Application of Traditional Japanese Drug Jidabokuippo in a Modern Society

Hajime Nakae*, Yasuhioto Irie, Toshiharu Kitamura and Manabu Okuyama

Department of Emergency and Critical Care Medicine, Akita University Graduate School of Medicine, Akita, Japan

Background: Jidabokuippo (JDI) (治打撲一方) has been used in Japan to alleviate contusion-induced swelling and pain since medieval times.

Method: This review investigated the effects of JDI on various symptoms in patients with trauma or static blood. The PubMed and Igaku Chuo Zasshi databases were searched until 24 December 2021. We summarize the benefits of applying JDI to inflammatory conditions, including bruises.

Results: JDI has been used to resolve blood stasis, regulate qi in trauma patients, and treat inflammatory swelling and pain caused by rheumatoid arthritis and cellulitis. As the adverse event rate associated with JDI is low (1.3%), JDI is considered a safe drug.

Conclusion: JDI can be used to resolve blood stasis in trauma patients without adverse events associated with nonsteroidal anti-inflammatory drugs.

Keywords: trauma, inflammatory swelling, made-in-Japan, static blood, adverse event

INTRODUCTION

Jidabokuippo (JDI) is an herbal mixture used in Japan to alleviate contusion-induced swelling and pain. It is composed of Nuphar japonica DC., Quercus acutissima Carruth., Ligusticum oficinale (Makino) Kitag., Neolitsea cassia (L.) Kosterm., Syzygium aromaticum (L.) Merr. and L.M.Perry, Rheum palmatum L., and Glycyrrhiza glabra L. (Table 1; Figure 1) (Department of Pharmacognosy and DPPN, 2018; Sakakibara, 2008; Nakae and Irie, 2020).

Herein, we document that JDI treatments have been applied to bruises and various inflammation conditions since medieval Japanese society. Potentially relevant articles were identified through a PubMed and Igaku Chuo Zasshi (ICHUSHI) literature search using the keywords (jidabokuppo OR jidabokuippou) for articles published until 24 December 2021. ICHUSHI contains bibliographic citations and abstracts from more than 2,500 biomedical journals and other serial publications published in Japan. Since Kampo medicine targets many intractable and rare diseases and the course of treatment differs in each case, it is difficult to conduct large-scale randomized controlled trials and secure high-quality evidence. Therefore, a case report and case series are also included.

SOURCE

Kampo prescriptions developed by Japanese expert clinicians in the Edo era were called “honchokeikenho” and are thought to include JDI. In the Sengoku era, the age of provincial wars (1467–1615), some traumatologists called “kinsoi” used drugs that resembled JDI for sword wounds and bruises.
TABLE 1 | Pharmacological action of formulated crude drugs in jidabokuippo.

Crude drug	Composition ratio (g)	Efficacy in Kampo medicine	Pharmacological action
Nuphar japonica DC.	3.0	Resolving blood\[TM1\] stasis and stomachic property	Analgesia, diuresis, and anti-edematous action
Quercus acutissima	3.0	Resolving blood\[TM1\] stasis and antidiarrheal action	Boosting and convergence
Carthamus Cinereum var. Indica	3.0	Resolving blood\[TM1\] stasis, regulating qi, removing wind\[TM1\] and dampness\[TM1\], and pain-relieving	Central inhibition, telangiectasia, antithrombotic action, spasmylocytic, increasing action on digestive tract mucosa blood flow volume, the elevation of skin temperature, and immunostimulation
Distylium officinale	3.0	Resolving blood\[TM1\] stasis, pain-relieving	Perspiration and antipyretic, sedation and spasmylocytic, telangiectasia, decreasing blood pressure, antithrombotic action, anti-inflammation, antibacterial action, antitumor action, and regulation of water metabolism
Neolitsea cassia (L.) Merr.	3.0	Releasing exterior, descending qi, resolving blood\[TM1\] stasis, pain-relieving	Anti-inflammatory, antibacterial action, antiviral action, sedation, and spasmylocytic
Syzygium aromaticum (L.) Merr. and L.M.Perry	1.0	Warming spleen\[TM1\], stomach\[TM1\], and kidney\[TM1\], and descending qi counterflow	Catharsis, antibacterial action, psychotropic, anti-inflammatory, immunostimulation, lipid metabolism, and antithrombotic action
Rheum palmatum L.	1.0	Purgative, heat\[TM1\], clearing, and resolving blood\[TM1\] stasis	Sedation and spasmylocytic, antitussive action, anti-inflammatory, antim tumor action, and antiviral action
Glycyrrhiza glabra L.	1.5	Descending qi, sedative action, relaxing tensions, pain-relieving, warming, and tonifying action, relieving purgative action, preserving fluid\[TM1\], and stomachic property	Sedation and spasmylocytic, antitussive action, anti-inflammatory, antim tumor action, and antiviral action

\[TM1\]: traditional medicine module 1

APPLICATION OF JIDABOKUIPPO IN THE CLASSICAL PERIOD

Shuan Kagawa reported that Quercus bark has the potential to resolve blood[\[TM1\]] stasis and improve fluid congestion found in bruises in “Ippondoyakusen (Ipppondoyakusen, 2021).” Contusion and pain caused by trauma are considered static blood[\[TM1\]], a sign of a microcirculatory disorder, and JDI alleviates blood[\[TM1\]] stasis patterns (Morikubo, 1999). Gentatsu Matsuoka, who lived from 1668 to 1746, reported that Nuphar japonica should be used for bruises. Prescriptions that included it were especially effective for bruises in “Yoyakusushi (Yoyakusushi, 2021).” Sohaku Asada explained that JDI improved myalgia and ostealgia caused by trauma; Nuphar japonica improved blood flow, and Quercus acutissima alleviated ostealgia. These two crude elements were the principal agents. Aconitum carmichaelii Debeaux with warm meridian is added in the chronic stage in “Futsugo-yakushitsu-hokan-kuketsu” (Asada, 1981). He also explained that dokopppito (土骨皮湯), composed of Quercus acutissima, Carthamus tinctorius L., Glycyrrhiza glabra, Bupleurum falcatum L., and Curcuma zedoaria (Christm.) Roscoe improved eczema capitis and ostealgia. In dokoppi, also known as Bokusoku, Quercus acutissima has strong potential of releasing exterior in “Futsugo-yakushitsu-hokan-kuketsu.”

Rheum palmatum has sedative effects in addition to resolving blood[\[TM1\]] stasis (Sumida et al., 1988). Ligusticum officinale, Neolitsea cassia, and Syzygium aromaticum have the potential to regulate qi (Table 1). Wada Tokaku, who lived from 1742 to 1803, stated “It is not good resolving blood[\[TM1\]] stasis using Carthamus tinctorius and Biancaea sappan (L.) Tod. for bruises. The regulating qi method should be chosen for this purpose. Provide sedation using shigyakusan (四逆散) or jinkokokito (沈香降氣湯)” (Shosozatsuwa, 2021). Since both resolving blood[\[TM1\]] stasis and regulating qi should be performed for the treatment of bruises, JDI is thought to have the ideal composition of crude drugs.

Kampo formulations are made from several crude drugs, with each crude drug having several constituents. Therefore, Kampo prescriptions are considered interaction-based multicomponent medicines. The blending effect of crude drugs in JDI is shown in Table 2.

APPLICATION OF JIDABOKUIPPO IN THE MODERN PERIOD

The relevance of JDI in modern society is the same as that in its classical use. In short, swelling caused by trauma is diagnosed as blood[\[TM1\]] stasis, and JDI is applied to resolve it (Table 3) (Yamamoto, 1975; Hijikata et al., 2007; Futenma et al., 2014; Irie and Nakae, 2019; Yoshinaga et al., 2020).

Yamamoto reported that JDI was effective for bruises in acute and chronic settings. JDI was much more effective than wounds. Shuan Kagawa, who lived from 1683 to 1755, finalized JDI and collected information on treating bruises. It was originally named “ippo (一方)” for “bruise” in “Ippondo-ikki-setsuyaku.” Sohaku Asada, a well-known Kampo medicine expert who practiced during the late 19th century (between the end of the Edo era and the early Meiji era), was the first to call it JDI in “Futsugo-yakushitsu-hokan-kuketsu” published in 1878. He reported that Shuan Kagawa developed JDI (Asada, 1981; Morikubo, 1999; Nakae and Irie, 2020).
keishibukuryogan (桂枝茯苓丸), and aconite tuber should be added to JDI in the chronic stage. He also recommended treatment-induced diarrhea using JDI and Rheum palmatum in acute severely injured patients, regardless of stool consistency (Yamamoto, 1975).

Plants contain various antioxidants that protect organisms from injury caused by ultraviolet radiation. Kampo formulations have antioxidant and multiple bioactive properties (Table 1) (Nakae, 2011; Hirayama et al., 2018). Yamane evaluated the radical scavenging potentials of seven herbs [Rheum palmatum, Uncaria gambir (W.Hunter) Roxb., Syzygium aromaticum, Paeonia lactiflora Pallas, Glycyrrhiza glabra, Polyporus umbellatus Fries, and Prunus persica (L.) Batsch] and reported that the scavenging potential of diphenylpicrylhydrazyl (DPPH) was the highest in Rheum palmatum, followed by Syzygium aromaticum (Yamane et al.,

TABLE 2 | Blending effect of formulated crude drugs in jidabokuippo.

Blended crude drug	Efficacy in Kampo medicine
Nuphar japonica + Ligusticum officinale	Reducing fluid congestion in a bruise and relieving pain
Quercus acutissima + Ligusticum officinale	Resolving bloodTM1 stasis, healing bruise, wound, and hematoma
Quercus acutissima + Nuphar japonica	Improving blood circulation and relieving pain in bloodTM1 stasis
Quercus acutissima + Rheum palmatum	Clearing heatTM1 and resolving bloodTM1 stasis
Syzygium aromaticum + Neolitsea cassia	Warming and improving blood circulation and healing congestive disease
Neolitsea cassia + Glycyrrhiza glabra	Descending qi counterflow and tranquilization

TM1: traditional medicine module 1

Nakae et al. Application of Jidabokuippo
TABLE 3 | Previous reports of more than 10 cases using jidabokuippo.

No.	References	Study design	Injuries and diseases	Number of cases
1	Ikeda et al. (1986)	Case series	Trauma	109
2	Kita et al. (1995)	Case series	Rheumatoid arthritis	12
3	Takagi (1998)	Cohort study	Chronic pain caused by trauma	18
4	Sudo and Oribe (2005)	Case series	Chronic pain caused by trauma	23
5	Sudo (2005)	Cross-sectional study	Spinal compression fracture	24
6	Sakurai et al. (2006)	Case series	Facial injuries	13
7	Takeda (2010)	Randomized controlled study	Anterior ankle sprain	10
8	Nakae et al. (2012)	Randomized controlled study	Anterior ankle sprain	76
9	Minamitani (2014)	Case series	Fractures and severe contusions	10
10	Nakae et al. (2015a)	Case series	Fractures of extremities	50
11	Yoshida (2015)	Case series	Facial contusions	47
12	Nakae et al. (2016)	Case series	Trauma	643
13	Hasegawa et al. (2016)	Cohort study	Trauma/postoperative swelling	53
14	Suzuki and Yoshida (2016)	Cross-sectional study	Postoperative finger swelling	112
15	Saito et al. (2019)	Case series	Obstetrics and gynecology patients	112
16	Akiyama et al. (2020)	Case series	Head injury	18
17	Kita et al. (2022)	Cross-sectional study	Trauma/postoperative swelling	1,104

FIGURE 2 | Hypothetical mechanisms of jidabokuippo for acute and chronic inflammation.
Tani suggested that polyphenol is closely involved in antioxidant effects based on a positive correlation between the polyphenol content and DPPH radical scavenging potential of herbs (Tani et al., 2004). They investigated 25 herbs. The polyphenol content was highest in *Rheum palmatum*, followed by *Quercus acutissima*, *Nuphar japonica*, *Glycyrrhiza glabra*, *Syzygium aromaticum*, and *Neolitsea cassia*. The DPPH radical scavenging potential was high in *Rheum palmatum*, followed by *Quercus acutissima*, *Nuphar japonica*, *Syzygium aromaticum*, and *Neolitsea cassia*. In addition, *Ligusticum of cinerale* has anti-inflammatory and antioxidant effects. A study designed to evaluate the effect of herbal extracts in suppressing reactive oxygen formation in human neutrophils showed a suppressive action by *Ligusticum of cinerale* (Luo et al., 1993). In addition, this herb protects organisms from radiation-induced damage (Ohta et al., 1987; Shinoda, 1995) and protects against edema (Tahara et al., 1998). *Neolitsea cassia* suppresses the formation of reactive oxygen in aqueous extracts (Toda et al., 1991), inhibits O2 formation in macrophages (Imamichi et al., 1990), and protects against radiation disorders (Ohta et al., 1987). *Rheum palmatum*, containing anthraquinones, suppresses lipid peroxide formation in human neutrophils (Mian et al., 1987), and condensed tannins have radical scavenging activity (Uchida et al., 1988). *Glycyrrhiza glabra* has anti-inflammatory and edema-suppressing activities (Kumagai, 1982; Amagaya et al., 1984). In addition, *Glycyrrhiza glabra* protects organisms from radiation (Ohta et al., 1987). Thus, JDI includes herbs with antioxidant effects; these herbs may act synergistically to exert antioxidant effects.

We have previously demonstrated the antioxidant activity of JDI in a clinical setting (Nakae, 2010a). Swelling related to trauma occurs due to the enhanced permeability caused by the overproduction of chemical mediators such as free radicals. JDI may improve the pathological condition through these antioxidant properties.

In the clinical setting, Kampo prescriptions should be first administered in doses two to three times greater than the common starting doses in patients with severe symptoms (Nakae and Irie, 2020; Nakae et al., 2021).

The hypothetical mechanisms of JDI are shown in Figure 2. A patient’s signs and symptoms are diagnosed based on theories of Kampo medicine such as yin and yang, deficiency and excess, cold and heat, exterior and interior, six-stage patterns, qi, blood, fluid, and zang-fu organs. The patient is to be treated based on those patterns. When a patient’s pattern is in static blood and qi depression, JDI is applied to the pattern, regardless the patient’s condition being acute or chronic inflammation.

EFFECTIVENESS OF JIDABOKUIPPO

As for the effectiveness of JDI as compared with Western drugs, there are only two randomized controlled studies (Table 3). Takeda compared the efficacy of JDI and nonsteroidal anti-
inflammatory drugs (NSAIDs), loxoprofen, in patients with anterior tibiofibular ligament injuries by analyzing the treatment duration using a visual analog scale and girth (Takeda, 2010). The results showed that compared to loxoprofen, JDI could shorten the swelling duration 2 weeks after the administration. We compared the efficacy of JDI and NSAIDs in patients with rib fractures by analyzing the treatment duration. Our results suggest that compared to NSAIDs, JDI could shorten the treatment duration and may be a promising analgesic agent for both medical and economic reasons (Nakae et al., 2012).

We have used JDI for various trauma such as rib fractures, fractures of extremities, abdominal wall hematoma, and traumatic asphyxia (Nakae et al., 2012; Nakae et al., 2015a; Nakae et al., 2016; Kitamura et al., 2022; Nakae et al., 2015b; Nakae et al., 2020).

Suzuki reported that the JDI group had a significantly more robust remission effect than the non-JDI group in postoperative tenderness at the right side of the paraumbilical site before concluding that JDI is a safe drug. (Suzuki and Yoshida, 2016). Nagashima reported that a 35-year-old man with massive subcutaneous swelling after decompressive craniectomy showed a rapid reduction of swelling after JDI administration (Nagashima et al., 2018). Furthermore, JDI was applied to treat rheumatoid arthritis and cellulitis (Kita et al., 1995; Takagi, 1995; Sudo and Oribe, 2005; Sakurai et al., 2006; Takeda, 2010; Nakae et al., 2012; Nakae et al., 2015a; Yoshida, 2015; Hasegawa et al., 2016; Nakae et al., 2016; Saito et al., 2019; Kitamura et al., 2022). The reported adverse event rate was 1.3%, falling within a low rate of previous reports (0–6.4%) (Ikeda et al., 1986; Kita et al., 1995; Takagi, 1995; Sudo and Oribe, 2005; Sudo, 2005; Sakurai et al., 2006; Takeda, 2010; Nakae et al., 2012; Minamitani, 2014; Nakae et al., 2015a; Yoshida, 2015; Nakae et al., 2016; Hasegawa et al., 2016; Suzuki and Yoshiha, 2016; Saito et al., 2019; Akiyama et al., 2020). The most common adverse event was digestive symptoms (0.9%), with diarrhea caused by Rheum palmatum being the most common. The adverse event rate of glycyrrhiza-induced pseudoaldosteronism was 0.33% (Table 5). The adverse event rate associated with JDI use is low, and the onset is relatively rapid. Kon reported that the laxative action that accompanies decreased aquaporin-3 expression due to sennoside A in Rheum palmatum was mitigated by the anti-inflammatory effects of glycyrrhizin (Kon et al., 2018). Glycyrrhizin is considered to attenuate the adverse events caused by sennoside A. However, we need to pay attention to the pharmacological action of Rheum palmatum and Glycyrrhiza glabra before concluding that JDI is a safe drug.

SAFETY OF JIDABOKUIPPO

The incidence of adverse events associated with Kampo formulations remains unclear. Kitamura et al. studied the adverse events in 1,104 patients who had JDI prescribed (Kitamura et al., 2022). The reported adverse event rate was 1.3%, falling within a low rate of previous reports (0–6.4%) (Ikeda et al., 1986; Kita et al., 1995; Takagi, 1995; Sudo and Oribe, 2005; Sudo, 2005; Sakurai et al., 2006; Takeda, 2010; Nakae et al., 2012; Minamitani, 2014; Nakae et al., 2015a; Yoshida, 2015; Nakae et al., 2016; Hasegawa et al., 2016; Suzuki and Yoshiha, 2016; Saito et al., 2019; Akiyama et al., 2020). The most common adverse event was digestive symptoms (0.9%), with diarrhea caused by Rheum palmatum being the most common. The adverse event rate of glycyrrhiza-induced pseudoaldosteronism was 0.33% (Table 5). The adverse event rate associated with JDI use is low, and the onset is relatively rapid. Kon reported that the laxative action that accompanies decreased aquaporin-3 expression due to sennoside A in Rheum palmatum was mitigated by the anti-inflammatory effects of glycyrrhizin (Kon et al., 2018). Glycyrrhizin is considered to attenuate the adverse events caused by sennoside A. However, we need to pay attention to the pharmacological action of Rheum palmatum and Glycyrrhiza glabra before concluding that JDI is a safe drug.

A POSSIBLE CHOICE FOR JIDABOKUIPPO

Takagi reported that JDI was effective in patients with abdominal tenderness at the right side of the parambilical site before treatment (Takagi, 1995). This tender point is considered to indicate blood stasis (Morikubo, 1999; Sudo and Oribe, 2005; Suzuki et al., 2017). It is difficult to confirm whether Takagi’s suggestion could be used in the absence of this tender point.

Table 5: Adverse events related to Jidabokuippo.

Adverse event	Frequency	Causative crude drugs
Digestive symptom		
Diarrhea, loose stool, and abdominal pain	0.47% (10/2,138)	Rheum palmatum
Nausea and vomiting	0.28% (6/2,138)	Combination of crude drugs
Stomach heaviness	0.09% (2/2,138)	Combination of crude drugs
Loss of appetite	0.05% (1/2,138)	Combination of crude drugs
Pseudoaldosteronism		
Weight increase, edema, hypokalemia, and feeling of weakness	0.33% (7/2,138)	Glycyrrhiza glabra
Skin symptom		
Rash	0.09% (2/2,138)	Neolitsea cassia

*Calculated according to the previous reports (Sudo and Oribe, 2005; Sakurai et al., 2006; Takeda, 2010; Nakae et al., 2012; Nakae et al., 2015a; Yoshida, 2015; Hasegawa et al., 2016; Nakae et al., 2016; Saito et al., 2019; Kitamura et al., 2022).
CONCLUSION

NSAIDs are often used to treat pain associated with trauma. However, NSAIDs intake often induces gastrointestinal symptoms. In addition, the use of selective cyclooxygenase-2 inhibitors poses a risk of ischemic heart disease (Hippisley-Cox and Coupland, 2005), and physicians hesitate to use them in patients with a history of cardiovascular disease. In recent years, proton pump inhibitors (PPIs) have been used to prevent NSAID-induced ulcers. However, PPIs pertain to medical economics, fractures, community-acquired pneumonia, watery stools, etc. (Bombardier et al., 2000; Dalton et al., 2009). JDI can be used as an alternative drug under such conditions. Moreover, JDI may be applied to non-trauma patients with blood stasis. A large randomized controlled trial is necessary to establish JDI treatment for various diseases with blood stasis.

REFERENCES

Akiyama, O., Harada, Y., Akiyama, I., Suzuki, M., Shimizu, Y., and Kondo, A. (2020). Therapeutic Effects of Jidabokuippo for Painful Swelling from Head Injury. J. Neurosurg. Kampo Med. 6, 12–17. (in Japanese).

Amagawa, S., Sugishita, E., Ogihara, Y., Ogawa, S., Okada, K., and Aizawa, T. (1984). Comparative Studies of the Stereosomers of Glycyrrhetic Acid on Anti-inflammatory Activities. J. Pharmacobiodyn. 7, 923–928. doi:10.1248/bph1978.7.923

Asada, S. (1981). Futsugo Yakusitusu Honkan Kaketsu. Tokyo: Kyowa Kikaku Ltd. (in Japanese).

Bombardier, C., Laine, L., Reicin, A., Shapiro, D., Burgos-Vargas, R., Davis, B., et al. (2000). Comparison of Upper Gastrointestinal Toxicity of Rofecoxib and Naproxen in Patients with Rheumatoid Arthritis. VIGOR Study Group. N. Engl. J. Med. 343 (1520–8), 1520–1528. 2 p following 1528. doi:10.1056/NEJM200011233432103

Dalton, B. R., Lye-Maccannell, T., Henderson, E. A., Maccannell, D. R., and Louie, T. I. (2009). Proton Pump Inhibitors Increase Significantly the Risk of Clostridium difficile Infection in a Low-Endemicity, Non-outbreak Hospital Setting. Aliment. Pharmacol. Ther. 29, 626–634. doi:10.1111/j.1365-2036.2008.03924.x

Department of Pharmacognosy and DPPN (2018). Phytochemistry and Narcotics (DPPN). National Institute of Health Sciences (NIHS) of Japan and Research Center for Medicinal Plant Resources (RCMPR), National Institute of Biomedical Innovation (NIBIO) of Japan, STORK. http://mpdh.nibiohn.go.jp/stork (Accessed December 16, 2021).

Futemna, C., Kikuzato, N., Ikema, M., and Uchida, T. (2014). Treatment with Kampo Medicines in the Acute Care of Orthopedic Service. Pain Kampo Med. 24, 165–168. (in Japanese).

Hasegawa, S., Okamoto, K., Ohta, K., Ueda, Y., Itouyama, T., and Miura, M. (2016). Jidabokuippo Is Effective for the Treatment of Swelling after Trauma and Surgery. J. Neurosurg. Kampo Med. 2, 25–29. (in Japanese).

Hijikata, Y., Miyazaki, A., Takatsu, H., and Sentoh, S. (2007). Two Kampo Medicines, Jidabokuippo and Hachimijiogan Alleviate Sprains, Bruises and Arthritis. Evid. Based Complement. Alternat. Med. 4, 463–467. doi:10.1093/ecam/nel015

Hippisley-Cox, J., and Coupland, C. (2005). Risk of Myocardial Infarction in Patients Taking Cyclo-Oxygenase-2 Inhibitors or Conventional Non-steroidal Anti-inflammatory Drugs: Population Based Nested Case-Control Analysis. BMJ 330, 1366. doi:10.1136/bmj.330.7504.1366

Hirayama, A., Oowada, S., Ito, H., Matsu, H., Ueda, A., and Aoyagi, K. (2018). Clinical Significance of Redox Effects of Kampo Formulæ, a Traditional Japanese Herbal Medicine: Comprehensive Estimation of Multiple Antioxidative Activities. J. Clin. Biochem. Nutr. 62, 39–48. doi:10.3164/jcbn.17-39

Ikeda, M., Nakajima, H., and Tsutsumi, Y. (1986). Jidabokuippo for Various Injuries. Kampo Shinryo 35, 35–45. (in Japanese).

Imaiizumi, U., Beppu, S., Mitsushashi, A., and Yoshida, K. (2016). A Case of a Comprehensive Medicine in a Patient Suffering from Neuropathic Pain after a Facial Injury by a Traffic Accident. Ipn. J. Orofac. Pain. 9, 75–80. (in Japanese). doi:10.11264/joip.9.75

Imamichi, T., Nakamura, T., Hayashi, K., Kaneko, K., and Koyama, J. (1990). Different Effects of Cinnamic Acid on the O2- Generation by Guinea Pig Macrophages Stimulated with a Chemotactic Peptide and Immune Complex. J. Pharmacobiodyn. 13, 344–352. doi:10.1248/bph1978.13.344

Ippondoyakusen, K. S. (2021). National Diet Library Digital Collections. Available at: https://ndl.ndl.go.jp/infendlipd/pid/2556221 (Accessed December 16, 2021).

Irie, Y., and Nakae, H. (2019). Jidabokuippo Use in Patients with Trauma. Kampo Newest Ther. 28, 151–155. (in Japanese).

Iwata, Y. (2020). The Efficacy of Kampo in Patients with Neck Sprain under the Automobile Liability Insurance. Kampo Newest Ther. 29, 279–285. (in Japanese).

Kase, S., Shimazaki, M., Arai, T., and Okuda, Y. (2009). A Case of Complex Regional Pain Syndrome Caused by Radialul Fractures Treated with Kampo Medicine. J. Jpn. Soc. Study Chronic Pain 28, 189–191. (in Japanese). https://mol.medicalonline.jp/library/journal/download?GoodsID=dc1chron/2009/002801/030&name=0189-0191&UserID=158.215.8.21&base=jamas_pdf

Kita, T., Ito, T., Imadaya, A., Takahashi, K., and Terasawa, K. (1995). The Effects of Supplemental Administration of Ji-Daboku-Ippo on Rheumatoid Arthritis. Kampo Med. Nihon Toyo Igaku Zasshi. 46, 447–451. (in Japanese). doi:10.3937/kampomed.46.447

Kitamura, T., Nakae, H., Irie, Y., Satoh, K., Hirasa, N., Kameyama, K., et al. (2022). Safety of Jidabokuippo Administration Based on Adverse Event Rate. Traditional Kampo Med. 9, 18–24. doi:10.1002/tkm2.1305

Kon, R., Yamamura, M., Fukushima, T., Uemura, T., Kusunoki, Y., Ikarashi, N., et al. (2018). Laxative Action of Sennoside A, Which Causes Decreased Colonic Aquaporin-3 Expression, Is Controlled by the Anti-inflammatory Effect of Glycyrrhizin. Traditional Kampo Med. 5, 45–50. doi:10.1002/tkm2.1090

Kumagai, A. (1982). Clinical Pharmacology in Japanese Traditional Medicines-Glycyrrhize Radix and Glycyrrhizin. Rinsho Yakurik 13, 185–188. (in Japanese). doi:10.3999/jspt.13.185

Luo, X. X., Midoriyama, Y., and Ogata, H. (1993). Antioxidant Activities of Injectable Crude Drugs on Human Leukocyte. Ipn. J. Clin. Physiol. 23, 571–575. (in Japanese) https://mol.medicalonline.jp/library/journal/download?GoodsID=ccchjapf/1993/002306/012&name=0571-0575&UserID=158.215.8.21&base=jamas_pdf?

Mian, M., Brunelleschi, S., Tarli, S., Rubinio, A., Benetti, D., Fantozzi, R., et al. (1987). Rhein: an Anthraquinone that Modulates Superoxide Anion Production from Human Neutrophils. J. Pharm. Pharmacol. 39, 845–847. doi:10.1111/j.1365-2309.1987.tb05131.x

Minamitani, T. (2014). Effect of Jidabokuippo to Improve Prolonged Swelling and Pain Caused by Fracture or Severe Contusion. Pain Kampo Med. 24, 110–116. (in Japanese).

AUTHOR CONTRIBUTIONS

All authors contributed to the writing of this review. HN conceived the idea for the article, drafted the methods and results, and developed it in collaboration with YI, TK, and MO. HN wrote the first draft of the manuscript. YI and TK contributed to the article and edited the manuscript. All authors contributed to the revisions.

ACKNOWLEDGMENTS

The basic terms of Kampo medicine are based on the Dictionary of Kampo Medicine (Basic terms) of the Japanese Society of Oriental Medicine (The Editing Committee for Dictionary of Kampo Medicine, 2019). We acknowledge Editage (https://www.editage.jp) for proofreading the text in English.
Tani, M., Sakurai, C., Tanago, M., et al. (2004). Inhibition of Oxidation of Low-Density Lipoprotein with Crude Drugs. *Jpn. Mibyou Syst. Assoc.* 9, 243–246. (in Japanese).

The editing committee for dictionary of kampo medicine (2019). "The Editing Committee for Dictionary of Kampo Medicine," in *The Dictionary of Kampo Medicine (Basic Terms)* (Tokyo: The Japan Society for Oriental Medicine).

Toda, S., Ohnishi, M., and Kimura, M. (1991). Inhibitory Effects of Aromatic Herbs on Generation of Active Oxygen. *J. Tradit. Med.* 8, 55–58. (in Japanese).

Tsugane, S., Fukuoka, T., Yokoyama, K., et al. (2011). Effect of Condensed Tannins. *Neurosci.* 14, 243–245. (in Japanese).

Yamada, T., Natori, Y., Mori, M., Kai, Y., Miki, K., and Noguchi, N. (2019). Two Case Reports Prescribing Jidabokuippo for the Puncture Hematoma after the Angiography. *J. Neurosurg. Kampo Med.* 4, 34–38. (in Japanese).

Yoshida, K., Harada, Y., and Arai, H. (2018). Two Case Reports Prescribing Jidabokuippo for the Puncture Hematoma after the Angiography. *J. Neurosurg. Kampo Med.* 1, 17–22. (in Japanese).

Yoshinaga, R., Nakayasu, K., and Tahara, E. (2020). An Ankle Sprain with Long-Term Swelling and Pain Successfully Treated with the Traditional Japanese Herbal Medicine Jidabokuippo: a Case Report. *J. Gen. Fam. Med.* 21, 261–263. doi:10.1002/jgf2.354

Yoshinaga, R., Goto, Y., Makii, T., Inoue, H., Yano, H., and Tahara, E. (2021). The Role of Kangyokure Medicine Jidabokuippo for Prolonged Pain after Bruising: A Case Report. *Nihon Toyo Igaku Zasshi.* 68, 148–151. (in Japanese). doi:10.3937/kampomed.68.148

Yonemitsu, T. (2017). Jidabokuippo and Sokeikaketsuto for Prolonged Pain after Injury Amputation of Fingers. 2,4,5, Successfully Treated with the Traditional Japanese Herbal Medicine Jidabokuippo. *Kampo, J. Med.* 28, 109–112. (in Japanese).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Nakae, Irie, Kitamura and Okuyama. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.