Solutions of diophantine equations as periodic points of p-adic algebraic functions, III

Patrick Morton

Abstract. All the periodic points of a certain algebraic function related to the Rogers-Ramanujan continued fraction $r(\tau)$ are determined. They turn out to be $0, -\frac{1+\sqrt{5}}{2}$, and the conjugates over \mathbb{Q} of the values $r(w_d/5)$, where w_d is one of a specific set of algebraic integers, divisible by the square of a prime divisor of 5, in the field $K_d = \mathbb{Q}(\sqrt{-d})$, as $-d$ ranges over all negative quadratic discriminants for which $\left(\frac{-d}{5}\right) = +1$. This yields a new class number formula for orders in the fields K_d. Conjecture 1 of Part I is proved for the prime $p = 5$, showing that the ring class fields over fields of type K_d whose conductors are relatively prime to 5 coincide with the fields generated over \mathbb{Q} by the periodic points (excluding -1) of a fixed 5-adic algebraic function.

Contents

1. Introduction 787
2. Iterated resultants 791
3. A 5-adic function 794
4. Identifying the factors of $P_n(x)$ 798
5. Ramanujan’s modular equations for $r(\tau)$ 806
6. Periodic points for $h(t, u)$ 810
References 815

1. Introduction

In Part I a periodic point of an algebraic function $w = g(z)$, with minimal polynomial $g(z, w)$ over $F(z)$, F a given field (often algebraically closed), was defined to be an element a of F, for which numbers $a_i \in F$ exist satisfying the simultaneous equations

$$g(a, a_1) = g(a_1, a_2) = \cdots = g(a_{n-1}, a) = 0,$$

Received August 29, 2020.

2010 Mathematics Subject Classification. 11D41,11G07,11G15,14H05.

Key words and phrases. Periodic points, algebraic function, 5-adic field, extended ring class fields, Rogers-Ramanujan continued fraction.
for some \(n \geq 1 \). The numbers \(a_i = g(a_{i-1}) \) in this definition are to be thought of as suitable values of the multi-valued function \(g(z) \), determined by possibly different branches of \(g(z) \) (when considered over \(F = \mathbb{C} \)). Note that if the coefficients of \(g(x, y) \) lie in a subfield \(k \) of \(F \), over which \(F \) is algebraic, then the set of periodic points of \(g(z) \) in \(F \) is invariant under the action of \(\text{Gal}(F/k) \). In this part the main focus will be on the multi-valued function \(g(z) \), whose minimal polynomial is the polynomial

\[
g(x, y) = (y^4 + 2y^3 + 4y^2 + 3y + 1)x^5 - y(y^4 - 3y^3 + 4y^2 - 2y + 1)
\]

considered in Part II, related to the Rogers-Ramanujan continued fraction \(r(\tau) \) (in the notation of [7]). Recall that the function \(r(\tau) \) satisfies the modular equation

\[
g(r(\tau), r(5\tau)) = 0, \quad \tau \in \mathbb{H},
\]

where \(\mathbb{H} \) is the upper half-plane. (See [1], [2], [7].)

I will show, that when transported to the \(p \)-adic domain – specifically to \(K_5(\sqrt{5}) \), where \(K_5 \) is the maximal unramified algebraic extension of the 5-adic field \(\mathbb{Q}_5 \) – the “multi-valued-ness” disappears, in that the \(a_i \) become values of a single-valued algebraic function \(T_5(x) \), defined on a suitable domain \(C_5 \subset K_5(\sqrt{5}) \). Thus, 5-adiically, \(a \) and its companions \(a_i \) are periodic points of \(T_5(x) \) in the usual sense. Setting \(\varepsilon = \frac{1 + \sqrt{5}}{2} \), this single-valued algebraic function is given by the 5-adiically convergent series

\[
T_5(x) = x^5 + 5 + \sqrt{5} \sum_{k=2}^{\infty} a_k \left(\frac{5\sqrt{5}}{x^5 - \varepsilon^5} \right)^{k-1}, \quad a_k = \sum_{j=1}^{4} \left(\frac{j/5}{k} \right),
\]

for \(x \) in the domain

\[
D_5 = \{ x \in K_5(\sqrt{5}) : |x|_5 \leq 1 \ \wedge \ x \not\equiv 2 \pmod{\sqrt{5}} \}.
\]

More precisely, half of the periodic points of \(g(z) \) lie in \(D_5 \); namely, those which lie in the unramified extension \(K_5 \). The other half are periodic points of the function \(T \circ T_5^{-1} \circ T \) and lie in \(T(D_5) \), where

\[
T(x) = \frac{-(-1 + \sqrt{5})x + 2}{2x + 1 + \sqrt{5}}.
\]

The function \(T_5(x) \) has the property that \(y = T_5(x) \) is the unique solution in \(K_5(\sqrt{5}) \) of the equation \(g(x, y) = 0 \), for any \(x \in K_5(\sqrt{5}) \) for which \(x \not\equiv 2 \pmod{\sqrt{5}} \). Thus, \(T_5(x) \) is one of the values of \(g(x) \), for \(x \in D_5 \).

In Part II [14] it was shown that the conjugates over \(\mathbb{Q} \) of the values \(\eta = r(w/5) \) of the Rogers-Ramanujan continued fraction are periodic points of the algebraic function \(g(z) \), for specific elements \(w \) in the imaginary quadratic field \(K = \mathbb{Q}(\sqrt{-d}) \). In this part it will be shown that these values are, together with 0 and \(\frac{-1 + \sqrt{5}}{2} \), the only periodic points of \(g(z) \). Let \(d_5 \) denote the discriminant of \(K = \mathbb{Q}(\sqrt{-d}) \), where \((\frac{-d}{5}) = +1 \), and let \(\varphi_5 \) denote a prime divisor of \((5) = \varphi_5 \varphi_5' \) in \(K \). Recall that \(p_d(x) \) is the minimal
polynomial over \(\mathbb{Q} \) of the value \(r(w_d/5) \), where \(w_d \) is given by equation (2) below.

Theorem 1.1. (a) The set of periodic points in \(\overline{\mathbb{Q}} \) (or \(\overline{\mathbb{Q}_5} \) or \(\mathbb{C} \)) of the multi-valued algebraic function \(g(z) \) defined by the equation \(g(z, g(z)) = 0 \) consists of \(0, -\frac{1+\sqrt{5}}{2}, \) and the roots of the polynomials \(p_d(x) \), for negative quadratic discriminants \(-d = dkf^2 \) satisfying \(\left(\frac{-d}{5} \right) = +1 \).

(b) Over \(\mathbb{C} \) the latter values coincide with the values \(\eta = r(w_d/5) \) and their conjugates over \(\mathbb{Q} \), where \(r(\tau) \) is the Rogers-Ramanujan continued fraction and the argument \(w_d \in K = \mathbb{Q}(\sqrt{-d}) \) satisfies

\[
 w_d = \frac{v + \sqrt{-d}}{2} \in R_K, \quad \sqrt{5} | w_d, \quad (N(w_d), f) = 1. \tag{1.2}
\]

(c) Over \(\overline{\mathbb{Q}_5} \), all the periodic points of \(g(z) \) lie in \(K_5(\sqrt{5}) \). Moreover, the periodic points of \(g(z) \) in \(K_5 \) are periodic points in \(D_5 \) of the single-valued \(5 \)-adic function \(T_5(x) \).

From this theorem and the results of Part II we can assert the following. Let \(F_d \) denote the abelian extension \(F_d = \Sigma_k \Omega_f \) (\(d \neq 4f^2 \)) or \(F_d = \Sigma_k \Omega_{5f} \) (\(d = 4f^2 > 4 \)) of \(K = \mathbb{Q}(\sqrt{-d}) \), where \(\Sigma_k \) is the ray class field of conductor \(f = (5) \) over \(K \) and \(\Omega_f \) is the ring class field of conductor \(f \) over \(K \). Since \((f, 5) = 1 \) and \(\Omega_{5f} = \Omega_f \) when \(d \neq 4f^2 \) (see [9, Satz 3]), then \(F_d = \Sigma_k \Omega_{5f} \) in either case. Furthermore, \(F_d \) coincides with what Cox [4] calls the extended ring class field \(L_{O,5} \) for the order \(O = R_{-d} \) of discriminant \(-d \) in \(K \). Cox refers to Cho [3], who denotes this field by \(K_{(5),O} \), but these fields are already discussed in Söhngen [20, see p. 318], who shows they are generated by division values of the \(\tau \)-function, together with suitable values of the \(j \)-function. See also Stevenhagen [21] and the monograph of Schertz [19, p. 108].

Theorem 1.2. Let \(K = \mathbb{Q}(\sqrt{-d}) \), with \(\left(\frac{-d}{5} \right) = +1 \) and \(-d = dkf^2 \), as above. If \(O = R_{-d} \) is the order of discriminant \(-d \) in \(K \), the extended ring class field \(F_d = \Sigma_k \Omega_{5f} \) over \(K \) is generated over \(\mathbb{Q} \) by a periodic point \(\eta = r(w_d/5) \) of the function \(g(z) \) (\(w_d \) is as in (1.2)), together with a primitive \(5 \)-th root of unity \(\zeta_5 \):

\[
 F_d = \Sigma_k \Omega_{5f} = \mathbb{Q}(\eta, \zeta_5). \tag{1.3}
\]

Conversely, if \(\eta \neq 0, -\frac{1+\sqrt{5}}{2} \) is any periodic point of \(g(z) \), then for some \(-d = dkf^2 \) for which \(\left(\frac{-d}{5} \right) = +1 \), the field \(\mathbb{Q}(\eta, \zeta_5) = F_d \). Furthermore, the field \(\mathbb{Q}(\eta) \) generated by \(\eta \) alone is the inertia field for the prime divisor \(\varphi_5 \) or for its conjugate \(\varphi_5^* \) in the field \(F_d \).

This theorem provides explicit examples of Satz 22 in Hasse’s *Zahlbericht* [8], according to which any abelian extension of \(K \) is obtained from \(\Sigma = \Omega_f(\zeta_n) \), for some integer \(f \geq 1 \) and some \(n \)-th root of unity \(\zeta_n \), by adjoining square-roots of elements of \(\Sigma \). This holds because \(\eta = r(w_d/5) \) satisfies a quadratic equation over \(\Omega_f(\zeta_5) \). See [14, Prop. 4.3, Cor. 4.7, Thm. 4.8].
Here the method of Part I [13] and [16], which yielded an interpretation and alternate derivation of special cases of a class number formula of Deuring, leads to the following new class number formula.

Theorem 1.3. Let $\mathcal{D}_{n,5}$ be the set of discriminants $-d = d_K f^2 \equiv \pm 1 \pmod{5}$ of orders in imaginary quadratic fields $K = \mathbb{Q}(\sqrt{-d})$ for which the automorphism $\tau_5 = \left(F_{d,5}/K_{q5} \right)$ has order n in the Galois group $\text{Gal}(F_{d,5}/K)$, where $F_{d,5}$ is the inertia field for q_5 in the abelian extension F_d/K. If $h(-d)$ is the class number of the order $R_{-d} \subset K$, then for $n > 1$,

$$\sum_{-d \in \mathcal{D}_{n,5}} h(-d) = \frac{1}{2} \sum_{k|n} \mu(n/k)5^k. \quad (1.4)$$

Based on this theorem and numerical calculations, I make the following

Conjecture 1. Let $q > 5$ be a prime number. Let $L_{\mathcal{O},q} = L_{R_{-d},q}$ be the extended ring class field over $K = K_d = \mathbb{Q}(\sqrt{-d})$ for the order $\mathcal{O} = R_{-d}$ of discriminant $-d = d_K f^2$ in K, and let $h(-d)$ denote the class number of the order \mathcal{O}. Also, let $F_{d,q}$ be the inertia field for the prime divisor q (dividing q in K_d) in the abelian extension $L_{\mathcal{O},q}$ of K_d. Then the following class number formula holds:

$$\sum_{-d \in \mathcal{D}_{n,q}} h(-d) = \frac{2}{q-1} \sum_{k|n} \mu(n/k)q^k, \quad n > 1,$$

where $\mathcal{D}_{n,q}$ is the set of discriminants $-d = d_K f^2$ for which $\left(\frac{-d}{q} \right) = +1$ and the Frobenius automorphism $\tau_q = \left(F_{d,q}/K_{\mathcal{O}} \right)$ has order n.

As was shown in [14] for the prime $q = 5$, the extension $L_{R_{-d},q}$ is equal to $\Sigma_q \Omega_f/K$, if $d \neq 3f^2$ or $4f^2$; and is equal to $\Sigma_q \Omega_q f/K$, if $q \equiv 1$ (mod 4) and $d = 4f^2$; or $q \equiv 1$ (mod 3) and $d = 3f^2$. The field $F_{d,q}$ has degree $(q - 1)/2$ and is cyclic over the ring class field Ω_f of conductor f over K.

One naturally expects that this conjecture describes an aspect of a much more general phenomenon. For example, one could consider families of quadratic fields $K = \mathbb{Q}(\sqrt{-d})$ for which the prime divisors q of a given fixed integer Q all split in K. These are the Q-admissible quadratic fields. Analogous formulas should hold for certain sets of class fields over the family of (imaginary?) abelian extensions of a fixed degree over \mathbb{Q}, whose Galois groups belong to a fixed isomorphism type, and in which a given rational prime q splits.
In Section 6 I show that a similar situation exists for the algebraic function
\(w = f(z) \) whose minimal polynomial over \(\overline{\mathbb{Q}}(z) \) is \(h(z, w) \), where
\[
\begin{align*}
 h(z, w) &= w^5 - \left(6 + 5z + 5z^3 + z^5\right)w^4 + \left(21 + 5z + 5z^3 + z^5\right)w^3 \\
 &\quad - \left(56 + 30z + 30z^3 + 6z^5\right)w^2 + \left(71 + 30z + 30z^3 + 6z^5\right)w \\
 &\quad - 120 - 55z - 55z^3 - 11z^5.
\end{align*}
\]

I showed in Part II (Theorem 5.4) that any ring class field \(\Omega_f \) over the imaginary quadratic field \(K \), whose conductor is relatively prime to 5, is generated over \(K \) by a periodic point \(v \) of \(f(z) \), which satisfies \(v = \eta - \frac{1}{\eta} \), for a certain periodic point \(\eta \) of \(g(z) \). In Theorem 6.2 of this paper I show that any periodic point \(v \neq -1 \) of \(f(z) \) is related to a periodic point of \(g(z) \) by \(v = \eta - \frac{1}{\eta} = \varphi(\eta) \), and that the 5-adic function
\[
\begin{align*}
 T_5(x) &= \phi \circ T_5 \circ \varphi^{-1}(x), \quad x \in \overline{D}_5 = \phi(D_5 \cap \{z \in K_5 : |z|_5 = 1\}),
\end{align*}
\]
plays the same role for \(f(z) \) that \(T_5(x) \) plays for \(g(z) \). In particular, Theorems 6.2 and 6.3 show that Conjecture 1 of Part I is true for the prime \(p = 5 \). This leads to a proof of Deuring’s formula for the prime 5 in Theorem 6.5 and its corollary, analogous to the proof given in Part I and in [16] for the prime 2 and in [12] for the prime 3.

2. Iterated resultants

Set
\[
g(X, Y) = (Y^4 + 2Y^3 + 4Y^2 + 3Y + 1)X^5 - Y(Y^4 - 3Y^3 + 4Y^2 - 2Y + 1). \quad (2.1)
\]

In Part II [14] it was shown that \((X, Y) = (\eta, \eta^{\tau_5}) \), with \(\eta = r(w_d/5) \) and \(w_d \) given by (1.2), is a point on the curve \(g(X, Y) = 0 \). Here \(\tau_5 = \left(\frac{Q(\eta)/K}{\nu_5}\right) \) is the Frobenius automorphism for the prime divisor \(\varphi_5 \) of \(K = \mathbb{Q}(\sqrt{-d}) \). This fact implies that \(r(w_d/5) \) and its conjugates over \(\mathbb{Q} \) are periodic points of the function \(g(z) \) defined by \(g(z, g(z)) = 0 \). (See Part II, Theorem 5.3.) In this section and Sections 3-4 it will be shown that these values, together with the fixed points \(0, -\frac{1 \pm \sqrt{5}}{2} \), represent all the periodic points of the algebraic function \(g(z) \). To do this we begin by considering a sequence of iterated resultants defined using the polynomial \(g(x, y) \), as in Part I, Section 3.

We start by defining \(R^{(1)}(x, x_1) := g(x, x_1) \), and note that
\[
R^{(1)}(x, x_1) \equiv (x_1 + 3)^4(x^5 - x_1) \pmod{5}.
\]
Then we define the polynomial \(R^{(n)}(x, x_n) \) inductively by
\[
R^{(n)}(x, x_n) := \text{Resultant}_{x_{n-1}}(R^{(n-1)}(x, x_{n-1}), g(x_{n-1}, x_n)), \quad n \geq 2.
\]
It is easily seen using induction that
\[
R^{(n)}(x, x_n) \equiv (-1)^{n-1}(x_n + 3)^{5^n-1}(x^{5^n} - x_n) \pmod{5},
\]
so that the polynomial $R_n(x) := R^{(n)}(x, x)$ satisfies
\[R_n(x) \equiv (-1)^{n-1}(x + 3)^{5^n - 1}(x^{5^n} - x) \pmod{5}, \quad n \geq 1. \tag{2.2} \]

The roots of $R_n(x)$ are all the periodic points of the multi-valued function $g(z)$ in any algebraically closed field containing \mathbb{Q}, whose periods are divisors of the integer n. (See Part I, p. 727.)

From this we deduce, by a similar argument as in the Lemma of Part I (pp. 727-728), that
\[\deg(R_n(x)) = 2 \cdot 5^n - 1, \quad n \geq 1. \]

As in Part I, we define the expression $P_n(x)$ by
\[P_n(x) = \prod_{k|n} R_k(x)^{\mu(n/k)}, \tag{2.3} \]
and show that $P_n(x) \in \mathbb{Z}[x]$. From (2.2) it is clear that $R_n(x)$, for $n > 1$, is divisible (mod 5) by the N irreducible (monic) polynomials $f_i(x)$ of degree n over \mathbb{F}_5, where
\[N = \frac{1}{n} \sum_{k|n} \mu(n/k)5^k, \]
and that these polynomials are simple factors of $R_n(x)$ (mod 5). It follows from Hensel’s Lemma that $R_n(x)$ is divisible by distinct irreducible polynomials $f_i(x)$ of degree n over \mathbb{Z}_5, the ring of integers in \mathbb{Q}_5, for $1 \leq i \leq N$, with $f_i(x) \equiv f_i(x) \pmod{5}$. In addition, all the roots of $f_i(x)$ are periodic of minimal period n and lie in the unramified extension K_5. Furthermore, n is the smallest index for which $f_i(x) \mid R_n(x)$.

Now we make use of the following identity for $g(x, y)$:
\[\left(x + \frac{1 + \sqrt{5}}{2} \right)^5 \left(y + \frac{1 + \sqrt{5}}{2} \right)^5 g(T(x), T(y)) = \left(\frac{5 + \sqrt{5}}{2} \right)^5 g(y, x), \]
where
\[T(x) = \frac{-(1 + \sqrt{5})x + 2}{2x + 1 + \sqrt{5}}. \]
We have
\[T(x) - 2 = -\left(\frac{5 + \sqrt{5}}{2} \right) \frac{2x - 1 + \sqrt{5}}{2x + 1 + \sqrt{5}}. \]
If the periodic point a of $g(z)$, with minimal period $n > 1$, is a root of one of the polynomials $f_i(x)$, then a is a unit in K_5, and for some a_1, \ldots, a_{n-1} we have
\[g(a, a_1) = g(a_1, a_2) = \cdots = g(a_{n-1}, a) = 0. \tag{2.4} \]
Furthermore $a \not\equiv 2 \pmod{\sqrt{5}}$, since otherwise $a \equiv 2 \pmod{5}$ would have degree 1 over \mathbb{F}_5 (using that K_5 is unramified over \mathbb{Q}_5). Hence, $2a + 1 + \sqrt{5}$ is a unit and $b = T(a) \equiv 2 \pmod{\sqrt{5}}$. All the a_i satisfy $a_i \not\equiv 2 \pmod{\sqrt{5}}$, as well, since the congruence $g(2, y) \equiv 4(y + 3)^5 \pmod{5}$ has only $y \equiv 2$ as
a solution. Hence, if some \(a_i = 2 \), then \(a_j = 2 \) for \(j > i \), which would imply that \(a = 2 \), as well. The elements \(b_i = T(a_i) \) are distinct and lie in \(K_5(\sqrt{5}) \), and the above identity implies that
\[
g(b, b_{n-1}) = g(b_{n-1}, b_{n-2}) = \cdots = g(b_1, b) = 0 \tag{2.5}
\]
in \(K_5(\sqrt{5}) \). Thus, all the \(b_i \equiv 2 \pmod{\sqrt{5}} \), and the orbit \(\{ b, b_{n-1}, \ldots, b_1 \} \) is distinct from all the orbits in (2.4). Now the map \(T(x) \) has order 2, so it is clear that \(b = T(a) \) has minimal period \(n \) in (2.5), since otherwise \(a = T(b) \) would have period smaller than \(n \). It follows that there are at least \(2N \) periodic orbits of minimal period \(n > 1 \). Noting that
\[
R_1(x) = g(x, x) = x(x^2 + 1)(x^2 + x - 1)(x^4 + x^3 + 3x^2 - x + 1),
\]
these distinct orbits and factors account for at least
\[
2 \cdot 5 - 1 + \sum_{d|n, d > 1} (2 \sum_{k | d} \mu(d/k)5^k) = -1 + 2 \sum_{d|n} (\sum_{k | d} \mu(d/k)5^k) = 2 \cdot 5^n - 1
\]
roots, and therefore all the roots, of \(R_n(x) \). This shows that the roots of \(R_n(x) \) are distinct and the expressions \(P_n(x) \) are polynomials. Furthermore, over \(K_5(\sqrt{5}) \) we have the factorization
\[
P_n(x) = \pm \prod_{1 \leq i \leq N} f_i(x)\tilde{f}_i(x), \quad n > 1, \tag{2.6}
\]
where \(\tilde{f}_i(x) = c_i(2x + 1 + \sqrt{5})^{\deg(f_i)}f_i(T(x)) \), and the constant \(c_i \) is chosen to make \(f_i(x) \) monic. Finally, the periodic points of \(g(z) \) of minimal period \(n \) are the roots of \(P_n(x) \) and
\[
\deg(P_n(x)) = 2\sum_{k | n} \mu(n/k)5^k, \quad n > 1. \tag{2.7}
\]
This discussion proves the following.

Theorem 2.1. All the periodic points of \(g(z) \) in \(\overline{Q}_5 \) lie in \(K_5(\sqrt{5}) \). The periodic points of minimal period \(n \) coincide with the roots of the polynomial \(P_n(x) \) defined by (2.3), and have degree \(n \) over \(Q_5(\sqrt{5}) \). For \(n > 1 \), exactly half of the periodic points of \(g(z) \) of minimal period \(n \) lie in \(K_5 \).

The last assertion in this theorem follows from the fact that \(T(x) \) is a linear fractional expression in the quantity \(\sqrt{5} \):
\[
T(x) = \frac{-x \sqrt{5} - x + 2}{\sqrt{5} + 2x + 1},
\]
with determinant \(-2(x^2 + 1)\). If it were the case that \(a \in K_5 \) and \(T(a) \in K_5 \), for \(n > 1 \), then the last fact would imply that \(\sqrt{5} \in K_5 \), which is not the case. Therefore, for \(n > 1 \), the only roots of \(P_n(x) \) which lie in \(K_5 \) are the roots of the factors \(f_i(x) \), in the above notation. Furthermore, the factors \(f_i(x) \) are irreducible over \(Q_5(\sqrt{5}) \), since this field is purely ramified over \(Q_5 \), which implies that the factors \(\tilde{f}_i(x) \) are irreducible over \(Q_5(\sqrt{5}) \), as well.
3. A 5-adic function

Lemma 3.1. Any root \(\eta' \) of the polynomial \(p_d(x) \) which is conjugate to \(\eta = r(w_d/5) \) over \(K = \mathbb{Q} \sqrt{-d} \) satisfies \(\eta' \not\equiv 2 \pmod{p} \), for any prime divisor \(p \) of \(\wp_5 \) in \(F_1 = \mathbb{Q}(\eta) \).

Proof. It suffices to prove this for \(\eta' = \eta \). Assume \(\eta \equiv 2 \pmod{p} \), where \(p | \wp_5 \) in \(F_1 \). Then the element \(z = \eta^5 - \frac{1}{\eta^9} \) satisfies \(z \equiv 2^5 - 2^{-5} \equiv -1 \pmod{p} \). Hence the proof of [14, Theorem 4.6] implies that \(d \) can only be one of the values \(d = 11, 16, 19 \). In these three cases \(h(-d) = 1 \), so \(\eta \) satisfies a quadratic polynomial over \(K = \mathbb{Q} \sqrt{-d} \). We have

\[
p_{11}(x) = x^4 - x^3 + x^2 + x + 1
= \left(x^2 + \frac{-1 + \sqrt{-11}}{2} x - 1 \right) \left(x^2 + \frac{-1 - \sqrt{-11}}{2} x - 1 \right);
\]

\[
p_{16}(x) = x^4 - 2x^3 + 2x + 1
= (x^2 + (-1 - i)x - 1)(x^2 + (-1 + i)x - 1);
\]

\[
p_{19}(x) = x^4 + x^3 + 3x^2 - x + 1
= \left(x^2 + \frac{1 + \sqrt{-19}}{2} x - 1 \right) \left(x^2 + \frac{1 - \sqrt{-19}}{2} x - 1 \right).
\]

In each case \(\eta = r(w_d/5) \), where, respectively:

\[
w_{11} = \frac{33 + \sqrt{-11}}{2}, \quad N(w_{11}) = 5^2 \cdot 11,
\]

\[
w_{16} = 11 + 2i, \quad N(w_{16}) = 5^3,
\]

\[
w_{19} = \frac{41 + \sqrt{-19}}{2}, \quad N(w_{19}) = 5^2 \cdot 17.
\]

Since \(F_1 = K(\eta) \) is unramified over \(\wp_5 \) and ramified over \(\wp_5' \), the minimal polynomial \(m_d(x) \) over \(K \) of \(\eta \) in each case is the first factor listed above. Since \(\wp_5^2 | w_d \), we conclude that

\[
\sqrt{-11} \equiv 2, \quad i \equiv 2, \quad \sqrt{-19} \equiv 4
\]

modulo \(\wp_5 \) in \(R_K \). Then

\[
m_{11}(x) \equiv x^2 + 3x + 4, \quad m_{16}(x) \equiv x^2 + 2x + 4, \quad m_{19}(x) \equiv (x + 1)(x + 4)
\]

modulo \(\wp_5 \), where the first two polynomials are irreducible mod 5. It follows that \(\eta \) cannot be congruent to 2 modulo any prime divisor of \(\wp_5 \). In each case we also have \(m_d(x) \equiv (x + 3)^2 \pmod{\wp_5^3} \). \(\square \)

Computing the partial derivative

\[
\frac{\partial g(x, y)}{\partial y} = (4y^3 + 6y^2 + 8y + 3)x^5 - 5y^4 + 12y^3 - 12y^2 + 4y - 1
\]

\[
\equiv 4(x + 3)^5(y + 3)^3 \pmod{5},
\]
SOLUTIONS OF DIOPHANTINE EQUATIONS, III

we see that the points \((x, y) = (\eta, \eta^5)\) on the curve \(g(x, y) = 0\) satisfy the condition
\[
\left. \frac{\partial g(x, y)}{\partial y} \right|_{(x, y) = (\eta, \eta^5)} \not\equiv 0 \mod p,
\]
for any prime divisor \(p\) of \(\wp_5\). Hence, the \(p\)-adic implicit function theorem implies that \(\eta^5\) can be written as a single-valued function of \(\eta\) in a suitable neighborhood of \(x = \eta\). (See [18, p. 334].) We shall now derive an explicit expression for this single-valued function.

To do this, we consider \(g(X, Y) = 0\) as a quintic equation in \(Y\). Using Watson’s method of solving a quintic equation from the paper [10] of Lavallee, Spearman and Williams, we find that the roots \(Y\) of \(g(X, Y) = 0\) are
\[
Y = \frac{Z + 3}{5} + \frac{\zeta}{10} (2Z + 11 + 5\sqrt{5})^{4/5} (2Z + 11 - 5\sqrt{5})^{1/5}
\]
\[
+ \frac{\zeta^2}{10} (2Z + 11 + 5\sqrt{5})^{3/5} (2Z + 11 - 5\sqrt{5})^{2/5}
\]
\[
+ \frac{\zeta^3}{10} (2Z + 11 + 5\sqrt{5})^{2/5} (2Z + 11 - 5\sqrt{5})^{3/5}
\]
\[
+ \frac{\zeta^4}{10} (2Z + 11 + 5\sqrt{5})^{1/5} (2Z + 11 - 5\sqrt{5})^{4/5},
\]
where \(\zeta\) is any fifth root of unity and \(Z = X^5\). This can also be written in the form
\[
Y = \frac{Z + 3}{5} + \frac{\zeta}{5} (Z - \varepsilon^5)^{4/5} (Z - \varepsilon^5)^{1/5} + \frac{\zeta^2}{5} (Z - \varepsilon^5)^{3/5} (Z - \varepsilon^5)^{2/5}
\]
\[
+ \frac{\zeta^3}{5} (Z - \varepsilon^5)^{2/5} (Z - \varepsilon^5)^{3/5} + \frac{\zeta^4}{5} (Z - \varepsilon^5)^{1/5} (Z - \varepsilon^5)^{4/5},
\]
\[
= \frac{Z + 3}{5} + \frac{1}{5} (Z - \varepsilon^5) (U^4 + U^3 + U^2 + U), \quad U = \zeta^{-1} \left(\frac{Z - \varepsilon^5}{Z - \varepsilon^5} \right)^{1/5}.
\]

Now, \(\varepsilon^5 = \frac{-11 + 5\sqrt{5}}{2} \equiv \frac{-1}{2} \equiv 2 \pmod{5}\), so for \(\zeta = 1\) and \(Z \not\equiv 2 \pmod{5}\), the functions \(U^j\) can be expanded into a convergent series:
\[
U^j = \left(\frac{Z - \varepsilon^5}{Z - \varepsilon^5} \right)^{j/5} = \left(1 + \frac{\varepsilon^5 - \varepsilon^5}{Z - \varepsilon^5} \right)^{j/5} = \sum_{k=0}^{\infty} \binom{j/5}{k} \left(\frac{5\sqrt{5}}{Z - \varepsilon^5} \right)^k.
\]

This series converges for all \(Z \not\equiv 2 \pmod{\sqrt{5}}\) in the field \(K_5(\sqrt{5})\). The terms in this series tend to 0 in the 5-adic valuation, because
\[
5^k \binom{j}{k} = \frac{j(j-5)(j-10) \cdots (j-5(k-1))}{k!}
\]
and because the additive 5-adic valuation of \(k!\) satisfies
\[
v_5(k!) = \frac{k - s_k}{4} \leq \frac{k}{4},
\]
where s_k is the sum of the 5-adic digits of k. Thus, for all $x \not\equiv 2 \pmod{\sqrt{5}}$ in $\mathbb{K}_5(\sqrt{5})$ the expression

$$y = T_5(x) = \frac{x^5 + 3}{5} + \frac{1}{5} (x^5 - \varepsilon^5) \sum_{k=0}^{\infty} a_k \left(\frac{\sqrt{5}}{x^5 - \varepsilon^5} \right)^k, \quad a_k = \sum_{j=1}^{4} \binom{\frac{j}{5}}{k},$$ \hspace{1cm} (3.1)

represents a root of the equation $g(x, y) = 0$ in the field $\mathbb{K}_5(\sqrt{5})$. This formula for $T_5(x)$ simplifies to:

$$T_5(x) = x^5 + 5 + \sqrt{5} \sum_{k=2}^{\infty} a_k \left(\frac{\sqrt{5}}{x^5 - \varepsilon^5} \right)^{k-1}.$$ \hspace{1cm} (3.2)

Note that

$$T_5(x) \equiv x^5 \pmod{5}, \quad |x|_5 \leq 1.$$ \hspace{1cm} (3.3)

This follows from the fact that 5 divides the individual terms

$$b_k = 5^k a_k (\sqrt{5})^{k-2}$$

(ignoring the unit denominators) in the series (3.2), for $2 \leq k \leq 7$, as can be checked by direct computation, and from the following estimate for $v_5(b_k)$, the normalized additive valuation of b_k in $\mathbb{K}_5(\sqrt{5})$:

$$v_5(5^k a_k (\sqrt{5})^{k-2}) \geq k \frac{1}{2} - 1 - \frac{k}{4} = \frac{k}{4} - 1 \geq 1, \text{ for } k \geq 8.$$

It follows from this that the function $T_5(x)$ can be iterated on the set

$$D_5 = \{ x \in \mathbb{K}_5(\sqrt{5}) : |x|_5 \leq 1 \land x \not\equiv 2 \pmod{\sqrt{5}} \}.$$ \hspace{1cm} (3.4)

I claim now that (3.1) (or (3.2)) gives the only root of $g(x, y) = 0$ in the field $\mathbb{K}_5(\sqrt{5})$, for a fixed $x \not\equiv 2 \pmod{\sqrt{5}}$. From the above formulas, a second root of this equation must have the form

$$y_1 = \frac{x^5 + 3}{5} + \frac{1}{5} (x^5 - \varepsilon^5)(U^4 + U^3 + U^2 + U),$$

where

$$U = \zeta^{-1} \left(\frac{x^5 - \varepsilon^5}{x^5 - \varepsilon^5} \right)^{1/5},$$

for some fifth root of unity $\zeta \neq 1$. But then

$$U^4 + U^3 + U^2 + U = \frac{U^5 - 1}{U - 1} - 1 \in \mathbb{K}_5(\sqrt{5}),$$

so $U \in \mathbb{K}_5(\sqrt{5})$; and since ζU is also in $\mathbb{K}_5(\sqrt{5})$, it follows that $\zeta \in \mathbb{K}_5(\sqrt{5})$. This is impossible, since the ramification index of 5 in $\mathbb{K}_5(\zeta)$ is $e = 4$, while the ramification index of 5 in $\mathbb{K}_5(\sqrt{5})$ is only $e = 2$.
Proposition 3.2. If \(x \in D_5 \), the subset of \(K_5(\sqrt{5}) \) defined by (3.4), then the series

\[
y = T_5(x) = x^5 + 5 + \sqrt{5} \sum_{k=2}^{\infty} a_k \left(\frac{5\sqrt{5}}{x^5 - \varepsilon^5} \right)^{k-1}, \quad a_k = \sum_{j=1}^{4} \left(\frac{j}{k} \right),
\]

(3.5)
gives the unique solution of the equation \(g(x, y) = 0 \) in the field \(K_5(\sqrt{5}) \). Moreover, the image \(T_5(x) \) also lies in \(D_5 \), so the map \(T_5 \) can be iterated on this set.

Corollary 3.3. The function \(T_5(x) \) satisfies \(T_5(D_5 \cap K_5) \subseteq D_5 \cap K_5 \).

Proof. Let \(\sigma \) denote the non-trivial automorphism of \(K_5(\sqrt{5})/K_5 \). If \(x \in D_5 \cap K_5 \), then \(g(x, T_5(x)) = 0 \) and \(T_5(x) \in K_5(\sqrt{5}) \) imply that \(g(x^\sigma, T_5(x)^\sigma) = g(x, T_5(x^\sigma)) = 0 \). The theorem gives that \(T_5(x)^\sigma = T_5(x) \), implying that \(T_5(x) \in K_5 \).

Now the completion \((F_1)_p\) of the field \(F_1 = \mathbb{Q}(\eta) \) with respect to a prime divisor \(p \) of \(R_{F_1} \) dividing \(\wp_5 \) is a subfield of \(K_5(\sqrt{5}) \). This is because \(F_1 \) is unramified at the prime \(p \) and is abelian over \(K \), so that \((F_1)_p\) is unramified and abelian over \(K_{\wp_5} = \mathbb{Q}_5 \).

By Lemma 3.1, we can substitute \(x = \eta \) in (3.5), and since \(\eta^{\sqrt{5}} \) is a solution of \(g(\eta, Y) = 0 \) in \(K_5 \), we conclude that \(\eta T_5 = T_5(\eta) \). Letting \(\zeta = 1 \) and \(U = -u \) gives

\[
\eta T_5 = \frac{\eta^5 + 3}{5} + \frac{1}{5}(\eta^5 - \varepsilon^5)(u^4 - u^3 + u^2 - u), \quad u = -\left(\frac{\eta^5 - \varepsilon^5}{\eta^5 - \varepsilon^5} \right)^{1/5} = \frac{1}{\varepsilon \xi} \in F;
\]

which agrees with the result of [14, Theorem 3.3] (see the second line in the proof of that theorem). The automorphism \(\tau_5 \) is canonically defined on the unramified extension \(\mathbb{Q}_5(\eta) \); defining \(\tau_5 \) to be trivial on \(\mathbb{Q}_5(\sqrt{5}) \), we have that \(T_5(\eta^{\tau_5}) = T_5(\eta)^{\tau_5} \), and hence that

\[
\eta^{\tau_5} = T_5^n(\eta), \quad n \geq 1.
\]

(3.6)
This also follows inductively from

\[
g(\eta^{\tau_5}, \eta^{\tau_5}) = g(\eta^{\tau_5}, T_5(\eta^{\tau_5})) = g(\eta^{\tau_5}, T_5^n(\eta)) = 0.
\]

Therefore, \(\eta = r(w/5) \) is a periodic point of \(T_5 \) in \(D_5 \), and the minimal period of \(\eta \) with respect to \(T_5 \) is equal to the order of the automorphism \(\tau_5 = \left(\frac{F_1/K}{\wp_5} \right) \).

By Theorem 2.1, the periodic points of \(g(z) \) lie in \(K_5(\sqrt{5}) \). In particular, the minimal period of \(\eta = r(w_d/5) \) with respect to \(g(z) \) is the order \(n \) of the automorphism \(\tau_5 \). This is because any values \(\eta_i \), for which

\[
g(\eta, \eta_i) = g(\eta_1, \eta_2) = \cdots = g(\eta_{m-1}, \eta) = 0,
\]
must themselves be periodic points with \(\eta_i \neq 2 \mod \sqrt{5} \). This implies that \(\eta_i \in D_5 \), and then \(\eta_i = T_5^i(\eta) \) follows from Proposition 3.2, so that \(m \) must
be a multiple of n. Hence, $\eta = r(w_d/5)$ must be a root of the polynomial $P_n(x)$.

Theorem 3.4. For any discriminant $-d \equiv \pm 1 \pmod{5}$, for which the automorphism $\tau_5 = \left(\frac{F_1/K}{\wp_5}\right)$ has order n, the polynomial $p_d(x)$ divides $P_n(x)$.

4. Identifying the factors of $P_n(x)$

We will now show that the polynomials $p_d(x)$ in Theorem 3.4 are the only irreducible factors of $P_n(x)$ over \mathbb{Q}. The argument is similar to the argument in [12, pp. 877-878], with added complexity due to the nontrivial nature of the points in $E_5[5] - \langle(0,0)\rangle$, plus the necessity of dealing with the action of the icosahedral group in this case.

To motivate the calculation below, we prove the following lemma. As in Part II, F_1 denotes the field $F_1 = \mathbb{Q}(\eta)$, where $\eta = r(w_d/5)$.

Lemma 4.1. If $w = w_d$ is defined as in (1.2), and $\tau_5 = \left(\frac{F_1/K}{\wp_5}\right)$, then for some 5-th root of unity ζ, we have
\[
\eta^{\tau_5^{-1}} = r\left(\frac{w}{5}\right)^{\tau_5^{-1}} = \zeta^i r\left(\frac{w^{25}}{25}\right).
\]

Proof. Define τ_5 on $F_1(\sqrt{5}) = \mathbb{Q}(\eta, \sqrt{5})$ so that it fixes $\sqrt{5}$. This is possible since F_1 and $K(\sqrt{5})$ are disjoint, abelian extensions of K. (See the discussion in Sections 5.2 and 5.3 of [14], where $\tau_5 = \sigma_1 \phi | F_1$ and both σ_1 and ϕ fix the field $L = \mathbb{Q}(\zeta)$.) Recall the linear fractional expression from Part II that was denoted
\[
\tau(b) = \frac{-b + \varepsilon^5}{\varepsilon^5 b + 1}.
\]
From $\tau(\xi^5) = \eta^5$ and $T(\eta^5) = \xi$ (Part II, Thms. 3.3 and 5.1) we then obtain
\[
\eta^{\tau_5^{-1}} = \tau(\xi^5)^{\tau_5^{-1}} = \tau(\xi^{25}) = \tau(T(\eta^5)) = r(\eta),
\]
where
\[
\tau(z) = \frac{2z^4 - 3z^3 + 4z^2 - 2z + 1}{2z^4 + 2z^3 + 4z^2 + 3z + 1},
\]
as in the Introduction to Part II. On the other hand,
\[
\tau(\eta) = \tau\left(r\left(\frac{w}{5}\right)\right) = r^5\left(\frac{w}{25}\right),
\]
by Ramanujan’s modular equation. Thus, $\eta^{\tau_5^{-1}} = r^5(w/25)$, and the assertion follows.

By (3.3), we have $f_i(T_5(x)) \equiv f_i(x^5) \pmod{5}$, and since $T_5(a)$ is an "unramified" periodic point in D_5 whenever a is, it follows that $\sigma : x \to T_5(x)$ is a lift of the Frobenius automorphism on the roots of $f_i(x)$, for each i with
1 \leq i \leq N$. We may assume that σ fixes $\sqrt{5}$, since K_5 and $Q_5(\sqrt{5})$ are linearly disjoint over Q_5. In order to apply σ to all the maps occurring in the proof below, we also extend σ to the field $K_5\left(\sqrt{-5+\sqrt{5}}\right)$, so that it fixes elements of the field $Q_5\left(\sqrt{-5+\sqrt{5}}\right)$; this is a cyclic quartic and totally ramified extension of Q_5 (the minimal polynomial of the square-root being the Eisenstein polynomial $x^4 + 5x^2 + 5$).

Theorem 4.2. For $n > 1$ the polynomial $P_n(x)$ is a product of polynomials $p_d(x)$:

$$P_n(x) = \pm \prod_{-d \in D_{n,5}} p_d(x), \quad (4.1)$$

where $D_{n,5}$ is the set of discriminants $-d = d_Kf^2$ of imaginary quadratic orders $R_{-d} \subset K = Q(\sqrt{-d})$ for which $(\frac{-d}{5}) = +1$ and the corresponding automorphism $\tau_5 = \left(\frac{F_1/K}{\nu_5}\right)$ has order n in $Gal(F_1/K)$. Here $F_1 = Q(r(w_d/5))$ is the inertia field for the prime divisor $\wp_5 = (5,w_d)$ in the abelian extension $\Sigma_5\Omega_f (d \neq 4f^2)$ or $\Sigma_5\Omega_5f$ $(d = 4f^2 > 4)$ of K; and $p_d(x)$ is the minimal polynomial of the value $r(w_d/5)$ over Q.

Proof. Let $\{\eta = \eta_0, \eta_1, \ldots, \eta_{m-1}\}, \ n \geq 2,$ be a periodic orbit of $T_5(x)$ contained in D_5, where $T_5^m(\eta) = \eta$, and let

$$\xi = T(\eta_1) = T(T_5(\eta)) = T(\eta^g).$$

Then the relation $g(\eta, \eta_1) = g(\eta, T(\xi)) = 0$ implies that η, ξ is a point on the curve

$$C_5 : X^5 + Y^5 = \varepsilon^5(1 - X^5Y^5).$$

Rewrite this relation as

$$\xi^5 = \frac{-\eta^5 + \varepsilon^5}{\varepsilon^5\eta^5 + 1} = \tau(\eta^5), \quad \tau(b) = \frac{-b + \varepsilon^5}{\varepsilon^5b + 1}, \quad b = \eta^5.$$

Let

$$E_5(b) : Y^2 + (1 + b)XY + bY = X^3 + bX^2$$

be the Tate normal form for a point of order 5; and let $E_{5,5}(b)$ be the isogenous curve

$$E_{5,5}(b) : Y^2 + (1 + b)XY + 5bY = X^3 + 7bX^2 + 6(b^3 + b^2 - b)X + b^5 + b^4 - 10b^3 - 29b^2 - b.$$

The X-coordinate of the map $\psi : E_5(b) \to E_{5,5}(b)$ is given by

$$X(\psi(P)) = \frac{b^4 + (3b^3 + b^4)x + (3b^2 + b^3)x^2 + (b - b^2 - b^3)x^3 + x^5}{x^2(x + b)^2}, \quad b = \eta^5,$$

with $x = X(P)$. Note that $ker(\psi) = \langle(0,0)\rangle$, and ψ is defined over $Q(b)$. (See [11, p. 259].)
The relation $\xi^5 = \tau(\eta^5)$ implies that there is an isogeny $\phi : E_5(\eta^5) \to E_5(\tau(\eta^5)) = E_5(\xi^5)$. This is because the j-invariant of $E_5(\xi^5)$ is

$$ j_5 = \frac{(1 - 12 \xi^5 + 14 \xi^{10} + 12 \xi^{15} + \xi^{20})^3}{\xi^{25}(1 - 11 \xi^5 - \xi^{10})} \bigg|_{\xi^5}, $$

where the latter value is $j(E_{5,5}(\eta^5))$. Thus, $E_{5,5}(\eta^5) \cong E_5(\xi^5)$ by an isomorphism ι_1. Composing ψ (for $b = \eta^5$) with this isomorphism gives the isogeny $\phi = \iota_1 \circ \psi$. Furthermore, $j(E_{5,5}(\eta^5))$ is invariant under the substitution $\eta \to T(\eta) = \xi^{\sigma-1}$, so

$$ j_5 = \left(\frac{(1 + 22\xi^5 + 49\xi^{10} - 228\xi^{15} + \xi^{20})^3}{\xi^{25}(1 - 11\xi^5 - \xi^{10})} \right)^{\sigma^{-1}}. $$

It follows that $E_5(\xi^5) \cong E_5((\eta^{\sigma^{-1}})^5)$ by an isomorphism ι_2. Composing ι_2 with ϕ gives an isogeny $\iota_2 \circ \phi = \phi_1 : E_5(\eta^5) \to E_5(\eta^5)^{\sigma^{-1}}$ of degree 5. Applying σ^{-i+1} to the coefficients of ϕ_1 gives an isogeny

$$ \phi_i : E_5(\eta^5)^{\sigma^{-(i-1)}} \to E_5(\eta^5)^{\sigma^{-i}}, \quad 1 \leq i \leq n, $$

which also has degree 5. Hence, $\iota = \phi_n \circ \phi_{n-1} \circ \cdots \circ \phi_1$ is an isogeny from $E_5(\eta^5)$ to $E_5(\eta^5)^{\sigma^{-n}}$ of degree 5^n. But σ^n is trivial on $\mathbb{Q}(\eta, \sqrt{5})$, since $T_n^\eta(\eta) = \eta$. Hence, $\iota : E_5(\eta^5) \to E_5(\eta^5)$.

We will show that ι is a cyclic isogeny by showing that some point $P \in E_5(\eta^5)[5]$ is not in $\ker(\iota)$. The following formula from [15] gives the X-coordinate on $E_5(b)$ for a point P of order 5, which does not lie in $((0,0))$:

$$ X(P) = -\frac{\varepsilon^4}{2} \left(-2u^2 + (1 + \sqrt{5})u - 3\sqrt{5} - 7)(2u^2 + (2\sqrt{5} + 4)u + 3\sqrt{5} + 7) \right), $$

where

$$ u^5 = \frac{b - \bar{\varepsilon}^5}{b - \varepsilon^5}, \quad b = \eta^5, \quad \varepsilon = -\frac{1 + \sqrt{5}}{2}. $$

A calculation on Maple shows that

$$ X_1 = X(\psi(P)) = -\frac{5 + \sqrt{5}}{10} (b^2 + \varepsilon^4b + b^2), \quad b = \eta^5. $$

This is the X-coordinate of the point $P' = \psi(P)$ on $E_{5,5}(b)$. On the other hand, an isomorphism $\iota_1 : E_{5,5}(b) \to E_5(\tau(b))$ is given by $\iota_1(X_1, Y_1) = (X_2, Y_2)$, where

$$ X_2 = \lambda_2^b X_1 + \lambda_1^b \frac{b^2 + 30b + 1}{12} - \frac{\tau(b)^2 + 6\tau(b) + 1}{12}, $$

with

$$ \lambda_1^b = \frac{1 + \sqrt{5}}{2}, \quad \lambda_2^b = \frac{1 - \sqrt{5}}{2}. $$
and
\[\lambda_1^2 = \frac{\sqrt{5} \varepsilon^5}{(b - \varepsilon^5)^2} = \frac{\sqrt{5} \varepsilon^5}{(\eta^5 - \varepsilon^5)^2}. \]

Under this isomorphism, \(X_1 = X(\psi(P)) \) maps to \(X_2 = 0 \), whence \(\phi(P) = \iota_1 \circ \psi(P) = \pm(0, 0) \) on \(E_5(\tau(b)) = E_5(\xi^5) \). Note that the map \(\phi \) is defined over \(\Lambda = \mathbb{Q}\left(\eta, \sqrt{\frac{5\varepsilon}{2}} \right) = \mathbb{Q}\left(\eta, \sqrt{-5 + \sqrt{5}} \right) \), since \(\lambda_1 \) lies in this field.

Now we find an explicit formula for the isomorphism \(\iota_2 \) between \(E_5(\xi^5) \) and \(E_5(\eta^{5\sigma - 1}) \). The Weierstrass normal form \(Y^2 = 4X^3 - g_2X - g_3 \) of \(E_5(b) \) has coefficients
\[
g_2(b) = \frac{1}{12}(b^4 + 12b^3 + 14b^2 + 12b + 1),
\]
\[
g_3(b) = -\frac{1}{216}(b^2 + 1)(b^4 + 18b^3 + 74b^2 - 18b + 1).
\]

An isomorphism \(\iota_2 : E_5(\xi^5) \to E_5(\eta^{5\sigma - 1}) \) is determined by a number \(\lambda_2 \) satisfying the equations
\[g_2(\eta^{5\sigma - 1}) = \lambda_2^2 \cdot g_2(\xi^5), \quad g_3(\eta^{5\sigma - 1}) = \lambda_2^3 \cdot g_3(\xi^5). \]

We now use computations analogous to those in Lemma 4.1, obtaining
\[\eta^{5\sigma - 1} = \tau(\xi^5)^{\sigma - 1} = \tau\left((\xi^{\sigma - 1})^5\right) = \tau(T(\eta)^5) = \tau(\eta). \]

Then we solve for \(\lambda_2^2 \) from
\[\lambda_2^2 = \frac{g_3(\tau(\eta))g_2(\tau(\eta^5))}{g_2(\tau(\eta))g_3(\tau(\eta^5))} \]
and find that
\[\lambda_2^2 = \frac{(11\sqrt{5} - 25)(2\eta + 1 + \sqrt{5})^2(-2\eta^2 + (3 + \sqrt{5})\eta - 3 - \sqrt{5})^2}{40(-2\eta^2 - 2\eta - 3 + \sqrt{5})^2}. \]

Here, \(\lambda_2 \) lies in the field \(\mathbb{Q}\left(\eta, \sqrt{-\frac{5\varepsilon}{2}} \right) = \mathbb{Q}\left(\eta, \sqrt{-5 + \sqrt{5}} \right) \), which coincides with the field \(\Lambda \) above. Hence, the desired isomorphism is given on \(X \)-coordinates by
\[X_3 = \iota_2(X_2) = \lambda_2^2X_2 + \lambda_2^2 \frac{\tau(\eta^5)^2 + 6\tau(\eta^5) + 1}{12} - \frac{\tau(\eta)^2 + 6\tau(\eta) + 1}{12}, \]
if \((X_2, Y_2) \) are the coordinates on \(E_5(\xi^5) \) and \((X_3, Y_3) \) are the coordinates on \(E_5(\eta^{5\sigma - 1}) \). Therefore, the points with \(X_2 = 0 \) map to points with
\[X_3 = \frac{(5 + \sqrt{5})(\eta\sqrt{5} + 2\eta^2 - \sqrt{5} - 3\eta + 3)(\eta\sqrt{5} - 2\eta^2 - \sqrt{5} + 3\eta - 3)}{20(-2\eta^2 + \sqrt{5} - 2\eta - 3)}. \]

Finally, we choose \(u = \frac{1}{\xi^5} \in K_5(\sqrt{5}) \), so that
\[u^5 = \frac{1}{\sqrt{5} \xi^5} = -\varepsilon^5 \varepsilon^5 \eta^5 + 1 - \frac{\eta^5 - \varepsilon^5}{\eta^5 - \varepsilon^5}. \]
as required above for the formula \(X(P)\). Then we compute that
\[
\sigma^{-1} \frac{1}{\varepsilon \xi^{\sigma^{-1}}} = \frac{1}{\varepsilon T(\eta)},
\]
which implies that \(\eta = T \left(\varepsilon^{-1} u^{-\sigma^{-1}} \right)\). Substituting this expression for \(\eta\) in \(X_3\) gives
\[
X_3 = \frac{-\varepsilon^4 \left(-2u_1^2 + (1 + \sqrt{5})u_1 - 3\sqrt{5} - 7 \right)(2u_1^2 + (2\sqrt{5} + 4)u_1 + 3\sqrt{5} + 7)}{(-2u_1^2 + (\sqrt{5} + 1)u_1 - 2)(u_1 + 1)^2},
\]
with \(u_1 = u^{\sigma^{-1}}\). Comparing with the above formula for \(X(P)\) shows that \(X_3 = X(P)^{\sigma^{-1}}\) and therefore the points \(\pm(0,0)\) on \(E_5(\xi^5)\) map to \(\pm P^{\sigma^{-1}}\) on \(E_5(\eta^{5\sigma^{-1}})\).

This discussion shows that the isogeny \(\phi_1 = \iota_2 \circ \iota_1 \circ \psi\) from \(E_5(\eta^5)\) to \(E_5(\eta^5)^{\sigma^{-1}}\) satisfies
\[
\phi_1(P) = \pm P^{\sigma^{-1}}.
\]
Applying \(\sigma^{-i+1}\) to this gives \(\phi_i(P)^{\sigma^{-i+1}} = \pm P^{\sigma^{-1}}\), and therefore
\[
\iota(P) = \phi_n \circ \phi_{n-1} \circ \cdots \circ \phi_1(P) = \pm P^{\sigma^{-n}} = \pm P.
\]
Since \(P\) is a point of order 5 on \(E_5(\eta^5)\), and \(P\) does not lie in \(\ker(\iota)\), we see that \(\iota\) is indeed a cyclic isogeny.

From this and the fact that \(\deg(\iota) = 5^n\) we conclude that the \(j\)-invariant \(j_\eta = j(E_5(\eta^5))\) satisfies the modular equation
\[
\Phi_{5^n}(j_\eta, j_\eta) = 0.
\]
On the other hand, from [4, p. 263],
\[
\Phi_{5^n}(X, X) = c_n \prod_{-d} H_{-d}(X)^{r(d, 5^n)},
\]
where the product is over the discriminants of orders \(\mathbb{R}_{-d}\) of imaginary quadratic fields and
\[
r(d, 5^n) = |\{\alpha \in \mathbb{R}_{-d} : \alpha\ \text{primitive, } N(\alpha) = 5^n \}/\mathbb{R}_{-d}^\times|.
\]
Thus, \(r(d, 5^n)\) is nonzero only when the equation \(4^k \cdot 5^n = x^2 + dy^2\), \((k = 0, 1)\), has a primitive solution. Now the polynomial \(P_n(x) \in \mathbb{Z}[x]\) splits completely in \(K_5(\sqrt{5})\), and its “unramified” roots all lie in \(K_5\). Furthermore the “ramified” roots all have the form \(\xi = T(\eta^\sigma)\) for some unramified root \(\eta\), and the corresponding \(j\)-invariants have the form
\[
j_\xi = \frac{(1 - 12\xi^5 + 14\xi^{10} + 12\xi^{15} + \xi^{20})^3}{\xi^{25}(1 - 11\xi^5 - \xi^{10})^3},
\]
which equals
\[
j_\xi = \frac{(1 + 228\eta^5 + 494\eta^{10} - 228\eta^{15} + \eta^{20})^3}{\eta^{5}(1 - 11\eta^5 - \eta^{10})^3}.
\]
It follows that all the \(j \)-invariants \(j_\eta, j_\xi \) lie in \(K_5 \). Hence, the value \(d \) for which \(H_d(j_\eta) = 0 \) is not divisible by 5. Thus, \((5, xyd) = 1 \), and therefore \(\left(-\frac{d}{2} \right) = +1 \).

From \(H_d(j_\eta) = H_d((j_\eta)^{\sigma^{-1}}) = H_d(j_\xi) = 0 \) we see that the periodic point \(\eta \) is a root of both polynomials \(F_d(x^5), G_d(x^5) \), where

\[
F_d(x) = x^{5h(-d)}(1 - 11x - x^2)^{h(-d)}H_d\left[\frac{(x^4 + 12x^3 + 14x^2 - 12x + 1)^3}{x^5(1 - 11x - x^2)}\right]
\]

and

\[
G_d(x) = x^{h(-d)}(1 - 11x - x^2)^{5h(-d)}H_d\left[\frac{(x^4 - 228x^3 + 494x^2 + 228x + 1)^3}{x(1 - 11x - x^2)^5}\right].
\]

Now the roots of the polynomial \(G_d(x^5) \) are invariant under the action of the icosahedral group \(G_{60} = \langle S, T \rangle \), where \(T \) is as before and \(S(z) = \zeta z \), with \(\zeta = e^{2\pi i/5} \). (See [11], [17].) Since \(H_d(X) \) is irreducible over the field \(L = Q(\zeta) \), containing the coefficients of all the maps in \(G_{60} \), the polynomial \(G_d(x^5) \) factors over \(L \) into a product of irreducible polynomials of the same degree. (See the similar argument in [12, p. 864].) By the results of [14, pp. 1193, 1202], one of these irreducible factors is \(p_d(x) \), whose degree is \(4h(-d) \), and \(p_d(x) \) is invariant under the action of the subgroup

\[
H = \langle U, T \rangle, \quad U(z) = -\frac{1}{z},
\]

a Klein group of order 4. The normalizer of \(H \) in \(G_{60} \) is \(N = \langle A, H \rangle \cong A_4 \), where \(A = STS^{-1} \) is the map

\[
A(z) = \zeta^3 \frac{(1 + \zeta)z + 1}{z - 1 - \zeta^4}
\]

of order 3, and \(ATA^{-1} = U, AU A^{-1} = T_2 = TU \). The distinct left cosets of \(H \) in \(G_{60} \) are represented by the elements

\[
M_{ij} = S^j A^i, \quad 0 \leq i \leq 2, \quad 0 \leq j \leq 4.
\]

(See [17, Prop. 3.3].) We would like to show that \(\eta \) is a root of the factor \(p_d(x) \).

Since all the roots of \(G_d(x^5) \) have the form \(M_{ij}(\alpha) \), for some root \(\alpha \) of \(p_d(x) \) ([14, p. 1203]), the factors of \(G_d(x^5) \) over \(L \) have the form

\[
p_{i,j}(x) = (cx + d)^{4h(-d)} p_d(A^i S^j(x)),
\]

where \(A^i S^j(x) = \frac{ax^j + b}{cx + d} \). The stabilizer of this polynomial in \(G_{60} \) is

\[
(A^i S^j)^{-1} H A^i S^j = S^{-j} H S^j,
\]

which contains the map \(S^{-j}US^j(x) = \frac{-\zeta^{-2j}}{x} \). If \(p_{i,j}(\eta) = 0 \), where \(j \neq 0 \), then both \(\eta \) and \(\frac{-\zeta^{-2j}}{\eta} \) are roots of \(p_{i,j}(x) \), which would imply that \(\zeta^{-2j} \) is contained in the splitting field of \(P_n(x) \) over \(Q \), and is therefore contained in \(K_5(\sqrt{5}) \), which is not the case. Hence, \(\eta \) can only be a root of \(p_{i,0}(x) = \)
(c_i x + d_i)^{4h(-d)}p_d(A^i(x))$, for some i. But then the elements in $HA^i(\eta)$ are roots of $pg_d(x)$. Assume $i = 1$. Since $A(\eta)$ is a root of $pg_d(x)$, so is $A^\rho(\eta)$, where ρ is the automorphism of $K_5(\zeta)/K_5$ for which $\zeta^p = \zeta^2$. But $A^\rho = A^{-1}U$, so that $A^\rho = A^{-\rho}U = UA U$ and $A^\rho = UA^\rho U = UA^{-1}$. Thus, $A^\rho(\eta)$ being a root of $pg_d(x)$ and $U \in H$ imply that $A^{-1}(\eta)$ is also a root of $pg_d(x)$. But then η is a common root of $p_{1,0}(x) = (c_1 x + d_1)^{4h(-d)}p_d(A(x))$ and $p_{2,0}(x) = (c_2 x + d_2)^{4h(-d)}p_d(A^{-1}(x))$, which is impossible, since these are two of the irreducible factors of $G_d(x^5)$ over L, and the latter polynomial has no multiple roots, for $d \neq 4$. (See [17, §2.2].) A similar argument works if $i = 2$, since $A^2 = A^{-1}$ and $A = UA^{-\rho}$. For $d = 4$, we have

$$G_4(x^5) = (x^{20} - 228x^{15} + 494x^{10} + 228x^5 + 1)^3 - 1728x^5(1 - 11x^5 - x^{10})^5$$

$$= (x^2 + 1)^2(x^4 + 2x^3 + 4x^2 - 2x + 1)^2(x^8 - x^6 + x^4 - x^2 + 1)^2$$

$$\times (x^8 + 4x^7 + 17x^6 + 22x^5 + 5x^4 - 22x^3 + 17x^2 - 4x + 1)^2$$

$$\times (x^8 - 6x^7 + 17x^6 - 18x^5 + 25x^4 + 18x^3 + 17x^2 + 6x + 1)^2,$$

and the only periodic point $\eta \in D_5$ which is a root of $G_4(x^5)$ is the fixed point

$$\eta = i = 3 \cdot 5 + 2 \cdot 5^2 + 3 \cdot 5^3 + 5^4 + \cdots \in Q_5.$$

Thus, $d = 4$ does not occur when $n \geq 2$. (Except for the primitive 20-th roots of unity, which do not lie in $K_5(\sqrt{5})$, the other roots of $G_4(x^5) = 0$ satisfy $x \equiv 2 \mod 5$, and so do not lie in D_5.)

Hence, the only possibility is that $pg_d(\eta) = 0$. This shows that all periodic points of $T_5(x)$ in D_5 are roots of some $pg_d(x)$ for which $(-d/5) = +1$. Since $T_5(\eta) = \eta^{75}$ for such a root by (3.6), it is clear that τ_5 has order n in the corresponding Galois group $Gal(F_1/Q)$, as well. All the roots of $P_d(x)$ which do not lie in D_5 have the form $T(\eta)$, for $\eta \in D_5$, by the discussion in Section 2, and are also roots of $pg_d(x)$ for one of these integers d, since $T(x)$ stabilizes the roots of $pg_d(x)$.

Thus, if $n \geq 2$, the only irreducible factors of $P_n(x)$ over Q are the polynomials $pg_d(x)$ for which $(-d/5) = +1$ and $\tau_5 \in Gal(F_1/Q)$ has order n. This proves (4.1). \hfill \Box

For use in the following corollary, note that the substitution $(X, Y) \to (-\frac{1}{X}, -\frac{1}{Y})$ represents an automorphism of the curve $g(X, Y) = 0$, since

$$X^5Y^5g\left(-\frac{1}{X}, -\frac{1}{Y}\right) = g(X, Y).$$

As in [14], put

$$g_1(X, Y) = Y^5g\left(X, -\frac{1}{Y}\right).$$

In the following corollary, we prove the claim stated in the last paragraph of [14, p. 1212]. In that paragraph, the polynomial $x^2 + x - 1$ should have
also been listed along with \(x, x^2 + 1 \) and \(p_d(x) \) as factors of the resultants \(R_n(x) \). As we will see below, however, \(x^2 + x - 1 \) never divides \(R_n(x) \).

Corollary 4.3. Let \(\tilde{R}_n(x) \) be the \((n - 1)\)-fold iterated resultant

\[
\text{Res}_{x_{n-1}}(\ldots(\text{Res}_{x_2}(\text{Res}_{x_1}(g(x, x_1), g(x_1, x_2)), g(x_2, x_3)), \ldots, g_1(x_{n-1}, x))
\]

for \(n \geq 2 \). If \(\alpha \neq 0 \) is a root of \(\tilde{R}_n(x) \), then \(\alpha \) is either \(\pm i \) or a root of some polynomial \(p_d(x) \), where \(p_d(x) \mid R_{2n}(x) \).

Proof. A root \(\alpha \neq 0 \) of \(\tilde{R}_n(x) \) satisfies the simultaneous equations

\[
g(\alpha, \alpha_1) = g(\alpha_1, \alpha_2) = \cdots = g(\alpha_{n-2}, \alpha_{n-1}) = g_1(\alpha_{n-1}, \alpha) = 0,
\]

for some elements \(\alpha_i \) in \(\overline{\mathbb{Q}} \), the algebraic closure of \(\mathbb{Q} \). Note that \(\alpha_i \neq 0 \), for \(1 \leq i \leq n - 1 \), because \(g(X, 0) = X^5 \), so that \(\alpha_i = 0 \) implies \(\alpha_{i-1} = 0 \). But the definition of \(g_1(X, Y) \) and the final equation in the above chain give that \(g(\alpha_{n-1}, \frac{1}{\alpha}) = 0 \). Now the identity (4.2) implies, using the above simultaneous equations, that

\[
g\left(\frac{-1}{\alpha}, \frac{-1}{\alpha_1}\right) = g\left(\frac{-1}{\alpha_1}, \frac{-1}{\alpha_2}\right) = \cdots = g\left(\frac{-1}{\alpha_{n-1}}, \alpha\right) = 0.
\]

Tacking this chain of equations onto the first chain following the equation \(g\left(\alpha_{n-1}, \frac{1}{\alpha}\right) = 0 \) shows that \(\alpha \) is a root of \(R_{2n}(x) = 0 \). Setting \(p_4(x) = x^2 + 1 \) (see below), we only have to verify that \(\alpha \) is not a root of \(x^2 + x - 1 \) to conclude that \(\alpha \) is a root of some polynomial \(p_d(x) \), because

\[
P_1(x) = x(x^2 + 1)(x^2 + x - 1)(x^4 + x^3 + 3x^2 - x + 1) = x(x^2 + x - 1)p_4(x)p_{19}(x).
\]

For in that case \(\alpha \) is either a root of \(p_4(x)p_{19}(x) \) or a root of some \(P_m(x) \), for \(m > 1 \). But if \(\alpha = \frac{-1 + \sqrt{5}}{2} \), then \(\alpha \) is a fixed point, \(g(\alpha, y) = 0 \Rightarrow y = \alpha \), but

\[
g_1(\alpha, \alpha) = \alpha^5 g(\alpha, \alpha) = \frac{625 - 275\sqrt{5}}{2} \neq 0.
\]

Thus, \(\alpha \) cannot be a root of \(\tilde{R}_n(x) \) for any \(n \geq 1 \). \(\square \)

Remark. This justifies the claims made in Section 5 of Part II about the resultant \(R_n(x) \). In particular, all its irreducible factors are \(x^2 + 1 \) and polynomials of the form \(p_d(x) \). This shows also that the polynomial in Example 2 of that section (pp. 1210-1211) is indeed \(p_{491}(x) \). The computation of the degree \(\tilde{R}_3(x) \) was in error, however, at the beginning of that example. In fact the degree is 250, and there are five factors of degree 12, not three, as was claimed before: these factors are the polynomials \(p_d(x) \) for \(d = 31, 44, 124, 211, 331 \).

Note that the root \(-i = r\left(\frac{-7 + i}{5}\right) \), so \(p_4(x) \) is the minimal polynomial of a value \(r(w_4/5) \), with \(w_4 = -7 + i \in \mathbb{Q}(\sqrt{-4}) \) and \(w_5 = (-2 + i)^2 \mid w_4 \). This justifies the notation \(p_4(x) \). See [7, p. 139].

The following theorem is immediate from Theorem 4.2 and the computations of Section 2.
Theorem 4.4. The set of periodic points in \(\mathbb{Q} \) (or \(\mathbb{Q}_5 \) or \(\mathbb{C} \)) of the multi-valued algebraic function \(g(z) \) defined by the equation \(g(z, g(z)) = 0 \) consists of \(0, -\frac{1 \pm \sqrt{5}}{2} \), and the roots of the polynomials \(p_d(x) \), for negative discriminants \(-d \) satisfying \(\left(-\frac{d}{5} \right) = +1 \). Over \(\mathbb{Q} \) or \(\mathbb{C} \) the latter values coincide with the values \(\eta = r(w_d/5) \) and their conjugates over \(\mathbb{Q} \), where \(r(\tau) \) is the Rogers-Ramanujan continued fraction and the argument \(w_d \in K = \mathbb{Q}(\sqrt{-d}) \) satisfies
\[
w_d = \frac{v + \sqrt{-d}}{2} \in R_K, \quad \varphi_5^2 | w_d, \quad \text{and} \quad (N(w_d), f) = 1.
\]

The fixed points \(0, -\frac{1 \pm \sqrt{5}}{2} \) come from the factors \(x, x^2 + x - 1 \) of the polynomial \(P_1(x) \).

Equating degrees in the formula (4.1) yields
\[
\deg(P_n(x)) = \sum_{-d \in \mathcal{D}_{n,5}} 4h(-d), \quad n > 1.
\]

From (2.7) we get the following class number formula.

Theorem 4.5. For \(n > 1 \) we have
\[
\sum_{-d \in \mathcal{D}_{n,5}} h(-d) = \frac{1}{2} \sum_{k|n} \mu(n/k)5^k,
\]
where \(\mathcal{D}_{n,5} \) has the meaning given in Theorem 1.3.

This proves Theorem 1.3, where the field \(F_1 \) has been denoted as \(F_{d,5} \), to indicate its dependence on \(d \). Note that the corresponding formula for \(n = 1 \) reads
\[
\sum_{-d \in \mathcal{D}_{1,5}} h(-d) = h(-4) + h(-19) = 2 = \frac{1}{2}(5 - 1).
\]

5. Ramanujan’s modular equations for \(r(\tau) \)

In this section we take a slight detour to show how the polynomials \(p_{4d}(x), p_{9d}(x) \) and \(p_{49d}(x) \) can be computed, if the polynomial \(p_d(x) \) is known.

From Berndt’s book [2, p. 17] we take the following identity relating \(u = r(\tau) \) and \(v = r(3\tau) \):
\[
(v - u^3)(1 + uv^3) = 3u^2v^2.
\]

Let
\[
P_3(u, v) = (v - u^3)(1 + uv^3) - 3u^2v^2.
\]
This polynomial satisfies the identity
\[
v^4P_3 \left(u, \frac{-1}{v} \right) = P_3(v, u).
\]
The following theorem gives a simple method of calculating \(p_{9d}(x) \) from \(p_d(x) \).

Theorem 5.1. For any negative discriminant \(-d \equiv \pm 1 \mod 5\), the polynomial \(p_{9d}(x) \) divides the resultant

\[
\text{Res}_y(P_3(y, x), p_d(y)).
\]

Proof. Let \(-d = d_K f^2\), where \(d_K\) is the discriminant of \(K = \mathbb{Q}(\sqrt{-d})\). One of the roots of \(p_{9d}(x) \) is \(\eta' = r(w_{9d}/5) \), where \(w_{9d} = \frac{v + \sqrt{-9d}}{2} \in R_{-d}, \, \varphi_5^2 | w_{9d} \) and \(N(w_{9d}) = \frac{v^2 + 9d}{4} \) is prime to \(3f\). Let \(f = 3f'\), with \((f', 3) = 1\). For some integer \(k\), \(w_{9d} + 25f'k = \frac{v + 50f'k + \sqrt{-9d}}{2} \) satisfies \(v + 50f'k \equiv v - 4f'k \equiv 3 \mod 9\). Furthermore,

\[
\eta' = r \left(\frac{w_{9d} + 25f'k}{5} \right) = r \left(\frac{w_{9d}}{5} + 5f'k \right) = r \left(\frac{w_{9d}}{5} \right).
\]

Thus, we may assume \(3 | v\), and then \(9 | N(w_{9d})\). In that case \(w_d = \frac{w_{9d}}{3} \in \mathbb{R}_{-d}\), where \((N(w_d), f) = 1\), even when \(3 | f\). Furthermore, \(\varphi_5^2 | w_d\). Hence, \(\eta = r(w_d/5) \) is a root of \(p_d(x) \). From (5.1) we have

\[
P_3(\eta, \eta') = P_3(r(w_d/5), r(w_{9d}/5)) = P_3(r(w_d/5), r(3w_d/5)) = 0.
\]

Hence, \(\eta' \) is a root of the resultant, which therefore has its minimal polynomial \(p_{9d}(x) \) as a factor. \(\square\)

Example 1. We compute

\[
\text{Res}_y(P_3(y, x), p_4(y)) = \text{Res}_y(P_3(y, x), y^2+1) = x^8 + x^6 - 6x^5 + 9x^4 + 6x^3 + x^2 + 1.
\]

Since the latter polynomial is irreducible, the theorem shows that it equals \(p_{36}(x) \):

\[
p_{36}(x) = x^8 + x^6 - 6x^5 + 9x^4 + 6x^3 + x^2 + 1.
\]

This verifies once again the entry for \(d = 36\) in Table 1 of [14], which we used in Example 1 of that paper (p. 1208). In the same way, we compute

\[
\text{Res}_y(P_3(y, x), p_{36}(y)) = (x^2 + 1)^4(x^{24} - 18x^{23} + 81x^{22} - 60x^{21} + 594x^{20} + 1074x^{19} + 118x^{18} - 1002x^{17} - 261x^{16} + 6882x^{15} + 12078x^{14} + 1014x^{13} - 18585x^{12} - 1014x^{11} + 12078x^{10} - 6882x^9 - 261x^8 + 1002x^7 + 118x^6 - 1074x^5 + 594x^4 + 60x^3 + 81x^2 + 18x + 1)
\]

\[= p_4(x)^4 p_{324}(x).\]

There is also the identity from [2, p. 12] relating \(u = r(\tau)\) and \(v = r(2\tau)\):

\[
(v - u^2) = (v + u^2) \cdot uv^2.
\]

(5.2)

Setting

\[
P_2(u, v) = (v + u^2) \cdot uv^2 - (v - u^2),
\]
we have the following identity, analogous to the identity for $P_3(u,v)$.

$$v^3P_2\left(u, \frac{-1}{v}\right) = P_2(v,u).$$

An argument similar to the proof of Theorem 5.1 yields

Theorem 5.2. For any negative discriminant $-d \equiv \pm 1 \pmod{5}$, the polynomial $p_{4d}(x)$ divides the resultant

$$\text{Res}_y(P_2(y,x), p_{d}(y)).$$

Proof. Again, let $-d = d_Ke^2$, where d_K is the discriminant of $K = \mathbb{Q}(-d)$. One of the roots of $p_{4d}(x)$ is $\eta' = r(w_{4d}/5)$, where $w_{4d} = \frac{v+\sqrt{-d}}{2} \in R_{-d}$. $\varphi^2_5 | w_{4d}$ and $N(w_{4d}) = \frac{v^2+4d}{4}$ is prime to $2f$. Thus, $v \equiv 2d + 2 \pmod{4}$. If f is odd, we set

$$w' = w_{4d} + 25f = \left(\frac{v}{2} + 25f\right) + \sqrt{-d} = v' + \sqrt{-d}.$$

Then,

$$r\left(\frac{w'}{5}\right) = r\left(\frac{w_{4d}}{5} + 5f\right) = r\left(\frac{w_{4d}}{5}\right) = \eta'.$$

Moreover, $v' \equiv \frac{v}{2} + 1 \equiv d \pmod{2}$. Now let $w_d = \frac{w'}{2} = \frac{v'+\sqrt{-d}}{2} \in R_{-d}$, where $(N(w_d), f) = 1$. Then $\varphi^2_5 | w_d$ and $\eta' = r(w_d/5)$ is a root of $p_d(x)$. From (5.2) we have

$$P_2(\eta, \eta') = P_2(r(w_d/5), r(w_{4d}/5)) = P_2(r(2w_d/5)) = 0.$$

Hence, η' is a root of the resultant, which therefore has its minimal polynomial $p_{4d}(x)$ as a factor.

On the other hand, if f is even, let $f = 2^e f'$, with f' odd. Then d is even, so $v/2$ is odd. In this case we choose k so that

$$v' = \frac{v}{2} + 25f'k \equiv \begin{cases} 0 \pmod{4}, & \text{if } 4 \mid d; \\ 2 \pmod{4}, & \text{if } 8 \mid d. \end{cases}$$

With this choice of k we have $v' \equiv d \pmod{2}$, so letting $w' = v' + \sqrt{-d} = w_{4d} + 25f'k$ and $w_d = \frac{w'}{2}$, we have $w_d \in R_{-d}$ and

$$N(w_d) = \frac{v'^2 + d}{4} \equiv \begin{cases} \frac{d}{4} \equiv 1 \pmod{2}, & \text{if } 4 \mid d; \\ \frac{v'^2}{4} \equiv 1 \pmod{2}, & \text{if } 8 \mid d. \end{cases}$$

In either case, we get that $(N(w_d), f) = 1$. We have $r(w'/5) = r(w_{4d}/5)$, as before, and letting $\eta = r(w_d/5)$ be a root of $p_d(x)$, we obtain $P_2(\eta, \eta') = 0$ as above, and the assertion of the theorem follows. \square
Example 2. We have

\[\text{Res}_y(P_2(y,x), p_{36}(y)) = (x^8 + x^6 - 6x^5 + 9x^4 + 6x^3 + x^2 + 1) \]
\[\times (x^{16} - 2x^{15} + 18x^{14} + 24x^{13} + 83x^{12} + 78x^{11} + 74x^{10} + 40x^9 \]
\[+ 9x^8 - 40x^7 + 74x^6 - 78x^5 + 83x^4 - 24x^3 + 18x^2 + 2x + 1) \]
\[= p_{36}(x)p_{144}(x) \]

and

\[\text{Res}_y(P_2(y,x), p_{144}(y)) = (x^8 + x^6 - 6x^5 + 9x^4 + 6x^3 + x^2 + 1)^2 \]
\[\times (x^{32} - 32x^{31} + 586x^{30} - 2856x^{29} + 5818x^{28} - 160x^{27} - 23408x^{26} \]
\[+ 41964x^{25} - 6573x^{24} - 63520x^{23} + 64426x^{22} + 12736x^{21} - 38746x^{20} \]
\[- 11464x^{19} + 55416x^{18} - 38148x^{17} - 5743x^{16} + 38148x^{15} + 55416x^{14} \]
\[+ 11464x^{13} - 38746x^{12} - 12736x^{11} + 64426x^{10} + 63520x^9 - 6573x^8 \]
\[- 41964x^7 - 23408x^6 + 160x^5 + 5818x^4 - 2856x^3 + 586x^2 + 32x + 1) \]
\[= p_{36}(x)^2p_{576}(x). \]

We can use Theorems 5.1 and 5.2 to construct polynomials \(p_4(x)\) for which the Conjecture (1) in [14, p. 1199] does not hold. For example, starting with

\[p_{51}(x) = x^8 + x^7 + x^6 - 7x^5 + 12x^4 + 7x^3 + x^2 - x + 1, \]

applying Theorem 5.2 once gives that

\[p_{204}(x) = x^{24} - x^{23} + 38x^{22} + 36x^{21} + 166x^{20} + 33x^{19} + 57x^{18} + 22x^{17} \]
\[+ 573x^{16} + 1603x^{15} + 2465x^{14} + 1225x^{13} + 1768x^{12} - 1225x^{11} \]
\[+ 2465x^{10} - 1603x^9 + 573x^8 - 22x^7 + 57x^6 - 33x^5 + 166x^4 - 36x^3 \]
\[+ 38x^2 + x + 1, \]

whose discriminant is exactly divisible by \(17^{12}\), in accordance with Conjecture (1). Applying Theorem 5.2 to this polynomial yields the polynomial \(p_{816}(x)\), of degree 48, whose discriminant is exactly divisible by \(17^{40}\);

\[\text{disc}(p_{816}(x)) = 2^{60}3^{120}5^{276}7^{40}17^{40}31^{24}47^879^8179^4191^{12}241^8491^8541^8691^8; \]

whereas Conjecture (1) predicts that \(17^{24}\) should be the power of 17 dividing \(\text{disc}(p_{816}(x))\).

Note that the period of the roots of \(p_{51}(x)\) is 4, whereas the period of the roots of \(p_{204}(x)\) and \(p_{816}(x)\) is 12.

We modify the statement of Conjecture (1) in [14, p. 1199] as follows.

Conjecture 2. If \(q > 5\) is a prime which divides the field discriminant \(d_K\) of \(K = \mathbb{Q}(\sqrt{-d})\), then \(q^{2h(-d_K)}\) exactly divides \(\text{disc}(p_{d_K}(x))\).
Now define the polynomial $P_7(u, v)$ by
\[
P_7(u, v) = u^8v^7 + (-7v^5 + 1)u^7 + 7u^6v^3 + 7(-v^6 + v)u^5 + 35u^4v^4
+ 7(v^7 + v^2)u^3 - 7u^2v^3 - (v^8 + 7v^3)u - v.
\]

Note that $P_7(u, v)$ satisfies the polynomial identity
\[
v^8P_7\left(u, \frac{-1}{v}\right) = P_7(v, u).
\]

From [22, Thm. 3.3] we have the following fact.

Proposition (Yi). The Rogers-Ramanujan continued fraction $r(\tau)$ satisfies the equation $P_7(r(\tau), r(\tau)) = 0$.

Theorem 5.3. For any negative discriminant $-d \equiv \pm 1 \pmod{5}$, the polynomial $p_{49d}(x)$ divides the resultant

\[
\text{Res}_y(P_7(y, x), p_d(y)).
\]

The proof is the same, mutatis mutandis, as the proof of Theorem 5.1, on replacing the prime 3 by 7.

Example 3. We compute that
\[
\text{Res}_y(P_7(y, x), p_4(y)) = p_{196}(x)
= x^{16} + 14x^{15} + 64x^{14} + 84x^{13} - 35x^{12} - 14x^{11} + 196x^{10}
+ 672x^9 + 1029x^8 - 672x^7 + 196x^6 + 14x^5 - 35x^4
- 84x^3 + 64x^2 - 14x + 1.
\]

As a check, note that $h(-4 \cdot 7^2) = 4$ and the discriminant of $p_{196}(x)$ is
\[
disc(p_{196}(x)) = 2^{32} \cdot 3^{12} \cdot 5^{28} \cdot 7^{14} \cdot 19^4 \cdot 71^8,
\]
all of whose prime factors are less than $d = 196 = 4 \cdot 7^2$.

6. Periodic points for $h(t, u)$

6.1. Reduction to periodic points of $g(x, y)$. From [14] the equation connecting $t = X - \frac{1}{X}$ and $u = Y - \frac{1}{Y}$ in the function field of the curve $g(X, Y) = 0$ is
\[
h(t, u) = u^5 - (6 + 5t + 5t^3 + t^5)u^4 + (21 + 5t + 5t^3 + t^5)u^3
- (56 + 30t + 30t^3 + 6t^5)u^2 + (71 + 30t + 30t^3 + 6t^5)u
- 120 - 55t - 55t^3 - 11t^5.
\]

On this curve $v = \eta - \frac{1}{\eta} \in \Omega_f$, with $\eta = r(w_d/5)$, satisfies
\[
h(v, v^{r_5}) = 0, \quad r_5 = \left(\frac{\Omega_f/\mathbb{Q}(\sqrt{-d})}{\mathfrak{p}_5}\right).
\]
This yielded the following theorem.

Theorem 6.1. If Ω_f is the ring class field of conductor f (relatively prime to 5) over the field $K = \mathbb{Q}(\sqrt{-d})$, where $-d = d_K f^2$ and $(\frac{-d}{5}) = +1$, then $\Omega_f = K(v)$, where $v = \eta - \frac{1}{\eta}$ is a periodic point of the algebraic function $f(z)$ defined by $h(z, f(z)) = 0$.

Note the identity

$$X^5 Y^5 h \left(X - \frac{1}{X}, Y - \frac{1}{Y} \right) = -g(X, Y) g_1(X, Y), \quad (6.1)$$

where $g(X, Y)$ is given by (2.1) and $g_1(X, Y)$ is defined in (4.3). Also, recall that

$$X^5 Y^5 g \left(\frac{-1}{X}, \frac{-1}{Y} \right) = g(X, Y), \quad X^5 Y^5 g_1 \left(\frac{-1}{X}, \frac{-1}{Y} \right) = g_1(X, Y), \quad (6.2)$$

where the second identity is an easy consequence of the first. Using these facts we can prove the following.

Theorem 6.2. If $v \neq -1$ is any periodic point of the algebraic function $f(z)$ in Theorem 6.1, then

$$v = \eta - \frac{1}{\eta},$$

for some periodic point η of $g(z)$, and v generates a ring class field Ω_f over some field $K = \mathbb{Q}(\sqrt{-d})$, where $-d = d_K f^2$ and $(\frac{-d}{5}) = +1$.

Proof. Assume that there exist elements v_i for which

$$h(v, v_1) = h(v_1, v_2) = \cdots = h(v_{n-1}, v) = 0. \quad (6.3)$$

Since the substitution $x = y - \frac{1}{y}$ transforms the polynomial

$$h(x, x) = -(x + 1)(x^2 + 4)(x^2 - x + 3)(x^2 - 2x + 2)(x^2 + x + 5),$$

(after multiplying by y^9) into the product

$$-(y^2 + y - 1)(y^2 + 1)^2(y^2 + y - x + 3)(y^2 - 2y + 2)(y^2 + x + 5),$$

we may assume $n \geq 2$. Set $g_0(X, Y) = g(X, Y)$ and write $v = \eta - \frac{1}{\eta}$ and $v_i = \eta_i - \frac{1}{\eta_i}$. By (6.1), equation (6.3) is equivalent to a set of simultaneous equations

$$g_1(\eta, \eta_1) = g_2(\eta_1, \eta_2) = \cdots = g_n(\eta_{n-1}, \eta) = 0, \quad (6.4)$$

where each $i_k = 0$ or 1. Using the same idea as in the proof of Corollary 4.3, we will transform this set of equations into a set of equations which only involve the polynomial $g = g_0$. Assume first that $i_1 = 1$. Then

$$0 = g_1(\eta, \eta_1) = g_1 \left(\eta, \frac{-1}{\eta_1} \right).$$
Now we use (6.2) to rewrite the remaining equations, so that we have

\[0 = g \left(\eta, \frac{-1}{\eta_1} \right) = g_{i_2} \left(\frac{-1}{\eta_1}, \frac{-1}{\eta_2} \right) = \cdots = g_{i_n} \left(\frac{-1}{\eta_{n-1}}, \frac{-1}{\eta} \right), \]

with the same subscripts \(i_r \), for \(r \geq 2 \), as before. Now assume we have transformed the first \(k - 1 \) equations so that only the polynomial \(g(X, Y) \) appears. Then, on renaming the elements \(\pm \eta_i^{\pm 1} \) as \(\eta_i \), we have the simultaneous equations

\[0 = g \left(\eta, \eta_1 \right) = \cdots = g(\eta_{k-2}, \eta_{k-1}) = g_{i_k} \left(\eta_{k-1}, \eta_k \right) = \cdots = g_{i_n} \left(\eta_{n-1}, \pm \eta^{\pm 1} \right). \]

If \(i_k = 0 \) we replace \(k \) by \(k+1 \) and continue. If \(i_k = 1 \) we replace \(g_{i_k} \left(\eta_{k-1}, \eta_k \right) \) by \(g(\eta_{k-1}, -1/\eta_k) \) and use (6.2) to replace \(\eta_r \) in the remaining equations by \(-1/\eta_r, r \geq k \). Then, on renaming the \(\eta \)'s again, we get a chain of equations

\[0 = g \left(\eta, \eta_1 \right) = \cdots = g(\eta_{k-1}, \eta_k) = \cdots = g_{i_n} \left(\eta_{n-1}, \pm \eta^{\pm 1} \right). \]

Thus, by induction, we see that (6.4) is equivalent to a chain of equations

\[0 = g \left(\eta, \eta_1 \right) = \cdots = g(\eta_{n-1}, \pm \eta^{\pm 1}) \]

only involving the polynomial \(g \). If the final \(\eta \) is simply \(\eta \), then \(\eta \) is a periodic point of \(g \) having period \(n \). On the other hand, if the final \(\eta \) appearing in these equations is \(-\eta^{-1}\), then we use the same argument as in Corollary 4.3 to show that \(\eta \) is a periodic point of period \(2n \). Then we know \(\eta \) is not 0 or a root of \(x^2 + x - 1 \), and therefore must be a root of some \(p_d(x) \). By Theorem 6.1, this implies that \(K(v) = \Omega_f \), for \(K = \mathbb{Q}(\sqrt{-d}) \) and \(-d = d_K f^2 \). This proves the theorem.

\[\square \]

Taken together, Theorems 6.1 and 6.2 verify Conjecture 1(b) of Part I for the case \(p = 5 \). To verify Conjecture 1(a), we define the function

\[T_5(z) = T_5(\eta) - \frac{1}{T_5(\eta)}, \quad \eta = \pm \frac{\sqrt{z^2 + 4}}{2}. \]

We can also write

\[T_5(z) = \phi \circ T_5 \circ \phi^{-1}(z), \quad \phi(z) = z - \frac{1}{z}, \]

where \(\phi^{-1}(z) \in \left\{ \frac{z \pm \sqrt{z^2 - 4}}{2} \right\} \) is two-valued. Since

\[g(z, T_5(z)) = 0 \Rightarrow g \left(\frac{-1}{z}, \frac{-1}{T_5(z)} \right) = 0, \]

it follows from Proposition 3.2 that

\[T_5 \left(\frac{-1}{z} \right) = \frac{-1}{T_5(z)}, \quad \text{for } z \in D_5 \cap \{ z : |z|_5 = 1 \}. \]

Since the two solutions \(\eta^{(+)}, \eta^{(-)} \) of \(\phi(\eta^{(\pm)}) = z \) satisfy \(\eta^{(+)}, \eta^{(-)} = -1 \), the value taken for \(\phi^{-1}(z) \) does not affect the value of \(T_5(z) \). In other words,
we have the symmetric formula
\[T_5(z) = T_5(\eta^{(+)}(z)) + T_5(\eta^{(-)}(z)), \quad \eta^{(\pm)} = \frac{z \pm \sqrt{z^2 + 4}}{2}. \]

Then from \(T_5(\eta^{(+)}) \cdot T_5(\eta^{(-)}) = -1 \) and (3.3) it follows that \(T_5(z) \in \phi(D_5 \cap \{ z : |z|_5 = 1 \}) \), which implies that
\[T^n_5(z) = T^n_5(\eta^{(+)}) + T^n_5(\eta^{(-)}), \quad n \geq 1, \quad \eta^{(\pm)} = \frac{z \pm \sqrt{z^2 + 4}}{2}. \]

Furthermore, \(g(z, T_5(z)) = 0 \) implies that
\[h(z - 1/z, T_5(z - 1/z)) = -g(z, T_5(z))g_1(z, T_5(z)) = 0. \]

We deduce the following.

Theorem 6.3. For any negative discriminant \(-d = d_K f^2 \) with \(\left(\frac{-d}{5} \right) = +1 \), and for \(\eta = \tau(w_1/5) \), as in Part II, the \(h(-d) \) distinct conjugate values
\[\nu^\tau = \eta^\tau - \frac{1}{\eta^\tau}, \quad \tau \in Gal(F_1/K), \]
lying in the ring class field \(\Omega_f \) of \(K = \mathbb{Q}(\sqrt{-d}) \), are periodic points of the 5-adic algebraic function \(T_5(z) \) in the 5-adic domain
\[\bar{D}_5 = \phi(D_5 \cap \{ z \in K_5 : |z|_5 = 1 \}). \]

The period of \(\nu^\tau \) is equal to the order of the automorphism \(\tau_5 = \left(\frac{\Omega_f/K}{\varphi_5} \right) \).

Proof. This is immediate from
\[T_5(\nu^\tau) = T_5\left(\eta^\tau - \frac{1}{\eta^\tau} \right) = T_5(\eta^\tau) - \frac{1}{T_5(\eta^\tau)} = \eta^{\tau_5} - \frac{1}{\eta^{\tau_5}} = \nu^{\tau_5}, \]
where the third equality above follows from \(g(\eta^\tau, \eta^{\tau_5}) = 0 \). The fact that the period is the order of \(\tau \) is a consequence of the fact that \(\mathbb{Q}(\nu) = \Omega_f \) and that
\[\tau_5 = \tau_5|_{\Omega_f}, \quad \tau_5 = \left(\frac{F_1/K}{\varphi_5} \right). \]

Corollary 6.4. Conjecture 1(a) of [13] holds for the prime \(p = 5 \): Every ring class field \(\Omega_f \) over \(K = \mathbb{Q}(\sqrt{-d}) \), with \(\left(\frac{-d}{5} \right) = +1 \) and \((f, 5) = 1 \), is generated over \(\mathbb{Q} \) by a periodic point of the 5-adic algebraic function \(T_5(z) \) which is contained in the domain \(\bar{D}_5 = \phi(D_5 \cap \{ z \in K_5 : |z|_5 = 1 \}) \subset K_5 \).

Note: it is clear that \(T_5(\bar{D}_5) \subseteq \bar{D}_5 \), since \(T_5(x) \) maps the set \(D_5 \cap \{ z \in K_5 : |z|_5 = 1 \} \) into itself, by Corollary 3.3 and equation (3.3).

The values \(\nu^\tau \) and their complex conjugates coincide with the roots of the polynomial \(t_d(x) \), for which
\[x^{2h(-d)}t_d \left(x - \frac{1}{x} \right) = p_d(x), \quad d > 4. \quad (6.5) \]
Theorem 6.2 shows that every periodic point \(v \neq -1, \pm 2i \) of \(f(z) \) is a root of some polynomial \(t_d(x) \) with \(d > 4 \).

6.2. Deuring’s class number formula. Let

\[
S^{(1)}(t, t_1) := h(t, t_1) \equiv 4(t_1 + 1)^4(t^5 - t_1) \pmod{5}
\]

and

\[
S^{(n)}(t, t_n) := \text{Resultant}_{t_{n-1}}(S^{(n-1)}(t, t_{n-1}), h(t_{n-1}, t_n)), \quad n \geq 2.
\]

Then it follows by induction that

\[
S^{(n)}(t, t_n) \equiv 4(t_n + 1)^{5n-1}(t^{5n} - t_n) \pmod{5}, \quad n \geq 1.
\]

Hence, the polynomial \(S_n(t) := S^{(n)}(t, t) \) satisfies the congruence

\[
S_n(t) \equiv 4(t + 1)^{5n-1}(t^{5n} - t) \pmod{5}. \tag{6.6}
\]

It follows that

\[
\deg(S_n(t)) = 2 \cdot 5^n - 1, \quad n \geq 1.
\]

(See the Lemma on pp. 727-728 of Part I, [13].)

Let \(L(z) = \frac{-z + 1}{z + 1} \). Then

\[
L\left(x - \frac{1}{x}\right) = \frac{-x^2 + 4x + 1}{x^2 + x - 1} = T(x) - \frac{1}{T(x)},
\]

and we have the identity

\[
(x + 1)^5(y + 1)^5h(L(x), L(y)) = 5^5h(y, x). \tag{6.7}
\]

Moreover,

\[
L(z) + 1 = \frac{5}{z + 1}. \tag{6.8}
\]

Using (6.6), (6.7) and (6.8), it follows by the same reasoning as in Section 2 that \(S_n(x) \) has distinct roots and that

\[
Q_n(x) = \prod_{k|n} S_k(x)^{\mu(n/k)} \tag{6.9}
\]

is a polynomial. Furthermore, all of the roots of \(Q_n(x) \) lie in \(K_5 \). From Theorem 6.3 we see that the polynomial \(t_d(x) \) divides \(Q_n(x) \) whenever the automorphism \(\tilde{\tau}_{5,d} \) has order \(n \), and from Theorem 6.2, we see that these are the only irreducible factors of \(Q_n(x) \) over \(\mathbb{Q} \). This gives

Theorem 6.5. For \(n > 1 \), the polynomial \(Q_n(x) \) is given by the product

\[
Q_n(x) = \pm \prod_{-d \in \mathcal{D}_n^{(5)}} t_d(x),
\]

where \(t_d(x) \) is defined by (6.5) and \(\mathcal{D}_n^{(5)} \) is the set of negative quadratic discriminants \(-d\) with \((\frac{-d}{\mathbb{Q}}) = +1\), for which the automorphism \(\tilde{\tau}_{5,d} = \tilde{\tau}_5 = \left(\frac{\Omega_f/K}{\mathbb{Q}} \right) \) has order \(n \) in \(\text{Gal}(\Omega_f/K) \), the Galois group of the ring class field \(\Omega_f \) over \(K = \mathbb{Q}(\sqrt{-d}) \).
For \(Q_1(x) \) we have the factorization

\[
Q_1(x) = -(x + 1)(x^2 + 4)(x^2 - x + 3)(x^2 - 2x + 2)(x^2 + x + 5)
\]

\[
= -(x + 1)t_4(x)t_{11}(x)t_{16}(x)t_{19}(x),
\]

where \(t_4(x) \) satisfies

\[
x^2 t_4 \left(x - \frac{1}{x} \right) = (x^2 + 1)^2 = p_4(x)^2.
\]

Since \(\deg(t_d(x)) = 2h(-d) \), Theorem 6.3 shows that half of the roots of \(t_d(x) \) lie in the domain \(\tilde{D}_5 \), while the other roots \(\xi \) satisfy \(\xi \equiv -1 \pmod{5} \) in \(K_5 \), a fact which follows from (6.7) and (6.8). Also see eq. (32) in [14].

The fact that \(\deg(t_d(x)) = 2h(-d) \) now implies the following class number formula.

Corollary 6.6. For \(n > 1 \) we have

\[
\sum_{-d \in \mathcal{D}_n^5} h(-d) = \sum_{k|n} \mu(n/k)5^k.
\]

This formula is equivalent to Deuring’s formula for the prime \(p = 5 \) from [5], [6], as in [16].

References

[1] Andrews, George E.; Berndt, Bruce C. Ramanujan’s lost notebook. Part I. *Springer, New York*, 2005. xiv+437 pp. ISSN: 978-0387-25529-3; 0-387-25529-X. MR2135178, Zbl 1075.11001. 788

[2] Berndt, Bruce C. Ramanujan’s notebooks. Part V. *Springer-Verlag, New York*, 1998. xiv+624 pp. ISBN: 0-387-94941-0. MR1486573, Zbl 0886.11001. 788, 806, 807

[3] Cho, Bumkyu. Primes of the form \(x^2 + ny^2 \) with conditions \(x \equiv 1 \pmod{N} \), \(y \equiv 0 \pmod{N} \). *J. Number Theory* 130 (2010), no. 4, 852–861. MR2600406, Zbl 1211.11103, doi: 10.1016/j.jnt.2009.07.013. 789

[4] Cox, David A. Primes of the form \(x^2 + ny^2 \). *Fermat, class field theory and complex multiplication*. Second edition. Pure and Applied Mathematics. *John Wiley & Sons, Inc., Hoboken, NJ*, 2013. xviii+356 pp. ISBN: 978-1-118-39018-4. MR3236783, Zbl 1275.11002, doi: 10.1002/9781118400722. 789, 802

[5] Deuring, Max. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. *Abh. Math. Sem. Hansischen Univ.* 14 (1941), 197–272. MR0005125, Zbl 0025.02003, doi: 10.1007/BF02940746. 815

[6] Deuring, Max. Die Anzahl der Typen von Maximalordnungen einer definierten Quaternionenalgebra mit prim er Grundzahl. *Jber. Deutsch. Math.-Verein.* 54 (1950), 24-41. MR0036777, Zbl 0039.02902. 815

[7] Duke, William. Continued fractions and modular functions. *Bull. Amer. Math. Soc.* 42 (2005), no. 2, 137–162. MR2133308, Zbl 1109.11026, doi: 10.1090/S0273-0979-05-01047-5. 788, 805

[8] Hasse, Helmut. Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil I: Klassenkörpertheorie. Jahresbericht
der Deutschen Mathematiker-Vereinigung 35 (1926), 1-55; reprinted by Physica-Verlag, Würzburg-Vienna, 1965, iv + 135 pp. ISBN 3-7908-0010-4. MR0195847, JFM 52.1050.19, doi: 10.1007/978-3-662-39429-8. 789

[9] Hasse, Helmut. Ein Satz über die Ringklassenkörper der komplexen Multiplikation, Monatshefte für Mathematik und Physik 38 (1931), 323-330. Reprinted in Helmut Hasse Mathematische Abhandlungen, Bd. 2, paper 36, pp. 61-68, Walter de Gruyter, Berlin, 1975, ISBN 3-11-005931-2. MR1549921, Zbl 0002.33101, doi: 10.1007/BF01700703. 789

[10] Lavallee, Melisa J.; Spearman, Blair K.; Williams, Kenneth S. Watson’s method of solving a quintic equation. JP J. Algebra, Number Theory Appl. 5 (2005), no. 1, 49–73. MR2140318, Zbl 1102.12001. 795

[11] Morton, Patrick. Explicit identities for invariants of elliptic curves. J. Number Theory 120 (2006), no. 2, 234–271. MR2257546, Zbl 1193.11062, doi: 10.1016/j.jnt.2005.12.008. 799, 803

[12] Morton, Patrick. Solutions of the cubic Fermat equation in ring class fields of imaginary quadratic fields (as periodic points of a 3-adic algebraic function). Int. J. Number Theory 12 (2016), no. 4, 853–902. MR3484288, Zbl 06580489, arXiv:1410.6798, doi: 10.1142/S179304211650055X. 791, 798, 803

[13] Morton, Patrick. Solutions of diophantine equations as periodic points of p-adic algebraic functions. I. New York J. Math. 22 (2016), 715–740. MR3548120, Zbl 1419.11059. 790, 813, 814

[14] Morton, Patrick. Solutions of diophantine equations as periodic points of p-adic algebraic functions, II: The Rogers-Ramanujan continued fraction. New York J. Math. 25 (2019), 1178–1213. MR4028831, Zbl 1441.11064. 788, 789, 790, 794, 807, 809, 810, 815

[15] Morton, Patrick. Product formulas for the 5-division points on the Tate normal form and the Rogers-Ramanujan continued fraction. J. Number Theory 200 (2019), 380–396. MR3944443, Zbl 07038702, doi: 10.1016/j.jnt.2018.12.013. 800

[16] Morton, Patrick. Periodic points of algebraic functions and Deuring’s class number formula. Ramanujan J. 50 (2019), no. 2, 323–354. MR4022234, Zbl 07140967, doi: 10.1007/s11139-018-0120-x. 790, 815

[17] Morton, Patrick. On the Hasse invariants of the Tate normal forms E_5 and E_7. J. Number Theory 218 (2021), 234–271. MR4157698, Zbl 07257228, doi: 10.1016/j.jnt.2020.07.008. 803, 804

[18] Prestel, Alexander; Ziegler, Martin. Model-theoretic methods in the theory of topological fields. J. Reine Angew. Math. 299(300) (1978), 318–341. MR0491852, Zbl 0367.12014. 795

[19] Schertz, Reinhard. Complex multiplication. New Mathematical Monographs, 15. Cambridge University Press, Cambridge, 2010. xiv+361 pp. ISBN: 978-0-521-76668-5. MR2641876, Zbl 1203.11001. 789

[20] Södingen, Heinz. Zur komplexen Multiplikation. Math. Ann. 111 (1935), no. 1, 302–328. MR1512998, Zbl 0012.09002, JFM 61.0169.02, doi: 10.1007/BF01472223. 789

[21] Stevenhagen, Peter. Hilbert’s 12th problem, complex multiplication and Shimura reciprocity. Class field theory—its centenary and prospect (Tokyo, 1998), 161–176, Adv. Stud. Pure Math., 30. Math. Soc. Japan, Tokyo, 2001. MR1846457, Zbl 1097.11535. 789

[22] Yi, Jinhee. Modular Equations for the Rogers-Ramanujan Continued Fraction and the Dedekind Eta-Function, Ramanujan J. Math. 5 (2001), 377–384. MR1891418, Zbl 1043.11041, doi: 10.1023/A:1013991704758. 810
