Objective: To assess the number of cases and the profile of hospitalizations from varicella after the introduction of the measles, mumps, rubella and varicella combination vaccine in the public health system.

Methods: Retrospective study in an infectious diseases pediatric hospital of reference in Southeast Brazil. The cases with a clinical diagnosis of varicella, from January 2011 to June 2016, were assessed from pediatricians’ medical records. The hospitalizations were classified into a pre-vaccine group and post-vaccine group, based on the date the vaccine was introduced (September 2013). Both groups were compared by age, sex, time of hospitalization, reason for hospitalization, hospital complications, duration of intensive care, and clinical outcome.

Results: A total of 830 hospitalizations were recorded; 543 in the pre-vaccine period and 287 in the post-vaccine period, a reduction of 47.1% (p<0.001). In both periods, a similar profile in the hospitalizations was noticed: majority male; aged between one to five years old; most complications due to secondary causes (mainly skin infections); main outcome was clinical improvement and discharge from the hospital. In the pre-vaccine period, six deaths were recorded and two were recorded in the post-vaccine period.

Conclusions: The profile of the hospitalizations was expected to stay the same since this study did not compare vaccinated with unvaccinated children, but hospitalizations before and after the vaccine introduction were expected to decrease.
concordância com a literatura, queda substantial no número de internações por varicela.

Palavras-chave: Varicela; Vacina contra varicela; Infecção pelo vírus da varicela-zóster.

INTRODUÇÃO

A varicela é uma doença infecciosa muito contagiosa e de relevância mundial.¹⁴ Anualmente, gera cerca de 4,2 milhões de internações por complicações graves no mundo.¹ No Brasil, entre 2012 e 2017, foram notificados 602.136 casos e registradas 38.612 internações relacionadas à doença, acometendo sobretudo a faixa etária de um a quatro anos.⁵

Decorrente da infeccção primária pelo vírus varicela-zóster (VVZ), a varicela manifesta-se por lesões cutâneas e mucosas associadas a sinais e sintomas sistêmicos inespecíficos.⁴ As lesões são pruriginosas, com distribuição centrípeta e polimorfa regional.¹³ Inicialmente, surgem máculas; estas se transformam em pápulas, em vesículas e, posteriormente, em crostas.¹³ O diagnóstico é clínico.³ A confirmação ocorre por isolamento viral em cultura ou por reação em cadeia de polimerase.²

Apesar de geralmente ser benigna, a varicela pode cursar com complicações de morbidade e de mortalidade importantes. Esses casos são mais comuns em menores de um ano de idade, desnutridos e imunodeprimidos.³ A infeccção secundária da pele por bactérias piogênicas (Streptococcus pyogenes, Staphylococcus aureus) é a complicação mais observada.⁶ Esse tipo de infecção oferece ao paciente o risco de sepse e de infecções focais, como a pneumonia.³ O risco de desenvolver complicações viscerais é maior em imunodeprimidos (30–50%), com 15% de letalidade na ausência de tratamento.² Em crianças, as complicações associadas ao sistema nervoso central (SNC) constituem a segunda maior causa de internação por varicela.⁴,⁶ Outras complicações incluem: miocardite, nefrite, artrite, síndrome de Reye, hepatite e lesões oftalmológicas.²

Estimativas conservadoras mostram que a varicela é responsável, anualmente, por 4.200 mortes no mundo.⁴,⁵ As taxas de mortalidade são menores que as de outras doenças controladas por vacina, tanto na era pré-vacinal como na pós-vacinal.⁸ Apesar disso, a doença possui um impacto populacional significativo, por cursar com desfecho grave em diversos grupos populacionais, sendo importante atuar na sua prevenção.³

Hoje em dia, o uso de vacinas é adotado em muitos países como estratégia fundamental para profilaxia da varicela.⁹-¹⁷ A vacina contra a varicela foi desenvolvida por Takahashi, em 1974, sendo composta de vírus atenuados, feitos da cepa Oka.³⁹ A soroconversão com uma dose vacinal varia de 85 a 100% nas crianças previamente saudáveis entre 12 meses e 12 anos.⁵ O Ministério da Saúde, por meio do Programa Nacional de Imunizações (PNI), implantou a vacina contra a varicela no Calendário Nacional de Vacinação em setembro de 2013. Essa vacina é utilizada, juntamente com as vacinas contra sarampo, rubéola e caxumba, na vacina tetraviral. A criança recebe a vacina tríplice viral (sarampo, rubéola, caxumba) aos 12 meses e a tetraviral aos 15 meses de idade. A partir de 2018, a segunda dose da vacina contra varicela passou a ser administrada aos quatro anos.¹¹,¹⁸ Porém, durante o período avaliado neste estudo, a vacina era disponibilizada apenas para a faixa etária de 15 a 24 meses incompletos, em dose única.¹⁹

A vacinação contra a varicela modificou drasticamente a epidemiologia da infecção, reduzindo a sua incidência em comunidades sentinelas.² Publicações nacionais e internacionais relatam que o uso da vacina tem gerado impacto favorável, incluindo: diminuição de internações, de desfechos graves e de despesas hospitalares e proteção de rebanho de não imunizados.⁹,¹⁷ Em estudo realizado no Brasil, verificou-se redução de 37,9% com despesas hospitalares após três anos da introdução da vacina e espera-se que essa economia chegue a 80% em 30 anos.¹⁷,²⁰

No Brasil, apenas casos graves internados e óbito por varicela são de notificação compulsória.¹ Portanto, os trabalhos para avaliar a variação da incidência da doença após a introdução da vacina devem se basear principalmente em dados hospitalares. Nesse contexto, este trabalho propôs a avaliação do número de casos e do perfil de internações por varicela no Hospital Infantil São Paulo II (HIJPII), pertencente à Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), após a introdução da vacina tetraviral no PNI. O HIJPII localiza-se no município de Belo Horizonte e atua como centro de referência em internações de crianças e de adolescentes com doenças infecçocongugicas. O seu público é referenciado pelas macrorregiões de Minas Gerais e pelos municípios da microregião e da região metropolitana de Belo Horizonte.²¹,²² A cobertura da vacina tetraviral no estado mineiro de 2014 a 2016 foi de 77,8%.²³

MÉTODOS

O estudo, descritivo e retrospectivo, foi realizado no HIJPII, e o levantamento dos casos deu-se com base no registro das
As internações foram classificadas em pré-vacinais e pós-vacinais, considerando a data de implantação da vacina quádrupla viral no Calendário Nacional de Vacinação: setembro de 2013. O período total analisado foi de 66 meses: 33 meses (janeiro de 2011 a setembro de 2013) pré-vacinais e 33 meses (outubro de 2013 a junho de 2016) pós-vacinais.

As variáveis estudadas foram: faixa etária e sexo dos pacientes, dias de hospitalização, causas de internação, necessidade de internação em centro de terapia intensiva (CTI), dias de internação em CTI e desfecho clínico. Classificaram-se as causas de internação em: causas primárias, causas secundárias, doença em pacientes de risco e outros motivos. As causas primárias foram definidas como afeções provocadas pelo próprio VVZ e divididas em afeções do SNC (cerebelite, encefalite pelo VVZ), convulsão febril e demais causas (plaquetopenia, estomatite, pneumonia). As causas secundárias foram determinadas como afeções facilitadas pela infecção pelo VVZ e divididas em infecções da pele e tecido subcutâneo, afecções respiratórias (pneumoniás, asma) e demais causas (sepse, glomerulonefrite, conjuntivite, arritmie e outros). O diagnóstico diferencial entre as infecções respiratórias de origem primária e secundária foi realizado com base nos dados clínicos, laboratoriais e radiológicos do paciente durante a internação, de acordo com a avaliação do médico infectologista.

As internações foram classificadas como provocadas por doença em pacientes de risco quando motivadas por infecção ou por complicação em paciente com condição que diminuísse a sua imunidade. Elas foram subdivididas em desnutrição ou doenças crônicas (renal, pulmonar, cardíaca) e em infecção por vírus da imunodeficiência humana (HIV) ou imunosupressão (uso de corticoide em doses imunossupressoras ou de outro imunossupressor). Já as internações por outros motivos foram aquelas que não se enquadravam nas categorias estabelecidas. Entre elas, estado geral ruim, negação de alimentação, internação social, outros.

Os dados foram coletados via prontuário médico, conforme formulário padronizado, e utilizados para a criação de banco de dados na versão 22 do software Statistical Package for the Social Sciences (SPSS) (IBM, Armonk, NY, Estados Unidos). Foi feita a análise das populações estudadas, comparando dados dos períodos pré e pós-vacinal. As variáveis qualitativas foram exibidas como frequências absolutas e relativas. As variáveis quantitativas foram submetidas ao teste de normalidade de Shapiro-Wilk e apresentadas como média±desvio padrão quando a distribuição era normal; e mediana, mínimo e máximo, caso contrário. Para comparação de variáveis qualitativas entre os períodos, adotaram-se os testes de proporções e χ² de independência. Para a comparação das variáveis quantitativas, foi usado o teste de Wilcoxon-Mann-Whitney para amostras independentes. Foi calculada a variação relativa do número de casos entre os dois períodos como a diferença entre os dois períodos dividida pelo número de casos no período pré-vacinal, avaliada em percentual. As análises foram feitas na versão 3.2.2 do programa R (R Foundation for Statistical Computing, Viena, Áustria), e foi adotado o nível de significância de 5%.

RESULTADOS
No período avaliado, foram registradas 868 internações por varicela. Ao todo, 38 pacientes foram excluídos do estudo por ausência de informações no prontuário ou mudança do diagnóstico durante o tratamento. Os números de internações registradas de acordo com os anos estudados foram: 269 (2011); 167 (2012); 233 (2013); 102 (2014); 56 (2015); e três (janeiro a julho de 2016). Foram enquadrados 38 casos nos critérios de exclusão. Totalizaram-se 830 internações por varicela, 543 casos no período pré-vacinal e 287 no pós-vacinal, ocorrendo redução de 47,1% nas internações (p<0,001). A diminuição nas internações por faixa etária não foi estatisticamente significante (Tabela 1).

No período total avaliado, ocorreram mais internações de indivíduos do sexo masculino (56,1%). A média da idade dos internados foi de 3,4±2,6 anos. Em relação à faixa etária, as internações predominaram no grupo de um a cinco anos de idade (64,5%), seguido por menores de um ano (16,1%), por de cinco a dez anos de idade (15,9%) e por maiores de dez anos (3,5%).

No período pré-vacinal, mais da metade das internações envolveu indivíduos do sexo masculino (54,7%). A média de idade dos internados nesse período foi de 3,2±2,6 anos. No período pós-vacinal, a maioria das internações também se deu com indivíduos do sexo masculino (58,9%), sendo 4,2% maior que no pré-vacinal. A idade média dos internados nesse período foi de 3,4±2,6 anos (p=0,267). Nos dois períodos, as internações predominaram na faixa etária de um a cinco anos (64,5%). Houve diminuição no número absoluto de internações...
em todas as faixas etárias no período pós-vacinal, mas o percentual de internações relativo a cada faixa etária se manteve similar (p>0,05).

A maioria das internações, no período total avaliado, foi motivada por causas secundárias (82,1%). Destas, 91,3% foram infecções de pele. O predomínio manteve-se semelhante nos períodos pré-vacinal e pós-vacinal. Em valores absolutos, houve diminuição das internações por causas primárias, por causas secundárias, por doença em pacientes de risco e por outros motivos (Tabelas 2 e 3).

No período total avaliado, a mediana do tempo de internação foi de 3,9 dias (mínimo=0; máximo=97,7); 68 crianças (8,2%) necessitaram de internação em UTI, sendo a mediana do tempo que cada uma permaneceu nessa terapia intensiva de cinco dias (mínimo=1; máximo=26). A maioria (96,6%) evoluiu com cura e alta.

No período pré-vacinal, a mediana do tempo de internação foi de 4,9 dias (mínimo=0, máximo=96,6); 44 crianças (8,1%) necessitaram de internação em UTI, sendo a mediana do tempo de permanência em terapia intensiva de cinco dias (mínimo=1; máximo=26). No pós-vacinal, a mediana do tempo de internação foi de 3,9 dias (mínimo=0; máximo=34,5; p=0,073), redução de aproximadamente um dia em relação ao pré-vacinal; 24 crianças (8,4%) precisaram de internação em UTI (p=1,00) — diminuição de 45,5% no número absoluto, em comparação ao pré-vacinal. A mediana do tempo de permanência em UTI foi de 4,5 dias (mínimo=2; máximo=15; p=0,096).

Nos dois períodos, a maioria das crianças evoluiu com cura e alta hospitalar, havendo pequeno aumento percentual no pós-vacinal (1,5%). Observou-se ainda redução no número absoluto de óbitos no período (Tabela 4).

DISCUSSÃO

O trabalho demonstrou, no período pós-vacinal, queda substancial nas internações por varicela, em concordância com a literatura médica nacional e internacional.9-17

No Brasil, poucos estudos avaliaram os efeitos da vacina contra varicela.17,24 O único em âmbito nacional utilizou dados de 2003 a 2016, coletados por meio do Departamento de Informática do Sistema Único de Saúde (DATASUS). Foi verificado que, após a introdução da vacina, ocorreu redução de 47,6% no número de internações por varicela, em comparação ao período pré-vacinal. O número absoluto de internações por varicela diminuiu aproximadamente 45,5% no período pós-vacinal, e a mediana do tempo de permanência em UTI foi reduzida em cerca de um dia.

tabela 1

Faixa etária	Período pré-vacinal n (%)	Período pós-vacinal n (%)	Redução	p-valor*
<1 ano	89 (16,4)	45 (15,7)	49,4%	0,869
1 a 5 anos	350 (64,5)	185 (64,5)	47,1%	1,000
5 a 10 anos	83 (15,3)	49 (17,1)	41,0%	0,569
>10 anos	21 (3,9)	8 (2,8)	61,9%	0,544

*p=Teste de igualdade das proporções.

tabela 2

	Período pré-vacinal n (%)	Período pós-vacinal n (%)	p-valor*	
Causas primárias	Sim	46 (8,5)	37 (12,9)	0,058
	Não	497 (91,5)	250 (87,1)	0,410
Causas secundárias	Sim	451 (83,1)	231 (80,5)	0,827
	Não	92 (16,9)	56 (19,5)	0,827
Doença em paciente de risco	Sim	62 (11,4)	35 (12,2)	0,827
	Não	481 (88,6)	252 (87,8)	0,827
Outros motivos	Sim	20 (3,7)	19 (6,6)	0,084
	Não	523 (96,3)	268 (93,4)	0,084

*p=Teste χ² de independência; **percentuais calculados sobre os casos válidos.
internações causadas pelo VVZ na faixa etária de um a quatro anos, porém o estudo não discriminou as internações causadas por varicela daquelas causadas por herpes-zóster.17

No que tange à literatura internacional, a maioria dos estudos relacionando vacinação e internações tem origem nos Estados Unidos, pioneiro na implantação da vacinação universal com uma dose (1995).9 Entre 1996 e 1997, não se observou queda nas internações.9,25 Entre 1993 e 2001, houve queda de 74 (geral) e de 81,8% (zero a quatro anos de idade), considerando cobertura vacinal de 76,3%.9,10 Entre 1994 e 2002, houve diminuição de 88%, com declínio predominante em menores de um ano.11 A vacinação com duas doses foi introduzida em 2006, para crianças de quatro e cinco anos de idade. Constatou-se redução nas internações de 75,6 (1994–2006) e de 88,3% (1994–2009).8,12

O segundo país a adotar a vacinação com uma dose foi o Uruguai (1999). Houve queda nas internações (1999–2005) de 81 (geral) e 94% (um a quatro anos de idade), considerando cobertura de 88 a 96%.9,13 Na Austrália, que introduziu a vacina aos 18 meses de idade (2005), as internações nos

Tabela 3	Subdivisões das causas de internação pelos pacientes internados com varicela, nos períodos pré e pós-introdução da vacina varicela, Hospital Infantil João Paulo II, Minas Gerais.			
	Período pré-vacinal	Período pós-vacinal	p-valor**	
Causas primárias				
Afecções do SNC	Sim	16 (34,8)	12 (32,4)	1,000
	Não	30 (65,2)	25 (67,6)	
Convulsão febril	Sim	16 (34,8)	11 (29,7)	0,801
	Não	30 (65,2)	26 (70,3)	
Demais causas	Sim	15 (32,6)	14 (37,8)	0,791
	Não	31 (67,4)	23 (62,2)	
Causas secundárias				
Infecções de pele	Sim	410 (90,9)	213 (92,2)	0,669
	Não	41 (9,1)	18 (7,8)	
Afecções respiratórias	Sim	49 (10,9)	17 (7,4)	0,184
	Não	402 (89,1)	214 (92,6)	
Demais causas	Sim	20 (4,4)	14 (6,1)	0,461
	Não	431 (95,6)	217 (93,9)	
Grupo de risco				
Doenças crônicas e desnutrição	Sim	20 (32,3)	13 (37,1)	0,791
	Não	42 (67,7)	22 (62,9)	
Imunossupressão ou HIV	Sim	48 (77,4)	27 (77,1)	1,000
	Não	14 (22,6)	8 (22,9)	

*p=percentuais calculados sobre os casos válidos; **p=teste χ² de independência; SNC: sistema nervoso central; HIV: vírus da imunodeficiência humana.

Tabela 4	Desfechos das internações por varicela, Hospital Infantil João Paulo II, Minas Gerais.			
Desfecho	Período pré-vacinal	Período pós-vacinal	Redução	p-valor*
Óbito	6 (1,1)	2 (0,7)	66,7%	0,846
Outro (sequela, transferência, outro)	15 (2,8)	5 (1,7)	66,7%	
Cura e alta	522 (96,1)	280 (97,6)	46,4%	

*p=teste de igualdade das proporções.
períodos de 1999 a 2001 e de 2007 a 2010 caíram 73,2% (p<0,001).9,14

Uma revisão de literatura descreveu o impacto da vacina nas taxas de internações associadas à varicela, em países que adota-ram a vacinação universal entre 1995 e maio de 2015. O estudo mostrou que a queda nas internações se repetiu, de formas variá-veis, em países como Canadá, Espanha e Alemanha.9 O per-}

cental variável na queda das internações pode ser explicado pelas diferenças etárias das populações avaliadas, pelo tempo avaliado após a introdução vacinal, pelos critérios regionais de internação hospitalar, pela cobertura vacinal e pela estratégia de vacinação local.9 Dessa forma, pode-se entender por que os dados da literatura são variáveis e se espera que a queda nas internações no Brasil seja maior em análises futuras, como ocor-}

reu nos países pioneiros na implantação da vacina.

Houve estabilidade na porcentagem de internações por faixa etária no HIJPII. Em números absolutos, ocorreu queda das internações em todas as faixas etárias. Esperava-se, a prin-

cípio, que a queda ocorresse exclusivamente entre pacientes de um a cinco anos, faixa que inclui as crianças que com-

pletaram 15 meses no período avaliado pelo estudo e que for-

am alvo da vacinação pela quádrupla viral. A diminuição de internações em faixas etárias não contempladas pela vaci-

nação está em concordância com trabalhos internacionais. Estes demonstram que a vacinação, ao reduzir o número de pessoas infectadas, protege indiretamente populações não elegíveis à vacinação.15,16 Estudos americanos verificaram a incidência da varicela em lactentes fora da faixa etária vacinal (1995–2008) e mostraram queda de 89,7% na incidência da doença, número inversamente proporcional à cobertura vaci-

nal, que aumentou nesse período.15

A causa de internação dominante nos dois períodos foi infeccção de pele (90,9% dos casos no pré-vacinal e 92,2% no pós-vacinal). Os primeiros trabalhos americanos também encontraram essa causa como a principal, acometendo 37% das crianças internadas, em ambos os períodos.25 O predomínio também foi verificado em um trabalho realizado na França (2003–2005), que encontrou a infeccção de pele e de tecidos moles como causa de 36,5% das internações pediátricas por varicela no país.26 Estudo realizado em hospital referência no Recife verificou prevalência maior que nos estudos internacio-

nais, com acometimento de 77,3% dos casos que complicaram, percentual mais condizente com o achado neste trabalho.27

As demais causas de internação também sofreram poucas alterações percentuais no período pós-vacinal. O mesmo ocor-

reu nos primeiros trabalhos americanos que avaliaram as inter-

nações no período pós-vacinal.25 Apesar disso, todas as causas de internação sofreram redução numérica, o que era esperado considerando a diminuição global do número de casos.

O declínio das internações no grupo de risco é um ponto importante a ser discutido. Uma parcela dos pacientes imunos-

uprimidos ou portadores de HIV, como aqueles HIV positivos suscetíveis à varicela e assintomáticos ou oligossintomáticos (categoria A1 e N1), já era contemplada pela vacinação em centros imunobiológicos especiais antes do início da vacinação uni-

versal. Além disso, indivíduos suscetíveis à varicela que tinham contato domiciliar com imunodeprimidos também já eram bene-

ficados.28 Dessa maneira, a queda das internações no grupo de risco parece estar relacionada ao aumento da cobertura vacinal geral da população, com consequente diminuição da exposição ao VVZ circulante no ambiente (imunidade de rebanho).15,16

Em relação à evolução, percebe-se que o tempo de internação, a necessidade de terapia intensiva e o tempo de internação em terapia intensiva sofreram pouca alteração. Esses dados podem ser comparados, visto que os critérios do serviço para interna-

ção hospitalar, internação em terapia intensiva, alta da terapia intensiva e alta hospitalar não se modificaram. Quanto aos desfechos, a grande maioria dos casos evoluí com cura nos dois períodos. Outros desfechos também se mantiveram está-

veis. Ainda, houve diminuição dos óbitos. Tais achados eram esperados, pois a avaliação realizada avaliou a população pediátr-

ica em geral, e não apenas a população pediátrica vacinada. Em pacientes vacinados, a literatura relata que, na vigência de falha vacinal, eles tendem a desenvolver quadros mais bran-

dos.29,30 Uma recente metanálise acerca da efetividade da vacina contra varicela mostrou 81% de proteção contra todas as for-

mas da doença e 98% contra formas moderadas e graves.29

A principal limitação deste estudo foi a falta de informações sobre a situação vacinal dos pacientes. Desse modo, fez-se uma descrição das populações sem que os resultados fossem indivi-

dualizados para populações vacinadas ou não. Outra limitação consistiu na coleta de dados em um único serviço. Porém, como o HIJPII é o hospital referência em doenças infecciosas de Minas Gerais, acredita-se que o número de internações do hospital represente, com boa confiabilidade, a população de crianças hospitalizadas por varicela no estado.

Em concordância com a literatura, o presente trabalho verificou o impacto favorável da introdução da vacina tetravi-

ral nas internações por vacicela. Houve diminuição global do número de internações, com redução numérica das internações por faixa etária e por causa de internação. Esses achados têm grande relevância, pois são dados brasileiros demonstrando que a medida adotada no PNI tem beneficiado, de forma direta, as crianças imunizadas, e, indiretamente, as populações não contempladas pela vacinação. Também, com a introdução da segunda dose da vacina contra varicela, em 2018, espera-se que futuros estudos identifiquem redução ainda maior das interna-

ções causadas pela doença.
REFERÊNCIAS

1. Brazil - Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. Guia de vigilância em saúde: volume único. 3ª ed. Brasília: Ministério da Saúde; 2019.

2. Whitley RJ. Infecções pelo vírus varicela-zóster. In: Kasper DL, editor. Medicina interna de Harrison. 19ª ed. Porto Alegre: AMGH; 2017. p.1183-6.

3. Berezin EN, Feldman C. Varicela-zóster. In: Focaccia R, Seward JF, Marin M. Varicela Disease burden and varicella vaccine coverage: global data review. Rev Paul Pediatr. 2021;39:e2019215

4. Brazil - Ministério da Saúde - DATASUS [homepage on the Internet]. Atendimento médico a doenças infecto-contagiosas infanto-juvenis [cited 2018 Mar 4]. Available from: http://www.saude.gov.br/saude-de-a-z/doenças-transmitidas-por-alimentos/situaçao-epidemiologica

5. Brazil - Ministério da Saúde [homepage on the Internet]. Portal da Saúde. Calendário Nacional de Vacinação 2019 [cited 2019 Jun 1]. Available from: http://www.saude.gov.br/saude-de-a-z/vacinacao/orientacoes-sobre-vacinacao

6. ECDC; 2015. Varicella vaccination in the European Union. Stockholm: European Centre for Disease Prevention and Control.

7. Seward JF, Marin M. Varicella Disease burden and varicella vaccines. Proceedings of the WHO SAGE Meeting; 2014 April 2.

8. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095-128. https://doi.org/10.1016/S0140-6736(12)61728-0

9. Hirose M, Gilio AE, Ferronato AE, Ragazzi SL. The impact of varicella vaccination on varicella-related hospitalization rates: global data review. Rev Paul Pediatr. 2016;34:359-66. https://doi.org/10.1016/j.rpped.2015.12.006

10. Davis MM, Patel MS, Gebremariam A. Decline in varicella-related hospitalizations and expenditures for children and adults after introduction of varicella vaccine in the United States. Pediatrics. 2004;114:786-92. https://doi.org/10.1542/peds.2004-0012

11. Zhou F, Harpaz R, Jumaan AO, Winston CA, Shefer A. Impact of varicella vaccination on health care utilization. JAMA. 2005;294:797-802. https://doi.org/10.1001/jama.294.7.797

12. Baxter R, Tran TN, Ray P, Lewis E, Fireman B, Black S, et al. Impact of vaccination on the epidemiology of varicella: 1995-2009. Pediatrics. 2014;134:24-30. https://doi.org/10.1542/peds.2013-4251

13. Quian J, Ruttimann R, Romero C, Dall’Orso P, Cerisola A, Breuer T, et al. Impact of universal varicella vaccination on 1-year-olds in Uruguay: 1997-2005. Arch Dis Child. 2008;93:845-50. https://doi.org/10.1136/adc.2007.126243

14. Marshall HS, McIntyre P, Richmond P, Buttery JP, Royle JA, Gold MS, et al. Changes in patterns of hospitalized children with varicella and of associated varicella genotypes after introduction of varicella vaccine in Australia. Pediatr Infect Dis J. 2013;32:S30-7. https://doi.org/10.1097/INF.0b013e31827e92b7

15. Chaves SS, Lopez AS, Watson TL, Civen R, Watson B, Mascola L, et al. Varicella in infants after implementation of the US varicella vaccination program. Pediatrics. 2011;128:1071-7. https://doi.org/10.1542/peds.2011-0017

16. Singleton RJ, Holman RC, Person MK, Steiner CA, Redd JT, Hennessy TW, et al. Impact of varicella vaccination on varicella-related hospitalizations among American Indian/Alaska native people. Pediatr Infect Dis J. 2014;33:276-9. https://doi.org/10.1097/INF.0000000000000100

17. Scotta MC, Paternina de la Ossa R, Lumertz MS, Jones MH, Mattiello R, Pinto LA. Early impact of universal varicella vaccination on childhood varicella and herpes zoster hospitalizations in Brazil. Vaccine. 2018;36:280-4. https://doi.org/10.1016/j.vaccine.2017.11.057

18. Brazil - Ministério da Saúde [homepage on the Internet]. Portal da Saúde. Calendário Nacional de Vacinação 2019 [cited 2019 Jun 1]. Available from: http://www.saude.gov.br/saude-de-a-z/vacinacao/orientacoes-sobre-vacinacao

19. Minas Gerais. Governo do Estado de Minas Gerais. Secretaria de Estado da Saúde. Subsecretaria de Vigilância e Proteção à Saúde. Protocolo de Varicela. 3ª ed. Belo Horizonte: Governo do Estado de Minas Gerais; 2013.

20. Valentim J, Sartori AM, Soárez PC, Amaku M, Azevedo RS, Novaes HM. Cost-effectiveness analysis of universal childhood varicella vaccination in Brazil. Vaccine. 2008;26:6281-91. https://doi.org/10.1016/j.vaccine.2008.07.021

21. Fundação Hospitalar do Estado de Minas Gerais - FHEMIG [homepage on the Internet]. Hospital Infantil João Paulo II [cited 2018 Mar 4]. Available from: http://fhemig.mg.gov.br/index.php/atendimento-hospitalar/complexo-de-urgencia-e-emergencia/hospital-infantil-joao-paulo-ii

22. Fundação Hospitalar do Estado de Minas Gerais - FHEMIG [homepage on the Internet]. Atendimento médico a doenças infecto-contagiosas infanto-juvenis [cited 2018 Mar 4]. Available from: http://www.fhemig.mg.gov.br/index.php/servicos-oculto/atendimento-medico-a-doenças-infecto-contagiosas-infanto-juvenis

23. Brazil - Ministério da Saúde - DATASUS [homepage on the Internet]. Imunizações-cobertura- Brasil [cited 2019 Aug 6]. Brasília: Ministério da Saúde. Available from: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?npi/cnpiuf/def
24. Kupek E, Tritany EF. Impact of vaccination against varicella on the reduction of the disease incidence in children and adolescents from Florianópolis, Brazil. J Pediatr (Rio J). 2009;85:365-8. https://doi.org/10.2223/JPED.1909

25. Rhein L, Fleisher GR, Harper MB. Lack of reduction in hospitalizations and emergency department visits for varicella in the first 2 years post-vaccine licensure. Pediatr Emerg Care. 2001;17:101-3. https://doi.org/10.1097/00006565-200104000-00005

26. Grimprel E, Levy C, de La Rocque F, Cohen R, Soubeyrand B, Caulin E, et al. Paediatric varicella hospitalisations in France: a nationwide survey. Clin Microbiol Infect. 2007;13:546-9. https://doi.org/10.1111/j.1469-0691.2007.01706.x

27. Anjos KS, Ferreira MM, Arruda MC, Ramos KS, Magalhães AP. Epidemiological characterization of varicella cases in patients of a university hospital located in Recife. Rev Bras Epidemiol. 2009;12:523-2. http://dx.doi.org/10.1590/S1415-790X2009000400002

28. Brazil - Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Manual dos centros de referência para imunobiológicos especiais. 3rd ed. Brasília: Ministério da Saúde; 2006.

29. Marin M, Marti M, Kambhampati A, Jeram SM, Seward JF. Global varicella vaccine effectiveness: a meta-analysis. Pediatrics. 2016;137:e20153741. https://doi.org/10.1542/peds.2015-3741

30. Andrade AL, da Silva Vieira MA, Minamisava R, Toscano CM, de Lima Souza MB, Fiaccadori F, et al. Single-dose varicella vaccine effectiveness in Brazil: a case-control study. Vaccine. 2018;36:479-83. https://doi.org/10.1016/j.vaccine.2017.12.011