

C_{2^n}\text{-EQUIVARIANT RATIONAL STABLE STEMS AND CHARACTERISTIC CLASSES}

NICK GEORGAKOPOULOS

Abstract. In this short note, we compute the rational C_{2^n}\text{-equivariant stable stems and give minimal presentations for the } RO(C_{2^n})\text{-graded Bredon cohomology of the equivariant classifying spaces } BC_{2^n}S^1 \text{ and } BC_{2^n}Σ\text{ over the rational Burnside functor } AQ. \text{ We also examine for which compact Lie groups } L \text{ the maximal torus inclusion } T \to L \text{ induces an isomorphism from } H^\ast_C (BC_{2^n}L; AQ) \text{ onto the fixed points of } H^\ast_C (BC_{2^n}T; AQ) \text{ under the Weyl group action. We prove that this holds for } L = U(m) \text{ and any } n, m \geq 1 \text{ but does not hold for } L = SU(2) \text{ and } n > 1.

1. Introduction

This note is the followup to [Geo21c]. We start by computing the C_{2^n}\text{-equivariant rational stable stems; this is done in section 4. While the method employed here is the one used in [Geo21c] and goes back to [GM95], the result is quite a bit more complicated to state and requires the notation set up in sections 2 and 3.

We then attempt to generalize the results in [Geo21c] to groups C_{2^n}. In [Geo21c], we obtained minimal descriptions of the C_2\text{-equivariant Chern, Pontryagin and symplectic characteristic classes associated with genuine (Bredon) cohomology using coefficients in the rational Burnside Green functor } AQ. \text{ The idea was based on the maximal torus isomorphism: if } L \text{ is any one of } U(m), Sp(m), SO(m), SU(m), T \text{ is a maximal torus in } L \text{ and } W \text{ is the associated Weyl group then the inclusion } BC_2 T \to BC_2 L \text{ induces an isomorphism } H^\ast_C (BC_2 L; AQ) \to H^\ast_C (BC_2 T; AQ)^W. \text{ We then computed } H^\ast_C (BC_2 T; AQ) \text{ from } H^\ast_C (BC_2 S^1; AQ) \text{ and the Kunneth formula, which reduced us to the algebraic problem of computing a minimal presentation of the fixed points } H^\ast_C (BC_2 T; AQ)^W.

In section 5, we generalize the maximal torus isomorphism to groups } G = C_{2^n} \text{ when } L = U(m), \text{ but show that the maximal torus isomorphism is not true for...
\(G = C_{2n} \) and \(L = SU(2) \) when \(n > 1 \). We also compute the Green functor \(H^\bigstar_G(B_G S^1; \mathbb{A}_Q) \) which turns out to be algebraically quite a bit more complex compared to the \(C_2 \) case of [Geo21c]. For that reason, we do not attempt to follow the program in [Geo21c] and get minimal descriptions of \(H^\bigstar_G(B_G U(m); \mathbb{A}_Q) \) from the maximal torus isomorphism.

Acknowledgment. We would like to thank Peter May for his numerous editing suggestions, including the idea to split off this paper from [Geo21c].

2. **Rational Mackey functors**

The rational Burnside Green functor \(A_Q \) over a group \(G \) is defined on orbits as

\[G/H \mapsto A(H) \otimes \mathbb{Q} \]

where \(A(H) \) is the Burnside ring of \(H \). A rational \(G \)-Mackey functor is by definition an \(A_Q \) module.

We shall use \(G \)-equivariant *unreduced* co/homology in \(A_Q \) coefficients. So if \(X \) is an unbased \(G \)-space, \(H^\bigstar_G(X) = H^\bigstar_G(X/G) \) is the rational \(G \)-Mackey functor defined on orbits as

\[H^\bigstar_G(X)(G/H) = [S^\bigstar, X_+ \wedge HA_Q]^H \]

where \(HA_Q \) is the equivariant Eilenberg-MacLane spectrum associated to \(A_Q \) and the index \(\bigstar \) ranges over the real representation ring \(RO(G) \).

We warn the reader of differing conventions that can be found in the literature: \(H^\bigstar(X) \) is sometimes used to denote the reduced homology Mackey functor (the group \(G \) being implicit), with \(H^G(X) \) denoting the value of this Mackey functor on the top level (i.e. the \(G/G \) orbit). In this paper, \(H^G(X) \) always denotes the Mackey functor and \(H^G(X)(G/G) \) always denotes the top level. This convention also applies when \(\bigstar = * \) ranges over the integers, in which case \(H_*(X) \) denotes the nonequivariant rational homology of \(X \).

All these conventions apply equally for cohomology \(H_G^\bigstar(X) \).

The \(RO(G) \)-graded Mackey functor \(H^G(X) \) is a module over the homology of a point \(H_G^\bigstar := H_G^\bigstar(\ast) \). This Green functor agrees with the equivariant rational stable stems:

\[\pi^G_S \otimes \mathbb{Q} = H_G^\bigstar \]

Two facts about rational Mackey functors that we shall liberally use ([GM95]):

- All rational Mackey functors are projective and injective, so we have the Kunneth formula:

\[H^G_G(X \times Y) = H^G_G(X) \boxtimes_{H^G_G} H^G_G(Y) \]

and duality formula:

\[H^G_G(X) = \text{Hom}_{H^G_G}(H^G_G(X), H^G_G) \]

- For a \(G \)-Mackey functor \(M \) and a subgroup \(H \) of \(G \) consider the \(W_G H \) module \(M(G/H)/\text{Im}(\text{Tr}) \) where \(W_G H = N_G H/H \) is the Weyl group and \(\text{Im}(\text{Tr}) \) is the submodule spanned by the images of all transfer maps \(Tr_H^G \) for \(K \subseteq H \). If we let \(H \) vary over representatives of conjugacy classes of subgroups of \(G \) then we get a sequence of \(W_G H \) modules. This functor from rational \(G \)-Mackey functors
to sequences of $Q[H]$-modules is an equivalence of symmetric monoidal categories.

From now on, we specialize to the case $G = C_2^n$.

There are two 1-dimensional $Q[G]$ modules up to isomorphism: Q with the trivial action and Q with action $g \cdot 1 = -1$ where $g \in G$ is a generator. We shall denote the two modules by Q and Q_- respectively; every other module splits into a sum of these.

The representatives of conjugacy classes of $G = C_2^n$ are $H = C_2$, for every $0 \leq i \leq n$ thus the datum of a rational G-Mackey functor is equivalent to a sequence of rational $W_{C_i}H = C_2^n / C_2$ modules.

We let $M_i^+, 0 \leq i \leq n$, and $M_i^-, 0 \leq i < n$, be the Mackey functors corresponding to the sequences $C_2^n / C_2 \mapsto \delta_{ij} Q$ and $C_2^n / C_2 \mapsto \delta_{ij} Q_-$ respectively.

For example, M_0^+, M_0^- are the constant Mackey functors corresponding to the modules Q and Q_- respectively.

Observe that:

- The M_i^\pm are self-dual.
- $M_i^\pm \boxtimes M_j^\pm = 0$ if $i \neq j$.
- $M_i^\alpha \boxtimes M_j^\beta = M_i^{\alpha \beta}$ where $\alpha, \beta \in \{-1, 1\}$.

Henceforth we shall write M_i for M_i^+.

The notation $M_i\{a\}$ shall mean a copy of M_i with a choice of generator $a \in M_i(C_2^n / C_2) = Q$. The element a generates $M_i\{a\}$ through its transfers:

$$M_i\{a\}(C_2^n / C_2) = \begin{cases} Q\{\text{Tr}_2^j(a)\} & \text{if } j \geq i \\ 0 & \text{if } j < i \end{cases}$$

We analogously define $M_i^{-}\{a\}$.

The rational Burnside G-Green functor is

$$A_Q(C_2^n / C_2) = \frac{Q[x_{i,j}]}{x_{i,j} \cdot x_{i,k} = 2^{i - \max(j,k)} x_{i,\min(j,k)}}$$

where $x_{i,j} = [C_2^n / C_2] \in A(C_2^n)$ for $0 \leq j < i$. To complete the Mackey functor description, we note that:

$$\text{Tr}_2^{j+1}(x_{i,j}) = x_{i+1,j} \quad \text{and} \quad \text{Tr}_2^{j+1}(1) = x_{i+1,i}$$

Let

$$y_i = \begin{cases} 1 - \frac{x_{i,i-1}}{2} & \text{if } i \geq 1 \\ 1 & \text{if } i = 0 \end{cases}$$

living in $A_Q(C_2^n / C_2)$). We can see that y_i spans a copy of M_i in A_Q and:

$$A_Q = \oplus_{i=0}^n M_i\{y_i\}$$

This is an isomorphism of Green functors, where the RHS becomes a Green functor by setting the product of elements from different summands to be 0 and furthermore setting the y_i to be idempotent ($y_i^2 = y_i$).
3. **Euler and orientation classes**

The real representation ring $RO(C_{2\pi})$ is spanned by the irreducible representations $1, \sigma, \lambda_k$ where σ is the 1-dimensional sign representation and λ_k is the 2-dimensional representation given by rotation by $2\pi s(m/2^n)$ degrees for $1 \leq m$ dividing 2^{n-2} and odd $1 \leq s < 2^n/m$. Note that 2-locally, $S^\lambda_{s,m} \simeq S^{\lambda_{s,m}}$ as $C_{2\pi}$-equivariant spaces, by the s-power map. Therefore, to compute $H_{G_{2\pi}}^{2}(X)$ it suffices to only consider \star in the span of $1, \sigma, \lambda_k := \lambda_{1,2^k}$ for $0 \leq k \leq n - 2$ ($\lambda_0 = 2\sigma$ and $\lambda_n = 2\sigma$).

We shall now define generating classes for H_G^\star.

We first have Euler classes $a_{\sigma} : S^0 \hookrightarrow S^\sigma$ and $a_{\lambda_k} : S^0 \hookrightarrow S^{\lambda_k}$ given by the inclusion of the north and south poles; under the Hurewicz map these classes are $a_{\sigma} \in H_G^G(G/G)$ and $a_{\lambda_k} \in H_G^{G_{\lambda_k}}(G/G)$.

There are also orientation classes $u_{\sigma} \in H_{1-\sigma}^G(C_{2n}/C_{2n-1})$, $u_{2\sigma} \in H_{2-2\sigma}^G(G/G)$ and $u_{\lambda_k} \in H_{2-\lambda_k}^G(G/G)$ but we shall need a small computation in order to define them.

Using the cofiber sequence $C_{2n}/C_{2n-1} \rightarrow S_0 \stackrel{a_{\sigma}}{\rightarrow} S^\sigma$ we get:

$$\tilde{H}^G_*(S^\sigma) = M_n \{ a_{\sigma} \}$$

$$\tilde{H}^G_*(S^\sigma) = \bigoplus_{i=0}^{n-1} M_i \{ y_i \text{Res}_{2i}^{2^{n-1}}(u_{\sigma}) \}$$

where $\tilde{H}_*(X)$ denotes the reduced homology of a based G-space X. We can further see that $\tilde{H}^G_*(S^\sigma)$ is generated as a Green functor module by a class $u_{\sigma} \in H_{1-\sigma}^G(C_{2n}/C_{2n-1})$. So we get

$$\tilde{H}^G_*(S^{2\sigma}) = M_n \{ a_{\sigma} \} \bigoplus \bigoplus_{i=0}^{n-1} M_i \{ y_i \text{Res}_{2i}^{2^{n-1}}(u_{\sigma}) \}$$

Using that $S^{2\sigma} = S^\sigma \wedge S^\sigma$ and the Kunneth formula, we get a class $u_{2\sigma}$ restricting to u_{σ} and:

$$\tilde{H}^G_*(S^{2\sigma}) = M_n \{ a_{\sigma} \} \bigoplus \bigoplus_{i=0}^{n-1} M_i \{ y_i \text{Res}_{2i}^{2^{n}}(u_{2\sigma}) \}$$

For $0 \leq k \leq n - 2$ we have a G-CW decomposition $S^0 \subseteq X \subseteq S^{\lambda_k}$ where X consists of the points $(x_1, x_2, x_3) \in S^{\lambda_k} \subseteq \mathbb{R}^3$ with $x_1 = 0$ or $x_2 = 0$. From this decomposition we can see that:

$$\tilde{H}^G_*(S^{\lambda_k}) = \bigoplus_{i=0}^{n-1} M_i \{ y_i \text{Res}_{2i}^{2^{n}}(u_{\lambda_k}) \}$$

for a class $u_{\lambda_k} \in H_{2-\lambda_k}^G(G/G)$. This also works for $k = n - 1$ and $\lambda_{n-1} = 2\sigma$ giving a different way of obtaining $a_{2\sigma} = a_2^2$ and $u_{2\sigma}$.

The classes $u_{\sigma}, u_{\lambda_k}, 0 \leq k \leq n - 1$, have not been canonically defined so far. Once we fix orientations for the spheres S^{λ_k}, the u_{λ_k} are uniquely determined by the following two facts:

- A G-self-equivalence of S^{λ_k} induces the identity map on the Mackey functor $H^G_*(S^{\lambda_k})$ if it does so on its bottom level $H^G_1(S^{\lambda_k})(G/e)$.
- An orientation of S^{λ_k} determines a generator for $\mathbb{Z} = H_2(S^2; \mathbb{Z})$ and consequently a generator for $Q = H_2(S^2; Q) = H^G_2(S^{\lambda_k})(G/e)$.

4
The first fact is proven using that the Mackey functor $H^G_S(S^\lambda_k)$ is generated by the transfers of $y_i\, \text{Res}^{2n}_{2i}(u_{\lambda_k})$ where $i \leq k$, so we only need to check that the induced map is the identity on $H^G_S(S^\lambda_k)(G/C_{2i}) = H^C_{2i}(S^\lambda_k)(C_{2i}/C_{2i})$ which follows from the fact that C_{2i} acts trivially on S^λ_k when $i \leq k$.

We can similarly uniquely determine u_r upon fixing an orientation of S^r that is compatible with the orientation for $S^{\lambda_k-1} = S^{2^r}$, meaning that $\text{Res}^{2n}_{2^{r-1}}(u_{2r}) = u^G_r$.

The discussion regarding orientation classes can also be performed integrally, defining $A\mathbb{Z}$-orientation classes $u_r, u_{2r}, u_{\lambda_k}$ upon fixing orientations for $S^r, S^{2^r}, S^{\lambda_k}$ as above. The $A\mathbb{Z}$-orientation classes map to the corresponding \mathbb{Z}-orientation classes of [HHR16] under the map $HA\mathbb{Z} \to H\mathbb{Z}$ where \mathbb{Z} is the constant Green functor corresponding to the trivial G-module \mathbb{Z}.

4. Rational stable stems

In this section we shall give a presentation of the Green functor H^G_\star with generators and relations.

The generators are elements $r_k \in H^G_{V_k}(C_{2^n}/C_{2^{n-1}})$ spanning M_{i_k}, where $\epsilon_k = +$ or $-$, such that every element of $\prod_{H \subseteq G, \star \in RO(G)} H^G_{\star}(G/H)$ can be obtained from the r_k using the operations of addition, multiplication, restriction, transfer and scalar multiplication (where the scalars are elements of $\prod_{H \subseteq G} A_\mathbb{Q}(G/H)$).

The fact that the r_k span M_{i_k} gives all the additive (Mackey functor) relations, but also implies certain multiplicative relations by means of the Kunneth formula: if $i_k < i_l$ then $r_k \cdot \text{Res}^{2i_l}_{2i_k}(r_l) = 0$ and if $i_k = i_l$ then $r_k r_l$ spans $M_{i_k}^{\epsilon_k \epsilon_l}$.

Finally, if $r \in H^G_{V_k}(C_{2^n}/C_{2^{n-1}})$ and there exists a unique $r' \in H^G_{V_k}(C_{2^n}/C_{2^{n-1}})$ with $rr' = y_i$, then we shall use the notation y_i/r to denote r'. If $r, y_i/r$ are generators then we have the implicit relation $r \cdot (y_i/r) = y_i$.

Proposition 4.1. The Green functor H^G_\star has a presentation whose generating set is the union of the following four families:

- $y_i\, \text{Res}^{2i-1}_{2i}(u_{\epsilon})$ and $y_i/\text{Res}^{2i-1}_{2i}(u_{\epsilon})$ spanning M_i^-, where $0 \leq i < n$.
- $y_i\, \text{Res}^{2n}_{2i}(u_{\lambda_k})$ and $y_i/\text{Res}^{2n}_{2i}(u_{\lambda_k})$ spanning M_i, where $0 \leq i \leq k$ and $0 \leq k \leq n-2$.
- $y_i\, \text{Res}^{2n}_{2i}(a_{\lambda_k})$ and $y_i/\text{Res}^{2n}_{2i}(a_{\lambda_k})$ spanning M_i, where $k < i \leq n$ and $0 \leq k \leq n-2$.
- $a_{\epsilon} (= y_n a_{\epsilon})$ and y_n/a_{ϵ} spanning M_n.

We have implicit relations of the form $(y_i/y) \cdot (y_i/y) = y_i$ in each of the four families. The remaining multiplicative relations can be obtained using the Kunneth formula.

Two observations:

- For $0 \leq i < n$, the square of $y_i\, \text{Res}^{2i-1}_{2i}(u_{\epsilon})$ is $y_i\, \text{Res}^{2i}_{2i}(u_{2\epsilon})$ and spans M_i.
- The ring $H^G_\star(G/G)$ has multiplicative relations: $a_{\epsilon} u_{2\epsilon} = 0$, $a_{\epsilon} u_{\lambda_k} = 0$ and $a_{\lambda_k} u_{\lambda_k} = 0$ for $s \leq k$.

The Green functor presentation also gives us an additive decomposition of H^G_\star into M_i, M_i^- but to state it explicitly, we’ll need some notation: For each integer
tuple \(t = (j_0, \ldots, j_{n-1}, j'_0, \ldots, j'_{n-1}) \) let

\[
k(t) = \begin{cases}
 n & \text{if } j_k = 0 \text{ for all } k \\
 \min\{k : j_k \neq 0\} & \text{otherwise}
\end{cases}
\]

and

\[
k'(t) = \begin{cases}
 -1 & \text{if } j'_{k'} = 0 \text{ for all } k' \\
 \max\{k' : j'_{k'} \neq 0\} & \text{otherwise}
\end{cases}
\]

and consider the representation

\[
V_i^\pm = \sum_{k=0}^{n-2} (j_k(2 - \lambda_k) - j'_k\lambda_k) + j_{n-1}(1 - \sigma) - j'_{n-1}\sigma
\]

where the sign \(\pm \) in \(V_i^\pm \) is \(+ \) if \(j_{n-1} \) is even and \(- \) if \(j_{n-1} \) is odd.

Let \(T \) be the set of all tuples \(t \) with \(k'(t) < k(t) \); as \(t \) ranges over \(T \), the \(V_i^\pm \) are pairwise non-isomorphic virtual representations. We can now state the additive description:

Proposition 4.2. The \(C_{2n} \) equivariant rational stable stems are:

\[
H^G_\star = \begin{cases}
 \bigoplus_{k'(<k(t))} M_i & \text{if } \star = V_i^+ \text{ for } t \in T \\
 \bigoplus_{k'(<k(t))} M_i^- & \text{if } \star = V_i^- \text{ for } t \in T \\
 0 & \text{otherwise}
\end{cases}
\]

Proof. (Of Proposition 4.1). Any representation sphere \(S^r \) is the smash product of \(S^r, S^{\lambda_k} \) and their duals \(S^{-r}, S^{-\lambda_k} \). By duality,

\[
\tilde{H}^G_\star(S^{-r}) = \tilde{H}^G_\star(S^r) = M_n \oplus \oplus_{i=0}^{n-1} M_i^- \{y_i, \text{Res}_{2^i}(u_{\sigma}^{-1})\}
\]

Let \(t \) be a generator for this copy of \(M_n \); then

\[
\tilde{H}^G_\star(S^0) = \tilde{H}^G_0(S^r) \otimes \tilde{H}^G_0(S^{-r}) \oplus \tilde{H}^G_1(S^r) \otimes \tilde{H}^G_1(S^{-r})
\]

On the left hand side we have a factor \(M_n \{y_n\} \) and on the right hand side we have \(M_n \{a_\sigma\} \otimes M_n \{t\} = M_n \{a_\sigma t\} \) so \(y_n = \lambda a_\sigma t \) for \(\lambda \in \mathbb{Q}^\times \). Thus we can pick \(t = y_n/a_\sigma \). The result then follows from the Kunneth formula. \(\square \)

We note that taking geometric fixed points inverts all Euler classes, annihilating all orientation classes and setting \(y_i = 1 \). Therefore:

\[
\Phi^{C_{2n}Q}(HAQ)_\star = \mathbb{Q}[a_\sigma^\pm, a_\lambda^\pm]_{0 \leq k \leq n-2}
\]

hence \(\Phi^{C_{2n}Q}HAQ = HQ \) as nonequivariant spectra. The homotopy fixed points, homotopy orbits and Tate fixed points are computed using that \(HAQ \to HQ \) is a nonequivariant equivalence, where \(Q = M_0 \) is the constant Green functor. Thus:

\[
(HAQ)_{hC_{2n}}^\star = (HAQ)^{hC_{2n}}_\star = \mathbb{Q}[u_2^\pm, u_\lambda^\pm]_{0 \leq k \leq n-2}
\]

and \((HAQ)^{C_{2n}}_\star = * \).
5. \(C_{2^n} \) rational characteristic classes

Proposition 5.1. As a Green functor algebra over the homology of a point:

\[
H_G^\bullet(B_G S^1) = \frac{H_G^\bullet[u, \alpha_{m,j}]_{1 \leq m \leq n, 1 \leq j < 2^n}}{\alpha_{m,j} \alpha_{m',j'} = \delta_{m,m'} \delta_{j,j'} \alpha_{m,j}, \ Res_{2m-1}^m(\alpha_{m,j}) = 0}
\]

for \(|u| = 2\) and \(|\alpha_{m,j}| = 0\).

Proof. Note that

\[
H_G^\bullet(X) = H_G^\bullet(X) \otimes_{A_Q} H_G^\bullet
\]

so it suffices to describe the integer graded cohomology.

For an explicit model of \(B_G S^1 \) we take \(\mathbb{C} P^\infty \) with a \(G \) action that can be described as follows: Let \(V_1, ..., V_{2^n} \) be an ordering on the irreducible complex \(G \)-representations and set \(V_{k+2^n} = V_k \) for any \(m \in \mathbb{Z}, 1 \leq k \leq 2^n \). The action of \(g \in G \) on homogeneous coordinates is \(g(z_1 : z_2 : \cdots) = (gz_1 : gz_2 : \cdots) \) where \(g \) acts on \(z_i \) as it does on \(V_i \).

Fix a subgroup \(H = C_{2^n} \) of \(G \). The fixed points under the \(H \)-action are:

\[
(B_G S^1)^H = \bigoplus_{j=1}^{2^n} \mathbb{C} P^\infty
\]

To understand the indexing, let \(W_1, ..., W_{2^n} \) be an ordering on the irreducible complex \(C_{2^n} \)-representations; the \(j \)-th \(\mathbb{C} P^\infty \) in \((B_G S^1)^H \) corresponds to the set of points with homogeneous coordinates \((z_1 : z_2 : \cdots) \) such that \(z_k = 0 \) if \(\text{Res}^{2^n}(V_k) \neq W_j \).

By [GM95] we have:

\[
H_G^\bullet(B_G S^1) = \bigoplus_{n=0}^{\infty} H^\bullet((B_G S^1) C_{2^n}) \mathbb{C} / C_{2^n}
\]

where \(H^\bullet(X) \) is nonequivariant cohomology in \(Q \) coefficients. The action of \(C_{2^n} / C_{2^n} \) on nonequivariant cohomology is trivial since it’s determined in degree \(* = 2 \) and thus on the 2-skeleton, which itself is the disjoint union of copies of \(S^2 = \mathbb{C} P^1 \) and for each \(S^2 \) the action is a rotation hence has degree 1. Thus

\[
H_G^\bullet(B_G S^1) = \bigoplus_{m=0}^{\infty} \bigoplus_{j=1}^{2^m} H^\bullet(\mathbb{C} P^\infty) = \bigoplus_{m=0}^{\infty} \bigoplus_{j=1}^{2^m} Q[e_{m,j}]
\]

where each \(e_{m,j} \) spans \(M_m \). Set \(\alpha_{m,j} = e_{m,j}^0 \) and \(u = \sum_m e_{m,j} \); then

\[
\sum_{j=1}^{2^m} \alpha_{m,j} = \frac{\text{Tr}_{2^m}(y_m)}{2^m}
\]

so the \(\alpha_{m,2^m} \) are superfluous. Thus we can take \(1 \leq m \leq n \) and \(1 \leq j < 2^n \) in the indexing for \(\alpha_{m,j} \).

We can similarly prove that:

Proposition 5.2. We have an isomorphism of Green functor algebras over \(H_G^\bullet \):

\[
H_G^\bullet(B_G \Sigma_2) = \frac{H_G^\bullet(B_G S^1)}{u}
\]

where the quotient map \(H_G^\bullet(B_G S^1) \to H_G^\bullet(B_G \Sigma_2) \) is induced by complexification: \(B_G \Sigma_2 = B_G O(1) \to B_G U(1) = B_G S^1 \).
The set of generators \(\{ u, \alpha_{m,i} \} \) for \(H^*_G(B_GS^1) \) is not minimal. Indeed, whenever we have generators \(e_1, \ldots, e_s \) with \(e_ie_j = \delta_{ij}e_i \), we can replace them by a single generator defined by \(e = e_1 + 2e_2 + \cdots + se_s \):

\[
\frac{Q[e_1, \ldots, e_s]}{e_ie_j = \delta_{ij}e_i} = \frac{Q[e]}{e(e-1)\cdots(e-s)}
\]

This isomorphism follows from the fact that any polynomial \(f \) on \(e_1, \ldots, e_n \) satisfies:

\[
f(e) = f(0) + (f(1) - f(0))e_1 + \cdots + (f(s) - f(0))e_s
\]

and thus

\[
e_i = \frac{f_i(e)}{f_i(i)} \text{ where } f_i(x) = \frac{x(x-1)\cdots(x-s)}{x-i}
\]

In this way, \(H^*_G(B_GS^1) \) is generated as an \(A_Q \) algebra by two elements \(u, \alpha \) but now with \(\alpha \) satisfying some rather complicated relations. If \(n = 1 \) i.e. \(G = C_2 \), we only have one \(\alpha_{m,i} \) element, namely \(\alpha = \alpha_{1,1} \) satisfying \(\alpha^2 = \alpha \).

Proposition 5.3. The inclusion \(B_GU(1)^m \to B_GU(m) \) induces an isomorphism of Green functor algebras over \(H^*_G \):

\[
H^*_G(B_GU(m)) = (\otimes^m H^*_G(B_GU(1)))^{\Sigma_m}
\]

Proof. Let \(V_i \) be the complex \(G \)-representation corresponding to the root of unity \(e^{2\pi i/n} \). The Grassmannian model for \(B_GU(m) \) uses complex \(m \)-dimensional subspaces of \(\mathbb{C}^{\infty \times \infty} \); a \(G \)-fixed point \(W \) of \(B_GU(m) \) is then a \(G \)-representation and thus as splits as \(W = \bigoplus_{i=1}^{2^m} k_i V_i \) for \(k_i = 0, 1, \ldots \) with \(\sum k_i = m \). An automorphism of \(W \) is made out automorphisms for each \(k_i V_i \) hence

\[
B_GU(m)^G = \coprod_{\Sigma_{k_i = m}} \bigotimes_{i=1}^{2^m} BU(k_i)
\]

Following [Geo21c] and inducting on the \(n \) in \(G = C_{2^n} \), it suffices to show that

\[
H^*(B_GU(m)) \to H^*(\bigotimes_{i=1}^{2^m} BU(k_i))
\]

is an isomorphism after taking \(\Sigma_m \) fixed points on the RHS. Spelling this out, we have:

\[
\prod_{\Sigma_{k_i = m}} \otimes_{i=1}^{2^n} H^*(BU(k_i)) \to \prod_{i=1}^{2^m} \otimes^m H^*(BS^1)
\]

where the product on the right is indexed on configurations \((V_{r_1}, \ldots, V_{r_m}) \). If we fix \(k_i \) with \(\sum_i k_i = m \) then we get

\[
\otimes_{i=1}^{2^n} H^*(BU(k_i)) \to \prod_{i=1}^{2^m} \otimes^m H^*(BS^1)
\]

where the product on the right is indexed on configurations \((V_{r_1}, \ldots, V_{r_m}) \) where \(k_i \) many of the \(r_i \)'s are equal to \(i \). Taking \(\Sigma_m \) fixed points is equivalent to fixing a configuration and then taking \(\Sigma_{k_1} \times \cdots \times \Sigma_{k_2^n} \) fixed points, where each \(\Sigma_{k_i} \) permutes the \(k_i \) many coordinates that are \(V_i \) in the configuration. Thus we are reduced to the nonequivariant isomorphism:

\[
H^*(BU(k_i)) = (\otimes^k H^*(BS^1))^{\Sigma_{k_i}}
\]

\(\square \)
For $n = 1$, $G = C_2$ and $H^*_G(B_GS^1)$ has a simple enough description to allow the computation of an explicit minimal presentation of $H^*_G(B_GU(m)) = H^*_G(B_GU(U(1)^m))$. Due to the greater algebraic complexity of $H^*_G(B_GS^1)$ for $n \geq 2$ ($G = C_{2^n}$), we do not attempt to generalize this and the rest of [Geo21c] to groups $G = C_{2^n}$ for $n \geq 2$.

We note that the maximal torus isomorphism does not work C_{2^n} equivariantly for the Lie group $L = SU(2) = Sp(1)$ and $n \geq 2$. The reason is that a C_{2^n} representation in $SU(2)$ is $2, 2\sigma$ or $V_i \oplus V_{-i}, 1 \leq i < 2^{n-1}$, using the notation of the proof above. Thus:

$$B_GSU(2)^G = BSU(2) \coprod_{i=1}^{2^{n-1}-1} BS^1$$

so $H^0(B_GSU(2)^G)$ has dimension $2^n + 1$. On the other hand, the maximal torus is $U(1) \subseteq SU(2)$ with Weyl group C_2 and

$$B_GU(1)^G = \coprod_{i=1}^{2^n} BS^1$$

The C_2 action does not affect $H^0(B_GU(1)^G)$ which has dimension 2^n. Finally, $2^n + 1 = 2^n$ only when $n = 1$.

References

[Geo21c] N. Georgakopoulos, C_2 equivariant characteristic classes over the rational Burnside ring, available here

[GM95] J.P.C. Greenlees, J.P. May, Generalized Tate Cohomology, Memoirs of the American Mathematical Society 543 (1995).

[HHR16] M. A. Hill, M. J. Hopkins, D. C. Ravenel, On the non-existence of elements of Kervaire invariant one, Annals of Mathematics, Volume 184 (2016), Issue 1

Department of Mathematics, University of Chicago
E-mail: nickg@math.uchicago.edu
Website: math.uchicago.edu/~nickg

9