Optimizing the Consumption of Spiking Neural Networks with Activity Regularization

Simon Narduzzi1,2 Siavash A. Bigdeli1 Shih-Chii Liu2 L. Andrea Dunbar1

1 CSEM, Neuchâtel, Switzerland 2 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
The energy consumption problem

Compute power of common deep learning models

Type	Parameters
CNN	1B
Transformer	10B
BERT Large	100B

Adapted from https://github.com/amirgholami/ai_and_memory_wall
Edge computing

Advantages

• Rapid decision making
• Efficient pre-processing
• Privacy-preserving applications

MAJOR CHALLENGE: Energy consumption

1.8B by 2026*

*ABI Research, Artificial intelligence and Machine Learning, 2 QTR 2021
Techniques to reduce consumption

Software

Technique	Description
Pruning	Weights / neurons
Quantization	8bits, 4bits, …
Distillation	Teacher – student
Efficient operators	Separable convolutions, etc…
Event-based processing	Spiking neural networks (SNNs)

Hardware

Category	Description
Semi-conductor process tech	FinFET, Fully Depleted Silicon-On-Insulator, etc…
Resource optimization	Power management, flexible accelerators, etc…
Specialized units	Convolution accelerators, zero-skipping, etc…
Event-based processing	Neuromorphic hardware: Intel Loihi, IBM TrueNorth, SpiNNaker, etc…
Artificial vs Spiking Neurons

Artificial Neural Network

\[z = \sigma \left(\sum_{j=1}^{N} W_{ij} x_j + b_i \right) \]

Information processing in artificial neural networks (ANN)

Spiking Neural Network

\[z = \sigma_{thr} \left(\sum_{j=1}^{N} W_{ij} x_{t,j} + b_i \right) \]

Information processing in spiking neural networks (SNN)
Metrics

Computation cost for ANN : ‘Effective’ FLOPS

\[EFLOPS = \sum_{l=1}^{L} \phi(W_l) \times \phi(A_{l-1}) + \phi(B_l) \]

\[\phi(x) := x \neq 0 \]

Computation cost for SNN: SynOps

\[SynOps = \sum_{t=1}^{T} \sum_{l=1}^{L} f_{out,l} \times s_l(t) \]

“A million spiking-neuron integrated circuit with a scalable communication network and interface”, Merolla et al, 2014
GOAL: Increase sparsity to reduce the computational cost

IDEA: Exploit the natural sparsity of SNNs

PROBLEM: SNNs training is difficult with common back-propagation
Experimental setup

"Conversion of continuous-valued deep networks to efficient event-driven networks for image classification", Rueckauer et al., 2017
Sparsity

- Sparsity reduces computational cost
- Pruning of weights or activation maps

Weight pruning

Neuron (activity) pruning
Related work

• Zhao et al., 2021; Pellegrini et al., 2021 – SNN trained from scratch
• Sorbaro et al., 2020 – Optimize SynOps
• Rückauer et al., 2017 – L₁ regularization on weights

• Ours:
 • Lᵖ-regularization and Hoyer,
 • Comparison between ANN and SNN,
 • EFLOPs
Constraint: Regularizers

- Enforce sparsity using regularizers on activity maps

Loss function:

\[\mathcal{L} = CE + \lambda_{reg} \sum_{l} \psi(X_l) \]
Results on MNIST

Results of the MLP with respect to λ_{reg}
Activity regularization effect

MNIST

Computation cost of MLP

- Baseline
- L2
- L1
- L0.5
- L0.01
- H
- HS

	Baseline	L2	L1	L0.5	L0.01	H	HS
EFLOPS	6.0E+04	4.0E+04	3.0E+04	2.0E+04	1.0E+04	3.0E+04	2.0E+04
SyrOps	7.0E+04	5.0E+04	4.0E+04	3.0E+04	2.0E+04	1.0E+04	3.0E+04

Computational cost of LeNet-5

- Baseline
- L2
- L1
- L0.5
- L0.01
- H
- HS

	Baseline	L2	L1	L0.5	L0.01	H	HS
EFLOPS	2.0E+05	1.5E+05	1.0E+05	5.0E+04	3.0E+04	2.0E+04	1.5E+08
SyrOps	3.0E+05	2.5E+05	2.0E+05	1.5E+05	1.0E+05	5.0E+04	3.0E+05
Activity regularization effect

CIFAR-10

Computation cost of LeNet-5

Baseline, L2, L1, L0.5, L0.01

EFLOPS, SynOps

-21%, -82%
Conclusion

• Activity regularization of ANNs is a simple way to reduce the number of SynOps in converted SNNs

• Hoyer regularization has limited effect compared to L_p-regularization

• SynOps and EFLOPs are not correlated, as a reduction in EFLOPs does not necessary result in a similar reduction in SynOps

• Better approximations of L_0 can be found, as $L_{0.01}$ is too aggressive
THANK YOU
