The Three Receptor Tyrosine Kinases c-KIT, VEGFR2 and PDGFR, Closely Spaced at 4q12, Show Increased Protein Expression in Triple-Negative Breast Cancer.

Jansson, Sara; Bendahl, Pår-Ola; Grabau, Dorthe; Falck, Anna-Karin; Fernö, Mårten; Aaltonen, Kristina; Rydén, Lisa

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0102176

2014

Link to publication

Citation for published version (APA):
Jansson, S., Bendahl, P-O., Grabau, D., Falck, A-K., Fernö, M., Aaltonen, K., & Rydén, L. (2014). The Three Receptor Tyrosine Kinases c-KIT, VEGFR2 and PDGFRα, Closely Spaced at 4q12, Show Increased Protein Expression in Triple-Negative Breast Cancer. PLoS ONE, 9(7), [e102176].
https://doi.org/10.1371/journal.pone.0102176

Total number of authors:
7

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Three Receptor Tyrosine Kinases c-KIT, VEGFR2 and PDGFRα, Closely Spaced at 4q12, Show Increased Protein Expression in Triple-Negative Breast Cancer

Sara Jansson¹, Pär-Ola Bendahl¹, Dorte Aamand Grabau¹, Anna-Karin Falck², Mårten Fernö¹, Kristina Aaltonen¹, Lisa Rydén³

¹Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden, ²Department of Surgery, Hospital of Helsingborg, Helsingborg, Sweden, ³Division of Surgery, Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden

Abstract

Background: Triple-negative breast cancer (TNBC) is a heterogeneous subgroup of breast cancer with poor prognosis and no targeted therapy available. Receptor tyrosine kinases (RTKs) are emerging targets in anticancer therapy and many RTK-inhibiting drugs are currently being developed. The aim of this study was to elucidate if there is a correlation between the protein expression of three RTKs c-KIT, VEGFR2 and PDGFRα, their gene copy number, and prognosis in TNBC compared to non-TNBC.

Methods: Tumor tissue samples from patients diagnosed with primary breast cancer were stained with immunohistochemistry (IHC) for protein assessment, and with fluorescence in situ hybridization (FISH) for gene copy number determination. Breast cancer mortality (BCM), measured from the date of surgery to death, was used as endpoint.

Results: The cohort included 464 patients, out of which 34 (7.3%) had a TNBC. High expression of the three RTKs was more common in TNBC compared to non-TNBC: c-KIT 49% vs. 10% (P<0.001), PDGFRα 32% vs. 19% (P=0.07) and VEGFR2 32% vs. 6% (P<0.001). The odds ratio (OR) of c-KIT, VEGFR2 and PDGFRα positivity, adjusted for tumor characteristics, was 6.8, 3.6 and 1.3 times higher for TNBC than for non-TNBC. 73.5% of the TNBC had high expression of at least one of the three investigated receptors, compared to 30.0% of the non-TNBC (P<0.001). Survival analysis showed no significant difference in BCM for TNBC patients with high vs. low c-KIT, PDGFRα or VEGFR2 protein expression. 193 (42%) tumors were evaluated with FISH. No correlation was seen between increased gene copy number and TNBC, or between increased gene copy number and high protein expression of the RTK.

Conclusion: c-KIT, VEGFR2 and PDGFRα show higher protein expression in TNBC compared to non-TNBC. Further investigation clarifying the importance of these RTKs in TNBC is encouraged, as they are possible targets for anticancer therapy.

Introduction

Breast cancer is a complex heterogeneous disease and it can be classified into several distinctive subgroups based on gene expression profiles [1–3]. This classification gives important information about prognosis and cellular molecular aberrations that could serve as targets for novel medical therapy. In clinical practice, immunohistochemical translations of the results of gene expression profiles are being used to allocate the patients to the different subgroups [4–6]. Guidelines for classification in the clinical setting have been proposed by St Gallen and are based on IHC analysis of the estrogen receptor (ER), the progesterone receptor (PR) and Ki67, and ISH-analysis of the human epidermal growth factor receptor 2 (HER2). By these analyses breast cancers are classified as luminal A (ER+ and/or PR+, Ki67 low and HER2−), luminal B HER2− (ER+ and/or PR+, Ki67 high and HER2−), luminal B HER2+ (ER+ and/or PR+, any Ki67 and HER2+), HER2-type (ER−, PR− and HER2+) and triple-negative (ER−, PR− and HER2−) [6].

The triple-negative breast cancer (TNBC) subgroup constitute approximately 12–17% of female breast cancers [7] and is associated with a particularly poor prognosis. Patients diagnosed with TNBC are often younger, have tumors with a higher histologic grade and are more frequently BRCA1 mutation carriers than those within the other breast cancer subgroups. They also tend to present with larger tumors at diagnosis [8,9].
The TNBC group comprises a greater diversity of tumors than the other breast cancer subgroups and it has been proposed that the TNBC group should be further subdivided based on the expression of basal breast cell markers (CK5/6 and/or EGFR) [5,10–13]. Another study further consolidating the heterogeneity of TNBC was performed by Lehmann et al. where gene expression profiling analysis was performed on a set of 567 TNBC tumors identifying 6 stable TNBC subtypes [14].

At present, the mainstay of adjuvant systemic treatment for TNBC is chemotherapy [7,9], compared to the other breast cancer subgroups where ER and HER2 provide targets for therapy. Potential targets in the TNBC group are currently being investigated [15] and receptor tyrosine kinases (RTKs) are emerging as such [16]. A RTK is a transmembrane receptor protein that upon binding of its ligand initiate an intracellular signal cascade ultimately leading to changes in the cell’s gene expression and phenotype [17]. The best example of a successful RTK-inhibitor is imatinib that inhibits both c-KIT and platelet-derived growth factor receptor alpha (PDGFRα) and it is currently used for treating, amongst others, gastrointestinal stromal tumors (GISTs) and chronic myeloid leukemia (CML) [16]. Two other examples are sunitinib and sorafenib, which are multi-tyrosine kinase inhibitors [18,19].

In this study, gene copy number and protein expression were evaluated for three RTKs as potential breast cancer drug targets: c-KIT, vascular endothelial growth factor receptor-2 (VEGFR2) and PDGFRα. The genes c-KIT, VEGFR2 and PDGFRα are all adjacently located at the 4q12 chromosomal segment and their involvement in the cancer process have been investigated in various malignancies, such as for example gliomas [20–22], malignant peripheral nerve sheath tumors [23] and GISTs [24]. However, to date, their role in breast cancer remains largely unknown. High expression of c-KIT and VEGFR2 has previously been correlated to basal-like breast cancer (BLBC) and TNBC [25–28]. Overexpression of PDGFRα in breast cancer has been found to be associated with tumor progression [29] and to be involved in the metastasis process [30]. PDGFRα has recently been associated with basal B like cell lines [31], but to our knowledge, the expression of PDGFRα has not been correlated to a breast cancer subgroup in a clinical cohort before.

Gain-of-function mutations in c-KIT leading to pathologic activation are seen in several neoplasms, such as GISTs and acute myeloid leukemia [32]. A previous study has shown that increased gene copy number of c-KIT and VEGFR2 in primary breast cancer is related to an aggressive phenotype and impaired prognosis [27].

The aim of this study was to analyze protein expression and gene copy number for c-KIT, VEGFR2 and PDGFRα in order to elucidate if there is a correlation between the copy number of these genes, their protein expression, and the prognosis of breast cancer in the TNBC subgroup compared to non-TNBC.

Materials and Methods

Patients

The patient cohort used in this study was originally assembled for an observational prospective study with the aim of evaluating the presence and prognostic value of disseminated tumor cells in bone marrow. The study was approved by the ethics committee at Lund University, and all the included patients gave a written informed consent (LU699-09, LU75-02). Further information about the patient cohort has been published elsewhere [33,34].

In summary, patients diagnosed with primary breast cancer in the South Swedish Health Care Region between June 1999 and May 2003, were included in the original cohort. The patients were treated surgically with either mastectomy or breast-conserving therapy based on pre-operatively identified characteristics and staging. Axillary lymph node dissection was performed on patients with lymphatic metastatic spread diagnosed either before surgery or following sentinel node biopsy. Patients were recommended adjuvant therapy according to clinical standards following Regional Guidelines. Data on breast cancer related death was retrieved from the Swedish Register of Causes of Death (Central Statistics Office). The median follow-up time for patients alive and without any breast-cancer related event was 61 months. Detailed information on routine prognostic factors, St Gallen molecular subtype and clinical follow-up data were assembled for all patients as described in Falc et al. [34] In total, 464 patients with known breast cancer subtype and remaining evaluable tumor tissue samples were included in the present study (Figure 1).

Tissue microarray

Formalin-fixed, paraffin embedded tumor tissue samples were retrieved from the Department of Pathology in Lund and Helsingborg, Sweden. Tissue micro arrays (TMAs) were constructed by extracting tissue core biopsies 1.0 mm in diameter from representative areas of invasive breast cancer using a tissue array machine (TMArayer Pathology Devices, Inc.). Two core biopsies were taken from each patient tumor sample. Biopsies were mounted into a recipient block and stored dark at room temperature until glass slide transfer and staining.

Immunohistochemistry (IHC)

Sections between 3 and 4 μm thick were taken from each TMA, transferred to glass slides (Menzel Super frost plus, Thermo Scientific, Germany), dried at room temperature and then baked in a heat chamber for two hours at 60°C. After deparaffinisation and antigen retrieval, staining was performed using an Autostainer Plus (Dako Denmark A/S, Glostrup, Denmark). The following antibodies and dilutions were used: c-KIT (#A4502, Dako Denmark A/S, Glostrup, Denmark) diluted 1:400), PDGFRα (#3164 Cell Signaling Technology, Inc., Danvers, MA, USA diluted 1:100) and VEGFR2 (#2479 Cell Signaling Technology, Inc., Danvers, MA, USA diluted 1:100). To amplify the signal of the primary PDGFRα antibody, a Rabbit Link K8009 (Dako Denmark A/S, Glostrup, Denmark) was used. A visualization kit Ki801021-2 (Dako Denmark A/S, Glostrup, Denmark) was used for all stainings, and all slides were counterstained with Mayer’s Haematoxylin applied for two minutes.

Two investigators evaluated the IHC staining independently, SJ and DG for c-KIT, and SJ and KA for PDGFRα and VEGFR2. Stainings were evaluated for intensity 0–3 (0 = negative, 1 = weak, 2 = intermediate and 3 = strong) and percentage of stained tumor cells. A score was calculated multiplying the fraction (0–3) with the intensity (0–3) resulting in a score ranging from 0 to 9.

A TMA core biopsy was considered c-KIT positive whenever $\geq 5%$. For PDGFRα and VEGFR2, the percentages of stained cancer cells were grouped in 4 groups, $(<5% = 0, 5–33% = 1, 34–66% = 2, 67–100% = 3)$. A score was calculated multiplying the fraction (0–3) with the intensity (0–3) resulting in a product between 0 and 9. A tumor tissue sample was considered VEGFR2 positive if the final score was >6 [35].
the percentages of stained cancer cells were grouped in 5 groups,
(0% = 0, 1–9% = 1, 10–50% = 2, 51–80% = 3, 81–100% = 4). A
score was calculated multiplying the fraction (0–4) with the
intensity (0–3) resulting in a product between 0 and 12. A tumor
tissue sample was considered PDGFRα positive if the final score
was 5 [36].

Fluorescence in situ hybridization (FISH)
A custom-made Poseidon quadruple-color DNA probe was
ordered from Kreatech (Kreatech, Amsterdam, Netherlands). It
was composed of a probe mix to detect c-KIT (labeled with PlatinumBright495, green), VEGFR2 (labeled with PlatinumB-right550, gold), PDGFRα (labeled PlatinumBright590, red) and the
control region SE4 (labeled with PlatinumBright415, blue).

With some minor adjustments, staining was performed according
to the manufacturer’s manual using chemicals from Tissue
Digestion Pretreatment Kit I (Kreatech, Amsterdam, Nether-
lands). TMA slides were baked for 2 hours in 80°C. They were
deparaffinised in xylene for 2×7 min, and rehydrated 3 min each
in absolute (ABS), 85% and 70% ethanol. The slides were treated
for 15 min in Pretreatment A (97–98°C) and rinsed for 2×2 min
in distilled water (dH2O). Pepsin was added to the slides for
40 min and the slides were rinsed in dH2O for 1 min. The slides
were put in 2×SSC with pH 7.0 for 5 min, and dehydrated in
70%, 85% and ABS for 1 min each. After drying, 20 µl of
Poseidon quadruple-color DNA probe was added and a cover
glass was mounted on each TMA slide and sealed with rubber
glue. The slides were put on a hot plate (80°C) for 5 min for co-
denaturation and incubated in a humid dark chamber to hybridize
overnight at 37°C. The next day, rubber glue and cover glass were
removed; the TMA slides were dipped in Washbuffer II and rinsed
for 2 min in Washbuffer I (73°C). Finally the slides were left in
Washbuffer II for 1 min, followed by dehydration in 70%, 85%
and ABS for 1 min each. When air-dried, 22 µl of DAPI
counterstain (concentration 0.05 µg/ml) and cover glass were
added.

Only one of the two core biopsies from each patient was
examined. 30 invasive cancer cells were evaluated in each sample.
The number of gene copies and of chromosome 4 control regions
per cell was counted. A gain was considered when a cell contained
≥4 gene copies. If the ratio between gene copies and chromosome
4 control regions was >2 the cell was considered to have an

Figure 1. Flow-chart of the patient cohort included in this study. *These patients were excluded because they did not meet the inclusion
criteria (e.g. patients with local breast cancer recurrence, bilateral breast cancer, no breast cancer or too few cancer cells in tissue samples).
TNBC = Triple-negative breast cancer.

doi:10.1371/journal.pone.0102176.g001
amplification. Any tissue sample containing ≥5 cells with gains and/or amplifications was considered FISH positive. The cut-off point for FISH positivity was chosen based on a comparison of cut-off points used in recent similar studies [20,21,27,37]. Since in this study TMAs of formalin-fixed tissue were used, we used the cut-off point that was closest to the one used by Joensuu et al. [20] who used the same type of tissue material.

Statistical analysis
Breast cancer mortality (BCM) was chosen as endpoint in this study. Survival data was retrieved from the Swedish Register of Causes of Death (Central Statistics Office) and registered events until 31 of December 2010 were recorded.

To evaluate differences in the distribution of clinical data and tumor characteristics between the non-TNBC group and the TNBC group a χ² test was used. Binary logistic regression analysis was performed to quantify the effect of each RTK, with and without adjustment for other tumor characteristics. The effect on survival for high protein expression and increased gene copy number of c-KIT, VEGFR2 and PDGFRα, was described in terms of BCM using cumulative incidence curves. P-values were calculated using the log-rank test and Hazard ratios (HR) using Cox regression. P-values<0.05 were considered statistically significant. The statistical calculations were performed using SPSS Version 21.0 (SPSS, Chicago, IL) and graphs were drawn in Stata Version 12.1 (StataCorp LP, College Station, TX).

Results

Patient cohort and TNBC patient characteristics
34 (7.3%) of the included 464 tumors were diagnosed as triple-negative (Figure 1). The TNBC presented with larger tumors at diagnosis (P=0.07), higher Nottingham histological grade (NHG)

Table 1. Patient and tumor characteristics in relation to triple-negative breast cancer (TNBC).
Characteristics

N = 464
Age Median (range)
<50
≥50
Histopathologic type
Ductal
Lobular
Tubular
Medullary
Mainly DCIS
Other
Unknown
Node status
N+
N0
Unknown
NHG
1
2
3
Unknown
KI67
High (>20%)
Low (≤20%)
Unknown

aDCIS = ductal cancer in situ; N0 = node negative; N+ = node positive; NHG = Nottingham histological grade.
bPercentages are shown despite the small number of patients in this group (N<50).
cP-value from Fisher’s Exact Test.
dP-value from Linear-by-Linear Association test.
doi:10.1371/journal.pone.0102176.t001

amplification. Any tissue sample containing ≥5 cells with gains and/or amplifications was considered FISH positive. The cut-off point for FISH positivity was chosen based on a comparison of cut-off points used in recent similar studies [20,21,27,37]. Since in this study TMAs of formalin-fixed tissue were used, we used the cut-off point that was closest to the one used by Joensuu et al. [20] who used the same type of tissue material.
Protein expression in TNBC compared to non-TNBC

VEGFR2 (C) and PDGFRα (E) present the distribution of the tumors between the expressions of the three proteins are shown in Table S1. Table 2. Test for correlations between results are summarized in Table 2. Test for correlations between

Correlation between high protein expression, increased gene copy number and survival

FISH staining was evaluated in 193 (42%) patient tissue samples. The quality of the staining in the rest of the samples was too low to evaluate, or no staining was seen at all. A possible explanation for this is that we used tissue micro arrays of paraffin embedded tissue and a custom made quadruple probe, two factors known to complicate the FISH procedure [38]. Examples of normal FISH staining pattern and positive FISH staining pattern are shown in Figure 3A and 3B. 21 (11%) of the 193 evaluated patient tumors were c-KIT FISH positive, 22 (11%) were VEGFR2 FISH positive and 24 (12%) were PDGFRα FISH positive (Table 2). There was no difference in the percentage FISH positive tumors in the TNBC group compared to the non-TNBC group. No correlation was seen between the c-KIT, PDGFRα and VEGFR2 IHC positive tumors, and the respective marker FISH positive tumors (Table S3).

Correlation between high protein expression, increased gene copy number and survival

Cumulative incidence curves were calculated for patients with tumors having a high protein expression of c-KIT (Figure 4A, B and C), VEGFR2 (Figure 4D, E and F) and PDGFRα (Figure 4G, H and I) in both the non-TNBC (Figure 4B, E and H) and the TNBC group (Figure 4C, F and I). For c-KIT and PDGFRα, no statistically significant difference in BCM was seen for the IHC positive versus the IHC negative groups, neither for TNBC patients nor for non-TNBC patients. For VEGFR2 there was moderate evidence (P=0.03) for lower BCM for the IHC positive patients in the non-TNBC group (Figure 4E), but no difference in the TNBC group (Figure 4F).

Cox regression showed no significant influence on mortality in the TNBC group for the tumors with high marker expression of c-KIT HR = 0.7 (95% CI 0.2–2.2), PDGFRα HR = 2.0 (95% CI 0.6–6.4), VEGFR2 HR = 1.4 (95% CI 0.4–4.8). In the non-TNBC group, a HR indicating notably lower breast cancer mortality was seen for the VEGFR2 positive patients, HR = 0.04 (95% CI 0.001–3.3), but this result was not significant (P=0.16). For c-KIT and PDGFRα, the HRs showed no significant mortality influence in the non-TNBC group (c-KIT HR = 1.0, 95% CI 0.4–2.6 and PDGFRα HR = 0.4, 95% CI 0.2–1.0).

No difference in BCM was seen for FISH positive versus FISH negative patients, neither in the TNBC nor in the non-TNBC group (data not shown).
Table 2. Protein expression and gene copy number of c-KIT, VEGFR2 and PDGFRα in relation to triple-negative breast cancer (TNBC).

IHC* and FISH* marker	All patients N (%)	Luminal A N (%)	Luminal B HER2− N (%)	Luminal B HER2+ N (%)	HER2+ N (%)	TNBC N (%)	P-value for St Gallen subgroup	P-value TNBC vs non-TNBC
c-KIT IHC								
Positive	57 (12)	20 (11)	13 (16)	8 (11)	0 (0)	16 (49)	<0.001b	<0.001b
Negative	404 (88)	233 (92)	67 (84)	66 (89)	17 (100)	17 (52)		
Unknown	3 (2)	2 (0)	0 (0)	0 (0)	1 (1)			
VEGFR2 IHC								
Positive	43 (10)	18 (7)	6 (8)	7 (10)	1 (6)	11 (32)	<0.001b	<0.001b
Negative	412 (90)	230 (93)	73 (92)	67 (91)	15 (94)	23 (68)		
Unknown	9 (7)	7 (0)	1 (0)	1 (0)	1 (1)			
PDGFRα IHC								
Positive	94 (20)	38 (15)	24 (30)	15 (20)	3 (18)	11 (32)	0.02b	0.07b
Negative	367 (80)	215 (85)	55 (70)	59 (80)	14 (82)	23 (68)		
Unknown	3 (2)	2 (0)	1 (0)	1 (0)	0 (0)			
c-KIT FISH								
Positive	21 (11)	11 (11)	4 (10)	3 (10)	1 (14)	2 (11)	1b	1b
Negative	172 (89)	86 (89)	36 (90)	27 (90)	6 (86)	16 (89)		
Unknown	271 (158)	158 (10)	40 (44)	44 (10)	10 (16)			
VEGFR2 FISH								
Positive	22 (11)	10 (10)	5 (13)	4 (13)	1 (14)	2 (11)	1b	1b
Negative	171 (89)	87 (90)	35 (88)	26 (87)	6 (86)	16 (89)		
Unknown	271 (158)	158 (10)	40 (44)	44 (10)	10 (16)			
PDGFRα FISH								
Positive	24 (12)	12 (12)	5 (13)	4 (13)	1 (14)	2 (11)	1b	1b
Negative	169 (88)	85 (88)	35 (88)	26 (87)	6 (86)	16 (89)		
Unknown	271 (158)	158 (10)	40 (44)	44 (10)	10 (16)			

*IHC = immunohistochemistry. FISH = fluorescence in situ hybridization.
bP-value from Fisher's Exact Test.
doi:10.1371/journal.pone.0102176.t002
Discussion

TNBC is a subgroup of breast cancer with poor prognosis and no targeted therapy available. In this study we show that TNBC is associated with high protein expression of the three RTKs and potential drug targets, c-KIT, VEGFR2 and PDGFRα, closely spaced at 4q12. The strongest evidence for correlation was seen for c-KIT and VEGFR2 while PDGFRα showed a somewhat weaker association. When RTK expression was adjusted for known tumor characteristics, the significant correlations for c-KIT and VEGFR2 were retained whereas the association between PDGFRα and TNBC was not significant. The low number of TNBC patients in the cohort can be one explanation for this. However, linking PDGFRα to TNBC is an interesting finding because PDGFRα has been detected as a key protein in one of the central epithelial to mesenchymal transition (EMT) processes, the invadopodia formation. EMT is a process where tumor cells lose epithelial characteristics and conversely gain invasive mesenchymal and stem cell-like features, and it has been related to breast cancer with a basal-like phenotype [39]. In invadopodia formation, PDGFRα is up-regulated and activated downstream of Twist1, and it is known that blocking of PDGFRα strongly decreases invadopodia formation [30].

Also, a recent study showed that mRNAs encoding PDGFRα, PDGFRβ and their ligand PDGF-C were highly expressed in basal B subtype of breast cancer cell lines with mesenchymal properties but not in luminal-like cell counterparts with more epithelial features [31]. High PDGFRα expression might thus be a sign of an active EMT process in the TNBC tumors.

Interestingly, Lehmann et al. have recently found that genes involved in the PDGFR and VEGF pathways are upregulated in the mesenchymal and mesenchymal-stem-like TNBC subtypes [14]. It would thus be intriguing to investigate the expression of c-KIT, VEGFR2 and PDGFRα in different genomic TNBC subtypes. However the number of TNBC patients in the present cohort was too low for additional subdivision.

To further test the association between TNBC and the three RTKs encoded at 4q12, we analyzed how many tumors had a high expression of at least one, or at least two, of the three RTKs. We noticed a remarkably elevated frequency of high expression of either one of three markers (73.5% compared to 30.0%, \(P<0.001\)) or two of three markers (53.3% compared to 5.8%, \(P<0.001\)) in the TNBC compared to the non-TNBC. Also, the ORs for TNBC and high expression of at least one, or at least two, of the three RTKs were 4.3 and 5.3, respectively, when compared to non-TNBC, with \(P\)-values of 0.001. These results support a connection between TNBC and high expression of c-KIT, VEGFR2 and PDGFRα.

Survival analysis did not show any correlation between high protein expression of c-KIT, VEGFR2 or PDGFRα and changes in BCM in the TNBC subgroup. Previous studies have shown varying results; Nielsen et al., 2004 reported no difference in survival for c-KIT positive BLBC patients compared to control [40], whereas Kashiwagi et al., 2012 found a poorer outcome for c-KIT positive BLBC patients with a hazard ratio of 2.29 [26]. One explanation for these opposing results is differences in cut-point for categorizing a sample as positive; Nielsen et al., 2004 used \(\geq 25\%\) stained cells as cut-point while Kashiwagi et al., 2012 set their limit to \(\geq 10\%\). In this study we used \(\geq 1\%\) stained cells as cut-point, since it is a standard cut-point for c-KIT assessment [25]. VEGFR2 has in one study been found to be significantly correlated to decreased breast cancer specific survival (BCSS) in TNBC patients [28]. In the present study, no such correlation was found. However, we found that VEGFR2 positive non-TNBC patients had a statistically significant lower mortality than VEGFR2 negative non-TNBC patients. A possible explanation for these differing results is that the previous study [28] included only premenopausal women with stage II breast cancer, while the present study had no upper age limit and a cohort weighted towards a low risk profile. Also, treatment regimens differed between the two studies. PDGFRα has been found to be associated with breast cancer progression and metastasis [29,30]. In this study we did not find any association between poor survival and high PDGFRα expression.

193 (42%) of the 464 FISH stained tissue samples were assessable for gene copy number. No difference was seen in tissue samples with increased gene copy number between the TNBC and the non-TNBC group. Nor was any correlation seen between high protein expression and increased gene copy number. Survival analysis showed no correlation between increased gene copy number and differences in BCM.

c-KIT, VEGFR2 and PDGFRα have previously been found to be amplified in 15–33% of primary glioblastomas [20,41] and amplification of c-KIT and PDGFRα is associated with poor survival of glioblastoma patients [21]. In a recent study, an increased copy number of the genes c-KIT and VEGFR2 was found in the TNBC subgroup, and increased gene copy number was related to an aggressive phenotype and impaired prognosis [27]. These results were not confirmed in this study. Staining methods differed between the two studies where Johansson et al., used fresh frozen tumor tissue, and we used formalin-fixed TMA in the present study.

The results from this study suggest that a multi-targeting RTK inhibitor, such as for example sunitinib or sorafenib, would be a possible treatment option for TNBC patients. We found that as many as 73.5% of TNBC patients have a high expression of at least one of the three RTKs c-KIT, VEGFR2 and PDGFRα. A few pilot studies have been conducted evaluating sunitinib as treatment for metastatic breast cancer and in those studies TNBC patients showed promising response rates [42,43]. However, a larger randomized phase III study on sunitinib as single treatment for metastatic breast cancer was aborted ahead of schedule since preliminary data showed a lower progression free survival amongst the sunitinib treated patients [44]. Important to notice is that the inclusion criteria in these studies were metastatic breast cancer regardless of subgroup or RTK expression (with the exception of the phase
III randomized trial where HER2 positive patients were excluded. Since TNBC patients seemed to benefit from the anti-RTK treatment in pilot studies [42,43], it is possible that only TNBC or BLBC patients should be included in a future study of anti-RTK treatment.

In addition to the RTK inhibitors described above, there are also drugs aimed at the RTK ligands such as bevacizumab targeting VEGF-A. In a recent study it was shown that addition of bevacizumab also drugs aimed at the RTK ligands such as bevacizumab targeting VEGF-A. In a recent study it was shown that addition of bevacizumab to TNBC patients in the neoadjuvant setting could increase the rate of pathologic complete response [45].

In conclusion, we have found that the proteins c-KIT, VEGFR2 and PDGFRα, encoded by genes at 4q12, are associated to the St Gallen breast cancer subgroup TNBC. No correlation was seen between high protein expression, increased gene copy number and BCM in the TNBC group. A remarkably high expression of at least one, and at least two, of the three investigated markers was seen in the majority of TNBC patients compared to non-TNBC, which suggests that anti-RTK therapy could be useful in this patient group in the future.

Supporting Information

Table S1 Presents correlations between c-KIT, VEGFR2 and PDGFRα.

| A, b and c presents the distribution of the tumors between the percentage groups (c-KIT) and the IHC scores (VEGFR2 and PDGFRα) for TNBC and non-TNBC. | (DOCX) |

Table S3 Shows how IHC and FISH results relate. | (DOCX) |

Acknowledgments

We want to thank Kristina Lövgren for IHC stainings.

Author Contributions

Conceived and designed the experiments: SJ KA LR. Performed the experiments: SJ DG KA. Analyzed the data: SJ AKF POB LR. Contributed reagents/materials/analysis tools: AKF MF LR. Wrote the paper: SJ KA LR.

References

1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752.
2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98: 10869–10874.
3. Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378: 1012–1023.
4. Cheang MC, Cheok SK, Voduc D, Gao D, Leung S, et al. (2009) K67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101: 736–750.
5. Cheang MC, Voduc D, Bajik C, Leung S, McKinney S, et al. (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14: 1368–1376.
6. Goldbirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, et al. (2011) Strategies for subtypes dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22: 1736–1747.
7. Fouliès WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363: 1933–1948.
8. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, et al. (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13: 4429–4434.
9. de Ruijter TC, Veek J, de Hoorn JP, van Engeland M, Tjan-Heijnen VC (2011) Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol 137: 183–192.
10. Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, et al. (2008) How basal are triple-negative breast cancers? Int J Cancer 123: 236–240.
11. Rakha EA, Elshiby SE, Aleksandaraya MA, Habashi HO, Green AR, et al. (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15: 2302–2310.
12. Gazinska P, Grigoriadis A, Brown JP, Millis RR, Mera A, et al. (2013) c-KIT expression as a prognostic molecular marker in patients with basal-like breast cancer. Br J Surg 100: 490–496.
13. Toft DJ, Cryns VL (2011) Minireview: Basal-like breast cancer: from molecular cancer therapeutics. Annu Rev Pharmacol Toxicol 45: 357–384.
14. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, et al. (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121: 2750–2767.
15. Puputti M, Tynninen O, Sihto H, Blom T, Maenpaa H, et al. (2006) Inference of the Basal epithelial phenotype in breast carcinoma from differential marker expression, using tissue microarrays in triple negative breast cancer and women younger than 35. Breast J 18: 399–405.
16. Kashiwagi S, Yashiro M, Takashima T, Aomatsu N, Kawajiri H, et al. (2013) c-KIT expression promotes invadopodia formation and tumor metastasis. Cancer Cell 19: 372–386.
17. Kaklamanis P, Grigoriadis A, Brown JP, Millis RR, Mera A, et al. (2013) Tyrosine kinase genes at 4q12 in glioblastoma. PLoS One 8: e71777.
18. Zirouch J, Ziegeneisen N, Heppner FL, Reus D, von Deimling A, et al. (2010) The 4q12 amplon in malignant peripheral nerve sheath tumors: consequences on gene expression and implications for sunnith treatment. PLoS One 5: e11850.
19. Hirota S, Kozaki K, Moriyama Y, Hashimoto K, Nishida T, et al. (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577–580.
20. Nasar A, Susman ZM, Lawson D, Cohen C (2012) Inference of the Basal epithelial phenotype in breast carcinoma from differential marker expression, using tissue microarrays in triple negative breast cancer and women younger than 35. Breast J 18: 399–405.
21. Kashiwagi S, Yashiro M, Takashima T, Aomatsu N, Kawajiri H, et al. (2013) c-KIT expression as a prognostic molecular marker in patients with basal-like breast cancer. Br J Surg 100: 490–496.
22. Johansson I, Aaltenon KE, Ebbesson A, Graubau D, Wigerup C, et al. (2012) Increased gene copy number of KIT and VEGFR2 at 4q12 in primary breast cancer is related to an aggressive phenotype and impaired prognosis. Genes Chromosomes Cancer 51: 375–383.
23. Ryden I, Jirstrom K, Haglund M, Stal O, Ferno M (2010) Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up. Breast Cancer Res Treat 120: 491–496.
24. Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F (2005) Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res Treat 7: R781–795.
25. Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, et al. (2011) Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 19: 372–386.
32. Miettinen M, Lasota J (2005) KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 13: 205–220.
33. Falck AK, Bendahl PO, Ingvar C, Isola J, Jonsson PE, et al. (2012) Analysis of and prognostic information from disseminated tumour cells in bone marrow in primary breast cancer: a prospective observational study. BMC Cancer 12: 403.
34. Falck AK, Bendahl PO, Chebil G, Olsson H, Ferno M, et al. (2013) Biomarker expression and St Gallen molecular subtype classification in primary tumours, synchronous lymph node metastases and asynchronous relapses in primary breast cancer patients with 10 years' follow-up. Breast Cancer Res Treat 140: 93–104.
35. Dhakal HP, Naume B, Syenestved M, Borgen E, Kaaresen R, et al. (2012) Expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2 in invasive breast carcinomas: prognostic significance and relationship with markers for aggressiveness. Histopathology 61: 350–364.
36. Nupponen NN, Paulsson J, Jeibmann A, Wrede B, Tanner M, et al. (2008) Platelet-derived growth factor expression and amplification in choroid plexus carcinomas. Mod Pathol 21: 265–270.
37. Hahtola S, Burghart E, Puputti M, Karenko L, Abdel-Rahman WM, et al. (2008) Cutaneous T-cell lymphoma-associated lung cancers show chromosomal aberrations differing from primary lung cancer. Genes Chromosomes Cancer 47: 107–117.
38. Brown LA, Huntsman D (2007) Fluorescent in situ hybridization on tissue microarrays: challenges and solutions. J Mol Histol 38: 151–157.
39. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, et al. (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68: 989–997.
40. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, et al. (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10: 5367–5374.
41. Holtkamp N, Ziegenhagen N, Malzer E, Hartmann C, Giese A, et al. (2007) Characterization of the amplicon on chromosome segment 6q12 in glioblastoma multiforme. Neuro Oncol 9: 291–297.
42. Burstein HJ, Elias AD, Rujo HS, Cobbleigh MA, WolfAC, et al. (2008) Phase II study of sunitinib malate, an oral multtargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 26: 1810–1816.
43. Kodroll M, Chuaang E, Starr A, Gowan PA, Catarnnozolo PE, et al. (2010) An exploratory study of sunitinib plus paclitaxel as first-line treatment for patients with advanced breast cancer. Ann Oncol 21: 1436–1441.
44. Barrios CH, Liu MC, Lee SC, Vanleemmens L, Ferrero JM, et al. (2010) Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res Treat 121: 121–131.
45. von Minckwitz G, Eidtmann H, Rezai M, Fasching PA, Tesch H, et al. (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 366: 290–299.