Renormalization group approach to 2D Coulomb interacting Dirac fermions with random gauge potential

Oskar Vafek1 and Matthew J. Case1

1National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Dated: February 2, 2008)

We argue that massless Dirac particles in two spatial dimensions with $1/r$ Coulomb repulsion and quenched random gauge field are described by a manifold of fixed points which can be accessed perturbatively in disorder and interaction strength, thereby confirming and extending the results of arXiv:0707.4171. At small interaction and small randomness, there is an infra-red stable fixed curve which merges with the strongly interacting infra-red unstable line at a critical endpoint, along which the dynamical critical exponent $z = 1$.

The properties of two dimensional massless Dirac fermions have recently sprung back into focus, largely due to the experimental discovery of the quantum Hall effect in graphene1,2, the single layer graphite. Moreover, the ability to control the density of carriers by the electrical field effect allows experimental access to the rich physics of the neutrality point, where in the clean non-interacting picture, the conduction and the valence bands touch. It is well known3 that, at the neutrality point, the exchange self-energy gives a logarithmic enhancement of the Fermi velocity $v_F \rightarrow v_F + (e^2/4\epsilon_d)\ln(\Lambda/k)$ where k is a small wavevector near the nodal point3 and ϵ_d is the dielectric constant of the medium. Physically, this effect is due to the lack of screening of the $1/r$ Coulomb interaction, an important consequence of which is the suppression of the single particle density of states $(N(E))$ at low energies. This in turn leads to the suppression of the electronic contribution to the low temperature specific heat2.

This suppression of $N(E)$ may lure one into the (incorrect) conclusion that, at $T = 0$, the Coulomb interactions turn the clean system into an electrical insulator. However, the vertex corrections contribute an exactly compensating enhancement of the conductivity2, making the system a metal with its residual conductivity asymptotically equal to the non-interacting value $\sigma_0 = (\pi/8)e^2/h$ per node.

In this work, we analyze the effects of the unscreened Coulomb interactions and the quenched random gauge disorder beyond leading order in the perturbative renormalization group (RG) of Ref.5. Our principle findings, which support and extend those of Ref.5 are twofold: first, in the clean case, there is an unstable fixed point at finite strength of Coulomb interactions characterized by the dimensionless ratio $\alpha = e^2/(\hbar c_d v_F)$ which represents a quantum critical point (QCP) separating the semimetal from an exciton insulator; and second, the interplay between Coulomb interactions and disorder induces a downward curvature of the fixed line5,6, causing it to end at the clean QCP (see Fig.1).

In two dimensions, the Hamiltonian for Coulomb interacting massless Dirac fermions in the presence of a quenched random gauge field can be written as

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{\text{dis}} + \hat{V}$$

with the free part given by,

$$\mathcal{H}_0 = \sum_{j=1}^{N} \int d^2r v_F \left[\psi_j^*(\mathbf{r}) \mathbf{p} \cdot \sigma \psi_j(\mathbf{r}) \right]$$

where the operator ψ_j annihilates a two-component Dirac fermion, $\mathbf{p} = -i\nabla$, σ_i is the ith Pauli matrix, and we have set $\hbar = k_B = 1$ for convenience, unless otherwise stated. N represents the number of fermion species; for single layer graphene, $N = 4$. The disorder part of the Hamiltonian is

$$\mathcal{H}_{\text{dis}} = \sum_{j=1}^{N} \lambda_j v_F \int d^2r \left[a_\mu(\mathbf{r}) \psi_j^*(\mathbf{r}) \sigma_\mu \psi_j(\mathbf{r}) \right]$$

FIG. 1: The renormalization group flow diagram in the (disorder) Δ – (interaction) $\alpha = e^2/(\epsilon_d v_F)$ plane. There is a line of stable fixed points at small Δ and small α which merges with the line of unstable fixed points at the critical end point. The (clean) unstable fixed point at Δ^* corresponds to a quantum phase transition into an excitonic insulator. Above the critical Δ^*, the disordered but non-interacting fixed line is unstable directly to the insulator.
where \(\mu = 1, 2 \) and the quenched random gauge field is assumed to be uncorrelated

\[
\langle a_\mu(r) \rangle = 0; \quad \langle a_\mu(r)a_\nu(r') \rangle = \Delta \delta_{\mu\nu} \delta(r-r').
\]

The charges \(\lambda_j = (-1)^j \) vary in sign from node to node as dictated by the overall time reversal symmetry of the system. The Coulomb interaction between Dirac fermions is given by

\[
\hat{V} = \frac{1}{2e_d} \int d^2 r d^2 r' \left[\delta n(r) \frac{e^2}{|r-r'|} \delta n(r') \right] \tag{5}
\]

where \(\delta n(r) = \sum_j \psi_j^\dagger(r) \psi_j(r) - n_0 \) and \(e \) is the electronic charge. The background charge density \(n_0 \) ensures overall charge neutrality.

This system can be described by three ”coupling constants” \(-e^2, \Delta \) and \(v_F \) – of which \(\Delta \) is dimensionless and, in our units, both \(v_F \) and \(e^2/e_d \) have dimensions of velocity. In what follows, we will set \(e_d = 1 \) and restore it in the final results by rescaling the charge. Generically, these coupling constants flow under the renormalization group transformation. However, the charge \(e^2 \) does not flow because it is a coefficient on a non-analytic term in the action, and as detailed elsewhere \(\Delta \) doesn’t flow either. The entire flow of the renormalized coupling constants then comes from the scale dependence of the Fermi velocity. The RG beta functions take the form:

\[
\frac{de^2}{d\ln \kappa} = 0 \tag{6}
\]

\[
\frac{d\Delta}{d\ln \kappa} = 0 \tag{7}
\]

\[
\frac{dv_F}{d\ln \kappa} = v_F \frac{\Delta}{\pi} - \frac{e^2}{4} + A v_F \Delta^2 + B e^2 \Delta + C \frac{e^4}{v_F} + \ldots \tag{8}
\]

where the ellipses mean terms of cubic order in the double expansion in small \(e^2 \) and \(\Delta \). The lowest order terms in the expansion come from the exchange diagrams for disorder and interactions (see Fig. 2), respectively. The result of our analysis presented below is the following values of the above coefficients

\[
A = 0, \quad B = \frac{1}{8\pi}, \quad C = \frac{N}{12} - \frac{103}{96} + \frac{3}{2} \ln 2. \tag{9}
\]

The vanishing coefficient \(A \) agrees with the result of Ludwig et.al.\(^2\) that, for \(e^2 = 0 \), the dynamical critical exponent \(z = 1 - d \ln v_F / d \ln \kappa = 1 - \Delta / \pi \) holds to all orders in perturbation theory. The values of \(B \) and \(C \) are the new results first reported in this paper.

If we rescale \(e^2 \) by \(v_F \), we can define a dimensionless coupling constant \(\alpha_F = e^2/(\hbar c_d v_F) \) which characterizes the strength of Coulomb interactions. The corresponding flow diagram is shown in Fig.1. In the clean case, small \(\alpha_F \) flows to zero due to the growth of the Fermi velocity. At \(\alpha_F = \alpha_e \), there is a quantum phase transition into an excitonic insulator, controlled by the strongly interacting fixed point. Within the above approximation, for \(N = 4 \), which is appropriate for the single layer graphene, the unstable fixed point appears at \(\alpha_e = 1/4C \approx 0.833 \). As discussed in greater detail below, since the expansion of the beta function \(\delta \) is carried out in \(\alpha_F N \ll 1 \), the semimetal-insulator fixed unstable point appears beyond the strict validity of the perturbative RG. Nevertheless, for finite \(\Delta \), there is a fixed manifold given by

\[
\Delta = \pi \frac{\alpha_F (1 - 4C \alpha_F)}{4 + \pi B \alpha_F} \tag{10}
\]

which is shown in Fig.1 by the solid (red) curve. Importantly, at small \(\alpha_F \) and \(\Delta \), this manifold represents the line of stable fixed points \(\Delta^* \) which is asymptotically exact, and which merges with the line of unstable fixed points at the critical endpoint \((\alpha^*, \Delta^*) \).

Next, we detail the perturbative renormalization group calculation which we perform in dimensional regularization scheme by analytically continuing the space integrals to \(D = 2 - \epsilon \) where \(\epsilon > 0 \). This formal device serves as a regulator for various divergent integrals. The bare Green’s function has the form \(G_0 \)

\[
G_0(i\omega, \mathbf{k}) = (-i\omega + \sigma \cdot \mathbf{k})^{-1} = \frac{i\omega + \sigma \cdot \mathbf{k}}{\omega^2 + \mathbf{k}^2}.
\]

The resulting self-energy matrix, which is defined through the two point irreducible vertex \(\Gamma = G^{-1} \) as

\[
\Gamma \mathbf{k}(i\omega) = -i\omega + v_F \sigma \cdot \mathbf{k} + \Sigma \mathbf{k}(i\omega), \tag{11}
\]

is calculated at finite external momentum \(\mathbf{k} \) and frequency \(\omega \). To illustrate the procedure, consider the self-energy to first order in the coupling constant \(e^2 \) (the first
the renormalized Fermi velocity to be
\[v_F \Delta, \]
and using Eqs. (14-16) we find the RG flow equation for the self-energy, let us define the renormalization conditions.

\[\Sigma^{\text{ren}}(i\omega) = \Delta \int \frac{d^D q}{(2\pi)^D} \sigma_{\mu} G_0(i\omega, q) \sigma_{\mu} = -\Delta i\omega |\omega|^{D-2} \times \frac{2\Gamma[1 - \frac{D}{2}]}{(4\pi)^{\frac{D}{2}}} \rightarrow -\Delta |i\omega|^{-\epsilon} \left(\frac{1}{\pi \epsilon} + \frac{1}{2} \ln \left(\frac{4\pi e^{-\gamma_E}}{\varepsilon} \right) \right) \] (13)

Again, the pole at \(D = 2 \) corresponds to a logarithmic divergence of the self-energy.

Before addressing the higher order contributions to the self-energy, let us define the renormalization conditions. The standard relationship between the renormalized two point function \(\Gamma^{\text{ren}}_k(i\omega) \) and the bare one \(\Gamma^0_k(i\omega) \) is

\[\Gamma^{\text{ren}}_k(i\omega) = Z\Gamma^0_k(i\omega) \] (14)

where \(Z \) is the wavefunction renormalization [11]. The renormalized coupling constants can now be defined through the following renormalization conditions

\[\frac{i}{2} \frac{\partial \text{Tr} \Gamma^{\text{ren}}_k(i\omega)}{\partial \omega} \bigg|_{\omega=\kappa} = 1 \] (15)

\[\frac{1}{4} \frac{\partial \text{Tr} [\sigma_{\mu} \Gamma^{\text{ren}}_k(i\omega)]}{\partial k_{\mu}} \bigg|_{\omega=\kappa} = v_F^R. \] (16)

Physically the above equations demand that at the renormalization scale \(\kappa \), the renormalized single particle Green’s function \(G^{\text{ren}}_k(i\omega) \) takes the form

\[G^{\text{ren}}_k^{-1}(i\omega) = \left[-i\kappa + v_F^R \sigma \cdot k \right]^{-1}. \]

Similarly, the leading order self energy due to the disorder scattering (second diagram in Fig. 2) is

\[\Sigma^{\text{dis}}_k(i\omega) = \Delta \int \frac{d^D q}{(2\pi)^D} \sigma_{\mu} G_0(i\omega, q) \sigma_{\mu} = -\Delta i\omega |\omega|^{D-2} \times \frac{2\Gamma[1 - \frac{D}{2}]}{(4\pi)^{\frac{D}{2}}} \rightarrow -\Delta i\omega |\omega|^{-\epsilon} \left(\frac{1}{\pi \epsilon} + \frac{1}{2} \ln \left(\frac{4\pi e^{-\gamma_E}}{\varepsilon} \right) \right) \] (13)

Thus, to this order in the perturbative expansion, the self energy matrix in Eq. (11) is

\[\Sigma_k(i\omega) = \Sigma^{\text{exch}}_k(i\omega) + \Sigma^{\text{dis}}_k(i\omega) + \Sigma^a_k(i\omega) + \Sigma^b_k(i\omega) + \Sigma^c_k(i\omega), \]

and using Eqs. (14-16) we find the RG flow equation for the renormalized Fermi velocity to be

\[\frac{dv_F^R}{d\ln \kappa} = \frac{e^2}{4} + \frac{e^2 \Delta}{\pi} + \frac{e^2 \Delta}{8\pi} + \left(\frac{N}{12} - \frac{103}{96} + \frac{3}{2} \ln 2 \right) \frac{e^4}{v_F^R}. \]

This is the result displayed in Eq. (8). It is apparent from this flow equation that at \(\Delta = 0 \) the Fermi velocity increases logarithmically provided that the dimensionless coupling \(\alpha < \alpha_c \). Such logarithmic growth implies suppression of the electronic density of states near the Dirac point and concomitant suppression of the specific heat [3].

In the case of \(\alpha > \alpha_c \), the runaway RG flows can be interpreted as the flow towards an excitonic insulator. The physical nature of this insulator depends on the details of the lattice model. For spinless fermions on a honeycomb lattice, for example, it would correspond to a...
state with a spontaneous breaking of (plaquette or bond centered) inversion symmetry and unequal population of the two sublattices; for strictly $1/r$ Coulomb repulsion and for the spinfull case it would correspond to an "antiferromagnetic" order (but no unit cell doubling) with unequal spin population of the two sublattices, although details of the short range part of the repulsive interactions could destabilize it towards the inversion symmetry broken state[12].

We conclude with a discussion of the validity of the approximations employed here. First, the RG was organized perturbatively in both α and Δ so the weak coupling portion of the fixed line in Fig. 1 is rigorously justified. Additionally, the downward curvature of this line implied by the sign of the terms in the second order expansion is also rigorous. Diagrammatically, integration of these RG equations corresponds to an infinite parquet-like resummation of the two leading logarithms at each order in the perturbative expansion (see for instance [13]).

On the other hand, the unstable portion of the fixed line and the (unstable) clean fixed point appear at a finite value of the coupling constant at which $\alpha_F N$ is not small. They are, therefore, beyond the reach of the perturbative RG. Nevertheless, the very existence of the clean unstable fixed point is perhaps on somewhat firmer footing [14–16], and due to the negative curvature of the IR stable fixed line in the perturbatively accessible region of the flow diagram, we expect that the gross topological features of the fixed manifold in Fig. 1 if not its quantitative aspects, are valid.

We wish to thank Professors I. Herbut and Z. Tesanovic for useful discussions and for their critical reading of the manuscript.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[2] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[3] J. Gonzales, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B 424, 595 (1994).
[4] O. Vafek, Physical Review Letters 98, 216401 (pages 4) (2007).
[5] I. F. Herbut, V. Juricic, and O. Vafek (2007), URL http://www.arxiv.org/abs/0707.4171.
[6] T. Stauber, F. Guinea, and M. A. H. Vozmediano, Physical Review B 71, 041406 (2005).
[7] A. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, Phys. Rev. B 50, 7526 (1994).
[8] J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Reading, MA, USA, 1988).
[9] E. G. Mishchenko, Physical Review Letters 98, 216801 (2007).
[10] J. González, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 59, R2474 (1999).
[11] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, MA, USA, 1995).
[12] I. F. Herbut, Physical Review Letters 97, 146401 (2006).
[13] I. F. Herbut, A Modern Approach To Critical Phenomena (Cambridge University Press, Cambridge, UK, 2007).
[14] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
[15] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. B 66, 045108 (2002).
[16] H. Leal and D. V. Khveshchenko, Nucl. Phys. B 687, 323 (2004).