Abstract

Extracts of Chinese red yeast rice (RYS, a traditional dietary seasoning of Monascus purpureus) contain several active ingredients including lovastatin, and several trials of its possible lipid-lowering effects have been conducted. This meta-analysis assesses the effectiveness and safety of RYS preparations on lipid modification in primary hyperlipidemia. We included randomized controlled trials testing RYS preparation, compared with placebo, no treatment, statins, or other active lipid-lowering agents in people with hyperlipidemia through searching PubMed, CBMdisk, TCMJARS, the Cochrane Library, and AMED up to December 2004. Ninety-three randomized trials (9625 participants) were included and three RYS preparations (Cholestin, Xuezhikang and Zhibituo) were tested. The methodological quality of trial reports was generally low in terms of generation of the allocation sequence, allocation concealment, blinding, and intention-to-treat. The combined results showed significant reduction of serum total cholesterol levels (weighted mean difference -0.91 mmol/L, 95% confidence interval -1.12 to -0.71), triglycerides levels (-0.41 mmol/L, -0.6 to -0.22), and LDL-cholesterol levels (-0.73 mmol/L, -1.02 to -0.043), and increase of HDL-cholesterol levels (0.15 mmol/L, 0.09 to 0.22) by RYS treatment compared with placebo. The lipid modification effects appeared to be similar to pravastatin, simvastatin, lovastatin, atorvastatin, or fluvastatin. Compared with non-statin lipid lowering agents, RYS preparations appeared superior to nicotinate and fish oils, but equal to or less effective than fenofibrate and gemfibrozil. No significant difference in lipid profile was found between Xuezhikang and Zhibituo. RYS preparations were associated with non-serious adverse effects such as dizziness and gastrointestinal discomfort. Current evidence shows short-term beneficial effects of RYS preparations on lipid modification. More rigorous trials are needed, and long-term effects and safety should be investigated if RYS preparations are to be recommended as one of the alternative treatments for primary hyperlipidemia.
Background
Red yeast rice (RYR) is a traditional Chinese cuisine and medicinal agent prepared by using Monascus purpureus fermented with rice, which has been recorded in ancient Chinese pharmacopoeia Ben Cao Gang Mu-Dan Shi Bu Yi during the Ming Dynasty (1368–1644) [1]. The extracts from RYR contain starch, sterols, isoflavones, and monounsaturated fatty acids, and other compounds [2,3], depending on Monascus strains used and fermentation conditions, it may contain polyketides called monacolins [4]. Monacolin K is lovastatin, which is a commonly prescribed lipid-lowering drug. Several randomized clinical trials have indicated beneficial effects of the RYR preparations including Xuezhikang and Zhibituo in the treatment of hyperlipidemia [5-9]. Xuezhikang has been in clinical use as a Chinese proprietary medicine in China and has recently been marketed in several European countries including Norway and Italy. As these preparations contain different compositions and concentration of lovastatin, evaluation of their effectiveness and safety from clinical trials is warranted.

People with hyperlipidemia have responded well to the lipid-lowering agents including HMG-CoA reductase inhibitors (statins), fibrates, nicotinic acids, and n-3 fatty acids [10]. However, long-term safety and potential drug interaction between statins and other hypolipidemic agents may become problematic [11-13]. Nowadays, many people would like to use naturaceuticals instead of chemical drugs. A previous systematic review identified four randomized trials of the lipid-lowering effects of RYR and concluded a lack of sufficient clinical research to support their efficacy [14]. The objective of this review is to assess the beneficial effects of lipid modification and safety of RYR preparations for their use in people with primary hyperlipidemia.

Methods
Search strategy
To identify relevant studies, we searched the following databases up to December 2004: The Cochrane Library, PubMed, Chinese Biomedical Database (CBMdisk), Traditional Chinese Medical Literature Analysis and Retrieval System (TCMLARS), and the Allied and Complementary Medicine Database (AMED). We used the search terms ‘red yeast rice, Monascus purpureus, Xuezhikang, Cholestics, Hyperchol, Hypocol, Lipascor’, combined with ‘hyperlipidemia, hypercholesterolemia, dyslipidemia, hypertriglyceridermia, hyperlipoproteinemia’, and limited our search to clinical trials. Depending on the database, various combinations of both MeSH terms and the free text terms were used, but no limitation with regard to language and report type. We also screened the reference lists of identified papers and review articles, and contacted pharmaceutical companies.

Inclusion criteria
We included randomized clinical trials comparing RYR vs. placebo, no intervention, or established lipid-lowering agents in individuals with primary hyperlipidemia on outcomes of lipid profile and adverse effects. Eligible trials had to include adult participants meeting the National Cholesterol Education Programme diagnostic criteria of hyperlipidemia [15] and excluded secondary causes such as hypothyroidism, familial hypercholesterolemia, diabetes mellitus, liver or kidney diseases. Trials comparing different RYR preparations were included, but trials comparing different dosage of RYR preparations or comparing RYR with other herbal medicines were excluded.

Validity assessment
The methodological quality of trials was assessed using the generation of the allocation sequence, the allocation concealment, double blinding, and withdrawals/drop-outs [16-19].

Data abstraction
One author (JL) extracted data and another author (JZ) cross-checked the data, and any disagreement was resolved by consensus. The following study characteristics were abstracted from the trials: design, participants and diagnosis, intervention regimen, and outcome measures.

Data synthesis
We used the statistical package (RevMan 4.2) provided by the Cochrane Collaboration for data analyses. Dichotomous data were presented as relative risk (RR) and continuous outcomes as weighted mean difference (WMD), both with 95% confidence interval (CI). We assessed data by both random effects and fixed effect analyses, but reported the random effect analysis if the heterogeneity was significant, which was assessed by the I^2 statistic and used P < 0.10 as significance limit [20].

Results
Included trials
We identified 647 records on RYR preparations from electronic and manual searches. By reading titles and abstracts, we excluded 275 citations that were clearly duplicates, review articles, or non-clinical studies. A total of 372 articles published in Chinese or English were retrieved for further assessment. Of these, 279 articles were excluded because they were non-controlled clinical studies or randomized trials with different research objectives. Two of these were ongoing placebo-controlled trials testing ‘Hypocol’ in Norway and ‘Lipolysar’ in Italy [21], but data were not available while writing this report. In total, 93 randomized clinical trials [6-8,22-111] were identified and they reported to allocate participants with primary hyperlipidemia (n = 9625) randomly to RYR preparation or no treatment (2 trials), placebo (8 trials),
statins (37 trials), other lipid-lowering agents (42 trials), or to a different RYR preparation (7 trials), in which three trials had more than two arms. The 93 trials were parallel group trials, and 91 were published in Chinese and two published in English [7,49]. Three RYR preparations were tested in the included trials: The RYR dietary supplement (Cholestin), and the Chinese proprietary medicines Xuezhikang and Zhibituo. Their constituents, dosages, and treatment regimens are listed in Table 1. All trials reported lipid profile outcome and 77 trials also reported adverse effects.

Methodological quality of included trials
Of the 93 trials, only three trials reported the methods to generate the allocation sequence (random number table or permuted blocks) [7,32,70], and two trials were assessed as having adequate concealment [7,29]. Five trials applied double-blinding [7,25-27,30], and three trials blinded the outcome assessors [29,51,106]. One trial reported prior sample size estimation and information on withdrawal/dropout [7], but no trial mentioned intention-to-treat analysis. Accordingly, the included trials had generally low methodological quality. All trials provided baseline data for the comparability among groups. The average sample size of the randomized trials was 103, ranging from 28 to 450 participants per trial.

Total cholesterol (TC) levels (Tables 2 and 3)
The three RYR preparations significantly reduced serum TC levels and the effect was reached at four weeks after the treatment and remained stable until 12 weeks (Figure 1). The percentage of TC level reduction was 16% for cholest- in, 19%–44% for Xuezhikang, and 13%–21% for Zhibituo (Table 2). Compared with no treatment, Zhibituo showed a reduction of serum TC levels (WMD -1.27 mmol/L; 95% CI -1.50 to -1.05; 2 trials, n = 112) [22,23]. Compared with placebo, significant reduction of serum TC levels was found for Cholestin (WMD -1.04 mmol/L; 95% CI -1.41 to -0.67; 1 trial, n = 83) [7], Xuezhikang (WMD -1.04 mmol/L; 95% CI -1.46 to -0.62; 4 trials, n = 323) [8,24-26], and Zhibituo (WMD -0.80 mmol/L; 95% CI -1.03 to -0.57; 3 trials, n = 283) [27-29]. There was no significant heterogeneity among the trials (I² statistic test) (Table 3). Different treatment duration showed similar effect of RYR preparations in reducing TC levels compared with placebo by 4 weeks (WMD -0.96 mmol/L; 95% CI -1.49 to -0.43; 2 trials, n = 113) [25,26], 6 weeks (WMD -0.61; 95% CI -1.0 to -0.22; 2 trials, n = 78) [27,28], 8 weeks (WMD -1.06; 95% CI -1.39 to -0.73; 5 trials, n = 406) [7,24-26], and 12 weeks (WMD -1.04; 95% CI -1.41 to -0.67; 1 trial, n = 83) [7].

Xuezhikang and Zhibituo were compared with simvastatin, pravastatin, lovastatin, atorvastatin, or fluvastatin in 37 trials. There was no statistically significant difference in TC levels between RYR preparation and statins except for one trial, in which Xuezhikang was less effective than fluv- astatin (WMD 0.48 mmol/L; 95% CI 0.24 to 0.72; n = 118) [55]. One trial presented data as number of subjects with at least 10% reduction of TC levels, and it showed no difference between Xuezhikang and lovastatin (64/69 vs. 68/76; RR 1.04; 95% CI 0.94 to 1.15) [64]. In these trials, Xuezhikang was used at dosage of 1.2 g/day (containing 10 mg of lovastatin), Zhibituo at 3.15 g/day (containing 9 mg of lovastatin), simvastatin at 10–20 mg/day, pravastatin at 10 mg/day, lovastatin at 20 mg/day, atorvastatin 10 mg/day, and fluvastatin 20 mg/day.

Compared with non-statin lipid-lowering agents, Xuezhikang was more effective in lowering TC levels than inositol nicotinate (WMD -0.56 mmol/L; 95% CI -0.81 to -0.31; 7 trials, n = 624) [65-71], fish oils (WMD -0.81 mmol/L; 95% CI -1.11 to -0.50; 2 trials, n = 116) [80,81], alginic sodium diester (WMD -1.08 mmol/L; 95% CI -1.38 to -0.78; 1 trial, n = 60) [84], and conjugated estrogens (WMD -0.87 mmol/L; 95% CI -1.20 to -0.54; 1 trial, n = 44) in postmenopausal women [85]. More participants had 10% reduction of TC levels after treatment of Xuezhikang against inositol nicotinate (16/18 vs. 7/17; RR 2.16; 95% CI 1.20 to 3.90) [72]. Xuezhikang was better than fish oils in terms of more participants with 10% reduction of TC levels (WMD 1.36; 95% CI 1.14 to 1.63; 2 trials, n = 146) [82,83]. No significant difference was found between Xuezhikang and fenofibrate or gemfibrozil, Xuezhikang and elastase or biphenalbid in lowering TC levels. However, Zhibituo was less effective than fenofi- brate (WMD 0.31 mmol/L; 95% CI 0.04 to 0.59; 2 trials, n = 248) [32,104], but more effective than inositol nicoti-
Table 2: Net benefit of RYR preparations in lipid profile in placebo-controlled trials

No. of subjects	Baseline	Post-treatment	Difference	P value		
	Mean (SD)	Mean (SD)	Mean (95% CI)	% Change		
TC levels (mmol/L)						
Cholestin	42	6.47 (0.78)	5.43 (0.80)	-1.04 (-1.38 to -0.70)	-16%	< 0.00001
Placebo	41	6.59 (0.75)	6.47 (0.93)	-0.12 (-0.49 to 0.25)	-2%	0.52
30	6.68 (0.98)	5.31 (0.84)	-1.37 (-1.83 to -0.91)	-21%		
33	5.81 (0.63)	4.26 (0.63)	-1.55 (-1.85 to -1.25)	-27%		
Xuezhikang	101	7.30 (1.40)	5.90 (1.40)	-1.40 (-1.79 to -1.01)	-19%	
30	5.65 (1.31)	3.16 (1.31)	-2.49 (-3.15 to -1.83)	-44%		
Subtotal: 194			-1.63 (-2.00 to -1.26)	< 0.00001		
Placebo	28	6.72 (0.97)	6.43 (0.93)	-0.29 (-0.79 to 0.21)	-4%	
30	5.84 (0.67)	4.94 (0.67)	-0.90 (-1.24 to -0.56)	-15%		
Placebo	51	6.80 (1.40)	6.70 (1.40)	-0.10 (-0.64 to 0.44)	-1%	
20	5.55 (1.02)	4.95 (1.02)	-0.60 (-1.23 to 0.03)	-11%		
Subtotal: 129			-0.50 (-0.90 to -0.11)	0.01		
Zhibituo	9	5.90 (0.95)	4.94 (0.65)	-0.96 (-1.71 to -0.21)	-16%	
30	6.70 (1.10)	5.80 (0.90)	-0.90 (-1.41 to -0.39)	-13%		
104	7.10 (1.70)	5.60 (1.30)	-1.50 (-1.91 to -1.09)	-21%		
Subtotal: 143			-1.17 (-1.59 to -0.74)	< 0.00001		
Placebo	9	5.83 (0.57)	5.56 (0.53)	-0.27 (-0.78 to 0.24)	-5%	
30	6.70 (1.50)	6.40 (1.30)	-0.30 (-1.01 to 0.41)	-4%		
104	6.00 (1.80)	6.50 (0.70)	0.50 (0.12 to 0.88)	8%		
Subtotal: 140			0.02 (-0.56 to 0.60)	0.95		
TG levels (mmol/L)						
Cholestin	42	1.50 (0.54)	1.40 (0.50)	-0.10 (-0.32 to 0.12)	-7%	0.38
Placebo	41	1.61 (0.52)	1.65 (0.53)	0.04 (-0.19 to 0.27)	2%	
30	2.84 (0.57)	2.38 (0.62)	-0.46 (-0.76 to -0.16)	-16%		
33	2.10 (0.92)	1.82 (0.92)	-0.28 (-0.72 to 0.16)	-13%		
Xuezhikang	101	3.60 (2.40)	2.30 (1.60)	-1.30 (-1.86 to -0.74)	-36%	
30	2.62 (0.58)	1.47 (0.58)	-1.15 (-1.44 to -0.86)	-44%		
Subtotal: 194			-0.78 (-1.26 to -0.31)	0.001		
Placebo	28	2.74 (0.73)	2.57 (0.69)	-0.17 (-0.54 to 0.20)	-6%	
30	2.14 (0.94)	1.91 (0.94)	3.00 (1.60)	-0.23 (-0.71 to 0.25)	-11%	
51	3.30 (1.60)	3.00 (1.60)	-0.30 (-0.92 to 0.32)	-9%		
20	2.50 (0.50)	2.11 (0.50)	-0.39 (-0.70 to -0.08)	-16%		
Subtotal: 129			-0.29 (-0.49 to -0.09)	0.005		
Zhibituo	13	2.46 (1.23)	1.79 (0.57)	-0.67 (-1.41 to 0.07)	-27%	
30	3.40 (0.90)	2.10 (1.10)	-1.30 (-1.81 to -0.79)	-38%		
104	3.40 (1.50)	2.30 (1.30)	-1.10 (-1.48 to -0.72)	-32%		
Subtotal: 147			-1.10 (-1.38 to -0.82)	< 0.00001		
Placebo	9	2.56 (0.88)	2.36 (0.64)	-0.20 (-0.91 to 0.51)	-8%	
30	3.40 (1.10)	3.10 (1.20)	-0.30 (-0.88 to 0.28)	-9%		
Table 2: Net benefit of RYR preparations in lipid profile in placebo-controlled trials (Continued)

Treatment	n	LDL-C levels (mmol/L)	HDL-C levels (mmol/L)
Placebo	101	3.10 (0.40)	2.50 (1.40)
Total	140		
Cholestin	42	4.47 (0.70)	3.49 (0.70)
Placebo	41	4.65 (0.78)	4.53 (0.85)
Total	140		
Xuezhikang	101	4.80 (1.60)	3.50 (1.40)
Placebo	30	3.00 (1.03)	2.10 (1.03)
Total	194		
Subtotal: 194		1.23 (-1.41 to -1.05)	0.38 (-0.83 to 0.07)
Zhibituo	104	3.70 (1.60)	3.50 (1.40)
Placebo	101	3.70 (1.20)	3.70 (1.00)
Total	147		
Subtotal: 147		0.18 (0.10 to 0.26)	0.13 (0.07 to 0.19)
Placebo	101	0.89 (0.13)	0.80 (0.30)
Total	144		
Subtotal: 144		0.04 (-0.26 to -0.01)	0.04 (-0.26 to -0.01)
Placebo	101	0.89 (0.41)	1.09 (0.41)
Total	144		
Subtotal: 144		0.18 (0.10 to 0.26)	0.13 (0.07 to 0.19)
Placebo	101	0.89 (0.13)	0.80 (0.30)
Total	144		
Subtotal: 144		0.04 (-0.12 to 0.03)	0.26
nate (WMD -0.73 mmol/L; 95% CI -1.13 to -0.33; 8 trials, n = 608) [88-95], and fish oils (WMD -0.76 mmol/L; 95% CI -1.04 to -0.49; 6 trials, n = 491) [97-102] by random effect model due to significant heterogeneity (Table 3). More participants treated by Zhibituo had 10% reduction of TC levels compared with those treated by inositol nicotinate (23/30 vs. 13/30; RR 1.77; 95% CI 1.12 to 2.79) [96] or those treated by fish oils (18/25 vs. 7/25; RR 2.57; 95% CI 1.31 to 5.05) [103]. Zhibituo appeared superior to alginic sodium diester for the number of participants with 10% reduction of TC levels (105/121 vs. 67/89; RR 1.15; 95% CI 1.00 to 1.32) [105].

* Random effects model

Xuezhikang did not differ from Zhibituo in TC-lowering effect (WMD -0.03 mmol/L; 95% CI -0.25 to 0.20; 7 trials, n = 701) [32,106-111] (Table 3).

Triglycerides (TG) levels (Tables 2 and 4)

There was a 13%–44% reduction of TG levels after treatment by Xuezhikang, 27%–38% by Zhibituo, and 7% by Cholestin. Compared with no treatment, Zhibituo showed a significant effect on reducing TG levels (WMD -0.54 mmol/L; 95% CI -0.77 to -0.32; 2 trials, n = 112) [22,23]. Compared with placebo, all three RYR preparations significantly reduced TG levels (Cholestin: WMD -0.25 mmol/L; 95% CI -0.47 to -0.03; 1 trial, n = 83) [7]: Xuezhikang: WMD -0.40 mmol/L; 95% CI -0.70 to -0.10; 4 trials, n = 323 [8,24-26]; and Zhibituo: WMD -0.55 mmol/L; 95% CI -0.99 to -0.10; 3 trials, n = 283) [27-29] (Table 4). Different treatment duration showed similar effect of RYR preparations in reducing TG levels compared with placebo by 4 weeks (WMD -0.32 mmol/L; 95% CI -0.58 to -0.07; 2 trials, n = 113) [25,26], 6 weeks (WMD -0.74; 95% CI -1.10 to -0.37; 2 trials, n = 86) [27,28], 8 weeks (WMD -0.35; 95% CI -0.5 to -0.21; 5 trials, n = 406) [7,8,24-26], and 12 weeks (WMD -0.25; 95% CI -0.47 to -0.03; 1 trial, n = 83) [7].

There was no statistically significant difference in TG levels after treatment between Xuezhikang or Zhibituo and simvastatin, pravastatin, lovastatin, atorvastatin, or fluvastatin. One trial presented data as number of subjects with at least 20% reduction of TG levels, and it showed no difference between Xuezhikang and lovastatin (47/60 vs. 59/77; RR 1.02; 95% CI 0.85 to 1.23) [64]. Compared with non-statin lipid lowering agents, there was no significant difference between Xuezhikang and

Table 3: Post-treatment total cholesterol levels (mmol/L) in randomized controlled trials

Interventions	No. of trials [references]	No. of participants	Weighted mean difference (95% confidence interval)	P value
RYR vs. no intervention/placebo				
Zhibituo vs. no intervention	2 [22, 23]	112	-1.27 (-1.50 to -1.05)	< 0.00001
RYR supplement vs. placebo	1 [7]	83	-1.04 (-1.41 to -0.67)	0.00001
Xuezhikang vs. placebo	4 [8, 24-26]	323	-1.04 (-1.46 to -0.62)*	< 0.00001
Zhibituo vs. placebo	3 [27-29]	283	-0.80 (-1.03 to -0.57)	< 0.00001
RYR vs. statins				
Xuezhikang vs. simvastatin	15 [6, 30-43]	1455	0.05 (-0.27 to 0.37)*	0.76
Xuezhikang vs. pravastatin	7 [44-50]	594	-0.20 (-0.47 to 0.06)*	0.14
Xuezhikang vs. lovastatin	3 [51-53]	174	-0.05 (-0.27 to 0.18)	0.69
Xuezhikang vs. atorvastatin	1 [54]	60	-0.16 (-0.58 to 0.26)	0.46
Xuezhikang vs. fluvastatin	1 [55]	118	0.48 (0.24 to 0.72)	0.0001
Zhibituo vs. simvastatin	9 [32, 56-63]	728	0.11 (-0.03 to 0.25)	0.14
Zhibituo vs. pravastatin	1 [22]	62	0.05 (-0.20 to 0.30)	0.70
Zhibituo vs. lovastatin	1 [57]	45	-0.11 (-0.48 to 0.26)	0.56
RYR vs. non-statin drugs				
Xuezhikang vs. inositol nicotinate	7 [65–71]	624	-0.56 (-0.81 to -0.31)*	< 0.0001
Xuezhikang vs. fenofibrate	5 [32, 73–76]	337	-0.13 (-0.46 to 0.20)*	0.44
Xuezhikang vs. gemfibrozil	3 [77–79]	156	-0.43 (-1.52 to 0.65)*	0.43
Xuezhikang vs. fish oils	2 [80, 81]	116	-0.81 (-1.11 to -0.50)	< 0.00001
Xuezhikang vs. alginic sodium diester	1 [84]	60	-1.08 (-1.38 to -0.78)	< 0.00001
Xuezhikang vs. conjugated estrogens	1 [85]	44	-0.87 (-1.20 to -0.54)	< 0.00001
Xuezhikang vs. elastase	1 [86]	107	-0.10 (-0.49 to 0.29)	0.61
Xuezhikang vs. biphenalbid	1 [87]	64	0.12 (-0.31 to 0.55)	0.59
Zhibituo vs. inositol nicotinate	8 [88–95]	608	-0.73 (-1.13 to -0.33)*	0.00004
Zhibituo vs. fish oils	6 [97–102]	491	-0.76 (-1.04 to -0.49)*	< 0.00001
Zhibituo vs. fenofibrate	2 [32, 104]	248	0.31 (0.04 to 0.59)	0.02
RYR versus RYR				
Xuezhikang vs. Zhibituo	7 [32, 106–111]	701	-0.03 (-0.25 to 0.20)*	0.82
inositol nicotinate, fenofibrate, alginic sodium diester, or elastase for TG levels. There was no difference between Xuezhikang and inositol nicotinate in number of participants with over 20% reduction of TG levels (11/16 vs. 10/16; RR 1.10; 95% CI 0.67 to 1.82) [72], and between Xuezhikang and fish oils (58/78 vs. 44/70; RR 1.15; 95% CI 0.8 to 1.64) [82,83]. However, Xuezhikang was less effective than gemfibrozil (WMD 0.41 mmol/L; 95% CI 0.30 to 0.51; 3 trials, n = 160) [77-79], but better than fish oils (WMD -0.71 mmol/L; 95% CI -0.97 to -0.44; 2 trials, n = 112) [80,81], conjugated estrogens (WMD -0.82 mmol/L; 95% CI -1.31 to -0.33; 1 trial, n = 44) [85] in postmenopausal women, and biphenalbid (WMD -0.43 mmol/L; 95% CI -0.81 to -0.05; 1 trial, n = 64) [87]. Zhhibituo showed a significant better TG-lowering effect (WMD -0.39 mmol/L; 95% CI -0.62 to -0.16; 7 trials, n = 598) [88-93,95] compared with inositol nicotinate. However, there was no significant difference between Zhhibituo and inositol nicotinate in the number of participants with over 20% reduction of TG levels (9/30 vs. 4/30) in one trial [96]. Zhhibituo did not differ from fish oils (WMD -0.12 mmol/L; 95% CI -0.29 to 0.05; 5 trials, n = 394) [97-100,102] or fenofibrate (WMD 0.33 mmol/L; 95% CI -0.12 to 0.78; 2 trials, n = 248) [32,104] (Table 4). In a small trial more participants appeared to have a 20% reduction of TG levels by Zhhibituo than by fish oils (20/23 vs. 9/19; RR 1.84; 95% CI 1.11 to 3.03) [103]. There was a marginal effect of Zhhibituo compared with alginic sodium diester for the number of participants with over 20% reduction of TG levels (69/121 vs. 38/89; RR 1.34; 95% CI 1.00 to 1.78) [105].

There was no significant difference between Xuezhikang and Zhhibituo in reducing TG levels (WMD 0.05 mmol/L; 95% CI -0.17 to 0.27; 7 trials, n = 727) (Table 4).

Low density lipoprotein cholesterol (LDL-C) levels (Tables 2 and 5)

There was a 22% reduction of LDL-C levels by Cholestin and 27%–32% by Xuezhikang, but 5% by Zhhibituo. Zhhibituo appeared to have no effect on reducing LDL-C levels compared with no treatment [22] or placebo [28]. The relative benefit of reducing LDL-C levels by Cholestin against placebo was WMD -1.04 mmol/L (95% CI -1.38 to -0.70; 1 trial, n = 83) [7], and by Xuezhikang against placebo (WMD) -0.74 mmol/L; 95% CI -0.93 to -0.55; 4 trials, n = 323 [8,23-25] (Table 5). Different treatment duration showed similar effect of RYR preparations in reducing LDL-C levels compared with placebo by 4 weeks (WMD -0.77 mmol/L; 95% CI -1.0 to -0.54; 2 trials, n =

Figure 1

Total cholesterol levels during the treatment in 8 randomized placebo-controlled trials.
Xuezhikang did not differ from simvastatin, pravastatin, lovastatin, atorvastatin or fluvastatin for post-treatment LDL-C levels.

Zhibituo appeared to have the same effect as pravastatin or lovastatin, but was less effective than simvastatin (WMD 0.22 mmol/L; 95% CI 0.04 to 0.39; 8 trials, n = 601) [32,56-62]. Compared with non-statin lipid-lowering agents, Xuezhikang was similar to fenofibrate, conjugated estrogens or biphenalbid, but significantly better in reducing LDL-C levels than inositol nicotinate (WMD -0.63 mmol/L; 95% CI -0.96 to -0.30; 4 trials, n = 299) [66-68,70], gemfibrozil (WMD -0.34 mmol/L; 95% CI -0.58 to -0.10; 3 trials, n = 152) [77-79], and fish oils (WMD -0.89 mmol/L; 95% CI -1.41 to -0.37; 1 trial, n = 95) [81].

Zhibituo was better than fish oils in reducing LDL-C levels (WMD -0.57 mmol/L; 95% CI -0.70 to -0.45; 5 trials, n = 489) [97-101], but less effective than fenofibrate (WMD 0.31 mmol/L; 95% CI 0.04 to 0.58; 1 trial, n = 90) [32] (Table 5).

No significant difference was found between Xuezhikang and Zhibituo in LDL-C levels (-0.08 mmol/L; -0.18 to 0.02; 5 trials, n = 628) [32,106,108,109,111] (Table 5).

High density lipoprotein cholesterol (HDL-C) levels (Tables 2 and 6)

There was an increase of HDL-C levels between 15% and 22% by Zhibituo. However, the findings for Xuezhikang were not consistent ranging from a 2% to 17% increase and 15% decrease in four trials. Cholestirin did not change the HDL-C levels after the treatment [7].

Table 4: Post-treatment triglycerides levels (mmol/L) in randomized controlled trials

Interventions	No. of trials [references]	No. of participants	Weighted mean difference (95% confidence interval)	P value
RYR vs. no intervention/placebo				
Zhibilituo vs. no intervention	2 [22, 23]	112	-0.54 (-0.77 to -0.32)	< 0.00001
RYR supplement vs. placebo	1 [7]	83	-0.25 (-0.47 to -0.03)	0.03
Xuezhikang vs. placebo	4 [8, 24-26]	323	-0.40 (-0.70 to -0.10)*	0.008
Zhibilituo vs. placebo	3 [27-29]	291	-0.55 (-0.99 to -0.10)	0.02
RYR vs. statins				
Xuezhikang vs. simvastatin	14 [6, 30–42]	1251	-0.08 (-0.25 to 0.10)*	0.39
Xuezhikang vs. pravastatin	7 [44–50]	592	0.04 (-0.29 to 0.38)*	0.79
Xuezhikang vs. lovastatin	3 [51–53]	168	-0.07 (-0.16 to 0.01)	0.09
Xuezhikang vs. atorvastatin	1 [54]	60	-0.02 (-0.16 to 0.12)	0.78
Xuezhikang vs. fluvastatin	1 [55]	118	0.09 (-0.1 4 to 0.32)	0.44
Zhibilituo vs. simvastatin	9 [32, 56–63]	732	0.03 (-0.1.70 to 0.26)*	0.67
Zhibilituo vs. pravastatin	1 [22]	62	-0.02 (-0.19 to 0.15)	0.81
Zhibilituo vs. lovastatin	1 [57]	45	-0.21 (- 0.61 to 0.19)	0.30
RYR vs. non-statin drugs				
Xuezhikang vs. inositol nicotinate	7 [65–71]	636	-0.06 (-0.20 to 0.08)	0.38
Xuezhikang vs. fenofibrate	5 [32, 73–76]	337	0.42 (-0.17 to 1.01)*	0.16
Xuezhikang vs. gemfibrozil	3 [77–79]	160	0.41 (0.30 to 0.51)	< 0.00001
Xuezhikang vs. fish oils	2 [80, 81]	112	-0.71 (-0.97 to -0.44)	< 0.00001
Xuezhikang vs. alginic sodium diester	1 [84]	60	0.04 (-0.21 to 0.29)	0.75
Xuezhikang vs. conjugated estrogens	1 [85]	44	-0.82 (-1.31 to -0.33)	0.001
Xuezhikang vs. elastase	1 [86]	107	0.00 (-0.31 to 0.31)	1.00
Xuezhikang vs. biphenalbid	1 [87]	64	-0.43 (-0.8 1 to -0.05)	0.03
Zhibilituo vs. inositol nicotinate	7 [88–93, 95]	598	-0.39 (-0.62 to -0.16)*	0.0008
Zhibilituo vs. fish oils	5 [97–100, 102]	394	-0.12 (-0.29 to 0.05)	0.17
Zhibilituo vs. fenofibrate	2 [32, 104]	248	0.33 (-0.12 to 0.78)	0.15
RYR vs. RTR				
Xuezhikang vs. Zhibilituo	7 [32, 106–111]	727	0.05 (-0.17 to 0.27)*	0.66

* Random effects model
of increasing HDL-C levels was shown when Xuezhikang was compared with placebo (WMD 0.11 mmol/L; 95%CI 0.05 to 0.17; 4 trials, n = 323) [8,24-26], and when Zhibituo was compared with no treatment (WMD 0.21 mmol/L; 95% CI 0.04 to 0.38; 1 trial, n = 62) [22] and with placebo (WMD 0.21 mmol/L; 95% CI 0.15 to 0.27; 3 trials, n = 291) [27-29] (Table 6). Different treatment durations showed that of RYR preparations increased HDL-C levels compared with placebo by 6 weeks (WMD 0.27; 95% CI 0.17 to 0.38; 2 trials, n = 86) [27,28] and 8 weeks (WMD 0.11; 95% CI 0.05 to 0.16; 5 trials, n = 406) [7,8,24-26]. There was no significant difference between RYR and placebo at 4 weeks and at 12 weeks for HDL-C levels [7,25,26].

Compared with statins, Xuezhikang appeared better than lovastatin in raising HDL-C levels (WMD 0.06 mmol/L; 95% CI 0.00 to 0.11; 3 trials, n = 152) [51,53]. Zhibituo was inferior to simvastatin (WMD -0.07 mmol/L; 95% CI -0.12 to -0.03; 9 trials, n = 666) [32,56-63]. There was no significant difference among other comparisons of RYR preparations and statins. Compared with non-statins, Xuezhikang was superior to inositol nicotinate (WMD 0.17 mmol/L; 95% Cl 0.06 to 0.28; 7 trials, n = 608) by random effects model [65-71], fish oils (WMD 0.17 mmol/L; 95% CI 0.09 to 0.25; 2 trials, n = 70) [80,81], alginic sodium diester (WMD 0.86 mmol/L; 95% CI 0.75 to 0.97; 1 trial, n = 60) [84], elastase (WMD 0.20 mmol/L; 95% CI 0.10 to 0.30; 1 trial, n = 107) [86], and to biphenalbid (WMD 0.25 mmol/L; 95% CI 0.11 to 0.39; 1 trial, n = 64) [87]. There was no significant difference between Xuezhikang and fenofibrate, gemfibrozil, or estrogens in affecting HDL-C levels. Zhibituo was superior to inositol nicotinate (WMD 0.18 mmol/L; 95% CI 0.09 to 0.27; 6 trials, n = 422) [89-91,93-95] and to fish oils (WMD 0.14 mmol/L; 95% CI 0.06 to 0.23; 6 trials, n = 400) [97-102] both in random effects model. There was no significant difference between Zhibituo and fenofibrate (WMD -0.13 mmol/L; 95% CI -0.37 to 0.11; 2 trials, n = 248) [32,104].

No significant difference was found between Xuezhikang and Zhibituo in affecting HDL-C levels (WMD 0.04 mmol/L; 95% CI -0.02 to 0.11; 7 trials, n = 627) [32,106-111] (Table 6).

Adverse effects

Seventy-seven trials reported outcomes of adverse effects, and the incidence rate ranged from 1.3% to 36%. The most commonly reported adverse effects were dizziness, low appetite, nausea, stomach-ache, abdominal disten-

Table 5: Post-treatment low-density lipoprotein cholesterol levels (mmol/L) in randomized controlled trials

Interventions	No. of trials [references]	No. of participants	Weighted mean difference (95% confidence interval)	P value
RYR vs. no intervention/placebo				
Zhibituo vs. no intervention	1 [22]	62	-0.16 (-0.71 to 0.39)	0.57
RYR supplement vs. placebo	1 [7]	83	-1.04 (-1.38 to -0.70)	< 0.00001
Xuezhikang vs. placebo	4 [8, 24–26]	323	-0.74 (-0.93 to -0.55)	< 0.00001
Zhibituo vs. placebo	1 [29]	205	-0.20 (-0.53 to 0.13)	0.24
RYR vs. statins				
Xuezhikang vs. simvastatin	13 [6, 30–34, 36–38, 40–43]	1238	0.14 (-0.05 to 0.33)*	0.14
Xuezhikang vs. pravastatin	7 [44–50]	587	-0.09 (-0.20 to 0.02)*	0.11
Xuezhikang vs. lovastatin	3 [51–53]	191	0.00 (-0.26 to 0.27)	0.98
Xuezhikang vs. atorvastatin	1 [54]	60	0.20 (-0.10 to 0.50)	0.19
Xuezhikang vs. fluvastatin	1 [55]	118	0.14 (-0.10 to 0.38)	0.26
Zhibituo vs. simvastatin	8 [32, 56-62]	601	0.22 (0.04 to 0.39)	0.02
Zhibituo vs. pravastatin	1 [22]	62	-0.11 (-0.60 to 0.38)	0.66
Zhibituo vs. lovastatin	1 [57]	45	0.03 (-0.30 to 0.36)	0.86
RYR vs. non-statin drugs				
Xuezhikang vs. inositol nicotinate	4 [66–68, 70]	299	-0.63 (-0.96 to -0.30)	0.0002
Xuezhikang vs. fenofibrate	3 [32, 74, 76]	220	-0.10 (-1.05 to 0.85)*	0.84
Xuezhikang vs. gemfibrozil	3 [77–79]	152	-0.34 (-0.58 to -0.10)	0.005
Xuezhikang vs. fish oils	1 [81]	95	-0.89 (-1.41 to -0.37)	0.0008
Xuezhikang vs. conjugated estrogens	1 [85]	44	-0.10 (-0.43 to 0.23)	0.35
Xuezhikang vs. biphenalbid	1 [87]	64	-0.06 (-0.32 to 0.20)	0.65
Zhibituo vs. fish oils	5 [97–101]	489	-0.57 (-0.70 to -0.45)	< 0.00001
Zhibituo vs. fenofibrate	1 [32]	90	0.31 (0.04 to 0.58)	0.02
RYR vs. RYR				
Xuezhikang vs. Zhibituo	5 [32, 106, 108, 109, 111]	628	-0.08 (-0.18 to 0.02)	0.12

* Random effects model
sion, and diarrhoea. A small proportion of participants suffered from increased serum BUN and ALT levels. The trials did not report serious adverse events.

Cost-effectiveness
One trial evaluated cost-effectiveness of Xuezhikang vs. pravastatin for treatment of hypercholesterolemia [49]. For a reduction of 1 mmol/L TC level, the cost of Xuezhikang and pravastatin was 57 USD and 78 USD respectively. For a reduction of 1 mmol/L TG level, the cost of Xuezhikang and pravastatin was 242 USD and 820 USD respectively; and for a reduction of 1 mmol/L LDL-C level, the cost was 59 USD and 84 USD respectively.

Discussion
Based on this review and meta-analysis, three different kinds of RYR preparations tested by in randomized trials demonstrate beneficial effects on reducing TC, TG, and LDL-C levels, and on increasing HDL-C levels in individuals with hyperlipidemia. The treatment duration of RYR ranged from 4 to 24 weeks (median of 8 weeks), and the lipid modification effects have been shown at four weeks of the treatment, and the effects remained at 24 weeks of the treatment. Long-term follow-up effects after the treatment have not been reported by the trials. The use of RYR preparations seems safe and well tolerated.

Before accepting the findings of this review to form a basis for clinical practice, we need to consider the following weaknesses in this review. First, the randomized trials in this review had several methodological flaws in terms of insufficient reporting of generation methods of the allocation sequence, allocation concealment, and double blinding. The trials provided limited descriptions of study

Table 6: Post-treatment high-density lipoprotein cholesterol levels (mmol/L) in randomized controlled trials

Interventions	No. of trials [references]	No. of participants	Weighted mean difference its (95% confidence interval)	P value
RYR vs. no intervention/placebo				
Zhibituo vs. no intervention	1 [22]	62	0.21 (0.04 to 0.38)	0.02
RYR supplement vs. placebo	1 [7]	83	0.10 (-0.04 to 0.24)	0.16
Xuezhikang vs. placebo	4 [8, 24–26]	323	0.11 (0.05 to 0.17)	0.0008
Zhibituo vs. placebo	3 [27–29]	291	0.21 (0.15 to 0.27)	< 0.0001
RYR vs. statins				
Xuezhikang vs. simvastatin	14 [6, 30–34, 36–43]	1277	0.06 (-0.11 to 0.22)	0.49
Xuezhikang vs. pravastatin	7 [44–50]	587	-0.01 (-0.06 to 0.03)	0.51
Xuezhikang vs. lovastatin	3 [51–53]	152	0.06 (0.00 to 0.11)	0.05
Xuezhikang vs. atorvastatin	1 [54]	60	0.01 (-0.17 to 0.19)	0.91
Xuezhikang vs. fluvastatin	1 [55]	118	-0.02 (-0.1 0 to 0.06)	0.62
Zhibituo vs. simvastatin	9 [32, 56–63]	666	-0.07 (-0.12 to -0.03)	0.0009
Zhibituo vs. pravastatin	1 [22]	62	-0.02 (-0.22 to 0.18)	0.85
Zhibituo vs. lovastatin	1 [57]	45	-0.07 (-0.23 to 0.09)	0.39
RYR vs. non-statin drugs				
Xuezhikang vs. inositol nicotinate	7 [65–71]	608	0.17 (0.06 to 0.28)	0.002
Xuezhikang vs. fenofibrate	4 [32, 73, 74, 76]	257	0.03 (-0.06 to 0.13)	0.49
Xuezhikang vs. gemfibrozil	2 [77, 79]	108	-0.03 (-0.3 5 to 0.28)	0.83
Xuezhikang vs. fish oils	2 [80, 81]	70	0.17 (0.09 to 0.25)	< 0.0001
Xuezhikang vs. alginic sodium diester	1 [84]	60	0.86 (0.75 to 0.97)	< 0.0001
Xuezhikang vs. conjugated estrogens	1 [85]	44	0.00 (-0.09 to 0.09)	1.00
Xuezhikang vs. elastase	1 [86]	107	0.20 (0.10 to 0.30)	< 0.0001
Xuezhikang vs. biphenalbidi nicotinate	1 [87]	64	0.25 (0.11 to 0.39)	0.0003
Zhibituo vs. inositol nicotinate	6 [89–91, 93–95]	422	0.18 (0.09 to 0.27)	< 0.0001
Zhibituo vs. fish oils	6 [97–102]	400	0.14 (0.06 to 0.23)*	0.001
Zhibituo vs. fenofibrate	2 [32, 104]	248	-0.13 (-0.37 to 0.11)	0.28
RYR vs. RYR				
Xuezhikang vs. Zhibituo	7 [32, 106–111]	627	0.04 (-0.02 to 0.11)*	0.20

* Random effects model
design, and most trials stated only that patients were randomly assigned; thus the information does not allow a judgement of whether or not it was conducted properly. We therefore state that the differences between RYR preparation and control drugs may be associated with the methodologically less rigorous trials [16-19]. The sample size for trials comparing RYR with statins or other established treatments was not justified and we do not know if the trials were designed as 'equivalence trials'. The limited number of trials with adequate quality prohibits us from performing meaningful sensitivity analyses to illuminate robustness of the results in the review.

Second, Vickers and colleagues [112] found that some countries, including China, publish unusually high proportions of positive results, for which publication bias is a possible explanation. All identified studies for this systematic review originated from China except one trial conducted in the USA and published in an international peer-reviewed journal [7]. Inability to identify unpublished eligible trials from the searching, trials with small samples and positive findings may raise the issue of publication bias.

There are some variations in RYR preparations and treatment regimens including composition, dosage and duration. Cholestin is an extract from RYR containing a special strain of yeast which produces monacolin K (lovastatin) [7]. Xuezhikang and Zhibituo are two Chinese proprietary medicines that contain other herbs in addition to RYR as main components. In some trials, placebo effects are substantial compared with baseline as demonstrated in trials of Xuezhikang where placebo treatment achieved 1% to 15% reduction of TC levels, and 6% to 16% reduction of TG levels (Table 2). Therefore, in non-placebo-controlled and non-double blind trials, placebo effects may add to the complexity of interpreting the present findings of the overall beneficial effects, and the interpretation should be taken with caution.

Given the generally low methodological quality of the randomized trials and potential publication bias, we suggest further rigorously designed trials are still needed before RYR preparation could be recommended for clinical use or as an alternative treatment to statins. The currently ongoing placebo-controlled trials in Europe may provide useful information [21]. In addition to anti-hyperlipidemic effects of RYR preparations, cost-effectiveness and safety should be further investigated in future trials [113].

Conclusion
Current evidence from randomized trials shows short-term beneficial effects of RYR preparations on lipid modification. More rigorous trials are needed, and long-term effects and safety should be investigated if RYR preparations are to be recommended as one of the alternative treatments for primary hyperlipidemia.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
JL conceived, designed, drafted the review, and performed study selection, data extraction, analyses, and interpretation. IZ did the literature search, study selection, and cross-checked the data extraction; YS developed the search strategies, performed electronic searches and retrieved articles; SG, TA, and VF provided methodological perspectives, and revised the review. All authors contributed to the writing of the review.

Acknowledgements
We thank Dr Antonio Bianchi for providing information on ongoing study on RYR preparation ‘Lipolyser’, and Beijing Weixin for unpublished study on Xuezhikang, and Pharmacologica in Norway for ‘Hypocol’.

References
1. Monascus purpureus (monograph). Altern Med Rev 2004, 9(2):208-210.
2. Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M: Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem 2000, 48(11):5220-5.
3. Patrick L, Uzzick M: Cardiovascular disease: C-reactive protein and the inflammatory disease paradigm: HMG-CoA reductase inhibitors, alpha-tocopherol, red yeast rice, and olive oil polyphenols. A review of the literature. Altern Med Rev 2001, 6(3):248-71.
4. Heber D, Lembertas A, Lu QY, Bowerman S, Go VL: An analysis of nine proprietary Chinese red yeast rice dietary supplements: implications of variability in chemical profile and contents. J Altern Complement Med 2001, 7(2):133-9.
5. Wang J, Lu Z, Chi J, Wang W, Su M, Kou W, Yu P, Yu L, Chen L, Zhu JS, Chang J: Multicenter clinical trial of the serum lipid-lowering effects of a Monascus purpureus (red yeast) rice preparation from traditional Chinese medicine. J Altern Complement Med 2003, 9(2):964-978.
6. Kou WR, Lu ZL, Guo JX, Li HY, Xue SW, Lin YZ, Wu XS, Chen H: Effect of Xuezhikang on the treatment of primary hyperlipidemia. Zhonghua Neike Za Zhi 1997, 36(8):529-31.
7. Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VL: Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Chin Nutr 1999, 27(2):231-6.
8. Shen ZW, Yu PL, Sun MZ, Chi J, Zhou YF, Zhu XS, Yang CY, He CF: Prospective study of Xuezhikang for treatment of primary hyperlipidemia. Nat Med J China 1996, 76(2):156-7.
9. Liu SS, Kou MK, Ding H, Li CM, He L, He L, Zhang CM, Li YF, Li ZF, Yang MJ: The clinical observation of hyperlipoproteinemia treated with Zhibituo. Chengdu Zhongyao Daxue Xuebao 1996, 19(3):12-5.
10. Kreisberg RA, Oberman A: Medical management of hyperlipidemia/dyslipidemia. J Clin Endocrinol Metab 2003, 88(6):2445-61.
11. Moghadasi MH: A safety look at currently available statins. Expert Opin Drug Saf 2002, 1(2):269-74.
12. Alcocer L: Statins for everybody? New evidence on the efficacy and safety of the inhibitors of HMG Co-A reductase. Am J Ther 2003, 10(6):423-8.
13. Bellosta S, Paoloni R, Corsini A: Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation 2004, 109(11):11150-7.
14. Thompson Coon JS, Ernst E: Herbs for serum cholesterol reduction: a systematic review. J Fam Pract 2003, 52(6):468-78.
15. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285(19):2486-97.

16. Schulz KF, Chalmers I, Hayes R, Altman D: Empirical evidence of bias. JAMA 1995, 273(24):1675-79.

17. Moher D, Pham B, Jones A, Cook DJ, Jadad AR, Moher M, Tugwell P, Klassen TP: Does quality of reported randomized trials affect estimates of intervention efficacy reported in meta-analyses. Lancet 1998, 352(9128):609-13.

18. Younggrad P, Villumsen J, Gluud C: Reported methodological quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 2001, 135(11):892-9.

19. Clarke M, Oxman AD: Assessment of study quality. Cochrane Hypertension’ Handbook 4.2.0 [updated March 2003]. In The Cochrane Library Issue 2 Oxford: Update Software; 2003.

20. Higgins JPT, Thompson SG, Deeks JJ, Altman DG: Reviewers’ Handbook 4.2.0 [updated March 2003].

21. Higgins JPT, Deeks JJ: Measuring inconsistency in meta-analyses. BMJ 2003, 327(7414):557-60.

22. Personal communication with the trial sponsors in Norway and Italy.

23. Tang HL: Randomized controlled study of Diao Zhibiutuo for lipid modulation effect. Schuan Yaoue 2004, 25(1):78-9.

24. Zhao YL, Ouyang HB: Observation on therapeutic effects of Zhibiutuo for treatment of hyperlipidemia. Changzhou Yan 1998, 7(215):1.

25. Cheng XM, Yu ZM, Luo HD, Qiu YH, Chen MX: Effect of Zhezhihikang on endothelial function in patients with hyperlipidemia. Chin J Atheroscler 2003, 11(3):235-7.

26. Qin SC, Zhang WQ, Qi P, Zhao ML, Qi P, Zhao ML, Dong ZN, Li YC, Xu XM, Fang X, Fu L: Ranitidine, double blind, controlled trial for the clinical therapeutic effects of Zhezhihikang in the elderly with hyperlipidemia. Zhonghua Neike Za Zhi 1998, 37(6):401-2.

27. Xiao M, Ye P: Clinical observation of Zhezhihikang for treatment of hyperlipidemia. Shandong Tiezhi 2001, 14(2):244-5.

28. Huang GZ, Yang S, Wu ZG: Observation on therapeutic effect of Zhibiutuo for treatment of hyperlipidemia. Dier Junyì Daxue Xuebao 1998, 19(1):94-5.

29. Peng DY: Observation on the effect of Zhibiutuo in treating hyperlipidemia. Zhejiang Yiyue Ling Stage Za Zhi 2002, 15(4):203-1.

30. Xu JM, Chen S, Hu WY, Cai NS, Xu Q, Wu ZG, Sun X: Zhibiutuo vs. placebo treatment of hyperlipidemia a double blind randomized and multicenter study. Zhongguo Xinjiao Yuan Liuchuang Za Zhi 1997, 16(1):47-51.

31. Chen FJ, Ruan Q, Qi HW, Yuan PY: Clinical observation of Zhezhihikang in treating middle and old age hyperlipidemia. Shanghai Yafangyao Za Zhi 2003, 15(5):222-3.

32. Chen LL, Liu J: Effects of Zhezhihikang on hypercholesterolemia. Fujian Daxue Za Zhi 2006, 34(2):1-2.

33. Li QL, Zhang YF: Clinical observation on effect of Taizhihikang capsule in treating 150 patients with hyperlipidemia. Zhongguo Zhezhihikang Za Zhi 2003, 23(5):335-7.

34. Lu QP, Huo SQ, Shen YC, Gong LS: Comparison of the effects of Zhezhihikang with simvastatin on lipid profile modification in patients with hyperlipidemia. Zhonghua Neike Za Zhi 1998, 37(6):371-3.

35. Quan SL, Wang WY, Xu XW, Chen J: Controlled observation on therapeutic effects of Zhezhihikang and simvastatin for treatment of hypercholesterolemia. Zhonghua Shiyong Za Zhi 2003, 3(5):427.

36. Zeng TK: Observation of the therapeutic effects of Zhezhihikang for treatment of 77 elderly with hyperlipidemia. Shoudou Yaoyao Za Zhi 1998, 6(11):49.

37. Zeng G, Zhang KX, Xu Z, Guang XF: Comparison of lipid-lowering effects of Zhezhihikang and Simvastatin for hyperlipidemia. Shoudou Yaoyao Za Zhi 1998, 5(6):35-6.

38. Zhao XH, Jiang XM, Ao LJ: Therapeutic observations of Zhezhihikang for treatment of hyperlipidemia. Yunnan Yaoyao Za Zhi 1998, 19(1):26.

39. Zheng Y, Luo XZ, Wang SL, Yang YJ: Clinical controlled study on the therapeutic effects of Zhezhihikang and Simvastatin. Zhongguo Yaoyao Za Zhi 2001, 36(10):715.

40. Zhu QF, Jiang L, Wang Y: Effects of Zhezhihikang and simvastatin on apolipoprotein B and A1 in patients with hyperlipidemia. Guangming Zhongyi Za Zhi 2003, 18(5):24-5.

41. Chen L, Qin YW, Guo RB: Clinical efficacy of capsule Zhezhihikang in treatment of hypercholesterolemia. Yaoyao Za Zhi 2003, 19(1):29.

42. Jin W, Yang H, Zhang C, Zhang CQ, Yu YH: Therapeutic observations of Zhezhihikang for treatment of primary hyperlipidemia. Zhongguo Zhongyi Jiehe Za Zhi 1997, 17(7):434-5.

43. Li JZ: Effects of Zhezhihikang on endothelial function in aged patients with hyperlipidemia. Zhongguo Yaoyao Za Zhi 2004, 24(5):95-7.

44. Li YS, Lei HZ, Zhu MJ: Clinical observations of 41 cases of elderly with hyperlipidemia treated with Zhezhihikang. Zhongguo Quanke Za Zhi 2003, 6(2):163.

45. Wang DG, Li D, Nie YZ: Application of cost-effectiveness analysis in Zhezhihikang and Simvastatin for the treatment hypercholesterolemia. Zhongguo Yaoyao Za Zhi 2003, 12(9):53-5.

46. Xu CB, Hu DY, Kang LP, Tian YW, Gao MM, Xu ZM, Jin SY, Ma FY, Ma M, Shi XY, Zhang BH, Long NZ, Li L, Xue L, Zhang JH, Chen XL, Dai CX: Comparative study of relatively long-term therapy for dyslipidemia with regular-dose Xuezhikang or pravastatin in Chinese patients. Zhongguo Yaoyao Za Zhi 2000, 9(4):218-22.

47. Yu CY, Zhang G, Yang H, Jin W: Observations of therapeutic effects of Zhezhihikang for treatment of primary hyperlipidemia. Heilongjiang Yaoyao Za Zhi 2001, 17(2):151-2.

48. Li BH, Zhang CJ, Zhang WG, Xu M, Ren P: Clinical observations of Ruanmaijianzhi in capsule in the treatment of dyslipidemia. Hebei Zhongyi Za Zhi 2004, 26(9):657-9.

49. Xu SG: Analysis of therapeutic effect of Zhezhihikang for treatment of primary hypercholesterolemia. Henan Yaoyao Za Zhi 2002, 10(13):6-7.

50. Zheng FS, Long XD, Liu HM, Liu YL, Bao YZ, Yu M: Comparison of lovastatin and Zhezhihikang in lipid modification for primary hyperlipidemia. Yunan Yaoyao Za Zhi 2000, 21(5):442-3.

51. Shen MY: Comparison of the therapeutic effects of Zhezhihikang and atorvastatin for treatment of hyperlipidemia. Zhonghua Shiyong Yaoyao Za Zhi 2002, 3(4):439-40.

52. Wang AH, Zhang GD: Comparison of the therapeutic effects of Zhezhihikang and Lescol for treatment of hyperlipidemia. Zhongguo Zhezhihikang Za Zhi 2002, 17(3):2-8.

53. Chen ZM: Comparison of the therapeutic effects of simvastatin and Zhibiutuo for treatment of hyperlipidemia. Guangxi Yika Za Zhi 2001, 18(4):343.

54. Guo WC, Feng WJ: Clinical observations of statin alone or combined with unsaturated fatty acids for the treatment of combined hyperlipidemia in elderly people. Beijing Yaoyao Za Zhi 2003, 25(1):24-7.

55. Guo XM, Tu L, Mi S: Comparison of the therapeutic effects of Zhibiutuo and simvastatin for regulating dyslipidemia. Zhongguo Yaoyao Yu Linchuang Za Zhi 1999, 24-7.

56. Huang YL, Zhou JG, Zhang HF, Shi YX, Wang MS: Comparison of the therapeutic effects of simvastatin and Zhibiutuo for the elderly with hyperlipidemia. Yaoyao Yaoyao Za Zhi 2003, 3(1):24-7.

57. Yang WJ, Fu XJ: Comparison of the therapeutic effects of Zhibiutuo and simvastatin for treatment of hyperlipidemia. Zhongguo Xianyi Yaoyao Yu Jishu 2003, 2(2):2-4.

58. Zhang GR: Comparison of Zhibiutuo and simvastatin for their effects on hyperlipidemia. Guangxi Yaoyao Za Zhi 2002, 24(5):713-4.

59. Zhang QL: Comparative interventional therapies of dyslipidemia by simvastatin and Zhibiutuo with 60 cases. Guoji Yaoyao Za Zhi 2004, 10(10):29-30.

60. Zheng CQ, Wang P: Zhibiutuo vs. simvastatin in treatment of hyperlipidemia. Zhongguo Yaoyao Za Zhi 2001, 4(6):447-8.
64. Wang SX: Comparison of the therapeutic effects of Xuezhikang and lovastatin. Xiandai Zhongyi Jiye Zazhi 2004, 18(4):2707.

65. Li DX, Li YF, Lu HY: Comparison of the effects of Xuezhikang with isonitrol hexanicotinate on lipid profile modification. Henan Zhonggu Yiyueyuan Xuebao 2000, 12(1):17-8.

66. Li YM, Sun RX: Therapeutic observations on Xuezhikang for treatment of hyperlipidemia. Zhongguo Shiyang Xianguan Yehang Zazhi 2004, 11(8):25-6.

67. Liu L, Li JP, Shen PN: Clinical observations of Xuezhikang for treatment of mixed type of hyperlipidemia. Zhonghua Shiyang Xueyue 2000, 16(12):1047-8.

68. QF, Huang Y, Deng J: Effects of Xuezhikang vs. Isonitrol nicotinate in treating hyperlipidemia. Jiangxi Yiyueyuan Xuebao 2002, 42(4):24-5.

69. Yang SS: Xuezhikang for treatment of 76 patients with hyperlipidemia. Zhongshengyao 2002, 24(10):815-6.

70. Zhou ZL, Liu CH, Cai MX, Deng JX, Lu LF: Xuezhikang for treatment of hyperlipidemia. Hebei Yiyue 1999, 5(3):60-1.

71. Li FL, Zeng WH: Comparison of Zhibituo and Isonitrol nicotinate for treatment of hyperlipidemia. Nongken Yixue 2002, 24(3):198-9.

72. Ma L, Gao Y, Li BZ, Ma XH, Li GR, Li JP, Mai WY, Zeng Y: Observations on the therapeutic effects of Zhibituo for treatment of 50 patients with hyperlipidemia. Shandong Yiyue 2002, 42(6):45-6.

73. Wang MJ, Wang RZ: Zhibituo for treatment of 100 cases of hyperlipidemia. Zhongguo Xinyao Yu Linchuang Zazhi 1997, 16(1):9-10.

74. Yan HY, Guo JH, Jia ST: Observations of the therapeutic effects of Zhibituo for treatment of hyperlipidemia. Hebei Yiyueyuan Xuebao 2000, 15(3):126.

75. Qiu JP, Wang ZJ, Xu XP, Ma SY, Kuan RJ: Observations of Zhibituo on the therapeutic effects in treatment of 60 patients with hyperlipidemia. Shandong Yiyue 2002, 42(4):2708-9.

76. Yu HY, Li TH: Observations on the therapeutic effects of Zhibituo for treatment of hyperlipidemia. Xinxuegou Kangfu Yixue Zazhi 1999, 8(1):30-1.

77. Chen HY: Observations on the therapeutic effects of Zhibituo for treatment of hyperlipidemia in the elderly. Guizhou Yiyue 1998, 23(4):307-8.

78. Chen JF, Yang ZZ, Li PT: Comparison of Zhibituo and Duoxikang for treatment of hyperlipidemia. Zhongguo Xinyao Yu Linchuang Zazhi 1997, 16(1):15-17.

79. Fu G, Liu WJ, Wang GT: Comparison of Zhibituo and fish oil capsules for treatment of hyperlipidemia. Heilongiang Yiyue 2000, 23(5):93-4.

80. Jin WQ, Li CW, Xu M, Gao YX, Xu XW: Comparison of Zhibituo and Duoxikang in treating 108 patients with hyperlipidemia. Zhongguo Xinyao Yu Linchuang Zazhi 1997, 16(1):61-2.

81. Li Y, Min YB, Fan XJ: Comparison of the therapeutic effects of Zhibituo and fish oil capsules for treatment of hyperlipidemia. Guangdong Yiyue Zazhi 2000, 10(1):43-5.

82. Wang LB, Qiao JJ, Li YM: Clinical evaluation of Zhibituo and concentrated fish oil capsules for treatment of hyperlipidemia. Jiamusi Yyxueyuan Xuebao 1998, 21(1):62-3.

83. Wang Q, Xue HQ: Observations on the therapeutic effects of Zhibituo for treatment of hyperlipidemia. Zhongguo Jiceng Yiyao 1999, 6(3):129.

84. Gu ZY, Lu ZF, Zhu HQ: Observations on the therapeutic effects of Zhibituo for treatment of 158 patients with hyperlipidemia. Nantong Yyxueyuan Xuebao 1998, 18(3):374-5.

85. Chen ZL: Controlled study of Diazo Shiyang and alginic sodium dieter for lipid lowering effect. Henan Shiyang Shengjingbing Zazhi 1997, 20(1):320-1.

86. Chen L, Qin YY, Zheng X: Effects of lipid modification of Diazo Shiyang capsules. Zhongguo Shiyang Yijie Zazhi 2003, 23(5):389.

87. Guo XL, Li Y, Yin QN: Xuezhikang for treatment of 30 cases of hyperlipidemia. Nongken Yiyue 1999, 21(7):418.

88. Lu WX, Wang JX, Zhu JG, Xu DS, Yang MJ, Wang HW, Wang RZ, Zheng R: Zhibituo capsules in treatment of hyperlipidemia: a multi-centre clinical trial. Zhongguo Xinyao Yu Linchuang Zazhi 1999, 18(6):3657-7.

89. Lu YS, Gu JS, Zhou WG: Comparison of the therapeutic effects of Zhibituo and Zhibituo in treatment of adults with hyperlipidemia. Zhongguo Shiyang Yijie Zazhi 1998, 18(8):467.

90. Sun FF, Ding XF, Wang M: Comparison of lipid-lowering effects of Xuezhikang and Zhibituo. Jiceng Yixue Zazhi 2004, 8(2):121-2.

91. Zhao CL, Yao ZQ, He SM: Comparison of the lipid modification effects of Xuezhikang and Zhibituo for hypercholesterolemia. Guangdong Yiyue Zazhi 2000, 21(5):430-1.

92. Vickers A, Goyal N, Harland R, Rees R: Do certain countries produce only positive results? A systematic review of controlled trials. Control Clin Trials 1998, 19(2):159-66.

93. Graham DJ, Staffa J, Shatin D, Andrade SE, Schech SD, La Grenade L, Gurwitz JH, Chan KA, Goodman MJ, Platt R: Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 2004, 292(21):2585-90.