Proton–hole excitation in the closed shell nucleus 205Au

Zs. Podolyák a,*, G.F. Farrelly a, P.H. Regan a, A.B. Garnsworthy a, S.J. Steer a, M. Górski b, J. Benlliure c, E. Casarejos c, S. Pietri a, J. Geri b, H.J. Wollersheim b, R. Kumar d, F. Molina e, A. Algora e, N. Alkhomashi a, G. Benzoni g, A. Blazhev h, P. Boutachkov b, A.M. Bruce i, L. Caceres b, I.J. Cullen a, A.M. Denis Bacelar i, P. Doornenbal b, M.E. Estevez c, Y. Fujita k, W. Gelletly a, H. Geissel b, H. Graewe b, J. Grębosz b, I. Kojouharov b, S. Lalkovski i, Z. Liu a, K.H. Maier n,l, C. Mihai o, D. Mucher h, B. Rubio e, H. Schaffner b, A. Tami k, S. Tashenov b, J.J. Valiente-Dobón p, P.M. Walker a, P.J. Woods q

a) Department of Physics, University of Surrey, Guildford GU2 7XH, UK
b) GSI, Planckstrasse 1, D-64291 Darmstadt, Germany
c) Universidad de Santiago de Compostela, E-15706, Santiago de Compostela, Spain
d) Inter University Accelerator Centre, New Delhi, India
e) Instituto de Física Corpuscular, Universidad de Valencia, E-46071, Spain
f) Institute for Nuclear Research, H-4010 Debrecen, Hungary
g) INFN, Università degli Studi di Milano, I-20133 Milano, Italy
h) IKP, Universität zu Köln, D-50937 Köln, Germany
i) School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK
j) Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
k) Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
l) The Henryk Niewodniczański Institute of Nuclear Physics, PL-31-342 Kraków, Poland
m) Department of Physics, Lund University, S-22100 Lund, Sweden
n) Department of Physics, University of West of Scotland, Paisley PA1 2BE, UK
o) "Horea Hulubei" National Institute for Physics and Nuclear Engineering, RO-077125 Bucharest, Romania
p) INFN-Laboratori Nazionali di Legnaro, Italy
q) Department of Physics and Astronomy, University of Edinburgh, UK

A R T I C L E I N F O
Article history:
Received 7 July 2008
Received in revised form 26 November 2008
Accepted 7 January 2009
Available online 10 January 2009
Editor: V. Metag

PACS:
25.70.Mn
27.80.+w

A B S T R A C T

The neutron-rich $N = 126$ nucleus 205Au has been populated following the relativistic energy projectile fragmentation of $E/A = 1$ GeV 208Pb, and studied via charged-particle decay spectroscopy. An internal decay with a transition energy of 907(5) keV and a half-life of $T_{1/2} = 6(2)$ s has been identified through the observation of the corresponding K and L internal conversion electron lines. The 907 keV energy level corresponds to the $\pi h_{11/2}$ proton–hole state and decays both internally into the 205Hg ground-state is known [4,5]. The experimental information on the structure of these nuclei can be used as building blocks for calculating more complex configurations. More information is available, more robust predictions can be made on the properties of more neutron-rich species. These are of particular importance as the r-process path nuclei, experimentally unreachable in this mass region so far, are approached [6].

The lack of information on proton–hole nuclei compared to the 208Pb core arises from difficulties in populating such neutron-rich nuclei. Projectile fragmentation has proved to be an efficient tool to produce exotic nuclear species. When projectile fragmentation is combined with high sensitivity gamma detection arrays, struc-
Time-correlated γ neutron-rich 205Au nucleus. After the production target the magnetic rigidity of the fully stripped 205Au nuclei is close to those of the intense He-like primary 208Pb beam. In order to avoid this contamination, the first half of the fragment separator was set to transmit the H-like 205Au ions. Although only an estimated 6.5% of the ions of interest were in their H-like charged state [14], the high production cross section in the order of 10^{-2} mbarn [15] ensures sufficient statistics for the current measurement. In the second part of the fragment separator, after the monochromatic degrader, 205Au was transmitted in its fully stripped charged state. This setting provided a beam consisting predominantly ($\sim 55\%$) of 205Au nuclei, as shown in Fig. 1.

The primary 208Pb beam intensity was 7×10^8 ion/spill, with the spill consisting of 1 s beam-on period followed by 10 s beam-off. The average implantation yield was ~ 30 205Au ion/spill, corresponding to a total of 76×10^3 collected ions. The observation of the previously identified γ-ray transitions in 205Hg in coincidence with the β-decay of the ground-state 205Au [4] confirmed the identification (see Fig. 1).

The use of the fragment separator in monochromatic mode allowed for the implantation of 205Au in a thin layer of Si, maximising the efficiency of the charged particle detection. Fig. 2 shows the simulated implantation profile in the 1 mm thick Si detector.

Fig. 1. (Top) Identification plot of the fragments of interest. (Bottom) γ-ray spectrum associated to the β decay of the 205Au ions using a maximum implantation-decay correlation time of 5 s. The labelled peaks, unless stated otherwise, belong to 205Hg [5] and confirm the identification. The peaks labelled in normal letters originate from the previously studied β decay of the 205Au groundstate [4], with the inset showing the corresponding decay curve. The peaks labelled in italic are associated with the β decay of the isomeric state of 205Au observed in the present work. For details see the text.

Fig. 2. Simulated implantation profile in the 1 mm thick Si detector.

A dedicated fragment separator setting was used to study the neutron-rich 205Au nucleus. After the production target the magnetic rigidity of the fully stripped 205Au nuclei is close to those of the intense He-like primary 208Pb beam. In order to avoid this contamination, the first half of the fragment separator was set to transmit the H-like 205Au ions. Although only an estimated 6.5% of the ions of interest were in their H-like charged state [14], the high production cross section in the order of 10^{-2} mbarn [15] ensures sufficient statistics for the current measurement. In the second part of the fragment separator, after the monochromatic degrader, 205Au was transmitted in its fully stripped charged state. This setting provided a beam consisting predominantly ($\sim 55\%$) of 205Au nuclei, as shown in Fig. 1.

The primary 208Pb beam intensity was 7×10^8 ion/spill, with the spill consisting of 1 s beam-on period followed by 10 s beam-off. The average implantation yield was ~ 30 205Au ion/spill, corresponding to a total of 76×10^3 collected ions. The observation of the previously identified γ-ray transitions in 205Hg in coincidence with the β-decay of the ground-state 205Au [4] confirmed the identification (see Fig. 1).

The use of the fragment separator in monochromatic mode allowed for the implantation of 205Au in a thin layer of Si, maximising the efficiency of the charged particle detection. Fig. 2 shows the
Fig. 3. Delayed charged particle spectrum associated to 205Au. In addition to the continuous energy of the β decay, two peaks are observed. These are interpreted as K and L internal conversion electron peaks corresponding to a 907(5) keV transition.

Simulated range distribution within the 1 mm thick silicon detector. According to these simulations, performed with the LISE code [16], 70% of the implanted ions were 205Au. The delayed charged particle spectrum measured in the Si detector and correlated to the implanted 205Au ions is presented in Fig. 3. In addition to the continuous energy spectrum of the β electron from the 205Au decay, two discrete peaks can be observed. These are interpreted as the K and L internal conversion electrons associated to a γ-ray transition with an energy of 907(5) keV. (Note that the L line contains contribution from the weak and unresolved M, N, \ldots lines.) The energy difference between the K and L lines, as well as the intensity ratio of the two peaks supports this interpretation. The measured lifetime of the decay is $T_{1/2} = 6(2)$ s. This lifetime suggests a transition with $M4$ or $E4$ character (considering a transition strength between 10^{-6} and 10^{-13} W.u.).

The γ-ray spectrum associated to the β decay of 205Au is shown in Fig. 1. When compared with that of the previous study of Ch. Wennemann et al. [4], one notices that the spectrum contains two additional transitions with energies of 967 and 1016 keV. These γ lines are clearly visible when a maximum implantation-decay correlation time in the order of seconds is used (5 s in Fig. 1), and they disappear in the background if a much longer maximum correlation time is chosen. These γ lines were previously identified in 203Hg (but not from β decay) and they deexcite states with spin-parities $7/2^-$ and $9/2^-$, respectively [5]. These spins are high when compared to that of the $3/2^+$ groundstate of 205Au, therefore it is unlikely that these γ-ray transitions originate from the β decay of the 205Au groundstate. The lifetimes associated to these two γ-ray transitions are consistent with the 6 s half-life of the conversion electron, and in the case of the stronger 967 keV transition inconsistent with the much longer lifetime of the groundstate β decay. All these experimental findings suggest the identification of an isomeric state in 205Au, and that this state decays both internally and via β decay. The branching ratio between these decays cannot be determined due to poor knowledge of the full peak conversion electron detection efficiency.

The proton–hole orbitals below the $Z = 82$ closed proton shell are $s_{1/2}, d_{3/2}, h_{11/2}, d_{5/2}$ and $g_{7/2}$. The experimental level scheme of the $Z = 81, N = 126$ single-hole 207Tl nucleus gives a clear graphical demonstration of this, as shown in Fig. 4. 205Au is a three proton–hole nucleus, with an expected groundstate configuration of $\pi d_{5/2}^{-1}$ (with the $s_{1/2}$ being empty) and spin-parity $I^T = 3/2^+$. The $\pi h_{11/2}$ excited state should be long lived since it can decay only through high multipolarity transitions, similarly like in 207Tl. Accordingly, the transition observed in the present experiment should originate from the decay of the $11/2^-$ isomeric state. The experimentally identified 907(5) keV transition corresponds to the $11/2^- \rightarrow 3/2^+$ transition of M4 character and a theoretical internal conversion coefficient [21] of $\alpha = 0.18$. The relatively high electron conversion coefficient together with the high energy of the transition, a rare combination, made possible the identification of this transition with the present method.

In order to obtain a quantitative understanding of the underlying single-particle structure of the excited states of 205Au, shell-model calculations have been performed employing the OXBASH code [17]. The standard interaction two-body matrix elements (TBMEs) were used as taken from Ref. [18]. They are based on the Kuo–Brown interaction including core polarisation [19,20], with slight modifications introduced to obtain an improved description of the experimental data available at the time. The proton–hole energies were taken from the experimental level scheme of 207Tl [1]. This parameterisation gives a good description of the reported excited states in the two-proton–hole 205Hg [2] and reasonable description for the four proton–hole nucleus 204Pt [3]. In order to get a good description for all available information on the $N = 126$ isotones below lead, both on excitation energies and transition strengths, small modifications of the standard TBMEs were required [3]. Calculations with these modified matrix elements were also performed. The results of the calculations for 205Au, using both sets of TBMEs, are compared with the experimental level schemes in Fig. 4. The dominant configurations are also indicated.

The measured energy of the isomeric state with the proposed $11/2^-$ spin-parity is in good agreement with the shell model calculations. The calculations also predict a $5/2^+$ state to lie below the $11/2^-$ isomer, therefore the isomer could decay into it via an E3 transition. The Weisskopf estimate for the partial lifetime of this transition is in the order of 0.1 s. This transition, even if it exists, could not be observed in the present experiment: the energy of the corresponding conversion electron is low and could not be discerned from the background; the γ branch could have not been correlated with the 205Au ions due to the long lifetime of the isomer. As a consequence, the $M4/E3$ branching ratio could not be ascertained in the current work. Since the $11/2^-$ isomeric state β decays and possibly decays internally through an E3 branch, only an upper limit for the $B(M4)$ transition strength was determined, $B(M4) \leq 1.7(7)$ W.u. This limit is somewhat lower than that of the equivalent $N = 124$ transition strength, $2.3(2)$ W.u. [1], in 207Tl, and similar to those determined in lighter gold isotopes: 2.4(8) W.u. in 197Au [22] and 2.2(3) W.u. in 195Au [23]. This suggests that the E3 branching might be missing altogether, possible because the $5/2^+$ state lies above the $11/2^-$ isomer.

In conclusion, an excited state in the neutron-rich $N = 126$ 205Au nucleus has been identified through conversion electron spectroscopy. It has an excitation energy of 907(5) keV and a half-life of $T_{1/2} = 6(2)$ s. It corresponds to the $\pi h_{11/2}^{-1}$ single proton-
hole excitation and decays both internally into the $\pi d_{3/2}^{-1}$ ground-state and via β decay into excited states of 205Hg. The energy of the isomeric state is in good agreement with the shell-model calculations.

Acknowledgements

The excellent work of the GSI accelerator staff is acknowledged. This work is supported by the EPSRC (UK), STFC (UK), the EU Access to Large Scale Facilities Programme (EURONS, EU contract 506065), The Spanish Ministerio de Educacion y Ciencia and The German BMBF.

References

[1] D. Eccleshall, M.J.L. Yates, Phys. Lett. 19 (1965) 301; M.J. Martin, Nucl. Data Sheets 70 (1993) 315.
[2] B. Fornal, et al., Phys. Rev. Lett. 87 (2001) 212501.
[3] S. Steer, et al., Phys. Rev. C 78 (2008) 061302(R).
[4] Ch. Wennemann, et al., Z. Phys. A 347 (1994) 185.
[5] F.G. Kondev, Nucl. Data Sheets 101 (2004) 521.
[6] H. Grawe, K. Langanke, G. Martinez-Pinedo, Rep. Prog. Phys. 70 (2007) 1525.
[7] R. Grzywacz, et al., Phys. Lett. B 335 (1995) 439.
[8] M. Pfützner, et al., Phys. Lett. B 444 (1998) 32.
[9] Zs. Podolyák, et al., Phys. Lett. B 401 (2000) 225.
[10] H. Geissel, et al., Nucl. Instrum. Methods Phys. Res. Sect. B 70 (1992) 286.
[11] R. Kumar, et al., Nucl. Instrum. Methods A 598 (2009) 754.
[12] S. Pietri, et al., Nucl. Instrum. Methods B 261 (2007) 1079; P.H. Regan, et al., Nucl. Phys. A 787 (2007) 491c.
[13] J. Grebosz, Comput. Phys. 176 (2007) 251.
[14] C. Scheidenberger, et al., Nucl. Instrum. Methods B 142 (1998) 441.
[15] L Audouin, et al., Nucl. Phys. A 768 (2006) 1.
[16] D. Bazin, O. Tarasov, M. Lewitowicz, O. Sorlin, Nucl. Instrum. Methods A 482 (2002) 307.
[17] B.A. Brown, A. Etchegoyen, W.D.M. Rae, The computer code OXBASH, MSU-NSCL report number 524.
[18] L. Rydström, et al., Nucl. Phys. A 512 (1990) 217.
[19] T.T.S. Kuo, G.H. Herling, Naval Research Laboratory Report 2259 (Washington, DC, 1971).
[20] G.H. Herling, T.T.S. Kuo, Nucl. Phys. A 181 (1972) 113.
[21] T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, C.W. Nestor Jr., AIP Conf. Proc. 769 (2005) 268.
[22] X. Huang, C. Zhou, Nucl. Data Sheets 104 (2005) 283.
[23] C. Zhou, Nucl. Data Sheets 86 (1999) 645.