Water, energy and climate benefits of urban greening throughout Europe under different climatic scenarios

Emanuele Quaranta1,2, Chiara Dorati2 & Alberto Pistocchi1

Urban greening is an effective mitigation option for climate change in urban areas. In this contribution, a European Union (EU)-wide assessment is presented to quantify the benefits of urban greening in terms of availability of green water, reduction of cooling costs and CO2 sequestration from the atmosphere, for different climatic scenarios. Results show that greening of 35% of the EU's urban surface (i.e. more than 26,000 km²) would avoid up to 55.8 Mtons year⁻¹ CO2 equivalent of greenhouse gas emissions, reducing energy demand for the cooling of buildings in summer by up to 92 TWh per year, with a net present value (NPV) of more than 364 billion Euro. It would also transpire about 10 km³ year⁻¹ of rain water, turning into "green" water about 17.5% of the "blue" water that is now urban runoff, helping reduce pollution of the receiving water bodies and urban flooding. The greening of urban surfaces would decrease their summer temperature by 2.5–6 °C, with a mitigation of the urban heat island effect estimated to have a NPV of 221 billion Euro over a period of 40 years. The monetized benefits cover less than half of the estimated costs of greening, having a NPV of 1323 billion Euro on the same period. Net of the monetized benefits, the cost of greening 26,000 km² of urban surfaces in Europe is estimated around 60 Euro year⁻¹ per European urban resident. The additional benefits of urban greening related to biodiversity, water quality, health, wellbeing and other aspects, although not monetized in this study, might be worth such extra cost. When this is the case, urban greening represents a multifunctional, no-regret, cost-effective solution.

Climate change and the current trends in urbanization make city resilience a clear priority1. Urban areas suffer from heat waves2–4 and generally require a high amount of energy for the cooling of buildings. Impervious surfaces exacerbate floods and their impacts, because urban runoff is quickly discharged to the receiving water bodies where it may cause disturbance to aquatic ecosystems5, and is often a significant source of pollution6.

Health and environmental risks due to climate effects in urban areas are expected to increase, especially in developing cities that are experiencing rapid population growth3,7. A recent study found that the accumulated total costs resulting from the impact of global and local climate change on cities since the year 2000 were about 2.6 times the costs without urban weather-related effects7.

Urban climate has been acknowledged to be strongly modified by human influences8. Green areas inside a city can lower the ambient air temperature and adjust the humidity of surrounding areas9–12, besides regulating runoff and enabling rainwater harvesting13,14, as unsealed soil allows retaining rainwater subsequently available for vegetation to grow.

In the last years, urban greening has attracted considerable interest as a broad-scoped management measure9. In the context of urban greening, a frequent option is not to restore unsealed soil, but to cover an impervious surface with a vegetated soil layer, usually on top of a waterproof membrane and a drainage layer to protect the underlying impervious surface. The latter is sometimes the roof of a building (which would be turned into a "green roof"), but could equally be a paved external surface with underlying pipelines or other services. If not specified otherwise, in the remainder of this work we refer to "greened surface", or equivalently “green roof”, as any soil cover of an urban impervious surface, enabling water infiltration and vegetation growth.

While green roofs have been used for centuries, they are now reviving under the current climate and urbanization trends15. Essentially, they harvest "blue" rainwater and make it available for evapotranspiration (turning it into "green water", i.e. water used by vegetation and soil), modifying the hydrologic and energy balance of

1European Commission, Joint Research Centre (JRC), Ispra, Italy. 2ARHS, Ispra, Italy. 3email: emanuele.quaranta@ec.europa.eu
the surfaces. In addition, rainwater in excess of evapotranspiration may be collected through drainage for possible reuse. Green roofs bring several potential benefits including reduction of storm water runoff by retaining precipitation\[13,14,16,17\], reduction of energy demand for the cooling of buildings\[16,19\], mitigation of the urban microclimate\[19,22\]. Moreover, by supporting vegetation growth, they enhance sequestration of carbon dioxide and pollutants from the atmosphere\[11,12\], reduce noise in buildings\[23\], provide usable spaces for social activities and horticulture\[4-4,36\] and for wildlife habitat, especially birds and pollinators\[27,28\]. Because of these multiple benefits, green roofs can be an important urban management measure, meeting the aspirations of the European green deal on buildings renovation\[49\].

Having in mind the local benefits of urban greening (single building- or city-scale), in this contribution we present a European-scale quantification of the potential benefits of green roofs in terms of water and climate regulation, energy saving and biomass production (hence carbon sequestration), using the meta-models described in Quaranta et al.\[30\]. On this basis, we discuss the opportunities and limitations of greening as a tool for sustainable urban development in Europe. The objective of the present paper is not a detailed assessment at single sites but the screening of a comprehensive strategy to develop urban greening as a mainstream solution.

Materials and methods

Our analysis combines a GIS implementation of the meta-models proposed by\[30\] applied to the EU context to quantify the benefits of converting 1 m\(^2\) of impervious surface into a green surface, with an empirical quantification of costs and benefits. The Net Present Value (NPV) of the investment was also calculated. NPV is an economic valuation analysis that takes into account the difference between the present value of benefits and the present value of costs over a period of time, that in our case was assumed to be 40 years. NPV allows to estimate the profitability of an investment or a project. Therefore, NPV accounts for the time value of money and can be used to compare similar investment alternatives. The NPV relies on a discount rate, that is the rate of return used to discount future cash flows back to their present value.

Quaranta et al.\[30\] combined the hydrological model of Pistocchi et al.\[31\], with the energy and biomass model of Neitsch et al.\[32\], to simulate biomass growth, the water and surface energy balance for 671 functional urban areas (FUA) across Europe at daily time step, using European scale gridded weather time series for the period 1990–2013\[33\] as input. The results were used to derive simple meta-models predicting the following indicators as a function of climatic descriptors, i.e. annual precipitation (\(P\)), annual potential evapotranspiration (\(ET_0\)) and annual actual evapotranspiration (\(AET\)):

1. the average difference in surface (skin) temperature in summer, \(\Delta T_s\) (°C), between an impervious urban surface and a greened surface at the same location (Eq. (1));
2. the average difference in summer temperature, \(\Delta T\) (°C), between an impervious urban surface and the bottom of the soil layer, placed for the greening on the urban surface at the same location (Eq. (2));
3. the difference between annual rainfall and annual runoff, \(RR\) (mm year\(^{-1}\)), for a greened surface, representing the runoff avoided as a consequence of greening (Eq. (3));
4. the annual biomass that may grow on a greened surface \(CB\) (kg m\(^{-2}\) year\(^{-1}\)), (Eq. (4)):

\[
\Delta T_s = 0.0061AET + 1.46
\]

\[
\Delta T = 6.85 \ln(ET_0) - 27.83
\]

\[
RR/P = 17.8P^{-0.544}
\]

\[
CB = 1.65 \ln(ET_0) - 8.685
\]

In the derivation of the metamodels of Quaranta et al.\[30\] \(ET_0\) was computed at daily step with the Penman–Monteith equation by Bisselink et al.\[33\], and aggregated as a yearly value. While \(AET\) is usually estimated with a hydrological model and may not be as readily available as \(P\) or \(ET_0\), in the European context it can be very well approximated by a simple Budyko model\[36\] and is therefore considered a climatic predictor on a par with \(P\) and \(ET_0\) for the purposes of this analysis. The meta-models proved to surrogate the results obtained by solving the integrated hydrological-energy-biomass model with an error usually below 10% quite evenly across the European region\[42\].

The above equations are valid for the European context, and for a soil layer thickness of 30 cm covered with an annual herbaceous cover (the meta-models were derived for a generic thickness \(t\) and proved to be relatively insensitive to the selected herbaceous crop\[36\]). In the present study we refer to a 30 cm thick soil with the aim of determining the maximum benefits of greening implementation. Higher thickness would imply higher costs, while benefits would not change substantially. A soil of 30 cm may be unfeasible as a uniform cover of roofs in many buildings due to architectural and structural constraints, but could be a reasonable solution when greening e.g. paved ground or subterranean parking lots. In the greening of roofs, patches of 30 cm-thick soil cover on less than 100% of the surface could still be feasible.

In the analysis presented here, the above indicators (Eqs. 1 – 4) were computed using the climatic predictors \(ET_0\), \(P\) and \(AET\) for present conditions (1990–2013) and for 2 climatic scenarios represented by regional concentration pathways (RCP) 8.5 and 4.5\[34\] for the period 2070–2100, using 4 regional climate models from the Euro-Cordex ensemble\[45\]. Therefore, we considered a total of eight climatic scenarios in our estimations. The
models included were from the Danish Meteorological Institute (model code used here: DM), Swedish Meteorological and Hydrological Institute (SM), Royal Dutch Meteorological Institute (KN) and Institute Pierre-Simon Laplace (IP). In the following, the scenarios are defined by the above model codes followed by codes 45 or 85 for the two RCPs considered, respectively. P and ET0 needed to compute AET under climate scenario conditions were average values for the climate simulation period 2070-2100 for each model. Under each scenario, P and ET0 were computed as the annual average from daily values over the period considered.

The four indicators of Eqs. (1–4) were quantified at the nodes of the regular grid of 5 × 5 km at which the climate variables were available. The impervious surface (roofs and other surfaces) within each of the 5 × 5 km grid cells was also quantified, so that cumulative curves could be calculated for each indicator, quantifying the area in km² where a certain indicator value was exceeded. The impervious surface area was estimated as per.

The summer temperature difference of Eq. (2), ΔT, can be interpreted as the cooling reduction of a roof if covered by soil, which implies a reduced energy demand for cooling. The corresponding energy cost saving G was estimated as:

\[
G = \frac{U A \Delta T h}{\text{SEER}} C
\]

where A is the area of the roofs, h is the amount of hours during summer months (from June to August included), SEER (set to 3.1) is the seasonal energy efficiency ratio for Europe, C is the electricity cost set to 0.2 € kWh⁻¹, representative of an average value in Europe and U is the average transmittance of the roof (set to 0.30 W m⁻² K⁻¹ as a European reference value, Eurima). The carbon emissions are assumed to be 0.325 kg CO₂ equivalent kWh⁻¹, a value corresponding to the European electricity generation. Obviously, this calculation should be applied only to the impervious surfaces that are represented by roofs of buildings. The impervious surface covered by building roofs was assumed to be 26,450 km² (35% of the total impervious area) as in Bódis et al. The remaining 65% is represented by urban areas like streets and impervious open spaces assumed to not be amenable to greening.

The carbon sequestered by an annual herbaceous biomass was estimated as 0.35 kg C m⁻² year⁻¹ in Salien et al. and 0.27 kg C m⁻² year⁻¹ in Gilmanov et al. In this analysis, we considered the more conservative value of Gilmanov et al. that corresponds to 0.98 kg CO₂ m⁻² year⁻¹. The present carbon dioxide (CO₂) market price is 22.5 € tons⁻¹ of CO₂. This amount of carbon is effectively sequestered if the biomass is preserved as straw or if it avoids an equivalent amount of biomass to be mineralized elsewhere, and is therefore an upper limit.

The residual runoff (i.e. P-RR) generated by the green surfaces can be in principle harvested, instead of discharging it into the environment, if we provide a sufficient storage volume to buffer demand and availability. In this assessment, we compute the storage volume required to harvest all the runoff generated by a green surface, assuming a constant demand whose yearly cumulative equals the yearly cumulative of available runoff. The required storage volume was calculated for each FUA using the classic mass diagram analysis for every year of the time series. The calculations were based on the daily runoff predicted under current conditions with the model described in Quaranta et al. In particular, we computed the average volume among those required in the various years, V_avg, the maximum, V_max, and the minimum, V_min. We derived an ordinary least squares multiple linear regression model to predict V_avg, V_min and V_max (mm) as a function of the climatic predictors already used for the above indicators. After testing various combinations of the predictors, we chose the best performing models (with mean absolute error (MAE) of 19% when considering V_avg and 30% when considering V_min), whose equations are given by:

\[
V_{\text{avg}} = -109 + 0.07ET0 + 0.25P \\
V_{\text{min}} = -13 - 0.02ET0 + 0.13P \\
V_{\text{max}} = -251 + 0.23ET0 + 0.40P
\]

Results and discussion

Calculation of the indicators. Figure 1 shows the distribution of the urban greening benefit indicators computed at European scale under the current scenario, while Fig. 2 shows the cumulative distribution of impervious urban areas by increasing value of each indicator, under the current and future scenarios. It should be stressed that, while the indicators of Eqs. (1–4) are computed for every grid cell, the curves of Fig. 2 reflect also the spatial distribution of impervious urban surfaces, and hence they give more prominence to the values of the indicators in the most densely urbanized areas of the continent.

The reduction of surface temperature ΔT, (Fig. 1a) is highest in the warmer and not excessively dry climates of Central and Southern Europe, reflecting the patterns of actual evapotranspiration. Most European urban areas would achieve temperature reductions of about 3–3.5 °C (Fig. 2a), slightly increasing with the severity of climate heating under the various scenarios, causing a reduction of sensible heat to the atmosphere, a driver of urban heat island effects, between 20 and 40% (see Appendix 1, Supplementary Material for further details). The highest temperature reduction at the roof surface, ΔT, is mostly perceived in the South of Europe (Fig. 1b), consistent with the pattern of potential evapotranspiration, similarly to the production of dry biomass CB (Fig. 1d). The reduction of temperature at the roof is predicted between 15 and 17 °C for most of Europe under the current scenario, and may increase of about 2 °C under the most severe climate scenario (Fig. 2b). Runoff reduction is significantly higher in areas with moderate precipitation, particularly in the plains, compared to rainier areas such as the Atlantic edge of the continent and high mountain ranges (Fig. 1c).

The maximum storage volume, V_max, calculated by Eq. 6, would allow to reuse 92% of the annual runoff, while V_min and V_avg would allow to store 77% and 86% of the runoff, respectively, as resulting from a daily balance.

https://doi.org/10.1038/s41598-021-88141-7
Figure 1. Maps of benefits per m² across Europe for ΔTₖ (a), ΔT (b), RR/P (c) and CB (d), in the present scenario.

Figure 2. Cumulative curves of urban surfaces versus the indicator ΔTₖ (a), ΔT (b), RR/P (c) and CB (d). The black line represents present conditions, while lines in color stand each for one climatic scenario. The y-axis is the cumulative surface area of the present European urban areas.
of the storage volume calculated over the 14 year time series. As the storage volume normalized to the annual runoff R_c is 0.24, 0.36 and 0.51 for V_{min}, V_{avg} and V_{max}, respectively (Figure 4b), choosing a storage volume equal to V_{min} appears to be the most cost-effective solution. V_{min} is mapped as shown in Fig. 3a for the case of constant demand, under the current scenario, while in Fig. 3b the volumes are plotted versus the cumulated areas.

Table 1. Climatic descriptors and quantification of annual benefits at the European scale in the present and future climatic scenarios, assuming to green all roof surfaces, or 35% of the European impervious surfaces.

Units	85KN	85SM	85IP	85DM	45KN	45SM	45IP	45DM	Present
Annual precipitation mm	715	772	836	719	708	753	757	721	685
Annual ET0 mm	859	795	748	817	771	735	732	751	695
Runoff reduction km3	10.0	11.4	12.9	10.2	9.8	10.9	10.9	10.9	10.9
Savings on energy needed for the cooling of buildings bil. €	19.6	19.1	18.3	19.2	19.0	18.5	18.5	18.8	18.4
CO2 emissions reduction (through energy saving) Mt tons	31.9	31.0	29.7	31.2	30.9	30.1	30.1	30.6	29.9
CO2 sequestration (through biomass) Mt tons	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.9
Total CO2 emissions reduction Mt tons	57.8	57.0	55.7	57.1	56.8	56.0	56.0	56.5	55.8

Physical and environmental implications. These potential effects of green surfaces at European scale correspond to potential benefits. The total benefits extrapolated for the EU are summarized in Table 1. Results are referred to the impervious surfaces corresponding to building roofs, that are assumed to amount to a total of 26,450 km2 as per Bödals et al.40. This represents 35% of the European impervious surface. Although it is

Figure 3. Storage volume V_{min} required to store the runoff in the case of constant demand.

Figure 4. Runoff that could be harvested, and normalized storage volume V_{min} versus the annual average runoff (R_c) for the case of constant withdrawal, calculated throughout the 14 year time series.
highly unlikely that the majority of the roofs may support a uniform soil cover of 30 cm, they could still bear patches of that thickness over a part of their surface. Moreover, additional surfaces such as sealed ground could be greened. Overall, having in mind these considerations, we pragmatically regard this 35% of impervious urban areas as a maximum extent that could be greened in Europe. All benefits calculated below would obviously scale proportionally for any reduction of the percentage of area subjected to greening. The quantification of Table 1 is explained below.

The reduction of land surface temperatures, ΔT_s, reduces the thermal irradiation and convective heat flux from urban surfaces (see Appendix 1 of Supplementary Material), which are the drivers of the heat island effect. As a first order approximation, the reduction of air temperature at 2 m from the surfaces can be expected to be about a half of ΔT_s as an average value in summer. The reduction of air temperature would generate economic benefits, like the life cycle extension of electronic material and cars, benefits in the health and transport sectors, reduction of social stress and morbidity, and reduction of damages to trees and animals.

The reduction of the surface temperature ΔT potentially reduces the cooling demand in summer (Eq. 5) by 92 TWh year$^{-1}$. This energy saving corresponds to 29.9 Mtons of CO$_2$ for the present scenario, considering emissions of 0.325 kg CO$_2$ equivalent kWh$^{-1}$ for European electricity. Our estimate is arguably an upper limit of cooling energy savings. In many cases, underroof spaces of buildings are not cooled and effectively work already as an insulation, hence the reduction in the heat transferred from the roofs to underlying inhabited spaces may be lower than we estimate.

The yearly produced biomass CB is a benefit in itself whenever the biomass may be used (e.g. crops from urban agriculture). However, more importantly, it may be appraised in terms of carbon and carbon dioxide sequestration. The carbon dioxide sequestered from the atmosphere through biomass growth is 25.9 Mtons year$^{-1}$ in the present scenario. This must be summed to the reduction of carbon emission following the expected decrease in cooling energy use for a total of 55.8 Mtons, or about 1.2% of the 4500 Mtons CO$_2$ produced in the EU every year.

It should be stressed that carbon dioxide sequestration by the biomass in green roofs is effective only if residues are not significantly degraded. This may be achieved by removing the biomass periodically before it undergoes respiration and mineralization. One could alternatively employ woody plants with a higher carbon accumulation capacity instead of herbaceous vegetation. Although our calculations are referred to a herbaceous annual crop, the results in terms of dry biomass would not be radically different had we considered a tree or shrub crop, as the dry matter potentially produced per unit surface is relatively independent of the plant. On the other hand, trees and shrubs may be expected to have higher evapotranspiration, thus enhancing the benefits quantified here for a herbaceous crop.

If greening is implemented on about 35% of the impervious urban areas, we expect a reduction of runoff in the order of 17.5% compared to the total. Considering that pollutant loads associated to runoff are estimated in the order of about 30 million population equivalents (PE) in terms of biochemical oxygen demand (BOD), about 18 million PE in terms of total nitrogen and about 6 million PE in terms of total phosphorus, this can be a sizable contribution to the treatment of pollution from European urban areas. Besides the reduction of runoff volume, greened surfaces may also help reduce the frequency of combined sewer overflows because they buffer runoff and release it more slowly than impervious surfaces. This effect is arguably more important for smaller storm events, and tends to disappear as events cause the saturation of green roof storage.

It should be stressed that the above analysis considers a soil thickness of 30 cm on greened surfaces. Using the meta-models proposed in 39 for the thickness of 10 cm we obtain a ratio between the indicators for thickness of storm events, and tends to disappear as events cause the saturation of green roof storage.

Economic implications. Most of the benefits of green roofs are collective. Only a few (e.g. energy saving in summer, and gardening) have an apparent private nature. The costs of greening roofs, on the contrary, are primarily borne by the private owners. It has been observed that, in the absence of specific incentives, green roof implementation can be economically convenient only for specific commercial and multifamily buildings.

Therefore, private investments should be encouraged through appropriate fiscal and funding policies if the objective is to facilitate a mainstream uptake of this solution. In this section, an indicative cost-benefit analysis is carried out in order to shed light on the possible financing needs at stake, and considering to green the impervious surfaces covered by roofs.

The two main benefits that can be easily monetized are the avoided cost of cooling in summer (based on energy prices) and the reduction of carbon dioxide emissions (based on greenhouse gas emissions market prices). By summing the results of Eq. (5) for all gridcells in Europe where the greened surface is assumed to be 35% of the impervious urban area in the gridcell, cooling savings can reach 18.4 billion € each year for the current scenario. For comparison, the current expenditure for residential cooling in summer can be assumed to be 78 billion € year$^{-1}$, based on an electricity use of 391 TWh. Therefore, the cooling energy saving is 23.5% (18.4...
Costs/benefits	Annual cost/saving	NPV (billion Euro)	Notes
Cost of greening	61.2	1323	Costs vary by a factor 0.5–1.6
Benefits from energy saving	18.4	364	Benefits depend on assumed cooling of buildings beneath greened surfaces
Benefits from heat island mitigation	11.2	221	1) Reduced costs: electronic devices, maintenance of cars, electric grid faults and damages to animal and trees, reduced productivity loss and flight cancellation, fire-fighting, masks; 2) Better performance of cooling, benefits on health, transport, tourism Assumed benefit: 20 €/urban resident per year
Benefits of GHG emission reduction	1.26	25	Benefits depend on energy saving (cooling) and assuming no mineralization of biomass

Outstanding benefits of greening

- **Pollution and flooding reduction**: Not quantified
- **Health benefits**: Not quantified Partially included in heat island reduction
- **Recreation and wellbeing**: Not quantified
- **Support to biodiversity**: Not quantified
- **Improvement of urban landscapes (including value of properties)**: Not quantified Property value can increase by 8%15

Table 2. Summary of benefits and costs of urban greening considered in this study for the European context.

The cost of greening the roofs or other impervious surfaces is more difficult to quantify as it depends on several design details and site-specific conditions. For example, in Finland the cost ranges between 70 and 80 € m⁻², in Germany between 13 and 41 € m⁻², while in Switzerland around 20 € m⁻². Assuming an average unit cost of 50 € m⁻², a lifetime of the storage of 100 years, and an emission trading system, would lead to a NPV of 24.85 billion € (from the estimated investment of 1323 billion €), yielding a net gap of 713 billion €, corresponding to an annual cost (discount rate 4%, 40 years life) of 63 billion euro. This means a cost of 6.3 € m⁻³ of annual runoff saved (assuming an average annual runoff savings of 10 km³), which is reasonably in line with an estimate of 9.2 € m⁻³ for the U.S. context, where the annual runoff volume reduction was 12% compared to our estimate of 17.5%.

Assuming a lifespan of 40 years and a discount rate of 4%, the NPV of the cost saving of summer cooling over 40 years (18.4 billion € year⁻¹ in Table 1), that is the main private benefit of a green roof installed in a private building, is 364 billion € (using a discount rate of 4%). The benefits of CO₂ reduction, monetized in an emission trading system, would lead to a NPV of 24.85 billion € over 40 years (55.8 Mtons year⁻¹). The NPV of the heat island benefit over 40 years would be 221 billion €. Deducting the sum of these benefits (totalling 610 billion €) from the estimated investment of 1323 billion €, yields a net gap of 713 billion €, corresponding to an annual cost of about 60 € for each of the 559.5 million European citizens living in urban areas. This estimated annual cost is apparently affected by the uncertainty on green roof costs: it could reduce to 4 €/year per urban citizen if the cost of the green roof is 25 € m⁻², and 129 €/year per urban citizen if the cost is 80 € m⁻². An annual cost of 60 €/year per urban citizen may be in many cases compensated by the additional benefits not quantified here. For example, the average increase of property value (rental prices) was estimated to be 8%15. Other benefits can be associated e.g. to leisure and recreation, socialization, amenity of the urban environment, and the creation of habitat or ecological connections in urban areas, besides the abovementioned positive effects in terms of water pollution and floods. Table 2 summarizes the economic results.

The harvesting of runoff is a potential additional benefit, but it also entails costs. These can be quantified as a first approximation considering a cost of the storage volume $C_s = 50$ € m⁻³, a lifetime of the storage of 100 years, a discount rate of 4% and annual operation and maintenance costs of 3% of the investment. For a unit greened surface, the runoff potentially harvested equals P_{RR} and can be computed from Eq. 3, while the required storage volume to harvest it is given by Eq. 6. The cost of harvesting one m³ of runoff (marginal harvesting costs) follows
from the abovementioned costing parameters. Figure 5 depicts the cumulate value of runoff as a function of the marginal harvesting cost. It can be seen that about 75% of the runoff can be harvested with marginal costs below 0.7 € m⁻³, a value compatible with urban water prices usually applied in Europe. Cs may be lower than 50 € m⁻³, but often it may also be higher. Hence our calculation can be only regarded as a first indication and is accurate not more than within one order of magnitude. The quality of water from green surface runoff harvesting is arguably adequate for non-potable domestic use, but depends on the type of green roof and vegetation.

Conclusions
In this study, meta-models were used to estimate the maximum achievable benefits of urban greening at the European scale, focusing on converting 26450 km², or 35% of the European urban surfaces into green surfaces. Our results show how green roofs may deliver significant benefits to European cities. They cool surfaces by between 2.5° and 6°, causing a reduction of sensible heat to the atmosphere, a driver of urban heat island effects, reducing air temperature of about 2.5° with respect to the surface temperature reduction. We estimate the benefits associated to surface temperature reduction at a NPV of 221 billion over 40 years. The reduction of heat flow to buildings corresponds to a potential cooling energy saving of about 92 TWh year⁻¹ in the present scenario, which turns into energy cost savings whose upper limit is estimated at a NPV of 364 billion € over 40 years. The combined effect of carbon dioxide sequestration by biomass growing on green roofs, and energy savings can be up to 55.8 Mtons per year (present scenario), with a sequestration component of 25.9 Mtons year⁻¹ (if biomass is removed or accumulated and not mineralized), yielding a NPV of avoided greenhouse gas emissions of about 25 billion € over 40 years. These monetized benefits, though, cover at best less than half of the costs of implementing urban greening, which we estimate to have a NPV of 1323 billion €.

Urban greening has the potential to reduce urban runoff by about 17.5%, helping reduce urban diffuse pollution and the frequency of combined sewer overflows. As such, the role of green roofs should be considered in the context of river basin management. The residual runoff from green roofs could be in principle harvested and reused, but this would require an adequate storage capacity to buffer demand and availability. The costs of harvested runoff are usually expected to be below 0.7 € m⁻³, although the quality of water may not be sufficient for potable use.

We did not quantify the benefits related to runoff reduction and combined sewer overflow mitigation, nor to the economic value of the biomass beyond carbon sequestration, and our study does not explicitly address other benefits of urban greening, including possible increase of property values, socialization (e.g. related to community gardening) and wellbeing. Biodiversity improvement is also an important benefit, supporting pollination and improving the environmental quality of urban landscapes. Due to the fact that urban greening requires for a large part private investments, if we want to implement it on a large scale on European urban surfaces, we may need appropriate fiscal and funding policies. According to our quantification, the costs of greening not covered by the monetized benefits would be around 60 € per year per urban citizen. In many situations, the additional benefits not monetized in our study may be worth these costs. When this is the case, urban greening could represent a multifunctional no-regret, cost-effective solution meeting the aspirations of the European (and global) sustainability agenda.

References
1. European Commission. The future of cities—opportunities, challenges and the way forward. EUR 29752 EN, 2019. https://doi.org/10.2760/375209.
2. Li, D. et al. Urban heat island: Aerodynamics or imperviousness?. Sci. Adv. 5, 4 (2019).
3. Pata, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).
4. Sharma, A. et al. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environ. Res. Lett. 11(6), 066004 (2016).
5. Pistocchi, A. Hydrological Impacts of Soil Sealing and Urban Land Take 157–168 (Land Cover and Soil Ecosystem Services, 2017).
6. Pistocchi, A. A preliminary pan-European assessment of pollution loads from urban runoff. Environ. Res. 182, 109129 (2020).
7. Darmanto, N. S., Varquez, A. C. G., Kawano, N. & Kanda, M. Future urban climate projection in a tropical megacity based on global climate change and local urbanization scenarios. Urban Clim. 29, 100482 (2019).
8. Chandler, T. J. London’s Urban climate. Geogr. J. 128(3), 279–298 (1962).
9. Bowler, D., Buyung-Ali, L., Knight, T. & Pullin, A. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 97(3), 147–155 (2010).
10. Chang, C. R., Li, M. H. & Chang, S. D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 80(4), 386–395 (2007).
11. Park, M., Hagishima, A., Tanimoto, J. & Narita, K. I. Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Build. Environ. 56, 38–46 (2012).
12. Sprooksen-Smith, R. A. & Oke, T. R. The thermal regime of urban parks in two cities with different summer climates. Remote Sens. 19(11), 2085–2104 (1998).
13. Berndtsson, J. C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 36(4), 351–360 (2010).
14. Souls, K. X., Ntoulas, N., Nektarios, P. A. & Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 102, 80–89 (2017).
15. Manso, M., Teotónio, I., Silva, C. M. & Cruz, C. O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 135, 110111 (2021).
16. Shafique, M., Kim, R. & Kyung-Ho, K. Green roof for stormwater management in a highly urbanized area: The case of Seoul, Korea. Sustainability 10(3), 584 (2018).
17. Zhang, Q. et al. The capacity of greening roofs to reduce stormwater runoff and pollution. Landsc. Urban Plan. 144, 142–150 (2015).
18. La Roche, P. & Berardti, U. Comfort and energy savings with active green roofs. Build. Environ. 82, 492–504 (2014).
19. Susca, T., Gaffin, S. R. & Dell’Osso, G. R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 159(8–9), 2119–2126 (2011).
20. Issa, R. J., Leitch, K. & Chang, B. Experimental heat transfer study on green roofs in a semiarid climate during summer. Construct. Eng. 20, 20 (2015).
21. Kuronuma, T. et al. CO2 payoff of extensive green roofs with different vegetation species. Sustainability 10(7), 2256 (2018).
22. Whittinghill, L. J., Rowe, D. B., Schutzi, R. & Gregg, B. M. Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landsc. Urban Plan. 123, 41–48 (2014).
23. Van Renterghem, T. & Botteldooren, D. Reducing the acoustical façade load from road traffic with green roofs. Build. Environ. 44(5), 1081–1087 (2009).
24. Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
25. Blackhurst, M., Hendrickson, C. & Matthews, H. S. Cost-effectiveness of green roofs. Archit. Eng. 16(4), 136–143 (2010).
26. Orsini, F. et al. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 6(4), 781–792 (2014).
27. Colla, S. R., Willis, E. & Packer, L. Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? Cities Environ 2(1), 4 (2009).
28. Fernández Cañero, R. & González Redondo, P. Green roofs as a habitat for birds: A review. Anim. Vet. Adv. 9(15), 2041–2052 (2010).
29. European Commission. The European Green Deal, COM (2019) 640 final.
30. Queranta, E., Dorati, C. & Pistocchi, A. Meta-models for rapid appraisal of the benefits of urban greening in the European context. Hydrol. Region. Stud. 34, 100772 (2021).
31. Pistocchi, A., Bourauari, F. & Bittelli, M. A simplified parameterization of the monthly topsoil water budget. Water Resour. Res. 44, 12 (2008).
32. Neitsch, S. L., Arnold, J. G., Kiniry, J. R. & Williams, J. R. Hydrological Impacts of Soil Sealing and Urban Land Take 157–168 (Land Cover and Soil Ecosystem Services, 2017).
33. Bisselink, B. et al. Impact of a changing climate, land use, and water usage on Europe’s water resources. A model simulation study. EUR 29, 130 (2018), EUR 29130 EN, ISSN 1018-5593 (print), 1831-9424 (online) DOI: 10.2760/847068 (online)10.2760/09027 (print).
34. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463(7282), 747–756 (2010).
35. Pistocchi, A., Dorati, C., Aloe, A., Ginebreda, A. & Marce, R. River pollution by priority chemical substances under the Water Framework Directive: A provisional pan-European assessment. Sci. Total Environ. 662, 434–445 (2019).
36. Werner, S. European space cooling demands. Energy 110, 148–156 (2016).
37. Grave, K., Breitsohpf, B., Ordzone, J., Wachsmuth, J., Hoeve, S., Smith, M., Schubert, A., Eckart, K., Pudlik, M., Bons, M., Ragwitz, M., Schleijch, J. Prices and costs of energy use. Report of European Commission 2016, Ecosys.
38. European Insulation Manufacturers Associations (EURIMA), 2017. https://www.eurima.org/u-values-in-europe/.
39. The Renewable Energy Information Source (Rensmart). https://www.rensmart.com/Calculators/KWH-to-CO2. Accessed Jan 2020.
40. Bodis, K., Kougias, I., Jager-Waldau, A., Taylor, N. & Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 114, 109369 (2019).
41. Safa, N., Liebg, M. & Kronberg, S. Carbon use efficiency of hayed alfalfa and grass pastures in a semiarid environment. Ecosphere 9(3), e02147 (2018).
42. Gilmanov, T. G. et al. Productivity and carbon dioxide exchange of leguminous crops: Estimates from flux tower measurements. Agron. J. 106(2), 545–559 (2014).
43. Ruf, P. & Mazzoni, M. The European carbon market: The impact of higher carbon prices on utilities and industries, Market Insight Report, Business Information Ltd.
44. Saneinejad, S., Moonen, P. & Carmeliet, J. Comparative assessment of various heat island mitigation measures. Build. Environ. 73, 162–170 (2014).
45. Alakama, R. & Cescatti, A. Biophysical impacts of recent changes in global forest cover. Science (Res. Rep.) 351(6273), 600–604 (2016).
46. Elasyad, I. Mitigation of the Urban Heat Island of the City of Kuala Lumpur, Malaysia. Middle-East Sci. Res. 11(1), 1602–1613 (2012).
47. Miner, M., Taylor, R., Jones, C. & Phelan, P. Efficiency, economics, and the urban heat island. Environ. Dev. (IUED) 29(1), 183–194 (2017).
48. Van Raalte, L., Nolan, M., Thakur, P., Xue, S. & Parker, N. *Economic Assessment of the Urban Heat Island Effect* (AECOM Australia Pty Ltd, 2012).
49. Li, Z. *et al.* Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States. *Ecol. Model.* 277, 1–12 (2014).
50. Carter, T. & Keeler, A. Life-cycle cost-benefit analysis of extensive vegetated roof systems. *Environ. Manag.* 87(3), 350–363 (2008).
51. Dalin, P., Nilsson, J., Rubenhag, A. The European Cold Market Final Report. *Ecoheatool and Euroheat & Power* 2016, Brussels.
52. World Bank (2019). https://data.worldbank.org/indicator/SP. URB. TOTL. IN. ZS?locations=EU.
53. Nurmi, V., Votsis, A., Perrels, A., & Lehmävirta, S. Cost–benefit analysis of green roofs in urban areas: Case study in Helsinki, Finnish Meteorological Institut 2013, 2 (ISBN 978-951-697-787-7).
54. Chen, J. *et al.* Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. *Sci. Total Environ.* 665, 69–79 (2019).
55. Feng, H. & Hewage, K. N. Economic benefits and costs of green roofs. *Nat. Based Strat. Urban Build. Sustain.* 20, 307–318 (2018).
56. Charalambous, K., Bruggeman, A., Eliades, M., Camera, C. & Vassiliou, L. Stormwater retention and reuse at the residential plot level—green roof experiment and water balance computations for long-term use in cyprus. *Water* 11(5), 1055 (2019).
57. Deng, S., Shi, Y., Jin, Y. & Wang, L. A GIS-based approach for quantifying and mapping carbon sink and stock values of forest ecosystem: A case study. *Energy Proced.* 5, 1535–1545 (2011).
58. European Commission. Study on Water efficiency Standards. *Bio intelligence Service- Scaling Sustainable Development* 2009, 070307/2008/5208889/ETU/D2.
59. Laminack, K. D. Green Roof Water Harvesting and Recycling Effects on Soil and Water Chemistry and Plant Physiology, 2014 (Doctoral dissertation).
60. Van Der Knijff, J. M., Younis, J. & De Roo, A. LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. *Geogr. Inf. Sci.* 24(2), 189–212 (2010).
61. Vestrella, A., Savé, R. & Bel, C. An experimental study in simulated green roof in Mediterranean climate. *Agric. Sci.* 7(4), 95 (2015).
62. Wang, G., Jager, H. I., Baskaran, L. M. & Brandt, C. C. Hydrologic and water quality responses to biomass production in the Tennessee river basin. *GCB Bioenergy* 10(11), 877–893 (2018).
63. Pistocchi, A., Beck, H., Isselkink, B., Gelati, E., Lavalle, C., Feher, J.; Water scenarios for the Danube River Basin: Elements for the assessment of the Danube agriculture-energy-water nexus; EUR 27700 EN; doi:10.2788/375680; 2015.
64. Rippl, W. (1883) ”The capacity of storage reservoirs for water supply” *Instit. Civ. Eng. Proc.*, 71, 270–278

Acknowledgements

This work was conducted within the research project WEFE (Water Energy Food Ecosystem Nexus) at the Joint Research Centre of European Commission. We would like to thank JRC colleagues Marco Pastori and Alessandro Cescatti for their suggestions and inputs.

Author contributions

E.Q. and A.P. designed the study and wrote the manuscript. C.D. curated the data, E.Q. and A.P. performed the analysis. A.P. supervised and steered the study.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-88141-7.

Correspondence and requests for materials should be addressed to E.Q.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021