SUPPLEMENTARY MATERIAL AND METHODS

Gene deletions and mutant complementations

Gene deletions were performed using pJQ200mp19 derivatives containing ~350 to 450 bp regions flanking the gene(s) to be deleted: *ku1* (SMa0426), *ku2* (SMb20686), *ku3* *ku4* (SMb21406-SMb21407), *ligD1* (SMa0414-SMa0417), *ligD2* (SMb20685), *ligD3* (SMb21044), *ligD4* (SMc03959). Open reading frames-flanking DNA fragments were amplified by PCR using *S. meliloti* GMI11495 genomic DNA as template and the oligonucleotides listed in Table S2 as primers, and individually cloned into pGEM-T. These regions were then subsequently juxtaposed as *SalI-BamHI* and *BamHI-SacI* fragments into *SalI-SacI*-digested pJQ200mp19. Plasmids were introduced in *S. meliloti* by electrotransformation as described (1). Single-crossover genomic integration of each pJQ200mp19 derivative was generated by selecting for Gm resistance. The resulting strains were then propagated in the absence of antibiotic, and cells having lost the plasmid by a second recombination event were selected by plating on LBMC supplemented with 5% sucrose (Suc). Suc^R Gm^S colonies were screened by PCR analysis using primers indicated in Table S2. Multiple mutants were constructed by the introduction of successive deletions as indicated in Table S3.

For complementations, *ligD2* and *ku2* genes, including their own promoters, were amplified by PCR using *S. meliloti* GMI11495 genomic DNA as template and OCB1444-OCB1445 and OCB1502-OCB1503 as primers, respectively, and cloned into pJET1.2. *ligD2* was extracted from pJET1.2 by *BglII* digestion and subcloned into the pJQ200mp19-derivative pLS272 (see construction details below) in *BamHI*. *ku2* was extracted from pJET1.2 by *XhoI-XbaI* digestions and subcloned into pLS272 in *NsiI-AvrII*. Before *XbaI* or *AvrII* digestions, *XhoI* and *NsiI* DNA ends were blunted using the T4 DNA polymerase. *ku2* and *ligD2* genes were introduced into the *S. meliloti* chromosome (*rhaS* gene) by a double recombination event as described above for gene deletions.

For *ku3* and *ku3-ku4* operon complementation, genes including their own promoters were amplified by PCR using *S. meliloti* GMI11495 genomic DNA as template and OCB1426-OCB1427 and OCB1426-OCB1428 as primers, respectively. For *ku4* complementation, PCR amplification was carried out with OCB1426-OCB1428 using CBT1811 (*S. meliloti* GMI11495 Δ*ku3*) genomic DNA as template to produce a fragment containing *ku4* preceded by the promoter of the *ku3-ku4* operon. These fragments were cloned into pGEM-T before being subcloned into the pJQ200mp19 derivative pLS282-3 (see construction details below).
as XbaI-BamHI (ku3 and ku3-ku4 complementation) or XbaI-NdeI (ku4 complementation) fragments.

I-SceI expression and restriction site integration

For I-SceI expression, a plasmid derived from pQF was used to clone the I-SceI coding sequence under the control of a cumate inducible promoter. pQF was first modified by inserting in between the AseI-SpeI restriction sites a dsDNA adapter obtained by annealing oligonucleotides OCB1481 and OCB1482, giving pLS256-1. Using OCB1483 and OCB1484, a second adapter was then cloned into BamHI-MfeI-cutt giving pLS257-1. Then, an NdeI-PstI fragment containing the I-SceI coding sequence was purified from pDAI-SceI and subcloned into AseI-NsiI-cut giving pLS273-25. Among the first *S. meliloti* clones carrying the I-SceI expressing plasmid but still having an intact I-SceI restriction site on the chromosome, several were streaked out on TY medium containing tetracycline and supplemented or not by 100 µM cumate. All tested clones but one (containing pLS273-25*) were able to grow on cumate-containing medium suggesting that this latter was still able to cleave I-SceI restriction site on the chromosome when induced with cumate. The plasmid from this cumate sensitive clone was extracted and sequenced, revealing a stop codon (TAC>TAG), leading to the synthesis of a truncated protein lacking the last 31 amino acids, presumably less active than WT form of I-SceI meganuclease.

To introduce an I-SceI restriction site into the *S. meliloti* chromosome, the first half of the *rhaS* coding sequence was PCR amplified using OCB1531 and OCB1532, generating a fragment flanked by SacI and BamHI restriction sites. The second half of *rhaS* was PCR amplified using OCB1533 and OCB1534 giving a fragment flanked by BamHI and SalI restriction sites and bearing an I-SceI restriction site in the vicinity of BamHI. These two fragments were individually cloned into pGEM-T before being juxtaposed into SacI-SalI-cut pJQ200mp19 as SacI-BamHI and BamHI-SalI fragments, giving pLS272-1. Addition of a second I-SceI restriction site and a multiple cloning site between the two halves of rhaS was performed by inserting an adapter into BamHI-cut pLS272-1. This adapter was obtained by annealing OCB1581 and OCB1582 and the orientation of adapter insertion was checked by PCR followed by I-SceI restriction. pLS282-3 contains an inverted orientation of the adapter, leading to two successive I-SceI sites followed by the multiple cloning site (XhoI, XbaI, SmaI, XmaI, SpeI, MfeI, NdeI).
Plasmid constructions for β-galactosidase assays. Plasmids were constructed from the *ku* and *ligD* upstream regions cloned into pGEM-T for gene deletions, and containing the gene promoters. Gene promoters were extracted from pGEM-T derivatives with *Bam*HI/*Nsi*I digestions and subcloned into pCZ962 in *Xba*I/*Nsi*I sites. Before the *Nsi*I digestion, *Bam*HI and *Xba*I DNA ends were blunted using the T4 DNA polymerase.

Plasmid-based NHEJ assay
To measure NHEJ efficiency, several pBBR1MCS-5 derivatives were constructed. The 5’ region of *lacZ* was amplified by PCR using pCZ962 as template and OCB1317-OCB1318 as primers, and cloned into pGEM-T. The *Sac*I/*Age*I *lacZ* 5’ region was subcloned into pBBR1MCS-5 giving pDP59. The *lacZ* 3’ region was extracted from pCZ962 with *Aat*II and *Asc*I digestions and subcloned into pDP59 in *Aat*II/*Mlu*I sites giving pDP62. The *sacB* gene was amplified by PCR using pJQ200mp19 as template and OCB1319-OCB1320 as primers, cloned into pGEM-T and subcloned in *Bam*HI, *Sma*I or *Pst*I in pDP62 giving respectively pDP63, pDP64 and pDP65.

The TetR pBBR1MCS-5 derivative used for normalization of transformation efficiencies was constructed as follows. The *tetA* *tetR* region was amplified by PCR using pCZ962 as template and OCB1414-OCB1415 as primers, cloned into pGEM-T, and subcloned into pBBR1MCS-5 as a *Nco*I/*Bgl*II fragment (*Nco*I/*Bgl*II digestion removes the GmR gene from pBBR1MCS-5).

DNA integration assays
The DNA fragment conferring spectinomycin resistance was amplified from pHP45-Ω using OCB1535 and OCB1543, each one carrying a *Bst*XI restriction site contiguous to an external *Bam*HI restriction site. For each primer, the *Bst*XI restriction site was designed to generate a 3’ protruding end compatible with the 3’ protruding ends generated by *I-Sce*I. The PCR fragment was cloned into pGEM-T, and then subcloned into *Bam*HI-cut pBBR1MCS-5 giving pLS278-9.
SUPPLEMENTARY TABLES

Table S1: Strains and plasmids used in this study.

Strain or plasmid	Description	Reference or source
Strains		
Sinorhizobium meliloti		
GMI11495	wild-type strain (Sm^β), Rm2011 background	(2, 3)
CBT1809	GMI11495 ∆ku1 (SMa0426)	This work
CBT1810	GMI11495 ∆ku2 (SMb20686)	This work
CBT1823	GMI11495 ∆ku34 (SMb21406-21407)	This work
CBT1892	GMI11495 ∆ku12	This work
CBT1893	GMI11495 ∆ku234	This work
CBT1960	GMI11495 ∆ku123	This work
CBT1961	GMI11495 ∆ku124	This work
CBT1899	GMI11495 ∆ku1234	(4)
CBT1938	GMI11495 ∆recA	(4)
CBT1943	GMI11495 ∆recA ∆ku1234	(4)
CBT2183	GMI11495 ∆ku2 rhaS::ku2	This work
CBT2381	GMI11495 ∆ku123 rhaS::ku3	This work
CBT2383	GMI11495 ∆ku124 rhaS::ku4	This work
CBT2385	GMI11495 ∆ku1234 rhaS::ku34	This work
CBT2382	GMI11495 ∆ku1234 rhaS::ku3	This work
CBT2384	GMI11495 ∆ku1234 rhaS::ku4	This work
CBT1813	GMI11495 ∆ligD1 (SMa0414-0417)	This work
CBT2162	GMI11495 ∆ligD2 (SMb20685)	This work
CBT1811	GMI11495 ∆ku3 (SMb21406)	This work
CBT1815	GMI11495 ∆ligD3 (SMb21044)	This work
CBT1816	GMI11495 ∆ligD4 (SMc03959)	This work
CBT2158	GMI11495 ∆ligD134	This work
CBT2180	GMI11495 ∆ligD234	This work
CBT2164	GMI11495 ∆ligD1234	This work
CBT2172	GMI11495 ∆ligD2 rhaS::ligD2	This work
CBT2000	GMI11495 ∆ku12 ∆ligD2	This work
CBT1962	GMI11495 ∆ku12 ∆ligD4	This work
CBT2005	GMI11495 ∆ku12 ∆ligD24	This work
CBT2082	GMI11495 ∆ku12 ∆ligD234	This work
CBT2120	GMI11495 ∆ku12 ∆ligD1234	This work
CBT2173	GMI11495 rhaS::I-SceI	This work
CBT2175	GMI11495 ∆ku2 rhaS::I-SceI	This work
CBT2177	GMI11495 ∆ku1234 rhaS::I-SceI	This work
CBT2496	GMI11495 ∆ligD1234 rhaS::I-SceI	This work
CBT907	GMI11495 rpoE2::hph	(3)
CBT2003	GMI11495 ∆ku12 rpoE2::hph	This work
Escherichia coli		
DH5α	F[·] Φ80_{LacZAM15} Δ(lacZYA-argF) U169 recA1 endA1 thi-1 gyrA96 relA1 λ[−]	Invitrogen
	hsdR17(κ[−], m[−]*) phoA supE44 thi-1 gyrA96 relA1 λ[−]	
Plasmids

- **pGEM-T**: Cloning vector (Amp^R)
 - Promega
- **pJET1.2**: Cloning vector (Amp^R)
 - ThermoScientific
- **pJQ200mp19**: Gene replacement vector (Gm^R)
 - (5)
- **pBBR1MCS-5**: Expression vector (Gm^R)
 - (6)
- **pHP45**: Vector (Spec^R)
 - (7)
- **pCZ962**: Cloning vector (Tet^R Amp^R)
 - (8)
- **pDAI-SceI**: I-SceI constitutive expression vector (Tet^R)
 - (9)
- **pQF**: Cumate inducible expression vector (Tet^R)
 - (10)
- **pDP39**: pJQ200mp19 derivative for *ku1* deletion
 - this work
- **pDP40**: pJQ200mp19 derivative for *ku2* deletion
 - this work
- **pDP41**: pJQ200mp19 derivative for *ku3* deletion
 - this work
- **pDP42**: pJQ200mp19 derivative for *ku4* deletion
 - this work
- **pDP56**: pJQ200mp19 derivative for *ku34* deletion
 - this work
- **pDP43**: pJQ200mp19 derivative for *ligD1* deletion
 - this work
- **pDP113**: pJQ200mp19 derivative for *ligD2* deletion
 - this work
- **pDP45**: pJQ200mp19 derivative for *ligD3* deletion
 - this work
- **pDP46**: pJQ200mp19 derivative for *ligD4* deletion
 - this work
- **pDP55**: pJQ200mp19 derivative for *ligD2ku2* deletion
 - this work
- **pDP52**: pJQ200mp19 derivative for *recA* deletion
 - this work
- **pLS272-1**: pJQ200mp19 derivative for *I-SceI* insertion at the rhaS locus
 - this work
- **pLS282-3**: pJQ200mp19 derivative for 2 *I-SceI* insertion at the rhaS locus
 - this work
- **pDP115**: pLS272-1 derivative for *ligD2* insertion at the rhaS locus
 - this work
- **pDP116**: pLS272-1 derivative for *ku2* insertion at the rhaS locus
 - this work
- **pLS289-9**: pLS282-3 derivative for *ku3* insertion at the rhaS locus
 - this work
- **pLS290-13**: pLS282-3 derivative for *ku4* insertion at the rhaS locus
 - this work
- **pLS294-8**: pLS282-3 derivative for *ku34* insertion at the rhaS locus
 - this work
- **pDP66**: pCZ962 derivative for measure of *ku34* promoter activity
 - this work
- **pDP67**: pCZ962 derivative for measure of *ligD4* promoter activity
 - this work
- **pDP68**: pCZ962 derivative for measure of *ku1* promoter activity
 - this work
- **pDP69**: pCZ962 derivative for measure of *ku2* promoter activity
 - this work
- **pDP70**: pCZ962 derivative for measure of *ligD2* promoter activity
 - this work
- **pDP92**: pCZ962 derivative for measure of *ligD1* promoter activity
 - this work
- **pDP93**: pCZ962 derivative for measure of *ligD3* promoter activity
 - this work
- **pDP58**: pGEM-T derivative with *sacB*
 - this work
- **pDP62**: pBBR1MCS-5 with complete *lacZ* gene
 - this work
- **pDP63**: pDP62 with *sacB* inside *lacZ* in BamHI site
 - this work
- **pDP64**: pDP62 with *sacB* inside *lacZ* in SmaI site
 - this work
- **pDP65**: pDP62 with *sacB* inside *lacZ* in PstI site
 - this work
- **pDP90**: pBBR1MCS-5 derivative (Tet^R)
 - this work
- **pLS257-1**: pQF derivative without 3’ and 5’ Flag
 - this work
- **pLS273-25**: pLS257-1 derivative for *I-SceI* constitutive expression
 - this work
- **pLS273-25**⁺: pLS273-25 derivative for *I-SceI* cumate inducible expression
 - this work
- **pLS278-9**: pBBR1MCS-5 derivative with Spec^R cassette
 - this work
Table S2: Oligonucleotides used in this study.

Name	Sequence (5'→3')	Target
OCB1284	GATCCGGAATGGCACTCCG	fw ku1 upstream
OCB1285	GAGCTCGAGGCTCTTGCTG	rev ku1 upstream
OCB1286	GTCGACAAATGGGACCTCCG	fw ku1 downstream
OCB1287	GATCCGCTCTTGGGAAATCGAGC	rev ku1 downstream
OCB1272	GTCACTAAAGACATCTGCTGGC	fw ku2 upstream
OCB1273	GATTCCTGACATTGTATTCTCCCTACG	rev ku2 upstream
OCB1274	GATCCGCAAGAAGAAAGCGTATGG	fw ku2 downstream
OCB1275	GAGCTCGAGGCGGCTTTCCGGAGC	rev ku2 downstream
OCB1260	GTCGACACGCGTCAGGCGGACC	fw ku3 upstream
OCB1261	GATCCTGCGATGCTCAGTTCTG	rev ku3 upstream
OCB1262	GATCCGCGCAATAGGGAAGTGAACG	fw ku3 downstream
OCB1263	GAGCTCCGACACGGTTCTAGCATCA	rev ku3 downstream
OCB1264	GTCACTACAGGCGGCGAATGCCC	fw ku4 upstream
OCB1265	GATCCGCGCATCTGCTCGCC	rev ku4 upstream
OCB1266	GATCTAAAGAGGAGGATGCC	fw ku4 downstream
OCB1267	GAGCTCTTGGGAGGCGGATGCC	rev ku4 downstream
OCB1292	GAGCTCCAGGAGGCGGCGAATGCCC	fw ligD1 upstream
OCB1293	GATCCGCGCAATAGGGAAGTGAACG	rev ligD1 upstream
OCB1294	GATCCGCGCATCTGCTCGCC	fw ligD1 downstream
OCB1295	GTCACTACAGGCGGCGAATGCCC	rev ligD1 downstream
OCB1268	GAGCTCTCAGGCCGACTCCGGCGAAGC	fw ligD2 upstream
OCB1269	GATCCGCGCATCGCCGCGCAAGC	rev ligD2 upstream
OCB1252	GATCCGCGCAAGAAGATCGATGCC	fw ligD2 downstream
OCB1256	GTCACTACAGGCGGCGAATGCCC	rev ligD2 downstream
OCB1280	GATCCGCGCATCGCCGCGCAAGC	fw ligD3 upstream
OCB1281	GAGCTCGACAGGAGGCGGCGAATGCCC	rev ligD3 upstream
OCB1282	GTCACTACAGGCGGCGAATGCCC	rev ligD3 downstream
OCB1283	GATCCGCGCATCTGCTCCGGG	rev ligD3 downstream
OCB1276	CTCTTGTGACACGAGATGCC	fw ligD4 upstream
OCB1277	GATCCGCGCATCGCCGCGCAAGC	rev ligD4 upstream
OCB1278	GATCCGCGCATCGCCGCGCAAGC	fw ligD4 downstream
OCB1279	GAGCTCCGACAGGAGGCGGCGAATGCCC	rev ligD4 downstream
OCB1302	GAGCTCCGACAGGAGGCGGCGAATGCCC	fw recA upstream
OCB1303	GATCCGACATCGTATCTCGGGAAGAACC	rev recA upstream
OCB1304	GATCCGACATCGTATCTCGGGAAGAACC	rev recA downstream
OCB1305	GTCACTACAGGCGGCGAATGCCC	rev recA downstream

Screening of genomic deletions or insertions

OCB1321	GATGCTGGGAGATGATCCC	fw screening of Δku1
OCB1322	GCCACTGCGATGACGTCG	rev screening of Δku1
OCB1323	CGCAAGCTGCTCGGCAAGC	fw screening of Δku2
OCB1324	GAGCGAGAGATCGTTCCGGC	rev screening of Δku2
OCB1325 TTCTGACGAGCGTGATCGC fw screening of Δku34		
OCB1328 CTGCCGTCTGCTCCATGC rev screening of Δku34		
OCB1329 ACTGCGAATATCAGTCACC fw screening of ΔligD1		
OCB1330 GCCTCTGCTTGGCGTCC rev screening of ΔligD1		
OCB1331 GTGCCTGACGCGATTC fw screening of ΔligD2		
OCB1332 GCATCTGCTGCTCCATGC rev screening of ΔligD2		
OCB1333 CTGCTGACGCGATTC fw screening of ΔligD3		
OCB1334 CTGCCTGACGCGATTC rev screening of ΔligD3		
OCB1335 CCATCTGCTGCTCCATGC fw screening of ΔligD4		
OCB1336 GTGCCTGACGCGATTC rev screening of ΔligD4		
OCB1339 TGACGAGCAGACGCTTGGC fw screening of ΔrecA		
OCB1340 CACACCGGCACTCTCCG rev screening of ΔrecA		
OCB1347 TCTAGA for ku2 complementation		
OCB1414 CCATGG for tetA tetR (pCZ962)		
OCB1415 AGATCT for tetA tetR (pCZ962)		
OCB1417 GAGCTCCGATCGTACATGGG fw sacB (pJQ200mp19)		
OCB1418 ACCGGTACGCTGAGTGCAACATGGAAAATCG rec sacB (pJQ200mp19)		
OCB1431 GAGCTCAAGTCTCGAATCATGATGGG fw 5’ rhaS (I-SceI addition)		
OCB1432 GGATCCTAGGATCAGCGAGCTGCATGGG rev 5’ rhaS (I-SceI addition)		
OCB1433 GGATCCTAGGATCAGCGAGCTGCATGGG rev 5’ rhaS (I-SceI addition)		
OCB1434 GTGCACAGAAGTGCTGCTCCATGC rev 3’ rhaS (I-SceI addition)		
OCB1435 GGATCCTAGGATCGTACATGGG fw spec^8 BstXII DNA end (pHP45-Ω)		
OCB1436 GGATCCTAGGATCGTACATGGG rev spec^8 BstXII DNA end (pHP45-Ω)		
OCB1437 GATCCATATGCATAGCTAGTCCG fw linker mcs + I-SceI addition		
OCB1438 CTAGACTCGAGTAGGATAACATGGGAATCG (pLS272-1 BamHI site)		
OCB1582	GATCATTACCTGTTATCCCTACTCGAGT	rev linker mcs + I-SceI addition (pLS272-1 BamHI site)
---------	-----------------------------	---
	CTAGACCCGGGACTAGTCAATTGCATATG	

Screening of NHEJ repair infidelity

M13 rev	GGAAACAGCTATGACCAT	Universal primer
OCB1043	AAGGGGGATGTGCTGCAAGG	pBBR1MCS-5 and derivatives (upstream multiple cloning site)
OCB1178	CGTGCCCTTCATCCGTTCC	pBBR1MCS-5 and derivatives (downstream multiple cloning site)

Restriction sites are indicated in bold letters. I-SceI and BstXI sites are underlined.
Table S3: Multiple mutant constructions.

Strains	Description
CBT1809	*ku1* deletion in GMI11495 (WT)
CBT1810	*ku2* deletion in GMI11495 (WT)
CBT1813	*ligD1* deletion in GMI11495 (WT)
CBT1815	*ligD3* deletion in GMI11495 (WT)
CBT1816	*ligD4* deletion in GMI11495 (WT)
CBT1822	*ligD2* and *ku2* deletion in GMI11495 (WT)
CBT1823	*ku34* deletion in GMI11495 (WT)
CBT1892	*ku1* deletion in CBT1810
CBT1893	*ku34* deletion in CBT1810
CBT1899	*ku1* deletion in CBT1893
CBT1938	*recA* deletion in GMI11495
CBT1943	*recA* deletion in CBT1899
CBT1946	*ku4* deletion in CBT1810
CBT1957	*ku3* deletion in CBT1810
CBT1960	*ku1* deletion in CBT1957
CBT1961	*ku1* deletion in CBT1946
CBT1962	*ligD4* deletion in CBT1892
CBT1997	*ku2* deletion in CBT907 (*rpoE2::hph*)
CBT2000	*ku1* deletion in CBT1822
CBT2003	*ku1* deletion in CBT1997
CBT2005	*ligD4* deletion in CBT2000
CBT2082	*ligD3* deletion in CBT2005
CBT2119	*ligD1* deletion in CBT1815
CBT2120	*ligD1* deletion in CBT2082
CBT2158	*ligD4* deletion on CBT2119
CBT2162	*ligD2* deletion in GMI11495 (WT)
CBT2163	*ligD2* deletion in CBT1816
CBT2164	*ligD2* deletion in CBT2158
CBT2180	*ligD3* deletion in CBT2163
Table S4: One way Anova detailed analysis values.

Figure	DNA end	total n values	F value	DFn	DFd	P value
Fig.1A	5' end (BamHI)	38	40.52	7	30	<0.0001
Fig.1A	Blunt end (SmaI)*	27	3.831	4	22	0.0165
Fig.1A	3' end (PstI)	43	8.068	7	35	<0.0001
Fig.1B	5' end (BamHI)	24	64.42	4	19	<0.0001
Fig.1B	Blunt end (SmaI)*	19	1.437	2	16	0.2668
Fig.1B	3' end (PstI)	26	5.24	4	21	0.0044
Fig.2A	5' end (BamHI)	40	71.58	6	33	<0.0001
Fig.2A	Blunt end (SmaI)*	32	39.16	4	27	<0.0001
Fig.2A	3' end (PstI)	45	15.59	6	38	<0.0001
Fig.2B	5' end (BamHI)	67	110.2	13	53	<0.0001
Fig.2B	Blunt end (SmaI)*	45	29.07	8	36	<0.0001
Fig.2B	3' end (PstI)	70	35.21	13	56	<0.0001
Fig.3A	5' end (BamHI)	25	191.7	6	18	<0.0001
Fig.3A	Blunt end (SmaI)*	16	11.29	4	11	0.0007
Fig.3A	3' end (PstI)	25	50.2	6	18	<0.0001
Fig.3B	5' end (BamHI)	25	37.55	5	19	<0.0001
Fig.3B	Blunt end (SmaI)*	18	39.55	3	14	<0.0001
Fig.3B	3' end (PstI)	24	10.82	5	18	<0.0001
Fig.4A	-	48	504.8	15	32	<0.0001
Fig.4B	-	36	450.8	11	24	<0.0001
Fig.4C	5' end (BamHI)	27	33.91	3	23	<0.0001
Fig.4C	Blunt end (SmaI)*	n.a	n.a	n.a	n.a	n.a
Fig.5A	-	59	17.98	6	52	<0.0001
Fig.5B	-	24	48.98	7	16	<0.0001

* for blunt end repair, strains unable to give colony were excluded from the test (treshold values reported on related figures instead of plot data).
Table S5: Fidelity of repair events.

Condition & genotype	Fidelity (%)^a	Total number of colonies				
	BamHI	SmaI	PstI	BamHI	SmaI	PstI
Log phase 28°C						
WT	94.0	78.5	98.5	6578	177	6894
ΔrecA	91.5	83.3	98.6	199	6	138
Δku1	86.4	83.3	98.8	1481	24	1212
Δku2	100.0	NA	100.0	26	0	415
Δku34	88.7	72.4	97.2	2308	29	1153
Δku1234	100.0	NA	100.0	20	0	380
Δku1234 ΔrecA	100.0	NA	100.0	93	0	170
ΔligD2	100.0	NA	100.0	22	0	640
ΔligD134	92.0	88.2	98.4	1391	17	610
ΔligD1234	100.0	NA	100.0	20	0	524
Stationary phase						
WT	89.2	73.0	98.5	21341	1562	20063
Δku1	82.1	71.1	99.2	8244	646	11728
Δku2	95.1	67.8	97.0	1051	270	908
Δku34	83.2	58.8	89.3	7171	719	2430
Δku1234	100.0	NA	98.8	55	0	2550
Δku1234	100.0	NA	100.0	58	0	727
Log phase 40°C						
WT	92.4	79.5	99.0	36035	2475	55006
Δku1	71.8	72.4	94.9	2050	4176	3702
Δku2	66.2	67.7	90.4	130	155	539
Δku12	87.1	69.3	83.7	3035	940	2881
Δku34	95.5	79.2	98.1	32078	1606	40628
Δku1234	100.0	NA	99.5	8	0	367
ΔligD1234	100.0	NA	100.0	124	0	2050
Δku12 ΔligD2	74.5	63.4	80.4	987	1033	1400
Δku12 ΔligD4	98.2	36.8	98.4	739	19	624
Δku12 ΔligD24	100.0	0.0	99.9	19	56	950
Δku12 ΔligD234	100.0	NA	100.0	10	0	165
Δku12 ΔligD1234	100.0	NA	100.0	14	0	396

^aFidelity was calculated as the ratio of blue (Lac⁺) vs total colony numbers.
Table S6: Fidelity of repair events: two-sided Fisher tests

Condition & Genotype	BamHI	P value	PstI	P value		
	Blue (Lac⁺)	White (Lac⁻)		Blue (Lac⁺)	White (Lac⁻)	
			P value			
Log phase 28°C						
WT	6185	393	0.0098	6788	106	<0.0001
∆ku2+∆ligD2+∆ku1234+∆ligD1234	88	0		1959	0	
Stationary phase						
WT	19026	2315	0.0023	19769	294	<0.0001
∆ku1234	58	0		727	0	
∆ku2	881	27	0.0014			
∆ku234	2518	32				
∆ku1234	881	27	<0.0001			
	727	0				
Log phase 40°C						
WT	33305	2730	<0.0001	54440	566	<0.0001
∆ku1234+∆ligD1234	132	0	<0.0001	2414	3	<0.0001
∆ku2	487	52	<0.0001			
∆ku1234	365	3				
∆ku12	2411	470	<0.0001			
∆ku1234	365	2				
∆ku12 ∆ligD2	1125	275				
∆ku12 ∆ligD24+∆ku12 ∆ligD234+	1510	1	<0.0001			
∆ku12 ∆ligD1234						
∆ku12 ∆ligD4	614	10	<0.0001			
∆ku12 ∆ligD24+∆ku12 ∆ligD234+	1510	1	<0.0001			
∆ku12 ∆ligD1234						
Figure S1. Genomic context of **ku** and **ligD** genes in *Sinorhizobium meliloti* (A) Organization of the **ku** and **ligD** genes on the *S. meliloti* replicons (the chromosome and the two megaplasmids pSymA and pSymB). The arrows represent ORFs and their directions of transcription. Coordinates of each **ligD** and **ku** ORF are noted according to *S. meliloti* GMI11495 strain annotation (https://iant.toulouse.inra.fr/S.meliloti2011). When available, transcription start site is indicated for **ku** and **ligD** genes (black arrow with coordinate). Predicted nuclease (blue), ligase (yellow) and polymerase (green) domains of LigD proteins are indicated on the corresponding genes. Adapted from (11), with modifications. (B) Putative RpoE2 binding motifs in **ku3** and **ligD4** promoters. Top: consensus sequence of promoter motifs recognized by RpoE2 (adapted from previous work, 12); bottom: promoter sequences of **ku3** and **ligD4** genes.						
Restriction Enzyme	WT Log phase (28°C)	WT Stationary phase (28°C)	WT Log phase (40°C)	ku12 Log phase (40°C)		
--------------------	---------------------	-----------------------------	--------------------	-----------------------		
BamHI						
number						
Total	30		3			
GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 26	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 28	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 4	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 8			
large deletion	3		1			
total	30		7			
GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1			
Smal						
number						
Total	12		2			
GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 8	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 2	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 2	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 0			
large deletion	1		1			
total	12		3			
GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1			
PstI						
number						
Total	10		1			
GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 3	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 3	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 2	GCGGCCGCTCTAGAATGTGGATCCCTCCGCTGCGAGAATTCCGATAT 1			
large deletion	1		1			
total	10		9			

Figure S2. Infidelity of NHEJ during linear plasmid repair in *Sinorhizobium meliloti*. Linear plasmid DNA generated by restriction digest with either *BamHI* (5' overhang), *Smal* (blunt) or *PstI* (3' overhang) was used to transform WT (CBT707) and Δ*ku12* (CBT1892) competent cells prepared from exponential phase cultures at 28°C (blue) or after heat stress at 40°C (red) or from stationary phase cultures (green). This figure shows the DNA sequence of junctions in Lac- colonies resulting from unfaithful repair events. Parental sequences are indicated as double-stranded DNA, whereas only the upper strand is shown for the sequenced DNA junctions. The restriction sites are in dark blue (with black triangles indicating the cut sites), the nucleotide additions in red, and the deletions in bold green. Large deletions are noted as numbers of deleted nucleotides (when known), or as large deletions when estimated to be > 100 nt by agarose gel electrophoresis of the plasmids. The number of events found is indicated in the right column. Note that insertions or deletions of 3 nucleotides were never found, presumably because they led to Lac+ colonies. Sequencing of plasmid DNA from 51 randomly chosen blue (Lac+) colonies obtained upon transformation of various strains with linear plasmids carrying all types of DNA ends revealed the WT sequence in every case, showing that the level of false positives resulting from addition or deletion of nucleotide triplet(s) is less than 2%.
Figure S3. Infidelity of NHEJ during repair of chromosomal double-strand breaks. Competent cells of the *S. meliloti* strains CBT2173 (WT) and CBT2175 (Δku2) carrying an *I-SceI* site in the chromosome were prepared either at 28°C (blue) or 40°C (red) and were transformed with the *I-SceI*-expressing plasmid pLS273-25. This figure shows the DNA sequence of junctions in transformants carrying an *I-SceI* site resistant to restriction digest, which all result from unfaithful repair events. The parental sequence is shown as double-stranded DNA, whereas only the upper strand is shown for the sequenced DNA junctions. The *I-SceI* restriction site is in dark blue (with black triangles indicating the cut sites), the nucleotide insertions in red, and the deletions in bold green. Large deletions are noted as numbers of deleted nucleotides. The number of events found is indicated in the right column.
Strain and condition	plasmid sequence	mutation	plasmid position of mutation (nt)	I-SceI CDS position of mutation (nt)	mutation effect
WT	TGAACCGAGCTCTTCCAC	C>T	3607	487	CAG (Q163) > AAG (K)
Log phase (28°C)	CGGTATGGCTAGTATGAC	C>A	3219	649	CAG (Q217) > TAG (STOP)
Δku2	GGGTCCGAACCTCCTAAACTGCCGAAGAATACAA IS	ISrm1 (~1.3 kb) insertion	2662	62	Protein interrupted by IS after Y20
Log phase (28°C)	CAGGTATGGCTAGTATGAC	ISrm1 (~1.3 kb) insertion	2692	122	Protein interrupted by IS after L40
Δku1234	GGGTCCGAACCTCCTAAACTGCCGAAGAATACAA IS	ISrm1 (~1.3 kb) insertion	3160	590	Protein interrupted by IS after L71
Log phase (28°C)	CAGGTATGGCTAGTATGAC	ISrm1 (~1.3 kb) insertion	2719	149	Protein interrupted by IS after I96
ΔligD1234	GGGTCCGAACCTCCTAAACTGCCGAAGAATACAA IS	ISrm1 (~1.3 kb) insertion	2706	136	Frameshift after I45
Log phase (28°C)	GGGTCCGAACCTCCTAAACTGCCGAAGAATACAA IS	ISrm1 (~1.3 kb) insertion	2664	94	Protein interrupted by IS after Q31

WT	TTCTAGTGGCTTTACTGCTCTCAC	C>A	3179	609	TAC (Y203) > TAA (STOP)
Log phase (40°C)	GCAAGTGATCGGTCTGCG Δ80 bp CATGGCACAAGCTATG	Deletion : 80 bp	2685	115	Loss of 26 a.a. and frameshift after L38
Δku2	AACTGAAACTGGAAGTTGCTGACAGAGGG	Deletion : 994 bp	2883	313	Loss of last 129 a.a. after H104
Log phase (40°C)	AACTGAAACTGGAAGTTGCTGACAGAGGG	Deletion : 994 bp	3081	511	GAA (E170) > TAA (STOP)
Δku1234	AACTGAAACTGGAAGTTGCTGACAGAGGG	Deletion : 994 bp	2514	-56	124 bp deleted just downstream the transcription start site
Log phase (40°C)	GGGTGACGGGTTGTA Δ124 bp GCTGACTGAAACGGTAA	Deletion : 124 bp	2872	302	ACT (T101) > AAT (n)
ΔligD1234	GGGTGACGGGTTGTA Δ124 bp GCTGACTGAAACGGTAA	Deletion : 124 bp	2796	226	TGG (W76) > CGG (R)
Log phase (40°C)	GGGTGACGGGTTGTA Δ124 bp GCTGACTGAAACGGTAA	Deletion : 124 bp	3017	447	TAC (Y149) > TAA (STOP)
Δku1234	GGGTGACGGGTTGTA Δ124 bp GCTGACTGAAACGGTAA	Deletion : 124 bp	2798	228	TGG (W76) > TGT (c)
Log phase (40°C)	GGGTGACGGGTTGTA Δ124 bp GCTGACTGAAACGGTAA	Deletion : 124 bp	2706	136	Frameshift after I45
ΔligD1234	TGGTATTGAAACAAAAAAA	C>G	3124	554	TGT (C185) > TTT (F)
Log phase (40°C)	TGGTATTGAAACAAAAAAA	C>G	3162	592	Protein interrupted by IS after Y197
ΔligD1234	TGGTATTGAAACAAAAAAA	C>G	3057	487	CAG (Q163) > GAG (E)

Figure S4. Sequence analysis of I-SceI-expressing plasmids extracted from clones showing an intact I-SceI restriction site. Competent cells of the S. meliloti strains CBT2173 (WT), CBT2175 (Δku2), CBT2177 (Δku1234) and CBT2496 (ΔligD1234) carrying an I-SceI restriction site in the chromosome were prepared either at 28°C (blue) or 40°C (red) and were transformed with the I-SceI-expressing plasmid pLS273-25. Plasmid DNA was extracted from 29 colonies carrying an intact I-SceI site originating from the different strains and conditions, and the sequence of the I-SceI meganuclease encoding gene of these plasmids was determined. The figure shows the mutations found in red.
Figure S5. Sequence of junctions of insertion events at the *rhaS* locus carrying a *I-SceI* restriction site. Competent cells of the *S. meliloti* strains CBT2173 (WT) and CBT2175 (Δku2) carrying a *I-SceI* restriction site in the chromosome and the *I-SceI*-expressing plasmid pLS273-25* under the control of a cumate inducible promoter were prepared either at 28°C (blue) or 40°C (red) in the presence of cumate. Cells were transformed with a linear DNA cassette carrying a Spec resistance gene flanked by *I-SceI*-compatible restriction sites generated with *Bst*XI (dark blue). This figure shows the DNA sequence of junctions in transformants having inserted the Spec resistance cassette at the chromosomal *I-SceI* site.

Insertions in the expected (upper part) or opposite (lower part) orientation are shown. Parental sequences are indicated as double-stranded DNA, whereas only the upper strand is shown for the sequenced DNA junctions. The 3' compatible protruding ends are shown in bold and the non-compatible 3' ends of inverted insertion events are in bold underlined. Deleted nucleotides are indicated in green and large deletions are noted as numbers of deleted nucleotides. The number of events found is indicated in the right column.
SUPPLEMENTARY REFERENCES

1. Ferri,L., Gori,A., Biondi,E.G., Mengoni,A. and Bazzicalupo,M. (2010) Plasmid electroporation of Sinorhizobium strains: The role of the restriction gene hsdR in type strain Rm1021. Plasmid, 63, 128–135.

2. Pobigaylo,N., Wetter,D., Szymczak,S., Schiller,U., Kurtz,S., Meyer,F., Nattkemper,T.W. and Becker,A. (2006) Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl. Environ. Microbiol., 72, 4329–4337.

3. Sallet,E., Roux,B., Sauviac,L., Jardinaud,M.-F., Carrère,S., Faraut,T., de Carvalho-Niebel,F., Gouzy,J., Gamas,P., Capela,D., et al. (2013) Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes, 20, 339–354.

4. Dupuy,P., Gourion,B., Sauviac,L. and Bruand,C. (2017) DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula. Microbiology, 163, 333–342.

5. Quandt,J. and Hynes,M.F. (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene, 127, 15–21.

6. Kovach,M.E., Elzer,P.H., Hill,D.S., Robertson,G.T., Farris,M.A., Roop,R.M. and Peterson,K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175–176.

7. Prentki,P. and Krisch,H.M. (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene, 29, 303–313.

8. Déjean,G., Blanvillain-Baufumé,S., Boulanger,A., Darrasse,A., Dugé de Bernonville,T., Girard,A.-L., Carrère,S., Jamet,S., Zischek,C., Lautier,M., et al. (2013) The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytol., 198, 899–915.

9. Flannagan,R.S., Linn,T. and Valvano,M.A. (2008) A system for the construction of targeted unmarked gene deletions in the genus Burkholderia. Environ. Microbiol., 10, 1652–1660.

10. Kaczmarczyk,A., Vorholt,J.A. and Francez-Charlot,A. (2013) Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl. Environ. Microbiol., 79, 6795–6802.

11. Kobayashi,H., Simmons,L.A., Yuan,D.S., Broughton,W.J. and Walker,G.C. (2008) Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti. Mol. Microbiol., 67, 350–363.
12. Sauviac, L., Philippe, H., Phok, K. and Bruand, C. (2007) An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. *J. Bacteriol.*, **189**, 4204–4216.