A fine-tuned global distribution dataset of marine forests

Jorge Assis1,4✉, Eliza Fragkopoulou1,4, Duarte Frade2, João Neiva1, André Oliveira1, David Abecasis1, Sylvain Faugeron2,3 & Ester A. Serrão1

Species distribution records are a prerequisite to follow climate-induced range shifts across space and time. However, synthesizing information from various sources such as peer-reviewed literature, herbaria, digital repositories and citizen science initiatives is not only costly and time consuming, but also challenging, as data may contain thematic and taxonomic errors and generally lack standardized formats. We address this gap for important marine ecosystem-structuring species of large brown algae and seagrasses. We gathered distribution records from various sources and provide a fine-tuned dataset with ~2.8 million dereplicated records, taxonomically standardized for 682 species, and considering important physiological and biogeographical traits. Specifically, a flagging system was implemented to signal potentially incorrect records reported on land, in regions with limiting light conditions for photosynthesis, and outside the known distribution of species, as inferred from the most recent published literature. We document the procedure and provide a dataset in tabular format based on Darwin Core Standard (DwC), alongside with a set of functions in R language for data management and visualization.

Background & Summary

Bioclimatic modelling1,2, macroecology3 and evolution4 are fields that have recently seen a boost in broad scale analyses owing to increased accessibility of large scale biodiversity data. Although these can be obtained from digital online databases (e.g., GBIF, the Global Biodiversity Information Facility, www.gbif.org and OBIS, the Ocean Biogeographic Information System, www.obis.org), herbarium (e.g., Macraogonal Herbarium Portal, www.macraogonal.org), museum collections, as well as citizen science initiatives5–7, they can be very incomplete and contain geographical and taxonomic errors. In particular, studies focused on the impacts of global climate changes8,9, or locating evolutionary biodiversity hotspots10,11, require complete and extremely accurate baselines on the distribution of species across space and time12.

Collating broad-scale biodiversity data from multiple sources is challenged by two major obstacles. First, the lack of complete database compatibility allowing efficient information exchange between distinct sources, alongside with inconsistent file structures13,14, leaves data frequently scattered, even for well-known taxa15. Second, the quality of several sources has been questioned regarding potential geographical data errors16. This is a serious limitation since unreliable biased records can deeply influence the outcomes of research analyses. For instance, distribution models can be strongly influenced by particular marginal records. While records of marine species falling on land (and vice-versa) can be easily identified and dealt with10, those distributed in climatically unfavorable regions (i.e., outside species’ niche), beyond range margins or dispersal capacities, should be verified and corrected when necessary. Wrong records may be even more likely for rare, elusive, or cryptic species that can be easily confused with others, more common and broadly distributed17. An additional problem that is more evident and easier to tackle is related to taxonomic data errors18, which can deeply confound the baseline of a species’ distribution19. When properly reviewed, databases can integrate quality control flags to identify potential data limitations. While some research communities have developed quality control standards on data (e.g., The Ocean Data Standards and Best Practices Project, www.oceandatastandards.org), no implementation has been done so far for the aforementioned data limitations, even in major online data sources providing large scale biodiversity data.

1CCMAR – Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal. 2Centro de Conservación Marina and CeBiB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. 3UMi 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique, Roscoff, France. ✉These authors contributed equally: Jorge Assis, Eliza Fragkopoulou. ✉✉e-mail: jorgemfa@gmail.com
Here we provide a fine-tuned dataset of marine forests at global scales, with occurrence records gathered from numerous independent sources15,30 and flagged with automatic and manual pipelines to increase data reliability in terms of geographical (including depth) and taxonomical traits. “Marine forests” is a common name used here to designate large brown algae (kelp and fucoids) and seagrasses. These blue-green infrastructures rank among the most productive and biodiversity-rich ecosystems31 supporting diverse food webs22,23, critical habitats and nursery grounds for numerous associated species24,25. They increase local biodiversity levels13,25–27 and provide key ecological services21 such as nutrient cycling, carbon sequestration28,29, sediment stabilization, and natural protection against ocean wave energy31. Because climate change is shifting their distribution and abundance worldwide1,4,5,31, a comprehensive dataset providing essential baselines is needed to better report and understand marine forests’ variability across space and time44.

Methods

Data compilation. Occurrence records of marine forests of large brown algae (orders Fucales, Laminariales and Tilopteridiales), and seagrasses (families Cymodoceaceae, Hydrocharitaceae, Posidoniaceae and Zosteraceae) were gathered from online repositories and herbaria, peer-reviewed scientific literature and citizen science initiatives with independently verifiable data (e.g., supported by photos). Only records with no copyright for any use and without any restriction (e.g., CC0, www.creativecommons.org), or any use with appropriate attribution (e.g., CC BY), were stored in the dataset (please refer to the analytical list of data sources; Suppl. Table 1).

Data treatment. The dataset structure was based on Darwin Core Standard (DwC)32. This framework for biodiversity data offers a stable and flexible framework to store all fields available in original data sources. Moreover, it provides standard identifiers, labels, and definitions, allowing a full link-back to original data sources.

Taxonomic standardization was performed with the World Register of Marine Species (WoRMS; www.marinespecies.org), a universally authoritative open-access reference system for marine organisms. This tool provides a unique identifier (aphiaID) that enabled to link each taxon originally captured, to an internationally accepted standardized name with associated taxonomic information (including hierarchy, rank, acceptance status and synonymy) that will continue to be updated in the future in case of taxonomic or name changes. In the rare cases of no match with WoRMS (including misspelled entries), or uncertain taxonomic status, the records were removed from the dataset.

Geographical locations were available for most records as coordinates in decimal degrees. For those records missing coordinates, but including information on location, an automatic geocoding procedure was performed with OpenStreetMap33,34 service (http://planet.openstreetmap.org).

Since unique records may be available across distinct data sources, the final aggregated dataset was subjected to the removal of duplicate records. These were considered when belonging to the same taxon, and recorded in the same exact geographical location (longitude, latitude and depth) and date (year, month and day).

Quality control. To achieve a fine-tuned dataset, a flagging system was implemented to identify records with doubtful geographical and depth locations. This started by flagging records occurring on land, by using a 1 km threshold from shoreline. This distance represented the lower spatial resolution of the polygon used to define landmass (OpenStreetMap geographic information33). Light availability for photosynthesis was further considered, since it is the main environmental driver restricting the vertical distribution of marine forests45. Limiting light was favored in detriment of bathymetry, because it varies with depth throughout the global ocean, particularly in oceanic regions, were it reaches deeper waters. Available light at bottom was extracted from Bio-ORACLE36, a dataset providing benthic environmental layers (i.e., along the bottom of the ocean). Because Bio-ORACLE layers are available for 3 different depth ranges, the maximum light value per record was chosen as a conservative approach to estimate the potential depth range for a given location. Records were flagged when light values were below the known limiting threshold of 50 E.m-2.year−1 for marine forests’ photosynthesis35,37. This flag was not applied to the brown algae Sargassum fluitans, Sargassum natans38 and Sargassum pusillum39 as they can complete a full life cycle floating on the sea surface.

Finally, all records were manually verified to identify potential outliers outside the known distribution of species. This information was based on the most recent published literature and by consulting experts when possible. Because distributional ranges are often documented at an administrative level (e.g., country), the flagging procedure integrated the Marine Ecoregions of the World (MEOW)40, a scheme that represents the broad-scale distributional patterns of species/communities in the ocean40. Records were flagged when distributed in a MEOW region not considered in the information available in the literature or provided by experts. The MEOW has 3 distinct levels dividing the globe into 12 realms, 62 provinces and 232 ecoregions40. We adopted the intermediate level “provinces” to reduce commission errors (cases incorrectly identified as potential outliers) and omission errors (outliers left out, or omitted), potentially arising while considering “realms” and “ecoregions”, respectively. Records were removed from the database when no information was available in literature to support the actual distribution of species.

Data Records

The dataset is publicly accessible for download in a permanent Figshare repository (https://doi.org/10.6084/m9.figshare.7854767). A version containing only pruned records is also accessible at https://www.dataone.org and https://www.marineforests.com.

Taxonomic coverage. The dataset provided41 covers 682 accepted taxa (at the species level; Suppl. Table 2) belonging to the orders Fucales, Laminariales and Tilopteridiales (i.e., brown macroalgae; Fig. 1), and the families Cymodoceaceae, Hydrocharitaceae, Posidoniaceae and Zosteraceae (i.e., seagrass; Fig. 2).
Spatial and temporal coverage. The dataset contains 2,751,805 records of occurrence (brown algae: 1,088,448; seagrasses: 1,663,357; Table 1) globally distributed between the years 1663 and 2018 (Fig. 3), increasing by 47.43% the data available in the two major online repositories GBIF and OBIS (Figs. 4 and 5).

Data collection sources. The dataset gathered information from 18 distinct repositories, 15 herbaria and 569 literature sources. The majority of records resulted from external repositories (82.56% of records), followed by literature (16.07% of records) and herbaria (1.35% of records; Table 1). The main repositories GBIF and OBIS...
accounted for 52.57% of all records). In terms of species number, the main sources of data were external repositories, followed by herbaria and literature. These covered 96.77%, 61.14% and 13.04% of species, respectively (Table 2).

Technical Validation

The dataset gathered information from multiple sources, some of which may be automatically interoperable, sharing erratic duplicated data, regardless of the credibility of the source. These data can be used in scientific studies, potentially generating misleading results. To address the challenge, we developed a specific quality control data treatment based on automatic and manual pipelines.

The taxonomic standardization using WORMS discarded any misspelled or no-match entries from the dataset, and aggregated 1116 initial taxa into 682 accepted taxa (at the species level). As new taxa are being described and their current status is constantly changing, WoRMS may not yet contain all updated statuses\(^42\), however, it is continuously being improved and is considered the best available source for marine taxonomic standardization. Together with the identification of duplicate entries, records missing coordinate information or information regarding species’ distributional ranges, our approach removed 2,676,350 initial entries from the dataset.

The automatic flagging procedure identified 1.21% of records located on land, and an additional 6.88% records without suitable light conditions for photosynthesis (Table 1). The manual verification based on published literature and consulting experts flagged 2.74% of records as potential outliers outside the known distributional ranges. To address the challenge, we developed a specific quality control data treatment based on automatic and manual pipelines.

The flagging system implemented, not available in any of the 33 repositories and herbaria consulted, allowed delivering a fine-tuned dataset of 2,485,534 georeferenced records gathered from multiple sources, with no taxonomic errors (based on the WoRMS current information), no duplicate entries, no records in unsuitable habitats (i.e. land or low light conditions) or too distant from species’ biogeographical ranges.

The use of a flagging system allowed retaining valuable data that should not be discarded. For instance, some large brown algae and seagrasses can often be found as rafts\(^43\), floating on the sea surface, hundreds of kilometers away from their original source\(^44,45\). While these records are not particularly suitable to build ecological models aimed for benthic species, they are highly valuable to address dispersal ecology. Instead of considering such cases as outliers for exclusion, flagging allows keeping records for users to decide their final use.

Group	Overall	Literature	Herbaria	Repositories	Total
Kelp and fucoid algae	439,877	36,775	611,796	1,088,448	
Flagged: On Land	2,241 (0.51)	5,350 (14.54)	18,615 (5.04)	26,206 (2.41)	
Flagged: Unsuitable light	21,080 (4.79)	7,420 (20.17)	44,480 (7.27)	72,980 (6.70)	
Flagged: Outside distribution	1,013 (0.23)	1,367 (3.71)	4,537 (0.74)	6,917 (0.63)	
Seagrasses	2,376	622	1,660,359	1,663,357	
Flagged: On Land	60 (2.52)	233 (37.45)	6,676 (0.40)	6,969 (0.42)	
Flagged: Unsuitable light	131 (5.51)	254 (40.83)	116,036 (6.99)	116,421 (6.99)	
Flagged: Outside distribution	39 (1.64)	99 (3.71)	68,314 (4.14)	68,452 (4.12)	
Total	442,253	37,397	2,272,155	2,751,805	

Table 1. Summary of records included in the dataset per ecological group, original source type and quality flagged (considering locations on land, regions with unsuitable light conditions and outside known distributional ranges). Values in parenthesis refer to percentage of flagged record.

Fig. 3 Records of marine forest species per year.
The dataset will continue to receive new data records from its multiple sources, as new literature gets published and new observations are made. Taxonomic and error corrections will continuously be made over the years, from experts (ecologists, taxonomists and naturalists), allowing continuous flagging of doubtful records.

R functions for data management and visualization. In addition to the dataset, we developed a set of functions in R language (R Development Core Team, 2018) to facilitate extraction, listing and visualization.
of occurrence records (e.g., function to export data as geospatial vectors for geographic information systems). All functions are detailed in Table 3 and can be easily installed by entering the following line into the command prompt:

```
source("https://raw.githubusercontent.com/jorgeassis/marineforestsDB/master/sourceMe.R")
```

Usage Notes

The dataset follows the FAIR principle of Findability, Accessibility, Interoperability and Reusability of data. It is made available as two distinct files in tabular format. The first aggregates all data with no taxonomic errors and no duplicate entries and includes the three fields implemented to flag records. The additional file provides a pruned version of the dataset discarding all potentially biased records.

The dataset complies with Darwin Core Standard (DwC), providing information on taxonomy, geographical location (e.g., coordinates in decimal degrees, depth and uncertainty), reference to original sources (including permanent identifiers; bibliographic Citation DOI), as well as the flagging system implemented (Table 4). The integration of the dataset with a set of functions in R language allows easy data acquisition and smooth integration with already available statistical tools, such as those aiming for Ecological Niche Modeling. For instance, the dataset can be used to describe the global distribution of species, address niche-based questions, support biodiversity and ecosystem-based conservation, and to understand correlations between anthropogenic pressures and population extinctions. Additionally, the availability of standard data layers delivering past and future climate change scenarios may further expand the applications of this dataset to predict range shifts, hypothesize important evolutionary scenarios, such as mapping climate-refugia where higher and endemic biodiversity evolved.

Data transparency and accuracy is a prerequisite for avoiding flawed and/or misleading conclusions, especially when provided to stakeholders and decision makers. The pipelines implemented are explicit, ensuring the clarity and reproducibility of the process and contributing to public data in standard formats (i.e., the Darwin Core Standard). With the flagging system, users can fine-tune the original dataset according to their research needs and boost the quality of their results. Particularly, when requested by decision-makers, more accurate outcomes may provide important climate change-integrated conservation strategies, as well as feed important baseline assessments, like those required in the scope of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES).

Table 2. Summary of species included in the dataset per ecological group and original source type. Quality flags (considering locations on land, regions with unsuitable light conditions and outside known distributional ranges) refer to species with at least one record flagged. Values in parenthesis refer to percentage of species with at least one record flagged.

Group	Species number (percentage)	Literature	Herbaria	Repositories	Total
Kelp and fucoid algae					
Overall	80	396	601	623	
Flagged: On Land	50 (62.50)	333 (84.09)	317 (52.75)	314 (50.40)	
Flagged: Unsuitable light	71 (88.75)	336 (84.84)	513 (85.35)	537 (86.19)	
Flagged: Outside distribution	22 (27.50)	235 (59.34)	208 (34.61)	423 (67.89)	
Seagrasses					
Overall	9	21	59	59	
Flagged: On Land	8 (88.88)	19 (90.48)	50 (84.74)	52 (88.13)	
Flagged: Unsuitable light	9 (100.00)	18 (85.71)	51 (86.44)	52 (88.13)	
Flagged: Outside distribution	2 (22.22)	17 (80.95)	36 (61.02)	39 (66.10)	
Total	89	417	660	682	

Table 3. List of functions available to facilitate extraction, listing and visualization of occurrence records (refer to main Github repository for more information).
Code availability
Data management was performed using R computing language61. The functions developed to manage and flag the dataset are permanently available in a Github repository (https://github.com/jorgeassis/marineforestsDB).

Received: 19 March 2019; Accepted: 19 March 2020;
Published online: 14 April 2020

References
1. Assis, J., Araújo, M. B. & Serrão, E. A. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob. Chang. Biol. 24, 1365–2486 (2017).
2. Thuiller, W. Patterns and uncertainties of species’ range shifts under climate change. Glob. Chang. Biol. 10, 2020–2027 (2004).
3. Verbruggen, H. et al. Macroecology meets macroevolution: Evolutionary niche dynamics in the seaweed Halimeda. Glob. Ecol. Biogeogr. 18, 393–405 (2009).
4. Wallari, E. & Hickerson, M. J. Late Pleistocene species distribution modelling of North Atlantic intertidal invertebrates. J. Biogeogr. 40, 249–260 (2013).
5. Azzurro, E., Broglio, E., Maynou, F. & Bariche, M. Citizen science detects the undetected: the case of Abudelfuf saxatilis from the Mediterranean Sea. Manag. Biol. Invasions 4, 167–170 (2013).
6. Cox, J. et al. Defining and Measuring Success in Online Citizen Science: A Case Study of Zooniverse Projects. Comput. Sci. Eng. 17, 28–41 (2015).
7. Assis, J. et al. Findkelp, a GIS-based community participation project to assess Portuguese kelp conservation status. J. Coast. Res. 3, 1469–1473 (2009).
8. Assis, J., Lucas, A. V., Bárbara, I. & Serrão, E. Á. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Mar. Environ. Res. 113, 174–182 (2016).

Table 4. Description of the main fields used in the dataset. For more information on additional available fields please refer to the Darwin Core Standard32 permanent repository34,64 at www.dwc.tdwg.org. *Potentially flagged records as ‘−1’ in dataset.
9. Neiva, J. et al. Genes Left Behind: Climate Change Threatens Cryptic Genetic Diversity in the Canopy-Forming Seaweed Bifurcaria bifurcata. *PLoS One* **10**, e0131530 (2015).

10. Boavida, J., Assis, J., Silva, I. & Serrão, E. A. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling. *Sci. Rep.* **6**, 36460 (2016).

11. Assis, J. et al. Deep reefs are climatic refugia for genetic diversity of marine forests. *J. Biogeogr.* **43**, 833–844 (2016).

12. Chefaoui, R. M., Assis, J., Duarte, C. M. & Serrão, E. A. Large-Scale Prediction of Seagrass Distribution Integrating Landscape Metrics and Environmental Factors: The Case of Cymodocea nodosa (Mediterranean–Atlantic). *Estuaries and Coasts** **39**, 123–137 (2015).

13. Shanmughavel, P. An overview on biodiversity information in databases. *Bioinformation* **1**, 367–369 (2007).

14. Duputie, A., Zimmermann, N. E. & Chuiue, I. Where are the wild things? Why we need better data on species distribution. * Glob. Ecol. Biogeogr.* **23**, 457–467 (2014).

15. Yesson, C. et al. How global is the global biodiversity information facility? *PLoS One* **2**, e12124 (2007).

16. Morris, R. A. A Encyclopedia of Biodiversity: Second Edition. Academic Press (Princeton University, 2013).

17. Aubry, K. B., Raley, C. M. & McKelvey, K. S. The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species. *PLoS One* **12**, e0179152 (2017).

18. Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. *Ecol. Inform.* **19**, 1–10 (2014).

19. Ceccarelli, S. et al. Data Descriptor: DataTri, a database of American triatomin species occurrence. *Sci. Data* **24**, 180071 (2018).

20. Dyer, E. E., Redding, D. W. & Blackburn, T. M. The global avian invasions atlas, a database of alien bird distributions worldwide. *Sci. Data* **4**, 170041 (2017).

21. Costanza, R. et al. The value of the world’s ecosystem services and natural capital. *Nature* **387**, 253–260 (1997).

22. Araújo, M. et al. Status, trends and drivers of kelp forests in Europe: an expert assessment. *Biodivers. Conserv.* **25**, 1319–1348 (2016).

23. Green, E. P. & Short, F. T. World Atlas Seagrass. (University of California Press, Berkeley, USA, 2003).

24. Hemminga, M. A. & Duarte, C. M. Seagrass Ecology. (Cambridge University Press, 2013).

25. Christie, H., Norderhaug, K. M. & Fredriksen, S. Macrophytes as habitat for fauna. *Mar. Ecol. Prog. Ser.* **396**, 221–233 (2009).

26. Borg, J. A., Rowden, A. A., Atrill, M. J., Sembri, P. J. & Jones, M. B. Wanted dead or alive: High diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica mat. *Mar. Biol.* **149**, 667–677 (2006).

27. Reaka-Kudla, M. L. The Global Biodiversity of Coral Reefs: A Comparison with Rain Forests. In *Seagrass Ecology* (eds. Hu, Z.-M. & Fraser, C.) 279–308 (Springer Netherlands, 2016).

28. Fourquarean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. *Nat. Geosci.* **5**, 505–509 (2012).

29. Chung, I. K. et al. adaptation against global warming: Korean Project Overview. *ICES J. Mar. Sci.* **68**, 66–74 (2012).

30. Neiva, J. et al. Climate Oscillations, Range Shifts and Phylogeographic Patterns of North Atlantic Fucaceae. In *Seaweed Phylogeography* (eds. Hu, Z.-M. & Fraser, C.) 279–308 (Springer Netherlands, 2016).

31. Assis, J. et al. Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. *Sci. Rep.* **7**(44348), 1–10 (2017).

32. Wieczorek, J. et al. Darwin core: An evolving community-developed biodiversity data standard. *PLoS One* **7**, e29715 (2012).

33. Haklay, M. & Weber, P. OpenStreetMap: User-generated street maps. *IEEE Pervasive Comput.* **1**, 12–18 (2008).

34. Contributors. O. Openstreetmap. Retrieved from, *https://planet.openstreetmap.org* (2015).

35. Graham, M. H., Kinlan, B. P., Druehl, L. D., Garske, L. E. & Banks, S. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. *Proc. Natl. Acad. Sci. USA* **104**, 16576–16580 (2007).

36. Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. * Glob. Ecol. Biogeogr.* **27**, 277–284 (2017).

37. Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. *Proc. Natl. Acad. Sci. USA*, 15452–15457 (2008).

38. Merino, D., Contreras-Patino, A. & Galparsoro, I. Towards a renewed approach to the development of marine protected areas in high biodiversity areas: Where are we heading? *Ecol. Evol.* **8**, 190–211 (2018).

39. Naimi, B. & Araújo, M. B. Genetic diversity and productivity. *Trends Ecol. Evol.* **33**, 369–373 (2009).

40. Spalding, M. D. et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. *Bioscience* **57**, 573–583 (2007).

41. Assis, J. et al. A fine-tuned global distribution dataset of marine forests. *figshare* https://doi.org/10.6084/m9.figshare.7854767 (2019).

42. Costello, M. J. et al. Global Co-ordination and Standardisation in Marine Biodiversity through the World Register of Marine Species (WoRMS) and Related Databases. *Oceanogr. Mar. Biol. Annu. Rev.* **44**, 323–429 (2006).

43. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. *Sci. Data* **3**, 160018 (2016).

44. Naimi, B. & Araújo, M. B. Amdin: a reproducible and extensible R platform for species distribution modelling. *Ecography (Cop.)* **39**, 368–375 (2016).

45. Thuiller, W., Lafoucade, B., Engler, R. & Araújo, M. B. BIOMOD - A platform for ensemble forecasting of species distributions. *Ecography (Cop.)* **32**, 369–373 (2009).

46. Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of Latitudinal Gradients in Marine Species Richness. *Trends Ecol. Evol.* **31**, 670–676 (2017).

47. Assis, J. et al. Oceanographic Conditions Limit the Spread of a Marine Invader along Southern African Shores. *PLoS One* **10**, e0128124 (2015).

48. Lee-Yaw, J. A. et al. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. *Ecol. Lett.* **19**, 710–722 (2016).

49. Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. *Ecol. Lett.* **8**, 993–1009 (2005).

50. Guisan, A. et al. Predicting species distributions for conservation decisions. *Ecol. Lett.* **16**, 1424–1433 (2013).

51. Scherner, F. et al. Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. *Mar. Pollut. Bull.* **76**, 106–115 (2013).

52. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. *Nature* **463**, 747–756 (2010).

53. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. *Nature* **507**, 492–5 (2014).

54. Martínez, B. et al. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. *Divers. Distrib.* **24**, 1350–1366 (2018).

55. Wallari, E. et al. Locating pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. *PLoS One* **2**, e563 (2007).

56. Assis, J., Serrão, E. A., Claro, B., Perrin, C. & Pearson, G. A. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. *Mol. Ecol.* **23**, 2797–2810 (2014).

57. Hannah, L., Midgley, G. F. & Millar, D. Climate change–integrated conservation strategies. *Glob. Ecol. Biogeogr.* **11**, 485–495 (2002).
Acknowledgements

This study was supported by a Pew Marine Fellowship (EAS), the European Maritime and Fisheries Fund and the MAR2020 program through project REDAMP (MAR-01.04.02-FEAMP-0015), and the Foundation for Science and Technology (FCT) of Portugal through fellowships to J.A. (SFRH/BPD/111003/2015), D.A. (SFRH/BPD/95334/2013), EAS (SFRH/BSAB/150485/2019) and E.F. (SFRH/BD/144878/2019), the transitional norm - DL57/2016/CP1361/CT0035 and D.L. 57/2016/CP1361/CT0036, and projects GENEKELP (PTDC/MAR-EST/6053/2014), MARFOR (BIODIVERSA/004/2015) and UIDB/04326/2020. We thank all the many taxonomy experts and citizen science volunteers that verified and contributed verifiable data records.

Author contributions

J.A. and E.A.S. conceived the study. J.A., E.F. and A.O. designed the data pipelines. D.F., J.N., S.F. and E.A.S. revised the data and queried taxonomic experts about doubtful records. D.A. contributed funds and tools. All authors wrote and reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41597-020-0459-x.

Correspondence and requests for materials should be addressed to J.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

© The Author(s) 2020