Chronic Sleep Fragmentation Promotes Obesity in Young Adult Mice

Yang Wang1, Alba Carreras1, SeungHoon Lee1*, Fahed Hakim1, Shelley X. Zhang1, Deepi Nair1, Honggang Ye2 and David Gozal1

Objectives: Short sleep confers a higher risk of obesity in humans. Restricted sleep increases appetite, promotes higher calorie intake from fat and carbohydrate sources, and induces insulin resistance. However, the effects of fragmented sleep (SF), such as occurs in sleep apnea, on body weight, metabolic rates, and adipose tissue distribution are unknown.

Methods: C57BL/6 mice were exposed to SF for 8 weeks. Their body weight, food consumption, and metabolic expenditure were monitored over time, and their plasma leptin levels measured after exposure to SF for 1 day as well as for 2 weeks. In addition, adipose tissue distribution was assessed at the end of the SF exposure using MRI techniques.

Results: Chronic SF-induced obesogenic behaviors and increased weight gain in mice by promoting increased caloric intake without changing caloric expenditure. Plasma leptin levels initially decreased and subsequently increased. Furthermore, increases in both visceral and subcutaneous adipose tissue volumes occurred.

Conclusions: These results suggest that SF, a frequent occurrence in many disorders and more specifically in sleep apnea, is a potent inducer of obesity via activation of obesogenic behaviors and possibly leptin resistance, in the absence of global changes in energy expenditure.

Introduction

Chronic sleep restriction and consequent sleepiness are a frequent occurrence in the modern westernized 24h/7d lifestyle. They are believed to be associated with increased propensity for development of obesity and diabetes, although such assumptions have recently been subjected to increased scrutiny (1-8). On the other hand, disruption of sleep integrity is a highly prevalent condition associated with multiple frequent disorders (e.g., sleep apnea, depression, asthma). Although disrupted sleep is not necessarily accompanied by reduced sleep duration, it is associated with excessive daytime sleepiness. Preliminary studies in humans support the concept that similar to sleep restriction, sleep fragmentation (SF) also imposes adverse metabolic consequences such as increased appetite and food consumption, i.e., obesogenic behaviors that could lead to increased adiposity (9,10). However, the mechanisms underlying SF-associated metabolic effects remain unclear, and have not been systematically explored in animal models (11).

To further understand the potential impact of chronic SF, we took advantage of a recently developed murine model, whereby prolonged periods of SF during the light phase of the circadian cycle manifest as increased sleep propensity (i.e., shortened sleep latency), despite preserved sleep duration and delta frequency power (a marker of sleep homeostasis) (12,13). We hypothesized that sustained SF would lead to increased food consumption and ultimately to development of frank obesity.

Methods

Animals

Male C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, Maine), were housed in a 12-h light-dark cycle (light on 7:00 am to 7:00 pm) at a constant temperature (24 ± 1°C), and were allowed access to food and water ad libitum. A total of 107

1 Section of Sleep Medicine, Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA. Correspondence: David Gozal (dgozal@uchicago.edu) 2 Section of Endocrinology, Department of Medicine, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA

*Department of Otorhinolaryngology and Head & Neck Surgery, College of Medicine, Korea University

Funding agencies: DG is supported by National Institutes of Health grants HL65270 and HL86662. SZ was supported by a Comer Kids Classic grant.

Disclosure: The authors have no competing interests.

Authors Contributions: YW conducted experiments, analyzed data, drafted portions of the manuscript, and served as blinded observer. AC, SXZ, FH, SL, and DN performed experiments and analyzed data. HY performed analyses of metabolic chamber data in a blinded fashion. DG provided the conceptual design of the project, analyzed data, drafted the manuscript, and is responsible for the financial support of the project and the manuscript content. All authors have reviewed and approved the final version of the manuscript. DG is supported by National Institutes of Health grants HL-65270, HL-086662, and HL-107160. Dr. Gozal is the guarantor of this work, had full access to all the data, and takes full responsibility for the integrity of data and the accuracy of data analysis.

Received: 24 June 2013; Accepted: 1 September 2013; Published online 13 September 2013. doi:10.1002/oby.20616
mice were used, including 52 in the control group and 55 in the SF group. All mice entered experimental protocols at 7–9 weeks of age. All experimental protocols were approved by the Institutional Animal Use and Care Committee and are in close agreement with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Every effort was made to minimize animal suffering and to reduce the number of animals used.

Sleep fragmentation
The SF device used to induce sleep disruption in rodents has been previously described (12-14). It employs intermittent tactile stimulation of freely behaving mice in a standard laboratory mouse cage, using a near-silent motorized mechanical sweeper. This method prevents the need for human contact and intervention, introduction of foreign objects, or touching of the animals during sleep, and is therefore superior to other existing methods of sleep disruption. To induce moderate to severe SF, we chose a 2-min interval between each sweep, implemented during the light period (7:00 am to 7:00 pm, except for those subjected to indirect calorimetric measurement where the light period was 6:00 am to 6:00 pm; see below). Depending on experimental needs, three or four mice were housed in each SF cage to prevent isolation stress, with matched number of mice housed in paired control cages. SF exposure lasted for 8 weeks during which mice had ad libitum access to food and water.

Food consumption, body weight, and indirect calorimetry
Food consumption by each cage was registered daily and body weight of each mouse registered twice weekly for the 8-week period, always at the same time of the day (middle of the light period). Body weight gain was determined by subtracting the body weight on the 1st day of SF exposure from the body weight on subsequent days. Indirect calorimetric measurements during SF were carried out with a separate set of mice at the Mouse Metabolic Core Facility using a home-made, modified LabMaster System, in which the gas inlet to and outlet from the carefully sealed mouse cage were connected to the standard LabMaster System used in the facility.

Assessment of plasma leptin levels
Venous blood samples were collected in capillary tubes from the tail vein at the completion of SF at 7 pm. One set of mice were sampled after 12 h of SF and another after 2 weeks of SF. Plasma leptin levels were assessed using an enzyme-linked immunosorbent assay (ELISA) kit (Millipore; St. Charles, MO, USA) according to the manufacturer’s protocol.

MRI quantitation of visceral and subcutaneous adipose tissues
To enable improved quantification of fat deposition in mice, we conducted MRI studies to obtain high-resolution images of the abdominal cavity for unbiased quantification of visceral and subcutaneous fat compartments in mice exposed to SF paradigms. Images were acquired on a 9.4 T/20 USR Bruker BioSpec (Ettlingen, Germany) equipped with BGA12S actively shielded gradients and ParaVision 4.0 software using a 50-mm i.d., 90-mm-long quadrature resonator (m2m Imaging, Brisbane, Australia). Acquisition was synchronized with the respiratory cycle to minimize physiological artifacts (SA Instruments, Stony Brook, NY). Two sets of proton density high-resolution scans (echo time/repetition time [TE/TR] 4000/27 ms, field of view [FOV] 40 × 40 mm, covered the abdominal cavity. A 20° flip angle gave optimal contrast between background and tissue. Image sets underwent manual segmentation procedures using AMIRA software (http://www.amira.com/amira/quantification.html; version 5.4) as previously described (15).

Data analysis
All data are reported as mean ± SE. Comparison of numerical data among SF and sleep control conditions was performed using one-way ANOVA followed by unpaired Student’s t-test with Bonferroni correction or using unpaired Student’s t-tests as appropriate. For all comparisons, a P value < 0.05 was considered as statistically significant.

Results
Mice exposed to SF developed increased food intake that began within several days from the initiation of SF, and was sustained throughout the duration of the 8-week SF exposure (Figures 1A and B). The increase in food intake was accompanied by the emergence of accelerated body weight accrual, that became manifest after 4 weeks of SF (Figure 1C), in the absence of altered energy expenditure (Figure 2). Indeed, there were no significant differences between the two groups in VO2 (3218 ± 27 in controls vs. 3256 ± 12 ml h−1 kg−1 in SF; P > 0.05), VCO2 (3172 ± 59 in controls vs. 3166 ± 27 ml h−1 kg−1 in SF; P > 0.05), and RER (0.976 ± 0.017 in controls vs. 0.968 ± 0.008 in SF; P > 0.05) in a 24-h period.

The overall alterations in energy balance induced by SF were associated with marked increases in both visceral and subcutaneous body fat after 8 weeks of SF (Figure 3). As quantitatively measured by MRI, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volumes were 2,190 ± 225 and 578 ± 110 mm3, respectively, in the SF group, compared to 496 ± 67 and 198 ± 34 mm3, respectively, in the control group (n = 6/experimental group; P < 0.0001 for both VAT and SAT).

Furthermore, SF exposure resulted in a biphasic change in plasma leptin levels. An initial decrease after 12 hours of SF (0.63 ± 0.18 ng/ml, vs. 0.89 ± 0.22 ng/ml in time matched sleep controls; n = 8 per group; P < 0.03) was followed by a substantial elevation after 2 weeks of SF (2.23 ± 0.65 ng/ml, vs. 0.88 ± 0.21 ng/ml in time matched sleep controls; n = 20 per group; P < 0.001). Importantly, SF-induced elevation in plasma leptin levels occurred before the increase in body weight became evident.

Discussion
In the present study, we have found that mice that are periodically awakened during their natural sleep period exhibit enhanced food
Obesity | VOLUME 22 | NUMBER 3 | MARCH 2014
www.obesityjournal.org

intake, and develop increased adipose tissue mass in the absence of reduced energy expenditure. Leptin resistance, as indicated by elevated plasma leptin levels in SF-exposed mice, precedes the manifestation of accelerated weight gain and likely plays a key role in mediating SF-induced obesogenic behaviors and increases in body weight. Thus, chronic SF ultimately leads to increased body weight gain in wild-type mice, even while eating normal chow, as evidenced by enhanced deposition of adipose tissue in both subcutaneous and visceral depots, culminating in development of obesity.

In a previous study, we showed that SF elicited increased sleepiness in the absence of reductions in total sleep duration, and manifested cognitive and behavioral deficits that seemed to be mediated, at least in part, by increased expression of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), as well as by increased oxidative stress, in the CNS (12,13). In this context, mice deficient of NADPH oxidase 2 were protected from SF-induced cognitive dysfunction, suggesting a role for this enzyme complex, as one of the most important sources of reactive oxygen species (ROS), in end-organ morbidities associated with disrupted sleep architecture. It is possible that similar inflammatory pathways and disturbance in ROS homeostasis are also critically involved in SF-induced metabolic dysfunction in both the hypothalamus and visceral fat that promotes obesogenic behavior leading eventually to obesity and insulin resistance. Indeed, many studies have implicated these cellular and molecular alterations in various diet-induced and genetic deficiency-related obesity models (16,17). Additional studies are certainly warranted to further explore these issues.

Several studies in humans have recently shown that sleep restriction in otherwise healthy individuals is associated with alterations in hedonic food preferences, overall increases in food intake, and globally preserved energy expenditure, thereby promoting increased obesogenic tendency (18-22), even in the context of acute sleep restriction (10,23). Similar responses have been described in rats (24). However, we are unaware of any published studies that have really focused on metabolic consequences of chronic sleep disruption, which is a more prevalent pathological condition associated with multiple common disorders (e.g., sleep apnea, depression, asthma). It is perhaps worthwhile to mention that while sleep apnea, affecting more than 20 million people in the US, is closely related to obesity in both adults and children, the most commonly used animal model for it, the intermittent hypoxia model, does not promote obesogenic behavior nor does it cause obesity. Intermittent hypoxia thus seems to be a limited model for studies focusing on obesogenic properties of sleep apnea. In light of these concerns, here we show that chronic SF during the naturally occurring rest period, a condition associated with overall preserved sleep duration—i.e., devoid of sleep restriction or deprivation, promotes increased food consumption in the absence of significant changes in energy expenditure in a time-dependent manner, leading to accelerated body weight accrual. Meanwhile, chronic SF leads to increased circulating plasma levels of leptin in wild-type mice, suggesting the progressive development of leptin resistance. These unique characteristics establish the SF model as a valid and useful tool, especially in studies concerning obesogenic properties of sleep apnea, among other things. Of note, reduced leptin levels occur after acute sleep restriction (25,26), and similar findings emerged in the present study after acute SF in mice.

It is possible that the development of obesity in the context of chronic SF may have been associated with altered autonomic nervous system balance, particularly with increases in sympathetic-excitatory balance, as well as ascribable to increased activity of the hypothalamic–pituitary–adrenal axis, both of which develop after acute sleep restriction (26-28). Indeed, evidence of a major hypothalamic role in the feedback regulation of autonomic nervous system outflow, and evidence for altered autonomic nervous system balance have recently emerged (29-31). However, we have previously shown that acute SF exposures (6 h) using the same device resulted in no detectable increases in systemic corticosterone levels (89.5 ± 7.3 and 92.5 ± 8.1 ng/ml for controls and SF, respectively) (14). Although long-term effects of our SF model on sympathetic-excitatory balance and the hypothalamic–pituitary–adrenal axis need to be addressed in future studies, it seems...
more likely that the effects of chronic SF are mediated by increases in inflammatory markers and oxidative stress, potentially altering neural responses to food (32,33).

In summary, the present study provides compelling evidence in support of an intimate mechanistic link between sleep integrity, rather than sleep duration, and metabolic regulatory pathways that govern

FIGURE 2 Assessment of oxygen consumption (VO₂) in mice exposed to SF. (A) VO₂ of a control cage (three mice) and two SF cages (three mice each cage) during a typical 24-h cycle. SF was applied in the diurnal phase (6 am to 6 pm) as indicated by the open bar. B. Average daily, diurnal, and nocturnal VO₂ in a 3-day period. Data are mean ± SE, n = 3 and 6 cage/day for control and SF mice, respectively. Mice exposed to SF did not exhibit altered energy expenditure on a daily basis, although they appeared to have mildly increased activity during the diurnal phase.

FIGURE 3 SF-induced increases in body fat contents in mice fed normal chow. Body fat content in the abdominal section reconstructed from MRI images using the AMIRA software. In upper panels, white color indicates adipose tissue. In lower panels, 3-D reconstructions of adipose tissue display visceral fat. These images are representative of six mice exposed to either control sleep (SC) or sleep fragmentation (SF).
appetite and energy balance. Current findings further highlight the role of preserved and intact sleep architecture in the regulation of homeostatic mechanisms responsible for maintaining adipose tissue mass balance.

Acknowledgments

We are thankful to Dr. Graeme Bell for allowing us access to the mouse metabolic core facility.

© 2013 The Obesity Society

References

1. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999;354:1435-1439.
2. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 2008;105:1044-1049.
3. Morselli L, Leproult R, Balbo M, Spiegel K. Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract Res Clin Endocrinol Metab 2010;24:687-702.
4. Buxton OM, Pavlova M, Reid EW, Wang W, Martens EA, Westerterp-Plantenga MS. Effects of sleep fragmentation on glucose metabolism and appetite. J Sleep Res 2010;19:552-558.
5. Buxton OM, Cain SW, O’Connor SP, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 2012;4:129ra43.
6. Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest. 2010;137:95-101.
7. Bouloumié A, Casteilla L, Lafontan M. Adipose tissue lymphocytes and macrophages in obesity and insulin resistance: Makers or markers, and which comes first? Arterioscler Thromb Vasc Biol 2008;28:1211-1213.
8. Nishimura S, Manabe I, Nagasaki M, et al. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest 2008;118:710-721.
9. Nedelcheva AV, Kilkus JM, Imperial J, Kasza K, Scheller DA, Penev PD. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr 2009;89:126-133.
10. Gongnissen HK, Hursel R, Rutters F, Martens EA, Westerterp-Plantenga MS. Effects of sleep fragmentation on appetite and energy balance. Current findings further highlight the brain’s response to hedonic food stimuli: An fMRI study. J Clin Endocrinol Metab 2012;97:E443-E447.
11. Koban M, Sita LV, Le WW, Hoffman GE. Sleep deprivation of rats: The hyperphagic response is real. Sleep 2008;31:927-933.
12. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 2004;141:846-850.
13. Spiegel K, Leproult R, L’hermite-Baleix M, Copinschi G, Penev PD. Van Cauter E. Leptin levels are dependent on sleep duration: Relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 2004;89:5762-5771.
14. Brondel L, Romer MA, Nougues PM, Touyarou P, Davenne D. Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr 2010;91:1550-1559.
15. St-Onge MP, Roberts AL, Chen J et al. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr 2011;94:410-416.
16. Jung CM, Melanson EL, Froydendall EJ, Perreault L, Eckel RH, Wight KP. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 2011;589:235-244.
17. St-Onge MP, McReynolds A, Trivedi ZB, Roberts AL, Sy M, Hirsch J. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am J Clin Nutr 2012;95:818-824.
18. Benedict C, Brooks SJ, O’Daly O, et al. Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: An fMRI study. J Clin Endocrinol Metab 2012;97:E443-E447.
19. Brondel L, Romer MA, Nougues PM, Touyarou P, Davenne D. Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr 2010;91:1550-1559.
20. St-Onge MP, Roberts AL, Chen J et al. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr 2011;94:410-416.
21. Jung CM, Melanson EL, Froydendall EJ, Perreault L, Eckel RH, Wight KP. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 2011;589:235-244.
22. St-Onge MP, McReynolds A, Trivedi ZB, Roberts AL, Sy M, Hirsch J. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am J Clin Nutr 2012;95:818-824.
23. Benedict C, Brooks SJ, O’Daly O, et al. Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: An fMRI study. J Clin Endocrinol Metab 2012;97:E443-E447.
24. Koban M, Sita LV, Le WW, Hoffman GE. Sleep deprivation of rats: The hyperphagic response is real. Sleep 2008;31:927-933.
25. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 2004;141:846-850.
26. Spiegel K, Leproult R, L’hermite-Baleix M, Copinschi G, Penev PD. Van Cauter E. Leptin levels are dependent on sleep duration: Relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 2004;89:5762-5771.
27. Kumari M, Badrick E, Ferrie J, Perski A, Marmot M, Chandola T. Self reported sleep duration and sleep disturbance are independently associated with cortisol secretion in the Whitehall II study. J Clin Endocrinol Metabol 2009;94: 4801-4809.
28. Fantus IG, Ryan J, Hirakawa N, Goremen P. The effect of glucocorticoids on the insulin receptor: an in vivo and in vitro study. J Clin Endocrinol Metab. 1981;52: 693-696.
29. Sohn JW, Harris LE, Berglund ED, et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 2013;152: 612-619.
30. Lucassen EA, Cizza G. The hypothalamic-pituitary-adrenal axis, obesity, and chronic stress exposure: Sleep and the HPA axis in obesity. Curr Opes 2012;1: 208-215.
31. Baum P, Petroff D, Classen J, Kiess W, Blüher M. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study. PLoS One 2013;8: e54546.
32. Tranavari T, Gannoumos P, Karalis KS, TNF-alpha and obesity. Curr Dir Autoimmun 2010;11:145-156.
33. St-Onge MP, Wolfe S, Sy M, Shechter A, Hirsch J. Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals. Int J Obes (Lond) 2013 Jun 19. doi:10.1038ijo.2013.114. [Epub ahead of print].

762 Obesity | VOLUME 22 | NUMBER 3 | MARCH 2014 www.obesityjournal.org