Nitrogen Dioxide Sensing Using Multilayer Structure of Reduced Graphene Oxide and α-Fe$_2$O$_3$

Tadeusz Pisarkiewicz 1, Wojciech Maziarz 1, Artur Małolepszy 2, Leszek Stobiński 2, Dagmara Michon 1, Aleksandra Szkudlarek 3, Marcin Pisarek 4, Jarosław Kanak 1 and Artur Rydosz 1,*

1 Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; pisar@agh.edu.pl (T.P.); maziarz@agh.edu.pl (W.M.); dagmaramichon@agh.edu.pl (D.A.M.); kanak@ichf.edu.pl (J.K.)
2 Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryński 1, 00-645 Warsaw, Poland; artur.malolepszy@pw.edu.pl (A.M.); lstob50@hotmail.com (L.S.)
3 Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; aleszku@agh.edu.pl
4 Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; mpisarek@agh.edu.pl
* Correspondence: rydosz@agh.edu.pl

Abstract: Multilayers consisting of graphene oxide (GO) and α-Fe$_2$O$_3$ thin layers were deposited on the ceramic substrates by the spray LbL (layer by layer) coating technique. Graphene oxide was prepared from graphite using the modified Hummers method. Obtained GO flakes reached up to 6 nanometers in thickness and 10 micrometers in lateral size. Iron oxide Fe$_2$O$_3$ was obtained by the wet chemical method from FeCl$_3$ and NH$_4$OH solution. Manufactured samples were deposited as 3 LbL (GO and Fe$_2$O$_3$ layers deposited sequentially) and 6 LbL structures with GO as a bottom layer. Electrical measurements show the decrease of multilayer resistance after the introduction of the oxidizing NO$_2$ gas to the ambient air atmosphere. The concentration of NO$_2$ was changed from 1 ppm to 20 ppm. The samples changed their resistance even at temperatures close to room temperature, however, the sensitivity increased with temperature. Fe$_2$O$_3$ is known as an n-type semiconductor, but the rGO/Fe$_2$O$_3$ hybrid structure behaved similarly to rGO, which is p-type. Both chemisorbed O$_2$ and NO$_2$ act as electron traps decreasing the concentration of electrons and increasing the effective multilayer conductivity. An explanation of the observed variations of multilayer structure resistance also the possibility of heterojunctions formation was taken into account.

Keywords: graphene oxide; reduced graphene oxide; α-Fe$_2$O$_3$/rGO multilayer; NO$_2$ sensing

1. Introduction

Nitrogen dioxide is a typical air pollutant, being a component of motor vehicle exhaust gas and is also generated in the house and industrial combustion processes. High-temperature combustion leads to an increase in NOx emissions. The early applications of NOx detectors for diesel engine exhausts utilized dense zirconia-based electrolytes. It is shown in more recent investigations of nitrogen oxide sensors that good results can be obtained by integrating the sensor with NOx trap materials [1] or by the use of LaSrMnO$_3$ type perovskite electrodes [2]. However, the sensors connected with vehicles exhaust work at elevated temperatures, frequently exceeding 300 °C. Exposures to NO$_2$ are also dangerous for the respiratory system; the presence of nitrogen dioxide in the atmosphere is a cause of photochemical smog and acid rains. Manufacturing of inexpensive NO$_2$ sensors working at low temperatures is therefore of high importance.

One of the materials recently investigated in gas sensors technology is graphene and structures based on graphene. There are many attempts to increase the sensitivity of graphene-based sensors in view of interaction with the ambient gas atmosphere, enabling practical applications. Pure monolayer graphene with a large surface area and...
a high conductivity is a good candidate for high-performance gas sensors. However, its production methods as epitaxial growth or chemical vapor deposition, are known as cost-prohibitive with small-scale yield. Modified graphene materials, i.e., graphene oxide (GO) or its reduced form (rGO), can be much easier manufactured, and their specific properties caused by lattice defects connected with, e.g., oxygen functional groups enhance absorption of ambient gas molecules. Increased sensitivity of rGO can be obtained by hybridization of this material with typical in gas sensor technology metal oxides (MOX), as SnO$_2$ [3–5], WO$_3$ [6,7], TiO$_2$ [8,9], In$_2$O$_3$ [10], and ZnO [11,12]. One observes also hybridization of rGO with metal disulfides, as MoS$_2$ [13–15] and WS$_2$ [16], conducting polymers (graphene/PANI [17]) or with metal nanoparticles like Cu [18], Pt [19], Pd [20], and Pd-Pt [21]. It was also discovered that the working temperature of graphene/metal oxide sensors was lower than that of MOX sensors and sometimes can even reach room temperature (RT) [22–25]. Good sensitivity of GO to acetone at room temperature was obtained recently by using a microwave-based gas sensor realized as a coupled-line section covered with a graphene oxide film [26].

Another gas-sensitive oxide, α-Fe$_2$O$_3$ (hematite), is recently investigated as a NO$_2$ sensor [27] but more frequently in the form of a nanocomposite with rGO [28–30]. The nanocomposites of α-Fe$_2$O$_3$/rGO are also used in detection of acetone [31,32], ethanol [33,34], and ethylene [35]. Among all crystal phases of iron oxide, essentially α-Fe$_2$O$_3$ is used in gas sensors technology. This phase is the most stable, environmentally friendly, sensitive, and easy in preparation. Mesoporous α-Fe$_2$O$_3$ samples with a large specific surface area were obtained with the use of templates [36,37]. Comparison of sensitivities for α-Fe$_2$O$_3$ and γ-Fe$_2$O$_3$ phases and their mixture is analyzed in [38].

Sensors of NO$_2$ based on hematite, as can be inferred from the literature (e.g., see discussion in [27]), work at rather elevated temperatures of order 200 °C. In comparison to pure hematite, improved sensing properties vs. NO$_2$ were obtained in hybrid nanocomposites rGO/Fe$_2$O$_3$ obtained by a facile hydrothermal method [28]. The enhanced response of the nanocomposite at RT was 3.86, compared to 1.38 for pure rGO. In [29] graphene-encapsulated α-Fe$_2$O$_3$ hybrids were investigated. The samples revealed good NO$_2$ sensing properties at RT with the response time of order a few minutes. In this case, the hybrid was obtained by the hydrolysis of Fe$^{3+}$ ions in the colloidal solution of GO and following hydrothermal procedure. The hydrothermal synthesis at 120 °C was applied by the authors of [30] to manufacture α-Fe$_2$O$_3$/rGO nanocomposites. In effect, nanosphere-like α-Fe$_2$O$_3$ of 40–50 nm diameters and single intercalated sheets of rGO were obtained.

In the present work, α-Fe$_2$O$_3$ and rGO were obtained separately and deposited on the substrate in the form of a multilayer by the spray method. Such a deposition method allowed for easy formation of slits and pores between the GO sheets, making diffusion of the ambient gas easier. Good sensitivity to NO$_2$ was also obtained at temperatures close to RT but with quite high response and recovery times.

2. Materials and Methods

2.1. Sample Preparation

Graphene oxide (GO) was prepared using a wet chemical method from graphite (modified Hummers method). Obtained flakes consisted of 6–7 graphene layers with a total thickness of ca. 6 nm and reached the lateral size up to a few micrometers (manufacturing procedure of GO and rGO is described in detail in [39]). Ferric oxide α-Fe$_2$O$_3$ was also obtained by the wet chemical method as follows: to 100 mL of 0.1 M FeCl$_3$, 300 mL of 0.1 M NH$_4$OH solution was added. An obtained reddish brown suspension was heated for 60 min at 100 °C. The precipitate was washed with warm water on a filter with pore size of 0.2 μm. Both GO and Fe$_2$O$_3$ were deposited on the substrate by spraying, as is schematically illustrated in Figure 1.
The GO/Fe$_2$O$_3$ multilayer structure was deposited by LbL (layer by layer) coating technique using alumina substrate with interdigitated Au electrodes manufactured in thick film technology. Separation between electrodes was 0.3 mm. The geometry of electrodes with adequate masking enabled the deposition of two different structures with, e.g., different thicknesses. For investigations, two kinds of samples were prepared: 3 LbL structure consisting of 3 layers (Fe$_2$O$_3$-GO-Fe$_2$O$_3$) and 6 LbL structure (3 Fe$_2$O$_3$ and 3 GO layers) with Fe$_2$O$_3$ layer always on top.

2.2. Electrical Measurements

Measurements of sensor resistance were performed in conditions of selected temperature, humidity, and ambient atmosphere composition. The high-quality equipment (electrometer, current and voltage sources, scanners, mass flow controllers) of Agilent (Agilent Technologies, Santa Clara, CA, USA), Keithley (Keithley Instruments Inc., Cleveland, OH, USA) and MKS (MKS Instruments, Andover, MA, USA) manufacturers was used. The measurement chamber contained the sample, Pt 100 temperature probe and digital humidity sensor. The current was measured by an electrometer working in a constant voltage mode. Measurements of resistance varying in a range over nine orders of magnitude were possible. The temperature inside the chamber was changed by applying the voltage from an additional power source. All devices were controlled from the LabView custom application of Agilent Technologies interface card. The required NO$_2$ gas concentration was obtained by controlling the ratio of gas to airflow rates. The humidity of the gas atmosphere was always kept constant with RH = 50% (detailed description of the measurement setup is given in [40]).
3. Results and Discussion

3.1. Structural and Morphological Characteristics

TEM measurements were performed with the help of high resolution scanning electron microscope HITACHI S-5500 (HITACHI Ltd., Tokyo, Japan) in a transmission mode. An example of a TEM image for the GO sample is shown in Figure 2a. Different transparencies for attenuated electron beams were caused by the stacking nanostructure of the investigated layers. Dark areas indicate the overlap of several layers. SEM pictures were obtained with the help of FEI Versa 3D Dual Beam microscope (Thermo Fisher Scientific, Waltham, MA, USA). In Figure 2b, one can see the flakes of GO sample deposited on Si/SiO₂ substrate.

Figure 2. (a) TEM and (b) SEM image of GO flakes.

In the image of GO/Fe₂O₃ nanostructure, Figure 3a, one can see both gray areas of GO flakes and white spots of Fe₂O₃ nanoparticles of average dimension ca 100 nm, covering GO flakes. The XRD patterns, Figure 3b, were obtained by using an XRD diffractometer Bruker AXS D8 Advance Cr (Kα 2.2910 Å) (Bruker AXS GmbH, Karlsruhe, Germany) with vanadium filter 0.015 mm. Observed peaks belong to the crystal planes of the hematite phase, which can be indexed to the rhombohedral structure of α-Fe₂O₃ and their positions are in accordance with JCPDS 86-0550 card. Analysis of the X-ray reflectivity for GO/Fe₂O₃ nanostructure enabled the determination of its thickness, equal 47.5 nm, and the RMS of surface roughness, 1.42 nm.
Figure 3. (a) SEM image of GO/α-Fe₂O₃ structure, (b) X-ray diffraction pattern for α-Fe₂O₃, (c) X-ray reflectivity pattern for GO/α-Fe₂O₃.

3.2. Chemical Composition

The surface chemistry of investigated samples was analyzed using X-ray photoelectron spectroscopy. A Microlab 350 (Thermo Electron, VG Scientific) spectrometer with non-monochromatic Al Kα radiation (hν = 1486.6 eV, power 300 W, voltage 15 kV) was used for this purpose. The analyzed area was 2 × 5 mm. The hemispherical analyzer was used for collecting the high-resolution (HR) XPS spectra with the following parameters: pass energy 40 eV, energy step size 0.1 eV. The collected XPS spectra were fitted using the Avantage software (version 5.9911, Thermo Fisher Scientific), where a Smart function of background subtraction was used to obtain XPS signal intensity and an asymmetric Gaussian/Lorentzian mixed-function was applied. The position of the carbon C1s peak was assumed to be at 284.4 eV and used as an internal standard to determine the binding energy of other photoelectron peaks. XPS spectra for GO/Fe₂O₃ structure are shown in Figure 4 and for rGO/Fe₂O₃ structure in Figure 5.
energy of other photoelectron peaks. XPS spectra for GO/Fe$_2$O$_3$ structure are shown in Figure 4 and for rGO/Fe$_2$O$_3$ structure in Figure 5.

Figure 4. XPS spectra for GO/Fe$_2$O$_3$ multilayer: (a) wide scan, (b) HR O1s, (c) HR C1s, (d) HR Fe2p.

A significant decrease of oxygen content in the samples after reduction is seen from the comparison of Figures 4 and 5. The percent concentrations of oxygen-containing bonds C-O and C=O in both kinds of samples are collected in Table 1. In particular, the decrease in C-O bonds is clearly seen after thermal reduction (decrease from 34.2% to 20.5%). Similar observations are reported by other investigators of rGO/α-Fe$_2$O$_3$ composites, [28,32].

Table 1. The percent contents of C1s chemical bonds in GO/F$_2$O$_3$ and rGO/Fe$_2$O$_3$ samples. The results are normalized to 100% for the C1s peak.

Sample	Chemical bonds	C-C (284.4 eV)	C-O (286.4 eV)	C=O (287.9 eV)	O=C-OH (289.5 eV)	O=C-O(O) (291.0 eV)
GO/Fe$_2$O$_3$		54.9%	34.2%	8.9%	2.0%	-
rGO/Fe$_2$O$_3$		62.2%	20.5%	9.3%	5.6%	2.4%

The recorded XR-XPS spectra of Fe2p revealed the chemical state of iron. Two wide peaks for both structures, located at the binding energies of ca. 711.0 eV and ca. 725.0 eV for Fe2p$_{3/2}$ and Fe2p$_{1/2}$, respectively, are characteristic for Fe$^{3+}$ species in α-Fe$_2$O$_3$, which is in good agreement with other reports, e.g., [29,31].

3.3. Gas Sensing Properties

Measurements of resistance for GO/Fe$_2$O$_3$ multilayers in response to oxidizing NO$_2$ atmosphere indicate that the structures behave as p-type semiconductors (under oxidizing atmosphere resistance of the sample decreases). Calculated gas response defined as S.

Figure 5. XPS spectra for rGO/Fe$_2$O$_3$ multilayer: (a) wide scan, (b) HR O1s, (c) HR C1s, (d) HR Fe2p.
A significant decrease of oxygen content in the samples after reduction is seen from the comparison of Figures 4 and 5. The percent concentrations of oxygen-containing bonds C-O and C=O in both kinds of samples are collected in Table 1. In particular, the decrease in C-O bonds is clearly seen after thermal reduction (decrease from 34.2% to 20.5%). Similar observations are reported by other investigators of rGO/α-Fe₂O₃ composites, [28,32].

Table 1. The percent contents of C1s chemical bonds in GO/Fe₂O₃ and rGO/Fe₂O₃ samples. The results are normalized to 100% for the C1s peak.

Sample	Chemical Bonds	Chemical Bonds			
GO/Fe₂O₃	C-C (284.4 eV)	C-O (286.4 eV)	C=O (287.9 eV)	O=C-OH (289.5 eV)	
	54.9%	34.2%	8.9%	2.0%	
rGO/Fe₂O₃	C-C (284.4 eV)	C-O (285.9 eV)	C=O (287.5 eV)	O=C-OH (289.0 eV)	O=C-O(O) (291.0 eV)
	62.2%	20.5%	9.3%	5.6%	2.4%

The recorded XR-XPS spectra of Fe2p revealed the chemical state of iron. Two wide peaks for both structures, located at the binding energies of ca. 711.0 eV and ca. 725.0 eV for Fe2p3/2 and Fe2p1/2, respectively, are characteristic for Fe³⁺ species in α-Fe₂O₃, which is in good agreement with other reports, e.g., [29,31].

3.3. Gas Sensing Properties

Measurements of resistance for GO/Fe₂O₃ multilayers in response to oxidizing NO₂ atmosphere indicate that the structures behave as p-type semiconductors (under oxidizing atmosphere resistance of the sample decreases). Calculated gas response defined as $S = (R_a - R_g)/R_a$ where R_a and R_g are the sensor resistances in air and NO₂, respectively, indicate that the structures are sensitive even at temperatures as low as 30 °C (Figure 6a,b). With increasing working temperature, the response also increased, as is shown for the structure GO/Fe₂O₃ 6 LbL with an increased number of layers, Figure 6c. As can be noticed, an increase in the number of layers in the structure does not influence the response remarkably. Variation of the baseline resistance with time at a constant NO₂ concentration is shown in Figure 6d, and the comparison of sensitivities for the 6LbL multilayer and the single rGO layer is shown in Figure 6e.

The selectivity of GO/Fe₂O₃ 6LbL structure was tested by exposing the sensor to different interference gases, both oxidizing and reducing, as shown in Figure 7. Comparing the response to acetone (1.2% at 25 ppm) and hydrogen (0.9% at 50 ppm) with that to NO₂, one can summarize that the influence of the tested interference gases is negligible. However, the influence of humidity on the sensor response is remarkable and is clearly seen at elevated temperatures. The example measurements of that response at 90 °C in a wide range of RH is shown in Figure 7b. The results indicate that both the increase and decrease of RH in comparison to 50% give variations of the response not higher than ±5%.

The response and recovery times of the structures are high, especially in the low operation temperature range. With increasing working temperature, these times significantly decreased, as shown in Figure 8 and Table 2.
Figure 6. (a) Variation of resistance with time for GO/Fe$_2$O$_3$ 3LbL structure with increasing NO$_2$ concentration at the temperature of 30 °C with a calculated response of this structure for increasing NO$_2$ concentration (b); (c) variation of resistance for GO/Fe$_2$O$_3$ 6 LbL structure with changing sensor temperature at 4 ppm NO$_2$ and (d) at 20 ppm NO$_2$ at a constant temperature 30 °C; (e) comparison of responses for samples GO/Fe$_2$O$_3$ 6 LbL and single rGO layer with increasing measurement temperature at 4 ppm NO$_2$.

The selectivity of GO/Fe$_2$O$_3$ 6LbL structure was tested by exposing the sensor to different interference gases, both oxidizing and reducing, as shown in Figure 7. Comparing...
Figure 7. (a) The response of GO/Fe$_2$O$_3$ 6LbL structure to different gases at room temperature and (b) variation of this response with the change of relative humidity at 90 °C.

Figure 8. Response and recovery times vs. temperature for the sample shown in Figure 6c.
Table 2. Variation of response and recovery times with temperature for sample GO/Fe$_2$O$_3$ 6 LbL.

Temperature (°C)	Response Time t_{res} (min)	Recovery Time t_{rec} (min)	t_{rec}/t_{res}
43	45	104	2.31
86	14	84	6
143	1	50	50
211	0.67	21	31.3

3.4. Gas Sensing Mechanism

Fe$_2$O$_3$ is known as an n-type semiconductor, but the rGO/Fe$_2$O$_3$ hybrid structure behaves similarly to p-type rGO. Both chemisorbed O$_2$ and NO$_2$ act as electron traps decreasing the concentration of electrons. This is clearly seen in rGO in the decrease of resistance (hole density increases). Pure Fe$_2$O$_3$ is nearly insensitive to NO$_2$, but in rGO/Fe$_2$O$_3$ composition, NO$_2$ reacts with O$_2$− adsorbed on Fe$_2$O$_3$ surface, forming an intermediate NO$_3$− complex as suggested in [30]

$$2\text{NO}_2 (\text{gas}) + \text{O}_2^- (\text{ads}) + \text{e}^- \rightarrow 2\text{NO}_3^- (\text{ads})$$

As a result, the unbalance of charge on the surface of Fe$_2$O$_3$ is compensated by transferring additional electrons from rGO to Fe$_2$O$_3$ surface, which results in additional holes in rGO, Figure 9, and then the increase in conductivity.

![Figure 9](image)

Figure 9. Interaction of NO$_2$ gas with oxygen adsorbed on Fe$_2$O$_3$ surface can effectively increase the concentration of holes in rGO.

In Table 2, O$_3$ on the increased sensitivity to NO$_2$ can be understood from Figure 10. At the interface between rGO flakes and Fe$_2$O$_3$ grains, the p-n heterojunctions can be formed. The numerical value of work function for rGO was taken from [41], and the energy gap was evaluated from [42] for oxygen content in rGO equal O/C = 10%, as previously determined in elemental composition experiments [40]. The work function for Fe$_2$O$_3$ was taken from Guo et al. [31]. The difference in work functions of both materials causes the transfer of electrons from rGO to Fe$_2$O$_3$ and holes in the opposite direction. In effect, the hole accumulation region is formed on the p-rGO side. The concentration of holes in the accumulation layer on the p-side increases additionally after interaction with NO$_2$, leading to the increased conductivity of GO flakes in the presence of NO$_2$ gas, as schematically shown in Figure 11.
4. Conclusions

Among air pollutants, NO$_2$ is one of the most harmful gases, and measurements of its concentration with the help of inexpensive chemoresistive structures with very small power consumption are of great importance. In contrary to the pure Fe$_2$O$_3$ with small sensitivity to NO$_2$ in the low-temperature range, rGO/Fe$_2$O$_3$ multilayer structures indicated good sensitivity to low concentrations of NO$_2$ in the ambient air, going down to 1 ppm. Both materials of the structure were easily obtained by the wet chemical method and were sprayed on the substrate to form the needed composition. The sensitivity of the multilayer increased with temperature. Response time of order 1 min was possible to obtain at temperatures below 150 °C, but the recovery time was still high, of order tens

![Diagram of energy bands of p-rGO and n-Fe$_2$O$_3$ before and after contact with the formation of a p-n heterojunction.](image)

![Interaction of Fe$_2$O$_3$ grains with rGO flakes leading to the formation of hole accumulation regions in rGO flakes.](image)
of minutes. An increase in the number of layers of the structure did not influence the response remarkably. The sensing behavior of the multilayer structure was explained by both individual interactions of constituting materials with the ambient oxidizing gas and by the formation of heterojunctions at the contact regions of GO and Fe$_2$O$_3$.

Author Contributions: Conceptualization and methodology, T.P., L.S., and A.R.; writing original draft, T.P.; measurements, W.M., A.S.; M.P., and J.K., sample preparation, A.M.; review and editing, A.R., D.A.M., and A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data Availability on request.

Acknowledgments: This work was supported by the National Science Centre, Poland NCN UMO-2016/23/B/ST7/00894 and National Science Centre, NCN Poland 2017/26/D/ST7/00355.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Geupel, A.; Schönauer, D.; Röder-Roith, U.; Kubinski, D.J.; Mulla, S.; Ballinger, T.H.; Chen, H.-Y.; Visser, J.H.; Moos, R. Integrating nitrogen oxide sensor: A novel concept for measuring low concentrations in the exhaust gas. *Sens. Actuators B Chem.* 2010, 145, 756–761. [CrossRef]

2. Pal, N.; Murray, E. Dense LaSrMnO$_3$ composite electrodes for NOx sensing. *Sens. Actuators B Chem.* 2018, 256, 351–358. [CrossRef]

3. Liu, S.; Wang, Z.Y.; Zhang, Y.; Li, J.C.; Zhang, T. Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensitivity performances. *Sens. Actuators B Chem.* 2016, 228, 134–143. [CrossRef]

4. Feng, Q.; Li, X.; Wang, J. Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO$_2$ composite based sensor. *Sens. Actuators B Chem.* 2017, 243, 1115–1126. [CrossRef]

5. Xiao, Y.; Yang, Q.; Wang, Z.; Zhang, R.; Gao, Y.; Sun, P.; Sun, Y.; Lu, G. Improvement of NO$_2$ gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. *Sens. Actuators B Chem.* 2016, 227, 419–426. [CrossRef]

6. Punetha, D.; Kumar Pandey, S. Sensitivity Enhancement of Ammonia Gas Sensor Based on Hydrothermally Synthesized rGO/WO$_3$ Nanocomposites. *IEEE Sens. J.* 2020, 20, 1738–1745. [CrossRef]

7. Srivastava, S.; Jain, K.; Singh, V.N.; Singh, S.; Vijayan, N.; Dilawar, N.; Gupta, G.; Senguttuvan, T.D. Faster response of NO$_2$ sensing in graphene–WO$_3$ nanocomposites. *Nanotechnology* 2012, 23, 205501. [CrossRef]

8. Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natlile, M.M.; Comini, E.; Nematov, S.; Sberveglieri, G. Reduced Graphene Oxide–TiO$_2$ Nanotube Composite: Comprehensive Study for Gas-Sensing Applications. *ACS Appl. Nano Mater.* 2018, 1, 7098–7105. [CrossRef]

9. Lin, W.-D.; Liao, C.-T.; Chang, T.-C.; Chen, S.-H.; Wu, R.-J. Humidity sensing properties of novel graphene/TiO$_2$ composites by sol–gel process. *Sens. Actuators B Chem.* 2015, 209, 555–561. [CrossRef]

10. Gu, F.; Nie, R.; Han, D.; Wang, Z. In$_2$O$_3$–graphene nanocomposite based gas sensor for selective detection of NO$_2$ at room temperature. *Sens. Actuators B Chem.* 2015, 219, 94–99. [CrossRef]

11. Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO$_2$ gas sensing performances at room temperature based on reduced graphene oxide–ZnO nanoparticles hybrids. *Sens. Actuators B Chem.* 2014, 202, 272–278. [CrossRef]

12. Ugale, A.D.; Umarji, G.G.; Jung, S.H.; Deshpande, N.G.; Lee, W.; Cho, H.K.; Yoo, J. ZnO decorated flexible and strong graphene fibers for sensing NO$_2$ and H$_2$S at room temperature. *Sens. Actuators B Chem.* 2020, 308, 127690. [CrossRef]

13. Wang, Z.; Zhang, T.; Zhao, C.; Han, T.; Fei, T.; Liu, S.; Lu, G. Rational synthesis of molybdenum disulfide nanoparticles decorated reduced graphene oxide hybrids and their application for high-performance NO$_2$ sensing. *Sens. Actuators B Chem.* 2018, 260, 508–518. [CrossRef]

14. Zhou, Y.; Liu, G.; Zhu, X.; Guo, Y. Ultrasensitive NO$_2$ gas-sensing based on rGO/MoS$_2$ nanocomposite film at low temperature. *Sens. Actuators B Chem.* 2017, 251, 280–290. [CrossRef]

15. Hou, X.; Wang, Z.; Fan, G.; Ji, H.; Yi, S.; Li, T.; Wang, Y.; Zhang, Z.; Yuan, L.; Zhang, R.; et al. Hierarchical three-dimensional MoS$_2$/GO hybrid nanostructures for trimethylamine-sensing applications with high sensitivity and selectivity. *Sens. Actuators B Chem.* 2020, 317, 128236. [CrossRef]

16. Wang, X.; Gu, D.; Li, X.; Lin, S.; Zhao, S.; Kovalenko, V.V.; Gaskov, A.M. Reduced graphene oxide hybridized with WS$_2$ nanoflakes based heterojunctions for selective ammonia sensors at room temperature. *Sens. Actuators B Chem.* 2019, 282, 290–299. [CrossRef]

17. Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Room Temperature Methane Sensor Based on Graphene Nanosheets/Polyaniline Nanocomposite Thin Film. *IEEE Sens. J.* 2012, 13, 777–782. [CrossRef]

18. Gil Na, H.; Cho, H.Y.; Kwon, Y.J.; Kang, S.Y.; Lee, C.; Jung, T.K.; Lee, H.-S.; Kim, H.W. Reduced graphene oxide functionalized with Cu nanoparticles: Fabrication, structure, and sensing properties. *Thin Solid Films.* 2015, 588, 11–18. [CrossRef]
