Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumors and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, major histocompatibility complex class I-related chain (MICA/B) and UL16 binding proteins (ULBPs), are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarize the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease.

Keywords: innate immunity, NKG2D receptor, MICA/B, ULBP, shedding, exosomes, immune evasion
in vitro with IL-2 (Verneris et al., 2004). Consistent with these data, studies on intestinal intraepithelial lymphocytes incubated with IL-15, mimicking the conditions of coeliac disease, demonstrated that these lymphocytes are able to produce IL-10 and interferon (IFN)-γ after NKG2D ligation without TCR engagement (Meresse et al., 2004; Ebert, 2005). Indeed, NKG2D+ CD4+ T cells, not present in healthy individuals, have been reported to be involved in the patho-physiology of several immune-mediated diseases such as rheumatoid arthritis (Grob et al., 2003). Moreover, IL-15 and IL-7 can maintain NKG2D surface expression after NKG2D co-stimulation of TCR activated CD8+ T cells (Maasho et al., 2005). On the other hand, exposure to other cytokines can produce a downmodulation of the NKG2D receptor: IL-21, produced by activated CD4+ T cells, which by its own activates both CD8+ T cells and NK cells promoting NKG2D-dependent killing of tumor cells (Takaki et al., 2005), when secreted in combination with IL-2 induces downregulation of NKG2D, thus silencing of the receptor-mediated immunosurveillance (Burgess et al., 2006). Similarly, TGF-β1, secreted by many types of cancer cells, reduces NKG2D surface expression, impairing tumor cytotoxic recognition by effector cells (Castriconi et al., 2003). Finally, cytokines such as IL-12 and IFN-β are associated with a reduction of NKG2D expression triggered by interaction with HCMV-infected dendritic cells (Montaelli et al., 2010).

TWO FAMILIES OF NKG2D-LIGANDS BASED ON GENE LOCATION

Two families of ligands for the human NKG2D receptor have been described (Figure 1): the MICA/B encoded in the MHC region (Bahram et al., 1994; Bauer et al., 1999) and a second family of MHC class I-related proteins, the ULBPs, also known as retinoic acid early transcripts (RAET1s), discovered while looking for ligands of the HCMV glycoprotein UL16 (Cosman et al., 2001),
although only ULBP1, 2, and 6 bind UL16. ULBPs are also encoded on chromosome 6, but outside the MHC locus. Like conventional MHC class I molecules, MICA/B proteins contain α1, α2, and α3 domains, however, they do not associate with β2-microglobulin and they do not present peptides (Groh et al., 1996). To date six genes, ULBP1–6, have been identified as belonging to the ULBP family. These molecules are 55–60% homologous in their amino-acid acid sequences, and are equally distantly related to MICs or MHC (around 20% sequence similarity Cosman et al., 2001; Chalupny et al., 2003; Eagle et al., 2009). Functionally, the ULBPs are similar to MICA/B in that they do not bind β2-microglobulin or present antigenic peptides (Groh et al., 1996), however, in contrast to MIC proteins, they lack an α3 domain and many of them attach to the membrane via a GPI-anchor.

MICA/B are highly polymorphic proteins, indeed more than 70 MICA and 30 MICB sequences have been described to date (Steven GE Marsh, Anthony Nolan Research Institute, http://hla.alleles.org/terms.html) and a number of diseases have been reported to be associated with MIC gene polymorphisms, including ankylosing spondylitis, Behçet’s disease, psoriasis, type 1 diabetes, and Addison’s disease (Stephens, 2001). The sequence variation that gives rise to these alleles occurs throughout the protein, but MICA polymorphism is often classified into several groups of alleles according to a microsatellite polymorphism in the TM region. Strikingly, one of these groups, known as MICA5.1, is highly frequent in multiple human populations worldwide. MICA 5.1 alleles (for example, MICA*008) contain a frame-shift mutation before the TM region that leads to an early stop codon (Ota et al., 1997). A number of single nucleotide polymorphisms in both promoter regions and coding sequences of the RAET1/ULBP genes has been described (Antoun et al., 2010), although the number of variant transcripts generated by these mutations is limited (Figure 1). The significance of polymorphism for receptor binding is unclear since NKG2D is known to bind to its ligands by adapting the homodimer to the α1/2 helices of the monomorphic ligand (Strong and McFarland, 2004). The interface between the receptor and its distinct ligands are stabilized by hydrophobic interactions and hydrogen bonds and, interestingly, different residues are involved in the interaction with the different ligands in both human (Li et al., 2001; McFarland et al., 2003) and murine systems (Wolan et al., 2001). This plasticity in the NKG2D/NKG2D-ligand interaction allows the receptor to recognize a large number of diverse molecules in the absence of an important conformational modification upon ligand binding (Radue et al., 2001). In the context of MICA polymorphism, it is striking to note that even though some allelic amino-acid changes are quite dramatic (Pro/His) and some polymorphic residues lie very close to the NKG2D contact site, only one dimorphic variant of MICA has been shown to affect the affinity with which MICA binds to NKG2D and this is a conservative substitution, Met or Val at residue 129 (Steinle et al., 2001; Paschen et al., 2009, 2010; Nuckel et al., 2010). It thus seems plausible to suggest that the diversity of NKG2D-ligands detected in different tumors reflects, on one hand, the complexity in the regulation of their expression at the cellular and tissue microenvironment level and, on the other, the contribution from the biochemical properties conferred by diversity and polymorphism. Evolution of NKG2D-ligands has been most probably driven by pathogen pressure, as illustrated by the example of HCMV (see below), however, the resulting benefit ensuring good recognition of infected cells can result in differential responses against tumors, from direct killing of the transformed cell to evasion of the immune response. Recognition of NKG2D-ligands, either in soluble form or at the cell surface, can result in downregulation and degradation of the activating receptor (Groh et al., 2001; Roda-Navarro and Reyburn, 2009) and differences have been observed

**EXPRESSION OF NKG2D-LIGANDS**

Although mRNA for both MICA/B and ULBP proteins can be found in some normal cells (Cosman et al., 2001; Schrambach et al., 2007), there is general consensus that the levels of NKG2D-ligand expression at the cell surface of the vast majority of healthy cells, are either null or low and clearly below that needed to activate immune cells expressing NKG2D receptors. Instead, the expression of these molecules is upregulated when the cells suffer different types of stress, notably tumoral transformation, viral and bacterial infection, and in autoimmune diseases. A large variety of primary tumors and tumor-derived cell lines express NKG2D-ligands and in the last few years, numerous comprehensive reviews have been published on the involvement of NKG2D-ligands in cancer (Navasch and Cerevosta, 2008). Thus, only some aspects of the complexity of this topic are discussed here. The molecular mechanisms involved in the regulation of expression of these molecules upon stress are not clear, however it has been reported that heat shock, oxidative stress, DNA damage, proteasome inhibition, and histone deacetylases lead to an increased expression of NKG2D-ligands at the cell surface (for review, see Mistry and O’Callaghan, 2007; Gonzalez et al., 2008 and references therein).

Of particular interest is that the effect of all those stress stimuli leads to differential expression of the various NKG2D-ligands, depending on the cellular type and/or its metabolic status. For example, proteasome inhibition specifically upregulated ULBP2 in Jurkat cells (Vales-Gomez et al., 2008), but ULBP1 in head and neck squamous cell carcinoma (HNSCC) cells (Butler et al., 2009). What seems clear is that, in the context of stress, NKG2D-ligand expression and release are regulated at many cellular levels including transcriptional, post-transcriptional [mRNA stability and micro-RNAs (mi-RNAs)] Stem-Ginoux et al., 2008; Heine-mann et al., 2012], and post-translational (protein modifications, trafficking, and shedding). As mentioned above, cytokines also affect the expression of NKG2D-ligands: while IFN-γ downregulates MICA and ULBP2 (Schwin et al., 2009; Nadav et al., 2009), IFN-α upregulates its expression (Jinushi et al., 2003; Zhang et al., 2008). Another level of complexity is that expression of a particular ligand in different types of cancer can be associated with better or worse prognosis (Vu et al., 2004; Li et al., 2009; McIlravy et al., 2009, 2010; Paschen et al., 2009; Nuckel et al., 2010). It thus seems plausible to suggest that the diversity of NKG2D-ligands detected in different tumors reflects, on one hand, the complexity in the regulation of their expression at the cellular and tissue microenvironment level and, on the other, the contribution from the biochemical properties conferred by diversity and polymorphism. Evolution of NKG2D-ligands has been most probably driven by pathogen pressure, as illustrated by the example of HCMV (see below), however, the resulting benefit ensuring good recognition of infected cells can result in differential responses against tumors, from direct killing of the transformed cell to evasion of the immune response. Recognition of NKG2D-ligands, either in soluble form or at the cell surface, can result in downmodulation and degradation of the activating receptor (Groh et al., 2001; Roda-Navarro and Reyburn, 2009) and differences have been observed
Table 1 | NKG2D-ligand biochemistry and cell biology.

| NKG2D-ligand | ULBP1/RAET1I | ULBP2/RAET1H | ULBP3/RAET1N | MICA | MICB |
|--------------|--------------|--------------|--------------|------|------|
| Stability at the cell surface<sup>1</sup> (hour) | <4 | >4 | >4 | >4 | >4 |
| DRMs (%)<sup>2</sup> | ~100 | ~100 | ~15 | ~75% | ~15% |
| Maturation<sup>2</sup> | >2 h | >2 h | 30 min | 30 min | NA |
| Release | Exosomes | Low<sup>2</sup> | Low<sup>2</sup> | Y | Low<sup>2</sup> | Low<sup>2</sup> |
| | Soluble | ADAM | Low | ADAM | Low |
| Viral evasion | HCMV-UL16 (downmodulation) | Y | Y | N | N | P | Y |
| | HCMV-UL142 (downmodulation) | N | N | Y | Y | N | N |
| | HIV-Nef (downmodulation) | Y | Y | NA | Y<sup>3</sup> | Y<sup>3</sup> | NA |

<sup>1</sup>Time to reach 50% reduction in cell surface expression after blockade of protein synthesis and recycling.
<sup>2</sup>50% of protein mature after the indicated time, as evaluated in pulse-chase experiments.
<sup>3</sup>These entries were not addressed.

whether the interacting ligand was membrane bound or soluble, the former being more potent for receptor inactivation (Salih et al., 2002; Coudert et al., 2003).

In the next sections, we will review the cell biology of NKG2D-ligands and group them according to their biochemical features, with the idea that this way of thinking may provide useful insights into the biology of these molecules. All the biochemical features of NKG2D-ligands discussed in the next sections are summarized in Table 1.

### BIOCHEMICAL FEATURES AND CELL TRAFFICKING OF NKG2D-LIGANDS

The classification of NKG2D-ligands according to their genetic location correlates with the presence of an α3 domain and with the primary mode of membrane attachment of these molecules: MICA and MICB are TM proteins whereas the most studied ULBPs (ULBP1–3) are GPI-linked molecules (Figure 1). However, this classification is not so straightforward since ULBP4 is a TM protein (Chalupny et al., 2003; Bacon et al., 2004) and ULBP 2 and 3 have recently been shown to have the potential to be expressed as either a GPI or a TM protein (Ohashi et al., 2010; Fernandez-Messina et al., 2011) demonstrating that, depending on cellular context a single mRNA sequence can encode proteins with two types of membrane attachment.

Despite these caveats, the observation that murine NKG2D-ligands are also expressed as either TM or GPI-linked molecules has led to the suggestion that the conservation of a GPI-anchor in some, but not all, NKG2D-ligands might be functionally important. However, the nature of this putative functional significance remains unclear. In the mouse, GPI-anchored proteins have modulated to low affinities for NKG2D, whereas the ligands possessing TM-cytoplasmic domains have high affinity (O’Callaghan et al., 2001), but the human NKG2D-ligands do not seem to conform to this pattern (Strong and McFarland, 2004). Another possibly relevant difference between GPI-anchored and TM proteins is that GPI-anchored proteins usually associate with detergent resistant membranes (DRMs), which are regions of the membrane enriched in sphingolipids and cholesterol. Indeed, the majority of ULBP1–3 proteins are recruited to these regions of the membrane (Fernandez-Messina et al., 2010) while only a low proportion of MICA/B appears in DRMs (Aguera-Gonzalez et al., 2009). However, this statement does not seem to be a general rule for MICs, since a high proportion of MICA*008 molecules are also recruited to DRMs (Ashiru et al., 2010). Clustering of the GPI-anchored ULBPs within lipid rafts, that are known to polarize to the site of interaction between the NK cell and the susceptible target cell (Lou et al., 2000), could increase the avidity of interaction of these molecules with the NKG2D receptor. In support of this hypothesis, Martinez et al. (2011) have observed that redistribution of ULBP1 outside of DRM, through the replacement of the GPI linkage in ULBP1 by the TM region of CD45, resulted in diminished NK cell responses to target cells expressing these molecules. In contrast, a naturally occurring TM form of ULBP2 was as capable of enhancing NK cell activation as the GPI-linked form of ULBP2 (Fernandez-Messina et al., 2011). Consistent with this observation, a mutant MICA molecule that could not be recruited to DRMs triggered NK cell lysis comparably to wild-type MICA (Aguera-Gonzalez et al., 2011). The reasons for the different results obtained in these three studies are not clear, but one obvious difference is that each paper analyzed a different NKG2D-ligand. It would be interesting to investigate the contribution of these distinct membrane anchors to the distribution and properties of specific ligands on target cells.

Another statement that does not seem to hold true when NKG2D-ligands are compared, is that possession of a GPI-anchor leads to a stable linkage to the exoplasmic leaflet of the lipid

---

**Table 1** | NKG2D-ligand biochemistry and cell biology.

| NKG2D-ligand | ULBP1/RAET1I | ULBP2/RAET1H | ULBP3/RAET1N | MICA | MICB |
|--------------|--------------|--------------|--------------|------|------|
| Stability at the cell surface<sup>1</sup> (hour) | <4 | >4 | >4 | >4 | >4 |
| DRMs (%)<sup>2</sup> | ~100 | ~100 | ~15 | ~75% | ~15% |
| Maturation<sup>2</sup> | >2 h | >2 h | 30 min | 30 min | NA |
| Release | Exosomes | Low<sup>2</sup> | Low<sup>2</sup> | Y | Low<sup>2</sup> | Low<sup>2</sup> |
| | Soluble | ADAM | Low | ADAM | Low |
| Viral evasion | HCMV-UL16 (downmodulation) | Y | Y | N | N | P | Y |
| | HCMV-UL142 (downmodulation) | N | N | Y | Y | N | N |
| | HIV-Nef (downmodulation) | Y | Y | NA | Y<sup>3</sup> | Y<sup>3</sup> | NA |

<sup>1</sup>Time to reach 50% reduction in cell surface expression after blockade of protein synthesis and recycling.
<sup>2</sup>50% of protein mature after the indicated time, as evaluated in pulse-chase experiments.
<sup>3</sup>These entries were not addressed.
RELEASE OF NKG2D-LIGANDS

The presence of soluble NKG2D-ligands in serum from cancer patients and the persistent engagement of the NKG2D receptor has been related with an impairment of NKG2D-mediated cytolytic functions (Salih et al., 2008 and references therein). Thus, the mechanisms underlying NKG2D-ligand release have been intensively studied in the last few years and, here again, marked similarities and differences between NKG2D-ligands that do not correlate with genetic family to which the ligands belong have been observed. MICA molecules with long TM and cytosolic domains (Salih et al., 2002), MICB (Bouet et al., 2009), and ULBP3 (Waldhauer and Steinle, 2006) are shed after proteolytic cleavage mediated by metalloproteases, whereas MICA*008 (short TM and cytoplasmic tail) and ULBP3 molecules are released as full-length proteins located in exosomes (Ashiru et al., 2010; Fernandez-Messina et al., 2010). Much less ULBP1 is released than either ULBP2 or 3, when comparing supernatants from the same cellular system. These data support the existence of intrinsic differences between the biochemistry of the NKG2D-ligands that do not correlate with a MIC/ULBP classification, and revealed that the integrity of cellular trafficking can have a marked influence on the behavior of the different NKG2D-ligands. Treatment of cells with metalloprotease inhibitors, led to the recruitment of both sheddase and ligand to DRMs and also to markedly influence the stability of the NKG2D-ligand at the cell surface (Simons and Raposo, 2009). In this sense, an exosome can be considered as a nanoparticle presenting multimeric NKG2D-ligands and it has been reported that exosomal NKG2D-ligands are more potent downmodulators of the NKG2D receptor than cleaved, soluble molecules (Ashiru et al., 2010; Fernandez-Messina et al., 2010). It is important to note that although MICA*008 can be released as a full-length protein in exosomes, this does not imply that it cannot be detected in patients sera since the method for detection does not distinguish between these two biochemical forms. Indeed, soluble MICA molecules can be detected in patients’ sera regardless of presumed allelic MICA differences, and in particular high sMICA levels have been found in MICA 5.17 individuals (i.e., mostly MICA*008). Thus, the expression of NKG2D-ligands could modulate in many different manners the intensity of the immune response of a cancer patient. Each one of these possibilities has different outcomes for the immune system and, identification of the particular route used to release NKG2D-ligands could provide information on immune system integrity and/or cellular routes affected in the tumor.

NKG2D-LIGANDS, CELL BIOLOGY, AND PATHOGEN IMMUNE EVASION STRATEGIES

The release of NKG2D-ligands from cells discussed above is thought to be a major mechanism for tumor cell evasion of NKG2D-mediated immune surveillance. However, apart from cancer, the NKG2D system plays a role in several other pathological situations that involve some degree of cellular stress, including transplantation (Collins, 2004; Suarez-Alvarez et al., 2006), autoimmune diseases (Van Belle and von Herath, 2009), and pathogen infection (Borchers et al., 2006). The observation that a number of pathogens, especially viruses, have developed strategies to evade NKG2D-mediated recognition shows the importance of this system to control infection. Immune evasion discrimination between NKG2D-ligands presumably reflects the existence of multiple mechanisms that can be exploited by virus to evade the immune system.
of important functional differences between the NKG2D-ligands. For example, the HCMV glycoprotein UL16 blocks surface expression of ULBP1, 2, 6, and MICB but not MICA, ULBP3, or ULBP4/RAET1E (Chalupny et al., 2003; Dunn et al., 2003; Rolle et al., 2003; Vales-Gomez et al., 2003; Welte et al., 2003). However, the HCMV-UL142 protein downmodulates MICA and ULBP1, but does not affect the alleles of MICA with a short TM/cytoplasmic tail or ULBP2 (Chalupny et al., 2006; Ashiri et al., 2009; Bennett et al., 2010). Consideration of several aspects of NKG2D-ligand cell biology (Table 1) can provide a novel perspective that may prove useful in understanding the interaction of immunoevasins with specific NKG2D-ligands as well as providing insights into the mechanisms of action of these molecules. For example, the rate of maturation of NKG2D-ligands varies among the individual molecules, ranging from 30 min to more than 2 h for ER exit, implying that each NKG2D-ligand follows different cellular routes and suffers different post-translational modifications. Interestingly, in some cases this biological variability can be correlated with the interaction of NKG2D-ligands with viral immunoevasins: for example, HCMV-UL142 preferentially binds those proteins that leave the ER rapidly, while HCMV-UL16 efficiently sequesters those that share the property of slow exit from the ER. It is striking to note that UL16 also leaves the ER only very slowly (Vales-Gomez et al., 2006); parallelling the behavior of the NKG2D-ligands with which it interacts, perhaps implying that this shared trafficking property is important for the intracellular accumulation of NKG2D-ligands mediated by UL16. The selective binding of UL1 to specific NKG2D-ligands may also be influenced by the strength of the interaction between the luminal domains of the viral protein and the NKG2D-ligand (Müller et al., 2010) and it seems reasonable to propose that viruses specifically target ligands according to features such as binding and/or trafficking. A number of other viruses also target specific NKG2D-ligands including human herpesvirus-7 (HHV-7; Schneiders and Hadson, 2011) that redirects ULBP1 molecules to lysosomes, and the Kaposi's sarcoma-associated herpesvirus K5 protein that promotes degradation of MICA molecules upon ubiquitylation of a lysine motif in the cytoplasmic tail (Thomas et al., 2008). Interestingly, both the GPI-anchored NKG2D-ligand proteins and the short-tailed alleles of MICA, lacking cytoplasmic tail, are resistant to degradation by this latter mechanism. The HHV-7 U21 gene also downmodulates MICA and MICB at a post-translational step, although the mechanism underlying this phenomenon is not completely understood. In contrast, those immune evasion proteins that downmodulate multiple NKG2D-ligands, for example, HIV-Nef that acts on all the NKG2D-ligands tested (ULBP1, 2, and MICA; Cerboni et al., 2007), seem likely to target some feature highly conserved between the different NKG2D-ligands. Thus, the existence of viral immunoevasins that selectively target some, but not all, NKG2D-ligands clearly demonstrates the existence of important differences in the biochemistry and cell biology of these molecules. Moreover identification of functionally important features that correlate with susceptibility to recognition by an immunoevasin may be a useful approach to shed light on its mechanism of action.

An additional level of viral regulation of ligand expression is represented by miRNAs: diverse herpes and polyomaviruses encode miRNAs that target NKG2D-ligand mRNA, to reduce their expression (Nachmani et al., 2009). However, here again, it is possible to argue that biochemical differences between the different NKG2D-ligands may have influenced the evolution of the specificity of these miRNAs. For example the HCMV miRNA UL112 acts to reduce expression of MICB, but not MICA. It is tempting to speculate that it is advantageous for the virus to have evolved a miRNA able to specifically block MICB transcription because the short half-life of MICB at the cell surface would mean a rapid loss of surface protein after blockade of mRNA transcription (Aguesta-Gonzalez et al., 2009). In contrast, the action of a viral protein would be required to actively sequester the much more stably expressed MICA protein.

CONCLUDING REMARKS

Review of the biochemical properties of the different NKG2D-ligands supports the idea that evolution of these molecules was significantly driven as a result of selective pressure exerted by a range of stress signals and pathogen infections: if an insult resulted in blockade of a particular cellular pathway, obstructing the expression of an NKG2D-ligand, the existence of a different ligand that could follow an alternative route to make the cell visible to the immune system would be an advantage. If, however, the actual set of ligands for the NKG2D receptor was the result of a process of evolution for diversity, it is not surprising that the biochemical properties of a given NKG2D-ligand do not necessarily reflect the behavior of other members of its genetic family. This kind of consideration reinforces the necessity for further studies to analyze the cell biology and biochemistry of the individual NKG2D-ligands in detail. This information will be especially important for understanding the role of this system in disease, in particular the detection of specific soluble NKG2D-ligands in the sera of patients suffering cancer. Although in many cases correlations between the levels of soluble ligands and disease progression have been reported, it is reasonable to suggest that identifying the NKG2D-ligand genotype of the patient, in particular long versus short MICA molecules, can contribute to their use as biomarkers. In this sense, it might well be worthwhile to revisit previous reports looking at which particular NKG2D-ligand was studied, not whether it was a MICA or a ULBP. Given that aberrant expression of NKG2D-ligands is involved in the pathogenesis of both cancer and various autoimmune diseases, learning the lessons of NKG2D-ligand cell biology may represent a useful approach to develop novel strategies to permit selective or general manipulation of this system in disease.

ACKNOWLEDGMENTS

Work in the authors' laboratories is supported by grants from the Spanish Fondo de Investigación Sanitaria (PS09/00181, PI08/1701, and PI11/08298). Lola Fernández-Messina is supported by the Comunidad de Madrid (grant 2S010/BMD-2326 to Mar Vales-Gomez). We would like to thank Dr. P. Roda-Navarro for critically reading the manuscript.
REFERENCES
Aguerre-Gonzalez, S., Boutet, P., Reyburn, H. T., and Vales-Gomez, M. (2010). Human immunodeficiency virus 1 gp120 downmodulates the ligands of the activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity. J. Virol. 84, 2851–2860.

Bauza, S., Grish, V., Wu, J., Steinle, A., Phillips, I. H., Lanier, L. L., and Spiess, N. (1999). Activation of NK cells and T cells by NKG2D, a receptor for transmembrane MHC class I. Science 285, 727–729.

Bennett, N. J., Ashiru, O., Morgan, F. J., Pong, Y., Oukaka, G., Eagle, R. A., Trousdale, J., Swanson, J. G., and Wills, M. R. (2010). Intracellular sequestration of the NKG2D ligand ULBP2 by human cytomegalovirus. J. Immunol. 185, 1095–1102.

Berchier, M. E., Harris, N. L., Wisse, S., Zhang, S., Chen, Y., Young, L., and Lau, G. W. (2006). The NKG2D-activating receptor mediates partial clearance of Porousodun aeruginosa. Infect Immun. 74, 2792–2796.

Boutet, P., Aguerre-Gonzalez, S., Allez, M., Fernandez-Messina, L., Aguera-Gonzalez, S., Mora, D., Murphy, G., Guerci, M., and Vales-Gomez, M. (2008). Cutting edge: the metastoprotein ADAO177/179 α2α3α5 converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J. Immunol. 182, 49–53.

Brown, M. G., Fulks, S., Matsumoto, K., Chu, R., Lyons, P. A., Levy, E. R., Scand, A. A., and Yokoyama, W. M. (2002). A 2.5-Mb YAC contig and physical map of the natural killer gene complex on mouse chromosome 6. Genomics 33, 101–115.

Burgos, S. J., Maruani, A. L., Pathi- maranathan, I., Borgen, F., and Coligan, J. E. (2006). IL-21 down-regulates NKG2D/IL21R expression on human primary CD8+ T-cells. J. Immunol. 176, 1400–1407.

Butler, J. E., Moore, M. B., Presnell, S. R., Chan, H. W., Chalupny, N. J., and Lata, G. T. (2009). Prototype regulation of UERF transcripton. J. Immunol. 182, 6061–6069.

Carrera, D., Milner, A., Courcoux, E., Grou, W. L., Hall-Ulrich, K., Northfield, J., Kleinman, P., Hofyn, K., Hadi, J., Gottschlich, S., Vooswinckel, J., Spitz, P., Fagin, U., Jabs, W. J., and Lembrecht, P. (2008). Expansion of circulating NKG2D+ effector memory T cells and expression of NKG2D ligand MHC in granuloma- tion lesions in Wegener’s granulo- matosis. Clin. Exp. Immunol. 127, 144–150.

Carsons, R., Cantoni, C., Dona, M., Vidal, P., Moncada, E., Contesso, R., Bevilaqua, R., Bottino, C., Massara, L., and Lanier, L. L. (2003). Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat. Med. 9, 207–213.

Chang, S. M., Wang, H. C., Gambar, K. J., Arist, J. R., Robinson, P., Lewis, D. E., Caliko-Zamarain, S., and Aitken, A. C. J. (2003). Interleukin-2 activates human natural killer cells to clear the intestinal protozoan cryptosporidium. J. Infect. Dis. 192, 1294–1302.

Dhunj, S., and Teo, H. S. (2003). IL-2-activated CD8+ CD4+ NK cells express both adaptive and innate immune system receptors and demonstrate specific for syngenic tumor cells. J. Immunol. 171, 3442–3450.

Duan, C., Chalupny, J. J., Sutherland, C. L., Dosch, S., Stevanak, P. V., Johnson, D. C., and Cosman, D. (2003). Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J. Exp. Med. 197, 1427–1439.

Eagle, R. A., Tsuchiya, J. A., Hain, J. R., Jelfers, L., and Trousdale, J. (2009). UERF/EAAT1 is an additional human NKG2D ligand. Eur. J. Immunol. 39, 5207–5216.

Eagle, R. A., and Trousdale, J. (2007). Promiscuity and the single receptor. NKG2D. Nat. Rev. Immunol. 7, 737–744.

Fernandez-Messina, L. (2011). Studies on the biochemistry and cell biology of the glycosyl-phosophatidylinositol (GPI)-anchored NKG2D ligands. PhD thesis, University of Cambridge, Cambridge.

Fernandez-Messina, L., Ashiru, O., Aguerre-Gonzalez, S., Reyburn, H. T., and Vales-Gomez, M. (2011). The human NKG2D ligand MICA can be expressed at the cell surface with or without a GPI-anchor, and both forms can activate NK cells. J. Gen. Virol. 92, 531–537.

Fernandez-Messina, L., Ashiru, O., Boutet, P., Aguerre-Gonzalez, S., Skop- pel, J. P., Reyburn, H. T., and Vales-Gomez, M. (2010). Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J. Biol. Chem. 285, 8454–8461.

Ghilian, S., Hsu, E. L., Cella, M., Yokoyama, W. M., and Colonna, M. (2002). NKG2D recruits two distinct adapters to trigger NK cell activation and cytostasis. Nat. Immunol. 3, 1130–1135.

Gonzalez, S., Lopez-Soto, A., Suarez-Alcazar, B., Lopez-Vazquez, A., and Lopez-Larriva, C. (2008). NKG2D ligands: key targets of the immune system responses. Trends Immunol. 29, 397–403.

Grish, V., Bauza, S., Bauza, S., Hartman, A., Beausoleil, M., and.
and Spies, T. (1996). Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelia. Proc. Natl. Acad. Sci. U.S.A. 93, 12445–12450.

Groh, V., Beutter, A., El-Gazhawi, H., Nielsen, J. L., and Spies, T. (2005). Stimulation of T cell autoreactivity by anoxia-induced expression of NKG2D and its MHC ligands in rheumatoid arthritis. Proc. Natl. Acad. Sci. U.S.A. 102, 9452–9457.

Groh, V., Rihinter, R., Randolph- Hulsbeck, J., Topp, M. S., Bokil, S. R., and Spies, T. (2001). Con- stitutively of CD8alphabeta T cells for NKG2D by engagement via MHC induced on virus-infected cells. Nat. Immunol. 2, 255–260.

Groh, V., Smyth, D., Kao, Z., and Spies, T. (2000). Fas-induced-enhanced perturbed T cell regulation by the receptor NKG2D in tumor immunity. Nat. Immunol. 1, 755–762.

Holländ, M., Stoevstov, A. C., Nagawa, O., Karlberg, L., Wolff, M., Baran- noon, V., and Minchova-Nilsson, L. (2009). Human plasma cell expresses and secretes NKG2D ligands via en- and the major histocompatibility class I. Cell biology of NKG2D-ligands

Johannes, M., Jamieson, A. M., Diefenbach, A., Mcma-

N. (2003). Critical role of MHC class lous atrophy during celiac disease.

Zucman, S. (2004). A direct role killer cell receptor NKG2D.

Diederichs, S., Schadendorf, D., and Durrant, L. G. (2010). ULBP2 and ligands for the activating receptor NKG2D. Immunity 121, 499–447.

Müller, E., Zacherl, G., Steinle, A., and Stähle, T. (2010). Structure of the HCMV UL16-MIC complex elucidates select binding of viral immunomodulatory proteins. PLoS Pathog. 6, e1000723. doi: 10.1371/journal.ppat.1000723.

Montaudo, A., Magez, G., Penda, D., Angulo, A., and Lopez-Botet, M. (2010). Inhibition of NKG2D expression in NK cells by cytokines secreted in response to human cytomegalovirus infection. Blood 115, 5170–5179.

Nachtman, D., Stern-Ginzburg, N., Sarid, R., and Mandelboim, O. (2009). Diverse herpesvirus microR- nas target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 6, 376–385.

Naoum, N., and Cerwenka, A. (2008). NKG2D ligands in tumor immunity. Oncogene 27, 5944–5953.

Nakell, H., Stövel, M., Sellmann, L., Hora, P. A., Darj, I., Duhon, U., Kappes, R., Grose-Wilde, H., and Rehmann, V. (2010). The prognostic significance of soluble NKG2D ligands in KollF chronic lymphocytic leukemia. Leukemia 24, 1172–1178.

O’Callaghan, C. A., Cerwenka, A., Will- sons, B. E., Lanner, L. I., and Byrk- man, P. J. (2011). Molecular com- petition for NKG2D: H60 and RAE1 target the stress-induced NKG2D ligands in tumor immunity. Oncogene 27, 5944–5953.

Nakell, H., Stövel, M., Sellmann, L., Hora, P. A., Darj, I., Duhon, U., Kappes, R., Grose-Wilde, H., and Rehmann, V. (2010). The prognostic significance of soluble NKG2D ligands in KollF chronic lymphocytic leukemia. Leukemia 24, 1172–1178.

O’Callaghan, C. A., Cerwenka, A., Will- sons, B. E., Lanner, L. I., and Byrk- man, P. J. (2011). Molecular com- petition for NKG2D: H60 and RAE1 target the stress-induced NKG2D ligands in tumor immunity. Oncogene 27, 5944–5953.

Nakell, H., Stövel, M., Sellmann, L., Hora, P. A., Darj, I., Duhon, U., Kappes, R., Grose-Wilde, H., and Rehmann, V. (2010). The prognostic significance of soluble NKG2D ligands in KollF chronic lymphocytic leukemia. Leukemia 24, 1172–1178.

O’Callaghan, C. A., Cerwenka, A., Will- sons, B. E., Lanner, L. I., and Byrk- man, P. J. (2011). Molecular com- petition for NKG2D: H60 and RAE1 target the stress-induced NKG2D ligands in tumor immunity. Oncogene 27, 5944–5953.

Nakell, H., Stövel, M., Sellmann, L., Hora, P. A., Darj, I., Duhon, U., Kappes, R., Grose-Wilde, H., and Rehmann, V. (2010). The prognostic significance of soluble NKG2D ligands in KollF chronic lymphocytic leukemia. Leukemia 24, 1172–1178.

O’Callaghan, C. A., Cerwenka, A., Will- sons, B. E., Lanner, L. I., and Byrk- man, P. J. (2011). Molecular com- petition for NKG2D: H60 and RAE1 target the stress-induced NKG2D ligands in tumor immunity. Oncogene 27, 5944–5953.
Salih, H. R., Heldemrider, S., and Steinle, A. (2008). Soluble NKG2D ligands promote release, autocrine, and antitumor impact. Front Biosci 13, 3648–3656.

Salih, H. R., Rammensee, H. G., and Steinle, A. (2002). Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169, 4089–4102.

Schneider, C. L., and Hudson, A. W. (2011). The human herpesvirus-8 (HHV-8) LATT immunoreceptor regulates NK cells through modulation of MICA and MICB. PLoS Pathog 7, e1002662. doi: 10.1371/journal.ppat.1002662.

Stern-Ginossar, N., Gur, C., Biton, S., Stephens, H. A. (2001). MICA and MICB. Trends Immunol 22, 378–385.

Steinle, A., Li, P., Morris, D. L., A., Cerwenka, A., Schadendorf, D., et al. (2011). The human herpesvirus-7 (HHV-7) U21 immunoevasin 7 enhances tumor rejection through modulation of MICA and the nuclear envelope. Cell Microbiol 8, 591–601.

Suarez-Mora, B., Lopez-Vazquez, A., Diaz-Molina, B., Bernardo-Rodriguez, M. J., Alvarez-Lopez, R., Panzar, D., Arnaudo, A., Martinez-Borra, J., Lambert, J. L., Gonzalez, S., and Lopez-Larrea, C. (2006). The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allografts. Transplantation 82, 354–361.

Taake, B., Hwangko, Y., Nelson, A., Strakma, P., Hughes, S., Smyth, M. J., and Lanier, L. L. (2005). IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 175, 2167–2173.

Thomas, M., Bonneau, J. M., Field, S., Nateurs, S., Vaiolo, M., Carasuolo, V., Wilks, M., and Lehnert, P. J. (2008). Down-regulation of NKG2D and NKG7 ligands by Kaposis sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl Acad Sci U S A 105, 10606–10611.

Upshaw, J. L., Arneson, L. N., Schoon, B. A., Dick, C. J., Billadeau, D. D., and Leland, P. J. (2006). NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 interaction and phosphatidylinositol-3-phosphate. Proc Natl Acad Sci U S A 103, 9188–9193.

Vales-Gomez, M., Browne, H., and Upshaw, J. L. (2002). Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 55, 279–287.

Stephens, H. A. (2001). MICA and MICB genes: can the enigma of their pathobiology be resolved? Trends Immunol 22, 378–385.

Stein-Ginzburg, N., Gay, C., Bito, M., Hiersch, E., Elbion, M., Stiensky, N., Mandelboim, M., and Mandelboim, O. (2008). Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9, 1065–1073.

Strong, B. K., and McFarland, B. J. (2004). NKG2D and related immunoreceptors. Adv. Protein Chem 68, 281–312.

Suarez-Mora, B., Lopez-Vazquez, A., Diaz-Molina, B., Bernardo-Rodriguez, M. J., Alvarez-Lopez, R., Panzar, D., Arnaudo, A., Martinez-Borra, J., Lambert, J. L., Gonzalez, S., and Lopez-Larrea, C. (2006). The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allografts. Transplantation 82, 354–361.

Taake, B., Hwangko, Y., Nelson, A., Strakma, P., Hughes, S., Smyth, M. J., and Lanier, L. L. (2005). IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 175, 2167–2173.

Thomas, M., Bonneau, J. M., Field, S., Nateurs, S., Vaiolo, M., Carasuolo, V., Wilks, M., and Lehnert, P. J. (2008). Down-regulation of NKG2D and NKG7 ligands by Kaposis sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl Acad Sci U S A 105, 10606–10611.

Upshaw, J. L., Arneson, L. N., Schoon, B. A., Dick, C. J., Billadeau, D. D., and Leland, P. J. (2006). NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 interaction and phosphatidylinositol-3-phosphate. Proc Natl Acad Sci U S A 103, 9188–9193.

Vales-Gomez, M., Browne, H., and Upshaw, J. L. (2002). Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 55, 279–287.

Stephens, H. A. (2001). MICA and MICB genes: can the enigma of their pathobiology be resolved? Trends Immunol 22, 378–385.

Stein-Ginzburg, N., Gay, C., Bito, M., Hiersch, E., Elbion, M., Stiensky, N., Mandelboim, M., and Mandelboim, O. (2008). Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9, 1065–1073.

Strong, B. K., and McFarland, B. J. (2004). NKG2D and related immunoreceptors. Adv. Protein Chem 68, 281–312.

Suarez-Mora, B., Lopez-Vazquez, A., Diaz-Molina, B., Bernardo-Rodriguez, M. J., Alvarez-Lopez, R., Panzar, D., Arnaudo, A., Martinez-Borra, J., Lambert, J. L., Gonzalez, S., and Lopez-Larrea, C. (2006). The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allografts. Transplantation 82, 354–361.

Taake, B., Hwangko, Y., Nelson, A., Strakma, P., Hughes, S., Smyth, M. J., and Lanier, L. L. (2005). IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 175, 2167–2173.

Thomas, M., Bonneau, J. M., Field, S., Nateurs, S., Vaiolo, M., Carasuolo, V., Wilks, M., and Lehnert, P. J. (2008). Down-regulation of NKG2D and NKG7 ligands by Kaposis sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl Acad Sci U S A 105, 10606–10611.

Upshaw, J. L., Arneson, L. N., Schoon, B. A., Dick, C. J., Billadeau, D. D., and Leland, P. J. (2006). NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 interaction and phosphatidylinositol-3-phosphate. Proc Natl Acad Sci U S A 103, 9188–9193.

Vales-Gomez, M., Browne, H., and Upshaw, J. L. (2002). Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 55, 279–287.

Stephens, H. A. (2001). MICA and MICB genes: can the enigma of their pathobiology be resolved? Trends Immunol 22, 378–385.