Experimental disclosing the composition- and structure-dependent deep-level defect in photovoltaic antimony trisulfide materials

Weitao Lian¹ Chenhui Jiang¹, Yiwei Yin¹, Rongfeng Tang¹, Gang Li¹, Lijian Zhang¹, Bo Che¹ and Tao Chen¹*

¹Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

*E-mail: tchenmse@ustc.edu.cn
Antimony trisulfide (Sb$_2$S$_3$) represents a kind of emerging light-harvesting material with excellent stability and abundant elemental storage. Due to the low-symmetry, theoretical investigation has pointed out that there exists complicated defect properties. However, there is no experimental verification on the defect property. Here, we conduct optical deep-level transient spectroscopy to investigate defect properties in Sb$_2$S$_3$ and show that there are maximum three kinds of deep level defects observed, depending on the composition of Sb$_2$S$_3$. We also find that the Sb-interstitial (Sbi) defect does not show critical influence on the carrier lifetime, indicating the high tolerance of the one-dimensional crystal structure where the space of (Sb$_4$S$_6$)$_n$ ribbons is able to accommodate impurities to certain extent. This work provides basic understanding on the defect properties of quasi-one-dimensional materials and a guidance for the efficiency improvement of Sb$_2$S$_3$ solar cells.
Point defect engineering of semiconducting materials is essential for photovoltaic devices, comprehensive understanding of the defects formation mechanism and function enables achieving high-efficiency solar energy conversion. In specific, the point defect (intrinsic or extrinsic defect) determines the Fermi level (E_F), free carrier concentration and conductivity type (n or p) of semiconductors. Shallow-level defects with thermal energy of about $k_B T$ (where k_B is Boltzmann constant, T is temperature) from conduction band minimum (CBM) or valence band maximum (VBM) plays the major role to tune the carrier concentrations and conductivity type. In contrast, deep-level defects whose activation energy is much higher than $k_B T$ from CBM or VBM is detrimental to photogenerated carrier lifetime and transport (carrier mobility and diffusion length). This defect results in the trap-assisted Shockley-Read-Hall (SRH) recombination (dominant non-radiation recombination) in solar cells, which is the primary cause of open-circuit voltage (V_{OC}) loss.

Recently, binary antimony chalcogenides Sb$_2$S(e)$_3$ (including Sb$_2$S$_3$, Sb$_2$Se$_3$, Sb$_2$(S,Se)$_3$) have drawn increasing attention in solar cell applications, for their large visible light absorption coefficient (> 10^5 cm$^{-1}$), earth-abundant compositional elements and tunable band gap in 1.1-1.7 eV. The efficiency breakthrough towards 10% in alloy-type antimony selenosulfide stimulating new interests in the development of this class of materials4,5. In particular, Sb$_2$S$_3$ with band gap of ~1.7 eV can be perfectly applied as top cell material for the construction of tandem solar cells. Different from previous photovoltaic materials such as silicon, Cu(In, Ga)Se$_2$, CdTe and organic-inorganic hybrid perovskite, the Sb$_2$S$_3$ displays quasi-one-dimensional structure composed of
[Sb_{4}S_{6}]_n ribbons and could generate benign grain boundaries without dangling bonds along c axis (Fig. 1)6,7. In practical, to transfer the distinctive structural advantage into efficient carrier transport and final power conversion efficiency (PCE), one must understand and control the defect properties, in particular the deep-level defects. This requirement has spurred intense interests in exploring the defect properties of such materials, especially from theoretical perspective, which revealed complicated defect characteristics although it has only two kinds of elements8-11. However, to date there is a lack of experimental verification of defect properties associated with the structure and compositions, which induces ambiguity in the fabrication of high quality Sb\textsubscript{2}S\textsubscript{3} films for efficient solar cells.

Herein, we experimentally uncover the defect characteristics by using deep level transient spectroscopy (DLTS) and identify the details of the defect. We examine both Sb-rich and S-rich Sb\textsubscript{2}S\textsubscript{3} films for a comparative study which is prepared by thermal evaporation approach. To make clear conclusions, we carefully analyze the crystallinity, electronic structure and chemical composition (impurity) of the as-obtained films. In contrast to the theoretical study where complicated defect proposed in the Sb\textsubscript{2}S\textsubscript{3}8-11, our experimental investigation shows only a few types of defect, and the defect type and concentration is sensitively dependent on anion/cation ratio.

Results

Structure and composition characterization of Sb\textsubscript{2}S\textsubscript{3} films. Due to the high saturated vapor pressure of sulfur, the sulfur loss is inevitable and results in Sb-rich films during thermal evaporation deposition. To obtain S-rich Sb\textsubscript{2}S\textsubscript{3} film, we apply a co-evaporation
equipment for the Sb$_2$S$_3$ film fabrication, in which S powders are co-evaporated with Sb$_2$S$_3$ for the generation S-rich Sb$_2$S$_3$ films. The synthesis details are provided in the Methods section. The as-obtained films at Sb-rich and S-rich conditions display similar morphology (Fig. 2a, 2b and Supplementary Fig. 1). X-ray diffraction (XRD) is then applied to characterize the crystallinity (Fig. 2c). Both of the films display diffractions at 15.6, 17.5, 24.9, 33.6 and 35.6 °, which are well assigned as (020), (120), (130), (330) and (240) crystal planes of orthorhombic Sb$_2$S$_3$ (JCPDS No. 42-1393, Pbnm). According to the energy dispersive X-ray spectroscopy (EDS), the atomic ratio of S/Sb in Sb-rich and S-rich Sb$_2$S$_3$ films are calculated to be 1.28 to 1.55 (Supplementary Table 1), respectively.

Impurity crucially influences the defect properties in a semiconductor. In this case, we carry out Raman scattering and X-ray photoelectron spectroscopy (XPS) characterizations to carefully examine the bulk and surface chemical compositions. Raman spectra show typical antisymmetric and symmetric bending vibration of S-Sb-S at 189 and 239 cm$^{-1}$ (Fig. 2d), respectively. The antisymmetric and symmetric stretching vibration of Sb-S appear at 282 and 309 cm$^{-1}$. Furthermore, Raman shift at 126 and 156 cm$^{-1}$ correspond to crystalline Sb$_2$S$_3$ phase. In addition, Raman scattering at 302 cm$^{-1}$ is ascribed to the phonon scattering from CdS substrate.

XPS spectra (Fig. 2e and f) display typical binding energy of 539.2 eV and 529.8 eV which are assigned to Sb 3d$_{3/2}$ and 3d$_{5/2}$ of Sb$_2$S$_3$, respectively. Notably, there is no existence of SbO$_x$ in both films, which is commonly generated as impurity in the synthesis of Sb$_2$S$_3$ and displays deep defects characteristics. In addition, the binding
energy of 163.1 eV and 161.9 eV are ascribed to the S 2p\(\frac{1}{2}\) and 2p\(\frac{3}{2}\) of Sb\(_2\)S\(_3\).\(^{14,15}\)

From both Raman scattering and XPS analysis, both Sb-rich and S-rich Sb\(_2\)S\(_3\) films prepared via thermal evaporation are free of impurities, which thus provides excellent platform for the investigations of the defect properties.

Photovoltaic performance of devices. To test the optoelectronic quality of the as-synthesized film at device level, we examine the solar cell efficiency by using CdS and Spiro-OMeTAD as electron and hole transport layer (ETL & HTL), respectively (Fig. 3a and b). The current density-voltage (\(J-V\)) curves are obtained under standard AM 1.5G illumination (Fig. 3c). The optimal Sb-rich Sb\(_2\)S\(_3\) based solar cell delivers PCE of 5.0%, with open-circuit voltage (\(V_{OC}\)), short-circuit current density (\(J_{SC}\)) and fill factor (\(FF\)) of 0.68 V, 15.4 mA cm\(^{-2}\) and 47.6%, respectively. While the optimal S-rich Sb\(_2\)S\(_3\) device generate a PCE of 6.2% (\(V_{OC}\) of 0.72 V, \(J_{SC}\) of 15.9 mA cm\(^{-2}\) and \(FF\) 54.3%) with a net increase by 1.2% than the Sb-rich Sb\(_2\)S\(_3\) based device. This PCE represents the highest value in thermal evaporation derived Sb\(_2\)S\(_3\) solar cells\(^{16,17}\). The statistic parameters (\(V_{OC}\), \(J_{SC}\), \(FF\), and PCE) of each type of devices show narrow distributions (Supplementary Fig. 2a-e), confirming the reliability of the film and device fabrication. Moreover, the external quantum efficiency (EQE) spectra (Fig. 3d and Supplementary Fig. 2f) display excellent photocurrent generation efficiency in the 500-700 nm, a decrease in the short wavelength is attributed to the light absorption loss induced by CdS since its band gap is 2.4 eV. On the ground of both \(J-V\) and EQE analysis, the as-prepared S-rich Sb\(_2\)S\(_3\) films display high photovoltaic quality.

Bulk deep-level defects analysis. In this characterization, there is a typical concern on
traditional electric DLTS regarding the distortion of minority-carrier trap detection18.

Whereas attaching optical pulse to DLTS is recognized as an effective means to improve
the sensitivity and authenticity of minority-carrier traps detection19,20. Herein, we adopt
electric and optical double pulse mode, and both pulses are exerted simultaneously and
share the same pulse width. In order to avoid the interference of electrons transport
layer (ETL) and holes transport layer (HTL), a 635 nm-wavelength red laser is selected
as the excited source of optical pulse. Moreover, the reverse bias is set at -0.3 V, while
various pulse voltage (0.1~0.5 V) is applied to avoid the fault peaks caused by the
capacitance bridge recovery delay at inappropriate pulse voltage sometimes.
Meanwhile, the information of defects at various depths can also be probed by varying
the pulse voltage.

Fig. 4a and b show the DLTS spectra of Sb-rich and S-rich Sb\textsubscript{2}S\textsubscript{3} devices at different
pulse voltages. The positive peaks in the DLTS spectra represent majority-carrier traps,
while the negative peaks indicate minority-carrier traps18. Regarding n-type Sb\textsubscript{2}S\textsubscript{3}
(Supplementary note 1), the majority and minority-carrier traps are corresponding to
electron and hole traps, respectively. Eventually, the statistical defects information of
the two kinds of devices can be calculated and the results are summarized in Table 1,
where E_T, σ, N_T, τ and N_S are trap energy level, capture cross section, trap density,
carrier lifetime and shallow donor concentration (Supplementary note 2), respectively.

It turns out that the Sb-rich film displays three electron traps, E1, E2 and E3 (donor
defects), with the energy level of 0.31, 0.60 and 0.69 eV below the CBM (Fig. 4a and
Fig. 5a). In contrast, the S-rich film exhibits two hole traps which are denoted as H1
and H2 (acceptor defects) with energy levels of 0.64 and 0.71 eV above the VBM (Fig. 4b and Fig. 5b). In comparison to the calculations on the defect energy levels\(^8,9,21\), the traps E1, E2 and E3 are well assigned to Sb-interstitial (Sb\(_i\)), S-vacancy (V\(_S\)), and antisite of Sb for S (Sb\(_S\)) defects, respectively. The traps H1 and H2 in S-rich Sb\(_2\)S\(_3\) are ascribed to Sb-vacancy (V\(_{Sb}\)) and antisite of S for Sb (S\(_{Sb}\)), respectively. This characterization suggests clearly the composition-dependent defect properties of Sb\(_2\)S\(_3\) films.

Notably, according the energy level alignment (Fig. 5a and b), these are all deep-level defects whose energy level are more than 0.3 eV far from CBM or VBM. Therefore, they are supposed to act as carrier traps or recombination sites due to their high ionization energy. Specially, the trap E2, E3, H1 and H2 possess deeper energy level (close to intrinsic \(E_F\)), large capture cross section and high trap density (Table 1) which accord with basic characteristics of SRH recombination centers. Thus, they behave seriously as recombination centers to hinder carrier transport and shorten the carrier lifetime.

Carrier dynamic analysis. To study the charge transport kinetics, we perform transient absorption spectroscopy (TAS) measurement of the Sb-rich and S-rich Sb\(_2\)S\(_3\) films deposited on soda-lime glass. We apply glass/Sb\(_2\)S\(_3\) films without any electron or hole extraction layer as sample for this study, which can reflect unambiguously that the exciton relaxes to ground state through charge recombination in films. The TAS is tracked at a time window of 5-5000 ps using 400 nm pulse laser excitation for Sb-rich and S-rich Sb\(_2\)S\(_3\) films (Fig. 6a and b, Supplementary Fig. 5). Strikingly, there appear
two photo-induced absorption peaks near 545 and 690 nm, both of which are assigned to a single broad feature of trapped carrier in Sb$_2$S$_3$. Especially, the peak at 690 nm is associated with the formation of sulfide radical22,23. Thus, the enhanced absorption at 690 nm for S-rich Sb$_2$S$_3$ could be attributed to abundant sulfide radical. Accordingly, the decay characteristics at 545 nm are fitted by biexponential model to study carrier decay kinetics (Fig. 6c and Supplementary Table 2). It is observed that the S-rich Sb$_2$S$_3$ exhibits much longer carrier lifetime (18.7 ns) than Sb-rich Sb$_2$S$_3$ (3.8 ns), the reduced defect type and concentration contribute the prolonged lifetime.

To gain further insight into the specific influence of each defect on the carrier dynamics, we extract the limited carrier lifetime associated with specific defect by trap-assisted SRH recombination according to equation 1.

$$\tau = (v_{th}\sigma N_T)^{-1}. \quad (1)$$

where the v_{th} is thermal velocity for electron (hole) that is about 107 cm/s in bulk semiconductors at room temperature2,3,24. Both σ and N_T can be obtained from DLTS. Consequently, the defect with large capture cross section, high trap density and deep trap energy level are much more detrimental to carrier lifetime.

In Sb-rich Sb$_2$S$_3$ film, the carrier lifetime is limited by trap E2 (V$_S$) and E3 (Sb$_S$) in Sb-rich Sb$_2$S$_3$ film which are estimated to be 64.6 and 28.4 ns (Table 1), respectively. The other defect E1 (Sb$_i$) present carrier lifetime of 2180 ns, much longer than those of E2 and E3. This result should be associated with the crystal structure where the Sb atoms enters into the space between (Sb$_4$S$_6$)$_n$ ribbons is less detrimental to the carrier transport dynamics. In S-rich Sb$_2$S$_3$ film, the trap H1 (V$_{Sb}$) sets the limited lifetime of
48.3 ns, while the lifetime limited by trap H2 (S\textsubscript{Sb}) is 997 ns. Defect S\textsubscript{Sb} shows less detriment to carrier lifetime since the low concentration due to high formation energy9, even though it manifests deeper energy level than V\textsubscript{Sb}.

In the first sense, we compare the shortest carrier lifetime limited by E3 and H1, we suppose that this prolonged carrier lifetime is attributed to reduced capture cross section and trap density of H1. In fact, the recombination form in real semiconductors is mostly multi-level recombination24. That is to say, the carriers leap among multiple trap level and get recombination ultimately. Therefore, the decreased defect numbers in S-rich Sb\textsubscript{2}S\textsubscript{3} also contribute the longer carrier lifetime. It is worthy of noting that the calculated carrier lifetime estimated based on bulk trap-assisted SRH recombination model should be slightly exaggerated since it does not consider other non-radiation recombination such as Auger recombination and interface recombination. In any case, the carrier lifetime calculated by bulk trap-assisted SRH recombination model shows the similar trend at the same scale when compared with that obtained by TAS, suggesting that it is the intrinsic deep-level defects that restrict the carrier lifetime in Sb\textsubscript{2}S\textsubscript{3}.

Discussion

For the Sb\textsubscript{2}S\textsubscript{3} solar cell development, one of the major concern is the efficiency improvement. The rational engineering of the defect properties benefits the carrier transport and suppress the negative recombination, which further improve three device parameters, \(V_{OC}\), \(J_{SC}\) and FF. In particular, it has been acknowledged that there is a serious \(V_{OC}\) loss in the Sb\textsubscript{2}S\textsubscript{3} solar cell. Fundamentally, the \(V_{OC}\) of solar cell originates from the split of quasi-Fermi level for electron and hole (Fig. 5c)24,25. The trap E2 and
E3 in Sb-rich Sb₂S₃ films with large capture cross section and high trap density, especially trap energy level closer to Fermi level compared with H1 and H2 in S-rich Sb₂S₃. There is high possibility that the electron quasi-Fermi level is pinned near trap E2 and E3 in Sb-rich Sb₂S₃ owing to inefficient extraction of trapped photo-exited carriers. In contrast, S-rich Sb₂S₃ displays decrescent capture cross section, defects density and defects numbers which jointly give rise to suppressive recombination and prolonged carrier lifetime. This characteristic is able to alleviate the Fermi level pinning effects and improving V_{OC} ultimately.

An interesting finding in this study is that the existence of Sb₁ in the Sb-rich Sb₂S₃ film generates less detrimental effect on the carrier lifetime, which should be related to Q1D crystal structure where the space between (Sb₄S₆)ₙ ribbons can afford impurities to certain degree. However, the S₁ defect does not appear in the S-rich Sb₂S₃ film, it is most likely that the sulfur is easy to be evaporate out during the film deposition at high temperature. Finally, we find that the Sb-rich film displays two types of crucial defect, i.e. V_S and Sb₈, while S-rich Sb₂S₃ film shows only one kind of critical defect, V_{Sb}. Therefore, the S-rich Sb₂S₃ film seems more promising for achieving next efficiency breakthrough, provided that the V_{Sb} is well suppressed without introducing other deep-level defects.

Methods

Preparation of Sb₂S₃ thin films. The Sb₂S₃ films were deposited on FTO/CdS substrate preheated at 300 °C via thermal evaporation under pressure of 0.2~0.3 Pa. About 0.3 g Sb₂S₃ powder (99.9%, aladdin) was put into a tungsten boat equipped on
the DC evaporator source, and the evaporating temperature was tuned through the DC current. As for co-evaporation, another 0.1 g S powder (99.999%, Sinopharm group) was needed to evaporate simultaneously with Sb$_2$S$_3$ powder. The films were deposited at a rate of 3-5 nm s$^{-1}$. The final thickness of films was controlled around 200 nm via a film thickness gauge. Finally, the as-deposited films were post-annealed at 350 °C for 2 min on a preheated hot plate in a N$_2$-filled glove box.

Fabrication of Sb$_2$S$_3$ solar cells. The FTO glass (TEC-A7) was cleaned by DI water, isopropanol, acetone, and ethanol sequentially. Then FTO substrate was cleaned for 15 min by UV ozone prior to use as well. Next, the FTO substrate coated with 60 nm CdS film as ETL by using chemical bath deposition (CBD) method4. After treatment with CdCl$_2$ (20 mg mL$^{-1}$ methanol), then FTO/CdS substrate was heated at 400 °C for 10 min in open air. Subsequently, the Sb$_2$S$_3$ film was deposited on FTO/CdS substrate by thermal evaporation mentioned above. Spiro-OMeTAD was utilized as HTL according our pervious report5. Finally, the Au back electrode was evaporated on the HTL under a pressure of 5×10^{-4} Pa. The active area was defined as 0.12 cm2.

Films characterizations. The morphologies of Sb$_2$S$_3$ thin films were characterized by Zeiss G450 SEM equipped with an EDS (Bruker) module. The crystal structure was measured by XRD (Bruker Advance D8 diffractometer) with Cu Kα radiation ($\lambda = 1.5406$ Å). Raman spectroscopy (Horiba JobinYvon, LabRAM HR800) was applied to analyze chemical bonds in Sb$_2$S$_3$ with 532 nm laser excitation. XPS (Thermo Fisher) with a Monochrome Al Kα (1486.6 eV, 15kV) was used to characterize the surface composition. The work function and valence band binding energy were measured by
UPS (Thermo Escalab 250Xi, He I excitation 21.22 eV) which were recorded at 0 V samples bias in an ultrahigh vacuum chamber. TAS of Sb$_2$S$_3$ films were measured by a Helios setup, where a nondegenerate pump–probe configuration was applied to probe the transient dynamics (50 fs to 7 ns). Additionally, the pump and probe laser pulses were generated by frequency doubling the fundamental output (Coherent Vitesse, 80 MHz, Ti-sapphire laser) and white light generated with a sapphire plate, respectively. The decay characteristics were fitted by biexponential model $y = \sum A_i \exp(-x/t_i)$, while carrier lifetime (τ) was obtained by $\tau = \sum A_i t_i^2 / \sum A_i t_i$ ($i=2$).

Devices characterizations. The $J-V$ characteristics were performed by Keithley 2400 apparatus under solar-simulated AM 1.5 sunlight (100 mW cm$^{-2}$) with a standard xenon-lamp-based solar simulator (Oriel Sol 3A, Japan). Prior to test, the solar simulator illumination intensity was calibrated by a monocrystalline silicon reference cell (Oriel P/N 91150 V, with KG-5 visible color filter) which is also calibrated by the National Renewable Energy Laboratory (NREL). The EQE (model SPIEQ200) was measured using a single-source illumination system (halogen lamp) combined with a monochromator. The DLTS measurement was performed via a Phystech FT-1230 HERA-DLTS system equipped with a 10 mW laser of 635 nm wavelength. And the optical pulse was generated from the laser. The modified Boonton 7200 capacitance meter (high frequency, 1 MHz) was used to observe capacitance dynamically. The samples were placed in a liquid-helium cryostat (Lakeshore 335,336). The DLTS temperature scan range varies from 120 to 420 K at 2 K intervals. The pulse mode was set as electrical (fill voltage) and optical (laser excitation) pulse yielding simultaneously.
In detail, the reverse bias, pulse voltage, pulse width (electric & optical), and period width were −0.3 V, 0.1~0.5 V, 10 ms and 100 ms, respectively.

Data available

All data that support the findings of this study are available within the paper and the supplementary information.

References

1. Park, J.S., Kim, S., Xie, Z. & Walsh, A. Point defect engineering in thin-film solar cells. *Nat. Rev. Mater.* 3, 194-210 (2018).

2. Hall, R.N. Electron-hole recombination in germanium. *Phys. Rev.* 87, 387 (1952).

3. Shockley, W. & Read Jr, W. Statistics of the recombinations of holes and electrons. *Phys. Rev.* 87, 835 (1952).

4. Tang, R. et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. *Nat. Energy* 5, 587-595 (2020).

5. Wang, X. et al. Manipulating the Electrical Properties of Sb$_2$(S, Se)$_3$ Film for High-Efficiency Solar Cell. *Adv. Energy Mater.* 10, 2002341 (2020).

6. Wang, X., Tang, R., Wu, C., Zhu, C. & Chen, T. Development of antimony sulfide-selenide Sb$_2$(S, Se)$_3$-based solar cells. *J. Energy Chem.* 27, 713-721 (2018).

7. Chen, C. & Tang, J. Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin and Possible Solution. *ACS Energy Lett.* 5, 2294-2304 (2020).

8. Cai, Z., Dai, C.-M. & Chen, S. Intrinsic Defect Limit to the Electrical Conductivity and a Two-Step p-Type Doping Strategy for Overcoming the Efficiency Bottleneck of Sb$_2$S$_3$-Based Solar Cells. *Sol. RRL* 4, 1900503 (2020).

9. Guo, L. et al. Scalable and efficient Sb$_2$S$_3$ thin-film solar cells fabricated by close space
sublimation. *APL Mater.* 7, 041105 (2019).

10. Huang, M., Xu, P., Han, D., Tang, J. & Chen, S. Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb_2Se_3. *ACS Appl. Mater. Interfaces* **11**, 15564-15572 (2019).

11. Savory, C.N. & Scanlon, D.O. The complex defect chemistry of antimony selenide. *J. Mater. Chem. A* **7**, 10739-10744 (2019).

12. Parize, R. et al. In situ analysis of the crystallization process of Sb_2S_3 thin films by Raman scattering and X-ray diffraction. *Mater. Design.* **121**, 1-10 (2017).

13. Saleem, M.F., Zhang, H., Deng, Y. & Wang, D. Resonant Raman scattering in nanocrystalline thin CdS film. *J. Raman Spectrosc.* **48**, 224-229 (2017).

14. Choi, Y.C., Lee, D.U., Noh, J.H., Kim, E.K. & Seok, S.I. Highly improved Sb_2S_3 sensitized–inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. *Adv. Funct. Mater.* **24**, 3587-3592 (2014).

15. Zakaznova-Herzog, V.P. et al. High resolution XPS study of the large-band-gap semiconductor stibnite (Sb_2S_3): Structural contributions and surface reconstruction. *Surf. Sci.* **600**, 348-356 (2006).

16. Yin, Y. et al. Composition engineering of Sb_2S_3 film enabling high performance solar cells. *Sci. Bull.* **64**, 136-141 (2019).

17. Deng, H. et al. Quasiepitaxy strategy for efficient full-inorganic Sb_2S_3 solar cells. *Adv. Funct. Mater.* **29**, 1901720 (2019).

18. Lang, D. Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. *J. Appl. Phys.* **45**, 3023-3032 (1974).
19. Kukimoto, H., Henry, C. & Merritt, F. Photocapacitance studies of the oxygen donor in GaP. I. Optical cross sections, energy levels, and concentration. *Phys. Rev. B* 7, 2486 (1973).

20. Takikawa, M. & Ikoma, T. Photo-excited DLTS: Measurement of minority carrier traps. *Jpn. J. Appl. Phys.* 19, L436 (1980).

21. Tumelero, M.A., Faccio, R. & Pasa, A.A. Unraveling the native conduction of trichalcogenides and its ideal band alignment for new photovoltaic interfaces. *J. Mater. Chem. C* 120, 1390-1399 (2016).

22. Yang, Z. et al. Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices. *Nat. Commun.* 10, 1-8 (2019).

23. Jin, X. et al. In Situ Growth of [hk1]-Oriented Sb$_2$S$_3$ for Solution-Processed Planar Heterojunction Solar Cell with 6.4% Efficiency. *Adv. Funct. Mater.* 30, 2002887 (2020).

24. Nelson, J.A. *The physics of solar cells.* (World Scientific Publishing Company, 2003).

25. Wen, X. et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. *Nat. Commun.* 9, 2179 (2018).

Acknowledgements

This work was supported by National Key Research and Development Program of China (2019YFA0405600), National Natural Science Foundation of China (U19A2092, 22005293) and Postdoctoral Science Foundation (BH2060000144).

Author contributions

T. C. supervised the project, W. L. and T. C. conceived the original concept and designed the experiments. W. L. fabricated the devices and conducted the photovoltaic characterizations and DLTS measurement analysis, B. C. assisted with the DLTS.
measurement and analysis. C. J. aid in TAS measurement. Y. Y. and R. T. helped the fabrication of films and deives. G. L., L. Z. and C. Z. assisted with the electrochemistry characterizations. W.L. and T.C. co-wrote the manuscript, all authors revised the manuscript.

Competing interests

The authors declare no competing interests.
Fig. 1 Schematic diagram of quasi-1-dimensional structural Sb$_2$S$_3$. Sideview (a) and aeroview (b) of [Sb$_4$S$_6$] ribbons along c axis.

Fig. 2 Characterizations of Sb$_2$S$_3$ film. a, b, Surface SEM images of Sb-rich and S-rich Sb$_2$S$_3$ films. c, d, XRD patterns and Raman spectroscopy of Sb-rich and S-rich Sb$_2$S$_3$ films. e, f, Sb 3d and S 2p XPS spectra of Sb-rich and S-rich Sb$_2$S$_3$.
Fig. 3 Device structure and photovoltaic performance. **a, b**, Cross sectional SEM image and corresponding device configuration of Sb$_2$S$_3$ solar cells. **c** $J-V$ characteristics of the optimal Sb-rich and S-rich Sb$_2$S$_3$ devices under standard one Sun illumination. **d** EQE spectra of the optimal Sb-rich and S-rich Sb$_2$S$_3$-based devices.
Fig. 4 Deep-level defects characterization. DLTS signals of Sb-rich (a) and S-rich Sb$_2$S$_3$ films (b) at pulse voltage ranging from 0.1 to 0.5 V, synergized with an identical pulse-width optical pulse.

Fig. 5 Schematic of band structure and heterojunction. a, b, Conduction band (E_C), valence band (E_V), Fermi level (E_F) and trap energy level (E_T) for Sb-rich and S-rich Sb$_2$S$_3$ films. c Schematic diagram of V_{oc} derived from heterojunction.
Fig. 6 TAS study of Sb$_2$S$_3$ films. a, b, 2D color images of TAS of Sb-rich and S-rich Sb$_2$S$_3$ films. c Transient kinetic decay and fittings (solid lines) monitored at 545 nm of Sb-rich and S-rich films.

Table 1 Deep-level defect parameters (trap type, trap energy level (E_T), capture cross section (σ), trap density (N_T), carrier lifetime (τ), shallow donor concentration (N_S)) of Sb-rich and S-rich Sb$_2$S$_3$ films.

Sample	Trap	E_T (eV)	σ (cm2)	N_T (cm3)	τ (ns)	N_S (cm3)
Sb-rich	E1	E_C−0.31±0.02	(0.54−8.13)\times10$^{-17}$	(3.75−5.63)\times1014	2.18×103	
E2	Ev+0.60±0.02	(0.26−4.68)\times10$^{-16}$	(1.57−3.31)\times1015	6.46×101	7.71×1016	
E3	E_C−0.69±0.02	(0.11−1.75)\times10$^{-15}$	(1.38−2.01)\times1015	2.84×101		
S-rich	H1	E_V+0.64±0.01	(0.46−1.31)\times10$^{-15}$	(0.45−1.58)\times1015	4.83×101	5.13×1016
H2	E_V+0.71±0.02	(0.49−1.17)\times10$^{-16}$	(6.71−8.57)\times1014	9.97×102		