A Security Framework for Wireless Sensor Networks: Theory and Practice

Christophe Guyeux, Abdallah Makhoul and Jacques M. Bahi

Femto-ST Institute
Computer science department (DISC)
University of Franche-Comté
Rue Engel-Gros, 90016 Belfort, France
{christophe.guyeux, abdallah.makhoul, jacques.bahi}@univ-fcomte.fr

Abstract—Wireless sensor networks are often deployed in public or otherwise untrusted and even hostile environments, which prompts a number of security issues. Although security is a necessity in other types of networks, it is much more so in sensor networks due to the resource-constraint, susceptibility to physical capture, and wireless nature. In this work we emphasize two security issues: (1) secure communication infrastructure and (2) secure nodes scheduling algorithm. Due to resource constraints, specific strategies are often necessary to preserve the network’s lifetime and its quality of service. For instance, to reduce communication costs nodes can go to sleep mode periodically (nodes scheduling). These strategies must be proven as secure, but protocols used to guarantee this security must be compatible with the resource preservation requirement. To achieve this goal, secure communications in such networks will be defined, together with the notions of secure scheduling. Finally, some of these security properties will be evaluated in concrete case studies.

Keywords—Wireless Sensor Networks; Security; Secure Scheduling; Indistinguishability; Nonmalleability.

I. INTRODUCTION

In the last few years, wireless sensor networks (WSN) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. Therefore, energy conservation is a key issue in the design of systems based on wireless sensor networks. In the literature, we can find different techniques to extend the sensor network lifetime [1]. For example, energy efficient protocols are aimed at minimizing the energy consumption during network activities. However, a large amount of energy is consumed by node components (CPU, radio, etc.) even if they are idle. Power management schemes are thus used for switching off node components that are not temporarily needed [2, 3]. Other techniques suitable to reduce the energy consumption of sensors is data acquisition (i.e. sampling or transmitting) reduction as data fusion and aggregation [4, 5].

On the other hand, sensor networks are often deployed in unattended even hostile environments, thus leaving these networks vulnerable to passive and active attacks by the adversary. The communication between sensor nodes can be eavesdropped by the adversary and can forge the data. Sensor nodes should be resilient to these attacks. Therefore, One of the major challenges in such networks is how to provide connection between sensors and the base station and how to exchange the data while maintaining the security requirements and taking into consideration their limited resources. In this paper we emphasize two security issues:

Secure communication infrastructure: In wireless sensor networks a sensor node generally senses the data and sends to its neighbor nodes or to the sink. Stationary adversaries equipped with powerful computers and communication devices may access whole WSN from a remote location. For instance, an intrusion detection system detects the different type of attacks and sends the report to base station. It uses all nodes or some special nodes to detect these types of attacks. These nodes co-operate each other to take the decision and finally send the report to the base station. It requires lots of communication between the nodes. If adversary can trap the message exchanging between the nodes then he can easily tamper the messages and send the false information to the other nodes. Secure communication is a necessary condition in order to make the network smooth so that nodes can send data or exchange the message securely. In our paper, we provide the definition of a communication system for WSNs, and define some of the required security properties dedicated to sensor networks.

Secure scheduling: The main objective of a secure scheduling is to prolong the whole network lifetime while fulfilling the surveillance application needs. In other words, a common approach is to define a subset of the deployed nodes to be active while the other nodes can sleep. In this paper, we present a novel scheduling algorithm where only a subset of nodes contribute significantly to detect intruders and prevent malicious attacker to predict the behavior of the network prior to intrusion. We present a random scheduling to solve this issue, by guaranteeing an uniform coverage while preventing attackers to predict the list of awaken nodes.

The remainder of this research work is organized as follows. In the next section we provide a general presentation for security in WSN. A rigorous formalism for secure communications in wireless sensor networks is presented...
II. Security in WSN: General Presentation

Wireless nature of communication, lack of infrastructure and uncontrolled environment improve capabilities of adversaries in WSN. Stationary adversaries equipped with powerful computers and communication devices may access whole WSN from a remote location. They can gain mobility by using powerful laptops, batteries and antennas, and move around or within the WSN. In this section, we consider a WSN where nodes communicate together by sending data publicly. These transmitted data contain a message whose confidentiality must be preserved. For instance, transmitted data is the cryptogram of a message, modulated in an electromagnetic radiation, or the message is dissimulated into the electromagnetic radiation by using a spread spectrum information hiding technique.

Wireless communication helps adversaries to perform variety of attacks. A secure communication can be used to provide the following general security goals:

- **One-wayness (OW)**, the adversary who sees transmitted data is not able to compute the corresponding message.
- **Indistinguishability (IND)**, observing transmitted data, the adversary learns nothing about the contained message.
- **Non-malleability (NM)**, the adversary, observing data for a message \(m \), cannot derive another data for a meaningful message \(m' \) related to \(m \).

The OW and IND goals relate to the confidentiality of messages sending through the WDN. The IND goal, however, much more difficult to achieve than the one-wayness. Non-malleability guarantees that any attempt to manipulate the observed data to obtain a valid data will be unsuccessful (with a high probability).

The power of a polynomial attacker (with polynomial computing resources) very much depends on his/her knowledge about the system used to transform information in data. The weakest attacker is an outsider who knows the public embedding algorithm together with other public information about the setup of the system. The strongest attacker seems to be an insider (he/she is inside the network) who can access the extraction device (recovering information from data) in regular interval. The access to the extraction key is not possible as the extraction device is assumed to be tamperproof.

An extraction oracle is a formalism that mimics an attacker’s access to the extraction device. The attacker can experiment with it providing data and collecting corresponding information from the oracle (the attacker cannot access to the decryption key). In general, the public-key WSN can be subjected to the following attacks (ordered in increasing strength):

- **Chosen information attack (CIA)** The attacker knows the embedding algorithm and the public elements including the public key (the embedding oracle is publicly accessible).

- **Nonadaptative chosen data attack (CDA1)** The attacker has access to the extraction oracle before he sees a data that he wishes to manipulate.

- **Adaptive chosen data attack (CDA2)** The attacker has access to the extraction oracle before and after he observes a data \(s \) that he wishes to manipulate (assuming that he is not allowed to query the oracle about the data \(s \)).

The security level that a public-key WSN achieves can be specified by the pair (goal, attack), where the goal can be either OW, IND, or NM, and the attack can be either CIA, CDA1, or CDA2. For example, the level (NM,CIA) assigned to a public-key network says that the system is nonmalleable under the chosen message attack. There are two sequences of trivial implications

- \((NM,CDA2) \Rightarrow (NM,CDA1) \Rightarrow (NM,CIA)\),
- \((IND,CDA2) \Rightarrow (IND,CDA1) \Rightarrow (IND,CIA)\),

which are true because the amount of information available to the attacker in CIA, CDA1, and CDA2 grows. Figure 1 shows the interrelation among different security notions. Consequently, we can identify the hierarchy of security levels. The top level is occupied by \((NM,CDA2)\) and \((IND,CDA2)\). The bottom level contains \((IND,CIA)\) only as the weakest level of security. If we are after the strongest security level, its enough to prove that our network attains the \((IND,CDA2)\) level of security.

III. Rigorous Formalism for Secure Communications in WSNs

In this section, we present a new principles formalism for secure communication in wireless sensor networks.

A. Communication System in a WSN

Definition 3.1 (Communication system): Let \(S, M, \) and \(K = \{0,1\}^I \) three sets of words on \(\{0,1\} \) called respectively the sets of transmission supports, of messages, and of keys (of size \(I \)).

A communication system on \((S, M, K)\) is a tuple \((I, E, inv)\) such that:

- \(I : S \times M \times K \rightarrow S, (s, m, k) \mapsto I(s, m, k) = s' \),
- is the insertion function, which put the message \(m \) into the support of transmission \(s \) according to the key \(k \), leading to the transmitted data \(s' \).
• $E : S \times K \rightarrow M$, $(s, k) \mapsto E(s, k) = m'$, defined as the extraction function, which extract a message m' from a transmitted data s, depending on a key k.

• $inv : K \rightarrow K$, s.t. \(\forall k \in K, \forall (s, m) \in S \times M, E(\overline{E}(s, m, k), inv(k)) = m \), which is the function that can “invert” the effects of the key k, producing the message m that has been embedded into s using k.

• I and E can be computed in polynomial time, and I is a probabilistic algorithm (the same values inputted twice produce two different transmitted data).

k is called the embedding key and $k' = inv(k)$ the extraction key. If $\forall k \in K, k = inv(k)$, the communication system through the WSN is said symmetric (private-key), otherwise it is asymmetric (public-key).

B. Indistinguability

Suppose that the adversary has two messages m_1, m_2 and a transmitted data s in his/her possession. He/she know that s contains either m_1 or m_2. Our intention is to define the fact that, having all these materials, the key, and the insertion function (we take place into the (IND,CIA) context), he cannot determine with a non negligible probability the message that has been embedded into s.

The difficulty of the challenge comes, for a large extend, from the fact that the insertion algorithm I is a probabilistic one, which is a common-sense assumption usually required in cryptography.

Definition 3.2: An Indistinguibility I-adversary is a couple (A_1, A_2) of nonuniform algorithms, each with access to an oracle O.

Definition 3.3 (Indistinguishability): For a public communication system in WSN (I, E, inv) on $(S, M, \{0,1\}^t)$, define the advantage of an I-adversary A by

$$Adv_A^{I-O} = Pr \left[\begin{array}{c}
 k \leftarrow (0,1)^t \\
 b \leftarrow \{0,1\} \\
 \alpha \leftarrow \{0,1\} \\
 s \leftarrow E(s, m, k) \\
 A_2(k, s, m, 1_\alpha) = b
\end{array} \right]$$

We define the insecurity of $S = (I, E, inv)$ with respect to the Indistinguishability as

$$InSec_S^{I-O}(t) = \max_A \left\{ Adv_A^{I-O} \right\}$$

where the maximum is taken over all adversaries A with total running time t.

We distinguish three kinds of oracles:

- The Non-adaptive oracle, denoted NA, where A_1 has access to the communication system and to an oracle that can in a constant time provide a message m' from any transmitted data $I(M', m', k')$, without knowing neither M' nor k' nor $inv(k')$. In this context, A_2 has no access to this oracle.

- The Strong adaptive oracle, denoted $AD2$, where A_1 has access to the communication system and to an oracle that can in a constant time provide a message m' from any transmitted data $I(M', m', k')$, without knowing neither M' nor k' nor $inv(k')$. In this context, A_2 has also access to this oracle but for the message $I(M, m, k)$.

C. Relation Based Non-malleability

In some scenarios malicious nodes can integrate the WSN, hoping by doing so to communicate false information to the other nodes. We naturally suppose that communications are secured. The problem can be formulated as follows: is it possible for the attacker to take benefits from his/her observations, in order to forge transmitted data either by embedding erroneous messages, or sending data that appear to be similar with what a node is supposed to produce.

As wireless sensor networks have usually a dynamical architecture, the (dis)appearance of nodes is not necessarily suspect. Authentication protocols can be deployed into the WSN, but in some cases such authentication is irrelevant, because of its energy consumption, communication cost, or rigidity. We focus in this section on the possibility to propose a secured communication scheme in WSN that prevents an attacker to forge such malicious transmitted data. Such non-malleability property can be formulated as follows.

Definition 3.4: A Relation Based NM-adversary is a nonuniform algorithm A having access to an oracle O.

Definition 3.5 (Relation Based Non-malleability): For a public communication system (I, E, inv) on $(S, M, \{0,1\}^t)$, define the advantage of a NM-adversary A by

$$Adv_A^{NM-O}(m) = Pr \left[\begin{array}{c}
 c \leftarrow R(M) \\
 k \leftarrow \{0,1\}^t \\
 m' \leftarrow E(c, k) \\
 A_2(k, s, m, 1_\alpha) = b
\end{array} \right]$$

where $R : M \rightarrow \mathcal{P}(M)$ is a function that map any message m to a subset of M containing messages related to m (for a given property). For instance, if we suppose that an attacker has inserted or corrupted some nodes in a network that measures temperature, he can make these nodes send wrong temperatures values fixed a priori.

We can now define the insecurity of $S = (I, E, inv)$ with respect to the Relation Based Non-malleability as

$$InSec_S^{NM-O}(t) = \max_A \left\{ \max_{m \in M} \left\{ Adv_A^{NM-O}(m) \right\} \right\}$$

where the maximum is taken over all adversaries A with total running time t. Similar kinds of oracles than previously can be defined in that context.

D. Message Detection Resistance

We now address the particular case where transmitted data can contain or not an embedded message. For security reasons, it is sometimes required that an attacker cannot determine when information are transmitted through the network. For instance, in a video surveillance context, suppose
that an attacker can determine when an intrusion is detected, or when something considered as suspicious is forwarded through the nodes to the sink. Then he/she can use this knowledge to deduce what kind of behavior is suspicious for the network, adapting so his/her attacks. Decoys are often proposed to make such attacks impossible: transmitted data do not always contain information, some of the communications are only realized to mislead the attacker. The quantity and frequency of these decoys must naturally respect the energy consumption requirement, and a compromise must be found on the message/decoy rate to face such attacks while preserving the WSN lifetime. However, such an approach supposes that the attacker is unable to make the distinction between decoys and meaningful communications. Such a supposition leads to the following definition.

Definition 3.6: A Detection Resistance DR-adversary is a couple \((A_1, A_2) \) of nonuniform algorithms, each with access to an oracle \(Q \).

Definition 3.7 (Message Detection Resistance):
For a public communication system \((\mathcal{I}, \mathcal{E}, \text{inv}) \) on \(\langle S, \mathcal{M}, \{0, 1\}^t \rangle \), define the advantage of a DR-adversary \(A \) by

\[
Adv_A^{DR-O} = \max \left\{ \begin{array}{c}
M_0, M_1 \leftarrow S \\
k \leftarrow \{0, 1\}^t \\
m \leftarrow A_1(k) \\
b \leftarrow \{0, 1\} \\
\alpha = \{M_0, \mathcal{I}(M_0, m, k)\}
\end{array} \right| A_2(m, k, \alpha) = M_b
\]

where the set defining \(\alpha \) is a non-ordered one.

We define the insecurity of \(S = (\mathcal{I}, \mathcal{E}, \text{inv}) \) with respect to the Message Detection Resistance as

\[
\text{InSec}_S^{DR-O}(t) = \max_{A} \left\{ \text{Adv}_A^{DR-O} \right\}
\]

where the maximum is taken over all adversaries \(A \) with total running time \(t \). Similar kinds of oracles than previously can be defined in that context.

IV. SECURE SCHEDULING

A. Motivations

A common way to enlarge lifetime of a wireless sensor network is to consider that not all of the nodes have to be awakened: a subset of well-chosen nodes participates temporarily to the task devoted to the network [6], whereas the other nodes sleep in order to preserve their batteries. Obviously, the scheduling process determining the nodes that have to be awakened at each time must be defined carefully, both for guaranteeing a certain level of quality in the assigned task and to preserve the network capability over time. Problems that are of importance in that approach are often related to coverage, ratio of awaken vs sleeping nodes, efficient transmission of wake up orders, and capability for the partial network to satisfy, with a sufficient quality, the objectives it has been designed for. Existing surveillance applications works focus on finding an efficient deployment pattern so that the average overlapping area of each sensor is bounded. The authors in [7] analyze new deployment strategies for satisfying some given coverage probability requirements with directional sensing models. A model of directed communications is introduced to ensure and repair the network connectivity. Based on a rotatable directional sensing model, the authors in [8] present a method to deterministically estimate the amount of directional nodes for a given coverage rate. A sensing connected sub-graph accompanied with a convex hull method is introduced to model a directional sensor network into several parts in a distributed manner. With adjustable sensing directions, the coverage algorithm tries to minimize the overlapping sensing area of directional sensors only with local topology information. Lastly, in [9], the authors present a distributed algorithm that ensures both coverage of the deployment area and network connectivity, by providing multiple cover sets to manage Field of View redundancies and reduce objects disambiguation.

All the above algorithms depend on the geographical location information of sensor nodes. These algorithms aim to provide a complete-coverage network so that any point in the target area would be covered by at least one sensor node. However, this strategy is not as energy-efficient as what we expect because of the following two reasons. Firstly, the energy cost and system complexity involved in obtaining geometric information may compromise the effect of those algorithms. Secondly, sensor nodes located at the edge of the area of interest must be always in an active state as long as the region is required to be completely covered. These nodes will die after some time and their coverage area will be left without surveillance. Thus, the network coverage area will shrink gradually from outside to inside. This condition is unacceptable in surveillance applications and (intelligent) intrusion detection, because the major goal here is to detect intruders as they cross a border or as they penetrate a protected area. In case of hostile environments, security play an important role in the written of the scheduling program. Indeed an attacker, observing the manner nodes are wake up, should not be able to determine the scheduling program. For instance, in a video surveillance context, if the attacker is able to determine at some time the list of the sleeping nodes, then he can possibly achieve an intrusion without being detected [10].

Obviously, a random scheduling can solve the issues raised above, by guaranteeing a uniform coverage while preventing attackers to predict the list of awaken nodes. However, this approach needs random generators into nodes, which cannot be obtained by deterministic algorithms embedded into the network. Even if truly random generators (TRG) can be approximated by physical devices, they need a certain quantity of resources, suppose that the environment under observation has a sufficient variability of a given set of physical properties (to produce the physical noise source required in that TRG), and are less flexible or adaptable on
demand than pseudorandom number generators (PRNGs). Furthermore, neither their randomness nor their security can be mathematically proven: these generators can be biased or wrongly designed. Being able to guarantee a certain level of security in scheduling leads to the notion of secure scheduling proposed below.

B. Secure Scheduling in Wireless Sensor Networks

Two kinds of scheduling processes can be defined: each node can embed its own program, determining when it has to sleep (local approach), or the sink or some specific nodes can be responsible of the scheduling process, sending sleep or wake up orders to the nodes that have to change their states (global approach).

We consider that a deterministic scheduling algorithm is a function $S : \{0,1\}^n \to \{0,1\}^M$, where $M > n$. This definition can be understood as follows:

• The value inputted in S is the secret key launching the scheduling process. It can be shown as the seed of a PRNG.

• In case of a local approach, the binary sequence produced by this function corresponds to the moments where the node must be awaken: if the k-th term of this sequence is 0, then the node can go to sleep mode between t_k and t_{k+1}.

• In case of a global approach, the binary sequence returned by S can be divided by blocs, such that each bloc contains the id of the node to which an order of state change will be send.

Loosely speaking, S is called a secure scheduling if it maps uniformly distributed input (the secret key or seed of the scheduling process) into an output which is computationally indistinguishable from uniform. The precise definition is given below.

Definition 4.1: A T-time algorithm $D : \{0,1\}^M \to 0,1$ is said to be a (T,ε)-distinguisher for S if

$p_T \left[D(S(x^M)) = 1 \right] - p_T \left[D(x^M) = 1 \right] \geq \varepsilon. \tag{2}$

where Ω_2 is the uniform distribution on $\{0,1\}$.

Definition 4.2 (Secure scheduling): Algorithm S is called a (T,ε)-secure scheduling if no (T,ε)-distinguisher exists for S.

Adapting the proofs of [11, 12], it is possible to show that a (T,ε)-distinguisher exists if and only if a T-time algorithm can, knowing the first l bits of a scheduling s, predict the $(l+1)$-st bit of s with probability significantly greater than 0.5. This comes from the fact that a PRNG passes the next-bit test if and only if it passes all polynomial-time statistical tests [11, 12].

An important question is what level of security (T,ε) suffices for practical applications in scheduled wireless sensor networks. Unfortunately, the level of security is often chosen arbitrarily. It is reasonable to require that a scheduling process is secure for all pairs (T,ε) such that the time-success ratio T/ε is below a certain bound. In the next section we present an illustration of this notion.

C. Practical Study

Suppose that a wireless sensor node has been scheduled by a Blum-Blum-Shub BBS pseudorandom generator. This generator produces bits y_0,y_1,\ldots, and the node is awaken during the time interval $[t_i:t_{i+1}]$ if and only if $y_i = 1$.

Let us recall that the Blum Blum Shum generator [13] (usually denoted by BBS) is defined by the following process:

1) Generate two large secret random and distinct primes p and q, each congruent to 3 modulo 4, and compute $N = pq$.
2) Select a random and secret seed $s \in [1,N−1]$ such that $gcd(s,N) = 1$, and compute $x_0 = s^2 \mod N$.
3) For $1 \leq i \leq l$ do the following:
 a) $x_i = x_{i−1}^2 \mod N$.
 b) y_i is the least significant bit of x_i.
4) The output sequence is y_1,y_2,\ldots,y_l.

Suppose now that the network will work during $M = 100$ time units, and that during this period, an attacker can realize 10^{12} clock cycles. We thus wonder whether, during the network’s lifetime, the attacker can distinguish this sequence from truly random one, with a probability greater than $\varepsilon = 0.2$. We consider that N has 900 bits.

The scheduling process is the BBS generator, which is cryptographically secure. More precisely, it is (T,ε)-secure: no (T,ε)-distinguishing attack can be successfully realized on this PRNG, if [14]

$$T \leq \frac{L(N)}{6N(\log_2(N))e^{-2M^2}} - 2^7N\varepsilon^{-2}M^2\log_2(8N\varepsilon^{-1}M) \tag{3}$$

where M is the length of the output ($M = 100$ in our example), and

$$L(N) = 2.8 \times 10^{-3} \exp \left(1.9229 \times (N \ln(2))^{\frac{1}{2}} \times \ln(N \ln 2)^{\frac{3}{2}}\right)$$

is the number of clock cycles to factor a N-bit integer.

A direct numerical application shows that this attacker cannot achieve its $(10^{12},0.2)$ distinguishing attack in that context.

D. Results study

This section presents simulation results on comparing our approach to the standard C++ `rand()`-based approach with random intrusions. We use the OMNET++ simulation environment and the next node selection will either use our approach or the C++ `rand()` function (`rand()` % 2^n) to produce a random number between 0 and 2^n. For these set of simulations, 128 sensor nodes are randomly deployed in a 75m * 75m area. Figure 2 shows the percentage of active nodes. Both our approach and the standard `rand()`
function have similar behavior: the percentage of active nodes progressively decreases due to battery shortage.

Another result we want to show is the energy consumption distribution. We recorded every 10s the energy level of each sensor node in the field and computed the mean and the standard deviation. Figure 3 shows the evolution of the standard deviation during the network lifetime. We can see that our approach selection provides a slightly better distribution of activity than the standard rand() function.

V. Conclusion

In this document, a rigorous framework for security in wireless sensor networks has been formalized. The definition of a communication system in WSNs has been introduced, and security properties (indistinguishability, nonmalleability, and message detection resistance) have been formalized in that context. Furthermore, the definitions of secure scheduling, specific to such networks, have been given too. With this theoretical framework, it has been possible to evaluate the security of a scheduling scheme based on the BBS cryptographically secure PRNG.

REFERENCES

[1] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella. Energy conservation in wireless sensor networks: A survey. Ad Hoc Netw., 7(3):537–568, May 2009.

[2] J.Bahi, A.Makhoul, and A.Mostefaoui. Localization and coverage for high density sensor networks. Computer Communications journal, 31(4):770–781, 2008.

[3] T. Zhao and Q. Zhao. Coverage based information retrieval for lifetime maximization in sensor networks. In the 41st Conference on Information Sciences and Systems, 2007.

[4] X. Li. A survey on data aggregation in wireless sensor networks. Project Report for CMPT 765, 2006.

[5] Jacques Bahi, Abdallah Makhoul, and Maguy Medlej. Data aggregation for periodic sensor networks using sets similarity functions. 7th IEEE Int. Wireless Communications and Mobile Computing Conference, pages 559–564, July 2011.

[6] Abdallah Makhoul and Congduc Pham. Dynamic scheduling of cover-sets in randomly deployed wireless video sensor networks for surveillance applications. 2nd IFIP Wireless Days Conference, WD’09, pages 73–78, December 2009.

[7] Huadong Ma and Yonghe Liu. Some problems of directional sensor networks. International Journal of Sensor Networks, 2(1-2):44–52, 2007.

[8] Dan Tao, Huadong Ma, and Liang Liu. Coverage-enhancing algorithm for directional sensor networks. Lecture Notes in Computer Science - Springer, pages 256–267, November 2006.

[9] Congduc Pham and Abdallah Makhoul. Performance study of multiple cover-set strategies for mission-critical video surveillance with wireless video sensors. In 6th IEEE Int. Conf. on Wireless and Mobile Computing, Networking and Communications, wimob’10, pages 208–216, 2010.

[10] Jacques Bahi, Christophe Guyeux, Abdallah Makhoul, and Congduc Pham. Secure scheduling of wireless video sensor nodes for surveillance applications. In 3rd Int. ICST Conference on Ad Hoc Networks, 2011.

[11] Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 80–91, Washington, DC, USA, 1982. IEEE Computer Society.

[12] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM, 33:792–807, 1986.

[13] Manuel Blum and Shafi Goldwasser. An efficient probabilistic public key encryption scheme which hides all partial information. In Proceedings of CRYPTO ’84 on Advances in cryptology, pages 289–302, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[14] R. Fischlin and C. P. Schnorr. Stronger security proofs for rsa and rabin bits. In Proceedings of the 16th annual international conference on Theory and application of cryptographic techniques, EUROCRYPT’97, pages 267–279, Berlin, Heidelberg, 1997. Springer-Verlag.