The initiation temperatures in nanothermite reactions

V.G. Myagkov
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036
Krasnoyarsk, Russia
ORCID 0000-0002-3276-0309
E-mail: miagkov@iph.krasn.ru

Abstract

An assumption on general regularities and chemical mechanisms of solid-state reactions in nanofilms and nanothermite mixtures is made. It is demonstrated that the moving force of all Al-based nanothermite reactions is the synthesis of the Al₂O₃ phase with a high negative enthalpy of formation. According to this assumption, all Al-based nanothermite reactions should have the same initiation temperature \(T_{in} \). Indeed, an analysis of literature data shows that the synthesis of the Al₂O₃ phase in Al/Fe₂O₃, Al/CuO, Al/Co₃O₄, Al/MoO₃, Al/Bi₂O₃, and Al/NiO nanothermite mixtures starts at the same temperature \(T_{in} \sim 510°C \). We also demonstrate the same initiation temperatures \(\sim 250°C, \sim 300°C \), and \(\sim 180°C \) for Zr-, Mg- and In-based nanothermite reactions, respectively. It is predicted that nanothermite reactions based on other fuels have their own initiation temperatures.

Keywords: Solid-state reactions, Nanofilms, Nanothermite reactions, First phase, Initiation temperature.

1. Introduction

The control and predictability of the synthesis of new materials is one of the most fundamental challenges in material science. The traditional approach to this problem is to use the prediction of crystal structure from first principles [1-4]. However, now the lack of control and predictability are indeed notorious characteristics of the synthesis of new materials [5]. The prediction of the phases in binary systems that will be formed during the thin film solid-state reaction has been a subject of numerous studies, and different empirical rules have been developed for predicting first phase formation [6-14].

Studies of solid-state reactions in nanolayers have shown three fundamental features that strongly distinguish them from bulk powders:
(i) Formation of only the first phase at the film reagent interface at a certain temperature \(T_{in} \) called the initiation (formation) temperature. As the annealing temperature is increased, other phases can occur and form the phase sequence [11-14].

(ii) The threshold of the reaction, characterized by intense intermixing at the interface and formation of compounds, arises at temperatures above the initiation (formation) temperature \(T_{in} \). The values of \(T_{in} \) in the first phase can be about room temperature [15, 16] or even at cryogenic temperatures [17-20]

(iii) Migration of the dominant diffusing species through the interface during first phase formation [13, 21, 22].

The formation of only the first phase among equilibrium phases, low initiation temperatures, and migration of the dominant diffusing species are unique, unexplained features of solid-state reactions in nanofilms. From the above results it follows that the first phase and its initiation temperature \(T_{in} \) are control characteristics of the thin film solid-state reactions.

2. Presentation of the hypothesis

Over the past decade, investigations focused on the nanoenergetic materials, such as reactive multilayer thin films [23, 24] and nanostructured reactive mixtures [25-27]. Thermite mixtures belong to a wide class of energetic materials that comprise a metal fuel (e.g., Al, Mg, or B) and an oxidizer (e.g., Fe\(_2\)O\(_3\), MoO\(_3\), CuO, Bi\(_2\)O\(_3\), or WO\(_3\)). These mixtures react with a lot of heat release; therefore, the thermite reactions often occur in a self-sustaining mode [28-30]. Typical thermite mixtures contain micron particles and have a combustion wave velocity of 1-20 m/s. In recent years, there has been an increasing interest in nanothermites (superthermites) where the particle size is reduced to a few nanometers. In nanothermite mixtures, the combustion wave velocity grows to 1000 m/s [25-27]. Studies of nanothermite combustion are mainly aimed at measuring the combustion wave velocity, burning temperature, delay time, and their dependences on density, morphology, and composition of the reaction mixture. Despite the intense investigations of thermite reactions, their general regularities and mechanisms remain unclear. Currently, the classical nanothermite Goldschmidt reaction \(\text{Fe}_2\text{O}_3 + 2\text{Al} = \text{Al}_2\text{O}_3 + 2\text{Fe} \) and other Al-based reactions are well studied.

In this work, we extend the existing concepts of the first phase and its initiation temperature \(T_{in} \), which describe the initial stage of solid-state reactions in nanofilms onto thermite reactions and demonstrate that in all Al-based nanothermite mixtures the synthesis of the Al\(_2\)O\(_3\) phase starts at the same initiation temperature \(T_{in} \sim 510^\circ\text{C} \). These results open up a way for understanding the exclusive role of the initiation temperature \(T_{in} \) in the solid-state
reactions at the nanoscale. Our previous studies and the analysis of solid-state thin film reactions for many bilayers have shown that the initiation temperatures T_{in} often coincide with temperatures T_K of structural phase transformations ($T_{in} = T_K$). In particular, initiation temperatures $T_{in}(Cu/Au)$ and $T_{in}(Ni/Fe)$ of reactions in the Cu/Au and Ni/Fe bilayers coincide with the minimum temperature of the order-disorder phase transition in Cu-Au \cite{31} and the eutectoid decomposition temperature in the Fe-Ni system \cite{32}, respectively. In Ni/Al and Cd/Au films, the reactions start at the temperature of the inverse martensitic transformation in the Ni-Al \cite{33} and Cd-Au \cite{34} binary systems, respectively. The equality $T_{in} = T_K$ was also established for the eutectic reactions, superionic transition, and spinodal decomposition in Al/Ge \cite{35}, Se/Cu \cite{36}, and Mn/Ge \cite{37, 38} films, respectively. The equality $T_{in} = T_K$ indicates the common nature of chemical interactions that control both solid-state reactions in thin films and solid-state transformations.

3. Testing of the hypothesis

The above results demonstrate that the first phase and its temperature T_{in} are the fundamental characteristics of a reaction bilayer. It follows that low-temperature reactions occur only between the reacting layers whose reaction products have low-temperature solid-state transformations. Therefore, the study of phase sequences in reaction couples makes it possible to refine and supplement the phase equilibrium diagrams especially in low-temperature part. Thus, recently we investigated the reaction in Ge/Mn bilayers and confirmed the existence of spinodal decomposition in an in Ge-Mn system at 120°C. It is important to note that the formation of the first Mn$_5$Ge$_3$ phase was independent of whether Mn and Ge atoms are in a solid solution or in Ge/Mn bilayers \cite{37, 38}.

The one important characteristic of reactive multilayer films is the ignition temperature T_{ig}, which can be defined as a minimum temperature of onset of a self-sustaining reaction for a given experiment \cite{23, 24}. As known, the self-sustaining regime of reaction arises when the rate of heat generation $Q_{reaction}$ overcomes the rate of heat losses Q_{loss} ($Q_{reaction} > Q_{loss}$). Unlike T_{ig}, the initiation temperature T_{in} is the start temperature of reactions at which the rate of heat generation $Q_{reaction}$ is less than the rate of heat losses Q_{loss} ($Q_{reaction} < Q_{loss}$) and so the initiation temperature T_{in} is always less than the ignition temperature T_{ig} ($T_{in} < T_{ig}$). As discussed above the initiation temperature T_{in} is the threshold temperature: no reaction below T_{in} and reaction initiate just the temperature of sample overcomes T_{in}. Thus, the initiation temperature T_{in} is the characteristic temperature of our given reaction couple. In contrast to T_{in}, the ignition temperature T_{ig} is a kinetic quantity that depends on the heating rate and the rate of heat loss. Nevertheless, Frits et
al. have recently shown that, similar to T_{in}, the ignition temperature T_{ig} in Ni/Al multilayers with a given bilayer thickness is a threshold temperature because in hot plate experiments the multilayers do not ignite when the specimens are heated to temperatures just 1°C below T_{ig} [39].

The enthalpy of formation of the first phase is a good measure of the free energy variation during the solid-state interaction; therefore, the heats of formation were used in several initial models to predict the first phase and phase sequence formation. Pretorius et al. [13] proposed an effective model for the enthalpy of formation, which was successfully used for predicting the first phase formation in many binary systems.

As mentioned above, with the increasing of the temperature of the bilayer above T_{in} leads to the beginning of intermixing of the reagents and first phase synthesis on the interface and consequently physical characteristics of the film samples, such as electrical resistance, magnetization, transparence, and heat release, begin to radically change. Obviously, the start temperature of these changes is the reaction initiation temperature T_{in}. In most cases the energetic properties of thermite nanocomposites were investigated by differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). In this case the initiation temperature T_{in} is the temperature at which heat release starts. An important characteristic of the DSC curves is also the exothermic peak temperature, which, unlike the initiation temperature T_{in}, depends on the heat removal conditions from the reaction zone.

It is important to note that the contaminants that form on the reagent interface during various methods of sample preparation (especially for chemically produced samples) can form thin barrier layers that slightly change the initiation temperature of T_{in} but do not suppress the reaction. An error in finding the exact value of the initiation temperature T_{in} can also follow from the certain inaccuracy in determining T_{in} from DTA, TGA and DSC plots. To find the exact T_{in} value, low heating rates are required. Therefore, we referred only to the studies in which the heat release curves were obtained at minimum heating rates (5, 10 or 20 °C/min).

The main results of the work are summarized in the schematic diagram in Figure 1, showing the initiation temperature $T_{in} \sim 510°C$ of the Al$_2$O$_3$ phase in Al/Fe$_2$O$_3$, Al/Co$_3$O$_4$, Al/NiO, Al/MnO$_2$, Al/Bi$_2$O$_3$, Al/CuO, Al/MoO$_3$ nanothermite reactions and oxidation of Al nanomaterials.

3. Implication of the hypothesis

3.1. The initiation temperature $T_{in} \sim 510°C$ of the Al-based nanothermite reactions
It can be seen from Tables 1–4 that, taking into account the errors in measuring the DTA, TGA, DSC curves, and magnetic and resistivity plots by different authors, the initiation temperatures of all Al-based nanothermite reactions are centered around ~ 510 °C. As can be seen from Tables 1-4, at heating rates 5, 10, 20 °C/min the heat release curves also have closely exothermic peak temperatures. It must be noted that at a heating rate of 5 °C/min, the oxidation of nanosized aluminum powders also starts at about 510 °C [60, 92-100]. Recently it was shown that the DSC curves of the NiCo$_2$O$_4$/Al core-shell nanowires thermite film [101] and three-dimensional ordered macroporous NiFe$_2$O$_4$/Al nanothermites [102] have an exothermic peak with an initiation temperature ~ 530°C and an exothermic peak temperature ~ 600°C. This unambiguously proves, that the synthesis of Al$_2$O$_3$ is the driving force of the thermite reaction $8\text{Al} + 3\text{Ni(Fe)}_2\text{O}_4 \rightarrow 4\text{Al}_2\text{O}_3 + 3\text{Ni} + 6(\text{Co or Fe})$ in the NiCo$_2$O$_4$/Al and NiFe$_2$O$_4$/Al nanocomposites.

These results suggest the following reaction mechanism: below the initiation temperature $T_{\text{in}} < \sim 510$ °C, Al and O atoms remain chemically neutral. At $T_{\text{in}} > \sim 510$ °C, strong chemical interactions occur between Al and O atoms that break old chemical bonds causing the directed atomic migration to the reaction zone and the synthesis of Al$_2$O$_3$ regardless of the system they exist in. Therefore, the initiation temperature $T_{\text{in}} \sim 510$ °C is a universal parameter of all Al-based nanothermite reactions.

3.2. The initiation temperature $T_{\text{in}} \sim 250$ °C of the Zr-based nanothermite reactions

The driving force of the Zr-based nanothermite reactions is the formation of the ZrO$_2$ phase, which has a relatively high negative enthalpy of formation ($\Delta H_f = -601$ kJ/mol). The analysis of the synthesis of Co-ZrO$_2$ and Fe-ZrO$_2$ ferromagnetic nanocomposites show, that thermite reactions in the Zr/Co$_3$O$_4$ [103] and Zr/Fe$_2$O$_3$ [104] thin films have the same initiation temperature $T_{\text{in}}(\text{Zr/Co}_3\text{O}_4) = T_{\text{in}}(\text{Zr/Fe}_2\text{O}_3) \sim 250$ °C. This value $T_{\text{in}} \sim 250$ °C is in agreement with the initiation temperature $T_{\text{in}}(\text{Zr/CuO}) \sim 250$ °C in the Zr/CuO nanothermite mixture [105] and with the study where the ZrO$_2$ nanoparticles were obtained by glycothermal processing [106]. From these facts we predict the same initiation temperature $T_{\text{in}} \sim 250$ °C for all the Zr-based nanothermite reactions.

3.3. The initiation temperature $T_{\text{in}} \sim 450$ °C of the Mg-based nanothermite reactions

The driving force of the Mg-based nanothermite reactions is the synthesis MgO phase having a high negative enthalpy of formation ($\Delta H_f = -1097$ kJ/mol) with some low enthalpy of
formation of Al₂O₃ (ΔH° = -1676 kJ/mol). Using the results of this paper [105], we determined that the thermite multilayer Mg/CuO stacks the initiation temperature T_{in}(Mg/CuO) ~ 450 °C. The nearest value of the initiation temperature has nanoenergetic Mg/CuO core/shell arrays, which exhibit an onset reaction temperature (~ 450 °C) [107]. The initiation temperatures are close to ~ 450 °C in fresh CuO/Mg/fluorocarbon nanoenergetic composites [108] and μm-Mg/nmCuO thermite mixtures prepared by physical and ultrasonic mixing [109]. Magnesium particles with a nominal size of 6 μm begin an intensive oxidation above 500 °C, which suggests that the starting temperature of the oxidation of nanosized magnesium powders is below 500 °C [110]. In these papers the initiation temperature T_{in} was defined as the temperature at which heat release started using the curves of differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Although the exact value of the initiation temperature of Mg-based nanothermite reactions remains unknown, it lies around 450 °C.

3.4. The initiation temperature T_{in} ~ 180 °C of the In-based nanothermite reactions

Recently, we have demonstrated a new way to synthesize ferromagnetic Fe-In₂O₃ and Co-In₂O₃ nanocomposite thin films using the new thermite reactions Fe₂O₃ + 2In = In₂O₃ + 2Fe [111] and 3Co₃O₄ + 8In + 4In₂O₃ + 9Co [112] which starts above the initiation temperature T_{in} = 180 °C - 190 °C with the predominant formation of the Fe, Co and In₂O₃ phases. In [113] the general strategy of the fabrication of metal oxide films has been proposed. The choice of suitable combustion precursors, containing indium nitrates as oxidizers and urea or acetyl acetone as fuel, were used for the low-temperature fabrication of In₂O₃ films. The initiation temperatures of combustion reactions, measured from DTA and DSC curves, are in the range 175 °C - 200 °C [113-115]. Our studies of the self-sustaining oxidation of In films have shown that the initiation temperature is ~ 180 °C [116]. The emergence of a strong chemical interaction between the In and O atoms above 180 °C may be the cause of rapid crystallization of amorphous In₂O₃ films within the temperature range 165-210 °C [117, 118]. The above data suggests that for the In-based nanothermites, oxidation of In and temperature crystallization of amorphous In₂O₃ films should have the same initiation temperature T_{in} ~ 180 °C.

It is worth noticing that all nanothermite reactions have low initiation temperatures and occur in the solid state (excluding In-based reactions). On the conceptual level, the initiation temperatures are ignored in modern models described the thin-film solid-state reactions. In contrast to this, our approach assumes the decisive role of the leading (first) phase and its initiation temperature not only in thermite reactions but also in other types of chemical reactions.
Progress in understanding and predicting the structural transformations and reactions in the solid state is limited by a lack-of-knowledge inference about the chemical interactions at nanoscale. Undoubtedly, future investigations of thin-film solid-state reactions and nanothermite reactions will discover new amazing properties of chemical interactions in solids.

4. Conclusions

The main concepts of this study are the first phase and its initiation temperature T_{in}, which describe thin-film solid-state reactions and were extended onto nanothermite reactions. The paper results prove that all Al-based nanothermite reactions have the same initiation temperature. The analysis of the initiation temperatures reported in the literature and our data has shown that the synthesis of the Al_2O_3 phase in $\text{Al}/\text{Fe}_2\text{O}_3$, Al/CuO, $\text{Al}/\text{Co}_3\text{O}_4$, Al/MoO_3, $\text{Al}/\text{Bi}_2\text{O}_3$, Al/NiO and $\text{Al}/\text{Mn}_2\text{O}_3$ nanothermite mixtures starts at a temperature of about $510 \, ^\circ\text{C}$. The same initiation temperatures $\sim250 \, ^\circ\text{C}$, $\sim450 \, ^\circ\text{C}$, and $\sim180 \, ^\circ\text{C}$ also have Zr-, Mg- and In-based nanothermite reactions, respectively. Finally, these findings predict that nanothermite reactions based on other fuels (e.g., Ti and B) must have their own initiation temperatures. This approach can be widely applicable in the study of the multicomponent thin-film solid-state reactions.

Acknowledgements
I thank Zhigalov VS, Bykova LE and Matsynin AA for fruitful discussions and advice.

Compliance with ethical standards
Conflict of interest
The author has no conflict of interest related to this paper.

REFERENCES
[1] Woodley CM, Catlow R (2008) Crystal structure prediction from first principles, Nat Mater 7:937-946.
[2] Jansen M (2015) Conceptual inorganic materials discovery – a road map, Adv Mater 27:3229-3242.
[3] Tse JS, Boron charged under pressure, (2009) Nature 457:800-801
[4] Desiraju GR (2013) Crystal engineering: from molecule to crystal, J Am Chem Soc 135:9952-9967.
[5] Jansen M, Schön JC (2004) Rationnal development of new materials – putting the cart before the horst, Nat Mater 3:838.
[6] Walser RM, Bene´ RW (1976) First phase nucleation in silicon-transition-metal planar interfaces, Appl Phys Lett 28:624-625.
[7] Ronay M (1983) Reinvestigation of first phase nucleation in planar metal-Si reaction couples, Appl Phys Lett 42:577-579.
[8] Grushko B, Shechtman D (1989) On the model of metastable phase formation by a diffusion process, J Appl Phys 67:2904-2907.
[9] Gossele U, Tu KN (1989) “Critical thickness” of amorphous phase formation in binarydiffusion couples, J Appl Phys 66:2619-2626.
[10] Ottaviani G (1979) Reviews of binary alloy formation by thin film interactions, J Vac Sci Technol 16:1112-1119.
[11] Pretorius, R, Theron CC, Vantomme A, Mayer JW (1999) Compound phase formation in thin film structures, Crit Rev Solid State Mater Sci 24:1-62.
[12] Poate JM, Tu KN, Meyer JW (1978) Eds: Thin Films-Interdiffusion and Reaction, Willey-Intersciense, New York
[13] Colgan EG (1990) A review of thin-film aluminide formation, Mater Sci Rep 5:1-44.
[14] Laurila T, Molarius J (2003) Reactive Phase Formation in Thin Film Metal/Metal and Metal/Silicon Diffusion Couples, Crit Rev Solid State Mater Sci 28:185-230.
[15] Juškėnas R, Pakštas V, Sudavičius A, Kapočius V, Karpavičien V (2004) Formation of intermetallic phases during ageing of Zn electroplate on the Cu substrate, Appl Surf Sci 229: 402-408.
[16] Clevenger LA, Arcot B, Ziegler W, Colgan EG, Hong QZ, d’Heurle FM Jr.; Cabral C, Gallo TA, Harper JME (1998) Interdiffusion and phase formation in Cu(Sn) alloy films, J Appl Phys 83: 90-99.
[17] Boyen H-G, Indlekofer G, Gantner G, Stupp H, Cossy-Favre A, Oelhafen P (2007) Intermixing at Au-In interfaces as studied by photoelectron spectroscopy, Phys Rev B 51:17096-17099.
[18] Koch Th, Siber, A, Marien J, Ziemann P (1994) Intermixing at Au-In and Pd-In interfaces at 90 K as observed by in situ Auger-electron and electron-energy-loss spectroscopy, Phys Rev B 49:1996 – 2000.
[19] Fink R, Koch T, Krausch G, Marien J, Plewnia A, Runge B-U, Schatz G, Siber A, Ziemann P (1993) Formation of an ultrathin amorphous layer at In/Pd interfaces observed by local and nonlocal techniques, Phys Rev B 47:10048-10051.
[20] Boyen H-G, Cossy-Favre A, Oelhafen P, Siber A, Ziemann P, Lauinger C, Moser T, Häussler P, Baumann F (1995) Low-temperature interface reactions in layered Au/Sb films: In situ investigation of the formation of an amorphous phase, Phys Rev B 51:791-17802.
[21] Comrie CM, SMEETS D, PONDO KJ, van der Walt C, Demeulemeester J, Knaepen W, Detavernier C, Habanyama A, Vantomme A (2012) Determination of the dominant diffusing species during nickel and palladium germanide formation, Thin Solid Films 526:261-268.
[22] Chi KS, Chen LJ (2002) Dominant diffusing species in the growth of amorphous interlayer between Yb metal thin films and crystalline Si, J Appl Phys 92:927-931.
[23] Adams DP (2015) Reactive multilayers fabrication by vapor deposition: a critical review, Thin Solid Films 576:98-128.
[24] Weihs, T. P. In Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties; Barmak, K., Coffey, K., Eds.; Woodhead Publishing Limited, 2014; Chapter 5, pp 160-243.
[25] Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic Materials for MEMS: A Review, J Microelectromech Syst 16:919-931.
[26] Mukasyan AS, Rogachev AS, Reddy Aruna ST (2015) Combustion synthesis in nanostructured reactive systems, Adv Powder Technol 26:954-976.
[27] Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35:141-167.
[28] Wang LL, Munir ZA, Maximov YM (1993) Thermite reactions: their utilization in the synthesis and processing of materials, J Mater Sci 28:3693-3708.
[29] Yang Y, Yan D-r, Dong Y-c, Chen X-g, Wang L, Chu Z.-h, Zhang J-x, He J-n (2013) Influence of oxides addition on the reaction of Fe$_2$O$_3$–Al composite powders in plasma flame, J Alloy Compd 579:1-6.
[30] Babakhani A, Zahabi E, Mehrabani HY (2012) Fabrication of Fe/Al$_2$O$_3$ composite foam via combination of combustion synthesis and spark plasma sintering techniques, J Alloys Compd 514:20-24.
[31] Myagkov VG, Byкова LE, Bondarenko GN, Zhigalov VS, Pol’skii AI, Myagkov FV (2000) Solid-phase reactions self-propagating high-temperature synthesis, and order-disorder phase transition in thin films, JETP Letters 71:183-186.
[32] Myagkov VG, Zhigalov VS, Byкова LE, Bondarenko GN (2006) Solid-state synthesis and phase transformations in Ni/Fe films: structural and magnetic studies, J Magn Magn Mater 305:534-545.
[33] Myagkov VG, Byкова LE, Zharkov SM, Bondarenko GN (2008) Formation of NiAl shape memory alloy thin films by solid-state reaction, Solid State Phenomena 138:377-384.
[34] Myagkov VG, Mikhlin YuL, Bykova LE, Bondarenko GV, Bondarenko GN (2010) Long-Range Nature of Chemical Interaction in Solid-Phase Reactions: Formation of Martensite Phases of an Au–Cd Alloy in Cd/Fe/Au Film Systems, Dokl Phys Chem 431:52-56.

[35] Myagkov VG, Bykova LE, Bondarenko GN (1999) Multiple self-propagating high-temperature synthesis and solid-phase reactions in thin films, JETP 88:963-967.

[36] Myagkov VG, Bykova LE, Bondarenko GN (2003) Solid-State Synthesis and Martensitic Transformations in Thin Films, Dokl Physics 48:30–33.

[37] Myagkov VG, Zhigalov VS, Matsuynin AA, Bykova LE, Bondarenko GV, Bondarenko GN, Patrin GS, Velikanov DA (2012) Phase transformations in the Mn–Ge system and in $\text{Ge}_x \text{Mn}_{1-x}$ diluted semiconductors, JETP Letters 96:40-43.

[38] Myagkov VG, Zhigalov VS, Matsuynin AA, Bykova LE, Mikhlin YuL, Bondarenko GN, Patrin GS, Yurkin GYu (2014) Formation of ferromagnetic germanides by solid-state reactions in 20Ge/80Mn films, Thin Solid Films 552:86 – 91.

[39] Fritz GM, Spey SJ Jr, Grapes MD, Weihs TP (2013) Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy, J Appl Phys 113:014901-014901-10.

[40] Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH Jr, Poco JF (2001) Nanostructured energetic materials using sol–gel methodologies, J Non-Crystalline Solids 285:338-345.

[41] Shin M-S, Kim J-K, Kim J-W, Moraes CAM, Kim H-S, Koo K-K (2012) Reaction characteristics of Al/Fe$_2$O$_3$ nanocomposites, J Indus Eng Chemistry 18:1768-1773.

[42] Chen JL, Hng HH, Lee YW, Du SW, Thadhani NN (2010) Kinetic study of thermal- and impact-initiated reactions in Al–Fe$_2$O$_3$ nanothermite, Combust. Flame 157:2241-2249.

[43] Kim SH, Zachariah MR (2004) Enhancing the Rate of Energy Release from NanoEnergetic Materials by Electrostatically Enhanced Assembly, Adv Mater 16:1821-1825.

[44] Zhang W, Yin B, Shen R, Ye J, Thomas JA, Chao Y (2013) Significantly Enhanced Energy Output from 3D Ordered Macroporous Structured Fe$_2$O$_3$/Al Nanothermite Film, ACS Appl Mater Interfaces 5:239-242.

[45] Miagkov VG, Polyakova KP, Bondarenko GN, Polyakov VV (2003) Granular Fe–Al$_2$O$_3$ films prepared by self-propagating high temperature synthesis, J Magn Magn Mater 258-259:358-360.

[46] Guo-Qiang Z, Wen-Chao Z, Xing X, Rui-Qi S, Ji-Ping D, Ying-Hua YE (2015) Preparation of Porous Core/Shell Structure Fe$_2$O$_3$/Al Nanothermite Membrane by Template Method, J Inorg Mater 30:610-614.
[47] Sui H, Atashin S, Wen JZ (2016) Thermo-chemical and energetic properties of layered nano-thermite composites, Thermochim. Acta 642:17-24.

[48] Ke X, Zhou X, Hao G, Xiao L, Liu J, Jiang W (2017) Rapid fabrication of superhydrophobic Al/Fe$_2$O$_3$ nanothermite film with excellent energy-release characteristics and long-term storage stability, Appl Surf Sci 407:137–144.

[49] Guo-Qiang Z, Wen-Chao Z, Xing X, Rui-Qi S, Ji-Ping D, Ying-Hua Y (2015) Preparation of Porous Core/Shell Structure Fe$_2$O$_3$/Al Nanothermite Membrane by Template Method, J Inorg Mater 30:610-614.

[50] Qin L, Yan N, Li J, Hao H, Zhao F, Feng H (2017) Enhanced energy performance from core–shell structured Al@Fe$_2$O$_3$ nanothermite fabricated by atomic layer deposition, RSC Adv 7:7188-7197.

[51] Yan N, Qin L, Hao H, Hui L, Zhao F, Feng H (2017) Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard, Appl Surf Sci 408:51-59.

[52] Zhang T, Ma Z, Li G, Wang Z, Zhao B, Luo Y (2016) Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe$_2$O$_3$/multi-walled carbon nanotube (MWCNT), J Solid State Chem 237:394–403.

[53] Zhang T, Wang Z, Li G, Luo Y (2015) Tuning the reactivity of Al/Fe$_2$O$_3$ nanoenergetic materials via an approach combining soft template self-assembly with sol–gel process, J Solid State Chem 230:1-7.

[54] Zhou X, Ying Zhu Y, Ke X, Zhang K (2019) Exploring the solid-state interfacial reaction of Al/FeO$_3$ nanothermites by thermal analysis, J Mater Sci (2019) 54:4115–4123.

[55] Yang Y, Xu D, Zhang K (2012) Effect of nanostructures on the exothermic reaction and ignition of Al/CuO$_3$ based energetic materials, J Mater Sci 47:1296-1305.

[56] Kwon J, Ducéré JM, Alphonse P, Bahrami M, Petrantoni M, Veyan J-F, Tenailleau C, Estève A, Rossi C, Chabal YJ (2013) Interfacial Chemistry in Al/CuO Reactive Nanomaterial and Its Role in Exothermic Reaction, ACS Appl Mater Interfaces 5: 605-613.

[57] Petrantoni M Rossi C, Salvagnac L, Conédéra V, Estève A, Tenailleau C, Alphonse P, Chabalet YJ (2010) Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro, J Appl Phys 108:084323-0843.

[58] Kim DK, Bae JH, Kang MK, Kim HJ (2011) Analysis on thermite reactions of CuO nanowires and nanopowders coated with Al, Curr Appl Phys 11:1067-1070.

[59] Chiang Y-C, Wu M-H (2017) Assembly and reaction characterization of a novel thermite consisting aluminum nanoparticles and CuO nanowires, Proc Combust Inst 6:4201-4208.
[60] Sui H, LeSergent L, Wen JZ (2017) Diversity in Addressing Reaction Mechanisms of Nano-Thermite Composites with a Layer by Layer Structure, Adv Eng Mater 20:1700822-1 - 1700822-11.

[61] Yin Y, Li X, Shu Y, Guo X, Zhu Y, Huang X, Bao H, Xu K (2017) Highly-reactive Al/CuO nanoenergetic materials with a tubular structure, Mater Design 117:104-110.

[62] Abdallah I, Zapata J, Lahiner G, Warot-Fonrose B, Cure J, Chabal Y, Esteve A, Rossi C (2018) Structure and Chemical Characterization at the Atomic Level of Reactions in Al/CuO Multilayers, ACS Appl Energy Mater 1:1762-1770.

[63] Dai J, Wang F, Ru C, Xu J, Wang C, Zhang W, Ye Y, Shen R (2018) Ammonium Perchlorate as an Effective Additive for Enhancing the Combustion and Propulsion Performance of Al/CuO Nanothermites, J Phys Chem C 122:10240-10247.

[64] Shen J, Qiao Z, Zhang K, Wang J, Li R, Xu H, Yang G, Nie F (2014) Effects of nano-Ag on the combustion process of Al-CuO metastable intermolecular composite, Appl Therm Eng 62:732-737.

[65] Zhou X, Wang Y, Cheng Z, Ke X, Jiang W (2017) Facile preparation and energetic characteristics of core-shell Al/CuO metastable intermolecular composite thin film on a silicon substrate, Chem Eng J 328:585–590.

[66] Shen J, Qiao Z, Wang J, Yang G, Chen J, Li Z, Liao X, Wang H, Zachariah MR (2018) Reaction mechanism of Al-CuO nanothermites with addition of multilayer graphene, Thermochim Acta 666:60-65.

[67] Glavier L, Taton G, Ducéré J-M, Baijot V, Pinon S, Calais T, Estève A, Rouhani MD, Rossi C (2015) Nanoenergetics as pressure generator for nontoxic impact primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combust Flame 162:1813-1820.

[68] Zhu Y, Zhou X, Xu J, Ma X, Ye Y, Yang G, Zhang K (2018) In situ preparation of explosive embedded CuO/Al/CL20 nanoenergetic composite with enhanced reactivity, Chem Eng J 354:885-895.

[69] Pantoya ML, Granier JJ (2005) Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites, Propel Expl Pyrotech 30:53-62.

[70] Umbrajkar SM, Chen C-M., Schoenitz M, Dreizin EL (2008) On problems of isoconversion data processing for reactions in Al-rich Al–MoO3 thermites, Thermochim Acta 477:1-6.

[71] Xu J, Tai Y, Ru C, Dai J, Ye Y, Shen R, Zhu P (2017) Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO3 Reactive Multilayer Films on a Semiconductor Bridge, ACS Appl Mater Interfaces 9:5580-5589.

[72] Hu X, Xiao L, Jian X, Zhou W (2018) Integration of nano-Al with one-step synthesis of MoO3 nanobelts to realize high exothermic nanothermite, Sci Eng Compos Mater 25:579-585
[73] Seo H-S, Kim J-K, Kim J-W, Kim H-S, Koo K-K (2014) Thermal behavior of Al/MoO$_3$ xerogel nanocomposites, J Ind Eng Chem 20:189–193.

[74] Zakiyyan N, Wang A, Thiruvengadathan RR, Staley C, Mathai J, Gangopadhyay K, Maschmann MR (2018) Combustion of aluminum nanoparticles and exfoliated 2D molybdenum trioxide composites, Combust Flame 187:1-10.

[75] Puszynski JA, Bulian CJ, Swiatkiewicz JJ (2007) Processing and Ignition Characteristics of Aluminum-Bismuth Trioxide Nanothermite System, J Propul Power 23:698-706.

[76] Patel VK, Ganguli A, Kant RR, Bhattacharya SS (2015) Micropatterning of nanoenergetical films of Bi$_2$O$_3$/Al for pyrotechnics, RSC Adv 5:14967-14973.

[77] Dai J, Xu J, Wang F, Tai Y, Shen Y, Shen R, Ye Y (2018) Facile formation of nitrocellulose-coated Al/Bi$_2$O$_3$ nanothermites with excellent energy output and improved electrostatic discharge safety, Mater Design 143:93-103.

[78] Hobosyan MA, Yolchinyan SA, Martirosyan KS (2016) A novel nano-energetic system based on bismuth hydroxide, RSC Adv 6:66564-66570.

[79] Xu D, Yang Y, Cheng H, Li YY, Zhang K (2012) Integration of nano-Al with Co$_3$O$_4$ nanorods to realize high-exothermic core–shell nanoenergetic materials on a silicon substrate, Combust Flame 159:2202-2209.

[80] Yu C, Zhang W, Gao Y, Ni D, Ye J, Zhu C, Ma K (2018) The super-hydrophobic thermite film of the Co$_3$O$_4$/Al core/shell nanowires for an underwater ignition with a favorable aging-resistance, Chem Eng J 338:99-106.

[81] Zheng Z, Zhang W, Yu C, Zheng G, Ma K, Qin Z, Ye J, Chao Y (2018) Integration of the 3DOM Al/Co3O4 nanothermite film with a semiconductor bridge to realize a high output micro-energetic igniter, RSC Adv 8:2552-2560.

[82] Xiao F, Li J, Zhou X, Yang R (2018) Preparation of mechanically activated aluminum rich Al-Co$_3$O$_4$ powders and their thermal properties and reactivity with water steam at high temperature, Combust Sci Technol 190:1935-1949.

[83] Patel VK, Saurav JR, Gangopadhyay K, Gangopadhyay S, Bhattacharya S (2015) Combustion characterization and modeling of novel nanoenergetic composites of Co$_3$O$_4$/nAl, RSC Adv 5:21471-21479.

[84] Myagkov VG, Bykova LE, Zhigalov VS, Matsynin AA, Volochaev MN, Tambasov IA, Mikhlin YuL, Bondarenko GN (2017) Thermite synthesis, structural and magnetic properties of Co-Al$_2$O$_3$ nanocomposite films, J Alloys Compd 724:820-826.

[85] Volochaev MN, Komogortsev SV, Myagkov VG, Bykova LE, Zhigalov VS, Shestakov NP, Velikanov DA, Smolyakov DA, Luk'yandenko AV, Rachek VB, Loginov YY, Tambasov IA,
Matsynin AA (2018) Structural and magnetic characteristics of nanogranular Co–Al₂O₃ single- and multilayer films formed by the solid-state synthesis, Phys solid state 60:1425-1431.

[86] Wen JZ, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen NH, Persic J, Petre CF, Zhou YN (2013) Characterization of thermochemical properties of Al nanoparticles and NiO nanowire composites, Nanoscale Res Lett 8:184-1-184-9.

[87] Bohlouli-Zanjania G, Wen JZ, Hu A, Persic J, Ringuette S, Zhou YN (2013) Thermochemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder, Thermochim Acta 572:51-58.

[88] Yu C, Zhang W, Shen R, Xu X, Cheng J, Ye J, Qin Z, Chao Y (2016) 3D ordered macroporous NiO/Al nanothermite film with significantly improved higher heat output, lower ignition temperature and less gas production, Mater. Design 110:304-310.

[89] Zhang D, Li X (2015) Fabrication and Kinetics Study of Nano-Al/NiO Thermite Film by Electrophoretic Deposition, J Phys Chem A 119:4688-4694.

[90] Zheng G, Zhang W, Shen R, Ye J, Qin Z, Chao Y (2016) Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn₂O₃/Al, Sci Rep 6:22588; doi: 10.1038/srep22588.

[91] Yang Y, Zhang Z-C, Wang P-P, Zhang J-C, Nosheen F, Zhuang J, Wang X (2013) Hierarchical MnO₂/SnO₂ Heterostructures for a Novel Free-Standing Ternary Thermite Membrane, Inorg Chem 52:9449-9455.

[92] Kearns M (2004) Development and applications of ultrafine aluminium powders, Mater Sci Eng A 375–377:20-126

[93] Jones DEG, Brousseau P, Fouchard RC, Turcotte AM, Kwok QSM (2000) Thermal Characterization of Passivated Nanometer Size Aluminium Powders, J Therm Anal Cal 2000 61:805-818.

[94] Dreizin EL, Schoenitz M (2015) Correlating ignition mechanisms of aluminum-based reactive materials with thermoanalytical measurements, Prog Energy Combust Sci 50:81-105.

[95] Zha M, Lv X, Ma Z, Zhang L, Zhao F, Xu S, Xu H (2015) Effect of Particle Size on Reactivity and Combustion Characteristics of Aluminum Nanoparticles, Combust Sci Technol 187:1036-1043.

[96] Noor F, Zhang H, Korakianitisac T, Wen D (2013) Oxidation and ignition of aluminum nanomaterials, Phys Chem Chem Phys 15:20176-20188.

[97] Saceleanu F, Atashin S, Wen JZ (2017) Investigation of the effects of phase transformations in micro and nano aluminum powders on kinetics of oxidation using thermogravimetric analysis, Phys Chem Chem Phys 19:18996-19009.
[98] Wang F, Wu Z, Shangguan X, Sun Y, Feng J, Li Z, Chen L, Zuo S, Zhuo R, Yan P (2017) Preparation of mono-dispersed, high energy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers, Sci Rep 7:5228, DOI:10.1038/s41598-017-05599-0.

[99] Coulet M-V, Rufino B, Esposito P-H, Neisius T, Isnard O, Denoyel R (2015) Oxidation Mechanism of Aluminum Nanopowders, J Phys Chem C 119:25063-25070.

[100] Vorozhtsov AB, Lerner M, Rodkevich N, Nie H, Abraham A, Schoenitz M, Dreizin EL (2016) Oxidation of nano-sized aluminum powders, Thermochim Acta 636:48–56.

[101] Chen Y, Zhang W, Yu C, Ni D, Ma K, Ye J (2018) Controllable synthesis of NiCo₂O₄/Al core-shell nanowires thermite film with excellent heat release and short ignition time, Mater Design 155:396-403.

[102] Shi L, Zhang W, Cheng J, Yu C, Shen R, Ye J, Qin Z, Chao Y (2016) A high energy output and low onset temperature nanothermite based on three-dimensional ordered macroporous nano-NiFe₂O₄, RSC Adv 6:93330-93334.

[103] Myagkov VG, Zhigalov VS, Bykova LE, Zharkov SM, Matsynin AA, Volochaev MN, Tambasov IA, Bondarenko GN (2016) Thermite synthesis and characterization of Co-ZrO₂ ferromagnetic nanocomposite thin films, J Alloys Compd 665:197–203.

[104] Myagkov VG, Bykova LE, Bayukov OA, Zhigalov VS, Tambasov IA, Zharkov SM, Matsynin AA, Bondarenko GN (2015) Solid state synthesis and characterization of Fe–ZrO₂ ferromagnetic nanocomposite thin films, J Alloys Compd 636:223-228.

[105] Mily EJ, Oni A, LeBeau JM, Liu Y, Brown-Shaklee HJ, Ihlefeld JF, Maria J-P (2014) The role of terminal oxide structure and properties in nanothermite reactions, Thin Solid Films 562:405-410.

[106] Kim J-S, Lee D-H, Kang S, Bae D-S, Park H-Y, Na M-K (2009) Synthesis and microstructure of zirconia nanopowders by glycothermal processing, Trans Nonferrous Met Soc China 19:s88-s91.

[107] Zhou X, Xu D, Zhang Q, Lu J, Zhang K (2013) Facile Green In Situ Synthesis of Mg/CuO Core/Shell Nanoenergetic Arrays with a Superior Heat-Release Property and Long-Term Storage Stability, ACS Appl Mater Interfaces 5:7641–7646.

[108] Zhou X, Xu D, Zhang Q, Lu J, Zhang K (2015) CuO/Mg fluorocarbon sandwich-structure superhydrophobic nanoenergetic composite with anti-humidity property, Chem Eng J 266:163-170.

[109] Hosseini SG, Sheikhpour A, Keshavarz MH, Tavangar S (2016) The effect of metal oxide particle size on the thermal behavior and ignition kinetic of Mg–CuO thermite mixture, Thermochim Acta 626:1-8.
[110] Chunmiao Y, Lifu Y, Chang L, Gang L, Shengjun Z (2013) Thermal analysis of magnesium reactions with nitrogen/oxygen gas mixture, J Hazard Mater 260:707-714.
[111] Myagkov VG, Tambasov IA, Bayukov OA, Zhigalov VS, Bykova LE, Mikhlin YL, Volochaev MN, Bondarenko GN (2014) Solid State Synthesis and Characterization of ferromagnetic nanocomposite Fe-In$_2$O$_3$ thin films, J Alloys Compd 612:189-194.
[112] Bykova LE, Zhigalov VS, Myagkov VG, Volochaev MN, Matsynin AA, Bondarenko GN, Patrin GS (2018) Co–In$_2$O$_3$ Nanocomposite films: synthesis and structural and magnetic properties, Phys solid state 60:2072-2077.
[113] Kim M-G, Kanatzidis MG, Facchetti A, Marks TJ (2011) Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing, Nat Mater 10:382-388.
[114] Sanchez-Rodriguez D, Farjas J, Roura P, Ricart S, Mestres N, Obradors X, Puig T (2013) Thermal Analysis for Low Temperature Synthesis of Oxide Thin Films from Chemical Solutions, J Phys Chem C 117:20133-20138.
[115] Yu X, Zhou N, Smith J, Lin H, Stallings K, Yu J, Marks TJ, Facchetti A (2013) Synergistic Approach to High-Performance Oxide Thin Film Transistors Using a Bilayer Channel Architecture, ASC Appl Mater Interfaces 5:7983-7988.
[116] Tambasov IA, Myagkov VG, Ivanenko AA, Nemtsev IV, Bykova LE, Bondarenko GN, Mikhlin YL, Maksimov IA, Ivanov VV, Balashov SV, Karpenko DS (2013) Structural and Optical Properties of Thin In$_2$O$_3$ Films Produced by Autowave Oxidation, Semiconductors 47:569-573.
[117] Thilakan P, Kumar J (1998) Oxidation dependent crystallization behaviour of IO and ITO thin films deposited by reactive thermal deposition technique, Mater Sci Eng B 55:195-200 (115)
[118] Adurodija FO, Semple L, Brüning RJ (2006) Crystallization process and electro-optical properties of In$_2$O$_3$ and ITO thin films. J Mater Sci 41:7096-7102.
Figure 1. The schematic illustration of the initiation temperature $T_{in} \sim 510 \, ^\circ C$ for the Al-based nanothermite reactions with Fe$_2$O$_3$, Co$_3$O$_4$, NiO, MnO$_2$, Bi$_2$O$_3$, CuO, MoO$_3$ oxidizers and the oxidation of Al nanomaterials. The initiation temperature $T_{in} \sim 510 \, ^\circ C$ is characteristic of the leading Al$_2$O$_3$ phase, which has a high negative enthalpy of formation ($\Delta H_f = -1676 \, \text{kJ/mol}$) and is the driving force of all the Al-based nanothermite reactions.

Table 1. Summary of Al-based nanothermite reactions with Fe$_2$O$_3$ oxidizer and with an associated record of the initiation temperatures.

Table 2. Summary of Al-based nanothermite reactions with CuO oxidizer and with an associated record of the initiation temperatures.

Table 3. Summary of Al-based nanothermite reactions with Bi$_2$O$_3$, MoO$_3$ oxidizers and with an associated record of the initiation temperatures.

Table 4. Summary of Al-based nanothermite reactions with Co$_3$O$_4$, NiO, MnO$_2$, oxidizers and with an associated record of the initiation temperatures.
Figure 1. The schematic illustration of the initiation temperature $T_{in} \sim 510 \, ^\circ C$ for the Al-based nanothermite reactions with Fe_2O_3, Co_3O_4, NiO, MnO_2, Bi_2O_3, CuO, MoO_3 oxidizers and the oxidation of Al nanomaterials. The initiation temperature $T_{in} \sim 510 \, ^\circ C$ is characteristic of the leading Al_2O_3 phase, which has a high negative enthalpy of formation ($\Delta H_f = -1676 \, \text{kJ/mol}$) and is the driving force of all the Al-based nanothermite reactions.
Table 1. Summary of Al-based nanothermite reactions with Fe$_2$O$_3$ oxidizer and with an associated record of the initiation temperatures.

Nanothermite Systems	Initiation Temperature T_{in} (°C)	Techniques	Temperature Rate η (K/min.)	Exothermic Peak Temperature (°C)	Samples	Refs.
Al/Fe$_2$O$_3$	~ 490	DSC	10	~ 530	Fe$_2$O$_3$/Al xerogel nanocomposites	[40]
Al/Fe$_2$O$_3$	~ 530	TGA/DSC	10	~ 550	Fe$_2$O$_3$/Al xerogel nanocomposites	[41]
Al/Fe$_2$O$_3$	~ 510	DSC	10	588	Fe$_2$O$_3$ nanotubes, Al nanocomposites	[42]
Al/Fe$_2$O$_3$	~ 520	DSC	10	~ 545	Fe$_2$O$_3$ nanoporous particles, Al powder	[43]
Al/Fe$_2$O$_3$	~ 520	DSC	20	548	Fe$_2$O$_3$/Al nanothermite membranes.	[44]
Al/Fe$_2$O$_3$	~ 530	Magnetization vs temperature	> 10		Fe$_2$O$_3$/Al bilayers.	[45]
Al/Fe$_2$O$_3$	~ 525	TGA/DSC	8-30	~ 590	Fe$_2$O$_3$/Al nanothermite membranes	[46]
Al/Fe$_2$O$_3$	507-508	TGA/DSC	10	~ 590	Fe$_2$O$_3$, Al nanoparticles	[47]
Al/Fe$_2$O$_3$	~ 520	TGA/DTA	20	~ 620	Al/Fe$_2$O$_3$ nanothermite film	[48]
Al/Fe$_2$O$_3$	~ 490	TGA/DTA	10	~ 570	Porous Core/Shell Structure Fe$_2$O$_3$/Al	[49]
Al/Fe$_2$O$_3$	~ 490	DSC	10	~ 570	core–shell structured Al@Fe$_2$O$_3$ nanothermite	[50]
Al/Fe$_2$O$_3$	~ 500	DSC	20	~ 550	Al@Fe$_2$O$_3$ nanocomposites	[51]
Al/Fe$_2$O$_3$	~ 500	TGA/DSC	10	~ 590	Al/Fe$_2$O$_3$/MWCNT nanostructured energetic materials	[52]
Al/Fe$_2$O$_3$	~ 480	DSC	20	~ 560	nanostructured energetic materials sol–gel–Al/Fe$_2$O$_3$	[53]
Al/Fe$_2$O$_3$	504-525	DSC/TG	5	546-569	n-Al/n-Fe$_2$O$_3$ nanothermite	[54]
Table 2. Summary of Al-based nanothermite reactions with CuO oxidizer and with an associated record of the initiation temperatures.

Nanothermite Systems	Initiation Temperature T_{in} ($^\circ$C)	Techniques	Temperature Rate η (K/min.)	Exothermic Peak Temperature ($^\circ$C)	Samples	Refs.
Al/CuO	~ 520	DTA/DSC	15/5	580/560	CuO nanowires, Al films.	[55]
Al/CuO	515	DSC	10	~ 530	Al/CuO bilayes	[56]
Al/CuO	~ 520	DTA/DSC	5	~ 560	Al/CuO multilayers	[57]
Al/CuO	~ 500	TG/DSC	15	~ 540	CuO nanowires coated with deposited nano-Al	[58]
Al/CuO	~ 520	DTA/DSC	10	~ 566	CuO nanowires, Al nanoparticles	[59]
Al/CuO	~ 500	TGA/DSC	10	~ 560	Al, CuO nanoparticles	[60]
Al/CuO	~ 500	DSC/TG	10	~ 620	nanoAl, CuO nano-array	[61]
Al/CuO	~ 500	DSC	10	~ 550	CuO/Al multilayers	[62]
Al/CuO	~ 520	DSC	5	~ 540	Al, CuO nanoparticles	[63]
Al/CuO	~ 500	DSC	10	~ 560	Al, CuO nanoparticles	[64]
Al/CuO	~ 520	DSC	5	~ 560	Al/CuO nanoparticles core-shell structures	[65]
Al/CuO	~ 530	DG/DSC	10	~ 590	Al, CuO nanoparticles	[66]
Al/CuO	~ 480	DSC	10	~ 550	Al, CuO nanoparticles	[67]
Al/CuO	~ 480	DSC	10	~ 550	Al/CuO core/shell arrays	[68]
Table 3. Summary of Al-based nanothermite reactions with Bi$_2$O$_3$, MoO$_3$ oxidizers and with an associated record of the initiation temperatures.

Nanothermite Systems	Initiation Temperature T_{in} (°C)	Techniques	Temperature Rate η (K/min.)	Exothermic Peak Temperature (°C)	Samples	Refs.
Al/MoO$_3$	476	DTS	10	~ 500	MoO$_3$ nanoparticles, Al micro particles	[69]
Al/MoO$_3$	~ 500	DTS	10	~ 550	Al/MoO$_3$ nanocomposites	[70]
Al/MoO$_3$	~ 520	DSC	20	~ 560-590	Reactive multilayer films	[71]
Al/MoO$_3$	~ 475-515	DTA/DSC		~ 550	nano-Al, MoO$_3$ nanobelts	[72]
Al/MoO$_3$	~ 520	TG/DSC	10	~ 560	Al/MoO$_3$ xerogel nanocomposite	[73]
Al/MoO$_3$	~ 440	TGA/DSC	20	~ 520	(2D) molybdenum trioxide, Al nanoparticles	[74]
Al/MoO$_3$	~ 480	DSC	10	~ 550	Al, MoO$_3$ nanoparticles	[67]
Al/Bi$_2$O$_3$	~ 520	DTS	10	~ 550	Al, Bi$_2$O$_3$ nanopowders	[75]
Al/Bi$_2$O$_3$	~ 510	TG/DTS	10	~ 572/589	Al, Bi$_2$O$_3$ nanofilms	[76]
Al/Bi$_2$O$_3$	~ 480	DSC	20	591	Al, Bi$_2$O$_3$ nanoparticles	[77]
Al/Bi(OH)$_3$	~ 520	DSC	20	603	Al-Bi(OH)$_3$ nanothermite	[78]
Al/Bi$_2$O$_3$	~ 480	DSC	10	~ 550	Al, Bi$_2$O$_3$ nanoparticles	[67]
Table 4. Summary of Al-based nanothermite reactions with Co$_3$O$_4$, NiO, MnO$_2$, oxidizers and with an associated record of the initiation temperatures.

Nanothermite Systems	Initiation Temperature T_{in} ($^\circ$C)	Techniques	Temperature Rate η (K/min.)	Exothermic Peak Temperature ($^\circ$C)	Samples	Refs.
Al/Co$_3$O$_4$	~ 520	DTA/TGA	10	574/569	Co$_3$O$_4$ nanowires, nano-Al	[79]
Al/Co$_3$O$_4$	~ 551	DSC	10	~ 600	Co$_3$O$_4$/Al core/shell nanowires	[80]
Al/Co$_3$O$_4$	~ 500	DSC	10-30	~ 560-590	Al/Co$_3$O$_4$ nanothermites film	[81]
Al/Co$_3$O$_4$	~ 500	DSC	10	~ 560-590	the Co$_3$O$_4$ particles were embedded in the aluminum particles	[82]
Al/Co$_3$O$_4$	~ 535	TG-DSC	10	~ 605	Co$_3$O$_4$/nanoAl	[83]
Al/Co$_3$O$_4$	~ 510	DSC	~ 4		Co$_3$O$_4$/Al nanofilms	[84-85]
Al/NiO	~ 475-515	DTA/DSC	10	~ 550	NiO nanowires, Al nanoparticles	[86]
Al/NiO	~ 490	DSC	10	~ 549	NiO nanowires, Al nanoparticles	[87]
Al/NiO	~ 460	DSC	20	~ 530-565	Three-dimensionally ordered macroporous NiO/Al nanothermite film.	[88]
Al/NiO	~ 520	DSC	20	~ 590	Nano-Al/NiO thermite films	[89]
Al/NiO	~ 516	DGA/DSC	10	~ 535	Al/NiO thermite Film	[60]
Al/Mn$_2$O$_3$	474-518	DSC	20	563-599	Mn$_2$O$_3$ macroporous skeleton, Al films	[90]
MnO$_2$/SnO$_2$/n-Al	~ 520	DSC	20	600	MnO$_2$/SnO$_2$/n-Al ternary thermite membrane	[91]