TWO-SIDED BOUNDS FOR THE VOLUME OF RIGHT-ANGLED HYPERBOLIC POLYHEDRA

DUŠAN REPOVŠ AND ANDREI VESNIN

Abstract. For a compact right-angled polyhedron \(R \) in \(\mathbb{H}^3 \) denote by \(\text{vol}(R) \) the volume and by \(\text{vert}(R) \) the number of vertices. Upper and lower bounds for \(\text{vol}(R) \) in terms of \(\text{vert}(R) \) were obtained in \cite{Atkinson2011}. Constructing a 2-parameter family of polyhedra, we show that the asymptotic upper bound \(\frac{5v_3}{8} \), where \(v_3 \) is the volume of the ideal regular tetrahedron in \(\mathbb{H}^3 \), is a double limit point for ratios \(\text{vol}(R) / \text{vert}(R) \). Moreover, we improve the lower bound in the case \(\text{vert}(R) \leq 56 \).

1. Right-angled polyhedra in \(\mathbb{H}^3 \).

In any space, right-angled polyhedra are very convenient to serve as "building blocks" for various geometric constructions. In particular, they have several interesting properties in hyperbolic 3-space \(\mathbb{H}^3 \). One can try to obtain a hyperbolic 3-manifold using a right-angled polyhedron as its fundamental polyhedron. Or, one can construct a hyperbolic 3-manifold in such a way that its fundamental group is a torsion-free subgroup of the Coxeter group, generated by reflections across the faces of a right-angled polyhedron \cite{Lobell1989}. Below we consider only compact polyhedra, which do not admit ideal vertices.

We start by recalling two nice recent results. Inoue \cite{Inoue2011} introduced two operations on right-angled polyhedra called decomposition and edge surgery, and proved that Löbell polyhedra (which will be a subject of discussion below) are universal in the following sense:

Theorem 1.1. \cite[Theorem 9.1]{Inoue2011} Let \(P_0 \) be a right-angled hyperbolic polyhedron. Then there exists a sequence of disjoint unions of right-angled hyperbolic polyhedra \(P_1, \ldots, P_k \) such that for \(i = 1, \ldots, k \), \(P_i \) is obtained from \(P_{i-1} \) by either a decomposition or an edge surgery, and \(P_k \) is a set of Löbell polyhedra. Furthermore,

\[
\text{vol}(P_0) \geq \text{vol}(P_1) \geq \text{vol}(P_2) \geq \ldots \geq \text{vol}(P_k).
\]

Atkinson \cite{Atkinson2011} estimated the volume of a right-angled polyhedron in terms of the number of its vertices as follows:

Theorem 1.2. \cite[Theorem 2.3]{Atkinson2011} If \(P \) is a compact right-angled hyperbolic polyhedron with \(V \) vertices, then

\[
(V - 2) \cdot \frac{v_8}{32} \leq \text{vol}(P) < (V - 10) \cdot \frac{5v_3}{8},
\]
where \(v_8 \) is the volume of a regular ideal octahedron, and \(v_3 \) is the volume of a regular ideal tetrahedron. There is a sequence of compact polyhedra \(P_i \), with \(V_i \) vertices such that \(\text{vol}(P_i)/V_i \) approaches \(5v_3/8 \) as \(i \) goes to infinity.

A family of polyhedra \(P_i \) suggested by Atkinson is described in the proof of [3, Prop. 6.4].

In this note we will demonstrate that Löbell polyhedra can serve as a suitable family realizing the upper bound. Thus these polyhedra play an important role not only in Theorem 1.1 but also in Theorem 1.2.

Let us denote by \(\text{vert}(R) \) the number of vertices of a right-angled polyhedron \(R \). In this note we prove that \(5v_3/8 \) is a double limit point in the sense that it is the limit point of limit points for ratios \(\text{vol}(R)/\text{vert}(R) \).

Theorem 1.3. For any integer \(k \geq 1 \) there exists a series of compact right-angled polyhedra \(R_k(n) \) in \(\mathbb{H}^3 \) such that

\[
\lim_{n \to \infty} \frac{\text{vol}(R_k(n))}{\text{vert}(R_k(n))} = \frac{k}{k+1} \cdot \frac{5v_3}{8}.
\]

As one will see from the proof, \(R_1(n) \) are Löbell polyhedra and \(R_k(n) \) for \(k > 1 \) are towers of them.

Moreover, in Corollary 4.3 we improve the lower estimate from Theorem 1.2 in the case \(\text{vert}(R) \leq 56 \).

2. Löbell polyhedra and manifolds.

We introduced Löbell polyhedra in [10] as a generalization of a right-angled 14-hedron used in [5].

Recall that in order to give a positive answer to the question of the existence of “Clifford-Klein space forms” (that is, closed manifolds) of constant negative curvature, Löbell [5] constructed in 1931 the first example of a closed orientable hyperbolic 3-manifold. This manifold was obtained by gluing together eight copies of the right-angled 14-faced polytope (denoted below by \(R(6) \) and shown in Fig. 1) with an upper and a lower basis both being regular hexagons, and a lateral surface given by 12 pentagons, arranged similarly as in the dodecahedron. Obviously, \(R(6) \) can be considered as a generalization of a right-angled dodecahedron in the way of replacing basis pentagons to hexagons.

As shown in [10], the dodecahedron and \(R(6) \) are part of a larger family of polyhedra. For each \(n \geq 5 \) we consider the right-angled polyhedron \(R(n) \) in \(\mathbb{H}^3 \) with \(2(n+2) \) faces, two of which (viewed as the upper and lower bases) are regular \(n \)-gons, while the lateral surface is given by \(2n \) pentagons, arranged as one can easily imagine. Note that \(R(5) \) is the right-angled dodecahedron (see Fig. 1). Existence of polyhedra \(R(n) \) in \(\mathbb{H}^3 \) can be easy checked by involving Andreev’s theorem [1].

An algebraic approach suggested in [10] admits a construction of both orientable and non-orientable closed hyperbolic 3-manifolds from eight copies of any bounded right-angled hyperbolic polyhedron. More exactly, any coloring of the faces of a right-angled polyhedron by four colors so that no two faces of the same color share an edge encodes a torsion-free subgroup of orientation preserving isometries which is a subgroup of the polyhedral Coxeter group of index eight. Thus, any four-coloring encodes an orientable hyperbolic 3-manifold obtained from eight
copies of a right-angled polyhedron. This approach also allows one to construct non-orientable hyperbolic 3-manifolds, but in this case five to seven colors are needed.

It was mentioned in [10] that the manifold constructed by Löbell can be encoded by some four-coloring of $R(6)$, and it was shown how to construct concrete orientable and non-orientable manifolds using eight copies of $R(n)$ for any $n \geq 5$. Closed orientable hyperbolic 3-manifolds encoded by four-colorings of $R(n)$, $n \geq 5$, were called Löbell manifolds. (Observe that for each n number of such manifolds do not need to be unique.) Polyhedra $R(n)$ can be naturally referred as Löbell polyhedra.

Various properties of Löbell manifolds were intensively studied: the volume formulae were obtained in [9] and [11], invariant trace fields for fundamental groups and their arithmeticity were numerically calculated in [2], many of Löbell manifolds were obtained in [8] as two-fold branched coverings of the 3-sphere, and two-sided bounds for complexity of Löbell manifolds were done in [7].

Since Lobachevsky's 1832 paper, the following Lobachevsky function has traditionally been used in volume formulae for hyperbolic polyhedra

$$\Lambda(x) = -\int_0^x \log |2 \sin(t)| \, dt.$$

The volume formula for Löbell manifolds established in [11] implies the following formula for $\text{vol}(R(n))$, since any Löbell manifolds indexed by n is glued by isometries from eight copies of $R(n)$:

Theorem 2.1. For all $n \geq 5$ we have

$$\text{vol}(R(n)) = \frac{n}{2} \left(2\Lambda(\theta_n) + \Lambda \left(\theta_n + \frac{\pi}{n}\right) + \Lambda \left(\theta_n - \frac{\pi}{n}\right) + \Lambda \left(\frac{\pi}{2} - 2\theta_n\right)\right),$$

where

$$\theta_n = \frac{\pi}{2} - \arccos \left(\frac{1}{2 \cos(\pi/n)}\right).$$

It is easy to check that $\theta_n \to \pi/6$ and $\frac{\text{vol}(R(n))}{n} \to \frac{5\pi}{3}$ as $n \to \infty$. Here we use that $v_3 = 3\Lambda(\pi/3) = 2\Lambda(\pi/6)$. Moreover, the asymptotic behavior of volumes of Löbell manifolds was established in [7, Prop. 2.10]. This implies trivially the description of the asymptotic behavior of $\text{vol}(R(n))$ as n tends to infinity.
Proposition 2.1. The following inequalities hold for sufficiently large n:
\[
\frac{5v_3}{4} \cdot n - \frac{17v_3}{2n} < \text{vol}(R(n)) < \frac{5v_3}{4} \cdot n.
\]
Since $\text{vert}(R(n)) = 4n$, we get

Corollary 2.1. The following inequalities hold for sufficiently large n:
\[
\frac{5v_3}{16} - \frac{17v_3}{8n^2} < \frac{\text{vol}(R(n))}{\text{vert}(R(n))} < \frac{5v_3}{16}.
\]

3. Proof of Theorem 1.3

We will use Löbell polyhedra $R(n)$ as building blocks to construct right-angled polyhedra with necessary properties. Let us present polyhedra $R(n)$ by their lateral surfaces as it is done in Fig. 2 for polyhedra $R(6)$ and $R(5)$, keeping in mind that left and right sides are glued together.

\[\text{Figure 2. Polyhedra } R(6) \text{ and } R(5).\]

For integer $k \geq 1$ denote by $R_k(n)$ the polyhedron constructed from k copies of $R(n)$ gluing them along n-gonal faces similar to a tower. In particular, $R_1(n) = R(n)$. The polyhedron $R_3(6)$ is presented in Fig. 3.

\[\text{Figure 3. Polyhedron } R_3(6).\]

Obviously, $R_k(n)$ is a right-angled polyhedron with n-gonal top and bottom and the lateral surface formed by $2n$ pentagons and $(k - 1)n$ hexagons.

Since $\text{vol}(R_k(n)) = k \cdot \text{vol}(R(n))$, Proposition 2.1 implies that for sufficiently large n
\[
k \cdot \frac{5v_3}{4} \cdot n - k \cdot \frac{17v_3}{2n} < \text{vol}(R_k(n)) < k \cdot \frac{5v_3}{4} \cdot n.
\]
Since $\text{vert}(R_k(n)) = (2k + 2)n$, we obtain
\[
k \cdot \frac{5v_3}{8} - k \cdot \frac{17v_3}{4n^2} < \frac{\text{vol}(R_k(n))}{\text{vert}(R_k(n))} < \frac{k}{k + 1} \cdot \frac{5v_3}{8}.
\]
Thus family of right-angled polyhedra $R_k(n)$ is such that for any integer $k \geq 1$
\begin{equation}
\lim_{n \to \infty} \frac{\text{vol}(R_k(n))}{\text{vert}(R_k(n))} = \frac{k}{k+1} \cdot \frac{5v_3}{8},
\end{equation}
and the upper bound $5v_3/8$ is a double limit point in the sense that it is the limit
of above limit points as $k \to \infty$:
\begin{equation}
\lim_{k,n \to \infty} \frac{\text{vol}(R_k(n))}{\text{vert}(R_k(n))} = \frac{5v_3}{8}.
\end{equation}
Thus, the theorem is proved. \qed

4. Other volume estimates.

Since 1-skeleton of a right-angled compact hyperbolic polyhedron P is a trival-
ent plane graph, one can easy see that Euler formula for a polyhedron implies
\begin{equation}
V = 2F - 4,
\end{equation}
where V is number of vertices of P and F is number of its faces. Moreover, Euler
formula implies also that P has at least 12 faces (this smallest number of faces
corresponds to a dodecahedron). Thus, Theorem 1.2 implies the following result.

Corollary 4.1. If P is a compact right-angled hyperbolic polyhedron with F faces,
then
\begin{equation}
(F - 3) \cdot \frac{v_8}{16} \leq \text{vol}(P) < (F - 7) \cdot \frac{5v_4}{4}.
\end{equation}

We recall that constants v_3 and v_8 are
\begin{align}
v_3 &= 3 \Lambda(\pi/3) = 1.0149416064096535 \ldots,
\end{align}
and
\begin{align}
v_8 &= 8 \Lambda(\pi/4) = 3.663862376708876 \ldots.
\end{align}

Since a right-angled hyperbolic n-gon has area $\pi/2 \cdot (n - 4)$, the lateral surface
area of a compact hyperbolic right-angled polyhedron P with F faces is equal to
$\pi \cdot (F - 6)$. Thus, Corollary 4.1 implies the following result.

Corollary 4.2. If P is a compact right-angled hyperbolic polyhedron with lateral
surface area S, then
\begin{equation}
(S/\pi + 3) \cdot \frac{v_8}{16} \leq \text{vol}(P) < (S/\pi - 1) \cdot \frac{5v_3}{4}.
\end{equation}

Observe, that Theorem 2.1 can be used to show that the volume function
$\text{vol} R(n)$ is a monotonic increasing function of n (see [4] and [7] for proofs), and
to calculate volumes of L"obell polyedra. In particular,
\begin{equation}
\text{vol} R(5) = 4.306 \ldots, \quad \text{vol} R(6) = 6.023 \ldots, \quad \text{vol} R(7) = 7.563 \ldots.
\end{equation}
Together with Theorem 1.1 it gives that the right-angled hyperbolic polyhedron of
smallest volume is $R(5)$ (a dodecahedron) and the second smallest is $R(6)$. Thus,
if a compact right-angled hyperbolic polyhedron P is differ of a dodecahedron,
then
\begin{equation}
\text{vol}(P) \geq 6.023 \ldots.
\end{equation}
Thus, we get the following
Corollary 4.3. If P is a compact right-angled hyperbolic polyhedron different than a dodecahedron, having V vertices and F faces. Then

$$\text{vol}(P) \geq \max\{(V - 2) \cdot \frac{v_8}{32}, 6.023 \ldots\}$$

and

$$\text{vol}(P) \geq \max\{(F - 3) \cdot \frac{v_8}{16}, 6.023 \ldots\}.\text{vol}(P)$$

The estimates from Corollary 4.3 improve the lower estimate from Theorem 1.2 for $V \leq 54$ and the lower estimate from Corollary 4.1 for $F \leq 29$.

References

[1] E. M. Andreev, On convex polyhedra in Lobachevsky space, Math. USSR Sbornik, 10(3) (1970), 413–440.

[2] O. Antolin-Camarena, G. Maloney, R.K.W. Roeder, Computing arithmetic invariants for hyperbolic reflection groups, In Complex Dynamics: Families and Friends (D. Schleicher editor) pages 571-605, A.K. Peters, 2008.

[3] C. K. Atkinson, Volume estimates for equiangular hyperbolic Coxeter polyhedra, Algebraic & Geometric Topology, 9 (2009), 1225–1254.

[4] T. Inoue, Organizing volumes of right-angled hyperbolic polyhedra, Algebraic & Geometric Topology, 8 (2008), 1523–1565.

[5] F. Löbell, Beispiele geschlossene dreidimensionaler Clifford — Kleinischer Räume negative Krümmung, Ber. Verh. Sächs. Akad. Lpz., Math.-Phys. Kl. 83 (1931), 168–174.

[6] S. Matveev, C. Petronio, A. Vesnin, Two-sided complexity bounds for Löbell manifolds, Doklady Mathematics, 76(2) (2007), 689–691.

[7] S. Matveev, C. Petronio, A. Vesnin, Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds, Journal of the Australian Math. Soc. 86(2) (2009), 205–219.

[8] A. Mednykh, A. Vesnin, Three-dimensional hyperelliptic manifolds and hamiltonian graphs, Siberian Math. J. 40(4) (1999), 628-643.

[9] A. Mednykh, A. Vesnin, Löbell manifolds revised, Siberian Electronic Mathematical Reports, 4 (2007), 605–609.

[10] A. Vesnin, Three-dimensional hyperbolic manifolds of Löbell type, Siberian Math. J. 28(5) (1987), 731–734.

[11] A. Vesnin, Volumes of three-dimensional hyperbolic Löbell manifolds, Math. Notes 64(1) (1998), 15–19.