UNIVALENCE CRITERIA AND QUASICONFORMAL EXTENSIONS

MURAT ÇAĞLAR AND HALIT ORHAN

Abstract. In the present paper, we obtain a more general conditions for univalence of analytic functions in the open unit disk \(\mathcal{U} \). Also, we obtain a refinement to a quasiconformal extension criterion of the main result.

1. Introduction

Let \(\mathcal{A} \) be the class of analytic functions \(f \) in the open unit disk \(\mathcal{U} = \{ z \in \mathbb{C} : |z| < 1 \} \) with \(f(0) = f'(0) - 1 = 0 \). We denote by \(\mathcal{U}_r \), the disk \(\{ z \in \mathbb{C} : |z| < r \} \), where \(0 < r \leq 1 \), by \(\mathcal{U}_{1} \) the open unit disk of the complex plane and by \(I \) the interval \([0, \infty)\).

Most important and known univalence criteria for analytic functions defined in the open unit disk were obtained by Becker [4], Nehari [19] and Ozaki-Nunokawa [21]. Some extensions of these three criteria were given by (see [16], [18], [22], [26]-[29] and [31]). During the time, a lot of univalence criteria were obtained by different authors (see also [8], [10]-[12]).

In the present investigation we use the method of subordination chains to obtain some sufficient conditions for the univalence of an analytic function. Also, by using Becker’s method, we obtain a refinement to a quasiconformal extension criterion of the main result.

2. Preliminaries

Before proving our main theorem we need a brief summary of the method of Loewner chains and quasiconformal extensions.

A function \(L(z, t) : \mathcal{U} \times [0, \infty) \to \mathbb{C} \) is said to be subordination chain (or Loewner chain) if:

(i) \(L(z, t) \) is analytic and univalent in \(\mathcal{U} \) for all \(t \geq 0 \).
(ii) \(L(z, t) \prec L(z, s) \) for all \(0 \leq t \leq s < \infty \), where the symbol ” \(\prec \) ” stands for subordination.

In proving our results, we will need the following theorem due to Ch. Pommerenke [25].

\[2000 \text{ Mathematics Subject Classification. Primary 30C45; Secondary 30C55.}\]

\textbf{Key words and phrases.} Analytic function, univalence condition, Loewner or subordination chain, quasiconformal extension.
Theorem 2.1. Let \(L(z, t) = a_1(t)z + a_2(t)z^2 + ... \), \(a_1(t) \neq 0 \) be analytic in \(U \), for all \(t \in I \), locally absolutely continuous in \(I \), and locally uniform with respect to \(U \). For almost all \(t \in I \), suppose that
\[
\frac{z}{\partial L(z, t)} = p(z, t) \frac{\partial L(z, t)}{\partial t}, \forall z \in U,
\]
where \(p(z, t) \) is analytic in \(U \) and satisfies the condition \(\Re p(z, t) > 0 \) for all \(z \in U \), \(t \in I \). If \(|a_1(t)| \to \infty \) for \(t \to \infty \) and \(\{L(z, t)/a_1(t)\} \) forms a normal family in \(U \), then for each \(t \in I \), the function \(L(z, t) \) has an analytic and univalent extension to the whole disk \(U \).

Let \(k \) be constant in \([0, 1)\). Then a homeomorphism \(f \) of \(G \subset \mathbb{C} \) is said to be \(k-\)quasiconformal, if \(\partial_z f \) and \(\partial_{\overline{z}} f \) in the distributional sense are locally integrable on \(G \) and fulfill the inequality
\[
|\partial_z f| \leq k|\partial_{\overline{z}} f|
\]
a almost everywhere in \(G \). If we do not need to specify \(k \), we will simply call that \(f \) is quasiconformal.

The method of constructing quasiconformal extension criteria is based on the following result due to Becker (see [4], [5] and also [6]).

Theorem 2.2. Suppose that \(L(z, t) \) is a Loewner chain. Consider
\[
w(z, t) = \frac{p(z, t) - 1}{p(z, t) + 1}, \quad z \in U, \quad t \geq 0
\]
where \(p(z, t) \) is given in (2.1). If
\[
|w(z, t)| \leq k, \quad 0 \leq k < 1
\]
for all \(z \in U \) and \(t \geq 0 \), then \(L(z, t) \) admits a continuous extension to \(\overline{U} \) for each \(t \geq 0 \) and the function \(F(z, \overline{z}) \) defined by
\[
F(z, \overline{z}) = \begin{cases}
L(z, 0), & \text{if } |z| < 1 \\
L(\frac{z}{|z|}, \log |z|), & \text{if } |z| \geq 1
\end{cases}
\]
is a \(k-\)quasiconformal extension of \(L(z, 0) \) to \(\mathbb{C} \).

Examples of quasiconformal extension criteria can be found in [1], [3], [7], [17], [24] and more recently in [9], [13]-[15], [30].

3. Main Results

Making use of Theorem 2.1 we can prove now, our main results.

Theorem 3.1. Consider \(f \in A \) and \(g \) be an analytic function in \(U \), \(g(z) = 1 + b_1z + ... \). Let \(\alpha, \beta, A \) and \(B \) complex numbers such that \(\Re(\alpha) > \frac{1}{2} \), \(A + B \neq 0 \), \(|A - B| < 2 \), \(|A| \leq 1 \) and \(|B| \leq 1 \). If the inequalities
\[
\left| \frac{1}{\alpha} \left(\frac{f'(z)}{g(z)} - \beta \right) - 1 \right| < \frac{|A + B|}{2 - |A - B|}
\]
(3.1)
and
\[(3.2) \quad \left(\frac{f'(z)}{g(z) - \beta} - 1 \right) |z|^2 + \left(1 - |z|^2 \right) \left(\frac{1 + \alpha}{\alpha} \frac{zf'(z)}{f(z)} + \frac{zg'(z)}{g(z) - \beta} \right) - \frac{(A - B)(A + B)}{4 - |A - B|^2} \leq \frac{2|A + B|}{4 - |A - B|^2}\]
are satisfied for all $z \in \mathcal{U}$, then the function f is univalent in \mathcal{U}.

Proof. We prove that there exists a real number $r \in (0, 1]$ such that the function $L : \mathcal{U}_r \times I \rightarrow \mathbb{C}$, defined formally by
\[(3.3) \quad L(z, t) = f^{1-\alpha}(e^{-t}z) \left[f(e^{-t}z) + (e^t - e^{-t}) z (g(e^{-t}z) - \beta) \right] ^\alpha\]
is analytic in \mathcal{U}_r for all $t \in I$.

Since $f(z) \neq 0$ for all $z \in \mathcal{U} \setminus \{0\}$, the function
\[(3.4) \quad \varphi_1(z, t) = \frac{(e^t - e^{-t}) z (g(e^{-t}z) - \beta)}{f(e^{-t}z)}\]
is analytic in \mathcal{U}.

It follows from
\[(3.5) \quad \varphi_2(z, t) = 1 + \frac{(e^t - e^{-t}) z (g(e^{-t}z) - \beta)}{f(e^{-t}z)}\]
that there exist a $r_1, 0 < r_1 < r$ such that φ_2 is analytic in \mathcal{U}_{r_1} and $\varphi_2(0, t) = (1 - \beta)e^{2t} + \beta, \varphi_2(z, t) \neq 0$ for all $z \in \mathcal{U}_{r_1}, t \in I$. Therefore, we choose an analytic branch in \mathcal{U}_{r_1} of the function
\[(3.6) \quad \varphi_3(z, t) = [\varphi_2(z, t)]^\alpha.\]
From these considerations it follows that the function
\[L(z, t) = f^{1-\alpha}(e^{-t}z) \left[f(e^{-t}z) + (e^t - e^{-t}) z (g(e^{-t}z) - \beta) \right] ^\alpha\]
\[= f(e^{-t}z)\varphi_3(z, t) = a_1(t)z + \ldots\]
is an analytic function in \mathcal{U}_{r_1} for all $t \in I$.

After simple calculation we have
\[(3.7) \quad a_1(t) = e^{(2\alpha - 1)t} \left[\beta e^{-2t} + 1 - \beta \right] ^\alpha\]
for which we consider the uniform branch equal to 1 at the origin. Because $\Re(\alpha) > \frac{1}{2}$, we have that
\[\lim_{t \to \infty} |a_1(t)| = \infty.\]
Moreover, $a_1(t) \neq 0$ for all $t \in I$.

From the analyticity of $L(z, t)$ in \mathcal{U}_{r_1}, it follows that there exists a number $r_2, 0 < r_2 < r_1$, and a constant $K = K(r_2)$ such that
\[\left| \frac{L(z, t)}{a_1(t)} \right| < K, \forall z \in \mathcal{U}_{r_2}, t \in I.\]
Then, by Montel’s Theorem, \(\left\{ \frac{L(z,t)}{\sigma_1(t)} \right\}_{t \in I} \) is a normal family in \(U \). From the analyticity of \(\frac{\partial L(z,t)}{\partial t} \), we obtain that for all fixed numbers \(T > 0 \) and \(r_3, 0 < r_3 < r_2 \), there exists a constant \(K_1 > 0 \) (that depends on \(T \) and \(r_3 \)) such that
\[
\left| \frac{\partial L(z,t)}{\partial t} \right| < K_1, \quad \forall z \in U_{r_3}, \ t \in [0,T].
\]
Therefore, the function \(L(z,t) \) is locally absolutely continuous in \(I \), locally uniform with respect to \(U_{r_3} \).

Let \(p : U_r \times I \to \mathbb{C} \) be the analytic function in \(U_r \), \(0 < r < r_3 \), for all \(t \in I \), defined by
\[
p(z,t) = \frac{\partial L(z,t)}{\partial t} / z \frac{\partial L(z,t)}{\partial z}.
\]
If the function
\[
w(z,t) = \frac{p(z,t) - 1}{A + Bp(z,t)} = \frac{\frac{\partial L(z,t)}{\partial t} - z\frac{\partial L(z,t)}{\partial z}}{A\frac{\partial L(z,t)}{\partial t} + B\frac{\partial L(z,t)}{\partial z}}
\]
is analytic in \(U \times I \) and \(|w(z,t)| < 1 \), for all \(z \in U \) and \(t \in I \), then \(p(z,t) \) has an analytic extension with positive real part in \(U \), for all \(t \in I \). From equality (3.8) we have
\[
w(z,t) = \frac{-2\phi(z,t)}{(A - B)\phi(z,t) + A + B}
\]
for \(z \in U \) and \(t \in I \), where
\[
\phi(z,t) = \left(\frac{f'(e^{-t}z)}{\alpha g(e^{-t}z) - \beta} - 1 \right) e^{-2t} + (1 - e^{-2t}) \left[\left(\frac{1 - \alpha}{\alpha} \right) \frac{e^{-t}zf'(e^{-t}z)}{f(e^{-t}z)} + \frac{e^{-t}zg'(e^{-t}z)}{g(e^{-t}z) - \beta} \right]
\]
From (3.1), (3.9), (3.10) and \(\Re(\alpha) > \frac{1}{2} \), we have
\[
|w(z,0)| = \frac{1}{\alpha} \left(\frac{f'(z)}{g(z) - \beta} - 1 \right) < \frac{|A + B|}{2 - |A - B|}
\]
and
\[
|w(0,t)| = \left(\frac{1}{\alpha (1 - \beta)} - 1 \right) e^{-2t} < \frac{|A + B|}{2 - |A - B|}
\]
where \(A + B \neq 0 \), \(|A - B| < 2 \), \(|A| \leq 1 \) and \(|B| \leq 1 \).

Since \(|e^{-t}z| = |e^{-t}| = e^{-t} < 1 \) for all \(z \in \overline{U} = \{ z \in \mathbb{C} : |z| \leq 1 \} \) and \(t > 0 \), we find that \(w(z,t) \) is an analytic function in \(U \). Using the maximum modulus principle it follows that for all \(z \in U - \{ 0 \} \) and each \(t > 0 \) arbitrarily fixed there exists \(\theta = \theta(t) \in \mathbb{R} \) such that
\[
|w(z,t)| < \max_{|z|=1} |w(z,t)| = |w(e^{i\theta},t)|,
\]
for all \(z \in U \) and \(t \in I \).

Denote \(u = e^{-t}e^{i\theta} \). Then \(|u| = e^{-t} \) and from (3.8) we have
\[
|w(e^{i\theta},t)| = \left| \frac{2\phi(e^{i\theta},t)}{(A - B)\phi(e^{i\theta},t) + A + B} \right|
\]
where
\[\phi(e^{i\theta}, t) = \left(\frac{1}{\alpha} \frac{f'(u)}{g(u) - \beta} - 1 \right) |u|^2 + \left(1 - |u|^2 \right) \left[\frac{1 - \alpha}{\alpha} \frac{uf'(u)}{f(u)} + \frac{ug'(u)}{g(u) - \beta} \right] \]

Because \(u \in U \), the inequality (3.2) implies that
\[|w(e^{i\theta}, t)| \leq 1, \]
for all \(z \in U \) and \(t \in I \). Therefore \(|w(z, t)| < 1 \) for all \(z \in U \) and \(t \in I \).

Since all the conditions of Theorem 2.1 are satisfied, we obtain that the function \(L(z, t) \) has an analytic and univalent extension to the whole unit disk \(U \), for all \(t \in I \). For \(t = 0 \) we have \(L(z, 0) = f(z) \), for \(z \in U \) and therefore the function \(f \) is analytic and univalent in \(U \). \(\square \)

If we take \(A = B \) in Theorem 3.1 we get the following univalence criterion.

Corollary 3.2. Consider \(f \in A \) and \(g \) be an analytic function in \(U \), \(g(z) = 1 + b_1 z + ... \). Let \(\alpha, \beta \) and \(A \) are complex numbers such that \(\Re(\alpha) > \frac{1}{2} \), \(A \neq 0 \), \(|A| \leq 1 \). If the inequalities
\begin{equation}
(3.14) \left| \frac{f'(z)}{g(z) - \beta} - 1 \right| < |A|
\end{equation}
and
\begin{equation}
(3.15) \left| \frac{f'(z)}{g(z) - \beta} - 1 \right| |z|^2 + \left(1 - |z|^2 \right) \left[\frac{1 - \alpha}{\alpha} \frac{zf'(z)}{f(z)} + \frac{zg'(z)}{g(z) - \beta} \right] \leq |A|
\end{equation}
are satisfied for all \(z \in U \), then the function \(f \) is univalent in \(U \).

If we choose \(\alpha = 1 \) in Theorem 3.1 we obtain the following univalence criterion.

Corollary 3.3. Consider \(f \in A \) and \(g \) be an analytic function in \(U \), \(g(z) = 1 + b_1 z + ... \). Let \(\beta, A \) and \(B \) complex numbers such that \(A + B \neq 0 \), \(|A - B| < 2 \), \(|A| \leq 1 \) and \(|B| \leq 1 \). If the inequalities
\begin{equation}
(3.16) \left| \frac{f'(z)}{g(z) - \beta} - 1 \right| < \frac{|A + B|}{2 - |A - B|}
\end{equation}
and
\begin{equation}
(3.17) \left| \frac{f'(z)}{g(z) - \beta} - 1 \right| |z|^2 + \left(1 - |z|^2 \right) \left[\frac{zg'(z)}{g(z) - \beta} - \frac{(\overline{A - B})(A + B)}{4 - |A - B|^2} \right] \leq \frac{2|A + B|}{4 - |A - B|^2}
\end{equation}
are satisfied for all \(z \in U \), then the function \(f \) is univalent in \(U \).

Corollary 3.4. Consider \(f \in A \) and \(g \) be an analytic function in \(U \), \(g(z) = 1 + b_1 z + ... \). Let \(A \) and \(B \) complex numbers such that \(A + B \neq 0 \), \(|A - B| < 2 \), \(|A| \leq 1 \) and \(|B| \leq 1 \). If the inequalities
\begin{equation}
(3.18) \left| \frac{f'(z)}{g(z) - 1} \right| < \frac{|A + B|}{2 - |A - B|}
\end{equation}
and
\begin{equation}
(3.19) \left| \frac{f'(z)}{g(z) - 1} \right| |z|^2 + \left(1 - |z|^2 \right) \left[\frac{zf'(z)}{g(z)} - \frac{(\overline{A - B})(A + B)}{4 - |A - B|^2} \right] \leq \frac{2|A + B|}{4 - |A - B|^2}
\end{equation}
are satisfied for all \(z \in \mathcal{U} \), then the function \(f \) is univalent in \(\mathcal{U} \).

Proof. It results from Corollary 3.3 with \(\alpha = 1 \) and \(\beta = 0 \). \(\square \)

For \(g(z) = f'(z) \) in Corollary 3.4 we have the following univalence criterion.

Corollary 3.5. Consider \(f \in \mathcal{A} \). Let \(A \) and \(B \) complex numbers such that \(A + B \neq 0 \), \(|A - B| < 2 \), \(|A| \leq 1 \) and \(|B| \leq 1 \). If the inequality

\[
\left| \left(1 - |z|^2 \right) \frac{zf''(z)}{f'(z)} - \frac{(\overline{A - B})(A + B)}{4 - |A - B|^2} \right| \leq \frac{2|A + B|}{4 - |A - B|^2}
\]

is satisfied for all \(z \in \mathcal{U} \), then the function \(f \) is univalent in \(\mathcal{U} \).

Corollary 3.6. Consider \(f \in \mathcal{A} \). Let \(\beta, A \) and \(B \) complex numbers such that \(A + B \neq 0 \), \(|A - B| < 2 \), \(|A| \leq 1 \) and \(|B| \leq 1 \). If the inequalities

\[
\left| \frac{\beta}{f'(z) - \beta} \right| < \frac{|A + B|}{2 - |A - B|}
\]

and

\[
\left| \frac{\beta |z|^2 + \left(1 - |z|^2 \right) zf''(z)}{f'(z) - \beta} - \frac{(\overline{A - B})(A + B)}{4 - |A - B|^2} \right| \leq \frac{2|A + B|}{4 - |A - B|^2}
\]

are satisfied for all \(z \in \mathcal{U} \), then the function \(f \) is univalent in \(\mathcal{U} \).

Proof. It results from Corollary 3.3 with \(g(z) = f'(z) \). \(\square \)

Corollary 3.7. Consider \(\beta < 0 \) in Corollary 3.6. By elementary calculation we obtain that the inequality (3.2) for \(A = B = 1 \) is equivalent to

\[
\mathbb{R}f'(z) > \frac{1}{2\beta} |f'(z)|^2, \ z \in \mathcal{U}.
\]

If in the last inequality we let \(\beta \to -\infty \) we obtain that

\[
\mathbb{R}f'(z) > 0.
\]

Since (3.22) for \(A = B = 1 \) and \(\beta \to -\infty \) it follows from Corollary 3.6 that the function \(f \) is univalent in \(\mathcal{U} \). Therefore, we can conclude that the univalence criterion due to Alexander-Noshiro-Warshawski [2, 20, 32] is a limit case of Corollary 3.6.

Remark 3.8. Some particular cases of Theorem 3.1 are the following:

(i) When \(\alpha = 1, \beta = 0, A = B = 1 \) and \(g(z) = f'(z) \) inequality (3.3) becomes

\[
\left(1 - |z|^2 \right) \left| \frac{zf''(z)}{f'(z)} \right| \leq 1, \ z \in \mathcal{U}
\]

which is Becker’s condition of univalence [4].
(ii) A result due to N. N. Pascu [23] is obtained when \(\alpha = 1, A = B = 1 \) and \(g(z) = f'(z) \).

Remark 3.9. It is worth to notice that the condition \((3.2)\) assures the univalence of an analytic function in more general case than that of condition \((3.3)\).

Remark 3.10. If we put \(g(z) = \frac{f(z)}{z} \) into \((3.12)\), we have
\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{|A + B|}{2 - |A - B|}, \quad z \in \mathbb{U}
\]
the class of functions starlike with respect to origin.

4. Quasiconformal Extension

In this section we will obtain the univalence condition given in Theorem 3.1 to a quasiconformal extension criterion.

Theorem 4.1. Consider \(f \in \mathcal{A} \), \(g \) be an analytic function in \(\mathbb{U} \), \(g(z) = 1 + b_1 z + \ldots \) and \(k \in [0, 1) \). Let \(\alpha, \beta, A \) and \(B \) complex numbers such that \(\Re(\alpha) > \frac{1}{2}, A + B \neq 0, k |A - B| < 2, |A| \leq 1 \) and \(|B| \leq 1 \). If the inequalities
\[
(4.1) \quad \left| \frac{1}{\alpha} \left(\frac{f'(z)}{g(z)} - \beta \right) - 1 \right| < \frac{k |A + B|}{2 - k |A - B|}
\]
and
\[
(4.2) \quad \left(\frac{f'(z)}{g(z) - \beta} - 1 \right) |z|^2 + \left(1 - |z|^2 \right) \left(\frac{1 - \alpha}{\alpha} \frac{zf'(z)}{f(z)} + \frac{zg'(z)}{g(z) - \beta} \right) - \frac{k^2 (A - B) (A + B)}{4 - k^2 |A - B|^2} \leq \frac{2k |A + B|}{4 - k^2 |A - B|^2}
\]
are satisfied for all \(z \in \mathbb{U} \), then the function \(f \) has a \(k \)-quasiconformal extension to \(\mathbb{C} \).

Proof. In the proof of Theorem 3.1 has been proved that the function \(L(z, t) \) given by \((3.8)\) is a subordination chain in \(\mathbb{U} \). Applying Theorem 2.2 to the function \(w(z, t) \) given by \((3.3)\), we obtain that the assumption
\[
(4.3) \quad |w(z, t)| = \left| \frac{-2\phi(z, t)}{(A - B) \phi(z, t) + A + B} \right| \leq k, \; z \in \mathbb{U}, \; t \geq 0, \; k \in [0, 1)
\]
where \(\phi(z, t) \) is defined by \((3.10)\).

Lengthy but elementary calculation shows that the last inequality \((4.3)\) is equivalent to
\[
\left(\frac{1}{\alpha} \frac{f'(e^{-t}z)}{g(e^{-t}z) - \beta} - 1 \right) e^{-2t} + (1 - e^{-2t}) \left(\frac{1 - \alpha}{\alpha} \frac{e^{-t}zf'(e^{-t}z)}{f(e^{-t}z)} + \frac{e^{-t}zg'(e^{-t}z)}{g(e^{-t}z) - \beta} \right) - \frac{k^2 (A - B) (A + B)}{4 - k^2 |A - B|^2} \leq \frac{2k |A + B|}{4 - k^2 |A - B|^2}.
\]
The inequality \((4.4)\) implies \(k \)-quasiconformal extensibility of \(f \).

The proof is complete. \(\square \)
If we choose $\alpha = 1, \beta = 0, g = f'$ in Theorem 4.1, we obtain following corollary.

Corollary 4.2. Consider $f \in A$ and $k \in [0,1)$. Let A and B complex numbers such that $A + B \neq 0, k |A - B| < 2, |A| \leq 1$ and $|B| \leq 1$. If the inequality

$$\left| \left(1 - |z|^2\right) \left(\frac{zf''(z)}{f'(z)}\right) - \frac{k^2 (\overline{A} - B) (A + B)}{4 - k^2 |A - B|^2} \right| \leq \frac{2k |A + B|}{4 - k^2 |A - B|^2}$$

is satisfied for all $z \in U$, then the function f has a k–quasiconformal extension to \mathbb{C}.

For $A = B = 1$ in Corollary 4.2 we have result of Becker [4].

Corollary 4.3. Consider $f \in A$ and $k \in [0,1)$. If the inequality

$$\left(1 - |z|^2\right) \left| \frac{zf''(z)}{f'(z)} \right| \leq k$$

is satisfied for all $z \in U$, then the function f has a k–quasiconformal extension to \mathbb{C}.

Acknowledgement 1. The present investigation was supported by Ataturk University Rectorship under "The Scientific and Research Project of Ataturk University", Project No: 2012/173.

References

[1] L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Ann. Math. Studies., 79 (1974), 23-29.
[2] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 17 (1915) 12-22.
[3] J. M. Anderson, A. Hinkkanen, Univalence criteria and quasiconformal extensions, Trans. Amer. Math. Soc., 324 (1991), 823-842.
[4] J. Becker, Löchnerse differentialgleichung und quasikonform fortsetzbare schlichte funktionen, J. Reine Angew. Math., 255 (1972) 23-43.
[5] J. Becker, Über die Lösungsstruktur einer differentialgleichung in der konformen abbildung, J. Reine Angew. Math., 285 (1976), 66-74.
[6] J. Becker, Conformal mappings with quasiconformal extensions, Aspects of Contemporary Complex Analysis, Ed. by D. A. Brannan and J. G. Clunie, Acad. Press, (1980), 37-77.
[7] Th. Betker, Löchner chains and quasiconformal extensions, Complex Variables Theory Appl., 20(1-4) (1992), 107-111.
[8] M. Çağlar and H. Orhan, Some generalizations on the univalence of an integral operator and quasiconformal extensions, Miskolc Math. Notes (2012) (accepted).
[9] E. Deniz, Sufficient conditions for univalence and quasiconformal extensions of meromorphic functions, Georgian Math. J., DOI 10.1515/gmj-2012-0027, 15 pages.
[10] E. Deniz, D. Raducanu, H. Orhan, On an improvement of an univalence criterion, Math. Balkanica (N.S.) 24 (2010), No. 1-2, 33–39.
[11] E. Deniz, H. Orhan, Some notes on extensions of basic univalence criteria, J. Korean Math. Soc. 48 (2011), No. 1, pp. 179-189.
[12] M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc. Trans. of Math., Monographs 29, Providence, RI, 1969.
[13] I. Hotta, Löchner chains with complex leading coefficient, Monatsh Math., 163 (2011), 315-325.
[14] I. Hotta, Explicit quasiconformal extensions and Loewner chains, Proc. Japan Acad. Ser. A., 85 (2009), 108-111.
[15] I. Hotta, Löewner chains and quasiconformal extension of univalent functions, Dissertation, Tohoku Univ., 2010.
[16] S. Kanas and H. M. Srivastava, Some criteria for univalence related to Ruscheweyh and Salagean derivatives, Complex Var. Elliptic Equ., 38 (1997), 263-275.
[17] J. G. Kryz, Convolution and quasiconformal extension, Comm. Math. Helv., 51 (1976), 99-104.
[18] J. Miazga, A. Wesolowski, A Univalence criterion and the structure of some subclasses of univalent functions, Ann. Univ. Mariae Curie-Skłodowska, Vol. XL, 16 (1986) 153-161.
[19] Z. Nehari, The Schwarzian derivate and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[20] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Imp. Univ., (1), 2 (1934-1935) 129-155.
[21] S. Ozaki, M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(2) (1972), 392-394.
[22] H. Ovesea-Tudor, S. Owa, An extension of the univalence criteria of Nehari and Ozaki, Hokkaido Mathematical Journal, 34 (3) (2005), 533-539.
[23] N. N. Pascu, V. Pescar, A generalization of Pfaltzgraff’s Theorem, Seminar on Geometric Function Theory, (Preprint), 2 (1991) 91-98.
[24] J. A. Pfaltzgraff, k-quasiconformal extension criteria in the disk, Complex Variables, 21 (1993), 293-301.
[25] Ch. Pommerenke, Univalent function, Vandenhoech Ruprecht in Göttingen, 1975.
[26] D. Raducanu, On a univalence criterion, Mathematica 37(60), 1-2, (1995), 227-231.
[27] D. Raducanu, H. Orhan, E. Deniz, On some sufficient conditions for univalence, An. Şt. Univ. Ovidius Constanţa, Vol. 18(2) (2010), 217-222.
[28] D. Raducanu, I. Radomir, M. E. Gageonea and N. R. Pascu, A generalization of Ozaki-Nunokawa’s univalence criterion, J. Inequl. Pure Appl. Math, Vol. 5(4) (2004), Article 95.
[29] D. Raducanu, A univalence criterion for analytic functions in the unit disk, Mathematica, 46(69), No. 2, (2004), 213-216.
[30] D. Raducanu, H. Tudor, A generalization of Goluzin’s univalence criterion, Stud. Univ. Babeş-Bolyai Math. 57(2012), 261-267.
[31] H. Tudor, New univalence criteria, Studia, Babeş-Bolyai Mathematica 52(2) (2007), 127-132.
[32] S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc., 38 (1935) 310-340.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ATATURK UNIVERSITY, ERZURUM, 25240, TURKEY.

E-mail address: mcaglar25@gmail.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ATATURK UNIVERSITY, ERZURUM, 25240, TURKEY.

E-mail address: orhanhalit607@gmail.com