IS APORIA CRAETAEGI AN UNSUITABLE HOST OF WOLBACHIA SYMBIONTS?

R.A. Bykov*, G.V. Yurlova, M.A. Demenkova, Yu.Yu. Ilinsky

Institute of Cytolgy and Genetics SB RAS, Novosibirsk, Russia

*corresponding author, e-mail: bykovra@bionet.nsc.ru

The Black-veined White *Aporia crataegi* (Lepidoptera: Pieridae) is a trans-Palearctic species causing damage to various fruit and berry crops. Here we analyzed *Wolbachia* infection in *A. crataegi* populations. *Wolbachia* bacteria are maternally transmitted intracellular symbionts of many arthropods, including numerous Lepidoptera. We have studied 376 samples of *A. crataegi* collected in 10 regions of Russia from the Far East to Kaliningrad. *Wolbachia* prevalence was very low; only eight *Wolbachia*-positive specimens of *A. crataegi* were detected in Yakutia, Republic of Buryatia, Sverdlovsk and Kaliningrad Provinces, and no infection was found in other localities. Two *Wolbachia* haplotypes, ST-19 and ST-109, from A and B supergroups respectively, were identified using the multilocus sequence typing (MLST) protocol. These haplotypes were also previously reported in different lepidopteran species. Both *Wolbachia* haplotypes were associated with the same mtDNA haplotype (as inferred from the cytochrome oxidase subunit I gene) of *A. crataegi*, and ST-19 with two mtDNA haplotypes. This incongruence of maternally inherited agents indicates independent cases of the bacteria acquisition in *A. crataegi* history. The above data suggest that *Wolbachia* can infect *Aporia crataegi* but cannot establish in the host populations.

Keywords: *Wolbachia*, Pieridae, Lepidoptera, *Aporia*, mtDNA

Received: 10.01.2021

Accepted: 30.03.2021

Introduction

The Black-veined White *Aporia crataegi* L. (Lepidoptera: Pieridae) is a pest of various fruit and berry crops. The larvae damage the species of Prunus, Crataegus, Rosa, Pyrus, Padus, Sorbus and several other genera (Emmet, Heath 1989; Gorbunov, Kosterin, 2003). Population outbreaks result in complete defoliation of trees (Ilyinskii, Tropin, 1965; Maximov, Marushchak, 2012). This butterfly is a trans-Palaearctic species with high migratory activity (Tolman and Lewington 2008). The abundance of *A. crataegi* varies in different regions, for instance, in Russia it is rare in Ural, Amurland and Primorye, but abundant in most of West Siberia (Gorbunov, Kosterin, 2003). In some regions, populations of *A. crataegi* fluctuate greatly from year to year, e.g., in Ural (Gorbunov, Kosterin, 2003) or have long-term fluctuations, e.g., in Finland (Kuussaari et al. 2007). Decreasing *A. crataegi* populations (Fokin, Korovin, 2001; Kim et al., 2015; Jugovic et al., 2017), have been observed in the territories of Northern, Central, Eastern and Southern Europe, and North Africa, primarily due to human activity (van Swaay et al., 2010; Todisco et al., 2020). Extinction of *A. crataegi* has been reported in England, Czech Republic, The Netherlands, and South Korea (Asher et al. 2001; van Swaay et al., 2010; Park et al., 2013; Kim et al., 2020).

Bacteria of the *Wolbachia* genus are maternally inherited intracellular symbionts found in many insects (Hilgenboecker et al., 2008; Zug, Hammerstein, 2012). *Wolbachia* can affect host biology in different ways. Reproductive abnormalities, such as male killing, feminization of males, thalytokes parthenogenesis and cytoplasmic incompatibility (CI) are the ways for *Wolbachia* to spread in a host population (Wenren et al., 2008). *Wolbachia* can also be a mutualist by providing for essential nutrients, protecting from viruses and parasites or increasing lifespan and fecundity of the hosts (De Barro, Hart, 2001; Dong et al., 2007; Hosokawa et al., 2010; Nikoh et al., 2014; Van Nouhuys et al., 2016; Mariño et al., 2017). Such deep involvement of the symbiont in the host biology allowed considering *Wolbachia* a potential agent for pest control (Zabalou et al., 2008; Bourtis, 2008). Laboratory experiments of *Wolbachia* transmission from *Rhagoletis cerasi* (Diptera: Tephritidae) to *Ceratitis capitata* (Diptera: Tephritidae), an important agricultural pest, resulted in total progeny death due to complete CI in the new host (Zabalou et al., 2008). Transmission of CI-induced *Wolbachia* strain from *Laodelphax striatellus* (Hemiptera: Delphacidae) to a dangerous rice pest *Nilaparvata lugens* (Hemiptera: Delphacidae) results in high levels of CI as well, resulting in rice protection from *Rice ragged stunt virus* transmitted by the pest (Gong et al., 2020). However, most of such studies currently are limited to laboratory tests.

Wolbachia are divided into 17 phylogenetic clades, namely supergroups which are denoted from A to S, excluding G and R (Wenren et al., 1995; Lo et al., 2002; Baldo, Wenren, 2007; Augustinos et al., 2011; Glowaska et al., 2015; Gerth, 2016; Lefoulin et al., 2020). Supergroups A and B are the most common in insects, while the others are not so widespread, and some lineages are specific to the certain insect host taxa. The same *Wolbachia* variants could be found in hosts belonging to different taxa, which implies horizontal transmission (HT) of the symbiont (Wenren 1997; Vare et al., 1999; Dedeine et al., 2005; Haine et al., 2005; Stahlhut et al., 2010; Zug, Hammerstein, 2012; Ahmed et al., 2016; Ilinsky, Kosterin, 2017; Shaivech et al., 2019). In spite of numerous cases of
HT, maternal transmission within a host is rather stable, and the co-evolution of the symbiont and host mtDNA lineages is observed (Rousset, Solignac, 1995; Marcade et al., 1999; Hinrich et al., 2002; Mercot, Charlat., 2004; Shoemaker et al., 2004; Hurst, Jiggins, 2005; Hinrich et al., 2003; Cariou et al., 2017; Chen et al., 2017). MtDNA of *Wolbachia*-infected species may undergo indirect selection that lead to reduction or increase in mtDNA diversity, changes in mtDNA variation, and to paraphyly of mtDNA (Hurst, Jiggins, 2005).

Wolbachia are found in a wide range of Lepidoptera species, and its prevalence greatly varies from low levels to totally infected populations (Tagami, Miura, 2004; Salunkhe et al., 2012; Ahmed et al., 2015; Solovyev et al., 2015; Ilinsky, Kosterin, 2017; Tokarev et al., 2017; Bykov et al., 2020; Malysh et al., 2020). Genetic diversity of *Wolbachia* in Lepidoptera hosts has been studied in detail employing the MLST protocol (Russell et al., 2009; Ahmed et al., 2016; Ilinsky, Kosterin, 2017). This protocol uses five bacterial loci: *gatB*, *coxA*, *hcpA*, *ftsZ* and *fbpA*; and a combination of alleles forms a Sequence Type (ST) or a haplotype (Baldo et al., 2006). Lepidopteran hosts often harbour *Wolbachia* strains of ST-41 and other ST-41-related haplotypes which belong to the supergroup B (Ahmed et al., 2016; Ilinsky, Kosterin, 2017). Certain haplotypes of the supergroup A have been also found in Lepidoptera (Russell et al., 2009; Ahmed et al., 2016; Ilinsky, Kosterin, 2017; Duplouy et al., 2020). In some Lepidoptera, *Wolbachia* induce feminization, male killing, and CI (Hiroki et al., 2004; Charlat et al., 2006, 2007; Narita et al., 2007; Graham, Wilson, 2012; Salunkhe et al., 2014; Arai et al., 2019).

Previously, *Wolbachia* symbionts were found in some species of the Pieridae family, with high infection rates in *Leptidea, Colias* and *Eurema* species (Tagami, Miura, 2004; Solovyev et al., 2015; Ilinsky, Kosterin, 2017; Duplouy et al., 2020). For *A. crataegi*, *Wolbachia* infection was only noted in Novosibirsk population (see discussion in Ilinsky, Kosterin, 2017) without the data on the symbiont prevalence. Here, we analyzed *Wolbachia* prevalence in populations of *A. crataegi* throughout the Russian Federation from the Far East to Kaliningrad. Additionally, we studied mtDNA haplotypes and *Wolbachia* variants of *A. crataegi* to reveal their associations.

Materials and Methods

A total of 376 adults of *A. crataegi* were collected from 2001 to 2019 in 16 localities of 10 regions of Russian Federation from the Far East to Kaliningrad (Fig. 1; Table 1).

Total DNA was extracted from abdomens of air-dried or fresh samples in CTAB buffer by standard protocol (see Bykov et al., 2020). The DNA extraction quality was determined by PCR with the primer set HCO2198/LCO1490 (Vrijenhoek et al., 1994) for the mitochondrial cytochrome-c oxidase subunit 1 gene (*COI*). *Wolbachia* infection was examined by PCR with primers for *coxA* gene (Baldo et al., 2006). Six out of eight *Wolbachia*-positive samples were genotyped according to MLST protocol (Baldo et al., 2006). Additionally, we sequenced the 658 bp part of *COI* gene for these six *Wolbachia*-infected samples and eight uninfected samples (one per region) to determine the mtDNA haplotypes of *A. crataegi*. Amplicons were purified with exonuclease I *E. coli* (New England Biolabs) and further were sequenced using BrilliantDye Terminator Cycle Sequencing kit v3.1 (Nimagen). All sequences were analyzed in FinchTV v1.4.0 (Geospiza Inc). All sequences were deposited to the GenBank database under accession numbers MW243570 - MW243583 for *COI* gene and MW246635 - MW246664 for MLST *Wolbachia* genes. The alignments were performed in MEGA 6 (Tamura et al., 2013). Phylogenetic reconstructions were performed in MEGA 6 by the maximum likelihood algorithm.

The data on other populations of *A. crataegi* (Park et al., 2013; Kim et al., 2020; Todisco et al., 2020) with *A. hippia* as an outgroup taxon were used for mtDNA tree reconstruction.

Figure 1. Sampling sites for *Aporia crataegi*: 1 – Khabarovsk Krai; 2 – Yakutia, Oymyakonsky District; 3 – Yakutia, Yakutsk; 4 – Yakutia, Namsky District; 5 – Yakutia, Khangalassky District; 6 – Yakutia, Suntarsky District; 7 – Yakutia, Lensky District; 8 – Republic of Buryatia, Eravinsky District; 9 – Republic of Buryatia, Suntarsky District; 10 – Altai Republic; 11 – Altai Krai; 12 – Kemerovo Province; 13 – Tomsk Province; 14 – Novosibirsk Province; 15 – Sverdlovsk Province; 16 – Kaliningrad Province. Dot size indicates sample size. Filled dots indicate localities where *Wolbachia* infection was found.
Table 1. *Wolbachia* infection in populations of *Aporia crataegi*.

Region, locality	Year	N$_w$/N*
Khabarovsk Krai	2018	0/12
Yakutia, Oymyakonsky District	2017	0/1
Yakutia, Yakutsk	2003	0/2
Yakutia, Namsky District	2015	0/1
Yakutia, Khangalassky District	2002	0/1
Yakutia, Suntarsky District	2016	1/2
Yakutia, Lensky District	2017	0/1
Republic of Buryatia, Yeravninsky District	2016	0/1
Republic of Buryatia, Khorinsky district	2018	0/1
Kemerovo Province	2016	0/4
Tomsk Province	2017	0/15
Novosibirsk Province	2019	0/6
Altai Republic	2016	0/4
Altai Krai	2017	0/15
Sverdlovsk Province	2015	1/20
Kaliningrad Province	2016	2/20
	2017	0/16
Total:		8/376

N$_w$* – number Wolbachia-positive specimens; N – total number of analyzed insects.

Wolbachia prevalence in *A. crataegi* populations was very low. Similar cases of low *Wolbachia* prevalence were previously described in *Pieris rapae* (Lepidoptera: Pieridae) populations, where 3.4% infection prevalence was detected (Tagami, Miura, 2004). Possible explanation of such low *Wolbachia* prevalence may be the absence of any advantages given by the symbiont to its host and no reproductive abnormalities induced by *Wolbachia*. Besides, host immunity may be able to suppress the symbiont. There are species that are reported to be *Wolbachia* free based on hundreds of screened samples, such as *Lymantria dispar* (Lepidoptera: Lymantriidae) (Martemyanov et al., 2014; Ilinsky et al., 2017), *Agricolenmis pygmaea* (Odonata: Coenagrionidae) (Thipakorn et al., 2003), *Aedes caspius* (Diptera: Culicidae) (Bozorg-Omid et al., 2020), *Anopheles gambiae* (Diptera: Culicidae) (Scholz et al., 2020). Reasons for *Wolbachia* absence in some species remain unclear.

In *A. crataegi*, we found two diverged *Wolbachia* haplotypes ST-19 and ST-109 that were also reported in different hosts. ST-109 (B supergroup) was found in *Colotis amata* (Pieridae), *Minois dryas* (Nymphalidae) and several Lycaenidae butterflies (Ahmed et al., 2016; Ilinsky, Kosterin, 2017). Haplotype ST-19 (A supergroup) was previously found in Pieridae, Pyralidae, Nymphalidae and Lycaenidae butterflies (Russell et al., 2009; Ahmed et al., 2016; Ilinsky, Kosterin, 2017; Duplouy et al., 2020), and also reported for Coleoptera and different Hymenoptera species, including parasitic wasps of the *Apanteles* and *Chelonus* genera (Russell et al., 2009; Tseng et al., 2020; pubMLST database https://pubmlst.org/organisms/wolbachia-spp). These wasps are parasitoids of different Lepidoptera, including *A. crataegi* (Wilbert, 1960); therefore, HT of *Wolbachia* between parasitic wasps and *A. crataegi* could not be ruled out. Reports of different *Wolbachia* supergroups in a single species are numerous (Tsutsui et al., 2003; Arthofer et al., 2009; Chai, Duo, 2011; Wiwatatanaratabut, Zhang, 2016; Duplouy, Brattström 2018). For instance, in *Homona magannina* (Lepidoptera: Tortricidae) there were three *Wolbachia* strains, two from the supergroup A and one from the supergroup B (Arai et al., 2019).

Results

Screening of 376 *A. crataegi* specimens from the vast territory revealed only eight cases of *Wolbachia* infection (2%). No specific geographic pattern of *Wolbachia* infection in populations of *A. crataegi* has been found. The symbiont has been detected in Yakutia, Republic of Buryatia, Sverdlovsk, and Kaliningrad Provinces (Table 1). In other regions, *Wolbachia* symbions were not found even in large samples from Novosibirsk Province and Altai Krai.

Analysis of *Wolbachia* genetic diversity based on the MLST protocol revealed two haplotypes of the symbiont. *Wolbachia* ST-19 was found in samples from Yakutia, Sverdlovsk, and Buryatia. These haplotypes belonged to different *Wolbachia* supergroups: ST-19 – to A, and ST-109 – to B-supergroup (Fig. 2B).

We found discordance between mtDNA haplotypes of *A. crataegi* and *Wolbachia* haplotypes. *Wolbachia* haplotype ST-19 associated with two different mtDNA haplotypes of the host, and ST-109 – with one haplotype shared with ST-19 (Fig. 2A, B). One of these mtDNA haplotypes associated with *Wolbachia* haplotypes belongs to the most common and widespread «Eurasian» haplogroup (Todisco et al., 2020). This mtDNA haplotype was found in infected samples from Sverdlovsk and Kaliningrad Provinces and in uninfected samples from Novosibirsk, Kemerovo and Tomsk Provinces, Altai Krai, Republic of Buryatia and Altai Republic. The other mtDNA haplotype was found in infected and uninfected samples from the Khabarovsk Krai. This haplotype belongs to the haplogroup previously described in Central and East Asia and Yakutia (Todisco et al., 2020), and it is probably typical for Asian populations of *A. crataegi*.

Discussion

Long-term *Wolbachia*-host association leads to a specific pattern of *Wolbachia* variants and mitochondrial DNA. When a particular *Wolbachia* variant is co-inherited with a particular maternal lineage, co-cladogenesis of these inherited factors could be observed. Recent *Wolbachia* acquisitions would not demonstrate any specific pattern of coinheritance. Assuming the co-evolution of *Wolbachia* and host mtDNA, we expected to find similar mtDNA haplotypes in *A. crataegi* specimens.
infecting with the same Wolbachia haplotype. However, two symbiont haplotypes were linked to the same host mtDNA haplotype and different mtDNA haplotypes co-occurred with ST-19 Wolbachia haplotype. Those Wolbachia haplotypes belonged to supergroups A and B, which diverged 58-200 Mya (Werren et al., 1995; Gerth, Bleidorn, 2017). Thus, we suppose that Wolbachia has recently emerged in A. crataegi populations.

Conclusion

Our data showed that widespread Wolbachia variants has recently infected A. crataegi, as inferred from the incongruence of Wolbachia and host mtDNA haplotypes. Low Wolbachia prevalence might indicate the difficulty of the symbiont establishment in A. crataegi populations, suggesting that A. crataegi is not a suitable host of Wolbachia.

Acknowledgments

The study was funded by the Russian Foundation for Basic Research (grants # 18-316-00099 and 19-04-00983) and the State Budgeted Project #0259-2021-0016*

The authors express sincere gratitude to our colleagues who collected and kindly provided us with material from different regions: V.V. Dubatolov (Institute of Systematics and Ecology of Animals, SB RAS) – from the Khabarovsk Krai; S.V. Shehovtsov (Institute of Cytology and Genetics, SB RAS) – from the Republic of Buryatia; I.A. Kerchev (Institute of Systematics and Ecology of Animals, SB RAS) – from Tomsk; A.P. Burnasheva (Institute for Biological Problems of Cryolithozone, SB RAS) – from Yakutia; I.A. Solonkin and E.Yu. Zakharova (Institute of Plant and Animal Ecology, UB RAS) – from Sverdlovsk Province, and to O.E. Kosterin (Institute of Cytology & Genetics, SB RAS) – from Novosibirsk.

*acknowledgment of project # 0259-2021-0016 is lacking in the hardcopy version of the manuscript due to technical reasons
Ahmed MZ, Araujo-Inr EV, Welch JI, Kawahara AY (2015)
Wolbachia in butterflies and moths: geographic structure in infection frequency. Front Zool 12 (1):1–16. https://doi.org/10.1186/s12862-015-0107-z

Ahmed MZ, Breinholt JW, Kawahara AY (2016) Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol Biol 16(1):1–16. https://doi.org/10.1186/s12862-016-0660-x

Arai H, Hirano T, Akizuki N, Abe A et al (2019) Multiple infection and reproductive manipulations of Wolbachia in Homonamagnanima (Lepidoptera: Tortricidae). Microb Ecol 77(1):257–266. https://doi.org/10.1007/s00248-018-1210-4

Arthofer W, Riegler M, Avtzis DN, Stauffer C (2009) Evidence for low-titre infections in insect symbiosis: Wolbachia in the bark beetle Pityogenes chalcographus (Coleoptera, Scolytinae). Environ Microbiol 11(8):1923–1933. https://doi.org/10.1111/j.1462-2920.2009.01914.x

Asher J, Warren M, Fox R, Harding P et al (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press.

Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M et al (2011) Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PloS One 6(12):e28695. https://doi.org/10.1371/journal.pone.0028695

Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR et al (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72(11):7098–7110. https://doi.org/10.1128/AEM.00731-06

Baldo L, Warren JH (2007) Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Curr Microbiol 55(1):81–87. https://doi.org/10.1007/s00284-007-0055-8

Bourtzis K (2008) Wolbachia-based technologies for insect pest population control. Transgenesis and the management of vector-borne disease 104–113.

Bozorg-Omid F, Oshaghi MA, Hamedi M, Karimian F et al (2020) Wolbachia infection in West Nile Virus vectors of northwest Iran. Appl Entomol Zool 55(1):105–113. https://doi.org/10.1186/s13355-019-00658-6

Bykov RA, Yudina MA, Grunenko NE, Zakharov IK et al (2019) Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster. BMC Evol Biol 19(1):45–53. https://doi.org/10.1186/s12862-019-1372-9

Bykov RA, Yurlova GV, Demenkova MA, Dubatolov VV et al (2020) High Wolbachia prevalence in populations of Siberian silk moth Dendrolimus superans sibiricus Tsetchevnikov, 1908 (Lepidoptera: Lasiocampidae) in the territory of Russia. Zhurnal obschej biologii 81(5):387–393. (In Russian). https://doi.org/10.31857/S004459620050036

Cariou M, Duret L, Charlat S (2017) The global impact of Wolbachia on mitochondrial diversity and evolution. J Evol Biol 30(12):2204–2210. https://doi.org/10.1111/jeb.13186

Chai HN, Du YZ (2011) Detection and phylogenetic analysis of Wolbachia wsp in the Chilo suppressalis (Lepidoptera: Crambidae) in China. Ann Entomol Soc Am 104(5):998–1004. https://doi.org/10.1603/AN11072

Charlat S, Engelstädter J, Dyson EA, Hornett EA et al (2006) Competing selfish genetic elements in the butterfly Hypolimnas bolina. Curr Biol 16(24):2453–2458. https://doi.org/10.1016/j.cub.2006.10.062

Charlat S, Hornett EA, Fullard JH, Davies NR et al (2007) Extraordinary flux in sex ratio. Science 317(5835):214–214. https://doi.org/10.1126.science.1143369

Chen F, Coates B, He KL, Bai SX et al (2017) Effects of Wolbachia on mitochondrial DNA variation in populations of Athetis lepigeone (Lepidoptera: Noctuidae) in China. Mitochondrial DNA Part A 28(6):826–834. https://doi.org/10.1080/24701394.2016.1197216

Chu D, Gao CS, De Barro P, Zhang YJ et al (2011) Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: Comparison of secondary symbionts from biotypes B and Q in China. Bull Entomol Res 101(4):477. https://doi.org/10.1017/S0007485311000083

De Barro PJ, Hart PJ (2001) Antibiotic curing of parthenogenesis in Eretmocerus mundus (Australian parthenogenetic form). Entomol Exp Appl 99:225–230. https://doi.org/10.1046/j.1570-7458.2001.00821.x

Dedeine F, Ahrens M, Calcaterra L, Shoemaker DD (2005) Social parasitism in fire ants (Solenopsis spp.): a potential mechanism for interspecies transfer of Wolbachia. Mol Ecol 14(5):1543–1548. https://doi.org/10.1111/j.1365-294X.2005.02499.x

Dong P, Wang JJ, Hu F, Jia FX (2007) Influence of Wolbachia infection on the fitness of the stored-product pest Liposcelis tricolor (Psocoptera: Liposcelididae). J Econ Entomol 100:1476–1481. https://doi.org/10.1093/jee/100.4.1476

Duploy A, Brattström O (2018) Wolbachia in the genus Bicyclus: a forgotten player. Microb Ecol 75(1):255–263. https://doi.org/10.1007/s00248-017-1024-9

Duploy A, Pranter R, Warren-Gash H, Tropek R et al (2020) Towards unravelling Wolbachia global exchange: a contribution from the Bicyclus and Mylothris butterflies in the Afrotropics. BMC Microbiol 20(1):1–9. https://doi.org/10.1186/s12866-020-02011-2

Emmet AM, Heath J (1989) The moths and butterflies of Great Britain and Ireland, vol 7, part 1. Harley Books

Fokin AV, Korovin AA (2001) [Effect of biopreparations on trophic activity of caterpillars of lackey moth and pierid butterfly]. Zashchita i Karantin Rasteniĭ 5:20 (In Russian).

Garmet M (2016) Classification of Wolbachia (Alphaproteobacteria, Rickettsiales): No Evidence for a Distinct Supergroup in Cave Spiders. Infect Genet Evol 43:378–380. https://doi.org/10.1101/046169

Glowska E, Dragun-Damian A, Dabert M, Gerth M (2015) Extraordinary Flux in Sex Ratio of Roscoea species and Papilionoidea) of North Asia (Asian part of Russia) in the territory of Russia]. Zurnal obschej biologii 81(5):387–393. (In Russian). https://doi.org/10.31857/S004459620050036

Gorbunov PI, Kosterin OE (2007) The butterflies (Hesperioidea and Papilionoidea) of North Asia (Asian part of Russia) in the territory of Russia]. Zurnal obschej biologii 81(5):387–393. (In Russian). https://doi.org/10.31857/S004459620050036

Gong JT, Li Y, Li TP, Liang Y et al (2020) Stable introduction of the plant-pathogen inhibiting Wolbachia into planthoppers for rice protection. Curr Biol 30(24):4837–4845. https://doi.org/10.1016/j.cub.2020.09.033

Graham RI, Wilson K (2012) Male-killing Wolbachia and mitochondrial selective sweep in a migratory species of planthoppers (Homoptera: Cercopidae). Mol Ecol 21(4):1056–1068. https://doi.org/10.1111/j.1365-294X.2011.05651.x

References
Park HC, Han T, Kang TW, Yi DA et al (2013) DNA barcode analysis for conservation of an endangered species, Aporia crataegi (Lepidoptera, Pieridae) in Korea. Journal of Sericultural and Entomological Science 51(2):201–206. https://doi.org/10.7852/jses.2013.51.2.201

Rouset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc Natl Acad Sci USA 92(14):6389–6393. https://doi.org/10.1073/pnas.92.14.6389

Russell JA, Goldman-Huertas B, Moreau CS, Baldo L et al (2009) Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 63(3):624–640. https://doi.org/10.1111/j.1558-5646.2008.00579.x

Solovyev VI, Ilinsky Y, Kosterin OE (2015) Genetic integrity of four species of Leptidea (Pieridae, Lepidoptera) as sampled in sympathy in West Siberia. Comp Cytogenet 9(3):299. https://doi.org/10.3897/CompCytogen.v9i3.4636

Salunke BK, Salunkhe RC, Dhotre DP, Walujkar SA et al (2012) Determination of Wolbachia diversity in butterflies from Western Ghats, India, by a multigene approach. Appl Environ Microbiol 78(12):4458–4467. https://doi.org/10.1128/AEM.07298-11

Salunke RC, Narkhede KP, Shouche YS (2014) Distribution and prevalence rates of the endosymbiotic bacterium of Ostrinia nubilalis and Ostrinia scapulalis (Lepidoptera: Pyraloidea: Crambidae) in Southwestern Russia. Russian Journal of Genetics: Applied Research 8(2):172–177. https://doi.org/10.11043/S2079059718020119

Tamura K, Stecher G, Peterson D, Filipski A et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/msq217

Thipaksorn A, Jammongluk W, Kittayapong P (2003) Molecular evidence of Wolbachia infection in natural populations of tropical odonates. Curr Microbiol 47(4):0314–0318. https://doi.org/10.1007/s00284-002-4010-4

Todisco V, Vodá R, Prosser SW, Nazari V (2020) Next generation sequencing-aided comprehensive geographic coverage sheds light on the status of rare and extinct populations of Aporia butterflies (Lepidoptera: Pieridae). Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-70957-4

Tokarev YS, Yudina MA, Malysh JM, Bykov RA et al (2018) Prevalence Rates of the Endosymbiotic Bacterium of the Wolbachia Genus in Natural Populations of Ostrinia nubilalis and Ostrinia scapulalis (Lepidoptera: Pyraloidea: Crambidae) in Southwestern Russia. Russian Journal of Genetics: Applied Research 8(2):172–177. https://doi.org/10.11043/S2079059718020119

Tooman T, Lewington R (2008) Collins butterfly guide. Harper Collins Publishers Ltd., London, p 384

Tseng SP, Hsu PW, Lee CC, Wetterer JK et al (2020) Evidence for Common Horizontal Transmission of Wolbachia among Ants and Ant Crickets: Kleptoparasitism Added to the List. Microorganisms 8. https://doi.org/10.3390/microorganisms8060805

Tsutsui ND, Kauppinen SN, Oyafuso AF, Grosberg RK (2003) The distribution and evolutionary history of Wolbachia infection in native and introduced populations of the invasive antibiotic (Linopinithemum). Mol Ecol 12(11):3057–3068. https://doi.org/10.1046/j.1365-294X.2003.01979.x

Van Nouhuys S, Kohonen M, Duploy A (2016) Wolbachia increases the susceptibility of a parasitoid wasp to hyperparasitism. J Exp Biol 219:2984–2990. https://doi.org/10.1242/jeb.140699

Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol 16(12):2944–2950. https://doi.org/10.1093/oxfordjournals.molbev.a026084

Verspoor RL, Haddrill PR (2011) Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One. 6(10):e26318. https://doi.org/10.1371/journal.pone.0026318

Vrijenhoek R (1994) DNA primers for amplification of Wolbachia endosymbiont infection in mosquitoes: Intra- and interspecies recombination, horizontal transmission and evolution. Mol Phylogenet Evol 134:24–34. https://doi.org/10.1007/s10598-002-0709-5

von Sartorius P, Dallai R, El Harti A, Goudet J et al (2000) Use of microsatellite DNA markers to evaluate the effects of Wolbachia infection in insects. Mol Ecol 9:333–342. https://doi.org/10.1046/j.1365-294X.2000.01158.x

Weinert LA, Tinsley MC, Temperley M, Jiggins FM (2007) Are we underestimating the diversity and incidence of insect bacterial symbionts? A case study in ladybird beetles. Biol Lett 3(6):678–681. https://doi.org/10.1098/rsbl.2007.0373

Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 261(1360):55–63. https://doi.org/10.1098/rspb.1995.0117

Werren JH (1997) Biology of Wolbachia. Anna Rev Entomol 42(1):587–609.

Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc Lond B Biol Sci 267(1450):1277–1285. https://doi.org/10.1098/rspb.2000.1139
Werren JH, Baldo L, Clark ME (2008) *Wolbachia*: master manipulators of invertebrate biology. *Nat Rev Microbiol* 6(10):741–751. https://doi.org/10.1038/nrmicro1969

Wilbert EL (1960) *Anateles pieridis* a parasite of *Aporia crataegi*. *Entomophaga* 5(3):183–211

Wiwanataramanabutra I, Zhang C (2016) *Wolbachia* infections in mosquitoes and their predators inhabiting rice field communities in Thailand and China. *Acta tropica* 159:153–160. https://doi.org/10.1016/j.actatropica.2016.03.026

Wiwatanaratanabutr I, Zhang C (2016) *Wolbachia* infections in mosquitoes and their predators inhabiting rice field communities in Thailand and China. *Acta tropica* 159:153–160. https://doi.org/10.1016/j.actatropica.2016.03.026

Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C et al (2004) *Wolbachia*-induced cytoplasmic incompatibility as a means for insect pest population control. *Proc Natl Acad Sci USA* 101(42):15042–15045. https://doi.org/10.1073/pnas.0403853101

Zug R, Hammerstein P (2012) Still a host of hosts for *Wolbachia*: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. *PloS One* 7(6):e38544. https://doi.org/10.1371/journal.pone.0038544

Вестник защиты растений, 2021, 104(1), с.

OECD+WoS: 1.06+1Y (Entomology)

https://doi.org/10.31993/2308-6459-2021-104-1-14945

Полнотекстовая статья

APORIA CRATAEGI NEUDOBNYI HOZJAIN DLA WOLBACHIA?

Р.А. Быков*, Г.В. Юрлова, М.А. Деменкова, Ю.Ю. Илинский

Институт цитологии и генетики СО РАН, Новосибирск

*ответственный за переписку, e-mail: bykovra@bionet.nsc.ru

Боярышница *Aporia crataegi* (Lepidoptera: Pieridae) – Транспалеарктический вид, который вредит различным плодово-ягодным культурам. Мы проводим анализ инфицированности *Wolbachia* популяций *A. crataegi*. Бактерии *Wolbachia* – это матерински-наследуемые внутриклеточные симбионты многих членистоногих, в том числе Чешуекрылых. Мы изучили 376 образцов *A. crataegi*, собранных в 10 регионах России от Дальнего Востока до Калининграда. Частота встречаемости *Wolbachia* была очень низкой, только восемь *Wolbachia*-положительных образцов *A. crataegi* было обнаружено в Якутии, Республике Бурятия, Свердловской и Калининградской областях, и не было выявлено инфекции в других локалитетах. Два гаплотипа *Wolbachia*, ST-19 и ST-109, из A и B супергрупп соответственно, были определены с использованием протокола мультилокусного генотипирования (MLST). Эти гаплотипы также встречаются у разных видов чешуекрылых. Оба гаплотипа *Wolbachia* ассоциированы с одним гаплотипом мтДНК *A. crataegi* (определенным на основании анализа гена первой субъединицы цитохром c-оксидазы), а ST-19 – с двумя гаплотипами мтДНК. Это несоответствие матерински наследуемых агентов указывает на случай независимого приобретения бактерий в истории *A. crataegi*. Все вышеперечисленные данные позволяют предположить, что *Wolbachia* может инфицировать *Aporia crataegi*, но не способна закрепиться в популяциях хозяина.

Ключевые слова: Wolbachia, Pieridae, Lepidoptera, Aporia, мтДНК

Поступила в редакцию: 10.01.2021

Принята к печати: 30.03.2021

© Быков Р.А., Юрлова Г.В., Деменкова М.А., Илинский Ю.Ю. Статья открытого доступа, публикуемая Всероссийским институтом защиты растений (Санкт-Петербург) и распространяемая на условиях Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).