Binomial tribonacci sums

Kunle Adegoke1, Robert Frontczak2, Taras Goy3

1Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
2Landesbank Baden-Württemberg, Stuttgart, Germany
3Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivske, Ukraine

(Received: 20 August 2021. Received in revised form: 28 September 2021. Accepted: 6 October 2021. Published online: 13 October 2021.)

© 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

We derive expressions for several binomials sums involving a generalized tribonacci sequence. We also study double binomial sums involving this sequence. Several explicit examples involving tribonacci and tribonacci–Lucas numbers are stated to highlight the results.

Keywords: generalized tribonacci sequence; tribonacci number; tribonacci–Lucas number; binomial transform.

2020 Mathematics Subject Classification: 11B37, 11B39.

1. Introduction

There is a dearth of tribonacci summation identities including binomial coefficients. Our goal in this paper is to derive several new binomial tribonacci sums such as

\[
\sum_{k=0}^{n} \binom{n}{k} G_{4k+s} = 2^n G_{3n+s},
\]

\[
\sum_{k=1}^{n} \binom{n}{k} G_{4k+s} = \sum_{m=1}^{n} \frac{2^m G_{3m+s} - G_s}{m},
\]

\[
\frac{3n}{2k} G_{2k+s} = 2^{n-1}(G_{4n+s} + (-1)^n G_{s-2n}),
\]

\[
\sum_{k=0}^{n} (-1)^{n-k} \binom{n+k}{2k} G_{4n+2k+s} = \frac{G_{8n+s} + G_s}{2n},
\]

and double binomial tribonacci summation identities such as

\[
\sum_{k=0}^{n} \binom{k}{p} (-1)^{k+p} \binom{n}{k} G_{5k+p+s} = 3^n G_{3n+s},
\]

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} \binom{k}{p} \frac{G_{k+5p+s}}{3^k} = \left(\frac{7}{3}\right)^n G_{3n+s}.
\]

In the above identities, \(n\) denotes a non-negative integer, \(s\) and \(p\) are arbitrary integers and \(G_n\) is a generalized tribonacci number.

The generalized tribonacci sequence \(G_n = G_n(c_0, c_1, c_2), n \geq 0,\) is defined recursively by

\[
G_n = G_{n-1} + G_{n-2} + G_{n-3}, \quad n \geq 3,
\]

with initial values \(G_0 = c_0, G_1 = c_1, G_2 = c_2\) not all being zero. Extension of the definition of \(G_n\) to negative subscripts is provided by writing the recurrence relation as

\[
G_{-n} = G_{-(n-3)} - G_{-(n-2)} - G_{-(n-1)},
\]

so that \(G_n\) is defined for all integers \(n\).

The most prominent representatives of \(G_n\) and widely studied in the literature are \(G_n(0, 1, 1) = T_n\) the sequence of tribonacci numbers and \(G_n(3, 1, 3) = K_n\) the sequence of tribonacci–Lucas numbers (sequences A000073 and A001644 in [19], respectively).

The first few tribonacci numbers and tribonacci–Lucas numbers with positive and negative subscripts are given in Table 1.

*Corresponding author (adegoke00@gmail.com).
Properties of (generalized) tribonacci sequences were investigated in the recent articles [1–4, 7, 8, 10, 12–18, 20, 21], among others. For instance, Janjić [16] found the remarkable combinatorial identity

\[T_n = 1 + \sum_{k=1}^{n-1} \sum_{i=0}^{k} \sum_{j=1}^{i-1} \binom{k}{i} \binom{j-1}{n-k-2j}. \]

A generalized tribonacci number \(G_n(c_0, c_1, c_2) \) is given by the Binet formula

\[G_n(c_0, c_1, c_2) = A\alpha^n + B\beta^n + C\gamma^n, \]

where \(\alpha, \beta \) and \(\gamma \) are the distinct roots of the equation \(x^3 - x^2 - x - 1 = 0 \). The coefficients \(A, B \) and \(C \) depend on the initial values and are determined by the system

\[
\begin{align*}
A + B + C &= c_0, \\
A\alpha + B\beta + C\gamma &= c_1, \\
A\alpha^2 + B\beta^2 + C\gamma^2 &= c_2.
\end{align*}
\]

The Binet formulas for \(T_n \) and \(K_n \) are

\[T_n = \frac{\alpha^{n+1}}{(\alpha - \beta)(\alpha - \gamma)} + \frac{\beta^{n+1}}{(\beta - \alpha)(\beta - \gamma)} + \frac{\gamma^{n+1}}{(\gamma - \alpha)(\gamma - \beta)} \]

and

\[K_n = \alpha^n + \beta^n + \gamma^n, \]

where

\[\alpha = 1 + \frac{\sqrt{19} + 3\sqrt{33} + \sqrt{19 - 3\sqrt{33}}}{3}, \quad \beta = 1 + \omega\frac{\sqrt{19} + 3\sqrt{33} + \omega^2\sqrt{19 - 3\sqrt{33}}}{3}, \]

\[\gamma = 1 + \omega^2\frac{\sqrt{19} + 3\sqrt{33} + \omega\sqrt{19 - 3\sqrt{33}}}{3}, \]

and \(\omega = \frac{-1+i\sqrt{3}}{2} \) is a primitive cube root of unity.

Tribonacci and tribonacci-Lucas numbers with negative indices can be accessed directly, using the following result.

Lemma 1.1. For integer \(n \),

\[T_{-n} = T_{n-1}^2 - T_{n-2}T_n, \]

\[K_{-n} = \frac{K_n^2 - K_{2n}}{2}. \]

For a proof of (2), see, for example, [8, Theorem 2.2]. The proof of (3) one can find in [6, Formula (9)].

In this article, we study binomial and double binomial sums with terms being a generalized tribonacci sequence. We derive closed forms for several such sums. We also prove a general binomial identity characterizing \(G_{an+b} \) for \(a \geq 1 \) and \(b \) an arbitrary integer.

2. Some auxiliary results

In this section we present some results that we will use in the sequel.

Lemma 2.1. Let \(\phi \in \{\alpha, \beta, \gamma\} \). Then, for all \(n \geq 0 \), we have

\[\phi^{n+1} = \phi^2T_n + \phi(T_{n-1} + T_{n-2}) + T_{n-1}. \]

For a proof of (4), see [7, Formula (6)].
Lemma 2.2. We have

\begin{align}
(\alpha - 1)^3 &= 2\alpha^2, \\
(\alpha + 1)^3 &= 2\alpha^4, \\
(\alpha^2 + 1)^3 &= 4\alpha^5, \\
(\alpha^3 - 1)^3 &= 2\alpha^7, \\
\alpha^4 + 1 &= 2\alpha^2, \\
\end{align}

with identical relations for \(\beta\) and \(\gamma\).

Proof. Since

\begin{equation}
1 + \alpha + \alpha^2 = \alpha^3,
\end{equation}

we have

\begin{equation}
\frac{\alpha^2 + 1}{\alpha^2 - 1} = \alpha
\end{equation}

and

\begin{equation}
\frac{\alpha + 1}{\alpha - 1} = \alpha^2.
\end{equation}

Addition of (11) and (12) gives

\begin{equation}
(\alpha + 1)^2(\alpha - 1) = 2\alpha^2,
\end{equation}

while their subtraction produces

\begin{equation}
(\alpha - 1)^2(\alpha + 1) = 2.
\end{equation}

Eliminating \(\alpha + 1\) between (13) and (14) gives identity (5), while the elimination of \(\alpha - 1\) yields (6).

Cubing identity \(\alpha^2 + 1 = 2\alpha\alpha - 1\) and making use of (5) gives (7). Subtracting (10) from \(\alpha + \alpha^2 + \alpha^3 = \alpha^4\) produces identity (8). Identity (9) follows from \(\alpha^4 + 1 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha = (\alpha^2 + 1)(\alpha + 1)\) with the help of (6) and (7). \(\square\)

Lemma 2.3. Let \(a, b, c\) and \(d\) be rational numbers and \(\lambda\) an irrational number. Then

\[a + \lambda b = c + \lambda d \iff a = c, \ b = d. \]

3. Identities from the binomial theorem and binomial transform

The next lemma will be the key ingredient to derive many results in this paper. For a proof and some applications to Horadam numbers, see [11].

Lemma 3.1. Let \(n\) and \(j\) be integers with \(0 \leq j \leq n\). Then, for each \(x, y \in \mathbb{C}\), we have

\[\sum_{k=j}^{n} (-1)^{j-k} \binom{n}{k} y^{k} x^{n-k} = \binom{n}{j} y^{j} (x \pm y)^{n-j}. \]

We also mention the standard fact about sequences and their binomial transforms [5]: Let \((a_n)_{n \geq 0}\) be a sequence of numbers and \((b_n)_{n \geq 0}\) its binomial transform. Then we have the following relations:

\[b_n = \sum_{k=0}^{n} \binom{n}{k} a_k \iff a_n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} b_k. \]

Furthermore, if \(a_0 = 0\) (so that \(b_0 = 0\) too) the binomial pair exhibits the following properties:

\[\sum_{k=1}^{n} \binom{n}{k} \frac{a_k}{k} = \frac{1}{m} \sum_{m=1}^{n} b_m, \]

and

\[\sum_{k=1}^{n} \binom{n}{k} \frac{a_k}{k + 1} = \frac{1}{n + 1} \sum_{m=1}^{n} b_m. \]

Theorem 3.1. Let \(j\) and \(s\) be integers such that \(s\) is arbitrary and \(j \geq 0\). Then

\[\sum_{k=j}^{n} \binom{k}{j} \binom{n}{k} G_{4k+s} = \binom{n}{j} 2^{n-j} G_{3n+j+s}. \]
Proof. Use identity (9) in Lemma 3.1 with \(x = 1 \) and \(y = \alpha^4 \), taking note of Lemma 2.3.

Corollary 3.1. For \(n \) a non-negative integer and \(s \) any integer,

\[
\sum_{k=0}^{n} \binom{n}{k} G_{4k+s} = 2^n G_{3n+s},
\]

(19)

\[
\sum_{k=0}^{n} \binom{n}{k} (-2)^k G_{4k+s} = (-1)^n G_{4n+s},
\]

(20)

\[
\sum_{k=1}^{n} \binom{n}{k} \frac{G_{4k+s}}{k} = \sum_{m=1}^{n} \frac{2^m G_{3m+s} - G_s}{m}
\]

(21)

and

\[
\sum_{k=1}^{n} \binom{n}{k} \frac{G_{4k+s}}{k+1} = \frac{1}{n+1} \left(\sum_{m=1}^{n} 2^m G_{3m+s} - nG_s \right).
\]

(22)

Proof. To obtain (19) set \(j = 0 \) in (18). Identities (20), (21) and (22) follow form (15), (16) and (17), respectively.

From (19) and (20) we immediately obtain the following binomial tribonacci and tribonacci–Lucas relations.

Corollary 3.2. For \(n \geq 0 \),

\[
\sum_{k=0}^{n} \binom{n}{k} T_{4k} = 2^n T_{3n}, \quad \sum_{k=0}^{n} \binom{n}{k} K_{4k} = 2^n K_{3n},
\]

\[
\sum_{k=0}^{n} \binom{n}{k} T_{4k-3n+1} = 2^n, \quad \sum_{k=0}^{n} \binom{n}{k} K_{4k-3n+1} = 2^n,
\]

\[
\sum_{k=0}^{n} \binom{n}{k} T_{4k-3n} = 0, \quad \sum_{k=0}^{n} \binom{n}{k} K_{4k-3n} = 3 \cdot 2^n.
\]

Theorem 3.2. For non-negative integer \(n \), any integer \(s \), we have

\[
\sum_{k=0}^{3n} \delta^k \binom{3n}{k} G_{pk+s} = \delta^n 2^n G_{rn+s},
\]

where the values of \(\delta, p, q, r \) as given in each column in Table 2.

\(\delta \)	\(-1 \)	\(1 \)	\(1 \)	\(-1 \)
\---	---	---	---	---
\(p \)	\(1 \)	\(1 \)	\(2 \)	\(3 \)
\(q \)	\(1 \)	\(1 \)	\(2 \)	\(1 \)
\(r \)	\(-2 \)	\(4 \)	\(5 \)	\(7 \)

Table 2: Values of \(\delta, p, q, r \) from Theorem 3.2.

Proof. Each of the identities (5)–(8) can be written as \((\alpha^p + \delta)^3 = 2^q \alpha^r \), where the values of \(\delta, p, q, r \) in each case are as given in each column in Table 2. The identity of the theorem then follows from the binomial theorem and Lemma 2.3.

Lemma 3.2. For non-negative integer \(n \) and real or complex \(z \),

\[
2 \sum_{k=0}^{[3n/2]} \binom{3n}{2k} z^{2k} = (1 + z)^{3n} + (1 - z)^{3n},
\]

\[
2 \sum_{k=1}^{[3n/2]} \binom{3n}{2k-1} z^{2k-1} = (1 + z)^{3n} - (1 - z)^{3n}.
\]

Theorem 3.3. For non-negative integer \(n \) and any integer \(s \),

\[
\sum_{k=0}^{[3n/2]} \binom{3n}{2k} G_{2k+s} = 2^{n-1} (G_{4n+s} + (-1)^n G_{s-2n}),
\]

\[
\sum_{k=1}^{[3n/2]} \binom{3n}{2k-1} G_{2k+s-1} = 2^{n-1} (G_{4n+s} - (-1)^n G_{s-2n}).
\]
Proof. Set $z = \alpha$ in Lemma 3.2, make use of identities (5) and (6), noting Lemma 2.3 with $\lambda = \alpha$.

Setting $s = 0$ in Theorem 3.3, we immediately obtain the following.

Corollary 3.3. For non-negative integer n,

\[
\sum_{k=0}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k} G_{2k} = 2^{n-1}(G_{4n} + (-1)^n G_{-2n}),
\]

\[
\sum_{k=1}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k-1} G_{2k-1} = 2^{n-1}(G_{4n} - (-1)^n G_{-2n}).
\]

As special cases of formulas above we have:

\[
\sum_{k=0}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k} T_{2k} = 2^{n-1} (T_{4n} + (-1)^n (T_{2n-1}^2 - T_{2n-2}T_{2n})),
\]

\[
\sum_{k=1}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k-1} T_{2k-1} = 2^{n-1} (T_{4n} - (-1)^n (T_{2n-1}^2 - T_{2n-2}T_{2n}))
\]

and

\[
\sum_{k=0}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k} K_{2k} = 2^{n-2} (2K_{4n} + (-1)^n (K_{2n}^2 - K_{4n})),
\]

\[
\sum_{k=1}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k-1} K_{2k-1} = 2^{n-2} (2K_{4n} - (-1)^n (K_{2n}^2 - K_{4n})).
\]

Theorem 3.4. For non-negative integer n and any integer s,

\[
\sum_{k=0}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k} G_{4k+s} = 2^{2n-1}(G_{5n+s} + (-1)^n G_{2n+s}),
\]

\[
\sum_{k=1}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k-1} G_{4k+s-2} = 2^{2n-1}(G_{5n+s} - (-1)^n G_{2n+s}).
\]

Proof. Combining (5) with (6) yields

\[(\alpha^4 - 1)^3 = 4n^2.\] (23)

Now set $z = \alpha^2$ in Lemma 3.2 and make use of identities (7) and (23), noting Lemma 2.3 with $\lambda = \alpha$.

Theorem 3.5. For non-negative integer n and any integer s,

\[
\sum_{k=0}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k} G_{6k+s} = 2^{3n-1}(G_{9n+s} + (-2)^n G_{7n+s}),
\]

\[
\sum_{k=1}^{\lfloor 3n/2 \rfloor} \binom{3n}{2k-1} G_{6k+s-4} = 2^{3n-1}(G_{9n+s} - (-2)^n G_{7n+s}).
\]

Proof. Combining (7) and (23) we have

\[(\alpha^4 - 1)^3 = 16\alpha^2.\] (24)

Set $z = \alpha^4$ in Lemma 3.2 and make use of identities (9) and (24), noting Lemma 2.3 with $\lambda = \alpha$.

\[\square\]
4. Identities from the Waring formulas

Our next result provides two combinatorial identities for generalized tribonacci numbers involving binomial coefficients.

Lemma 4.1. The following identities hold for \(n \geq 0 \) and real or complex \(x \) and \(y \):

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} (xy)^k (x+y)^{n-2k} = \frac{x^{n+1} - y^{n+1}}{x-y}
\]

(25)

and

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} \frac{n}{n-k} (xy)^k (x+y)^{n-2k} = x^n + y^n.
\]

(26)

Formulas (25) and (26) are well-known in combinatorics and called Waring (sometimes Girard-Waring) formulas. The proof of these formulas can be found, for example, in [9].

Theorem 4.1. Let \(n \) be a non-negative integer and \(s \) any integer. Then

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{1}{4}\right)^k \binom{n-k}{k} (G_{3n-2k+s+4} - G_{3n-2k+s}) = \frac{G_{4n+s+4} - G_s}{2^n}
\]

and

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{1}{4}\right)^k \binom{n-k}{k} \frac{G_{3n-2k+s}}{n-k} = \frac{G_{4n+s} + G_s}{2^n n}.
\]

Proof. Set \((x,y) = (1,\alpha^4)\) in (25) and (26), respectively, Lemma 4.1 and use identity (8) and Lemma 2.3. \(\Box\)

Corollary 4.1. For \(n \geq 0 \),

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{1}{4}\right)^k \binom{n-k}{k} (G_{n-2k+4} - G_{n-2k}) = \frac{G_{2n+4} - G_{-2n}}{2^n},
\]

and

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{1}{4}\right)^k \binom{n-k}{k} \frac{G_{n-2k}}{n-k} = \frac{G_{2n+4} + G_{-2n}}{n2^n}.
\]

In particular,

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{1}{4}\right)^k \binom{n-k}{k} (T_{n-2k+4} - T_{n-2k}) = \frac{T_{2n+4} - T_{2n-1} + T_{2n-2} T_{2n}}{2^n},
\]

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{1}{4}\right)^k \binom{n-k}{k} (K_{n-2k+4} - K_{n-2k}) = \frac{2K_{2n+4} + K_{2n}^2 + K_{4n}}{n2^n + 1}
\]

and

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{1}{4}\right)^k \binom{n-k}{k} \frac{T_{n-2k}}{n-k} = \frac{T_{2n-1} + T_{2n} (1 - T_{2n-2})}{n2^n},
\]

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{1}{4}\right)^k \binom{n-k}{k} \frac{K_{n-2k}}{n-k} = \frac{K_{2n}^2 + 2K_{2n} - K_{4n}}{n2^{n+1}}.
\]

5. Double binomial tribonacci sums

Theorem 5.1. Let \(n, j \) and \(s \) be integers with \(s \) arbitrary and \(j \geq 0 \). Then,

\[
\sum_{p=0}^{n-j} (-1)^{j-p} \binom{n-j}{p} G_{5k+p+s} = 3^{n-j} \binom{n}{j} \sum_{p=0}^{j} (-1)^{j-p} \binom{j}{p} G_{3n+2j+p+s}.
\]

(27)

Proof. The identity can be derived from Lemma 3.1 using \(3\phi^3 = \phi^6 - \phi^5 + 1 \). \(\Box\)

Corollary 5.1. Let \(n \) and \(s \) be integers. Then,

\[
\sum_{k=0}^{n} (-1)^{k-p} \binom{n}{k} p G_{5k+p+s} = 3^{n} G_{3n+s},
\]

\[
\sum_{k=1}^{n} (-1)^{k-p} \binom{n}{k} p k G_{5k+p+s} = n3^{n-1} (G_{3n+s} + G_{3n+s+1}).
\]
Proof. Set \(j = 0 \) and \(j = 1 \) in (27), respectively.

Theorem 5.2. Let \(j \) and \(s \) be integers with \(s \) arbitrary and \(j \geq 0 \). Then

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} \binom{n}{k} \binom{k}{p} \frac{G_{k+4p+s}}{2^k} = 2^{2n-j} \sum_{m=0}^{j} \binom{j}{m} G_{3n-2j+4m+s},
\]

(28)

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} \binom{n}{k} \binom{k}{p} \frac{G_{k+5p+s}}{3^k} = \frac{7}{3} \sum_{m=0}^{n} \binom{j}{m} G_{3n-2j+5m+s}.
\]

(29)

Proof. Use Lemma 3.1 in conjunction with \(4\phi^3 = \phi^5 + \phi + 2 \) and \(7\phi^3 = \phi^6 + \phi + 3 \), respectively.

Corollary 5.2. Let \(n \) and \(s \) be integers. Then,

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} \binom{n}{k} \binom{k}{p} \frac{G_{k+4p+s}}{2^k} = 2^n G_{3n+s},
\]

and

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} \binom{n}{k} \binom{k}{p} \frac{G_{k+5p+s}}{3^k} = \left(\frac{7}{3}\right)^n G_{3n+s}.
\]

Proof. Set \(j = 0 \) and \(j = 1 \) in (28) and (29), respectively.

6. A general binomial sum identity

Theorem 6.1. Let \(j, s \) and \(v \) be integers with \(j, v \geq 0 \), \(v \neq 0 \), \(v \neq 1 \). Then,

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} \binom{n}{k} \binom{k}{p} (-1)^{j+m+q} (j-m) \binom{j}{q} \binom{T_v}{\frac{T_v}{T_{v-1}}}^m G_{vn-j(v-1)+q+s} = \frac{T_v^{m-2}}{T_{v-1}^2} \sum_{k=0}^{n} \sum_{p=0}^{k} \binom{k}{p} (-1)^{k+w+p} (j) \binom{j}{p} \binom{k}{p} \binom{k}{p} \binom{T_{v-1}}{\frac{T_{v-1}}{T_{v-2}}}^k \binom{T_v}{\frac{T_v}{T_{v-1}}}^p G_{k+w+s}.
\]

Proof. For \(v \geq 1 \) and \(\phi = \alpha \) write (4) in the form

\[
\alpha^v = \alpha \left(T_v + T_{v-1}(\alpha - 1)\right) + T_{v-2}.
\]

Now, identify \(x = \alpha \left(T_v + T_{v-1}(\alpha - 1)\right) \) and \(a = T_{v-2} \) and use Lemma 3.1 and the binomial theorem to get

\[
\sum_{k=0}^{n} \binom{n}{k} \binom{k}{p} (-1)^{k+w+p} (j) \binom{j}{p} \binom{k}{p} \binom{k}{p} \binom{T_{v-1}}{\frac{T_{v-1}}{T_{v-2}}}^k \binom{T_v}{\frac{T_v}{T_{v-1}}}^p G_{k+w+s} = \frac{T_v^{m+s}}{T_{v-2}^m}.
\]

Multiply both sides by \(\alpha^s \) and combine the similar results for \(\beta \) and \(\gamma \) according to the Binet formula (1).

Corollary 6.1. We have

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} (-1)^{w+p} \binom{n}{p} \binom{k}{p} \binom{T_{v-1}}{\frac{T_{v-1}}{T_{v-2}}}^k \binom{T_v}{\frac{T_v}{T_{v-1}}}^p G_{n+w+s} = (-1)^w G_{2n+s}
\]

for \(v = 1 \) the left-hand side collapses and we end with \(G_{n+s} \) on both sides of the equality sign. The special values for \(v = 2 \) and \(v = 3 \) are given by

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} (-1)^{w+p} \binom{n}{p} \binom{k}{p} \binom{T_{v-1}}{\frac{T_{v-1}}{T_{v-2}}}^k \binom{T_v}{\frac{T_v}{T_{v-1}}}^p G_{n+w+s} = (-1)^w G_{2n+s}
\]

and

\[
\sum_{k=0}^{n} \sum_{p=0}^{k} (-1)^{w+p+k} \binom{n}{p} \binom{k}{k} \binom{k}{p} \binom{T_{v-1}}{\frac{T_{v-1}}{T_{v-2}}}^k \binom{T_v}{\frac{T_v}{T_{v-1}}}^p G_{k+w+s} = G_{3n+s}.
\]
References

[1] K. Adegoke, Weighted tribonacci sums, Konuralp J. Math. 8 (2020) 355–360.
[2] K. Adegoke, R. Frontczak, T. Goy, Special sums with squared Horadam numbers and generalized Tribonacci numbers, Palest. J. Math. (2021), To appear.
[3] K. Adegoke, A. Olatinwo, W. Oyekanmi, New Tribonacci recurrence relations and addition formulas, Notes Number Theory Discrete Math. 26 (2020) 164–172.
[4] P. Anantakitpaisal, K. Kuhapatanakul, Reciprocal sums of the tribonacci numbers, J. Integer Seq. 19 (2016) #16.2.1.
[5] K. N. Boyadzhiev, Notes on the Binomial Transform: Theory and Table with Appendix on Stirling Transform, World Scientific, Singapore, 2018.
[6] M. Catalani, Identities for Tribonacci–related sequences, arXiv:0209179 [math.CO], (2002).
[7] G. Cerda-Morales, Quadratic approximation of generalized tribonacci sequences, Discuss. Math. Gen. Algebra Appl. 38 (2018) 227–237.
[8] E. Choi, Modular tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 20 (2013) 207–221.
[9] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel, Dordrecht, 1974.
[10] J. Feng, More identities on the Tribonacci numbers, Ars Combin. 100 (2011) 73–78.
[11] R. Frontczak, A short remark on Horadam identities with binomial coefficients, Ann. Math. Inf. 54 (2021) DOI: 10.33039/ami.2021.03.016, In press.
[12] R. Frontczak, Convolutions for generalized Tribonacci numbers and related results, Int. J. Math. Anal. 12 (2018) 307–324.
[13] R. Frontczak, Relations for generalized Fibonacci and Tribonacci sequences, Notes Number Theory Discrete Math. 25 (2019) 178–192.
[14] R. Frontczak, Sums of Tribonacci and Tribonacci–Lucas numbers, Int. J. Math. Anal. 12 (2018) 19–24.
[15] T. Goy, M. Shattuck, Determinant identities for Toeplitz–Hessenberg matrices with tribonacci number entries, Trans. Comb. 9 (2020) 89–109.
[16] M. Janjić, Words and linear recurrences, J. Integer Seq. 21 (2018) #18.1.4.
[17] T. Komatsu, R. Li, Convolution identities for Tribonacci numbers with symmetric formulae, Math. Rep. 21(71) (2019) 27–47.
[18] K. Kuhapatanakul, L. Sukruan, The generalized tribonacci numbers with negative subscripts, Integers 14 (2014) #A32.
[19] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
[20] Y. Soykan, Tribonacci and Tribonacci–Lucas matrix sequences with negative subscripts, Comm. Math. Appl. 11 (2020) 141–159.
[21] N. Yilmaz, N. Taskara, Tribonacci and Tribonacci–Lucas numbers via the determinants of special matrices, Appl. Math. Sci. 8 (2014) 1947–1955.