Helicobacter pylori eradication lowers serum homocysteine level in patients without gastric atrophy

Biro Ozer, Ender Serin, Yuksel Gumurdulu, Fazilet Kayaselcuk, Ruksan Anarat, Gurden Gur, Kemal Kul, Mustafa Guçlu, Sedat Boyacioglu

Abstract

AIM: To determine whether **Helicobacter pylori** (**H pylori**) infection caused hyperhomocysteinaemia by altering serum vitamin B$_{12}$, serum folate and erythrocyte folate levels and whether eradication of this organism decreased serum homocysteine level.

METHODS: The study involved 73 dyspeptic **H pylori**-positive patients, none of them had gastric mucosal atrophy based on rapid urease test and histology. Out of 73 patients, 41 (56.2%) showed a successful eradication of **H pylori** 4 wk after the end of treatment. In these 41 patients, fasting serum vitamin B$_{12}$, folate and homocysteine levels, and erythrocyte folate levels before and 4 wk after **H pylori** eradication therapy were compared.

RESULTS: The group with a successful eradication of **H pylori** had significantly higher serum vitamin B$_{12}$, and erythrocyte folate levels in the post-treatment period compared to those in pre-treatment period (210±97 pg/mL vs 237±94 pg/mL, P<0.001 and 442±212 ng/mL vs 539±304 ng/mL, P = 0.024, respectively), but showed no significant change in serum folate levels (5.6±2.6 ng/mL vs 6.0±2.4 ng/mL, P = 0.341). Also, the serum homocysteine levels in this group were significantly lower after therapy (13.1±5.2 μmol/L vs 11.9±6.2 μmol/L, P = 0.002). Regression analysis showed that serum homocysteine level was positively correlated with age (P = 0.01) and negatively with serum folate level before therapy (P = 0.003).

CONCLUSION: Eradication of **H pylori** decreases serum homocysteine even in patients who do not exhibit gastric mucosal atrophy. It appears that the level of homocysteine in serum is related to a complex interaction among serum vitamin B$_{12}$, serum folate and erythrocyte folate levels.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: **H pylori**, Gastritis; Vitamin B$_{12}$; Folate; Erythrocyte folate; Homocysteine

Ozer B, Serin E, Gumurdulu Y, Kayaselcuk F, Anarat R, Gur G, Kul K, Guçlu M, Boyacioglu S. **Helicobacter pylori** eradication lowers serum homocysteine level in patients without gastric atrophy. *World J Gastroenterol* 2005; 11(18): 2764-2767

http://www.wjgnet.com/1007-9327/11/2764.asp

INTRODUCTION

Helicobacter pylori (**H pylori**) is a spiral-shaped bacterium that causes chronic infection in human stomachs, and often leads to gastritis and peptic ulcers.[8] Recent data indicate a possible correlation between **H pylori** infection and coronary heart disease[6-8]. The connection between **H pylori** infection and hyperhomocysteinemia is one way in which this organism may be linked to the development of coronary diseases. Researches have shown strong associations between hyperhomocysteinemia and inadequate vitamin intake and insufficient vitamin concentrations in plasma, particularly vitamin B$_{12}$, vitamin B$_9$ and folate levels[6-8]. Several studies have demonstrated that **H pylori** infection has negative effects on serum levels of vitamin B$_{12}$ and folate[6-8].

Homocysteine metabolism involves a complex interaction between folate and vitamin B$_{12}$.[9] Our aims in this study were to examine whether **H pylori** infection affected serum homocysteine, serum vitamin B$_{12}$, serum folate, and erythrocyte folate levels in non-ulcer dyspeptic patients without gastric mucosal atrophy, and to evaluate the effect of eradication of **H pylori** on serum homocysteine level.

MATERIALS AND METHODS

Patients

This study included 73 dyspeptic patients (24 men and 49 women; mean age 41±12 years) and was conducted between May 2002 and February 2003. The protocol was approved by the Human Research Ethics Committee of Baskent University, and informed consent was obtained from all subjects. Each individual was referred to our center for endoscopic examination, and diagnosed with **H pylori** infection by rapid urease test (Pronto Dry, Medical Instr., Solothurn, Switzerland) and histopathologic evaluation. In each case, two biopsy specimens from the gastric antrum...
and two from the corpus were examined. The tissues were stained with hematoxylin and eosin, and Giemsa stain. Gastritis was defined using the Sydney classification. The same pathologist, who was blinded to the clinical conditions of the patients, performed all histological examinations. None of these dyspeptic patients exhibited gastric mucosal atrophy. All patients underwent *H. pylori* eradication therapy (2 wk of a combination regimen of lansoprazole 30 mg twice daily, amoxicillin 1 000 mg twice daily, and clarithromycin 500 mg twice daily). Repeat endoscopy was done 4 wk after the completion of treatment to assess the eradication status of *H. pylori* in each patient.

Before and at the time of the investigation, none of the 73 patients was taking medication known to alter serum homocysteine levels, such as methotrexate, theophylline, anticonvulsants or antidepressants. The other exclusion criteria were chronic renal failure, hypothyroidism, previous gastric surgery, smoking habit, and use of proton pump inhibitors, antibiotics or vitamin supplementation in the 4 wk prior to enrollment in the study.

Determination of serum homocysteine, vitamin B₁₂, folate, and erythrocyte folate levels

A blood sample was drawn from each patient before and 4 wk after the completion of eradication therapy. Each sample was collected after overnight fasting, and serum homocysteine, serum vitamin B₁₂, serum folate, and erythrocyte folate levels were measured. Serum homocysteine level was determined using a commercial fluorescence polarization immunoassay (AXSYM Homocysteine, Abbott Laboratories, Abbott Park, IL, reference ranges for male and females were 5.9-16.0 and 3.36-20.44 μmol/L, respectively). Serum vitamin B₁₂ was measured by electrochemiluminescence immunoassay (Elecsys Vitamin B₁₂, Roche, IN, reference range: 197-866 pg/mL, respectively). Serum folate and erythrocyte folate levels were determined using a binding assay technique (Elecsys folate, Roche, IN, reference range: 3-17 and 93-641 ng/mL, respectively).

Table 1 Serum vitamin B₁₂, folate, erythrocyte folate, and homocysteine levels before and after *H. pylori* eradication treatment (mean±SD)

Patients with successful eradication (n = 41)	Before treatment	After treatment	P
Serum vitamin B₁₂ (pg/mL)	210±97	237±49	<0.001
Serum folate (ng/mL)	5.6±2.6	6.0±2.4	0.341
Erythrocyte folate (ng/mL)	442±212	539±304	0.024
Serum homocysteine (μmol/L)	13.1±5.2	11.9±6.2	0.002

Table 2 Relationships between serum homocysteine level and serum or erythrocyte levels of vitamins, and patient age and sex before *H. pylori* eradication

	Pearson’s r	P
Homocysteine-age	0.272	0.020
Homocysteine-sex	-0.201	0.088
Homocysteine-B₁₂	-0.267	0.023
Homocysteine-folate	-0.367	0.001
Homocysteine-erythrocyte folate	-0.336	0.004
Serum folate-erythrocyte folate	0.654	<0.001

Statistical analysis

All analyses were performed using the statistical package for the social sciences (SPSS) for Windows, version 9.05. Normality of the distribution of the results for the four variables (serum vitamin B₁₂, serum folate, serum homocysteine, erythrocyte folate) were tested using the Kolmogorov-Smirnov test, and all were found to be normally distributed. Data were presented as mean±SD. P values <0.05 were considered statistically significant. The paired t-test was used to compare pre- and post-treatment serum levels of homocysteine, vitamin B₁₂, folate, and erythrocyte folate levels in all patients. Univariate analysis using Pearson’s correlation test was done to evaluate the relationship between serum homocysteine and age, sex, serum folate, and erythrocyte folate levels. Logistic regression analysis was done to identify which parameters independently influenced serum homocysteine level. The independent variables tested in this model were age, sex, serum folate and vitamin B₁₂ levels.

RESULTS

Of the 73 patients, 41 (56.2%) showed a successful eradication of *H. pylori* 4 wk after the end of treatment. The group with a successful eradication of *H. pylori* had significantly higher serum vitamin B₁₂ and erythrocyte folate levels in the post-treatment period compared to those in pre-treatment period (210±97 pg/mL vs 237±94 pg/mL, P<0.001 and 442±212 ng/mL vs 539±304 ng/mL, P=0.024, respectively), but showed no significant change in serum folate levels (5.6±2.6 ng/mL vs 6.0±2.4 ng/mL, P=0.341) (Table 1). Also, the serum homocysteine levels in this group were significantly lower after the therapy (13.1±5.2 μmol/L vs 11.9±6.2 μmol/L, P=0.002) (Table 1 and Figure 1).

Univariate analysis of the data collected before eradication treatment revealed that serum homocysteine level was positively correlated with the age of the patient (r=0.272; P=0.02), and negatively with serum folate level (r=-0.367; P=0.001), serum vitamin B₁₂ level (r=-0.267; P=0.023), and erythrocyte folate level (r=-0.336; P=0.004) (Table 2). Regression analysis identified age (P=0.01) and serum folate level (P=0.003) as the only two factors independently associated with serum homocysteine level. The erythrocyte folate level, which was strongly correlated with serum folate level (Table 2), was not included in multivariate analysis.

Figure 1 Changes in serum homocysteine level before and after *H. pylori* eradication (P = 0.002).
RESULTS
Several recent studies have investigated the relationship between coronary artery disease and H pylori infection, and the results are controversial.[2,3,11-13] Hyperhomocysteinemia is a factor that is suggested to be responsible for the development of atherosclerosis in the setting of chronic H pylori infection. In recent years, homocysteine has been shown to be an important contributor to atherosclerosis[14-16]. One meta-analysis involving 10,000 patients revealed no meaningful correlations between H pylori and vascular risk factors[17]. Research has shown that homocysteine can directly cause endothelial damage[18], affect platelet function and coagulation factors[19], and increase the oxidation of low-density lipoproteins[20]. In the light of these findings, a number of investigators have focused on H pylori infection as a possible cause of hyperhomocysteinemia. However, these findings are also inconsistent[2,3,12,20].

It has been well established that chronic H pylori infection causes atrophic gastritis[8], and decreased absorption of both vitamin B12 and folic acid has been documented in patients with this condition[9]. Furthermore, a recent study done at our clinic showed that even patients with non-atrophic H pylori gastritis exhibited low vitamin B12 levels[9,23-25]. This is supported by investigations that demonstrated food-cobalamin malabsorption in patients with H pylori gastritis who did not have mucosal atrophy[9]. As noted above, in the present study we found that serum vitamin B12 level was significantly higher after treatment, regardless of the patient’s eradication status. This indicates that the degree of malabsorption, or perhaps consumption of this vitamin by the organism, decreases when H pylori density in the gastric mucosa is reduced by eradication therapy. Patients with chronic H pylori infection exhibited decreased secretion of ascorbic acid by the gastric mucosa and elevated gastric pH[20-22]. It has been demonstrated that low levels of ascorbic acid in gastric juice or high pH of gastric juice could cause less folate absorption from the diet[20]. In the 41 dyspeptic H pylori-positive patients we studied, baseline serum folate levels were in the normal range and there was no significant change in this parameter after therapy (5.6±2.6 ng/mL vs 6.0±2.4 ng/mL, P = 0.341). We suspect that this may be because the levels were normal before treatment, and because the typical Turkish diet contains high levels of folate. Our patients also showed significantly higher erythrocyte folate levels after H pylori eradication therapy. This is also likely linked to vitamin B12 levels, since one important reaction in erythrocytes involves vitamin B12-dependent transfer of the methyl group from N5-methyltetrahydrofolate to homocysteine. Lack of adequate vitamin B12 impedes this reaction and leads to leakage of un conjugated folate from cells, whereas correction of the deficiency could restore erythrocyte folate levels[20].

Our analysis identified the age of the patient and serum folate level as independent determinants of serum homocysteine level. As described above, folate re-methylation of homocysteine to methionine required vitamin B12. However, this vitamin had less influence on serum homocysteine concentration than serum folate[9,20]. Some authors have stressed that it is incorrect to state that vitamin B12 plays no role in homocysteine metabolism, and that the effect of this vitamin is often masked by the role of folate[9]. Also, research showed that when oral folic acid supplementation provided a certain serum level of folate (10 μg/L was considered the approximate cut-off), serum folate had less influence on homocysteine levels[20]. Our results are in line with these findings and statements. We conclude that serum folate level is a primary determinant of serum homocysteine level in dyspeptic H pylori-positive patients, even though infection with this organism is known to reduce serum B12 levels. Our study did not show that increased serum vitamin B12 after H pylori eradication had a positive effect on serum homocysteine levels, but like other authors, we believe that the impact of vitamin B12 may be indirect or masked.

One report in the literature states that each 1-μmol/L drop in serum homocysteine level represents a 10% decrease in the risk of vascular disease[9,10]. We found that the mean serum homocysteine level in our patients with complete H pylori eradication was decreased by slightly more than 1 μmol/L. Although homocysteine has not been considered to be as important as other risk factors such as hypercholesterolemia, smoking, diabetes mellitus, and hypertension, we suggest that prolonged hyperhomocysteinemia possibly due to H pylori infection since childhood, especially in developing countries may play a contributing role in the pathogenesis of atherosclerosis. This suggests that eradication of this microorganism can lower the risk of vascular diseases in dyspeptic H pylori-positive patients. It also indicates that there is a significant benefit to prescribing H pylori eradication even in the absence of mucosal atrophy or other severe gastroduodenal lesions. Such a treatment may be more important in countries where the rates of nutritional folic acid and/or vitamin B12 deficiency are particularly high. The property of diet consumed in a population is certainly very important to achieve an acceptable serum and tissue levels of many nutrients including folate and cobalamin. As we have suggested in a recent paper, even some patients with a high H pylori load in their gastric mucosa may show normal serum levels of these vitamins probably because of consuming foods and drinks containing a high level of these vitamins[9].

The main etiologic factors thought to underlie the high prevalence of vitamin B12 deficiency in the elderly population are dietary deficiency and malabsorption due to atrophic gastritis. A recent study conducted at our center has confirmed that older age is an independent factor in vitamin B12 deficiency, but disproved the malabsorption-atrophic gastritis link since only patients without gastric mucosal atrophy were investigated[9]. The findings of our present study support the positive correlation between age and serum homocysteine level that has been reported previously[17,33,34]. We suggest that this connection may be explained by a complex interaction among serum vitamin B12, serum folate and erythrocyte folate levels.

In conclusion, even in dyspeptic H pylori-positive patients who do not exhibit gastric mucosal atrophy, complete eradication of H pylori is associated with a significant drop in serum homocysteine. In countries where H pylori infection is highly prevalent, it may be beneficial to implement widespread dietary fortification with folic acid and vitamin
B12, and/or to provide eradication treatment for all infected patients. Further research is needed to determine whether these approaches offer significant clinical benefits in terms of lower cardiovascular risk.

REFERENCES

1. Blaser MJ. Helicobacter pylori: its role in disease. Clin Infect Dis 1992; 15: 386-391
2. Mendall MA, Goggin PM, Molineaux N, Levy J, Toosy T, Strachan D, Camm AJ, Northfield TC. Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J 1994; 71: 437-439
3. Patel P, Mendall MA, Carrington D, Strachan DP, Leatham E, Molineaux N, Levy J, Blakestone C, Seymour CA, Camm AJ. Association of Helicobacter pylori and Chlamydia pneumoniae infections with coronary heart disease and cardiovascular risk factors. BMJ 1995; 311: 711-714
4. Stapfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, Tishler PV, Hennekens CH. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US Physicians. JAMA 1992; 268: 877-881
5. Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ. Vitamin B12, vitamin B6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 1993; 57: 47-53
6. Kaptan K, Beyan C, Ural AU, Cetin T, Avcu F, Gulsen M, Finici R, Yalcin A. Helicobacter pylori – is it a novel causative agent in Vitamin B12 deficiency? Arch Intern Med 2000; 160: 1349-1353
7. Carmel R, Johnson CS. Racial patterns in pernicious anemia: Early age at onset and increased frequency of intrinsic-factor antibody in black women. N Engl J Med 1978; 298: 647-650
8. Serin E, Gümürdülü Y, Ozer B, Kayasalcuk F, Yilmaz U, Kocak R. Impact of Helicobacter pylori on the development of vitamin B12 deficiency in the absence of gastric atrophy. Helicobacter 2002; 7: 337-341
9. Sung JJ, Sanderson JE. Hyperhomocysteinaemia, Helicobacter pylori and coronary heart disease. Heart 1996; 76: 305-307
10. Fenoglio-Preiser C, Noffsinger GN, Lantz PE. The nonneoplastic stomach. In: Gastrointestinal Pathology: An atlas and text. Chapter 6, 2nd ed. Lippincott-Raven. Philadelphia 1999: 153-236
11. Folsom AR, Nieto FJ, Sorelie P, Chambless LE, Graham DY. Helicobacter pylori seropositivity and coronary heart disease incidence. Atherosclerosis Risk In Communities (ARIC) Study Investigators. Circulation 1998; 98: 845-850
12. Whincup PH, Mendall MA, Perry IJ, Strachan DP. Hyperhomocysteinaemia, Helicobacter pylori, and coronary heart disease. Heart 1997; 78: 524
13. Saxena V, Markus H, Swaminathan S, Mendall ME. Hyperhomocysteinaemia, Helicobacter pylori, and coronary heart disease. Heart 1997; 78: 524
14. Boushey CJ, Beresford SA, Omena GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: Probable benefits of increasing folic acid intakes. JAMA 1995; 274: 1049-1057
15. Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27: 517-527
16. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998; 49: 31-62
17. Danesh J, Petro R. Risk factors for coronary heart disease and infection with Helicobacter pylori: meta-analysis of 18 studies. BMJ 1998; 316: 1130-1132
18. Harker LA, Harlan JM, Ross R. Effect of sulfaptopyrone on homocysteine-induced endothelial injury and arteriosclerosis in baboons. Circ Res 1983; 53: 731-739
19. Harker LA, Ross R, Slichter SJ, Scott CR. Homocysteine-induced arteriosclerosis: The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 1976; 58: 731-741
20. Heinecke JW, Kawamura M, Suzuki L, Chait A. Oxidation of low-density lipoprotein by thiols: superoxide-dependent and - independent mechanisms. J Lipid Res 1993; 34: 2051-2061
21. Leung WK, Ma PK, Choi PC, Ching JY, Ng AC, Poon P, Woo KS, Sung JJ. Correlation between Helicobacter pylori infection, gastric inflammation and serum homocysteine concentration. Helicobacter 2001; 6: 146-150
22. Tamura A, Fujioka T, Nasu M. Relation of Helicobacter pylori infection to plasma vitamin B12, folic acid, and homocysteine levels in patients who underwent diagnostic coronary arteriography. Am J Gastroenterol 2002; 97: 861-866
23. Carmel R, Perez-Perez GI, Blaser MJ. Helicobacter pylori infection and food-cobalamin malabsorption. Dig Dis Sci 1994; 39: 309-314
24. Del Corral A, Carmel R. Transfer of cobalamin from the cobalamin-binding protein of egg yolk to R binder of human saliva and gastric juice. Gastroenterology 1990; 98: 1460-1466
25. Appelmelk BJ, Smit M, Negrini R, Moran AP, Aspinall GO, Forte JC, De Vries T, Quan H, Verboom T, Maaskant JJ, Ghiara P, Kuipers EJ, Bloemena E, Tadema TM, Townsend RR, Tyagarajan K, Crothers JM, Monteiro MA, Savio A, De Graaff J. Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmune. Infect Immun 1996; 64: 2031-2040
26. Sobala GM, Schorah CJ, Sanderson M, Dixon MF, Tompkins DS, Godwin P, Axon AT. Ascorbic acid in the human stomach. Gut 1995; 37: 357-363
27. Rathbone BJ, Johnson AW, Wyatt LT, Lelleher J, Healey RV, Losowsky MS. Ascorbic acid: a factor concentrated in human gastric juice. Clin Sci (Lond) 1989; 76: 237-241
28. Lucod MD, Priestnall M, Daskalakis I, Schorah CJ, Wild J, Levene MI. Nonenzymatic degradation and salvage of dietary folate: physicochemical factors likely to influence bioavailability. Biochem Mol Med 1995; 55: 43-53
29. Babior BM, Burn HF. Megaloblastic anemias. Harrison’s Principles of Internal Medicine 14 Th 1998; Part 6, Chap 108: 654
30. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Homocysteine Lowering Trials’ Collaboration. BMJ 1998; 316: 394-398
31. Quinlivan EP, McPartlin J, McNulty H, Ward M, Strain J, Weir DG, Scott JM. Importance of both folic acid and vitamin B12 in reduction of risk of vascular disease. Lancet 2002; 359: 227-228
32. Gumurdu Y, Serin E, Ozer B, Kayasalcuk F, Kul K, Pata C, Gucla M, Gur G, Boyacioglu S. Predictors of vitamin B12 deficiency: age and Helicobacter pylori load of antral mucosa. Turk J Gastroenterol 2003; 14: 44-49
33. Andersson A, Brattstrom L, Isaksson B, Hamfelt A, Hultberg B. Plasma homocysteine before and after methionine loading with regard to age, gender, and menopausal status. Eur J Clin Invest 1992; 22: 79-87
34. Seilhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinaemia in an elderly population. JAMA 1993; 270: 2693-2698