Dimerisation, rhodium complex formation and rearrangements of N-heterocyclic carbenes of indazoles

Zong Guan¹, Jan C. Namyslo¹, Martin H. H. Drafz¹, Martin Nieger² and Andreas Schmidt*¹

Abstract
Deprotonation of indazolium salts at low temperatures gives N-heterocyclic carbenes of indazoles (indazol-3-ylidenes) which can be trapped as rhodium complexes (X-ray analysis). In the absence of Rh, the indazol-3-ylidenes spontaneously dimerize under ring cleavage of one of the N,N-bonds and ring closure to an indazole–indole spiro compound which possesses an exocyclic imine group. The E/Z isomers of the imines can be separated by column chromatography when methanol is used as eluent. We present results of a single crystal X-ray analysis of one of the E-isomers, which equilibrate in solution as well as in the solid state. Heating of the indazole–indole spiro compounds results in the formation of quinazolines by a ring-cleavage/ring-closure sequence (X-ray analysis). Results of DFT calculations are presented.

Introduction
As a result of their biochemical and pharmacological significance, there has been a considerably growing interest in indazoles in recent years, which is reflected in several book chapters and review articles dealing with syntheses [1-4], synthetic potentials [4], and biological activities [4,5] of this ring system. In view of the rapid development of the class of N-heterocyclic carbenes (NHC) [6-12] it is not unexpected, that attention was also directed towards the NHCs of indazole which have been generated and applied in heterocyclic synthesis (vide infra) as well as in complex chemistry [13]. Undoubtedly the N-hetero-
cyclic carbenes of imidazole, imidazoline and the triazoles play the most important roles as ligands in metal-organic chemistry [14] or as organocatalysts [15,16]. The N-heterocyclic carbenes of indazole (and pyrazole [17,18]), however, have a chemistry of their own which set them apart from the NHCs of the aforementioned ring systems. Portions of that field have been covered in recent review articles [18,19]. The N-heterocyclic carbene of indazole has been generated by thermal decarboxylation of indazolium-3-carboxylates 1 which belong to the class of pseudo-cross-conjugated heterocyclic mesomeric betaines (Scheme 1). Its properties have been calculated [20,21] and examined by means of vibrational spectroscopy [21]. It was shown that pseudo-cross-conjugated mesomeric betaines decarboxylate readily in the absence of stabilizing effects such as hydrogen bonds to protic solvents or water of crystallization [18,19]. Thus, the Gibbs free energy difference for the decarboxylation of 1,2-dimethylindazolium-3-carboxylate under standard conditions (25 °C, 1 atm) was found to be 3.4 kcal/mol [20]. Alternatively, indazolium salts 2 can be deprotonated by various bases to give indazol-3-ylidenes 3 [22].

The chemistry of indazol-3-ylidene, which is a singlet carbene, is due to the considerable donor strength of the carbene atom which has a calculated Mulliken charge of 0.009 [20]. Moreover, the ability to cleave the N–N single bond, which was calculated to have a bond length of 144.6 pm in 1,2-dimethylindazol-3-ylidene [20] (N–N \text{indazole} = 138.4 pm [3]) and a stretching force constant of 4.23 mdyne Å⁻¹ [21], opens the access to several heterocyclic transformation products (vide infra). Finally, the synthetic potential is governed by the electrophilic properties of the iminium group of indazolium salts which result from protonation of the carbene. As a consequence, the synthetic potential of indazol-3-ylidene not only strongly depends on the choice of potential reaction partners, but also on its substitution pattern and the reaction conditions. As examples, when N1 is substituted with a methyl group, the carbene can be trapped by elemental sulfur, isocyanates, and isothiocyanates which form indazolethione 4, indazolium-3-amidate 5, and indazolium-3-thioamidate 6, respectively [23] (Scheme 2). Aliphatic ketones surprisingly give stable 1:1 adducts 7 [20,24]. α-Bromo acetophenones induce an unexpected ring enlargement to cinnolines 8 [25]. New ring systems such as 9 [25] and 10 [26] were prepared on treatment of indazol-3-ylidene with acetylenes.

Indazol-3-ylidenes which possess an aryl ring at N1 rearrange to give substituted acridines by a ring-cleavage/pericyclic ring-closure reaction sequence (2→A→B→11) (Scheme 3). It

Scheme 1: Generation of indazol-3-ylidenes.

Scheme 2: Reaction products of indazol-3-ylidenes in heterocycle synthesis.

Scheme 3: Reaction of indazol-3-ylidenes with acetylenes.
proved to be advantageous to start these rearrangements from indazolium salts which are readily available by copper-catalyzed aryl couplings or Buchwald–Hartwig reactions [22]. Pyrazol-3-ylidenes rearrange similarly to quinolines [17].

We report here on two unexpected rearrangements of indazol-3-ylidene, and trapping reactions of the N-heterocyclic carbene with rhodium.

Results and Discussion

On trying to deprotonate the indazolium salts 12a–e with potassium 2-methylbutan-2-olate in anhydrous dichloromethane at −80 °C to the N-heterocyclic carbene I in the absence of trapping reagents we unexpectedly obtained a mixture of two compounds which are in equilibrium, when the reaction was allowed to warm to room temperature (Scheme 4). From the NMR spectra of the mixture it was apparent that neither the 3,3’-biindazolylidene II nor its trans isomer had formed, as signals between δ = 91.7 ppm and 94.0 ppm were detected by 13C NMR spectroscopy which are neither in agreement with structure II nor with its trans isomer. Mass spectrometric examinations, however, clearly showed the peaks of dimerized species of the carbene I, because the molecular peaks correspond to twice the mass of the salts 12a–e minus two hydrogen atoms, respectively. We were able to separate the mixtures of the reactions of 12a,c,d by column chromatography employing methanol as eluent, and to characterize the separated species. The species in equilibrium proved to be spiro[indazole-3,2'-indolines], the exocyclic imine groups of which form Z- and E-isomers 13a–d and 14a,c,d, respectively, equilibrated slowly in chloroform solutions to give stable ratios after several days at rt. These results are summarized in Table 1.

Compounds	Ratio^a	Time (d)
13a/14a	10 : 7	12
13b/14b	5 : 1	2
13c/14c	1 : 1	18
13d/14d	10 : 9	9

^aRatios determined by 1H NMR spectroscopy in CDCl₃ at rt.

The isomers 13a–e and 14a–e gave identical IR spectra, but the NMR spectra differ considerably (Figure 1). In the NMR spectra of the E/Z-isomers 13a–d and
spectra the Z-isomers 13a–e show two distinct methyl groups at $\delta = 3.27$ ppm and $\delta = 2.60$ ppm in CDCl$_3$, respectively, as well as two different phenyl rings. The methyl groups of the isomeric spiro compounds 14a, c, d appear at $\delta = 3.74$ ppm and – as overlapped signal – at $\delta = 2.60$ ppm in the 1H NMR spectra measured in CDCl$_3$. On conversion of the exocyclic imine groups from the Z- into the E-configuration (13 → 14), the methyl groups move from a position above the plane of the indazole ring into a position in the plane of the indole ring. This change from vertical to horizontal interactions of aromatics on the methyl groups explains the considerable downfield shift of their 1H NMR resonance frequencies on Z→E isomerisation.

The following scheme presents diagnostic peak assignments of the 1H and 13C NMR spectra, taken at 400 and 100 MHz in CDCl$_3$, respectively.

According to DFT calculations the conversion of 13a to 14a requires an activation energy of $\Delta G^\# = +79$ kJ/mol ($\Delta E = +89$ kJ/mol) while the two species do not differ in energy ($\Delta E < 1$ kJ/mol). In comparison the inversions of the two nitrogen atoms within the indazole ring (vide infra) require less than 50 kJ/mol. Transition with such low activation energies are not inhibited at room temperature, so the last mentioned inversions are not observable in NMR spectra at standard temperature conditions.
The spiro compound 14c crystallized from a saturated solution in n-hexane so that we were able to perform a single crystal X-ray analysis. The compound crystallized monoclinic. As expected, neither the pyrrole ring nor the pyrazole ring is planar as evidenced by the dihedral angles C9–N10–C11–C16 = −159.47(12)° and C9–N1–N2–C3 = 15.22(13)° (crystallographic numbering; Figure 2). The pyramidalization of the nitrogen atoms N1 and N10 cause an anti conformation of the methyl group attached to N1 and the 3-chlorophenyl ring attached to N10. The latter is twisted with respect to the indole moiety [C11–N10–C27–C28 = 41.85(18)°]. As N2 is also pyramidalized, the methyl group at N1 and the 3-chlorophenyl ring at N2 adopt an anti conformation as well. The exocyclic imine has a bond length of 127.13(17) pm and this value corresponds to a typical C=NO imine bond. Correspondingly, the dihedral angle C16–C17–N18–C19 is only −1.3(2)°. The dihedral angle C15–C16–C17–N18, however, is 6.3(3)° so that the imine group is slightly twisted out of the plane of the indole’s phenyl ring. In the single crystal of 14c, the imine adopts an E configuration as already predicted by the NMR investigations.

To prove the initial formation of an N-heterocyclic carbene in this reaction we tried trapping reactions starting from 12a and 12e with carbonylbis(triphenylphosphine)rhodium(I) chloride under otherwise unchanged reaction conditions. Indeed, stable complexes were formed as yellow crystals in either case which were fully characterized (Scheme 5). The carbene atom of 15e was detected at 191.4 ppm by 13C NMR spectroscopy. A comparison of the stretching frequencies of the CO ligands (15a: 2009 cm⁻¹, 15e: 1994 cm⁻¹) indicated very strong donor strengths of these indazol-3-ylidenes as already postulated earlier on comparing different stretching frequencies of selected 5-membered NHCs [27] or 13C NMR resonance frequencies of several palladium carbene complexes [28].

We were able to obtain single crystals of 15e to perform an X-ray analysis (Figure 3). Suitable single crystals were obtained by slow evaporation of a concentrated solution in dichloromethane/iPrOH. The complex crystallized monoclinic. The Rh–C carbene and Rh–CO bond lengths [Rh1–C1 and Rh1–C10; crystallographic numbering] were determined to be 206.0(2) pm and 186.3(3) pm, respectively. The p-iodophenyl substituent is twisted by −50.7(4)° from the plane of the indazole ring [C4–N2–C1–C53].
Another type of rearrangement occurred on heating the dimerized carbenes 13a–d/14a–d in xylene, as the substituted quinazolines 16a–d were isolated in reasonable yields (Scheme 6). The mechanism can be rationalized by formation of an ylide by 1,7-H-shift from the mesomeric betaine III, followed by ring cleavage of the indazole ring and subsequent ring-closure of the resulting 1,6-dipole to give the quinazolines 16a–d.

Single crystals of 16b suitable for an X-ray analysis were obtained by slow evaporation of a saturated solution in methanol. This compound crystallized monoclinic. A molecular structure is shown in Figure 4. In the single crystal the NH group of the aniline (N18–H) forms a hydrogen bond to the imine group (N25) so that an almost planar six-membered ring is formed. The dihedral angle C11–C12–C17–N18 (crystallographic numbering) was determined to be 0.5(2)$^\circ$. This six-membered ring is almost perpendicularly twisted in relation to the quinazoline ring [N1–C10–C11–C12 = −92.65(17)$^\circ$].

Figure 3: Structure of the cation of 15e, displacement parameters are drawn at 50% probability level.

Figure 4: Molecular structure of 16b, displacement parameters are drawn at 50% probability level.

Scheme 6: Rearrangement of the spiro compounds on heating.

\[13a–d / 14a–d \xrightarrow{xylene, reflux \ 3 \text{ h} } [\text{III}] \xrightarrow{} 16a–d \]

16a: $R^1 = R^2 = R^3 = H$, 56%
16b: $R^1 = Cl$, $R^2 = R^3 = H$, 75%
16c: $R^1 = R^3 = H$, $R^2 = Cl$, purification failed
16d: $R^1 = R^2 = H$, $R^3 = Br$, 67%
Conclusion

The N-heterocyclic carbene of indazole, indazol-3-ylidene, displays a chemistry of its own which differs from the chemistry of N-heterocyclic carbones of other ring systems. At low temperatures it can be trapped as a rhodium complex. Without trapping reagents it dimerizes under ring-cleavage to form two isomeric spiro compounds possessing E- and Z-configured methylimine groups. Heating of the carbene dimer results in the formation of novel quinazolines.

Experimental

General considerations: All reactions for the dimerisation and the rearrangement were carried out under an atmosphere of nitrogen in oven-dried glassware. Flash-chromatography was performed with silica gel 60 (0.040–0.063 mm). Nuclear magnetic resonance (NMR) spectra were obtained with a Bruker Avance 400 and Bruker Avance III 600 MHz. 1H NMR spectra were recorded at 400 MHz or 600 MHz. 13C NMR spectra were recorded at 100 MHz or 150 MHz, with the solvent peak or tetramethylsilane used as the internal reference. Multiplicities are described by using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. FTIR spectra were obtained on a Bruker Vector 22 in the range of 400 to 4000 cm⁻¹. The mass spectra were measured with a Varian 320 MS Triple Quad GC–MS/MS with a Varian 450-GC. The electrospray ionization mass spectra (ESIMS) were measured with an Agilent LCMSD series HP 1100 with APIES. Melting points are uncorrected and were performed with silica gel 60 (0.040–0.063 mm). Nuclear magnetic resonance (NMR) spectra were obtained with a Varian 450-GC. The electrospray ionization mass spectra (ESIMS) were measured with an Agilent LCMSD series HP 1100 with APIES. Melting points are uncorrected and were determined in an apparatus according to Dr. Tottoli (Büchi). The HRMS spectra were measured on a Bruker Daltonik Tesla-Fourier transform-ion cyclotron resonance mass spectrometer with electrospray ionisation. Yields are not optimized. Compounds 12a, 12b, 12c and 12e were described in an earlier publication [22]. 1-(4-Bromophenyl)-1H-indazole was prepared by the method B which we described earlier [22] and was isolated in better yield (85%) than in the literature (40%) [29].

Crystal structure determinations of 14c, 15e, 16b

The single-crystal X-ray diffraction study was carried out on a Bruker-Nonius Kappa-CCD at 123(2) K using MoKα radiation (λ = 0.71073 Å). Direct Methods (SHELXS-97) [30] were used for structure solution and refinement was carried out using SHELXL-2013 [30] (full-matrix least-squares on F²). Hydrogen atoms were localized by difference electron density determination and refined using a riding model (H(N) free). Semi-empirical absorption corrections were applied. In 15e one of the 3 solvent molecules CH₂Cl₂ is disordered. For more information see the Supporting Information File 1.

14c: yellow, C₂₅H₂₂Cl₂N₄, M = 485.39, crystal size 0.45 × 0.25 × 0.15 mm, monoclinic, space group P2₁/c (no. 14): a = 13.522(1) Å, b = 14.131(1) Å, c = 12.306(1) Å, β = 94.16(1)°, V = 2345.2(3) Å³, Z = 4, ρ(calc) = 1.375 Mg m⁻³, F(000) = 1008, μ = 0.302 mm⁻¹, 38867 reflections (20max = 55°), 5367 unique [Rint = 0.028], 309 parameters, R1 (for 4546 I > 2σ(I)) = 0.032, wR2 (all data) = 0.086, GOOF = 1.05, largest diff. peak and hole 0.294 / -0.294 e Å⁻³.

15e: yellow, C₅₁H₄₁N₂O₂P₃Rh⁺ ·PF₆⁻ ·3CH₂Cl₂, M = 1389.36, crystal size 0.35 × 0.25 × 0.15 mm, monoclinic, space group P2₁/n (no. 14): a = 14.314(1) Å, b = 26.691(2) Å, c = 15.045(1) Å, β = 99.43(1)°, V = 5670.3(7) Å³, Z = 4, ρ(calc) = 1.627 Mg m⁻³, F(000) = 2768, μ = 1.273 mm⁻¹, 91339 reflections (20max = 55°), 12976 unique [Rint = 0.021], 685 parameters, 70 restraints, R1 (for 11838 I > 2σ(I)) = 0.032, wR2 (all data) = 0.086, GOOF = 1.09, largest diff. peak and hole 1.473 / -1.377 e Å⁻³.

16b: colourless, C₂₈H₂₃Cl₂N₄, M = 485.39, crystal size 0.30 × 0.24 × 0.06 mm, monoclinic, space group P2₁/n (no. 14): a = 14.690(1) Å, b = 7.488(1) Å, c = 21.484(2) Å, β = 90.75(1)°, V = 2363.0(4) Å³, Z = 4, ρ(calc) = 1.364 Mg m⁻³, F(000) = 1008, μ = 0.300 mm⁻¹, 36379 reflections (20max = 55°), 5408 unique [Rint = 0.034], 311 parameters, 1 restraint, R1 (for 4414 I > 2σ(I)) = 0.040, wR2 (all data) = 0.093, GOOF = 1.05, largest diff. peak and hole 0.325 / -0.278 e Å⁻³.

Crystallographic data (excluding structure factors) for the structures reported in this work have been deposited with the
General procedure for the preparation of the indazole carbene dimers 13/14

A solution of 2.0 mmol of the indazole salts 12a–e in 20 mL of dichloromethane was cooled to −80 °C. Then 1.2 mL of a 2 M solution of potassium 2-methylbutan-2-olate in THF was added dropwise within 30 minutes. The reaction mixture was then evaporated to dryness and extracted twice with 20 mL of petroleum ether, respectively. After evaporation of the solvent in vacuo the crude reaction product was purified by flash column chromatography (silica gel; methanol) and dried in vacuo. The isomers 13 and 14 have R² values of approximately 0.4 and 0.2 on silica gel in MeOH, respectively.

(Z)-N-(2-Methyl-1,1'-diphenyl-1,2-dihydrospiro[indazole-3,2'-indolin]-3'-ylidine)ethanamine (13a)

Yield: 152 mg (37%) of a yellow solid; mp 74–75 °C; 1H NMR (400 MHz, CDCl₃) δ 7.68 (dd, J = 7.5, 0.6 Hz, Ar-H), 7.29–7.25 (m, 2H, Ar-H), 3.41 (s, 3H, CH₂) ppm; IR (ATR): 2009, 1498, 1479, 1436, 1222, 122.2, 109.6, 40.2 ppm; IR (ATR): 3051, 2952, 2891, 2855, 1655, 1605, 1590, 1450, 1354, 1312, 1271, 1191, 1151, 1000, 922, 856, 697, 681, 480 cm⁻¹; ESIMS: m/z (%) = 417 [M + H⁺]; HRESIMS: C₂₈H₂₅N₄ calcd for 417.2079; found: 417.2075.

General procedure for the rearrangements of the indazole carbene dimers to 16

A solution of 1.0 mmol of the dimers of the indazole carbenes 13a/13b/13d in 20 mL of xylene was stirred at reflux temperature for 3 hours. After the solvent was distilled off in vacuo, the crude product was purified by flash column chromatography (petroleum ether: ethyl acetate = 3:1) and dried in vacuo.

2-((Methylimino)(1-phenyl-1,2-dihydroquinazolin-4-yl)methyl)-N-phenylaniline (16a)

Yield: 233 mg (56%) of yellow crystals; mp 146–147 °C. 1H NMR (400 MHz, CDCl₃) δ 7.53 (t, J = 7.6 Hz, Ar-H), 7.50–7.45 (m, 2H, Ar-H), 3.23 (s, 3H, CH₂) ppm; IR (ATR): 3051, 2952, 2891, 2855, 1655, 1605, 1590, 1450, 1354, 1312, 1271, 1191, 1151, 1000, 922, 856, 697, 681, 480 cm⁻¹; ESIMS: m/z (%) = 417 [M + H⁺]; HRESIMS: C₂₈H₂₅N₄ calcd for 417.2079; found: 417.2075.

General procedure for the rearrangement of the rhodium complexes 15

A solution of 0.2 mmol of the indazolium salts 12a and 12e, respectively, and 0.2 mmol of carbonylbis(triphenylphosphine)rhodium(I) chloride in 20 mL of THF was cooled to −80 °C. Then, 0.1 mL of a 2 M solution of potassium 2-methylbutan-2-olate in THF was added dropwise. The reaction mixture was then stirred overnight at room temperature. Yellow solids formed which were filtered off, washed with 2 mL of ethylacetate, and dried in vacuo.
Supporting Information

Supporting Information File 1
Synthetic procedures, characterization data, X-ray data and NMR spectra.

Acknowledgements
Dr. Gerald Dräger, University of Hannover, Germany, is thankfully acknowledged for measuring the HRESIMS spectra.

References
1. Stadlbauer, W. In Science of Synthesis; Neer, R., Ed.; Thieme Verlag: Stuttgart, Germany, 2002; Vol. 12, pp 227–324.
2. Elguero, J. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, U.K., 1996; Vol. 3, pp 1–75.
3. Stadlbauer, W. In Houben-Weyl, Methoden der Organischen Chemie; Schaumann, E., Ed.; Thieme Verlag: Stuttgart, Germany, 1994; Vol. E8b, pp 764–864.
4. Schmidt, A.; Beutler, A.; Snovydovych, B. Eur. J. Org. Chem. 2008, 4073–4095. doi:10.1002/ejoc.200800227
5. Cerecetto, H.; Gerpe, A.; González, M.; Arán, V. J.; Ochoa de Ocáriz, C. Mini-Rev. Med. Chem. 2005, 5, 869–878. doi:10.2174/138955705774329584
6. Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361–363. doi:10.1021/ja00001a054
7. Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719–3726. doi:10.1021/ja01547a064
8. Wanzlick, H-W. Angew. Chem. 1962, 74, 129–134. doi:10.1002/ange.19620704002
9. Öfele, K. J. Org. Chem. 1967, 12, P42. doi:10.1021/jo0022328X(00)86691-X
10. Kühl, O. Functionalized N-Heterocyclic Carbene Complexes; John Wiley & Sons: Chichester, U.K., 2010. doi:10.1002/9780470685839
11. Diez-González, S. N-Heterocyclic Carbene: From Laboratory Curiosities to Efficient Synthetic Tools; Royal Society of Chemistry: Cambridge, U.K., 2011.
12. Nolan, S. P. N-Heterocyclic Carbene in Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
13. Yuan, D.; Huynh, H. V. Organometallics 2011, 31, 405–412. doi:10.1021/om1010029
14. Mata, J. A.; Poyatos, M. Curr. Org. Chem. 2011, 15, 3309–3324. doi:10.2174/138527211797247969
15. Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 124, 320–332. doi:10.1002/anie.201105415
16. Zhao, Q. W.; Curran, D. P.; Malacria, M.; Fensterbank, L.; Goddard, J. P.; Lacôte, E. Chem.–Eur. J. 2011, 17, 9911–9914. doi:10.1002/chem.201101822
17. Schmidt, A.; Münster, N.; Dreger, A. Angew. Chem., Int. Ed. 2010, 122, 2851–2854. doi:10.1002/anie.200905436
18. Schmidt, A.; Guan, Z. Synthesis 2012, 3251–3268. doi:10.1055/s-0032-1316787
19. Schmidt, A.; Wiechmann, S.; Freese, T. ARKIVOC 2013, No. i, 424–469. doi:10.3998/ark.5550190.p008.251
20. Schmidt, A.; Merkel, L.; Eisefeld, W. Eur. J. Org. Chem. 2005, 2124–2130. doi:10.1002/ezoc.200500032
21. Schmidt, A.; Snovydovych, B.; Casado, J.; Quirante, J. J.; López Navarrete, J. T.; Ramírez, F. J. Phys. Chem. Chem. Phys. 2009, 11, 341–348. doi:10.1039/b812597j
22. Guan, Z.; Wiechmann, S.; Drauf, M.; Hübner, E.; Schmidt, A. Org. Biomol. Chem. 2013, 11, 3558–3567. doi:10.1039/c3ob40379c
23. Schmidt, A.; Beutler, A.; Habeck, T.; Mordhorst, T.; Snovydovych, B. Synthesis 2006, 1882–1894. doi:10.1055/s-2006-942367
24. Schmidt, A.; Habeck, T.; Snovydovych, B.; Eisefeld, W. Org. Lett. 2007, 9, 3515–3518. doi:10.1021/ol0713739
25. Schmidt, A.; Snovydovych, B.; Gijka, M. Synthesis 2008, 2798–2804. doi:10.1055/s-2008-1067215
26. Schmidt, A.; Snovydovych, B.; Hemmen, S. Eur. J. Org. Chem. 2008, 4313–4320. doi:10.1021/00800456
27. Jothibasu, R.; Huynh, H. V. Chem. Commun. 2010, 46, 2986–2988. doi:10.1039/b925677e
28. Huynh, H. V.; Han, Y.; Jothibasu, R.; Yang, J. A. Organometallics 2009, 28, 5395–5404. doi:10.1021/om800667d
29. Lebedev, A. Y.; Kartulyari, A. S.; Voskoboynikov, A. Z. J. Org. Chem. 2005, 70, 596–602. doi:10.2174/0069295010701060871
30. Sheldrick, G. M. Acta Crystalllogr., Sect. A 2008, 64, 112–122. doi:10.1107/S0108767307043930

License and Terms
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.10.79