Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Y. F. Wu$^1$, G. Yan$^1$, J. S. Li$^2$, Y. Feng$^1$, S. K. Chen$^1$, H. P. Tang$^1$, H. L. Xu$^3$, C. S. Li$^1$, P. X. Zhang$^1$, Y. F. Lu$^1$

$^1$ Northwest Institute for Nonferrous Metal Research, P. O. Box 51, Xian, Shaanxi 710016, P. R. China
$^2$ Northwestern Polytechnical University, Xi’an 710012, P.R.China
$^3$ School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450002, Peoples Republic of China

Abstract. The powder-in-tube MgB$_2$ wires were prepared by high energy milling of Mg and B powder. The powder was not mechanically alloyed for 2h short milling time. However, the MgB$_2$ grains in wires are very small (20-100 nm) and resembled to the dimple after post-heat treatment. The clear evidence for transcrystalline fracture is observed. It indicated that the grain connection was greatly improved and the fluxing pinning was significantly enhanced. Another point to view is no intermediate annealing was adopted during the whole rolling process. The influence of the post-heat treatment on the transport current density was studied. Despite the lower $T_c$ of about 35K, the transport current density reaches to $3 \times 10^4$ A/cm$^2$ at 15K and 3.5T for 700 °C sintered wires.

PACS numbers: 74.70.Ad, 74.62.Bf, 74.25.Qt, 74.25.Sv, 74.50.+r, 74.70.-b

† To whom correspondence should be addressed (wyf7777@tom.com)
1. Introduction

Preparation of MgB$_2$ wires depends very critically on the precursor powder used for the powder-in-tube (PIT) techniques. Small grain sizes are favored preconditions for achieving high quality wires. Mechanical alloying (MA) technique for MgB$_2$ powder preparation is expected for obtaining enhanced magnetic flux pinning by microstructure refinement. However, it costs as long as 20-100h\[1,2,3-8\] for in situ MA precursor powder preparation. The use of short-time unalloyed high energy milling of Mg and B powder as precursor material represents an efficient combination between conventional powder preparation and mechanical alloying techniques. Fe sheath was considered as one of suitable materials however hard it is. It is also gradually recognized that repeated annealing during rolling process would cause the inevitable diffusion of oxygen into the filament of MgB$_2$ wire and decrease $J_c$ greatly. Therefore, how to reduce intermediate annealing steps during material preparation become one of the biggest challenges as literatures[8-10] referred to.

2. Experimental details

Mg(99.8\%) and amorphous B (95\%) powder with 5\% Mg surplus were filled under purified Ar-atmosphere into an agate milling container and milling media. The milling was performed on a SPEX 8000M mill for 2h using a ball-to-powder mass ratio of 3. Monofilamentary wires were prepared by conventional PIT method. The powder was packed into coaxial Cu/Fe tubes (outer diameter 14 mm and inner diameter 7 mm) forming the billets. Next, billets were groove-rolled and drawn to a wire diameter of 1.2mm without any intermediate annealing. The post heat treatment was performed at different temperatures for 1 hour under ultra-high purity Ar-atmosphere. The phase content of MgB$_2$ was analysed by x-ray diffraction scans performed on a Philips APD1700 diffractometer with Cu K radiation. The surface morphology and microstructures of the samples were characterized by JSM-6700F scanning electron microscope. The superconducting transition temperature, $T_c$, was obtained by resistance-temperature method. The critical currents were evaluated from V-I curves taking a 1V cm$^{-1}$ criterion.

3. Results and discussion

As we know, the ductile deformation behavior at low temperatures is favored for acquiring high $J_c$ performance MgB$_2$ wires. In our study, no intermediate annealing was adopted during the whole rolling process. The total working modulus of Fe sheath exceeds 99 percent. A typical cross section for wire diameter of 1.2 mm is shown in figure 1. We concluded from our experience that the reduction in pass and rolling rate during rolling process should be controlled to a lower lever.

The microstructures of samples sintered at different temperatures are shown in
Fig. 2. The Scanning electron microscope images mainly show dimple-like grains for 700–800 °C sintered samples. The grain sizes are about 20–100 nm for 700 °C and 750 °C sintered samples. The clear evidence for the transcrysalline fracture is observed. It indicated that the grain connectivity was enhanced greatly. The grains are grown up to 100–250 nm for 800 °C sintered sample. While for 650 °C reacted sample, large plate-like column crystals were observed. The impurity phases are evidently observed for sample sintered at 800 °C. Fig. 3 shows the wrap-around distribution of the second phases of the 800 °C sintered sample. EDX analysis indicates that the bright one is O-rich zone and the grey one is Mg-rich zone, as seen in fig. 4.

Fig. 5 indicates the superconducting transition $T_c$ by resistance measurement for the samples sintered at different temperatures. As we can see, all samples have sharp transitions. $T_c$ of the high energy milling samples ranged from 34.5 to 35.5 K, which is much lower than 39 K. Most likely, this is not due to a deviation from the ideal stoichiometry of the superconducting compound [2]. From x-ray analysis, interaction between the constituents of precursor powder and the sheath material can also be excluded. It seems that the suppression of $T_c$ is caused by oxygen contamination in grain boundary induced by high energy milling as well as sintering process.

Fig. 6 shows the $J_c$-$B$ curve of the MgB$_2$ wires at different temperatures. The critical currents were evaluated from V-I curves taking a 1V cm$^{-1}$ criterion. As we can see, the critical current densities are influenced greatly by heat treatment. The higher or lower heat treatment induced second phases and inferior microstructure, which led to bad grain connectivity and contribute to dramatic decrease of $J_c$. In the lower field, the MgB$_2$ wires sintered at 700 °C show the higher critical current density. In the higher field, the MgB$_2$ wires sintered at 750 °C show the higher critical current density. The critical current density reaches to $3 \times 10^4$ A/cm$^2$ at 15 K and 3.5 T for the wire sintered at 700 °C.

In Summary, we succeeded in preparing high critical current density MgB$_2$ wire using unalloyed high energy milling precursor powder. The powder preparation process was greatly shortened. It demonstrated that it is an effective approach to get fine crystalline MgB$_2$ with good grain connectivity and high $J_c$ performance. The critical current density reaches to $3 \times 10^4$ A/cm$^2$ at 15 K and 3.5 T for the wire sintered at 700 °C.

4. Acknowledge

This work was partially supported by National Natural Science Foundation project (contract No. 50472099) and National Basic Research Program of China (contract No. 2006CB601004).
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

References

[1] V.N. Narozhnyi, G. Fuchs, A. Handstein, A. Gumbel, J. Eckert, K. Nenkov, D. Hinz, O. Gutfleisch, A. Walte, L. N. Bogacheva, I. E. Kostyleva, K.-H. Muller, L. Schultz, Int. Conf. on Superconductivity, CMR & Related Materials: Novel Trends (SCRM2002), Giens, France, 1-8 June 2002.

[2] A. Gumbel, O. Perner, J. Eckert, G. Fuchs, K. Nenkov, K.-H. Muller, and L. Schultz, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, Vol. 13, No. 2, JUNE 2003.

[3] A. Gumbel, J. Eckert, G. Fuchs, K. Nenkov, K.-H. Muller and L. Schultz, APPLIED PHYSICS LETTERS, Vol. 80, No. 15, 15 APRIL 2002, pp.2725-2727.

[4] W. Haler, C. Roding, C. Fischer, B. Holzapfel, O. Perner, J. Eckert, K. Nenkov and G. Fuchs, Supercond. Sci. Technol. 16 (2003) pp.281-284.

[5] C. Fischer, C. Roding, W. Haler, O. Perner, J. Eckert, K. Nenkov, G. Fuchs, H. Wendrock, B. Holzapfel and L. Schultz, APPLIED PHYSICS LETTERS, Vol. 83, No. 9, 1 SEPTEMBER 2003, pp.1803-1805.

[6] O. Perner, J. Eckert, W. Haler, C. Fischer, K-H Muller, G. Fuchs, B Holzapfel and L Schultz, Supercond. Sci. Technol. 17 (2004) pp.1148-1153.

[7] Olaf Perner, Wolfgang Haler, Claus Fischer, Gunter Fuchs, Bernhard Holzapfel, Ludwig Schultz and Jurgen Eckert, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 15, NO. 2, JUNE 2005.

[8] O. Perner, J. Eckert, W. Haler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel and L. Schultz, JOURNAL OF APPLIED PHYSICS 97, 056105(2005), pp.1-3.

[9] C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R 115 (2001).

[10] V. N. Narozhnyi, G. Fuchs, A. Handstein, A. Gmbel, J. Eckert, K. Nenkov, D. Hinz, O. Gutfleisch, A. W?lte, L. N. Bogacheva, I. E. Kostyleva, K.-H. Miller, and L. Schultz, J. Supercond. 15, 599 (2002)
Figure captions

Fig. 1 A typical cross section for wire diameter of 1.2 mm.

Fig. 2 The Scanning electron microscope images of samples sintered at different temperatures: (a) 650 °C; (b) 700 °C; (c) 750 °C and (d) 800 °C.

Fig. 3 The wrap-around distribution of the second phases for 800 °C sintered MgB₂ wires.

Fig. 4 The EDX analysis of the second phases for 800 °C sintered MgB₂ wires. It shows: (a) the bright one is O-rich zone; (b) the grey one is Mg-rich zone.

Fig. 5 Superconducting transition T_c by resistance measurement for the samples sintered at different temperatures.

Fig. 6 Transport Jc-B curve of the MgB₂ wires at different temperatures.
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Fig. 1
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Fig.2
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Fig. 4
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Fig. 5
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Fig. 6
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Y. F. Wu$^1$, G. Yan$^1$, J. S. Li$^2$, Y. Feng$^1$, S. K. Chen$^1$, H. P. Tang$^1$, H. L. Xu$^3$, C. S. Li$^1$, P. X. Zhang$^1$, Y. F. Lu$^1$

$^1$ Northwest Institute for Nonferrous Metal Research, P. O. Box 51, Xian, Shaanxi 710016, P. R. China
$^2$ Northwestern Polytechnical University, Xi’an 710012, P. R. China
$^3$ School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450002, Peoples Republic of China

Abstract. The powder-in-tube MgB$_2$ wires were prepared by high energy milling of Mg and B powder. The powder was not mechanically alloyed for 2h short milling time. However, the MgB$_2$ grains in wires are very small (20-100nm) and resembled to the dimple after post-heat treatment. The clear evidence for transcrystalline fracture is observed. It indicated that the grain connection was greatly improved and the fluxing pinning was significantly enhanced. Another point to view is no intermediate annealing was adopted during the whole rolling process. The influence of the post-heat treatment on the transport current density was studied. Despite the lower $T_c$ of about 35K, the transport current density reaches to $3 \times 10^4$A/cm$^2$ at 15K and 3.5T for 700℃ sintered wires.

PACS numbers: 74.70.Ad, 74.62.Bf, 74.25.Qt, 74.25.Sv, 74.50.+r, 74.70.-b

† To whom correspondence should be addressed (wyf7777@tom.com)
1. Introduction

Preparation of MgB$_2$ wires depends very critically on the precursor powder used for the powder-in-tube (PIT) techniques. Small grain sizes are favored preconditions for achieving high quality wires. Mechanical alloying (MA) technique for MgB$_2$ powder preparation is expected for obtaining enhanced magnetic flux pinning by microstructure refinement. However, it costs as long as 20-100h [1,2,3-8] for in situ MA precursor powder preparation. The use of short-time unalloyed high energy milling of Mg and B powder as precursor material represents an efficient combination between conventional powder preparation and mechanical alloying techniques. Fe sheath was considered as one of suitable materials however hard it is. It is also gradually recognized that repeated annealing during rolling process would cause the inevitable diffusion of oxygen into the filament of MgB$_2$ wire and decrease $J_c$ greatly. Therefore, how to reduce intermediate annealing steps during material preparation become one of the biggest challenges as literatures [8-10] referred to.

2. Experimental details

Mg(99.8%) and amorphous B (95%) powder with 5% Mg surplus were filled under purified Ar-atmosphere into an agate milling container and milling media. The milling was performed on a SPEX 8000M mill for 2h using a ball-to-powder mass ratio of 3. Monofilamentary wires were prepared by conventional PIT method. The powder was packed into coaxial Cu/Fe tubes (outer diameter 14 mm and inner diameter 7 mm) forming the billets. Next, billets were groove-rolled and drawn to a wire diameter of 1.2mm without any intermediate annealing. The post heat treatment was performed at different temperatures for 1 hour under ultra-high purity Ar-atmosphere. The phase content of MgB$_2$ was analysed by x-ray diffraction scans performed on a Philips APD1700 diffractometer with Cu K radiation. The surface morphology and microstructures of the samples were characterized by JSM-6700F scanning electron microscope. The superconducting transition temperature, $T_c$, was obtained by resistance-temperature method. The critical currents were evaluated from V-I curves taking a 1V cm$^{-1}$ criterion.

3. Results and discussion

As we know, the ductile deformation behavior at low temperatures is favored for acquiring high $J_c$ performance MgB$_2$ wires. In our study, no intermediate annealing was adopted during the whole rolling process. The total working modulus of Fe sheath exceeds 99 percent. A typical cross section for wire diameter of 1.2 mm is shown in figure 1. We concluded from our experience that the reduction in pass and rolling rate during rolling process should be controlled to a lower lever.

The microstructures of samples sintered at different temperatures are shown in
Fig. 2. The Scanning electron microscope images mainly show dimple-like grains for 700–800 °C sintered samples. The grain sizes are about 20–100 nm for 700 °C and 750 °C sintered samples. The clear evidence for the transcrystalline fracture is observed. It indicated that the grain connectivity was enhanced greatly. The grains are grown up to 100–250 nm for 800 °C sintered sample. While for 650 °C reacted sample, large plate-like column crystals were observed. The impurity phases are evidently observed for sample sintered at 800 °C. Fig. 3 shows the wrap-around distribution of the second phases of the 800 °C sintered sample. EDX analysis indicates that the bright one is O-rich zone and the grey one is Mg-rich zone, as seen in fig. 4.

Fig. 5 indicates the superconducting transition $T_c$ by resistance measurement for the samples sintered at different temperatures. As we can see, all samples have sharp transitions. $T_c$ of the high energy milling samples ranged from 34.5 to 35.5 K, which is much lower than 39 K. Most likely, this is not due to a deviation from the ideal stoichiometry of the superconducting compound[2]. From x-ray analysis, interaction between the constituents of precursor powder and the sheath material can also be excluded. It seems that the suppression of $T_c$ is caused by oxygen contamination in grain boundary induced by high energy milling as well as sintering process.

Fig. 6 shows the $J_c$-$B$ curve of the MgB$_2$ wires at different temperatures. The critical currents were evaluated from V-I curves taking a 1 V cm$^{-1}$ criterion. As we can see, the critical current densities are influenced greatly by heat treatment. The higher or lower heat treatment induced second phases and inferior microstructure, which led to bad grain connectivity and contribute to dramatic decrease of $J_c$. In the lower field, the MgB$_2$ wires sintered at 700 °C show the higher critical current density. In the higher field, the MgB$_2$ wires sintered at 750 °C show the higher critical current density. The critical current density reaches to $3 \times 10^4$ A/cm$^2$ at 15 K and 3.5 T for the wire sintered at 700 °C.

In Summary, we succeeded in preparing high critical current density MgB$_2$ wire using unalloyed high energy milling precursor powder. The powder preparation process was greatly shortened. It demonstrated that it is an effective approach to get fine crystalline MgB$_2$ with good grain connectivity and high $J_c$ performance. The critical current density reaches to $3 \times 10^4$ A/cm$^2$ at 15 K and 3.5 T for the wire sintered at 700 °C.

4. Acknowledge

This work was partially supported by National Natural Science Foundation project (contract No. 50472099) and National Basic Research Program of China (contract No. 2006CB601004).
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

References

[1] V.N. Narozhnyi, G. Fuchs, A. Handstein, A. Gumbel, J. Eckert, K. Nenkov, D. Hinz, O. Gutfleisch, A. Walte, L. N. Bogacheva, I. E. Kostyleva, K.-H. Muller, L. Schultz, Int. Conf. on Superconductivity, CMR & Related Materials: Novel Trends (SCRM2002), Giens, France, 1-8 June 2002.

[2] A. Gumbel, O. Perner, J. Eckert, G. Fuchs, K. Nenkov, K.-H. Muller, and L. Schultz, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, Vol. 13, No. 2, JUNE 2003.

[3] A. Gumbel, J. Eckert, G. Fuchs, K. Nenkov, K.-H. Muller and L. Schultz, APPLIED PHYSICS LETTERS, Vol. 80, No. 15, 15 APRIL 2002, pp.2725-2727.

[4] W. Haler, C. Roding, C. Fischer, B. Holzapfel, O. Perner, J. Eckert, K. Nenkov and G. Fuchs, Supercond. Sci. Technol. 16 (2003) pp.281-284.

[5] C. Fischer, C. Roding, W. Haler, O. Perner, J. Eckert, K. Nenkov, G. Fuchs, H. Wendrock, B. Holzapfel and L. Schultz, APPLIED PHYSICS LETTERS, Vol. 83, No. 9, 1 SEPTEMBER 2003, pp.1803-1805.

[6] O. Perner, J. Eckert, W. Haler, C. Fischer, K-H Muller, G. Fuchs, B Holzapfel and L Schultz, Supercond. Sci. Technol. 17 (2004) pp.1148-1153.

[7] Olaf Perner, Wolfgang Haler, Claus Fischer, Gunter Fuchs, Bernhard Holzapfel, Ludwig Schultz and Jurgen Eckert, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 15, NO. 2, JUNE 2005.

[8] O. Perner, J. Eckert, W. Haler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel and L. Schultz, JOURNAL OF APPLIED PHYSICS 97, 056105(2005), pp.1-3.

[9] C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R 115 (2001).

[10] V. N. Narozhnyi, G. Fuchs, A. Handstein, A. Gumbel, J. Eckert, K. Nenkov, D. Hinz, O. Gutfleisch, A. W?lte, L. N. Bogacheva, I. E. Kostyleva, K.-H. Miller, and L. Schultz, J. Supercond. 15, 599 (2002)
Figure captions

Fig. 1 A typical cross section for wire diameter of 1.2 mm.

Fig.2 The Scanning electron microscope images of samples sintered at different temperatures: (a)650°C; (b)700°C; (c)750°C and (d)800°C.

Fig.3 The wrap-around distribution of the second phases for 800°C sintered MgB$_2$ wires.

Fig.4 The EDX analysis of the second phases for 800°C sintered MgB$_2$ wires. It shows: (a) the bright one is O-rich zone; (b) the grey one is Mg-rich zone.

Fig.5 Superconducting transition T$_c$ by resistance measurement for the samples sintered at different temperatures.

Fig.6 Transport J$_c$-B curve of the MgB$_2$ wires at different temperatures.
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Fig. 1
Fig. 2
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of $\text{MgB}_2$/Fe/Cu Wires

Fig. 3
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Fig. 4
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires.
Influence of Preparation Process on Microstructure, Critical Current Density and $T_c$ of MgB$_2$/Fe/Cu Wires

Fig. 6