Development of a Robust UFIR Filter with Consensus on Estimates for Missing Data and unknown noise statistics over WSNs

Miguel Vazquez-Olguin1,∗, Yuiri S. Shmaiy3,∗∗, and Oscar Ibarra-Manzano1,∗∗∗

1Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico

Abstract. Wireless sensor networks (WSN) are often deployed in harsh environments, where electromagnetic interference, damaged sensors, or the landscape itself cause the network to suffer from faulty links and missing data. In this paper, we develop an unbiased finite impulse response (UFIR) filtering algorithm for optimal consensus on estimates in distributed WSN. Simulations are provided assuming two possible scenarios with missing data. The results show that the distributed UFIR filter is more robust than the distributed Kalman filter against missing data.

1 Introduction

The wireless sensor networks (WSN) have found applications in diverse areas in recent years due to a noticeable progress in the miniaturization and cost reduction of smart sensors, which allow providing a more ubiquitous access to real world environments. Measurements are often subject to noise and missing data due to unstable links. Therefore, optimal estimation is required along with adequate sensor fusion techniques [3–6], which must demonstrate a sufficient robustness against missing data, model errors (mismatching), and incomplete information about noise statistics. On the other hand, the restrictions of WSN caused by limited battery life and processing power put a stress on the development of the algorithms to ensure that these limited resources are exploited efficiently.

In order to improve battery life and minimize the computational burden, distributed filtering has been introduced to estimate \(Q \) in real time [7, 8]. Under the distributed filtering, each node is tasked with the estimation of \(Q \) and a consensus protocol is implemented by averaging the estimates, measurements, or information matrices [9] so that all the nodes agree in a common value called the group decision value [10].

The low computational burden and optimal estimation, make the Kalman filter (KF) a very popular sensor fusion technique [11]. Based on the KF approach, many authors have addressed the consensus problem in WSNs. In [12], the author has proposed a KF structure that requires each node to locally aggregate its measurement and covariance matrix with those of its neighbors and, in a posterior step, compute the estimate using a KF with a consensus term. In [13], the KF approach has been developed for local estimation and a consensus matrix as fusion technique. In [14], the authors have presented an algorithm based on the KF to address an issue with missing data. Let us notice that the KF optimality has important requirements such as a complete knowledge of the noise statistics, the noise distribution must be strictly Gaussian, an adequate model must be used, and a knowledge of the initial conditions is mandatory [15–18]. If these requirements are not met, the performance of the KF may drastically degrade and become unacceptable for real world WSN applications [19].

It has been proven in [20–23] that better robustness can be achieved by using filters operating on finite data horizons. Under such an assumption, a moving average estimator has been designed in [24] for weak observability. A consensus finite-horizon \(H_{\infty} \) approach was developed in [25] under missing measurements. In [26], an unbiased finite impulse response (UFIR) filter was developed for consensus on measurements. Although this filter demonstrates an ability to be more robust and adequate than the KF for WSN, it was designed under the condition that all sensors measure the same state at the same time. In [19], the UFIR structure has been developed for consensus on estimates, but the consensus factor was obtained through a previous analysis and without a mathematical background. Also, the effect of missing measurements on the filter performance was not considered. The issue of missing measurements has been addressed by the KF and UFIR approaches. In [27] an extended KF was modified to address the issue of missing measurement while in [28] a UFIR filter was developed as a robust estimator that neglects noise statistic. Regarding WSNs, in [29] a KF was modeled for intermittent observations and in [30] a UFIR alternative for missing and delayed data was developed.
In this work, we further develop the results obtained in [19] by providing a mathematical expression for the consensus factor and also include a prediction step to overcome the issue of missing data. The rest of the paper is organized as follows. In Section 2, the problem is formulated and the model presented. Section 3 presents a predictive KF algorithm. The design of a tracking predictive dUFIR filter is given both in the batch and fast iterative forms in Section 4. Simulations are provided in Section 5 and conclusions are given in Section 6.

2 Problem Formulation and Preliminaries

Consider the dynamics of a quantity Q given for a distributed WSN with the following discrete K-states space equations,

\[x_k = F_k x_{k-1} + B_k u_k, \quad (1) \]
\[y_k^0 = H_k^0 (F_k x_{k-1}), \quad (2) \]
\[y_k^0 = y_k (H_k^0 x_k + x_k^0) + (1 - y_k) y_k^0, \quad (3) \]
\[y_k = H_k x_k + v_k, \quad (4) \]

where \(x_k \in \mathbb{R}^K, u_k \in \mathbb{R}^d, F_k \in \mathbb{R}^{K \times K}, E_k \in \mathbb{R}^{K \times M}, \) and \(B_k \in \mathbb{R}^{K \times L}. \) The \(\text{th}, i \in [1, n], \) is a part of the WSN regarded as an undirected graph \(G = (\mathcal{V}, E), \) where each vertex \(v_i \in \mathcal{V} \) is a node and each link is an edge of a set \(E, \) for \(i \in I = \{1, \ldots, n\} \) and \(n = |\mathcal{V}| \) with \(J \) inclusive neighbors.

Each node measures \(y_k \) by \(y_k^0 \in \mathbb{R}^p, \) \(p \leq K, \) with \(H_k^0 \in \mathbb{R}^{p \times K}. \) Local data \(y_k^0 \) are united in the observation vector \(y_k = [y_k^0]^T \ldots [y_k^0]^T]^T \in \mathbb{R}^p \) with \(H_k = [H_0^0 \ldots H_k^0]^T \in \mathbb{R}^{p \times K}. \) Noise vectors \(u_k \in \mathbb{R}^L \) and \(v_k = [v_k^0]^T \ldots [v_k^0]^T]^T \in \mathbb{R}^p \) are zero mean, not obligatorily white Gaussian, uncorrelated, and with the covariances \(Q_k = E[u_k u_k^T] \in \mathbb{R}^{L \times L}, \) \(R_k = \text{diag}[v_k^0 v_k^0]^T \ldots [v_k^0 v_k^0]^T] \in \mathbb{R}^{p \times p}, \) and \(K_k^0 = E[y_k^0 y_k^0]^T \). A binary variable \(y_k \) serves as an indicator of whether a measurement exist \((y_k = 1) \) or not \((y_k = 0), \) in which case the measurement prediction \(y_k^0 \) (2) is used by substituting \(x_{k-1} \) with the estimate.

3 Predictive Distributed Kalman Filter

In order to assert a better robustness of the distributed UFIR (dUFIR) filter against missing data, a comparison with the distributed KF (dKF) is mandatory. For this reason, we first develop a modification of the KF algorithm introduced in [12] by including a predictive feature (lines 3–5).

The logic behind the dKF, makes it mandatory for the first step to ensure that the prediction from every first order neighbor is available such that in a posterior step the implementation of a local KF is provided with a consensus on estimates from neighbors.

Algorithm 1: Predictive dKF Algorithm

Data: \(P_0^{(i)}, Q_k, R_k, x_k^0, y_k, x_0 = x_0 \)
Result: \(x_k \)

1 begin
2 \(\text{for } k = 0 : \infty \) do
3 \(\text{if } y_k = 0 \text{ then} \)
4 \(y_k^0 = H_k^0 F_k x_{k-1}; \)
5 \(\text{end if} \)
6 \(x_k = H_k^0 F_k x_{k-1}; \quad \forall j \in J; \)
7 \(\hat{x}_k = \sum_{j \in J} \hat{x}_k; \)
8 \(y_k^0 = R_k^0 F_k^0 H_k^0, \quad \forall j \in J; \)
9 \(S_k = \sum_{j \in J} S_k^0; \)
10 \(M_k^0 = (P_k^{(i)} + S_k^{(i)})^{-1}; \)
11 \(x_k = x_k^0 + M_k^0 (y_k^0 - x_k^0); \)
12 \(P_{k+1} = F_k M_k^0 F_k^0 + R_k; \)
13 \(\text{end for} \)

4 Predictive Distributed UFIR Filter

To obtain optimum estimates and achieve a consensus on estimates, we formulate the distributed estimate as

\[\hat{x}_k = \hat{x}_k + A_k^{opt} \hat{x}_k, \quad (5) \]

where the centralized and individual estimates, \(\hat{x}_k \) and \(\hat{x}_k^{(i)} \) respectively, are obtained through

\[\hat{x}_k = K_{m,k} y_{m,k}, \quad (6) \]
\[\hat{x}_k^{(i)} = K_{m,k}^{(i)} \hat{y}_{m,k}^{(i)} \quad (7) \]

and \(\Sigma_k = \sum_j (\hat{x}_k^{(j)} - \hat{x}_k^{(0)}) \) is a consensus protocol that minimizes the disagreement between the first-order neighbors \([12]\).

A consensus factor \(A_k^{opt} \) is chosen such that the root mean squared error (RMSE) is minimized by

\[A_k^{opt} = \arg \min \{ \text{tr} (P(A_k)) \} \quad (8) \]

with \(P(A_k) = E[(x - \hat{x})(x - \hat{x})^T] \) as the relevant error covariance.

4.1 Batch Distributed UFIR Filter Design

To determine gains \(K_{m,k} \) and \(K_{m,k}^{(i)}, \) we express the model equations (1)–(4) in the extended state space form over horizon \(N \) as described in [19, 31],

\[X_{m,k} = A_{m,k} x_m + D_{m,k} W_{m,k}, \quad (9) \]
\[Y_{m,k} = C_{m,k} x_m + M_{m,k} W_{m,k} + V_{m,k}, \quad (10) \]
\[y_{m,k} = C_{m,k}^{(i)} x_m + M_{m,k}^{(i)} W_{m,k} + V_{m,k}^{(i)}, \quad (11) \]
where \(X_{m,k} = \begin{bmatrix} x_1 \ T \ x_{m+1}^T \ \ldots \ x_k^T \end{bmatrix}^T \), \(Y_{m,k} = \begin{bmatrix} y_{m}^T \ y_{m+1}^T \ \ldots \ y_k^T \end{bmatrix}^T \), \(W_{m,k} = \begin{bmatrix} w_{m}^T \ w_{m+1}^T \ \ldots \ w_k^T \end{bmatrix}^T \), \(V_{m,k} = \begin{bmatrix} v_{m}^T \ v_{m+1}^T \ \ldots \ v_k^T \end{bmatrix}^T \), \(Y_{m,k}^{(i)} = \begin{bmatrix} y_{m,k}^{(i)} \ y_{m+1,k}^{(i)} \ \ldots \ y_{k,k}^{(i)} \end{bmatrix}^T \), and the extended matrices are

\[
A_{m,k} = \begin{bmatrix} 1 & F_{m+1} & \ldots & (F_{k+m-1})^T \end{bmatrix}^T, \tag{12}
\]

\[
D_{m,k} = \begin{bmatrix} B_m & 0 & \ldots & 0 \\
F_{m+1}B_m & B_{m+1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
F_{k+m-1}B_m & F_{k+m-2}B_{m+1} & \ldots & F_{k-1}B_k & B_k
\end{bmatrix} \tag{13}
\]

\[
C_{m,k} = \bar{C}_{m,k}A_{m,k}, \quad M_{m,k} = \tilde{C}_{m,k}D_{m,k}, \quad C_{m,k}^{(i)} = \bar{C}_{m,k}^{(i)}A_{m,k}, \quad M_{m,k}^{(i)} = \bar{C}_{m,k}^{(i)}D_{m,k},
\]

where

\[
\bar{C}_{m,k} = \text{diag}(H_m, H_{m+1}, \ldots, H_k), \tag{14}
\]

\[
\bar{C}_{m,k}^{(i)} = \text{diag}(H_m^{(i)}, H_{m+1}^{(i)}, \ldots, H_k^{(i)}), \tag{15}
\]

\[
\mathcal{F}_T = \begin{bmatrix} F, F_r, \ldots, F_g & g < r + 1 \\
I & g = r + 1 \end{bmatrix}. \tag{16}
\]

Referring to [19], equation (5) can now be rewritten as

\[
\hat{x}_k = K_mY_{m,k} + J_x^{\text{opt}}K_m^{(i)}Y_{m,k} - J_x^{\text{opt}}K_m^{(i)}x_{m,k}. \tag{17}
\]

As we are interested in a robust UFIR filter that ignores the initial values, the unbiasedness condition must hold for the distributed, centralized and individual estimates,

\[
E(\hat{x}_k) = E(\hat{x}_k^{(i)}) = E(x_k) \tag{18}
\]

where

\[
x_k = \mathcal{F}_k^{m+1}x_m + D_{m,k}W_{m,k} \tag{19}
\]

with \(\bar{D}_{m,k} = [\mathcal{F}_k^{m+1}B_m \mathcal{F}_k^{m+2}B_{m+1} \ldots F_kB_{k-1} B_k] \). The corresponding gains are defined by

\[
K_{m,k} = G_k C_m^T, \quad K_{m,k}^{(i)} = G_k^{(i)} C_m^{(i)} \tag{20}
\]

\[
K_{m,k}^{(i)} = G_k^{(i)} C_m^{(i)} \tag{21}
\]

where \(G_k = (C_m^T C_m)^{-1} \) and \(G_k^{(i)} = (C_m^{(i)} C_m^{(i)})^{-1} \).

In real world applications, the nodes of the WSN may be unable to implement equation (17), due to large-dimension matrices and operations involved into the limited memory resources of the smart sensors. Therefore, below we develop an iterative form of (17) which fits better with the WSNs resources.

4.2 Optimum \(\lambda_k \)

Consider the error covariance \(P_k = E[x_k x_k^T] \) as function of \(\lambda_k \), with the estimation error \(\tilde{x}_k = x_k - \hat{x}_k \), to be

\[
P_k = (\bar{D}_{m,k} - K_{m,k}M_{m,k})Q_{m,k}(\bar{D}_{m,k} - K_{m,k}M_{m,k})^T + J_k \lambda_{k}(K_{m,k} \bar{R}_{m,k}K_{m,k}^T - K_{m,k}^{(i)} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)})^T + J_k^2 \lambda_{k}^2 (K_{m,k} \bar{R}_{m,k}K_{m,k}^T - K_{m,k}^{(i)} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)})^T \tag{22}
\]

where

\[
\bar{R}_{m,k} = E[t_{m,k} t_{m,k}^T] = \text{diag}(R_m \ldots R_k),
\]

\[
R_{m,k}^{(i)} = E[t_{m,k}^{(i)} t_{m,k}^{(i)}] = \text{diag}(R_{m,k} \ldots R_{k}^{(i)}),
\]

\[
\bar{R}_{m,k}^{(i)} = E[t_{m,k}^{(i)} t_{m,k}^{(i)}] = \text{diag}(R_{m,k}^{(i)} \ldots R_{k}^{(i)}).
\]

We next apply the derivative with respect to \(\lambda \) to the trace of (22) by using the identities \(\frac{\partial}{\partial \lambda} \text{tr}(X^T BX) = BX + B^T X \) and \(\frac{\partial}{\partial \lambda} \text{tr}(AX) = A^T \). Putting the derivative to zero yields

\[
\lambda_k^{\text{opt}} = \frac{1}{T}(K_m \bar{R}_{m,k}K_{m,k}^T - K_{m,k}^{(i)} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)}) \times (K_m \bar{R}_{m,k}K_{m,k}^T - K_{m,k}^{(i)} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)})^{-1} - (K_{m,k} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)})^T + K_{m,k}^{(i)} K_{m,k}^{(i)} K_{m,k}^{(i)} \tag{23}
\]

and using the identities

\[
K_{m,k} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)} = (K_{m,k} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)})^T,
\]

\[
K_{m,k} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)} = G_k G_k^{(i)} K_{m,k}^{(i)} K_{m,k}^{(i)} K_{m,k}^{(i)} \tag{24}
\]

we obtain the final form of (24) as

\[
\lambda_k^{\text{opt}} = - \frac{1}{T}(K_m \bar{R}_{m,k}K_{m,k}^T - G_k G_k^{(i)} K_{m,k}^{(i)}) \times (K_m \bar{R}_{m,k}K_{m,k}^T - G_k G_k^{(i)} K_{m,k}^{(i)})^{-1} \times (K_{m,k} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)})^T + (K_{m,k} \bar{R}_{m,k}^{(i)} K_{m,k}^{(i)})^T + K_{m,k}^{(i)} K_{m,k}^{(i)} K_{m,k}^{(i)} \tag{23}
\]

If, for some particular application, the network and the process dynamics are both time invariant, \(\lambda_k^{\text{opt}} \) is also time invariant, to mean that equation (24) can be computed beforehand and embedded into the nodes.

4.3 Iterative Distributed UFIR filter

An iterative algorithm for the centralized estimates \(\hat{x}_k \) can be derived following the procedure described in [31], including a variable \(i \) that starts at \(i = k - N + K + 1 \) and ending in \(i = k \). The recursions are given by

\[
\hat{G}_i = [H_i^T H_i + (A_i G_{i-1} A_i^T)^{-1}]^{-1}, \tag{25}
\]

\[
\hat{x}_i = A_i \hat{x}_{i-1}, \tag{26}
\]

\[
\hat{x}_i = \hat{x}_i + \hat{G}_i H_i^T (y_i - H_i \hat{x}_i). \tag{27}
\]
The initial values G_{i-1} and \dot{x}_{i-1} are computed at $s = k - N + K$ in batch forms as

$$G_s = (C_{m,s}^T C_{m,s})^{-1},$$

$$\dot{x}_s = G_s C_{m,s}^T Y_{m,s}.$$

(28)

(29)

The individual estimates $\hat{x}_l^{(i)}$ are provided by

$$G_l^{(i)} = [H_l^{(i)} H_l^{(i)} + (A_l G_l^{(i-1)} A_l^T)^{-1}]^{-1},$$

$$\dot{x}_l^{(i)} = A_l \dot{x}_{l-1}^{(i)},$$

$$\dot{x}_l^{(i)} = \dot{x}_l^{(i)} + G_l^{(i)} H_l^{(i)} (y_l - H_l^{(i)} \dot{x}_l^{(i)}).$$

(30)

(31)

(32)

with the initial values

$$G_s^{(i)} = (C_{m,s}^{m,s} C_{m,s})^{-1},$$

$$\dot{x}_s^{(i)} = G_s^{(i)} C_{m,s}^{m,s} Y_{m,s}.$$

(33)

(34)

A pseudo code of the designed predictive iterative dUFIR algorithm with consensus on estimates is listed as Algorithm 2.

Algorithm 2: Iterative dUFIR Filtering Algorithm

Data: $y_k, R_k^{(i)}, R_k, N, x_k^{opt}$

Result: \dot{x}_k

1. begin
2. for $k = N - 1 : \infty$ do
3. $m = k - N + 1, s = m + K - 1 ;$
4. $G_s = (H_m^{(i)} H_m^{(i)})^{-1} ;$
5. $G_s^{(i)} = (H_m^{(i)} H_m^{(i)})^{-1} ;$
6. if $\gamma_l = 0$ then
7. $y_l^{(i)} = H_k^{(i)} F_k \dot{x}_l^{(i)} ;$
8. end if
9. $\dot{x}_s = G_s^{(i)} H_m^{(i)} Y_{m,s} ;$
10. $\dot{x}_s^{(i)} = G_s^{(i)} H_m^{(i)} Y_{m,s} ;$
11. for $l = s + 1 : k$ do
12. $\dot{x}_l^{(i)} = F_l \dot{x}_{l-1}^{(i)} ;$
13. $\dot{x}_l^{(i)} = F_l \dot{x}_{l-1}^{(i)} ;$
14. $G_l = [H_l^{(i)} H_l^{(i)} + (A_l G_l^{(i-1)} A_l^T)^{-1}]^{-1} ;$
15. $G_l^{(i)} = [H_l^{(i)} H_l^{(i)} + (A_l G_l^{(i-1)} A_l^T)^{-1}]^{-1} ;$
16. $\dot{x}_l = \dot{x}_l + G_l H_l (y_l - H_l \dot{x}_l) ;$
17. $\dot{x}_l = \dot{x}_l^{(i)} + G_l^{(i)} H_l^{(i)} (y_l^{(i)} - H_l^{(i)} \dot{x}_l^{(i)});$
18. end for
19. $\dot{x}_k = (I + J L_{k}^{opt}) \dot{x}_k - J L_{k}^{opt} \dot{x}_k ;$
20. end for
21. end
22. \dagger First data $y_0, y_1, ..., y_{N-1}$ must be available.

5 Simulations

The following scenario is considered to test Algorithm 1 and Algorithm 2 for robustness against missing data. We consider the ground truth trajectory of a robot available for free from the MapPIE project dataset [32]. The coordinates x and y are measured by eight nodes of a WSN, whose connections are depicted in Fig. 1 and stated in table 1. Measurements are simulated by adding white Gaussian noise to the ground truth data with different variances for each sensor as $\sigma_{y} = 0.25 + \phi$, where ϕ is uniformly distributed as $\phi = U(0.5, -0.5)$. Several data points are removed from measurements by following the binomial distribution with $p = 0.99$, where only a few data points are lost (Fig. 2 a)) and $p = 0.6$, where many data points are lost (Fig. 2 b)).

The process dynamics of the moving robot is described in state space with

$$A = \begin{bmatrix} 1 & \tau & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \tau \\ 0 & 0 & 0 & 1 \end{bmatrix} ,$$

$$H^{(i)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ,$$

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} ,$$

$$Q = \begin{bmatrix} \sigma_{v}^2 & 0 \\ 0 & \sigma_{w}^2 \end{bmatrix} ,$$

where $\sigma_{v} = 0.76$ m/s. For dUFIR, the optimal horizon N_{opt} was found at a test stage to be 57 in average.

As stated by (24), the optimal factor λ_{k}^{opt} depends on the appropriate knowledge of the noise statistics. In order to analyze the robustness of the algorithms, we let $Q_{k} \leftarrow (0.1)^{2} Q_{k}$ and $R_{k}^{(i)} \leftarrow (2)^{2} R_{k}^{(i)}$.

The RMSE computation for each node reveals remarkable results in terms of robustness as it is represented in Fig. 3. While it is true that both filters require knowledge of the measurement noise statistics, the performance of dKF falls behind the dUFIR performance due to its dependency on errors in the process noise statistics. Also, we observe that an unstable network ($p = 0.66$) has a more dramatic effect on dKF, as error in the dKF increase regardless of the number of links, while in the dUFIR an increase in the errors is more contained. This behavior is better observed in Fig. 4, where the bias errors in dUFIR are practically unaltered by the missing data.

The effect of the missing measurements is better appreciated in the overall trajectory estimation as shown in
Fig. 2. Missing measurements corresponding to node 5: a) $p = 0.99$ and b) $p = 0.6$.

Fig. 3. The RMSE produced by the dUFIR filter and dKF of nodes 1, 2, 3 and 4.

Fig. 4. Estimation error produced along the coordinate x of node 5 by: a) dKF and b) dUFIR filter.

Fig. 5. The ground truth and a trajectory estimated by the dKF and dUFIR algorithms.

Fig. 5, where the estimates obtained with Algorithm 1 demonstrate lesser accuracy than the estimates obtained with Algorithm 2.

6 Conclusion

In this paper, we have introduced a mathematical expression for λ_{opt} that allows the dUFIR filter to produce estimates with a minimum possible RMSE for consensus on estimates. The performance of the dUFIR filter was shown to have a better robustness than of the dKF under the missing data. This inference was shown to hold even for very unstable networks. An overall conclusion that has been made is that the dUFIR is a better choice than the dKF for distributed WSNs.

References

[1] D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Ambient intelligence: Technologies, applications, and opportunities,” Pervasive and Mobile Computing, vol. 5, no. 4, pp. 277–298, aug 2009.
[2] L. G. Feng Zhao, Wireless Sensor Networks: An Information Processing Approach. MORGAN KAUFMANN PUBL INC, 2004.
[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, Mar 2002.
[4] M. S. Mahmoud and Y. Xia, Networked Filtering and Fusion in Wireless Sensor Networks. CRC Press, 2014.
[5] C. Chen, S. Zhu, X. Guan, and X. Shen, Wireless Sensor Networks. Springer Intern. Publ., 2014.
[6] B. Rao and H. Durrant-Whyte, “Fully decentralised algorithm for multisensor Kalman filtering.” IEE Proc. D Control Theory and Applic., vol. 138, no. 5, p. 413, 1991.
[7] H. Dong, Z. Wang, and H. Gao, “Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet
dropouts,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 3164–3173, Jun 2012.
[8] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in Ad Hoc WSNs with noisy links—Part I: Distributed estimation of deterministic signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364, Jan 2008.
[9] W. Li, Z. Wang, G. Wei, L. Ma, J. Hu, and D. Ding, “A survey on multisensor fusion and consensus filtering for sensor networks,” Discrete Dynamics in Nature and Society, vol. 2015, pp. 1–12, 2015.
[10] R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, sep 2004.
[11] X. Bai, Z. Wang, L. Zou, and F. E. Alsaadi, “Collaborative fusion estimation over wireless sensor networks for monitoring CO 2 concentration in a greenhouse,” Information Fusion, vol. 42, pp. 119–126, Jul 2018.
[12] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in 2007 46th IEEE Conf. on Decision and Control. IEEE, 2007.
[13] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed kalman filtering based on consensus strategies,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 4, pp. 622–633, 2008.
[14] S. S. Stanković, M. S. Stanković, and D. M. Stipanović, “Consensus based overlapping decentralized estimation with missing observations and communication faults,” Automatica, vol. 45, no. 6, pp. 1397–1406, jun 2009.
[15] J. J. Pomarico-Franquiz and Y. S. Shmaliy, “Accurate self-localization in RFID tag information grids using FIR filtering,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1317–1326, May 2014.
[16] Y. S. Shmaliy, S. Khan, and S. Zhao, “Ultimate iterative UFIR filtering algorithm,” Measurement, vol. 92, pp. 236–242, Oct 2016.
[17] Y. S. Shmaliy, “Suboptimal FIR filtering of nonlinear models in additive white gaussian noise,” IEEE Transactions on Signal Processing, vol. 60, no. 10, pp. 5519–5527, oct 2012.
[18] J. Contreras-Gonzalez, O. Ibarra-Manzano, and Y. S. Shmaliy, “Clock state estimation with the kalman-like UFIR algorithm via TIE measurement,” Measurement, vol. 46, no. 1, pp. 476–483, jan 2013.
[19] M. Vazquez-Olguin, Y. S. Shmaliy, and O. Ibarra-Manzano, “Developing UFIR Filtering with Consensus on Estimates for Distributed Wireless Sensor Networks,” WSEAS Trans. Circuits Syst., 2018.
[20] A. H. Jazwinski, Stochastic Processes and Filtering Theory (Dover Books on Electrical Engineering). Dover Publications, 2007.
[21] F. Ramirez-Echeverria, A. Sarr, and Y. S. Shmaliy, “Optimal memory for discrete-time FIR filters in state-space,” IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 557–561, feb 2014.
[22] S. Zhao, Y. S. Shmaliy, and F. Liu, “Fast kalman-like optimal unbiased FIR filtering with applications,” IEEE Transactions on Signal Processing, vol. 64, no. 9, pp. 2284–2297, may 2016.
[23] Y. S. Shmaliy, S. H. Khan, S. Zhao, and O. Ibarra-Manzano, “General unbiased FIR filter with applications to GPS-based steering of oscillator frequency,” IEEE Transactions on Control Systems Technology, vol. 25, no. 3, pp. 1141–1148, may 2017.
[24] M. Farina, G. Ferrari-Trecate, and R. Scattolini, “Distributed moving horizon estimation for linear constrained systems,” IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2462–2475, 2010.
[25] B. Shen, Z. Wang, and Y. Hung, “Distributed finite horizon consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682–1688, 2010.
[26] M. Vazquez-Olguin, Y. S. Shmaliy, and O. G. Ibarra-Manzano, “Distributed unbiased FIR filtering with average consensus on measurements for WSNs,” IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1440–1447, Jun 2017.
[27] J. Hu, Z. Wang, H. Gao, and L. K. Stergioulas, “Extended kalman filtering with stochastic nonlinearities and multiple missing measurements,” Automatica, vol. 48, no. 9, pp. 2007–2015, sep 2012.
[28] M. Vazquez-Olguin, Y. S. Shmaliy, C. K. Ahn, and O. G. Ibarra-Manzano, “Blind robust estimation with missing data for smart sensors using UFIR filtering,” IEEE Sensors Journal, vol. 17, no. 6, pp. 1819–1827, mar 2017.
[29] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry, “Kalman filtering with intermittent observations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, sep 2004.
[30] K. Uribe-Murcia, Y. S. Shmaliy, and J. A. Andrade-Lucio, “UFIR filtering for GPS-based tracking over WSNs with delayed and missing data,” Journal of Electrical and Computer Engineering, vol. 2018, pp. 1–9, may 2018.
[31] Y. S. Shmaliy, S. Zhao, and C. K. Ahn, “Unbiased finite impulse response filtering: An iterative alternative to kalman filtering ignoring noise and initial conditions,” IEEE Control Systems, vol. 37, no. 5, pp. 70–89, 2017.
[32] D. Hanley, A. B. Faustino, S. D. Zelman, D. A. Degenhardt, and T. Bretl, “MagPIE: A dataset for indoor positioning with magnetic anomalies,” in 2017 Int. Conf. Indoor Positioning and Indoor Navigation (IPIN). IEEE, sep 2017.