Preoperative therapy in locally advanced esophageal cancer

Pankaj Kumar Garg, Jyoti Sharma, Ashish Jakhetiya, Aakanksha Goel, Manish Kumar Gaur

Abstract

Esophageal cancer is an aggressive malignancy associated with dismal treatment outcomes. Presence of two distinct histopathological types distinguishes it from other gastrointestinal tract malignancies. Surgery is the cornerstone of treatment in locally advanced esophageal cancer (T2 or greater or node positive); however, a high rate of disease recurrence (systemic and loco-regional) and poor survival justifies a continued search for optimal therapy. Various combinations of multimodality treatment (preoperative/perioperative, or postoperative; radiotherapy, chemotherapy, or chemoradiotherapy) are being explored to lower disease recurrence and improve survival. Preoperative therapy followed by surgery is presently considered the standard of care in resectable locally advanced esophageal cancer as postoperative treatment may not be feasible for all the patients due to the morbidity of esophagectomy and prolonged recovery time limiting the tolerance of patient. There are wide variations in the preoperative therapy practiced across the centres depending upon the institutional practices, availability of facilities and personal experiences. There is paucity of literature to standardize the preoperative therapy. Broadly, chemoradiotherapy is the preferred neo-adjuvant modality in western countries whereas chemotherapy alone is considered optimal in the far East. The present review highlights the significant studies to assist in opting for the best evidence based preoperative therapy (radiotherapy, chemotherapy or chemoradiotherapy) for locally advanced esophageal cancer.

Key words: Esophageal cancer; Preoperative therapy; Multimodality treatment; Chemotherapy; Radiotherapy; Chemoradiotherapy
INTRODUCTION

The eighth most common cancer in the world is esophageal cancer. Esophageal cancer, being the sixth most common cause of death from cancer, has an overall ratio of mortality to incidence of 0.88[1]. Esophageal cancer comprises of two distinct histological entities, i.e. squamous cell carcinoma (SCC) and adenocarcinoma. These two histological types differ in their epidemiology, etiopathogenesis, tumor biology, management and outcomes. SCC is common in Asia and Eastern Europe while adenocarcinoma is prevalent in North America and Western Europe. Unfortunately, majority of the patients present with locally advanced disease in esophageal cancer and survival is dismal regardless of histology.

Traditionally, surgical resection has been the mainstay of treatment with a potential to ensure loco-regional control as well as long-term survival. However, surgery alone fails to contend against the natural history of disease owing to the presence of occult micrometastasis and fatal distant and loco-regional disease relapse is common. Median survival after esophagectomy is 15 to 18 mo with a 5-year survival rate of 20% to 25%[2]. Therefore, clinicians now are inclined towards use of some form of multidisciplinary treatment including surgery as standard of care for locally advanced esophageal cancer. Locally advanced esophageal cancer can be defined as those restricted to the esophagus or resectable periesophageal tissue (T2-T4) and/or lymphnode involvement (N1-N3) in the absence of distant metastasis[3]. The optimal multimodality treatment is still controversial. Potential contentious issues exist regarding the (1) ideal approach-preoperative, perioperative, or postoperative and (2) ideal combination-radiotherapy, chemotherapy or concurrent chemoradiation. Though various randomized and non-randomized trials have been conducted to address these issues, no standard guidelines have been established till date. This review will highlight the significant studies to assist in opting for the best evidence based multimodality management of esophageal cancer. We limit this review to preoperative therapy followed by surgery as it is presently considered the standard of care. The objectives of preoperative treatment are to downstage the tumor to achieve R0 resection, reduce local and distant disease relapses and thus improve survival.

PREOPERATIVE RADIOThERAPY

High rate of local failure after curative resection led to conception of many studies in the '80s and '90s to evaluate the role of preoperative radiotherapy (RT) in esophageal cancer. Preoperative RT was envisaged to increase the resectability rates with negative circumferential margins, to lower the loco-regional recurrences and to improve survival. Five randomized control trials (RCTs) addressed this issue and compared preoperative RT followed by surgery to surgery alone. Table 1 displays the salient features of these RCTs[4-8]. None of the studies reported significantly higher complete resections following preoperative RT. Only two studies reported loco-regional recurrences in the study arms: Wang et al[7] reported no difference whereas Gignoux et al[8] observed significantly lower loco-regional recurrences following preoperative RT and surgery compared to surgery alone (66% vs 76%). None of the RCTs reported significant improvement in survival. Nygaard et al[6] reported improvement in 3-year overall survival (OS) (21% vs 9%) among patients who underwent surgery following preoperative RT compared to patients who were operated upfront. Esophageal Cancer Collaborative Group conducted a quantitative meta-analysis using updated data from these five RCTs comprising 1147 patients to assess whether preoperative radiotherapy improves OS and whether it is differentially effective in patients defined by age, sex and tumour location[9] (Figure 1). In a group of patients with mostly squamous cell carcinoma, who had a median follow up of 9 years, the hazard ratio (HR) was found to be 0.89 (95%CI: 0.78-1.01). This suggested an overall reduction in the risk of death by 11% and an absolute improvement in survival is not expected to be more than 3% to 4%. To detect such an improvement (from
Garg PK et al. Esophageal cancer

Preoperative RT	No preoperative RT								
Study or subgroup	Events	Total	Events	Total	O-E	Variance	Weight	Hazard ratio [Exp ([O-E]/V), fixed, 95%CI]	Hazard ratio [Exp ([O-E]/V), fixed, 95%CI]
------------------	---------	-------	--------	-------	-----	----------	--------	----------------------------------	----------------------------------
Launois et al.[8], 1981	56	61	40	46	0.22	22.60	9.3%	1.01 (0.67, 1.53)	1.01 (0.67, 1.53)
Gignoux et al.[9], 1988	108	116	108	113	1.02	53.72	22.2%	1.02 (0.78, 1.33)	1.02 (0.78, 1.33)
Wang et al.[10], 1989	131	195	165	223	-16.67	78.83	32.6%	0.81 (0.65, 1.01)	0.81 (0.65, 1.01)
Arnott 1992	87	90	75	86	6.82	40.02	16.5%	1.91 (0.87, 1.62)	1.91 (0.87, 1.62)
Nygaard 1992 (a)	52	58	50	50	-11.58	22.92	9.5%	0.60 (0.46, 0.19)	0.60 (0.46, 0.19)
Subtotal (95%CI)	520	518				90.1%		0.91 (0.80, 1.04)	0.91 (0.80, 1.04)

Total events: 434 vs 438
Heterogeneity: $\chi^2 = 8.69, df = 4 (P = 0.07); I^2 = 54%$
Test for overall effect: $Z = 1.37 (P = 0.17)$

Table 1 Salient features of randomized controlled trials addressing the role of preoperative radiotherapy followed by surgery versus surgery alone in the management of esophageal cancer

Ref.	Study period	Treatment	No. of patients	Histology	Complete resection	Local recurrence rate	Operative mortality	5-yr OS	Conclusion
Launois et al.[8], 1981	1973-1976	40 Gy RT + Surgery	67	SCC	74%	NA	22.6%	9.5%	No significant benefit
Gignoux et al.[9], 1988	1976-1982	33 Gy RT + Surgery	NA	SCC	43%	46%	NA	11%	No significant benefit
Wang et al.[10], 1989	1977-1985	40 Gy RT + Surgery	104	SCC	74%	41%	5%	5%	Higher pre-op RT dose
Arnott et al.[11], 1993	1983-1988	30 Gy RT + Surgery	90	SCC/AC	76%	NA	NA	9%	No benefit of low dose
Nygaard et al.[12], 1992	1983-1988	35 Gy RT + Surgery	NA	SCC	34%	NA	NA	9%	Beneficial effect of pre-op RT

SCC: Squamous cell cancer; AC: Adenocarcinoma; RT: Radiotherapy; NA: Not available; OS: Overall survival.

15% to 20%) reliably, trials or a meta-analysis of not less than 2000 patients (90% power, 5% significance level) would be needed([10]).

It can be inferred, based on available RCTs, that preoperative radiation therapy is unlikely to benefit esophageal cancer patients, both in terms of significantly lowering local failure rate and improving survival.

PREOPERATIVE CHEMOTHERAPY

Distant recurrence following curative resection in localized esophageal cancer constitutes significant proportion of disease relapse and invariably limits survival. Recurrence pattern analysis of 439 patients who underwent R0 resection highlighted that almost one fifth of the patients developed distant recurrence([11]). Furthermore, autopsy study of 43 curatively resected cases of esophageal cancer revealed that 17 of the 27 patients who had disease recurrence were found to have haematogenous metastasis([12]). Two studies showed that almost 80% of the patients had disseminated tumour cells in the bone marrow samples of ribs resected during esophagectomy for localized esophageal cancer([13,14]). Presence of systemic micro-metastasis in a significant number of esophageal cancer patients and the pattern of higher rates of distant recurrence leading to failure in curatively treated patients led to exploration of role of induction preoperative chemotherapy in esophageal cancer.

The enthusiasm to use preoperative chemotherapy arose due to its potential to exterminate micrometastasis, to down-stage the tumor, thus enhancing resectability, to improve loco-regional control and to provide relief of dysphagia. The downside of giving preoperative chemotherapy is development of chemoresistance and progression of disease in patients who do not respond to it. It is known that almost half of the patients are unresponsive to the presently employed chemotherapy([12]). Moreover, delay in local treatment can further compromise the already marginal nutritional status of the patient when surgery is not the initial treatment.

The role of preoperative/peroperative chemotherapy followed by surgery compared to surgery alone has been addressed by 13 RCTs (Table 2)([6,15-26]). A pooled random-effects meta-analysis of 10 RCTs comprising 2122 participants highlighted the lower risk of mortality among patients who were given preoperative chemotherapy compared to those treated with surgery alone (HR = 0.88, 95%CI: 0.80-0.96, P = 0.003)([27]) (Figure 2). Another updated meta-analysis of 10 RCTs revealed that the risk of all-cause mortality...
Table 2 Salient features of randomized controlled trials addressing the role of preoperative/perioperative chemotherapy followed by surgery versus surgery alone in the management of esophageal cancer

Trials	Study period	Treatment	Histology	RO resection	pCR (%)	pN+ (%)	Median follow up	LRR	OS (%)	Conclusions
Roth et al[14, 188]	1982-1986	Periop Cisplatin, bleomycin + S	SCC	35%	6%	NS	30 mo	NS	25 (3 yr)	Prolonged OS in responders in perioperative chemotherapy arm with acceptable toxicity and post-op complications.
Nygaard et al[15, 192]	1983-1988	Surgery Cisplatin, bleomycin + S	SCC	21%	-	NS	30 mo	NS	05 (3 yr)	No improvement in survival in chemotherapy arm.
Schlag et al[16, 192]	1990's	Preop FC + S	SCC	44%	6%	NA	NA	NS	09 (3 yr)	No influence on resectability or OS in chemotherapy arm. Rather, it results in increase in side effects and postop mortality rate.
Maipang et al[17, 194]	1988-1990	Cisplatin, Vindesine, bleomycin + S	SCC	NS	0%	NS	30 mo	NS	31 (3 yr)	Better OS in control group. Poorly nourished patients may tolerate smaller dosages of chemotherapy.
Law et al[18, 197]	1989-1995	Surgery Preop FC + S	SCC	67%	-	70	NA	12	44 (2 yr)	Significant downstaging and an increased likelihood of R0 resection in chemotherapy arm. No survival difference but responders fared better.
Ancona et al[19, 2001]	1992-1997	Preop FC + S	SCC	90%	13%	NS	30 mo	32	34 (5 yr)	Significantly improved long term survival in patients with pathologic complete response following perioperative chemotherapy.
Cunningham et al[20, 2006]	1994-2002	Peri-op ECF + S	AC	69.3%	NA	NS	49	14.4	36.3 (5 yr)	Preoperative chemotherapy decreased tumor size and stage, and significantly improved PFS, OS.
Kelsen et al[21, 1992]	1990-1995	Preop FC + S	SCC - 98,	63%	2.5%	NS	8.8 yr	23	23 (3 yr)	No improvement in OS in chemotherapy arm. Only R0 resection results in long-term survival, regardless of pre-op chemotherapy.
MRC OEO2 trial, 2009	1992-1998	Preop FC + S	SCC - 123,	60%	4%	58	5.9 yr	11.5	23 (5 yr)	Preop chemotherapy improves survival and should be considered as a standard of care.
Allum et al[22, 2001]	1992-1998	Surgery	SCC - 124,	54%	-	68	6.1 yr	12.2	17 (5 yr)	
Ychou et al[23, 2011]	1995-2003	Peri-op FC + S	AC	84%	3%	67	8.8 yr	12	38 (5 yr)	Peri-op chemotherapy significantly increased R0 reseption rate, DFS, and OS.
Boonstra et al[24, 2011]	1989-1996	Surgery	SCC	73%	-	80	15 mo	19	26 (5 yr)	Significant improvement in OS in chemotherapy arm.
Ando et al[25, 2012]	2000-2006	Surgery	SCC	57%	-	46	14 mo	25	17 (5 yr)	Pre-op chemotherapy can be regarded as standard treatment.

Periop: Perioperative; SCC: Squamous cell cancer; AC: Adenocarcinoma; RT: Radiotherapy; NA: Not available; OS: Overall survival; NS: Not stated; ECF: Epirubicin, cisplatin, 5-FU; S: Surgery.
was significantly less for preoperative chemotherapy followed by surgery compared to surgery alone (pooled HR = 0.87, 95%CI: 0.79-0.96, \(P = 0.005 \)). The absolute survival difference at 2 years was calculated as 5.1% (number needed to treat = 19). A subgroup analysis by histological type for these studies showed that the preoperative chemotherapy proved beneficial in adenocarcinoma (HR = 0.83, 95%CI: 0.71-0.95, \(P = 0.01 \)) and not in squamous-cell carcinoma (HR = 0.92, 95%CI: 0.81-1.04, \(P = 0.18 \))\(^{[28]}\).

Though the objective of the present review is to analyze the role of preoperative therapy, it is worthwhile to discuss perioperative chemotherapy here as well. The role of perioperative chemotherapy (before and after the surgery) has been evaluated in lower esophageal adenocarcinoma in two RCTs. The British Medical Research Council conducted a phase III trial (MAGIC trial) to evaluate perioperative chemotherapy in the management of resectable gastro-oesophageal adenocarcinoma. Though the proportion of patients with esophageal cancers was less (lower esophagus or junctional adenocarcinoma) in these trials, results of this trial definitely indicated benefit of perioperative chemotherapy. OS significantly improved from 23% to 36%. Only 104 of 250 patients (41.6%) randomized to perioperative chemotherapy arm in this study could complete all six cycles of chemotherapy, due to disease progression or early death, patient choice, postoperative complications, prior toxicity, lack of response to preoperative treatment, and worsening coexisting disease, thus acting as a limitation\(^{[26]}\).

Another recent FNCLCC/FFCD trial reported that perioperative chemotherapy improved 5-year OS from 24% to 38%. It must be noted that 75% of tumors in this trial were lower esophageal or junctional and among the 109 patients who received at least one cycle of preoperative chemotherapy, 54 patients (50%) received postoperative chemotherapy\(^{[23]}\). These two trials suggest that the approach of perioperative chemotherapy may be beneficial for patients with lower esophagus or junctional adenocarcinoma but only half of the patients are able to complete the planned treatment after surgery.

PREOPERATIVE CHEMORADIATION

High risk of both loco-regional and systemic failures following curative treatment, led to integration of all three treatment modalities namely surgery, chemotherapy and radiation in the management of esophageal cancer. As preoperative RT failed to meet the high expectations of providing additional loco-regional control compared to surgery alone in esophageal cancer; attempts were made to use chemoradiotherapy (CRT) as a double-edged sword. While RT was expected to improve loco-regional control, simultaneously, chemotherapy was thought to eradicate the micrometastases. Chemotherapy adds several benefits with its use along with preoperative RT by (1) containing micrometastasis and lowering systemic failure; (2) providing additive effect to radiation by acting against the different tumor cell populations; and (3) providing assistance to radiotherapy for control of loco-regional disease (spatial cooperation\(^{[29]}\)). Spatial cooperation may exist at different levels: (1) with altered DNA repair or modification of the lesions induced by chemotherapy or radiation at the molecular level; (2) through cytokinetic cooperation arising from differential sensitivity of the various compartments of the cell cycle to the drug or radiation at the cellular level, notably; and (3) including re-oxygenation, increased drug uptake or inhibition of repopulation or angiogenesis at the tissue level\(^{[30]}\).

Table 3 displays the RCTs which compared preoperative CRT followed by surgery to surgery alone\(^{[31-39]}\). The most promising trials which have
Trial	Study period	Treatment	No. of patients	Histology	Completed treatment	RO	pCR	pH+	LRR	Median survival (mo)	OS	Treatment related mortality	DFS median/ proportions	Conclusion
Apinop et al[31], 1994	1986-1992	FC + 40 Gy RT + Surgery	35	SCC	26	NA	26.9%	NA	NA	19.2 (3 yr)	NS	NS	NA	No statistically significant difference in OS, complication rate, mortality
Le Prise et al[32], 1994	1988-1991	Sequential FC-20 Gy RT-FC + Surgery	41	SCC	39	51.0%	NA	17.9%	10	7.6 mo	No change in operative mortality or survival time			
Walsh et al[33], 1996	1990-1995	FC + 40 Gy RT + Surgery	45	SCC	42	36.0%	NA	21.4%	10	5 mo	Multimodal treatment superior to surgery alone			
Le Prise et al[32], 1994	1994	Sequential FC-20 Gy RT-FC + Surgery	58	AC	53	NA	25%	42	NA	37 (3 yr)	3%	NA	CRT induced high clinical and pathological response, but no statistically significant benefit in OS and DFS	
Walsh et al[33], 1996	1996	FC + 40 Gy RT + Surgery	58	AC	54	NA	100%	37	22.8%	55 (2 yr)	8.5%	51% (2 yr)	No significant improvement in PFS or OS	
Lee et al[34], 2004	1999-2002	FC + 45.6 Gy RT + Surgery	50	SCC	48	87.5%	-	10.8%	27.3	57 (2 yr)	8.5%	51% (2 yr)	No statistically significant benefit in OS and DFS	
Burmeister et al[35], 2005	1994-2000	FC + 35 Gy RT + Surgery	128	SCC	105	80.0%	16%	43	11%	22.2 (3 yr)	NS	10%	No significant improvement in PFS or OS	
Tepper et al[36], 2008 (CALGB 9781)	1997-2000	FC+ 50.4 Gy RT + Surgery	30	SCC	29	84.6%	40%	12	13.7%	39 (5 yr)	28%	26% (5 yr)	Long-term survival advantage supports trimodality therapy as a standard of care	
Lv et al[37], 2010	1997-2004	2 Cis, Pacli+ 40 Gy + Surgery	80	SCC	80	97.4%	-	11.3%	33	24.5 (10 yr)	3.4%	61.3% (3 yr)	Rational application of pre-op or post-op CRT can improve PFS, OS	
Mariette et al[38], 2014	2000-2009	2 Cis, 5FU + Surgery	98	SCC	84	93.8%	33.3%	30.8	22.1%	31.8 (5 yr)	11.1%	35.6% (5 yr)	No effect on R0 resection rate or survival but enhanced postoperative mortality	

Periop: Perioperative; SCC: Squamous cell cancer; AC: Adenocarcinoma; RT: Radiotherapy; NA: Not available; OS: Overall survival; NS: Not stated; ECF: Epirubicin, cisplatin, 5-FU; S: Surgery.
almost established the role of preoperative CRT are the Dutch chemoradiotherapy in Oesophageal Cancer and the Surgery Study (CROSS) trials[29,38]. The investigators randomly assigned 368 patients with resectable esophageal cancers to either preoperative CRT followed by surgery or to surgery alone. The patients in preoperative CRT arm received weekly carboplatin and paclitaxel for 5 wk and concurrent radiotherapy (41.4 Gy in 23 fractions of 1.8 Gy each, with 5 fractions administered per week, starting on the first day of the first chemotherapy cycle) followed by surgery. The histopathological types were adenocarcinoma (75%), SCC (23%), and large-cell undifferentiated carcinoma (2%). R0 resection rates were significantly better in preoperative CRT arm compared to surgery alone (92% vs 69%, p < 0.001). More than one fourth of patients (29%) achieved pathological complete response following preoperative CRT. Though postoperative complications and inhospital mortality were similar in the two groups, median OS was significantly better in preoperative CRT group (49.4 mo vs 24.0 mo, HR for survival, 0.657, 95%CI: 0.495-0.871, P = 0.003). However, the HR for esophageal adenocarcinoma was only marginally statistically significant (adjusted HR = 0.74, 95%CI: 0.54-1.02, P = 0.07). Long-term results of the study were recently published. These revealed that the survival advantage for preoperative CRT persisted after a median follow up of 84.1 mo for surviving patients (range 61.1-116.8, IQR: 70.7-96.6). Median OS was 48.6 mo (95%CI: 32.1-65.1) in the preoperative chemoradiotherapy plus surgery group and 24.0 mo (14.2-33.7) in the surgery alone group (HR = 0.68, 95%CI: 0.53-0.88, log-rank P = 0.003). The improvement in survival was evident for both histological subtypes - median OS for patients with squamous cell carcinomas and adenocarcinoma were 81.6 mo (95%CI: 47.2-116.0) and 43.2 mo (95%CI: 24.9-61.4) respectively in the preoperative CRT group compared to 21.1 mo (95%CI: 15.4-26.7) and 27.1 mo (95%CI: 13.0-41.2) in the surgery alone group[40]. Preoperative CRT led to significantly lower loco-regional recurrences (14% vs 34%, P < 0.001) and peritoneal carcinomatosis (4% vs 14%, P < 0.001)[41].

In sharp contrast to the findings of the CROSS trial, the French trial (FFCD 9901) could not find any significant benefit of preoperative CRT. FFCD 9901 was a multicentre RCT which was conducted to assess improvement in outcomes for patients with stage I or II esophageal cancer with use of preoperative CRT. The investigators randomized 195 patients (in 30 centres) to either preoperative CRT followed by surgery (n = 98) or surgery alone (n = 97). CRT protocol was 45 Gy in 25 fractions over 5 wk with two courses of concomitant chemotheraphy composed of fluorouracil 800 mg/m2 and cisplatin 75 mg/m2. Preoperative CRT did not improve R0 resection rates (93.8% vs 92.1%, P = 0.749); there was no difference in 3-year OS either (47.5% vs 53.0%, HR = 0.99, 95%CI: 0.69-1.40, P = 0.94). Moreover, significantly higher postoperative mortality was seen in patients who received preoperative CRT (11.1% vs 3.4%, P = 0.049). The authors concluded that preoperative CRT does not improve R0 resection rate or survival but enhances postoperative mortality in patients with stage I or II esophageal cancer[39].

A number of factors can be attributed to these differences in survival outcomes between the French and Dutch studies: (1) small sample size in the FFCD 9901 trial reducing the statistical power of detecting a survival benefit; (2) different histological profiles in two studies (70% of patients in the French study were SCC compared with 23% in the Dutch study); and (3) larger number of patients with early-stage disease (fewer node-positive and T3 patients) in the French study compared to Dutch study[42]. The CROSS trial investigators cautioned against coming to the conclusion that preoperative CRT is not beneficial in early-stage esophageal cancer, as one might, from the results of the FFCD 9901 trial. They highlighted that CROSS trial findings should still be considered for stage II cancers in view of its larger study population, more consistent inclusion rate, less toxic CRT regimen, more sophisticated radiation techniques and lower postoperative mortality rate[43].

A meta-analysis which was designed to compare the role of preoperative CRT for esophageal carcinoma including 14 RCTs (n = 1737) concluded that it has the potential to improve the long-term survival and reduce locoregional cancer recurrence compared to surgery alone. Five-year survival was significantly better in preoperative CRT group compared to the surgery alone group (OR = 1.64, 95%CI: 1.28-2.12). The authors further reported that a complete pathological response to CRT was observed in 10%-45.5% of patients[44].

In a meta-analysis of 12 trials which compared preoperative CRT followed by surgery versus surgery alone (n = 1854), the Australasian gastro-intestinal trials group reported that preoperative CRT led to significant reduction in all-cause mortality (HR = 0.78, 95%CI: 0.70-0.88, P < 0.0001). The beneficial effect was evident in both histological subtypes - the HR for squamous-cell carcinoma was 0.80 (95%CI: 0.68-0.93, P = 0.004) and for adenocarcinoma was 0.75 (95%CI: 0.59-0.95, P = 0.02). They further undertook the pooled analysis of two RCTs and highlighted that the preoperative CRT seemed to lower all-cause mortality compared to preoperative chemotherapy (HR for the overall indirect comparison 0.88, 95%CI: 0.76-1.01, P = 0.07). They concluded that there seemed to be strong evidence for survival benefit with the use of preoperative CRT or chemortherapy followed by surgery versus surgery alone in resectable esophageal cancer[28].

Another meta-analysis which included 13 RCTs (n = 1930, resectable esophageal cancers) addressed the issue of postoperative complications following preoperative CRT compared to surgery alone[45]. The
The standard of care continues to be debated due to difference of opinions and practices across the world and lack of any trial with head-to-head comparison alone to further refine the role of preoperative therapy. The literature suggests that preoperative chemoradiotherapy with chemotherapy radiotherapy followed by surgery results in optimal outcome while managing locally advanced esophageal cancer; however, there is a need to compare preoperative chemoradiotherapy with chemotherapy alone to further refine the role of preoperative therapy. The standard of care continues to be debated due to difference of opinions and practices across the world and lack of any trial with head-to-head comparison between these two established treatment protocols.

CONCLUSION

The literature suggests that preoperative chemoradiotherapy followed by surgery results in optimal outcome while managing locally advanced esophageal cancer; however, there is a need to compare preoperative chemoradiotherapy with chemotherapy alone to further refine the role of preoperative therapy. The standard of care continues to be debated due to difference of opinions and practices across the world and lack of any trial with head-to-head comparison between these two established treatment protocols.

REFERENCES

1. Ferlay J, Sorejomotaram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013 cited 2015-06-25. Available from: URL: http://globocan.iarc.fr
2. Posner MC, Minsky BD, Ison DH. Cancer of the Esophagus. In: DeVita VT, Lawrence TS, Rosenberg SA, editors. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Philadelphia: Wolters Kluwer, 2015: 574-612
3. Keditsu KK, Jiwnani S, Karimundackal G, Pramesh CS. Multimodality management of esophageal cancer. Indian J Surg Oncol 2013; 4: 96-104 [PMID: 24426708 DOI: 10.1007/s13193-013-0216-0]
4. Arnott SJ, Duncan W, Kerr GR, Walbaum PR, Cameron E, Jack WJ, Mackillop WJ. Low dose preoperative radiotherapy for carcinoma of the oesophagus: results of a randomized clinical trial. Radiother Oncol 1992; 24: 108-113 [PMID: 1496141 DOI: 10.1016/0167-8140(92)90287-5]
5. Lauwerys B, Delarue D, Campion JP, Kerbaol M. Preoperative radiotherapy for carcinoma of the esophagus. Surg Gynecol Obstet 1981; 153: 690-692 [PMID: 6794167]
6. Nygaard K, Irgan S, Hansen HS, Hatlevoll R, Hultborn R, Jakobsen A, Møistad M, Modig H, Munk-Wijkstra L, Rosengren B. Pre-operative radiotherapy prolongs survival in operable esophageal carcinoma: a randomized, multicenter study of pre-operative radiotherapy and chemotherapy. The second
Surgical resection with or without preoperative irradiation and surgery in the treatment of esophageal carcinoma: report on 206 patients. Int J Radiat Oncol Biol Phys 1989; 16:325-327 [PMID: 2646253 DOI: 10.1016/0360-3016(89)90323-4]

Gignoux M, Roussel A, Paillot B, Gillet M, Schlag P, Favre JP, Dalesio O, Buyse M, Duez N. The value of preoperative radiotherapy in esophageal cancer: results of a study of the E.O.R.T.C. World J Surg 1987; 11:426-432 [PMID: 3630187]

Arnott SJ, Duncan W, Gignoux M, Hansen HS, Launois B, Nygaard K, Parmar MK, Roussel A, Spiliopoulos G, Stewart G, Tierney JF, Wang M, Rhugan Z. Preoperative radiotherapy for esophageal carcinoma. Cochrane Database Syst Rev 2005; (4):CD001799 [PMID: 16252586 DOI: 10.1002/14651858.CD001799.pub2]

Arnott SJ, Duncan W, Gignoux M, Girling DJ, Hansen HS, Launois B, Nygaard K, Parmar MK, Roussel A, Spiliopoulos G, Stewart LA, Tierney JF, Wang M, Rhugan Z. Preoperative radiotherapy for esophageal carcinoma. Cancer Treatment Comparative Group. Cochrane Database Syst Rev 2000; (2):CD001799 [PMID: 10796823 DOI: 10.1002/14651858.CD001799]

Mariette C, Balon JM, Piessens F, Garel S, Van Steuningen I, Triboulet JP. Pattern of recurrence following complete resection of esophageal carcinoma and factors predictive of recurrent disease. Cancer 2003; 97:1616-1623 [PMID: 12655517 DOI: 10.1002/cncr.11228]

Katayama A, Mafune K, Tanaka Y, Takubo K, Makuuchi M, Kaminishi M. Autopsy findings in patients after curative esophagectomy for esophageal carcinoma. J Am Coll Surg 2003; 196:866-873 [PMID: 12788422 DOI: 10.1016/S1072-7515(03)00116-9]

Bonavina L, Soligo D, Quirici N, Bossolasco P, Cesana B, Lembtenghini Deliilers G, Peracchia A. Bone marrow-dissemintated tumor cells in patients with carcinoma of the esophagus or cardia. Surgery 2001; 129:15-22 [PMID: 11150029 DOI: 10.1067/msy.2001.109503]

O’Sullivan GC, Sheehan D, Clarke A, Stuart R, Kelly J, Kiely MD, Walsh T, Collins JK, Shanahan F. Micrometastases in esophageal cancer: high detection rate in resected rib segments. Gastroenterology 1999; 116:543-548 [PMID: 10029612]

Ancona E, Ruol A, Santi S, Merigliano S, Sileni VC, Koussis H, de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE. Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer and factors predictive of recurrent disease. J Clin Oncol 2007; 25:5062-5067 [PMID: 19770374 DOI: 10.1200/JCO.2009.22.2083]

Cunningham D, Allum WH, Stembridge SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Iveson TJ, Smith DB, Langley RE, Verma M, Weeden S, Chua YJ. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal adenocarcinoma: a FNCLCC and FFCD multicenter phase III trial. J Clin Oncol 2011; 29:1715-1721 [PMID: 21444866 DOI: 10.1200/JCO.2010.33.0597]

Ando N, Kato H, Igaki H, Shinoda M, Ozawa S, Shimizu H, Nakamura T, Yabuhashi H, Aoyama N, Kurita A, Ikeda K, Kanda T, Tsujinaka T, Nakamura K, Fukuda H. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluouraurcil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol 2012; 19:68-74 [PMID: 21879261 DOI: 10.1245/s10434-011-1209-9]

Maigap T, Vasinanorkum P, Petipichetchan C, Chamroonkul S, Geater A, Chansawwaeng S, Kuanapich S, Panjapiyakul C, Wattanareppornchai S, Punperrk S. Induction chemotherapy in the treatment of patients with carcinoma of the esophagus. J Surg Oncol 1994; 56:191-197 [PMID: 7518020 DOI: 10.1002/jso.2930560314]

Medical Research Council Oesophageal Cancer Working Group. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet 2002; 359:1727-1733 [PMID: 12049861 DOI: 10.1016/S0140-6736(02)08651-8]

Roth JA, Pass HI, Flanagan MM, Graeber GM, Rosenberg JC, Steinberg S. Randomized clinical trial of perioperative and postoperative adjuvant chemotherapy with cisplatin, vindesine, and bleomycin for carcinoma of the esophagus. J Thorac Cardiovasc Surg 1986; 98:242-248 [PMID: 2546424]

Schlag PM. Randomized trial of preoperative chemotherapy for squamous cell carcinoma of the esophagus. The Chirurgische Arbeitsgemeinschaft Fuer Onkologie der Deutschen Gesellschaft Fuer Chirurgie Study Group. Arch Surg 1992; 127:1446-1450 [PMID: 1365602]

Ychou M, Boive G, Pignon JP, Conroy T, Bouchal O, Lefebre G, Ducourtieux M, Bedenne L, Fabre JM, Saint-Aubert B, Genève J, Lasser P, Rougier P. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol 2011; 29:1715-1721 [PMID: 21444866 DOI: 10.1200/JCO.2010.33.0597]

Ando N, Kato H, Igaki H, Shinoda M, Ozawa S, Shimizu H, Nakamura T, Yabuhashi H, Aoyama N, Kurita A, Ikeda K, Kanda T, Tsujinaka T, Nakamura K, Fukuda H. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluourouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol 2012; 19:68-74 [PMID: 21879261 DOI: 10.1245/s10434-011-1209-9]

Kidane B, Coughlin S, Vogt K, Malthaner R. Perioperative chemotherapy for resectable thoracic esophageal cancer. In: Cochrane Database of Systematic Reviews [Internet]. John Wiley & Sons, Ltd, 2015 [DOI: 10.1002/14651858.CD001556.pub3]

Sjoquist KM, Burmeister BH, Smithers BM, Zalberg JR, Simes RJ, Barbou R, Gebski V. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol 2011; 12:681-692 [PMID: 21684205 DOI: 10.1016/S1470-2045(11)70142-5]

van Heijl M, van Lanschot JJ, Koppert LB, van Berge Henegouwen MI, Muller K, Steyerberg EW, van Dekken H, Wijnhoven BP, Tilanus HW, Richel DJ, Busch OR, Bartelsman & Sons, Ltd, 2015 [DOI: 10.1002/14651858.CD001556.pub3]

Hennequin C, Favaudon V. Biological basis for chemoradiotherapy interactions. Eur J Cancer 2002; 38:223-230 [PMID: 11803139]

Apinop C, Puttisak P, Preecha N. A prospective study of combined therapy in esophageal cancer. Hepatogastroenterology 1994; 41:391-393 [PMID: 7959579]
Le Prise E, Etienne PL, Meunier B, Maddern G, Ben Hassel M, Gedouin D, Boutin D, Campion JP, Launois B. A randomized study of chemoradiotherapy, radiation therapy, and surgery versus surgery for localized squamous cell carcinoma of the esophagus. Cancer 1994; 73: 1779-1784 [PMID: 8137201 DOI: 10.1002/1097-0142(199404 01)73::T7-1779::AID]

Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy T. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 1996; 335: 462-467 [PMID: 8672151 DOI: 10.1056/NEJM199608153350702]

Lee JL, Park SI, Kim SB, Jung HY, Lee GH, Kim JH, Song HY, Cho KJ, Kim WK, Lee JS, Kim SH, Min YI. A single institutional phase III trial of preoperative chemotherapy with hyperfractionation radiotherapy plus surgery versus surgery alone for resectable esophageal squamous cell carcinoma. Ann Oncol 2004; 15: 947-954 [PMID: 15151953 DOI: 10.1093/annonc/ mdh219]

Burmeister BH, Smithers BM, Gumbs V, Fitzgerald L, Simes RJ, Devitt P, Ackland S, Gotley DC, Joseph D, Millar J, North J, Walpole ET, Denham JW; Trans-Tasman Radiation Oncology Group, Australasian Gastro-Intestinal Trials Group. Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: a randomised controlled phase III trial. Lancet Oncol 2005; 6: 659-668 [PMID: 16129660 DOI: 10.1016/S1470-2045(05)70288-6]

Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, Kiel K, Willett C, Sugarbaker D, Mayer R. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol 2008; 26: 1086-1092 [PMID: 18309943 DOI: 10.1200/JCO.2007.12.9593]

Lv J, Cao XF, Zhu B, Ji L, Tao L, Wang DD. Long-term efficacy of perioperative chemoradiotherapy on esophageal squamous cell carcinoma. World J Gastroenterol 2010; 16: 1649-1654 [PMID: 20355244 DOI: 10.3748/wjg.v16.i13.1649]

van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, Richard DJ, Nieuwenhuijzen GA, Hoppers GA, Bonenkamp JJ, Cuesta MA, Blaisse RJ, Busch OR, ten Kate FJ, Creemers GJ, Punt CJ, Plukker JT, Verheul HM, Bilgen EJ, van Dekken H, van der Sangen MJ, Rozema T, Biermann K, Beukema JC, Piet AH, van Rij CM, Reinders JG, Tilanus HW, van der Gaast A. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 2012; 366: 2074-2084 [PMID: 22646630 DOI: 10.1056/NEJMoa1112088]

Mariette C, Dahan L, Mornex F, Maillard E, Thomas PA, Meunier B, Boige V, Pezet D, Robb WB, Le Brun-Ly V, Bosset JF, Mahbouli Y, Triboulet JP, Bedenne L, Seitz JF. Surgery alone versus chemoradiotherapy followed by surgery for stage I and II esophageal cancer: final analysis of randomized controlled phase III trial FFCD 9901. J Clin Oncol 2014; 32: 2416-2422 [PMID: 24982463 DOI: 10.1200/JCO.2013.53.6532]

Shapiro J, van Lanschot JJ, Hulshof MC, van Hagen P, van Berge Henegouwen MI, Wijnhoven BP, van Laarhoven HW, Nieuwenhuijzen GA, Hoppers GA, Bonenkamp JJ, Cuesta MA, Blaisse RJ, Busch OR, ten Kate FJ, Creemers GJ, Punt CJ, Plukker JT, Verheul HM, Bilgen EJ, van Dekken H, van der Sangen MJ, Rozema T, Biermann K, Beukema JC, Piet AH, van Rij CM, Reinders JG, Tilanus HW, Steyerberg EW, van der Gaast A. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol 2015; 16: 1090-1098 [PMID: 26254683 DOI: 10.1016/S1470-2045(15)00040-6]

Oppeldijk V, van der Gaast A, van Lanschot JJ, van Hagen P, van Os R, van Rij CM, van der Sangen MJ, Beukema JC, Rütten H, Spruit PH, Reinders JG, Richard DJ, van Berge Henegouwen MI, Hulshof MC. Patterns of recurrence after surgery alone versus preoperative chemoradiotherapy and surgery in the CROSS trials. J Clin Oncol 2014; 32: 385-391 [PMID: 24419108 DOI: 10.1200/JCO.2013.51.2186]

Czito BG, Paha M, Willett CG. Results of the FFCD 9901 trial in early-stage esophageal carcinoma: is it really about neoadjuvant therapy? J Clin Oncol 2014; 32: 2398-2400 [PMID: 24982460 DOI: 10.1200/JCO.2014.55.7231]

Shapiro J, van Lanschot JJ, Hulshof MC, van der Gaast A. Effectiveness of neoadjuvant chemoradiotherapy for early-stage esophageal cancer. J Clin Oncol 2015; 33: 288-289 [PMID: 25452442 DOI: 10.1200/JCO.2014.59.2428]

Lv J, Cao XF, Zhu B, Ji L, Tao L, Wang DD. Effect of neoadjuvant chemoradiotherapy on prognosis and surgery for esophageal carcinoma. World J Gastroenterol 2009; 15: 4962-4968 [PMID: 19842230 DOI: 10.3748/wjg.v15.i49.4962]

Deng J, Wang C, Xiang M, Liu F, Liu Y, Zhao K. Meta-analysis of postoperative efficacy in patients receiving chemoradiotherapy followed by surgery for resectable esophageal carcinoma. Diagn Pathol 2014; 9: 151 [PMID: 25030666 DOI: 10.1186/1746-1596-9-151]

P- Reviewer: Garcia-Olmo D, Osawa S, Schmidt T
S- Editor: Gong ZM
L- Editor: A
E- Editor: Wang CH
