Network topology reconstructed from derivative-variable correlations

Zoran Levnajić, Arkady Pikovsky
Department of Physics and Astronomy, University of Potsdam
14476 Potsdam, Germany

Abstract

A method of network reconstruction from the dynamical time series is introduced, relying on the concept of derivative-variable correlation. Using a tunable observable as a parameter, the reconstruction of any network with known interaction functions is formulated via simple matrix equation. We suggest a procedure aimed at optimizing the reconstruction from the time series of length comparable to the characteristic dynamical time scale. Our method also provides a reliable precision estimate. We illustrate the method’s implementation via elementary dynamical models, and demonstrate its robustness to both model and observation errors.

Introduction

The development of methods for reconstructing the topologies of real networks from the observable data, is of great interest in modern network science. Topology, in combination with the internode interactions, determine the function of complex networks [1]. Reconstruction methods are often developed within the contexts of particular fields, relying on domain-specific approaches. These include gene regulations [2,3,4,5], metabolic networks [6], neuroscience [7], or social networks [8]. On the other hand, theoretical reconstruction concepts are based on paradigmatic dynamical models such as phase oscillators [9,10,11,12], some of which have been experimentally tested [13,14]. In a similar context, techniques for detecting hidden nodes in networks are being investigated [15]. A class of general reconstruction methods exploit the time series obtained by quantifying the network behaviour. Some of them assume the knowledge of the internal interaction functions [16,17], while others do not [18]. Network couplings can be examined via information-theoretic approach [19]. Advantage of these methods is that they are non-invasive, i.e. require no interfering with the on-going network dynamics.

Reconstruction methods are often based on examining the inter-node correlations [12]. On the other hand, universal network models such as Eq.1, are based on expressing the time derivative of a node as a combination of a local and a coupling term. Inspired by this, we propose a non-invasive reconstruction method, departing from the concept of derivative-variable correlation. Our method assumes the dynamical time series to be available as measured observables, and the interaction functions to be known. We present our theory in a general form, extending our initial results [20]. As we show, our approach allows for the reconstruction precision to be estimated, indicating the level of noise in the data, or possible mismatches in the knowledge of the interaction functions.

*Correspondence and requests for materials should be addressed to Zoran Levnajić (zoran.levnajic@fis.unm.si)
Results

The reconstruction method

We consider a network of N nodes, described by their dynamical states $x_i(t)$. Its time evolution is governed by:

$$
\dot{x}_i = f_i(x_i) + \sum_{j=1}^{N} A_{ji} h_j(x_j),
$$

where the function f_i represents the local dynamics for each node, and h_j models the action of the node j on other nodes. The network topology is encoded in the adjacency matrix A_{ji}, specifying the strength with which the node j acts on the node i. We assume that: (i) the interaction functions f_i and h_j are precisely known, and (ii) a discrete trajectory consisting of L values $x_i(t_1), \ldots, x_i(t_L)$ is known for each node. The measurements of x_i are separated by the uniform observation interval δ_t defining the time series resolution. We seek to reconstruct the unknown adjacency matrix $A_{ij} \equiv A$ under these two assumptions.

The starting point is to define the following correlation matrices, using the observable $g(x)$ whose role will be explained later:

$$
\begin{align*}
B &= \langle g(x_i) \dot{x}_j \rangle, \\
C &= \langle g(x_i) f_j(x_j) \rangle, \\
E &= \langle g(x_i) h_j(x_j) \rangle,
\end{align*}
$$

which is our main reconstruction equation, applicable to any network with dynamics given by Eq.(1). Time series are to be understood as the available observables, allowing for matrices in Eq.(2) to be computed for any g. For the infinitely long dynamical data, reconstruction is always correct for any generic g. For short time series, representing experimentally realistic scenarios, the reconstruction is always approximate, and its precision crucially depends on the choice of g.

To be able to quantify the reconstruction precision, we need to equip ourselves with the adequate measures. To differentiate from the original adjacency matrix A, we term the reconstructed matrix $R_{ij} \equiv R$, and express the matrix error as:

$$
\Delta_A = \sqrt{\frac{\sum_{ij} (R_{ij} - A_{ij})^2}{\sum_{ij} A_{ij}^2}}.
$$

Of course, each R is computed according to Eq.(3) in correspondence with the chosen g. However, since the matrix A is unknown, we have to introduce another precision measure, based only on the available data. A natural test for each R is to quantify how well does it reproduce the original data $x_i(t_m)$. We apply the following procedure: start the dynamics from $x_i(t_1)$ and run it using R until $t = t_2$; denote thus obtained values $y_i(t_2)$; re-start the run from $x_i(t_2)$ and run until $t = t_3$, accordingly obtaining $y_i(t_3)$, and so on. The discrepancy between the reconstructed time series $y_i(t_m)$ and the original $x_i(t_m)$ is an explicit measure of the reconstruction precision, based solely on the available data. We name it trajectory error Δ_T, and define it as follows:

$$
\Delta_T = \frac{1}{N} \sum_{i=1}^{N} \sqrt{\frac{\langle (x_i - y_i)^2 \rangle}{\langle (x_i - \langle x_i \rangle)^2 \rangle}}.
$$

1Usually, correlations are defined as central moments with averages subtracted. Instead, we are here not interested in correlations per se, but in the reconstruction according to Eq.(3) for which the subtraction of averages is not needed.
Different choices of the observable g lead to different R, with different precisions expressed through errors ΔT and ΔA. As we show below, these two error measures are related, meaning that small ΔT suggests small ΔA. The function g hence plays the role of a tunable parameter, which can be used to optimize the reconstruction. By considering many R-s obtained through varying g, we can single out R-s with the minimal ΔT to obtain the best reconstruction.

Implementation of the method

To illustrate the implementation of our method, we begin by constructing a network with $N = 6$ nodes by putting 17 directed links between randomly chosen node pairs. As our first example, we consider the Hansel-Sompolinsky model, describing the firing rate s in neural populations [21]. It is defined by the interaction functions $f_i = -x$ and $h_j = \tanh x$ which are fixed for all nodes. The adjacency matrix is specified by assigning positive and negative weights to the networks links, randomly chosen from $[-10, 10]$, as shown in Fig.1a. Starting from random initial conditions, the resulting system is integrated from $t = 0$ to $t = 4$. During the run, 20 values of x_i are stored for each node, equally spaced with $\delta_t = 0.2$. The obtained time series, shown in Fig.2, are rather short compared to the characteristic time scale and the network size.

We now use these data to reconstruct the original adjacency matrix by employing the procedure described above. We consider a set of 10^4 test-functions g, each composed of first 10 Fourier harmonics

$$g(x) = \sum_{k=1}^{10} \left[a_k \sin(kx) + b_k \cos(kx) \right].$$

The coefficients a_k and b_k are randomly selected from $[0, 100]$ with the log-uniform probability. This is implemented by selecting each Fourier coefficient via $10^{0.00432137 \times \text{rand} - 1.0}$, where \text{rand} is a random number between 0 and 1. A typical function thus constructed for each choice of a_k and b_k will have all 10 Fourier components, but one (or at most few) will be well pronounced. Functions are then normalized to the range of time series values. Given relatively smooth timeseries, lower harmonics are expected to generally extract more features from data, which is why we limit ourselves to the first 10 harmonics. To improve the stability of the derivative estimates, we base our calculations on the set of time points $\tau_m = (t_{m+1} - t_m)/2$. For each g, the matrix R is obtained via Eq.2 and Eq.3 with the invertibility of each E checked by virtue of the singular value decomposition. The errors ΔT and ΔA are then calculated for each R, and reported as a scatter plot in Fig.3a.

![Adjacency matrix A for the first example (a), and the second example (b). Colorbars (shades) indicate the interaction strength. Two different colorbars in (b) stand for two different interaction types (see text).](image)

Figure 1: Adjacency matrix A for the first example (a), and the second example (b). Colorbars (shades) indicate the interaction strength. Two different colorbars in (b) stand for two different interaction types (see text).
Figure 2: Time series for all 6 nodes produced by the network Fig.1a (black dots). Bars denote the added white noise of strength $\eta = 0.4$ (see text, cf. Fig.5a).

Figure 3: Scatter plots of errors ΔT and ΔA, in relation with the first and second example, in (a) and (b), respectively. Best 1% of R-s with the minimal ΔT, are represented by the dots left of the vertical dashed line.

The main result of this analysis is a clear correlation between ΔT and ΔA, particularly pronounced for smaller values of errors. This confirms that the best R are among those that display minimal ΔT. In order to identify the best reconstruction and estimate its precision, we focus on the 1% of matrices R with the minimal ΔT, as illustrated in Fig.3a by the dashed vertical line. The variability of R within this group can be viewed as the reconstruction precision. Small variability indicates the invariance of R to the choice of g, which suggests a good reconstruction. Large variability of R implies its drastic dependence on g, indicating a bad precision. We quantify this by computing the mean and the standard deviation for each matrix element of R within this group, and identify them, respectively, with the best reconstruction value and its precision. In Fig.4a we report the original A and the best reconstruction, along with the respective errorbar for each matrix element, describing the reconstruction precision. The reconstruction is indeed very
good for both zero and non-zero weights (i.e. for non-linked and linked node pairs in the network).

Figure 4: Elements of the original A (circles), and the best reconstruction (crosses), with the corresponding errorbars. First and second example in (a) and (b), respectively.

As our second example, we consider a dynamical model describing gene interactions, with the coupling functions of two types: activation $h^+_j = x^5/(1 + x^5)$ and repression $h^-_j = 1/(1 + x^5)$ [22]. Local interaction are again modeled via $f_i = -x$. The adjacency matrix is based on the same network, and defined by assigning a random weight from $[0,1]$ for each link, as shown in Fig.1b. The nodes 1-3 (respectively, 4-6) act activatorily (repressively) on all nodes that they act upon. Again, we run the dynamics from $t = 0$ to $t = 4$, obtaining another set of time series with 20 points (not shown). The same reconstruction procedure is applied, yielding the Δ_T vs. Δ_A scatter plot shown in Fig.3b. Using the same procedure, we obtain the best reconstruction and show it in Fig.4b. Again, the precision is very good. Note that our method thus applies also in cases of strongly non-linear interaction functions, which capture most real dynamical scenarios.

Testing the method’s robustness

In order to model the real applicability of our method, we test its robustness to possible violations of the initial assumptions, focusing on the first example (Fig.1a). We start with the scenario when the interaction functions are not precisely known – we assume a small mismatch in their mathematical form (model error). Instead of the original $f_i = -x$ and $h_j = \tanh x$, we take $f_i = -1.1x$ and $h_j = \tanh(1.1x) + 0.1x$. The measurements of Δ_T now cannot be expected to converge to zero. Nevertheless, we apply the same procedure, and find (a weaker) correlation...
between Δ_T and Δ_A, as shown (by black dots) in Fig.5a. To see the worsening of the precision clearly, grey dots show the original non-perturbed scatter plot from Fig.3a. Dashed vertical line shows the part of the error Δ_T which is unavoidable due to the presence of the perturbation. We compute it as the difference between the original and the perturbed interaction functions, averaged over the range of time series. We isolate this part of the trajectory error, since it is not due to the properties of our method. Its size indicates that the remaining part of the Δ_T is similar to the Δ_T occurring in the non-perturbed case. This demonstrates that our method works optimally even under perturbed conditions. The worsening of the reconstruction precision is what expected from the nature of the perturbation, meaning that our method makes no additional “unexpected” errors in the perturbed conditions. The best reconstruction and the corresponding errorbars are computed as before and shown in Fig.5a. The errorbars are larger and the reconstruction precision worsens. Still, the essential fraction of elements of A are within the respective errorbars. The decline of precision is controllable, since it is clearly signalized by the size of the errorbars. This could be used to generalize the method in the direction of detecting the interaction functions as well. Each best R would be accompanied by the best guesses for f_i and h_j, meaning that different network topologies, reproducing the data equally well, would come in combination with different f_i and h_j.

Figure 5: Scatter plots of errors Δ_T and Δ_A (black dots), for the model error scenario in (a) and the observation error scenario in (b). Original non-perturbed scatter plot from Fig.3a is shown in gray for comparison. Vertical dashed lines depicts the part of the Δ_T error which is unavoidable in the presence of the perturbation (see text).

To test the second assumption of our theory, we take the time series to be not precisely known due to observation errors. Uncorrelated white noise of intensity $\eta = 0.4$ is added, perturbing each value of the time series. Instead of the original data, we now consider one realization of the noisy data, as illustrated in Fig.2 (interaction functions are the original ones). The central problem now is the computation of the derivatives, which are extremely sensitive to the noise. We employ the Savitzky-Golay smoothing filter \cite{25} as a standard technique of data de-noising, which allows for a good derivative estimation. Since the time series are short, we apply the smallest smoothing parameters. The reconstruction procedure is applied as before, using smoothed derivatives to compute matrix B in Eq.2. The scatter plot of Δ_T vs Δ_A is shown in Fig.5b, again compared with the original plot, and with the perturbation-induced unavoidable error indicated by the vertical line. The worsening of the precision is of a similar magnitude as in the model error scenario. The best reconstruction and the corresponding errorbars are reported in Fig.6b. Note that the precision is again correctly reflected by the size of the errorbars. In two cases from Fig.6, the precision does not decline uniformly for all links. The analysis above shows that our reconstruction
method is reasonably robust to both model and observation error. We found this robustness to be qualitatively independent of the realization of both these errors.

Figure 6: Elements of the original A (circles), and the best reconstruction (crosses), with the corresponding errorbars (first example). Model error and observation error scenarios in (a) and (b), respectively.

Discussion and Conclusions

We presented a method of reconstructing the topology of a general network from the dynamical time series with known interaction functions. Through conceptually novel approach, our method is formulated as an inverse problem using linear systems formalism [24]. Rather than relying on the correlations between the observed variables, it is based on the correlations between the variables and their time derivatives. Our method involves two important factors: it applies to the data that is relatively short, i.e. of the length comparable to the network size and to the characteristic time scale; and, it yields the errorbars as a by-product, correctly reflecting the reconstruction precision.

On the other hand, our theory relies on knowing (at least approximately) both the dynamical model Eq.1 and the interaction functions. While these assumptions might limit the immediate applicability of our method, our idea presents a conceptual novelty, potentially leading towards a more general and applicable reconstruction method. For example, we expect applicability in studies of interacting neurons in slices or cultures, where the properties of the individual neurons (i.e. functions f and h) can be relatively well established, while the adjacency matrix is unknown. In contrast, the application to problems such as brain fMRI activity patterns, where even the existence of a dynamical model like Eq.1 is questionable, appears at present not possible.
Our theory includes choosing the tunable observables g, which allow for the reconstruction to be optimized within the constraints of any given data. The question of constructing the optimal g which extracts the maximal extractable information, remains open. Our algorithm can be reiterated: once the 1% of the best R-s are found, one can examine the functions g leading to those 1%, and repeat the procedure, sampling only the neighboring portion of the functional space. Alternatively, various evolutionary optimization algorithms could be used $^{[23]}$. An important factor for the method’s applicability is the dynamical regime behind the time series, which could be regular (periodic) or chaotic (transiental). The former case is less reconstructible, because of a poor coverage of the phase space. In particular, the synchronized dynamics, being essentially non-sensitive to the variations of the coupling coefficients, offers very little insight into the structure of the underlying network. Increasing the time series length is obviously of no help $^{[20]}$. In contrast, the latter case contains more network information, and is potentially more reconstructible. Another issue is the applicability to large networks $N \ll 1$, and in particular, the dependence of precision on relationship between N and L. This relates to the possibility of quantifying the network information content of the available data. Relevant here is also the performance of our method for varying types of network topologies (random, scalefree etc.). This is a matter of ongoing research to be reported elsewhere.

Another limitation of our theory comes from the form of Eq$^{[11]}$. A similar theory could be developed for alternative scenarios, such as h specified by both source and target nodes. The real challenge here are the networks with non-additive inter-node coupling (i.e., the dynamical contribution to the node i is not a mere sum of neighbours’ inputs). The key practical problem is that the mathematical forms of f and h are not (precisely) known for many real networks, although for certain systems they can be inferred with a reasonable confidence $^{[4, 5]}$. Noise always hinders the reconstruction, specially via derivative estimates. However, longer time series not only bring more information, but also allow for a better usage of smoothing. Finally, we note that the network reconstruction problem is opposite of the network design problem. Our method could be employed to design a network that displays given dynamics. However, while any network with $\Delta_T \simeq 0$ solves the design problem, in the reconstruction theory this creates the permanent issue of isolating the true network among those that exhibit $\Delta_T \simeq 0$.

References

[1] A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks, Cambridge University Press, Cambridge (2008).

[2] M. Hecker et al. Gene regulatory network inference: Data integration in dynamic models - A review, Biosystems 96(1), 86 (2009).

[3] F. Emmert-Streib et al. Statistical inference and reverse engineering of gene regulatory networks from observational expression data, Front. Genet. 3, 8 (2012).

[4] D. Nelson D. et al., Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression, Science 306, 704 (2004).

[5] S. Pigolotti, S. Krishna and M. Jensen, Oscillation patterns in negative feedback loops, Proc. Nat. Acad. Sci. USA 104, 6533 (2007).

[6] M. J. Herrgard et al., A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology, Nature Biotech. 26, 1155 (2008).

[7] E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10, 186 (2009).

[8] N. Eagle, A. Pentland, D. Lazer, Inferring friendship network structure by using mobile phone data, Proc. Nat. Acad. Sci. USA 106(36), 15274 (2009).

[9] Z. Levnajić, A. Pikovsky, Network Reconstruction from Random Phase Resetting, Phys. Rev. Lett. 107, 034101 (2011).

[10] B. Kralemann, A. Pikovsky, M. Rosenblum, Reconstructing phase dynamics of oscillator networks, CHAOS 21, 025104 (2011).

[11] L. Prignano, A. Diaz-Guilera, Extracting topological features from dynamical measures in networks of Kuramoto oscillators, Phys. Rev. E 85, 036112 (2012).
[12] J. Ren et al., Noise Bridges Dynamical Correlation and Topology in Coupled Oscillator Networks, Phys. Rev. Lett. 104, 058701 (2010).

[13] K. Blaha et al., Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators, Phys. Rev. E 84, 046201 (2011).

[14] T. Stankovski et al., Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise, Phys. Rev. Lett. 109, 024101 (2012).

[15] R. Su, W. Wang, Y. Lai, Detecting hidden nodes in complex networks from time series, Phys. Rev. E 85, 065201(R) (2012).

[16] S. G. Shandilya, M. Timme, Inferring network topology from complex dynamics, New J. Phys. 13, 013004 (2011).

[17] S. Dieroski, L. Todorovski, Equation discovery for systems biology: finding the structure and dynamics of biological networks from time course data, Curr. Opin. Biotech. 19, 360 (2008).

[18] S. Hempel et al. Inner Composition Alignment for Inferring Directed Networks from Short Time Series, Phys. Rev. Lett. 107, 054101 (2011).

[19] B. Pompe, J. Runge, Momentary information transfer as a coupling measure of time series, Phys. Rev. E 83, 051122 (2011).

[20] Z. Levnajić, Derivative-variable correlation reveals the structure of dynamical networks, Eur. Phys. J. B 86, 298 (2013).

[21] D. Hansel, H. Sompolinsky, Solvable Model of Spatiotemporal Chaos, Phys. Rev. Lett. 71, 2710 (1993).

[22] S. Widder, J. Schicho, P. Schuster, Dynamic patterns of gene regulation 1: Simple two gene systems, J. Theor. Biol. 246, 395 (2007).

[23] Z. Levnajić, Evolutionary design of non-frustrated networks of phase-repulsive oscillators, Sci. Rep. 2, 967 (2012).

[24] J. P. Hespanha, Linear Systems Theory, Princeton University Press, Princeton (2009).

[25] J. S. Simonoff, Smoothing Methods in Statistics, Springer, New York, (1996).

Acknowledgments. Work supported by the DFG via project FOR868, by ARRS via program P1-0383 “Complex Networks” and via project J1-5454 “Unravelling Biological Networks”. Work also supported by Creative Core FISNM-3330-13-500033 “Simulations” funded by the European Union, The European Regional Development Fund. The operation is carried out within the framework of the Operational Programme for Strengthening Regional Development Potentials for the period 2007-2013, Development Priority 1: Competitiveness and research excellence, Priority Guideline 1.1: Improving the competitive skills and research excellence. We thank colleagues Michael Rosenblum and Mogens H. Jensen for useful discussions.

Competing Financial Interests. The authors declare no competing financial interests.

Figure Legends:

Figure 1 Adjacency matrices of two examined dynamical networks

Figure 2 Example of timeseries produced by network Fig. 1, including potential observation noise

Figure 3 Scatter plots of errors Δ_T vs. Δ_A for the two studied cases

Figure 4 Network reconstruction with errorbars for the two cases

Figure 5 Scatter plots of errors Δ_T vs. Δ_A for the model error and observation error scenarios

Figure 6 Network reconstruction with errorbars for the model error and observation error scenarios