High level of ezrin expression in colorectal cancer tissues is closely related to tumor malignancy

Hong-Jian Wang, Jin-Shui Zhu, Qiang Zhang, Qun Sun, Hua Guo

AIM: To investigate the ezrin expression in normal colorectal mucosa and colorectal cancer tissues, and study the correlation between ezrin expression in colorectal cancer tissues and tumor invasion and metastasis.

METHODS: Eighty paraffin-embedded cancer tissue samples were selected from primary colorectal adenocarcinoma. Twenty-eight patients had well-differentiated, 22 had moderately differentiated and 30 had poorly differentiated adenocarcinoma. Forty-five patients and 35 patients had lymph node metastasis. Forty-five patients were of Dukes A to B stage, and 35 were of C to D stage. Another 22 paraffin-embedded tissue blocks of normal colorectal epithelium (> 5 cm away from the edge of the tumor) were selected as the control group. All patients with colorectal cancer were treated surgically and diagnosed histologically, without preoperative chemotherapy or radiotherapy. The immunohistochemistry was used to detect the ezrin expression in paraffin-embedded normal colorectal mucosa tissues and colorectal cancer tissue samples.

RESULTS: Ezrin expression in colorectal cancer was significantly higher than in normal colorectal mucosa (75.00% vs 9.09%, P < 0.01), and there was a close relationship between ezrin expression and the degree of tumor differentiation, lymph node metastasis and Dukes stage (88.46% vs 50.00%, P < 0.01; 94.28% vs 51.11%, P < 0.01; 94.28% vs 51.11%, P < 0.01).

CONCLUSION: Ezrin expression is obviously higher in colorectal cancer tissues than in normal colorectal mucosa tissues, and the high level of ezrin expression is closely related to the colorectal cancer invasion and metastasis process.

INTRODUCTION
Ezrin belongs to the ezrin/radixin/moesin (ERM) protein family, which act as membrane organizers and linkers between the plasma membrane and cytoskeleton[1,2]. Ezrin is mainly expressed on the cell surface to maintain the polarity of endothelial cells[3]. Recent studies have found that, through regulating adhesion molecules and signal transduction pathways, ezrin is involved in cell-cell and cell-matrix interactions, and might play an important role in the process of tumor cell invasion and metastasis[4,5]. Overexpression of ezrin protein is correlated with the metastatic potential of several cancers[6,7], and a high level of ezrin protein expression can induce conversion of a variety of cell lines, as well as abnormal hyperplasia[8]. Tumor cell lines with stronger metastatic abilities are usually accompanied by overexpression of ezrin[9]. Through testing the expression of ezrin protein in normal colonic mucosa...
and colorectal cancer tissues, we aimed to establish the relationship between ezrin expression and clinical parameters, evaluate its molecular action mechanisms in the process of colorectal cancer carcinogenesis, invasion and metastasis, and provide the evidence for clinical prognosis and suitable adjuvant therapy.

MATERIALS AND METHODS

Patients and their pathological samples
The immunohistochemistry was performed in paraffin-embedded tissue samples. Eighty colorectal adenocarcinoma patients diagnosed by postoperative pathology were investigated. There were 44 male and 36 female patients, whose ages ranged from 31 to 80 years, with an average age of 55.5 years. Histologically, 28 patients had well-differentiated, 22 had moderately differentiated, and 30 had poorly differentiated adenocarcinoma. Forty-five patients were without and 35 patients had lymph node metastasis. Forty-five patients were of Dukes A to B stage, and 35 were of C to D stage. Another 22 paraffin-embedded tissue blocks of normal colorectal epithelium (> 5 cm away from the edge of the tumor) was the control group.

Drugs and reagents
Mouse anti-human ezrin mAb was purchased from Fujian Maixin Biotechnology Development Co. Ltd, and SP kit DAB from Beijing Zhong Shan Jinqiao Biotechnology Development Co. Ltd. Experiments were performed following the instructions of the manufacturers. PBS (0.01 mmol/L) was used to replace the first antibody as a negative control, while the normal colorectal mucosa was a positive control.

Result judgment
Each stained slide was assessed and given a score according to the classification standard of Mathew et al.\[11\]: score 0, no expression; score 1, < 50% of cells staining positive expression or less; score 2, ≥ 50% of cells staining positive expression. Score 0-1 was recorded as negative, and score 2 recorded as positive.

Statistical analyses
SPSS for Windows version 11.0 was used for statistical analyses. The \(\chi^2 \) test was used in the analysis of the relationship between ezrin and colorectal cancer clinicopathological parameters. \(P \leq 0.05 \) was considered as a significant difference.

RESULTS

The positive expression of ezrin in colorectal cancer was significantly higher than that in normal colorectal mucosa (Figure 1A-E). The positive rate of ezrin protein in normal colorectal mucosa was 9.09% (2/22) and 75.00% (60/80) in colorectal cancer tissues. There were significant differences between the two groups (75.00% vs 9.09%, \(P < 0.01 \)), as shown in Table 1.

Group	\(n \)	Positive expression (%)
Normal colorectal mucosa	22	2 (9.09)\(^a\)
Colorectal cancer tissues	80	60 (75.00)

\(^a \)P < 0.01 vs colorectal cancer tissues.

Table 2 Relationship between ezrin expression in colorectal cancer tissues and clinicopathological parameters \(n (%) \)

Clinicopathological parameters	\(n \)	Ezrin positive expression (%)
Well-differentiated	28	14 (50.00)\(^b\)
Moderately and poorly differentiated	52	46 (88.46)
Lymph node metastasis	35	33 (94.28)\(^d\)
Without lymph node metastasis	45	27 (51.11)\(^c\)
Dukes A to B stage	45	27 (51.11)\(^c\)
Dukes C to D stage	35	33 (94.28)\(^d\)

There was a close relationship between ezrin expression and the degree of tumor differentiation, lymph node metastasis and Dukes stage. There were significant differences between the well-differentiated and the moderately and poorly differentiated groups (\(P < 0.01 \)); lymph node metastasis group vs group without lymph node metastasis (\(P < 0.01 \)); Dukes A to B stage vs Dukes C to D stage (\(P < 0.01 \)).

DISCUSSION

Ezrin protein expression in specific cell membrane regions is mainly involved in the connection between the epithelial cell cytoskeleton and the cell membrane, through membrane surface signaling molecules and some transmembrane signal transduction pathway. It participates in the regulation of cell survival, adhesion, proliferation and migration processes. Recent studies have found that ezrin protein may play an important role in the tumorigenesis, development, invasion and metastasis process, probably through regulating adhesion molecules and participating in cell signal transduction, and other channels in the tumor.\[12-15\]. Ezrin protein is an indispensable factor for tumor cell metastasis of osteosarcoma\[16\], breast cancer\[17\], nasopharyngeal carcinoma\[18\], and prostate cancer\[19\]. In addition, in malignant tumor tissues, there are also changes in subcellular localization of ezrin expression. Moilanen et al.\[20\] found that ezrin expression in normal ovarian epithelial cells is a kind of cell polarity expression, and that ezrin expression in malignant ovarian tumor cells is more diffusive, with a different degree of tumor cell differentiation, and the location and intensity of ezrin expression in cells is quite different. Therefore, we speculate that ezrin subcellular localization in normal
cells forms the foundation of various physiological functions and cell structure. Abnormal ezrin expression or distribution will also lead to abnormal cell structure and physiological function, and accordingly, these abnormal changes participate in the occurrence, development, invasion and metastasis of malignant tumors.

The role of ezrin in tumor progression is very important and deserves much attention. Recent studies have found that ezrin is a key factor in Fas-mediated apoptosis[23], in the P-gp1-mediated multidrug resistance of cancers, and in cannibalism of metastatic tumors[24]. The active ezrin C-terminal is connected with the actin cytoskeleton, and the N-terminal is connected with cell adhesion molecules such as E-cadherin, and CD44[25,26], etc. Ezrin participates in regulating cell-cell and cell-extracellular matrix adhesion, thus influencing tumor cell invasion and other biological behavior[27-30]. CD44 is a cellular membrane receptor which can specially recognize hyaluronic acid and collagen, and regulate cell-cell and cell-extracellular matrix adhesion. Some studies have found that ezrin, CD44 and CD44 variants could make up a compound that is co-expressed in the tumor cells[31]. Pujuguet et al[32] have found that ezrin can regulate E-cadherin expression in the cell membrane through Rho protein, thereby regulating cell adhesion. At the same time, ezrin also has regulating function in the E-cadherin membrane localization, and activated ezrin can make the E-cadherin protein aggregate in the cell, thereby undermining the cell-to-cell contact and intercellular adhesive ability, and the overexpression of ezrin in the tissues also has the same function of weakening the intercellular adhesion[33]. Through activation of RhoA and the MAPK pathway, ezrin can promote the cell adhesion plaque formation, thereby promoting the adhesive function between the tumor cells and other cells, as well as stoma cells[34]. Therefore, we believe, through participation in the formation of the cell adhesion plaque, cytoskeletal connections and cell surface compartments assembly, and other biological functions, ezrin protein mediates and regulates cell-cell and cell-extracellular matrix adhesion, and is also involved in the malignant tumor invasion and metastasis process. This study showed that, the overexpression of ezrin in colorectal cancer tissues may be involved in cancer invasion and metastasis. The studies on the correlation between ezrin protein and cancer might help us further reveal the tumor invasion and metastasis mechanism, and find the targets for inhibiting tumor metastasis, or indicators that forecasts the prognosis of patients with tumors.

ACKNOWLEDGMENTS

The authors thank Dr. Yun-Hai Dai and Dr. Xiao-Peng Xiong of Department of Nuclear Medicine, Affiliated Renji Hospital of Shanghai Jiao Tong University for their valuable discussions and comments.

REFERENCES

1 Swanson KA, Crane DD, Caldwell HD. Chlamydia trachomatis species-specific induction of ezrin tyrosine phosphorylation functions in pathogen entry. Infect Immun
A role for ezrin in a neglected metastatic tumor

Fadel A, Lee HH, Demir N, Richman S, Iwasaki A, Connell K, Naftolin F. Ezrin is a key element in the human vagina. *Maturitas* 2008; 60: 31-41.

Wald FA, Oriolo AS, Mashukova A, Fregien NL, Langshaw AH, Salas PJ. Atypical protein kinase C (fota) activates ezrin in the apical domain of intestinal epithelial cells. *J Cell Sci* 2008; 121: 644-654.

Fais S. A role for ezrin in a neglected metastatic tumor function. *Trends Mol Med* 2004; 10: 249-250.

Koon N, Schneider-Stock R, Sarlomo-Rikala M, Lasota J, Smolkin M, Petroni G, Zaika A, Boltze C, Meyer F, Andersson L, Knuttila S, Miettinen M, El-Rifai W. Molecular targets for tumour progression in gastrointestinal stromal tumours. *Gut* 2004; 53: 235-240.

Pang ST, Fang X, Valdman A, Norstedt G, Pousette A, Egevad L, Ekman P. Expression of ezrin in prostatic intraepithelial neoplasia. *Urology* 2004; 63: 609-612.

Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. *Nat Med* 2004; 10: 182-186.

Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. *Nat Med* 2004; 10: 175-181.

Kaul SC, Mitsu Y, Komatsu Y, Reddel RR, Wadhwa R. A highly expressed 81 kDa protein in immortalized mouse fibroblasts: its proliferative function and identity with ezrin. *Oncogene* 1996; 13: 1231-1237.

Lamb RF, Ozanne BW, Roy C, McC arrogy L, Stipp C, Mangeat P, Jay DG. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. *Curr Biol* 1997; 7: 682-688.

Matthew J, Hines JE, Obafunwa JO, Burr AW, Too le K, Burt AD. CD44 is expressed in hepatocellular carcinomas showing vascular invasion. *J Pathol* 1996; 179: 74-79.

Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. *Cancer Res* 2001; 61: 3750-3759.

Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. *Nat Med* 2004; 10: 182-186.

Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. *Nat Med* 2004; 10: 175-181.

Akisawa N, Nishimori I, Iwamura T, Onishi S, Hollingsworth MA. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. *Biochem Biophys Res Commun* 1999; 268: 395-400.

Elliott BE, Moens JA, Sen Gupta SK, Louvard D, Arpin M. The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. *Breast Cancer Res* 2005; 7: R365-R373.

McClatchey AI. Merlin and ERM proteins: unappreciated roles in cancer development? *Nat Rev Cancer* 2003; 3: 877-883.

Ferrari S, Zanella L, Alberghini M, Palmerini E, Staals E, Bacchini P. Prognostic significance of immunohistochemical expression of ezrin in non-metastatic high-grade osteosarcoma. *Pediatr Blood Cancer* 2008; 50: 752-756.

Li Q, Wu M, Wang H, Xu G, Zhu T, Zhang Y, Liu P, Song A, Gang C, Han Z, Zhou J, Meng L, Lu Y, Wang S, Ma D. Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells. *Cancer Lett* 2008; 261: 55-63.

Shen ZH, Chen XY, Chen J. Impact of up-regulating Ezrin expression by Epstein-Barr virus latent membrane protein 1 on metastasis ability of nasopharyngeal carcinoma cells. *Ai Zheng* 2008; 27: 165-169.

Musial J, Sporny S, Nowicki A. Prognostic significance of E-cadherin and ezrin immunohistochemical expression in prostate cancer. *Pol J Pathol* 2007; 58: 235-243.

Molainen J, Lassus H, Lemenen A, Vaheri A, Bützow R, Carpen O. Ezrin immunoreactivity in relation to survival in serous ovarian carcinoma patients. *Gynecol Oncol* 2003; 90: 273-281.

Fais S, De Milito A, Lozupone F. The role of FAS to ezrin association in FAS-mediated apoptosis. *Apoptosis* 2005; 10: 941-947.

Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, Gentile M, Luciani F, Parmiani G, Rivoltini L, Malorni W, Fais S. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. *Cancer Res* 2006; 66: 3629-3638.

Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. *J Cell Biol* 1994; 126: 391-401.

Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S, Tsukita S. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. *J Cell Biol* 1998; 140: 885-895.

Curto M, McClatchey AI. Ezrin...a metastatic detEERMinant? *Cancer Cell* 2004; 5: 113-114.

Dransfield DT, Bradford AJ, Smith J, Martin M, Roy C, Mangeat PH, Goldenring JR. Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. *EMBO J* 1997; 16: 35-43.

Hunter KW. Ezrin, a key component in tumor metastasis. *Trends Mol Med* 2004; 10: 201-204.

Yao X, Cheng L, Forte JG. Biochemical characterization of ezrin-actin interaction. *J Biol Chem* 1996; 271: 7224-7229.

Pujuguet P, Del Maestro L, Gautreau A, Louvard D, Arpin M. Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. *Mol Biol Cell* 2003; 14: 2181-2191.

Saras J, Heldin CH. PDZ domains bind carboxy-terminal sequences of target proteins. *Trends Biochem Sci* 1996; 21: 455-458.

Birukov KG, Leitinger N, Bochkov VN, Garcia JG. Signal transduction pathways activated in human pulmonary endothelial cells by OxPAPC, a bioactive component of oxidized lipoproteins. *Microvasc Res* 2004; 67: 18-28.