INTRODUCTION

The oculomotor nerve dysfunction is a well recognized manifestation of the internal carotid-posterior communicating artery (ICA-PComA) junction aneurysm and is considered to be a valuable localizing sign caused by direct pressure on the nerve. Intracranial pressure via extraventricular drainage before surgery was 15-50 mm Hg. Three months later, brain MRI showed infarction of the left posterior cerebral artery territory and lacuna infarction of the pons. Eleven months after aneurysm repair, nerve palsy improved slowly and recovered partially. The patient communicated well with simple words. The author reviewed and discussed the possible mechanism of this rare neuro-ophthalmological manifestation in view of a false localizing sign.

CASE REPORT

A rare case of bilateral third cranial nerve palsy due to a ruptured anterior communicating artery aneurysm is presented. A 68-yr-old woman was semicomatose with bilaterally fixed dilated pupil, abducted eyes, and ptosis. A computed tomography demonstrated extensive hemorrhage spreading around the both Sylvian and interhemispheric fissure without focal mass effect. Intracranial pressure via extraventricular drainage before surgery was 15-50 mm Hg. Three months later, brain MRI showed infarction of the left posterior cerebral artery territory and lacuna infarction of the pons. Eleven months after aneurysm repair, nerve palsy improved slowly and recovered partially. The patient communicated well with simple words. The author reviewed and discussed the possible mechanism of this rare neuro-ophthalmological manifestation in view of a false localizing sign.

Key Words: Oculomotor Nerve; Paralysis; Palsy; Anterior Communicating Artery; Intracranial Aneurysm

Sung Don Kang
Department of Neurosurgery, School of Medicine, Institute of Wonkwang Medical Science, Wonkwang University, Iksan, Korea
Received: 29 August 2005
Accepted: 21 November 2005
Address for correspondence
Sung Don Kang, M.D.
Department of Neurosurgery, Wonkwang University Hospital, 344-2 Sinnyong-dong, Iksan 570-711, Korea
Tel: +82-63-850-1268, Fax: +82-63-852-2606
E-mail: kangsd@wonkwang.ac.kr
*This paper was supported by Wonkwang University in 2006.
Twenty days later, ventriculo-peritoneal shunting was done due to communicating hydrocephalus. Her left pupil decreased to 3 mm in size but did not react to direct or indirect light. There were still limitations of ocular movements of both eyes.

As her consciousness began to improve slowly after shunting over a period of weeks, it was noted that she was unable to open her both eyes, indicating bilateral ptosis. At this point, the author came to recognize these events and finally confirmed external ophthalmoplegia of the right eye and complete ophthalmoplegia of the left eye. Three months after surgery, follow-up magnetic resonance imaging (MRI) demonstrated infarction of left medial occipital lobe and lacunar infarction of the pons (Fig. 3). The final examination performed in one year showed that the patient communicated well with simple words, and that the left arm and leg rema-

Fig. 1. Computed tomographic scanning demonstrates extensive hemorrhage spreading around the both Sylvian, basal, and inter-hemispheric cistern.

Fig. 2. A digital subtraction angiogram reveals a saccular aneurysm on the anterior communicating artery.

Fig. 3. Three months after surgery, a follow-up magnetic resonance imaging demonstrates infarction of the left medial occipital lobe (A) and lacunar infarction of the pons (B).
Bilateral third cranial nerve palsy as a false localizing sign due to a ruptured anterior communicating artery aneurysm is very rare because AComA aneurysms are not in the vicinity of the oculomotor nerve. Suzuki and Iwabuchi (3) recorded false localizing third cranial nerve palsy in two patients with ruptured aneurysms. These patients had A1 and AComA aneurysms and were presented with unilateral partial cranial nerve III palsy and bilateral total ophthalmoplegia, respectively. They explained in patient with A1 aneurysm and mega-dolichobasilar anomaly that the oculomotor nerve might be more easily displaced or squeezed between the posterior cerebral and superior cerebellar arteries by increased ICP. In another expired patient, a remarkable descent of the terminal portion of the basilar artery was found, indicating downward displacement of the midbrain by supratentorial hypertension, resulting in total ophthalmoplegia. A single case of an AComA aneurysm rupture in which bilateral oculomotor nerve palsy was presented was reported by Coyne and Wallace (4).

A number of mechanisms of a third nerve palsy in patients with an intracranial aneurysm have been classified by Fox (5). Direct peripheral causes include, 1) local pressure by the aneurysm, and 2) hemorrhagic dissection of the nerve. Direct central causes include bleeding into midbrain parenchyma or direct pressure of a large basilar artery on the nucleus. Indirect peripheral causes include increased ICP (from clot, edema, hydrocephalus) causing uncal herniation. Indirect central causes include increased ICP and vasospasm (6). The case of Coyne and Wallace (4) showed close similarity to the present case with respect to the pathogenesis but a little difference from clinical signs and course of the bilateral oculomotor nerve palsy. In their report, raised ICP without brain herniation and compression of the third nerves within the perimesencephalic cisterns by focal subarachnoid clot were suggested as possible underlying mechanisms of the palsies.

When the peripheral oculomotor nerve is involved by an aneurysm, usually the pupilloconstrictor fibers are involved first, followed by palsy of the levator palpebrae, superior rectus, and medial rectus, in order. In contrast, when there is an intramedullary lesion, the pupilloconstrictor fibers can be saved (7, 8). While the phenomenon of a pupil-sparing oculomotor nerve palsy caused by an aneurysm has been well documented, it is nonetheless an uncommon event (9-11). In diabetes, a pupil-sparing oculomotor nerve palsy leads to loss of myelin and axons within that central portion, but may spare the peripheral regions where pupillary fibers travel (12). In the present patient, it is likely that the microvascular supply to the inner nerve fibers of right third nerve was compromised while more peripheral fibers still received an adequate vascular supply.

It is clinically difficult to ascertain the exact pathophysiologic mechanism responsible for the present case. This nerve injury might be caused by 1) direct compression of the nerve derived from the extensive clot in the basal cistern, 2) uncal herniation, 3) remote effect due to increased ICP, and less likely, 4) vasospasm of branches of basilar artery. In the present patient, these several features typically seen in other reports were found to be co-existing. The development of infarction of left medial occipital lobe usually signifies incipient uncal herniation. Most likely, brain herniation, along with dense hemorrhage and increased ICP, is a mechanism of the left oculomotor nerve palsy. However, relatively good improvement of this patient’s neurological deficits and the absence of midbrain and uncal lesion on MRI suggest that focal vasospasm is one rare possibility of infarction of this medial occipital lobe and lacunar infarction of the pons. In contrast, the remote effect due to increased ICP could conceivably account for pupillary change of the right eye according to ventricular drainage.

Eye opening on command or painful stimulus is most significant within the first 72 hr following an injury. After this time, even patients who will remain vegetative may open their eyes spontaneously. Delay in the diagnosis of this condition after surgery could be common because of lack of recognition of ptosis in an unconscious patient.

Despite considerable variety in the degree of recovery, many patients show little functional impaiment. However, this relates to the nature of the hemorrhagic insult. It seems to be possible that early operative decompression of the cistern and direct neck clipping are the therapeutic maneuvers most
likely to produce ultimate ocular recovery in the present case.

In conclusion, the incidence of bilateral third cranial nerve palsy due to a ruptured AComA aneurysm as a false localizing sign is very rare. It will be difficult to evaluate the result if the neuro-ophthalmological examination was limited by the poor clinical grade of the patients with ruptured intracranial aneurysms. Therefore, more meticulous neuro-ophthalmological examination should be done to evaluate cranial nerve palsy.

REFERENCES

1. Lee CH, Koh YC. Ruptured posterior communicating artery aneurysm causing bilateral abducens nerve paralyses. J Korean Neurosurg Soc 2000; 29: 426-9.
2. Ziyal IM, Ozcan OE, Deniz E, Bozkurt G, Ismailoglu O. Early improvement of bilateral abducens nerve palsies following surgery of an anterior communicating artery aneurysm. Acta Neurochir 2003; 145: 159-61.
3. Suzuki J, Iwabuchi T. Ocular motor disturbances occurring as false localizing signs in ruptured intracranial aneurysms. Acta Neurochir 1974; 30: 119-28.
4. Coyne TJ, Wallace MC. Bilateral third cranial nerve palsies in association with a ruptured anterior communicating artery aneurysm. Surg Neurol 1994; 42: 52-6.
5. Fox JL. Intracranial aneurysms. New York: Springer, 1983; 163-83.
6. Kudo T. Postoperative oculomotor palsy due to vasospasm in a patient with a ruptured internal carotid artery aneurysm: a case report. Neurosurgery 1986; 19: 274-7.
7. Trobe JD. Isolated third nerve palsies. Semin Neurol 1986; 6: 135-41.
8. Trobe JD. Third nerve palsy and the pupil. Footnotes to the rule. Arch Ophthalmol 1988; 106: 601-2.
9. Good EF. Ptosis as the sole manifestation of compression of the oculomotor nerve by an aneurysm of the posterior communicating artery. J Clin Neuroophthalmol 1990; 10: 59-61.
10. Kissel JT, Burde RM, Klingele TG, Zeiger HE. Pupil-sparing oculomotor palsies with internal carotid-posterior communicating artery aneurysms. Ann Neurol 1983; 13: 149-54.
11. Terry JE, Stout T. A pupil-sparing oculomotor palsy from a contralateral giant intracavernous aneurysm. J Am Optom Assoc 1990; 61: 640-5.
12. Asbury AK, Aldredge H, Hershberg R, Fisher CM. Oculomotor palsy in diabetes mellitus: a clinico-pathological study. Brain 1970; 93: 555-66.