The density structure around quasars from optical depth statistics*

Emmanuel Rollinde¹, Raghunathan Srianand¹, Tom Theuns², Patrick Petitjean³, Hum Chand ¹
¹ IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India
² Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK
³ Institut d’Astrophysique de Paris – CNRS, 98bis Boulevard Arago, F-75014 Paris, France

Typeset 5 November 2018; Received / Accepted

ABSTRACT

We present a method for studying the proximity effect and the density structure around redshift z=2-3 quasars. It is based on the probability distribution of Lyman-α pixel optical depths and its evolution with redshift. We validate the method using mock spectra obtained from hydrodynamical simulations, and then apply it to a sample of 12 bright quasars at redshifts 2-3 observed with UVES at the VLT-UT2 Kueyen ESO telescope. These quasars do not show signatures of associated absorption and have a mean monochromatic luminosity of 5.4×10^{31} h$^{-2}$ erg s$^{-1}$ Hz$^{-1}$ at the Lyman limit. The observed distribution of optical depth within 10 h$^{-1}$Mpc from the QSO is statistically different from that measured in the general intergalactic medium at the same redshift. Such a change will result from the combined effects of the increase in photoionisation rate above the mean UV-background due to the extra ionizing photons from the quasar radiation (proximity effect), and the higher density of the IGM if the quasars reside in overdense regions (as expected from biased galaxy formation). The first factor decreases the optical depth whereas the second one increases the optical depth, but our measurement cannot distinguish a high background from a low overdensity. An overdensity of the order of a few is required if we use the amplitude of the UV-background inferred from the mean Lyman-α opacity. If no overdensity is present, then we require the UV-background to be higher, and consistent with the existing measurements based on standard analysis of the proximity effect.

Key words: Methods: data analysis - N-body simulations - statistical - Galaxies: intergalactic medium - haloes - structure - quasars: absorption lines

1 INTRODUCTION

The hydrogen Lyman-α absorption lines of the ‘Lyman-α forest’ seen in the spectra of distant quasars, are a powerful probe of the physical conditions in the intergalactic medium (IGM) at high redshifts ($1.8 \leq z \leq 6$). It is believed that most of the lines with column density, $N_{\text{HI}} \lesssim 10^{14}$ cm$^{-2}$ originate in quasi-linear density fluctuations in which the hydrogen gas is in ionization equilibrium with a meta-galactic UV background produced by star forming galaxies and quasars. Non-linear effects are unimportant and therefore the properties of the Lyman-α forest are described well by just three basic ingredients: quasi-linear theory for the growth of baryonic structure, a UV radiation field, and the temperature of the gas (Bi 1993; Muecket et al. 1996; Bi & Davidson 1997; Hui, Gnedin & Zhang 1997; Weinberg 1999; Choudhury, Srianand & Padmanabhan 2001a; Choudhury, Padmanabhan & Srianand 2001b; Schaye 2001; Viel et al. 2002a). This paradigm is impressively confirmed by full hydrodynamical simulations (Cen et al 1994; Zhang, Anninos & Norman 1995; Miralda-Escudé et al 1996; Hernquist, Katz & Weinberg 1996; Wadsley & Bond 1996; Zhang et al. 1997; Theuns et al. 1998; Machacek et al 2000; see e.g. Efstathiou, Schaye & Theuns 2000 for a recent review).

In photoionization equilibrium, the optical depth, τ, is related to the overdensity of the gas, $\Delta \equiv \rho/\langle \rho \rangle$, by

$$\tau \propto \Delta^2 T^{-0.7}/\Gamma_1 \propto \Delta^{2-0.7(\gamma-1)/\gamma}/\Gamma_1.$$ \hspace{1cm} (1)

Here, $\Gamma = \Gamma_1 10^{-12} s^{-1}$ is the hydrogen photo-ionization rate and $T(\Delta)$ the temperature of the gas. The associated transmission $F = \exp(-\tau) \equiv F_0/F_i$ is the observed flux (F_0) divided by the estimated continuum flux (F_i). Photo-ionization heating and cooling by adiabatic expansion introduce a tight relation $T = T_0 \Delta^{\gamma-1}$.
in the low-density IGM responsible for the Lyman-α forest (Hui & Gnedin 1997; Theuns et al. 1998). The above equation has been extensively used, especially to probe the matter clustering (Hui 1999; Nusser & Haehnelt 1999; Pichon et al. 2001; Viel et al. 2002b; Croft et al. 2002; McDonald 2003; Rollinde et al. 2003).

The UV-background that causes the photo-ionization is dominated by massive stars and quasars (Haardt & Madau 1996; Giroux & Shapiro 1996). The amplitude of the corresponding photo-ionization rate as a function of redshift, $\Gamma(z)$, and the relative importance of the different sources, are relatively uncertain. Fardal, Giroux & Shull (1998) have derived the H I and He II photoionization history by modelling the opacity of the IGM, using high-resolution observations of H I absorption. They find $\Gamma_{12} = 1 - 3$ at redshift $z = 2 - 4$. Haardt & Madau (2001) have combined models for the emissivity of galaxies and quasars with calculations of the absorption of UV photons in the IGM, and estimate $\Gamma_{12} \approx 1 - 2$ at redshift $z = 2 - 3$. More recent observations suggest that Lyman break galaxies may dominate the UV-background at $z = 3$ (Steidel et al. 2001). In simulations, assuming a standard Big Bang baryon fraction, the value of Γ_{12} has to be between 0.3 and 2 at a redshift $z = 2 - 3$ in order to reproduce observed Lyman-α forest properties, such as the mean transmission and the column density distribution (Hernquist et al. 1996; Miralda-Escudé et al. 1996; Rauch et al. 1997; Zhang et al. 1997; Choudhury et al. 2001a; Haehnelt et al. 1995; Fernandez-Soto et al. 1995; Giallongo et al. 1996; Lu et al. 1991; Kulkarni & Fall 1993; Bechtold 1994; Cristiani et al. 1999).

Recent studies of the so-called galaxy proximity effect (e.g. Kollmeier et al. 2003, Bruscoli et al. 2003, Maselli et al. 2004, Desjacques et al. 2004) have been made possible by reprocessing Lyman break galaxies (LBGs) data collected from the proxim-ity effect by Croft (2004) and Schirber, Miralda-Escudé & McDonald (2004) also suggest excess absorption over that predicted by models that assume the standard proximity effect and isotropic quasar emission. If this is not due to an increase in density close to the quasar, it might imply that the quasar light is strongly beamed, or alternatively that the quasar is highly variable. Interestingly, neither of these effects the longitudinal proximity effect discussed in this paper.

Observations of the IGM transmission close to Lyman break galaxies (LBGs) show that the intergalactic medium contains more neutral hydrogen than the global average at comoving scales $1 < r < 5 h^{-1}$ (Adelberger et al. 2003). As the UV photons from the LBGs can not alter the ionization state of the gas at such large distances, it is most likely that the excess absorption is caused by the enhanced IGM density around LBGs. It is worth noting that various hydrodynamical simulations have trouble reproducing this excess density around quasar host galaxies and is not taken into account, then a determination of Γ from the proximity effect will be biased high.

In this paper, we present a new analysis of the proximity effect of very bright quasars observed as part of the ESO-VLT Large Programme (LP) ‘Cosmological evolution of the Inter Galactic Medium’ (PI Jacqueline Bergeron). This new method allows one to infer the density structure around quasars. The method is based on the cumulative distribution function (CDF) of pixel optical depth, τ, and so avoids the Voigt profile fitting and line counting tradition-ally used. Using τ instead of the transmission, $F = \exp(-\tau)$, has the great advantage that we can take into account the strong redshift dependence $\tau \propto (1 + z)\alpha$, with $\alpha \approx 4.5$.

We begin by briefly describing the data used in this paper. We outline the procedure in Section 3 and illustrate it using hydrodynamical simulations in Section 4. The application to the high signal to noise and high resolution spectra of the ESO-VLT Large Programme is described in Section 5. Our analysis requires that the density be higher close to the quasar. Results and future prospects are discussed in Section 6. Throughout this paper, we assume a flat universe with $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$ and $h = 0.7$.

2 THE DATA

2.1 The LP quasar sample

The observational data used in our analysis were obtained with the Ultra-Violet and Visible Echelle Spectrograph (UVES) mounted on the ESO KUEYEN 8.2 m telescope at the Paranal observatory for the ESO-VLT Large Programme (LP) ‘Cosmological evolution of the Inter Galactic Medium’ (PI Jacqueline Bergeron). This programme has been devised to gather a homogeneous sample of echelle spectra of 18 QSOs, with uniform spectral coverage, resolution and signal-to-noise ratio suitable for studying the intergalactic medium in the redshift range 1.7–4.5. Spectra were obtained in service mode observations spread over four periods (two years) covering 30 nights under good seeing conditions (≤ 0.8 arcsec).

Spectra have a signal-to-noise ratio of ~ 40 to 80 per pixel and a spectral resolution ≥ 45000 in the Lyman-α forest region. Details of the data reduction can be found in Chand et al. (2004) and Aracil et al. (2004). In our analysis we have only used absorption lines that
Figure 1. Transmission $F = \exp(-\tau)$ as a function of luminosity distance for the LP QSOs listed in Table 1. The emission redshift, z_{em}, is indicated between brackets and increases from top to bottom. The evolution of the optical depth with redshift (see Section 3.4) is removed to compute the mean transmission $\overline{F} = \langle \exp(-\tau/z) \rangle$ as a function of luminosity distance (bottom panel). The proximity effect is clearly seen as an increase in mean transmission close to the quasar.
Six of the eighteen LP QSOs (HE 1158 quasar.
verse and a spectral index of 0.5.
redshift of emission (Table 1.
been determined using different emission lines. The luminosity, L, in h\(^{-2}\) erg s\(^{-1}\) Hz\(^{-1}\) (last column) is computed assuming a \(\Omega_{\text{m}} = 0.3\) flat Universe and a spectral index of 0.5.

quasar	mean value	\(z_{\text{em}}\)	log(L)	
Q0122-380	2.203	\(\text{H}\alpha, \text{Mg}\,\text{II}\)	2	31.633
PKS1446-232	2.220	\(\text{H}\alpha, \text{Mg}\,\text{II}\)	2	31.527
PKS2347-23	2.333	\(\text{H}\alpha, \text{Mg}\,\text{II}\)	2	31.665
HE0001-2340	2.267	\(\text{Mg}\,\text{II}\)	1	31.649
Q0109-3518	2.404	\(\text{H}\alpha, \text{Mg}\,\text{II}\)	1	31.819
HE2347-2818	2.414	\(\text{Mg}\,\text{II}\)	1	31.994
Q0329-385	2.440	\(\text{H}\alpha, \text{Mg}\,\text{II}\)	2	31.278
Q0453-423	2.658	Lyman-\(\alpha\), C \(\text{IV}\), Si \(\text{IV}\)	3	31.709
PKS0329-255	2.736	C \(\text{IV}\)	1	31.577
Q0002-422	2.767	Lyman-\(\alpha\), C \(\text{IV}\), Si \(\text{IV}\)	3	31.721
HE0940-1050	3.068	C \(\text{IV}\)	1	32.146
PKS2126-158	3.267	Lyman-\(\alpha\), C \(\text{IV}\), Si \(\text{IV}\)	4	32.132

Average determinations of \(z_{\text{em}}\) are taken from Espey et al 1989 (2), Bechtold et al. 2002 and Srianand & Khare 1996 (3), using a correction factor suggested by Fan & Tytler 1994), Tytler & Fan 1992 (4) or (re)done in this paper (1, Section 2.1).

are between the Lyman-\(\alpha\) and the Lyman-\(\beta\) emission lines of the quasar.
Six of the eighteen LP QSOs (HE 1158—1843, HE 1347—2457, HE 0151—4326, HE 1341—1020, Q 0420-388 and HE 2347—4342) show signatures of associated absorption close to the emission redshift of the QSO, and are therefore excluded from our analysis. The remaining twelve are listed in Table 1, which gives the name of the QSO, its redshift, \(z_{\text{em}}\), and the monochromatic luminosity at the Lyman limit (L).

An accurate determination of the emission redshift is important for the analysis. Espey et al. (1989) have found that the \(\text{H}\alpha\) line is redshifted by an average 1000 km s\(^{-1}\) with respect to lines from high ionization species and has statistically a similar redshift as the lines from the low ionization species. The mean difference between \(\text{H}\alpha\) and \(\text{Mg}\,\text{II}\) redshifts in their sample is \(\sim 107\) km s\(^{-1}\) with a standard deviation of \(\sim 500\) km s\(^{-1}\). A redshift measurement based on \(\text{H}\alpha\) and other low ionization lines is available for 4 of the QSOs (Espey et al. 1989, see Table 1). We consider the mean redshift of all observed lines for these systems. When the \(\text{Mg}\,\text{II}\) emission line is observed, as it is for three additional QSOs, we fit the profile with the doublet of \(\text{Mg}\,\text{II}\) and a polynomial continuum to determine accurately the redshift. Fig. 2 shows the results of this fitting procedure for the three QSOs. On average, these redshifts should be within an rms of 500 km s\(^{-1}\) from the systemic redshift. For 2 of the QSOs, Bechtold et al. (2002) and Srianand & Khare (1996) used the C \(\text{IV}\), Si \(\text{IV}\) and Lyman-\(\alpha\) lines to determine the redshift of emission, and applied the correction factor suggested by Fan & Tytler (1994). Otherwise, we use the C \(\text{IV}\) emission line for two other QSOs and the determination from Tytler & Fan (1992) for the last remaining QSO. Therefore 7 out of 12 redshifts of the QSOs in our sample are determined accurately using the \(\text{H}\alpha\) or \(\text{Mg}\,\text{II}\) emission line, and 2 using the correction factor from Fan & Tytler (1994).

The QSO luminosity at the Lyman limit is computed from the available B-magnitude. The QSO continuum slope is assumed to be a power law, \(L_{\lambda} \sim \lambda^\alpha\). We use \(\alpha = -0.5\) as Francis (1993). We checked that within a reasonable range of \(\alpha = -0.5\) to \(-0.7\) (e.g. Cristiani & Vio 1990), our main result (i.e. the density structure around quasar) is not affected by our choice of \(\alpha\).

All possible metal lines and Lyman-\(\alpha\) absorption of a few sub-DLA systems (there are no DLA systems in the observed spectra) are flagged inside the Lyman-\(\alpha\) forest. The entire line is removed up to the point where it reaches the continuum. We have not removed the Lyman-\(\alpha\) absorption associated with metal line systems (i.e. systems with N(\(\text{H}\,\text{I}\))\(< 10^{19}\) cm\(^{-2}\)) but the metal absorption lines themselves are flagged and removed.

Continuum fitting of the quasar spectra is very important for our analysis. As most of the QSOs in our sample are at lower redshifts where line-crowding is not a problem, all the available line free regions are used to fit the continuum. The procedure used to compute the continuum has been calibrated and controlled using synthetic spectra by Aracil et al. (2004). They estimated that errors in the continuum amount to about 2% at \(z \sim 2.3\). The transmission \(F = \exp(-\tau)\) for each quasar in Table 1 is shown in Fig. 1 up to a luminosity distance of 20 h\(^{-1}\)Mpc.

2.2 The mock LP quasar sample

We use mock spectra generated from hydrodynamical simulations to illustrate and test the method described below. The simulated cosmological model has \((\Omega_{\text{m}}, \Omega_{\Lambda}, h, \Omega_{b}h^{2}, \sigma_{8}) = (0.3, 0.7, 0.65, 0.019, 0.9)\), where the symbols have their usual meaning, and we have used cmbfast (Seljak & Zaldarriaga 1996) to generate the linear power-spectrum at the starting redshift \(z = 49\), assuming scale-invariant \(n = 1\) primordial Gaussian fluctuations. The baryons are heated and ionized by an imposed uniform ionizing background as computed by Haardt & Madau (1996), and updated by Haardt & Madau (2001). We have increased the photoheating rates during hydrogen and helium reionization to satisfy the

Figure 2. Determination of the emission redshift, \(z_{\text{em}}\), of three QSOs using Mg \(\text{II}\) line (see Table 1). For each quasar, the Mg \(\text{II}\) emission lines (\(\lambda\lambda 2796.35, 2803.53\)) are fitted (two dashed lines) on the top of a polynomial continuum (long dashed line). The final profile is shown with a solid line.
Density structure around quasars

3 METHOD

3.1 Overview

Our aim is to investigate the density structure around high-redshift luminous quasars. We do so by investigating how the probability distribution (PDF) of optical depths, \(P(\tau) \), varies with distance to the quasar. Far away from the QSO, \(P(\tau, z) \) evolves with redshift mainly because the mean optical depth decreases with redshift due to the expansion of the Universe. In the appendix we show that the shape of the PDF does not evolve much over the relatively small redshift range \(1.8 \leq z \leq 3.1 \) covered by our QSO sample. Therefore we can define a redshift-independent scaled optical depth distribution, \(P(\tau, z) \equiv P(\tau(z)/\tau_0(z)) \), which allows us to predict the optical depth PDF at any \(z \). The ability to take into account the strong redshift evolution of the mean optical depth is a major advantage of our method.

We can now compare this predicted optical depth PDF with the measured one, as a function of distance \(r \) to a QSO. We show that this predicted PDF differs significantly from the measured PDF close to the QSO. Indeed, radiation from the QSO will decrease the neutral hydrogen fraction in its surroundings, which in turn will lead to a decrease of the reference optical depth. This is the usual proximity effect. In contrast if the QSO lives in a high density environment, as is expected, then the optical depth will increase. Therefore we need to introduce another function \(f(r) \), which describes the effect of the QSO on the PDF, such that the optical depth scales as \(\tau/f(r) \tau_0(z) \). When radiation dominates, \(f(r) \ll 1 \), and the optical depth becomes very small. When density dominates, \(f(r) \gg 1 \), and the optical depth becomes very large. The explicit expression for \(f(r) \) is given in Eq. (9) below. Of course, the presence of the QSO might also change the shape of the PDF. Our main assumption in this paper is that the shape does not change, and we demonstrate below that this is a good assumption.

By comparing the predicted to the measured optical depth PDFs, we can determine the relative importance of radiation versus density enhancement. As we explain in more detail below, we can of-set a higher amplitude of the background ionization rate with a decrease in the over density: our determination is degenerate in this respect. So instead of assuming no over-density and inferring the background ionization rate, \(\Gamma(z) \), as is usually done in the analysis of the proximity effect, we will assume a given value of \(\Gamma(z) \), and recover the corresponding over-density.

This method is based on comparing optical depth PDFs. We characterise the difference between two PDFs, by computing the maximum absolute difference between the corresponding cumulative PDFs. Given bootstrap re-sampled realisations of these PDFs, we can associate a probability to a given probability of the over-density as a function of distance to the QSO, for an assumed value of the ionization rate. This is the basis for the inferred over density as a function of distance to the LP QSOs shown in Fig. 10 below.

In the rest of this section we explain this procedure in more detail, and test it on our mock QSO spectra. Readers not interested in these details may want to skip directly to Sect. 5, where we apply the method to the LP data.

3.2 The optical depth - density relation

We analyse the proximity effect using the cumulative distribution of pixel optical depths as a function of distance to a quasar. The starting point is Eq. (1), which relates optical depth, \(\tau \), to overdensity, \(\Delta = \rho/\langle \rho \rangle \).

\[
\tau = \tau_0 \Delta^2 \propto \Delta^{1/(1+\beta)},
\]

where \(1/(1+\beta) = 2 - 0.7(\gamma - 1) \), and

\[
\tau_0 = 0.206 \frac{\Omega_b h^2}{0.02} \left(\frac{\alpha(T)}{0.24} \right) \frac{X + 0.5Y}{0.88} \leq \frac{1}{\Gamma(z)} \frac{H(z-2)}{H(z)} \left(\frac{1+3z}{3} \right)^6,
\]

is the Gunn-Peterson (Gunn & Peterson 1965) optical depth. Here, \(\alpha(T) = 2\times10^4K \) is the hydrogen recombination coefficient (Verner & Ferland 1996) which scales approximately \(T^{-0.5} \) close to \(T = 10^4K \). The Hubble constant at redshift \(z \), \(X \) and \(Y \) are the hydrogen and helium abundances by mass, respectively, and \(\Omega_b h^2 = \) the baryon fraction. We have assumed that hydrogen and helium are both almost fully ionized.

\[http://www.pa.uky.edu/~gray/cloudy/\]
The exponent γ and normalisation T_0 of the temperature-density relation $T = T_0 \Delta^{\gamma-1}$, have been measured by e.g. Schaye et al. (2000) to be in the range $\gamma = [1 - 1.5]$ and $T_0 \approx 10^4 K$ in the redshift interval $2 \leq z \leq 3$. How are the density and optical depth PDFs related?

Let $P_\Delta(\Delta, z)d\Delta$ be the density distribution at redshift z. The probability distribution function (PDF) for the optical depth $P_\tau(\tau, z)d\tau$ is obtained by combining $P_\Delta(\Delta, z)d\Delta$ with Eq. (2). At two different redshifts z_1 and z_2, say, $P_\tau(\tau, z)d\tau$ will differ because τ_0 changes (see Eq. (3)) and because the density PDF, $P_\Delta(\Delta, z)d\Delta$, evolves as structure grows. For the relatively small redshift range covered by the LP quasars, we show below that the redshift evolution of $P_\tau(\tau, z)d\tau$ is dominated by that of the mean optical depth, τ_0, and that the shape of the distribution does not change very much. This is true for the simulated quasar sample as well. The PDF of τ is therefore given by

$$P_\tau(\tau, z)d\tau \approx (1 + \beta) P_\Delta \left(\frac{\tau}{\tau_0} \right)^{1+\beta} \left(\frac{\tau}{\tau_0} \right)^\beta d\tau,$$

and to a very good approximation, its redshift dependence is through $\tau_0(z)$ only. Therefore, given the PDF of τ at several redshifts covered by the LP sample, $1.7 \leq z \leq 3.1$, one can accurately predict the scaling factor required to scale each PDF $P_\tau(\tau, z)$ to the PDF observed at a given reference redshift, $z = 2.25$. We will call this the scaled optical depth PDF below. We emphasise here that the transmission is non-linearly related to the density. Since the median optical depth corresponds to a value of the flux within the transmission only. We consider the effect of both the

Thermal broadening and peculiar velocities prevent the unique identification of an overdensity, Δ, in real space, with a given optical depth, τ, in redshift space. Therefore $P_\Delta(\Delta, z)d\Delta$ does not refer to the real space over density, but the optical depth weighted overdensity, as used for example in Schaye et al. (1999). In the Appendix we discuss a fitting function of P_Δ which is based on the fit introduced by Miralda-Escudé, Haehnelt & Rees (2000) for the density distribution of the IGM. We show there that the shape of this function fits P_Δ well, but the best fitting parameters differ considerably from the real space density PDF. We also show that, in simulations, P_Δ varies little with redshift in $1.7 \leq z \leq 3.1$. A quasar’s proximity effect will change the PDF of τ. The change due to the increase in ionization rate can be accurately predicted by the appropriate scaling of τ_0. However, the density PDF may change, as is expected for biased quasar formation, which will modify accordingly the optical depth PDF. In our model, the shape of the density PDF is assumed to be unaltered, only the mean value is changed. This is our main assumption. Physically, this implies that feedback effects from the galaxy hosting the QSO such as winds, infall, or excess of clustering that may modify the density distribution itself, are neglected. The net effect of the quasar is then a rescaling of τ_0. This scaling factor is determined as a function of distance τ to the quasar, by comparing the measured PDF of τ at τ with the predicted one at the same redshift. The method is based on τ, whereas what we observe is the transmission $F = \exp(-\tau)$. We describe how to infer τ from F next.

3.3 The optical depth distribution

At a given redshift only part of the PDF of optical depth, $P_\tau(\tau)d\tau$, can be recovered from the observational data. Low values of τ, $\tau \leq \tau_{\text{min}}$, are lost in the noise, whereas high values of τ, $\tau \geq \tau_{\text{max}}$, cannot be recovered since the Lyman-α absorption is saturated. However, we can estimate the range $\tau_{\text{min}} \leq \tau \leq \tau_{\text{max}}$ where τ can be accurately recovered given the noise properties of the data. By using higher-order transitions one can accurately recover high values of τ where Lyman-α is saturated but Lyman-β for example is not (Savage & Sembach 1991; Cowie & Songaila 1998; Rollinde, Petitjean & Pichon 2001; Aguirre, Schaye & Theuns 2002; Arcalí et al. 2004). However, here we only use the Lyman-α absorption from normalised spectra and recover τ between $\tau_{\text{min}} = -\log(1 - 3\sigma) \approx 0.1$ and $\tau_{\text{max}} = -\log(3\sigma) \approx 2.5$, where $\sigma(\lambda)$ is the rms noise as a function of wavelength. Note that $\tau_{\text{min}} = 0.1$ is a high value compared to the actual noise in most of the spectra. We use this limit to be conservative. Since we will use the cumulative probability distribution of τ (CPDF, in the following all probability functions implicitly refer to τ, unless explicitly noted), we also keep track of the number of pixels below τ_{min} and above τ_{max}. The CPDF of this censored representation of the optical depth, $\text{CPDF}_{\text{rec}}(\tau)$, is therefore a portion of the full CPDF, $\text{CPDF}(\tau) \equiv P(\tau' < \tau)$, between τ_{min} and τ_{max}:

$$\begin{align*}
\text{CPDF}_{\text{rec}}(\tau) &= 0, & \tau < \tau_{\text{min}} \\
\text{CPDF}_{\text{rec}}(\tau) &= \text{CPDF}(\tau), & \tau_{\text{min}} \leq \tau \leq \tau_{\text{max}} \\
\text{CPDF}_{\text{rec}}(\tau) &= 1, & \tau > \tau_{\text{max}}.
\end{align*}$$

The values of τ_{min} and τ_{max} depend on redshift because the noise level σ does, but this dependence is very weak for our sample. This means that when we scale two recovered PDFs to the same reference redshift, the scaled values of τ_{min} and τ_{max} will no longer be the same. For example at lower redshift (say, $z = 2$) higher over-densities $\Delta \propto (\tau/\tau_0(z = 2))^{1+\beta}$ can be recovered before the line becomes saturated than at higher redshift ($z = 3$, say) because of the evolution of $\tau_0(z)$. Conversely, lower over densities can be recovered at $z = 3$ than at $z = 2$, before the line disappears in the noise. This could be exploited to increase the effective recovered overdensity range if the evolution of τ_0 was strong enough. We describe how we scale PDFs to a common redshift next.

3.4 Scaling of the reference optical depth $\tau_0(z)$

We show in Sections 4.1 and 5 that the shape of the censored optical depth cumulative distribution function in both simulations and observations, is nearly independent of redshift. These distributions refer to regions far away from the quasar (proper distance $\geq 50 \text{ Mpc}/h$) where the distribution of τ is not modified by radiation from the QSO itself. The fact that the shape of the PDF is conserved means that redshift evolution can be modeled accurately by a simple redshift dependence of the reference optical depth, $\tau_0(z)$. We find the best fitting scaling $\tau_0(z) \propto (1 + z)^\alpha$ by minimising the maximum absolute distance between scaled optical depth PDFs (KS distance) within different bins in redshift. Note that the evolution of the number of systems within a range of column densities, as used in most previous work on the proximity effect, is also described as a simple scaling. Errors in $\tau_0(z)$ are estimated using a bootstrap resampling of chunks of proper size $10 \text{ h}^{-1} \text{ Mpc}$. In the next steps, $\tau_0(z)$ is used to scale the optical depth of each pixel to a reference redshift of $z = 2.25$.

3.5 The proximity effect

We now consider the influence of a quasar on the optical depth distribution in the nearby IGM, scaled to the same reference redshift using the function $\tau_0(z)$. We consider the effect of both the
ionizing flux emitted by the quasar and that of a modified density distribution.

Let the quasar emit ionizing photons with spectrum characterised in the usual way as

\[4\pi J_L(\nu, r) = \frac{L}{4\pi r^2} \left(\frac{\nu}{c} \right)^{-\phi} \text{erg s}^{-1} \text{cm}^{-2} \text{Hz}^{-1}. \]

\[= 4\pi J_{21}(z) \times 10^{-21} \left(\frac{\nu}{\nu_H} \right)^{-\phi} \omega(r, z). \] (6)

Here, \(L \) is the monochromatic luminosity of the quasar at the hydrogen ionization threshold \(\nu_H \). The corresponding ionization rate is \((12.6/(3 + \delta)) J_{21} \omega(r) 10^{-12}\text{s}^{-1} \), when one approximates the hydrogen photo-ionization cross-section with a power-law (Theuns et al. 1998, Table B4). The function \(\omega \) is

\[\omega(r, z) = \frac{L[h^{-2}\text{erg s}^{-1} \text{Hz}^{-1}]/4\pi}{4\pi (r(z)[h^{-2}\text{cm}^2])} 10^{-21} J_{21}(z) \]

\[\equiv \left(\frac{r_L(z)}{r(z)} \right)^2. \] (7)

Here \(r(z) \) is the luminosity distance from the quasar at redshift \(z_{\text{sun}} \) to the cloud at redshift \(z \), at the time the photons arrive there. For a given pixel, \(r \) is computed from the absorption wavelength of that pixel and the emission redshift of the quasar, using the equations from Phillipps, Horleston & White (2002) for a \(\Omega_m = 0.3 \) flat cosmological model (in the future, it would be worthwhile to investigate how our results depend on the assumed cosmology, as initiated for the standard proximity effect analysis by Phillipps et al. 2002). Note that this neglects possible infall or outflow close to the quasar. All distances are computed as a luminosity distance in the flat cosmological model (in the future, it would be worthwhile to determine the proper distance \(z_{\text{sun}} \) and from the radiation background \(\Gamma_{\text{IGM}} \)).

The total ionization rate \(\Gamma \) in the IGM is the sum of that from the uniform background radiation, \(\Gamma_{\text{IGM}}(z) \), and from the radiation from the quasar, \(\Gamma^Q(r, z) \). The increase in \(\Gamma \) will shift the PDF of \(\tau \) to smaller values, without changing its shape. Very close to the QSO, \(\Gamma(r) \propto 1/r^2 \) diverges, hence according to Eq. (3), \(\tau_0 \rightarrow 0 \), which is the usual proximity effect.

We argued before that the quasar is likely to be in an overdense region, which will lead to an increase in \(\tau \). We model this by assuming that the density close to the quasar is simply a scaled-up version of that far away from the quasar, i.e.

\[P_{\Delta}(r, (1 + \Psi(r))\Delta) \, d\Delta \equiv P_{\Delta}(\Delta) \, d\Delta. \] (8)

Eq. (2) shows that this has the effect of increasing \(\tau_0 \) by a factor \((1 + \Psi(r))^{1/(1+\beta)} \). Shifting the PDF of \(\tau \) at a given \(r \) bin, to higher values without changing its shape. To simplify the notation, we will use \(\rho/\langle \rho \rangle \) to refer to the density structure, or enhancement, around the quasar (i.e. \(1 + \Psi \)), and \(\Delta \) to refer to the distribution of density \(P_{\Delta} \).

Note that we neglect a possible variation of temperature due to the ionizing flux from the quasar. Since the main modification to the ionizing background is the larger proportion of hard photons from the quasar, we assume that the change in temperature is not large enough to modify the optical depth distribution in a significant way. This argument will not be valid if the He II is not ionized. Available observations indicate the epoch of He II reionization may be probably earlier than \(z \simeq 3 \) (e.g. Theuns et al. 2002). The combined effect of a density increase and extra ionizing photons is to shift \(\tau_0 \) by a factor

\[\tau_0 \rightarrow \tau_0 \left(\frac{\rho(r)/\langle \rho \rangle}{1 + (r_L/r)^{1/\beta}} \right)^{1/(1+\beta)}. \] (9)

The relative importance of quasar versus UV-background ionizing photons is characterised by \(r_L(z)^2 \propto L/\Gamma_{12}(z) \) (where \(\Gamma_{\text{IGM}} = \Gamma_{12} 10^{-12} \text{s}^{-1} \)). In the absence of any temperature enhancement the optical depth at \(r \) is globally scaled compared to the optical depth in the intergalactic medium. As a consequence, the distribution \(P(\tau) \) is simply scaled along the abscissa toward higher values in case of an overdensity \(\rho/\langle \rho \rangle > 1 \) or lower values under the influence of the quasar ionizing flux \(\omega > 0 \). Thus, for a given distance \(r \), there is an intrinsic degeneracy between the local density structure \(\rho(r) \) and the value of \(\Gamma_{12} \), combined in the above scaling factor. Therefore, if one modifies the value of \(\Gamma_{12} \), the recovered value of \(\rho(r)/\langle \rho \rangle \) is scaled by a constant value \(1/\Gamma_{12} \) when \(r \ll r_L \) and is independent of \(\Gamma_{12} \) when \(r \gg r_L \). Close to or far away from the quasar, this scaling is constant, which allows the shape of the density enhancement to be recovered. Then, despite the fact that the absolute value of \(\rho(r) \), when \(r \ll r_L \), will depend on the value of \(\Gamma_{12} \) assumed in the analysis; the presence of a non-uniform density enhancement can in principle be revealed by this method. Conversely, if the underlying density enhancement is known through numerical simulations e.g., or if it is neglected as in the standard proximity effect analysis, \(\Gamma_{12} \) can be recovered. However, neglecting overdensities always implies an overestimate of \(\Gamma_{12} \), irrespective of the method.

We now describe how the density structure is recovered and how errors are estimated.

3.6 Estimation of the density structure and errors

The density structure, \(\rho(r)/\langle \rho \rangle \), can be infered once the ionizing rate, \(\Gamma_{12}(z) \), and the slope of the temperature-density relation, \(\gamma \), are determined. We will illustrate how \(\rho/\langle \rho \rangle \) changes with changes in these parameters.

The mean scaled CPDF in the IGM, and its statistical uncertainty, are determined from bootstrap resampling pixels outside of the possible proximity region, at distances larger than \(50 \text{h}^{-1}\text{Mpc} \) proper. We characterise the difference between two PDFs by the maximum absolute distance (KS distance) between the corresponding cumulative distributions, just as in a Kolmogorov-Smirnov test. Bootstrap resampling allows us to associate a probability to a given value of this KS distance, \(P(KS) \).

The proximity region is characterised by evaluating the scaled CPDF in radial bins from the background QSO. For each radial bin, the mean CPDF in the IGM is shifted according to Eq. (9), using our assumed value of \(\Gamma_{12} \) and for different values of the function \(\rho(r)/\langle \rho \rangle \). Given the probability associated with a given value of KS, we can determine a probability associated with a given value of \(\rho(r) \), \(P_{\text{KS}}(\rho(r)/\langle \rho \rangle) \). The distribution of KS values of course depends on the number of pixels in each bin. Since we want to use small bins close to the QSO, we need to determine the probability \(P(KS) \) for each bin separately, using only pixels outside the proximity region.

We bootstrap the QSO sample, using different sub-samples of six quasars taken from the 12 quasars available in full sample. We can then define a global probability associated to \(\rho(r) \) as

\[P(\rho(r)/\langle \rho \rangle) = P_{\text{KS}}(\rho(r)/\langle \rho \rangle)_{\text{sub--sample}}. \] (10)
Figure 3. Evolution with redshift of the cumulative distribution of optical depth, computed with mock LP spectra. Only pixels located far away from the proximity region are considered. Top panel: Cumulative distributions in five bins in redshifts centred on $z = 1.8, 2.0, 2.25, 2.5$ and 2.95 (left to right, with alternate solid and dashed lines). The 3σ statistical error is shown with a vertical mark in both panels. Bottom panel: Same distributions but after scaling each curve to the CPDF at $z = 2.25$ (thick curve in both panels) by a redshift dependent scaling factor $\tau \rightarrow \tau \tau_0(z = 2.25)/\tau_0(z)$. The scaled curves are all consistent within the 3σ error, showing that the shape of the distribution is independent of z.

Figure 4. Evolution of different percentiles of the scaled optical depth ($z = 2.25$) with luminosity distance to the background quasar, in mock LP spectra. Quasars are randomly located in the simulation box, which implies that no additional density structure around the quasars is expected statistically (i.e. $\rho/\langle \rho \rangle = 1$). Mock spectra are computed assuming the mean luminosity of the LP sample, $L = 5.4 \times 10^{31}$ h$^{-2}$ erg/s/Hz and $\Gamma_{12} = 1$. The distance where the amplitude of the ionizing flux from the quasar and in the IGM are equal (i.e. $\omega = 1$, Eq. 7) is indicated by the vertical dashed line. Horizontal lines indicate the observational upper and lower limits in optical depth.

which will allow us to characterise the density structure at different level of confidence.

Note that this method is also able to recover Γ_{12}, if one assumes $\rho(r) \equiv \langle \rho \rangle$, i.e. the assumption made in the standard analysis of the proximity effect. Indeed, the above procedure can be done for different values of Γ_{12}, while maximising the product of $P(\rho(r) \equiv \langle \rho \rangle)$ over r.

We will first apply the method to mock spectra in order to show that this method works well. We also use the simulations to show that our method of bootstrap sampling chunks and quasars gives realistic errors.

4 PROXIMITY EFFECT USING OPTICAL DEPTH: VALIDATION OF THE METHOD WITH SYNTHETIC SPECTRA

In this section, we use mock LP spectra, generated as described in Section 2.2. The proximity effect is implemented as described by Eq. (9), assuming the mean luminosity of the LP sample, $L = 5.4 \times 10^{31}$ h$^{-2}$ erg s$^{-1}$ Hz$^{-1}$ and $\Gamma_{12} = 1$, without and with additional density enhancement. Note that the value used for Γ_{12} here needs not be equal to the value actually implemented in the simulation itself. The different steps involved in the analysis, as described above, are now applied successively to the mock spectra.
Density structure around quasars

4.1 Evolution of the optical depth with redshift

Since we are first interested in the evolution of the optical depth in the IGM, we consider here pixels at a distance larger than 50 h⁻¹Mpc proper to the quasar only. The evolution of the CPDF within five bins in redshift centred at $z = 1.8$, 2.0, 2.25, 2.5 and 2.95 is displayed in the top panel of Fig. 3. The main evolution is driven by the mean density that increases, together with the mean optical depth $\tau_0(z)$, with redshift. This corresponds to a shift of the CPDF along the abscissa toward higher values. As explained in Section 3.4, a simple scaling of the reference optical depth $\tau_0(z)$ is used to remove this primary evolution. Parameterising $\tau_0(z) \propto (1 + z)^{\alpha}$ gives a best fitting value of $\alpha \approx 4.5$. Although some scatter is present, half of 50 different samples prefer a value $4 \leq \alpha \leq 4.5$. Once the optical depth at each pixel is scaled using this relation, the CPDF computed within the same bins are displayed in the bottom panel of Fig. 3. We find then that the shape is indeed conserved, to the level of accuracy of our sample. In our mock samples, the ionizing background $\Gamma(z)$ varies only weakly with z over the range $1.7 \leq z \leq 3.1$, as does the temperature T of the IGM. Therefore a scaling close to $\alpha = 4.5$ is indeed expected from Eq. (3), given the high redshift approxima-

\[H(z) \propto (1 + z)^{3/2} \]

Below we will generate several observed data sets by bootstrapping the LP quasars, and use either the best fitting exponent in $\tau_0(z) \propto (1 + z)^{\alpha}$ for each sample, or a fixed value of $\alpha = 4.5$.

4.2 Proximity effect

Once the main evolution of optical depth with redshift is removed, we can concentrate on its change with distance to the quasar. Fig. 4 shows the evolution of different percentiles of the optical depth with luminosity distance to the mock background quasar. Note that we only model the excess ionizing radiation from the QSO: there is no over density at the emission redshift (i.e. $\rho/\langle \rho \rangle = 1$). We note that the relation between ω and distance, Eq. (7), depends on the luminosity of the quasar. In our homogeneous sample, the luminosity of the QSOs, and then ω, varies only within a factor of two from one quasar to another. For the mock spectra, since we assume an unique value of the luminosity of each quasar, the distance at which $\omega = 1$ is the same for all mock spectra: it is shown as a vertical line in the figure. The effect of assuming a different luminosity on the recovered over density is discussed in more detail in Section 5.

Fig. 4 clearly reveals the decrease of τ with decreasing radius, as the mock QSO starts dominating the ionization rate. Since in this case $\rho/\langle \rho \rangle = 1$, the optical depth where $\omega = 1$ must be a factor of two less than its value in the ambient IGM at $r > 50$ h⁻¹Mpc (Eq. 9). This is indeed observed here, for each percentile. Note how at small distances the optical depth is everywhere decreased below τ_{\min}, and how the different percentiles are almost all equal to the minimum optical depth.

4.3 Recovery of a uniform density field

This qualitative change with distance is now studied quantitatively to recover the underlying density field close to the background quasars. During the implementation of the proximity effect in the mock spectra, we assumed $\Gamma_{12} = 1$. Therefore, we shall use the same value in the analysis. A wrong estimate of Γ_{12} mostly leads to a re-scaling of $\rho/\langle \rho \rangle$ in the region of interest, close to the quasar. Although the simulation does not correspond to a unique value of γ (there is a dispersion in the temperature-density relation), the exact assumed value, if within the range specified above (Eq. 2), does not have a large influence on the recovered density; we assume here $\gamma = 1.5$. We will illustrate the amplitude of these effects on the analysis of the Large Programme quasars in Section 5. Here, since the quasars are randomly distributed in the simulation box, we must recover a uniform density with $\rho(r) = \langle \rho \rangle$.

For each bootstrap sample (Section 3.6), we recover a different function $\tau_0(z)$ for the evolution of τ. However, very similar results are obtained using a fixed evolution $(1 + z)^{3.5}$, which shows that errors on the estimation of $\tau_0(z)$ are not essential in the analysis. We then fit the change of the CPDF with distance to the quasar (Fig. 4) using Eq. (9). This allows us to recover a probability distribution of $\rho(r)/\langle \rho \rangle$, from the function P_{KS} (Eq. 10).

Our result is therefore expressed in terms of a probability for each value of $\rho/\langle \rho \rangle$ at a given radius. Different levels of probability are shown in Fig. 5. The 2 and 3σ levels of confidence correspond to the blue region and to the solid lines respectively. The input structure $\rho/\langle \rho \rangle = 1$ is indeed accurately recovered at the 2σ level for $r > 1$ h⁻¹Mpc. In this particular case, the assumption of the standard proximity effect is satisfied (see Introduction). Then, assuming
\(\rho / \langle \rho \rangle \equiv 1 \), the data (i.e. the optical depth CPDF in our analysis, but also the mean flux \(^2\)) are fitted with \(\Gamma = \Gamma_{\text{true}} \) within the 3σ confidence level. Therefore, the real value of \(\Gamma_{12} \) may be recovered if the density field is uniform.

However, at distance lower than 3 \(h^{-1} \)Mpc, a tendency towards over-density together with a symmetric increase of errors is apparent. The reason is the following. When the ionizing flux from the quasar is high (close to the quasar), the optical depth in most of the pixels is below \(\tau_{\text{min}} \) (see Fig. 4). Then, the modeled (censored) cumulative function (computed from the CPDF in the IGM) is everywhere equal to 1. As for the CPDF measured directly in the spectra, there will always be a fraction of the pixels above \(\tau_{\text{min}} \) due to the noise (this fraction mostly depends on the signal to noise ratio). Therefore, the KS distance between theoretical and measured CPDFs will have a maximum probability at a value larger than 0. This is not the case far away from the quasar, where the theoretical CPDF, for the best fitting value of \(\rho / \langle \rho \rangle \), is the mean of all measured CPDFs. Although most of this effect is included in the function \(P_{\text{KS}}(\rho / \langle \rho \rangle) \), this asymmetry will favour a value of \(\rho / \langle \rho \rangle \) higher than 1. Besides, a lower \(\rho / \langle \rho \rangle \), that is a larger under-density, will not modify the theoretical CPDF, as long as \(\tau \) is everywhere lower than \(\tau_{\text{min}} \). This explains the large error toward low \(\rho / \langle \rho \rangle \) for \(r \lesssim 10^{-1} \)Mpc.

\(^2\) if the distribution of \(\tau \) is known between \(\tau_{\text{min}} \) and \(\tau_{\text{max}} \), then the distribution of the flux is known between 0 and 1, which allows us to compute the mean flux too.

4.4 Recovery of a density structure

The issue at small distances discussed above should be less important if an overdensity is present close to the quasar. Indeed, \(\mathcal{F} \) will then remain above \(\tau_{\text{min}} \) at lower distances. We have checked this effect by adding a unique density structure (directly to \(\tau \), so in velocity space) in all spectra with the shape \(\rho(r) / \langle \rho \rangle = 1 + 3 \exp(-\log(r)^2/0.6) \) (Eq. (8)). We will show in Section 5 that, using this specific structure, the observed evolution of optical depth percentiles is well fitted by the evolution in mock LP spectra (Fig. 9). This input structure is indicated with a solid line in Fig. 6. The 2 and 3 σ confidence levels for the recovered density structure are shown in Fig. 6. It is again consistent with the input structure. As an exercise, the analysis has been repeated with twice as many quasars (i.e. 24). The corresponding contour of the 3σ rejection level are shown with dashed lines in Fig. 6. The constraint is more stringent and still in agreement with the input structure. As expected, the bias is not present anymore. Although this result is encouraging, one must remember that the same luminosity and density structure are used for all quasars, which would obviously not be the case in a real and larger sample.

We have shown in two different cases, with a uniform and with an enhanced density, that our analysis does recover the input structure. We now concentrate on the estimation of errors.
Density structure around quasars

4.5 Validation of error estimates

The analysis of one sample (of similar properties as the Large Programme sample), provides us with a probability distribution for the recovered density structure. To validate the estimation of errors, we generate and analyse 50 different samples of mock spectra. In Fig. 7, the results at different radius are reproduced in each panel.

For each radius, the range of most probable values of $\rho/\langle \rho \rangle$ obtained for each sample is indicated by a thin horizontal line, while a specific probability distribution corresponding to one sample is shown. This procedure is done in the case of an additional density enhancement (Fig. 6). The best fitting value from different realisations does always fall within the 3σ rejection level estimated from a single sample. The same validation has been done without additional density structure. The conclusion is the same, although the bias discussed above implies that the distribution at low radius is extended toward lower values while the best fitting value is shifted toward higher values.

Our analysis has been successfully tested with a numerical simulation, for the most probable result as well as the estimation of errors. We may now turn to the analysis of the ESO-VLT Large Programme.

5 APPLICATION TO THE ESO-VLT LARGE PROGRAMME

In this section, we perform, with the LP quasars, the same sequence of analysis described above. First, we have confirmed that the evolution of the mean transmission $\langle F \rangle$ with z is consistent with previous determinations (e.g. Press, Rybicki & Schneider 1993; Schaye et al. 2003). In particular, this gives confidence in the continuum fitting procedure.
Then, we compute the evolution of optical depth with redshift, displayed in Fig. 8 (upper panel). It is stronger than in the mock spectra and seems to favor $\alpha = 6$, when fitted with $\tau_0(z) \propto (1+z)^\alpha$. However, a slope of 4.5 is allowed within a 3σ confidence level. More important, our results are not modified, within the statistical errors, whether we use $\alpha = 4.5$ or the actual fit. The CPDF of the scaled optical depth is shown in Fig. 8 (bottom panel) with the best fitting result for $\tau_0(z)$. Observations are also consistent with the assumption that the shape of the CPDF does not evolve from $z = 3.2$ to $z = 2.2$.

Once the evolution with redshift is removed, the scaled optical depth CPDFs are computed within different bins in distance to the quasar. The 1σ statistical contours (from a bootstrap resampling) of the evolution of different percentiles are shown in Fig. 9 (grey regions in each panel). We note here that the different percentiles are scaled roughly by the same amount at any given radius (when the lowest contour of τ is larger than the minimum value, i.e. the lower dotted line). This corresponds to the fact that the shape of the CPDF is conserved when one gets closer to the quasar (at the level of accuracy of our sample). This gives confidence in our main assumption that a simple scaling of the reference optical depth is sufficient.

In order to recover the density structure, values of Γ_{12} and γ have to be fixed first. As mentioned earlier, the expected value of γ is between 1 and 1.5 and we use $\gamma = 1.5$ in most of our analysis. The value of Γ_{12} is between 0.3 and 3 (aside from measurements from standard proximity effect analysis), we use $\Gamma_{12} = 1$. In the previous section, the mean evolution of optical depth percentiles was computed in mock LP spectra without additional density structure and using $\Gamma_{12} = 1$ (see Fig. 4). It is overplotted for comparison in Fig. 9, panel (a). In the data, there is no clear change in the percentiles at a radius where $\omega = 1$ (for $\Gamma_{12} = 1$) and even at the lowest radii considered here, the highest percentiles do not reach the minimum optical depth. In contrast, the presence of the ionizing photons from the QSO already strongly affects the optical depth percentiles in mock spectra. Thus, the addition of a density structure is required to counterbalance the increase of the ionization rate. This is shown in panel b where we overplot the evolution of optical depth percentiles in mock spectra including a density structure around the quasar, as described in Section 4.4 (Fig. 6). This provides then a better fit to the observed evolution. The probability distribution of $\rho/\langle \rho \rangle$ associated to the Large Programme QSOs is directly recovered through the procedure described in Section 3. The 2σ confidence region is then displayed in Fig. 10, again for $\Gamma_{12} = 1$ and $\gamma = 1.5$ (panel b, blue region). A uniform density is rejected at the 2σ level for $r \lesssim 10$ proper h^{-1}Mpc.

This recovered profile can then be compared to expected density profile from simulation. For this purpose, we have used the Millennium simulation (Springel et al. 2005). This dark-matter only simulation evolved 21603 particles in a box of size 500 h^{-1}Mpc, and has $\Omega_m = 0.25$ and $\sigma_8 = 0.9$. Since the LP quasars are very luminous, we extract the averaged density profile around the most massive halo at redshift $z = 2$ in the simulation. The profile, smoothed over 2.5 h^{-1}Mpc is shown as diamonds in Fig. 10. The similarity is encouraging, in particular the fact that both profiles start to increase at the same radius ~ 10 h^{-1}Mpc.

The effect of varying Γ_{12} and γ is investigated next. It is reasonable to assume that γ is within 1 and 1.5 (see Eq. 2). Since we actually recover $(\rho/\langle \rho \rangle)^{2\gamma - 0.7(\gamma - 1)}$, varying γ only scales $\rho/\langle \rho \rangle$ in a logarithmic plot. The effect is negligible compared to statistical errors. As for Γ_{12}, we have shown in Section 3 that, for $r \lesssim \Gamma_{12}$, $\rho/\langle \rho \rangle$ is proportional to $(1/\Gamma_{12})^{1/2\gamma}$. Therefore, the observed optical depth percentiles evolution could also be reproduced in mock spectra with a larger value of Γ_{12}, which decreases the influence of the quasar ionizing flux (the radius where $\omega = 1$ is shifted towards lower distance). The same quality of fit in Fig. 9 (panel e) is indeed obtained with the evolution of optical depth percentiles in mock spectra without density structure but with a larger value of Γ_{12} (3 instead of 1). Similarly, the 2σ confidence region of $\rho/\langle \rho \rangle$ is shown for $\Gamma_{12} = 3$ in panel (e) of Fig. 9. The recovered density structure is reduced, and a uniform density can be rejected at the 2σ level for $r \lesssim 2h^{-1}$Mpc only. Yet, this may as well be explained by the systematic bias in the recovered structure at small distances (Fig. 5). Higher values of Γ_{12} would result in an under density at small distances. Conversely, a lower value of Γ_{12} enhances the recovered density structure, which is demonstrated for $\Gamma_{12} = 0.3$ in panel (a) of Fig. 10.

One may then ask the question of which value of Γ_{12} will allow the observation to be consistent with a uniform density $\rho/\langle \rho \rangle = 1$. This corresponds to the standard proximity effect applied to optical depth statistics. If one requires that an uniform density is not rejected at more than 2σ, within each bin in distance, Γ_{12} is constrained to be within the range 3.6-15. This is consistent with the range of estimates obtained from standard proximity effect analysys using line counting statistics ($\Gamma_{12} \simeq 1.5 - 9$). We could also

Figure 10. Recovered density structure versus luminosity distance to the background quasar from the analysis of the proximity effect in the Large Programme sample. The density structure, $\rho(r)/\langle \rho \rangle$, is recovered within different bins in distance to the background quasar, from the evolution of the optical depth distribution in the vicinity of the quasar, as compared to the distribution in the IGM. Since the optical depth is a function of the density, the temperature and the amplitude of the ionizing flux, the resulting density structure depends on the slope of the temperature-density relation, γ, and on the amplitude of the background ionizing flux (defined by the parameter Γ_{12}). The value of γ is fixed to 1.5 since uncertainties in it are small enough to have little influence on the result. The 2σ contours of the recovered density structure are shown for $\Gamma_{12} = 0.3$ (panel a), $\Gamma_{12} = 1$ (panel b) and $\Gamma_{12} = 3$ (panel c). A value of $\Gamma_{12} \simeq 1$ is favored to recover the density enhancement derived around the most massive halo at redshift $z = 2$ in the Millennium simulation (Springel et al. 2005), which is overplotted in each panel with diamonds.
assume the density profile based on the Millenium simulation to recover \(\Gamma_{12} \). In this case, Fig. 10 shows that \(0.3 < \Gamma_{12} < 3 \).

6 CONCLUSION

In this article we presented a method to probe the density structure around quasars, using a new analysis of the proximity effect in absorption spectra of quasars. In the vicinity of the quasar, the additional ionizing photons increase the total ionizing rate which decreases the Lyman-\(\alpha \) absorption. Simultaneously, an increase of the density around the quasar (as expected from biased galaxy formation) would increase the absorption. Both effects are better probed with the optical depth than directly with the flux. Our method also avoids fitting the individual absorption lines, and directly uses the cumulative distribution of Lyman-\(\alpha \) optical depths observed in each pixel. We then model the change of this distribution under modification of the density field and the amplitude of the ionizing rate, \(\Gamma_{12} \). Our method therefore allows one, in principle, to estimate the density enhancement around host galaxy of quasars, once \(\Gamma_{12} \) is fixed by some other method.

We first use a LCDM high resolution simulation to validate our method. The information on \(\Gamma_{12} \) and density field is accurately recovered. This gives us confidence to perform our analysis on the real data. We then use the spectra of 12 quasars with highest luminosity at \(2.2 < z < 3.3 \) from the ESO-VLT Large Programme.

Our method has revealed the presence of an overdensity for \(2 < r < 10 \) proper \(h^{-1}\)Mpc, assuming \(\Gamma_{12} < 3 \). We have shown that it is consistent with a density profile around the most massive halo at redshift \(z = 2 \) in the Millenium simulation for \(\Gamma_{12} = 1 \) (Fig. 10). In the future, a similar analysis should be done with a larger sample of spectra, covering different redshift and luminosity ranges. Together with synthetic density profiles computed around halos of different mass in a large simulation such as the Millenium one, this will be very useful to understand better the relation between the environment of the quasar and its host galaxy, and their evolution with redshift. New constraints could also be put on the mass-luminosity relation.

Without the knowledge of \(\Gamma_{12} \), and due to the limited statistics, we could not discard an uniform density profile. Indeed, consistently with standard proximity effect analysis, observations are also modelled without density enhancement, assuming a higher value of \(\Gamma_{12} \). Yet, due to the specific scaling of the density profile with \(\Gamma_{12} \), a larger statistics could already allow us to distinguish between different type of profiles, from a simple power law to the existence of alternate shells corresponding to over and under density regions. This would be valuable to test the presence of winds, or other specific feedback effects. Thus it is important to confirm our tentative finding of density enhancement around QSOs (for \(\Gamma_{12} < 3 \)) at high significant level using a bigger sample.

Another application of this analysis concerns the transverse proximity effect. The modeling of the observations obtained with Lyman break galaxies or quasars has been done either with simulations (Croft 2004; Maselli et al. 2004) or analytical model for the density (Schirber et al. 2004). These works could not reproduce the amplitude of the observed effect with normal properties of the quasar, such as anisotropy of the beaming and variability. Combining the constraints on the optical depth evolution along and transverse to the line of sight could be a way to disentangle the different parameters, that is the density structure, \(\Gamma_{12} \) and the properties of the quasar.

Acknowledgements:

We thank B. Aracil for the reduction and the continuum fitting of the data, and J. Miralda-Escudé for useful comments.

We thank E. Thiebaut, and D. Munro for freely distributing his Yorick programming language (available at ftp://ftp.icf.llnl.gov/pub/Yorick), which we used to implement our analysis.

ER was supported by a grant LAVOISIER from the French foreign office. HC thanks CEA, INDIA for the grant award No. 9/545(18)/2KI/EMR-I and CNRS/IAP for the hospitality. RS and PPJ gratefully acknowledge support from the Indo-French Centre for the Promotion of Advanced Research (Centre Franco-Indien pour la Promotion de la Recherche Avancée) under contract No. 3004-3. TT and PPJ acknowledge support from the European RTN program “The Physics of the Intergalactic Medium”. TT thanks PPARC for the award of an Advanced Fellowship, and the Kavli institute at the University of Santa Barbara for hospitality. TT thanks IUCAA for hospitality and the Royal Society for the travel grant to India. Research was conducted in cooperation with Silicon Graphics/Cray Research utilising the Origin super computer at DAMTP, Cambridge. This research was supported in part by the National Science Foundation under Grant No. PHY99-07949.

REFERENCES

Adelberger K., Steidel C., Shapley A., Pettini M., 2003, ApJ, 584, 45
Aguirre A., Schaye J., Theuns T., 2002, ApJ, 576, 1
Aracil B., Petitjean P., Cheron G., Bergeron J., 2004, A&A, 419, 811
Bajtlik S., Duncan R., Ostriker J., 1988, ApJ, 327, 570
Barkana R., 2004, MNRAS, 347, 59
Bekhtold J., 1994, ApJS, 91, 1
Bekhtold J., Drobrycki A., Wilden B., Morta M., Scott J., Drobrycka D., Tran K., Aldcroft, T.L., 2002, ApJS, 140,143
Bi H., 1993, ApJ, 405, 479
Bi H., Davidsen A. F., 1997, ApJ , 479, 523
Bolton J.S., Haehnelt M.G., Viel M., Springel V., 2005, MNRAS, 357, 1178
Bromley B.J., Somerville R.S., Fabian A.C., 2004, MNRAS, 350, 456
Bruscoli M., Ferrara A., Marri S., Schneider R., Maselli A., Rollinde E., Aracil B., 2003, MNRAS, 343, 41
Carswell R.F., Whelan J., Smith M., Boksenberg A., Tytler D., 1982, MNRAS, 198, 91
Cen R., Miralda-Escudé J., Ostriker J. P., Rauch M., 1994, ApJ, 437, 9
Chand H., Srianand. R., Petitjean P., Aracil B., 2001, A&A, 417, 853
Choudhury T., Srianand R., Padmanabhan T., 2001a, ApJ, 559, 29
Choudhury T., Padmanabhan T., Srianand R., 2001b, MNRAS, 322, 561
Cooke A.J., Espey B., Carswell R.F., 1997, MNRAS, 284, 552
Couchman H.M.P., 1991, ApJ , 368, L23
Couchman H.M.P., Thomas P.A., Pearce F.R., 1995, ApJ, 452, 797
Cowie L.L., Songaila A., 1998, Nature, 394, 44
Cristiani S., Vio R., 1990, A&A, 227, 385
Cristiani S., D’Odorico S., Fontana A., Giallongo E., Savaglio S., 1995, MNRAS, 273, 1016
Croft R., 2004, ApJ, 610, 642
Croft R., Weinberg D., Bolte M., Burles S., Hernquist L., Katz N., Kirkman D., Tytler D., 2002, ApJ, 581, 20
Desjacques V., Nusser A., Haehnelt M. G., Stoehr F., 2004, MNRAS, 350, 879
Efstathiou G., Schaye J., Theuns T., 2000, Royal Society of London Philosophical Transactions Series A, 358, 2049
Espey B.R., Carswell R.E., Bailey J.A., Smith M.G., Ward M.J., 1989, ApJ, 342, 666
APPENDIX

A key assumption in this paper is that the PDF of the scaled optical depth, \(P(\tau(z)/\tau_0(z)) \), varies little with redshift. Here, \(\tau_0(z) \propto (1 + z)^\alpha \) is a redshift dependent scaling function, with \(\alpha \approx 4 - 5 \). We showed in Fig. 3 that this is true for the full optical depth in mock spectra in the range \(0.1 < \tau / \tau_0 < 100 \) and in Fig. 8 for the censored, recovered optical depth in the range \(0.1 < \tau / \tau_0 < 2.5 \), both at the reference redshift \(z = 2.25 \). We illustrate in Fig. 11 the limitation of this assumption, by showing the scaled \(P(\tau/\tau_0) \) over a larger range. As expected, the PDF becomes wider in its tails as the density field becomes increasingly non-linear at lower redshifts. However in the range in which we use the PDF, \(\tau_{\text{min}} < \tau \leq \tau_{\text{max}} \), this dependence is very weak indeed. It also becomes clear from this figure that we cannot reliably determine the shape of the PDF around the maximum for the signal-to-noise ratio in the LP quasars, even at the higher redshifts \(z \approx 3 \). This is also clear from Eq. (2): \(\tau \approx 0.07 < \tau_{\text{min}} \) at the typical volume-averaged overdensity \(\Delta = 1/3 \) at \(z = 3 \), when \(\tau_0 \approx 0.7 \). Uncertainties associated with continuum fitting make this part of the PDF uncertain, in addition to these signal-to-noise issues. Note that in our previous analysis we used the recovered optical depth from mock samples, which were continuum-fitted to mimic observed samples. This will strongly affect the shape of the PDF at these low values, and therefore it is not very worthwhile to try to take these lower optical depths into account for the present analysis.

In contrast, the mock PDF is uncertain at high \(\tau \), where it becomes sensitive to lack of self-shielding and other numerical uncertainties in high density regions. Given these limitations, can we understand the shape of the optical depth PDF in the intermediate regime?

Miralda-Escudé, Haehnelt and Rees (2000) provide physical motivation for the following fitting function for the (volume-weighted, real space) overdensity \(\Delta \).

\[
P(\Delta) \, d\Delta = A \exp \left[-\frac{(\Delta - 2/3 - C_0)^2}{2(2\delta_0/\beta)^2} \right] \Delta^{-\beta} \, d\Delta.
\]

Their Table 1 provides values for \(A, C_0, \delta_0 \) and \(\beta \) at redshifts \(z = 2, 3, 4 \) and 6, which they obtained from fitting their numerical simulations. The exponent guarantees that the PDF is a Gaussian in \(\Delta - 1 \) when \(C_0 = 1 \) and the dispersion \(\delta_0 \ll 1 \).

We can use this as an Ansatz for the PDF of \(\tau \), given the relation
Table 2. best fitting parameters (Eq. 12) for the PDF of scaled optical depth, within different redshift bins, restricting the fit to $-2 \leq \log(\tau/\tau_0) \leq 1$ (thin lines in Fig. 12)

z	δ_0	μ	ν
1.8	3.58	1.44	0.46
2.0	3.80	1.46	0.47
2.25	4.09	1.47	0.50
2.9	3.80	1.49	0.52

Figure 11. PDF of the true, scaled optical depth, τ/τ_0, of a large sample (20) of mock LP quasars, in the redshift range [1.7, 1.9], [1.9, 2.1], [2.15, 2.35], [2.85, 3.05]. A redshift scaling $\tau_0 \propto (1+z)^5$ is assumed pixel by pixel, the mean redshift is indicated in the panel. Limits in optical depth for the censored PDFs, are indicated by thin vertical lines (with corresponding types). The PDFs have a Gaussian shape, with a more extended power-law tail toward low as well as higher optical depths. The shape of the scaled PDF is almost independent of redshift over nearly three decades in $-1 \leq \log(\tau/\tau_0) \leq 2$.

Figure 12. Fits of the form Eq. (12) (full lines) to the scaled PDFs shown in Fig. 11, represented here by the histograms. The fits shown by the thin line restrict the fitted region to that of the censored optical depth (vertical lines). Different redshift range indicated in the panel are offset vertically and horizontally by 0.05 and 0.1 respectively, for clarity. The fitting function does reasonably well around the maximum and in the power-law tail toward higher τ, but is not able to fit the more non-linear parts at very high and very low τ. The fit to the censored optical depth (thin lines) does not recover well the PDF around the maximum.

Figure 13. Overlay of the fits to the scaled PDF of the mock sample from Fig. 11 to the (censored) scaled PDF of the LP quasar sample. The same redshift scaling $\tau_0 \propto (1+z)^5$ is assumed for the LP data. The same redshift range are indicated and shifted as in Fig. 12. The agreement is very good, increasing our confidence that the mock samples are sufficiently realistic for validating our method.

Eq. (2) between Δ and τ. We expect the exponent in the exponential to change $-2/3 \rightarrow -2(1 + \beta)/3$, and $1 + \beta = [0.5, 0.6]$ for $\gamma = [1, 1.6]$, hence we fit

$$P(x) dx = A \exp \left[-\frac{(x^{2\nu/3} - C_0)^2}{2(2\nu/3)^2} \right] (10^x)^{-\mu} dx,$$

where $x \equiv \log(\tau/\tau_0)$, with free parameters $\nu \approx 1 + \beta$, C_0, δ_0 and μ, and A a normalisation constant. Restricting the fit to $-2 \leq x \leq 1$, we show the best fitting PDFs in Fig. 12 and provide the best fitting parameters in Table 2. The best fitting value for $C_0 \approx 0$ is kept constant. The dispersion δ_0 differs significantly from the best fitting one to the density PDF, but the value of the exponent ν is close to expected.

These fits are overlaid on the censored PDF of the observed LP quasar sample in Fig. 13. The good agreement suggest that the mock sample is indeed representative of the observed distribution.