Hydrolytic Amino Acids Employed as a Novel Organic Nitrogen Source for the Preparation of PGPF-Containing Bio-Organic Fertilizer for Plant Growth Promotion and Characterization of Substance Transformation during BOF Production

Fengge Zhang¹,²*, Xiaohui Meng¹,², Chenglong Feng¹, Wei Ran¹,³, Guanghui Yu¹,³, Yingjun Zhang², Qirong Shen¹,³*

¹ National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China, ² Grassland & Environmental Engineering Lab, Nanjing Agricultural University, Nanjing, 210095, China, ³ Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China

☯ These authors contributed equally to this work.

* shenqirong@njau.edu.cn

Abstract

Opportunity costs seriously limit the large-scale production of bio-organic fertilizers (BOFs) both in China and internationally. This study addresses the utilization of amino acids resulting from the acidic hydrolysis of pig corpses as organic nitrogen sources to increase the density of Trichodermaharzianum T-E5 (a typical plant growth-promoting fungi, PGPF). This results in a novel, economical, highly efficient and environmentally friendly BOF product. Fluorescence excitation-emission matrix (EEM) spectroscopy combined with fluorescence regional integration (FRI) was employed to monitor compost maturity levels, while pot experiments were utilized to test the effects of this novel BOF on plant growth. An optimization experiment, based on response surface methodologies (RSMs), showed that a maximum T-E5 population (3.72 × 10⁸ ITS copies g⁻¹) was obtained from a mixture of 65.17% cattle manure compost (W/W), 19.33% maggot manure (W/W), 15.50% (V/W) hydrolytic amino acid solution and 4.69% (V/W) inoculum at 28.7°C after a 14 day secondary solid fermentation. Spectroscopy analysis revealed that the compost transformation process involved the degradation of protein-like substances and the formation of fulvic-like and humic-like substances. FRI parameters (P_I, n, P_II, n, P_III, n and P_V, n) were used to characterize the degree of compost maturity. The BOF resulted in significantly higher increased chlorophyll content, shoot length, and shoot and root dry weights of three vegetables (cucumber, tomato and pepper) by 9.9%~22.4%, 22.9%~58.5%, 31.0%~84.9%, and 24.2%~34.1%, respectively. In summary, this study presents an operational means of increasing PGPF T-E5 populations in BOF to promote plant growth with a concomitant reduction in...
production cost. In addition, a BOF compost maturity assessment using fluorescence EEM spectroscopy and FRI ensured its safe field application.

Introduction

Trichoderma species exhibit extremely high levels of ecological adaptability through their symbiotic colonization of plants and saprophytic existence in all soil types. Their capacity to improve plant growth and promote health in agricultural systems has been well documented. Recognized as plant growth-promoting fungi (PGPF) [1], *Trichoderma* form mutualistic relationships with many crops [2, 3] and have been widely implemented as biocontrol agents for protection against numerous soil-borne plant diseases [4–6]. However, successful biocontrol requires the formulation of carriers that ensure *Trichoderma* survival and maintenance of a significant population in soil.

Several inexpensive agricultural wastes (e.g. animal manure and agricultural industry by-products [7–9]) have been recognized as feasible organic carriers of many bio-agents. Manure addition to soil is known to improve soil fertility and positively influence crop quality and yields [10]. Bio-organic fertilizers (BOFs) that contain *Trichoderma* spp. and animal manure have been shown to promote plant growth and control Fusarium wilt in cucumber plants [5, 11, 12, 13]. In previous studies and through commercial BOF production, defatted rapeseed meal has been used as an organic nitrogen source during secondary co-solid-fermentation with manure compost for BOF production [12, 14]. While defatted rapeseed meal is used as animal feed, marginal costs for BOF production exceed marginal revenues. This opportunity cost negatively impacts the large-scale production of BOFs both in China and internationally. Therefore, there is need to develop alternative waste organic nitrogen sources to both replace defatted rapeseed meal in order to reduce BOF production costs and to identify an optimum secondary co-solid-fermentation process to ensure a maximum PGPF (*Trichoderma* spp.) population in BOFs.

Currently, animal farms in China are growing at a rapid pace with average mortality rates ranging between 5% and 10%. Deceased animals are typically buried or are burned, resulting in air pollution and the waste of numerous biological resources. To address this, we have developed a method to produce amino acids by hydrolyzing dead animals in H$_2$SO$_4$ solution (3 mol/L) at 100–105°C and 1.5–1.8 atmospheric pressure (China patent: ZL201410042218.3). The resulting amino acids are used as liquid fertilizer, as BOF additives, and have been used by several Chinese companies for the production of amino acid fertilizers.

Immature BOFs have been shown to result in negative effects on both plant growth and soil properties [15]. Therefore, maturity assessments of BOFs are necessary to guarantee effective agricultural application. Fluorescence excitation-emission matrix (EEM) spectroscopy, an efficient, inexpensive and highly sensitive technique, can be used to evaluate compost maturity levels, including the identification of protein-like, fulvic acid-like and humic acid-like substances [16]. Provenzano et al. [17] and Henderson et al. [18] used fluorescence spectroscopy as a tool to assess chemical transformations that occur during composting. However, fluorescence EEM analyses mainly depend on the visual determinations of peaks or on peak intensity ratios [19, 20], which are limited by the inherent sample heterogeneity. As a quantitative technique, fluorescence regional integration (FRI) addresses this issue and has been proven suitable for analyzing EEM spectra [21, 22].

In order to address BOF production costs, we made a first attempt to replace defatted rapeseed meal with amino acids obtained through the hydrolysis of pig corpses. The strain
Trichoderma harzianum T-E5, a previously reported PGPF [3, 5], was utilized in the secondary solid fermentation of cattle manure compost, maggot manure and hydrolytic amino acid solution to produce a novel BOF. In addition, we aimed to identify optimized ratios of different waste proteins and matured composts to yield maximum T-E5 population levels in BOF based on RSM. Compost substance transformation was monitored using EEM and FRI to identify relationships between raw material changes and T. harzianum T-E5 growth. Lastly, we implemented a greenhouse pot experiment to determine whether the novel BOF had significant growth promotion of three different vegetable crops (cucumber, tomato and pepper).

Materials and Methods

Ethics statement

Our study was carried out on the field experimental station (31°20' N, 119°40' E) of Jiangsu Key Lab for Solid Organic Waste Utilization, Yixing, Jiangsu Province, with property rights in China (2012–2028). No specific permits were required for the described field studies and the locations were not protected. The study field did not involve endangered or protected species.

Fungus and conidia suspension preparation

T. harzianum T-E5 (CCTCC No.AF2012011, China Center for Type Culture Collection) was used throughout the secondary solid fermentation experiment. The strain was cultured on potato dextrose agar (PDA) medium at 28°C in the dark and was stored at 4°C. T. harzia-
num T-E5 conidia suspension was prepared as described in Zhang et al. [3], with the final concentration of 2.9 × 10^8 colony forming units (CFU) mL^{-1}, based on hemocytometer counts.

Raw materials

Cattle manure compost was supplied by Lianye Co., Ltd., Jiangyin City, Jiangsu Province, China, and used as the basic substrate of the secondary solid fermentation process. Maggot manure was also supplied by Lianye Co., Ltd., and rice straw was collected from a local farm. The three materials used for secondary solid fermentation were pretreated following Zhang et al. [5]. Properties of the pretreated cattle manure compost, maggot manure and rice straw samples used are shown in S1 Table. Amino acids were prepared via the acidic hydrolysis of pig corpses as follows: 3mol/L H_2SO_4 and pork (3:2, v/m) was mixed together in a flask (1 L); the flask containing the mixture was then heated at 100–105°C for 3 h and stirred every 30 min; the prepared hydrolytic amino acids were then stored at 4°C for later use. A chromatogram of the hydrolytic amino acids is shown in S1 Fig.

Description of the secondary solid fermentation (composting) process

Various forms of agricultural waste (e.g. maggot manure, hydrolytic amino acids, and rice straw) and T. harzianum T-E5 conidial suspensions of various ratios were thoroughly mixed with cattle manure compost. The mixtures (3 kg) were placed into a 30 cm x 20 cm x 15 cm plastic sterile container for the second phase of solid fermentation under aerobic conditions in an open system at 40–45% and under varying ambient temperatures for 14 d. The composting piles were manually agitated daily to guarantee inoculated T. harzianum T-E5 growth at the prescribed temperature. Each composting treatment contained three replicates. Samples were collected on the last day of composting, and a five-point sampling method was employed. The collected samples were immediately stored at -20°C, and T. harzianum populations in the collected samples were quantified using the Real-time Taq-Man PCR technique described by Zhang et al. [5].
Experimental design for the optimization of T. harzianum T-E5 populations during the composting process

Plackett-Burman design (PBD). Plackett-Burman design (PBD) was employed to pre-screen significant factors for the T. harzianum T-E5 population from the six main variables provided at different levels: Maggot manure content (10–25%, m/m), hydrolytic amino acid content (10–25%, m/m), rice straw content (1–5%, m/m), T-E5 inoculum content (2–10%, v/v) and daily agitation frequencies (1–3), designated as X1, X2, X3, X4, X5 and X6, respectively. Significant effects of variables on the T-E5 population were determined at 95% confidence level (p<0.05) based on regression analyses [23]. The study experimental design and statistical data analysis were implemented using Design Expert Version 8.0.6 (State-Ease, Inc., Minneapolis, MN, USA).

Box-Behnken design (BBD). Four variables, consisting of maggot manure, hydrolytic amino acid, composting temperature and T. harzianum T-E5 inoculum content levels, were selected as significant factors based on PBD and were designated as new X1, X2, X3 and X4 variables, respectively. The BBD, based on response surface methodologies (RSM), was used to optimize T-E5 populations based on the four significant variables selected. Predicted responses (Y) in terms of the significant variables (X1, X2, X3 and X4) were explained using the following second-degree polynomial equation: Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β11X1 2 + β22X2 2 + β33X3 2 + β44X4 2 + β12X1X2 + β13X1X3 + β14X1X4 + β23X2X3 + β24X2X4 + β34X3X4, where β0 is the intercept term; β1, β2, β3, β4 are the linear coefficients; β11, β22, β33, β44 are the quadratic coefficients; and where β12, β13, β14, β23, β24, β34 are the cross-coefficients. Three-dimensional (3D) response surface plots were developed to visualize independent variable interactions with the T-E5 population, and Design Expert Version 8.0.6 (State-Ease, Inc., Minneapolis, MN, USA) was employed for experimental design, regression analysis and graphical presentation purposes.

Expanded composting under the optimized conditions

Compost sample collection. The expanded composting process (20 kg) under optimized conditions was conducted in triplicate and was prepared based on Section “Description of the secondary solid fermentation (composting) process”. Compost samples were collected daily at 4:00 PM after thorough manual stirring, and each collected sample was divided into three samples. One sample was air-dried at room temperature, and the other two were stored at 4°C and -20°C.

Physical and chemical analysis. The temperature of each pile at a depth of 20 cm was recorded daily at 4:00 PM over the course of the composting process. The fresh compost samples were oven dried at 105°C for ~24 h to a constant weight for moisture content determination [24]. The aqueous compost extracts [14] were obtained by mixing the fresh compost samples with deionized water (1:10, w/v) followed by horizontal shaking (160 rpm/min) for 2 h at room temperature. Extracts were then centrifuged at 10,000 rpm and filtered through 0.45 um polytetrafluoroethylene (PTFE) filters. The prepared water extracts were analyzed for pH and electrical conductivity (EC) using a pH electrode (PB-10, Sartorius, Germany) and Conductivity Indicator (LF91, Wiss Techn Werkstatten, Germany), respectively. Total carbon and nitrogen content levels were determined using an auto elemental analyzer (Vario EL III, Elementar, Germany), and NH4+-N and NO3--N concentrations were measured using an auto analyzer (AA3, Bran and Luebbe, Germany). All physicochemical analyses of the compost samples were carried out in triplicate.

Fluorescence spectroscopy determination and analysis. Fluorescence spectroscopy and sample analyses were conducted following Yu et al. [16]. Water-extractable organic matter
(WEOM) was prepared first by placing a mixture composed of the compost sample and deionized water (1:10, w/v) on a horizontal shaker (150 rpm/min) at room temperature for 24 h. The turbid liquid was then filtered through a 0.45 μm PTFE filter following centrifugation at 10,000 rpm for 10 min. Prior to the determination of fluorescence, the WEOM filtration was diluted to a concentration of dissolved organic carbon (DOC) <10 mg/L as determined by a TOC/TN analyzer (multi N/C 3000, Analytik Jena AG, Germany). Fluorescence EEM spectroscopy measurements were performed using a fluorescence spectrophotometer (Cary Eclipse; Varian, Inc., Palo Alto, CA) in scan mode at room temperature. The conditions for obtaining fluorescence EEM spectra were as follows: a 150 W xenon excitation source; excitation wavelengths (λ_ex) of 200 to 500 nm at 10 nm increments; emission wavelengths (λ_em) of 250 to 600 nm at 2 nm increments; excitation and emission slit bandwidths of 5 nm and a scan rate of 1200 nm min⁻¹. The fluorescence spectrum of deionized water sent through a 0.45 μm milli-pore filter under the same conditions was used as the control, and all EEM spectra results were deducted from the control. A quinine sulfate (QS) solution was used for fluorescence intensity calibration, where 0.01 mg L⁻¹ quinine in 1 mol L⁻¹ H₂SO₄ at λ_ex/λ_em = 350/450 nm was defined as the Quinine sulfate unit (QSU) fluorescence intensity level [25]. Fluorescence EEM spectra were divided into five excitation-emission regions [26] and were then quantitatively analyzed using FRI techniques.

Pot experiment

Plant materials, soils and fertilizers. Cucumber (Cucumis sativus L cv. Jinchun No. 4), tomato (Lycopersicon esculentum L cv. BGQF), and pepper (Capsicum annuum L cv. Sujiao No. 5) seedlings were prepared following Zhang et al. [12] and Lugtenberg et al. [27]. A loamy soil was collected from a local field with no historical cucumber, tomato or pepper plants cultivation. The soil, contained 20.6 g kg⁻¹ of organic matter, 1.8 g kg⁻¹ of total N, 20.6 mg kg⁻¹ of available P, 124.4 mg kg⁻¹ of available K, 20% water content and a pH of 6.6. The cattle manure compost (CK) and organic fertilizer inoculated without T-E5 (OF) and with T-E5 (BOF) described in Section “Expanded composting under the optimized conditions” were used so that we could evaluate their effects on plant growth.

Pot experiment design. The pot experiment was performed in a greenhouse (average air temperature 30°C, relative air humidity 60%) located in the Jiangsu Key Lab for Solid Organic Waste Utilization of Xing City in Jiangsu Province, China from May to June of 2014. The following treatments were utilized. Control, consisting of pot soil supplemented with 0.5% (w/w DW) CK and planted with cucumber (CKc), tomato (CKt) and pepper (CKp) plants, treatment 1, pot soil supplemented with 0.5% (w/w DW) OF and planted with cucumber (OFc), tomato (OFt) and pepper (OFp) plants, treatment 2, pot soil supplemented with 0.5% (w/w DW) BOF and planted with cucumber (BOFc), tomato (BOFt) and pepper (BOFp) plants. A total of 3 kg soil was placed into each plastic pot (20 × 31 cm in diameter and height). Three blocks were randomly laid out, with each treatment containing 15 replications (pots). The cucumber, tomato and pepper plants were harvested after 30 days of growth, and chlorophyll content, shoot length and plant dry weight levels were determined. The pot experiment was repeated once from July to August, 2014.

Statistical analysis

For the composting experiment, quantification results of *Trichoderma* were analyzed using 7500 system SDS Software version 1.4 (Applied Biosystems). Sigmaplot 12.0 was employed to develop a contour map of fluorescence spectra. The Pearson correlation coefficient (R) was used to determine the linear correlation between the two parameters. As similar trends were
observed for the two pot experiments, only data from May to June of 2014 are presented in this paper. Data collected included the means of the three replicates, and the statistical analyses were conducted using SPSS 13.0 (SPSS Inc., Chicago, IL, USA). Data were subjected to Duncan’s analysis of variance (ANOVA), and mean values of the different treatments were determined using Duncan’s multiple range tests at a p<0.05 level.

Results and Discussion

Optimization of T-E5 populations through Plackett-Burman and Box-Behnken design experiments

The experimental design matrix and results of PBD procedure are listed in Table 1. T-E5 populations, which ranged from 10^4 to 10^6 ITS copies g^{-1}, varied greatly across the 12 performed trials. The statistical analysis employed for the selection of significant variables is described in Table 2. The maggot manure (X_1, p < 0.0001), hydrolytic amino acid (X_2, p < 0.0001), composting temperature (X_4, p < 0.0001) and inoculum content (X_5, p = 0.0416) were identified as significant factors, whereas rice straw (X_3, p = 0.012) and daily agitation frequency (X_6, p = 0.30) did not have a significant effect on the T-E5 population. Fisher’s test F (1203.99) and p(<0.0001) values showed that the overall model was statistically significant (>99.9%) and offered excellent response result predictions. The coefficient of determination (R^2, 0.9992 > 0.8) demonstrated good fit with the response model [28], with 99.92% of the T-E5 population sample variation explained by this model. The adjusted determination coefficient value (Adj R^2 = 0.9985) also confirms that the actual response (T-E5 population) agreed well with the predicted response.

The Box-Behnken design (BBD) approach was further employed to examine interactive effects of the four selected significant factors (maggot manure X_1, hydrolytic amino acid X_2, composting temperature X_3 and inoculum content X_5 on T-E5 populations based on the PBD
results. A total of 29 trials conducted with four independent variables included five center points at three levels (-1, 0, +1), and response values (from 10^5 to 10^8 ITS copies g\(^{-1}\)) are shown in Table 3. A second-order polynomial equation was derived by conducting multiple regression analyses on the experimental data in order to explain the relationship between the independent variables and T-E5 populations:

\[Y = 8.52 + 0.15X_1 + 0.06X_2 - 0.48X_3 + (4.167 \times 10^{-3})X_4 - 0.33X_1^2 - 0.32X_2^2 - 1.98X_3^2 - 0.011X_4^2 - (2.5 \times 10^{-3})X_1X_2 - (2.5 \times 10^{-3})X_1X_3 - (2.5 \times 10^{-3})X_1X_4 - 0.773X_2X_1 + (1.0 \times 10^{-2})X_2X_4 + 0.03X_3X_4, \]

where Y denotes the predicted T-E5 population, and \(X_1, X_2, X_3, X_4\) are the coded values for maggot manure, hydrolytic amino acid, composting temperature and inoculum content levels, respectively.

In this equation, the \(X_1, X_2, X_3X_4\) and \(X_3X_4\) coefficients are positive, denoting that they had a synergistic effect on the T-E5 population. In contrast, the negative terms had an inverse effect on the T-E5 population [29]. Based on the p-value of this model (Table 4), we can conclude that the \(X_1, X_3, X_1^2, X_2^2, X_3^2\) constants had significant effects on the response results (\(P < 0.05\)) and therefore that considerable effects on the T-E5 population would emerge if minor variations between these factors were present. However, \(X_2, X_4, X_1^2, X_2X_1, X_1X_3, X_1X_4, X_2X_3, X_2X_4\) and \(X_3X_4\) were found to be insignificant (\(P > 0.05\)). The high significance of this model is reflected by both the F (82.19) and p value (\(p < 0.0001\)) (Table 4). The high R\(^2\) value (0.9880) illustrated a strong correlation between the actual and predicted results and the Adj R\(^2\) (0.9760) value confirmed the high significance of this model. The coefficient of variation (C.V.) was 2.15\% (\(< 10\%\)), implying that the designed experiment was precise and reliable. The lack of fit measure was found to be non-significant for the model (\(p = 0.4169\)), and thus the model can be deemed suitable for the prediction of variables in this case. These analytical results fully demonstrate that the response equation serves as an appropriate model for the optimization of T-E5 populations.

Interactions between the variables and responses can be depicted visually by developing three-dimensional (3D) response surface plots based on the predicted model using Design-Expert software. These 3D response surface plots proved integral for locating optimal experimental conditions. Each plot (Fig 1) in our experiment was generated to illustrate the interactive effects of each pair of variables on the T-E5 population while maintaining the other two factors at moderate levels. Fig 2A shows interactions between the maggot manure and hydrolytic amino acid samples when composting temperatures and inoculum content levels were

Table 2. Analysis of variance (ANOVA) for the response surface quadratic model of the T-E5 population based on the Plackett-Burman design (PBD).

Source	Sum of squares (SS)	Degrees of freedom (DF)	Mean square (MS)	F Values	P-value	Prob > F
Model	5.07	6	0.84	1203.99	\(<0.0001\)**	
X₁	0.77	1	0.77	1090.37	\(<0.0001\)**	
X₂	0.16	1	0.16	222.91	\(<0.0001\)**	
X₃	8.33E-006	1	8.33E-006	0.012	0.9175	
X₄	4.14	1	4.14	5902.91	\(<0.0001\)**	
X₅	5.20E-003	1	5.20E-003	7.42	0.0416*	
X₆	2.08E-004	1	2.08E-004	0.30	0.6092	
Residual	3.508E-003	5	7.017E-004			
Cor Total	5.07	11				

Note: C.V. % = 0.46; R\(^2\) = 0.99923; Adj R\(^2\) = 0.9985; Pred R\(^2\) = 0.9960; Adeq Precision ratio = 94.655. X₁, maggot manure (%); X₂, hydrolytic amino acid (%); X₃, rice straw (%); X₄, composting temperature (°C); X₅, inoculum content (%); X₆, daily agitation frequency.

*Correlation is significant at \(p < 0.05\)
**Correlation is highly significant at \(p < 0.001\).

doi:10.1371/journal.pone.0149447.t002
held at a value of "zero" (in our case). With an increase in maggot manure and hydrolytic amino acid levels to 17.5% and 15%, respectively, T-E5 populations increased to optimum levels (3.31 × 10^8 ITS copies g^{-1}). Thereafter, they declined despite an increase in maggot manure and hydrolytic amino acid concentrations. The analysis presented in Fig 2B-f is similar to that shown in Fig 2A. The model anticipated a maximum T-E5 population of 3.72 × 10^8 ITS copies g^{-1} with 65.17% cattle manure compost, 19.33% maggot manure, 15.50% hydrolytic amino acid solution and 4.69% inoculum content at 28.7°C after 14 d of composting.

Verification of the predicted optimal model

Expanded composting (20 kg) validation experiments conducted under the optimized conditions was performed in triplicate to verify the validity of the predicted results and developed

Table 3. Box-Behnken design (BBD) matrix of variables (coded and actual levels) for T-E5 population optimization.

Run order	Experimental factors	Actual level	Response							
	x1	x2	x3	x4	X1	X2	X3	X4	Actual	Predicted
1	-1	-1	0	0	10	10	30	6	7.89	7.65
2	-1	0	0	1	10	15	30	10	7.99	8.03
3	1	0	-1	0	25	15	20	6	6.90	6.89
4	0	-1	0	1	17.5	10	30	10	8.09	8.11
5	0	0	0	0	17.5	15	30	6	8.64	8.52
6	-1	1	0	0	10	20	30	6	7.94	7.88
7	0	0	0	0	17.5	15	30	6	8.29	8.52
8	0	1	0	1	17.5	20	30	10	8.15	8.25
9	1	0	1	0	25	15	40	6	5.89	5.84
10	0	0	1	-1	17.5	15	40	2	6.13	6.02
11	0	0	1	1	17.5	15	40	10	6.15	6.07
12	-1	0	-1	0	10	15	20	6	6.34	6.50
13	0	1	1	0	17.5	20	40	6	5.74	5.72
14	0	0	0	0	17.5	15	30	6	8.57	8.52
15	0	0	-1	1	17.5	15	20	10	7.11	6.98
16	0	-1	-1	0	17.5	10	20	6	6.42	6.57
17	1	0	0	1	25	15	30	10	8.27	8.33
18	0	-1	1	0	17.5	10	40	6	5.61	5.74
19	0	0	0	0	17.5	15	30	6	8.47	8.52
20	-1	0	0	-1	10	15	30	2	7.96	8.03
21	1	1	0	0	25	20	30	6	8.09	8.08
22	0	1	0	-1	17.5	20	30	2	8.14	8.24
23	-1	0	1	0	10	15	40	6	5.49	5.62
24	0	1	-1	0	17.5	20	20	6	6.84	6.83
25	1	-1	0	0	25	10	30	6	8.05	7.97
26	0	0	-1	-1	17.5	15	20	2	7.21	7.05
27	1	0	0	-1	25	15	30	2	8.25	8.34
28	0	0	0	0	17.5	15	30	6	8.62	8.52
29	0	-1	0	-1	17.5	10	30	2	8.12	8.14

Note: \(x_1\), maggot manure (%); \(x_2\), hydrolytic amino acid (%); \(x_3\), composting temperature (°C); \(x_4\), inoculum content (%).

doi:10.1371/journal.pone.0149447.t003
model. The actual maximum average value of the T-E5 population \(3.89 \times 10^8\) ITS copies g\(^{-1}\) was obtained and proved to be consistent with the predicted yield \(3.72 \times 10^8\) ITS copies g\(^{-1}\). This strong correlation between the actual and predicted values demonstrates that this response model effectively predicted T-E5 population sizes.

Physicochemical and biological parameter evolution during composting under the optimized conditions

The variations of different physicochemical properties and T-E5 population are shown in Fig 2. Temperature levels were recognized as an important parameter for characterizing compost maturity levels, and microbial activity levels were closely related to temperature changes that occurred during the composting process [30]. Temperature and T-E5 population variations at different composting stages are shown in Fig 2A. Specifically, temperatures increased from 29°C (ambient temperature) to 42°C over four days and were maintained at 42–47°C for another week. This was likely attributed to T-E5 microbial activity when labile organic substances (e.g. amino acids, soluble saccharides) were initially decomposed, followed by the slow decomposition of crop straw that maintained the temperature at 42–47°C. Temperatures then declined to less than 42°C after 10 d, suggesting compost nearing maturity. By day 13, temperatures dropped to ambient temperature levels, reflecting the consumption of available by T-E5. The T-E5 population increased rapidly until reaching its highest level by 6 d \(3.89 \times 10^8\) ITS copies g\(^{-1}\) and remained constant at this level \(\geq 3 \times 10^8\) ITS copies g\(^{-1}\) until the end of the

Table 4. Analysis of variance (ANOVA) for the response surface quadratic model of the T-E5 population based on the Box-Behnken design (BBD).

Source	Sum of squares (SS)	Degrees of freedom (DF)	Mean square (MS)	F Values	P-value Prob>F
Model	29.46	14	2.10	82.19	<0.0001**
X1	0.28	1	0.28	11.02	0.0051*
X2	0.043	1	0.043	1.69	0.2150
X3	2.81	1	2.81	109.87	<0.0001**
X4	2.083E-004	1	2.083E-004	8.137E-03	0.9294
X1X2	2.500E-005	1	2.500E-005	9.764E-04	0.9755
X1X3	6.400E-003	1	6.400E-003	0.25	0.6249
X1X4	2.500E-005	1	2.500E-005	9.764E-04	0.9755
X2X3	0.021	1	0.021	0.82	0.3802
X2X4	4.000E-004	1	4.000E-004	0.016	0.9023
X3X4	3.600E-003	1	3.600E-003	0.14	0.7133
X1\(^2\)	0.69	1	0.69	26.80	0.0001**
X2\(^2\)	0.68	1	0.68	26.39	0.0002**
X3\(^2\)	25.40	1	25.40	992.19	<0.0001**
X4\(^2\)	8.578E-004	1	8.578E-004	0.034	0.8574
Residual	0.36	14	0.026	1.34	0.4169
Lack of Fit	0.28	10	0.028	1.34	0.4169
Pure Error	0.082	4	0.021		
Cor Total	29.82	28			

Note: C.V. % = 2.15; R\(^2\) = 0.9880; Adj R\(^2\) = 0.9760; Pred R\(^2\) = 0.9423; Adeq Precision ratio = 25.215. X1, maggot manure (%); X2, hydrolytic amino acid (%); X3, composting temperature (°C); X4, inoculum content (%).

*Correlation is significant at p < 0.05

**Correlation is highly significant at p < 0.001.

doi:10.1371/journal.pone.0149447.t004
composting phase. These dynamic changes in the T-E5 population agree well with temperatures recorded prior to compost maturity achievement (10 d).

The C/N ratio is typically used as an intuitive parameter for evaluating compost maturity levels [31]. During the composting phase, some organic C translated into CO₂ and organic macromolecules, causing a continuous C decline. However, N content levels declined to a lesser degree (relative to C content), and thus the C/N ratio gradually declined as the composting process progressed (Fig 2B). In addition, NH₄⁺-N/NO₃⁻N ratios declined, in agreement with previous results [32] (Fig 2C). This result can be attributed to loss of N in the form of NH₃ in the presence of increased pH levels and compost nitrification.

The optimal range of pH during the composting stage was 5.5–8.0 [33], and compost pH levels increased with composting time. The addition of hydrolytic amino acids to the compost caused the initial compost pH (5.4) to rise rapidly after composting to 7.0 (Fig 2D), illustrating robust microbial activity levels during the composting process [20]. EC increased from 2.84 to 3.82 mS cm⁻¹ (Fig 2D), attributed to the accumulation of water-soluble salt and gradually declining moisture content levels during the composting process [34]. Santamaria and Ferrera [35] demonstrated that EC reflects levels of water-soluble salt in compost and influences
microbe growth and metabolism levels when EC > 8 mS cm⁻¹. Thus, EC levels in our study effectively prevented the emergence of compost phytotoxicity.

Fluorescence EEM spectra analysis for assessing compost maturity levels under optimized conditions

We employed fluorescence EEM spectroscopy to monitor compost maturity in order to provide direct evidence of raw material transformation during the composting process. Water-extractable organic matter (e.g. amino acids, proteins and pigments) can emit characteristic fluorescence spectra as a result of excitation from ultraviolet or visible light and occupy specific locations along EEM fluorescence contours. Fig 3 shows the contours of WEOM that were obtained from the composting process under optimized conditions: a clear protein-like peak referred to as Peak A (λₜₓ/λₑₓ = 220–230 nm/300–350 nm), two fulvic-like peaks (Peak B and Peak C, λₜₓ/λₑₓ = 230–250 nm/400–440 nm) and a humic-like peak (Peak D, λₜₓ/λₑₓ = 320–340 nm/400–440 nm) were found during the initial stages of composting (Fig 3A) [26, 36]. These fluorescence EEM peaks in compost have been previously reported [17, 37, 38]. As composting progressed, Peak A grew increasingly weaker in intensity until it disappeared on day 8, while the intensity dynamics of Peaks B, C and D grew increasingly stronger (Fig 3B–3F). After
the composting phase, the stability and maturity of the compost sample improved, and fulvic-like and humic-like substances became the main components of dissolved organic matter. These results are consistent with previous conclusions stating that composting was a process of the degradation of protein-like substances and the formation of fulvic-like and humic-like substances [37]. Furthermore, these results support the activity of the inoculated strain *T. harzianum* T-E5 (Fig 2A).

The FRI technique was additionally employed for a quantitative analysis of EEM fluorescence contours. Both $P_{I,n}$ and $P_{II,n}$ levels decreased considerably during the first 8 days, and then held at relatively stable levels of 3.0% and 23.0%, respectively (Fig 4). This suggested that simple aromatic proteins were the main decomposition substrates in the first 8 days. In contrast, $P_{III,n}$ and $P_{IV,n}$ levels gradually increased and reached plateau values of ~40% and ~24%, respectively, at the conclusion of the compost phase. Furthermore, $P_{III,n}$ increased faster than that of $P_{IV,n}$. As such, $P_{IV,n}/P_{III,n}$ levels declined throughout the composting process, suggesting that high molecular substances were transformed preferentially into fulvic acid-like materials, with smaller increases in humic-like substances. $P_{IV,n}$ levels increased over the first six days and then decreased slightly, suggesting that the continued accumulation of soluble microbial products had few decomposition effects when the compost matured (after 6 d). The $P_{IV,n}$ levels observed strongly supported the above results for EEM fluorescence contours and

Fig 3. Fluorescence EEM contours of WEOM from composts during composting process in the optimized condition. Peak A, peak B and peak C represent protein-like, fulvic-like and humic-like substances, respectively. (a) 0 d; (b) 3 d; (c) 6 d; (d) 8 d; (e) 11 d; (f) 14 d.

doi:10.1371/journal.pone.0149447.g003
support that composting involves protein-like substance degradation and that the formation of fulvic-like and humic-like substances occurs due to microbial activity.

A pearson correlation between the compost maturity indices and FRI parameters was conducted to investigate the potential of fluorescence EEM for evaluating compost maturity. PI, n levels were found to be significantly negatively correlated with EC (R = -0.942, p < 0.01) (Table 5). PII, n was found to be positively correlated with C/N (R = 0.940, p < 0.05) and NH₄⁺-N/NO₃⁻-N (R = 0.904, p < 0.05) and significantly negatively correlated with pH (R = -0.960, p < 0.01) and EC (R = -0.965, p < 0.01). In contrast to PII, n, PV, n was negatively correlated with C/N (R = -0.906, p < 0.05) and NH₄⁺-N/NO₃⁻-N (R = -0.882, p < 0.05) and significantly positively correlated with pH (R = 0.918, p < 0.01) and EC (R = 0.976, p < 0.01). As

![Fig 4. Dynamic changes of Pi, n in the five regions during composting process in the optimized condition.](https://doi.org/10.1371/journal.pone.0149447.g004)

Table 5. Pearson correlation between physicochemical and FRI parameters.

Parameters	PI, n	PII, n	PIII, n	PIV, n	PV, n	PV, n /P III, n
temperature	0.260	0.216	-0.158	0.686	0.130	0.483
C/N	0.727	0.904*	-0.802	0.291	-0.882*	0.580
NH₄⁺-N/NO₃⁻-N	0.716	0.940*	-0.803	0.234	-0.906*	0.552
pH	-0.789	-0.960**	0.893*	-0.431	0.918**	-0.720
EC	-0.942**	-0.965**	0.981**	-0.565	0.976**	-0.834*

Note

*Correlation is significant at the 0.05 level (two-tailed)

**Correlation is significant at the 0.01 level (two-tailed).
with for the $P_{V, n}$ results, positive correlations were found between $P_{III, n}$ and the two FRI parameters (pH, $R = 0.893$, $p < 0.05$; EC, $R = 0.981$, $p < 0.01$). No significant correlation was found between the FRI parameters and $P_{IV, n}$. The $P_{V, n}/P_{III, n}$ ratio was negatively correlated with EC ($R = -0.834$, $p < 0.05$). These results suggest that the evolution of FRI parameters (with the exception of $P_{IV, n}$) could also be employed to characterize compost material changes and maturity.

Efficacy promotion effects of produced novel \textit{T. harzianum} T-E5 enhanced BOF on cucumber, tomato and pepper plant growth in the pot experiment

Significant differences were found in cucumber, tomato and pepper plant growth on the harvest day (30 days after transplantation) between the control (CK) and treatment pots (OF and BOF) (Table 6). OFc (without inoculation of T-E5) exhibited significantly increased chlorophyll content, shoot lengths, and shoot and root dry weights of the cucumber plants by 12.8%, 9.6%, 18.6%, and 14.6%, respectively, as compared with the control (CKc). The addition of T-E5 enhanced organic fertilizer (BOFc) was found to enhance these responses, resulting in significant increases of 22.4%, 58.5%, 50.5%, and 34.1%, respectively.

Our previous report demonstrated that T-E5 encourages cucumber plant growth via strong plant colonization and through indole acetic acid production [3]. Thus, the results of our present study show that the BOFc treatment increased chlorophyll content levels, shoot lengths, and shoot and root dry weights by 8.5%, 37.9%, 26.9%, 17.0%, respectively, relative to the OFc condition results, and that this response can be attributed to the presence of large quantities of the PGPR strain (\textit{T. harzianum} T-E5) and biologically active metabolites. From the tomato and pepper plant pot experiments, similarly significant increasing tendencies as those found for the cucumber plants were found, demonstrating that T-E5 enhanced bio-organic fertilizer has the strongest plant growth promotion effect.

Conclusions

We used hydrolytic amino acids derived from pig corpses to reduce BOF production, and developed an operational means for increasing \textit{T. harzianum} T-E5 densities in BOF products.
through the use of various agricultural wastes. The resulting BOF can be used as a soil amend-
ment to substantially facilitate plant growth in agricultural practices. The fluorescence EEM
spectroscopy and FRI analysis results serve as a theoretical basis for developing systematic
compost maturity assessment methods to ensure the secure application of BOFs in the field.

Supporting Information

S1 Fig. The chromatogram of hydrolytic amino acids (100-fold diluted solution).
(DOCX)

S1 Table. The basic characteristics of three agro-industrial wastes.
(DOCX)

Acknowledgments

This work was financially supported by 973 project (2015CB150506), Innovative Research
Team Development Plan of the Ministry of Education of China (IRT1256), and the Priority
Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. The
authors are grateful to Prof. Christopher Ryan Penton at Arizona State University for his lan-
guage revision of this manuscript.

Author Contributions

Conceived and designed the experiments: WR FZ QS. Performed the experiments: FZ XM CF.
Analyzed the data: FZ XM WR. Contributed reagents/materials/analysis tools: WR QS. Wrote
the paper: FZ WR GY QS YZ.

References

1. Masunaka A, Hyakumachi M, Takenaka S. Plant growth-promoting fungus, Trichoderma koningi sup-
presses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus.
Microbes Environ 2011; 26:128–134. PMID: 21502738

2. Ahmed M, Upadhyay RS. Effect of soil amendment with Trichoderma harzianum, chemicals and wilt
pathogen on growth and yield of tomato. J Mycol Plant Pathol 2011; 41: 77–81.

3. Zhang FG, Yuan J, Yang XM, Cui YQ, Chen LH, Ran W, et al. Putative Trichoderma harzianum mutant
promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant
Soil 2013; 368:433–444.

4. De Souza JT, Bailey BA, Pomella AW, Erbe EF, Murphy CA, Bae H, et al. Colonization of cacao seed-
lings by Trichoderma stromaticum a mycoparasite of the witches’ broom pathogen, and its influence on
plant growth and resistance. Biol Control 2008; 46: 36–45.

5. Zhang FG, Zhu Z, Yang XM, Ran W, Shen QR. Trichoderma harzianum T-E5 significantly affects
cucumber root exudates and fungal community in the cucumber rhizosphere. Appl Soil Ecol 2013; 72:
41–48.

6. Zhang FG, Yang XM, Ran W, Shen QR. Fusarium oxy sporum induces the production of proteins and
volatile organic compounds by Trichodermarharzianum T-E5. FEMS Microbiol Lett 2014; 359: 116–123.
doi: 10.1111/1574-6968.12582 PMID: 25135494

7. Tan JY, Shao XH, Chen LH, Chen LN, Xu HL. Effect of formulations of Trichoderma harzianum SQR-
T037 on the induction of resistance against Fusarium wilt in cucumber. J Food Agric Environ 2012; 10:
1205–1209.

8. Fravel DR, Lewis JA, Chittams JL. Alginate Prill Formulations of Talaromyces-Flavus with Organic Car-
riers for Biocontrol of Verticillium-Dahliae. Phytopathology 1995; 85: 165–168.

9. Doni F, Isahak A, Zain CRCM, Ariffin SM, Mohamad WNW, Yusoff WMW. Formulation of Trichoderma
sp. SL2 inoculants using different carriers for soil treatment in rice seedling growth. Springerplus 2014;
3: 532. doi: 10.1186/2193-1801-3-532 PMID: 25279323

10. Benitez C, Bellido E, Gonzales GL, Medina M. Influence of pedalogical and climatic factors on nitrogen
mineralization in soils treated with pig slurry compost. Bioresour Technol 1998; 63: 147–151.
11. Chen LH, Yang XM, Raza W, Luo J, Zhang FG, Shen QR. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresour Technol 2011; 102: 3900–3910. doi: 10.1016/j.biortech.2010.11.126 PMID: 21190841

12. Zhang FG, Zhu Z, Wang BB, Wang P, Yu GH, Wu MJ, et al. Optimization of Trichoderma harzianum T-ES biomass and determining the degradation sequence of biopolymers by FTIR in solid-state fermentation. Ind Crop Prod 2013; 49: 619–627.

13. Huang XQ, Chen LH, Ran W, Shen QR, Yang XM. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biotechnol 2011; 91:741–755. doi: 10.1007/s00253-011-3259-6 PMID: 21484203

14. Huang Y, Li R, Liu HJ, Wang BB, Zhang CM, Shen QR. Novel resource utilization of refloated algal sludge to improve the quality of organic fertilizer. Environ Technol2014; 35: 1658–1667. PMID: 24956756

15. Said-Pullicino D, Erriquens FG, Gigliotti G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour Technol2007; 98: 1822–1831.

16. Yu GH, He PJ, Shao LM. Novel insights into sludge dewater ability by fluorescence excitation-emission matrix combined with parallel factor analysis. Water Res2010; 44: 797–806. doi: 10.1016/j.watres.2009.10.021 PMID: 19914675

17. Provenzano MR, de Oliveira SC, Santiago-Silva MR, Senesi N. Assessment of maturity degree of composts from domestic solid wastes by fluorescence and Fourier transform infrared spectroscopies. J Agric Food Chem2001; 49: 5874–5879. PMID: 11743777

18. Henderson RK, Baker A, Murphy KR, Hambly A, Stuetz RM, Khan SJ. Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Res2009; 43: 863–881. doi: 10.1016/j.watres.2008.11.027 PMID: 19061598

19. Antizar-Ladislao B, Lopez-Real J, Beck AJ. Investigation of organic matter dynamics during in-vessel composting of an aged coal-tar contaminated soil using fluorescence excitation-emission spectroscopy. Chemosphere2006; 64: 839–847. PMID: 16330081

20. Gone DL, Seidel JL, Batiot C, Bamory K, Ligban R, Biemi J. Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation-flocculation of a tropical surface water (Agbo reservoir). J Hazard Mater2009; 172: 693–699. doi: 10.1016/j.jhazmat.2009.07.052 PMID: 19665841

21. Tang Z, Yu GH, Liu DY, Xu DB, Shen QR. Different analysis techniques for fluorescence excitation-emission matrix spectroscopy to assess compost maturity. Chemosphere2011; 82: 1202–1208. doi: 10.1016/j.chemosphere.2010.11.032 PMID: 21129765

22. Ait-Baddi G, Hafidi M, Cegarra J, Alburquerque JA, Gonzalvez J, Gilard V, et al. Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill wastes plus straw. Bioresour Techno2004; 93: 285–290.

23. Guo WQ, Ren NQ, Wang XJ, Xiang WS, Ding J, You Y, et al. Optimization of culture conditions for hydrogen production by Ethanoligenens harbirensens B49 using response surface methodology. Bioresour Techno2009; 100: 1192–1196.

24. Wong JW, Mak KF, Chan NW, Lam A, Fang M, Zhou LX, et al. Co-composting of soybean residues and leaves in Hong Kong. Bioresour Techno2001; 76:99–106. PMID: 11131806

25. Xu HC, He PJ, Wang GZ, Shao LM. Three-dimensional excitation emission matrix fluorescence spectroscopy and gel-permeating chromatography to characterize extracellular polymeric substances in aerobic granulation. Water Sci Techno2010, 61: 2931–2942. doi: 10.2166/wst.2010.197 PMID: 20498267

26. Chen W, Westerhoff P, Leenheer JA, Booksh K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Techno2003; 37: 5701–5710.

27. Lugtenberg BJ, Kravchenko LV, Simons M. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol1999; 1: 439–446. PMID: 11207764

28. Mirhosseini H, Tan CP, Taherian AR, Boo HC. Modeling the physicochemical properties of orange beverage emulsion as function of main emulsion components using response surface methodology. Carbohydr Polym 2009; 75: 512–520.

29. Halim SFA, Kamaruddin AH, Fernando WJN. Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Techno2009; 100: 710–716. doi: 10.1016/j.biortech.2008.07.031 PMID: 18819793
30. Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 2009; 100: 5444–5453.
31. Mathur SP, Owen G, Dinel H, Schnitzer M. Determination of compost biomaturity: literature review. Biol Agric Hortic. 1993; 10: 65–85.
32. Tiquia SM, Tam NFY. Co-composting of spent pig litter and sludge with forced-aeration. Bioresour Technol 2000; 72: 1–7.
33. Bertoldi M, Vallini G, Pera A. The biology of composting: a review. Waste Manage Res. 1983; 1: 157–176.
34. Abid N, Saydi S. Detrimental effects of olive mill wastewater on the composting process of agricultural wastes. Waste Manage 2006; 26:1099–1107.
35. Santamaria RS, Ferrera CR. Dynamics and relationships among microorganisms, C-organic and N-total during composting and vermin composting. Agrociencia 2001; 35: 377–383.
36. Wu MJ, Mei XL, Shen QR, Yu GH. Molecular structures and biofilm characterization in compost at different maturity stages using 13C NMR spectroscopy and multiple fluorescence labeling techniques. J Residuals Sci Tech 2012; 9: 65–72.
37. Marhuenda-Egea FC, Martinez-sabater E, Jorda J, Moral R, Bustamante MA, Paredes C, et al. Dissolved organic matter fractions formed during composting of winery and distillery residues: evaluation of the process by fluorescence excitation-emission matrix. Chemosphere 2007; 68: 301–309. PMID: 17292449
38. Shao ZH, He PJ, Zhang DQ, Shao LM. Characterization of water extractable organic matter during the biostabilization of municipal solid waste. J Hazard Mater 2009; 164, 1191–1197. doi: 10.1016/j.jhazmat.2008.09.035 PMID: 18963454