Health-Related Quality of Life in Metastatic, Hormone-Sensitive Prostate Cancer: ENZAMET (ANZUP 1304), an International, Randomized Phase III Trial Led by ANZUP

Martin R. Stockler, MBBS, MSc1; Andrew J. Martin, MBBS, PhD1; Ian D. Davis, PhD2; Haryama A. Dhillon, BSc, MA, PhD3; Stephen D. Begbie, MBBS4; Kim N. Chi, MD5; Simon Chowdhury, MBBS, PhD6; Xanthi Coskinas, BHS, BMedSc (Clin Epid)7; Mark Frydenberg, MBBS8; Wendy E. Hague, MBBS, MBA, PhD, GAICD9; Lisa G. Horvath, MBBS, PhD10; Anthony M. Joshua, BSc, MBBS, PhD11; Nicola J. Lawrence, MBChB, PhD12; Gavin M. Marx, BSc (Med), MBBS13; Wendy R. Parulekar, MD14; David W. Pook, MBBS, MD15; M. Neil Reaume, BSc, MD, MSc16; Shahneen Sandhu, MBBS17; Scott G. Williams, MBBS, MD18; Diana G. Winter, BSc19; Sonia Yip, BSc, PhD19; Alison Y. Zhang, MBBS, MMed1; Robert R. Zielinski, MBBS20; and Christopher J. Sweeney, MBBS21 for the ENZAMET Trial Investigators and the Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP)

PURPOSE
We previously reported that enzalutamide improved overall survival when added to standard of care in metastatic, hormone-sensitive prostate cancer. Here, we report its effects on aspects of health-related quality of life (HRQL).

METHODS
HRQL was assessed with the European Organisation for Research and Treatment of Cancer core quality-of-life questionnaire and QLM-PR25 at weeks 0, 4, 12, and then every 12 weeks until progression. Scores from week 4 to 156 were analyzed with repeated measures modeling to calculate group means and differences. Deterioration-free survival was from random assignment until the earliest of death, clinical progression, discontinuation of study treatment, or a worsening of 10 points or more from baseline in fatigue, physical function, cognitive function, or overall health and quality of life (OHQL). HRQL scores range from 0 (lowest possible) to 100 (highest possible).

RESULTS
HRQL was assessed in 1,042 of 1,125 participants (93%). Differences in means favored control over enzalutamide for fatigue (5.2, 95% CI, 3.6 to 6.9; \(P = .001\)), cognitive function (4.0, 95% CI, 2.5 to 5.5; \(P < .001\)), and physical function (2.6, 95% CI, 1.3 to 3.9; \(P < .001\)), but not OHQL (1.2, 95% CI, −0.2 to 2.7; \(P = .1\)). Deterioration-free survival rates at 3 years, and log-rank \(P\) values comparing the whole distributions, favored enzalutamide over control for OHQL (31% v 17%; \(P < .0001\)), cognitive function (31% v 20%; \(P = .001\)), and physical function (31% v 22%; \(P < .001\)), but not fatigue (24% v 18%; \(P = .16\)). The effects of enzalutamide on HRQL were independent of baseline characteristics.

CONCLUSION
Enzalutamide was associated with worsening of self-reported fatigue, cognitive function, and physical function, but not OHQL. Enzalutamide was associated with improved deterioration-free survival for OHQL, physical function, and cognitive function because delays in disease progression outweighed early deteriorations in these aspects of HRQL.

INTRODUCTION
Enzalutamide is a potent, oral, nonsteroidal, androgen receptor antagonist that increased overall survival in men with castration-resistant prostate cancer.1,2 ENZAMET (NCT02446405) is an ANZUP-led, international, randomized, phase III, cooperative group trial of enzalutamide versus an active control (physician’s choice of bicalutamide, nilutamide, or flutamide), used together with testosterone suppression, in recently diagnosed, metastatic, hormone-sensitive prostate cancer (HSPC). In 2019, we reported that treatment with early enzalutamide improved overall survival in metastatic HSPC within 3 years of follow-up.3 Here, we report on aspects of health-related quality of life (HRQL), a key secondary outcome in ENZAMET. Our aim was to determine the effects of enzalutamide...
CONTEXT

Key Objective
Enzalutamide prolonged overall survival and delayed progression when added to testosterone suppression for hormone-sensitive, metastatic prostate cancer in the ENZAMET trial. Determination of the effects of open-label enzalutamide on aspects of health-related quality of life (HRQL) was a prespecified secondary objective of ENZAMET.

Knowledge Generated
Enzalutamide was associated with worse mean self-ratings of fatigue, physical function, and cognitive function, but not overall health and quality of life. However, clinically significant declines attributable to enzalutamide occurred in a minority of participants. The adverse effects of enzalutamide on HRQL were additive to those of early docetaxel. These effects were most evident early in the treatment course. Enzalutamide was associated with net benefits in deterioration-free survival at 3 years despite these effects on HRQL.

Relevance
Effects on HRQL are important when considering the addition of a potent inhibitor of androgen signaling to testosterone suppression in men with hormone-sensitive, metastatic prostate cancer.

METHODS
Participants had prostate cancer with metastases evident on conventional imaging (computed tomography and/or radioisotope bone scanning with technetium) and were randomly assigned, in a 1:1 ratio, to open-label treatment with either enzalutamide 160 mg daily or an active control (physician’s choice of bicalutamide, nilutamide, or flutamide), together with testosterone suppression (luteinizing hormone—releasing hormone analog or orchidectomy). Random assignment was central and used minimization with a random element to stratify for volume of disease (high volume defined as the presence of visceral metastases and/or at least four bone lesions with at least one beyond the vertebral column and pelvis). Planned use of early chemotherapy with docetaxel, planned use of bone antiresorptive therapy, a comorbidity score of 2 or more according to the Adult Comorbidity Evaluation 27, and study site. Three months after ENZAMET had opened and accrued 88 men, the Protocol (online only) was amended to allow the use of early chemotherapy with docetaxel after presentation of results from CHAARTED. Planned use of early chemotherapy with docetaxel was declared before random assignment and comprised six cycles at a starting dose of 75 mg/m² of body surface area. The Protocol had ethics approval at all participating institutions, and all participants provided signed, written, informed consent.

HRQL Assessments
Assessments of HRQL were scheduled to occur at baseline, weeks 4 and 12, and then every 12 weeks until clinical progression. Clinical progression was defined by conventional imaging, development of symptoms attributable to cancer progression, or initiation of another treatment for prostate cancer.

Statistical Considerations
Primary and secondary analyses were specified a priori in a statistical analysis plan written before their conduct and reflected two ways of viewing effects on HRQL. The first was to summarize and compare self-ratings HRQL from random assignment until clinical progression. The second was to describe and compare times to first deterioration defined either by a clinically important worsening in a domain of HRQL or by clinical progression.

For HRQL until progression, scores over time were summarized by the treatment group and analyzed using a
repeated measures model (RMM) to calculate predicted group means, differences, 95% CIs, and P values on the basis of Wald tests. The RMM was specified within the general linear-mixed model framework, used a compound symmetry covariance matrix, and included covariates for randomly assigned treatment, baseline assessment, post-baseline assessment time point, and an interaction term for treatment-by-time point, all as fixed effects. The interaction term was removed to calculate the difference between groups across all postbaseline time points. Reference-based sensitivity analyses with multiple imputations were used to assess the effects of assuming HRQL data were missing at random.

Deterioration-free survival was formulated a priori as an end point reflecting net benefit during the interval from random assignment until clinical progression. It was defined as the time from random assignment until the earliest of the following events: a 10-point or greater deterioration from

| Table 1. Baseline Characteristics by Randomly Assigned Treatment |
|-------------------|-------------------|-----------------|
| Characteristic | Control (N = 522) | Enzalutamide (N = 520) |
| Age, years | 68.7 (8.2) | 68.8 (8.1) |
| | 68.8 (63.6-74.5) | 69.3 (63.2-74.5) |
| Range | 40.9-95.5 | 47.3-90.2 |
| Country, No. (%) | | |
| Australia | 296 (56.7) | 298 (57.3) |
| Canada | 100 (19.2) | 95 (18.3) |
| Ireland | 40 (7.7) | 38 (7.3) |
| New Zealand | 18 (3.4) | 16 (3.1) |
| The United Kingdom| 47 (9.0) | 57 (11.0) |
| The United States | 21 (4.0) | 16 (3.1) |
| Planned use of early docetaxel, No. (%) | 233 (44.6) | 237 (45.6) |
| Volume of disease, No. (%) | | |
| High | 279 (53.4) | 273 (52.5) |
| Low | 243 (46.6) | 247 (47.5) |
| ACE-27 strata, No. (%) | | |
| 0-1 | 387 (74.1) | 391 (75.2) |
| 2-3 | 135 (25.9) | 129 (24.8) |
| M stage at initial diagnosis, No. (%) | | |
| M0 (metachronous, recurrent metastatic) | 145 (27.8) | 147 (28.3) |
| M1 (synchronous, de novo metastatic) | 377 (72.2) | 373 (71.7) |
| Gleason score, No. (%) | | |
| ≤7 | 153 (29.3) | 138 (26.5) |
| 8-10 | 294 (56.3) | 312 (60.0) |
| Missing | 75 (14.4) | 70 (13.5) |
| ECOG PS, No. (%) | | |
| 0 | 380 (72.8) | 373 (71.7) |
| 1 | 137 (26.2) | 141 (27.1) |
| 2 | 5 (1.0) | 6 (1.2) |
| Visceral metastases | 65 (12.5) | 57 (11.0) |
| Treatment before random assignment, No. (%) | | |
| Adjuvant LHRHA | 35 (6.7) | 53 (10.2) |
| LHRHA | 387 (74.1) | 383 (73.7) |
| Docetaxel | 73 (14.0) | 87 (16.7) |

Abbreviations: ACE-27, Adult Comorbidity Evaluation 27; ECOG PS, Eastern Cooperative Oncology Group performance status; IQR, interquartile range; LHRHA, luteinizing hormone-releasing hormone analog; SD, standard deviation.
TABLE 2. Baseline HRQL Scores by Randomly Assigned Treatment

Aspect of HRQL	Control (N) Mean (SD)	Enzalutamide (N) Mean (SD)
Physical functioning	[518] 90.3 (14.0)	[517] 89.0 (15.0)
Role functioning	[518] 86.6 (23.0)	[516] 85.6 (22.9)
Emotional functioning	[521] 83.4 (16.5)	[524] 84.1 (16.6)
Cognitive functioning	[521] 88.6 (15.7)	[518] 88.2 (15.1)
Social functioning	[521] 87.5 (18.7)	[519] 87.1 (19.6)
OHQL	[518] 76.7 (18.5)	[519] 75.9 (18.9)
Fatigue	[518] 19.7 (18.1)	[517] 22.1 (19.9)
Nausea and vomiting	[518] 3.1 (8.9)	[517] 2.9 (7.8)
Pain	[522] 15.8 (20.2)	[520] 17.4 (22.5)
Dyspnea	[514] 9.0 (18.7)	[515] 10.7 (19.0)
Insomnia	[516] 25.2 (26.5)	[515] 26.3 (27.7)
Appetite loss	[516] 7.8 (18.0)	[518] 6.9 (16.5)
Constipation	[516] 11.8 (22.8)	[516] 11.3 (20.9)
Diarrhea	[519] 7.3 (16.6)	[520] 6.5 (16.2)
Financial problems	[517] 10.7 (22.3)	[517] 10.7 (22.8)
Urinary symptoms	[511] 18.9 (15.4)	[507] 19.8 (16.1)
Bowel symptoms	[520] 4.1 (7.5)	[508] 4.6 (8.1)
ADT symptoms	[522] 9.7 (9.2)	[519] 10.6 (10.8)
Sexual activity	[518] 77.5 (25.0)	[514] 77.6 (24.6)
Sexual functioning	[127] 40.4 (24.7)	[110] 48.2 (24.9)

Abbreviations: ADT, androgen deprivation therapy; HRQL, health-related quality of life; OHQL, overall health and quality of life; SD, standard deviation.

Some returned HRQL assessments had missing responses to some items that prevented calculation of a given scale score.

Baseline characteristics were similar among those assigned enzalutamide (Table 1) and among those who did and did not report HRQL (Data Supplement, online only). Scores for aspects of HRQL at baseline were similar among those assigned enzalutamide versus control (Table 2). Characteristics associated with worse OHQL at baseline included impaired ECOG performance status, metastatic disease at initial diagnosis, and high-volume disease, but not planned use of early chemotherapy with docetaxel or age 70 years and older (Table 3).

The median follow-up time was 34 months. The proportions of HRQL assessments expected that were received ranged from 93% at 4 weeks to 86% at 156 weeks (Data Supplement).

HRQL Over Time

Mean scores for aspects of HRQL by the randomly assigned treatment group are shown for each assessment point, and overall, in Figure 1 and the Data Supplement. OHQL differed little between men randomly assigned to enzalutamide versus control (overall means 72 v 73, difference 1.2, 95% CI, 0.2 to 2.7; P = .10). Scores at 12 weeks deteriorated to a greater extent in the enzalutamide group than controls (means 70 v 72, difference 1.9, 95% CI, 0.1 to 4.0; P = .07) and thereafter remained relatively stable. Differences in overall means for functional domains favored control over enzalutamide for physical functioning (2.6, 95% CI, 1.3 to 3.9; P < .001), role functioning (3.6, 95% CI, 1.5 to 5.7; P = .001), social functioning (3.3, 95% CI, 1.5 to 5.1; P < .001), and cognitive functioning (4.0, 95% CI, 2.5 to 5.5; P < .001), but not for emotional functioning.

Post hoc, subgroup analyses were used to examine if the effects of enzalutamide on HRQL were modified by baseline characteristics, particularly planned use of early chemotherapy with docetaxel. This was done by augmenting the previously described models by adding a main effect term for the characteristic and an interaction term for the effect of enzalutamide by characteristic. Evidence of effect modification is indicated by a low P value for the interaction term. Analyses included all participants who completed an assessment at baseline and at least one additional postbaseline time point. All CIs and P values are two-sided, without correction for multiplicity, and should be interpreted conservatively as evidence against the null hypothesis.

RESULTS

HRQL data were extracted from the study database on December 31, 2019, with a cutoff date of February 28, 2019, to match our first reported analysis of overall survival.4

HRQL was reported by 1,042 of 1,125 (93%) participants. Baseline characteristics were similar among those randomly assigned enzalutamide versus control (Table 1) and among those who did and did not report HRQL (Data Supplement, online only). Scores for aspects of HRQL at baseline were similar among those assigned enzalutamide versus control (Table 2). Characteristics associated with worse OHQL at baseline included impaired ECOG performance status, metastatic disease at initial diagnosis, and high-volume disease, but not planned use of early chemotherapy with docetaxel or age 70 years and older (Table 3).

The median follow-up time was 34 months. The proportions of HRQL assessments expected that were received ranged from 93% at 4 weeks to 86% at 156 weeks (Data Supplement).
TABLE 3. Clinical Correlates of Baseline Overall Health and Quality of Life

Variable	Mean	Difference (95% CI)	P
Planned use of early docetaxel			
No	75.8	−1.2 (−3.5 to 1.1)	.3160
Yes	76.9		
Comorbidity score (ACE-27 strata)			
0-1	76.9	2.3 (−0.4 to 4.9)	.0894
2-3	74.6		
ECOG PS			
0	79.9	13.0 (10.6 to 15.4)	<.0001
1-2	66.9		
M stage at initial diagnosis			
M0 (metachronous, recurrent metastatic)	80.6	6.0 (3.5 to 8.5)	<.0001
M1 (synchronous, de novo metastatic)	74.6		
Volume of disease strata			
High	74.9	−2.9 (−5.2 to −0.6)	.0121
Low	77.8		
Age, years			
< 70	76.4	0.2 (−2.1 to 2.5)	.8615
≥ 70	76.2		

Abbreviations: ACE-27, Adult Comorbidity Evaluation 27; ECOG PS, Eastern Cooperative Oncology Group performance status.

(P = .8). The trajectories for these functional domains were similar to those for OHQL.

Differences in overall means for selected symptoms favored control over enzalutamide for fatigue (5.2, 95% CI, 3.6 to 6.9; P < .001), appetite loss (2.5, 95% CI, 1.0 to 4.0; P = .003), urinary symptoms (1.9, 95% CI, 0.6 to 3.1; P = .05), and dyspnea (1.8, 95% CI, 0.0 to 3.5; P = .05), but not pain, nausea and vomiting, insomnia, constipation, diarrhea, hormonal symptoms, and sexual activity or sexual dysfunction (all P > .08).

The observed differences between the randomly assigned treatment groups in HRQL scores over time, and their upper 95% CI, were less than the predefined clinically important difference of 10 points for all aspects of HRQL.

Sensitivity analyses yielded similar results and conclusions. Boxplots of actual HRQL scores over time and of predicted scores from the RMM can be found in the Data Supplement. Sensitivity analyses assuming unstructured covariances can be found in the Data Supplement.

Early deteriorations in key aspects of HRQL were more evident with enzalutamide than control for physical function, fatigue, and cognitive function, but not OHQL (Fig 1).

To explore these early effects, we evaluated the frequency of a 10-point or greater deterioration from baseline during the first 12 weeks as a specific, patient-reported indicator of the adverse effects of treatment (Fig 2A). This confirmed that early deteriorations in HRQL were more frequent among men assigned enzalutamide than control for fatigue (difference 13%, 95% CI, 7 to 20), cognitive function (9%, 95% CI, 3 to 15), and physical function (6%, 95% CI, 1 to 12), but not OHQL (1.3%, 95% CI, −4 to 7). These analyses also showed that early deteriorations were common in the control group, untreated with enzalutamide, ranging from 24% of participants for physical functioning to 46% of participants for fatigue. These frequencies included participants treated with early docetaxel, so we also evaluated the frequencies of early deteriorations in subgroups classified by physician-assigned plan for early chemotherapy with docetaxel (Fig 2B). These analyses confirmed that early deteriorations were also common in control group members untreated with early chemotherapy, ranging from 19% of participants for physical functioning to 43% for fatigue, and that the modest detrimental effects associated with enzalutamide were additive and independent to those of concurrent treatment with early docetaxel. Similar effects were seen on the frequencies of 10-point or greater improvements from baseline to 12 weeks (Data Supplement).

Deterioration-Free Survival

Kaplan-Meier curves for deterioration-free survival by the randomly assigned treatment group are shown in Figure 3. Drops in the curves over the first 3 months, mainly attributable to early deteriorations in HRQL because of treatment, were greater with enzalutamide than control for physical function, fatigue, and cognitive function, but not OHQL. However, benefits in disease control attributable to enzalutamide resulted in crossing of the curves beyond 6 months such that improved deterioration-free survival rates at 3 years, and log-rank P values comparing the whole distributions, favored enzalutamide over control for physical functioning (31% v 22%; P = .0013), cognitive functioning (31% v 20%; P < .001), and OHQL (31% v 17%; P < .001), but not fatigue (24% v 18%; P = .16). Cumulative incidence functions separating the components of deterioration-free survival can be found in the Data Supplement.

Early Chemotherapy With Docetaxel and Other Subgroup Effects

Subgroup analyses on the basis of interaction tests for prespecified baseline characteristics recorded before random assignment were used to determine if the effects of enzalutamide were modified by these characteristics. These analyses indicated that planned early chemotherapy with docetaxel, assigned by physicians, did not modify the effect of randomly assigned enzalutamide on HRQL scores until progression (all P > .14, Data Supplement), deterioration-free survival (all P > .06, Data Supplement), or early deteriorations in HRQL (all P > .5, Data Supplement). These analyses indicate that the effects of enzalutamide and planned early docetaxel on HRQL were independent, incremental, and approximately additive.
FIG 1. Health-related quality of life scores over time by randomly assigned treatment for (A) the EORTC core quality-of-life questionnaire and (B) EORTC QLM-PR25. *P < .05, **P < .01, ***P < .001. ADT, androgen deprivation therapy; EORTC, European Organisation for Research and Treatment of Cancer; EORTC QLM-PR25, European Organisation for Research and Treatment of Cancer disease-specific module for prostate cancer; OHQL, overall health and quality of life.
DISCUSSION

Treatment with enzalutamide was associated with worse self-ratings of fatigue, physical function, and cognitive function, but not OHQL. Differences between the randomly assigned treatment groups, and their upper 95% confidence limits, were below our prespecified threshold for a minimum clinically important difference of 10 points (on a scale from 0 to 100). These effects were apparent within 3 months of starting study treatment and remained relatively constant thereafter. Men randomly assigned to enzalutamide were more likely to have early deteriorations in fatigue, physical function, and cognitive function, regardless of early chemotherapy with docetaxel. Despite these early impairments in aspects of HRQL, delays in clinical progression because of treatment with enzalutamide led to net benefits in deterioration-free survival. Mean scores for aspects of HRQL at baseline among all trial participants reflected a low burden of cancer-related symptoms and good quality of life on aggregate, similar to reference norms from a population-based sample of Australian men. However, men with high-volume disease at baseline, or with metastatic disease at initial diagnosis, reported worse OHQL than their counterparts.

Our findings add to accumulating evidence about potent inhibitors of androgen signaling in HSPC. Enzalutamide had little effect on OHQL in ENZAMET, similar to findings from the ARCHES trial of enzalutamide, the TITAN trial of apalutamide, and the LATITUDE trial of abiraterone. However, unlike ARCHES, TITAN, and LATITUDE, we report that modest detrimental effects of enzalutamide on fatigue, physical function, and self-rated cognitive function, that occurred early, were of a clinically important magnitude in a minority of patients and did not worsen over time. The detrimental effects of enzalutamide on aspects of HRQL were additive and independent of concurrent treatment with docetaxel. ENZAMET differs from ARCHES, TITAN, and LATITUDE in two important ways. First, ENZAMET was an open-label trial, rendering it susceptible to over-reporting of adverse effects documented in the participant information. Second, ENZAMET was the only trial that tested a novel antiandrogen given concurrently with docetaxel; ARCHES, TITAN, and LATITUDE required completion of early chemotherapy before random assignment.

The main strengths of this study are its randomized design, large sample size, high completion of HRQL assessments, active treatment in the control group, and concurrent use of enzalutamide with docetaxel in 48% of participants. The study had high power to detect clinically important differences between treatment groups and clinically important modifications of the treatment effect in major subgroups. These strengths support our conclusion that the impairments in HRQL associated with enzalutamide were generally modest and of similar magnitude, regardless of planned early chemotherapy with docetaxel.

The main limitations of these analyses are that HRQL was assessed only until progression and for a maximum of 3 years. HRQL beyond progression is affected by subsequent...
treatments that were left to treating physicians. The follow-up time of 3 years matches our first interim analysis of overall survival. Follow-up is ongoing to determine the effects of enzalutamide beyond 3 years.

The addition of early enzalutamide to standard of care, including testosterone suppression with or without early docetaxel, improved overall survival during 3 years of follow-up with modest impairments in fatigue, physical function, and self-rated cognitive function, but not OHQL, in men with recently diagnosed, metastatic, HSPC. These impairments did not worsen over time, and better disease control improved deterioration-free survival rates at 3 years because the modest detrimental effects on aspects of HRQL were outweighed by subsequent delays in disease progression. Longer follow-up will reveal the effects of enzalutamide beyond 3 years.

AFFILIATIONS

1NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
2Monash University, Melbourne, Victoria, Australia
3CEMPE: The University of Sydney Centre for Medical Psychology and Evidence-Based Decision-Making, Sydney, NSW, Australia
4Port Macquarie Base Hospital, Port Macquarie, New South Wales, Australia
5BC Cancer Agency Vancouver Centre, Vancouver, BC, Canada
6Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
7Chris O’Brien Lifehouse, Sydney, New South Wales, Australia
8Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, New South Wales, Australia
9Auckland District Health Board, Auckland, New Zealand
10Sydney Adventist Hospital, Sydney, NSW, Australia
11Cancer Trials Ireland, Dublin, Ireland
12St Vincent’s University Hospital, Dublin, Ireland
13ANZUP Cancer Trials Groups, Sydney, NSW, Australia
14Cross Cancer Institute, Edmonton, Alberta, Canada

FIG 3. Kaplan-Meier curves for deterioration-free survival by randomly assigned treatment: (A) physical functioning, (B) OHQL, (C) cognitive functioning, and (D) fatigue. OHQL, overall health and quality of life.
Health-Related Quality of Life in ENZAMET

13. Adelaide Cancer Centre, Adelaide, South Australia, Australia
14. Canadian Cancer Trials Group, Kingston, Ontario, Canada
15. Monash Health, Melbourne, Victoria, Australia
16. University of Ottawa, Ottawa, Ontario, Canada
17. Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
18. Waikato District Health Board, Hamilton, New Zealand
19. Royal Adelaide Hospital, Adelaide, South Australia, Australia
20. Royal Cornwall Hospital, Cornwall, United Kingdom
21. Kingston Health Sciences Centre, Kingston, Ontario, Canada
22. Orange Health Service, Orange, New South Wales, Australia
23. Dana-Farber Cancer Institute, Boston, MA

CORRESPONDING AUTHOR
Martin R. Stockler, MBBS, MSc, NHMRC Clinical Trials Centre, University of Sydney, Level 6, Chris O’Brien Lifehouse RPA, Missenden Rd, Camperdown, Australia; e-mail: Martin.Stockler@sydney.edu.au.

PRIOR PRESENTATION
Presented in part at European Society of Medical Oncology Congress, September 29, 2019, Barcelona, Spain.

SUPPORT
Financial support and enzalutamide provided by Astellas. ANZUP receives infrastructure funding from the Australian Government through Cancer Australia’s Support for Cancer Clinical Trials Program. I.D.D. was supported by an NHMRC Practitioner Fellowship (APP1102604). The NHMRC Clinical Trials Centre is supported by NHMRC Program Grant Nos. 1037786 and 1150467. The Canadian Cancer Trials Group is supported by Canadian Cancer Society Grant No. 704970.

CLINICAL TRIAL INFORMATION
NCT02446405 (ENZAMET)

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.21.00941.

AUTHOR CONTRIBUTIONS
Conception and design: Martin R. Stockler, Andrew J. Martin, Ian D. Davis, Xanthi Coskinas, Margaret McJannett, Scott G. Williams, Christopher J. Sweeney
Financial support: Martin R. Stockler, Ian D. Davis, Xanthi Coskinas, Wendy E. Hague, Margaret McJannett, Christopher J. Sweeney
Administrative support: Martin R. Stockler, Ian D. Davis, Wendy R. Parulekar, Simon Chowdhury, Wendy E. Hague, John McCaffrey, Ray McDermott, Margaret McJannett, Francisco Vera-Badillo, Diana G. Winter, Christopher J. Sweeney
 Provision of study materials or patients: Martin R. Stockler, Ian D. Davis, Stephen D. Begbie, Kim N. Chi, Simon Chowdhury, Mark Frydenberg, Anthony M. Joshua, Gwinn M. Marx, John McCaffrey, Ray McDermott, Scott A. North, Francis Parnis, Wendy R. Parulekar, David W. Pook, Shahneen Sandhu, Alvin Tan, Thean Hsiang Tan, Alastair Thomson, Robert R. Zielinski, Christopher J. Sweeney
 Collection and assembly of data: Martin R. Stockler, Ian D. Davis, Kim N. Chi, Simon Chowdhury, Xanthi Coskinas, Mark Frydenberg, Wendy E. Hague, Lisa G. Horvath, Anthony M. Joshua, Nicola J. Lawrence, Gwinn M. Marx, John McCaffrey, Ray McDermott, Margaret McJannett, Scott A. North, Francis Parnis, Wendy R. Parulekar, David W. Pook, Shahneen Sandhu, Alvin Tan, Thean Hsiang Tan, Alastair Thomson, Francisco Vera-Badillo, Diana G. Winter, Alison Y. Zhang, Christopher J. Sweeney
 Data analysis and interpretation: Martin R. Stockler, Andrew J. Martin, Ian D. Davis, Haryana M. Dhillon, Stephen D. Begbie, Kim N. Chi, Mark Frydenberg, Anthony M. Joshua, Nicola J. Lawrence, Ray McDermott, Margaret McJannett, Scott A. North, Francis Parnis, Wendy R. Parulekar, M. Neil Reamde, Thean Hsiang Tan, Alastair Thomson, Francisco Vera-Badillo, Scott G. Williams, Sonia Yip, Alison Y. Zhang, Robert R. Zielinski, Christopher J. Sweeney
 Manuscript writing: All authors
 Final approval of manuscript: All authors
 Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT
We acknowledge and thank the 1,125 patients for their participation in the ENZAMET study and the principal investigators, coinvestigators, and study coordinators at the 83 centers across Australia, New Zealand, Canada, the United Kingdom, and Ireland for their dedication and enthusiasm. Thanks also to the members and staff of the ANZUP Board, Scientific Advisory Committee, Prostate Cancer Subcommittee, Consumer Advisory Panel, and Independent Data Safety and Monitoring Committee; NHMRC Clinical Trials Centre; Canadian Cancer Trials Group; and Cancer Trials Ireland; and Majid Tabesh and Pádraig Moran. We also acknowledge and thank Astellas for provision of financial support and enzalutamide.

REFERENCES
1. Scher HI, Fizazi K, Saad F, et al; Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187-1197, 2012
2. Beer TM, Armstrong AJ, Ruthkopf D, et al: Enzalutamide in men with chemotherapy-naïve metastatic castration-resistant prostate cancer: Extended analysis of the phase 3 PRÉVAIL study. Eur Urol 71:151-154, 2017
3. Davis ID, Martin AJ, Stockler MR, et al: ENZAMET trial investigators and the Australian and New Zealand urogenital and prostate cancer trials group. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med 381:121-131, 2019
4. Sweeney CJ, Chen YH, Carducci M, et al: Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 373:737-746, 2015
5. Piccirillo JF, Tierney RM, Costas L, et al: Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA 291:2441-2447, 2004
6. Aaronson NK, Ahmedzai S, Bergman B, et al: The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in International Clinical Trials in Oncology. J Natl Cancer Inst 85:365-376, 1993
7. van Andel G, Bottomley A, Fossá SD, et al: An international field study of the EORTC QLQ-PR25: A questionnaire for assessing the health-related quality of life of patients with prostate cancer. Eur J Cancer 44:2418-2424, 2008
8. Janssen MF, Pickard AS, Golicki D, et al: Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: A multi-country study. Qual Life Res 22:1717-1727, 2013
9. Martin AJ, Gibbs E, Sjoquist K, et al: Health-related quality of life associated with regorafenib treatment in refractory advanced gastric adenocarcinoma. Gastric Cancer 21:473-480, 2018
10. Cocks K, King MT, Velikova G, et al: Evidence-based guidelines for interpreting change scores for the European organisation for the Research and treatment of cancer quality of life questionnaire core 30. Eur J Cancer 48:1713-1721, 2012
11. Mercieca-Bebber R, Costa DS, Norman R, et al: The EORTC quality of life questionnaire for cancer patients (QLQ-C30): Australian general population reference values. Med J Aust 210:499-506, 2019
12. Stenzl A, Dunshee C, De Giorgi U, et al: Effect of enzalutamide plus androgen deprivation therapy on health-related quality of life in patients with metastatic hormone-sensitive prostate cancer: An analysis of the ARCHES randomized, placebo-controlled, phase 3 study. Eur Urol 78:603-614, 2020
13. Agarwal N, McQuarrie K, Bjartell A, et al: TITAN investigators. Health-related quality of life after apalutamide treatment in patients with metastatic castration-sensitive prostate cancer (TITAN): A randomized, placebo-controlled, phase 3 study. Lancet Oncol 20:1518-1530, 2019
14. Chi KN, Protheroe A, Rodriguez-Antolin A, et al: Patient-reported outcomes following abiraterone acetate plus prednisone added to androgen deprivation therapy in patients with newly diagnosed metastatic castration-naive prostate cancer (LATITUDE): An international, randomized phase 3 trial. Lancet Oncol 19:194-206, 2018
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Health-Related Quality of Life in Metastatic, Hormone-Sensitive Prostate Cancer: ENZAMET (ANZUP 1304), an International, Randomized Phase III Trial Led by ANZUP

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rcwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Ray McDermott
Stock and Other Ownership Interests: Bayer
Honoraria: Sanofi, Janssen, Astellas Pharma, Bristol Myers Squibb, Merck Sharp & Dohme, Pfizer, Novartis, Clovis Oncology
Consulting or Advisory Role: MSD Oncology
Research Funding: Janssen, Bayer, Astellas Pharma
Expert Testimony: Pfizer
Travel, Accommodations, Expenses: Janssen-Cilag, Roche, Ipsen
Scott A. North
Stock and Other Ownership Interests: Janssen-Ortho
Honoraria: Astellas Pharma, Pfizer, Sanofi, Merck, Roche Canada, BMS
Consulting or Advisory Role: Sanofi, Pfizer, Roche Canada, Merck, AstraZeneca, Janssen, Bristol Myers Squibb, EMD Serono
Speakers’ Bureau: Astellas Pharma
Research Funding: Janssen, AstraZeneca
Expert Testimony: AstraZeneca
Travel, Accommodations, Expenses: Astellas Pharma
Francis Parnis
Honoraria: Janssen Oncology
Consulting or Advisory Role: Ipsen, Merck Serono
M. Neil Reaume
Stock and Other Ownership Interests: Novartis
Honoraria: Ipsen, AstraZeneca, Pfizer, EMD Serono
Speakers’ Bureau: AstraZeneca
Shahneen Sandhu
Stock and Other Ownership Interests: Bristol Myers Squibb
Honoraria: Merck, Merck Serono, AstraZeneca
Consulting or Advisory Role: Merck Sharp & Dohme, Bristol Myers Squibb, Roche, Bristol Myers Squibb
Speakers’ Bureau: Merck, Roche/Genentech, Amgen
Research Funding: AstraZeneca, Merck, Endocyte/Advanced Accelerator Applications, Genentech/Roche, Novartis
Thean Hsiang Tan
Speakers’ Bureau: Janssen Oncology
Alastair Thomson
Consulting or Advisory Role: Novartis, Roche
Speakers’ Bureau: Genomic Health, Novartis, Lilly
Travel, Accommodations, Expenses: Ipsen, BMS, Astellas Pharma, EUSA Pharma
Francisco Vera-Badillo
Honoraria: Bayer
Consulting or Advisory Role: AstraZeneca, Janssen Oncology
Speakers’ Bureau: AstraZeneca/MedImmune
Scott G. Williams
Honoraria: Amgen
Consulting or Advisory Role: Janssen
Expert Testimony: Astellas Pharma
Alison Y. Zhang
Stock and Other Ownership Interests: Astellas Pharma
Honoraria: Mundipharma, AstraZeneca, Pfizer, Bayer, MSD Oncology, Merck Sharp & Dohme
Consulting or Advisory Role: Janssen Oncology, Pfizer, Merck
Robert R. Zielinski
Stock and Other Ownership Interests: BMS
Honoraria: Pfizer, Roche/Genentech
Consulting or Advisory Role: MSD Oncology
Speakers’ Bureau: BMS
Research Funding: AstraZeneca

Martin R. Stockler
Speakers’ Bureau: Astellas Pharma
Research Funding: Astellas, Celgene, Bayer, Bionomics, Medivation, Sanofi, Pfizer, AstraZeneca, Bristol Myers Squibb, Roche, Amgen, Merck Sharp & Dohme, Tilitray, BeiGene
Expert Testimony: Medivation/Pfizer

Ian D. Davis
Research Funding: Astellas Pharma, Pfizer, Roche/Genentech, MSD Oncology, AstraZeneca, Janssen Oncology, Eisai, Bayer, Amgen, Bristol Myers Squibb, Movember Foundation, Excelixis, Ipsen, Medivation, Seagen
Patents, Royalties, Other Intellectual Property: International Patent Application No. PCT/US2004/032147 (NY-ESO-1) through Ludwig Institute for Cancer Research

Haryana M. Dhillon
Honoraria: Janssen Oncology

Stephen D. Begbie
Honoraria: Janssen Oncology
Consulting or Advisory Role: Astellas Pharma, MSD Oncology, Merck Serono
Speakers’ Bureau: Astellas Medivation
Research Funding: Merck Serono, Janssen Oncology, Boston Biomedical, Pfizer/EMD Serono, Bristol Myers Squibb

Kim N. Chi
Stock and Other Ownership Interests: Janssen
Honoraria: Astellas Pharma, Bayer, AstraZeneca, Roche, Merck, ESSA
Consulting or Advisory Role: Astellas Pharma, Janssen, Sanofi, Amgen, Bayer, AstraZeneca, Roche, POINT Biopharma, Daiichi Sankyo, Merck, Constellation Pharmaceuticals
Speakers’ Bureau: Janssen
Research Funding: Astellas Pharma, Bayer, Sanofi, Bristol Myers Squibb, Merck, Roche, AstraZeneca, Novartis, Pfizer, ESSA
Patents, Royalties, Other Intellectual Property: AstraZeneca
Expert Testimony: Novartis

Simon Chowdhury
Stock and Other Ownership Interests: Clovis Oncology
Honoraria: Novartis, Clovis Oncology
Consulting or Advisory Role: Astellas Pharma, Bayer, Pfizer, Janssen-Cilag, BeiGene, Novartis
Speakers’ Bureau: Janssen-Cilag, Sanofi/Aventis

Mark Frydenberg
Employment: Genesis Cancer Care, Telix Pharmaceuticals

Lisa G. Horvath
Employment: Connected Medical Solutions
Leadership: Connected Medical Solutions
Stock and Other Ownership Interests: Imagn Biosystems
Honoraria: Imagn Biosystems
Speakers’ Bureau: Astellas Pharma
Expert Testimony: Astellas Pharma
Travel, Accommodations, Expenses: Janssen-Cilag, Pfizer

Anthony M. Joshua
Stock and Other Ownership Interests: Pricilium Therapeutics
Consulting or Advisory Role: Neoleukin Therapeutics, Janssen Oncology, Ipsen, AstraZeneca, Sanofi, Noxopharm, IQvia, Pfizer, Novartis, Bristol Myers Squibb, Merck Serono, Eisai
Research Funding: Bristol Myers Squibb, Janssen Oncology, Merck Sharp & Dohme, Mayne Pharma, Roche/Genentech, Bayer, Macrogenics, Lilly, Pfizer, AstraZeneca, Corvus Pharmaceuticals, Lilly

Gavin M. Marx
Stock and Other Ownership Interests: Janssen
Honoraria: Roche
Consulting or Advisory Role: Janssen

Ray McDermott
Stock and Other Ownership Interests: Bayer
Honoraria: Sanofi, Janssen, Astellas Pharma, Bristol Myers Squibb, Merck Sharp & Dohme, Pfizer, Novartis, Clovis Oncology
Consulting or Advisory Role: MSD Oncology
Research Funding: Janssen, Bayer, Astellas Pharma
Expert Testimony: Pfizer
Travel, Accommodations, Expenses: Janssen-Cilag, Roche, Ipsen

Scott A. North
Stock and Other Ownership Interests: Janssen-Ortho
Honoraria: Astellas Pharma, Pfizer, Sanofi, Merck, Roche Canada, BMS
Consulting or Advisory Role: Sanofi, Pfizer, Roche Canada, Merck, AstraZeneca, Janssen, Bristol Myers Squibb, EMD Serono
Speakers’ Bureau: Astellas Pharma
Research Funding: Janssen, AstraZeneca
Expert Testimony: AstraZeneca
Travel, Accommodations, Expenses: Astellas Pharma

Francis Parnis
Honoraria: Janssen Oncology
Consulting or Advisory Role: Ipsen, Merck Serono

M. Neil Reaume
Stock and Other Ownership Interests: Novartis
Honoraria: Ipsen, AstraZeneca, Pfizer, EMD Serono
Speakers’ Bureau: AstraZeneca

Shahneen Sandhu
Stock and Other Ownership Interests: Bristol Myers Squibb
Honoraria: Merck, Merck Serono, AstraZeneca
Consulting or Advisory Role: Merck Sharp & Dohme, Bristol Myers Squibb, Roche, Bristol Myers Squibb
Speakers’ Bureau: Merck, Roche/Genentech, Amgen
Research Funding: AstraZeneca, Merck, Endocyte/Advanced Accelerator Applications, Genentech/Roche, Novartis

Thean Hsiang Tan
Speakers’ Bureau: Janssen Oncology

Alastair Thomson
Consulting or Advisory Role: Novartis, Roche
Speakers’ Bureau: Genomic Health, Novartis, Lilly
Travel, Accommodations, Expenses: Ipsen, BMS, Astellas Pharma, EUSA Pharma

Francisco Vera-Badillo
Honoraria: Bayer
Consulting or Advisory Role: AstraZeneca, Janssen Oncology
Speakers’ Bureau: AstraZeneca/MedImmune

Scott G. Williams
Honoraria: Amgen
Consulting or Advisory Role: Janssen
Expert Testimony: Astellas Pharma

Alison Y. Zhang
Stock and Other Ownership Interests: Astellas Pharma
Honoraria: Mundipharma, AstraZeneca, Pfizer, Bayer, MSD Oncology, Merck Sharp & Dohme
Consulting or Advisory Role: Janssen Oncology, Pfizer, Merck

Robert R. Zielinski
Stock and Other Ownership Interests: BMS
Honoraria: Pfizer, Roche/Genentech
Consulting or Advisory Role: MSD Oncology
Speakers’ Bureau: BMS
Research Funding: AstraZeneca
Christopher J. Sweeney
Stock and Other Ownership Interests: Leuchemix
Consulting or Advisory Role: Sanofi, Janssen Biotech, Astellas Pharma, Bayer, Genentech/Roche, AstraZeneca, Pfizer, Amgen, Lilly
Research Funding: Janssen Biotech, Astellas Pharma, Sanofi, Bayer, Dendreon, Pfizer
Patents, Royalties, Other Intellectual Property: Leuchemix, Parthenolide, Dimethylaminoparthenolide; Exelixis: Abiraterone plus cabozantinib combination

No other potential conflicts of interest were reported.