Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

John Hartung,‡ Peter K. Dornan,‡ and Robert H. Grubbs

Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125

rhg@caltech.edu

Supporting Information
Table of Contents

General Information..S3
Resolution of *rac-5*..S4
Synthesis of Substrates for AROCM..S5
General Procedure and Characterization Data for AROCM Products..S5
Synthesis of Complexes 6c-l..S13
Substrates for ARCM...S14
General Procedure and Characterization Data for ARCM Products...S23
Absolute Configuration Determination for ARCM Product 14...S24
Tentative Model for Enantioinduction in ARCM...S33
Procedure and Characterization Data for ACM...S34
Optimization Table for ACM..S35
NMR Spectra..S36
General Information.

All reactions were carried out in dry glassware under an Argon atmosphere using standard Schlenk line techniques or in a Vacuum Atmospheres glovebox under nitrogen atmosphere. All solvents were purified by passage through solvent purification columns and further degassed with Argon.\(^1\) NMR solvents for air-sensitive compounds were degassed by sparging with nitrogen and passed through a solvent purification column prior to use. Commercially available reagents were used as received unless otherwise noted. Substrates in the liquid state were degassed with Argon and passed through a plug of neutral alumina prior to use. Solid substrates were used after purification by silica gel column chromatography. Silica gel used for the purification of transition metal complexes was dried at 220 °C and 100 mTorr for 24 h prior to use.

Standard NMR spectroscopy experiments were conducted on a Varian INOVA 500 (\(^1\)H: 500 MHz, \(^1\)C: 125 MHz) spectrometer. Chemical shifts are referenced to the residual solvent peak (CDCl\(_3\) or C\(_6\)D\(_6\)) multiplicity is reported as follows: (s: singlet, d: doublet, t: triplet, q: quartet, br: broad, m: multiplet). Spectra were analyzed and processed using MestReNova.

Gas chromatography data was obtained using an Agilent 6850 FID gas chromatograph equipped with an Agilent HP-5 5% phenyl methyl siloxane capillary column (J&W Scientific). GC instrument conditions: Inlet temperature-

\(^1\) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J., *Organometallics* **1996**, *15*, 1518-1520.
250 °C; Detector temperature- 300 °C; Hydrogen flow- 30 mL/min; Air flow- 400 mL/min; Makeup flow- 25 mL/min. GC method: 50 °C for 1 min, then temperature ramp (35 °C/min) for 7 min to 300 °C followed by an isothermal period at 300 °C for 3 min.

High-resolution mass spectra (HRMS) data was obtained on a JEOL MSRoute mass spectrometer using FAB+, EI+, or MALDI-TOF methods.

Analytical SFC data was obtained on a Mettler SFC supercritical CO₂ analytical chromatography system equipped with Chiracel OD-H, OJ–H or Chirapak AD-H columns (4.6 mm x 25 cm). Column temperature was maintained at 40°C. Preparative HPLC was conducted on an Agilent HPLC system equipped with Chiral Technologies Chiralpak AD-H column (21 x 250 mm). Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm.

Resolution of Complex rac-5

Complex *rac-5* was resolved according to the procedure previously reported. A modification of the original procedure is described herein. The mixture of diastereomers *6a* and *6b* (0.260 g, 0.349 mmol) was triturated with 1:1 Et₂O/pentane (5 x 3 mL) at 23°C under a N₂ atmosphere. The remaining solid was dried under vacuum and assayed by¹H NMR (>95% de *6a*, 100 mg, 0.136 mmol, 77% of theoretical yield).

²Hartung, J.; Grubbs, R. H. *J. Am. Chem. Soc.* **2013**, *135*, 10183-10185.
Synthesis of Substrates for AROCM

Substrates for AROCM were synthesized as previously reported in the literature: 9d, 3e, 4 were synthesized according to the provided references.

General Procedure for AROCM

In a glovebox, alkene 9d (40 mg, 0.2 mmol, 1 equiv) and allyl acetate (140 mg, 1.4 mmol, 7 equiv) were dissolved in 0.4 mL THF. To this solution was added catalyst 5 (1.27 mg, 0.002 mmol). The reaction vial was capped and stirred for 1 h and then quenched with an excess of ethyl vinyl ether. The reaction mixture was concentrated and conversion was determined by 500 MHz 1H NMR. The crude was subjected to flash chromatography or preparative TLC to afford the desired ARCM product (11d, 33 mg, 56% yield, 15:85 Z/E ratio, 94% ee (Z), 93% ee (E)). Pure products were submitted to analytical SFC to determine ee.

Characterization Data for AROCM Products

Z-11d.

56% combined (E and Z products) yield, 15:85 Z/E ratio (GC).

3 La, D. S.; Sattely, E. S.; Ford, J. G.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 7767-7778.
4 Coe, J. W.; Wirtz, M. C.; Bashore, C. G.; Candler, J. Org. Lett. 2004, 6, 1589-1592.
\([\alpha]_D^{25} = -23.9^\circ \text{ (c = 0.21, CHCl}_3)\); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.35 – 7.24 (m, 5H), 5.99 (ddd, \(J = 17.1, 10.2, 8.2\) Hz, 1H), 5.90 – 5.83 (m, 1H), 5.55 (dtd, \(J = 11.1, 7.0, 1.0\) Hz, 1H), 5.08 (ddd, \(J = 17.2, 2.1, 1.0\) Hz, 1H), 5.02 (ddd, \(J = 10.2, 2.0, 0.8\) Hz, 1H), 4.62 (dt, \(J = 7.1, 1.1\) Hz, 2H), 4.55 (d, \(J = 11.7\) Hz, 1H), 4.50 (d, \(J = 11.7\) Hz, 1H), 3.76 (t, \(J = 4.1\) Hz, 1H), 2.91 (qd, \(J = 9.1, 4.3\) Hz, 1H), 2.62 (qd, \(J = 8.6, 3.9\) Hz, 1H), 2.06 (s, 2H), 1.82 (dq, \(J = 9.4, 6.9\) Hz, 3H), 1.75 – 1.67 (m, 1H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 139.25, 139.09, 136.26, 128.34, 127.74, 127.52, 123.45, 115.04, 86.93, 73.76, 60.77, 50.32, 43.45, 30.53, 30.11, 28.99, 21.14. HRMS (FAB+) calculated for C\(_{19}\)H\(_{24}\)NaO\(_3\) [M+Na]: 323.1623; found 323.1627.

Separation conditions: OJ-H, 1% IPA, 2.5 mL/min. 94% ee

Racemate:

![Graph of racemate separation](image1)

Signal 1: DAD1 A, Sig=210,8 Ref=360,100

#	RetTime	Type	Width	Area	Height	Area
1	11.035	BV	0.2512	2302.19849	137.56712	50.2543
2	11.905	VV	0.2763	2278.89893	127.66735	49.7457

Totals : 4581.09741 265.23447

Enantioenriched:

![Graph of enantioenriched separation](image2)
E-11d.

$[\alpha]_D^{25} = -1.1^\circ$ (c = 0.67, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.40 – 7.23 (m, 5H), 6.07 – 5.97 (m, 1H), 5.95 – 5.88 (m, 1H), 5.61 (dt, $J = 15.8$, 6.4 Hz, 1H), 5.09 (d, $J = 17.3$ Hz, 1H), 5.03 (dd, $J = 10.4$, 1.9 Hz, 1H), 4.57 (d, $J = 11.9$ Hz, 1H), 4.54 – 4.51 (m, 2H), 4.49 (dd, $J = 11.8$, 1.5 Hz, 1H), 3.79 (t, $J = 4.3$ Hz, 1H), 2.62 (dt, $J = 9.7$, 4.6 Hz, 2H), 2.05 (d, $J = 1.5$ Hz, 3H), 1.87 – 1.75 (m, 4H). 13C NMR (125 MHz, CDCl$_3$) δ 139.37, 139.10, 136.73, 128.31, 127.82, 127.53, 124.18, 114.96, 86.98, 73.70, 65.35, 50.14, 48.54, 28.91, 21.11. HRMS (FAB+) calculated for C$_{19}$H$_{24}$NaO$_3$ [M+Na]: 323.1623; found 323.1628.

Separation conditions: AD-H, 2% IPA, 2.5 mL/min. 93% ee

Racemate:
Enantioenriched:

11e.

55% yield, 76:14 Z/E ratio.

Z-11e: $[\alpha]_{D}^{25} + 41.4^\circ$ (c = 0.65, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.25 – 7.20 (m, 2H), 7.19 – 7.14 (m, 1H), 7.11 – 7.07 (m, 1H), 5.89 – 5.81 (m, 1H), 5.80 – 5.75 (m, 1H), 5.67 (ddd, J = 10.7, 9.6, 1.1 Hz, 1H), 5.25 (ddd, J = 17.0, 1.9, 1.0 Hz, 1H), 5.18 (dd, J = 10.0, 1.8 Hz, 1H), 4.78 (dt, J = 6.9, 1.0 Hz, 2H), 4.15 – 4.03 (m, 1H), 3.76 (dt, J = 10.3, 7.7 Hz, 1H), 2.54 (dt, J = 12.3, 7.0 Hz, 1H), 2.11
(d, J = 0.8 Hz, 2H), 1.64 (dt, J = 12.2, 10.5 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$) δ 145.72, 145.25, 140.55, 137.57, 127.04, 124.77, 124.30, 124.12, 116.02, 60.59, 49.13, 42.79, 41.59, 21.16. HRMS (FAB+) calculated for C$_{16}$H$_{17}$O$_2$ [M+H-H$_2$]: 241.1229; found 241.1221.

Separation conditions: AD-H, 3% IPA, 2.5 mL/min. >98% ee

Racemate:

![Racemate graph]

Enantioenriched:

![Enantioenriched graph]
E-11e was deacetylated to the compound shown above in order to aid purification.

1H NMR (500 MHz, CDCl₃) δ 7.25 – 7.10 (m, 3H), 5.91 – 5.79 (m, 2H), 5.77 – 5.69 (m, 1H), 5.22 (ddd, J = 17.1, 1.8, 0.9 Hz, 1H), 5.15 (dd, J = 10.0, 1.9 Hz, 1H), 4.20 (t, J = 5.7 Hz, 2H), 3.73 (dq, J = 16.8, 8.3 Hz, 2H), 2.52 (dt, J = 12.4, 7.1 Hz, 1H), 1.66 (dt, J = 12.4, 10.3 Hz, 1H), 1.32 (t, J = 5.7 Hz, 1H).

Separation conditions: AD-H, 3% IPA, 2.5 mL/min. >98% ee

Racemate:
Enantioenriched:

Z and E isomers of S1 were hydrogenated (H₂, 1 atm, 10% Pd/H, EtOAc) to afford the tetrahydro derivative. ^1H NMR (500 MHz, CDCl₃) δ 7.25 – 7.14 (m, 4H), 3.78 – 3.66 (m, 2H), 3.13 – 2.90 (m, 3H), 2.53 (ddt, J = 20.8, 12.3, 6.8 Hz, 2H), 2.22 – 2.00 (m, 2H), 1.83 – 1.63 (m, 1H), 1.48 – 1.35 (m, 2H), 1.05 – 0.97 (m, 3H). ^13C NMR (125 MHz, CDCl₃) δ 147.67, 147.50, 126.46, 126.41, 123.40, 123.30, 63.42, 45.30, 43.39, 39.23, 31.15, 31.04, 29.86, 27.67, 26.94, 12.05. HRMS (EI+) calculated for C₁₄H₂₀O [M⁺]: 204.1514; found 204.1517.

Separation Conditions: AD–H, 3% IPA, 2.5 mL/min

Racemate:
Enantioenriched:

Preparation of Silver Carboxylates

Following a known procedure,\(^5\) L-N-acetyl alanine (200 mg, 1.53 mmol, 2 equiv.) was added to a stirring suspension of silver oxide (177 mg, 0.762 mmol, 1 equiv.) in 4 mL acetonitrile, shielded from light. The reaction was vigorously stirred for 24 h, at which time a light gray precipitate had formed. The mixture was filtered and washed with acetonitrile and ether. The resultant solid was dried under vacuum overnight while shielded from light to provide 268 mg (1.13 mmol, 74\% yield) of the silver carboxylate. \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) 7.76 (d, \(J = 7.7\) Hz, 1H), 4.15 (p, \(J = 7.2\) Hz, 1H), 1.80 (s, 3H), 1.21 (d, \(J = 7.2\) Hz, 3H). \(^{13}\)C NMR (125 MHz, DMSO-d\(_6\)) \(\delta\) 176.19, 168.11, 49.43, 22.68, 19.15.

The above procedure was followed substituting L-N-acetyl valine (200 mg, 1.26 mmol) for L-N-acetyl alanine to afford the corresponding silver carboxylate (121

\(^5\) Dorta, R.; Shimon, L.; Milstein, D. J. Organomet. Chem. 2004, 689, 751-758.
mg, 0.457 mmol, 36% yield). 1H NMR (500 MHz, DMSO-d$_6$) δ 7.53 (d, $J = 9.0$ Hz, 1H), 4.10 (dd, $J = 9.0$, 5.3 Hz, 1H), 2.02 (m, 1H), 1.84 (s, 3H), 0.81 (d, $J = 6.8$ Hz, 6H). 13C NMR (125 MHz, DMSO-d$_6$) δ 175.40, 169.28, 59.43, 31.03, 22.88, 19.77, 18.51.

The above procedure was followed substituting (S)-2-phenyl butyric acid (200 mg, 1.22 mmol) for L-N acetyl alanine to afford the corresponding silver carboxylate (212 mg, 0.785 mmol, 64% yield). 1H NMR (500 MHz, DMSO-d$_6$) δ 7.30 – 7.25 (m, 2H), 7.25 – 7.20 (m, 2H), 7.16 – 7.11 (m, 1H), 3.37 – 3.27 (m, 1H), 1.99 – 1.88 (m, 1H), 1.60 (m, 1H), 0.79 (t, $J = 7.3$ Hz, 3H). 13C NMR (125 MHz, DMSO-d$_6$) δ 177.56, 142.76, 128.07, 128.05, 126.09, 56.10, 27.56, 12.88.

Synthesis of Catalysts 6c-i

To a solution of enantiopure ruthenium iodide ent-7 (1.92 mg, 0.0028 mmol) in 0.5 mL THF was added silver carboxylate from above (0.055 mmol, 2 equiv.). The mixture was stirred for 30 min and then concentrated. The resultant solid was redissolved in C$_6$D$_6$ and filtered through a short pad of Celite. The resultant purple solution was assayed by 1H NMR, concentrated, redissolved in THF, and then used directly in the ARCM reaction. 1NMR spectra of complexes 6c-e
matched previously reported spectra of the corresponding racemic complexes.\(^6\)

Diagnostic benzylidene signals (C\(_6\)D\(_6\)) of novel compounds are listed below:

\(6b\): 15.00 ppm

\(6f\): 14.99 ppm

\(6g\): 15.10 ppm

\(6i\): 15.11 ppm

Synthesis of Substrates for ARCM

\[13 \]

A procedure adapted from Jeong et al.\(^7\) was used:

To a flame dried round bottom flask was added N-tosyl allyl amine (4.23 g, 20 mmol, 1.0 eq), triphenylphosphine (6.56 g, 25 mmol, 1.25 eq), THF (100 mL) and 1,4-pentadien-3-ol (2.43 mL, 25 mmol, 1.25 eq). The mixture was cooled to 0 °C,
and then diethylazodicarboxylate (40 wt % in Toluene, 11.38 mL, 25 mmol, 1.25 eq). The mixture was stirred at 0 °C for 30 min and then warmed to ambient temperature for 12 hr. The reaction was quenched with sat’d NaHCO₃ and extracted with ether (3 x 30 mL). The combined organic extracts were washed with brine (30 mL), dried with MgSO₄ and concentrated in vacuo. Ether (30 mL) was then added, and the mixture was filtered on a glass frit to remove triphenylphosphine oxide. The solid was washed with ether, and the filtrate was concentrated in vacuo. The material was purified by column chromatography (10% ethyl acetate / hexanes) to yield 3.386 g of an inseparable mixture of the title compound and the corresponding S₉2’ conjugated diene product in a 1:1.5 ratio. This mixture was dissolved in toluene (24 mL) and heated to reflux for 22 hr in order to convert the undesired conjugated diene to the Diels-Alder adduct. Compound 13 was then purified by column chromatography (7.5% ethyl acetate / hexanes) to give a clear oil (960 mg, 17%). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 8.3 Hz, 2H), 7.28 – 7.25 (m, 2H), 5.81 – 5.73 (m, 3H), 5.19 (dt, J = 10.4, 1.3 Hz, 2H), 5.16 (m, 3H), 5.07 (dq, J = 10.2, 1.4 Hz, 1H), 4.96 (tt, J = 6.0, 1.6 Hz, 1H), 3.78 (dt, J = 6.1, 1.5 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.2, 138.2, 135.7, 135.3, 129.6, 127.6, 118.7, 117.5, 62.4, 47.7, 21.6. HRMS (FAB+) m/z calculated for [C₁₅H₁₉NSO₂+H]⁺: 278.1215; found: 278.1221.
To a flame dried flask under argon was added CH₂Cl₂ (60 mL), 4-dimethylaminopyridine (88 mg, 0.72 mmol, 0.05 eq), triethylamine (2.4 mL, 17.2 mmol, 1.2 eq), 1,4-pentadien-3-ol (1.38 mL, 14.1 mmol, 1.0 eq) and then allyldimethylsilyl chloride (2.2 mL, 15.0 mmol, 1.06 eq). The mixture was stirred at room temperature for 20 hr, and then quenched with H₂O (20 mL). The organic phase was separated, and the aqueous phase was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic extracts were washed with brine (20 mL), dried with Na₂SO₄ and concentrated in vacuo. The crude material was passed through a pad of neutral alumina with 5% ether in pentane and then concentrated in vacuo to give 15 (2.46 g, 96%). ¹H NMR (500 MHz, CDCl₃) δ 5.82 (ddd, J = 17.1, 10.3, 5.7 Hz, 2H), 5.83 – 5.74 (m, 1H), 5.22 (dt, J = 17.1, 1.6 Hz, 2H), 5.09 (dt, J = 10.3, 1.5 Hz, 2H), 4.92 – 4.84 (m, 2H), 4.62 (tp, J = 5.7, 1.5 Hz, 1H), 1.65 (dt, J = 8.1, 1.2 Hz, 2H), 0.14 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 140.1, 134.2, 114.4, 113.8, 74.9, 25.1, -1.7. HRMS (El⁺) m/z calculated for [C₁₀H₁₈OSi]⁺: 182.1127; found: 182.1137.

To a flame dried round bottom flask under argon was added diphenyldichlorosilane (0.421 mL, 2.0 mmol, 1.33 eq) and THF (10 mL).
Imidazole (102 mg, 1.5 mmol, 1.0 eq) was then added, and the cloudy mixture was stirred for 5 minutes and then cooled to -78 °C. 1,4-pentadien-3-ol (0.146 mL, 1.5 mmol, 1.0 eq) was then added, and the mixture was stirred for 15 min, warmed to 0 °C for 1 hr, and then stirred at ambient temperature for 1 hr. Allyl magnesium bromide (2 M in THF, 5 mL, 10 mmol) was then added dropwise. The clear yellow solution was stirred for 2.5 hr, and then quenched with sat’d NH₄Cl (15 mL). The mixture was extracted with ethyl acetate (2 x 30 mL). The combined organic extracts were washed with brine (20 mL), dried with MgSO₄, and concentrated in vacuo. The product was isolated by column chromatography (0 → 3% ethyl acetate / hexanes) to give a 5:1 mixture of the desired product and the disilanol byproduct (347 mg, 61% corrected yield). Analytically pure material can be obtained by preparatory TLC (0.8% ethyl acetate / hexanes, run twice). ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.62 (m, 4H), 7.46-7.42 (m, 2H), 7.41-7.36 (m, 4H), 5.90-5.81 (m, 3H), 5.21 (dt, J = 17.2, 1.5 Hz, 2H), 5.09 (dt, J = 10.3, 1.4 Hz, 2H), 4.96 (ddt, J = 17.0, 2.1, 1.5 Hz, 1H), 4.91 (ddt, J = 10.1, 2.1, 1.1 Hz, 1H), 4.73 (tp, J = 5.7, 1.4 Hz, 1H), 2.23 (dt, J = 7.9, 1.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 139.7, 135.1, 134.9, 133.2, 130.0, 127.8, 115.3, 114.7, 75.7, 22.6. HRMS (EI+) m/z calculated for [C₂₀H₂₂OSi]⁺: 306.1440; found: 306.1452.
Compound 19 was synthesized according to a literature procedure.\(^8\)

A procedure adapted from Gomez, et al.\(^9\) was followed. 5-Bromopenta-1,3-diene was synthesized by dropwise addition of 1,4-pentadien-3-ol (0.97 mL, 10 mmol) to a solution of PBr\(_3\) (0.38 mL, 4 mmol) in 5 mL ether at 0°C. Upon complete conversion of the alcohol, as determined by TLC, the reaction was quenched with brine. The organic layer was separated, washed with saturated NaHCO\(_3\) solution, dried over MgSO\(_4\), filtered and carefully concentrated at 23°C under a stream of Ar.

Toluenesulfonamide (0.58 g, 3.4 mmol), Indium powder (0.49 g, 4.2 mmol, 1.25 equiv), titanium (IV) ethoxide (1.78 mL, 8.48 mmol, 2.5 equiv), and acetone (0.27 mL, 3.7 mmol, 1.1 equiv) were dissolved in 20 mL THF and the mixture was stirred at 65°C for 14 h. The bromide prepared above (1.04 g crude weight) was added directly to the reaction and heated at 65°C for an addition 8 h. After cooling to 23°C, the reaction mixture was added to a 4:1 EtOAc/brine mixture and

\(^8\) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840.
\(^9\) Bosque, I.; Bagdatli, E.; Foubelo, F.; Gonzalez-Gomez, J. C. J. Org. Chem. 2014, 79, 1796.
filtered through Celite. The crude residue was concentrated and subjected to flash chromatography to afford 0.42 g S2 (1.50 mmol, 44% yield with respect to toluenesulfonamide).

\[\text{filtered through Celite.} \]

\[\text{The crude residue was concentrated and subjected to flash chromatography to afford 0.42 g S2 (1.50 mmol, 44% yield with respect to toluenesulfonamide).} \]

\[\text{1H NMR (500 MHz, CDCl}_3\text{)} \delta 7.78 - 7.73 (m, 2H), 7.30 - 7.26 (m, 2H), 5.77 (ddd,} \]

\[\text{J = 17.1, 10.3, 8.5 Hz, 2H), 5.20 (ddd,} \]

\[\text{J = 10.3, 1.7, 0.7 Hz, 2H), 5.17 (dd,} \]

\[\text{J = 1.7, 1.0 Hz, 1H), 5.13 (dd,} \]

\[\text{J = 1.7, 1.0 Hz, 1H), 4.58 (s, 1H), 2.85 (tt,} \]

\[\text{J = 8.5, 0.9 Hz,} \]

\[\text{1H), 2.42 (s, 3H), 1.16 (s, 6H).} \]

\[\text{13C NMR (125 MHz, CDCl}_3\text{)} \delta 143.00, 140.84, 135.85, 129.58, 127.17, 118.94, 59.48, 58.25, 25.06, 21.64.} \]

\[\text{HRMS (FAB+) calculated for C}_{15}\text{H}_{22}\text{SN}_{2}[\text{M+H]: 280.1371; found 280.1370.} \]

\[\text{At 0°C, S2 (200 mg, 0.717 mmol) was added to a suspension of KH (31.6 mg, 0.788 mmol, 1.1 equiv) in 4 mL THF. After stirring for 1 h, allyl bromide (250} \]

\[\text{μL, 2.87 mmol, 4 equiv) and HMPA (4 mL) were added and the reaction was warmed to 23°C. After stirring for 24 h, the reaction was carefully quenched with water at 0°C. Excess water was added and the solution extracted with ether. The combined organic layers were washed with brine and dried over MgSO}_4\text{.} \]

\[\text{Filtration and concentration afforded a crude residue, which was subjected to flash chromatography to afford 21 (107 mg, 0.335 mmol, 47% yield).} \]

\[\text{1H NMR (500 MHz, CDCl}_3\text{)} \delta 7.76 - 7.71 (m, 2H), 7.25 (dt,} \]

\[\text{J = 8.0, 0.8 Hz, 2H), 5.91 - 5.77 (m, 3H), 5.15 (qd,} \]

\[\text{J = 1.9, 1.0 Hz, 2H), 5.12 (tt,} \]

\[\text{J = 1.9, 0.9 Hz, 3H),} \]
5.09 (m, 1H), 5.07 (dq, J = 10.2, 1.4 Hz, 1H), 4.02 (dt, J = 6.1, 1.5 Hz, 2H), 3.66 (tt, J = 7.7, 1.1 Hz, 1H), 2.40 (s, 3H), 1.32 (s, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 142.74, 140.85, 137.62, 137.09, 129.41, 127.51, 117.86, 116.64, 65.35, 56.64, 49.58, 25.58, 21.56. HRMS (FAB+) calculated for C$_{18}$H$_{26}$NSO$_2$ [M+H]: 320.1684; found 320.1679.

Compound S3 was synthesized as previously reported.10 To a suspension of sodium hydride (60% dispersion, 0.125 g, 3.13 mmol, 2 equiv) in THF was added S3 (0.250 g, 1.56 mmol) as a solution in THF at 0°C (total volume THF = 10 mL). The reaction was stirred for 2 h, at which time allyl bromide (0.54 mL, 6.25 mmol, 4 equiv) was added dropwise. The reaction was warmed to room temperature and stirred for 16 h, at which time a conversion of about 30% was observed. The reaction was heated to 65°C for 4 h, at which time complete conversion was observed. The reaction was cooled to room temperature, quenched with water, and diluted with ether. The organic layer was separated and washed with water and subsequently brine. The resultant organic layer was dried over MgSO$_4$, filtered, and concentrated to afford the crude product. Column chromatography afforded pure 23 (0.307 g, 1.53 mmol, 98% yield). 1H NMR (500 MHz, CDCl$_3$) δ 7.46-7.42 (m, 2H), 7.37-7.32 (m, 2H), 7.27 (tt, J = 7.2, 1.3 Hz, 1H), 6.14 (dd, J =

10 Ndungu, J. M.; Larson, K. K.; Sarpong, R. Org. Lett. 2005, 7, 5845-5848.
17.4, 10.8 Hz, 2H), 5.96 (ddt, J = 17.2, 10.3, 5.0 Hz, 1H), 5.36 (dq, J = 17.0, 2.0 Hz, 1H), 5.34 (dd, J = 10.8, 1.4 Hz, 2H), 5.30 (dd, J = 17.4, 1.4 Hz, 2H), 5.15 (dq, J = 10.5, 1.7 Hz, 1H), 3.90 (dt, J = 5.1, 1.7 Hz, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 142.82, 140.18, 135.71, 128.23, 127.38, 127.33, 116.34, 115.60, 82.78, 64.95. HRMS (FAB+) calculated for C$_{14}$H$_{15}$O [M+H-H$_2$]: 199.1123; found 199.1171.

Compound 25 was synthesized according to a literature procedure.\(^{11}\)

To a flame dried round bottom flask under argon was added diphenyldichlorosilane (0.421 mL, 2.0 mmol, 2.0 eq) and THF (10 mL). The solution was cooled to -78°C and imidazole (68 mg, 1.0 mmol, 1.0 eq) was then added. The mixture was warmed to ambient temperature, stirred for 15 min, and then the cloudy mixture was cooled back to -78 °C. 1,4-pentadien-3-ol (0.097 mL, 1.0 mmol, 1.0 eq) was added, and the mixture was stirred for 1 hr. Subsequently the mixture was warmed to ambient temperature and stirred for 2 hr. Meanwhile, to a flame dried 2-neck round bottom flask under argon was added magnesium

\(^{11}\) Sattely, E. S.; Cortex, G. A.; Moebius, D. C.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 8526-8533.
turnings (204 mg, 8.4 mmol) and a small crystal of I₂ (5 mg). The flask was heated with a heat gun until a pink glow was observed, and then allowed to cool to ambient temperature. THF (10 mL) was then added, and a reflux condenser was attached. 4-bromobut-1-ene (0.812 mL, 8.0 mmol) was added, and the mixture began to heat spontaneously. The reaction achieved reflux without external heat for 15 minutes, at which point the magnesium was mostly consumed. The reaction was allowed to cool to room temperature. The Grignard solution was then added dropwise to the flask containing the silane in a 0 °C ice bath. The clear yellow solution was stirred for 2 hr, and then quenched with sat’d NH₄Cl (15 mL). The mixture was extracted with diethyl ether (2 x 30 mL). The combined organic extracts were washed with brine (20 mL), dried with MgSO₄, and concentrated in vacuo. The product was isolated by column chromatography (1-4% ethyl acetate / hexanes) to give a clear oil (207 mg, 65%) containing a trace impurity of the bis(homoallyl)silane byproduct. Analytically pure material can be obtained by preparatory TLC (1.5 % ethyl acetate / hexanes, run twice).

¹H NMR (500 MHz, CDCl₃) δ 7.62-7.59 (m, 4H), 7.44-7.40 (m, 2H), 7.39-7.35 (m, 4H), 5.89 (ddt, J = 17.1, 10.2, 6.2 Hz, 1H), 5.83 (ddd, J = 17.1, 10.3, 5.8 Hz, 2H), 5.18 (dt, J = 17.2, 1.5 Hz, 2H), 5.06 (dt, J = 10.3, 1.4 Hz, 2H), 4.99 (dq, J = 17.1, 1.7 Hz, 2H), 4.89 (ddt, J = 10.1, 1.9, 1.4 Hz, 2H), 4.67 (tp, J = 5.7, 1.4 Hz, 2H), 2.16 (dddd, J = 12.3, 6.1, 3.1, 1.5 Hz, 2H), 1.30 – 1.25 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 141.3, 139.8, 135.3, 135.0, 130.0, 127.9, 114.7, 113.0, 75.6, 27.2, 13.8. HRMS (EI+) m/z calculated for [C₂₁H₂₄OSi]⁺: 320.1596; found: 320.1608.
General Procedure for ARCM

In a glovebox, triene 13 (27.7 mg, 0.1 mmol) was dissolved in 35 μL THF. To this solution was added 165 μL of a stock solution (0.03 M in THF) of catalyst 5. The reaction vial was capped and stirred for 24 h and then quenched with an excess of ethyl vinyl ether outside of the glovebox. The reaction mixture was concentrated and conversion was determined by 500 MHz ¹H NMR. The crude was subjected to flash chromatography or preparative TLC to afford the desired ARCM product (14, 22.6 mg, 95% yield, 54% ee). Pure products were submitted to analytical SFC to determine ee.

Characterization data for ARCM products

![Chemical structure of 14](image)

14.

95% yield

\[\alpha\]_D^{25} = +113° (c = 1.09, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 8.2 Hz, 2H), 7.31 – 7.28 (m, 2H), 5.79 (ddd, J = 17.1, 10.1, 7.0 Hz, 1H), 5.67 (dq, J = 6.1, 2.0 Hz, 1H), 5.53 (dq, J = 6.3, 2.2 Hz, 1H), 5.28 (dt, J = 17.1, 1.1 Hz, 1H), 5.13 (dt, J = 10.1, 1.1 Hz, 1H), 4.92 – 4.87 (m, 1H), 4.17 – 4.14 (m, 2H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.5, 137.7, 135.6, 129.8, 129.2, 127.6, 125.3, 116.3, 69.1, 55.4, 21.6. HRMS (FAB+) m/z calculated for [C₁₃H₁₅NSO₂H]⁺: 250.0902; found: 250.0901.
Separation conditions: AD-H, 10% IPA, 2.5 mL/min, 54% ee

Racemate:

Enantioenriched:

Determination of absolute configuration:

A racemic sample was synthesized according to the general procedure using triene 5 (83.1 mg, 0.3 mmol, 1.0 eq), rac-4 (0.375 μL, 0.04M in THF, 0.015 mmol, 0.05 eq) and THF (225 μL). Racemic 6 was isolated by column chromatography (10-20% Ethyl acetate / hexanes) to give a crystalline white solid (64 mg, 86%).
This material was resolved by chiral prep-HPLC (Chiral Technologies AD-H SFC column, 21x250 mm, 5µm particle, 20% IPA / Hexanes, 10 ml/min, 30 injections of 1 µg in 50 µL IPA, retention time = 18 min, 20 min). The combined fractions of the faster eluting enantiomer (F1) were concentrated to afford a >99% ee sample (15 mg), which was then re-purified by preparative TLC (20% Ethyl acetate / hexanes) to remove a faint yellow color. A single crystal suitable for X-ray diffraction was grown by slow diffusion of pentane into a solution of F1 in diethyl ether. X-ray crystallographic analysis indicated that the absolute configuration of F1 is (S). The Flack and van Hooft parameters were 0.026(7) and 0.021(7) respectively.
Due to volatility of the product, the yield was determined by NMR.

In a glovebox, 167 µL of a stock solution of catalyst 5 (0.03M in THF) was concentrated. A solution of triene 15 in 200 µL d₈-THF was then added, and the capped vial was stirred at room temperature for 24 hr. Mesitylene (0.1 mmol, 13.9 µL, 1 equiv) was then added as an internal standard, and the mixture was diluted to 700 µL with d₈-THF. The yield of product 16 was then determined by integration of the ¹H NMR spectrum to be 65%. ¹H NMR (500 MHz, THF-d₈) δ 5.88-5.82 (m, 2H), 5.57 (ddt, J = 10.8, 2.9, 2.0 Hz, 1H), 5.20 (dt, J = 17.0, 1.8 Hz, 1H), 4.98 (dt, J = 10.3, 1.8 Hz, 1H), 4.87-4.81 (m, 1H), 1.26 (dt, J = 4.9, 2.4 Hz, 1H), 1.23 (ddd, J = 5.6, 2.9, 1.8 Hz, 1H), 0.16 (d, J = 5.2 Hz, 6H). ¹³C NMR (125 MHz, THF-d₈) δ 141.3, 132.2, 124.6, 113.1, 74.4, 12.8, 0.5, -0.5.

Product 16 was converted to the derivative shown above by treatment with Tamao-Fleming conditions (10 equiv 30% H₂O₂, 5 equiv KF, 2.5 equiv KHCO₃, 1:1 THF/MeOH, 23°C, 13 hr) and subsequent standard benzylation conditions (10 equiv BzCl, 10 equiv NEt₃, 1 equiv DMAP, CH₂Cl₂, 0 °C, 3 hr) to afford a product amenable to ee determination.
$[\alpha]_D^{25} = -6.6^\circ$ (c = 0.07, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 8.09 – 8.01 (m, 4H), 7.59 – 7.51 (m, 2H), 7.50 – 7.39 (m, 4H), 6.31 (ddq, $J = 8.2, 5.6, 1.4$ Hz, 1H), 6.00 (ddd, $J = 17.3, 10.5, 5.5$ Hz, 1H), 5.94 (dtd, $J = 11.1, 6.6, 1.1$ Hz, 1H), 5.77 (ddt, $J = 11.0, 8.7, 1.5$ Hz, 1H), 5.44 (dt, $J = 17.2, 1.3$ Hz, 1H), 5.29 (dt, $J = 10.5, 1.2$ Hz, 1H), 5.11 (ddd, $J = 13.4, 6.5, 1.6$ Hz, 1H), 5.04 (ddd, $J = 13.3, 6.7, 1.4$ Hz, 1H). HRMS (MM) m/z calculated for [C$_{13}$H$_{13}$O$_2$]$^+$ (M-OBz): 201.0916; found: 201.0905.

Separation conditions: OJ-H, 5% IPA, 2.5 mL/min. 69% ee

Racemate:

![Racemate Chromatogram]

Enantioenriched:

![Enantioenriched Chromatogram]
29% yield

\[\alpha_d^{\pm 25} = -66.3^\circ \] (c = 0.37, CHCl₃); \(^1\)H NMR (500 MHz, CDCl₃) δ 7.65-7.60 (m, 4H), 7.45-7.35 (m, 6H), 6.03 (dddd, J = 10.6, 5.9, 4.6, 2.0 Hz, 1H), 5.94 (ddd, J = 17.0, 10.2, 5.9 Hz, 1H), 5.68 (dddd, J = 10.8, 3.0, 2.2, 1.6 Hz, 1H), 5.32 (dt, J = 17.0, 1.5 Hz, 1H), 5.10 (dt, J = 10.2, 1.5 Hz, 1H), 5.10-5.06 (m, 1H), 1.82-1.78 (m, 2H);

\(^{13}\)C NMR (125 MHz, CDCl₃) δ 139.6, 135.8, 135.7, 134.6, 134.5, 131.8, 130.2, 130.2, 128.1, 128.0, 124.1, 114.2, 74.4, 10.3.

HRMS (FAB+) m/z calculated for \([C_{18}H_{17}OSi]^+\) (M+H²-): 277.1049; found: 277.1054.

Separation conditions: AD-H, 7% IPA, 2.5 mL/min. 67% ee

Racemate:
Enantioenriched:

90% yield

\([\alpha]_D^{25} = -107^\circ \text{ (c} = 0.92, \text{ CHCl}_3)\); 1H NMR (500 MHz, CDCl$_3$) δ 7.72 (d, $J = 8.2$ Hz, 2H), 7.28 (d, $J = 8.0$ Hz, 2H), 5.77 – 5.71 (m, 1H), 5.62 (dt, $J = 17.2, 9.6$ Hz, 1H), 5.58 – 5.52 (m, 1H), 5.06 – 5.03 (m, 1H), 5.03 – 4.99 (m, 1H), 4.17 (dd, $J = 18.0, 2.7$ Hz, 1H), 4.12 – 4.03 (m, 1H), 2.53 (ddd, $J = 8.9, 4.2, 2.1$ Hz, 1H), 2.43 (s, 3H), 1.24 (s, 3H), 1.21 (s, 2H). 13C NMR (125 MHz, CDCl$_3$) δ 143.03, 140.18, 137.30, 129.58, 127.59, 127.24, 122.95, 117.23, 58.46, 52.73, 44.73, 24.86, 24.53, 21.63. HRMS (FAB+) calculated for C$_{16}$H$_{22}$NO$_2$S [M+H]: 292.1371; found 292.1366.
Separation conditions: OJ-H, 5% IPA, 2.5 mL/min. 57% ee

Racemate:

Enantioenriched:

72% yield. Spectral characterization of 26 matches a previous report of its synthesis; material produced by 5 has the opposite sign of the optical rotation, which indicates that the enantiomer (absolute configuration shown above) is
formed in preference.12 Lit. $[\alpha]_D^{25} = +57.7^\circ$ (88% ee, c = 1, CHCl\textsubscript{3}); $[\alpha]_D^{25} = -28.4^\circ$ (47% ee, c = 1.27, CHCl\textsubscript{3}).

Separation conditions: AD-H, 10% IPA, 2.5 mL/min. 47% ee

Racemate:

![Racemate Chromatogram]

Peak RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area
1	VV	0.1955	1.21105e4	984.48834	48.6055
2	VB	0.2263	1.29083e4	884.50220	51.5945
Totals: | | | | 2.50197e4 | 1868.99054 |

Enantioenriched:

![Enantioenriched Chromatogram]

Peak RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area
1	VB	0.1657	4387.00244	413.84402	26.7455
2	VB	0.1942	1.20158e4	985.99432	73.2545
Totals: | | | | 1.64028e4 | 1399.83835 |

12 Sattely, E. S.; Cortex, G. A.; Moebius, D. C.; Schrock, R. R.; Hoveyda, A. H. \textit{J. Am. Chem. Soc.} 2005, 127, 8526-8533.
Following the general procedure for ARCM (capped vial), diene 28 was isolated in 61% yield, 0% ee. In order to prevent reversibility caused by the presence of ethylene, the procedure was modified:

In a glovebox, triene 27 (15 mg, 0.047 mmol, 1 equiv) was dissolved in 67 µL THF. To this solution was added 33 µL of a stock solution (0.03 M in THF) of catalyst 5. The reaction vial was left uncapped and stirred for 24 h. The reaction was then diluted with 500 µL ether and quenched with an excess of ethyl vinyl ether outside of the glovebox. The mixture was purified as above to yield the desired product (28, 7.0 mg, 51% yield, 37% ee).

\[[\alpha]_{D}^{25} = +23^\circ \ (c = 0.51, \text{CHCl}_3); \]
\[^1H \text{ NMR (500 MHz, CDCl}_3) \delta 7.67-7.57 \text{ (m, 4H), 7.45-7.32 (m, 6H), 6.02 (ddd, J = 17.1, 10.3, 5.2 Hz, 1H), 5.96 (dtd, J = 11.3, 6.9, 2.1 Hz, 1H), 5.66 (ddt, J = 11.3, 4.9, 1.2 Hz, 1H), 5.41 (dt, J = 16.9, 1.6 Hz, 1H), 5.15 (dt, J = 10.2, 1.7 Hz, 1H), 5.16-5.12 (m, 1H), 2.52 (qt, J = 6.6, 1.1 Hz, 2H), 1.55-1.48 (m, 1H), 1.31 (ddd, J = 15.0, 7.3, 5.7 Hz, 1H); \]
\[^{13}C \text{ NMR (125 MHz, CDCl}_3) \delta 140.1, 136.4, 135.8, 134.6, 134.4, 134.1, 133.1, 130.0, 129.9, 128.2, 127.9, 114.0, 71.2, 22.2, 12.5. \]
HRMS (EI+) m/z calculated for [C\text{_{19}H\text{_{20}}OSi}]^+: 292.1284; found: 292.1286.
Separation conditions: AD-H, 2% IPA, 2.5 mL/min, 37% ee.

Racemic:

Enantioenriched:

Tentative model for ARCM enantioinduction

Based on previous computational studies of terminal olefin homodimerization with catalyst \textit{rac-5}, we propose a side-bound ruthenacyclobutane mechanism. The non-reacting vinyl group is located on a pseudo-equatorial position of an

13 Liu, P.; Xu, X.; Dong, X.; Keitz, B. K.; Herbert, M. B.; Grubbs, R. H.; Houk, K. N. \textit{J. Am. Chem. Soc.} \textbf{2012}, \textit{134}, 1464–1467.
envelope-type conformation in S4. Isomerization of the ruthenacyclobutane leads to S5, followed by retro-[2+2] to release the product.

Asymmetric Cross Metathesis Procedure

In a glovebox, TBS-protected alcohol 29 (20 mg, 0.1 mmol) and cis-1,4-diacetoxy-2-butene (86 mg, 0.5 mmol) were added to a glass vial and the mixture dissolved in 0.3 mL THF. Catalyst 5 was added to the mixture as a stock solution (5 mol%, 0.005 mmol, 165 μL of a 0.03 M solution) and the reaction heated to 35°C for 18 h while uncapped. The reaction was removed from the glovebox, quenched with ethyl vinyl ether, and concentrated. Flash chromatography afforded 9.5 mg Z-31 (0.035 mmol, 35% yield, 93% Z). TBS deprotection (TBAF, THF, 23 °C, 12 hr), and acylation (5 equiv (S)-MTPA-Cl, excess NEt₃, 1 equiv DMAP, CH₂Cl₂, 23 °C) enabled determination of ee (50%) and absolute configuration (R).

¹H NMR (500 MHz, CDCl₃) δ 5.78 (ddd, J = 17.2, 10.3, 5.1 Hz, 1H), 5.61 – 5.48 (m, 2H), 5.23 (dt, J = 17.1, 1.6 Hz, 1H), 5.06 (dt, J = 10.3, 1.6 Hz, 1H), 4.93 (ddt, J = 6.7, 5.1, 1.5 Hz, 1H), 4.73 – 4.66 (m, 1H), 4.64 – 4.58 (m, 1H), 2.06 (s, 3H), 0.89 (s, 8H), 0.07 (s, 3H), 0.06 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.72, 136.75, 123.25, 114.00, 70.23, 60.54, 25.98, 20.99, 18.41, -4.55.
Table S1. Optimization of ACM Reaction of 29 with rac-5^a

Equiv. 29	Cross Partner	Equiv. of Cross Partner	Cat. Loading (%)	mL THF	Yield Z-31(%)^b
1	allyl acetate	5	5	0.3	15
5	allyl acetate	1	5	0.3	35
1	cis-1,4-diacetoxy-2-butene	5	5	0.3	35
1	cis-1,4-diacetoxy-2-butene	5	2.5	0.3	35
1	cis-1,4-diacetoxy-2-butene	5	1	0.3	6
1	cis-1,4-diacetoxy-2-butene	5	5	0.2	30
1	cis-1,4-diacetoxy-2-butene	5	5	0.1	30

^a All reactions conducted with 0.1 mmol of limiting reagent at 35°C for 18 h in an open vial under inert atmosphere (glove box); ^b Yield with respect to limiting reactant; determined by integration relative to an internal standard (mesitylene) in the ¹H NMR of the crude reaction mixture.
NMR Spectra

Z-11d
MeCO₂Ag
NHAc
16 (crude) + Mesitylene internal standard (0.1 mmol) in d$_8$-THF
MTPAO OAc

(rac)

50% ee

MTPAO OAc