Microorganisms Associated with the Fermentation of Gari Fortified with Sprouted Mung Beans Flour

Abiola Abiodun Bayode¹ and Ojokoh, Anthony Okhonlaye²

¹Department of Microbiology, Federal University of Technology, Akure, Nigeria.
²Department of Biotechnology, Federal University of Technology, Akure, Nigeria.

ABSTRACT

Gari is consumed regularly by large populations of Nigeria, therefore, it is an excellent means of improving the diet of people through fortification with nutritionally rich foods hence, this study aimed to produce ‘Gari’ by co-fermenting cassava mash and sprouted mung bean flour in different ratios in order to assess the effect on the nutritional composition as compared to a standard produced without sprouted mungbeans (SMF) flour fortification. In different ratios, composites of cassava mash (CM) and the sprouted mungbeans flour (SMF) were made (5% SMF + 95% CM, 10% SMF + 90% CM, 15% SMF + 85% CM; and 100% CM which serve as the control) and fermented using semi-solid state fermentation for four days. The Gari was then produced following the standard method of dewatering, sieving and roasting. Isolation of microorganisms during the fermentation was carried out using standard microbiological techniques and identification was done using conventional and molecular techniques. The total bacterial (cfu/ml) of the fermented samples increased during the first day of fermentation, and reduced on subsequent days in all samples with the bacterial count ranging from 1.21×10^5 CFU/g to 2.45×10^5 CFU/g. The organisms isolated include Lysinibacillus alkalisoli, Proteus mirabilis, Pediococcus acidilactici, Lactobacillus plantarum, Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Penicillium sclerotiorum, Diutina.
Manihot esculenta Crantz

tubers. This staple food is derived from cassava

generated from fermented, gelatinized fresh cassava

fermentation of cassava mash and sprouted mung bean flour

Cassava (Manihot esculenta Crantz) is a staple

carbohydrate, made from fermented, gelatinized fresh cassava
tubers. This staple food is derived from cassava

Keywords: Mung beans; gari; nutrition; dewatering; Nigeria.

1. INTRODUCTION

In the microbiological sense, fermentation is the

problems with consistent consumption of

The mung bean (Vigna radiata (L.) is a major

Gari is one of the most popular foods in Nigeria,
as well as in West Africa. It is a fermented, gritty,
starchy food with slightly sour taste. Gari or

tubers through a processing method that

The problems with consistent consumption of

Gari is rich in

Gari is one of the most popular foods in Nigeria,

Gari is one of the most popular foods in Nigeria,

latter stage of the fermentation in all the fermented samples. Molecular

identification of the bacterial isolates shows that Lysinibacillus alkalisoli, Proteus mirabilis, Pediococcus acidilactici, Lactobacillus plantarum, Staphylococcus aureus, Bacillus subtilis and Bacillus cereus were present in the samples. The outcome of this research showed that co-

fermentation of cassava mash and sprouted mung bean flour eliminates pathogenic

microorganisms and encourages the growth of beneficial microorganism in mung bean fortified

Gari production.

Cassava is a major edible legume seed in Asia (India, South East-

Asia and East Asia) and is also eaten in

Southern Europe and in the Southern USA. The

mature seeds provide an invaluable source of
digestible protein for humans in places where

meat is lacking or where people are mostly

vegetarian [6]. Mung beans are cooked fresh or

dry. They can be eaten whole or made into flour,

soups, porridge, snacks, bread, noodles and ice-

cream. Split seeds can be transformed into dhal

in the same way as black gram or lentils. Mung

beans can be processed to make starch noodles

(vermicelli, bean thread noodles, cellophane

noodles) or soaps. The sprouted seeds ("bean

sprouts" in English, and incorrectly called

"germes de soja" or "pousses de soja" in French) are relished raw or cooked throughout the world.

processes to make starch noodles (vermicelli, bean

thread noodles, cellophane noodles) or soaps. The sprouted seeds ("bean sprouts" in English, and incorrectly called "germes de soja" or "pousses de soja" in French) are relished raw or cooked throughout the world.

The mung bean (Vigna radiata (L.) is a major

edible legume seed in Asia (India, South East-

Asia and East Asia) and is also eaten in

Southern Europe and in the Southern USA. The

mature seeds provide an invaluable source of
digestible protein for humans in places where

meat is lacking or where people are mostly

vegetarian [6]. Mung beans are cooked fresh or

dry. They can be eaten whole or made into flour,

meat is lacking or where people are mostly

vegetarian [6]. Mung beans are cooked fresh or

dry. They can be eaten whole or made into flour,
soups, porridge, snacks, bread, noodles and ice-

cream. Split seeds can be transformed into dhal

in the same way as black gram or lentils. Mung

beans can be processed to make starch noodles

(vermicelli, bean thread noodles, cellophane

noodles) or soaps. The sprouted seeds ("bean

sprouts" in English, and incorrectly called

"germes de soja" or "pousses de soja" in French) are relished raw or cooked throughout the world.

problems with consistent consumption of

unfortified, traditionally fermented gari and other
cassava products stem from their poor nutritional

value [3] and potential toxicity [4]. Gari is rich in

calories but have very low protein, fat, and

micronutrient contents. Diets made from low

protein gari can predispose consumers to

protein-energy malnutrition with compromised

kidney functions [5]. Moreover, protein-energy

malnutrition and micronutrient deficiencies

constitute the most dreaded nutritional problems

faced in developing countries [3].

In order to provide the body with all nutrients it

requires, foods are often combined or a

particular food is fortified/nutrified with the

nutrient(s) it lacks in order to make the nutrient(s)
available for the body utilization.

12

In order to provide the body with all nutrients it

requires, foods are often combined or a

particular food is fortified/nutrified with the

nutrient(s) it lacks in order to make the nutrient(s)
available for the body utilization.

2

In the microbiological sense, fermentation is the

chemical transformation of organic substances

into simpler compounds by the action of

enzymes, complex organic catalysts, which are

produced by microorganisms such as moulds,
yeasts, or bacteria. Enzymes act by hydrolysis, a

process of breaking down or predigesting

complex organic molecules to form smaller (and

in the case of food, more easily digestible)

compounds and nutrients. For example, the

enzyme protease breaks down huge protein

molecules first into polypeptides, then into

numerous amino acids, which are readily

absorbed by the body. Fermentation also,

according to Sandor [1], also creates new

nutrients. As they go through their life cycles,

microbial cultures create B vitamins, including

folic acid, riboflavin, niacin, thiamine, and biotin.

Ferments have been credited with creating

vitamin B12, otherwise absent from many plant-

source foods.

In order to provide the body with all nutrients it

requires, foods are often combined or a

particular food is fortified/nutrified with the

nutrient(s) it lacks in order to make the nutrient(s)
available for the body utilization.

The mung bean (Vigna radiata (L.) is a major

edible legume seed in Asia (India, South East-

Asia and East Asia) and is also eaten in

Southern Europe and in the Southern USA. The

mature seeds provide an invaluable source of
digestible protein for humans in places where

meat is lacking or where people are mostly

vegetarian [6]. Mung beans are cooked fresh or
dry. They can be eaten whole or made into flour,
soups, porridge, snacks, bread, noodles and ice-
cream. Split seeds can be transformed into dhal in
the same way as black gram or lentils. Mung beans can be processed to make starch noodles (vermicelli, bean thread noodles, cellophane noodles) or soaps. The sprouted seeds ("bean sprouts" in English, and incorrectly called "germes de soja" or "pousses de soja" in French) are relished raw or cooked throughout the world.
The immature pods and young leaves are eaten as a vegetable [7].

2. METHODS

2.1 Collection of Samples

Fresh and healthy cassava tubers (Manihot esculenta) used were purchased from Oja oba, Market, Ilesha while the Mung bean was bought from Ortese market in Gboko, Benue State.

2.2 Preparation of Samples

Extraneous particles like stones and metals were hand-picked from the beans. Broken kernels and wizened seeds were also removed. The seeds were soaked in clean water for eight (8) hours at room temperature. The soaked seeds were removed from the water and spread on trays which were then covered with moist towel. The trays were placed in a dark room for 3 days to allow sprouting of the seeds. After sprouting, the seed coats were removed and the seeds oven-dried and ground into flour to give the sprouted Mungbeans flour (SMF). The flour was stored in a polythene bag and sealed.

The cassava roots were peeled to remove the outer brown skin and the inner thick cream layer and washed using a plastic scourer and clean water to remove stains and dirt. The cleaned cassava tubers were then grated using a motorised grater with a stainless steel grating drum.

2.3 Preparation of Composites of Cassava Mash and Mungbeans Flour

In different ratios, composites of cassava mash (CM) and the sprouted mungbeans flour (SMF) were made. The mungbeans flour was worked into the cassava mash to produce homogenous composites as follows:

- 5% SMF (100 g SMF + 1900 g CM)
- 10% SMF (200 g SMF + 1800 g CM)
- 15% SMF (300 g MBF + 1700 g CM)
- 0% SMF (0 g SMF + 2000 g CM) (Control)

2.4 Fermentation of Samples

Each sample was produced in duplicates and put in separate polythene sacks, tied, and fermented. The samples were fermented using one of the methods described by (8). The bags containing the samples were put on a rack, to allow the milky water to drain freely from the bags and for the samples to ferment for 4 days. The bags were then removed from the rack and pressed with hydraulic press for a day to get rid of the rest of the milky water. The bags were removed when the water stopped dripping from the bags. The resulting wet cake was then sieved into smaller pieces known as grits, which were then roasted separately on a hot frying tray to form the final dry and crispy product. The frying tray was wiped clean after each sample was roasted to prevent the carrying of particles of one sample to another.

2.5 Microbiological Analysis of the Samples

Bacteria and fungi were evaluated using nutrient agar (NA) and potato dextrose agar (PDA) respectively while De Man Rogosa sharpe agar was used to isolate lactic acid bacteria. Techniques were enumerated by using appropriate serial dilution and pour plate techniques. The bacterial culture was incubated at 37°C for 18 to 24 hours, fungal plates were inverted and incubated at 24°C for 48 to 72 hours. De Man Rogosa sharpe agar plates were incubated at 32°C for 18 to 24 hours anaerobically. The organisms were characterized based on biochemical and morphological observations according to the methods of Akinrotuye [9].

2.6 Molecular Identification of Bacteria

2.6.1 Isolate

Extraction of DNA using CTAB method was done according to (10), PCR analysis was run with a universal primer for fungi called 1TS1 and ITS4 and bacteria which was run with a universal primer called 16S rRNA. The amplicon was further purified before the sequencing using 2M Sodium Acetate wash techniques.

2.7 Determination of pH and TTA

The pH of all fermenting samples was determined at 24 hours interval using a pocket size pH meter. A 1 g of the sample was dissolved in 10 ml of distilled water and filtered. The pH meter was calibrated with buffer solutions of pH 4, 7 and 9, this was followed by dipping the electrode of the pH meter into the sample solution and the observed pH was read and recorded in triplicates. The total titratable acidity of the fermenting samples was determined at 24
hours interval. A 2 g of macerated sample was weighed into a beaker. 20 ml of distilled water was added to it, it was mixed and filtered. 10 ml of the filtrate was measured into a beaker and 2 drops of phenolphthalein indicator was added into it. This was titrated with 0.1 M sodium hydroxide (NaOH) solution and the titre value was read. Total titratable acidity was expressed as percent (%) lactic acid. The acidity was calculated as: \[TTA = \text{Titre value} \times 9 \text{ mg/100.} \]

The pH and TTA of the samples were carried out according to the method described by [11].

3. RESULTS

3.1 Types of Microorganisms Isolated from Mungbeans Fortified and Unfortified Gari Samples during Fermentation

The organisms isolated from Mungbeans Fortified and Unfortified Gari samples during fermentation include Lysinibacillus spp, Proteus spp, Pediococcus spp, Lactobacillus plantarum, Staphylococcus spp, Bacillus spp and Bacillus spp for bacteria (Table 1) while the fungi isolate Penicillium spp, Diutina spp, Rhizopus stolonifer, Trichoderma spp and Saccharomyces cerevisiae were confirmed to be Penicillium sclerotiorum, Diutina catenulata, Rhizopus stolonifer, Trichoderma viridae and Saccharomyces cerevisiae.

3.3 pH and Titratable Acidity of Fermented Broth Cultures

The pH of the fermented samples was found to decrease on daily basis with the highest pH on day 1 and the lowest on the last day of fermentation in all the samples (Table 7.). The titratable acidity (TTA) of the fermented broth cultures was found to increase on daily basis with the least TTA observed on day 1 and the highest on the last day of fermentation in all the samples (Table 8).

4. DISCUSSION

This study aimed to produce Gari by co-fermenting cassava mash and sprouted mungbeans flour in different ratios in order to assess the microorganisms associated with the fermentation process. Since the major constituents of cassava and mungbeans are proteins, fats and carbohydrates, the organisms responsible for its fermentation must be capable of utilizing these three constituents. Most of the organisms isolated during the fermentation are known to possess such characteristics. Lactobacillus planetarium and yeast isolate was predominant towards the latter stage of the fermentation in all the sample probably because of the reduced pH which favours their growth and the ability of Lactobacillus planetarium to produce lactic acid during fermentation might account for the initial isolation of some organism during the first and second day of fermentation in all the samples that later disappeared towards the end of the fermentation. This agrees with the observation of Enujiugha [12], who reported that Lactobacillus produces acid medium during fermentation to inhibit the growth of other microbes that cannot grow in acidic medium.
Table 1. Morphological, biochemical characteristics and identification of bacterial isolate

Isolate No	Colony morphology	Gram’s reaction	Catalase	Coagulase	Motility	Mannitol	Glucose	Fructose	Maltose	Lactose	Sucrose	Citrate	Indole	Spore forming	Methyl red test	Starch hydrolysis	Urease test	Probable identity	
1	Cream, circular, opaque, flat, rough	+	+	NA	+	AG	AG	AG	AG	+	-	-	+	-	-	+	-	-	Bacillus spp.
2	Cream, circular, raised and smooth	-	+	-	+	-	A	A	-	-	A	NA	-	+	Proteus spp.				
3	Circular, opaque, convex, cream, smooth colonies	+	-	-	-	A	AG	AG	A	-	-	-	+	+	Pediococcus spp.				
4	Circular, opaque, convex, cream, smooth colonies	+	-	-	-	A	AG	AG	A	-	-	-	+	+	Lactobacillus plantarum				
5	Cream, circular, smooth, entire	+	+	NA	-	-	AG	A	-	-	-	-	-	-	Staphylococcus aureus				
6	Cream, circular, opaque, flat, rough	+	+	NA	+	+	AG	AG	AG	AG	+	-	+	-	Bacillus spp.				
7	Cream, circular, opaque, flat, rough	+	+	NA	+	+	AG	AG	AG	AG	+	-	+	-	Bacillus spp.				
Table 2. Cultural and morphological characteristics of fungi isolated

Isolate No	Cultural and morphological characteristics	Probable organism
1	Mycelium, sporangiophore and spores grow outside the Petri dish, Whitish growth and later become greyish-brown. Sporangiophores are tall, irregular, ovoid, solitary, smooth walled stolons opposite the branched rhizoids	*Rhizopus stolonifer*
2	Conidia one-celled, borne in single terminal cluster, branch hyaline conidiophores	*Trichoderma viride*
3	Dark colony colour, rough surface, no sclerotia, brown-green conidia with velvety surface. Conidiophores irregularly branched, consisting of short stipes. Conidia are cylindrical and smooth-walled	*Penicillum digitatum*
4	Colonies are with pseudo-hyphae and absent of chlamydospore and germ tube. Urease negative, ferment glucose, sucrose and galactose but not lactose	*Candida tropicalis*
5	Creamy in colour, slightly smooth in chains, glabrous, pseudo-hyphae were formed with large globose to ellipsoidal cells with multilateral budding, colonies have pseudohyphae	*Saccharomyces cerevisiae*

Table 3. Bacterial load (x10^5 CFU/g) of mungbeans fortified and unfortified gari samples

Samples	0 HOUR	24 HOUR	48 HOUR	72 HOUR	96 HOUR
Sample A	2.10	2.25	2.00	1.61	1.50
Sample B	2.20	2.30	2.00	1.63	1.82
Sample C	2.35	2.45	1.62	1.72	1.51
Sample D	1.53	1.75	1.40	1.32	1.21

Data are presented as Mean ± S.E (n=3). Values along the same column are not significantly different (P < 0.05)

Keys: Sample A= 5% SMF (100 g SMF + 1900 g CM), Sample B= 10% SMF (200 g SMF + 1800 g CM), Sample C= 15% SMF (300 g MBF + 1700 g CM), Sample D=0%SMF (0 g SMF + 2000 g CM) (Control)

Table 4. Yeast load (x10^5 SFU/g) of Mungbeans Fortified and Unfortified gari samples

Samples	0 HOUR	24 HOUR	48 HOUR	72 HOUR	96 HOUR
Sample A	1.81±0.11^b	1.66±0.06^b	1.31±0.01^b	1.01±0.01^a	0.65±0.05^a
Sample B	1.61±0.11^ab	1.45±0.05^ab	1.11±0.01^a	0.79±0.09^a	0.45±0.05^a
Sample C	1.46±0.05^1	1.25±0.05^1	1.12±0.02^1	0.80±0.10^1	0.65±0.05^1
Sample D	2.16±0.06^6	1.96±0.06^6	1.86±0.06^6	1.07±0.03^6	0.95±0.05^6

Data are presented as Mean ± S.E (n=3). Values with the same superscript letter(s) along the same column are not significantly different (P < 0.05)

Keys: Sample A= 5% SMF (100 g SMF + 1900 g CM), Sample B= 10% SMF (200 g SMF + 1800 g CM), Sample C= 15% SMF (300 g MBF + 1700 g CM), Sample D=0%SMF (0 g SMF + 2000 g CM) (Control)

Molecular techniques are rapid, less laborious, more sensitive, specific and efficient compared to the conventional method [13]. This result revealed a difference in cultural identification of *Lactobacillus plantarum*, *Micrococcus roseus* and *Lactobacillus fermentum*. A similar observation was also reported by Akinyemi and Oyelakin [13], who reported differences in conventional method and molecular method of bacteria identification. However, the results of this study demonstrate clearly the interest and feasibility to introduce the 16S rRNA gene sequencing method in identification of bacteria, combination of conventional techniques and molecular approach will improve bacteriological investigation and authentication, allowing specific and efficient identification of microorganisms as against cultural method that is probable.

The microbial load was observed throughout the five days of fermentation. The increase in the total bacteria (CFU/ml) of the fermented samples observed during the first few days of fermentation showed that the microorganisms have adapted physiologically to the culture conditions and are now in the exponential phase. This agrees with the view of Yate and Smotzer (2007) who reported that in a batch culture, after
physiological adaptation of microorganisms to culture condition follows an exponential phase. Subsequent reduction in the bacteria counts observed after the increase could be as a result of the accumulation of toxic wastes material, depletion of nutrient and overpopulation of the organism thereby resulting in their ultimate death (Koffler, 2016). This could also justify the reduction in the yeast count (CFU/ml) that was observed throughout the fermentation duration. However, the increase in the total lactic acid bacteria throughout the fermentation period could be associated to the reduce pH in the fermenting medium during the fermentation.

The decrease in pH value and increase in titratable acidity of fermented samples may be due to the production of organic acids such as the lactic acid in the samples. This is in agreement with the findings of Akinrotoye [9] who reported a decrease in the pH when checking for the effect of fermented palm wine on some diarrhoeagenic bacteria.

Table 5. Lactic Acid Bacterial load (x10⁵ CFU/g) of Mungbeans Fortified and Unfortified gari samples

Samples	0 HOUR	24 HOUR	48 HOUR	72 HOUR	96 HOUR
Sample A	1.13±0.02³	1.36±0.05³	1.56±0.06³	1.62±0.02³	1.70±0.00³
Sample B	1.22±0.01⁰	1.47±0.06⁰	1.76±0.05⁰	1.79±0.02⁰	1.82±0.02³
Sample C	1.24±0.02⁰	1.55±0.06⁰	1.57±0.05⁰	1.66±0.05⁰	1.74±0.04⁰
Sample D	1.10±0.02⁰	1.13±0.03⁰	1.16±0.05⁰	1.91±0.10³	1.92±0.15³

Data are presented as Mean ± S.E (n=3). Values with the same superscript letter(s) along the same column are not significantly different (P < 0.05; Keys: Sample A= 5% SMF (100 g SMF + 1900 g CM), Sample B= 10% SMF (200 g SMF + 1800 g CM), Sample C= 15% SMF (300 g MBF + 1700 g CM), Sample D=0%SMF (0 g SMF + 2000 g CM) (Control))

Table 6. Molecular identification of isolated bacteria and yeast

Cultural and biochemical Identification	Gene sequence identification	Max Identity	Accession number
Lysinibacillus spp	Lysinibacillus alkalosoli	100	NR156042.1
Proteus mirabilis spp	Proteus mirabilis	99	NR113344.1
Pediococcus spp	Pediococcus acidilactici	99	NR042057.9
Lactobacillus spp	Lactobacillus plantarum	98	NR104573.1
Staphylococcus spp	Staphylococcus aureus	97	NR037007.2
Bacillus spp	Bacillus subtilis	98	NR102783.2
Bacillus spp	Bacillus cereus	99	NR074504.1
Penicillium sclerotiorum	Penicillium sclerotiorum	98	MH484008.1
Diutina spp	Diutina catenulata	100	MK394156.1
Rhizopus stolonifer	Rhizopus stolonifer	98	AB025735.1
Trichoderma spp	Trichoderma viridae	99	MK318057.1
Saccharomyces spp	Saccharomyces cerevisiae	99	CP036473

Table 7. pH Changes during fermentation of samples

Samples	0 HOUR	24 Hours	48 Hours	72 Hours	96 Hours
Sample A	5.05±0.15⁰	4.80±0.20⁰	4.30±0.20⁰	3.10±0.10⁰	3.10±0.10⁰
Sample B	6.00±0.20⁰	5.33±0.12⁰	4.55±0.15⁰	3.60±0.20⁰	3.50±0.10⁰
Sample C	6.05±0.25⁰	5.21±0.11⁰	4.35±0.25⁰	3.80±0.10⁰	3.75±0.15⁰
Sample D	6.35±0.15⁰	5.58±0.18⁰	4.75±0.15⁰	3.90±0.13⁰	3.65±0.15⁰

Data are presented as Mean ± S.E (n=3). Values with the same superscript letter(s) along the same column are not significantly different (P < 0.05; Keys: Sample A= 5% SMF (100 g SMF + 1900 g CM), Sample B= 10% SMF (200 g SMF + 1800 g CM), Sample C= 15% SMF (300 g MBF + 1700 g CM), Sample D=0%SMF (0 g SMF + 2000 g CM) (Control))

Table 8. Titratable acidity changes during fermentation of samples

Samples	0 Hour	24 Hours	48 Hours	72 Hours	96 Hours
Sample A	0.32±0.02⁰	0.38±0.01⁰	0.48±0.02⁰	0.49±0.03⁰	0.50±0.01⁰
Sample B	0.33±0.02⁰	0.34±0.01⁰	0.35±0.01⁰	0.41±0.01⁰	0.46±0.01⁰
Sample C	0.41±0.01⁰	0.55±0.02⁰	0.61±0.10⁰	0.63±0.01⁰	0.64±0.01⁰
Sample D	0.30±0.02⁰	0.35±0.02⁰	0.37±0.02⁰	0.39±0.02⁰	0.46±0.01⁰

Data are presented as Mean ± S.E (n=3). Values with the same superscript letter(s) along the same column are not significantly different (P < 0.05; Keys: Sample A= 5% SMF (100 g SMF + 1900 g CM), Sample B= 10% SMF (200 g SMF + 1800 g CM), Sample C= 15% SMF (300 g MBF + 1700 g CM), Sample D=0%SMF (0 g SMF + 2000 g CM) (Control))
5. CONCLUSION

The outcome of this research showed that co-fermentation of cassava mash and sprouted mung bean flour eliminates pathogenic microorganisms such as *Proteus* spp, *Staphylococcus* spp, *Bacillus* spp, *Diutina* spp and *Trichoderma* spp and encourages the growth of beneficial microorganism such as *Lactobacillus plantarum*, *Pediococcus* spp, *Penicillium* spp and *Saccharomyces cerevisiae* in mung bean fortified Gari production.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Sandor EK. Wild Fermentation: the flavor, nutrition and Craft of Live-culture Foods. Chelsea Green Publishing; 2003.
2. FAO (Food and Agriculture Organization). The State of Food and Agriculture 2014. Innovation in family farming. Rome; 2014. Available:www.fao.org/3/a-i4040e.pdf).
3. Ezinwanyi AY, Ndaeyo EN. Proximate compositions, physicochemical and sensory properties of gari fortified with soybean, melon seed and moringa seed flour. International Journal of Nutrition and Food Sciences. 2010;7;6(2):105-110.
4. Onasoga MO, Ayodele DO, Oyeyipo OO. Chemical change during the fortification of cassava meal with African Breadfruit Residue, Journal of Applied Sciences in Environment Magement. 2014;18(3):506-512.
5. Olasore AH, Samuel TA. Gari based kwashiorkorogenic diets compromised some renal functions in albino rats. Asian Journal of Clinical Nutrition. 2010;2:215-220.
6. AVRDC. Mung bean. Asian Vegetable Research and Development Center - The World Vegetation Center; 2012.
7. Mogotsi KK. Vigna radiata (L.) R. Wilczek. In: Brink, M. & Belay, G. (Editors). PROTA 1: Cereals and pulses/Céréales et légumes secs. [CD-Rom]. PROTA, Wageningen, Netherlands; 2006.
8. James B, Okechukwu R, Abass A, Fannah S, Maziya-Dixon B, Sanni L, Osei-Sarfoh A, Fomba S, Lukombo S. Producing gari from Cassava: An illustrated guide for smallholder cassava processors; 2012.
9. Akinrotoye KP. Effects of fermented palm wine on some diarrhoeagenic bacteria. Elite Research Journal Biotechnology Microbiology. 2014;2(1):4–14.
10. Fawole MO, Oso BA. Laboratory Manual of Microbiology, Spectrum books limited. 2012:2:112-121.
11. AOAC. Official methods of analysis of AOAC International 19th Edition. Gaithersburg, MD, USA, Association of Analytical Communities. 2012:35-60.
12. Enujigha VN. Chemical and functional characteristics of conophor nut'. Pakistan Journal of Nutrition. 2009;2(6):335–338.
13. Akinyemi AA, Oyelakin OO. Molecular characterization of bacteria isolates from farm-raised catfish Clarias garpinus (Burchell, 1822). British Microbiology Research Journal. 2014;4(12):1345-1352.

© 2019 Bayode and Okhonlaye; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.