Polymorphism discovery and allele frequency estimation using high-throughput DNA sequencing of target-enriched pooled DNA samples

Michael P Mullen1*, Christopher J Creevey2*, Donagh P Berry3, Matt S McCabe2, David A Magee4, Dawn J Howard1, Aideen P Killeen2, Stephen D Park4, Paul A McGettigan4, Matt C Lucy5, David E MacHugh4,6 and Sinead M Waters2

Abstract

Background: The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility.

Results: In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent \((n = 952) \) of variants were located within 5' and 3' UTRs. Seventy-two percent \((n = 3,612) \) were intronic and 9% \((n = 464) \) were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS). Significant \((P < 0.01) \) mean allele frequency differentials between the low and high fertility groups were observed for 720 SNPs (58 NSS). Allele frequencies for 43 of the SNPs were also determined by genotyping the 150 individual animals (Sequenom® MassARRAY). No significant differences \((P > 0.1) \) were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total).

Conclusions: The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving interval plausibly harbouring causative variants contributing to heritable variation. To our knowledge, this is the first report describing sequencing of targeted genomic regions in any livestock species using groups with divergent phenotypes for an economically important trait.
Background

The somatotrophic axis (GH/IGF-1) is well established as central to nutrient partitioning, post-natal growth and development in mammals [1]. In domestic ruminants the influence of this axis on traits of commercial importance such as body size, carcass weight, milk yield and fertility has been widely published [2,3]. Genomic variation in key genes of the somatotrophic, such as insulin-like growth factor 1 (IGF1), growth hormone (GHI) and growth hormone receptor (GHR) have previously been shown to associate with production traits in dairy cattle [4-7]. Quantitative trait loci (QTL) that encompass GHR on BTA20 and IGF-1 on BTA5 associated with fertility traits have also been reported [8-11]. However, with the exception of F279Y, a non-synonymous SNP in exon 8 of GHR [8] strongly associated with milk yield and composition in dairy cattle, there is a dearth of information on candidate causal polymorphisms affecting performance in genes of this axis and its regulators.

In recent years, array-based genome wide association studies (GWAS) have improved our understanding of the genetic basis of complex traits in humans and other mammalian species [12-14]. However, a large proportion of the genetic variation underpinning complex traits cannot be explained using current GWAS approaches [15]. The contribution of variants segregating at very low frequencies, less than 0.05, termed rare variants, are thought to contribute to this ‘missing heritability’ and have typically been outside the scope of many GWAS array designs [15,16]. Recently proposed novel methods for haplotype analysis of high density arrays have demonstrated the ability, however, to identify genomic regions harbouring rare recessive variants affecting fertility in cattle [17]. The identification of putative genetic variants, including rare variants, underlying complex traits requires the analysis of large numbers of individual samples [18] and even with the rapid development of high-throughput sequencing technology and associated decreasing costs [19], sequencing of large numbers of individual genomes remains prohibitively expensive. While the development of custom targeted genome enrichment prior to sequencing is enabling analysis of large genomic regions of multiple genomes at reduced costs [20-22], the preparation of individual genomes for enrichment and sequencing is labour intensive and still beyond the capabilities of many research groups. Consequently, the pooling of DNA from subsets of samples prior to high-throughput sequencing to reduce sequencing costs is a viable alternative and has been successfully used to identify variants associated with complex traits in humans [23,24].

The aims of this study were to (1) identify putative coding and regulatory DNA sequence polymorphisms in 83 candidate genes of the somatotrophic axis, and (2) estimate allele frequency differences at these loci between pooled groups of dairy cattle divergent in genetic merit for fertility, using a pooled DNA approach coupled with ‘sequence capture target enrichment’ and high-throughput next generation sequencing technology. Estimated allele frequencies of a selection of SNPs from the sequence capture target enrichment and sequencing of pooled samples were compared to actual allele frequencies generated using Sequenom® MassARRAY iPLEX™ gold assay. Results from this study will examine the pooled sequencing approach as an initial step for the identification of candidate genetic markers for fertility in dairy cattle and other complex performance traits in livestock.

Methods

Gene selection

A total of 83 genes were selected for targeted re-sequencing based on: (1) a comprehensive literature review of the somatotrophic axis, including its transcriptional regulators, binding proteins and associated genes involved in gluconeogenesis and insulin nutrient partitioning-related pathways; and (2) the availability of the DNA sequences in the Ensembl and/or GenBank databases (Additional File 1, Table S1).

Animal Selection

Genomic DNA was available for 698 Holstein-Friesian progeny-tested artificial insemination (AI) bulls. An iterative algorithm was invoked to chose 150 bulls divided into two groups (n = 75) divergent for genetic merit (i.e. predicted transmitting ability) for calving interval while cognizant of the co-ancestry within each group. Firstly both genetic merit for calving interval and pairwise relationships among all animals were standardized to have equal variance. An index was derived for each animal using the (standardized) estimated breeding value of the animal and the (standardized) relationship of the animal to each of the other animals. The weighting on EBV and relatedness in the index was 60:40. An algorithm was subsequently invoked to generate the groups. Firstly, the animal with the lowest genetic merit for calving interval was selected and allocated to the low calving interval group. A second animal was selected based on its average index value with the first animal selected. Subsequently a third animal was selected based on its average index value with the bulls previously selected. This algorithm continued until 75 animals bulls were selected for the low calving interval group. The algorithm was again invoked to select the group of
animals of high genetic merit for calving interval; the selection choice did not include any animal in the poor genetic merit group. This resulted in the sires in the high CIV group representing 46 different paternal half-sib groups and 44 different maternal grand-sires lines while the sires in the low CIV group represented 71 different paternal half-sib groups and 61 different maternal grandsire lines. In total, 116 different sire lines (84 different paternal grand-sire lines) and 102 different maternal-grand sire lines were represented. The co-ancestry among the high CIV group was 3.0%, among the low CIV group was 0.24% and between the high and low CIV groups was 0.20%; the low CIV animals were on average 9 years older than the high CIV group. The median (inter-quartile range in parenthesis) number of daughters per sire and reliability were 160 (261) and 83% (23%) for the high CIV pool and 261 (738) and 79% (43%) for the low CIV pool. Mean predicted transmitting ability (standard deviation in parenthesis) for the 75 high and 75 low calving interval bulls was 5.3 days (1.6) and -5.8 days (1.4), respectively.

Sample preparation, target enrichment and sequencing
For both sample groups (n = 75), DNA was pooled using equimolar quantities (100 ng) of DNA from each individual animal. The pools were then prepared for high-throughput DNA sequencing using the Illumina Genome Analyzer II platform. For this, 5 μg of pooled genomic DNA was sheared for 30 min using NEBNext® dsDNA Fragmentase™ (New England Biolabs UK Ltd., Hitchin, UK) according to manufacturer’s instructions. Blunt-end fragment repair and A tailing was performed on the resulting fragments using NEBNext® End Repair Module and NEBNext® dA-Tailing Module (New England Biolabs UK Ltd., Hitchin, UK). Illumina standard paired end (PE), adapters (Illumina, Essex, UK), including a 6 bp index, were ligated to the fragments, and the indexed adapter ligated fragments were gel purified and enriched by 12 cycles of PCR using Illumina PE1 and PE2 primers and Phusion High-Fidelity DNA Polymerase (New England Biolabs UK Ltd., Hitchin, UK).

Indexed PE sequencing libraries were captured and enriched for the genes of interest using the SureSelect Target Enrichment for Illumina® PE Sequencing (Agilent Technologies Ltd., Cork, Ireland) according to manufacturer’s instructions. Bovine Hybloc (Applied Genetics Laboratories, Florida, USA) was used instead of human Cot1 DNA during the sequence capture process to prevent non-specific hybridisation to the sequence capture baits. Sequence capture baits were designed to target whole gene (exons and introns) sequences including 3 kb of both the 5’ and 3’ flanking UTR sequence for 22 genes central to the function of the somatotrophic axis (Additional File 1, Table S1). To maximise the number of genes included for analysis, the remaining baits were designed to target only the coding sequences and 5’ and 3’ flanking UTR regions and encompassed 61 additional genes (Additional File 1, Table S1). In total, approximately 1.5 Mb of DNA sequence was targeted for capture. Target captured libraries from both sample groups contained different indexes located at the 5’ end of both reads, allowing them to be pooled into a single flow cell lane. 80 bp PE sequencing was conducted on an Illumina GAIIx (cluster kit 4PE and sequencing kit version 5) and indexed sequencing reads from the two groups of animals were separated bioinformatically.

Mapping and variant calling
All DNA sequence data were aligned to the B. taurus version 4.0 (Btau_4.0) reference genome using the Burrows-Wheeler Aligner (BWA) program version 0.5.9 [25] and the alignments were sorted and filtered for possible PCR and optical duplicates using Samtools version 0.1.17 [26]. The Genome Analysis Toolkit (GATK) version 1.0.5506 [27] was used for base quality score recalibration incorporating known Bovine SNPs from ENSEMBL [28] and indel realignment using standard hard filtering parameters [29]. DNA sequence polymorphisms were then identified for each of the sequenced regions using Samtools version 0.1.17 [26]. Samtools was also used with in-house scripts to calculate coverage estimates and to compare frequencies between the groups. Non-synonymous SNPs were identified using the Btau_4.0 annotation from ENSEMBL version 62 [30] using SNPdat (available upon request from the authors).

For variant calling, reads below stringent thresholds for mapping quality score (≤ 50) and base quality (≤ 20) were discarded. In addition, to call a variant a minimum of 4 reads supporting the non reference allele was required across both pools.

Accuracy of SNP detection and allele frequency estimation
To assess the accuracy of SNP detection and allele frequency estimation we compared the high throughput DNA sequence data to: (1) SNPs located within the 1.5 Mb of targeted sequences as reported in the dbSNP (v130) database; and (2), SNPs validated, as part of a previous larger study performed by this group, as segregating in these 150 Holstein Friesian (HF) cattle using capillary based Sanger re-sequencing and Sequenom® MassARRAY genotyping technologies. This included analysis of genotypes previously reported by this group in IGF1 [4], IGF2R, IGF2 [31,32], GH1 [5] and GHR [7].

Transcription factor and microRNA binding site analysis
Bioinformatic analysis was performed on SNPs in the regulatory regions of selected genes to examine the
effects of allele substitution on predicted transcription factor binding sites using MatInspector software package [33] and microRNA (miRNA) binding sites using MicroInspector software [34].

Comparison of SNP allele frequency estimations

A two-tailed Fisher’s exact test was used to 1) compare the allele frequency estimates generated using high throughput sequencing and Sequenom® MassARRAY genotyping technologies for the SNPs in common across both platforms, and 2) compare the allele frequencies generated using high throughput sequencing in the pools of animals divergent for genetic merit for calving interval. In both analyses adjustment for multiple testing was undertaken using the Benjamini and Hochberg [35] correction for an experiment-wise significance of $P < 0.1$ and < 0.01 in the first and second analyses, respectively.

Results

High throughput DNA sequence analysis

Approximately 2.95 million reads were obtained generating, on average, 1.05 Gb of sequence data per pool. Of the approximate 1.5 Mb of sequence targeted for enrichment, 1.2 Mb was sequenced with an average of 44-fold coverage per base across both pools (Table 1). We identified a total of 5,028 variants (4,135 SNPs and 893 indels) across the 83 genes (Additional File 1, Table S2). Nineteen percent ($n = 952$) of variants were located within 5’ and 3’ UTRs, 72% ($n = 3,612$) were intronic and 9% ($n = 464$) were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions [NSS] (Table 2). Significant ($P < 0.01$) allele frequency differentials between low and high CIV groups were observed for 720 SNPs including 58 NSS (Additional File 1, Table S2). The top 20 most significant SNPs differentiating the high and low CIV groups, located at least 10 Mb apart, in exonic, intronic, and regulatory regions is displayed in Table 3. Distribution of the 4,135 SNP allele frequency differentials between both pools showed a slightly heavy tailed normal distribution (Figures 1 and 2).

Accuracy of SNP detection and allele frequency estimation

Comparison to dbSNP

In total, 1,304 SNPs were reported in dbSNP v130 across the 1.5 Mb of targeted sequences. Of these, 598 SNPs were identified during the high throughput sequencing with 706 SNPs undetected (Additional File 1, Table S3). A large number of undetected SNP loci had less than 4× coverage ($n = 396$) in the present study. Assuming all SNPs reported in dbSNP were present in this population of HF sires, the false negative rate drops to 28.5% (268 SNPs) and 26% (252 SNPs) when considering bases with at least 10× and 30× coverage, respectively. The median for base coverage in undetected and detected groups was two and 95 respectively (Figure 3). Comparison of these data with SNPs reported in dbSNP (v130) also identified 3537 putative novel SNPs (Additional File 1, Table S2).

Comparison to previous data from this group

Analysis of the previous studies on these sires [4,5,7,31,32] identified 67 validated SNPs segregating in these 150 HF cattle, of which, 43 SNPs were identified in at least one of the two pools in this study (Table 4). The lowest minor allele frequency detected was 0.08 and 0.09 in the low and high CIV pools, respectively (Table 4). There was strong concordance between both methods with no significant differences (experiment-wise $P > 0.1$) between allele frequency estimates for any of the 43 SNPs across both low and high CIV pools (Table 4; Figure 4). The 24 undetected SNPs included 16 SNP loci with zero coverage, two SNP loci with combined coverage across both pools of less than 4× and six SNP loci with coverage depth of between 5× to 54× with variant allele frequencies ranging between 0.01 to 0.89 (Additional File 1, Table S4). The false negative rate reduced to 7.5% (5/67) and 3.0% (2/67) when considering variant loci with at least 10× and 30× coverage, respectively. Analysis of the allele frequencies for the two undetected SNPs with greater than 30× coverage revealed they were below detectable thresholds given their respective coverage at each loci (Additional File 1, Table S4).

Table 1 Capture efficiency	Low calving interval pool	High calving interval pool
Total sequencing data generated (Gb)	1.57	1.38
Sequence data mapped to bovine genome (Gb)	1.23 (78%)	0.9 (67%)
Data mapped to targeted regions (Mb)	143 (12%)	132 (14%)
Data remaining after quality control (Mb)	74 (52%)	48 (34%)
Number of bases targeted (Mb)	1.54	1.54
Quantity of bases covered (Mb)	1.18 (76%)	1.20 (77%)
Average fold coverage per base	56	32

Percentages in parentheses represent proportions related to the category above each field.
Table 2 Variants detected across the 1.5Mb of targeted sequence

SNP Indel	Unique in Low CIV pool	Unique to High CIV pool				
S` and 3` UTR	547	86	93	50	118	58
Exonic	278 (153)	29	57 (38)	17	65 (45)	19
Intronic	2226	277	310	189	441	168

1: Numbers in parenthesis represent the number of SNPs resulting in non synonymous substitutions; 2: Variants classified as unique represent variants undetected in the corresponding pool.

Transcription factor and microRNA binding site analysis

Analysis of three SNPs located in the 5` UTR of insulin-like growth factor binding protein 5 (IGFBS5), the mitogen-activated protein kinase 9 gene (MAPK9) and the glucokinase gene (GCK) were predicted to collectively modulate 11 transcription factor binding sites (TFBS) (Table 5). The two SNPs analysed in the 5` UTR of GHR and growth hormone releasing hormone (GHRH) were not predicted to affect any TFBS.

Analysis of the five SNPs located in the 3` UTR of Hexokinase 1 (HK1), carrier family 2 (sodium/glucose cotransporter) member 1 gene (SLC2A1), insulin receptor substrate 4 (IRS4), estrogen receptor beta (ESR2) and carrier family 5 (sodium/glucose cotransporter) member 1 gene (SLC5A1) predicted SNPs located in HK1, SLC2A1 and ESR2 affected binding of six microRNAs while the remaining two SNPs in IRS4 and SLC5A1 were not predicted to have any effects (Table 6).

Discussion

DNA pooling and allele frequency estimation

DNA pooling and comparison of allele frequencies between groups of individuals divergent for a particular phenotype is an attractive approach to candidate QTN identification primarily due to the current costs of target enrichment and high throughput sequencing of large numbers of individual genomes [36]. Although segregation at significantly different frequencies between pools does not necessarily infer a relationship with the trait and may be a result of genetic drift or high linkage disequilibrium with a causative variant, this approach efficiently captures the genetic variation of individuals.

Table 3 Top 20 most significant SNPs, at least 10 Mb apart, in exonic, intronic and UTR regions displaying differential frequencies between groups of cattle divergent for calving interval.

Extern gene/Ensembl ID	Chr.	Location	Allele	Frequency in Low CIV pool	Frequency in High CIV pool	P value	Type/Location	Predicted effect	Reference
GH1	19	49749042	G>T	0.00	0.38	9.2 × 10^-15	Exon NSS	N/A	rs41917096
SST	21	47258728	C>T	0.00	0.34	4.8 × 10^-9	Exon NSS	N/A	novel
NRZF2	21	95100000	A>G	0.00	0.52	9.1 × 10^-8	Exon NSS	N/A	novel
HK3	7	37630361	T>G	0.00	0.30	8.2 × 10^-6	Exon NSS	N/A	novel
STAT5B	19	43676953	G>T	0.00	0.28	1.2 × 10^-5	Exon NSS	N/A	novel
IGFBS5	2	10885684	C>T	0.00	0.54	2.3 × 10^-12	5`	2 × pTFBS	novel
MAPK9	7	871347	C>T	0.47	0.09	5.3 × 10^-12	5`	1 × pTFBS	rs4395395
GCK	11	74275999	G>A	0.00	0.39	2.2 × 10^-9	5`	8 × pTFBS	novel
GHR	20	34207771	C>A	0.00	0.39	8.3 × 10^-9	5`	None	novel
HK1	28	24994609	C>T	0.00	0.18	2.4 × 10^-7	3`	1 × miRNA	novel
GHRH	13	66803946	A>G	0.06	0.25	3.1 × 10^-6	5`	None	novel
IRS4	X	35195377	C>G	0.00	0.83	4.9 × 10^-9	3`	None	novel
SLC2A1	3	11025920	T>G	0.00	0.38	5.0 × 10^-9	3`	4 × miRNA	novel
SLC5A1	17	73909477	C>T	0.68	0.18	9.7 × 10^-7	3`	None	rs41255339
ESRE2	10	78593544	C>T	0.21	0.93	9.3 × 10^-7	3`	1 × miRNA	novel
IGF2R	9	10013696	C>T	0.79	0.00	5.5 × 10^-20	Intron	N/A	novel
PIK3R2	7	4996360	C>A	0.00	0.55	2.8 × 10^-15	Intron	N/A	novel
Q5SM43	7	14524938	G>A	0.00	0.44	4.4 × 10^-9	Intron	N/A	novel
IGFBS3	4	78896406	A>T	0.00	0.42	8.8 × 10^-9	Intron	N/A	novel
SIRT2	18	48205429	T>A	0.00	0.53	1.6 × 10^-8	Intron	N/A	novel

1: Frequency of second allele displayed; 2: Benjamini and Hochberg corrected P value; 3: NSS = SNPs resulting in non synonymous substitutions; 4: Predicted effects on transcription factor binding sites in the 5` regulatory regions using MatInspector software package [33] and on microRNA binding sites in the 3` regulatory regions using MicroInspector software [34], detailed information on predicted effects displayed in Tables 6 and 7; 5: SNPs classified according to dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/ accessed 9th September 2011).
divergent for a particular phenotype and has been successfully used to identify variants involved in complex traits in humans [23,24]. However, the success of this approach is influenced by several factors including: (1) the degree of divergence of individuals for the true genetic merit of the trait as well as the effective number (i.e., after accounting for coancestry) of individuals per pool; (2) equimolar pooling of DNA from each individual; (3) bias introduced during target enrichment prior to sequencing; (4) bias introduced during amplification during sequencing; (5) classification of variants during post sequencing data analysis; (6) sequencing error rate; (7) technical differences between sequencing lanes and (8) sampling bias during sequencing. Analysis of all the technical parameters individually was not within the remit of this study and has previously been discussed [22,36-39].

In the current study, we assessed performance of the process retrospectively by comparing the allele frequency estimates with results from conventional genotyping and observed a strong concordance between both methods even at low read depths of less than 10× where reliable sequencing data can be difficult to achieve [39]. Although the relative contribution of each sample in pooled sequencing is a critical issue and cannot be guaranteed, the high concordance with actual genotypes provided strong evidence that minimal biases were introduced including during in-solution enrichment which captured approximately 80% of the target sequence and has previously been reported to yield better uniformity and specificity than equivalent array based capture approaches [40]. Potential biases due to technical variations such as mechanical differences in sequencing lane manufacture [39] were circumvented by indexing groups and pooling into a single lane. However, despite sequencing within a single flow cell lane, differences in capture efficiencies were observed between pools. The high CIV pool generated 37% more
EntrezGene ID	Chr.	SNP name	Position	Allele sub.	Allele frequency in low CIV pool	P value	Allele frequency in high CIV pool	P value	Reference
					Actual	NGS	Actual	NGS	
S555G	33897071	T > C	0.19	0.15	1.00	0.12	0.10	1.00	AF140284
H45	33897099	A > G	0.34	0.28	0.96	0.15	0.18	1.00	AF140284
AS367	33897128	C > T	0.13	0.15	1.00	0.02	0.00	1.00	AF140284
N528T	33897151	T > G	0.21	0.22	1.00	0.12	0.10	1.00	AM161140
GHR76	33897252	A > G	0.13	0.14	1.00	0.02	0.00	1.00	n/a
F279Y	33915503	A > T	0.00	0.00	1.00	0.09	0.09	1.00	AM161140
GHR19.1	33994639	G > T	0.62	0.65	1.00	0.47	0.29	0.23	rs109702942
GHR18.2	33995251	G > C	0.07	0.09	1.00	0.00	0.00	1.00	n/a
GHR20	34086084	C > T	0.69	0.73	1.00	0.31	0.29	1.00	AF126288
GHR9.1	34101240	C > T	0.05	0.00	0.96	0.37	0.33	1.00	rs11097028
GHR3.3	34166627	A > G	0.08	0.12	1.00	0.43	0.39	1.00	n/a
GHR2.2	34166731	A > G	0.09	0.13	1.00	0.43	0.31	0.96	n/a
GHR3.1	34166898	T > C	0.09	0.00	0.23	0.42	0.33	0.96	n/a
GHR2.6	34166944	C > T	0.09	0.00	0.22	0.42	0.34	1.00	rs109825954
GHR2.5	34166970	A > G	0.09	0.00	0.23	0.42	0.36	1.00	n/a
GHR2.4	34166982	A > C	0.09	0.00	0.22	0.43	0.33	0.96	n/a
GHR2.3	34167025	C > T	0.09	0.00	0.23	0.42	0.37	0.10	n/a
GHR2.2	34167126	G > A	0.09	0.09	1.00	0.43	0.35	1.00	n/a
GHR2.1	34167240	C > T	0.09	0.00	0.13	0.44	0.52	1.00	n/a
GH19	49657225	G > A	0.90	0.86	1.00	0.84	0.91	1.00	rs1923481
GH18	49657293	G > A	0.92	0.82	1.00	0.92	0.90	1.00	rs196003433
GH17	49657371	C > G	0.92	1.00	1.00	0.89	1.00	1.00	rs1923483
2291	49660125	T > G	0.08	0.00	0.13	0.12	0.08	1.00	n/a
2141	49660275	G > C	0.33	0.36	1.00	0.09	0.11	1.00	rs1923484
GH1	49660469	A > C	0.08	0.00	0.96	0.12	0.12	1.00	rs196003424
GH38	49693278	G > A	0.33	0.21	1.00	0.59	0.60	1.00	rs1923525
GH29	49693686	C > T	0.50	0.26	0.36	0.50	0.64	0.96	rs1923520
RS2012853	71150007	C > T	0.99	1.00	1.00	0.90	0.93	1.00	rs2012853
IGF1	71175477	T > C	0.17	0.24	0.95	0.01	0.00	1.00	rs10957731
IGF1I2	71175753	A > G	0.49	0.46	1.00	0.25	0.15	0.70	rs109227434
IGF1I1	71176219	A > T	0.26	0.16	1.00	0.37	0.25	1.00	rs110076310
AF017143	71198324	G > A	0.35	0.26	0.96	0.62	0.76	0.92	AF017143
IGF2	51250879	A > G	0.40	0.40	1.00	0.65	0.47	0.83	rs42196909
41515	100112956	A > G	0.87	0.79	1.00	0.87	0.87	1.00	rs41625344
41092	100113379	G > A	0.63	0.65	1.00	0.77	0.47	0.22	rs41625344
86262	100134604	G > A	0.86	0.76	0.73	0.86	1.00	0.62	n/a

1: SNP details according to previous studies [4,5,7,31,32]; 2: Reported from the forward strand; 3: Allele frequencies represents second allele; 4: Benjamini and Hochberg corrected P values; 5: Genbank accession or dbSNP reference (http://www.ncbi.nlm.nih.gov/projects/SNP/ accessed 9th September 2011).
data mapping to the bovine genome compared with the low CIV pool. Although, the authors cannot explain the differences, it is noteworthy that other authors have also observed differences in capture efficiencies between pooled DNA samples. For example, Bansal et al. (2011) [36] observed up to a 26% difference in sequencing coverage between libraries captured using the same target capture system. Furthermore, Maricic et al. 2010 [41] reported up to a four-fold difference in the number of sequence reads obtained using captured mitochondrial DNA sequences from 46 human individuals using a similar bait-design sequence capture system.

Despite the cost effective advantages a pooled sample approach delivers, given a fixed quantity of sequence data, a compromise on the fold-coverage per pooled sample/group and thereby sensitivity is unavoidable. The combined average read coverage of 88× across both pools impacted the sensitivity to detect variants segregating at low frequencies in either pool. Accounting for the requirement of 4 non-reference alleles across both pools to be present to call a variant translates to the ability to detect alleles with MAF, on average, of 4.5%. To achieve detection of alleles with MAF < 4.5% a reduction in the quantity of sequence targeted for enrichment and/or number of pools per sequencing lane would be required. This is an important consideration for study designs incorporating a DNA pooling and sequencing approach for rare variant detection. However a reduced ability to identify rare variants by sequencing many individuals at a more shallow depth in larger pool sizes can be offset by the gains in power achieved by more accurate estimation of allele frequencies compared to sequencing fewer individuals at higher depth with

Figure 4 Comparison of allele frequencies estimated using high-throughput sequencing vs. genotyping for 43 SNPs across two pools of 75 dairy cattle divergent for calving interval (CIV). Actual genotype frequencies calculated from Sequenom® MassARRAY data obtained from previous studies [4,5,7,31,32].

Table 5 Effects of SNPs located in the 5' UTR of IGFBP5, MAPK9 and GCK on predicted transcription factor binding sites.

Entrez Gene ID	Chr.	Position	Allele	Strand	Matrix Family	Core similarity	Matrix similarity	Site sequence	Detailed Family Information
IGFBP5	2	108856584	T	(-)	VSZF07	1.00	0.94	ggtccCTCCtctcag	C2H2 zinc finger transcription factors 7
				(+)	VSPLAG	1.00	0.89	gaGAGGaaggccagggqagg	Pleomorphic adenoma gene
MAPK9	7	871347	C	(+)	VSNFKB	1.00	0.93	aacggggtTCCcttc	Nuclear factor kappa B/c-rel
				(-)	VSPAR	0.76	0.71	aacCAGGacacagtctctcc	Peroxisome proliferator activated receptor homodimers
				(+)	VSPAX3	1.00	0.87	caggTACacagtctcccc	PAX-3 binding sites
GCK	11	74275999	(-)	VSEREF	1.00	0.93	aacGAcacaGGTcacagtctcc	Estrogen response elements	
				(-)	VSRORA	1.00	0.96	aaacaacagGGTcacagtctc	v-ERB and RAR-related orphan receptor alpha
				(+)	VSGREF	0.75	0.86	ggagggagtTGTGATctgg	Glucocorticoid responsive and related elements
				(-)	VSGATA	0.85	0.90	acacaGATCaaca	GATA binding factors
					VSRXRF	1.00	0.79	agcaaaGGTcaaaaacagtcac	RXR heterodimer binding sites

The “core sequence” of a matrix is defined as the (usually 4) consecutive highest conserved positions of the matrix (marked in uppercase letters). A perfect match between the consensus bovine sequence and the matrix gets a score of 1.00 (each sequence position corresponds to the highest conserved nucleotide at that position in the matrix); a “good” match to the matrix usually has a similarity of >0.80.
Table 6 Effects of SNPs located in the 5′ UTR of SLC2A1, HK1 and ESR2 on predicted miRNA binding sites.

Entrez Gene ID/Ensembl	Chromosome Position	Allele	Strand	miRNA name	miRNA sequence	Free energy ΔG (kcal/mol)
SLC2A1	3 110250920	T (+)	bta-miR-10b	uaccuguaacggaauuggu	-20.7	
HK1	28 24994609	T (+)	bta-miR-2465	uagaccaacuagacuuggau	-21.9	
ESR2	10 78593544	A (-)	bta-miR-2348	uucggugugguggagcgccc	-21.9	

*Free energy: Gibbs free energy (ΔG) of the duplex structure is indicated.

smaller pool size, even accounting for higher than expected error rates [42].

When assessing false negative rates in relation to reference databases other factors other than sequencing depth need consideration including segregation of these variants in the target population and accuracy of variants reported in the reference database. Poor sequencing depth was the main factor in the false negative rates found when compared to the Sequenom® dataset as the majority of undetected SNP loci, i.e. 93% had low read depths of less than 10×. Comparison to the dbSNP database however highlighted that other factors were involved with only 61% of undetected SNPs having read depths less than 10×. The high SNP false negative rate of 20.5% (loci with >10× coverage) compared to dbSNP is most probably due to a combination of a lack of segregation of these SNPs in HF cattle and inaccurate dbSNP data. In support of this a recent commentary by Day (2010) [43] on the human dbSNP database revealed that several studies have reported discontinuity with dbSNP variants and depending on the study dbSNP false positive rates ranged between 8 - 17%.

Identification of candidate causative variants

The identification of causative mutations or quantitative trait nucleotides (QTN) underlaying performance traits in livestock is problematic with only a small number identified to date [44,45]. This is mainly due to the polygenic nature of quantitative traits requiring dense genome wide marker or sequence analysis on large populations of animals with accurate phenotypic data to identify and accurately estimate small effects especially on lowly heritable traits [14]. Other factors include the long generation interval of livestock, costs involved, lack of inbred lines, the difficulty of producing ‘knock-out’s [45] as well as possible conservation of LD within small chromosomal regions.

The somatotrophic axis is a likely candidate for harbouring QTN due to its central role in animal postnatal growth, development, lactogenesis, and reproduction [2,3]. It is therefore not surprising several groups have reported associations with variants in this axis and performance [6,8,46-51]. In addition to milk production and growth traits we have previously observed associations between calving interval and variants in GHR [7] and associations between an indirect measurement of reproductive performance (functional survival) and SNPs in both GH1 and IGF1 [4,5]. Our previous studies involved sequence analysis of specific regions, encompassing between only 2-5% of the sequence of each gene. Polymorphisms presented herein are the first genomic characterisation of this axis in cattle divergent for a performance trait, and were generated from sequencing entire genes and regulatory regions. It is therefore probable, even allowing for other possible genetic mechanisms such as copy number variation or epigenetic effects such as methylation, a subset of these variants underlies heritable variation in CIV. Although CIV is a locally heritable trait (0.03-0.04; Berry et al. [52]) the sires used in the present study were of relatively high reliability. We identified variants (n = 301) within coding regions of 72 genes, consisting of either SNPs resulting in non-synonomous substitutions or indels, which could plausibly affect abundance or biological activity of their respective gene products. In this study, 58 of these SNPs were segregating at significantly different frequencies (P < 0.01) between the high and low CIV pools, all with at least 30× coverage, and warrant further investigation. In addition, SNPs in the regulatory regions flanking each gene were found to be present at different frequencies between pools (n = 116) and may harbour variants of biological significance. Interestingly, bioinformatic analysis of the top 10 most significant variants located in untranslated regions revealed SNPs located in the 5′ UTR of IGFBP5, MAPK9 and GCK were predicted to collectively modulate 11 transcription factor binding sites (TFBS) and SNPs in the 3′ UTR of HK1, SLC2A1 and ESR2 were predicted to modulate six miRNA binding sites. While in contrast significant SNPs analysed in the 5′ UTR of GHR and GHRH and 3′ region of SIRT2 and SLC5A1 were not predicted to have any effects on TF or miRNA
binding. Perhaps not surprisingly, by far the largest proportion of all detected variants, 71% (n = 3612), were located in the intronic regions of the 22 genes targeted for complete sequencing, of which, frequencies of 524 SNPs were significantly different between groups. An example of the potential impact of intronic polymorphisms on gene function can be seen with one of the few QTNs identified in livestock, resulting in a major effect on muscle growth in pigs, is located within an intron of IGF2 [53]. While it is interesting to investigate possible effects of these polymorphisms, it is important to reiterate the observation of differential frequencies between pools does not translate to an association with CIV but instead candidate causative variants are presumably captured and cannot be identified until subsequent genotyping and association analysis.

Genotyping all identified variants across a large population of cattle with detailed phenotypic information would provide the greatest chance for QTN identification. However due to a combination of (1) the quantity of variants identified and (2) the requirement for large numbers of genotyped individuals to attain sufficient power in the association analysis renders this a costly approach. Therefore careful selection of candidate polymorphisms prior to genotyping will be required. A parameter worth consideration during variant selection is the likely extent of linkage disequilibrium (LD) between variants in either pool. High LD could result in substantial numbers of variants displaying differential frequencies due to nothing more than physical proximity to the causative agent. One limitation of the current DNA pooling strategy however is the inability to estimate LD and subsequent variant selection could inadvertently omit QTN candidates from genotyping. Selecting variants per gene/chromosome rather than genome wide and using bioinformatic tools to extrapolate possible biological effects based on our current understanding of gene regulation and function would be the number of false positives and negatives carried through the process. LD in cattle was previously thought to span large distances [54,55] but more recent evidence suggests the extent of LD in HF dairy cattle to be smaller in the region of 2 Mb (r² = 0.3) to 10 Mb (D' = 0.3) [56]. The current study identified 720 SNPs displaying significantly different allele frequencies between high and low CIV pools, located across 72 genes on 28 chromosomes with 50 of these genes separated by at least 10 Mb. Even considering the possibility of regions of high LD these results tentatively support previous observations of multiple independent effects between variants in genes of the somatotrophic axis and performance [57]. This is consistent with Fishers classical infinitesimal model of complex traits, where many genes are involved, each with small but additive effects [58].

This study is one of only two reporting the use of targeted enrichment for the analysis of large genomic regions in cattle, the previous study utilised high-throughput sequencing to identify the causative mutation underlying bovine arachnomelia, a congenital anomaly resulting in limb bone deformation [59]. To our knowledge, this report describes the first sequencing of targeted genomic regions using groups of individuals divergent for an economically important trait in livestock and the high concordance obtained between actual genotype frequencies and this data supports DNA pooling as a cost-effective alternative to individual animal genotyping for SNP allele frequency estimation in agreement with previous studies [36,38,60-63].

These results represent a preliminary screen for candidate causal polymorphisms in genes of the somatotrophic axis contributing to differences in genetic merit for CIV performance. Future work will include variant selection, aided by bioinformatic analysis, followed by genotyping on a large panel of cattle with detailed fertility information. As sequencing technology develops whole genome sequencing of large numbers individual genomes will become affordable for many study designs, but until then the detection of candidate causative variants, rare and common, via targeted re-sequencing followed by array based association studies will almost always be the most efficient design.

Conclusion
This study validates the use of pooled DNA samples for subsequent enrichment and high-throughput sequencing as an accurate cost effective method to identify polymorphisms segregating at differential frequencies between populations and therefore may aid the identification of causative variants associated with complex traits.

Additional material

Additional file 1: Excel file containing the four additional tables. Additional Table 1 - details of the genes including sequence co ordinates selected for target enrichment and sequencing. Additional Table 2 - details of the SNPs and indels identified across the 83 candidate genes in both the low and high calving interval DNA pools. Additional Table 3 - details of all SNPs reported on dbSNPv130 within the 1.5 Mb DNA sequences targeted for sequencing. Additional Table 4 - 24 undetected SNPs validated as segregating in the 150 Holstein-Friesian sires using Sequenom® MassARRAY genotyping.

Acknowledgements
MPP is funded by a Science Foundation Ireland strategic research grant (07/SRC/B1156). CJC is funded under the Science Foundation Ireland (SFI) Stokes lecturer scheme (07/SK/B1236A). Financial support from Research Stimulus Fund (RSF-06-0353, RSF-06-0409) is also acknowledged.
References

1. Etherton TD. Somatotropin function: The somatomedin hypothesis revisited. J Anim Sci 2004, 82(13 suppl.E239-244.

2. Lucy MC, Verkerk GA, Whyte BE, Macdonald KA, Burton L, Cursons RT, Roche JR, Holmes CW. Somatotropin axis components and nutrient partitioning in genetically diverse dairy cows managed under different feed allowances in a pasture system. J Dairy Sci 2009, 92(2):526-539.

3. Lucy MC. Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction. Reprod Domest Anim 2008, 43(Suppl.2):31-39.

4. Mullen MP, Berry DP, Howard DJ, Diskin MG, Lynch CO, Gilbin L, Kenny DA, Magee DA, Neade KG, Waters SM. Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF-1) gene are associated with performance in Holstein-Friesian dairy cattle. Frontiers in Genetics 2011, 2.3.

5. Mullen MP, Berry DP, Howard DJ, Diskin MG, Lynch CO, BERKOWICZ EW, Magee DA, MacHugh DE, Waters SM. Associations between single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle. J Dairy Sci 2010, 93(12):5995-5969.

6. Vittala S, Syda J, Blott S, Schulman N, Lidauer M, Maki-Tanila A, Georges M, Vilki J. The Role of the Bovine Growth Hormone Receptor and Prolactin Receptor Genes in Milk, Fat and Protein Production in Finnish Ayrshire Dairy Cattle. Genetics 2006, 173(4):2151-2164.

7. Waters SM, McCabe NS, Howard DJ, Gilbin L, Magee DA, MacHugh DE, Berry DP. Associations between newly discovered polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle. Anim Genet 2011, 42:39-49.

8. Blott S, Kim JI, Mosio S, Schmidt-Kuntzel A, Cornet A, Berri P, Cambisano N, Ford C, Grisart B, Johnson D, Fairley S, Fitzgerald S, et al. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 2003, 163(1):253-266.

9. Allan MF, Kuehn LA, Cushman RA, Snelling WM, Eichtenkamp SE, Thallman RM. Confirmation of quantitative trait loci using a low-density single nucleotide polymorphism map for twinning and ovulation rate on bovine chromosome 5. J Anim Sci 2009, 87(1):46-56.

10. Kim ES, Shi X, Coganboglu O, Weigel K, Berger PJ, Kirkpatrick BW. Refined mapping of twinning-rate quantitative trait loci on bovine chromosome 5 and analysis of insulin-like growth factor-1 as a positional candidate gene. J Anim Sci 2009, 87(3):835-843.

11. Sahana G, Gulbrandsen B, Bendixen C, Lund MS. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle. Anim Genet 2010, 41(6):579-588.

12. McCarthy MJ, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Review Genetics 2008, 9(6):356-369.

13. Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nature Review Genetics 2009, 10(4):241-251.

14. Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Review Genetics 2009, 10(6):381-391.

15. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MJ, Rieder MJ, Topol EJ, et al. Finding the missing heritability of complex diseases. Nature 2009, 461(7265):747-753.

16. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, BA, Hadenbol P, Leal SM, Pastersk S, Wheeler DA WT, Yu F, Yang H, Zeng C, Gao Y, Hu L, Li C, LW, Liu S, Pan H, Tang X, Wang J, Wang W, Wu Y, J, Zhang B, Zhang Q, Zhao H, Zhou J, Gabriel SB, Barry R, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449(7164):851-861.

17. VanRaden PM, Olson KM, Null DJ, Hutchinson JL. Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J Dairy Sci 2011, 94(12):6153-6161.

18. Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nature Review Genetics 2009, 10(8):565-577.

19. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Review Genetics 2011, 12(7):499-510.

20. Grinke A. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009, 27:182-189.

21. Summerer D. Enabling technologies of genomic-scale sequence enrichment for targeted high-throughput sequencing. Genomics 2009, 94(3):363-368.

22. Hedges DJ, Guettouche T, Yang S, Bademci G, Diaz A, Andersen A, Hulme WF, Linker S, Mehta A, Edwards YJK, et al. Comparison of Three Targeted Enrichment Strategies on the SOLiD Sequencing Platform. PLoS ONE 2011, 6(4):e18595.

23. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes. Science 2009, 324(5925):387-389.

24. Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Altshuler D, et al. Genome-wide association study of type 2 diabetes: results from the International Diabetes Heritability Initiative (IDH): a multiethnic cohort. Nat Genet 2010, 42(10):851-858.

25. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.

26. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(15):1714-1720.

27. McKenna A, Hanna M, Banks E, Sivachenko AY, Cibulskis K,altashuler D, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20:1297-1303.

28. Flicek P. Results from sequence reads: methods for alignment and assembly. Nat Methods 2009, 6:56-512.

29. DePristo MA. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genet 2011.

30. Flicek P, Amode MR, Barrell D, Bahr K, Billis K, Bl, Dall'Oglio A, Fairley S, Fitzgerald S, et al. Ensembl 2011. Nucleic Acids Res 2011, 39(Database):D80-D85.

31. Berkowicz EW, Magee DA, Sikora KM, Howard DJ, Mulken MP, Evans RD, Spillane C, Ensembl Database: A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449(7164):851-861.

32. Berkowicz EW, Magee DA, Sikora KM, Howard DJ, Mulken MP, Evans RD, Spillane C, MacHugh DE: Single nucleotide polymorphisms in the imprinted bovine insulin-like growth factor 2 receptor gene (IGF2R) are associated with body size traits in Irish Holstein-Friesian cattle. Anim Genet 2011, 42(1):1-8.
associated with dairy performance in Irish Holstein-Friesian cattle. J Dairy Res 2011, 1:1-8.

33. Quandt K, Frech K, Karas H, Wingender E, Werner T: MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995, 23(23):4878-4884.

34. Ruisinov V, Baev V, Minkov IN, Tabler M: MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 2005, 33(suppl 2):W96-700.

35. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, series B 1995, 57(1):289-300.

36. Bansal V, Tewhey R, LeProust EM, Schork NJ: Efficient and Cost Effective Population Resequencing by Pooled and In-Solution Hybridization. PLoS ONE 2011, 6(3):e18353.

37. Nielsen R, Paul JS, Albrechtsen A, Song YS: Genotype and SNP calling from next-generation sequencing data. Nature Review Genetics 2011, 12(6):443-451.

38. Altmann A, Weber P, Quast C, Rex-Haffner M, Binder EB, Müller-Myhsok B: vqsr: variant identification in pooled DNA using R. Bioinformatics 2011, 27(13):177-84.

39. Mcintyre L, Lopiano K, Morse A, Amin V, Oberg A, Young L, Nuzhdin S: SNP frequency estimation using massively parallel sequencing of pooled DNA. Bioinformatics 2011, 27(13):177-84.

40. Mamanova L, Coffey AJ, Scott CE, Kozaireva I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ: Target-enrichment strategies for next-generation sequencing. Nat Methods 2010, 7(2):111-118.

41. Mancic T, Whetten M, Pålbo S: Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products. PLoS ONE 2010, 5(11): e14004.

42. Kim SY: Design of association studies with pooled or un-pooled next-generation sequencing data. Genet Epidemiol 2010, 34(5):479-491.

43. Ron M, Weller JI: From QTL to QTN identification in livestock. Trends in Genetics 2010, 26(1):24-30.

44. Bansal V, Tewhey R, LeProust EM, Schork NJ: Efficient and Cost Effective Population Resequencing by Pooled and In-Solution Hybridization. PLoS ONE 2011, 6(3):e18353.

45. Nielsen R, Paul JS, Albrechtsen A, Song YS: Genotype and SNP calling from next-generation sequencing data. Nature Review Genetics 2011, 12(6):443-451.

46. Allmann A, Weber P, Quast C, Rix-Haffner M, Binder EB, Muller-Myhsok B: vqsr: variant identification in pooled DNA using R. Bioinformatics 2011, 27(13):177-84.

47. McIntyre L, Lopiano K, Morse A, Amin V, Oberg A, Young L, Nuzhdin S: SNP frequency estimation using massively parallel sequencing of pooled DNA. Bioinformatics 2011, 27(13):177-84.

48. Mamanova L, Coffey AJ, Scott CE, Kozaireva I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ: Target-enrichment strategies for next-generation sequencing. Nat Methods 2010, 7(2):111-118.

49. Mancic T, Whetten M, Pålbo S: Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products. PLoS ONE 2010, 5(11):e14004.

50. Kim SY: Design of association studies with pooled or un-pooled next-generation sequencing data. Genet Epidemiol 2010, 34(5):479-491.

51. Ron M, Weller JI: From QTL to QTN identification in livestock. Trends in Genetics 2010, 26(1):24-30.

52. Bansal V, Tewhey R, LeProust EM, Schork NJ: Efficient and Cost Effective Population Resequencing by Pooled and In-Solution Hybridization. PLoS ONE 2011, 6(3):e18353.

53. Nielsen R, Paul JS, Albrechtsen A, Song YS: Genotype and SNP calling from next-generation sequencing data. Nature Review Genetics 2011, 12(6):443-451.