Prehospital Prediction of a Time-sensitive Condition Among Patients With Dizziness Assessed by the Emergency Medical Service

Carl Magnusson
Institute of Medicine, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, Gothenburg University, SE 405 30 Gothenburg, Sweden

Julia Gärskog
Institute of Medicine, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, Gothenburg University, SE-405 30 Gothenburg, Sweden

Elin Lökholm
Institute of Medicine, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, Gothenburg University, SE-405 30 Gothenburg, Sweden

Jonny Stenström
Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, Gothenburg University, SE-405 30 Gothenburg, Sweden

Rickard Wetter
Institute of Medicine, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, Gothenburg University, SE-405 30 Gothenburg, Sweden

Christer Axelsson
Centre for Prehospital Research, Faculty of Caring Science, Work Life and Social Welfare, University of Borås, SE-501 90 Borås, Sweden

Magnus Andersson Hagiwara
University College of Boras Faculty of Caring Science Work Life and Social Welfare, University of Borås, SE-501 90 Borås, Sweden

Niclas Packendorff
The Emergency Medical Service System in Gothenburg, Sweden

Katarina Jood
University of Gothenburg Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden

Thomas Karlsson
Health Metrics Unit, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden

Johan Herlitz (✉ johan.herlitz@hb.se)
Centre for Prehospital Research, Faculty of Caring Science, Work Life and Social Welfare, University of Borås, SE-501 90 Borås, Sweden https://orcid.org/0000-0003-4139-6235
Abstract

Background: Dizziness is a relatively common symptom among patients who call for the emergency medical service (EMS).

Methods: All patients assessed by the EMS and triaged using the rapid emergency triage and treatment system for adults code 11 (=dizziness) in the 660,000 inhabitants in the Municipality of Gothenburg, Sweden, in 2016, were considered for inclusion. The patients were divided into two groups according to the final diagnosis (a time-sensitive condition, yes or no).

Results: There were 1,536 patients who fulfilled the inclusion criteria, of which 96 (6.2%) had a time-sensitive condition. The majority of these had an acute cerebrovascular disease. Eight predictors of a time-sensitive condition were identified. Three were associated with a reduced risk: 1) the dizziness was of a rotatory type, 2) the dizziness had a sudden onset and 3) increasing body temperature. Five were associated with an increased risk: 1) sudden onset of headache, 2) a history of head trauma, 3) symptoms of nausea or vomiting, 4) on treatment with anticoagulants and 5) increasing systolic blood pressure.

Conclusion: Among 1,536 patients who were assessed by the EMS due to dizziness, 6.2% had a time-sensitive condition. On the arrival of the EMS, eight factors were associated with the risk of having a time-sensitive condition. They were linked to the type of symptoms, to clinical findings on the arrival of the EMS and to the recent clinical history.

Background

Dizziness is a relatively common symptom among patients who seek emergency care. Many of these patients dial 112 for ambulance transport to hospital.

Dizziness is a unifying concept for a number of different experiences for the patient, such as being on a carousel, off balance, near syncope or motion of the sea. It has previously been reported that about three per cent of patients who visit the emergency department do so because of dizziness [1].

A number of conditions can be associated with the symptom of dizziness. Damage to central or peripheral parts of the vestibular nerve will generate an acute vestibular syndrome, which consists of several symptoms such as dizziness, nausea/vomiting, nystagmus and trouble maintaining body balance.

When the damage is localised to the inner ear or in the vestibular nerve, there is a peripheral aetiology. Examples of a peripheral aetiology of an acute vestibular syndrome are benign paroxysmal positional vestibular neuritis, Meniere’s disease, bacterial labyrinthitis and herpes zoster oticus [2].

Dizziness of central origin damage is localised in the central parts of the vestibular system in the brain stem and/or cerebellum and the underlying aetiologies include TIA/stroke, migraine, tumour in the brain...
stem, encephalitis and multiple sclerosis.

However, it has been suggested that the majority of patients with acute dizziness have aetiologies other than damage to the peripheral or central parts of the vestibular system. In one large study, it was reported that 63% of all cases with acute dizziness had other aetiologies. The most common aetiology was an upper airway infection (35%), followed in order of frequency by hypertension (18%). Time-sensitive conditions such as bradycardia, AV block III, sepsis and acute coronary syndrome accounted for three per cent of all cases [3]. Similar findings have been made by others reporting that more than half the patients with dizziness have an aetiology which is not related to the vestibular system, with the majority having an internal medicine disorder [4].

Time-sensitive conditions which are not related to the vestibular system but may still cause dizziness include cerebrovascular disease not specifically affecting the vestibular system, water-electrolyte imbalance, arrhythmia, carbon monoxide poisoning and aortic dissection.

The variety of conditions that may exist behind symptoms of dizziness highlight the difficulties healthcare providers experience when attempting to differentiate these symptoms into benign and malignant conditions when they meet patients with these symptoms.

The burden on the emergency medical service (EMS) has increased markedly during the last few decades. This is primarily explained by an elderly population with an often extensive comorbidity and the fact that people nowadays tend to dial 112 more often than before, despite not suffering from a time-sensitive condition [5]. It has also been shown that not all these patients require transport to hospital [6] and that some could preferably be handled by a lower level of care [6].

This situation constitutes a demanding challenge for the EMS staff who, for the adequate utilisation of resources, must try to differentiate time-sensitive from non-time-sensitive conditions already at the scene.

A typical symptom where the EMS staff may have problems is dizziness. Although a large proportion of these patients appear to suffer from a relatively benign condition, there are time-sensitive conditions hidden among them which are important to identify.

The aim of this study was, among patients who are assessed by the EMS due to symptoms of dizziness, to attempt to identify clinical factors that may help to differentiate patients who are suffering from a time-sensitive condition from those that are not. We have recently reported on basic findings from this study cohort [7].

Methods

Design

This study is a retrospective, observational study where patients with on-the-scene PEN triage of RETTS code no 11 (dizziness) were included for a manual review.
Recruitment of patients:

All the patients who were seen by the EMS in the Municipality of Gothenburg and given the rapid emergency triage and treatment system for adults (RETTS-A) code 11 = dizziness (n = 2,048) from 1 January to 31 December 2016 were included in the study.

Inclusion criteria:

1. Primary mission and assessed by a prehospital emergency nurse (PEN)
2. Given RETTS-A code 11 by a PEN

Exclusion criteria:

1. Age < 16 years
2. Patient primarily assessed by another caregiver, for example, a physician or at an outpatient clinic
3. Not assessed by a physician at the hospital
4. Incomplete identification number
5. Patient sent to another hospital outside the catchment area

The EMS system in Sweden

The healthcare provided in Sweden, including pre-hospital care, is tax funded. The EMS organisation uses national/regional guidelines. Each ambulance in Sweden should be staffed by at least one registered nurse (RN), responsible for the care. The RN often has an additional one-year postgraduate education in pre-hospital emergency care (PEN). However, ambulance crew set-ups can take the form of two nurses or one nurse and one emergency medical technician (EMT). The PEN assesses the patient at the scene and has approximately 40 different types of drug at his/her disposal. The PEN is responsible for deciding on the level of care, which means that not all patients are transported to hospital [8].

Ambulances are dispatched from a dispatch centre with three priorities as previously described [9].

Triage system

The RETTS-A [10] is a five-level triage system currently in use in the majority of emergency departments (EDs) and EMS organisations in Sweden. The RETTS-A is developed, licensed and maintained by a Swedish company (Predicare AB). The RETTS-A contains 58 charts with common ED presentations. Each chart includes both emergency signs and symptoms (ESS) and vital signs (VS) as previously described [7]. The level of severity of both VS and ESS is divided into the colours of red, orange, yellow, green and blue, but blue is not used by the EMS. Triage level red is considered life threatening, resulting in immediate contact with a physician, orange is potentially life threatening, while yellow and green can wait in the ED without medical risk. Yellow is considered to be more urgent than green. The highest triage level of either VS or ESS becomes the final triage level.

Data collection
Data were collected from digital case records in the EMS data system and the hospital medical records.

Final diagnosis at discharge was collected from the hospital medical records. Patients were then divided into two groups according to whether or not they had a time-sensitive condition. A time-sensitive condition was defined if the final diagnosis was any of those described by Wibring et al [11]. Of particular interest for this article was TIA/stroke.

Data analyses

Univariate comparisons between patients with and patients without a time-sensitive condition were performed using the Mann-Whitney U test for continuous/ordered variables and Fisher’s exact test for dichotomous variables.

With the exception of the two variables of “non-transported, attended the ED within 72 hours” and “EMS on-the-scene time”, which were regarded as outcomes rather than predictors, all variables with a univariate \(p < 0.20 \) for differences between the two groups were tested for inclusion in a multiple logistic regression model, using backward stepwise selection with \(p < 0.01 \) for staying in the model. This procedure was performed both using only complete cases and, due to the amount of missing data for several of the variables, using multiple imputations (primary analysis). For the latter, which was regarded as the primary analysis, missing data were assumed to be missing at random (MAR) and 50 imputed datasets were generated with the Markov Chain Monte Carlo (MCMC) method using the expectation-maximisation (EM) algorithm. Rubin’s rules were used to pool the results from the imputed datasets. To identify independent predictors of time-sensitive conditions in the multiple imputation multivariable analysis, we started with a model including all the variables in Table 1 with a univariate \(p < 0.20 \).

Collinearity was checked by association measurements between variables, as well as by inspection of the variance inflation factor, condition index and eigenvector proportions in a multiple linear regression model including all the candidate variables. One important collinearity, between systolic and diastolic blood pressure, was found and, as a result, diastolic blood pressure was excluded from the following analysis. Multiple logistic regression was performed in each of the 50 imputed datasets and the variable with the highest \(p \)-value in the pooled result was excluded from the model. A new regression analysis was then performed in each imputed dataset and, of the remaining variables, the one with the highest \(p \)-value in the pooled result was excluded. This procedure was repeated until all the remaining variables yielded a \(p \)-value below 0.01 in the pooled result.
Table 1
a. Patient characteristic and EMS assessment with and without a time-sensitive condition not included in the multivariable analysis

	Total	Not time-sensitive condition	Time-sensitive condition	P
	n = 1536	n = 1440	n = 96	
Non-transported patients - n(%)				
Attended the ED within 72 hours	43 (12.3)¹	38 (2.6)	5 (5.2)	0.186
Mode of transport - n(%) (38,5)²				0.285
Ambulance	1361 (91.2)	1277 (91.1)	84 (92.3)	
Patient transport vehicle	50 (3.3)	48 (3.4)	2 (2.2)	
Seated transport vehicle	49 (3.3)	47 (3.4)	2 (2.2)	
Single responder	17 (1.1)	15 (1.1)	2 (2.2)	
By own means	16 (1.1)	15 (1.1)	1 (1.1)	
EMS time - median h:mm (176,13)				
Dispatch - Arrival in hospital	0:53 (0:44,1:05)	0:54 (0:44,1:05)	0:53 (0:45,1:07)	0.481
Time on scene	0:22 (0:16,0:29)	0:22 (0:16,0:29)	0:25 (0:18,0:31)	0.006
Vital signs - median (10th,90th percentile)				
Respiratory rate /min (73,4)²	17 (14,20)	17 (14,20)	16 (14,20)	0.539
Heart rate /min (47,5)	80 (62,104)	80 (62,104)	78 (60,100)	0.408
Medical history - n(%)³ (19,0)				
Atrial fibrillation	241 (15.9)	223 (15.7)	18 (18.8)	0.470
Myocardial infarction	159 (10.5)	147 (10.3)	12 (12.5)	0.491
Angina pectoris	98 (6.5)	92 (6.5)	6 (6.3)	1.000
Heart failure	73 (4.8)	69 (4.9)	4 (4.2)	1.000
Peripheral vascular disease	23 (1.5)	22 (1.5)	1 (1.0)	1.000
Cancer	152 (10.0)	142 (10.0)	10 (10.4)	0.861
History of presenting complaint - n(%)	Total	Not time-sensitive condition	Time-sensitive condition	P
--	-------	-----------------------------	--------------------------	---
Transient loss of consciousness	134 (8.8)	124 (8.7)	10 (10.4)	0.576
Recurrent transient loss of consiousness	31 (2.0)	29 (2.0)	2 (2.1)	1.000
Headache	357 (23.5)	333 (23.4)	24 (25.0)	0.710

ED: Emergency department

1 Denoted as percentage of non-transported patients (n = 351)

2 Missing data for groups not time-sensitive condition and time-sensitive conditions respectively

3 A patient could have more than one medical history diagnosis

4 A patient could have more than one symptom
Table 1
b. Patient characteristics and EMS assessment of patients with and without a time-sensitive condition included in the multivariable prediction model

	Total	Not time sensitive condition	Time sensitive condition	P
	n = 1536	n = 1440	n = 96	
Age - year (25th,75th percentile) (12,0)\(^1\)				
Median	73 (57.83)	73 (57.83)	78 (66.85)	0.007
Sex - n(%) (13,0)				
Women	877 (57.6)	830 (58.2)	47 (49.0)	0.088
Dispatcher priority - n(%) (1,0)				0.038
Priority 1	523 (34.0)	481 (33.4)	42 (43.8)	
Priority 2	945 (61.6)	894 (62.1)	51 (53.1)	
Priority 3	67 (4.4)	64 (4.5)	3 (3.1)	
Triage level according to RETTS-A - n(%)				0.026
Red	22 (1.4)	22 (1.5)	0 (0.0)	
Orange	415 (27.0)	375 (26.0)	40 (41.7)	
Yellow	878 (57.2)	835 (58.0)	43 (44.8)	
Green	221 (14.4)	208 (14.5)	13 (13.5)	
Vital signs - median (10th,90th percentile)				
Oxygen saturation % (49,5)\(^1\)	98 (95,100)	98 (95,100)	98 (95,99)	0.063
Systolic blood pressure mm/hg (51,4)	150 (110,190)	145 (110,187)	160 (130,190)	< 0.001
Diastolic blood pressure mm/hg (142,8)	80 (70,100)	80 (70,100)	90 (70,104)	0.026
Body temperature °C (83,7)	36.7 (36.0,37.3)	36.7 (36.0,37.3)	36.6 (35.6,37.2)	0.189
Blood glucose recorded - n(%)	739 (48.1)	685 (47.6)	54 (56.3)	
Elevated blood glucose >9.4 mmol/l	117 (15.8)	104 (15.2)	13 (24.1)	0.118
Medical history - n(%)\(^2\) (19,0)				
	Total	Not time sensitive condition	Time sensitive condition	P
--------------------------	-----------	------------------------------	--------------------------	-----
Stroke	189 (12.5)	169 (11.9)	20 (20.8)	0.016
Transient ischaemic attack	95 (6.3)	85 (6.0)	10 (10.4)	0.122
Hypertension	618 (40.7)	568 (40.0)	50 (52.1)	0.024
Diabetes	213 (14.0)	195 (13.7)	18 (18.8)	0.172

History of presenting complaint - n(%)

	Total	Not time sensitive condition	Time sensitive condition	P
Sudden onset	1165	1104 (77.7)	61 (63.5)	0.003
Nausea, vomiting	801	742 (52.2)	59 (61.5)	0.091
Sudden onset headache	35	24 (1.7)	11 (11.5)	< 0.001
Head trauma	86	70 (4.9)	16 (16.7)	< 0.001
Treatment with anticoagulants	215	191 (13.4)	24 (25.0)	0.004

Types of dizziness - n(%)

	Total	Not time sensitive condition	Time sensitive condition	P
Rotatory vertigo	445	428 (41.2)	17 (21.2)	
Balance disturbance	85	81 (7.8)	4 (5.0)	
Nautical	111	102 (9.8)	9 (11.3)	
Non-specific dizziness	477	427 (41.2)	50 (62.5)	

1. Missing data for groups not time sensitive condition and time sensitive conditions respectively
2. A patient could have more than one medical history diagnosis
3. A patient could have more than one symptom
4. Onset within a few hours

Two-sided tests were used and p-values below 0.01 were considered statistically significant. All univariable analyses were performed using SPSS version 25 and, for the multivariable analyses, SAS for Windows version 9.4 was used.

Results

Overall, there were 59,000 primary missions for the EMS in 2016. Of them, 2,048 (3.5%) were coded as dizziness according to the RETTS-A (code 11).
After applying inclusion and exclusion criteria, 1,536 patients remained. The clinical characteristics of the included patients are shown in Table 1. The overall median age was 73 years and 58% were women.

Of the 1,536 included patients, 96 (6.2%) fulfilled the criteria for a time-sensitive condition. The most frequent time-sensitive conditions were stroke and TIA (n = 84), followed by AV block (n = 4), electrolyte imbalance (n = 4), a traumatic brain bleed (n = 3) and acute coronary syndrome (n = 1).

Univariable analyses

The results of univariable analyses of the association between clinical variables and time-sensitive conditions are shown in Table 1b and 1a.

Patients with a time-sensitive condition were significantly older. They also had higher systolic blood pressure, more often had ongoing anticoagulation, more often described a sudden onset of headache but less often described a sudden onset of dizziness and less often had dizziness of the rotatory type, nautical, or balance disturbing. Moreover, they more frequently had a history of head trauma.

Multivariable analyses (Table 2)

Multiple imputations (n = 96 + 1440)
OR (95% CI)
Systolic blood pressure (per mmHg)
1.015 (1.007,1.022)
0.0001
Body temperature (per degree Celsius)
0.56 (0.38,0.82)
0.003
Rotary vertigo
0.32 (0.18,6.59)
0.0002
Sudden onset
0.35 (0.21,0.57)
< 0.0001
Nausea, vomiting
2.10 (1.29,3.43)
< 0.0001
Sudden onset headache
8.54 (3.71,19.67)
< 0.0001
History of head trauma
4.13 (2.17,7.86)
< 0.0001
Treatment with anticoagulants
2.36 (1.39,3.99)
0.001

OR: Odds ratio; CI: Confidence interval
There were eight factors that were independently associated with the risk of a time-sensitive condition. Two factors, the rotatory type of dizziness and the sudden onset of the symptoms, were both associated with a threefold decrease in the risk of a time-sensitive condition. Furthermore, the risk of a time-sensitive condition was reduced by nearly 50% for each degree(C) of increase in body temperature.
The following five factors were associated with an increased risk of a time-sensitive condition: 1) sudden onset of headache with a ninefold increase in risk, 2) a history of head trauma with a fourfold increase in risk, 3) symptoms of nausea or vomiting with a twofold increase in risk, 4) on treatment with anticoagulants with a twofold increase in risk and 5) systolic blood pressure with a 1.5% increase in risk per mmHg increase in systolic blood pressure.

Discussion

We found that, among 59,000 primary missions for the EMS in the catchment area, 3.5% were reported as suffering from dizziness. Of them, about six per cent fulfilled the criteria for having a time-sensitive condition, among which the majority had had an acute cerebrovascular disease. On the arrival of the EMS, there were eight factors that were associated with the risk of having a time-sensitive condition. Three factors, i.e. having a rotatory type of dizziness, having a sudden onset of symptoms and increasing body temperature, were all associated with a decreased risk.

Five factors, i.e. sudden onset of headache, a history of head trauma, symptoms of nausea or vomiting, on treatment with anticoagulants and increasing blood pressure, were all associated with an increased risk.

Our finding that around three per cent of patients who were seen by the EMS had symptoms of dizziness is in agreement with previous research which states that about three per cent of patients who visit the emergency department have symptoms of dizziness [1]. Furthermore, Hjälte et al. found that three per cent of patients who called for the EMS did so because of dizziness [12].

The observation that around six per cent of the patients with dizziness had a time-sensitive condition is also within the range that has previously been reported [13–16].

The observation that rotatory dizziness is associated with a reduced risk of a time-sensitive condition is supported to some extent by previous research [14, 17].

Moreover, the observation that the sudden onset of dizziness is associated with a reduced risk of a time-sensitive condition has been reported [18]. However, the proportion of patients with a time-sensitive condition among those with a sudden onset of dizziness has been reported with a frequency varying from 0.7–11% [15, 19–21]. It is possible to speculate that there is difficulty deciding how to describe the type of onset of dizziness in some cases.

The finding that the risk of a time-sensitive condition decreased with increasing body temperature is difficult to explain. It is possible to speculate that, among patients with fever and vertigo, the risk of an underlying infection (not defined as a time-sensitive condition) is more marked.

Sudden onset of headache was strongly associated with an increased risk of a time-sensitive condition. Similar findings were made by Kerber et al. [18]. Others [15, 22–23] did not report results that supported this statement.
Another factor that increased the risk of a time-sensitive condition was a history of head trauma. To the best of our knowledge, this has not been reported before. The mechanism behind the association between head trauma and a time-sensitive condition among patients with dizziness can only be speculated upon.

A third factor was the presence of nausea or vomiting. The fact that these symptoms are associated with an increased risk of a time-sensitive condition has previously been suggested [18, 24]. There is no clear explanation of why nausea or vomiting should be a risk factor for a more alarming aetiology. Among patients with other symptoms such as chest pain, the presence of nausea or vomiting has been associated with an increased risk of an underlying acute coronary syndrome [24].

A fourth factor that increased the risk of a time-sensitive condition was whether the patient was on chronic treatment with anticoagulants. Although this was not reported by other researchers [15, 23] there is a potential explanation for this finding. This may indicate that the patient has previously suffered from a thromboembolic event or suffers from a disease that is associated with an increased risk of such an event, for example, atrial fibrillation. Somewhat surprisingly, a history of atrial fibrillation did not appear as a risk factor for a time-sensitive condition in our survey.

The last risk factor was increasing systolic blood pressure on the arrival of the EMS. This finding is in agreement with a number of previous studies [15, 16, 18, 23]. The finding that an elevation of blood pressure is a risk factor for the development of a cerebrovascular disease is well documented [13, 25–28].

Strengths And Limitations

This cohort of patients who were assessed by the EMS within the catchment area is large and representative. Since the data are based on a retrospective observational study, the results and the conclusion are dependent on the quality of the reporting. This quality most likely varies and is dependent on situational factors, as well as the experience and skills of the EMS staff. Information is missing for a large number of variables and this was adjusted for by multiple imputations.

Although the data are representative of the catchment area, they are collected from an EMS system within an urban area. For this reason, our results cannot be extrapolated to a national perspective where rural areas must be included as well.

Conclusion

Among 1,536 patients who were assessed by EMS due to dizziness, 6.2% had a time-sensitive aetiology. On the arrival of the EMS, eight factors were associated with the risk of having a time-sensitive aetiology. They were all linked to the type of symptoms or to clinical findings on the arrival of the EMS but also to clinical history. Further studies should aim to develop a risk-stratifying instrument in the prehospital setting and the validation of such an instrument.
Declarations

Ethics approval and consent to participate

This study was approved by the Regional Ethical Review Authority in Gothenburg, approval no. 970-15. For the retrospective analysis of this register study, informed consent was waived. However, at the time of EMS assessment, patients who asked for their data to remain confidential were not included in the retrospective analysis.

Consent for publication

Not applicable

Availability of data and materials

I confirm that data and material are available if necessary.

Competing interest

The authors have no commercial associations or sources of support that might pose a conflict of interest.

Funding

The study was supported by the Swedish state under the ALF agreement (ALFGBG-922511). The funder costs for the statistical analysis of the data.

Authors contribution

CM was responsible for the planning process, analysed and interpreted the data and was responsible for the writing process.

JG took part in the planning process, took part in the analysis and interpretation of the data and was active in the writing process.

EL took part in the planning process, took part in the analysis and the interpretation of the data and was active in the writing process.

JS took part in the planning process, took part in the analysis and the interpretation of the data and was active in the writing process.

RW took part in the planning process, took part in the analysis and the interpretation of the data and was active in the writing process.

CA took part in the planning process, took part in the analysis and the interpretation of the data and was active in the writing process.
MA was active in the interpretation of the data and in the writing process.

NA was active in the planning process in the interpretation of the data and in the writing process.

KJ was active in the interpretation of the data and in the writing process.

TK was responsible for the statistical analysis and was active in the interpretation of the data and in the writing process.

JH was together with CM responsible for the overall process including planning, analysis, interpretation and writing.

Acknowledgements

Not applicable

Abbreviations

ED = Emergency Department

EM = Expectation Maximisation

EMS = Emergency Medical Service

ESS = Emergency Signs and Symptoms

MAR = Missing at random

MCMC = Markov Chain Monte Carlo

PEN = Prehospital Emergency Nursing

RETTS-A = Rapid Emergency Triage and Treatment System for Adults

RN = Registered nurse

SAS = Statistical Analyses System

SPSS = Statistical Product and Service Solutions

TIA = Transitory Ischemic Attack

VS = Vital signs

References
1. Newman-Toker DE, Stanton VA, Hsieh YH, Tothman RE. Frontline providers harbor misconceptions about the bedside evaluation of dizzy patients. Acta Oto-Laryngologica 2008;128(5): 601-604.

2. Mochalina N, Khoshnood A, Karlberg M, Dryver E. ABC om Yrsel på akuten. Läkartidningen 2015;112: 1-7.

3. Lam J, Siu W, Lam T, Cheung N, Graham C, Rainer TH. The epidemiology of patients with dizziness in an emergency department. Emergency Medicine) Hong Kong journal of Emergency Medicine 2006;13(3): 133-139.

4. Newman-Toker DE, Hsieh Y-H, Camargo CA, Pelletier AJ, Butchy GT, Butchy AJ. Spectrum of Dizziness Visits to US Emergency Departments: Cross-Sectional Analysis From a Nationally Representative Sample. Mayo Clinic Proceedings 2008;83: 765-775.

5. Thang ND, Karlson BW, Bergman B, Santos M, Karlsson T, Bengtson A, et al. Patients admitted to hospital with chest pain &#x2014; Changes in a 20-year perspective. International Journal of Cardiology 2013;166(1):141-146.

6. Magnusson C, Källenius C, Knutsson S, Herlitz J, Axelsson C. Pre-hospital assessment by a single responder: The Swedish ambulance nurse in a new role: A pilot study. International Emergency Nursing 2016;26:32-37.

7. Packendorff N, Gustavsson V, Magnusson C, Andersson Hagiwara M, Jood K, Herlitz J, Axelsson C. Outcome among patients who call the emergency medical service (EMS) due to dizziness. Australasian Emergency Care 2020. In press.

8. Lindström V, Bohm K, Kurland L. Prehospital care in Sweden. Notfall + Rettungsmedizin 2015;18(2):107-109.

9. Ek B, Edström P, Toutin A, Svedlund M. Reliability of a Swedish pre-hospital dispatch system in prioritizing patients. International Emergency Nursing 2013;21(2):143-149.

10. Widgren BR, Jourak M. Medical Emergency Triage and Treatment System (METTS): A New Protocol in Primary Triage and Secondary Priority Decision in Emergency Medicine. The Journal of Emergency Medicine 2011;40(6):623-628.

11. Wibring K, Magnusson C, Axelsson C, Lundgren P, Herlitz J, Andersson Hagiwara M. Towards definitions of time-sensitive conditions in prehospital care. Scandinavian journal of trauma, resuscitation and emergency medicine 2020;28(1):7-7.

12. Hjälte L, Suserud BO, Herlitz J, Karlberg I. Initial emergency medical dispatching and prehospital needs assessment: a prospective study of the Swedish ambulance service. Eur J Emerg Med 2007;14: 134-141.

13. Kerber KA, Brown DL, Lisabeth LD, Smith MA, Morgenstem LB. Stroke among patients with dizziness, vertigo, and imbalance in the emergency department: A population-based study. Stroke 2006;37(10): 2484-2487.

14. Doijiri R, Uno H, Miyashita K, Ihara M, Nagatsuka K. How commonly is stroke found in patients with isolated vertigo or dizziness attack? J of Stroke and Cerebrovascular Diseases 2016;25(10): 2549-2552.
15. Navi BB, Kamel H, Shah MP, Grossman AW, Wong C, Poisson SN, Kim AS. Rate and predictors of series neurologic causes of dizziness in the emergency department. Mayo Clinic Proceedings 2012;87(11): 1080-1088.

16. Ljunggren M, Persson J and Salzer J. Dizziness and the Acute Vestibular Syndrome at the Emergency Department: A Population-Based Descriptive Study. Eur.Neurol 2018;79:5-12

17. Kim Y, Faysel M, Balucani C, Yu D, Gilles NR, Levine S. Ischemic Stroke Predictors in Patients Presenting with Dizziness, Imbalance and Vertigo. Journal of Stroke and Cerebrovascular Diseases 2018;27(12): 3419-3424. Doi:http://dx.doi.org.lib.costello.pub.hb.se/10.1016/j.jstrokecerebrovasdis.2018.08.002

18. Kerber KA, Meurer WJ, Brown DL, Burke JF, Hofer TP, Tsodikov A, Hoeffner EG, Fendrick AM, Adelman EE, Morgenstern LB. Stroke risk stratification in acute dizziness presentations. Neurology 2015;85(21): 1869–1878. https://doi.org/10.1212/wnl.0000000000002141

19. Kerber KA, Brown DL, Lisabeth LD, Smith MA, Morgenstern LB. Stroke among patients with dizziness, vertigo, and imbalance in the emergency department: a population-based study. Stroke 2006;37(10): 2484-7. doi:10.1161/01.STR.0000240329.48263.0d

20. Mosarrezai A, Toghae M, Majed M, Aloosh M. Isolated vertigo and possibility of brain ischemia. Arch Iran Med, 2012;15(8): 469-471. doi:012158/aim.005

21. Paul NL, Simoni M, Rothwell PM. Transient isolated brainstem symptoms preceding posterior circulation stroke: a population-based study. Lancet Neurol 2013;12(1); 65-71. doi:10.1016/s1474-4422(12)70299-5

22. Cheung CS, Mak PS, Manley K, Lam JM, Tsang AY, Chan HM, Rainer T, Graham C. Predictors of important neurological causes of dizziness among patients presenting to the emergency department. Emergency Medical Journal 2010;27(7): 517-521. doi: 10.1136/emj.2009.078014

23. Kuroda R, Nakada T, Ojima T, Serizawa M, Imai N, Yagi N, Tasaki A, Aoki M, Oiwa T, Ogane T, Moochizuki K, Kobari M, Miyajima H. The TriAGE+ Score for Vertigo or Dizziness: A Diagnostic Model for Stroke in the Emergency Departm. Journal of Stroke and Cerebrovascular Diseases, 2017;26(5): 1144-1153.

24. Andersson H, Ullgren A, Holmberg M, Karlsson T, Herlitz J, Wireklint Sundström B. Int Emerg Nurs 2017;33: 43-47.

25. Briton M, Carlsson A, de Faire U. Blood pressure course in patients with acute stroke and matched controls. Stroke 1986;17: 861-864.

26. Leonardi-Bee J, Bath PMW, Phillips SJ, Sandercock PAG. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke 2002;33: 1315-1320.

27. Qureshi AI, Ezzeddine MA, Nasar A, Suri MFK, Kirmani JF, Hussein HM, Divani AA, Reddi AS. Prevalence of elevated blood pressure in 563 704 adult patients with stroke presenting to the ED in the United States. Am J Emerg Med. 2007;25: 32-38.

28. Bangalore S, Schwamm L, Smith EE, Hellkamp AS, Suter RE, Xian Y, Schulte PJ, Fonarow GC, Bhatt DL, for the Get With the Guidelines-Stroke Steering Committee and Investigators. Blood pressure and
in-hospital outcomes in patients presenting with ischaemic stroke. Eur Heart J 2017;38: 2827-2835.