Research

Identification of genes involved in ceramide-dependent neuronal apoptosis using cDNA arrays
Charles Decraene*†, Bernard Brugg‡, Merle Ruberg§, Eric Eveno*, Christiane Matingou*, Fariza Tahi*¶, Jean Mariani‡, Charles Auffray* and Geneviève Pietu*†

Addresses: *Genexpress, CNRS FRE 2376, BP8, 94801 Villejuif, France. ‡Neurobiologie des Processus Adaptatifs, UMR 7102 CNRS-UPMC, Université Pierre et Marie Curie, Paris, France. §INSERM U289, Hôpital de la Salpêtrière, 75013 Paris, France. Current addresses: †CEA Service de Génomique Fonctionnelle, 2 rue Gaston Crémieux, 91057 Evry Cedex, France. *Université d’Evry-Val d’Essonne, 91025 Evry, France.

Correspondence: Geneviève Pietu. E-mail: pietu@dsvidf.cea.fr

Abstract

Background: Ceramide is important in many cell responses, such as proliferation, differentiation, growth arrest and apoptosis. Elevated ceramide levels have been shown to induce apoptosis in primary neuronal cultures and neurally differentiated PC12 cells.

Results: To investigate gene expression during ceramide-dependent apoptosis, we carried out a global study of gene expression in neurally differentiated PC12 cells treated with C2-ceramide using an array of 9,120 cDNA clones. Although the criteria adopted for differential hybridization were stringent, modulation of expression of 239 genes was identified during the effector phase of C2-ceramide-induced cell death. We have made an attempt at classifying these genes on the basis of their putative functions, first with respect to known effects of ceramide or ceramide-mediated transduction systems, and then with respect to regulation of cell growth and apoptosis.

Conclusions: Our cell-culture model has enabled us to establish a profile of gene expression during the effector phase of ceramide-mediated cell death. Of the 239 genes that met the criteria for differential hybridization, 10 correspond to genes previously involved in C2-ceramide or TNF-α signaling pathways and 20 in neuronal disorders, oncogenesis or more broadly in the regulation of proliferation. The remaining 209 genes, with or without known functions, constitute a pool of genes potentially implicated in the regulation of neuronal cell death.

Background

Ceramide is an intracellular lipid second messenger generated in response to a large number of extracellular signals [1,2]. These include tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), ionizing and ultraviolet radiation, anti-cancer drugs, growth-factor withdrawal, infection by human immunodeficiency virus (HIV) or bacteria. It is reported to participate in cell differentiation [3], senescence [4], growth arrest or programmed cell death [1,2], depending on the cell type.

The role of ceramide in programmed cell death or apoptosis has been described in lymphocytes [5], macrophages [6], neurons in primary culture [7-8] and neurally differentiated
PC12 cells [9-11]. A number of downstream targets of ceramide have been identified. The best documented are the ceramide-activated protein phosphatases (CAPP) and the ceramide-activated protein kinase (CAPK). The former, represented by the PP1 and PP2A families, mediate the effect of ceramide on the transcription factors c-Myc [12] and c-Jun [13]. CAPK is involved in the mitogen-activated protein (MAP) kinase (MAPK) cascades that include the extracellular-signal regulated kinases (ERK), the c-Jun N-terminal kinases or stress-activated kinases (JNK/SNK/SAPK) and the p38 family [14].

Recently, it has been shown that C₂-ceramide rapidly decreases phosphorylation of ERKs, but increases p38 and JNK phosphorylation, activating the transcription factors c-Fos, c-Jun and p53, during the effector phase of apoptosis in primary cortical neurons [15]. It also regulates the protein kinase B (Akt/PKB)-dependent survival pathways, inactivating Akt by dephosphorylation and activating the Bcl-2-related protein BAD by phosphorylation [16-18]. Ceramide-induced apoptosis in neurons or in neuronally differentiated PC12 cells has been associated with mitochondrially produced reactive oxygen species (ROS) as well as activation and nuclear translocation of the transcription factor NFκB [10,11,19]. All these molecular events are observed during the effector phase of ceramide-induced apoptosis which also includes gene expression and new protein synthesis required for ceramide-mediated cell death, as it has been shown that neuronal cell death can be inhibited by cycloheximide [7].
The genes that are transcriptionally regulated during ceramide-mediated cell death are still poorly documented. To study gene expression during neuronal cell death, we carried out a differential screen of an array of 9,120 cDNA clones from a human infant brain library (library 1NIB [20]) with complex cDNA targets derived from neurally differentiated rat pheochromocytoma PC12 cells treated with C2-ceramide compared to control PC12 cells. This model is particularly suitable for establishing a gene-expression profile during ceramide-mediated neuronal death because first, the neuronal cell population is synchronized and homogeneous, unlike brain tissue or primary neuronal cultures, and second, because the use of exogenous C2-ceramide eliminates the risk of interference by transcripts activated by signal transducers upstream of ceramide in the cell-death pathway or in pathways activated in parallel.

Results

Cell death induced in neurally differentiated PC12 cells by C2-ceramide

The morphological characteristics of differentiated PC12 cells after 24 hours in the presence of 25 μM C2-ceramide were compatible with cell death by apoptosis. Compared with control cultures, as viewed by phase-contrast microscopy (Figure 1a), C2-ceramide-treated cells lost their neurites and became rounded and shrunken after 24 hours of treatment (Figure 1b). The cells that remained viable in the C2-ceramide-treated cultures were refringent (Figure 1b), like those in the control cultures (Figure 1a), and excluded the vital marker propidium iodide (Figure 1c), whereas the dead cells took up propidium iodide that intercalated into their DNA (Figure 1d), revealing condensed and fragmented nuclei. As previously described, when neurally differentiated PC12 cells or primary cultures of mesencephalic neurons were treated with cell-permeant C2-ceramide (10-50 μM), they died in a dose-dependent manner [7,10]. At 25 μM no significant cell death was observed until 12 hours after the initiation of treatment (Figure 2a). After 24 hours, 50% of the cells had died. By 48 hours, no viable cells remained. Furthermore, we observed activation of caspase-3/CPP32, a member of the cysteine-activated aspartate family of cell-death proteases [21], that started 8 hours after the beginning of ceramide treatment and was five times the control value by 18 hours (Figure 2b). No significant cell death and caspase-3/CPP32 activity were observed using the inactive C2 analog of ceramide, C2-dihydroceramide (Figure 2).

Validation of hybridization signals

Hybridization of 9,120 cDNA clones with complex cDNA targets from poly(A)⁺ RNA extracted from C2-ceramide-treated or control cells produced signals of varying intensities (Figure 3a). In order to eliminate clones for which no reproducible hybridization signals were obtained, the signal-intensity values were validated as described in Materials and Methods.
Figure 3
Hybridization signal analysis. (a) Macroarray of 9,120 cDNA clones hybridized with complex cDNA targets derived from mRNA of neuronally differentiated PC12 cells without C2-ceramide treatment (control) or treated with C2-ceramide (stimulated). (b) Distribution of the hybridization signal intensities between control and stimulated cells. Some genes identified in the present study are indicated.
methods. Thus, 7% of the clones hybridized with the control
cDNA target (634) and 14% of clones hybridized with the
C2-ceramide-treated cDNA target (1,297) were excluded
from further analysis. The remaining 6,494 clones were ana-
lyzed for differential hybridization.

Differential gene expression in neuronally
differentiated PC12 cells treated with C2-ceramide
compared to controls

Changes in gene expression were analyzed during the effec-
tor phase of neuronal death, 7 hours after the beginning of
C2-ceramide treatment. This time point was chosen because
on the one hand it is preceded by the activation of the tran-
scription factor NFκB and c-Jun observed 4 to 6 hours after
C2-ceramide treatment in PC12 cells [10,22], and on the
other, the apoptotic process is still not induced by caspase-3
activation, which occurs 8 hours after the beginning of
C2-ceramide treatment.

Hybridization between the rat PC12 cell-derived targets and
the human cDNA macroarray was carried out as described
in Materials and methods. Modulation of gene expression
was quantitated by calculating the ratio of the intensity of
the normalized hybridization signal obtained with the
C2-ceramide cDNA target to that obtained with the control
target. Clones were considered to be differentially
hybridized in C2-ceramide-treated cells compared to control
cells if the ratio between the corresponding hybridization
intensity values was ≥ 2 (up-hybridized clones) or ≤ 0.5
(down-hybridized clones) which are the limits of confidence
for the method. To decrease the risk of false-positive
results, clones with hybridization signals that were less than
twofold above background were also excluded, resulting in
the elimination of 538 clones. In addition, the remaining
clones were hybridized with complex cDNA targets from
poly(A)+ RNA extracted from C2-dihydroceramide-treated
cells used as negative control and compared to untreated
cells. No modulation of expression was observed (except for
one clone excluded from the analysis) in the presence of this
inactive analog of C2-ceramide (data not shown). Among
the 239 clones that met the criteria for differential hybridiza-
tion, 132 were up-hybridized in C2-ceramide-treated cells
and 107 were down-hybridized. The distribution of the
hybridization-intensity values between the control and the
C2-ceramide complex cDNA targets is presented in
Figure 3b. Approximately 55% (72/132) of the up-hybridized
clones were hybridized 3-6-fold more in C2-ceramide-
treated cells than in the control and 40% (41/107) of the
down-hybridized clones were hybridized 3-9-fold less.

Partial 5´ and 3´ sequences of the 239 clones were compared
with all the sequences in the database developed in our labo-
atory (the Genexpress Index [23]) and in public databases.
Of the 239 clones, 179 clones corresponded to already identi-
ﬁed human genes, 113 of which have deﬁned functions. The
remaining 60 clones corresponded to genes with limited
characterization. Under the hypothesis that differential
hybridization of the clones reﬂects linear modulation of
expression of the corresponding genes, we assume that we have detected differential gene expression using cDNA array technology that can be interpreted according to the information available.

Ten differentially expressed genes encode proteins with a role in ceramide or TNF-α pathways (Figure 4, Table 1; see [24] for links to database entries for each gene). Two of these genes, \(\text{PLA2G4C} \) and \(\text{CLN3} \), seem to have a role in ceramide-mediated cell death or survival. Two upregulated genes (\(\text{ETV5} \), \(\text{NPTX2} \)) and two downregulated genes (\(\text{COL18A1} \), \(\text{TNFAIP1} \)) encode proteins that are modulated by TNF-α. Four genes, three upregulated (\(\text{AXL} \), \(\text{BIRC1} \), \(\text{RSU1} \)) and one downregulated (\(\text{MAPK10} \)) encode proteins with a role in the TNF-α signaling pathway.

Twenty clones correspond to genes encoding proteins that have been involved in the regulation of apoptosis and/or cell growth (Figure 5, Table 2, see [24]). Fourteen are up-hybridized and six are down-hybridized by C\(_2\)-ceramide. Ten of the upregulated and two of the downregulated genes encode proteins stimulating apoptosis and/or growth arrest. The other genes (four upregulated and four downregulated) encode proteins downregulating apoptosis and/or stimulating growth.

The remaining 83 clones corresponding to 82 genes with known or putative functions have no obvious relation to the apoptosis process (Table 3, see [24]). Of the total number of differentially hybridized clones, 66 correspond to mRNA sequences (Table 4, see [24]) and 60 to poorly characterized genes (Table 5, see [24]) that encode proteins without known function.

To confirm the results obtained by macroarray analysis, differentially expressed transcripts representing upregulated or downregulated genes were analyzed for differential expression by reverse transcription PCR (RT-PCR) or northern blots. As shown in Figure 6, the upregulation of \(\text{ETV5} \), \(\text{M6PR} \) and \(\text{APCL} \) was confirmed by RT-PCR, and the downregulation of two genes with unknown function (mRNA DKFZp586C1723 and GENX 2969) was confirmed by northern blotting.
Discussion

Extracellular signaling molecules such as cytokines, growth-factor deprivation and DNA damage caused by chemotherapeutic agents or irradiation activate ceramide-mediated signal transduction pathways leading to cell death. These pathways have been investigated in the immune system, where they are known to have an important role, and in neurons, as they are suspected to play a part in neurodegenerative disorders [1]. A number of steps in the signaling cascades have been elucidated. However, although the translation inhibitor cycloheximide inhibits the ceramide-mediated death of mesencephalic neurons [7], the expression patterns of genes modulated during ceramide-mediated cell death remain unknown. In a global approach to this question, we have used cDNA macroarray technology to determine the profile of gene expression in a neuronal model of cell death, neuronally differentiated and C2-ceramide-treated PC12 cells, in which ceramide-dependent changes in gene expression could be isolated from the effects of other transcription modulators.

Identification of genes closely implicated in the ceramide and/or TNF-α signaling pathway

We were able to detect differential expression of 10 genes known to be involved in the ceramide or TNF-α signaling pathways (see Figure 4, Table 1) thus validating our study. A summary illustration of the putative role of these genes is presented in Figure 7. Briefly, two genes, encoding phospholipase A2 group IVC (PLA2G4C) and ceroid-lipofuscinosis, neuronal 3, juvenile (CLN3) are already known to be involved in ceramide-mediated signal transduction. The first, PLA2G4C, belongs to the cytosolic phospholipase A2 gene family that encodes two different proteins: calcium-independent and calcium-dependent cytosolic phospholipases [38]. TNF-α regulates the expression of PLA2G4A mRNA in HeLa cells [39] and in human bronchial epithelial cells [40], which is indirect evidence of modulation by ceramide, but the role of ceramide was not demonstrated directly in these studies. However, ceramide was shown directly to upregulate the expression of the gene encoding cytosolic phospholipase A2 in the fibroblast cell line L929.

Figure 5
Differentially expressed genes that encode proteins involved in the regulation of apoptosis and/or cell growth. Gray boxes, genes stimulating apoptosis and/or growth arrest; white boxes, genes downregulating apoptosis and/or stimulating growth.
Conversely, the activation of this gene was reported to be necessary for ceramide accumulation and cell death in the same cells [25]. We show for the first time that this gene is involved in neuronal apoptosis.

The second gene, CLN3, is expressed in a variety of human tissues including the brain, where the product is necessary for neuronal survival [26,27]. Interestingly, CLN3 does not inhibit C₄-ceramide-induced apoptosis but modulates endogenous ceramide synthesis and suppresses apoptosis by preventing generation of ceramide [42]. Thus, C₄-ceramide can activate a negative feedback mechanism regulating endogenous ceramide generation as well as activate the downstream targets of the endogenous lipid.

Four other genes or families of genes known to be transcriptionally regulated by TNF-α were also modulated by C₄-ceramide in our model (Table 1). Of these, ETS variant 5 (ETV5) belongs to the family of ETS transcription factor genes. Increased expression of both ETS1 mRNA and the protein has been observed in human fibroblasts after TNF-α or IL-1β stimulation [28]. PEA3 (a mouse protein

Table 2

Differentially expressed genes that encode proteins involved in the regulation of apoptosis and/or cell growth

Clone ID	GenBank accession number	Unigene	C. int.	C. SD	S. int.	S. SD	Ratio	Similarity	Gene symbol
yg01b10	2112 R18353; R42557	Hs.286	1.68	0.17	7.95	0.55	4.74	Ribosomal protein L4	RPL4
yl73h11	567 H06473	Hs.9663	1.60	0.15	7.42	0.54	4.64	Programmed cell death 6-interacting protein	PDCD6IP
yc29h11	673 F13260; T77039	Hs.75709	2.12	0.33	9.83	0.95	4.64	Mannose-6-phosphate receptor (cation dependent)	M6PR
yg94h08	6030 R56149	Hs.78776	1.96	0.34	7.09	1.25	3.61	Putative transmembrane protein	NMA
yf90d04	25970 R15366	Hs.20912	1.34	0.22	4.71	0.58	3.51	Adenomatous polyposis coli like	APC
yg76b02	3804 R51346; R51453	Hs.78935	0.95	0.18	2.89	0.40	3.03	Methionine aminopeptidase; elf-2-associated p67	METAP2
yd01h06	9451 R39334; T78769	Hs.27434	1.98	0.16	5.89	0.66	2.97	HLA-B associated transcript-3	BAT3
c-22F12	2915 F08770	Hs.75323	1.44	0.23	3.26	0.29	2.26	Prohibitin	PHB
yf69g07	115124 R14126	Hs.132955	1.82	0.30	3.99	0.96	2.19	BCL2/adenovirus E1B 19kD-interacting protein 3-like	BNIP3L
yd02b11	115910 T79985	Hs.63984	0.88	0.19	1.88	0.30	2.14	Cadherin 13, H-cadherin (heart)	CDH13
c-3ke04	781 F10823; F13223	Hs.12409	1.17	0.10	ND	ND	0.43	Somatostatin	SST
yg64g08	115205 R35542; R51110	Hs.288986	3.01	0.41	0.90	0.15	0.30	Survival of motor neuron 1 1, telomeric	SMN1

Proteins regulating apoptosis and/or stimulating growth

Clone ID	GenBank accession number	Unigene	C. int.	C. SD	S. int.	S. SD	Ratio	Similarity	Gene symbol
yg44d03	408 R25503	Hs.155212	1.74	0.40	7.67	0.40	4.40	Methylmalonyl coenzyme A mutase	MUT
yg68d10	2957 R36284; R49571	Hs.89582	1.80	0.25	7.26	0.57	4.04	Glutamate receptor, ionotropic, AMPA 2	GRIA2
yl81d04	9379 H05457; H07007	Hs.150423	2.64	0.36	8.72	1.06	3.31	Cyclin-dependent kinase 9 (CDC2-related kinase)	CDK9
yd02a11	78693 T79973	Hs.107911	2.52	0.42	5.38	0.44	2.14	ATP-binding cassette, sub-family B (MDR/TAP), member 6	ABCB6
yg51a11	17820 R21694; R46587	Hs.223014	1.09	0.24	ND	ND	0.46	Antizyme inhibitor	OAZIN
yh10g09	4858 R61276; R61277	Hs.8073	1.59	0.23	0.66	0.16	0.41	Septin 3	SEP3
yf53a12	3165 R12025; R37093	Hs.356245	1.14	0.21	0.29	0.02	0.25	Apoptosis regulator	LOCS1283
yg67b12	115951 R35827; R49537	Hs.285754	2.38	0.48	0.50	0.12	0.21	Met proto-oncogene	MET

Abbreviations and column headings are as in Table 1.
Clone ID	GENX	GenBank accession number	Unigene	C. int.	C. SD	S. int.	S. SD	Ratio	Similarity	Gene symbol
Signal transduction										
yf85b10	1842	H05211	Hs.22003	1.62	0.40	7.99	0.37	4.94	Solute carrier family 6 (neurotransmitter transporter, GABA), member 1	SLC6A1
yf77g11	3900	R14207; R37490	Hs.75819	1.12	0.12	5.02	0.43	4.46	Glycoprotein M6A	GPM6A
yg63f10	1552	R26636; R49665	Hs.24212	1.01	0.15	4.02	0.61	3.98	Latrophilin	KIAA0786
c-2ee07	116218	Z45003	Hs.107979	1.75	0.35	6.17	0.85	3.52	Small membrane protein 1	SMP1
yf60h11	12653	R13771	Hs.61628	1.43	0.18	4.68	0.61	3.28	Calcium binding atopy-related autoantigen 1	CBARA1
yf88a09	9668	R15201	Hs.181326	4.01	0.50	11.65	2.01	2.90	Myotubulin-related protein 2	MTMR2
yg1l08	107475	R17181; R41731	Hs.5462	0.72	0.12	1.54	0.33	2.14	Solute carrier family 4, sodium bicarbonate cotransporter, member 4	SLCA4
c-2mh12	1997	Z41050; Z45338	Hs.108787	1.08	0.21	0.52	0.04	0.47	Phosphatidylinositol glycan, class N	PIGN
yc87e10	115203	F10343; F12737	Hs.173717	1.24	0.17	0.50	0.06	0.40	Phosphatidic acid phosphatase type 2B	PPA2B
yf48c10	9043	R12286; R12797	Hs.10842	1.10	0.24	0.43	0.03	0.39	RAN, member RAS oncogene family	RAN
yd09f12	2991	R39085	Hs.306359	2.39	0.46	0.90	0.22	0.38	Hect domain and RCC1 (CHC1)-like domain (RLD) 1	HERC1
c-3ie05	5307	F10685; F13091	Hs.9347	1.48	0.24	0.53	0.02	0.36	Regulator of G-protein signaling 14	RGSI4
yg16c08	5294	R17962; R41352	Hs.1440	1.05	0.23	0.29	0.04	0.27	Gamma-aminobutyric acid (GABA) A receptor, beta 3	GABRB3
yf50c04	1366	R11777; R37698	Hs.5985	1.13	0.12	0.17	0.01	0.15	Non-kinase Cdc42 effector protein SPEC2	LOC56990
Transcription/translation										
yf71g02	5232	R40420	Hs.16313	0.90	0.13	2.30	0.15	2.55	Kruppel-like zinc-finger protein GLIS2	GLIS2
c-26a02	451	F07446	Hs.13993	1.64	0.38	3.39	0.73	2.07	TBP-like 1	TBP1
c-05c07	4917	Z38284; Z41997	Hs.26973	1.21	0.20	2.45	0.52	2.02	Bromodomain adjacent to zinc-finger domain, 2B	BAZZ2B
c-24a11	11423	F07382	Hs.75678	1.38	0.23	0.66	0.16	0.47	FBJ murine osteosarcoma viral oncogene homolog B	FOSB
yg90e12	10904	R56427; R56248	Hs.239	1.28	0.23	0.59	0.03	0.46	Forkhead box M1	FOXM1
yf61e03	4401	R13803; R37662	Hs.182447	7.20	1.01	2.75	0.60	0.38	Heterogeneous nuclear ribonucleoprotein C (C1/C2)	HNRPCC
yf64g02	993	R37803	Hs.6151	4.87	0.77	1.87	0.46	0.38	Pumilio homolog 2 (Drosophila)	PUM2
yg53f10	1678	R62465; R25370	Hs.520	1.41	0.20	ND	ND	0.35	Nuclear receptor subfamily 2, group C, member 2	NR2C2
yg47e10	1548	R21283; R45337	Hs.14520	1.55	0.26	0.53	0.13	0.34	Eukaryotic translation initiation factor 2C, 1	EIF2C1
yg36d06	1872	R24568; R44373	Hs.76177	10.91	1.23	3.67	0.10	0.34	Transcription factor CP2	TFCP2
yg60b12	303	R35123; R49511	Hs.2186	3.12	0.63	0.94	0.07	0.30	Eukaryotic translation elongation factor 1 gamma	EEF1G
yg27a08	4127	R43968	Hs.278589	9.43	1.24	2.76	0.40	0.29	General transcription factor II, i, pseudogene 1	GTF2IP1
Table 3 (continued)

Clone ID	GENX	GenBank accession number	Unigene symbol	C. int.	C. SD	S. int.	S. SD	Ratio	Similarity	Gene symbol
Cellular traffic or structure proteins										
yg1905	200119	R20424; R43544	Hs.169793	1.51	0.36	7.37	1.32	4.86	Ribosomal protein L32	RPL32
yc86h03	2760	F12918; T75229	Hs.182625	2.38	0.26	7.78	1.17	3.27	Vamp (vesicle-associated membrane protein)-associated protein B and C	VAPB
yc87f04	5084	R38549; T75126	Hs.22826	1.83	0.11	5.59	0.64	3.06	Tropomodulin 3 (ubiquitous)	TMOD3
yf98g01	8512	R18713	Hs.75196	2.96	0.63	9.29	0.80	3.14	Ankyrin repeat-containing protein	G9A
yh17e09	1304	R59488; R59489	Hs.30991	0.78	0.19	2.32	0.11	2.97	Ankyrin repeat domain 6	ANKR6D
yf76d11	424	R13426; R40938	Hs.119324	0.84	0.08	2.07	0.35	2.48	Kinesin-like 4	KNSL4
c-27f03	1382	F07488	Hs.89497	2.32	0.31	5.60	0.64	2.42	Lamin B1	LMNB1
yc96a12	11155	F13331; T77651	Hs.159613	4.50	0.32	10.84	2.13	2.41	Thyroid hormone receptor binding protein	ALB3
yf57c11	1225	R12822; t20734	Hs.1501	0.94	0.22	2.25	0.22	2.39	Syndecan 2	SDC2
yf71a06	10804	H05894	Hs.6682	1.33	0.11	2.94	0.20	2.21	Solute carrier family 7, cationic amino acid transporter, y+ system, member 11	SLC7A11
yc99f07	11082	T78361	Hs.103042	2.21	0.07	0.98	0.19	0.44	Microtubule-associated protein 1B	MAP1B
yf72e08	2558	R13080; R40510	Hs.7979	2.05	0.34	0.80	0.15	0.39	Likely ortholog of mouse synaptic vesicle glycoprotein 2a	SV2
yc87h12	2952	F10545; F12946	Hs.21611	5.68	0.59	1.93	0.17	0.34	Kinesin family member 3C	KIF3C
yg54d05	604	R25813; R46810	Hs.117977	1.62	0.33	0.50	0.11	0.31	Kinesin 2 (60-70 kD)	KNS2
yf91b02	1980	R16352; R42300	Hs.103042	3.50	0.41	1.01	0.24	0.29	Microtubule-associated protein 1B	MAP1B
yf72a03	115963	R13048; R40479	Hs.187958	1.46	0.34	0.40	0.06	0.28	Solute carrier family 6, member 8, accessory proteins BAP31/BAP29	SLC6A8, DXS1357E
Immunity/inflammatory response										
yg75d06	25621	R54423	Hs.179661	1.88	0.18	8.01	1.02	4.26	FKS56-binding protein 1A (12 kD)	FKBPA1
yg65b03	2453	R35324	Hs.9688	0.86	0.13	3.67	0.60	4.26	Leukocyte membrane antigen	IRC1
yg57f05	190007	R34428	Hs.181244	3.83	0.24	9.76	1.22	2.55	MHC class I gene family	
yf51e08	2563	R12005; R39844	Hs.75682	0.89	0.04	2.05	0.21	2.31	Autoantigen	
c-2bh04	190137	F03851; F07604	Hs.284394	1.13	0.07	0.56	0.07	0.50	Complement component 3	C3
yf59h02	5580	R13549; R20669	Hs.82689	1.05	0.21	0.47	0.10	0.44	Tumor rejection antigen (gp96)	TRA1
yc86g03	8628	F10456; F12856	Hs.302749	1.51	0.35	0.58	0.09	0.39	FKS56-binding protein 9 (63 kD)	FKBPA9
Protein processing										
yf68a10	1071	R40190; R46258	Hs.75890	0.55	0.13	2.09	0.23	3.80	Site-I protease (subtilisin-like, sterol-regulated, cleaves sterol regulatory element binding proteins)	S1P
c-2na07	2001	F04230; F07978	Hs.102	1.01	0.16	0.46	0.10	0.45	Aminomethyltransferase (glycine cleavage system protein T)	AMT
yc85d05	6301	F10498; F12892	Hs.170197	1.45	0.22	0.59	0.10	0.41	Glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate aminotransferase 2)	GOT2
c-2ge12	2793	Z40826; Z46090	Hs.183212	1.14	0.19	0.45	0.09	0.39	Isoprenylcysteine carboxyl methyltransferase	ICMT
yg5204	202164	R21082; R46258	Hs.235887	1.55	0.31	0.54	0.08	0.34	HMT1 (hnRNP methyltransferase, Saccharomyces cerevisiae)-like 1	HRMT1LI
Clone ID	GENX	GenBank accession number	Unigene	C. int.	C. SD	S. int.	S. SD	Ratio	Similarity	Gene symbol
----------	------	--------------------------	---------	--------	-------	--------	-------	-------	------------	-------------
yf6407	2813	R13707; R37801	Hs.171501	1.27	0.24	ND	ND	0.39	Ubiquitin specific protease 11	USP11
yc9708	1805	R39698; T78043	Hs.2838	2.73	0.24	9.35	0.86	3.42	Malic enzyme 3, NADP(+)-dependent, mitochondrial	ME3
yg9706	3929	R59198; R59256	Hs.78989	0.68	0.07	1.99	0.18	2.94	Alcohol dehydrogenase 5 (class III), chi polypeptide	ADH5
c-2ca07	1549	F01858; F07608	Hs.180616	1.04	0.12	0.50	ND	0.48	CD36 antigen (collagen type I receptor, thrombospondin receptor)-like 1	CD36L1
yc9506	3164	R39463; T77281	Hs.155247	1.01	0.20	0.31	0.05	0.30	Aldolase C, fructose-bisphosphate	ALDOC
yc9806	1475	R37847; T78111	Hs.301789	1.55	0.27	4.52	0.35	2.92	Sodium channel, voltage-gated, type I, alpha polypeptide	SCNIA
yc5402	924	R11969	Hs.4865	1.41	0.17	3.05	0.18	2.17	Synaptotagmin XIII	SYT13
c-11a09	4199	Z39718; Z43661	Hs.8834	0.64	0.15	1.30	0.19	2.02	Ring finger protein 3	RNF3
yg33b04	4211	R53332; R53937	Hs.7022	1.19	0.28	0.59	0.09	0.50	Capping protein (actin filament) muscle Z-line, alpha 1	CAPZA
yf5702	4610	R12627; R20528	Hs.334688	1.51	0.25	0.75	0.13	0.50	Mannosidase, beta A, lysosomal-like	MANB1
yg36h06	3087	R24595; R44400	Hs.7122	1.08	0.13	ND	ND	0.46	Scare study protein 1	SCG51
yf9905	2822	R18211; R24149	Hs.79284	1.07	0.21	0.48	0.07	0.45	Protein with polyglutamine repeat; calcium (Ca2+)-homeostasis endoplasmic reticulum protein	EHD3
c-19a06	9239	Z40467; Z44591	Hs.171545	1.02	0.20	0.45	0.11	0.44	Mesoderm specific transcript (mouse) homolog	MEST
yd05d01	2346	R38832; T80384	Hs.13493	1.06	0.24	0.44	0.06	0.42	Like mouse brain protein E46	E46L
yf74e11	2106	R13277; R40723	Hs.334851	1.95	0.41	0.80	0.17	0.41	Lim and SH3 protein 1	LASP1
yd01e11	3181	T78746	Hs.168640	1.17	0.27	0.47	0.10	0.40	Homolog of mouse Ank	ANK
yf48e09	414	R12292; R12804	Hs.21050	1.22	0.26	0.47	0.07	0.38	HIV-1 Rev binding protein	HIRB
yg16d07	1087	R43459; R17969	Hs.87125	9.91	2.06	3.35	0.51	0.34	Hematological and neurological expressed	HN1
yf57d07	12763	R12632; R20533	Hs.109706	1.78	0.23	0.58	0.09	0.33	Hematological and neurological expressed	HN1
c-2la01	200991	F04056; F07796	Hs.74376	1.00	0.07	0.33	0.01	0.33	Olfactomedin related ER localized protein	NOEL1

Table 3 (continued)
C2-ceramide treatment is consistent with our previous [29,30]. The regulation of the pentraxin gene family by TNF-α/H9251 suppressor protein 1, which is involved in TNF-α signaling, is reported to protect against TNF-α-stimulated signaling via activation of NFκB pathways. Thus AXL, encoding type XVIII collagen alpha 1, and identified in our model are COL18A1, encoding type XVIII collagen alpha 1, and TNFAIP1, encoding TNFα-induced protein 1. These proteins, downregulated by C2-ceramide, are modulated by TNF-α in various cell types [31-33].

We also identified four genes encoding proteins known to participate in TNF-α-activated signal transduction pathways. Thus AXL, upregulated by a factor of 3.65 (Table 1), encodes a tyrosine kinase receptor. Signaling through this receptor is reported to protect against TNF-α-induced apoptosis in fibroblasts and its absence increases apoptosis after serum deprivation [34]. Interestingly, ARK, the mouse protein corresponding to AXL, activates the survival pathway mediated by the serine-threonine kinase Akt [49], which is negatively regulated by ceramide [16,17,50], and is also reported to modulate ceramide synthesis [51]. The second gene we identified is BIRC1, encoding baculoviral IAP repeat-containing 1 protein. This protein, putatively involved in spinal muscular atrophy [52], is an inhibitor of cell death induced by various apoptotic stimuli, including TNF-α [35]. The third identified gene, RSU1, encodes Ras suppressor protein 1, which is involved in TNF-α signaling by blocking the Ras-dependent response. Levels of both RSU1 mRNA and protein have been correlated with a decrease in growth rate and tumorigenic potential in U251 glioblastoma cells [53] and it induces growth arrest in PC12 cells [36]. This is consistent with the report that ceramide regulates apoptosis via modulation of the Ras signaling pathway [18]. In addition, RSU1 has been identified as an inhibitor of Jun kinase activation [37]. This point is interesting, as the fourth gene presenting in this group, MAPK10/J.NK3, encoding the JNK family member mitogen-activated protein kinase 10, is downregulated by C2-ceramide in our model.

The identification of these eight genes, which are involved in the TNF-α signaling pathway, in C2-ceramide treated PC12 cells, suggests that their modulation of expression by TNF-α could be the result of a ceramide-dependent mechanism.

Commitment to apoptosis: upregulation of pro-apoptotic genes and downregulation of anti-apoptotic genes by the ceramide pathway

Twenty genes regulated by C2-ceramide correspond to genes known to be involved in regulation of apoptosis and/or cell growth (Figure 5, Table 2). Twelve of these genes are known to be associated with oncogenesis and four with neuronal disorders. Of the upregulated genes, 10 out of 14 are known to be associated with a pro-apoptotic or anti-proliferation process and 3 out of 14 are mainly implicated in protection of the cell against cytotoxicity or damage. Of the downregulated genes, 4 out of 6 are associated with an anti-apoptotic or a proliferation process. This highlights the fact that the cells are engaged in programmed cell death. The putative roles of these genes are illustrated in Figure 7, which focuses on the pro-apoptotic or anti-proliferation process versus anti-apoptotic or proliferation processes.

Briefly, of the known pro-apoptotic or anti-proliferative genes that are upregulated in our model, RPL4 encodes the ribosomal protein L4 that has been shown to be transcriptionally stimulated prior to apoptosis induced by the 5-azacytidine in the PC12 cells [54]. PDCD6IP, upregulated by C2-ceramide in our model, encodes a protein that interacts with ALG2, a Ca++-binding protein that is required for apoptosis induced by diverse stimuli, including ceramide.
Clone ID	GENX	GenBank accession number	Unigene C. int.	C. SD	S. int.	S. SD	Ratio	Similarity	
yg51f11	229	R21710;	Hs.64691	1.32	0.16	6.34	0.43	4.80	KIAA0483 protein
yg30b04	5093	R44721;	Hs.12896	1.31	0.12	5.99	0.29	4.57	KIAA1034 protein
yf53g09	13	R12046;	Hs.90424	1.56	0.10	7.09	0.67	4.55	Homo sapiens cDNA: FLJ23285 fis, clone HEP09071
yc94b11	223	F13362; R77404;	Hs.101375	1.40	0.15	6.38	1.10	4.55	cDNA DKFZp434H205 (from clone DKFZp434H205)
yg37d06	2008	R19640;	Hs.264636	1.70	0.39	7.39	1.60	4.34	KIAA0781 protein
yf75c06	425	R13300; R40783;	Hs.106825	1.40	0.15	5.99	1.10	4.57	Homo sapiens cDNA: FLJ21380 fis, clone COL03329
yc94b01	6715	R12046	Hs.90424	1.56	0.10	7.09	0.67	4.55	cDNA DKFZp434H205 (from clone DKFZp434H205)
yg42a11	20067	R24764; R45496;	Hs.21710	1.64	0.20	6.61	1.00	4.04	Hypothetical protein DKFZp761G0313
yc85f03	255	F12760; T74722;	Hs.125034	1.98	0.16	6.52	0.85	3.29	Homo sapiens cDNA: FLJ10733 fis, clone NT2RP001392
yc86g12	32	R14304; R40254;	Hs.59236	1.21	0.25	3.94	0.63	3.24	Hypothetical protein DFKZp434L0718
yg18e11	4391	R20224;	Hs.41185	3.49	0.86	11.27	1.23	3.23	cDNA DKFZp434H205 (from clone DKFZp434H205)
yc90h10	1343	F13218; T55433;	Hs.141003	1.32	0.24	4.19	1.05	3.18	Homo sapiens cDNA: FLJ21691 fis, clone COL09555
yg42a11	20067	R24764; R45496;	Hs.288368	0.45	0.10	1.41	0.11	3.14	Homo sapiens cDNA: FLJ21314 fis, clone COL02428
yc85f03	255	F12760; T74722;	Hs.318401	3.03	0.42	9.46	0.80	3.12	HSPC039 protein (LOC51124)
yc86g12	32	R12859; T75526;	Hs.180948	4.61	0.28	14.27	1.89	3.10	KIAA0729 protein
c-2lb03	1917	Z45263	Hs.155182	4.68	1.55	19.98	3.34	3.08	KIAA1036 protein
yf94d09	2836	R16328; R41404;	Hs.6343;	3.16	0.48	9.58	0.97	3.03	KIAA1464 protein
yf49g10	2696	R11887;	Hs.40094	4.42	0.68	13.38	1.70	3.03	Human DNA sequence from clone 167A19 on chromosome 1p32.1-33
yg67h02	1136	R35733; R49366;	Hs.325825	3.76	0.34	11.27	0.80	3.00	Homo sapiens cDNA: FLJ20848 fis, clone ADKA01732
yc89d09	2388	F13194; T75317;	Hs.22109	3.52	0.07	10.11	1.40	2.87	KIAA0945 protein
yf72d11	4469	R13137; R40616;	Hs.6311	2.38	0.54	6.80	0.92	2.86	Homo sapiens cDNA: FLJ20859 fis, clone ADKA01617
yg73c09	51540	R51740;	Hs.288959	1.31	0.18	3.70	0.65	2.83	Homo sapiens cDNA: FLJ20920 fis, clone ADSE00877
yf50h09	9583	R11191;	Hs.11637	3.87	0.33	10.71	1.31	2.77	Homo sapiens mRNA; cDNA DKFZp47J125 (from clone DKFZp47J125)
c-2ba02	4345	Z41723; Z44845;	Hs.15921	1.93	0.37	5.31	1.02	2.75	Hypothetical protein FLJ10759
yg36f12	11000	R25011; R45019;	Hs.118983	1.13	0.27	3.00	0.46	2.65	Homo sapiens cDNA: FLJ21505 fis, clone MAMMA1000422
c-24b10	1689	Z45463	Hs.154919	2.67	0.43	6.60	1.44	2.47	KIAA0625 protein
Table 4 (continued)

Clone ID	GENX	GenBank accession number	Unigene	C. int.	C. SD	S. int.	S. SD	Ratio	Similarity	
Upregulated clones (continued)	yf76a11	1849	R13420; R40930	Hs.7822	1.12	0.09	2.73	0.33	2.43	cDNA DKFZp564C1216 (from clone DKFZp564C1216)
yc91c07	162	F10758; F13156	Hs.140833	0.61	0.14	1.46	0.32	2.41	H. sapiens mRNA full length insert cDNA clone EUROIMAGE 29222	
yc94c08	4310	R38361; T77413	Hs.119004	0.53	0.05	1.25	0.22	2.36	KIAA0665 gene product	
yg57f04	3072	R34427; Hs.140833	0.61	0.14	1.46	0.32	2.41	H. sapiens mRNA full length insert cDNA clone EUROIMAGE 29222		
yg15g12	5559	R18075; R44290	Hs.22370	0.66	0.14	1.45	0.21	2.19	cDNA DKFZp564A00122 (from clone DKFZp564A00122)	
yg97d02	1018	R59194; R59252	Hs.5324	0.64	0.07	1.32	0.16	2.06	Hypothetical protein (CL25022)	
yc95f04	3851	F13386; Hs.7888	0.58	0.07	1.16	0.25	2.02	H. sapiens clone 23736 mRNA sequence		
Downregulated clones	yg42e05	4312	R45416; R25077	Hs.169330	1.05	0.23	0.52	0.05	0.49	Neuronal protein (NP25)
yg89f11	2081	R55970; R55969	Hs.16443	1.16	0.27	0.56	0.06	0.49	H. sapiens cDNA: FLJ21721 fis, clone COLF0381	
yg33e09	5446	R20455; R44290	Hs.333389	1.39	0.19	0.67	0.17	0.48	Hypothetical protein MGC13090	
c-2aa11	1485	Z40609; Z44824	Hs.13485	1.44	0.23	0.70	0.16	0.48	KIAA00018 protein	
yf65e06	5690	R13865; R37007	Hs.301685	1.03	0.21	ND	ND	0.48	KIAA0620 protein	
yg76d07	37588	H05960; H06010	Hs.92418; Hs.63510	3.95	0.73	1.85	0.18	0.47	KIAA0141	
c-2cg09	201091	F03885; F07635	Hs.288361	1.06	0.10	0.49	0.02	0.47	H. sapiens cDNA: FLJ22696 fis, clone HSI11696	
yg64h02	2829	R35543; R51112	Hs.12239	2.94	0.61	1.35	0.30	0.46	CGI-10 protein (LOC51004)	
yf49c08	23982	R11699; R17677	Hs.322844	1.29	0.32	0.58	0.12	0.45	Hypothetical protein DKFZp564A176	
yg33g08	636	R20203; R44989	Hs.7750	8.39	1.43	3.60	0.64	0.43	Novel human gene mapping to chromosome 1	
yf53d08	532	R11837; R36955	Hs.246885	1.07	0.05	0.44	0.08	0.42	Hypothetical protein FLJ20783	
yg65h10	10701	R35431; R49229	Hs.222746	1.04	0.25	0.42	0.09	0.40	KIAA1610 protein	
yg69e11	1257	R36317; R49249	Hs.216958	1.16	0.28	0.44	0.10	0.38	KIAA0194 protein	
yf79f12	5599	R14349; R40677	Hs.179946	2.55	0.37	0.86	0.20	0.34	KIAA1100 protein	
yf86c11	1909	R15181; R41632	Hs.286013	1.06	0.14	0.34	0.08	0.32	Short coiled-coil protein	
yf78c09	1664	R14217; R40635	Hs.351029	1.04	1.29	3.36	0.75	0.32	H. sapiens cDNA FLJ31803 fis, clone NT2R12009101	
yf61c10	1067	R13997; R39120	Hs.5008; Hs.21515	1.11	0.09	0.35	0.08	0.32	CG-87 protein	
yd06g01	2455	R38891; R81283	Hs.165570	1.41	0.07	0.45	0.10	0.32	H. sapiens clone 25052 mRNA sequence	
yf64f10	111134	R36936	Hs.80285	8.72	0.83	2.76	0.35	0.32	mRNA cDNA DKFZp586C1723 (from clone DKFZp586C1723)	
treatment [55-57]. M6PR encodes the cation-dependent mannose-6-phosphate receptor, which has been implicated in retinoid-induced apoptosis [58]. NMA, encoding a putative transmembrane protein, is expressed at low levels in metastatic human melanoma cell lines and xenografts, and is completely absent in highly metastatic human melanoma cell lines [59]. APCL, encoding adenomatous polyposis coli like protein, is a tumor-suppressor gene [60]. METAP2 encodes methionine aminopeptidase eIF-2-associated p67, which interacts with eukaryotic translation initiation factor eIF-2 [61] and could regulate p53 signaling [62]. BAT3, downregulated in some transformed cells, encodes HLA-B associated transcript-3, which interacts with eukaryotic translation initiation factor eIF-2 [61] and could regulate p53 signaling [62]. BAT3, downregulated in some transformed cells, encodes HLA-B associated transcript-3, which interacts with eukaryotic translation initiation factor eIF-2 [61] and could regulate p53 signaling [62]. BAT3, downregulated in some transformed cells, encodes HLA-B associated transcript-3, which interacts with eukaryotic translation initiation factor eIF-2 [61] and could regulate p53 signaling [62]. BAT3, downregulated in some transformed cells, encodes HLA-B associated transcript-3, which interacts with eukaryotic translation initiation factor eIF-2 [61] and could regulate p53 signaling [62].

Four genes out of the other genes presented in Table 2 have already been implicated in neuronal disorders, suggesting that ceramide may be a key second messenger in these pathologies. The upregulation of the glutamate receptor gene (GRIA2) seems to be an indicator of tolerance to ischemia [75]. The absence of somatostatin, encoded by SST (downregulated in our model), is associated with apoptotic neurons in patients with Alzheimer’s disease [76]. SMN, encoding Survival of motor neuron 2, downregulated by C2-ceramide, strongly contributes to the severity of the spinal muscular atrophy [77]. MUT mRNA is upregulated in ischemia, in relation to a decrease in the accumulation of its neurotoxic metabolite [78].

In conclusion, our cell culture model has enabled us to establish a profile of gene expression during the effector phase of ceramide-mediated cell death. In spite of the stringency of the criteria adopted for differential hybridization, a large number of cDNA clones, 239 of the 9,120 in our cDNA array derived from a normalized infant brain library,
Table 5

Unknown genes differentially expressed in ceramide-dependent apoptosis

Clone ID	GENX	GenBank accession number	Unigene	C. int.	C. SD	S. int.	S. SD	Ratio	Similarity
Upregulated clones									
yf66a04	17755	R18781	1.04	0.24	5.19	0.59	4.98 ESTs		
yf88d07	3024	R15141; R41563	Hs.12381	1.21	0.09	5.83	0.85	4.80 ESTs	
yc85h07	11132	F12902; T74741	1.38	0.16	5.75	0.53	4.16 ESTs		
yg38a10	2564	R19870; R45098	Hs.182503	1.32	0.23	5.46	0.63	4.15 ESTs	
c-25h01	1301	Z44625	Hs.29672	4.51	0.68	18.31	3.99	4.06 ESTs	
yg53c11	5862	R25710; R62454	Hs.238956	1.83	0.19	7.36	0.59	4.02 ESTs	
yg02a02	5691	R18381; R42444	Hs.240816	1.52	0.23	6.08	0.94	4.00 ESTs	
yh09g12	4411	R61781; R61782	1.20	0.30	4.55	0.24	3.78 ESTs		
yf80c09	943	R14362	2.24	0.32	8.34	0.16	3.73 ESTs		
yd02e05	761	R39357; T80134	Hs.306425; Hs.327350	1.20	0.19	4.47	0.73	3.72 ESTs	
yg17c05	5291	R18746; R43067	Hs.238956	1.09	0.11	3.79	0.39	3.48 ESTs	
c-2ef12	1659	F07687	2.97	0.12	8.10	0.31	3.36 ESTs		
yf58c03	1072	R12737; R39789	Hs.119714	3.06	0.60	10.30	0.39	3.36 ESTs	
yf69b01	160	H00104	5.20	2.54	10.72	1.23	3.11 ESTs		
yc93d09	438	T77119	Hs.21417	2.08	0.45	6.77	1.60	3.25 ESTs	
c-28b03	1425	F07517; Z40576	2.49	0.35	7.77	0.52	3.12 ESTs		
yg60e11	2509	R35134	4.12	0.92	13.72	2.61	2.82 ESTs		
yf96g09	11047	H09060	2.97	0.51	9.23	1.00	3.11 ESTs		
yg02b03	2758	R18419	Hs.18585	3.51	0.62	10.83	1.03	3.09 ESTs	
yf94d10	11844	R16329; R41405	Hs.197143	2.73	0.46	8.41	1.14	3.08 ESTs	
yf63h02	201117	R13594	Hs.155639	1.92	0.25	5.75	0.77	3.00 ESTs	
yf98c09	16058	R18177; R42241	Hs.106359	1.07	0.24	3.17	0.27	2.95 ESTs	
yf80c07	1885	F07517; Z40576	2.49	0.35	7.77	0.52	3.12 ESTs		
yc92a01	11141	F13028; T76925	2.08	0.45	6.77	1.60	3.25 ESTs		
yf76a02	711	R13339	Hs.7913	5.21	0.78	14.52	3.06	2.79 ESTs	
yf55h04	664	R12357	3.64	0.18	9.99	1.24	2.75 ESTs		
yc85h06	11131	F12901; T74740	5.20	0.54	14.15	2.43	2.72 ESTs		
yf88c03	10642	F12878; R38624	Hs.106313	1.50	0.30	4.04	0.70	2.70 ESTs	
yg39a10	10317	R19899; R45120	Hs.89388	4.91	0.67	12.91	2.40	2.63 ESTs	
yc15d09	6818	R61465	4.60	0.37	11.88	1.21	2.58 ESTs		
yg02g01	1987	R18425; R42486	Hs.4983	1.11	0.27	2.75	0.51	2.47 ESTs	
yg08h03	201114	R22721; R43427	Hs.244482	0.70	0.17	1.60	0.08	2.28 ESTs	
yg33b02	4208	R20161; R44947	Hs.22905	0.91	0.19	2.05	0.17	2.26 ESTs	
yf44c04	3106	R25497; R45563	None	1.11	0.27	2.60	0.50	2.33 ESTs	
yf46g12	5388	R20696; R45358	Hs.311444; Hs.6591	0.90	0.17	1.95	0.48	2.16 ESTs	
yg42a06	2573	R25050; R45389	Hs.23558	0.57	0.14	1.22	0.22	2.13 ESTs	
yf63f11	5521	R36919	Hs.25205	0.99	0.14	2.11	0.19	2.13 ESTs	
Downregulated clones									
c-2eg10	1662	F03955; F07692	1.04	0.19	0.51	0.08	0.49 ESTs		
c-29f04	201571	Z40598; Z45048	Hs.184780	1.06	0.15	0.52	0.11	0.49 ESTs	
c-2ia08	1913	Z40977; Z45261	Hs.125266	1.03	0.22	ND	ND	0.49 ESTs	
c-2ch10	3050	F03889; F07637	Hs.27278	2.42	0.49	1.12	0.24	0.46 ESTs, weakly similar to chain A, cyclophilin A complexed with cyclosporin A (H. sapiens)	
correspond to genes up- or downregulated by C₂-ceramide treatment. Already-known genes account for 179 of the transcripts, 113 of which have a putative function.

On the basis of their putative functions, we have made an attempt at classifying these transcripts, first with respect to known effects of ceramide or ceramide-mediated transduction systems, then with respect to regulation of cell growth and apoptosis. The 30 genes in Tables 1 and 2 met these criteria, validating the approach and suggesting that the other modulated genes may also be relevant with regard to the progression of the cell-death mechanisms. These genes were classified as having no obvious relation to cell death or survival (Table 3), no known function (Table 4) or as poorly characterized (Table 5).

Interestingly, given the large number of genes known to be modulated by NFκB in the immune system [79], it was surprising that only pentraxin was detected in our model. This suggests either that NFκB is less important in neurons than in lymphocytes, or that its targets are different. Conversely, the transcriptional regulators responsible for the differential expression of the genes detected in our study remain to be discovered. In any case, our results show that transcriptional regulation plays an important role in ceramide-mediated cell death and that some of the modulated transcripts, in agreement with published studies, are involved in other cell-death mechanisms as well.

Materials and methods

Cell culture

Rat PC12 cells [80], which acquire a neuronal phenotype in the presence of nerve growth factor (NGF), were plated at a density of 2,000-3,000 cells/cm² in 75 cm² culture flasks coated with polyethyleneimine (1 mg/ml) in Leibovitz modified L15 medium (Gibco BRL) supplemented with 2% horse serum and 150 ng/ml NGF (grade II; Alomone Labs, Jerusalem, Israel). Rat PC12 cells were plated at a density of 2,000-3,000 cells/cm², then incubated with 10 ng/ml C₂-ceramide (naturals) for 24 h. The cells were used for experimentation after this incubation period.

Table 5

Clone ID	GENX	GenBank accession number	Unigene	C. int.	C. SD	S. int.	S. SD	Ratio	Similarity
yg83b05	20476	R53938; R53333		1.27	0.10	0.56	0.13	0.44	ESTs
yg36f04	5214	R24580	Hs.27104	2.18	0.53	0.95	0.17	0.43	ESTs
yf60a12	3065	R38592; R13746		6.52	1.15	2.61	0.42	0.40	ESTs
yc86e07	2935	F10326; F12716	Hs.227993	7.76	0.94	3.02	0.59	0.39	ESTs
yc90f10	10752	F10679; F13085	Hs.12395	1.12	0.20	0.43	0.08	0.38	ESTs
yc97e12	4395	T78036	Hs.23213	1.11	0.20	0.41	0.05	0.37	ESTs
yf50h10	477	R11920; R39108	Hs.6777	2.39	0.56	0.82	0.16	0.34	ESTs
yf74a06	16024	R13206; R40294		1.32	0.28	0.45	0.10	0.34	ESTs
yg96e11	3143	R59141; R59142		1.30	0.19	0.43	0.08	0.33	ESTs
yf51a04	958	R11976; R39818	Hs.4241	1.25	0.23	0.40	0.09	0.32	ESTs
yg51e05	5025	R46483; R21387	Hs.23187	6.26	0.92	1.98	0.19	0.32	ESTs
yg02h09	2969	R17514; R42608	Hs.139270	10.09	0.93	3.19	0.46	0.32	ESTs
yf66e03	978	R37086	Hs.23210	1.72	0.18	ND	ND	0.29	ESTs
yf76b06	115094	R18860	Hs.203213	1.72	0.28	ND	ND	0.29	ESTs
yf91f12	4185	H08130; H08131	Hs.19515	2.86	0.33	0.70	0.17	0.25	ESTs
yg14a03	2782	R17432; R42778	Hs.22217	1.57	0.27	0.34	0.06	0.22	ESTs
yf52e12	4147	R12228; R39947	Hs.7237	1.57	0.30	0.34	0.06	0.22	ESTs
yf50g11	1829	R11917; R39107	Hs.352354; Hs.244624	2.37	0.24	0.48	0.10	0.20	ESTs
yf84b08	2237	R14545; R41206	Hs.349648	1.06	0.17	0.19	0.03	0.18	ESTs, weakly similar to KIAA1157 protein (H. sapiens)

Abbreviations and column headings are as in Table 1.
Israel) as previously described [81]. Apoptosis was induced, after 6 days in the presence of NGF, with the cell-permeant C2 analog of ceramide (C2-ceramide), N-acetylsphingosine (Biomol Research Laboratories, Plymouth Meeting, PA), at a concentration of 25 μM. As negative control, an inactive C2 analog of ceramide (C2-dihydroceramide), N-acetylsphinganine (Biomol Research Laboratories), was used in the same condition as C2-ceramide.

Morphological characterization of apoptosis and cell counts

Neurite retraction and cell shrinkage were visualized by phase-contrast microscopy. Condensed and fragmented nuclei were made visible in situ as described in [7], by intercalation into nuclear DNA of the fluorescent probe propidium iodide. Propidium iodide, which only enters dead cells that have become permeable, was visualized by epifluorescence with a rhodamine filter (excitation, 548-580 nm; emission, 580-610 nm). Viability was quantified by counting cells in at least 10 randomly chosen fields with a 20x objective. The percentage of cells excluding the vital dye propidium iodide was calculated at each time point after the beginning of C2-ceramide or C2-dihydroceramide treatment with respect to the corresponding control.

Measurement of caspase-3-like activity

Caspase-3-like activity was measured using the CaspACE Assay system (Promega, Madison, WI). Cell extracts containing equivalent amounts of protein were used to measure DEVDase (caspase-3-like) activity: the chromophore p-nitroaniline (pNA), released from the colorimetric substrate (Ac-DEVD-pNA) upon cleavage by DEVDase produces a yellow color that is monitored by a photometer at 405 nm.

Preparation of the cDNA macroarray

cDNA clones from a normalized infant brain library (library 1NIB; [20]) were randomly selected to provide a set of 9,120 cDNA clones. The 3’ and/or 5’ ends of these clones had been previously sequenced [25]. The sequences, registered in GenBank [82], were compared to those in public data bases, permitting tentative identification of the corresponding gene transcripts. The cDNA clones were used to prepare PCR products using oligonucleotide primers complementary to sequences in the vector. They were spotted by robot (Flexis; Perkin Elmer, Shelton, CT) at medium density (25 PCR products/cm²) on nylon membranes (Hybond-N+; Amersham Biosciences, Uppsala, Sweden) as previously described [83]. The entire collection of 9,120 cDNA clones was spotted on a set of four filters.
Figure 7
Schematic illustrating the putative roles of the proteins encoded by the genes noted in Figures 4 and 5.
Purification of poly(A)+ mRNA
Total RNA was extracted from control PC12 cultures and from PC12 cultures treated with C2-ceramide or C2-dihydroceramide (approximately 10⁶ cells) with the RNasea midi kit (Qiagen, Courtaboeuf, France), according to the manufacturer's instructions. The integrity of the RNA was confirmed by agarose gel electrophoresis. Poly(A)+ mRNA was extracted from total RNA with oligo(dT)-conjugated magnetic beads (Dynabeads; Dynal, Oslo, Norway), as described in the manufacturer’s protocols.

Complex cDNA target synthesis
Complex cDNA targets were synthesised by reverse transcription of 500 ng poly(A)+ mRNA extracted from control, C2-dihydroceramide- or C2-ceramide-treated PC12 cells. The reaction was performed with the SuperScript™ Preamplification System (Invitrogen) as previously described [84]. The reaction mixture contained random-oligonucleotide primers (500 ng), 50 µCi [α-33P]dATP, 3,000 Ci/mmol (Amersham), 500 µM d(T, C, G)TP (Amersham) and 50 µM dideoxyGTP (Invitrogen).

Filter hybridization
The filters were prehybridized at 68°C for 30 min in ExpressHyb hybridization solution (Clontech, Palo Alto, CA), hybridized for 2 h in the same solution to which the radiolabeled complex cDNA target was added, then washed twice for 30 min at 25°C in standard saline citrate (SSC) 1x/0.1% sodium dodecyl sulfate (SDS) and twice for 30 min at 25°C in SSC 0.1x/0.1% SDS. The washed filters were exposed to phosphor screens (Molecular Dynamics, Sunnyvale, CA) for 16 h.

Hybridization signal quantitation
Image acquisition was carried out with the PhosphorImager (Molecular Dynamics). The hybridization signal corresponding to each cDNA clone was quantitated with a specifically designed software (XdotsReader; Cose, Dugny, France) and compared to the signal obtained with the local background signal was subtracted. The intensity of the hybridization signal for each clone was then divided by the hybridization signal corresponding to 18S rRNA (control probe). For northern blot analysis, the blots were prehybridized 2 h in ULTRAhyb hybridization buffer (Ambion, Austin, TX), hybridized with the labelled probe (1-2 x 10⁶ cpm/ml) for 16 h at 42°C in the same solution, and washed as for the high-density filters. The washed filters were exposed to phosphor screens (Molecular Dynamics) for 48 h. The hybridization signal of the specific probes was analyzed with the ImageQuant software (Molecular Dynamics) and compared to the signal obtained with the control probe.

RT-PCR
Total RNA of PC12 cells cultured with or without C2-ceramide was purified according to the protocol described above. Total RNA (2 µg) were reverse transcribed using the SuperScript™ Preamplification System (Invitrogen) according to the manufacturer’s protocol. An aliquot of the reaction was then used for PCR amplification with the Advantage PCR kit (Clontech) and primers specific to the gene of interest. The amplification products were visualized after electrophoresis in a 1.5% agarose gel with ethidium bromide. The signals were analyzed with ImageQuant software and compared to HPRT (hypoxanthine phosphoribosyltransferase) as control gene.

Acknowledgements
This work was supported by the CNRS and grants from European Union to J.M. (TMR project Neuril) and BIOMED2 programs (EURO-IMAGE Consortium, BMH4-CT-97-2284) to C.A. C.M. was supported by Genome Express and C.D. acknowledges fellowships from the Fédération Française des Groupements Parkinsoniens (FFGP) and the Association pour la Recherche sur le Cancer (ARC).

References
1. Hannun YA: Functions of ceramide in coordinating cellular responses to stress. Science 1996, 274:1855-1859.
2. Mathias S, Pena LA, Kolesnick RN: Signal transduction of stress via ceramide. Biochem J 1998, 335:465-480.
3. Furuya S, Mitoma J, Malina A, Hirabayashi Y: Ceramide and its interconvertible metabolite sphingosine function as indispensable lipid factors involved in survival and dendritic differentiation of cerebellar Purkinje cells. J Neurochem 1998, 71:366-377.
4. Obeid LM, Venable ME: Signal transduction in cellular senescence. J Am Geriatr Soc 1997, 45:361-366.
5. Kolesnick R, Golde DW: The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1996, 77:325-328.
6. Kyprianou N, Alexander RB, Isaacs JT: Activation of programmed cell death by recombinant human tumor necrosis factor plus topoisomerase II-targeted drugs in L929 tumor cells. J Natl Cancer Inst 1991, 83:346-350.
7. Brugg B, Michel PP, Agid Y, Ruberg M: Ceramide induces apoptosis in cultured mesencephalic neurons. J Neurochem 1996, 66:733-739.
8. Mitoma J, Ito M, Furuya S, Hirabayashi Y: Bipotential roles of ceramide in the growth of hippocampal neurons: promotion of cell survival and dendritic outgrowth in dose- and developmental stage-dependent manners. J Neurosci 1998, 18:712-722.
9. Hartfeld P, Mayne GC, Murray AW: Ceramide induces apoptosis in PC12 cells. FEBS Lett 1997, 401:148-152.
10. France-Lanord Y, Brugg B, Michel PP, Agid Y, Ruberg M: Mitochondrial free radical signal in ceramide-dependent apoptosis: a
putative mechanism for neuronal death in Parkinson’s disease. J Neurochem 1998, 69:1612-1621.
11. Lamberg N, Michel PP, Brugg B, Agid Y, Ruberg M: Mechanisms of apoptosis in PC12 cells irreversibly differentiated with nerve growth factor and cyclic AMP. Brain Res 1999, 821:60-68.
12. Woff RA, Dobrowsky RT, Bielawska A, Obeid LM, Hannun YA: Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 1994, 269:19605-19609.
13. Reyes JG, Robayna IG, Delgado PS, Gonzalez IH, Aguiar JQ, Rosas FE, Fanjul LF, Galarratta CM: c-Jun is a downstream target for ceramide-activated protein phosphatase in A431 cells. J Biol Chem 1996, 271:21375-21380.
14. Su B, Kurnit M: Mitogen-activated protein kinase cascade and regulation of gene expression. Curr Opin Immunol 1996, 8:402-411.
15. Williame S, Vanhoupte P, Caboche J, Lemaigre-Dubreuil Y, Mariani J, Brugg B: Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur J Neurosci 2001, 11:2037-2046.
16. Schubert KM, Scheid MP, Duronio V: Ceramide inhibits protein kinase C-mediated promoting dephosphorylation of serine 473. J Biol Chem 2000, 275:13330-13335.
17. Salinas M, Lopez-Valdaliso R, Martin D, Alvarez A, Cuadrado A: Inhibition of PKB/Akt by C2- ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci 2000, 15:156-169.
18. Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R: BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 1998, 273:30419-30426.
19. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Fauchoux BA, Agid Y, Hirsh EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 1997, 94:7531-7536.
20. Salinas M, Alfonso MF, Jelene P, Su L, Lawton L, Esfratiadis A: Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci USA 1994, 91:9228-9232.
21. Nicholson DW: Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999, 6:1028-1042.
22. Hartfield PJ, Bilney AJ, Murray AW: Neurotrophic factors prevent ceramide-induced apoptosis downstream of c-Jun N-terminal kinase activation in PC12 cells. J Neurochem 1998, 71:161-169.
23. Huguette R, Mariage-Samson R, Duprat S, Tessier A, Bentolila S, Lamy B, Auffray C: The Genexpress Index: a resource for gene discovery and the genic map of the human genome. Genome Res 1995, 5:272-304.
24. Identification of genes involved in ceramide-dependent neuronal apoptosis using cDNA arrays. [http://idefix.ers1984.vjf.cnrs.fr/APOPTOSE/]
25. Jayadev S, Hayter HL, Andrieu N, Gamard CJ, Liu B, Balu R, Wallace BA: A model for Batten disease protein CLN3: function and structural implications from homology and mutations. J Neurochem 1996, 69:175-177.
26. Reyes JG, Rosas FE, Fanjul LF, Galarratta CM: c-Jun is a downstream target for ceramide-activated protein phosphatase in A431 cells. J Biol Chem 1996, 271:21375-21380.
27. The International Batten Disease Consortium: Isolation of a novel gene underlying Batten disease, CLN3. Cell 1995, 82:949-957.
28. Gilles F, Raes MB, Stehelin D, Vandenbunder B, Faufeur V. The c-ets1 proto-oncogene is a new early-response gene differentially regulated by cytokines and growth factors in human fibroblasts. Exp Cell Res 1996, 221:370-376.
29. Basile A, Sica A, d’Aniello E, Breviario F, Garrido G, Castellano M, Mantovani A, Introna M: Characterization of the promoter for the human long pentraxin PTX3. Role of NF-κB in tumor necrosis factor-alpha and interleukin-1beta regulation. J Biol Chem 1997, 272:8172-8178.
30. Mantovani A, Muzio M, Ghezzi P, Colotta C, Introna M: Regulation of inhibitory pathways of the interleukin-1 system. Ann NY Acad Sci 1998, 840:338-351.
31. Solis-Herruzo JA, Brenner DA, Chojkier M: Tumor necrosis factor alpha inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts. J Biol Chem 1988, 263:5841-5845.
32. Hernandez-Munoz I, de la Torre P, Sanchez-Alcazar JA, Garcia I, Santiago E, Munoz-Yague MT, Solis-Herruzo JA: Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology 1997, 113:625-640.
33. Wolf FW, Marks RM, Sarma V, Byers MG, Katz RW, Shows TB, Dzier VM: Characterization of a novel tumor necrosis factor-alpha induced endothelial primary response gene. J Biol Chem 1992, 267:1317-1326.
34. Bellotta P, Zhang Q, Goff SP, Basilico C: Signaling through the ARK tyrosine kinase receptor promotes apoptosis from in the death domain family. Science 1996, 272:161-169.
35. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda JE, Mackenzie A, Korneluk RG: Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996, 379:349-353.
36. Maselli L, Ettenberg S, Ramamurthy V, Vestergaard-Sykes K, Cutler ML: The ras suppressor, RSU-1, enhances nerve growth factor-induced differentiation of PC12 cells and induces p21CIP expression. Cell Growth Differ 1999, 10:555-564.
37. Schubert KM, Scheid MP, Duronio V: Ceramide inhibits protein kinase C-mediated promoting dephosphorylation of serine 473. J Biol Chem 2000, 275:13330-13335.
38. Salinas M, Lopez-Valdaliso R, Martin D, Alvarez A, Cuadrado A: Inhibition of PKB/Akt by C2- ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci 2000, 15:156-169.
39. Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R: BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 1998, 273:30419-30426.
40. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Fauchoux BA, Agid Y, Hirsh EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 1997, 94:7531-7536.
41. Nicholson DW: Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999, 6:1028-1042.
42. Hartfield PJ, Bilney AJ, Murray AW: Neurotrophic factors prevent ceramide-induced apoptosis downstream of c-Jun N-terminal kinase activation in PC12 cells. J Neurochem 1998, 71:161-169.
43. Huguette R, Mariage-Samson R, Duprat S, Tessier A, Bentolila S, Lamy B, Auffray C: The Genexpress Index: a resource for gene discovery and the genic map of the human genome. Genome Res 1995, 5:272-304.
44. Identification of genes involved in ceramide-dependent neuronal apoptosis using cDNA arrays. [http://idefix.ers1984.vjf.cnrs.fr/APOPTOSE/]
45. Jayadev S, Hayter HL, Andrieu N, Garmard CJ, Liu B, Balu R, Hayakawa M, Ito F, Hannun YA: Phospholipase A2 is necessary for tumor necrosis factor alpha-induced ceramide generation in L929 cells. J Biol Chem 1997, 272:17196-17203.
46. Janes RW, Munroe PB, Mitchison HM, Gardiner RM, Mole SE, Wallace BA: A model for Batten disease protein CLN3: functional implications from homology and mutations. FEBS Lett 1996, 399:75-77.
47. The International Batten Disease Consortium: Isolation of a novel gene underlying Batten disease, CLN3. Cell 1995, 82:949-957.
48. Gilles F, Raes MB, Stehelin D, Vandenbunder B, Faufeur V. The c-ets1 proto-oncogene is a new early-response gene differentially regulated by cytokines and growth factors in human fibroblasts. Exp Cell Res 1996, 221:370-376.
49. Basile A, Sica A, d’Aniello E, Breviario F, Garrido G, Castellano M, Mantovani A, Introna M: Characterization of the promoter for the human long pentraxin PTX3. Role of NF-kappaB in tumor necrosis factor-alpha and interleukin-1beta regulation. J Biol Chem 1997, 272:8172-8178.
50. Mantovani A, Muzio M, Ghezzi P, Colotta C, Introna M: Regulation of inhibitory pathways of the interleukin-1 system. Ann NY Acad Sci 1998, 840:338-351.
51. Goswami R, Kilkuja J, Dawson SA, Dawson G: Overexpression of Akt (protein kinase B) confers protection against apoptosis and prevents formation of ceramide in response to pro-apoptotic stimuli. J Neurosci Res 1999, 57:884-893.

52. Roy N, Mahadevan MS, McLean M, Shuter G, Yaraghi Z, Farahani R, Baird S, Besner-Johnston A, Lefebvre C, Kang X, et al.: The gene for neuronal apoptosis inhibitory protein is partially deleted in individual with spinal viral polyoma. Cell 1995, 80:167-178.

53. Tsuda T, Marinetto MR, Masuelli L, Cutler ML: The Ras suppressor RSU-1 localizes to 10p13 and its expression in the U251 glioblastoma cell line correlates with a decrease in growth rate and tumorigenic potential. Oncogene 1995, 11:397-403.

54. Kajikawa S, Nakayama H, Suzuki M, Takashima A, Murayama O, Nishihara M, Takahashi M, Doi K: Increased expression of a ribosomal protein L4 mRNA in 5-azacytidine-treated PC12 cells prior to apoptosis. Biochem Biophys Res Commun 1998, 252:220-224.

55. Vito P, Pellegrini L, Guiet C, D’Adamo L: Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J Biol Chem 1999, 274:1533-1540.

56. Vito P, La M, E’Dalamo L: Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 1996, 271:521-525.

57. Lacena E, Ganeje KJ, Vito P, D’Adamo L: Dissociation of apoptosis and activation of IL-1beta-converting enzyme/Ced-3 protease by ALG-2 and the truncated Alzheimer’s gene ALG-3. J Immunol 1997, 158:5129-5135.

58. Kang JX, Bell J, Beard RL, Chandraratna RA: Mannose 6-phosphate/insulin-like growth factor II receptor mediates the growth-inhibitory effects of retinoids. Cell 1999, 100:591-600.

59. Degen WG, Weterman MA, van Groningen JJ, Cornelissen IM, Lemmers JP, Agterobos MA, Geurts van Kessel A, Swart GW, Bloemers HP: Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melanoma cell lines and normal skin melanocytes. J Invest Dermatol 1998, 110:460-465.

60. Nakagawa H, Koyama K, Murata Y, Morito M, Akiyama T, Nakamura Y: APCL, a central nervous system-specific homologue of adenomatous polyposis coli tumor suppressor, binds to p53 binding protein 2 and translocates it to the perinucleus. Cancer Res 2000, 60:101-105.

61. Ray MK, Datta B, Chakraborty A, Chattopadhyay A, Meza-Keuthen S, Gupta NK: The eukaryotic initiation factor 2-associated 67-kDa polypeptide (p67) plays a critical role in regulation of protein synthesis initiation in animal cells. Eur J Neurosci 1995, 7:425-434.

62. Cuddihy AR, Li S, Tam NW, Wong AH, Taya Y, Abraham N, Bell JC, Koromilas AE: Cloning of AIP1, a central nervous system-specific homologue of APCL, a central nervous system-specific homologue of adenomatous polyposis coli tumor suppressor, binds to p53 binding protein 2 and translocates it to the perinucleus. Cancer Res 2000, 60:101-105.

63. Ray MK, Datta B, Chakraborty A, Chattopadhyay A, Meza-Keuthen S, Gupta NK: The eukaryotic initiation factor 2-associated 67-kDa polypeptide (p67) plays a critical role in regulation of protein synthesis initiation in animal cells. Eur J Neurosci 1995, 7:425-434.

64. Zhang H, Xu Q, Krajewski S, Krajewska M, Xie Z, Fuess S, Kitada S, Nishihara M, Takahashi M, Doi K: Increased expression of a ribosomal protein L4 mRNA in 5-azacytidine-treated PC12 cells prior to apoptosis. Biochem Biophys Res Commun 1998, 252:220-224.

65. Vito P, Pellegrini L, Guiet C, D’Adamo L: Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J Biol Chem 1999, 274:1533-1540.

66. Vito P, La M, E’Dalamo L: Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 1996, 271:521-525.

67. Lacena E, Ganeje KJ, Vito P, D’Adamo L: Dissociation of apoptosis and activation of IL-1beta-converting enzyme/Ced-3 protease by ALG-2 and the truncated Alzheimer’s gene ALG-3. J Immunol 1997, 158:5129-5135.

68. Kang JX, Bell J, Beard RL, Chandraratna RA: Mannose 6-phosphate/insulin-like growth factor II receptor mediates the growth-inhibitory effects of retinoids. Cell 1999, 100:591-600.

69. Degen WG, Weterman MA, van Groningen JJ, Cornelissen IM, Lemmers JP, Agterobos MA, Geurts van Kessel A, Swart GW, Bloemers HP: Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melanoma cell lines and normal skin melanocytes. J Invest Dermatol 1998, 110:460-465.

70. Nakagawa H, Koyama K, Murata Y, Morito M, Akiyama T, Nakamura Y: APCL, a central nervous system-specific homologue of adenomatous polyposis coli tumor suppressor, binds to p53 binding protein 2 and translocates it to the perinucleus. Cancer Res 2000, 60:101-105.

71. Ray MK, Datta B, Chakraborty A, Chattopadhyay A, Meza-Keuthen S, Gupta NK: The eukaryotic initiation factor 2-associated 67-kDa polypeptide (p67) plays a critical role in regulation of protein synthesis initiation in animal cells. Eur J Neurosci 1995, 7:425-434.

72. Cuddihy AR, Li S, Tam NW, Wong AH, Taya Y, Abraham N, Bell JC, Koromilas AE: Cloning of AIP1, a central nervous system-specific homologue of APCL, a central nervous system-specific homologue of adenomatous polyposis coli tumor suppressor, binds to p53 binding protein 2 and translocates it to the perinucleus. Cancer Res 2000, 60:101-105.

73. Ray MK, Datta B, Chakraborty A, Chattopadhyay A, Meza-Keuthen S, Gupta NK: The eukaryotic initiation factor 2-associated 67-kDa polypeptide (p67) plays a critical role in regulation of protein synthesis initiation in animal cells. Eur J Neurosci 1995, 7:425-434.