Using the theoretical domains framework to inform strategies to support dietitians undertaking body composition assessments in routine clinical care

Chloe J. D. Jobber, Shelley A. Wilkinson, Elyssa K. Hughes, Fiona Nave and Barbara S. van der Meij

Abstract

Background: Malnutrition, sarcopenia and cachexia are clinical wasting syndromes characterised by muscle loss. Systematic monitoring by body composition assessment (BCA) is recommended for the diagnosis, treatment and monitoring of the syndrome(s). This study investigated practices, competency, and attitudes of Australian dietitians regarding BCA, to inform a local implementation process.

Methods: Applying the Action cycle in the Knowledge to Action framework, surveys were distributed to the 26 dietitians of an 800-bed tertiary hospital. The survey assessed barriers and enablers to performing routine BCA in clinical care. Results were categorised using the Theoretical Domains Framework (TDF) and suitable interventions mapped using the Behaviour Change Wheel.

Results: Twenty-two dietitians (84.6%) completed the survey. Barriers to BCA were identified in all TDF domains, particularly in Knowledge, Skills, Social/professional role and identity, Beliefs about capabilities, and Environmental context and resources. Enablers existed in domains of: Skills; Beliefs about consequences; Goals; Environmental context and resources; Social influences; Intentions; Optimism; Reinforcement.

Conclusions: This study showed that hospital dietitians experience individual, team, and organisational barriers to adopt BCAs in clinical practice. We were able to formulate targeted implementation strategies to overcome these barriers to assist BCA adoption into routine practice.

Keywords: Barriers, Body composition assessment, Enablers, Malnutrition, Sarcopenia

Background

Malnutrition, sarcopenia and cachexia are clinical wasting syndromes, prevalent in patients with acute or chronic diseases and frail elderly [1–3]. Malnutrition occurs in 20–50% [1, 4] of patients in acute care settings, sarcopenia in 15–70% [5, 6] and cachexia in 5–80% [7–9]. Malnutrition is defined as “a state resulting from lack of intake or uptake of nutrition that leads to altered body composition (decreased fat free mass) and body cell mass leading to diminished physical and mental function and impaired clinical outcome from disease” [10]. Malnutrition is associated with reduced treatment efficacy and increased healthcare costs [11, 12]. Disease-related malnutrition is characterised by inflammation and can be acute or chronic. Chronic disease-related malnutrition is also called ‘cachexia’ and is characterised by “inflammation and ongoing loss of weight and muscle mass” [10].
Sarcopenia is a condition which is often associated with malnutrition. It is defined as "loss of skeletal muscle mass and strength related to ageing and/or chronic disease" [13, 14], and is associated with negative outcomes across health care settings including reduced survival, worse clinical outcomes and impaired quality of life in many clinical populations including oncology, surgical, hepatology, and older adults [15–17]. As sarcopenia is prevalent amongst elderly and chronically ill, assessment and treatment has been encouraged by several leading expert groups [13, 18]. To be able to identify sarcopenia, assessment of muscle strength and muscle quantity or quality is required.

The three syndromes of malnutrition, cachexia, and sarcopenia are present in hospital populations and although they have been well defined in clinical practice, the umbrella term ‘malnutrition’ is used for patients who show signs of inadequate food intake, weight loss, and muscle wasting. It is recommended to screen for malnutrition on admission to the hospital and regularly during hospital stay, and to treat malnutrition as early as possible [10, 19, 20]. Malnutrition is typically ‘managed’ with a two-step process of screening and assessment. The initial step uses a malnutrition screening tool, such as the Malnutrition Screening Tool (MST) or Nutritional Risk Screening (NRS) [10, 21]. Patients classified as ‘at risk of malnutrition’ are subsequently referred to a dietitian. The second step is a dietitian assessment using a validated tool, such as the Subjective Global Assessment (SGA) or Mini-Nutritional Assessment (MNA) [10, 11]. These assessment tools diagnose malnutrition by drawing on objective parameters such as weight and metabolic demand, as well as subjective parameters like weight history, nutrition impact symptoms, and physical examination of muscle mass and subcutaneous fat stores [22]. Nutritional assessment may include additional anthropometric assessments such as mid upper arm circumference, skin fold thickness and mid upper arm muscle circumference [23].

Whilst parameters of nutrition assessment tools are easy to gather and rate highly regarding sensitivity, specificity and inter-rater reliability, they do not provide objective data on body composition such as muscle mass [24]. In addition, there is a subset of patients who cannot be weighed and using an estimated weight leaves a margin for error in classifying malnutrition [25]. Nutrition assessment tools also fail to recognise that patients can have a low level of lean tissue with any BMI category [26].

Thus, measures of overall weight loss lack the sensitivity to detect the amount of lean mass an individual has and the potential loss of lean mass experienced. This introduces the potential to grossly underestimate the prevalence of hospital malnutrition if diagnosis is based on body weight and body weight changes alone. Other challenges that impact the correct identification of malnutrition are our ageing society and the global epidemic of overweight and obesity [27], resulting in a higher number of patients with sarcopenia, as well as overweight and obese patients with chronic or acute diseases [28–30]. Malnutrition in these patients is harder to recognise using the aforementioned assessment tools, but is nonetheless associated with worse outcomes [25, 31].

As a result of these shortcomings there is a lack of consensus amongst the dietetic and medical community surrounding malnutrition assessment methodologies [17, 32–37]. With societal changes and improved technologies available, it is prudent to consider additional objective ways to obtain information on lean mass, in order to diagnose and monitor the effectiveness of the treatment of malnutrition [17, 37, 38].

Routine measuring lean mass provides an objective measure to diagnose and monitor malnutrition. This aligns with the international clinical nutrition community’s recognition of the need for BCA as part of malnutrition assessment [15, 17, 39]. Indeed, the new Global Leadership Initiative on Malnutrition (GLIM) criteria recommends the measuring of body composition and identifying loss of lean mass as one of the top five criteria to assist in diagnosing malnutrition [27, 33]. Since the launch of the GLIM criteria, several initiatives have been taken to validate the criteria. These showed that the GLIM criteria have a fair agreement with the reference standard [40–42].

Despite available evidence of the benefits of BCA, body composition is not routinely used by dietitians in clinical practice. This is reportedly due to incomplete knowledge and awareness, uncertainty of how and when to measure, poor availability of assessment tools and a lack of time [17, 43]. Given the role that lean mass plays in the clinical outcomes of certain illnesses, it is of critical importance that its assessment be added into the nutrition field [15, 17].

The most common BCA techniques that have been validated for use in humans are skinfold measurements, single and multi-frequency bio-impedance analysis, hydrodensitometry, Dual Energy X-ray Absorptiometry (DXA), computerized tomography (CT)-scans, and air displacement plethysmography (e.g. BodPod) [44]. These techniques are all non-invasive but vary with regards to cost, precision and validity, with skinfold measurements and bio-impedance analysis being relatively imprecise and DXA, CT-scans and air displacement plethysmography being more accurate but also more costly techniques, and less appropriate for bedside measurements [15, 44, 45]. Recently, ultrasound techniques have been used to assess body compartments at the bedside, for instance the upper quadriceps muscle [15].
It is widely recognised that the dissemination of information alone does not change practice [46]; thus drawing on an implementation science methodology facilitating this change and adoption process [47]. This theory-driven approach guides the rigorous and systematic processes of evidence selection, adapting knowledge to the local context, understanding barriers and enablers to its use, selecting appropriate interventions to support its adoption, and monitoring and evaluating outcomes, as well as sustaining knowledge use, as outlined in the Knowledge-to-Action (KTA) framework [48]. Within this framework additional theories, models, and frameworks can be applied to guide structured and systematic barrier identification and intervention selection, such as the Theoretical Domains Framework (TDF) and the Behaviour Change Wheel (BCW) [49, 50].

The aim of this project was to develop a department-wide strategy to incorporate BCA by dietitians into routine clinical care in an 800-bed tertiary hospital in South-East Queensland (Australia) using an Implementation Science approach. To inform this process we planned to investigate the current local practices, competency, and attitudes of our departmental clinical dietitians with regards to the utilisation of BCA.

Methods

The study was declared as Exempt from Review – Not Research according to the Human Research Ethics Committee of Mater Research Institute – UQ Human Research Ethics Committee (Project ID: EXMT/MML/58778). All methods were carried out in accordance with relevant guidelines and regulations. Informed consent was obtained from all participants; instructions for survey completion indicated their completion implied consent.

This implementation planning project occurred in an 800-bed tertiary hospital in Brisbane, Australia. The hospital provides services to both private and public inpatients and outpatients and includes a variety of patient populations. At the start of this project (May 2017), The Dietetics and Foodservices department consisted of 20.55 full time equivalents (FTE) with 26 dietitians.

To develop our BCA implementation strategy we followed the KTA framework which is an iterative approach that allows building (Knowledge Creation) and application of knowledge (Action Cycle) [40, 48, 51]. The Action Cycle was the focus of this work; with steps that can occur sequentially or concurrently and involve identification of the problem, assessing knowledge use determinants, evaluating the impact of knowledge use or outcomes, and ensuring sustainability [40]. The KTA is a ‘process model’ that guides the process of translating research into practice [48]. The KTA is flexible enough to enable some of the steps (e.g. ‘assess barriers to knowledge use’ and ‘select, tailor, implement interventions’) to be guided by further application of ‘Determination Theories’ (i.e. TDF) [50] and ‘Implementation Theories’ (i.e. BCW) [49] to assess barriers and enablers and design suitable interventions [51]. The TDF is used as a system for categorising and defining barriers, and the BCW as a system for guiding decision-making around designing behaviour change interventions based on the identified barriers.

Below, we outline the survey process which allowed determination of a dietetic departmental practices, competency, and attitudes. A survey was developed to assess barriers and enablers to BCA use within the dietetic department (Additional file 1). Questions were designed by the authors to map against domains of the TDF [50]. Questions covered knowledge attitudes on, and confidence in BCA device use, frequency and predicted time taken to use the devices, views on how it would change dietetic practice, and which patient cohorts would benefit from BCA, informed by current literature on barriers and enablers to undertaking BCA [43] and discussion within the research team. Each question also had an ‘other’ option. All department dietitians were invited to complete the survey via an email link to an online survey portal (Survey Monkey, San Mateo, CA, USA) in May 2018. The survey was open for two weeks and two reminders were sent prior to the closing date.

The results were summarised as frequencies and percentages of answers for each question. All authors reviewed the summarised survey results and tabulated the barriers and enablers identified (Table 1). This process involved an analysis using the TDF as the framework to categorise responses into domains; these responses were sorted into identified barriers and enablers, followed by documenting the source of the behaviour using the BCW (column 5), potential behaviour change techniques (BCT) in column 6, and finally, interventions designed drawing from the implementation science literature (column 7) [49, 52]. Definitions of the BCW intervention components (column 5) are as follows: Education (Increasing knowledge or understanding); Persuasion (Using communication to induce positive or negative feelings or stimulate action); Incentivisation (Creating expectation of reward); Coercion (Creating expectation of punishment or cost); Training (Imparting skills); Restriction (Using rules to reduce the opportunity to engage in the target behaviour (or to increase the target behaviour by reducing the opportunity to engage in competing behaviours)); Environmental restructuring (Changing the physical or social context); Modelling (Providing an example for people to aspire to or imitate); and Enablement (Increasing means/reducing barriers to
TDF domain	n survey respondents (from 22 dietitians)	Survey identified Barriers (% who reported barrier)	Survey identified Enablers (% who reported enablers)	BCW Intervention components and intervention definition	Behaviour change techniques (BCTs)	Potential strategies, operationalised as:
Knowledge	16	Unsure of clinical areas BCA would benefit 54.5% unsure who to use on 50.0% unsure when to do 45.5% unsure how to interpret				
		Spending more time on MUAC 50.0% unsure what to do				
Skills	16	Training and awareness in a variety of areas 27.3% Don't know how to use 18.2% Lack of confidence (and enabler) 18.2% Don't have time to perform Never use skinfold 90.9%, BIS 81.8%, handgrip 68.2%, MUAC 68.2% 54.5% unsure who to use on 50.0% unsure when to do				

Psychological capability
- **Education**: Increasing knowledge or understanding: E.g. Feedback on the behaviour/ outcome(s) of the behaviour
- **Training**: Self-monitoring of behaviour/ outcome of behaviour
- **Prompts/cue**: Information about social and environmental consequences
- **Information about others' approval**: Information about others' approval
- **Imparting skills**: Self-monitoring of behaviour

Enablement
- **Reduction barriers to increase capability or opportunity**: (beyond education, training and environmental restructuring)
- **Verbal persuasion about capability**: E.g. Social support
- **Self-reward**: Reduce negative emotions
- **Goal setting (behaviour, outcome)**: Conserve mental resources
- **Review behaviour and outcome of behaviour**: Feedback on the behaviour/ outcome(s) of the behaviour
- **Discrepancy between current behaviour and goal**: Graded tasks
- **Action planning**: Adding objects to the environment

Reflective motivation
- **Cognitive interpersonal skills**: Increasing knowledge or understanding: E.g. as above
- **Education**: Using communication to induce positive or negative feelings or stimulate action
- **Persuasion**: Focus on past success

Physical capability
- **Training**: Identification associated with changed behaviour
- **Physical skills**: Incorporation into project plan and engagement and reporting strategy for and with clinical champions (6 month project)
| TDF domain | n survey question respondents (from 22 dietitians) | Survey identified Barriers (% who reported barrier) | Survey identified Enablers (% who reported enablers) | BCW Intervention components and intervention definition | Behaviour change techniques (BCTs) | Potential strategies, operationalised as: |
|------------|---|--|--|--|---------------------------------|-----------------------------------|
| Social/ professional role and identity | 6 | 18.2% I think these measures are more appropriate for research
18.2% I do not think these measurements are appropriate for my area of work | Reflective motivation
Education
Persuasion
Incentivisation
Coercion | Enablement
Identification of self as role model,
Information about social and environmental consequences,
Information about health consequences,
Salience of consequences,
Information about others’ Social comparison
Creating expectation of reward
E.g.
Feedback on behaviour or on the outcome(s) of behaviour,
Self-monitoring of behaviour or outcome of behaviour,
Monitoring of (outcome of) behaviour by others without evidence of feedback,
Situation-specific reward,
Reward incompatible behaviour,
Reduce reward frequency,
Reward alternate behaviour,
Social reward,
Self-reward,
Behavioural contract,
Commitment,
Discrepancy between current behaviour and goal
Creating expectation of punishment or cost
As above | As ‘Skills’
As above | As above |
| Beliefs about capabilities | 12 | 27.3% I don’t think I could perform these measures accurately
18.2% I do not have time to perform these measurements | Reflective motivation
Education
Persuasion
Incentivisation
Coercion | As ‘Skills’
As above, especially how to be accurate
As above, especially workflow practices (decide and discuss as a team/s) | As above |
| Beliefs about consequences | 5 (barriers)
19 (enablers) | 13.6% Don’t think these measurements would benefit my practice/tell me anything new/useful
9.0% I do not expect these measurements to change my practice | Reflective motivation
Education
Persuasion
Incentivisation
Coercion | As ‘Skills’
As above, especially reflected in the BPIs and WARs – how this may be clinically relevant to measure and monitor; how to make routine; how to monitor; also areas for future research | As above |

50.0% unsure what to do
45.5% unsure how to interpret
63.6%, PG-SGA (77.3%), hand-grip (45.5%), tape measure (68.2%)
TDF domain	n survey question respondents (from 22 dietitians)	Survey identified Barriers (% who reported barrier)	Survey identified Enablers (% who reported enablers)	BCW Intervention components and intervention definition	Behaviour change techniques (BCTs)	Potential strategies, operationalised as:
Goals	16	54.5% unsure who to use on 50.0% unsure when to do 50.0% unsure what to do 45.5% unsure how to interpret malnutrition 45.5% Would improve my practice 22.7% Leverage for nasogastric tubes 22.7% Leverage for pre-surgical provision of enteral/parenteral nutrition 4.5% With training and time BCAs could become routine	72.2% I would like to learn more about BCA 68.2% I would like to apply measurement of body composition to my practice 45.5% Great that we will have support to routinize	Reflective motivation Education Persuasion Incentivisation Coercion	As ‘Skills’	As above
Memory, attention and decision processes	16	59.1% Not in my daily routine 40.9% Hassle to find reference ranges 31.8% Too much time to do 22.7% I forget about doing or scheduling a measurement 45.5% Difficulties – practicalities	45.5% Great that we will have support to routinize	Psychological capability Education Training Enablement	As ‘Knowledge’	As above, especially eventually formalise a process of documenting, trialling, evaluation in each WAR, also to consider new staff orientation
Environmental context and resources	10	31.8% We do not have procedures or forms to report these measurements 54.5% I don’t know how to book these devices 27.3% I don’t know where these devices are kept 18.2% I know where these devices are kept but I don’t know how to get them to the ward 18.2% I don’t have access to the devices I need to perform body composition assessment	45.5% If you can get access to the peapod for routine assessments that would be great	Physical opportunity Restrictions Environmental restructuring	Using rules to reduce the opportunity to engage in the target behaviour (or to increase the opportunity to engage in competing behaviours)	As above
Social influences	13	18.2% My peers do not perform these measurements, so why should I? 45.5% I think they are burdensome to patients	45.5% I feel this would add value to Dietitians and patient care in relevant populations	Social opportunity Restrictions Persuasion	As above	As above
increase capability or opportunity) [49]. Findings were refined through group discussion resulting in consensus, with subsequent operationalisation and prioritisation of strategies, listed in column 7, informed by BCTs in column 6. The group consisted of two clinician-researchers (one with expertise in implementation science and one in body composition) who were embedded in the department and three clinicians (including one senior team leader) with an interest in body composition assessment and who also had a strong clinical understanding of the department.

Results

Twenty-two of 26 dietitians (84.6%) completed the survey. As shown in Table 2, more than half of clinicians had previous training in BCA, mostly in skinfold
Few had training in bioelectrical impedance spectroscopy (BIS) devices. The majority of clinicians were aware that skinfold calliper, BIS, PG-SGA physical exam, hand grip dynamometer and tape measure devices were available for use in their department. More clinicians felt confident using PG-SGA physical exam and tape measures with fewer feeling confident using the BIS, MUAC and handgrip devices and techniques. As seen in Fig. 1, the PG-SGA physical exam was the most common assessment reported to be performed, followed by the use of tape measures. The majority of clinicians reported that they never used skinfold measurement, BIS, MUAC or handgrip measures.

Dietitians’ attitudes to use of BCA in routine practice were categorised barriers and enablers across TDF domains (Table 1). Around half of the dietitians reported not being sure who (54.5%), when (50%), what to do (50%), or how to interpret (45.5%) BCAs (TDF domain -Knowledge). Further, between 68.2–100% of BCA techniques were not used in their practice (Skills). Broadly, in their daily practice, the dietitians noted that undertaking BCAs were not in their daily routine (Belief about Capabilities; Memory, attention and decision processes; Intentions). Almost half (45.5%) felt they would need to change their practice to incorporate BCA into their assessments (Memory, attention and decision processes) and 40.9% reported it would be a hassle to find references ranges (Behavioural Regulation).

However, positively, over two-thirds of dietitians were aware of most of the devices in the department (Skills), and felt adding BCA into their practice would have a positive effect on a range of activities, including assessment of energy requirements (77.3%), providing objective measures of their interventions (72.3%) (Beliefs about Consequences). A large majority of dietitians reported they would like to learn more about BCAs (72.2%) thickness and mid upper arm circumference (MUAC). A very few had training in bioelectrical impedance spectroscopy (BIS) devices. The majority of clinicians were aware that skinfold calliper, BIS, PG-SGA physical exam, hand grip dynamometer and tape measure devices were available for use in their department. More clinicians felt confident using PG-SGA physical exam and tape measures with fewer feeling confident using the BIS, MUAC and handgrip devices and techniques. As seen in Fig. 1, the PG-SGA physical exam was the most common assessment reported to be performed, followed by the use of tape measures. The majority of clinicians reported that they never used skinfold measurement, BIS, MUAC or handgrip measures.

Table 2

Dietitian’s prior training, awareness of available devices and confidence in performing body composition assessments
% (n) Dietitians
Response rate
Previous training in BCA use
Yes
No
Previous training in BCA devices
Skinfold callipers
Mid-upper arm circumference (MUAC)
Bioelectrical impedance spectroscopy (BIS)
Dual x-ray absorptiometry (DXA)
Knowledge of available of devices and procedures in department
PG-SGA physical exam
BIS
Tape measures
Skinfold callipers
Handgrip dynamometer
Bioelectrical impedance scale
Rating of confidence in using BCA devices or undertaking procedures (extremely / reasonably confident)
PG-SGA physical exam
Tape measures
MUAC
Handgrip dynamometer
BIS
Skinfold callipers

BCA body composition assessment; BIS Bioelectrical impedance spectroscopy; DXA dual x-ray absorptiometry; MUAC mid upper arm circumference; PG-SGA patient generated subjective global assessment; REE resting energy expenditure

![Graph](image)
and apply them in their practice (68.2%)(Goals), feeling it would make their practice more interesting (Optimism). The dietitians also agreed that the Body Composition team would make these changes possible (67.7%)(Reinforcement).

Table 1 shows the mapping of the identified barriers and enablers (columns 2 and 3) to the TDF domains (column 1). Interventions and how these can be operationalised, drawing from the literature [49, 52] are in columns 4 and 5. Barriers to use of BCA within our department were identified in all TDF domains. Enablers included: Skills; Beliefs about consequences; Goals; Environmental context and resources; Social influences; Intentions; Optimism; Reinforcement.

Through the detailed mapping process, these are summarised in and operationalised in column 6 of Table 1. They can broadly be grouped as: 1. Professional development strategy, 2. Body composition assessment clinical champion project, and 3. Departmental integration process.

Discussion

This study aimed to understand the attitudes, beliefs, and practices of clinicians in a tertiary hospital dietetics department regarding patients’ BCA practices to inform a process of integrating these practices into routine clinical care. Most dietitians rarely used BCA with their patients in a systematic way. Barriers and enablers existed in many of the same TDF domains. Many dietitians felt unsure of their skills, when and how to systematically use these BCA techniques, and some questioned their benefit for particular clinical areas (e.g. neonatal care) and/or outside of research projects. However, many dietitians were optimistic about the potential this process would provide to enabling evidence-based practice and noted it would add to the strength of assessments, recommendations, and ability to detect malnutrition and other wasting syndromes, and to clinically relevant improvements within the delivery of medical nutrition therapy.

To our knowledge, this is the first study to investigate barriers and enablers to systematic adoption of BCA techniques into routine dietetic clinical practice. While many papers have promoted the use of BCA to detect malnutrition [10, 15, 17, 33, 36, 37], and specific studies described the application of these techniques in clinical areas (e.g. elderly [38]; liver failure [53–55]; oncology [56, 57]; renal disease [58]; and respiratory disease [32]) none have applied this across a hospital dietetics department.

To our knowledge, only one study, by Reijnierse et al. (2017), documented barriers to BCA application in practice [43]. These were explored before and after a Dutch health professional training program on detection and management of sarcopenia [43]. Barriers included lack of availability of equipment, lack of knowledge, time constraints, and lack of collaboration with/awareness of other health professionals [43]. When Reijnierse’s study was repeated in a similar sized cohort of Australian and New Zealand health professionals (n = 250), as previously found, a lack of diagnostic tools was the main reason for not diagnosing sarcopenia [59]. Lack of sarcopenia awareness and lack of motivation among healthcare professionals were also common barriers [43]. In addition to most of these, our study identified additional barriers relating to clinicians’ beliefs about the applicability of the techniques, personal ability to undertake the assessments and confidence in their abilities to incorporate these into their daily practice. Our more extensive suite of barriers may have resulted from a more profession-specific/department-wide assessment rather than training attendees of varied professions [43, 59].

Moreover, applicability issues also relate to BCA validity issues when used with acutely or chronically ill patients. American Society for Parenteral and Enteral Nutrition’s (ASPEN) recent systematic review showed minimal studies that have provided data on BCA in clinical populations. Out of BIA, DXA and ultrasound, DXA and CT scanning were recommended as ‘gold standard’, but the authors indicated that more research is required on the validity of BCA in specific patient populations [36].

Acknowledging the need for addressing all “bottlenecks” (barriers) in each phase of the implementation to ensure diagnosis and management of sarcopenia in daily practices, Reijnierse et al. (2017) highlight the need to draw on the implementation science literature in delivering effective interventions [43]. They highlight that this requires many factors such as acquisition of diagnostic measurement devices, reorganisation of care, collaboration between healthcare professionals, perceived needs and benefits of innovation and organizational factors [43]. Accordingly, we have adopted an implementation science approach to ensure we systematically select interventions that align with identified barriers and enhance existing enablers [48–50].

Following the operationalisation of the evidence-informed strategies to overcome the identified barriers and enablers, our team will progress the overarching interventions of upskilling (professional development strategy), modelling and reducing fear of change (clinical champion project) and embedding as usual practice (departmental integration) the use of BCA to complete a full ‘action cycle’ of the KTA [49, 52]. The details of these strategies are described in Table 1 (column 6). We will repeat our departmental survey in mid-2020 to reassess adoption of, (perceived) competency in, and attitudes of clinical dietitians towards the utilisation of BCA devices within our department.
A study strength included the use of implementation science methodology and frameworks (KTA, TDF, BCW) [48–50] to map and inform our strategy. Many solutions may appear ‘common sense’ but the systematic assessment and rigour provided by the process provides confidence in the findings and interventions. The survey revealed numerous barriers and enablers to the adoption of BCA in routine clinical care. A greater understanding and/or a wider selection of barriers may have been identified through more qualitative approaches (E.g. focus groups, interviews). However, the methodological approaches were pragmatically chosen to be administered and analysed within routine practice without additional funding. The barriers and enablers identified may reflect specific local departmental issues and may not be generalisable to all sites. However, it is likely that many of these issues are common to other Australian and international sites, as highlighted by Reijnierse [43] and Yeung [59] and colleagues. Study limitations include potential reporting bias or answers reflecting social desirability despite being an anonymous due to the small team size, barriers not existing in the TDF domains allocated to them in the survey, plus lack of data on time burden for dietitians of performing measurements, booking devices, and carrying devices to clinics or wards. We also lack data on objective clinical practice change, resultant clinical outcomes, and cost-effectiveness. Another limitation is the potential impact of knowledge and practice loss with staff turnover; however this was attempted to be circumvented with handover and orientation processes.

Conclusions
In summary, malnutrition is associated with poorer clinical outcomes in hospitalised patients. BCA devices can be a useful addition to routine clinical care to detect muscle loss that can otherwise be undetected in current malnutrition screening and assessment processes. However, we identified numerous health professional, team, and organisational barriers to the systematic adoption of these processes. Through a process of barrier analysis and intervention mapping within an implementation science framework we have designed three-pronged strategy of dietitian upskilling, embedding and evaluating, and management-endorsement and support to facilitate adoption of practices that will support evidence-based care for these patients. Our next step will be to assess the process of implementation of BCA into routine dietetic practise in our hospital department and its impact on practices, competency, and attitudes of our departmental clinical dietitians with regards to the utilisation of BCA.

Abbreviations
BCA: Body Composition Assessment; BCW: Behaviour Change Wheel; BIS: Bioelectrical Impedance Spectroscopy; DXA: Dual Energy X-ray Absorptiometry; FTE: Full Time Equivalents; GLIM: Global Leadership Initiative on Malnutrition; KTA: Knowledge to Action; MUAC: Mid Upper Arm Circumference; MUST: Malnutrition Universal Screening Tool; MST: Malnutrition Screening Tool; PG-SGA: Patient-Generated Subjective Global Assessment; SGA: Subjective Global Assessment; TDF: Theoretical Domains Framework

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12913-021-06375-7.

Additional file 1.

Acknowledgements
Queensland Health - Health Research Fellowship funding (2015-2020).

Authors’ contributions
All authors have participated sufficiently in the article to take public responsibility for the content. Chloe Jobber was responsible for collecting and analysing data, interpreting results, writing the manuscript. A/Prof Shelley Wilkinson (corresponding author) and Dr. Barbara van der Meij were responsible for study design, project coordination, data interpretation and manuscript preparation. Elyssa Hughes was responsible for collecting and analysing data, and reviewing the manuscript. Fiona Nave was responsible for collecting data, coordinating the project, and reviewing the manuscript. The author(s) read and approved the final manuscript.

Funding
Dr. Shelley Wilkinson was supported by a Queensland Government Department of Health - Health Research Fellowship.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
The study was declared as Exempt from Review – Not Research according to the Human Research Ethics Committee of Mater Research Institute – UQ Human Research Ethics Committee (Project ID: E0XT/MML/S8778). All methods were carried out in accordance with relevant guidelines and regulations. Informed consent was obtained from all participants; instructions for survey completion indicated their completion implied consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Dietetics & Foodservices, Mater Health, South Brisbane, Queensland, Australia. 2School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia. 3Nutrition & Dietetics, Mater Research Institute - The University of Queensland, Brisbane, Queensland, Australia. 4Department of Nutrition and Dietetics, Logan Hospital, Meadowbrook, Queensland, Australia. 5Bond University Nutrition and Dietetics Research Group, Gold Coast, Queensland, Australia.
References

1. Barker L, Gout B, Crowe T. Hospital malnutrition: prevalence, identification and impact on patients and the healthcare system. Int J Environ Res Public Health. 2011;8(2):154–27. https://doi.org/10.3390/ijerph8020154.

2. Lim SLOK, Chan YH, Loke WC, Ferguson M, Daniels L. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin Nutr. 2012;31(3):345–50. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin Nutr. 2012;31(3):345–50. https://doi.org/10.1016/j.clnu.2011.11.001.

3. Correia M, Perman M, Watzberg D. Hospital malnutrition in Latin America: a systematic review. Hospital malnutrition in Latin America: A systematic review. Clin Nutr. 2017;36(4):958–67.

4. Agarwal E, Ferguson M, Banks M, Bauer J, Capra S, Iserring E. Nutritional status and dietary intake of acute care patients: results from the nutrition care day survey. Clin Nutr. 2012;31(1):41–7. https://doi.org/10.1016/j.clnu.2011.08.002.

5. Ryan A, Power D, Daly L, Cushen S, Ní Bhuachalla et al. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin Nutr. 2012;31(3):345–50. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin Nutr. 2012;31(3):345–50. https://doi.org/10.1016/j.clnu.2011.11.001.

6. Ferguson M, Capra S, Bauer J, Banks M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutrition. 1999; 15(6):458–64. https://doi.org/10.1016/S0899-9007(99)00089-2.

7. Cederholm T, Jensen GL, Correia M, Gonzalez MC, Fukushima R, Poli M, et al. Contribution of malnutrition and CT-defined sarcopenia and Myosteatosis are endemic in overweight and obese patients. J Parenter Enteral Nutr. 2016;40(2):227–38. https://doi.org/10.1002/jpen.1597.

8. Kyle U, Morabia A, Slozman DO, Mensi N, Unger P, Pichard C. Contribution of body composition to nutritional assessment at hospital admission in 995 patients: a controlled population study. Br J Nutr. 2001;86(6):725–31. https://doi.org/10.1079/BJN2001470.

9. Benitez Brito N, Suárez Llanos J, Fuentes Ferrer M, Oliva García J, Delgado Brito I, Pereyra-García Castro F, et al. Relationship between Mid-Upper Arm Circumference and Body Mass Index in Inpatients. PLoS one. 2016;11(8): e0160480.

10. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin M, McCargar L, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47. https://doi.org/10.1200/JCO.2012.45.2722.

11. Cederholm T, Bosaeus I, Barazzoni R, Bauer J, Van Gossum A, Klek S, et al. Diagnostic criteria for malnutrition - An ESPEN Consensus Statement Clinical nutrition. 2015;34(3):335–40. https://doi.org/10.1016/j.clnu.2015.03.001.

12. Martin L, Giolubasian I, Senese P, Baracos V. Cancer-associated malnutrition and CT-defined sarcopenia and Myosteatosis are endemic in overweight and obese patients. J Parenter Enteral Nutr. 2020;44(2):227–38. https://doi.org/10.1002/jpen.1597.

13. Kyle U, Pirlich M, Lochs H, Schuetz T, Pichard C. Increased length of hospital stay in underweight and overweight patients at hospital admission: a controlled population study. Br J Nutr. 2013;110(6):980–7. https://doi.org/10.1016/j.clnu.2018.08.002.

14. Kyle U, Morabia A, Slozman D, Mensi N, Unger P, Pichard C. Contribution of body composition to nutritional assessment at hospital admission in 995 patients: a controlled population study. Br J Nutr. 2001;86(6):725–31. https://doi.org/10.1079/BJN2001470.

15. Kyle U, Pirlich M, Lochs H, Schuetz T, Pichard C. Increased length of hospital stay in underweight and overweight patients at hospital admission: a controlled population study. Br J Nutr. 2013;110(6):980–7. https://doi.org/10.1016/j.clnu.2018.08.002.

16. Martin L, Giolubasian I, Senese P, Baracos V. Cancer-associated malnutrition and CT-defined sarcopenia and Myosteatosis are endemic in overweight and obese patients. J Parenter Enteral Nutr. 2019;43(1):1–10. https://doi.org/10.1002/jpen.1475-2 891-10.35.

17. Cederholm T, Jensen GL, Correia M, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLM criteria for the diagnosis of malnutrition - a consensus report from the global clinical nutrition community. Clin Nutr. 2019;38(1):1–9. https://doi.org/10.1016/j.clnu.2018.08.002.

18. Kyle U, Morabia A, Slozman D, Mensi N, Unger P, Pichard C. Contribution of body composition to nutritional assessment at hospital admission in 995 patients: a controlled population study. Br J Nutr. 2001;86(6):725–31. https://doi.org/10.1079/BJN2001470.

19. Kyle U, Pirlich M, Lochs H, Schuetz T, Pichard C. Increased length of hospital stay in underweight and overweight patients at hospital admission: a controlled population study. Br J Nutr. 2013;110(6):980–7. https://doi.org/10.1016/j.clnu.2018.08.002.

20. Shean P, Gonzalez M, Prado C, McKeever L, Hall A, Braunschweig C. American Society for Parenteral and Enteral Nutrition clinical guidelines: the validity of body composition assessment in clinical populations. J Parenter Enteral Nutr. 2019;44(1):1–12.

21. Thibault R, Pichard C. The evaluation of body composition: a useful tool for clinical practice. Ann Nutri Metab. 2012;60(1):16–16. https://doi.org/10.1159/000334879.
38. Dent E, Hoogendijk E, Visvanathan R, Wright O. Malnutrition Screening and Assessment in Hospitalised Older People: a Review. J Nutr Health Aging. 2019;23(5):431–44. https://doi.org/10.1007/s12603-019-1176-z.

39. Mareschal J, Achamrah N, Norman K, Genton L. Clinical value of muscle mass assessment in clinical conditions associated with malnutrition. J Clin Med. 2019;8(7):1040. https://doi.org/10.3390/jcm8071040.

40. Allard J, Keller H, Gramlich L, Jejeebhoy K, Laporte M, Duikers D. GLIM criteria has fair sensitivity and specificity for diagnosing malnutrition when using SGA as comparator. Clin Nutr. 2020;39(9):2771–7. https://doi.org/10.1016/j.clinu.2019.12.004.

41. Zhang XTM, Zhang Q, Zhang KP, Guo ZQ, Xu HX, et al. The GLIM criteria as an effective tool for nutrition assessment and survival prediction in older adult cancer patients. Clin Nutr. 2020;20:10.

42. Clark A, Rejniere E, Lim W, Maier A. Prevalence of malnutrition comparing the GLIM criteria, ESPEN definition and MST malnutrition risk in geriatric rehabilitation patients: RESORT. Clin Nutr. 2020;39(11):3504–11. https://doi.org/10.1016/j.clnu.2020.03.015.

43. Rejniere E, de van der Schueren M, Trappenburg M, Does M, Meskers C, Maier A. Lack of knowledge and availability of diagnostic equipment could hinder the diagnosis of sarcopenia and its management. PLoS One. 2017;12:e0185837.

44. Academy of Nutrition and Dietetics. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Acad Nutr Diet. 2016;116:28.

45. Fischer M, JeVenn A, Hipskind P. Evaluation of muscle and fat loss as diagnostic criteria for malnutrition. Nutr Clin Pract. 2015;30(2):239–48. https://doi.org/10.1177/0884533615573053.

46. Grol R, Wensing M. What drives change? Barriers to and incentives for achieving evidence-based practice. Med J Australia. 2004;180(6):57–60.

47. Eccles M, Grimshaw J, Walker A, Johnston M, Pitts N. Changing the behavior of healthcare professionals: the use of theory in promoting the uptake of research findings. J Clin Epidemiol. 2005;58(2):107–12. https://doi.org/10.1016/j.jclinepi.2004.09.002.

48. Straus S, Tetroe J, Graham I. Knowledge translation in health care. Moving from evidence to practice. Oxford: Wiley-Blackwell/8MJ Books; 2009. https://doi.org/10.1002/9781444341174.

49. Michie S, van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement Sci. 2011;6(1):42. https://doi.org/10.1186/1748-5908-6-42.

50. Francis JJ, O’Connor D, Curran J. Theories of behaviour change synthesised into a set of theoretical groupings: introducing a thematic series on the theoretical domains framework. Implement Sci. 2012;7(1):35. https://doi.org/10.1186/1748-5908-7-35.

51. Nilsen P. Making sense of implementation theories, models and frameworks. Implement Sci. 2015;10(1):53. https://doi.org/10.1186/s13012-015-0242-0.

52. Colquhoun H, Leeman J, Michie S, Lokker C, Bragge P, Hempel S, et al. Towards a common terminology: a simplified framework of interventions to promote and integrate evidence into health practices, systems, and policies. Implement Sci. 2014;9:51.

53. Montano-Loza A. Clinical relevance of sarcopenia in patients with cirrhosis. World J Gastroenterol. 2014;20(29):8061–71. https://doi.org/10.3748/wjg.v20.i29.8061.

54. Hsu C, Kao J. Sarcopenia and chronic liver diseases. Expert Rev Gastroenterol Hepatol. 2018;12(12):1229–44. https://doi.org/10.1080/17474124.2018.1534586.

55. Cichoñ-Lach H, Michalak A. A Comprehensive Review of Bioelectrical Impedance Analysis and Other Methods in the Assessment of Nutritional Status in Patients with Liver Cirrhosis. Gastroenterol Res Pract. 2017;2017:569056.

56. Crawford J. What are the criteria for response to cachexia treatment? Ann Palliat Med. 2019;8(1):43–9. https://doi.org/10.21037/apm.2018.12.08.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.