidics and Microsystems (Labmems), Mechanical Engineering Program (PEM/COPPE), Federal University of Rio de Janeiro (UFRJ), Cx. Postal 68503, Cidade Universitária, Rio de Janeiro/RJ, 21945-970, Brazil

E-mail: mhfarias@inmetro.gov.br

Abstract. This work discusses influence of the surface roughness on the behavior of liquids flowing inside microchannels. By measuring the flow profile using the micro-PIV technique, the flow of water inside two rectangular microchannels of different wall roughness and in a circular smooth microchannel was studied. Comparisons were made among the experimental results, showing that a metrological approach concerning surface characteristics of microdevices is required to ensure reliability of the measurements for flow analyses in microfluidic processes.

1. Introduction
A reliable measurement for describing details of the fluid dynamics in microscale has been very challenger for scientists and for manufacturers of microfluidic devices. In very tiny geometries, the flow behavior is not well represented by the equations and hypotheses which are commonly applied to flow in macrodomain, for instance, Navier-Stokes equations and boundary conditions. So, it can affect, strongly, the performance and flow process control analyses. As metrological approach in microfluidic studies plays very important role for theoretical, experimental and computational developments devoted to provide reliability on achievements about such theme, technology advances in this field also has been driven by the need of ensuring confidence on the measurement for characterizing microflows. Besides, discussions, investigations and developments aiming metrological traceability chain establishment for flow measure in microscale have received attention from NMIs [1].

1.1. Aim of this work
When fluid flows in microscale, multiphysics effects [2] take place, and a process analysis can be misinterpreted. One parameter which clearly influences the microflow behavior is the roughness of the surface on which the flow is in contact. However, for flow inside microchannels is very difficult to eliminate these influences, since the surface quality depends on the techniques for microchannel fabrication, as well as the material, since each technique has limitations. In the literature, it is known that surface effects in microflow are important, nevertheless, researchers do not have focused the
discussions on this subject. Thus, aiming to contribute to call attention to the relevance of the metrological criteria in microflow characterization measurements, this work presents an introductory discussion about influences of the surface roughness of the channel walls for flow behavior in microscale. In this work, the flow of liquid occurs inside rectangular and circular channels, in which the resulting scale length characterizes the microfluidic behavior.

2. Material and methods

The microflow measurements were carried out in three different straight channels: two of square cross section and one of circular cross section, as shown on table 1.

Geometry	Size (mm)	Material
Circular	I.D: 1	borosilicate glass
	L: 75	
Rectangular:	H: 0.8	borosilicate glass (side walls)
One with polished side walls	W: 0.8	(side walls) and PET (bottom
one with unpolished side walls	L: 75	and ceiling)

The circular channel was a glass capillary (with smooth internal surface). The rectangular channels were constructed by carefully bonding two glass slides (microscope slides, plain) and two translucent and colorless polyethylene terephthalate (PET) strips. Care was taken to avoid the channel clogging with glue. In the rectangular channels, the mean roughness of the polished (ground glass) side wall is around 0.8 µm, while the unpolished side wall is bright and smooth (with roughness less than 0.05 µm), but it is slightly waviness.

The micro particle image velocimetry technique, micro-PIV [4], from Dantec Dynamics™, was employed to obtain the flow velocity field. A high-resolution CCD sensor (FlowSense 4M Mk2 with a resolution of 2048 x 2048 pixels) and a Nd:YAG double-pulsed laser light source, producing a short pulse of 5 ns of green light (532 nm), were adapted to the inverted microscope (Leica Microsystems™, model 090-135.003) to illuminate and visualize the flow using a 10x magnification lens. PMMA Rhodamine B-Particles of mean diameter 1 µm were seeded in the flow, as tracers. For each liquid flowrate, 100 pairs of images were captured at a frequency of 7.4 Hz, with time between pairs of images varying between 500 µs and 20000 µs (according to the fluid flowrate). A syringe pump (Havard Apparatus® Pump 11 Elite) promoted the displacement of a 10 mL syringe containing the working fluid (deionized water and tracer particles) according to the set flowrate. In previous work, the metrological reliability of this syringe pump was evaluated under the basis of totalized volume upon different liquid flowrate [3].

3. Experimental procedure

Each channel was connected to the syringe pump, separately, through a hose. Deionized water was seeded with PMMA Rhodamine B-Particles, and after setting the flowrate at the pump control panel, the water was sent to the channel and the resulting field of velocity was measured with the micro-PIV
system. In this measurement, the center of the flow visualization window was placed at the middle length of the channels (L/2). The water flowrates in the experiments were the following:

Reference Flowrate (µL/min)	Circular channel	Rectangular channel (polished walls)	Rectangular channel (unpolished walls)
50	50, 100, 200, 500	10, 50, 100, 200, 500	

The flow velocity field was mapped after a mean of 100 pair of the flow images were compared. It is important highlight here that the flow field which is shown in the next section is related to a horizontal plan which is placed around the middle height of the channel. It is said “around” because when microchannels are studied with the use of the micro-PIV technique, the correct position of the plan of measurement cannot be determined with accuracy. This problem means a limitation in the micro-PIV technique use, and this lack shows a need of metrological investigation and the need of procedures and standards development for positioning the focused optical plan when aiming microflow dynamics analysis. It is a challenge. At Inmetro, this issue has received attention by the Fluid Dynamics Metrology Division.

4. Results and discussion
The pictures below show the velocity fields for minimum and maximum flowrates. The graphs were plotted using the same size and color scales to allow a quick comparison.

4.1. Water flowrate 50 µL/min

![Figure 1. Circular channel: (a) velocity field and (b) frame of the flow.](image-url)
Figure 2. Rectangular channel (polished wall): (a) velocity field and (b) frame of the flow.

Figure 3. Rectangular channel (unpolished wall): (a) velocity field and (b) frame of the flow.
4.2. *Water flowrate 500 μL/min*

As can be seen in Figures 1 to 3, at very low flowrate the flow velocity field in the circular and also in the rectangular channels are within the range near zero. Also, a similarity between the flow velocity field in the rectangular channels shows that, although there are differences between the mean size of the wall roughness of the channels, as the flow is very slow, the differences between the resulting shear rate are not significant. However, when the flowrate is increased, differences are perceived. Since the width of the channel is in microscale, when the side wall is rough, the friction effects generated at the channel wall are propagated under considerable intensity and impact on all main flow, when compared to the case of smooth wall under a same flowrate. As consequence, the longitudinal components of the velocity vector around the centerline of the rough channel become less than those when the wall is smooth. Besides, an asymmetry of the flow field (Figures 3 and 4b) was observed, and it can be due to the unpolished walls be slightly wavy, or even due to some irregularities which could have arisen during the process of channel construction.

Then, the results aforementioned show that a metrological approach considering the surface condition of the geometries where a microflow occurs has to be accounted in microflow analysis, since this can impact on the results of microfluidic processes. Here were shown the first results assessed in this research line at Inmetro, and the investigations will be continued. Other fluids and discussions about influences due to microchannel fabrication techniques will be included in the next studies.

5. References

[1] Wolf H 2010 *Meas. Sci. Technol.* **21** p070101.
[2] Karniadakis G, Beskok A and Aluru N 2005 *Microflows and Nanoflows - Fundamentals and Simulation* Springer New York 25.
[3] Dias B L, Aquino M H, Farias M H, Koiller J, Gabriel P C and Aibe V Y 2016 *J. Phys. Conf. Ser.* **733** p012007.
[4] Raffel M, Willert C, Wereley S and Kompenhans J 2007 *Particle Image Velocimetry* Springer Heidelberg.

Acknowledgements

The authors are grateful to CNPq, FAPERJ, FINEP, PETROBRAS and INMETRO for their support and sponsorship which have become possible the development of this research.