Multilateral basic hypergeometric summation identities and hyperoctahedral group symmetries

Hasan Coskun

Department of Mathematics, Texas A&M University–Commerce, Binnion Hall, Room 314, Commerce, TX 75429

Abstract

We give new proofs for certain bilateral basic hypergeometric summation formulas using the symmetries of the corresponding series. In particular, we present a proof for Bailey’s $3\psi_3$ summation formula as an application. We also prove a multiple series analogue of this identity considering hyperoctahedral group symmetries of higher ranks.

Keywords: bilateral basic hypergeometric series, hyperoctahedral group symmetries, Bailey’s $3\psi_3$ summation formula, theta functions

2000 MSC: 05A19, 11B65, 33D67

1. Introduction

Let $(a; q)_\alpha$ denote the q–Pochhammer symbol which is formally defined by

$$(a)_\alpha = (a; q)_\alpha := \frac{(a; q)_\infty}{(aq^\alpha; q)_\infty} \quad (1)$$

where the parameters $a, q, \alpha \in \mathbb{C}$, and $(a; q)_\infty$ denotes the infinite product $(a; q)_\infty := \prod_{i=0}^{\infty} (1 - aq^i)$. Note here that when $\alpha = k$ is a positive integer, then the q-Pochhammer symbol reduces to $(a)_k = \prod_{i=1}^{k} (1 - aq^{i-1})$. We often use the shorthand notation $(a_1, a_2, \ldots, a_r)_\alpha$ for the product $\prod_{i=1}^{r} (a_i)_\alpha$.

The series $\sum_{k=0}^{\infty} c_k$, where the ratio c_{k+1}/c_k is a rational function of q^k, is called a basic hypergeometric series [1]. Using the q–Pochhammer symbol (1), the general basic hypergeometric series with r numerator parameters and s denominator parameters is defined by

$$r\varphi_s \left[\begin{array}{c} a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_s \end{array} ; x, q \right] := \sum_{k=0}^{\infty} \frac{(a_1, a_2, \ldots, a_r)_k}{(q, b_1, b_2, \ldots, b_s)_k} x^k \left((-1)^k q^{\binom{k}{2}} \right)^{1+s-r} \quad (2)$$

Email address: hasan_coskun@tamu-commerce.edu (Hasan Coskun)
URL: http://faculty.tamu-commerce.edu/hcoskun (Hasan Coskun)

Preprint submitted to Adv and App in Discete Math
where we assume that none of the denominator factors vanish.

Note that if one of the numerator parameters is of the form q^{-n}, for some non-negative integer n and $q \neq 0$, the series terminates from above since $(q^{-n})_k = 0$ when $k > n$. The denominator factor $(q)_k$ terminates the series from below, that is the factor $1/(q)_n$ causes the sum to vanish when $n < 0$.

In general, when dealing with non-terminating series it is assumed for convergence that $|q| < 1$. In that case, the series $r+1\varphi_r$ converges absolutely for $|x| < 1$.

When $r = s + 1$, the basic hypergeometric series (2) is called well-poised if the parameters satisfy the relation

$$qa_1 = a_2b_1 = a_3b_2 = \ldots = a_{s+1}b_s,$$

and very well-poised if, in addition, $a_2 = q\sqrt{a_1}$ and $a_3 = -q\sqrt{a_1}$. An $r+1\varphi_r$ series is called k-balanced if $b_1 \ldots b_r = q^k a_1 \ldots a_{s+1}$, and $x = q$.

There are numerous classical one-dimensional results, summation and transformation formulas for basic hypergeometric series. One of the most general summation formulas, for example, is the $(q$–Dougall or) Jackson sum

$$8\varphi_7 \left[a, qa^{1/2}, -qa^{1/2}, b, c, d, e, q^{-n} \left| a^{1/2}, -a^{1/2}, aq/b, aq/c, aq/d, aq/e, aq^{n+1}; q, q \right. \right] = \frac{(aq, aq/bc, aq/bd, aq/cd)_n}{(aq/b, aq/c, aq/d, aq/bcd)_n}$$

where $qa^2 = bcdeq^{-n}$. An important general transformation formula is Bailey’s $10\varphi_9$ transformation

$$10\varphi_9 \left[a, qa^{1/2}, -qa^{1/2}, b, c, d, e, f, \lambda aq^{n+1}/ef, q^{-n} \left| a^{1/2}, -a^{1/2}, aq/b, aq/c, aq/d, aq/e, aq/f, aq^{n+1}/ef, q^{-n}/\lambda, aq^{n+1}; q, q \right. \right] = \frac{(aq, aq/ef, \lambda q/e, \lambda q/f)_\infty}{(aq/e, aq/f, \lambda q/ef)_\infty} \cdot 10\varphi_9 \left[\lambda, q\lambda^{1/2}, -q\lambda^{1/2}, \lambda b/a, \lambda c/a, \lambda d/a, e, f, \lambda aq^{n+1}/ef, q^{-n} \left| \lambda^{1/2}, -\lambda^{1/2}, aq/b, aq/c, aq/d, aq/e, aq/f, aq^{n+1}/a, \lambda q^{n+1}; q, e \right. \right]$$

where $\lambda = qa^2/bcd$.

The basic hypergeometric series (2) is Heine’s generalization of the hypergeometric series

$$\sum_{n=0}^{\infty} \frac{\{a_1\}_n \{a_2\}_n \ldots \{a_r\}_n}{n! \{b_1\}_n \{b_2\}_n \ldots \{b_s\}_n} x^n$$

where $\{a\}_n$ denotes the shifted factorial (or Pochhammer symbol) defined by

$$\{a\}_0 := 1, \quad \{a\}_n := a(a+1)\ldots(a+n-1) \text{ for } n \in \mathbb{Z}_>.$$

The basic hypergeometric series (2) reduces to (5) if we replace parameters a_i and b_i by qa_i and qb_i in (2) respectively, and let $q \to 1$.

2
The basic hypergeometric series are further generalized in the literature in several directions. Bilateral basic hypergeometric series is a generalization where the index of summation is no longer restricted to non-negative integers, but it runs over all integers. The most general result of this type is Bailey’s ψ_6 summation formula which can be written as

\[
\psi_6\left[\begin{array} {c} qa^{1/2}, \ldots, -qa^{1/2}, b, \ldots, c, d, e \\ a^{1/2}, \ldots, -a^{1/2}, \frac{aq}{b}, \frac{aq}{c}, \frac{aq}{d}, \frac{aq}{e}; \frac{qa^2}{bcde} \end{array}\right] = \frac{(aq, \frac{aq}{be}, \frac{aq}{bd}, \frac{aq}{be}, \frac{aq}{cd}, \frac{aq}{ce}, \frac{aq}{de}, q, q/a)_{\infty}}{(aq/b, \frac{aq}{c}, \frac{aq}{d}, \frac{aq}{e}, q/b, q/c, q/d, q/e, \frac{qa^2}{bcde})_{\infty}}
\]

provided that $|qa^2/bcde| < 1$, where

\[
\psi_5\left[\begin{array} {c} a_1, \ldots, a_r; b_1, \ldots, b_s; x, q \end{array}\right] = \sum_{n=-\infty}^{\infty} \frac{(a_1)_n(a_2)_n \cdots (a_r)_n}{(b_1)_n(b_2)_n \cdots (b_s)_n} \frac{(-1)^{(s-r)n} q^{(s-r)\frac{n}{2}}}{x^n}
\]

There are other important summation formulas such as Ramanujan’s ψ_1 sum, and useful transformation formulas for bilateral series as well. The former identity, for example, may be written as

\[
\psi_5\left[\begin{array} {c} a_1, a_2, \ldots, a_r; b_1, b_2, \ldots, b_s; x, q \end{array}\right] = \frac{(a_1)_n(a_2)_n \cdots (a_r)_n}{(b_1)_n(b_2)_n \cdots (b_s)_n} \frac{(-1)^{(s-r)n} q^{(s-r)\frac{n}{2}}}{x^n}
\]

for $|qa^2/bcde| < 1$. The elliptic q–Pochhammer symbol is then given by

\[
(a; q, p)_n = \prod_{k=0}^{n-1} \theta(aq^k)
\]
for $n > 0$. The definition is extended to negative n by the relation $(a; q, p)_n = 1/(aq^n; q, p)_n$ analogous to the standard q-Pochhammer symbol. When $n = 0$, we have $(a; q, p)_0 = 1$. Note also that when $p = 0$ this reduces to standard definition of the q-Pochhammer symbol.

The definition of a balanced, very–well–poised elliptic basic hypergeometric series now may be written [13] as

$$r+1\omega_r(a_1; a_4, \ldots, a_{r+1}; q, p) = \sum_{k=0}^{\infty} \frac{\theta(a_1 q^{2k})}{\theta(a_1)} \frac{(a_1, a_4, \ldots, a_{r+1}; q, p)_k q^k}{(q, a_1 q/a_4, \ldots, a_1 q/a_{r+1}; q, p)_k}$$

(12)

where $(a_4 \ldots a_{r+1})^2 = a_1^{-3} q^{-5}$. By defining the partition generalization of the elliptic q–Pochhammer symbol in the form

$$(a)_\lambda = (a; q, p, t)_\lambda := \prod_{k=0}^{n-1} (at^{1-i}; q, p)_\lambda_i$$

(13)

the definition of elliptic basic hypergeometric series is generalized to various root systems of rank n. The following shorthand notation will also be used.

$$(a_1, \ldots, a_k)_\lambda = (a_1, \ldots, a_k; q, p, t)_\lambda := (a_1)_\lambda \ldots (a_k)_\lambda.$$

(14)

In [5] we proved a multiple elliptic analogue of the classical Jackson sum and other important results including a multiple analogue of Bailey’s $10\varphi 9$ transformation formula. The multiple elliptic Jackson sum may be written in the form

$$W_\lambda(z; q, p, t, at^{-2n}, bt^{-n})$$

$$= \frac{(s)_\lambda (as^{-1}t^{-n-1})_\lambda}{(qbs^{-1}t^{-1})_\lambda (qbt^n s/a)_\lambda} \prod_{1 \leq i < j \leq n} \left\{ \frac{(t^{j-i+1})_{\lambda_i} (qbt^{-i-j+1})_{\lambda_i} (qbt^{-j-i})_{\lambda_i}}{(t^{j-i})_{\lambda_i} (qbt^{-i-j})_{\lambda_i}} \right\}$$

$$\cdot \sum_{\mu \subseteq \lambda} \frac{(bs^{-1}t^{-n})_\mu (qbt^n/a)_\mu}{(qt^n-1)_\mu (as^{-1}t^{-n-1})_\mu} \cdot \prod_{i=1}^{n} \left\{ \frac{(1 - bs^{-1}t^{-1-i}q^{2\mu_i})_\mu}{(1 - bs^{-1}t^{-2})} (qt^{2i-2})_{\mu_i} \right\}$$

$$\cdot \prod_{1 \leq i < j \leq n} \left\{ \frac{(t^{j-i})_{\mu_i} (q^{t-i-j})_{\mu_i} (q^{t-j-i})_{\mu_i}}{(qt^{j-i-1})_{\mu_i} (t^{j-i-1})_{\mu_i - \mu_j} (bs^{-1}q^{t-j-i})_{\mu_i + \mu_j}} \cdot W_\mu(q^{\lambda t^{\delta(n)}}; q, t, bt^{-2n}, bs^{-1}t^{-n}) \cdot W_\mu(zs; q, t, as^{-2}t^{-2n}, bs^{-1}t^{-n})$$

(15)

where $z \in \mathbb{C}^n$ and W_λ denotes the symmetric Macdonald function [5] that is defined as follows.

Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ and $\mu = (\mu_1, \ldots, \mu_n)$ be partitions of at most n parts for a positive integer n such that the skew partition λ/μ is a horizontal strip;
i.e. $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \lambda_n \geq \mu_n \geq \lambda_{n+1} = \mu_{n+1} = 0$. Setting

$$H_{\lambda/\mu}(q, p, t, b)$$

$$= \prod_{1 \leq i < j \leq n} \left\{ \frac{(q^{\mu_i - \mu_j - 1}t^{-i})_{\mu_j - 1 - \lambda_j}(q^{\lambda_i + \lambda_j}t^{j-i}b)_{\mu_j - 1 - \lambda_j}}{(q^{\mu_i - \mu_j - 1}t^{-i})_{\mu_j - 1 - \lambda_j}(q^{\lambda_i + \lambda_j}t^{j-i}b)_{\mu_j - 1 - \lambda_j}} \right\} \prod_{1 \leq i < (j-1) \leq n} \frac{(q^{\mu_i + \lambda_j + 1}t^{j-i}b)_{\mu_j - 1 - \lambda_j}}{(q^{\mu_i + \lambda_j}t^{j-i}b)_{\mu_j - 1 - \lambda_j}} \right\} \prod_{1 \leq i < (j-1) \leq n} \frac{(q^{\mu_i + \lambda_j + 1}t^{j-i}b)_{\mu_j - 1 - \lambda_j}}{(q^{\mu_i + \lambda_j}t^{j-i}b)_{\mu_j - 1 - \lambda_j}}$$

we define

$$W_{\lambda/\mu}(x; q, p, t, a, b) := H_{\lambda/\mu}(q, p, t, b) \left(\frac{1}{x-a} \right)_\lambda (qbt/xt, qbt/(axt))_{\mu} \left(\frac{1}{x-a} \right)_\mu (qbt/xt, qbt/(axt))_{\lambda}$$

where $q, p, t, x, a, b \in \mathbb{C}$. Note that $W_{\lambda/\mu}(x; q, p, t, a, b)$ vanishes unless λ/μ is a horizontal strip. The symmetric function $W_{\lambda/\mu}(y, z_1, \ldots, z_\ell; q, p, t, a, b)$ is extended to $\ell+1$ variables $y, z_1, \ldots, z_\ell \in \mathbb{C}$ through the following recursion formula

$$W_{\lambda/\mu}(y, z_1, \ldots, z_\ell; q, p, t, a, b) = \sum_{\nu \prec \lambda} W_{\lambda/\nu}(y; q, p, t, a, b) W_{\nu/\mu}(z_1, \ldots, z_\ell; q, p, t, a, b).$$

These functions generalize Macdonald polynomials and interpolation Macdonald polynomials [7, 9] and are closely related to BC_n abelian functions [10].

2. Multilateral Basic Series Identities

I would like to present our bilateralization argument first in one dimensional case to help make the multiple multilateral analogues easier to read. The classical Jackson sum, that is $s\psi_T$ summation formula, for example, may be written in the form

$$\sum_{k=0}^{n} \frac{(1 - bq^{2k})}{(1 - b)} \frac{(b, q^{-n})_k}{(q, bq^{1+n})_k} \frac{(\sigma, \rho, \gamma, b^2q^{1+n}/\sigma \rho \gamma)_k}{(qb/\sigma, qb/\rho, qb/\gamma, \sigma \rho \gamma q^{-n}/b)_k} q^k$$

$$= \frac{(qb, qb/\sigma \rho, qb/\sigma \gamma, qb/\rho \gamma)_n}{(qb/\sigma, qb/\rho, qb/\gamma, qb/\sigma \rho \gamma)_n}$$

By using the definition (1) of q–Pochhammer symbol and the identity

$$(a)_k = \frac{(-a)^k q^{\binom{k}{2}}}{(q/a)^k}$$

$$5$$
we may flip factors and write the summand in the left hand side as

\[
\frac{q^{-z^2}}{(q^{-2z})_{\infty}} = \frac{(\sigma, \rho, \sigma q^{-2z}, \rho q^{-2z})_{\infty}}{(q^{-2z})_{\infty} (q^1-2z, q^{1+n}, q, q^{1+n+2z})_{\infty}} \cdot (\gamma, q^{1+z+1+n}/\sigma \rho \gamma, \gamma q^{-2z}, q^{1+n+2z}/\sigma \rho \gamma)_{\infty}
\]

\[
\cdot (q^{1-z-(z+k)}, q^{1+n+z-(z+k)}, q^{1-z+(z+k)}, q^{1+n+z+(z+k)})_{\infty}
\]

\[
\cdot (\sigma q^{z+(k+z)}, \rho q^{z+(k+z)}, \sigma q^{z-(k+z)}, \rho q^{z-(k+z)})_{\infty}
\]

\[
\cdot \left(\gamma q^{z+(k+z)}, q^{1+z+1+n+(z+k)}/\sigma \rho \gamma, \gamma q^{z-(k+z)}, q^{1+z+1+n-(k+z)}/\sigma \rho \gamma\right)_{\infty}
\]

(21)

where we also set \(b = q^{2z} \) for some \(z \in \mathbb{C} \). It is clear that the summand is invariant under the maps \((z + k) \leftrightarrow w(z + k) \) for all \(w \) in the hyperoctahedral group of rank 1, namely \(\mathbb{Z}_2 \). It is clear that these maps generate full weight lattice \(\mathbb{Z} \) for the root system \(C_1 \) if \(z = m/2 \) as illustrated in [2] for Rogers–Selberg identity. However, we will only consider the case when \(m = \delta \in \{0, 1\} \), that is \(b = q^\delta \).

Recall also that the Macdonald polynomial identity [8] for the root system \(C_1 \) of rank 1 may be written as

\[
1 = \frac{1}{1 - x^2} + \frac{1}{1 - x^{-2}}
\]

(22)

By setting \(x = q^{(z+k)} \) and multiplying the sum on the left hand side by the polynomial identity and simplifying, we get

\[
\sum_{k=0}^{n} \frac{(1 - q^{\delta+2k})}{(1 - b)} \frac{(q^\delta, q^{-n})_k}{(q^{\delta+1+n})_k} \left(\frac{(\sigma, \rho, \gamma, q^{2\delta+1+n}/\sigma \rho \gamma)_k}{(q^{1+\delta}/\sigma, q^{1+\delta}/\rho, q^{1+\delta}/\gamma, \sigma \rho \gamma q^{-\delta-n})_k} q^k\right)
\]

\[
= \sum_{k=-n-\delta}^{n} f(\delta) \frac{(q^{-n})_k}{(q^{1+\delta})_k} \left(\frac{(\sigma, \rho, \gamma, q^{2\delta+1+n}/\sigma \rho \gamma)_k}{(q^{1+\delta}/\sigma, q^{1+\delta}/\rho, q^{1+\delta}/\gamma, \sigma \rho \gamma q^{-\delta-n})_k} q^k\right)
\]

(23)

where

\[
f(\delta) = \begin{cases}
1 & \text{when } \delta = 0 \\
1/(1 - q^\delta) & \text{when } \delta = 1
\end{cases}
\]

(24)

Now we send \(n \to \infty \) applying the dominated convergence theorem for infinite series [3] to get

\[
\sum_{k=-\infty}^{\infty} f(\delta) \left(\frac{q^{(\delta+1)}}{\sigma \rho \gamma}\right)^k \left(\frac{(\sigma, \rho, \gamma)_k}{(q^{1+\delta}/\sigma, q^{1+\delta}/\rho, q^{1+\delta}/\gamma)}\right)
\]

\[
= \left(\frac{q^{1+\delta}}{\sigma \rho \gamma}, q^{1+\delta}/\sigma \rho, q^{1+\delta}/\sigma \gamma, q^{1+\delta}/\rho \gamma\right)_{\infty}
\]

(25)
Here we also used the limit rule
\[
\lim_{a \to 0} a^k(x/a)_k = (-1)^k x^k q(\frac{k}{2})
\] (26)

Now, setting \(\delta = 0\) gives Bailey’s \(3\psi_3\) bilateral summation formula. The \(\delta = 1\) case appears to be a new bilateral sum.

We now give a multilateral analogue of Bailey’s \(3\psi_3\) bilateral summation formula. Recall [5] that when \(z = xt^3\) for some \(x \in \mathbb{C}\) and \(t^3 = (t^{n-1}, t^{n-2}, \ldots, t, 1)\), the multiple Jackson sum (15) may be written as

\[
\frac{(sx^{-1}, asx)_\lambda}{(qbx, qb/ax)_\lambda} = \sum_{\mu \leq \lambda} q^{\mu \cdot 2n(\mu)} \frac{(s, as)_\lambda}{(qb, qb/a)_\lambda} \frac{(bt^{1-n}, qb/as)_\mu}{(qt^{n-1}, as)_\mu}
\]

\[
\cdot \prod_{i=1}^{n} \left\{ \frac{(1 - bt^{2-i}q^{2\mu_i})}{(1 - bt^{2-2i})} \right\} \prod_{1 \leq i < j \leq n} \left\{ \frac{(qt^{j-i})_{\mu_i - \mu_j} (bt^{3-i-j})_{\mu_i + \mu_j}}{(qt^{j-i-1})_{\mu_i - \mu_j} (bt^{2-i-j})_{\mu_i + \mu_j}} \right\}
\]

\[
\cdot W_{\mu}(q^{\lambda} t^{\delta(n)}; q, t, bst^{2-2n}, bt^{1-n}) \frac{(x^{-1}, ax)_\mu}{(qbx, qb/ax)_\mu} \tag{27}
\]

It was also shown [4] that the summand which includes the \(W_{\mu}\) function is invariant under the hyperoctahedral group action of permutations and sign changes for arbitrary partitions \(\lambda\). More precisely, it was shown that under the specialization \(t = q^k\) and \(b = q^{2z_i + 2k(i-1)}\) where \(z_i \in \mathbb{C}\) and \(k \geq 0\) is a non-negative integer, the summand is invariant under the action \((\mu_i + z_i) \leftrightarrow w(\mu_i + z_i)\) for all elements \(w \in W\) of the hyperoctahedral group or rank \(n\). It was further verified that this action generates the full weight lattice \(\mathbb{Z}^n\) only if \(z_i = m/2 + k(n - i)\) for some non-negative integers \(m, k \geq 0\).

The proof of the invariance follows from the duality formula and the flip identity [2] for \(W_{\lambda}\) functions. The symmetry under permutations are given by the duality formula

\[
W_{\lambda}(k^{-1} q^\nu t^\delta; q, t, k^2 a, kb) \cdot \frac{(qb^{n-1})_\lambda(qb/a)_\lambda}{(nak^{n-1})_\lambda}
\]

\[
\cdot \prod_{1 \leq i < j \leq n} \left\{ \frac{(t^{j-i})_{\lambda_i - \lambda_j} (qa't^{2n-i-j-1})_{\lambda_i + \lambda_j}}{(t^{j-i-1})_{\lambda_i - \lambda_j} (qa't^{2n-i-j})_{\lambda_i + \lambda_j}} \right\}
\]

\[
= W_{\nu}(h^{-1} q^{\lambda} t^\delta; q, t, h^2 a', hb') \cdot \frac{(qbt^{n-1})_\nu(qb/a')_\nu}{(h)_\nu(ha't^{n-1})_\nu}
\]

\[
\cdot \prod_{1 \leq i < j \leq n} \left\{ \frac{(t^{j-i})_{\nu_i - \nu_j} (qa't^{2n-i-j-1})_{\nu_i + \nu_j}}{(t^{j-i-1})_{\nu_i - \nu_j} (qa't^{2n-i-j})_{\nu_i + \nu_j}} \right\} \tag{28}
\]

where \(k = a't^{n-1}/b\) and \(h = at^{n-1}/b\). The invariance under sign changes follows from the flip identity

\[
a^{[\lambda]} b^{-[\lambda]} q^{-[\lambda]} t^{-n([\lambda]+(n-1)[\lambda])} W_{\lambda}(x_1^{-1}, \ldots, x_n^{-1}, q^{-1}, p, t^{-1}, a^{-1}, b^{-1})
\]

\[
= a^{-[\lambda]} b^{[\lambda]} q^{[\lambda]} t^{n([\lambda]-(n-1)[\lambda])} W_{\lambda}(x_1, \ldots, x_n; q, p, t, a, b) \tag{29}
\]
The invariance of other factors follows immediately form the definition of the q–Pochhammer symbol.

We will give the multiple $3\psi_3$ summation using the specialization $m = \delta \in \{0, 1\}$ as in the classical one dimensional case, and for $k = 1$ or $t = q$. In other words, we let $t \to q$ and $b \to q^{\delta+2(n-1)}$ and write the identity above in the form

$$
\begin{aligned}
\frac{(sx^{-1}, asx)_\lambda}{(s, as)_\lambda} &= \sum_{\mu \in \mathbb{Z}^n} f(\delta) q^{\mu|+2n(\mu)} \frac{q^{\delta+2n-1}/as\mu}{(as)_\mu} \\
&\cdot \prod_{1 \leq i < j \leq n} \left\{ \frac{(q^{i-j+1})_{\mu_i-\mu_j}(q^{\delta+2n+1-i-j})_{\mu_i+\mu_j}}{(q^{j-i})_{\mu_i-\mu_j}(q^{\delta+2n-i-j})_{\mu_i+\mu_j}} \right\} \\
&\cdot W_\mu(q^{\lambda+\delta(n)}; q, q, sq^\delta, q^{\delta+(n-1)}) (x^{-1}, ax)_\mu
\end{aligned}
$$

where

$$
f(\delta) := \frac{1}{2^n} \prod_{i=1}^{n-1} \frac{1}{(1+q^{n-i})}, \quad \text{if } \delta = 0
$$

and

$$
f(\delta) := \frac{1}{2^n} \prod_{i=1}^{n} \frac{1}{(1-q^{1+2n-2i})}, \quad \text{if } \delta = 1
$$

Note also that although the series is written over \mathbb{Z}^n, it actually terminates from above by λ and from below by $(-\lambda_i - 2n - 2i + \delta)$.

The analogue of Weyl degree formula [4] for W_μ functions implies that

$$
W_\mu(q^{N+\delta(n)}; q, q, sq^\delta, q^{\delta+(n-1)}) = \frac{(q^{-N}, sq^{N+N+n+1})_\mu}{(q^{N+\delta+2n-1}, q^{-N+n}/s)_\mu} \prod_{1 \leq i < j \leq n} \frac{(q^{i-j+1})_{\mu_i-\mu_j}(q^{\delta+2n+1-i-j})_{\mu_i+\mu_j}}{(q^{j-i})_{\mu_i-\mu_j}(q^{\delta+2n-i-j})_{\mu_i+\mu_j}}
$$

Therefore, by setting $\lambda = N^n = (N, N, \ldots, N)$ and sending $N \to \infty$ we get

$$
\begin{aligned}
\frac{(sx^{-1}, asx)_{\infty}}{(s, as)_{\infty}} &= \sum_{\mu \in \mathbb{Z}^n} q^{(1-n)|\mu|+2n(\mu)} \frac{(q^{\delta+2n-1}/as\mu)}{(as)_\mu} \frac{1}{(q^{\delta+2n-1}/ax)_\mu} 2^n f(\delta) \\
&\cdot \prod_{1 \leq i < j \leq n} \left\{ \frac{(1-q^{i-j+1})_{\mu_i-\mu_j}(1-q^{\delta+2n+1-i-j})_{\mu_i+\mu_j}}{(1-q^{j-i})^2_{\mu_i-\mu_j}(1-q^{\delta+2n-i-j})^2_{\mu_i+\mu_j}} \right\}
\end{aligned}
$$

This is the multilateral analogue of Bailey’s bilateral $3\psi_3$ summation formula as desired.

8
3. Conclusion

The multilateralization technique applied here can be used to prove other multilateral series when the invariance property is satisfied. We will explore similar identities in other publications.

References

[1] G. E. Andrews, R. Askey and R. Roy *Special Functions*, Encyclopedia of Math and Its App 71, Cambridge University Press, Cambridge, 1999.

[2] H. Coskun, *Multiple analogues of binomial coefficients and related special numbers*, submitted, arXiv: math.CO/01001.5466, 2009.

[3] H. Coskun, *A multilateral Bailey Lemma and multiple Andrews–Gordon Identities*, submitted, arXiv: math.CO/0412153, 2009.

[4] H. Coskun, *An Elliptic BC_n Bailey Lemma, Multiple Rogers–Ramanujan Identities and Euler’s Pentagonal Number Theorems*, AMS Transactions, 360 (2008), 5397–5433.

[5] H. Coskun and R. A. Gustafson, *The well–poised Macdonald functions W_λ and Jackson coefficients ω_λ on BC_n*, Jack, Hall–Littlewood and Macdonald Polynomials, ICMS, AMS *Contemporary Mathematics*, Volume 417 (2006), 127–155.

[6] L. B. Frenkel and V. G. Turaev, *Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions*, The Arnold–Gelfand Mathematical Seminars, Birkhauser, Boston, MA (1997), 171–204.

[7] I. G. Macdonald, *Affine root systems and Dedekind’s η function*, Invent. Math. 15 (1972), 91–143.

[8] I. G. Macdonald, *The poincare series of a coxeter group*, Math. Ann. 199 (1972), 161–174.

[9] A. Okounkov, *On Newton interpolation of symmetric functions: A characterization of interpolation Macdonald Polynomials*, Adv. in Appl. Math. 20 (1998), 395–428.

[10] E. Rains, *BC_n-symmetric abelian functions*, math.CO/0402113.

[11] H. Rosengren and M. Schlosser, *Summations and transformations for multiple basic and elliptic hypergeometric series by determinant evaluations*, Indag. Math. 14 (2003), 483-514.

[12] L. J. Slater, *Generalized hypergeometric functions*, Cambridge Univ. Press, Cambridge, 1966.

[13] S. O. Warnaar, *Summation and transformation formulas for elliptic hypergeometric series*, Constr. Approx. 18 (2002), 479–502.