Reducing charge noise in quantum dots by using thin silicon quantum wells

Charge noise in the host semiconductor degrades the performance of spin-qubits and poses an obstacle to control large quantum processors. However, it is challenging to engineer the heterogeneous material stack of gate-defined quantum dots to improve charge noise systematically. Here, we address the semiconductor-dielectric interface and the buried quantum well of a 28Si/SiGe heterostructure and show the connection between charge noise, measured locally in quantum dots, and global disorder in the host semiconductor, measured with macroscopic Hall bars. In 5 nm thick 28Si quantum wells, we find that improvements in the scattering properties and uniformity of the two-dimensional electron gas over a 100 mm wafer correspond to a significant reduction in charge noise, with a minimum value of $0.29 \pm 0.02 \, \mu\text{eV/Hz}^{1/2}$ at 1 Hz averaged over several quantum dots. We extrapolate the measured charge noise to simulated dephasing times to CZ-gate fidelities that improve nearly one order of magnitude. These results point to a clean and quiet crystalline environment for integrating long-lived and high-fidelity spin qubits into a larger system.

Spin-qubits in silicon quantum dots are a promising platform for building a scalable quantum processor because they have a small footprint, long coherence times, and are compatible with advanced semiconductor manufacturing. Furthermore, rudimentary quantum algorithms have been executed and quantum logic at high-fidelity performed. As the qubit count is increasing, with a six-qubit processor demonstrated, significant steps have been taken to couple silicon spin qubits at a distance, via microwave photons or spin shuttling, towards networked spin-qubit tiles. However, electrical fluctuations associated with charge noise in the host semiconductor can decrease qubit readout and control fidelity. Reducing charge noise independently of the device location on a wafer is pivotal to achieving the ubiquitous high-fidelity of quantum operations, within and across qubit tiles, necessary to execute more complex quantum algorithms.

Charge noise is commonly associated with two-level fluctuators (TLF) in the semiconductor host. In gated heterostructures with buried quantum wells, TLF may arise from impurities in several locations: within the quantum well, the semiconductor barrier, the semiconductor/dielectric interface, and the dielectrics layers above. Furthermore, previous work on strained-Si MOSFETs, with strained-Si channels deposited on SiGe strain relaxed buffers, has associated charge noise with dislocations arising from strain relaxation, either deep in the SiGe buffer or at the quantum well/buffer interface. Since these impurities and dislocations are randomly distributed over the wafer and are also a main scattering source for electron transport in buried quantum wells, a holistic approach to materials engineering should be taken to address disorder in two-dimensional electron gases and charge noise in quantum dots.

Received: 30 September 2022
Accepted: 25 February 2023
Published online: 13 March 2023

1QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands. 2QuTech and Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands. 3Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain. 4ICREA, Pg. Lluís Companys 23, 08020 Barcelona, Catalonia, Spain.

Check for updates

Brian Paquelet Wuetz¹, Davide Degli Esposti¹, Anne-Marije J. Zwerver¹, Sergey V. Amitonov¹², Marc Botifoll⃣³, Jordi Arbiol⃣³⁴, Amir Sammak², Lieven M. K. Vandersypen¹, Maximilian Russ⃣³ & Giordano Scappucci⃣¹

1234567890():,;
In this work, we demonstrate thin quantum wells in \(^{28}\text{Si}/\text{SiGe}\) heterostructures with low and uniform charge noise, measured over several gate-defined quantum dot devices. By linking charge noise measurements to the scattering properties of the two-dimensional electron gas, we show that a quiet environment for quantum dots is obtained by improving the semiconductor/dielectric interface and the crystalline quality of the quantum well. We feed the measured charge noise into a theoretical model, benchmark the model against recent experimental results\(^{6,10}\), and predict that these optimized heterostructures may support long-lived and high-fidelity spin qubits.

Results

Description of \(^{28}\text{Si}/\text{SiGe}\) heterostructures

Figure 1a illustrates the undoped \(^{28}\text{Si}/\text{SiGe}\) heterostructures, grown by reduced-pressure chemical vapor deposition, and the gate-stack above. From bottom to top, the material stack comprises a 100 nm Si substrate, a strain-relaxed SiGe buffer layer, a strained \(^{28}\text{Si}\) quantum well, a 30 nm thick SiGe barrier, a Si cap oxidized in air to form a SiO\(_x\) layer, an AlO\(_x\) layer formed by atomic layer deposition, and metallic gates. The SiGe layers above and below the quantum well have a Ge concentration of \(\approx 0.3\) (Methods).

We consider three \(^{28}\text{Si}/\text{SiGe}\) heterostructures (A, B, C) to improve, in sequence, the semiconductor/dielectric interface (from A to B) and the crystalline quality of the quantum well (from B to C). Heterostructure A has an \(\approx 9\) nm thick quantum well and is terminated with an epitaxial Si cap grown by dichlorosilane at 675 °C. This kind of heterostructure has already produced high performance spin-qubits\(^{6,10}\). Heterostructure B misses a final epitaxial Si cap but features an amorphous Si-rich layer obtained by exposing the SiGe barrier to dichlorosilane at 500 °C. Compared to A, heterostructure B supports a two-dimensional electron gas with enhanced and more uniform transport properties across a 100 mm wafer, owing to a more uniform SiO\(_x\) layer with less scattering centers\(^{32}\). Finally, we introduce here heterostructure C, having the same amorphous Si-rich termination as in heterostructure B, but a thinner quantum well of \(\approx 5\) nm (Supplementary Fig. 1). This is much thinner than the Matthews-Blakeslee critical thickness\(^{33,34}\), which is \(\approx 10\) nm\(^{35}\) for the relaxation of tensile Si on \(\text{Si}_{0.7}\text{Ge}_{0.3}\) via the formation of misfit dislocation at the bottom interface of the quantum well. In light of recent morphological characterization by electron channeling contrast imaging of Si/SiGe heterostructures with similar quantum well thickness and SiGe chemical composition\(^{36}\), we expect misfit dislocation segments in heterostructure B because the quantum well approaches the Matthews-Blakeslee critical thickness. Due to the much thinner quantum well, instead, the epitaxial planes may adapt to the SiGe buffer much better in heterostructure C than in heterostructure B, meaning that misfit dislocations are, in principle, suppressed.

Figure 1b, c shows bright-field scanning transmission electron microscopy (BF-STEM) images from heterostructure C after strain relaxation. b. c BF-STEM images from heterostructure C highlighting the semiconductor/dielectric interface and the 5 nm thick \(^{28}\text{Si}\) quantum well, respectively. d Mobility \(\mu\) and e conductivity \(\sigma_{xx}\) measured as a function of density \(n\) at a temperature of 1.6 K in a Hall bar H-FET from heterostructure C. The red curve in e is a fit to percolation theory.
fabrication of a Hall bar shaped heterostructure field effect transistors (H-FET). We observe a sharp SiGe/SiOx semiconductor/dielectric interface (Fig. 1b), characterized by a minor Ge pile up (dark line) in line with ref. 11. The ≈5 nm thick quantum well (Fig. 1c, Supplementary Fig. 1) is uniform, has sharp interfaces to the nearby SiGe, and appears of high crystalline quality.

Electrical characterization of heterostructure field effect transistors

We evaluate the scattering properties of the two-dimensional electron gases by wafer-scale electrical transport measured on Hall-bar shaped H-FETs operated in accumulation mode (Methods). For each heterostructure, multiple H-FETs over a wafer are measured in the same cooldown at a temperature of 1.7 K in refrigerators equipped with cryomultiplexers10. Figure 1d, e shows typical mobility-density and conductivity-density curves for heterostructure C, from which we extract the mobility measured at high density ($n = 6 \times 10^{11} \text{cm}^{-2}$) and the percolation density (n_p)15. The mobility rises steeply at low density due to progressive screening of scattering from remote impurities and flattens at higher density ($n > 5 \times 10^{10} \text{cm}^{-2}$), limited by scattering from impurities within or near the quantum well, for example uniform background charges, surface roughness, or crystalline defects such as threading or misfit dislocations16,17,18.

Charge noise measurements in quantum dots

For charge noise measurements, we use devices comprising a double quantum dot and a charge sensor quantum dot nearby, illustrated in Fig. 2a. Using the same device design, two-qubit gates with fidelity above 99% were demonstrated4, silicon quantum circuits were controlled by CMOS-based cryogenic electronics19, and energy splittings in Si/SiGe heterostructures were studied with statistical significance20.

Here, we electrostatically define a multi-electron quantum dot in the charge sensor by applying gate voltages to the accumulation gates SDRAcc and SDLAcc, the barriers SDLB and SDRB, and the plunger gate P. All other gates (red in Fig. 2a) are set to 0 V for the same device in b, plotted in 3D as a function of f and V_P. The dark gray plane is a fit through the datasets, i.e. the collection of noise spectra as in c measured at different V_P and each obtained using a unique lever arm from the corresponding Coulomb diamond. e Line cut through the data in d at $f = 1 \text{Hz}$, showing the experimental noise S_f (colored dots) and fit (dark gray line). The black circled data point (also in d) marks the minimum charge noise measured for this specific device (S_{min}) at $f = 1 \text{Hz}$.
from the corresponding Coulomb diamonds and slope of the Coulomb peak to take into account a possible deformation of the charge sensor with the increasing electron number (inset Fig. 2b, Methods, and Supplementary Fig. 5). A representative charge noise spectrum of measured at $V_p = 360.3 \text{mV}$ is shown in Fig. 2c. We observe an approximate $1/f$ trend at low frequency, pointing towards an ensemble of TLF with a broad range of activation energies affecting charge noise around the charge sensor\(^41,42\). Figure 2e shows the change in noise spectrum with increasing V_p, and minimum charge noise $S_{\epsilon_{\text{min}}}$ within the range of V_p investigated for heterostructure A (red, 4 devices measured), B (blue, 7 devices measured), and C (green, 5 devices measured). Quartile box plots, mode (horizontal line), means (diamonds), 99% confidence intervals of the mean (dashed whiskers), and outliers (circles) are shown.

Distribution of transport properties and charge noise

We have introduced key metrics for 2D electrical transport (μ, n_p) and charge noise (α, β, and $S_{\epsilon_{\text{min}}}$) from Hall bar and quantum dot measurements, respectively. In Fig. 3a–e we compare the distributions of all these metrics for the three heterostructures A, B, C. Each box-plot is obtained from the analysis of measurements in Figs. 1d, e, and 2d repeated on multiple H-FETs or quantum dots, on dies randomly selected from different locations across the 100 mm wafers (Methods). To facilitate a comparison with previous studies, the minimum charge noise at 1 Hz is plotted in Fig. 3e as $S_{\epsilon_{\text{min}}}^{1/2}$ and therefore in units of $\mu \text{eV/Hz}^{1/2}$.

As reported earlier in ref. \(^32\), the improvement in both mean values and spread for μ and n_p was associated with a reduction of remote impurities when replacing the epitaxial Si cap in heterostructure A with a Si-rich passivation layer in heterostructure B. Moving to heterostructure C, we measure a high mean mobility of $(2.10 \pm 0.08) \times 10^5 \text{cm}^2/\text{Vs}$ and a low mean percolation density of $(7.68 \pm 0.37) \times 10^{10} \text{cm}^{-2}$, representing an improvement by a factor ≈ 1.4 and ≈ 1.3, respectively (compared to heterostructure A). Most strikingly, the 99% confidence intervals of the mean for μ and n_p are drastically reduced by a factor ≈ 9.8 and ≈ 4.8, respectively. We speculate that these improvements in heterostructure C are associated with the suppression of misfit dislocations at the quantum well/buffer interface, thereby reducing short range scattering and increasing uniformity on a wafer-scale. This interpretation is supported by previous
studies of mobility limiting mechanisms as a function of the quantum well thickness in strained Si/SiGe heterostructures. We speculate that further reducing the quantum well thickness could increase surface roughness scattering from the bottom interface, and therefore disorder. Instead, fine-tuning the quantum well thickness between 5 nm and 9 nm might minimize surface roughness scattering whilst still avoiding the formation of misfit dislocations.

We now shift our attention to the results of charge noise measurements. First, the power law exponent α (Fig. 3c) shows a mean value ≈ 1, however the 99% confidence interval and interquartile range increase when moving from heterostructure A to B and C. Next, we observe a decreasing trend for the absolute mean value of coefficients β (Fig. 3d), meaning that the noise spectrum is less susceptible to changes in V_F. Finally, Fig. 3e shows the distributions for $S_{e,min}^{1/2}$, the minimum charge noise at 1 Hz upon varying V_F. We find in heterostructure C an almost order of magnitude reduction in mean $S_{e,min}^{1/2}$ to 0.29 \pm 0.02 μeV/Hz$^{3/2}$. This trend is confirmed by plotting the distributions of maximum charge noise at 1 Hz upon varying V_F (Supplementary Fig. 4). Furthermore, within the distribution of $S_{e,min}$ for heterostructure C, the minimum value of the measured charge noise as a function of V_F and across quantum dots is 0.15 μeV/Hz$^{3/2}$. These charge noise values are on par or compare favorably to the best values reported previously at 1 Hz in gate defined quantum dots. In multi-electron quantum dots, charge noise of 0.3 μeV/Hz$^{3/2}$ was reported for Si/SiGe45, 0.49 \pm 0.1 μeV/Hz$^{3/2}$ for Si/SiO$_2$,46 and 1 μeV/Hz$^{3/2}$ for InSb47. In single-electron quantum dots, charge noise of 0.33 μeV/Hz$^{3/2}$ was reported for Si/SiGe48 and 7.5 μeV/Hz$^{3/2}$ for GaAs49. We understand the charge noise trends in Fig. 3c–e by relating them to the evolution of the disorder landscape moving from heterostructures A to B and C, as inferred by the electrical transport measurements in Fig. 3a, b. The narrow distribution of α in heterostructure A points to charge noise being dominated from many TLFs possibly located at the low quality semiconductor/dielectric interface and above, albeit other sources of charge noise in the surrounding environment of the quantum dot may be present, such as highly localized misfit dislocations arising from partial strain relaxation in the quantum well or other nearby fluctuators. With a better semiconductor/dielectric interface, the effect of these other nearby fluctuators emerges in heterostructure B and C as a larger spread of the frequency exponent α, indicating a nonuniform distribution of activation energies according to the Dutta-Horn model50. Yet, the noise spectra still follow a 1/f-like behavior (Supplementary Fig. 3), suggesting that TLFs also experience slow temperature fluctuations51. The electrical transport measurements support this interpretation: scattering from many remote impurities is dominant in heterostructure A, whereas with a better semiconductor/dielectric interface remote scattering has less impact in the transport metrics of heterostructures B and C.

The decreasing trend in $|\beta|$ is in line with the observation from electrical transport. As the impurity density decreases from heterostructure A to B and C, charge noise is less affected by an increasing V_F, since screening of electrical noise through adding electrons to the charge sensor becomes less effective. While we are not able to measure directly the electron number in the charge sensor, we deem unlikely the hypothesis that charge sensors in heterostructure A are operated with considerably fewer electrons than in heterostructure C. This is because all operation gate voltages in heterostructure A are consistently larger than in heterostructure C (Supplementary Fig. 4), due to the higher disorder.

Finally, the drastic reduction in mean value and spread of $S_{e,min}^{1/2}$ mirrors the evolution of mean value and spread of n_p and μ. From heterostructure A to B, a reduction in scattering from remote impurities is likely to result in less charge noise from long-range TLFs. From heterostructure B to C, the reduction in the possible number of dislocations at the quantum well/buffer interface, further reduces the charge noise picked up by quantum dots. This explanation is based on earlier studies of charge noise in strained Si-MOSFETs30,29, which showed a correlation between low-frequency noise spectral density and static device parameters. Dislocations at the bottom of the strained channel may act as scattering centers that degrade mobility and as traps for the capture and release of carriers, which causes noise similarly to traps at the dielectric interface.

Calculated dephasing time and infidelity

To emphasize the improvement of the electrical environment in the semiconductor host, we calculate the dephasing time T_2^* of charge and spin qubits assuming these qubits experience the same fluctuations as our 28Si/SiGe quantum dots. The dephasing time of a qubit (in the quasistatic limit and far-off from a sweet spot) is given by

$$T_2^* = \frac{h}{\sqrt{2\pi}}$$

with the Planck constant h and the standard deviation

$$\sigma^2 = \frac{\partial^2 E}{\partial \mu^2} \times 2 \int_{f_{\text{low}}}^{f_{\text{high}}} \frac{S_\epsilon}{f} \, df$$

importantly, both the charge noise amplitude $S_\epsilon^2(f)$ and the noise exponent α have a strong impact on the dephasing time while the low and high frequency cut-off, f_{low} and f_{high}, given by the duration of the experiment have a weaker impact. The prefactor $1/(\pi \alpha)$ translates shifts in chemical potential of the charge sensor into energy shifts of the qubit and depends on many parameters such as the type of qubit and the device itself. We find $|\alpha|=1$ for a charge qubit51 and $|\alpha|=10^{-3}$ for an uncoupled spin-qubit (see Supplementary Note 7 for a derivation of these numbers and the used frequency bandwidths).

Figure 4a shows the computed dephasing times of charge qubits (circle) and spin qubits (star) for all three heterostructures. These calculations represent a best case scenario, since we use the distribution of measured $S_{e,min}$ from Fig. 3 as input parameter for each heterostructure. The improvements in our material can be best seen by investigating T_2^* of the charge qubit since it is directly affected by charge noise. Our theoretical extrapolation shows two orders of magnitude improvement in T_2^* by switching from heterostructures A to heterostructures B and C. One order is gained from the reduced charge noise amplitude and another order is gained through a more beneficial noise exponent $\alpha > 1$. Note, that the integration regimes differ for spin and charge qubits due to the different experimental setups and operation speeds44,53. For potential spin qubits in heterostructure A the calculated T_2^* shows an average $T_2^* = 8.4 \pm 5.6$ μs. This distribution compares well with the distribution $T_2^* = 6.7 \pm 5.6$ μs of experimental T_2^* data from state-of-the-art semiconductor spin qubits in materials with similar stacks as in heterostructure A40. Note that while such comparisons oversimplify actual semiconductor spin-qubit devices by reducing them to a single number, they fulfill both aims. They allow us to benchmark the computed performance of heterostructure A to past experiments and provide a prognosis on the qubit quality in novel material stacks. Heterostructures B and C, in this case, may support average dephasing times of $T_2^* = 24.3 \pm 12.5$ μs and $T_2^* = 36.7 \pm 18$ μs, respectively. The highest values $T_2^* = 70.1 \mu$s hints towards a possible long dephasing time for spin qubits, previously only reported in ref.7.

Figure 4b shows the simulated infidelity, a metric to measure the closeness to the ideal operation, of a universal c2:gate between two spin qubits following ref.1 and Supplementary Note 7. Note that the device used in ref.1 has the same architecture as our test devices. In the c2:gate simulation, noise couples in dominantly via barrier
in the simulations. The simulations show an averaged average gate exponent α error every 5000 runs. We also observe a saturation value close to ppm concentration of the ^{29}Si silicon isotope which has a non-zero in the simulations estimated from nuclear spin noise due to a δ00

are reduced, charge noise becomes more sensitive to local measurements of charge noise in quantum dots. As remote impurities and their uniformity across a $100\ \text{mm}$ wafer. The trend observed from the quantum dot experiments in Fig. 3 as input for barrier fluctuations.

Discussion

In summary, we have measured electron transport and charge noise in $^{28}\text{Si}/\text{SiGe}$ heterostructures where we improve the semiconductor/dielectric interface, by adopting an amorphous Si-rich passivation, and the structural quality of the quantum well, by reducing the quantum well thickness significantly below the Matthew-Blakeslee critical thickness for strain relaxation. We relate disorder in 2D to charge noise supported by quantum dots. Using the charge noise distribution as input parameter and benchmarking against published spin-qubit data, we predict that our optimized semiconductor host could support long-lived and high-fidelity spin qubits. We envisage that further materials improvements in the structural quality of the quantum well, in addition to the commonly considered semiconductor/dielectric interface, may lead systematically to quantum dots with less noise and to better qubit performance.

Methods

Si/SiGe heterostructure growth

The $^{28}\text{Si}/\text{SiGe}$ heterostructures are grown on a $100\-\text{mm}$ n-type $\text{Si}(001)$ substrate using an Epsilon 2000 (ASMI) reduced pressure chemical vapor deposition reactor. The reactor is equipped with a $^{28}\text{SiH}_4$ gas cylinder (1\% dilution in H$_2$) for the growth of isotopically enriched ^{28}Si. The $^{28}\text{SiH}_4$ gas was obtained by reducing $^{28}\text{SiF}_4$ with a residual ^{28}Si concentration of 0.08%-\dagger. Starting from the Si substrate, the layer sequence of all heterostructures comprises a 3 μm step-graded $\text{Si}_{0.7-x}\text{Ge}_x$ layer with a final Ge concentration of $x=0.3$ achieved in four grading steps ($x=0.07, 0.14, 0.21,$ and 0.3), followed by a 2.4 μm $\text{Si}_{0.7-x}\text{Ge}_{0.3}$ strain-relaxed buffer. The heterostructures differ for the active layers on top of the strain-relaxed buffer. Heterostructure A has a 9 nm tensile strained ^{28}Si quantum well, a 30 nm $\text{Si}_{0.7-x}\text{Ge}_{0.3}$ barrier, and a sacrificial 1 nm epitaxial Si cap. Heterostructure B has an 9 nm tensile strained ^{28}Si quantum well, a 30 nm $\text{Si}_{0.7-x}\text{Ge}_{0.3}$ barrier, and a sacrificial passivated Si cap grown at 500 °C. Heterostructure C has a 5 nm tensile strained ^{28}Si quantum well, a 30 nm $\text{Si}_{0.7-x}\text{Ge}_{0.3}$ barrier, and a sacrificial passivated Si cap grown at 500 °C. A typical secondary ions mass spectrometry of our heterostructures is reported in Supplementary Fig. S13 of ref. 40 and the Ge concentration in the SiGe layers is confirmed by quantitative electron energy loss spectroscopy (EELS).

Fig. 4 | Calculated dephasing times and infidelity. a Computed dephasing times T_2^* of a charge qubit (circle) and of a spin-qubit (star) using S_{min} from heterostructure A (red), B (blue), C (green). Eq. (1) was used to compute T_2^* as a function of S_α and μ from Fig. 3 with frequency cutoffs ($f_{\text{min}}, f_{\text{max}}$) = (1.6 mHz, 33 GHz) and ($f_{\text{min}}, f_{\text{max}}$) = (1.6 mHz, 10 kHz). Literature values (squares) are taken from refs. 6,10. b Simulated infidelity of a CZ-gate between two spin qubits following the ref. 6 using S_α and μ from heterostructure A (red), B (blue), C (green) in Fig. 3 as input for barrier fluctuations.

![Calculated dephasing times and infidelity](https://doi.org/10.1038/s41467-023-36951-w)
Device fabrication

The fabrication process for Hall-bar shaped heterostructure field effect transistors (H-FETs) involves: reactive ion etching of mesa-trench to isolate the two-dimensional electron gas; P-ion implantation and activation by rapid thermal annealing at 700°C; atomic layer deposition of a 10-nm-thick Al2O3 gate oxide; deposition of thick dielectric pads to protect gate oxide during subsequent wire bonding step; sputtering of Al gate; electron beam evaporation of Ti/Pt to create ohmic contacts to the two-dimensional electron gas via doped areas. All patterning is done by optical lithography. Double quantum dot devices are fabricated on wafer coupons from the same H-FET fabrication run and share device parameters so that Coulomb blockade peaks are visible. We then determine the barrier voltages and sweep VSDRB to find a set of gate voltage voltages for each barrier. Subsequently, we measure the current ISD across the quantum dot, and we apply 0 V to all other gates. We measure the current ISD and the current noise spectrum S on the left side of the Coulomb peak where |dI/dV| is largest. We use a sampling rate of 1 kHz for 1 min using a Keithley DMM6500 multimeter. The spectra are then divided into 10 segments of equal length and we use a Fourier transform to convert from time-domain to frequency-domain for a frequency range of 167 mHz–500 Hz. We set the upper limit of the frequency spectra at 10 Hz, to avoid influences from a broad peak at around 150 Hz coming from the setup (Supplementary Fig. 3). A peak in the power spectral density at 9 Hz is removed from the analysis since it is an artifact of the pre-amplifier. To convert the current noise spectrum to a charge noise spectrum, we use the formula 6

\[S_c = \frac{a^2 S_i}{|dI/dV|} \]

where a is the lever arm and |dI/dV| is the slope of the Coulomb peak at the plunger voltage used to acquire the time trace.

The charge noise measurements conditions have been slightly modified from sample A to sample B, C to extend the probed frequency range from 100 μHz to 10 μHz. For heterostructures B and C we apply a source drain bias of 150 μA across the quantum dot, finite gate voltages across the operation gates of the quantum dot, and we apply 0 V to all other gates. We measure the current ISD and the current noise spectrum S on the left side of the Coulomb peak where |dI/dV| is largest. We use a sampling rate of 1 kHz for 10 min using a Keithley DMM6500 multimeter. The spectra are then divided into 15 segments of equal length and we use a Fourier transform to convert from time-domain to frequency-domain for a frequency range of 25 mHz–500 Hz. We set the upper limit of the frequency spectra at 10 Hz, to avoid influences from a broad peak at around 150 Hz coming from the setup. We use Eq. (3) to convert the current noise spectrum to a charge noise spectrum.

(Scanning) Transmission Electron Microscopy

For structural characterization with (S)TEM, we prepared cross-sections of the quantum well heterostructures by using a Focused Ion Beam (Helios 600 dual beam microscope). Atomically resolved HAADF STEM data was acquired in a probe corrected TITAN microscope operated at 300 kV. Quantitative EELS was carried out on a TECNAI F20 microscope operated at 200 kV with approximately 2 eV energy resolution and 1 eV energy dispersion. Principal Component Analysis (PCA) was applied to the spectrum images to enhance S/N ratio.

Data availability

All data included in this work are available from the 4TU.ResearchData international data repository at https://doi.org/10.4121/20418579.

References

1. Vandersypen, L. M. K. & Eriksson, M. A. Quantum computing with semiconductor spins. Phys. Today 72, 38–45 (2019).
2. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).
3. Stano, F. & Loss, D. Review of performance metrics of spin qubits in gated semiconductor nanostructures. Nat. Rev. Phys. 4, 672–688 (2022).
4. Zwerver, A. M. J. & al. Qubits made by advanced semiconductor manufacturing. Nat. Electronics 5, 184–190 (2022).
5. Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).
6. Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).
7. Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).
8. Mądzik, M. T. et al. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 601, 348–353 (2022).
9. Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv. 8, 5130 (2022).
10. Philips, S. G. J. et al. Universal control of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).
11. Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).
12. Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).
13. Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2020).
14. Harvey-Collard, P. et al. Coherent spin-spin coupling mediated by virtual microwave photons. Phys. Rev. X 12, 021026 (2022).
15. Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).
16. Noiri, A. et al. A shuttling-based two-qubit logic gate for linking distant silicon quantum processors. Nat. Commun. 13, 5740 (2022).
17. Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors-hot, dense, and coherent. npj Quantum Inf. 3, 1–13 (2017).
18. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).
19. Paladino, E., Galperin, Y. M., Falci, G. & Althuser, B. L. 1/f noise: Implications for solid-state quantum information. Rev. Modern Phys. 86, 361 (2014).
20. Connors, E. J., Nelson, J. J., Qiao, H., Edge, L. F. & Nichol, J. M. Low-frequency charge noise in Si/SiGe quantum dots. Phys. Rev. B 100, 165305 (2019).
21. Connors, E. J., Nelson, J., Edge, L. F. & Nichol, J. M. Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations. Nat. Commun. 13, 940 (2022).
22. Culcer, D., Hu, X. & Das Sarma, S. Dephasing of Si spin qubits due to charge noise. Appl. Phys. Lett. 95, 073102 (2009).
23. Dekker, C. et al. Spontaneous resistance switching and low-frequency noise in quantum point contacts. Phys. Rev. Lett. 66, 2148–2151 (1991).
24. Sakamoto, T., Nakamura, Y. & Nakamura, K. Distributions of single-carrier traps in GaAs/AlGaAs heterostructures. Appl. Phys. Lett. 67, 2220 (1998).
25. Liefrink, F., Dijkhuis, J. I. & Houten, H. V. Low-frequency noise in quantum point contacts. Semiconductor Sci. Technol. 9, 2178–2189 (1994).
26. Ramon, G. & Hu, X. Decoherence of spin qubits due to a nearby charge fluctuator in gate-defined double dots. Phys. Rev. B 81, 045304 (2010).
27. Hua, W.-C., Lee, M. H., Chen, P. S., Tsai, M.-J. & Liu, C. W. Threading dislocation induced low frequency noise in strained-Si nMOSFETs. IEEE Electron Device Letters 26, 667–669 (2005).
28. Lee, M. H. et al. Comprehensive low-frequency and RF noise characteristics in strained-Si NMOSFETs. In: IEEE International Electron Devices Meeting 2003, pp. 3–61364 (2003).
29. Simoen, E. et al. Processing aspects in the low-frequency noise of nMOSFETs on strained-silicon substrates. IEEE Trans. Electron Dev. 53, 1039–1047 (2006).
30. Monaco, D. Comparison of mobility-limiting mechanisms in high-mobility Si-Ge heterostructures. J. Vac. Sci. Technol. B 11, 1731 (1993).
31. Xue, X. et al. Cmos-based cryogenic control of silicon quantum circuits. Nature 593, 205–210 (2021).
32. Degl’Esposito, D. et al. Wafer-scale low-disorder 2DEG in 28Si/28SiGe without an epitaxial Si cap. Appl. Phys. Lett. 120, 184003 (2022).
33. Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers: I. Misfit dislocations. J. Crystal Growth 27, 118–125 (1974).
34. People, R. & Bean, J. C. Calculation of critical layer thickness versus lattice mismatch for Ge,Si, /Si strained-layer heterostructures. Appl. Phys. Lett. 47, 322–324 (1985).
35. Ismail, K. Effect of dislocations in strained Si/SiGe on electron mobility. J. Vac. Sci. Technol. B 14, 2776 (1996).
36. Liu, Y. et al. Role of critical thickness in SiGe/SiGe heterostructure design for qubits. J. Appl. Phys. 132, 085302 (2022).
37. Paquelet Wuetz, B. et al. Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures. npj Quantum Inf. 6, 43 (2020).
38. Tracy, L. A. et al. Observation of percolation-induced two-dimensional metal-insulator transition in a Si MOSFET. Phys. Rev. B 79, 235307 (2009).
39. Ismail, K. et al. Identification of a mobility-limiting scattering mechanism in modulation-doped Si/SiGe heterostructures. Phys. Rev. Lett. 73, 3447–3450 (1994).
40. Paquelet Wuetz, B. et al. Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots. Nat. Commun. 13, 7730 (2022).
41. Kogan, S. Electronic noise and fluctuations in solids (Cambridge University Press, 1996).
42. Ahn, S., Sarma, S. D. & Kestner, J. P. Microscopic bath effects on noise spectra in semiconductor quantum dot qubits. Phys. Rev. B 103, 041304 (2021).
43. Thorgrimsson, B. et al. Extending the coherence of a quantum dot hybrid qubit. npj Quantum Inf. 3, 32 (2017).
44. Struck, T. et al. Low-frequency spin qubit energy splitting noise in highly purified 28Si/SiGe. npj Quantum Inf. 6, 40 (2020).
45. Lodari, M. et al. Low percolation density and charge noise with holes in germanium. Mater. Quantum Technol. 1, 1102 (2021).
46. Freeman, B. M., Schoenfield, J. S. & Jiang, H. Comparison of low-frequency charge noise in identically patterned Si/SiO2 and Si/SiGe quantum dots. Appl. Phys. Lett. 108, 253108 (2016).
47. Jekat, F. et al. Exfoliated hexagonal BN as gate dielectric for InSb nanowire quantum dots with improved gate hysteresis and charge noise. Appl. Phys. Lett. 116, 253101 (2020).
48. Mi, X., Kohler, S. & Petta, J. R. Landau-Zener interferometry of valley-orbit states in Si/SiGe double quantum dots. Phys. Rev. B 98, 161404 (2018).
49. Basset, J. et al. Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture. Appl. Phys. Lett. 105, 063105 (2014).
50. Dutta, P., Dimon, P. & Horn, P. M. Energy scales for noise processes in metals. Phys. Rev. Lett. 43, 646–649 (1979).
51. Shnirman, A., Makhlkin, Y. & Schön, G. Noise and decoherence in quantum two-level systems. Phys. Scripta 2002, 147 (2002).
52. Bermeister, A., Keith, D. & Culcer, D. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits. Appl. Phys. Lett. 105, 192102 (2014).
53. MacQuarrie, E. R. et al. Progress toward a capacitively mediated CNOT between two charge qubits in Si/SiGe. npj Quantum Inf. 6, 81 (2020).
54. Sabbagh, D. et al. Quantum Transport Properties of Industrial 28Si/28SiO2. Phys. Rev. Appl. 12, 014013 (2019).

Acknowledgements
We acknowledge helpful discussions with G. Isella, D. Paul, M. Memarkdost, the Scappucci group and the Vandersypen group. This research was supported by the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No. 951852 (QLSI project) and in part by the Army Research Office (Grant No. W911NF-17-1-0274). The views and conclusions contained in this
Author contributions
A.S. grew and designed the 28Si/SiGe heterostructures with B.P.W. and G.S.. M.R. developed the theory. A.S. and D.D.E. fabricated heterostructure field effect transistors measured by B.P.W. and D.D.E.. M.B and J.A. performed TEM characterization. S.A and D.D.E. fabricated quantum dot devices. B.P.W. and D.D.E. measured the quantum dot devices with contributions from A.M.J.Z.. G.S. conceived and supervised the project. B.P.W, D.D.E, M.R, and G.S. wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-36951-w.

Correspondence and requests for materials should be addressed to Giordano Scappucci.

Peer review information Nature Communications thanks Yujia Liu and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023