The goal of the KArlsruhe TRItrium Neutrino (KATRIN) experiment is the determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c^2 at 90% C.L.\(^1\). This goal can only be achieved with a very low background level in the order of 10 mcps\(^2\) in the detector region of interest. A possible background source are \(\alpha\)-decays on the inner surface of the KATRIN Main Spectrometer. Rydberg atoms, produced in sputtering processes accompanying the \(\alpha\)-decays, are not influenced by electric or magnetic fields and freely propagate inside the vacuum of the Main Spectrometer. Here, they can be ionized by thermal radiation and the released electrons directly contribute to the KATRIN background. Two \(\alpha\)-sources, \(^{223}\)Ra and \(^{228}\)Th, were installed at the Main Spectrometer with the purpose of temporarily increasing the background in order to study \(\alpha\)-decay induced background processes. In this paper, we present a possible background generation mechanism and measurements performed with these two radioactive sources. Our results show a clear correlation between \(\alpha\)-activity on the inner spectrometer surface and background from the volume of the spectrometer. Two key characteristics of the Main Spectrometer background – the dependency on the inner electrode offset potential, and the radial distribution – could be reproduced with this artificially induced background. These findings indicate a high contribution of \(\alpha\)-decay induced events to the residual KATRIN background.

\(^1\) C.L. - confidence level.

mcps - milli count per second.

https://doi.org/10.1016/j.astropartphys.2022.102686

Received 5 May 2021; Received in revised form 29 October 2021; Accepted 13 January 2022

Available online 31 January 2022

0927-6505/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
prevent tritium from entering the spectrometer section where it would be a source of background.

The spectrometer section consists of two spectrometers, the Pre- and Main Spectrometer. The Pre-Spectrometer acts as a filter for low-energy β-electrons. In the Main Spectrometer, the energies of the remaining electrons are analyzed using the principle of magnetic adiabatic collimation with an electrostatic filter (MAC-E filter) [6–8]. The high voltage applied to the 23.2 m long stainless steel vessel, fine-shaped by 23400 thin wires of the inner electrode (IE) system, defines the filter potential \(U_{\text{ret}} = U_{\text{vessel}} + U_{\text{IE}} \). For a retarding potential of \(U_{\text{ret}} = -18.6 \text{kV} \), these values are typically \(U_{\text{IE}} = -0.2 \text{kV} \) and \(U_{\text{vessel}} = -18.4 \text{kV} \). The magnetic field inside the Main Spectrometer is shaped by superconducting magnet coils at the entrance and exit of the spectrometer and a 12.6 m diameter air coil system [9], represented in Fig. 1. Electrons with energies above the filter potential are transmitted through the Main Spectrometer in an ultra-high vacuum of about 10\(^{-11}\) mbar to the detector section. Here they are post-accelerated at a dedicated Post Acceleration Electrode (PAE) with a voltage of \(U_{\text{PAE}} = 10 \text{kV} \) and counted by the focal plane detector (FPD) [10] at the downstream end of the beamline.

For the targeted neutrino mass sensitivity, a low background in the order of 10 mcps (KATRIN technical design) is required [1]. A background rate of 293(1) mcps [11] was achieved in the first KATRIN science run. Investigations have shown that there is no significant background contribution from muons [12], external gamma radiation [13], radon [14,15], and Penning discharges [16] during normal operation (neutrino mass measurement configuration) with active and passive countermeasures.

The spectrometer was exposed to \(^{222}\text{Rn} \) from ambient air during the installation of the inner electrode system. This caused a small contamination of the inner surfaces with \(^{210}\text{Pb} \).

One possible background source is \(\alpha \)-decays in the spectrometer walls from the decay of \(^{210}\text{Po} \) to \(^{206}\text{Pb} \) as part of the \(^{210}\text{Po} \) decay chain. Rydberg atoms, produced in sputtering processes accompanying the \(\alpha \)-decay, are not influenced by electric or magnetic fields and freely propagate inside the vacuum of the spectrometer. Here, they can be ionized by thermal radiation and the released electrons directly contribute to the KATRIN background (Section 2).

To investigate whether this background mechanism contributes to the Main Spectrometer background, we aim to induce this background process in a controlled manner. Two different \(\alpha \)-sources, \(^{223}\text{Ra} \) and \(^{228}\text{Th} \), were installed at the KATRIN Main Spectrometer for this purpose.

The main criterion for the source isotope selection was that the source emanates a radon isotope in order to contaminate the inner spectrometer surface. Another important selection criterion of the sources is the half-life of the isotopes in the decay chain following the radon isotope. They need to be sufficiently small (< few days) in order to prevent an increase of the background for normal KATRIN operation.

The decay chain of \(^{223}\text{Ra} \) includes four \(\alpha \)-decays [17–20]. The \(^{228}\text{Th} \) decay chain includes five \(\alpha \)-decays [21–25]. The principal decay paths are shown in Eqs. (1) and (2). These decay chains potentially induce a large Rydberg-induced background through a series of consecutive implantations and decays.

\[
\begin{align*}
^{228}\text{Th} & \rightarrow ^{224}\text{Ra} \quad a \quad ^{220}\text{Rn} \rightarrow ^{216}\text{Po} \rightarrow ^{212}\text{Pb} \\
\ldots^{212}\text{Pb} & \rightarrow ^{212}\text{Bi} \rightarrow ^{212}\text{Po} \rightarrow ^{208}\text{Pb} \\
^{223}\text{Ra} & \rightarrow ^{219}\text{Rn} \rightarrow ^{215}\text{Po} \rightarrow ^{211}\text{Pb} \rightarrow ^{211}\text{Bi} \\
\ldots^{211}\text{Bi} & \rightarrow ^{207}\text{Po} \rightarrow ^{207}\text{Pb}
\end{align*}
\]

The production and installation of the two radioactive sources are described in Section 3 and the performed measurements are described in Section 4. We conclude our results in Section 5.

2. The Rydberg background hypothesis

A possible background source in KATRIN is the \(\alpha \)-decay of \(^{210}\text{Po} \) to \(^{206}\text{Pb} \) on the Main Spectrometer surface [26]. The polonium isotope is a progeny following the \(^{210}\text{Pb} \rightarrow ^{210}\text{Bi} \) decay. The lead isotope (half-life = 22.3 yr), a progeny of the \(^{222}\text{Rn} \)-decay, was most likely implanted by \(\alpha \)-decay during the 5-year installation period of the inner electrode system, during which the spectrometer was at ambient pressure with continuous ventilation through a HEPA filter. For low background experiments, \(^{210}\text{Po} \) and its progenies are a known source of background on surfaces [27] that had been exposed to ambient air and the local concentration of \(^{222}\text{Rn} \) for an extended period of time. The total amount of \(^{210}\text{Pb} \) accumulated on the surfaces of the Main Spectrometer is estimated to be on the order of kBq [14].

The high nuclear recoil energy of the daughter atom \(^{206}\text{Pb} \) in a \(^{210}\text{Po} \) decay can sputter off atoms from the spectrometer surface [28]. The sputtering takes place at the position of the \(^{210}\text{Po} \) decay but can also occur at a second location as the daughter nucleus propagates through the vacuum of the spectrometer and eventually impinges on the spectrometer surface, which boosts the proposed background creation mechanism. The released energy also induces highly excited states, so-called Rydberg states, with ionization energies in the meV to eV range. Emitted Rydberg atoms can be in different charge states, so-called Rydberg states, with ionization energies in the meV to eV range. Emitted Rydberg atoms can be in different charge states, so-called Rydberg states, with ionization energies in the meV to eV range. Emitted Rydberg atoms can be in different charge states, so-called Rydberg states, with ionization energies in the meV to eV range. Emitted Rydberg atoms can be in different charge states, so-called Rydberg states, with ionization energies in the meV to eV range. Emitted Rydberg atoms can be in different charge states, so-called Rydberg states, with ionization energies in the meV to eV range. Emitted Rydberg atoms can be in different charge states, so-called Rydberg states, with ionization energies in the meV to eV range. Emitted Rydberg atoms can be in different charge states, so-called Rydberg states, with ionization energies in the meV to eV range.
Rydberg atoms leaving the surface are strongly affected by the black body radiation of the spectrometer walls at room temperature. These photons stimulate any of the following processes: photo-emission of the excited atoms, de-excitation, excitation to higher levels, and ionization. Low-energy background electrons are generated if the Rydberg atoms are ionized within the spectrometer volume. Such a mechanism via neutral Rydberg atoms is required because only electrons created inside the magnetic flux tube\(^3\) mapped onto the detector can generate background events at normal magnetic field settings (neutrino mass measurement configuration). Electrons originating from the spectrometer walls are magnetically shielded or reflected by the electric potential of the inner electrodes [30].

In addition to black body radiation, external electric or magnetic fields influence excited atoms through the Stark effect or the Zeeman effect [31]. In the KATRIN Main Spectrometer, the perturbation of the excited atoms by magnetic fields can be neglected, but not the electric field between the vessel and the wire electrode. Rydberg atoms can be ionized in this high electric field region and therefore are not able to contribute to the background in the spectrometer volume. Ionization of Rydberg atoms by collisions with residual gas can be neglected in the ultra-high vacuum of the spectrometers. Therefore, ionization through black body radiation is considered to be the main ionization mechanism in the sensitive magnetic flux volume.

An overview of the proposed background generation process through excited neutral atoms emitted from the surface and their subsequent ionization is illustrated in Fig. 2.

3. Production and installation of the \(\alpha\)-sources at the KATRIN main spectrometer

The \(^{228}\text{Th}\) source [32] was produced for the XENON collaboration and borrowed by the KATRIN experiment. The source was created by electroplating thorium nitrate onto a stainless steel disk of 30 mm diameter. The activity at the time of production in March 2015 was 40 kBq. At the KATRIN Main Spectrometer, the source is installed at the same vacuum flange (Fig. 3) as the radium source.

The \(^{223}\text{Ra}\) source was produced at ISOLDE facility at CERN. \(^{223}\text{Ra}\) was implanted with a depth of \(\approx 40 \text{ Å}\) into the round side of a half-sphere gold substrate with a diameter of 1 cm.

\(^3\) The magnetic flux tube refers to the volume where the magnetic field guides electrons from the tritium source to the focal plane detector [3].

The isotope was produced off-line from in-target decay of \(^{227}\text{Th}\) in a UC\(_2\) target that had previously been irradiated with 1.4 GeV protons. The \(^{223}\text{Ra}\) was thermally released from the target, which was heated to 2000 °C by passing an appropriate current of several 100 A through it to compensate the missing 2.8 kW heat input of the proton beam. Ra ions were created in a hot tantalum surface ionizer kept at 2100 °C. The ions were accelerated to 20 kV, mass separated, and implanted into the curved side of the half-sphere. The off-line operation was optimized to minimize contamination from the 30 masses in the molecular beams. The reference of the source at the KATRIN surface level, as illustrated in Fig. 2. A picture of the setup is shown in Fig. 3.

4. Measurements with artificial background sources

4.1. Measurement configuration

Two magnetic field configurations were used for the presented measurements. Background originating from the spectrometer volume is observed in the volume magnetic field configuration as shown in Fig. 4. To investigate the background electrons from the inner surface of the Main Spectrometer, the so-called surface magnetic field configuration is used, where the magnetic field lines point towards the cylindrical part of the spectrometer walls, as illustrated in Fig. 4(b). In the surface magnetic field configuration the magnetic flux tube is neither electrically nor magnetically shielded, leading to much higher background rate compared to the one observed in the volume magnetic field configuration. To switch between these configurations the air coil currents are changed, which takes a few minutes.

Whilst the volume and magnetic field configurations are similar for both the thorium and radium sources, slight differences arise due to the presence of stray magnetic fields from the tritium source section, which were only present during the measurements with the radium source, and slightly different air coil currents. The differences in the configurations affect the volume of the magnetic flux tube (volume magnetic field configuration) and the surface area that is mapped onto the detector (surface magnetic field configuration). Therefore, different absolute background rates are observed for the thorium and radium measurements.
Fig. 4. Measurement configuration: volume (a) and surface (b) magnetic field configuration enable the investigation of volume and surface-induced events. The colored lines show the magnetic field lines reaching the silicon detector. Each line corresponds to a boundary between the ring-wise segmentation of the detector.

Fig. 5. The 228Th-induced rate in volume magnetic field setting versus time after closing the valve to the 228Th source (a). For this measurement, the inner electrode voltage offset was set to $-100\,\text{V}$. A fit of Eq. (3) to the measurement data was performed. The observed half-life of $10.66(16)\,\text{h}$ matches the literature value $10.64(1)\,\text{h}$ [33] for ^{212}Pb. The background offset is $0.763(5)\,\text{cps}$. ^{218}Th-induced rate in surface magnetic field setting versus time after closing the valve to 228Th source (b). For this measurement, the inner electrode voltage offset was set to $0\,\text{V}$. A fit of Eq. (4) to the measurement data was performed. The background offset is $2891(3)\,\text{cps}$.

4.2. Thorium source

The goal of this measurement is to accumulate ^{212}Pb on the inner surface of the KATRIN Main Spectrometer and to observe a time-dependent background component, which is expected to decrease with the $10.64(1)\,\text{h}$ half-life [33] of the isotope. For this purpose, the ^{228}Th-source was installed in December 2016 at the Main Spectrometer. The valve to the Main Spectrometer was opened for $20\,\text{h}\,6\,\text{min}$ to release ^{220}Rn into the Main Spectrometer. Any ^{220}Rn that was not pumped from the spectrometer volume, subsequently decayed into ^{212}Pb which was implanted into the spectrometer walls.

A measurement with the two alternating magnetic field settings (see Fig. 4) was started shortly after the valve to the ^{228}Th-source was closed. Each measurement point in the volume magnetic field configuration lasted for $2000\,\text{s}$ and each point in the surface magnetic field configuration lasted $200\,\text{s}$.

The background rate of the volume configuration is shown in Fig. 5(a). The following equation is used to describe the data:

$$r(t) = r_0 e^{-\frac{t}{\tau_1}} + c,$$

with $r(t)$ the rate at the detector in cps as a function of time t, r_0 the initial rate, and c a constant rate offset in cps (dominantly non-^{212}Pb related backgrounds).

The measured half-lives of both measurement configurations agree very well and there is a very strong correlation between the rates in volume and surface configuration (Fig. 6) with a Pearson correlation coefficient [34] of 0.999. The correlation was calculated by pairing
the data points of a volume measurement with the subsequent surface measurement.

The KATRIN detector is segmented into 148 pixels of equal area [10]. The pixels are grouped into 13 concentric rings (4 pixels for the center ring, 12 pixels each for all other rings). The ring index increases with the radius, starting at zero for the ring in the center. Fig. 7 shows the normalized events of each detector ring for a reference measurement, which was performed before the 228Th exposure, and the first ten runs of the measurement in the volume field configuration. This matches the expectation that for the same underlying background mechanism the same normalized radial distribution is observed.

The behavior of the background after the exposure of the Main Spectrometer matches very well to the expectation from the background assumption described in Section 2. The subsequent α-decays of the implanted 212Pb on the inner spectrometer surface created a large number of secondary electrons which were observed in the surface magnetic field configuration. At the same time Rydberg atoms were produced in sputtering processes. As electrically neutral particles they propagated into the spectrometer volume where they could be ionized by the thermal radiation from the spectrometer surface. The created electrons were accelerated towards the detector and observed as background in the volume field configuration. The time dependence of the process is dominated by the long half-life of 212Pb.

4.3. Radium source

With the 223Ra source we investigated in October 2018 the induced Main Spectrometer surface activity, and how it could generate background in the spectrometer volume. We also studied the characteristics of such a background.

After insertion of the 223Ra source into the Main Spectrometer, the surface magnetic field configuration (see Fig. 4(b)) was used to monitor the background evolution on the spectrometer surface [35]. The observed behavior indicates accumulation of activity on the surface and can be described by the Bateman equation [36]

\[A_{Pb}(t) = A_{Ra}(t_0) \frac{\lambda_{Pb}}{\lambda_{Pb} - \lambda_{Ra}} (e^{-\lambda_{Ra}t} - e^{-\lambda_{Pb}t}) + A_{Pb}(t_0)e^{-\lambda_{Pb}t} \]

with \(A_{Pb}(t) \) and \(A_{Pb}(t_0) \) describing the activities of the isotopes before surface contamination was initiated at \(t_0 \) and \(\lambda_{Pb} = 3.19 \times 10^{-4} \text{s}^{-1} \), \(\lambda_{Ra} = 7.02 \times 10^{-7} \text{s}^{-1} \) the decay rates of 211Pb and 223Ra [37,38], respectively. The initial activity of lead in the walls is assumed to be negligible such that \(A_{Pb}(t_0) = 0 \). The other 223Ra daughters, 219Rn and 219Po, are negligible since their half-lives are only 3.96 s and 1.78 ms, leading to the accumulation of 211Pb activity in the spectrometer walls before the start of the measurement. A fit of Eq. (5) to the background rate observed after inserting the source, with the free parameter \(A_{Ra}(t_0) \) exhibits excellent agreement, confirming the spectrometer contamination with the 223Ra daughter 211Pb. After about four half-lives of 211Pb (≈2.5 h) the accumulated surface activity is close to saturation. At this point the 223Ra source was retracted and the valve between source and spectrometer was closed.

The backgrounds from the spectrometer volume and the surface were studied by measuring alternately in the surface and volume magnetic field configurations, see Fig. 4. Each sequence in the surface magnetic field configuration lasted 5 min and was followed by 20 min in the volume configuration. The corresponding background rates are shown in Fig. 8. Due to electrons created from radioactive decays, the background rates in the spectrometer surface magnetic field configuration are not distributed according to a Poisson distribution. In the spectrometer surface and volume magnetic field configurations, a decay half-life of 0.64(2) h and 0.61(4) h, respectively, is observed. Both are in agreement with the half-life 0.60 h of 211Pb [38], which is the dominant time-constant in the decay chain of 223Ra. The matching half-lives indicate the contaminated spectrometer surface as the origin of the background events in the volume, confirming observations with the thorium source. In addition, the data points are correlated with a Pearson correlation coefficient of 0.99.

To investigate the characteristics of the artificially created α-source induced background, the measurement shown in Fig. 8(b) was repeated. This time the inner electrode voltage dependency of the 223Ra induced background in the Main Spectrometer volume was studied in the first hour of the exponential decay by measuring at three different voltages, 0, –20 and –200 V. At each voltage we measured for about 18 min so that the overall measurement time stayed within a range of significant 223Ra background contributions. To extract the voltage dependency from such a measurement, the measurement must be corrected for the exponential decay. The expected number of events

\[\lambda = \frac{\text{expected number of events}}{\text{observed number of events}} \]
Fig. 8. The measured background rates after the withdrawal of the 223Ra source in the (a) surface and (b) volume magnetic field configurations, see Fig. 4. For this measurement, the inner electrode voltage offset was set to $-200\,\text{V}$ in case of the volume magnetic field configuration and to $0\,\text{V}$ in case of the surface magnetic field configuration. The background rates of both measurements decay exponentially. A fit of Eq. (3) to the measurement data is performed. The fitted half-life is in agreement with the expected one of ^{211}Pb, $\tau_{1/2} = 36\,\text{min} = 0.6\,\text{h}$. The fitted constant offsets are $1432(3)\,\text{cps}$ and $0.87(2)\,\text{cps}$ for the surface and volume magnetic field configuration, respectively.

Table 1

U_{IE} (V)	Observed #events (nominal background subtracted)	Expected #events assuming $U_{\text{IE}} = 0\,\text{V}$	Background relative to $U_{\text{IE}} = 0\,\text{V}$
-200	1079 ± 45	1827 ± 126	0.59 ± 0.05
-20	969 ± 49	1176 ± 77	0.82 ± 0.07
0	755 ± 49	755 ± 49	1.00

was calculated under the assumption of an exponential decay at a constant voltage of $U_{\text{IE}} = 0\,\text{V}$, see Table 1 column 2. From the ratio of the expected number of counts to the observed number at different voltages, listed in column 3 of Table 1, the dependency is obtained. The results are shown in Fig. 9. For different inner electrode offset potentials, the relative background reduction with respect to $U_{\text{IE}} \approx 0\,\text{V}$ is shown for the nominal Main Spectrometer [28] and 223Ra-induced backgrounds. Both show a background reduction as U_{IE} decreases, which agrees well within uncertainties. This points to α-decay induced background as the dominant Main Spectrometer background source. In the hypothesis of the Rydberg states as the background source, this voltage dependency can be explained by field ionization. With more negative inner electrode voltage more Rydberg states are ionized in the high electric field between spectrometer walls and wire electrodes and do not contribute to the background in the spectrometer volume. Since charged particles, like electrons, created at the spectrometer surface cannot penetrate the sensitive flux volume due to electric and magnetic shielding, our observations also indicate the existence of a neutral mediator, e.g. the Rydberg atoms.

5. Conclusions

We performed measurements with two α-sources at the KATRIN Main Spectrometer to investigate whether an increased α activity on its surfaces could increase the electron background in its volume. Our results indicate α-decays in the spectrometer walls act as potential triggers of the background-creating process. Further, we show that such background exhibits the same radial distribution and inner electrode voltage dependency as the nominal Main Spectrometer background. This points towards a significant contribution of α-decay induced background to the residual background in KATRIN. Given these findings, a neutral mediator that generates the background electrons in the spectrometer volume is required. A promising candidate is Rydberg atoms created from α-decays in the spectrometer walls by sputtering processes. Low-energy electrons are produced through ionization of those highly excited atoms in the magnetic flux volume. The energy of photons from the thermal radiation of the walls at room temperature is sufficient to ionize some of the Rydberg atoms. One possible countermeasure for such a background is a shift of the potential maximum towards the detector side, a so-called shifted analyzing plane [39]. Since Rydberg induced electrons are expected to be low-energy, only those generated in the volume between the maximal filter potential and the detector contribute to the detected background. By spatially shifting the maximum potential, the relevant volume for background creation is reduced. First demonstration measurements have shown that this approach can reduce the background by more than a factor of two [40,41].
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We acknowledge the support of the Helmholtz Association (HGF), Germany, Ministry for Education and Research BMBF, Germany (05A17PM3, 05A17PX3, 05A17VK2, and 05A17W03), Helmholtz Alliance for Astroparticle Physics (HAP), and Helmholtz Young Investigator Group (VH-NG-1055) in Germany; Ministry of Education, Youth and Sport (CANAM-LM2011019), cooperation with the JINR Dubna (3+3 grants) 2017–2019 in the Czech Republic; and the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-AC02-05CH11231, and DE-SC0011091 in the United States.

We acknowledge the support of the ISOLDE Collaboration and technical teams.

We acknowledge F. Müller and Y. Steinhauser for constructing the 228Ra source module and R. Lang from Purdue University for lending the work reported in this paper.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] KATRIN Collaboration, KATRIN Design Report 2004, Technical Report, Forschungszentrum, Karlsruhe, 2005, http://dx.doi.org/10.5445/IR/270060419.
[2] G. Drexlin, V. Sann, H. Sertens, C. Weinheimer, Current direct neutrino mass experiments, Adv. High Energy Phys. (2013) 293986, http://dx.doi.org/10.1155/2013/293986.
[3] M. Aker, K. Altenmüller, J. Amsbaugh, M. Arenz, M. Bubaczka, J. Bast, S. Bauer, H. Bechtler, M. Beck, A. Becgarian, J. Behrens, B. Bender, R. Berendes, A. Berlev, U. Beserger, C. Bettin, B. Bieringer, K. Blaum, F. Block, S. Bobien, M. Böttcher, J. Bohn, K. Bokehlo, H. Bolz, B. Bornschein, L. Bornschein, H. Bouquet, N. Boyd, T. Brunert, T. Burritt, T. Caldwell, Z. Chaoui, S. Chilingarian, W. Choi, T. Corona, G. Cox, K. Debowski, M. Deffert, M. Deske, D.D. Barrero, P. Doe, O. Dragari, G. Drexlin, J. Dunmore, S. Dyba, F. Edzards, F. Eichler, C. Eichler, E. Ellinger, R. Engel, S. Enomoto, M. Erhard, D. Eversheim, M. Fedkewyck, A. Felden, S. Fischer, J. Formaggio, F. Franke, G. Frankein, H. Frenzel, F. Friedel, A. Fultz, K. Gauda, R. Gehring, W. Gil, F. Glück, S. Gürbati, J. Grimm, R. Grüne, S. Größle, R. Größle, S. Gührer, K. Hartung, M. Haschka, F. Heinzelmann, K. Heichel, M. Held, S. Hfickworth, D. Hfick, B. Hille, D. Hilleheuser, D. Hinz, T. Höbn, M. Hötzelt, S. Holzmer, S. Horn, T. Houdy, M. Howe, A. Huber, T. James, A. Jansen, M. Kaiser, C. Karasek, O. Karasek, J. Kellner, L. Kippenbrock, M. Kleesiek, M. Klefges, J. Kleinherr, M. Klein, C. Köhler, L. Köllnberger, A. Kopmann, M. Korzeczek, A. Kosmider, A. Kovalsk, B. Krasch, H. Krause, M. Krasik, L. Kuckert, A. Kuhn, N. Kunka, T. Lassere, L.L. Casco, O. Lebeda, M. Leber, B. Lehnert, B. Lehnert, J. Lettew, L. Leitner, S. Lichter, V.M. Lobashev, A. Lukov, M. Machatschek, E. Malcher, K. Müller, M. Mark, A. Marsteller, E.L. Martin, C. Melzer, A. Meniskos, S. Sertens, M. Miller, R. Möller, R. Müller, J. Mönch, M. Nelles, S. Niemes, S. Niemes, M. Oelmann, A. Ott, H.W. Orhtjahm, A. Osipowicz, B. Ostrick, E. Otrn, D.S. Parno, D.G. Phillips, P. Plischke, A. Pollithy, A.W.P. Poon, J. Pouryamout, M. Prall, F. Priestner, M. Röllig, C. Rütte, P. Ruhl, C. Rupp, M. Ryf, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.S. (née Poliott), L. Schön, K. Schön, L. Schröder, S. Schuster, L. Schüler, A. Schmid, M. Schreiber, A. Schuste, R. Sack, A. Savitz, M. Sagawe, P. Schäfer, A.
