The Characteristics of Walking with Different Types of Shoes as Viewed from the Ground Reaction Forces

Kazuo MAIE1), Shiro KONDO1), Hideyuki TANAKA1), Akira OTSUKA1), Shuichi TAKAHASHI2) and Mayumi FUJITA1)

1) The Institute of Human Living Sciences, Otsuma Women's University
2) Otsuka Shoe Co., Ltd.

Abstract The characteristics of walking with different types of shoes were investigated from the viewpoint of ground reaction forces, as compared with those during walking barefoot. The shoes used in this experiment were three types for casual or business uses for men, which were on the market in Japan. The same shoes were worn by 4 male subjects of the same shoes sizes. It was concluded, from the analysis of variance and the mean difference test, that (1) the ground reaction forces during walking with shoes showed large differences between subjects, (2) the first peak value of the vertical ground reaction force had the tendency to increase while the polar minimum value of the vertical force had the tendency to decrease during walking with shoes, (3) the effect of shoes on the ground reaction forces appeared subject specific, and (4) the formal shoes with leather sole had less effect to enhance the acceleration.

Key Words Human walking, Ground reaction forces, Shoes, Barefoot

Introduction

The ground reaction forces during walking barefoot have been studied by numerous researchers (e.g., ENDO and KIMURA, 1969; CAVAGNA, 1985; CAVAGNA et al., 1976; KIMURA and ENDO, 1972; KIMURA et al., 1975; SUZUKI, 1987; YAMADA et al., 1988, 1989). However, there have been few studies on the forces during walking with shoes, and none using the same shoes for each subject. Because the effects of the shoes on the characteristics of walking may depend on the structural and mechanical features of the particular shoes, the same shoes should be used for all subjects in the experiment. We have investigated the ground reaction forces during walking with shoes in comparison with those during walking barefoot, using the same shoes and subjects of the same shoes size.

Subjects and Methods

Four male subjects whose shoe sizes were identical were chosen, based on the reason mentioned above. Their proper shoe size was '25-EEE' in JIS standard, which meant that the shoes were for the foot length from 248 mm to
Table 1. Age, stature and body weight of the subjects

Subject	Age (years)	Stature (cm)	Body weight (kg)
SY	36	175.5	67.2
TO	36	168.8	69.6
YT	41	168.6	63.8
YM	44	168.4	64.3

The subjects were asked to walk on the level indoor track of 6 meters long, at the ordinary speed, stride, and cadence for each subject. The walking velocity of the subject was not controlled in order not to deform the natural walking. A force platform (120 cm long and 60 cm wide, Kyowa Dengyo Co.) was set in the middle of the track, and the ground reaction forces of right foot were recorded, which was repeated ten times under each of the four conditions, i.e. walking barefoot or wearing three different types of shoes. The ground reaction forces were normalized by the subject's body weight, and measurements were made on the following parameters (Fig. 1): peak value of the brake force (Fb), peak value of the acceleration force (Fa), the first peak value of the vertical force (Fv1), minimum value of the vertical force (Fvpm), and the second peak value of the vertical force (Fv2). The lateral force was not used in this analysis, because of its large inter-trial variation.

The shoes used in the experiment were three types for casual and business uses for men, which were on the market as the popular shoes for business men in Japan. The shoes type, upper and sole materials, sole patterns, shoe weight, sole length, toe-spring, and main character of these shoes are listed in Table 2. All these shoes sizes were '25EEE'. The shoes I were for casual use. They had heavy and thick polyurethane sole with radial ditches, which may enhance the brake and acceleration. The shoes II were for business use. They were the lightest among the three types, and had the soft rubber sole of rough surface with lattice pattern ditches, which made the shoes easy to be bent. The shoes III were for formal business use. They were heavy, and had the flat and hard leather sole,
Characteristics of walking with different types of shoes

Table 2. Characteristics of the shoes used in the experiment

	shoes I	shoes II	shoes III
shoes type	casual	business	business
upper material	buckskin	leather	leather
sole material	polyurethane	rubber	leather
sole pattern	radial ditches	lattice ditches	flat surface
	(3-4 mm deep)	(1 mm deep)	
shoe weight (right shoe)	396 g	276 g	395 g
sole length (right shoe)	273 mm	281 mm	275 mm
sole thickness (tip)	15 mm	14 mm	6 mm
(heel)	26 mm	18 mm	30 mm
toe-spring*	5 mm	16 mm	20 mm
main character	heavy and good to brake and accel	light, and brake and accel	to be bent quickly and lightly

1) Toe-spring means the height of the shoe's front tip from the floor

Table 3. Results of the analysis of variance on the ground reaction force parameters by the subjects and the shoes

	sum of squares	degree of freedom	mean square	F-value	P
Fb subjects	937.3	3	312.4	127.1	**
shoes	7.9	2	4.0	1.6	
Fa subjects	1541.2	3	513.7	288.0	**
shoes	106.7	2	53.4	29.9	**
Fv1 subjects	4056.5	3	1352.2	74.3	**
shoes	464.9	2	232.5	12.8	**
Fvpm subjects	1139.9	3	380.0	49.5	**
shoes	131.0	2	65.5	8.5	
Fv2 subjects	1599.5	3	533.2	48.8	**
shoes	14.8	2	7.4	0.7	

**: P<0.01
Table 4. Mean and standard deviation of ground reaction force parameters during walking barefoot and with each type of shoes

subj, SY	Fb	Fa	Fv1	Fvpm	Fv2
barefoot	16.38 ± 1.082	19.02 ± 1.343	98.79 ± 2.898	78.96 ± 1.686	107.78 ± 1.726
I	15.48 ± 1.812	17.12 ± 0.753**	109.29 ± 6.286**	75.97 ± 4.246*	109.21 ± 2.445
II	16.69 ± 1.672	17.62 ± 1.173*	111.17 ± 7.442**	73.55 ± 4.805**	110.35 ± 3.131*
III	15.22 ± 0.927	15.77 ± 1.152**	105.12 ± 2.151**	79.64 ± 1.381	110.62 ± 1.750**

subj, TO	Fb	Fa	Fv1	Fvpm	Fv2
barefoot	21.26 ± 1.745	22.18 ± 1.860	111.38 ± 5.203	75.96 ± 3.448	97.95 ± 4.271
I	22.26 ± 1.985	25.19 ± 3.196*	123.99 ± 5.068**	71.62 ± 2.863**	103.24 ± 3.636**
II	21.70 ± 2.175	24.13 ± 0.991**	120.65 ± 5.318**	71.20 ± 2.299**	100.85 ± 1.889**
III	22.79 ± 1.891*	22.19 ± 0.943	120.95 ± 3.001**	70.97 ± 2.341**	104.17 ± 1.354**

subj, YT	Fb	Fa	Fv1	Fvpm	Fv2
barefoot	13.92 ± 1.387	18.54 ± 0.815	109.57 ± 4.095	83.22 ± 2.326	106.35 ± 3.146
I	16.43 ± 1.085**	16.28 ± 0.717**	118.22 ± 1.856**	75.08 ± 1.548**	105.43 ± 4.916
II	13.83 ± 1.685	16.38 ± 0.690**	114.87 ± 1.917**	76.18 ± 2.442**	109.11 ± 5.019
III	14.95 ± 1.459	14.48 ± 1.351**	112.88 ± 3.949*	77.69 ± 2.443**	105.36 ± 4.290

subj, YM	Fb	Fa	Fv1	Fvpm	Fv2
barefoot	16.20 ± 1.149	21.53 ± 1.027	118.77 ± 5.203	71.99 ± 2.646	110.96 ± 4.194
I	18.19 ± 1.115**	24.25 ± 1.027**	125.30 ± 3.392**	68.36 ± 2.114**	113.50 ± 3.240
II	18.02 ± 1.267**	22.81 ± 0.733**	124.83 ± 3.510**	68.89 ± 1.729**	113.49 ± 1.947
III	17.17 ± 1.142*	21.62 ± 1.280	119.14 ± 3.066	70.94 ± 2.935	110.32 ± 3.424

1) Figures are expressed as % ratio against each subject’s body weight.
2) Significant differences of ground reaction force parameters between walking barefoot and walking with shoes are shown with asterisks; *: p<0.05, **: p<0.01.
Characteristics of walking with different types of shoes

Fig. 2. The effect of each type of shoes on the ground reaction force parameters. The ordinate means the ratio of the ground reaction force parameters of the shoes against those during walking barefoot. ○ represents the shoes I, □ the shoes II, and △ the shoes III.

Results and Discussion

The analysis of variance revealed that difference of the normalized ground reaction forces between the subjects were significant (P<0.01) for all of the parameters measured (Table 3). Differences between the shoes were also significant for Fa, Fv1, and Fvpm (P<0.01).

The mean and standard deviation of each parameter of the normalized ground reaction force in each subject under each condition are listed in Table 4. The significant differences between walking with shoes and walking barefoot, examined by the unpaired t-test, are also shown in the table by the asterisks; the Fv1 significantly increased from the barefoot level with almost all types of shoes in all subjects while the Fvpm significantly decreased from the barefoot level with all types of shoes in all subjects, except for two cases. The Fb, Fa, and Fv2 showed no clear tendency by wearing the shoes.

Magnitude of the ground reaction forces during walking with shoes relative to those during walking barefoot in each subject are shown in Fig. 2. The figure shows that, irrespective of the shoes type, the increase or decrease of each force parameter against the barefoot level has characteristic pattern from subject to subject. A close examination of the figure, however, suggests shoes-specific effects on the ground reaction forces which are common to the subjects.

In Table 5 are compared the ground reaction force parameters between the shoes. In all subjects, the Fa is significantly greater for shoes I and II than for shoes III. A similar tendency, though not necessarily significant, is observed for the Fv1. An inverse trend seems to exist for the Fvpm, i.e. this parameter is greater for shoes III than for shoes I and II. The hard leather sole of shoes III appears to be responsible for these tendencies.
Table 5. Comparison of ground reaction force parameters between the shoes I, II, and III

subj. SY	Fb	Fa	Fv1	Fvpm	Fv2
I vs. II	▽	▽	▽	▽	▽
I vs. III	△	△**	△	▽*	▽
II vs. III	△*	△**	△	▽**	▽

subj. TO	Fb	Fa	Fv1	Fvpm	Fv2
I vs. II	△	△	△	△	△
I vs. III	▽	△*	△	▽	▽
II vs. III	▽	△**	▽	▽**	▽

subj. YT	Fb	Fa	Fv1	Fvpm	Fv2
I vs. II	△**	▽	△**	▽	▽
I vs. III	△*	△**	△**	▽*	▽
II vs. III	▽	△**	▽	▽	▽

subj. YM	Fb	Fa	Fv1	Fvpm	Fv2
I vs. II	△	△**	△	▽	▽
I vs. III	△	△**	△**	▽*	▽
II vs. III	△	△**	△**	▽	▽*

△: I is greater than II, I is greater than III, or II is greater than III.
▽: I is less than II, I is less than III, or II is less than III.
Significant differences are shown by asterisks (*: P<0.05, **: P<0.01).

The results presented here have shown that the ground reaction forces during walking are basically subject-specific. Such an observation, reliable by using one and the same shoes for different subjects, suggests that each subject walks in a way unique to him, irrespective of the wearing conditions. Despite this, other results have demonstrated that there exist some effects of wearing conditions including the type of shoes. Possible factors causing these effects may include change in the walking speed and walking kinematics. Identification of the factor needs further study.

Acknowledgements
We would like to thank Prof. Morihiko OKADA, Institute of Health and Sport Sciences, University of Tsukuba, for his kind and precise suggestions on this paper.
抄 録

床反力値からみた裸足歩行に対する着靴歩行の特徴

真家和生・近藤四郎・田中秀幸
大塚 斌・高橋周一・藤田真弓

裸足歩行時と着靴歩行時の床反力値を比較し、着靴歩行時の特徴について考察を行った。実験に用いた靴は、市販されている3タイプの紳士用ビジネスシューズおよびカジュアルシューズであり、被験者は、36歳から44歳にわたる同じ靴サイズを有する日本人男性4名である。分散分析および平均値の差の検定の結果、(1) 着靴歩行時の床反力値には個人差が大きいこと、(2) 着靴歩行では垂直力第1ピークが高められ、垂直力極小値が低められる傾向がみられたこと、(3) 裸足歩行時に対する着靴歩行時の床反力値の変化の傾向は、靴の違いにかかわらず、被験者ごとにほぼ一定していること、(4) 跛行のフォーマル靴は他の靴と比較して推進力を高める効果が低いこと、が示された。

References

CAVAGNA, G.A., H. THYS and A. ZAMBONI, 1976: The sources of external work in level walking and running. J. Physiol., 262: 639-657.
CAVAGNA, G.A., 1985: Force platforms as ergometers. J. Appl. Physiol., 39: 174-179.
ENDO, B. and T. KIMURA, 1969: Dynamic analysis of human walking. In: Proc. 8th Congr. Anthrop. Ethnol. Sci. vol. I, Science Council of Japan, Tokyo, pp. 335-339.
KIMURA, T. and B. ENDO, 1972: Comparison of forces of foot between quadrupedal walking of dog and bipedal walking of man. J. Fac. Sci., Univ. Tokyo, Sec. V, 4: 119-130.
KIMURA, T., M. OKADA and H. ISHIDA, 1975: Primate bipedal walking viewed from foot force. In: Society of Biomechanism (ed.), Biomechanism 3. Univ. Tokyo Press, Tokyo, pp. 219-226. (In Japanese)
[木村 賢・岡田守彦・石田英実, 1975: 足底部力からみた齧長類の２足歩行. パイオメカニズム 3, 東京大学出版会, 東京, pp. 219-226.]
MARTIN, R. and K. SALLER, 1957: Lehrbuch der Anthropologie. Gustav Fischer Verlag, Stuttgart, p. 316.
SUZUKI, R., 1987: Foot biomechanics and analysis of human walking. J.Jpn. Orthop. Assoc., 61: 75-86. (In Japanese)
[足のバイオメカニクスと步行解析. 日本整形外科学会雑誌, 61: 75-86.]
YAMADA, T., K. MAIE and S. KONDO, 1988: The characteristics of walking in old men analysed from the ground reaction force. J. Anthropol. Soc. Nippon, 96: 7-15.
YAMADA, T., K. MAIE and S. KONDO, 1989: Aging of human gait from the viewpoint of ground reaction forces. Jpn. J. Sports Sci., 8: 128-133. (In Japanese)
[山田忠利・真家和生・近藤四郎, 1989: 床反力解析からみた歩行の年齢変化. Jpn. J. Sports Sci., 8: 128-133.]

真 家 和 生

大妻女子大学人間生活科学研究所
〒102 東京都千代田区三番町 12

Kazuo MAIE

Institute of Human Living Sciences
Otsuka Women's University
12 Sanbancho, Chiyoda-ku, Tokyo 102, Japan