IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells

Lars Neeb1, Peter Hellen1, Carsten Boehnke1, Jan Hoffmann1, Sigrid Schuh-Hofer2, Ulrich Dirnagl1, Uwe Reuter1*

1 Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany, 2 Department of Neurology, Universitätsklinikum Tübingen, Tübingen, Germany

Abstract

Objective: Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified.

Methods and Results: 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE2) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE2 and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect.

Conclusion: We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-1β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE2 (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine.

Citation: Neeb L, Hellen P, Boehnke C, Hoffmann J, Schuh-Hofer S, et al. (2011) IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells. PLoS ONE 6(3): e17360. doi:10.1371/journal.pone.0017360

Editor: Stefan Bereswill, Charité-University Medicine Berlin, Germany

Received December 29, 2010; Accepted January 28, 2011; Published March 4, 2011

Copyright: © 2011 Neeb et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the Bundesministerium für Bildung und Forschung (BMBF 01EM 0515). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Pro-inflammatory cytokines have been linked to inflammation and pain [1]. Interleukin-1β (IL-1β), interleukin-6 and tumor necrosis factor-α (TNFα) are known to induce hyperalgesia in rats [2–4]. Cytokines also seem to play an important role in pathophysiological mechanisms involved in migraine headache. Among others, IL-1β and TNFα levels were elevated in jugular vein blood during migraine attacks [5,6]. Plasma levels of IL-6 were also increased in patients with migraine compared to healthy controls [7]. Furthermore, enhanced expression of IL-1β was found in the meninges in an experimental animal model related to migraine [8].

The trigeminal system, neuropeptides and inflammatory mediators are key players in the pathophysiology of migraine. Activation of perivascular trigeminal nerves within meninges causes the release of calcitonin gene-related peptide (CGRP) and other peptides e.g. substance P [9,10]. This leads to a series of peripheral and central events such as vasodilatation, plasma protein extravasation [11] and neuronal activation [12].

CGRP is classified as the most important neuromediator in the pathophysiology of migraine and other primary headaches. It is believed not only to be involved in dilation of cerebral and dural blood vessels but also in release of inflammatory mediators from mast cells and transmission of nociceptive information [13]. In clinical studies, plasma levels of CGRP can be found to be elevated during migraine and cluster headache attacks [14,15]. Intravenous injection of CGRP induces a typical headache in migraineurs [16] and CGRP receptor antagonists (BIBN4096BS/MK-0974) can abort attacks [17,18].

On a cellular basis in an experimental cell culture model, stimulation of trigeminal ganglia neurons with potassium chloride, capsaicin or a cocktail of inflammatory mediators used to mimic neurogenic inflammation resulted in an elevated CGRP release in these cells. Stimulus induced CGRP release could be repressed by the 5-HT1B/D agonist sumatriptan [19], which is used in acute migraine treatment, and furthermore by botulinum toxin type A [20] and topiramate [21], two substances proved to be effective in migraine prophylaxis. Stimulation with TNFα increased the...
leads to PGE2 production in TGC which may have an effect on abort migraine we hypothesized that induced COX-2 expression CGRP release in vitro. Based on the efficacy of COX- inhibitors to the cytokine IL-1 in cultured trigeminal ganglia cells (TGC) upon stimulation with migraine remain unclear.

medium with 1% w/v collagen G) for 90 minutes at 37 PBS, followed by incubation with coating medium (dissociation lysin (5% w/v in PBS) for 90 minutes at 4 well plates. Wells were pretreated by incubation with poly-l-istry were seeded on round glass cover slips previously inserted in penicillin/streptomycin, 0.25% L-glutamine, 2% B27-supplement, in starter medium (Invitrogen, Karlsruhe, Germany) plus 1% w/v collagen for 2 min at 21 10 uC, then rinsed with 6 cells/cm2 (equates approximately 2 ganglia/well). Cells used for immunohistochemistry were seeded on round glass cover slips previously inserted in the well plates. Wells were pretreated by incubation with poly-l-lysin (5% w/v in PBS) for 90 minutes at 4°C, then rinsed with PBS, followed by incubation with coating medium (dissociation medium with 1% w/v collagen G) for 90 minutes at 37°C in the incubator. After that, the wells were rinsed twice with PBS and filled with starter medium in which cells were seeded. Cytosine arabinoside (final concentration 10 μM; Sigma Aldrich, Munich, Germany) was added at day 1 and day 3 to minimize growth of non-neuronal cells. Cultures were kept at 37°C and 5% CO2 and fed with neurobasal medium + B27 medium every second day by replacing 50% of the medium. Condition of cultures was assessed by light microscopy, cell types by cell morphology and immunohistochemistry (with antibodies against glial fibrillary acidic protein (GFAP) for glial cells and β-tubulin III for neurons). Cell damage was monitored by life-death assays. Stimulation experiments and immunohistochemistry were performed on day 6.

Materials and Methods

Animals

We used 3 days old male and female Sprague Dawley rats (Charles River, Sulzheim, Germany). All animals were kept under standard laboratory housing conditions with a 12-h light–dark cycle and with an adult female Sprague Dawley rat (Charles River, Sulzheim, Germany) with free access to food and water. For cell culture procedures 3 day old rats were anaesthetized with an isoflurane vaporizer (4%) and decapitated. All animal work was carried out in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) regarding the care and use of animals for experimental procedures. The sacrifice of the rats and extraction of their brains was reported to and approved by the Landesamt für Gesundheit und Soziales Berlin (LaGeSo; T0322/96).

Cell culture

Trigeminal ganglia cell culture was established as previously described [28] with minor modifications. In brief, trigeminal ganglia were dissected from 3 day old male and female Sprague Dawley rats (Charles River, Sulzheim, Germany). The cells were incubated for 90 min at 37°C in 10 ml dissociation medium (modified eagles medium; Biochrom, Berlin, Germany) with 10% bovine serum, 10 mM HEPES, 44 mM glucose, 100 U penicillin + streptomycin, 2 mM glutamine, 100 IE insulin/l containing collagenase/dispase (final concentration 100 μg/ml) (Boehringer Mannheim, Germany), rinsed twice with phosphate buffered saline (PBS) 0.1 M and again incubated with trypsin/EDTA (0.05%/0.02% w/v in PBS) for 30 min for dissociation. Subsequently, cells were rinsed twice with PBS and once with dissociation medium, dissociated by Pasteur pipette and pelleted by centrifugation at 2100 × g for 2 min at 21°C. After suspension in starter medium (Invitrogen, Karlsruhe, Germany) plus 1% penicillin/streptomycin, 0.25% L-glutamine, 2% B27-supplement, 0.1% 25 mM glutamate, 2.5 mM calcium chloride and 100 ng/ ml NGF-β, cells were plated in 24 well plates and filled to 500 μl with starter medium at a density of 0.5 × 10⁶ cells/cm² (equates approximately 2 ganglia/well). Cells used for immunohistochemistry were seeded on round glass cover slips previously inserted in the well plates. Wells were pretreated by incubation with poly-l-lysin (5% w/v in PBS) for 90 minutes at 4°C, then rinsed with PBS, followed by incubation with coating medium (dissociation medium with 1% w/v collagen G) for 90 minutes at 37°C in the
mouse polyclonal anti β-actin antibody (1:5000; Sigma Aldrich, Munich, Germany) followed by 2 hours incubation with goat anti-mouse horseradish peroxidase coupled IgG (1:7500; Amersham, Little Chalfont, Buckinghamshire, UK). For positive control macrophage + IFNγ/LPS cell lysate was used as provided by the manufacturer (BD Biosciences, Heidelberg, Germany). Optical density measurement for COX-2 was performed by dividing the intensity of the COX-2 bands by the intensity of the house keeping protein (β-Actin, 1:5000).

Immunohistochemistry

Trigeminal ganglia cell cultures (day 6) were incubated 6 or 24 hours with 10 ng/ml IL-1β or vehicle, subsequently rinsed with PBS 0.1 M (pH 7.4) and fixed with methanol 100% for 15 min at −20°C (n = 4). Cells were washed 3 times with PBS 0.1 M and blocked with normal donkey serum 10% and 0.3% Triton X in 0.1 M PBS for 2 hours at 4°C. For COX-2/CGRP and β-tubulin III/GFAP co-stainings cells were incubated overnight at 4°C in rabbit anti-COX-2 serum (diluted: 1:300 in PBS; 160126; Cayman Chemical, Ann Arbor, Michigan) or in rabbit anti-CGRP serum (diluted 1:200 in PBS; C8198; Sigma Aldrich, Munich, Germany) and in mouse anti-β-tubulin III serum (as a specific neuronal marker) (diluted 1:600 in PBS; T3076; Sigma Aldrich, Munich, Germany) or mouse anti glial fibrillary acidic protein (GFAP) serum (as a glia marker) (diluted 1:300 in PBS; MAB360; Chemicon) +3% normal donkey serum and 0.3% Triton X in 0.1 M PBS. The specimen was then washed 3 times in PBS and incubated for 90 min with Alexa Fluor 594 donkey anti-rabbit IgG (diluted: 1:300 in PBS; A-21207; Invitrogen, Karlsruhe, Germany) and Alexa Fluor 488 donkey anti-mouse IgG (diluted 1:600 in PBS; A-21202; Invitrogen, Karlsruhe, Germany) labeled rabbit anti-CGRP serum (diluted 1:300 in PBS; T5076; Sigma Aldrich, Munich, Germany) and captured with Leica DC Twain 5.1.10 (Leica GmbH, Wetzlar, Germany). Images were photographed by the system built in digital camera and captured with Leica ConfoLab Software (Leica, Wetzlar, Germany). Images were processed with ImageJ (National Institutes of Health) to visualize co-labelling.

PGE2 determination by enzyme immunoassay

For PGE2 determination 6 day old cultured trigeminal ganglia neurons were incubated with 10 ng/ml IL-1β or equal volume of vehicle (PBS 0.1 M) for 30 min or 4 hours. For inhibition studies cell cultures were preincubated for 15 min with sumatriptan (10 μM), indomethacin (10 μM) or parecoxib (10 μM or 1 μM) prior to stimulation with IL-1β (10 ng/ml). In control experiments, equal volumes of vehicle (PBS 0.1 M) were added at the corresponding time. Prior to stimulation 50 μl supernatant of each well were removed to assess baseline content of PGE2, 30 min or 4 hours after stimulation the supernatants of two dishes were pooled and 100 μl of the supernatant were removed for PGE2 determination. PGE2 release was determined using a specific PGE2 enzyme immunoassay (Cayman Chemical, Ann Arbor, Michigan, USA) according to the manufacturer’s instructions. The baseline samples of the two corresponding wells were also pooled and PGE2 content was determined. All samples were measured in duplicates. PGE2 release was determined in pg/ml as absolute increase over baseline values in the corresponding two wells.

CGRP determination by enzyme immunoassay

After 6 days in culture the medium was gently removed and replaced with fresh medium without NGF to exclude effects of NGF on protein release. 1 hour later cells were stimulated with IL-1β (10 ng/ml), PGE2 (100 nm or 10 μM) or equal volume of
vehicle (PBS 0.1 M). For inhibition studies cells were preincubated 45 min before stimulation with sumatriptan (10 μM or 100 μM), indomethacin (10 μM) or parecoxib (10 μM). Prior to stimulation 50 μl supernatant of each well were removed to assess baseline content of CGRP. After 1, 4, 10 or 24 hours the supernatants of two dishes were pooled and 100 μl were removed for CGRP determination using a specific CGRP enzyme immunoassay (SPIbio, Montigny le Bretonneux, France) as recommended by the manufacturer. For each experiment, one set of wells was treated with 60 mM KCl to determine the responsiveness of the cultures to depolarizing stimuli as described previously [19]. Cultures that exhibited a response less than 2-fold on CGRP release after the depolarizing stimulus were not analyzed. CGRP release was determined in pg/ml as absolute increase over baseline values in the corresponding two wells. All samples were measured in duplicates.

Statistical analysis

For PCR statistical analysis was performed using variance analysis followed by Bonferroni correction. For PGE2 and CGRP studies values were first tested for normal distribution (Kolmogorov-Smirnov test) followed by an unpaired t-test to detect statistically significant differences between two groups using SPSS 17 statistical software (SPSS, Chicago, IL, USA). Statistical significance was assumed when \(p < 0.05 \). Data are shown as mean ± standard error of the mean (SEM).

Results

Characterization of trigeminal ganglia cell culture

Trigeminal ganglia are a heterogeneous tissue containing neuronal cells, satellite cells and Schwann cells. Neurons were identified by their typical pseudo-unipolar morphology of sensory neurons and by staining with the neuronal marker β-tubulin III. Under our conditions the cell culture obtained from rat trigeminal ganglia contained approximately 10% β-tubulin III positive neurons. The rest of the cell population consisted of astrocytes staining positive for GFAP. Most of the sensory neurons were surrounded by GFAP positive glial cells (satellite glial cells).

IL-1β induces COX-2 mRNA

Incubation of cultured trigeminal ganglia cells with IL-1β (10 ng/ml) led to a time-dependent expression of COX-2 mRNA (Fig. 1A). COX-2 mRNA was significantly (~4.5 fold) increased 90 min after incubation with IL-1β compared to vehicle (n = 4; \(p < 0.05 \)). COX-2 mRNA expression peaked after 3 hours (~7 fold increase; n = 5; \(p < 0.05 \)) and declined after 6 hours but was still significantly (~3 fold; n = 4; \(p < 0.05 \)) increased compared to vehicle stimulation.

To determine whether IL-1β induces COX-2 mRNA specifically, COX-1 mRNA expression was analyzed at the 3 hours time point. There was no difference between COX-2 mRNA expression in IL-1β (10 ng/ml) (0.49±0.02 SEM fold increase; n = 3) and vehicle stimulated cells (0.34±0.01 SEM fold increase; n = 3; \(p > 0.05 \)).

A dose response for IL-1β (1 pg/ml; 100 pg/ml; 10 ng/ml; 100 ng/ml) induced COX-2 gene expression was established at 3 hours since COX-2 mRNA expression was maximal at this time point. Increasing doses of IL-1β resulted in increased COX-2 mRNA levels (Fig. 1B). Stimulation with 1 pg/ml IL-1β showed no difference compared to stimulation with vehicle (n = 4; \(p > 0.05 \)). Higher doses of IL-1β (100 pg/ml; 10 ng/ml) led to a significant increase of COX-2 mRNA expression. Further increase of IL-1β doses (100 ng/ml) resulted in no further induction of COX-2 mRNA (data not shown). As IL-1β 10 ng/ml caused a

Figure 1. Expression of COX-2 mRNA in trigeminal ganglia cell culture following IL-1β incubation. Induction of COX-2 mRNA was maximal after 3 hours (A) and at the IL-1β dose of 10 ng/ml (B) (n = 4-5/group). Co-incubation with the IL-1ra led to a significantly reduced COX-2 mRNA induction rate after 3 hours indicating the specificity of the effect (C). Application of the IL-1ra + vehicle resulted in a minor COX-2 mRNA induction rate comparable to vehicle administration (n = 3). Values are expressed as mean ± SEM. * \(p < 0.05 \) compared to vehicle.

doi:10.1371/journal.pone.0017360.g001

reliable and strong COX-2 mRNA we used this dose for all further experiments.

To confirm the specificity of IL-1β induced COX-2 mRNA the IL-1 receptor antagonist (IL-1ra) (1 μg/ml) was added 15 min.
prior to IL-1β (10 ng/ml) to the supernatant. IL-1ra significantly reduced COX-2 expression rate: IL-1β plus vehicle resulted in a 7-fold COX-2 mRNA increase after 3 hours whereas co-administration with IL-1ra led to a 3.5-fold increase (n = 4; p < 0.05) (Fig. 1C). Stimulation with IL-1β + IL-1ra was not significantly different from vehicle + IL-1ra administration alone (p > 0.05).

IL-1β induces COX-2 protein synthesis in neuronal and glial cells

To show that enhanced COX-2 transcription leads to increased protein synthesis western blot analysis was performed after 6 hours. Immunoblot analysis of IL-1β stimulated trigeminal ganglia cell cultures (n = 3) and the cell lysate (positive control) revealed a single clear band after 6 hours at the size of approximately 70 kDa corresponding to COX-2 protein (Fig. 2A). In vehicle treated cultures (n = 3) a faint COX-2 band could be detected. However, there was a striking difference in signal intensity in all three experiments (optical density 0.13 ± 0.04 SD for vehicle vs. 0.48 ± 0.09 SD for IL-1β treated cells; p < 0.05).

Induced COX-2 protein expression in trigeminal ganglia cell cultures could also be observed by immunohistochemistry with a COX-2 antibody 6 hours after treatment with IL-1β (10 ng/ml) (Fig. 2B; n = 4). Co-staining with mouse anti-β-tubulin III serum (β-tub III) for the identification of neuronal cells or with mouse anti-GFAP serum staining positive for glial cells revealed both neuronal and glial cells as the cellular source for COX-2 protein (Fig. 2B). Basal COX-2 expression could be observed in neuronal and glial cells and induction of COX-2 expression was seen also in both cell types. A strong induction of COX-2 was noted in particular in large glial cells.

IL-1β induced PGE2 release is dependent on COX-2 activity

To assess whether IL-1β induced COX-2 expression is functionally significant, PGE2 release into the supernatant was determined by Enzyme immunoassay (EIA). PGE2 release was measured before and after maximal induction of COX-2 mRNA (3 hours after stimulation with IL-1β). PGE2 content in the supernatant was not significantly different 30 mins after stimulation with IL-1β (48 ± 261 SEM pg/ml (IL-1β) vs. 332 ± 105 SEM pg/ml (vehicle); n = 4; p > 0.05). In contrast, 4 hours after IL-1β stimulation PGE2 concentration in the supernatant of IL-1β treated cells was strongly elevated (1829 ± 640 SEM pg/ml) while vehicle treatment was without effect (191 ± 81 pg/ml SEM; n = 4; p < 0.05 (Fig. 3A).

The non-selective COX inhibitor indomethacin (10 μM) and the selective COX-2 inhibitor parecoxib (10 μM) administered to the supernatant of TGC 15 min prior to IL-1β exposure completely aborted PGE2 release after 4 hours (Fig. 3B). Statistical significant difference (p < 0.05) was achieved for all groups vs. IL-1β + vehicle (n = 3–4/group). In contrast, sumatriptan (10 μM) did neither affect IL-1β induced COX-2 mRNA synthesis nor PGE2 release (data not shown). 5-HT1B/D receptor expression in these cells was detected by RT-PCR. Because selective and non-selective COX-inhibitors block IL-1β induced PGE release we conclude that PGE2 release from trigeminal ganglia cells is dependent on COX-2 expression and function.

IL-1β induces delayed CGRP release in trigeminal ganglia neurons

TGN release CGRP upon stimulation with e.g. potassium chloride, a cocktail of inflammatory agents, capsaicin (Durham,

Figure 2. Expression of COX-2 protein in trigeminal ganglia cells after IL-1β stimulation. COX-2 protein in cell culture homogenates was analyzed 6 hours after stimulation with IL-1β using Western blot (n = 3). A representative image is shown in panel A. Cell lysate of IL-1β treated TGC and the positive control (IFNγ/LPS treated macrophages) showed a clear band at 70 kDa corresponding to COX-2 protein. Vehicle stimulation resulted in a faint COX-2 expression. The expression of COX-2 protein in cultured trigeminal ganglia cells exposed 6 hours to vehicle (10 ng/ml, upper panel B1-B3/B7-B9) or IL-1β (0.1 M PBS, lower panel B4-B9/B10-B12) is shown in fluorescent micrographs in panel B. Cells were stained with a mouse β-tubulin III antibody, indicative of neuronal cells (B1 and B4) or a mouse GFAP antibody, indicative of glial cells (B7 and B10), and a rabbit COX-2 antibody (B2, B5, B8, B11). The β-tubulin III and the GFAP antibodies were recognized by an Alexa Fluor 488 labeled secondary donkey anti-mouse antibody (green) and the COX-2 antibody was recognized by an Alexa Fluor 594 labeled secondary donkey anti-rabbit antibody (red). Double stained cells appear orange in B3, B6, B9 and B12. IL-1β caused a clear upregulation of COX-2 in neuronal and glial cells (lower panel) whereas a faint COX-2 expression could also be observed in control experiments (upper panel). The strongest induction of COX-2 was seen in bigger glial cells (40-100 μm) and neuronal cells. doi:10.1371/journal.pone.0017360.g002
Comparison to vehicle (n = 3-4/group).

Whether the stimulation with 10 ng/ml IL-1β compared to vehicle (466 ± 44 SEM pg/ml for IL-1β + vehicle (n = 10) vs. 238 ± 29 SEM pg/ml for IL-1β + parecoxib (n = 7; p < 0.05) and 313 ± 75 SEM pg/ml for IL-1β + indomethacin (n = 4; p < 0.05)). There were no significant differences between CGRP release in the IL-1β + COX-inhibitor groups and vehicle + vehicle stimulation (257 ± 40 SEM pg/ml; n = 10; p > 0.1). Incubation with Sumatriptan 10 μM did not block IL-1β induced CGRP release (479 ± 147 SEM pg/ml; p > 0.1; n = 4) (Fig. 4C). Incubation with a higher dose of sumatriptan (100 μM) did also not change CGRP release in preliminary experiments.

To determine if the same population of trigeminal ganglia neurons expresses CGRP and COX-2, we co-stained trigeminal IL-1β treated (6 hours) trigeminal ganglia cell cultures with CGRP- and COX-2-antibodies. Immunohistochemistry revealed that all neuronal cells expressing COX-2 also stained positive for CGRP, whereas glial cells only stained positive for COX-2 (Fig. 4D).
neurons. IL-1β induced PGE2 and CGRP release was blocked by selective and non-selective COX-2 inhibitors thereby demonstrating dependency on COX-2 enzyme activity. Neither PGE2 nor CGRP release were mediated by activation of 5-HT1B/D receptors as the pre-incubation with sumatriptan was without effect.

The trigeminal ganglion (TG) is known to play a key role in the pathophysiology of migraine and other primary headaches. Cultured sensory neurons derived from trigeminal or dorsal root ganglia have been shown to express the characteristics of differentiated pain sensory cells [28]. Cultured TG cells have been used to illustrate molecular mechanisms related to migraine pathophysiology e.g. 5-HT1B/D controlled CGRP release [19–21,35,36].

Stimulation of trigeminal ganglia cells with IL-1β led to a strong induction of COX-2 mRNA and protein with subsequently PGE2 synthesis. Direct stimulation of TG cells with PGE2 resulted in enhanced CGRP release in trigeminal ganglia neurons (n = 3). Cultured trigeminal ganglia cells were exposed to IL-1β (10 ng/ml) for 6 hrs. Cells were stained with an Alexa Fluor 488 donkey anti-mouse IgG labeled rabbit anti-CGRP serum (green, panel 1) and with a rabbit anti-COX-2 antibody, which was recognized by an Alexa Fluor 594 labeled secondary donkey anti-rabbit antibody (red, panel 2). Double stained cells appear orange (panel 3). All CGRP synthesizing cells also stained positive for COX-2. Additionally COX-2 was expressed in glial cells not staining positive for CGRP.

doi:10.1371/journal.pone.0017360.g004

IL-1β induced COX-2 and PGE2 synthesis resulting in CGRP release

Stimulation of trigeminal ganglia cells with IL-1β led to a strong induction of COX-2 mRNA and protein with subsequently PGE2 synthesis. Direct stimulation of TG cells with PGE2 resulted in enhanced CGRP release in trigeminal ganglia neurons after one hour and more pronounced after 4 hours. In an in vitro preparation of the rat skull fluid-filled cavities electrical and chemical activation of trigeminal afferents resulted in enhanced release of PGE2 and CGRP from rat dura mater encephali [44]. In a rat trigeminal ganglion cell culture model Jenkins and co-workers identified the EP-2 receptor as the key signaling mechanism for PGE2 induced CGRP release [45].

Enhancement of capsaicin induced CGRP release by PGE2 has been observed in slices of the trigeminal nucleus caudalis, indicating a prostaglandin induced neuronal sensitization [46].

While these observations may support a role of PGE2 in neurogenic inflammation, it is uncertain which COX isoform accounts for the PGE2 release. Since COX-1 is constitutively

Figure 4. IL-1β induced CGRP release in TGN is dependent on COX-2 activity but not on 5-HT1B/D receptor activation. A: IL-1β (10 ng/ml) but not vehicle stimulation for 1, 4, 10 (n = 4) or 24 hours (n = 12) resulted in significantly enhanced CGRP levels in the supernatant of cultured trigeminal ganglia cells at the 24 hrs time point (* p<0.05 vs. vehicle). Earlier time points did not show a significant difference between groups. CGRP release is shown as mean pg/ml ± SEM compared to baseline. Panel B shows a representative fluorescent photomicrograph of trigeminal ganglia cells exposed 24 hours to IL-1β (10 ng/ml). Cells were stained with a mouse β-tubulin III antibody, which specifically recognizes neuronal cells (1) and a rabbit CGRP antibody (2). β-tubulin III staining was visualized with an Alexa 488 donkey anti-mouse IgG antibody (green, panel 1). CGRP IgG was recognized by Alexa 594 donkey anti-rabbit antibody (red, panel 2). All CGRP expressing cells stained positive for β-tubulin III (orange, panel 3). For inhibition experiments TGC were exposed to either parecoxib (10 μM), sumatriptan (1 μM), indomethacin (10 μM) or vehicle 45 min prior to 24 h stimulation with IL-1β (10 ng/ml), incubation with parecoxib (n = 7) and indomethacin (n = 4) blocked CGRP release in the supernatant significantly compared to IL-1β + vehicle (n = 10). Sumatriptan had no effect in the same paradigm (n = 4). CGRP release is shown as mean pg/ml ± SEM compared to baseline. * p<0.05 compared to IL-1β + vehicle. D: Immunofluorescence staining shows that CGRP is co-expressed with COX-2 in trigeminal ganglia neurons (n = 3). Cultured trigeminal ganglia cells were exposed to IL-1β (10 ng/ml) for 6 hrs. Cells were stained with an Alexa Fluor 488 donkey anti-mouse IgG labeled rabbit anti-CGRP serum (green, panel 1) and with a rabbit anti-COX-2 antibody, which was recognized by an Alexa Fluor 594 labeled secondary donkey anti-rabbit antibody (red, panel 2). Double stained cells appear orange (panel 3). All CGRP synthesizing cells also stained positive for COX-2. Additionally COX-2 was expressed in glial cells not staining positive for CGRP.

doi:10.1371/journal.pone.0017360.g004

While these observations may support a role of PGE2 in neurogenic inflammation, it is uncertain which COX isoform accounts for the PGE2 release. Since COX-1 is constitutively
expressed in many cells types (e.g. dural macrophages, fibroblasts) and PGE2 release occurs immediately after electrical and chemical meningeal stimulation [44]. COX-1 may account for this response. In our model, immediate PGE2 release did not occur after stimulation with IL-1β. Additionally, COX-1 mRNA remained unchanged 3 hours after stimulation with IL-1β. In contrast, IL-1β induced COX-2 mRNA expression after 3 hours and PGE2 release after 4 hours. PGE2 release could be blocked by the selective COX-2 inhibitor parecoxib. These findings provide evidence for a COX-2 mediated pathway.

Glia-neuron interaction

We found neuronal and glial cells as a source of COX-2 as demonstrated by immunohistochemistry. In particular, a strong stimulus dependent induction of COX-2 by IL-1β was seen in large glial cells. Stimulation of cultured trigeminal cells with PGE2 and IL-1β led to CGRP release exclusively in trigeminal ganglia neurons (cell body and neuronal processes). Immunohistochemistry did not reveal any CGRP expression in glial cells which is in line with the findings of others in rat and human trigeminal ganglia [34].

Our findings support a glia-neuron interaction within the trigeminal ganglion. We hypothesize that IL-1β activates glial cells and neurons in the trigeminal ganglion, which leads to the expression of COX-2 in these cells. In turn the COX-2 reaction product PGE2 activates trigeminal neurons to release CGRP.

Glia-neuron interaction plays an important role for the normal function of the brain as well in the pathophysiology of many CNS diseases [47]. Over the last years the importance of CNS glia for neuronal function in pain processing has been demonstrated in various experimental pain states [48]. The physiological function of
the glial cells within the trigeminal ganglion is not well understood. In
the trigeminal ganglia cell bodies of neurons are surrounded by
satellite glial cells that can modulate their function and enhance their
excitability [49]. In a recently published work IL-1β induced COX-2
expression and PGE2 synthesis in cultured trigeminal satellite cells.
Stimulation of TGN with conditioned media from these activated
cells led to sensitization of TGN resulting in increased CGRP
release after stimulation with capsaicin [30]. Activation of satellite
glia cells in the trigeminal ganglion modulates the excitability of TG
neurons via IL-1β following inflammation associated with hyperal-
gesia in rats [51]. The involvement of neuron-glial signaling via gap
junctions and release of nitric oxide and pro-inflammatory cytokines
from the trigeminal ganglia satellite glial cells has been demonstrated
recently in experimental models related to migraine pathophysiology
[52–55]. Interestingly, CGRP receptors are expressed on trigeminal
neurons and glial cells. CGRP released by trigeminal ganglia neurons
has been shown to function in a paracrine manner to activate
trigeminal satellite glial cells to release various cytokines including IL-
1β and nitric oxide, a molecule known to be involved in migraine
pathophysiology [52,54]. Additionally CGRP possesses autocrine
signaling function properties to increase mRNA levels of CGRP in
cultured trigeminal neurons [35]. Our finding that induction of
COX-2 expression by IL-1β in trigeminal glial and neuronal cells
leads to direct induction of CGRP release from trigeminal neurons
supports the notion of an important cross talk between neurons and
glial cells in the trigeminal ganglion in processes involved in
trigeminally mediated headaches.

IL-1β induced CGRP release in trigeminal ganglia neurons

In our model exposure of trigeminal ganglia cell culture to IL-1β
led directly to delayed CGRP release from TGN 24 hours after
stimulation with an earlier non-significant trend after 10 hours. This
latency was not expected as IL-1β induced PGE2 release was
significant after 4 hours and PGE2 caused CGRP release after 1
day. Delayed (48 hours) IL-1β induced CGRP release was
observed previously in dorsal root ganglia neurons. Blocking
experiments demonstrated that IL-1β might activate protein kinase
C that in turn initiates c-Jun-N-terminal kinase mitogen activated
protein kinase followed by activation of nuclear factor-kappaB,
which finally induces alpha-CGRP gene expression and neuropep-
tide release from these sensory neurons [56]. In our hands IL-1β
did not lead to an induction of CGRP mRNA synthesis in cultured
trigeminal neurons as demonstrated by quantitative RT-PCR.
We speculate that a certain threshold of PGE2 concentration in the
supernatant is necessary to induce gradual CGRP expression, which
may take several hours to archive. Direct stimulation of TG with
10 μM PGE2 did also not lead to the induction of CGRP gene
expression. In line, in another rat model of isolated trigeminal
ganglion the infusion of the NO donor glyceroltrinitrate induced the
release of CGRP but did not change mRNA levels of CGRP [57].
Therefore, elevated CGRP release in the trigeminal ganglion in our
and other models seems to be dependent on enhanced secretion
rather than synthesis due to gene expression.

Non-selective (indomethacin) and selective (parecoxib) COX-2
inhibitors aborted L-1β induced CGRP release. In contrast,
neither IL-1β nor PGE2 induced CGRP release could be blocked
by sumatriptan, indicating a release mechanism independent of 5-
HT1B/D receptor activation. A COX-2 dependent CGRP release
could also be demonstrated in the dura mater in an isolated
preparation of fluid-filled rat skull cavities. The COX-2 inhibitor
S-flurbiprofen inhibited inflammatory mediator (bradykinin,
histamine and serotonin) induced CGRP and PGE2 release while the
5-HT1B/D receptor agonist naratriptan was without effect [58].
Our findings demonstrate a direct link between COX-2 activity
and CGRP release in TGN. In a slightly different cell culture
model of trigeminal ganglia cells potassium chloride and
inflammatory cocktail induced rapid CGRP release that could be
blocked by sumatriptan [19]. The results of our study point to an
alternative pathway of cytokine induced CGRP release in TGN
regulated by COX-2 and not affected by sumatriptan.

Conclusion

In summary, our results demonstrate that primary trigeminal
ganglia cells are able to synthesize COX-2 and PGE2 upon
stimulation with the cytokine IL-1β in a functionally significant
mode resulting in delayed CGRP release in trigeminal ganglia
neurons. CGRP release is mediated by a COX-2 dependent
pathway and independent of 5-HT1B/D receptor activation (Fig. 6).
COX-2 expression in trigeminal ganglion cells could contribute
to the development of pain in trigeminal mediated headaches.
Non-selective [23] and selective COX-2 inhibitors [24,25] abort
migraine attacks. The demonstrated attenuation of CGRP release
by COX-2 inhibition could at least in part explain the mechanism
of COX inhibitors in migraine therapy.

Acknowledgments

We would like to thank Sonja Blumenau for excellent technical assistance and Francisco Fernández Klett for support with confocal imaging.

Author Contributions

Conceived and designed the experiments: LN UR. Performed the experiments: LN CB PH JH SSH. Analyzed the data: LN UR PH. Contributed reagents/materials/analysis tools: UR UD. Wrote the paper: LN UR.

References

1. Sommer C, Kress M (2004) Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosurg Rev 36(1): 184–187.

2. Cunha JM, Cunha FQ, Poole S, Ferreira SH (2000) Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. Br J Pharmacol 130: 1416–1424.

3. Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH (1992) The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 107: 660–664.

4. Oka T, Oka K, Hosoi M, Hori T (1995) Intracerebroventricular injection of interleukin-6 induces thermal hyperalgesia in rats. Brain Res 692: 123–128.

5. Perini F, D’Andrea G, Galloni E, Pignatelli F, Billo G, et al. (2005) Plasma cytokine levels in migraineurs and controls. Headache 45: 926–931.

6. Sacco A, Arocena A, Baldi A, Coppola F, Rossi G, et al. (2006) Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed axially. Headache 46: 200–207.

7. Kocer A, Memisogullari R, Domac FM, Ilhan A, Kocer E, et al. (2009) IL-6 levels in migraine patients receiving topiramate. Pain Pract 9: 375–379.

8. Reuter U, Bolay H, Jansen-Olesen I, Chiurugi A, Sanchez del RM, et al. (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124: 2490–2502.

9. Uddman R, Edvinsson L, Ekman R, Kingman T, McCulloch J (1985) Inervation of the frontal cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett 62: 131–136.

10. Edvinsson L, Hara H, Uddman R (1989) Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides. J Cereb Blood Flow Metab 9: 212–218.

11. Waerbel C, Moskowitz MA (2005) Migraine as an inflammatory disorder. Neurology 64(2): S9–15.

12. Storer RJ, Akerman S, Goadsby PJ (2004) Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 142: 1171–1181.
13. Durham PL (2006) Calcitonin gene-related peptide (CGRP), and migraine. Headache 46(Suppl 1): S3–S8.
14. Juhasz G, Zsombok T, Modos EA, Olajos S, Jakab B, et al. (2003) COX-2 Dependent CGRP Release in TGC growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 115: 1265–1275.
15. Inoue A, Ikoma K, Moroika N, Kumagai K, Hashimoto T, et al. (1999) Interleukin-1beta induces substance P release from primary afferent neurons through the cyclooxygenase-2 system. J Neurochem 73: 2206–2213.
16. Jansen-Olesen I, Zhou M, Zinck T, Xu CB, Edvinsson L (2005) Expression of proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol Pain 5: 1–33.
17. Lin CH, Wang H, Zimmerman K, Amaya F, Vandehe D, et al. (2008) Nociceptors are interleukin-1beta sensors. J Neurosci 28: 14062–14073.
18. Inoue A, Ikoma K, Moroika N, Kumagai K, Hashimoto T, et al. (1999) Interleukin-1beta induces substance P release from primary afferent neurons through the cyclooxygenase-2 system. J Neurochem 73: 2206–2213.
19. Ipse CQ, Murray JN, Moohanve AS (2001) Interleukin-1-induced cyclooxygenase and nitric oxide synthase gene expression in the rat dorsal root ganglia is modulated by antioxidants. Neuroscience 105: 971–985.
20. Jansen-Olesen I, Zhou M, Zinck T, Xu CB, Edvinsson L (2005) Expression of proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol Pain 5: 1–33.
21. Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80: 1326–1338.
22. Fehrenbacher JC, Burkey TH, Nicol GD, Vasko MR (2005) Tumor necrosis factor alpha and interleukin-1 alpha modulate the expression of cyclooxygenase II but do not alter prostaglandin E2 receptor mRNA levels in cultured dorsal root ganglia cells. Pain 113: 113–122.
23. Silberstein SD, Saper CS, Olesen J, et al. (2002) Expression of CGRP in rat trigeminal ganglion neurons during cell and organ culture. Brain Res 96: 22–32.
24. Goebel H, Allessandri M, Figini M, Geppetti P, Michelacci S (1995) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 335: 1104–1110.
25. Juhasz G, Zsombok T, Modos EA, Olajos S, Jakab B, et al. (2003) COX-2 Dependent CGRP Release in TGC growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 115: 1265–1275.
26. Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology and function of prostaglandin synthesis and inhibition. Pharmacol Rev 56: 357–437.
27. Baccaglini PI, Hogan PG (1983) Some rat sensory neurons in culture express calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci 27: 2693–2700.
28. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, et al. (2001) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol Pain 5: 1–33.
29. Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology and function of prostaglandin synthesis and inhibition. Pharmacol Rev 56: 357–437.
30. Inoue A, Ikoma K, Moroika N, Kumagai K, Hashimoto T, et al. (1999) Interleukin-1beta induces substance P release from primary afferent neurons through the cyclooxygenase-2 system. J Neurochem 73: 2206–2213.
31. Moira N, Inoue A, Hanada T, Kumagai K, Takeda K, et al. (2002) Nitric oxide synergistically potentiates interleukin-1 beta-induced increase of cyclooxygenase-2 mRNA levels, resulting in the facilitation of substance P release from primary afferent neurons: involvement of cGMP-independent mechanisms. Neuropharmacology 43: 848–876.
32. Kuris A, Xu CB, Zhou MF, Tajti J, Uddman R, et al. (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129: 155–166.
33. Inoue A, Ikoma K, Moroika N, Kumagai K, Hashimoto T, et al. (1999) Interleukin-1beta induces substance P release from primary afferent neurons through the cyclooxygenase-2 system. J Neurochem 73: 2206–2213.
34. Binshtok AM, Wang H, Zimmerman K, Amaya F, Vandehe D, et al. (2008) Nociceptors are interleukin-1beta sensors. J Neurosci 28: 14062–14073.
35. Durham PL, Niemann C, Cady R, et al. (2004) Regulation of calcitonin gene-related peptide secretion from rat trigeminal ganglion neurons. J Neurochem 96: 65–77.
36. Baccaglini PI, Hogan PG (1983) Some rat sensory neurons in culture express calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci 27: 2693–2700.
37. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, et al. (2001) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol Pain 5: 1–33.
38. Tajti J, Makkos M, Balogh I, et al. (2007) Elevated expression of CGRP in rat trigeminal ganglion neurons during cell and organ culture. Brain Res 1196: 22–32.
39. Takeda M, Tsuzinoto T, Kadoi J, Nasu M, Takeda K, et al. (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129: 155–166.
40. Igwe OJ, Murray JN, Moolwaney AS (2001) Interleukin 1-induced cyclooxy- genase and nitric oxide synthase gene expression from rat dura mater neuronal-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80: 1326–1338.
41. Baccaglini PI, Hogan PG (1983) Some rat sensory neurons in culture express calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci 27: 2693–2700.
42. Fehrenbacher JC, Burkey TH, Nicol GD, Vasko MR (2005) Tumor necrosis factor alpha and interleukin-1 alpha modulate the expression of cyclooxygenase II but do not alter prostaglandin E2 receptor mRNA levels in cultured dorsal root ganglia cells. Pain 113: 113–122.
43. Bruno PP, Carpio F, Carpio G, Zicari A (2007) An overview on immune system and migraine. Eur Rev Med Pharmacol Sci 11: 245–248.
44. Ebersberger A, Averbeck B, Meslinger K, Reeh PW (1999) Release of substance P in rat dura mater. Pain 103: 313–320.
45. Jenkins DW, Langmead CJ, Parsons AA, Strijsbos PJ (2004) Regulation of calcitonin gene-related peptide expression from rat trigeminal neuronal-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80: 1326–1338.