Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling

Pedro Dorado-Morales¹, Cristina Vilanova¹, Carlos P. Garay³, Jose Manuel Martí³ & Manuel Porcar¹,²

We propose a new strategy to identify and visualize bacterial consortia by conducting replicated culturing of environmental samples coupled with high-throughput sequencing and multidimensional scaling analysis, followed by identification of bacteria-bacteria correlations and interactions. We conducted a proof of concept assay with pine-tree resin-based media in ten replicates, which allowed detecting and visualizing dynamical bacterial associations in the form of statistically significant and yet biologically relevant bacterial consortia.

There is a growing interest on disentangling the complexity of microbial interactions in order to both optimize reactions performed by natural consortia and to pave the way towards the development of synthetic consortia with improved biotechnological properties¹,². Despite the enormous amount of metagenomic data on both natural and artificial microbial ecosystems, bacterial consortia are not necessarily deduced from those data. In fact, the flexibility of the bacterial interactions, the lack of replicated assays and/or biases associated with different DNA isolation technologies and taxonomic bioinformatics tools hamper the clear identification of bacterial consortia. We propose here a holistic approach aiming at identifying bacterial interactions in laboratory-selected microbial complex cultures. The method requires multi-replicated taxonomic data on independent subcultures, and high-throughput sequencing-based taxonomic data. From this data matrix, randomness of replicates can be verified, linear correlations can be visualized and interactions can emerge from statistical correlations. The whole procedure can be summarized as follows:

1. Taxonomic data from multi-replicated, independent assays is obtained.
2. Fluctuation scaling of replicates, i.e. slope of Taylor’s law, is validated for the samples of the first time step against the expectation of a Poisson-distributed selection.
3. Linear correlation coefficients are determined, converted into distances and displayed by multidimensional scaling.
4. Interaction matrix is inferred from the correlation matrix using the discrete Lotka-Volterra model with relative abundances³.

As a proof of concept, we chose to analyze independent laboratory cultures grown on a natural, recalcitrant compound. A range of recalcitrant substrates, from synthetic dyes to polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other organic pollutants can be efficiently degraded by mixed microbial cultures combining catabolic enzyme activities of individual consortium members⁴. Therefore, a carbon source that requires complex pathways for degradation is expected to shape the structure of the microbial community and behave as a strong selection pressure towards the establishment of microbial consortia with biodegradation properties.

In a previous work, we characterized the cultivable microbial communities present in coniferous resin, and detected a rather diverse microbial community, including several fungal and bacterial strains with potential use in bioremediation as deduced from their ability for the degradation of different terpenic compounds⁵. In the proof of concept we present here, we used pine-tree resin as the main carbon source of a resin-rich semi-synthetic medium (prepared as described in our previous report⁶), which we inoculated with environmental resin in ten independent subcultures. We designed this multi-replicate experimental evolution assay to address three main issues: i) Time-course variation in biodiversity fate (does sub-culturing in a recalcitrant compound lead
Results and Discussion

16S profiles-based monitoring of bacterial populations throughout the experiment. Ten replicated cultures of resin samples in resin-rich semisynthetic medium were set up and independently subcultured (nine times) during 24 days, as described in the Methods section. Rather than within replicates, the taxonomic profiles displayed statistically significant variations within time steps (p-value = 0.01, see Methods). Indeed, significant alterations (p-value = 0.02) were found at times 2, 3 and 7, in correlation with changes in the number of days between subculturing events (Fig. 1). For nearly all time points and replicates, *Pseudomonas* sp. (OTU rc_1) followed by an enterobacterium (OTU rc_2) were the most frequent species, being overwhelmingly present at subculturing steps 1, 4, 5, 6, 8, and 9. A species belonging to the Xanthomonadaceae family (OTU rc_3) and *Comamonas terrigena* (OTU rc_4) were also found at relatively high rates, particularly at subculturing steps 3 (*C. terrigena*), 7 (Xanthomonadaceae species) and 2 (both). Table 1 shows the taxonomical assignations for the 26 most abundant OTUs. Twenty-two other relatively frequent OTUs were detected at a comparatively lower, but still significant frequency (more than 100 counts), and as many as 87 different OTUs could be detected in total.

In order to find out whether sub-culturing was associated with a change in sample biodiversity, Shannon and Simpson indexes, as well as Species Richness were calculated for each sample. Richness index was virtually constant throughout the whole experiment; whereas Shannon and Simpson indexes fluctuated in time: they increased between subculturing steps 1 and 3, then dropped, and then increased again until subculturing step 7, showing a slightly decreasing trend at the end of the experiment (Supplementary Fig. 1). These fluctuations coincided with changes in the number of days between subculturing steps, suggesting, again, the influence of this factor in community composition.

Identification of microbial consortia. Components of the consortia were identified through a three-phase analysis of a selected pool of data consisting of correlated time-series of relative abundances for the 26 more frequent OTUs in our samples. We first characterized the randomness of our ten subcultures at the first sampled time. The fluctuation scaling of the Taylor law (log of the standard deviation versus the mean frequency of each OTU) of our samples was 0.60 ± 0.04 (Supplementary Fig. 2), which is consistent with Poisson-distributed replica (0.5). Data of each replicated time series were analyzed both independently and together, as a mixture of all ten replica. The linear correlation coefficients among OTUs were calculated and the correlation matrix was converted into a distance matrix by shifting the correlation coefficients by two units6,7. Multidimensional scaling (MDS) was used to display the positions of the OTUs in a given dimension, where distances are well preserved. The stress value of our MDS solution was 0.092, which falls between “fair” and “good” goodness of fit according to Kruskal’s
Table 1. Taxonomical classification obtained for the OTUs analyzed in this study.

ID	Class	Order	Family	Genus	Species
OTU_rc_1	γ-proteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	—
OTU_rc_2	γ-proteobacteria	Enterobacteriales	Enterobacteriaceae	—	—
OTU_rc_3	γ-proteobacteria	Xanthomonadales	Xanthomonadaceae	—	—
OTU_rc_4	β-proteobacteria	Burkholderiales	Comamonadaceae	Comamonas	terrigena
OTU_rc_5	γ-proteobacteria	Burkholderiales	Alcaligenaceae	Achromobacter	—
OTU_rc_6	γ-proteobacteria	Xanthomonadales	Xanthomonadaceae	Stenotrophomonas	geniculata
OTU_rc_7	β-proteobacteria	Burkholderiales	Comamonadaceae	Comamonas	—
OTU_rc_8	γ-proteobacteria	Pseudomonadales	Moraxellaceae	—	—
OTU_rc_9	β-proteobacteria	Burkholderiales	Comamonadaceae	Delftia	—
OTU_rc_10	γ-proteobacteria	Xanthomonadales	Xanthomonadaceae	Pseudoxanthomonas	mexicana
OTU_rc_11	β-proteobacteria	Burkholderiales	Comamonadaceae	—	—
OTU_rc_12	γ-proteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	stutzeri
OTU_rc_13	γ-proteobacteria	Xanthomonadales	Xanthomonadaceae	Stenotrophomonas	—
OTU_rc_14	β-proteobacteria	Burkholderiales	Alcaligenaceae	—	—
OTU_rc_15	γ-proteobacteria	Pseudomonadales	Pseudomonadaceae	—	—
OTU_rc_16	γ-proteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	viridiflava
OTU_rc_17	γ-proteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	alcaligenes
OTU_rc_18	β-proteobacteria	Neisseriales	Neisseriaceae	—	—
OTU_rc_19	β-proteobacteria	Rhodocyclaceae	Rhodocyclaceae	Zoogloea	—
OTU_rc_20	γ-proteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	—
OTU_rc_21	γ-proteobacteria	Aeromonadales	Aeromonadaceae	—	—
OTU_rc_22	β-proteobacteria	Burkholderiales	—	—	—
OTU_rc_23	γ-proteobacteria	Xanthomonadales	Xanthomonadaceae	Luteimonas	—
OTU_rc_24	γ-proteobacteria	Xanthomonadales	Xanthomonadaceae	Stenotrophomonas	acidaminiphila
OTU_rc_25	γ-proteobacteria	Alteromonadales	Shewanellaceae	Shewanella	—
OTU_rc_26	Sphingobacteria	Sphingobacteriales	Sphingobacteriaceae	Sphingobacterium	multivorum

criterion. We show the distances among OTUs by statistical correlation in Fig. 2, where the size of the spheres scale logarithmically with the relative abundance. We determined the statistical significance of the inferred correlations by performing permutation tests and also by simulating 10,000 experiments with the assumption that the counts have lognormal distribution (both approaches yielded similar results, data not shown). Three main consortia (OTU groups positively correlated) were observed: OTUs 3, 6, 10, 13, 23, and 24; OTUs 4, 7, 18, 19, and 22; and OTUs 8, 11, 17, and 20. The first association involved only gamma-proteobacteria (mainly, three species of the Stenotrophomonas genus, and also Pseudoxanthomonas mexicana, and Luteimonas sp.); the second comprised only beta-proteobacteria (two species of the genus Comamonas, Zoogloea sp., and two species belonging to the Neisseriaceae family and the Burkholderiales order, respectively); and, finally, the third one was composed of three gamma-proteobacteria (Pseudomonas alcaligenes, Acinetobacter sp., and a species of the Moraxellaceae family) and one beta-proteobacterium of the Comamonadaceae family. A significant negative correlation was found between OTU 12 (Pseudomonas stutzeri) and the consortia composed of OTUs 4, 7, 18, 19, and 22.

Statistical correlation does not imply interaction. We inferred the interaction matrix by using the discrete Lotka-Volterra model with relative abundances, a forward stepwise regression to include the strongest interactions and a bootstrap aggregation method to cure instabilities. Four statistically significant, positive interactions (Fig. 2) were found between OTUs 4 and 7 (Comamonas terrigena and Comamonas sp.); OTUs 3 and 10 (Pseudoxanthomonas mexicana and other Xanthomonadaceae species); OTUs 3 and 6 (the same Xanthomonadaceae species and Stenotrophomonas geniculata); and OTUs 6 and 10 (S. geniculata and P. mexicana).

Interestingly, the three bacterial associations detected in this work include well known terpenoid degraders, particularly Pseudomonas and, to a lesser extent, Comamonas and Stenotrophomonas. The resolution of the taxonomic assignations for the OTUs detected in this work poses difficulties in identifying putative metabolic complementation established among the members of each consortium. However, the associations unveiled with our analysis pose new opportunities for understanding the bioremediation of TNT-contaminated soils. Further genomic-scale analyses are needed to better understand the relationships established at the molecular level among the members of the microbial consortia unveiled in this study.
This work shows how microbial consortia can be visualized after a robust analysis of their relative frequencies in multireplicated cultures. The resulting plot can be very helpful to rapidly identify bacterial key-players and consortia in a wide range of bioprocesses. From the proof of concept of our method, we can conclude that unambiguous consortia can be detected within a pool of coexisting species on the basis not only of their relative abundance, but also by statistical correlation and verification of inferred biological interactions.

Methods

Culture medium and growth conditions. A pine-tree resin-based medium previously described containing 0.1% (w/v) of resin as the main carbon source was used for microbial culturing. A starter culture of environmental resin in the resin-rich semi-synthetic medium was set up, and ten 5 mL-aliquots were taken from it and incubated independently for 4 days (time series 1, t1). Then, a 50 μL aliquot of each culture was inoculated in a new set of ten independent tubes containing fresh medium, and incubated for another 4 days (t2). New 50 μL aliquots were taken from the second round of cultivation, and the whole process was repeated a total of 9 times. Since previous observations in the laboratory proved that few sub-culturing steps resulted in an accelerated microbial growth (resin colloids were consumed faster), the time between sub-cultures was shortened throughout the experiment from 4 to 2 days in order to promote the selection of efficient resin-degrading consortia. Tubes were grown for 4 days in t1-t2 and t2-t3; 3 days in t3-t4; and 2 days in t4-t5, t5-t6, t6-t7, and t8-t9. Three days of incubation in t7-t8 were applied to compensate an unexpected decrease (from 30 to 28 °C) in the temperature of the incubator. The complete assay lasted 24 days, and aliquots were taken at every sub-culturing step to obtain a total of 90 (10 replicated cultures x 9 sub-culturing steps) culture samples.

DNA isolation and quantification. A two mL aliquot of each culture was sampled and resin colloids from the culture medium were pelleted by mild centrifugation (800 g, 5 min). The supernatant was transferred to a new tube, cells were harvested at 11,000 g for 3 min and washed twice with sterile PBS buffer (NaCl 8 g/L, KCl 0.2 g/L, Na2HPO4 1.44 g/L, KH2PO4 0.24 g/L, pH adjusted to 7.4). Then, DNA was isolated with a standard protocol consisting of alkaline lysis followed by precipitation with potassium acetate and isopropanol. The quality of the DNA was finally checked on a 0.8% (w/v) agarose gel and quantified with Nanodrop-1000 Spectophotometer (Thermo Scientific, Wilmington, DE).
PCR amplification. A 500 bp fragment of the V1–V3 hypervariable region of the 16S ribosomal RNA gene was PCR-amplified from all the samples with primers 28F (5′-GAG TTT GAT CMT GGC TCA G-3′) and 519R (5′-GTN TTA CNG CGG CKG CTG-3′). A short (9–11 nucleotides) barcode sequence followed by a four-nucleotide spacer (CGAT) was included at the 5′ end of the oligonucleotides used as forward primers to enable assignment of sequences to samples after high-throughput sequencing. All the amplifications were performed under the following thermal cycling conditions: initial denaturing at 95 °C for 5 min, followed by 35 cycles of denaturing at 95 °C for 30 s, annealing at 54 °C for 30 s, and extension at 72 °C for 1 min, finalized by a 10-min elongation at 72 °C. The resulting amplicons were checked on a 0.8% (w/v) agarose gel and purified by precipitation with 3M potassium acetate (pH = 5) and isopropanol. Pure amplicons were quantified with the Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA) and an equimolar pool of amplicons was prepared from all the samples.

Sequencing. A sequencing library was constructed with 100 ng of the pool by amplicon fusion (Ion Plus Fragment Library Kit, MAN0006846, Life Technologies). The library was quantified with the Agilent 2100 Bioanalyzer (Agilent Technologies Inc, Palo Alto, California) prior to clonal amplification. Emulsion PCRs were carried out applying the Ion PGM Template OT2 400 kit as described in the user-guide (MAN0007218, Revision 3.0 Lifetecnologies) provided by the manufacturer. Finally, the library was sequenced in an Ion 318 Chip v2 on a Personal Genome Machine (PGM IonTorrentTM, Lifetechnologies) at Lifesequencing S.L. (Lifesequencing, Valencia, Spain), using the Ion PGM Sequencing 400 kit following the manufacturer’s protocol (Publication Number MAN0007242, Revision 2.0, Lifetecnologies).

Bioinformatic analysis. Raw sequences were filtered to remove short (<200bp) and low quality (<Q10) reads with the NextGENe® Software for Ion Torrent PGM™ System, and the resulting sequences were processed with the QIIME package14 according to the following pipeline. First, a mapping file was generated by assigning reads to samples according to barcode sequences (allowing a maximum of 1 mismatch in primer search and 1 mismatch in barcode search). Second, an OTU table was generated with the uclust algorithm, using a similarity threshold of 0.97, corresponding to species-level OTUs. Then, representative sequences were picked from each OTU and classified with the BLAST algorithm (e-value < 1e-05) against the 16S Greengenes database (version 13_8). Finally, an OTU table containing the taxonomical identifications and the absolute abundance of each OTU in every sample was built.

In order to determine whether microbial composition significantly changed among replica and/or with time (variation between sub-culturing steps and/or variation of the time between these steps), a matrix of Bray-Curtis beta-diversity dissimilarities was calculated with QIIME, and an ANOSIM test with 999 permutations was carried out for each hypothesis.

Biostatistical analysis. Multidimensional Scaling. The OTU table containing the frequency of each OTU in every sample was used to compute the linear correlation matrix of the fluctuations observed in the 9 time series with the SparCC software6. Correlations were linearly converted into positive distances, so that positive full correlation was d = 0 and negative full correlation was d = 2. A matrix of distances, if all are precisely know, can be uniquely converted into positions up to dimension, translation and rotational symmetry. In our study, we chose non-metric multidimensional scaling in the MATLAB® function mdscale. We devised using three dimensions (3D) in the plot as a requirement to minimize 2D image ambiguity effects in the visualization of correlated, uncorrelated and anticorrelated taxa.

Interaction. For a determined taxonomical level, the discrete time Lotka-Volterra model (dLV) relates the abundance of taxon i at an arbitrary future time t + dt to the abundances of all the taxa at the present time t. The interactions19 are described by interaction coefficients cij that describe the influence of taxon j on the abundance of taxon i. If the number of taxa is large, the dynamics of relative abundances can be described by a modified dLV model generalized to include stochasticity, like environmental and demographic stochastic effects5 (Equation 1):

\[x_i(t + \delta t) \approx n_i(t) \exp \left(\delta t \sum_j c_{ij} \left(x_j(t) - x_i(t) \right) \right) \]

where \(n_i(t) \) is a log-normally distributed multiplicative noise, \(x_i \) is the relative abundance of taxon i and \(x_j \) is the equilibrium abundance of taxon j and is set by the carrying capacity of the environment. In this problem, the interaction coefficients are known up to an arbitrary multiplicative constant and the design matrix is singular. We inferred the interaction coefficients with the LIMITS algorithm3.

References
1. Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).
2. Mee, M. T. & Wang, H. H. Engineering ecosystems and synthetic ecologies. Mol. Biosyst. 8, 2470–2483 (2012).
3. Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS One 9, e102451 (2014).
4. Huse, S. M., Y e, Y ., Zhou, Y . & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 7, e34242 (2012).
8. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).
9. Molina, G., Pimentel, M. R. & Pastore, G. M. Pseudomonas: a promising biocatalyst for the bioconversion of terpenes. Appl. Microbiol. Biotechnol. 97, 1851–1864 (2013).
10. Morgan, C. A. & Wyndham, R. C. Characterization of 1d genes for the degradation of tricyclic diterpenes by Pseudomonas diterpeniphila A19-6a. Can. J. Microbiol. 48, 49–59 (2002).
11. Liao, F. et al. Isolation and identification of bacteria capable of degrading euptox A from Eupatorium adenophorum Spreng. Toxicon 77, 87–92 (2014).
12. Pepi, M., Minacci, A., Di Cello, F., Baldi, F. & Fani, R. Long-term analysis of diesel fuel consumption in a co-culture of Acinetobacter venetianus, Pseudomonas putida and Alcaligenes faecalis. Antonie Van Leeuwenhoek 83, 3–9 (2003).
13. Prpich, G. P. & Daugulis, A. J. Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two phase partitioning bioreactor. Biodegradation 16, 329–339 (2005).
14. Cordova-Rosa, S. M. et al. Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant. J. Hazard. Mater. 164, 61–66 (2009).
15. Marrón-Montiel, E., Ruiz-Ordaz, N., Rubio-Granados, C., Juárez-Ramírez, C. & Galindo-Mayer, C. J. 2,4-D-degrading bacterial consortium. Process Biochem. 41, 1521–1528 (2006).
16. Martin, V. J. & Mohn, W. W. Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BMKE-9. J. Bacteriol. 182, 3794–3793 (2000).
17. Muter, O. et al. The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J. Environ. Manage. 98, 51–55 (2012).
18. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
19. Holbauer, J., Hutson, V. & Jansen, W. Coexistence for systems governed by difference equations of Lotka-Volterra type. J. Math. Biol. 25, 553–570 (1987).

Acknowledgements
This work was supported by Generalitat Valencia Prometeo Grants II/2014/050, and by the Spanish Grants FPA2011-29678 of MINECO and by PITN- GA-2011-289442-INVISIBLES. CV was funded with a FPU (Formación de Personal Universitario) grant from the Spanish MECD (Ministerio de Educación, Cultura y Deporte), and JMM is a recipient of an FPI grant from MINECO (Ministerio de Economía y Competitividad). We are indebted to José Vicente Carrion (IFIC, CSIC) for continuous computing support and to Daniel Martinez (FISABIO) for his enlightening discussions. The sequences used in this study have been deposited in the SRA repository (BioProject ID: PRJNA296420).

Author Contributions
M.P. and P.D.M. conceived the experiments, P.D.M. and C.V. conducted the experiments, C.P.G. designed the biostatistical analysis, C.V., J.M.M., M.P. and C.P.G. analyzed the results. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Dorado-Morales, P. et al. Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling. Sci. Rep. 5, 18396; doi: 10.1038/srep18396 (2015).