Are publications on zoological taxonomy under attack?
Ângelo Parise Pinto, Gabriel Mejdalani, Ross Mounce, Luís Fábio Silveira, Luciane Marinoni, José Albertino Rafael

https://doi.org/10.1590/SciELOPreprints.1164

This preprint was submitted under the following conditions:

- The authors declare that they are aware that they are solely responsible for the content of the preprint and that the deposit in SciELO Preprints does not mean any commitment on the part of SciELO, except its preservation and dissemination.

- The authors declare that the research that originated the manuscript followed good ethical practices and that the necessary approvals from research ethics committees are described in the manuscript, when applicable.

- The authors declare that the necessary Terms of Free and Informed Consent of participants or patients in the research were obtained and are described in the manuscript, when applicable.

- The authors declare that the preparation of the manuscript followed the ethical norms of scientific communication.

- The authors declare that the manuscript was not deposited and/or previously made available on another preprint server or published by a journal.

- The submitting author declares that all authors responsible for preparing the manuscript agree with this deposit.

- The submitting author declares that all authors' contributions are included on the manuscript.

- The authors declare that if the manuscript is posted on the SciELO Preprints server, it will be available under a Creative Commons CC-BY license.

- The deposited manuscript is in PDF format.

- If the manuscript is being reviewed or being prepared for publishing but not yet published by a journal, the authors declare that they have received authorization from the journal to make this deposit.

Submitted on (YYYY-MM-DD): 2020-08-30
Posted on (YYYY-MM-DD): 2021-02-11
Are publications on zoological taxonomy under attack?

Ângelo Parise Pinto¹* - https://orcid.org/0000-0002-1650-5666
Gabriel Mejdalani² - https://orcid.org/0000-0003-4513-243X
Ross Mounce³ - https://orcid.org/0000-0002-3520-2046
Luís Fábio Silveira⁴ - https://orcid.org/0000-0003-2576-7657
Luciane Marinoni¹ - https://orcid.org/0000-0001-7034-5395
José Albertino Rafael⁵ - https://orcid.org/0000-0002-0170-0514

¹Departamento de Zoologia, Universidade Federal do Paraná, P. O. Box 19020, 81531-980, Curitiba, PR, Brazil.
²Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
³Arcadia Fund, Sixth Floor, 5 Young Street, London W8 6EH, UK.
⁴Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil.
⁵*Museu de Zoologia da Universidade de São Paulo, São Paulo, SP, Brazil.

*corresponding author: appinto@ufpr.br

Abstract

Taxonomy is essential to biological sciences and the priority field to be supported in face of the biodiversity crisis. The industry of scientific publications has made extensive use of bibliometric indexes, resulting in distortions to institutions, organizations, and researchers, such as the side effect known as Journal Impact Factor (JIF) mania. Inadequacies of the most widely used bibliometric indexes from giant companies Clarivate™ (InCites™) and RELX™ Elsevier B.V. (Scopus®) to assessment of the relevance of taxonomic publications were considered as one of the impediments for the progress of this field. Recently, Clarivate suppressed the mega-journal Zootaxa, focused on taxonomy, from Journal Citation Reports (JCR), a database with 12,000 periodicals. Zootaxa suppression, together with other 32 journals, was based on an unusual high proportion of self-citations. Suppressed journals would thus not receive a value of JIF for 2020. A prompt reaction from the scientific community against the suppression of Zootaxa took place and, accordingly, Clarivate announced its reinstatement. This situation exposed many persistent myths and misuses of bibliometric indexes. The goal of this study is to shed light on the impacts of bibliometric indexes to the taxonomic field and on underlying aspects of the suppression of Zootaxa. Our major question is whether the suppression of any journal from JIF can really affect the production in the taxonomic field. We explored data metrics from the JCR (Web of Science Core Collection™) for 2010–2018 of the top ten zoological journals (eight are included in JCR) in the number of new taxa and journals focused on or regularly publishing taxonomic studies, totaling 123 journals. Zootaxa shows higher levels of self-citations than similar journals. We consider that two possible explanations provided for the high number of self-citations, i.e., Zootaxa’s scope on taxonomy and the fact that it is a mega-journal, are inadequate. Instead, putative explanations are related to the “Zootaxa phenomenon,” a sociological bias that includes visibility,
and potential harmful myths that portray *Zootaxa* as the unique journal that publishes taxonomic studies with an inviting JIF value. Menaces to taxonomy as a science come from many sources and the low bibliometric values of its journals are only one of the factors that contribute for establishing the so-called taxonomic impediment. We suggest rejection of bibliometric indexes, including JIF, instead of considering them when convenient. Taxonomists as a community, instead of being deeply focused on journal metrics endorsing the villainy of bibliometric policies imposed by dominant companies, should be engaged with renewed strength in actions directly connected to the development and promotion of this science.

Keywords Bibliometrics, Biodiversity Crisis, Journal Impact Factor (JIF), Scientometrics, Systematics.

Introduction

Every middle of year giant companies on scientific data analytics, the American-British Clarivate™ (InCites™) and the Dutch RELX™ Elsevier B.V. (Scopus®), release their metrics for scientific journals indexed in their huge databases, among them the Journal Impact Factor™ (JIF) and the CiteScore™, respectively. These metrics have been adopted as major qualifiers by several countries as a single measure of the quality of the produced research in their universities and institutes. Generally, funding for research in these institutions is derived from the taxes paid by the citizens of a given country. This policy produces a sort of quest or JIF mania for publishing in higher-ranked journals (Ioannidis & Thombs 2019). Therefore, depending on the impact factor, a researcher has better chances of evolving in his/her career, earn prestige, win grants, etc. Thus, these metrics have a strong impact on how and what scientific investigation can currently be conducted.

On the last day of June of this year, an interruption of the colossal concerns about the Covid-19 pandemic affected taxonomists around the world. An issue break through the media due to the involvement of zoologists from many countries: the suppression of the mega-journal *Zootaxa*, a periodical focused on zoological taxonomy, from the Journal Citation Reports™ (JCR) Science Edition metrics by Clarivate. Based on a high proportion of self-citations, along with other 32 journals from the 12,000 in JCR database, *Zootaxa* would not receive a value of Journal Impact Factor (JIF) for 2019; however, it would keep the values for previous years and still be indexed on the Clarivate Analytics platform.

By this time, with the publication of JIF 2019 by JCR, which called the attention of editors and authors who were eager to see how journals were ranked, passionate discussions arose because of *Zootaxa*’s suppression. A prompt reaction, hardly seen before, through many letters of support to *Zootaxa* and petitions from several societies and researchers, forced Clarivate to review its decision. We believe that suppression of *Zootaxa* entails so many unique elements that it needs a closer inspection. Some supporting letters could actually be considered political manifestos and others were very naïve, not to say alarmist or simply inaccurate in interpreting the fact as a new attack to taxonomy as a science. Among the utterly passionate arguments was the one that *Zootaxa* is the single vehicle to publish taxonomic papers.
nowadays, a statement obviously far away from the truth. At the end of July, in a short statement on
Twitter, Clarivate announced that *Zootaxa* and the *International Journal of Systematic and Evolutionary Microbiology* would be reconsidered in the regular refresh of the JCR to be published in September. Cases of suppression are common and not unique to the Clarivate platform, being most of them due to accusations of artificial boost or inflation of impact factors (e.g., Cortegiani et al. 2020). A particular case, almost a decade ago, had a wide repercussion among researchers when four journals edited in Brazil were suppressed under accusation of a citation-stacking scheme, a sort of cartel in which self-citations are exchanged among a group of journals (Van Norden 2013). Noticeably, cases of suppression in the past hardly received any sympathy from the scientific community, except from people directly involved as editors, perhaps as a signal that sectors of the academic community agreed with the suppression and considered that the affected journals deserved such “punishment.” Once discarded from JIF, a journal is excluded from the gold rush of academia targeting high-impact outlets.

In a system full of anachronisms, in which traditional journals supported by museums or scientific societies are struggling to survive and the scientific publishing industry is led by giant publishers such as John Wiley & Sons, Elsevier, and Springer Nature, among others with profit margins comparable to those of major players in drug, bank, and auto companies (Larivière et al. 2015), it is at least curious to perceive the commotion around the suppression of *Zootaxa*. We became intrigued and thus decided to provide some reflections aiming to shed light on underlying aspects of this issue. We believe that many of the arguments that were given in the supporting letters are based on misunderstandings about these metrics or are biased by personal interests due to the pressure to publish in high-impact journals. In addition, some points are also potentially misplaced. Bibliometric data are plagued by myths and misunderstandings (Glänzel 2008).

Our goal is to discuss the following questions. Can the suppression of any journal from JIF really affect the production in the taxonomic field? What are the consequences of *Zootaxa* suppression to taxonomy as a science? What means self-citation? What is the average JIF for taxonomic journals? Is *Zootaxa* a victim of its success? So, what is actually going on? To properly address these aspects, we first need to clarify a few concepts and dig further into the current situation of taxonomic journals, impact measures of scientific publications, and the role of individuals and mega-corporations in this arena.

Material and methods

We explored citation data including JIF, most-cited journals, and self-citation metrics from the Journal Citation Reports (Web of Science Core Collection™) of the last nine years (2010–2018) of the top ten zoological journals (TTJ, eight are included in JCR) when the number of new available names (based on the last five years of ION/Zoological Records™–ZR) is considered. We also checked up for journals focused on or regularly publishing taxonomic papers included in the Zoology and Entomology categories. Data from *Zootaxa* were retrieved from JCR 2018 because this journal was suppressed from the current edition and will only reappear in September. Journals included in both Zoology and Entomology categories were
considered simply as Zoology. Among 168 journals in Zoology and 101 in Entomology, 73 and 48 (both numbers include “plus” Zootaxa) were selected. Data of a total of 123 journals were compiled. In order to analyze the selected journals with available data from 2010–2018, a descriptive statistics approach including arithmetic mean of the bibliometric variables, their standard deviations, and the ratio between JIF without self-citations and JIF was used to investigate the influence of self-citations on JIF. This approach was conducted among the top ten journals (TTJ) in ZR and those in Zoology and Entomology categories. The percentage of self-citations and the ratio between JIF without self-citations and JIF per year of the journals between quartiles 2 and 3 (Q2 and Q3) in their categories plus TTJ were analyzed with non-parametric one-way analysis of variance Kruskal–Wallis H test (Dalgaard 2008) in R software (R Core Team 2018). Thus, journals with similar scope and JIF to Zootaxa were considered. In practice, all journals publishing taxonomic papers with JIF 2019 ranging from 0.25–2.315 in the categories Zoology and Entomology were included. This last criterion can be considered arbitrary because the proportion of taxonomic papers is dissimilar among the journals. Clearly, Zootaxa and ZooKeys, for example, have a greater amount of taxonomic papers, even when the fact that these journals accept studies on different subjects of biological sciences is considered. However, for the purposes of our discussion it is reasonable to consider such journals as similar in scope. The comparison is not easy because the original scope of Zootaxa is unique, due to its intent of “rapid publication of high-quality papers on any aspect of systematic zoology” and its focus on long papers. However, Zootaxa publishes today virtually any subject associated to zoological taxonomy/systematics, including biographies and points of view on theoretical subjects. Therefore, it is fair to conclude that all kinds of zoological papers are published in that journal, except those essentially dealing with ecological or experimental issues. The list of the journals and selected metrics are available in Table 1 and Supplementary File 1. Note that the categorization of journals follows Web of Science’s rules, so that many taxonomic journals that publish studies in the areas of zoology or entomology have not been included because they are listed in any other of 178 categories in the Science Edition database.

Results

A small fraction of the 123 taxonomic journals investigated adopt mandatory APC-GOA models (18.7%). DOA represents 22.0%, while the largest amount (59.3%) of journals are based on hybrid models with paywall to access their content, usually through readers’ payment/subscription (Table 1). A few journals, published in distinct platforms maintained by societies, require page charges to authors, irrespective of them being associated or not to the society, and they also have their contents protected by paywall; thus, these journals have both authors’ and readers’ charges (e.g., Journal of the Kansas Entomological Society and Malacologia).

The average levels of self-citations in the period of 2010–2018 range from 0.0–24.2% in Zoology, 0.0–34.9% in Entomology, and 4.6–34.9 in TTJ. For the last five years (2014–2018), these levels are 0.0–27.3% in Zoology, 0.0–36.4% in Entomology, and 4.5–36.4% in TTJ. The upper bounds of self-citation in the
Entomology and TTJ categories are due to *Systematic and Applied Acarology*; excluding this journal, the maximum level of self-citation for Entomology is 21.4% (*Coleopterists Bulletin*) for 2010–2018 and 27.3% (*Odonatologica*) for 2014–2018, while for TTJ they are 26.3% and 27.5% (both correspond to *Cretaceous Research*). In comparison to all other journals, excluding *Systematic and Applied Acarology*, the mean levels of self-citation are higher for *Zootaxa* than for any other journal in Zoology (Figure 1), Entomology (Figure 2), and TTJ categories (Figure 3), being 34.9% for 2010–2018 and 37.6% for 2014–2018 in *Zootaxa*. The levels of self-citation have gradually increased in *Zootaxa* from 27.99% in 2010 to 52.7% in 2018 (Figure 4). The percentage of self-citations for 2010–2018 is higher in *Zootaxa* and similar only to *Systematic and Applied Acarology* (Figure 4). The non-parametric one-way analysis of variance Kruskal-Wallis of Q2 and Q3 journals, plus TTJ, is highly significant for both the ratio of JIF without self-citation and JIF (JIF ratio: \(H = 326.8, \text{d.f.} = 67, P < 0.001\)), as well as to the proportion of self-citation (level of self-citation: \(H = 311.4, \text{d.f.} = 67, P < 0.001\)).

Influence of self-citations on JIF is almost insignificant to boost this metric because most journals from the three categories (Entomology, Zoology, and TTJ) have similar means of the ratio between JIF without self-citations and JIF for 2010–2018 (Figure 5), except *Shilap-Revista de Lepidopterologia*, a journal devoted to butterflies and moths, *Insects*, published by Multidisciplinary Digital Publishing Institute (MDPI)—a company with questionable conduct (Retraction Watch 2018) and considered predatory (Brezgov 2014)—, and *Zootaxa*. Some journals have large intervals based on SD in the influence of self-citation on JIF, while journals such as *Zootaxa* have a more constant influence of self-citation. For instance, in *Zootaxa* this ratio ranges from 0.55 to 0.60 and JIF reduces 39.6–45.6% when self-citations are excluded (Figure 6, Supplementary File 1).

Zootaxa, with around 15,000 citations, received 311% more citations than the second most cited journal, *ZooKeys*, during 2010–2018 (Figure 7, Supplementary File 1). Levels of self-citation are unrelated to number of citations. In Figure 7 it is shown the number of citations and journals with similar effects in the assessed metrics.

Discussion

What are journal-level metrics?

As non-bibliometric researchers, we suppose that measures in bibliometric science were created with some genuine purposes, which entail goals other than supposedly assessing the quality of research or researchers. Originally these indexes aimed to be objective tools for helping librarians in the development of journal collections (Haustein & Larivière 2015). According to Keith Collier (Senior Vice President of Product, Science Group Clarivate, https://bit.ly/31gOMg3), the JIF mission is “to provide a thorough, publisher-neutral, multifaceted view of journal performance, reflecting the world’s highest-quality scientific and scholarly literature.” The hope relies on the citation frequency that would reflect a journal value and the use made of it and shows the average citations per published paper in a given journal (Garfield 1972).
Apart from the controversies of whether JIF actually assesses a journal “quality,” it aims, together with other bibliometric indexes, the recognition of patterns and trends in publications. Since its creation in the beginning of the 1970 decade (Garfield 1972, however, mentioned that it was designed in 1955; see also Garfield 2006), the metric became strongly popular and has been adopted as a major parameter for evaluating the quality of research, a topic certainly controversial (Hecht et al. 1998, Alberts 2013). The index is a very simple measure calculated from the ratio between the number of citations along a year (numerator) and number of papers published along the two previous years (denominator) — i.e., JIF 2019 is the number of citations in 2019 from papers published in 2017 and 2018 divided by the number of published papers in 2017 and 2018 — (Garfield 2006). So, in a certain way, it shows how trendy papers or subjects published by a journal are, as well as if they are achieving a wide audience. The bad twist occurred when organizations, including governmental funding agencies, reached the conclusion that, since journals are evaluated by their impact, bingo, the scientific production in universities, institutes, and graduate courses, as well as the researchers themselves, should be evaluated in the same manner. However, there is a flawed logic in extrapolating indexes such as JIF to evaluate work and careers. Hence, the JIF is recognized without doubt as being the most widely misused and abused bibliometric index in academic science (Hecht et al. 1998, Haustein & Larivière 2015, Ioannidis & Thombs 2019).

The adoption of scientific bibliometric indexes such as JIF has grown, especially in the last two decades, as a way to objectively evaluate the strongly competitive field of academic careers. However, there are many studies showing perverse pitfalls, for both researchers and organizations, of this use and interpretation of JIF (e.g., Hecht et al. 1998, Alberts 2013, Chapman et al. 2019). The quest and struggle for publishing in high impact journals produced the JIF mania (Ioannidis & Thombs 2019).

Although the use of JIF is not recommended for ranking individuals (Alberts 2013), its impact in the real-life academic career is crystal clear. It is widely perceived that an academic researcher can only evolve in his/her career by means of publishing in journals with high JIF values. The metric has well-known limitations when used to evaluate both journals or individual papers, because the index is strongly sensible to what is considered a citable item (The PLoS Medicine Editors 2006); also, it is characterized by a misuse of statistics such as media and median (Vanclay 2012) and may be radically influenced by a single or few papers (e.g., Dimitrov 2010). Its widespread adoption leads to several distortions such as unjustified multi-authored papers and schemes by journals to artificially increase JIF or impact inflation; these schemes are among the most common outcomes of the JIF mania. Because of the metrics inflation, the bibliometric platforms act as judges to prevent these types of distortion, excluding or punishing “deviant” journals. Indexing platforms such as Clarivate/JCR, for instance, adopt no less than 24 criteria into a putatively unreproducible method of analysis. When a journal disagrees or does not fulfill one of these criteria, it is suppressed (Clarivate 2020a). The lack of transparency greatly affects our ability to properly evaluate journal suppressions. The philosophical dilemma “Who watches the watchmen?”, eternalized in the famous graphic novel Watchmen, written by Alan Moore, fits well here.
Undeniably, exploring biodiversity is a core issue for the entire biological sciences (and humanity). In this context, taxonomic research is an essential priority in face of the current biodiversity crisis (Wheeler et al. 2012). The concept of taxonomy in biological sciences has a wide range of meanings, varying from the reductionist, atomized, and merely descriptive harmful view known as alpha taxonomy (e.g., Mayr 1969) — largely denoted as a minor science, old fashioned and intellectually poor — to a wide sense of taxonomy as the biggest among all biological sciences (e.g., Wheeler 2008), equivalent to the whole field of comparative biology. This wider view, which is adopted here, embraces from primary data acquisition in field expeditions to morphological, genomic, and even ecosystem analyses. Thus, it considers taxonomy as a relevant hypothesis-driven science. However, ordinary taxonomic research executed day-by-day is a generally low-cost activity that employs few technological tools. It is focused on the study of natural history collections with the goal of characterizing and making available basic data on biological entities. This work often involves the study of the morphology of poorly known taxa, an unknown sex of a given species or developmental stages, as well as undescribed taxa. Taxonomists must frequently work with poorly known subjects, looking for the novelty, odd, and thus dealing with unpopular or even neglected topics. Therefore, there are many cases of fine, well-written and beautifully fully illustrated comprehensive taxonomic monographs on animal groups that will probably rarely be cited. The small number of citations might even be related to the fact that such monographs successfully solve most of the basic taxonomic questions affecting one taxon. One colorful example was mentioned during the Brazilian Congress of Zoology in 2014. A colleague entomologist raised a simple question: “I am studying one of the smallest orders of insects (Zoraptera, the angel insects) with no more than four dozens of extant species, so what is the chance of citation, within only two years, of a paper that provides a great contribution on this group, including the description of new species?” Problems with the low rate of citations in taxonomy are widely discussed and the inadequacy of JIF for basic sciences is often mentioned (e.g., Krell 2000, Rafael et al. 2009). This is a paradox caused by the fact that taxonomy must, in part, necessarily deal with basic descriptive subjects, the new and unexpected, focusing on small parts of the tree of life.

Taxonomy is known as a science in crisis affected by losses of positions in institutions and reduction of funding resources. In addition to this scenario of gradual loss of workforce and grants, the discipline is also damaged by the biases or inadequacies of these so-called indexes of “quality” (see Ebach et al. 2011). Some solutions for low citations suggested the mandatory citation of references in which authorities erected new taxa (original descriptions) whenever a name was mentioned in a study, a rule endorsed by Zootaxa but not strictly enforced by the journal. This rule would partially explain its high level of self-citations. However, this strategy is deeply misleading, because original descriptions, especially the old ones, are often not adequate for species characterization and recognition. A more straightforward approach would be to make clear which concept of species is being adopted and provide the bibliographic source
Another important point is that multidisciplinarity in biological sciences has blurred the limits among traditional disciplines, even the descriptive ones. All these aspects were suggested as reasonable explanations for the high levels of Zootaxa self-citations. However, they are not valid because there are many other journals currently accepting taxonomic studies, being either purely descriptive or including broader analytical approaches; these journals are obviously attractive in the context of the JIF mania game (Supplementary File 1).

Zootaxa phenomenon and suppression quarrel

As authors of papers on distinct zoological taxa, editors of special issues, and reviewers of manuscripts submitted to Zootaxa along the last ten years, we feel comfortable to offer an opinion on the journal and its impact in the taxonomic world, an actual phenomenon that transformed it into the leading vehicle for making new zoological names available.

Since its establishment, Zootaxa has become a prestigious forum for promotion and discussion of all topics of taxonomic science and thus reached a distinguished position among other similar journals. Unquestionably, the birth of the journal was a milestone to the field of zoological taxonomy. Started in 2001 with a hybrid platform of publication (i.e., the payment of Article Processing Charges – APC by authors is optional for making the paper Open Access – OA), when 300 pages were published, the journal increased to 32,330 pages in 2010 (Zhang 2011) and ended 2019 with the impressive record of 47,528 pages; the latter comprising 2,400 papers in 176 volumes (data compiled from Zootaxa’s site). In its first decade, Zootaxa has made available about 20–25% of the new nomina per year (Zhang 2014). In the last five years, it has become the main journal, truly the leader in the field of descriptive taxonomy, with 24,722 (26.57% of the total) newly erected taxa made available (ION/Zoological Records™ 2020). Despite its few years of existence, the journal has received remarkable status and visibility. Papers published in it have potentially higher chances of being cited by fellow taxonomists, unlike the situation in many other similar journals in the field that clearly have a lower visibility. Zootaxa has been the first choice for a legion of young taxonomists for their very first papers. The relatively high JIF of the journal is certainly among the reasons for this choice. Furthermore, for those zoologists who are not primarily taxonomists but who eventually decide to publish a taxonomic paper, the journal is also probably the first choice, if not the single one known. Indeed, Zootaxa is so influential nowadays that a somewhat pejorative term, “Zootaxa author,” has been coined, meaning those researchers who only publish in the journal or have a massive amount of their papers in it, reaching 80% or more. Why this phenomenon? Why does a journal congregate such a huge parcel of publications in a field? Is this situation actually good for taxonomy?

For almost a decade Zootaxa was the single big (or mega) journal in the field designed to attend taxonomic science, even though several smaller journals also published most of their issues with a high amount of taxonomic papers. Today Zootaxa has competitors with the advantage of having either Gold Open Access (GOA) or Diamond Open Access (DOA) policies, such as the European Journal of Taxonomy.
(first issue published in 2011) and ZooKeys (first issue in 2008). However, in the case of ZooKeys, a minimum APC of €700 is required for mandatory open access; this is a huge obstacle, especially for researchers from developing countries, outside the group of those countries considered of lowest income, who do not automatically qualify for a fee waiver. The Zootaxa initiative from Magnolia Press Ltd. was so successful that it stimulated the creation of some new journals, including Phytotaxa, its sibling version dedicated to plant sciences. Data on Magnolia Press, which is based in New Zealand, is not easy to obtain. In the company’s website (magnoliapress.com) not much information is given, for instance, which is the registered business model (for-profit or not-for-profit).

The great significance of Zootaxa cannot be denied and it has become the most important vehicle for the publication of taxonomic studies. However, it is obviously not the single journal devoted to taxonomic science, such as depicted by some of the supporting letters. So, why has the suppression caused that enormous commotion? A quick answer is because in some megadiverse countries, such as Brazil in which most of the fauna remains undescribed, the higher education and scientific organizations evaluation systems have entirely embraced bibliometric indexes (e.g., Curry 2018, Krüger 2020, Reategui et al. 2020). Therefore, these metrics play an important role in the system and, for instance, a Brazil-based author’s choice of a scientific journal is largely based on values such as JIF. Consequently, the suppression of Zootaxa was received as a serious setback for taxonomists in such countries, especially so of course for those who publish most or even all their papers in the journal. This last aspect has a clear influence on the high rate of self-citations, as well as on the JIF of Zootaxa (Figures 1–3, 5), even considering that Clarivate recognized that 20% of papers on zoology were published by the journal.

What is self-citation and its consequences?

An important distinction should be made between two categories of self-citation, individual (author) and collective (journal) self-citation, although both potentially result in a boost of bibliometric indexes. There are many legitimate reasons for a researcher to cite his/her earlier works; in many cases, self-citations are unavoidable, depending on the circumstances or subject (Glänzel 2008). For example, an author could have been the single authority on a taxon during the last thirty years or present a high production in a specialized field. In these situations, self-citation alone is not necessarily fraudulent. Concerns arise when similar citations are not received in the work of other researchers in the field (Haustein & Larivière 2015) or, more commonly, based on the myth that self-citations help to artificially increase one’s own position in the community (Glänzel 2008). Differently, collective (journal) self-citation would be more problematic and is most probably a side-effect of the JIF mania, caused by the competition among journals for higher journal ranking, prestige, and higher monetary earnings through higher subscription pricing, which is often connected to journal-level bibliometrics. Dear readers do not be naïve: academic publications are million dollars businesses, truly having high profit margins (Monbiot 2011, Larivière et al. 2015). It is thus not surprising that journals engage in “impact factor wars” to manipulate their metrics using strategies such as
citation stacking, enlargement of cited references during the review process to include papers from the own journal (sometimes even coercive self-citation), and rejection of studies with low potential of citation (Haustein & Larivière 2015). Thus, a high level of self-citations in a journal is not easy to understand and should be checked with caution.

Self-citation phenomena, either of author or journal types, have been deeply investigated from various perspectives, including sociological and bibliometric aspects. A review focused on author self-citation and all its technical nuances was presented by Szomszor et al. (2020). Generally, high levels of self-citation are condemned, particularly when journal self-citation is interpreted as the result of manipulation for boosting indexes; in these situations, it has of course been determined that the biased metrics should not be considered for analyses of influence or impact (Ioannidis & Thombs 2019). However, self-citation can be legitimate in certain circumstances (Chorus & Waltman 2016). Consequently, levels of self-citation are not easy to analyze. Ioannidis & Thombs (2019) argued that these levels naturally vary, and high levels may be justifiable in highly specialized journals or in disciplines with few available journals.

Zootaxa hardly meets the aforementioned criteria for reasonable justification of high self-citations. Also, self-citation has increased in the journal over the years (Figure 4). Zootaxa is clearly not highly specialized. A quick examination of its issues will confirm this point and taxonomy as a whole is far from having only a few other available journals, at least to most groups. We compiled 123 journals that publish taxonomic papers, solely in the JCR database (Table 1). Therefore, there are clearly many options since these journals surely publish a great deal of descriptive taxonomy (Figures 1–2). If specialization were true for Zootaxa, we would expect that more specialized journals devoted to small groups, such as Odonatologica (dragonflies) and Acarologia (mites), which together represent a small part of extant diversity, would present similar or even higher self-citation levels, which is not the case (Figures 1–2, 5). On the other hand, we would also expect that journals specialized in megadiverse groups, such as beetles, bees, moths, butterflies, etc., would likewise have high levels of self-citation, which again is not the case (Figures 2, 5). Even journals dealing with taxa from a specific region of the world, such as Neotropical Ichthyology or South American Journal of Herpetology, also present significantly lower levels of self-citation. Therefore, the scope of Zootaxa, with its focus on taxonomy, does not explain the high level of self-citations. Instead, an explanation should be looked for in the elements of the Zootaxa phenomenon depicted above. A relevant aspect to be observed in this discussion is that the great majority of the citations given to the analyzed journals came from Zootaxa (Figures 1–3).

In addition, Chorus & Waltman (2016) carefully studied journal self-citation and proposed a measure to evaluate boosts in the JIF, detecting disproportional and potentially unethical behavior (“Impact Factor Biased Self-Citation Practices”). They did not consider their measure unfailing and discussed a few cases when self-citation would be legitimated. The latter include distinct situations. For instance, a researcher could be inspired by recent studies published in a journal and thus decides to conduct similar research; accordingly, that journal would naturally be an important source and his/her first
choice for publication. Also, there are situations when, after finishing a manuscript, an author realizes that most of the cited references are from a given journal; the latter becomes again a naturally expected option. We believe that such cases are strongly associated to the Zootaxa mega-journal phenomenon and appear to partially explain its high levels of self-citation.

We are confident that a journal can publish high-quality, robust science regardless of its level of self-citation. There is not necessarily any relationship between the rate of journal-level self-citation and the quality of the research published in a journal, particularly in the case of high output journals such as Zootaxa. Clarivate appears to want to promote a sense of competition among journals, so that it can sell its journal ranking data and analytics—clearly, zoological taxonomists and their publishing and citing behaviors do not fit the model that Clarivate seemingly wants to promote. Who is wrong here? The community of scientists producing taxonomic science for which they were specifically trained to, or the profit-driven analytics company that appears to know nothing about taxonomy and yet still wants to rank and supposedly provide sound judgement on the quality of taxonomic journals? We think of course that the scientific community knows best, whereas Clarivate appears to know or care very little about robust science.

Is the suppression a new attack on taxonomy?

Based on the Zootaxa suppression and the academic engagement into a bandwagon sympathetic commotion, opinions in social media, and letters from societies and researchers (e.g., SBH 2020, SOL 2020, Van Damme 2020), mainly from megadiverse countries, which appear to be in favor of the journal and ask Clarivate to review its decision, two main conclusions could be unearthed: (1) JIF is very important to taxonomy and (2) taxonomy is under attack. We seriously doubt both conclusions and invite the reader to carefully consider these aspects.

Why do researchers choose to publish in Zootaxa? Several reasons influence the preference of a researcher for a specific journal. Certainly, scope, visibility, prestige in the field, and JIF are among the most influential criteria. It is realistic to assume that most of the authors of Zootaxa are looking for a journal that has fast reviewing and production processes, is free of charge to authors (no APC), has a comparatively high JIF, and has no limit of pages for a manuscript. Authors and readers of the journal seem not to be concerned about the hybrid policy of paywall for accessing most of the published issues, with few published articles having GOA through payment by authors (APC-OA). Among the reasons for this complaisance are the article-processing charges for most open access journals with values of hundreds of Euros or US Dollars, generally excessively expensive for researchers from developing countries, the possible economic situation of most contributors (e.g., Brazilian researchers are authors of most papers in the journal, https://bit.ly/2Y0hsQ9), and the open access is viable through platforms of self-archiving, such as ResearchGate, or websites, such as Sci-Hub; the latter illegally makes paywalled content available for free and is regarded as “piracy.” High APC costs are clearly impeditive for researchers from most countries and
for small research groups lacking big budgets. Also, there are certainly many other priorities for spending
limited research money. Nevertheless, open access through platforms such as Sci-Hub is deprived of
respect for the intellectual property or copyright laws and certainly raises many moral issues. Therefore, it
is at least controversial that authors are opposed to paying fees to APC-GOA journals and are in favor of
hybrid platforms because it is possible to break paywalls to access payment-based content.

The holy grail quest for Diamond open access (no APC for authors, DOA) versus paywall policies
creates a paradox: how can journals cover the costs involved in publishing, copyediting, DOI generation,
data insertion into biodiversity databases, file archiving, etc.? These controversies concerning OA were
depicted with vibrant colors during the gradual transition of big publishers’ journals, such as Diversity and
Distributions, from readers’ payment to authors’ payment in an APC-OA model (Peterson et al. 2019).
Gradually, the scientific scholarship publications are changing from paywall to GOA with authors paying the
charges (APC-GOA) for publication in biodiversity journals. Certainly, this is the best business model option
for the big publishers because it avoids losses generated by white (sometimes named black OA) or green
platforms such as Sci-Hub, ResearchGate, or Academia Inc. (site: academia.edu). Here it is important to
highlight that authors never received messages from *Zootaxa* demanding the removal of files from any such
platforms, quite unlike the crusade carried out by big publishers against these kinds of storage and access-
granting.

We are aware of the leading role that bibliometric indexes play in the science publishing industry,
as well as their considerable influence on how and where science is done nowadays. However, JIF cannot
determine the development of a whole scientific field, even when supporting agencies adopt it as a
criterion of quality. A high JIF does not necessarily come from a high-quality taxonomic study; it is probably
much more connected to the scope and diversity of methods and sources of data that are aligned to high
JIF ranked journals. Another aspect to be considered is that *Zootaxa* was focused initially on long papers on
descriptive taxonomy; subsequently, it gradually changed its scope and started accepting short notes and
studies on various subjects associated to zoological taxonomy/systematics. Curiously, soon after Clarivate
announced the reinstatement of the JIF of *Zootaxa* for next September (Clarivate 2020b), the journal’s
website refreshed its JIF, showing perhaps that it is willingly taking part in the JIF games.

Conclusions

Menaces to taxonomy as a science come from distinct sources and the low bibliometric values of its
journals is only one factor that contributes for establishing the so-called taxonomic impediment. Clarivate is
a for-profit company, but Magnolia Press Ltd. and other similar publishers are also not examples of
nonprofit NGOs. The reversion of the suppression of *Zootaxa* by Clarivate is irrelevant to biological sciences
and taxonomy because Journal Impact Factors are statistically illiterate (Curry 2012) and cause a great deal
of harm to science. This reinstatement should certainly not be regarded by taxonomists as a victory for the
field. As a community we should not endorse the villainy of bibliometric policies that bring more harm than benefit to our field.

We hope the community of taxonomists gets engaged with renewed strength in actions directly connected to the development and promotion of our science. Instead of being deeply focused on proprietary gaming, irreproducible journal metrics sold to our institutions and research funders, controlled by a USA/UK based company, itself acquired in 2016 by two private equity funds (Onex Corporation and Baring Private Equity Asia – ONEX/BPEA; see Cision Ltd./PR Newswire 2016, https://prn.to/31nGDYC, BPEA 2019, https://bit.ly/3hm9yC4) we should perhaps concentrate, for instance, on securing professional positions for young talented taxonomists, who are much needed for the proper development and maintenance of museums, scientific collections, and public digital databases. We are sure that Zootaxa has provided an invaluable service to the field of taxonomy. Suppression from JIF will not change or diminish this remarkable contribution.

We emphasize that menace to taxonomy comes not much from the suppression of any specific journal from a bibliometric platform belonging to a big company. Much more harm is caused by the limited renewal of professional positions and the loss of collections, such as the huge ones that were housed at the Museu Nacional of the Federal University of Rio de Janeiro. These are the real issues that should motivate the engagement and action of taxonomists around the world. In short and loud, taxonomy is produced by taxonomists, not by journals. We recognize the deep impact the JIF mania has on the careers of taxonomists, due to governmental policies that embraced bibliometric evaluations in a highly competitive environment, with researchers struggling for limited grants. However, our current challenges cannot be dealt with through endorsement of the status quo. We need to change the focus. Also, it is contradictory to argue in favor of the reinstatement of Zootaxa to the JIF without considering that this journal has this index influenced by the currently high levels of self-citation. Regardless of its real significance, JIF is considered one of the attractive qualities of Zootaxa. The bibliometrics game in science has its own rules. An honorable choice would be to reject bibliometric indexes altogether, including JIF, instead of considering them when convenient. We are seeing a bankruptcy of the system of scientific publications devoted to the knowledge on biodiversity, at least for researchers, and it would be much better if the system could be somehow reinvented with ways to support diamond open access (DOA) as its main goal.

Taxonomic groups that still need massive descriptive studies, with many species waiting to be discovered, such as Coleoptera, Hymenoptera, Lepidoptera, Diptera, and Arachnida, have many journals devoted specifically to them. The JIF of these journals is similar to that of Zootaxa and, of course, research on those taxa can also be published in more general outlets in Entomology or Zoology categories. Therefore, the high levels of self-citation in Zootaxa are hardly justifiable. It appears to us that these high levels are caused by a sociological bias, being a side effect of the Zootaxa phenomenon. Myths about Zootaxa as the unique journal that publishes taxonomic studies are clearly harmful to the field. In addition, an urgent question must be answered: if Zootaxa decides to ignore JIF altogether, would it remain a good
vehicle for the publication of taxonomic papers? If your answer is no, there is certainly a big problem with the community of practitioners in the taxonomic world.

Acknowledgements
André Adrian Padial (DBot – UFPR) helped a great deal with the statistical analysis.

Competing interests
The authors declare no competing interests and their organizations had no role in any steps of the study, from its design to submission for publication.

Funding
This study was partially supported by grants from National Council for Scientific and Technological (CNPq) through research productivity fellowships to GM (proc. 303229/2018-7), JAR (proc. 300019/2017-3), LF (proc. 308337/2019-0), and LM (proc. 308994/2018-3).

Author contributions
APP designed the study, compiled, organized, and analyzed the data, wrote the manuscript, revised, and approved its final version.
GM, LF, and RM wrote the manuscript, revised, and approved its final version.
LM and JR revised and approved the final version.

Data availability
Primary compiled data was arranged in Supplementary File 1.

References
Alberts B (2013) Impact Factor Distortions. Science 340 (6134): 787. DOI: http://dx.doi.org/10.1126/science.1240319
Baring Private Equity Asia - BPEA (2019) Baring Private Equity Asia and Onex Partners announce secondary offering of Clarivate Analytics. December 4, 2019. Access August 26, 2020. Available at: https://www.bpeasia.com/news/191204-joint-press-release-on-clarivate-analytics/
Brazilian Society of Herpetology (SBH) (2020) Letter to Clarivate. http://sbherpetologia.org.br/assets//Documentos/C%C3%B3pia%20de%20SBH%20Zootaxa.docx
Brezgov S (2014) [Updated May 31, 2019] Chinese Publisher MDPI Added to List of Questionable Publishers. Access August 26, 2020. Available at: https://scholarlyoa.com/chinese-publisher-mdpi-added-to-list-of-questionable-publishers/
solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions 25(1): 5–8. https://doi.org/10.1111/ddi.12888

Rafael JA, Aguiar AP, Amorim DS (2009) Knowledge of insect diversity in Brazil: challenges and advances. Neotropical Entomology 38(5): 565–570.

R Core Team (2018) [version 3.50] R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org

Reategui E, Pires A, Cariato M, Franco SRK (2020) Evaluation of Brazilian research output in education: confronting international and national contexts. Scientometrics https://doi.org/10.1007/s11192-020-03417-z

Sociedad de Odonatologia Latinoamericana - SOL (2020) Letter to Marian Hollingsworth Clarivate Analytic. July 3, 2020. Access August 20, 2020. Available at: http://www.odonatasol.org/wp-content/uploads/2020/07/SOL-support-for-ZOOTAXA-1.pdf

Szomszor M, Pendlebury DA, Adams J (2020) How much is too much? The difference between research influence and self-citation excess. Scientometrics 123: 1119–1147. https://doi.org/10.1007/s11192-020-03417-5

The PLoS Medicine Editors (2006) The Impact Factor Game. PLoS Med 3(6): e291. https://doi.org/10.1371/journal.pmed.0030291

Van Damme K (2020) Zootaxa Suppressed from 2019 JCR Data (2020 release). July 16, 2020. Access August 20, 2020. Available at: https://www.gopetition.com/petitions/zootaxa-suppressed-from-2019-jcr-data-2020-release.html?fbclid=IwAR3dL0dntvkIw_xBdx00rB7Oss9e6y-NvRCC_i8WMvo2I0KJJJe1VXuMDoP8

Van Norden R (2013) Brazilian citation scheme outed. Thomson Reuters suspends journals from its rankings for ‘citation stacking’. Nature 500(7464), 510–511. https://doi.org/10.1038/500510a

Vanclay JK (2012) Impact factor: outdated artefact or stepping-stone to journal certification? Scientometrics 92: 211–238. https://doi.org/10.1007/s11192-011-0561-0

Wheeler QD (2008) Introductory: Toward the New Taxonomy. In Q D Wheeler (ed) The New Taxonomy, Systematics Association Special Volume Series, Boca Raton, CRC Press.

Wheeler QD, Knapp S, Stevenson DW, Stevenson J, Blum SD, Boom BM, Borisy GG, Buizer JL, De Carvalho MR, Cibrian A, Donoghue MJ, Doyle V, Gerson EM, Graham CH, Graves P, Graves SJ, Guralnick RP, Hamilton AL, Hanken J, Law W, Lipscomb DL, Lovejoy TE, Miller H, Miller JS, Naeem S, Novacek MJ, Page LM, Platnick NI, Porter-Morgan H, Raven PH, Solis MA, Valdecasas AG, Van Der Leeuw S, Vasco A, Vermeulen N, Vogel J, Walls RL, Wilson EO, Woolley JB (2012) Mapping the biosphere: exploring species to understand the origin, organization and sustainability of biodiversity. Systematics and Biodiversity 10(1): 1–20. https://doi.org/10.1080/14772000.2012.665095

Zhang Z-Q (2011) Accelerating biodiversity descriptions and transforming taxonomic publishing: the first decade of Zootaxa. Zootaxa 2896: 1–7.
Zhang Z-Q (2014) Sustaining the development of world’s foremost journal in biodiversity discovery and inventory: Zootaxa editors and their contributions. Zootaxa 3753 (6): 597–600.

http://dx.doi.org/10.11646/zootaxa.3753.6.6
Figure legends

Figure 1. Amount of citations including all journals (blue), from most-citing journal (yellow), and self-citations (red) in the category Zoology from Journal Citation Reports (JCR) Science Edition database in Clarivate. * The data of most-citing journal is from Zootaxa; except for Zootaxa where it is ZooKeys.

Figure 2. Amount of citations including all journals (green), from most-citing journal (yellow), and self-citations (red) in the category Entomology from Journal Citation Reports (JCR) Science Edition database of Clarivate. * The data of most-citing journal is from Zootaxa; except for Zootaxa where it is ZooKeys.

Figure 3. Amount of citations including all journals (blue), from most-citing journal (yellow), and self-citations (red) for the top ten zoological journals (TTJ, eight are on JCR) when the number of new available names is considered. Journal Citation Reports (JCR) Science Edition database of Clarivate. * The data of most-citing journal is from Zootaxa; except for Zootaxa where it is ZooKeys.

Figure 4. Evolution of percentage of journal-level self-citation in Zootaxa based on JCR/Clarivate 2019.

Figure 5. Mean percentage (dot) and standard deviation (line) of self-citations from 2010 to 2018 based on JCR/Clarivate 2019.

Figure 6. Mean of the ratio between JIF without self-citations and JIF (dot) and standard deviation (line) of journal impact factor (JIF) without self-citations from 2010 to 2018 based on JCR/Clarivate 2019.

Figure 7. Number of citations based on JCR/Clarivate 2019 and notations of observed effects on bibliometric measures compared to Zootaxa.

Tables, Figure captions and graphs

Table 1. Journals, and their publishing model, indexed in Journal Citation Reports (Web of Science Core Collection™) and that publish taxonomic studies included in the Zoology and Entomology categories plus the top ten zoological journals (TTJs) in number of new taxa in the last five years based on the Zoological Records. APC-GOA = gold open access through payment of article processing charges; DOA = diamond open access; GOA = gold open access; Hybrid = optional payment of gold open access, access to the content via subscription (paywall).

Journal	Abbreviation used in JCR	Category	ISSN	Publisher	Publishing model
Acarologia	ACAROLOGIA	Entomology	0044-586X	Centre de Biologie pour la Gestion des Populations, France INPA/SciELO	DOA
Acta Amazonica	ACTA AMAZON	Zoology	0044-5967	Acta Chiropterologica, published by the Museum and Institute of Zoology at the Polish Academy of Sciences, is devoted solely to the study and discussion of bats.	DOA
Acta Chiropterologica	ACTA CHIROPTEROL	Zoology	1508-1109	Acta Chiropterologica, published by the Museum and Institute of Zoology at the Polish Academy of Sciences, is devoted solely to the study and discussion of bats.	DOA
Acta Entomologica Musei Nationalis Pragae	ACTA ENT MUS NAT PRA	Entomology	1804–6487	BioOne/ Museum and Institute of Zoology, Polish Academy of Sciences Hungarian Academy of Sciences	Hybrid/APC-GOA [?]
Acta Zoologica Academiae Scientiarum Hungaricae	ACTA ZOOL ACAD SCI H	Zoology	1217-8837	BioOne/Entomological Society of Southern Africa Pensoft Publishers	Hybrid/APC-GOA
African Entomology	AFR ENTOMOL	Entomology	1021-3589	BioOne/Entomological Society of Southern Africa Pensoft Publishers	Hybrid/APC-GOA
African Invertebrates	AFR INVERTEBR	Zoology	1681-5556	Taylor & Francis Group	Hybrid/APC-GOA
African Zoology	AFR ZOOL	Zoology	1562-7020	Taylor & Francis Group	Hybrid/APC-GOA
Journal Name	Abbreviation	Subject	Volume	Publisher	Access Model
---	--------------	---------------	--------	---	--------------
American Malacological Bulletin	AM MALACOL BULL	Zoology	0740-2783	The Sheridan Press	Hybrid/APC-GOA
American Museum Novitates	AM MUS NOVIT	Zoology	0003-0082	BioOne/American Museum of Natural History	Hybrid/APC-GOA
Amphibia-Reptilia	AMPHIBIA REPTILIA	Zoology	0173-5373	Brill Academic Publishers	Hybrid/APC-GOA
Annals of Carnegie Museum	ANN CARNEGIE MUS	Zoology	0097-4463	BioOne/Carnegie Museum	Hybrid/APC-GOA
Annals of the Entomological Society of America	ANN ENTOMOL SOC AM	Entomology	0013-8746	Oxford University Press	Hybrid/APC-GOA
Annales de la Societe Entomologique de France	ANN SOC ENTOMOL FR	Entomology	0037-9271	Taylor & Francis Group	Hybrid/APC-GOA
Aquatic Insects	AQUAT INSECT	Entomology	0165-0424	Taylor & Francis Group	Hybrid/APC-GOA
Arthropod Systematics & Phylogeny	ARTHROPOD SYST PHYLO	Entomology	1863-7221	Senckenberg	DOA
Arthropoda Selecta	ARTHROPODA SEL	Entomology	0136-006X	Naturhistorische, Germany	DOA
Asiaen Herpetological Research	ASIAN HERPETOL RES	Zoology	2095-0357	Chinese Academy of Sciences/Science Press	Hybrid/APC-GOA
Asian Myrmecology	ASIAN MYRMECOL	Entomology	1985-1944	International Network for the Study of Asian Ants	DOA
Austral Entomology	AUSTRAL ENTOMOL	Entomology	2052-1758	John Wiley & Sons	Hybrid/APC-GOA
Bulletin of Insectology	B INSECTOL	Entomology	1721-8861	Department of Agricultural and Food Sciences, Italy	DOA
Belgian Journal of Zoology	BELG J ZOOL	Zoology	0777-6276	Royal Belgian Zoological Society and the Royal Belgian Institute of Natural Sciences	DOA
Caldasia	CALDASIA	Zoology	0366-5232	Universidad Nacional de Colombia/SciELO	DOA
Canadian Entomologist	CAN ENTOMOL	Entomology	0008-347X	Cambridge University Press	Hybrid/APC-GOA
Canadian Journal of Zoology	CAN J ZOOL	Zoology	0008-4301	Canadian Science Publishing	Hybrid/APC-GOA
Coleopterists Bulletin	COLEOPTS BULL	Entomology	0010-065X	BioOne/The Coleopterists Society	Hybrid/APC-GOA
Contributions to Zoology	CONTRIB ZOOL	Zoology	1383-4517	Brill Academic Publishers	APC-GOA
Copeia	COPEIA	Zoology	0045-8511	BioOne/American Society of Ichthyologists and Herpetologists (ASIH)	APC-GOA
Cretaceous Research	CRETAUCEOUS RES	Paleontolog	0195-6671	Elsevier B.V.	Hybrid/APC-GOA
Current Herpetology	CURR HERPETOL	Zoology	1345-5834	BioOne/The Herpetological Society of Japan	Hybrid/APC-GOA
Cybium	CYBIUM	Zoology	0399-0974	Société Française d'Icthyologie	Hybrid/APC-GOA
Deutsche Entomologische Zeitschrift	DEUT ENTOMOL Z	Entomology	1435-1951	Pensoft Publishers	APC-GOA
Entomologica Americana	ENTOMOL AM NY	Entomology	1947-5136	BioOne/The New York Entomological Society	Hybrid/APC-GOA
Entomologica Fennica [merged with Annales Zoologici Fennici]	ENTOMOL FENNICA	Entomology	0785-8760	Finnish Zoological and Botanical Publishing Board	APC-GOA
Entomological News	ENTOMOL NEWS	Entomology	0013-872X	BioOne/The American Entomological Society	Hybrid/APC-GOA
Entomological Research	ENTOMOL RES	Entomology	1738-2297	John Wiley & Sons	Hybrid/APC-GOA
Entomological Science	ENTOMOL SCI	Entomology	1343-8786	John Wiley & Sons	Hybrid/APC-GOA
Journal Name	Abbreviation	Subject Area	Volume	Year	
--	--------------	--------------	--------	------	
European Journal of Entomology	EUR J EN TOMOL	Entomology	1210-5759		
European Journal of Taxonomy	EUR J TAXON	Zoology	2118-9773		
Florida Entomologist	FLA EN TOMOL	Entomology	0015-4040		
Gayana	GAYANA	Zoology	0717-652X		
Herpetological Journal	HERPETOL J	Zoology	0268-0130		
Herpetological Monographs	HERPETOL MONOG	Zoology	0733-1347		
Herpetologica	HERPETOLOGICA	Zoology	0018-0831		
Hystrix-Italian Journal of Mammalogy	HYSTRIX	Zoology	0394-1914		
Ichthyological Research	ICHTHYOL RES	Zoology	1341-8998		
Ichthyological Research	ICHTHYOL EXPLOR FRES	Zoology	0936-9902		
Insect Systematics & Evolution Insects	INSECT SYST EVOL	Entomology	1399-560X		
International Journal of Acarology	INT J ACAROL	Entomology	0164-7954		
International Journal of Odonatology	INT J ODONATOL	Entomology	1388-7890		
International Journal of Primatology	INT J PRIMATOL	Zoology	0164-0291		
Invertebrate Systematics	IN VER TE BR SYST	Zoology	1445-5226		
Journal of Arachnology	J ARACHNOL	Entomology	0161-8202		
Journal of Asia-Pacific Entomology	J ASIA PAC EN TOMOL	Entomology	1226-8615		
Journal of Conchology	J CON CHOL	Zoology	0022-0019		
Journal of Crustacean Biology	J CRUSTACEAN BIOL	Zoology	0278-0372		
Journal of the Entomological Research Society	J EN TOMOL RES SOC	Zoology	1302-0250		
Journal of Helminthology	J HELMIN THOL	Zoology	0022-149X		
Journal of Herpetology	J HERPETOL	Zoology	0022-1511		
Journal of Hymenoptera Research	J HYMENOPT RES	Entomology	0022-1511		
Journal of the Kansas Entomological Society	J K AN S AS EN TOMOL SOC	Entomology	0022-8567		
Journal of the Lepidopterists Society	J L EPID SOC	Entomology	0024-0966		
Journal of Mammalogy	J MAMMAL	Zoology	0022-2372		
Journal of Molluscan Studies	J MOLLUS STUD	Zoology	0260-1230		
Journal of Natural History	J NAT HIST	Zoology	0022-2933		
Journal of Nematology	J N EMATOL	Zoology	0022-300X		
Journal of Systematic Palaeontology	J SYST PAL AE ON TOL	Paleontolog	1477-2019		
Journal of Zoological Systematics and Evolutionary Research Malacology	J ZOOL SYST EVOL RES	Zoology	0947-5745	John Wiley & Sons	Hybrid/APC-GOA
---	---	---	---	---	---
Malacology	MALACOLOGIA	Zoology	0076-2997	BioOne/Institute of Malacology	Hybrid/APC-GOA
Mammalia	MAMMALIA	Zoology	1864-1547	Walter de Gruyter GmbH	Hybrid/APC-GOA
Molluscan Research	MOLLUSCAN RES	Zoology	1323-5818	Taylor & Francis Group	Hybrid/APC-GOA
Myrmecological News	MYRMECOL NEWS	Entomology	1997-3500	Austrian Society of Entomofaunistics	DOA
Nautilus	NAUTILUS	Zoology	2358-2936	BioOne/Brazilian Crustacean Society	DOA
Nematology	NEMATOLOGY	Zoology	1388-5545	Bailey-Matthews National Shell Museum	DOA [?]
Neotropical Entomology	NEOTROP ENTOMOL	Entomology	1519-566X	Springer Nature	Hybrid/APC-GOA
Neotropical Ichthyology	NEOTROP ICHTHYOL	Zoology	1679-6225	Sociedade Brasileira de Ictiologia/SciELO	APC-GOA
New Zealand Journal of Zoology	NEW ZEAL J ZOOL	Zoology	0301-4223	Taylor & Francis Group	Hybrid/APC-GOA
Nota Lepidopterologica	NOTA LEPIDOPTEROLOGI NZ ENTOMOL	Zoology	0342-7536	Pensoft Publishers	APC-GOA
New Zealand Entomologist	ODONATOLOGICA	Entomology	0375-0183	Osmylus Scientific Publishers/International Odonatological Foundation, Societas Internationalis Odonatologica (S.I.O.)	Hybrid/APC-GOA
Organisms Diversity & Evolution Oriental Insects	ORG DIVERS EVOL	Zoology	1439-6092	Springer Nature	Hybrid/APC-GOA
Proceedings of the Entomological Society of Washington Pacific Science	P ENTOMOL SOC WASH	Entomology	0013-8797	BioOne/Entomological Society of Washington	Hybrid/APC-GOA
Pacific Science	PAC SCI	Zoology	0030-8870	BioOne/University of Hawai‘i Press	Hybrid/APC-GOA
Paleontology	PALEONTOL J	Paleontolog y	0022-3360	Cambridge University Press	Hybrid/APC-GOA
Pan-Pacific Entomologist	PAN PAC ENTOMOL	Entomology	0031-0603	BioOne/Pacific Coast Entomological Society	Hybrid/APC-GOA
Phyllomedusa	PHYLLOMEDUSA	Zoology	1519-1397	Esalq/USP	OA
Primates	PRIMATES	Zoology	0032-8332	Springer Nature	Hybrid/APC-GOA
Records of the Australian Museum	REC AUST MUS	Zoology	0067-1975	Australian Museum	DOA [?]
Revista Brasileira de Entomologia	REV BRAS ENTOMOL	Entomology	0085-5626	Sociedade Brasileira de Entomologia/SciELO	APC-GOA
Revista Colombiana de Entomologia	REV COLOMB ENTOMOL	Entomology	0120-0488	Colombian Society of Entomology	APC-GOA
Revista de la Sociedad Entomológica Argentina	REV SOC ENTOMOL ARGE	Entomology	0373-5680	Sociedad Entomológica Argentina/Biotaxa/SciELO	DOA
Revue Suisse de Zoologie	REV SUISSE ZOOL	Zoology	0035-418X	BioOne/Muséum d’histoire naturelle, Genève	DOA
Russian Journal of Herpetology	RUSS J HERPETOL	Zoology	2713-1467	Folium Publishing Company	Hybrid/APC-GOA
Russian Journal of Nematology	RUSS J NEMATOL	Zoology	0869-6918	RUSSIAN ACAD SCI, INST PARASITOLOGY	Hybrid/APC-GOA
South American Journal of Herpetology	SAM J HERPETOL	Zoology	1808-9798	BioOne/Brazilian Society of Herpetology	DOA [?]
Journal Title	Abbreviation	Subject	Volume - Issn	Publisher/Owner	Type
Salamandra	SALAMANDRA	Zoology	0036-3375	German Society for Herpetology and Herpetoculture Sociedad Hispano-Luso-Americana de Lepidopterología España	APC-GOA
Shilap-Revista de Lepidopterologia	SHILAP REV LEPIDOPT	Entomology	0300-5267	Verlag Dr. Friedrich Pfeil	DOA
Southwestern Entomologist	SOUTHWEST ENTOMOL	Entomology	0147-1724	BioOne/Society of Southwestern Entomologists	Hybrid/APC-GOA
Spixiana	SPIXIANA	Zoology	341-8391	John Wiley & Sons	Hybrid/APC-GOA
Studies on Neotropical Fauna and Environment Systematic and Applied Acarology Systematic Entomology	STUD NEOTROP FAUNA E SYST APPL ACAROL SYST ENTOMOL	Entomology	0165-0521	BioOne/Systematic and Applied Acarology Society	Hybrid/APC-GOA
Transactions of the American Entomological Society Turkish Journal of Zoology Vertebrate Zoology	T AM ENTOMOL SOC TURK J ZOOL VERTEBR ZOOL	Zoology	1300-0179	Scientific and Technological Research Council of Turkey Senckenberg Gesellschaft für Naturforschung	Hybrid/APC-GOA
ZooKeys	ZOOKEYS	Zoology	1313-2989	Pensoft Publishers	DOA
Zoologischer Anzeiger	ZOOL ANZ	Zoology	0044-5231	Elsevier B.V.	Hybrid/APC-GOA
Zoological Journal of the Linnean Society Zoological Letters Zoology in the Middle East Zoological Research	ZOOL J LINN SOC LOND ZOOL LETT ZOOL MIDDLE EAST ZOOL RES	Zoology	0024-4082	Oxford University Press	Hybrid/APC-GOA
Zoological Science	ZOOL SCI	Zoology	0289-0003	BioOne/Zoological Society of Japan	Hybrid/APC-GOA
Zoologica Scripta	ZOOL SCR	Zoology	0300-3256	John Wiley & Sons	Hybrid/APC-GOA
Zoological Studies	ZOOL STUD	Zoology	1021-5506	Biodiversity Research Center, Academia Sinica, Taiwan MAIK Nauka-Interperiodica PUBL	DOA
Zoologichesky Zhurnal	ZOOL ZH [merged with Annales Zoologici Fennici]	Zoology	0044-5134	Unknown	Unknown
Zoologia	ZOOLOGIA CURITIBA	Zoology	1984-4670	Pensoft Publishers	APC-GOA
Zoology	ZOOLOGY	Zoology	0944-2006	Elsevier B.V.	Hybrid/APC-GOA
Zoosystematics and Evolution Zootaxa	ZOOSYST EVOL ZOOTAXA	Zoology	1435-1935	Pensoft Publishers	DOA
			1175-5326	Magnolia Press	Hybrid/APC-GOA
Figure 1. Amount of citations including all journals (blue), from most-citing journal (yellow), and self-citations (red) in the category Zoology from Journal Citation Reports (JCR) Science Edition database in Clarivate. * The data of most-citing journal is from Zootaxa; except for Zootaxa where it is ZooKeys.
Figure. 2. Amount of citations including all journals (green), from most-citing journal (yellow), and self-citations (red) in the category Entomology from Journal Citation Reports (JCR) Science Edition database of Clarivate. * The data of most-citing journal is from Zootaxa; except for Zootaxa where it is ZooKeys.
Figure. 3. Amount of citations including all journals (blue), from most-citing journal (yellow), and self-citations (red) for the top ten zoological journals (TTJ, eight are on JCR) when the number of new available names is considered. Journal Citation Reports (JCR) Science Edition database of Clarivate. *The data of most-citing journal is from Zootaxa; except for Zootaxa where it is ZooKeys.

Figure. 4. Evolution of percentage of journal-level self-citation in Zootaxa based on JCR/Clarivate 2019.
Figure 5. Mean percentage (dot) and standard deviation (line) of self-citations from 2010 to 2018 based on JCR/Clarivate 2019.

Figure 6. Mean of the ratio between JIF without self-citations and JIF (dot) and standard deviation (line) of journal impact factor (JIF) without self-citations from 2010 to 2018 based on JCR/Clarivate 2019.
Supplementary File 1

Bibliometric data from 2010–2018 of the 123 selected journals among the 168 journals in Zoology and 101 in Entomology, plus top ten zoological journals (TTJ), eight are on JCR) available in the Web of Science Core Collection, Journal Citation Reports (JCR) Science Edition database of Clarivate.

Journal;Category JCR;Status;Quartile 2019 (*Zootaxa 2018);Metrics;

All Yrs;2019;2018;2017;2016;2015;2014;2013;2012;2011;2010;Rest;2010-2018;2014-2018;

ZOOTAXA;ZOOLOGY;Top Ten;3;ALL citations;19280;0;640;1892;2097;2003;1983;1783;1592;1571;1354;1069;14915;8615;2011;2010;Rest;2010-2018;2014-2018;

ZOOTAXA;ZOOLOGY;Top Ten;3;ALL citations (excluding self and most);12076;0;251;966;1216;1166;1284;1146;1023;1115;902;792;9069;4883;

ZOOTAXA;ZOOLOGY;Top Ten;3;Self-citation;6174;0;337;818;763;719;603;544;486;393;379;277;5039;3240;

ZOOTAXA;ZOOLOGY;Top Ten;3;Ratio of self-citations;0.320228216;#DIV/0!;0.5265625;0.432346723;0.359861558;0.30408472;0.305103758;0.305276382;0.248249523;0.279911374;0.259120674;0.12434966;1.985808624;

ZOOTAXA;ZOOLOGY;Top Ten;3;JIF;0;0,768;1,042;0,837;0,775;0,408;0;0;0;0;0;0;3,062;3,062;

ZOOTAXA;ZOOLOGY;Top Ten;3;JIF (without self-citations);0;0,705;1,01;0,772;0,716;0,342;0;0;0;0;0;0;2,84;2,84;

ACTA AMAZON;ZOOLOGY;ZOOLOGY;3;ALL citations;1583;10;35;38;87;69;60;42;63;69;97;1013;560;289;

ACTA AMAZON;ZOOLOGY;ZOOLOGY;3;ALL citations (excluding self and most);1500;8;29;36;86;67;58;41;60;66;92;957;535;276;

ACTA AMAZON;ZOOLOGY;ZOOLOGY;3;Self-citation;38;1;5;1;1;1;1;1;1;1;1;2;1;1;1;1;2;1;1;23;14;9;

ACTA AMAZON;ZOOLOGY;ZOOLOGY;3;Ratio of self-citations;0.024005054;0,1;0,142857143;0,026315789;0,011494253;0,014492754;0,016666667;0,023809524;0,031746032;0,014492754;0,010309278;0,022704837;0,292184193;0,211826605;

ACTA AMAZON;ZOOLOGY;ZOOLOGY;3;JIF;0;0,768;1,042;0,837;0,775;0,408;0;0;0;0;0;0;3,062;3,062;

ACTA AMAZON;ZOOLOGY;ZOOLOGY;3;JIF (without self-citations);0;0,705;1,01;0,772;0,716;0,342;0;0;0;0;0;0;2,84;2,84;

ACTA CHIROPTEROL;ZOOLOGY;ZOOLOGY;3;ALL citations;824;2;9;36;86;67;58;41;60;66;92;957;535;276;
Publication Title	Year	JIF (without self-citations)	Ratio of self-citations	All citations excluding self and most					
AM MUS NOVIT; ZOOLOGY; ZOOLOGY	3	1.000	0.671	0.294; 0.0459288; 0.398204644; 0.256524858;					
ANN CARNEGIE MUS; ZOOLOGY; ZOOLOGY	3	1.500	0.361	0.563; 0.857; 0.563; 0.134; 0.204; 0.256; 0.313;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
ANN HERPETOL RES; ZOOLOGY; ZOOLOGY	3	1.000	0.500	0.500; 0.100; 0.500; 0.100; 0.100; 0.100;					
Journal	Category	Subcategory	Year	Total Citations	Citations (excluding self and most)	Citations (self-citation)	Ratio of self-citations	JIF	JIF (without self-citation)
------------------------------	----------	-------------	------	-----------------	--------------------------------------	--------------------------	-----------------------	-----	----------------------------
ICHTHYOL EXPLOR FRES; ZOOLOGY; ZOOLOGY; 2; ALL citations	528; 2; 15; 10; 28; 28; 19; 14; 19; 20; 14; 32; 13; 123; 944								
ICHTHYOL EXPLOR FRES; ZOOLOGY; ZOOLOGY; 2; ALL citations (excluding self and most)	399; 2; 8; 21; 21; 29; 15; 13; 17; 14; 258; 139; 80								
ICHTHYOL EXPLOR FRES; ZOOLOGY; ZOOLOGY; 2; ZOOTAXA	124; 0; 6; 9; 7; 7; 13; 14; 4; 6; 6; 5; 72; 42								
ICHTHYOL EXPLOR FRES; ZOOLOGY; ZOOLOGY; 2; Self-citation	5; 0; 1; 0; 0; 0; 0; 1; 0; 3; 2; 1								
ICHTHYOL EXPLOR FRES; ZOOLOGY; 2; Ratio of self-citations	0.009469697; 0.066666667; 0.04; 0.014666667; 0.009584665; 0.108333333; 0.066666667; 0.1								
ICHTHYOL EXPLOR FRES; ZOOLOGY; ZOOLOGY; 2; ZOOTAXA	124; 0; 6; 9; 7; 7; 13; 14; 4; 6; 6; 5; 72; 42								
ICHTHYOL EXPLOR FRES; ZOOLOGY; ZOOLOGY; 2; Self-citation	5; 0; 1; 0; 0; 0; 0; 1; 0; 3; 2; 1								
ICHTHYOL EXPLOR FRES; ZOOLOGY; 2; Ratio of self-citations	0.009469697; 0.066666667; 0.04; 0.014666667; 0.009584665; 0.108333333; 0.066666667; 0.1								
ICHTHYOL EXPLOR FRES; ZOOLOGY; ZOOLOGY; 2; ZOOTAXA	124; 0; 6; 9; 7; 7; 13; 14; 4; 6; 6; 5; 72; 42								
ICHTHYOL EXPLOR FRES; ZOOLOGY; ZOOLOGY; 2; Self-citation	5; 0; 1; 0; 0; 0; 0; 1; 0; 3; 2; 1								
ICHTHYOL EXPLOR FRES; ZOOLOGY; 2; Ratio of self-citations	0.009469697; 0.066666667; 0.04; 0.014666667; 0.009584665; 0.108333333; 0.066666667; 0.1								
Journal	Zoology	Self	Ratio of self-	ALL citations (excluding self and most)	JIF (without self-citations)	JIF (excluding self)	Zootaxa		
---------	---------	------	---------------	--	-----------------------------	-----------------------	---------		
J Conchol	Zooology	3	227	0.5; 21; 9; 8; 7; 9; 4; 8; 14; 142; 85; 50;					
J Conchol	Zooology	3	Zootaxa	0; 1; 0; 0; 0; 2; 1; 2; 0; 0; 0; 0; 13; 5; 3;					
J Conchol	Zooology	3	Self-citation	18; 0; 1; 2; 1; 1; 0; 1; 0; 10; 8; 6;					
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							
J Conchol	Zooology	3							

Note: The table above contains entries from various journals related to zooology and self-citation rates, along with JIF (journal impact factor) and Zootaxa data. The entries are for different years, with specific ranges and values provided.
Journal	Top Ten	Publications Type	All Publications	Self-citations	Ratio of self-citations	JIF (without self-citations)	Ratio of self-citations	
SALAMANDRA;ZOOLOGY;ZOOLOGY;ZOOLOGY;2	Self-citation	22,06:0,2;2,1;1,0;1,1;1,8;14,11;						
SALAMANDRA;ZOOLOGY;ZOOLOGY;ZOOLOGY;2	Ratio of self-citations	0,054187192;0,146341463;0,066666667;0,071428571;0,040,058823529;0,066666667;0,052631579;0,050632911;0,502558477;0,324436702;						
SPIXIANA;ZOOLOGY;ZOOLOGY;ZOOLOGY;4	ALL citations	323,2;16,11;19,12,15;9,20,8,201;120,68;						
SPIXIANA;ZOOLOGY;ZOOLOGY;ZOOLOGY;4	JIF (excluding self and most)	1,532;1,313;1,46;1,25;1,25;1,1;1,229;1,0;0,8,602;6,373;						
SPIXIANA;ZOOLOGY;ZOOLOGY;ZOOLOGY;4	Ratio of self-citations	0,054187192;0,146341463;0,066666667;0,071428571;0,040,058823529;0,066666667;0,052631579;0,050632911;0,502558477;0,324436702;						
SPIXIANA;ZOOLOGY;ZOOLOGY;ZOOLOGY;4	JIF (without self-citations)	0,054187192;0,146341463;0,066666667;0,071428571;0,040,058823529;0,066666667;0,052631579;0,050632911;0,502558477;0,324436702;						
VERTEBR ZOOLOGY;ZOOLOGY;ZOOLOGY;3	ALL citations	208;10;21;26;29;25;10;19,8;5,34;164;122;						
VERTEBR ZOOLOGY;ZOOLOGY;ZOOLOGY;3	Self-citation	9;1;1;1;1;0;1;0;0;1;2,6;4;						
VERTEBR ZOOLOGY;ZOOLOGY;ZOOLOGY;3	Ratio of self-citations	0,022065331;0,181818182;0,02;0,02,0,027027027;0,034782609;0,015873016;0,03125;0,014492754;0,0263						
VERTEBR ZOOLOGY;ZOOLOGY;ZOOLOGY;3	JIF (without self-citations)	0,022065331;0,181818182;0,02;0,02,0,027027027;0,034782609;0,015873016;0,03125;0,014492754;0,0263						
VERTEBR ZOOLOGY;ZOOLOGY;ZOOLOGY;3	JIF (without self-citations)	0,022065331;0,181818182;0,02;0,02,0,027027027;0,034782609;0,015873016;0,03125;0,014492754;0,0263						
ZOOKEYS;ZOOLOGY;ZOOLOGY;ZOOLOGY;3	Top Ten	5138;146;115;4796;3033;						
ZOOKEYS;ZOOLOGY;ZOOLOGY;ZOOLOGY;3	ALL citations (excluding self and most)	3727;104,434;377;458;471;388;378;358;578;95;86;3537;2128;						
ZOOKEYS;ZOOLOGY;ZOOLOGY;ZOOLOGY;3	Self-citation	595;92;94;68;90;55;48;58;25;32;19;48;355;						
ZOOKEYS;ZOOLOGY;ZOOLOGY;ZOOLOGY;3	Ratio of self-citations	0,022065331;0,181818182;0,02;0,02,0,027027027;0,034782609;0,015873016;0,03125;0,014492754;0,0263						
ZOOKEYS;ZOOLOGY;ZOOLOGY;ZOOLOGY;3	JIF (without self-citations)	0,022065331;0,181818182;0,02;0,02,0,027027027;0,034782609;0,015873016;0,03125;0,014492754;0,0263						
ZOOKEYS;ZOOLOGY;ZOOLOGY;ZOOLOGY;3	JIF (without self-citations)	0,022065331;0,181818182;0,02;0,02,0,027027027;0,034782609;0,015873016;0,03125;0,014492754;0,0263						
ZOOKEYS;ZOOLOGY;ZOOLOGY;ZOOLOGY;3	JIF (without self-citations)	0,022065331;0,181818182;0,02;0,02,0,027027027;0,034782609;0,015873016;0,03125;0,014492754;0,0263						
Journal/Region	Category	All Citations	Self-Citation	JIF	Top Ten Citations			
----------------	----------	---------------	---------------	-----	------------------			
ZOO ANZ	ZOOLOGY	ALL citations	2084	53	99	136; 127; 85; 55; 92; 41; 45; 45; 1306; 725; 502		
ZOO ANZ	ZOOLOGY	ALL citations (excluding self and most)	1639; 27; 90; 120; 87; 74; 50; 77; 29; 39; 39	1007; 605; 421				
ZOO ANZ	ZOOLOGY	Self-citation	122; 22; 1; 8; 30; 0; 2; 11; 9	1; 3; 35; 85; 41				
ZOO ANZ	ZOOLOGY	Ratio of self-citation	0.022222222; 0.066666667; 0.026793897; 0.76947495; 0.341508648					
ZOO ANZ	ZOOLOGY	Self-citation	0.1; 314; 1; 497; 1; 1269; 1; 137; 1; 419; 1; 414; 1; 1731; 1; 3; 1; 341; 1; 692; 0; 12; 8; 6; 736					
ZOO J LINN SOC LOND	ZOOLOGY	Top Ten Citations	1; ALL					
ZOO J LINN SOC LOND	ZOOLOGY	All citations (excluding self and most)	5024; 110; 268; 263; 302; 270; 239; 193; 217; 268; 231; 2663; 2251; 1342					
ZOO J LINN SOC LOND	ZOOLOGY	Self-citation	208; 8; 10; 12; 19; 12; 17; 8; 9; 21; 83; 117; 70					
ZOO J LINN SOC LOND	ZOOLOGY	Ratio of self-citation	0.037056832; 0.055944056; 0.031847134; 0.040540541; 0.054755043; 0.03986711; 0.060498221; 0.037735849; 0.036734694; 0.068403909; 0.036144578; 0.02844144; 0.040527078; 0.0227508048					
ZOO J LINN SOC LOND	ZOOLOGY	Top Ten Citations	1; JIF					
ZOO J LINN SOC LOND	ZOOLOGY	Top Ten (excluding self and most)	0.02; 824; 2; 909; 2; 685; 2; 711; 2; 316; 2; 717; 2; 658; 2; 583; 2; 433; 2; 319; 0; 23; 331; 13; 338					
ZOO MIDDLE EAST	ZOOLOGY	Top Ten Citations	0; 0; 122					
ZOO MIDDLE EAST	ZOOLOGY	All citations	490; 11; 15; 26; 41; 25; 54; 20; 28; 30; 27; 213; 266; 161					
ZOO MIDDLE EAST	ZOOLOGY	All citations (excluding self and most)	440; 7; 13; 19; 36; 20; 48; 20; 25; 27; 27; 199; 234; 136					
ZOO MIDDLE EAST	ZOOLOGY	Self-citation	2; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 1					
ZOO MIDDLE EAST	ZOOLOGY	Ratio of self-citation	0.04081633; 0; 0.06666667; 0; 0; 0; 0; 0; 0.035714286; 0; 0; 0.002380952; 0.6666667					
ZOO MIDDLE EAST	ZOOLOGY	All citations (excluding self and most)	688; 31; 60; 80; 55; 44; 50; 41; 30; 27; 38; 232; 425; 289					
ZOO MIDDLE EAST	ZOOLOGY	Self-citation	1; 81; 17; 12; 10; 16; 7; 5; 1; 0; 1; 1; 11; 53; 50					
ZOO MIDDLE EAST	ZOOLOGY	Ratio of self-citation	0.096889952; 0.314814815; 0.151898734; 0.097087379; 0.205128205; 0.134615385; 0.089285714; 0.022727273					
ZOO MIDDLE EAST	ZOOLOGY	Self-citation	0; 0; 0.034482759; 0.025641026; 0.040590406; 0.706866474; 0.678015417					
ZOO MIDDLE EAST	ZOOLOGY	All citations (excluding self and most)	0.0; 0.4; 629; 0.472; 0.455; 0.543; 0.355; 0.46; 0.381; 0.392; 0.313; 0.4; 2.454					
ZOO MIDDLE EAST	ZOOLOGY	Self-citation	1; 836; 54; 79; 103; 78; 52; 56; 44; 31; 29; 39; 271; 511; 368					
ZOO MIDDLE EAST	ZOOLOGY	All citations (excluding self and most)	688; 31; 60; 80; 55; 44; 50; 41; 30; 27; 38; 232; 425; 289					
ZOO MIDDLE EAST	ZOOLOGY	Self-citation	1; 81; 17; 12; 10; 16; 7; 5; 1; 0; 1; 11; 53; 50					
ZOO MIDDLE EAST	ZOOLOGY	All citations (excluding self and most)	2383; 8; 35; 62; 74; 70; 103; 132; 120; 116; 112; 1551; 824; 344;					
Journal	Year	All Citations	All Citations (excluding self and most)	Zootaxa	Self-citation	Ratio of self-citations	JIF	JIF (without self-citations)
-------------------------------	------	---------------	--	---------	----------------	------------------------	------------	-------------------------------
Asian Myrmecol; Entomology; Entomology	4	42	42	0	0	0	0.621; 0.429; 0.25; 0.625; 0.867; 0.630; 3.9	0.621; 0.429; 0.25; 0.625; 0.867; 0.630; 3.9
Austral Entomol; Entomology	2	20	20	0	0	0	1.552; 1.769; 1.341; 1.114	1.552; 1.769; 1.341; 1.114
Coleopta Bull; Entomology	4	21	21	0	0	0	0.621; 0.429; 0.25; 0.625; 0.867; 0.630; 3.9	0.621; 0.429; 0.25; 0.625; 0.867; 0.630; 3.9

Note: The table continues with similar entries for other journals and years.
J ENTOMOL RES SOC;ENTOMOLOGY;ENTOMOLOGY;4;ZOOTAXA;14;0;0,1;5;0,0;0;1,2;5;9;6;
J ENTOMOL RES SOC;ENTOMOLOGY;ENTOMOLOGY;4;Self-citation;7;0;0;0,1;2;0,0;3,0;1,0;7,3;
J ENTOMOL RES SOC;ENTOMOLOGY;ENTOMOLOGY;4;Ratio of self-
citations;0,058333333;0,0;0,066666667;0,333333333;0,0;0,1875;0,0,125;0,0,7125;0,4;
J ENTOMOL RES
SOC;ENTOMOLOGY;ENTOMOLOGY;4;JIF;0,0;0,328;0,182;0,293;0,266;0,181;0,4;0,347;0,275;0,365;0,2;0,2;509;1,322;
J ENTOMOL RES SOC;ENTOMOLOGY;ENTOMOLOGY;4;JIF (without self-
citation);0,0,328;0,167;0,293;0,234;0,181;0,314;0,267;0,174;0,25;0,175;0,2,0,055;1,189;
J HYMENOPT RES;ENTOMOLOGY;ENTOMOLOGY;2;ALL citations;574;17;46;69;53;61;29;36;33,10;17;203;354;258;
J HYMENOPT RES;ENTOMOLOGY;ENTOMOLOGY;2;ALL citations (excluding self and
most);418;10;31;44;33;47;20;29;27;8,15;154;254;175;
J HYMENOPT RES;ENTOMOLOGY;ENTOMOLOGY;2;ZOOTAXA;77;1;6;13;9,5;4;1,2;1,30;46;38;
J HYMENOPT RES;ENTOMOLOGY;ENTOMOLOGY;2;Self-citation;79;6;9;12;11;9;4;3,5;0,1;19,54;45;
J HYMENOPT RES;ENTOMOLOGY;ENTOMOLOGY;2;Ratio of self-
citations;0,137630662;0,352941176;0,195652174;0,173913043;0,20754717;0,147540984;0,137931034;0,083333333;
0,151515152;0,0,058823529;0,093596059;1,15625642;0,862584405;
J HYMENOPT RES
SOC;ENTOMOLOGY;ENTOMOLOGY;2;JIF;0,1;1,322;0,939;0,902;0,793;0,783;0,903;0,966;0,524;0,531;0,5;0,6,841;4,32;
J HYMENOPT RES;ENTOMOLOGY;ENTOMOLOGY;2;JIF (without self-
citation);0,1,08;8,027;0,745;0,69;0,71;8,33;0,475;0,333;0,5;0,341;0,5,464;3,805;
J KANSAS ENTOMOL SOC;ENTOMOLOGY;ENTOMOLOGY;4;ALL
citations;1376;1,2;17;19;32;14,23;29;13;20;1206;169;84;
J KANSAS ENTOMOL SOC;ENTOMOLOGY;ENTOMOLOGY;4;ALL citations (excluding self and
most);1241;1,2;17;18;23;12;22;27;12;18;1089;151;72;
J KANSAS ENTOMOL SOC;ENTOMOLOGY;ENTOMOLOGY;4;ZOOTAXA;135;0;0,0;1,9;2;1,2;1,2;117;18;12;
J KANSAS ENTOMOL SOC;ENTOMOLOGY;ENTOMOLOGY;4;Self-citation;0,0;0,0;0,0;0,0;0,0;0,0;0;0;
J KANSAS ENTOMOL SOC;ENTOMOLOGY;ENTOMOLOGY;4;Ratio of self-citations;0,0;0,0;0,0;0,0;0,0;0,0;
J KANSAS ENTOMOL
SOC;ENTOMOLOGY;ENTOMOLOGY;4;JIF;0,0;0,292;0,216;0,299;0,505;0,277;0,539;0,397;0,551;0,493;0,653;0,3,93;1,836;
J KANSAS ENTOMOL SOC;ENTOMOLOGY;ENTOMOLOGY;4;JIF (without self-
citation);0,0,292;0,189;0,299;0,418;0,231;0,474;0,346;0,526;0,384;0,611;0,3,478;1,611;
J LEPID SOC;ENTOMOLOGY;ENTOMOLOGY;4;ALL citations;500;1,22;29;20;21;21;14,12;11,4;345;154,113;
J LEPID SOC;ENTOMOLOGY;ENTOMOLOGY;4;ALL citations (excluding self and
most);404;1,15;24;18;15;14;12;11;10,3,281;122;86;
J LEPID SOC;ENTOMOLOGY;ENTOMOLOGY;4;ZOOTAXA;32;0,2;2;0,1;3,0;0,1,0;23;9,8;
J LEPID SOC;ENTOMOLOGY;ENTOMOLOGY;4;Self-citation;64;0;5,3;2,5;4,2,1;1,41,23;19;
J LEPID SOC;ENTOMOLOGY;ENTOMOLOGY;4;Ratio of self-
citations;0,128;0,0,227727277;0,103448276;0,1;0,238095238;0,19047619;0,142857143;0,083333333;0,0,25;0,11884;
0,58,1,335482908;0,859292432;
J LEPID
SOC;ENTOMOLOGY;ENTOMOLOGY;4;JIF;0,0;0,646;0,518;0,463;0,474;0,38;0,515;0,333;0,219;0,267;0,559;0,3,728;2,35;
J LEPID SOC;ENTOMOLOGY;ENTOMOLOGY;4;JIF (without self-
citation);0,0,544;0,386;0,4,0,382;0,354;0,333;0,27;0,125;0,233;0,525;0,3,008;1,855;
MYRMECOL NEWS;ENTOMOLOGY;ENTOMOLOGY;1;ALL citations;615;3,35;75;44;12;69;47;81;53;37;159;453;235;
MYRMECOL NEWS;ENTOMOLOGY;ENTOMOLOGY;1;ALL citations (excluding self and
most);573,2;32;70,39;10,64;46;77;50;35,148;423;215;
MYRMECOL NEWS;ENTOMOLOGY;ENTOMOLOGY;1;ZOOTAXA;17,0;1,3;3,0;2;0,2,3;1,2;15,9;
MYRMECOL NEWS;ENTOMOLOGY;ENTOMOLOGY;1;Self-citation;25;1,2,2;2,2,3,1;0,1,9,15,11;
MYRMECOL NEWS;ENTOMOLOGY;ENTOMOLOGY;1;Ratio of self-
citations;0,040650407;0,333333333;0,057142857;0,026666667;0,045454545;0,166666667;0,043478261,0,021276596;
0,024691358;0,0,027027027;0,056603774;0,412040398;0,339408997;
MYRMECOL
NEWS;ENTOMOLOGY;ENTOMOLOGY;1;JIF;0,2,558;2,619;1,838;1,805;2,386;2,898;1,582;2,157;2,644;0,0,17,929;11,54;
MYRMECOL NEWS;ENTOMOLOGY;ENTOMOLOGY;1;JIF (without self-
citation);0,2,465;2,167,1,568;1,463;2,159;2,265;1,373;1,549;2,0,0,14,544,9,622;
NEOTROP ENTOMOL;ENTOMOLOGY;ENTOMOLOGY;2;ALL
citations;2079;51;121;117;106,60;79,90;76;167,178;1034;994,483;
Year	Journal	Category	ALL citations (excluding self and most)	ZOOTAXA citations	Self-citation citations	Ratio of self-citation citations	JIF	JIF (without self-citation citations)
1882	NEOTROP ENTOMOL; ENTOMOLOGY; ENTOMOLOGY	2	1903; 29; 106; 100; 99; 55; 74; 81; 86; 168; 166; 965; 909; 434;	0; 0	0; 0	0; 0	0; 0	0; 0
1883	NEOTROP ENTOMOL; ENTOMOLOGY; ENTOMOLOGY	2	1904; 70; 7; 5; 3; 4; 2; 3; 3; 3; 3; 34; 29; 17;	0; 0	0; 0	0; 0	0; 0	0; 0
1884	NEOTROP ENTOMOL; ENTOMOLOGY; ENTOMOLOGY	2	Self-citation; 106; 15; 10; 14; 4; 1; 3; 6; 5; 4; 9; 35; 56; 32;	0; 0	0; 0	0; 0	0; 0	0; 0
1885	NEOTROP ENTOMOL; ENTOMOLOGY; ENTOMOLOGY	2	Ratio of self-citation; 0; 050986051; 0; 28644628; 0; 11965812; 0; 037735849; 0; 01666667; 0; 037974684; 0; 06666667;	0; 0	0; 0	0; 0	0; 0	0; 0
1886	NEOTROP ENTOMOL; ENTOMOLOGY; ENTOMOLOGY	3	1887; 1888; 1889; 1890; 1891; 1892; 1893; 1894;	0; 0	0; 0	0; 0	0; 0	0; 0
1887	NEOTROP ENTOMOL; ENTOMOLOGY; ENTOMOLOGY	3	1888; 1889; 1890; 1891; 1892; 1893; 1894;	0; 0	0; 0	0; 0	0; 0	0; 0
1888	NEOTROP ENTOMOL; ENTOMOLOGY; ENTOMOLOGY	3	1889; 1890; 1891; 1892; 1893; 1894;	0; 0	0; 0	0; 0	0; 0	0; 0
1889	NEOTROP ENTOMOL; ENTOMOLOGY; ENTOMOLOGY	3	1890; 1891; 1892; 1893; 1894;	0; 0	0; 0	0; 0	0; 0	0; 0
1890	NZ ENTOMOL; ENTOMOLOGY	4	1891; 1892; 1893; 1894;	0; 0	0; 0	0; 0	0; 0	0; 0
1891	NZ ENTOMOL; ENTOMOLOGY	4	1892; 1893; 1894;	0; 0	0; 0	0; 0	0; 0	0; 0
1892	NZ ENTOMOL; ENTOMOLOGY	4	1893; 1894;	0; 0	0; 0	0; 0	0; 0	0; 0
1893	NZ ENTOMOL; ENTOMOLOGY	4	1894; 1895; 1896; 1897; 1898; 1899;	0; 0	0; 0	0; 0	0; 0	0; 0
1894	NZ ENTOMOL; ENTOMOLOGY	4	1895; 1896; 1897; 1898; 1899;	0; 0	0; 0	0; 0	0; 0	0; 0
1895	NZ ENTOMOL; ENTOMOLOGY	4	1896; 1897; 1898; 1899;	0; 0	0; 0	0; 0	0; 0	0; 0
1896	NZ ENTOMOL; ENTOMOLOGY	4	1897; 1898; 1899;	0; 0	0; 0	0; 0	0; 0	0; 0
1897	NZ ENTOMOL; ENTOMOLOGY	4	1898; 1899;	0; 0	0; 0	0; 0	0; 0	0; 0
1898	NZ ENTOMOL; ENTOMOLOGY	4	1899; 2000; 2001;	0; 0	0; 0	0; 0	0; 0	0; 0
1899	NZ ENTOMOL; ENTOMOLOGY	4	2001; 2002; 2003; 2004; 2005; 2006;	0; 0	0; 0	0; 0	0; 0	0; 0
2000	NZ ENTOMOL; ENTOMOLOGY	4	2001; 2002; 2003; 2004; 2005; 2006;	0; 0	0; 0	0; 0	0; 0	0; 0
2001	NZ ENTOMOL; ENTOMOLOGY	4	2002; 2003; 2004; 2005; 2006;	0; 0	0; 0	0; 0	0; 0	0; 0
2002	NZ ENTOMOL; ENTOMOLOGY	4	2003; 2004; 2005; 2006;	0; 0	0; 0	0; 0	0; 0	0; 0
2003	NZ ENTOMOL; ENTOMOLOGY	4	2004; 2005; 2006;	0; 0	0; 0	0; 0	0; 0	0; 0
Year	Journal	Impact Factor	Self-Citation	Ratio of self-citation	All Citations	JIF (without self-citations)		
------	--	---------------	---------------	------------------------	---------------	------------------------------		
1998	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
1999	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2000	SHILAP REV LEPIDOPT; ENTOMOLOGY; ENTOMOLOGY	4						
2001	SYST APPL ACAROL UK; ENTOMOLOGY; Top Ten	2						
2002	SYST APPL ACAROL UK; ENTOMOLOGY; Top Ten	2						
2003	SYST APPL ACAROL UK; ENTOMOLOGY; Top Ten	2						
2004	SHILAP REV LEPIDOPT; ENTOMOLOGY; ENTOMOLOGY	4						
2005	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2006	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2007	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2008	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2009	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2010	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2011	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2012	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2013	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2014	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2015	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2016	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2017	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2018	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2019	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2020	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2021	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2022	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2023	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						
2024	REV SOC ENTOMOL ARGE; ENTOMOLOGY; ENTOMOLOGY	4						

Note: The table above lists the top ten journals in terms of impact factor, self-citation ratio, and all citations. The specific values are not provided in the image.
