ON LANDIS’ CONJECTURE IN THE PLANE WHEN THE POTENTIAL HAS AN EXPONENTIALLY DECAYING NEGATIVE PART

BLAIR DAVEY, CARLOS KENIG, AND JENN-NAN WANG

ABSTRACT. In this article, we continue our investigation into the unique continuation properties of real-valued solutions to elliptic equations in the plane. More precisely, we make another step towards proving a quantitative version of Landis’ conjecture by establishing unique continuation at infinity estimates for solutions to equations of the form \(-\Delta u + Vu = 0\) in \(\mathbb{R}^2\), where \(V = V_+ - V_-\), \(V_+ \in L^\infty\), and \(V_-\) is a non-trivial function that exhibits exponential decay at infinity. The main tool in the proof of this theorem is an order of vanishing estimate in combination with an iteration scheme.

To prove the order of vanishing estimate, we establish a similarity principle for vector-valued Beltrami systems.

Keywords: Landis’ conjecture; quantitative unique continuation; order of vanishing; vector-valued Beltrami system

Mathematics Subject Classification: 35B60, 35J10

1. INTRODUCTION

In this paper, we consider the unique continuation properties of real-valued solutions to equations of the form

\[-\Delta u + Vu = 0 \tag{1}\]

in \(\mathbb{R}^2\). We assume that \(V = V_+ - V_-\) where \(V_+ \geq 0\) satisfies

\[\|V_+\|_{L^\infty(\mathbb{R}^2)} \leq 1 \tag{2}\]

\[V_-(z) \leq \exp\left(-c_0|z|^{1+ \epsilon_0}\right) \quad \forall z \in \mathbb{R}^2, \tag{3}\]

for some \(\epsilon_0 > 0\). The main result of this article is the following quantitative form of Landis’ conjecture for solutions to (1).

Theorem 1. Assume that \(V : \mathbb{R}^2 \to \mathbb{R}\) satisfies (2) and (3). Let \(u : \mathbb{R}^2 \to \mathbb{R}\) be a solution to (1) for which

\[|u(z)| \leq \exp(C_0|z|) \tag{4}\]

\[|u(0)| \geq 1. \tag{5}\]

Then for any \(\epsilon > 0\) and any \(R \geq R_0(C_0, c_0, \epsilon_0, \epsilon)\), we have

\[\inf_{|z_0| = R} \|u\|_{L^\infty(B_1(z_0))} \geq \exp\left(-R^{1+\epsilon}\right). \tag{6}\]
This theorem improves upon the work in [KSW15] (see also the subsequent results in [DKW17] and [DW17]) since we now allow for V_- to be a non-trivial function.

To prove Theorem 1, we follow the usual approach and prove an order of vanishing estimate for a scaled version of equation (1). Since the potential function exhibits decay at infinity, we combine the scaling argument first developed in [BK05] with an iteration scheme similar to the one presented in [Dav14] (and further developed in [LW14]) to prove Theorem 1.

The notation $B_r(z_0)$ is used to denote the ball of radius r centered at $z_0 \in \mathbb{R}^2$. The abbreviated notation B_r will be used when the centre is understood from the context. We also use the notation $Q_r(z_0)$ to denote the cube of sidelength $2r$ centered at $z_0 \in \mathbb{R}^2$, and we may abbreviate the notation when it is clear from the context. For the order of vanishing estimate, we consider solutions to (1) in Q_b for some $b > 1$.

Theorem 2. Let F be a function for which $1 \leq F(\lambda) \leq \lambda$ for all $\lambda \geq 1$. For some $\lambda \geq 1$, set $b = 1 + \frac{1}{F(\lambda)}$. Assume that $\|V_+\|_{L^\infty(Q_b)} \leq \lambda^2$ and that $\|V_-\|_{L^\infty(Q_b)} \leq \delta^2$, where

$$\delta = \frac{c \sqrt{\lambda}}{\log \lambda} \exp(-m\lambda),$$

for some $c > 0$ and a constant $m > 0$ to be specified below. Let u be a real-valued solution to (1) in Q_b that satisfies, for some $p > 0$,

$$\|u\|_{L^\infty(B_b)} \leq \exp(C_1\lambda),$$

$$\|u\|_{L^\infty(B_1)} \geq \exp(-c_1\lambda^p).$$

Then for any r sufficiently small,

$$\|u\|_{L^\infty(B_r)} \geq r^{C\lambda q F(\lambda)},$$

where $q = \max \{1, p\}$ and C depends on C_1, c_1, and c.

Since we are working with real-valued solutions and equations in the plane, we follow an approach that is based on the ideas first developed in [KSW15]. In particular, we rely on tools from complex analysis to prove our theorem. In [KSW15], [DKW17], and [DW17], the first step in the proof of the order of vanishing estimate is to show the existence of a positive multiplier and establish good bounds for it. Since the negative part of V is now assumed to be non-trivial, our usual approach to establishing the existence of a positive multiplier breaks down. Thus, we introduce a positive solution to an associated equation with a shifted potential function. This positive solution allows us to transform the PDE for u into a divergence-form equation. The resulting equation is not divergence-free, but it resembles a higher-dimensional divergence-free equation. Therefore, we mimic ideas from the 3-dimensional setting, and introduce a vector-valued stream function that gives rise to a vector-valued Beltrami system.

The main challenge that we overcome is understanding the quantitative behavior of solutions to vector-valued Beltrami equations. In the scalar setting, an application of the similarity principle in combination with the Hadamard three-circle theorem allowed us to quantify all solutions to the resulting Beltrami system. As a similarity principle with bounds was not available to us in the vector-valued setting, we prove one here using Cartan’s Lemma, the Wiener-Masani Theorem, and the ideas from [BR03]. With this new similarity principle, we can prove our three-ball inequalities by applying the Hadamard three-circle theorem component-wise.
Each section in this article describes an important proof. Section 2 gives the proof of Theorem 2 where each major step is presented in a subsection. The four steps in this proof are: the introduction of a positive multiplier and its properties, the reduction from the PDE to a vector-valued Beltrami system, the quantitative properties of solutions to vector-valued Beltrami systems, and the three-ball inequality. The proof of Theorem 1 is presented in Section 3. We first present the proposition behind the iteration scheme, whose proof relies on the order of vanishing estimate given in Theorem 2. Then we repeatedly apply the proposition to prove Theorem 1. Finally, Section 4 presents the proof of an important proposition in the quantification of solutions to vector-valued Beltrami systems.

2. THE PROOF OF THEOREM 2

2.1. The positive multiplier. In [KSW15] and [DKW17], the first step in the proofs of the order of vanishing estimates is to establish that a positive multiplier associated to the operator (or its adjoint) exists and has suitable bounds. Since we are no longer working with a zeroth order term that is assumed to be non-negative, we take a somewhat different approach here.

Define

\[V_\delta (x, y) = V (x, y) + \delta^2. \]

It follows from the assumptions \(\| V^- \|_{L^\infty (Q_B)} \leq \delta^2, \| V^+ \|_{L^\infty (Q_B)} \leq \lambda^2 \), and \(\lambda \geq 1 \geq \delta \) (choosing \(\lambda \) sufficiently large), that \(0 \leq V_\delta \leq 2\lambda^2 \) a.e. in \(Q_B \). Therefore, we may mimic the techniques from [KSW15] and [DKW17] to construct a positive multiplier associated with the equation

\[\Delta \phi - V_\delta \phi = 0 \quad \text{in} \quad Q_B. \tag{11} \]

Set \(\phi_1 (x, y) = \exp \left(\sqrt{2\lambda} x \right) \). Since

\[\Delta \phi_1 - V_\delta \phi_1 = (2\lambda^2 - V_\delta) \phi_1 \geq 0, \]

then \(\phi_1 \) is a subsolution. Set \(\phi_2 = \exp \left(\sqrt{8\lambda} \right) \) and notice that

\[\Delta \phi_2 - V_\delta \phi_2 = -V_\delta \phi_2 \leq 0, \]

so \(\phi_2 \) is a supersolution. Since \(\phi_2 \geq \phi_1 \) in \(Q_B \), then there exists a positive solution \(\phi \) to (11) for which

\[\exp \left(-\sqrt{8\lambda} \right) \leq \phi \leq \exp \left(\sqrt{8\lambda} \right) \tag{12} \]

in \(Q_B \). By the gradient estimate for Poisson’s equation (as in [GT01] for example), we have

\[\| \nabla \phi \|_{L^\infty (B_r)} \leq \frac{C \alpha^2}{r} \| \phi \|_{L^\infty (B_{ar})}, \tag{13} \]

whenever \(\alpha > 1, \alpha r < b \). Note that \(C \alpha \sim (\alpha - 1)^{-1} \). A similar estimate holds for \(u \) as well.

We present an estimate similar to one in [KSW15] that will be instrumental below.

Lemma 1. Recall that \(b = 1 + \frac{1}{F(\lambda)} \), where \(1 \leq F (\lambda) \leq \lambda \). For \(d = 1 + \frac{1}{2F(\lambda)} \), there is an absolute constant \(C_2 \) for which

\[\| \nabla (\log \phi) \|_{L^\infty (Q_d)} \leq C_2 \lambda, \]

where \(\phi \) is a positive solution to (11).
Proof. We begin with an L^2 estimate for $\Phi := \log \phi$. Let $\theta \in C_0^\infty (Q_b)$ be a smooth cutoff function with $\theta \equiv 1$ in Q_d, where $\tilde{d} = 1 + \frac{3}{4F(\lambda)}$. The assumption on b implies that $b - \tilde{d} \geq \frac{1}{4F(\lambda)}$ and therefore $\|\nabla \theta\|_{L^\infty (Q_b)} \leq CF(\lambda)$ and $\|\Delta \theta\|_{L^\infty (Q_b)} \leq C [F(\lambda)]^2$. It follows from (11) that in Q_b

$$\Delta \Phi + |\nabla \Phi|^2 = \theta^2.$$

(14)

Multiplying both sides of this equation by θ^2 and integrating by parts, we see that

$$\int |\nabla \Phi|^2 \theta^2 = \int V_{\delta} \theta^2 + \int \nabla (\theta^2) \cdot \nabla \Phi \leq \int V_{\delta} \theta^2 + \frac{1}{2} \int |\nabla \Phi|^2 \theta^2 + 2 \int |\nabla \theta|^2.$$

Therefore,

$$\int_{Q_d} |\nabla \Phi|^2 \leq \int |\nabla \Phi|^2 \theta^2 \leq 2 \int V_{\delta} \theta^2 + 4 \int |\nabla \theta|^2 \leq C \left(\lambda^2 + [F(\lambda)]^2 \right),$$

where we have used the bound on V_{δ} and that $\tilde{d} \leq \frac{7}{4}$. Since $F(\lambda) \leq \lambda$, then $\|\nabla \Phi\|_{L^2 (Q_d)} \leq C \lambda$, where C is an absolute constant.

We rescale equation (14). Set $\phi = \frac{\Phi}{C \lambda}$ for some $C > 0$. Then (14) is equivalent to

$$\mu \Delta \phi + |\nabla \phi|^2 = \tilde{\nu} \text{ in } Q_d,$$

(15)

where $\mu = \frac{1}{C \lambda}$ and $\tilde{\nu} = \frac{V_{\delta}}{C^2 \lambda^2}$. Now choose C sufficiently large so that

$$\left\|\frac{\tilde{\nu}}{L^\infty (Q_b)}\right\| \leq 1, \quad \int_{Q_d} |\nabla \phi|^2 \leq 1.

(16)

Claim 1. For any $z \in Q_d$, if $\mu \leq cr, r < \frac{1}{8F(\lambda)}$, and conditions (15) and (16) hold, then

$$\int_{B_r (z)} |\nabla \phi|^2 \leq Cr^2.$$

Proof of Claim [7] We use the abbreviated notation B_r to denote $B_r (z)$ for some $z \in Q_d$. Let $\eta \in C_0^\infty (B_{2r})$ be a cutoff function such that $\eta \equiv 1$ in B_r. By the divergence theorem

$$0 = \mu \int \text{div} (\nabla \phi \eta^2) = \mu \int \Delta \phi \eta^2 + 2 \mu \int \eta \nabla \phi \cdot \nabla \eta.$$n

(17)

Now we estimate each term. By (15) and (16),

$$\int \mu \Delta \phi \eta^2 = - \int |\nabla \phi|^2 \eta^2 + \int \tilde{\nu} \eta^2 \leq - \int |\nabla \phi|^2 \eta^2 + \left\|\frac{\tilde{\nu}}{L^\infty (B_d)}\right\|_{B_{2r}} 1$$

$$\leq - \int |\nabla \phi|^2 \eta^2 + Cr^2.$$

(18)

By Cauchy-Schwarz and Young’s inequality,

$$2 \mu \int \eta \nabla \phi \cdot \nabla \eta \leq 2 \mu \left(\int |\nabla \phi|^2 \eta^2 \right)^{1/2} \left(\int |\nabla \eta|^2 \right)^{1/2} \leq \frac{1}{2} \int |\nabla \phi|^2 \eta^2 + C \mu^2.$$n

(19)

Combining (17)-(19) and using that $\mu \leq cr$, we see that

$$\int_{B_r} |\nabla \phi|^2 \leq \int |\nabla \phi|^2 \eta^2 \leq C \mu^2 + Cr^2 \leq Cr^2,$$

(20)

proving the claim. \qed
We now use Claim 1 to give a pointwise bound for $\nabla \varphi$ in Q_d. Define

$$\varphi_\mu \left(z \right) = \frac{1}{\mu} \varphi \left(\mu z \right).$$

Then

$$\nabla \varphi_\mu \left(z \right) = \nabla \varphi \left(\mu z \right), \quad \Delta \varphi_\mu \left(z \right) = \mu \Delta \varphi \left(\mu z \right).$$

It follows from (15) that

$$\Delta \varphi_\mu + \left| \nabla \varphi_\mu \right|^2 = \tilde{V} \left(\mu z \right) =: \tilde{V}_\mu \left(z \right),$$

where we have used Claim 1. It follows from Theorem 2.3 and Proposition 2.1 in Chapter V of [Gia83] that there exists $p > 2$ such that

$$\left\| \nabla \varphi_\mu \right\|_{L^p(B_1)} \leq C.$$

Define

$$\tilde{\varphi}_\mu \left(z \right) = \varphi_\mu \left(z \right) - \frac{1}{\left| B_1 \right|} \int_{B_1} \varphi_\mu.$$

Since $\nabla \tilde{\varphi}_\mu = \nabla \varphi_\mu$, then

$$\Delta \tilde{\varphi}_\mu = - \left| \nabla \tilde{\varphi}_\mu \right|^2 + \tilde{V}_\mu := \zeta \quad \text{in } B_1.$$

Clearly, $\left\| \zeta \right\|_{L^{p/2}(B_1)} \leq C$. Moreover, by Hölder, Poincaré and (21),

$$\left\| \varphi_\mu \right\|_{L^{p/2}(B_1)} \leq C \left\| \varphi_\mu \right\|_{L^p(B_1)} \leq C \left\| \nabla \varphi_\mu \right\|_{L^p(B_1)} \leq C.$$

By Theorem 9.9 from [GT01], for example,

$$\left\| \tilde{\varphi}_\mu \right\|_{W^{2,p/2}(B_r)} \leq C,$$

for any $r < 1$. If $p > 4$, then it follows that $\left\| \nabla \tilde{\varphi}_\mu \right\|_{L^\infty(B_{r'})} \leq C$. Otherwise, assuming that $p < 4$, a Sobolev embedding shows that $\left\| \nabla \tilde{\varphi}_\mu \right\|_{L^{2p/4} \left(B_{r'} \right)} \leq C$. Since $\frac{2p}{4-p} > p$, we may repeat these arguments to show that for some $r' < 1$

$$\left\| \nabla \tilde{\varphi}_\mu \right\|_{L^\infty \left(B_{r'} \right)} = \left\| \nabla \varphi_\mu \right\|_{L^\infty \left(B_{r'} \right)} = \left\| \nabla \varphi_\mu \right\|_{L^\infty \left(B_{r'} \right)} \leq C.$$

This derivation works for any $z \in Q_d$ and any $\mu < \mu_0$. Since $\varphi = \frac{\phi}{C^2}$, the conclusion of the lemma follows. \hfill \Box
2.2. **Reduction to a vector-valued Beltrami equation.** Now we use the positive multiplier ϕ from above to reduce the PDE to a first-order Beltrami equation. The novelty here is that the resulting equation is a vector equation instead of a scalar equation as it was in [KSW15]. With u and ϕ satisfying (I) and (II), respectively, we define

$$v = \frac{u}{\phi},$$

and a computation shows that

$$\nabla \cdot (\phi^2 \nabla v) + \delta^2 \phi^2 v = 0 \quad \text{in } Q_b. \tag{22}$$

Definition 1. For any $\delta \in \mathbb{R}$, define the operator $\nabla_\delta = (\partial_x, \partial_y, \delta)$, where δ denotes multiplication by δ. That is, if f is an arbitrary scalar function and $F = (F_1, F_2, F_3)$ is an arbitrary vector function,

$$\nabla_\delta f = (\partial_x f, \partial_y f, \delta f),$$

$$\nabla_\delta \cdot F = \text{div}_\delta F = \partial_x F_1 + \partial_y F_2 + \delta F_3,$$

$$\nabla_\delta \times F = \text{curl}_\delta F = (\partial_y F_3 - \delta F_2, \delta F_1 - \partial_x F_3, \partial_x F_2 - \partial_y F_1).$$

With this new notation, (22) may be rewritten as

$$\nabla_\delta \cdot (\phi^2 \nabla_\delta v) = 0 \quad \text{in } Q_b. \tag{23}$$

Therefore, the positive multiplier ϕ for the related equation (I) has been used to transform the PDE (II) into a δ-divergence-free equation.

If we take the standard gradient, divergence and curl in \mathbb{R}^3, and replace ∂_z with multiplication by the constant δ, we get the operators ∇_δ, $\nabla_\delta \cdot$ and $\nabla_\delta \times$. A number of the relationships between gradient, divergence and curl are inherited for these new operators. For example, $\nabla_\delta \cdot (\nabla_\delta \times F) = 0$, $\nabla_\delta \times \nabla_\delta f = 0$, and $\nabla_\delta \times (\nabla_\delta \times F) = - (\Delta + \delta^2) F + \nabla_\delta (\nabla_\delta \cdot F)$.

The next step is to generalize the definition of the stream function given in [KSW15]. Since we have a δ-divergence-free vector field, $\phi^2 \nabla_\delta v$, the idea (that comes from the 3-dimensional setting) is to define a vector-valued function G that satisfies

$$\nabla_\delta \times G = \phi^2 \nabla_\delta v. \tag{24}$$

That is, if $G = (v_1, v_2, v_3)$, then

$$\begin{cases}
\partial_y v_3 - \delta v_2 = \phi^2 \partial_x v \\
-\partial_x v_3 + \delta v_1 = \phi^2 \partial_y v \\
\partial_x v_2 - \partial_y v_1 = \delta \phi^2 v
\end{cases}. \tag{25}$$

Note that when $\delta = 0$, this system reduces to the defining equations for the scalar stream function v_3. When $\delta \neq 0$, one possible solution to this system is obtained by setting $v_3 = 0$. That is,

$$\begin{cases}
v_1 := \delta^{-1} \phi^2 \partial_x v \\
v_2 := -\delta^{-1} \phi^2 \partial_y v
\end{cases}. \tag{26}$$

Define

$$\begin{cases}
w_1 := \phi^2 v \\
w_2 := v_2 + \sqrt{-1} v_1
\end{cases}. \tag{27}$$
With $\bar{\partial} = \frac{\bar{\partial}}{\bar{\partial}x} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \sqrt{-1} \frac{\partial}{\partial y} \right)$,

$$\bar{\partial}w_1 = \bar{\partial} \left(\phi^2 \right) v + \phi^2 \bar{\partial} v = 2 \bar{\partial} (\log \phi) \phi^2 v + \frac{1}{2} \left[\phi^2 \frac{\partial v}{\partial x} + \sqrt{-1} \phi^2 \frac{\partial v}{\partial y} \right]$$

$$= 2 \bar{\partial} (\log \phi) w_1 - \frac{\delta}{2} \bar{w}_2,$$

and

$$\bar{\partial}w_2 = \bar{\partial}v_2 + \sqrt{-1} \bar{\partial}v_1 = \frac{1}{2} \left[\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right] + \frac{\sqrt{-1}}{2} \left[\frac{\partial v_2}{\partial y} + \frac{\partial v_1}{\partial x} \right]$$

$$= \frac{\delta}{2} w_1 + \bar{\partial} (\log \phi) w_2 - \bar{\partial} (\log \phi) \bar{w}_2.$$

Set $\alpha = \bar{\partial} (\log \phi)$ so that $\bar{\alpha} = \overline{\bar{\partial} (\log \phi)} = \bar{\partial} (\log \phi)$, since ϕ is real. We define

$$\bar{\alpha} = \begin{cases} \bar{\alpha} w_2 & \text{if } w_2 \neq 0 \\ 0 & \text{otherwise} \end{cases}, \quad \bar{\delta} = \begin{cases} \bar{\delta} w_2 & \text{if } w_2 \neq 0 \\ 0 & \text{otherwise} \end{cases}.$$

We use the notation $T = T_{Q_b}$ to denote the Cauchy-Pompeiu operator on Q_b. More details can be found in the next subsection, but for now we rely on the property that $\bar{\partial} T_{Q_b} f = f \chi_{Q_b}$. It follows that

$$\bar{\partial} \left(e^{-T(2\alpha)} w_1 \right) = e^{-T(2\alpha)} \bar{\partial} w_1 - 2 \alpha e^{-T(2\alpha)} w_1 = -\frac{\delta}{2} e^{-T(2\alpha)} w_2$$

$$\bar{\partial} \left(e^{-T(\alpha - \bar{\alpha})} w_2 \right) = e^{-T(\alpha - \bar{\alpha})} \bar{\partial} w_2 - (\alpha - \bar{\alpha}) e^{-T(\alpha - \bar{\alpha})} w_2 = \frac{\bar{\delta}}{2} e^{-T(\alpha - \bar{\alpha})} w_1.$$

If we set $\tilde{w}_1 = e^{-T(2\alpha)} w_1$, $\tilde{w}_2 = e^{-T(\alpha - \bar{\alpha})} w_2$, and introduce vector notation

$$\tilde{w} = \begin{bmatrix} \tilde{w}_1 \\ \tilde{w}_2 \end{bmatrix} \quad \text{and} \quad G = \begin{bmatrix} 0 & -\frac{\bar{\delta}}{2} e^{-T(\alpha + \bar{\alpha})} \\ \frac{\delta}{2} e^{T(\alpha + \bar{\alpha})} & 0 \end{bmatrix},$$

then we have

$$\tilde{\bar{\partial}} \tilde{w} - G \tilde{w} = \tilde{0} \quad \text{in } Q_d. \quad (28)$$

2.3. Solutions to Beltrami matrix equations. Towards understanding the behavior of solutions to (28), we study the behavior of matrix solutions to the equation

$$\bar{\partial} P - AP = 0 \quad \text{in } \mathcal{R} := [0,1] \times [0,1]. \quad (29)$$

For a 2×2 matrix A, recall that

$$|A|^2 = \text{tr}(A^*A),$$

where A^* is the Hermitian adjoint of A. We use the notation $\|\cdot\|$ to denote the operator norm of a matrix. Observe that for 2×2 matrices A and B,

$$|AB| \leq |A| \|B\|$$

$$\|A\| \leq |A| \leq \sqrt{2} \|A\|$$

$$|I| = \sqrt{2}.$$
For a 2×2 matrix function A, we write
\[\|A\|_{\infty} = \sup_{i,j=1,2} \|a_{ij}\|_{L^\infty}. \]

The goal is to solve the equation $\bar{\partial}P = AP$ in \mathcal{R} and show that both P and P^{-1} have good control in terms of $M = \|A\|_{\infty}$.

We first need some notation. For some $\delta > 0$, set
\[V_i = \left[i\delta, i\delta + \frac{3}{2}\delta \right]. \]

Then $V_{i-1} \cap V_i = \left[i\delta, i\delta + \frac{1}{2}\delta \right]$ and $V_i \cap V_j \neq \emptyset$ if and only if $j = i \pm 1$. Assuming that δ is chosen so that $i_0 := \frac{1}{\delta} - \frac{3}{2} \in \mathbb{N}$, we have $[0, 1) = \bigcup_{i=0}^{i_0} V_i$. Define
\[U_i = V_i \times [0, 1]. \]

The first proposition serves as the main tool in the proof the second proposition.

Proposition 1. Let $\{H_i\}_{i=1}^{i_0}$ be a collection of 2×2 matrices such that each H_i is defined on $U_{i-1} \cap U_i$, $\|H_i\| \leq 10$, $\|H_i^{-1}\| \leq 10$, and both H_i and H_i^{-1} are analytic on $U_{i-1} \cap U_i$. Then there exists a collection of 2×2 matrices $\{g_i\}_{i=0}^{i_0}$, where both g_i and g_i^{-1} are defined and analytic on U_i, with $H_i = g_{i-1}g_i^{-1}$ on $U_{i-1} \cap U_i$. Moreover, there exists a constant $C > 0$ so that
\[|g_i|^2 + |g_i^{-1}|^2 \leq Ce^{C/\delta^2} \quad \text{in} \quad U_i. \tag{30} \]

The proof of Proposition [1] can be found in Section [4]. Here we use the result to prove the following proposition.

Proposition 2. Let A be a 2×2 matrix function defined on \mathcal{R} with $M = \|A\|_{\infty}$. There exists an invertible solution to $\bar{\partial}P = AP$ in \mathcal{R} with the property that
\[\|P\| + \|P^{-1}\| \leq \exp\left[CM^2 (\log M)^2 \right]. \tag{31} \]

Proof. For a constant $C_1 > 0$ to be specified below, define δ so that $\delta \log (1/\delta) \leq \frac{1}{2C_1M}$. In particular, if $M \geq M_0$, then there exists c_1 depending on M_0 and C_1 so that if
\[\delta := \frac{c_1}{M \log M}, \tag{32} \]

then the bound above is satisfied and $i_0 = \frac{1}{\delta} - \frac{3}{2} \in \mathbb{N}$.

We first solve the equation $\bar{\partial}P = AP$ in $R_\delta := U_i$. If P a solution and $P = I + Q$, then
\[\bar{\partial}Q = \bar{\partial}P = AP = A + AQ. \]

Let
\[T_{R_\delta}(F)(z) = \frac{1}{\pi} \int_{R_\delta} \frac{F(\xi)}{z - \xi} d\omega(\xi). \]

Note that $\bar{\partial} \left(T_{R_\delta}(F) \right) = F\chi_{R_\delta}$. Since we need to solve the equation $\bar{\partial}Q - AQ = A$ in R_δ, we solve $\bar{\partial} \left[Q - T_{R_\delta}(AQ) - T_{R_\delta}(A) \right] = 0$. Therefore, we seek solutions to
\[Q - T_{R_\delta}(AQ) = T_{R_\delta}(A) \quad \text{in} \quad R_\delta. \tag{33} \]
Observation: There exists a constant $C > 0$ such that \(\sup_{z \in R_\delta} \frac{1}{|z - \xi|} d\omega(\xi) \leq C \delta \log(1/\delta) \).

Recall that \(R_\delta = U_i = [i\delta, i\delta + \frac{3}{2}\delta] \times [0, 1] \). Partition \([0, 1]\) into equal intervals \(I_k \) of length at most \(\frac{3}{2}\delta \) such that \(U_i = \bigcup_{k=1}^{[2/3\delta]} [i\delta, i\delta + \frac{3}{2}\delta] \times I_k \) Assume first that \(z \in [i\delta, i\delta + \frac{3}{2}\delta] \times I_1 \). For \(k \geq 3 \), let \(\xi
in [i\delta, i\delta + \frac{3}{2}\delta] \times I_k \), then \(|z - \xi| \simeq k\delta \), and

\[
\int_{[i\delta, i\delta + \frac{3}{2}\delta] \times I_k} \frac{1}{|z - \xi|} d\omega(\xi) \leq \frac{1}{k\delta} \delta^2 = \frac{\delta}{k}.
\]

Moreover,

\[
\int_{[i\delta, i\delta + \frac{3}{2}\delta] \times (I_1 \cup I_2)} \frac{1}{|z - \xi|} d\omega(\xi) \lesssim \int_{B(z, 5\delta)} \frac{1}{|z - \xi|} d\omega(\xi) \simeq \int_0^{5\delta} \frac{r}{r} dr \simeq \delta.
\]

Hence

\[
\frac{1}{|z - \xi|} d\omega(\xi) \lesssim \sum_{k=1}^{[2/3\delta]} \frac{\delta}{k} \simeq (\log(1/\delta)) \].

When \(z \in [i\delta, i\delta + \frac{3}{2}\delta] \times I_{k_0} \) for \(k_0 > 1 \), the result follows similarly and we have proved the observation.

Claim: There exists a constant \(C_1 > 0 \) so that \(\|T_{R_\delta}(F)\|_{L^{\infty}(R_\delta)} \leq C_1 \delta \log(1/\delta) \|F\|_{\infty} \).

This claim follows directly from the observation above and the definition of the operator \(T_{R_\delta} \).

By the definition of \(\delta \) given in (32), we have that \(C_1 \delta \log(1/\delta) M \leq 1/3 \). Therefore, we can solve (33) via a Neumann series approach. Moreover, the resulting solution \(Q \) has \(\|Q\|_{\infty} \leq \frac{3}{2} C_1 \delta \log(1/\delta) M \leq \frac{1}{4} \) and then \(P = I + Q \) satisfies \(\|P\| < 3 \) and \(\|P^{-1}\| < 3 \).

Using the construction described above, for each \(i = 0, \ldots, i_0 \), define \(P_i \) to be the matrix solution to

\[
\tilde{\partial} P_i = AP_i \quad \text{in} \quad U_i
\]

with \(\|P_i\| < 3 \) and \(\|P_i^{-1}\| < 3 \). On \(U_{i-1} \cap U_i \), define \(H_i = P_{i-1}^{-1} P_i \). Clearly, \(\|H_i\| \leq 10 \) and \(\|H_i^{-1}\| \leq 10 \).

As

\[
\tilde{\partial} H_i = -P_{i-1}^{-1}\tilde{\partial} P_{i-1} P_{i-1}^{-1} P_i + P_{i-1}^{-1}\partial P_i = -P_{i-1}^{-1}AP_{i-1} P_{i-1}^{-1} P_i + P_{i-1}^{-1}AP_i = 0,
\]

then each \(H_i \) is analytic on \(U_{i-1} \cap U_i \). A similar argument shows that each \(H_i^{-1} \) is also analytic on \(U_{i-1} \cap U_i \). Therefore, Proposition [1] is applicable. That is, there exist functions \(g_i \) defined and analytic on \(U_i \) such that \(H_i = g_{i-1} g_i^{-1} \) on \(U_{i-1} \cap U_i \) and \(|g_i|^2 \leq Ce^{C/\delta^2} \) on \(U_i \).

Now we use the collections \(\{P_i\}_{i=0}^{i_0} \) and \(\{g_i\}_{i=0}^{i_0} \) to define a function \(P \) on all of \(\mathcal{R} \). On \(U_i \), set \(P = P_i g_i \). Since each \(g_i \) is analytic, then \(\tilde{\partial} P = \tilde{\partial} P_i g_i = AP_i g_i = AP \) on each \(U_i \), as required. As \(H_i = P_{i-1}^{-1} P_i = g_{i-1} g_i^{-1} \), then \(P_{i0} g_i = P_{i-1} g_{i-1} \) on \(U_{i-1} \cap U_i \). Moreover,

\[
\|P\| + \|P^{-1}\| = \|P_i g_i\| + \|g_i^{-1} P_{i-1}^{-1}\| \lesssim e^{C/\delta^2}.
\]

Referring to (32), the estimate (31) follows. \(\square \)

Remark. Although this construction was done on the unit rectangle (for convenience), since \(d \in [1, 3/2] \), the result still holds with a modified constant when \(\mathcal{R} \) is replaced by \(Q_d \).
Lemma 2. Let \(c_\infty = \sup_{x \in [1, 3/2]} \{ \lVert T_Q \rVert_{L^\infty(Q_3)} \} \). Let \(C_3 = \sup_{x \in [1, 3/2]} \{ C_2(s) \} \), where \(C_2(s) \) is the constant given in Lemma 1 on \(Q_s \). If we set \(m = 2c_\infty C_3 \), then the matrix \(G \) belongs to \(L^\infty(Q_d) \) and satisfies

\[
\lVert G \rVert_{L^\infty(Q_d)} \leq \frac{C \sqrt{\lambda}}{\log \lambda}.
\]

Proof. Recall that \(G = \begin{bmatrix} 0 & -\frac{\delta}{2} e^{-T(\alpha+\bar{\alpha})} & 0 \\ \frac{\delta}{2} e^{T(\alpha+\bar{\alpha})} & 0 & 0 \end{bmatrix} \). Since \(\alpha = \partial (\log \phi) \), \(\bar{\alpha} = \partial (\log \phi) \), \(|\bar{\alpha}| = |\alpha| \), and \(d \in [1, 3/2] \), then it follows from Lemma 1 that \(\lVert \alpha \rVert_{L^\infty(Q_d)} \leq C_3 \lambda \) and \(\lVert \bar{\alpha} \rVert_{L^\infty(Q_d)} \leq C_3 \lambda \). Therefore, \(\lVert T(\alpha+\bar{\alpha}) \rVert_{L^\infty(Q_d)} \leq 2c_\infty C_3 \lambda \) and then

\[
\lVert G \rVert_{L^\infty(Q_d)} \leq \frac{\delta}{2} \exp\left(2c_\infty C_3 \lambda \right) \leq \frac{C \sqrt{\lambda}}{2 \log \lambda} \exp(-m\lambda) \exp\left(2c_\infty C_3 \lambda \right) = \frac{C \sqrt{\lambda}}{\log \lambda},
\]

where we have used (7).

\(\square \)

By combining the previous two results, we reach the following observation.

Corollary 1. There exists an invertible matrix solution \(P \) to

\[
\bar{\partial} P = GP \quad \text{in } Q_d
\]

with the property that

\[
\lVert P \rVert_{L^\infty(Q_d)} + \lVert P^{-1} \rVert_{L^\infty(Q_d)} \leq \exp(C\lambda).
\]

Lemma 3. If \(\tilde{w} \) is a solution to (28), then \(\tilde{w} = \tilde{P} \tilde{h} \), where \(\tilde{P} \) is the invertible matrix given in Corollary 1 and \(\tilde{h} \) is a 2-vector with holomorphic entries.

Proof. Since \(\tilde{P} \) is invertible, it suffices to show that \(P^{-1} \tilde{w} \) is a holomorphic vector. Using equations (28) and (34), we compute:

\[
\partial (P^{-1} \tilde{w}) = -P^{-1} \tilde{P} P^{-1} \tilde{w} + P^{-1} \partial \tilde{w} = -P^{-1} \tilde{G} P P^{-1} \tilde{w} + P^{-1} \tilde{G} \tilde{w} = 0,
\]

as required. \(\square \)

2.4. Three-ball inequality. We now come to the three-ball inequality. Although we used cubes for the construction of the matrix solution \(P \), we now work over balls and use that \(P \) and \(\tilde{w} \) are solutions in \(B_d \subset Q_d \). Using that \(\tilde{w} = \tilde{P} \tilde{h} \) and \(\lVert P \rVert_{L^\infty(B_d)} \leq \exp(C\lambda) \), we have

\[
\lVert \tilde{w}_1 \rVert_{L^\infty(B_1)} = \lVert p_{11} h_1 + p_{12} h_2 \rVert_{L^\infty(B_1)}
\leq \exp(C\lambda) \left[\lVert h_1 \rVert_{L^\infty(B_1)} + \lVert h_2 \rVert_{L^\infty(B_1)} \right]
\leq \exp(C\lambda) \left[\lVert h_1 \rVert_{L^\infty(B_1)} \lVert h_2 \rVert_{L^\infty(B_1)} \right],
\]

where we have applied the Hadamard 3-circle theorem to \(h_1 \) and \(h_2 \) with \(0 < r < 1 < d \) and

\[
\frac{1}{\theta} = \frac{\log \left(\frac{r}{\sqrt{d}} \right)}{\log d} = \frac{\log r - \log \left(2 + \frac{1}{F(\lambda)} \right)}{\log \left(1 + \frac{1}{2F(\lambda)} \right)} \geq CF(\lambda) \log r.
\]
Now, using that $\tilde{u} = P^{-1}\tilde{w}$ and $\|P^{-1}\|_{L^\infty(B_d)} \leq \exp(C\lambda)$, we get
\[
\exp(-C\lambda) \|\tilde{w}_1\|_{L^\infty(B_1)} \\
\leq \left\| P_{11}^{-1}\tilde{w}_1 + P_{12}^{-1}\tilde{w}_2 \right\|_{L^\infty(B_{r/2})} \theta \left\| P_{11}^{-1}\tilde{w}_1 + P_{12}^{-1}\tilde{w}_2 \right\|_{L^\infty(B_d)}^{1-\theta} \\
+ \left\| P_{21}^{-1}\tilde{w}_1 + P_{22}^{-1}\tilde{w}_2 \right\|_{L^\infty(B_{r/2})} \theta \left\| P_{21}^{-1}\tilde{w}_1 + P_{22}^{-1}\tilde{w}_2 \right\|_{L^\infty(B_d)}^{1-\theta} \\
\leq \left(\left\| P_{11}^{-1}\tilde{w}_1 \right\|_{L^\infty(B_{r/2})} + \left\| P_{12}^{-1}\tilde{w}_2 \right\|_{L^\infty(B_{r/2})} \right) \theta \left(\left\| P_{11}^{-1}\tilde{w}_1 \right\|_{L^\infty(B_d)} + \left\| P_{12}^{-1}\tilde{w}_2 \right\|_{L^\infty(B_d)} \right)^{1-\theta} \\
+ \left(\left\| P_{21}^{-1}\tilde{w}_1 \right\|_{L^\infty(B_{r/2})} + \left\| P_{22}^{-1}\tilde{w}_2 \right\|_{L^\infty(B_{r/2})} \right) \theta \left(\left\| P_{21}^{-1}\tilde{w}_1 \right\|_{L^\infty(B_d)} + \left\| P_{22}^{-1}\tilde{w}_2 \right\|_{L^\infty(B_d)} \right)^{1-\theta} \\
\leq 2 \exp(C\lambda) \left(\|\tilde{w}_1\|_{L^\infty(B_{r/2})} + \|\tilde{w}_2\|_{L^\infty(B_{r/2})} \right) \theta \left(\|\tilde{w}_1\|_{L^\infty(B_d)} + \|\tilde{w}_2\|_{L^\infty(B_d)} \right)^{1-\theta}.
\]
Recall that $\tilde{w}_1 = e^{-T(2\alpha)}\phi u$ and since $v = \frac{u}{\phi}$, then
\[
\tilde{w}_2 = \delta^{-1} e^{-T(\alpha-\bar{\alpha})} \left[\phi \left(-\partial_x^2 u + i\partial_y u \right) + u \left(\partial_x \phi - i\partial_y \phi \right) \right].
\]
It follows from Lemma that $\|\alpha\|_{L^\infty(B_d)} \leq C_2 \lambda$ and $\|\bar{\alpha}\|_{L^\infty(B_d)} \leq C_2 \lambda$. Therefore, $\|T(\alpha-\bar{\alpha})\|_{L^\infty(B_d)} \leq 2c_\infty C_2 \lambda$ and $\|T(2\alpha)\|_{L^\infty(B_d)} \leq 2c_\infty C_2 \lambda$ as well. Using (12), we see that
\[
\|\tilde{w}_1\|_{L^\infty(B_{r/2})} \leq \exp(C\lambda) \|u\|_{L^\infty(B_{r/2})}
\]
and a similar estimate holds in B_d. Using the estimate (13), we have
\[
\|\tilde{w}_2\|_{L^\infty(B_{r/2})} \leq \delta^{-1} \exp(C\lambda) \left[\|\phi\|_{L^\infty(B_{r/2})} \|\nabla u\|_{L^\infty(B_{r/2})} + \|u\|_{L^\infty(B_{r/2})} \|\nabla \phi\|_{L^\infty(B_{r/2})} \right] \\
\leq \delta^{-1} \exp(C\lambda) \left[\|\phi\|_{L^\infty(B_{r/2})} \left(\frac{C\lambda^2}{r} \|u\|_{L^\infty(B_r)} \right) + \|u\|_{L^\infty(B_{r/2})} \left(\frac{C\lambda^2}{r} \|\phi\|_{L^\infty(B_r)} \right) \right] \\
\leq \delta^{-1} r^{-1} \exp(C\lambda) \|u\|_{L^\infty(B_r)}
\]
and
\[
\|\tilde{w}_2\|_{L^\infty(B_d)} \leq \delta^{-1} (b-d)^{-1} \exp(C\lambda) \|u\|_{L^\infty(B_b)} \leq \delta^{-1} \exp(C\lambda) \|u\|_{L^\infty(B_b)},
\]
where we have used that $b-d = \frac{1}{\tau F(\lambda)} \geq \frac{1}{\lambda}$. Observe also that
\[
\|u\|_{L^\infty(B_1)} \leq \left\| e^{T(2\alpha)}\phi^{-1}\tilde{w}_1 \right\|_{L^\infty(B_1)} \leq \exp(C\lambda) \|\tilde{w}_1\|_{L^\infty(B_1)}.
\]
Combining our observations, we have
\[
\|u\|_{L^\infty(B_1)} \leq \exp(C\lambda) \left[\|u\|_{L^\infty(B_{r/2})} + \delta^{-1} r^{-1} \|u\|_{L^\infty(B_r)} \right] \theta \left(\|u\|_{L^\infty(B_d)} + \delta^{-1} \|u\|_{L^\infty(B_b)} \right)^{1-\theta} \\
\leq \delta^{-1} \exp(C\lambda) \left(r^{-1} \|u\|_{L^\infty(B_r)} \right) \theta \|u\|_{L^\infty(B_b)}^{1-\theta} \\
\leq \delta^{-1} \exp [(C + C_0) \lambda] \left(r^{-1} \|u\|_{L^\infty(B_r)} \right)^\theta ,
where we have applied (8). Using (7), (9), and (35), it follows that

\[\|u\|_{L^\infty(B_\kappa)} \geq r \frac{c \sqrt{\lambda}}{\log \lambda} \exp \left[- \frac{c_1 \lambda^p + (C + C_0 + m) \lambda}{\theta} \right] \]

\[\geq r \exp \left[CF(\lambda) \lambda^q \log r \right] \geq r^{C \lambda^q F(\lambda)}, \]

as required.

3. The proof of Theorem

We begin with a proposition that serves as the main tool in the iteration scheme.

Proposition 3. Assume that \(V : \mathbb{R}^2 \to \mathbb{R} \) satisfies (2) and (3). Let \(u : \mathbb{R}^2 \to \mathbb{R} \) be a solution to (1) for which (4) holds. Let \(\varepsilon \in (0, \frac{\varepsilon_0}{1+\varepsilon_0}) \). Suppose that for any \(S \geq \tilde{S}(C_0, c_0, \varepsilon_0, \varepsilon) \), there exists an \(\alpha \in (1, 2] \) so that

\[\inf_{|z_0|=S} \|u\|_{L^\infty(B_1(z_0))} \geq \exp(-S^\alpha). \]

(36)

Set \(R = S + \left(\frac{S}{2}\right)^{\frac{1}{1-\varepsilon}} - 1. \)

1. If \(\alpha > \frac{1}{1-\varepsilon} \), then with \(\beta = \alpha - \frac{\alpha-1}{2} \varepsilon \), it holds that

\[\inf_{|z_1|=R} \|u\|_{L^\infty(B_1(z_1))} \geq \exp\left(-R^\beta\right). \]

(37)

2. If \(\alpha \in (1, \frac{1}{1-\varepsilon}] \), then

\[\inf_{|z_1|=R} \|u\|_{L^\infty(B_1(z_1))} \geq \exp\left(-C R^{1+\varepsilon} \log R\right), \]

(38)

where \(C \) depends on \(C_0. \)

Proof. Define \(T = \left(\frac{S}{2}\right)^{\frac{1}{1-\varepsilon}} \) and set \(b = 1 + \frac{S}{2T} \). Let \(z_1 \in \mathbb{R}^2 \) be such that \(|z_1| = S + T - 1 = R. \) Define

\[\tilde{u}(z) = u(z_1 + Tz) \]

\[\tilde{V}(z) = T^2 V(z_1 + Tz). \]

Then \(\Delta \tilde{u} - \tilde{V} \tilde{u} = 0 \) in \(Q_b. \) Assumption (2) implies that \(\|\tilde{V}_+\|_{L^\infty(Q_b)} \leq T^2 \) while condition (3) gives that \(\|\tilde{V}_-\|_{L^\infty(Q_b)} \leq T^2 \exp\left[-c_0 \left(\frac{S}{2} - 1 \right)^{1+\varepsilon_0} \right]. \) Moreover, \(\|\tilde{u}\|_{L^\infty(Q_b)} \leq \exp\left[C_0 \left(\frac{S}{2} - 1 \right)^{1+\varepsilon_0} \right] \leq \exp(5C_0) \) and from (36) we see that with \(z_0 := S \frac{z_1}{|z_1|}, \) \(\|\tilde{u}\|_{L^\infty(B_1(z_0))} \geq \exp(-S^\alpha). \)

With \(\lambda = T, \) we see that \(b = 1 + \lambda^{-\varepsilon} \) and \(\|\tilde{V}_+\|_{L^\infty(Q_b)} \leq \lambda^2. \) Furthermore, if \(S \) is sufficiently large in the sense that \(\frac{(S/2-1)^{1+\varepsilon_0}}{(S/2)^{1-\varepsilon}} \geq \frac{3m c_0}{c_0} \) (which is always possible because of the relationship between \(\varepsilon \) and \(\varepsilon_0 \)), then we have \(\|\tilde{V}_-\|_{L^\infty(Q_b)} \leq \delta^2 \) where \(\delta \) is given by (7) with \(c \) depending only on \(m. \) With \(C_1 = 5C_0, \) we see that \(\|\tilde{u}\|_{L^\infty(B_1)} \leq \exp(C_1 \lambda). \) Finally, setting \(c_1 = 4 \geq 2^\alpha \) and \(p = \alpha (1 - \varepsilon), \) we have \(\|\tilde{u}\|_{L^\infty(B_1)} \geq \exp(-c_1 \lambda^p). \) Now we may apply Theorem (2) to conclude that for \(r < 1, \)

\[\|\tilde{u}\|_{L^\infty(B_1)} \geq r^{C \lambda^q}, \]

12
where \(q = \max \{ p, 1 \} + \varepsilon \) and \(C \) depends on \(C_0 \) and \(m \). Choosing \(r = T^{-1} = \lambda^{-1} \), we see that
\[
\|u\|_{L^\infty(B_1(z_1))} \geq \exp \left(-C \lambda^q \log \lambda \right) = \exp \left(-CT^q \log T \right).
\]

If \(\alpha > \frac{1}{1-\varepsilon} \), then \(q = p + \varepsilon = \alpha - (\alpha - 1) \varepsilon \in (1 + \varepsilon, \alpha) \). If \(S \) is sufficiently large in the sense that
\[
\frac{(S/2)^{2(1-\varepsilon)^2}}{\log (S/2)} \geq \frac{C}{1-\varepsilon},
\]
then \(R^\beta \geq CT^q \log T \) and it follows that
\[
\|u\|_{L^\infty(B_1(z_1))} \geq \exp \left(-R^\beta \right).
\]

Since \(z_1 \in \mathbb{R}^2 \) with \(|z_1| = R \) was arbitrary, (37) has been proved.

On the other hand, if \(\alpha \in \left(1, \frac{1}{1-\varepsilon} \right) \), then \(p \leq 1 \) so that \(q = 1 + \varepsilon \). Since \(R \geq T \), it follows that
\[
\|u\|_{L^\infty(B_1(z_1))} \geq \exp \left(-CR^{1+\varepsilon} \log R \right).
\]

Again, because \(z_1 \in \mathbb{R}^2 \) with \(|z_1| = R \) was arbitrary, (38) follows. \(\square \)

Now we present the proof of the main theorem.

Proof of Theorem 7 Let \(\varepsilon > 0 \) be given and \(\varepsilon_1 = \frac{\varepsilon}{2} \) such that \(\varepsilon_1 \in (0, \frac{\epsilon_0}{1+\epsilon_0}) \). Since \(\|V\|_{L^\infty(\mathbb{R}^2)} \leq 1 \), then Lemma 3.10 in [BK05], for example, implies that if \(|z_0| \geq 1 \), then
\[
\inf_{|z_0|=S_0} \|u\|_{L^\infty(B_1(z_0))} \geq \exp \left(-cS_0^{4/3} \log S_0 \right),
\]
where \(c \) depends on \(C_0 \). We choose \(\alpha_0 \in (4/3, 2) \) so that \(cS_0^{4/3} \log S_0 \leq \tilde{S}^{\alpha_0} \), where \(\tilde{S}(C_0, c_0, \varepsilon_0, \varepsilon_1) \) is the lower bound on \(S \) given in Proposition 7. For any \(S_0 \geq \tilde{S} \), we see that
\[
\inf_{|z_0|=S_0} \|u\|_{L^\infty(B_1(z_0))} \geq \exp \left(-S_0^{\alpha_0} \right).
\]

Assume that \(\alpha_0 > \frac{1}{1-\varepsilon_1} \). For \(n = 0, 1, 2, \ldots \), define \(\alpha_{n+1} = \alpha_n - \frac{\alpha_n-1}{2} \varepsilon_1 \) and observe that as long as \(\alpha_n > \frac{1}{1-\varepsilon_1} \), \(\frac{\alpha_{n+1}}{\alpha_n} < 1 - \frac{\varepsilon_1^2}{2} \). Therefore, there exists \(N \in \mathbb{N} \) such that \(\alpha_n > \frac{1}{1-\varepsilon_1} \) for all \(n = 0, 1, \ldots, N - 1 \), while \(\alpha_N \leq \frac{1}{1-\varepsilon_1} \). For each \(n = 0, 1, 2, \ldots, N \), we also define \(S_{n+1} = S_n + \left(\frac{S_n}{2} \right)^{1-\varepsilon_1} - 1 \). Since \(\alpha_n > \frac{1}{1-\varepsilon_1} \) for each \(n = 1, 2, \ldots, N-1 \), then applications of the first case of Proposition 7 with \(\varepsilon = \varepsilon_1 \), \(\alpha = \alpha_n \), and \(S = S_n \) give
\[
\inf_{|z_{n+1}|=S_{n+1}} \|u\|_{L^\infty(B_1(z_{n+1}))} \geq \exp \left(-S_{n+1}^{\alpha_n} \right).
\]

That is, Proposition 7 holds with \(\beta = \alpha_{n+1} \) and \(R = S_{n+1} \). In particular,
\[
\inf_{|z_N|=S_N} \|u\|_{L^\infty(B_1(z_N))} \geq \exp \left(-S_N^{\alpha_N} \right).
\]

Since \(\alpha_N \leq \frac{1}{1-\varepsilon_1} \), another application of Proposition 7 (this time using the second case) shows that
\[
\inf_{|z_{N+1}|=S_{N+1}} \|u\|_{L^\infty(B_1(z_{N+1}))} \geq \exp \left(-C\lambda_{N+1}^{1+\varepsilon_1} \log S_{N+1} \right) \geq \exp \left(-S_{N+1}^{1+\varepsilon_1} \right),
\]
completing the proof. \(\square \)
4. The proof of Proposition 1

We now prove Proposition 1 by following the argument in [BR03]. We start from Cartan’s Lemma, as given by Malgrange:

Theorem 3 (Theorem 2 from Chapter 9 of [Ma84]). Let \(K \) be a rectangle in \(\mathbb{C} \), and let \(L,M \) be compact sets in \(\mathbb{C}^l, \mathbb{C}^m \), respectively. Let \(H = K \cap \{ \Re z = 0 \} \). Let \(C(z, \lambda, \mu) \) be a \(C^\infty \) function in a neighborhood of \(H \times L \times M \) that is holomorphic in \(z \) and \(\lambda \) with values in \(GL(m, \mathbb{C}) \). Let \(K_1 = K \cap \{ z \in \mathbb{C} : \Re z \geq 0 \} \) and \(K_2 = K \cap \{ z \in \mathbb{C} : \Re z \leq 0 \} \). Then there exists function \(C_1(z, \lambda, \mu) \) and \(C_2(z, \lambda, \mu) \) in neighborhoods of \(K_1 \times L \times M \) and \(K_2 \times L \times M \), respectively, satisfying the same regularity conditions as \(C \) and such that, in a neighborhood of \(H \times L \times M, C = C_1C_2^{-1} \).

Repeated applications of this theorem (with \(L,M = \emptyset \)) produce a collection of analytic functions \(\{ \gamma_i \}_{i=0}^h \), where each \(\gamma_i \) is defined on \(U_i \) and satisfies \(H_i = \gamma_{i-1}\gamma_i^{-1} \) on \(U_{i-1} \cap U_i \). As given, these have no explicit bounds for these functions \(\gamma_i \), so our goal is to produce such estimates. To do this, we find an invertible analytic function \(h \) defined on \(\mathbb{R} \) and then set

\[
g_i = \gamma_i h \quad \text{on} \quad U_i.
\]

Then \(g_{i-1}g_i^{-1} = \gamma_{i-1}hh^{-1}\gamma_i^{-1} = \gamma_{i-1}\gamma_i^{-1} = H_i \) on \(U_{i-1} \cap U_i \), as desired.

To find \(h \) and establish that both \(h \) and \(g_i \) have good bounds, we rely on the Wiener-Masani Theorem. The following statement is from [BR03], see also [WM57]. We use this theorem over a rectangle instead of a ball.

Theorem 4 ([BR03] Theorem 2.1). Let \(A_0 \) be a positive definite \(N \times N \) matrix of smooth functions defined on the circle. Then there exists a \(N \times N \) matrix \(h \) of holomorphic functions in the disk, extending smoothly to the boundary such that

\[
A_0 = h^*h
\]
on the circle, and such that \(g = h^{-1} \) is also holomorphic in the disk and extends smoothly to the boundary. The matrix \(h \) is uniquely determined up to multiplication from the left by a constant unitary matrix.

Thus, we need to prescribe the values of \((h^{-1})^*h^{-1} \) on \(\partial \mathcal{R} \). Define the sets

\[
W_i = \begin{cases}
U_i \setminus (U_i \cap U_{i+1}) & \text{if } i = 0 \\
U_i \setminus (U_{i-1} \cap U_i) & \text{if } i = 1, \ldots, i_0 - 1 \\
U_i \setminus (U_{i-1} \cap U_i) & \text{if } i = i_0
\end{cases}
\]

First define \(h \) on each \(\partial \mathcal{R} \cap W_i \) so that \((h^{-1})^*h^{-1} = \gamma_i^*\gamma_i \) there. This implies that \(g_i^*g_i = I \) on this part of the boundary. Then on each \(\partial \mathcal{R} \cap (U_{i-1} \cap U_i) \), the function \((h^{-1})^*h^{-1} \) is defined as a convex combination of \(\gamma_{i-1}^*\gamma_{i-1} \) and \(\gamma_i^*\gamma_i \). Once this process has been carried out, we have that \((h^{-1})^*h^{-1} \) is defined unambiguously on \(\partial \mathcal{R} \) and an application of the Weiner-Masani Theorem implies that there exists an analytic function function \(h^{-1} \) defined in \(\mathcal{R} \). In conclusion, the required analytic function \(h \) exists.

Once we establish that (30) holds, the proof of Proposition 1 is complete. Now we work to establish bounds for \(\gamma_i \) and \(g_i \) through a series of technical results.

Lemma 4. On \(U_{i-1} \cap U_i \),

\[
\frac{1}{10} \leq \frac{|\gamma_i - 1|}{|\gamma_i|} \leq 10 \quad \text{and} \quad \frac{1}{10} \leq \frac{|\gamma_i^{-1} - 1|}{|\gamma_i^{-1}|} \leq 10.
\]
Proof. Since \(H_i = \gamma_i^{-1} H_i \) on \(U_{i-1} \cap U_i \) and we can write \(\gamma_{i-1} = \gamma_i^{-1} \gamma_i = H_i \gamma_i \), then
\[
|\gamma_{i-1}| \leq \|H_i\| |\gamma_i| \leq 10 |\gamma_i|,
\]
from the assumed bound on \(H_i \). Similarly,
\[
|\gamma_i| \leq \|\gamma_i \gamma_{i-1}^{-1}\| |\gamma_{i-1}| = \|H_i^{-1}\| |\gamma_{i-1}| \leq 10 |\gamma_{i-1}|.
\]
Combining these two bounds leads to the first stated estimate. The same argument for the inverses gives the second estimate.

Lemma 5. On \(U_{i-1} \cap U_i \),
\[
\frac{1}{10} \leq \left| \frac{g_{i-1}}{g_i} \right| \leq 10 \quad \text{and} \quad \frac{1}{10} \leq \left| \frac{g_i^{-1}}{g_{i-1}} \right| \leq 10.
\]

Proof. We have
\[
|g_{i-1}|^2 = \text{tr} \left(g_{i-1}^* g_{i-1} \right) = \text{tr} \left(g_{i-1} g_{i-1}^* \right) = \text{tr} \left(\gamma_{i-1} h h^* \gamma_i^* \right) = \text{tr} \left(\gamma_{i-1}^* \gamma_{i-1} \gamma_i h \right)^2 \leq \|\gamma_{i-1} \gamma_i h\|^2
\]
\[
= \|H_i\|^2 |g_i|^2 \leq 10^2 |g_i|^2.
\]
Similarly,
\[
|g_i|^2 = \text{tr} \left(h \gamma h^* \gamma_i^* \right) = \text{tr} \left(\gamma_i^* \gamma_i \gamma_i h \right) \leq \|\gamma_i \gamma_i h\|^2
\]
\[
= \|H_i^{-1}\|^2 |g_{i-1}|^2 \leq 10^2 |g_{i-1}|^2.
\]
Combining these two observations leads to the first bound on \(U_{i-1} \cap U_i \), and the same bounds hold for the inverses.

Lemma 6. On \(\partial \mathcal{R} \cap U_i \),
\[
\frac{2}{10^2} \leq |g_i|^2 \leq 2 \cdot 10^2 \quad \text{and} \quad \frac{2}{10^2} \leq |g_i^{-1}|^2 \leq 2 \cdot 10^2.
\]

Proof. Since \(g_i^* g_i = I \) on \(\partial \mathcal{R} \cap W_i \) by construction, then \(|g_i|^2 = 2 \) there. On \(\partial \mathcal{R} \cap (U_{i-1} \cap U_i) \), we define \((h^{-1})^* h^{-1} = \theta \gamma_{i-1} \gamma_{i-1} h + (1 - \theta) \gamma_i \gamma_{i-1} h \) for some \(0 \leq \theta \leq 1 \), from which it follows that
\[
I = \theta \gamma_i \gamma_{i-1} \gamma_{i-1} h + (1 - \theta) h \gamma_i \gamma_{i-1} h.
\]
Then
\[
2 = \text{tr} \left(I \right) = \theta \text{tr} \left(h \gamma_{i-1} \gamma_{i-1} h \right) + (1 - \theta) \text{tr} \left(\gamma_i \gamma_{i-1} h \right)
\]
\[
\leq \theta 10^2 \text{tr} \left(h \gamma_i \gamma_{i-1} h \right) + (1 - \theta) \text{tr} \left(\gamma_i \gamma_{i-1} h \right),
\]
where we have used the idea from the proof of Lemma [5]. Therefore, \(\frac{2}{10^2} \leq |g_i|^2 \) on \(\partial \mathcal{R} \cap (U_{i-1} \cap U_i) \). And since
\[
2 = \text{tr} \left(I \right) = \theta \text{tr} \left(h \gamma_{i-1} \gamma_{i-1} h \right) + (1 - \theta) \text{tr} \left(\gamma_i \gamma_{i-1} h \right)
\]
\[
\geq \theta 10^{-2} \text{tr} \left(h \gamma_i \gamma_{i-1} h \right) + (1 - \theta) \text{tr} \left(\gamma_i \gamma_{i-1} h \right),
\]
then \(\frac{2}{10^2} \leq |g_i|^2 \leq 2 \cdot 10^2 \). On \(\partial \mathcal{R} \cap (U_i \cap U_{i+1}) \), we can similarly show that \(\frac{2}{10^2} \leq |g_i|^2 \leq 2 \cdot 10^2 \). Combining these three bounds leads to the first estimate in the conclusion of the lemma. An analogous argument shows that each \(|g_i^{-1}| \) satisfies the same bounds.
To get interior bounds for $|g_i|^2$ on U_i, we define and use a subharmonic function v.

Lemma 7. For $i = 0, \ldots, i_0$, set

$$c_i^+ = c_{i+1} = \frac{A}{\delta},$$

$$b_i^+ = b_{i+1} = \frac{i (i + 1)}{2} A - i B,$$

where $A = 10.5 \log 10$ and $B = 3 \log 10$. Then the function defined piecewise by

$$v = \begin{cases}
\max \left\{ |g_{i-1}|^2 e^{c_i^- x + b_i^-}, |g_i|^2 e^{c_i^+ x + b_i^+} \right\} & \text{on } U_{i-1} \cap U_i \text{ for } i = 1, \ldots, i_0 \\
|g_i|^2 e^{c_i^+ x + b_i^+} & \text{on } W_i \text{ for } i = 0, \ldots, i_0
\end{cases} \tag{41}$$

is continuous and subharmonic on \mathcal{R}.

Proof. Recall that if $f = e^\phi$, where ϕ is continuous and subharmonic, then so too is f. Since $\log |g|$ is subharmonic whenever g is analytic and the function $cx + b$ is harmonic, then for any analytic g, $\log \left(|g|^2 e^{cx+b} \right) = 2 \log |g| + cx + b$ is continuous and subharmonic. Since each g_i is analytic, then every function used to define v is subharmonic. In particular, v is continuous and subharmonic on each W_i. Moreover, since the maximum of two continuous subharmonic functions remains continuous and subharmonic, then v is also continuous and subharmonic on each $U_{i-1} \cap U_i$. It remains to show that we have compatibility along the boundaries of each W_i and $U_{i-1} \cap U_i$.

For $i = 1, \ldots, i_0$, set $x_i = i \delta + \frac{1}{2} \delta$, $x_i^- = \delta$, and $x_i^+ = i \delta + \frac{1}{2} \delta$. If we additionally define $x_0^- = 0$ and $x_{i_0+1}^- = 1$, note that

$$U_{i-1} \cap U_i = \left[x_i^-, x_i^+ \right] \times [0, 1]$$

and

$$W_i = \left[x_i^+, x_{i+1}^- \right] \times [0, 1].$$

If x is near x_i^-, then x is near $W_{i-1} \cap (U_{i-1} \cap U_i)$ and since $c_i^{+} = c_i^{-}$ and $b_i^{+} = b_i^{-}$, then we want $v(x, y) = |g_{i-1}|^2 e^{c_i^- x + b_i^-}$ in this region. Similarly, if x is near x_i^+, then we need to show that

$$v(x, y) = |g_i|^2 e^{c_i^+ x + b_i^+}.$$

By Lemma 5

$$|g_i|^2 e^{c_i^+ x + b_i^+} \leq 2 e^{10.5 \log 10} = 1$$

for some $\epsilon > 0$, then

$$\left(c_i^+ - c_i^- \right) x + (b_i^+ - b_i^-) = A \delta x - (B + iA) < A \delta \left(i \delta + \epsilon \delta \right) - (B + iA) = A \epsilon - B.$$

Assuming that $\epsilon \leq \frac{1}{105}$, we have $10^2 e^{A \epsilon - B} = 10^2 e^{(10.5 \log 10)} \leq 1$ and we conclude that

$$|g_i|^2 e^{c_i^+ x + b_i^+} < |g_{i-1}|^2 e^{c_i^- x + b_i^-}.$$

Therefore, when $x \in \left[x_i^-, x_i^- + \frac{1}{105} \delta \right]$, max \left\{ $|g_{i-1}|^2 e^{c_i^- x + b_i^-}, |g_i|^2 e^{c_i^+ x + b_i^+} \right\} = |g_{i-1}|^2 e^{c_i^- x + b_i^-}$, proving that v is continuous along $W_{i-1} \cap (U_{i-1} \cap U_i)$.

We repeat the argument near the boundary of $W_i \cap (U_{i-1} \cap U_i)$. By Lemma 5

$$|g_{i-1}|^2 e^{c_i^- x + b_i^-} \leq 10^2 |g_i|^2 e^{c_i^- x + b_i^-}.$$
If \(x \in (x_i^+ - \varepsilon \delta, x_i^+] \) for some \(\varepsilon > 0 \), then

\[
(c_i^+ - c_i^-) x + (b_i^+ - b_i^-) = \frac{A}{\delta} x - (B + iA) > \frac{A}{\delta} \left(i \delta + \frac{1}{2} \delta - \varepsilon \delta \right) - (B + iA) = \frac{A}{2} - A \varepsilon - B.
\]

Assuming that \(\varepsilon \leq \frac{11}{27} \), we have \(10^2 e^{Ax + B} \leq 10^2 e^{(10.5 \varepsilon + 3 - 10.5) \log 10} \leq 1 \) and we conclude that

\[
|g_i|^2 e^{c_i^+ x + b_i^+} < |g_{i-1}|^2 e^{c_i^- x + b_i^-}.
\]

Therefore, when \(x \in (x_i^+ - \frac{11}{27} \delta, x_i^+] \), max \(\{ |g_{i-1}|^2 e^{c_i^- x + b_i^-}, |g_i|^2 e^{c_i^+ x + b_i^+} \} \) is continuous along \(W_i \cap (U_{i-1} \cap U_i) \) as well and completing the proof. \(\square \)

Lemma 8. For the function \(v \) as defined in (41), there exists a universal constant \(C > 0 \) so that \(v \leq Ce^{C/\delta^2} \) in \(\mathcal{R} \).

Proof. We start with \(\partial \mathcal{R} \cap W_i \). Since \(v = |g_i|^2 e^{c_i^- x + b_i^-} \) on \(W_i \), and \(|g_i|^2 = 2 \) on \(\partial \mathcal{R} \cap W_i \), then

\[
v = 2e^{i \frac{x_i^+ - (i+1)A - iB}{2}} \leq 2e^{i \frac{x_i^+ - (i+1)A - iB}{2}} = 2e^{-i \frac{2}{2} A - iB} \text{ on } \partial \mathcal{R} \cap W_i.
\]

Taking a supremum over \(i \in \{0, \ldots, i_0 \} \), we see that

\[
v \leq 2e^{\frac{i_0(i_0+1)A - i_0B}{2}} \text{ on } \partial \mathcal{R} \cap \left(\bigcup_{i=0}^{i_0} W_i \right).
\]

Next we examine \(v \) on \(\partial \mathcal{R} \cap (U_{i-1} \cap U_i) \). There we have \(v = \max \{ |g_{i-1}|^2 e^{c_i^- x + b_i^-}, |g_i|^2 e^{c_i^+ x + b_i^+} \} \) and \(x_i^- \leq x \leq x_i^+ \). By Lemma 6 \(|g_{i-1}|^2 \leq 2 \cdot 10^2 \) and \(|g_i|^2 \leq 2 \cdot 10^2 \) in \(U_{i-1} \cap U_i \). Examining the exponentials, we get

\[
\max \{ e^{c_i^- x + b_i^-}, e^{c_i^+ x + b_i^+} \} \leq \max \{ e^{c_i^- x_i^+ + b_i^-}, e^{c_i^+ x_i^+ + b_i^+} \}
\]

\[
= \max \{ e^{\frac{A}{2} - (i-1)B}, e^{\frac{A}{2} A - iB} \} = e^{\frac{A}{2} A - iB},
\]

since \(A = 10.5 \log 10 \) and \(B = 3 \log 10 \). Therefore,

\[
v \leq 2 \cdot 10^2 e^{\frac{A}{2} A - iB} \text{ on } \partial \mathcal{R} \cap (U_{i-1} \cap U_i).
\]

Taking a supremum over \(i \in \{1, \ldots, i_0 \} \), we see that

\[
v \leq 2 \cdot 10^2 e^{\frac{A_{i_0} A - i_0B}{2}} \text{ on } \partial \mathcal{R} \cap \left(\bigcup_{i=1}^{i_0} (U_{i-1} \cap U_i) \right).
\]

Combining (42) and (43) shows that \(v \leq 2e^{\frac{i_0(i_0+1)A - i_0B}{2}} \text{ on } \partial \mathcal{R} \). Since \(i_0 = \frac{1}{\delta} - \frac{3}{2} \), then the conclusion of the lemma follows from an application of the maximum principle. \(\square \)

Now we have all of the preliminary results required to prove Proposition 1.
Proof of Proposition 7. By Theorem 3 there exists a collection \(\{ \gamma_i \}_{i=0}^{i_0} \) of analytic function, where each \(\gamma_i \) is defined on \(U_i \) and satisfies \(H_i = \gamma_i^{-1} \gamma_i^{-1} \) on \(U_{i-1} \cap U_i \).

On each \(\partial \mathcal{R} \cap W_i \), define \(h \) so that \((h^{-1})^* h^{-1} = \gamma_i^* \gamma_i \) there. Then on each \(\partial \mathcal{R} \cap (U_{i-1} \cap U_i) \), define \((h^{-1})^* h^{-1} \) to be a convex combination of \(\gamma_i^* \gamma_i^{-1} \) and \(\gamma_i^* \gamma_i \). Since \((h^{-1})^* h^{-1} \) is defined unambiguously on \(\partial \mathcal{R} \), an application of Theorem 4 implies that there exists an analytic function \(h^{-1} \) defined in \(\mathcal{R} \).

On each \(U_i \), define \(g_i = \gamma_i h \). Then each \(g_i \) is defined and analytic on \(U_i \) with \(g_{i-1} g_i^{-1} = \gamma_i^{-1} h h^{-1} \gamma_i^{-1} = \gamma_i^{-1} \gamma_i^{-1} = H_i \) on \(U_{i-1} \cap U_i \).

For any \(i \in \{ 0, 1, \ldots, i_0 \} \), \(|g_i|^2 e^{c_i^+ x + b_i^+} \leq v \) on \(U_i \) and it follows from Lemma 8 and the definition of \(v \) as given in (41) that

\[
|g_i(x,y)|^2 \leq v(x,y) e^{-c_i^+ x - b_i^+} \leq v(x,y) e^{-c_{i+1}^+ x - b_{i+1}^+} \leq C e^{C/\delta^2} \text{ in } U_i.
\]

A similar argument may be made for \(g_i^{-1} \), completing the proof. \(\square \)

REFERENCES

[BK05] Jean Bourgain and Carlos E. Kenig. On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math., 161(2):389–426, 2005.

[BR03] B. Berndtsson and J.-P. Rosay. Quasi-isometric vector bundles and bounded factorization of holomorphic matrices. Ann. Inst. Fourier (Grenoble), 53(3):885–901, 2003.

[Dav14] Blair Davey. Some quantitative unique continuation results for eigenfunctions of the magnetic Schrödinger operator. Comm. Partial Differential Equations, 39(5):876–945, 2014.

[DKW17] Blair Davey, Carlos Kenig, and Jenn-Nan Wang. The Landis conjecture for variable coefficient second-order elliptic PDEs. Trans. Amer. Math. Soc., 369(11):8209–8237, 2017.

[DW17] Blair Davey and Jenn-Nan Wang. Landis’ conjecture for general second order elliptic equations with singular lower order terms in the plane. arXiv:1709.09042, 2017.

[Gia83] Mariano Giaquinta. Multiple integrals in the calculus of variations and nonlinear elliptic systems, volume 105 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1983.

[GT01] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[KSW15] Carlos Kenig, Luis Silvestre, and Jenn-Nan Wang. On Landis’ Conjecture in the Plane. Comm. Partial Differential Equations, 40(4):766–789, 2015.

[LW14] Ching-Lung Lin and Jenn-Nan Wang. Quantitative uniqueness estimates for the general second order elliptic equations. J. Funct. Anal., 266(8):5108–5125, 2014.

[Mal84] B. Malgrange. Lectures on the theory of functions of several complex variables, volume 13 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Distributed for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1984. Reprint of the 1958 edition, Notes by Raghavan Narasimhan.

[WM57] N. Wiener and P. Masani. The prediction theory of multivariate stochastic processes. I. The regularity condition. Acta Math., 98:111–150, 1957.
DEPARTMENT OF MATHEMATICS, CITY COLLEGE OF NEW YORK CUNY, NEW YORK, NY 10031, USA
E-mail address: bdavey@ccny.cuny.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, IL 60637, USA
E-mail address: cek@math.uchicago.edu

INSTITUTE OF APPLIED MATHEMATICAL SCIENCES, NCTS, NATIONAL TAIWAN UNIVERSITY, TAIPEI 106, TAIWAN
E-mail address: jnwang@math.ntu.edu.tw