Особенности количественной оценки содержания флавоноидов в препаратах коры ореха черного

V.А. Куркин, Н.И. Зименкина

Цель. Разработка методик количественного определения флавоноидов в препаратах коры ореха черного с помощью современных инструментальных методов анализа (спектрофотометрия, микроколонная высокоэффективная жидкостная хроматография).

Материалы и методы. Объектами исследования являлись настойка и сухой экстракт коры ореха черного (Juglans nigra L.), образцы которой были заготовлены в марте-апреле 2020 года на территории Ботанического сада ФГБОУ ВО СамГМУ Минздрава России (г. Самара); стандартные образцы мирицитрина, мирицетина. Регистрацию УФ-спектров проводили с помощью спектрофотометра «Specord®40» (Analytik Jena, Германия) методом дифференциальной спектрофотометрии. Хроматографический анализ осуществляли методом обращенно-фазовой ВЭЖХ на микроколонном жидкостном хроматографе «Милихром-6» (НПАО «Научприбор», Россия).

Результаты. Разработана методика количественного определения суммы флавоноидов в пересчете на мирицитрин в настойке и сухом экстракте коры ореха черного (Juglans nigra L.) с помощью метода дифференциальной спектрофотометрии. Установлено, что содержание суммы флавоноидов в настойке и сухом экстракте коры ореха черного составляет 0,84±0,07% и 12,38±0,24% (в пересчете на мирицитрин) соответственно. Ошибка единичного определения суммы флавоноидов в пересчете на мирицитрин в настойке и сухом экстракте коры ореха черного с доверительной вероятностью 95% составляет ±8,34% и ±2,10% соответственно.

Разработана методика количественного определения мирицитрина в настойке и сухом экстракте коры ореха черного (Juglans nigra L.) методом ВЭЖХ. Содержание доминирующего флавоноида – мирицитрина (мирицетин-3-O-α-L-рамнопиранозид) в настойке и сухом экстракте коры ореха черного составляет 0,42±0,03% и 8,45±0,24% соответственно. Ошибка единичного определения мирицитрина в настойке и сухом экстракте коры ореха черного с доверительной вероятностью 95% составляет ±7,14% и ±2,96% соответственно.

Заключение. Разработанные методики количественного определения флавоноидов в настойке и сухом экстракте коры ореха черного могут быть использованы для решения вопросов стандартизации препаратов указанного лекарственного растительного сырья.

Ключевые слова: орех черный; Juglans nigra; кора; УФ-спектрофотометрия; ВЭЖХ; мирицитрин; флавоноиды

Список сокращений: ЛРС – лекарственное растительное сырье; ЛРП – лекарственный растительный препарат; ВЭЖХ – высокоэффективная жидкостная хроматография; СО – стандартный образец.

FEATURES OF QUANTITATIVE ESTIMATION OF FLAVONOIDS CONTENT IN JUGLANS NIGRA L. BARKS PREPARATIONS

V.A. Kurkin, N.I. Zimenkina

Samara State Medical University
89, Chapaevskaya St., Samara, Russia, 443099

E-mail: v.a.kurkin@samsmu.ru

Received 23 Oct 2021 After peer review 12 Jan 2022 Accepted 20 Jan 2022

Для цитирования: В.А. Куркин, Н.И. Зименкина. Особенности количественной оценки содержания флавоноидов в препаратах коры ореха черного. Фармация и фармакология. 2022;10(1):31-43. DOI: 10.19163/2307-9266-2022-10-1-31-43
© V.A. Kurkin, N.I. Zimenkina, 2022

For citation: V.A. Kurkin, N.I. Zimenkina. Features of quantitative estimation of flavonoid content in Juglans nigra L. barks preparations. Pharmacy & Pharmacology. 2022;10(1):31-43. DOI: 10.19163/2307-9266-2022-10-1-31-43

Volume X, Issue 1, 2022 31
ОРИГИНАЛЬНАЯ СТАТЬЯ
ISSN 2307-9266 e-ISSN 2413-2241
ФАРМАЦИЯ И ФАРМАКОЛОГИЯ

The aim of the research is the development of quantification procedures of flavonoids in Juglans nigra L. barks preparations using modern instrumental analytical techniques (spectrophotometry, high performance liquid chromatography).

Materials and methods. The subjects of research were tincture and dry extract of Juglans nigra L. bark, the samples of which were prepared in March and April 2020 in the Botanical Garden of Samara State Medical University (Samara); the standard samples (SS) of myricitrin, myricetin. The registration of the electronic spectra was carried out with a spectrophotometer «Spectro 40» (Analytik Jena, Germany). The chromatographic analysis was carried out by the method of reversed-phase HPLC on a micro-column liquid chromatograph “Milichrom-6” (NPAO “Nauchpribor”, Russia).

Results. Using differential spectrophotometry, methods for the quantitative determination of the total amount of flavonoids in terms of myricitin in the tincture and dry extract of Juglans nigra L. bark, has been developed. It has been determined that the content of the total amount of flavonoids in terms of myricitin in the tincture and dry extract of Juglans nigra L., is 0.84±0.07% and 12.38±0.24%, respectively. The error of a single determination of the total amount of flavonoids in terms of myricitin in the tincture and dry extract of Juglans nigra L. bark with a confidence probability of 95%, is ± 8.91% and ± 2.10%, respectively. Methods for the quantitative determination of myricitin in the tincture and dry extract of Juglans nigra L. bark by HPLC has been developed. The content of the dominant flavonoid – myricitin (myricetin-3-O-α-L-rhamnopyranoside) – in the tincture and dry extract of Juglans nigra L., was 0.42±0.06% and 8.45±0.24%, respectively. The error of the single determination of myricitin in the tincture and dry extract of Juglans nigra L. with a confidence probability of 95% is ± 15.04% and ± 2.96%, respectively.

Conclusion. The developed methods for the quantitative determination of flavonoids in the preparations of Juglans nigra L. barks L. can be used in solving the problems of standardization of Juglans nigra L. preparations.

Keywords: Juglans nigra L.; bark; UV spectrophotometry; HPLC; myricitrin; flavonoids

Abbreviations: MPRM – medicinal plant raw materials; HP – herbal preparation; HPLC – high-performance liquid chromatography; SS – standard sample.

ВВЕДЕНИЕ
В настоящее время поиск новых лекарственных препаратов, в том числе и растительного происхождения, обладающих высоким содержанием биологически активных соединений и достаточной фармакологической активностью, является актуальным направлением в фармации. Как известно, лекарственные растения видов рода Орех (Juglans L.) семейства Juglandaceae обладают указанными особенностями, и, следовательно, являются перспективными видами лекарственного растительного сырья для применения в медицинской практике. Представители рода Орех являются потенциальными источниками различных флавоноидов, являющихся ведущей группой биологически активных соединений, другие химические вещества: азотистые вещества, тритерпены и фенольные соединения, в том числе флавоноиды. Разнообразие химического состава в том числе наличие большого числа фенольных соединений обуславливает широкий спектр фармакологической активности представителей рода Орех (орех грецкого, орех черного и ореха серого) [14–18]. Известная антиоксидантная, общекупреждающая, противовоспалительная и антиоксидантная активность присутствующих на фармацевтическом рынке препаратов ореха, на наш взгляд, может быть обусловлена веществами флавоноидной природы [19–23]. Данные сведения доказывают актуальность изучения флавоноидов коры ореха черного, а также препаратов на основе данного ЛРС.

Несмотря на то, что стандартизация коры и препаратов коры ореха черного проводится по содержанию нафтохинонов (в пересчете на юглон), установлено, что доминирующим и диагностически значимым соединением является флавоноид мирицитрин (мирицетин-3-О-α-L-рамнopyраноэсид), для которого выявлены противовоспалительное, антиоксидантное и нейротропное действие [24–26]. Следовательно, препараты коры ореха черного являются перспективными для дальнейшего изучения не только в области фармакологии, но и в сферы контроля их качества [27–30].

ЦЕЛЬ. Применение методов УФ-спектрофотометрии и микроколоночной высокоэффективной жидкостной хроматографии (ВЭЖХ) для контроля содержания флавоноидов, а также анализ содержания суммы флавоноидов (УФ-спектрофотометрия) и мирицитритина (ВЭЖХ) в полученных настойках и сухом экстракте коры ореха черного.

МАТЕРИАЛЫ И МЕТОДЫ
В качестве объектов исследования использовали настойку и сухой экстракт коры ореха черного, образцы которой были заготовлены в марте-апреле 2020 года на территории Ботанического сада Самарского государственного университета (г. Самара). Анализировали настойку и сухой экстракт коры ореха черного с использованием стандартных образцов (СО) мири-
цитрина и мирицетина (рис. 1) методом УФ-спектрофотометрии и ВЭЖХ.
В работе использовали ацетонитрил для ВЭЖХ, уксусную кислоту х.ч. (ООО «Компонент-реактив», Россия), воду, полученную с использованием системы для получения воды очищенной с многоступенчатой системой очистки (адсорбция, обратный осмос, мембранное фильтрование) и проверенную на чистоту в условиях хроматографического анализа.
Регистрацию УФ-спектров проводили с помощью спектрофотометра «Specord 40» (Analytik Jena, Германия). Спектральные характеристики стандартных образцов мирицитрина и мирицетина представлены ниже.
Мирицитрин (мирицитин-3-О-а-L-рамнопираноэид). Желтое кристаллическое вещество с т.пл. 203–205°С (водный спирт), УФ-спектр (EtOH, λ max, нм): 212, 260, 358; + NaOAc 268, 366; + NaOAc + Н3ВО 260, 382; +АlСl3 278, 416; +АlСl3 + НСІ 270, 406. 1H-ЯМР-спектр (300 МГц, DMSO-d6, δ, м.д., J/Гц): 12.68 (1Н, с, 5-ОН-группа), 9.23 (2Н, уш. с, 7-ОН-группа и 4'-ОН-группа), 6.88 (2Н, с, Н-2' и Н-6'), 6.36 (1Н, д, 2.5 Гц, Н-8), 6.19 (1Н, д, 2.5 Гц, Н-6), 5.20 (1Н, д, 1.5 Гц, Н-4' рамнозы), 3.1-5.0 (м, 4Н рамнозы), 0.84 (3Н, д, 6 Гц, СН3 рамнозы). 13С-ЯМР спектр (126.76 МГц, DMSO-d6, δС, м.д.): С-4 (177.85), С-7 (164.24), С-5 (161.37), С-4' (157.57), С-9 (156.49), С-2 и С-3 (145.83), С-3' и С-5' (145.83), С-1' (119.70), С-2' и С-6' (108.00), С-10 (104.12), С-1'' рамнозы (102.00), С-6 (94.81), С-8 (94.30), С-2' (116.21), С-3'' (71.03), С-5'' (67.92), С-4'' (70.62), С-4' (70.47), С-2'' (70.08), С-6'' (СН3) (17.57).
Масс-спектр (HR-ESI-MS, 180°С, m/z): m/z 465.1016 [M+H]+, m/z 487.0830 [M+Na]+, m/z 503.0560 [M+K]+.
Мирицетин (3,5,7,3',4',5'-гексагидроксифлавон). Желтовато-зеленое кристаллическое вещество с т.пл. 357°С (водный спирт), УФ-спектр (EtOH, λ max, нм): 254, 377; + NaOAc 275, 382; + NaOAc + Н3ВО 258, 392; +АlСl3 266, 440; +АlСl3 + НСІ 266, 440.
1H-ЯМР-спектр (399.78 МГц, DMSO-d6, δ, м.д., J/Гц): 12.45 (1Н, с, 5-ОН-группа), 10.73 (1Н, с, 7-ОН-группа), 9.28 (1Н, с, 4'-ОН-группа), 9.17 (2Н, с, 7-ОН-группа и 3'-ОН-группа), 8.75 (1Н, с, 3-ОН-группа), 7.20 (2Н, с, Н-2' и Н-6'), 6.32 (1Н, д, 2.2 Гц, Н-8), 6.14 (1Н, д, 2.2 Гц, Н-6).
13С-ЯМР спектр (100.52 МГц, DMSO-d6, δС, м.д.): С-4 (176.29), С-7 (164.39), С-5 (161.25), С-9 (156.59), С-4' (147.36), С-3' и С-5' (146.23), С-2 и С-3 (136.38), С-1' (121.30), С-2' и С-6' (107.68), С-10 (103.49), С-8 (93.71), С-6 (98.7).
Исходя из спектральных данных, поскольку дноминирующий флавоноид мирицитрина имеет в длинноволновой области экстрактного спектра максимум поглощения при 360±2 нм, нами была выбрана длина волны 360 нм для детекции анализируемых веществ при проведении ВЭЖХ-анализа.

Приведен список литературы.

1 USA National Library of Medicine National Institutes of Health. [Электронный ресурс]. – Режим доступа: https://pubchem.ncbi.nlm.nih.gov/compound/Myricitrin.
Методика количественного определения суммы флавоноидов в настойке коры ореха черного

Около 1,00 мл настойки коры ореха черного (точная навеска) помещали в мерную колбу вместимостью 25 мл, доводили объем раствора до метки спиртом этиловым 70% (испытуемый раствор A). Затем 1 мл испытуемого раствора A помещали в мерную колбу вместимостью 50 мл, прибавляли 2 мл спиртового раствора алюминия хлорида 3% и доводили объем раствора до метки спиртом этиловым 96% (испытуемый раствор Bₐ). В качестве раствора сравнения использовали раствор, полученный следующей методикой: 1 мл испытуемого раствора A помещали в мерную колбу вместимостью 50 мл и доводили объем спиртом этиловым 96% до метки. Содержание суммы флавоноидов в пересчете на мирицитрин и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

\[
X = \frac{A \cdot m_a + 25 \cdot 50 \cdot 5 \cdot 100}{A \cdot V + 25 \cdot 1 \cdot 25},
\]

где: A – оптическая плотность испытуемого раствора; Aₐ – оптическая плотность раствора СО мирицидина; V – объем настойки, взятой для анализа, мл; mₐ – масса СО мирицидина, г.

В случае отсутствия стандартного образца мирицитрина целесообразно использовать теоретическое значение удельного показателя поглощения – 432 при длине волны 416 нм.

Приготовление препаратов для анализа методом ВЭЖХ

Пробоподготовка для настойки коры ореха черного. Настойку коры ореха черного в количестве 5 мл помещали в мерную колбу вместимостью 25 мл, доводили объем раствора до метки спиртом этиловым 96% (испытуемый раствор A). Испытуемый раствор Aₐ предварительно фильтровали через мембранный фильтр Milipore (0,45 мкм).

Пробоподготовка для сухого экстракта коры ореха черного. Около 0,2 г сухого экстракта коры ореха черного (точная навеска) помещали в мерную колбу вместимостью 25 мл, доводили объем раствора до метки тем же растворителем (испытуемый раствор Aₐ). Затем 5 мл испытуемого раствора A помещали в мерную колбу вместимостью 25 мл, доводили объем раствора до метки спиртом этиловым 96% (испытуемый раствор Bₐ). Испытуемый раствор Bₐ предварительно фильтровали через мембранный фильтр Milipore (0,45 мкм).

Приготовление стандартного раствора мирицидина для ВЭЖХ. Около 0,02 г (точная навеска) предварительно высушенного мирицидина (содержание основного вещества ≥98%) переносили в мерную колбу вместимостью 50 мл. В случае отсутствия стандартного образца мирицидина (содержание основного вещества ≥98%) переносили в мерную колбу вместимостью 50 мл, доводили объем раствора до метки тем же растворителем.

Приготовление стандартного раствора мирицидина для ВЭЖХ. Около 0,02 г (точная навеска) предварительно высушенного мирицидина (содержание основного вещества ≥98%) переносили в мерную колбу вместимостью 50 мл, доводили объем раствора до метки тем же растворителем.
Условия хроматографического разделения

Хроматографический анализ осуществляли методом обращенно-фазовой ВЭЖХ на микролитичном жидкостном хроматографе «Милихром-6» (НПАО «Научприбор», Россия) в следующих условиях: изохроматический режим; колонка стальная «КАХ-6-80-4» (№2; 2 мм × 80 мм; Сепарон-C18 7 мм); подвижная фаза – 1% уксусная кислота в воде в соотношении 2:8; скорость элюирования – 100 мкл/мин; объем элюента – 2500 мкл. Детекцию веществ осуществляли при длине волны 360 нм. Объемы инжектируемых проб: 4 мкл (настойка и сухой экстракт коры ореха черного, мирицитрин, мирицетин).

Оценка пригодности хроматографической системы

Для оценки пригодности разработанной хроматографической системы проводили 5-кратное хроматографирование испытуемого раствора настойки коры ореха черного. Далее рассчитывали показатели: эффективность колонки, разрешение между пиками, фактор асимметрии. На основании расчетов были получены следующие результаты (табл. 1).

Методика количественного определения мирицитрина в настойке коры ореха черного

Около 5,00 мл настойки коры ореха черного помещали в мерную колбу вместимостью 25 мл, доводили объем раствора до метки спиртом этиловым 96% (испытуемый раствор А). Испытуемый раствор А предварительно фильтровали через мембранный фильтр Milipore (0,45 мкм). В жидкостной хроматографе «Милихром-6» (НПАО «Научприбор», Россия) с УФ-детектором вводили 4 мкл полученного раствора. Хроматографировали в условиях обращенно-фазовой хроматографии в изохроматическом режиме на стальной колонке «КАХ-6-80-4» (№2; 2 мм × 80 мм; Сепарон-C18 7 мм), элюентная система – ацетонитрил : раствор уксусной кислоты 1%, скорость элюирования – 100 мкл/мин, объем элюента – 2500 мкл. Рабочая длина волны 360 нм, диапазон чувствительности 0,5.

Парадельно 4 мкл СО мирицитрина вводили в хроматограф и хроматографировали, как описано выше. Проводили не менее 3 параллельных определений для испытуемого раствора сухого экстракта и стандартного раствора мирицитрина. Вычисляли среднюю площадь пика мирицитрина на хроматограммах испытуемого раствора.

Методика количественного определения мирицитрина в сухом экстракте коры ореха черного

Около 0,2 г (точная навеска) сухого экстракта коры ореха черного помещали в мерную колбу вместимостью 25 мл, доводили объем раствора до метки тем же растворителем (испытуемый раствор Б). Испытуемый раствор Б предварительно фильтровали через мембранный фильтр Milipore (0,45 мкм). В жидкостной хроматографе «Милихром-6» (НПАО «Научприбор», Россия) с УФ-детектором вводили 4 мкл полученного раствора. Хроматографировали в условиях обращенно-фазовой хроматографии в изохроматическом режиме на стальной колонке «КАХ-6-80-4» (№2; 2 мм × 80 мм; Сепарон-C18 7 мм), элюентная система – водяная в соотношении 2:8 с добавлением 1% уксусной кислоты, скорость элюирования – 100 мкл/мин, объем элюента – 2500 мкл. Рабочая длина волны 360 нм, диапазон чувствительности 0,5.

Паразельно 4 мкл СО мирицитрина вводили в хроматограф и хроматографировали, как описано выше. Проводили не менее 3 параллельных определений для испытуемого раствора сухого экстракта и стандартного растворов мирицитрина. Вычисляли среднюю площадь пика мирицитрина на хроматограммах испытуемого раствора.

Содержание мирицитрина в настойке коры ореха черного

Содержание мирицитрина в настойке коры ореха черного вычисляли по формуле:

\[
x = \frac{S \cdot m_0 \cdot 0.98 \cdot V \cdot V_2 \cdot 100}{S_0 \cdot V_3 \cdot V_4},
\]

где: \(S \) – среднее значение площади пика мирицитрина на хроматограмме испытуемого раствора; \(S_0 \) – среднее значение площади пика мирицитрина на хроматограмме стандартного раствора; \(V \) – объем раствора испытуемого образца, \(V_2 \) – объем вводимой пробы раствора стандартного образца, \(V_3 \) – объем вводимой пробы раствора СО мирицитрина, \(V_4 \) = объем раствора СО мирицитрина, \(m_0 \) = масса СО мирицитрина, г; 0,98 = содержание основного вещества в 1,0 г СО мирицитрина.

Содержание мирицитрина в сухом экстракте коры ореха черного

Содержание мирицитрина в сухом экстракте коры ореха черного в пересчете на абсолютно сухое сухое сырье в процентах (Х) вычисляли по формуле:

\[
x = \frac{S \cdot m_0 \cdot 0.98 \cdot V \cdot V_2 \cdot 100}{S_0 \cdot V_3 \cdot V_4},
\]

где: \(S \) – среднее значение площади пика мирицитрина на хроматограмме испытуемого раствора; \(S_0 \) – среднее значение площади пика мирицитрина на хроматограмме стандартного раствора; \(V \) – объем раствора испытуемого образца, \(V_2 \) – объем вводимой пробы раствора стандартного образца, \(V_3 \) – объем вводимой пробы раствора СО мирицитрина, \(V_4 \) = объем раствора СО мирицитрина, \(m_0 \) = масса СО мирицитрина, г; 0,98 = содержание основного вещества в 1,0 г СО мирицитрина.
извлечения, мл; \(V_l \) – объем вводимой пробы раствора испытуемого образца, мл; \(V_s \) – объем раствора СО мирицитрина, мл; \(V_{wl} \) – объем вводимой пробы раствора СО мирицитрина, мл; \(m_t \) – масса сухого экстракта, г; \(m_{m} \) – масса СО мирицитрина, г; 0,98 – содержание основного вещества в 1,0 г СО мирицитрина.

Метрологическая характеристика разработанной методики

Для проведения процедуры градуировки серию разведений мирицитрина (250–2500 мкг/мл) хроматографировали в описанных условиях. На основании полученных данных строили график в координатах «концентрация, мг/мл – площадь пика» и рассчитывали уравнение линейной регрессии (\(Y = \alpha X + b \)), значение коэффициента детерминации (\(r^2 \)), стандартное отклонение с использованием Microsoft Excel 2013. Статистическую обработку экспериментальных данных промежуточной прецизионности разработанной методики при анализе 11 проб образцов испытуемых растворов настойки и сухого экстракта (\(P = 95\% \)) проводили с использованием критерия Стьюдента для вычисления граничных значений доверительного интервала среднего результата и определения ошибки единичного определения (ГФ РФ XIV, ОФС 1.1.0013.15). Стабильность методики определяли на основе методика настройки контейна ореха черного, анализируя его через 2, 4, 8, 12, 24, 48 и 72 ч после первого анализа. Правильность методики определяли на модельных смесах настойки коры ореха черного и СО мирицитрина в количестве от 25% до 75% от исходного содержания с использованием метода добавок.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Опираясь на литературные данные, существует несколько подходов к стандартизации лекарственного растительного сырья видов рода орех в том числе и коры ореха черного.

Коллегами из Пятигорского медико-фармацевтического института – филиала Волгоградского государственного медицинского университета был предложен подход к стандартизации ЛРС и ЛРП рода орех, который заключается в использовании в качестве анализируемой группы индикаторных соединений, в частности, юглона [4, 28, 29]. Этот подход целесообразным является определение содержания суммы флавонидов в пересчете на юглон в ЛРС видов рода орех, который заключается в использовании в качестве анализируемой группы индикаторных соединений, в частности, юглона [4, 28, 29].

Вместе с этим, в качестве аналиэзуируемой группы БАС для методик количественного определения мо
Рисунок 1 – Структурные формулы мирицитрина (1) и мирицетина (2).

Таблица 1 – Определение пригодности разработанной хроматографической системы

Параметры хроматографической колонки	Значение	Нормативный показатель
Эффективность колонки	5115	Не менее 2000 теоретических тарелок
Разрешение между пиками	1,65	Не менее 1,5
Фактор асимметрии	1,35	Не более 1,5

Таблица 2 – Метрологические характеристики методик количественного определения суммы флавоноидов в препаратах коры ореха черного

Образец	n	f	\(\bar{X} \)	S	\(S_2 \)	P (%)	T (P, t)	\(\pm \Delta X \)	E, %
Настойка коры ореха черного	11	10	0,84	0,03357	0,01012	95	2,23	\(\pm 0,07 \)	8,34
Сухой экстракт коры ореха черного	11	10	12,38	0,10650	0,03211	95	2,23	\(\pm 0,24 \)	2,10

Таблица 3 – Содержание суммы флавоноидов в настойке коры ореха черного в зависимости от добавления мирицитрина

Исходное содержание суммы флавоноидов, мг/мл настойки	Добавление мирицитрина, мг/мл	Содержание суммы флавоноидов, мг/мл	Ошибка анализа	
8,4	2,10	10,50	\(-0,46 \)	\(-4,38 \)
8,4	4,20	12,60	+0,38	+3,02
8,4	6,30	14,70	\(-0,32 \)	\(-2,18 \)

Таблица 4 – Содержание суммы флавоноидов в образцах препаратов коры ореха черного (Juglans nigra L.)

№ п/п	Образец	Оптическая плотность, A	Содержание суммы флавоноидов в пересчете на мирицитрин и абсолютно сухое сырье, %
1	Настойка коры ореха черного	0,29	0,84(0,07)
2	Сухой экстракт коры ореха черного	0,86	12,38±0,24

Таблица 5 – Времена удерживания пиков флавоноидов коры ореха черного

Флавоноид	Стандартный образец	Настойка	Сухой экстракт
Мирицитрин (1)	7,326	6,951	6,741
Мирицетин (2)	14,211	18,909	17,277

Таблица 6 – Результаты определения правильности методики

Исходное содержание мирицитрина, мг/мл настойки	Добавлено мирицитрина, мг/мл	Содержание мирицитрина, мг/мл	Ошибка анализа	
4,20	1,05	5,25	\(-0,32 \)	\(-6,09 \)
4,20	2,10	6,30	+0,29	+4,60
4,20	3,15	7,35	\(-0,23 \)	\(-3,14 \)

DOI: 10.19163/2307-9266-2022-10-1-31-43
Валидационная оценка разработанной методики проводилась по показателям: специфичность, линейность, правильность.

Специфичность методики определялась по соответствию максимальных положений комплекса флавоноидов коры ореха черного и стандартного образца мирицитрина с алюминиевым хлоридом. Линейность методики определяли для серии растворов мирицитрина (с концентрациями в диапазоне от 10 до 50 мг/мл) (рис. 3). Коэффициент корреляции составил 0,99988.

Правильность методики определяли методом добавок раствора стандартного образца мирицитрина с известной концентрацией (25%, 50% и 75%) к испытуемому раствору настойки. Относительная ошибка анализа составила ±3,19%. Опыты с добавками стандартного образца мирицитрина (с концентрациями в диапазоне от 10 до 50 мг/мл) (рис. 5).

Время удерживания пиков мирицитрина и мирицетина на хроматограмме стандартного образца мирицитрина, а также в испытуемых растворах настойки и сухого экстракта коры ореха черного представлены в таблице 5.

Добавление раствора мирицитрина (1) и мирицетина (2) в испытуемые растворы настойки и сухого экстракта коры ореха черного приводит к увеличению интенсивности пика мирицитрина и пика мирицетина соответственно по сравнению с таковой мирицитрина и мирицетина в исходном испытуемом растворе (рис. 4А и 4Б).

При анализе методом ВЭЖХ в испытуемых растворах настойки и сухого экстракта коры ореха черного, определенное методом дифференциальной спектрофотометрии при аналитической длине волны 416 нм, представлено в таблице 4.

Оценка промежуточной прецизионности методики количественного определения мирицитрина в коре ореха черного

Образец	f (P, P, f)	t (P, f)	S	P, %	S	f	П	t	ΔX	%	F (P, f, f)	(tabl.)	F	расчет.
Настойка коры ореха черного («Милихром-6»)	10,042	0,02089	0,000436	95	±0,04	±8,45	4,19	1,14						
Сухой экстракт коры ореха черного («Милихром-6»)	10,042	0,02089	0,000436	95	±0,04	±8,45	4,19	1,14						

Таблица 7 – Содержание мирицитрина в образцах препаратов коры ореха черного (Juglans nigra L.) методом ВЭЖХ

№ п/п	Образец	Содержание мирицитрина (%)
1	Настойка коры ореха черного	0,42±0,06
2	Сухой экстракт коры ореха черного	8,45±2,25

Таблица 8 – Оценка промежуточной прецизионности методики количественного определения мирицитрина в коре ореха черного

-Высокая обоснованность данных, что в указанной системе возможно идентифицировать агликон мирицитрина – мирицетин (рис. 3Б, 3В, 3Г).

Время удерживания пиков мирицитрина и мирицетина на хроматограмме стандарта мирицитрина, а также в испытуемых растворах настойки и сухого экстракта коры ореха черного приведено в таблице 5.

Для определения количества мирицитрина и мирицетина в препаратах коры ореха черного было проведено сравнение общих оценок с содержанием мирицитрина в стандартном образце (табл. 3).

Правильность методики определяли методом добавок раствора стандартного образца мирицитрина с известной концентрацией (25%, 50% и 75%) к испытуемому раствору настойки. Относительная ошибка анализа составила ±3,19%. Опыты с добавками стандартного образца мирицитрина (с концентрациями в диапазоне от 10 до 50 мг/мл) (рис. 5).

Время удерживания пиков мирицитрина и мирицетина на хроматограмме стандартного образца мирицитрина, а также в испытуемых растворах настойки и сухого экстракта коры ореха черного приведено в таблице 5.

Для определения количества мирицитрина и мирицетина в препаратах коры ореха черного было проведено сравнение общих оценок с содержанием мирицитрина в стандартном образце (табл. 3).

Правильность методики определяли методом добавок. Растворы цинозида с известной концентрацией (25%, 50% и 75%) добавляли к аликвоте испытуемого раствора. Для каждой концентрации проводили по три определения (табл. 6). Относительная ошибка анализа составила 4,19%. Погрешность, определяемая для проб с добавками стандартных образцов, находилась в пределах погрешности единичного определения, что свидетельствует об отсутствии систематической погрешности.

Количество мирицитрина в образцах препаратов коры ореха черного, определенное методом обращенно-фазовой ВЭЖХ, представлено в таблице 7.
Рисунок 2 – Электронные спектры испытуемых растворов препаратов коры ореха черного и стандартных образцов

Примечания: А – Электронные спектры спиртовых растворов мирицитрина; Б – Электронный спектр раствора мирицитрина (дифференциальный вариант); В – Электронные спектры испытуемого раствора настойки коры ореха черного; Г – Электронный спектр раствора испытуемого раствора настойки коры ореха черного (дифференциальный вариант); Д – Электронные спектры испытуемого раствора сухого экстракта коры ореха черного; Е – Электронный спектр раствора испытуемого раствора сухого экстракта коры ореха черного (дифференциальный вариант). 1 – исходный раствор; 2 – раствор с добавлением алюминия хлорида.

DOI: 10.19163/2307-9266-2022-10-1-31-43
Рисунок 3 – График зависимости оптической плотности от концентрации мирицитрина в пробе и уравнение линейной регрессии

Рисунок 4 – ВЭЖХ-хроматограммы испытуемых растворов препаратов коры ореха черного и стандартных образцов

Примечания: А – ВЭЖХ-хроматограмма мирицитрина; Б – ВЭЖХ-хроматограмма мирицетина; В – ВЭЖХ-хроматограмма испытуемого раствора настоя коры ореха черного; Г – ВЭЖХ-хроматограмма испытуемого раствора сухого экстракта коры ореха черного. 1 – мирицитрин; 2 – мирицитин.
Рисунок 5 – ВЭЖХ-хроматограммы испытуемых растворов препаратов коры ореха черного с добавлением стандартного образца мирицитрина
Примечания: А – ВЭЖХ-хроматограмма испытуемого раствора настойки коры ореха черного с добавлением мирицитрина и мирицетина; Б – ВЭЖХ-хроматограмма испытуемого раствора сухого экстракта коры ореха черного с добавлением мирицитрина и мирицетина. 1 – мирицитрин; 2 – мирицетин.

Рисунок 6 – График зависимости площади пика от концентрации мирицитрина в пробе и уравнение линейной регрессии.

\[y = 0.3894x + 103.57 \]

\[R^2 = 0.9957 \]
Для оценки показателя промежуточной прецизионности производился расчет относительного стандартного отклонения, дисперсии, критерия Стьюдента и F-критерия Фишера (табл. 8). Оценку промежуточной прецизионности настойки и сухого экстракта проводили на двух приборах марки «Милихром-6». Для каждого образца проводились исследования в количестве одиннадцати экспериментов (табл. 8). Результаты расчета величины относительного стандартного отклонения не превышали 2%, ошибка единичного определения содержания мирицитрина в образцах настойки на «Милихром-6, » и «Милихром-6, » составила 8,45% и 13,87% соответственно; ошибка единичного определения содержания мирицитрина в образцах сухого экстракта составила 2,06% и 2,73% соответственно (табл. 8).

Расчет критерия Фишера позволяет утверждать, что средние результаты анализа образцов настойки и сухого экстракта на разных хроматографах статистически достоверны (P=95%) и не отличаются друг от друга. Из таблицы 7 видно, что рассчитанное значение F-критерия Фишера при анализе настоек и сухого экстракта меньше табличной величины. Следовательно, дисперсия результатов анализа обоих химиков статистически эквивалентны (табл. 7). Таким образом, разработанная методика соответствует требованиям валидации.

Результаты оценки промежуточной прецизионности разработанной методики при анализе 11 проб образцов настойки и сухого экстракта свидетельствуют об удовлетворительной воспроизводимости результатов анализа.

ЗАКЛЮЧЕНИЕ

Таким образом, результаты проведенных спектральных и хроматографических исследований свидетельствуют о целесообразности стандартизации препаратов коры черного путем определения суммы флавоноидов в пересчете на мирицитрин с использованием метода УФ-спектрофотометрии при длине волны 416 нм; определения содержания доминирующего и диагностически значимого флавоноида — мирицитрина с использованием метода ВЭЖХ и детектированием на УФ-детекторе при длине волны 360 нм. Содержание суммы флавоноидов в пересчете на мирицитрин в настойке и сухом экстракте коры черного составляет (0,84±0,07)% и (12,38±0,24)% соответственно. Ошибка единичного определения суммы флавоноидов в настойке и сухом экстракте коры черного с доверительной вероятностью 95% составляет ±8,34% и ±2,10% соответственно. Содержание мирицитрина в настойке и сухом экстракте коры черного составляет (0,42±0,06)% и (8,45±0,25)% соответственно. Ошибка единичного определения суммы флавоноидов в настойке и сухом экстракте коры черного составляет ±7,14% и ±2,96% соответственно.

ФИНАНСОВАЯ ПОДДЕРЖКА

Данное исследование не имело какой-либо финансовой поддержки от сторонних организаций.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

ВКЛАД АВТОРОВ

В.А. Куркин – концепция и дизайн исследования, редактирование; Н.И. Зименкина – сбор и обработка материала, написание текста и составление списка литературы, статистическая обработка результатов измерения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Дайронас Ж.В. Зилфикаров И.Н. Орех грецкий – перспективное лекарственное растение (обзор литературы) // Традиционная медицина: Российский фитотерапевтический съезд: Сб. науч. тр. съезда 22–23 октября 2010 г. – 2010. – № 3 (22). – С. 118–123.
2. Беленовская Л.М., Буданцев А.Л. Нафтохиноны видов флоры России и их биологическая активность // Растительные ресурсы. – 2006. – Т. 42, № 4. – С. 108–141.
3. Tang L.L., Zhang M., Zhao X.L. Species distribution and community assembly rules of Juglans mandshurica in North China // Chinese J. Plant Ecology. – 2019. – Vol. 43, No. 9. – P. 753–761. DOI: 10.17521/cjpe.2018.0161.
4. Дайронас Ж.В., Зилфикаров И.Н., Корочинская В.В. Определение нафтохинонов в сырье и фитопрепарате ореха черного – Juglans nigra L. // Фармация. – 2013. – № 4. – С. 12–14.
5. Ильинская И.А. К систематике и филогении семейства Juglandaceae // Ботанический журнал. – 1990. – Т. 75, № 6. – С. 792–803.
6. Paudel P., Satyal P., Dosoky N.S., Maharjan S., Setzer W.N. Juglans regia and J. nigra, two trees important in traditional medicine: A comparison of leaf essential oil compositions and biological activities // Nat. Prod. Commun. – 2013. – Vol. 8, No.10. – P. 1481–1486.
7. Зименкина Н.И., Куркин В.А. Разработка подходов к стандартизации коры ореха черного // Разработка подходов к стандартизации коры ореха черного // Аспирантский вестник Поволжья. – 2020. – № 1–2. – С. 131–136.
8. Аслонова И.Ж., Кароматов И.Д., Тураева Н.И. Химический состав грецкого ореха // Биология и интегративная медицина. – 2019. – № 10(38). – С. 77–83.
9. Пастушенкова А.Л. Лекарственные растения и лекарственное растительное сырье с противомикробным действием как путь преодоления лекарственной...
устойчивости микроорганизмов к действию антибактериальных препаратов // Клиническая патофизиология. – 2018. – Т. 24, № 1. – С. 20–24.
10. Тушканова О.В., Бойко И.Е. Исследование антибактериальной активности ягода выделенного из плодника Juglans nigra L. // Разработка и регистрация лекарственных средств. – 2017. – № 1(18). – С. 126–129.
11. Кикалишвили Б.Ю., Горгасладзе Н.С., Сулакашвили Ц.П. Липицы семьи греческого ореха (Juglans regia L.) // Web of Scholar. – 2018. – Т. 3, № 6(24). – С. 35–37. DOI: 10.31435/rsglobal_wos/12062018/5765.
12. Alshawi A.A., Hasan T.N., Shafi G., Syed N.A., Al-Assaf A.H., Alamri M.S., Al-Khaila A.S. Validation of the antiproliferative effects of organic extracts from the green husk of Juglans regia L. on PC-3 human prostate cancer cells by assessment of apoptosis-related genes // Evidence-Based Complementary and Alternative Medicine. – 2012. – Vol. 2012. – Article ID 103026. DOI: 10.1155/2012/103026.
13. Croitoru A., Ficai D., Craciun L. Evaluation and exploitation of bioactive compounds of walnut, Juglans regia // Current Pharmaceutical Design. – 2019. – Vol. 25, No. 2. – P. 119–131. DOI: 10.2174/1381622825666190329150825.
14. Feng S., Fang H., Liu X. Genome-wide identification and characterization of long non-coding RNAs conferring resistance to Colletotrichum gloeosporioides in walnut (Juglans regia) // BMC Genomics. – 2021. – Vol. 22, No.1. – P. 15. DOI: 10.1186/s12864-020-07310-6.
15. Дайронас Ж. В., Верниковский В. В. Основные фармакологические свойства извлечений из сырья рода Juglans // Экология лекарственных растений, ФГБОУ ВО СамГМУ Минздрава России. ORCID ID: 0000-0003-1334-6046. E-mail: v.a.kurkin@samsmu.ru
16. Корчинский А. В., Бойко И. Е. Исследование антибиотической активности извлечения из ягод Juglans nigra L. // Журнал клинической медицины. – 2019. – № 5(26). – С. 115–118.
17. Sharma, P., Verma P.K., Pankaj N.K. Neuroprotective potential of hydroethanolic hull extract of Juglans regia L. on isoprenaline induced oxidative damage in brain of Wistar rats // Toxicology Reports. – 2021. – Vol. 8. – P. 223–229. DOI: 10.1016/j.toxrep.2021.01.006.
18. Железняк А. С. Изучение флавоноидов в листьях некоторых видов рода Juglans, интродуцированных в условиях Самарской области // Материалы докладов Всероссийской конференции с международным участием Аспиранты и студенцы – 2013: «Молодые учёные в медицине». – 2013. – С. 274–277.
19. Пастушкова А. Л. Лекарственные растения и лекарственное растительное сырье с противовирусным действием как путь преодоления лекарственной устойчивости микроорганизмов к действию антибактериальных препаратов // Клиническая патофизиология. – 2018. – Т. 24, № 1. – С. 20–24.
20. Caballero E., SotoC., Jara J. Thermal stability data of juglone from extracts of walnut (Juglans regia) green husk, and technologies used to concentrate juglone // Data in Brief. – 2019. – Vol. 25. – Art. No. 104081. DOI: 10.1016/j.dib.2019.104081.
21. Ebrahimia I., Gashit M.P. Extraction of juglone from Pterocarya fraxinifolia leaves for dyeing, anti-fungal finishing, and solar UV protection of wool // Coloration Technology. – 2015. – Vol. 131, No. 6. – P. 451–457. DOI: 10.1111/cote.12180.
22. Gholizadeh J., Sadeghipour H.R., Abdolzadeh A. Bud break accompanies with the enhanced activities of hemicellulase and pectinase and the mobilization of cell wall thickenings in Persian walnut bud scales // Trees – Structure and Function. – 2021. – DOI: 10.1007/s00468-021-02122-x.
23. Lin Y., Liang J., Peng X., Ruan H. Phenolic constituents from the fresh pericarps of Juglans sigillata // Nat. Prod. Res. – 2021. – Vol. 35, No. 8. – P. 1242–1248. DOI: 10.1080/14786419.2019.1644631.
24. Bandele O.J., Clawson S.J., Osheroff N. Dietary polyphenols as topoisomerase II poisons: B ring and C ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement // Chem. Res. Toxicol. – 2008. – Vol. 21, No. 6. – P. 1253–1260. DOI: 10.1021/tr070078s.

Авторы

Куркин Владимир Александрович – доктор фармацевтических наук, профессор, заведующий кафедрой фармакогнозии с ботаникой и основами фитотерапии, ФГБОУ ВО СамГМУ Минздрава России. ORCID ID: 0000-0002-7513-9352. E-mail: v.a.kurkin@samsmu.ru

Зименкина Наталья Игоревна – аспирант кафедры фармакогнозии с ботаникой и основами фитотерапии, ФГБОУ ВО СамГМУ Минздрава России. ORCID ID: 0000-0003-1334-6046. E-mail: n.i.zimenkina@samsmu.ru