Retrospective Study

Prognostic value of modified Lauren classification in gastric cancer

Fei-Long Ning, Nan-Nan Zhang, Jun Wang, Yi-Feng Jin, Hong-Guang Quan, Jun-Peng Pei, Yan Zhao, Xian-Tao Zeng, Masanobu Abe, Chun-Dong Zhang

ORCID numbers: Fei-Long Ning 0000-0002-8846-3709; Nan-Nan Zhang 0000-0003-0582-8934; Jun Wang 0000-0002-6754-5641; Yi-Feng Jin 0000-0002-3803-2142; Hong-Guang Quan 0000-0002-9677-630X; Jun-Peng Pei 0000-0002-1876-3204; Yan Zhao 0000-0002-7760-916X; Xian-Tao Zeng 0000-0003-1262-725X; Masanobu Abe 0000-0001-9472-5077; Chun-Dong Zhang 0000-0003-1804-1356.

Author contributions: Ning FL, Zhang NN, Wang J, and Zhang CD contributed to the concept and design of the study; Ning FL, Zhang NN, and Zhang CD contributed to the acquisition of the data; Ning FL, Zhang NN, Wang J, Zeng XT, and Zhang CD contributed to the analysis and interpretation of the data; Ning FL, Zhang NN, Wang J, Yin YF, Quan HG, Pei JP, Zhao Y, Zeng XT, Abe M, and Zhang CD contributed to the drafting of the manuscript; Ning FL, Zhang CD contributed to the critical revision of the manuscript for important intellectual content; Zhang CD contributed to obtaining the funding.

Supported by: The China Scholarship Council, No. 201908050148.

Institutional review board statement: This study was supported by the China Scholarship Council, No. 201908050148.

Abstract

BACKGROUND
It remains controversial as to which pathological classification is most valuable in predicting the overall survival (OS) of patients with gastric cancer (GC).

AIM
To assess the prognostic performances of three pathological classifications in GC.
and develop a novel prognostic nomogram for individually predicting OS.

METHODS

Patients were identified from the Surveillance, Epidemiology, and End Results program. Univariate and multivariate analyses were performed to identify the independent prognostic factors. Model discrimination and model fitting were evaluated by receiver operating characteristic curves and Akaike information criteria. Decision curve analysis was performed to assess clinical usefulness. The independent prognostic factors identified by multivariate analysis were further applied to develop a novel prognostic nomogram.

RESULTS

A total of 2718 eligible GC patients were identified. The modified Lauren classification was identified as one of the independent prognostic factors for OS. It showed superior model discriminative ability and model-fitting performance over the other pathological classifications, and similar results were obtained in various patient settings. In addition, it showed superior net benefits over the Lauren classification and tumor differentiation grade in predicting 3- and 5-year OS. A novel prognostic nomogram incorporating the modified Lauren classification showed superior model discriminative ability, model-fitting performance, and net benefits over the American Joint Committee on Cancer 8th edition tumor-node-metastasis classification.

CONCLUSION

The modified Lauren classification shows superior net benefits over the Lauren classification and tumor differentiation grade in predicting OS. A novel prognostic nomogram incorporating the modified Lauren classification shows good model discriminative ability, model-fitting performance, and net benefits.

Key Words: Gastric cancer; Pathological classification; Prognostic model; Tumor-node-metastasis classification; Survival outcome

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this study, we compared the prognostic performances among the modified Lauren classification, the Lauren classification, and tumor differentiation grade. The modified Lauren classification was identified as one of the independent prognostic factors for overall survival. It showed superior model discriminative ability, model-fitting performance, and net benefits over the other classifications. We further developed a novel prognostic nomogram of individually predicting overall survival by incorporating the modified Lauren classification.

Citation: Ning FL, Zhang NN, Wang J, Jin YF, Quan HG, Pei JP, Zhao Y, Zeng XT, Abe M, Zhang CD. Prognostic value of modified Lauren classification in gastric cancer. *World J Gastrointest Oncol* 2021; 13(9): 1184-1195

URL: https://www.wjgnet.com/1948-5204/full/v13/i9/1184.htm

DOI: https://dx.doi.org/10.4251/wjgo.v13.i9.1184

INTRODUCTION

Gastric cancer (GC) is the fifth most prevalent and the third leading cause of cancer death worldwide[1]. It is a complex, heterogeneous entity that encompasses tumors with varying histopathologies, molecular profiles, and behaviors; however, GC is considered as a single entity for the purpose of clinical management and treatment, without regard to its subtype[2,3]. To date, the gold standard for GC prognostication and treatment guidance is the anatomical American Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM) classification[4,5]. It has been widely applied in many clinical practices without reference to its histopathology because the value of the morphological features of GC in determining clinical outcomes is still limited[6]. In
addition, many investigators are still trying to identify a more valuable classification with better prognostic value[3,7,8].

Due to the wide variations in the morphological features of GC, many histological classifications have been proposed, and they are currently in wide use[3,9-13]. One of these classifications is the tumor differentiation grade. GC can be classified as well differentiated, moderately differentiated, poorly differentiated, and undifferentiated, according to the degree of differentiation exhibited by the tumor[10]. The tumor differentiation grade has been identified as a prognostic risk factor for GC in some studies [14,15]. However, several recent studies have reported that the tumor differentiation grade is not significantly associated with the prognosis of GC patients[16-19]. Another classification is the Lauren classification[13]. Despite dating back to 1965, it remains one of the most commonly used pathological classifications in GC. This classification categorizes GC into intestinal, diffuse, and mixed types, according to its histology, and each type has a distinct pathology and prognosis[13,20-22]. However, several studies have reported that the Lauren classification is not significantly correlated with patient survival because anatomic and corresponding epidemiologic distinctions were not taken into account[23,24].

Recently, it has been proposed that the Lauren classification be modified to include both the Lauren classification and the anatomical location of GC, thus yielding at least three entirely distinct types, namely, the proximal non-diffuse type, distal non-diffuse type, and diffuse type[3]. Molecular biology analyses further showed that there were marked differences in the mRNA expression profiles of the three types. Recent studies performed in Asia also suggested that the modified Lauren classification could be a reliable prognostic factor for patients with GC[25,26].

However, it remains controversial as to which pathological classification is most valuable in predicting the overall survival (OS) in GC patients. Therefore, we aimed to assess the prognostic value of the tumor differentiation grade, Lauren classification, and modified Lauren classification in GC patients. We compared model discriminative ability, model-fitting performance, and net benefits to identify the optimal prognostic pathological classification for GC based on the updated Surveillance, Epidemiology, and End Results (SEER) program. We also developed a novel prognostic nomogram for individually predicting the 3- and 5-year OS by applying the optimal pathological classification.

MATERIALS AND METHODS

Data source
We included data of eligible primary operable GC patients from the SEER program (https://seer.cancer.gov/). Data were extracted with SEER*Stat 8.3.6 software (www.seer.cancer.gov/seerstat). The data-use agreement for the SEER program data file was approved. This study was approved by the Institutional Review Boards of The Fourth Affiliated Hospital of China Medical University (EC-2021-KS-047).

Inclusion and exclusion criteria
Patients were included if they met the inclusion criteria as follows: (1) Primary carcinoma of the stomach; (2) TNM classification available; (3) no distant metastases (M0 disease); (4) solitary cancer; (5) history of curable surgery; (6) no neoadjuvant radiochemotherapy; (7) postoperative survival longer than one month; (8) aged between 18 and 75 years; (9) histological information available; and (10) defined tumor sites. Patients were excluded if they met any of the exclusion criteria as follows: (1) Metastatic carcinoma of the stomach; (2) TNM classification unavailable; (3) distant metastases (M1); (4) multiple cancers; (5) no history of surgery; (6) preoperative radiotherapy or chemotherapy; (7) postoperative survival shorter than 1 mo; (8) aged < 18 or > 75 years; (9) histological information unavailable; and (10) undefined tumor sites.

Clinicopathologic features
The analyzed clinicopathologic features were gender, age, tumor size, depth of tumor invasion (pT stage), number of retrieved lymph nodes, number of positive lymph nodes (pN stage), tumor differentiation grade, and Lauren classification. Patients were uniformly reviewed and re-staged (pT or pN stage) according to the AJCC 8th edition TNM classification[4]. The last follow-up was in November 2016.
Statistical analysis
The OS was calculated from the time of diagnosis to the time of death from any reason. Kaplan-Meier survival curves with log-rank tests were applied to analyze the difference in the OS among the groups. Factors with \(P \) values less than 0.1 in univariate analyses were considered potential prognostic factors and included in the Cox proportional hazards regression model. Hazard ratios with 95% CIs were applied.

The model discriminative ability of different pathological classifications was assessed by areas under the receiver operating characteristic curves (AUC)\(^{[27]}\). The model-fitting performance was evaluated by Akaike information criteria (AIC). A higher AUC value indicated a better model discriminative ability, and a lower AIC value indicated a superior model-fitting performance. The differences in AUC values were assessed by DeLong test\(^{[28]}\). Decision curve analysis (DCA) was performed to assess clinical usefulness, and the net benefits of making a decision based on the models were calculated\(^{[29,30]}\).

The modified Lauren classification is an adjusted categorization of the Lauren classification, and both classifications are considered highly relevant. The Cox proportional hazards regression model was employed by incorporating either the Lauren or modified Lauren classification. Finally, the independent prognostic factors identified by multivariate analysis were applied to the nomogram.

Statistical analyses were performed using SPSS 22.0 (SPSS, Inc., Chicago, IL, United States), MedCalc 15.2 (Ostend, Belgium), GraphPad Prism 7 (GraphPad Software Inc., San Diego, CA, United States), and R 3.5.6 (http://www.R-project.org/) software packages. All tests were two-sided, and \(P \)-values less than 0.05 were considered statistically significant.

RESULTS

Patient characteristics
A total of 2718 eligible patients with GC from the SEER program were included. The clinicopathological characteristics are summarized in Table 1. There were 1588 males (58.4%) and 1130 were females (41.6%). The median age of all patients was 61 years (range, 18–75 years), and the median follow-up period was 31 mo (range, 2–155 mo).

Prognostic factors of overall survival
Univariate analysis identified potential prognostic factors, namely, age, tumor size, number of retrieved lymph nodes, \(pT \) stage, \(pN \) stage, tumor differentiation grade, and the modified Lauren classification (log-rank tests, \(P < 0.10 \)). These factors were further applied in multivariate analysis with the Cox proportional hazards regression model. The results indicated that the independent prognostic factors predicting OS were age, tumor size, number of retrieved lymph nodes, \(pT \) stage, \(pN \) stage, and the modified Lauren classification (Table 2). However, neither the tumor differentiation grade \((P = 0.115)\) nor the Lauren classification \((P = 0.163)\) was found to be an independent predictive factor for OS in further multivariate analysis (Supplementary Table 1).

Predictive performance evaluations of pathological classifications
We compared the model discriminative ability and model-fitting performance of the tumor differentiation grade, Lauren classification, and modified Lauren classification. The modified Lauren classification showed superior model discriminative ability (3-year OS, AUC, 0.679 vs 0.666, Delong test, \(P < 0.001 \)); 5-year OS, AUC, 0.702 vs 0.681, \(P < 0.001 \)) and model-fitting performance (AIC, 25877 vs 25923) over the Lauren classification (Table 3, Supplementary Figure 1A and B). The modified Lauren classification also showed superior model discriminative ability (3-year OS, AUC, 0.679 vs 0.626, Delong test, \(P < 0.001 \)); 5-year OS, AUC, 0.702 vs 0.621, \(P < 0.001 \)) and model-fitting performance (AIC, 25877 vs 25971) over the tumor differentiation grade (Table 3, Supplementary Figure 1A and B). In addition, the Lauren classification showed superior model discriminative ability (3-year OS, AUC, 0.666 vs 0.626, Delong test, \(P < 0.001 \)); 5-year OS, AUC, 0.681 vs 0.621, \(P < 0.001 \)) and model-fitting performance (AIC, 25923 vs 25971) over the tumor differentiation grade (Table 3, Supplementary Figure 1A and B, Supplementary Figure 2).

The modified Lauren classification also showed superior model discriminative ability (higher AUC values) and model-fitting performance (lower AIC values) in patients that were stratified by gender (female, male), age (< 60 years, ≥ 60 years),
Variable	Distal non-diffuse type	Proximal non-diffuse type	Diffuse type
Gender (%)			
Male	416 (63.6)	324 (70.0)	848 (53.0)
Female	238 (36.4)	139 (30.0)	753 (47.0)
Age (%)			
< 60 yr	200 (30.6)	167 (36.1)	850 (53.1)
≥ 60 yr	454 (69.4)	296 (63.9)	751 (46.9)
Tumor size (%)			
< 4.0 cm	318 (48.6)	218 (47.1)	664 (41.5)
≥ 4.0 cm	310 (47.4)	221 (47.7)	771 (48.2)
Unknown	26 (4.0)	24 (5.2)	166 (10.4)
Retrieved lymph nodes (%)			
Adequate (n ≥ 16)	326 (49.8)	261 (56.4)	831 (51.9)
Inadequate (n < 16)	328 (50.2)	202 (43.6)	770 (48.1)
AJCC 8th pT stage (%)			
pT1	211 (32.3)	123 (26.6)	356 (22.2)
pT2	87 (13.3)	69 (14.9)	173 (10.8)
pT3	207 (31.7)	149 (32.2)	464 (29.0)
pT4a	101 (15.4)	89 (19.2)	480 (30.0)
pT4b	48 (7.3)	33 (7.1)	128 (8.0)
AJCC 8th pN stage (%)			
pN0	302 (46.2)	197 (42.5)	532 (33.2)
pN1	117 (17.9)	79 (17.1)	260 (16.2)
pN2	115 (17.6)	90 (19.4)	302 (18.9)
pN3a	95 (14.5)	70 (15.1)	347 (21.7)
pN3b	25 (3.8)	27 (5.8)	160 (10.0)
Differentiation grade (%)			
Well differentiation	66 (10.1)	26 (5.6)	3 (0.2)
Moderate differentiation	269 (41.1)	170 (36.7)	44 (2.7)
Poor differentiation	311 (47.6)	259 (55.9)	1484 (92.7)
Undifferentiation	8 (1.2)	8 (1.7)	70 (4.4)

AJCC: American Joint Committee on Cancer; pN stage: Pathological N stage; pT stage: Pathological T stage.

Clinical utility of pathological classifications

We conducted DCA to assess the clinical utility of the different pathological classifications. The results revealed that the modified Lauren classification had superior net benefits over the Lauren classification and tumor differentiation grade in predicting both 3- and 5-year OS (Supplementary Figure 1C and D). Specifically, the modified Lauren classification showed superior net benefits over the tumor differentiation grade between threshold probabilities of 50%–65% and 40%–80% in predicting 3- and 5-year OS, respectively (Supplementary Figure 1C and D). In addition, the modified Lauren classification also had superior net benefits over the Lauren classification in predicting both 3- and 5-year OS (Supplementary Figure 1C and D). These results confirmed that the modified Lauren classification showed the best model discriminative ability and model-fitting performance among the three pathological classifications.

tumor size (< 4.0 cm, ≥ 4.0 cm, unknown), number of retrieved lymph nodes (< 16, ≥ 16), pT stage (pT1, pT2–4), and pN stage (pN0, pN1–3). These results confirmed that the modified Lauren classification showed the best model discriminative ability and model-fitting performance among the three pathological classifications.
Table 2 Univariate and multivariable analyses of prognostic factors for overall survival

Variable	No. of patients (%)	Univariate analysis	Multivariate analysis		
		5-yr OS	P value	HR (95%CI)	P value
Gender (%)			0.111		
Male	1588 (58.4)	45.9%			
Female	1130 (41.6)	49.1%			
Age (%)			< 0.001	< 0.001	
< 60 yr	1217 (44.8)	50.7%	1 (Ref)		
≥ 60 yr	1501 (55.2)	44.4%	1.157 (1.360–1.692)	< 0.001	
Tumor size (%)			< 0.001		0.001
≤ 4.0 cm	1200 (44.2)	63.9%	1 (Ref)		
> 4.0 cm	1302 (47.9)	33.6%	1.179 (1.038–1.339)	0.011	
Unknown	216 (7.9)	40.2%			
Retrieved lymph nodes (%)			0.074	< 0.001	
Adequate (n ≥ 16)	1418 (52.2)	48.9%	1 (Ref)		
Inadequate (n < 16)	1300 (47.8)	45.5%	1.550 (1.380–1.740)	< 0.001	
AJCC 8th pT stage (%)			< 0.001		< 0.001
pT1	690 (25.4)	80.9%	1 (Ref)		
pT2	329 (12.1)	66.6%	1.533 (1.193–1.975)	0.001	
pT3	820 (30.2)	38.5%	2.882 (2.334–3.558)	< 0.001	
pT4a	670 (24.7)	23.4%	3.415 (2.740–4.256)	< 0.001	
pT4b	209 (7.7)	18.6%	4.452 (3.458–5.732)	< 0.001	
AJCC 8th pN stage (%)			< 0.001		< 0.001
pN0	1031 (37.9)	71.6%	1 (Ref)		
pN1	456 (16.8)	46.9%	1.467 (1.225–1.757)	< 0.001	
pN2	507 (18.7)	37.5%	1.611 (1.353–1.919)	< 0.001	
pN3a	512 (18.8)	24.8%	2.356 (1.976–2.809)	< 0.001	
pN3b	212 (7.8)	9.2%	4.138 (3.306–5.181)	< 0.001	
Differentiation grade (%)			0.011	0.135	
Well differentiation	95 (3.5)	69.4%	1 (Ref)		
Moderate differentiation	483 (17.8)	58.9%	0.974 (0.649–1.462)	0.898	
Poor differentiation	2054 (75.5)	44.0%	1.123 (0.755–1.670)	0.566	
Undifferentiation	86 (3.2)	35.6%	1.415 (0.876–2.285)	0.156	
Modified Lauren classification (%)			< 0.001	0.013	
Distal non-diffuse type	654 (24.1)	58.8%	1 (Ref)		
Proximal non-diffuse type	463 (17.0)	48.3%	1.230 (1.033–1.466)	0.020	
Diffuse type	1601 (58.9)	42.4%	1.246 (1.068–1.452)	0.005	

AJCC: American Joint Committee on Cancer; HR: Hazard ratio; OS: Overall survival; pN stage: Pathological N stage; pT stage: Pathological T stage. Variables with P values less than 0.1 were included in the multivariate analysis.

classification also showed superior net benefits over the Lauren classification between threshold probabilities of 30%–45% and 40%–60% in predicting 3- and 5-year OS, respectively (Supplementary Figure 1C and D).
Table 3 Comparison of predictive performances between different pathological classifications and prognostic models

Pathological classification/prognostic model	AUC (95%CI)	3-yr overall survival	5-yr overall survival	AIC
Differentiation grade	0.626 (0.608-0.644)	0.621 (0.602-0.639)	25971	
Lauren classification	0.666 (0.647-0.683)	0.681 (0.663-0.699)	25923	
Modified Lauren classification	0.679 (0.661-0.696)	0.702 (0.685-0.719)	25877	
DeLong tests for AUCs				
Differentiation grade vs Lauren	P < 0.001	P < 0.001		
Lauren vs modified Lauren	P < 0.001	P < 0.001		
Modified Lauren vs differentiation grade	P < 0.001	P < 0.001		
Novel prognostic model	0.803 (0.786-0.819)	0.804 (0.787-0.820)	20010	
Age, tumor size, retrieved lymph nodes, pT stage, pN stage, modified Lauren classification				
Control model	0.776 (0.759-0.793)	0.776 (0.759-0.793)	20144	
AJCC 8th pTNM stage (pT stage, pN stage)				

AIC: Akaike's Information Criterion; AJCC: American Joint Committee on Cancer; AUC: Area under curve; pN stage: Pathological N stage; pT stage: Pathological T stage. A higher area under the curve indicated better model discrimination and a lower Akaike’s Information Criterion indicates superior model-fitting; Differentiation grade, well vs moderate vs poor vs undifferentiation; Lauren classification, intestinal type vs diffuse type vs mixed type; Modified Lauren classification, distal non-diffuse vs proximal non-diffuse vs diffuse type.

Novel prognostic nomogram model vs AJCC 8th edition TNM classification

We further developed a novel prognostic model of age, tumor size, number of retrieved lymph nodes, pT stage, pN stage, and the modified Lauren classification by multivariate analysis using the Cox proportional hazards regression model. A novel nomogram for individually predicting 3- and 5-year OS was established by applying significant prognostic factors, including age, tumor size, number of retrieved lymph nodes, pT stage, pN stage, and the modified Lauren classification (Supplementary Figure 3A).

This novel prognostic model showed superior model discriminative ability (3-year OS, AUC, 0.803 vs 0.776, DeLong test; 5-year OS, AUC, 0.804 vs 0.776) and model-fitting performance (AIC, 20010 vs 20144) over the AJCC 8th edition TNM classification (pT stage, pN stage) (Table 3, Supplementary Figure 2C and D, Supplementary Figure 3B).

We further conducted DCA to assess the clinical utility of the novel prognostic model and the AJCC 8th edition TNM classification. The novel prognostic model showed superior net benefits over the AJCC 8th edition TNM classification between threshold probabilities of 40%–90% and 50%–95% in predicting 3- and 5-year OS, respectively (Supplementary Figure 1E and F).

DISCUSSION

Several pathological classifications of GC are currently in use due to the various morphological characteristics of GC[3,9-13]. However, it remains controversial as to which classification is best. Therefore, we performed a systematic analysis of the three most well-known pathological classifications and compared prognostic predictive performance with clinical use. In addition to the commonly used Lauren classification and tumor differentiation grade, we also compared a new classification, the modified Lauren classification. In our study, pN and pT stages were the most important prognostic factors for survival, thus validating the quality of the participants.

Tumor differentiation grades are commonly used for GC, and the four types of GC are defined as well differentiated, moderately differentiated, poorly differentiated, and undifferentiated[31]. It has been widely accepted that poorly differentiated tumors usually spread more extensively than well differentiated tumors by the time of surgery, and patients with more differentiated tumors have obvious survival advantages after curative resection[14,15]. However, recent studies have reported that...
the tumor differentiation grade is not significantly associated with the prognosis of patients with GC [16-19]. In the current study, the tumor differentiation grade was significantly associated with the prognosis in log-rank tests; however, it was not an independent prognostic factor for OS. This discrepancy may be due to the mixture of differentiated and undifferentiated GC histologies [18,32]. In addition, it suggests that some well-differentiated types of GC can change to poorly differentiated types with tumor progression [33,34]. Therefore, further studies are needed to understand the significance of the tumor differentiation grade of GC.

The Lauren classification of GC is one of the most widely applied histological grading systems in predicting survival [21]. It has been reported that Lauren-classified tumor subtypes can respond differently to chemotherapy, thus yielding different survival outcomes [20]. However, the Lauren classification has also been demonstrated to have inadequate prognostic discriminative performance, and therefore, its prognostic accuracy remains controversial [23,24]. Specific pathogenetic and morphologic features of intestinal and diffuse types may underlie their different behaviors [22]. Population-based studies have reported the different epidemiological features of Lauren-classified subtypes and cancer of the cardia [35,36]. Epidemiologically, the intestinal type of GC, particularly that of the antrum, is often strongly associated with chronic inflammation as a consequence of chronic infection with Helicobacter pylori [37,38]. Anatomically, proximal GC can be classified as a third type of GC for which inflammation of a different type may be the driving force for carcinogenesis [39]. Furthermore, the anatomical location of GC is clinically relevant, and proximal third GC is associated with a worse prognosis than middle or distal third GC [40,41].

Therefore, a location-modified Lauren classification has been proposed. It defines the subtypes of GC by incorporating epidemiological and histopathological data together with the anatomical location [3]. Several studies have revealed that the modified Lauren classification has better discriminative ability and monotonicity than the Lauren classification [25,26]. The results of the current study demonstrated that the modified Lauren classification showed superior model discriminative ability, model-fitting performance, and net benefits compared with other classifications. Similar findings were also obtained in populations stratified by gender, age, tumor size, number of retrieved lymph nodes, pT stage, and pN stage. Decision curve analysis confirmed its clinical usefulness over other classifications.

It remains unclear why the modified Lauren classification showed a significantly better prognostic performance. A previous study has reported that the Kirsten rat sarcoma viral oncogene homolog pathway was downregulated in proximal non-diffuse GC compared with diffuse GC [42]. In addition, genomic analysis has confirmed that the modified Lauren classification can achieve a clear molecular distinction [3]. Moreover, HER2 amplification or overexpression is not uniform across different GC subtypes; it is most prevalent in proximal GC (HER2 positivity rate, approximately 30%) and least prevalent in diffuse GC (HER2 positivity rate, approximately 5%) [43]. Furthermore, whole-genome sequencing of diffuse GC uncovered mutations in RHOA, a gene encoding a well-studied small GTPase, in 15%-25% of diffuse tumors but not in non-diffuse tumors [44].

Nomograms are visualization tools for individually predicting survival [45,46] with improved predictive accuracy and comprehensive outcomes for many types of cancers [47]. Therefore, we developed a novel prognostic nomogram of age, tumor size, number of retrieved lymph nodes, pT stage, pN stage, and the modified Lauren classification. This novel prognostic model achieved superior model discriminative ability, model-fitting performance, and net benefits over the AJCC 8th edition TNM classification. These findings support the consideration of more factors spanning different aspects of the disease as the most promising approach to improve the clinical management of GC. However, the findings of the current study still need to be interpreted with caution because specific intervention factors of the surgical procedures, chemo-radiotherapeutic regimens, and drug doses were not applied in the current study.

CONCLUSION

In summary, the modified Lauren classification provides superior model discriminative ability, model-fitting performance, and net benefits over the tumor differentiation grade and Lauren classification. It also shows good applicability in various clinical settings. The novel prognostic nomogram incorporating the modified Lauren
classification shows good model discriminative ability, model-fitting performance, and net benefits. However, the findings of the current study require further validation.

ARTICLE HIGHLIGHTS

Research background
It remains controversial as to which pathological classification is most valuable in predicting overall survival (OS) in patients with gastric cancer (GC).

Research motivation
Recently, it has been proposed that the Lauren classification be modified to include both the Lauren classification and the anatomical location of GC, thus yielding at least three entirely distinct types, namely, the proximal non-diffuse type, distal non-diffuse type, and diffuse type.

Research objectives
To assess the prognostic performances of three pathological classifications in GC and develop a novel prognostic nomogram for individually predicting OS.

Research methods
We retrospectively reviewed and analyzed the data identified from the Surveillance, Epidemiology, and End Results program.

Research results
A total of 2718 eligible GC patients were identified. The modified Lauren classification was identified as one of the independent prognostic factors for OS. It showed superior model discriminative ability and model-fitting performance over the other pathological classifications, and similar results were obtained in various patient settings. In addition, it showed superior net benefits over the Lauren classification and tumor differentiation grade in predicting 3- and 5-year OS. A novel prognostic nomogram incorporating the modified Lauren classification showed superior model discriminative ability, model-fitting performance, and net benefits over the American Joint Committee on Cancer 8th edition tumor-node-metastasis classification.

Research conclusions
The modified Lauren classification shows superior net benefits over the Lauren classification and tumor differentiation grade in predicting OS. A novel prognostic nomogram incorporating the modified Lauren classification shows good model discriminative ability, model-fitting performance, and net benefits.

Research perspectives
A large prospective study is needed to validate our findings.

ACKNOWLEDGEMENTS
We acknowledge the efforts of Surveillance, Epidemiology, and End Results (SEER) program tumor registries for creating the SEER database (https://seer.cancer.gov/).

REFERENCES
1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7-34 [PMID: 30620402 DOI: 10.3322/caac.21551]
2 Shah MA, Kelsen DP. Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease. J Natl Compr Canc Netw 2010; 8: 437-447 [PMID: 20410336 DOI: 10.6004/jnccn.2010.0033]
3 Shah MA, Khanin R, Tang L, Janjigian YY, Klimstra DS, Gerdes H, Kelsen DP. Molecular classification of gastric cancer: a new paradigm. Clin Cancer Res 2011; 17: 2693-2701 [PMID: 21430069 DOI: 10.1158/1078-0432.CCR-10-2203]
4 Amin MB, Edge SB, Greene F, Byrd DR, Brodkland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM,
Epstein-Barr virus and microsatellite instability genotypes from the Lauren histotypes: Combined classification and its prognostic significance.

Bouche O, Bennouna J, Francois E, Ghiringhelli F, De La Fouchardiere C, Samalin E, Baptiste Pernot S

With Stage II or III Gastric Cancer.

Azkarate A, Ramchandani A, López C, Martinez de Castro E, Fernández Montes A, Longo F, Jiménez Fonseca P

Association of Adjuvant Chemotherapy With Survival in Patients of differentiation status in gastric cancer.

Yang Y, Yu J, Liu W, Cai S, Li G.

H pylori infection survival and response to chemotherapy: real-world data from the AGAMENON National Cancer Registry.

Lee JH

Cytoreductive Surgery With or Without Hyperthermic Intraperitoneal Chemotherapy for Gastric Cancer With Peritoneal Metastases (CYTO-CHIP study): A Propensity Score Analysis.

Jiménez Fonseca P, Carmona-Bayonas A, Hernández R, Custodio A, Cano JM, Lacalle A, Echavarriam I, Macias I, Mansan G, Visa L, Buxo E, Álvarez Mancheño F, Viudez A, Pericay C, Azkaraite A, Ramchandani A, López C, Martínez de Castro E, Fernández Montes A, Longo F, Sánchez Bayona R, Limón ML, Diaz-Serrano A, Martin Carnicer A, Arias D, Cerda P, Rivera F, Vieitez JM, Sánchez Cánovas M, Garrido M, Gallego J. Lauren subtypes of advanced gastric cancer influence survival and response to chemotherapy: real-world data from the AGAEMNON National Cancer Registry. Br J Cancer 2017; 117: 775-782 [PMID: 28765618 DOI: 10.1038/bjc.2017.245]
cohort of 1,248 cases. *Int J Cancer* 2019; 145: 3218-3230 [PMID: 30771224 DOI: 10.1002/ijc.32215]

24 de Aguiar VG, Segatelli V, Macedo ALV, Goldenberg A, Gansl RC, Maluf FC, Usón Junior PLS. Signet ring cell component, not the Lauren subtype, predicts poor survival: an analysis of 198 cases of gastric cancer. *Future Oncol* 2019; 15: 401-408 [PMID: 30622020 DOI: 10.2217/fon-2018-0354]

25 Choi JK, Park YS, Jung DH, Son SY, Ahn SH, Park DJ, Kim HH. Clinical Relevance of the Tumor Location-Modified Lauren Classification System of Gastric Cancer. *J Gastric Cancer* 2015; 15: 183-190 [PMID: 2668416 DOI: 10.5230/jgc.2015.15.3.183]

26 Zhao LY, Wang JI, Zhao YL, Chen NZ, Yang K, Chen XL, Zhang WH, Liu K, Song XH, Zheng JB, Zhou ZG, Yu PW, Li Y, Hu IK. Superiority of Tumor Location-Modified Lauren Classification System for Gastric Cancer: A Multi-Institutional Validation Analysis. *Ann Surg Oncol* 2018; 25: 3257-3263 [PMID: 30051368 DOI: 10.1245/s10434-018-6654-8]

27 Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. *Clin Chem* 1993; 39: 561-577 [PMID: 8472349]

28 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. *Biometrika* 1988; 44: 837-845 [PMID: 3203132]

29 Fitzgerald M, Saville BR, Lewis RJ. Decision curve analysis. *JAMA* 2015; 313: 409-410 [PMID: 25626037 DOI: 10.1001/jama.2015.37]

30 Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. *Med Decis Making* 2006; 26: 565-574 [PMID: 17099194 DOI: 10.1177/0272989X06295361]

31 Camargo MC, Kim WH, Chiaravalli AM, Kim KM, Corvalan AH, Matsuo K, Yu J, Sung JJ, Herrera-Goeppert R, Meneses-Gonzalez F, Kijima Y, Natsugoe S, Liao LM, Lissowska J, Kim S, Hu N, Gonzalez CA, Yatabe Y, Korinova C, Hewitt SM, Akiba S, Gulley ML, Taylor PR, Rabkin CS. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. *Gut* 2014; 63: 236-243 [PMID: 23580779 DOI: 10.1136/gutjnl-2013-305431]

32 Horiuichi Y, Fujiyaki J, Yamamoto N, Ishizuka N, Omae M, Ishiyama A, Yoshio T, Hirasawa T, Yamamoto Y, Nagahama M, Takahashi H, Tsuichida T. Mixed poorly differentiated adenocarcinoma in undifferentiated-type early gastric cancer predicts endoscopic noncurative resection. *Gastric Cancer* 2018; 21: 689-695 [PMID: 29236187 DOI: 10.1007/s10120-017-0788-4]

33 Tanaka K, Shimura T, Kitajima T, Kondo S, Ide S, Okugawa Y, Saigusa S, Toiyama Y, Inoue Y, Araki T, Uchida K, Mohri Y, Kusunoki M. Tropomyosin-related receptor kinase B at the invasive front and tumour cell dedifferentiation in gastric cancer. *Br J Cancer* 2014; 110: 2923-2934 [PMID: 24853179 DOI: 10.1038/bjc.2014.228]

34 Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. *EMBO Rep* 2014; 15: 244-253 [PMID: 24531722 DOI: 10.1002/embr.201338254]

35 Kaneko S, Yoshimura T. Time trend analysis of gastric cancer incidence in Japan by histological types, 1975-1989. *Br J Cancer* 2001; 84: 400-405 [PMID: 11161407 DOI: 10.1054/bjoc.2000.1602]

36 Dassen AE, Lemmens VE, van de Poll-Franse LV, Creemers GJ, Brenninkmeijer SJ, Lips DJ, Vd Wurff AA, Bosscha K, Coebergh JW. Trends in incidence, treatment and survival of gastric adenocarcinoma between 1990 and 2007: a population-based study in the Netherlands. *Eur J Cancer* 2010; 46: 1101-1110 [PMID: 20219351 DOI: 10.1016/j.ejca.2010.02.013]

37 Choi JJ, Kim CG, Lee JY, Kim YI, Kook MC, Park B, Joo J. Family History of Gastric Cancer and Helicobacter pylori Treatment. *N Engl J Med* 2020; 382: 427-436 [PMID: 31995688 DOI: 10.1056/NEJMoa1909666]

38 Ajani JA, Lee J, Sano T, Janjiqian YY, Fan D, Song S. Gastric adenocarcinoma. *Nat Rev Dis Primers* 2017; 3: 17036 [PMID: 28569272 DOI: 10.1038/nrdp.2017.36]

39 Shoji Y, Nunobe S, Ida S, Kumagai K, Ohashi M, Sano T, Hiki N. Surgical outcomes and risk assessment for anastomotic complications after laparoscopic proximal gastrectomy with double-flap technique for upper-third gastric cancer. *Gastric Cancer* 2019; 22: 1036-1043 [PMID: 30838469 DOI: 10.1007/s10120-019-00940-0]

40 Rosa F, Quero G, Fiorillo C, Bissolati M, Cipollari C, Rausei S, Chiari D, Ruspi L, de Manzoni G, Costamagna G, Doglietto GB, Aflieri S. Total vs proximal gastrectomy for adenocarcinoma of the upper third of the stomach: a propensity-score-matched analysis of a multicenter western experience (On behalf of the Italian Research Group for Gastric Cancer-GIRGAC). *Gastric Cancer* 2018; 21: 845-852 [PMID: 29423892 DOI: 10.1007/s10120-018-0804-3]

41 Kajiyama Y, Tsurumaru M, Udagawa H, Tsutsui K, Kinoshita Y, Ueno M, Akiyama H. Prognostic factors in adenocarcinoma of the gastric cardia: pathologic stage analysis and multivariate regression analysis. *J Clin Oncol* 1997; 15: 2015-2021 [PMID: 9164213 DOI: 10.1200/JCO.1997.15.5.2015]

42 Hiyama T, Harauma K, Kitayadi Y, Masuda H, Miyamoto M, Tanaka S, Yoshihara M, Shimamoto F, Chayama K. K-ras mutation in helicobacter pylori-associated chronic gastritis in patients with and without gastric cancer. *Int J Cancer* 2007; 97: 562-566 [PMID: 11807776 DOI: 10.1002/ijc.1644]

43 Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Arpilio G, Kullkow E, Hill J, Lehe M, Rüschoff J, Kang YK, ToGA Trial Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-esophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. *Lancet* 2010; 376: 687-697 [PMID: 20728210 DOI: 10.1016/S0140-6736(10)61211-X]

44 Kakichu M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, Yamamoto S, Tatsuno K, Kato H, Watanabe Y, Ichimura T, Ushiku T, Funahashi S, Tateishi K, Wada I, Shimizu N, Nomura S.
Koike K, Seto Y, Fukayama M, Aburatani H, Ishikawa S. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. *Nat Genet* 2014; 46: 583-587 [PMID: 24816255 DOI: 10.1038/ng.2984]

Randall RL, Cable MG. Nominal nomograms and marginal margins: what is the law of the line? *Lancet Oncol* 2016; 17: 554-556 [PMID: 27301026 DOI: 10.1016/S1470-2045(16)00072-3]

Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: more than meets the eye. *Lancet Oncol* 2015; 16: e173-e180 [PMID: 25846697 DOI: 10.1016/S1470-2045(14)71116-7]

Carmona-Bayonas A, Jiménez-Fonseca P, Lamarca A, Barriuso J, Castañó Á, Benavent M, Alonso V, Riesco-Martínez MDC, Alonso-Gordoa T, Custodio A, Sánchez Cánovas M, Hernando Cubero J, López C, Lacasta A, Fernández Montes A, Marazuela M, Crespo G, Escudero P, Díaz JÁ, Feliciangeli E, Gallego J, Llanos M, Segura Á, Vilardell F, Percovich JC, Grande E, Capdevila J, Valle JW, García-Carbonero R. Prediction of Progression-Free Survival in Patients With Advanced, Well-Differentiated, Neuroendocrine Tumors Being Treated With a Somatostatin Analog: The GETNET-TRASGU Study. *J Clin Oncol* 2019; 37: 2571-2580 [PMID: 31390276 DOI: 10.1200/JCO.19.00980]
