ABSTRACT
Lipoxygenases (LOXs) enzymes are reported to convert the arachidonic, linoleic, and other polyunsaturated fatty acid into biologically active metabolites that are involved in the inflammatory and immune responses.[1] It is noted that 5-LOX and platelet type 12-LOX are generally considered as pro-carcinogenic, 15-LOX-2 suppresses carcinogenesis while 15-LOX-1 remains controversial.[2] LOXs are the key enzymes in the biosynthesis of leukotrienes (LTs) that play an important role in several inflammation-related diseases such as arthritis, asthma, cancer, and allergic diseases.[3,4] High levels of LTs could be observed in the case of asthma, psoriasis, allergic rhinitis, rheumatoid arthritis, and colitis ulcerosa.[5] Therefore, it is of the view that the production of LTs can be prevented via inhibition of the LOX pathway and targeting LOX with active metabolites which may be useful in cancer treatment.[6] Plants and plant based herbal preparations have been used to treat ailments since prehistoric times, and the treatment of various diseases with plant-based medicines has remained an integral part of many cultures across the globe. The World Health Organization estimates that 4 billion people (i.e., 80% of the world’s population) use herbal medicines in some aspects of primary healthcare and there is a growing tendency to “go natural.”[6] In these aspects, all around the world, the medicinal properties of plants have been investigated and explored for their potent biological activities to counteract diseases which are with no side effects and with high economic viability.[7-9] This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Eshwarappa RS, Ramachandra YL, Subaramaihha SR, Subbahia SG, Austin RS, Dhananjaya BL. Anti-Lipoxygenase activity of leaf gall extracts of Terminalia chebula (Gaertn.) Retz. (Combretaceae). Phcog Res 2016;8:78-82.
Terminalia chebula (Gaertn.) Retz. (Combretaceae) commonly known as black myrobalan and haritaki, is an important medicinal plant native to tropical regions of southern Asia viz., India, Nepal, China, Sri Lanka, Malaysia, and Vietnam. It is amply referred to as "king of medicines" as it has been the component of many formulations for treatment of various diseases in all the streams of Indian system of medicines such as Ayurveda, Siddha, Unani, and Homeopathy.[9,10,11] It consists of gall-like excrescences formed by insects on the leaves, petioles, and branches of the plant-insect Dixothrips onerosus (Thysanoptera). The galls are vasiiform, lobed, greenish yellow, fleshy, truncate gall, 25–33 mm long, smooth when immature, and longitudinally striated or ridged when old.[12] These galls are commonly known as Karkatshringi and is an important Ayurvedic drug used in preparations such as the dasamulari, Chyvanaprash and shringiya churna which are used in the treatment of diseases like swasa (asthma), yakshma (tuberculosis), ajeerna (indigestion), hydroga (heart diseases), jwara (fevers), and yakrt roga (liver disorders) to mention a few.[9,13] Hakims consider galls are useful in pulmonary infections, nose, hemorrhage from gums, and also used to suppress bleeding from the nose.[9,13] Karkatshringi also finds usage in the treatment of children’s ear infections, suppress hemorrhage from gums, and also used to suppress bleeding from the nose.[9,13] Alim examines gall is useful in pulmonary infections, diarrhea, and vomiting.[14] The accepted source of Karkatshringi is the galls of Rhus Succedanea L., but Pistacia integerrima and T. chebula are also generally used in preparations.[9,15] Gall extracts of T. chebula have been found to possess anti-inflammatory, anti-bacterial, anti-tymosinase, anti-cancer, and anti-aging activities.[16-21] In the present study, the photochemical constituents and the anti-LOX potential of leaf galls of T. chebula are evaluated to exemplify its further potential development and use as a drug.

MATERIALS AND METHODS

Materials

Lipoxidase (E.C.1.13.12.12), indomethacin, ascorbic acid, and gallic acid were purchased from Sigma, USA. Linoleic acid was purchased from Himedia. Ascorbic acid, gallic acid, quercetin, were procured from SRL Chemicals, India. All the other reagents and solvents were of analytical grade.

Plant material

The gall induced leaves of T. chebula were purchased from local market of Bangaluru, India. The plant materials were certified and authenticated by Dr. S. Sundara Rajan, and the voucher specimen (JU-RUV-52) were deposited at Research Centre of Vrikshayurveda, Jain University, Bengaluru. Further letter of authentication of the plant material was provided by Vrikshayurveda Centre, Jain University dated 24th May 2014. The galls were cleaned with distilled water, dried and crushed into fine powder by using an electric grinder.

Preparation of extract

The coarsely powdered gall materials were sequentially extracted with ethanol, petrol ether, chloroform, and aqueous solvents in Soxhlet apparatus for 24 h. The extracts were evaporated to dryness under reduced pressure using a Rotavapor (Buchi Flawil, Switzerland) and a portion of the residue was used for the anti-LOX assay.

Phytochemical analysis

The preliminary qualitative phytochemical analyses of carbohydrates, saponins, alkaloids, flavonoids, fixed oils and fats, phenolic and tannins, glycosides, phytosterols, and triterpenoids in the extracts were carried out using the standard methods as described.[9,12-25]

Quantitative analysis

Determination of total phenolic content

The total phenolics were determined in the T. chebula leaf gall extracts (ethanol, petroleum ether, chloroform, and aqueous) using Folin-Ciocalteu reagent method, employing gallic acid as a standard.[26] Briefly, 200 mL of both methanol and aqueous extracts (2 mg/mL) were made up to 3 mL with distilled water, and then mixed thoroughly with 0.5 mL of Folin-Ciocalteu reagent. After mixing for 3 min, 2 mL of 20% (W/V) sodium carbonate was added and allowed to stand for a further 60 min in the dark. The absorbance of the reaction mixtures was measured at 650 nm, and the results were expressed as mg of gallic acid equivalent (GAE)/g of dry weight.

Determination of total flavonoid content

Total flavonoid content of the extracts (ethanol, petroleum ether, chloroform, and aqueous) was determined using the aluminum chloride colorimetric method as described by Chang et al.[27] In brief, 50 µL of methanol and aqueous extracts (2 mg/mL) were made up to 1 mL with methanol then mixed with 4 mL of distilled water and subsequently with 0.3 mL of 5% NaNO₂ solution. After 5 min of incubation, 0.3 mL of 10% AlCl₃ solution was added and then allowed to stand for 6 min, followed by adding 2 mL of 1 M NaOH solution to the mixture. Then water was added to the mixture to bring the final volume to 10 mL, and the mixture was allowed to stand for 15 min. The absorbance was measured at 510 nm. Total flavonoid content was calculated as quercetin from a calibration curve. The calibration curve was prepared by preparing quercetin solutions at concentrations 12.5–100 mg/mL in methanol. The result was expressed as mg quercetin equivalent (QUE)/g of dry weight.

Anti-lipoygenase activity

Anti-LOX assay was studied using linoleic acid as substrate and lipoxidase as enzyme purchased from Sigma, USA.[28] The plant extract sample (200–800 µg/mL) was dissolved in 0.25 mL of 2 M borate buffer pH 9.0 and added 0.25 mL of soybean lipoxidase enzyme solution (final concentration of 20,000 U/mL). This mixture was incubated for 5 min at 25°C. After which, 1.0 mL of linoleic acid solution (0.6 mM) was added, mixed well, and absorbance was measured at 234 nm. Indomethacin (60 µg/mL) was used as reference standard. The percent inhibition was calculated from the following equation:

\[
\% \text{ inhibition} = \left(\frac{\text{Absorbance of control} - \text{Absorbance of test sample}}{\text{Absorbance of control}} \right) \times 100
\]

A dose-response curve was plotted to determine the IC₅₀ values. IC₅₀ is defined as the concentration sufficient to obtain 50% of a maximum scavenging capacity. All tests and analyses were run in triplicate and averaged.

Statistical analysis

The experiments were carried out in triplicate and results are given as the mean ± standard deviation. Statistical analysis of all data was carried out using Microsoft Excel 2007 (MicroSoft®, Inc., USA) statistical software. Student’s t-test was used to determine a significant difference between the experimental groups. Statistical significance was assumed at P = 0.05.

RESULTS AND DISCUSSION

As LOXs are implicated in the biosynthesis of LTs that play an important role in several inflammation-related diseases such as arthritis, asthma, cancer, and allergic diseases,[3,4] therefore, it is of the view that the production of LTs can be prevented via inhibition of the LOX pathway and targeting LOX with inhibitors is of a promising therapeutic target.
Results for LOX inhibitory activities of extracts (ethanol, petroleum ether, chloroform, and aqueous) of leaf galls of *T. chebula* are shown graphically in Figure 1. It is observed that the ethanol extract showed highest LOX inhibitory activity of 52.67% at 800 μg/mL concentration, whereas aqueous, chloroform, and petroleum ether extracts showed 46.31%, 39.51%, and 20.25% inhibition at the same concentration, respectively. The minimum inhibitory concentrations of the ethanol, petroleum ether, chloroform, and aqueous extracts of leaf galls of *T. chebula*, as well as those of standard antibiotics, are shown in Table 1. The results indicate that the ethanolic extract had potent inhibitory activities. The IC_{50} value of ethanolic extract was found to be 560 ± 0.2 μg/mL. The reference standard indomethacin showed a 53.20% inhibition at a concentration of 60 μg/mL [Figure 1]. Therefore, in the present study, the methanol extract exhibited potent LOX inhibitory activity, when compared to all the other extracts and was equal to the standard used. These results suggest that leaf galls of *T. chebula* have a potentially high anti-inflammatory effect. Reactive oxygen species is known to propagate inflammation by stimulating the release of cytokines and also by activation of enzymes such as LOXs from inflammatory cells. Therefore, plants rich in antioxidant constituents with potential antioxidant activity are found to be beneficial to counteract inflammatory reactions. The antioxidant activities of plant/herb extracts are often explained by their total phenolic and flavonoid contents. The qualitative presence of phenolics, flavonoids, triterpenes, saponins, glycosides, phytosterols, and reducing sugars identified in the extracts are shown in Table 2. The total amount of phenolic and flavonoid content of extracts of leaf galls of *T. chebula* is presented in Table 3. The results obtained indicated that in comparison with all the extract, the ethanol extract had the highest total phenolic and flavonoid of 141 ± 2.2 mg of GAE/g d.w and 125 ± 1.4 mg of QUE/g d.w, respectively. These results show that the ethanol extract possessed significant activity in releasing most of the secondary metabolites from leaf galls of *T. chebula*. This may be due to the fact that phenolic and flavonoid compounds are often extracted in higher amounts by using polar solvents such as aqueous methanol/ethanol.\(^{[29]}\) It is reported that differences in the polarity of the extracting solvents could result in a wide variation in the polyphenolic and flavonoid contents of the extract.\(^{[30]}\) Phenolic antioxidants are products of secondary metabolism in plants, and their antioxidant activity is mainly due to their redox properties and chemical structure, which can play an important role in chelating transitional metals and scavenging free radicals.\(^{[31]}\) Similarly, the mechanisms of action of flavonoids are also through scavenging or chelating processes.\(^{[32]}\) In addition, compounds such as flavonoids, which contain hydroxyl functional groups, are responsible for the antioxidant effects of plants.\(^{[33]}\) The higher LOX inhibitory activity exhibited by ethanolic extract of *T. chebula* might be related to the significantly high polyphenolic content and antioxidant property. The leaf gall of *T. chebula* is reported to be very rich in tannins, triterpenoids, flavonoids, essential oils, and others phenolic constituents.\(^{[13,21]}\) The results given in this investigation showed that the phenolic and flavonoid content was higher in polar extracts (ethanol) and subsequently its LOX inhibitory potential. Therefore, the inhibition might be due to the synergistic effect of the compounds from the extract. These observations confirm the folklore use of *T. chebula* leaves and gall extracts as a natural antioxidant and justify the ethnobotanical approach in the search for novel bioactive compounds.

CONCLUSIONS

The present investigation demonstrated promising anti-LOX properties of *T. chebula* leaves gall extracts. Presumably, these activities could be attributed in part to the polyphenolic features of the extract, as there was a strong correlation of higher LOX inhibiting activities with that of high total phenolic and flavonoid content in the methanolic leaf gall extracts of *T. chebula*. The results of this study confirm the folklore use of *T. chebula* leaves gall extracts as a natural anti-inflammatory agent and justify the ethnobotanical approach in the search for novel bioactive compounds. Further, the results support the use of gall extracts as a promising source.
that may be effective as preventive agents in the pathogenesis of some inflammatory diseases. Therefore, the results encourage the use of T. chebula leave gall extracts for medicinal health, functional food, and nutraceuticals applications. More in vivo and in vitro studies along with detailed phytochemical investigations are needed in order to potentially use this plant in the prevention and therapies of inflammatory-related diseases. In short, the present study provides the biochemical foundation for further chemical analysis and develop it as a drug for therapeutic application.

Acknowledgments
We acknowledge Dr. R. Chenraj Jain, President, Jain University Trust., Dr. N. Sundararajan, Vice Chancellor, Jain University, and Prof. K. S. Shantamani, Chief Mentor, Jain University, Bengaluru for their kind support and encouragement. DBL thank Jain University for the constant support and encouragement given toward research progress. DBL acknowledges the financial support by Tamil Nadu Science and Technology (Grant No. TNSCST/S and T Projects/VR/MS/2012-13/203) of Tamil Nadu State Council for Science and Technology to carry out this work.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Catalano A, Procopio A. New aspects on the role of lipoxigenases in cancer progression. Histol Histopathol 2005;20:969-75.
2. Pidgeon GR, Lysaght J, Krishnamoorthy S, Reynolds JV, O’Byrne K, Nie D, et al. Lipoxigenase metabolism: Roles in tumor progression and survival. Cancer Metastasis Rev 2007;26:503-24.
3. Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxigenases. Prog Lipid Res 2011;50:115-31.
4. Rackova L, Oblozinsky M, Kostalova D, Kettmann V, Bezakova L. Free radical scavenging activity and lipoxigenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids. J Inflamm (Lond) 2007;4:15.
5. Schneider I, Bucar F. Lipoxigenase inhibitors from natural plant sources. Part 1: Medicinal plants with inhibitory activity on arachidonate 5-lipoxigenase and 5-lipoxigenase [iso]cyclooxygenase. Phytother Res 2005;19:81-102.
6. Gossell-Williams M, Simon OR, West ME. The past and present use of plants for medicines. West Indian Med J 2006;55:217-8.
7. Auddy B, Ferreira M, Blasina F, Lafon L, Arredondo F, Dajas F, et al. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol 2003;84:131-8.
8. Shrestha S, Subramamiah SR, Subbaiah SG, Eshwarappa RS, Lakkappa DB. Evaluating the antimicrobial activity of methanolic extract of Rhus succedanea leaf gall. Biocompacts 2013;3:195-8.
9. Shrestha S, Kaushik VS, Eshwarappa RS, Subaramiah SR, Ramanna LM, Lakkappa DB. Pharmacognostic studies of insect gall of Quercus infectoria Olivier (Fagaceae). Asian Pac J Trop Biomed 2014;4:35-9.
10. CSIR, The Wealth of India, a Dictionary of Indian Raw Materials and Industrial Products. Vol. 8. New Delhi: Publication and Information Directorate, CSIR; 1969. p. 121.
11. Ministry of Health and Family Welfare. The Ayurvedic Formulary of India (Pt. II); 1st ed. Delhi: Department of Health, Government of India; 1978. p. 1-324.
12. Santha TR, Shetty JK, Yoganarasimhan SN, Sudha R. Pharmacognostical studies on the South Indian market sample of karkatasringi (kadukkaipoo) – Terminalia chebula (gaertn. Leaf gall) Anc Sci Life 1991;11:16-22.
13. Sukh D. Ethanoltherapeutics and modern drug development. The potential of ayurveda. Curr Sci 1997;73:909-28.
14. Nadkarni KM. Indian Materia Medica. 3rd ed. Mumbai: Popular Prakashan Ltd.; 1976. p. 1062-3.
15. Ministry of Health and Family Welfare. The Siddha Formulary of India. New Delhi: Department of Health, Government of India; 1978a.
16. Vonshak A, Barazani O, Sathiyamorthoo P, Shalev R, Vardy D, Golan-Goldhirsh A. Screening South Indian medicinal plants for antifungal activity against cutaneous pathogens. Phytother Res 2003;17:1123-5.
17. Manosroi A, Jantrawut P, Akazawa H, Akihisa T, Manosroi J. Biological activities of phenolic compounds isolated from galls of Terminalia chebula Retz. (Combretaceae). Nat Prod Res 2010;24:1915-26.
18. Upadhye AS, Rajopadhya AA. Pharmacognostic and phytochemical evaluation of leaf galls of Kakadshringi used in Indian system of medicine. J Sci Ind Res 2010;69:700-4.
19. Manosroi A, Jantrawut P, Akihisa T, Manosroi W, Manosroi J. In vitro and in vivo skin anti-aging evaluation of gel containing niosomes loaded with a semi-purified fraction containing gallic acid from Terminalia chebula galls. Pharm Biol 2011;49:1190-203.
20. Shankara BE, Ramachandra YL, Sundara Rajan S, Preetham J, Sujan Ganapathy PS. In vitro antibacterial activity of Terminalia chebula leaf gall extracts against some human pathogenic strains. Int Curr Pharm J 2012;2:121-20.
21. Manosroi A, Jantrawut P, Ogihara E, Yamamoto A, Fukatsu M, Yasukawa K, et al. Biological activities of phenolic compounds and triterpenoids from the galls of Terminalia chebula. Chem Biodivers 2012;10:1448-63.
22. Harborne JJ. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 2nd ed. New York: Chapman and Hall; 1984. p. 85.
23. Treese GE, Evans WC. Pharmacognosy. 13th ed. Delhi: ELBS Publication; 1989. p. 171.
24. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 23rd ed. Pune: Nirali Prakashan; 1996. p. 106-14.
25. Khandelwal KR. Practical Pharmacognosy: Techniques and Experiments. 13th ed. Pune: Nirali Prakashan; 2005. p. 149-96.
26. Kaur C, Kapoor HC. Antioxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol 2002;17:153-61.
27. Chang C, Yang M, Wen H, Chen J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 2002;10:178-82.
28. Shinde UA, Kulkarni KR, Phadke AS, Nair AM, Manguntiwar AA, Dikshit VJ, et al. Mast cell stabilizing and lipoxigenase inhibitory activity of Cedrus deodara (Roxb.) Loud. wood oil. Indian J Exp Biol 1999;37:258-61.
29. Sultana B, Anwar F, Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam trees. Food Chem 2007;104:1106-14.
30. Choi Y, Jeong HS, Lee J. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem 2007;103:130-8.
31. Mohamed AA, Khalil AA, El-Beitagi HE. Antioxidant and antimicrobial properties of kaaf marmay (Anastatica hierochuntica) and doum palm (Hyphaene thebaica). Grasas Y Aceites 2010;61:67-75.
32. Kessler M, Ubeaud G, Jung L. Anti- and pro-oxidant activity of rutin and quercetin derivatives. J Pharm Pharmacol 2003;55:131-42.
33. Das NP, Pereira TA. Effects of flavonoids on thermal autoxidation of palm oil: Structure activity relationship. J Am Oil Chem Soc 1990;67:255-8.
ABOUT AUTHORS

Dr. Ravi Shankara Birur Eswarappa, has been working in the field of Drug discovery from diverse source from the past 8 years and has published over 10 International papers.

Dr. Yarappa Lakshmikantha Ramachandra, has been working in the field of Drug discovery from diverse source from the past 25 years and has published over 135 International papers.

Prof. Sundara Rajan Subaramaihha, has been working in the field of Drug discovery from the past 35 years and has published over 50 International papers.

Dr. Sujan Ganapathy Pasura Subbaiah, has been working in the field of Drug discovery from diverse source from the past 8 years and has published over 10 International papers.

Dr. Richard Surendranath Austin, has been working in the field of Drug discovery from diverse source from the past 5 years and has published over 8 International papers.

Dr. Bhadrapura Lakkappa Dhananjaya has been working in the field of Drug discovery from diverse source from the past 12 years and have published over 60 International papers.