Constraining primordial black holes with relativistic degrees of freedom

Junsong Cang1,2,3, Yin-Zhe Ma4,5,6,* and Yu Gao1

1 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
3 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
4 School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
5 NAOC-UKZN Computational Astrophysics Centre (NUCAC), University of KwaZulu-Natal, Durban, 4000, South Africa and
6 National Institute for Theoretical and Computational Sciences (NITheCS), South Africa

Scalar perturbations in the early Universe create over-dense regions that can collapse into primordial black holes (PBH). This process emits scalar-induced gravitational waves (SIGW) that behaves like an extra radiation component and contributes to the relativistic degrees of freedom (N_{eff}). We show that N_{eff} limits from cosmic microwave background (CMB) give promising sensitivities on both the abundance of PBHs and the primordial curvature perturbation ($P_{\text{R}}(k)$) at small scales. We show that Planck and ACTPol data can exclude supermassive PBHs with peak mass $M_* \in [3 \times 10^5, 5 \times 10^{10}] M_\odot$ as the major component of dark matter, depending on the shape of the PBHs mass distribution. Future CMB-S4 mission is capable of broadening this limit to a vast PBH mass window of $M_* \in [8 \times 10^{-3}, 5 \times 10^{10}] M_\odot$, covering sub-stellar masses. These limits correspond to the enhanced sensitivity of P_{R} on scales of $k \in [10^4, 10^{22}]$ Mpc$^{-1}$, which is much smaller than those scales probed by direct perturbation power spectra (CMB and large-scale structure).

Introduction. Large density fluctuation in the early Universe create over-dense regions that can collapse into primordial black holes (PBH). This process emits scalar-induced gravitational waves (SIGW) that behaves like an extra radiation component and contributes to the relativistic degrees of freedom (N_{eff}). We show that N_{eff} limits from cosmic microwave background (CMB) give promising sensitivities on both the abundance of PBHs and the primordial curvature perturbation ($P_{\text{R}}(k)$) at small scales. We show that Planck and ACTPol data can exclude supermassive PBHs with peak mass $M_* \in [3 \times 10^5, 5 \times 10^{10}] M_\odot$ as the major component of dark matter, depending on the shape of the PBHs mass distribution. Future CMB-S4 mission is capable of broadening this limit to a vast PBH mass window of $M_* \in [8 \times 10^{-3}, 5 \times 10^{10}] M_\odot$, covering sub-stellar masses. These limits correspond to the enhanced sensitivity of P_{R} on scales of $k \in [10^4, 10^{22}]$ Mpc$^{-1}$, which is much smaller than those scales probed by direct perturbation power spectra (CMB and large-scale structure).

PBH model. To achieve efficient PBH formation, the primordial curvature perturbation P_{R} needs to be boosted to 10^{-2} at small scales ($k \gtrsim 1$ Mpc$^{-1}$) [26, 31, 54–57]. Such a spectrum can be realised in several inflation theories [31, 55, 58–62], here we adopt a typical log-normal P_{R} parameterisation peaking at a small scale
ing the third equality in (3) we have used

\[\beta(M) \equiv \rho_*/\rho_{cr}(z) = \frac{2}{\Delta} \int_{\Delta}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\left(\frac{\delta^2}{2\sigma^2}\right)} \, d\delta, \]

where \(\rho_*/ \) and \(\rho_{cr}(z) \) are the PBH density and the critical density of the Universe at the time of collapse. \(\Delta \approx 0.45 \) is the threshold density contrast for gravitational collapse during radiation dominated era [8, 68, 69]. While deriving the third equality in (3) we have used \(\delta_c > \bar{\sigma} \), which remains valid for all scenarios we explored. \(\bar{\sigma}^2 \) is the coarse-grained variance for density contrast [26, 65, 70]

where the collapsing scale \(k \) is related to its enclosed mass \(M \) via Eq. (2), \(W \) is a window function, for which we adopt a Gaussian form [26, 65], \(W(x) = \exp(-x^2/2) \).

The distribution of PBH abundance in different masses can be calculated via [26, 65, 70, 71]

\[\Phi = \sum f_{bh} \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left[-\frac{\ln(M/M_*)^2}{2\sigma^2} \right], \]
After neutrinos decouple, the cosmic radiation energy density \(\rho_t \) is a sum of contributions from CMB photon (\(\gamma \)), neutrino (\(\nu \)) and GW,

\[
\rho_t = \rho_\gamma + \rho_\nu + \rho_{gw}
\]

with

\[
\rho_\gamma = \frac{\pi^2}{15} T_\gamma^4, \quad \rho_{gw} = \frac{7\pi^2}{120} N_{\text{eff}} T_\gamma^4, \quad \rho_\nu = \frac{\pi}{16} T_\nu^4,
\]

here \(T_\gamma = 2.728(1+z) \) K and \(T_\nu = (4/11)^{1/3} T_\gamma \) are temperatures of CMB and neutrino respectively. Since the behavior of GW density mimics that of neutrino, in Eq. (11) we model their total energy density by the effective number of neutrino species,

\[
N_{\text{eff}} \equiv N_{\text{SM}}^{\text{eff}} + \Delta N_{\text{eff}}, \quad (12)
\]

where \(N_{\text{SM}}^{\text{eff}} = 3.046 \) represents the contribution from SM neutrino [42–44], \(\Delta N_{\text{eff}} \) parameterises the GW density. Comparing \(\rho_{gw} = \Omega_{gw} \rho_c (1+z)^4 \) with Eq. (11), one can easily show that

\[
\Delta N_{\text{eff}} = 8.3 \times 10^4 \Omega_{gw}(\bar{\theta}),
\]

where \(\bar{\theta} \) indicates the model parameters. Depending on the choice of parameterisation, \(\bar{\theta} \) can be either the \(\mathcal{P}_3 \) parameters \((A, \sigma, k_*) \) defined in Eq. (1), or the PBH parameters \((f_{bh}, \sigma_*, M_*) \) defined in Eq. (6). For a given set of \(\mathcal{P}_\mathcal{R} \) parameters, the value of \(\Omega_{gw} \) is directly determined by integrating Eq.(7). To obtain the relation between \(\Omega_{gw} \) and PBH parameters, we constructed a three dimensional grid in \(\mathcal{P}_\mathcal{R} \) parameter space and calculated the corresponding \(\Omega_{gw} \) and \((f_{bh}, \sigma_*, M_*) \) for each point in the grid, using the large discrete sample of \(\Omega_{gw}(f_{bh}, \sigma_*, M_*) \) obtained in the process, we then built an interpolation function to calculate \(\Omega_{gw} \).

We combine Planck [78, 79] and ACTPol [80, 81] data and use the Markov Chain Monte Carlo (MCMC) chain in the CosmoMC package [82–85] to constrain cosmological parameters, and obtain \(N_{\text{eff}} < 3.213 \) for 95% C.L.

\(^2\) For future CMB observations, we use the benchmark value of \(\Delta N_{\text{eff}} < 0.027 \) (95% C.L.) from the CMB Stage IV experiment [47, 51–53]. Combining both current and future constraints, we have

\[
\Delta N_{\text{eff}} < \begin{cases}
0.167 & \text{Planck+ACTPol (PA)} \\
0.027 & \text{CMB Stage IV (S4)}
\end{cases}
\]

(14)

Using Eq. (13), Eq. (14) is inverted to the upper bounds on SIGW density at 95% C.L.

\[
\Omega_{gw} < \begin{cases}
2.01 \times 10^{-6} & \text{PA} \\
3.25 \times 10^{-7} & \text{S4}
\end{cases}
\]

(15)

In the following, we will substitute Eq. (1) into Eq. (7) to calculate \(\Omega_{gw} \) or numerically using the \(\Omega_{gw}(f_{bh}, \sigma_*, M_*) \) interpolation function, and then use the upper bound in Eq. (15) to constrain the model parameters.

Sensitivity. For given \(\sigma \) and \(k \), \(\mathcal{P}_R \) is determined by \(k_* \) and \(A \) parameters. Once we set \(k_* = k \exp[(1-n_c)\sigma^2] \), which gives a \(\mathcal{P}_R \) spectra that peaks at \(k \) according to Eq. (4), the upper bound on \(\mathcal{P}_R(k) \) can be obtained by fixing \(A \) to its upper limit derived by iteratively solving Eq. (15). To avoid overlapping with existing large scales constraints [29], we restrict the solution to the range of \(k > 10 \) Mpc\(^{-1} \), which corresponds to \(M_* < 5 \times 10^{10} M_{\odot} \) via Eq. (2).

In the majority of parameter space we explored, our results show that PA constrains \(\mathcal{P}_R \) to be \(\sim \mathcal{O}(10^{-1}) \) over a wide range of \(k \), and the constraint becomes more stringent for a wider spectral width \(\sigma \), which is mainly due to the fact that the peak amplitude of \(\mathcal{P}_R \) is roughly inversely proportional to \(\sigma \). For a sharp spectra with \(\sigma = 0.1 \), our results yields \(\mathcal{P}_R \lesssim 1 \), whereas the limit tightens to \(\mathcal{P}_R \lesssim 0.1 \) for \(\sigma = 2 \). In most cases, the linear part in Eq. (1) can be safely ignored, so that \(\mathcal{P}_R \propto A \) and \(\Omega_{gw} \propto A^2 \), thus our \(\mathcal{P}_R \) upper limit is proportional to the maximally allowed \(\sqrt{\Omega_{gw}} \). Therefore, compared to PA, the CMB-S4 experiment almost uniformly improves

![Comparison of \(\mathcal{P}_R \) constraints. The shaded regions indicate the excluded parameter space. We show limits derived in this work for \(\sigma = 0.5 \) in blue and red regions, corresponding to the current excluded space from PA and the forecasted exclusion from S4 respectively, a wider spectra with larger \(\sigma \) would yield more stringent constraints. Regions in cyan and yellow colors indicate the constraints from CMB and LSS [29], and the non-detection of \(\gamma \)-rays from Ultracompact minihalos (UCMHs) [56]. Regions in magenta, green, and brown colors indicate the exclusion of \(\mathcal{P}_R \) with width of \(\sigma = 0.5 \), from Big-Bang Nucleosynthesis (BBN) [25, 76], European Pulsar Timing Array (EPTA) and advanced LIGO (aLIGO) [25].](image)
its \mathcal{P}_R constraint by 60% on all scales.

Figure 1 compares our PA and S4 results with other leading \mathcal{P}_R constraints taken from Refs. [25, 29, 56]. At $k < 4\,\text{Mpc}^{-1}$, \mathcal{P}_R is well measured by CMB anisotropy and LSS to $\sim 2 \times 10^{-9}$ [29]. Between $k = [4.3 \times 10^7, 10^9] \,\text{Mpc}^{-1}$, the non-detection of gamma rays from Ultra-compact minihalos (UCMHs) [56] constrains $\mathcal{P}_R \lesssim 10^{-6}$. All other limits shown in Fig. 1 are for \mathcal{P}_R with a log-normal width of $\sigma = 0.5$, set by the Big-Bang Nucleosynthesis (BBN) and GW observations, e.g. EPTA (European Pulsar Timing Array) and aLIGO (advanced LIGO) [25]. Our PA data constrains $\mathcal{P}_R \lesssim 0.28$, which is the strongest \mathcal{P}_R limit for $k \in [10^5, 10^{10}] \,\text{Mpc}^{-1}$ up-to-date. Projected limits from S4 further tighten to $\mathcal{P}_R \lesssim 0.11$. Future GW detectors such as Taiji [35], Tian-Qin [86], LISA [36] and SKA [87–89] can probe k scales from 10^5 to $10^{14} \,\text{Mpc}^{-1}$ [26] and potentially improve our constraints further.

For majority of PBH formation theories [72–74, 90–93], our PBHs follow an extended distribution that can be well described by the log-normal parameterisation in Eq. (6). Using the $\Omega_{\text{GW}}(f_{\text{bh}}, \sigma_{\text{bh}}, M_{\text{bh}})$ interpolation function described in previous section, it can be shown numerically that Ω_{GW} increases with f_{bh}, and here we derive our f_{bh} upper bounds by iteratively solving Eq. (15). In Fig. 2 we show the f_{bh} limits for PBHs with distribution widths of $\sigma = 1$ and $\sigma = 2$, combined with existing bounds of monochromatic PBH limits (assuming all PBHs having same mass), summarised in Refs. [8, 77]. For constraint from PA with $\sigma = 1$, the blue (filled) region in Fig. 2 shows that it excludes supermassive PBHs with $M_{*} \in [3 \times 10^5, 5 \times 10^{10}] \,\text{M}_\odot$ as the dominant DM component ($f_{\text{bh}} < 1$), spanning more than 5 orders of magnitude. The limit covers the range set by X-ray binary (light blue) [94] and LSS (yellow) [8]. For $\sigma = 2$, the exclusion window expands to $[33, 5 \times 10^{10}] \,\text{M}_\odot$, which constitutes the widest constraints of PBH up-to-date. The red region and dashed line show the sensitivity of projected CMB-S4 experiment on PBH abundance, which can exclude PBHs in $[8 \times 10^{-5}, 5 \times 10^{10}] \,\text{M}_\odot$ while setting the most stringent PBH constraints in a large mass range ($[7 \times 10^{-3}, 5 \times 10^{10}] \,\text{M}_\odot$). Compared to other leading constraints in the supermassive PBH window around $[3 \times 10^{4}, 5 \times 10^{10}] \,\text{M}_\odot$, the limits from projected S4 is stronger by more than 10 orders of magnitude. Fig. 3 shows the complete constraints for a range of σ values. For fixed f_{bh}, we find that Ω_{GW} increases with both σ and M_{*}, therefore our f_{bh} limit tightens as we increase either σ or M_{*}.

Summary. Scalar-perturbation induces PBH formation which emits SIGWs that behave like a relativistic species, the CMB constrained ΔN_{eff} can yield stringent limits on the scalar power spectra \mathcal{P}_R at small scales $10 < k < 10^{22} \,\text{Mpc}^{-1}$, much smaller than the direct CMB power spectra measurement. Using a log-normal parameterization for \mathcal{P}_R, which naturally arises in e.g Hornedskel gravity theory [26] and serves as a good approxi-
mation for a wide class of perturbation theories, we show that Planck and ACTPol experiments give the currently most stringent $P_\mathcal{R}$ constraints in $k \in [10^8, 10^{22}] \text{ Mpc}^{-1}$. For PBHs with a log-normal width of $\sigma_\epsilon = 1$, Planck and ACTPol exclude supermassive PBHs with peak mass $M_\bullet \in [4 \times 10^5, 5 \times 10^{10}] \text{ M}_\odot$ as the dominant DM component, while future CMB-S4 experiment can improve the constraints by more than 10 orders of magnitudes and potentially exclude $M_\bullet \in [8 \times 10^{-5}, 5 \times 10^{10}] \text{ M}_\odot$ mass window, which constitutes a sensitive test on small-scale primordial perturbations.

Acknowledgements. J.C gratefully acknowledges support from the China Scholarship Council (CSC, No.202104910395) and the hospitality at the Center for High Performance Computing (CHPC) of SNS. Y.Z.M. is supported by the National Research Foundation of South Africa under grant No. 120385 and No. 120378, and NicTheCS program “New Insights into Astrophysics and Cosmology with Theoretical Models confronting Observational Data”, and National Natural Science Foundation of China with project 12047503. Y.G. thanks for support from the Ministry of Science and Technology of China (2020YFC2201601).

* Corresponding author: Y.-Z. Ma, ma@ukzn.ac.za
† Corresponding author: Y. Gao, gaoyu@ihep.ac.cn

[1] Stephen Hawking, “Gravitationally collapsed objects of very low mass,” Mon. Not. Roy. Astron. Soc. 152, 75 (1971).
[2] Bernard J. Carr, “The Primordial black hole mass spectrum,” Astrophys. J. 201, 1–19 (1975).
[3] Bernard J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy. Astron. Soc. 168, 399–415 (1974).
[4] Bernard Carr, Sebastien Clesse, Juan Garcia-Bellido, and Florian Kühnel, “Cosmic conundra explained by thermal history and primordial black holes,” Phys. Dark Univ. 31, 100755 (2021), arXiv:1906.08217 [astro-ph.CO].
[5] Rachel Bean and Joao Magueijo, “Could supermassive black holes be quintessential primordial black holes?” Phys. Rev. D 66, 063505 (2002), arXiv:astro-ph/0204486.
[6] B. P. Abbott et al. (LIGO Scientific, Virgo), “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE].
[7] Karsten Jedamzik, “Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates,” Phys. Rev. Lett. 126, 051302 (2021), arXiv:2007.03565 [astro-ph.CO].
[8] Bernard Carr and Florian Kühnel, “Primordial Black Holes as Dark Matter: Recent Developments,” Ann. Rev. Nucl. Part. Sci. 70, 355–394 (2020), arXiv:2006.02838 [astro-ph.CO].
[9] Bernard Carr and Florian Kühnel, “Primordial black holes as dark matter candidates,” SciPost Phys. Lect. Notes 48, 1 (2022), arXiv:2110.02821 [astro-ph.CO].
[10] Bernard Carr, Florian Kühnel, and Marit Sandstad, “Primordial Black Holes as Dark Matter,” Phys. Rev. D 94, 083504 (2016), arXiv:1607.06077 [astro-ph.CO].
[11] Bernard Carr, Kazunori Kohri, Yuititi Sendouda, and Jun’ichi Yokoyama, “Constraints on primordial black holes,” Rept. Prog. Phys. 84, 116902 (2021), arXiv:2002.12778 [astro-ph.CO].
[12] Junsong Cang, Yu Gao, and Yin-Zhe Ma, “21-cm constraints on spinning primordial black holes,” JCAP 03, 012 (2022), arXiv:2108.13256 [astro-ph.CO].
[13] Jérémy Affinger, “Primordial black hole constraints with Hawking radiation – a review,” (2022), arXiv:2206.02672 [astro-ph.CO].
[14] Steven Clark, Bhaskar Dutta, Yu Gao, Louis E. Strigari, and Scott Watson, “Planck Constraint on Relic Primordial Black Holes,” Phys. Rev. D 95, 083006 (2017), arXiv:1612.07738 [astro-ph.CO].
[15] Ranjan Laha, “Primordial Black Holes as a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 keV γ-Ray Line,” Phys. Rev. Lett. 123, 251101 (2019), arXiv:1906.09994 [astro-ph.HE].
[16] Steven Clark, Bhaskar Dutta, Yu Gao, Yin-Zhe Ma, and Louis E. Strigari, “21 cm limits on decaying dark matter and primordial black holes,” Phys. Rev. D 98, 043006 (2018), arXiv:1803.00990 [astro-ph.HE].
[17] Anupam Ray, Ranjan Laha, Julian B. Muñoz, and Regina Caputo, “Near future MeV telescopes can discover asteroid-mass primordial black hole dark matter,” Phys. Rev. D 104, 023516 (2021), arXiv:2102.06714 [astro-ph.CO].
[18] Ranjan Laha, Julian B. Muñoz, and Tracy R. Slatyer, “INTEGRAL constraints on primordial black holes and particle dark matter,” Phys. Rev. D 101, 123514 (2020), arXiv:2004.00627 [astro-ph.CO].
[19] Junsong Cang, Yu Gao, and Yin-Zhe Ma, “Prospects of Future CMB Anisotropy Probes for Primordial Black Holes,” JCAP 05, 051 (2021), arXiv:2011.12244 [astro-ph.CO].
[20] Yacine Ali-Haïmoud and Marc Kamionkowski, “Cosmic microwave background limits on accreting primordial black holes,” Phys. Rev. D 95, 043534 (2017), arXiv:1612.05644 [astro-ph.CO].
[21] Hiroyuki Tashiro and Naoshi Sugiyama, “The effect of primordial black holes on 21 cm fluctuations,” Mon. Not. Roy. Astron. Soc. 435, 3001 (2013), arXiv:1207.6405 [astro-ph.CO].
[22] Yupeng Yang, “Constraints on accreting primordial black holes with the global 21-cm signal,” Phys. Rev. D 104, 063528 (2021), arXiv:2108.11130 [astro-ph.CO].
[23] Zn-Cheng Chen, Chen Yuan, and Qing-Guo Huang, “Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset,” Phys. Rev. Lett. 124, 251101 (2020), arXiv:1910.12239 [astro-ph.CO].
[24] Sai Wang, Yi-Fan Wang, Qing-Guo Huang, and Tjonne G. F. Li, “Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background,” Phys. Rev. Lett. 120, 191102 (2018), arXiv:1610.08725 [astro-ph.CO].
[25] Keisuke Inomata and Tomohiro Nakama, “Gravitational waves induced by scalar perturbations as probes of the
small-scale primordial spectrum,” Phys. Rev. D 99, 043511 (2019), arXiv:1812.00674 [astro-ph.CO].

[26] Pisin Chen, Seoktae Koh, and Gansukh Tumurtushaa, “Primordial black holes and induced gravitational waves from inflation in the Horndeski theory of gravity,” (2021), arXiv:2107.08638 [gr-qc].

[27] B. J. Carr, Kazunori Kohri, Yuuiti Sendouda, and Jun’ichi Yokoyama, “New cosmological constraints on primordial black holes,” Phys. Rev. D 81, 104019 (2010), arXiv:0912.5297 [astro-ph.CO].

[28] N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].

[29] Paul Hunt and Subir Sarkar, “Search for features in the spectrum of primordial perturbations using Planck and other datasets,” JCAP 12, 052 (2015), arXiv:1510.03338 [astro-ph.CO].

[30] Chen Yuan and Qing-Guo Huang, “A topic review on probing primordial black hole dark matter with scalar induced gravitational waves,” (2021), arXiv:2103.04739 [astro-ph.GA].

[31] Shi Pi and Misao Sasaki, “Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak,” JCAP 09, 037 (2020), arXiv:2005.12006 [gr-qc].

[32] Christian T. Byrne, Philippa S. Cole, and Subodh P. Patil, “Steepest growth of the power spectrum and primordial black holes,” JCAP 06, 026 (2019), arXiv:1811.11158 [astro-ph.CO].

[33] Carmelita Carbone and Sabino Matarrese, “A Unified treatment of cosmological perturbations from superhorizon to small scales,” Phys. Rev. D 71, 043508 (2005), arXiv:astro-ph/0407611.

[34] Kouji Nakamura, “Second-order gauge invariant cosmological perturbation theory: Einstein equations in terms of gauge invariant variables,” Prog. Theor. Phys. 117, 17–74 (2007), arXiv:gr-qc/0605108.

[35] Wen-Rui Hu and Yue-Liang Wu, “The Taiji Program in Space for gravitational wave physics and the nature of gravity,” Natl. Sci. Rev. 4, 685–686 (2017).

[36] Pau Amaro-Seoane et al. (LISA), “Laser Interferometer Space Antenna,” (2017), arXiv:1702.00786 [astro-ph.IM].

[37] P. Serpico, “Cosmic microwave background as a probe of dark relics,” PoS CORFU2018, 094 (2019).

[38] Zackaria Chacko, Yanou Cui, Sungwoo Hong, and Takemichi Okui, “Hidden dark matter sector, dark radiation, and the CMB,” Phys. Rev. D 92, 055033 (2015), arXiv:1505.04192 [hep-ph].

[39] Fuminobu Takahashi and Masaki Yamada, “Anthropic Bound on Dark Radiation and its Implications for Reheating,” JCAP 07, 001 (2019), arXiv:1904.12864 [astro-ph.CO].

[40] Moumita Aich, Yin-Zhe Ma, Wei-Ming Dai, and Jun-Qing Xia, “How much primordial tensor mode is allowed?,” Phys. Rev. D 101, 063536 (2020), arXiv:1912.00995 [astro-ph.CO].

[41] Daniel Green et al., “Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics,” Bull. Am. Astron. Soc. 51, 159 (2019), arXiv:1903.04763 [astro-ph.CO].

[42] G. Mangano, G. Miele, S. Pastor, and M. Peloso, “A Precision calculation of the effective number of cosmological neutrinos,” Phys. Lett. B 534, 8–16 (2002), arXiv:astro-ph/0111408.

[43] Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Teguaco Pinto, Ofelia Pisanti, and Pasquale D. Serpico, “Relic neutrino decoupling including flavor oscillations,” Nucl. Phys. B 729, 221–234 (2005), arXiv:hep-ph/0506164.

[44] Pablo F. de Salas and Sergio Pastor, “Relic neutrino decoupling with flavour oscillations revisited,” JCAP 07, 051 (2016), arXiv:1606.06986 [hep-ph].

[45] Zhen Hou, Ryan Keisler, Lloyd Knox, Marius Millea, and Christian Reichardt, “How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail,” Phys. Rev. D 87, 083008 (2013), arXiv:1104.2333 [astro-ph.CO].

[46] Brent Follin, Lloyd Knox, Marius Millea, and Zhen Pan, “First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background,” Phys. Rev. Lett. 115, 091301 (2015), arXiv:1503.07863 [astro-ph.CO].

[47] Benjamin Wallisch, Cosmological Probes of Light Relics, Ph.D. thesis, Cambridge U. (2018), arXiv:1810.02800 [astro-ph.CO].

[48] P. A. R. Ade et al. (Planck), “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO].

[49] Marcelo Alvarez et al., “PICO: Probe of Inflation and Cosmic Origins,” (2019), arXiv:1908.07495 [astro-ph.CO].

[50] Eleonora Di Valentino et al. (CORE), “Exploring cosmic origins with CORE: Cosmological parameters,” JCAP 04, 017 (2018), arXiv:1612.00021 [astro-ph.CO].

[51] Kevork N. Abazajian et al. (CMB-S4), “CMB-S4 Science Book, First Edition,” (2016), arXiv:1610.02743 [astro-ph.CO].

[52] Daniel Baumann, Daniel Green, and Benjamin Wallisch, “New Target for Cosmic Axion Searches,” Phys. Rev. Lett. 117, 171301 (2016), arXiv:1604.08614 [astro-ph.CO].

[53] Daniel Baumann, Daniel Green, Joel Meyers, and Benjamin Wallisch, “Phases of New Physics in the CMB,” JCAP 01, 007 (2016), arXiv:arXiv:1508.06342 [astro-ph.CO].

[54] Anne M. Green and Bradley J. Kavanagh, “Primordial Black Holes as a dark matter candidate,” J. Phys. G 48, 091301 (2015), arXiv:1503.07863 [astro-ph.CO].

[55] Juan Garcia-Bellido and Ester Ruiz Morales, “Primordial black holes from single field models of inflation,” Phys. Dark Univ. 18, 47–54 (2017), arXiv:1702.03901 [astro-ph.CO].

[56] Torsten Bringmann, Pat Scott, and Yashar Akrami, “Improved constraints on the primordial power spectrum at small scales from ultracompact minihalos,” Phys. Rev. D 85, 125027 (2012), arXiv:1110.2484 [astro-ph.CO].

[57] Amandeep S. Josan, Anne M. Green, and Karim A. Malik, “Generalised constraints on the curvature perturbation from primordial black holes,” Phys. Rev. D 79, 103520 (2009), arXiv:0903.3184 [astro-ph.CO].

[58] Jun’ichi Yokoyama, “Chaothic new inflation and formation of primordial black holes,” Phys. Rev. D 58, 083510 (1998), arXiv:astro-ph/9802357.

[59] Kristjan Kannike, Luca Marzola, Martti Raidal, and Hardi Veerm¨ae, “Single Field Double Inflation and Primordial Black Holes,” JCAP 09, 020 (2017), arXiv:1705.06225 [astro-ph.CO].
dial black hole formation in a double inflation model in supergravity,” Phys. Rev. D 57, 6050–6056 (1998), arXiv:hep-ph/9710259.

[61] Kazunori Kohri, Chia-Min Lin, and Tomohiro Matsuda, “Primordial black holes from the inflating curvature,” Phys. Rev. D 87, 103527 (2013), arXiv:1211.2371 [hep-ph].

[62] Rong-Gen Cai, Zong-Kuan Guo, Jing Liu, Lang Liu, and Xing-Yu Yang, “Primordial black holes and gravitational waves from parametric amplification of curvature perturbations,” JCAP 06, 013 (2020), arXiv:1912.10437 [astro-ph.CO].

[63] Guillem Domènech, “Scalar Induced Gravitational Waves Review,” Universe 7, 398 (2021), arXiv:2109.01398 [gr-qc].

[64] Tomohiro Nakama, Joseph Silk, and Marc Kamionkowski, “Stochastic gravitational waves associated with the formation of primordial black holes,” Phys. Rev. D 95, 043511 (2017), arXiv:1612.06264 [astro-ph.CO].

[65] Ogan Özsoy, Susha Parameswaran, Gianmassimo Tasi­nato, and Ivonne Zavala, “Mechanisms for Primordial Black Hole Production in String Theory,” JCAP 07, 005 (2018), arXiv:1803.07626 [hep-th].

[66] B. J. Carr, “The primordial black hole mass spectrum.” Astrophys. J. 201, 1–19 (1975).

[67] William H. Press and Paul Schechter, “Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation,” Astrophys. J. 187, 425–438 (1974).

[68] Tomohiro Harada, Chul-Moon Yoo, and Kazunori Kohri, “Threshold of primordial black hole formation,” Phys. Rev. D 88, 084051 (2013), [Erratum: Phys.Rev.D 89, 029903 (2014)], arXiv:1309.4201 [astro-ph.CO].

[69] Ilia Musco and John C. Miller, “Primordial black hole formation in the early universe: critical behaviour and self-similarity,” Class. Quant. Grav. 30, 145009 (2013), arXiv:1201.2379 [gr-qc].

[70] Sam Young, Christian T. Byrnes, and Misao Sasaki, “Calculating the mass fraction of primordial black holes,” JCAP 07, 045 (2014), arXiv:1405.7023 [gr-qc].

[71] Keiisuke Inomata, Masahiro Kawasaki, Kyoei Mukaida, Yuichiro Tada, and Tsutomu T. Yanagida, “Inflationary Primordial Black Holes as All Dark Matter,” Phys. Rev. D 96, 043504 (2017), arXiv:1701.02544 [astro-ph.CO].

[72] Bernard Carr, Martti Raidal, Tommi Tenkanen, Ville Vaskonen, and Hardi Veermäe, “Primordial black hole constraints for extended mass functions,” Phys. Rev. D 96, 023514 (2017), arXiv:1705.05567 [astro-ph.CO].

[73] Anne M. Green, “Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function,” Phys. Rev. D 94, 063530 (2016), arXiv:1609.01143 [astro-ph.CO].

[74] Alexandre Dolgov and Joseph Silk, “Baryon isocurvature fluctuations at small scales and baryonic dark matter,” Phys. Rev. D 47, 4244–4255 (1993).

[75] Kenta Ando, Keisuke Inomata, and Masahiro Kawasaki, “Primordial black holes and uncertainties in the choice of the window function,” Phys. Rev. D 97, 103528 (2018), arXiv:1802.06393 [astro-ph.CO].

[76] Kazunori Kohri and Takahiro Terada, “Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations,” Phys. Rev. D 97, 123532 (2018), arXiv:1804.08577 [gr-qc].

[77] Pasquale D. Serpico, Vivian Poulin, Derek Inman, and Kazunori Kohri, “Cosmic microwave background bounds on primordial black holes including dark matter halo accretion,” Phys. Rev. Res. 2, 023204 (2020), arXiv:2002.10771 [astro-ph.CO].

[78] N. Aghanim et al. (Planck), “Planck 2018 results. V. CMB power spectra and likelihoods,” Astron. Astrophys. 641, A5 (2020), arXiv:1907.12875 [astro-ph.CO].

[79] N. Aghanim et al. (Planck), “Planck 2018 results. VIII. Gravitational lensing,” Astron. Astrophys. 641, A8 (2020), arXiv:1807.06210 [astro-ph.CO].

[80] Steve K. Choi et al. (ACT), “The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz,” JCAP 12, 045 (2020), arXiv:2007.07289 [astro-ph.CO].

[81] Simone Aiola et al. (ACT), “The Atacama Cosmology Telescope: DRI Maps and Cosmological Parameters,” JCAP 12, 047 (2020), arXiv:2007.07288 [astro-ph.CO].

[82] Antony Lewis and Sarah Bridle, “Cosmological parameters from CMB and other data: A Monte Carlo approach,” Phys. Rev. D 66, 103511 (2002), arXiv:astro-ph/0205436.

[83] Antony Lewis, “Efficient sampling of fast and slow cosmological parameters,” Phys. Rev. D 87, 103529 (2013), arXiv:1304.4473 [astro-ph.CO].

[84] Antony Lewis, Anthony Challinor, and Anthony Lasenby, “Efficient computation of CMB anisotropies in closed FRW models,” Astrophys. J. 538, 473–476 (2000), arXiv:astro-ph/9911177.

[85] Cullan Howlett, Antony Lewis, Alex Hall, and Anthony Challinor, “CMB power spectrum parameter degeneracies in the era of precision cosmology,” JCAP 04, 027 (2012), arXiv:1201.3654 [astro-ph.CO].

[86] Jun Luo et al. (TianQin), “TianQin: a space-borne gravitational wave detector,” Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM].

[87] Chris L. Carilli and S. Rawlings, “Science with the Square Kilometer Array: Motivation, key science projects, standards and assumptions,” New Astron. Rev. 48, 979 (2004), arXiv:astro-ph/0409274.

[88] C. J. Moore, R. H. Cole, and C. P. L. Berry, “Gravitational-wave sensitivity curves,” Class. Quant. Grav. 28, 015014 (2015), arXiv:1408.0740 [gr-qc].

[89] Gemma Janssen et al., “Gravitational wave astronomy with the SKA,” PoS AASKA14, 037 (2015), arXiv:1501.00127 [astro-ph.IM].

[90] Jun’ichi Yokoyama, “Cosmological constraints on primordial black holes produced in the near critical gravitational collapse,” Phys. Rev. D 58, 107502 (1998), arXiv:gr-qc/9804041.

[91] Jens C. Niemeyer and K. Jedamzik, “Dynamics of primordial black hole formation,” Phys. Rev. D 59, 124013 (1999), arXiv:astro-ph/9901292.

[92] Nicola Bellomo, José Luis Bernal, Alvise Raccanelli, and Licia Verde, “Primordial Black Holes as Dark Matter: Converting Constraints from Monochromatic to Extended Mass Distributions,” JCAP 01, 004 (2018), arXiv:1709.07467 [astro-ph.CO].

[93] Shi Pi, Ying-li Zhang, Qing-Guo Huang, and Misao Sasaki, “Scalaron from R^2-gravity as a heavy field,” JCAP 05, 042 (2018), arXiv:1712.09896 [astro-ph.CO].

[94] Yoshiyuki Inoue and Alexander Kusenko, “New X-ray bound on density of primordial black holes,” JCAP 10, 034 (2017), arXiv:1705.00791 [astro-ph.CO].