Measurement of the Inclusive $e^\pm p$ Scattering Cross Section at High Inelasticity y and of the Structure Function F_L

Alexey Petrukhin, DESY
(on behalf of the H1 & ZEUS Collaborations)

Low x Workshop 2011, Santiago de Compostela
Content

• Deep Inelastic Scattering at HERA
• DIS x-section at low Q^2
• x-section measurements at high inelasticity y
• Results on the structure function F_L
• Combined data for phenomenological analyses
• Conclusions
The ep collider HERA

- Circumference: 6.3 km
- $27.5\times920(820)\text{ GeV, } \sqrt{s_{ep}} = 319\text{ GeV}$
- 2 collider experiments: H1 and ZEUS
- HERA I: 1992-2000
- Luminosity upgrade: mid 2000 – end 2001
- Higher luminosity: HERA II (2003 – 2007)
Inclusive DIS at HERA

Use the scattered electron to reconstruct event kinematics:

\[Q^2 = 4E_e E'_e \cos^2 \frac{\theta_e}{2} \] - four momentum transfer squared in the reaction

\[x = \frac{Q^2}{s_y} \] - fraction of the proton momentum carried by the parton

\[y = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\theta_e}{2} \] - fraction of the lepton’s energy loss

\[s = 4E_e E_p \] - center-of-mass energy squared
NC cross section and structure functions

NC Reduced cross section: \[\sigma_r(x, Q^2) \]

\[
\frac{d^2 \sigma_{NC}(e^\pm p)}{dx dQ^2} = \frac{2\pi \alpha^2}{x Q^4} Y_+ \left[F_2 - \frac{Y^2}{Y_+} F_L \right]
\]

Dominant contribution

Sizeable only at high \(y \) (\(y > \sim 0.6 \))

- The proton structure functions in QPM:
 \[
 F_2(x) = \sum_i e_i^2 x [q_i(x) + \bar{q}_i(x)] - \text{sum of the (anti)quarks density distributions weighted with their electric charge squared}
 \]
 \[
 F_L(x) = 0
 \]

- In QCD: \(F_L(x, Q^2) \sim \text{gluon density} \)
\(\sigma_r \) for \(E_p = 460, 575 \) and 920 GeV

- New cross-section measurements for different \(E_p \) at HERA II
 [H1 Collab., Eur.Phys.J. C71, 2011 1579]

- For \(E_p = 920 \) GeV, these data are combined with previous H1 measurements
 [H1 Collab., Eur.Phys.J. C63, 2009 625],
 [H1 Collab., Eur.Phys.J. C64, 2009 561],
 [H1 Collab., Eur.Phys.J. C21, 2001 33]
 leading to factor of 2 improvement in precision at high \(y \)
F_L determination

- F_L determined from measurements at different CME
- F_L is proportional to the variation of σ_r as a function of $y^2/(1+(1-y)^2)$
- Improved determination procedure, taking into account correlations due to systematic uncertainties

[H1 Collab., Eur.Phys.J. C71, 2011 1579]
The measurement spans over 2 decades in x at low $0.00002 < x < 0.002$

- Measured HERA F_2 and F_L are consistent with predictions of the NLO DGLAP fit in the ACOT scheme
HERA F_L and different predictions

- New measurement extends to $Q^2 \geq 1.5$ GeV2
- Within the uncertainties all predictions describe the data reasonably well
- Good agreement between H1 and ZEUS measurements
The ratio R

HERA data are consistent with const $R = 0.26 \pm 0.05$
Phenomenological analysis settings

- Combined H1 data for $E_p=820–920$ GeV, $0.2 \leq Q^2 \leq 150$ GeV2 [H1 Collab., Eur.Phys.J. C63, 2009 625], [H1 Collab., Eur.Phys.J. C64, 2009 561], [H1 Collab., Eur.Phys.J. C21, 2001 33]

- Combined for $y_{460} \leq 0.35$ low $E_p=460$ and 575 GeV data

- ‘H1fitter’ fitting program, based on NLO DGLAP QCDNUM [arXiv:1005.1481] evolution code. The fitter has been extended to include non-DGLAP models (dipole, λ-fit)

- See more about HERA fits in talk of Voica Radescu
\(\sigma_r \) and QCD fits

- Two calculation schemes for QCD fits: ACOT and RT with different computation of the heavy quark structure functions and of the structure function \(F_L \).
- Better quality of ACOT fit: \(\chi^2/\text{dof} = 715/781 \) vs RT fit with \(\chi^2/\text{dof} = 765/781 \).
- With increasing of \(Q^2 \) cut:
 - fit quality is improved
 - gluon is increased, sea becomes smaller at low \(x \)

\(Q^2_{\text{min}} \)/GeV\(^2\)	1.5	2	2.5	3.5	5	7.5
\(\chi^2/\text{n_{dof}} \)	824.8/834	777.9/818	748.7/801	715.2/781	677.6/759	626.9/712
\(\lambda \text{ fit} \)

- At low \(Q^2 \) and \(x \to 0 \) rise of \(F_2 \) towards low \(x \) may be described by
 \[
 F_2(x, Q^2) = c(Q^2) \cdot x^{-\lambda(Q^2)}
 \]

- Fit \(x \)-dependences of \(\sigma_r \) in \(Q^2 \) bins with two free parameters \(c(Q^2), \lambda(Q^2) \) and fixed \(R=0.26 \)
 \[
 \sigma_r(x, Q^2) = F_2(x, Q^2) \cdot \left[1 - \frac{y^2}{1 + (1 - y)^2} \cdot \frac{R}{1 + R} \right]
 \]

- Fit results
 - For \(Q^2 \geq 2 \text{ GeV}^2 \)
 - \(\lambda \) exhibits a linear increase as function of \(\ln Q^2 \)
 - Normalisation \(C \) is constant
 - For \(Q^2 < 2 \text{ GeV}^2 \)
 - \(\lambda \) deviates from that linear dependence
 - Normalisation \(C \) rises with increasing of \(Q^2 \)

With offset method for syst. errors quality of the fit is poor: \(\chi^2/\text{dof}=538/350 \)
Introduce a λ' fit

- Parameterisation of the F_2 is extended by one parameter to allow for deviations from a simple power law

$$F_2(x, Q^2) = c(Q^2) \cdot x^{-\lambda(Q^2)+\lambda'(Q^2) \ln x}$$

- Fit returns significantly improved χ^2/dof=405/326
 - λ exhibits a constant behaviour ($\lambda \sim 0.25$)
 - strong correlations between λ and λ'
- Fix $\lambda=0.25$ and let $C(Q^2)$, $\lambda'(Q^2)$ float which yields χ^2/dof=464/350

Confirms a QCD prediction [A. De Rujula et al., Phys. Rev. D10, 1649 (1974)]:
rise of F_2 slower than power $1/x$, faster than power $\ln1/x$
\(\sigma_r \) and Dipole Model fits

- Test DModels with and without DGLAP-based correction for valence contribution
- Fits to data in \(3.5 \leq Q^2 \leq 150 \text{ GeV}^2 \) and \(x < 0.01 \) where both DM and DGLAP are working
- The addition of valence contribution improves description of the data at high \(x \) but overall fit quality is not better

Fit Conditions	GBW	HIM	\(\chi^2 / n_{\text{dof}} \)	ACOT	RT
Nominal fit	718.8/352	397.6/352	424.9/352	715.2/781	764.5/781
\(Q^2 \geq 3.5 \text{ GeV}^2 \)	559.7/252	259.4/252	261.7/252	715.2/781	764.5/781
DGLAP_valence	739.5/252	287.6/252	371.4/252	248.3/249	288.8/249

 ⇒ Best fit for DGLAP-ACOT, closely followed by IIM
\(F_L \) vs phenomenological models

- At \(Q^2 > 10 \text{ GeV}^2 \): good agreement between data and all considered models
- At low \(Q^2 \): RT fit falls below data. Other models describe measured \(F_L \) well
Summary

• The new most precise HERA measurement of the inclusive $e^\pm p$ scattering cross section at high inelasticity y and of the structure function F_L is presented
• The analysis is published in EPJC [H1 Collab., Eur. Phys. J. C71, 2011 1579. arXiv:1012.4355 [hep-ex]]
• F_L is measured for the first time at HERA down to $Q^2 = 1.5 \text{ GeV}^2$
• Data are consistent with constant $R \sim 0.26$ and generally well described by the phenomenological models
• From the considered models NLO DGLAP ACOT fit provides the best description of HERA data
Back up
The preliminary combined measurement of F_L cover the range of $2.5 \leq Q^2 \leq 800 \text{ GeV}^2$ and $0.00005 \leq x \leq 0.06$

Data are in a good agreement with HERAPDF1.0 for $Q^2 > 10 \text{ GeV}^2$
Background estimation

- Measure particle charge using curvature of the associated track

- e^+p scattering:
 - Scattered lepton has the beam charge (positive)
 - Background from hadronic particles, γ conversions is almost charge symmetric:
 \[N_{BG}^+ \approx N_{BG}^- \]

- Require positive charge for the signal sample. Estimate remaining background using negative sample
F$_2$-F$_L$ Fitter: new method

Instead of σ-average, extract F_2/F_L directly

$$\chi^2(F_2, F_L, \alpha) = \sum_i \left[\frac{(F_2^i - f(y^i)F_L^i) - \sum_j \Gamma^j \alpha_j - \mu^i}{\Delta_i^2} \right]^2 + \sum \alpha_j^2 + \sum \left(\frac{F_L^i - \frac{R}{R + 1} F_2^i}{\Delta_{F_L}^i} \right)^2$$

Minimization vs F_2, F_L and syst. sources α leads to a simple system of linear equations:

$$R = \frac{F_L}{F_2 - F_L} \approx 0.25$$

μ^i – measured x-section

Δ_i – its uncertainty

α_j – correlated error sources

which can be easily solved numerically.
Dipole model fits

• At low x and Q^2 the virtual photon-proton scattering can be described using the color dipole model (CDM):

$$\gamma^*(q) + p(p) \rightarrow \gamma^*(q) + p(p)$$

the initial γ^* splitting into a quark-antiquark pair (dipole), this pair scattering on the proton and the $q\bar{q}$ subsequently fusing into the final state γ^*

• We consider here three CDM as representative for a much larger variety of Dipole models:
 GBW (Golec-Biernat & Wusthoff), IIM (Iancu, Itakura & Munier) and B-SAT (Kowalski, Motyka & Watt)
• CDM are applicable for $x<0.01$ where the gluon and sea dominate. All models neglect valence contributions which are sizeable: 5-15%