A SHORT PROOF OF A CONJECTURE ON THE HIGHER CONNECTIVITY OF GRAPH COLORING COMPLEXES

ALEXANDER ENGSTRÖM

Abstract. The Hom–complexes were introduced by Lovász to study topological obstructions to graph colorings. It was conjectured by Babson and Kozlov, and proved by Čukić and Kozlov, that $\text{Hom}(G, K_n)$ is $(n - d - 2)$–connected, where d is the maximal degree of a vertex of G. We give a short proof of the conjecture.

Introduction

It was conjectured by Babson and Kozlov [1], and proved by Čukić and Kozlov [4], that $\text{Hom}(G, K_n)$ is $(n - d - 2)$–connected, where d is the maximal degree of a vertex of G. We give a shorter proof of this, by generalizing the proof of that $\text{Hom}(K_m, K_n)$ is $(n - m - 1)$–connected in Babson and Kozlov [1].

For definitions and basic theorems on Hom–complexes used in this text, see the papers mentioned above, or the survey by Kozlov [6].

1. An analogue of the chromatic number

An independent subset of vertices of a graph is a set, such that no vertices of it are adjacent. The minimal number of sets needed to partition the vertex set of a graph G into independent sets is the chromatic number $\chi(G)$.

Definition 1.1. A covering I_1, I_2, \ldots, I_k of G is a sequence of independent subsets of $V(G)$ such that they partition $V(G)$, and I_i is a maximal independent set in the induced subgraph of G with vertex set $I_i \cup I_{i+1} \cup \ldots \cup I_k$, for all i, where $1 \leq i \leq k$.

A partition of G into $\chi(G)$ independent sets can always be transformed to a covering by ordering the independent sets and if needed enlarging them. But a covering can use more than $\chi(G)$ sets. Define $\hat{\chi}(G)$ to be the maximal number of sets in a covering of G. Clearly $\hat{\chi}(G) \geq \chi(G)$.

Lemma 1.2. If d is the maximal degree of a vertex of G, then $\hat{\chi}(G) \leq d + 1$.

Proof. Let $I_1, I_2, \ldots, I_{\hat{\chi}(G)}$ be a covering of G, and $v \in I_{\hat{\chi}(G)}$. For each i, where $1 \leq i < \hat{\chi}(G)$, there is a $w \in I_i$ adjacent to v, because otherwise I_i would not be a maximal independent set. Hence the degree of v is at least $\hat{\chi}(G) - 1$. The degree of v is at most d, thus $\chi(G) \leq d + 1$. \square

Lemma 1.3. If H is an induced subgraph of G, then $\hat{\chi}(H) \leq \hat{\chi}(G)$.

Date: May 22, 2005.

1991 Mathematics Subject Classification. 57M15, 05C15.

Key words and phrases. Graph homomorphisms, k-connectivity, Hom–complexes.

Research supported by ETH and Swiss National Science Foundation Grant PP002-102738/1.
Proof. It suffices to prove this when H and G only differ by a vertex v of G. Let $I_1, I_2, \ldots, I_{\check{\chi}(H)}$ be a covering of H. If v is adjacent to a vertex in each of the sets I_i, then $\{v\}, I_1, I_2, \ldots, I_{\check{\chi}(H)}$ is a covering of G and $\check{\chi}(H) + 1 \leq \check{\chi}(G)$. Otherwise, let I_j be the first set in the covering such that v is not adjacent to any vertex of I_j. Then $I_1, I_2, \ldots, I_j \cup \{v\}, \ldots, I_{\check{\chi}(H)}$ is a covering of G, and $\check{\chi}(H) \leq \check{\chi}(G)$. \qed

Lemma 1.4. If I is a maximal independent set of G, then $\check{\chi}(G) > \check{\chi}(G \setminus I)$.

Proof. Let $I_1, I_2, \ldots, I_{\check{\chi}(G \setminus I)}$ be a covering of $G \setminus I$. Then $I, I_1, I_2, \ldots, I_{\check{\chi}(G \setminus I)}$ is a covering of G with $1 + \check{\chi}(G \setminus I)$ sets. \qed

2. Higher connectivity of $\text{Hom}(G, K_n)$

Lemma 2.1. If I is an independent set of G, and $I' \subset I$, then $\Delta = \{\eta \in \text{Hom}(G, K_n)|n \in \eta(i) \Rightarrow i \in I\}$ collapses onto $\Delta' = \{\eta \in \text{Hom}(G \setminus (I \setminus I'), K_n)|n \in \eta(i) \Rightarrow i \in I'\}$.

Proof. It suffices to prove this when $I \setminus I' = \{v\}$. Let $\eta_1, \eta_2, \ldots, \eta_k$ be an ordering of $\{\eta \in \Delta|n \notin \eta(v)\}$ such that if $\eta(w) \supseteq \eta'(w)$ for all $w \in V(G)$ then η is not after η'. Define η^*_i as $\eta^*_i(w) = \eta_i(w)$ for $w \neq v$, and $\eta^*_i(v) = \eta_i(v) \cup \{n\}$. Each successive removal of η^*_i together with η_i from Δ for $i = 1, 2, \ldots, k$ is a collapse step. The cells left are $\Delta'' = \{\eta \in \Delta|\eta(v) = \{n\}\}$. Finally, there is a bijection between the face posets of Δ' and Δ'' by extending each $\eta \in \Delta'$ with $\eta(v) = \{n\}$. \qed

The main use of lemma 2.1 is when $I' = \emptyset$. Then $n \notin \eta(w)$ for all $\eta \in \Delta'$ and $w \in V(G) \setminus I$, so $\Delta' = \text{Hom}(G \setminus I, K_{n-1})$. Another way to prove the lemma is to use discrete Morse theory [5].

We will use a variation of a Nerve Lemma, (Björner 10.6(ii) [6], Björner et.al. [7]). A regular cell complex Δ is m-connected if there is a family of subcomplexes $\{\Delta_i\}$ such that $\Delta = \cup \Delta_i$, all of the subcomplexes Δ_i are m-connected, and all of the intersection of several Δ_i’s are $(m-1)$-connected.

Theorem 2.2. $\text{Hom}(G, K_n)$ is $(n - \check{\chi}(G) - 1)$-connected.

Proof. We use induction on $\check{\chi}(G)$ and on $n - \check{\chi}(G)$. When $\check{\chi}(G) = 1$, G have no edges, so $\text{Hom}(G, K_n)$ is contractible, and in particular $(n - \check{\chi}(G) - 1)$-connected.

If $n - \check{\chi}(G) = 0$ then $n \geq \check{\chi}(G)$ so $\text{Hom}(G, K_n)$ is non-empty, and $(n - \check{\chi}(G) - 1)$-connected.

For all $I \in \mathcal{I}$, let $\Delta_I = \{\eta \in \text{Hom}(G, K_n)|n \in \eta(i) \Rightarrow i \in I\}$, where \mathcal{I} is the family of maximal independent subsets of G. Clearly $\text{Hom}(G, K_n) = \cup_{I \in \mathcal{I}} \Delta_I$. By lemma 2.1, the complex Δ_I is homotopy equivalent to $\text{Hom}(G \setminus I, K_{n-1})$, which is $((n-1) - (\check{\chi}(G) - 1) - 1)$-connected by lemma 1.3 and induction. If $\mathcal{I} \supseteq \mathcal{I}' \neq \emptyset$ then $\cap_{I \in \mathcal{I}' \setminus \mathcal{I}} \Delta_I = \{\eta \in \text{Hom}(G, K_n)|n \in \eta(i) \Rightarrow i \in \cap_{I \in \mathcal{I}'} I\}$ is homotopy equivalent to $\text{Hom}(G \setminus (\cap_{I \in \mathcal{I}'} I), K_{n-1})$ by lemma 2.1 and $((n-1) - \check{\chi}(G) - 1)$-connected by lemma 1.3 and induction. By the Nerve Lemma we are done. \qed

Corollary 2.3. $\text{Hom}(G, K_n)$ is $(n - d - 2)$-connected.

Proof. Lemma 1.2 states that $\check{\chi}(G) \leq d + 1$. \qed
REFERENCES

1. E. Babson, D.N. Kozlov, *Complexes of graph homomorphisms*. \texttt{arXiv:math.CO/0310056} 23 pages, to appear in Israel J. Math.

2. A. Björner, Topological Methods, in: “Handbook of Combinatorics” (eds. R. Graham, M. Grötschel, and L. Lovász), North-Holland, 1995, pp. 1819–1872.

3. A. Björner, L. Lovász, S.T. Vrećica, R.T. Živaljević, *Chessboard complexes and matching complexes*, J. London Math. Soc. (2) 49 (1994), 25–49.

4. S. Ćukić, D.N. Kozlov, *Higher connectivity of graph coloring complexes*. \texttt{arXiv:math.CO/0410335} 16 pages, to appear in Int. Math. Res. Notices.

5. R. Forman, *Morse theory for cell complexes*, Adv. Math. 134, no. 1, (1998), 90-145.

6. D.N. Kozlov, *Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic classes*, invited contribution to *Geometric Combinatorics*, IAS/Park City Mathematics Series 14, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, N.J.

ETH ZÜRICH, IFW B29, 8092 ZÜRICH, SWITZERLAND

E-mail address: engstro@inf.ethz.ch