Oxidation of clindamycin phosphate by chromium(VI) in aqueous sulfuric acid medium—A kinetic and mechanistic study

Amar K. Durgannavar, Manjunath D. Meti, Sharanappa T. Nandibewoor and Shivamurti A. Chimatadar

Cogent Chemistry (2015), 1: 1115210
Oxidation of clindamycin phosphate by chromium(VI) in aqueous sulfuric acid medium—A kinetic and mechanistic study

Amar K. Durgannavar, Manjunath D. Meti, Sharanappa T. Nandibewoor and Shivamurti A. Chimatadar

Abstract: Kinetics and mechanism of oxidation of clindamycin phosphate by potassium dichromate in aqueous sulfuric acid medium is studied spectrophotometrically at 25°C at a constant ionic strength of 3.60 mol dm⁻³. The stoichiometry of the reaction is determined and it was found that one mole of clindamycin phosphate consumes two moles of chromium(VI) (1:2). The oxidation products are characterized and confirmed by spectral studies such as IR, GC-MS and LC-MS. The reaction is first order each in chromium(VI) and clindamycin phosphate concentrations. An increase in the sulfuric acid concentration causes an increase of the reaction rate. The order with respect to acid concentration is found to be 1.65. From the results of kinetic studies, reaction stoichiometry and product analysis a suitable free radical mechanism is proposed. Based on investigation of the reaction at different temperatures, computation of the activation parameters with respect to the slow step of the proposed mechanism was evaluated.

Subjects: Applied & Industrial Chemistry; Environmental Chemistry; Organic Chemistry; Physical Chemistry

Keywords: kinetics; mechanism; clindamycin phosphate; chromium(VI)

ABOUT THE AUTHORS

Amar K. Durgannavar was born in Bhirdi, Karnataka, India on April 2, 1988. He received Master degree in Chemistry from Karnatak University, Dharwad, in 2011. He is currently PhD student in the same university. He is recipient of “Association of Kineticists Award” by Indian Chemical Society in 2014. His research interests are Chemical Kinetics, Catalysis and Drug Protein Interaction.

Dr. Manjunath D. Meti is currently Post Doctoral Fellow in IIT Mumbai, obtained PhD from Karnatak University, Dharwad. His research interests are Kinetics, Drug Protein Interaction.

Dr. Sharanappa T. Nandibewoor Professor of Chemistry in Karnatak University, Dharwad. His research interests are Kinetics, Electrochemical Sensors, and Analytical Chemistry. He has published more than 350 articles in reputed journals.

Dr. Shivamurti A. Chimatadar Professor of Chemistry in Karnatak University, Dharwad. His research areas are Kinetics, Catalysis and Drug Protein Interaction. He has published more than 100 research articles in reputed journals.

PUBLIC INTEREST STATEMENT

Over the past few years, pharmaceuticals are considered as an emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. In view of effective antibacterial activity, and various susceptible oxidation sites in clindamycin phosphate. The present study deals with the title reaction in order to investigate the redox chemistry of Cr(VI) in acidic medium and to compute the thermodynamic quantities of various steps involved in the mechanism to those derived on the basis of kinetic and spectroscopic results. Such oxidation studies shed light on the mechanism of degradation of these drugs in biological or ecological systems and can be helpful to design advanced oxidation processes which can further be applied to combat environmental issues.
1. Introduction
Chromium(VI) is widely used specifically in organic chemistry, due to its versatile oxidative mecha-
nistic pathways, which makes them inherently interesting. Chromium(VI) has been used for the oxida-
tion of alcohols (Noshiranzadeh, Bikas, Ślepokuro, Mayeli, & Lis, 2014), aldehydes (Gupta, Dey,
Gupta, Adhikari, & Banerjeee, 1990), ketones (Rocek & Riehl, 1967), hydrocarbons (Chen & Sheldon,
1995), sulfides (Liang, Cheng, & Trudell, 2003) to name a few serving as economically viable oxida-
tion processes. Biologically, chromium is essential for proper metabolism of carbohydrates and lipids
in mammals, evidently, the mechanism of these actions have proved elusive (Davis, Sumrall, &
Vincent, 1996). Among various oxidation states of chromium, Cr(VI) and Cr(III) are stable oxidation
states. In acidic medium the reduction potential of Cr(VI)/Cr(III) couple is 1.33 V (Chimatadar,
Basavaraj, & Nandibewoor, 2006; Day & Selbin, 1964). Kinetics and oxidation of organic compounds
by chromic acid has been the subject of large number of investigators (Das, 2004; Wiberg &
Mukherjee, 1974). Description of mechanism in these cases follow either intermediate complex for-
modation or free radical mechanism depending on interpretation of results. Considerably interest has
been shown in the chemistry of the intermediate oxidation states, Cr(V) and Cr(IV), due to their ob-
servation during the oxidation of organic substrates by Cr(VI) and implication in the mechanism of
Cr-induced cancers (Fawzy, Ashour, Musleh, Hassan, & Asghar, in press).

Clindamycin phosphate(clindamycin), methyl7-chloro-6,7,8-trideoxy-6-[[25,4R]-1-methyl-4-pro-
pylpyrrolidine-2-carboxamide]-1-thio-1-threo-D galactooctapyranoside monohydrate chloride inhib-
its protozoans such as toxoplasma and mycoplasma as well as many anaerobic bacteria (Portugal,
Lujan, & Murrieta, 2008). Clindamycin has been prescribed to treat serious infectious caused by
Staphylococcus aureus strain in children for more than 35 years (Kaplan, 2005). Clindamycin and
several macrolide antibiotics are effective for the treatment of AIDS-toxoplasmosis, usually in asso-
ciation with pyrimethamine (Dannemann et al., 1992). These block protein synthesis in bacteria by
interacting with peptidyl transferase domain of 23S rRNA. Structural features of clindamycin phos-
phate include the presence of two secondary alcoholic groups, an amide linkage and a methyl
sulfide all of which are susceptible for oxidation. Measurements of rates of oxidation of several cyclic
alcohols by chromium(VI) have demonstrated that alcohol with most hindered hydroxyl group is
oxidized most rapidly (Kwart & Francis, 1958). While, the oxidation of electron deficient sulfide to
sulfone and its kinetic study is crucial to understand cheaper and reliable direct oxidation processes.
Moreover, sulfone moieties are useful synthetic intermediates in the preparation and functionaliza-
tion of bio-chemically potent compounds. Our literature survey reveals that the oxidation of biologi-
cally potent organic compounds by different oxidants has received limited attention (Fawzy, Ashour,
& Musleh, 2014; Ionita, Sahini, Semenesescu, & Ionita, 2000). These mechanisms are interesting be-
cause of its complexity resulting out of possibility of a variety of mechanistic pathways, involving
reactive intermediates which encounter in chemical reactions. The present investigation is an at-
tempt to gain insight on the role of the oxidizing agent and its selectivity over range of susceptible
oxidation sites in clindamycin phosphate, to understand intermediate oxidation states of chromium
during oxidation process and to propose the mechanism based on kinetic and spectral data.

2. Experimental
2.1. Materials and reagents
All chemicals used, clindamycin phosphate, sulfuric acid, potassium dichromate, sodium sulfate
were of reagent grade. Double distilled water was used throughout our work. The stock solution of
clindamycin phosphate (Sigma Aldrich, Bangalore, India) was freshly prepared by dissolving equiva-
 lent quantity in double distilled water. The solution of chromium(VI) (s.d. fine-chem., Mumbai, India)
was prepared by dissolving potassium dichromate in double distilled water (Jeffery, Bassett,
Mendham, & Denny, 1996). The chromium(III) solution was prepared by dissolving chromic potas-
sium sulfate (Cr2(SO4)3K2SO4.24H2O) (AR) in water. H2SO4 and Na2SO4 were used to maintain the acid-
ity and ionic strength of the reaction system respectively.
2.2. Kinetic measurements and procedure

The kinetic measurements were carried out under pseudo-first order conditions, where clindamycin phosphate concentration was present at least 10 times excess quantity over that of chromic acid concentration at a constant ionic strength of 3.60 mol dm$^{-3}$. The reaction was initiated by mixing thermally equilibrated (at 25.0 ± 0.1°C) solutions of chromium(VI) and clindamycin phosphate which also contained the required quantities of H$_2$SO$_4$ and Na$_2$SO$_4$. The course of reaction was followed by recording the decrease in absorbance of chromium(VI) at 360 nm as a function of time in a 1 cm cell placed in the thermostatted compartment of Varian Cary-50 Bio UV–vis Spectrometer (Varian, Victoria-3170, Australia). It was examined and verified that there was no interference from other reagents at this wavelength. Beer’s Law has been verified between 1.0 x 10$^{-4}$ and 1.0 x 10$^{-3}$ mol dm$^{-3}$ of chromium(VI) at 360 nm under the reaction conditions and the extinction coefficient was found to be 1200 ± 12 dm3 mol$^{-1}$ cm$^{-1}$. The kinetic runs were followed more than 70% completion of reaction and good first order kinetics were observed. The pseudo-first order rate constants, k_{obs}, were obtained from the slopes of the plots of log (absorbance) vs. time. The pseudo-first order plots were linear over three half lives (Figure 1). The rate constants k_{obs} were reproducible to within ±5% and are average of at least three independent kinetic runs (Table 1).

2.3. Stoichiometry and product analysis

The stoichiometry of the overall reaction of clindamycin phosphate with excess chromic acid in 1.0 mol dm$^{-3}$ H$_2$SO$_4$ and at 3.60 mol dm$^{-3}$ ionic strength was determined spectrophotometrically. Reaction mixtures containing different initial concentrations of the reactants were equilibrated for about 3 h under nitrogen atmosphere at 25°C. The unreacted chromic acid was estimated spectrophotometrically. The result indicates that one mole of clindamycin phosphate requires two moles of chromium(VI) (1:2) as shown in Equation (1).

![Reaction Scheme]

The reaction products were identified as chromium(III), 4-(1-chloroethyl)-hexahydro-7,8-dihydroxy-6-(methylsulfonyl)pyrano[2,3-e][1,3]oxazin-2(3H)-one (A), and 1-methyl-5-propylpyrrolidin-2-ol (B). The product (A) was characterized and confirmed by IR (Figure 2) and LC-MS spectrum (Figure 3). IR spectrum (Nicolet 5700-FT-IR spectrometer) of (A) showed broad OH peak at 3346 cm$^{-1}$, lactone carbonyl at 1759 cm$^{-1}$. The LC-MS spectrum (Agilent Compact 1120 and Thermo Surveyor model for liquid chromatography and Thermo LCQ Deca XP MAX model for Mass Spectrometer) of (A) showed molecular ion peak at m/z 329. Product (B) was isolated from the reaction mixture by extraction using ether.
and evaporated, resulted in white solid and it was confirmed using GC-MS (Figure 4). The GC-MS spectrum of B showed molecular ion peak at m/z 141. GC-MS data was obtained on Shimadzu 17A Gas Chromatograph with a Shimadzu QP-5050A mass spectrometer using EI ionisation technique.

Table 1. Effect of variation of chromium(VI), clindamycin phosphate, sulfuric acid concentrations on the oxidation of clindamycin phosphate by chromium(VI) at I = 3.60 mol dm\(^{-3}\) and at 25°C

[Cr(VI)] × 10\(^{-4}\) (mol dm\(^{-3}\))	[CP] × 10\(^{-3}\) (mol dm\(^{-3}\))	[H\(_2\)SO\(_4\)] (mol dm\(^{-3}\))	\(k_{obs} \times 10^{-3}\) (s\(^{-1}\))	\(k_2 = \frac{k_{obs}}{[\text{clindamycin}]}\) (dm\(^3\) mol\(^{-1}\) s\(^{-1}\))
0.5	2.0	1.0	1.12	–
1.0	2.0	1.0	1.16	–
2.0	2.0	1.0	1.31	–
3.0	2.0	1.0	1.24	–
4.0	2.0	1.0	1.17	–
5.0	2.0	1.0	1.17	–
2.0	0.5	1.0	0.30	0.60
2.0	1.0	1.0	0.61	0.61
2.0	2.0	1.0	1.17	0.59
2.0	3.0	1.0	1.78	0.59
2.0	4.0	1.0	2.44	0.61
2.0	5.0	1.0	3.00	0.60
2.0	2.0	0.2	0.04	–
2.0	2.0	0.4	0.14	–
2.0	2.0	0.6	0.28	–
2.0	2.0	0.8	0.62	–
2.0	2.0	0.9	0.92	–
2.0	2.0	1.0	1.23	–

Figure 2. FT-IR Spectra of the product 4-(1-chloroethyl)-hexahydro-7,8-dihydroxy-6(methylsulfonyl) pyrano[2,3-e][1,3]oxazin-2(3H)-one obtained after oxidation of clindamycin phosphate.
3. Results

3.1. Reaction orders
The orders were determined from the slopes of log k_{obs} vs. log (concentration) plots by varying the concentrations of clindamycin phosphate and H$_2$SO$_4$, in turn, while keeping all other conditions constant.

3.2. Effect of [chromium(VI)] on rate of oxidation
The concentration of chromium(VI) was varied in the range of 5.0 \times 10$^{-5}$ to 5.0 \times 10$^{-4}$ mol dm$^{-3}$ retaining all other reaction conditions constant. Resultant k_{obs} are nearly constant values (Table 1) indicating order with respect to chromium(VI) concentration is unity. This was further confirmed by the linearity of the plots of log absorbance vs. time over three half lives (Figure 1).

3.3. Effect of [clindamycin phosphate] on rate of oxidation
The effect of clindamycin phosphate concentration on the rate was studied in the range of 5.0 \times 10$^{-4}$ to 5.0 \times 10$^{-3}$ mol dm$^{-3}$ retaining concentrations of all other reaction components constant. It was observed that, increase in concentration of clindamycin phosphate resulted in an increase in rate constants (Table 1). The order with respect to clindamycin phosphate concentration was obtained from the plot of log k_{obs} vs. log [CP] and was found to be unity.
3.4. Effect of [sulfuric acid] on rate of oxidation

Kinetic measurements were performed in H$_2$SO$_4$–Na$_2$SO$_4$ solutions with different hydrogen ion concentrations maintaining constant ionic strength of 3.60 mol dm$^{-3}$ and temperature 25°C ± 0.1 in order to clarify the influence of acid concentration on the reaction rates. It was found that, as sulfuric acid concentration increases the rate of reaction also increases (Table 1). The order with respect to acid concentration was found to be close to 2 (1.65).

3.5. Effect of variation in ionic strength (I) and dielectric constant (D) on rate of oxidation

To shed some light on the reactive ionic species in the rate-determining step, kinetic runs were performed by varying ionic strength and dielectric constant at constant concentrations of reactants and maintaining other conditions constant. Ionic strength (I) was varied from 3.20 to 5.0 mol dm$^{-3}$ by varying the concentrations of Na$_2$SO$_4$. The values of k_{obs} were found to decrease with increasing ionic strength (Table 2). The plot of log k_{obs} vs. \sqrt{I} is shown in Figure 5. The effect of dielectric constant (D) was studied by varying the acetic acid–water (v/v) content from 0 to 35% in the reaction mixture with all other conditions being maintained constant. Since the dielectric constants of aqueous acetic acid are not available in the literature, they were computed from the values of pure liquids (Lide, 1992). Obtained experimental results showed no significant effect of dielectric constant on the rate of reaction (Table 2).

3.6. Effect of externally added product on rate of oxidation

The effect of added product, chromium(III) was studied in the range of 0.5 × 10$^{-4}$ mol dm$^{-3}$ to 5.0 × 10$^{-4}$ mol dm$^{-3}$ by keeping all other reaction conditions constant. It was observed that, initially added product, chromium(III) did not have any significant effect on rate of reaction. Thus, from the above experimental results, the rate law is

$$\text{Rate} = k_{obs}[\text{Cr(VI)}]^{1.00}[\text{CP}]^{1.00}[\text{H}_2\text{SO}_4]^{1.65}$$

Table 2. Effect of variation of ionic strength and dielectric constant on the oxidation of clindamycin phosphate by chromium(VI) in aqueous sulfuric acid medium at 25°C

Ionic strength (I) (mol dm$^{-3}$)	$k_{obs} \times 10^{-3}$ (s$^{-1}$)	Dielectric constant	$k_{obs} \times 10^{-3}$ (s$^{-1}$)
3.2	1.36	0	78.50
3.6	1.17	10	71.27
4.0	0.91	15	67.64
4.2	0.83	20	64.03
4.6	0.60	25	60.41
5.0	0.48	35	53.17

% of acetic acid–water (v/v)	Da	
0	78.50	1.17
10	71.27	1.12
15	67.64	1.22
20	64.03	1.09
25	60.41	1.18
35	53.17	1.13

Notes: [Cr(VI)] = 2.0 × 10$^{-4}$; [CP] = 2.0 × 10$^{-3}$; [H$_2$SO$_4$] = 1.0 mol dm$^{-3}$.

aDielectric constant values are taken from Lide (1992).
3.7. Test for free radicals (polymerization study)

The oxidation of clindamycin phosphate by chromium is usually assumed to proceed via free radical intermediates. The possible occurrence of free radicals in this reaction was tested by the addition of known quantity of acrylonitrile (scavenger) to the following reaction solutions: (1) 0.01 mol dm$^{-3}$ chromium(VI); (2) 0.01 mol dm$^{-3}$ clindamycin phosphate; (3) 0.01 mol dm$^{-3}$ chromium(VI) + 0.01 mol dm$^{-3}$ clindamycin phosphate; all in 1.0 mol dm$^{-3}$ H$_2$SO$_4$ + 0.2 mol dm$^{-3}$ Na$_2$SO$_4$. To all three solutions known quantities of acrylonitrile (scavenger) was added initially, and were kept in an inert atmosphere for 1 h at room temperature. These solutions were diluted with methanol, it was observed that solution (3) became turbid, whereas solutions 1 and 2 remained perfectly clear, this suggested that there was participation of free radicals in the reaction. And account of which has been undertaken in understanding the mechanism and has been proposed accordingly in Scheme 1.
3.8. Effect of temperature

The influence of temperature on the reaction was studied at 15, 25, 35, and 45°C by varying clindamycin phosphate and H₂SO₄ concentrations. It was found that the rate of reaction increases with an increase in temperature. The rate constant (k_{obs}) of the slow step of Scheme 1 were obtained from the intercepts of $1/k_{obs}$ vs. $1/[$H⁺$]^2$ and $1/k_{obs}$ vs. $1/[$CP$]$ (Figure 6) at different temperatures and the values are given in Table 3. The energy of activation for rate determining step was obtained from a plot of log k_{obs} vs. $1/T$, from which activation parameters were calculated by using Eyring equation (Lente, Fabian, & Poe, 2005) and are given in Table 3. Thermodynamic quantities of first and second step of Scheme 1 were evaluated from the slope and intercept of the plot of $1/k_{obs}$ vs. $1/[$H⁺$]^2$ and $1/k_{obs}$ vs. $1/[$CP$]$ respectively at different temperatures. Van’t Hoff plot was drawn for the variation of K with temperature (log K vs. $1/T$). Thermodynamic quantities are provided in Table 3.

4. Discussion

The chromium(VI) oxidation of clindamycin phosphate in acid media has a stoichiometry 2:1. The reaction is first order with respect to chromium(VI) and clindamycin phosphate concentrations. The effect of acid on the rate was studied by varying the sulfuric acid concentration and it was found that, as the acid concentration increases the rate of reaction also increases. These experimental results have been schematically represented in Scheme 1.

Table 3. Effect of temperature on the oxidation of clindamycin phosphate by chromium(VI) in aqueous sulfuric acid medium

(a) Effect of temperature and activation parameters with respect to slow step of Scheme 1

Temperature (K)	$k \times 10^{-2}$ (s⁻¹)	Activation parameters	Values
288	4.1	E_a (kJ mol⁻¹)	49 ± 2
298	8.8	ΔH° (kJ mol⁻¹)	46 ± 2
308	15.6	ΔS° (J K⁻¹ mol⁻¹)	-108 ± 3
318	29.5	ΔG° (kJ mol⁻¹)	79 ± 3

(b) Effect of temperature on equilibrium steps of Scheme 1 and thermodynamic quantities

Temperature (K)	K_1	K_2	Thermodynamic quantities	Values from K_1	Values from K_2
288	1.85	12.1	ΔH (kJ mol⁻¹)	31.79	-24.27
298	2.16	9.71	ΔS (J K⁻¹ mol⁻¹)	152.81	-63.14
308	3.79	6.53	ΔG (kJ mol⁻¹)	-14.51	-5.14
318	6.23	4.79			
It is well known fact that in aqueous acid solutions, chromium(VI) exists in the form of H_2CrO_4 (Chimatadar, Madawale, & Nandibewoor, 2007; Hasan & Rocek, 1975; Saunte, Chaubey, & Mahanti, 2008). In a pre-equilibrium step, CrO_2^{-4} reacts with two moles of acid to give H_2CrO_4, which is in accordance with observed order of two in acid concentration. The results indicate that H_2CrO_4 reacts with clindamycin phosphate forming a complex, The formation of complex is evident kinetically by a Michaelis–Menton plot, i.e. a non zero intercept of the plot of $1/k_{\text{obs}}$ vs. $1/[\text{CP}]$ (Figure 6). It is agreed that, chromium(VI) undergoes direct two electron reduction during the process of oxidation. In view of this, in the rate determining step complex undergoes decomposition in presence of water to give sulfoxide (1a) and chromium(IV) while H_3PO_4 is eliminated. Further, sulfoxide (1a) formed, undergoes oxidation with one more mole of chromium(VI) in fast step to yield sulfone (1b) and chromium(IV) intermediate species. Chromium(IV) being highly unstable and is responsible for carbon–carbon bond cleavage with the formation of free radical in numerous organic compounds (Rahman & Rocek, 1971). Evidently after conversion of methyl sulfide to methyl sulfone in clindamycin phosphate, the chromium(IV) formed cleaves carbon–carbon bond in sulfone (1b), resulting in free radical(1c), cation (2a) and chromium(III). The free radical (1c) is highly unstable which leads it to attack closest secondary alcohol followed by intramolecular cyclization leading to the formation of 4-(1-chloroethyl)-hexahydro-7,8-dihydroxy-6-(methylsulfonyl)pyrano[2,3-e][1,3]oxazin-2(3H)-one (1d) and chromium(III) which are final product of oxidation. The oxidation of clindamycin phosphate by chromium(VI) occurs through intervention of reactive chromium(IV) species. The intervention of chromium(IV) is evident through the progressive rate decline in the presence of increasing amounts of added manganese(II), the decrease reaching a limit of about one half of the rate found in the absence of manganese(II). Similar results have also been witnessed in chromium(VI) oxidation of 2-propanol in acetic acid (Chimatadar, Koujalagi, & Nandibewoor, 2004).

All these experimental results were summarized in the form of Scheme 1.

From Scheme 1 the following rate law (7) can be derived as follows

$$\text{Rate} = k [\text{Complex}(\text{C})]$$

$$\text{Rate} = \frac{-d[\text{CrO}_2^{-4}]_{\text{f}}}{dt} = kK_1K_2[\text{CP}]_f[\text{CrO}_2^{-4}]_t[H^+]^2$$

(2)

The total concentration of CrO_2^{-4} is given by,

$$[\text{CrO}_2^{-4}]_t = [\text{CrO}_2^{-4}]_f + [\text{H}_2\text{CrO}_4] + [\text{Complex (C)}]$$

$$= [\text{CrO}_2^{-4}]_f + K_1[\text{CrO}_2^{-4}]_f[H^+]^2 + K_1K_2[\text{CP}]_f[\text{CrO}_2^{-4}]_f[H^+]^2$$

$$= [\text{CrO}_2^{-4}]_f \left\{ 1 + K_1[H^+]^2 + K_1K_2[\text{CP}]_f[H^+]^2 \right\}$$

Therefore,

$$[\text{CrO}_2^{-4}]_f = \frac{[\text{CrO}_2^{-4}]_t}{\left\{ 1 + K_1[H^+]^2 + K_1K_2[\text{CP}]_f[H^+]^2 \right\}}$$

(3)

where t and f stands for total and free concentration of chromium(VI).

Similarly,

$$[\text{CP}]_t = [\text{CP}]_f + [\text{Complex (C)}] = [\text{CP}]_f + K_1K_2[\text{CrO}_2^{-4}]_f[\text{CP}]_f[H^+]^2$$

$$= [\text{CP}]_f \left\{ 1 + K_1K_2[\text{CrO}_2^{-4}]_f[H^+]^2 \right\}$$
In view of the low concentrations of chromium(VI) in the experiment, in Equation (4) the term $K_1 K_2 [CrO_4^{2-}] [H^+]^2$ can be neglected in comparison with unity.

Hence,

$$[CP]_t = [CP]_f$$ \hspace{1cm} (5)$$

and

$$[H^+]_t^2 = [H^+]_f^2 + [H_2CrO_4] + [\text{Complex (C)}] = [H^+]_f^2 + K_1 [CrO_4^{2-}] [H^+]^2 + K_2 [H_2CrO_4] [CP]$$
$$= [H^+]_f^2 + K_1 [CrO_4^{2-}] [H^+]^2 + K_2 [H^+]^2 [CrO_2^{2-}] [CP]$$
$$= [H^+]_f^2 \left(1 + K_1 [CrO_4^{2-}] + K_2 [CP] [CrO_2^{2-}] \right)$$ \hspace{1cm} (6)$$

Similarly,

$$[H^+]_t^2 = [H^+]_f^2$$

Substituting Equations (3), (5), and (6) in Equation (2), and omitting subscripts we get Equation (7), which explains all the experimentally observed orders with respect to different species of reaction.

$$\text{Rate} = \frac{-d[CrO_4^{2-}]}{dt} = \frac{k K_1 K_2 [CrO_4^{2-}] [CP] [H^+]^2}{1 + K_1 [H^+]^2 + K_2 [CP] [H^+]^2}$$ \hspace{1cm} (7)$$

or

$$\frac{\text{Rate}}{[CrO_4^{2-}]} = k_{obs} = \frac{k K_1 K_2 [CP] [H^+]^2}{1 + K_1 [H^+]^2 + K_2 [CP] [H^+]^2}$$ \hspace{1cm} (7)$$

The rate law (7) can be rearranged to Equation (8), which is suitable for verification.

$$\frac{1}{k_{obs}} = \frac{1}{k K_1 K_2 [CP] [H^+]^2} + \frac{1}{k K_2 [CP]} + \frac{1}{k}$$ \hspace{1cm} (8)$$

According to Equation (8), plots of 1/k_{obs} vs. 1/[CP] and 1/k_{obs} vs. 1/[H^+]^2 should be linear and were found to be so (Figure 6). The slopes and intercepts of these plots lead to the values of K_1 (2.16 dm^6 mol^{-2}), K_2 (9.71 dm^3 mol^{-1}) and k (8.81 \times 10^{-2} s^{-1}) at 25°C (Table 3). Similarly k, K_1 and K_2 values for other temperatures were calculated and are given in Table 3. Since ions exert electrostatic forces on each other, the kinetics of reaction between ions deviates from such reactions which involve non-electrolytes. The rate constants of ionic reactions depend upon the charges carried by the ions and also upon the ionic strength of the solution. The salt effect on the reaction rates has been well described by the Bronsted–Bjerrum theory. In the present investigations, variation of the ionic strength of the medium by adding Na_2SO_4 solution decreases the rate constant linearly with negative slope indicating that reactant species involved are oppositely charged as shown in Scheme 1. Hence the observed ionic strength effect is consistent with the Bronsted–Bjerrum concept (Laidler, 1995). Insignificant effect of dielectric constant of solvent on rate of reaction has been resulted may be due to polar and non-polar nature of clindamycin phosphate which is soluble both in highly polar solvent like water and less polar solvent like acetic acid (Badi & Tuwar, in press). The smaller activation energies observed support that the reaction proceeds between ions of opposite charges or an ion and a neutral
molecule (Zaafarany, Khairou, & Hassan, 2009). Therefore, the electrostatic attraction between the reactants does not need much energy to bring them together in order to form the respective intermediates and oxidation products. The values of ΔH° and ΔS° are both favorable for electron transfer processes. The negative value of ΔS° are within the range of radical reaction and have been ascribed to the nature of electron pairing and unpairing process and to the loss of degree of freedom formerly available to reactants upon the formation of rigid transition state. In view of foregoing experimental observations and kinetic interpretations this reaction mechanism presumably occurs via an inner-sphere mechanism. Thus, with these arguments and the experimental findings, the oxidation of clindamycin phosphate by chromium(VI) illustrated in Scheme 1, representing the oxidation of sulfide to corresponding sulfone.

5. Conclusion
Through kinetics study, we proposed a free radical reaction mechanism for oxidation of clindamycin phosphate by chromium(VI). Among the various competitive oxidation sites in clindamycin phosphate it was evident through our study that methyl sulfide of clindamycin phosphate leads in taking first priority to get oxidized by chromium(VI). The active species of chromium(VI) was found to be H_2CrO_4^-. It was apparent, that reaction medium played crucial role during the process of oxidation. The rate constant of the slow step, equilibrium constant involved in the mechanism and activation parameters were evaluated and computed. Oxidation products were identified, while the proposed mechanism is in well agreement with the experimental and spectral interpretations.

Acknowledgements
Amar K. Durgannavar thank Prof. M. V. Kulikarni for his valuable suggestions on the scheme. The authors also acknowledge Spectroscopy/Analytical Test Facility, Society for Innovation and Development, Indian Institute of Science, Bangalore for spectral analysis.

Funding
The author, Amar K. Durgannavar, gratefully acknowledge financial support via UGC-UGE programme by University Grants Commission of India and Karnatak University, Dharwad for the research fellowship [KU/Sch/UGC-UGE/2013/14/1116].

Author details
Amar K. Durgannavar1
E-mail: amar.durgannavar@gmail.com
Manjunath D. Meti1
E-mail: manjunathameti14@gmail.com
Sharanappa T. Nandibewoor1
E-mail: stnandibewoor@yahoo.com
Shivamurti A. Chimatadar1
E-mail: schimatadar@gmail.com
ORCID ID: http://orcid.org/0000-0001-5382-7317

1 P. G. Department of Studies in Chemistry, Karnatak University, Pavate Nagar, Dharwad 580003, India.

Citation information
Cite this article as: Oxidation of clindamycin phosphate by chromium(VI) in aqueous sulfuric acid medium—A kinetic and mechanistic study, Amar K. Durgannavar, Manjunath D. Meti, Sharanappa T. Nandibewoor & Shivamurti A. Chimatadar, Cogent Chemistry (2015), 1: 1115210.

Cover image
Source: Authors.

References
Bodi, S. S., & Tuwar, S. M. (in press). Oxidation of clindamycin phosphate by cerium(IV) in perchloric acid medium—A kinetic and mechanistic approach. Arabian Journal of Chemistry, doi:10.1016/j.arabjc.2013.04.025

Chen, J. D., & Sheldon, R. A. (1995). Selective oxidation of hydrocarbons with O, over chromium aluminophosphate-5 molecular-sieve. Journal of Catalysis, 153, 1–8. doi:10.1006/jcat.1995.1101

Chimatadar, S. A., Bovaraj, T., & Nandibewoor, S. T. (2006). Mechanistic study of quinoliniumdichromate (QDC) oxidation of mercury(II) in aqueous sulfuric acid in the presence of micro amounts of palladium(II)—Autocatalysis in catalysis. Polyhedron, 25, 2976–2986. doi:10.1016/j.poly.2006.05.002

Chimatadar, S. A., Modavole, S. V., & Nandibewoor, S. T. (2007). Mechanism of oxidation of hexamine by quinolinium dichromate in aqueous perchloric acid. Indian Journal of Chemical Technology, 14, 459–465.

Chimatadar, S. A., Koujalagi, S. B., & Nandibewoor, S. T. (2004). Oxidation of allyl alcohol by quinolinium bichromate. A kinetic and mechanistic study. Oxidation Communications, 27, 81–89.

Dannemann, B., McCutchan, J. A., Israelski, D., Antonisik, D., Leport, C., Luft, B., & Chiu, J. (1992). Treatment of toxoplasmic encephalitis in patients with AIDS: A randomized trial comparing pyrimethamine plus clindamycin to pyrimethamine plus sulfadiazine. Annals of Internal Medicine, 116, 33–43. doi:10.7326/0003-4819-116-1-33

Das, A. K. (2004). Micellar effect on the kinetics and mechanism of chromium(VI) oxidation of organic substrates. Coordination Chemistry Reviews, 248, 81–99. doi:10.1016/j.ccr.2003.10.012

Davis, C. M., Sumrall, K. H., & Vincent, J. B. (1996). A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP). Biochemistry, 35, 12963–12969. doi:10.1021/bi960328y

Day, M. C., & Selbin, I. (1964). Theoretical inorganic chemistry. New York, NY: Reinhold.

Fawzy, A., Ashour, S. S., Musleh, M. A., Hassan, R. M., & Asghar, B. H. (in press). Kinetics and mechanistic approach to the chromic acid oxidation of l-tryptophan with a spectral detection of chromium(III) product. Journal of Saudi Chemical Society. doi:10.1016/j.jscs.2014.10.003

Fawzy, A., Ashour, S. S., & Musleh, M. A. (2014). Kinetics and mechanism of oxidation of L-histidine by permanganate ions in sulfuric acid medium. International Journal of Chemical Kinetics, 46, 370–381. doi:10.1002/kin.20857
Gupta, K. K. S., Dey, S., Gupta, S. S., Adhikari, M., & Banerjee, A. (1990). Evidence of esterification during the oxidation of some aromatic aldehydes by chromium(VI) in acid medium and the mechanism of the oxidation process. Tetrahedron, 46, 2431–2444. doi:10.1016/S0040-4020(01)82024-X

Hassan, F., & Rocek, J. (1975). Three-electron oxidations. IX. Chromic acid oxidation of glycolic acid. Journal of the American Chemical Society, 97, 1444-1450. doi:10.1021/ja00839a028

Ionita, G. A., Sahini, V. E., Semenescu, G., & Ionita, P. (2000). Kinetics of oxidation of amino acids by some free stable hydrazyl radicals. Acta Chimica Slovenica, 47, 111–119.

Jeffery, G. H., Bassett, J., Mendham, J., & Denny, R. C. (1996). Vogel’s textbook of quantitative chemical analysis, ELBS (5th ed., p. 320). Essex: ELBS Longman.

Kaplan, S. L. (2005). Osteomyelitis in children. Infectious Disease Clinics of North America, 19, 787-797. doi:10.1016/j.idc.2005.07.006

Kwart, H., & Francis, P. (1958). Structural and conformational effects on the rates of oxidation of secondary alcohols by chromic acid. Journal of the American Chemical Society, 81, 2116–2119.

Laidler, K. J. (1993). Reaction kinetics (2nd ed.). New Delhi: Tata McGraw-Hill.

Lente, G., Fabian, I., & Poe, A. J. (2005). A common misconception about the Eyring equation. New Journal of Chemistry, 29, 759–760. doi:10.1039/b501687h

Liang, X., Cheng, J., & Trudell, M. L. (2003). Chromium(VI) oxide catalyzed oxidation of sulfides to sulfones with periodic acid. The Journal of Organic Chemistry, 68, 5386–5391. doi:10.1021/jo030033n

Lide, D. R. (1992). CRC hand book of chemistry and physics (73rd ed., pp. 8–51). London: CRC Press.

Noshiranzadeh, N., Bikas, R., Slepokura, K., Mayeli, M., & Lis, T. (2016). Synthesis, characterization and catalytic activity of new Cr(III) complex in oxidation of primary alcohols to aldehydes. Inorganica Chimica Acta, 421, 176–182. doi:10.1016/j.ica.2014.05.026

Portugal, M. C. C., Lujan, M., & Murrieta, F. J. F. (2008). Evaluation of gender in the oral pharmacokinetics of clindamycin in humans. Biopharmaceutics & Drug Disposition, 29, 427–430. doi:10.1016/j.bdd.2004.08.024

Rahman, M., & Rocek, J. (1971). Mechanism of chromic acid oxidation of isopropyl alcohol. Evidence for oxidation by chromium(IV). Journal of the American Chemical Society, 93, 5462-5469. doi:10.1021/ja00750a025

Rocek, J., & Riehl, S. A. (1967). Mechanism of the chromic acid oxidation of ketones. Journal of the American Chemical Society, 89, 6691–6695. doi:10.1021/ja01001a005

Saunte, H., Chaubey, G. S., & Mahantil, M. K. (2008). Kinetics of oxidation of heterocyclic compounds by quinolinium dichromate. Oxidation Communications, 31, 841–852.

Wilberg, K. B., & Mukherjee, S. K. (1974). Chromic acid oxidation of isopropyl alcohol oxidation by chromium(IV). Journal of the American Chemical Society, 96, 1884–1885. doi:10.1021/ja00813a039

Zaafarany, I. A., Kharou, K. S., & Hassan, R. M. (2003). Acid-catalysis of chromic acid oxidation of kappa-carrageenan polysaccharide in aqueous perchlorate solutions. Journal of Molecular Catalysis A: Chemical, 202, 112–118. doi:10.1016/j.molcata.2003.12.005