NSPT calculations in the Schrödinger Functional formalism

C. Torrero*, G.S. Bali
Institute for Theoretical Physics, University of Regensburg, 93040, Regensburg, Germany
E-mail: christian.torrero@physik.uni-regensburg.de
gunnar.bali@physik.uni-regensburg.de

Within the framework of the Schrödinger Functional (SF), we outline how to combine Numerical Stochastic Perturbation Theory (NSPT) and PCAC relations to determine the two-loop contributions to the improvement coefficients c_A and c_{SW} for Sheikholeslami-Wohlert-Wilson fermions.
1. Introduction

As it is well-known, in the improvement approach à la Symanzik \[1\] the lattice QCD action has to be provided with an extra irrelevant contribution, the so-called Sheikholeslami-Wohlert term \[2\]. In Perturbation Theory (PT), it features a scalar coefficient c_{SW} which can be Taylor-expanded in powers of the bare coupling g_0 as

$$c_{SW} = c_{SW}^{(0)} + c_{SW}^{(1)} g_0^2 + c_{SW}^{(2)} g_0^4 + \mathcal{O}(g_0^6) .$$ (1.1)

The zero- and one-loop coefficients have already been determined for different lattice actions \[3\]\[4\] while $c_{SW}^{(2)}$ is still unknown: the final aim of this project is precisely to estimate it by combining the Schrödinger Functional formalism (SF) and the PCAC relations in the same spirit as \[5\] and \[6\] where $c_{SW}^{(0)}$ and $c_{SW}^{(1)}$ were successfully recovered.

The main difference with these two latter seminal papers lies in the fact that observables are evaluated perturbatively without following a diagrammatic approach but rather by means of Numerical Stochastic Perturbation Theory (NSPT), a computer algorithm characterized by a Langevin-like evolution of the system.

2. Theoretical aspects - part I (basics)

The lattice formulation of QCD we adopt is that of Wilson: a concrete expression of the well-known contributions to the action - namely the gauge (S_G), fermionic (S_F) and Sheikholeslami-Wohlert (S_{SW}) term - can be found in \[5\] whose notations and conventions inspire nearly all the formulae appearing in this and the next section\(^1\).

A suitable observable to study in order to evaluate $c_{SW}^{(2)}$ is provided by the quark mass m_q which can be conveniently computed by means of the lattice PCAC relation reading,\(^2\)

$$\frac{1}{2} (\partial_R^0 + \partial_L^0) \langle A_b^0(n) \rangle = 2m_q \langle P^b(n) \rangle ,$$ (2.1)

where \mathcal{O} is any product of fields located at nonzero distance from n, ∂_R^0 (∂_L^0) is the lattice right (left) derivative in the time direction and

$$A_b^0(n) = \sum_{f,g} N_f \bar{\psi}^f(n) \gamma_\mu \gamma_5 \frac{1}{2} \tau^b_{fg} \psi^g(n) , \quad P^b(n) = \sum_{f,g} N_f \bar{\psi}^f(n) \gamma_\mu \gamma_5 \frac{1}{2} \tau^b_{fg} \psi^g(n) ,$$ (2.2)

where τ^b is a matrix acting on flavour degrees of freedom\(^3\).

In order to fix $c_{SW}^{(2)}$, one requires m_q to be independent of contributions of order a: however, to achieve full improvement Eq.(2.1) has to be modified to,

$$\frac{1}{2} (\partial_R^0 + \partial_L^0) \langle A_b^0(n) \rangle + c_A \partial_R^0 \partial_L^0 \langle P^b(n) \rangle = 2m_q \langle P^b(n) \rangle ,$$ (2.3)

\(^1\) More generally, we stick to the setup outlined in sections 2, 4 and 6 of \[5\].
\(^2\) From now on, the time direction will be assigned the subscript 0.
\(^3\) Spin and colour subscripts will be usually left implicit in order to ease the notation.
where c_A is a second improvement coefficient which, just like c_{SW}, can also be decomposed as $c_A = c_A^{(0)} + c_A^{(1)} g_0^2 + c_A^{(2)} g_0^4 + O(g_0^6)$. Once again, the first unknown contribution is at two-loop level: see [8] and [9] for the determination of $c_A^{(0)}$ and $c_A^{(1)}$.

The second main theoretical ingredient of the present strategy is given by the Schrödinger Functional: assuming the time coordinate ranges from 0 to T and labelling the space coordinates as \vec{n}, it consists of replacing the usual periodic boundaries by Dirichlet conditions along the time direction, namely,

$$U_k(n)|_{n_0=0} \rightarrow W_k(\vec{n}) , \quad U_k(n)|_{n_0=T} \rightarrow W_k'(\vec{n}) \quad (k = 1, 2, 3),$$

(2.4)

for the gauge degrees of freedom\(^4\) and $(P_\pm = (\mathbb{I} \pm \gamma_5)/2$ with \mathbb{I} being the identity matrix)

$$\psi^f(n)|_{n_0=0} \rightarrow \rho^f(\vec{n}) = P_+ \psi^f(n)|_{n_0=0} , \quad \psi^f(n)|_{n_0=T} \rightarrow \rho^f(\vec{n}) = P_+ \psi^f(n)|_{n_0=T} ;$$

(2.5)

$$\overline{\psi}^f(n)|_{n_0=0} \rightarrow \overline{\rho}^f(\vec{n}) = P_+ \overline{\psi}^f(n)|_{n_0=0} , \quad \overline{\psi}^f(n)|_{n_0=T} \rightarrow \overline{\rho}^f(\vec{n}) = P_+ \overline{\psi}^f(n)|_{n_0=T} ;$$

(2.6)

for fermions: boundary fields $W, W', \rho, \overline{\rho}, \rho'$ and $\overline{\rho}'$ will be defined later on.

Due to the Schrödinger Functional formalism, the three contributions to the lattice QCD action get modified as follows:

- the gauge part S_G becomes

$$S_G = \beta \sum_{n, \mu, \nu} \omega_{\mu\nu}(n) \left(1 - \frac{T_F}{2N_c} [U_{\mu\nu}(n) + U_{\mu\nu}^+(n)]\right),$$

(2.7)

where the weight $\omega_{\mu\nu}(n)$ for the lattice plaquette $U_{\mu\nu}(n)$ is 1 everywhere except for the spatial plaquette at $n_0 = 0$ and $n_0 = T$ whose $\omega_{\mu\nu}(n)$ reads $\frac{1}{2}$;

- the fermionic part S_F remains in principle unchanged; anyway, in order to have one more parameter to play with, an additional phase $e^{i\theta_\mu/L_F}$ is introduced in the definition of the lattice covariant derivatives within the Wilson-Dirac operator: in practice, gauge fields $U_\mu(n)$ appearing in S_F are replaced by

$$U_\mu(n) \rightarrow e^{i\theta_\mu/L_F} U_\mu(n),$$

(2.8)

with $\theta_0 = 0$ and $-\pi < \theta_k \leq \pi$ for $k = 1, 2, 3$;

- the clover term is set to 0 for all those lattice points with $n_0 = 0$ or $n_0 = T$.

\(^4\)Gauge fields along the time direction, defined for $0 \leq n_0 < T$, have no constraints on them. It turns out that W and W' can sloppily be written as $W = \mathcal{P} e^{iC}$ and $W = \mathcal{P} e^{iC'}$ - see section 6 of [8] for notations and a more careful and detailed treatment of this topic - where C and C' play a similar role as the background field in classical physics: in what follows we will refer to the case $C = C' = 0$ as the trivial background.
3. Theoretical aspects - part II (details)

Before outlining the procedure that should lead to an estimate of $c_{SW}^{(2)}$, let us give a precise shape to the observable \mathcal{O} appearing in Eq.(2.3): a convenient choice reads,

$$\mathcal{O} = a^b \sum_{f,g} \sum_{\vec{m},\vec{n}} \bar{\zeta}^f(\vec{m}) \rho_{f,g} \frac{1}{2} \tau_f^b \zeta^g(\vec{m})^\prime,$$

(3.1)

where

$$\zeta^f(\vec{m}) = \frac{\delta}{\delta \bar{p}_f^f(\vec{m})}, \quad \bar{\zeta}^f(\vec{m}) = -\frac{\delta}{\delta \rho_f^f(\vec{m})}.$$

(3.2)

After first plugging Eq.(3.1) into Eq.(2.3), then letting the derivatives with respect to ρ and $\bar{\rho}$ act on the Boltzmann factor and finally setting all the fermionic boundary fields to zero, some algebra allows one to write

$$m_q = \frac{1}{f_p} \left[\frac{1}{2} (\partial_0^R + \partial_0^L) f_A + c_A \partial_0^L \partial_0^R f_p \right],$$

(3.3)

with

$$f_A = \frac{1}{12} \sum_{\vec{m},\vec{n}} \langle H^{ab}_{\vec{m}+\hat{0}} \omega_c, n \epsilon \delta \rangle \langle \eta_0 \rangle_{\vec{m}} \bar{\tau}^b_{f,g} \langle p \rangle_{\omega \sigma} \bar{J}_{\vec{m}+\hat{0}}^{gh} \tau_h \rangle_G,$$

(3.4)

$$f_p = \frac{1}{12} \sum_{\vec{m},\vec{n}} \langle H^{ab}_{\vec{m}+\hat{0}} \omega_c, n \epsilon \delta \rangle \langle \eta_0 \rangle_{\vec{m}} \bar{\tau}^b_{f,g} \langle p \rangle_{\omega \sigma} \bar{J}_{\vec{m}+\hat{0}}^{gh} \tau_h \rangle_G,$$

(3.5)

with

$$H^{if}_{\vec{m}+\hat{0}} = \left[U_0(\vec{m}) \right]_{cb} \left(\tilde{M}^{-1} \right)^{if}_{\vec{m}+\hat{0}, \omega \epsilon \delta},$$

(3.6)

$$J^{gh}_{\vec{m}+\hat{0}} = \left[U_0(\vec{m}) \right]_{cd} \left(\tilde{M}^{-1} \right)^{gh}_{\vec{m}+\hat{0}, \sigma \epsilon \delta},$$

(3.7)

where \tilde{M} is the overall fermionic operator in the lattice action.

f_A, f_p and m_q depend on the lattice spacing a, the lattice extents L_μ, the bare coupling g_0, the gauge fields W and W', the angles θ_0 (from now on, we will set the latter equal to a common value θ) and the improvement coefficient: recalling that the approach is perturbative, we can write

$$m_q(L, \theta, x_0, g_0, a) = m_q^{(0)}(L, \theta, x_0, a) + m_q^{(2)}(L, \theta, x_0, a) g_0^2 + m_q^{(4)}(L, \theta, x_0, a) g_0^4 + \mathcal{O}(g_0^6),$$

(3.8)

The subscript “G” stands for the mean over gauge degrees of freedom. Here and in Eqs.(3.6)-(3.7) repeated indices are summed over. Moreover, from now on we tacitly assume that all quantities are rescaled with a to be dimensionless.

We make the dependence on W, W', c_{SW} and q_4 implicit not to overwhelm the notation; at the same time, we drop the subscript on the lattice extents for a reason that will become clear soon.
and in turn, thanks to dimensional analysis

\[m_q^{(k)}(L, \theta, x_0, a) = d_L(c_{SW}^{(i \leq k)}, c_A^{(i \leq k)}) \frac{a}{L} + d_{x_0}(c_{SW}^{(i \leq k)}, c_A^{(i \leq k)}) \frac{a}{x_0} + d_\theta(c_{SW}^{(i \leq k)}, c_A^{(i \leq k)}) \frac{a \theta}{L} + O(a^2). \tag{3.9} \]

This formula can actually be simplified by setting the \(L_k \)'s to the same value \(L \), putting \(L_0 = 2L \) and choosing \(n_0 = L \); thus, the corrections in \(a \) to \(m_q^{(k)} \) will be grouped together into a single one proportional to \(a/L \). Since the aim of improvement is to get rid of lattice artifacts of order \(a \), it is reasonable to estimate \(c_{SW}^{(2)} \) by requiring the only coefficient \(d(c_{SW}^{(i \leq k)}, c_A^{(i \leq k)}) \) left in the formula above - after its reduction - to vanish. This can be achieved by the following steps: 1) fix \(c_{SW}^{(2)} \) and \(c_A^{(2)} \) arbitrarily after setting \(c_{SW}^{(0)}, c_A^{(0)} \) and \(c_A^{(1)} \) to their known values; 2) perform simulations for different lattice extents keeping \(\theta, W \) and \(W' \) constant; 3) fit the coefficient \(d(c_{SW}, c_A^{(2)}) \); 4) repeat the previous steps for different choices of \(c_{SW}^{(2)} \) and \(c_A^{(2)} \); 5) collect the various estimates of \(d(c_{SW}^{(2)}, c_A^{(2)}) \) and interpolate the values of \(c_{SW}^{(2)} \) and \(c_A^{(2)} \) for which \(d(c_{SW}^{(2)}, c_A^{(2)}) \) vanishes.

Before ending this section, some remarks are in order.

The first term on the r.h.s. of Eq.(3.8) should normally correspond to the bare mass \(\tilde{M}_0 \) appearing in \(S_F \); however, in the present setup, \textit{this is the case only if} \(\theta = 0 \): we chose to set \(\tilde{M}_0 = 0 \) but to work with non-vanishing \(\theta \) to avoid any infrared divergence.

Second, in Eq.(3.9) it is understood that mass counterterms - depending on \(c_{SW} \) - are subtracted. Otherwise \(m_q^{(k)} \) would not be 0 in the large \(L \) limit: this subtraction prevents extra improvement coefficients to appear (see section 3 in [8]) but, in practice, this should really matter only when working with renormalized quantities (while we deal with their bare counterparts).

Finally, it is possible to disentangle the effects of \(c_{SW}^{(2)} \) and \(c_A^{(2)} \) by means of \(W \) and \(W' \): in particular it turns out that, if the \textit{trivial background} (see footnote 4) is set, only \(c_A^{(2)} \) has an effect at two-loop level. We start with this choice of the boundary gauge fields to fix this coefficient, afterwards \(W \) and \(W' \) will be changed to determine \(c_{SW}^{(2)} \) thanks also to the by-then-known estimate of \(c_A^{(2)} \).

4. Numerical aspects

Two more issues have still to be addressed about the present strategy, namely how configurations are generated and how the Wilson-Dirac operator is inverted to compute \(f_A \) and \(f_D \) eventually: to answer both, we must introduce some basics of NSPT.

Its core is given by the Langevin evolution equation that, for lattice gauge variables, reads

\[\frac{\partial}{\partial t} U_\mu(n,t) = -i \sum_A T^A \left[\nabla_{n,\mu,A} S[U] + \eta_\mu^A(n,t) \right] U_\mu(n,t), \tag{4.1} \]

where \(t \) is an extra degree of freedom (which can be thought as a \textit{stochastic time}), \(S \) is the part of the lattice action depending on the \(U' \)'s, \(\eta \) is a Gaussian noise while \(\nabla \) stands for the group derivative.

7 See [8] and references therein for more details on this section in general.

8 As usual, fermion fields are integrated out so that only gauge degrees of freedom have to be eventually treated.
defined as (index “A” is summed over),

\[\mathcal{F} \left[e^{i\alpha T^A U_\mu(n), U'} \right] = \mathcal{F} [U_\mu(n), U'] + \alpha^A \nabla_{n, A} \mathcal{F} [U_\mu(n), U'] + \ldots, \tag{4.2} \]

where \(T^A \) are the generators of the algebra and \(\mathcal{F} \) is a generic scalar function of both the variable \(U_\mu(n) \) and some more labelled \(U' \) for short.

Given this setup, it can be shown that

\[Z^{-1} \int [DU] O[U] e^{-S[U]} = \lim_{t \to \infty} \frac{1}{t} \int_0^t dt' \left\langle O[U_\eta(t')] \right\rangle_\eta, \tag{4.3} \]

where \(Z \) is the partition function and \(O[U] \) a generic observable depending on the gauge fields.

Perturbation theory enters into play by \textit{formally} expanding each gauge degree of freedom in powers of \(\beta_0^{-1} \) - defined as \(\beta_0 = 2N_c/s_0^2 \) being \(N_c \) the number of colours - up to a given order \(s \) as

\[U_\mu(n, t) = \mathbb{I} + \sum_{k=1}^{s} \beta_0^{-k} U^{(k)}_\mu(n, t), \tag{4.4} \]

and then plugging this Taylor series\(^9\) into Eq.(4.1): this results in a consistent \textit{hierarchical system of differential equations} which can be numerically integrated by discretizing the stochastic time as \(t = n \tau \) with \(n \) integer. In practice, the system starts from an arbitrary configuration and evolves by means of the solution of the discretized counterpart of Eq.(4.1): the desired observable is then obtained by averaging its measurements on its plateau - recall the limit in \(t \) in Eq.(4.3)\(^10\).

As for the inverse of the fermionic operator, the entries needed to get \(f_A \) and \(f_P \) can be computed by means of the following perturbative formulae

\[
\begin{align*}
\tilde{M}^{-1(0)} &= \tilde{M}^{(0)}^{-1}, \\
\tilde{M}^{-1(1)} &= -\tilde{M}^{(0)}^{-1} \tilde{M}^{(1)} \tilde{M}^{(0)}^{-1}, \\
\tilde{M}^{-1(2)} &= -\tilde{M}^{(0)}^{-1} \tilde{M}^{(2)} \tilde{M}^{(0)}^{-1} + \\
&\quad -\tilde{M}^{(0)}^{-1} \tilde{M}^{(1)} \tilde{M}^{(1)} \tilde{M}^{(0)}^{-1}, \\
&\quad \ldots
\end{align*}
\]

where only the zeroth order of \(\tilde{M} \) has to be truly inverted: its expression for trivial \(W \) and \(W' \) can be found in section 3.1 of \[3\].

5. Preliminary results

To test the correctness of the overall setup, we computed the one-loop contribution to \(m_q \) without any counterterm subtraction for different choices of \(\theta \) and \(c_{SW}^{(0)} \)\(^11\) and compared the results

\(^9\)Strictly speaking, Eq.(4.3) is valid only if the boundary gauge fields are set to the identity as in this first part of the study; once that a non-trivial \textit{background field} is introduced, the expansion would read \(U_\mu(n, t) = \exp[i(C_k - C_0)/T] \cdot [\mathbb{I} + \sum_k \beta^{-k} U^{(k)}_\mu(n, t)] \) - consult section 6.2 in \[3\] for the meaning of the first term in this product.

\(^10\)This relation is true only for continuous \(\tau \) so that simulations with different \(\tau \) values have to be performed in order to extrapolate to \(\tau \to 0 \) afterwards.

\(^11\)This is indeed the only \(c_{SW} \) contribution that enters into play at this order with trivial \(W \) and \(W' \).
with the analytical values in Table 1.

θ	$c_{SW}^{(0)} = 0.0$	$c_{SW}^{(0)} = 1.0$	$c_{SW}^{(0)} = 1.5$
1.40	2.67621(4)	1.67151(2)	0.94999(1)
1.00	2.63837(3)	1.64808(1)	0.93229(1)
0.45	2.60727(3)	1.62694(1)	0.91948(1)
0.00	2.60571	1.62045	0.91067

Table 1: Numerical results for $m_q^{(1)}$ on a $10^3 \times 21$ lattice with $c_A^{(0)} = c_A^{(1)} = 0$: the last line contains the infinite-volume results obtained from [7].

It is reassuring that, when varying $c_{SW}^{(0)}$, outputs change accordingly: the still-existing gap is explained by recalling that finite-size effects are still present and that the analytical results correspond to $m_q^{(0)} = 0$ while in our simulations $m_q^{(0)} \neq 0$ due to the non-vanishing values of θ ($m_q^{(0)}$ approaches with decreasing θ the analytical infinite-volume values computed with $\theta = 0.0$).

6. Conclusions and acknowledgements

According to the first, preliminary results, the outlined approach seems to be feasible: however, since different extrapolations (in τ and L) and interpolations (in $c_A^{(2)}$ and $c_{SW}^{(2)}$ when dealing with non-trivial W and W') are needed, extra care will have to be paid not to spoil accuracy.

We warmly thank LRZ centre (Munich) and ECT* (Trento) for providing us with computer time on their clusters.

This work was supported by the DFG SFB/TR 55.

References

[1] K. Symanzik, *Continuum Limit and Improved Action in Lattice Theories. II. O(N) Nonlinear Sigma Model in Perturbation Theory*, Nucl. Phys. B **226** (1983) 187.

[2] B. Sheikholeslami and R. Wohlert, *Improved Continuum Limit Lattice Action for QCD with Wilson Fermions*, Nucl. Phys. B **259** (1986) 572.

[3] R. Wohlert, *Improved Continuum Limit Lattice Action For Quarks*, unpublished.

[4] R. Horsley, H. Perlt, P.E.L. Rakow, G. Schierholz and A. Schiller, *Perturbative determination of c_{SW} for plaquette and Symanzik gauge action and stout link clover fermions*, Phys. Rev. D **78** (2008) 054504. [hep-lat/0807.0345].

[5] M. Luscher, S. Sint, R. Sommer and P. Weisz, *Chiral symmetry and O(a) improvement in lattice QCD*, Nucl. Phys. B **478** (1996) 365. [hep-lat/9605038].

[6] M. Luscher and P. Weisz, *O(a) improvement of the axial current in lattice QCD to one loop order of perturbation theory*, Nucl. Phys. B **479** (1996) 429. [hep-lat/9606016].

[7] H. Panagopoulos and Y. Proestos, *The critical hopping parameter in O(a) improved lattice QCD*, Phys. Rev. D **65** (2002) 014511 [hep-lat/0108021].

[8] F. Di Renzo and L. Scorzato, *Numerical Stochastic Perturbation Theory for full QCD*, JHEP **0410** (2004) 073 [hep-lat/0410010].

12 An analytical expression for $m_q^{(0)}$ can be found in section 3 of [3].