ABSTRACT
We consider the problem of similarity search within a set of top-k lists under the Kendall’s Tau distance function. This distance describes how related two rankings are in terms of concordantly and discordantly ordered items. As top-k lists are usually very short compared to the global domain of possible items to be ranked, creating an inverted index to look up overlapping lists is possible but does not capture tight enough the similarity measure. In this work, we investigate locality sensitive hashing schemes for the Kendall’s Tau distance and evaluate the proposed methods using two real-world datasets.

1. INTRODUCTION
Generating rankings is a well known methodology to order a set of elements to allow users or tools to immediately investigate the best performing elements, according to the applied ranking criterion. This is frequently done, in portals such as ranker.com that aim at crowdsourcing (subjective) entity rankings, in data warehousing environments that rank business objects on objective/measurable criteria, or given in form of tables on the Web. Rankings can serve ad-hoc information demands or give access to deeper analytical insights. Consider for instance mining semantically similar Google-style keyword queries based on the query-result lists, or dating portals that let users create favorite lists that are later on used for match making. Such rankings are usually rather short instead of exhaustively ranking the global domain or rank-able items. This work emphasizes on Kendall’s Tau as the distance measure for retrieving rankings in near-neighbor (NN) search—for a user-given distance threshold and a ranking that serves as the query. Although the Kendall’s Tau distance is originally defined over pairs of rankings that capture the same (full) domain of elements, a definition of the generalized Kendall’s Tau distance for top-k list is given by Fagin et al. in [9]. The authors in the same work also show that the generalized Kendall’s Tau distance violates the triangle equality, hence, is not a metric, so, using metric space index structures, like the M-tree [4], is discarded immediately. Using the fact that at least one element should be contained in both rankings in order to have a reasonable, minimum similarity, one classical solution of NN search is to use inverted indices. Such indices are very efficient in answering set-containment queries [11]. On the other hand, locality sensitive hashing (LSH) performs efficiently in approximate NN search for high-dimensional data. In literature, there exist various hash function families for different metric distances such as l1, Euclidean, or Hamming distance [5,13]. Although the Kendall’s Tau distance is a non-metric distance function, we observe a similarity between Kendall’s Tau and the Hamming distance and also the Jaccard distance which encouraged us to work on LSH hash function families for the Kendall’s Tau distance.

1.1 Problem Statement and Setup
We consider a set of rankings T, where each $\tau_i \in T$ has a domain D_{τ_i} of fixed size k. The global domain of items is then $D = \bigcup_{\tau_i \in T} D_{\tau_i}$. We investigate the impact of various choices of k on the query performance in the experiments. For instance, we have the following input given:

id	ranking content
1	2, 5, 4, 3
2	1, 4, 7, 5
3	0, 8, 7, 5

Rankings are represented as arrays or lists of items, where the left-most position, denotes the top ranked item. The rank of an item i in a ranking τ is given as $\tau(i)$. At query time, we are provided with a query ranking q, where $|D_q| = k$ and $D_q \subseteq D$, a distance threshold θ_d, and distance function d. Our objective is to find all rankings which belong to T and has distance less than or equals to θ_d, i.e.,

$$\{\tau_i | \tau_i \in T \land d(\tau_i, q) \leq \theta_d\}$$

As mentioned above, rankings can be interpreted as short sets and we can build an inverted index over them, to look up at query time those rankings that have at least one item overlap with the query’s items.

Considering the above example, for a query ranking $q = [8, 1, 0, 6]$, ranking τ_1 does not overlap at all with the query items, while τ_2 and τ_3 do overlap. The retrieval of overlapping candidates using an inverted index is very efficient [11]. For the found candidates, the distance function is applied with respect to the query and the true results are returned. Note that, we assume that the distance threshold θ_d is strictly smaller than the maximum possible distance (normalized, 1), thus, in fact the inverted index can find all result rankings.
However, Kendall’s Tau is defined as the pairwise disagreement between two permutation of a set, which suggests building an inverted index that is labeled (as keys) by pairs of items. This, however, calls for investigating if looking up at query time only a few pairs is sufficient.

1.2 Contributions and Outline

Here, we have summed up the main contributions of this work.

- We propose two different hash families for Kendall’s Tau distance that facilitate LSH for NN search.
- We compare the performance of those LSH schemes and traditional inverted indices by an experimental study using real-world rankings.

The paper is organized as follows. Section 2 gives a brief overview on the main principles of Kendall’s Tau, locality sensitive hashing, and inverted indices. Section 3 presents an overview on the main principles of Kendall’s Tau, locality sensitive hashing, and inverted indices. Section 4 shows the consequences of interpreting rankings as sets of pairs and motivates the derivation of LSH schemes presented in Section 5. Section 6 reports on the details of a conducted experimental evaluation using two real-world datasets. Section 7 discusses related work. Section 8 concludes the paper.

2. BACKGROUND

2.1 Kendall’s Tau on Top-k Lists

Complete rankings are considered to be permutations over a fixed domain D. We follow the notation by Fagin et al.\cite{Fagin1999} and references within. A permutation σ is a bijection from the domain $D = D_\sigma$ onto the set $[n] = \{1, \ldots, n\}$. For a permutation σ, the value $\sigma(i)$ is interpreted as the rank of element i. An element i is said to be ahead of an element j in σ if $\sigma(i) < \sigma(j)$. The Kendall’s Tau distance $K(\sigma_1, \sigma_2)$ measures how both rankings differ in terms of concordant and discordant pairs: For a pair $(i, j) \in D \times D$ with $i \neq j$ we let $K_{ij}(\sigma_1, \sigma_2) = 0$ if i and j are in the same order in σ_1 and σ_2 and $K_{ij}(\sigma_1, \sigma_2) = 1$ if they are in opposite order. Then Kendall’s Tau is given as $K(\sigma_1, \sigma_2) = \sum_{i,j} K_{ij}(\sigma_1, \sigma_2)$.

Kendall’s Tau is a metric, that is, it has the symmetry property, i.e., $d(x, y) = d(y, x)$, is regular, i.e., $d(x, y) = 0$ iff $x = y$, and suffices the triangle inequality $d(x, z) \leq d(x, y) + d(y, z)$, for all x, y, z in the domain.

In this work, we consider incomplete rankings, called top-k lists in \mathbb{R}^d. Formally, a top-k list τ is a bijection from D_τ onto $[k]$. The key point is that individual top-k lists, say τ_1 and τ_2 do not necessarily share the same domain, i.e., $D_{\tau_1} \neq D_{\tau_2}$.

Fagin et al.\cite{Fagin1999} discuss how the above two measures can be computed over top-k lists. None of the discussed ways to compute Kendall’s Tau over top-k lists is a metric.

This work considers incomplete rankings (lists) and applies the generalized Kendall’s Tau distance function defined by Fagin\cite{Fagin1999}. Given two top-k lists τ_1 and τ_2 that correspond to two permutations σ_1 and σ_2 on $D_{\tau_1} \cup D_{\tau_2}$, the generalized Kendall’s Tau distance with penalty zero, denoted as $K^{(0)}(\tau_1, \tau_2)$, is defined as follows:

- If $i \in D_{\tau_1}$ and $j \in D_{\tau_2}$ and their order is the same in both list then $K^{(0)}(\tau_1, \tau_2) = 0$ otherwise $K^{(0)}(\tau_1, \tau_2) = 1$.
- If $i, j \in D_{\tau_1}$ and $i \neq j$, $i \in D_{\tau_1}$ and $\tau_1(i) < \tau_1(j)$ then $K^{(0)}(\tau_1, \tau_2) = 0$ otherwise $K^{(0)}(\tau_1, \tau_2) = 1$.

2.2 Locality Sensitive Hashing

Locality sensitive hashing addresses the problem of efficient approximate nearest neighbor (NN) search. The key idea is to map objects into buckets via hashing with the property that similar objects have a higher chance to collide (in the same bucket) than dissimilar ones. A large amount of research has been conducted on LSH in order to find fast and robust families of hash functions for different distance functions.

Let us consider family \mathcal{H} of hash functions that map a point $p \in \mathbb{R}^d$ to some universe U. For threshold r and approximation factor c, \mathcal{H} is called (r, cr, P_1, P_2)-sensitive if for any two points $p, q \in \mathbb{R}^d$

- if $p \in B(q, r)$ then $Pr_{\mathcal{H}}(h(p) = h(q)) \geq P_1$
- if $p \notin B(q, cr)$ then $Pr_{\mathcal{H}}(h(p) = h(q)) \leq P_2$

$B(q, r)$ represents a ball that is centered at q and has radius r, i.e., if a point p is in $B(q, r)$ then its distance to q is at most r. In order for LSH to be useful for dissimilarity measure (where $c > 1$) we should have $P_1 > P_2$ and $r < cr$.

Instead of employing only one hash function to determine the bucket to put an object in, several h_i out of \mathcal{H} are used to create a label $g(p) = (h_1(p), h_2(p), \ldots, h_m(p))$. Two objects p_1 and p_2 are put into the same bucket if, obviously, $g(p_1) = g(p_2)$, hence, the more h_i are used in g, the fewer objects a bucket will contain. On the other hand, if two objects are placed in the same bucket, the chance that they are really similar is increased.

To counter the problem of suffering from low recall (i.e., the fraction of results found) l different hash tables are created using l different g_i functions. Then, for a query point q, if points p and q are both hashed to the same bucket in any of the l hash tables, p is considered a potential candidate. Finally, if $q \in B(q, r)$ then it is considered as near neighbor of q, otherwise not.

2.3 Inverted Index

Rankings can be interpreted as plain lists, ignoring the order among items. One way to index sets of items is to create a mapping of items to the rankings in that the items are contained in. This resembles the basic inverted index known from information retrieval and also used for querying set-valued attributes\cite{Robertson1992}.

An inverted index consists of two components—a dictionary D of objects and the corresponding posting lists (aka. index list) that record for each object information about its occurrences in the relation (cf.\cite{Robertson1992} for an overview and implementation details).

For a given item, the inverted index is accessed and returns all rankings that contain the item.

3. INV. INDEX WITH DISTANCE BOUNDS

In this section, we discuss how inverted indices can be used for computing Kendall’s Tau and derive distance bounds for improved performance. We use a basic inverted index on rankings, shown in Table I as a baseline in the experimental evaluation.
Finding similar rankings for user given query ranking \(q \) and a distance threshold \(\theta_d \) follows a simple filter and validate pattern:

- The inverted index is looked up for each element in \(D_q \) and a candidate set \(C \) of rankings is built by collecting all distinct rankings seen in the accessing posting lists.
- For all such candidate rankings \(\tau \in C \), the distance function \(K(0)(\tau, q) \) is calculated and if \(K(0)(\tau, q) \leq \theta_d \) then \(\tau \) is added to result set \(R \).

Potentially very many of the candidate rankings in \(C \) are so called false positives, i.e., rankings that are accessed but do not belong to the final \(R \). Each such false positive causes an unnecessary distance function call. Intuitively, final \(\tau \in R \) should be found in at least a certain number of posting lists, depending on distance threshold \(\theta_d \), and, in fact, we can derive such a criterion that removes some of the false positives but does not introduce false negatives, i.e., missed results.

Assume \(n \) elements are common between the query ranking \(q \) and a specific ranking \(\tau \). Then, the smallest possible \(K(0)(\tau, q) \) value is \((k - n)^2 \), considering all matched pairs of elements are in same order in both the query and the ranking and also, missing elements of the query and the ranking appear at the bottom of both lists. Note that throughout the paper we use the non-normalized Kendall’s Tau distance, as in the definition of \(K(0)(\tau, q) \) ; so in fact, \(k^2 \) is the maximum distance possible between two top-k.

We are interested in the least (minimum) number of common elements \(\mu \) that are required for a ranking to have the chance to be in \(R \). \(\mu \) can be found from the ranking whose best score is \(\theta_d \). Thus, solving the equation \((k - \mu)^2 = \theta_d \) for \(\mu \), we get \(\mu = k - \sqrt{\theta_d} \). Clearly, all rankings with “overlap” \(n < \mu \) will have \(K(0)(\tau, q) > \theta_d \) and can be immediately ignored. As final results must appear in at least \(\mu \) number of posting lists, we can avoid scanning \((\mu - 1) \) number of elements from \(D_q \). Thus, in time of building the candidate set, we can prune a significant amount of rankings just by looking into only \(k - \mu + 1 \) posting lists.

4. RANKINGS AS SETS OF PAIRS

From the perspective of the definition of the Kendall’s Tau distance, rankings can be viewed as a set of pair elements apart from set of ordered elements. We consider two different representations of \(\tau \) as set of pair elements. In general, indexing pairs is feasible as rankings are considered rather short compared to the potentially large global domain. We will see below that at query time not all pairs need to be used.

\(\tau^p \) represents all pair of elements that occur in ranking \(\tau \), defined as:

\[
\tau^p = \{(i, j) | (i, j) \subseteq D \times D \land i < j \}
\]

For example, \(\tau^p_{(2, 5), (2, 4), (2, 3), (4, 5), (3, 5)} \). The pair entries are sorted in lexicographic order for removing redundant indexing. A pairwise index structure is proposed by mapping each pair \((i, j) \in \tau^p \) to a posting list that holds all rankings (ids) in which both the elements \(i \) and \(j \) occur. For clarification, Table 2 represents part of the index for the example rankings given earlier.

Again, a simple filter and validate technique can be used for this index structure. In this case, we look up the index for all pair \((i, j) \in q^p \). As we can calculate \(\mu \) for specific \(\theta_d \) and \(k \), it is sufficient to look up the index for all the pairs that include any one of the \(\mu \) elements. Hence, we need to compare at most \(\Sigma_{i=1}^{\mu-1} (k - i) \) number of pairs from query and can prune potentially very many false-positive candidates.

A slightly different representation of a ranking \(\tau \) is defined below, denoted as \(\tau^s \), where each pair holds the information about the ranking order between them.

\[
\tau^s = \{(i, j) | \tau(i) \leq \tau(j) \land i, j \in D \}
\]

For example, \(\tau^s_{(2, 5), (2, 4), (2, 3), (5, 4)} \). Based on this representation, a sorted-pairwise inverted index is used to map \((i, j) \in \tau^s \) to a posting list. A posting list for \((i, j) \) holds all those rankings in which \(i \) occurs before \(j \). For clarification, Table 3 represents part of the index for the example given in the introduction.

A query is processed in this index in exactly the same way as it is processed for the unsorted pair index.

In practice, we can retrieve all result candidates by scanning much fewer pair of elements than the bound we have established above. For instance, in the experiments, in some cases, we are able to find more than 99% of the result candidates by scanning only 1 pair from query.

In the next section, we discuss the reason behind these characteristics by relating the pairwise inverted index structures to locality sensitive hashing. For this, we define hash functions and reason about their locality sensitivity.

5. LSH SCHEMES FOR KENDALL’S TAU

In this section, we investigate two hash families for LSH under the Kendall’s Tau distance.

5.1 Scheme 1

We introduce the first hash family denoted as \(H_1 \), which contains projection with respect to elements of the global domain \(D \). \(h_i \in H_1 \) where \(i \in D \) is defined as

\[
h_i(\tau) = \begin{cases}
1, & i \in \tau \\
0, & \text{otherwise}
\end{cases}
\]

For this scheme, we define a function family \(G_1 \) as

\[
G_1 = \{(h_i, h_j)|(h_i, h_j) \in H_1 \times H_1 \land i < j\}
\]

That is, \(g \in G_1 \) where \(g = (h_i, h_j) \) projects a ranking \(\tau \) to \{0, 1\}^{2}. In practice, we always project on two elements that
5.1.1 Locality Sensitivity

From Section 3 we can compute the overlap (μ) that is required to have a chance to satisfy distance threshold θ_d. As $h_i \in H_1$ maps $\tau, q \in T$ to $\{0, 1\}$ according to the presence of i in τ and q, the probability $Pr[h(q) = h(\tau)]$ becomes the Jaccard similarity between them, which is $P_1 = \mu/(2k - \mu)$. We need at least a Jaccard similarity of P_1 between the query and the ranking, which yields at most the Jaccard distance between rankings, i.e., the Jaccard distance decreases between rankings, then we get $P_1 > P_2$. Thus, the locality sensitive property holds for H_1.

5.2 Scheme 2

Here, we use a hash function family H_2 that contains all projection based on all combination of pair elements, represented as $D_P = \{(i,j)| (i,j) \in D \times D$ and $i < j\}$.

$H_2 = \{h_{i,j}| (i,j) \in D_P\}$

$K(0)^{(i,j)}(\tau, q)$ is defined by the number of discordant pairs on the domain $D_u \cup D_q$, for a ranking τ and query ranking q, as described in Section 2. Here, we define hash functions $h_{i,j} \in H_2$ that project τ to $\{0, 1\}$.

$h_{i,j}(\tau) = \begin{cases} 1, & i,j \in \tau \text{ and } \tau(i) < \tau(j) \\ 1, & i \in \tau \\ 0, & \text{otherwise} \end{cases}$

For this scheme, the hash function family G_2 is defined by selecting any hash function over H_2, i.e., $G_2 = \{h_{i,j}| h_{i,j} \in H_2\}$. For a $g \in G_2$, i.e., $g = \{h_{i,j}\}$, the bucket labels ‘1’ and ‘0’ of g are represented respectively by the key element (i,j) and (j,i) in the sorted pairwise index. Thus, looking up $(a,b) \in q_{k}^P$ in the sorted pairwise index is the same as considering the bucket where q is projected by a $g = h_{i,j}$ with $\{i,j\} = \{a,b\}$. Now, as above, we can say that doing so for l number of pairs from q_{k}^P means applying l different hash functions $g \in G_2$ on the query ranking. The impact of l is studied in the experimental evaluation.

5.2.1 Locality Sensitivity

After projecting it on D_P, a ranking is represented as a string of $\{0, 1\}$. For clarification, such representation for T_1 and T_2 under hash family H_2 is shown in Table 4.

T_1	T_2
1	0
0	1

Table 4: projection of ranking under H_2

rankings are more similar then probability to project those ranking into same bucket is more. Also, as long as $c > 1$, we get $P_1 > P_2$ and the property of locality sensitive hashing holds for H_2.

5.3 Comparisons of the Two Schemes

The two presented schemes are compared in this section with respect to the probability of projecting similar items to the same bucket.

In general, as the function family G is created by concatenating m number of hash function h and l different $g \in G$ are applied, the probability of becoming a candidate pair is $(1 - (1 - P^m_1)^l)$. For the first scheme, G_1 is created by concatenating two hash function from H_1, so $m = 2$. With $l = 1$, the probability of becoming a candidate is $f_1 := 1 - (1 - (\mu/(2k - \mu))^2)$. Using the μ as given in Section 3 and simplifying this, $f_1 = (k - \sqrt{\theta_d})/(k + \sqrt{\theta_d})^2$.

For the second scheme, we know $m = 1$. Considering $l = 1$, the probability of becoming a candidate is $f_2 := (1 - (1 - (1 - \theta_d/k^2)))$ which is simplified to $f_2 = 1 - \theta_d/k^2$ and $f_1/f_2 = k^2(k - \sqrt{\theta_d})/(k + \sqrt{\theta_d})^2 < 1$. Hence, $f_1 < f_2$. This is also reflected in experiments below.

6. EXPERIMENTS

We have implemented the index structures as described above in Java 1.7 and conducted the experiments using an Intel i5-3320M CPU @ 2.60GHz Ubuntu Linux machine (kernel 3.8.0-29) with 8GB memory. The index structures are kept entirely in memory.

To test the querying performance in terms of query response time (wallclock time), number of retrieved candidates, and recall (fraction of results found), we use two different datasets.

Yago Entity Rankings: This dataset contains 25,000 top-k rankings which has been mined from the Yago knowledge base, as described in [12].

NYT: This dataset contains 1 million keyword query that are randomly selected out from a published query log of a large US Internet provider, against the New York Times archive [15] using a standard scoring model from the information retrieval literature.

The Yago dataset holds real world entities where each entity occur in few rankings while the NYT dataset holds many popular documents that appear in many query result rankings.

The following approaches are compared to each other:

- The filter and validate technique on the simple inverted index denoted as InvIn.
- The InvIn technique on the simple inverted index combined with dropping some posting lists from consideration using the distance bound given in Section 3 denoted as InvIn+drop.
- The presented LSH scheme 1, i.e., the unsorted pairwise index, denoted as Scheme 1.
The presented LSH scheme 2, i.e., the sorted pairwise index, denoted as Scheme 2.

For both LSH schemes, unless \(l \) is explicitly stated, \(l \) is tuned such that 100% recall are reached. Runtime performance is measured in terms of average runtime for 1000 queries for varying the normalized distance threshold \(\theta \) (given by \(\theta_d = k^2 \times \theta \)).

We see in Figure 1 for the Yago dataset that using the pairwise indices much less candidates are retrieved than for simple inverted indices. Since recall is tuned to 100% this means that much fewer false positives are evaluated. This happens as, according to the LSH technique, true positive candidates are more likely to be hashed into the same bucket. This is consistent through datasets and parameters except for \(\theta = 0.1 \) (larger difference) and \(\theta = 0.2 \) (almost exactly the same performance) for \(k = 10 \) for the NYT dataset (cf., Figure 2) where InvIn+drop performs best. For the plots showing the number of retrieved candidates, we put the actual number of results to mark the lower bound.

These characteristics are also reflected in the runtime performance for the Yago dataset, but varies for the NYT dataset. For the latter, in some cases (particularly for \(\theta = 0.1 \)) both LSH schemes show inferior performance compared to the InvIn+drop.

We also see that the sorted pairwise index (Scheme 2) consistently retrieves fewer candidates than the unsorted pairwise index (Scheme 1). This property reflects that for different \(l \) values, probability of retrieving candidates that belong to \(\mathcal{R} \) in Scheme 2 is higher than Scheme 1, which has been theoretically shown in Section 5 for \(l = 1 \). Thus, in other way, Scheme 2 is less likely to find a true positive result than Scheme 1 for same \(l \), which also reflects in Table 5 and Table 6.

In addition, comparing the columns of the table, we see that the recall increases as \(l \) increases; which is in line with the LSH theory. We also understand the characteristics of the datasets by analyzing the recall. For both schemes, with the same threshold \(\tau \) and value of \(l \), the recall for the NYT

Figure 1: Comparative study of query processing for varying \(\theta \) (Yago).

Figure 2: Comparative study of query processing for varying \(\theta \) (NYT).

Table 5: Comparison of achieved recall in percent for \(k = 10 \)

\(\theta = 0.1 \)	\(\theta = 0.2 \)	\(\theta = 0.3 \)											
\(k = 1 \)	\(k = 3 \)	\(k = 6 \)	\(k = 10 \)	\(k = 1 \)	\(k = 3 \)	\(k = 6 \)	\(k = 10 \)	\(k = 1 \)	\(k = 3 \)	\(k = 6 \)	\(k = 10 \)	\(k = 15 \)	
Scheme 1 for NYT	100 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100	99.9 100 100 100 100
Scheme 2 for NYT	99.7 100 100 100 100	98.6 99.5 99.9 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100	97.5 99.2 99.8 100 100
Scheme 2 for Yago	99.0 100 100 100 100	95.6 98.4 99.5 99.8 99.8	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9	90.8 96.3 98.9 99.5 99.9

Table 6: Comparison of achieved recall in percent for \(k = 20 \)
dataset is always larger or equal to the recall for the Yago dataset. This reflects that elements of the NYT dataset are featured more skewed than in the Yago dataset.

7. RELATED WORK

There is an ample work on computing relatedness between ranked lists of items, such as to mine correlations or anti-correlations between lists ranked by different attributes. Arguably, the two most prominent similarity measures are Kendall’s tau and Spearman’s Footrule. Fagin et al. [9] study comparing incomplete top-k lists, that is, lists capturing a subset of a global set of items, rendering the lists incomplete in nature. In the scenarios motivating our work, like similarity search for query lists, lists are naturally incomplete, capturing, e.g., only the top-10 movies of all times. In this work, we focus on the computation of Kendall’s Tau distance.

Helmer and Moerkotte [11] present a study on indexing set-valued attributes as they appear for instance in object-oriented databases. Retrieval is done based on the query’s items; the result is a set of candidate rankings, for which the distance function can be computed. For metric spaces, data-agnostic structures for indexing objects are known, like the M-tree by Ciaccia et al. [4, 17], but Kendall’s Tau over incomplete list is not a metric.

Wang et al. [16] propose an adaptive framework for similarity joins and search over set-valued attributes, based on prefix filtering. This framework can be applied in the filter and validate technique on the naïve inverted index discussed in this work. The proposed LSH schemes are related to the concept of prefix filtering with parameter 2; a detailed investigation of this is part of our future work. The key idea behind Locality Sensitive Hashing (LSH) [1, 5, 10] is the usage of locality preserving hash functions that map, with high probability, close objects to the same hash value (i.e., hash bucket). Different parameters of locality preserving functions together with the number of hash function used, render LSH a parametric approach. Studies concerning LSH parameter tuning [2, 3] have been performed providing an insight into LSH parameter tuning for optimal performance. LSH can be extended for non-metric distance using reference object has explained in [2].

Diaz et al. [6] consider matchmaking between users in a dating portal. The attributes considered are scalar (e.g., age, weight, and height) or categorical (e.g., married, smoking, and education) and focus is put on feature selection and learning for effective match making. Work on rank aggregation [8, 14] aims at synthesizing a representative ranking that minimizes the distances to the given rankings, for a given input set of rankings.

8. CONCLUSION

In this paper, we proposed two different hash function families for querying for similar top-k lists with respect to the generalized Kendall’s Tau distance. From the experimental results, we have concluded that the performance of query processing using LSH scheme outperforms the original inverted index for datasets where the entities of a domain are “uniformly” distributed in rankings, whereas the performance of the LSH schemes is similar or sometimes inferior on datasets where some popular entities appear in large amount of rankings. We also studied the differences between the two proposed hashing schemes both theoretical and experimentally. Further, we would like to investigate indexing beyond pairs (i.e., using triplets and more) of ranked items and to harness the derived distance bounds and learned influences of \(t \) on pruning the index size.

9. REFERENCES

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In FOCS, pages 459–468, 2006.

[2] V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios. Nearest neighbor retrieval using distance-based hashing. In ICDE, pages 327–336, 2008.

[3] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning indexes for similarity search. In WWW, pages 651–660, 2005.

[4] P. Ciaccia, M. Patella, and P. Zuzula. M-tree: An efficient access method for similarity search in metric spaces. In VLDB, pages 426–435, 1997.

[5] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In Symposium on Computational Geometry, pages 253–262, 2004.

[6] F. Diaz, D. Metzler, and S. Amer-Yahia. Relevance and ranking in online dating systems. In SIGIR, pages 66–73, 2010.

[7] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li. Modeling lsh for performance tuning. In CIKM, pages 669–678, 2008.

[8] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In WWW, pages 613–622, 2001.

[9] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM J. Discrete Math., 17(1):134–160, 2003.

[10] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, pages 518–529, 1999.

[11] S. Helmer and G. Moerkotte. A performance study of four index structures for set-valued attributes of low cardinality. VLDB J., 12(3):244–261, 2003.

[12] E. Ilieva, S. Michel, and A. Stupar. The essence of knowledge (bases) through entity rankings. In CIKM, pages 1537–1540, 2013.

[13] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In STOC, pages 604–613, 1998.

[14] F. Schalekamp and A. van Zuylen. Rank aggregation: Together we’re strong. In ALENEX, pages 38–51, 2009.

[15] The New York Times Annotated Corpus.

[16] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive framework for similarity join and search. In SIGMOD Conference, pages 85–96, 2012.

[17] P. Zuzula, P. Savino, G. Amato, and F. Rabitti. Approximate similarity retrieval with m-trees. VLDB J., 7(4):275–293, 1998.

[18] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comput. Surv., 38(2), 2006.

http://corpus.nytimes.com