Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance

Suman Saurav a,1, Jyoti Tanwar b,c,1, Kriti Ahuja a, Rajender K. Motiani a,*

a Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
b CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India
c Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

A R T I C L E I N F O

Keywords:
Virus
Calcium
STIM1/Oral1
TPC2
VGCC
COVID-19

A B S T R A C T

Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca²⁺) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca²⁺ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca²⁺ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca²⁺ homeostasis. The focus of this review is to first discuss the role of host cell Ca²⁺ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca²⁺ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca²⁺ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca²⁺ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca²⁺ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.

1. Introduction

Viral infections are one of the most common causes of human illness worldwide (Burrell et al., 2017; Parvez and Parveen, 2017). Several viral infections are endemic in nature while some others can lead to pandemic diseases such as novel coronavirus disease (COVID-19). Viruses utilize host cell molecular machinery for driving their replication and dissemination. Therefore, virus-host cell interaction and subsequent modulation of host cell signaling pathways is a hallmark of viral pathogenesis (Rouse and Sehrawat, 2010). One of the most commonly dysregulated host cell signaling cascades during viral infections is cellular calcium (Ca²⁺) dynamics (Zhou et al., 2013). Ca²⁺ is a versatile second messenger that regulates a variety of cellular functions ranging from cell survival, proliferation, transcriptional regulation to apoptosis (Parys and Guse, 2019; Tanwar and Motiani, 2016). It is important to note that cells can neither synthesize nor metabolize Ca²⁺ and it is the complex interplay of Ca²⁺ handling machinery (Ca²⁺ channels, pumps, ATPases etc.) that regulates cytosolic and organellar Ca²⁺ homeostasis. In the last couple of decades, several new channels, uniporters, Ca²⁺ handling proteins etc. have been discovered. Especially, the proteins involved in a) maintaining mitochondrial Ca²⁺ dynamics b) mediating Ca²⁺ influx across plasma membrane (PM) in response to decrease in intracellular Ca²⁺ stores and c) modulating Ca²⁺ signaling in the endo-lysosomal compartments have gained significant attention in the last 10–15 years (Bagur and Hajnoczky, 2017; Parys and Guse, 2019).

Since Ca²⁺ signaling regulates plethora of cellular functions, it is not surprising that viruses hijack host cell Ca²⁺ signaling cascades for its own benefit. Indeed, a variety of viruses take over host cell Ca²⁺ handling machinery for driving viral infection and pathogenesis. Moreover, viruses induce changes in cytosolic Ca²⁺ concentration to activate Ca²⁺ dependent enzymes for promoting their replication (Chen et al., 2019). In this review, we will provide a brief overview of the viral life cycle and cellular Ca²⁺ signaling. We will then discuss the literature demonstrating that viral proteins can interact and/or modulate activity...

* Corresponding author. Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
E-mail address: rajender.motiani@rcb.res.in (R.K. Motiani).
1 Equal Contribution.

https://doi.org/10.1016/j.mam.2021.101004
Received 5 February 2021; Received in revised form 18 May 2021; Accepted 16 July 2021
Available online 23 July 2021
0098-2997/© 2021 Elsevier Ltd. All rights reserved.
of host cell Ca2+ handling machinery. Further, we will deliberate upon how viruses target organelle specific Ca2+ signaling for facilitating their entry and replication, which in turn determines viral pathogenesis. Importantly, we will prudently discuss the recent findings demonstrating the therapeutic potential of FDA-approved drugs targeting Ca2+ handling proteins in curtailing viral infections. Finally, we will provide future perspectives and highlight key outstanding questions in the field that demand critical and timely attention.

2. Viral life cycle

Viruses are microscopic obligatory intracellular parasites. Viruses live as a completely assembled virus particles known as virions (Gelderblom, 1996). The typical virion size is in the range of nanometers (Claverie, 2008; Carter, 2012). The virions are made up of two fundamental components: nucleic acid (single-stranded or double-stranded RNA or DNA) and a capsid protein coat. The capsid protects the viral genome from nucleases. Further, it helps in virion attachment to the specific receptors on the host cell during infection. The virions with an envelope are called enveloped viruses (eg. Human immunodeficiency viruses, Herpesviruses etc.), while those without an envelope are called naked viruses (eg. Papillomavirus, Parvovirus etc.).

For their replication and transmission, viruses must gain entrance into target cells and hijack the host cellular machinery. The various steps involved in the transmission of viruses inside cells are collectively referred as the "virus life cycle". The virus life cycle can be divided into three stages i.e. entry, genome replication and exit.

2.1. Entry of the viral component

The viral entry into a host cell requires the identification of the viral receptor (present on host cell) by the virion. There are four stages of viral entry: attachment, penetration, cytoplasmic trafficking, and uncoating (Ryu, 2017).

2.1.1. Attachment

Viron binds to specific receptors on the surface of the host cell through one or more of its surface proteins. The virion-recognition of its receptor is highly specific.

2.1.2. Penetration

After attachment of the virus on host cell, the next step is penetration into the cytoplasm. The enveloped viruses use either of the following two pathways for penetrating into host cell: direct fusion or receptor-mediated endocytosis.

Direct fusion: It is a process in which two membranes (i.e., a viral envelope and a cell membrane) fuse together. The viral nucleocapsid is transmitted directly to the cytoplasm, leaving the viral envelope behind on the PM. For example: Retroviruses (Ryu, 2017).

Receptor-mediated endocytosis: Majority of the animal viruses enter the host cells through endocytosis pathway. Viruses can use different endocytosis mechanisms. The most common route is clathrin-mediated endocytosis. While some viruses utilize caveolin and lipid raft-dependent pathways (Liu, 2014).

2.1.3. Intracellular trafficking

After successful penetration, the virus particles need to get to an appropriate location within the cell for genome replication. This process is called intracellular trafficking (Ryu, 2017).

2.1.4. Uncoating

The uncoating is the removal of the capsid for releasing virus genome in the host cell. Depending on the virus, the uncoating can happen at one of the several sites. For example: at the cell surface, within cytoplasm, at the nuclear pore or inside the nucleus (Carter, 2012).

2.2. Viral replication

The replication strategy varies significantly between the different family of viruses (Liu, 2014). Regardless of the genomic composition and replication strategy, soon after infection the viral genome is expressed as functional messenger RNA (mRNA). This guides the host cell translational machinery to generate viral proteins.

2.3. Viral exit/egress

The viral exit from host cell can be classified into three steps: capsid assembly, release and maturation.

2.3.1. Capsid assembly

The capsid assembly can be divided into two steps: capsid assembly and genome packaging. These two mechanisms may occur sequentially or concurrently, depending on the virus.

2.3.2. Release

In the case of naked viruses, viral particles are released through cell lysis of the infected host cells. Therefore, post cell membrane disruption, no defined escape mechanism is required in such cases. While in the case of enveloped viruses, a mechanism in which the capsids are surrounded by a lipid bilayer takes place prior to their release (Ryu, 2017).

2.3.3. Maturation

Maturation is the last step of the viral particle assembly that occurs extracellularly after the release of viruses from host cells. Importantly, viral particles acquire infectivity through the maturation process.

In the following sections, we will deliberate upon the molecular choreography through which viruses perturb host cell Ca2+ homeostasis for supporting their life cycle. First of all, we will provide a brief overview of intracellular Ca2+ signaling and organellar Ca2+ dynamics. Subsequently, we will discuss the viral targeting of Ca2+ homeostasis in various cellular compartments individually.

3. Intracellular calcium signaling

Ca2+ is a versatile second messenger involved in regulating wide array of cellular processes including proliferation, gene transcription, aerobic metabolism, muscle contraction, exocytosis and synaptic plasticity (Parys and Guse, 2019). Under resting conditions, cells maintain cytosolic Ca2+ concentrations (~100 nM) via efficient coordination between the extracellular milieu (Ca2+ concentrations ~2 mM) and intracellular Ca2+ stores (Ca2+ concentrations ~100–200 μM) (Bagur and Hajnóczy, 2017; Clapham, 2007). The intracellular Ca2+ homeostasis is maintained by various Ca2+ channels and pumps present on PM and intracellular organelles such as endoplasmic reticulum (ER), mitochondria, Golgi, and lysosomes. PM has several Ca2+-permeable channels and pumps such as voltage-gated calcium channels (VGCC), store-operated channels (SOC), receptor-operated channels (ROC) such as transient receptor potential channels (TRP), plasma membrane Ca2+ ATPase (PMCA) and the Na+/Ca2+ exchanger (NCX) (Bagur and Hajnóczy, 2017; Parys and Guse, 2019). The PM localized VGCC, SOC and ROC mediate Ca2+ entry from the extracellular milieu to cytosol. These PM resident channels are activated by the specific stimuli. The VGCCs are stimulated by membrane depolarization. These channels are found mostly in excitable cells (Atlas, 2014). The activation of these channels regulates various physiological functions such as excitation, contraction and relaxation of muscles, immune-protection and synaptic transmission among others (Catterall, 2011). Likewise, ROC are stimulated by external agonists, or intracellular messengers. TRP channels are major constituents of ROC and play an important role in decoding environmental stimuli. TRP channels are non-specific cationic channels that can mediate Ca2+ influx into the cells. The mammalian TRP channel superfamly is classified into six subfamilies based on sequence...
overload within the mitochondrial matrix leads to apoptosis (Mammu regulates Ca2+ uptake into the mitochondrial matrix is mediated via a highly Ca2+ selective channel known as Mitochondrial Ca2+ Uniporter (MCU) (Baughman et al., 2011; De Stefani et al., 2011). Mitochondrial Ca2+ regulates Ca2+-dependent dehydrogenase enzymes, which are involved in tricarboxylic acid cycle (TCA) cycle thereby meeting cellular energy demand via ATP synthesis (Hajnoczy et al., 1995). However, Ca2+ overload within the mitochondrial matrix leads to apoptosis (Mammucari et al., 2018; Park et al., 2018; Rasola and Bernardi, 2011; Tanwar et al., 2021). Ca2+ extrusion from mitochondrial matrix is majorly mediated through mitochondrial Ca2+ efflux proteins i.e. mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) (Palty et al., 2010) and leucine zipper EF hand-containing transmembrane 1 (Lem1) (Jiang et al., 2009). Further, lysosomes can also regulate Ca2+ homeostasis by acting as Ca2+ stores (Pate1 and Docampo, 2010; Patel and Mualliem, 2011). Ca2+ entry into endo-lysosomes is mediated by Ca2+/H+ exchangers (CHX) in an H+-dependent manner (Christensen et al., 2002; Melchionda et al., 2016). While, Ca2+ extrusion from the endo-lysosomes is mediated through the two-pore channel (TPCs) (Patel, 2015; Wang et al., 2012), TRPMLs (Cheng et al., 2010), TRPA1 and TRPM2 (Yang et al., 2018). The intracellular cues such as nicotinic acid adenine dinucleotide phosphate (NAADP) mobilizes Ca2+ from lysosomes through TPCs (Calcraf et al., 2009; Patel, 2015). In addition to ER and lysosomes, Golgi apparatus (GA) also serves as Ca2+ store (Dolman and Tepikin, 2006; Patel and Mualliem, 2011). In membranes of GA SERCA, IP\textsubscript{3}R, RyRs and SPCA (secretory pathway calcium ATPase) are present. IP\textsubscript{3} binding to IP\textsubscript{3}R releases Ca2+ from the Golgi. Ca2+ uptake in Golgi is mediated via SERCA and SPCA (Pizzo et al., 2011). The Ca2+ homeostasis within Golgi regulates cytosolic Ca2+ signaling. Taken together, Ca2+ dynamics within all these intracellular organelles (ER, mitochondria, lysosomes and Golgi) and the various PM Ca2+ channels crosstalk with each other for regulating cellular Ca2+ signaling (Raffaello et al., 2016) (Please refer Fig. 1 for the schematic illustration of the cellular Ca2+ handling toolkit). Importantly, dysregulation in the intracellular Ca2+ homeostasis is associated with several pathophysiological conditions including viral infections and pathogenesis. In the following sections, we will discuss the role of intracellular Ca2+ signaling in viral infections. Further, we will deliberate upon the molecular pathways adopted by viruses for hijacking host cell Ca2+ handling machinery to enhance viral pathogenesis.

4. Viral infections and perturbations in the Ca2+ signaling across PM

Host cell ion channels including Ca2+ channels are frequently targeted by viruses for their entry and replication (Charlton et al., 2020). In this section, we will discuss the molecular mechanisms through which viruses take over the PM Ca2+ handling machinery for their benefit.

4.1. Voltage gated Ca2+ channels (VGCC)

VGCC are one of the most well studied viral targets. The availability of highly specific FDA-approved inhibitors of VGCC (e.g., verapamil and nifedipine) has further helped in evaluating their significance in viral pathogenesis. Epstein-Barr virus (EBV) causes a range of malignancies including Burkitt’s lymphoma and nasopharyngeal carcinoma. EBV infection induces an increase in cytoplasmic Ca2+ in B lymphocytes due to augmented Ca2+ inflow from the extracellular space (Zhou et al., 2009). The pharmacological experiments using VGCC blockers
(verapamil or diltiazem) showed that EBV-induced human B cell activation is inhibited either upon incubation in Ca$^{2+}$-free medium or after treatment with VGCC blocking drugs (Dugas et al., 1989). On the contrary, no change in EBV-induced B cell activation was noted when the intracellular Ca$^{2+}$ concentration was decreased with Ca$^{2+}$ chelator BAPTA. This implicates a critical role for VGCC in EBV induced increase in intracellular Ca$^{2+}$ required for B cells activation (Dugas et al., 1989). Similarly, Nugent et al. reported that VGCC blocker Verapamil prevents influenza virus replication in canine kidney cells and in murine pulmonary macrophages (Nugent and Shanley, 1984). Recently, it was demonstrated that Influenza A virus (IAV) glycoprotein hemagglutinin (HA) binds to the Cav1.2 voltage-dependent Ca$^{2+}$ channel (Fujikawa et al., 2018). This leads to induction of intracellular Ca$^{2+}$ oscillations and subsequent viral entry and replication. It was further reported that IAV entry is hampered by both pharmacological blocking and molecular knockdown of Cav1.2 (Fujikawa et al., 2018). The small GTPase RhoA is reported to operate downstream of IAV induced Ca$^{2+}$ response, which in turn regulates both clathrin-mediated and clathrin-independent endocytosis of virus. This signaling cascade is a key mechanism for regulating IAV internalization and infection (Fujikawa et al., 2013).

HIV belongs to retroviruses family comprising of RNA as their genetic material (Karn, 2013). Two HIV-1 proteins namely the membrane glycoprotein gp120 and the transcriptional trans-activator Tat induce cytoplasmic Ca$^{2+}$ elevation by modulating VGCC activity. These proteins have been shown to do so in both excitable (such as neuronal cells) and non-excitable cells (such as epithelial and immune cells) (Zhou et al., 2009). HIV-1 Tat interacts with L-type Ca$^{2+}$ channels expressed by dendritic cells and inhibits cellular functions (Zocchi et al., 1998). Likewise, HIV-1 Tat targets L-type Ca$^{2+}$ channels on NK cells, which leads to failure of NK cell-mediated cytotoxicity (Zocchi et al., 1998).

Flaviviruses include several pathogenic viruses such as Japanese encephalitis virus (JEV), Yellow Fever virus (YFV), Zika virus (ZIKV), West Nile virus (WNV), Dengue virus (DENV) etc. Excitingly, an unbiased screening of FDA-approved drugs for identifying the inhibitors of JEV infection led to identification of three VGCC blockers i.e. mandipidine, clindipidine, and benidipine hydrochloride as highly potent blockers of JEV infection (Wang et al., 2017). In the high-throughput screening assay, these three drugs robustly inhibited the viral (wild-type JEV strain AT31) infection, which was validated by a battery of subsequent experiments (Wang et al., 2017). Since flaviviruses are quite similar in structure and pathogenesis, authors first used JEV as a model system for the drug screening and later on validated antiviral activities of VGCC blockers in ZIKV, WNV, and DENV type 2 (DENV-2) (Wang et al., 2017). Mechanistically, these drugs most likely inhibit flavivirus genome replication as they imparted complete inhibition even when cells were treated with these drugs post viral infection. This suggests that Ca$^{2+}$ influx mediated by VGCC is critical for flavivirus genome replication.

Likewise, VGCC were identified as a therapeutic target against New World arenaviruses (NWA) infection (Lavanya et al., 2013). Lavanya et al. performed a high-throughput siRNA screening with pseudo-typed virus for identifying host cell proteins of high therapeutic value. Both pharmacological blocking and siRNA mediated silencing of VGCC subunits decreased viral entry into host cells. Moreover, the authors evaluated the role of VGCC in viral infection in vivo. They used the vaccine strain of the Junin virus for performing in vivo studies in mice. Importantly, an FDA-approved VGCC targeting drug, gabapentin robustly diminished the viral infection in vivo thereby corroborating an important role for VGCC in NWA entry and infection (Lavanya et al., 2013). Recently, same group reported that the haploinsufficiency of one of the chains of VGCC imparts protection to human cells and mice against NWA infections (Sarute and Ross, 2020). It was demonstrated that NWA target VGCC for host cell entry and mutation in α1s chain provides significant protection against vaccine strain of the Junin virus in vivo. Further, the heterozygous mice carrying this mutation showed higher efficacy of gabapentin in comparison to control littersmates (Sarute and Ross, 2020). Taken together, above discussed studies elegantly demonstrate that VGCC are attractive therapeutic targets for stalling a variety of viral infections. With a battery of FDA-approved drugs targeting VGCC, it is an area that demands immediate and critical attention for fighting against viral infections.

4.2. Store operated Ca$^{2+}$ channels (SOCC)

SOCC are stimulated by the loss of Ca$^{2+}$ from ER, which is physiologically caused by activation of a variety of cell surface receptors (Chen et al., 2019; Prakriya and Lewis, 2015). Recently, Yao et al. reported that the Hepatitis b virus (HBV) non-structural protein X (HBx) increases intracellular Ca$^{2+}$ by interacting with SOCC protein Orail (Yao et al., 2018). The authors performed confocal microscopy, co-immunoprecipitation and GST-pull-down assay for demonstrating that Orail C-terminus interacts with HBx (Yao et al., 2018). This interaction enhances store operated Ca$^{2+}$ entry, thereby elevating cytosolic Ca$^{2+}$ levels. It is important to note that HBx mediated modulation of intracellular Ca$^{2+}$ dynamics is critical for HBV replication. Further, HBx regulates viral pathogenesis, host cell apoptosis, transcription and cell signaling (Bouchard and Navas-Martin, 2011). Consequences of HBx expression vary according to the cell type (Bouchard and Navas-Martin, 2011). Recently, a direct association between HBx mediated cytosolic Ca$^{2+}$ elevation (via SOCC) and stimulation of HBV replication was reported (Casciano et al., 2017). It was demonstrated that expression and activity of SOCC components remain unaltered but Ca$^{2+}$ entry via SOCC is prolonged. The persistent high cytosolic Ca$^{2+}$ levels stimulate downstream effector proteins, which in turn creates favorable cellular environment for HBV replication.

In case of retroviruses, pX open reading frame 1 encoding two proteins i.e. p121 and p271 is necessary for developing persistent infection (Ding et al., 2002). The chemical inhibition experiments using SOCC inhibitor indicated that SOCC contribute to the p121-mediated Nuclear Factor of Activated T-cells (NFAT) activation (Ding et al., 2002). The NFAT activation in turn leads to the replication of retroviruses (Ding et al., 2002). Similarly, rotavirus (RV) infection enhances cytosolic Ca$^{2+}$ concentration, which is critical for virus replication (Chang-Graham et al., 2019). The pharmacological experiments demonstrated that both RV replication and RV nonstructural protein 4 (NSP4) induce a rise in cytoplasmic Ca$^{2+}$ levels via SOCC (Diaz et al., 2012). Subsequently, Hyser et al. reported that in RV infected cells, STIM1 is constitutively active and STIM1 puncta are colocalized with the Orai1 (Hyser et al., 2013). The wild-type NSP4 was shown to activate STIM1, which results in Ca$^{2+}$ influx. But an NSP4 viroporin mutant failed to cause STIM1 oligomerization and did not activate the SOC entry (SOCE) (Hyser et al., 2013). Importantly, STIM1 knockdown substantially decreased RV yield, suggesting that STIM1 plays a vital role in RV replication (Hyser et al., 2013). Recently, it was demonstrated that the inhibition of SOCE or Orai1 channel attenuates the cytosolic Ca$^{2+}$ spikes critical for viral replication (Chang-Graham et al., 2019). Taken together, these studies establish an important role of SOCC mediated increase in cytosolic Ca$^{2+}$ in RV replication.

Likewise, it was recently demonstrated that DENV infection in human hepatic cells leads to activation of SOC channels and rise in cytosolic Ca$^{2+}$ levels via Orai1 (Dionicio et al., 2018). It was observed that DENV infection induces ER Ca$^{2+}$ store depletion followed by co-localization of STIM1 and Orai1 leading to Ca$^{2+}$ influx via Orai1. Further, the treatment of infected cells with Ca$^{2+}$ chelators (BAPTA-AM and EGTA) or SOC inhibitor (SKF96365) substantially reduced the viral titers, thereby emphasizing (Dionicio et al., 2018) that SOC mediated Ca$^{2+}$ influx plays an important role in DENV replication. Similarly, Han et al. demonstrated that hemorrhagic fever viruses like the filoviruses (Ebola and Marburg) and arenaviruses (Lassa and Junin viruses) induce rise in cytosolic Ca$^{2+}$ levels via STIM1/Orai1-mediated SOCE (Han et al., 2015). The authors silenced STIM1/Orai1 as well as pharmacologically blocked SOCE for demonstrating a critical role of this pathway in
enhancing cellular Ca2+ levels upon filo and arenavirus infection. Importantly, STIM1 and Orai1 regulate viral budding and pathogenesis of Ebola, Marburg, Lassa and Junín viruses (Han et al., 2015) thereby suggesting that SOCE could be targeted for controlling the pathogenesis of hemorrhagic fever viruses. In summary, STIM1-Orai1 mediated SOCE plays a critical role in viral replication and budding in a battery of different viral families.

4.3. Receptor operated Ca2+ channels (ROCC)

The role of ROCC in viral infections remains poorly understood. The infection of HIV-1 coat protein gp120 in rat retinal ganglion cells and hippocampal neurons induces significant increase in the intracellular Ca2+ leading to cytotoxicity (Nath et al., 1995). In gp120-mediated biological responses, glutamate is involved (Nath et al., 1995). The gp120 activity is blocked, at least in part, by NMDA-selective excitatory amino acid receptor antagonists, Ca2+ channel inhibitors (like dantrolene) and nitric oxide synthase inhibitors (Nath et al., 1995). Recent studies have reported that the two Tat protein variants, Tat 172 and Tat 186 induce rapid rise in intracellular Ca2+ in rat hippocampus organotypic slice cultures (Self et al., 2004). Importantly, NMDA receptor antagonist dizocilpine significantly attenuated changes in intracellular Ca2+ levels induced by Tat 172 or Tat 186. This suggests that targeting NMDA receptor could help in managing neurotoxic effects associated with HIV infection (Self et al., 2004). More recently, transient receptor potential vaniloid 4 (TRPV4) was reported to regulate replication of a variety of viruses. It was demonstrated that TRPV4 is frequently expressed after viral infection, exhibits some spontaneous activity, and induces intracellular Ca2+ signals (Donate-MacIan et al., 2018). TRPV4 binds and controls the functioning of the DEAD-box RNA helicase DDX3X. DDX3X is attacked by many RNA viruses. TRPV4-mediated Ca2+ influx leads to release of DDX3X from the channel and its subsequent nuclear translocation (Donate-MacIan et al., 2018). The molecular knockdown or pharmacological inhibition of TRPV4 reduces DDX3X-dependent functions such as translation and export of viral proteins (Donate-MacIan et al., 2018). Additionally, TRPV4 mediates nuclear aggregation of DDX3X in cells infected with Zika virus. Importantly, TRPV4 targeting decreases dengue, hepatitis C and Zika virus infectivity (Donate-MacIan et al., 2018).

4.4. Plasma membrane Ca2+ ATPase (PMCA) and sodium-calcium exchanger (NCX)

As major Ca2+ extruders, PMCA and NCX take Ca2+ out of the cell, thereby helping in maintaining cytosolic Ca2+ homeostasis. Viruses can directly or indirectly regulate the activity of PMCA and/or NCX for inducing changes in the cytosolic Ca2+ levels. For example, the ectopic expression of the HBx protein causes elevation of the cytosolic Ca2+ by modulating PMCA activity (Chami et al., 2003; Zhou et al., 2013). HBV infection did not modify the levels of PMCA-1, 2, 3, or 4 mRNAs suggesting that HBV does not influence PMCA expression at least at the mRNA level (Casiano et al., 2017). Mechanistically, it was demonstrated that HBx overexpression induces caspase-3-mediated cleavage of PMCA while blockage of caspase activity abolishes PMCA cleavage (Chami et al., 2003). Therefore, HBx regulates PMCA activity by inducing its cleavage. This in turn decreases Ca2+ efflux from the cytosol to the extracellular environment resulting in elevated cytoplasmic Ca2+ levels (Casiano et al., 2017). The rise in cytosolic Ca2+ concentration augments HBV replication and enhances the core assembly of HBV (Zhou et al., 2013). Similarly, RV infection dysregulates cellular Ca2+ homeostasis, which in turn helps in its replication and diarrheal pathogenesis (Chang-Graham et al., 2020). RV NSP4 is responsible for inducing perturbations in host cell Ca2+ dynamics (Sastri et al., 2016). Diaz et al. reported that RV infection or just NSP4 expression leads to reverse mode activation of NCX thereby increasing the cytosolic Ca2+ concentration. This suggests that RV targets NCX and stimulates its functioning in reverse mode, which in turn results in rise in cellular Ca2+ levels required for RV replication (Diaz et al., 2012).

Taken together, above studies demonstrate that a variety of viruses hijack different types of PM Ca2+ handling proteins for the host cell entry and replication (please refer Fig. 2 for the diagrammatic illustration). Most of these viruses enhance cytosolic Ca2+ concentration for driving their replication. However, the molecular choreography connecting rise in cytosolic Ca2+ levels to augmented viral replication remains poorly understood. Certainly, it is critical to enrich this knowledge base so that it could be utilized in the future for developing therapeutic strategies in curtailing the replication of such viruses.
5. ER Ca\(^{2+}\) homeostasis and viral infections

Viruses exploit ER to promote various steps of their life cycle (Romero-Brey and Bartenschlager, 2016). A variety of viruses target host cell ER Ca\(^{2+}\) stores for driving their replication and enhancing viral infection. For example RV infection leads to elevation of cytosolic Ca\(^{2+}\) levels in the host cell because of increased efflux of Ca\(^{2+}\) from ER into cytosol followed by Ca\(^{2+}\) influx through PM (Hyser and Estes, 2015; Pérez et al., 1999; Tian et al., 1994). The virus encoded NSP4 protein has been reported to be responsible for the changes in Ca\(^{2+}\) dynamics (Hyser and Estes, 2015; Tian et al., 1994). NSP4 perturbs Ca\(^{2+}\) homeostasis by at least two mechanisms: viroporin function and endotoxin activity (Sastri et al., 2016). NSP4 is localized in the ER and functions as a viroporin that depletes ER Ca\(^{2+}\) stores. This leads to rise in cytosolic Ca\(^{2+}\) levels, which is important for replication of RV (Díaz et al., 2008; Hyser et al., 2010, 2013; Pham et al., 2017; Tian et al., 1995). Secondly, NSP4 possesses an enterotoxin domain (amino acids 114–135), which can induce chloride secretion from enterocytes due to PLC-dependent transient rise in cytosolic Ca\(^{2+}\) (Dong et al., 1997; Morris et al., 1999).

Recently, Chang-Graham et al. characterized RV modulated Ca\(^{2+}\) signaling by stably expressing genetically encoded Ca\(^{2+}\) indicators targeting cytosol and/or ER in cell lines and human intestinal enteroids (HI-Es) (Chang-Graham et al., 2019). The virus induced increase in cytosolic Ca\(^{2+}\) exhibits spatial and temporal complexity. The authors measured alterations in cytosolic Ca\(^{2+}\) in single cells over a long time to understand if RV dysregulates Ca\(^{2+}\) levels during infection and its progression. They observed that release of Ca\(^{2+}\) from the ER is the prime cause of RV-induced cytosolic Ca\(^{2+}\) spikes. Importantly, modulation of Ca\(^{2+}\) signals by RV can direct the host cell either towards cell death or cell survival/proliferation. RV infection activates discrete, transient Ca\(^{2+}\) signaling events rather than a steady rise in cytosolic Ca\(^{2+}\) levels (Chang-Graham et al., 2019). This acts as a pro-survival signal by stimulating PI3K and calcineurin-dependent NFAT transcription factor. As Ca\(^{2+}\) levels increase drastically during the later stages of viral life cycle, cell damage and death occur (Crawford et al., 2012; Pérez et al., 1998; Zhu et al., 2017). In summary, RV targets ER Ca\(^{2+}\) signaling for promoting its replication and assembly.

Human cytomegalovirus (HCMV) encodes several genes (US21, UL37, US28) that can regulate host cell Ca\(^{2+}\) signaling (Dunn and Munger, 2020). US21 gene encodes a Ca\(^{2+}\) permeable channel, a viroporin, that depletes the ER Ca\(^{2+}\) stores (Lugunini et al., 2018). This in turn decreases susceptibility of the cell to apoptosis. Likewise, UL37 is responsible for mobilizing Ca\(^{2+}\) from ER to cytosol thereby enhancing ATP production, which is used to meet energy demands of the virus (Sharon-Friling et al., 2006). On the contrary, US28 (a viral GPCR) activates caspase that promotes apoptosis (Gao and Murphy, 1994; Pleskoff et al., 2005). This aids in disease progression in certain specific cell types. Miller et al. reported that US28 triggers PLC-β signaling which leads to release of intracellular Ca\(^{2+}\) in smooth muscle and endothelial cells but not in glioblastoma cells (Miller et al., 2012). Further, UL146 encodes vCXCL1 (a viral chemokine), which is an agonist for human chemokine receptors (CXCRI and CXCRII) and it induces intracellular Ca\(^{2+}\) release (Penfold et al., 1999; Wang et al., 2003). Additionally, interaction between HCMV and epidermal growth factor receptor (EGFR) is responsible for internalization of the virus. As a consequence, intracellular Ca\(^{2+}\) levels are increased (Wang et al., 2003) and that aids in viral dissemination through the host. In summary, HCMV gene products modulate ER Ca\(^{2+}\) signaling via multiple cascades eventually regulating host cell growth, apoptosis and inflammatory responses.

EBV, an oncogenic gamma-herpes virus infects normal resting B lymphocytes and leads to immortalization of the cells (Papp et al., 2020). EBV has the ability to immortalize primary naïve B lymphocytes, which results in various forms of lymphomas (Dellis et al., 2009). EBV infection leads to a rise in resting cytosolic Ca\(^{2+}\) levels (Chami et al., 2006; Scharenberg et al., 2007) by modulating the expression and activity of SERCA3 (Dellis et al., 2009). EBV protein, LMP-1 (latent membrane protein-1) brings about the down-regulation of SERCA3. This process eventually results in B cell immortalization associated with EBV infection.

Ca\(^{2+}\) signaling plays an important role in HIV-1 protein trafficking, release and viral replication. HIV-1 gp120 and Tat are responsible for IP\(_{3}\) generation (Ehrlich et al., 2011, 2014) whereas HIV Nef acts as an agonist for IP\(_{3}\)R (Ehrlich et al., 2010; Manninen and Saksela, 2002). The activation of IP\(_{3}\)R is required for efficient trafficking of HIV-1 Gag and for viral release (Ehrlich et al., 2010). Furthermore, the studies from Ehrlich et al. indicate that Ca\(^{2+}\) is required for Gag assembly, which is facilitated by IP\(_{3}\)R mediated ER Ca\(^{2+}\) release. The authors demonstrated that Gag regulates both ER Ca\(^{2+}\) release and store refilling (Ehrlich et al., 2014). Interestingly, Gag stimulates IP\(_{3}\)R and distributes them towards the cell periphery (Chalmers et al., 2006; Vermassen et al., 2004).

Further, it is reported that functioning of PI(4,5)P\(_2\) as a PM anchor and PLC substrate are required for efficient HIV infection. Some of the ER released Ca\(^{2+}\) might keep activating PLC, which hydrolyses PI(4,5)P\(_2\) and provide a constant supply of IP\(_{3}\) and hence support continuous activation of IP\(_{3}\)R (Rhee, 2001; Suh et al., 2008). Importantly, the increase in production of viral particles is observed upon ER Ca\(^{2+}\) release.

Fig. 3. ER Ca\(^{2+}\) homeostasis and viral infections. A number of viruses target ER Ca\(^{2+}\) handling toolkit, which in turn aids in all three stages of infection i.e. viral entry (eg. HSV), viral replication (eg. HIV and HBV) and viral exit (eg. HIV). Some viruses, such as RV and HCMV can induce ER Ca\(^{2+}\) efflux by forming viroporin in the ER membrane. This in turn helps in viral replication and assembly. While oncogenic EBV targets SERCA regulated ER Ca\(^{2+}\) homeostasis for driving viral infection and associated oncogenesis.
in independent studies have reported localization of HBx to mitochondria in AIDS pathogenesis (Manninen and Saksela, 2002). It acts as an agonist (Ehrlich et al., 2014). Similarly, HIV protein Nef plays an important role in AIDS pathogenesis (Manninen and Saksela, 2002). It acts as an agonist (Ehrlich et al., 2014). Similarly, HIV protein Nef plays an important role

S. Saurav et al.

This triggers ER Ca²⁺ release downstream of PLC-IP3 pathway. It leads to activation of phosphorylation pathways, which aids in viral penetration and delivery of viral capsids to host cell nucleus. In a subsequent study, same group used confocal microscopy to demonstrate that viral penetration triggers rise in cellular Ca²⁺ via release of IP3 sensitive intracellular Ca²⁺ stores. Importantly, the abrogation of intracellular Ca²⁺ response prevented viral entry and infection. The inhibition of IP3 R and chelation of intracellular Ca²⁺ inhibits viral infection. This suggests that IP3 induced Ca²⁺ release from intracellular stores plays an important in regulating HSV entry in the host cells (Cheshenko et al., 2007).

Taken together, above studies clearly exhibit that viral proteins target ER Ca²⁺ handling machinery for modulating ER and cytosolic Ca²⁺ levels. This in turn helps in viral entry, replication and exit thereby playing an important role in viral pathogenesis (Refer Fig. 3 for the pictorial summary). However, more mechanistic investigations are required to precisely decipher how changes in ER Ca²⁺ drive viral infections.

6. Mitochondrial Ca²⁺ dynamics and viral infections

Mitochondrial Ca²⁺ homeostasis is a critical regulator of host cell fate upon viral infection (Zhou et al., 2009). Mitochondria are the key targets for viruses as they are major player involved in regulating bioenergetics and apoptosis (Cavallari et al., 2018). Several studies have demonstrated that host cell mitochondrial Ca²⁺ signaling is altered during viral infections (Anand and Tikoo, 2013; Chaudhuri et al., 2021). Viruses modulate the Ca²⁺ flux across mitochondria to induce or prevent apoptosis (Panda et al., 2021). Host cells utilize apoptosis as an innate defense mechanism to control virus production and viral dissemination (Benedict et al., 2002). In contrast, viruses utilize an anti-apoptotic approach to evade host immune clearance. Interestingly, certain viruses induce apoptosis to aid viral dissemination (Zhou et al., 2009). Various types of viruses induce perturbations in mitochondrial Ca²⁺ signaling to aid persistent infection (Anand and Tikoo, 2013; Chaudhuri et al., 2021; Ohba and Nishiyama, 2011).

The HBx protein plays a critical role in replication of HBV and the development of liver cancer (Bouchard and Schneider, 2004). Several independent studies have reported localization of HBx to mitochondria (Clippinger and Boucher, 2008; Henkel et al., 2001; Hui and Siddiqui, 2002; Takada et al., 1999). By utilizing aequorin-based recombinant probes, it was revealed that overexpression of HBx in HepG2 and HeLa cells leads to decrease in histamine induced mitochondrial Ca²⁺ uptake (Chami et al., 2003). Furthermore, the ectopic expression of HBx altered mitochondrial morphology i.e. round, fragmented and swollen mitochondria (Chami et al., 2003). Taken together, this study suggested that HBx induces apoptosis by modulating mitochondrial Ca²⁺ signaling. Several groups have reported a critical role for mitochondrial Permeability Transition pore (mPTP) activity in HBV replication (Bouchard et al., 2001; Gearhart and Bouchard, 2010; McClain et al., 2007). An interesting report by Gearhart et al. implicated a role for mitochondrial Ca²⁺ signaling in replication of HBV (Gearhart and Bouchard, 2010). The authors demonstrated that mPTP increases cell cycle arrest in G1 phase via mitochondria-dependent Ca²⁺ signaling. This in turn leads to stimulation of HBV replication (Gearhart and Bouchard, 2010). It was reported that mitochondrial Ca²⁺ dynamics regulates HBx activated HBV DNA replication (Bouchard et al., 2001). The treatment with cyclosporin A (CsA), a mPTP inhibitor reduces HBx activated HBV DNA replication (Bouchard et al., 2001). In an interesting study, Rahmani et al. described interaction between HBx and VDAC3 within mitochondrial membrane (Rahmani et al., 2000). The authors further reported altered mitochondrial membrane potential upon HBx expression in human hepatoma cells (Rahmani et al., 2000). Similarly, Yang et al. reported that HBx protein induces rise in cytosolic Ca²⁺ by modulating mitochondrial Ca²⁺ uptake (Yang and Bouchard, 2012). The authors demonstrated an increase in mitochondrial Ca²⁺ uptake in HBx-expressing cells. This increased mitochondrial Ca²⁺ uptake stimulates HBV replication (Yang and Bouchard, 2012).

The HCV infection is associated with various mitochondrial dysfunctions (Brault et al., 2013; Piccoli et al., 2006). Piccoli et al. revealed that expression of HCV protein leads to dysregulation of mitochondrial Ca²⁺ homeostasis in U2-OS human osteosarcoma cells (Piccoli et al., 2007). The rise in mitochondrial Ca²⁺ influx led to mitochondrial Ca²⁺ overload, which in turn results in altered bioenergetics, inhibition of complex I, decreased mitochondrial membrane potential, increased ROS and elevated nitro-oxidative stress. Importantly, these observations could be completely reversed upon inhibition of mitochondrial Ca²⁺ uptake by ruthenium red or Ru360 (Piccoli et al., 2007). Similarly, Gong et al. demonstrated the role of HCV nonstructural protein 5A (NS5A) in altering mitochondrial Ca²⁺ homeostasis and inducing nuclear translocation of NF-kB and STAT-3 transcription factors (Gong et al., 2001). A decrease in NS5A-induced NF-kB activation was observed upon inhibition of mitochondrial Ca²⁺ uptake by ruthenium red (RR). Thus, suggesting a critical role for mitochondrial Ca²⁺ in regulating NS5A’s ability to activate transcription factors (Gong et al., 2001). Likewise, Li et al. reported that HCV core protein enhances mitochondrial Ca²⁺ uptake and ROS generation by potentiating the activity of Ca²⁺ uniporter (Li et al., 2007). Further, the authors observed a rise in mitochondrial Ca²⁺ influx upon incubating mouse liver mitochondria with HCV core protein in vitro. This increased entry was inhibited by the mitochondrial Ca²⁺ uniporter inhibitor Ru360 but not with Na⁺/Ca²⁺ exchanger inhibitor or ROS scavengers. This suggests that the mitochondrial Ca²⁺ uniporter is one of the targets of HCV infection (Li et al., 2007). Interestingly, Quatato et al. reported that alisporivir (an analogue of mPTP inhibitor cyclosporine A and cyclophilin inhibitor) treatment gives protection against HCV-induced mitochondrial dysfunction (Quatato et al., 2012). The authors further demonstrated that alisporivir rescues HCV-induced increase in ROS production, depolarization of mitochondrial membrane potential and mitochondrial Ca²⁺ overload. Therefore, this study suggests a potential therapeutic value of alisporivir in managing HCV infections (Quatato et al., 2012).

A study by Moir et al. reported that hepatitis E virus open reading frame 3 (Orf3) protein provides protection to virus from mitochondrial depolarization and associated cell death (Moir et al., 2007). The authors reported that stable Orf3-expression leads to upregulation of VDAC. Further, siRNA mediated knockdown of Orf3 decreases VDAC expression. The authors showed a decrease in cell death in Orf3-expressing cells. This was associated with the reduction in OMM permeabilization via VDAC1 oligomerization and increase in Orf3 interaction with hexokinase 1. This signaling cascade eventually prevents the release of cytochrome c and aids in cell survival, thereby allowing viral replication in these cells (Moir et al., 2007). Similarly, HCMV UL37 encodes a viral mitochondria-localized inhibitor of apoptosis (vMiA), which promotes cell survival by inhibiting a pro-apoptotic protein Bax (Arnoult et al., 2004; Goldmacher et al., 1999; Poncet et al., 2004). All the cited studies collectively recognize UL37 as a potent inhibitor of host cell apoptosis that in turn helps in continuous viral replication.
HIV viral proteins (Tat and gp120) induce mitochondrial impairment by perturbing processes such as mitochondrial dynamics, morphology and mitochondrial membrane potential (Rozzi et al., 2017). Kruman et al. reported that Tat induces apoptosis of cultured embryonic rat hippocampal neurons via caspase activation and mitochondrial Ca\(^{2+}\) overloading (Kruman II et al., 1998). The authors demonstrated that Tat induces rise in cytosolic Ca\(^{2+}\) leading to increase in mitochondrial Ca\(^{2+}\) uptake and generation of mitochondrial ROS. Furthermore, they showed protection against Tat-induced apoptosis with BAPTA-AM and ruthenium red (Kruman II et al., 1998) suggesting an important role for mitochondrial Ca\(^{2+}\) concentration. The rise in mitochondrial Ca\(^{2+}\) levels leads to host cell apoptosis.

Viral Exit
Viral Replication and Exit
Viral Exit
Viral Exit
Viral Replication

3. Mitochondrial Ca\(^{2+}\) dynamics and viral infections

Viral exit of the virus is a crucial step for viral infections associated with dysregulation of mitochondrial Ca\(^{2+}\) homeostasis. HIV viral proteins (Tat and gp120) induce mitochondrial impairment by perturbing processes such as mitochondrial dynamics, morphology and mitochondrial membrane potential (Rozzi et al., 2017). Kruman et al. reported that Tat induces apoptosis of cultured embryonic rat hippocampal neurons via caspase activation and mitochondrial Ca\(^{2+}\) overloading (Kruman II et al., 1998). The authors demonstrated that Tat induces rise in cytosolic Ca\(^{2+}\) leading to increase in mitochondrial Ca\(^{2+}\) uptake and generation of mitochondrial ROS. Furthermore, they showed protection against Tat-induced apoptosis with BAPTA-AM and ruthenium red (Kruman II et al., 1998) suggesting an important role for mitochondrial Ca\(^{2+}\) concentration. The rise in mitochondrial Ca\(^{2+}\) levels leads to host cell apoptosis.

7. Lysosomal Ca\(^{2+}\) dynamics and viral entry

The lysosomal Ca\(^{2+}\) drives important cellular processes such as signal transduction, vesicular trafficking, autophagy, exocytosis etc. (Peng and Yang, 2016; Lloyd-Evans and Platt, 2011; Purel and Cai, 2015; Trivedi et al., 2020). Viruses target lysosomal Ca\(^{2+}\) handling machinery for entry into host cells. A fascinating study by Sakurai et al. reported an important role for endo-lysosomal TPCs in EBOV entry into host cells (Sakurai et al., 2015). The authors demonstrated that Ned19 (TPC inhibitor) and tetradrine (NAADP antagonist) treatment reduces Ebola virus (EBOV) infection. A robust decrease in EBOV infection was observed in the mouse embryonic fibroblasts harvested from TPC1/2 knockout mice thereby confirming an essential role for TPCs in EBOV entry. Furthermore, tetradrine treatment led to inhibition of Marburgvirus (distantly related filovirus) signifying a critical role of TPCs in filovirus infection (Sakurai et al., 2015). Independently, Simons et al. reported that EBOV entry occurs through endolysosomes positive for two-pore Ca\(^{2+}\) channel 2 (TPC2) and Niemann-Pick C1 (NPC1) (Simmons et al., 2016). A recent study by Penny et al. identified FDA-approved blockers for TPC to inhibit viral entry into host cells (Penny et al., 2019). For identifying novel compounds targeting TPC, the authors virtually screened a library of around 1500 FDA-approved drugs by performing TPC2 structure-based virtual drug screening. It was observed that the drugs targeting dopamine and estrogen receptors bind to TPC pore. Further in vitro validation studies demonstrated that these drugs indeed inhibit endogenous NAADP-evoked Ca\(^{2+}\) release and TPC2 channel activity. Most importantly, these drugs led to a significant reduction in EBOV infection in HeLa cells. Taken together, these elegant studies established an important role for TPCs in EBOV entry and identified TPCs as a potential drug target against EBOV infection (Penny et al., 2019). More recently, Das et al. reported a role for Ca\(^{2+}\) in EBOV entry by utilizing single-molecule FRET (smFRET)-imaging (Das et al., 2020). These authors demonstrated that pH, Ca\(^{2+}\), and NPC1 receptor binding leads to conformational changes in EBOV envelope glycoprotein 2. This conformational change plays an important role in the fusion of virus with endosomal membrane, a critical step in the EBOV entry (Das et al., 2020).

Likewise, Gunaratne et al. reported a critical role of TPCs in Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections (Gunaratne et al., 2018). The knockdown of TPCs but not that of lysosomal transient receptor potential musclopin-1 (TRPM1) led to impairment of MERS-CoV translocation via endo-lysosomes (Gunaratne et al., 2018). Importantly, the inhibition of NAADP-evoked lysosomal Ca\(^{2+}\) release via bisbenzyl-isouquinoline alkaloids blocked MERS pseudovirions translocation (Gunaratne et al., 2018). This highlights the therapeutic significance of targeting TPCs in regulating MERS-CoV pathogenesis. Recently, TPC1/2 were reported to play a critical role in mitochondrial-dependent apoptotic pathways. Further, CaMKII inhibition with a pharmacological inhibitor (KN-93) or its silencing by shRNA repressed cytochrome c release from mitochondria and abrogated CVB3-induced H9c2 apoptosis. While overexpression of the CaMKII activated mutant (CaMKII-T287D) increased CVB3-induced H9c2 apoptosis (Nie et al., 2020) thereby suggesting that mitochondrial Ca\(^{2+}\) dynamics play a critical role in CVB3 pathogenesis.
polyomavirus entry into the host cells (Dobson et al., 2020). Further, it was demonstrated that inhibition of TPC activity by tetrandrine abrogates Merkel cell polyomavirus and Simian virus 40 infection. In a timely and highly relevant study, Ou et al. demonstrated that human angiotensin converting enzyme 2 (hACE2) is the receptor for SARS-CoV-2, the virus responsible for current COVID-19 pandemic (Ou et al., 2020). The authors reported that SARS-CoV-2 enters cells primarily through endocytosis. Further, they showed that TPC2 but not TRPML1 plays a critical role in the SARS-CoV-2 entry. Importantly, Ou and colleagues demonstrated that inhibition of TPC2 by tetrandrine leads to decrease in SARS-CoV-2 pseudovirion entry (Ou et al., 2020). Therefore, further investigations focused on evaluating the efficacy of TPC targeting drugs as novel antiviral therapy are needed of the hour.

Apart from TPCs, an important role for another endo-lysosomes localized Ca\(^{2+}\) channel TRPML1 is reported in HIV-1 infection (Khan et al., 2019). As discussed in previous sections, HIV-1 Tat protein is critical for HIV-1 replication and latent infection. The degradation of Tat protein depends on pH of host cell endo-lysosomal compartment. Khan et al. demonstrated that acidification of endo-lysosomes by inducing TRPML1 activation leads to Tat degradation (Khan et al., 2019). This suggests that TRPML1 could be a potential therapeutic candidate against latent HIV-1 infections (Khan et al., 2019).

Taken together, these studies highlight that lysosomal Ca\(^{2+}\) signaling is critical for viral entry. It is important to note that TPC2 but not TRPML1 is a promising target for EBOV, SARS-CoV-2 and MERS-CoV infections whereas TRPML1 plays a critical regulatory role in case of HIV-1 infections thereby suggesting viral specific targeting of lysosomal Ca\(^{2+}\) handling machinery (Please refer Fig. 5 for the diagrammatic summary). Therefore, these studies demonstrate that different viruses target specific endo-lysosomal Ca\(^{2+}\) channels for their entry into host cells. Notably, FDA-approved drugs targeting lysosomal Ca\(^{2+}\) dynamics can robustly decrease viral infections thereby suggesting that these drugs should be further evaluated in clinical trials for better management of viral diseases including current COVID-19 pandemic.

8. Disruption of the Golgi Ca\(^{2+}\) signaling and viral infections

GA plays a critical role in post-translational modification and sorting of lipids and proteins. Further, GA is actively involved in intracellular Ca\(^{2+}\) dynamics. It is equipped with Ca\(^{2+}\) release channels, Ca\(^{2+}\) pumps and Ca\(^{2+}\) binding proteins. This Ca\(^{2+}\) handling toolkit is involved in regulating the spatio-temporal complexity of the cellular Ca\(^{2+}\) signaling (Pizzo et al., 2011). The GA Ca\(^{2+}\) handling machinery includes IP\(_3\)R, SERCA, RyR and SPCA1. SPCA1 is a critical regulator of GA Ca\(^{2+}\) content and plays an important role in the maintenance of GA ultrastructure and in the sorting of proteins to the PM.

The respiratory syncytial virus (RSV) is a RNA virus belonging to Paramyxoviridae family (Collins et al., 2013). Recently, Hoffmann et al. performed a genome-wide knockout screen in human haploid cells to identify host factors necessary for RSV infection (Hoffmann et al., 2017). Interestingly, SPCA1 was one of the most promising hits in this screening as it regulates processing of RSV glycoproteins and maturation of the virus (Hoffmann et al., 2017). Importantly, SPCA1 KO robustly decreased RSV infection and spread as viral glycoproteins critical for viral infectivity are not processed in absence of SPCA1. In addition to RSV, SPCA1 is required for infection of numerous other RNA viruses such as measles, dengue, zika, and chikungunya viruses (Hoffmann et al., 2017). Taken together, SPCA1 is emerging as a promising target for stalling spread of RNA viruses.

Parvoviruses such as adeno-associated viruses (AAVs) possess a single-stranded DNA genome (Madigan et al., 2020). AAV2 hijacks endosomal channels to migrate from the cell surface to the nucleus, including several endosome-trafficking proteins such as VPS29, VPS52, VPS53, VPS54, SPCA1 (Pillay et al., 2016). These proteins are engaged in the retrograde transport from endosomes to GA (Pillay et al., 2016). SPCA1 mediated GA Ca\(^{2+}\) homeostasis plays a critical role in AAV transduction (Madigan et al., 2020). The authors generated a SPCA1 CRISPR knockout (KO) line and demonstrated that AAV transduction is reduced upon SPCA1 KO (Madigan et al., 2020). Interestingly, SPCA1 KO does not inhibit AAV binding, its cellular uptake or nuclear entry, but SPCA1 KO cells exhibit scattered and punctuated trafficking (Madigan et al., 2020). Additionally, SPCA1 KO leads to significant inhibition of transcription of the vector genome. This SPCA1 KO phenotype and AAV transduction was rescued by the Ca\(^{2+}\) ionophore ionomycin, which enhances cytosolic Ca\(^{2+}\) levels. Conversely, AAV transduction is inhibited by the Ca\(^{2+}\) channel blocker BAPTA-AM, which decreases cytosolic Ca\(^{2+}\). Collectively, these data suggest that SPCA1 mediated modulation of cytosolic Ca\(^{2+}\) concentration is a key regulator.
Similarly, benidipine and nifedipine were demonstrated to reduce SFTSV induced mortality in humanized mice model. Notably, both benidipine and nifedipine act on host cells rather than the viruses directly (Gehring et al., 2019). Further, the authors demonstrated that Verapamil hydrochloride. Further, the authors demonstrated that Verapamil as potent in the management of viral pathogenesis. Since viruses interfere in the functioning of the Ca\(^{2+}\) handling machinery for its benefit, it is not surprising that host cell Ca\(^{2+}\) signaling plays a critical role in AA\ntransduction. Collectively, the above-discussed studies shed light on the critical role of GA Ca\(^{2+}\) homeostasis and establish SPCA1 as an important regulator of viral infections (Also refer pictorial summary in Fig. 6).

9. Targeting host cell Ca\(^{2+}\) signaling for curtailing viral pathogenesis

As discussed in above respective sections, viruses dysregulate intra-cellular Ca\(^{2+}\) homeostasis by targeting different cellular Ca\(^{2+}\) compartments (ER, PM, mitochondria, Golgi and lysosomes) for promoting viral pathogenesis. Since viruses interfere in the functioning of the CA\(^{2+}\) handling machinery for its benefit, it is not surprising that host cell Ca\(^{2+}\) signaling toolkit has emerged as a promising target for clinical management of viral pathogenesis.

In a highly relevant study, Wang et al. screened FDA-approved drugs to target JEV (Wang et al., 2017). A high-throughput screening of FDA-approved drugs for inhibitors of JEV led to identification of 5 drugs, including 3 VGCCs blockers (manidipine, cilnidipine, and benidipine hydrochloride). Further, the authors demonstrated that Verapamil (another VGCCs inhibitor) treatment leads to dose dependent inhibition of JEV in human hepatocellular carcinoma (Huh-7) and African Green monkey kidney (Vero) cells. Moreover, VGCCs blockers inhibited replication of a variety of other flaviviruses such as ZIKV, DENV and Measles virus (Chang-Graham et al., 2020). In vivo experiments in mouse infection model of EBOV corroborated the efficacy of Bepridil in curtailing EBOV infection and associated pathogenesis. A highly timely study relevant to the current COVID-19 pandemic, Vatasever et al. demonstrated that Bepridil inhibits SARS-CoV-2 infection in human cells (Vatasever et al., 2021). It was shown that Bepridil blocks both entry and infection of SARS-CoV-2 by modulating endo-lysosomal pH and by inhibiting key protease of SARS-CoV-2 respectively. Taken together, these studies elegantly demonstrate the potential clinical significance of FDA-approved VGCC inhibitor Bepridil in stalling SARS-CoV-2 and EBOV infections. Certainly, in current COVID-19 pandemic situation Bepridil must be further evaluated for its efficacy in controlling SARS-CoV-2 infection.

In an exciting study, Hyser lab recently demonstrated that rotaviral infection leads to a paracrine signaling resulting in generation of intercellular Ca\(^{2+}\) waves (ICWs) (Chang-Graham et al., 2020). Chang-Graham et al. showed that rotaviral infected cells secrete adenosine 5'-diphosphate (ADP) that activates P2Y1 purinergic receptors on neighboring uninfected cells, which in turn leads to rise in cellular Ca\(^{2+}\) concentration. The authors showed that P2Y1 knockout abrogates ICWs generation and viral replication. Importantly, using neonatal mice model, it was reported that P2Y1 inhibition significantly reduces severity of RV induced diarrhea in vivo (Chang-Graham et al., 2020). In the future, it would be pertinent to identify FDA-approved drug/s that can inhibit P2Y1 and evaluate their safety and efficacy in treating clinical rotaviral infections.

As discussed earlier, a large number of viruses attack mitochondrial Ca\(^{2+}\) signaling for either meeting higher energetic requirements or for inducing host cell apoptosis. Interestingly, Percocchi lab performed an orthogonal interspecies chemical screening in yeast mitochondria and human cells for identifying modulators of MCU (Arduino et al., 2017). Arduino et al. screened more than 600 small molecules belonging to NIH clinical collection library to eventually identify mitoxantrone (an FDA-approved drug) as a highly specific MCU inhibitor (Arduino et al., 2017). Similarly, a high throughput screening of around 120,000 compounds identified DS16650511 as a novel inhibitor of MCU activity in a variety of cells and beating rat heart (Kum et al., 2017). Subsequently, work from Madesh lab reported synthesis and characterization of Ru265 (Wood et al., 2019). The authors reported that Ru265 is highly specific inhibitor of MCU activity. Importantly, Woods et al. demonstrated that Ru265 is cell permeable and nominally toxic molecule that does not perturb cytosolic Ca\(^{2+}\) homeostasis and mitochondrial membrane potential. More recently, a high throughput screening of over 44,000 non-proprietary small molecules was performed for characterizing the
Table 1
The outcomes of viral interaction with host cell Ca\(^{2+}\) handling machinery.

Site	S. No.	Virus	Viral Protein	Host target	Effect on host cell Ca\(^{2+}\) signaling	Relevance to viral pathogenesis	Reference	
PM	1	IAV	Hemagglutinin (HA)	VGCC	Induces intracellular Ca\(^{2+}\) oscillation	Helps in viral entry and replication	Fujisaka et al. (2018)	
	2	HIV-1	Tat	VGCC	Elevation of intracellular Ca\(^{2+}\)	Host immune dysfunction	Zocchi et al. (1998)	
	3	Flavivirus (JEV, ZIKV, DENV, YFV and WNV)	NS4B	VGCC	Increases cytosolic Ca\(^{2+}\)	Viral replication	Wang et al. (2017)	
	4	NWA	Viral glycoproteins (GP)	VGCC	Increases cytosolic Ca\(^{2+}\)	Helps in viral entry and infection	(Lavanya et al., 2013; Sarute and Ross, 2020)	
	5	HBV	HBx	Orai1	Increases cytosolic Ca\(^{2+}\)	Essential for HBV replication	Yao et al. (2018)	
	6	HTLV-1	p12I	SOCC	Elevation of cytoplasmic Ca\(^{2+}\)	Aids in viral replication	Ding et al. (2002)	
	7	RV	NSP4	SOCC	SOCE activation, increases cytoplasmic Ca\(^{2+}\) levels	Aid in viral replication	(Díaz et al., 2012; Hyser et al., 2013)	
	8	DENV	Not known	Orai1	Rise in cytosolic Ca\(^{2+}\) levels	Viral replication	Dionicio et al. (2018)	
	9	Arenavirus and Filovirus	Orf3	Orai1	Rise in cytosolic Ca\(^{2+}\) levels	Viral budding and spread	Han et al. (2015)	
	10	HIV-1	Gp120, Tat	NMDAR	Increases intracellular Ca\(^{2+}\)	Not known	(Nath et al., 1995; Self et al., 2004)	
	11	HCV, DEVN, ZIKV	Not known	TRPV4	Rise in cytosolic Ca\(^{2+}\)	Viral replication and exit	Donate-Macian et al. (2018)	
	12	HBV	HBx	PMCA	Elevation of the cytosolic Ca\(^{2+}\)	Enhances HBV DNA replication and HBV core assembly	Zhou et al. (2013)	
ER	13	RV	Not Known	NSP4	Acts as ER Viroporin	Increase in cytosolic Ca\(^{2+}\) levels	(Díaz et al., 2012)	
	2	HCMV	US21	Acts as ER Viroporin	Increases cell Ca\(^{2+}\) stores	Decreases cell susceptibility to apoptosis	Enhanced ATP production to meet viral energy demands	Legunian et al. (2018)
	3	HCMV	UL37	IP3R	Mobilizes Ca\(^{2+}\) from ER to cytosol		Sharron-Friling et al. (2006)	
	4	HCMV	US28	Triggers PLC-β signaling	Release of intracellular Ca\(^{2+}\) signaling		Miller et al. (2012)	
	5	HCMV	vCXCL1	Agonist for human chemokines CXCR1 and CXCR2	Intracellular Ca\(^{2+}\) release	Viral dissemination through the host	(Penfold et al., 1999; Wang et al., 2003)	
	6	EBV	LMP-1	SERCA3	Increase in resting cytosolic Ca\(^{2+}\) levels	Development of latent, persistent infection and cell immortalization	Delli et al. (2009)	
	7	HIV	Gag	IP3R	Ca\(^{2+}\) release from ER	Viral budding, formation of VLPs	(Ehrlich et al., 2011, 2014; Ehrlich and Carter, 2012)	
	8	HIV	Nef	IP3R	Ca\(^{2+}\) release from ER	AIDS pathogenesis	(Ehrlich et al., 2010; Manninen and Saksela, 2002)	
	9	HBV	HBx	IP3R	Increase in mitochondrial Ca\(^{2+}\) uptake	Aid in viral replication	Yang and Bouchard (2012)	
	10	HSV	Not defined	IP3R	Increases cytosolic Ca\(^{2+}\)	Viral penetration, delivery of viral capsids to host cell’s nucleus.	(Chenchenko et al., 2003, 2007)	
Mitochondria	1	HBV	HBx	mPTP	Releases Ca\(^{2+}\) from mitochondria	Regulates HBV replication	Bouchard et al. (2001)	
	2	HCV	NSSA	MCU	Increased mitochondrial Ca\(^{2+}\) influx and nuclear translocation of transcription factors	Helps in viral pathogenesis	Gong et al. (2001)	
	3	HCV	HCV polyprotein	MCU	Increase in mitochondrial Ca\(^{2+}\) influx	May induce apoptosis	Piccoli et al. (2007)	
	4	HCV	Core protein	MCU	Increase in mitochondrial Ca\(^{2+}\) uptake	Increases ROS production and alters apoptosis	Li et al. (2007)	
	5	HEV	Orf3	VDAC	Uptregulation of VDAC	Enhances viral replication	Moin et al. (2007)	
	6	HIV-1	Tat	MCU	Increase in mitochondrial Ca\(^{2+}\) uptake	Host cell apoptosis	(Krumlan IL et al., 1998)	
	7	HIV-1	Tat	VDAC	Increase in mitochondrial Ca\(^{2+}\) uptake	Host cell apoptosis	Lecouer et al. (2012)	
	8	PV	Not known	VDAC and MCU	Increase mitochondrial Ca\(^{2+}\) levels	Apoptosis induction	Briasc et al. (2010)	
Lysosomes	1	EBOV and Marburgvirus	Not known	TPC2	Ca\(^{2+}\) release from lysosomes	EBOV entry and infection, Marburgvirus infection	(Penny et al., 2019; Sakurai et al., 2015; Simmons et al., 2016)	

(continued on next page)
inhibitors of mitochondrial Ca\(^{2+}\) uptake 1 (MICU1), which regulates mitochondrial Ca\(^{2+}\) influx (Di Marco et al., 2020). This arduous study identified 2 lead molecules that authors named as MCU-i4 and MCU-i11. Both of these molecules were able to efficiently and specifically inhibit MICU1 thereby decreasing mitochondrial Ca\(^{2+}\) concentration in \textit{in vitro} and \textit{ex vivo} assays (Di Marco et al., 2020; Nathan et al., 2020). Taken together, these recent studies have led to identification and characterization of highly specific small molecules that can target mitochondrial Ca\(^{2+}\) handling machinery. Considering the critical role of mitochondrial Ca\(^{2+}\) dynamics in viral infections, it would be interesting to evaluate the efficacy of these lead compounds in managing viral pathogenesis.

The emerging literature suggests that lysosomal Ca\(^{2+}\) dynamics, especially lysosomal Ca\(^{2+}\) efflux channel TPC2 plays a critical role in viral entry (please refer lysosomal Ca\(^{2+}\) signaling section for details). Excitingly, TPC2 inhibition is shown to stall entry of SARS-CoV-2, virus responsible for COVID-19 pandemic, as well (Ou et al., 2020). Recently, 1500 FDA-approved drugs were screened for inhibiting TPC2 activity (Penny et al., 2019). The authors identified and characterized two drugs that can inhibit endogenous NAADP-evoked lysosomal Ca\(^{2+}\) release and TPC2 channel activity. Significantly, these drugs lead to substantial reduction in EBOV infection in HeLa cells (Penny et al., 2019). In the future, it would be worth to investigate the potential of repurposing these FDA-approved drugs for clinical management of viral infections. Certainly, clinical trials for assessing the safety and efficacy of these drugs in restricting viral pathogenesis would be required to reveal the real potential of these drugs.

10. Future perspectives

In this review, we have discussed the dysregulation of host cell Ca\(^{2+}\) homeostasis during viral infections. Several viral proteins target specific cellular Ca\(^{2+}\) compartments (ER, PM, mitochondria, GA and lysosomes) for promoting viral pathogenesis. Viral proteins such as Tat and gp120 of HIV-1, HBx of HBV etc. modulate functioning of PM localized Ca\(^{2+}\) channels and pumps. Similarly, viral proteins like Gag and Nef of HIV, HBx of HBV etc. induce Ca\(^{2+}\) release from ER to cytosol (Please refer Table 1 for the detailed list of viral proteins, their host cell targets and the resulting effect on cellular Ca\(^{2+}\) homeostasis). Although these proteins have been reported to modulate functioning of host cell Ca\(^{2+}\) handling proteins, the detailed molecular choreography that connects viral infections to perturbations in Ca\(^{2+}\) homeostasis remains poorly understood. Likewise, how changes in cytosolic and/or organelar Ca\(^{2+}\) aid in viral life cycle progression and pathogenesis remains poorly understood. With the advent of highly specific genetically encoded Ca\(^{2+}\) sensing probes coupled with super resolution microscopy and systems biology approaches, the stage is set for dissecting out the intricate signaling cascades working at the intersection of viral infections and host cell Ca\(^{2+}\) dynamics.

As discussed in the lysosomal Ca\(^{2+}\) dynamics and viral entry section, a variety of viruses target lysosomal Ca\(^{2+}\) channels especially TPCs for entry into host cells. Going forward, it would be worth to examine the role of TPCs in non-viral infectious diseases caused by the pathogens that target endo-lysosomes for driving infections. Since FDA-approved drugs targeting TPCs have been recently identified, their further evaluation and efficacy in clinical settings is required.

The current COVID-19 pandemic has severely affected whole world with over 3 million deaths. Studies have reported that Ca\(^{2+}\) is required for the fusion of MERS-CoV, SARS-CoV and Rubella virus with the host cells suggesting that Ca\(^{2+}\) plays a critical role in these viral infections (Dubé et al., 2014; Lai et al., 2017; Straus et al., 2020b). Interestingly, based on structural homology, bioinformatics and metanalyses, it is suggested that Ca\(^{2+}\) could act as an important regulator of SARS-CoV-2 entry into host cells (Cashman, 2020a, 2020b). Further, TPCs have been recognized as targetable option for stalling SARS-CoV-2 entry into host cells (Filippini et al., 2020; Ou et al., 2020; Zhao et al., 2021) and TPC antagonist tetradeine is hypothesized as a potential antiviral against SARS-CoV-2 (Heister and Poston, 2020). Indeed, there is an ongoing clinical trial that is evaluating efficacy of tetradecine in COVID-19 treatment (https://clinicaltrials.gov/ct2/show/study/NCT04308317). Moreover, Bepridil a VGCC inhibitor is shown to inhibit SARS-CoV-2 infection \textit{in vitro} (Vatansever et al., 2021). Likewise, FDA-approved VGCC blockers amiodipine and nifedipine have been shown to stall SARS-CoV-2 entry into host cells (Straus et al., 2020a). Taken together, these studies have highlighted a critical role of Ca\(^{2+}\) dynamics in COVID-19 infection. In light of current pandemic, further investigations on VGCC blockers and TPC inhibitors as potential antivirals against SARS-CoV-2 are urgently needed.

Further, as discussed earlier VGCC inhibitors have shown promising role in curtailing flavivirus and polyomavirus infections. It is important to note that VGCC inhibitors are routinely prescribed for managing hypertension and they are part of long term medication for hypertensive patients. Therefore, it would be relevant to conduct epidemiological surveys of the patients taking VGCC inhibitors for possible protection against flavivirus, SARS-CoV-2 and polyomavirus infections. Such surveys will most likely provide insightful information that may assist in designing future antiviral therapies.

In summary, several elegant studies have demonstrated that Ca\(^{2+}\) handling proteins are attractive therapeutic targets for stalling a variety of viral infections. With availability of both FDA-approved drugs and bio-active lead molecules targeting these proteins, it is an area that demands immediate and critical attention for managing viral infections. Certainly, preclinical safety and efficacy studies in relevant animal models would be needed before testing these drugs in clinical trials. In the current scenario wherein outbreaks of viral infections are frequently observed, it is actually need of the hour to investigate the clinical significance of targeting host cell Ca\(^{2+}\) signaling for curtailing viral pathogenesis.

Declaration of competing interest

Authors report no conflicts of interest.

Table 1 (continued)

Site	S. No.	Virus	Viral Protein	Host target	Effect on host cell Ca\(^{2+}\) signaling	Relevance to viral pathogenesis	Reference
2	Polyomavirus	Not known	TPC1/2	-	Ca\(^{2+}\) release from lysosomes	Viral entry	Dobson et al., 2020
3	MERS-CoV	Furin	TPC3	-	Ca\(^{2+}\) release from lysosomes	Viral entry	Gunaratne et al., 2018
4	SARS-CoV-2	Not known	TPC2	-	Ca\(^{2+}\) release from lysosomes	Viral entry	Ou et al., 2020
5	HIV-1	Tat	TRPML1	-	Ca\(^{2+}\) release from lysosomes	HIV-1 replication and latent infections	Khan et al., 2019
Golgi	1	DENV, ZIKV, CHIKV, RSV and Measles virus	Not known	SPCA1	-	Viral maturation and exit	Hoffmann et al., 2017
2	AAV	Not known	SPCA1	Perturbs cytosolic Ca\(^{2+}\)	AAV transduction	-	(Madigan et al., 2020; Pillay et al., 2016)
Acknowledgments

This work was supported by the DBT/Wellcome Trust India Alliance Fellowship (IA/1/19/2/504651) awarded to Rajender K Motiani. Authors also acknowledge RCB core funding and Science & Engineering Research Board (SERB) Start-up Research Grant (SRG/2019/000495) to RK. SS acknowledges his Junior Research Fellowship from CSIR, India and JT acknowledges her Senior Research Fellowship from CSIR, India.

References

Anand, S.K., Tilok, S.K., 2013. Viruses as modulators of mitochondrial functions. Adv. Virol. 793794, 2013. https://doi.org/10.1155/2013/793794.

Arduino, D.M., Wettmarshausen, J., Vais, H., Navas-Navarro, P., Cheng, Y., Leimpek, A., RKM. SS acknowledges his Junior Research Fellowship from CSIR, India

Atlas, D., 2014. Voltage-gated calcium channels function as Ca2+ sensors in primary hepatocytes. J. Virol. 78, 12375-12379. https://doi.org/10.1128/JVI.02257-14.

Bouchard, M.J., Schneider, R.J., 2004. The enigmatic X gene of hepatitis B virus. J. Virol. 78, 12225-12234. https://doi.org/10.1128/JVI.78.23.12725-12734.2004.

Bouchard, M.J., Wang, L.H., Schneider, R.J., 2001. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 294, 2376-2378. https://doi.org/10.1126/science.294.5550.2376.

Brault, C., Levy, P.L., Bartosch, B., 2013. Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 5, 95-98. https://doi.org/10.3390/v5010095.

Brault, C., Teoulé, F., Austré, P., Pelletier, I., Colbé-Garapin, F., Brenner, C., Lemaire, C., Blondel, B., 2010. Calcium flux between the endoplasmic reticulum and mitochondrion contributes to poliovirus-induced apoptosis. J. Virol. 84, 12226-12235. https://doi.org/10.1128/JVI.00949-10.

Calder, P.J., McCandlish, A.R., Simpson, A.J., Chakrabarti, S., 2012. Autophagy hijacked through vesicular-dependent activation of protein kinase kinase kinase 1 signaling is required for rotavirus replication. Proc. Natl. Acad. Sci. U.S.A. 109, E3405-E3413. https://doi.org/10.1073/pnas.1215539109.

Collins, P.L., Fearns, R., Graham, B.S., 2013. Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Current Topics in Microbiology and Immunology. NIH Public Access, pp. 3-38. https://doi.org/10.1007/978-3-642-38919-1_1.

Crawford, S.E., Hyser, J.M., Uzama, B., Estes, M.K., 2012. Autophagy triggered by vesicular-activated calcium-dependent kinase kinase kinase 1 signaling is required for rotavirus replication. J. Virol. 86, 6798-6811. https://doi.org/10.1128/JVI.00154-08.

Crawford, S.E., Uzama, B., Hyser, J.M., Estes, M.K., 2013. Autophagy hijacked through vesicular-dependent activation of protein kinase kinase kinase 1 signaling is required for rotavirus replication. Proc. Natl. Acad. Sci. U.S.A. 109, E3405-E3413. https://doi.org/10.1073/pnas.1215539109.

Deng, W., Albrecht, B., Kelley, R.E., Muthusamy, N., Kim, S.-J., Altschuld, R.A., 2020. Intracellular Ca(2+) sensing: its role in calcium homeostasis and signaling. Mol. Cell. 66, 780-788. https://doi.org/10.1016/j.molcel.2020.01.081.e6.

Dere, G., Aristimuño, J., Latorre, I., Luna, F., Aristimuño, J.L., 2017. Mitochondrial dysregulation manifests as dynamic calcium signaling in the cytoplasm and endoplasmic reticulum. J. Mol. Biol. 429, 1-10. https://doi.org/10.1016/j.jmb.2016.09.025.

Di Marco, G., Vallese, F., Jourde, B., Bergsdorf, C., Sturlese, M., De Mario, A., Techer-Etienne, V., Hansen, D., Oberhauser, B., Schleger, S., Minetti, G., Moro, S., Rizzuto, R., De Stefano, D., Foffano, L., Mannucci, C., 2020. A high-throughput screening identifies MCU1 target compounds. Cell Rep. 30, 231-242. https://doi.org/10.1016/j.celrep.2020.01.081.e6.

Díaz, Ñ., Chomienne, C., Joab, I., Bopp, P., 2009. Modulation of b-catenin endoplasmic reticulum calcium homeostasis by hepatitis B virus latent membrane protein-1. Mol. Can. 8, 59. https://doi.org/10.1091/mbc.E116-0528-308.

Díaz, Ñ., Chomienne, C., Joab, I., Bopp, P., 2009. Modulation of b-catenin endoplasmic reticulum calcium homeostasis by hepatitis B virus latent membrane protein-1. Mol. Can. 8, 59. https://doi.org/10.1091/mbc.E116-0528-308.

Díaz, Ñ., Petta, F., Aristimuño, O.C., Zambrano, J.L., Rojas, H., Barrios, F., Salazar, J., Chomienne, C., Sapin, C., Traganos, G., Michelangeli, F., Ruiz, M.C., 2008. Expression of nonstructural rotavirus NSP4 mimics homoeostasis changes induced by rotavirus infection in cultured cells. J. Virol. 82, 12381-12393. https://doi.org/10.1128/JVI.02777-08.

Díaz, Ñ., Petta, F., Aristimuño, O.C., Matteo, L., De Agrela, M., Chomienne, M.E., Michelangeli, F., Ruiz, M.C., 2012. Dissecting the Ca2+ entry pathways induced by rotavirus infection and NSP4-EGFP expression in Cos-7 cells. Virus Res. 176, 296-302. https://doi.org/10.1016/j.virusres.2012.09.007.

Diego, B., Albrecht, B., Kelley, R.E., Muthusamy, N., Kim, S.-J., Altschuld, R.A., Lairo, M.D., 2002. Human T-cell lymphotropic virus type 1 p12 expression

Endoplasmic reticulum. Biochem. J. 394, 56-77. https://doi.org/10.1042/0261-2915%282001%29230.1362.A.

Endoplasmic reticulum. Biochem. J. 394, 56-77. https://doi.org/10.1042/0261-2915%282001%29230.1362.A.
Lee, S.-A.A., Kim, H., Won, Y.-S.S., Kim, B.-J.J., 2015b. Induction of endoplasmic reticulum-derived oxidative stress by an oculocutaneous related S antigen variant. World J. Gastroenterol. 21, 6872–6883. https://doi.org/10.3748/wjg.v21.22.6872.

Li, H., Zhang, L.K., Li, S.F., Zhang, S.F., Wan, W.W., Zhang, Y.L., Xin, Q.L., Dai, K., Hu, Y., Wang, Z.B., Zhu, X.T., Fang, Y.J., Cai, N., Zhang, P.H., Yuan, C., Lu, Q. Bin, Bai, J. Y., Wang, F., Xiao, F., Peng, K. X., et al., 2020. Endoplasmic reticulum stress mediates severe fever with thrombocytopenia syndrome virus (SFTSV) related fatality. Cell Res. 29, 739–753. https://doi.org/10.1038/s41422-019-0241-z.

Li, Y., Boehning, D.F., Qian, T., Popov, V.L., Weisman, S.A., 2007. Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ -unporter activity. Faseb. J. 21, 2474–2485. https://doi.org/10.1096/fj.06-7345com.

Liu, L., 2014. Fields virology. Clin. Infect. Dis. 59 https://doi.org/10.1093/cid/ciu346 , 1–4939-7831-1_11 .

Madigan, V.J., Berry, G.E., Tyson, T.O., Nardone-White, D., Ark, J., Elmore, Z.C., Madigan, V.J., 2011. Lysosomal Ca2+ stores come to the fore. Cell Calcium 50, 109–112. https://doi.org/10.1016/j.ceca.2011.03.009.

Matsutani, M., Scheller, R.H., 2019. The Ca2+-permeable ion channels. Cell Calcium 52, 222–230. https://doi.org/10.1016/j.ceca.2014.12.005.

Matsui, S., Papp, B., Launay, S., Gschwind, W., Parnis, J., Nolte, C., Panda, S., Cai, X., 2015. Endoplasmic reticulum Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium 57, 222–230. https://doi.org/10.1016/j.ceca.2014.12.005.

Matsui, S., Behera, S., Alam, M.F., Syed, G.H., 2016. Open pit focus on calcium. Sci. Signal. 9 https://doi.org/10.1126/scisignal.aan9961.

Patek, S., 2015. Function and dysfunction of two-pore channels. Sci. Signal. 8, re7. https://doi.org/10.1126/scisignal.2007314.

Patek, S., 2015. How Ca2+-permeable Ca2+ stores open: an overview. Biophys. J. 109, 584–600. https://doi.org/10.1016/j.bpj.2015.02.003.

Patek, S., 2015. Calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol. 25, 207–278. https://doi.org/10.1016/j.tcb.2014.10.007.

Patek, S., Behera, S., Alam, M.F., Syed, G.H., 2017. Calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol. 27, 783–796. https://doi.org/10.1016/j.tcb.2017.03.007.

Patek, S., Behera, S., Alam, M.F., Syed, G.H., 2018. Calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol. 28, 506–517. https://doi.org/10.1016/j.tcb.2018.02.002.

Penny, C.J., Vassileva, K., Jha, A., Yuan, Y., Chee, X., Yates, E., Mazzon, M., Kilpatrick, B. S., Muallem, S., Marsh, M., Rahman, T., Patel, S., 2019. Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1151–1161. https://doi.org/10.1016/j.bbamcr.2018.10.022.

Parvez, M.K., Parveen, S., 2017. Evolution and emergence of pathogenic viruses: past, present, and future. Inter virology 60, 1–7. https://doi.org/10.1007/s00717-016-0782-4.

Payr, J.B., Gue, A.H., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.

Patterson, T., 2014. Open pit focus on calcium. Sci. Signal. 7 https://doi.org/10.1126/scisignal.aan9961.
