Superconformal symmetry and higher-derivative Lagrangians

Antoine Van Proeyen
KU Leuven

Frascati,
Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity
March 25, 2013
Interest in higher-derivative terms:

- appear as α' terms in effective action of string theory
- corrections to black hole entropy
- higher order to AdS/CFT correspondence
- counterterms for UV divergences of quantum loops
Plan

1. What we know about general sugra/susy theories
2. The superconformal method (and in which SUGRAs can we use it)
3. Higher derivative sugra actions and sugra loop results
4. Dirac-Born-Infeld– Volkov-Akulov and deformation of supersymmetry (example of an all order higher-derivative susy action)
5. Conclusions
1. What we know about general sugra/susy theories

- There are many good books that explain the basics, but ...
‘Ordinary’ susy/sugra

- Bosonic terms in the action have at most two spacetime derivatives, and fermionic terms at most one.
- E.g. $D=4$: fields of spin $2, 1, 0, 3/2, 1/2$

$$e^{-1} \mathcal{L} = \frac{1}{2} R +$$
$$+ \frac{1}{4} \text{Im} \ N_{IIJ} \mathcal{F}_{\mu \nu}^I \mathcal{F}_{\mu \nu}^J$$
$$- \frac{i}{8} \text{Re} \ N_{IIJ} \epsilon_{\mu \nu \rho \sigma} \mathcal{F}_{\mu \nu}^I \mathcal{F}_{\rho \sigma}^J$$
$$- \frac{1}{2} g_{uv} D_{\mu} \phi^u \ D_{\nu} \phi^v - V$$
$$\{- \bar{\psi}_{\mu i} \gamma^{\mu \nu \rho} D_{\nu} \psi_{\rho i}$$
$$- \frac{1}{2} g_A B \bar{\lambda}^A \phi \lambda_B + \text{h.c.}\} + \ldots$$
Possibilities for susy depend on the properties of irreducible spinors in each dimension

- Dependent on signature. Here: Minkowski
- **M**: Majorana
 MW: Majorana-Weyl
- **S**: Symplectic
 SW: Symplectic-Weyl

Dim	Spinor	min.# comp
2	MW	1
3	M	2
4	M	4
5	S	8
6	SW	8
7	S	16
8	M	16
9	M	16
10	MW	16
11	M	32
Maximal susy / sugra

- From representations in 4 dimensions:
 maximal $N=8 \rightarrow 32$ susys for supergravity
 maximal $N=4 \rightarrow 16$ susys for supersymmetry

- based on particle states and susy operator
 - transforming a boson state in a fermion state,
 - and squaring to translations
Particle representations of \mathcal{N}–extended supersymmetry

$\#$ bosonic d.o.f. = $\#$ fermionic d.o.f., based on $\{Q,Q\} = P$ (invertible)

$$\sum_{s,h} \langle p^\mu, s, h | \left(Q_{i\alpha} Q^{\dagger j\alpha} + Q^{\dagger j\alpha} Q_{i\alpha} \right) e^{-2\pi i J_3} | p^\mu, s, h \rangle$$

$$= \delta^j_i \sum_{s,h} \langle p^\mu, s, h | P^0 e^{-2\pi i J_3} | p^\mu, s, h \rangle$$
Maximal susy / sugra

- From representations in 4 dimensions:
 - maximal N=8 → 32 susys for supergravity
 - maximal N=4 → 16 susys for supersymmetry

- based on particle states and susy operator
 - transforming a boson state in a fermion state,
 - and squaring to translations

- maximal spin 2 for gravity theories → N≤ 8 or 32 susys
- maximal spin 1 without gravity → N≤ 4 or 16 susys

- any higher dimensional theory can be dimensionally reduced on tori to D=4.
 This keeps the same number of susy generators
The map: dimensions and # of supersymmetries

D	susy	32	24	20	16	12	8	4
11	M	M	M	M	M	M	M	M
10	MW	IIA	IIB	IIB	IIB	IIB	IIB	IIB
9	M	N=2	N=2	N=2	N=2	N=2	N=2	N=2
8	M	N=2	N=2	N=2	N=2	N=2	N=2	N=2
7	S	N=4	N=4	N=4	N=4	N=4	N=4	N=4
6	SW	(2,2)	(2,1)	(2,1)	(2,1)	(2,1)	(2,1)	(2,1)
5	S	N=8	N=6	N=6	N=6	N=6	N=6	N=6
4	M	N=8	N=6	N=6	N=6	N=6	N=6	N=6

SUGRA
SUGRA/SUSY
SUGRA
SUGRA/SUSY

- ![vector multiplets](green)
- ![tensor multiplet](blue)
- ![multiplets up to spin 1/2](olive)

Strathdee, 1987
Basic supergravities and deformations

- **Basic supergravities:**
 - have only gauged supersymmetry and general coordinate transformations (and U(1)’s of vector fields).
 - No potential for the scalars.
 - Only Minkowski vacua.

- In any entry of the table there are ‘**deformations**’: without changing the kinetic terms of the fields, the couplings are changed.
 - Many deformations are ‘gauged supergravities’: gauging of a YM group, introducing a potential.
 - Produced by fluxes on branes
 - There are also other deformations (e.g. massive deformations, superpotential)
Embedding tensor formalism

The gauge group is a subgroup of the isometry group G, defined by an embedding tensor.

\[
(\partial_\mu - A_\mu^M \Theta_M^\alpha \delta_\alpha) \phi
\]

determines which symmetries are gauged, and how: e.g. also the coupling constants.

There are several constraints on the tensor.

Structure to get a complete picture of supergravities with at most two spacetime derivatives in Lagrangian

(although: to get all the explicit solutions of constraints still needs more work)

Nicolai, Samtleben, 0010076

de Wit, Samtleben and Trigiante, 0507289

Cordaro, Frè, Gualtieri, Termonia and Trigiante, 9804056
Higher-derivative actions: no systematic knowledge

- Various constructions of higher derivative terms
 - e.g. susy Dirac-Born-Infeld: Cecotti, Ferrara, 1987; Tseytlin; Bagger, Galperin; Roček; Kuzenko, Theisen; Ivanov, Krivonos, Ketov; Bellucci,

- but no systematic construction, or classification of what are the possibilities; (certainly not in supergravity)
Constructions of actions

Possible constructions:

- order by order Noether transformations: the only possibility for the maximal theories (Q>16)
- superspace:
 - very useful for rigid N=1: shows structure of multiplets.
 - very difficult for supergravity. Needs many fields and many gauge transformations
- (super)group manifold:
 - Optimal use of the symmetries using constraints on the curvatures
- superconformal tensor calculus:
 - keeps the structure of multiplets as in superspace but avoids its immense number of unphysical degrees of freedom
 - extra symmetry gives insight in the structure
2. The superconformal method

- Superconformal symmetry is the maximal extension of spacetime symmetries according to Coleman-Mandula theorem

- Here: not about Weyl supergravity: \[\int d^4x \left[R^2_{\mu\nu\rho\sigma} - 2R^2_{\mu\nu} + \frac{1}{3}R^2 \right] \]

- Tool for construction of actions
 - allows to use multiplet calculus similar to superspace
 - makes hidden symmetries explicit
Gravity as a conformal gauge theory

The strategy

- scalar field (compensator)

Conformal Gravity

\[\mathcal{L} = -\frac{1}{2} \sqrt{g} \phi \Box_C \phi = -\frac{1}{2} \sqrt{g} \phi \Box \phi + \frac{1}{12} \sqrt{g} R \phi^2 \]

Dilatational Gauge Fixing

\[\phi = \sqrt{6}/\kappa \]

\[\mathcal{L} = \frac{1}{2\kappa^2} \sqrt{g} R \]

- First action is conformal invariant,
- gauge-fixed one is Poincaré invariant.
- Scalar field had scale transformation \(\delta \phi (x) = \lambda_D (x) \phi (x) \)
Schematic: Conformal construction of gravity

- Conformal scalar action (contains Weyl fields)
- Gauge fix dilatations and special conformal transformations
- Poincaré gravity action

Local conformal symmetry
Local \square symmetry
Superconformal construction
The idea of superconformal methods

- Difference susy- sugra: the concept of multiplets is clear in susy, they are mixed in supergravity
- Superfields are an easy conceptual tool for rigid susy

- (Super)gravity can be obtained by starting with (super)conformal symmetry and gauge fixing.
- With matter:
 Before gauge fixing: everything looks like in rigid supersymmetry + covariantizations
Superconformal algebra

In general

\[
\begin{pmatrix}
\text{conformal algebra} \\
\text{Q, S} \\
\text{R-symmetry}
\end{pmatrix}
\]

according to dilatational weight: \(\text{e.g. N=1} \)

\[
\begin{align*}
1 & : P_\mu \\
\frac{1}{2} & : Q \\
0 & : D, M_{ab}, U(1) \\
-\frac{1}{2} & : S \\
-1 & : K_\mu
\end{align*}
\]

\[
[D, Q] = \frac{1}{2} Q, \quad [D, S] = -\frac{1}{2} S
\]

\[
\begin{align*}
\{ Q_\alpha, Q^\beta \} &= -\frac{1}{2} (\gamma^a)_{\alpha}^{\beta} P_a, \\
\{ S_\alpha, S^\beta \} &= -\frac{1}{2} (\gamma^a)_{\alpha}^{\beta} K_a, \\
\{ Q_\alpha, S^\beta \} &= -\frac{1}{2} \delta_{\alpha}^{\beta} D - \frac{1}{4} (\gamma^{ab})_{\alpha}^{\beta} M_{ab} + \frac{1}{2} i (\gamma_*)_{\alpha}^{\beta} U(1)
\end{align*}
\]
The strategy: superconformal construction of \(N=1 \) supergravity

- chiral multiplet + Weyl multiplet
- superconformal action

Gauge fix dilatations,
- special conformal transformations,
- local R-symmetry and
- special supersymmetry

Poincaré supergravity action
Superconformal construction of N=4 supergravity

De Roo, 1985

Weyl multiplet +

6 gauge compensating multiplets (on-shell)

superconformal action

gauge-fixing

Weyl symmetry, local SU(4), local U(1), S-supersymmetry and K-conformal boosts

pure N=4 Cremmer-Scherk-Ferrara supergravity

\[\frac{1}{4} R - \frac{1}{8} \frac{\partial \tau \partial \bar{\tau}}{(\text{Im} \tau)^2} + \frac{i}{4} \tau F^{+I}_\mu \delta_{IJ} F^{+J}_\mu + \text{h.c.} \]
On-shell and off-shell multiplets

- Action should be invariant
- Algebra can be closed only modulo field equations
- Problem: No flexibility in field equations
- Examples:
 - hypermultiplets $N=2$;
 - $N=4$ gauge multiplets (are compensator multiplets);
In which sugras can we use superconformal methods?

- We should have a superconformal algebra
- We should have compensating multiplets
Superconformal groups

conformal algebra is $\text{so}(D,2)$

D	supergroup	conf	R	ferm.	
3	$\text{OSp}(N	4)$	$\text{SO}(3,2) = \text{Sp}(4)$	$\text{SO}(N)$	$4N$
4	$\text{SU}(2,2	N)$	$\text{SO}(4,2) = \text{SU}(2,2)$	$\text{U}(N)$ for $N \neq 4$	$8N$
			$\text{SU}(4)$ for $N = 4$		
5	$F^2(4)$	$\text{SO}(5,2)$	$\text{SU}(2)$	16	
6	$\text{OSp}(8^*	2N)$	$\text{SO}(6,2) = \text{SO}^*(8)$	$\text{USp}(2N)$	$16N$

covering group always compact

Other superalgebras have been considered, where the conformal algebra is not a factor, but a subalgebra of the bosonic part symmetry e.g. $\text{SO}(11,2) \subset \text{Sp}(64) \subset \text{OSp}(1|64)$

But not sucessfully applied for constructing actions

JW van Holten, AVP, 1982
D’Auria, S. Ferrara, M. Lledò, V. Varadarajan, 2000
The map: dimensions and # of supersymmetries

D	susy	32	24	20	16	12	8	4	
11	M								
10	MW	IIA	IIB						
9	M	N=2					N=1		
8	M	N=2					N=1		
7	S	N=4					N=2		
6	SW	(2,2)	(2,1)		(1,1)	(2,0)		(1,0)	
5	S	N=8	N=6				N=4	N=2	
4	M	N=8	N=6	N=5	N=4	N=3	N=2	N=1	

- **SUGRA**
- **SUGRA/SUSY**
- **SUGRA**

have SC algebra
can be used for SC methods
vector multiplets +
multiplets up to spin 1/2

vector multiplets
tensor multiplet

3. Higher derivative supergravity actions and supergravity loop results
The Null Results

Miracle #1	2007	N= 8, D=4 is UV finite up to 3-loops
		Bern, Carrasco, Dixon, Johansson, Kosower, Roiban

Miracle #2	2009	N= 8, D=5 is UV finite up to 4-loops
		Bern, Carrasco, Dixon, Johansson, Roiban

Miracle #3	2012	N= 4, D=4 is UV finite up to 3-loops

| Miracle #4 | 2012 | N= 4, D=5 is UV finite up to 2-loops |

- Bern, Davies, Dennen, Huang: 3-loop D=4 computation in pure supergravity
- September: 2-loop D=5 UV finite

- If there are divergences:
 - supersymmetric counterterms should exist
 - (or supersymmetry anomalies)
- We do not know enough to be sure whether invariants do exist.
Higher derivative sugra actions

- examples with superconformal tensor calculus
 - S. Cecotti and S. Ferrara, `Supersymmetric Born-Infeld actions’, 1986
 - N=2 constructions:
 B. de Wit, S. Katmadas, M. van Zalk, arXiv:1010.2150 ;
 W. Chemissany, S. Ferrara, R. Kallosh, C. S. Shahbazi, 1208.4801
 - Higher derivative extension in D=6 (1,0)
 E. Bergshoeff, F. Coomans, E. Sezgin, AVP 1203.2975

- other methods
 starting with S. Deser, J.H. Kay and K.S. Stelle, 1977, ...
 more recent: G. Bossard, P. Howe, K. Stelle, P. Vanhove;
 M. Koehn, J-L Lehners, B. Ovrut ... (using superspace)
N=2 D=4 construction

- Based on tensor calculus as in superspace:
 - chiral multiplets: \(S = \{X, \Omega_i, \ldots, C\} \)
 - also Weyl multiplet: \(W^2 = \{T_{ab} T^{ab}, \ldots\} \)
 - kinetic multiplet: \(\mathcal{T}(\bar{S}) = \{\bar{C}, \ldots\} \)

- made superconformal invariant
 - restriction on possible actions (homogeneity)

- Everything off-shell

- many possibilities, e.g. invariants contributing to entropy and central charges of black holes

\(^{*}\) arbitrary power is still chiral

de Wit, Katmadas, van Zalk, 2011
N=2 higher derivative terms with auxiliary fields

- The term quartic in the auxiliary field from the Weyl multiplet is a partner of the term quartic in the Weyl curvature.

\[\lambda(C, \ldots)^4 \quad \lambda(\partial \mathcal{T})^4 \]

- Deformed EOM for the Weyl multiplet auxiliary

\[T^+_{ab} = \frac{2}{X} F^+_{ab} + \lambda (\partial^4 T^3)^+_{ab} + \ldots \]

- Solve recursively: infinite number of higher derivative terms with higher and higher powers of the graviphoton, N=2 supergravity vector

\[\mathcal{T}^{def} = \mathcal{F} + \lambda [\partial^4 \mathcal{F}^3] + \lambda^2 [\partial^4 \mathcal{F}^2][\partial^4 \mathcal{F}^3] + \ldots \]

- The action with auxiliary field eliminated: Born-Infeld with higher derivatives

\[S^{def} = -\frac{1}{4} \mathcal{F}^2 + \lambda ([\partial \mathcal{F}]^4 + \lambda^2 [\partial^8 \mathcal{F}^6] + \ldots \]

Chemissany, Ferrara, Kallosh, Shahbazi, 1208.4801
Also transformation laws deform

\[\delta \psi_\mu^i = D_\mu \epsilon^i - \frac{1}{16} \gamma^{ab} T_{ab} \epsilon^{ij} \gamma_\mu \epsilon_j - \gamma_\mu \eta^i \]

Deformation of the supergravity local N=2 supersymmetry after S-supersymmetry gauge-fixing and expanding near the lowest order solution for auxiliary fields

Order by order

\[\phi_{aux} = \phi_{aux}^0 + \Delta \phi_{aux} \]

\[\Delta \phi_{aux} = \sum_{n=1} \lambda^n \phi^{(n)}_{aux}, \]

The deformation of the gravitino supersymmetry due to higher derivative term is

\[\Delta \psi_\mu = -4\lambda [\partial^4 F^3]_{\mu}^{\nu} \gamma_\nu \epsilon^i + \ldots \]
Are all valid counterterms (broken) superconformal actions?

\(N=0\) : Locally conformal \(\mathbb{R}^4\) ; gauge fixed: is 3-loop counterterm

\[
\int d^4x \sqrt{-g} \phi^{-4} C_{\alpha\beta\gamma\delta} C_{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}} C^{\alpha\beta\gamma\delta} C^{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}}
\]

\(N=2\) superconformal \(\mathbb{R}^4\)
chiral kinetic action with inverse powers of the compensator superfield \(S\)

\[
\int d^4\theta \frac{W^2}{S^2} T \left(\frac{W^2}{S^2} \right)
\]

\(N=4\) superconformal \(\mathbb{R}^4\)

???
N=4 has no tensor calculus

- Since compensating multiplets cannot be multiplied, ... we cannot make constructions as those for N=2.
- Algebra only valid on shell: modified actions imply modified field equations:

 \[\Rightarrow \text{transformations (or superfields) have to be deformed.} \]
How for N=4 ?

- No tensor calculus; no auxiliary fields
- How to establish the existence/non-existence of the consistent order by order deformation of N=4 on shell superspace?
- **Conjecture**: if it does not exist: explanation of finiteness (if Bern et al do not find N=4, D=4 is divergent at higher loops)
- Until invariant counterterms are constructed (conformal?) we have no reason to expect UV divergences

Two points of view

1. Legitimate counterterms are not available yet
2. Legitimate counterterms are not available, period

S. Ferrara, R. Kallosh, AVP, 1209.0418
N=4 conjecture

If the UV finiteness will persist in higher loops, one would like to view this as an opportunity to test some new ideas about gravity. E.g. : is superconformal symmetry more fundamental?

Repeat: Classical N=4 is obtained from gauge fixing a superconformal invariant action:
The mass M_{Pl} appears in the gauge-fixing procedure

Analogy:
• Mass parameters M_W and M_Z of the massive vector mesons are not present in the gauge invariant action of the standard model.
• Show up when the gauge symmetry is spontaneously broken.
• In unitary gauge they give an impression of being fundamental.
• In renormalizable gauge (where UV properties analyzed) : absent

S. Ferrara, R. Kallosh, AVP, 1209.0418
The non-existence of (broken) superconformal-invariant counterterms and anomalies in $N=4$, $D=4$ could explain ‘miraculous’ vanishing results.

- **simplest** possible explanation of the 3-loop finiteness and predicts perturbative UV finiteness in higher loops
- the same conjecture applies to higher derivative superconformal invariants and to a consistent superconformal anomaly
- the conjecture is **economical**, sparing in the use of resources: either the local $N=4$ superconformal symmetry is a good symmetry, or it is not.
- **Falsifiable** by $N=4$ $L=4$ computations
 (which are already underway)

If the conjecture survives these computations (if UV finite): hint that the models with superconformal symmetry serve as a basis for constructing a consistent quantum theory where M_{Pl} appears in the process of gauge-fixing superconformal symmetry.

Also **falsifiable** by our own calculations: if we find a way to construct (non-perturbative) superconformal invariants
The non-existence of (broken) superconformal invariants and anomalies in $N=4$, $D=4$ could explain 'miraculous' vanishing results.

- **simplest** possible explanation of the 3-loop finiteness and predicts perturbative UV finiteness in higher loops
- the same conjecture applies to higher derivative superconformal invariants and to a consistent superconformal anomaly
- the conjecture is **economical**, sparing in the use of resources: either the local $N=4$ superconformal symmetry is a good symmetry, or it is not.
- **Falsifiable** by $N=4$ $L=4$ computations (which are already underway)

If the conjecture survives these computations (if UV finite): hint that the models with superconformal symmetry serve as a basis for constructing a consistent quantum theory where M_{pl} appears in the process of gauge-fixing superconformal symmetry.

Also **falsifiable** by our own calculations: if we find a way to construct (non-perturbative) superconformal invariants

“We are trying to prove ourselves wrong as quickly as possible, because only in that way can we find progress.” (Feynman)
4. Dirac-Born-Infeld–Volkov-Akulov and deformation of supersymmetry

A super new paper (arXiv:1303.5662)

on the search of deformations of N=4 theories, we find all-order invariant actions in rigid susy with extra supersymmetries (Volkov-Akulov (VA) – type)
Down-up approach: start deformations

\[S = \int d^D x \left\{ -\frac{1}{4}(F_{\mu\nu})^2 + \bar{\chi} \phi \chi \right\} \]

gauge field \((D-2)\) on-shell dof;
fermion = \#spinor comp / 2

Dim	Spinor	min.# comp
2	MW	1
3	M	2
4	M	4
5	S	8
6	SW	8
7	S	16
8	M	16
9	M	16
10	MW	16
11	M	32
The map: dimensions and # of supersymmetries

D	susy	32	24	20	16	12	8	4
11	M	M						
10	MW	IIA	IIB		I			
9	M	N=2						
8	M	N=2						
7	S	N=4						
6	SW	(2,2)	(2,1)	(1,1)	(2,0)	(1,0)		
5	S	N=8	N=6					
4	M	N=8	N=6	N=5				

SUGRA | **SUGRA/SUSY** | **SUGRA** | **SUGRA/SUSY**

- **vector multiplets**
- **tensor multiplet**
- **multiplets up to spin 1/2**
Down-up approach: start deformations

\[S = \int d^D x \left\{ -\frac{1}{4} (F_{\mu\nu})^2 + \bar{\lambda} \phi \lambda \right\} \]

gauge field (D-2) on-shell dof;
fermion = \#spinor comp / 2

\[\delta_\epsilon A_\mu = \bar{\epsilon} \Gamma_\mu \lambda, \quad \delta_\epsilon \lambda = \frac{1}{4} \Gamma^{\mu\nu} F_{\mu\nu} \epsilon \]

extra (trivial) fermionic shift symmetry

\[\delta_\eta A_\mu = 0, \quad \delta_\eta \lambda = -\frac{1}{2\alpha} \eta \]

D=10: MW;
D=6 SW;
D=4 M;
D=3 M;
D=2 MW

normalization for later use
Bottom-up deformation

\[S = \int d^D x \{ -\frac{1}{4} F^2 + \bar{\lambda} \phi \lambda \} - 2\alpha c_4 F^{\mu \nu} \bar{\lambda} \Gamma_\mu \partial_\nu \lambda \]

\[+ \frac{1}{8} \alpha^2 [\text{Tr} F^4 - \frac{1}{4} (F^2)^2 + 4(1 + 4c_4^2)(F^2)^\mu\nu \bar{\lambda} \Gamma_\mu \partial_\nu \lambda \]

\[+ (1 - 4c_4^2) F_\mu \lambda (\partial_\lambda F_{\nu\rho}) \bar{\lambda} \Gamma^{\mu\nu\rho} \lambda + \frac{1}{2} (c_1 + 8c_4^2) F^2 \bar{\lambda} \phi \lambda \]

\[- \frac{1}{2} C_2 F_{\mu\nu} (\partial_\lambda F^\lambda_{\rho}) \bar{\lambda} \Gamma^{\mu\nu\rho} \lambda - \frac{1}{2} (c_3 + 4c_4^2) F_{\mu\nu} F_{\rho\sigma} \bar{\lambda} \Gamma^{\mu\nu\rho\sigma} \phi \lambda \]

\[+ \mathcal{O}(\alpha^2 \lambda^4) + \mathcal{O}(\alpha^3) \]

free coefficients \(c_i \), but these are related to field redefinitions

\[A_\mu(0) = A_\mu - \frac{1}{16} \alpha^2 C_2 F^{\nu\rho} \bar{\lambda} \Gamma_{\mu\nu\rho} \lambda, \]

\[\lambda(0) = \lambda + \frac{1}{2} \alpha c_4 F_{\mu\nu} \Gamma^{\mu\nu} \lambda + \frac{1}{32} \alpha^2 c_1 F^2 \lambda - \frac{1}{32} \alpha^2 c_3 F_{\mu\nu} F_{\rho\sigma} \Gamma^{\mu\nu\rho\sigma} \lambda, \]

\[\Rightarrow \text{answer unique;} \]

also transformation rules deformed.

As well \(\epsilon \) as \(\eta \) parameter transformations can be defined continues from E. Bergshoeff, M. Rakowski and E. Sezgin, 1987
bottom-up deformation

e.g.

\[\delta \eta A^\mu = \frac{\alpha}{4} \overline{\eta} F^\nu{}^\mu \Gamma_{\nu} \lambda + \frac{\alpha}{8} \overline{\eta} \Gamma^{\mu\nu\rho} F_{\nu\rho} \lambda - \frac{1}{16} \alpha c_2 F_{\nu\rho} \overline{\eta} \Gamma^{\mu\nu\rho} \lambda + O(\alpha \eta \lambda^3) + O(\alpha^2), \]

\[\delta \eta \lambda = -\frac{1}{2\alpha} \eta + \alpha \left[-\frac{1}{32} F^2 - \frac{1}{64} \Gamma^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \right] \eta \]

\[+ \frac{1}{4} c_4 F_{\mu\nu} (c) \Gamma^{\mu\nu} \left[\eta - \frac{1}{2} \alpha c_4 F_{\rho\sigma} (c) \Gamma^{\rho\sigma} \eta \right] \]

\[+ \frac{1}{64} \alpha c_1 F^2 \eta - \frac{1}{64} \alpha c_3 F_{\mu\nu} F_{\rho\sigma} \Gamma^{\mu\nu\rho\sigma} \eta + O(\alpha \eta \lambda^2) + O(\alpha^2) \]

already complicated; but only use of
- Majorana flip relations

\[\bar{\lambda}_1 \Gamma^\mu \lambda_2 = -\bar{\lambda}_2 \Gamma^\mu \lambda_1 \]

- cyclic (Fierz) identity

\[\Gamma_\mu \lambda_1 \bar{\lambda}_2 \Gamma^\mu \lambda_3 + \Gamma_\mu \lambda_2 \bar{\lambda}_3 \Gamma^\mu \lambda_1 + \Gamma_\mu \lambda_3 \bar{\lambda}_1 \Gamma^\mu \lambda_2 = 0. \]

which are valid in D=10,6,4,3,2

looks hopeless to continue to all orders
Dp-brane action

Start with κ–symmetric Dp brane action

\[
S_{\text{DBI} + S_{\text{WZ}}} = -\frac{1}{\alpha'^2} \int d^{p+1}\sigma \sqrt{-\det(G_{\mu\nu} + \alpha F_{\mu\nu})} + \frac{1}{\alpha'^2} \int \Omega_{p+1}
\]

\[
G_{\mu\nu} = \eta_{mn} \prod_{\mu}^{m} \prod_{\nu}^{n}, \quad \prod_{\mu}^{m} = \partial_{\mu} X^{m} - \bar{\theta} \Gamma^{m} \partial_{\mu} \theta
\]

\[
F_{\mu\nu} \equiv F_{\mu\nu} - 2\alpha^{-1}\bar{\theta} \sigma_{3} \Gamma_{m} \partial_{[\mu} \theta \left(\partial_{\nu]} X^{m} - \frac{1}{2} \bar{\theta} \Gamma^{m} \partial_{\nu] \theta} \right)
\]

Dp brane: IIB theory $m=0,..., 9$ and $\mu=0,..., p=2n+1$

space-time coordinates X^{m}; θ is doublet of MW spinors;

$F_{\mu\nu}$ Abelian field strength

Symmetries:

rigid susy doublet $\epsilon^{1}; \epsilon^{2}$

local κ symmetry doublet (effectively only half (reducible symmetry))

world volume gct

$\delta_{\kappa} \theta = (1 + \Gamma) \kappa$
Dp-brane action

Start with κ–symmetric Dp brane action

$$S_{\text{DBI}+\text{SWZ}} = -\frac{1}{\alpha'^2} \int d^{p+1}\sigma \sqrt{-\det(G_{\mu\nu} + \alpha F_{\mu\nu})} + \frac{1}{\alpha'^2} \int \Omega_{p+1}$$

$$G_{\mu\nu} = \eta_{mn} \prod_{\mu}^m \prod_{\nu}^n, \quad \prod_{\mu}^m = \partial_\mu X^m - \bar{\theta} \Gamma^m \partial_\mu \theta$$

$$F_{\mu\nu} \equiv F_{\mu\nu} - 2\alpha^{-1} \bar{\theta} \sigma_3 \Gamma_m \partial_{[\mu} \theta (\partial_{\nu]} X^m - \frac{1}{2} \bar{\theta} \Gamma^m \partial_\nu \theta)$$

Dp brane: IIB theory $m=0,...,9$ and $\mu=0,...,p=2n+1$

space-time coördinates X^m; θ is doublet of MW spinors; $F_{\mu\nu}$ Abelian field strength

Symmetries:

rigid susy doublet \mathcal{S}

local κ symmetry doublet $(\mathcal{S}, \mathcal{S'})$ (effectively only half (reducible symmetry)

world volume get

Same applies for $D=6$ (2,0) (also called iib):

$m=0,...,5$

brane interpretation: see talk Eric Bergshoeff

Also $D=4$ N=2, $m=0,...,3$ (BH solutions)
Gauge fixing

\(X^m = \{ \delta^m_\mu \sigma^\mu, \phi^I \} \), \quad m' = 0, 1, \ldots, p, \quad I = 1, \ldots, 9 - p \\
\theta = (\theta^1 = 0, \theta^2 \equiv \alpha \lambda) \\

worldvolume gct \(\xi^m \) and \(\kappa \) symmetry gauge-fixed \\
to stay in the gauge (‘decomposition laws’): parameters become function of parameters of other symmetries \\
\(\Rightarrow \) the two deformed \(\epsilon^1 \) and \(\epsilon^2 \) supersymmetries preserved \\
suitable combinations are called \(\epsilon \) and \(\zeta \)
Complete DBI-VA model
for the p=9 case (no scalars ϕ^I)

$$S = -\frac{1}{\alpha^2} \int d^{10}x \left\{ \sqrt{-\det(G_{\mu\nu} + \alpha F_{\mu\nu})} - 1 \right\}$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu}, \quad \Pi^m_{\mu} = \delta^m_{\mu} - \alpha^2 \bar{\lambda}\Gamma^m \partial_{\mu} \lambda,$$

$$F_{\mu\nu} \equiv F_{\mu\nu} + 2\alpha \bar{\lambda}\Gamma_{[\nu} \partial_{\mu]} \lambda, \quad \mu = 0, 1, \ldots, 9, \quad m = 0, 1, \ldots, 9,$$

16 ϵ transformations, deformation of the Maxwell supermultiplet supersymmetries

$$\delta_\epsilon \lambda = -\frac{1}{2\alpha} (1 - \beta) \epsilon - \frac{1}{2} \alpha \partial_\mu \lambda \bar{\lambda}\Gamma^\mu (1 + \beta) \epsilon,$$

$$\delta_\epsilon A_\mu = -\frac{1}{2} \bar{\lambda}\Gamma_{\mu} (1 + \beta) \epsilon + \frac{1}{2} \alpha^2 \bar{\lambda}\Gamma_m (\frac{1}{3} 1 + \beta) \epsilon \bar{\lambda} \Gamma^m \partial_\mu \lambda - \frac{1}{2} \alpha \bar{\lambda}\Gamma^\rho (1 + \beta) \epsilon F_{\rho\mu}$$

16 VA-type ζ transformations

$$\delta_\zeta \lambda = \alpha^{-1} \zeta + \alpha \partial_\mu \lambda \bar{\lambda}\Gamma^\mu \zeta,$$

$$\delta_\zeta A_\mu = \bar{\lambda}\Gamma_\mu \zeta + \alpha \bar{\lambda}\Gamma^\rho \zeta F_{\rho\mu} - \frac{1}{3} \alpha^2 \bar{\lambda}\Gamma_m \zeta \bar{\lambda}\Gamma^m \partial_\mu \lambda$$

$$\beta = [\det (\delta_\mu \nu + \alpha F_{\mu\rho} G_{\rho\nu})]^{-1/2} \sum_{k=0}^{5} \frac{\alpha^k}{2^k k!} \bar{\Gamma}_1 \nu_1 \cdots \nu_k \nu_k F_{\mu_1 \nu_1} \cdots F_{\mu_k \nu_k} = 1 + O(\alpha)$$

Note: Λ susys: do not transform fermion to boson states; are not the regular susys
Complete DBI-VA model for the p=9 case (no scalars ϕ^I)

$$S = -\frac{1}{\alpha^2} \int d^{10}x \left\{ \sqrt{-\det(G_{\mu\nu} + \alpha F_{\mu\nu})} - 1 \right\}$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu} , \quad \Pi^m_{\mu} = \delta^m_{\mu} - \alpha^2 \bar{\lambda} \Gamma^m \partial_{\mu} \lambda ,$$

$$\mathcal{F}_{\mu\nu} \equiv F_{\mu\nu} + 2\alpha \bar{\lambda} \Gamma_{[\nu} \partial_{\mu]} \lambda , \quad \mu = 0, 1, ..., 9 , \quad m = 0, 1, ..., 9 ,$$

16 ϵ transformations, deformation of the Maxwell supermultiplet supersymmetries

$$\delta_{\epsilon} \lambda = -\frac{1}{2\alpha} (1 - \beta) \epsilon + \frac{1}{2} \alpha \partial_{\mu} \bar{\lambda} \Gamma^\mu (1 + \beta) \epsilon ,$$

$$\delta_{\epsilon} A_{\mu} = -\frac{1}{2} \bar{\lambda} \Gamma_{\mu} (1 + \beta) \epsilon + \frac{1}{2} \alpha^2 \bar{\lambda} \Gamma_m (1 + \beta) \epsilon \bar{\lambda} \Gamma^m \partial_{\mu} \lambda - \frac{1}{2} \alpha \bar{\lambda} \Gamma^\rho (1 + \beta) \epsilon F_{\rho\mu}$$

16 VA-type ζ transformations

$$\delta_{\zeta} \lambda = \alpha^{-1} \zeta + \alpha \partial_{\mu} \bar{\lambda} \Gamma^\mu \zeta ,$$

$$\delta_{\zeta} A_{\mu} = \bar{\lambda} \Gamma_{\mu} \zeta + \alpha \bar{\lambda} \Gamma^\rho \zeta F_{\rho\mu} - \frac{1}{3} \alpha^2 \bar{\lambda} \Gamma_m \zeta \bar{\lambda} \Gamma^m \partial_{\mu} \lambda$$

Note: VA susys: do not transform fermion to boson states; are not the regular susys
Comparing bottom-up with top-down

\[S = \int d^Dx \left\{ -\frac{1}{4}F^2 + \bar{\lambda}\phi\lambda \right\} - 2\alpha c_4 F^{\mu\nu} \bar{\lambda}\Gamma_{\mu}\partial_\nu\lambda \]

+ \frac{1}{8}\alpha^2 \left[\text{Tr} F^4 - \frac{1}{4} \left(F^2\right)^2 + 4(1 + 4c_4^2)(F^2)^{\mu\nu}\bar{\lambda}\Gamma_{\mu}\partial_\nu\lambda \right]

+ (1 - 4c_4^2)F_\mu^{\lambda}(\partial_\lambda F_{\nu\rho})\bar{\lambda}\Gamma^{\mu\nu\rho}\lambda + \frac{1}{2}(c_1 + 8c_4^2)F^2\bar{\lambda}\phi\lambda

- \frac{1}{2}c_2 F_{\mu\nu}(\partial_\lambda F_\rho^{\lambda})\bar{\lambda}\Gamma^{\mu\nu\rho}\lambda - \frac{1}{2}(c_3 + 4c_4^2)F_{\mu\nu}F_{\rho\sigma}\bar{\lambda}\Gamma^{\mu\nu\rho\sigma}\phi\lambda + O(\alpha^2\lambda^4) + O(\alpha^3)

- Expanding the all-order result, one re-obtains indeed the result that was obtained in the bottom-up calculation to order \(\alpha^2 \) using a particular field definition (choice of coefficients \(c_i \) : such that no \(\partial F \) terms: \(c_1 = 2, c_2 = 0, c_3 = -1, c_4 = -1/2 \)).

- For the transformation laws: agree modulo a ‘zilch symmetry’: (on-line trivial symmetry) (\(\zeta \) is linear combination of \(\epsilon \) and \(\eta \))

- This proves that our all-order result is indeed the full deformation that we were looking for !
The map: dimensions and # of supersymmetry

D	susy	32	24	20	16	12	8	4
11	M	M						
10	MW	IIA	IIB			D9	I	
9	M	N=2				N=1		
8	M	N=2				D7		
7	S	N=4				N=2		
6	SW	(2,2)	(2,1)	D5	(1,1)	(2,0)		
5	S	N=8	N=6		N=4		N=2	
4	M	N=8	N=6	N=5	N=4	N=3	N=2	N=1

SUGRA

SUGRA/SUSY

vector multiplets +
tensor multiplet
multiplets up to spin 1/2
Complete DBI-VA model for the $p=3$ case

$$S = -\frac{1}{\alpha^2} \int d^4 x \left\{ \sqrt{-\det(G_{\mu\nu} + \alpha F_{\mu\nu})} - 1 \right\}, \quad \mu = 0, 1, 2, 3$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu} = \eta_{m'n'} \Pi^m_{\mu} \Pi^{n'}_{\nu} + \delta_{IJ} \Pi^I_{\mu} \Pi^J_{\nu}, \quad m' = 0, 1, 2, 3, \quad I = 1, \ldots, 6$$

$$\Pi^m_{\mu} = \delta^m_{\mu} - \alpha^2 \bar{\lambda} \Gamma^m \partial_{\mu} \lambda, \quad \Pi^I_{\mu} = \partial_{\mu} \phi^I - \alpha^2 \bar{\lambda} \Gamma^I \partial_{\mu} \lambda$$

$$F_{\mu\nu} \equiv F_{\mu\nu} - 2\alpha \bar{\lambda} \Gamma_{[\mu} \partial_{\nu]} \lambda - 2\alpha \bar{\lambda} \Gamma_I \partial_{[\mu} \lambda \partial_{\nu]} \phi^I$$

16 ϵ and 16 ζ symmetries and shift symmetry of scalars

Can be compared with $N = 4, D=4$
\[N=4, \ D=4 \]

\[S_{\text{Maxw}} = \int d^4x (-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + 2 \bar{\psi}_i \phi \psi^i - \frac{1}{8} \partial_\mu \varphi_{ij} \partial^\mu \varphi^{ij}) \]

one vector; 4 Majorana (or Weyl) spinors and 6 scalars) recognized as \(\alpha=0 \) part of all order action and transformations when

\[\alpha \varphi_{ij} = \phi_a \beta_{ij}^a \rightleftarrows i \phi_a + 3 \alpha_{ij}^a, \quad a = 1, 2, 3 \]

Gliozzi, Scherk, Olive \(4 \times 4 \) matrices rewriting the \(D=10 \) Majorana-Weyl fermion as

\[\lambda = \begin{pmatrix} \psi^i \\ \psi_i \end{pmatrix} \]

\[\Gamma^\mu = \gamma^\mu \otimes 1_8, \quad \Gamma^a = \gamma_\ast \otimes \begin{pmatrix} 0 & \beta^a \\ -\beta^a & 0 \end{pmatrix}, \quad \Gamma^{a+3} = \gamma_\ast \otimes \begin{pmatrix} 0 & i\alpha^a \\ i\alpha^a & 0 \end{pmatrix}, \]

\[C_{10} = C_{4} \otimes \begin{pmatrix} 0 & 1_4 \\ 1_4 & 0 \end{pmatrix}, \quad \Gamma_\ast = \gamma_\ast \otimes \begin{pmatrix} 1_4 & 0 \\ 0 & -1_4 \end{pmatrix} \]
All-order deformations of N=4, D=4

- Since the action is invariant at all orders under 16+16 supersymmetries, this is the full result!
- The action has both type of supersymmetries: ordinary SUSY and VA-type
- The 10-dimensional formulation is much simpler.

\[S = -\frac{1}{\alpha^2} \int d^4x \left\{ \sqrt{-\det(G_{\mu\nu} + \alpha F_{\mu\nu})} - 1 \right\}, \quad \mu = 0, 1, 2, 3 \]

\[G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu} = \eta_{m'n'} \Pi^m_{\mu} \Pi^{n'}_{\nu} + \delta_{IJ} \Pi^I_{\mu} \Pi^J_{\nu}, \quad m' = 0, 1, 2, 3 \]

\[\Pi^m_{\mu} = \delta^m_{\mu} - \alpha^2 \lambda \Gamma^m \partial_{\mu} \lambda, \quad \Pi^I_{\mu} = \partial_{\mu} \phi^I - \alpha^2 \lambda \Gamma^I \partial_{\mu} \lambda, \quad I = 1, \ldots, 6 \]

\[F_{\mu\nu} \equiv F_{\mu\nu} - 2\alpha \lambda \Gamma_{[\mu} \partial_{\nu]} \lambda - 2\alpha \lambda \Gamma^I \partial_{[\mu} \lambda \partial_{\nu]} \phi^I \]
World volume theory in AdS background

\[
\begin{align*}
S_{cl} &= S_{\text{DBI}} + S_{\text{WZ}} \\
S_{\text{DBI}} &= -\int d^{p+1}\sigma \sqrt{-\det (g_{\mu\nu}^{\text{ind}} + F_{\mu\nu})} \\
g_{\mu\nu}^{\text{ind}} &= \partial_\mu X^M \partial_\nu X^N G_{MN}
\end{align*}
\]

rigid symmetries inherited from solution:
• AdS superisometries (incl. susys)
• isometries of sphere
local
• GCT in \((p+1)\)-dimensional worldvolume
• \(\kappa\) symmetry

P. Claus, R. Kallosh and AVP, hep-th/9711161 and 9812066
P. Claus, R. Kallosh, J. Kumar, P. Townsend and AVP, hep-th/9711161
Gauge fixing of GCT on brane and of κ - symmetry

- After gauge fixing: remaining symmetries (from rigid super-AdS and gauge-fixed GCT and κ) appear as conformal rigid symmetries on the brane.
- Fermionic ones are ϵ and η.
 (similar to ϵ and ζ in this new work).
- Hope to get all-order result with conformal symmetry in the cases where these superalgebras exist (as for D3)
V-branes: DBI-VA actions with 8+8 supersymmetries

- Our results apply also when we start with D=6, and then can take either p=5 or p=3: these are related to branes called V5 and V3 (see talk Eric Bergshoeff)

- Same formulas as for D=10 lead to actions in 6 and 4 dimensions with 8+8 supersymmetries
The map: dimensions and # of supersymmetries

D	susy	32	24	20	16	12	8	4
11	M	M						
10	MW	IIA	IIB					
9	M	N=2						
8	M	N=2						
7	S	N=4						
6	SW	(2,2)						
5	S	N=8	N=6					
4	M	N=8	N=6	N=5				

- **D9**: N=1
- **D7**: N=1
- **D5**: (2,0)
- **V5**: (1,0)

- **V3**: N=2
- **N=1**
- **N=2**
- **N=3**
- **N=4**
- **N=5**
- **N=6**
- **N=8**

Legend:
- Green:_vector multiplets
- Blue: tensor multiplet
- Gold: multiplets up to spin 1/2

Notes:
- **SUGRA**
- **SUGRA/SUSY**
- **SUGRA/SUSY** vector multiplets +
5. Conclusions 1

- Superconformal symmetry has been used as a tool for constructing classical actions of supergravity. - also higher-derivative terms can be constructed
- Quantum calculations show that there are unknown relevant properties of supergravity theories.
- Can (broken) superconformal symmetry be such an extra quantum symmetry?
- The non-existence of (broken) superconformal-invariant counterterms and anomalies in N=4, D=4 could in that case explain ‘miraculous’ vanishing results.
Conclusions 2

- We do not have a systematic knowledge of higher-derivative supergravity action.
- **Perturbative approach**: construct actions and transformation laws order by order in α.
- Starting from Dp brane actions in $D=10$ we can construct DBI-VA actions with $16+16$ susys ($p=9,7,5,3,...$). For $p=3$ this is the deformation of $N=4, D=4$ with higher order derivatives.
- Same can be done from $D=6$: DBI-VA actions (V-branes) with $8+8$ susys, e.g. containing the deformation of $D=4, N=2$.
- Hope that this can lead also to supergravity actions using the superconformal methods.