REMARK ABOUT HEAT DIFFUSION ON PERIODIC SPACES

JOHN LOTT

(Communicated by Jozef Dodziuk)

Abstract. Let M be a complete Riemannian manifold with a free cocompact \mathbb{Z}^k-action. Let $k(t, m_1, m_2)$ be the heat kernel on M. We compute the asymptotics of $k(t, m_1, m_2)$ in the limit in which $t \to \infty$ and $d(m_1, m_2) \sim \sqrt{t}$. We show that in this limit, the heat diffusion is governed by an effective Euclidean metric on R^k coming from the Hodge inner product on $H^1(M/\mathbb{Z}^k; \mathbb{R})$.

1. Introduction

Let M be a complete connected oriented n-dimensional Riemannian manifold. Let $k(t, m_1, m_2)$ be the time-t heat kernel on M. The usual ansatz to approximate $k(t, m_1, m_2)$ is to say that

$$k(t, m_1, m_2) \sim P(t, m_1, m_2) e^{-\frac{d(m_1, m_2)^2}{4t}}$$ \hspace{1cm} (1.1)

where $e^{-\frac{d(m_1, m_2)^2}{4t}}$ is considered to be the leading term and $P(t, m_1, m_2)$ is a correction term which can be computed iteratively. There are results which make this precise. For example [1], if m_1 and m_2 are nonconjugate, then as $t \to 0$,

$$k(t, m_1, m_2) = \sum_{\gamma} \frac{(\det d(\exp_{m_1} sv_{\gamma}))^{-1/2}}{(4\pi t)^{n/2}} e^{-\frac{d(m_1, m_2)^2}{4t}} (1 + O(t)).$$ \hspace{1cm} (1.2)

Here the sum is over minimal geodesics $\gamma : [0, 1] \to M$ joining m_1 to m_2 of the form $\gamma(s) = \exp_{m_1}(sv_{\gamma})$. For another example, if M has bounded geometry, then lower and upper heat kernel bounds [4], [5] imply that (1.1) is a good approximation if $d(m_1, m_2) \gg t$, in the sense that $-\ln(k(t, m_1, m_2))$ is well-approximated by $\frac{d(m_1, m_2)^2}{4t}$.

One can ask if the ansatz (1.1) is relevant for other asymptotic regimes. In this paper we look at the case when M has a periodic metric, meaning that \mathbb{Z}^k acts freely by orientation-preserving isometries on M, with $X = M/\mathbb{Z}^k$ compact. We consider the asymptotic regime in which $t \to \infty$ and $d(m_1, m_2) \sim \sqrt{t}$. As the typical time-$t$ Brownian path will travel a distance comparable to \sqrt{t}, this is the regime which contains the bulk of the diffusing heat. We show that, in this regime, (1.1) is no longer a valid approximation. Instead, the heat diffusion is governed by...
an effective Euclidean metric on \(\mathbb{R}^k \). This metric is constructed using the Hodge inner product on \(H^1(X; \mathbb{R}) \).

To state the precise result, let \(\mathcal{F} \) be a fundamental domain in \(M \) for the \(\mathbb{Z}^k \)-action. Given \(\mathbf{v} \in \mathbb{Z}^k \), put
\[
(1.3) \quad k(t, \mathbf{v}) = \int_{\mathcal{F}} k(t, m, \mathbf{v} \cdot m) \, d\text{vol}(m).
\]
This is independent of the choice of fundamental domain \(\mathcal{F} \).

The covering \(M \to X \) is classified by a map \(\nu : X \to B\mathbb{Z}^k \), defined up to homotopy, which is \(\pi_1 \)-surjective. It induces a surjection \(\nu_* : H_1(X; \mathbb{R}) \to \mathbb{R}^k \) and an injection \(\nu^* : (\mathbb{R}^k)^* \to H^1(X; \mathbb{R}) \). Let \(\langle \cdot, \cdot \rangle_{H^1(X; \mathbb{R})} \) be the Hodge inner product on \(H^1(X; \mathbb{R}) \).

Definition 1. The inner product \(\langle \cdot, \cdot \rangle_{(\mathbb{R}^k)^*} \) on \((\mathbb{R}^k)^* \) is given by
\[
(1.4) \quad \langle \cdot, \cdot \rangle_{(\mathbb{R}^k)^*} = \frac{(\nu^*)^*(\cdot, \cdot)_{H^1(X; \mathbb{R})}}{\text{vol}(X)}.
\]
The inner product \(\langle \cdot, \cdot \rangle_{\mathbb{R}^k} \) is the dual inner product on \(\mathbb{R}^k \).

Let \(\text{vol}(\mathbb{R}^k/\mathbb{Z}^k) \) be the volume of a lattice cell in \(\mathbb{R}^k \), measured with \(\langle \cdot, \cdot \rangle_{\mathbb{R}^k} \).

Proposition 1. Fix \(C > 0 \). Then in the region \(\{(t, \mathbf{v}) \in \mathbb{R}^+ \times \mathbb{Z}^k : \langle \mathbf{v}, \mathbf{v} \rangle_{\mathbb{R}^k} \leq Ct\} \), as \(t \to \infty \) we have
\[
(1.5) \quad k(t, \mathbf{v}) = \frac{\text{vol}(\mathbb{R}^k/\mathbb{Z}^k)}{(4\pi t)^{k/2}} e^{-\langle \mathbf{v}, \mathbf{v} \rangle_{\mathbb{R}^k}/(4t)} + O(t^{-\frac{k+1}{2}})
\]
uniformly in \(\mathbf{v} \).

Example. 1. If \(M = \mathbb{R}^k \) with a flat metric \(\langle \cdot, \cdot \rangle_{\text{flat}} \), then one can check that \(\langle \cdot, \cdot \rangle_{\mathbb{R}^k} = \langle \cdot, \cdot \rangle_{\text{flat}} \), so one recovers the standard flat-space heat kernel.

2. If \(n = 2 \), then \(\langle \cdot, \cdot \rangle_{H^1(X; \mathbb{R})} \) is conformally-invariant. Hence in this case, the heat kernel asymptotics only depend on \(\text{vol}(X) \) and the induced complex structure on \(X \).

One can get similar pointwise estimates on \(k(t, m_1, m_2) \) by the same methods. We omit the details.

The result of Proposition 1 is an example of the phenomenon of “homogenization”, which has been much-studied for differential operators on \(\mathbb{R}^n \). Homogenization means that in an appropriate scaling limit, the solution to a problem is governed by the solution to a spatially homogeneous problem; see [2] and references therein. Thus it is not surprising that the answer in Proposition 1 has a homogeneous form. The point of the present paper is to show how one can compute the exact asymptotics in the general geometric setting.

We remark that when \(t \to \infty \) and \(d(m_1, m_2) \gg t \), the asymptotic expression (1.1) also shows homogenization. This follows from the result of D. Burago [3] that there are a Banach norm \(\| \cdot \| \) on \(\mathbb{R}^k \) and a constant \(c > 0 \) such that if \(m \in M \) and \(\mathbf{v} \in \mathbb{Z}^k \), then \(|d(m, \mathbf{v} \cdot m) - \| \mathbf{v} \| \| \leq c \). Thus as \(t \to \infty \), if \(d(m_1, m_2) \sim \sqrt{t} \), then the effective geometry is \((\mathbb{R}^k, \langle \cdot, \cdot \rangle_{\mathbb{R}^k}) \), while if \(d(m_1, m_2) \gg t \), then the effective geometry is \((\mathbb{R}^k, \| \cdot \|) \).

It would be interesting if one could extend the results of this paper to the setting in which \(\Gamma \) is a nonabelian discrete group, such as the fundamental group of a closed hyperbolic surface. In this case, the relevant scaling regime should be \(t \to \infty \) and
d(m_1, m_2) \sim t$, as the typical time-$t$ Brownian path on the hyperbolic plane travels a distance comparable to t.

I thank the IHES for its hospitality while this work was done and Palle Jorgensen for sending his reprints.

2. Proof of Proposition 1

We first recall some basic facts about the eigenvalues of a parametrized family of operators [7, Chapter XII].

Let $M_d(\mathbb{C})$ be the vector space of $d \times d$ complex matrices and let $M_d^{sa}(\mathbb{C})$ be the subspace of self-adjoint matrices. Let $f : \mathbb{R}^k \to M_d(\mathbb{C})$ be a real-analytic map. The eigenvalues $\{\lambda_i(x)\}_{i=1}^d$ of $f(x)$ are algebraic functions of x, meaning the roots of a polynomial whose coefficients are real-analytic functions of x, as they are given by $\text{det}(f(x) - \lambda) = 0$. If $\lambda_1(0)$ is a nondegenerate eigenvalue of $f(0)$, then it extends near $x = 0$ to a real-analytic function $\lambda_1(x)$.

If $k = 1$ and f takes values in $M_d^{sa}(\mathbb{C})$, then the eigenvalues of f form d real-analytic functions $\{\lambda_i(x)\}_{i=1}^d$ on \mathbb{R}. Of course, these functions may cross. If $k > 1$ and f takes values in $M_d^{sa}(\mathbb{C})$, then it may not be true that the eigenvalues form real-analytic functions on \mathbb{R}^k. This can be seen in the example $f(x_1, x_2) = \begin{pmatrix} 0 & x_1 - i x_2 \\ x_1 + i x_2 & 0 \end{pmatrix}$. Its eigenvalues are $\pm \sqrt{x_1^2 + x_2^2}$, which are not the union of two smooth functions on \mathbb{R}^2. However, if $\gamma(s)$ is a real-analytic curve in \mathbb{R}^2, then the eigenvalues of $f(\gamma(s))$ do form real-analytic functions in s.

If f is instead an appropriate real-analytic family of operators on a Hilbert space, then one has similar results. We refer to [7, Chapter XII.2] for the precise requirements.

To prove Proposition 1, we use the method of [6, Section VI]. The Pontryagin dual of \mathbb{Z}^k is $T^k = (\mathbb{R}^k)^*/2\pi(\mathbb{Z}^k)^*$. Given $\theta \in T^k$, let $\rho(\theta) : \mathbb{Z}^k \to U(1)$ be the corresponding representation and let $E(\theta)$ be the flat line bundle on X associated to the representation $\pi_1(X) \to \mathbb{Z}^k \xrightarrow{\rho(\theta)} U(1)$. Let Δ_θ be the Laplacian on $L^2(X; E(\theta))$. Then Fourier analysis gives

$$k(t, \nu) = \int_{T^k} e^{i \theta \cdot \nu} \text{Tr} \left(e^{-t \Delta(\theta)} \right) \frac{d^k \theta}{(2\pi)^k}. \tag{2.1}$$

Now Ker($\Delta(\theta)$) = 0 if $\theta \neq 0$ and Ker($\Delta(\theta)$) $\approx \mathbb{C}$ consists of the constant functions on X.

In order to write all of the operators $\Delta(\theta)$ as acting on the same Hilbert space, let $\{\tau^j\}_{j=1}^k$ be a set of harmonic 1-forms on X which gives an integral basis of $\mathbb{Z}^k = (\mathbb{R}^k)^* \subseteq H^1(X; \mathbb{R})$. Let $d(\tau^j)$ denote exterior multiplication by τ^j on $C^\infty(X)$ and let $i(\tau^j)$ denote interior multiplication by τ^j on $\Omega^1(X)$. Putting

$$d(\theta) = d + i \sum_{j=1}^k \theta_j e(\tau^j) \tag{2.2}$$

and

$$d^*(\theta) = d^* - i \sum_{j=1}^k \theta_j i(\tau^j), \tag{2.3}$$

$\Delta(\theta)$ is unitarily equivalent to the self-adjoint operator $d^*(\theta)d(\theta)$ (which we shall also denote by $\Delta(\theta)$) acting on $L^2(X)$. Because $\Delta(\theta)$ is quadratic in θ, it is easy
to see that \(\{ \Delta(\theta) \}_{\theta \in T^k} \) is an analytic family of type (A) in the sense of [7, Chapter XII.2], so we can apply analytic eigenvalue perturbation theory. In particular, if \(\{ \lambda_i(\theta) \}_{i \in \mathbb{Z}^*} \) are the eigenvalues of \(\Delta(\theta) \), arranged in increasing order and repeated if there is a multiplicity greater than one, then \(\lambda_1(\theta) \geq 0 \) and \(\lambda_1(\theta) = 0 \) if and only if \(\theta = 0 \), in which case it is a nondegenerate eigenvalue. Thus \(\lambda_1 \) extends to a real-analytic function in a neighborhood of \(\theta = 0 \). So for sufficiently small \(\epsilon > 0 \), there is a neighborhood \(U \subseteq T^k \) of \(0 \in T^k \) such that

1. If \(\theta \notin U \), then \(\lambda_1(\theta) > \epsilon \).

2. Restricted to \(U \), \(\lambda_1 \) is a real-analytic function which represents a nondegenerate eigenvalue and \(\lambda_2 > \epsilon \).

From (2.1), we have

\[
(2.9) \quad k(t, \psi) = \int_{T^k} e^{i\theta \cdot \psi} \sum_{i=1}^{\infty} e^{-t\lambda_i(\theta)} \frac{d^k \theta}{(2\pi)^k}.
\]

Then it is easy to show that

\[
(2.5) \quad k(t, \psi) = \int_U e^{i\theta \cdot \psi} e^{-t\lambda_1(\theta)} \frac{d^k \theta}{(2\pi)^k} + O(e^{-t/2}),
\]

uniformly in \(\psi \).

Lemma 1. The Taylor’s series of \(\lambda_1(\theta) \) near \(\theta = 0 \) starts off as

\[
(2.6) \quad \lambda_1(\theta) = \lambda_1(0) + (\theta^3) + O(\theta^3).
\]

Proof. It suffices to compute \(\frac{d\lambda_i(s\vec{w})}{ds} \big|_{s=0} \) and \(\frac{d^2\lambda_i(s\vec{w})}{ds^2} \big|_{s=0} \) for all \(s \in (\mathbb{R}^k)^* \). For simplicity, denote \(\Delta(s\vec{w}) \) by \(\Delta(s) \) and \(\lambda_1(s\vec{w}) \) by \(\lambda(s) \). As \(\lambda(s) \) is nonnegative and \(\lambda(0) = 0 \), we must have \(\lambda'(0) = 0 \). Let \(\psi(s) \) denote a nonzero eigenfunction with eigenvalue \(\lambda(s) \); we can assume that it is real-analytic in \(s \) with \(\psi(0) = 1 \). Differentiation of \(\Delta(s)\psi(s) = \lambda(s)\psi(s) \) gives

\[
(2.7) \quad \Delta'(0)\psi(0) + \Delta(0)\psi'(0) = 0
\]
and

\[
(2.8) \quad \Delta''(0)\psi(0) + 2\Delta'(0)\psi'(0) + \Delta(0)\psi''(0) = \lambda''(0)\psi(0).
\]

Taking the inner product of (2.8) with \(\psi(0) \) gives

\[
(2.9) \quad \langle \psi(0), \Delta''(0)\psi(0) \rangle + 2\langle \psi(0), \Delta'(0)\psi'(0) \rangle + \langle \psi(0), \lambda''(0)\psi(0) \rangle = \lambda''(0)\langle \psi(0), \psi(0) \rangle.
\]

Let \(G \) be the Green’s operator for \(\Delta(0) \). From (2.7),

\[
(2.10) \quad \psi'(0) = c\psi(0) - G\Delta'(0)\psi(0)
\]
for some constant \(c \). Changing \(\psi(s) \) to \(e^{-cs}\psi(s) \), we may assume that \(c = 0 \). Substituting (2.10) into (2.9) gives

\[
(2.11) \quad \langle \psi(0), \Delta''(0)\psi(0) \rangle - 2\langle \psi(0), \Delta'(0)G\Delta'(0)\psi(0) \rangle = \lambda''(0)\langle \psi(0), \psi(0) \rangle.
\]

It remains to compute \(\langle \psi(0), \Delta''(0)\psi(0) \rangle \) and \(\langle \psi(0), \Delta'(0)G\Delta'(0)\psi(0) \rangle \). Put \(D(s) = d_{\vec{w}}s \) and \(D^*(s) = d_{\vec{w}}^*s \). Then \(\Delta(s) = D^*(s)D(s) \). From (2.2) and (2.3), \(D(s) \) and \(D^*(s) \) are linear in \(s \), with

\[
(2.12) \quad D'(0) = i \sum_{j=1}^k w_j e(\tau^j)
\]
and

\[(D^*)'(0) = -i \sum_{j=1}^{k} w_j i^{\tau_j}.\]

Then

\[
\langle \psi(0), \triangle''(0)\psi(0) \rangle = 2\langle \psi(0), (D^*)'(0)D'(0)\psi(0) \rangle
\]

\[
= 2|D'(0)\psi(0)|_{H^1(X;\mathbb{C})}^2
\]

\[
= 2\sum_{j=1}^{k} w_j \tau_j |_{H^1(X;\mathbb{C})}.\]

Now

\[
\triangle'(0)\psi(0) = [(D^*)'(0)D(0) + D^*(0)D'(0)] \psi(0)
\]

\[
= d^* \left(-i \sum_{j=1}^{k} w_j \tau_j \right) = 0.\]

Substituting (2.14) and (2.15) into (2.11) and using the fact that \(\langle \psi(0), \psi(0) \rangle = \text{vol}(X)\), the lemma follows.

Continuing with the proof of Proposition 1, by Morse theory and Lemma 1, we can find a change of coordinates near 0 \(\in T^k\) with respect to which \(\lambda_1\) becomes quadratic. That is, if \(B_r(0)\) denotes the ball of radius \(r\) in \((\mathbb{R}^k)^*\), we can find an \(r>0\), a neighborhood \(U\) of 0 \(\in T^k\) and a diffeomorphism \(\phi: B_r(0) \to U\) such that \(\phi(0) = 0\), \(d\phi_0 = \text{Id}\) and \(\lambda_1(\phi(x)) = \langle x, x \rangle_{(\mathbb{R}^k)^*}\). Then there is some \(\alpha > 0\) such that as \(t \to \infty\),

\[
k(t, v) = \int_{B_r(0)} e^{i\phi(x) \cdot v} e^{-t \langle x, x \rangle_{(\mathbb{R}^k)^*}} \det(d\phi_x) \frac{d^k x}{(2\pi)^k} + O(e^{-\alpha t}),
\]

uniformly in \(v\). Multiplying by a cutoff function on \((\mathbb{R}^k)^*\), we can write

\[
k(t, v) = \int_{(\mathbb{R}^k)^*} e^{i\phi(x) \cdot v} e^{-t \langle x, x \rangle_{(\mathbb{R}^k)^*}} g(x) \frac{d^k x}{(2\pi)^k} + O(e^{-\alpha' t})
\]

\[
= t^{-\frac{k}{2}} \int_{(\mathbb{R}^k)^*} e^{i\phi(\frac{x}{\sqrt{t}}) \cdot v} e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} g \left(\frac{x}{\sqrt{t}} \right) \frac{d^k x}{(2\pi)^k} + O(e^{-\alpha' t})
\]

for some \(g \in C_0^\infty((\mathbb{R}^k)^*)\) with \(g(0) = 1\) and some \(\alpha' > 0\). (Here \(\phi\) has been extended to become a map \(\phi: (\mathbb{R}^k)^* \to (\mathbb{R}^k)^*\) which is the identity outside of a compact set.)

We have now reduced to a stationary-phase-type integral. Let

\[
g(x) = 1 + (\nabla g)(0) \cdot x + E(x)
\]
be the beginning of the Taylor’s expansion of \(g \). We can write

\[
(2.19) \quad t^{-\frac{1}{2}} \int_{(\mathbb{R}^k)^*} e^{i \phi(\mathbf{x})} \mathbf{v} e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} g \left(\frac{x}{\sqrt{t}} \right) \frac{d^k x}{(2\pi)^k} = t^{-\frac{1}{2}} \int_{(\mathbb{R}^k)^*} e^{i \phi(\mathbf{x})} \mathbf{v} e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} \left[1 + (\nabla g)(0) \cdot \frac{x}{\sqrt{t}} + E \left(\frac{x}{\sqrt{t}} \right) \right] \frac{d^k x}{(2\pi)^k} + t^{-\frac{1}{2}} \int_{(\mathbb{R}^k)^*} e^{i \phi(\mathbf{x})} \mathbf{v} \left[e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} - 1 \right] e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} g \left(\frac{x}{\sqrt{t}} \right) \frac{d^k x}{(2\pi)^k}.
\]

Recall that the measure \(\frac{d^k x}{(2\pi)^k} \) on \((\mathbb{R}^k)^*\) derives from the product measure on \(T^k = (\mathbb{R}^*/2\pi\mathbb{Z}^*)^k \). Let \(\langle \cdot, \cdot \rangle_{prod} \) be the standard product Euclidean metric on \((\mathbb{R}^*)^k\). Let \(Q \) be the self-adjoint operator on \((\mathbb{R}^k)^*\) such that \(\langle x, x \rangle_{(\mathbb{R}^k)^*} = \langle x, Q x \rangle_{prod} \). Then a standard calculation gives

\[
(2.20) \quad t^{-\frac{1}{2}} \int_{(\mathbb{R}^k)^*} e^{i \phi(\mathbf{x})} \mathbf{v} e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} \frac{d^k x}{(2\pi)^k} = \frac{(\det Q)^{-1/2}}{(4\pi)^{k/2}} \frac{d^k x}{(2\pi)^k} e^{-\langle \mathbf{v}, \mathbf{v} \rangle_{\mathbb{R}^k}/(4t)}.
\]

On the other hand,

\[
(2.21) \quad (\det Q)^{-1/2} = \text{vol}(\mathbb{R}^k/\mathbb{Z}^k).
\]

By symmetry,

\[
(2.22) \quad t^{-\frac{1}{2}} \int_{(\mathbb{R}^k)^*} e^{i \phi(\mathbf{x})} \mathbf{v} e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} (\nabla g)(0) \cdot \frac{x}{\sqrt{t}} \frac{d^k x}{(2\pi)^k} = 0.
\]

Let \(c > 0 \) be such that \(|E(x)| \leq c \langle x, x \rangle_{(\mathbb{R}^k)^*} \) for all \(x \in (\mathbb{R}^k)^* \). Then

\[
(2.23) \quad \left| \int_{(\mathbb{R}^k)^*} e^{i \phi(\mathbf{x})} \mathbf{v} e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} E \left(\frac{x}{\sqrt{t}} \right) \frac{d^k x}{(2\pi)^k} \right| \leq c t \int_{(\mathbb{R}^k)^*} \langle x, x \rangle_{(\mathbb{R}^k)^*} \frac{d^k x}{(2\pi)^k}.
\]

Finally,

\[
(2.24) \quad \left| \int_{(\mathbb{R}^k)^*} e^{i \phi(\mathbf{x})} \mathbf{v} \left[e^{i \phi(\mathbf{x})} - 1 \right] e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} g \left(\frac{x}{\sqrt{t}} \right) \frac{d^k x}{(2\pi)^k} \right| \leq \| g \|_{\infty} \int_{(\mathbb{R}^k)^*} 2 \left| \sin \left(\frac{1}{2} \left[\phi \left(\frac{x}{\sqrt{t}} \right) - \frac{x}{\sqrt{t}} \right] \cdot \mathbf{v} \right) \right| e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} \frac{d^k x}{(2\pi)^k}.
\]

We can find a constant \(c' > 0 \) such that

\[
(2.25) \quad 2 \left| \sin \left(\frac{1}{2} \left[\phi(x) - x \right] \cdot \mathbf{v} \right) \right| \leq c' \langle x, x \rangle_{(\mathbb{R}^k)^*} \| \mathbf{v} \|_{\mathbb{R}^k}
\]
for all $x \in (\mathbb{R}^k)^*$ and $v \in \mathbb{Z}^k$. Then

\begin{equation}
\|g\|_\infty \int_{(\mathbb{R}^k)^*} 2 \left| \sin \left(\frac{1}{2} \left[\phi \left(\frac{x}{\sqrt{t}} \right) - \frac{x}{\sqrt{t}} \right] \cdot v \right) \right| e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} \frac{d^k x}{(2\pi)^k} \leq c' \frac{\|v\|_{\mathbb{R}^k}}{\sqrt{t}} \left(\frac{\|g\|_\infty}{\sqrt{t}} \right) \int_{(\mathbb{R}^k)^*} \langle x, x \rangle_{(\mathbb{R}^k)^*} e^{-\langle x, x \rangle_{(\mathbb{R}^k)^*}} \frac{d^k x}{(2\pi)^k}.
\end{equation}

By assumption,

\begin{equation}
\frac{\|v\|_{\mathbb{R}^k}}{\sqrt{t}} \leq \sqrt{C}.
\end{equation}

The proposition follows from combining equations (2.17)–(2.27).

References

[1] R. Azencott et al., Géodésiques et Diffusions en Temps Petit, Astérisque 84-85, Société Mathématique de France, Paris (1981)
[2] C. Batty, O. Bratteli, P. Jorgensen and D. Robinson, “Asymptotics of Periodic Subelliptic Operators”, J. of Geom. Anal. 5, p. 427-443 (1995) MR 97f:35028
[3] D. Burago, “Periodic Metrics”, in Advances in Soviet Math. 9, p. 241-248 (1992) MR 93c:53029
[4] J. Cheeger and S.-T. Yau, “A Lower Bound for the Heat Kernel”, Comm. Pure Appl. Math. 34, p. 465-480 (1981) MR 82i:58065
[5] E. Davies and M. Pang, “Sharp Heat Kernel Bounds for some Laplace Operators”, Quart. J. Math. Oxford 40, p. 281-290 (1989) MR 91i:58142
[6] J. Lott, “Heat Kernels on Covering Spaces and Topological Invariants”, J. Diff. Geom. 35, p. 471-510 (1992) MR 93b:58140
[7] M. Reed and B. Simon, Methods of Mathematical Physics, Academic Press, New York (1978)