THE POTENTIAL OF *HEDYOTIS CORYMBOSA* (L.) LAMK EXTRACT TO INHIBIT THE PROGRESSIVITY OF ORAL CANCER CELL IN RATS INDUCED WITH BENZOPYRENE

(POTENSI EKSTRAK HEDYOTIS CORYMBOSA (L.) LAMK DALAM MENGHAMBAT PROGRESIFITAS SEL KANKER MULUT PADA TIKUS YANG INDUKSI DENGAN BENZOPYRENE)

Theresia Indah Budhy, Istiati, Bambang Sumaryono

Department of Oral Pathology and Maxillofacial Faculty of Dentistry, Airlangga University
Jl. Mayjend. Prof. Dr. Moestopo 47 Surabaya 60132, Indonesia
E-mail: terebudhy@gmail.com

Abstract

Cancer is still ranked as the fifth cause of mortality and morbidity in Indonesia. *Hedyotis corymbosa* (L.) Lamk has ursolact acid as anti-proliferative cancer cell. This research is aimed to determine the potency of *Hedyotis corymbosa* (L.) Lamk at different doses, namely 375, 750, and 1500 mg/kg, used as an inhibitor for the progressivity of oral cancer, such as proliferation, angiogenesis, and apoptosis of cancer cells. Post test only control group design was used in this research. There were 24 *Rattus novergicus* used as research samples. Those were divided into four groups, namely control, treatment group 1 with a dose of 375 mg/kg, treatment group 2 with a dose of 750 mg/kg, and treatment group 3 with a dose of 1500 mg/kg. Their oral cavity was induced intramuscularly by benzopyrene with a dose of 8 mg/kg for 4 weeks (twice a week) to create cancer. *Hedyotis corymbosa* (L.) Lamk was given orally for 10 days. All samples were aclimatization to perform Histo Pathology Anatomi among groups. Haematoxillin Eosin for proliferation cancer cell and capillary. Immunohistochemistry for expression of caspase3. Data were tabulated and analyzed statistically by ANOVA. There was significant difference of cancer cell proliferation and capillary between control and treatment groups. The most significant decreasing of cancer cell proliferation was in those samples given with a dose of 750 mg/kg. Meanwhile, the highest apoptosis of caspase3 expression was in those samples given with a dose of 750 mg/kg. It can be concluded that *Hedyotis corymbosa* (L.) Lamk extract could decrease cancer cell proliferation and capillary as well as could increase apoptosis.

Key words: *Hedyotis corymbosa* (L.), oral cancer, apoptosis, benzopyrene

Abstrak

Kanker masih menjadi penyebab kelima mortalitas dan morbiditas di Indonesia. *Hedyotis corymbosa* (L.) Lamk memiliki asam ursolact sebagai anti-proliferasi sel kanker. Penelitian ini bertujuan untuk mengetahui potensi *Hedyotis corymbosa* (L.) Lamk pada dosis yang berbeda, yaitu 375, 750, dan 1500 mg/kg BB, sebagai inhibitor progresivitas kanker mulut, seperti proliferasi, angiogenesis, dan apoptosis sel kanker. Dalam penelitian ini digunakan Post test only control group. Terdapat 24 ekor *Rattus novergicus* sebagai sampel penelitian, dibagi menjadi empat kelompok, yaitu kontrol, kelompok perlakuan 1 dosis 375 mg/kg, kelompok perlakuan 2 dosis 750 mg/kg, dan kelompok perlakuan 3 dosis 1500 mg/kg. Mukosa rongga mulut diinduksi intramuscular dengan benzopyrene dengan dosis 8 mg / kg selama 4 minggu sampai terbentuk kanker. *Hedyotis corymbosa* (L.) Lamk diberikan secara oral selama 10 hari. Dilakukan pemeriksaan Histopatologi, untuk proliferasi sel kanker dan pembuluh darah menggunakan Hematoksilin Eosin, sedangkan ekspresi caspase3 dengan Imunohistokimia. Data dianalisis secara statistik dengan Anova. Hasil didapatkan perbedaan signifikansi proliferasi sel kanker dan pembuluh darah antara kontrol dan kelompok perlakuan. Dosis yang terbaik adalah 750 mg/kg terhadap penurunan proliferasi sel kanker, pembuluh darah. Pada ekspresi caspase3 tertinggi diberikan dengan dosis 750 mg/kg. Dapat disimpulkan bahwa *Hedyotis corymbosa* (L.) Lamk ekstrak dapat menurunkan proliferasi sel kanker dan pembuluh darah serta dapat meningkatkan apoptosis.

Kata kunci: *Hedyotis corymbosa* (L.), kanker mulut, apoptosis, benzopyrene
INTRODUCTION

The highest cause of mortality and morbidity in the world today is cancer. In Indonesia, cancer is ranked as the fifth cause of mortality. In the United States, 3% of 1 million cases in each year are related with cancer disease in oral cavity and oropharynx. Some intensive cancer treatments have been made including surgery, chemotheray, radiation, immunetherapy, and pharmacotherapy, but they still have not given satisfactory results. Thus, alternative cancer treatments are very important. One of them is derived from *Hedyotis corymbosa* (L.) Lamk plant, known as apotential anti-cancer. Febriansah said that *Hedyotis corymbosa* (L.) Lamk extract has anti-proliferative effects against liver cancer cells, but its effect on oral cancer is still not known.

Free radical compounds are highly reactive to the cells of the body causing mutations in "proto-oncogenes" and "suppressor genes" that contribute to the regulation of cell proliferation and apoptosis. It means that if there is a mutation in the gene, proliferation will be uncontrolled and apoptosis will be inhibited initiating cancer incidence. Cancer can also form its own blood vessels or angiogenesis in order to grow more progressive. Thus, it can be said that the imbalance between proliferating and both apoptotic cells and angiogenesis process makes cancer become increasingly progressive.

Hedyotis corymbosa (L.) Lamk is more known to the public as a wild plant. It has a group of terpenoid compounds that can be used as a herbal drug. The terpenoid compounds contain *ursolic acid* that can inhibit liver cancer at a dose of 750 mg/kg. *Ursolic acid* can interfere with the regulation of the cell cycle by inhibiting the cell cycle from the G phase to the S phase to inhibit cell proliferation. In addition, a research showed that *ursolic acid* can cause progressive barriers to gastric cancer cell cycle by in-activating cyclin/cdk5.

Ursolic acid also induces apoptosis in the extrinsic pathway through *TRAIL* or tumor necrosis factor-related *apoptosis* inducing ligand. *TRAIL* works specifically to induce apoptosis in cancer cells, but not in normal cells. *Ursolic acid* then will activate caspase that has a function as a pro-apoptosis enzyme. In angiogenesis, *ursolic acid* contains of *Hedyotis corymbosa* (L.) Lamk has a role in inhibiting *ERK* pathway and in inhibiting the expressions of *VEGF* and *bFGF*.

Therefore, this research aimed to determine the potential of *Hedyotis corymbosa* (L.) Lamk extract as the inhibitor of the progression of oral cancer cells and as anti-proliferation of cancer cells in increasing apoptosis through caspase 3 expression and in decreasing the number of new blood vessels. Finally, this research is expected to be used to develop oral cancer treatment.

MATERIALS AND METHODS

This research was a laboratory experimental research with post test only control group design. In this research, there were four groups, namely Treatment Group 1, Treatment Group 2, Treatment Group 3, and Control Group. The samples of this research were healthy male *Rattus norvegicus* Wistar aged 2-3 months old and weighed 160-200 grams. In this research, replication was conducted as many as six times for each treatment. *Hedyotis corymbosa* (L.) Lamk extract was used with three different doses, namely 375 mg/kg, 750 mg/kg, and 1500 mg/kg.

Moreover, *Hedyotis corymbosa* (L.) Lamk extract was made with the following procedures. First, *Hedyotis corymbosa* (L.) Lamk leaves were dried and powdered in a blender, and then filtered to obtain powder. Second, the powder was macerated by putting it into a large column and soaking it with 96% ethanol with a macerator tool for 3x24 hours. Third, the solvent was removed and evaporated with a rotary vacuum evaporator at a 40°C to produce extracts. Fourth, extract obtained was then added with distilled water in the ratio 1:1.

Furthermore, cancer was created by giving benzopyrene in all groups of the samples. Benzopyrene was used in the form of solid powder at a dose of 8 mg/kg dissolved in *olivarium olio* with a ratio of 2:11. The provision of benzopyrene was conducted by injection using a syringe with a depth of 2-3 mm on oral intrabuccal mucosa of those rats as many as 0.07 ml for 4 weeks. After cancer was created in those rats, they were given *Hedyotis corymbosa* (L.) Lamk extract with distilled water in the treatment groups, namely Treatment Group 1 about 375 mg/kg, Treatment Group 2 about 750 mg/kg, and Treatment Group 3 about 1500 mg/kg. Meanwhile, Control Group was only given with aquadest. Those groups were injected two times every week. The extract was given orally as many as 0.17 ml every day for 10 days.

Finally, tissue fixation process was conducted in two stages. First, the tissue was soaked into Buffered Neutral Formalin solution (10% BNF with pH 6.5 -7.5) with a ratio of 1:10. Second, the tissue was processed by using an auto technician. Paraffin blocks were cut with a thickness of 4 μ. Cancer cell proliferation and capillary examination by using HE staining technique ("Hematoxylin eosin"). Expression of caspase-3 used caspase-3 monoclonal
antibody by Immunohistochemistry staining, counterstain was used as hematoxyllin.

RESULTS

This research had been approved with Ethical clearance from IEC of Dentistry Faculty, University of Airlangga. In this research, there were twenty-four mice suffering from mandibular gland cancer. Table 1 illustrated the average number of cancer cell proliferation in the control and treatment group.

Table 1. The average number of cancer cells in each group

Group	Number of samples	Mean
Control (negative)	6	83.83
375 mg/kg BW	6	34.67
750 mg/kg BW	6	17.33
1500 mg/kg BW	6	43.17

Graph 1. The average number of cancer cells in lymph gland tissue

Figure 1. The average number of cancer cells shown with an Arrow, A. Control group, B. Treatment Group 1 (375 mg/kg BW), C. Treatment Group 2 (750 mg/kg BW), D. Treatment Group 3 (1500 mg/kg BW)

Based on that data, it can be known that the average number of cancer cells in the control group was the highest one, while in the treatment group 2 was the lowest one compared to treatment group 1 and 3.

Table 2. The average number of new blood vessels in each group

Group	Number of samples	Mean
Control Group	6	54.33
Treatment Group 1 (375 mg/kg BW)	6	32.33
Treatment Group 2 (750 mg/kg BW)	6	21.83

Graph 2. The average number of new blood vessels in each group

Figure 2. New blood vessels in three each groups shown with an Arrow (A. Control group, B. Treatment Group 1, C. Treatment Group 2, D. Treatment Group 3)

Based on Table 2, it can be seen that the average number of new blood vessels in the control group was more than the average number in the treatment groups. It can also be seen that the average number of new blood vessels in the treatment group 2 was the lowest one compared to the treatment Group 1 and 3.

In other words, it can be said that the ethanol extract of Hedyotis corymbosa (L.) Lamk can significantly inhibits the formation of new blood vessels in the treatment group 2 with a dose of 750 mg/kg. Thus, the dose used in the treatment group 2 can be considered as the most influential dose compared to the treatment group with a dose of 375 mg/kg dose and the treatment group 3 with a dose1500 mg/kg.

Tables 3 and figure 3 show the average number of cancer cells expressing caspase-3 from all groups. Based on that table, it is known that the highest average number of cancer cells expressing caspase-3 was in the apoptosis of the treatment group 2.

Table 3. The average number of cells expressing caspase-3 in each group

Group	The average number of cells expressing caspase-3
Control	11.67
Treatment Group 1	6.67
Treatment Group 2	24.17
and inhibited apoptosis can lead to cancer. However, normal cells only will develop into cancer cells if the condition of the body's immune system decreases. In other words, the immune system will help the process of initiation, promotion and progression in cancer formation.

This research, furthermore, is a purely experimental research aimed to know the benefits of *Hedyotis corymbosa* (L.) Lamk extract in preventing and curing cancer. According to Febriansah et al., *Hedyotis corymbosa* (L.) Lamk extract contained of *ursolic acid* playing anti-proliferative role against liver cancer cells. In addition, according to Jaki et al., *ursolic acid* also acted as an immune-modulatory, anti-inflammatory, and antioxidant. Therefore, it can be said that *ursolic acid* can be used in the development of cancer therapies.

In this research, cancer studied was formed in lymph gland. In accordance with the opinion, it is known that immune system has many effects on cancer incidence. *Benzopyrene* injected in this research is highly reactive compounds that can suppress the immune system. Therefore, it can lead to cancer in sub-mandibular gland.

Benzopyrene compound, moreover, is an organic compound with specific molecular formula, C_{20}H_{12}, including the class of polycyclic aromatic hydrocarbons (PAH) that is extremely toxic. In the living body, *benzopyrene* does intercalation into *Deoxyribo Nucleic Acid* (DNA) that can interfere with the process of DNA transcription. Therefore, the disruption of the transcription process can serve as a tumor initiator and mediator.

Benzopyrene, furthermore, has structural similarities with nucleobases, namely adenosine, thymine, guanine and cytosine. This makes *benzopyrene* easy to insert themselves into the DNA strands. As a result, the function of the DNA will be disturbed, and if the damage cannot be repaired, the cell will cause cancer.

It is also known that *benzopyrene* is hydrophobic, which does not have methyl structure or other reactive properties to be converted to a more polar compound. As a result, it is very difficult for the body to excrete this compound, causing accumulation in body tissues, such as lymph, adipose, liver and kidney tissue. Therefore, the exposure of *benzopyrene* in high level will cause the suppression of the immune system, and will also lead to cancer.

After cancer was formed, *Hedyotis corymbosa* (L.) *Lamk* extract was given to KP1 for 10 days at a dose of 375 mg/kg, KP2 with a dose of 750 mg/kg, and KP3 with a dose 1,500 mg/kg. Based on the HPA examination, data for analysis was obtained. In general, the results showed that the average number

DISCUSSION

Cancer is considered as the leading cause of mortality and morbidity in the world. Cancer cells can invade biological tissues by invasion and metastasis. Abnormal protein function can lead to DNA damage and *p53* gene mutation, controlling cell proliferation. Therefore, uncontrolled cell proliferation

Graph 3. The average number of cells expressing *caspase-3*

Figure 3. The Expression of *caspase-3* shown brown (an arrow) in the control group (a), treatment group 1 (b), treatment group 2 (c), treatment group 3 (c)}
of cancer cells in the group given with *Hedyotis corymbosa* (L.) Lamk extract was fewer than that in the group not given (Table 1). It is because of the role of *Hedyotis corymbosa* (L.) Lamk extractas anti-proliferation. It is also known that *Hedyotis corymbosa* (L.) Lamk extract contained of ursolic acid considered as an anti-proliferation of cancer cells by the inhibition of *STAT3* (*Signal Transducers and Activators of Transcription* 3) pathway.\(^\text{20}\)

Furthermore, ursolic acid will bind to estrogen receptors on the surface of macrophages, which then activates intracellular transduction signal causing the phosphorylation and degradation of *IkB* (*Inhibitor k Beta*). The degradation of *IkB* can enable NF-\(\kappa B\) (*Nuclear Factor Beta k*) to translocate into nucleus. In the nucleus, NF-\(\kappa B\) induces the transcription of genes that control various chemokines, immune receptors, and cytokines, such as IL-12. The induction of IL-12 will stimulate the production of IFN-\(\gamma\), but can also prevent the proliferation of Th2, which produces IL-10 as homeostasis.

Then, IFN-\(\gamma\) will re-activate macrophages that can lead to the phagocytes is of cancer cells. Meanwhile, the decreasing of IL-10 then will inhibit *STAT3* pathway. IL-10 is a cytokine that works on *STAT3* pathway. Thus, the decreasing of IL-10 can cause the inhibition of *STAT3* pathway through JAK-2. Ursolic acid actually is able to inhibit JAK-2 (*Janus Activated Kinase*-2), so the phosphorylation of proteins used in the activation of *STAT3* will not happen. The inhibition of *STAT3* pathway then will lead to the disruption of the regulation system of gene products (such as cyclin D1, Bcl-2, Bcl-xl, survivin, Mcl-1, and vascular endothelial growth factor) and the modulation of cell proliferation.

STAT3, moreover, is a signal transduction that acts as a regulator of gene products, such as *cyclin D1*. Thus, the inactivation of *STAT3* pathway will lead to the disruption of the nuclear translocation, so it is unable to play a role in regulating *cyclin D1* and modulating cell proliferation. *Cyclin D1* is an active form of *Cyclin Dependent Kinase* (CDK) needed by the cell to perform mitosis and play a role in *G1* phase. *G1* phase is aimed to prepare DNA replication phase. Therefore, when this phase is interrupted, it can inhibit cell proliferation.

In the *G1* phase, furthermore, there was *p53* gene involved in the transactivation of the *p21* protein. The function of *p21* gene is to suppress the activity of CDK-Cyclin complexes, so check point occurs at the end of the *G1* phase before entering the *S* phase. *Check point* is aimed to provide an opportunity for the cell to repair or apoptosis. Apoptosis is characterized by the increasing of caspase-3 expression, known as the executor of cell death. The formation of new blood vessels then can be decreased by inhibiting ERK (*Extra Celular Signal Regulatory Kinase*), causing a decrease in HIF-\(\alpha\) (*hypoxia inducible factor*). Finally, it causes VEGF barriers, so new blood vessels formed are few.

It can be concluded that ethanol extract of *Hedyotis corymbosa* (L.) Lamk can reduce the progression of oral cancer in the lymph gland of Wistar strain rats induced by benzopyrene with the best dose of 750 mg/kg. Further research needs to use pure compound, ursolic acid, to decrease the progression of cancer in oral cavity. Additional research also needs to be conducted regarding the ability of ursolic acid in enhancing immune system as an immunomodulator.

REFERENCES

1. Ariyani A. Uji sitotoksik isolat 1 dan 2 rumput mutiara (*Hedyotis corymbosa* (L.) Lamk.) terhadap sel kanker payudara T47D dan serviks HeLa. Journal Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas sebesa maret Surakarta.2011: 3-9.
2. Syafriadi M. Pathologi mulut tumor neoplasik dan non neoplasik rongga mulut. Yogyakarta. 2008: 74-7.
3. Febriansah. Ekstrak etanolik rumput mutiara (*Hedyotis corymbosa*) berefek antiproliferasi terhadap sel hepar tikus galur Sprague Dawley terinduksi 7,12-dimetil benz[a] antrazena melalui penghambatan ekspresi protein c-Myc. Prosiding Kongres Ilmiah XVI ISFI. Fakultas Farmasi UGM. 2008: 23-39.
4. Sudiono J. Pemeriksaan Patologi untuk Diagnosis Neoplasma Mulut. Jakarta: ECG. 2008: 50-70.
5. Wang X, Zhang F. Ursolic acid inhibits proliferation and induces apoptosis of cancer cells in vitro and in vivo. J Biomed Biotech 2011; 3: 419-43.
6. Nagy JA, Chang SH, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know? British J. Cancer 2009: 866-7.
7. IPIKNet. Tanaman Obat Indonesia, Rumput mutiara (*Hedyotis corymbosa* (L.) Lamk.). <http://www.ipitek.net.id/> (20 Februari 2010)
8. Murdijono T. Uji toksisitas hasil fraksinasi daun rumput mutiara (*Hedyotis corymbosa* L. (Lamk.) terhadap Artemia Salina Leach dan Profil Kandungan Kimia Fraksi Terakiforn. Skripsi. Jurusan Biologi Universitas Sebelas Maret, Surakarta. 2008: 2-12.
Budhy: The potency of hedyotis corymbosa (L.) Lank extract to inhibit the progressivity of oral cancer cell

9. Sukamdi D, Asyhar A, Jenie R. Peningkatan Ekspresi p53 oleh ekstrak etanolik rumput mutiara (Hedyotis Corymbosa) pada sel hepar tikus dawley terinduksi 7, 12-Dimetilbenz(a) antra-sena. Pharmacon Journal. 2010; 11 (1): 2-4
10. Sadasivan, S. Hepatoprotective studies on Hedyotis Corymbosa (L.) Lamk. Journal of ethnopharmacology, 2006; 106: 245-9
11. Jaki B, Fanzblau S, Chadwick L, Lankin D, Zhang F, Wang Y. Purity Activity Relationships of Natural Products: The case of Anti-TB Active Ursolic Acid. J Nat Peod. 2008; 71: 1742-8
12. Prasad S, Yadaf R, Kannappan R, Aggarwal B. Ursolic acid, a pentacyclin triterpenne, potentiates TRAIL-induced Apoptosis through p53-independent up-regulation of death receptors. <http://www.jbc.org/content/suppl/2010/12/14/M110.183699.DC1.html> (28 Maret 2014).
13. Li W, Qiong L, Lin HE, Juan JB, Xiuy FY. Effect of Ursolic Acid Extracted from Chinese Herbs on the Proliferation of Vascular Endhotelial Cells and Its Underlying Mechanism. J. of Med Plants Research. 2011; 5 (21): 5275
14. Fan, Guowei. Development of Traditional Chinese Medicine Extracts with Anti-Angiogenesis Property. Institute of Traditional Chinese Med. 2014; 1 (1): 3.
15. Mukmilah L, Udin Z, Lisnawati E. Uji aktivitas dari ekstrak rumput mutiara (Hedyotis corymbosa (L.) Lank.), Valensi J. 2012; 2 (5): 548-56.
16. Budhy TI. Mekanisme nekrosis sel kanker oleh sel imunokompeten makrofag karena pemberian ekstrak teh hitam pada mukosa rongga mulut yang terpapar benzopirene. Surabaya LPPM Universitas Airlangga. 2000; 30-39.
17. Kumar V, Robbins Basic Pathologic, 7th ed., Jakarta: Penerbit Buku Kedokteran ECG, 2007; 185-224.
18. Guo N, Faller DV, Vaziri C. Carcinogen induced S-phase arrest is Chk 1 medieted and caffeine sensitive. Cell Growth Differentiation. 2002; 13: 77-86.
19. Jung K, Patel M, Kimity P, Chillrud S, Whyatt R, Hoepner L. Effects of season and indoor heating on indoor and outdoor residential levels of airborne polycyclic aromatic hydrocarbons, absorbance and particulate matter 2.5 in an inner city cohort of young children. J. Allergy Clin. Immunol. 2010: 100-125.
20. Pathak A, Bhutani M, Nair A. Ursolic acid inhibits STAT-3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res. 2007: 5-9.