Excess of Social Behavior Reduces the Capacity to Respond to Perturbations

David Mateo, Yoke Kong Kuan, and Roland Bouffanais
Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372

Social interaction increases significantly the performance of a wide range of cooperative systems. However, evidence that natural swarms limit the number of social connections suggests potentially detrimental consequences of excessive social activity. Using a canonical model of collective motion, we find that the responsiveness of a swarm to local perturbations is reduced when the social interaction exceeds a certain threshold. We uncover a similar effect for two distinct collective decision-making models of distributed consensus operating over a range of static networks. While increasing the amount of interaction always increases the capacity of these systems to adapt to slow changes, an excess of social behavior can hinder the swiftness of their response to fast perturbations. These results have far-reaching implications for the design of artificial swarms or interaction networks.

Social interaction is critical for swarms to perform an effective and coordinated response to changing environments. Social activity and the associated transmission of information through the interaction network have recently attracted considerable attention in a wide range of complex systems: from the biological realm—from flock of birds [1, 2], school of fish [3–6], swarm of insects [7–9], and human crowds [10]—and social networks [11], to artificial multi-agent systems such as the power grid [12, 13] and robotic swarms [14, 15]. The characteristics of the interaction network are known to strongly affect the swarm dynamics [16–18] and, in particular, its capacity to respond to local perturbations [4, 6, 19, 20].

Increasing the amount of social interaction usually improves the performance of collectives, but it is known that most natural swarms operate with a limited number of social connections. For instance, flocking starlings interact on average with a fixed number of conspecifics—6 to 7 [21]—and swarms of midges [8] regulate their nearest-neighbor distance depending on the size of the swarm. Gordon et al. [22] have shown that one species of ants (L. fuliginosus) regulate its rate of social encounters following: (i) changes in the nestmate density for undisrupted ant colonies, and (ii) the introduction of an external perturbation—workers from another colony—in the colony. This limited interaction appears to be a behavioral feature and not a direct result of physical limitations of their sensing capabilities. These findings suggest that excessive social activity could be detrimental to the collective dynamics, potentially hindering its responsiveness to environmental changes.

Experimental evidence of such detrimental effects has been found in the collective dynamics of midges, where the susceptibility of the system diminishes if the amount of interaction—inferrred from density—is increased above a certain value [8]. From the theoretical standpoint, some models of decision-making dynamics predict that overreliance on social information can render a collective unresponsive to changing circumstances [22, 24]. Models of consensus in mobile communicating agents have also shown that consensus can be reached more efficiently with a limited interaction range [25], which is strictly equivalent to having a limited number of connections. Understanding the consequences of excessive social activity is critical for achieving new functional predictions on collective animal behavior [3, 4], and for the study of spreading of behaviors in networked systems such as online communities [13]. From a technological viewpoint, developing a predictive theoretical framework to understand under which circumstances these effects appear is of paramount importance for the emerging field of large-scale swarm robotics [14, 15].

Here, we investigate the relationship between the number of social connections and the responsiveness of the collective. First, we present an analysis of the correlations in swarms following a classical model of collective motion in which self-propelled particles (SPPs) move by adjusting their direction of travel to that of their neighbors. Second, we extend the study beyond swarm dynamics by considering a general distributed decision-making model. We measure how the properties of the interaction network affect the dynamics of the collective decision when facing external influences. Finally, we develop an analytical framework based on linear time-invariant (LTI) theory that allows us to establish how the connectivity of a networked multi-agent system affects its overall responsiveness. This framework may be used to determine policies on interaction regulation for optimal dynamical response to a given perturbation.

RESULTS

Correlations in swarms

A natural starting point to characterize the responsiveness of the collective motion is to study the connected correlation in fluctuations of the consensus variable and the associated susceptibility [8]. It has been proposed that most biological systems may be poised near criticality [20], that is, they reside near the critical point between ordered and disordered phases where the system becomes highly correlated and thus has a large susceptibility. This has been proven to be the case for swarms of...
midges lacking global collective order \[8\]. Specifically, it was observed that these swarms keep a low global alignment while exhibiting high levels of directional correlations \[7, 8\].

Being at the edge of chaos is apparently a favorable strategy for collectives faced with dynamical environmental perturbations. However, some swarms such as starlings \[2\] display a high degree of emergent global alignment. If these swarms rely on a high level of order to perform collective actions—migration, milling, transport, etc—then being poised near criticality may not be a viable option for them.

Following the framework developed by Attanasi et al. \[7, 8\], we compute the connected correlation in velocity fluctuations \(C(r)\) (Eq. \(3\)) for a swarm composed of \(N = 2,048\) SPPs while varying the number of neighbors \(k\). We perform the calculations in the low noise regime in order to investigate the behavior of swarms displaying a high degree of alignment (see Methods). Even in the ordered phase and far from the critical point, we find that the system can exhibit a large susceptibility if the amount of social interaction is set to an appropriate level (inset of Fig.\(1\)). The susceptibility \(\chi\) (Eq. \(7\)) is limited by the intrinsic trade-off between the spatial spread of correlation and its short-range intensity: an increase in the sociality (or amount of social interaction, see Methods) allows the information to travel farther through the network—increased correlation length—but causes each agent to be exposed to more information, thus decreasing the relevance of each individual signal—decreased correlation strength.

The correlation function is shown in Fig. \(1\) for three different values of the number of neighbors \(k\), illustrating the clear trade-off between correlation spread and intensity. For small values of \(k\) (e.g. \(k = 4\) in Fig. \(1\)), correlations are large but confined to short distances. As the amount of social interaction increases, so does the spread of correlations and thus the susceptibility \(\chi\). Above a certain optimal number of neighbors, which is approximately \(k^* \approx 20\) for the particular configuration used in our calculation, the increase in spatial spread cannot compensate for the reduction in correlation strength and the susceptibility of the system diminishes with increasing sociality.

Collective response to a predator attack

In order to illustrate how a highly aligned swarm can benefit from a large susceptibility, we have performed a model simulation of a predator attacking a group of SPPs following the Vicsek consensus and measured the survival rate of agents with different levels of social interaction (see Methods). The emergent collective avoidance maneuver is shown in Fig. \(2\) for three selected snapshots of a predator attack and in movies M1-M3 (see Supplementary Information). At \(t_0\) (leftmost frame), the predator starts the attack on a highly-aligned section of the swarm. Only the agents that detect the predator—those inside the red disk—react according to Eq. \(8\). After 13 iterations, agents outside the detection area are collectively reacting to the threat thanks to the social information transmitted through the swarm. After 26 iterations from the start of the attack, all agents in the vicinity of the predator perform a global evasive maneuver. Notice that the information transfer has taken place strikingly fast, which is in good agreement with recent empirical observations of collective turns in flocks of starlings \[1\] and startled schools of fish \[3, 27\].

It is worth pointing out that animals avoid predators using behaviors and strategies considerably more sophisticated than the model presented here. For instance, Rosenthal et. al \[27\] have shown how schooling golden shiner fish use visual cues such as a fast change in speed to signal to other members the necessity to flee. However, this idealized model illustrates how classical concepts from statistical mechanics such as the susceptibility can be linked to aspects of a collective’s behavior crucial for the survival of its members. A similar case could be made for the capacity of swarms to forage for food,
FIG. 2. Collective evasive action induced by a predator attack. The SPPs (empty blue arrows) can only detect the threat (solid white arrow) inside the danger-detection region shown in red. In each consecutive frame, more agents outside this circle are able to flee without detecting the predator thanks to cooperative social behavior. Each square in the background grid has a side of length 10% that of the total computation box.

achieve optimal pattern formation, or other examples of animal collective behavior where a timely response to perturbations is critical [28, 29].

The characteristic avoidance time for the swarm, defined as the average time elapsed between two consecutive catches by the predator, is shown in Fig. 3(a) as a function of the mean number of neighbors for both metric and topological interactions. In the latter case, the mean is exactly the imposed outdegree value k, while in the former the average is computed over all agents and iterations. Interestingly, both interactions yield essentially the same outcome. Starting from a noninteracting collective ($\langle k \rangle = 0$), the avoidance time grows with the amount of social interaction up to a maximum value about 40% larger than the noninteracting time. From that optimal point at approximately 20 neighbors, the avoidance time monotonously decreases with increasing sociality, down to the value obtained for a noninteracting collective. In order to better understand how sociality influences the avoidance time, Movies M1 to M3 in the Supplemental Information present the movement of the swarm for each of the three characteristic regimes: optimal sociality ($k = 16$), insufficient sociality ($k = 4$), and excessive sociality ($k = 40$) respectively.

Taking the avoidance time as a measure of the capacity of a swarm to respond to localized perturbations, we can assess its relationship with susceptibility. Figure 3(b) shows how the avoidance time for a particular sociality varies with the susceptibility χ of the equivalent unperturbed swarm. Figure 3(b) unambiguously shows a systematic improvement in responsiveness with increased correlations.

FIG. 3. Efficiency in predator avoidance. (a): Mean number of iterations between two consecutive predator catches (avoidance time) as a function of the average number of neighbors $\langle k \rangle$ for metric (red, □) and topological (blue, ○) interactions. (b): Mean avoidance time as a function of the susceptibility χ of the equivalent unperturbed (in the absence of a predator) swarm.
Influence of connectivity on collective decision-making

We have seen that the susceptibility of an SPP system can be maximized by tuning social activity in the limit of low noise, which may run against the intuition that the peak of susceptibility is located at the transition between the ordered and disordered phases (see the Supplementary Note I for a discussion on this point). This behavior is quite different from that of seemingly similar mechanistic models such as the XY model in the highly ordered phase because the SPP is a nonpotential model with nonequilibrium dynamical effects. A model of collective behavior being nonpotential should not be surprising, as the agents or “particles” of the model are complex structures with the capacity of self-propulsion and, more importantly, an element of decision-making that is absent in mechanistic models. Thus, it is interesting to try to disentangle the effects of the collective decision-making process from the dynamics of the agents and the statistical description of the swarm. To this aim, we turn our attention to a minimalist description of decision-making dynamics involving a set of fixed agents interacting through a static network and performing a consensus protocol.

An archetypical minimalist model of decision-making is the so-called linear threshold model, which is a generalization of the simple majority vote model. Using this model with different degrees of modularity, Nematzadeh et al. revealed that the network structure has a strong influence on information diffusion. A similar conclusion was obtained by Centola using experiments on a specifically designed social network. In both cases, the effectiveness in information diffusion was characterized by the influence of perturbations onto the asymptotic global state.

Here, we use the same model as Nematzadeh et al. to study the responsiveness of a decision-making process to perturbations. We characterize this response capacity using the polarization speed c, which is essentially the rate at which agents adapt their individual state to an induced perturbations detected only by a minority of informed agents (see Methods). These informed agents can be considered as “leaders” that drive the system from $P = 0$ to $P = 1$, much like the SPPs detecting the predator lead the swarm to perform a collective evasive maneuver or initiators can drive sheep herds to specific targets.

The polarization speed is shown in Fig. 4 for two extreme kinds of network wiring: a fixed-outdegree random directed network where each agent is randomly connected with k agents, and an undirected regular one-dimensional lattice (a ring) where each agent is connected with its k nearest neighbors. With both wirings, the polarization speed c is maximum for a finite outdegree k^* which, for large systems, is fairly independent of the total number of agents N (see Supplementary Note V).

We have chosen a large enough number of informed leaders to guarantee that the system eventually reaches $P = 1$, i.e. a full polarization, in a finite time. This way, the polarization speed is determined by the short-time response capacity of the system, and not its asymptotic polarization at long times. How fast the system reaches full polarization depends on the amount of social interaction and, as seen for the SPPs, too many connections hinder the performance of the system.

FIG. 4. Polarization speed c for a linear threshold consensus protocol with threshold $\theta = 1/2$ for a directed random network with fixed outdegree k (□), and an undirected one-dimensional regular lattice with k-nearest neighbors connectivity (○). The dynamics is triggered by switching 36% of the $N = 2,048$ agents to the state $s = 1$.

The results in Fig. 4 also reveal that the structure of the network can enhance or diminish the effects of connectivity on the response capacity. While the optimal outdegree $k^* = 10$ is the same for completely random and highly structured networks, the polarization speed in the random network shows a larger sensitivity to the amount of connections. These results do not exhaustively prove the existence of such an optimal outdegree for any arbitrary topology. Nonetheless, it is reasonable to assume that most realistic examples of complex networked systems possess a network structure somewhere in between the two extreme cases considered here (see Supplementary Note VI). A systematic study of the polarization speed for a wider collection of complex networks may reveal how the short-time response of a system is related to other properties of the interaction network such as degree distribution, average shortest connecting path, and clustering coefficient.

Responsiveness of cooperative multi-agent systems

In the previous sections, we have stressed the importance of distributed consensus problems in both biolog-
rical and social systems. Both the SPP and the majority vote models provide excellent phenomenological frameworks to study how the level of connectivity among agents affects the responsiveness of cooperative systems. However, their phenomenological nature limits our ability to identify and characterize the underlying mechanisms responsible for the impaired collective responses under excessive social connectivity.

Consensus and cooperation in networked multi-agent systems is a topic that is starting to receive significant attention in control theory and distributed computing owing to numerous possible engineering applications [37]. For instance, the power grid, urban traffic, arrays of distributed sensors, multi-robot systems, and social networks are various examples of collective systems requiring an effective response to local perturbations. The design of such systems—especially in the emerging field of swarm robotics—can be optimized using a theoretical framework that highlights the underlying mechanism and predicts under which conditions the detrimental effect of excessive connectivity will manifest. The LTI system theory provides one of the most elementary candidates for such a framework.

We consider a set of \(N + 1 \) agents performing a linear consensus protocol, and model the effects of local perturbations by setting one agent as a “leader” that does not participate to the local consensus dynamics albeit influencing agents connected to it. The leader-follower distributed linear consensus protocol presented in Eq. (11) is fairly standard \([16, 18, 37, 39]\), and can be used to analyze the capacity of the system to follow and adapt to fast changes in the behavior of the leading agent (see Methods). To simplify the problem as much as possible, static and undirected regular one-dimensional lattice topologies—\(k \) nearest neighbors with a ring topology—are considered for the network of interaction between agents.

Significant attention has been dedicated to the problem of convergence to consensus \([18]\) and controllability of multi-agent dynamics \([40]\) in the presence of complex network topologies—possibly switching—with directed or undirected information flow \([37]\). Here, given the simple topology of the static network, both convergence to consensus and controllability are guaranteed. Instead, our focus lies with the overall responsiveness of the collective in adapting to fast changes in the dynamics of the single leader—in control-theoretic terms, the input.

To characterize the effects of varying levels of connectivity (or sociality) on the far-from-consensus responsiveness of the collective, Fig. 5 shows the response capacity of this system to oscillations of the leading agent as a function of the number of connections \(k \), and for input oscillation frequencies \(\omega \) spanning four orders of magnitude. This response capacity, measured by the total amplitude gain (see Methods), can be roughly interpreted as the number of agents that are capable of following the perturbation induced by the leader.

For such a rudimentary linear system, the response capacity exhibits a surprisingly rich structure. At low frequencies \(\omega \ll \omega_0 \), an increase in sociality always translates into an improvement in the system’s capacity to respond to perturbations. At high frequencies \(\omega \gg \omega_0 \), the opposite is true: adding connections systematically yields a reduction in the system’s performance. A very interesting intermediate frequency regime is also observed (e.g. \(\omega \sim 0.01\omega_0 \) in Fig. 5), where the responsiveness features a peak at a finite level of sociality. The inset highlights that, in this intermediate frequency regime, the system can essentially double the amount of agents capable of following the leader by tuning the outdegree to its optimal value. This trend is reminiscent of what we have uncovered for the variations of the susceptibility (Fig. 1), mean avoidance time (Fig. 3a), and polarization speed (Fig. 4) as a function of the sociality \(k \) in the previous phenomenological models.

![Figure 5](image_url)
Using the analytical expression for the gain, we can obtain general predictions for the responsiveness on arbitrary networks in the limits of low and high frequencies. For instance, in the limit of low frequencies, any system with an undirected interaction network (for directed ones, see Supplementary Note VIII) will respond to perturbations of frequency $\omega \ll \omega_0$ as

$$H^2_{\omega \ll \omega_0} = ||H_0||^2 - \omega^2 H_0^\dagger W^{-2} H_0 + O(\omega^4), \quad (1)$$

where $H_0 = H(0) = W^{-1} W_l$ is the gain at $\omega = 0$, W is related to the inter-agent connectivity, and W_l to the connectivity of the agents to the leader (see Methods). For any connected network, H_0 is a vector with all components equal to 1 [41], and thus Eq. (1) can be written as

$$H^2_{\omega \ll \omega_0} = N - \omega^2 \sum_{i,j} (W_0^2)_{ij} + O(\omega^4). \quad (2)$$

At high frequency, the gain is

$$H^2_{\omega \gg \omega_0} = \omega^{-2} ||W_l||^2 + O(\omega^{-4}). \quad (3)$$

Note that the low-frequency limit is fully determined by the connectivity between agents W, while the high-frequency limit only depends on the connectivity of the agents with the leader W_l. For networks with a fixed outdegree k, the norm of this connectivity decreases as $||W_l||^2 \sim 1/k$. Thus, at high frequencies, distributed consensus systems have a decrease in responsiveness with increasing number of connections. This is a general behavior and not a particular feature of the regular ring network used in the previous calculations.

In general, there is no such direct relation between W^{-2} and the amount of connections in the network, which means that the behavior of the system at low frequencies is more sensitive to the features of the interaction network beyond its outdegree distribution.

From the standpoint of designing artificial swarms, this analysis highlights that the pace of typical perturbations faced by the system is central in defining appropriate levels of interagent connectivity. When subjected to slowly changing perturbations, the system’s effectiveness always benefits from a higher level of connectivity. Comparing with earlier observations, one can deduce that in the low-frequency regime, the system does not require high correlation strengths for good propagation of the signal, but it does benefit from an increase in speed that higher correlation lengths provide. On the other hand, fast perturbations inevitably reduce the system’s effectiveness with increasing interagent connectivity. Extending the comparison, this suggests that in the high-frequency regime, a high correlation strength is paramount for the signal to be effectively transmitted throughout the entire system.

DISCUSSION

A myriad of organisms manifests swarming and social organization to some degree. It is well known that such collective behaviors notably improve the effectiveness of fundamental tasks, e.g. predator avoidance, foraging, or mating. However, our phenomenological and analytical study of different models of collective behavior reveals that an excess in social interaction can have detrimental effects, in that it leads to a reduced capacity of response to fast localized perturbations.

Specifically, we have shown that for a system of self-propelled agents—subjected to a consensus protocol to align their velocities—the susceptibility of the swarm is maximized for a finite amount of social interaction. In other words, the responsiveness of the swarm is reduced if the sociality is increased above a certain level. Beyond the field of swarming, we have found that simulations of a minimalist model of collective decision-making—the linear threshold model—exhibits a reduced capacity to respond to perturbations with excessive sociality. Lastly, a frequency-domain analysis within the LTI framework reveals the underlying cause of this phenomenology: in general, more social interaction in a multi-agent system increases its responsiveness to slow perturbations while decreasing its responsiveness to fast ones.

Simulation of an idealized predator attack upon a swarm of SPPs following the Vicsek model with both metric and topological interactions reveal a direct connection between the high susceptibility χ of the swarm and the survivability of its members in hostile environments. We speculate that the dilution of information transferred through the swarm occurring for high levels of sociality may be the reason behind the apparently self-imposed limit on social activity observed in flocking birds [21], social ants [22], and other taxa.

In terms of correlations, an increase in the number of neighbors yields an increase in the correlation length at the cost of decreasing the correlation strength. At low sociality (e.g. below $k = 20$ in Fig. 1) this is a beneficial trade-off for the swarm: the increase in correlation length effectively allows the information to propagate faster through the interaction network. Thus, more agents are capable of responding to the presence of the threat. However, at high sociality (e.g. beyond $k = 20$ in Fig. 1), the increase in correlation length only affects agents far away from any danger and marginally benefits the overall performance of the swarm. On the other hand, this increase in the correlation length is accompanied by a drastic reduction in correlation strength that, in turn, severely reduces the responsiveness of agents in the vicinity of the threat.

Sociality has similar effects on responsiveness for the case of multi-agent systems performing distributed consensus with a threshold-triggered dynamics, meaning...
that an agent only changes its state when a certain amount of its neighbors do. These kind of threshold events have been observed in the spread of information over social networks and the so-called flash expansion of whirligig beetles facing a potential predator threat.

It is worth pointing out that our results for dynamical responsiveness complement previous studies associated with global properties, such as the robustness of the interaction network or the consensus speed. In these studies, increasing the amount of interaction eventually yields diminishing returns—i.e., less gain per neighbor—but never an actual reduction in the property of interest. Diminishing returns can only justify the preference for a finite number of connections if the cost for establishing links between agents is significant. However, quantifying such costs in biological swarms is close to impossible given the complexity associated with sensory and neurological requirements. In contrast, the present study on the dynamical responsiveness of the swarm shows an absolute reduction in swarming effectiveness when the number of neighbors is increased above a certain level.

This fact raises the important question of why collectives with excessive connectivity display a reduced effectiveness under some scenarios such as a predator attack, but not under others such as consensus reaching. The present analysis of the responsiveness of multi-agent systems following LTII consensus dynamics under time-varying perturbations reveals that one key element for predicting the effect of connectivity on responsiveness is the speed of perturbation changes.

In many cases, being able to react efficiently to perturbations in the appropriate time scale is essential for the performance of systems conducting distributed consensus. For example, ants performing collective transport of food rely on transiently informed ants to locate their nest. These informed “leaders” forget their knowledge after a time of joining the collective action, and thus provide a changing signal with a certain characteristic time scale to the swarm. Successful transport depends both on a high consensus over the direction of movement and a proper responsiveness to this dynamic input.

As can be seen in Fig. 4, high levels of connectivity provide marginal benefits when the system is subjected to slow perturbations, but yield a sizable reduction in effectiveness in the presence of relatively fast perturbations.

In summary, previous studies in the animal and social realms and in social systems provide evidence suggesting that, in some cases, it is optimal for collectives to limit the amount of social interaction. We have presented a statistical treatment of a standard SPP model for collective motion, simulations of decision-making dynamics, and an analysis of the frequency-response in a consensus protocol that consistently exhibit a decreased responsiveness associated with an excess of connection or interaction. Given that these models are relatively general and unadorned, we suggest that this non-trivial relation between responsiveness and sociality may be a general feature of a wide range of complex systems involving distributed consensus.

Besides shedding a new light on our understanding of collective behavior, this has also clear implications for the design of networked systems. Even ignoring the possible costs of establishing connections and transmitting information between agents, it may be desirable to limit the number of connections in order to achieve a more effective dynamical response.

METHODS

Self-propelled particles

We use the self-propelled particles (SPP) model developed by Vicsek et al. as a minimalist model of collective motion that captures the cooperative alignment of orientation. There are several extensions and improvements to this model that generate more realistic and specific dynamics, but we use the original model for the sake of generality and simplicity. Each particle moves in a two-dimensional periodic space and changes its direction of motion at discrete timesteps in order to align to its neighbors’ mean orientation according to

\[
\begin{align*}
x_i(t + \Delta t) &= x_i(t) + \Delta t v_i(t), \\
\theta_i(t + \Delta t) &= \arg\left(\sum_{j \sim i} v_j(t)\right) + 2\pi \eta_i(t),
\end{align*}
\]

where the velocity vector \(v_i = v_0 \hat{\theta}_i \) has constant magnitude \(v_0 \) and direction \(\theta_i \), \(\arg() \) gives the orientation of a vector, and \(\eta_i(t) \) is a random number uniformly distributed in the \([-\eta/2, \eta/2]\) range. The sum \(j \sim i \) is performed over the neighbors of \(i \) (including \(i \) itself).

While the original Vicsek model considers that a pair of agents interact—i.e., are neighbors—if they are closer than a certain distance (metric interaction), there is strong evidence that certain natural systems such as flocks of birds interact with a fixed number of neighbors instead (topological or metric-free interaction). For this reason, we have studied different kinds of interactions only to find the same phenomenology; the responsiveness depends essentially on the amount of interaction in the swarm, not the details of the interaction rule itself. Thus, throughout this work, we talk about sociality to refer to the parameter quantifying the amount of interaction between agents, be it the interaction radius in the metric case or the outdegree (number of neighbors) in the topological one.

The results presented in this work have been obtained by computing the dynamics of a set of \(N = 2,048 \) SPPs...
following the Vicsek model starting from random positions and velocity orientations. The numerical calculations have been performed using the libsp library \[40\]. Further implementation details can be found in Supplementary Note V.

Correlations and susceptibility

The dimensionless velocity fluctuation is defined as

$$\delta \varphi_i = \frac{\mathbf{v}_i - \langle \mathbf{v} \rangle}{\sqrt{\sum_{k=1}^N \| \mathbf{v}_k - \langle \mathbf{v} \rangle \|^2/N}},$$

where $\langle \mathbf{v} \rangle = \sum_{i=1}^N \mathbf{v}_i/N$ is the average velocity. The connected correlation function is then given by

$$C(r) = \sum_{i \neq j} \delta \varphi_i \cdot \delta \varphi_j \delta(r - r_{ij}) \sum_{i \neq j} \delta(r - r_{ij}),$$

where $r_{ij} = \| \mathbf{r}_i - \mathbf{r}_j \|$ is the distance between agents i and j, and $\delta(r)$ the Dirac delta distribution. For finite-size systems, one can use the integral of $C(r)$ up to its first zero as an estimation for the susceptibility of the system \[3\],

$$\chi = \max_{r_0} \left(\int_{r < r_0} C(r) \, dr \right).$$

Using Eq. \[4\] to compute the correlation requires of a finite value of noise η to avoid indeterminate forms. In order to study the responsiveness of swarms with high degree of alignment, which is guaranteed in the absence of noise, we have set the noise to $\eta = 0.04$ and checked that the results are consistent with vanishing noise (see Supplementary Note IB).

To obtain numerical values of the correlation function C and susceptibility χ, we compute the histogram of the correlations in the system every 5×10^3 iterations during 2×10^6 iterations, after discarding the first 5×10^4 iterations as transient dynamics. The correlation $C(r)$ shown in Fig. 4 is the average over 400 histograms obtained with this procedure.

Predator attack

The predator is introduced as an agent that does not participate in the consensus protocol. Instead, it is afforded predatory capabilities: it moves 40% faster than swarming agents, systematically in the direction pointing to the closest one. When the predator “catches” an agent, the latter is removed from the simulation. An agent can only detect the presence of the threat when it is located at a distance smaller than a fixed “danger-detection” radius R_D; as soon as the agent detects it, an evasive maneuver is initiated with the agent moving away in the direction opposite to the predator. We have set R_D to be constant throughout the simulations and independent of the sociality between agents. The fleeing behavior takes precedence over the collective motion of a particular agent for as long as the predator lies inside its danger-detection area. Thus, the agents in this simulation follow the equations of motion \[4\] with the exception that

$$\mathbf{v}_i(t) = \frac{\mathbf{x}_i(t) - \mathbf{x}_P(t)}{\| \mathbf{x}_i(t) - \mathbf{x}_P(t) \|} \quad \text{if} \quad \| \mathbf{x}_i(t) - \mathbf{x}_P(t) \| < R_D,$$

where \mathbf{x}_P denotes the predator’s position.

The mean avoidance time shown in Fig. 3 is obtained by computing the swarm dynamics in the presence of a single predator (introduced after a transient of 2,000 iterations) for 500 different runs of 5,000 iterations each. The reason for computing several runs instead of running the calculation for longer times is that the results depend on the density of agents in the swarm, and the repeated removal of agents by the predator can cause significant changes in the density after long times.

Collective decision-making

The linear threshold model is a generalization of the simple majority vote model \[32\] where the state of each agent or node i is determined by a binary variable $s_i \in \{0, 1\}$. The dynamics of the model dictates that, at a given timestep t, $s_i(t)$ takes the value 0 or 1 according to

$$s_i(t + 1) = \begin{cases} 1 & \text{if } \langle s_j(t) \rangle_{j \sim i} > \theta \\ 0 & \text{otherwise} \end{cases},$$

where $\langle \cdot \rangle_{j \sim i}$ is the average over all neighbors of i and θ is a parameter that determines the minimum ratio of neighbors that need to be in the state $s = 1$ for an agent to switch to it.

To study the effects of a perturbation on the collective decision-making process, we consider the following scenario: a given set of $N = 2,048$ networked agents reside in the “ground” state $s_i = 0 \forall i$ when, at $t = 0$, an unspecified perturbation induces a small fraction of “informed” agents to abruptly switch to (and remain in) the state $s_{j(1)} = 1$. This change propagates through the network and causes more agents to switch from state 0 to 1. If the fraction of initially informed agents is large enough and the network is connected, the mean polarization $P(t) = \langle s_i(t) \rangle$ will eventually reach $P = 1$. One can characterize the responsiveness of the decision-making process by the speed at which this change propagates through the system, measured by the rate of change in polarization,

$$c = \frac{dP}{dt} = \frac{1}{N} \frac{d}{dt} \sum_{i=1}^N s_i(t).$$
Distributed consensus in multi-agent systems

Let us consider a group of \(N + 1 \) identical agents performing a distributed consensus protocol on their scalar state-variable \(x_i(t) \), through a connected and undirected network. The system is characterized by the global state vector \(\mathbf{X}(t) = \{x_i(t); i = 0, \ldots, N\} \) and the adjacency matrix of the underlying graph \(\mathbf{A} = \{a_{ij}; i, j = 0, \ldots, N\} \), where \(a_{ij} = 1 \) if agent \(i \) is connected to \(j \) and 0 otherwise. Given a certain connectivity graph, the state of the system evolves according to

\[
\frac{dx_i}{dt} = \frac{\omega_0}{k_i} \sum_{j=0}^{N} a_{ij} (x_j(t) - x_i(t)),
\]

\[
= \sum_{j=0}^{N} w_{ij} x_j(t),
\]

where \(\omega_0 \) is the natural response frequency of our identical agents, and \(k_i = \sum_{j=0}^{N} a_{ij} \) is the degree of agent \(i \), i.e. its number of neighbors in the network sense. The quantity \(w_{ij} = \omega_0 (a_{ij}/k_i - \delta_{ij}) \) is introduced for the sake of a compact notation for the governing dynamical equations. As is classical with many swarming systems, these dynamics involve relative output information of neighboring agents [37].

We model the process of distributed transfer of social information by considering a leader-follower consensus dynamics. This is implemented by affording one agent—say agent \(i = 0 \)—with a dynamics not abiding by Eq. (11), but instead following an arbitrary trajectory \(x_0(t) = u(t) \). This single control input has a direct effect onto the dynamics of its \(k_0 \) neighboring agents, but also has indirect effects onto the dynamics of many more agents through the coupled set of dynamical equations [11]. In the presence of this single leader, Eq. (11) can be recast as

\[
\frac{dx_i}{dt} = \sum_{j=1}^{N} w_{ij} x_j(t) + w_{i0} u(t),
\]

for \(i = 1, \ldots, N \).

Despite the static nature of the topology of interaction, this leader-follower consensus model is a good idealization of the process of social information transfer occurring in startled schools of fish or flocks of birds, where one individual has access to privileged information about a potential threat or other kind of external perturbation. This temporary leader triggers a wave of agitation that propagates strikingly fast through the swarm [3, 47]. Such waves of agitation are initiated by extremely rapid changes in the leading agent’s state, which very effectively propagate to all other swarming agents [1].

Within this leader-follower scheme, one can characterize the responsiveness of the multi-agent system undergoing the distributed consensus process as its capacity to follow fast changes in the leader’s dynamics, \(u(t) \). Specifically, with an input signal oscillating at the frequency \(\omega \), \(u(t) = u_0 e^{i\omega t} \), the state of all agents at long times becomes proportional to \(u(t) \) with a factor given by the transfer function,

\[
H(\omega) = \lim_{t \to \infty} \frac{\mathbf{X}(t)}{u(t)} = (i\omega \mathbf{I} - \mathbf{W})^{-1} \mathbf{W}_l,
\]

where \(\mathbf{I} \) is the identity matrix of dimension \(N \), \(\mathbf{W} = \{w_{ij}\} \) is the \(N \times N \) consensus protocol matrix and \(\mathbf{W}_l = \{w_{i0}\} \) is the \(N \)-vector resulting from projecting \(\mathbf{W} \) onto the subspace of the leader. This allows us to define the system’s responsiveness as the norm of this transfer function, \(H^2 = \|\mathbf{H}\|^2 = \sum_i |h_i(\omega)|^2 \), with \(|h_i(\omega)| \leq 1 \) for all \(i \) and \(\omega \) [48]. As is clear from Eq. (13), the gain functions have a nontrivial dependency on the topology of the agents’ connectivity, including that of the leading agent, through the entries of \(\mathbf{W} \) and \(\mathbf{W}_l \).

ACKNOWLEDGMENTS

This work was supported by a grant from the Temasek Lab (TL@SUTD) under the STARS project (D.M.) and a grant #SMIG14006 from the Singapore–MIT Alliance for Research and Technology (SMART) (R.B.).

The authors thank Nikolaj Sørensen for fruitful discussions on state-space modeling and Dr. Mardavij Roozbehani for his input on the importance of nodal dynamics for the time-constrained controllability of a system.

AUTHOR CONTRIBUTIONS

D.M. and R.B. designed the study. D.M. performed research, developed the analytical and numerical tools. Y.K.K. performed research and computed the control-theoretic aspects. R.B. coordinated the study. D.M. and R.B. analyzed the results and wrote the paper.

* e-mail: david.mateo.valderrama@gmail.com

[1] Attanasi, A. et al. Information transfer and behavioural inertia in starling flocks. *Nature Phys.* 10, 691–696 (2014).
[2] Mora, T. et al. Local equilibrium in bird flocks. *Nature Physics advance online publication* (2016). URL http://dx.doi.org/10.1038/nphys3846.
[3] Sumpter, D., Buhl, J., Biro, D. & Couzin, I. Information transfer in moving animal groups. *Theory Biosci.* 127, 177–186 (2008).
[4] Strandburg-Peshkin, A. et al. Visual sensory networks and effective information transfer in animal groups. *Curr. Biol.* **23**, R709–R711 (2013).

[5] Herbert-Read, J. E., Buhl, J., Hu, F., Ward, A. J. W. & Sumpter, D. J. T. Initiation and spread of escape waves within animal groups. *R. Soc. Open Sci.* **2**, 140355 (2015).

[6] Calovi, D. S. et al. Collective response to perturbations in a data-driven fish school model. *J. R. Soc. Interface* **12**, 20141362 (2015).

[7] Attanasi, A. et al. Collective behaviour without collective order in wild swarms of midges. *PLoS Comput. Biol.* **10**, e1003697 (2014).

[8] Attanasi, A. et al. Finite-size scaling as a way to probe near-criticality in natural swarms. *Phys. Rev. Lett.* **113**, 238102 (2014).

[9] Ni, R., Puckett, J. G., Dufresne, E. R. & Ouellette, N. T. Intrinsic fluctuations and driven response of insect swarms. *Phys. Rev. Lett.* **115**, 118104 (2015).

[10] Moussaid, M., Perozo, N., Garnier, S., Helbing, D. & Theraulaz, G. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. *PLoS ONE* **5**, e10047 (2010).

[11] Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. *Proc. Natl. Acad. Sci. USA* **107**, 5334–5338 (2010).

[12] Alizadeh, M., Li, X., Wang, Z., Scaglione, A. & Melton, R. Demand-side management in the smart grid: Information processing for the power switch. *IEEE Signal Processing Magazine* **29**, 55–67 (2012).

[13] Weekx, S., D’Hulst, R., Claessens, B. & Driessen, J. Multiagent charging of electric vehicles respecting distribution transformer loading and voltage limits. *IEEE Trans. Smart Grid* **5**, 2857–2867 (2014).

[14] Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a thousand-robot swarm. *Science* **345**, 795–799 (2014).

[15] Kawashima, H. & Egerstedt, M. Manipulability of leader-follower networks with the rigid-link approximation. *Automatica* **50**, 695–706 (2014).

[16] Young, G. F., Scardovi, L., Cavagna, A., Giardina, I. & Leonard, N. E. Starling flock networks manage uncertainty in consensus at low cost. *PLoS Comput. Biol.* **9**, e1002894 (2013).

[17] Komareji, M. & Bouffanais, R. Resilience and controllability of dynamic collective behaviors. *PLoS ONE* **8**, e82578 (2013).

[18] Shang, Y. & Bouffanais, R. Influence of the number of topologically interacting neighbors on swarm dynamics. *Sci. Rep.* **4**, 4184 (2014).

[19] Centola, D. The spread of behavior in an online social network experiment. *Science* **329**, 1194–1197 (2010).

[20] Bassett, D. S., Alderson, D. L. & Carlson, J. M. Collective decision dynamics in the presence of external drivers. *Phys. Rev. E* **86**, 036105 (2012).

[21] Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. *Proc. Natl. Acad. Sci. USA* **105**, 1232–1237 (2008).

[22] Gordon, D. M., Paul, R. E. & Thorpe, K. What is the function of encounter patterns in ant colonies? *Anim. Behav.* **45**, 1083–1100 (1993).

[23] Torney, C. J., Lorenz, T., Couzin, I. D. & Levin, S. A. Social information use and the evolution of unresponsive-ness in collective systems. *J. R. Soc. Interface* **12** (2014).

[24] Kao, A. B. & Couzin, I. D. Decision accuracy in complex environments is often maximized by small group sizes. *Proc. R. Soc. B* **281**, 20133305 (2014).

[25] Baronchelli, A. & Díaz-Guilera, A. Consensus in networks of mobile communicating agents. *Phys. Rev. E* **016113** (2012).

[26] Mora, T. & Bialek, W. Are biological systems poised at criticality? *J. Stat. Phys.* **144**, 286–302 (2011).

[27] Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. *Proceedings of the National Academy of Sciences* **112**, 4690–4695 (2015).

[28] Gelblum, A. et al. Ant groups optimally amplify the effect of transiently informed individuals. *Nature Communications* **6**, 7729 (2015).

[29] Krause, J. & Ruxton, G. D. *Living in Groups*. Oxford Series in Ecology and Evolution (Oxford University Press, Oxford, U.K., 2002).

[30] Toner, J. & Tu, Y. H. Long-range order in a two-dimensional dynamical model how birds fly together. *Phys. Rev. Lett.* **75**, 4326–4329 (1995).

[31] Toner, J. & Tu, Y. H. Flocks, herds, and schools: A quantitative theory of flocking. *Phys. Rev. E* **58**, 4828–4858 (1998).

[32] Aldana, M. & Larralde, H. Phase transitions in scale-free networks: Departure from the standard mean-field universality class. *Phys. Rev. E* **70**, 066130 (2004).

[33] Nematzadeh, A., Ferrara, E., Flammini, A. & Ahn, Y.-Y. Optimal network modularity for information diffusion. *Phys. Rev. Lett.* **113**, 088701 (2014).

[34] Toulet, S., Gautrais, J., Bon, R. & Peruani, F. Imitation combined with a characteristic stimulus duration results in robust collective decision-making. *PLoS ONE* **10**, 1–16 (2015).

[35] Watts, D. J. & Strogatz, S. H. Collective dynamics of “small-world” networks. *Nature* **393**, 440–442 (1998).

[36] Sekunda, A., Komareji, M. & Bouffanais, R. Interplay between signaling network design and swarm dynamics. *Network Science* **4**, 244–265 (2016).

[37] Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and cooperation in networked multi-agent systems. *Proc. IEEE* **95**, 215–233 (2007).

[38] Jadabaie, A., Lin, J. & Morse, A. S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. *IEEE Trans. Autom. Contr.* **48**, 988–1001 (2003).

[39] Shang, Y. & Bouffanais, R. Consensus reaching in swarms ruled by a hybrid metric-topological distance. *Eur. Phys. J. B* **87**, 294 (2014).

[40] Komareji, M. & Bouffanais, R. Controllability of a swarm of topologically interacting autonomous agents. *Int. J. Complex Systems in Science* **3**, 11–19 (2013).

[41] Jadabaie, A., Lin, J. & Morse, A. S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. *IEEE Transactions on Automatic Control* **48**, 988–1001 (2003).

[42] Romney, W. L. & Lamb, A. R. Flash expansion threshold in whirligig swarms. *PLoS ONE* **10**, 1–12 (2015).

[43] Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase-transition in a system of self-driven particles. *Phys. Rev. Lett.* **75**, 1226–1229 (1995).
[44] Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).
[45] Ginelli, F. & Chaté, H. Relevance of metric-free interactions in flocking phenomena. Phys. Rev. Lett. 105, 168103 (2010).
[46] Mateo, D. swarming-spp: A C++ library for simulations of self-propelled particles and the theoretical study of emergent swarming behaviors. (2015). URL http://dx.doi.org/10.5281/zenodo.30587
[47] Hemelrijk, C. K. & Hildenbrandt, H. Scale-free correlations, influential neighbours and speed control in flocks of birds. J. Stat. Phys. 158, 563–578 (2015).
[48] Ogata, K. Modern Control Engineering (Prentice Hall, Upper Saddle River, NJ, 2010), fifth edn.