INTRODUCTION

Understanding the complex relationships that determine plant adaptation will require detailed knowledge of the action of individual genes, the environment, and their interactions. One of the fundamental processes that plants must accomplish is to manage the uptake, distribution, and storage of elements from the environment. Many different physiological, chemical, biochemical, and cell biology processes are involved in moving elements, implicating thousands of genes in every plant species. Modern genetic techniques have made it easy and inexpensive to identify hundreds to thousands of loci for traits, such as the elemental composition (or ionome) of plant tissues. However, moving from loci to genes is still difficult as the number of possible candidates is often extremely large and the ability of researchers to identify a candidate gene from its functional annotations is limited by our current knowledge and inherent biases about what is worth studying (Stoeger et al., 2018; Baxter, 2020).

The most obvious candidates for genes affecting the ionome in a species are orthologs of genes that have been shown to affect elemental accumulation in another species. Indeed, there are multiple examples of orthologs affecting elemental accumulation in distantly related species, such as Arabidopsis thaliana and rice (Oryza sativa), including Na⁺ transporters from the HKT family (Ren et al., 2005; Baxter et al., 2010); the heavy metal transporters AtHMA3 and OsHMA3 (Chao et al., 2012; Yan et al., 2016); and transporter coding genes and genes altering the accumulation of iron and zinc are overrepresented in the current list.
ubiquitin ligase BRUTUS and OsHRZs that regulate the degradation of iron uptake factors (Selote et al., 2015; Hindt et al., 2017; Kobayashi et al., 2013) and the K⁺ channel AKT1 (Ahmad et al., 2016; Lagarde et al., 1996). To our knowledge, no comprehensive list of genes known to affect elemental accumulation in plants exists. To ameliorate this deficiency, we sought to create a curated list of genes based on peer-reviewed literature along with a pipeline to identify orthologs of the genes in any plant species and a method for continuously updating the list. Here we present version 1.0 of the known ionome gene (KIG) list.

2 | MATERIALS AND METHODS

The list includes all functionally characterized genes from the literature that are linked to changes in the ionome. Criteria for inclusion in the primary KIG list were as follows:

1. The function or levels of the gene are unambiguously altered (i.e., a confirmed knockout, knockdown or overexpressor). For double mutants, both genes are listed.
2. The levels of at least one element are significantly altered in plant tissue.
3. Publication in the form of a peer-reviewed manuscript.

Note that our definition excludes genes that are linked to metal tolerance or sensitivity but do not alter the ionome, or genes where the levels of the transcript are correlated with elemental accumulation. In order to identify the KIG genes, we created a Google survey that was distributed to members of the Ionomicshub research coordination network (NSF DBI-0953433), as well as advertising on Twitter and in oral presentations by the authors. We asked submitters to provide the species, gene name (or names where alleles of two genes were required for a phenotype), gene ID(s), tissue(s), element(s) altered, and a DOI link for the primary literature support. Subsequently, authors FKR and LW did an extensive literature search.

2.1 | Creating the inferred orthologs list

The known ionome gene list contains known genes from the primary list and their orthologous genes inferred by InParanoid (v4.1) pairwise species comparisons (Remm et al., 2001). The InParanoid files were downloaded from Phytozome for each organism-to-organism combination of species in the primary list, plus Glycine max, Sorghum bicolor, Setaria italic, Setaria viridis, and Populus trichocarpa. Orthologs of the primary genes were labeled as “inferred” genes. If a primary gene was also found as an ortholog to a primary gene in another species, the status was changed to “Primary/Inferred” in both species. It is important to note that only primary genes can infer genes; inferred genes cannot infer other genes. The pipeline for transforming the primary list into the known ionomics gene list can be found at https://github.com/baxterlab/KIG.

2.2 | Gene Enrichment analysis

Overrepresentation analysis (released July 11, 2019) was performed on the primary and inferred genes in A. thaliana using the GO Consortium’s web-based GO Enrichment Analysis tool powered by the PANTHER (v14) classification system tool (Ashburner et al., 2000; Mi et al., 2017; The Gene Ontology Consortium, 2017). We restricted overrepresentation analysis to A. thaliana because of its dominance in the KIG list and our lack of confidence in the functional annotation of the other species on the list. An analysis performed by Wimalanathan et al. (2018) found that maize gene annotations in databases like Gramene and Phytozome lacked GO annotations outside of automatically assigned, electronic annotations (IEA). IEA annotations are not curated and have the least amount of support out of all the evidence codes (Harris et al., 2004). A. thaliana annotations come from a variety of evidence types, showing a higher degree of curation compared to maize (Wimalanathan et al., 2018). The whole-genome Arabidopsis thaliana gene list from the PANTHER database was used as the reference list.

We tested both the PANTHER GO-slim and the GO complete datasets for biological processes, molecular function, and cellular component. GO-Slim datasets contain a selected subset of terms that give a broad summary of the gene list, whereas the complete dataset contains all the terms returned for a more detailed analysis. The enriched terms (fold enrichment >1 and with a false discovery rate <0.05) from the complete dataset were sorted into five specific categories relating to the ionome based annotation terms:

1. Ion homeostasis - terms include homeostasis, stress, detoxification, regulation of an ion
2. Ion transport - terms specifically state transport, export, import or localization of ion(s). Does not include hydrogen ion transport
3. Metal ion chelation - terms relating to phytochelatins, other chemical reactions or pathways of metal chelator synthesis
4. Response to ions—vaguely states response to ions, but does not have any parent annotation terms that offer any more clarification (ie. stress response). Broadly this is referring to any change in the state or activity of cell secretion, expression, movement, or enzyme production (Carbon et al., 2009)
5. Other transport—annotation stating the transfer of anything that is not an ion (glucose, peptides, etc.)

Genes may belong to more than one category, but if they belong to a parent and child term in the same category, they are only counted once.

3 | RESULTS

The current primary list (v1.0) consists of 176 genes from A. thaliana, O. sativa, Medicago truncatula, Triticum aestivum, and Zea mays with the majority coming from A. thaliana and O. sativa (Table 1, Figure 1).
Species	GeneID	GeneName	Elements	Tissue	Citation(s)
A. thaliana	AT1G01340	CNGC10	K, Ca, Mg	Roots, shoots	Guo et al. (2010)
A. thaliana	AT1G01580	FRO2	Fe	Root	Robinson et al. (1999)
A. thaliana	AT1G07600	MT1A	Cd, Zn, As	Shoots	Zimeri et al. (2005)
A. thaliana	AT1G08490	CPNIFS	Se, S	Roots, shoots	Van Hoewyk et al. (2005)
A. thaliana	AT1G12640	LPCAT1	P	Leaf	Kisko et al. (2018)
A. thaliana	AT1G14040	PHO1;H3	P	Shoots	Khan et al. (2014)
A. thaliana	AT1G14870	PCR2	Zn	Shoots	Song et al. (2010)
A. thaliana	AT1G18910	BTSL2	Fe, Mn, Zn	Leaf	Hindt et al. (2017)
A. thaliana	AT1G20110	FYVE1	Fe, Zn, Co, Mn	Root	Barberon et al. (2014)
A. thaliana	AT1G30270	CIPK23	K	Shoots	Xu et al. (2006)
A. thaliana	AT1G30400	ABCC1	Cd	Shoots	Park et al. (2012)
A. thaliana	AT1G30450	CCC	Ca, K, Na,S	seeds	McDowell et al. (2013)
A. thaliana	AT1G31885	NIP3:1	As	Shoots	Xu et al. (2015)
A. thaliana	AT1G32450	AtNRT1.5/AtNPF7.3	K, NO3-	Shoots, Roots	Li et al. (2017)
A. thaliana	AT1G36370	AtMSA1	S, Se	Shoots	Huang, et al. (2016)
A. thaliana	AT1G56160	myb72	Fe, Cd, Zn, Co, Mo	Leaf	Palmer et al. (2013)
A. thaliana	AT1G56430	NAS4	Fe, Cd, Co, Mo	Leaf	Palmer et al. (2013)
A. thaliana	AT1G59870	PEN3	Cd	Shoots, roots	Kim et al. (2007)
A. thaliana	AT1G60960	AtIR3	Fe	Roots	Lin et al. (2009)
A. thaliana	AT1G62180	AtAPR2	S, Se	Shoots	Loudet et al. (2007); Chao, et al. (2014)
A. thaliana	AT1G63440	AtHMA5	Cu	Shoots	Andrés-Colás et al. (2006)
A. thaliana	AT1G66240	AtAX1	Cu	Shoots	Shin et al. (2012)
A. thaliana	AT1G68320	MYB62	P	Roots, shoots	Devaiah et al. (2009)
A. thaliana	AT1G71200	AtCITF1	Cu	Shoots, Anthers	Yan et al. (2017)
A. thaliana	AT1G74770	BTSL1	Fe, Mn, Zn	Leaf	Hindt et al. (2017)
A. thaliana	AT1G76430	PHT1;9	P, As	Roots, shoots	Remy et al. (2012)
A. thaliana	AT1G80760	NIP6:1	B	Leaves, shoots	Tanaka et al. (2008)
A. thaliana	AT1G80830	AtNRAMP1	Mn	Shoots, roots	Cailliatte et al. (2010)
A. thaliana	AT2G01770	VIT1	Fe	Seed	Kim et al. (2006)
A. thaliana	AT2G01980	SOS1/NHX7	Na	Shoots	Shi et al. (2003)
A. thaliana	AT2G13540	ABH1	S	seeds	McDowell et al. (2013)
A. thaliana	AT2G16770	AtbZIP23	Zn	Shoots, roots	Assunção et al. (2010)
A. thaliana	AT2G19110	AtHMA4	Zn	Shoots, seeds	Hussain et al. (2004); Olsen et al. (2016)
A. thaliana	AT2G21045	AtHAC1	As	Shoots	Chao, et al. (2014)
A. thaliana	AT2G23150	AtNRAMP3	Fe, Mn, Zn	Shoots	Lanquar et al. (2010)
A. thaliana	AT2G23240	AtMT4b	Cu, Zn	Seeds	Ren et al. (2012)
A. thaliana	AT2G25680	MOT1	Mo	Leaf	Baxter, Muthukumar, et al., 2008; Baxter, Vitek et al., 2008
A. thaliana	AT2G28160	FRU	Fe	Shoots	Yuan et al. (2008)
A. thaliana	AT2G28670	ESB1	Ca, Mn, Zn, Na, S, K, As, Se, Mo	Leaf	Baxter et al. (2009)
A. thaliana	AT2G32830	PHT1;5	P	Roots	Nagarajan et al. (2011)
A. thaliana	AT2G33770	PHO2	P	Roots, shoots	Liu et al. (2012)
Species	GeneID	GeneName	Elements	Tissue	Citation(s)
--------------	-----------	----------	----------	----------------	-------------------------
A. thaliana	AT2G37430	ZAT11	Ni	Shoots	Liu et al. (2014)
A. thaliana	AT2G38460	FPN1	Co	Leaf	Morrissey et al. (2009)
A. thaliana	AT2G38940	PHT1:4	P	Roots, shoots	Shin et al. (2004)
A. thaliana	AT2G39450	AtMTP11	Mn	Shoots, roots	Peiter et al. (2007)
A. thaliana	AT2G40200	AtMT4a	Cu, Zn	Seeds	Ren et al. (2012)
A. thaliana	AT2G46430	CNGC3	K	Leaf	Gobert et al. (2006)
A. thaliana	AT2G46800	AtMTP1	Zn	Shoots	Desbrosses-Fonrouge et al. (2005)
A. thaliana	AT2G47160	BOR1	B	Shoots	Miwa et al. (2006)
A. thaliana	AT3G0310	VIH2	P	Shoots	Zhu et al. (2019)
A. thaliana	AT3G06060	TSC10a	Na, K, Rb, Mg, Ca, Fe, Mo	Leaf	Chao et al. (2011)
A. thaliana	AT3G06100	NIP7	As	NA	Lindsay and Maathuis (2016); Isayenkov and Maathuis (2008)
A. thaliana	AT3G08040	FRD3/MAN1	Mn	Leaf	Delhaize (1996)
A. thaliana	AT3G12750	AtZIP1	Mn	Roots	Milner et al. (2013)
A. thaliana	AT3G12820	myb10	Fe, Cd, Zn, Co, Mo	Leaf	Palmer et al. (2013)
A. thaliana	AT3G13320	CAX2	Mn, Fe, K, P	Seed	Conronton et al. (2012)
A. thaliana	AT3G13405	mir169a	N	Root	Zhao et al. (2011)
A. thaliana	AT3G14280	S		seeds	McDowell et al. (2013)
A. thaliana	AT3G15380	AtCTL1	Na, Fe, Zn, Mn, Mo	Shoots, Roots	Gao et al. (2017)
A. thaliana	AT3G18290	BTS	Fe, Zn, Mn	Leaf	Hindt et al. (2017)
A. thaliana	AT3G22890	AtATPS1	S	Shoots	Koprivova et al. (2013)
A. thaliana	AT3G23210	bHLH34	Fe	Root, shoot	Li et al. (2016)
A. thaliana	AT3G23430	PHO1	P	Shoots	Khan et al. (2014)
A. thaliana	AT3G43790	ZIFL2	Cs	Leaf	Remy et al. (2015)
A. thaliana	AT3G47640	PYE	Fe, Zn, Mn, Co	Root	Long et al. (2010)
A. thaliana	AT3G47950	AHA4	Na	Root	Vitart et al. (2001)
A. thaliana	AT3G51860	CAX3	P, K	Seed	Connorton et al. (2012)
A. thaliana	AT3G51895	SULTR3:1	S	Leaf	Cao et al. (2013)
A. thaliana	AT3G56970	bHLH38	Fe	Shoots	Yuan et al. (2008)
A. thaliana	AT3G56980	bHLH39	Fe	Shoots	Yuan et al. (2008)
A. thaliana	AT3G58060	AtMTP8	Mn	Shoots, seeds	Eroglu et al. (2016), Eroglu et al. (2017)
A. thaliana	AT3G58810	AtMTP3	Zn	Shoots	Arrivault et al. (2006)
A. thaliana	AT3G58970	MGT6	Mg	Roots, shoots	Mao et al. (2014)
A. thaliana	AT3G62270	BOR2	B	Shoots	Miwa et al. (2013)
A. thaliana	AT4G02780	GA1	Fe	Root	Wild et al. (2016)
A. thaliana	AT4G10310	AtHKT1:1	Na	Leaf	Baxter et al. (2010)
A. thaliana	AT4G10380	NIP5:1	B	Roots, shoots	Takano et al. (2006)
A. thaliana	AT4G13420	HAK5	Rb, Cs	Roots	Rubio et al. (2008), Qi et al. (2008)
A. thaliana	AT4G14410	bHLH104	Fe	Root, shoot	Li et al. (2016)
A. thaliana	AT4G16370	OPT3	Fe, Cd	Leaf	Zhai et al. (2014)
A. thaliana	AT4G19690	IRT1	Fe, Mn, Co, Cd, Zn	Root	Eide et al. (1996)
Species	GeneID	GeneName	Elements	Tissue	Citation(s)
-----------	-------------	----------	----------	--------	-------------
A. thaliana	AT4G23100	GSH1	Cd, As	Shoots	Guo et al. (2008)
A. thaliana	AT4G24120	YSL1	Fe, Zn, Cu	NA	Waters et al. (2006)
A. thaliana	AT4G28610	AtPHR1	P	Shoots	Nilsson et al. (2007)
A. thaliana	AT4G30110	AtHMA2	Zn	Shoots, seeds	Hussain et al. (2004; Olsen et al. (2016)
A. thaliana	AT4G30120	AtHMA3	Cd, Zn	Leaf	Chao et al. (2012; Pita-Barbosa et al. (2019)
A. thaliana	AT4G33000	CBL10	K	Shoots	Ren et al. (2013)
A. thaliana	AT4G35040	AtbZIP19	Zn	Shoots, roots	Assunção et al. (2010)
A. thaliana	AT4G37270	HMA1	Zn	Shoots	Kim et al. (2009)
A. thaliana	AT5G02600	NaKR1	Na, K, Rb	Leaf	Tian et al. (2010)
A. thaliana	AT5G03455	ACR2	As, P	Roots, shoots	Dhankher et al. (2006)
A. thaliana	AT5G03570	FPN2	Co, Ni	Leaf	Morrissey et al. (2009; Schaaf et al. (2006)
A. thaliana	AT5G09690	MGT7	Mg	Shoots	Kamiya et al. (2012)
A. thaliana	AT5G13740	ZIF1	Zn, Fe	Shoots	Haydon et al. (2012)
A. thaliana	AT5G15070	VIH1	P	Shoots	Zhu et al. (2019)
A. thaliana	AT5G15410	CNGC2/DND1	Ca, Mg seeds	McDowell et al. (2013)	
A. thaliana	AT5G17290	APG5	Fe, Mn, Zn	Leaf, shoots, seeds	Pottier et al. (2019)
A. thaliana	AT5G18830	AtSPL7	Cu	Shoots, roots	Bernal et al. (2012)
A. thaliana	AT5G20650	COPT5	Cu	Shoots, roots, seeds	Klaumann et al. (2011)
A. thaliana	AT5G35410	SOS2	Na	Seeds	McDowell et al. (2013)
A. thaliana	AT5G42130	AtMlf1	Fe	Leaves, shoots	Tarantino et al. (2011)
A. thaliana	AT5G43350	PHT1:1	P, As	Shoots	Shin et al. (2004; Catarecha et al. (2007)
A. thaliana	AT5G44070	PCS1	Zn, Cd, As	Leaf	Kühlbranz et al. (2016; Guo et al. (2008)
A. thaliana	AT5G53130	CNGC1	Pb	Leaf	Sunkar et al. (2000)
A. thaliana	AT5G53550	YSL3	Fe, Zn, Cu	NA	Waters et al. (2006)
A. thaliana	AT5G54680	ILR3	Cd, Co, Fe, Mn, Zn	Leaf	Rampey et al. (2006)
A. thaliana	AT5G54810	AtTSB1	Cd	Roots, shoots	Sanjaya et al. (2008)
A. thaliana	AT5G57620	AtMYB36	Li, B, Na, Mg, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Mo, Cd	Shoots	Kamiya et al. (2015)
A. thaliana	AT5G59030	COPT1	Cu	Seed, Leaf	Sancenón et al. (2004)
A. thaliana	AT5G64930	CPR5	K	Leaf	Borghi et al. (2011)
A. thaliana	AT5G67330	AtNRAMP3	Fe, Mn, Zn	Shoots	Lanquart et al. (2010)
M. truncatula	Medtr1g010270	MtMOT1.2	Mo	Nodules	Gil-Diez et al. (2018)
M. truncatula	Medtr3g088460	MtNrapm1	Fe	Nodules	Tejada-Jiménez et al. (2015)
M. truncatula	Medtr3g464210	MtMOT1.3	Mo	Nodules	Tejada-Jiménez et al. (2017)
M. truncatula	Medtr4g019870	MtCOP1T	Cu	Nodules	Senovilla et al. (2018)
M. truncatula	Medtr4g064893	MtMTP2	Zn	Nodules	León-Mediavilla et al. (2018)
M. truncatula	Medtr4g083570	MtZIP6	Zn	Nodules	Abreu et al. (2017)
O. sativa	LOC_Os01g3914	OsMTP9	Mn	Shoots	Ueno et al. (2015)
O. sativa	LOC_Os01g20160	OsHKT1:5	Na	Leaf, shoots	Kobayashi et al. (2017)
O. sativa	LOC_Os01g45990	AKT1	K	NA	Ahmad, et al. (2016)

(Continues)
Species	GeneID	GeneName	Elements	Tissue	Citation(s)
O. sativa	LOC_Os01g64250	OsHORZ1	Fe	Shoots, seeds	Kobayashi et al. (2013)
O. sativa	LOC_Os01g64890	OsMG1	Mg, Na	Roots, shoots	Chen, et al. (2017)
O. sativa	LOC_Os02g06290	OsHAC4	As	Seed	Xu et al. (2017)
O. sativa	LOC_Os02g10290	OsHMA4	Cu	Roots, shoots, seeds	Huang, et al. (2016)
O. sativa	LOC_Os02g13870	OsNIP1;1	As	Shoots	Sun et al. (2018)
O. sativa	LOC_Os02g43370	OsYSL2	Fe, Mn	Seeds	Ishimaru et al. (2010)
O. sativa	LOC_Os02g43410	OsYSL15	Fe	Roots, shoots, seeds	Lee et al. (2009)
O. sativa	LOC_Os02g51110	LSI1	Se	Roots, shoots	Zhao et al. (2010)
O. sativa	LOC_Os02g53490	OsMTP8.2	Mn	Shoots, roots	Takemoto et al. (2017)
O. sativa	LOC_Os02g56510	OsPHO1;2	P	Shoots	Secco et al. (2010)
O. sativa	LOC_Os03g05640	OsPT2	Se	Roots, shoots	Zhang et al. (2014)
O. sativa	LOC_Os03g09140	OsRab6a	Fe, Zn	Seeds, shoot, roots	Yang and Zhang (2016)
O. sativa	LOC_Os03g12530	OsMTP8.1	Mn	Seeds, roots	Chen et al. (2013)
O. sativa	LOC_Os03g18550	OsMIT	Fe	Shoots	Bashir et al. (2011)
O. sativa	LOC_Os03g19420	OsNAS2	Fe	Seeds	Lee et al. (2012)
O. sativa	LOC_Os03g21240	OsPHR2	P	Shoots	Zhou et al. (2008)
O. sativa	LOC_Os04g32920	OsHAK1	Cs	Shoots, seeds	Rai et al. (2017)
O. sativa	LOC_Os04g38940	OsVIT1	Fe, Zn	Shoots, seeds	Zhang et al. (2012)
O. sativa	LOC_Os04g45860	OsYSL9	Fe	Shoots, seeds	Senoura et al. (2017)
O. sativa	LOC_Os04g45900	OsYSL16	Cu	Roots, shoots, seeds	Zheng et al. (2012)
O. sativa	LOC_Os04g46940	OsHMA5	Cu	Roots, shoots	Deng et al. (2013)
O. sativa	LOC_Os04g52310	OsZIP3	Zn	Shoots	Sasaki et al. (2015)
O. sativa	LOC_Os04g52900	OsABCC1	As	Seeds	Song et al. (2014)
O. sativa	LOC_Os04g56430	OsRMC	Fe, Mn, Cu	Root, shoot, seeds	Yang et al. (2013)
O. sativa	LOC_Os05g34290	OsPCS1*	As	Seeds	Hayashi et al. (2017)
O. sativa	LOC_Os05g39560	OsZIP5	Zn	Leaf	Lee et al. (2010)
O. sativa	LOC_Os05g47780	OsHRZ2	Fe	Shoots, seeds	Kobayashi et al. (2013)
O. sativa	LOC_Os05g48390	OsPHO2	P	Leaf	Wang et al. (2009)
O. sativa	LOC_Os06g01260	OsPCS2*	As, Cd	Seeds	Uraguchi et al. (2017)
O. sativa	LOC_Os06g05160	SPDT	P	Seed	Yamaji et al. (2017)
O. sativa	LOC_Os06g48720	OsHMA2	Zn	Shoots, roots	Takahashi et al. (2012)
O. sativa	LOC_Os06g48810	OsHKRT2;1	Na	Roots, shoots	Horie et al. (2007)
O. sativa	LOC_Os07g01810	TPKb	K	Leaf, root	Ahmad et al. (2016)
O. sativa	LOC_Os07g09000	OsPHF1	P	Leaf, root	Chen et al. (2011)
O. sativa	LOC_Os07g12900	OsHMA3	Cd	Shoots, seeds	Tanaka et al. (2016)
O. sativa	LOC_Os07g15370	NRAMP5	Fe, Mn, Cd	Leaf	Sasaki et al. (2012)
O. sativa	LOC_Os08g01120	OsMOT1;1	Mo	Shoots, Seed	Huang et al. (2019)
O. sativa	LOC_Os08g04390	OsPR1	Fe	Shoots, roots	Zhang et al. (2017)
O. sativa	LOC_Os08g05590	OsNIP3;2	As	Roots	Chen, Sun, et al. (2017a); Chen, Yamaji, et al. (2017b)
O. sativa	LOC_Os08g05600	OsNIP3;3	As	Shoots	Sun et al. (2018)
O. sativa	LOC_Os08g10480	OsATX1	Cu	Shoots, roots, seeds	Zhang, Cao, et al. (2018); Zhang, Chen, et al. (2018)
Most primary genes have orthologs in other species. Less than 10% of primary genes in A. thaliana, 12% in O. sativa, and one of the four primary genes in wheat (T. aestivum) lack orthologs (Table 2). G. max, P. trichocarpa, S. bicolor, S. italica, and S. viridis currently contain only inferred genes (Table 2, Figure 1).

The YSL genes in A. thaliana and O. sativa are an example that provides evidence for the validity of the KIG list pipeline: AtYSL3, OsYSL9, and OsYSL16 were listed in their respective species as primary genes (Table 1) and after the ortholog search was annotated as primary/inferred genes, referencing each other (Table S1). AtYSL2 in A. thaliana, was not listed as primary gene, but was inferred through its rice orthologs OsYSL9 and OsYSL16. Additionally, AtYSL1 in A. thaliana is not a paralog of AtYSL3 or an ortholog of OsYSL9 and OsYSL16 according to PhytoMine’s InParanoid results and is not listed as an ortholog to either of the O. sativa YSL genes in the KIG list. Other examples include AtVIT1 and OsVIT1/OsVIT2 (Kim et al., 2006; Zhang et al., 2012), and the vacuolar Mn transporters AtMTP8 and OsMTP8 (Eroglu et al., 2016; Chen et al., 2013). Thus, we can reliably generate inferred genes and create a species-specific KIG list for any species in PhytoMine.

The primary list covers 23 elements (Figure 2) according to the reported elements from authors in the primary list, which is more elements than predicted by the GO term annotations for those genes. Some GO annotations for these genes mention only a portion of elements listed by the literature on the primary list. This may be due to GO annotation evidence codes lacking curation or biological data (IEA, ND, NAS) (Wimalanathan et al., 2018), or it may be due to alterations in one element leading to alterations in other elements (Baxter, Muthukumar, et al., 2008; Baxter, Vitek, et al., 2008).
A. thaliana is the only species to have a primary gene listing for each element. There is a bias toward manganese, zinc, and iron which have two, three, and four times more associated genes than the average 13 ± 12 genes of other elements. Iron is the only element to contain genes from all five species in the primary list. In addition to biases toward certain elements, our primary list is also skewed toward an overrepresentation of ionome genes in above-ground tissue studies (Figure 3). This is likely due to the difficulties in studying the elemental content of below-ground tissues. All M. truncatula genes come from studies of the nodule in this model legume species.

Querying the manually curated PANTHER GO-slim biological process database (PANTHER v14.1, released March 12, 2019) and the GO complete biological process database (GO Ontology database, released October 08, 2019) with the A. thaliana KIG genes returned significantly (FDR < 0.05) overrepresented annotation terms related to the transport, response, and homeostasis of iron, zinc, copper and manganese ions. Additionally, the GO complete results had terms for cadmium, nickel, cobalt, sulfur, arsenic, lead, selenium, boron, magnesium, phosphorus, sodium, potassium, and calcium; covering most of the elements in the KIG list (Figure 4). Even though some genes were annotated as associated in the “other transport” of glycoside, glucose, oligopeptides, or phloem transport, the citations that have added them into our primary list show that their mutant alleles altered elemental accumulation. AtABCC1 is annotated as encoding a glycoside transporter protein, but Park et al. (2012) found overexpression of AtABCC1 increased cadmium concentrations in shoot tissue. The YSL genes and OPT3 are annotated as genes encoding oligopeptide transporters, but more specifically they are encoding predicted phloem-localized metal-nicotianamine complex and iron/cadmium transporters,

Table 2

Species	Total genes	Primary genes	Primary/inferred genes	Inferred genes	Primary & primary/inferred genes without orthologs
A. thaliana	136	65.44%	16.18%	18.38%	9.91%
O. sativa	141	20.57%	14.89%	64.54%	12.00%
M. truncatula	176	1.70%	1.70%	96.59%	0.00%
T. aestivum	267	0.75%	0.75%	98.50%	25.00%
Z. mays	152	1.32%	1.97%	96.71%	0.00%
G. max	268	0.00%	0.00%	100.00%	0.00%
P. trichocarpa	197	0.00%	0.00%	100.00%	0.00%
S. bicolor	135	0.00%	0.00%	100.00%	0.00%
S. italica	146	0.00%	0.00%	100.00%	0.00%
S. viridis	146	0.00%	0.00%	100.00%	0.00%
FIGURE 4 Known ionome genes relating to different terms from the GO complete biological process dataset. Ontology groups of GO Enrichment Analysis from PANTHER

respectively (Waters et al., 2006; Zhai et al., 2014). Last, NRT1.5/NPF7.3 is also annotated as encoding an oligopeptide transporter, but Li et al., (2017) identified it as a xylem loading potassium ion antiporter.

The PANTHER GO-slim molecular function annotation database found a significant overrepresentation for iron and potassium cation transmembrane transporter activity in the A. thaliana genes. The results using the GO complete molecular function database supported this and additionally included terms for arsenic, cadmium, zinc, boron, manganese, phosphate, sulfur, and magnesium ion transmembrane transporter activity. The GO complete molecular database also returned overrepresented terms for metal ion-binding and cyclic nucleotide-binding annotations. The cyclic nucleotide-binding annotation genes were more specifically cyclic nucleotide ion gated channel genes (Gobert et al., 2006). The PANTHER GO-slim cell component and GO complete cell component annotation database both returned significant overrepresentation for vacuoles and the plasma membrane, both known to be critical for elemental movement and storage (Barkla & Pantoja, 1996). The molecular function and cell component results are further evidence that our list is dominated by ion transporters.

To test the completeness of the KIG list, we searched PANTHER's biological processes annotations for the number of A. thaliana genes encoding predicted elemental transporters. We found 618 A. thaliana genes predicted to encode elemental transport, and only 40 of these PANTHER genes are listed in the KIG list. We checked these results against ThaleMine (v1.10.4, updated on June 13, 2017) genes with the term “ion transport” in the gene name, description, or GO annotation and found only 358 genes, with 52 of these genes listed in the A. thaliana known ionome gene list. Interestingly, 219 of the genes from ThaleMine were not found in the 634 from PANTHER.

4 | DISCUSSION

Here we have produced a curated list of genes known to alter the elemental composition of plant tissues. We envision several possible uses for this list:

1. Researchers can use the list to identify candidate genes in loci from QTL and GWAS experiments.
2. This list can serve as a gold standard for computational approaches.
3. The list can serve as a reading list for those interested in learning about elemental accumulation.

It is important to highlight that the inferred genes lists are not likely to be perfect predictors of the causal genes. Our use of InParanoid orthologs may exclude homologs that are likely candidates. Additionally, the reasons that some genes have been studied could be the result of human bias toward research topics (Baxter, 2020). The list is highly enriched for (a) transporters, (b) genes that affect elemental accumulation in above-ground tissues, and (c) genes that affect the accumulation of Fe and Zn. Transporter genes became obvious candidates for studying plant nutrition when disruption allele collections were produced (McDowell et al., 2013). Above-ground tissues are easier to study without contamination from the soil, and such studies are, therefore, more prevalent. Finally, while Fe and Zn are important biochemical cofactors, these elements are likely enriched in the KIG list due to their considerable interest in the community where the ionomics approach was developed. This is further illustrated in the PANTHER GO-slim databases, where Fe was the only element to have its overrepresented response, homeostasis, and transport-related GO terms show up in the PANTHER GO-slim biological process and molecular function databases, which are selected subsets of terms meant to broadly summarize data. Overrepresented terms related to other KIG list elements are only found in the GO complete databases. Taken together, these factors warn against forming conclusions about the nature of all elemental accumulation genes based on this limited dataset.

Most entries on this list are derived from model organisms, suggesting that most of our knowledge about genes that affect elemental accumulation comes from these species. A. thaliana and M. truncatula account for 64% of the primary genes list, which is probably a lower bound for the influence of knowledge generated in model organisms. Several of the genes in crop plants were found due to being orthologs of genes in the model organisms (Ahmad, et al., 2016; Xu et al., 2017), and on closer inspection of the 50 papers identifying primary genes in rice, 38 cited a gene in Arabidopsis (not necessarily the direct ortholog) as a source for why the gene was investigated. The higher quality of the GO terms in Arabidopsis, when compared to other species, is another reflection of this disparity of knowledge and a significant hindrance when trying to clone genes in other organisms.
4.1 | Call for more submissions

While we have done our best to ensure that the current list is useful and thorough, it is possible we are still missing genes. We ask readers who know of genes that we are useful to contribute by submitting them here: https://docs.google.com/forms/d/e/1FAlpQLSmdS_zoOlxTOlmq2wBV45BuSQmIILMKKnWSatmFRGR2Q10OEv/viewform?c=0&sw=1 or email corresponding author. KIG lists v1.0 for each of the species can be viewed in Table S1, and future updates to the list can be found at https://docs.google.com/spreadsheets/d/1Xl21tvVjiHrlXLeOS5yTQQnLYq7BOHpjjuC-kUejUU/edit?usp=sharing.

ACKNOWLEDGMENTS

The authors thank the editors and reviewers for their consideration and comments.

AUTHORS CONTRIBUTIONS

Contributed genes: IB, FKR, FM, SC, EW, PK. Analyzed data: LW, GZ. Wrote paper: LW, FKR, IB. Edited paper: FKR, FM, SC, EW, PK, GZ, LW, IB.

ORCID

Lauren Whitt https://orcid.org/0000-0002-2970-2175 Felipe Klein Ricachenevsky https://orcid.org/0000-0001-5429-3759 Greg Ziegler Ziegler https://orcid.org/0000-0001-6455-7148 Stephan Clemens https://orcid.org/0000-0003-0570-1060 Elisabeth Walker https://orcid.org/0000-0003-4237-9920 Frans J. M. Maathuis https://orcid.org/0000-0001-6033-6428 Philip Kear https://orcid.org/0000-0002-4488-6013 Ivan Baxter https://orcid.org/0000-0001-6680-1722

REFERENCES

Abreu, I., Saéz, Á., Castro-Rodriguez, R., Escudero, V., Rodriguez-Haas, B., Senovilla, M., Larue, C., Grollmund, D., Tejada-Jiménez, M., Imperial, J., & González-Guerrero, M. (2017). Medicago truncatula zinc-iron permease 6 provides zinc to rhizobia-infected nodule cells.

Plant, Cell & Environment, 40(11), 2706–2719.

Aggarwal, S., Kumar, A., Bhati, K. K., Kaur, G., Shukla, V., Tiwari, S., & Pandey, A. K. (2018). RNAi-mediated downregulation of inositol pentakisphosphate kinase (IPK1) in wheat grains decreases phytic acid levels and increases Fe and Zn Accumulation.

Frontiers in Plant Science, 9(March), 259. https://doi.org/10.3389/fpls.2018.00259

Ahmad, I., Devonshire, J., Mohamed, R., Schultze, M., & Maathuis, F. J. M. (2016). Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice.

The New Phytologist, 209(3), 1040–1048.

Ahmad, I., Mian, A., & Maathuis, F. J. M. (2016). Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance.

Journal of Experimental Botany, 67(9), 2689–2698. https://doi.org/10.1093/jxb/erw1103

Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., Puig, S., & Peñarrubia, L. (2006). The arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots.

The Plant Journal, 45(2), 225–236. https://doi.org/10.1111/j.1365-313X.2005.02601.x

Arrivault, S., Senger, T., & Krämer, U. (2006). The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe Deficiency and Zn oversupply.

The Plant Journal, 44(5), 861–879. https://doi.org/10.1111/j.1365-313X.2006.02744.x

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification of biology.

The gene ontology consortium. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556

Assunção, A. G. L., Herrero, E., Lin, Y.-F., Huettel, B., Tulkudar, S., Smaczniak, C., Immink, R. G. H., van Eldik, M., Fiers, M., Schat, H., & Aarts, M. G. M. (2010). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency.

Proceedings of the National Academy of Sciences of the United States of America, 107(22), 10296–10301. https://doi.org/10.1073/pnas.1004788107

Barberon, M., Dubegaux, G., Kolb, C., Iseno, E., Zelazny, E., & Vert, G. (2014). Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis.

Proceedings of the National Academy of Sciences of the United States of America, 111(22), 8293–8298. https://doi.org/10.1073/pnas.1402261211

Barkla, B. J., & Panttoja, O. (1996). Physiology of ion transport across the tonoplast of higher plants.

Annual Review of Plant Physiology and Plant Molecular Biology, 47(June), 159–184. https://doi.org/10.1146/annurev.arplant.47.1.159

Bashir, K., Ishimaru, Y., Shimo, H., Nagasaka, S., Fujimoto, M., Takanashi, H., Tatsunami, N., An, G., Nakanishi, H., & Nishizawa, N. K. (2011). The Rice Mitochondrial Iron Transporter Is Essential for Plant Growth.

Nature Communications, 2, 322.

Baxter, I. (2020). We aren’t good at picking candidate genes, and it’s slowing us down.

Current Opinion in Plant Biology, 54(April), 57–60.

Baxter, I., Brazelton, J. N., Danni, Y. U., Huang, Y. S., Lahner, B., Yakubova, E., Li, Y., Bergelson, J., Borevitz, J. O., Nordborg, M., & Vitek, O. (2010). A coastal cline in sodium accumulation in arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1.

PLoS Genetics, 6(11), e1001193.

Baxter, I., Hosmani, P. S., Rus, A., Lahner, B., Borevitz, J. O., Muthukumar, B., Mickelbart, M. V., Schreiber, L., Franke, R. B., & Salt, D. E. (2009). Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in arabidopsis.

PLoS Genetics, 5(5), e1000492.

Baxter, I., Muthukumar, B., Park, H. C., Buchner, P., Lahner, B., Danku, J., Zhao, K., Lee, J., Hawkesford, M. J., Guerinot, M. L., & Salt, D. E. (2008). Variation in molybdenum content across broadly distributed populations of arabidopsis thaliana is controlled by a Mitochondrial Molybdenum Transporter (MOT1).

PLoS Genetics, 4(2), e1000004.

Baxter, I. R., Vitek, O., Lahner, B., Muthukumar, B., Borghi, M., Morrissey, J., Guerinot, M. L., & Salt, D. E. (2008). The leaf ionome as a multivariable system to detect a plant’s physiological status.

Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12081–12086.

Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., Yang, H., Dodani, S. C., Pellegrini, M., Huijser, P., Connolly, E. L., & Merchant, S. (2012). Transcriptome sequencing identifies SPL7-regulated cop expression in Arabidopsis thaliana.

The Plant Cell, 24(2), 738–761.

Bhati, K. K., Alok, A., Kumar, A., Kaur, J., Tiwari, S., & Pandey, A. K. (2016). Silencing of ABCC13 transporter in wheat reveals its involvement in iron homeostasis in arabidopsis thaliana.

PLoS One, 6(10), e26360.
Cailliatte, R., Schikora, A., Briat, J.-F., Mari, S., & Curie, C. (2010). High-affinity manganese uptake by the metal transporter NRAMP1 is essential for arabidopsis growth in low manganese conditions. The Plant Cell, 22(3), 904–917.

Cao, M.-J., Wang, Z., Wirtz, M., Hell, R., Oliver, D. J., & Xiang, C.-B. (2013). SULTR3;1 is a chloroplast-localized sulfate transporter in arabidopsis thaliana. The Plant Journal, 73(4), 607–616.

Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., Lewis, S., AmiGO Hub and Web Presence Working Group. (2009). AmiGO: online access to ontology and annotation data. Bioinformatics, 25(2), 288–289.

Catacrepa, P., Segura, M. D., Franco-Zorrilla, J. M., Garcia-Ponce, B., Lanza, M., Solano, R., Paz-Ares, J., & Leyva, A. (2007). A mutant of the arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. The Plant Cell, 19(3), 1123–1133.

Chan-Rodriguez, D., & Walker, E. L. (2018). Analysis of yellow striped mutants of zea mays reveals novel loci contributing to iron deficiency chlorosis. Frontiers in Plant Science, 9(February), 157.

Chao, D.-Y., Baraniecka, P., Danku, J., Koprivova, A., Lahner, B., Luo, H., Chao, D.-Y., Baraniecka, P., Danku, J., Koprivova, A., Lahner, B., Luo, H., Chao, D.-Y., Lahner, B., Luo, H., & Salt, D. E. (2014). Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulfur assimilation enzyme ADENOSINE 5’-PHOSPHOSULFATE REDUCTASE2 across the arabidopsis species range. Plant Physiology, 166(3), 1593–1608.

Chao, D.-Y., Chen, Y. I., Chen, J., Shi, S., Chen, Z., Wang, C., Danku, J. M., Zhao, F.-J., & Salt, D. E. (2014). Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biology, 12(12), e1002009.

Chao, D.-Y., Gable, K., Chen, M., Baxter, I., Dietrich, C. R., Cahoon, E. B., Guerinot, M. L., Lahner, B., Lu, S., Markham, J. E., & Morrissey, J. (2011). Sphingolipids in the root play an important role in regulating the leaf ionome in arabidopsis thaliana. The Plant Cell, 23(3), 1061–1081.

Chao, D.-Y., Silva, A., Ivan Baxter, Y. S., Huang, M. N., Danku, J., Lahner, B., Yakubova, E., & Salt, D. E. (2012). Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in arabidopsis thaliana. PLoS Genetics, 8(9), e1002923.

Che, J., Yokosho, K., Yamaji, N., & Ma, J. F. (2019). A Vascular phytosidophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiology, 181(1), 276–288.

Chen, J., Liu, Y. U., Ni, J., Wang, Y., Bai, Y., Shi, J., Gan, J., Zhongchang, W. U., & Ping, W. U. (2011). OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiology, 157(1), 269–278.

Chen, Y. I., Sun, S.-K., Tang, Z., Liu, G., Moore, K. L., Maathuis, F. J. M., Miller, A. J., McGrath, S. P., & Zhao, F.-J. (2017). The nodulin 26-like intrinsic anion channel NAI2a is essential for arsenate reductase (ACR2) activity and arsenic detoxification and drives leaf Zn accumulation. FEBS Letters, 579(19), 4165–4174.

Devaiya, B. N., Madhuvanthi, R., Karthikeyan, A. S., & Raghothama, K. G. (2009). Phosphate Starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in arabidopsis. Molecular Plant, 2(1), 43–58.

Dhankher, O. P., Rosen, B. P., McKinney, E. C., & Meagher, R. B. (2006). Hyperaccumulation of Arsenic in the Shoots of Arabidopsis Silenced for Arsenate Reductase (ACR2). Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5413–5418.

Durak, A. R., Phillips, K. A., Pike, S., O’Neill, M. A., Mares, J., Gallavotti, A., Malcomber, S. T., Gassmann, W., & McSteen, P. (2014). Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. The Plant Cell, 26(7), 2978–2995.

Eide, D., Broderius, M., Fett, J., & Guerinot, M. L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 93(11):5624–5628.

Ergul, S., Siehl, R. F. H., Meier, B., Takahashi, M., Terada, Y., Ignatyev, K., Andresen, E., Küpper, H., Peiter, E., & von Wirén, N. (2017). Metal tolerance protein 8 mediates manganese homeostasis and iron reallocation during seed development and germination. Plant Physiology, 174(3), 1633–1647.

Ergul, S., Meier, B., von Wirén, N., & Peiter, E. (2016). The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in arabidopsis. Plant Physiology, 170(2), 1030–1045.

Gao, Y.-Q., Chen, J.-G., Chen, Z.-R., An, D., Lv, Q.-Y., Han, M.-L., Wang, Y.-L., Salt, D. E., & Chao, D.-Y. (2017). A new vesicle trafficking regulator CTL1 plays a crucial role in iron homeostasis. PLoS Biology, 15(12), e2002978.

Gil-Díez, P., Tejada-Jiménez, M., León-Medivalli, J., Wen, J., Mysores, K. S., Imperial, J., & González-Guerrero, M. (2018). MtMOT1.2 is responsible for molybdate supply to medicago truncatula nodules. Plant, Cell & Environment, 42(1), 310–320. https://doi.org/10.1111/ pce.13388

Gobert, A., Park, G., Amtmann, A., Sanders, D., & Maathuis, F. J. M. (2006). Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. Journal of Experimental Botany, 57(4), 791–800.

Guo, J., Dai, X., Wenzhong, X. U., & Ma, M. I. (2008). Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in arabidopsis thaliana. Chemosphere, 72(7), 1020–1026.

Guo, K. M., Babourina, O., Christopher, D. A., Borsic, T., & Rengel, Z. (2010). The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in arabidopsis. Physiologia Plantarum, 139(3), 303–312.

Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K. et al (2004). The gene ontology (GO) database and informatics resource. Nucleic Acids Research, 32(Database issue): D258–D261.

Hayashi, S., Kuramata, M., Abe, T., Takagi, H., Ozawa, K., & Ishikawa, S. (2017). Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. The Plant Journal, 91(5), 840–848.

Haydon, M. J., Kawachi, M., Wirtz, M., Hillmer, S., Hell, R., & Krämer, U. (2012). Vacular nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in arabidopsis. The Plant Cell, 24(2), 724–737.

Hindt, M. N., Akmakjian, G. Z., Pivarski, K. L., Punshon, T., Baxter, I., Salt, D. E., & Guerinot, M. L. (2017). BRUTUS and its paralogs, BTS like1 and BTS like2, encode important negative regulators of the
iron deficiency response in arabidopsis thaliana. *Metallomics*, 9(7), 876–890.

Hoevwyk, V., Douglas, G. F., Garifullina, A. R., Ackley, S. E., Abdel-Ghany, M. A., Marcus, S. F., Ishiyama, K., Inoue, E., Pilon, M., Takahashi, H., & Pilon-Smits, E. A. (2005). Overexpression of AtCpNiF enhances selenium tolerance and accumulation in arabidopsis. *Plant Physiology*, 139(3), 1518–1528.

Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H.-Y., Miyao, A., Hirochika, H., An, G., & Schroeder, J. I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. *The EMBO Journal*, 26(12), 3003–3014.

Huang, X.-Y., Chao, D.-Y., Koprivova, A., Danku, J., Wirtz, M., Müller, S., Sandoval, F. J., Bawwe, H., Roje, S., Dilkes, B., & Hell, R. (2016). Nuclear localised MORE SULPHUR ACCUMULATION1 epigenetically regulates sulphur homeostasis in arabidopsis thaliana. *PLoS Genetics*, 12(9), e1006298.

Huang, X.-Y., Deng, F., Yamaji, N., Pinson, S. R. M., Fujish-Kashino, M., Danku, J., Douglas, A., Guerinot, M. L., Salt, D. E., & Ma, J. F. (2016). A heavy metal P-Type ATPase OsHMA4 prevents copper accumulation in rice grain. *Nature Communications*, 7(7), 12138.

Huang, X.-Y., Liu, H., Zhu, Y.-F., Pinson, S. R. M., Lin, H.-X., Guerinot, M. L., Zhao, F.-J., & Salt, D. E. (2019). Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. *The New Phytologist*, 221(4), 1983–1997.

Hussain, D., Haydon, M. J., Wang, Y., Wong, E., Sherson, S. M., Young, J., Camakaris, J., Harper, J. F., & Cobbett, C. S. (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in arabidopsis. *The Plant Cell*, 16(5), 1327–1339.

Isayenkov, S. V., & Maathuis, F. J. M. (2008). The arabidopsis thaliana aquaglyceroporin AtNIP7:1 is a pathway for arsenite uptake. *FEBS Letters*, 582(11), 1625–1628.

Ishimaru, Y., Bashir, K., Fujimoto, M., An, G., Itai, R. N., Tsutsumi, N., Nakanishi, H., & Nishizawa, N. K. (2009). Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis. *Molecular Plant*, 2(5), 1059–1066.

Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R., & Nishizawa, N. K. (2010). Rice metal-nicotianamine transporter, OsYNL2, is required for the long-distance transport of iron and manganese. *The Plant Journal*, 62(3), 379–390.

Kamiya, T., Borghi, M., Wang, P., Danku, J. M. C., Ishimaru, Y., Bashir, K., Fujimoto, M., An, G., Kalmbach, L., Hosmani, K., Khan, G. A., Bouraine, S., Wege, S., Li, Y., de Carbonnel, M., Berthomieu, J. M. C., Yamagami, M., Hirai, M. Y., & Fujiwara, T. (2012). Establishment of the Arabidopsis mutants AtNRAMP3 and AtNRAMP4 Is required for optimal photosynthesis and growth under manganese deficiency. *The Plant Journal*, 74(4), 657–670.

Klaumann, S., Nickolaus, S. D., Fürst, S. H., Starck, S., Sabine Schneider, N., Neuhaus, E., & Trentmann, O. (2011). The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in arabidopsis thaliana. *The New Phytologist*, 192(2), 393–404. https://doi.org/10.1111/j.1469-8137.2011.03798.x

Kobayashi, N. I., Yamaji, N., Yamamoto, H., Okubo, K., Ueno, H., Costa, A., Tano, K., Matsumura, H., Fujii-Kashino, M., Horiuichi, T., & Naya, M. A. (2017). OsHKT1.5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. *The Plant Journal*, 91(4), 657–670.

Kobayashi, T., Nagasaka, S., Senoura, T., Itai, R. N., Nakanishi, H., & Nishizawa, N. K. (2013). Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. *Nature Communications*, 4, 2792. https://doi.org/10.1038/ncomms3792

Koprivova, A., Giovannetti, M., Baraniecka, P., Lee, B.-R., Grondin, C., Loudet, O., & Kopriva, S. (2013). Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in arabidopsis. *Plant Physiology*, 163(3), 1133–1141.

Kühnlenz, T., Hofmann, C., Uraguchi, S., Schmidt, H., Schömpf, S., Weber, M., Lahner, B., Salt, D. E., & Clemens, S. (2016). Phytochelatin synthesis promotes leaf Zn accumulation of arabidopsis thaliana plants grown in soil with adequate Zn supply and is essential for survival on Zn-contaminated soil. *Plant & Cell Physiology*, 57(11), 2342–2352.

Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S., & Grignon, C. (1996). Tissue-specific expression of arabidopsis AKT1 gene is consistent with a role in K+ nutrition. *The Plant Journal*, 9(2), 195–203.

Lanquar, V., Ramos, M. S., Lelièvre, F., Barbier-Brygoo, H., Krieger-Liszkay, A., Krämer, U., & Thomine, S. (2010). Export of vacuolar manganese by ATPNM3 and AtNRAMP4 Is required for optimal photosynthesis and growth under manganese deficiency. *The Plant Journal*, 45(4), 190–199.

Lee, S., Seo, J.-H. H., Kim, S. A., Lee, J., Guerinot, M. L., & An, G. (2009). Disruption of OsSLS15 leads to iron inefficiency in rice plants. *Plant Physiology*, 150(2), 786–800.

Lee, S., Jeong, H. J., Kim, S. A., Lee, J., Guerinot, M. L., & An, G. (2010). OsZIP5 is a plasma membrane zinc transporter in rice. *Plant Molecular Biology*, 73(4–5), 507–517.

Lee, S., Kim, Y.-S., Jeon, U. S., Kim, Y.-K., Schjoerring, J. K., & An, G. (2012). Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. *Molecules and Cells*, 33(3), 269–275.

León-Mediavilla, J., Senovilla, M., Montiel, J., Gil-Diez, P., Saez, A., Kryvoruchko, I. S., Reguera, M., Udvardi, M. K., Imperial, J., & González-Guerrero, M. (2018). MtMTP2-facilitated zinc transport into intracellular compartments is essential for nodule development in medicago truncatula. *Frontiers in Plant Science*, 9(July), 990.

Li, H., Miao, Y. U., Xin-Qiao, D. U., Wang, Z.-F., Wei-Hua, W. U., Quintero, F. J., Jin, X.-H., Li, H.-D., & Wang, Y. I. (2017). NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in arabidopsis. *The Plant Cell*, 29(8), 2016–2026.

Li, X., Zhang, H., Ai, Q., Liang, G., & Diqui, Y. U. (2016). Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in arabidopsis thaliana. *Plant Physiology*, 170(4), 2478–2493.

Lin, Y.-F., Liang, H.-M., Yang, S.-Y., Boch, A., Clemens, S., Chen, C.-C., Jing-Fen, W. U., Huang, J.-L., & Yeh, K.-C. (2009). Arabidopsis IRT3
Is a zinc-regulated and plasma membrane localized zinc/iron transporter. *The New Phytologist*, 182(2), 392–404.

Lindsay, E. R., & Maathuis, F. J. M. (2016). Arabidopsis thaliana NIP7.1 is involved in tissue arsenic distribution and tolerance in response to arsenate. *FEBS Letters*, 590(6), 779–786.

Liu, T.-Y., Huang, T.-K., Tseng, C.-Y., Lai, Y.-S., Lin, S.-I., Lin, W.-Y., Chen, J.-W., & Chiou, T.-J. (2012). PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in arabidopsis. *The Plant Cell*, 24(5), 2168–2183.

Liu, X.-M., An, J., Han, H. J., Kim, S. H., Lim, C. O., Yun, D.-J., & Chung, W. S. (2014). ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance in arabidopsis. *Plant Cell Reports*, 33(12), 2015–2021.

Long, T. A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D. E., & Benfey, P. N. (2010). The bHLH transcription factor POPEYE regulates response to iron deficiency in arabidopsis roots. *The Plant Cell*, 22(7), 2219–2236.

Loudet, O., Saliba-Colombani, V., Camilleri, C., Calenge, F., Gaudon, V., Koprivova, A., North, K. A., Kopriva, S., & Daniel-Vedele, F. (2007). Natural variation for sulfate content in arabidopsis thaliana is highly controlled by APR2. *Nature Genetics*, 39(7), 896–900.

Mao, D., Chen, J., Tian, L., Liu, Z., Yang, L., Tang, R., Li, J., Lu, C., Yang, Y., Shi, J., & Chen, L. (2014). Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. *The Plant Cell*, 26(5), 2234–2248.

McDowell, S. C., Akmakjian, G., Sladek, C., Mendoza-Cozatl, D., Morrissey, J. B., Saini, N., Mittler, R., Baxter, I., Salt, D. E., Ward, J. M., & Schroeder, J. J. (2013). Elemental concentrations in the seed of mutants and natural variants of arabidopsis thaliana grown under varying soil conditions. *PLoS One*, 8(5), e63014.

Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2017). PANTHER version 11: Expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. *Nucleic Acids Research*, 45(D1), D183–D189.

Milner, M. J., Seamon, J., Craft, E., & Kochian, L. V. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. *Journal of Experimental Botany*, 64(1), 369–381.

Miwa, K., Takano, J., & Fujiwara, T. (2006). Improvement of seed yields to boron availability for efficient boron uptake and xylem loading. *The Plant Cell*, 18(6), 2168–2183.

Nagarajan, V. K., Jain, A., Poling, M. D., Lewis, A. J., Raghothama, K. G., & Smith, A. P. (2011). Arabidopsis Pht1:5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. *Plant Physiology*, 156(3), 1149–1163.

Nakagawa, Y., Hanaka, H., Kobayashi, M., Miyoshi, K., Miwa, K., & Fujiwara, T. (2007). Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. *The Plant Cell*, 19(18), 2624–2635.

Nilsson, L., Müller, R., & Nielsen, T. H. (2007). Increased expression of the MYB-related transcription factor, PHR1. Leads to enhanced phosphate uptake in arabidopsis thaliana. *Plant, Cell & Environment*, 30(12), 1499–1512.

Olsen, L. I., Hansen, T. H., Larue, C., Østerberg, J. T., Hoffmann, R. D., Liesche, J., Krämer, U., Surblé, S., Cadarsi, S., Samson, V. A., & Gronlund, D. (2016). Mother-plant-mediated pumping of zinc into the developing seed. *Nature Plants*, 2(5), 16036.

Palmer, C. M., Hindt, M. N., Schmidt, H., Clemens, S., & Guerinot, M. L. (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. *PLoS Genetics*, 9(11), e1003953.

Park, J., Song, W.-Y., Ko, D., Eom, Y., Hansen, T. H., Schiller, M., Lee, T. G., Martinoa, E., & Lee, Y. (2012). The phytochelatin transporters ATABC1 and ATABC2 mediate tolerance to cadmium and mercury: ABC transporters for PC-dependent Cd and Hg tolerance. *The Plant Journal*, 69(2), 278–288.

Peiter, E., Montanini, B., Gobert, A., Pedas, P., Husted, S., Maathuis, F. J. M., Blaudez, D., Chalot, M., & Sanders, D. (2007). A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. *Proceedings of the National Academy of Sciences of the United States of America*, 104(20), 8532–8537.

Pita-Barbosa, A., Ricachenevsky, F. K., Wilson, M., Dottorini, T., & Salt, D. E. (2019). Transcriptional plasticity buffers genetic variation in zinc homeostasis. *Scientific Reports*, 9(1), 19482.

Pottier, M., Dumont, J., Masclaux-Daubresse, C., & Thorne, S. (2019). Autophagy is essential for optimal translocation of iron to seeds in arabidopsis. *Journal of Experimental Botany*, 70(3), 859–869.

Qi, Z., Hampton, C. R., Shin, R., Barkla, B. J., White, P. J., & Schachtman, D. P. (2008). The HIGH Affinity K+ transporter ATHAK5 plays a physiological role in plants at very low K+ concentrations and provides a caesium uptake pathway in arabidopsis. *Journal of Experimental Botany*, 59(3), 595–607.

Qin, Y.-J., Wei-Hua, W. U., & Wang, Y. I. (2019). ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+ conditions. *Journal of Integrative Plant Biology*, 61(6), 691–705.

Rai, H., Yokoyama, S., Satoh-Nagasawa, N., Furukawa, J., Nomii, T., Ito, Y., Fujimura, S., Takahashi, H., Suzuki, R., Yousra, E., & Goto, A. (2017). Cesium uptake by root cells largely depends upon a single gene, HAK1, which encodes a potassium transporter. *Plant & Cell Physiology*, 58(9), 1486–1493.

Rampey, R. A., Woodward, A. W., Hobbs, B. N., Tierney, M. P., Lahner, B., Salt, D. E., & Bartel, B. (2006). An arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. *Genetics*, 174(4), 1841–1857.

Remm, M., Storm, C. E., & Sonnhammer, E. L. (2001). Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. *Journal of Molecular Biology*, 314(5), 1041–1052.

Remy, E., Cabrito, T. R., Batista, R. A., Teixeira, M. C., Sá-Correia, I., & Duque, P. (2012). The Pht1:9 and Pht1:8 transporters mediate inorganic phosphate acquisition by the arabidopsis thaliana root during phosphorus starvation. *The New Phytologist*, 195(2), 356–371.

Remy, E., Cabrito, T. R., Batista, R. A., Teixeira, M. C., Sá-Correia, I., & Duque, P. (2015). The major facilitator superfamily transporter ZIF22 modulates cesium and potassium homeostasis in arabidopsis. *Plant & Cell Physiology*, 56(1), 148–162.

Ren, X.-L., Qi, G.-N., Feng, H.-Q., Zhao, S., Zhao, S.-S., Wang, Y. I., & Wei-Hua, W. U. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in arabidopsis. *The Plant Journal*, 74(2), 258–266.

Ren, Y., Liu, Y., Chen, H., Li, G., Zhang, X., & Zhao, J. (2012). Type IV metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in arabidopsis. *Plant, Cell & Environment*, 35(4), 770–789. https://doi.org/10.1111/j.1365-3040.2011.02450.x

Ren, Z.-H., Gao, J.-P., Li, L.-G., Cai, X.-L., Huang, W., Chao, D.-Y., Zhu, M.-Z., Wang, Z.-Y., Luan, S., & Lin, H.-X. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. *Nature Genetics*, 37(10), 1141–1146. https://doi.org/10.1038/ng1643

Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. *Nature*, 397(6), 694. https://doi.org/10.1038/17800
Song, W.-Y., Nieves-Cordon, M., Aleman, F., & Martinez, V. (2008). Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. *Physiologia Plantarum*, 134(4), 598–608.

Sancenon, V., Puig, S., Mateu-Andres, I., Dorcely, E., Thiele, D. J., & Peñarrubia, L. (2004). The arabidopsis copper transporter CPT1 functions in root elongation and pollen development. *The Journal of Biological Chemistry*, 279(15), 15348–15355.

Sanjaya, P.-Y., Rye-Chih, S. U., Ko, S.-S., Tong, C.-G., Yang, R.-Y., & Chan, M.-T. (2008). Overexpression of arabidopsis thaliana cryptophan synthase beta 1 (AtTSB1) in arabidopsis and tomato confers tolerance to cadmium stress. *Plant, Cell & Environment*, 31(8), 1074–1085.

Sasaki, A., Yamaji, N., Mitani-Ueno, N., Kashino, M., & Ma, J. F. (2015). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. *The Plant Cell*, 24(5), 2155–2167. https://doi.org/10.1105/tpc.112.1111111

Saka, G., Honsbein, A., Meda, A. R., Kirchner, S., Wipf, D., & von Wirén, N. (2006). AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in arabidopsis thaliana roots. *The Journal of Biological Chemistry*, 281(35), 35252–35254.

Secco, D., Baumann, A., & Poirier, Y. (2010). Characterization of the rice PHO1 gene family reveals a key role for ospho1:2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. *Plant Physiology*, 152(3), 1693–1704.

Selote, D., Samira, R., Matthiadis, A., Gillikin, J. W., & Long, T. A. (2015). Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. *Plant Physiology*, 167(1), 273–286.

Senoura, T., Sakashita, E., Kobayashi, M., Aung, M. S., Sasaki, A., Yamaji, N., Yokosho, K., & Ma, J. F. (2012). The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. *Plant, Cell & Environment*, 35(11), 1948–1957.

Takahashi, R., Ishimaru, Y., Shimo, H., Ogo, Y., Senoura, T., Nishizawa, N. K., & Nakaniishi, H. (2012). The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. *Plant, Cell & Environment*, 35(11), 1948–1957.

Tanaka, J., Wada, M., Ludewig, U., Schaaf, G., von Wirén, N., & Fujiwara, T. (2006). The arabidopsis major intrinsic protein NIP5:1 is essential for efficient boron uptake and plant development under boron limitation. *The Plant Cell*, 18(6), 1498–1509.

Tanemoto, Y., Tsunemitsu, Y., Fuji-Kashino, M., Mitani-Ueno, N., Yamaji, N., Ma, J. F., Kato, S.-I., Iwasaki, K., & Ueno, D. (2017). The tonoplast-localized transporter MTTPB2 contributes to manganese detoxification in the shoots and roots of *Oryzia Sativa L.* *Plant & Cell Physiology*, 58(9), 1573–1582.

Tanaka, M., Wallace, I. S., Takano, J., Roberts, D. M., & Fujiwara, T. (2008). NIP6:1 is a boric acid channel for preferential transport of boron to growing shoot tissues in arabidopsis. *The Plant Cell*, 20(10), 2860–2875.

Tanaka, N., Nishida, S., Kamiya, T., & Fujiwara, T. (2016). Large-scale profiling of brown rice ionome in an ethyl methanesulphonate-mutagenized hitomebore population and identification of high- and low-cadmium lines. *Plant and Soil*, 407(1–2), 109–117.

Tarantino, M., Morandini, P., Ramirez, L., Soave, C., & Murgia, I. (2011). Identification of an arabidopsis mitoferlinlike carrier protein involved in Fe metabolism. *Plant Physiology and Biochemistry*, 49(5), 520–529.

Tejada-Jiménez, M., Castro-Rodríguez, R., Igor Kryvoruchko, M., Lucas, M., Udvardi, M., Imperial, J., & González-Guerrero, M. (2015). Medicago truncatula natural resistance-associated molybdate protein1 is required for iron uptake by rhizobia-infected nodule cells. *Plant Physiology*, 168(1), 258–272.

Tejada-Jiménez, M., Gil-Diez, P., León-Mediavilla, J., Wen, J., Myosre, K. S., Imperial, J., & González-Guerrero, M. (2017). Medicago truncatula Molybdate Transporter Type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. *The New Phytologist*, 216(4), 1223–1235.

The Gene Ontology Consortium. (2017). Expansion of the gene ontology knowledgebase and resources. *Nucleic Acids Research*, 45(D1), D331–D338.

Tian, H., Baxter, I. R., Lahner, B., Reinders, A., Salt, D. E., & Ward, J. M. (2010). Arabidopsis NPCCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance. *The Plant Cell*, 22(12), 3963–3979.

Ueno, D., Sasaki, A., Yamaji, N., Miyaji, T., Fujii, Y., Takemoto, Y., Moriyama, S., Che, J., Moriyama, Y., Iwasaki, K. & Ma, J. F. (2015). A polarly localized transporter for efficient manganese uptake in rice. *Nature Plants*, 1(November), 15170.

Uruguichi, S., Tanaka, N., Hofmann, C., Abiko, K., Okhama-Ohtsu, N., Weber, M., Kamiya, T., Sone, Y., Nakamura, R., Takezawa, Y., & Kiyono, M. (2017). Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains. *Plant & Cell Physiology*, 58(10), 1730–1742.

Vitart, V., Baxter, I., Doerner, P., & Harper, J. F. (2001). Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis: salt sensitive H+-ATPase mutant. *The Plant Journal*, 27(3), 191–201.
