Clinical Study and Management of Varicose Veins

Authors

Dr J. Ravinder Naik, M.S.¹, Dr Ravinder Naik Noonavath, M.S.²

¹Assistant Professor, Department of Surgery, Konaseema Institute of Medical Sciences and Research Foundation, Amalapuram, East Godavari, Andhra Pradesh INDIA

²Assistant Professor, Department of Surgery, MNR Medical College, Sangareddy, Telangana

Corresponding Author

Dr J. Ravinder Naik, M.S.

Assistant Professor, Department of Surgery, Konaseema Institute of Medical Sciences and Research Foundation, Amalapuram, East Godavari, Andhra Pradesh INDIA

ABSTRACT

The prevalence of Varicose veins has been variously reported from as little as 2% to over 20% in population studies. The prevalence of varicose veins rises with age. The aim of the present study is to analyse the cases of varicose veins presenting at the MGM Hospital, Warangal during the period of May 2008 to July 2010. Out of the 50 cases included in this study 46 (92%) were male with only 4 female patients (8%). Maximum number of patients 16 (32%) was presented in the 31-40 years age group. Long saphenous vein was involved in 92% of cases (46 patients), the short saphenous vein in 2% (1 patient) and both long and short in 6% (3 cases). Doppler/Duplex scanning has an overall accuracy of 94%.

Keywords: varicose veins, saphenous vein, Doppler scanning.

INTRODUCTION

Varicose veins and their associated symptoms and complications constitute the most common chronic vascular disorders leading to surgical treatment. The term varicose is derived from the Latin word meaning dilated. The definition of varicose veins varies widely ranging from “clearly visible, dilated, tortuous and possibly prominent subcutaneous veins of lower extremities” according to Arnoldi, to “varicose veins secondary to loss of valvular efficiency” according to Dodd and Cockett, “Vein with a saccular dilatation which is often tortuous” according to WHO. This variation in the definition of varicose veins has lead to wide discrepancies in its incidence reported in the literature.

Though varicose veins were recognized prehistorically only in the present century considerable knowledge has been gained concerning the anatomy of venous system of the leg, the physiological mechanism of venous return to heart against gravity and pathology of the disorder, which has lead to many newer modalities of treatment. The term “varicosity” is generally applied to elongated, tortuous, pouched, thickened, inelastic and friable vessels which have permanently lost its valvular efficiency though similar changes may also occur in veins in....
anal canal, as hemorrhoids, varicocele of pampaniform plexus, and in cases of portal hypertension at the lower end of oesophagus.

EPIDEMIOLOGY

Varicose veins are common. The prevalence has been variously reported from as little as 2% to over 20% in population studies. This enormous variation results from the different populations studied, different definitions applied and the different assessment or examination techniques used. Western studies have shown that 20% population suffers from varicose vein and 2% have skin changes preceding the venous ulceration.

The Edinburgh Venous study (EVS) published in 1998 examined over 1500 adults in UK, showed that 39.7% of men and 32.2% of women had a dilated tortuous trunk of the long and/or short saphenous vein and their first or second order branches. The prevalence of webs or small reticular varicosities was even higher at over 80% for both males and females. Although it was previously believed that varicose veins are more common in women, few other population studies confirm that varicose veins are at least as common in men.

The prevalence of varicose veins rises with age in virtually all published studies. The prevalence of trunk varicosities in the EVS rose from 11.5% in the 18-24 year old group to 55.7% in those aged 55-64. Although there is considerable anecdotal evidence to suggest that varicose veins are less common in developing countries like ours, the absence of adequate epidemiological data leaves the question open. The search for more effective means of prevention and cure for this common condition continues and this dissertation covers almost all aspects of varicose veins of lower limb.

OBJECTIVES

The aim of the present study is to analyse the cases of varicose veins presenting at the MGM Hospital, Warangal during the period of May 2008 to July 2010. The following are the objectives of the study:

- Analysis of Age and sex distribution
- Analysis of clinical features of varicose veins of lower limb
- Analysis of the side effected and the venous system involved
- Analysis of perforator incompetence
- The various treatment modalities adapted for the management of varicose veins
- Analysis of the various complications
- To analyze the accuracy of clinical examination, colour doppler and to correlate with the intra operative findings

METHODOLOGY

This was a prospective study involving 50 patients who presented with symptoms of primary varicose veins to Mahatma Gandhi Memorial Hospital, Warangal during May 2008 to July 2010.

Inclusion criteria

Patients presenting with signs and symptoms of primary varicose veins that get investigated with Doppler and undergoing any appropriate definitive surgical procedure.

Exclusion criteria

1. Secondary varicose veins
2. Recurrent varicose veins
3. Deep venous incompetence
4. Varicose veins other than lower limbs

Study design

All patients who presented to our outpatient department with symptoms of primary varicose veins were meticulously examined and later subjected to Color Doppler studies before they underwent surgery for the same.

1. Clinical examination

After obtaining an adequate history, the patient was examined in standing position with good illumination, exposing both the lower limbs completely. The following tests were performed:

- Brodie trendelunburg I and II, Modified Parthe's test, multiple tourniquet test, Schwartz test, Morrissey's cough impulse test, Fegan's test
Abdominal and rectal examination
The results of the tests were documented according to the clinical proforma.

2 Color Doppler ultrasonography
We used the Toshiba ultrasonography machine. Using a 7-10 MHz probe, the patient was examined in standing position along the whole length of the long saphenous and short saphenous systems.
The following signs were specifically looked for:
 1. Sapheno femoral junction incompetence
 2. Sapheno popliteal junction incompetence
 3. Perforator incompetence
 4. Deep venous system
 5. Presence of abnormal or unnamed veins or perforators
The sites of incompetence were marked by indelible skin pencil.

3. Intraoperative findings:
The following operative procedure were undertaken –
 • High, flush ligation of saphenofemoral junction with or without stripping of long saphenous vein.
 • High, flush ligation of sapheno popliteal junction without stripping of short saphenous vein.
 • Incompetent perforator vein ligation.
The intra-operative results were documented in the proforma.

FOLLOW-UP
All patients were discharged after 7 to 14 days with mean 7 days after surgery with elastic crape bandage. They were all followed up for a minimum of 4 months after they were discharged for symptomatic relief, recurrence of varicosity, healing of varicose ulcers.

RESULTS
50 (Fifty) patients with primary varicose veins who were treated in Mahatma Gandhi Memorial Hospital, Warangal attached to Kakatiya Medical College(K.M.C.), during May 2008 to July 2010 were included in the study.

DEMOGRAPHIC DATA
AGE DISTRIBUTION
The age of these patients ranged from 17yrs to 70 yrs. The commonest age group of over patients was between 31 to 40 yrs (32 %.).

Table-1

Age Group	No. of cases	Percentage
11-20	3	6
21-30	12	24
31-40	16	32
41-50	12	24
51-60	6	12
>60	1	2
TOTAL	50	100

SEX DISTRIBUTION

Table-2

GENDER	NO. OF CASES	PERCENTAGE
Male	46	92
Female	4	8
TOTAL	50	100

SIDE AFFECTED
Left limb was more affected (30cases - 60 %) than Right limb (18 cases - 36 %). In 2 of the cases (4%), both the limbs were involved.

Table-3

SIDE AFFECTED	NO. OF CASES	PERCENTAGE
Right	18	36
Left	30	60
Both limbs	2	4
TOTAL	50	100

FAMILY HISTORY
7 patients had family history of similar complaints (14%).
SYMPTOMATOLOGY
Table 4

SYMPTOMS	NO. OF CASES	PERCENTAGE
Pain	23	46
Dilated vein	48	96
Limb edema	03	06
Ulcer	07	14
Others (Skin changes)	16	32

Our patients presented with varied symptoms, out of which dilated veins was most common 48 (96%), patients followed by aching pain 23 patients (46%).

VENOUS SYSTEM INVOLVED
Long saphenous system is the most common venous system affected by varicosity (92%). Both the long and short saphenous system is affected in 6% of the cases.

Table 5

VENOUS SYSTEM INVOLVED	NO. OF CASES	PERCENTAGE
Long saphenous system	46	92
Short saphenous system	01	02
Both systems	3	6
TOTAL	50	100

PERFORATOR INCOMPETANCE
The total number of incompetent perforators are 70 clinically, 85 by Doppler and 71 intraoperatively. The most common was the above ankle group with 33 preoperatively and 36 at surgery.

Table 6

FINDINGS	CLINICAL SIGNS	COLOUR DOPPLER	INTRA OP FINDINGS
Thigh	3	5	3
Below knee	23	28	24
Above ankle	33	40	36
Unnamed	10	12	8
TOTAL	70	85	71

TREATMENT GIVEN
Table 7

TREATMENT MODALITY	No:	PERCENTAGE
SFJ flush ligation with stripping of LSV	7	14
SFJ flush ligation with stripping of LSV with incompetent perforator ligation	40	80
SFJ, SPJ ligation with stripping of LSV with incompetent perforator ligation	2	4
SPJ ligation without stripping of SSV	1	2
TOTAL	50	100

COMPLICATIONS
Total number of complications was 10; Seroma was commonest with 3 cases. There was no recurrence of varicosity in the follow up period.

Table 8

COMPLICATIONS	NO. OF CASES	PERCENTAGE
Seroma	3	6
Haematoma	2	4
Infection	1	2
Limb oedema	1	2
Paraesthesia	1	2
Delay healing	2	4
Recurrence	0	0

ACCURACY OF CLINICAL EXAMINATION WITH INTRA OP FINDINGS
Table 9

SFJI	INTRA-OP FINDINGS			
	CLINICAL	POSITIVE	NEGATIVE	TOTAL
POSITIVE	46	2	48	
NEGATIVE	0	2	2	
TOTAL	46	4	50	
Table-10

Measure	Value	Percentage
Sensitivity	46/46	100%
Specificity	2/4	50%
Positive Predictive Value	46/48	95.83%
Negative Predictive Value	2/2	100%
Accuracy	48/50	96%

ACCURACY OF COLOUR DOPPLER WITH INTRA-OP FINDINGS

Table-11

Measure	INTRA-OP	TOTAL
SFJI	46/46	100%
COLOUR DOPPLER	POSITIVE	NEGATIVE
Positive	46	1
Negative	0	3
Total	46	4

Table-12

Measure	Value	Percentage
Sensitivity	46/46	100%
Specificity	3/4	75%
Positive Predictive Value	46/47	97.87%
Negative Predictive Value	3/3	100%
Accuracy	47/50	94%

ACCURACY OF CLINICAL FINDINGS WITH COLOUR DOPPLER

Table-13

Measure	COLOUR DOPPLER	
SFJI	CLINICAL SIGNS	
Positive	COLOUR DOPPLER	
CLINICAL	POSITIVE	NEGATIVE
Positive	47	1
Negative	0	2
Total	47	3

Table-14

Measure	Value	Percentage
Sensitivity	47/47	100%
Specificity	2/3	66.66%
Positive Predictive Value	47/48	97.9%
Negative Predictive Value	2/2	100%
Accuracy	48/50	96%

COMPARISION OF ACCURACY OF CLINICAL FINDINGS WITH COLOUR DOPPLER AND INTRAOPERATIVE FINDINGS

Table-15

FINDINGS	CLINICAL SIGNS	COLOUR DOPPLER	INTRA OP FINDINGS
SFJI	48	47	46
SPJ	4	4	4
Thigh	3	5	3
Below knee	23	28	24
Above ankle	33	40	36
Unnamed	10	12	8
TOTAL	121	136	121

DISCUSSION

In our study, maximum number of patients 16 (32%) was presented in the 31-40 years age group. This age distribution correlates well with other studies conducted by W.B. Campbell et al., who showed the commonest age at presentation to be 30-40 yrs.

Out of the 50 cases included in this study 46 (92%) were male with only 4 female patients (8%). This disparity may be due to the fact the patients are from the low socio-economic background and also cosmesis is not a concern, as these patients do not wear short clothes. All other studies (Bobek et al, Maffei) stated women are affected more than men.

A 14% (7 cases) familial incidence was noted in the De Takata series. In his series had shown that nearly 50 to 70% of the patients with varicose veins had a hereditary tendency, but this series showed a very low incidence.

In our study, in 18 (36%) cases, right lower limb was involved and in 30 (60%) cases left lower limb was involved and in 2 (4%) both limbs were involved.

In the present study, the commonest symptom in 48 (96%) cases was that of dilated and tortuous veins. 23 (46%) cases had complaints of pain in the affected limb and 3(6%) cases had limb edema, venous ulcer was present in 7 (14%) of cases. This findings correlate well with other studies done by W.B. Campbell et al, with cosmetic symptoms being 90% and aching pain 57%.
In this series, long saphenous vein was involved in 92% of cases (46 patients), the short saphenous vein in 2% (1 patient) and both long and short in 6% (3 cases). Delbe and Mocquet in their study had found varicosity of long saphenous vein in 98% and only 2% in short saphenous vein. Incompetent perforator was noted in (82%) cases.

Doppler/Duplex scanning is the primary non-invasive method of assessing chronic venous insufficiency, which has an overall accuracy of 94%. This finding is in conformity of Masudaem et al who showed that duplex scanning had an overall accuracy of 88%.

Seven patients had associated venous ulcers that were all due to superficial venous incompetence. Conservative treatment was given to all the patients pre-operatively with the idea of improving the limb and making it fit for surgery and post operative compression treatment was followed routinely to prevent hematoma formation after stripping and were advised elastic crepe bandage/stockings for three to four months.

Sclerosant therapy was not tried in this series, because of the paucity and non-availability of the sclerosant agents and also because of presence of major incompetence.

Out of 50 cases, saphenofemoral junction ligation including the ligation of anatomically constant tributaries at its termination with stripping of long saphenous vein by Myers stripper up to the knee and ligation of incompetent perforator was done in 40 cases. Sapheno-popliteal flush ligation was done in 1 case, SFJ and SPJ ligation with stripping of LSV in 2 cases. SSV was not stripped to avoid nerve injury. Flush ligation of SFJ and stripping of LSV was done in 7 cases.

Comparative Analysis

In our study findings are depicted considering Intraoperative findings as the reference gold standard.

Clinical examination detected saphenofemoral junction incompetence in all cases showing intraoperative saphenofemoral junction incompetence, making clinical testing 100% sensitive. Clinical examination ruled out presence of saphenofemoral junction incompetence in both the intraoperatively negative cases.

Clinical examination had a specificity of 50% showing clinical examination may over diagnose cases of saphenofemoral junction incompetence increasing the cost of treatment and morbidity of the patient.

The positive predictive value of clinical examination is shown to be 95.83% i.e. in a significance proportion of cases clinical examination can truly detect saphenofemoral junction incompetence.

The negative predictive accuracy of clinical examination is 100% i.e. clinical examination can definitely confirm the absence of saphenofemoral junction incompetence. The clinical examination shows an overall accuracy of 96%.

Diagnostic validity of color Doppler against intraoperative findings taken a referral gold standard for saphenofemoral junction incompetence shows the following –

Color Doppler detected all cases of operatively evident saphenofemoral junction incompetence, giving the test a high sensitivity of 100%. Color Doppler ruled out presence of saphenofemoral junction incompetence in 4 out of 5 intraoperatively negative cases, with a specificity of 75%, showing a much higher specificity compared to clinical examination.

The positive predictive accuracy of color Doppler for saphenofemoral junction incompetence was 97.87% showing it to be higher than clinical examination 95.83%.

The negative predictive accuracy of color Doppler for saphenofemoral junction incompetence was 100% showing that color Doppler can effectively rule out presence of saphenofemoral junction incompetence in all intraoperatively negative cases, reducing operative costs and patient morbidity. Color Doppler shows an overall accuracy of 94%

Diagnostic validity of clinical findings in comparison to color Doppler in saphenofemoral junction incompetence taking the latter as the gold standard shows- Clinical examination detected all
cases shown to have saphenofemoral junction incompetence by color Doppler with a sensitivity of 100%. Specificity i.e. the ability to detect all truly negative cases as shown by color Doppler is low (66.6%), there is a tendency to falsely predict the presence of saphenofemoral junction incompetence clinically.

Positive predictive accuracy of clinical examination is 97.9%; with a negative predictive value of 100% showing ability of clinical examination to rule out saphenofemoral junction incompetence in all color Doppler negative cases.

In our study we had a total of 70 perforators incompetent by clinical examination and 85 by color Doppler. Both combined (Intraoperative finding) 71 incompetent perforators. The commonest group of perforators that were incompetent was the above ankle group, 33 of them by clinical and 40 by Doppler examination and 36 of them intraoperatively.

Out of the total incompetent perforators, we had 10 in unnamed areas by clinical examination and 12 by Doppler and 8 intraoperatively.

We had 3 case of sapheno-popliteal incompetence detected by Doppler and confirmed at surgery.

In our study, we encountered 6 cases of complication, the commonest being seroma (3 cases), which were subsided with drainage, and hematoma in 2 cases which cleared after about 15 days. There was no incidence of deep vein thrombosis or pulmonary embolism postoperatively in this series. Literature shows the incidence to be very low at 0.01%.

We had no recurrence of varicosity in our study with a follow up of a minimum of 4 months. In a small series of this study, it is difficult to assess the results of operative treatment as such assessment should be taken up after a long follow up period of at least five years.

CONCLUSION

Fifty cases of varicose veins of the lower limb have been studied in detail. An analysis of the data has enabled this study to arrive at the following conclusions.

- Varicosity of the lower limb is a fairly common clinical entity. The number of cases reporting to the hospital is much less than the real incidence; because in the absence of symptoms due to varicose veins patients do not seek treatment in our country.
- The commonest age group of patients suffering from varicose veins is 31 to 40 years.
- No definite conclusion could be drawn from the present series regarding etiology, as the number is small. However a definite relationship exists between the occupation and the incidence of varicose veins.
- The involvement of long saphenous system is more common than the short saphenous system and left limb is affected more common.
- Clinical examination has a high predictive accuracy. It gives sufficient information to treat the patients in centers where color Doppler is not available or affordable.
- The use of color Doppler is a valuable supplement to clinical examination for effective treatment of varicose veins and its use is strongly recommended to prevent recurrences and reduce morbidity as it is effective tool in detecting venous incompetence.
- SPJ junction is highly variable and should always be marked pre-operatively using Doppler.
- The outcome of cases of primary varicose veins depends on a thorough and complete clinical examination and duplex scan by an experienced radiologists
- Operative line of treatment is a primary procedure in the management of varicose veins of lower limbs. LSV stripping up to knee and non- stripping of SSV is associated with less morbidity.
- Complications are negligible if cases are meticulously selected and operated. The present procedures enable the patient to
lead almost normal life after surgery and the mortality rate is nil in this series.

- Though the newer trends in the management of varicose veins are showing good results, they need a long term follow up. All people cannot afford such treatment due to cost factor. Hence there is a need of medical insurance to achieve social justice.

SUMMARY

Clinical study and management of varicose vein, study carried out in Mahatma Gandhi Memorial Hospital attached to Kakatiya Medical College, Warangal from May 2008 to July 2010. It is found that varicose veins and their associated symptoms and complications constitute the most common chronic vascular disorders leading to surgical treatment. The incidence is on rise. It is more common in middle-aged group and in males. Patients presented with spectrum of symptoms and signs, with swellings being more common presenting symptom with or without pain. Long saphenous system is the most common venous system affected with above ankle (lower leg) perforator being the most common incompetent perforators. The outcome of cases of primary varicose vein depends on a thorough and complete clinical examination and duplex scan by an experienced radiologist. Operative line of treatment is a primary procedure in the management of varicose veins of lower limb. Stripping of LSV up to knee and non-stripping of SSV is associated with less morbidity. Accurate assessment of the underlying anatomy reduces the risk of recurrent varicose veins. There was no recurrence in our study. There is a need for medical insurance for poor people to afford the newer modality of treatment of varicose veins.

BIBLIOGRAPHY

1. Norman S. Williams, Bulstrode CJK, P. Ronan O'Connell , “Venous disorders” in Bailey and Love’s Short practice of surgery, Ch.54; 25th Edn; 2008: 925-943.
2. Bradbury, BMJ 1999; 318:353-356
3. Callum M.J., “Epidemiology of Varicose veins”. British Journal of Surgery.1994: 81:167-163.
4. De Takatas G. Varicose veins and their sequelae. JAMA. 929:92:775- 779.
5. Masuda E.M., Kistner R.L., Prospective comparison of Duplex scanning and descending venography in assessment of venous insufficiency.
6. Shami S.K., Sarin S, Cheatle T.R., Scurr J.H., Coleridge Smith P.D., “Venous ulcers and the superficial system”. Journal of Vascular Surgery.1993:17:487-490.