Material selection criteria for natural fibre composite in automotive component: A review

M Noryani¹,², S M Sapuan¹*, M T Mastura³, M Y M Zuhri¹ and E S Zainudin¹

¹Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
²Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
³Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.

*Corresponding author: sapuan@upm.edu.my

Abstract. Emphasizing the green technology in manufacturing process with proper materials selection of natural fibre reinforced composite (NFRC) can save our future generation. There is multiple consideration of the criteria from the researcher for material selection process since the database of NFRC is not completely available. Product design specification (PDS) of automotive component is studied from past researcher with the summarized of the elements considered. Literature from year 2000 until year 2016 were collected which is focused on related automotive component design. In this study, it is found that the most commonly used elements of PDS of automotive component was consider from the previous researcher were cost, density, tensile strength, Young’s modulus and elongation at break. Generally, the mentioned elements are recommended to be considered by other researchers in automotive component design in material selection process.

1. Introduction

In recent years, the annual car production is increase in automotive industry by the year 2020. It will give a special advantage by emphasize renewable material and green operation in manufacturing process according to automotive perspective [1]. It’s become a good effort from the industry to overcome the projections world energy consumption 1990-2040 as reported by the International Energy Outlook [2]. In addition, a good green product can be delivered to the end user and give a good environment to the future generation. Based on World Nuclear Association, the electricity energy is the higher demand increase by more than two-thirds as overall energy in between 2011-2035 that may need a nuclear power suggested by major international report on energy. To beat this global issue in future, the design engineers should properly select the right materials in manufacturing process especially in automotive component to meet the standard product requirement by the industry.

In a recent year, an engineer keeps on seeking the best materials that can produce a better product with a satisfactory performance. The main factor is to meet the product design specification (PDS) for each of the automotive component before the assembly process of the product in a whole design and manufacturing process. Good materials, low cost, lightweight and performance are the factors that contribute to the last user which is customer. Finally, final product such as a car meet the
customer satisfaction and can reflect to the customer loyalty to the product [3-4]. Material selection is one of the critical processes in design and manufacturing of a product as shown in Figure 1. Ashby [5] describe the characteristic of one material can increase the precision of the product compare to a multiple and diversity of the materials characteristics. A good receipt of the materials will give a better performance on the physical, mechanical and environmental effect [6–10]. In fact, it can reduce cost and time [11–13].

Figure 1. A Framework of Design Process [5].

Determination the best material of natural fibre composite in manufacturing process is difficult compare to the synthetic fibre because the properties of this material was distinctive. The elements of physical, mechanical, chemical and environmental properties of NFRC are not consistent and diversity [14]. These composites are custom-made at least from two combinations of materials, it causes variety performance of the properties. These materials constraints become a conflict to the manufacturing process to fulfill the design requirement of automotive component in industry.

Most of the previous researcher study on material selection of automotive component application in car manufacturing such as clutch pedal, car front hood, buggy bonnet, brake disc, bumper beam, dashboard panel, break lever, car roof and anti-roll bar [15–23] were consider multiple criteria and sub criteria based on the application of the automotive component. In materials selection process, there are a lot of methods in multiple-criteria decision-making (MCDM) was used in varied application such as Analytical Hierarchy Process, Analytical Network Process, Multi-attribute Utility Theory, Preference Selection Index, Technique of Ranking Preferences by similarity of the Ideal Solutions, Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR), Elimination and Choice Expressing the Reality, Simple Additive Weighting, Data Envelopment Analysis, Preference Ranking Organization Method for Enrichment Evaluations, Quality Function Deployment, Quality Function Deployment for the Environment and questionnaire [24–27]. All these method is implemented by different approach such as computer aid engineering, knowledge-based expert, fuzzy and integrated method of MCDM [28–33]. Researcher should determine the criteria to desired properties of interest.
application before performing the analysis. In general, as observed from prior studies, the most researchers focus on four main properties which are physical, mechanical, chemical and environmental on their study.

This review paper attempts to provide a knowledge and idea to the new researcher about the major criteria used for material selection. The criteria, types of materials, case study on different automotive component from previous study was summarized. The major concern on types of criteria with command materials of fibre and matrix also listed in this study that will be a quit access to other researcher.

2. Design Material Selection and Requirement

By considering multiple characteristics of the composites can produce multiple performance of the materials and a proper procedure should be addressing to find the best output in automotive industry. Decision making on materials is extremely intuitive when considering single criterion problem. It can create a bias problem to other alternative materials. However, in the real world, the engineer should identify an appropriate criterion, goal, aspects, attributes and possible alternatives in MCDM. Most of MCDM used similar systematic evaluation steps which involving (1) determination the relevance criteria and feasible alternatives, (2) numerical measurement of the criteria and evaluation of the alternatives and (3) determining a ranking score of each alternatives [34].

Identification on factors and criteria at the beginning of selection process can perform a better judgment on the potential capabilities of the natural fibre composites [35]. A lot of features and properties should be considered in difference application. Decision maker need to identify the criteria or factors based on the application and PDS is used as a guide to the decision maker. In this study, the literature from year 2000 until 2016 was summarized and the criteria that influence the selection process is discussed as shown in Table 1. The most main criteria consider by the decision maker were physical, mechanical and environmental aspect [23], [29], [36-37]. Some researchers used these properties to select the concept design for a particular application such as selection of bumper system, brake disk, break lever and wheelchair [36], [38–40]. Consideration the criteria for selection process is one of the instrument on concurrent engineering [33]. From this review, more than 50 types of criteria were considered for material selection focusing in automotive component from 22 articles. We found the most commonly used criteria of PDS are cost, density, tensile strength, Young’s modulus and elongation at break. The description of top 10 criteria was explained in Table 2.

Besides physical, mechanical and environmental properties have been identified as major contributing factors for material selection by referring on Table 1, other factors such as chemical, maintenance, thermal and acoustic insulating properties are considered by minority of the researchers.

2.1 Product Design Specification (PDS)

Each of automotive component have a specific product design requirement. This PDS describe how a design is made, what it is intended to do and how far it complies with the requirement. The requirement is formal documented to be satisfied by the material, design, product and service generally. To avoid any automotive component failure during the product design testing, the engineer should optimize follow the PDS. For example, Davoodi et al. [54] consider design parameters such as thickness, bumper beam curvature and strengthening ribs to fulfil the desired PDS to produce vigorous bumper beam. Other than market investigation, conceptual design, detail design and manufacture, PDS is one of the main factors that should be consider in design stages as mentioned by Sapuan [15].
Table 1. Selection requirement for automotive component design.

Description	Design requirement	Application	Materials	Author
Material selection of natural fibre	Density		Sugar palm	[23]
	Elongation at break		Kenaf	
	Micro-fibril angle		Oil palm	
	Fibres’ length		Sisal	
	Moisture content		Jute	
	Cellulose		Hemp	
	Hemicellulose		Flax	
	Lignin		Pineapple	
	Young’s modulus	Anti-roll bar (ARB)	Coir	
	Bio-degradability			
	Raw cost			
	Tensile strength			
	Availability			
	Production rate			

Material selection of matrix (thermoplastic)	Density		PP	[41]
	Young’s modulus		PS	
	Fracture toughness		HDPE	
	Elongation at break		LDPE	
	Tensile strength	Anti-roll bar (ARB)	TPU	
	Impact strength			
	Chemical resistance			
	Water absorption			
	CO2 footprint			
	Raw cost			
	Thermal conductivity			
	Recycle			
Material selection of matrix (thermoplastic)	Material selection of natural fibre	Material selection
Tensile strength	Strength	Stiffness
Young modulus	Density	Cost
Elongation at break	Raw material cost	Water absorption
Impact strength	Heat deflection temperature	Availability
Coefficient of thermal expansion	Process melting temperature	
Raw material cost	Parking Brake	Parking Brake
Parking Brake	Lever	Lever
PP	Kenaf	Kenaf
LDPE	Oil palm	Jute
HDPE	Flax	Ramie
Nylon 6	Hemp	Cor
Parking Brake	Sisal	Cotton
Lever	Bagasse	Coir
Parking Brake	Pineapple	Flax
Lever	Banana	Hemp
Parking Break	Car front hood	Parking Break
Lever	Kenaf	Jute
Parking Break	Sisal	Jute
Lever	Flax	Flax
Parking Break	Hemp	hemp
Lever		
Material selection
for buggy bonnet

Property	Material	Unit
Density	Flax	g/cm³
Young’s modulus	Hemp	
Specific Young’s modulus	Jute	
Tensile strength	Abaca	
Specific tensile strength	Sisal	
Ultimate elongation at	Coir	
break	E-glass	

Material Selection

Property	Unit	Application
Density	g/cm³	Automotive, Biocomposites
Thermal conductivity		
Coefficient of thermal expansion		
Glass transition temperature		
Acoustic insulation properties		
Elastic modulus		
Fracture toughness		
Elongation to break		
Yield strength		
Impact strength		
Curing temperature		
Curing pressure		
Curing time		
Resistance of chemicals		
Level of hydrophobic nature		
Weather resistance		
Service temperature		
Sunlight and UV resistance		
Wettability		
Cost		

[17] [42]
Material selection	Young modulus	Dashboard panel	NFRPC	[20]															
Dent resistance (yield strength, panel thickness, panel stiffness)	Safety	Type of panel: Roof	Steel-BH	[22]															
Ease of manufacturing	Size	Bumper beam for passenger	Steel-DP	[43] [44]															
Noise, vibration, harshness (NVH)	Performance	Glass+Thermoplastic	Steel-HSLA																
Density	Installation	Kenaf/Glass+Epoxy	Steel-martensite																
Material cost, manufacturing cost	Materials		Aluminium-5xxx																
Temp. performance	Weight		Aluminium-6xxx																
Crashworthiness	Environment		Magnesium																
Durability	Process, Cost		Titanium																
Bending stiffness	Disposal		GFRP																
Torsional stiffness			HDPE																
Material Selection	Density	Permissible slide speed	Permissible pressure	Elastic modulus	Tensile strength	Thermal expansion coefficient	Thermal conductivity	Hardness	Wear resistance	Corrosion resistance	Heat-treatability	Manufacturability	Recycle cost	Material cost	Processing cost	Disposal	Reusability	Energy consumption	Polluting
-----------------------------	---------	-------------------------	----------------------	-----------------	-----------------	-------------------------	---------------------	----------	----------------	---------------------	-------------------	-------------------	--------------	--------------	------------------	----------	------------	-------------------	----------

Concept design selection	Environment	Size	Weight	Materials	Standard	Patents	Safety	Cost	Performance	Maintenance	Manufacturing	Shape

Automotive Engineering [45]

Automotive bumper beam	Glass+Epoxy	Carbon+Epoxy	Carbon+10%PP	Glass+40%PP	Glass+30%Polyester	Glass+60%Vinylester	
							[46]
							[37]

Glass+40%PP [37]
Material selection	Performance (elastic modulus, density)	Interior motorcar panel	Polypropylene + hemp 40%	Polypropylene + flax 40%	Wood	Cork	[47]
Material selection	Energy absorption	Automotive bumper beam	Glass fibre epoxy	Glass fibre-reinforced polypropylene (10%)			[19]
for polymeric composite	Impact toughness		Carbon fibre epoxy	Glass fibre-reinforced polypropylene (40%)			
	Performance		Carbon fibre-reinforced polypropylene (10%)	Glass fibre-reinforced polyester (30%)			
	Flexural strength		Glass fibre-vinylester SMC	Glass fibre-reinforced polyester (30%)			
	Flexural modulus						
	Cost						
	Density						
	Service conditions						
	Corrosion resistance						
	Water absorption						
	Manufacturing process						
	Shape						
	Environment consideration						
	Recycling						
	Disposal						
	Availability						
Design	Strength	Eco-aware lightweight automotive friction materials	Kenaf				[12]
Processing	Stiffness		Jute				
Materials	Density		Ramie				
	Maximum service temperature		Asbestos				
	Durability with water						
	Toxicity						
	Price						
	Energy and co2 footprint						
	Safe for disposal						
Material selection of natural fibre composite	Density	Young’s modulus	Biodegradability	Toxic level	Material cost	Manufacturing cost	Automotive component
---	---------	-----------------	------------------	-------------	---------------	-------------------	---------------------
Material selection		Tensile strength					
Material selection							
Material selection							
Material selection							
Material selection							

Material selection

- Compressive strength
- Friction coefficient
- Wear resistance
- Thermal conductivity
- Specific gravity
- Cost

Automotive brake disc/rotor system

- Cast iron (GCI)
- Aluminium alloy (based metal matrix composite)
- Titanium alloy
- Ceramics
- Composites

Material selection

- Density
- Porosity
- Microstructural analysis
- Hardness
- Compressive Strength
- Compressive Strain
- Compressive Load

Automotive Break Pad

- Coconut fibre reinforced composite

Material selection

- High strength to weight ratio
- Easy manufacturing
- Cost
- Longer life
- High oxidation and Corrosion resistances
- Higher creep and fatigue resistances

Spar of Human Powered Aircraft

- Super Alloys
- Hastelloy S, X
- Haynes HR-120, 160
- Haynes 230, 282, 625
- Inconel 600, 601
- CMSX-4

References:

- [48]
- [18]
- [50]
- [51]
Material selection for thermal conductor

Property	Example Materials
Density	Copper-2-beryllium, Copper-cobalt-beryllium
Compressive stress	Electrolytic tough-pitch, copper, soft
Ultimate tensile stress	Electrolytic tough-pitch, copper, hard
Spring back index	Wrought aluminium alloy
Bend force index	Wrought austenitic stainless steel
Static load index	Commercial bronze, soft
Hardness	Carbon steel
Yield stress	
Elastic modulus	
Thermal diffusivity	
Thermal conductivity	
Cost	

Material selection

Property	Example Materials
Failure strength	300M
Fracture toughness	2024-T3
Density	7050-T73651
Price	Ti-6Al-4V
Fragmentability	E glass-epoxy
	S glass-epoxy
	Carbon-epoxy
	Kevlar29-epoxy
	Kevlar49-epoxy
	Boron-epoxy

Material selection

Property	Example Materials
Strength	Polymetric based composite
Modulus	
Manufacture	
Cost	
Clutch pedal	

[52] [53]

Table 2. The criteria of automotive component [23].

Criteria of PDS	Description
Density	The degree of consistency measures by the quantity of mass per unit volume
Tensile strength	The resistance of a material to breaking under tension
Young's modulus	The measurement of elasticity, ratio of the stress to strain
Thermal conductivity	The rate at which heat passes through on material, the amount of heat that
	flows per unit time through a unit area with a temperature gradient of one
	degree per unit distance
Cost	The price of raw materials and manufacturing
Elongation at break	The capability of a material to resist changes of shape without crack
	formation
Fracture toughness	The ability of a material containing a crack to resist
Water absorption	The fluid uptake on the material
Stiffness	The ability of an object to resist deformation in response to an applied
	force
Easy of manufacturing	The process of converting raw materials, component or part into finished
	goods

2.2 Materials

In this review, most of the reference used natural fibre reinforced composite as the material for selection process. The combination of natural fibre and the matrix will enhance the properties of the composite for example a hybrid materials from sugar palm fibre and fibre glass in fabrication of boat can increase the tensile and impact properties of the composites [55]. In different study by Ishak et al. [56] also show the composites reinforced with kenaf bast fibres produce better score on tensile, flexural and impact test compare with kenaf core fibre composites with different level of fibre loading. The advantages of the composite are low density and high specific strength and stiffness [57–59]. Moreover, the fibre from the composite is renewable resources which need less energy production and can reduce CO₂ [60]. The most preferable concern used this material was the cost which it’s cheaper compare to synthetic fibre [11]. Joshi et al. [61] compare the natural fibre and glass fibre with comparative life cycle assessment and found that the natural fibre composite achieve higher on key driver of their relative environmental performance. However, the composite has wider variability of properties because of the diversity combination from the fibre and matrix itself. On the other hand, high moisture absorption of the composite will result swelling [62], [63]. The low durability problem of the composite can be improved with the chemical treatment such as two different alkali pre-treatment treated palm fibre reinforces mortars can increase the durability and other mechanical properties studied by Ozerkan et al. [64]. The salt-fog environment condition also can be considered as a practical approach for enhancing the durability of natural flax fibre with external basalt layers [65]. Different consideration on geometry parameter by Davoodi et al. [54] such as cross section, thickness, added ribs and fixing method optimizations can improve the impact properties in epoxy composite bumper beam. From this review on material selection, most of the researchers used NFRC on their studies. The top five natural fibre was jute, hemp, flax, kenaf and coir. It is because these natural fibres are easy to handle and process during the experimental work. Furthermore, the properties of these natural fibres are available. In this study, we found that polypropylene (PP), high density polyethylene (HDPE) and low density polyethylene (LDPE) are the command matrix used as the reinforced material to the fibre due to high recyclable of these thermoplastic nature compared to thermosetting such as epoxies and silicones. The application by using natural fibre for automotive component is a good transformation in automotive industry. Besides, based on Table 1 there is still metal based material used such as steel, aluminium and alloy for critical automotive component like turbine blade, thermal conductor and brake disc.
3. Discussion

Material selection process depends on the application and decision-making tools that may vary the result accordingly. As shown in Mansor et al.’s [21] study, kenaf fiber was selected as the most suitable natural fiber for lever break with regards to its design specifications. While, Mastura et al. [23] obtained sugar palm as the most suitable natural fibre in their study for the automotive anti roll bar using different method of decision making. Different study also considers different requirement such as environmental aspect, customer voice and design and manufacturing guideline. The selection process on natural fibre and matrix is done separately by the authors like Mansor et al. [40] and Mastura et al. [41]. This kind of implementation can be applied by others researcher or product design engineering that interested on single materials at the beginning of product design requirement on manufacturing process. In addition, the finding can contribute to a satisfactory performance on the final composite. Different practice done by Farag [47] and Ahmad Ali [48] which selection process is done on the composite which focus on certain type of matrix for example PP is selected as the matrix for the composite on automotive component application studied by Ahmad Ali et al. [48].

In other application on buggy bonnet, Furtado et al. [17] shown the jute fibre composite have higher damping behaviour compare to glass fibre. The jute fibre is a realistic choice in automotive application where the attenuation of vibration and noise is desirable. Kenaf was identified as an appropriate NFC to achieve the transportation weight reduction on application of car front hood by using VIKOR [16]. A study done by Mustafa et al. [12] also found kenaf have a potential as an alternative sources of friction materials not only consider the design requirement but impact on environment and human health is count into the study.

The concept of different application will have different criteria also practical in other industry such as in medication, the medical device consider availability, design flexibility, cost per unit, performance properties, regulatory compliance, bio-compatibility, aesthetics and usability, manufacturing efficiency, sterilization and cleaning and sustainability for choosing the right materials for the medical device design [66].

4. Conclusion

Numerous types of criteria were considered from the researcher in year 2000 until 2016 on different automotive component application for material selection. From over 50 types of criteria was summarized, we can conclude the most criteria used for material selection to satisfy the PDS in automotive industry were cost, density, tensile strength, Young’s modulus and elongation at break. Furthermore, the availability, ability and flexibility of these natural fibre such as jute, hemp, flax, kenaf and coir were the reason they become the favourite natural fibre used in automotive component. In addition, the command filler to the natural fibre was PP, HDPE and LDPE. From this study, the finding can be used to other researcher to start their study on automotive component design in material selection process generally.

Acknowledgements

The authors would like to thank Universiti Putra Malaysia for the opportunity doing this study as well as Universiti Teknikal Malaysia Melaka for providing the scholarship award to the principal author in this project.

References

[1] Nunes B and Bennett D 2009 Green technologies in the automotive industry International Association for Management of Technology Management of Green Technology Industry Perspective 1 7-8
[2] Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure J T, and Westfall L 2016 International Energy Outlook 2016 Eith Projections to 2040. Washington: U. S. Energy Information Administration
[3] Das D, Bhattacharya S, and Sarkar B 2016 Decision-based design-driven material selection: A normative-prescriptive approach for simultaneous selection of material and geometric variables in gear design Mater. Design 92 787–793
[4] Al-Oqla F M, Sapuan S M, Anwer T, Jawaid M, and Hoque M E 2015 Natural fiber reinforced conductive polymer composites as functional materials: A review Synth. Met. 206 42–54

[5] Ashby M F 2005 Materials Selection in Mechanical Design, Third. Oxford: Elsevier

[6] Węcławski B T, Fan M, and Hui D 2014 Compressive behaviour of natural fibre composite. Compos. Part B-Eng 67 183-191

[7] Fairuz A M, Sapuan S M, Zainudin E S, and Jaafar C N A 2016 Effect of filler loading on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites J. Mech. Eng. Sci. 10 1931–1942

[8] Ramesh M, Palanikumar K, and Reddy K H 2012 Mechanical Property Evaluation of Sisal Jute-Glass Fiber Reinforced Polyester Composites Compos. Part B-Eng 48 1–9

[9] Razali N, Salit S, Jawaid M, Ishak M R, and Lazim Y 2015 A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity BioResources 10 1803–1824

[10] Yahuya R., Sapuan S M, Jawaid M, Leman Z, and Zainudin E S 2015 Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites Mater. Design 67 173–179

[11] Monteiro S N, Lopes F P D, Ferreira A S, and Nascimento D C O 2009 Natural-Fiber Polymer-Matrix Composites: Cheaper, Tougher, and Environmentally Friendly JOM 61 17–22

[12] Abdollah M F B, Shuhimi F F, Ismail N, Amiruddin H, and Umehara N 2015 Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method Mater. Design 67 577–582

[13] Tezara C, Siregar J P, Lim H Y, Fauzi F A, Yazdi M H, Moey L K, and Lim J W 2016 Factors that affect the mechanical properties of kenaf fibre reinforced polymer: A review. J Mech Eng Sci 10 2159-2175

[14] AL-Oqla F M, Sapuan S M, Ishak M R, and Nuraini A A 2015 A Model for Evaluating and Determining the Most Appropriate Polymer Matrix Type for Natural Fiber Composites Int J Polym Anal Ch 20 191–205

[15] Sapuan S M 2005 Concurrent design and manufacturing process of automotive composite components Assembly Autom 25 146–152

[16] Ishak N M, Malingam S D, and Mansor M R 2016 Selection of natural fibre reinforced composites using fuzzy VIKOR for car front hood Int J Mater Prod Tec 53 267–285

[17] Furtado S C R, Araújo A L, Silva A, Alves C, and Ribeiro A M R 2014 Natural fibre-reinforced composite parts for automotive applications I J Auto C 1 18–38

[18] Maleque M A, Dyuti S, and Rahman M M 2010 Material Selection Method in Design of Automotive Brake Disc World Congress on Engineering 3–7

[19] Hambali A, Sapuan S M, Rahim A. S, Ismail N, and Nukman Y 2011 Concurrent Decisions on Design Concept and Material Using Analytical Hierarchy Process at the Conceptual Design Stage Concurrent Eng-Res A 19 111–121

[20] Sapuan S M, Kho J Y, Zainudin E. S, Leman Z, Ahmed Ali B A and Hambali A 2011 Materials selection for natural fiber reinforced polymer composites using analytical hierarchy process Indian J Eng Mater S 18 255–267

[21] Mansor M R, Sapuan S M, Zainudin E S, Nuraini A A, and Hambali A 2013 Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design Mater. Design 51 484–492

[22] Mayyas A, Shen Q, Mayyas A, Shan D, Qattawi A, and Omar M 2011 Using quality function deployment and analytical hierarchy process for material selection of body-in-white Mater. Design 32 2771-2782

[23] Mastura M T, Sapuan S M, Mansor M R, and Nuraini A A 2017 Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. Int J Adv Manuf Technol 89 2203-2219
[24] Tzeng G H and Huang J J 2011 Multiple Attribute Decision Making Methods and Applications CRC Press
[25] Mardani A, Jusoh A, Nor K, Khalifah Z, and Valipour A 2014 Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014 Econ. Res.Ek on. Istraz. 28 516–571
[26] Jahan A, K Edwards L, and Bahraminasab M 2016 Multi-criteria Decision Analysis For Supporting the Selection of Engineering Materials in Product Design, Second. Oxford: Elsevier Butterworth Heinemann
[27] Marini C D, Fatchurrohman N, Azhari A, and Suraya S 2016 Product Development using QFD, MCDM and the Combination of these Two Methods IOP Conf. Ser. Mater. Sci. Eng. 114 12089
[28] Ahmed Ali B A, Sapuan S M, E Zainudin. S, and Othman M 2013 Java based expert system for selection of natural fibre composite materials J. Food. Agric. Environ. 11 1871–1877
[29] Mansor M R, Sapuan S M, Zainudin E S, Nuraini A A, and Hambali A 2014 Application of Integrated AHP-TOPSIS Method in Hybrid Natural Fiber Composites Materials Selection for Automotive Parking Brake Lever Component Aust. J. Basic & Appl. Sci. 8 431–439
[30] Mousavi-Nasab S H and Sotoudeh-Anvari A 2017 A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems Mater. Design 121 237–253.
[31] Rao R V 2013 Decision Making in the Manufacturing Environment using Graph Theory and Fuzzy Multiple attribute Decision Making Methods, 2nd ed. Springer
[32] Sapuan S M 2001 A knowledge-based system for materials selection in mechanical engineering design Mater. Design 22 687–695
[33] Sapuan S M and Mansor M R 2014 Concurrent engineering approach in the development of composite products : a review Mater. Design 58 161–167
[34] Yang S S, Nasr N, Ong S K, and Nee A Y C 2015 Designing automotive products for remanufacturing from material selection perspective J. Clean. Prod.
[35] Al-Oqla F M, Salit M S, Ishak M R, and Aziz N A 2015 Selecting natural fibers for bio-based materials with conflicting criteria Am. J. Appl. Sci. 12 64–71
[36] Davoodi M M, Sapuan S M, Ahmad D, Aidy A, Khalina A, and Jonoobi M 2011 Concept selection of car bumper beam with developed hybrid bio-composite material Mater. Design 32 4857–4865
[37] Hambali A, Sapuan S M, Ismail N, and Nukman Y 2010 Material selection of polymeric composite automotive bumper system using analytical hierarchy process J. Cent South Univ T 17 244–256
[38] Sapuan S M, Maleque M A, Hameedullah M, Suddin M N, and Ismail N 2005 A note on the conceptual design of polymeric composite automotive bumper system J. Mater. Process Tech 159 145–151
[39] Fatchurrohman N, Sulaiman S, Sapuan S M, M Ariffin K A, and Baharuddin B T H T 2013 New Conceptual Selection of Manufacturing Process and Material, Case Study: Metal Matrix Composite Component Adv Mat Res 789 82–86
[40] Mansor M R, S Sapuan M, Zainudin E S, A Nuraini A, and Hambali A 2014 Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ – Morphological Chart – Analytic Hierarchy Process method Mater. Design 54 473–482
[41] Mastura M T, Sapuan S M, Mansor M R, and Nuraini A A 2017 Materials selection of thermoplastic matrices for ‘ green ’ natural fibre composites for automotive anti - roll bar with particular emphasis on the environment Int J Pr Eng Man-Gt 5 111–119
[42] Al-Oqla F M, Sapuan S M, Ishak M R, and Nuraini A A 2015 A Model for Evaluating and Determining the Most Appropriate Polymer Matrix Type for Natural Fiber Composites Int J Polym Anal Ch 20 191–205
[43] Davoodi M M, Sapuan S M, Aidy A, Osman N A A, Oshkour A A, and Abas W A B W 2012 Development process of new bumper beam for passenger car: A review Mater. Design 40 304–313
[44] Davoodi M M, Sapuan S M, Ahmad D, Ayid A, Khalina A, and Jonoobi M 2012 Effect of polybutylene terephthalate (PBT) on impact property improvement of hybrid kenaf / glass epoxy composite Mater Lett 67 5-7
[45] Liu H, You J, Zhen L, and Fan X 2014 A novel hybrid multiple criteria decision making model for material selection with target-based criteria Mater. Design 60 380–390
[46] Hambali A, Sapuan S M, Ismail N, and Nukman Y 2009 Composite manufacturing process selection using analytical hierarchy process IJMME 4 49–61
[47] Farag M M 2008 Quantitative methods of materials substitution: Application to automotive components Mater. Design 29 374–380
[48] Ali B A, Sapuan S M, Zainudin E S and Othman M 2015 Implementation of the expert decision system for environmental assessment in composite materials selection for automotive components J Clean Prod 107 557-567
[49] Maleque M A and Dyuti S 2010 Materials selection of a bicycle frame using cost per unit property and digital methods IJMME 5 95–100
[50] Maleque M A, Atiqaq A, Talib R J, and Zahurin H 2012 New natural fibre reinforced aluminium composite for automotive brake pad IJMME 7 166–170
[51] Kasaei A, A Abedian, and Milani A S 2014 An application of Quality Function Deployment method in engineering materials selection Mater. Design 55 912–920
[52] Jahan A, Ismail Y, Shuib B, Norfazidah D, and Edwards K L 2011 An aggregation technique for optimal decision-making in materials selection Mater. Design 32 4918–4924
[53] Jee D and Kang K 2000 A method for optimal material selection aided with decision making theory Mater. Design 21 199–206
[54] Davoodi M M, Sapuan S M, Ali A, Ahmad D, and Khalina A 2010 Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam IOP Conf. Ser. Mater. Sci. Eng. 11 012013
[55] Misri S, Z Leman, Sapuan S M, and Ishak M R 2010 Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite IOP Conf. Ser. Mater. Sci. Eng. 11 1–13
[56] Ishak M R, Leman Z, Sapuan S M, Edeerozey A M M, and Othman I S 2010 Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites IOP Conf. Ser. Mater. Sci. Eng. 11
[57] Li M, Wang Z, Liu Q, Wang S, Gu Y, Li Y, and Zhang Z 2017 Carbon nanotube film/epoxy composites with high strength and toughness Polym Composite 38 588-596
[58] Maya M G, George S C, Jose T, Sreekala M S, and Thomas S 2017 Mechanical properties of short sisal fibre reinforced phenol formaldehyde eco-friendly composites PFRR 8 27–42
[59] Sharma S and Dwivedi S P 2017 Effects of waste eggshells and SiC addition on specific strength and thermal expansion of hybrid green metal matrix composite J Hazard Mater 333 1–9
[60] Ghoushji M J, Eshkoo R A, Zulkifli R, Sulung A B, Abdullah S, and Azhari C H 2017 Energy Absorption Capability of Axially Compressed Woven Natural Ramie/Green Epoxy Square Composite Tubes J Reinf Plast Comp 36 1028–1037
[61] Joshi S V, Drzal L T, Mohanty A K, and Arora S 2004 Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A-Appi S 35 371–376
[62] Kord B and Roohani M 2017 Water transport kinetics and thickness swelling behavior of natural fiber-reinforced HDPE/CNT nanocomposites Compos Part B-Eng 126 94–99
[63] Das S 2017 Mechanical and water swelling properties of waste paper reinforced unsaturated polyester composites Constr. Build. Mater. 138 469–478
[64] Ozerkan N G, Ahsan B, Mansour S, and Iyengar S R 2013 Mechanical performance and durability of treated palm fiber reinforced mortars Int. J. Sustain. Built Environ. 2 131–142
[65] Fiore V, T Scalici, Calabrese L, Valenza A, and Proverbio E 2016 Effect of external basalt layers on durability behaviour of flax reinforced composites Compos Part B-Eng 84 258–265
[66] Cheryl G (2016, May 17). 10 Criteria for Choosing the Right Materials for your Medical
Device Design *MDT*. Retrieved from http://www.mdtmag.com