B$_1$-EPG REPRESENTATIONS USING BLOCK-CUTPOINT TREES

A PREPRINT

Vitor Tocci F. de Luca
Universidade do Estado do Rio de Janeiro
Rio de Janeiro, Brazil
toccivitor@gmail.com

Fabiano de S. Oliveira
Universidade do Estado do Rio de Janeiro
Rio de Janeiro, Brazil
fabiano.oliveira@ime.uerj.br

Jayme L. Szwarcfiter
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil
jayme@nce.ufrj.br

June 11, 2021

ABSTRACT

In this paper, we are interested in the edge intersection graphs of paths of a grid where each path has at most one bend, called B$_1$-EPG graphs and first introduced by Golumbic et al (2009). We also consider a proper subclass of B$_1$-EPG, the \$-$-EPG graphs, which allows paths only in \$-$ shape. We show that two superclasses of trees are B$_1$-EPG (one of them being the cactus graphs). On the other hand, we show that the block graphs are \$-$-EPG and provide a linear time algorithm to produce \$-$-EPG representations of generalization of trees. These proofs employed a new technique from previous results in the area based on block-cutpoint trees of the respective graphs.

Keywords Edge intersection graph · Block-cutpoint trees · Block graphs · Cactus graphs

1 Introduction

Let \mathcal{P} be a family of nontrivial paths on a rectangular grid \mathcal{G}. We define the *edge intersection graph* EPG(\mathcal{P}) of \mathcal{P} as the graph whose vertex set is \mathcal{P} and such that (P, Q) is an edge of EPG(\mathcal{P}) if and only if paths P and Q share at least one grid edge of \mathcal{G}. A graph G is called an *edge intersection graph of paths on a grid (EPG)* if $G = EPG(\mathcal{P})$ for some family of paths \mathcal{P} on a grid \mathcal{G}, and \mathcal{P} is an *EPG representation* of G. EPG graphs were first introduced by Golumbic et al in [6] motivated from circuit layout problems [4]. Figure 1 illustrates the EPG-graph corresponding to the family of paths presented in the figure.

![Figure 1](image.png)

Figure 1: A B$_2$-EPG representation \mathcal{P} and its corresponding EPG graph EPG(\mathcal{P}).

A turn of a path at a grid point is called a *bend* and the grid point in which a bend occurs is called a *bend point*. An EPG representation is a *B$_k$-EPG representation* if each path has at most k bends. A graph that has a B$_k$-EPG representation is called B$_k$-EPG. Therefore, the graph defined in Figure 1 is B$_2$-EPG, as the representation shows. However, it is possible to show that there is a B$_1$-EPG representation of G and, thus, G is also B$_1$-EPG. The time complexity of
recognizing B_k-EPG is polynomial for $k = 0$ [6], and NP-hard for $k = 1$ [8] and $k = 2$ [10], whereas is unknown for other values of k.

A block B of a graph G is a maximal biconnected subgraph of G. A vertex v of a connected graph G is a cut vertex if $G - v$ is disconnected. For a graph G, we define its block-cutpoint tree [7] (BC-tree) T as follows. There is a vertex in T corresponding each block of G, called a block vertex, and a vertex for each cut vertex of G, called as such in T. A cut vertex c forms an edge with a block vertex b if the block corresponding to b contains c in G. The only existing vertices and edges of T are those previously described. Figure 2 depicts a graph and its respective BC-tree.

A universal vertex is a vertex of G that is adjacent to all other vertices of G. For $X \subseteq V(G)$, we denote by $G[X]$ the subgraph induced by X. A cycle with k vertices is denoted by C_k.

In B_1-EPG representations, each path has one of the following shapes: \ast, $\ast\ast$, $\ast\ast\ast$, besides horizontal or vertical segments. One may consider more restrictive subclasses of B_1-EPG by limiting the type of bends allowed in the representation. This arises the definition of “x”-EPG graphs, where “x” stands for a sequence of path shapes allowed in the class. For example, the $\ast\ast\ast$-EPG graphs are those in which only the “$\ast\ast\ast$” or the “$\ast\ast\ast$” shapes are allowed. Although that might imply the study of 2^4 different subclasses, corresponding to all subsets of $\{ \ast, \ast, \ast\ast, \ast\ast\ast \}$, only the \ast-EPG, \ast-EPG, $\ast\ast$-EPG and $\ast\ast\ast$-EPG may be considered, since all others do not define distinct subclasses (their representations are isomorphic to these four up to 90 degree rotations and reflections).

2 A B_1-EPG representation of a superclass of trees

In this section, we describe a B_1-EPG representation of a superclass of trees, inspired on the representation of trees described in [6]. The novelty of the following results are the usage of BC-trees to obtain EPG representations.

Theorem 1. Let G be a graph such that every block of G is B_1-EPG and every cut vertex v of G is a universal vertex in the blocks of G in which v is contained. Then, G is B_1-EPG.

Proof. The result is trivial if G does not have cut vertices, since G consists of a single block. Therefore, we assume from now on that there is a cut vertex in G. The theorem is proved by induction. Actually, we prove a stronger claim, stated as follows: given any graph G satisfying the theorem conditions and a BC-tree T of G rooted at some cut vertex r, there exists a B_1-EPG representation $R = \{P_v \mid v \in V(G)\}$ of G in which:

(i) P_r is a vertical path with no bends in R;

(ii) all paths but P_r are constrained within the horizontal portion of the grid defined by P_r and at the right of it.

Let B_1, B_2, \ldots, B_t be the block vertices which are children of r and let $T_{i1}, T_{i2}, \ldots, T_{ij}$ be the subtrees rooted at B_i, for all $1 \leq i \leq t$ (see Figure 3). The leaves of T are the blocks of G having exactly one cut vertex. From T, build the representation R of G as follows. First, build an arbitrary vertical path P_r in the grid G, corresponding the root r. Next, divide the vertical portion of G defined by P_r and at the right of it into t vertical subgrids, G_1, G_2, \ldots, G_t, with
Figure 3: The rooted BC-tree T of a graph.

a row space between them such that the i-th subgrid will contain the paths corresponding to the cut vertices that are descendants of B_i in T. So, each subgrid G_i is constructed as follows. We first represent the children of B_i as disjoint U-shaped paths, all sharing the same grid column in which P_r lies, since by the hypothesis, the children of B_i are all adjacent to r. Now, for each B_i, we build the following paths:

- those corresponding to vertices of B_i that are not cut vertices of G (as those vertices in black in Figure 2(a)); let us call the set of such vertices as B_i';
- those belonging to the induced subgraphs of G corresponding to the BC-trees $T_{i1}, T_{i2}, \ldots, T_{ij}$.

These paths will be placed on the marked regions of G_i of Figure 4. So, it remains to define how the paths belonging to

Figure 4: A subgrid G_i.

the regions B_i' and T_{ij} will be build, for all $1 \leq j \leq j_i$.

So, by the claim hypothesis, r is universal to B_i and B_i' is a B1-EPG graph. Therefore, let \mathcal{R}' be a B1-EPG representation of B_i. Without loss of generality, considering the operation of rotating the representation, let P_r' be an \L-path corresponding r in \mathcal{R}' and let p be its bend point. Since r is universal to B_i, all other paths must share a grid edge with P_r'. Transform \mathcal{R}' in the following way:

- For all P_w', a path of \mathcal{R}' that intersects all other paths of \mathcal{R}' and is not coincident to P_r', modify P_w' by making it coincident to P_r'.
- For all P_z', a path of \mathcal{R}' which contains p and the grid point immediately below of p, modify P_z' by removing the part of the path that goes from p downwards (that is, making p an endpoint of P_z'). Such a modification does not change the intersections of P_z'. Clearly, by construction, it does not increase the intersections. To see that it does not decrease as well, note that if P_z' lost an edge intersection to some path P_w', it is because P_w' would intersect P_z' only in the “leg” that was removed, which would imply that P_w' does not intersect P_r', an absurd.
- For all P'_z, a path of R' which contains p and the grid point immediately at the left of p, modify P'_z in an analogous way, removing the part of the paths that are to the left of p.

Finally, R' can be transformed such that all universal vertices become vertical paths, by “unbending” them at the grid point p (see Figure 5).

Figure 5: Transformations of P'_z.

For the T_{ij} portion of the representation, let r_{ij} be the root of T_{ij}. Applying induction hypothesis, we obtain B_1-EPG representations of each subtree that have vertical paths representing each root and the entire representation is bounded as described previously in (ii). Thus, we can clearly attach each one of the representations to its respective portion of the model being built, rotated 90 degrees in counter-clockwise (see Figure 6). This concludes the proof.

Figure 6: B_1-EPG representation of G after induction step.

It is assumed in Theorem 1 that the blocks of G are B_1-EPG. If, instead, it is assumed that the blocks of G are \bot-EPG, we get an \bot-EPG representation of a superclass of trees. The representation to be shown yields a distinct \bot-representation of trees of the one described in [6].

Theorem 2. Let G be a graph such that every block of G is \bot-EPG and every cut vertex v of G is a universal vertex in the blocks of G in which v is contained. Then, G is \bot-EPG.
Proof. The theorem is proved by induction. Once again, a stronger claim is actually proved, stated as follows: given any graph G satisfying the theorem conditions and a BC-tree T of G rooted at some cut vertex r, there exists an λ-EPG representation $R = \{ P_v \mid v \in V(G) \}$ of G in which:

(i) P_r is a vertical path with no bends in R;

(ii) all paths but P_r are constrained within the horizontal portion of the grid defined by P_r and at the right of it.

Let B_1, B_2, \ldots, B_t be the block vertices which are children of r and let $T_{i1}, T_{i2}, \ldots, T_{ij_i}$ be the subtrees rooted at B_i, for all $1 \leq i \leq t$ (see Figure 3). The leaves of T are the blocks of G having exactly one cut vertex. From T, build the representation R of G as follows. First, build an arbitrary vertical path P_r in the grid G, corresponding the root r. Next, divide the vertical portion of G defined by P_r and at the right of it into t vertical subgrids, G_1, G_2, \ldots, G_t, with a row space between them such that the i-th subgrid will contain the paths corresponding to the cut vertices that are descendants of B_i in T. So, each subgrid G_i is constructed as follows. We first represent the children of B_i as disjoint λ-shaped paths, all sharing the same grid column in which P_r lies, since by the hypothesis, the children of B_i are all adjacent to r. Now, for each B_i, we build the following paths:

- those corresponding to vertices of B_i that are not cut vertices of G; let us call the set of such vertices as B'_i;
- those belonging to the induced subgraphs of G corresponding to the BC-trees $T_{i1}, T_{i2}, \ldots, T_{ij_i}$.

These paths will be placed on the marked regions of G_i of Figure 4. So, it remains to define how the paths belonging to the regions B'_i and T_{ij} will be built, for all $1 \leq j \leq j_i$.

So, by the claim hypothesis, r is universal to B_i and B_i is a B_1-EPG graph. Therefore, let R' be an λ-EPG representation of B_i. Without loss of generality, considering the operation of rotating the representation, let P'_r be an λ-path corresponding r in R' and let p be its bend point. Since r is universal to B_i, all other paths must share a grid edge with P'_r. Transform R' in the following way:

- For all P'_w, an λ-path of R' that intersects P'_r only in its vertical (resp. horizontal) portion, shorten the horizontal (resp. vertical) “leg” of P'_r until that “leg” is degenerated into a single point, that is, transform P'_r into a line segment by removing the horizontal (resp. vertical) “leg” of the path.
- For all P'_z, a path of R' which contains p and the grid point immediately below of p, modify P'_z by removing the part of the path that goes from p downwards (that is, making p an endpoint of P'_z). Such a modification does not change the intersections of P'_z. Clearly, by construction, it does not increase the intersections. To see that it does not decrease as well, note that if P'_z lost an edge intersection to some path P'_w, it is because P'_w would intersect P'_r only in the “leg” that was removed, which would imply that P'_w does not intersect P'_r, an absurd.
- For all P'_z, a path of R' which contains p and the grid point immediately at the left of p, modify P'_z in an analogous way, removing the part of the paths that are to the left of p.

Finally, R' can be transformed into an interval model such all universal vertices become vertical paths, by “unbending” them at the grid point p (see Figure 7).

For the T_{ij} portion of the representation, let r_{ij} be the root of T_{ij}. Applying induction hypothesis, we obtain λ-EPG representations of each subtree that have vertical paths representing each root and the entire representation is bounded as described previously in (ii). Thus, we can clearly attach each one of the representations to its respective portion of the model being built, rotated 90 degrees in counter-clockwise. Note that due to the rotation of the λ-EPG representations, the paths are transformed into λ-shaped paths. In order to obtain an λ-EPG representation of G, flip the representations of each subtree horizontally (see Figures 6(a) and 8). This concludes the proof.

A graph G is a block graph if every block of G is a clique. In [1], the authors showed that block graphs are B_1-EPG in a proof by contradiction. As a consequence of Theorem [1] we have the following result.

Corollary 1. Block graphs are λ-EPG.

It is known that trees are λ-EPG. In [6], the authors described a recursive procedure to construct an λ-EPG representation of them. Note that trees are in particular block graphs and therefore can also be represented with the construction of Theorem [2]. As an example, compare the resulting representations of both constructions, considering the tree T in
Figure 7: Transformations of $P_{z'}$.

Figure 8: Rotating \perp-EPG representations obtained after induction step.

Figure 9: The \perp-EPG representation of T described in [6] is shown in Figure 10(a). And the \perp-EPG representation of T given by Theorem 1 is shown in Figure 10(b).

Finally, note that the induction proof of Theorem 2 yields a recursive algorithm to produce an \perp-EPG representation given as input a graph G holding the theorem conditions. This algorithm can be recognized in linear time, since the recognition of interval graphs (needed in order to obtain a model of each B'_i defined in the theorem’s proof) can be done in linear time [3].

Figure 9: Tree T.
A cactus graph is a connected graph in which every block is either an edge or a cycle. So, cactus is another generalization of trees. In [5], the authors showed that cactus graphs are \(\gamma\)-EPG. In this section, we provide an alternative construction that yields \(B_1\)-EPG representations of cactus graphs using BC-trees.

Theorem 3. Cactus graphs are \(B_1\)-EPG.

Proof. Let \(G\) be a cactus graph. This proof follows the same reasoning lines as those in the proof of Theorem 1. The key difference is that here the block vertices of a rooted BC-tree \(T\) of \(G\) represent the cycles (or single edges) in \(G\). If \(G\) has no cut vertices, then \(G\) is either a single edge or a cycle, and the result is trivial. Assume, therefore, that \(G\) has a cut vertex.

The theorem is proved by induction. Again, a stronger claim is actually proved, stated as follows: given any cactus graph \(G\) and a BC-tree \(T\) of \(G\) rooted at some cut vertex \(r\), there exists a \(B_1\)-EPG representation \(\mathcal{R} = \{P_v \mid v \in V(G)\}\) of \(G\) in which \(P_r\) is a vertical path with no bends in \(\mathcal{R}\).

Let \(B_1, B_2, \ldots, B_t\) be the block vertices which are children of \(r\) and let \(T_{i1}, T_{i2}, \ldots, T_{ij_i}\) be the subtrees rooted at \(B_i\) (see Figure 3), for all \(1 \leq i \leq t\). From \(T\), build the representation \(\mathcal{R}\) of \(G\) as follows. First, build an arbitrary vertical path \(P_r\) in the grid \(G\), corresponding the root \(r\). Next we must represent the blocks \(B_i\), for all \(1 \leq i \leq t\), in which \(r\) is contained. Let us consider the following cases:

- If \(B_i\) is a single edge (resp. \(C_3\)), we can represent it as one path (resp. two paths) with no bends intersecting \(P_r\) (see Figures 11(a) and 11(b)).
Figure 12: B_1-EPG representations (the red regions are to attach representations obtained from the hypothesis induction).

Figure 13: Outerplanar graph and its B_2-EPG representation (see [9]).

- If B_i is a C_4, C_5, or C_k with $k \geq 6$, the representation will be as shown in Figures [11(c), 11(d), or 11(e)], respectively.

The blocks of r can be placed along P_r. It is always possible to stretch the ends of P_r to include all required blocks. Using the same idea from the proof of Theorem 1 in order to recursively apply the same operation on each subtree rooted at the remaining cut vertices, we must guarantee that each one of them has a vertical or horizontal portion in which we will be able to attach the resulting B_1-EPG representation of their subtrees. Let r_{ij} be the root of T_{ij}. Applying induction hypothesis, we obtain B_1-EPG representations of each subtree that have vertical paths representing each root. Note that, due to the constructions depicted in Figure 11, it is always possible to embed the B_1-EPG representations produced by the induction hypothesis in the regions depicted in Figure 12 so that the resulting representation is B_1-EPG.

It is known that the class of outerplanar graphs, which is a superclass of cactus graphs, is B_2-EPG. It was conjectured by Biedl and Stern in [2] and proved by Heldt, Knauer and Ueckerdt in [9]. See an example of an outerplanar graph and its B_2-EPG representation in Figure 13.

4 Conclusion

In this paper, we showed a B_1-EPG representation of graphs in which every block is B_1-EPG and every cut vertex is a universal vertex in the blocks to which it belongs. We extend the proof to show that cactus graphs are also B_1-EPG. We also showed a linear-time algorithm to construct \cup-EPG representations of graphs in which every block is \cup-EPG and every cut vertex is a universal vertex in the blocks to which it belongs, concluding that block graphs are \cup-EPG. The latter result provides an alternative \cup-EPG representation for trees.
References

[1] Asinowski, A., Ries, B. Some properties of edge intersection graphs of single-bend paths on a grid. *Discrete Mathematics*, volume 312:2, pages 427-440, 2012.

[2] Biedl, T. and Stern, M. On edge-intersection graphs of k-bend paths in grids, *Discrete Mathematics & Theoretical Computer Science*, volume 12:1, pages 1-12, 2010.

[3] Booth, K. S. and Lueker, G. S., Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. *Journal of Computer and System Sciences*, volume 13, pages 335-379, 1976.

[4] Brady, M. L. and Sarrafzadeh, M. Stretching a knock-knee layout for multilayer wiring, *IEEE Transactions on Computers*, volume 39, pages 148-151, 1990.

[5] Cela, E. and Gaar, E. Monotonic Representations of Outerplanar Graphs as Edge Intersection Graphs of Paths on a Grid. *arXiv preprint arXiv:1908.01981*, 2019.

[6] Golumbic, M. C., Lipshteyn, M. and Stern, M. Edge intersection graphs of single bend paths on a grid, *Networks: An International Journal*, volume 54:3, pages 130–138, 2009.

[7] Harary, F. *Graph Theory*, Addison-Wesley, Massachusetts, 1969.

[8] Heldt, D., Knauer, K. and Ueckerdt, T. Edge-intersection graphs of grid paths: the bend-number, *Discrete Applied Mathematics*, volume 167, pages 144-162, 2014.

[9] Heldt, D., Knauer, K. and Ueckerdt, T. On the bend-number of planar and outerplanar graphs, *Discrete Applied Mathematics*, volume 179, pages 109-119, 2014.

[10] Martin Pergel, P. R. On edge intersection graphs of paths with 2 bends, *Discrete Applied Mathematics*, volume 226, pages 106-116, 2017.