Depression Symptoms Relationship With Music Use: Investigating the Role of Trait Affect, Musical Ability, Music Preferences

Sai Charan Kanagala1, Thomas Schäfer2, David M. Greenberg3, and Anna Gabińska1

Abstract
People across cultures often use music to evoke positive emotions and moods. Yet, some people tend to employ maladaptive strategies such as rumination, avoidant coping, or social isolation when they listen to music. The present research investigated how strongly maladaptive musical engagement is linked with depression and wellbeing in a sample of 1415 Indians (17–65 years) across four cities and two countries. Participants completed a battery of assessments on trait affect, depression, adaptive and maladaptive musical engagement strategies, music preferences, and music skills. 1329 participants were included for analysis. All nine symptoms (r = .16, to .30) and the sum score of depression (r = .39), as well as trait negative affect (r = .36) were correlated with maladaptive music engagement. Six of the symptoms of depression were significant predictors of maladaptive music engagement. Among those, suicidal ideation, worthlessness, and fatigue were the most important. Maladaptive music engagement increased the odds of experiencing all the depression symptoms (OR = 1.04 to 1.14). Trait positive affect (r = .29) and having music as a hobby (r = .22) correlated with adaptive music engagement. Musicians who had been playing an instrument for six years and above had lower levels of maladaptive music engagement (d = .84). Furthermore, the results show that depression symptoms might have a bidirectional relationship with maladaptive music engagement, with suicidal thoughts being the most important symptom. The current study also validated the Healthy-Unhealthy Music Scale (HUMS; Saarikallio et al., 2015) in India and provides a cut-off score based on the sensitivity (.86) and specificity (.66) in identifying people at risk for depression. Overall, the results reveal that socio-demographic factors (age, gender, relationship status, occupation status, geographical location), psychological factors (trait affect, depressive symptoms), and music skills play an important role in engaging with music.

Keywords
depression, symptoms, Indian, music skills, maladaptive, trait affect

Submission date: 30 August 2020; Acceptance date: 5 October 2021

Introduction
People use music to regulate their mood, emotions, and to cope with the issues of everyday life (Juslin & Laukka, 2004; Lonsdale & North, 2011; Sloboda, 2010; Tarrant et al., 2000; van Goethem & Sloboda, 2011). Affect regulation typically is the most important reason for listening to music when people are directly asked (Saarikallio, 2011; Saarikallio & Erkkilä, 2007; Schäfer et al., 2013). Similarly, listening to music for affect regulation purposes was consistently found being the primary reason for listening to music across cultures (Boer & Fischer, 2012; Juslin et al., 2016; Rana & North, 2007; Schäfer et al., 2012).

The term affect is used as an umbrella term in the current study to denote emotions, moods, and sometimes...
feelings of stress in a musical context (Juslin & Sloboda, 2010). The process of affect regulation can be conscious or unconscious but is always directed at achieving specific goals (Mauss & Tamir, 2014). Affect regulation is achieved by using music to change, maintain, or enhance positive and negative affective states (Baltazar & Saarikallio, 2016).

Music engagement and affect regulation

Theories such as mood management theory (Zillmann, 1988b) or the uses-and-gratifications approach (e.g., Arnett, 1995) state that music is used to give positive and hedonic outcomes. Listening to music for affect regulation can be a considered a form of self-therapy when people pass through troubles or encounter problematic events in their lives and music help them address their mental health issues (Skånland, 2012). However, research into music use and health outcomes has shown that people also sometimes engage with music in ways that can be maladaptive (Carlson et al., 2015; Garrido & Schubert, 2013a; Thomson et al., 2014) and result in harmful consequences (McFerran & Saarikallio, 2014; Miranda et al., 2012) or are associated with mental illness such as depression, as recently found in western adolescents and adults (Garrido et al., 2017; Garrido & Schubert, 2013a; Leipold & Loepthien, 2015; Miranda & Claes, 2009; Saarikallio et al., 2015).

Maladaptive strategies are those that are not apt to the situation or context, resulting in reinforcement or a maladaptive increase in the negative mood state with an ultimate decline in overall wellbeing (Aldao et al., 2010). In musical contexts, maladaptive use refers to employing music-specific regulation strategies that involve rumination, avoidant coping, or perpetuating social isolation (McFerran & Saarikallio, 2014; Miranda et al., 2012; Miranda & Claes, 2009; Saarikallio, 2011; Saarikallio & Erkkilä, 2007). In contrast, adaptive strategies such as reappraisal, problem solving, and distraction in music engagement (see Gustavson et al., 2021, for a detailed review on music engagement and mental health) are positively related to wellbeing and negatively associated with depression and anxiety (Chin & Rickard, 2014; Miranda & Claes, 2009; Van den Tol & Edwards, 2015).

Individual differences exist in the affect regulation strategies people deploy. The regulation strategies are driven by ones goals and subsequently leading to different behavioural and mental health outcomes (Berkling et al., 2019; Coulacoglou & Saklofske, 2017; Kobylińska & Kusev, 2019). This is consistent with prior evidence that people engage with music to reach specific goals that serve their needs (Randall et al., 2014; Schäfer, 2016; Sloboda et al., 2001; van Goethem & Sloboda, 2011).

Specific affect regulation strategies through musical engagement might reflect potential underlying emotion regulation disturbances (Garrido & Schubert, 2011, 2013a; Leipold & Loepthien, 2015; Thomson et al., 2014). Emotion regulation problems are also commonly observed in mood disorders such as depression and anxiety, and these mental health disorders play a crucial role for in the decline of an individual’s psychological wellbeing (Campbell-Sills & Barlow, 2007).

Emotion regulation abilities are crucial for a stable and healthy psychological life (Gross, 1998). These abilities are shown to be impaired in depressed individuals who are more prone to employ maladaptive strategies such as suppression and rumination over adaptive strategies such as reappraisal and acceptance (Aldao et al., 2010; Garnefski et al., 2004; Joormann & Stanton, 2016). The evidence indicates that employing maladaptive strategies such as suppression and rumination for affect regulation in general (Aldao et al., 2010; John & Gross, 2004) or specifically through musical engagement (Saarikallio et al., 2015) is associated with depression.

Music and depression

Could listening to music that makes people sad or the engagement in maladaptive listening strategies result in, or at least be a mirror of, clinical symptoms of depression? Depression is a mental disorder that affects the regulation of mood and emotion, i.e., affect (Davidson et al., 2002). According to the World Health Organization; (2020) International classification of diseases for mortality and morbidity statistics (11th revision.; ICD-11), depression is part of mood disorders (Reed et al., 2019).

The symptoms of depression are composed of three clusters. The affective cluster (AC) is marked by emotional and mood related symptoms that include feelings of worthlessness, excessive or inappropriate guilt, and recurrent thoughts of death or suicide. It also includes primary symptoms, such as depressive mood and diminished interest in activities or loss of pleasure. The somatic cluster (SC) is marked by somatic symptoms such as reduced energy or fatigue and changes in appetite or sleep. The cognitive cluster (CC) comprises cognitive symptoms such as difficulty in concentrating or indecisiveness, hopelessness, psychomotor agitation or retardation (Gaebel et al., 2017; Malhi & Mann, 2018; Reed et al., 2019; Stein et al., 2020).

To identify depression in individuals, five out of nine symptoms must be present, including the compulsory presence of one or two primary symptoms, present over two weeks (11th ed.; ICD-11). The prevalence of symptoms of depression varies between cultures. In Indians, somatic symptoms such as feeling tired, fatigue, physical pain, and anhedonia are the most commonly reported symptoms of depression (Grover et al., 2013; Poongothai et al., 2009).

In experimental studies in music and RCT trials where music therapy is used as an intervention to treat depression, sum scores of depression scales are used to compare scores of pre and post-intervention as a yardstick to evaluate the efficacy of music therapy and also to assess the outcome from experiments (Aalbers et al., 2017; Tang et al., 2020). The decrease in sum score after an intervention is measured to judge whether the treatment or the experiment
was successful or not. In addition, severity of depression is assessed according to threshold values created from the sum score in music research (Leubner & Hinterberger, 2017). Similar practices are observed in non-experimental music psychology research, where the correlation between depression sum score, variables of wellbeing and mental health, and specific musical variables is assessed. The current study will depart from the established practice of using sum scores of depression scales. Instead, we will examine the individual depressive symptoms’ relationship with music variables. Using only sum scores of depression is not thoroughly supported by evidence due to methodological and theoretical problems in understanding depression. The reasons are discussed in the following sections.

Measurement Invariance. The scales used to assess depression do not measure a single underlying condition or the same set of constructs in an identical manner across different time periods. Yet, these interpretations are crucial to infer validity. The commonly used scales for depression violate temporal measurement invariance (TMI), which means the association between the latent variable and its indicators should be stable across different time points to have temporal measurement invariance. If the measurement stability is violated, then the difference observed across a time period might not reflect changes in the latent variable. The TMI is violated across depressed and non-depressed samples (Fried et al., 2016; Galinowski & Lehert, 1995; Rocca et al., 2002; Uher et al., 2008). In addition, the required number of factors to describe the covariance between symptoms is heterogeneous.

Longitudinal studies that used different scales such as BDI, MADRS, QUIDS-C, HRSD, IDS-SR found a decrease of sum scores and an increase in reliability, simultaneously sum score variance at the exit time point of the study is observed. However, there is a violation of strict temporal and scalar measurement invariance, and a decrease in dimensionality was also observed (Fokkema et al., 2013; Quilty et al., 2013). The dimensionality (reliability) of the depression scales changes according to the depression severity of the samples used in the studies (Fried et al., 2016).

Factor extraction. The standard route to explore the symptom heterogeneity is through using principal component factor or latent factor-based models. The factors obtained through these methods vary within and across depression screening instruments (Furukawa et al., 2005; Shafer, 2006), and changes across demographic factors such as sex (Baas et al., 2011) or ethnicity (Crockett et al., 2005) and age (Williams et al., 2007) appear arbitrary (Wood et al., 2010). The results also differ based on the extraction method (Widaman, 1993).

Unidimensionality. It is defined as a scale that consists of a single underlying latent variable that can fully explain the correlation of the indicators. For example, the latent models treat all the symptoms more or less equally central to the disorder (symptom equivalence) because all the symptoms arise out of a single underlying condition (Cramer et al., 2010; Lux & Kendler, 2010; Schnittmann et al., 2013). However, research studies using large population cohorts and longitudinal samples have shown us that the latent variable model of major depression does not fit the observed data and fails to meet unidimensionality expectations (Fried et al., 2016; García-Velázquez et al., 2017, 2019). The underlying premise that depression is a unidimensional construct contributes to the categorisation of sum scores into healthy or depressed based on the assumption that all symptoms of depression are equal contributors to the severity of depression. Depression is a heterogeneous disorder rather than a homogenous (Goldberg, 2011).

Content overlap. Santor et al. (2006) reviewed 280 depression scales published in the past 80 years and found that content varies between scales, and the scales are not only confined to varying in content but variation in the extent of items allocated to measure a symptoms domain (e.g., cognitive, somatic, affective). In addition, the format of items is different, some scales measure intensity and some measure frequency in symptoms. Recently Fried (2017) reviewed seven commonly used depression scales to examine the extent to which scales differ in item content, and they found that 52 different symptoms were obtained from 7 different scales, and the content overlap is very low (mean 0.36) between the scales. A recent review by Mew et al. (2020) identified that 19 different depression scales were used in 30 clinical depression trials to assess depression symptom severity.

Latent factor. Depressive symptoms are assumed not to be correlated beyond their shared origin (i.e., latent factor). So the symptoms should be independent from each other when controlling for the latent factor, which is least likely to happen as the symptoms directly influence each other. For example, lack of sleep might cause fatigue which in turn results in psychomotor and concentration problems (Borsboom & Cramer, 2013; Wichers, 2014). Finally, the usage of depression sum scores relies on the assumption that the depression construct we are measuring is a single latent variable, which is not supported by evidence (García Velázquez, 2019).

Convergent validity. The evidence for convergent validity of depression scales is mixed, with correlations between scales ranging from 0 to 1 (Polaino & Senra, 1991). Even if the convergent validity between scales indicates a higher degree of correlation between sum scores, that does not indicate both the scales assess the same construct since the scales have different symptoms and capture depression differently (Fried et al., 2016). Due to a low degree of overlap between scales, the interchangeability of depression scales is a more significant challenge resulting in a peculiar situation where it is difficult to generalise and threaten the validity of the research.

Low content validity. Depression scales do not measure the same set of constructs in an identical way across different time points and do not measure a single underlying construct. It means each depression scale measures different
constructs. For example, the CES-D scale contains symptoms such as frequent crying, perceiving others as unfriendly, talking less; the BDI scale emphasises majorly on cognitive symptoms such as worthlessness and pessimism; the Hamilton rating scale for depression (HRSD) contains sexual dysfunction in somatic symptoms. The symptoms mentioned in these scales are not included in the criteria for major depression in DSM or ICD (Fried et al., 2016; Shafer, 2006).

The gold standard tools such as HRSD that are used in RCT trials and as outcome measures for therapeutic interventions to measure the efficacy of anti-depressants reveal low retest and poor inter-rater reliability, weak content validity, and specific items in the scale show poor performance in psychometric properties (Bagby et al., 2004; Gullion & Rush, 1998). Violation of temporal measurement invariance is observed in widely used scales of depression. Depression scales are not limited to lacking in unidimensionality, but they also have low reliability (i.e., all the items in the test measure the same construct) while maintaining good face validity (i.e., all the items in the test measure what it is supposed to measure) (Fried, 2020).

Subtypes. Subtypes are specified as mutually exclusive categories such as neurotic, anxious depression, psychotic depression, melancholic, atypical depression. Depression subtypes are another indication of the large variability in depression symptoms.

The studies conducted to date, which include systematic reviews examined using latent class analyses and factor analysis, did not reveal any definitive evidence for the number of symptom subtypes and the nature of depression subtypes (Baumeister et al., 2011; Harald & Gordon, 2012; Lichtenberg & Belmaker, 2010; van Loo et al., 2012). The findings from depression subtypes reveal that treatment strategies for each subtype should differ (Calati et al., 2013).

Apart from depressive or sad mood in symptom criteria for depression in ICD-11, remaining are compound symptoms such as worthlessness or guilt, fatigue or reduced energy (WHO, 2020) that could lead us to qualify for depression criteria in different ways. A recent study examining unique symptom patterns in 3703 patients diagnosed with depression identified 1030 distinctive ways to qualify for major depressive disorder (Fried & Nesse, 2015). The common symptom profile was found in less than 2 percent of participants (Fried & Nesse, 2015).

Comorbidity. Symptoms of major depression have a high degree of comorbidity with other mental disorders, making it difficult to analyse the subtypes of symptoms that challenge the notion of diagnostic criteria of syndromes as unique and discrete (Rush et al., 2005; van Loo et al., 2016; Wanders et al., 2016). For example, symptoms overlap between depression and general anxiety disorder are observed, and the two disorders share common symptoms such as fatigue, concentration problems, psychomotor agitation (Kessler et al., 2005).

Risk Factors. External risk factors such as stressful life events are associated with each symptom differently and the presence or absence of depressive symptoms changes depending on the type of influence by a stressful life event that occurs before the onset or after the stressful event (Cramer et al., 2012; Fried et al. (2015); Keller et al., 2007; Keller & Nesse, 2006; Slavich et al., 2009). Breakups in romantic relationships were related to higher levels of guilt and depressed mood, while stress was connected to fatigue and hypersomnia (Cramer et al., 2012; Keller et al., 2007). Recently Fried et al., 2015 found that in married elderly couples, loss of partner influenced loneliness symptoms the most, and loneliness was related to being less happy and sad. Worthlessness, guilt and anhedonia were statistically significant predictors of suicide attempts (Bolton et al., 2010). Furthermore, worthlessness is a strong predictor of the history of concurrent and after remission suicide attempts (Bolton et al., 2008; McGirr et al., 2007). For more detailed information on the risk factors for suicide (see Hawton et al., 2013). Another study by Keller and Nesse (2006) found that pessimism, rumination, guilt, and fatigue were present in a striking manner after failed efforts.

Impairment. Impairment in functioning is a crucial outcome of major depressive disorder. Individual depressive symptoms have varied associations with different domains of impairment. Classifying individuals into cut off scores or threshold scores puts everyone suffering from diverse symptoms into a single category which obscures the crucial information. E. I. Fried and Nesse (2014) found that depressed mood, problems in concentration, fatigue symptoms were the biggest predictors of overall impairment. They further stated that early insomnia is a strong predictor of impairment in functioning at work, and loss of interest is associated with impairment in social activities and fatigue is strongly associated with impairment in home management. In addition, self-blame has a substantial impact in the close relationship domain.

However, the evidence suggests that people who do not meet 5 out of 9 symptom criteria in the last two weeks might suffer from subthreshold depression. Impairment and mortality evidenced in subthreshold or subclinical major depression cases are eligible for clinical diagnosis (Cuijpers & Smit, 2002; Wakefield & Schmitz, 2017; Wanders et al., 2016).

Evidence on individual symptoms. McGlinchey et al. (2006) stated that symptoms not mentioned in the DSM criteria such as hopelessness and helplessness are the strongest predictors of major depression. In addition, they also argued that individual depressive symptoms performed well in differentiating between patients with and without a diagnosis of major depression. Individual symptoms have a varying relationship with demographic factors, characteristics of depressive episodes, comorbidity, and risk of a future episode, suggesting the heterogeneity of depression syndrome (Lux and Kendler, 2010).
The sum score of a depression scale obscures the information on the symptom level (Fried & Nesse, 2015). Hence, there is a need for analyses on the symptom level to gain more clarity on the strength of the association between depressive symptoms and music engagement.

Trait affect and music engagement

Positive trait affect is defined as the predisposition to experience positive affect or feelings such as enthusiasm, joy, or contentment (Gray & Watson 2001). Negative trait affect is defined as the predisposition to experience negative feelings or affect such as worry, nervousness, sadness, anger, or distress (Watson & Clark, 1984). Positive and negative affect is employed as indicators of mental health outcomes and overall wellbeing. Depression, for instance, is characterised by recurrent, persistent, or excessive negative affect (Rottenberg & Bylsma, 2014). People with depression may have a higher threshold for activation of positive affect for less duration and intensity. They may also have a lower threshold for activation of negative affect that can sustain longer durations in a more intense manner (Joormann & Gotlib, 2010). Individuals with low positive affect and higher negative affect have a higher risk of experiencing depression (Stanton & Watson, 2014).

Trait negative affect is strongly connected to neuroticism trait in personality (Stanton & Watson, 2014). The presence of neuroticism is noted across different mental disorders from the internalising to externalising spectrum (Kotov et al., 2010). However, higher levels of negative affect are observed more robustly in mood disorders such as depression and anxiety, as both disorders share similar comorbid symptoms. Longitudinal studies had consistently found that lower levels of positive affect are only associated with depressive symptoms and depression than with anxiety (Dejonckheere et al., 2018; Watson & Walker, 1996). Higher levels of negative affect are connected to depression because the core symptom, such as the feeling of sadness for a prolonged period or depressed mood, is regarded as a manifestation of negative affect (Watson & Clark, 1984). The secondary core symptom anhedonia (reduced interest in activities or loss of pleasure) is considered as a lack of positive affect (Watson, Clark, & Carey, 1988a). In other words, the two core symptoms, anhedonia and depressed mood, show association with diminished positive affect and elevated negative affect.

Previous studies have occasionally examined the role of mood states and emotions in musical engagement, but not the role of trait affect. For example, Chin and Rickard (2014) showed that employing adaptive affect regulation strategies while listening to music helps predict positive mental health outcomes even after controlling for negative and positive trait affect. In a sense, outcomes of music listening are determined by the affect regulation strategies rather than the predisposition of trait affect. However, measuring trait affect is advantageous because it is a time-stable construct not susceptible to situational or contextual changes, and it is easier to record through self-report methods (Watson & Tellegen, 2002). Trait affect mainly represents the stable predisposition to affective states, either positive or negative, and might determine an individual’s music engagement style (adaptive or maladaptive). We hypothesise that higher levels of trait positive affect may associate with adaptive music engagement and higher levels of negative trait affect and lower levels of positive affect might be linked to maladaptive musical engagement.

Music skills and affect

Active participation in musical activities or acquiring musical skills such as learning a musical instrument through receiving formal music lessons has a significant role in affect regulation and is associated with wellbeing (Hallam, Creech, et al., 2012a; Saarikallio, 2011). The amount of practice engaged in musical activities is used as criteria to identify someone as a musician. Musical expertise criteria is used to categorise musicians and non-musicians. Musical expertise is measured through the number of years a person received formal training in music (Rickard & Chin, 2017). The duration of practice engaged in musical activities is a predictor of the level of expertise attained and indicative of performance (Hambrick et al., 2014). In a sense, expertise in musical skills relies on acquiring skills and also to develop expertise requires considerable time and effort. In addition, the individual needs to be highly motivated to learn or play a musical instrument (Hallam, Rinta, et al., 2012b).

The length of practice is connected monotonically to the level of expertise attained in music (Ericsson et al., 1993; Sloboda et al., 1996). The practice accumulated over a lifetime is predictive of the level of music expertise (Ericsson et al., 1993; Jørgensen, 2001; Sloboda et al., 1996), supported by evidence that musicians with a high level of expertise have accumulated considerably more time in practice than their less successful peers (Jørgensen, 2002; Sloboda et al., 1996). Contrary to the findings discussed above, Hallam (1998) found a strong relationship between the number of years spent learning music skills and musical achievement. However, they found weaker evidence between achievement and amount of practice. Recent evidence also confirms that the duration of learning or acquiring music skills is a strong predictor of musical expertise compared to the time spent practising music skills (Hallam, Rinta, et al., 2012b).

A recent review by Zhang et al. (2018) defined a cut-off value to define a musician as someone with at least six years of experience in learning and acquiring music skills through formal training. Musicians’ affective responses to music are different from those of non-musicians, as indicated in behavioural and experimental settings (Getz, Marks, et al., 2012b; Mikutta et al., 2014; Park et al., 2014). However, the role of music-based affect
regulation strategies between non-musicians and musicians have not been investigated in Non-Western population.

Music genres and music engagement

Music listening cannot be assumed as unrestrictedly to be beneficial in promoting wellbeing. For example, some individuals prefer to listen to music that makes them feel sad (van Goethem & Sloboda, 2011), and the preference for sad music is stronger in listeners who score high in rumination (Chen et al., 2007; Garrido & Schubert, 2015).

Research has shown that adolescents with mental health problems were more likely to listen to specific genres that would intensify their negative moods and enhance their rumination, suggesting that music preferences have an important association with the overall health of the individual (Baker & Bor, 2008; Miranda & Claes, 2008). However, few studies in Non-Western contexts have examined this issue (Getz, Chamorro-Premuzic, et al., 2012a). A recent study by Chakraborty et al. (2017) examined the association between music preferences (genres) and values in India. However, they did not examine the role of music-based affect regulation strategies or coping methods in music preferences. The current study is an initial attempt to examine the association between music preferences and adaptive or maladaptive music engagement.

Rationale of the present study

Saarikallio et al. (2015) examined the association between music engagement and depression and found that unhealthy music use (maladaptive music engagement) is associated with depression while healthy music use (adaptive music engagement) is associated with mental wellbeing. They developed a self-report scale (Healthy-Unhealthy music scale; HUMS) and validated the scale on adolescents and young students from Finland and Australia to measure healthy (HM) and unhealthy music (UHM) use.

Further, the scale was widely used in several studies using ESM, longitudinal, online survey methods, and RCT trials as an intervention or outcome tool. These studies recruited diverse samples from the cohorts in clinical settings such as primary care centres, acute care mental health centres on the patients diagnosed with affective, bipolar, anxiety, psychotic, addiction disorders, personality disorders and in hospitals with cancer patients and in online survey samples of general (non-clinical) participants. The age (13–74 years) of the participants in the samples varied and they were from different countries such as Australia, United Kingdom, USA, Finland, Germany, India, and representing from Asia, Africa Europe (Agarwal et al. (2019); Garrido et al., 2017; Gold et al., 2017; Haeyen & Noorthoorn, 2021; Hense et al., 2018; Hides et al., 2019; McFerran et al., 2018; Silverman, 2020a, 2020b, 2021).

The exploratory factor analyses in the original study (Saarikallio et al., 2015) and the Indian study (Agarwal et al., 2019) resulted in two factors. The first factor, Healthy music use (HM-adaptive music engagement), is associated with positive mood changes after listening to self-selected music when they are sad, positive group listening, and a wide repertoire of adaptive coping strategies such as active coping, emotional support, instrumental support and positive reframing, humour, acceptance, planning, reflection, happiness. The second factor, unhealthy music use (UHM-maladaptive music engagement) is positively associated with depression, stress, anxiety, rumination and inversely associated with wellbeing, happiness, maladaptive coping strategies denial, behavioural disengagement, humour, self-blame, venting, self-distracting, instrumental support.

The HUMS scale is developed as a screening tool to identify individuals prone to the risk of experiencing depression. The HUMS scale was used in music therapy sessions as an intervention tool in the RCT trials, but these studies did not provide the scale’s classification prediction or accuracy. One study by Agarwal et al., 2019 reported the classification accuracy for the HUMS scale to identify people at risk of experiencing depression. They identified that the HUMS scale has 82% accuracy in identifying moderate to high-risk depressed people. However, they did not report the specificity and sensitivity of the HUMS scale.

ROC analysis is used to evaluate and measure classification and prediction models’ performance to separate the two mutually exclusive categories (i.e., normal vs depressed participants) (Tourassi, 2018). Classification accuracy can be indicated by the specificity and sensitivity of the test. The sensitivity indicates the test’s capacity to detect cases that have the condition present. Specificity indicates the test’s capability to detect cases without the condition (Kumar & Indrayan, 2011).

ROC curve plots depict the relationship between specificity and sensitivity for the full range of thresholds in a graphical way, where a decision should be taken based on the graph. Coordinates of the ROC curve display the trade-off between specificity and sensitivity. In addition, it helps in obtaining the optimal cut-off score to properly detect the misclassification of participants with and without condition as well as discriminating ability to identify the presence and absence of condition (Hajian-Tilaki, 2013). In the current study, we tried to address the limitations of the earlier study by providing the specificity, sensitivity, and ROC curve of the HUMS scale.

We also set out to address some limitations in the Saarikallio et al. (2015) study. First, adults were not studied. Second, depression was measured using a distress scale rather than a specific scale developed exclusively to measure depression. Third, the study used a sum score of depression and did not focus on the association between depression symptoms and the HUMS scale. Fourth, they mentioned that HUMS can be used as a screening tool but did not specify the sensitivity and specificity of the unhealthy subscale in predicting depression. The present research extends prior research in this area by overcoming each of these four limitations.
In sum, the results of previous studies suggest associations between music engagement, depression, trait affect, and music preference. However, since previous research has not yet unravelled the relation between single depression symptoms and music engagement, we primarily focus on these simple correlations. At the same time, we aim at analysing the potential predictive value of the HUMS scale for depression symptoms as a non-clinical issue. Not least, we set out to assess the screening accuracy (specificity and sensitivity) of the HUMS scale in detecting depression episode (i.e., according to symptom criteria for ICD-11). Further, we will investigate the role of non-clinical measures such as trait affect, everyday musical behaviour, music preferences, music skills and sociodemographic factors on adaptive and maladaptive music engagement.

Method

Participants

A total of 1415 participants of Indian origin were enrolled in the study. Some participants had to be excluded because of hearing difficulties or incomplete data, resulting in a total \(N \) of 1329 participants. Their age ranged from 18 to 65 years. The demographic and mean, standard deviation, reliability of key measures are presented in Table 1. Students were the largest group of participants, pursuing their under-graduation (67%), post-graduation (7.5%), PhD (0.3%), or completed Intermediate equivalent to K12 in England (7.2%). A large group (66.1%) of the students were pursuing stem courses (Architecture, Bio and physical, Math Sciences, Computer science/IT, Engineering, Medicine, Management, Pharmacy, Technical diplomas) and the rest are from the fields of commerce (0.3%), law (3%), and social sciences (0.5%). Of the participants that are employed, the majority (27.7%) were working in the Software, Banking, or Service sector. A small portion (1.5%) were working in the secondary sector, such as construction and other manufacturing-related services. The rest were distributed in the fields of Teaching (5.5%), Architecture (3.6%), Legal sector (11.1%), Government (7.6%), or were self-employed (5.7%). The other (5.4%) consisted of house makers, or they were unemployed or retired.

In terms of musical experience, 27.6% of the participants had some form of musical experience, either through learning or studying music formally or playing an instrument. In the current study, music skills are assessed based on the number of years spent learning music through formal training. We did not ask questions regarding the amount of practice as an indicator of expertise in music skills. Participants with music skills, learned music formally \((n = 312)\) for an average of 4.6 years \((M = 4.6, SD = 4.4, \text{Min} = 1, \text{Max} = 30)\) or studied music theory \((n = 166)\) for an average of 3.8 years \((M = 3.8, SD = 4.1, \text{Min} = 1, \text{Max} = 27)\). Participants \((n = 126)\) played a musical instrument for an average of 4 years \((M = 4.1, SD = 5.7, \text{Min} = 1, \text{Max} = 50)\). Three binary variables were created according to the cut-off values proposed by (Zhang et al., 2018) to examine the differences between non-musicians or amateur musicians (1–5 years) and musicians with experience of 6 years and above: (1) participants who learned music formally \((n = 217)\) and musicians \((n = 75)\), (2) studied music theory formally by non-musicians \((n = 127)\) and musicians \((n = 27)\), and (3) played a musical instrument by non-musicians \((n = 99)\) and musicians \((n = 22)\).

Twenty-three different favourite musical styles or music genres were reported by the participants. The most commonly mentioned musical styles were melodious (30.2%, \(n = 402\)), all genres/types (12.8%, \(n = 170\)), pop (9.7%, \(n = 129\)), classical (8.9%, \(n = 118\)), and rock (8.3%, \(n = 110\)) and the rest of the genres had in between 5 to 20 participants per each genre. The average music listening time per week was 11 h \((M = 11.06, SD = 14.84)\). In addition, 77% \((n = 1023)\) of participants had mentioned music as a hobby for an average of 10 years \((M = 10.14, SD = 7.88, \text{Min} = 0 \text{ to Max} = 50)\).

Procedure

Data was collected from participants of Indians and Indian origin immigrants using a paper and pencil method. Indian
participants lived in three different cities (Hyderabad, Vijayawada, Bangalore) in India and Indian immigrants lived in Warsaw, Poland. In the Poland sample, data was only collected from Indian immigrants. Information about the study was displayed in social media networks and on printed posters in public places and private offices. In person, we visited the places of people who responded to the invitation of the study and gave the questionnaires and collected them back when they finished answering. We received answers from over 27 collection points spread across public and private universities and colleges, government offices, courts, corporate offices, and streets. Participation in the study was voluntary. The informed consent was received from the participants before enrolling in the study. Ethical approval was obtained from SWPS University.

Demographic questions such as age, gender, education, occupation, employment, and marital status were asked in the first part. The second part included questions about music preferences (genres), musical skills, hearing problems, and musical habits.

Measurements

Music engagement was measured using the Healthy Unhealthy Music Scale (HUMS, Saarikallio et al., 2015). It consists of 13 items grouped into two subscales that measure adaptive and maladaptive music use. Five items represent healthy music use (HM), and eight items represent unhealthy music use (UHM). The healthy music subscale represents adaptive music engagement and consists of items reflecting mood enhancement, social connection, and relaxation. The unhealthy music subscale represents maladaptive music engagement and consists of items reflecting rumination, negative thoughts and feelings, isolation, and escapism.

All items were rated on a five-point Likert scale ranging from 1 (never) to 5 (always). The two subscales have good internal consistency: Cronbach’s α = .78 for HM and .83 for UHM (Saarikallio et al., 2015).

Depression was measured using the Beck Depression Inventory-II (Beck, Steer, Ball, et al., 1996; Beck, Steer, & Brown, 1996). The instrument consists of 21 items. Each item has four options ranging from 0 (not experiencing any symptom) to 3 (experiencing the symptom in severe). Since we were concerned with symptoms of major depression, we selected 14 items from the depression inventory that most closely match the nine symptoms used to qualify for major depression (Beck, Steer, Ball, et al., 1996; Beck, Steer, & Brown, 1996). The items were rated on a five-point scale ranging from 1 (very slightly or not at all) to 5 (extremely). Participants were instructed to answer each item based on what they generally feel.
Results

Psychometric properties of the scales

The mean and standard deviation of the scales used in the study are presented in Table 1. The internal consistency of all the scales is within an acceptable range. Confirmatory factor analysis (CFA) was used to test the two-factor measurement model of the HUMS scale. The results indicated that the two-factor model had a close fit to the data, $\chi^2(64) = 317.162$, $p < .001$, normed chi-square $\chi^2/df = 4.95$, CFI = .929, SRMR = .055, RMSEA = .055, SRMR = .055, BIC = 48440.616.

Prevalence of depression symptoms

The prevalence of depression symptoms in Indians and Indian immigrants is reported in Table 7. The first and second most endorsed symptoms in Indians are disturbances in sleep and appetite symptoms from the somatic cluster. However, in Indian immigrants, changes in appetite were the top reported symptom, and the second most reported symptom is depressed mood. Guilty feelings were the third most reported symptom in Indian immigrants, whereas diminished interest in activities was the third most reported symptom in Indians. Concentration difficulty was the fourth most reported symptom in Indians, and fatigue was the fourth most experienced symptom in Indian immigrants. Fatigue is the fifth most experienced symptom in Indians. Finally, in Indian immigrants, the loss of pleasure symptom was the fifth commonly experienced symptom.

Music engagement and depression

Correlations between music engagement and depression symptoms. We calculated the Pearson correlations between the scores of HM and UM, the total depression sum score, and the 14 symptoms of depression to analyse if music engagement is indicative of depression (see Table 2). As expected, all symptoms of depression are positively correlated with UHM, but to a different extent: worthlessness, suicidal thoughts, and fatigue are moderately correlated with UHM. In addition, the total depression score shows a medium sized relation with UHM. With regard to HM, there were no substantial correlations. Thus, the correlation analysis shows that unhealthy engagement (UHM) with music is related to depression symptoms with a varying strength.

Depressive symptoms as predictors of UHM. Multiple linear regression analysis was used to examine whether depressive symptoms predict UHM. All the variables were entered at a time (enter method). Depression symptoms were selected as independent variables and UHM as the dependent variable. Regression coefficient estimates were derived from 5000 bootstraps. The results reveal (Table 3) three symptoms (depressed mood, worthlessness or guilt, suicidal thoughts) from the affective cluster and two symptoms (fatigue and changes in sleep pattern) from somatic cluster and one symptom (hopelessness) from cognitive cluster were significant predictors of UHM. The overall model was statistically significant, $F(14, 1054) = 16.12$, $p < .001$, $R^2 = 18$. The presence of one symptom in each pair is adequate to qualify for a single symptom.

Table 3. Depression symptoms as predictors of maladaptive music engagement (UHM).

Predictors	B	[95% CI]	SE	β	t	p
(Intercept)	12.94	[12.39, 13.56]	.29	45.81	.001	
Depressed Mooda	.52	[.16, .87]	.18	.09	2.79	.005
Diminished interest in activitiesac	-.01	[-.39, .38]	.20	.00	-.03	.975
Loss of pleasureac	.20	[-.17, .60]	.19	.03	1.02	.310
Worthlessnessac	.55	[0.01, 1.09]	.28	.08	2.17	.030
Guilty feelingssd	.51	[.04, .98]	.24	.07	2.16	.031
Suicidalthoughts or wishesa	1.03	[.47, 1.62]	.29	.14	4.06	.001
Fatiguesd	.59	[.13, 1.07]	.24	.10	2.69	.007
Reduced energysd	.11	[-.40, .60]	.25	.02	.46	.643
Changes in sleep patternsm	.58	[.23, .99]	.19	.10	3.27	.001
Changes in appetite	.00	[-.35, .41]	.19	.00	.05	.957
Concentration difficultyck	-.12	[-.52, .28]	.21	-.02	-.58	.565
Indecisivenessck	.16	[-.23, .58]	.21	.03	.82	.410
Agitationa	.05	[-.30, .40]	.18	.01	.26	.795
Hopelessnessc	.50	[.04, .92]	.22	.07	2.34	.020

Note. 1069 participants were included in the analysis. The values in bold indicate statistically significant.

a, ac, ab, sd, sm, ck | Represents symptoms in the affective cluster.

b, bc, cb | Represents symptoms in the cognitive cluster.

c, ck, sc | Represents symptoms in the somatic cluster.

Presence of one symptom in each pair is adequate to qualify for a single symptom.
and area under curve (AUC) were selected to assess the probability of predicting the severity of depression symptoms. An OR > 1 implies a positive relationship, while OR < 1 implies a negative relationship. AUC is an important metric that indicates the performance of the classification model. The values range from 0 to 1. Values closer to 1 indicate a better model. The conventions for interpreting AUC are as follows: negligible (below 0.55), small (0.56 to 0.63), moderate (0.64 to 0.70), and strong (>0.70; Rice and Harris, 2005; Salgado, 2018).

The odds ratios (Table 4) of all the depressive symptoms show a positive relationship with UHM. The use of UHM increased the probability of experiencing depressive symptoms in the affective cluster by odds ratios between 1.04 and 1.14. In the somatic cluster, odd ratios ranged from 1.06 to 1.08 and in the cognitive cluster, odd ratios ranged from 1.04 to 1.11. AUC values of the five symptoms indicate that loss of pleasure or diminished interest, worthlessness, fatigue or reduced energy, changes in sleep pattern or appetite, and agitation had small effect sizes. AUC values of four symptoms show that depressed mood, suicidal thoughts, indecisiveness, and hopelessness had a medium effect size. The AUC value of guilty feelings had a strong effect size.

Table 4. UHM as predictor of depression symptoms.

Predictors	n	OR	[95% CI]	P	AUC	[95% CI]	P*	AIC	R²
Depressed Mood	1195	1.10	[1.07, 1.13]	.001	.65	[0.62, 0.68]	.000	1584.19	.06
Diminished interest in activities	1198	1.06	[1.04, 1.08]	.001	.60	[0.57, 0.63]	.000	1641.69	.02
Loss of pleasure	1192	1.09	[1.06, 1.11]	.001	.63	[0.60, 0.66]	.000	1597.00	.05
Worthlessness	1201	1.04	[1.02, 1.06]	.001	.57	[0.54, 0.60]	.000	1654.82	.01
Guilty feelings	1186	1.13	[1.11, 1.16]	.001	.71	[0.67, 0.74]	.000	1201.01	.13
Suicidal thoughts or wishes	1202	1.14	[1.11, 1.17]	.001	.70	[0.67, 0.74]	.000	1099.94	.12
Fatigue	1176	1.08	[1.06, 1.08]	.001	.63	[0.60, 0.66]	.000	1579.48	.04
Reduced energy	1173	1.07	[1.04, 1.09]	.001	.60	[0.57, 0.64]	.000	1588.69	.03
Changes in sleep pattern	1176	1.07	[1.06, 1.08]	.001	.59	[0.55, 0.62]	.000	1567.85	.02
Changes in appetite	1171	1.07	[1.04, 1.09]	.001	.60	[0.56, 0.63]	.000	1586.63	.02
Concentration difficulty	1187	1.07	[1.05, 1.10]	.001	.61	[0.58, 0.64]	.000	1614.55	.04
Indecisiveness	1187	1.11	[1.08, 1.13]	.001	.65	[0.62, 0.69]	.000	1547.22	.07
Agitation	1154	1.08	[1.06, 1.10]	.001	.62	[0.59, 0.66]	.000	1550.72	.04
Hopelessness	1193	1.10	[1.08, 1.13]	.001	.66	[0.63, 0.69]	.000	1441.89	.06

Note. Nagelkerke R².

a, ac, ab Represents symptoms in the affective cluster.
s, sd, sm Represents symptoms in the somatic cluster.
c, ck Represents symptoms in the cognitive cluster.
d Asymptotic Significance.
ac, ab, sd, sm Presence of one symptom in each pair is adequate to qualify for a single symptom.

Role of depression on music engagement, music skills and demographic factors. A general binary depression variable (depressed and non-depressed) was created. Depressed category was based on the presence of five out of nine symptoms, including the compulsory presence of one or two primary symptoms (depressed mood and reduced interest in activities or loss of pleasure). Participants in the depression category were selected irrespective of the severity level and according to the diagnostic criteria for depression outlined in ICD-11. On the other hand, those who did not meet less than ICD-11 diagnostic criteria for depression, were included in non-depressed group.

No significant differences between non-depressed and depressed individuals were found regarding musical training, music education, gender and age. In music engagement, no differences were found between depressed and nondepressed in HM, Welch’s t(501.86) = 1.36, p = .174, ΔM = 0.38, 95% CI [−0.17, 0.93], d = 0.09, 95% [-0.04, 0.22]. Yet, differences were observed in UHM. Depressed people had higher levels of UHM than people without depression, Welch’s t(534.91) = −6.92, p < .001, ΔM = −2.47, 95% CI [−3.16, −1.77], d = −0.46, 95% CI [−0.59, −0.32].
Sensitivity and specificity of UHM subscale. Univariate binary logistic regression assessed the UHM subscale specificity, sensitivity, and accuracy in predicting and identifying depression cases through classification tables. UHM subscale is selected as an independent variable, and a binary (depressed and non-depressed) variable created according to ICD-11 criteria is selected as a dependent variable. The results indicate that the model is statistically significant ($\chi^2(1208) = 48.39, p < .001$). UHM is a significant predictor ($B = 0.09, 95\% CI [0.09, 0.13], SE = 0.02, \text{Wald } X^2 (1) = 43.07, OR = 1.10, 95\% CI [1.06, 1.13], p < .001$) of depression episode that meets the ICD-11 criteria. The Nagelkerke $R^2 = .06$ indicates that this model accounts for 6% of the variability in depression. Optimal cut-off values were calculated using ROC curves (Figure 1) to find the UHM subscale screening accuracy; 10.5 was selected as the cut-off score (Table 5) for the UHM subscale. The sensitivity was 0.86, specificity was 0.66, and area under ROC curve was .64, 95% CI [.60, .68], $SE = .02$, asymptotic significance $p < .001$.

Link between social and psychological factors and musical engagement

Since we observed a bidirectional relationship between music engagement and depression, we will focus on the demographic variables that might play a role in music engagement. These variables include demographic (age and gender, occupation, marital status, cities), musical skills, trait affect, and preferred music genres/styles.

Psychological factors. HM was positively correlated with trait PA: $r_{(1185)} = .29, 95\% CI [.24, .34], r < .001$, but not with trait NA: $r_{(1184)} = .01, 95\% CI [−.05, .06], p = .854$. UHM was negatively correlated with PA: $r_{(1185)} = −.14, [−.20, −.09], r = .001$, and positively with NA: $r_{(1184)} = .36, 95\% CI [.30, .40], p = .001$.

Social factors. In the HM subgroup, no differences were found in occupation ($F(2.276.29) = 1.15, r = .316, \omega^2 = .00$) and relationship status ($F(2, 34.23) = 1.28, r = .289, \omega^2 = .00$).

In the UHM subgroup, 1308 participants were included in the Welch-ANOVA. Differences were observed between occupation categories ($F(2, 279.20) = 40.01, r < .001, \omega^2 = .05$) and relationship status ($F(2, 34.64) = 39.39, r < .001, \omega^2 = .04$). Games-Howell post hoc comparisons using scheffe’s corrections method indicated that students $(\eta = 0.97)$ had higher levels of unhealthy music use (UHM) compared to people from Bangalore city $(\Delta \eta = 2.49, 95\% CI [2.25, 2.73], P_{scheffe} < .001)$. People in Hyderabad had lower levels of UHM than those from Bangalore $(\Delta \eta = 2.84, 95\% CI [2.61, 3.06], P_{scheffe} < .001)$ and Warsaw $(\Delta \eta = 2.92, 95\% CI [2.68, 3.17], P_{scheffe} < .001)$.

There were no differences found between the countries, India and Poland in HM $(\eta(147.83) = 0.35, r = .728, \Delta \eta = 0.13, 95\% CI [0.06, 0.19], d = 0.03, 95\% CI [0.01, 0.05])$ and UMH $(\eta(144.16) = 0.35, r = .328, \Delta \eta = 0.52, 95\% CI [0.37, 0.67], d = 0.12, 95\% CI [0.08, 0.26])$. There were no differences observed between cities in HM, but differences were observed between the cities ($F(3, 75.13) = 32.33, r < .001, \omega^2 = .06$) in UHM. Games Howell post hoc comparisons using scheffe’s correction method indicated people from Hyderabad had lower levels of UHM compared to people from Vijayawada $(\Delta \eta = 2.92, 95\% CI [2.73, 3.11], P_{scheffe} < .001)$. People in Vijayawada city had higher levels of UHM than people in Bangalore $(\Delta \eta = 4.41, 95\% CI [2.04, 6.79], P_{scheffe} < .001)$ and Warsaw $(\Delta \eta = 2.01, 95\% CI [0.56, 3.45], P_{scheffe} = .002)$. The mean values of UHM levels indicate that people from Bangalore city had lower levels of UHM. The effect size interpretation for omega squared (ω^2) is 0.01 (small), 0.06 (medium), 0.14 (Large).

Table 5. Coordinates of the ROC curve test result Variable(s): unhealthy scale.

Positive if Greater Than or Equal To	Sensitivity	1 - Specificity
4.00	1.000	1.000
5.00	.998	.993
6.00	.994	.984
7.00	.992	.980
8.00	.962	.862
9.00	.917	.753
10.00	.858	.661
11.00	.806	.576
12.00	.733	.520
13.50	.653	.454
14.50	.568	.405
15.00	.498	.342
16.50	.429	.280
17.50	.371	.217
18.50	.318	.191
19.50	.267	.141
20.50	.222	.125
21.50	.183	.092
22.50	.149	.072
23.50	.110	.066
24.50	.084	.049
25.50	.066	.033
26.50	.047	.033
27.50	.039	.023
28.50	.031	.016
29.50	.021	.007
30.50	.011	.003
31.50	.009	.003
33.00	.004	.003
34.50	.003	.000
35.50	.002	.000
36.50	.001	.000
38.00	.000	.000

The test result variable(s): Unhealthy Scale has at least one tie between the positive actual state group and the negative actual state group.

a. The smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value is the maximum observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.

Logistic regression assessed the UHM subscale specificity and the largest cutoff value is selected as a dependent variable. The model is statistically significant ($\chi^2(1208) = 48.39, p < .001$). UHM is a significant predictor ($B = 0.09, 95\% CI [0.09, 0.13], SE = 0.02, \text{Wald } X^2 (1) = 43.07, OR = 1.10, 95\% CI [1.06, 1.13], p < .001$) of depression episode that meets the ICD-11 criteria. The Nagelkerke $R^2 = .06$ indicates that this model accounts for 6% of the variability in depression. Optimal cut-off values were calculated using ROC curves (Figure 1) to find the UHM subscale screening accuracy; 10.5 was selected as the cut-off score (Table 5) for the UHM subscale.
Table 6. Correlation of healthy- unhealthy music subscales with music preferences.

Variable	HM [95% CI]	P	UHM [95% CI]	P
Melodious	.10 [.05, .16]	.001	.03 [-.02, .09]	.244
All Genres/Types	.03 [-.03, .08]	.026	-.01 [-.06, .05]	.764
Pop	.04 [-.01, .10]	.117	-.04 [-.09, .02]	.184
Classical	.11 [.05, .16]	.001	-.07 [-.12, .02]	.012
Rock	.01 [-.05, .06]	.794	-.04 [-.09, .01]	.141
Love/Romantic	.00 [-.05, .06]	.943	-.02 [-.08, .03]	.412
Folk	-.01 [-.07, .04]	.592	-.03 [-.09, .02]	.247
Bollywood	.00 [-.05, .05]	.985	-.03 [-.08, .03]	.325
Jazz	.05 [-.00, .10]	.071	-.04 [-.10, .01]	.129
Classics	.09 [.03, .14]	.001	.08 [.02, .13]	.004
Hip-Hop	.03 [-.03, .08]	.361	-.04 [-.09, .02]	.169
Western	.02 [-.03, .08]	.370	-.01 [-.06, .05]	.806
Mass	.02 [-.04, .07]	.512	.07 [.01, .12]	.066
Slow	-.01 [-.06, .04]	.723	-.00 [-.06, .05]	.900
Film / Cinema songs	.00 [-.05, .06]	.880	-.05 [-.10, .00]	.700
Devotional	.05 [.00, .10]	.069	-.00 [-.06, .05]	.862
Instrumental	.04 [-.01, .01]	.121	-.02 [-.07, .03]	.451
Sad songs/music	-.06 [-.11, -.01]	.031	.11 [.06, .16]	.001
Rap	.00 [-.06, .05]	.974	-.02 [-.07, .04]	.535
Fast Beat	.00 [-.05, .06]	.970	-.03 [-.08, .03]	.329
Soft	.00 [-.05, .05]	.986	-.04 [-.09, .02]	.198
Indian Carnatic	.01 [-.05, .06]	.767	-.01 [-.07, .04]	.648
Telugu	-.05 [-.11, .00]	.052	.03 [.03, .08]	.302

Note. 1306 participants were included for the analysis between HM and music preferences (genres). 1308 participants were included for the analysis between UHM and music preferences. The Music genres reported in this table are arranged in a descending way based on the number of people who reported their preference for that genre.

Table 7. Prevalence of depressive symptoms in Indians and Indian immigrants.

Symptoms	Total sample	India Male	Female	Indian Immigrants Male	Female
Changes in sleep pattern	53.8	54.1	53.6	54.6	50.8
Changes in appetite	48.8	47.7	50.9	44.6	60.0
Diminished interest	47.7	47.5	47.3	47.7	50.0
Concentration difficulty	46.5	46.1	47.4	44.7	50.8
Fatigue	46.2	45.6	43.6	47.5	52.5
Guilty feeling	46.0	45.1	47.8	42.4	55.0
Depressed Mood	44.1	42.7	39.9	45.4	58.3
Loss of pleasure	43.7	42.9	45.8	40.1	51.7
Agitation	41.4	41.3	41.3	41.3	42.5
Reduced energy	41.2	41.0	39.1	42.9	43.3
Indecisiveness	39.5	39.6	38.8	40.5	38.3
Hopelessness	30.1	29.6	28.3	30.9	35.0
Worthlessness	21.5	21.4	21.8	21.1	22.5
Suicidal Thoughts	18.1	18.1	17.1	19.1	18.3

Note. The symptoms are arranged rank wise according to the percentage of people reported.

*aTotal number of people in the entire sample.

Gender. Women had higher levels of HM than men (t(1304) = 2.04, p = .042, ΔM = 0.46, 95% CI [0.02, 0.91], d = 0.11, 95% CI [0.00, 0.22]), while no gender differences (t(1306) = 0.55, p = .581, ΔM = 0.17, 95% CI [−0.43, 0.78], d = 0.03, 95% CI [−0.08, 0.14]) were observed in UHM.

Age. HM was positively correlated with age: r(1306) = .06, [.00, .11], p = .045; UHM was negatively correlated with age: r(1306) = −.19, 95% [−.24, −.14], p = .001.

Participants were classified into three groups based on their age. 68.9% of participants were in emerging adulthood (18–25 years, n = 916), 23% were in young adulthood (26–39 years, n = 306), 8.1% of participants were in middle adulthood (40–65 years, n = 107). Age is used as WLS weight due to the uneven distribution of participants in age groups in the current study. Welch correction is used for the ANOVA test because of the violation of the equality of variance assumption. 1306 participants were...
included in the final analysis. Statistically significant differences were not present among age groups (F(2, 266.48) = 1.63, p = .197, $\omega^2 = .00$) in HM but in UHM (F(2, 258.65) = 43.94, p < .001, $\omega^2 = .06$). Games-Howell post hoc comparison tests using scheffe’s correction method indicate that the emerging adulthood group has higher levels of unhealthy music use than young adults ($\Delta M = 2.86$, 95% CI [2.06, 3.66], $p_{\text{scheffe}} < .001$) and middle adulthood group ($\Delta M = 2.80$, 95% CI [1.70, 3.91], $p_{\text{scheffe}} < .001$).

Musical skills and musical history. There were no statistical differences in HM between non-musician and musician regarding learned music (Welch t(133.96) = -0.58, $p = .561$, $\Delta M = -0.29$, 95% CI [-1.28, 0.70], $d = -0.08$, 95% CI [-0.34, 0.19]), studied music theory (t(34.53) = 0.70, $p = .486$, $\Delta M = -0.64$, 95% CI [-1.20, 2.48], $d = 0.16$, 95% CI [-0.26, 0.57]), or played an instrument (t(29.13) = 0.25, $p = .802$, $\Delta M = 0.25$, 95% CI [-1.75, 2.25], $d = 0.06$, 95% CI [-0.40, 0.52]).

Regarding UHM, there were no statistically significant differences between musician and non-musicians, neither for learning music formally ($t(151.03) = 1.08$, $p = .282$, $\Delta M = 0.79$, 95% CI [-0.65, 2.22], $d = 0.14$, 95% CI [-0.12, 0.40]) nor for studying music theory ($t(44.73) = 0.21$, $p = .832$, $\Delta M = 0.23$, 95% CI [-1.91, 2.37], $d = 0.04$, 95% CI [-0.37, 0.46]). One exception are musicians who have played an instrument for six and above years, showing lower levels in UHM ($t(38.47) = 3.89$, $p = .001$, $\Delta M = 4.09$, 95% CI [1.96, 6.21], $d = 0.84$, 95% CI [0.34, 1.33]) compared to non-musicians.

In addition, age was negatively correlated ($r(873) = -0.11$, 95% CI [-0.17, -0.04], $p = .001$) with the number of hours a person listens to music in a week. Music as a hobby in years was positively correlated ($r_{(1012)} = .22$, 95% CI [0.16, 0.28], $p = .001$) with HM and negatively related ($r_{(1014)} = -.11$, 95% CI [-0.17, -0.05], $p = .001$) with UHM. Familiarity with Indian popular music was positively associated ($r_{(1202)} = .13$, 95% CI [0.08, 0.19], $p = .001$) with HM but not associated ($r_{(1202)} = .06$, 95% CI [0.00, 0.11], $p = .054$) with UHM.

Music preferences. Only three musical styles showed significant correlations with music engagement (Table 6). Classical and melodious was positively correlated with HM. Sad music was positively correlated with UHM. In light of the large number of musical styles and the cumulation of Alpha error when testing all their associations with music engagement, we can conclude that there are no substantial correlations between music preferences and music engagement. Furthermore, the sample sizes for each genre are too small. The first five genres reported in Table 7 had above 100 participants each. From love and romantic genre to instrumental, the sample sizes of each genre were between 50 to 30 people. The rest of the genres were named by 20 to 30 people.

Discussion
Prevalence of depression symptoms

The prevalence of depression symptoms reported by the Indian participants in the current study supports earlier research where people frequently reported somatic symptoms (Grover et al., 2010). The most commonly reported depressive symptoms experienced by the Indian immigrants in the current study are somatic symptoms and sad mood, similar to the depression symptoms reported in Indian immigrants (Bhugra & Mastrogianni, 2004; Bhuï et al., 2004).

Music and depression

Depressive symptoms relation with UHM. The current study provides evidence that depressive symptoms significantly correlate with unhealthy musical use (UHM) positively but not associated with healthy musical use (HM). Unlike in the original study by Saarikallio et al. (2015), where they found that depression is positively correlated with HM.

The findings from correlation analysis show that the strength of the effect sizes between depressive symptoms and UHM extended from small to medium, but the effect size between depression sum score and UHM extends above medium ($r = .39$). The findings are in contrast with Saarikallio et al. (2015) and Agarwal et al. (2019), where they found a large effect size ($r = .52$ and $r = .67$) was observed in the relationship between the sum score of depression and UHM. This is because the K10 scale was employed to measure depression in both these studies. K10 scale was developed to assess psychological distress rather than to capture depression. In addition, the sample sizes of these studies are small that would inflate effect sizes. Garrido et al. (2017) obtained similar results, where they found a large effect size ($r = .45$) in the relation between UHM and sum score of the DASS depression subscale. The upper limit of the confidence interval reported in the current study has observed similar effect size ($r = .44$). The sample size in Garrido et al. (2017) study is acceptable. However, the gender distribution in the sample is skewed towards recruiting more women that might influence the results, as women have a higher risk of experiencing depression and ruminating (Nolen-Hoeksema & Hilt, 2009). The overlap of item content between the DASS depression subscale and BDI-II is low. The authors of the DASS subscale admitted that the items in the depression subscale do not correspond to any diagnostic systems (DASS FAQ, n.d.).

Interchanging of depression scales changes the effect sizes and makes it difficult to interpret the findings. Therefore, we used the depressive symptoms criteria of ICD-11 to measure depression and assessed symptom level relationship with the HUMS subscales instead of depression sum scores. The results reveal crucial information on symptom level that suicidal thoughts,
worthlessness, and fatigue symptoms had a robust relationship with UHM. Using depression sum score would obscure such important observations.

Depressive symptoms predictor of UHM. The results from multiple regression analysis indicate that six depression symptoms are predictors of unhealthy music use (UHM). Of those six symptoms, three are from affective cluster (AC), including one primary symptom, depressed mood. This is in line with the general belief that depression is considered an affective disorder. Therefore, we would expect it to be majorly associated with the affective component of musical engagement (Gabrielson, 2010) and the inherent ability of music to influence emotions and mood (Juslin et al., 2010; Konecni, 2010). In addition, fatigue and changes in sleep pattern from somatic cluster (SC) and hopelessness from cognitive cluster (CC) are predictors of UHM. The effect size of R^2 is above medium in strength.

The explanation behind the lack of improving mood when experiencing depressive symptoms is because of selecting mood-congruent music to sustain the negative states deliberately and worsen mood for misery sharing (Gibson et al., 2000; Skanland, 2013; Zillmann, 1988a). The mood congruency theory states that the increased recall of information, thoughts, or memories that are congruent with affective states (Bower & Forgas, 2000, 2001). For example, a negative mood tends to facilitate and entertain negative thinking and enhance or maintain negative affective experiences (Zillmann, 1988a), resulting in self-defeating tendencies that aggravate the distress. People who experience depressive symptoms most likely engage with music to reflect on or to match their mood (Wilhelm et al., 2013).

Siemer (2005) found that mood induced through music tends to be accompanied by mood-congruent cognitions in an experimental setting. Sad mood increases the perception of sadness while listening to music (Hunter et al., 2011). Especially when the individuals are experiencing distress, they may consciously choose to hinder the process of mood repair altogether despite maintaining those affective states which do not help address those inducing incidents, nor does it help prevent manifesting such events in the future (Gibson et al., 2000).

Depressed individuals are highly susceptible to employing affect regulation strategies like expressive suppression and engage in rumination due to a lack of inhibition when processing negative material (Joormann & Gotlib, 2010). In the music context, deploying affect regulation strategies to change or maintain affective states that are maladaptive lead to impaired affect regulation (Marik & Stegemann, 2016; Sakka & Juslin, 2018b). Therefore, maladaptive music listening may contribute to maladaptive affect regulation outcomes in individuals with a disposition for depression. However, these outcomes may not represent the affect regulation intentions of these individuals.

In depression, persistent negative affect and impaired affect regulation skills are observed (Campbell-Sills & Barlow, 2007), when coupled with maladaptive ways of listening to music has harmful consequences and can cause disturbances in affective functioning, which is commonly observed in affective disorders such as depression and anxiety (Carlson et al., 2015; Garrido & Schubert, 2013a; Silverman, 2020a).

UHM predictor of depressive symptoms. The findings from logistic regression analysis confirm that subjects who engage with music in unhealthy (UHM) ways have an increased risk of experiencing depression symptoms. The more intense the individuals engage in UHM, the higher their risk of experiencing depression symptoms. Engaging with UHM can increase the odds of experiencing depressive symptoms by up to 14 percent.

McFerran and Saarikallio (2014) demonstrated in their study that young people at risk of depression are more likely to rely on music to improve their affective states and feel content about themselves. However, those people also unconsciously use music to intensify their distressed states and support rumination. People prone to depression may not be aware of the effect of music listening on them and report positive benefits from music engagement. Lack of awareness about the double-edged ability of music behaviours can be harmful to the individual if the music they are engaging with is used to intensify their mental health disorders (Cheong-Clinch & McFerran, 2016). Addressing how people engage in musical activities can increase awareness and insight into the effects of deliberate music listening (McFerran et al., 2018).

Maladaptive strategies such as rumination involve the individual in uncontrolled attention on pessimistic, negative thoughts and behaviours associated with prolonged sadness, leading to a decrease in motivation to do any activities that would improve the mood (Conway et al., 2000; Forbes & Dahl, 2005; Joormann, 2005). Ruminating is a strong predictor of clinical depression (Calmes & Roberts, 2007; Nolen-Hoeksema & Morrow, 1993). One explanation that might explain why people continue to pursue rumination despite it having negative consequences is that rumination behaviour is reinforced by the fact that it permits ruminations to avoid the situations and evade active involvement in problem-solving (Moulds et al., 2007). Using rumination would make depressed people choose music that would not aid in improving their mood. Employing avoidance strategies as coping is a significant factor in predicting psychopathology, mainly depression, anxiety, and substance abuse (Aldao & Nolen-Hoeksema, 2012; Nolen-Hoeksema & Aldao, 2011).

Engagement with music for affect regulation does not always guarantee an improvement of mood in every individual. In some circumstances, it may also sustain the presence of psychopathology (Thomson et al., 2014). Recent Arvind et al., 2019; Gautham et al., 2020. However, it is difficult to establish whether frequent use of specific strategies of music engagement advances the onset of psychopathology or whether psychopathology encourages the adoption of these maladaptive strategies. Future studies in music
should focus more on longitudinal methods to establish the prediction at different time intervals (Miranda et al., 2012).

A detailed examination of the results between depressive symptoms and music engagement points us to a crucial observation. There is a strong association between unhealthy musical use (UHM) and suicidal thought symptom. First, the results indicate that suicidal ideation is one of the most important factors behind engaging in unhealthy use of music. Second, the use of unhealthy use of music indicates a higher probability of having suicidal thoughts. But again, due to the study’s design, we cannot say anything certain about causality.

UHM subscale can be used as an indirect indicator of affect disturbances or severe mental illness in India, especially when stigma about mental health is high among Indians where 1 in 20 people suffer from depression (Arvind et al., 2019; Gautham et al., 2020) and are unlikely to seek help from a therapist (Shidhaye et al., 2016). Understanding the link between music engagement and mental illness has implications for treatment.

Music engagement in depressed and non-depressed people.

Large effect size was observed from the findings of the t-test where depressed people have higher levels of unhealthy music use than people without depression. The results align with an earlier study that used the same tool (HUMS) on the people diagnosed with depression who were admitted to the inpatient ward had higher levels of UHM and lower levels of HM (Hense et al., 2018). These results are in contrast with a recent study by Sakka and Juslin (2018) they found no differences between depressed and non-depressed individuals in employing maladaptive strategies. Nevertheless, the current results in line with the literature indicate that maladaptive strategies are higher in depressed individuals (Aldao et al., 2010).

Screening accuracy of UHM subscale.

The UHM subscale had adequate screening ability to detect the presence of depression episode according to ICD-11. In addition, the sensitivity of the test was high, and the specificity was moderate. These results demonstrate that HUMS scale can be used as a screening tool in non-clinical settings. Despite the HUMS scale ability to detect depression, the HUMS scale cannot be used for screening severe depression symptoms or other mental disorders. Screening tool cannot be substituted for diagnostic evaluation.

Trait affect

Positive and negative trait affect had a significant role in musical engagement. Positive affect had a positive relationship only with HM with a medium strength in effect size, confirming that experiencing trait positive affect is related to flexibility in coping methods and affect regulation while engaging with music. Furthermore, higher levels of positive affect is a sign of individuals overall wellbeing and physical and mental health (Cohen & Pressman, 2006; Kuppens et al., 2008). Thus, employing cognitive strategies that are adaptive such as distraction is related to higher levels of positive affect, which is in line with past research (Augustine & Hemenover, 2009; Stone et al., 1995; Webb et al., 2012). In addition, the HM subscale is comprised of sociability component and it is known that positive trait affect correlates with extraversion (Naragon-Gainey & Watson, 2019).

Lower levels of positive affect and higher levels of negative affect had a relationship with UHM, which is in line with existing evidence that strategies such as avoidance and rumination sustain negative affect, eventually leading to depression symptoms (Aldao et al., 2010; Nolen-Hoeksema & Morrow, 1993). Our results confirm that low positive affect and high negative affect had an association with maladaptive coping methods, which in turn is a predictor of psychopathology. The effect size between trait NA and UHM is moderate, but the effect size between trait PA and UHM is small.

Social factors in music engagement

In healthy music use, there were no substantial differences found among different socio-demographic groups. However, in unhealthy music use, there were differences within occupation and relationship status and cities. The effect size of cities and the rest (occupation and marital status) were medium in strength. We can infer two conclusions from the results. First, the geographical location had an association with musical engagement. Second, individuals who identify as students, single in relationship status, had a higher risk of engaging in unhealthy musical use.

The current findings inform us that musical engagement models need to consider social and cultural factors (North & Hargreaves, 2008). The formation of musical identity is shaped in the context of cultural, psychological and social factors and the musical identity cannot be inferred only through musical tastes or music preferences (Dys et al., 2017). How we listen to music and respond to music is related to geographic location and contextual factors (Krause et al., 2016; Krause & North, 2017). Where we are listening to music and how we listen to music can be a marker of musical identity (Hargreaves et al., 2016). However, further research needs to be done to examine geographical influences on musical engagement through the ESM method.

Gender differences

There were no gender differences observed in unhealthy music use. However, a significant gender difference is observed with a small effect size in healthy music use in the present study. Women engage with healthy musical use more frequently than men, which is consistent with the general literature on the use of coping mechanisms and affect regulation strategies where women employ a wide repertoire of affect regulation strategies to regulate their affect (Nolen-Hoeksema, 2012; Tamres et al., 2002).
and women tend to use music for affect regulation, stress regulation significantly higher than men (Groarke & Hogan, 2018; Sloboda et al., 2001).

The gender differences found in the current study is in contrast with Saarikallio et al. (2015) study, where they found out that adolescent girls scored higher in unhealthy music use than boys and gender differences were not observed in healthy musical use. The differences in results between the current study and the former study are that the current study age composition of the sample is older than the younger school going sample and early college going girls in the former study. In a longitudinal study using an adult sample Hides et al. (2019) stated that gender did not have any role in HM or UHM.

Age relationship with musical engagement
In the current study, age was inversely correlated with UHM with a small effect size, consistent with the study by Garrido et al. (2017) that found a small effect size between UHM and age. In addition, findings from ANOVA test show that emerging adults had higher levels of UHM than the young and middle adulthood group with a moderate effect size. Overall the findings support the notion that affect regulation improves and negative affect decreases in old age (Mather & Carstensen, 2005), but our findings are in contrast with other studies (Agarwal et al., 2019; Saarikallio, 2011) that found no differences between age groups and music listening patterns that specifically focused on a link with depression.

Young individuals more frequently experience intense and extreme affective states (Larson, 1995), sometimes with a negative valence, which might reflect that the transition from childhood to young age sometimes is marked by an increase in psychopathology, particularly mood disorders (Davey et al., 2008; Paus et al., 2008). This is a crucial stage as the chance of developing maladaptive strategies rises, as it further increases the vulnerability for experiencing psychopathology (Cracco et al., 2017; Schirda et al., 2016). Young people with low emotional awareness have a higher chance of developing depression and anxiety and diminished access to strategies to cope with interpersonal difficulties and negative affect (Flynn & Rudolph, 2014; Kranzler et al., 2016).

Music skills and musical activities
The results indicate an absence of statistically significant differences in healthy, unhealthy music use between non-musicians and musicians, either in learned music formally or studied music theory. The findings support previous studies that did not find any differences in affective responses or music engagement strategies between musicians and non-musicians (Saarikallio et al., 2013). However, musicians playing musical instruments for more than six years had lower levels of unhealthy music use (UHM) than non-musicians, and the effect size is strong. The findings confirm that the amount of time involved in learning a musical instrument is related to the affective regulation of the musician and they use less maladaptive strategies when they engage with music. The findings support the notion that involvement in musical activities or acquiring music skills is related to the flexible use of affect regulation through music (Hanser, 2011). Thus, an individual’s affective regulation might be improved by musical training (see also Lehmann, 1997; Pelletier, 2004; Stratton and Zalanowski, 2003).

The correlational results also indicate that the average music listening time in a week is reduced as the age increases, but having music as a hobby over the years is linked to HM and inversely related to UHM. As we age, having a music hobby is beneficial as it engages with music employing adaptive regulation strategies and reduces maladaptive music engagement strategies. The findings should be interpreted with caution as the effect sizes of correlation coefficients are small. However, these results are in line with evidence that music engagement through active involvement in music-related activities is positively associated with individual’s affect regulation and physical, mental health, and wellbeing across the lifespan (Hanser, 2011; MacDonald et al., 2013; Rickard & McFerran, 2012).

The familiarity with popular music, in this case, it is Indian popular music, is correlated with HM with a weak effect size. However, earlier research showed that familiarity with music does not predict stress, but the degree of liking is related to reducing stress levels (Jiang et al., 2016).

Music genres
Overall, the results showed no substantial correlations between musical genres and music engagement. There were only three exceptions: melodic, classical, and sad music showed at least small correlations with musical engagement.

The preference for sad music was positively associated with UHM. Sad themes in sad music are related to higher levels of rumination (Garrido & Schubert, 2013a). In turn, rumination might lead to prolonged maladaptive music engagement and eventually to the development of depressive symptoms. The plausible explanation behind why sad music is associated with UHM can be explained through mood congruence theory, sad mood states make sad music more appealing for them (Hunter et al., 2011). However, some studies found that listening to sad music can also have positive outcomes as it helps release negative emotions (Van den Tol & Edwards, 2013). Yet, people who are already prone to depression might not be able to profit from this specific aspect (Garrido & Schubert, 2013b, 2015). The present study confirms that listening to sad music is connected with maladaptive engagement with music.
Preference for classical and melodious music genres was positively correlated to HM. Classical music is mainly rooted in tradition and is part of religious music in India (Joshi, 1982). The melodious style also refers to devotion and spirituality (Upadhyay et al., 2016). In India, traditional music is entwined with religious activities, and people listen to religious music as part of self-reflection and diversion to either seek solace from or indulge in spiritual activities. Schäfer et al. (2012) found that self-reflection in the form of devotion to God is one of the key functions of music in Indians. Within Indian cultural context, it is not possible to listen to Indian raga (melody) without emotionally being involved as each raga (melody) evokes a specific emotion, mood, or sentiment (Deva, 1992; Mathur et al., 2015; Midya et al., 2019). Findings from RCT trials demonstrated that the therapeutic application of ragas in treatment settings on mental health, neurocognitive disorders, and stress, hypertension has potential health benefits (Kunikullaya et al., 2015, 2016; Nizamie & Tikka, 2014; Sharma et al., 2021).

The current findings on music preferences align with earlier research that stated the association between music preferences (genres) and mental health did not generate enough evidence to infer a causal relationship (A.C. North & Hargreaves, 2006). Interventions that focus on raising awareness and self-reflection of the feelings and thoughts triggered by music listening are more predictive for positive outcomes than specific music style preferences (Stewart et al., 2019).

Limitations

The design of this study is cross-sectional, so our findings do not reveal any causality. We could have measured musical genres through validated scales instead of open-ended questions. The construct validity and reliability of the single item measurement of depression symptoms are prone to error. To date, most of the common scales developed to assess depression have not been validated to analyse individual depressive symptoms. A potential solution to improve the reliability of symptom measurement would be assessing the single symptom with multiple items on a broader scale, employing a scale like Inventory of Depression and Anxiety Symptoms (Watson et al., 2007) that measures a single symptom such as suicide with six different items might be a more reliable form of measurement. Another limitation is that we did not collect data on the acculturation and immigration experience of the Indian immigrants in Poland that would have revealed crucial information.

Conclusion

The way people interact with music may reflect their inner cognitive and emotional world and also an indicative of maladaptive ways of coping with everyday life, which might also reflect states of depression. In the present study, we mainly investigated the relationship between music engagement, symptoms of depression, and trait affect. We found that mainly the affective component of depression had a strong association with maladaptive music engagement. Since prior research has revealed nothing definite about the causality of these variables, we analysed predictive models in both directions and could show that maladaptive music engagement can predict depressive symptoms, but, at the same time, depressive symptoms can predict maladaptive music engagement. However, these causal pathways have to be tested empirically in future studies using longitudinal and ESM methods. Despite these limitations, the study’s findings are important because the UHM subscale of HUMS can identify individuals at risk of experiencing depressive symptoms. Moreover, our results showed that learning a musical instrument for a longer duration can be a protective factor as they prompt individuals to engage with music using efficient and flexible affect regulation strategies.

We could also show that the HUMS scale is a reliable tool that can be used in the general adult population as a non-clinical element of screening depression symptoms, and it can also help in identifying people at risk for depression episode (ICD-11 criteria), which can also be valuable in therapeutic settings, especially in music therapy that deals with depression. It is cost-effective and easy to use. Employing the HUMS scale in music therapy may help develop healthy relationships with music by evaluating music’s positive and negative impact on everyday lives (Ansdel, 2016).

Acknowledgements

I’m thankful to the participants who enrolled in the study. I’m grateful for the support of my family, friends and the people who helped me at every stage of this study. I wouldn’t have executed this study without them. I am indebted to the co-authors and anonymous reviewers of this paper.

Action Editor

Suvi Saarikallio, Department of Music, Art and Culture, University of Jyväskylä.

Peer Review

Katrina McFerran, The University of Melbourne, Faculty of Fine Arts and Music. Dave Miranda, University of Ottawa, School of Psychology.

Author Contributions

SCK researched literature, designed the study, obtained ethical approval, recruited participants, conducted the data analysis and wrote the first draft of the manuscript. DMG, TS, AG reviewed and edited the manuscript and approved the final version of the manuscript. AG supervised the study.
Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

ORCID iDs

Sai Charan Kanagala https://orcid.org/0000-0002-4094-8774
Thomas Schäfer https://orcid.org/0000-0002-9910-2642
David M. Greenberg https://orcid.org/0000-0003-1560-1418
Anna Gabin https://orcid.org/0000-0002-4379-9495

Supplemental material

Supplemental material for this article is available online.

References

Aalbers, S., Fusar-Poli, L., Freeman, R. E., Spreen, M., Ket, J. C., Vink, A. C., Maratos, A., Crawford, M., Chen, X.-J., & Gold, C. (2017). Music therapy for depression. *Cochrane Database of Systematic Reviews*, 11. https://doi.org/10.1002/14651858.CD004517.pub3

Aagarwal, R., Singh, R., Saarikallio, S., McFerran, K., & Alluri, V. (2019). Mining mental states using music associations. *Proc. Workshop on Speech, Music and Mind, (SMM)* 2019, 56–59. https://doi.org/10.21437/SMM.2019-12

Aldao, A., & Nolen-Hoeksema, S. (2012). The influence of context on the implementation of adaptive emotion regulation strategies. *Behaviour Research and Therapy*, 50(7–8), 493–501. https://doi.org/10.1016/j.brat.2012.04.004

Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. *Clinical Psychology Review*, 30(2), 217–237. https://doi.org/10.1016/j.cpr.2009.11.004

Ansdel, G. (2016). *How music helps in music therapy and everyday life* (1st ed). Rutledge. https://doi.org/10.4324/9781315587172

Arnett, J. J. (1995). Adolescents’ uses of media for self-socialization. *Journal of Youth and Adolescence*, 24(5), 519–533. https://doi.org/10.1007/BF01537054

Arvind, B. A., Gururaj, G., Loganathan, S., Amudhan, S., Varghese, M., Benegel, V., Rao, G. N., Kokane, A. M., B S, C., P K, D., Ram, D., Pathak, V., R K. L., Singh, L. K., Sharma, P., Saha, P. K., C, R., Mehta, R. Y., & T M, S. (2019). Prevalence and socioeconomic impact of depressive disorders in India: Multisite population-based cross-sectional study. *BMJ Open*, 9(6), e027250. https://doi.org/10.1136/bmjopen-2018-027250

Augustine, A. A., & Hemenover, S. H. (2009). On the relative effectiveness of affect regulation strategies: A meta-analysis. *Cognition and Emotion*, 23(6), 1181–1220. https://doi.org/10.1080/02699930802396556

Baas, K. D., Cramer, A. O. J., Koeter, M. W. J., van de Lisdonk, E. H., van Weert, H. C., & Schene, A. H. (2011). Measurement invariance with respect to ethnicity of the patient health questionnaire-9 (PHQ-9). *Journal of Affective Disorders*, 129(1), 229–235. https://doi.org/10.1016/j.jad.2010.08.026

Bagby, R. M., Ryder, A. G., Schuller, D. R., & Marshall, M. B. (2004). The hamilton depression rating scale: Has the gold standard become a lead weight? *American Journal of Psychiatry*, 161(12), 2163–2177. https://doi.org/10.1176/appi.ajp.161.12.2163

Baker, F., & Bor, W. (2008). Can music preference indicate mental health Status in young people? *Australasian Psychiatry*, 16(4), 284–288. https://doi.org/10.1080/10398560701879589

Baltazar, M., & Saarikallio, S. (2016). Toward a better understanding and conceptualization of affect self-regulation through music: A critical, integrative literature review. *Psychology of Music*, 44(6), 1500–1521. https://doi.org/10.1177/0305735616663313

Baumeister, H., Hutter, N., Bengel, J., & Härter, M. (2011). Quality of life in medically Ill persons with comorbid mental disorders: A systematic review and meta-analysis. *Psychotherapy and Psychosomatics*, 80(5), 275–286. https://doi.org/10.1159/000323404

Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. F. (1996). Comparison of Beck Depression Inventories-I and-II in Psychiatric Outpatients. *Journal of Personality Assessment*, 67(3), 588–597. https://doi.org/10.1207/s15327752jpa6703_13

Beck, A. T., Steer, R. A., & Brown, G. K. (1996). *Manual for the Beck Depression Inventory-II*. San Antonio, TX: Psychological Corporation.

Berking, M., Eichler, E., Luhmann, M., Diedrich, A., Hiller, W., & Rief, W. (2019). Affect regulation training reduces symptom severity in depression – A randomized controlled trial. *PLOS ONE*, 14(8), e0220436. https://doi.org/10.1371/journal.pone.0220436

Bhugra, D., & Mastrogianni, A. (2004). Globalisation and mental disorders: Overview with relation to depression. *The British Journal of Psychiatry*, 184(1), 10–20. https://doi.org/10.1192/bjp.184.1.10

Bhui, K., Bhugra, D., Goldberg, D., Sauer, J., & Tylee, A. (2004). Assessing the prevalence of depression in punjabi and English primary care attenders: The role of culture, physical illness and somatic symptoms. *Transcultural Psychiatry*, 41(3), 307–322. https://doi.org/10.1177/030674560456624

Boer, D., & Fischer, R. (2012). Towards a holistic model of functions of music listening across cultures: A culturally decentred conceptualization of affect self-regulation through music: A critical, integrative literature review. *Psychology of Music*, 44(6), 1500–1521. https://doi.org/10.1177/0305735616663313

Bolton, J. M., Belik, S.-L., Enns, M. W., Cox, B. J., & Sareen, J. (2008). Exploring the correlates of suicide attempts among individuals with major depressive disorder: Findings from the national epidemiologic survey on alcohol and related conditions. *The Journal of Clinical Psychiatry*, 69(7), 1139–1149. https://doi.org/10.4088/JCP.v69n0714

Bolton, J. M., Pagura, J., Enns, M. W., Grant, B., & Sareen, J. (2010). A population-based longitudinal study of risk factors for suicide attempts in major depressive disorder. *Journal of Psychiatric Research*, 44(13), 817–826. https://doi.org/10.1016/j.jpsychires.2010.01.003
Flynn, M., & Rudolph, K. D. (2014). A prospective examination of emotional clarity, stress responses, and depressive symptoms during early adolescence. *The Journal of Early Adolescence, 34*(7), 923–939. https://doi.org/10.1177/0272431613513959

Fokkema, M., Smits, N., Kelderman, H., & Cuijpers, P. (2013). Response shifts in mental health interventions: An illustration of longitudinal measurement invariance. *Psychological Assessment, 25*(2), 520–531. https://doi.org/10.1037/a0031669

Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to understanding child and adolescent depression? *Development and Psychopathology, 17*(3), 827–850. https://doi.org/10.1017/S095457940505039X

Fried, E. (2017). Moving forward: How depression heterogeneity hinders progress in treatment and research. *Expert Review of Neurotherapeutics, 17*(5), 423–425. https://doi.org/10.1080/14737175.2017.1307737

Fried, E. I. (2020). Lack of theory building and testing impedes progress in the factor and network literature. *Psychological Inquiry, 31*(4), 271–288. https://doi.org/10.1080/1047840X.2020.1853461

Fried, E. I., Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, A. O. J., Epskamp, S., Tuerlinckx, F., Carr, D., & Stroebel, M. (2015). From loss to loneliness: The relationship between bereavement and depressive symptoms. *Journal of Abnormal Psychology, 124*(2), 256–265. https://doi.org/10.1037/abn0000028

Fried, E. I., & Nesse, R. M. (2014). The impact of individual depressive symptoms on impairment of psychosocial functioning. *PLOS ONE, 9*(2), e90311. https://doi.org/10.1371/journal.pone.0090311

Fried, E. I., & Nesse, R. M. (2015). Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. *Journal of Affective Disorders, 172*, 96–102. https://doi.org/10.1016/j.jad.2014.10.010

Fried, E. I., van Borkulo, C. D., Epskamp, S., Schoevers, R. A., Tuerlinckx, F., & Borsboom, D. (2016). Measuring depression over time... Or not? Lack of unidimensionality and longitudinal measurement invariance in four common rating scales of depression. *Psychological Assessment, 28*(11), 1354–1367. https://doi.org/10.1037/aps0000275. PubMed

Furukawa, T. A., Streiner, D. L., Azuma, H., Higuchi, T., Kamijima, K., Kanba, S., Ozaki, N., Aoba, A., Murasaki, M., & Miura, S. (2005). Cross-cultural equivalence in depression assessment: Japan–Europe–North American study. *Acta Psychiatrica Scandinavica, 112*(4), 279–285. https://doi.org/10.1111/j.1600-0447.2005.00587.x

Gabrielsson, A. (2010). Strong experiences with music. In *Handbook of music and emotion: Theory, research, applications* (pp. 547–574). Oxford University Press.

Gaebel, W., Zielasek, J., & Reed, G. (2017). Mental and behavioural disorders in the ICD-11: Concepts, methodologies, and current status. *Psychiatria Polska, 51*(2), 169–195. https://doi.org/10.12740/PP/69660

Galinowski, A., & Lehert, P. (1995). Structural validity of MADRS during antidepressant treatment. *International Clinical Psychopharmacology, 10*(3), 157–161. https://doi.org/10.1097/00004850-199510030-00004

Garcia Velázquez, R. (2019). Symptom-level analysis of depression and functional impairment: Evidence from population-based studies [Doctoral Thesis, University of Helsinki]. https://helda.helsinki.fi/handle/10138/305598

García-Velázquez, R., Jokela, M., & Rosenström, T. H. (2017). Symptom severity and disability in psychiatric disorders: The U.S. Collaborative psychiatric epidemiology survey. *Journal of Affective Disorders, 222*, 204–210. https://doi.org/10.1016/j.jad.2017.07.015

García-Velázquez, R., Jokela, M., & Rosenström, T. H. (2019). Direction of dependence between specific symptoms of depression: A Non-Gaussian approach. *Clinical Psychological Science, 8*(2), 240–251. https://doi.org/10.1177/2167702619875410

Garriffo, N., Teerds, J., Kraaij, V., Legerstee, J., & van den Kommer, T. (2004). Cognitive emotion regulation strategies and depressive symptoms: Differences between males and females. *Personality and Individual Differences, 36*(2), 267–276. https://doi.org/10.1016/S0191-8869(03)00083-7

Garrido, S., Eerola, T., & McFerran, K. (2017). Group rumination: Social interactions around music in people with depression. *Frontiers in Psychology, 8*, 490. https://doi.org/10.3389/fpsyg.2017.00490

Garrido, S., & Schubert, E. (2011). Individual differences in the enjoyment of negative emotion in music: A literature review and experiment. *Music Perception: An Interdisciplinary Journal, 28*(3), 279–296. https://doi.org/10.1525/mp.2011.28.3.279

Garrido, S., & Schubert, E. (2013a). Adaptive and maladaptive attraction to negative emotions in music. *Musicae Scientiae, 17*(2), 147–166. https://doi.org/10.1177/1029864913478305

Garrido, S., & Schubert, E. (2013b). Moody melodies: Do they cheer us up? A study of the effect of sad music on mood. *Psychology of Music, 43*(2), 244–261. https://doi.org/10.1177/0305735613501938

Garrido, S., & Schubert, E. (2015). Music and people with tendencies to depression. *Music Perception: An Interdisciplinary Journal, 32*(4), 313–321. https://doi.org/10.1525/mp.2015.32.4.313

Gautham, M. S., Gururaj, G., Varghese, M., Benegal, V., Rao, G. N., Kokane, A., Chavan, B. S., Dalal, P. K., Ram, D., Pathak, K., Lenin Singh, R. K., Singh, L. K., Sharma, P., Saha, P. K., Ramasubramanian, C., Mehta, R. Y., & Shibukumar, T. M. (2020). The National Mental Health Survey of India (2016): Prevalence, socio-demographic correlates and treatment gap of mental morbidity. *International Journal of Social Psychiatry, 66*(4), 361–372. https://doi.org/10.1177/0020764020907941

Getz, L. M., Chamorro-Premuzic, T., Roy, M. M., & Devroop, K. (2012a). The relationship between affect, uses of music, and music preferences in a sample of South African adolescents. *Psychology of Music, 40*(2), 164–178. https://doi.org/10.1177/0020764010381818

Getz, L. M., Marks, S., & Roy, M. (2012b). The influence of stress, optimism, and music training on music uses and
preferences. *Psychology of Music*, 42(1), 71–85. https://doi.org/10.1177/0305735612456727

Gibson, R., Aust, C. F., & Zillmann, D. (2000). Loneliness of adolescents and their choice and enjoyment of love-celebrating versus love-lamenting popular music. *Empirical Studies of the Arts*, 18(1), 43–48. https://doi.org/10.2190/B51G-8U0W-N0EQ-MJUU

Gold, C., Saarikallio, S., Crooke, A. H. D., & McFerran, K. S. (2017). Group music therapy as a preventive intervention for young people at risk: Cluster-randomized trial. *Journal of Music Therapy*, 54(2), 133–160. https://doi.org/10.1093/jmt/blb002

Goldberg, D. (2011). The heterogeneity of “major depression.” *World Psychiatry*, 10(3), 226–228. https://doi.org/10.1002/j.2051-5545.2011.tb00061.x. PubMed.

Gray, E. K., & Watson, D. (2001). Emotion, mood, and temperament: Similarities, differences, and a synthesis. In R. L. Payne & C. L. Cooper (Eds.), *Emotions at Work: Theory, Research and Applications for Management* (pp. 21–43). John Wiley & Sons.

Groarke, J. M., & Hogan, M. J. (2018). Development and psychometric evaluation of the adaptive functions of music listening scale. *Frontiers in Psychology*, 9, 516. https://doi.org/10.3389/fpsyg.2018.00516

Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. *Review of General Psychology*, 2(3), 271–299. https://doi.org/10.1037/1089-2680.2.3.271

Grover, S., Avasthi, A., Kalita, K., Dalal, P. K., Rao, G. P., Chadda, R. K., Lakdawala, B., Bang, G., Chakraborty, K., Kumar, S., Singh, P. K., Kathuria, P., Thirunavukarasu, M., Sharma, P. S. V. N., Harish, T., Shah, N., & Deka, K. (2013). IPS Multicentric study: Functional somatic symptoms in depression. *Indian Journal of Psychiatry*, 55(1), 31–40. https://doi.org/10.4103/0019-5545.105502. PubMed.

Grover, S., Dutt, A., & Avasthi, A. (2010). An overview of Indian research in depression. *Indian Journal of Psychiatry*, 52(Suppl 1), S178–S188. https://doi.org/10.4103/0019-5545.69231. PubMed.

Gullion, C. M., & Rush, A. J. (1998). Toward a generalizable model of symptoms in major depressive disorder. *Biological Psychiatry*, 44(10), 959–972. https://doi.org/10.1016/S0006-3223(98)00235-2

Gustavson, D. E., Coleman, P. L., Iversen, J. R., Maes, H. H., Gordon, R. L., & Lense, M. D. (2021). Mental health and music engagement: Review, framework, and guidelines for future studies. *Translational Psychiatry*, 11(1), 370. https://doi.org/10.1038/s41398-021-01483-8

Haeyen, S., & Noorthoorn, E. (2021). Validity of the self-expression and emotion regulation in Art therapy scale (SERATS). *PLOS ONE*, 16(3), e0248315. https://doi.org/10.1371/journal.pone.0248315

Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. *Caspian Journal of Internal Medicine*, 4(2), 627–635. http://caspjm.com/article-1-193-en.html

Hallam, S. (1998). The predictors of achievement and dropout in instrumental tuition. *Psychology of Music*, 26(2), 116–132. https://doi.org/10.1177/0305735698262002

Hallam, S., Crech, A., Varvarigou, M., & McQueen, H. (2012a). Perceived benefits of active engagement with making music in community settings. *International Journal of Community Music*, 5(2), 155–174. https://doi.org/10.1386/ijcm.5.2.155_1.

Hallam, S., Rinta, T., Varvarigou, M., Crech, A., Papageorgi, I., Gomes, T., & Lanippekun, J. (2012b). The development of practising strategies in young people. *Psychology of Music*, 40(5), 652–680. https://doi.org/10.1177/0305735612443868

Hambrecht, D. Z., Oswald, F. L., Altmann, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: Is that all it takes to become an expert? *Acquiring Expertise: Ability, Practice, and Other Influences*, 45, 34–45. https://doi.org/10.1016/j.intell.2013.04.001

Hansen, S. B. (2010). Music, health, and well-being. In P. N. Juslin & J. Sloboda (Eds.), *Handbook of music and emotion: Theory, research, applications*. (1st ed., pp. 849–877). Oxford University Press. https://doi.org/10.1093/acprof:osu/9780199230143.003.0030.

Harald, B., & Gordon, P. (2012). Meta-review of depressive subtyping models. *Journal of Affective Disorders*, 139(2), 126–140. https://doi.org/10.1016/j.jad.2011.07.015

Hargreaves, D. J., MacDonald, R., & Miell, D. (2016). Musical identities. In S. Hallam, C. Ian, & M. Thaut (Eds.), *The Oxford handbook of music psychology* (Second edition, pp. 759–774). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198729460.013.45.

Hawton, K., Casañas i Comabella, C., Haw, C., & Saunders, K. (2013). Risk factors for suicide in individuals with depression: A systematic review. *Journal of Affective Disorders*, 147(1), 17–28. https://doi.org/10.1016/j.jad.2013.01.004

Hense, C., Silverman, M. J., & McFerran, K. S. (2018). Using the healthy-unhealthy uses of music scale as a single-session music therapy intervention on an acute youth mental health inpatient unit. *Music Therapy Perspectives*, 36(2), 267–276. https://doi.org/10.1093/mtpt/miy013

Hides, L., Dingle, G., Quinn, C., Stoyanov, S. R., Zelenko, O., Tjondronegoro, D., Johnson, D., Cockshaw, W., & Kavanagh, D. J. (2019). Efficacy and outcomes of a music-based emotion regulation Mobile App in distressed young people: Randomized controlled trial. *JMIR Mhealth and Uhealth*, 7(1), e11482. https://doi.org/10.2196/11482

Hunter, P. G., Schellenberg, E. G., & Griffith, A. T. (2011). Misery loves company: Mood-congruent emotional responding to music. *Emotion (Washington, D C)*, 11(5), 1068–1072. https://doi.org/10.1037/a0023749

Jiang, J., Rickson, D., & Jiang, C. (2016). The mechanism of music for reducing psychological stress: Music preference as a mediator. *The Arts in Psychotherapy*, 48, 62–68. https://doi.org/10.1016/j.artspr.2016.02.002

John, O. P., & Gross, J. J. (2004). Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span development. *Journal of Personality, 72*(6), 1301–1334. https://doi.org/10.1111/j.1467-6494.2004.00298.x

Joormann, J. (2005). Inhibition, rumination, and mood regulation in depression. In *Cognitive limitations in aging and
subexpert-performance?context=ubx&refld=5633757d-7720-4c12-86bf-f8be798a166c
Leipold, B., & Loepthien, T. (2015). Music reception and emotional regulation in adolescence and adulthood. *Musaeus Scientiae, 19*(1), 111–128. https://doi.org/10.1177/1029864915570354
Leubner, D., & Hinterberger, T. (2017). Reviewing the effectiveness of music interventions in treating depression. *Frontiers in Psychology, 8*, 1109. https://doi.org/10.3389/fpsyg.2017.01109
Lewinsohn, P. M., Solomon, A., Seeley, J. R., & Zeiss, A. (2000). Clinical implications of “subthreshold” depressive symptoms. *Journal of Abnormal Psychology, 109*(2), 345–351. https://doi.org/10.1037/0021-843X.109.2.345.
Lichtenberg, P., & Belmaker, R. H. (2010). Subtyping Major depressive disorder. *Psychotherapy and Psychosomatics, 79*(3), 131–135. https://doi.org/10.1159/000286957
Lonsdale, A. J., & North, A. C. (2011). Why do we listen to music? A uses and gratifications analysis. *British Journal of Psychology, 102*(1), 108–134. https://doi.org/10.1348/000712610X506831
Lux, V., & Kendler, K. S. (2010). Deconstructing major depression: A validation study of the DSM-IV symptomatic criteria. *Psychological Medicine, 40*(10), 1679–1690. https://doi.org/10.1017/S0033291709992157
MacDonald, R., Kreutz, G., & Mitchell, L. (2013). *Music, health, and wellbeing*. Oxford University Press.
Malhi, G. S., & Mann, J. J. (2018). Depression. *The Lancet, 392*(10161), 2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2
Mark, M., & Stegemann, T. (2016). Introducing a new model of emotion dysregulation with implications for everyday use of music and music therapy. *Musaeus Scientiae, 20*(1), 53–67. https://doi.org/10.1177/1029864915622055
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. *Trends in Cognitive Sciences, 9*(10), 496–502. https://doi.org/10.1016/j.tics.2005.08.005
Mathur, A., Vijayakumar, S. H., Chakrabarti, B., & Singh, N. C. (2015). Emotional responses to hindustani raga music: The role of musical structure. *Frontiers in Psychology, 6*, 513. https://doi.org/10.3389/fpsyg.2015.00513
Mauss, I. B., & Tamir, M. (2014). Emotion goals: How their content, structure, and operation shape emotion regulation. In *Handbook of emotion regulation* (2nd ed, pp. 361–375). The Guilford Press.
McFerran, K. S., Hense, C., Koike, A., & Rickwood, D. (2018). Intentional music use to reduce psychological distress in adolescents accessing primary mental health care. *Clinical Child Psychology and Psychiatry, 23*(4), 567–581. https://doi.org/10.1177/1359104518767231
McFerran, K. S., & Saarikallio, S. (2014). Depending on music to feel better: Being conscious of responsibility when appropriating the power of music. *The Arts in Psychotherapy, 41*(1), 89–97. https://doi.org/10.1016/j.aip.2013.11.007
McGirr, A., Renaud, J., Seguin, M., Alda, M., Benkelfat, C., Lesage, A., & Turecki, G. (2007). An examination of DSM-IV depressive symptoms and risk for suicide completion in major depressive disorder: A psychological autopsy study. *Journal of Affective Disorders, 97*(1), 203–209. https://doi.org/10.1016/j.jad.2006.06.016
McGlinchey, J. B., Zimmerman, M., Young, D., & Chelminski, I. (2006). Diagnosing major depressive disorder VIII: Are some symptoms better than others? *Journal of Nervous and Mental Disease, 194*(10), 785–790. https://doi.org/10.1097/01.nmd.0000240222.75201.a
Mew, E. J., Monsour, A., Saeed, L., Santos, L., Patel, S., Courtney, D. B., Watson, P. N., Szatmari, P., Offringa, M., Monga, S., & Butcher, N. J. (2020). Systematic scoping review identifies heterogeneity in outcomes measured in adolescent depression clinical trials. *Journal of Clinical Epidemiology, 126*, 71–79. https://doi.org/10.1016/j.jclinepi.2020.06.013
Midya, V., Valla, J., Balasubramanian, H., Mathur, A., & Singh, N. C. (2019). Cultural differences in the use of acoustic cues for musical emotion experience. *PLOS ONE, 14*(9), e0222380. https://doi.org/10.1371/journal.pone.0222380
Mikutta, C. A., Maissen, G., Altorfer, A., Strik, W., & Koenig, T. (2014). Professional musicians listen differently to music. *Neuroscience, 268*, 102–111. https://doi.org/10.1016/j.neuroscience.2014.03.007
Miranda, D., & Claes, M. (2008). Personality traits, music preferences and depression in adolescence. *International Journal of Adolescence and Youth, 14*(3), 277–298. https://doi.org/10.1080/02673843.2008.9748008
Miranda, D., & Claes, M. (2009). Music listening, coping, peer affiliation and depression in adolescence. *Psychology of Music, 37*(2), 215–233. https://doi.org/10.1177/0305735608097245
Miranda, D., Gaudreau, P., Debrosse, R., Morizot, J., & Kirmayer, L. J. (2012). Music listening and mental health: Variations on internalizing psychopathology. In R. MacDonald, G. Kreutz, & L. Mitchell (Eds.), *Music, health, and wellbeing* (pp. 514–530). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199586974.003.0034.
Moulds, M. L., Kandris, E., Starr, S., & Wong, A. C. M. (2007). The relationship between rumination, avoidance and depression in a non-clinical sample. *Behaviour Research and Therapy, 45*(2), 251–261. https://doi.org/10.1016/j.brat.2006.03.003
Naragon-Gainey, K., & Watson, D. (2019). Positive affectivity: The disposition to experience positive emotional states. In R. MacDonald, G. Kreutz, & L. Mitchell (Eds.), *The Oxford handbook of positive psychology* (3rd ed.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199396511.013.17.
Nizamie, S. H., & Tikka, S. K. (2014). Psychiatry and music. *Music, health, and wellbeing* (3rd ed.). Oxford University Press. https://doi.org/10.4103/0019-5545.130482. PubMed.
Nolen-Hoeksema, S. (2012). Emotion regulation and psychopathology: The role of gender. *Annual Review of Clinical Psychology, 8*(1), 161–187. https://doi.org/10.1146/annurev-clinpsy-032511-143109
Nolen-Hoeksema, S., & Aldao, A. (2011). Gender and age differences in emotion regulation strategies and their
relationship to depressive symptoms. *Personality and Individual Differences, 51*(6), 704–708. https://doi.org/10.1016/j.paid.2011.06.012
Nolen-Hoeksema, S., & Hilt, L. M. (2009). Gender differences in depression. In *Handbook of depression* (2nd ed, pp. 386–404). The Guilford Press.
Nolen-hoeksema, S., & Morrow, J. (1993). Effects of rumination and distraction on naturally occurring depressed mood. *Cognition and Emotion, 7*(6), 561–570. https://doi.org/10.1080/0269993930849206
North, A. C., & Hargreaves, D. J. (2006). Problem music and self-harming. *Suicide and Life-Threatening Behavior, 36*(5), 582–590. https://doi.org/10.1521/suli.2006.36.5.582
North, A., & Hargreaves, D. (2008). The social and applied psychology of music. Oxford University Press. https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198567424.001.0001/acprof-9780198567424.
Park, M., Gutyrchik, E., Bao, Y., Zaytseva, Y., Carl, P., Welker, L., Pöppel, E., Reiser, M., Blautzik, J., & Meinld, T. (2014). Differences between musicians and non-musicians in neuro-affective processing of sadness and fear expressed in music. *Neuroscience Letters, 566*, 120–124. https://doi.org/10.1016/j.neulet.2014.02.041
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? *Nature Reviews Neuroscience*, 9*(12), 947–957. https://doi.org/10.1038/nrn2513
Pelletier, C. L. (2004). The effect of music on decreasing arousal Due to stress: A meta-analysis. *Journal of Music Therapy, 41*(3), 192–214. https://doi.org/10.1093/jmt/41.3.192
Polaino, A., & Serra, C. (1991). Measurement of depression: Comparison between self-reports and clinical assessments of depressed outpatients. *Journal of Psychopathology and Behavioral Assessment, 13*(4), 313–324. https://doi.org/10.1007/BF00960444
Poongothai, S., Pradeepa, R., Ganesan, A., & Mohan, V. (2009). Prevalence of depression in a large urban south Indian population—The chennai urban rural epidemiology study (cures – 70). *PLOS ONE, 4*(9), e7185. https://doi.org/10.1371/journal.pone.0007185
Quilty, L. C., Robinson, J. J., Rolland, J.-P., Fruyt, F. D., Rouillon, F., & Bagby, R. M. (2013). The structure of the montgomery-Åsberg depression rating scale over the course of treatment for depression. *International Journal of Methods in Psychiatric Research, 22*(3), 175–184. https://doi.org/10.1002/mpr.1388. PubMed.
Rana, S. A., & North, A. C. (2007). The role of music in everyday life among Pakistanis. *Music Perception: An Interdisciplinary Journal, 25*(1), 59–73. https://doi.org/10.1525/mp.2007.25.1.59
Randall, W. M., Rickard, N. S., & Vella-Brodrick, D. A. (2014). Emotional outcomes of regulation strategies used during personal music listening: A mobile experience sampling study. *Musicae Scientiae, 18*(3), 275–291. https://doi.org/10.1177/1029864914536430
Reed, G. M., First, M. B., Kogan, C. S., Hyman, S. E., Gureje, O., Gaebel, W., Maj, M., Stein, D. J., Maercker, A., Tyrer, P., Claudino, A., Garralda, E., Salvador-Carulla, L., Ray, R., Saunders, J. B., Dua, T., Poznyak, V., Medina-Mora, M. E., Pike, K. M., & ... Saxena, S., (2019). Innovations and changes in the ICD-11 classification of mental, behavioural and neurodevelopmental disorders: Innovations and changes in the ICD-11 classification of mental, behavioural and neurodevelopmental disorders. *World Psychiatry, 18*(1), 3–19. https://doi.org/10.1002/wps.20611
Rice, M. E., & Harris, G. T. (2005). Comparing effect sizes in follow-up studies: ROC area, Cohen’s D, and r. *Law and Human Behavior, 29*(5), 615–620. https://doi.org/10.1007/s10979-005-6832-7
Rickard, N. S., & Chin, T. (2017). Defining the musical identity of “non-musicians”. In *Handbook of musical identities* (pp. 288–303). Oxford University Press. https://doi.org/10.1003/acprof:oso:9780199679485.00016
Rickard, N. S., & McFerran, K. (2012). Lifelong engagement with music: Benefits for mental health and well-being (1st ed.). Nova Science Publishers.
Rocca, P., Fonzo, V., Ravizza, L., Rocca, G., Scotta, M., Zanatla, E., & Bogetto, F. (2002). A comparison of paroxetine and amitriptyline in the treatment of dysthymic disorder. *Journal of Affective Disorders, 70*(3), 313–317. https://doi.org/10.1016/S0165-0327(01)00327-5
Rottenberg, J., & Bylsma, L. M. (2014). Emotional functioning in depression. In *Handbook of depression* (3rd ed, pp. 103–121). The Guilford Press.
Rush, A. J., Zimmerman, M., Wisniewski, S. R., Fava, M., Hollon, S. D., Warden, D., Biggs, M. M., Shores-Wilson, K., Shelton, R. C., Luther, J. F., Thomas, B., & Trivedi, M. H. (2005). Comorbid psychiatric disorders in depressed outpatients: Demographic and clinical features. *Journal of Affective Disorders, 87*(1), 43–55. https://doi.org/10.1016/j.jad.2005.03.005
Saarikallio, S. (2011). Music as emotional self-regulation throughout adulthood. *Psychology of Music, 39*(3), 307–327. https://doi.org/10.1177/0305736610374894
Saarikallio, S., & Erkkilä, J. (2007). The role of music in adolescents’ mood regulation. *Psychology of Music, 35*(1), 88–109. https://doi.org/10.1177/0305736607068889
Saarikallio, S., Gold, C., & McFerran, K. (2015). Development and validation of the healthy-unhealthy music scale. *Child and Adolescent Mental Health, 20*(4), 210–217. https://doi.org/10.1111/camh.12109
Saarikallio, S., Niineminen, S., & Brattico, E. (2013). Affective reactions to musical stimuli reflect emotional use of music in everyday life. *Musicae Scientiae, 17*(1), 27–39. https://doi.org/10.1177/1029864912462381
Sakka, L. S., & Juslin, P. N. (2018a). Emotion regulation with music in depressed and non-depressed individuals: Goals, strategies, and mechanisms. *Music & Science, 1*, 2059204318755023. https://doi.org/10.1177/2059204318755023
Sakka, L. S., & Juslin, P. N. (2018b). Emotional reactions to music in depressed individuals. *Psychology of Music, 46*(6), 862–880. https://doi.org/10.1177/0305736617730425
Salgado, J. F. (2018). Transforming the area under the normal curve (AUC) into Cohen’s D, Pearson’s Rpb, odds-ratio, and natural Log odds-ratio: Two conversion tables. *European
Siemer, M. (2005). Mood-congruent cognitions constitute mood experience. Emotion (Washington, D C), 5(3), 296–308. https://doi.org/10.1037/1528-3542.5.3.296

Silverman, M. J. (2020a). Music-Based discharge, healthy music Use, and unhealthy music Use explain adaptive and maladaptive coping strategies in adults hospitalized with cancer: A cross-sectional investigation. Musicae Scientiae, 1029864920922290, https://doi.org/10.1177/1029864920922290

Silverman, M. J. (2020b). Music-Based affect regulation and unhealthy music Use explain coping strategies in adults with mental health conditions. Community Mental Health Journal, 56(5), 939–946. https://doi.org/10.1007/s10597-020-00560-4

Skånland, M. S. (2012). A TECHNOLOGY OF WELL-BEING A qualitative study on the use of MP3 players as a medium for musical self-care [Norwegian Academy of Music]. http://hdl.handle.net/11250/2412231.

Silverman, M. J. (2021). Music-based emotion regulation and healthy and unhealthy music use predict coping strategies in adults with substance use disorder: A cross-sectional study. Psychology of Music, 49(3), 333–350. https://doi.org/10.1177/0305736918854529

Skånland, M. S. (2013). Everyday music listening and affect regulation: The role of MP3 players. International Journal of Qualitative Studies on Health and Well-Being, 8(1), 20595. https://doi.org/10.3402/qhw.v8i0.20595

Slavich, G. M., Thornton, T., Torres, L. D., Monroe, S. M., & Gotlib, I. H. (2009). Targeted rejection predicts hastened onset of Major depression. Journal of Social and Clinical Psychology, 28(2), 223–243. https://doi.org/10.1521/jscp.2009.28.2.223

Sloboda, J. A. (2010). Music in everyday life: The role of emotions. In Handbook of music and emotion: Theory, research, applications (pp. 493–514). Oxford University Press.

Sloboda, J. A., Davidson, J. W., Howe, M. J. A., & Moore, D. G. (1996). The role of practice in the development of performing musicians. British Journal of Psychology, 87(2), 287–309. https://doi.org/10.1111/j.2044-8295.1996.tb02591.x

Sloboda, J. A., O’Neill, S. A., & Ivaldi, A. (2001). Functions of music in everyday life: An exploratory study using the experience sampling method. Musicae Scientiae, 5(1), 9–32. https://doi.org/10.1177/109284900100500102

Stanton, K., & Watson, D. (2014). Positive and negative affective dysfunction in psychopathology. Social and Personality Psychology Compass, 8(9), 555–567. https://doi.org/10.1111/spc.12132

Stein, D. J., Szatmari, P., Gaebel, W., Berk, M., Vieta, E., Maj, M., de Vries, Y. A., Roest, A. M., de Jonge, P., Maercker, A., Brewin, C. R., Pike, K. M., Grilo, C. M., Fineberg, N. A., Briken, P., Cohen-Kettenis, P. T., & Reed, G. M. (2020). Mental, behavioral and neurodevelopmental disorders in the ICD-11: An international perspective on key changes and controversies. BMC Medicine, 18(1), 21. https://doi.org/10.1186/s12916-020-1495-2

Stewart, J., Garrido, S., Hense, C., & McFerran, K. (2019). Music Use for mood regulation: Self-awareness and conscious listening choices in young people With tendencies to depression. Frontiers in Psychology, 10, 1199. https://doi.org/10.3389/fpsyg.2019.01199

Stone, A. A., Kennedy-Moore, E., & Neale, J. M. (1995). Association between daily coping and end-of-day mood. Health Psychology, 14(4), 341–349. https://doi.org/10.1037/0278-6133.14.4.341.

Strutton, V. N., & Zalanowski, A. H. (2003). Daily music listening habits in college students: Related moods and activities. Psychology and Education: An Interdisciplinary Journal, 40(1), 1–11.

Tamres, L. K., Janicki, D., & Helgeson, V. S. (2002). Sex differences in coping behavior: A meta-analytic review and an examination of relative coping. Personality and Social
comorbidity survey. *Journal of Affective Disorders*, 212, 101–109. https://doi.org/10.1016/j.jad.2017.01.034

Wanders, R. B. K., van Loo, H. M., Vermunt, J. K., Meijer, R. R., Hartman, C. A., Schoevers, R. A., Wardenaar, K. J., & de Jonge, P. (2016). Casting wider nets for anxiety and depression: Disability-driven cross-diagnostic subtypes in a large cohort. *Psychological Medicine*, 46(16), 3371–3382. https://doi.org/10.1017/S0033291716002221. Cambridge Core.

Watson, D., & Clark, L. A. (1984). Negative affectivity: The disposition to experience aversive emotional states. *Psychological Bulletin*, 96(3), 465–490. https://doi.org/10.1037/0033-2909.96.3.465

Watson, D., Clark, L. A., & Carey, G. (1988a). Positive and negative affectivity and their relation to anxiety and depressive disorders. *Journal of Abnormal Psychology*, 97(3), 346–353. https://doi.org/10.1037/0021-843X.97.3.346

Watson, D., Clark, L. A., & Tellegen, A. (1988b). Development and validation of brief measures of positive and negative affect: The PANAS scales. *Journal of Personality and Social Psychology*, 54(6), 1063–1070. PubMed. https://doi.org/10.1037/0022-3514.54.6.1063

Watson, D., O’Hara, M. W., Simms, L. J., Kotov, R., Chmielewski, M., McDade-Montez, E. A., Gamez, W., & Stuart, S. (2007). Development and validation of the inventory of depression and anxiety symptoms (IDAS). *Psychological Assessment*, 19(3), 253–268. https://doi.org/10.1037/1040-3590.19.3.253

Watson, D., & Tellegen, A. (2002). Aggregation, acquiescence, and the assessment of trait affectivity. *Journal of Research in Personality*, 36(6), 589–597. https://doi.org/10.1016/S0092-6566(02)00509-3

Watson, D., & Walker, L. M. (1996). The long-term stability and predictive validity of trait measures of affect. *Journal of Personality and Social Psychology*, 70(3), 567–577. https://doi.org/10.1037/0022-3514.70.3.567

Webb, T. L., Miles, E., & Sheeran, P. (2012). Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. *Psychological Bulletin*, 138(4), 775–808. https://doi.org/10.1037/a0027600.

Wichers, M. (2014). The dynamic nature of depression: A new micro-level perspective of mental disorder that meets current challenges. *Psychological Medicine*, 44(7), 1349–1360. https://doi.org/10.1017/S0033291713001979

Widaman, K. F. (1993). Common factor analysis versus principal component analysis: Differential bias in representing model parameters? *Multivariate Behavioral Research*, 28(3), 263–311. https://doi.org/10.1207/s15327906mbr2803_1

Wilhelm, K., Gillis, I., Schubert, E., & Whittle, E. L. (2013). On a blue note: Depressed Peoples’ reasons for listening to music. *Music and Medicine*, 5(2), 76–83. https://doi.org/10.1177/1943862113482143

Williams, C. D., Taylor, T. R., Makambi, K., Harrell, J., Palmer, J. R., Rosenberg, L., & Adams-Campbell, L. L. (2007). CES-D four-factor structure is confirmed, but not invariant, in a large cohort of African American women. *Psychiatry Research*, 150(2), 173–180. https://doi.org/10.1016/j.psychres.2006.02.007
Wood, A. M., Taylor, P. J., & Joseph, S. (2010). Does the CES-D measure a continuum from depression to happiness? Comparing substantive and artifactual models. *Psychiatry Research, 177*(1), 120–123. https://doi.org/10.1016/j.psychres.2010.02.003

World Health Organisation (2020, Version). *ICD-11—Mortality and Morbidity Statistics*. http://id.who.int/icd/entity/578635574.

Zhang, J. D., Susino, M., McPherson, G. E., & Schubert, E. (2018). The definition of a musician in music psychology: A literature review and the six-year rule. *Psychology of Music, 48*(3), 389–409. https://doi.org/10.1177/0305735618804038

Zillmann, D. (1988a). Mood management: Using entertainment to full advantage. In L. Donohew, H. E. Sypher, & E. T. Higgins (Eds.), *Communication, social cognition, and affect* (1st ed., pp. 147–171). Lawrence Erlbaum Associates, Inc.

Zillmann, D. (1988b). Mood Management Through Communication Choices. *American Behavioral Scientist, 31*(3), 327–340. https://doi.org/10.1177/000276488031003005.