OSTEOPOROSIS AND PERIODONTITIS: A BIDIRECTIONAL RELATIONSHIP.

Paramjit Kaur Khinda, Jyotika Pasricha*, Amarjit Singh Gill, Deepkanwar Kaur
Department of Periodontology and Oral Implantology, Genesis Institute of Dental Sciences and Research, Ferozepur, India.
Email: resmile.zenflox@gmail.com

Received: 19 Mar, 2016
Accepted: 24 Apr, 2016

Abstract
Osteoporosis is a condition of compromised bone strength that predisposes an individual to an increased risk of fracture and is a major cause of morbidity in older susceptible individuals. Osteoporosis is related to various endocrinal abnormalities, metabolic and nutritional factors, post-menopausal hormonal changes and consumption of certain drugs such as cortisone. Emerging clinical and molecular evidence suggests that inflammation also exerts significant influence on osteoporotic bone changes. Numerous pro-inflammatory cytokines have been shown to be associated with regulation of osteoblast and osteoclast differentiation, resulting in a shift towards activated immune profile; hypothesized as an important risk factor for the condition. Chronic inflammatory conditions and the immune system remodeling characteristic of aging may be determinant pathological risk factors for osteoporosis. The present article reviews the current perspective on the interaction between bone morphology and immune system in the inflammatory condition (periodontitis), unleashing the link between two chronic conditions.

Keywords: Osteoporosis; periodontitis; pro-inflammatory cytokines; inflammation; bone remodeling; dual-energy X-ray absorptiometry.

INTRODUCTION

Periodontitis, an inflammatory disease characterized by resorption of alveolar bone as well as loss of soft tissue attachment of the tooth, is a major cause of tooth loss in adult population. Advances in science and technology over the last century have greatly expanded our knowledge on the pathogenesis of periodontal disease. Though periodontal disease is a infectious disease, but environmental, physical, social and various host stresses may affect and modify disease expression. There is an essential bacterial aetiology, and there are specific pathogenic bacteria (periodontal pathogens) associated with destructive periodontal disease. However, these pathogens do not invariably cause disease by their presence alone.

Current concept states that host response varies among different individuals and that an insufficient host immune response or an exaggerated immune response to bacterial pathogens may lead to more severe forms of the disease. Furthermore, certain systemic disorders and conditions alter host tissue physiology, which may impair host barrier integrity and immune response to bacterial pathogens, resulting in more destructive periodontal disease. Many systemic diseases and disorders have been implicated as risk indicator and/or risk factor in periodontal disease. Growing understanding of physiological bone remodelling suggests that factors involved in inflammation are linked with those critical for the aetopathogenesis of certain chronic bone disorders like osteoporosis.

Osteoporosis is a systemic skeletal disorder; characterized by low bone mass density and micro-architectural deterioration of bone tissue without any change in its chemical composition and subsequent increase in bone fragility and susceptibility to fracture. In this perspective osteoporosis may reflect a state of disequilibrium between structural demand for calcium and phosphate and their biologic demand during metabolically active states such as inflammation. According to National Osteoporosis Foundation, osteoporosis is a major public threat for an estimated 44 million of the US population (55% of people > 50 years of age) and almost twice that number have low bone mass and osteopenia (a condition of compromised bone strength that predisposes an individual to an increased risk of fracture and usually asymptomatic, becoming symptomatic when functional demand exceeds the structural viability of the skeleton). Osteoporosis and osteopenia can be differentiated on the basis of bone mineral density assessed using dual energy X-ray absorptiometry. Bone mineral density quantified using dual-energy X-ray absorptiometry scan can be defined in terms of T score. The T score compares the bone mineral density with the peak bone mineral density for an individual of the same age and gender and is reported as the number of standard deviations below that average. According to World Health Organization (WHO) osteoporosis is defined as bone mineral density (BMD) 2.5 standard deviations below normal. Bone mineral density scores 1.0 to 2.5 standard deviations below normal are diagnostic for osteopenia and scores of 0 to 1.0 are considered normal.

The incidence of osteoporosis is much higher in women (80%) than in men (20%). Appreciably one in two women over the age of 50 is susceptible to bone fracture because of osteoporosis. This may be attributed to the fact that women at peak mass attainment achieve less bone mineral content than males. In women, 98% of the skeletal mass built occurs by age of 20 years much earlier than in men; responsible for increased risk of osteoporosis. Whereas low levels of estrogen mainly causes accelerated bone loss perimenopausally.

Osteoporosis can be categorized into primary and secondary. Primary osteoporosis is associated with increased age and/or decreased sex hormones. A multitude of systemic diseases are also associated with an increased risk of osteoporosis, including hypogonadal states, endocrine disorders (Cushing’s syndrome, thyrotoxicosis), rheumatologic disorders (rheumatoid arthritis) and certain inherited diseases (osteogenesis imperfecta), hypophosphatasia, multiple myeloma, leukaemia and lymphoma. Secondary osteoporosis implies an underlying systemic cause which may include usage of certain medications, systemic factors affecting bone turnover, and low calcium intake.

Osteoporosis and Periodontal disease

Osteoporosis, characterized by imbalance in normal bone turnover physiology with net loss of bone and bone mineral density do affect oral bone turnover. Now, question arises to what extent is oral bone affected by altered bone physiology, and does it contribute to oral bone loss? In addition to the academic relevance of this
question, it is fundamental to proper clinical management of dentate and edentulous patients suffering from both osteopenia and osteoporosis. A rational dental treatment plan in such patients is not complete if proper management of systemic bone loss is not included.

Co-Risk factors for osteoporosis and periodontal disease:

Osteoporosis and periodontal disease are chronic multifactorial diseases. Thus, it is not surprising that both diseases share common risk factors. These risk factors can be classified as nonmodifiable or modifiable. [Table 1]

Table(1) Risk Factors Common To Periodontal Disease And Osteoporosis.

RISK FACTOR	MODIFIABLE	PREVENTION
Age	No	
Early menopause (Estrogen deficiency)	No	
Race	No	
Nutritional factors (Lack of Calcium, several vitamins)	Yes	Diet high in calcium and vitamins
Smoking	Yes	Smoking cessation
Alcohol	Yes	Decreased alcohol consumption
Heredity	No	
Diseases (e.g. Hyperparathyroidism)	To some extent	Treatment

Estrogen deficiency is dominant pathogenic factor for osteoporosis in postmenopausal women. Estrogen either directly or indirectly, modulates the production of cytokines and growth factors which in turn act as local regulators of the remodelling process. Cytokines under estrogen control with direct effects on bone cells include OPG, RANKL/RANK, IL-1 alpha, IL-1 beta, TNF-alpha, and granulocyte-macrophage colony-stimulating factor (M-CSF) secreted by monocytes and IL-6 secreted by osteoblasts. IL-1 induces the synthesis of IL-6, which increases bone resorption through osteoclast recruitment. Colony-stimulating factor plays a role in the maturation of osteoclasts. IL-1 and TNF-alpha stimulate mature osteoclasts, modulate bone cell proliferation, and induce bone resorption in vivo. In addition, IL-1, TNF-alpha, and GM-CSF contribute to bone resorption by promoting osteoclast recruitment and differentiation from bone marrow precursors. Thus, estrogen deficiency causes an increase in the number of osteoclasts, driven by the higher levels of same cytokines that down-regulate osteoblast generation in normal physiological conditions. This creates imbalance in normal physiological metabolism, favouring bone resorption.

In addition, estrogen may affect bone turnover indirectly by acting as an antagonist to PTH. But, the bone sparing effect of estrogen may be explained by its fundamental ability to interact with bone cells and modulate the cytokine circuitry. [15]

Norderyd and colleagues [16] reported lower, although not statistically significant, levels of clinical attachment loss and gingival bleeding in postmenopausal women receiving estrogen supplementation compared with estrogen-deficient postmenopausal women. A 5-year longitudinal study of 69 women (with menopause receiving hormone replacement therapy) compared lumbar spine BMD, with mandibular bone mass assessed by quantitative measures of standardized intraoral radiographs. A statistically significant but moderate correlation was observed between mandibular and lumbar spine bone mass and that estrogen replacement therapy after menopause had a positive effect on bone mass not only of the lumbar spine but the mandible as well. [17] Payne and colleagues showed, [18] in a 1-year longitudinal study of 24 postmenopausal women, that estrogen-deficient women displayed a mean net loss in alveolar bone density compared with estrogen sufficient women, who displayed a mean net gain in alveolar bone density. [Table 2]

Table(2) Relationship between estrogen status and periodontal disease

Smoking

Smoking interferes with efficient calcium absorption resulting in accelerated bone loss. A meta-analysis of 29 studies including 2,156 smokers and 9,750 nonsmokers examined the effect of cigarette smoking on skeletal bone mineral density. While bone density in premenopausal women was comparable in smokers and non-smokers, in postmenopausal women bone loss was greater in current smokers compared with non-smokers. [19] suggesting that the effect of smoking on skeletal BMD is modulated by estrogen.

A meta-analysis of available literature indicates that smokers have 2.5 times the risk for severe periodontal disease compared with nonsmokers, independent of the effects of age, socioeconomic factors, diabetes mellitus, or dental plaque. Furthermore, the risk is cumulative and dose dependent in that the severity of periodontal disease is related to the duration and amount of smoking. The greater severity of periodontal disease in males in part is explained by smoking as a risk factor.

Thus, smoking is considered the single most important modifiable risk factor for periodontal disease and osteoporosis.

Dietary Factors:

Adequate dietary calcium is essential for the growth and development of a normal skeleton. Insufficient calcium intake during childhood and adolescence can reduce peak bone mass attainment and enhance postmenopausal and age-related osteoporosis. [20] Individuals with diets deficient in calcium had statistically higher levels of periodontal disease compared with those with calcium
sufficient diets. This association was especially strong in younger and premenopausal women. Individuals with diets deficient in vitamins C, A, alpha-carotenoïds, selenium, and lutein also showed increased risk for periodontal disease, independently of the confounding effects of age, dental plaque, and smoking. Therefore, a diet complete in vitamins and minerals plays an important role, not only in ensuring achievement of peak bone mass and protection from age-related bone loss, but also protects against the destruction of connective tissue and alveolar bone resulting from periodontal infection.

Genetics Factors:

Osteoporosis is a multifactorial, polygenic condition involving multiple genes regulating the attainment of peak bone mass and possibly the control of bone turnover. The vitamin D receptor (VDR) is required for normal calcium absorption from the gut. Common allelic variants in the gene encoding the vitamin D receptor has direct effect on bone density. Other polymorphisms imparting susceptibility to osteoporosis include the binding site in collagen type I alpha 1 (COL1A 1) gene, transforming growth factor-beta (TGF-β) gene, the estrogen receptor as well as genes regulating cytokines involved in bone turnover. Susceptibility to periodontal infection appear to be under genetic regulation as well as influenced by several genes. Candidate genes for susceptibility to periodontal disease include genes defining the FcγR II receptor, genes regulating immunoglobulin synthesis, especially IgG2, and genes regulating cytokine synthesis determining bone turnover.

Is Osteoporosis an inflammatory condition?

Clinical observations reveal coincidence of systemic osteoporosis with period of systemic inflammation as well as co-localization of regional osteoporosis with areas of regional inflammation. Different epidemiological studies report an increase in the risk of developing osteoporosis in various inflammatory conditions. Immunochemical dysfunction, autoimmunity and various inflammatory conditions, hyper IgE syndrome, rheumatoid arthritis, haematological disorders, particularly myeloma and inflammatory bowel diseases are associated with osteoporosis.

C-reactive protein (CRP), a pentameric protein found in blood plasma is elevated during conditions of active inflammation. C-reactive protein production in liver is upregulated by various pro-inflammatory cytokines like IL-1, IL-6 and TNF-alpha and is regarded as sensitive marker of systemic inflammation. An association between circulating levels of high sensitive (hs) CRP and bone mineral density has been observed in several immune and inflammatory conditions, suggesting an association between subclinical systemic inflammation and osteoporosis.

On the other hand, an intriguing aspect of immunosenescence is the increased production of pro-inflammatory cytokines with aging (inflamm-aging). As age advances, continuous exposure to chronic antigenic load and oxidative stress may impair the normal physiological counter-regulatory mechanism; which inhibits bone resorption following T-cell activation. This would contribute, together with low grade systemic inflammation, to increasing incidence of osteoporosis during senescence.

Excessive osteoclastic resorption is a common feature of chronic inflammatory processes such as periodontal disease. The underlying mechanism of increased bone resorption may be directed by increased systemic/local osteoclastic activity, or by elevated local cellular or cytokine profile. In physiological bone remodelling, the cell-to-cell contact between receptor activator of nuclear factor-κB ligand (RANKL)-expressing osteoclasts and RANK-expressing monocyte/osteoclast precursor cells is crucial. In inflammatory processes activated T lymphocytes express higher levels of RANKL, increasing the possibility of osteoclast differentiation and synthesis. RANKL is inhibited by osteoprotegerin (OPG) released by stromal cells and osteoblasts. B lymphocytes may also participate in osteoclast formation, either by expressing RANKL or by serving as osteoclast progenitor cells themselves. Interestingly, studies have shown that RANKL mRNA is upregulated in the gingiva of patients with advanced periodontitis. On the other hand, osteoprotegerin (OPG) mRNA is downregulated. The hypothesis linking osteoprotegerin and periodontal disease is strengthened by studies involving many gram-negative bacteria. Bacterial infection by these pathogens may trigger RANKL activation and subsequent osteoclast proliferation and activation, inducing osteoporotic bone changes in patients with periodontal infection.

Since the expression of RANKL/RANK may be controlled by sex hormones, it is possible to speculate that this system may control gender specific differences in immunity and could be involved in higher incidence of autoimmune diseases and osteoporosis in women. RANKL, RANK and OPG are considered as interesting molecular links between bone remodelling, immunity and inflammation.

Another factor, nitrous oxide (NO) has both anabolic and catabolic effects on bone metabolism. The role of NO is controversial, in that low levels of NO maintain homeostasis, whereas high levels of NO induce bone resorption as seen in many inflammatory conditions. Also, NO is an important element of the host defense mechanism against P. gingivalis, a primary periodontal pathogen. Thus activation of the inducible NO synthase pathway by cytokines, such as IL-1 and TNF-α, inhibits osteoblast function in vitro and stimulates osteoblast apoptosis shifting bone physiology towards resorption.

Recently, some studies have reported an association between osteoporosis and oral bone loss in periodontal disease, first attempt for which was made as early as 1960. Most of the research carried out on mandibular bone revealed a relationship between systemic and oral bone loss evaluated by means of radiography, histology (microradiography), single-photon absorptiometry (SPA), dual-photon absorptiometry (DPA), quantitative CT (QCT) and more recently, dual-energy X-ray absorptiometry (DEXA).

Relationship of Skeletal bone mass to Mandibular Bone Density:

It has long been postulated that mandibular bone density may be indicative of systemic bone mineral density. In a classic series of studies, Kribbs and colleagues addressed this relationship in both normal and osteoporotic women. In an early study total body calcium as assessed by neutron activation analysis, was found to be associated with mandibular density as measured by quantitative analysis of intraoral radiographs. Later study in normal, non-osteoporotic women, revealed that mandibular bone mass was not affected by age but was significantly associated with skeletal bone mass at the spine and wrist. [TABLE 3] A study conducted by Melescanu-Imer et al 2009 revealed no relationship between alveolar bone mass and skeletal BMD but mandibular cortical thickness was influenced by estrogen levels.

Alveolar Crestal Height and Osteoporosis:

Several studies were conducted to determine the relationship between crestal bone level and skeletal BMD. Elders et al and Kalmetti et al failed to determine any positive co-relation between
alveolar bone and skeletal bone mass. Wactawski-Wende et al, in a study of 70 postmenopausal women, found a significant relationship between alveolar crestal bone height as a measure of periodontitis and skeletal osteopenia (femur and lumbar spine) measured by DXA.56 This relationship was seen after controlling for possible confounders such as dental plaque, years of menopause, and smoking. In addition, there was a relationship between osteopenia at the hip and probing attachment loss in this same group. Payne et al57 and Tezal et al58 were able to establish positive co-relation between alveolar bone height and BMD spine and hip. [TABLE 4]

Tooth loss and Osteoporosis:

Several studies have demonstrated a relationship between tooth loss and systemic osteoporosis in both dentate and edentulous individuals. Daniell and colleagues suggested that systemic bone loss was a risk factor for edentulism.59 Women with severe osteoporosis, defined as extreme thinning of the metacarpal cortical area, were three times more likely (44% versus 15%) to have no teeth compared with healthy, age-matched controls. In a study of 329 healthy postmenopausal women, for each additional tooth present, spinal BMD increased 0.003 g per cm².62 Taguchi and colleagues showed that a decrease in mandibular bone density, estimated as mandibular cortical width, correlated with tooth loss for women in their sixties. Collectively, this evidence indicates that osteoporotic women have lost significantly more teeth, and more are edentulous compared with non-osteoporotic women. [TABLE 5]

Periodontal Disease and Osteopenia/Osteoporosis:

Payne and his colleagues demonstrated a prospective study, positive co-relation between periodontal destruction and BMD at spine and hip. Yoshihara and colleagues also demonstrated similar results in another prospective study.59 von Wowern and colleagues in a case-control study comparing 12 female patients with osteoporotic fractures and 14 normal women, reported significantly greater periodontal attachment loss in the osteoporotic women compared with the normal women. They found that the osteoporotic women had less mandibular bone mineral content, as measured by dual photon absorptiometry, than the 14 normal women. This association was increased even further in postmenopausal females.73 [TABLE 6]

Hence, though limited, the evidence from various studies suggest an association between osteopenia, osteoporosis, and periodontal disease.

Evidence suggests that hormone replacement therapy improves bone density in postmenopausal women. In a 3-year randomized trial in postmenopausal women with moderate to advanced periodontal destruction, estrogen therapy significantly improved alveolar bone density compared with placebo (p<.04), along with increase in bone mineral density of the femur but not in the lumbar spine.77 Furthermore, women receiving hormonal therapy had significantly less gingival inflammation, lower plaque scores, and lesser loss of attachment.

Using osteoporosis treatment as a basis, many studies have tried to use similar approaches in treating periodontal disease, deepening the relationship between the two diseases. Parathyroid hormone (PTH) produces several distinct effects on the entire bone remodelling process, because it influences both bone formation and bone resorption. Recent studies have indicated that intermittent doses of PTH have an efficient systemic anabolic effect, reducing bone resorption especially in estrogen deficient osteoporotic cases.78 A study conducted by Marques MR concluded that systemic administration of PTH reduces alveolar bone loss in ovariectomized rats, despite the presence of periodontal disease inducer and estrogen deficiency.79

DISCUSSION:

Although number of studies have found that the density of the alveolar bone in the mandible correlated with the density of the bone in the rest of the skeleton and that generalized bone loss may render the jaw susceptible to accelerated alveolar bone resorption, these findings are not universal. Many other cross-sectional studies and longitudinal studies fail to establish association between systemic bone loss, periodontal disease, and edentulism. Thus, further studies should be attempted to clarify this correlation; as majority of studies determining the relationship between periodontitis and osteoporosis have been hindered by small sample size, limited control of other confounding factors, varying definitions of both periodontal disease and osteoporosis and few perspective studies where association between periodontal disease and osteoporosis had been established. Other types of study design including long term follow up, intervention before menopause and investigation of oral conditions during the menopausal phase need to be practiced.

Characterization of the functions of RANKL-OPG axis has significantly contributed to the emergence of osteoimmunity, helping us in examination of the interplay between active immunity and maintenance of bone homeostasis. In the relationship between periodontal disease and osteoporosis, detailed knowledge of the molecular mechanisms involved in RANKL-RANK activation and downstream signalling could generate new pharmacological principles for the inhibition of excessive bone resorption in various periodontal pathological conditions. Though modulating the immune system is a delicate work, targeting the alterations of the axis may form the basis for rational drug therapy in treating periodontal infection effectively.

CONCLUSION

As stated earlier periodontal disease is multifactorial disease and the main factor responsible for periodontal disease is microbial plaque, osteoporosis therefore, cannot be the aetiological agent causing the onset of periodontal disease, but after the outbreak of the disease, it may be a predisposing factor in the exacerbation, or persistence of the disease. Periodontal disease itself an inflammatory condition, could alter the course of several chronic conditions like osteoporosis due to generation of activated immune profile. Hormonal Replacement Therapies found beneficial in preventing the progression of periodontal disease in postmenopausal women indicate that osteoporosis is definitely a risk factor for periodontal destruction within the female population.

An important implication as a healthcare provider would be to serve as a pre-screener of patients with the potential risk for osteopenia and osteoporosis as familiarity with the risk factors could help identify these individuals and aid in early diagnosis.

References

1) Papapanou PN. Periodontal diseases: epidemiology. Ann Periodontol 1996;1:1-36.
2) Mealey BL. Periodontal implications: medically compromised patients. Ann Periodontol 1996;1:256-321.
3) Page RC, Beck JD. Risk assessment for periodontal diseases. Int Dent J 1997;47:61-87.
4) Monteiro da Silva AM, Oakley DA, Newman HN, Nohl FS, Lloyd HM. Psychological factors and adult onset rapidly progressive periodontitis. J Clin Periodontol 1996;23:789-794.
1) Mealey BL. Influence of periodontal infections on systemic health. Periodontol 2000 1999;21:197-209.
2) Klokkevold PR, Mealey BL. Influence of Systemic Disorders and Stress on the Periodontium. In: Carranza FA, editor. Carranza's Clinical Periodontology. 10th ed. United States of America: Saunders Publishers;2009. p.284-311.
3) Ginardi L, Benedetto MC, Martinis M. Osteoporosis, Inflammation and Ageing. Immunity & Ageing 2005;2:14.
4) NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, diagnosis and Therapy. JAMA 2001;285:785-795.
5) Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 2000; 908:244-254.
6) Otomo-Corgel J. Osteoporosis And Osteopenia: Implications For Periodontal And Implant Therapy. Periodontol 2000 2002;59:111-139.
7) Reddy MS. Osteoporosis and Periodontitis: Discussion, conclusion and recommendations. Ann Periodontol 2006;6:214-217.
8) WHO technical Report series NO. 843.1994. WHO study group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis.
9) WHO technical Report series NO. 921.2003. WHO study group. Prevention and Management of Osteoporosis.
10) JAMA 1994;272:1942-1948.
11) Payne JB, Zachs NR, Reinhardt RA, Nurmikoski PV, Patil KD. The association between estrogen status and alveolar bone density changes in postmenopausal women with a history of periodontitis. J Periodontol 1997;68:24-31.
12) Law MR, Hackshaw AK. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ 1997;315:841-846.
13) Nishida M, Grossi SG, Dunford RG, Ho AW, Trevisan M, Genco RJ. Nutrition and risk for periodontal disease. I. Dietary and serum calcium. J Periodontol 2000;71:1057-1066.
14) Nishida M, Grossi SG, Dunford RG, Ho AW, Trevisan M, Genco RJ. Nutrition and risk for periodontal disease. II. Dietary vitamin C. J Periodontol 2000;71:1215-1223.
15) Hamson G, Evans C, Pettitt RJ, Evans WD, Woodhead SJ, Peters JR et al. Bone mineral density, collagen type 1 alpha 1 genotypes and bone turnover in premenopausal women with diabetes mellitus. Diabetologia1998; 41(11):1314-1320.
16) Yamada Y, Miyachi A, Goto J, Takagi Y, Okuzumi H, Kanematsu M, et al. Association of polymorphism of the transforming growth factor beta 1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res1998;13(10):1569-1576.
17) Grant SFA, Ralston SH. Genes and osteoporosis. Trends Endocrinol Metab1997;8:232-236.
18) Michalowitz BS. Genetic and heritable risk factors in periodontal disease. J Periodontol 1994;65:479-488.
19) Yun AJ, Lee PY. Maladaptation of the link between inflammation and bone turnover may be a key determinant of osteoporosis. Med Hypotheses 2004;63:532-537.
20) Walsh NC, Gravallese EM. Bone loss in inflammatory arthritis: mechanisms and treatment strategies. Curr Opin Rheumatol 2004;16:419-427.
21) Leung DY, Gehr RS. Clinical and immunologic aspects of the hyperimmunoglobulin E syndrome. Hematol Oncol Clin North Am 1988;2:81-100.
22) Jensen T, Klarlund M, Hansen M, Jensen KE, Skjødt H, Hyldlåstrup L. Connective tissue metabolism in patients with unclassified polyarthritis and early rheumatoid arthritis. Relationship to disease activity, bone mineral density, and radiographic outcome. J Rheumatol 2004;31:1698-1708.
23) Abrahamsen B, Anderssen I, Christensen SS, Madsen JS, Brixen K. Utility of testing for monoclonal bands in serum of patients with suspected osteoporosis: retrospective, cross sectional study. Br Med J 2005;330:818-821.
24) Moschen AR, Kaser A, Enrich B, Ludwiczek O, Gabriel M, Obrist P, et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 2005;54:479-487.
25) Koh JM, Khang YH, Jung CH, Bae S, Kim DJ, Chung YE, et al. Higher circulating hs CRP levels are associated with lower bone mineral density in healthy pre-and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int. 2005;16:1263-1271.
26) Muller B. Cytokine imbalance in non immunological chronic disease. Cytokine 2002; 18:334-339.
27) Ganesan K, Teklehaimanot S, Tran TH, Asuncion M, Norris K. Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females. J Nati Med Assoc 2005;97:329-333.
28) Manabe H, Kawauchi H, Chikuda H, Miyaura C, Inada M, Nagai R, et al. Connection between B lymphocyte and osteoclast differentiation pathways. J Immunol 2001;167:2625-2631.
29) Liu D, Xu JK, Filiglomei L, Huang L, Pavlos NJ, Rogers M et al. Expression of RANKL and OPG mRNA in periodontal disease. Possible involvement in bone destruction. Int J Mol Med 2003;11:17-21.
30) Nagasawa T, Kobayashi H, Kii J, Aramaki M, Mahanada R, Kojima T, et al. LPS-stimulated human gingival fibroblast inhibits the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin Exp Immunol 2002;130:338-344.
31) Lohinai Z, Stachlewitz R, Virag L, Szekely AD, Hasko G, Szabo C. Evidence for reactive nitrogen species formation in gingivomucosal tissue. J Dent Res 2001;80:470-475.
32) Gyurko R, Boustany G, Huang PL, Kantarci A, Van Dyke TE, Genco CA, et al. Mice lacking inducible nitric oxide synthase demonstrate impaired killing of Porphyromonas gingivalis. Infect Immun 2003;18:39-46.
33) Armour KJ, Armour KE, van't Hof RJ, Reid DM, Wei XQ, Liew FY, et al. Activation of the inducible nitric oxide synthase pathway contributes to inflammation induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. Arthritis Rheum 2001;44:2790-2796.
42) Jagelaviciene E, Kubilius R. The relationship between general osteoporosis of the organism and periodontal diseases. Medicina (Kaunas) 2006;42:613-618.

43) Von Wouwn N. Dual-photon absorptiometry of mandibles: in vitro test of a new method. Scand J Dent Res 1985;93:169-177.

44) Kribbs PJ, Chensut CH III, Ott SM, Kilcoyne RF. Relationships between mandibular and skeletal bone in an osteoporotic population. J Prosthet Dent 1989;62:703-707.

45) Hildebolt CF, Rupich RC, Vannier MW, Zerbolio DJ, Jr, Shroot MK, Cohen S, et al. Inter-relationships between bone mineral content measures. Dual energy radiography (DER) and bitewing radiographs (BWX). J Clin Periodontol 1993;20:739-745.

46) Kribbs PJ, Smith DE, Chensut CH. Oral findings in osteoporosis. Part 1. Relationship between residual ridge and alveolar bone resorption and generalized skeletal osteopenia. J Prosthet Dent 1983;50:719-724.

47) Kribbs PJ, Chensut CH, Ott SM. Relationships between mandibular and skeletal bone in a population of normal women. J Prosthet Dent 1990;63:86-89.

48) Homer K, Devlin H, Alsop CW, Hodgkinson IM, Adams JE. Mandibular bone mineral density as a predictor of skeletal osteoporosis. Br J Radiol 1996;69:1019-1025.

49) Imre MM, Preoteasa E. Mandibular Panoramic Indexes Predictors of Skeletal Osteoporosis for Implant Therapies. Curr Health Sci J. 2009;25:155-161.

50) Cakar B, Dagistan S, Ahin AS, Harorl A, Yilmaz AB. Reliability of mandibular cortical index and mandibular bone mineral density in the detection of osteoporotic women. Dentomaxillofac Rad 2009;38:255-261.

51) Duncea I, Pop A, Georgescu CE. The relationship between osteoporosis and the panoramic mandibular index. HVM Bioflux 2013;5:14-18.

52) Humphries S, Delvin H, Worthington H. A Radiographic investigation into bone resorption of mandibular alveolar bone into elderly edentulous patients. J Dent 1989;17:94-96.

53) HiraT, Ishijima T, Hashikama Y, Yajima T. Osteoporosis and reduction of alveolar ridge in edentulous patients. J Prosthet Dent 1993;69:49-56.

54) Wactawski-Wende J, Grossi SG, Trevisan M, Genco RJ, Tezal M, Dunford RG, et al. The role of osteopenia in oral bone loss and periodontal disease. J Periodontol 1996;67:1076-1084.

55) Payne JB, Reinhardt RA, Nummikoski PV, Dunning DG, Patil KD. The association between cigarette smoking and alveolar bone loss in postmenopausal females. J Clin Periodontol 2000;27:658-667.

56) Tezal M, Wactawski-Wende J, Grossi SG, Ho AW, Dunford R, Genco RJ. The relationship between bone mineral density and periodontitis in postmenopausal women. J Periodontol 2000;71:1492-1498.

57) Elders PJ, Habets LL, Netelenbos JC, van der Linden LW, van der Stelt PF. The relation between periodontitis and systemic bone mass in women between 46 and 55 years of age. J Clin Periodontol 1992;19:492-496.

58) Klemetti E, Kolmakov S, Heiskanen P, Vainio P, Lassila V. Panoramic mandibular index and bone mineral densities in postmenopausal women. Oral Surg Oral Med Oral Pathol 1993;75:774-779.

59) Daniell HW. Postmenopausal tooth loss. Contributions to Edentulism by osteoporosis and cigarette smoking. Arch Intern Med 1983;143:1678-1682.
periodontitis-associated bone loss in ovariectomized rats. Arch Oral Biol 2005;50:421-429.

Table(2) Relationship between estrogen status and periodontal disease

Author	Periodontal parameter	Osteoporosis assessment	Study design	Results
Norderyd et al, 1993¹⁶	CAL, gingival bleeding and levels of plaque	234 postmenopausal women (57 ERT; 177 non-ERT)	Cross-sectional	ERT associated with less gingivitis in postmenopausal women
Payne et al, 1997¹⁷	Alveolar bone density	24 postmenopausal women (10 estrogen sufficient; 14 estrogen deficient)	Longitudinal	Estrogen status may influence alveolar bone density status
Jacobs et al, 1996¹⁸	BMC; mandible	BMC; lumbar spine	Longitudinal	Estrogen status directly related to mandibular bone mass

Table(3) Relationship between Skeletal and Mandibular bone density

Author	Oral measure	Osteoporosis assessment	Study Design	Results
Kribbs et al, 1983¹⁶	Mandibular bone density	Total body calcium	Cross-sectional	Positive
Kribbs et al, 1989¹⁴	Mandibular bone mass	Total body calcium, bone mass at radius and bone density at spine	Cross-sectional	Positive
Kribbs et al, 1990¹⁷	Mandibular bone density	Bone mass at wrist and spine (normal women) Osteoporotic group had less mandibular bone mass and density	Cross-sectional	Positive
Homer et al 1996	BMD mandibular body, ramus, symphysis	BMD lumbar spine, femoral neck, forearm		Positive
Melescanu-Imre et al 2009	Alveolar bone mass	Skeletal BMD		Negative
Melescanu-Imre et al 2009	Mandibular angular cortex density	Estrogen use		Positive
B Cakur et al 2009	Mandibular cortical index	Skeletal BMD		Negative
Ducnea et al 2013	Panoromic mandibular index	BMD hip, femoral neck		Positive

Studies performed to determine relationship between Mandibular Bone Density and Osteoporosis
Table(4) Studies Performed To Determine The Relationship Of Osteoporosis And Alveolar Crestal Height.

Author	Oral Measure	Osteoporosis Assessment	Epidemiological Design	Results
Humphries et al 1989 52	Residual ridge resorption	Gender, age	Cross sectional	Positive
Elders et al 1992 53	Alveolar bone height	BMD spine, Metacarpal cortical thickness	Cross sectional	Negative
Klemetti et al 1993 54	Crestal alveolar bone loss	Cortical or trabecular density		Negative
Hirai et al 1993 55	Residual ridge resorption	Osteoporosis	Cross sectional	Positive
Wactawski-Wende et al 1996 56	Alveolar crestal height	BMD spine, hip	Cross sectional	Positive
Payne et al 2000 57	Alveolar crestal height	BMD spine	Prospective	Positive
Tezal et al 2000 58	Alveolar crestal height	BMD spine, hip	Cross sectional	Positive

Studies determining the relationship of Osteoporosis and Alveolar Crestal Height.

Table(5) Studies Linking Osteoporosis and Number of Teeth Present.

Author	Oral Measure	Osteoporosis Assessment	Epidemiological Design	Results
Daniell et al 1983 59	Edentulism	Metacarpal index	Cross sectional	Positive
Kribbs et al 1990 60	Edentulism	Osteoporosis	Cross sectional	Positive
Astron et al 1990 61	Tooth loss	Hip fracture	Prospective	Positive
Krall et al 1994 62	Number of Teeth	BMD spine/ forearm	Cross sectional	Positive
Taguchi et al 1995 63	Number of Teeth	Mandibular cortical width	Cross sectional	Positive
Taguchi et al 1995 64	Number of Teeth	Fracture spine	Cross sectional	Positive
Krall et al 1997 65	Number of Teeth	Estrogen use	Cross sectional	Positive
Mohammad et al 1997 66	Tooth loss	BMD spine	Cross sectional	Negative
Hildebolt et al 1997 67	Number of Teeth	BMD spine, hip	Cross sectional	Negative
Earnshaw et al 1998 68	Number of Teeth	BMD	Cross sectional	Negative

Studies on relationship between Osteoporosis and number of teeth present.

Table(6) Studies Determining Relationship Between Osteoporosis and Clinical Attachment Level.

Author	Periodontal Parameters evaluated	Osteoporosis Assessment	Epidemiological Design	Results
Yoshihara et al 2004 69	CAL	BMD	Prospective	Positive
Payne et al 2000 57	Bleeding on probing, plaque	BMD spine, hip, wrist	Prospective	Positive
Tezal et al 2000 58	CAL	Osteoporosis	Cross sectional	Positive
Richardt et al 1999 70	CAL	Serum Estradiol levels	Prospective	Negative
Mohammad et al 1997 66	CAL, Gingival recession	BMD spine	Cross sectional	Positive
Hildebolt et al 1997 67	CAL	BMD spine, hip	Cross sectional	Negative
Mohammad et al 1996 71	CAL	BMD spine	Cross sectional	Positive
von Wowern et al 1994 72	CAL	Fracture	Cross sectional	Positive
von Wowern et al 1992 73	CAL	BMC	Prospective	Negative
Kribbs et al 1990 60	PD/CAL	Osteoporosis	Cross sectional	Negative
Kribbs et al 1989 44	PD	BMD	Cross sectional	Positive
Ward and Manson 1973 74	PD	Metacarpal index	Cross sectional	Negative
Phillips and Ashey 1973 75	PD	Metacarpal index	Cross sectional	Positive
Groen et al 1968 76	CAL	Osteoporosis X-ray		Positive