Characterization and fine mapping of nonstop glumes 2 (nsg2) mutant in rice (Oryza sativa L.)

Yunfeng Li*,†, Xiaozheng Zeng‡, Hui Zhuang, Huan Chen, Ting Zhang, Jun Zhang, Hao Zheng, Jun Tang, Honglei Wang, Suxian Ren, Yinghua Ling, Guanghua He**

Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
*E-mail: liyf1980@swu.edu.cn Tel: +86-023-68250158 Fax: +81-023-68250158
**E-mail: heghswu@163.com Tel: +86-023-68250158 Fax: +81-023-68250158

Received November 28, 2018; accepted May 6, 2019 (Edited by H. Shimada)

Abstract In cereal crops, the grain number per panicle and the grain yield are greatly affected by the number of florets in a spikelet. In wild-type rice, a spikelet only produces one fertile floret and beneath the floret are a pair of sterile lemmas and a pair of rudimentary glumes. This study characterized a rice spikelet mutant nonstop glumes 2 (nsg2). In the nsg2 mutant, both the sterile lemmas and rudimentary glumes were elongated, and part of sterile lemma looked like a lemma in appearance, shape and size. Detailed histological analysis and qPCR analysis revealed that the sterile lemmas in the nsg2 mutant had homeotically transformed into lemma-like organs. This phenotype indicates that NSG2 is involved in the regulation of spikelet development and supports the long-held view that sterile lemmas were derived from the lemmas of the two lateral florets. This implies that the rice spikelet has the potential to be restored to the "three florets spikelet”, which may have existed in its ancestors. Genetic analysis reveals that the nsg2 trait is controlled by a single recessive gene. The NSG2 gene was finally mapped between markers R-20 and R-39 on chromosome 7 with a physical region of 180 kb. The two MYB family factors LOC_Os07g44030 and LOC_Os07g44090 might be involved in the development of the spikelet and floral organ, and they were considered as candidate genes of NSG2. These results provide a foundation for map-based cloning and function analysis of NSG2, as well as evidence to support “three-florets spikelet” breeding in rice.

Key words: gene mapping, nonstop glumes 2 (nsg2), rice (Oryza sativa), spikelet.

Introduction
The development process and the structure of the panicle and flower have important effects on yield and quality in crops. A major change in the life of a plant occurs during the transition from vegetative to reproductive growth. The shoot apical meristem (SAM) stops initiating leaves and transforms into the inflorescence meristems (IMs); later, the IMs transform into floral meristems (FMs), and FMs transform into floral organs. In rice, the IMs are not directly transformed into FMs, but are first transformed into spikelet meristems (SMs), and the SMs are then transformed into FMs to form florets (McSteen et al. 2000; Schmidt and Ambrose 1998). In rice, the panicle consists of primary branches, secondary branches, and spikelets on the branches. The grain number per panicle is correlated mainly with the primary and secondary branches. OsCKX2/Gn1a, Ghd7, DENSE AND ERECT PANICLE 1 (DEP1), DEP2 and OsSPL14/IPA1 have been applied to increase yield by regulating panicle branching in rice (Ashikari et al. 2005; Li et al. 2010; Miura et al. 2010; Xue et al. 2008; Yan et al. 2007). In rice and other Oryzaeae, the spikelet is the primary unit of inflorescence but only produce one fertile floret, while it can produce one or more florets in other some grasses, such as wheat. Therefore, increasing the number of florets in a spikelet may provide a new path to improve yield in those one-floret/grain spikelet species, such as rice. As a consequence, there is a need for a better understanding of the genetic and molecular mechanism of spikelet development.

In rice, each spikelet generates a single floret (also known as a terminal floret). A pair of sterile lemmas are formed outside of the floret, and a pair of rudimentary glumes are formed blow the sterile lemma. The terminal floret consists of one lemma, one palea, two lodicules, six stamens and one carpel. It is generally thought that the rudimentary glumes are equivalent to the degraded glumes of other grasses. Regarding the origin and evolution of the sterile lemmas, there have

† These authors contributed equally to this work.
This article can be found at http://www.jspcmcb.jp/
Published online September 21, 2019
been two prevailing hypotheses. The first holds that sterile lemmas and rudimentary glumes are both the result of degradation of the glume (Hong et al. 2010; Schmidt and Ambrose 1998; Terrell et al. 2001). The second hypothesis proposes that the spikelet of rice ancestors contained a top floret and two lateral florets. It is supposed that the rice spikelet was a “three-florets spikelet”, and the lateral florets degenerated into sterile lemmas during the evolution of the modern plant (Kellogg 2009; Kobayashi et al. 2010; Yoshida et al. 2009).

Recently, several studies have supported this “three-florets spikelet” hypothesis. LONG STERILE LEMMA (G1), a plant-specific gene, encodes a DUF640 protein. In the g1 mutant, the sterile lemma is larger than that of the wild-type, and has structural features resembling those of the lemma in the top fertile floret (Yoshida et al. 2009). The gene EXTRA GLUME 1 (EG1) encodes a lipase. The eg1 mutant develops lemma-like sterile lemmas, suggesting that EG1 specifies the sterile lemma identity (Li et al. 2009). Another gene, OsMADS34/PAP2, also regulates the development of the sterile lemma. In the osmads34 mutant, the sterile lemmas are transformed into the lemmas and have the lemma identity (Gao et al. 2010; Kobayashi et al. 2010, 2012). Mutations of NONSTOP GLUME (NSG) and ABBERRANT SPIKELET AND PANICLE1 (ASP1) also lead to lemma-like sterile lemma (Kwon et al. 2012; Wang et al. 2013; Yoshida et al. 2012). Moreover, the OsMADS/LEAFY HULL STERILE 1 gene controls the development of the lemma and palea. Expression of OsMADS1 is almost absent in the sterile lemma, but the ectopic expression of OsMADS1 causes a homeotic transformation from a sterile lemma into a lemma (Agrawal et al. 2005; Prasad et al. 2001, 2005; Wang et al. 2017). These results suggested that sterile lemmas were the degraded lemma of two lateral florets in rice. Recently, a gain-of-function mutant lateral florets 1 (lf1) in rice has been reported (Zhang et al. 2017). In lf1, the spikelet develops lateral florets with proper floral organ identities in the axil of the sterile lemma, providing direct evidence for the “three-florets” hypothesis.

In summary, all of the above studies suggest that the spikelet of the ancestor of rice may be a “three-florets” spikelet. And to become its present form, a group of genes are involved in the identity specification of the sterile lemma during the evolution. However, to better understand the gene regulation network of sterile lemma (lateral florets) development and evolution, more related mutants and researches on these mutants are needed in rice. In this study, a novel sterile lemma mutant nonstop glumes 2 (nsg2) was reported. The sterile lemmas of nsg2 mutant were elongated and were believed to have gained the lemma-like identity. In addition to phenotype analysis, we also performed gene mapping to locate the candidate gene in this study. This provided a foundation for map-based cloning of NSG2 and its function analysis.

Materials and methods

Materials

We obtained the abnormal glume mutant nsg2 by EMS mutagenesis of the indica maintainer line Xinong 1B (Supplementary Figure S1A). The nsg2 mutant was then crossed with sterile line 56S (indica) (Supplementary Figure S1B) to yield the F1 population (Supplementary Figure S1C) and subsequently generate the seed of the F2 population in 2014. During 2015, the F1 population, F2 population, Xinong 1B (as wild-type) and the parent plants were grown in Chongqing, China. Mutated plants in the F2 population (Supplementary Figure S1D) were used to locate the NSG2 gene.

Morphological and histological analysis of nsg2

Among the field grown plants, we investigated the multiple defects of nsg2 used Xinong 1B as the wild type control during different developmental stage.

At the booting stage (ca. 75 day after germination), the development process of early spikelets in nsg2 mutants and wild-type plants were examined using a scanning electron microscope (SU3500, Hitachi, Tokyo, Japan) with a −20°C cool stage under a low-vacuum environment. At the flowering stage (~90 day after germination), the phenotypic characteristics of the mutant and wild-type spikelets were investigated using a scanning electron microscope (SU3500, Hitachi, Tokyo, Japan) and a NIKON SMZ1500 stereoscope (Nikon, Tokyo, Japan).

For paraffin section, mutant and wild-type spikelets at the heading stage were fixed in FAA (50% ethanol, 0.9 M glacial acetic and 3.7% formaldehyde) at 4°C for at least 16h. A grade ethanol series was used to dehydrate the spikelets before they were infiltrated with xylene and then embedded in paraffin. 8µm-thick slices were cut (RM2245; Leica, Hamburg, Germany) and dyed sequentially with 1% safranin (Amresco) and 1% Fast Green (Amresco). Finally, the sections were mounted beneath a neutral balsam cover slip. Histological analysis was performed using the Nikon E600 microscope (Nikon, Tokyo, Japan).

Gene mapping of NSG2

The target gene was located according to the reported BSA method (Michelmore et al. 1991). DNA of the parents, F2 population, normal and mutant gene pools were extracted from equal quantities of fresh leaf following the previously reported CTAB method with appropriate modifications (Murray and Thompson 1980). The quality and quantity of DNA were estimated using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, USA) and 1% agarose gel electrophoresis. SSR markers (http://www.gramene.org/microsat/) and IN/DEL markers from previous studies that distributed on the average of 12 chromosomes were employed for gene mapping. The primers we used were synthesized by the Shanghai Invitrogen Company, China.

The polymerase chain reaction (PCR) amplifications were carried out in a total volume of 15µl, which contained 1.5µl
10×PCR buffer, 1µl 50ngµl⁻¹ DNA, 0.75µl of 2.5mmol¹ dNTPs, 9.5µl ddH₂O, 1µl 10mmol¹ forward and reverse primer, and 0.25µl 5Uµl⁻¹ rTaq DNA polymerase (TOYOBO, Japan). Amplification was performed with a MyCycler Thermal Cycler (Bio-Rad, CA, USA) under the following conditions: 5 min at 94°C for DNA strand separation, followed by 35 cycles of denaturing at 94°C for 30s, annealing at 55°C for 30s, extension at 72°C for 30s, and finally extension at 72°C for 7 min. Amplified products were separated by electrophoresis on 10.0% polyacrylamide gels, before silver staining was undertaken to observe the color of the band patterns (Luo et al. 2007).

Linkage map construction

To analyze the results, the F₂ progeny expressing the band patterns of 56S and Xinong 1B were labeled A and B, and the heterozygote, which contained two parent bands, was labeled H. The linkage relationship was analyzed by MAPMAKER3.0 (Lander et al. 1987), and the recombination rate was transformed into genetic distance (cM) using the Kosambi mapping function. Meanwhile, we constructed a physical map based on the rice genome sequence information obtained from the Gramene website (http://www.gramene.org/).

qPCR analysis

RNA from the lemma, palea and sterile lemma was isolated from the nsg2 and wild-type plants using the RNAprep Pure Plant Kit (Tiangen, Beijing, China). The first-strand cDNA was synthesized from 1µg of total RNA with oligo(dT)₁₈ primers in a 20µl reaction volume using the PrimeScript® Reagent Kit With gDNA Eraser (Takara, Dalian, China). The expression levels of floral specific genes (OsMADS1, OsMADS6, OsMADS34, and DL) (Table 1) were detected by qPCR. The qPCR analysis was performed using a SYBR premix Ex Taq II Kit (Takara, Dalian, China) in an ABI 7500 Sequence Detection System (Applied Biosystems, Carlsbad, CA, USA). ACTIN (OsRac1, LOC_Os01g12900) (Table 1) was used as an endogenous control. Three replicates were taken, and mean values for the expression of each gene were used in analysis.

Table 1. Primers used for qPCR analysis.

Primers	Forward sequence (5′-3′)	Reverse sequence (5′-3′)	Reference
ACTIN	GACCCAGATCATGTTTGAGACCT	CAGTGTGGCTGACACCATCAC	Ren et al. 2013
OsMADS1	TCTTGGTGAGGATTGGGC	CCTTGCTTTCAATCAAACAG	Ren et al. 2013
OsMADS6	AGAGAAGAGCCAATGATGATGG	AGGCTTGCTGATGGCTCTG	Ren et al. 2013
OsMADS34	GCTTCGCAAGATGGCTGCC	GTAGCCAGTGGAAGCTAATCTC	Ren et al. 2013
DL	CCCATCTGCTTACAAACCT	GTTGGAGTGGAAACCGTGG	Ren et al. 2013

Figure 1. Phenotype and statistics of wild-type and nsg2 plants. (A): The whole plant of wild-type and nsg2; (B): wild-type spikelets and nsg2 spikelets with elongated/lemma-like sterile lemma; (C): phenotype statistics of normal spikelets (two rudimentary glumes are extremely degrade, two sterile lemmas are small and about 1/5 size of lemma, lemma is a little bigger than palea and hooked together with palea, enclosed the two lodicules, six stamens and a pistil) and abnormal spikelets (spikelets with one or more defects such as elongated rudimentary glume, elongated/lemma-like sterile lemma, degraded palea, decreased number of stamen) in wild-type and nsg2; (D): statistics of wild-type sterile lemma and sterile lemma of nsg2 spikelet (normal, elongated and lemma-like sterile lemma).
Results

Morphological and histological analysis of nsg2 mutants

During the vegetative stage, no significant difference was observed between the nsg2 mutant and the wild-type plants, however, the nsg2 mutant exhibited remarkable abnormalities in spikelet development (Figure 1A, B). In nsg2 panicle, there were about 97.8% spikelets displaying defective features (including elongated/lemma-like sterile lemma, elongated rudimentary glume, degraded palea and decreased stamen) (Figure 1C).

Generally, a wild-type rice spikelet is composed of a top fertile floret and a pair of sterile lemmas and a pair of rudimentary glumes (Figure 2A1–A3). The sterile lemmas are two lamella-like organs and is only about 1/5 the size of the lemma. And the sterile lemma had a smooth adaxial surface with a few trichomes (Figure 2A4–A5). The rudimentary glume is extremely degenerated (Figure 2A1, A4). The floret includes four whorls of floral organs: one lemma and one palea in whorl 1, two lodicules in whorl 2, six stamens in whorl 3, and one pistil that forms the fourth whorl. The stamen is composed of a filament and an anther, and the pistil is composed of one ovary and two stigmas (Figure 2A1–A3). Lemma and palea enclose the internal three whorls of floral organs, and develop a silicified adaxial epidermis bearing trichomes and protrusions (Figure 2A4, A6, A8).

In 26.7% spikelets of nsg2, elongation of the sterile lemma was observed (Figures 1D, 2B1–B3). The elongated sterile lemma was longer than the wild-type sterile lemma, and developed some silicified cells on the adaxial epidermis (Figure 2B4, B5). In 64.4% spikelets of nsg2, the sterile lemmas were larger than that in the wild-type spikelets and resembling the lemma. The palea also displayed degeneration to different degrees (Figures 1D, 2C1, D1). Epidermis of the lemma-like sterile lemma was covered with silicified cells, which wasn’t produced on the sterile lemma of wild-type (Figure 2C4, C6, D4–D6).
were elongated (Figure 2B4, C1–C3), and the rachilla also showed elongation to some extent (Figure 2C1–C4). In addition, the number of stamens in some florets was reduced to between two and five (Figure 2B6, C7, D7).

Micromorphological and histological analysis was also performed. In the wild-type, the lemma was hooked with palea (Figure 2A7) and developed five vascular bundles, which marked by black arrows in the transverse section of spikelet (Figure 2A7). In contrast to the lemma, the palea consisted of two parts: the body of palea (bop) and the marginal region of palea (mrp) and developed three vascular bundles (Figure 2A7–A8). Both the bop and the lemma had four cell layers: a silicified outer epidermal cell layer, a fibrous sclerenchyma cell layer, a spongy parenchymatous cell layer, and an inner epidermal cell layer. There was an abundance of spongy tissue but few sclerenchyma cells in the mrp between the two smooth epidermal cell layers (Figure 2A8). The sterile lemma had smooth epidermal cells with parenchyma cells, and one vascular bundle in the middle (Figure 2A9). In the nsg2 mutant, the cell structure of these elongated sterile lemmas was similar to that in the lemma and bop to differing degrees (Figure 2B8, C7, C9, D7, D9). In some sterile lemma, the degree of silicification in the outer epidermal cell layer was lower, and the number of vascular bundles was not increased, although an obvious fibrous cell layer was found (Figure 2B8). In other sterile lemmas, the cell structure was completely consistent with the lemma: it contained the outer epidermal cell layer with a high degree of silicification, five vascular bundles, obvious fibrous sclerenchyma, and a spongy parenchymatous cell layer (Figure 2C9, D9). These results indicate that the elongated sterile lemma had transformed into a lemma-like organ. In addition, the cell structure in the nsg2 palea showed no obvious difference from that in the wild-type, but it did become smaller on the whole. This led to the non-closure of the lemma and the palea (Figure 2B6, B7, C7, C8, D7, D8).

Micromorphological analysis of nsg2 at early stage of flower development

We examined young spikelets of the wild-type and mutant plants at early developmental stages using scanning electron microscopy (SEM). The development progress of the sterile lemma in the nsg2 mutant was significantly different from that in the wild-type. In the wild-type, the spikelet development is categorized into eight stages (Sp1–Sp8) based on the identity of lateral organs (Ikeda et al. 2004). At Sp2 stage, a pair of sterile lemmas is formed in 1/2 alternate arrangement, and during Sp3–Sp5 stage, the sterile lemmas continue growing and elongated. (Figure 3A, B). In the nsg2 mutant, the growth rate of the sterile lemma was significantly faster than that in the wild-type, and the sterile lemma continued to elongate during Sp6–Sp8. Some nsg2 sterile lemmas were very similar to the
lemma in size, shape, and development progress during these stages (Figure 3E–L). The results showed that the development of the sterile lemma in the nsg2 mutant displayed a development process similar to that of the lemma; in other words, the mutation of the NSG2 gene resulted in the homeoeotic transformation of the sterile lemma primordia into the lemma primordia at the early stage of flower development.

Some defects in the floral organ primordia were also observed in the nsg2 mutant. In the wild-type spikelets, the palea primordia is formed at a 180° position apart from the lemma during the Sp4 stage (Figure 3A). During Sp5–6 stage, the lodicule and stamen primordias are formed, but only stamen primordias could be observed (Figure 3B). During Sp7 stage, the carpel primordia and the palea continued to differentiate, the marginal region of the palea began to hook with the lemma (Figure 3C). During Sp8 stage, the ovule and pollens developed, palea and lemma close together (Figure 3D). However, during the same stage in the nsg2 mutant, the palea generally developed slower than in the wild-type, and the palea primordia was significantly smaller than the normal palea primordia in Sp7 and Sp8 (Figure 3G, H). Moreover, the initiation of stamens was not synchronized and was later than in the wild-type, and the number of stamens was significantly reduced (Figure 3F, G, J, K). Entering the Sp8 stage, the lemma and palea of the wild-type were closed and wrapped the inner organs. However, in the nsg2 mutant, as a result of the delayed development of the palea, the lemma and palea could not be closed (Figure 3H, L).

Expression analysis of floral organ identity genes in the sterile lemma of nsg2 and wild-type spikelets

To clarify the identity of this elongated sterile lemma precisely, we examined the expression levels of OsMADS1, OsMADS6, OsMADS34, and DL in the lemma, palea normal sterile lemma (not elongated sterile lemma), elongated sterile lemma and lemma-like sterile lemma of nsg2 spikelets and lemma, palea, sterile lemma of wild-type spikelets (Figure 4A–D). In the wild-type spikelets, OsMADS1 gene had a high level of expression in the lemma and the palea, and a very low expression in the sterile lemma (Figure 4B). OsMADS6 strongly expressed in the palea, but nearly not expressed in the sterile lemma or lemma (Figure 4C). And DL gene strongly expressed in the lemma, but not in the palea or sterile lemma (Figure 4D). In the nsg2 mutant, high levels of expression of OsMADS1 and DL were detected in the lemma-like sterile lemma, while only a low level of expression was detected in the elongated sterile lemma and normal sterile lemma (Figure 4B, D). Moreover, only extremely low or nearly no expression of OsMADS6 was detected in the normal/elongated/lemma-like sterile lemma (Figure 4C). In the wild-type, OsMADS34 was highly expressed in the sterile lemma, but not in the lemma or palea (Figure 4A). In the nsg2 spikelets, the expression of OsMADS34 in the lemma and palea was similar to that of wild-type spikelets. However, there was a decreased expression of OsMADS34 in three types of sterile lemma: normal sterile lemma, elongated sterile lemma and lemma-like sterile lemma. And expression of OsMADS34 in the lemma-like sterile lemma was obviously lower than the normal and elongated sterile lemma (Figure 4A). These results indicate that the lemma-like sterile lemma had gained the identity of the lemma, and further suggest that the NSG2 gene plays a key role in the regulation of the identity genes of these floral organs.

Genetic analysis of nsg2

The nsg2 mutant was crossed with the sterile line 56S to yield the F1 population. All F1 plants exhibited a normal phenotype. In the F2 population, the segregation ratio of normal to mutant phenotypes was 3:1 ($\chi^2=2.57<\chi^2_{0.05}=3.84$). This result indicates that the nsg2 trait was controlled by a single recessive gene.

Gene mapping of NSG2

To map the NSG gene, the 676 mutant plants in the F2 population were used as a mapping population. 10 normal plants and 10 mutant plants, randomly selected from the F2 segregating population were used to construct the normal and the mutant gene pool. Then the 102 pairs of markers that showed polymorphism between two parents were employed to screen the normal and mutant gene pool. Four markers, ZTQ65, ZTQ66, CY7-6, and CY7-15 on chromosome 7, showed polymorphism...
between the two DNA pools. Then we use 32 mutant individuals to verify the linkage of the four markers, the number of recombinants of ZTQ65, ZTQ66, CY7-6 decreased gradually (9, 6, 3) and did not overlap with the 2 recombinants of CY7-15. The results revealed that NSG2 was located between IN/DEL markers CY7-6 and CY7-15 on the long arm of chromosome 7, with 3 and 2 recombinants (Figure 5A; Supplementary Figure S2).

Next, the two IN/DEL markers CY7-6 and CY7-15 were used to survey the whole 676 mutant individuals and found 41 and 29 recombinants, respectively. In order to further locate NSG2, 21 pairs of SSR primers between CY7-6 and CY7-15 were synthesized. Of these primers, R-20, R-34, R-37, R-39, R-40, and R-49 exhibited...
polymorphism (Table 2). These six pairs of primers were used to further analyze all the 70 recombinants. The results showed that each marker had 15, 0, 0, 1, 3, 7 recombinants (Supplementary Figure S3). Finally, the \textit{NSG2} gene was located between the SSR markers R-20 and R-39, with an approximate 180-kb physical distance in the genome sequencing variety \textit{Nipponbare} (Figure 5B). According to the gene annotation information provided by the Gramene website (http://www.gramene.org/Oryza_sativa/Location/), we fund that there were 31 annotated genes in the mapping region (Figure 5C), including eight expressed proteins, four putative proteins, three cytochrome proteins, two MYB proteins, two transposon proteins, one transcription regulator, and several functional proteins (Table 3).

Discussion

In rice, more and more studies provide direct or indirect evidence for the hypothesis which states that a spikelet of \textit{Oryza} originally contained a terminal floret and two lateral florets, and that the two lateral florets subsequently degenerated during evolution, leaving only the lemma (Kellogg 2009). The sterile lemma seems to be derived from the degeneration of this lemma (Kobayashi et al. 2010; Yoshida et al. 2009, 2012). In \textit{lateral floret 1} (lf1) mutants, the spikelet of \textit{lf1} developed lateral florets with proper floral organ identities in the axil of the sterile lemma (Zhang et al. 2017). Furthermore, two florets within a single spikelet were observed in the two allelic mutants \textit{double floret1-1} (df1-1) and \textit{df1-2}, and each single floret developed four whorls of floral organs. Three florets were also observed, though this was much less common (Ren et al. 2018). These studies constitute much stronger evidence in support of the three-florets spikelet hypothesis. In our research, the \textit{nsg2} mutant developed a lemma-like sterile lemma in a similar way to \textit{gl1, eg1, osmads34, asp1, nsg, dg1} mutants and \textit{OsMADS1} ectopic expression plants. However, the difference was that the elongated sterile lemmas in \textit{gl1, eg1, osmads34, asp1, nsg, dg1} mutants, and \textit{OsMADS1} ectopic expression plants all developed similarly to lemma in shape and identity, while no identity of palea was observed. In the sterile lemma of \textit{nsg2}, the expression signals of both lemma identity genes were detected, indicating that the elongated sterile lemma may obtain the identities of lemma. This result provides partial evidence for the hypothesis of the evolution of the sterile lemma. The \textit{NSG2} gene plays a key role in maintaining sterile lemma identity by repressing the identity of the lateral floret and lateral remaining lemma during the evolution of rice. Moreover, increasing rice yield has always been the main goal of rice breeding. In addition to increasing the number of primary and secondary branches, increasing the number of florets in spikelet is also an important way to increase rice yield. Together with the previous researches, the sterile lemma of \textit{nsg2} transformed into lemma-like organ provides evidence to support "three-florets spikelet" hypothesis, which indicate that it is possible to cultivated a "three-florets spikelet" rice. If succeed, the number of grains per panicle would be dramatically increased and affect rice yield.

The lemma and palea are unique floral organs in grass plants, with different origins and characteristics. The palea is generally considered to be the first leaf on the flower axis and the lemma is the bract (Kellogg 2009; Ohmori et al. 2009). In rice, the palea is an organ produced by the congential fusion of the bop (the body of palea) and the mrp (the marginal region of palea), which potentially have distinct origins (Lombardo and Yoshida 2015; Yoshida and Nagato 2011). The cellular structure of the bop has been shown to be highly similar to that of the lemma but distinct from that of the mrp (Cusick 1966; Verbeke 1992; Zannis 2007). In previous studies, several mutants have also exhibited a degraded palea: genes \textit{DP1, REP1, PD1} and \textit{DEP1/OsMADS15} greatly affect the structure of the palea. In the \textit{depressed palea 1} (\textit{dp1}) mutant, the body of the palea is destroyed and finally turned into a leaf-like organ comprising just the margin of the palea (Jin et al. 2011; Luo et al. 2005). In the \textit{dense and erect panicle1} (\textit{dep1}) and the \textit{retarded palea} (\textit{rep}) mutants, the body of the palea is severely degraded, but the margin structure is widened (Wang et al. 2010; Yuan et al. 2009; Zeng et al. 2016). The \textit{palea defective 1} (\textit{pd1}) mutant shows a smaller and flatter leaf-like palea, which causes the lemma to bend excessively inwards (Xiang et al. 2015). \textit{cy15} is a novel mutation in the C terminus of \textit{OsMADS1} and the development of the palea in severe \textit{cy15} spikelets is greatly affected: the size of bop is reduced, whereas the mrps are normal (Zhang et al. 2018). The results are in accordance with the view that the palea is a chimeric organ, and that the identities of bop and mrp are controlled by different regulatory pathways. In the \textit{nsg2} mutant, the palea degenerated to varying degrees and led to the non-closure of the lemma and palea, while the identity of the lemma remained normal. In addition, the palea of \textit{nsg2} was reduced with a smaller bop, while the identities of bop and mrp were unchanged. In other words, \textit{NSG2} may regulate cell proliferation and expansion to maintain the size of the palea, but it does not affect its identity.

In this study, \textit{NSG2} gene was mapped on chromosome 7, with a 180-kb region in \textit{Nipponbare}. In the region,
we didn’t find known genes involved in spikelet development. Therefore, NSG2 was a new gene involving the sterile lemma development.

Among those 31 annotated genes in the mapping region, there are two MYB family transcription factors: LOC_Os07g44030 and LOC_Os07g44090. Previous studies have shown that MYB transcription factors exist in almost all plants and are involved in the development of the floral organs. In Arabidopsis, AtMYB21 and AtMYB24 influence JA metabolism through interactions with JAZ, thus regulating stamen development. myb21 and myb24 mutants showed defects in pollen maturation, anther cracking and fiber elongation, which eventually led to male sterility (Cheng et al. 2009; Song et al. 2011). In atmyb26 mutant, the anther could not crack and disperse pollen because there was no secondary thickening of the cells in the wall of the drug chamber (Dawson et al. 1999). In rice, ANther INDEHISCENCE1 (AID1), encodes a 1R-MYB protein. Loss of function of AID1 leads to pollen abortion and delayed anthesis (Zhu et al. 2004). OsGAMYB and CARbon STARVED ANther (CSA) are both R2R3 MYB transcription factor, and regulate the development of pollen (Aya et al. 2009; Kaneko et al. 2004; Zhu et al. 2015). Interestingly, COP1 is a negative regulator of light morphogenesis, ectopically expressed AtMYB24 in cop1 leads to narrowed petals and deformed carpels (Shin et al. 2002). Those researches showed that MYB factors played an important role in flower development. Therefore, the two MYB family factors LOC_Os07g44030 and LOC_Os07g44090 in the mapping region might be involved in the development of the spikelet and floral organ. And they were considered as the candidate genes of NSG2. Our next step will be to carry out further identification and cloning of these two genes to confirm the identity of NSG2.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31730063, 31271304), National Key Program for Research and Development (2017YFD0100202), Project of CQ CSTC (CSTC2017jcyJ JX062), Graduate student scientific research innovation projects in Chongqing (CYS2015066), and the Fundamental Research Funds for the Central Universities (XDJK2016A013).

References

Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59: 125–135

Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309: 741–745

Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21: 1453–1472

Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5: e1000440

Cusick F (1966) On phylogenetic and ontogenetic fusions. In: Gutter EG (ed) Trends in Plant Morphogenesis. Longmans, London, pp 170–183

Dawson J, Sözen E, Vizir I, Van Waeyenberge S, Wilson ZA, Mulligan BJ (1999) Characterization and genetic mapping of a mutation (ms35) which prevents anther dehiscence in Arabidopsis thaliana by affecting secondary wall thickening in the endothecium. New Phyol 141: 213–222

Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D (2010) The SEPALLATA-Like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153: 728–736

Hong L, Qian Q, Zhu K, Tang D, Huang Z, Gao L, Li M, Gu M, Cheng Z (2010) ELE restraints empty glumes from developing into lemma. J Genet Genomics 37: 101–115

Ikeda K, Sunohara H, Nagato Y (2004) Developmental course of inflorescence and spikelet in rice. Breed Sci 54: 147–156

Jin Y, Luo Q, Tong H, Wang A, Cheng Z, Tang J, Li D, Zhao X, Li X, Wan J, et al. (2011) An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol 359: 277–285

Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, et al. (2004) Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell 16: 33–44

Kellogg EA (2009) The evolutionary history of Ehrhartoideae, Oryzeae, and Oryza. Rice (NY) 2: 1–14

Kobayashi K, Maekawa M, Miyao A, Hirochika H, KyoZuka J (2010) Panicle PHYtomer2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51: 47–57

Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, KyoZuka J (2012) Inflorescence meristem identity in rice is specified by overlapping functions of three API/FUL-Like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24: 1848–1859

Kwon Y, Yu SI, Park JH, Li Y, Han JH, Alavilli H, Cho J, Kim YH, Jeon JS, Lee BH (2012) OsREL2, a rice TOPLESS homolog functions in axillary meristem development in rice inflorescence. Plant Biotechnol Rep 6: 213–224

Lander ES, Green P, Abrahamson J, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181

Li F, Liu W, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen MS, Chu CC (2010) Rice DENSE AND ERECT Panicle 2 is essential for determining panicle outgrowth and elongation. Cell Res 20: 838–849

Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, Qian Q, Xue Y (2009) A putative lipase gene EXTRA GLume1 regulates both empty-glume fate and spikelet development in rice. Plant J 57: 593–605
Liu M, Li H, Su Y, Li W, Shi C (2016) G1/ELE functions in the development of rice lemma in addition to determining identities of empty glumes. *Front Plant Sci* 7: 1006

Lombardo F, Yoshida H (2015) Interpreting lemma and palea homologies: A point of view from rice floral mutants. *Front Plant Sci* 6: 61

Luo Q, Zhou K, Zhao X, Zeng Q, Xia H, Zhai W, Xu J, Wu X, Yang H, Zhu L (2005) Identification and fine mapping of a mutant gene for palealea spikelet in rice. *Planta* 222: 221–230

Luo Z, Yang Z, Zhong B, Li Y, Xie R, Zhao F, Ling Y, He G (2007) Genetic analysis and fine mapping of a dynamic rolled leaf gene, *RL10*(i), in rice (*Oryza sativa* L.). *Genome* 50: 811–817

McSteen P, Laudencia-Chingcuanco D, Colasanti J (2000) A floret by any other name: Control of meristem identity in maize. *Trends Plant Sci* 5: 61–66

Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genetic regions by using segregating populations. *Proc Natl Acad Sci USA* 88: 9828–9832

Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsMADS14 promotes panicle branching and higher grain productivity in rice. *Plant J* 68: 4321–4326

Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-Like MADS box gene, regulates floral organ identity and meristem fate in rice. *Plant Cell* 21: 3008–3025

Prasad K, Parameswaran S, Vijayraghavan U (2005) Epidermal Features of the Rice Spikelet. *Arabidopsis*. *Plant Cell* 23: 1000–1013

Terrell EE, Peterson PM, Wergin WP (2001) Epidermal Features and Spikelet Micromorphology in *Oryza* and Related Genera (*Poaceae: Oryzeae*). Smithsonian Institution Press, Washington, D.C.

Copyright © 2019 The Japanese Society for Plant Cell and Molecular Biology