Modification of Alternative Splicing of Bcl-x Pre-mRNA in Prostate and Breast Cancer Cells

ANALYSIS OF APOPTOSIS AND CELL DEATH*

Received for publication, October 11, 2000, and in revised form, February 6, 2001
Published, JBC Papers in Press, February 7, 2001, DOI 10.1074/jbc.M009256200

Danielle R. Mercatante‡, Carl D. Bortner‡, John A. Cidlowski‡, and Ryszard Kole‡¶

From the ‡Lineberger Comprehensive Cancer Center and the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7295 and the ¶Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709

There is ample evidence that deregulation of apoptosis results in the development, progression, and/or maintenance of cancer. Since many apoptotic regulatory genes (e.g. bcl-x) code for alternatively spliced protein variants with opposing functions, the manipulation of alternative splicing presents a unique way of regulating the apoptotic response. Here we have targeted oligonucleotides antisense to the 5'-splice site of bcl-x, an anti-apoptotic gene that is overexpressed in various cancers, and shifted the splicing pattern of Bcl-x pre-mRNA from Bcl-xL to Bcl-xS, a pro-apoptotic splice variant. This approach induced significant apoptosis in PC-3 prostate cancer cells. In contrast, the same oligonucleotide treatment elicited a much weaker apoptotic response in MCF-7 breast cancer cells. Moreover, although the shift in Bcl-x pre-mRNA splicing inhibited colony formation in both cell lines, this effect was much less pronounced in MCF-7 cells. These differences in responses to oligonucleotide treatment were analyzed in the context of expression of Bcl-xL, Bcl-xS, and Bcl-2 proteins. The results indicate that despite the presence of Bcl-x pre-mRNA in a number of cell types, the effects of modification of its splicing by antisense oligonucleotides vary depending on the expression profile of the treated cells.

Apoptosis, or programmed cell death, is a highly regulated process controlled by numerous genes that determine a proper response to death signals (1–4); the relative levels of expression of pro- and anti-apoptotic genes appear to be particularly important (5–9). Deregulation of apoptosis, which contributes to the development, progression, and/or maintenance of cancer (3, 4, 10), is frequently caused by mechanisms that alter splicing of pro- and anti-apoptotic genes in cell culture (24–27). We therefore hypothesized that blocking the alternative 5'-splice site in intron 2 of Bcl-x with an antisense oligonucleotide should shift splicing from Bcl-xL to Bcl-xS mRNA, thereby increasing the level of pro-apoptotic Bcl-xS protein and decreasing the level of its anti-apoptotic isoform, Bcl-xL. We show here that this shift in splicing could indeed be accomplished and that it induced apoptotic markers in the prostate cancer cell line PC-3. However, in the breast cancer cell line MCF-7, shifting splicing from Bcl-xL to Bcl-xS and induction of apoptosis were much less efficient. Differences in the responses to oligonucleotide treatment were also evident in the inhibition of cell growth of the two cell lines.

EXPERIMENTAL PROCEDURES

Cells—PC-3 cells were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F-12 supplemented with 10% fetal calf serum. MCF-7 cells were cultured in modified essential medium supplemented with 10% fetal calf serum, 1× sodium pyruvate (Life Technologies, Inc.), 1× nonessential amino acids (Sigma), and 10 µg/ml insulin. Twenty-four hours prior to oligonucleotide treatment, the cells were plated in 2 ml of medium in 6-well plates at a density of 2 × 10^6 cells/well. For experiments requiring estrogen-free medium, MCF-7 cells were cultured in phenol red-free medium containing 10% (4 days) and then 3% (3 days) charcoal-stripped fetal calf serum. Oligonucleotide Treatment—2′-O-Methyl-modified oligoribonucleotide phosphorothioate 18-mers antisense to the 5′-splice site of Bcl-xL (5′-Bcl-x AS, ACCACCGCCCGCUUCCUC) and to the 3′-splice site of exon III in Bcl-x pre-mRNA (3′-Bcl-x AS, GUUCCACAAAGAAGUACC) were used. Oligonucleotides with randomized and anti-β-globin se-
sequences (24) were used as negative controls. All oligonucleotides were synthesized and purified by Hybридon, Inc. (Milford, MA) and Trilink Biotechnologies, Inc. (San Diego, CA). The cells were treated with oligonucleotide-DMRIE-C Reagent (8 μg/ml, Life Technologies, Inc.) cationic lipid complexes according to the manufacturer’s directions at the concentrations indicated on the figures. Ten hours post-treatment, the medium was replaced with fresh medium, and the cells were cultured for the indicated times. Thapsigargin (0.5 μM final concentration; Sigma) was added directly to the medium of MCF-7 cells 24 h post-transfection.

RNA Isolation and Reverse Transcription-Polymerase Chain Reaction (RT-PCR)1—Oligonucleotide-treated cells were lysed in 1 ml of TRI-reagent (Molecular Research Center, Inc., Cincinnati, OH), and total RNA was isolated. RNA (200 ng) was used in RT-PCR with r7th enzyme (PerkinElmer Life Sciences) in the presence of 0.2 μCl of [α-32P]dATP. Both procedures followed the manufacturers’ protocols. The reverse transcription reaction was carried out at 70 °C for 15 min, followed by PCR: one cycle of 95 °C for 3 min; 22 cycles of 95 °C for 30 s, 66 °C for 30 s, and 72 °C for 1 min; and a final extension at 72 °C for 7 min. The forward and reverse primers used were GCATTGGTCCCCCATAGTCTC and GCATTGGTCCCCCATAGTCTC, respectively. Under these conditions, the linear concentration-dependent response of PCR was maintained (data not shown). The resulting products (Bcl-xL, 300 bp; and Bcl-xS, 162 bp) were separated on 8% nondenaturing polyacrylamide gels and the gels were autoradiographed with Kodak BioMax film. All autoradiograms were captured by a Dage-MTI CCD 72 video camera, and the images were processed using NIH IMAGE Version 1.61 software. NIH IMAGE was also used to quantify the density of the bands. The percentage of Bcl-xL in each lane was determined by dividing the intensity of the 162-bp band (Bcl-xS) by the total intensities of the 290-bp (Bcl-xL) and 162-bp (Bcl-xS) bands. The calculations reflect the fact that the number of radioactive adenine nucleotides in the Bcl-xL band is 1.2 times higher than that in the Bcl-xS band. Thus, the percent of correction is higher than appears from the autoradiograms.

Protein Analysis—Transfected cells were harvested at the indicated time points in radioimmune precipitation assay buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% SDS, and 1% sodium deoxycholate) and a mixture of protease inhibitors (Sigma). Total protein (100 μg for Bcl-xL, 10 μg for Bcl-xS, and Bc-2, and 75 μg for PARP) from the cells was electrophoresed on a 15% (for Bcl-2, Bcl-xL, and Bcl-xS) or 8% (for PARP) SDS-polyacrylamide gel and electrotransferred to polyvinylidene difluoride membranes. Equal gel loading and transfer of protein were confirmed by staining the membranes with Ponceau S. Membranes were blocked for 1 h with BLOTTO (5% nonfat dry milk in Tris-buffered saline/Tween 20). Membranes were incubated at room temperature with rabbit anti-Bcl-xL polyclonal antibody (1:1000 dilution; Transduction Laboratories), mouse anti-Bcl-2 monoclonal antibody (1:250 dilution; Transduction Laboratories), or rabbit anti-PARP polyclonal antibody (1:1000 dilution; Cell Signaling Technology, Beverly, MA), followed by 1 h of incubation with horseradish peroxidase-conjugated anti-rabbit (1:5000 dilution; Bio-Rad) or anti-mouse (1:1000 dilution; Amersham Pharmacia Biotech) secondary antibodies. Blots were developed with ECL Plus reagents (Amersham Pharmacia Biotech) and exposed to Kodak film. Bcl-xL, Bcl-xS, Bcl-2, and cleaved PARP proteins migrated at 99 and 85 kDa, respectively. The densities of the resulting bands were quantified using NIH IMAGE Version 1.61 software.

Fluorescence-activated Cell Sorting (FACS) Analysis—At the indicated times after oligonucleotide treatment, cells were resuspended by trypsinization, and aliquots were removed for RT-PCR analysis (see above) and for colony formation assays (see below). The remaining cells were washed twice with cold 1× phosphate-buffered saline, fixed in cold 70% ethanol, and stored at −20 °C for at least 24 h. They were then washed with 1× phosphate-buffered saline and treated with 20 μM propidium iodide and 1 mg/ml RNase A in 1× phosphate-buffered saline for 30 min in the dark. Cells were analyzed by flow cytometry using a Becton Dickinson FACSort for two measures of apoptosis: subdiploid DNA and loss of cell cycle progression (cell volume 30–70).

Colony Formation Assay—Aliquots of trypsinized cell suspensions were seeded on 100-mm plates at 5 × 104 for PC-3 cells and 1 × 105 for MCF-7 cells. Cells were treated under normal culture conditions, cells were stained with 5% methylene blue (Sigma) in 50% ethanol for 10 min. Colonies of >50 cells were counted.

RESULTS
Shift in Splicing from Bcl-xL to Bcl-xS in Oligonucleotide-treated PC-3 Cells—PC-3 cells were treated with increasing amounts of 5′-Bcl-x AS, a 2′-O-methyl-modified oligoribonucleotide phosphorothioate 18-mer targeted to the downstream alternative 5′-splice site in Bcl-x pre-mRNA. Splicing at this site led to Bcl-xL mRNA and protein; alternative splicing at the upstream site resulted in the Bcl-xS splice variant (Fig. 1). The 2′-O-methyl-modified oligoribonucleotide was chosen because it is resistant to nucleases, does not induce degradation of RNA in the RNA-oligoribonucleotide hybrid by RNase H (33), and binds to the target sequence with high Tm (34). These properties predict that the oligoribonucleotide should block the targeted splice site and induce a shift in the splicing pathways from Bcl-xL to Bcl-xS mRNA.

RT-PCR analysis (see “Experimental Procedures”) of total cell RNA 24 h post-treatment showed that 5′-Bcl-x AS treatment led to a dose-dependent shift in splicing from the Bcl-xL to Bcl-xS pathway as indicated by a shift in the ratios of the respective mRNAs (Fig. 2A, upper panel, lanes 2–7). At the highest concentrations of the 5′-Bcl-x AS oligoribonucleotide, the level of Bcl-xL reached ~65% of the total amount of Bcl-xL and Bcl-xS isoforms (Fig. 2A, lower panel, lane 7). There was no shift in Bcl-x pre-mRNA splicing in cells treated with an oligonucleotide with a randomized sequence (Fig. 2A, lanes 8–11).

After a single treatment of PC-3 cells with 0.08 μM 5′-Bcl-x AS oligoribonucleotide, a maximal shift in splicing occurred at 12 h post-treatment and persisted, with a slight decrease, for at least 72 h (Fig. 2B, lanes 3–6). This decrease was presumably due to dilution of the oligoribonucleotide and/or instability of the oligoribonucleotide and Bcl-xS mRNA in dividing cells. As expected, despite prolonged culture of the cells, the randomized oligoribonucleotide had no effect on the Bcl-xL/Bcl-xS mRNA ratio (Fig. 2B, lanes 7–11).

Since a shift in the splicing pattern of Bcl-x pre-mRNA from Bcl-xL to Bcl-xS should change the Bcl-xL/Bcl-xS protein ratio, we analyzed total protein from the PC-3 cell line by immunoblotting and probing with an antibody expected to detect both splice variants of the Bcl-x protein. This analysis showed a time-dependent decrease in Bcl-xL protein (Fig. 3, upper panel, lanes 2–5) and an increase in Bcl-xS protein (lower panel, lanes 6–7).
Modification of Alternative Splicing of Bcl-x Pre-mRNA

Shift in splicing from Bcl-xL to Bcl-xS by treatment of PC-3 cells with 5'-Bcl-x AS oligonucleotide. The results from the analysis of total cellular RNA by RT-PCR are shown. A: upper panel, dose dependence of cells treated for 24 h. Lane 1, mock-transfected cells; lanes 2–7, cells transfected with 5'-Bcl-x AS; lanes 8–11, cells transfected with an oligonucleotide with randomized sequence. The lengths of the PCR products (in base pairs) are indicated to the right. Black bar, mock-transfected cells; gray bars, 5'-Bcl-x AS oligonucleotide-treated cells; white bars, randomized oligonucleotide-treated cells. B: upper panel, time course. Lane 1, mock-transfected cells; lanes 2–6, RNA isolated from 5'-Bcl-x AS oligonucleotide (0.08 μM)-transfected cells 6, 12, 24, 48, and 72 h post-transfection, respectively; lanes 7–11, cells transfected with the randomized oligonucleotide (0.08 μM). Lower panel, quantitation of the results. Designations are as the same as described for A.

Apoptosis and Death of PC-3 Cells Caused by a Shift in Splicing from Bcl-xL to Bcl-xS. To determine whether increasing the levels of Bcl-xS protein increased apoptosis of 5'-Bcl-x AS oligonucleotide-treated PC-3 cells, the cells were analyzed by FACs for two measures of apoptosis: subdiploid DNA and loss of cell volume. As illustrated in Fig. 4A, the population of cells that had degraded their DNA (shown in green in the left panels) and to the left of the bars in the right panels) also exhibited a decreased cell size (lower left corners in the left panels). Quantitation of the results of multiple experiments showed that treatment with 0.01, 0.03, and 0.08 μM 5'-Bcl-x AS oligonucleotide resulted in 6.4, 11.2, and 19.8% of the PC-3 cells, respectively, exhibiting subdiploid DNA (Fig. 4B); the latter result was statistically significant (p < 0.0001, analysis of variance and Student-Neuman-Keuls tests) in comparison with mock-treated cells (4.4%) or with cells transfected with 0.8 μM randomized oligonucleotide (5.0%). Similarly, treatment with the 5'-Bcl-x AS oligonucleotide resulted in a dose-dependent loss of cell volume; at 0.08 μM 5'-Bcl-x AS, the effect (20.3%) was statistically significant (p < 0.0001) relative to either mock-treated (5.2%) or randomized oligonucleotide-treated (6.0%) cells (data not shown). Thus, by two different criteria and consistent with the RT-PCR and immunoblot results, the shift in splicing of Bcl-x pre-mRNA from Bcl-xL to Bcl-xS led to a dose-dependent increase in apoptosis of PC-3 cells.

The ultimate goal of shifting splicing from the Bcl-xL isoform to Bcl-xS isoform is to induce cell death. Since it has been argued that apoptotic markers, especially in cells with mutated p53, underestimate the killing potential of cytotoxic drugs (35), we have analyzed the effects of 5'-Bcl-x AS treatment of PC-3 cells on cell survival. The colony formation assay showed statistically significant cell death at 0.01, 0.03, and 0.08 μM 5'-Bcl-x AS oligonucleotide compared with mock- or randomized oligonucleotide-treated cells (Fig. 4C). At these oligonucleotide concentrations, the number of surviving cells was reduced 2.0-, 2.6-, and 4.4-fold, respectively, relative to mock treatment and 1.7-, 1.8-, and 3.8-fold relative to randomized oligonucleotide treatment. Thus, the long-term effects of the treatment were even more pronounced than those detected by the short-term assays of apoptotic markers.

Inefficient Induction of Apoptosis by Down-regulation of Bcl-xL Pre-mRNA in PC-3 Cells—Shifting splicing of Bcl-x pre-mRNA should presumably lead to a more efficient induction of apoptosis than down-regulation of Bcl-xL because the former approach leads to simultaneous down-regulation of anti-apoptotic Bcl-xL and up-regulation of pro-apoptotic Bcl-xS. To test this hypothesis, PC-3 cells were treated with an oligonucleotide targeted to the 3'-splice site of exon III in Bcl-xL pre-mRNA (5'-Bcl-x AS; see Fig. 1). In contrast to 5'-Bcl-x AS, this oligonucleotide should simultaneously decrease the level of Bcl-xL and Bcl-xS proteins because the 3'-splice site is common to both Bcl-xL and Bcl-xS splice variants.

As predicted, at 0.08 μM, the 3'-Bcl-x AS oligonucleotide led to a decrease in the levels of Bcl-xL protein (Fig. 5A, upper panel, lane 2). The levels of Bcl-xS protein appeared unaffected (Fig. 5A, lower panel, lane 2) and equal to that in mock-treated or control cells (lanes 1 and 4, respectively). In agreement with the results shown in Fig. 3, 5'-Bcl-x AS decreased Bcl-xL levels (Fig. 5A, upper panel, lane 3), but increased Bcl-xS protein levels (lower panel, lane 3). FACS analysis of the oligonucleotide-treated cells showed that 3'-Bcl-x AS was approximately half as efficient as 5'-Bcl-x AS in inducing apoptosis (Fig. 5B). These results confirm that apoptosis of PC-3 cells is more...
efficiently induced by an increase in Bcl-xS than by a decrease in Bcl-xL, validating the approach of modification of splicing of Bcl-x pre-mRNA.

Shift in Splicing from Bcl-xL to Bcl-xS in MCF-7 Cells Leads to Cell Death with Minimal Induction of Apoptosis—Since Bcl-xL is overexpressed in 40–60% of breast cancers (16), we also tested the 5'-Bcl-x AS oligonucleotide against a breast cancer cell line, MCF-7. Similar to PC-3 cells, treatment of MCF-7 cells with the oligonucleotide-DMRIE-C Reagent complex resulted in a dose-dependent (Fig. 6, lanes 2–6) and sequence-dependent (lanes 7–11) shift in Bcl-x pre-mRNA splicing from the Bcl-xL to Bcl-xS pathway; however, the effects were much less pronounced. At 0.1 μM oligonucleotide, only 18% of Bcl-xS was generated (compared with 62% in PC-3 cells), and the maximal Bcl-x S level (54%) was reached at 1.0 μM oligonucleotide, i.e. at a concentration almost 10 times higher than that needed for PC-3 cells. As a consequence of the shift in splicing, the level of Bcl-xL protein decreased, and that of Bcl-xS protein increased (see Fig. 10, A and B, respectively, lane 5). The effects of the 5'-Bcl-x AS oligonucleotide persisted for up to 72 h (data not shown).
should be restored if the ratio of Bcl-xS to Bcl-xL and Bcl-2 were significantly increased.

In contrast to PC-3 cells, 5'-Bcl-x AS oligonucleotide-treated MCF-7 cells did not appear to undergo significant apoptosis. Approximately 3.6, 5.2, and 5.2% of the cells exhibited subdiploid DNA (Fig. 7, left three bars) and loss of cell volume (data not shown) when mock-transfected or transfected with the randomized oligonucleotide or with the 5'-Bcl-x AS oligonucleotide, respectively. Interestingly, despite the lack of apoptotic markers, the colony formation assay showed that the cells transfected with the 5'-Bcl-x AS oligonucleotide formed ~2.7-fold fewer colonies than the negative control cells (Fig. 8, left three bars).

Since the MCF-7 cells treated with 5'-Bcl-x AS alone did not exhibit subdiploid DNA or loss of cell volume, we sought to determine if the increased Bcl-xS/Bcl-xL isoform ratio generated by the oligonucleotide treatment of the cells sensitized them to apoptotic inducers such as thapsigargin. Thapsigargin is known to induce apoptosis by depleting the intracellular calcium stores without increasing the influx of extracellular calcium (36). This mechanism was shown to be inhibited by anti-apoptotic proteins such as Bcl-2 (37) and Bcl-xL (38) and calcium (36). This mechanism was shown to be inhibited by anti-apoptotic proteins such as Bcl-2 (37) and Bcl-xL (38) and should be restored if the ratio of Bcl-xS to Bcl-xL and Bcl-2 were significantly increased.

Twenty-four hours after transfection with the oligonucleotide, the cells were treated with 0.5 μM thapsigargin for 48 h. Relative to mock-transfected cells, 5'-Bcl-x AS combined with thapsigargin treatment resulted in a statistically significant increase in the percentage of cells with subdiploid DNA (p = 0.04) (Fig. 7, middle three bars) and loss of cell volume (data not shown). There was no statistically significant difference between cells treated with a randomized oligonucleotide plus thapsigargin and with the 5'-Bcl-x AS oligonucleotide plus thapsigargin.

Despite the lack of induction of apoptotic markers in 5'-Bcl-x AS oligonucleotide-treated cells, the survival of the MCF-7 cells treated with the 5'-Bcl-x AS oligonucleotide alone was consistently reduced (Fig. 8, left three bars). Interestingly, the additional treatment with thapsigargin had only a minor effect, if any, on cell survival (Fig. 8, three right bars). The difference in cell death after treatment with Bcl-x AS alone or in combination with thapsigargin was not statistically significant.

The oligonucleotide-induced cell death without evidence of cell apoptosis was intriguing, raising a possibility that the apoptosis assay based on DNA fragmentation may be inadequate in detecting apoptosis in the MCF-7 cell line. Therefore,

DISCUSSION

We have taken advantage of the fact that alternative splicing of Bcl-x pre-mRNA yields two products with antagonistic functions and used an oligonucleotide antisense to the 5'-splice site.

FIG. 7. Apoptosis of MCF-7 cells treated with 5'-Bcl-x AS. Shown are the results from FACS analysis for subdiploid DNA of MCF-7 cells transfected for 24 h with 0.4 μM 5'-Bcl-x AS, followed by a 48-h treatment with 0.5 μM thapsigargin (Thaps). Left three bars, no thapsigargin (72 h post-transfection); middle three bars, plus thapsigargin (48 h after thapsigargin treatment, 72 h post-transfection); right three bars, cells cultured in the presence of charcoal-stripped serum (CS; 72 h post-transfection). See “Experimental Procedures” for details. The asterisk indicates a significant difference from mock transfections (p = 0.04; significance level = 5%). Black bars, mock-transfected cells; gray bars, 5'-Bcl-x AS oligonucleotide-transfected cells; white bars, randomized oligonucleotide-transfected cells.

FIG. 8. Inhibition of colony formation in MCF-7 cells treated with 5'-Bcl-x AS (0.4 μM) as well as thapsigargin (5 μM for 48 h). Asterisks indicate significant difference from mock- and randomized oligonucleotide-treated cells (p = 0.0002; significance level = 5%). Designations are the same as described in the legend to Fig. 7. Results are from at least three independent experiments. Thaps, thapsigargin.

we tested 5'-Bcl-x AS oligonucleotide-treated PC-3 and MCF-7 cells for PARP cleavage (Fig. 9), another indicator of apoptosis. Twenty-four hours after a single treatment with the 5'-Bcl-x AS oligonucleotide (0.08 μM for PC-3 cells and 0.4 μM for MCF-7 cells), this assay detected maximal apoptotic response of PC-3 cells, but virtually no apoptosis of MCF-7 cells. PARP cleavage did appear in MCF-7 cells at 48 h and reached maximum levels at 72 h post-treatment. However, even at the optimal time points, apoptosis of PC-3 cells was 3.5-fold higher than that of MCF-7 cells.

Factors Affecting Apoptosis of MCF-7 Cells—To gain some insight into the mechanisms responsible for the differences in the 5'-Bcl-x AS effects on PC-3 and MCF-7 cells, we compared the two cell lines for the levels of expression of Bcl-xL, Bcl-xS, and Bcl-2 proteins. Fig. 10A shows that the level of Bcl-xL in MCF-7 cells (lanes 4–6) was markedly lower than that in PC-3 cells (lanes 1–3). This suggests that even if the same Bcl-xL/Bcl-xS mRNA ratio is induced by the oligonucleotide in the two cell lines, the absolute amount of generated Bcl-xS protein will be lower in MCF-7 cells. Fig. 10B (lane 5 versus 2) illustrates this for treatment of PC-3 and MCF-7 cells with 0.08 and 0.4 μM 5'-Bcl-x AS, respectively. This treatment resulted in similar ratios of the splice variant mRNAs (data not shown). Note that the low level of Bcl-xS protein in oligonucleotide-treated MCF-7 cells will also result in a low ratio of this protein to other anti-apoptotic gene products.

Since a wide variety of human cancers express not only Bcl-xL, but also Bcl-2, a potent anti-apoptotic protein whose function is antagonized by Bcl-xS (13), the expression of Bcl-2 was assayed in the two cell lines by immunoblotting of total protein. Densitometry of the immunoblot shown in Fig. 10C and quantitation of the results indicated that, in MCF-7 cells, the concentration of Bcl-2 was ~1.7 times higher than that in PC-3 cells (compare lanes 1–3 versus 4–6). As expected, the level of Bcl-2 was not affected by treatment of the cells with the 5'-Bcl-x AS or randomized oligonucleotide (Fig. 10C, lanes 2 and 5 and lanes 3 and 6, respectively).

We have cultured MCF-7 cells in charcoal-stripped medium, a procedure shown to remove estrogen from the medium and, as a consequence, to inhibit expression of Bcl-2 in these cells (28). Under these conditions, the cellular level of Bcl-2 in MCF-7 cells was reduced below the level detected in PC-3 cells (data not shown). However, the treatment had no effect on apoptosis of 5'-Bcl-x AS oligonucleotide-treated MCF-7 cells (Fig. 7, right three bars). Thus, the contribution of Bcl-2 to the induction or the lack of apoptosis in 5'-Bcl-x AS oligonucleotide-treated cells remains unclear.
Fig. 9. PARP cleavage in PC-3 and MCF-7 cells treated with 5'-Bcl-x AS. Total protein from 5'-Bcl-x AS oligonucleotide-treated cells was analyzed by immunoblotting with anti-PARP antibody. The protein samples were collected at 12, 24, and 48 h for PC-3 cells and at 24, 48, 72, and 120 h for MCF-7 cells after oligonucleotide treatment. Band intensities were quantitated, and the results are expressed as the level of cleavage of PARP above background generated by treatment with the randomized oligonucleotide. Black bars, PC-3 cells (0.08 μM 5'-Bcl-x AS); white bars, MCF-7 cells (0.4 μM 5'-Bcl-x AS).

A. Bcl-xL

B. Bcl-xS

C. Bcl-2

Fig. 10. Expression of Bcl-xL, Bcl-xS, and Bcl-2 proteins in PC-3 and MCF-7 cells. Total protein from PC-3 and MCF-7 cells was analyzed by Western blotting for Bcl-xL, Bcl-xS, and Bcl-2 proteins. Lanes 1–3, PC-3 cells subjected to mock, 5'-Bcl-x AS (0.08 μM, 36 h), and randomized oligonucleotide (0.08 μM, 36 h) treatment, respectively; lanes 4–6, analogous treatment (0.4 μM, 36 h) of MCF-7 cells.

Recalculation of the data in terms of the effective concentration (EC_{50}) of the oligonucleotide yielded EC_{50} values of 0.32 and 0.05 μM for MCF-7 and PC-3 cells, respectively, a 6.5-fold ratio. This difference is partly explained by reduced nuclear uptake of the oligonucleotide in MCF-7 cells. In contrast to PC-3 cells, in which fluorescent labeled oligonucleotide accumulated predominantly in the nucleus, in MCF-7 cells, the large fraction of the compound remained concentrated in cytoplasmic endosomal vesicles (data not shown), where it was unable to affect splicing, a nuclear process (46).

The fact that cells differ in their response to a shift in the Bcl-xL/Bcl-xS ratio may impart beneficial specificity to the in vivo applications of the 5'-Bcl-x AS oligonucleotide. That is, although Bcl-xL is expressed in a number of cell types, including several hematopoietic cell lineages (47), the apoptotic stim-

2 D. R. Mercatante and R. Kole, unpublished data.
Modification of Alternative Splicing of Bcl-x Pre-mRNA

ulus of the oligonucleotide may be effective only in certain susceptible cells with a gene expression profile akin to the prostate cancer PC-3 cell line. In addition, a combination of the oligonucleotide with chemotherapeutic agents exemplified by prostate cancer PC-3 cell line. In addition, a combination of the oligonucleotide may be effective only in certain cells to undergo apoptosis. An additional benefit of cellular sensitization by the oligonucleotide may be a reduction in the dosage of chemotherapeutic agents and hence in the overall toxicity of cancer treatment.

Acknowledgment—We thank Elizabeth Smith for excellent technical assistance.

REFERENCES

1. Adams, J. M., and Cory, S. (1998) Science 281, 1322–1326
2. Antonsson, B., and Martinou, J. C. (2000) Exp. Cell Res. 256, 50–57
3. Lowe, S. W., and Lin, A. W. (2000) Carcinogenesis 21, 485–495
4. Reed, J. C. (1999) J. Clin. Oncol. 17, 2941–2953
5. Shinoura, N., Yoshida, Y., Asai, A., Kirino, T., and Hamada, H. (1999) Oncogene 18, 5703–5713
6. Kawakami, K., Tsukuda, M., Mizuno, H., Nishimura, G., Ishii, A., and Hamajima, K. (1999) Anticancer Research 19, 3927–3932
7. Taylor, S. T., Hickman, J. A., and Dive, C. (2000) J. Natl. Cancer Inst. 92, 18–23
8. Liu, Q. Y., and Stein, C. A. (1997) Clin. Cancer Res. 3, 2039–2046
9. Han, J. S., Núñez, G., Wicha, M. S., and Clarke, M. F. (1998) Springer Semin. Immunopathol. 19, 279–288
10. Wang, D. G. (1999) Clin. Endocrinol. 51, 1–9
11. Mercatante, D., and Cole, R. (2000) Pharmacol. Ther. 85, 237–243
12. Jiang, Z. H., and Wu, J. Y. (1999) Proc. Soc. Exp. Biol. Med. 220, 64–72
13. Boise, L. H., González-García, M., Postema, C. E., Ding, L., Lindsten, T., Turkas, L. A., Mao, X., Núñez, G., and Thompson, C. B. (1999) Cell 74, 587–608
14. Tu, Y., Renner, S., Xu, F., Fleishman, A., Taylor, J., Weisz, J., Vescio, R., Rettig, M., Berenson, J., Krajewski, S., Reed, J. C., and Lichtenstein, A. (1999) Cancer Res. 59, 256–262
15. Bree, J. G., Xiong, J., Morgan, J., and Blethen, N. M. (1996) Br. J. Cancer 73, 1183–1200
16. Olopade, O. I., Adeyaju, M. O., Safa, A. R., Hagos, F., Mick, R., Thompson, C. B., and Becant, W. M. (1997) Cancer J. Sci. Am. 3, 230–237
17. Liu, R., Page, C., Beidler, D. R., Wicha, M. S., and Núñez, G. (1999) Am. J. Pathol. 155, 1861–1867
18. Schmitt, E., Cimoli, G., Seyer, A., and Bertrand, R. (1999) Exp. Cell Res. 240, 107–121
19. Krajewski, M., Krajewski, S., Epstein, J. I., Shabalka, A., Sauvageot, J., Song, K., Kitada, S., and Reed, J. C. (1996) Am. J. Pathol. 148, 1567–1576
20. Minn, A. J., Boise, L. H., and Thompson, C. B. (1996) J. Biol. Chem. 271, 6306–6312
21. Clarke, M. F., Apel, I. J., Benedict, M. A., Eipers, P. G., Sunmantran, V., González-García, M., Doedens, M., Fukunaga, N., Davidson, B., Dick, J. E., Minn, A. J., Boise, L. H., Thompson, C. B., Wicha, M., and Núñez, G. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 11024–11028
22. Ealovega, M. W., McGinnis, P. K., Sunmantran, V. N., Clarke, M. F., and Wicha, M. S. (1996) Cancer Res. 56, 1963–1969
23. Sunmantran, V. N., Ealovega, M. W., Núñez, G., Clarke, M. F., and Wicha, M. S. (1995) Cancer Res. 55, 2507–2510
24. Sierakowska, H., Sambade, M. J., Agrawal, S., and Cole, R. (1999) Proc. Natl. Acad. Sci. U. S. A. 95, 12840–12844
25. Sierakowska, H., Sambade, M. J., Schumperli, D., and Cole, R. (1999) RNA 5, 3902–3907
26. Wilton, S. D., Lloyd, F., Carville, K., Fletcher, S., Honeyman, K., Agrawal, S., and Cole, R. (1999) Neuroumal. Disorders 9, 330–338
27. Friedman, K. J., Cole, J., Cohn, J. A., Knowles, M. R., Silverman, L. M., and Cole, R. (1999) J. Biol. Chem. 274, 36193–36199
28. Teixeira, C., Reed, J. C., and Pratt, M. A. C. (1995) Cancer Res. 55, 3920–3927
29. Phillips, A., Chalbos, D., and Rochefort, H. (1993) J. Biol. Chem. 268, 14103–14108
30. Cohen, J. J. (1993) Immunol. Today 14, 126–130
31. Fiers, W., Heyrman, R., Declerq, W., and Vandenameele, P. (1999) Oncogene 18, 7719–7730
32. Wylie, A. H. (1998) Nature 284, 555–556
33. Sprout, B. S., and Lamond, A. I. (1995) in Antisense Research and Applications (Croke, S. T., and Lebleu, B., eds) pp. 351–363, CRC Press, Inc., Boca Raton, FL
34. Stein, D., Foster, E., Huang, S. B., Weller, D., and Summerton, J. (1997) Antisense Nucleic Acid Drug Dev. 7, 151–157
35. Brown, J. M., and Wouters, B. G. (1997) Nature 385, 1391–1399
36. Segerre, I. N., and Rhoten, W. B. (1997) Endocrine 8, 321–327
37. Qi, X. M., He, H., Zhong, H., and Distelhorst, C. W. (1997) Oncogene 15, 1207–1212
38. Srivastava, R. K., Solott, S. J., Khan, L., Hansford, R., Lakatta, E. G., and Longy, D. L. (1999) Mol. Cell. Biol. 19, 5639–5674
39. Taylor, J. K., Zhang, Q. Q., Men, B. P., Marcusson, E. G., and Dean, N. M. (1999) Oncogene 18, 4495–4504
40. Leech, S. H., Ohe, R. A., Gautschl, O., Simoess-Wust, A. P., Tschopp, S., Haner, R., Hall, J., Stahel, R. A., and Zangemeister-Wittke, U. (2000) Int. J. Cancer 86, 570–576
41. Taylor, J. K., Zhang, Q. Q., Wyatt, J. R., and Dean, N. M. (1999) Nat. Biotechnol. 17, 1197–1199
42. Carrol, A. G., Voeller, H. J., Sugars, L., and Gelmann, R. P. (1993) Prostate 23, 123–134
43. Isaacson, W. B., Carter, B. S., and Ewing, C. M. (1991) Cancer Res. 51, 4716–4720
44. Nieves-Neira, W., and Pommier, Y. (1999) Int. J. Cancer 82, 396–404
45. Zapata, J. M., Krajewska, M., Krajewski, S., Huang, R. P., Takayama, S., Wang, H. G., Adamson, E., and Reed, J. C. (1998) Breast Cancer Res. Treat 47, 129–140
46. Zelphati, O., and Szoka, F. C. J. (1996) Pharm. Res. (N. Y.) 13, 1367–1372
47. Krajewski, S., Krajewska, M., Shabalka, A., Wang, H. G., Irie, S., Fong, L., and Reed, J. C. (1994) Cancer Res. 54, 5501–5507