Identification of ISC1 (YER019w) as Inositol Phosphosphingolipid Phospholipase C in Saccharomyces cerevisiae*

Hirofumi Sawai‡, Yasuo Okamoto‡, Chiara Luberto‡, Cungui Mao, Alicja Bielawska‡, Naohika Domae‡, and Yusuf A. Hannun**

From the ‡Department of Biochemistry and Molecular Biology and the ¶Ralph H. Johnson Veterans Administration Hospital and the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and the §Department of Medicine, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573, Japan

Sphingolipids have emerged as novel bioactive mediators in eukaryotic cells including yeast. It has been proposed that sphingomyelin (SM) hydrolysis and the concomitant generation of ceramide are involved in various stress responses in mammalian cells. The yeast Saccharomyces cerevisiae has inositol phosphosphingolipids (IPS) instead of SM and glycolipids, and synthesis of IPS is indispensable to its growth. Although the genes responsible for the synthesis of IPS have been identified, the gene(s) for the degradation of IPS has not been reported. Here we show that ISC1 (YER019w), which has homology to bacterial neutral sphingomyelinase (SMase), encodes IPS phospholipase C (IPS-PLC). First, we observed that overexpression of ISC1 greatly increased neutral SMase activity, and this activity was dependent on the presence of phosphatidylserine. Cells deleted in ISC1 demonstrated negligible neutral SMase activity. Because yeast cells have IPS instead of SM, we investigated whether IPS are the physiologic substrates of this enzyme. Lysates of ISC1-overexpressing cells demonstrated very high PLC activities on IPS. Deletion of ISC1 eliminated endogenous IPS-PLC activities. Labeling yeast cells with [3H]dihydrosphingosine showed that IPS were increased in the deletion mutant cells. This study identifies the first enzyme involved in catabolism of complex sphingolipids in S. cerevisiae.

Sphingolipids such as ceramide, sphingosine, and sphingosine 1-phosphate have been proposed as intracellular mediators in various cellular responses (1–5). Ceramide has been proposed to be involved in stress responses induced by serum deprivation, heat shock, irradiation, or anticancer drugs. Two mechanisms of ceramide generation in these stresses have been reported so far: hydrolysis of sphingomyelin (SM) by sphingomyelinase (SMase) and de novo synthesis. At least five SMases (acid, neutral membrane-bound, neutral cytosolic, Zn2+-dependent, and alkaline) exist in mammalian cells, and acid SMase and membrane-bound neutral SMase (N-SMase) have been cloned (6–10).

In the yeast Saccharomyces cerevisiae, many genes involved in sphingolipid metabolism have been identified, and the genes involved in the synthesis of sphingolipids such as LCB1/LCB2 are essential for growth (11, 12). S. cerevisiae possesses inositol phosphosphingolipids (IPS) (inositol phosphorylceramide (IPC), mannosylinositol phosphorylceramide (MIPC), and mannosylinositol phosphorylceramide (M(IP)2C)) as its complement of complex sphingolipids instead of choline phosphorylceramide (SM) and glycosphingolipids of mammals (13, 14). AUR1, which encodes IPC synthase, is also essential for the growth of S. cerevisiae, indicating that IPS may play a crucial role in yeast (15). However, the gene(s) involved in degradation of IPS in yeast have not been elucidated. Interestingly, the existence of N-SMase activity in S. cerevisiae was recently reported, although SM does not appear to exist in S. cerevisiae (16). This raised the possibility that N-SMase activity may be an in vitro activity of yeast IPS phospholipase C (IPS-PLC). Therefore, we investigated YER019w, a yeast homolog of bacterial N-SMase (7), to test this hypothesis.

Here we report that YER019w indeed encodes IPS-PLC. We named this gene ISC1 for IPS-PLC. Overexpression of ISC1 in S. cerevisiae dramatically increased N-SMase activity as well as IPC-, MIPC-, and M(IP)2C-PLC activities. Interestingly, these activities demonstrated a strict requirement for phosphatidylserine (PS) or other acidic phospholipids in the assay. Furthermore, all of these activities were completely eliminated in the deletion mutant cells of ISC1. Radiolabeling experiments showed an increase of M(IP)2C and IPC in the deletion mutant cells. Therefore, these results identify the first enzyme of S. cerevisiae involved in the catabolism of complex sphingolipids. The potential roles for IPS-PLC in S. cerevisiae are discussed.

EXPERIMENTAL PROCEDURES

Materials—myo-[2-3H]inositol (20 Ci/mmol) and d-erythro-14,5,3H3-dihydrosphingosine (30 Ci/mmol) were purchased from American Radiolabeled Chemicals (St. Louis, MO). [1-palmitoyl-1-C]Lysophosphatidylcholine (lyso-PC; 56.7 Ci/mmol), [choline-methyl-14C]Dipalmitoylphosphatidylcholine (PC; 159 mCi/mmol), [myo-inositol-2-3H]Phosphatidylinositol (PI; 16.5 Ci/mmol), and [9,10-3H]Palmitic acid (43 Ci/mmol) were from PerkinElmer Life Sciences. Lys[1-O-octadecyl-3H]Plasmane and activating factor (lyso-PAF; 161 Ci/mmol) was from Amersham Pharmacia Biotech. [choline-methyl-14C]SM was synthesized as described (8). Other lipids were from Avanti Polar Lipids.
Oligodeoxynucleotides were purchased from IDT, Inc.

Yeast Strains and Culture Media—The *S. cerevisiae* strain JK9-3da (MATa trpl1 leu2-3 his3 ura3 ade2-1) (17) was used as wild-type cells. Yeast deletion mutant strains 32771 (MIP synthase (SUR1) deletion mutant) and 34607 (MIP(C) synthase (IPT1) deletion mutant) were purchased from Research Genetics. Yeast extract and peptone were from Difco. Synthetic minimal medium (SD), SD/Gal, and Ura dropout supplement were purchased from CLONTECH.

Plasmids—The pYES2 yeast expression vector containing a galactose-inducible promoter was purchased from Invitrogen. cDNA of *ISC1* (YER019c) with the FLAG tag was generated by PCR using CGGGG-TACATGATAACGGGACCAACG-TACATGATAACGGGACCAACG (primer P1) and AAGACAGAGATGTTC (primer P2) as primers, and genomic DNA was extracted from JK9-3da as template. pYES2 and the PCR product were digested by the restriction enzymes Kpn1 and Xho1 and ligated. The sequence of the PCR product was analyzed by an ABI 377 DNA sequencer. Plasmids were transfected into yeast cells as described (17), and the expression of *ISC1* was induced by incubating the cells in synthetic complete-Ura medium containing 2% galactose overnight.

Yeast Gene Deletion—The *ISC1* gene was disrupted as described (17). Briefly, PCR was performed using GAAGCACTGAACGGGACCAACG-TACATGATAACGGGACCAACG (primer P1, containing the sequence for the FLAG tag) and GCAGTTGGATGGATGCTCAAGAATTTTG as primers, and genomic DNA was extracted from JK9-3da as template. pYES2 and the PCR product were digested by the restriction enzymes Kpn1 and Xho1 and ligated. The sequence of the PCR product was analyzed by an ABI 377 DNA sequencer. Plasmids were transfected into yeast cells as described (17), and the expression of *ISC1* was induced by incubating the cells in synthetic complete-Ura medium containing 2% galactose overnight.

Radiolabeling of Yeast Cells—Yeast cells (2 × 10^7) were labeled with 2.5 μCi NBD-C6-SM (Molecular Probes, Inc.) in SC medium for 1 h. Lipids were extracted by the method of Folch et al. (25) and separated by TLC with solvent C (chloroform, methanol, and 15 μL CaCl₂ (60:35:8)).

Identification of ISC1 as IPS-PLC in S. cerevisiae

RESULTS

Induction of N-SMase Activity by Overexpression of ISC1 in S. cerevisiae—Recently, it was reported that the amino acid sequence of the Iso1p shares slight homology (10% identity) with that of bacterial N-SMase (7). Furthermore, overexpression of mouse or human homologs of the Iso1p induced N-SMase activity, although lyso-PAF instead of SM is most likely the substrate of the human homolog (24). Although SM probably does not exist in yeast, a recent report showed N-SMase activity in *S. cerevisiae* (16). To elucidate whether the Iso1p possesses N-SMase activity, pYES2 containing the sequence of *ISC1* was constructed and transfected into JK9-3da, and the expression of *ISC1* was induced by SC-Ura medium containing 2% galactose overnight. In initial experiments, N-SMase activity in lysates of vector transfectant or *ISC1*-overexpressing cells was negligible. Because the activity of N-SMase partially purified from rat brain was greatly stimulated by PS or other acidic phospholipids (27), PS was added to the N-SMase assay. Surprisingly, the N-SMase activities of both the vector and *ISC1*-overexpressing cells were greatly increased by PS. Furthermore, the N-SMase activity of *ISC1*-overexpressing cells was increased by >100-fold compared with that of vector transfectant in the absence of PS (Table I). In the presence of 100 μM (6.7 mol %) PS in the assay, the *V*ₐₘₜ for SM were 2.37 mol % and 9.2 nmol/g/h, respectively (Table I).

Purification of the Iso1p Using Anti-FLAG Affinity Gel—The overexpressed protein with the FLAG tag was detected at ~55 kDa by Western blot analysis using anti-FLAG antibody (Fig. 1A). When cell lysates were fractionated by centrifugation at 100,000 × g, most of the overexpressed protein was detected in the pellet.
Identification of ISC1 as IPS-PLC in S. cerevisiae

Table II

	SM	IPC	MIPC	M(IP)_2C
K_m (mol %)	2.37	3.57	1.85	1.92
V_{max} (nmol/μg/h)	9.2	2.7	7.8	9.1
V_{max}/K_m	3.88	0.76	4.21	4.74

To examine whether the Isc1p itself possesses N-SMase activity, the overexpressed protein with a FLAG tag was partially purified using anti-FLAG affinity gel. One single major band at 55 kDa was detected with several minor bands on SDS-polyacrylamide gel by silver staining (Fig. 1B). This 55-kDa protein was detected with anti-FLAG antibody by Western blotting (data not shown). The specific activity of the partially purified protein on SM was 75 nmol/μg/h, which was >10-fold of that of the cell lysates. However, the activity of the partially purified protein was unstable. Approximately 50 and 80% of the activity was lost within 24 and 48 h at 4°C, respectively. The activity was not preserved at ~20°C or in the presence of glycerol or albumin. Therefore, cell lysates were used in further experiments for the characterization of this enzyme.

Characterization of the Overexpressed N-SMase Activity—N-SMase activity in the lysates of ISC1-overexpressing cells was dependent on detergents such as Triton X-100. N-SMase activity was optimal in 0.1% Triton X-100 and was reduced in higher concentrations of Triton X-100 when fixed amounts of PS and SM were used in the assay (Fig. 2A). On the other hand, when fixed mole percents of PS and SM in Triton X-100-mixed micelles were used, N-SMase activity was almost constant between 0.1 and 1% Triton X-100 (Fig. 2B), demonstrating that the enzyme is sensitive primarily to the surface concentration of substrate and that Triton X-100 reduced the activity due to dilution of substrate and cofactor. When N-SMase activity was measured in the presence of β-octyl glucoside instead of Triton X-100, N-SMase activity was negligible without PS and was detectable only in the presence of 0.6% β-octyl glucoside with PS (data not shown). N-SMase activity was also dependent on Mg²⁺ (data not shown). Mn²⁺ stimulated N-SMase activity at 1 mM; however, higher concentrations of Mn²⁺ suppressed the activity. Ca²⁺ did not support N-SMase activity. Dithiothreitol slightly stimulated N-SMase activity (data not shown). SMase activity was maximum at pH 7.5 and greatly reduced at acidic or alkaline pH (data not shown).

Lack of N-SMase Activity in the Deletion Mutant of ISC1—Since N-SMase activity has been measured in S. cerevisiae, we investigated if the ISC1 gene accounts for this activity. Therefore, a deletion mutant of ISC1 (Δisc1) was generated. N-SMase activity in the deletion mutant was negligible (Table I), suggesting that ISC1 may be the only gene encoding N-SMase activity in S. cerevisiae.

Furthermore, we measured N-SMase activity in cells. To this end, the cells were labeled with NBD-C₆-ceramide, and lipids were separated by TLC. As shown in Fig. 3, the generation of NBD-C₆-ceramide was increased by ~3-fold in ISC1-overexpressing cells compared with vector transfectant. On the other hand, NBD-C₆-ceramide was not detected in Δisc1 cells. These results demonstrate that the Isc1p possesses N-SMase activity in cells as well as in vitro and that it is the protein responsible for the basal activity of N-SMase in S. cerevisiae.

Identification of IPS as Substrates of the Isc1p—Because SM is not detectable in S. cerevisiae, and the major complex sphingolipids in S. cerevisiae are the IPS, we suspected that IPS might be substrates for the Isc1p. To examine this, ³H-labeled IPS (IPC, MIPC, and M(IP)_2C) were purified from yeast cells and used as substrates instead of SM in the assay. Lysates of ISC1-overexpressing cells showed a greatly increased hydrolytic activity on these lipids (Table I). The in vitro activities on IPC, MIPC, and M(IP)_2C in the overexpressing cells were increased by 230-, 510-, and 360-fold, respectively, compared with those in vector cells.

When IPS purified from cells labeled with [³H]palmitic acid was used as a substrate, the product corresponded to the standard of (phyto)ceramide on TLC (Fig. 4). Also, when M(IP)_2C labeled with [³H]dihydrosphingosine was used as a substrate, the product was (phyto)ceramide (data not shown). These results demonstrate that the activity of the PLC-type.

Next, the K_m and V_{max} for these lipids were determined (Table II). The K_m values for M(IP)_2C and MIPC were approximately half of that for IPC, and the V_{max} values for M(IP)_2C and MIPC were ~3.4-fold and 2.9- of that for IPC, respectively, suggesting that M(IP)_2C and MIPC are better substrates for the Isc1p than IPC, as further shown by comparison of the V_{max}/K_m ratios. The K_m and V_{max} for M(IP)_2C and MIPC were almost the same as those for SM (Table II).

Furthermore, lysates of the deletion mutant of ISC1 showed negligible activities on IPS (Table I). These results suggest that ISC1 may be the only gene that encodes IPS-PLC activity in S. cerevisiae, at least under these growth conditions.

Other phospholipids were also examined as substrates. PLC activity on PC was 0.002 ± 0.001 nmol/μg/h in lysates of both vector transfectant and ISC1-overexpressing cells, suggesting that PC is not a substrate of this enzyme. PLC activity on PI was undetectable in lysates of vector transfectant and not significantly increased in lysates of ISC1-overexpressing cells (0.001 ± 0.001 nmol/μg/h), suggesting that PI is not a substrate. Moreover, the human homolog of bacterial N-SMase demonstrated PLC activities on lyso-PAF and lyso-PC (24); therefore, lyso-PAF and lyso-PC were examined as substrates of this enzyme. PLC activity on lyso-PAF was 0.013 ± 0.005 and 0.011 ± 0.016 nmol/μg/h, and PLC activity on lyso-PC was 0.001 ± 0.001 and 0.003 ± 0.002 nmol/μg/h in lysates of vector transfectant and ISC1-overexpressing cells, respectively.
These results suggest that neither lyso-PAF nor lyso-PC is a substrate of this enzyme.

Characterization of the Overexpressed IPS-PLC Activities—

To characterize IPS-PLC activities, MIPC was used as a substrate in further experiments. PLC activity on MIPC was dependent on Mg$^{2+}$, and the K_a for Mg$^{2+}$ was 2.4 mM (Fig. 5A). Mn$^{2+}$ stimulated the activity at 1 mM; however, the activity was decreased at higher concentrations of Mn$^{2+}$. Ca$^{2+}$ did not support the activity. PLC activity on MIPC was maximum at pH 7.5 and greatly reduced at acidic or alkaline pH (Fig. 5B).

Stimulation of IPS-PLC Activities by PS—As mentioned above, PLC activities on IPS as well as SM were dependent on the presence of PS in the assay. When 0.1% Triton X-100 was used in the assay, 5 mM (0.33 mol %) PS only slightly induced PLC activity on MIPC, and stimulation of the activity was maximum at 100 mM (6.7 mol %) PS (Fig. 6A). Because the stimulation of the activity by PS was S-shaped, a Hill plot was performed. As shown in Fig. 6B, the Hill coefficient was 2.0, suggesting that two or more molecules of PS interact with the Isc1p to stimulate IPS-PLC activities in a cooperative manner.

When various concentrations of PS were used in the assay, a double-reciprocal plot showed that the K_m remained constant, whereas the V_{max} was increased at higher concentrations of PS (Fig. 6C and D). Other acidic phospholipids such as PI and cardiolipin also stimulated PLC activity on MIPC, but less effectively (Fig. 6E). Phosphatidylcholine, phosphatidylethanolamine, and phosphatidic acid only slightly increased the activity (Fig. 6E).

Effect of ISC1 Overexpression or Deletion on the Radiolabeling of IPS in S. cerevisiae—To examine the effect of the Isc1p on IPS metabolism in cells, we performed radiolabeling experiments with [3H]dihydrosphingosine. When wild-type and deletion mutant cells of ISC1 were labeled with [3H]dihydrosphingosine, the levels of M(IP)$_2$C and IPC were increased in the deletion mutant compared with the wild type (the radioactivities were 18,000 and 27,000 dpm for M(IP)$_2$C and 28,000 and 36,000 dpm for IPC in the wild type and deletion mutant, respectively) (Fig. 7A). Interestingly, the level of MIPC was not increased in the deletion mutant compared with the wild type. These data demonstrate that the Isc1p functions as IPS-PLC in cells. On the other hand, when vector transfectant and ISC1-overexpressing cells were labeled with [3H]dihydrosphingosine, the levels of IPS were not apparently decreased in ISC1-overexpressing cells compared with vector transfectant (Fig. 7B). Similar results were obtained by labeling the cells with [3H]inositol (data not shown).

DISCUSSION

SM hydrolysis induced by SMases has been reported to be involved in various signal transduction and cell regulatory pathways in mammalian cells. N-SMase activity was also detected in yeast cells, although SM does not exist in yeast (16).
IPS (IPC, MIPC, and M(IP)2C) are the major sphingolipids in yeast. Here we demonstrated that ISC1 (YER019W) encodes IPS-PLC in *S. cerevisiae*. It was previously shown that the Isc1p shares slight homology in amino acid sequence with bacterial N-SMases (7). Therefore, we suspected that it would be a good candidate for a yeast phospholipase that also acts on SM. Indeed, we detected a great increase of N-SMase activity in lysates of ISC1-overexpressing cells. Furthermore, this activity hydrolyzed IPC, MIPC, and M(IP)2C *in vitro*. Interestingly, the activity was completely dependent on PS (or other acidic phospholipids such as PI and cardiolipin). N-SMase activity purified from rat brain was also greatly stimulated by PS, although the N-SMase activity in crude lysates of rat brain was not much increased by PS (27). On the other hand, the activity of the human homolog of bacterial N-SMases was only slightly (up to 2-fold) stimulated by PS, although the amino acid sequence of this protein shows ~30% homology to that of the Isc1p.

FIG. 5. Effects of cations (A) and pH (B) on IPS-PLC activity. A, the PLC activity on MIPC was measured at various concentrations of MgCl2 (○), MnCl2 (●), or CaCl2 (■). The results are means of duplicate experiments. B, the PLC activity on MIPC was measured at various pH values. The following buffers were used: pH 4–5, acetate; pH 6, phosphate; pH 7–8, Tris; and pH 9, glycine. The results are means of duplicate experiments. Similar results were obtained in two different experiments.

IPS (IPC, MIPC, and M(IP)2C) are the major sphingolipids in yeast. Here we demonstrated that ISC1 (YER019W) encodes IPS-PLC in *S. cerevisiae*.

It was previously shown that the Isc1p shares slight homology in amino acid sequence with bacterial N-SMases (7). Therefore, we suspected that it would be a good candidate for a yeast phospholipase that also acts on SM. Indeed, we detected a great increase of N-SMase activity in lysates of ISC1-overexpressing cells. Furthermore, this activity hydrolyzed IPC, MIPC, and M(IP)2C *in vitro*. Interestingly, the activity was completely dependent on PS (or other acidic phospholipids such as PI and cardiolipin). N-SMase activity purified from rat brain was also greatly stimulated by PS, although the N-SMase activity in crude lysates of rat brain was not much increased by PS (27). On the other hand, the activity of the human homolog of bacterial N-SMases was only slightly (up to 2-fold) stimulated by PS, although the amino acid sequence of this protein shows ~30% homology to that of the Isc1p.

2 H. Sawai, and Y. A. Hannun, unpublished observations.

FIG. 6. Dependence of IPS-PLC activity on PS or other acidic phospholipids. A, the PLC activity on MIPC was measured at various concentrations of PS. The results are means of duplicate experiments. Similar results were obtained in two different experiments. B, shown is a Hill plot of the data in A. C and D, shown is the substrate dependence and the double-reciprocal plot of PLC activity on MIPC at various concentrations of PS: 100 μM (6.7 mol %), 50 μM (3.3 mol %), 40 μM (2.7 mol %), and 30 μM (2.0 mol %). E, the PLC activity on MIPC was measured in the absence (○) or presence of various phospholipids at 100 μM (6.7 mol %). PE, phosphatidylethanolamine; PA, phosphatidic acid; CL, cardiolipin. The results are means of duplicate experiments. Similar results were obtained in two different experiments.

FIG. 7. Radiolabeling experiments with [3H]dihydrosphingosine. A, wild-type cells (WT) and deletion mutant of ISC1 (KO) were labeled with 1 μCi of [3H]dihydrosphingosine for 30 min. The results are representative of three different experiments. B, vector transfectant (V) and ISC1-overexpressing cells (Y) were labeled with 1 μCi of [3H]dihydrosphingosine for 30 min. TLC was performed as described under “Experimental Procedures.” The results are representative of two different experiments. dhSp, dihydrosphingosine; dhSpP, dihydrosphingosine 1-phosphate.
The Hill coefficient for PS of the Isc1p was ~2.0, suggesting that two or more molecules of PS interact cooperatively with the Isc1p to stimulate its activity. The precise mechanism by which PS stimulates IPS-PLC activity awaits the elucidation of PS-binding sites in the protein. It also remains to be elucidated whether PS (or other acidic phospholipids) functions as an activating factor of IPS-PLC in cells. Colocalization of the protein and PS (or other phospholipids) may be critical for the activation of IPS-PLC, and IPS-PLC activity may be induced by the increase in lipid cofactor upon cell stimulation.

The deletion mutant of ISCI almost completely lost PLC activities for all IPS (IPC, MIPC, and M(IP)_2C), indicating that ISCI is the only gene encoding IPS-PLC activities in S. cerevisiae. This result is in contrast with the fact that distinct genes encode the enzymatic activities for the synthesis of IPC, MIPC, and M(IP)_2C and is distinct from the fact that mammalian cells have more than one SMase. The PLC activity of the Isc1p was specific to IPS and SM because PLC activity on PS, lyso-PC, or PI was much lower than that on IPS in lysates of ISCI-overexpressing cells. Lyso-PAF was not a substrate for the Isc1p, although the human homolog of the Isc1p showed high activity on lyso-PAF both in vitro and in cells (24). These results suggest that the mammalian homolog of the Isc1p acquired another function (i.e. lyso-PAF-PLC activity) during the evolutionary process from yeast to mammals. It is also possible that another mammalian homolog of the Isc1p exists with specific activity for SM depending on PS as a cofactor.

Although cell labeling experiments showed increased levels of M(IP)_2C and IPC, the level of MIPC was not increased in the deletion mutant of ISCI compared with wild-type cells, and the levels of IPS were not apparently decreased in ISCI-overexpressing cells compared with vector transfectant. These results would be explained by counter-regulatory metabolic changes such that enzymes involved in de novo synthesis of IPS may be influenced by the deletion or overexpression of ISCI to compensate for the change in IPS-PLC activity. Second, the overexpressed Isc1p may not exert full activity due to the limitation of key activator(s) in cells. In accordance with this notion, the results obtained by labeling the cells with NBD-C_6-ceramide, whereas N-SMase activity was increased >100-fold in vitro in ISCI-overexpressing cells compared with vector transfectant. Finally, the overexpressed Isc1p may not have access to most of its substrates due to distinct localization because most IPS exist in the plasma membrane (28), whereas it is highly possible that the Isc1p exists in the endoplasmic reticulum judging from the fact that the Isc1p shares high homology in the putative transmembrane domains with its mouse homolog, which was recently shown to be localized in the endoplasmic reticulum (29). This may explain why the levels of IPS were not decreased in ISCI-overexpressing cells compared with vector transfectant. However, the localization of the Isc1p remains to be elucidated. In conclusion, this study identifies the yeast IPS-PLC as the first and possibly only enzyme involved in the catabolism of yeast complex sphingolipids.

Acknowledgment—We thank Dr. Samer El Bawab for helpful discussions.

REFERENCES
1. Hannun, Y. A. (1994) J. Biol. Chem. 269, 3125–3128
2. Hannun, Y. A. (1996) Science 274, 1855–1859
3. Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zou, L. L., Kryziak, J. M., Haimovitz-Friedman, A., Fuku, Z., Kolesnick, R. N. (1996) Nature 380, 75–79
4. Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., and Spiegel, S. (1996) Nature 381, 800–803
5. Perry, D. K., and Hannun, Y. A. (1998) Biochim. Biophys. Acta 1436, 233–243
6. Quinlann, L. E., Schuchman, E. H., Levrans, O., Suchi, M., Friberg, K., Reinke, H., Sandhoff, K., and Desnick, R. J. (1989) EMBO J. 8, 2469–2473
7. Tomiuk, S., Hofmann, K., Nix, M., Zambanski, M., and Stoffel, W. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 3638–3643
8. Okazaki, T., Bielawska, A., Domae, N., Bell, R. M., and Hannun, Y. A. (1994) J. Biol. Chem. 269, 4070–4077
9. Schissel, S. L., Schuchman, E. H., Williams, K. J., and Tabas, I. (1996) J. Biol. Chem. 271, 18431–18436
10. Duan, R. D., Nyberg, L., and Nilsson, A. (1995) Biochim. Biophys. Acta 1259, 49–55
11. Dickson, R. C., and Lester, R. L. (1999) Biochim. Biophys. Acta 1426, 347–357
12. Dickson, R. C., and Lester, R. L. (1999) Biochim. Biophys. Acta 1438, 305–321
13. Steiner, S., Smith, S., Wachter, C. J., and Lester, R. L. (1969) Proc. Natl. Acad. Sci. U. S. A. 64, 1042–1048
14. Smith, S. W., and Lester, R. L. (1974) J. Biol. Chem. 249, 3395–3405
15. Nagiec, M. N., Nagiec, E. E., Baltisberger, J. A., Wells, G. B., Lester, R. L., and Dickson, R. C. (1997) J. Biol. Chem. 272, 9809–9817
16. Ellis, K. M., Qi, C., Delan, J. W., Thompson, R. P., and Meier, K. E. (1997) Arch. Biochem. Biophys. 340, 101–110
17. Mao, C., Wadleigh, M., Jenkins, G. M., Hannun, Y. A., and Obeid, L. M. (1997) J. Biol. Chem. 272, 28690–28694
18. Hanson, B. A., and Lester, R. L. (1980) J. Lipid Res. 21, 309–315
19. Clarke, N. G., and Dawson, R. M. C. (1981) Biochem. J. 215, 570–579
20. Wells, G. B., Dickson, R. C., and Lester, R. L. (1998) J. Biol. Chem. 273, 7235–7243
21. Beeler, T. J., Fu, D., Rivera, J., Monaghan, E., Gable, K., and Dunn, T. M. (1997) Mol. Gen. Genet. 255, 570–579
22. Dickson, R. C., Nagiec, E. E., Wells, G. B., Nagiec, M. M., and Lester, R. L. (1997) J. Biol. Chem. 272, 29620–29625
23. Pawar, H., Domae, N., Nagan, N., and Hannun, Y. A. (1999) J. Biol. Chem. 274, 38131–38139
24. Folch, J., Lees, M., and Stanley, G. H. S. (1957) J. Biol. Chem. 226, 497–509
25. Pawar, H., Okazaki, T., Takeda, Y., Tashima, M., Sawada, H., Okuma, M., Kishi, S., Umehara, H., and Domae, N. (1997) J. Biol. Chem. 272, 2452–2458
26. Liu, B., Haasler, D. F., Smith, G. K., Wacker, W., and Hannun, Y. A. (1998) J. Biol. Chem. 273, 34472–34479
27. Patton, J. L., and Lester, R. L. (1991) J. Bacteriol. 173, 3101–3108
28. Fensom, A. C., Rodrigues-Lima, F., Josephs, M., Paterson, H. F., and Katan, M. (2000) J. Biol. Chem. 275, 1128–1136