A New Agent-Based Intelligent Network Architecture

Sisay Tadesse Arzo, Domenico Scotece, Riccardo Bassoli, Fabrizio Granelli, Luca Foschini, and Frank H.P. Fitzek

ABSTRACT

The advent of 5G and the design of its architecture has become possible because of the previous individual scientific works and standardization efforts on cloud computing and network softwarization. Software-defined networking and network function virtualization started separately to find their convolution into 5G network architecture. Also, the ongoing design of the future beyond 5G (B5G) and 6G network architecture cannot overlook the pivotal inputs of different independent standardization efforts on autonomic networking, service-based communication systems, and multi-access edge computing. This article provides the design and characteristics of an agent-based, softwarized, and intelligent architecture, which coherently condenses and merges the independent proposed architectural works by different standardization working groups and bodies. This novel work is a helpful means for the design and standardization process of the future 5G and 6G network architecture.

INTRODUCTION

The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T) Focus Group on IMT-2020 concluded its pre-standardization activities in December 2016. The core reform that 5G introduced in communication was the idea of virtualization, or more specifically, network softwarization. This implied a tremendous paradigm shift from the previous store-and-forward to the current/future compute-and-forward. This has made computing as important as communication in future communication networks [1]. However, the design of 5G architecture and core characteristics has leveraged the previous experience obtained during the successful development of cloud computing and network virtualization instances such as software-defined networking (SDN) — led by the no-profit consortium Open Network Foundation (ONF) — and network function virtualization (NFV) — started by the industry and standardized by the European Telecommunications Standards Institute (ETSI).

Recently, ITU has started writing a report about the future technology trends toward 2030 and beyond, which is going to be released in June 2022. This report will mainly provide the very general vision for future 6G communication networks. In 2021, 6G research and design started in the EU, like the EU flagship Hexa-X (hexa-x.eu) and the German research hub 6G-life (6g-life.de). In particular, the Hexa-X project has been publishing the main guidelines for 6G characteristics, use cases, key performance indicators (KPIs), and architecture [2, 3]. However, the last few years of research and standardization efforts on in-network intelligence and network softwarization have been providing mature input for the architectural aspects of the new generation, which is still an open challenge [2, 3]. Thus, this article provides an architectural design and guidelines for future 5G, beyond 5G, and 6G networks by leveraging the various standardization works by ETSI and the Third Generation Partnership Project (3GPP), considering the current popular trends on microservice- and agent-based intelligent communication systems. In this vision, all softwarized network functions become atomic entities, playing as autonomous, intelligent, and collaborative agents, in line with the current trends shown in [2, 3]. To the best of the authors’ knowledge, this is the first architectural attempt to unify the four existing individual architectures, microservices-based SDN control plane, ETSI SDN-NFV Management and Orchestration (MANO), ETSI Generic Autonomic Networking Architecture (GANA), and 3GPP-ETSI Mobile Edge Computing (MEC), a unique and homogeneous framework for 5G, beyond 5G, and 6G.

Motivation and Background

This section provides an overview of the main existing independent architectures.

Microservices-Based SDN Controller

The centralized nature of the SDN control plane leads to several issues on latency, single point of failure, and overloading [4]. These issues have been partially overcome by using the distributed SDN controller approach. However, the SDN controller is a monolithic system that results in inefficient replication of the SDN system. Moreover, monolithic SDN deployment does not allow dynamic management of SDN components and/or functionalities to (de-)activate according to the scenario. To alleviate this, the work in [5, 6] decomposed the SDN controller and implemented it as a set of microservices components that can run in a distributed fashion with flexibility in recomposition. In particular, the SDN controller is designed as a composition of logical sub-functions (i.e., microservices). They can share network service load and create a robust system against failures.
The work in [6] presented the mONOS architectural framework, which is proposed by Open Network Operating System (ONOS) [6]. It is expected to be the next-generation SDN architecture. However, mONOS has been specialized mainly for cloud data center scenarios. It is limited to certain technologies and is not all 5G-compliant. In particular, mONOS uses the gRPC protocol family for microservices intercommunication, which is not the standard declared in the 3GPP white paper version 15 [7]. 3GPP specifies REST application programming interfaces (APIs) as the standard de facto for services intercommunication. In this regard, we have implemented a microservices-based SDN controller deployment that complies with the 5G standard (Fig. 1, top left) [5]. Our implementation is based on the Ryu SDN Framework, and a first release is available to the community at https://gitlab.com/dscotece/ryusdndecomposition/.

ETSI SDN-NFV MANO

ETSI released its ETSI SDN-NFV MANO architecture [8], to provide a unified architecture effectively combining SDN and NFV characteristics. Figure 1 (top right) depicts its structure. This architecture consists of three main entities, called the network management system (NMS), the network function virtualization infrastructure (NFVI), and the operation/business support scheme (OSS/BSS). The first manages the virtual network, the second sets the resources (hardware or software) that are used to run and connect virtual network functions, and the third sets the applications used by service providers to provide network services. Each one of these layers has an interface to the MANO entity, which hosts the virtual infrastructure managers (VIMs) aimed at controlling the NFVI resources. Next, the virtual network function manager (VNFPM) configures and manages the life cycle of virtual network functions in its network domain. Finally, there is the orchestrator for the NFVI who manages the resources across different VIMs, and subsequently the life cycle of network services. Finally, the virtualization layer groups all the element management entities with their respective virtual network functions (VNFs).

ETSI GANA

Generic Autonomic Network Architecture: ETSI also unveiled a standard reference architecture as an implementation guide for the GANA architectural framework for network automation [9]. The main goal of the GANA reference model is to prescribe the design and operational principles for decision elements (DEs) as the drivers for cognitive, self-managing, and self-adaptive network behaviors. ETSI is performing several GANA instantiations onto various target standardized ref-

Figure 1. Architectures of microservices-based SDN controller decomposition (top left), ETSI SDN-NFV MANO (top right), ETSI GANA (bottom left), and 3GPP-ETSI MEC (bottom right).
Autonomous network architectures. This is to enable autonomic algorithms to be integrated into the design and implementation of DEs. The integration is also aimed at standardizing the autonomic network architectures at four levels, as depicted in Fig. 1 (bottom left).

Network Level Decision Element: This level is designed to operate the outer closed control loops on the basis of network-wide views or state as input to the DEs’ algorithms and logics for autonomic management.

Node Level Decision Element: This level is in charge of controlling the behavior of the network element (NE) as a whole, and also managing the orchestration and policing of the function level decision elements. GANA Function Level specifies the following decision elements: security management, fault management, auto-configuration and discovery, resilience, and survivability.

Function Level Decision Element: This level represents a group of protocols and mechanisms that abstract, as atomic units, networking or a management/control function. The GANA model defines the following six decision elements: routing management; forwarding management; quality of service management; mobility management; monitoring management; and service and application management.

Protocol Level Decision Element: This is the lowest level decision element in the system. This kind of element is protocols or other fundamental mechanisms that may exhibit intrinsic control loops or decision element logic and associated DE, as is the case for some protocols such as Open Shortest Path First (OSPF).

GANA Knowledge Plane (GANA KP): This enables advanced management and control intelligence at the element management (EM), network management (NM), and operation and support system (OSS).

A close look at the GANA model reveals close alignment with the multi-agent-based approach proposed in [10], which defines the network functions as services that can be deployed in a virtualized/containerized environment.

Multi-Agent System (MAS): This is a sub-branch of distributed artificial intelligence, where it has multiple interacting intelligent agents performing a given task collaboratively and autonomously. MAS includes different attributes such as architecture, communication, coordination strategies, decision making, and learning abilities. The work in [10] identified MAS as a competing candidate for defining atomic and autonomous DEs in the GANA model. DEs could be network function units that could be used as a building block in any automated system. Network function atomization is the mechanism that defines the smallest possible network function units in a service-oriented system. MAS is comparable to microservices but with more autonomy and proactive capability [10].
3GPP-ETSI MEC Architecture

The basic idea of MEC is to provide capabilities closer to the end users to overcome mobile difficulties. This promotes a new three-layer device-edge-cloud hierarchical architecture, which is recognized as very promising for several application domains [11]. With the advent of 5G networks, MEC is one of the key technologies for supporting ultra-reliable and low-latency communications.

The 5G system architecture specified by 3GPP is designed to fit a wide range of use cases including Internet of Things (IoT) network management. In particular, 3GPP defines the service-based architecture (SBA) for the 5G core network, whereby the control plane functionality and common data repositories are delivered by a set of interconnected network functions (NFs), each with authorization to access each other’s services [12]. The SBA framework provides the necessary functionality to authenticate the consumer and to authorize its service requests, as well as flexible procedures to efficiently expose and consume services. Moreover, ETSI MEC defines an API framework aligned with the SBA framework to provide a set of functionalities and services. The NFs and the services are aggregated in a Network Resource Function (NRF), while MEC applications are registered in the MEC platform. The 5G network exposure function (NEF) acts as a centralized point for service exposure. The Network Slice Selection Function (NSSF) is the function that selects the user slice and allocates the necessary Access and Mobility Management Functions (AMF). The Unified Data Management (UDM) function generates the 3GPP AKA authentication credentials, while the User Plane Function (UPF) is the configurable data plane. The resulting integrated architecture described in [12] is presented in Fig. 1 (bottom right).

PROPOSED ARCHITECTURE

This section discusses the unified architecture, providing conceptual analysis.

PROPOSED UNIFIED ARCHITECTURE

Our architecture combines four different standards — SDN, ETSI NFV, ETSI GANA, and ETSI MEC — for proposing virtualized network intelligent agents instead of VNFs or microservices (in the case of SDN decomposition). Figure 2 shows our unified architecture. While the infrastructure and virtualization layers are directly derived from NFV architecture, the MANO layer is modified to have internal components as intelligent orchestration agents. The application layer of NFV is significantly modified and contains the four layers of the ETSI GANA model. Therefore, GANA divides the application layer of NFV into four layers, and we further propose the ETSI GANA decision units to be intelligent agents. Hence, the application layer becomes a composition of protocol-level agents, function-level agents, node-level agents, and network-level agents. These intelligent agents enable the event handling at each layer of the GANA model. Note that for event management several strategies are available, including centralized, distributed, and hybrid [13].

The application layer depicts the decomposed controller, NMS, and MEC functions on the left and right sides, respectively. The functions are built as autonomous and atomic agents introducing in-network intelligence in the internal architecture of the agents. The recomposition of these agents would create the required controller, MEC system, and other NMS, depending on the requirements in a given environment. The recomposed system becomes a multi-agent-based intelligent system. Network functions in 5G, controller, and NMS and 5G/6G functions should be designed as autonomous agents incorporating appropriate artificial intelligence/machine learning (AI/ML) as an integral part of that function. The collection of such functions would create a fully autonomous network system. In other words, functions become intelligent agents where intelligence is introduced in the internal architecture of the agent, designing the agents using cognitive components such as AI/ML algorithms.

The interface between the infrastructure layer, the virtualization layer, and the application layer is similar to NFV with little modification; however, the orchestration layer is based on intelligent agents. Therefore, we recommended interfaces to be open and adaptive based on the specific applications. This could be achieved by equipping agents with a programmable protocol stack (PPS), which represents the implementation of a software-based environment of network protocols and layers [14]. The interface between the agents is mainly through RESTful API. However, we suggested equipping the agent with a dynamic protocol stack.

AGENT INTERNAL ARCHITECTURE

We propose agent-designed principles and guidelines to enable intelligence and full autonomy in performing a given function incorporating cognitive components. Figure 3 depicts the general agent design and architectural guidelines. An agent is composed of an INPUT, which is an incoming request; FACTS, the knowledge database of the agent; the COGNITION (REASONING) UNIT, which gives agents the reasoning capability; the PLANNING STRATEGY, which organizes the steps/procedures for the action to be taken to satisfy the requested service; VALIDATION, the unit that verifies the action plan for consistency; and an OUTPUT/ACTION, which is the final decision (result/action) to be made by the agent. An agent also has an interface to communicate with other agents or microservices via the PPS. Future generation networks should be equipped with effective and efficient protocols. Agents in the application layer of the proposed architecture are various types that will use combinations of multiple protocols for communication for various kinds.
Network functions can be divided into small functions allowing maximum recomposition freedom. Here, we redefine these functions as atomic units having full autonomic capability to perform a given function, including security, QoS monitoring, AMF, SMF, and so on.

Network Function Atomization

Network functions can be divided into small functions allowing maximum recomposition freedom. Here, we redefine these functions as atomic units having full autonomic capability to perform a given function, including security, QoS monitoring, AMF, SMF, and so on. Our architecture redefines the internal components of a decomposed monolithic system to be intelligent agents, designing the agents using the cognitive element as the brain of the agents to make an autonomous decision on a given function. The agents are fully intelligent, atomic, and autonomous decision units that can be flexibly recomposed to create a fully autonomic network system. *Intelligent* refers to the ability of the agent to perform its function, adapting to the dynamic demands. The level of intelligence and capability is heavily reliant on the design of a particular agent. For example, a network traffic classifier and predictor agents can be designed using an ML model [15] as a cognitive component of the agent, and it can classify and predict given incoming service traffic in order to allocate network resources accordingly depending on the traffic class and proactive allocation and scheduling agents’ decision. This reduces resource and energy consumption while reducing service processing latency using proactive resource allocation and scheduling. Again, we are assuming task execution agents can optimize their performance depending on the current traffic and system state. Depending on the implemented ML model as a cognitive component of the agent, the performance of the agent varies in terms of accuracy, latency, and so on [15]. Similarly, an autonomous SMF agent, designed using appropriate ML, can dynamically create, update, and remove protocol data unit sessions while managing session context with the UPF agent. Agent atomicity refers to the smallest functionality, identity, and acting territory of a particular function/agent. Autonomy defines the agent’s self-reliance in delivering the given task without external intervention. However, the agent can communicate with other agents when it requires information or if completing the task requires the support of other agents. In general, the recomposition of agents would create the overall autonomous system. The recomposition could be agent chaining creation using an orchestration agent. This by itself requires intelligence that should be incorporated when designing an intelligent orchestration agent.

Multi-Agent-Based System Recomposition

As a guideline in designing the agent-based system, we show a decomposed SDN controller[5], designing the components as autonomous agents, and recomposing them to create the intelligent controller system. The main principle to retain in decomposing an SDN controller is that the network information and state should be synchronized and self-consistent. This allows an independent implementation and component reuse.

We showed in [5] a possible implementation of a decomposed SDN controller using microservice; however, now we redefine these components with intelligent and atomic agents. These agents can be executed on arbitrary computing platforms on distributed and virtualized resources such as virtual machines/containers in edge/cloud environments using intelligent orchestration agents. The loosely composed agents can be viewed as a black box, defined by its externally observable behavior, emulating the original monolithic SDN controller with added intelligence. Agents’ orchestration can be done using intelligent orchestrator agents. This creates an agent chain to intelligently perform what the legacy controller does. The recomposition can be done with flexible agent composition as per the system requirement in time and space. In particular, the controller could be deployed with maximum recomposition freedom using only the necessary functions/agents while performing the functions autonomously.

Conclusion

This article presents a unified architecture combining SDN, NFV, MEC, and GANA architectural and conceptual models for future networks, such as beyond 5G and 6G. The main principles addressed by the architecture are the introduction of in-network intelligence using intelligent agents, decomposing monolithic network systems. Moreover, it also shows the organization of agents to produce an overall autonomous system. Due to the maximum recomposition freedom and in-network intelligence at the smallest service units of a network system, the architecture is expected to address future network demands in terms of autonomy, flexibility, heterogeneity, reliability, and latency. Since there are few agent-based service designs, as one of the future challenges this architecture is developing such functions.

Acknowledgments

This work is partially funded by the NATO Science for Peace and Security Programme in the framework of the project SP5 G5428 “Dynamic Architecture based on UAVs Monitoring for Border Security and Safety.” Also, it is partially funded by the German Research Foundation as part of Germany’s Excellence Strategy — EXC2050/1 — Project ID 390696704 — Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden, and by the European Commission through the H2020 projects Hexa-X (Grant Agreement no. 101015956).

References

[1] F. H. P. Fitzek, F. Granelli, and P. Seeling, Eds., Computing in Communication Networks — From Theory to Practice, 1st ed., ser. 1. Elever, 2020, vol. 1.
[2] Hexa-X. D1.2 – Expanded 6G Vision, Use Cases and Societal Values — Including Aspects of Sustainability, Security and Spectrum, Apr. 2021; https://hexa-x.eu/wp-content/uploads/2021/05/Hexa-X-D1.2.pdf.
[3] Hexa-X. D5.1 – Initial 6G Architectural Components and Enablers, Dec. 2021; https://hexa-x.eu/wp-content/uploads/2022/01/Hexa-X-D5.1 full version v1.0.pdf.
[4] F. Bannour, S. Souhi, and A. Mellouk, “Distributed SDN Control: Survey, Taxonomy, and Challenges,” IEEE Commun. Surveys & Tutorials, vol. 20, no. 1, 2018, pp. 333–54.
[5] S. T. Arzoo et al., “MSN: A Playground Framework for Design and Evaluation of Microservices-Based SDN Controller,” J.
Biographies

SiSay T. Arzo is a postdoctoral researcher at the University of New Mexico. He received his Ph.D. and M.Sc. in telecom engineering from the University of Trento. He received his B.Sc. from Hawassa University, Ethiopia. He has five years of industrial experience in the telecom industry. His research interests include network softwarization, IoT, and network automation.

Domenico ScoTece is a postdoctoral researcher at the University of Bologna. He received his Ph.D. and M.Sc. degrees in computer science engineering from the University of Bologna in 2020 and 2014, respectively. His research interests include pervasive computing, middleware for fog and edge computing, IoT, and management of cloud computing systems.

riccar Do B aSSoli is a senior researcher with the Deutsche Telekom Chair of Communication Networks at the Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Germany. He received his Ph.D. degree from the 5G Innovation Centre (5GIC) at the University of Surrey, United Kingdom, in 2016.

Fabrizio Granelli is a full professor in the Department of Information Engineering and Computer Science at the University of Trento, Italy. He was an IEEE ComSoc Distinguished Lecturer for 2012–2015 and 2021–2022, Director of Online Content in 2016–2017, and Director of Educational Services in 2018–2019. He is an author of more than 250 papers on networking.

Luca FoSchini is an associate professor of computer engineering. His interests span from integrated management of distributed systems and services to edge computing, from management of cloud computing systems to Industry 4.0. He is a voting member of the IEEE ComSoc EMEA Board.

Frank H.P. Fitzek received his Dipl.-Ing. degree in electrical engineering from the Rheinisch-Westfälische Technische Hochschule, Aachen, Germany, in 1997 and his Dr.-Ing. degree in electrical engineering from the Technical University Berlin, Germany. He is a professor and head of the Deutsche Telekom Chair of Communication Networks at Technische Universität Dresden.