Review

Survey on Mathematical Models and Methods of Complex Logical Dynamical Systems

Xiangshan Kong, Qilong Sun and Haitao Li *

School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China
* Correspondence: haitaoli09@gmail.com

Abstract: Logical dynamical systems (LDSs) have wide applications in gene regulation, game theory, digital circuits, and so on. In LDSs, phenomena such as impulsive effect, time delays, and asynchronous behavior are not negligible, which generate complex LDSs. This paper presents a detailed survey on models and methods of investigating LDSs. Firstly, some preliminary results on LDSs and semi-tensor product (STP) method are presented. Secondly, some new developments on modeling complex LDSs are summarized, including switched LDSs, probabilistic LDSs, delayed LDSs, LDSs with impulsive effects, asynchronous LDSs, constrained LDSs, and implicit LDSs. Finally, the control design techniques of LDSs are reviewed, including reachable set approach, sampled-data control, event-triggered control, and control Lyapunov function method.

Keywords: complex logical dynamical system; mathematical model; control design; semi-tensor product of matrices

MSC: 93C29

1. Introduction

From the mathematical point of view, logical dynamical systems (LDSs) are a class of discrete-time nonlinear systems whose states, inputs, and outputs are quantized on a finite set, and the dynamical equations are represented by multi-valued/mix-valued logical functions [1,2]. In general, the dynamic model of LDSs is

\[
\begin{align*}
\dot{x}_1(s+1) &= \varphi_1(x_1(s), \ldots, x_m(s), v_1(s), \ldots, v_n(s)), \\
\vdots \\
\dot{x}_m(s+1) &= \varphi_m(x_1(s), \ldots, x_m(s), v_1(s), \ldots, v_n(s)), \\
\dot{y}_p(s) &= \psi_p(x_1(s), \ldots, x_m(s)), p = 1, \ldots, q,
\end{align*}
\]

where \(x_i, i = 1, \ldots, m\) are state variables, \(v_j, j = 1, \ldots, n\) are control inputs, \(y_p, p = 1, \ldots, q\) are outputs, \(\varphi_i, i = 1, \ldots, m\) are logical functions determining the state evolution of system (1), and \(\psi_p, p = 1, \ldots, q\) are logical functions determining the output evolution of system (1). Furthermore,

(i) if \(x_i, v_j, y_p \in D := \{1,0\}, \varphi_i : D \times \cdots \times D \rightarrow D, \) and \(\psi_p : D \times \cdots \times D \rightarrow D, \) system (1) is called Boolean networks [3–5];
(ii) if \(x_i, v_j, y_p \in D_k := \{0, \cdots, k - 1\}, \varphi_i : D_k \times \cdots \times D_k \rightarrow D_k, \) and \(\psi_p : D_k \times \cdots \times D_k \rightarrow D_k, \) system (1) is called \(k\)-valued logical networks [6,7];
(iii) if \(x_i \in D_{k_1}, v_j \in D_{\lambda_1}, y_p \in D_{\mu_1}, \varphi_i : D_{k_1} \times \cdots \times D_{k_m} \rightarrow D_{\lambda_1}, \) and \(\psi_p : D_{k_1} \times \cdots \times D_{k_m} \rightarrow D_{\mu_1}, \) system (1) is called mix-valued logical networks [8–10].
Boolean networks were firstly proposed by Kauffman [3] to study genetic regulatory networks. In order to solve practical problems in computers and engineering, \(k \)-valued logical networks were proposed. When describing the dynamic game between machine and human, the model can be described as a network, in which each node may adopt different finite strategies. This network can be described by mix-valued logical networks [11,12]. Since LDSs are parameter free, they can be used to model large-scale systems [13]. In the past half a century, LDSs have been successfully applied to many fields, such as gene regulation [3], game theory [14], fuzzy control [15], finite automata [16], digital circuits [17], information security [18], and so on. Indeed, LDSs have become a frontier research direction of interdisciplinary intersection. Many analytical and/or numerical methods have been recently developed to study the topological structure [19–22] and dynamic characteristics [23–26] of LDSs.

Because of the lack of mathematical tools for logical process, it becomes very inconvenient to study the control problems and some other theoretical issues of LDSs [2,13]. The semi-tensor product (STP) of \(M \) and \(N \) is defined as where \(\alpha \) is the least common multiple of \(q \) and \(\epsilon \), and "\(\otimes \)" is the Kronecker product [27]. For the specific properties of STP, please refer to [1,28–30]. Based on the STP, an algebraic state space representation framework was established for the analysis and control of LDSs [33,34]. One can use the algebraic state space representation framework to study LDSs via the classic control theory [35,36].

We recall the algebraic state space representation framework below. Let \(\Delta_m := \{ \delta^s_{im} : s = 1, \cdots, m \} \), where \(\delta^s_{im} \) is the \(s \)-th column of the \(m \)-dimensional identity matrix \(I_m \). An \(m \times \epsilon \) matrix \(A \) is called a logical matrix, if \(\text{Col}(A) \subseteq \Delta_m \), where \(\text{Col}(A) \) denotes the set of all columns of \(A \). All \(p \times q \) logical matrices in the form of \(\delta^j_{ip} \delta^q_{j} \) with \(j \in \{1, \cdots, p\}, i = 1, \cdots, q \) form a set, denoted by \(L_{p \times q} \). Without losing generality, take Boolean networks as an example. Identifying \(1 \sim \delta^1_{2} \) and \(0 \sim \delta^2_{2} \), we have \(D = \Delta = \{ \delta^1_{2}, \delta^2_{2} \} \). For system (1), there exists a unique matrix \(M_{\varphi_i} \in \mathbb{L} \times 2^{2n+\alpha} \) satisfying

\[
\varphi_i(x_1(s), \cdots, x_m(s), v_1(s), \cdots, v_n(s)) = M_{\varphi_i} \otimes_{j=1}^{n} v_j \otimes_{i=1}^{m} x_i, x_i, v_j \in \Delta.
\]

We call \(M_{\varphi_i} \) the structural matrix of \(\varphi_i \) [2]. From (2), the algebraic state space representation of system (1) can be obtained as

\[
\begin{align*}
 x(s+1) &= Mv(s)x(s), \\
 y(s) &= Lx(s),
\end{align*}
\]

where \(x(s) = \otimes_{i=1}^{m} x_i(s) \in \Delta_{2n}, v(s) = \otimes_{i=1}^{n} v_i(s) \in \Delta_{2^p}, y(s) = \otimes_{i=1}^{n} y_i(s) \in \Delta_{2^q}, M = M_{\varphi_1} \cdots M_{\varphi_n} \in \mathbb{L}_{2^m \times 2^{m+n}}, L \in \mathbb{L}_{2^q \times 2^m} \), and "\(\otimes \)" denotes the Khatri–Rao product.

In the past decade, based on the algebraic state space representation approach, many theoretical problems of LDSs have been achieved, including controllability [37–41], observability [42–46], stability [47–51], stabilization [52–56], tracking control [57–61], disturbance decoupling [62–66], input-output decoupling [67–71], optimal control [12,72–74], and so on.

In some recent studies, the above results have been extended to various complex LDSs. For example, switched LDSs [75], probabilistic LDSs [76], delayed LDSs [77], LDSs with impulsive effects [78], asynchronous LDSs [79], constrained LDSs [80], singular LDSs [81], and so on. Based on the algebraic state space representation technique, several efficient control design techniques such as a reachable set approach [52], control Lyapunov function approach [51], event-triggered control technique [64], and sampled-data control technique [82] have been introduced to solve the control problems of complex LDSs. This paper aims to present a detailed survey on these complex LDSs and control design techniques. Lu et al. [13] presented a survey on recent development of fundamental works on LDSs and briefly introduced research works on generalised Boolean (control) networks. Compared with [13], this paper presents a detailed survey on complex LDSs, and it is easy to see that
the general LDSs and generalised Boolean (control) networks considered in [13] are special cases of the complex LDSs considered in this paper.

The remainder of this paper is organized as follows: Section 2 presents a comprehensive survey on the mathematical models of complex LDSs. Some control design techniques of complex LDSs are summarized in Section 3, which is followed by a conclusion in Section 4.

2. Mathematical Models of Complex LDSs

2.1. LDSs with Switching Structures

Switched systems are hybrid systems in which several subsystems controlled by a switching law. Recently, switched systems have received intensive attention [83]. Switched LDSs are actually a nonlinear switched system [84,85], in which the switching mode is generated by asynchronous updating and external disturbances. The dynamic model of LDS (1) with switching structures is

\[
\begin{align*}
 x_1(s + 1) &= \varphi_1^{\epsilon(s)}(x_1(s), \ldots, x_m(s), v_1(s), \ldots, v_n(s)), \\
 \vdots \\
 x_m(s + 1) &= \varphi_m^{\epsilon(s)}(x_1(s), \ldots, x_m(s), v_1(s), \ldots, v_n(s)),
\end{align*}
\]

(4)

where \(\varphi : \mathbb{N} \rightarrow S := \{1, 2, \ldots, \epsilon\} \) is the switching signal, and \(\mathbb{N} \) denotes the set of nonnegative integers.

The model of switched Boolean control networks (BCNs) was firstly proposed in [75] to study the reachability and controllability. Since then, several fundamental results of switched LDSs have been developed. In [86–89], stability of switched Boolean networks was discussed. In [59,90–94], stabilization and control design of switched Boolean networks were investigated. Complete synchronization problem for the drive-response switched Boolean networks under arbitrary switching signals was investigated in [95]. Stability of switched \(k \)-valued logical networks was investigated in [96,97]. Stabilization and control design of switched \(k \)-valued logical networks were investigated in [6,98,99]. Controllability of switched mix-valued logical networks with constraints was investigated in [100].

2.2. Probabilistic LDSs

In the real world, stochasticity is very common. Therefore, extending LDSs to probabilistic LDSs is reasonable. Profiting from this kind of nondeterministic systems, the uncertainty in both data and model selection can be well dealt with [101]. The dynamic model of probabilistic LDSs is

\[
\begin{align*}
 x_1(s + 1) &= \varphi_1^{\epsilon(s)}(x_1(s), \ldots, x_m(s), v_1(s), \ldots, v_n(s)), \\
 \vdots \\
 x_m(s + 1) &= \varphi_m^{\epsilon(s)}(x_1(s), \ldots, x_m(s), v_1(s), \ldots, v_n(s)),
\end{align*}
\]

(5)

where \(\varphi : \mathbb{N} \rightarrow S := \{1, 2, \ldots, \epsilon\} \) is the switching signal, and the switching signal \(\epsilon(s) \) is a stochastic sequence, which is independently and identically distributed with the probability distribution \(P\{\epsilon(s) = i\} = p_i > 0, i \in S, \sum_{i=1}^{\epsilon} p_i = 1 \).

Probabilistic LDSs were firstly proposed in [102]. Stability of probabilistic Boolean networks was discussed in [103–105]. Controllability and observability of probabilistic Boolean networks were investigated in [76,106,107]. Stabilization of probabilistic Boolean networks was investigated in [108–112]. The synchronization problem of master–slave probabilistic Boolean networks was analyzed in [113]. Controllability and stabilizability of probabilistic logical control networks were investigated in [114]. Liu et al. [115] considered two kinds of optimal control problems for probabilistic mix-valued LDSs. Some further results on the finite-time stability of probabilistic logical networks were presented in [101].
2.3. LDSs with Time Delays

As a source of instability, the phenomenon of time delays could occur under some circumstances, such as the delay of long-distance information transmission, chemical processes, drug action, and slow processes of gene transcription and translation [116–119]. Thus, considering the influence of time delays could predict the dynamics of models more accurately. Three kinds of time delays including constant time delay, time-variant delay, and state-dependent delay are commonly considered [120]. LDSs with time delays are called delayed LDSs. The dynamic model of LDS (1) with constant time delay is

\[
\begin{align*}
x_1(s+1) &= \varphi_1(X(s-\tau+1), \ldots, X(s), V(s)), \\
& \vdots \\
x_m(s+1) &= \varphi_m(X(s-\tau+1), \ldots, X(s), V(s)),
\end{align*}
\]

where \(\tau \in \mathbb{Z}_+ \) is the state time delay, \(\mathbb{Z}_+ \) denotes the set of positive integers, \(X(i) := (x_1(i), \ldots, x_m(i)) \), \(i = s - \tau + 1, \ldots, s \), and \(V(s) := (v_1(s), \ldots, v_n(s)) \).

The study of delayed LDSs has aroused many scholars’ research interests. The delayed LDSs were firstly studied by using the STP of matrices in [1]. Observability and controllability of Boolean networks with constant time delays were investigated in [77,121–123]. Stabilization and set stabilization of BCNs with constant time delays were investigated in [124,125]. Control design for output tracking of BCNs with constant time delays was investigated in [60]. Mu et al. [126] investigated controllability and reachability of \(k \)-valued LDSs with constant time delays. Controllability and observability of BCNs with time-variant delays were investigated in [127–129]. In [130,131], stability and stabilization of Boolean networks with stochastic time delays were studied. Considering state-dependent delay, the set stability of Boolean networks was investigated in [132]. Stability and uniform sampled-data stabilization of constrained Boolean networks with state-dependent delays were discussed in [120].

2.4. LDSs with Impulsive Effects

Evolutionary processes may experience abrupt changes of states, which may occur at prescribed time instants and/or triggered by specified events. When mathematically modeling the evolution of processes with a short-time perturbation, the perturbation is assumed to be instantaneous and the duration is neglected, that is, in the form of impulse. In view of the important influence of impulse in biological networks, impulsive effects are introduced into the study of gene regulatory networks [133,134]. The dynamic model of LDS (1) with impulsive effects is

\[
\begin{align*}
x_1(s+1) &= \varphi_1(x_1(s), \ldots, x_m(s), v_1(s), \ldots, v_h(s)), \\
& \vdots \\
x_m(s+1) &= \varphi_m(x_1(s), \ldots, x_m(s), v_1(s), \ldots, v_h(s)), \\
x_1(s_h) &= f_1(x_1(s_h-1), \ldots, x_m(s_h-1)), \\
& \vdots \\
x_m(s_h) &= f_m(x_1(s_h-1), \ldots, x_m(s_h-1)),
\end{align*}
\]

where \(s_h, h \in \mathbb{Z}_+ \) is the impulsive instant satisfying \(0 < s_1 < \cdots < s_h < \cdots \), and \(Y := \{s_h : h \in \mathbb{Z}_+\} \).

LDSs with impulsive effects were firstly proposed in [135] to study observability. Stability and stabilization of Boolean network with impulsive effects were studied in [78,136–139]. Controllability of BCNs with impulsive effects was investigated in [140,141]. The optimal control problem of BCNs with impulsive effects was investigated in [80,142]. Considering impulsive effects, the robust set stabilization and the output tracking problem of BCNs were addressed [143,144]. Impulsive control for the output tracking of probabilistic BCNs was investigated in [61]. The bisimulations of BCNs with impulsive effects was addressed in [145].
2.5. Asynchronous LDSs

For classical LDSs such as (1), based on the assumption that the update scheme is independent of the dynamical behaviors of the network, it is generally assumed that all nodes on the network are updated in parallel. However, in reality, it is difficult to find synchronous clocks in biological systems. For example, factors such as mRNA and protein transport, degradation and synthesis time mean that the system is full of different degrees of delays, and genes are activated or suppressed in a basically asynchronous manner [146]. Therefore, it is necessary to discuss LDSs under the asynchronous updating rule. In general, a deterministic asynchronous scheme and random asynchronous scheme are two kinds of asynchronous schemes usually considered [93]. Now, we consider the deterministic asynchronous LDSs. \(\tau_i \in \{0, \cdots , \zeta_i - 1\} \) and \(\zeta_i \) denotes the initial updating time and the updating period of node \(i \), respectively, \(i = 1, \cdots , m \). The dynamic model of LDS (1) with asynchronous updating rule is given as follows:

\[
\begin{aligned}
 x_1(s + 1) &= \begin{cases}
 \varphi_1(x_1(s), \cdots , x_m(s), v_1(s), \cdots , v_n(s)), & \text{if } g_1(s + 1) = 1, \\
 x_1(s), & \text{if } g_1(s + 1) = 0,
 \end{cases} \\
 & \vdots \\
 x_m(s + 1) &= \begin{cases}
 \varphi_m(x_1(s), \cdots , x_m(s), v_1(s), \cdots , v_n(s)), & \text{if } g_m(s + 1) = 1, \\
 x_m(s), & \text{if } g_m(s + 1) = 0,
 \end{cases}
\end{aligned}
\]

(8)

where

\[
g_i(s) = \begin{cases}
 1, & \text{if } s \mod \zeta_i = \tau_i, \\
 0, & \text{else},
 \end{cases} \quad i = 1, \cdots , m.
\]

(9)

For node \(i \), if \(g_i(s + 1) = 1 \), the value of \(x_i(s + 1) \) is determined by the updating rule \(\varphi_i \); otherwise, the value of \(x_i(s + 1) \) remains unchanged.

Asynchronous LDSs were firstly proposed in [147]. In [148], the dynamics of asynchronous \(k \)-valued logical networks were investigated based on the linear representation. In [79], the dynamics of asynchronous Boolean networks is investigated via algebraic approach, where at each time step a random number of nodes can be updated. In [149], the controllability of asynchronous BCNs was studied. By virtue of the results obtained in [149], the controllability of BCNs with delays and asynchronous stochastic update was considered [150]. Controllability of asynchronous BCNs with constant time delay was studied in [151]. The complete synchronization for asynchronous switched Boolean networks was discussed in [152]. In [153], a new linear approach was proposed to model the dynamics of asynchronous Boolean networks. In [93], the dynamics of deterministic asynchronous BCNs were converted into the form of periodic switching BCNs, and the time-variant state feedback stabilization problem of deterministic asynchronous BCNs was solved. In [154], the asynchronous event-triggered control mechanism was introduced to the set stabilization problem of \(k \)-valued logical control networks.

2.6. Constrained LDSs

As we all know, constraints often play an important role in both linear systems and nonlinear systems [155–157]. Similarly, in the gene regulatory network, because some gene states may cause serious diseases, or some treatment schemes may have dangerous effects, it is necessary to impose constraints on the states and controls. LDSs with state constraints were introduced in [39]. LDSs with state or control constraints are called constrained LDSs. Considering the constraints of system (3), the state constraint set and control constraint set are generally defined as

\[
C_x = \{ \delta_{2m}^1, \cdots , \delta_{2m}^n \} \subseteq \Delta_{2m},
\]

(10)

and

\[
C_v = \{ \delta_{2v}^1, \cdots , \delta_{2v}^n \} \subseteq \Delta_{2v},
\]

(11)
respectively, where \(i_1 < \cdots < i_n, j_1 < \cdots < j_\beta \).

In the past decade, many excellent results on constrained LDSs have been proposed, including observability [158], controllability [32,80,91,100], stabilization [125,155,159,160], and so on.

2.7. Implicit LDSs

When the dynamic equations of systems are constrained, singular systems, which are also referred to as implicit systems, differential algebraic equations or descriptor systems, are often much more natural and convenient than standard models in describing some scientific and engineering systems, and such systems have been widely used in many fields, including biological systems, power networks, flexible arm control of robots and aircraft attitude control [161]. Inspired by this, singular LDSs were proposed [81,162], and the more general model is implicit LDSs [163]. The dynamic model of implicit LDSs is

\[
\begin{align*}
\varphi_1 (x_1(s), \cdots, x_m(s), x_1(s+1), \cdots, x_m(s+1)) &= 1, \\
& \vdots \\
\varphi_m (x_1(s), \cdots, x_m(s), x_1(s+1), \cdots, x_m(s+1)) &= 1.
\end{align*}
\]

(12)

It should be noted that the existence of solutions in implicit LDSs is not necessarily unique. Singular LDSs [81] were firstly introduced in [162] and called dynamic-algebraic LDSs. In [164], the properties of singular LDSs were studied in detail by using the STP method. Since then, many excellent results about singular LDSs have been established such as controllability and observability [100,165,166], stability [167], optimal control [168], disturbance decoupling [169], and function perturbations [170]. As the more general model of singular LDSs, implicit LDSs were proposed for the first time in [163]. In [163], some criteria were proposed to equivalently convert implicit LDSs into classic or restricted LDSs. Then, in order to determine the topological structure of singular LDSs, an improved method was presented, based on which transformation relations between implicit LDSs and singular LDSs were given.

3. Control Design Techniques for LDSs

3.1. Reachable Set Approach

Control design for stabilization is one of the fundamental issues of LDSs, and many excellent results have been obtained [1,48,52,78,171]. Among them, the reachable set approach for studying the state feedback stabilization of LDSs proposed in [48,52] provides a convenient approach for constructing stabilizers of LDSs.

The objective of state feedback stabilization is to find a state feedback control of the form [52]

\[
\begin{align*}
\var{v_1}(s) &= g_1(x_1(s), \cdots, x_m(s)), \\
& \vdots \\
\var{v_n}(s) &= g_n(x_1(s), \cdots, x_m(s)),
\end{align*}
\]

(13)

where \(g_i, i = 1, \cdots, n \) are logical functions that stabilizes system (3) to a given equilibrium point \(x_e = \delta^0_{m} \). From the algebraic state space representation framework, the state feedback control (13) can be converted into the following algebraic form:

\[
\var{v}(s) = G\var{x}(s),
\]

(14)

where \(G \) is said to be the state feedback gain matrix.
For the given equilibrium point $x_e = \delta_{\text{eq}}^0$, the reachable set is defined as follows:

$$E_r(\theta) = \left\{ x_0 \in \Delta_{\text{eq}} : \text{there are } v(0), \cdots, v(r-1) \in \Delta_{\text{eq}} \right.$$

such that $x(r; x_0; v(0), \cdots, v(r-1)) = \delta_{\text{eq}}^0 \left\}, \right.$$(15)

where $E_r(\theta)$ represents a set of initial states that reach x_e in r steps, and the control design approach based on $E_r(\theta)$ is called a reachable set approach.

Following [48,52], many valuable results on LDSs have been obtained by the reachable set approach, including stabilization [82,125,155,159,172], set stabilization [111,173–175], synchronization [176–178], output tracking [179,180], output regulation [181–183], and so on.

3.2. Sampled-Data Control

Sampled-data control, which can decrease the controller update frequency and reduce the computational burden, is a commonly used technique to decrease the control costs [184]. In many research fields such as nonlinear systems [185], neural networks [186] and fuzzy systems [187], sampled-data control theory has been well developed. The sampled-data control technique was also introduced to the control of LDSs [82,188], switched LDSs [189] and probabilistic LDSs [110,111]. Accordingly, some fundamental results were proposed for the sampled-data controllability [190], synchronization [191], and stabilization [192].

Definition 1. Given a set of sampling points $\{ s_h : h \in \mathbb{N} \}$ with $s_0 = 0$, $(V(0), V(1), \cdots)$ is said to be a uniform sampled-data control, if

$$V(s) = V(s_h), \ s \in [s_h, s_{h+1}) \cap \mathbb{Z}, \ s_{h+1} - s_h = \zeta, \ \forall \ h \in \mathbb{N},$$

where $\zeta \in \mathbb{Z}_+$ is called the sampling period, and $[s_h, s_{h+1}) \cap \mathbb{Z} = \{ s_h, s_h + 1, \cdots, s_{h+1} - 1 \}$.

Sampled-data control with the intervals between sampling points being time-variant is called nonuniform sampled-data control. From Definition 1, it can be seen that the sampling points are fixed. For BCNs, uniform sampled-data state feedback control was first used to investigate the stabilization problem in [82]. In [193], the uniform sampled-data state feedback control problem of mix-valued logical control networks was studied. By virtue of the STP method, the robust uniform sampled-data control invariance of BCNs were investigated in [188]. Controllability and observability of uniform sampled-data BCNs were considered in [194]. The uniform sampled-data reachability and stabilization of constrained k-valued logical control networks were investigated in [155]. In [110,111], considering uniform sampled-data state feedback controllers, stabilization and set stabilization of probabilistic BCNs were addressed. In [191], the general partial synchronization of BCNs was studied by the uniform sampled-data feedback controller. Under the nonuniform sampled-data control, the time-variant state feedback stabilization of constrained BCNs with time delays was investigated in [125].

Definition 2. $\{ V(s) : s \in \mathbb{N} \}$ is said to be an aperiodic sampled-data control, if

$$V(s) = V(s_h), \ s \in [s_h, s_{h+1}) \cap \mathbb{Z}, \ s_{h+1} - s_h = \tau_h, \ \forall \ h \in \mathbb{N},$$

where $s_h, h \in \mathbb{N}$ are sampling points, the interval length $\tau_h \in \Omega_c := \{ l_1, \cdots, l_p \} \subseteq \mathbb{Z}_+$, $l_1 < l_2 < \cdots < l_p$, and $s_0 = 0$.

From Definition 2, it can be seen that the sampling points are aperiodic. In [192], under the aperiodic sampled-data control, the global stability analysis of BCNs was considered via a novel technique, and the key is that the BCNs under aperiodic sampled-data control was converted into a switched Boolean network. In [195], the global stability of BCNs with
the aperiodic sampled-data control was further studied. Controllability and stabilizability of BCNs under the aperiodic sampled-data control was investigated in [190].

Definition 3. \(\{V(s) : s \in \mathbb{N}\} \) is said to be a nonuniform sampled-data control, if

\[
V(s) = V(s_h), s \in [s_h, s_{h+1}) | z_{s_h}, s_{h+1} - s_h = \tau, \forall h \in \mathbb{N},
\]

where \(s_h, h \in \mathbb{N} \) are sampling points, the sampling period \(\tau \in \{\tau_1, \tau_2\} \) with probability distribution \(\{p, 1-p\} \), and \(s_0 = 0 \).

From Definition 3, it can be seen that the sampling points are determined by the probability distribution. Under nonuniform sampled-data control, the output regulation problem of BCNs was investigated [196]. Wang et al. [197] discussed sampled-data state feedback control with stochastic sampling periods for BCNs. Sun et al. [198] introduced a novel technique for the global stochastic stability of aperiodic sampled-data BCNs.

3.3. Event-Triggered Control

Event-triggered control was firstly introduced in [199], and it has been well developed in nonlinear systems and networked control systems [200–202]. Event-triggered control can reduce control execution times and computation costs. The event-triggered control approach to LDSs was firstly introduced in [64], and the disturbance decoupling problem of BCNs was considered. An event-triggered control scheme was developed for the robust set stabilization of disturbed \(k \)-valued logical control networks in [203].

Generally speaking, event-triggered control consists of two basic elements as feedback control and event-triggered condition [204]. Now, we show the two basic elements of the event-triggered control by referring to the results in [203]. Let an initial state \(x(0) = d_x \), a nonempty set \(P \subseteq \Delta_k \), and a time-variant state feedback control \(v(s) = \Phi(s, x(0))x(s) \) be given. The event-triggered condition was formulated as

\[
d_H(Y(s+1), P) > 0,
\]

where \(Y(s+1) = \text{Col}(\text{Blk}_\theta(\times^s_{i=0}(L\Phi(i, x(0))R^M_{k_i}))) \), \(\text{Blk}_\theta(P) \) denotes the \(\theta \)-th \(n \times n \) square block of an \(n \times nm \) matrix \(P \), and \(d_H(Y(s+1), P) \) represents the Hausdorff distance between \(Y(s+1) \) and \(P \). Denote the sequence of triggering time by \(s_1 < s_2 < \cdots < s_r < \cdots \). Correspondingly, one can obtain a sequence of state feedback control updates as \(\Phi(s_1, x(0)), \Phi(s_2, x(0)), \cdots, \Phi(s_r, x(0)), \cdots \). Thus, the event-triggered controllers can be designed as

\[
v(s) = \Phi(s_i, x(0))x(s), s \in [s_i, s_{i+1}) \cap \mathbb{N},
\]

where \(i = 0, 1, \cdots, \tau, \cdots \).

Recently, by virtue of an event-triggered control approach, several excellent results on LDSs have been proposed, including synchronization [98,178], stabilization [205–207], set stabilization [154,208], disturbance decoupling [209], output regulation [210] and so on[211], and the corresponding event-triggered mechanisms and techniques for designing state feedback controllers were proposed.

3.4. Control Lyapunov Function

Lyapunov theory plays an important role in the stability analysis and control synthesis of nonlinear dynamic systems. In the past few decades, a series of construction methods of control Lyapunov functions have been proposed and used to design the state feedback stabilizers in nonlinear control systems [212,213]. Control Lyapunov functions were generalized to finite evolutionary games in [214]. In [5], a framework of Lyapunov stability theory for LDSs by the STP method was first established. Then, a control Lyapunov approach was proposed in [215] to investigate the feedback stabilization, where all stabilizers and corresponding control Lyapunov functions were designed.
The Lyapunov theory of LDSs was developed in [51], where the Lyapunov function of LDS (1) is a pseudo-Boolean function in the form of
\[
P(x_1, \cdots, x_m) = a_0 + a_1 x_1 + \cdots + a_m x_m + a_{m+1} x_1 x_2 + \cdots + a_{2^m-1} x_1 \cdots x_m,
\]
where \(a_i, i = 0, 1, \cdots, 2^m - 1 \) are real coefficients. At the same time, \(P(x_1, \cdots, x_m)\) meets

(i) \(P(x_1, \cdots, x_m) > 0, \forall (x_1, \cdots, x_m) \in D^m \setminus S\), and \(P(x_1, \cdots, x_m) = 0, \forall (x_1, \cdots, x_m) \in S\);

(ii) along the trajectories of the system (1), \(\Delta P(x_1(s), \cdots, x_m(s)) := P(x_1(s+1), \cdots, x_m(s+1)) - P(x_1(s), \cdots, x_m(s)) < 0\) holds for any \((x_1(s), \cdots, x_m(s)) \notin S\), and \(\Delta P(x_1(s), \cdots, x_m(s)) = 0\) holds for any \((x_1(s), \cdots, x_m(s)) \in S\),

where \(S\) denotes the set of fixed points, and \(S\) denotes the set of attractors.

Using the STP method, the pseudo-Boolean function (18) can be expressed as
\[
P(x) = M_P x,
\]
where \(M_P \in \mathbb{R}^{1 \times 2^m}\) is unique. Conversely, \(M_P\) determines a unique pseudo-Boolean function \(P(x_1, \cdots, x_m)\).

Recently, some excellent results on LDSs via the control Lyapunov function approach have been proposed. In [192], in order to derive sufficient conditions for the global stability of BCNs with aperiodic sampled-data control, switching-based Lyapunov function techniques and average dwell time method were established. Lyapunov functions for the set stability of Boolean networks and control Lyapunov functions for the feedback set stabilization and synchronization of BCNs were proposed in [216]. By virtue of the control Lyapunov function method, the partial stabilization of probabilistic BCNs with sample-data state-feedback control was investigated in [109]. In [160], the stabilization for delayed BCNs with state constraints was studied by using the barrier Lyapunov function.

Remark 1. In the past few decades, neural networks have received extensive attention and have been applied to various fields such as signal processing, fault diagnosis, and industrial automation. It is worth noting that neural networks with time delays were also investigated via sampled-data techniques [217–219]. The main difference between delayed neural networks and delayed LDSs lies in the fact that the states of neural networks take values from set of real numbers while that of LDSs taking values from finite sets.

4. Conclusions

In this survey, we have reviewed new developments for several generalized forms of LDSs, including switched LDSs, probabilistic LDSs, delayed LDSs, LDSs with impulsive effects, asynchronous LDSs, constrained LDSs, and implicit LDSs (see Table 1). Furthermore, we have summarized some control design techniques of LDSs, including the reachable set approach, sampled-data control technique, event-triggered control technique, and control Lyapunov function approach. In the future, one may apply the model and control theory of LDSs to the modeling and control of engineering devices such as unmanned aerial vehicles and hybrid electric vehicles.
Table 1. A classification for the considered models and methods.

Models	Reachable Set	SAMPLED-Data	Event-Triggered	Lyapunov Function
Switched LDSs	✓ [173]	✓ [189]	✓ [98]	✓ [192]
Probabilistic LDSs	✓ [111]	✓ [110]	✓ [205]	✓ [160]
Delayed LDSs	✓ [172]	✓ [125]	✓ [210]	✓ [160]
Impulsive LDSs	✓ [143]			
Asynchronous LDSs	✓ [176]			✓ [178]
Constrained LDSs	✓ [159]	✓ [155]		
Implicit LDSs	✓ [166]			

Author Contributions: Investigation, writing—original draft preparation, X.K.; validation, Q.S.; methodology, writing—review and editing, supervision, project administration, H.L. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by the National Natural Science Foundation of China under Grant No. 62073202, and the Young Experts of Taishan Scholar Project under Grant No. tsqn201909076.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, D.; Qi, H.; Li, Z. Analysis and Control of Boolean Networks: A Semi tensor Product Approach; Springer: London, UK, 2011.
2. Cheng, D.; Qi, H.; Zhao, Y. Analysis and control of general logical networks-An algebraic approach. *Annu. Rev. Control* 2012, 36, 11–25.
3. Kauffman, S. Metabolic stability and epigenesis in randomly constructed genetic nets. *J. Theor. Biol.* 1969, 22, 437–467.
4. Cheng, D.; Qi, H.; Liu, T.; Wang, Y. A note on observability of Boolean control networks. *Syst. Control. Lett.* 2016, 87, 76–82.
5. Yang, M.; Li, R.; Chu, T. Controller design for disturbance decoupling of Boolean control networks. *Automatica* 2013, 49, 273–277.
6. Gao, Y.; Liu, C.; Wang, J. Stabilization of periodic switched k valued logical networks. *IEEE Access* 2021, 9, 74488–74498.
7. Kong, X.; Wang, S.; Li, H.; Alsaadi, F. New developments in control design techniques of logical control networks. *Front. Inf. Technol. Electron. Eng.* 2020, 21, 220–233.
8. Liu, Z.; Wang, Y. Reachability/controllability of high order mix valued logical networks. *J. Syst. Sci. Complex.* 2013, 26, 341–349.
9. Jia, G.; Meng, M.; Feng, J. Function perturbation of mix valued logical networks with impacts on limit sets. *Neurocomputing* 2016, 207, 428–436.
10. Zhang, L.; Feng, J.; Feng, X.; Yao, J. Further results on disturbance decoupling of mix valued logical networks. *IEEE Trans. Autom. Control* 2014, 59, 1630–1634.
11. Mu, Y.; Guo, L. Optimization and identification in a nonequilibrium dynamic game. In Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with 28th Chinese Control Conference, Shanghai, China, 15–18 December 2009; pp. 5750–5755.
12. Zhao, Y.; Li, Z.; Cheng, D. Optimal control of logical control networks. *IEEE Trans. Autom. Control* 2011, 56, 1766–1776.
13. Lu, J.; Li, H.; Liu, Y.; Li, F. Survey on semi tensor product method with its applications in logical networks and other finite-valued systems. *IET Control. Theory Appl.* 2017, 11, 2040–2047.
14. Cheng, D.; He, F.; Qi, H.; Xu, T. Modeling, analysis and control of networked evolutionary games. *IEEE Trans. Autom. Control* 2015, 60, 2402–2415.
15. Cheng, D.; Feng, J.; Lv, H. Solving fuzzy relational equations via semitensor product. *IEEE Trans. Fuzzy Syst.* 2012, 20, 390–396.
16. Xu, X.; Hong, Y. Matrix expression and reachability analysis of finite automata. *J. Control. Theory Appl.* 2012, 10, 210–215.
17. Li, H.; Wang, Y. Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method. *Automatica* 2012, 48, 688–693.
18. Liu, Z.; Wang, Y.; Cheng, D. Nonsingularity of feedback shift registers. *Automatica* 2015, 55, 247–253.
19. Hinkelmann, F.; Brandon, M.; Guang, B.; McNeill, R.; Blekherman, G.; Veliz-Cuba, A.; Laubenbacher, R. Adam: analysis of discrete models of biological systems using computer algebra. *BMC Bioinform.* 2011, 12, 295.
20. Aldana, M. Boolean dynamics of networks with scale-free topology. *Physica D* 2003, 185, 45–66.
21. Drossel, B.; Mihaljev, T.; Greil, F. Number and length of attractors in a critical Kauffman model with connectivity one. *Phys. Rev. Lett.* 2005, 94, 088701.
22. Heidel, J.; Maloney, J.; Farrow, C.; Rogers, J. Finding cycles in synchronous Boolean networks with applications to biochemical systems. *Int. J. Bifurc. Chaos* **2003**, *13*, 535–552.

23. Akutsu, T.; Hayashida, M.; Ching, W.; Ng, M. Control of Boolean networks: Hardness results and algorithms for tree structured networks. *J. Theor. Biol.* **2007**, *244*, 670–679.

24. Albert, R.; Barabasi, A. Dynamics of complex systems: Scaling laws for the period of Boolean networks. *Phys. Rev. Lett.* **2000**, *84*, 5660–5663.

25. Harris, S.; Sawhill, B.; Wensche, A.; Kauffman, S. A model of transcriptional regulatory networks based on biases in the observed regulation rules. *Complexity* **2002**, *7*, 23–40.

26. Chaves, M.; Albert, R.; Sontag, E. Robustness and fragility of Boolean models for genetic regulatory networks. *J. Theor. Biol.* **2005**, *235*, 431–449.

27. Cheng, D. Semi-tensor product of matrices and its application to Morgan’s problem. *Sci. China Ser. F* **2001**, *44*, 195–212.

28. Li, H.; Zhao, G.; Meng, M.; Feng, J. A survey on applications of semi-tensor product method in engineering. *Sci. China Inf. Sci.* **2018**, *61*, 28–44.

29. Cheng, D.; Qi, H. *Semi-tensor Product of Matrices-Theory and Applications*; Science Press: Beijing, China, 2007.

30. Cheng, D.; Qi, H.; Zhao, Y. *An Introduction to Semi-tensor Product of Matrices and Its Applications*; World Scientific: Singapore, 2012.

31. Liu, Y.; Tong, L.; Lou, J.; Lu, J.; Cao, J. Sampled-data control for the synchronization of Boolean control networks. *IEEE Trans. Cybern.* **2019**, *49*, 726–732.

32. Guo, Y. Controllability of Boolean control networks with state-dependent constraints. *Sci. China Inf. Sci.* **2016**, *59*, 162–175.

33. Liang, S.; Zhao, G.; Li, H.; Ding, X. Structural stability analysis of gene regulatory networks modeled by Boolean networks. *Math. Methods Appl. Sci.* **2019**, *42*, 2221–2230.

34. Zhao, G.; Liang, S.; Li, H. Stability analysis of activation-inhibition Boolean networks with stochastic function structures. *Math. Methods Appl. Sci.* **2020**, *43*, 8694–8705.

35. Zou, Y.; Zhu, J. System decomposition with respect to inputs for Boolean control networks. *Automatica* **2014**, *50*, 1304–1309.

36. Wang, S.; Feng, J.; Yu, Y.; Zhao, J. Further results on dynamic-algebraic Boolean control networks. *Sci. China Inf. Sci.* **2019**, *62*, 177–190.

37. Cheng, D.; Qi, H. Controllability and observability of Boolean control networks. *Automatica* **2009**, *45*, 1659–1667.

38. Zhao, Y.; Qi, H.; Cheng, D. Input-state incidence matrix of Boolean control networks and its applications. *Syst. Control. Lett.* **2010**, *59*, 767–774.

39. Laschov, D.; Margaliot, M. Controllability of Boolean control networks via the Perron-Frobenius theory. *Automatica* **2012**, *48*, 1218–1223.

40. Li, Z.; Song, J. Controllability of Boolean control networks avoiding states set. *Sci. China Inf. Sci.* **2014**, *57*, 1–13.

41. Zhao, G.; Wang, Y.; Li, H. Invertibility of higher order k-valued logical control networks and its application in trajectory control. *J. Franklin Inst.* **2016**, *353*, 4667–4679.

42. Forasini, E.; Valcher, M. Observability, reconstructibility and state observers of Boolean control networks. *IEEE Trans. Auton. Control* **2013**, *58*, 1390–1401.

43. Laschov, D.; Margaliot, M.; Even, G. Observability of Boolean networks: A graph-theoretic approach. *Automatica* **2013**, *49*, 2351–2362.

44. Li, R.; Yang, M.; Chu, T. Observability conditions of Boolean control networks. *Int. J. Robust Nonlinear Control* **2014**, *24*, 2711–2723.

45. Zhang, K.; Zhang, L. Observability of Boolean control networks: a unified approach based on finite automata. *IEEE Trans. Autom. Control* **2016**, *61*, 2733–2738.

46. Zhu, Q.; Liu, Y.; Lu, J.; Cao, J. Observability of Boolean control networks. *Sci. China Inf. Sci.* **2018**, *61*, 156–167.

47. Cheng, D.; Qi, H.; Li, Z.; Liu, J. Stability and stabilization of Boolean networks. *Int. J. Robust Nonlinear Control* **2011**, *21*, 134–156.

48. Forasini, E.; Valcher, M. On the periodic trajectories of Boolean control networks. *Automatica* **2013**, *49*, 1506–1509.

49. Guo, Y.; Wang, P.; Gui, W.; Yang, C. Set stability and set stabilization of Boolean control networks based on invariant subsets. *Automatica* **2015**, *61*, 106–112.

50. Li, H.; Wang, Y. Robust stability and stabilisation of Boolean networks with disturbance inputs. *Int. J. Syst. Sci.* **2016**, *48*, 750–756.

51. Li, H.; Wang, Y. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks. *SIAM J. Control Optim.* **2017**, *55*, 3437–3457.

52. Li, R.; Yang, M.; Chu, T. State feedback stabilization for Boolean control networks. *IEEE Trans. Auton. Control* **2013**, *58*, 1853–1857.

53. Li, H.; Wang, Y. Output feedback stabilization control design for Boolean control networks. *Automatica* **2013**, *49*, 3641–3645.

54. Bof, N.; Forasini, E.; Valcher, M. Output feedback stabilization of Boolean control networks. *Automatica* **2015**, *57*, 21–28.

55. Li, H.; Wang, Y. Further results on feedback stabilization control design of Boolean control networks. *Automatica* **2017**, *83*, 303–308.

56. Li, H.; Yang, X.; Wang, S. Robustness for stability and stabilization of Boolean networks with stochastic function perturbations. *IEEE Trans. Auton. Control* **2021**, *66*, 1231–1237.

57. Li, H.; Wang, Y.; Xie, L. Output tracking control of Boolean control networks via state feedback: constant reference signal case. *Automatica* **2015**, *59*, 54–59.

58. Li, H.; Wang, Y.; Guo, P. State feedback based output tracking control of probabilistic Boolean networks. *Inf. Sci.* **2016**, *349*, 1–11.

59. Li, H.; Wang, Y. Output tracking of switched Boolean networks under open-loop/closed-loop switching signals. *Nonlinear Anal. Hybrid Syst.* **2016**, *22*, 137–146.
60. Liu, Y.; Zheng, Y.; Li, H.; Alsaadi, F.; Ahmad, B. Control design for output tracking of delayed Boolean control networks. *J. Comput. Appl. Math.* 2018, 327, 188–195.

61. Wang, J.; Liu, Y.; Li, H. Impulsive control design for output tracking of probabilistic Boolean control networks. *IET Control Theory Appl.* 2020, 14, 2688–2695.

62. Cheng, D. Disturbance decoupling of Boolean control networks. *IEEE Trans. Autom. Control* 2011, 56, 2–10.

63. Liu, Z.; Wang, Y. Disturbance decoupling of mix-valued logical networks via the semi-tensor product method. *Automatica* 2012, 48, 1839–1844.

64. Li, B.; Liu, Y.; Kou, K.; Yu, L. Event-triggered control for the disturbance decoupling problem of Boolean control networks. *IEEE Trans. Cybern.* 2018, 48, 2764–2769.

65. Wang, S.; Li, H. New results on the disturbance decoupling of Boolean control networks. *IEEE Control Syst. Lett.* 2021, 5, 1157–1162.

66. Li, Y.; Zhu, J.; Li, B.; Liu, Y.; Lu, J. A necessary and sufficient graphic condition for the original disturbance decoupling of Boolean networks. *IEEE Trans. Autom. Control* 2021, 66, 3765–3772.

67. Valcher, M. Input/output decoupling of Boolean control networks. *IET Control Theory Appl.* 2017, 11, 2081–2088.

68. Pan, J.; Feng, J.; Yao, J.; Zhao, J. Input-output decoupling of Boolean control networks. *Asian J. Control* 2018, 20, 1–10.

69. Fu, S.; Zhao, J.; Wang, J. Input-output decoupling control design for switched Boolean control networks. *J. Franklin Inst.* 2018, 355, 8576–8596.

70. Yu, Y.; Feng, J.; Pan, J.; Cheng, D. Block decoupling of Boolean control networks. *IEEE Trans. Autom. Control* 2019, 64, 3129–3140.

71. Li, Y.; Zhu, J. Necessary and sufficient vertex partition conditions for input–output decoupling of Boolean control networks. *Automatica* 2022, 137, 110097.

72. Fornasini, E.; Valcher, M. Optimal control of Boolean control networks. *IEEE Trans. Autom. Control* 2014, 59, 1258–1270.

73. Liu, Y.; Chen, H.; Wu, B.; Sun, L. A Mayer-type optimal control for multivalued logic control networks with undesirable states. *Appl. Math. Modell.* 2015, 39, 3357–3365.

74. Cheng, D.; Zhao, Y.; Xu, T. Receding horizon based feedback optimization for mix-valued logical networks. *IEEE Trans. Autom. Control* 2015, 60, 3362–3366.

75. Li, H.; Wang, Y. On reachability and controllability of switched Boolean control networks. *Automatica* 2012, 48, 2917–2922.

76. Li, F.; Sun, J. Controllability of probabilistic Boolean control networks. *Automatica* 2011, 47, 2765–2771.

77. Li, F.; Sun, J.; Wu, Q. Observability of Boolean control networks with state time delays. *IEEE Trans. Neural Netw.* 2011, 22, 948–954.

78. Li, F.; Sun, J. Stability and stabilization of Boolean networks with impulsive effects. *Syst. Control. Lett.* 2012, 61, 1–5.

79. Luo, C.; Wang, X. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation. *PLoS ONE* 2013, 8, e66491.

80. Chen, H.; Li, X.; Sun, J. Stabilization, controllability and optimal control of Boolean networks with impulsive effects and state constraints. *IEEE Trans. Autom. Control* 2015, 60, 806–811.

81. Feng, J.; Yao, J.; Cui, P. Singular Boolean networks: semi-tensor product approach. *Sci. China Inf. Sci.* 2013, 56, 1–14.

82. Liu, Y.; Cao, J.; Sun, L.; Lu, J. Sampled-data state feedback stabilization of Boolean control networks. *Neural Comput.* 2016, 28, 778–799.

83. Sun, Z.; Ge, S. *Switched Linear Systems: Control and Design*; Springer: London, UK, 2005.

84. Yang, H.; Jiang, B.; Cocquempot, V. A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes. *Nonlinear Anal. Hybrid Syst.* 2014, 13, 45–60.

85. Pang, H.; Zhao, J. Output regulation of switched nonlinear systems using incremental passivity. *Nonlinear Anal. Hybrid Syst.* 2018, 27, 239–257.

86. Li, H. Global stability and controllability of switched Boolean networks. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 82–88.

87. Li, H.; Wang, Y. Consistent stabilizability of switched Boolean networks. *Neural Netw.* 2013, 46, 183–189.

88. Li, H.; Wang, Y.; Liu, Z. Stability analysis for switched Boolean networks under arbitrary switching signals. *IEEE Trans. Autom. Control* 2014, 59, 1978–1982.

89. Li, F. Global stability at a limit cycle of switched Boolean networks under arbitrary switching signals. *Neurocomputing* 2014, 133, 63–66.

90. Li, H.; Wang, Y.; Xie, L.; Cheng, D. Disturbance decoupling control design for switched Boolean control networks. *Syst. Control. Lett.* 2014, 72, 1–6.

91. Li, H.; Wang, Y. Controllability analysis and control design for switched Boolean networks with state and input constraints. *SIAM J. Control Optim.* 2015, 53, 2955–2979.

92. Zeroulak, A.; Vecchio, C.; Gliemlo, L. Feedback stabilization control design for switched Boolean control networks. *Automatica* 2020, 116, 108934.

93. Li, Y.; Li, H. Controllability and stabilization of periodic switched Boolean control networks with application to asynchronous updating. *Nonlinear Anal. Hybrid Syst.* 2021, 41, 101054.

94. Zhang, Q.; Feng, J.; Zhao, Y.; Zhao, J. Stabilization and set stabilization of switched Boolean control networks via flipping mechanism. *Nonlinear Anal. Hybrid Syst.* 2021, 41, 101055.
126. Mu, T.; Feng, J.; Li, Y. Controllability and reachability of k-valued logical control networks with time delays in states. In Proceedings of the 40th Chinese Control Conference, Shanghai, China, 26–28 July 2021; pp. 338–344.
127. Zhang, L.; Zhang, K. Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories. *Sci. China Inf. Sci.* 2012, 56, 1–12.
128. Zhang, L.; Zhang, K. Controllability and observability of Boolean control networks with time-variant delays in states. *IEEE Trans. Neural Netw. Learn. Syst.* 2013, 24, 1478–1484.
129. Jiang, D.; Zhang, K. Observability of Boolean control networks with time-variant delays in states. *J. Syst. Sci. Complex.* 2018, 31, 436–445.
130. Meng, M.; Lam, J.; Feng, G.; Cheung, K. Stability and stabilization of Boolean networks with stochastic delays. *IEEE Trans. Autom. Control* 2018, 64, 790–796.
131. Ding, X.; Li, H.; Wang, S. Set stability and synchronization of logical networks with probabilistic time delays. *J. Franklin. Inst.* 2018, 355, 7735–7748.
132. Li, H.; Zheng, Y.; Alsaadi, F. Algebraic formulation and topological structure of Boolean networks with state-dependent delay. *J. Comput. Appl. Math.* 2019, 350, 87–97.
133. Li, X.; Song, S. Stabilization of delay systems: delay-dependent impulsive control. *IEEE Trans. Autom. Control* 2016, 62, 406–411.
134. Qiu, J.; Sun, K.; Yang, C.; Chen, X.; Chen, X.; Zhang, A. Finite-time stability of genetic regulatory networks with impulsive effects. *Neurocomputing* 2017, 219, 9–14.
135. Li, F.; Sun, J. Observability analysis of Boolean control networks with impulsive effects. *IET Control. Theory Appl.* 2011, 5, 1609–1616.
136. Chen, H.; Sun, J. Global stability and stabilization of switched Boolean network with impulsive effects. *Appl. Math. Comput.* 2013, 224, 625–634.
137. Li, H.; Xu, X.; Ding, X. Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect. *Appl. Math. Comput.* 2019, 347, 557–565.
138. Lin, L.; Cao, J.; Zhu, S.; Rutkowskii, L.; Lu, G. Sampled-data set stabilization of impulsive Boolean networks based on a hybrid index model. *IEEE Trans. Control Netw. Syst.* 2020, 7, 1859–1869.
139. Shen, Y.; Guo, Y.; Gui, W. Stability of Boolean networks with state-dependent random impulses. *Front. Inf. Technol. Electron. Eng.* 2021, 22, 222–231.
140. Liu, Y.; Chen, H.; Wu, B. Controllability of Boolean control networks with impulsive effects and forbidden states. *Math. Method. Appl. Sci.* 2014, 37, 1–9.
141. Li, Y.; Li, J.; Feng, J. Set controllability of Boolean control networks with impulsive effects. *Neurocomputing* 2020, 418, 263–269.
142. Chen, H.; Wu, B.; Lu, J. A minimum-time control for Boolean control networks with impulsive disturbances. *Appl. Math. Comput.* 2016, 273, 477–483.
143. Xu, X.; Li, H.; Li, Y.; Alsaadi, F. Output tracking control of Boolean control networks with impulsive effects. *Math. Method. Appl. Sci.* 2018, 41, 1554–1564.
144. Xu, X.; Liu, Y.; Li, H.; Alsaadi, F. Robust set stabilization of Boolean control networks with impulsive effects. *Nonlinear Anal. Model. Control* 2018, 23, 553–567.
145. Zhang, Q.; Feng, J.; Wang, B.; Meng, M. Bisimulations of Boolean control networks with impulsive effects and its application in controllability. *Asian J. Control* 2019, 21, 2559–2568.
146. Hallinan, J.; Wiles, J. Asynchronous dynamics of an artificial genetic regulatory network, In Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, Boston, MA, USA, 12–15 September 2004; pp. 399–403.
147. Harvey, I.; Bossmoaiyer, T. Time out of joint: Attractors in asynchronous random Boolean networks. In Proceedings of the Fourth European Conference on Artificial Life, Brighton, UK, 28–31 July 1997; pp. 67–75.
148. Luo, C.; Wang, X. Algebraic representation of asynchronous multiple-valued networks and its dynamics. *IEEE/ACM Trans. Comput. Biol. Bioinf.* 2013, 10, 927–938.
149. Luo, C.; Wang, X.; Liu, H. Controllability of asynchronous Boolean multiplex control networks. *Chaos* 2014, 24, 033108.
150. Luo, C.; Wang, X.; Liu, H. Controllability of time-delayed Boolean multiplex control networks under asynchronous stochastic update. *Sci. Rep.* 2014, 4, 7522.
151. Luo, C.; Liu, H. Controllability of Boolean control networks under asynchronous stochastic update with time delay. *J. Vib. Control* 2014, 22, 235–246.
152. Zhang, H.; Wang, X.; Lin, X. Synchronization of asynchronous switched Boolean network. *IEEE/ACM Trans. Comput. Biol. Bioinf.* 2015, 12, 1449–1456.
153. Das, H.; Deshpande, A.; Layek, R. A linear formulation of asynchronous Boolean networks. *IEEE Control Syst. Lett.* 2018, 3, 284–289.
154. Quyang, C.; Li, L.; Li, Y.; Lu, J. Asynchronous event-based set stabilization of logical control networks and its applications in finite-field networks. *IEEE Trans. Control Syst. Technol.* 2022, 9, 163–171.
155. Li, Y.; Li, H.; Wang, S. Constrained sampled-data reachability and stabilization of logical control networks. *IEEE Trans. Circuits Syst. II Express Briefs* 2019, 66, 2002–2006.
156. Ma, L.; Huo, X.; Zhao, X.; Zong, G. Adaptive fuzzy tracking control for a class of uncertain switched nonlinear systems with multiple constraints: A small-gain approach. *Int. J. Fuzzy Syst.* 2019, 21, 2609–2624.
157. Li, Z.; Chang, X.; Park, J. Quantized static output feedback fuzzy tracking control for discrete-time nonlinear networked systems with asynchronous event-triggered constraints. *IEEE Trans. Syst. Man Cybern. Syst.* 2021, 51, 3820–3831.

158. Ma, X.; Yong, D.; Zhou, R.; Guo, Y. Observability of Boolean control networks with state-dependent input constraints. In Proceedings of the 29th Chinese Control In addition, Decision Conference, Chongqing, China, 28–30 May 2017; pp. 3301–3306.

159. Li, H.; Wang, Y. Minimum-time state feedback stabilization of constrained Boolean control networks. *Asian J. Control* 2016, 18, 1688–1697.

160. Liu, A.; Li, H. Stabilization of delayed Boolean control networks with state constraints: A barrier Lyapunov function method. *IEEE Trans. Circuits Syst. II Express Briefs* 2021, 68, 2553–2557.

161. Dai, L. *Singular Control Systems*; Springer: Berlin, Germany, 1989.

162. Cheng, D.; Zhao, Y.; Xu, X. Mix-valued logic and its applications. *J. Shandong Univ. (Natural Sci.)* 2011, 46, 32–44.

163. Yu, Y.; Feng, J.; Meng, M.; Wang, B. Topological structure of implicit Boolean networks. *IET Control. Theory Appl.* 2017, 11, 2058–2064.

164. Meng, M.; Feng, J. Topological structure and the disturbance decoupling problem of singular Boolean networks. *IET Control. Theory Appl.* 2014, 8, 1247–1255.

165. Meng, M.; Li, B.; Feng, J. Controllability and observability of singular Boolean control networks. *Circ. Syst. Signal Pr.* 2015, 34, 1233–1248.

166. Li, Y.; Feng, J.; Wang, B. Observability of singular Boolean control networks with state delays. *J. Frankl. Inst.* 2022, 359, 331–351.

167. Li, H.; Wang, Y. Stability analysis for switched singular Boolean networks. *Control. Theory Appl.* 2014, 31, 909–914.

168. Meng, M.; Feng, J. Optimal control problem of singular Boolean control networks. *Int. J. Control Autom. Syst.* 2015, 13, 266–273.

169. Liu, Y.; Li, B.; Lou, J. Disturbance decoupling of singular Boolean control networks. *IEEE/ACM Trans. Comput. Biol. Bioinf.* 2016, 13, 1194–1200.

170. Liu, Y.; Li, B.; Chen, H.; Cao, J. Function perturbations on singular Boolean networks. *Automatica* 2017, 84, 36–42.

171. Li, H.; Wang, Y.; Liu, Z. Simultaneous stabilization for a set of Boolean control networks. *Syst. Control. Lett.* 2013, 62, 1168–1174.

172. Liu, R.; Lu, J.; Liu, Y.; Cao, J.; Wu, Z. Delayed feedback control for stabilization of Boolean control networks with state delay. *IEEE Trans. Neural Netw. Learn. Syst.* 2018, 29, 3283–3288.

173. Li, F.; Tang, Y. Set stabilization for switched Boolean control networks. *Automatica* 2017, 78, 223–230.

174. Li, Y.; Li, B.; Liu, Y.; Lu, J.; Wang, Z.; Alsaaadi, F. Set stability and stabilization of switched Boolean networks with state-based switching. *IEEE Access* 2018, 6, 35624–35630.

175. Tong, L.; Liu, Y.; Lou, J.; Lu, J.; Alsaaadi, F. Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks. *Appl. Math. Comput.* 2018, 332, 263–275.

176. Zhong, J.; Lu, J.; Liu, Y.; Cao, J. Synchronization in an array of output-coupled Boolean networks with time delay. *IEEE Trans. Neural Netw. Learn. Syst.* 2015, 25, 2288–2294.

177. Zhong, J.; Lu, J.; Huang, T.; Ho, D. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. *IEEE Trans. Cybern.* 2017, 47, 3482–3493.

178. Yang, J.; Lu, J.; Li, L.; Liu, Y.; Wang, Z.; Alsaaadi, F. Event-triggered control for the synchronization of Boolean control networks. *Nonlinear Dyn.* 2019, 96, 1335–1344.

179. Zhong, J.; Ho, D.; Lu, J.; Xu, W. Switching-signal-triggered pinning control for output tracking of switched Boolean networks. *IET Control. Theory Appl.* 2017, 11, 2089–2096.

180. Li, X.; Lu, J.; Cao, J.; Liu, Y.; Alsaaadi, F. Robust output tracking of delayed Boolean networks under pinning control. *IEEE Trans. Circuits Syst. II Express Briefs* 2018, 65, 1249–1253.

181. Chen, H.; Li, J.; Cao, J. Output regulation of Boolean control networks with stochastic disturbances. *IET Control. Theory Appl.* 2017, 11, 2097–2103.

182. Li, H.; Wang, Y.; Guo, P. Output reachability analysis and output regulation control design of Boolean control networks. *Sci. China Inf. Sci.* 2017, 60, 022202.

183. Li, H.; Xie, L.; Wang, Y. Output regulation of Boolean control networks. *IEEE Trans. Autom. Control* 2017, 62, 2993–2998.

184. Wu, Y.; Su, H.; Shi, P.; Shu, Z.; Wu, Z. Consensus of multiagent systems using aperiodic sampled-data control. *IEEE Trans. Cybern.* 2016, 46, 2132–2143.

185. Qian, C.; Du, H. Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. *IEEE Trans. Autom. Control* 2012, 57, 2934–2939.

186. Wu, Z.; Shi, P.; Su, H.; Chu, J. Local synchronization of chaotic neural networks with sampled-data and saturating actuators. *IEEE Trans. Cybern.* 2014, 44, 2635–2645.

187. Wang, Y.; Yang, X.; Yan, H. Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. *IEEE Trans. Ind. Electron.* 2019, 66, 9439–9447.

188. Tong, L.; Liu, Y.; Alsaaadi, F.; Hayat, T. Robust sampled-data control invariance for Boolean control networks. *J. Franklin Inst.* 2017, 354, 7077–7087.

189. Yerukdim, A.; Vecchio, C.; Glielmo, L. Sampled-data set stabilization of switched Boolean control networks. *IFAC-PapersOnLine* 2020, 53, 6139–6144.

190. Yu, Y.; Feng, J.; Wang, B.; Wang, P. Sampled-data controllability and stabilizability of Boolean control networks: Nonuniform sampling. *J. Franklin Inst.* 2018, 355, 5324–5335.
191. Lin, L.; Zhong, J.; Zhu, S.; Lu, J. Sampled-data general partial synchronization of Boolean control networks. *J. Franklin Inst.* 2022, 359, 1–11.

192. Lu, J.; Sun, L.; Liu, Y.; Ho, D.; Cao, J. Stabilization of Boolean control networks under aperiodic sampled-data control. *SIAM J. Control Optim.* 2018, 56, 4385–4404.

193. Sun, L.; Liu, Y.; Cao, J. Sampled-data stabilization of mix-valued logical control networks. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016; pp. 2419–2424.

194. Zhu, Q.; Liu, Y.; Lu, J.; Cao, J. Controllability and observability of Boolean control networks via sampled-data control. *IEEE Trans. Control Netw. Syst.* 2019, 6, 1291–1301.

195. Sun, L.; Lu, J.; Ching, W. Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable. *Front. Inf. Technol. Electron. Eng.* 2020, 21, 260–267.

196. Lin, L.; Zhu, S.; Liu, Y.; Wang, Z.; Alsaadi, F. Output regulation of Boolean control networks with nonuniform sampled-data control. *IEEE Access* 2019, 7, 50691–50696.

197. Wang, L.; Wu, Z.; Chen, S. Sampled-data stabilization for Boolean control networks with infinite stochastic sampling. *IEEE Trans. Cybern.* 2022, 52, 333–343.

198. Sun, L.; Ching, W.; Lu, J. Stabilization of aperiodic sampled-data Boolean control networks: A delay approach. *IEEE Trans. Autom. Control* 2021, 66, 5606–5611.

199. Åström, K.; Bernhardsson, B. Comparison of periodic and event based sampling for first order stochastic systems. *IFAC Proc. Vol.* 1999, 32, 5006–5011.

200. Postoyan, R.; Tabuada, P.; Nešić, D.; Anta, A. A framework for the event-triggered stabilization of nonlinear systems. *IEEE Trans. Autom. Control* 2015, 60, 982–996.

201. Li, J.; Modares, H.; Chai, T.; Lewis, F.; Xie, L. Off-policy reinforcement learning for synchronization in multiagent graphical games. *IEEE Trans. Neural Netw. Learn. Syst.* 2017, 28, 2434–2445.

202. Wu, Y.; Meng, X.; Xie, L.; Lu, R.; Su, H.; Wu, Z. An input-based triggering approach to leader-following problems. *Automatica* 2017, 75, 221–228.

203. Li, Y.; Li, H.; Sun, W. Event-triggered control for robust set stabilization of logical control networks. *Automatica* 2018, 95, 556–560.

204. Heemels, W.; Donkers, M.; Teel, A. Periodic event-triggered control for linear systems. *IEEE Trans. Autom. Control* 2013, 58, 847–861.

205. Zhu, S.; Lou, J.; Liu, Y.; Li, Y.; Wang, Z. Event-triggered control for the stabilization of probabilistic Boolean control networks. *Complexity* 2018, 2018, 1–7.

206. Zhu, Q.; Lin, W. Stabilizing Boolean networks by optimal event-triggered feedback control. *Syst. Control. Lett.* 2019, 126, 40–47.

207. Zhu, S.; Liu, Y.; Lou, Y.; Cao, J. Stabilization of logical control networks: an event-triggered control approach. *Sci. China Inf. Sci.* 2020, 63, 112203.

208. Zhang, Q.; Feng, J.; Wang, B.; Wang, P. Event-triggered mechanism of designing set stabilization state feedback controller for switched Boolean networks. *Appl. Math. Comput.* 2020, 383, 125372.

209. Wang, S.; Li, H.; Li, Y.; Sun, W. Event-triggered control for disturbance decoupling problem of mix-valued logical networks. *J. Franklin Inst.* 2020, 357, 796–809.

210. Zhang, A.; Li, L.; Lu, J. Event-based output regulation of Boolean control networks with time delay. *IEEE Trans. Circuits Syst. II Express Briefs* 2021, 68, 2007–2011.

211. Tong, L.; Liu, Y.; Lu, J.; Wang, Z.; Alsaadi, F. Robust control invariance of probabilistic Boolean control networks via event-triggered control. *IEEE Access* 2018, 6, 37767–37774.

212. Goebel, R.; Prieur, C.; Teel, A. Smooth patchy control Lyapunov functions. *Automatica* 2009, 45, 675–683.

213. Karafyllis, I.; Jiang, Z. Global stabilization of nonlinear systems based on vector control Lyapunov functions. *IEEE Trans. Autom. Control* 2013, 58, 2550–2562.

214. Wang, Y.; Cheng, D. Stability and stabilization of a class of finite evolutionary games. *J. Franklin Inst.* 2017, 354, 1603–1617.

215. Li, H.; Ding, X. A control Lyapunov function approach to feedback stabilization of logical control networks. *SIAM J. Control Optim.* 2019, 57, 810–831.

216. Chen, B.; Cao, J.; Lu, G.; Rutkowski, L. Lyapunov functions for the set stability and the synchronization of Boolean control networks. *IEEE Trans. Circuits Syst. II Express Briefs* 2020, 67, 2537–2541.

217. Ali, M.; Zhu, Q.; Pavithra, S.; Gunasekaran, N. A study on $((Q,S,R)-\gamma)$-dissipative synchronisation of coupled reaction–Diffusion neural networks with time-varying delays. *Int. J. Syst. Sci.* 2018, 49, 755–765.

218. Ali, M.; Gunasekaran, N.; Aruna, B. Design of sampled-data control for multiple-time delayed generalised neural networks based on delay-partitioning approach. *Int. J. Syst. Sci.* 2017, 48, 2794–2810.

219. Ali, M.; Gunasekaran, N.; Cao, J. Sampled-data state estimation for neural networks with additive time–varying delays. *Acta Math. Sci.* 2019, 39, 195–213.