Geoepidemiologic variation in outcomes of primary sclerosing cholangitis

Tej I Mehta, Simcha Weissman, Brian M Fung, James H Tabibian

ORCID number: Tej I Mehta (0000-0001-6866-0054); Simcha Weissman (0000-0002-0796-6217); Brian M Fung (0000-0002-2558-5733); James H Tabibian (0000-0001-9104-1702).

Author contributions: Weissman S and Mehta TI assisted with data acquisition, analyses, and manuscript preparation; Weissman S, Mehta TI and Tabibian JH drafted and critically revised the manuscript; Fung BM critically revised the manuscript and provided input regarding methodology; Tabibian JH provided direct supervision and guidance; Weissman S and Tabibian JH are the article guarantors; all authors agree to the final version of this manuscript.

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Abstract

Primary sclerosing cholangitis (PSC) is a chronic, progressive, hepatobiliary disease characterized by inflammation and fibrosis of the intra- and extra-hepatic bile ducts. Its natural history is one that generally progresses towards cirrhosis, liver failure, cholangiocarcinoma, and ultimately disease-related death, with a median liver transplantation-free survival time of approximately 15-20 years. However, despite its lethal nature, PSC remains a heterogenous disease with significant variability in outcomes amongst different regions of the world. There are also many regions where the outcomes of PSC have not been studied, limiting the overall understanding of this disease worldwide. In this review, we present the geoepidemiologic variations in outcomes of PSC, with a focus on survival pre- and post-liver transplantation as well as the concurrence of inflammatory bowel disease and hepatobiliary neoplasia.

Key words: Cholangiocarcinoma; Inflammatory bowel disease; Liver transplantation; Geography; Biliary tract; Autoimmune

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: There appears to be considerable geoepidemiologic variation in the outcomes of primary sclerosing cholangitis (PSC). Median liver transplantation-free survival in adults with PSC ranges from 14 to 21 years, depending on geographic region. Post-liver transplantation survival for PSC in North America and Europe appears to be nearly twice
that found in Asia. The overall average risk of cholangiocarcinoma among patients with PSC is approximately 400 times that of the general population, occurring in roughly 7%-9% of all patients with PSC. However, these rates vary from region to region, with East Asia having rates roughly three-times higher compared to other regions. Studies from North America, Europe, and Oceania generally report worse clinical outcomes for patients with PSC-inflamatory bowel disease compared to patients with only PSC or inflammatory bowel disease; however, this association is less prominent in studies from Asia.

INTRODUCTION

Primary sclerosing cholangitis (PSC) is a chronic, cholestatic liver disease of unclear etiopathogenesis with a wide spectrum of presentations\(^1\). The natural history of PSC is one that generally progresses to cirrhosis, liver failure, and death\(^2,3,4\). PSC most often affects males in the fourth decade of life, though males as well as females of all ages may be affected. It is also strongly associated with inflammatory bowel disease (IBD)\(^5,6\). Though a rare disease, PSC is the fifth leading indication for liver transplantation (LT) in the United States and a major indication in other countries\(^6,7,8\).

Moreover, no medical therapy has been shown to significantly delay PSC progression; indeed, it has been suggested that PSC treatments are one of the greatest unmet needs in hepatology\(^9,10\).

Despite the global incidence of PSC, outcomes data are lacking from certain regions of the world. Additionally, few studies have looked at the specific subset of patients with PSC and concurrent IBD (PSC-IBD) with respect to the frequency of their concurrence and the impact on disease-related outcomes. To this end, we queried the PubMed and EMBASE databases on PSC and PSC-IBD related outcomes and abstracted the available relevant data. Based on our findings, we herein review the geoepidemiologic variation in the outcomes of PSC, focusing particularly on LT-free, overall, and post-LT survival, as well as the concurrence of PSC with IBD, and the association of PSC with hepatobiliary and other malignancies.

OUTCOMES IN PRIMARY SCLEROSING CHOLANGITIS

Geographic variations in survival

Survival in patients with PSC is highly variable with patient demographics and disease severity playing a large role in this variation. Global LT-free survival (survival free of liver-related death or LT) and global overall survival (OS) among patients with PSC has recently been reported to be 15-20 years from time of diagnosis, though significant variation exists (Table 1). Historically, European and North American studies have reported a median time from diagnosis to death or LT of 10 to 12 years\(^1,8,11,12\). Recent studies have suggested longer survival times, though this may be due to the fact that until recently, there have only been a small number of outcomes-based studies examining survival in PSC\(^6,11-14\). Technological advances in LT may also play a role in the metric of LT-free survival (as higher frequencies of LT and/or LT performed at younger ages can decrease LT-free survival). In Europe, Asia, and Oceania, median LT-free survival time appears to be 20 years or more\(^1,11,12\). However, this statistic does not provide a complete picture. In a Netherlands-based study, Boonstra et al\(^1\) reported the median LT-free survival for all patients with PSC to be 21.3 years\(^1\). However, median LT-free survival of the subset of patients with PSC treated at LT centers was only 13.2 years\(^1\). In a Japan-based study, Kumagai et al\(^1\) noted a median LT-free survival and OS of 18 years, though these patients were recruited from a LT center. Median LT-free survival and OS in some regions, such as Israel, even reach as high as 23.5 and 26.3 years, respectively\(^14\). Indeed, survival among patients with PSC may be increasing, but major confounding factors such as availability of LTs, patient criteria for LTs, as well as competing survival risks and
variable ages at disease presentation may disproportionately influence apparent LT-free survival in various regions. Furthermore, few if any studies have been performed in Central and South America, Africa, and much of Asia; thus, trends and comparisons of survival in these regions cannot be accurately performed at this time (Figure 1).

Overall, patients with PSC have a three- to four-fold increased risk of all-cause mortality compared to the general population[1,16-20]. Across reported regions, the leading causes of death among patients with PSC are cholangiocarcinoma (CCA), liver failure, LT-related complications, and colorectal cancer[3,21-23]. In Asia, liver dysfunction is reported as the most common cause of death in patients with PSC (40%-70%), whereas in Europe and North America the plurality (40%-50%) of PSC-related deaths are due to cancer[30,31,42].

Variations in post-liver transplant survival

LT is the treatment of choice for patients with advanced PSC-related hepatobiliary disease. Current practice guidelines support referral for LT when patients develop a Model for End-stage Liver Disease score of 15 or greater, a Child-Pugh-Turcotte classification of C, or when LT may significantly improve quality of life, such as in the case of intractable pruritis[32,36-39]. However, data regarding time to LT are often difficult to compare between populations because: (1) Studies at referral centers generally have patients with more severe disease, and thus may be more likely to receive a LT (Berkson’s bias); and (2) Patients living in countries/regions with greater health care access may be more likely to receive LTs. For example, the increased availability of LT centers in Europe and North America has significantly altered clinical outcomes such that nearly 50% of patients with PSC treated in these countries receive LTs[30]. In contrast, only approximately 4%-12% of patients in Asian countries receive LTs[30,31]. A major reason for this is that certain countries, such as Japan, have significant shortages of brain death donors and thus rely heavily on living donor LTs[30].

Various European and American studies have reported 1, 3, 5, and 10-year post-LT survival rates in the 70% to 90% range; however, post-LT survival in Asia appears lower with 5 and 10 year post-LT survival rates in the range of 55% to 75%[25,50-52]. Regional differences in post-LT survival may, in part, be due to overall greater clinical experience with LTs in Europe and North America or variations in patient selection criteria across regions. However, other factors may also play a role. Genetic differences, such as human leukocyte antigen profiles, have been associated with LT success rates, and the genetic underpinnings of PSC may help to explain some of the observed differences[32,50]. One North American study explored the risk of LT listing among patients with PSC and identified significantly different HLA associations among various ethnic groups. In particular, European Americans and Hispanics with PSC listed for LT had similar HLA profiles, but African Americans displayed a different HLA profile[40]. In addition, African Americans were more likely to have severe PSC-related disease than other ethnic groups in this study independent of socioeconomic factors, suggesting that genetics may contribute to PSC phenotype[40]. Unfortunately, linkage disequilibrium patterns, associations with HLA-DRB1, HLA-B, and other non-HLA genes as well as varying nomenclature and typing methodologies across regions over time currently preclude the clinical utility of PSC genotyping[41]. Of note, limited data on post-LT survival in pediatric patients with PSC are available; one North American study reported the 5-year LT-free survival among children with PSC to be 78%[40].

Geographic variations in post-transplant PSC recurrence

Approximately 20%-25% of patients with PSC experience disease recurrence post-LT, though this rate varies by cohort[40]. Recurrent PSC (rPSC) carries the potential need for re-LT and increased risk of mortality. The etiology of rPSC is unknown, but various studies have attempted to identify possible risk factors for recurrent disease. Across regions, pre-LT colectomy has been associated with reduced risk of rPSC, whereas increased age, presence of IBD, increased Model for End-stage Liver Disease score, acute cellular rejection, and pre-LT CCA have been associated with increased risk of rPSC[40]. Time-to-recurrence post-LT also appears to be similar across regions with a median time to recurrence of 5.1 years and a range spanning a few months to multiple decades[43]. Of note, among studies examining rPSC, the median age at LT appears to be younger in Asian studies compared with the global average (approximately 33 years vs 45 years, respectively)[22,26-29,32,41]. However, as stated previously, most of these data come from European and North American LT centers, possibly limiting prognostication to other regions. Analyses of LT-free survival, OS, and time to LT were conducted using weighted averages of studies from each reported geographic region (Table 1).
Table 1 Overall and regional primary sclerosing cholangitis clinical outcomes in terms of overall survival (measured in years) and incidence of cholangiocarcinoma

Region	Studies (n)	Total patients (n)	Age at diagnosis (yr)	PSC-IBD co-incidence (%)	Transplant free survival (yr)	Overall survival (yr)	Time to LT (yr)	Annual incidence CCA \(^1\)
Africa	0	0	-	-	-	-	-	-
Asia	9	711	39	39%	20.8	23.6	3.5	1503
Europe	18	3993	35	74%	17.3	14.8	4.9	303
North America	14	1155	31	66%	14.5	13.8	3	642
South America	1	21	7	24%	-	-	-	433
Oceania	4	416	47	79%	23.3	10	8	439
International	1	7121	39	73%	14.5	-	-	-
Overall	47	13417	37	71%	15.9	15.3	4.6	500

\(^1\)Among PSC per 100000. PSC: Primary sclerosing cholangitis; IBD: Inflammatory bowel disease; CCA: Cholangiocarcinoma; LT: Liver transplantation.

PRIMARY SCLEROSING CHOLANGITIS AND INFLAMMATORY BOWEL DISEASE

Geographic variations in PSC-IBD

Long-established associations and complex interactions exist between PSC and IBD. The PSC-IBD phenotype is distinct with outcomes different from those seen in PSC or IBD alone. Moreover, geographic variations may exist in the PSC-IBD phenotype. In particular, studies from Oceania have noted patients with PSC-IBD to be at an increased risk of death and increased risk of gastrointestinal or hepatobiliary malignancies than patients with PSC alone\(^{45,46}\). In contrast, multiple studies from Asia have not identified significant differences in these outcome measures between patients with PSC-IBD and PSC alone\(^{16,17}\). A study from Iran even noted favorable outcomes for patients with PSC-UC relative to those with UC alone\(^{47}\). However, there are also studies from Asia suggesting worse outcomes in PSC-IBD; one study from South Korea found an increased risk of colorectal neoplasia and a trend towards increased mortality in patients with PSC-UC compared to those with UC alone\(^{48}\). Studies from North America generally report worse outcomes for patients with the PSC-IBD phenotype, with most studies suggesting a significantly increased risk of neoplastic disease, rPSC, and potentially earlier onset of rPSC post-LT\(^{49-54}\). Studies from Europe appear to have similar findings to that of North America; patients with PSC-IBD appear to have an increased risk of neoplastic disease, particularly colorectal dysplasia, compared to patients with either PSC or IBD alone\(^{1,55}\). However, European studies generally have not identified significant survival differences between patients with PSC-IBD and PSC alone\(^{11,55,56}\).

Differences concerning age at presentation of PSC and PSC-IBD appear to remain highly variable. Multiple studies from various regions have noted that patients with PSC-IBD present at an earlier age than patients with PSC alone, but there are also studies in similar regions that have not identified significant age differences\(^{11,16,17,45,46,49}\). Whether this is due to IBD-related symptomatology leading to an earlier age of diagnosis and thus lead-time bias or if the PSC-IBD phenotype itself tends to present at an earlier age is unclear\(^{57}\).

PSC-IBD concurrence rates appear to vary between regions. Roughly 65% of patients with PSC in Western countries have concurrent IBD, whereas only 30% of patients with PSC in East Asian countries have concurrent IBD\(^{8,17,30}\). Interestingly, among patients with PSC-IBD in Europe and East Asian countries, the concurrence of PSC-UC was similar at approximately 80%\(^{13,17,30,39}\). However, studies from Central Asia and the Middle East have more variable results. Generally, PSC-IBD concurrence rates in these regions are reported as similar to those in Europe, but PSC-UC concurrence rates are much lower, often under 60%\(^{13,17,30}\). Lastly, some regions, such as central and southern Europe, Alaska, and northern Canada have identified either very low or even no concurrence of PSC with IBD\(^{8,13,30}\).
Figure 1 Locations of all studies reporting liver transplantation-free and overall survival in primary sclerosing cholangitis.

PRIMARY SCLEROSSING CHOLANGITIS AND NEOPLASIA

Geographic associations with cholangiocarcinoma

PSC is a major risk factor for the development of CCA. The risk of CCA among patients with PSC is roughly 400 times that of the general population[1]. The global annual incidence of CCA is approximately 500 per 100000 patients with PSC, or 0.5% annually (Table 1).

The annual incidence of CCA among adult and pediatric patients with PSC is roughly 7%-9% across populations, though estimates in North America vary greatly, with reported incidences as low as 4% and as high as 20%[1,11,42-67]. The highest annual incidence of CCA is in Asia, with incidences as high as three times the global average; the reason for this elevated incidence is unknown (Table 1)[16,35,60,68,69]. Interestingly, the highest non-PSC related rates of CCA are also seen in Asia, suggesting another variable (e.g., parasitic infections and chronic viral hepatitis) may be playing a role in the high rate of CCA[70].

Data regarding duration of PSC and risk of CCA are variable, with several studies suggesting PSC increases the risk of CCA over time while other studies have not found the same association[1,65]. This may be due to the fact that the presence of CCA in patients with PSC is often occult (with at least 10% of patients with PSC having “silent” CCA for significant lengths of time), thus the true time to development of carcinoma is unclear[71]. Interestingly, both duration of IBD among PSC-IBD patients and colorectal neoplasia (CRN) among PSC-UC patients increase the risk of CCA development[72].

Geographic associations with colorectal neoplasia

IBD confers an increased risk of CRN and PSC-IBD further increases the risk of CRN above that of IBD alone[73]. Of note, some studies have reported an increased risk of CRN among PSC-UC patients compared to UC patients but not among PSC-IBD patients relative to IBD patients, implying a specific disease interaction between PSC and UC[72-75].

While regional differences in PSC-IBD associated CRN are difficult to ascertain, it is known that post-LT colorectal neoplasia is of particular concern in patients with PSC and PSC-IBD[22]. Among post-LT PSC-IBD patients, the risk of CRN rises by approximately 1% per year post-LT[22-24]. As such, it is possible that rates of CRN among PSC-IBD patients may be greater in European and North American countries owing to the increased frequency of LT in these regions, though there is little evidence to support this directly. Annual endoscopic monitoring is considered standard of care among PSC-IBD patients[77].

LIMITATIONS

Geographic reporting of PSC-related outcomes is heterogenous, with the majority of studies coming from Europe and North America, a limited number of studies from Asia and Oceania, and very few studies from South America and Africa, hence
summary estimates were not amenable to meta-analysis. Moreover, the reporting of results differs even within similar regions, making comparisons challenging. For example, within one region, one study may report LT-free survival while another study may report OS, limiting the ability to make comparisons. Additionally, PSC case identification, outcomes, and other factors may have changed over time. Therefore, when comparing studies from one region to another we may be comparing them not only based on where the studies took place, but when they took place, potentially confounding results. Lastly, our search was limited to studies available in English, which may have left out studies from non-English speaking regions.

CONCLUSION

Studies on global PSC-related outcomes have increased over the years allowing for novel analyses of regional differences. Causes of PSC-related death vary globally, with liver dysfunction being the primary cause of PSC-related death in Asia, and cancer being the primary cause in both Europe and North America. Although notably, there is a significantly greater rate of CCA in East Asia than the rest of the world. Interestingly, PSC-IBD concurrence rates vary across regions, yet the proportions of PSC-IBD subtypes are largely consistent across regions. Likewise, PSC-IBD related outcomes appear largely consistent across regions. As most studies of PSC have been conducted in the United States and Western European countries, with a paucity of data from other regions, the need for large population-based studies in under-reported regions is imperative to better understand global and regional PSC-related outcomes.

REFERENCES

1. Boonstra K, Weersma RK, van Erpecum KJ, Raams EA, Spanier BW, Poon AC, van Nieuwkerk KM, Drenth JP, Witteman BJ, Tuynman HA, Naber AH, Kingma PJ, van Buuren HR, van Hoek B, Vlieggaar FP, van Geloven N, Beuers U, Ponsioen CY. EpiPSCBPC Study Group. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. *Hepatology* 2013; 58: 2045-2055 [PMID: 23775876 DOI: 10.1002/hep.26565]
2. Molodecky NA, Karemni H, Parah R, Barkema HW, Quan H, Myers RP, Kaplan GG. Incidence of primary sclerosing cholangitis: a systematic review and meta-analysis. *Hepatology* 2011; 53: 1590-1599 [PMID: 21351115 DOI: 10.1002/hep.24247]
3. Bjorno K, Brandsaeter B, Foss A, Schrupp E. Liver transplantation in primary sclerosing cholangitis. *Semin Liver Dis* 2006; 26: 69-79 [PMID: 16496235 DOI: 10.1053/j.sld.2006.01.005]
4. Karlsen TH, Borgen KM. Update on primary sclerosing cholangitis. *J Hepatol* 2013; 59: 571-582 [PMID: 23603686 DOI: 10.1016/j.jhep.2013.03.015]
5. Tahibian JH, Bowlus CL. Primary sclerosing cholangitis: A review and update. *Liver Res* 2017; 5: 221-230 [PMID: 29977544 DOI: 10.1016/j.livres.2017.12.002]
6. Farrant JM, Haylar KM, Wilkinson ML, Karani J, Portmann BC, Westaby D, Williams R. Natural history and prognostic variables in primary sclerosing cholangitis. *Gastroenterology* 1991; 100: 1710-1717 [PMID: 1850376 DOI: 10.1016/0016-5085(91)90073-9]
7. Schrupp E, Abdelnoor M, Fausa O, Elgjo K, Jensen E, Kolmannskog F. Risk factors in primary sclerosing cholangitis. *J Hepatol* 1994; 21: 1061-1066 [PMID: 7699228 DOI: 10.1016/S0168-8278(05)80613-X]
8. Tischendorf JJ, Hecker H, Krüger M, Manns MP, Meier PN. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: A single center study. *Am J Gastroenterol* 2007; 102: 107-114 [PMID: 17075993 DOI: 10.1111/j.1572-0241.2006.00872.x]
9. Dyson JK, Webb G, Hirschfield GM, Lobse A, Beuers U, Lindor K, Jones DE. Unmet clinical need in autoimmune liver diseases. *J Hepatol* 2015; 62: 208-218 [PMID: 2524946 DOI: 10.1016/j.jhep.2014.09.010]
10. Laborda TJ, Jensen MK, Kavan M, Deneau M. Treatment of primary sclerosing cholangitis in children. *World J Hepatol* 2019; 11: 19-36 [PMID: 30705716 DOI: 10.4254/wjh.v11.i19]
11. Broome U, Olsson R, Löf L, Bodenar G, Hultcrantz R, Danielsson A, Pryt H, Sandberg-Gertzén H, Wallerstedt S, Lindberg G. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. *Gut* 1996; 38: 610-615 [PMID: 8707097 DOI: 10.1136/gut.38.4.610]
12. Wiesner RH, Grambsch PM, Dickson ER, Ludwig J, MacCarty RL, Hunter EB, Fleming TR, Fisher LD, Beaver SJ, LaRusso NF. Primary sclerosing cholangitis: natural history, prognostic factors and survival analysis. *Hepatology* 1989; 10: 430-436 [PMID: 2777204 DOI: 10.1002/hep.1840100409]
13. Borgen KM, Aaldland E, Johnsen J, Raknerud N, Stiris M, Bell H. Incidence and prevalence of biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis in a Norwegian population. *Scand J Gastroenterol* 1998; 33: 99-103 [PMID: 9489916 DOI: 10.1080/003358398105616284]
14. Bambha K, Kim WR, Talwalkar J, Torgerson H, Benson JT, Themen TM, Lothus EV, Yawn BP, Dickson ER, Melton LJ. Incidence, clinical spectrum, and outcomes of primary sclerosing cholangitis in a United States community. *Gastroenterology* 2003; 125: 1364-1369 [PMID: 14598252 DOI: 10.1016/j.gastro.2003.07.011]
15. Freeman E, Majeed A, Kemp W, Roberts SK. Long-term outcomes of primary sclerosing cholangitis: an Australian non-transplant tertiary hospital perspective. *Intern Med J* 2019; 49: 323-327 [PMID: 30043218 DOI: 10.1111/imj.14081]
16. Yanai H, Matalon S, Rosenblatt A, Awadie H, Berdichevsky T, Snir Y, Kopylov U, Katz L, Stein A, Mlynarsky L, Tulchinsky H, Konikoff FM, Horin SB, Braun M, Ben-Ari Z, Chowers Y, Baruch Y,
Shibooli O, Dotan I. Prognosis of primary sclerosing cholangitis in Israel is independent of coexisting inflammatory bowel disease. *Crohns Collitis* 2015; 5: 177-184 [PMID: 25518055 DOI: 10.1093/ccoja/ccv013]

Kumagai J, Taida T, Ogawara S, Nakagawa T, Iino Y, Shingyoji A, Ishikawa K, Akizue N, Yamato M, Takahashi K, Ohta Y, Hamanaka S, Okimoto K, Nakamura M, Ohyama H, Saito K, Kusakabe Y, Maruoka D, Yasui S, Matsumura T, Sugiyama H, Sakai Y, Mikata R, Arai M, Katsuno T, Tsyusugechi T, Kato N. Clinical characteristics and outcomes of primary sclerosing cholangitis and ulcerative colitis in Japanese patients. *PLoS One* 2018; 13: e0209352 [PMID: 28571774 DOI: 10.1371/journal.pone.0209352]

Card TR, Solaymani-Doroud M, West J. Incidence and mortality of primary sclerosing cholangitis in the UK: a population-based cohort study. *J Hepatology* 2008; 48: 939-944 [PMID: 18433916 DOI: 10.1016/j.jhep.2008.02.017]

Liang H, Manne S, Shick J, Lissoos T, Dolin P. Incidence, prevalence, and natural history of primary sclerosing cholangitis in the United Kingdom. *Medicine (Baltimore)* 2017; 96: e7116 [PMID: 28614231 DOI: 10.1097/MD.0000000000007116]

Cheung KS, Seto WK, Fung J, Lai CL, Yuen MF. Prognostic Factors for Transplant-Free Survival and Validation of Prognostic Models in Chinese Patients with Primary Biliary Cholangitis Receiving Ursodeoxycholic Acid. *Clin Transl Gastroenterol* 2017; 8: e100 [PMID: 28640288 DOI: 10.1038/cgastro.2017.23]

Karlsen TH, Folseras T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. *J Hepatology* 2017; 67: 1298-1323 [PMID: 28802875 DOI: 10.1016/j.jhep.2017.07.022]

Chapman MH, Thorburn D, Hirschfield GM, Webster GJ, Rushbrook SM, Alexander G, Collier J, Dyson JK, Jones DE, Patanwala I, Thain C, Walmesley M, Pereira SP. British Society of Gastroenterology and UK-PSC guidelines for the diagnosis and management of primary sclerosing cholangitis. Gut 2019; 68: 1356-1378 [PMID: 31154395 DOI: 10.1136/gutjnl-2018-317993]

Weismuller TJ, Trivedi PJ, Bergquist A, Imam M, Lenzen H, Ponsioen CY, Holm K, Gothardt D, Farkkiili MA, Marschall HU, Thorburn D, Weersma RK, Fevery J, Mullier T, Chazouilleres O, Schulze K, Lazaridis KN, Almer S, Pereira SP, Levy C, Mason A, Naess S, Bowlsu CL, Florenati A, Hallbasica E, Yamani KK, Milkiewicz P, Beuers U, Huhnh NK, Huhnh NSK, Invernessi P, Berg CP, Kirchner GR, Sarrazin C, Zimmer V, Fabris L, Braun F, Marzioni M, Jurand BD, Said K, Rupp C, Jokelainen K, Benito de Valle M, Safiost F, Cheung A, Trauner M, Schramm C, Chapman RW, Karlsen TH, Schumpf E, Strassburg CP, Manns MP, Lindor KD, Hirschfield GM, Hansen BE, Boberg KM; International PSC Study Group. Patient Age, Sex, and Inflammatory Bowel Disease Phenotype Associate With Course of Primary Sclerosing Cholangitis. *Gastroenterology* 2017; 152: 1975-1984.e8 [PMID: 28274849 DOI: 10.1053/j.gastro.2017.02.038]

Chapman RW. Update on primary sclerosing cholangitis. *Clin Liver Dis (Hoboken)* 2017; 9: 107-110 [PMID: 28099791 DOI: 10.1016/CLD.633]

Tanaka A, Takamori Y, Toda G, Ohnishi S, Takizaki H. Outcome and prognostic factors of 391 Japanese patients with primary sclerosing cholangitis. *Liver Int* 2008; 28: 983-989 [PMID: 18397233 DOI: 10.1111/j.1478-3220.2008.01726.x]

Lindor KD, Kowdle KV, Harrison ME; American College of Gastroenterology. ACG Clinical Guideline: Primary Sclerosing Cholangitis. *Am J Gastroenterol* 2015; 110: 646-59; quiz 660 [PMID: 25869391 DOI: 10.1038/ajg.2015.112]

Bittencourt PL, Canedo EL, Couto CA, Levy C, Porta G, Silva AE, Tarrabau DR. Brazilian Society of Hepatology on the Diagnosis and Management of Autoimmune Diseases of the Liver, Carvalho Filho RJ, Chaves DM, Miura IK, Codes L, Faria LC, Evangelista AS, Farias AQ, Goncalves LL, Harriz M, Lopes Neto EF, Luz GO, Oliveira P, Oliveira EM, Schiavon JL, Seva-Pereira T, Parise ER. Brazilian society of hepatology recommendations for the diagnosis and management of autoimmune diseases of the liver. *Arq Gastroenterol* 2015; 52 Suppl 1: 15-46 [PMID: 26958804 DOI: 10.1590/s0004-28032015000500002]

European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. *J Hepatology* 2009; 51: 237-267 [PMID: 19501929 DOI: 10.1016/j.jhep.2009.04.009]

Iyama H, Tazuma S, Kokudo N, Tanaka A, Tsyusuguchi T, Nakazawa T, Notoha K, Mizuno S, Akamatsu N, Serikawa M, Naitoh I, Hirooka Y, Wakai T, Ito I, Ebata T, Okaniwa S, Kamisawa T, Kawashima H, Kanno A, Kubota K, Tabata M, Unno M, Takizaki H; PSC guideline committee Members: Ministry of Health, Labour and Welfare (Japan) Research Project, The Intractable Hepatobiliary Disease European Association for the Study of Primary Sclerosing Cholangitis. *J Gastroenterol* 2018; 53: 1006-1034 [PMID: 29595129 DOI: 10.1002/jgs.5-18484-9]

Takakura WR, Tabibian JH, Bowlsu CL. The evolution of natural history of primary sclerosing cholangitis. *Curr Opin Gastroenterol* 2017; 33: 71-77 [PMID: 28030370 DOI: 10.1097/MOG.0000000000000333]

Tanaka A, Tazuma S, Nakazawa T, Iyama H, Tsyusuguchi T, Inui K, Takizaki H. No negative impact of serum IgG4 levels on clinical outcome in 435 patients with primary sclerosing cholangitis from Japan. *J Hepatobiliary Pancreat Sci* 2017; 24: 217-225 [PMID: 28103424 DOI: 10.1002/jhbp.432]

Ueda Y, Kaido T, Okajima H, Hata K, Annazawa T, Yoshizawa A, Yagi S, Taura T, Masui Y, Yamashiki N, Haga H, Nakanuma M, Marusawa H, Uemoto S. Long-term Prognosis and Recurrence of Primary Sclerosing Cholangitis After Liver Transplantation: A Single-Center Experience. *Transplant Direct* 2017; 3: e334 [PMID: 29536035 DOI: 10.1002/tdx.2000751]

Rossi RE, Conte D, Massironi S. Primary sclerosing cholangitis associated with inflammatory bowel disease: an update. *Eur J Gastroenterol Hepatol* 2016; 28: 123-131 [PMID: 26636407 DOI: 10.1097/MJG.0000000000001523]

Tamura S, Sugawara Y, Kaneko J, Matsu Y, Togashi J, Makuchi M. Recurrence of primary sclerosing cholangitis after living donor liver transplantation. *Liver Int* 2007; 27: 86-94 [PMID: 17241386 DOI: 10.1111/j.1478-3221.2006.01395.x]

Ang TL, Fock KM, Ng TM, Teo EK, Chua TS, Tan JY. Clinical profile of primary sclerosing cholangitis in Singapore. *J Gastroenterol Hepatol* 2002; 17: 908-913 [PMID: 12164967 DOI: 10.1046/j.1440-1746.2002.02835.x]

Egawa H, Ueda Y, Ichida T, Teramukai S, Nakanuma Y, Onishi S, Tsuobuchi H. Risk factors for recurrence of primary sclerosing cholangitis after living donor liver transplantation in Japanese registry. *Am J Transplant* 2011; 11: 518-527 [PMID: 21325158 DOI: 10.1111/j.1600-6143.2010.03402.x]

Emek E, Serin A, Sahin T, Yastici P, Yuzer Y, Tokat Y, Bozkurt B. Experience in Liver Transplantation Due to Primary Sclerosing Cholangitis: A Single Center Experience. *Transplant Proc* 2019; 51: 2459-2441
Christodoulou DK, Tsianos EV; Northwest Greece IBD Study Group. Prevalence of inflammatory bowel disease in Alaska Natives. *Am J Gastroenterol* 2002; 97: 2402-2407 [PMID: 12358264 DOI: 10.1111/j.1572-0241.2002.06019.x]

McMahon BJ, Deubner H, Hsu-Trawinski B, Williams JL, Kowdley KV. Prevalence of primary sclerosing cholangitis: an experience from India. *J Gastroenterol Hepatol* 1996; 11: 153-159 [PMID: 8743914 DOI: 10.1111/j.1440-1746.1996.tb00286.x]

Kochhar R, Goenka MK, Das K, Nagi B, Bhasin DK, Chawla YK, Vaiphei K, Singh K, Dilawari JB. Sclerosing cholangitis in Turkey. *Gut* 2001; 43: 562-566 [PMID: 12235081 DOI: 10.1136/gut.51.4.562]

Parlak E, Kugelmas M, Spiegelman P, Osgood MJ, Young DA, Trotter JF, Steinberg T, Wachs ME, Bak T, Kam I, Gelley F, Zádori G, Görög D, Kóbori L, Fevery J, Van Steenbergen W, Van Pelt J, Laleman W, Hoffman I, Geboes K, Vermeire S, Nevens F. Primary Sclerosing Cholangitis and IBD. *Am J Gastroenterol* 2016; 111: 705-711 [PMID: 27002801 DOI: 10.1038/ajg.2016.55]

Gulamhusein AF, Daryani NE, Bahrami H, Haghpanah B, Nayyer-Habibi A, Sadatsafavi M. Liver transplantation for sclerosing cholangitis. *Liver Transpl* 2003; 9: 727-732 [PMID: 12679790 DOI: 10.1053/jlts.2003.50143]

Liver Int 2011; 35: 1045-1053 [PMID: 2228605 DOI: 10.1053/jls.2012.05063.x]

Jeyarajah DR, Netto GJ, Lee SP, Testa G, Abbasoglu O, Husberg BS, Levy MF, Goldstein RM, Gowda TA, Tillery GW, Crippin JS, Klintalm GB. Recurrence primary sclerosing cholangitis after orthotopic liver transplantation: is chronic rejection part of the disease process? *Transplantation* 1998; 66: 1300-1306 [PMID: 9846552 DOI: 10.1097/00007890-199912070-00006]

Neumann UP, Guckelberger O, Langrehr JM, Lang M, Scharfenberg A, Menzel S, Klupp J, Neuaehaus P. Impact of human leukocyte antigen matching in liver transplantation. *Transplantation* 2003; 75: 132-137 [PMID: 12544880 DOI: 10.1097/01.TP.0000048590.200301.508242]

Eaton JE, Tabibian JH, Atkinson EJ, Juran BD, Lazaridis KN. Duration of cholangiography in a Dutch population. *Hepatology* 2004; 39: 153-159 [PMID: 15203079 DOI: 10.1002/hep.20066]

Maljaars PWJ. Systematic review with meta-analysis: risk factors for recurrent primary sclerosing cholangitis after liver transplantation. *Aliment Pharmacol Ther* 2019; 49: 636-643 [PMID: 30740723 DOI: 10.1111/apt.15148]

Ye JD, Yang SK, Bao SJ, Cho YK, Yang DH, Yoon SM, Kim KJ, Byeon JS, Myung SJ, Yu CS, Yoon SC, Kim JH. Clinical characteristics of ulcerative colitis associated with primary sclerosing cholangitis in Korea. *Inflamm Bowel Dis* 2011; 17: 1901-1906 [PMID: 21830268 DOI: 10.1002/ibd.21569]

Navaneethan U, Venkatesh PG, Lashner BA, Shen B, Kiran RP. Impact of ulcerative colitis on the long-term outcome of patients with primary sclerosing cholangitis. *J Hepatol* 2016; 65: 124-133 [PMID: 30837784 DOI: 10.1016/j.jhep.2016.07.014]

Bowlus CL, Li CS, Karlsen TTI, Lie BA, Selini C. Primary sclerosing cholangitis in genetically diverse populations listed for liver transplantation: unique clinical and human leukocyte antigen associations. *Liver Transpl* 2010; 16: 1324-1330 [PMID: 2013548 DOI: 10.1002/12161]

Navaneethan U, Venkatesh PG, Lashner BA, Shen B, Kiran RP. Impact of ulcerative colitis on the long-term outcome of patients with primary sclerosing cholangitis. *Aliment Pharmacol Ther* 2012; 35: 1045-1053 [PMID: 2228605 DOI: 10.1053/jls.2012.05063.x]

Jeyarajah DR, Netto GJ, Lee SP, Testa G, Abbasoglu O, Husberg BS, Levy MF, Goldstein RM, Gowda TA, Tillery GW, Crippin JS, Klintalm GB. Recurrence primary sclerosing cholangitis after orthotopic liver transplantation: is chronic rejection part of the disease process? *Transplantation* 1998; 66: 1300-1306 [PMID: 9846552 DOI: 10.1097/00007890-199912070-00006]

Gulamhusain AF, Eaton JE, Tabibian JH, Atkinson EJ, Jarun BD, Lazaridou KN. Duration of Inflammatory Bowel Disease Associated With Increased Risk of Cholangiocarcinoma in Patients With Primary Sclerosing Cholangitis and IBD. *Am J Gastroenterol* 2016; 111: 703-711 [PMID: 27002801 DOI: 10.1038/jga.2016.55]

Mathur R, Morgan AJ, Yeo JJ, Forner A, O’Morain C, Gurusamy K, McCollum M, Bhatnagar S, James O, Bonner J, Rutgeerts P, Socolowsky J, Doavig A, Fischbach D, Kozarek R, Chauhan A, Thaler T, Ballantyne AJ, Einstein D, Sheline D, Finegold M, Ward S, Arora S, Rau R, Mewissen M. Clinical course of patients with primary sclerosing cholangitis, in patients with and without primary sclerosing cholangitis. *Gastroenterology* 2009; 136: 1400-1406 [PMID: 19104720 DOI: 10.1053/j.gastro.2009.01.038]

Jeyarajah DR, Netto GJ, Lee SP, Testa G, Abbasoglu O, Husberg BS, Levy MF, Goldstein RM, Gowda TA, Tillery GW, Crippin JS, Klintalm GB. Recurrence primary sclerosing cholangitis after liver transplantation: is chronic rejection part of the disease process? *Transplantation* 1998; 66: 1300-1306 [PMID: 9846552 DOI: 10.1097/00007890-199912070-00006]

Jeyarajah DR, Netto GJ, Lee SP, Testa G, Abbasoglu O, Husberg BS, Levy MF, Goldstein RM, Gowda TA, Tillery GW, Crippin JS, Klintalm GB. Recurrence primary sclerosing cholangitis after orthotopic liver transplantation: is chronic rejection part of the disease process? *Transplantation* 1998; 66: 1300-1306 [PMID: 9846552 DOI: 10.1097/00007890-199912070-00006]

Jeyarajah DR, Netto GJ, Lee SP, Testa G, Abbasoglu O, Husberg BS, Levy MF, Goldstein RM, Gowda TA, Tillery GW, Crippin JS, Klintalm GB. Recurrence primary sclerosing cholangitis after liver transplantation: is chronic rejection part of the disease process? *Transplantation* 1998; 66: 1300-1306 [PMID: 9846552 DOI: 10.1097/00007890-199912070-00006]
disease related dysplasia and cancer in 1500 colonoscopies from a referral center in northwestern Greece. *J Crohns Colitis* 2011; 5: 19-23 [PMID: 21272799 DOI: 10.1016/j.crohns.2010.09.001]

64 Lakatos L, Pandur T, David G, Balogh Z, Kuronya P, Tollas A, Lakatos PL. Association of extraintestinal manifestations of inflammatory bowel disease in a province of western Hungary with disease phenotype: results of a 25-year follow-up study. *World J Gastroenterol* 2003; 9: 2300-2307 [PMID: 14562397 DOI: 10.3748/wjg.v9.i10.2300]

65 Lakatos L, Pandur T, David G, Balogh Z, Kuronya P, Tollas A, Lakatos PL. Association of extraintestinal manifestations of inflammatory bowel disease in a province of western Hungary with disease phenotype: results of a 25-year follow-up study. *World J Gastroenterol* 2003; 9: 2300-2307 [PMID: 14562397 DOI: 10.3748/wjg.v9.i10.2300]

66 Toy E, Balasubramanian S, Selmi C, Li CS, Bowls CL. The prevalence, incidence and natural history of primary sclerosing cholangitis in an ethnically diverse population. *BMC Gastroenterol* 2011; 11: 83 [PMID: 21767410 DOI: 10.1186/1745-6215-11-83]

67 Lutz HH, Tischendorf JJ. Management of primary sclerosing cholangitis. *Hepatology* 2010; 51: 660-678 [PMID: 20101749 DOI: 10.1002/hep.23294]

68 Toy E, Balasubramanian S, Selmi C, Li CS, Bowls CL. The prevalence, incidence and natural history of primary sclerosing cholangitis in an ethnically diverse population. *BMC Gastroenterol* 2011; 11: 83 [PMID: 21767410 DOI: 10.1186/1745-6215-11-83]

69 Lutz HH, Tischendorf JJ. Management of primary sclerosing cholangitis. *Hepatology* 2010; 51: 660-678 [PMID: 20101749 DOI: 10.1002/hep.23294]

70 Kirstein MM, Vogel A. Epidemiology and Risk Factors of Cholangiocarcinoma. *Visc Med* 2016; 32: 395-400 [PMID: 28229073 DOI: 10.1159/000453013]

71 Marsh JW, Iwatsuki S, Makowka L, Esquivel CO, Gordon RD, Todo S, Tzakis A, Miller C, Van Thiel D, Starzl TE. Orthotopic liver transplantation for primary sclerosing cholangitis. *Ann Surg 1988; 207: 21-25 [PMID: 2827553 DOI: 10.1097/00000658-198801000-00005]

72 Broome U, Löffberg R, Veress B, Eriksson L.S. Primary sclerosing cholangitis and ulcerative colitis: evidence for increased neoplastic potential. *Hepatology 1995; 22: 1404-1408 [PMID: 7990655 DOI: 10.1002/hep.1840220511]*

73 Soetikno RM, Lin OS, Heidenreich PA, Young HS, Blackstone MO. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis: a meta-analysis. *Gastrointest Endosc 2005; 56: 48-54 [PMID: 12085034 DOI: 10.1016/j.gie.2002.125367]*

74 Zhong HH, Jiang XL. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis of 16 observational studies. *Eur J Gastroenterol Hepatol 2016; 28: 383-390 [PMID: 26938805 DOI: 10.1097/MEG.0000000000000576]*

75 Lazaridis KN, LaRusso NF. Primary Sclerosing Cholangitis. *N Engl J Med 2016; 375: 1161-1170 [PMID: 2765356 DOI: 10.1056/NEJMra150963360]*

76 Aitwegg R, combes r, Laharie D, De LEDinghen V, Radenne S, Conti F, Chazouilleres O, Douvoux C, Dumortier J, Leroy V, Treton X, Durand F, Dhariancy S, Nachury M, Goutorbe F, Lamblin G, Boivinne L, Peyrin-Birolet L, Pageaux GP. Effectiveness and safety of anti-TNF therapy for inflammatory bowel disease in liver transplant recipients for primary sclerosing cholangitis: A nationwide case series. *Dig Liver Dis 2018; 50: 668-674 [PMID: 29655972 DOI: 10.1016/j.dld.2018.02.014]*

77 Peyrin-Birolet L, Bonnand G, Bourreille A, Chevaux JB, Faure P, Filippi J, Laharie D, Vuitton L, Bulois P, Gonzalez F, Trang C, Koch S, Bernardini D, Cellier C; IBD Committee of the French Society of Digestive Endoscopy. Endoscopy in inflammatory bowel disease: recommendations from the IBD Committee of the French Society of Digestive Endoscopy (SFED). *Endoscopy 2013; 45: 936-943 [PMID: 24165822 DOI: 10.1055/s-0033-1344783]*
