Plasticity for (-) - Hydroxycitric acid (HCA) content in ecotypes of Garcinia indica (Kokum) of Western Ghats

Apoorva KA, Fakrudin B, Nandini K, Gaurav NC, Sandeep K, Jayashree U, Mohankumar S, Ramegowda GK, Honnabaryaiah MK, Krishna HC and Lakshminarayana H

Abstract

Western Ghats of India is the centre for biological diversity many plant species including Garcinia indica. Biologically important compound (-) - Hydroxycitric acid (HCA) is a popular anti-obesity compound extracted from the fruits of Garcinia indica. The present study was conducted to understand the extent of variation for the content of (-)-HCA in the fruits of Garcinia indica ecotypes prevailing in Western Ghats of Karnataka. The autoclave assisted extraction and the spectrophotometric analysis of 120 ecotypes of G. indica revealed significant variation in HCA content in the fruits. The average per cent HCA content on dry weight basis in fruits of G. indica was 17.90. The average mean HCA content of G. indica ecotypes in Uttara Kannada region (regarded as Uttara Kannada population) was highest (20.60%), compared to other ecotypes. The results indicated that there is a good genetic plasticity for HCA content among the ecotypes of G. indica prevailing in Western Ghats of Karnataka and there exists ample opportunity to exercise selection for the genotypes with higher (-)-HCA content.

Keywords: Hydroxycitric acid, Garcinia indica, Western Ghats

Introduction

The genus Garcinia comprises about 250 species in which 43 species are found in India, distributed across the tropical forests and adjoining main lands, and exhibit fair amount of morphological and phytochemical diversity Anu et al., 2016 [1], Parthasarathy et al., 2014 [11] and Sivu et al., 2017 [17]. The species Garcinia indica is endemic to Western Ghats of India is an important species of the genus Garcinia (Shameer et al., 2016) [14]. Garcinia species in general and Garcinia indica in particular are known to have rich diversity in their phytochemical traits of food and nutritional importance to human (Jena et al. 2002) [6] (Anu et al., 2016) [1]. Among the chemical compounds found in Garcinia species, the major compound is (-) - Hydroxycitric acid (HCA) which is used as an anti-obesity principle (Jayaparaksha 2002). It is a derivative of citric acid and a chiral compound (Jena et al. 2002) [6]. HCA has been found to have anti-obesity activity by inhibiting lipid synthesis in the body (Lewis and Neelakantan, 1965) [8]. The compound (-)- Hydroxycitric acid is chiral in nature and has an additional –OH group when compared to citric acid. Further, there are also two asymmetrical carbons rendering the compound to assume four isomer forms; all these confirmations possibly impart health benefit properties to the molecule (Gogoi et al., 2014) [13]. Primarily the (-)-HCA has made the fruits of Garcinia species and their products popular in international market for anti-obesity properties in human.

Presence of two hydroxyl and three carboxyl groups makes (-) -HCA an unstable compound and therefore it easily tends to form lactones with cations like Ca²⁺, K⁺ etc. (Antony et al., 1998). The Potential of weight loss property in human upon consuming (-) -HCA is aids by their ability of increasing lipid metabolism (Shrikantan et al., 2014) [16]. ATP citrate oxaloacetate lyase (citrate lyase) is involved in catalyzing the cleavage reaction of citrate into oxaloacetate and acetyl CoA (Jena et al., 2002) [6]. By inhibiting the activity of the citrate lyase enzyme and making Acetyl CoA unavailable for lipid synthesis, (-) -HCA acts as an anti-
obesity factor. However, the (-)-HCA content in the fruits of Garcinia indica vary from region to region and across the genotypes / ecotypes (Jayaprakasha 2002; Kureshi et al. 2019; Seethapathy et al. 2018) [4, 7, 13]. Assessment of genetic plasticity for (-)-HCA content among the natural populations of G. indica provides an insight into the natural sources of this valuable compound, its inheritance and distribution within and between the populations in its natural habitat. Estimation of (-)-HCA content is done from leaves and fruits, especially dried fruit rinds using various extraction procedures. The fruit rinds of Garcinia species contain higher amount of (-)-HCA compared to other parts of (-)-HCA (Jayaprakasha et al., 2003) [5]. We report the nature and extent of variation for the (-)-HCA content in the ecotypes of the Garcinia indica prevailing in the Western Ghats covering Karnataka state in India.

Material and Methods

Fruits of Garcinia indica ecotypes from random locations covering Western Ghats of the Karnataka state of India were collected in the peak fruiting season of 2016-17 and the fruits were stored at 4 °C until their actual use. The sampling locations are presented in Table 1. A set of 120 fruit samples each in replications were used for final analysis to estimate the (-)-HCA content. Chemicals used for the sample preparation were: 4N Sodium hydroxide, 50 per cent Calcium hydroxide, 10 per cent activated charcoal, 1N H₂SO₄ and 5 per cent Sodium metavanadate, Potassium hydroxyxycitrate bicarbonate (Standard for (-)-HCA).

Preparation of samples for extraction of (-)-HCA: The method described by Gogoi et al. (2014) [3] was followed for extraction of HCA with few minor modifications. About 5 g of chopped rinds of each fruit sample was dried to one third of their fresh weight (Figure 2 A and B). Powdered rinds were added to 15 ml of double distilled water and autoclaved twice (121 °C, 15 PSI.). The liquid extract was separated and treated with 10 per cent activated charcoal. The thick concentrated liquid was filtered. The residue was washed with small portion of distilled water and combined with the filtrate. The filtrate was neutralized with 4N NaOH solution which was maintained at pH 7.5. Fifty per cent solution of CaCl₂, was added and stirred well. Precipitated residue was filtered through 125 mm pore size filter paper and dried (Figure 1 C). Weight of the dried pellets of HCA lactones was recorded. Accurately weighed 0.29 g of HCA lactone was dissolved in 5 ml of 1 N H₂SO₄ and diluted to 25 ml with distilled water. The sample solution was decolorized using 10 per cent activated charcoal. The solution was filtered into a 50 ml standard flask, washed the residue with small portion of distilled water and made up to the volume. The standard Potassium hydroxyxycitrate bicarbonate salt equivalent to 0.0429 g of the free acid was weighed accurately and dissolved in 5 ml of 1 N H₂SO₄, and 25 ml of distilled water was added. It was filtered and transferred into a 50 ml volumetric flask and made up to the volume using distilled water. Linear working standards (0.5 ml, 1 ml, 1.5 ml and 2 ml) were prepared from the stock standard solution.

Quantification of HCA content by UV double-beamed spectrophotometer

One ml each of the prepared working standard solutions was added to 0.9 ml of 5 per cent Sodium metavanadate and 1ml double distilled water to estimate the HCA content present in the given sample (Figure 2 D). Absorbance value at 467 nm (Antony et al., 1998) was noted for all the working standards and a linear graph was plotted with the absorbance values to obtain a standard curve (Figure 2). Similarly, absorbance values for samples were recorded and the HCA content in samples was estimated using the following formula;

\[
\text{HCA content (per cent)} = \frac{\text{Absorbance value} \times \text{quantity of sample in the test solution} \times \text{factor}}{\text{Volume of the sample}} \times 100
\]

Factor = Pellet quantity obtained after precipitation with Ca (OH)₂ / 5 g of sample

Analysis of variance (ANOVA) and normal distribution of probability were worked out for the results obtained from HCA quantification.

Results

Relative levels of (-)-HCA content in the fruit samples on dry weight basis was estimated and analysed. The normal distribution of HCA content in ecotypes of G. indica species revealed a symmetrical bell-shaped curve (Figure 3). Per cent HCA content on dry weight basis in fruit samples of different ecotypes of Garcinia indica is presented in Table 2. The analysis of variance (ANOVA) revealed significant differences among the ecotypes of Garcinia indica for the (-)-HCA content in fruits (Table 3). The average mean per cent (-)-HCA content on dry weight basis was 17.90. The ecotype from Sirsi (Uttara Kannada) population recorded highest per cent (-)-HCA content of 25.46 and lowest per cent (-)-HCA content (10.53) was recorded in an ecotype from Mudigere (Chikmagalur) population.

The samples were divided into populations based on Districts as units. Descriptive statistics for HCA content among the samples of Garcinia indica representing different populations is presented in Table 4. The average mean for (-)-HCA content of populations of G. indica ecotypes based on geographical region was highest for the population from Uttara Kannada (20.60). The lowest average mean for (-)-HCA content was recorded in population from Belgaum (16.39). These results indicated that there is a fair amount of genetic plasticity for per cent (-)-HCA content among the ecotypes of G. indica in Western Ghats of Karnataka.

Discussion

The extraction of (-)-Hydroxycitric acid from the dried rinds of Garcinia indica by autoclaving the samples worked efficiently for better estimation of HCA content. Autoclaving the samples help in effective release of the target contents and enabling their detection (Gogoi et al., 2014) [3]. The spectrophotometric estimation has some limitations such as inaccurate quantification due to reaction of other similar compounds and time dependence of the developed colour by the reaction. Nonetheless, a proper extraction of the target compound from the tissue into the solution, such as the process of autoclaving, evolved better capture and accounting in the final estimation. Similar results for (-)-HCA content estimation in fruit rinds of Garcinia indica (12 per cent) was reported by Pandey et al. (2015) [10]. The variation in (-)-HCA content among the ecotypes of Garcinia indica was significant across the samples of different natural populations of Western Ghats. The high HCA content of Garcinia indica in the sub-populations of Northern regions of Western Ghats of Karnataka such as Uttara Kannada and Udupi Districts pointed at the genetic diversity of Garcinia indica. The variation in (-)-HCA content across geographic populations may be due genotypic variation and adoption to different
regions where the environmental conditions have favoured maximum expression of the trait (Priyadevi et al., 2012). The survey conducted by Parthasarathy et al. (2013) revealed that *Garcinia indica* and *Garcinia cambogia* were present throughout Western Ghats, extended from Konkan valley in North of Maharashtra to Malabar Coast in South of Kerala and ecotypes of *Garcinia indica* was predominant in Konkan region. The normal distribution of ecotypes with more number of ecotypes having the (--)HCA content near to mean (--)HCA content in ecotypes of *G. indica* also reveals that the content of HCA in fruits is symmetrically distributed in natural populations of the species in Western Ghats of Karnataka.

Table 1: Details of locations covered to collect *Garcinia indica* samples in Western Ghats of Karnataka

Sl. No.	District name	No. of locations	Location names
1	Uttara Kannada	10	Karasulli, Yana, Kumta, Dandeli, Sirsi, Siddapura, Yellapur, Honnawara, Ankola, Karwar and Ramnagar
2	Udupi	3	Mandarthi, and Kokkarne
3	Kodagu	6	Kodlipet, Chettalli, CHES-Chettallli, Madikeri, Valnoor and Coorg
4	Hassan	1	Sakleshpur
5	Chikmagalur	5	Koppa, Mudigere, Kadur, Sringeri, and Chattanahalli
6	Dakshina Kannada	5	Ullala, Kouduiar, Puttur, Kaniyoor, Madibidre and Machina Belthangadi
7	Belgaum	2	Belgaum and Anmod
8	Goa	1	Ela
9	Shivamogga	1	Aagumbe
10	Dharwad	1	Dharwad
11	Kasargod (Kerala)	1	Kasargod

Table 2: Relative content of (--)HCA (per cent on dry weight basis) in fruit rinds of different ecotypes of *Garcinia indica* estimated by spectrophotometer method

Sl. No.	Sample ID	Mean (%)	SD
1	GI_KAR1	22.37	0.18
2	GI_KAR2	21.66	0.21
3	GI_KAR3	11.50	0.50
4	GI_KAR4	13.69	0.11
5	GI_KAR5	12.28	0.50
6	GI_KAR6	13.47	0.14
7	GI_KAR7	17.59	0.15
8	GI_KAR8	15.18	0.30
9	GI_KAR9	17.29	0.10
10	GI_KAR10	11.41	0.14
11	GI_KAR11	10.57	0.09
12	GI_KAR12	17.11	0.20
13	GI_KAR13	11.42	0.11
14	GI_KAR14	12.67	0.15
15	GI_KAR15	14.02	0.09
16	GI_MAN2	17.54	0.53
17	GI_MAN3	14.82	0.31
18	GI_MAN8	14.54	0.76
19	GI_KAD1	14.34	0.56
20	GI_KAD2	12.48	0.14
21	GI_KAD3	14.64	0.127
22	GI_KAD4	14.41	0.16
23	GI_KAD5	17.11	0.92
24	GI_KOD1	13.55	0.10
25	GI_KOD2	17.57	0.75
26	GI_MAC	17.48	0.16
27	GI_CHE1	12.02	0.28
28	GI_KOP1	17.50	0.51
29	GI_MDB	17.43	0.61
30	GI_SKP	20.13	0.07
31	GI_MDG1	20.04	0.14
32	GI_YAN1	20.02	0.94
33	GI_KOK2	21.33	0.85
34	GI_KOD2	20.58	0.35
35	GI_GOA4	13.21	0.25
36	GI_DAN1	11.65	0.31
37	GI_KAN1	13.29	0.56
38	GI_KAN2	14.98	0.63
39	GI_KAN3	15.44	0.13
40	GI_KAN4	16.03	0.42
41	GI_KAN5	12.72	0.38
42	GI_KAN6	14.35	0.16
43	GI_KAN7	12.33	0.37
44	GI_KAN8	13.28	0.53
---	---		
45	GI_KAN9	13.09	0.52
46	GI_KAN10	21.54	0.21
47	GI_KAN11	23.04	0.15
48	GI_KAN12	13.40	0.45
49	GI_KAN13	17.50	0.16
50	GI_KAN14	20.78	0.86
51	GI_KAN15	23.06	0.57
52	GI_KAN16	16.07	0.48
53	GI_KAN17	19.62	0.15
54	GI_KAN18	19.39	0.10
55	GI_KAN19	18.66	0.67
56	GI_KAN20	19.76	0.23
57	GI_YAN2	18.39	0.10
58	GI_KAN21	19.41	0.87
59	GI_KAN22	19.74	0.25
60	GI_KAN23	14.50	0.10
61	GI_KAN24	18.67	0.64
62	GI_KAN25	15.67	0.26
63	GI_KAN26	17.67	0.32
64	GI_KAN27	16.68	0.20
65	GI_KAN28	14.67	0.27
66	GI_KAN29	13.79	0.42
67	GI_KAN30	15.42	0.15
68	GI_KAN31	12.61	0.23
69	GI_KAN32	14.06	0.21
70	GI_KAN33	17.06	0.14
71	GI_KAN34	16.79	0.17
72	GI_KAN35	15.65	0.61
73	GI_KAN36	12.59	0.26
74	GI_KAN37	13.61	0.62
75	GI_KAN38	14.05	0.24
76	GI_KAN39	12.90	0.15
77	GI_KAN40	11.80	0.43
78	GI_KAN41	10.53	0.71
79	GI_KAN42	15.41	0.98
80	GI_KAN43	15.25	0.22
81	GI_KAN44	12.23	0.61
82	GI_KAN45	15.91	0.46
83	GI_KAN46	17.41	0.26
84	GI_KAN47	17.05	0.32
85	GI_KAN48	13.76	0.31
86	GI_KAN49	13.52	0.22
87	GI_KAN50	12.98	0.18
88	GI_KAN51	23.68	0.31
89	GI_KAN52	22.63	0.36
90	GI_KAN53	24.06	0.09
91	GI_KAN54	22.43	0.25
92	GI_KAN55	23.78	0.87
93	GI_KAN56	24.45	0.42
94	GI_KAN57	24.72	0.30
95	GI_KAN58	22.74	0.16
96	GI_KAN59	23.40	0.32
97	GI_KAN60	24.03	0.42
98	GI_KAN61	24.57	0.46
99	GI_KAN62	24.70	0.63
100	GI_KAN63	23.91	0.34
101	GI_KAN64	23.96	0.42
102	GI_KAN65	23.50	0.93
103	GI_KAN66	24.09	0.32
104	GI_KAN67	24.41	0.31
105	GI_KAN68	24.86	0.76
106	GI_KAN69	20.66	0.38
107	GI_KAN70	22.61	0.25
108	GI_KAN71	21.41	0.82
109	GI_KAN72	21.76	0.25
110	GI_KAN73	23.60	0.32
111	GI_KAN74	25.46	0.24
112	GI_KAN75	24.54	0.37
113	GI_KAN76	24.93	0.25
114	GI_KAN77	22.66	0.27
115	GI_KAN78	24.57	0.67
116	GI_KAN79	25.27	0.45
117	GI_KAN80	21.68	0.71
Table 3: Analysis of variance (ANOVA) of (-)–HCA content among ecotypes of *Garcinia indica*

Source of Variation	DF	MS	F-cal	F-critical
Treatments	119	59.25	848.01	1.43**
Replications	240	0.07		
Total	359			
Standard error		0.22		
t tab 0.01 (240)		2.34		
Critical Difference		0.51		
Co-efficient of Variance (CV)		0.25		

- significant at 1%

Table 4: Mean, range and standard deviation for (-) - HCA content in different sub populations (regions) of *Garcinia indica*

Sub populations	Regions	Mean (%)	Minimum (%)	Maximum (%)	Standard Deviation
POP 1	Uttara Kannada	19.11	12.05	23.22	4.25
POP 2	Udupi	15.97	9.07	23.96	4.83
POP 3	Kodagu	15.32	10.53	19.08	3.04
POP 4	Dakshina Kannada	15.38	12.11	18.64	4.62
POP 5	Chikmagalur	16.91	11.48	22.41	5.67
POP 6	Hassan	16.45	10.83	23.78	4.07
POP 7	Belgaum	16.38	9.03	23.36	4.73

A. B. C. D

Fig 1: Steps in preparation of samples for HCA content estimation; A) Dried rinds of *Garcinia indica*, B) Powdered dried rinds, C) HCA lactone pellets and D) Colour development after Sodium meta vanadate reaction with HCA in the sample

![Standard linear curve](image)

Fig 2: Standard linear curve plotted for the linear working standard solutions (0.5 ml, 1.0 ml, 1.5 ml and 2.0 ml) of Potassium hydroxycitrate bicarbonate at 467 nm absorbance in UV double-beamed spectrophotometer. The R^2 value above 0.8 (0.9941) confirms the linearity of the standard curve plotted for the estimation of HCA content.
Fig 3: Normal distribution of HCA content among *G. indica* ecotypes

Supplementary materials

Table 1: Details of *Garcinia indica* samples collected from different regions of Karnataka

Sl. No.	Sample	Sample ID	Location	District/State	GPS Coordinates
1	*G. indica*	GI_KAR1	Karasulli	Uttara Kannada	14° 34' 30.8316'' N 74° 48' 33.1992'' E
2	*G. indica*	GI_KAR2	Karasulli	Uttara Kannada	14° 34' 30.8388'' N 74° 48' 33.1632'' E
3	*G. indica*	GI_KAR3	Karasulli	Uttara Kannada	14° 34' 30.828'' N 74° 48' 33.1524'' E
4	*G. indica*	GI_KAR4	Karasulli	Uttara Kannada	14° 34' 30.8172'' N 74° 48' 33.174'' E
5	*G. indica*	GI_KAR5	Karasulli	Uttara Kannada	14° 34' 30.8244'' N 74° 48' 33.1488'' E
6	*G. indica*	GI_KAR6	Karasulli	Uttara Kannada	14° 34' 30.8136'' N 74° 48' 33.1236'' E
7	*G. indica*	GI_KAR7	Karasulli	Uttara Kannada	14° 34' 30.8028'' N 74° 48' 33.1668'' E
8	*G. indica*	GI_KAR8	Karasulli	Uttara Kannada	14° 34' 30.7956'' N 74° 48' 33.1344'' E
9	*G. indica*	GI_KAR9	Karasulli	Uttara Kannada	14° 34' 30.8532'' N 74° 48' 33.1056'' E
10	*G. indica*	GI_KAR10	Karasulli	Uttara Kannada	14° 34' 30.8464'' N 74° 48' 33.138'' E
11	*G. indica*	GI_KAR11	Karasulli	Uttara Kannada	14° 34' 30.846'' N 74° 48' 33.1524'' E
12	*G. indica*	GI_KAR12	Karasulli	Uttara Kannada	14° 34' 30.8464'' N 74° 48' 33.138'' E
13	*G. indica*	GI_KAR13	Karasulli	Uttara Kannada	14° 34' 30.8244'' N 74° 48' 33.1668'' E
14	*G. indica*	GI_KAR14	Karasulli	Uttara Kannada	14° 34' 30.8064'' N 74° 48' 33.1344'' E
15	*G. indica*	GI_KAR15	Karasulli	Uttara Kannada	14° 34' 30.8028'' N 74° 48' 33.1812'' E
16	*G. indica*	GI_MAN2	Mandarthi	Udupi	13° 29' 48.4476'' N 74° 48' 35.172'' E
17	*G. indica*	GI_MAN3	Mandarthi	Udupi	13° 29' 47.7852'' N 74° 48' 36.5256'' E
18	*G. indica*	GI_MAN8	Mandarthi	Udupi	13° 29' 46.9572'' N 74° 48' 35.136'' E
19	*G. indica*	GI_KAD1	Kadur	Chikmagalur	13° 33' 12.0528'' N 76° 0' 40.0248'' E
20	*G. indica*	GI_KAD2	Kadur	Chikmagalur	13° 33' 9.6588'' N 76° 0' 39.9852'' E
21	*G. indica*	GI_KAD3	Kadur	Chikmagalur	13° 33' 12.4383'' N 76° 0' 38.1312'' E
22	*G. indica*	GI_KAD4	Kadur	Chikmagalur	13° 33' 12.2868'' N 76° 0' 36.432'' E
23	*G. indica*	GI_KAD5	Kadur	Chikmagalur	13° 33' 10.5624'' N 76° 0' 35.9676'' E
24	*G. indica*	GI_KOK1	Kokkarne	Udupi	13° 26' 37.1976'' N 74° 48' 35.6848'' E
25	*G. indica*	GI_KOD1	Kodlipet	Kodagu	12° 47' 48.588'' N 75° 53' 22.9308'' E
26	*G. indica*	GI_MAC	MachinBelthangad	Dakshin Kannada	12° 57' 35.946'' N 75° 12' 26.046'' E
27	*G. indica*	GI_CHE1	Chettalli	Kodagu	12° 22' 12.0144'' N 75° 49' 50.4336'' E
28	*G. indica*	GI_KOP1	Koppar	Chikmagalur	13° 31' 57.5688'' N 75° 21' 20.8548'' E
29	*G. indica*	GI_MDB	Mudibide	Dakshin Kannada	13° 4' 7.6764'' N 75° 59' 36.96'' E
30	*G. indica*	GISKP	Sakleshpur	Hassan	12° 56' 33.1188'' N 75° 47' 32.7228'' E
31	*G. indica*	GI_MDG1	Mudigere	Chikmagalur	13° 8' 9.3336'' N 75° 38' 23.1216'' E
32	*G. indica*	GI_YAN1	Yana	Uttara Kannada	14° 34' 10.6788'' N 74° 33' 28.962'' E
33	*G. indica*	GI_KOK2	Kokkarne	Udupi	13° 26' 38.7456'' N 74° 48' 56.804'' E
34	*G. indica*	GI_KOD2	Kodlipet	Kodagu	12° 47' 45.51'' N 75° 53' 27.4848'' E
35	*G. indica*	GI_GOA4	Ela	Goa	15° 17' 57.5376'' N 74° 7' 26.3856'' E
36	*G. indica*	GI_DAN1	Dandeli	Uttara Kannada	15° 14' 58.8408'' N 74° 37' 25.5646'' E
37	*G. indica*	GI_KAN1	Kaniyoor, Puttur	Dakshin Kannada	12° 43' 0.8976'' N 75° 22' 5.448'' E
38	*G. indica*	GI_KAN2	Kaniyoor, Puttur	Dakshin Kannada	12° 43' 0.0048'' N 75° 22' 1.704'' E
39	*G. indica*	GI_KAN3	Kaniyoor, Puttur	Dakshin Kannada	12° 42' 59.9292'' N 75° 22' 5.4084'' E
40	*G. indica*	GI_KAN4	Kaniyoor, Puttur	Dakshin Kannada	12° 42' 59.9292'' N 75° 22' 8.886'' E
41	*G. indica*	GI_KAN5	Kaniyoor, Puttur	Dakshin Kannada	12° 42' 55.7856'' N 75° 22' 3.4788'' E
42	*G. indica*	GI_KAN6	Kaniyoor, Puttur	Dakshin Kannada	12° 42' 51.5664'' N 75° 22' 3.5544'' E
Conclusion
The plasticity for HCA content in fruit rinds of ecotypes of *Garcinia indica* in the present study suggested that there is a significant amount of diversity with respect to (-)-HCA content in ecotypes of *G. indica* in Western Ghats of Karnataka. The diversity for (-)-HCA content in fruits of ecotypes of *G. indica* is normally distributed across the geographical region of Western Ghats of Karnataka. These results can serve as basis for selection of ecotypes for a detailed estimation of (-)-HCA content using more robust methods and select the superior ecotypes for further evaluation.

Acknowledgement
The present study was funded by Karnataka Biotechnology and Information Technology Services (KBITS), Department of Information Technology, Biotechnology and Science & Technology, Govt. of Karnataka. The encouragement of review and mentoring team of KBITS, Dept. of IT, BT and S&T, GoK is acknowledged.

References
1. Anu AP, Menon LN, Rameshkumar KB. Structural diversity of secondary metabolites in *Garcinia* species. In Diversity of *Garcinia* species in the Western Ghats: Phytochemical perspective. Rameshkumar, K. B. (Ed). JNTBGRI, Kerala, 2015, 196-201.
2. Ashish GR, Parthasarathy U, Zachariah J, Kokkat GC. A comparative estimation of (-) – Hydroxycitricacid in different species of *Garcinia*. The Hort. J. 2008; 21:26-29.
3. Gogoi A, Gogoi N, Neog B. Estimation of (-) - Hydroxyctic acid (HCA) in *Garcinia lanceaefolia* using novel HPLC methodology. Int. J. Pharm. Sci. Res. 2014; 5:4995-4999.
4. Jayaparaksha GK. Determination of organic acids in leaves and rinds of *Garcinia indica* (Desr.) by LC 2002; 28:379-384.
5. Jayaparaksha GK, Jena BS, Sakariah KK. Improved liquid chromatographic method for determination of organic acids in leaves, pulp, fruits, and rinds of *Garcinia*. Int. AOAC J. 2003; 5:1063-1068.
6. Jena BS, Jayaparaksha GK, Singh RP, Sakariah KK. Chemistry and biochemistry of (-)-Hydroxyctic acid from *Garcinia*. J. Agri. Food Chem. 2002; 50:10-22.
7. Kureshi AA, Dholakiya C, Hussain T, Mirgal A, Salvi SP, Barua PC et al. Simultaneous Indian *Garcinia* species using a validated UHPLC-PDA method. J AOAC Int. 2019; 102:1423-1434.
8. Lewis YS, Neelakantan S. (-)-Hydroxyctic acid-the principal acid in the fruits of *Garcinia cambogia*. Phytochem. 1965; 4:619-625.
9. Mishra. Antioxidant activity of *Garcinia indica* (kokum) and its syrup. Curr. Sci., 2006; 1:90-93.
10. Pandey R, Kumar B, Rameshkumar KB. Rapid estimation of bioactive constituents of *Garcinia* species in the Western Ghats using UHPLC-MS/MS Method. In Diversity of *Garcinia* species in the Western Ghats: Phytochemical perspective. Rameshkumar, K. B. (Ed). JNTBGRI, Kerala, 2015, 196-201.
11. Parthasarathy U. Morphological characterization of some important Indian *Garcinia* Species, Dataset Paper. 2014; 2-6-10.
12. Sathish M, Misra SM. Estimation of (-)-Hydroxycitric acid HCA in *Garcinia indica* chotty by HPLC method. Anal. Chem., 2008; 12(7):854-856.
13. Seethapathy G5, Tadesse M, Urumarudappa SKJ, SVG, Vasudeva R, Maltered KE et al. Authentication of *Garcinia* fruits and food supplements using DNA barcoding and NMR spectroscopy. Sci. Rep. 2018; 8:10561.
14. Shameer PS, Rameshkumar KB, Sivu AR, Sabu T, Pradeep NS, Mohanan N. Morphological, chemical and molecular taxonomy of a new *Garcinia* species- *Garcinia pushpangadaniana*, In Diversity of *Garcinia* species in the Western Ghats: Phytochemical Perspective. (Ed) Rameshkumar, K. B., JNTBGRI, Kerala, 2016, 196-201.
15. Shivkumar S, Sriraman S, Subhasree N, Dubey GP. *In vitro* assessment of antibacterial and antioxidant activities of fruit rind extracts of *Garcinia cambogia* L. Int. J. Pharm. Pharm. Sci. 2013; 5:254-257.
16. Shrikant BS. *Kokum* (*Garcinia indica*) and its many functional components as related to the human health: A review. J. Food Res. Technol. 2014; 2:130-142.
17. Sivu AR, Pradeep NS, Rameshkumar KB. Molecular characterization of *Garcinia* species in the Western Ghats, In Diversity of *Garcinia* species in the Western Ghats: Phytochemical perspective. Rameshkumar, K. B. (Ed). JNTBGRI, Kerala, 2017, 196-201.