Global R-Matrix Analysis of the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction

Carl R. Brune and Daniel B. Sayre

Edwards Accelerator Laboratory
Department of Physics and Astronomy
Ohio University
Athens, Ohio 45701 USA
E-mail: brune@ohio.edu, sayre4@llnl.gov

Abstract. The $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction, in combination with the triple-alpha process, determines the $^{12}\text{C}/^{16}\text{O}$ fraction at the end of stellar helium-burning. This fraction has been shown to strongly influence any subsequent stellar evolution and, due to imprecise knowledge of $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction rate, complicates precision tests of stellar models. The $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction rate at stellar energies is determined via the R-matrix analysis of experimental data. These data are discussed, and new measurements of the E_1-E_2 interference sign between the $E_{\text{c.m.}} = 2.68$-MeV E_2 resonance and an underlying E_1 strength are described. An E_1-E_2 asymmetry parameter of $a = 0.07 \pm 0.05$ was extracted from the thick-target γ-ray yields of the narrow resonance at angles of 45° and 135°. The positive sign of a corresponded to constructive interference at forward angles and, further, allowed the interference between the resonance and an E_2 background to be identified as constructive below the resonance energy. The E_2-E_2 interference was then used to evaluate the global S_{E_2} data within the vicinity of the resonance $2.5 \leq E_{\text{c.m.}} \leq 3.0$ MeV. A global analysis of S_{E_2} data that agreed with the interference scenario has determined the E_2-E_2 interference scheme of the 4.34-MeV resonance and background, resulting in a value of $S_{E_2}(300) = (62^{+9}_{-6})$ keV b.

1. Introduction

The helium-burning stage of red giant stars is dominated by the triple-α process ($3\alpha \rightarrow ^{12}\text{C}$) and the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction, making a precise understanding of both reactions essential for modeling the evolution of stars from this stage and beyond [1; 2]. Despite four decades of experimental investigations, the uncertainty associated with the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction continues to be an obstacle. An uncertainty of $\leq 10\%$ in the astrophysical $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ cross section is needed to advance the modeling [3], yet even the smallest error bars reported thus far greatly exceed that value [4].

At helium-burning energies of $E = 300$ keV (we refer to center-of-mass energies in the $^{12}\text{C} + \alpha$ channel throughout this work), the reaction is governed by ground-state E_1 and E_2 captures through $J^p = 1^-$ and 2^+ partial waves, with cascades being about an order of magnitude smaller. The extrapolation of the measured $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ cross sections ($E \geq 1$ MeV) to lower energies is complicated by two states located 45 keV ($J^p = 1^-$) and 245 keV ($J^p = 2^+$) below the $^{12}\text{C} + \alpha$ threshold. The cross section at astrophysical energies arises largely from the high-energy tails of these states, but the properties of these states are only weakly constrained by cross-section measurements at higher energies. Presently, the cross section [or S factor at 300 keV, $S(300)$] can

1 Present address: Lawrence Livermore National Laboratory, Livermore, California, USA
only be determined through a combination of experimental data and theoretical extrapolation. Direct measurements have been limited to energies \(\geq 1 \) MeV for technological reasons related to the difficulties of measuring very small cross sections. Indirect approaches have been investigated to constrain the low-energy extrapolation, such as \(^{12}\text{C} + \alpha\) elastic scattering \([4–6]\), the \(^{16}\text{N}\) \(\beta\)-delayed \(\alpha\)-decay spectrum \([7–10]\), \(\alpha\)-transfer on \(^{13}\text{C}\) with beams of Li isotopes \([11; 12]\), and cascade transitions through the 6.92-MeV state of \(^{16}\text{O}\) \([13; 14]\). However, recent ground-state \(S_{E2}(300)\) values have ranged from 30–60% of \(S(300)\) \([4; 11; 14; 15]\), having an unsatisfactory dependence on experimental datasets and assumptions made in the analysis.

2. Systematic Errors in Measurements Near 2.68-MeV

A notable contributor to the large variation in \(S_{E2}(300)\) values is the systematic errors in the global data. Roughly a third of the \(S_{E2}\) data are located in the vicinity of the narrow 2.68-MeV \((2^+)\) resonance \(2.5 \leq E \leq 3.0\) MeV. Here, the \(E2\) cross section is a coherent sum of amplitudes from the 2.68-MeV resonance and an underlying component resulting from other \(2^+\) resonances and external capture. Measurements of the cross section around the resonance become acutely sensitive to the beam energy distribution within the target. Another complication is that the target thickness can change during the measurements. As a consequence, many of the data have unreported systematic errors and this poses a serious challenge for any reliable analysis. It has been pointed out \([16]\) that most of the existing \(S_{E2}\) datasets result in conflicting interference scenarios between the resonance and underlying \(E2\) component. This unphysical result is also found in a more recent dataset from a group that has reported making the target corrections \([17]\).

Some groups \([18; 19]\) have simply chosen not to fit the global \(S_{E2}\) data within the vicinity of the 2.68-MeV resonance. Although this approach avoids the mentioned systematic errors, it limits the constraints that can be placed on the fit. For example, data around the 2.68-MeV resonance are key to identifying the \(E2-E2\) interference scheme between the 4.34-MeV \((2^+)\) resonance and background component. This is important because the interferences of resonances, like their decay properties, need to be specified for the extrapolation. A significant uncertainty in previous \(S_{E2}(300)\) analyses \([4; 11]\) arose from the inability to resolve how the 4.34-MeV resonance interfered with the background. In accounting for this ambiguity, Ref. \([4]\) averaged the values, \(S_{E2}(300) = 49^{+7}_{-9}\) and \(58^{+8}_{-11}\) keV b, from the different interference scenarios to obtain \(S_{E2}(300) = 53^{+13}_{-18}\) keV b. We have addressed this uncertainty by measuring a new observable that independently determines the interference scenario between the 2.68-MeV resonance and the underlying \(E2\) amplitude. Having established the energy dependence of the \(E2\) cross section in the vicinity of the resonance, one can then evaluate the global \(S_{E2}\) data and eliminate those with systematic discrepancies.

3. Resonance Anisotropy Measurements

It has been shown \([16]\) that the angular distribution of the integrated \(\gamma\)-ray yield from the 2.68-MeV resonance can be used to determine its \(E2-E2\) interference scheme. Along with the energy-dependent \(E2-E2\) interference in the angle-integrated cross section, there is an angle-dependent interference between an \(E1\) background and the \(E2\) resonance. The relative phase of the \(E1\) and \(E2\) background amplitudes is well known from angular distribution measurements below the resonance \([15; 20; 21]\). Based on this information, a determination of the \(E1-E2\) relative phase using the integrated yield of the resonance also determines the relative phase of the \(E2-E2\) interference. Ref. \([16]\) has derived an expression for the angular distribution of the integrated yield

\[
W(\theta) = 1 + \frac{5}{4}P_2 - \frac{12}{4}P_4 + a(P_1 - P_3),
\]
Figure 1. An illustration of the important experimental components for the γ-ray yield measurements. The beam enters from the right, and is stopped in a Faraday cup off the left side of the figure. Simulated γ rays from the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction are shown as green lines.

which consists of Legendre polynomials $P_\ell = P_\ell(\cos \theta)$ and a parameter a that leads to an asymmetry about 90°. The magnitude of a can be calculated from the properties of the 2.68-MeV resonance and the underlying $E1$ cross section via [16]

$$|a| = \frac{3k_R}{5} \sqrt{\frac{\Gamma_\alpha \sigma_{E1}}{\pi \Gamma_{\gamma0}}} |\sin \phi_0|, \quad (2)$$

where k_R is the wavenumber at the resonance, Γ_α and $\Gamma_{\gamma0}$ are the respective α and ground-state γ-ray widths, σ_{E1} is the underlying $E1$ ground-state cross section, and $|\sin \phi_0|$ is determined by the elastic-scattering phase shifts. Using existing data, the magnitude of the asymmetry parameter is determined to be $|a| = 0.08 \pm 0.01$ [16], but the sign is unknown. Depending on whether a is positive or negative, the $E2$-$E2$ interference will be constructive or destructive below the resonance energy. We have recently reported the first measurements of the asymmetry parameter [22], and have found its sign to be positive. These measurements are described below.

Measurements of the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction were performed with the 4.5-MV tandem Van de Graaff accelerator at Ohio University, where 200-pnA beams of α particles bombarded a 30-\mu g/cm2 carbon foil composed of $>99.9\%$ ^{12}C. The target was sufficiently thick to integrate the
2.68-MeV resonance ($\Gamma = 0.6 \pm 0.1$ keV [23]) while restricting both non-resonant and background reactions. To help preserve the target properties during the experiment, a liquid-nitrogen cold trap was installed around the target for suppressing the buildup of carbon (with natural isotopic composition) on its surface.

Throughout the experiment the elastic scattering spectrum from the target was monitored with a silicon surface-barrier detector fixed at 144°. The 2.68-MeV resonance appeared in the spectrum, and this was utilized to tune the beam energy until it was centered within the target. Also, a 1-µg/cm² layer of gold was deposited over the target. Detection of elastically scattering α particles from gold provided a measure of the number incident to the target, which supplemented the information obtained with a Faraday cup.

The ≈ 10 MeV γ rays from the ground-state decay of the 2.68-MeV resonance were measured with a 10-cm×10-cm cylindrical bismuth germanate (BGO) detector, which was both actively and passively shielded from the ambient room background. In a compromise between detection efficiency and the importance of finite size and misalignment corrections, the front face of the BGO detector was placed 20 cm away from the target. The detector was placed between several guide rails atop a rotatable platform, so that its position could be reproduced for measurements at different angles. The rotation axis of this platform was aligned with the beam-target intersection to submillimeter precision using an in situ γ-ray source, created by activating a sodium-tungstate target through the 23Na$(d, p)^{24}$Na reaction [24]. Additionally, measurements of the 12C(α, γ)16O reaction were performed on both sides of the beamline to mitigate the effects from beam wander on the target. The experimental setup is show in in Fig. 1.

Extraction of the γ-ray yields involved fitting the 12C(α, γ)16O spectra with the combination of a Monte Carlo signal and several measured backgrounds (see Fig. 2). The simulated 12C(α, γ)16O signal was produced with the GEANT4 [25] toolkit and considered the reaction kinematics, γ-ray angular distribution, attenuation of the target chamber and cold trap, and detector efficiency. Together with the ambient background there was a beam-induced contribution from the 13C(α, n)16O reaction. Its spectra were acquired in a separate experiment that replicated the beam energy, target thickness, and detector positions of the 12C(α, γ)16O measurements, except with a 99% 13C target. The scaled backgrounds were subtracted from the 12C(α, γ)16O spectra, and the remaining counts within a 9-to-10 MeV region of interest were integrated. In addition to the statistics from the extracted yields, systematic errors were considered for the energy miscalibration, detector misalignment, fit region, beam energy shifts, and region of interest. The ratio of the 45° to 135° yields, each normalized by the number of incident particles, was related to the $E1-E2$ asymmetry parameter through the simulations. Two separate measurements of the ratio gave values of $a = 0.09 \pm 0.07$ and 0.05 ± 0.07, resulting in a weighted average of $a = 0.07 \pm 0.05$ (a systematic error of 0.02 was common to both measurements and has been added in quadrature to the combined statistical error). The positive value of a corresponded to constructive $E2-E2$ interference below the 2.68-MeV resonance.

4. R-Matrix Fits

Our experimental result was then used to constrain an R-matrix [19; 26] fit with the global S_{E2} data and the d-wave elastic-scattering phase shifts of Ref. [6]. This analysis utilized the alternative parametrization of the R-matrix [27] so that experimental quantities could be directly included in the analysis. R-matrix parameters were determined from the minimization of

\[
\chi^2 = \sum_{i=1}^{N_i} \left[\sum_{j=1}^{N_j} \frac{(N_i y_j - t_i)^2}{N_i \sigma_j} + \left(\frac{N_i - 1}{s_i} \right)^2 \right],
\]
Figure 2. A fit to the 135° γ-ray yield from the first $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ experiment. The solid (red) curve was the sum of three contributions: an ambient room background shown as a long dashed (blue) curve, a beam-induced background given by the short dashed (green) curve, and a Monte Carlo signal that corresponds to the dash-dot (black) curve.

with MINUIT [28]. Eq. (3) is summed over all experiments N_e, each having a number N_i of data points. Here, y_j and t_j are the experimental and theoretical values at data point j, and σ_j is the statistical uncertainty associated with y_j. An adjustable normalization N_i is determined for each S_{E2} dataset (the phase shifts are not rescaled) by minimizing the second term χ^2_{ν}. Normalization uncertainties s_i are taken as $s_i \rightarrow \infty$ for experiments that have normalized their data to other measurements, allowing their N_i to float freely. Otherwise, s_i is taken to be its reported value (see Table 2). The only exception being the 6% normalization uncertainty of Ref. [20], which was determined in part by using a derived quantity from another analysis. Instead, the 13% value determined independently by that experiment, from a measurement of the cross section around the 2.42-MeV resonance, was used. Following Refs. [4; 8–11; 14], the acceptable $S_{E2}(300)$ range from the fit was determined by $\chi^2 \leq \chi^2_{\text{min}}(1 + 9/\nu)$, with ν being the number of degrees of freedom in the fit.

Five 2^+ levels were considered in the R-matrix: a background pole and physical resonances at $-0.245, 2.68, 4.34,$ and 5.86 MeV. Of these levels there were 7 adjustable parameters: the energy and widths of the background pole, the energy and α-particle width of the 4.34-MeV resonance, and the asymptotic normalization coefficients (ANC) of the subthreshold resonance and final state (-7.162 MeV). All other decay properties were fixed with experimental values. Resonance energies and α-particle widths were taken from Refs. [4; 6], except for the α-particle width of 2.68-MeV resonance [23]. Radiative widths for the $-0.245, 2.68, 4.34,$ and 5.86 MeV resonances were obtained from Refs. [29–32], respectively. The interference signs of the 2.68-MeV...
Figure 3. Fits (a) (top panel) and (b) (bottom panel) to the global S_{E2} data. The solid (dashed) line represents the fit assuming the opposite (same) interference signs for the 4.34-MeV and subthreshold resonances.

Fits of two types were considered to the global S_{E2} data: (a) only the S_{E2} data ≤ 2.5 MeV and (b) all data that followed the determined 2.68-MeV interference scenario (in addition to the data ≤ 2.5 MeV). Eleven data points within the $2.5 \leq E \leq 3.0$ MeV region that did not follow the interference scenario were eliminated according to Chauvanet’s criterion [33].

The fits outlined above represent two approaches to deal with the systematic errors around the 2.68-MeV resonance, with the second signifying a new way to include the data around the 2.68-MeV resonance. For reference, both fits are shown in Fig. 3. Note: The only difference between the fits of (a) and (b) was that 15 additional S_{E2} data points were included in the latter.

The best fit of type (a), which gave a $\chi^2_{\text{min}} = 202$ for 381 data points, occurred when the 4.34-MeV and subthreshold resonances had opposite interference signs. Although the case having identical signs only raised the total χ^2 by 2, and also fell within the acceptable range from the χ^2_{min}, $\Delta \chi^2 = 5$. The best fit of type (b) resulted in a χ^2_{min} of 218 for 396 data points. Again, the best fit occurred when 4.34-MeV and subthreshold resonances had opposite signs. In Fit (b), however, the other interference scenario could be excluded since it increased the total χ^2 by 10. Fit (a) in Fig. 3 illustrates that the destructive scenario below the 4.34-MeV resonance (identical signs) favors smaller values of S_{E2} above the 2.68-MeV resonance than the constructive one. The additional data of Fit (b) require larger S_{E2} values above the 2.68-MeV resonance, and this leads to an increased background strength for the destructive interference fit. A poorer quality fit to the data below the resonance results from the larger background pole.

We also find the 4.34-MeV interference scenario from our analysis confirmed in recently reported S_{E2} measurements [34]. To further constrain our final analysis, we have included this new dataset. Table 1 lists R-matrix parameters from the best fit, which gave a $\chi^2_{\text{min}} = 226$ for...
Table 1. The R-matrix parameters from the best fit. Fixed parameters are shown in parentheses, and the signs are discussed in the text. The ANC is reported instead of an α-particle width for levels below the $\alpha + ^{12}$C threshold.

$\lambda\ell$	E_λ (MeV)	ANC (fm$^{-1/2}$)	Γ_α (keV)	Γ_γ (meV)
10	(-7.162)	7.09 x 102	—	—
12	(-0.245)	1.59 x 102	—	—
22	(2.683)	—	(0.6)	(-5.9)
32	4.340	—	82.9	(-610)
42	(5.857)	—	(350)	(700)
52	21.59	—	129	1.31 x 105

Table 2. Details of the fit to each dataset. The data type has been indicated as either d-wave phase shift δ_2 or ground-state $E2$ S-factor S_{E2}; other columns of the Table were discussed in the text.

Ref.	Type	N_i	s_i	N_i	χ_i^2	χ_i^2
[6]	δ_2	321	—	—	131.9	—
[15]	S_{E2}	19	0.11	0.90	0.9	22.8
[17]	S_{E2}	12	0.09	1.07	0.6	16.9
[20]	S_{E2}	17	0.13	0.96	1.2 x 10$^{-2}$	30.2
[35]	S_{E2}	13	∞	1.04	—	7.3
[36]	S_{E2}	3	0.10	1.01	1.0 x 10$^{-2}$	3.1
[21]	S_{E2}	9	∞	0.95	—	6.8
[37]	S_{E2}	2	0.05	1.00	7.0 x 10$^{-6}$	0.3
[34]	S_{E2}	3	0.05	1.00	4.0 x 10$^{-5}$	6.8

399 data points and resulted in a value of $S_{E2}(300) = 62^{+9}_{-6}$ keV b. A channel radius of 5.5 fm was used in all fits [4] because larger channel radii were found to require additional background levels. In the Table, radiative widths for the ground-state transition Γ_γ are accompanied by their interference signs. A sign is also considered for the ANC of the final state. It should be mentioned that the interference scheme of the 5.86-MeV resonance could not be determined here, as a fit with the negative sign only increased χ^2 by 3. The asymmetric error in our result comes from the fit with the negative interference sign. An uncertainty of 3 keV b from the fixed parameters, which was determined by performing separate fits for each parameter at its 1σ deviation, has also been considered.

Table 2 provides fit details, such as the normalizations N_i and χ^2_i per dataset χ_i^2. The individual datasets appear to be well described by the global fit, with the possible exception of Ref. [20] which gives a rather large χ_i^2/N_i value. It should also be noted that the χ_i^2/N_i value of Ref. [6] is unrealistically small.

Our result of $S_{E2}(300) = 62^{+9}_{-6}$ keV b, is heavily dependent upon the elastic scattering data of Refs. [4; 6]. However, we have repeated the analysis with an alternative set of phase shift data [5] and found consistent results, $S_{E2}(300) = 38^{+34}_{-25}$ keV b, albeit with much greater uncertainty. In comparison to the $S_{E2}(300) = 53^{+12}_{-13}$ keV b value reported by Ref. [4], the present result is both larger and with significantly smaller uncertainty. The main distinction between results comes from our ability to exclude the destructive interference scenario for the 4.34-MeV resonance; if the destructive interference scenario for the 4.34-MeV resonance is eliminated from the analysis...
of Ref. [4], a comparable result is obtained. Smaller changes arise from the adjustable dataset normalizations in our analysis and the inclusion of newer S_{E2} data [15; 17; 34; 37]. Other analyses that did not make use of the high-precision phase shifts, but instead relied on the either the α-transfer or the 6.92-MeV cascade data to determine the ANC of the -0.245-MeV resonance, determined $S_{E2}(300)$ values of 44^{+16}_{-23} keV b [11] and 95 ± 24 keV b [14], respectively. Future investigations should be considered to understand the source of the discrepancy in ANC values.

5. Conclusions
We have experimentally determined the $E2$-$E2$ interference scheme of the 2.68-MeV resonance and presented a way to include data within $2.5 \leq E \leq 3.0$ MeV region based upon that determination. The S_{E2} data within this region were found to resolve the $E2$-$E2$ interference scheme of the 4.34-MeV resonance – a significant uncertainty in previous analyses [4; 11] of the ground-state S_{E2} factor. The R-matrix analysis of S_{E2} and d-wave phase shift data yields $S_{E2}(300) = 62^{+9}_{-6}$ keV b.

Combining our $S_{E2}(300)$ value with an average of Refs. [8; 10], $S_{E1}(300) = 83 \pm 22$ keV b, and an estimate of the cascades, 16 ± 16 keV b [38], gives a total of $S(300) = 161 \pm 28$ keV b. This result is consistent with the 170 ± 20 keV b [3] value obtained by matching supernova nucleosynthesis calculations with the solar-system abundances.

A somewhat similar analysis has recently been published by Schürmann et al. [39]. Interestingly, these authors have deduced the opposite conclusion regarding the $E2$-$E2$ interference scheme of the 2.68-MeV resonance. Their conclusion apparently results from including in their fit data from Ref. [17] above the 2.68-MeV resonance. These data points are inconsistent with the resonance anisotropy measurements reported here and in Ref. [22]. In addition, it has been pointed out that these data points are almost certainly systemically too large, due to the depth profile of the targets used [40]. These differences highlight the importance of systematic errors and the process of data selection for fitting.

Acknowledgments
We acknowledge the work of D. Shafer and C. Dodson in the design and fabrication of equipment; thank D. E. Carter, D. C. Ingram, D. K. Jacobs, and J. E. O’Donnell for assistance with the experimental setup, and appreciate the help with accelerator operations from S. Ahktar, Y. Byun, S. Dhakal, T. N. Massey, C. Parker, A. Ramirez, and A. Voinov. This work was supported in part by the U.S. Department of Energy under grant numbers DE-FG02-88ER40387 and DE-FG52-09NA29455.

References
[1] Weaver T A and Woosley S E 1993 Phys. Rep. 227 65
[2] Tur C, Heger A and Austin S M 2007 Astrophys. J. 671 821
[3] Woosley S E, Heger A and Weaver T A 2002 Rev. Mod. Phys. 74 1015
[4] Tischhauser P, Azuma R E, Buchmann L, Detwiler R, Giesen U, Görres J, Heil M, Hinnefeld J, Käppeler F, Kolata J J, Schatz H, Shotter A, Stech E, Vouzoukas S and Wiescher M 2002 Phys. Rev. Lett. 88 072501
[5] Plaga R, Becker H, Redder A, Rolfs C, Trautvetter H and Langanke K 1987 Nucl. Phys. A465 291
[6] Tischhauser P, Couture A, Detwiler R, Görres J, Ugalde C, Stech E, Wiescher M, Heil M, Käppeler F, Azuma R E and Buchmann L 2009 Phys. Rev. C 79 055803
[7] Buchmann L, Azuma R E, Barnes C A, D’Auria J M, Dombsky M, Giesen U, Jackson K P, King J D, Kortelag R G, McNeely P, Powell J, Roy G, Vincent J, Wang T R, Wong S S M and Wrean P R 1993 Phys. Rev. Lett. 70 726
[8] Azuma R E, Buchmann L, Barker F C, Barnes C A, D’Auria J M, Dombsky M, Giesen U, Jackson K P, King J D, Kortelag R G, McNeely P, Powell J, Roy G, Vincent J, Wang T R, Wong S S M and Wrean P R 1994 Phys. Rev. C 50 1194
[9] Tang X D, Rehm K E, Ahmad I, Brune C R, Champagne A, Greene J P, Hecht A A, Henderson D, Janssens R V F, Jiang C L, Jisonna L, Kahl D, Moore E F, Notani M, Pardo R C, Patel N, Paul M, Savard G, Schiffer J P, Segler R E, Sinha S, Shumard B and Wuosmaa A H 2007 Phys. Rev. Lett. 99 052502
[10] Tang X D, Rehm K E, Ahmad I, Brune C R, Champagne A, Greene J P, Hecht A, Henderson D J, Janssens R V F, Jiang C L, Jisonna L, Kahl D, Moore E F, Notani M, Pardo R C, Patel N, Paul M, Savard G, Schiffer J P, Segler R E, Sinha S and Wuosmaa A H 2010 Phys. Rev. C 81 045809
[11] Brune C R, Geist W H, Kavanagh R W and Veal K D 1999 Phys. Rev. Lett. 83 4025
[12] Belhout A, Ouichaoui S, Beaumevieux H, Boughrara A, Fortier S, Kiener J, Maison J, Mehl Di, Rosier L, Thibaud J, Trabelsi A and Vernotte J 2007 Nucl. Phys. A793 178
[13] Buchmann L 2001 Phys. Rev. C 64 022801(R)
[14] Matei C, Brune C R and Massey T N 2008 Phys. Rev. C 78 065801
[15] Kunz R, Jaeger M, Mayer A, Hammer J W, Staudt G, Harissopulos S and Paradellis T 2001 Phys. Rev. Lett. 86 3244
[16] Brune C R 2001 Phys. Rev. C 64 055803
[17] Assuncao M, Fey M, Lefebvre-Schuel A, Kiener J, Tatischeff V, Hammer J W, Beck C, Boukari-Pelissie C, Coc A, Correia J J, Courtin S, Fleurot F, Galanopoulos E, Grana C, Haas F, Hamburger F, Hannachi F, Harissopulos S, Korichi A, Kunz R, LeDu D, Lopez-Martens A, Malcherek D, Meunier R, Paradellis T, Rousseau M, Rowley N, Staudt G, Szilner S, Thibaud J P and Weil J L 2006 Phys. Rev. C 73 055801
[18] Filippone B W, Humblet J and Langanke K 1989 Phys. Rev. C 40 515
[19] Barker F C and Kajino T 1991 Aust. J. Phys. 44 369
[20] Redder A, Becker H, Rolfs C, Trautvetter H, Donoghue T, Rinckel T, Hammer J and Langanke K 1987 Nucl. Phys. A462 385
[21] Ouellet J M L, Butler M N, Evans H C, Lee H W, Leslie J R, MacArthur J D, McLatchie W, Mak H B, Skensved P, Whittton J L, Zhao X and Alexander T K 1996 Phys. Rev. C 54 1982
[22] Sayre D B, Brune C R, Carter D E, Jacobs D K, Massey T N and ODonnell J E 2012 Phys. Rev. Lett. (in press)
[23] McDonald A, Alexander T, Bee J, Hardy J, Jackson K and Mak H 1977 Nucl. Phys. A287 189
[24] Sayre D B 2011 Ph.D. thesis Ohio University
[25] S Agostinelli et al 2003 Nucl. Instrum. and Meth. in Phys. Res. A 506 250
[26] Lane A and Thomas R 1958 Rev. Mod. Phys. 30 257
[27] Brune C R 2002 Phys. Rev. C 66 044611
[28] James F 1994 Minuit: Function Minimization and Error Analysis CERN Geneva
[29] Moreh R, Sellyey W C, Sutton D and Vodhanel R 1985 Phys. Rev. C 31 2314
[30] Larson J D and Spear R H 1964 Nucl. Phys. 56 497
[31] Brochard F, Chevallier P, Disdier D, Rauch V and Scheibling F 1975 *J. Physique* **31** 255
[32] Kernel G, Mason W M and von Wimmersperg U 1971 *Nucl. Phys.* **A167** 352
[33] Bevington P R 1969 *Data Reduction and Error Analysis for the Physical Sciences* (McGraw-Hill)
[34] Schürmann D, Leva A D, Gialanella L, Kunz R, Strieder F, Cesare N D, Cesare M D, D’Onofrio A, Fortak K, Imbriani G, Rogalla D, Romano M and Terrasi F 2011 *Phys. Lett. B* **703** 557
[35] Roters G, Rolfs C, Strieder F and Trautvetter H 1999 *Euro. Phys. J. A* **6** 451
[36] Dyer P and Barnes C A 1974 *Nucl. Phys.* **A223** 495
[37] Makii H, Nagai Y, Shima T, Segawa M, Mishima K, Ueda H, Igashira M and Ohsaki T 2009 *Phys. Rev. C* **80** 065802
[38] Buchmann L, Azuma R E, Barnes C A, Humblet J and Langanke K 1996 *Phys. Rev. C* **54** 393
[39] Schürmann D, Gialanella L, Kunz R and Strieder F 2012 *Phys. Lett. B* **711** 35
[40] Brune C R and Sayre D B 2012 *Nucl. Instrum. and Meth. in Phys. Res. A* (submitted)