Oncogenic FGFR1 mutation and amplification in common cellular origin in a composite tumor with neuroblastoma and pheochromocytoma

Keiji Tasaka¹ | Hiroo Ueno¹ | Kai Yamasaki² | Takahiro Okuno³ | Tomoya Isobe⁴ | Shunsuke Kimura⁴,⁵ | Katsutsugu Umeda¹ | Junichi Hara⁶ | Seishi Ogawa⁷,⁸,⁹ | Junko Takita¹

¹Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
²Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
³Department of Pathology, Osaka City General Hospital, Osaka, Japan
⁴Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
⁵Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
⁶Cancer Consultation and Support Center, Osaka City General Hospital, Osaka, Japan
⁷Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
⁸Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
⁹Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden

Abstract

Neuroblastoma (NB) and pheochromocytoma (PCC) are derived from neural crest cells (NCCs); however, composite tumors with NB and PCC are rare, and their underlying molecular mechanisms remain unknown. To address this issue, we performed exome and transcriptome sequencing with formalin-fixed paraffin-embedded (FFPE) samples from the NB, PCC, and mixed lesions in a patient with a composite tumor. Whole-exome sequencing revealed that most mutations (80%) were shared by all samples, indicating that NB and PCC evolved from the same clone. Notably, all samples harbored both mutation and focal amplification in the FGFR1 oncogene, resulting in an extraordinarily high expression, likely to be the main driver of this tumor. Transcriptome sequencing revealed undifferentiated expression profiles for the NB lesions. Considering that a metastatic lesion was also composite, most likely, the primitive founding lesions should differentiate into both NB and PCC. This is the first reported case with composite-NB and PCC genetically proven to harbor an oncogenic FGFR1 alteration of a common cellular origin.

Abbreviations: CNA, copy number alteration; CPT-11, irinotecan; FFPE, formalin-fixed paraffin-embedded; MIBG, 123I-metaiodobenzylguanidine; NB, neuroblastoma; NCCs, neural crest cells; PCC, pheochromocytoma; SCPs, Schwann cell precursors; TARGET, Therapeutically Applicable Research to Generate Effective Treatment; TMZ, temozolomide; VAFs, variant allele frequencies; WES, whole-exome sequencing.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
1 | INTRODUCTION

PCC and NB are the most common NCC-derived tumors in adults and children, respectively.1-3 Composite pheochromocytoma refers to tumors with morphologic features of PCC and NCC-derived tumors, such as malignant peripheral nerve sheath tumor and neuroendocrine carcinomas, within the same tumor.4,5 Composite tumors are rare and most often combined with ganglioneuroma in composite PCC; therefore, composite tumors comprising PCC and NB are even rarer.5-10 The genetic mechanism of composite tumors with PCC and NB remains unclear; a single nucleotide polymorphism array analyzed only 1 case.5 Here, we applied exome and transcriptome analyses to a patient case with a composite tumor with NB and PCC to investigate whether the NB and PCC lesions arose from a common cellular origin and how this tumor developed.

2 | MATERIALS AND METHODS

Detailed methods are provided in the Supporting information section of this paper and include the following:

- Patient samples
- Immunohistochemistry analysis
- Whole-exome sequencing and mutation calling
- Validation of detected mutations
- Phylogenetic analysis
- Analysis of alterations in copy number
- RNA sequencing and gene expression analysis
- Accuracy of RNA-seq data generated from FFPE samples

This study was approved by the Institutional Review Board of Kyoto University. Written informed consent was obtained from the patient’s parents.

3 | RESULTS

3.1 | Case presentation

A 5- y- old boy was admitted with abdominal pain. Computed tomography and 123I-metaiodobenzylguanidine (MIBG) scintigraphy revealed lesions in the adrenal gland and supraclavicular lymph node (Figure 1A). A metastatic supraclavicular lymph node biopsy was performed (first surgery), and histopathological tissue assessment verified the diagnosis of metastatic PCC. The patient had no medical history of malignant diseases or a family history of cancer. He underwent 4 cycles of multidrug chemotherapy with etoposide (100 mg/
FIGURE 1 Clinical presentation in this case, and histological features of the resected tumors at the fourth surgery. A, Clinical presentation in this case. B, C, H&E staining of the adrenal primary tumor showing 2 distinct patterns (PCC: left, NB: right) (B) and a mixed pattern (C). D, E, The PCC component is more strongly positive for chromogranin A. F, G, The NB component is more strongly positive for PGP9.5. H, I, Neurofilament is largely restricted to the NB component. Original magnification: ×100 (B–I). NB, neuroblastoma; PCC, pheochromocytoma; mixed, mixed components of NB and PCC without clear boundaries.
intra-abdominal lymph node. Compared with conventional NB and PCC, del(1p) is recurrently in both NB\(^{11,12}\) and PCC,\(^2\) and 11UPD and +17q are only in NB.\(^{11,13}\) Del (10) and del (7) are uncharacteristic of both NB and PCC (Figure S1).

3.3 Composite-NBs transcriptionally contain larger fractions of early normal fetal adrenal neuroblasts

We further illustrated the molecular basis of this composite tumor by performing whole-transcriptome sequencing of the 6 samples. Unsupervised consensus clustering identified 2 clusters completely corresponding to the histopathological features of NB and PCC. One mixed lesion with higher NB components was classified with the NB lesion samples, and the other mixed lesion with higher PCC components was classified with the PCC lesion samples (Figure S2A,B). As the expression profiles of the 2 mixed lesions were heterogeneous and affected by the amount of NB or PCC components, the 4 samples from pure NB (composite-NBs) and PCC (composite-PCCs) lesions were used for subsequent analyses.

Next, we analyzed the expression profiles of the composite-NBs combined with 161 conventional NBs in the TARGET cohort (https://portal.gdc.cancer.gov/projects). Recently, single-cell transcriptomic analyses of the developmental origins of NB defined normal differentiation trajectories from SCPs over the intermediate states to neuroblasts or chromaffin cells, suggesting that NB transcriptionally resemble normal fetal adrenal neuroblasts.\(^{14}\) To analyze the composition and developmental programs in composite-NBs, we used the expression signatures of normal adrenal medullary cell populations\(^{14}\) to decompose the bulk transcriptomes of composite-NBs and TARGET cohort NBs (Table S2). Most of the NBs, including composite-NBs, were confirmed to transcriptionally match the normal neuroblasts (Figure 2E). Unexpectedly, in composite-NBs, only a few late neuroblasts (differentiated neuroblasts) were detected; however, the abundance of neuroblasts (early neuroblasts) was higher than that in TARGET NB cohort (Figure 2F,G), suggesting that composite-NBs were of transcriptionally undifferentiated subtype. The analysis of the composition between composite-NBs and composite-PCCs revealed that composite-PCCs had a higher population of chromaffin cells and lower populations of neuroblasts when compared with composite-NBs (Figure S3A).

We compared the expression pattern of composite-PCCs to that of conventional PCCs by performing the unsupervised consensus clustering of composite-PCCs and 173 PCC/PGL samples in TCGA.\(^2\) Expectedly, composite-PCCs were clustered with the conventional PCCs of a kinase signaling subtype (Figure S3B,C), in which FGFR1 N546K was recurrent.\(^2\)

3.4 Inflammatory pathways are activated in composite-NBs compared with composite-PCCs

We illustrated statistically differential signaling pathways between composite-NBs and PCCs using Gene Set Enrichment Analysis with MSigDB hallmark gene sets.\(^{15}\) Compared with the composite-PCCs, enrichment of inflammatory response pathways and negative enrichment of proliferation-associated pathways, including E2F targets and G2M checkpoints, were observed in the composite-NBs (Figure S4A). The transcriptional induction of an IFN response within tumor cells indicates the contribution of host immunity to the therapeutic response\(^{16}\); therefore, high inflammatory signals may reflect a contribution of host immunity. In fact, immunohistochemical staining revealed more CD68\(^+\) macrophages infiltrated into tumor tissues in composite-NBs than in PCCs (Figure S4B). These results agreed with the clinical course that the composite-NBs responded to treatment more than the composite-PCCs.

4 DISCUSSION

The whole-exome and transcriptome sequencing of composite-NBs and PCCs revealed that the NB and PCC lesions shared a common cellular origin with the FGFR1 alteration, and that composite-NBs had undifferentiated features. Although the evolution of this composite tumor remains unclear, this study provided important clues to this question from 3 perspectives.

First, composite-NB and PCC share the same cellular origin, and the FGFR1 N546K mutation with focal amplification is likely to be the main driver for this tumor. FGFR1 is commonly activated through amplification in tumors, such as breast\(^{17}\) and lung cancer,\(^{18}\) and recurrent FGFR1 somatic mutations are identified in pilocytic astrocytoma.\(^{19}\) Furthermore, the p.Asn546Lys (N546K) variant alters FGFR1 autophosphorylation, increasing kinase activity, and transforming potential.\(^{20}\) Although FGFR1 mutations have been observed in NB
and PCC.2,11 we are the first to report the co-occurrence of mutation and focal amplification in FGFR1 causing high expression (Figure S5), conferring an aggressive phenotype.

Regarding neural development, fibroblast growth factor signaling plays multiple roles necessary for NCC induction and specification, such as patterning Hox expression via Cdx genes, posteriorizing
neural plate, inducing paraxial mesoderm, inhibiting bone morphogenetic protein (BMP) signaling and BMP expression, and inducing WNT gene expression. Therefore, the FGFR1 mutation with amplification in differentiating NCC cells is likely to confer growth advantages and contributes to the development of tumor-initiating cells from which NB and PCC may evolve.

Second, the accumulation of distinct mutations would be irrelevant to the characteristics of this composite tumor. Contrary to myelodysplastic syndromes, in which sequential mutation acquisitions are pivotal for clonal evolution to acute myeloid leukemia, NB or PCC-specific mutations were not detected in this composite tumor. In addition, the number of somatic mutations was low, and the mutations and CNAs were mostly shared by the samples. Nevertheless, the accumulation of shared mutations and common CNAs, such as del (1p), 11UPD, and +17q, would contribute to the pathogenesis of this tumor. Del (7) was observed only in the mixed lesion of the metastatic intra-abdominal lymph node, and not in the other lesions. Therefore, tumors are believed to consist of a heterogeneous mixture of functionally distinct cancer cells and that their subpopulations vary widely in their responses to therapeutic agents. In the present case, it seems possible that the clone with del (7) was present as a minor clone in other lesions, albeit this clone subsequently became dominant in this mixed lesion. Nevertheless, whether the significance of this del (7) is related to drug resistance or malignancy remains unclear.

Third, the expression profile of composite-NBs was mainly similar to that of early normal neuroblasts, which suggests that the FGFR1 alteration may be acquired in less differentiated progenitor cells. This speculation is supported by the fact that, in a mixed phenotype acute leukemia, which is also a composite of lymphoid and myeloid hematopoietic lineages, mutations are acquired in early hematopoietic progenitor cells, which then drives the bi-phenotypic nature.

To the best of our knowledge, this is the first case with composite-NB and PCC, genetically proven to harbor a common cellular origin. Furthermore, our results suggest a possible mechanism for the formation of this composite characteristic in line with a previous report (Figure 3). However, as there were no viable cells left, in vivo validation using xenograft models or cell lines derived from this composite tumor was impossible; therefore, further studies, including those on other composite tumors, are needed to investigate whether the stemness is related to the formation of composite tumors.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Numbers 20H00528 and 21K1905 to JT and 21H02880 to KU; Project for Cancer Research and Therapeutic Evolution (P-CREATE; grant no. JP19cm0106509h9904), and Practical Research for Innovative Cancer Control (grant no. JP19ck0106468h0001) from Japan Agency for Medical Research and Development (AMED) to JT; Princess Takamatsu Cancer Research Fund to JT. This work was also supported by the Japan Agency for Medical Research and Development (nos. JP15cm0106056h0005, JP19cm0106501h0004, JP16ck0106073h0003 and JP19ck0106250h0003 to SO); the Core Research for Evolutional Science and Technology (no. JP19gm1110011 to SO).

DISCLOSURE
The authors have no conflict of interest.

ORCID
Keiji Tasaka https://orcid.org/0000-0002-2708-3876
Hiroo Ueno https://orcid.org/0000-0001-7617-1672
Katsutsugu Umeda https://orcid.org/0000-0002-6844-2011
Junichi Hara https://orcid.org/0000-0002-6798-1558
Junko Takita https://orcid.org/0000-0002-2452-6520

REFERENCES
1. Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 2013;13:397-411
2. Fishbein L, Leshchiner I, Walter V, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31:181-193.
3. Furlan A, Adameyko I. Schwann cell precursor: a neural crest cell in disguise? Dev Biol. 2018;424(Suppl 1):S2-S35.
4. Khan AN, Solomon SS, Childress RD. Composite pheochromocytoma-ganglioneuroma: a rare experiment of nature. Endocr Pract. 2010;16:291-299.
5. Tran L, Fitzpatrick C, Cohn SL, Pytel P. Composite tumor with pheochromocytoma and immature neuroblastoma: report of two cases.
with cytogenetic analysis and discussion of current terminology. Virchows Arch. 2017;471:553-557.

6. Steen O, Fernando J, Ramsay J, Prebtani AP. An unusual case of a composite pheochromocytoma with neuroblastoma. J Endocrinol Metab. 2014;4(1):39-46.

7. Comstock JM, Willmore-Payne C, Holden JA, Coffin CM. Composite pheochromocytoma: a clinicopathologic and molecular comparison with ordinary pheochromocytoma and neuroblastoma. Am J Clin Pathol. 2009;132:69-73.

8. Tatekawa Y, Muraji T, Nishijima E, Yoshida M, Tsugawa C. Composite pheochromocytoma associated with adrenal neuroblastoma in an infant: a case report. J Pediatr Surg. 2006;41:443-445.

9. Candanedo-González FA, Alvarado-Cabero I, Gamboa-Dominguez A, et al. Sporadic type composite pheochromocytoma with neuroblastoma: clinicomorphologic, DNA content and ret gene analysis. Endocr Pathol. 2001;12:343-350.

10. Franquemont DW, Mills SE, Lack EE. Immunohistochemical detection of neuroblastomatous foci in composite adrenal pheochromocytoma-neuroblastoma. Am J Clin Pathol. 1994;102:163-170.

11. Brady SW, Liu Y, Ma X, et al. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. Nat Commun. 2020;11:5183.

12. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14:108-119.

13. Chen Y, Takita J, Choi YL, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455:971-974.

14. Jansky S, Sharma AK, Körber V, et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet. 2021;53(5):683-693.

15. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425.

16. Korpeła SP, Hinz TK, Oweida A, et al. Role of epidermal growth factor receptor inhibitor-induced interferon pathway signaling in the head and neck squamous cell carcinoma therapeutic response. J Transl Med. 2021;19:43.

17. Theillet C, Adelaide J, Louason G, et al. FGFR1 and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosomes Cancer. 1993;7:219-226.

18. Weiss J, Sos ML, Seidel D, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2:62ra93.

19. Jones DT, Hutter B, Jäger N, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45:927-932.

20. Lew ED, Furdui CM, Anderson KS, Schlessinger J. The precise sequence of FGFR receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci Signal. 2009;2:ra6.

21. Rogers CD, Jayasena CS, Nie S, Bronner ME. Neural crest specification: tissues, signals, and transcription factors. Wiley Interdiscip Rev Dev Biol. 2012;1:52-68.

22. Makishima H, Yoshizato T, Yoshida K, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017;49:204-212.

23. Pribluda A, de la Cruz CC, Jackson EL. Intratumoral heterogeneity: from diversity comes resistance. Clin Cancer Res. 2015;21:2916-2923.

24. Alexander TB, Gu Z, Iacobucci I, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562:373-379.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Tasaka K, Ueno H, Yamasaki K, et al. Oncogenic FGFR1 mutation and amplification in common cellular origin in a composite tumor with neuroblastoma and pheochromocytoma. Cancer Sci. 2022;113:1535–1541. doi:10.1111/cas.15260