The ability of riboflavin-overproducing *Lactiplantibacillus plantarum* strains to survive under gastrointestinal conditions

Annel M. Hernández-Alcántara¹, Sandra Pardo¹, Mari Luz Mohedano¹, Graciela Vignolo², Alejandra de Moreno de LeBlanc², Jean Guy LeBlanc², Rosa Aznar³, ⁴ and Paloma López¹*

¹Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
²Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
³Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Spain
⁴Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
Supplementary Figure S1. Riboflavin calibration curve. Correlation of riboflavin concentration and fluorescence. Serial dilutions of a riboflavin solution in CDM medium lacking riboflavin at 10 mg mL\(^{-1}\) were used to determine its fluorescence emission at a wavelength of 520 nm after excitation at a wavelength of 440 nm.

The equation for the line of best fit is:

\[
y = 15.191x + 0.6392
\]

with an R\(^2\) value of 0.9996.
Supplementary Figure S2. Calibration curves of *L. plantarum M5MA1-B2[pRCR12]* and *M9MG6-B2[pRCR12]* strains. Correlation of bacterium concentration and fluorescence due to mCherry protein were determined. Serial dilutions of a bacterial suspension at an initial concentration of 2×10^8 cfu mL$^{-1}$ in saline solution were employed to determine the corresponding fluorescence emission at a wavelength of 610 nm upon excitation at 587 nm. The mean values of three independent determinations and their standard deviations are depicted.
Supplementary Figure S3. Analysis of the *L. plantarum* M5MA1-B2 and M9MG6-B2 strains carrying or lacking pRCR12 plasmid. (A) Colony phenotypes of the strains is depicted. (B) Micrographs of bacterial preparations with 100 X magnification, analyzed with a Leica DM1000 model microscope and with a light source EL6000 and the filter system TX2 ET for detection of the mCherry fluorescence.
Supplementary Table S1. Commercial INCAPARINA composition, produced by Central de Alimentos, S.A. (Guatemala City, Guatemala).

	% of RV*
Energy	125 kcal
Energy from fat	25 kcal
Total fat	3 g
Saturated fat	1.5 g
Cholesterol	10 mg
Sodium	40 mg
Potassium	200 mg
Total carbohydrates	20 g
Sugars	12g
Dietary fibers	1g
Proteins	4g
Vitamins and ions	
Vitamin A	80 μg
Vitamin B1	0.144 mg
Vitamin B2	0.216 mg
Vitamin B12	2.4 μg
Vitamin D	1.5 μg
Folic acid	60 μg
Niacin	1.5 mg
Iron	1.68 mg
Zinc	1.8 mg
Calcium	200 mg

Quantities per package of Incaparina (resuspension in 200 mL).
*Reference Values (RV) according to the FAO/WHO Codex Alimentarius.