Scientific Research Report

Childhood Factors and Dental Caries in the Permanent Dentition: Findings of an 8-Year Study Under a Nationwide School Dental Service

Sharon Hui Xuan Tan a,b, Yik-Ying Teoa, Melissa Hui Xian Tan c, Xiaoli Gao a,d*

a Saw Swee Hock School of Public Health, National University of Singapore, Singapore
b Ministry of Health, Singapore
c Health Promotion Board, Singapore
d Faculty of Dentistry, National University of Singapore, Singapore

ARTICLE INFO

Article history:
Available online 17 March 2021

ABSTRACT

Objective: This study, using a retrospective analysis of nationwide dental records of school-going children over 8 years, aims to identify childhood factors associated with dental caries incidence in the permanent dentition up to adolescence.

Methods: Students studying in primary and secondary schools in Singapore are eligible for free basic dental care under the nationwide School Dental Service (SDS). All available dental records, general health records, and sociodemographic data from 2009 to 2017 were extracted as anonymised records, for a full cohort of 29,617 students that were enrolled in Primary 1 in 2009. Multiple logistic regression and modified Poisson regression were applied to identify risk factors for caries incidence in the permanent dentition over 8 years.

Results: Caries occurred in the permanent dentition of 9389 (31.7%) students in the 8 years. Risk of caries incidence in the permanent dentition was associated with baseline caries in the primary (risk ratio [RR]: 1.88; 95% CI: 1.81, 1.95) and permanent (RR: 1.54; 95% CI: 1.47, 1.61) dentition, tooth hypoplasia (RR: 1.58; 95% CI: 1.49, 1.68), and poor baseline oral hygiene (RR: 1.07; 95% CI: 1.03, 1.12). Sociodemographic predictors of caries incidence include a lower socioeconomic status, Chinese ethnicity, female gender, and enrolment in nonmainstream schools or schools in the Eastern and Western regions of Singapore.

Conclusions: Both clinical and sociodemographic factors in childhood are associated with caries incidence in the permanent dentition and can be used for structuring dental service provision and identifying caries-susceptible individuals and groups for early prevention and intervention.

© 2021 The Authors. Published by Elsevier Inc. on behalf of FDI World Dental Federation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Key words:
Dental caries
Longitudinal
School dental service
Children
Adolescents

Introduction

While many countries provide school-based dental services, few have evaluated the longitudinal oral health outcomes of individuals who undergo a structured school-based dental service programme from childhood to adolescence. Understanding the risk factors for dental caries development among students is important to improve population oral health and reduce health inequalities under the concept of ‘proportionate universalism.’ Beyond a targeted approach to individuals, or directed population approach to subgroups at higher risk, the identification of risk factors associated with caries incidence under a universal oral health programme may aid in the refinement and further development of interventions with gradations in scale and intensity that are proportionate to the needs and level of disadvantage.

Most studies on caries risk among children and adolescents are cross-sectional. Based on cross-sectional studies, demographic and socioeconomic factors such as ethnicity, area of residence, type of school, and maternal level of education are associated with the prevalence of dental caries...
among adolescents. Nonetheless, it is uncertain if these factors are associated with the incidence of or increment in dental caries. Research in caries risk is characterised by an increasing interest in longitudinal studies, especially life course studies. A study among young adolescents found that past caries, incipient caries, the presence of sucrose activity, salivary lactobacilli, and Candida were associated with caries increment over 11 months. A study of 12-year-olds in Sweden found that previous experience of caries and socioeconomic level influenced the risk of developing new caries in 2 years. Another study in Belgium found that oral health-related behaviours such as infrequent toothbrushing and regular intake of sugary drinks were risk factors for caries increment over a 3-year period, while a discriminant function analysis found that lower socioeconomic status (SES) and baseline caries in the primary and permanent dentition predicted the risk of caries increment in children over 4 years. More recently, Warren et al. found that lower maternal education, infrequent toothbrushing, and the female gender were associated with a high caries incidence in adolescence (from 13 to 17 years of age).

Nonetheless, in regard to longitudinal studies, follow-up periods were often relatively short, with few observing caries development from childhood into adolescence. There is thus a need to ascertain if modifiable and nonmodifiable factors in early life have a persistent effect on the risk of caries incidence in the long term. Furthermore, none of the existing studies involve a large-scale, population-wide sample in the context of a school dental service programme. There is a need to further our understanding of the residual impact of risk factors on the oral health of children who undergo standardised dental assessments and receive dental care at regular intervals.

Singapore is a tropical island country located in Southeast Asia. It is a multicultural country with a total population of 5.7 million (as of 2019) consisting of Chinese (74.4%), Malay (13.4%), Indian (9.0%), and others (3.2%). It is the first country in Asia to institute a comprehensive water fluoridation programme covering 100% of the population since 1958. Water fluoridation levels were initially set at 0.7 ppmF, changed to 0.6 ppmF in 1992, and kept at 0.5 ppmF since the start of 2008. The variation across regions was reasonably controlled. In 2015, the average water fluoride level was reported to be 0.47 ppmF and ranged between 0.36 and 0.66 ppmF. There is no nationwide supplemental fluoridation policy beyond community water fluoridation. All students studying in primary and secondary schools (aged 7-18) in Singapore are eligible for free basic dental care under the School Dental Service (SDS) operated by the Health Promotion Board. Preventive oral health programmes such as toothbrushing exercises, plaque disclosing programmes, and dental talks on gum disease are carried out in all schools. Standard clinical oral examinations are scheduled in 6 school years, Primary 1, 2, 4, and 6 and Secondary 1 and 3, corresponding to approximate ages 7, 8, 10, 12, 13, and 15, respectively, for students with parental consent. Across the years, approximately 92%-97% of students in Singapore are enrolled in SDS, of which more than 90% receive oral examinations.

Although risk factors for caries prevalence and caries incidence have been explored in preschool children in Singapore, they have not been examined for older children and adolescents. Reports of “low” mean decayed, missing, or filled teeth (DMFT) counts (<1) among adolescents in Singapore suggest that a substantial proportion of adolescents are caries free (DMFT = 0) in the permanent dentition, and that there may be an unequal distribution of the caries burden. Identifying schoolchildren and adolescents who are susceptible to caries is therefore of paramount importance for targeted and cost-effective caries control in this population.

This study, using data from a full cohort in the nationwide SDS in Singapore, aims to fill the aforementioned knowledge gaps and identify the childhood factors associated with dental caries in adolescence. The identification of risk factors for caries incidence over the schooling years may aid in the refinement of the caries risk classification of students and enhance the risk-based approach and structuring of existing resources to maximise oral health outcomes and address inequalities.

Methods

The study population included students enrolled in Primary 1 in 2009 who received dental care under SDS. Ethics approval for this study was given by the institutional review board (IRB, Ref Code: N-18-068). Informed consent for the use of dental records for research was previously obtained from students’ parents.

All available dental records from 2009 (baseline examination in Primary 1) to 2017 (final follow-up under SDS in Secondary 3) were extracted from the Integrated Dental Electronic Assessment System (IDEAS) adopted by SDS and anonymised. Each dental record comprised the oral health findings and treatment rendered in a single dental visit, documented contemporaneously by the clinician (either a dentist or dental therapist; both trained, qualified, and registered with Singapore Dental Council) who provided care. Oral health examinations were conducted on each student using a mouth mirror and a dental probe, under lighting on a dental chair. Visuo-tactile detection for the presence of cavitated carious lesions was carried out on 5 surfaces (mesial, distal, lingual/palatal, labial/buccal, and incisal/occlusal) of each erupted tooth. Overall oral hygiene status was assessed and classified into 4 categories (good, fair, poor, and very poor) based on the presence of plaque, debris, and calculus intraorally. The presence of tooth hypoplasia was also recorded clinically through visual assessment based on the presence of deficient enamel in furrows, bands, and pits, which may be localised or generalised. Examinations were conducted either in mobile dental clinics, field dental clinics sited within the school compound, or at a centralized referral centre.

General health indicators examined include self-reported medical history and drug allergies. Sociodemographic data, including gender, age, race, and residence type, were also retrieved. Residence type was used as a proxy to SES, and classified into 3 ordinal groups. Besides individual-level SES measures, school-level measures were also recorded. Schools were categorised into geographical regions based on Urban Redevelopment Authority (Singapore) planning areas.

According to the classifications by the Ministry of Education
Singapore, primary schools were categorized into 3 distinct types—Special Assistance Plan (SAP) schools committed to nurturing bilingual and bicultural students, non-SAP government schools, and others (including madrasah schools, special education schools, and home schooling). Secondary schools were categorised into 4 distinct types—autonomous, independent, nonautonomous government, and others.

Statistical analyses were carried out using Stata software (StataCorp LP, Stata Statistical Software: Release 14). The caries outcome was restricted to the permanent dentition, whereas caries in primary teeth was only included as 1 of the independent variables. Pre-post analysis was carried out by tabulating the within-individual DMFT change between years 2009 (baseline examination) and 2017 (final follow-up in SDS). Given that there were no negative changes in DMFT, caries increment was calculated by the absolute difference, rather than crude or net caries increments. Students were dichotomized into 2 groups based on DMFT change over the whole study period (2009 to 2017): no caries incidence (\(\Delta \text{DMFT} = 0 \)) and caries incidence (\(\Delta \text{DMFT} > 0 \)). To model the risk factors for caries incidence, sociodemographic characteristics, general health status, presence of any tooth hypoplasia, baseline dmft, baseline DMFT, and baseline oral hygiene status were analysed via univariate analysis. Variables with a \(P \) value that met the cutoff of 0.25 in the univariate analysis\(^{22} \) were assessed for suitability of inclusion in a multiple logistic regression model via an iterative process of exploratory association analysis. A cross-product interaction term between baseline DMFT and dmft status was included to test for multicollinearity analysis. A total of 728 students had missing values for risk factors, met a significance level of \(P < 0.05 \) or improved model fit (pseudo R\(^2 \)) were considered for inclusion. Likelihood ratio tests, Akaike information criteria (AIC), and Bayesian information criteria (BIC) values were used to determine the significance of each additional covariate. Forward stepwise and backward stepwise analyses were done to confirm the model. Fit of the model was assessed by the Hosmer-Lemeshow goodness-of-fit test, and regression diagnostics was performed. All statistical tests were 2-sided, and odds ratios with associated 95% CIs were reported. As the rare disease assumption was not met, relative risk regression was also carried out using a Poisson regression model with robust error variance\(^{24} \) to determine effect sizes in terms of risk ratios.

Results

Records for a total of 42,753 students were retrieved. After excluding students with missing DMFT counts in either year (2009 or 2017), dental records for 30,349 students were analysed. A total of 728 students had missing values for risk factors under study. Thus, the final analysis was based on a sample of 29,617 individuals. The sociodemographic characteristics and baseline (oral) health status of the students are listed in Table 1.

Approximately two-thirds (66.1%) of the cohort remained caries-free in the permanent dentition (\(\text{DMFT} = 0 \)) throughout the schooling years. A small proportion (2.2%) had caries at baseline (\(\text{DMFT} > 0 \)) but did not develop any new caries during their school years (\(\Delta \text{DMFT} = 0 \)). Of the 9389 (31.7%) students who had caries incidence in the permanent dentition (\(\Delta \text{DMFT} > 0 \)), 48.2% had a DMFT increment of 1; 26.0% had a DMFT increment of 2, and 25.8% had a DMFT increment of 3 or more. The overall mean caries increment (\(\Delta \text{DMFT} \)) was 0.67 (95% CI: 0.66-0.69). Based on the univariate analysis (Table 2), the relative risk of having caries incidence in the permanent dentition was higher when caries was present in the primary dentition (ie, the dmft count was 1 or more at baseline) compared to no baseline caries in the primary dentition. The adjusted risk ratio (Adj. RR) was 1.88 (95% CI: 1.81-1.95) (Table 3).

The female gender was associated with higher risk of caries incidence compared to the male gender (Adj. RR: 1.23; 95% CI: 1.19-1.27). Chinese ethnicity was associated with a higher risk of caries incidence compared to Indian ethnicity (Adj. RR: 1.10; 95% CI: 1.04-1.17). No statistically significant difference in the risk of caries incidence was observed for Malay and other ethnicities as compared to Indian ethnicity. The mean age (in years) in Primary 1 was found to differ between

Characteristic	Mean (SD)
Age in 2009	7.02 (0.18)
Gender (Male)	15,049 (50.8)
Race	
Chinese	20,294 (68.5)
Malay	3675 (12.4)
Indian	2820 (9.5)
Others	2828 (9.6)
Primary School Region	
Central	7421 (25.1)
East	4800 (16.2)
North	4590 (15.5)
North-East	5933 (20.0)
West	6873 (23.2)
Primary School Type	
Public	26,354 (89.0)
SAP	3241 (10.9)
Others	22 (0.1)
Secondary School Type	
Public	21,403 (72.3)
Autonomous	5460 (18.4)
Independent	2332 (7.9)
Others	422 (1.4)
Housing Type	
Private	5055 (17.1)
1-3 room HDB	4349 (14.7)
4-5 room HDB	20,213 (68.3)
Baseline dmft ≥ 1	15,090 (51.0)
Baseline DMFT ≥ 1	1602 (5.4)
Hypoplasia	994 (3.4)
Existing Medical Condition	5587 (18.9)
Drug Allergy	872 (2.9)
Baseline Oral Hygiene Status	
Good - Fair	25,062 (84.6)
Poor - Very Poor	4555 (15.4)

\(\text{DMFT} = \) decayed, missing, or filled teeth; \(\text{HDB} = \) Housing Development Board; \(\text{SAP} = \) special assistance plan; \(\text{SD} = \) standard deviation.
individuals with and without caries incidence (7.03 vs 7.01; \(P<.001\)), but no statistically significant association between age and caries incidence in the permanent dentition was found after adjustment for other covariates.

Education enrolment in nonmainstream primary school types ("Others") including Special Educational Needs (SPED), Madrasah schools, and home schooling was associated with higher risks of caries incidence (Adj. RR 1.94; 95% CI: 1.38-2.73), compared to public schools. The geographical location of primary schools was also associated with DMFT increment, with a higher risk of caries incidence in the East (Adj. RR: 1.21; 95% CI: 1.15-1.28) and West (Adj. RR: 1.13; 95% CI: 1.08-1.19), as compared to the Central region. By residence type, the risk of caries incidence was higher among those living in 1-2

Table 2 – Univariate analysis of potential risk factors of caries incidence.

Variable*	No caries incidence (DMFT = 0), N = 20,228	Caries incidence (DMFT > 0), N = 9389	Odds ratio (95% CI)	P value	Risk ratio (95% CI)	P value
Age in 2009	7.01 (7.01-7.02)	7.03 (7.02-7.03)	1.40 (1.23-1.59)	<.001	1.23 (1.14-1.32)	<.001
Gender						
Male	10,751 (71.4%)	4298 (28.6%)	1.00			
Female	9477 (65.1%)	5091 (34.9%)	1.34 (1.28-1.41)	<.001	1.22 (1.18-1.27)	<.001
Race						
Indian	2040 (72.3%)	780 (27.7%)	1.00			
Chinese	13,763 (67.8%)	6531 (32.2%)	1.24 (1.14-1.35)	<.001	1.16 (1.09-1.24)	<.001
Malay	2501 (68.1%)	1174 (31.9%)	1.23 (1.10-1.37)	<.001	1.15 (1.07-1.25)	<.001
Others	1924 (68.0%)	904 (32.0%)	1.23 (1.10-1.38)	<.001	1.16 (1.07-1.25)	<.001
Residence Type						
Private	3583 (70.9%)	1472 (29.1%)	1.00			
HDB 1-3 room	2857 (65.7%)	1492 (34.3%)	1.27 (1.17-1.39)	<.001	1.18 (1.11-1.25)	<.001
HDB 4-5 room	13,788 (68.2%)	6425 (31.8%)	1.13 (1.06-1.21)	<.001	1.09 (1.04-1.14)	<.001
Primary school region						
Central	5254 (70.8%)	2167 (29.2%)	1.00			
East	3085 (64.3%)	1715 (35.7%)	1.35 (1.25-1.46)	<.001	1.22 (1.16-1.29)	<.001
North	3181 (69.3%)	1409 (30.7%)	1.07 (0.99-1.16)	.081	1.05 (0.99-1.11)	.081
North East	4191 (70.6%)	1742 (29.4%)	1.01 (0.93-1.09)	.840	1.01 (0.95-1.06)	.840
West	4517 (65.7%)	2356 (34.3%)	1.26 (1.18-1.36)	<.001	1.17 (1.12-1.23)	<.001
Primary school type						
Government	17,975 (68.2%)	8379 (31.8%)	1.00			
SAP	2245 (69.3%)	996 (30.7%)	0.95 (0.88-1.03)	.220	0.97 (0.92-1.02)	.223
Others	8 (36.4%)	14 (63.6%)	3.75 (1.57-8.95)	<.001	2.00 (1.46-2.75)	<.001
Secondary school type						
Government	14,469 (67.6%)	6934 (32.4%)	1.00			
Autonomous	3797 (69.5%)	1663 (30.5%)	0.91 (0.86-0.97)	.006	0.94 (0.90-0.98)	.007
Independent	1691 (72.5%)	641 (27.5%)	0.79 (0.72-0.87)	<.001	0.85 (0.79-0.91)	<.001
Others	271 (64.2%)	151 (35.8%)	1.16 (0.95-1.42)	.142	1.10 (0.97-1.26)	.132
Existing medical condition						
No	16,364 (68.1%)	7666 (31.9%)	1.00			
Yes	3864 (69.2%)	1723 (30.8%)	0.95 (0.89-1.01)	.124	0.97 (0.93-1.01)	.126
Drug allergy						
No	19,633 (68.3%)	9112 (31.7%)	1.00			
Yes	595 (68.2%)	277 (31.8%)	1.00 (0.87-1.16)	.967	1.00 (0.91-1.11)	.967
Baseline dmft						
0	11,448 (78.8%)	3079 (21.2%)	1.00			
≥1	8,780 (58.2%)	6310 (41.8%)	2.67 (2.54-2.81)	<.001	1.97 (1.90-2.05)	<.001
Baseline DMFT						
0	19,573 (69.9%)	8442 (30.1%)	1.00			
≥1	655 (40.9%)	947 (59.1%)	3.35 (3.02-3.72)	<.001	1.96 (1.88-2.05)	<.001
Baseline oral hygiene						
Good/Fair	17,399 (69.4%)	7663 (30.6%)	1.00			
Poor/Very Poor	2829 (62.1%)	1726 (37.9%)	1.39 (1.30-1.48)	<.001	1.24 (1.19-1.29)	<.001
Tooth hypoplasia						
No	19,775 (69.1%)	8848 (30.9%)	1.00			
Yes	453 (65.6%)	541 (34.4%)	2.67 (2.35-3.03)	<.001	1.76 (1.66-1.87)	<.001

CI = confidence interval; DMFT = decayed, missing, or filled teeth; HDB = Housing Development Board; SAP = special assistance plan; SD = standard deviation.

* Mean (SD) for age; for all other variables: N (%).

† Results of log-binomial and modified Poisson (Poisson regression with robust error variance) produced the same estimates.

‡ Postestimation test of parameters.

§ HDB 1-3 Room includes Welfare Homes, Factory Quarters, HDB 1-3 room Flats; HDB 4-5 room includes HDB 4-5 room/HUDC/Executive Flats.
Room (Adj. RR: 1.13; 95% CI: 1.07-1.20) and 4-5 room flats (Adj. RR: 1.06; 95% CI: 1.01-1.11) in public housing, as compared to those living in private residences.

Poor or very poor oral hygiene at baseline was associated with higher risks of caries incidence (Adj. RR 1.07; 95% CI: 1.03-1.12) compared to good or fair oral hygiene. Presence of tooth hypoplasia was associated with higher caries risk, with reference to no hypoplasia (Adj. RR: 1.58; 95% CI: 1.49-1.68).

The Hosmer-Lemeshow goodness-of-fit test with 10 groups suggested that the logistic regression model was of an adequate fit for risk prediction (χ^2 statistic = 14.51, $P = .069$). The area under the Receiver Operating Characteristic (ROC) curve was 0.67 (Figure). A total of 60.2% of students were correctly classified by DMFT increment status, with sensitivity (69.6%) and specificity (55.8%) at a predicted probability cutoff of 0.30 derived using the Youden Index method.

Discussion

Data collected from developed countries have repeatedly shown a skewed caries distribution, with 80% of disease burden concentrated in 20% of selected populations of children. In our study, 18.7% of students demonstrated 80% of all DMFT counts in 2017 (year of final follow-up), suggesting...
a similarly unequal distribution of disease burden even in the backdrop of a universal dental care programme. This underlines the necessity of identifying caries-prone individuals and groups for targeted intervention.

Our findings suggest that caries in the primary dentition is a key risk factor for caries incidence in the permanent dentition. Risk of caries incidence over 8 subsequent years among students with a baseline dmft score of 1 or more was 1.88 times that in students without caries in the primary dentition. This is in line with the findings of other longitudinal studies, including another 8-year cohort study in China, where children with caries in the primary dentition at 3-5 years were found to have relative risk of caries in the permanent dentition of 2.6. It is uncertain if caries development in both dentitions share the same pathway, as oral bacterial species were found to be different in primary and permanent dentitions. Nevertheless, the consistent association found between caries in the primary and permanent dentition implies that childhood caries serves as a useful indicator for delivering timely interventions to prevent caries in the later stages of life.

Caries experience in the permanent dentition at baseline was also associated with a higher risk of caries incidence in the permanent dentition. This is supported by caries risk-assessment models that include past caries as a predictor of future caries. Although a combination of the presence of caries in the primary and permanent dentitions at baseline was found to be associated with a higher odds for DMFT increment in the permanent dentition, no effect modification was found in our study, with the interaction term introducing multicollinearity. As with other studies, tooth enamel defects in the form of tooth hypoplasia, which increases acid solubility and enables bacteria adhesion, was a noted caries risk factor in our sample.

Studies have shown that dental caries is clustered in children from families with low SES. Based on principal component analysis, a study in Sweden showed that larger SES models better explained caries prevalence than models using a smaller number of SES indicators, with stronger associations between SES and caries in the primary versus the permanent dentition. However, only housing type was available in the SDS system and, thus, was adopted as a proxy for SES in our study. In the Singapore context, housing type has been found to be positively associated with household income and is considered a reasonable proxy for SES, given the significant difference in prices of different types of housing. Despite the use of a single SES indicator, our study findings suggest an association between lower SES and caries incidence, with a gradual increase in caries risk in the following order: residence in private housing, residence in 4- to 5-room public housing, residence in 1- to 3-room public housing. In addition to individual-level SES, school-level measures, namely geographical district and school type, have been incorporated in this study to profile the variation in caries burdens across different population subgroups. The mechanisms of the association between SES and dental caries include larger predisposing factors, such as the lack of economic means and empowerment to engage in healthy lifestyles (eg, diets low in sugar and good oral hygiene practice). Collectively, these indicators have implications for caries control and allocation of resources in the local population.

In terms of demographic characteristics, the female gender was associated with higher risks of caries development. This is supported by findings among children in United States but not South Asia. Explanations for a higher caries rate among females include biological factors such as variants of the X-linked Amelogenin gene, lower salivary flow rate, earlier tooth eruption, and frequent snacking habits. Other studies that found lower DMFT counts in females than in males speculated that a cultural emphasis on aesthetics in girls may play a part in improving their oral health. Our finding of a lower risk ratio for caries incidence among Indians, as compared to Chinese, is consistent with a cross-sectional study among South Asians. It is unclear if dietary differences such as a vegetarian diet among some Indians or variations in oral hygiene practices between races account for the finding. Nonetheless, while the Malay race appeared to be a predictor of caries incidence in the primary dentition among preschoolers in Singapore, this was not found to be the case in the permanent dentition among school-going children in our study after adjusting for covariates.

Our study also showed that students from nonmainstream schools have a higher risk of caries incidence than those in public schools. The high caries risk among students in special education schools is in line with findings of prior studies demonstrating a higher dental caries prevalence among children with special needs. However, the estimates should be interpreted with caution due to the small sample size and potential for selection bias, with more cooperative, more dentally aware, or students with more dental problems seeking care at SDS in this group. Students enrolled in schools in the East and West regions have higher risks of caries incidence compared to students enrolled in the Central region. A separate univariate analysis indicated a higher proportion of students with caries in the permanent dentition at baseline in the East and West as well. This suggests the presence of explanatory factors extrinsic to the SDS, such as possible regional differences in oral health awareness of students or parents and water fluoridation levels, which can be explored in the future.

The model fit and predictive values were moderate. This suggests that there may be other predictors of caries incidence that are not captured in the SDS database, such as oral health behaviours (diet and toothbrushing habits) and salivary or microbiological factors. A limitation of this study was that the clinicians were not calibrated, and dental radiographs were not routinely taken, given the nature of the nationwide SDS. Nevertheless, misclassification of the presence of dental caries is likely to be nondifferential, given the large number of students and clinicians, and multiple examinations per student by different clinicians over the schooling years. The caries outcome was set at cavitation level. Clinical records of white spot lesions were not available before enhancements to the electronic system in 2012 and, thus, were not included in the analysis. As students in our target population are usually in the mixed dentition phase, the number of erupted permanent teeth at risk of dental caries may differ across individuals and could not be adjusted due to the lack of data. Nevertheless, since all students belonged...
to the same cohort (Primary 1 in 2009), the variation in their age and number of erupted permanent teeth is expected to be small. The strength of this study is the large sample size, which allows for sufficient statistical power to detect the differences across groups. This is also the first study using the 8-year longitudinal data from the nationwide SDS in Singapore, which is representative of the oral health status of the population.

Conclusions

This study showed the unequal distribution of caries burden even among children and adolescents in a structured school dental service programme. Caries incidence in permanent dentition during adolescence is associated with childhood factors, including clinical status (tooth hypoplasia, the presence of dental caries in the primary and permanent dentition, and poor oral hygiene) and sociodemographic characteristics (female gender, ethnicity, lower SES, and enrolment in non-mainstream schools or primary schools in the East and West regions of Singapore). Beyond enhancing risk classifications for long-term oral health outcomes, these findings can aid in the structuring of dental service provision and the delivery of targeted interventions to at-risk children and adolescents.

Conflict of interest

None disclosed.

Acknowledgments

The authors are indebted to Dr Eu Oy Chu and Dr Wong Yim Heng for their support for the work. The team would also like to thank Mr Tan Kim Chwee and Ms Ashokan Sangumithra for their help in data extraction.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-sectors.

REFERENCES

1. Marmot M. Fair society, healthy lives: the Marmot review. Strategic review of health inequalities in England post-2010. London, UK: UCL-Institute of Health Equity; 2010.
2. Brewster L, Sherriff A, Macpherson L. Effectiveness and reach of a directed-population approach to improving dental health and reducing inequalities: a cross sectional study. BMC Public Health 2013;13:778.
3. Drummond AMA, Ferreira EF, Gomes VE, et al. Inequality of experience of dental caries between different ethnic groups of Brazilians aged 15 to 19 years. PloS One 2015;10(12):e0145553.
4. Borges TS, Schwanke NL, Reuter CP, et al. Factors associated with caries: a survey of students from southern Brazil. Revista Paulista de Pediatria 2016;34:489–94.
5. Nicolau B, Marcenes W, Bartley M, et al. A life-course approach to assessing causes of dental caries experience: the relationship between biological, behavioural, socio-economic and psychological conditions and caries in adolescents. Caries Res 2003;37(5):319–26.
6. Raitio M, Pienihäkkinen K, Scheinin A. Assessment of single risk indicators in relation to caries increment in adolescents. Acta Odontol Scand 1996;54(2):113–7.
7. Källenstal C, Wall S. Socio-economic effect on caries. Incidence data among Swedish 12–14-year-olds. Community Dent Oral Epidemiol 2002;30(2):108–14.
8. Vanobbergen J, Martens L, Lesaffre E, et al. The value of a baseline caries risk assessment model in the primary dentition for the prediction of caries incidence in the permanent dentition. Caries Res 2001;35(6):442–50.
9. Abernathy JR, Graves RC, Bohannan HM, et al. Development and application of a prediction model for dental caries. Community Dent Oral Epidemiol 1987;15(1):24–8.
10. Warren JJ, Van Buren JM, Levy SM, et al. Dental caries clusters among adolescents. Community Dent Oral Epidemiol 2017;45(6):538–44.
11. Department of Statistics Singapore. Population and population structure. Available from https://www.singstat.gov.sg/-/media/files/publications/population/population2019.pdf. Accessed 24 December 2020.
12. Loh T. Thirty-eight years of water fluoridation—the Singapore scenario. Community Dent Health 1996;13(Suppl 2):47–50.
13. Singapore Government, PUB’s Water Quality Office. Singapore drinking water quality (Jan 2015 - Dec 2015). Available from: https://www.pub.gov.sg/Documents/Our%20Drinking%20Water%20Quality%202015.pdf. Accessed 24 December 2020.
14. Hong CH, Bagramian RA, Hashim Nainar SM, et al. High caries prevalence and risk factors among young preschool children in an urban community with water fluoridation. Int J Paediatr Dent 2014;24(1):32–42.
15. Un Lam C, Khin LW, Kalhan AC, et al. Identification of caries risk determinants in toddlers: results of the GUSTO birth cohort study. Caries Res 2017;51(4):271–82.
16. Gao XL, Hsu CY, Xu Y, et al. Building caries risk assessment models for children. J Dent Res 2010;89(6):637–43.
17. Health Promotion Board Singapore. Dental index: dental health status of the school children at 12 and 15 years old. Govtech; 2019. Available from: https://data.gov.sg/dataset/dental-index-dental-health-status-of-the-school-children-at-12-and-15-years-old. Accessed July 31, 2020.
18. Ministry of Education Singapore. Primary schools by planning area in year 2020. Available from: https://www.moe.gov.sg/admissions/primary-one-registration/information-on-primary-schools/listing-by-planning-area. Accessed 6 June 2019.
19. Ministry of Education Singapore, Secondary School Education. Shaping the next phase of your child’s learning journey. 2019. Available from: https://www.moe.gov.sg/-/media/files/secondary-secondary-brochure-2020.pdf. Accessed July 31, 2020.
20. Ministry of Education Singapore. Enhanced programmes by Special Assistance Plan schools to enrich students’ learning of Chinese language and values. 2008. Available from: https://www.nas.gov.sg/archivesonline/data/pdfdoc/20080211995.pdf. Accessed July 31, 2020.
21. Broadbent JM, Thomson WM. For debate: problems with the DMF index pertinent to dental caries data analysis. Community Dent Oral Epidemiol 2005;33(6):400–9.
22. Bursac Z, Gauss CH, Williams DK, et al. Purposeful selection of variables in logistic regression. Source Code Biol Med 2008;3(1):17.
23. Lee PH, Burstyn I. Identification of confounder in epidemiologic data contaminated by measurement error in covariates. BMC Med Res Methodol 2016;16:54.
24. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004;159(7):702–6.
25. Perkins NJ, Schisterman EF. The inconsistency of “optimal” cut-points obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol 2006;163(7):670–5.

26. Do LG, Spencer AJ. Oral health of Australian children: the National Child Oral Health Study 2012–14. Adelaide, SA, Australia: University of Adelaide Press; 2016.

27. Dugmore CR. The 80-20 phenomenon (80:20 distribution of caries)—myth or fact. Br Dent J 2006;200(4):197–8.

28. Du Q, Yu M, Li Y, et al. Permanent caries experience is associated with primary caries experience: a 7-year longitudinal study in China. Community Dent Oral Epidemiol 2017;45(1):43–8.

29. Li Y, Wang W. Predicting caries in permanent teeth from caries in primary teeth: an eight-year cohort study. J Dent Res 2002;81(8):561–6.

30. Hall-Scullin E, Whitehead H, Milsom K, et al. Longitudinal study of caries development from childhood to adolescence. J Dent Res 2017;96(7):762–7.

31. Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 2008;46(4):1407–17.

32. Cagetti MG, Bonta G, Cocco F, et al. Are standardized caries risk assessment models effective in assessing actual caries status and future caries increment? A systematic review. BMC Oral Health 2018;18(1):123.

33. Kassawara ABC, Tagliaferro EPdS, Cortelazzi KL, et al. Epidemiological assessment of predictors of caries increment in 7-10-year-olds: a 2-year cohort study. J Appl Oral Sci 2010;18(2):116–20.

34. Basha S, Mohamed RN, Swamy HS. Association between enamel hypoplasia and dental caries in primary second molars and permanent first molars: a 3-year follow-up study. Ann Trop Med Public Health 2016;9:4–11.

35. Gilchrist JA, Brumley DE, Blackford JU. Community socioeconomic status and children’s dental health. J Am Dent Assoc 2001;132(2):216–22.

36. André Kramer AC, Petzold M, Hakeberg M, et al. Multiple socioeconomic factors and dental caries in Swedish children and adolescents. Caries Res 2018;52(1-2):42–50.

37. Ng CW, Tan WS, Gunapal FP, et al. Association of socioeconomic status (SES) and social support with depressive symptoms among the elderly in Singapore. Ann Acad Med Singap 2014;43(12):576–87.

38. Engelmann JL, Tomasoni F, Oliveira MDM, et al. Association between dental caries and socioeconomic factors in schoolchildren - a multilevel analysis. Braz Dent J 2016;27(1):72–8.

39. Martinez-Mier EA, Zandonà AF. The impact of gender on caries prevalence and risk assessment. Dent Clin North Am 2013;57(2):301–15.

40. Lukac J. Gender differences in oral health in South Asia: metadata imply multifactorial biological and cultural causes. Am J Hum Biol 2011;23(9):398–411.

41. Ferraro M, Vieira AR. Explaining gender differences in caries: a multifactorial approach to a multifactorial disease. Int J Dent 2010;2010:649643.

42. Shaffer JR, Leslie EJ, Feingold E, et al. Caries experience differs between females and males across age groups in Northern Appalachia. Int J Dent 2015;2015:8.

43. Shi C, Faris P, McNeil DA, et al. Ethnic disparities in children’s oral health: findings from a population-based survey of grade 1 and 2 schoolchildren in Alberta, Canada. BMC Oral Health 2018;18(1):1.

44. Ngcobo CB, Yengopal V, Rudolph MJ, et al. Dental caries prevalence in children attending special needs schools in Johannesburg, Gauteng Province, South Africa. SADJ 2012;67(7):308–13.

45. American Academy of Pediatric Dentistry. Management of the developing dentition and occlusion in pediatric dentistry. Chicago, IL: American Academy of Pediatric Dentistry; 2014.