Forest Fire Risk Assessment using Fuzzy Analytic Hierarchy Process

DIVYA MEHTA, PARMINDER KAUR BAWEJA and R K AGGARWAL*

Department of Environmental Science, College of Forestry, Dr Y S Parmar University of Horticulture and Forestry Nauni, Solan, 173 230, India.

Abstract
The goal of present investigation was to generate forest fire risk zones in Solan district of Himachal Pradesh. The methodology applied was based on Fuzzy Analytic Hierarchy Process (FAHP) technique which involved socio-economic and bio-physical factors for risk assessment. Risk factors were selected on the bases of occurrence of forest fire in the area during past few years. Results revealed highest weight for fuel type (0.3109) followed by aspect (0.2487), agricultural workers (0.1341), nutritional density (0.1244), population density (0.0622), slope (0.0524), elevation (0.0311), literacy rate (0.0207) and distance from road (0.0155), respectively. Out of total geographical area, 4.15% area was classified under very high risk, while 40.63% and 54.00% area was under high and moderate risk, respectively. Area under low risk (0.84%) and very low risk (0.37%) were extremely less. The results were in agreement with actual fire occurrences in the area.

Introduction
Forest fires are extensive and critical facet of the world. The annual global area burned due to forest fire ranges from 300 and 450 Mha.¹ Over 80 percent of the global area burned occurs in grasslands and savannahs, primarily in South Asia, Africa, Australia and South America. Globally fires are frequent over most of the earth except in areas of scant vegetation and near the poles.² India witnesses most of severe forest fires during the summer season in the hills of Himachal Pradesh.³
Forest fires have caused extensive damage in recent years leading to loss of wildlife habitat and biodiversity, change in micro-climate, adverse effect on livelihood of people, addition of greenhouse gases etc. Average estimated loss due to forest fire in Himachal Pradesh is INR 113 million per annum. The forests of Himachal Pradesh are mainly comprised of Chir, Oak, Deodara, Khair, Saal, Bamboo and other broad-leaved tree species. Of above species area occupied by Chir is highly prone to forest fires due to shedding of highly inflammable chir needles. The forests of the Solan district are occupied by pure and mixed stands of chir pine and mostly conform to lower Shiwalik chir pine (9C1a) forest type and covers 7.68 per cent of total area of district. There was need to generate forest fire risk zone for the study area in order to carry out prevention and management measures.

Materials and Methods
In this investigation Saaty’s (1998) Fuzzy Analytic Hierarchy Process (FAHP) was used. FAHP is Multi-criteria Decision Making methodology which involves decision-making framework to rank and prioritize the forest fire risk factors. Table 1 summarizes the related work done over the world.

Study Area
The study was carried out in Solan district of Himachal Pradesh, India. Solan occupied 10 percent area of the state i.e. 1,93,600 hectares. The area was primarily occupied by Pinus roxburghii, Quercus leucotrichophora, Acacia catechu, bamboos and other broad-leaved tree species. Average daily mean temperature, relative humidity and annual rainfall were 18.4 °C, 1038.2 mm and 51.2 %, respectively.

Hierarchical Structure Development of Fire Risk Criteria
We used population density (PD), agricultural workers (AGRI-W), literacy rate (LR) nutritional density (ND), distance from road (DR), fuel type (FT), aspect (A), slope (S) and elevation (E) for evaluating the fire risk in the study area (Fig. 2). Fuzzy Analytic Hierarchy model was followed in order to construct the hierarchical structure, for reckoning fire risk (Fig. 2).

Relevant socio-economic data for sub-districts of Solan were collected from District Census Handbook. Road maps, Terrain maps and fuel type maps were generated using Shuttle RADAR Topographic Mission (90m), GLOBE COVER (300m) and GLCF, respectively.

Fig. 1
Table 1. Summary of Related Works

First Author	Year	Place of Study	Title of Research Work	Variable Studied and Fire Risk Model
Aumedes	2017	Global	Human-caused fire occurrence modelling in perspective: a review	Distance from roads, railways, urban areas and settlements Model: HCF model (Human Caused Fire)
Ruffault	2017	France	Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region	
Ajin	2016	Kerala, India	Forest Fire Risk Zone Mapping Using RS and GIS Techniques: A Study in Achankovil Forest Division, Kerala, India.	Distance from roads and distance from settlements Model: FRI (Fire Risk Index)
Baweja	2014	Himachal Pradesh, India	Perceptions of communities exposed to forest fires in western Himalayan region of India.	Family size and literacy rate
Vilar	2014	Europe	Modelling socio-economic drivers of forest fires in the Mediterranean Europe.	Population density, road networks, wildland-urban interface, railway network, protected area, landscape fragmentation etc. Model: Logistic Regression Model
Spies	2014	Oregon	Examining fire-prone forest land-escapes as coupled human and natural systems	Ownership of land
Ganteaume	2013	Europe	A review of the main driving factors of forest fire ignition over Europe.	Unemployment rate, transport networks and distance to urban areas
Lafragueta	2013	Spain	GIS and MCE-based forest fire assessment and mapping- A case study in Huesca, Aragon, Spain.	Distance from roads, railway track, camping and settlements Model: FRI (Fire Risk Index)
Sharma	2012	Himachal Pradesh, India	Fuzzy AHP for forest fire risk modeling	Distance from road and distance from settlement Model: CFRISK (Cumulative Fire Risk Index)
Gai	2011	China	GIS-based Forest Fire Risk Assessment and Mapping	Population density and value of forest resources Model: FRI (Fire Risk Index)
Hoyo	2011	Spain	Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data	Road infrastructure, recreational and natural protected areas, Cattle-grazing pressure, Buffer of electric lines etc. Model: Logistic Regression Models
Archibald	2010	South Africa	Southern African fire regimes as revealed by remote sensing	Population density Model: FRP (Fire Radiative Power Index)

...Contd
First Author	Year	Place of Study	Title of Research Work	Variable Studied and Fire Risk Model
Calcerrada	2010	Spain	Spatial modelling of socioeconomic data to understand patterns of human-caused wildfire ignition risk in the SW of Madrid (central Spain)	Population, secondary housing, cattle, sheep and goats
Vadrevu	2010	Andhra Pradesh, India	Fire Risk Evaluation using multi-criteria analysis- A case study	Population density, agricultural workers, nutritional density and literacy rate Model: Analytical Hierarchy Process (AHP)
Leone	2009	Mediterranean region	Human factors of fire occurrence in the Mediterranean	Agricultural burning, bonfires, power line, engines, machines etc.
Martinez	2008	Spain	Human-caused wildfire risk rating for prevention planning in Spain	Rural exodus, forest lands, rural population aging or declining fuel accumulation in abandoned agricultural lands, lack of interest in conservation etc. Model: Logistic Regression Model
Maingi	2007	United States of America	Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA	Unemployment rates, distance to roads and distance to populated places.
Yang	2007	United States	Spatial Patterns of Modern Period Human-Caused Fire Occurrence in the Missouri Ozark Highlands	Roads, municipalities, ownership, and population density
Rawat	2003	Uttarakhand, India	Fire Risk Assessment for Forest Fire Control Management in Chilla Forest Range of Rajaji National Park, Uttaranchal, India	Road index and settlement index Model: CFRISK (Cumulative Fire Risk Index)

Fig. 2: Hierarchial Data Organization for Quantifying Fire Risk in the Study Area
Table 2: Index Value and Fire Rating Classes for Forest Fire Risk Parameters

Parameter	Class	Index Value	Fire rating class
Population Density	0-150	1	Very low
(People km\(^2\))	150-300	2	Low
	300-450	3	Moderate
	450-600	4	High
	≥600	5	Very high
Literacy Rate	0-20	5	Very high
(%)	20-40	4	High
	40-60	3	Moderate
	60-80	2	Low
	80-100	1	Very low
Agricultural Workers	0-5000	1	Very low
(people)	5000-10000	2	Low
	10000-15000	3	Moderate
	15000-20000	4	High
	≥20000	5	Very high
Nutritional Density	0-100	1	Very low
(People km\(^2\))	100-200	2	Low
	200-300	3	Moderate
	300-400	4	High
	≥400	5	Very high
Distance from Road Network	0-1.00	5	Very high
(km)	1.00-2.00	4	High
	2.00-3.00	3	Moderate
	3.00-4.00	2	Low
	≥4.00	1	Very low
Fuel Type	Conifer Forest	5	Very high
	Broad-leaved Forest	4	High
	Mixed Forest	3	Moderate
	Scrub Lands	2	Low
	Cultivated Areas	2	Low
	Urban Areas	1	Very low
	Bare Areas	1	Very low

...contd
Forest Fire Risk Index
All factors were classified into five classes, where higher value represented more risk as compared to the lower values (Table 2).

Fuzzy Analytic Hierarchy Process (FAHP)
FAHP was used for determining weights for the parameters. A judgmental pair wise comparison matrix ‘A’, was formed using the comparison scales (Table 3). Each entry a_{ij} of the matrix ‘A’ was formed comparing the row element a_i with the column element a_j.

$A = (a_{ij}) (i,j \ldots n = 1,2 \ldots n; n=\text{number of criteria})$

The entries a_{ij} in matrix ‘A’ were done following rules given below:

$a_{ij} > 0; a_{ij} = \frac{1}{a_{ji}}; a_{ii} = 1 \text{ for all } i$

$$A = \begin{bmatrix}
 a_{11} & \ldots & a_{1i} & \ldots & a_{1n} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 1/a_{ij} & \ddots & a_{ij} & \ddots & a_{jn} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 1/a_{in} & \ldots & 1/a_{jn} & \ldots & a_{nn}
\end{bmatrix}$$

Standardized matrix ‘W’ was formed by using following equation:

$W = (w_{ij}) = \frac{a_{ij}}{\sum_{j=1}^{n} a_{ij}}$

Final weights were derived by taking row average of matrix ‘W’.

Parameter	Class	Index Value	Fire rating class
Aspect	North	1	Very low
Northeast	1	Very low	
Northwest	2	Low	
West	2	Low	
East	3	Moderate	
Southeast	4	High	
Southwest	5	Very high	
South	5	Very high	

Elevation (m)			
≤500	5	Very high	
500-1000	4	High	
1000-1500	3	Moderate	
1500-2000	2	Low	
≥2000	1	Very low	

Slope (degree)			
0-10	1	Very low	
10-20	2	Low	
20-30	3	Moderate	
30-40	4	High	
≥40	5	Very high	

Table 3: Scale used in Fuzzy Analytical Hierarchy Process

Intensity of scale	Linguistic Variable
1	Equally important
3	Weakly important
5	Essentially important
7	Very strongly important
9	Absolutely important
2,4,6,8	intermediate values between two adjacent judgments
Fig. 3: Index Map for Socio-Economic and Bio-Physical Factors

Fig. 4: (a) Forest Fire Risk Map for Solan district and (b) Forest Fire hot spot derived from NASA FIRMS datasets for the year 2018
Table 4: Estimated Weights of Forest Fire Risk Parameters

Socio-economic Parameter	Weight	Bio-physical Parameter	Weight
Population density (person km\(^{-2}\))	0.0622	Fuel type	0.3109
Literacy rate (%)	0.0207	Aspect	0.2487
Agricultural workers (person)	0.1341	Slope (degree)	0.0524
Nutritional density (person km\(^{-2}\))	0.1244	Elevation (m)	0.0311
Distance from road (m)	0.0155		

Consistency of comparisons
The value of \(\lambda_{\text{max}}\) was required to calculate the consistency ratio (CR).\(^{24}\)

Consistency index (CI) = \(\frac{\lambda_{\text{max}}-n}{n-1}\)

Where,
\(\lambda_{\text{max}}\) = largest eigen value and \(n\) = number of criteria

The final consistency ratio was calculated by dividing the consistency index with the random index

\[
\text{CR} = \frac{\text{CI}}{\text{RI}}
\]

Where,
\(\text{RI}\) = Random index and \(\text{CI}\) = Consistency index

Consistency ratio was designed such a way that shows a reasonable level of consistency in the pair wise comparisons if \(\text{CR} < 0.10\) and \(\text{CR} \geq 0.10\) indicated inconsistent.

Results and Discussion
Results pertaining to estimated weights of selected fire risk factors revealed highest weight for fuel type (0.3109) followed by aspect (0.2487), agricultural workers (0.1341), nutritional density (0.1244), population density (0.0622), slope (0.0524), elevation (0.0311), literacy rate (0.0207) and distance from road (0.0155), respectively (Table 4).

The resulting weights from Fuzzy Analytic Hierarchy Process were applied in the Cumulative Forest Fire Risk Index model. Table 5 demonstrated the fire risk for five classes of CFRISK index value. CFRISK model had been shown in the following equation:

\[
\text{CFRISK} = 0.0622 \times \text{PDI} + 0.0207 \times \text{LRI} + 0.1341 \times \text{AWI} + 0.1244 \times \text{NDI} + 0.0155 \times \text{DRI} + 0.3109 \times \text{FTI} + 0.0524 \times \text{SI} + 0.2487 \times \text{AI} + 0.0311 \times \text{EI}
\]

Where;
\(\text{CFRISK}\) = Cumulative Fire Risk Index

\(\text{PDI}\) = Population density index

\(\text{LRI}\) = Literacy rate index

\(\text{AWI}\) = Agricultural worker index

\(\text{NDI}\) = Nutritional density index

\(\text{DRI}\) = Distance from road index

\(\text{FTI}\) = Fuel type index

\(\text{SI}\) = Slope index

\(\text{AI}\) = Aspect index

\(\text{EI}\) = Elevation Index

Out of total geographical area of Solan district, 4.15% area was classified under very high risk, 40.63% area under high risk, 54.00% area under moderate risk, 0.84% area under low risk and 0.37% under very low risk (Fig. 4a). Accuracy of the Forest Fire Risk map was tested using NASA FIRMS forest fire dataset for the year 2018 (Fig. 4b). The Forest Fire Risk map for the three classes alone viz. moderate, high and very high predicted 99.4% of the total fire pixels (1012). The moderate class predictive capability was highest (60.77%), followed by high (33.99%) and very high (4.64%) fire risk class.

Table 5: Cumulative Forest Fire Risk (CFRISK) Index potential scale\(^{24}\)

Index	Forest Fire Risk
0-1	Very low
1-2	Low
2-3	Moderate
3-4	High
4-5	Very high
Acknowledgements
The assistance provided by Dr SK Bhardwaj Prof. & Head, Department of Environmental Science, and Dr IK Thakur, Principal Scientist, Department of Tree Improvement and Genetic Resources, Dr YS Parmar University of Horticulture and Forestry, Nauni, HP-India in the present study is highly acknowledged.

References
1. Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S., and Arellano, Jr. A.F., Interannual variability in global biomass burning emissions from 1997 to 2004. *Atmosphere Chemistry Physics*, 6(11):3423–3441 (2006).
2. Mouillot, F., and Field, C.B., Fire history and the global carbon budget: A fire history reconstruction for the 20th century. *Global Change Biology*, 11(3):398-420 (2005).
3. Forest Survey of India. State forest report, Dehradun, Uttarakhand; (2003).
4. Anonymous. Forest fires and its effect on environment, forests, bio-diversity and remedial/preventive measures. Directory of Forest Fire Control and Management, Himachal Pradesh; (2016).
5. Shah, S., and Sharma, D.P., Land use change detection in Solan Forest Division, Himachal Pradesh, India. *Forest Ecosystems*, 2:26-38 (2015).
6. Champion, H.G., and Seth, S.K., A Revised Survey of Forest Types of India. Management of Publications, Govt. of India, Delhi. 34p, (1968).
7. Saaty, L.T., Multicriteria Decision Making: The Analytic Hierarchy Process, RWS Publications, Pittsburgh, PA, (1988).
8. Vaidya, O.S., and Kumar, S., Analytic hierarchy process: An overview of applications. *European Journal of Operational Research*, 169(1):1-29 (2006).
9. Vahidniaa, M.H., Alesheikhb, A., Alimohammadlic, A., and Bassirid, A., Fuzzy Analytical Hierarchy Process in GIS application. The International Archives of the Photogrammetry, *Remote Sensing and Spatial Information Sciences*, 37:593-596 (2008).
10. Aumedes, S.C., Comas, C., and Garcia, V.C., Human-caused fire occurrence modelling in perspective: a review. *International Journal of Wildland Fire*, 26(12): 983-998 (2018).
11. Ruffault, J., and Mouillot, F., Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. *International Journal of Wildland Fire*, 26(6):498-508 (2017).
12. Ajin, R.S., Loghin, A.M., Vinod, P.G., and Jacob, M.K., Forest Fire Risk Zone Mapping Using RS and GIS Techniques: A Study in Achankovil Forest Division, Kerala, India. *Journal of Earth, Environment and Health Sciences*, 2(3):109 (2016).
13. Baweja, P.K., and Kundu, S., Perceptions of communities exposed to forest fires in western Himalayan region of India. *Online International Journal of Biosolution*, 2(4): 94-99 (2014).
14. Vilar, L., Camia, A., and Ayazn, J.S.M., Modelling socio-economic drivers of forest fires in the Mediterranean Europe. In: Social and Economic issues, Coimbra University Press, Spain, 1874-1882 (2014).
15. Spies, T.A., White, E.M., Kline, J.D., Fischer, A.P., Ager, A., Bailey, J., Bolte, J., Koch, J., Platt, E., Olsen, C.S., Jacobs, D., Examining fire-prone forest landscapes as coupled human and natural systems. *Ecology and Society*, 19(3):9 (2014).
16. Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz J., Long-Fournel M., and Lampin C., A review of the main driving factors of forest fire ignition over Europe. *Environmental management*, 51(3): 651-662 (2013).
17. Lafragueta, J.F., GIS and MCE-based forest fire risk assessment and Mapping: A case study in Huesca, Aragon, Spain. M Sc Thesis. School of Engineering and the Built Environment, Spain; (2013).
18. Sharma, L.K., Kanga, S., Singh, M.N., Sinha, S., and Chandra, P.P., Fuzzy AHP for forest...
fire risk modeling. Disaster Prevention and Management: An International Journal, 21(2):160-171 (2012).

19. Gai, C., Weng, W., and Yuan, H., GIS-based forest fire risk assessment and mapping. Paper presented at: Computational Sciences and Optimization (CSO), 2011 Fourth International Joint Conference, 1240-1244 (2011).

20. Hoyo, L.V., Isabel, M.P.M., and Vega, F.J.M., Logistic regression models for human-caused wildfire risk estimation: analyzing the effect of the spatial accuracy in fire occurrence data. European Journal of Forest Research, 130: 983-996 (2011).

21. Archibald, S., Scholes, R.J., Roy, D.P., Roberts, G., and Boschetti, L., Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire, 19(7):861-878 (2010).

22. Calcerrada, R., Barrio-Parra, F., Millington, J.D.A., and Novillo, C.J., Spatial modelling of socioeconomic data to understand patterns of human-caused wildfire ignition risk in the SW of Madrid (central Spain). Ecological Modelling, 221(1): 34-45 (2010).

23. Vadrevu, K.P., Eaturu, A., and Badrinath, K.V.S., Fire Risk Evaluation using multriteria analysis- A case study. Environmental monitoring and assessment, 166:223-239 (2010).

24. Leone, V., Lovreglio, R., Martin, M.P., Martinez, J., and Vilar, L., Human factors of fire occurrence in the Mediterranean. In: Earth observation of wildland fires in Mediterranean ecosystems; 149-170 (2009).

25. Martinez, J., Garcia, C.V., and Chuvieco, E., Human-caused wildfire risk rating for prevention planning in Spain. Journal of environmental management, 90(2):1241-1252 (2009).

26. Maingi, J.K., and Henry, M.C., Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. International Journal of Wildland Fire, 16(1):23-33 (2007).

27. Yang, J., He, H.S., Shifley, S.R., and Gustafson, E.J., Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. Forest science, 53(1):1-15 (2007).

28. Rawat, G.S., Fire Risk Assessment for Forest Fire Control Management in Chilla Forest Range of Rajaji National Park, Uttaranchal, India. M Sc Thesis. International Institute for Geo-information Science and Earth Observation Enschede, (2003).

29. Ramanathan, A., A note on the use of the analytic hierarchy process for environmental impact assessment. Journal of Environmental Management, 63(1):27–35 (2001).