Metallacrowns (MCs) belong to a continuously developing class of compounds in the field of molecular recognition, catalysis, and magnetochemistry. Like their organic crown ether analogs, MCs contain oxygen donor atoms in their repeating units, allowing them to coordinate metal guest ions. This makes them perfect candidates for molecular recognition.

The very first metallacrowns, which were reported by V. Pecoraro in 1989, included the complexes \([\text{V}^\text{V} \text{O}]_2(\text{sh})_2(\text{CH}_3\text{OH})_2\) and \([\text{Fe}(\text{sh})_2(\text{MeOH})_2(\text{OAc})_2]\). Both showed a 9-MC-3 structural motif. While vanadium 9-MC-3 was vacant and therefore had no guest ion, the iron complex contained iron(III) as the central guest ion (Scheme 1).

Thus, Pecoraro et al. forecasted more than 30 years ago that it should be possible to form metalloccrowns ethers through synthesis of the kinetically inert Co(III) or Cr(III) analogues. We expect that these exchange inert clusters will form the 9-C-MC.

We herein report the first step towards this goal. The enhanced stability of metal ions can increase the stability of MCs which is necessary to enable the processing of MC-based SMMs. We were able to obtain the 9-Cr-MC.

Our research focuses on the magneto chemistry of MCs. In recent years, MCs have proven that they can behave as Single-Molecule Magnets, SMMs. The use of kinetically inert metal ions can increase the stability of MCs which is necessary to enable the processing of MC-based SMMs. We herein report the first step towards this goal. The enhanced stability will open the field for heterometallic MCs using kinetic inert ring-building Cr(III) on the one hand and embed magnetic ani-

Scheme 1. a) Color code: green: elements for which classical MCs with shi are reported; gray: For Ni(II), Zn(II) and Mn(II) ions (the latter in 9-MC-3), MCs with various other ligands are reported; b) schematic representation of the repetition units for a [12-MC-4] and a [9-MC-3] cavity with guest metal ions (black color).
sotropic guest ions achieving SMM behavior on the other hand.

\([\text{Cr}^\text{III}(\mu_2\text{piv})_2\text{MC}]\text{morph}\)\text{MeOH}, hereafter referred to as \([\text{Cr},\text{Cr}]-\text{MC}\), crystallizes in the monoclinic space group \(P2_1/n\) with four molecules per unit cell. The crystallographic data as well as selected bond lengths and angles are summarized in the SI (Table S1-S4). Deposition numbers 2047296 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe (Access Structures service). As the basic reaction conditions facilitate the full deprotonation of the ligand, three salicylhydroxamtes, \(\text{shi}^{3-}\), coordinate the chromium(III) ring metal ions \(\text{Cr}1,\text{Cr}2,\) and \(\text{Cr}3\), and form a 9-MC-3 cavity with the characteristic repetition unit \([\text{Cr}-\text{N}-\text{O}]\) (see Figure 1).

All chromium(III) ions are octahedrally coordinated, as expected based on their \(d^6\) electronic configuration (see Figure S5). For the ring-forming metal ions, this means that the \(\text{shi}^{3-}\) ligands are coordinated, providing four donor atoms (three \(\text{O}\)-donor atoms and one \(\text{N}\)-donor atom). An \(\text{N}\)-donor atom from a morpholine co-ligand and an \(\text{O}\)-donor atom from a pivalate complete the octahedral coordination (Figure 2b).

As the ligands are oriented \(\text{cis}\) to each other, the metal ions adopt an asymmetric \(\text{cis}\)-propeller configuration. This chiral arrangement can lead to two different isomers. Only the right-handed \(\Delta\)-isomer is shown in Figure 2. It is important to note that the same chirality for all ring metal ions is a prerequisite for forming a 9-MC-3 with the repetition unit \([\text{Cr}-\text{N}-\text{O}]\). Hence, all ring metal ions must have either \(\Delta\Delta\Delta\Delta\) or \(\Delta\Lambda\Lambda\Lambda\) chirality (Figure 2 and S4). Figure 1 depicts the \(\Delta\Delta\Delta\Delta\)-isomer of the \([\text{Cr},\text{Cr}]-\text{MC}\). Due to the centrosymmetric space group, a racemate with the \(\Delta\)-isomer and \(\Lambda\)-isomer naturally results in a solid-state, as shown in Figures S4 and S5. For detailed information on the determination of chirality, see Supporting Information.

Finally, it is worth noting that the small cavity of the 9-MC-3 ring does not allow coordination of the central chromium ion in the center. This leads to considerable out-of-plane coordination of \(\text{Cr}4\). The guest ion is located 1.89 Å above the \(\text{Cr1},\text{Cr2},\text{Cr3}\) plane and 1.11 Å above the \(\text{O3},\text{O6},\) and \(\text{O9}\) plane (see Figure S7–S8) and is additionally held by three pivalate ligands coordinated in a \(\mu^2-\eta^1-\eta^2\) mode.

The \([\text{Cr},\text{Cr}]-\text{MC}\) was spectroscopically characterized in bulk using IR and UV/Vis spectroscopy (see SI with Figures S10 and S11). The UV/Vis spectrum of \([\text{Cr},\text{Cr}]-\text{MC}\) in methanol shows absorption bands at 256 nm and 356 nm which can be assigned to ligand-based \(\pi-\pi^*\) and \(n-\pi^*\) excitations. (27) Two bands at higher wavelengths, 425 nm and 577 nm, can be assigned to the spin-allowed ligand field transitions from the \(^{2}\text{A}_3g-^{4}\text{T}_2g\) (F) and \(^{2}\text{A}_2g-^{4}\text{T}_1g\) (F),\(^{28}\) respectively, confirming the \(t_{2g}\) electron configuration.

To further elucidate the magnetic properties of the \([\text{Cr},\text{Cr}]-\text{MC}\), we performed variable temperature magnetic susceptibility measurements. Figure 3 shows that the \(\chi_mT\) product steadily decreases when cooling, from 5.9 cm\(^3\)Kmol\(^{-1}\) at 300 K to a minimum of 3.3 cm\(^3\)Kmol\(^{-1}\) at about 40 K. Further lowering of the temperature leads to the \(\chi_mT\) product increasing again, until a value of 4.4 cm\(^3\)Kmol\(^{-1}\) is reached at 4 K. The experimental \(\chi_mT\) value at 300 K is well below the theoretical value for four uncoupled \(S=3/2\) spin centers calculated using the spin-only formula (7.5 cm\(^3\)Kmol\(^{-1}\)) indicating significant antiferromagnetic exchange interactions. The shape of the \(\chi_mT\) vs. \(T\) curve further suggests the presence of competing antiferromagnetic exchange interactions.

Figure 1. Schematic representation of the molecular structure of \([\text{Cr}^\text{III}(\mu_2\text{piv})_2\text{MC}]\text{morph}\). Hydrogen atoms are omitted for clarity. Color code: chromium(III) ions green, oxygen red, nitrogen blue, carbon black.

Figure 2. Schematic representation of \(\Delta\) isomers of a) central chromium(III) ion \(\text{Cr}4\) and b) ring metal ion \(\text{Cr}1\). Color code: chromium(III) ions green, oxygen red, nitrogen blue, carbon black.
was used to fit the susceptibility and exchange coupling constant within the ring for this MC was also determined as \(J_2 = -3.2 \text{ cm}^{-1} \), taking into account a dominant \(\pi \)-contribution for the exchange interaction via the hydroxamate group, the comparable coupling strength is easily explained by the analog electron configuration for the \(d^6 \) and \(d^7 \) metal ions regarding the \(t_{2g} \) orbitals with \(\pi \)-character.

For MC complexes with competing exchange interactions, \(J_1 \) and \(J_2 \) previous research has shown that the relative energies of the spin states are functions of the ratio between the coupling constants \(J_1/J_2 \). At a ratio of \(J_1/J_2 \) close to 1, the \(S_1 \) ground state with the lowest multiplicity occurs as a result of an alternating spin alignment in the cyclic scaffold. On the contrary, if \(J_1 \) coupling constants dominate, the peripheral spins align antiparallel to the central spin. In our study, we extracted a \(J_1/J_2 \) ratio of 3.5 and showed that the antiferromagnetic coupling \(J_1 \) of the guest ion with the ring metal ions is slightly dominant, thus forcing the coordination cluster into a high spin ground state of \(S_1 = 3 \).

To confirm this ground state, we performed field-dependent magnetization measurements between 4 K and 10 K in an applied field of 0 to 7 T (see insert Figure 3 and S15). Although the magnetization increases rapidly, it does not reach saturation. However, extrapolation of the saturation value in higher fields is consistent with six unpaired electrons, indicating a spin ground state of \(S_1 = 3 \). (For the simulation of the Zeeman splitting see Figures S13 and S14)

In conclusion, we synthesized the long-sought missing chromium(III) metallocrown \([\text{Cr}^\text{III}(\mu_1\text{piv})_2(\text{S}-\text{MeOH})_3] \text{[morph]}_2 \text{MeOH} \), which was predicted over 30 years ago.\(^{[6]} \) The structure corresponds to predictions made based on the iron(III) metallocrown. The magnetic analysis revealed two competing antiferromagnetic exchange interactions, resulting in a spin ground state of \(S_1 = 3 \). This first successful chromium(III) MC synthesis paves the way for new kinetically and thermodynamically stable MCs which can be used in multiple applications. We will continue this line of research with the aim of implementing other ions in chromium metallocrown cavities.

Acknowledgements

We are very grateful to Dr. Dieter Schollmeyer for the collection of the X-ray diffraction data. Funded by the Deutsche For...
schungsgemeinschaft (DFG, German Research Foundation)—TRR 173-268565370 (project A09). This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universität Mainz (MPGC). Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: 9-MC-3 · chromium · kinetic stability · metallacrown · structural integrity

[1] G. Mezei, C. M. Zaleski, V. L. Pecoraro, Chem. Rev. 2007, 107, 4933–5003.
[2] V. L. Pecoraro, A. J. Stemmler, B. R. Gibney, J. J. Bodwin, H. Wang, J. W. Kampf, A. Barwinski, Progress in Inorganic Chemistry, Wiley-Blackwell, New York, 2007, pp. 83–177.
[3] J. J. Bodwin, A. D. Cutland, R. G. Malkani, V. L. Pecoraro, Coord. Chem. Rev. 2001, 216–217, 489–512.
[4] L. F. Jones, C. A. Klimer, M. A. Halcrow, Chem. Eur. J. 2009, 15, 4667–4675.
[5] M. Ostrowska, I. O. Fritsky, E. Gumienna-Kontecka, A. V. Pavlishchuk, Coord. Chem. Rev. 2016, 327–328, 304–332.
[6] C. J. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach, S. Parsons, S. P. Perlepes, G. Christou, E. K. Brechin, J. Am. Chem. Soc. 2007, 129, 2754–2755.
[7] C. M. Zaleski, S. Tricard, E. C. Depperman, W. Wernsdorfer, T. Mallah, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2011, 50, 11348–11352.
[8] P. Happ, E. Rentschler, Dalton Trans. 2014, 43, 15308–15312.
[9] P. Happ, C. Plenk, E. Rentschler, Coord. Chem. Rev. 2015, 289–290, 238–260.
[10] C. Plenk, J. Krause, M. Beck, E. Rentschler, Chem. Commun. 2015, 51, 6524–6527.
[11] M. S. Lah, V. L. Pecoraro, J. Am. Chem. Soc. 1999, 121, 7258–7259.
[12] V. L. Pecoraro, Inorg. Chim. Acta 1989, 155, 171–173.
[13] M. Soo Lah, M. L. Kirk, W. Hattfeld, V. L. Pecoraro, J. Chem. Soc. Chem. Commun. 1999, 1606–1608.
[14] M. Murrie, S. Parsons, R. E. P. Winpenny, I. M. Atkinson, C. Benelli, Chem. Commun. 1999, 285–286.
[15] F. Y. Salem, T. F. Parkerton, R. V. Lewis, J. H. Huang, K. L. Dickson, Sci. Total Environ. 1989, 86, 25–41.
[16] D. Rai, L. E. Early, J. M. Zachara, Sci. Total Environ. 1989, 86, 15–23.
[17] R. D. Cannon, R. P. White in Progress in Inorganic Chemistry, Wiley, New York, 1988, pp. 195–298.
[18] K. V. Pringour, C. P. Raptopoulou, A. Escuer, T. C. Stamatatos, Inorganica Chim. Acta 2007, 360, 69–83.
[19] A.-R. Tomsa, Y. Li, S. Blanchard, P. Herson, K. Boubeker, P. Gouzerh, A. Proust, J. Cluster Sci. 2014, 25, 825–838.
[20] G. Psomas, A. J. Stemmler, C. Dendrinou-Samara, J. J. Bodwin, M. Schneider, M. Alexiou, J. W. Kampf, D. P. Kessisoglu, V. L. Pecoraro, Inorg. Chem. 2001, 40, 1562–1570.
[21] C. McDonald, S. Sarz, E. K. Brechin, M. K. Singh, G. Rajaraman, D. Gaynor, L. F. Jones, RSC Adv. 2014, 4, 38182–38191.
[22] M. Alexiou, C. Dendrinou-Samara, C. P. Raptopoulou, A. Terzis, D. P. Kessisoglu, Inorg. Chem. 2002, 41, 4732–4738.
[23] S. Wang, L. Kong, H. Yang, Z. He, Z. Jiang, D. Li, S. Zeng, M. Niu, Y. Song, J. Dou, Inorg. Chem. 2011, 50, 2705–2707.
[24] A. Tarushi, A. G. Hatzidimitriou, M. Estrader, D. P. Kessisoglu, V. Tangoulis, G. Psomas, Inorg. Chem. 2017, 56, 7048–7057.
[25] A. J. Lewis, E. Garlatti, F. Cugini, M. Solzi, M. Zeller, S. Carretta, C. M. Zaleski, Inorg. Chem. 2020, 59, 11894–11900.
[26] C. Dendrinou-Samara, A. N. Papadopoulos, D. A. Malamaturi, A. Tarushi, C. P. Raptopoulou, A. Terzis, E. Samaras, D. P. Kessisoglu, J. Inorg. Biochem. 2005, 99, 864–875.
[27] Sheetel, K. Nehra, R. Kaushal, S. Arora, D. Kaur, R. Kaushal, Russ. J. Gen. Chem. 2016, 86, 154–160.
[28] C. D. Beard, L. Carr, M. F. Davis, J. Evans, W. Levason, L. D. Norman, G. Reid, M. Webster, Eur. J. Inorg. Chem. 2006, 4399–4406.
[29] N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, J. Comput. Chem. 2013, 34, 1164–1175.
[30] C. E. Anson, J. P. Bourke, R. D. Cannon, U. A. Jayasooriya, M. Molinier, A. K. Powell, Inorg. Chem. 1997, 36, 1265–1267.
[31] P. Chaudhuri, M. Hess, E. Rentschler, T. Weyhermüller, U. Flörke, New J. Chem. 1998, 22, 553–555.
[32] C. Y. Chow, R. Guillot, E. Rivière, J. W. Kampf, T. Mallah, V. L. Pecoraro, Inorg. Chem. 2016, 55, 10238–10247.
[33] A. B. Lago, J. Pasán, L. Cahadillas-Delgado, O. Fabelo, F. J. M. Casado, M. Julve, F. Lloret, C. Ruiz-Pérez, New J. Chem. 2011, 35, 1817–1822.

Manuscript received: November 13, 2020
Accepted manuscript online: November 26, 2020
Version of record online: January 14, 2021