Cutaneous Phaeohyphomycosis of the Right Hand Caused by *Exophiala jeanselmei*: A Case Report and Literature Review

Chongyang Wu · Ling Shu · Zhixing Chen · Qianrong Hu · Lijun Tao · Chao He

Received: 20 October 2021 / Accepted: 1 March 2022 / Published online: 21 March 2022 © The Author(s) 2022

Abstract *Exophiala* spp. is increasingly reported as a pathogen causing the cutaneous, subcutaneous or invasive infection. In this report, we present a case of cutaneous phaeohyphomycosis due to *E. jeanselmei* on the right hand of a farmer, who suffered from this disease three years ago which had not been definitely diagnosed until he was admitted to our hospital. In our hospital, a potential fungal pathogen was observed by histopathological examination, and then was recovered and identified as *E. jeanselmei* by sequencing its internal transcribed spacer region. After 4 weeks of antifungal treatment, his hand recovered very well. To investigate the in vitro susceptibility of *E. jeanselmei* isolates to antifungal agents and compare the characteristics of their related infections among immunocompetent and immunocompromised patients, we reviewed 84 cases published in PubMed database between 1980 and 2020.

Keywords Phaeohyphomycosis · *Exophiala jeanselmei* · Infection · Literature review

Introduction

Phaeohyphomycosis is a group of rare fungal infections caused by the dematiaceous fungi, such as *Alternaria* spp. *Phialophora* spp. and *Exophiala* spp. [1]. Recently, *Exophiala* spp. has been frequently reported as an etiologic agent of phaeohyphomycosis in both immunocompromised and immunocompetent individuals [2–5], which highlights the importance of reviewing the characteristics of this pathogen related infections. In this study, we described one case of prolonged cutaneous infection due to *E. jeanselmei* and reviewed 84 cases published in PubMed database during 1980 to 2020.

Case Report

A 61-year-old male farmer was admitted to West China Hospital of Sichuan University on October 30, 2018. There were multiple cutaneous abscesses on the back of the red, swollen and painful right hand...
Computed tomography (CT) scan of this hand showed the extensive tissue swelling in the wrist and palm (Fig. 1b).

He complained that this hand was injured when he worked in the field three years ago. And then the swelling and pain was developed, while the definite diagnosis was not made in the local hospital and triamcinolone acetonide was administrated intermittently to relieve the discomfort of this hand. Two months ago, the old skin lesions in this hand expanded rapidly and new ones appeared. Some kinds of the antibiotics were administered in the local hospital but the symptoms did not improve. He denied the history of autoimmune diseases, diabetes and tumors.

At his admission to our hospital, white blood cell count (7.27×10^9/L), neutrophilic granulocyte ratio (85.3%), serum C-reactive protein (20.76 mg/L) and procalcitonin (0.22 ng/mL) were all elevated. The skin biopsy of this hand was sent for pathological investigation. Multiple dark hyphae were highlighted with Gomori methenamine silver (GMS) staining (Fig. 2a).
Thick brown aspirate collected by fine-needle was sent for bacterial, fungal, and mycobacterial investigation. The results of Gram staining and acid-fast staining were negative. There were flat to domed, mucoid, dark olive-green to black colonies with black reverse grewed at 28 °C on Sabouraud’s dextrose agar (SDA) plate (Fig. 2b). The colonies were stained with lactophenol cotton blue. The septate hyphae, single-celled and ellipsoidal conidia accumulating in groups, and cylindrical to flask-shaped annellides with narrow apical area, were observed (Fig. 2c, 2d).

Isolation of *Exophiala* spp. from the aspirate was reported to the clinicians. This patient was administered with amphotericin B (1 mg/kg iv q12h) immediately. After one week, the pus no longer discharged and the skin began to scab (Fig. 1c).

Sequencing the internal transcribed spacer (ITS) was performed to identify the isolate to species level as previously reported [6], and its sequence were completely homology with those of *E. jeanselmei* D12H (Accession ID: MH010928.1).

In vitro susceptibility testing of this isolate to antifungal agents was performed according to the

![Fig. 2](image-url)
M38-A2 protocol of Clinical and Laboratory Standards Institute (CLSI) [7]. Briefly, the conidia was collected with a cotton swab and suspended in sterile saline with Tween. Heavy particles were settled for 3 to 5 min. The supernatant was collected and mixed with a vortex mixer. Its turbidity was adjusted to a 0.5 McFarland Standard. And then, 100 µL of the suspension was added to 11 mL of Sensititre YeastOne broth (Thermo Fisher Co.) to give a final inoculum. The final suspension was transferred into the Sensititre YeastOne plate and incubated at 35 °C in a non-CO2 incubator. The minimum inhibitory concentrations (MICs) were reported as listed in Table 1. Voriconazole (200 mg iv q12h) was administered for this patient. One week later, he was discharged with oral voriconazole (200 mg, bid). After another two weeks, his hand recovered very well (Fig. 1d).

Literature Review of the Cases Associated with E. jeanselmei

A total of 89 cases associated with E. jeanselmei during 1980 to 2020 were collected from PubMed database (http://www.ncbi.nlm.nih.gov/pubmed), but five of them were excluded for lack of detailed data [2–4, 6, 8–92]. We summarized the available results of in vitro susceptibility testing against 70 strains of E. jeanselmei described in Table 1. Except one study described the E-test method [39], broth microdilution method were performed in the other reports. The antifungal agents tested frequently were amphotericin B, azoles and echinocandins. In addition, two studies tested the activity of terbinafine [38, 59].

The 84 cases included were classified into immunocompetent or immunocompromised group according to their underlying conditions. The clinical characteristics of the infections among these two groups were compared as shown in Table 2.

Discussion

Phaeohyphomycosis is a rare infection caused by the dematiaceous fungi [93]. In recent years, the frequent occurrence of this kind of fungal infection as well as the diversity of the organisms isolated has been reported around the world [94, 95]. Alternaria spp. was associated with the cutaneous phaeohyphomycosis in solid-organ transplant recipients [89, 96, 97]. Scedosporium prolificans was a common species (41.6%) responsible for disseminated phaeohyphomycosis [98]. E. jeanselmei was involved in the subcutaneous or cutaneous infections [65, 99]. Exophiala spp. was isolated from 80.0% of the cases had underlying collagen disease and E. jeanselmei was the most common species (46.2%) [2]. In this study, we shared an experience of successful diagnosis and treatment of a prolonged cutaneous phaeohyphomycosis due to E. jeanselmei, and also reviewed the cases associated with this species.

Accurate identification of the pathogen can provide an important basis for precise diagnosis and treatment of phaeohyphomycosis. Otherwise, prolonged disease process, disseminated or relapsed situation, even poor clinical outcomes might be brought about [100, 101]. Traditionally, histopathological examination and culture-based methods are applied to identify the fungal pathogen. Whereas, these methods are usually time-consuming and confused morphological characteristics might bring the challenges for the inexperienced technicians. Therefore, molecular-based methods are preferred especially when typical morphological characteristics cannot be observed. In our case, the internal transcribed spacer (ITS) regions of the isolate were sequenced. Eventually, a cutaneous phaeohyphomycosis associated with E. jeanselmei was diagnosed based on the clinical features, histopathological examination, culture and ITS sequencing of the isolate.

In our study, in vitro susceptibility of E. jeanselmei isolates to antifungal agents were also reviewed. As shown in Table 1, this species had good in vitro susceptibility to amphotericin B, posaconazole, voriconazole, itraconazole and echinocandins. Variable activity with wide MIC range of amphotericin B (0.25–16 µg/mL), voriconazole (0.03–4 µg/mL) and itraconazole (< 0.015–64 µg/mL) were also observed in Table 1. In practice, susceptibility testing for each isolate should be performed to guide the precise treatment. In addition, other factors should be considered when the agents were chosen. Amphotericin B was a potent broad-spectrum antifungal drug for fungal infections, but it is not the best choice due to severe side effects [102]. Azoles were reported as the active drugs against E. jeanselmei [103]. Though itraconazole showed significant activity against dematiaceous fungi, adverse effects and the lack of an
Table 1 In vitro susceptibility of *E. jeanselmei* isolates to antifungal agents

Resource	Number of isolate (N)	Year of report	MIC (µg/mL)								
This Study	1	2021	1	ND	0.25	0.125	0.25	0.25	0.03	0.25	ND
[111]	14	2021	0.25–2	8–64	0.031–0.25	0.25–4	≤ 0.016–0.125	0.008–4	≤ 0.008–4	ND	0.25–4
[112]	6	2021	0.25–4	ND	0.03–0.25	0.06–0.25	0.03–0.25	0.125–2	0.125	0.094	ND
[59]	1	2019	2	16	0.5	0.5	ND	4	0.25	ND	ND
[113]	1	2016	1	ND	0.125	0.25	0.06	ND	ND	ND	ND
[81]	1	2013	0.25	32	0.125	0.25	< 0.03	ND	ND	ND	ND
[47]	9	2010	0.25–2	8–32	0.031–0.25	0.25–2	0.016–0.063	2–8	ND	0.063–4	0.25–2
[105]	2	2010	0.25–0.5	18–20	0.063–0.05	0.2–0.78	ND	ND	ND	0.2–3.1	
[50]	1	2010	0.5	> 64	0.06	ND	ND	2	ND	ND	ND
[103]	7	2010	0.5	ND	0.03	0.125	≤ 0.015	ND	ND	ND	ND
[114]	8	2009	0.25–1.0	ND	≤ 0.015–0.125	0.06–0.5	≤ 0.015–0.03	ND	ND	ND	ND
[63]	1	2008	0.5	ND	0.125	0.03	ND	ND	ND	ND	ND
[39]	1	2005	1	ND	64	ND	ND	ND	ND	ND	ND
[115]	5	2004	2–16	ND	ND	0.5–2	ND	ND	ND	0.125–2	ND
[38]	1	2004	0.25	ND	0.03	ND	ND	ND	ND	ND	ND
[72]	9	2001	0.25–0.5	ND	0.125–0.25	0.5–1	0.125–0.5	ND	ND	ND	ND
[90]	1	2000	0.5	ND	1	ND	ND	ND	ND	ND	ND

AMB amphotericin B, *FLC* fluconazole, *ITC* itraconazole, *VRC* voriconazole, *POS* posaconazole, *CAS* caspofungin, *MFG* micafungin, *AFG* anidulafungin, *ISC* isavuconazole, *ND* not determined, *MIC* (minimum inhibitor concentration)
intravenous formulation have reduced its use [99, 104]. Voriconazole was likely a good choice due to its broad activity, preferable side effect profile, and availability of an intravenous formulation [105]. Echinocandins had a variable in vitro activity and were not suggested by the guidelines of European Society for Clinical Microbiology and Infectious Diseases and European Confederation of Medical Mycology (ESC-MID/ECMM) [102]. Terbinafine was also the treatment option for cutaneous and subcutaneous infection [38]. The lack of serious side effects and broad-spectrum in vitro antifungal activity help make terbinafine an alternative drug for the patients who cannot be cured through conventionally recommended treatments [106].

According to ESCMID/ECMM guidelines, antifungal therapy combination with surgical excision was recommended for managing phaeohyphomycosis [102]. In our review, we found that antifungal therapy (48.4%) and antifungal therapy combined with surgery (35.7%) were the common choices for treating the infections caused by *E. jeanselmei*. The surgical resection was recommended for treating the phaeohyphomycosis in immunocompromised host, because the recurrence of the infection occurred in about 30.0% of these patients [107]. The surgical drainage was suggested when the surgical excision was not applicable for the patients [4]. Modifying immunosuppression condition could improve the outcome of antifungal treatment in transplant patients [6, 96, 108]. In terms of the patients’ outcome, we found that 76.2% of cases recovered. Poor outcome was usually associated with the misdiagnosis, invalid treatment, or the occurrence of disseminated infections [109].

We also found that more than 80.0% of the cases occurred in the patients over 50 years old and 95.2% of the related infections presented as localized subcutaneous or cutaneous lesions. The trauma, particularly in the face and extremity (61.9%), might be the common cause of the infections, which could lead to the inoculation of the fungus in the cutaneous or subcutaneous tissue as described previously [93, 110].

Table 2 Clinical characteristics of *E. jeanselmei*-related cases published in PubMed database during 1980 to 2020

Characteristics	Immunocompetent group (N = 29)	Immunocompromised group (N = 55)	χ^2	P value
Age	56.1 ± 15.3	51.1 ± 23.8	0.234	0.629
Sex			0.624	0.429
Male	21	44		
Female	8	11		
Location of infection			2.096	0.351
Upper limbs	15	31		
Lower limbs	13	18		
Other	1	6		
Treatment choice			4.382	0.223
Surgery	0	3		
Antifungal agents	18	23		
Both	9	21		
NA	2	8		
Clinical Outcome			1.185	0.553
Survived	22	42		
Died	2	7		
NA	5	6		
Length of treatment (weeks)			1.937	0.586
≤ 8	4	12		
8–24	7	11		
≥ 24	11	13		
NA	7	9		

NA, not available
In addition, we paid attention to the correlation between immunity status and clinical characteristics of the infections caused by *E. jeanselmei*. As listed in Table 2, there were no statistically significant for the location of infection, treatment choice, length of treatment and patient’s outcome between immuno-compromised groups and immunocompetent groups.

In all, the results of histopathological examination, culture and species identification can provide the important basis for precise diagnosis and effective treatment of the infection due to *E. jeanselmei*, as demonstrated in our case. The findings of our review based on the cases reported in PubMed database indicated that *E. jeanselmei* isolates had good in vitro susceptibility to antifungal agents and immune status of the patients might not be correlated to the characteristics of the infections.

Acknowledgements We thank the colleagues in clinical microbiology laboratory, West China Hospital of Sichuan University, for the suggestions of preparing the case report.

Declarations The authors declare that they have no conflict of interest.

Ethical statements This work was already approved by the Ethics Committee of West China Hospital of Sichuan University (No. 954).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Shields BE, Rosenbach M, Brown-Joel Z, Berger AP, Ford BA, Wanat KA. Angioinvasive fungal infections impacting the skin: background, epidemiology, and clinical presentation. J Am Acad Dermatol. 2019;80(4):869-880.e865.

2. Takenaka M, Murota H, Nishimoto K. Subcutaneous phaeohyphomycosis due to *Exophiala jeanselmei* following renal transplantation: a case report with a published work review of phaeohyphomycosis in Japan. J Dermatol. 2020;47(9):1050–3.

3. Bhardwaj S, Capoor MR, Kolte S, Purohit G, Dawson L, Gupta K, Ramesh V, Mandal AK. Phaeohyphomycosis due to *Exophiala jeanselmei*: an emerging pathogen in India—case report and review. Mycopathologia. 2016;181(3–4):279–84.

4. Lief MH, Capilivski D, Bottone EJ, Lerner S, Vidal C, Huprikar S. *Exophiala jeanselmei* infection in solid organ transplant recipients: report of two cases and review of the literature. Transpl Infect Dis Off J Transpl Soc. 2011;13(1):73–9.

5. de Hoog GS, Vicente V, Caligiorno S, Kantarcioglu S, Tintelnin K, van den Ende AHG, Haase G. Species diversity and polymorphism in the *Exophiala spinifera* clade containing opportunistic black yeast-like fungi. J Clin Microbiol. 2003;41(10):4767–78.

6. Puing AG, Couture-Cossette A, Wang AX, Zygourakis CC, Cheng X, Stevens BA, Banaei N, Novoa RA, Ho DY, Subramanian AK. Simultaneous coccidioidomycosis and phaeohyphomycosis in a kidney transplant recipient: a case report and literature review. Transpl Infect Dis Off J Transpl Soc. 2020;22(6):e13365.

7. Wayne P. Clinical and laboratory standards institute (CLSI), reference method for broth dilution antifungal susceptibility testing of filamentous fungi, 3rd ed.CLSI document M38-A3. 2017.

8. Thammayya A, Sanyal M. *Exophiala jeanselmei* causing mycetoma pedis in India. Sabouraudia. 1980;18(2):91–5.

9. Monroe PW, Floyd WE. Chromohyphomycosis of the hand due to *Exophiala jeanselmei* (Phialophora jeanselmei, Phialophora gougerotii): case report and review. J Hand Surg. 1981;6(4):370–3.

10. Hironaga M, Mochizuki T, Watanabe S. Cutaneous phaeohyphomycosis of the sole caused by *Exophiala jeanselmei* and its susceptibility to amphotericin B, 5-FC and ketoconazole. Mycopathologia. 1982;79(2):101–4.

11. Prabhakar Y, Rao R, Sharma S, Bhatia VN, Arora AL, Srivastava KK, Yadav SS. A rare case of phaeohyphomycosis caused by *Exophiala jeanselmei*. Indian J Dermatol Venereol Leprol. 1983;49(1):17–21.

12. Zackheim HS, Halde C, Goodman RS, Marchasin BS, Buncke HJ Jr. Phaeohyphomycotic cyst of the skin caused by *Exophiala jeanselmei*. J Am Acad Dermatol. 1985;12(1 Pt 2):207–12.

13. Sindhuphak W, MacDonald E, Head E, Hudson RD. *Exophiala jeanselmei* infection in a postrenal transplant patient. J Am Acad Dermatol. 1985;13(5 Pt 2):877–81.

14. Hemashettar BM, Patil CS, Nagalotimath SJ, Thammayya A. Mycetoma due to *Exophiala jeanselmei* (a case report with description of the fungus). Indian J Pathol Microbiol. 1986;29(1):75–8.

15. Padhye AA, Ajello L. A case of chromoblastomycosis with special reference to the mycology of the isolated *Exophiala jeanselmei*. Mykosen. 1987;30(3):134.

16. Hachisuka H, Matsumoto T, Kusuhara M, Nomura H, Nakano S, Sasaki Y. Cutaneous phaeohyphomycosis caused
by Exophiala jeanselmei after renal transplantation. Int J Dermatol. 1990;29(3):198–200.
17. Alfred BJ. Subcutaneous phaeohyphomycosis due to Exophiala jeanselmei in an immunosuppressed patient: case report. N Zeal Med J. 1990;103(893):321–2.
18. Singh SM, Pourani M, Naidu J. Cutaneous phaeohyphomycosis caused by Exophiala jeanselmei var. lecanii-cornii (Benedek and Specht) De Hoog. Indian J Pathol Microbiol. 1992;35(3):269–73.
19. Manian FA, Brischetto MJ. Pulmonary infection due to Exophiala jeanselmei: successful treatment with ketoconazole. Clin Infect Dis Off Publ Infect Dis Soc Am. 1993;16(3):445–6.
20. Aggarwal S, Goodman NL, Malluche HH. Peritonitis due to Exophiala jeanselmei var. lecanii-cornii (Benedek and Specht) De Hoog. Indian J Pathol Microbiol. 1992;35(3):269–73.
21. Schwinn A, Strohm S, Helgenberger M, Rank C, Bröcker EB. Phaeohyphomycosis caused by Exophiala jeanselmei treated with itraconazole. Mycoses. 1993;36(11–12):445–8.
22. De Hoog GS, Matsumoto T, Matsuda T, Uijthof JM. Exophiala jeanselmei var. lecanii-corni, an aetiologic agent of human phaeohyphomycosis, with report of a case. J Med Vetern Mycol Bi-Monthly Publ Int Soc Hum Animal Mycol. 1994;32(5):373–80.
23. Hayashi M, Kiryu Y, Sueyama Y, Asahi M. A case of cutaneous infection by Exophiala jeanselmei. J Dermatol. 1994;21(12):971–3.
24. Kawachi Y, Tateishi T, Shojima K, Iwata M, Otsuka F. Subcutaneous phaeohyphomycotic cyst of the finger caused by Exophiala jeanselmei: association with a wooden splinter. Cutis. 1995;56(1):41–3.
25. Chuan MT, Wu MC. Subcutaneous phaeohyphomycosis caused by Exophiala jeanselmei: successful treatment with itraconazole. Int J Dermatol. 1995;34(8):563–6.
26. Whittle DI, Kominos S. Use of itraconazole for treating subcutaneous phaeohyphomycosis caused by Exophiala jeanselmei. Clin Infect Dis Off Publ Infect Dis Soc Am. 1995;21(4):1068.
27. Remon C, de la Calle IJ, Vallejo Carrión F, Perez-Ramos S, Fernández RE. Exophiala jeanselmei peritonitis in a patient on CAPD. Periton Dial Int J Int Soc Periton Dial. 1996;16(5):536–8.
28. Kim HU, Kang SH, Matsumoto T. Subcutaneous phaeohyphomycosis caused by Exophiala jeanselmei in a patient with advanced tuberculosis. Br J Dermatol. 1998;138(2):351–3.
29. Xu X, Low DW, Palevsky HI, Elenitsas R. Subcutaneous phaeohyphomycotic cysts caused by Exophiala jeanselmei in a lung transplant patient. Dermatol Surg Off Publ Am Soc Dermatol Surg. 2001;27(4):343–6.
30. Aranegui B, Feal C, García CP, Batalla A, Abalde T, Alvarez-Martínez M, de la Torre C. Subcutaneous phaeohyphomycosis caused by Exophiala jeanselmei treated with wide surgical excision and posaconazole: case report. Int J Dermatol. 2013;52(2):255–6.
31. Boisseau-Garsaud AM, Desbois N, Guillermun ML, Osondo M, Gucho E, Cales-Quist D. Onychomycosis due to Exophiala jeanselmei. Dermatol (Basel, Switzerl). 2002;204(2):150–2.
32. Liou JM, Wang JT, Wang MH, Wang SS, Hseuh PR. Phaeohyphomycosis caused by Exophiala species in immunocompromised hosts. J Formosan Med Assoc Taiwan yi zhi. 2002;101(7):523–6.
33. Murayama N, Takimoto R, Kawai M, Hiruma M, Takanori K, Nishimura K. A case of subcutaneous phaeohyphomycotic cyst due to Exophiala jeanselmei complicated with systemic lupus erythematosus. Mycoses. 2003;46(3–4):145–8.
34. Peña-Penabad C, Durán MT, Yebra MT, Rodríguez-Lozano J, Vieira V, Fonseca E. Chromomycosis due to Exophiala jeanselmei in a renal transplant recipient. Eur J Dermatol EJD. 2003;13(3):305–7.
35. Hague J, Liotta E. Subcutaneous phaeohyphomycosis caused by Exophiala jeanselmei in an immunocompromised host. Cutis. 2003;72(2):132–4.
36. Calista D, Leardini M, Arcangeli F. Subcutaneous Exophiala jeanselmei infection in a heart transplant patient. Eur J Dermatol EJD. 2003;13(5):489.
37. de Monbrison F, Piens MA, Ample B, Eufrard S, Cochat P, Picot S. Two cases of subcutaneous phaeohyphomycosis due to Exophiala jeanselmei, in cardiac transplant and renal transplant patients. Br J Dermatol. 2004;150(3):597–8.
38. Agger WA, Andes D, Burgess JW. Exophiala jeanselmei infection in a heart transplant recipient successfully treated with oral terbinafine. Clin Infect Dis Off Publ Infect Dis Soc Am. 2004;38(11):e126–9.
39. Silva Mdo R, Fernandes Ode F, Costa CR, Chaul A, Morgado LF, Fleury-Júnior LF, Costa MB. Subcutaneous phaeohyphomycosis by Exophiala jeanselmei in a cardiac transplant recipient. Rev Inst Med Trop Sao Paulo. 2005;47(1):55–7.
40. Rallis E, Frangoulis E. Successful treatment of subcutaneous phaeohyphomycosis owing to Exophiala jeanselmei with oral terbinafine. Int J Dermatol. 2006;45(11):1369–70.
41. Arribi-Martínez M, de la Torre C. Subcutaneous phaeohyphomycosis due to Exophiala jeanselmei of cutaneous origin in a lung transplant recipient. Enfermedades Infecciosas y Microbiol Clin. 2006;24(3):205–6.
42. Capoor MR, Khanna G, Nair D, Hasan A, Rajni DM, Aggarwal P. Eumycetoma pedis due to Exophiala jeanselmei. Indian J Med Microbiol. 2007;25(2):155–7.
43. Wakamatsu K, Takahata Y, Tokuhisa Y, Morita K, Muto M. Two cases of phaeohyphomycosis due to Exophiala jeanselmei. J Dermatol. 2008;35(3):178–80.
44. Martínez-González MC, Verea MM, Velasco SD, Saprófito F, Del Pozo J, García-Silva J, Fonseca E. Three cases of cutaneous phaeohyphomycosis by Exophiala jeanselmei. Eur J Dermatol EJD. 2008;18(3):313–6.
45. Al-Tawfiq JA, Amr SS. Madura leg due to Exophiala jeanselmei successfully treated with surgery and itraconazole therapy. Med Mycol. 2009;47(6):648–52.
46. Umemoto N, Demitsu T, Kakurai M, Kawasaki M, Mochizuki T. Two cases of cutaneous phaeohyphomycosis due to Exophiala jeanselmei: diagnostic significance of direct microscopic examination of the purulent discharge. Clin Exp Dermatol. 2009;34(7):e351-353.
54. Fathy H, Abdel-Razek MM, Abdelgaber S, Othman T, El-
53. Zhou X, Hu Y, Hu Y, Liu K, Wang L, Wei Q, Han X, Zhu
51. Parente JN, Talhari C, Ginter-Hanselmayer G, Schettini
49. Rossetto AL, Dellatorre G, Pe `rsio RA, Romeiro JC, Cruz
48. Arakaki O, Asato Y, Yagi N, Taira K, Yamamoto Y,
58. Miyagawa F, Shobatake C, Fukumoto T, Yamanaka Y,
47. Badali H, Najafzadeh MJ, van Esbroeck M, van den Enden
E, Tarazooie B, Meis JF, de Hoog GS. The clinical spec-
trum of Exophiala jeanselmei, with a case report and in
vitro antifungal susceptibility of the species. Med Mycol.
2010;48(2):318–27.
48. Arakaki O, Asato Y, Yagi N, Taira K, Yamamoto Y,
Nonaka K, Hosokawa A, Kayo S, Hagiwara K, Uezato H.
Phaeohyphomycosis caused by Exophiala jeanselmei in a
patient with polymyalgia rheumatica. J Dermatol.
2010;37(4):367–73.
49. Rossetto AL, Dellatorre G, Pe `rsio RA, Romeiro JC, Cruz
RC. Subcutaneous phaeohyphomycosis on the scrotum
caused by Exophiala jeanselmei: case report. An Bras
Dermatol. 2010;85(4):517–20.
50. Nomura M, Maeda M, Seishima M. Subcutaneous
phaeohyphomycosis caused by Exophiala jeanselmei in
collagen disease patient. J Dermatol. 2010;37(12):1046–50.
51. Parente JN, Talhari C, Ginter-Hanselmayer G, Schettini
AP, Eiras Jda C, de Souza JV, Tavares R, Buzina W, Brunasso AM, Massone C. Subcutaneous phaeo-
hyphomycosis in immunocompetent patients: two new cases
caused by Exophiala jeanselmei and Cladosporiophora
carrionii. Mycoses. 2011;54(3):265–9.
52. Chen YC, Su YC, Tsai CC, Lai NS, Fan KS, Liu KC.
Subcutaneous phaeohyphomycosis caused by Exophiala
jeanselmei. J Microbiol Immunol Infect. 2014;47(6):546–9.
53. Zhou X, Hu Y, Hu Y, Liu K, Wang L, Wei Q, Han X, Zhu
D, Lu Y, Mao Z, et al. Cutaneous and subcutaneous
phaeohyphomycosis caused by Exophiala jeanselmei after
renal transplantation: a case report. Nan fang yi ke da xue
J Southern Med Univ. 2012;32(8):1206–10.
54. Fathy H, Abdel-Razek MM, Abdelgaber S, Othman T, El-
morsy F. Subcutaneous phaeohyphomycosis in immuno-
competent child caused by Exophiala jeanselmei. Int J
Dermatol. 2012;51(10):1267–70.
55. Pattananprichakul P, Bunyaratavej S, Leeypahan C, Sithi-
namsuwon P, Sudhadam M, Muansprat C, Feng P, Badali H, de Hoog GS. An unusual case of eumycetoma
caused by Exophiala jeanselmei after a sea urchin injury.
Mycoses. 2013;56(4):491–4.
56. Desoubeaux G, Million A, Freychet B, de Muret A, Garcia-
Hernos D, Bailly E, Rosset P, Chandenier J, Bernard L.
Eumycetoma of the foot caused by Exophiala jeanselmei in
a Guinean woman. J Med Mycol. 2013;23(3):168–75.
57. Joshi P, Agarwal S, Singh G, Xess I, Bhowmik D. “A fine
needle aspiration cytology in time saves nine”: cutaneous
phaeohyphomycosis caused by Exophiala jeanselmei in a
renal transplant patient: diagnosis by fine needle aspiration
cytology. J Cytol. 2016;33(1):55–7.
58. Miyagawa F, Shobatake C, Fukumoto T, Yamanaka Y,
Kobayashi N, Nishimura K, Masuda M, Asada H. Cuta-
aneous phaeohyphomycosis caused by Exophiala jeanselmei
in a healthy individual. J Dermatol. 2018;45(1):106–8.
59. Miyashita K, Matsu T, Johno M, Noguchi H, Matsumoto
T, Hiruma M, Kimura U, Kano R, Yaguchi T, Ihn H.
Subcutaneous cystic phaeohyphomycosis caused by Exo-
phiala jeanselmei. J Dermatol. 2019;46(12):e449–51.
60. Ramprasad A, Rastogi N, Xess I, Singh G, Ranjan P, Jadan
R, Ray A, Vikram N. Disseminated phaeohyphomycosis
by Exophiala jeanselmei. J QIM Monnt J Assoc Phys.
2020;113(4):305.
61. Tirico MC, Neto CF, Cruz LL, Mendes-Sousa AF, Valk-
inir DE, Spina R, Oliveira WR. Clinical spectrum of
phaeohyphomycosis in solid organ transplant recipients.
JAAD Case Rep. 2016;2(6):465–9.
62. Ito A, Yamada N, Kimura R, Tanaka N, Kurai J, Anzawa
K, Mochizuki T, Yamamoto O. Concurrent double fungal
infections of the skin caused by phialemoniosis endo-
phytica and Exophiala jeanselmei in a patient with micro-
scopic pyaangitis. Acta Dermato-Venereol. 2017;97(9):1142–4.
63. Leung EH, Moskalewicz R, Parada JP, Kovach KJ, Bouch-
ard C. Exophiala jeanselmei keratitis after laser in situ
keratomileusis. J Cataract Refract Surg. 2008;34(10):1809–11.
64. Hofling-Lima AL, Freitas D, Fischman O, Yu CZ, Roizenblatt R, Belfort R Jr. Exophiala jeanselmei causing
late endophthalmitis after cataract surgery. Am J Oph-
thalmol. 1999;128(4):512–4.
65. Li DM, Li Ry, de Hoog GS, Sudhadam M, Wang DL.
Fatal Exophiala infections in China, with a report of seven
cases. Mycoses. 2011;54(4):e136-142.
66. Chhonkar A, Kataria D, Tambe S, Nayak CS. Three rare
cases of cutaneous phaeohyphomycosis. Indian J Plast
Surg Off Publ Assoc Plast Surg India. 2016;49(2):271–4.
67. de Oliveira WR, Borsato MF, Darbonzo ML, Festa Neto C,
Rocha LA, Nunes RS. Phaeohyphomycosis in renal transplanta-
tion: report of two cases. An Bras Dermatol. 2016;91(1):89–92.
68. Roncoroni AJ, Smayevsky J. Arthritis and endocarditis
from Exophiala jeanselmei infection. Ann Intern Med.
1988;108(5):773.
69. da Silva Hellwig AH, Heidrich D, Zanette RA, Sgrofer-
neker ML. In vitro susceptibility of chromoblastomycosis
agents to antifungal drugs: a systematic review. J Glob
Antimicrob Resist. 2019;16:108–14.
70. Flynn BJ, Bourbeau PP, Cera PJ, Scicchitano LM, Jordan
RL, Yap WT. Phaeohyphomycosis of the epididymis
caused by Exophiala jeanselmei. J Urol. 1999;162(2):492–3.
71. Sartoris KE, Baille GM, Tiernan R, Rajagopalan PR.
Phaeohyphomycosis from Exophiala jeanselmei with con-
comitant Nocardia asteroides infection in a renal transplant
recipient: case report and review of the literature. Phar-
macotherapy. 1999;19(8):995–1001.
72. Nucci M, Akiti T, Barreiros G, Silveira F, Revankar SG,
and Cladophialophora Exophiala jeanselmei in a
patient with polymyalgia rheumatica. J Dermatol.
1999;128(4):512–4.
73. Iwatsu T, Miyaji M. Phaeomycotic cyst. A case with a
Wooden splinter. Arch Dermatol. 1999;162(2):492–3.
74. Severo LC, Oliveira FM, Vettorato G, Londero AT.
Mycetoma caused by Exophiala jeanselmei. Report of a
case successfully treated with itraconazole and review of
the literature. Rev Iberoam Micol. 1999;16(1):57–9.
75. Hammer ME, Harding S, Wynn P. Post-traumatic fungal
endophthalmitis caused by Exophiala jeanselmei. Ann
Ophthalmol. 1983;15(9):853–5.
76. Sautter RE, Bliss MD, Morrow D, Lee RE. Isolation of *Exophiala jeanselmei* associated with esophageal pathology: three cases, laboratory and clinical features. Mycopathologia. 1989;105(3):171–3.

77. Al-Hedaithy SS, Al-Kaff AS. Invasion of a soft contact lens by *Exophiala jeanselmei*. Mycoses. 1993;36(3–4):97–100.

78. Pepe RR, Vigolo G. First isolation of *Exophiala jeanselmei* (Lang) De Hoog from a dental granuloma. Ann Osp Maria Vittoria Torino. 1986;29(7–12):283–91.

79. Saeedi OJ, Iyer SA, Mohiuddin AZ, Hogan RN. *Exophiala jeanselmei* keratitis: case report and review of literature. Eye Contact Lens. 2013;39(6):410–2.

80. Laverde S, Moncada LH, Restrepo A, Vera CL. Mycotic keratitis: 5 cases caused by unusual fungi. Sabouraudia. 1973;11(2):119–23.

81. Ben-Simon GJ, Barequet IS, Grinbaum A. More than tears in your eyes (*Exophiala jeanselmei* keratitis). Cornea. 2002;21(2):230–1.

82. Naka W, Harada T, Nishikawa T, Fukushima R. A case of chromoblastomycosis with special reference to the mycology of the isolated *Exophiala jeanselmei*. Mycoses. 1988;31(2):70.

83. Komatsu-Fujii T, Nonoyama S, Ogawa M, Fukumoto T, Mtoya W, Harada T, Nishikawa T, Fukushiro R. A case of chromoblastomycosis with special reference to the mycology of the isolated *Exophiala jeanselmei*. Mycoses. 1988;31(2):70.

84. Espinel-Ingroff A, Shadomy S, Kerkering TM, Shadomy SJ, Delyon J, Le Cleach L, Guegan S, Ducroux F, Van Daele S, Lambrecht B, Bosma S, Vandercross K, Lortholary O, Migaud M, et al. Chronic and invasive fungal infections in solid-organ transplant recipients. J Am Acad Dermatol. 2020;83(2):455–62.

85. Hoffmann Cde C, Danucalov IP, Purim KS, Queiroz-Telles F. Infections caused by dematiaceous fungi and their anatocochanical correlations. An Bras Dermatol. 2011;86(1):138–41.

86. Khan SA. Calcancheal osteomyelitis caused by *Exophiala jeanselmei* in an immunocompetent child. J Bone Joint Surg Am. 2007;89(11):2547.

87. Seyedmousavi S, Netea MG, Mouton JW, Melchers WJ, Verweij PE, de Hoog GS. Black yeasts and their filamentous relatives: principles of pathogenesis and host defense. Clin Microbiol Rev. 2014;27(3):527–42.

88. Brandt ME, Warnock DW. Epidemiology, clinical manifestations, and therapy of infections caused by dematiaceous fungi. J Chemother (Florence, Italy). 2003;15(Suppl 2):36–47.

89. Valenzuela P, Legarraga P, Rabagliati R. Epidemiology of invasive fungal disease by filamentous fungi in the period 2005 to 2015, in a university hospital in Santiago, Chile. Revista Chilena de Infectologia. 2019;36(6):732–41.

90. Santos DW, Camargo LF, Gonçalves SS, Ogawa MM, Tomimori J, Enokihara MM, Medina-Pestana JO, Colombo AL. Melanized fungal infections in kidney transplant recipients: contributions to optimize clinical management. Clin Microbiol Infect. 2017;23(5):333.e339–333.e314.

91. Hoffmann Cde C, Danucalov IP, Purim KS, Queiroz-Telles F. Infections caused by dematiaceous fungi and their anatocochanical correlations. An Bras Dermatol. 2011;86(1):138–41.

92. Khan SA. Calcancheal osteomyelitis caused by *Exophiala jeanselmei* in an immunocompetent child. J Bone Joint Surg Am. 2007;89(11):2547.
106. Revankar SG, Nailor MD, Sobel JD. Use of terbinafine in rare and refractory mycoses. Fut Microbiol. 2008;3(1):9–17.

107. Abdolrasouli A, Gonzalo X, Jatan A, McArthur GJ, Francis N, Azadian BS, Borman AM, Johnson EM. Subcutaneous Phaeohyphomycosis Cyst Associated with Medcopsis romeroi in an Immunocompromised Host. Mycopathologia. 2016;181(9–10):717–21.

108. Aydın M, Özçelik U, Çevik H, Çınar Ö, Evren E, Demirag A. Multiple brain abscesses due to phialemonium in a renal transplant recipient: first case report in the literature. Exp Clin Transpl Off J Middle East Soc Organ Transpl. 2015;13(Suppl 3):77–80.

109. Hsu CC, Chang SS, Lee PC, Chao SC. Cutaneous alternariosis in a renal transplant recipient: a case report and literature review. Asian J Surg. 2015;38(1):47–57.

110. Adnan M, Özçelik U, Çevik H, Çınar Ö, Evren E, Demirag A. Multiple brain abscesses due to phialemonium in a renal transplant recipient: first case report in the literature. Exp Clin Transpl Off J Middle East Soc Organ Transpl. 2015;13(Suppl 3):77–80.

111. Kantarcioğlu AS, de Hoog GS. Infections of the central nervous system by melanized fungi: a review of cases presented between 1999 and 2004. Mycoses. 2004;47(1–2):4–13.

112. Najafzadeh MJ, Dolatabadi S, Vicente VA, de Hoog GS, Meis JF. In vitro activities of 8 antifungal drugs against 126 clinical and environmental Exophiala isolates. Mycoses. 2021;64(11):1328–33.

113. Borman AM, Fraser M, Szekely A, Larcombe DE, Johnson EM. Rapid identification of clinically relevant members of the genus *Exophiala* by matrix-assisted laser desorption ionization-time of flight mass spectrometry and description of two novel species, *Exophiala campbellii* and *Exophiala lavatrina*. J Clin Microbiol. 2017;55(4):1162–76.

114. Fothergill AW, Rinaldi MG, Sutton DA. Antifungal susceptibility testing of *Exophiala* spp.: a head-to-head comparison of amphotericin B, itraconazole, posaconazole and voriconazole. Med Mycol. 2009;47(1):41–3.

115. Odabasi Z, Paetznick VL, Rodriguez JR, Chen E, Ostrosky-Zeichner L. In vitro activity of anidulafungin against selected clinically important mold isolates. Antimicrob Agents Chemother. 2004;48(5):1912–5.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.