Are There ν_μ or ν_τ in the Flux of Solar Neutrinos on Earth?

C. Giunti

INFN, Sezione di Torino,
and
Dipartimento di Fisica Teorica, Università di Torino,
Via P. Giuria 1, I–10125 Torino, Italy

(Dated: 10 October 2001)

Using the model independent method of Villante, Fiorentini, Lisi, Fogli, Palazzo, and the rates measured in the SNO and Super-Kamiokande solar neutrino experiment, we calculate the amount of active ν_μ or ν_τ present in the flux of solar neutrinos on Earth. We show that the probability of $\nu_e \rightarrow \nu_{\mu,\tau}$ transitions is larger than zero at 99.89% CL. We find that the averaged flux of $\nu_{\mu,\tau}$ on Earth is larger than 0.17 times the ^8B ν_e flux predicted by the BP2000 Standard Solar Model at 99% CL. We discuss also the consequences of possible $\nu_e \rightarrow \nu_{\mu,\tau}$ or $\nu_e \rightarrow \bar{\nu}_e$ transitions of solar neutrinos. We derive a model-independent lower limit of 0.52 at 99% CL for the ratio of the ^8B ν_e flux produced in the Sun and its value in the BP2000 Standard Solar Model.

PACS numbers: 26.65.+t, 14.60.Pq, 14.60.Lm

Keywords: Solar Neutrinos, Neutrino Physics, Statistical Methods

The first results of the SNO solar neutrino experiment \[1\] have beautifully confirmed the existence of the solar neutrino problem. A comparison of the neutrino flux measured through charged-current interactions in the SNO experiment with the flux measured through elastic scattering interactions in the Super-Kamiokande experiment \[2\] shows an evidence of the presence of active ν_μ or $^1\nu_\tau$ in the solar neutrino flux measured by the Super-Kamiokande experiment \[1, 3\]. Such a presence represents a very interesting indication in favor of neutrino physics beyond the Standard Model, most likely neutrino mixing that generates oscillations between different flavors (see \[4\]).

The purpose of this paper is to quantify the amount of this flux of active ν_μ or ν_τ in a model-independent way in the framework of Frequentist Statistics\[2\].

The authors of Refs. \[6, 7\] have noted that the response functions of the SNO and Super-Kamiokande (SK) experiments to solar neutrinos can be made approximately equal with a proper choice of the energy thresholds of the detected electrons. It turns out that given the threshold $T_S^{\text{SNO}} = 6.75\text{ MeV}$, the two response functions are approximately equal for $T_{\text{SK}}^{\nu_e} = 8.60\text{ MeV}$ \[3\]. In this case the SNO and Super-Kamiokande event rates normalized to the BP2000 Standard Solar Model (SSM) prediction \[8\] can be written in a model-independent way as \[3\]

\[
R_{\text{SNO}} = f_B \langle P_{\nu_e \rightarrow \nu_e} \rangle, \tag{1}
\]

\[
R_{\text{SK}} = f_B \langle P_{\nu_e \rightarrow \nu_e} \rangle + f_B \frac{\langle \sigma_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e \rightarrow \nu_e} \rangle} \langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle, \tag{2}
\]

where f_B is the ratio of the ^8B ν_e flux produced in the Sun and its value in the SSM \[8\], $\langle P_{\nu_e \rightarrow \nu_e} \rangle$ is the survival probability of solar ν_e’s averaged over the common SNO and Super-Kamiokande response functions,

\[
\frac{\langle \sigma_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e \rightarrow \nu_e} \rangle} = 0.152 \tag{3}
\]

is the ratio of the averaged $\nu_{\mu,\tau}$ and ν_e cross sections in the Super-Kamiokande experiment, and $\langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle$ is the averaged probability of $\nu_e \rightarrow \nu_{\mu,\tau}$ transitions.

Calling

\[
R_A \equiv R_{\text{SK}} - R_{\text{SNO}}, \tag{4}
\]

\[*
\text{Electronic address: giunti@to.infn.it; URL: } \text{http://www.to.infn.it/~giunti}
\]

1 In this paper the conjunction “or” is used as a logical inclusive disjunction (the sentence is true when either or both of its constituent propositions are true).

2 Since the results that we obtain are not too close to physical boundaries for the quantities under discussion and we assume a normal distribution for the errors, the numerical values in the framework of Bayesian Probability Theory with a flat prior are close to those obtained here, but their meaning is different (see, for example, Ref. \[8\]).
from Eqs. (1) and (2) we have

\[R_A = f_B \frac{\langle \sigma_{\nu_e} \rangle}{\sigma_{\nu_e}} \langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle. \]

(5)

Therefore, \(R_A \) is the rate of \(\nu_{\mu,\tau} \)-induced events in the Super-Kamiokande experiment, relative to the \(\nu_e \)-induced rate predicted by the SSM.

Considering the data of the Super-Kamiokande experiment above the energy threshold \(T_{SK}^e = 8.60 \text{ MeV} \) and the BP2000 Standard Solar Model \([8]\), the measured values of \(R_{\text{SNO}} \) and \(R_{\text{SK}} \) are:

\[R_{\text{exp}}^{\text{SNO}} = 0.347 \pm 0.029 \quad [1], \]

(6)

\[R_{\text{exp}}^{\text{SK}} = 0.451 \pm 0.017 \quad [2, 3]. \]

(7)

Adding in quadrature the uncertainties of \(R_{\text{SNO}} \) and \(R_{\text{SK}} \), for \(R_A \) we obtain:

\[R_{\text{exp}}^{\text{A}} = 0.104 \pm 0.034. \]

(8)

The standard deviation of \(R_{\text{exp}}^{\text{A}} \) is

\[\sigma_{\text{exp}}^{\text{A}} = 0.034, \]

(9)

and we have

\[\frac{R_{\text{exp}}^{\text{A}}}{\sigma_{\text{exp}}^{\text{A}}} = 3.06 \pm 1. \]

(10)

Hence, the central value of \(R_A \) is 3.06\(\sigma \) away from zero, implying an evidence of solar \(\nu_e \rightarrow \nu_{\mu,\tau} \) transitions [1, 3]. Our purpose is to quantify the probability of these transitions and possibly derive a lower limit.

The authors of Ref. [1] calculate the probability of a fluctuation larger than the observed one assuming \(R_A = 0 \): for normally distributed errors the probability of a fluctuation larger than 3.06\(\sigma \) from the mean is 0.11%.

Recently some frequentist methods have been proposed that allow to obtain always meaningful confidence intervals with correct coverage for quantities like \(R_A \) that are bound to be positive by definition [9, 10, 11, 12]. In particular, the Unified Approach proposed in Ref. [9] has been widely publicized by the Particle Data Group [13] and used by several experimental collaborations.

Using the Unified Approach we can derive confidence intervals for \(R_A \). Figure 1 shows the confidence belts in the Unified Approach for a normal distribution with unit standard deviation for 90\% (1.64\(\sigma \)), 99\% (2.58\(\sigma \)), 99.73\% (3\(\sigma \)) and 99.89\% (3.06\(\sigma \)) CL. One can see that the measured value (10) of \(\frac{R_{\text{exp}}^{\text{A}}}{\sigma_{\text{exp}}^{\text{A}}} \) implies that

\[0 < \frac{R_A}{\sigma_A} < 6.32 \quad \text{at} \quad 99.89\% \text{ CL}, \]

(11)

i.e. active \(\nu_\mu \) or \(\nu_\tau \) are present in the solar neutrino flux on Earth at 99.89\% CL. Equation (11) implies that there is a 0.11\% probability that the true value of \(\frac{R_A}{\sigma_A} \) is zero or larger than 6.32. This probability is the same as the probability of a fluctuation larger than 3.06\(\sigma \) calculated in Ref. [1] assuming \(R_A = 0 \). However, our result have been derived without making any assumption on the true unknown value of \(R_A \) and has a well defined meaning in the framework of Frequentist Statistics: whatever the true value of \(R_A \), the interval (11) belongs to a set of intervals that could be obtained in the same way from repeated measurements and have the property that 99.89\% of these intervals cover the true value of \(\frac{R_A}{\sigma_A} \).

In order to derive a lower limit for the averaged flux of \(\nu_{\mu,\tau} \) on Earth, we consider in the following 99\% confidence intervals. From Fig. 1 we obtain

\[0.74 < \frac{R_A}{\sigma_A} < 5.63 \quad (99\% \text{ CL}), \]

(12)

whose meaning is that there is a 99\% probability that the interval (12) covers the true unknown value of \(\frac{R_A}{\sigma_A} \).

For \(f_B \langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle \), that gives the flux of active \(\nu_{\mu,\tau} \) averaged over the common Super-Kamiokande and SNO response function, relative to the SSM \(^8B \nu_e \) flux, we find

\[0.17 < f_B \langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle < 1.26 \quad (99\% \text{ CL}). \]

(13)
Hence, we can say that the averaged flux of $\nu_{\mu,\tau}$ on Earth is larger than 0.17 times the 8B ν_e flux predicted by the Standard Solar Model at 99% CL. This is an evidence in favor of relatively large $\nu_e \rightarrow \nu_{\mu,\tau}$ transitions if f_B is not too large.

One could argue that it is possible to derive a more stringent lower limit for $f_B \langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle$ by calculating a confidence belt without left edge, instead of the one in Figure 1 calculated in the Unified Approach. Such a procedure is not acceptable, because it would lead to undercoverage if not chosen a priori, independently from the data, as shown in Ref. [2] for the case of upper limits. The correct procedure is to choose a priori a method like the Unified Approach that gives always sensible results and apply it to the data, as we have done here. A priori one could have chosen another method, as those presented in Refs. [10, 11, 12], that may have even better properties than the Unified Approach [14, 15], but we have verified that the intervals [11]–[13] do not change significantly.

Unfortunately, we cannot derive a model independent lower limit for the averaged $\nu_e \rightarrow \nu_{\mu,\tau}$ probability $\langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle$, because f_B could be large. However, from Figure 1 we can say that $R_A/\sigma_A^{\exp} > 0$ at 99.89% CL (see Eq. (11)), and hence

$$P_{\nu_e \rightarrow \nu_{\mu,\tau}} > 0 \text{ at } 99.89\% \text{ CL} \quad (14)$$

in the range of neutrino energies covered by the common SNO and Super-Kamiokande response function presented in Ref. [3].

On the other hand, it is interesting to note that the relations (1) and (2) allow to derive a model-independent lower limit for f_B, taking into account that

$$\langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle \leq 1 - \langle P_{\nu_e \rightarrow \nu_e} \rangle. \quad (15)$$

Using this inequality, from Eqs. (1) and (2) we obtain

$$f_B \geq \frac{\langle \sigma_{\nu_e} \rangle}{\langle \sigma_{\nu_{\mu,\tau}} \rangle} R_{SK} - \left(\frac{\langle \sigma_{\nu_e} \rangle}{\langle \sigma_{\nu_{\mu,\tau}} \rangle} - 1 \right) R_{SK} = f_{B,\text{min}}. \quad (16)$$

From Eqs. (3), (4) and (5), the experimental value of $f_{B,\text{min}}$ is

$$f_{B,\text{exp}} = 1.031 \pm 0.197. \quad (17)$$

Since the central value of $f_{B,\text{min}}$ is 5.2σ away from zero, we can calculate the resulting 99% CL interval for $f_{B,\text{min}}$ using the Central Intervals method (see [3]), that gives the same result as the Unified Approach far from the physical boundary $f_{B,\text{min}} > 0$. Since in the Central Intervals method 99% CL corresponds to 2.58σ, we obtain the confidence interval

$$0.52 < f_{B,\text{min}} < 1.54 \quad (99\% \text{ CL}). \quad (18)$$

Therefore, we can conclude that the SNO and Super-Kamiokande data imply the model-independent lower limit

$$f_B > 0.52 \quad (99\% \text{ CL}). \quad (19)$$

This is a very interesting information for the physics of the Sun.

So far we have not considered the possible existence of exotic mechanisms that produce $\nu_e \rightarrow \bar{\nu}_{\mu,\tau}$ or $\nu_e \rightarrow \bar{\nu}_e$ transitions (in addition or alternative to $\nu_e \rightarrow \nu_{\mu,\tau}$ transitions), such as resonant spin-flavor precession of Majorana neutrinos [16, 17]. In this case, Eq. (2) must be replaced with

$$R_{SK} = f_B \langle P_{\nu_e \rightarrow \nu_e} \rangle + f_B \left[\frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle + \frac{\langle \sigma_{\bar{\nu}_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \rightarrow \bar{\nu}_{\mu,\tau}} \rangle + \frac{\langle \sigma_{\bar{\nu}_e} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \rightarrow \bar{\nu}_e} \rangle \right]. \quad (20)$$

and Eq. (5) with

$$R_A = f_B \left[\frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \rightarrow \nu_{\mu,\tau}} \rangle + \frac{\langle \sigma_{\bar{\nu}_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \rightarrow \bar{\nu}_{\mu,\tau}} \rangle + \frac{\langle \sigma_{\bar{\nu}_e} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \rightarrow \bar{\nu}_e} \rangle \right]. \quad (21)$$

3 We would like to thank a referee of the first version of this paper for pointing out the possibility of $\nu_e \rightarrow \bar{\nu}_{\mu,\tau}$ transitions of solar neutrinos.

4 In the case of Majorana neutrinos the right-handed states are conventionally called antineutrinos.
Using the 8B neutrino spectrum given in Ref. [18], the neutrino-electron elastic scattering cross section calculated in Ref. [19] taking into account radiative corrections, and the Super-Kamiokande energy resolution given in Ref. [20], we obtain the following values for the ratios of the averaged cross sections in the Super-Kamiokande experiment for the threshold energy $T_e = 8.60$ MeV:

$$\frac{\langle \sigma_{\nu_e} \rangle}{\langle \sigma_{\nu_e} \rangle} = 0.114, \quad \frac{\langle \sigma_{\bar{\nu}_e} \rangle}{\langle \sigma_{\nu_e} \rangle} = 0.120.$$ \hspace{1cm} (22)

Hence, we have the useful inequalities

$$\frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} < \frac{\langle \sigma_{\nu_e} \rangle}{\langle \sigma_{\nu_e} \rangle} < \frac{\langle \sigma_{\bar{\nu}_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle}.$$ \hspace{1cm} (23)

The lower bound in Eq. (11) implies the existence of solar $\nu_e \to \nu_{\mu,\tau}$ or $\nu_e \to \bar{\nu}_{\mu,\tau}$ or $\nu_e \to \bar{\nu}_e$ transitions at 99.89% CL. The inequalities in Eq. (23) imply that the quantity on the right-hand side of Eq. (21) is limited in the interval (0.025, 0.19) at 99% CL. Using the inequalities (23), we obtain

$$0.17 < f_B \left[(P_{\nu_e \to \nu_{\mu,\tau}}) + (P_{\nu_e \to \bar{\nu}_{\mu,\tau}}) + (P_{\nu_e \to \bar{\nu}_e}) \right] < 1.67 \quad (99\% \text{ CL}).$$ \hspace{1cm} (24)

Therefore, the averaged flux of $\nu_{\mu,\tau}$, ν_τ, $\bar{\nu}_{\mu,\tau}$, $\bar{\nu}_\tau$ and $\bar{\nu}_e$ on Earth is larger than 0.17 times the 8B ν_e flux predicted by the BP2000 Standard Solar Model at 99% CL.

Let us derive now the most general model-independent lower limit for f_B (assuming only that the Super-Kamiokande and SNO events are produced by neutrinos or antineutrinos generated as ν_e from 8B decay in the Sun). Using the inequality

$$\langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle + \langle P_{\nu_e \to \bar{\nu}_{\mu,\tau}} \rangle + \langle P_{\nu_e \to \bar{\nu}_e} \rangle \leq 1 - \langle P_{\nu_e \to \nu_e} \rangle$$ \hspace{1cm} (25)

and those in Eq. (23), from Eqs. (1) and (20) we obtain again the limit in Eq. (16). Therefore, Eq. (19) gives the most general model-independent lower limit for f_B following from the SNO and Super-Kamiokande data.

In conclusion, we have considered the model independent relations (1), (2) [3, 6, 7] (and (1), (20)) and the rates measured in the SNO [1] and Super-Kamiokande [2] solar neutrino experiment in the framework of Frequentist Statistics. We have shown that the probability of $\nu_e \to \nu_{\mu,\tau}$ (and $\nu_e \to \bar{\nu}_{\mu,\tau}$, $\nu_e \to \bar{\nu}_e$) transitions is larger than zero at 99.89% CL in the range of neutrino energies covered by the common SNO and Super-Kamiokande response function. We have found that the flux of $\nu_{\mu,\tau}$ (and $\nu_{\mu,\bar{\tau}}$, $\bar{\nu}_{\mu,\tau}$) on Earth averaged over the common SNO and Super-Kamiokande response functions is larger than 0.17 times the 8B ν_e flux predicted by the BP2000 Standard Solar Model at 99% CL. We have derived a model-independent lower limit of 0.52 at 99% CL for the ratio f_B of the 8B ν_e flux produced in the Sun and its value in the BP2000 Standard Solar Model [3].

\[\text{References}\]

[1] Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 87, 071301 (2001), nucl-ex/0106015.
[2] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 86, 5651 (2001), hep-ex/0103032.
[3] G. L. Fogli, E. Lisi, D. Montanino, and A. Palazzo (2001), hep-ph/0106247.
[4] S. M. Bilenky, C. Giunti, and W. Grimus, Prog. Part. Nucl. Phys. 43, 1 (1999), hep-ph/9812360.
[5] G. D’Agostini, CERN Yellow Report 99-03 (1999).
[6] F. L. Villante, G. Fiorentini, and E. Lisi, Phys. Rev. D59, 013006 (1999), hep-ph/9807360.
[7] G. L. Fogli, E. Lisi, A. Palazzo, and F. L. Villante, Phys. Rev. D63, 113016 (2001), hep-ph/0102288.
[8] J. N. Bahcall, M. Pinsonneault, and S. Basu, Astrophys. J. 555, 990 (2001), astro-ph/0010346.
[9] G. J. Feldman and R. D. Cousins, Phys. Rev. D57, 3873 (1998), physics/9711021.
[10] S. Ciampolillo, Nuovo Cim. A111, 1415 (1998).
[11] C. Giunti, Phys. Rev. D59, 053001 (1999), hep-ph/9808240.
[12] M. Mandelkern and J. Schultz, J. Math. Phys. 41, 5701 (2000), hep-ex/9910041.
[13] D. E. Groom et al., Eur. Phys. J. C15, 1 (2000), wWw page: http://pdg.lbl.gov.
[14] C. Giunti and M. Lavender, Int. J. Mod. Phys. C, in press (2001), hep-ex/0002020.
[15] C. Giunti and M. Lavender, Nucl. Instrum. Meth. A, in press (2001), hep-ex/0011069.
[16] C.-S. Lim and W. J. Marciano, Phys. Rev. D37, 1368 (1988).
[17] E. K. Akhmedov, Phys. Lett. B213, 64 (1988).
[18] J. N. Bahcall et al., Phys. Rev. C54, 411 (1996), nucl-th/9601044.
[19] J. N. Bahcall, M. Kamionkowski, and A. Sirlin, Phys. Rev. D51, 6146 (1995), astro-ph/9503003.
[20] M. Nakahata et al. (Super-Kamiokande), Nucl. Instrum. Meth. A421, 113 (1999), hep-ex/9807027.
FIG. 1: Confidence belts in the Unified Approach for a normal distribution with unit standard deviation. The regions between the solid, long-dashed, dotted and dash-dotted lines correspond, respectively, to 90% (1.64σ), 99% (2.58σ), 99.73% (3σ) and 99.89% (3.06σ) CL. The thick solid vertical line represent the measured value of R_A / σ_A (Eq. (10)).