Solution of Master Equations for the anharmonic oscillator interacting with a heat bath and for parametric down conversion process

L.M. Arévalo-Aguilar,1 R. Juárez-Amaro2, J.M. Vargas-Martínez3, O. Aguilar-Loreto,3 and H. Moya-Cessa3

11Centro de Investigaciones en Optica, A.C., Loma del Bosque 115, Lomas del Campestre, León, Gto., Mexico,
2Universidad Tecnológica de la Mixteca, Apdo. Postal 71, 69000 Huajuapan de León, Oax., Mexico
3INAOE, Coordinación de Óptica, Apdo. Postal 51 y 216, 72000 Puebla, Pue., Mexico

We solve analytically master equations that describe a cavity filled with a kerr medium, taking into account the dissipation induced by the environment, and parametric down conversion processes. We use superoperator techniques.

I. INTRODUCTION

The study of the quantum anharmonic oscillator has attracted some attention because of their significant role in nonlinear quantum optics, such as the prediction of Yurke and Stoler that with this system Schrödinger cat states can be produced [1]. The study of the anharmonic oscillator, in the isolated case, was carried out by Milburn [2]. The study of the anharmonic oscillator interacting with a heat bath was made by many authors [3, 4, 5, 6, 7]. In particular, Milburn and Holmes [3] studied this system when the oscillators in the reservoir are at zero temperature. Daniel and Milburn [4] and Peřinová and Lukš [5] studied this model with the reservoir at temperature different from zero. All these authors found that the quantum coherence effects are destroyed because of the interaction of the system with the environment. This phenomena was called decoherence [8]. A common feature of the majority of these studies is that they were realized using the usual technique of finding a Fokker-Planck type equation and the result found was that the time of environment-induced decoherence is very short. Recently there have been some studies of the behaviour of this system [9, 10] that shows that there can be quantum effects at times greater than the decoherence time.

It is well known that a way to produce optical bistability is for instance by injecting a field inside a high Q cavity filled with a Kerr medium [11]. Solving the master equation for stationary conditions shows that optical bistability may be produced in such a system.

In this contribution we show solutions of master equations using superoperator techniques for both parametric down conversion and for the field interacting with a Kerr medium. This enable us to find the evolution of the system for an arbitrary initial state.

II. KERR MEDIUM AND DISSIPATION

Milburn and Holmes [3] have studied the damped anharmonic oscillator by mapping the master equation in quantum state space into an evolution equation in classical state space. They manage to solve the master equation for an initial coherent state by using Fokker-Planck equations. Here we develop a solution that may be applied to any initial state. We write the master equation (in a frame rotating at field frequency ω) for a lossy cavity filled with a Kerr medium

$$\dot{\rho} = (S + J_- + L)\rho$$ \hspace{0.5cm} (1)

where the superoperators S, J and L are defined as

$$S\rho = -i\chi[a^\dagger a^2, \rho]$$ \hspace{0.5cm} (2)

and

$$J_-\rho = 2\gamma_- a\rho a^\dagger, \hspace{0.5cm} L\rho = -\gamma_- (a^\dagger a\rho + \rho a^\dagger a)$$ \hspace{0.5cm} (3)

It is not difficult to show that the solution to (1) is

$$\rho(t) = e^{St} e^{Lt} \exp \left(1 - e^{-2t(\gamma_- + i\chi R)} \frac{1}{2(\gamma_- + i\chi R)} J_- \right) \rho(0)$$ \hspace{0.5cm} (4)

where

$$R\rho = a^\dagger a\rho - \rho a^\dagger a$$ \hspace{0.5cm} (5)
To check that the above density matrix is the solution of Equation (11) we need to use the commutation relations
\[[L, J_\pm] \rho = 2\gamma J_\pm \rho, \quad [S, J_\pm] \rho = i2\chi RJ_\pm \rho, \quad [R, J_\pm] \rho = 0. \quad (6) \]

III. NON-ZERO TEMPERATURE

The master equation in the non-zero temperature case is slightly different to (1)
\[\dot{\rho} = (S + J_- + J_+ + L + C_\gamma) \rho \quad (7) \]
however it is much more complicated to solve it. The new superoperators that appear are defined as
\[J_+ \rho = 2\gamma a^\dagger \rho a, \quad L\rho = -\gamma_0 (a^\dagger \rho a + \rho a^\dagger a) \quad (8) \]
\(C_\gamma\) is a constant. We will now perform a set of transformations to arrive to a master equation that has a known solution. First we get rid off the constant term via \(\tilde{\rho}(t) = \exp(C_\gamma t) \rho\) to obtain
\[\dot{\tilde{\rho}} = e^{C_\gamma t} \tilde{\rho} \quad (9) \]
\[\dot{\rho} = (S + J_- + J_+ + L) \rho \quad (10) \]
Next we do \(\rho = \exp(St) \rho_1\) so we obtain
\[\dot{\rho}_1 = (J_- e^{-2i\chi R t} + J_+ e^{2i\chi R t} + L) \rho_1 \quad (11) \]
The next transformation allows us to get rid off the superoperator \(J_+\), \(\rho_1 = \exp(\beta e^{2i\chi R t} J_+) \rho_2\), with
\[\beta_{1,2} = \frac{(i\chi R + \gamma_0 \pm \sqrt{(\gamma_0 + i\chi R)^2 - 4\gamma_+})}{4\gamma_+} \quad (12) \]
such that we get
\[\dot{\rho}_2 = (J_- e^{-2i\chi R t} + \alpha L + F) \rho_2 \quad (13) \]
where \(\alpha = 1 - 4\beta \gamma_- / \gamma_0\) and \(F = 4\gamma_- \beta\). We have almost succeeded in taking the master equation to a known one, as the superoperators involved in the above equation are the ones involved in the master equation at zero temperature (because they commute with \(R\) and functions of it). Therefore we do \(\rho_2 = \exp[F(R)t] \rho_3\)
\[\dot{\rho}_3 = (J_- e^{-2i\chi R t} + \alpha L) \rho_3 \quad (14) \]
and by doing \(\rho_3 = \exp[\delta J_- e^{-2i\chi R t}] \rho_4\) we arrive to the equation
\[\dot{\rho}_4 = \alpha L \rho_4 \quad (15) \]
where we have set
\[\delta = -\frac{1}{2(\gamma_0 \alpha + i\chi R)} \quad (16) \]
with the solution
\[\dot{\rho}_4(t) = \exp[\alpha(R)tL] \rho_4(0) \quad (17) \]
we now write the solution for \(\tilde{\rho}\) with the initial condition \(\tilde{\rho}(0)\).
\[\tilde{\rho}(t) = e^{C_\gamma t} e^{St} e^{\beta e^{2i\chi R t} J_+} e^{F(R)t} e^{\delta J_- e^{-2i\chi R t}} e^{\alpha(R)tL} e^{-\delta J_-} e^{-\beta J_+} \tilde{\rho}(0) \quad (18) \]
IV. PARAMETRIC DOWN CONVERSION

Parametric down conversion processes consist in the conversion of an incident photon of frequency ω into two photons of frequency $\omega/2$, called idler and signal photons. This process occurs in the interaction of an electromagnetic field with a nonlinear crystal. In the case where the incident wave is very intense, the Hamiltonian of this interaction is given by (12):

$$H = \hbar \omega a^\dagger a + \hbar (\epsilon a^\dagger a + \epsilon^* a^2).$$ \hfill (19)

We consider the interaction of this system with a reservoir. In this case, the master equation at non zero temperature in the so called diffusive limit i.e, when the damping constant goes to zero $\kappa \rightarrow 0$ and the number of thermal photon goes to infinity, but keeping the product $\gamma = \kappa \bar{n}$ finite, may be written as (in the interaction picture)

$$\frac{d\rho}{dt} = (\hat{S} + \hat{J} + \hat{K} + \hat{L})\rho,$$ \hfill (20)

where

$$S\rho = -i[\epsilon a^\dagger a + \epsilon^* a^2, \rho],$$ \hfill (21)

and

$$J\rho = 2\gamma a\rho a^\dagger, \quad K\rho = 2\gamma a^\dagger \rho a, \quad L\rho = -\gamma(a^\dagger a \rho + \rho a^\dagger a).$$ \hfill (22)

The terms \hat{S} and \hat{L} hint about a phase sensitive reservoir as they may be expressed as only one superoperator via a squeeze transformation. Because of this, we introduce some operators used in the phase sensitive reservoir we previously studied [13] via the transformations

$$\rho_1 = e^{\alpha^+ J\rho}, \quad \hat{J}+\rho = a^\dagger \rho a^\dagger, \quad \tilde{\rho} = e^{\alpha^+ J\rho}, \quad \hat{J}^- = \rho a a.$$

(23)

The commutation relations between \hat{J}^-, \hat{J}^+ and the relevant superoperator in (20) are

$$[\hat{J}+, \hat{J}] \rho = -2\gamma a^\dagger a^\dagger \rho,$$ \hfill (24)

$$[\hat{J}+, \hat{S}] \rho = i\frac{\epsilon^*}{\gamma}(\hat{J} + \hat{K})\rho, \quad [\hat{J}+, \hat{J}] \rho = -2\gamma a^2 \rho,$$ \hfill (25)

$$[\hat{J}^-, \hat{K}] \rho = 2\gamma a^2 a^\dagger \rho, \quad [\hat{J}^-, \hat{S}] \rho = -i\frac{\epsilon}{\gamma}(\hat{J} + \hat{K})\rho,$$ \hfill (26)

and

$$[\hat{J}^-, \hat{L}] \rho = [\hat{J}+, \hat{L}] \rho = 0, \quad [\hat{J}^-, \hat{R}+] \rho = \frac{\beta}{\gamma}(\hat{K} + \hat{J}).$$ \hfill (27)

We still do the definition

$$\hat{X}_- \rho = i\epsilon a^\dagger a^\dagger \rho, \quad \hat{X}_+ \rho = -i\epsilon^* a^2 \rho$$ \hfill (28)

$$\hat{Y}_- \rho = -i\epsilon a^\dagger a^\dagger \rho, \quad \hat{Y}_+ \rho = i\epsilon^* \rho$$ \hfill (29)

so that we write the superoperator S as

$$\hat{S} = \hat{X}_- + \hat{X}_+ + \hat{Y}_- + \hat{Y}_+.$$

(30)

After transformation we obtain:
\[\frac{d\hat{\rho}}{dt} = \left[\hat{S} + (\hat{J} + \hat{K}) \left(1 + i e^{*} \frac{\alpha_{+}}{\gamma} - i e \frac{\alpha_{-}}{\gamma} - i e \frac{\alpha_{\beta}}{\gamma} \beta \right) \right] \hat{\rho} + \left[(X_{+} + Y_{+}) \left[2i \gamma \alpha_{-} \left(1 + i e^{*} \frac{\alpha_{+}}{\gamma} \right) + \beta \alpha^{2} \frac{\epsilon}{\epsilon^{*}} \right] + \beta (X_{-} + Y_{-}) \right] \hat{\rho}, \] (31)

with \(\beta = 2i \gamma \alpha_{+} - \epsilon^{*} \alpha^{2}_{+} \). In order to cancel the term \(X_{+} + Y_{+} \) with the same term in \(S \), see equation (30), we need \(\beta = -1 \), which produces the value for \(\alpha_{+} \)

\[\alpha_{+} = -\gamma \pm \sqrt{\gamma^{2} - |\epsilon|^{2}} \] (32)

Finally, to cancel the term \(X_{+} + Y_{+} \) we have to find the value for \(\alpha_{-} \), which is given by

\[\alpha_{-} = \mp \frac{ie^{*}}{2\sqrt{\gamma^{2} - |\epsilon|^{2}}} \] (33)

In \cite{15} there was a mistake in finding such parameters, which however does not change the conclusion of it. With the choices given above, (31) is finally written in the form

\[\frac{d\hat{\rho}}{dt} = \left[(\hat{J} + \hat{K}) \sqrt{1 - \frac{|\epsilon|^{2}}{\gamma^{2}}} + \hat{L} \right] \hat{\rho} \] (34)

i.e. a master equation that has only the terms present in the case of losses at non-zero temperature and which has been solved in \cite{14}.

Finally, it is worth to note that, if we consider the following definitions

\[\hat{N} = \hat{J}_{+} + \hat{J}_{-} \] (35)
\[\hat{M} = \frac{i\hat{X}_{-}}{\epsilon} - \frac{i\hat{X}_{+}}{\epsilon^{*}} \] (36)
\[\hat{Q} = \frac{i\hat{Y}_{-}}{\epsilon} - \frac{i\hat{Y}_{+}}{\epsilon^{*}} \] (37)
\[\hat{J}' = \frac{2\hat{J}}{\gamma}, \quad \hat{K}' = \frac{2\hat{K}}{\gamma} \] (38)

then we form the following table

	\(\hat{M} \)	\(\hat{J}' \)	\(\hat{N} \)	\(\hat{Q} \)	\(\hat{K}' \)
\(\hat{M} \)	0	0	\(-\hat{J}'\)	4 \(\frac{\hat{L}}{\gamma} - 1 \)	\(-2\hat{N} \)
\(\hat{J}' \)	0	0	\(-4\hat{M} \)	8\hat{N}	\(-16 \left(\frac{\hat{L}}{\gamma} - 1 \right) \)
\(\hat{N} \)	\(\hat{J}' \)	4\hat{M}	0	\(\hat{K}' \)	4\hat{Q}
\(\hat{Q} \)	\(-4 \left(\frac{\hat{L}}{\gamma} - 1 \right) \)	\(-8\hat{N} \)	\(-\hat{K}' \)	0	0
\(\hat{K}' \)	2\hat{N}	16 \(\frac{\hat{L}}{\gamma} - 1 \)	\(-4\hat{Q} \)	0	0

(39)

we can identify two subalgebras in the table \(\{ \hat{J}', \hat{M}, \hat{N} \} \), \(\{ \hat{K}', \hat{Q}, \hat{N} \} \).

V. CONCLUSIONS

We have shown how a solution to master equations describing the interaction of an anharmonic oscillator and a heat bath can be obtained. Also, we have given a solution to the master equation describing parametric down conversion.
We would like to thank the support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

[1] B. Yurke and D. Stoler, Phys. Rev. Letters 57, 13 (1986).
[2] G. J. Milburn, Phys. Rev. A 33, 674 (1986).
[3] G. J. Milburn and C. A. Holmes, Phys. Rev. Letters 56, 2237 (1986).
[4] D. J. Daniel and G. J. Milburn, Phys. Rev. A 39, 4628 (1989).
[5] V. Peřinová and A. Lukš, Phys. Rev. A 41, 414 (1990).
[6] F. Kärtnner and A. Schenzele, Phys. Rev. A 48, 1009 (1993).
[7] J. G. Peixoto de Faria, quant-ph/0512060 (2005).
[8] W. H. Zurek, Phys. Today 44, 36 (1991). D. F. Walls, and G. J. Milburn, Phys. Rev. A 31, R1095 (1985).
[9] G. P. Berman, A. R. Bishop, F. Borgonovi and D. A. R. Dalvit, Phys. Rev. A 69, 062110 (2004).
[10] D. A. R. Dalvit G. P. Berman and M. Vishik, Phys. Rev. A 73, 013803 (2006).
[11] D. F. Walls and G. J. Milburn, Quantum Optics, Springer-Verlag (1994).
[12] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge (1995).
[13] A. Vidiella-Barranco, L.M. Arévalo-Aguilar, and H. Moya-Cessa Int. J. of Mod. Phys. B 15, 1127 (2001).
[14] L. M. Arévalo Aguilar and H. Moya-Cessa, Quantum Semiclass. Opt. 10, 671 (1998).
[15] H. Moya-Cessa, Phys. Rep. 432, 1 (2006).