Mobility dynamics of the elderly: Review of literatures

A A Busari¹, D O Oluwafemi¹, S A Ojo¹, J O Oyedepo², A S Ogbiye¹, S A Ajayi³, D D Adegoke¹, K O Daramola¹

¹Department of Civil Engineering, Covenant University, Ota, Ogun State, Nigeria.
²Federal University of Technology Akure, Ondo State
³Nigeria Building and Road Research Institute, Ota, Ogun State.
Corresponding Author: ayobami.busari@covenantuniversity.edu.ng

Abstract. Mobility is key to maintaining independence, especially as people age. Sustainable development goals focused on providing access to safe, affordable, accessible and sustainable transportation for all by reducing number of global deaths and injuries from road traffic accidents. Providing transportation facilities for the elderly is an important part of sustainable transportation. This review assessed the mobility dynamics of the elderly with the aim of proffering sustainable solutions to the effective mobility of this unique set of individuals. Several literatures on mobility dynamics, travel behaviour and trip pattern of this unique set of people were assessed. The study showed that the use of public transport is influenced by distance in comparison with different modes of transport for the elderly. The review also established that distance is a function of the pendulum pattern. The mobility patterns of older people are influenced by various elements that depend on individual circumstances and state of health. Other factors that influenced mobility dynamics of the seniors as reviewed are age, gender, educational level, type of disability, income, residential area, availability of means of transport and built environment. The outcome of this review will aid transportation policy makers on the way-forward for effective and efficient mobility for the elderly now and in the foreseeable future towards a sustainable transportation system.

Keywords: Sustainable Transportation, Trip pattern, Accessibility, Aged, Transportation Planning

1.0 Motivation

By 2060 it is expected that the number of elderly people (65 and higher) will increase by two folds [1]. Increased life expectancy in recent years have been attributed to higher life expectancy and lower fertility rate among other factors. Natural aging process is linked to physical transformation and it has huge results on mobility. As a result, most countries now have an appreciable percentage of the seniors with transport needs. Gloomily, this set of people have been left out in the overall transportation planning policies which is an integral component of national growth and quality life [2-3]. Decline in mobility of the seniors have many unfavourable consequences. Inadequacy of public transport and public transportation infrastructure has limited the mobility of this unique set of people. Absence of data on mobility dynamics of the aged in most developing countries for quite some time now has been an issue for transportation planners. This review seeks to assess the factors affecting mobility and the mobility dynamics of the aged with view of proffering a sustainable solution for effective mobility now and in the foreseeable future.
1.1 Introduction

Mobility is one of the fundamental aspects of daily activities because without locomotion, it becomes difficult for an individual’s needs to be accomplished [4]. Transportation is one of the most important human activities in the world, it is an essential part of social, political and economic life in every society [4]. The expectation of older people around the world is increasing because of the improved expectations for daily comfort and health. As a result of the aging process and physiological changes, more aged individuals tend to make fewer trips than other age groups, altering the desired mode of transport. By 2060, it is expected that the number of elderly people (65 and higher) will increase by two folds [1]. Reduced flexibility, strength, visual perception, increased vulnerability to bone fracture, are some of the transformations that reduce the choice of active transportation for this individuals. Every elderly person, despite the fact that they participate in walking, cycling, driving or public transport, experience the negative consequences of more stressful and more powerful traffic [5]. Transportation mobility of older persons have been relatively neglected [6] and this is necessary for efficient transportation planning and hence the review.

2.0 Review of Literature

2.1 Travel behaviour of the Elderly

Due to the increase in age, older people tend to walk more, drive less and use more public transport [7]. According to the same author, the use of the car is constantly decreasing from the age of 55, while walking increases and public transport becomes a more used option for people aged 75 and older. It was also opined that there are different subgroups of obsolete individuals with different trip patterns and matching desires [8]. The mobility of elderly people can therefore be ambiguous and depend on the blueprint and the nature of the public transport services available to them. Elderly people in most developing and under developed nations are inclined to make fewer trips than the lower age groups. Research of [9] recommended that appropriate and meaningful transport workplaces for this age group is essential. According to the same author, access to open traffic can help mature people to enjoy good, administrative, businesslike and distinctive traffic. Public transport will make a significant contribution to maintaining its dynamic lifestyle, even when they cannot drive [10]. Public transport is therefore crucial for meeting the neighborhood of older people, their adaptability and flexibility. This has been adopted used globally [11-12].

Access to public transport helps older people to use goods and services, business activities and various activities [9]. To this end, public transport plays an important role in maintaining a dynamic lifestyle for older people who cannot drive [10]. Public transport is essential for the personal satisfaction of older people, their sense of flexibility and freedom [11-12].

2.2 Mobility Dynamics of the Aged

Human movements have been studied by observing people’s positions in a given space and time [13]. Based on the research, mobility is dependent on time and distance. The distance people travel and the durations of the trips are known as power law distributions [13]. Mobility is subject to cost and return and other incentives such as employment, health, desires among others. The mobility patterns of the elderly are caused by different elements based on individual circumstances as avowed by [14, 15, 8, 15, 16]. Apart from the ever-increasing physical or mental limitations, extraordinary events play a remarkable role in modifying mobility behaviours and desires. According to the same authors, retirement, sick leave of an accomplice, partner or close family members are common occurrences that affects mobility needs and alternatives. Other important events are separation, marriage, leaving children and the introduction of grandchildren.

Attitudes and lifestyles of the elderly have been identified as important factors in the trip pattern of these persons [17]. This was also buttressed by the theory of planned behavior, the theory of interpersonal behaviour and the standard activation model. Furthermore, the research of opined [17] stated that accessibility, mobility and external factors influence the decisions that these people take. It was in like manner demonstrated that there are different sub-groups of aged individuals with various
character patterns and matching desires [9,18]. The mobility of aged individuals hence can be unequivocally and rely based on blueprint and nature of public transportation services available to them. The modal split of the aged, showed that public transportation is a reliable means of transportation. To this end, access to public transportation helps the aged to have access to goods and services, business and other different activities. Consequently, public transportation plays a vital part in keeping up their dynamic way of life [19]. The author opined that public transportation is essential for personal satisfaction of the aged. This improve the feeling of flexibility and freedom. This has been affirmed in a broad overview nationally, around the world as well as in the World Health Organization's. However, some authors hold a different view on the mobility dynamics of this individual especially for rural elderly.

2.3 Trip Pattern of the Rural Elderly
One of the social functions of the transport system is to facilitate the movement and the needs of the population by integrating territories into the economic, social and recreational world. The research of Gina et al., 2006 has showed that the rural seniors are at disadvantage because they are less educated and have lower income. This was also buttressed by [20-21] that women, widows and most single parents [21-22] are at detriment. The low income of most seniors limit their accessibility to the basic necessity of life which include transportation. Additionally, lack of transportation alternatives is also a key factor restricting mobility in rural neighbourhood [23]. This to a large extent has affected accessibility to effective transportation of this set of individuals [24]

2.4 Factors affecting transportation pattern of the Aged
Changes in mobility patterns may be related to the declining ability of older people to overcome various obstacles. However, research of revealed that age is not really a strong factor affecting mobility as assumed for people lesser than 75 years. Interestingly, changes consist of physical and mental changes, financial barriers, reduced energy and sensory and reduced psychological capacities among other factors reduce the choice of active transportation by the elderly [1] Conversely, research of [15] contradicted this view. According to the author, age is indirectly proportional to driving, which reduces trip, trip time, and distance. Accordingly, older people are particularly struck by obstacles to their physical condition and inadequate facilities for public transport [25]. So many factors are responsible for the reduced mobility of the aged.

Sex or Gender
Men on the basis of gender can travel more easily than the female gender without help [15, 26]. Older women trip pattern showed that they are more escorted than men. This result is in line with the research of [15, 26] which revealed that older women use public transport more often than men, with women preferring the bus system

Income
The general recurrence of voyages is contingent on having a driver’s license as well as financial pay, among different elements. Aged individuals having little income as well as no driver’s permit will probably have shorter trip distance while those with higher incomes are most likely to trip more [27]. In general, trip costs turn out to be more vital than trip time as age increases; because aged individuals possess additional time along with regularly little or no cash there is a tendency of picking options that are less expensive however having longer trip time [28].

Area of residence
Extensive literature by [29-33] has discussed the links between the built environment and travel behavior. Factors such as density, street design, land use diversity, destination accessibility, distance to transit, and demographics, and travel behavior [34-38] affects the trip pattern of the elderly. The
residential area has a significant influence on the trip pattern and the choice of transport. A recent report showed that people aged 65 and above live in groups where the benefits of public transport are poor or do not exist. In addition, 60 percent of people above 50’s have no public transport within a 10-minute walk of their homes. Ownership of a vehicle can also be affected by residential areas, with 97% of rural and 92% of urban families owning a car and rural residents accounting for 91% of car journeys, compared to 86% of urban residents [39].

Built Environment

The research of [40-41] suggests that built environment characteristics from three domains (transportation systems, land use patterns, and urban design) can impact both functional limitations and disability in positive and negative directions. A majority of the existing literature is cross-sectional, making causal inferences impossible [41-44]. Housing density was associated with greater levels of walking according to [45] and with less disability among those with lower body functional limitations [46].

The results of the research showed that the mobility of older people still lags behind with young people. Recent studies are based on spatial differences in the trip behavior of the elderly. Several important elements of the built environment have a considerable impact on the drain profile, such as population density, mix of land use, distance to different facilities and transport regulations [46]. In general, residents of compact, compact mixed-use cities, together with adequate access to public transport and facilities, tend to participate in additional outdoor activities using more non-motorized transport [46-50]. Older people tend to react differently to build environments than other age groups because of the effects of retirement, changes in lifestyle and aging of the body.

3.0 Discussion

The review revealed that older people often seem less involved in movement and opt for shorter distances. It can be inferred that seniors engage in more intra city trips than inter-city trips. Based on the review, public transport is important for elderly because of their personal satisfaction, their sense of opportunity and freedom. Access to transport for these people can help them to use goods, services, work and different activities. Usually these people want to have available, moderate, accessible, acceptable, access and unlimited services with access to a significant number of goals over a long period. Additionally, the review showed that in general, trip costs turn out to be more vital than trip time as age increases. The residential area has a significant influence on the trip pattern and the choice of transport. As people aged 65 and above live in groups where the benefits of public transport are poor or do not exist. Furthermore, age is indirectly proportional to driving, which reduces trip, trip time, and distance. Accordingly, older people are particularly struck by obstacles to their physical condition and inadequate facilities for public transport as opined by [25].

The literature study showed a developing population of elderly whose needs are being maintained or observed in many national and international policies. The research of [40-41] suggests that built environment characteristics from three domains (transportation systems, land use patterns, and urban design) can impact both functional limitations and disability in positive and negative directions.

Conclusion

This research assessed the mobility dynamics of the elderly. This was done by the extensive review of relevant literature to assess the factors affecting the mobility of this unique set of individuals. This is because decline in mobility of the seniors have many unfavourable consequences. This review creates a way of bridging the gap that exist between this unique set of individuals and the rest of the world. Changes in mobility patterns may be related to the declining ability of older people to overcome various obstacles. The review assessed past research on travel behaviour and trip pattern of the seniors in a bid to proffer a sustainable solution to their transport need. The result of the review showed that:

a. Trip distance and time are very important factors in assessing the travel behavior and trip pattern of these individuals. We can infer that with increase in age the lower the use of private cars and mobility in general.

b. Due to increase in age, older individuals begin to walk more, drive less and use more public transport.
c. The rural seniors are at disadvantage because they are less educated and have lower income
d. According to the study car use diminishes continually as from 55 years, while walking increases and public transportation becomes a more used option for people 75 years and more.
e. Public transport is therefore crucial for meeting the neighborhood of older people, their adaptability and flexibility.
f. Men on the basis of gender can travel more easily than the female gender without help

3.1 Recommendations
i. Transport structures need to be created to promote non-motorized or public transport to nearby locations or residences for elderly.
ii. Walkways, railways, inland waterways and other modes of transport must be built, developed and promoted in order to reduce excessive reliance on the use of road transport over short and long distances.
iii. In addition, pedestrian paths must be linked to the structure of the general road network.
iv. For older people who cannot drive any more, a good and efficient public transport service should be provided.

Acknowledgment
The authors are grateful to Covenant University for the support.

REFERENCES

[1] EC-European Commission 2011. The 2012 Ageing Report: Underlying Assumptions and Projection Methodologies European Commission. European Economy 4|2011.

[2] Busari A, Oyedepo J, Modupe A, Bamigboye G, Olowu O, Adediran J and Ibikunle F 2017. Trip pattern of low density residential area in semi urban industrial cluster: predictive modeling. International Journal of Human Capital Urban Management, 2(3): 211-218, Summer 2017 DOI: 10.22034/ijhcum.2017.02.03.00

[3] Busari A, Oluwajana S, Ede A, Joshua O and Adeyanju E 2018. Spatio-temporal commuting pattern of university environment: Gender perspective. WIT CONFERENCE: Sustainable development and Planning 2018. Sienna, Spain (September 4th to 6th, 2018).

[4] Busari A, Osuolale O, Omole D, Ojo A and Jayeola B 2016. Trip Behaviour of University Environment: Inter-Relationship Between Trip Distance And Trip Mode Choice In South-Western Nigeria.

[5] Busari A, Opeyemi J, Oyedepo J, Olawuyi O and Daramola K 2018. University commuting trip pattern: Temporal assessment. WIT CONFERENCE: Sustainable development and Planning 2018. Sienna, Spain (September 4th to 6th, 2018).

[6] Shrestha B, Millonig A, Hounsell N and McDonald M 2017. Review of Public Transport Needs of Older People in European Context. Population Ageing. 10:343–361 DOI 10.1007/s12062-016-9168-9

[7] Mollenkopf H and Flaschenträger P 2001. Erhaltung von Mobilität im Alter, Bundesministerium für Familie Senioren Frauen und Jugend (Hrsg.); Verlag W. Kohlhammer, Stuttgart (Germany)

[8] Glasgow N and Blakely R.M 2000. Older nonmetropolitan residents’ evaluations of their transportation arrangements. The Journal of Applied Gerontology, 19 (1), 95-116.

[9] Hubers C and Glenn L 2013. New technologies for the old: Potential implications of living in later life for trip demand.
[10] Marsden G 2007. Transport and Older People: Integrating transport planning tools with user needs. *11th World Conference on Transport Research*, San Francisco, 24–28 June 2007.

[11] Gabriel G and Bowling A 2004. *Quality of life from the perspectives of older people*. Ageing and Society, 24, 675–691.

[12] World health Organisation (2007). Checklist of Essential Features of Age-friendly Cities. Available at: http://www.who.int/ageing/publications/Age_friendly_cities_checklist.pdf

[13] Raja J 2013. *The Impact of Cost and Network Topology on Urban Mobility*

[14] Marottoli RA, Mendes de Leon, CF, Glass, TA, Williams C.S, Cooney Jr LM, Berkman,

[15] Siren A and Hakamies-Blomqvist L 2009. *Mobility and wellbeing in old age*. Topics in Geriatric Rehabilitation 25 (1), 3-11.

[16] Ziegler F and Schwanen T 2011. "I like to go out and be energized by different people”: an exploratory analysis of mobility and wellbeing in later life. Ageing & Society, forthcoming.

[17] Cao, C, Ashton-Miller J A, Schultz A B, Alexander N. B 1997. *Abilities to turn suddenly while walking: effects of age, gender, and available response time*. Journals of Gerontology Series A-Biological Sciences & Medical Sciences 52 (2), M88-M93

[18] Gina S, Gary C, Marcie S 2006. *The Mobility Needs and Transportation Issues of the Aging Population in Rural Manitoba*. The Institute of Urban Studies.

[19] Szeto W Y, Linchuan Y, Wong R C, Li Y C and Wong S.C 2017. *Spatio-temporal trip characteristics of the elderly in an ageing society*. Trip Behaviour and Society.

[20] Keating N, Keefe J and Dobbs B 2001. A good place to grow old? Rural communities and support to seniors. In R.Epp and D. Whitson (Eds.) *Writing Off the Rural West: Globalization, Governments and the Transformation of Rural Communities*. Edmonton, AB: The University of Alberta Press, 263-277.

[21] Krout J A and Coward R T 1998. Aging in rural environments. In R.T. Coward and J.A. Krout (eds.) *Aging in Rural Settings: Life Circumstances and Distinctive Features*. New York: Springer Publishing Company, 3-14.

[22] Glasgow N and Blakely RM 2000. *Older nonmetropolitan residents’ evaluations of their transportation arrangements*. The Journal of Applied Gerontology, 19 (1), 95-116.

[23] McGhee JL (1983). *Transportation opportunity and the rural elderly: A comparison of objective and subjective indicators*. The Gerontologist, 23 (5), 505-511.

[24] Kinsella K 2001. *Urban and rural dimensions of global population aging: An overview*. The Journal of Rural Health, 17 (4), 314-322.

[25] Sammer G, Uhlmann T, Unbehaun W, Millonig A, Mandl B, Danscha J and Mayr, R. 2013. *Identification of mobility-impaired persons and analysis of their travel behavior and needs*. Transportation Research Record, 232-, 46–54

[26] Siren A and Hakamies-Blomqvist L 2009. *Mobility and wellbeing in old age*. Topics in Geriatric Rehabilitation 25 (1), 3-11.

[27] Christaens J 2009. *Mobility and the elderly - Successful ageing in a sustainable transport system. Brussels: Belgian Science Policy.*

[28] Su, F 2007. Understanding and Satisfying Older Peoples Travel Demand. Dissertation. Imperial College University of London
[29] Timilsina G R, Shrestha A 2009. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy. 2009; 37:4523–4539. doi: 10.1016/j.enpol.2009.06.009.

[30] Zahabi S A, Miranda-Moreno L, Patterson Z and Barla P 2015. Spatio-temporal analysis of car distance, greenhouse gases and the effect of built environment: A latent class regression analysis. Transp. Res. Part A Policy Pract. 2015;77:1–13. doi: 10.1016/j.tra.2015.04.002.

[31] Waygood E, Sun Y and Susilo Y O 2014. Transportation carbon dioxide emissions by built environment and family lifecycle: Case study of the Osaka metropolitan area. Transp. Res. Part D Transp. Environ. 2014; 31:176–188. doi: 10.1016/j.trd.2014.06.001.

[32] Manoj M and Verma A 2012. Effect of built environment measures on trip distance and mode choice decision of non-workers from a city of a developing country. India. Transp. Res. Part D Transp. Environ. 2016; 46:351–364. doi: 10.1016/j.trd.2016.04.013.

[33] Etminani-Ghasrodashti R and Ardeshiri M 2016. The impacts of built environment on home-based work and non-work trips: An empirical study from Iran. Transp. Res. Part A Policy Pract. 2016; 85:196–207. doi: 10.1016/j.tra.2016.01.013.

[34] Kotval K Z and Vojnovic I 2015. The socio-economics of travel behavior and environmental burdens: A Detroit, Michigan regional context. Transp. Res. Part D Transp. Environ. 2015; 41:477–491. doi: 10.1016/j.trd.2015.10.017.

[35] Newman P and Kenworthy J R 1987. Gasoline consumption and cities: A comparison of U.S. cities with a global survey. J. Am. Plan. Assoc. 1987;55:24–37. doi: 10.1080/01944368908975398.

[36] Ewing R and Cervero R 2010. Travel and the built environment. J. Am. Plan. Assoc. 2010; 76:265–294. doi: 10.1080/01944361003766766.

[37] Bhat C R, Astroza S, Sidharthan R, Alam M J and Khushefati W H 2014. A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model. Transp. Res. Part B Methodol. 2014; 68:31–51. doi: 10.1016/j.trb.2014.05.004.

[38] Hankey S, Marshall J D 2010. Impacts of urban form on future us passenger-vehicle greenhouse gas emissions. Energy Policy. 2010; 38:4880–4887. doi: 10.1016/j.enpol.2009.07.005.

[39] Elena M and Elena V 2016. Understanding urban mobility and impact public policies.

[40] Yen H, Michael Y L, and Perdue L 2009. Neighborhood environment in studies of health of older adults: a systematic review. American Journal of Preventive Medicine, vol. 37, no. 5, pp. 455–463.

[41] Clarke P and Nieuwenhuijsen E R 2009. Environments for healthy ageing: a critical review. Maturitas, vol. 64, no. 1, pp. 14–19.

[42] Renalds A, Smith A T, and Hale P J (2010). A systematic review of built environment and health. Family and Community Health, vol. 33, no. 1, pp. 68–78.

[43] Macintyre S, Ellaway A, and Cummins S (2002). Place effects on health: how can we conceptualise, operationalise and measure them. Social Science and Medicine, vol. 55, no. 1, pp. 125–139, 2002.

[44] Kawachi I and Berkman LF 2003. Neighborhoods and Health, Oxford University Press, New York, NY, USA, 2003.

[45] Li F, Fisher K J, Brownson RC, and Bosworth M 2005. Multilevel modelling of built environment characteristics related to neighbourhood walking activity in older adults. Journal of Epidemiology and Community Health, vol. 59, no. 7, pp. 558–564.
[46] Clarke P and George LK 2005. *The role of the built environment in the disablement process*. American Journal of Public Health, vol. 95, no. 11, pp. 1933–1939, 2005.

[47] Metz DH 2000. *Mobility of older people and their quality of life*. Transport Policy 7 (2), 149-52.

[48] Paez A, Gertes Mercado R, Farber S Morency C and Roorda M 2010. Relative accessibility deprivation indicators for urban settings: definitions and application to food desert in Montreal, Urban Studies, 47(7), 1415-1438.

[49] Páez A, Scott DM, Potoglou D, Kanaroglou PS and Newbold KB 2007. *Elderly mobility: demographic and spatial analysis of trip making in the Hamilton CMA*. Urban Studies 44 (1), 123-146

[50] Adler G, Rottunda S, 2006. *Older adults. perspectives on driving cessation*. Journal of Aging Studies 20 (3), 227–235.