Efficient Robustness Certificates for Discrete Data

Sparsity-Aware Randomized Smoothing for

Graphs, Images and More

Aleksandar Bojchevski, Johannes Klicpera, Stephan Günnemann
Robustness Certificate

Guarantee that the prediction does \textbf{not} change for all \tilde{x} in a ball $\mathcal{B}_r(x)$ around the input x.

Here $\mathcal{B}_r(x)$ is the L_0 ball: the attacker can change up to r bits.
Given any base classifier for discrete data

Node-level Classification
Graph-level Classification

Graph Neural Network
ResNet
Transformer
DNN
...

Discretized Images
Text
Molecules (SMILES)
...

Certify a smoothed classifier w.r.t. an L_0 adversary
Sparsity-aware smoothing improves guarantees

Reduced complexity: $O(d^3)$ to $O(r)$

Results on Graphs, MNIST, ImageNet, ...
Certifying Graph Neural Networks

Any GNN: GCN, GAT, PPNP, GIN, ...

Perturbing both graph and node attributes

First certificate for graph-level classification

Perturbations:
- inserted edge
- deleted edge
- perturbed attribute
Certifying Graph Neural Networks

Different GNNs have different robustness trade-offs

GAT GCN APPNP

Perturbing Attributes

Perturbing Graph Structure
Randomly Smoothed Classifiers

Given:

- Any base classifier $f: \mathcal{X} \to \mathcal{Y}$
- Any randomization scheme $\phi(x)$

Certify a **smoothed** classifier g

$$g(x) = \arg\max_{y \in \mathcal{Y}} \Pr(f(\phi(x)) = y)$$

majority vote y^*
Certifying the Smoothed Classifiers

Majority vote $g(x)$ changes slowly

Example: $f(x) =$, but $g(x) =$

$Pr(f(\phi(x)) = y)$
Randomly Smoothed Classifiers

Goal:
Guarantee that the majority votes does not change for all \(\tilde{x} \) in a ball \(\mathcal{B}_r(x) \) around the input \(x \)

For all \(\tilde{x} \), \(\Pr(f(\phi(\tilde{x})) = \bullet) > 0.5 \)
Choosing the Randomization Scheme $\phi(x)$

First idea: Randomly flip bits with probability p

x: [Diagram showing flipping bits]

$\phi(x)$: [Diagram showing flipped bits]

Higher p leads to better guarantees

Problem: For sparse data even moderately small p destroys the data
Choosing the Randomization Scheme $\phi(x)$

Sparsity aware: Treat zeros separately

$\phi(x)$: \[
\begin{array}{cccccccc}
\cdot & \cdot \\
\end{array}
\]

Graphs: Insert edges with p_+, delete edges with p_-

We can afford to set p_- relatively high and p_+ relatively low without introducing too much noise in the data
Deriving the Certificate

The smoothed classifier is certifiably robust if

\[
\min \Pr(f(\phi(\tilde{x})) = y^*) > 0.5
\]

subject to:
\[
\tilde{x} \in B_r(x)
\]

Find the \(\tilde{x}\) that minimizes the probability of the majority vote \(y^*\)
Constant Likelihood Ratio Regions

The smoothed classifier is certifiably robust if

$$\min \sum_i \Pr(\phi(\tilde{x}) \in R_i) \ h_i > 0.5$$

subject to:

$$\tilde{x} \in B_r(x)$$

$$h_i \in [0, 1]$$

$$\sum_i \Pr(\phi(x) \in R_i) \ h_i = p_{y^*}$$

$$\frac{\Pr(\phi(x) \in R_i)}{\Pr(\phi(\tilde{x}) \in R_i)} = c_i$$

constant
Constant Likelihood Ratio Regions

Observation 1: We consider w.l.o.g. only dimensions where \(x_i \neq \tilde{x}_i \)

Observation 2: Number of regions is independent of \(d \)

Threat model: \(B_{r_a, r_d} = \{ \tilde{x} : \text{added} \leq r_a \text{ bits, deleted} \leq r_d \text{ bits} \} \)
GNNs: Setup

Threat model: Perturb either graph structure or attributes

Task: Semi-supervised node classification
Results on Node Classification

GNNs are more robust to edge deletion than edge addition

Perturbing Attributes

Perturbing Graph Structure

Certified ratio

Certified r_a, r_d

Certified ratio

Certified r_a, r_d

GAT GCN APPNP
Results on Node Classification

Models are more robust to edge deletion than edge addition

Average max r_d radius is 6.47 with \textit{sparse} smoothing and 1.75 without
Results on Graph Classification

First certificate for the graph-level classification task
Results on MNIST

Sparsity-aware smoothing improves the certified ratio
Other results: ImageNet

Dramatically improved runtime for the exact same (tight) certificate

Certificate	Type	Time	$r = 1$	$r = 3$	$r = 5$	$r = 7$
Cohen et al. (2019)	Continuous	< 1 sec.	0.372	0.226	0.170	0.138
Dvijotham et al. (2020)	Discrete	< 1 sec.	0.362	0.224	0.136	0
Lee et al. (2019)	Discrete	4 days	0.538	0.338	0.244	0.176
Ours	Discrete	< 1 sec.	0.538	0.338	0.244	0.176
Model-agnostic, Tight, Efficient, & Sparsity-Aware Robustness Certificate

Code & Project Page: https://www.daml.in.tum.de/sparse_smoothing/
Twitter: @abojchevski