Simple Sequence Repeat Markers for Kānuka (Kunzea spp.; Myrtaceae) Present in New Zealand

Authors: Dagmar F. Goeke, Caroline M. Mitchell, Claudia Lange, and Gary J. Houliston
Source: Applications in Plant Sciences, 5(4)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps.1700008
SIMPLE SEQUENCE REPEAT MARKERS FOR KĀNUKA (KUNZEA SPP.; MYRTACEAE) PRESENT IN NEW ZEALAND

DAGMAR F. GOEKE1,2, CAROLINE M. MITCHELL2, CLAUDIA LANGE2, AND GARY J. HOULISTON2

1Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand
2Author for correspondence: goeked@landcareresearch.co.nz

doi:10.3732/apps.1700008

The genus Kunzea Rchb. includes more than 60 shrub or small tree species from the Myrtaceae family endemic to New Zealand and Australia (WCSF, 2017). New Zealand Kunzea (kānuka) has recently been revised (de Lange, 2014), resulting in 10 Kunzea species endemic to New Zealand’s islands: K. amathicola de Lange & Toelken, K. ericoides (A. Rich.) Joy Thompsons., K. robusta de Lange & Toelken, and K. serotina de Lange & Toelken from both main islands; K. linearis (Kirk) de Lange & Toelken, K. tenuicaulis de Lange, and K. toelkenii de Lange from the North Island; K. salteria de Lange from Whale Island and Mayor Island; K. sinclairii (Kirk) W. Harris from Great Barrier Island; and K. triregensis de Lange from Three Kings Islands. Restricted geographic distribution and commercial use of these species (nectar for honey production and essential oils) have created a strong interest in their population genetics, but low genetic variation between these species makes phylogenetics difficult (de Lange, 2014). We used next-generation sequencing to develop novel simple sequence repeat markers (SSRs) for New Zealand Kunzea species. SSRs offer resolution of closely related species and populations while requiring short development time and low costs, and allow sample additions retrospectively. These markers will facilitate the generation of a national-scale population genetics data set to improve biodiversity and production management of kānuka.

METHODS AND RESULTS

Molecular markers for Kunzea species were prepared following the method of Abdelkrim et al. (2009), with modifications. Total genomic DNA was extracted from 100 mg of fresh leaf material of K. robusta (CHR641860; Allan Herbarium [CHR], Lincoln, New Zealand) using the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions. With 410 ng of this DNA, a shotgun sequencing library was constructed for a Roche 454 Junior Genome Sequencer, a large-scale pyrosequencing system (Roche, Basel, Switzerland) at the Landcare Research Molecular Laboratory (Auckland, New Zealand). An average read length of 416 bp was obtained for 197,805 reads and a total yield of 82.3 Mb of sequence. We deposited the data in the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI; accession no. SRR5342717). Di- to hexanucleotide repeat regions with at least four repeat units were identified with MSATCOMMANDER 0.8.2 (Faircloth, 2008). Primers were designed using Primer3 (Rozen and Skaltsky, 1999), implemented in MSATCOMMANDER, with the following specifications: 80–550 bp amplicon length, repeat units flanked by 250 bp, and 57–62°C melting temperature (Faircloth, 2008). From a total of 3174 putative simple sequence repeat regions, 96 primer pairs, providing a range of product sizes and repeat units, were screened. Adding an M13F tag (TGTTAAAACGACGGCCAGT) to the 5′ end of the forward primers enabled the use of 6-FAM–labeled M13F probes in the second step of the PCR for economic genotyping (Schuelke, 2000; Abdelkrim et al., 2009).

All primer pairs were tested on K. robusta (sample used for library construction: CHR641860) and another four species: K. robusta (CHR688818), K. serotina (CHR641385), K. ericoides var. linearis (CHR553091), and K. toelkenii (CHR550085). DNA was extracted from 20 mg of dried leaf material using the NucleoSpin Plant II kit (PLI lysis buffer; Macherey-Nagel, Düren, Germany) following manufacturer’s instructions, resulting in 200–800 ng of DNA per sample. PCRs were performed in 15-µL reactions, containing 5–50 ng of DNA, and final concentrations of 0.08 µM forward primer, 0.32 µM reverse primer, 0.32 µM 6-FAM–labeled M13F primer, 1× KAPA plant PCR buffer with dNTPs, 0.3 units KAPA3G Plant DNA Polymerase (Kapa Biosystems, Wilmington, Massachusetts, USA), and PCR-grade H2O. Thermocycling was conducted on

Applications in Plant Sciences 2017 5(4): 1700008; http://www.bioone.org/loi/apps © 2017 Goeke et al. Published by the Botanical Society of America. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC-SA 4.0), which permits unrestricted noncommercial use and redistribution provided that the original author and source are credited and the new work is distributed under the same license as the original.

1 Manuscript received 6 February 2017; revision accepted 20 March 2017.

The authors thank Duckchul Park for preparing the shotgun sequencing library and sequencing, as well as Peter B. Heenan, Julia S. Allwood, Peter J. de Lange, the Auckland War Memorial Museum, and the Allan Herbarium for providing support, advice, and plant specimens. Funding was provided by the New Zealand Ministry of Business, Innovation, and Employment to Landcare Research via core funding to Crown Research Institutes.

2Author for correspondence: goeked@landcareresearch.co.nz

doi:10.3732/apps.1700008
the Bioer GenePro thermocycler (Bioer Technology, Hangzhou, Zhejiang Province, China) using the following conditions: initial denaturation at 95°C for 5 min; 30 cycles of 95°C for 20 s, 55°C for 15 s, and 72°C for 30 s; followed by 10 cycles of 95°C for 20 s, 51°C for 15 s, and 72°C for 30 s; and final extension at 72°C for 10 min. Five-microliter PCR products were separated on 2.5% agarose gels. Concentration of PCR products was allowed, and 1 µL added to 10 µL Hi-Di formamide (Applied Biosystems, Carlsbad, California, USA) and 0.2 µL GeneScan 600 LIZ Size Standard (Applied Biosystems). Samples were separated on a 3500xl genetic analyzer (Applied Biosystems) using a DS-33 dye set at the Landcare Research Molecular Laboratory. GeneMarker version 2.6.4 (SoftGenetics, State College, Pennsylvania, USA) was used for fragment sizing and scoring. After assessment of polymorphism and repeatability of each locus, 24 of the 96 loci tested produced diagnostic fragments with a maximum of two alleles per specimen.

PCRs were optimized for the integration of labeled forward primers (6-FAM, NED, VIC, or PET) to allow multiplex genotyping, and the M13F tail was omitted (Table 1). PCR reactions were set up as described above, omitting unlabeled forward primers. Thermocycling conditions were adjusted to: initial denaturation at 95°C for 5 min; followed by 35 cycles at 95°C for 20 s, 55°C for 15 s, and 72°C for 30 s; and a final extension at 72°C for 10 min. All 24 loci

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	Total A (n = 220)	Fluorescent dye^{ad}	Multiplex pool^{bc}	GenBank accession no.
Kanuka63	F: CACGTCGGAAGATGATGAGCC R: GACACGCAAAACCGCTTC	(CTTTT)₄	119–164	9	PET	1	KY352777
Kanuka15	F: CTGGCCTGCTAAGTATAC R: GACCGCATAGATTGGAG	(AAC)₃	186–209	9	NED	1	KY352778
Kanuka29	F: GTAAGTTGTTGCCCTTCTCACAG R: TGCCTGCTGCAATGGCTTC	(AG)₁₁	180–261	19	6-FAM	1	KY352779
Kanuka38	F: GAGACCTGCTGAGTGCTAC R: AAGCCCAACCCCGCTTC	(AG)₁₂	285–312	11	VIC	1	KY352780
Kanuka67	F: AGCTTCTGACTAGTAGT R: AAGTTCTCTCCTTGAG	(AGT)₃	139–153	13	PET	2	KY352781
Kanuka94	F: GCCAGAAGTGTGGGATCC R: CACTCCCATTTACATTAGC	(ACGGG)₄	243–271	24	6-FAM	2	KY352783
Kanuka71	F: GACTTAAAAACACACCTTGAGC R: CCTGTGCTTCTCTCTACATTT	(AG)₁₂	292–339	24	VIC	2	KY352784
Kanuka18	F: AGCATGGGAAAGACGTCTAC R: GCTGTGCAATAAAAGTGATG	(AG)₁₀	182–220	19	PET	3	KY352786
Kanuka21	F: TTGTCCTGACATGCTAGCC R: CCTTGGCTCACTGCATAGTG	(GT)₁₃	222–257	18	NED	1	KY352786
Kanuka3	F: ACCAGAGTCCTGATGCTC R: TCCGAACTCTGGAAGAGG	(AG)₁₁	262–288	17	6-FAM	3	KY352787
Kanuka9	F: CTCACAATACACTGATG R: CCATGGGCGCTTTTCTTTT	(AG)₁₁	338–361	18	VIC	3	KY352788
Kanuka11	F: GGAAGCTGCAATGTTGCTC R: CAGGGTGGGCTTTGCTTAT	(AACT)₄	137–182	16	PET	4	KY352789
Kanuka4	F: AGAGATCTGCAGTGCTGAGC R: TGGCGGTTATCTATTTG	(CT)₁₀	229–252	14	NED	4	KY352790
Kanuka78	F: ACTCCTAAAGGGACTCCGAG R: TCTGTCTTGTGGGATGAC	(AAATT)₄	246–265	8	6-FAM	4	KY352791
Kanuka1	F: AGATTGCTCTTGCCCCC R: ACCACTGAGAATTGAACC	(GT)₁₁	310–326	20	VIC	4	KY352792
Kanuka7^e	F: AGGACTGGCAGATTTATG R: GCACAGTCTGCTGAGG	(AAG)₈	141–151	4	NA	NA	KY352793
Kanuka8^e	F: TTTGATGACAGTGCTGCTG R: GGTGAAGTCAACACACTAC R: GCAAGCCTGCTCTGATCC	(CT)₁₀	360–371	4	NA	NA	KY352794
Kanuka52	F: TCTTGAGAAATACCCGATTTTC R: AGCTGACCAAAATCTCAGAAC R: TTAATTGAAGCTCCAGTTGAT R: TTGCGAGATGTTGCAAGTC R: AGGACCTAACAAGACGCTATGG R: AGGCGTTGGCATCGAAG R: AGGAGCGTTGCATCAAGAG R: ACCCTCCATAAGACTGAC R: AGCGATCTGCAAGC R: GCTATGACAGTGCT R: GCACAGTCTGCTGAGG	(ATCGG)₄	159–169	3	NA	NA	KY352797
Kanuka73	F: GTGAGTTCCAAAGACG R: AGGACTGGCAGATTTATG R: GCACAGTCTGCTGAGG	(CTTTT)₄	286–302	3	NA	NA	KY352798
Kanuka74^e	F: AGGACTGGCAGATTTATG R: GCACAGTCTGCTGAGG	(ATC)₃	260–282	3	NA	NA	KY352799
Kanuka89^e	F: AGCGATCTGCAAGC R: GCTATGACAGTGCT R: GCACAGTCTGCTGAGG	(ATT)₃	219–249	3	NA	NA	KY352800

Note: A = number of alleles.
^aAnnealing temperatures as per the Methods and Results section.
^bInitial amplification of test samples was carried out with 6-FAM–labeled M13F-tagged primers. As markers dropped out in multiplex PCR, a reference fluorescent dye in multiplex and multiplex pool was not applicable; these markers are identified as “NA.”
^cFluorescent dye used in multiplex.
^dData only from five initial test samples, as markers dropped out in multiplex PCR.

Table 1. Characteristics of 24 polymorphic simple sequence repeat loci developed for New Zealand *Kunzea* species.
We developed 24 polymorphic SSR markers for New Zealand kānuka species, based on Roche 454 sequencing of total genomic DNA. We optimized 16 markers for multiplex genotyping of 10 *Kunzea* species endemic to New Zealand. The cross-species compatibility of these markers suggests suitability for other closely related species.

Despite low sample numbers per species and varying sample numbers per population, we observed high polymorphism in each species, indicating that the markers are valuable for in-species phylogenetic and population structure studies of kānuka.

CONCLUSIONS

We developed 24 polymorphic SSR markers for New Zealand kānuka species, based on Roche 454 sequencing of total genomic DNA. We optimized 16 markers for multiplex genotyping of 10 *Kunzea* species endemic to New Zealand. The cross-species compatibility of these markers suggests suitability for other closely related species.

Despite low sample numbers per species and varying sample numbers per population, we observed high polymorphism in each species, indicating that the markers are valuable for in-specific phylogenetic and population structure studies of kānuka.

LITERATURE CITED

ADELBIRK, J., B. C. ROBERTSON, J. A. L. STANTON, AND N. J. GEMMELL. 2009. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. *BioTechniques* 46: 185–192.

DE LANGE, P. J. 2014. A revision of the New Zealand *Kunzea ericoides* (Myrtaceae) complex. *PhytoKeys* 40: 1–185.

FAIRCLOTH, B. C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. *Molecular Ecology Resources* 8: 92–94.

PEAKALL, R., AND P. E. SMOUSE. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 92–94.

ROZEN, S., AND H. J. SKALETSKY. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics: Methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

SCHUEKLE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.

WCSNP. 2017. World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Website http://apps.kew.org/wcsnp/ [accessed 23 February 2017].

Table 2. Summary statistics for 16 polymorphic single-locus repeat loci optimized for 10 New Zealand *Kunzea* species.

Species	n	A	H_e	H_o	Locus	Alleles	Heterozygosity
K. salterae	15	6	0.50	0.39	Kanuka 1	4 0.39	
K. amathicola	15	6	0.50	0.39	Kanuka 2	4 0.39	
K. robusta	15	6	0.50	0.39	Kanuka 3	4 0.39	
K. triregens	15	6	0.50	0.39	Kanuka 4	4 0.39	
K. salterae	15	6	0.50	0.39	Kanuka 5	4 0.39	
K. amathicola	15	6	0.50	0.39	Kanuka 6	4 0.39	
K. robusta	15	6	0.50	0.39	Kanuka 7	4 0.39	
K. triregens	15	6	0.50	0.39	Kanuka 8	4 0.39	
K. salterae	15	6	0.50	0.39	Kanuka 9	4 0.39	
K. amathicola	15	6	0.50	0.39	Kanuka10	4 0.39	
K. robusta	15	6	0.50	0.39	Kanuka11	4 0.39	
K. triregens	15	6	0.50	0.39	Kanuka12	4 0.39	
K. salterae	15	6	0.50	0.39	Kanuka13	4 0.39	
K. amathicola	15	6	0.50	0.39	Kanuka14	4 0.39	
K. robusta	15	6	0.50	0.39	Kanuka15	4 0.39	
K. triregens	15	6	0.50	0.39	Kanuka16	4 0.39	

Note: A: number of alleles; H_e: expected heterozygosity; H_o: observed heterozygosity.
Appendix 1. Location data and herbarium voucher information for *Kunzea* species included in this study.

Species	Herbarium accession no.	New Zealand island	Latitude	Longitude	Coordinates estimated*
K. amathicola de Lange & Toelken	AK297617	NI	−36.5783333	174.3416667	N
K. amathicola	AK289868	SI	−40.5080556	172.7150000	N
K. amathicola	AK293310	NI	−34.8961111	173.0911111	N
K. amathicola	AK276552	NI	−36.5000000	174.6166667	N
K. amathicola	AK284417	NI	−37.8500000	174.7833333	N
K. amathicola	AK289231	NI	−40.6016667	175.2066667	N
K. amathicola	AK289243	SI	−40.5520000	173.0085850	Y
K. amathicola	AK297615	NI	−36.2744444	174.4355556	N
K. amathicola	AK289690	SI	−40.5520000	173.0085850	Y
K. amathicola	AK287967	NI	−35.1833333	173.1166667	N
K. amathicola	AK297613	NI	−36.4888889	174.5005556	N
K. amathicola	AK254924	NI	−38.0500000	174.8666667	N
K. amathicola	AK289328	NI	−40.6000000	175.1994444	N
K. amathicola	AK289678A	SI	−40.5208333	172.7419444	Y
K. ericoides (A. Rich.) Joy Thomps. var. *linearis* (Kirk) W. Harris	AK228837	NI	−35.4833333	174.7333333	N
K. ericoides	AK286235	SI	−41.4166667	174.0166667	N
K. ericoides	AK358074	SI	−40.5077500	172.6602500	N
K. ericoides	AK202538	NI	−39.0166667	175.8000000	N
K. ericoides	CHR275538	NI	−38.9666667	176.2166667	N
K. ericoides	CHR473165	NI	−40.9000000	176.0333333	N
K. ericoides	CHR473162	NI	−40.5000000	175.2066667	N
K. ericoides	CHR473167	NI	−39.1566667	175.7700000	N
K. ericoides	CHR67625	NI	−41.2500000	174.9166667	N
K. ericoides	CHR471604	SI	−40.7000000	175.5833333	Y
K. ericoides	CHR471605	SI	−40.7000000	175.5833333	Y
K. ericoides var. *linearis*	CHR468823	Great Barrier I	−36.1783333	175.2333333	N
K. ericoides	CHR67625	NI	−41.2500000	175.1166667	Y
K. ericoides var. *linearis*	CHR244708	NI	−40.7000000	175.5833333	Y
K. ericoides	CHR471604	SI	−40.7000000	175.5833333	Y
K. ericoides	CHR471605	SI	−40.7000000	175.5833333	Y
K. ericoides	CHR468823	Great Barrier I	−36.1783333	175.2333333	N
K. ericoides var. *linearis*	CHR530911	NI	−36.3670000	174.1690000	Y
K. ericoides	AK289064	Three Kings I	−34.1644444	172.1308333	N
K. ericoides	AK289061	Three Kings I	−34.1644444	172.1308333	N
K. ericoides var. *linearis*	AK24092	Three Kings I	−34.1555550	172.1344790	N
K. tenuicaulis de Lange	AK285267	NI	−36.8500000	174.7666667	N
K. tenuicaulis	AK285268	NI	−36.8500000	174.7666667	N
K. tenuicaulis	CHR550923A	NI	−38.0833333	176.7000000	N
K. tenuicaulis	CHR547023A	NI	−38.0833333	176.7000000	N
K. tenuicaulis	CHR76956	NI	−38.6166667	176.1000000	Y
K. tenuicaulis	CHR50949	NI	−38.4166667	176.1833333	N
K. tenuicaulis	CHR506319	NI	−38.6666667	176.0333333	N
K. tenuicaulis	CHR506236	NI	−38.4000000	176.2166667	N
Appendix 1. Continued.

Species	Herbarium accession no.	New Zealand island	Latitude	Longitude	Coordinates estimateda
K. tenuicaulis	CHR356386A	NI	−38.0500000	176.3500000	Y
K. tenuicaulis	CHR507223	NI	−38.3166667	176.3666667	N
K. tenuicaulis	CHR507220	NI	−38.3166667	176.3666667	N
K. tenuicaulis	AK288088	NI	−38.4000000	176.2166667	N
K. tenuicaulis	AK288101	NI	−38.6500000	176.0666667	N
K. tenuicaulis	AK286186	NI	−38.3166667	176.3833333	N
K. tenuicaulis	AK300912	NI	−38.4000000	176.2166667	N
K. tenuicaulis	AK300909	NI	−38.4000000	176.2166667	N
K. tenuicaulis	AK288085	NI	−38.8033333	176.7000000	N
K. tenuicaulis	AK286152	NI	−38.6500000	176.0666667	N
K. tenuicaulis	AK288100	NI	−38.6500000	176.0666667	N
K. tenuicaulis	AK300909	NI	−37.8570000	176.9680000	Y
K. tenuicaulis	AK253384	NI	−38.3666667	176.3666667	N
K. tenuicaulis	AK226797	Three Kings I	−34.1530000	172.1330000	Y
K. linearis	AK121371	NI	−34.4833333	172.8666667	N
K. linearis	AK287853	NI	−34.8500000	173.4000000	Y
K. linearis	AK287879	NI	−34.9940620	173.5289180	Y
K. linearis	AK287877	NI	−35.1833333	172.6833333	N
K. linearis	AK288776	NI	−35.2333333	173.4833333	N
K. linearis	AK287737	NI	−35.4333333	172.8333333	N
K. linearis	AK287789	NI	−36.0000000	174.0666667	N
K. linearis	AK288490	NI	−37.4500000	175.4666667	Y
K. linearis	AK288491	NI	−37.4500000	175.4666667	N
K. linearis	AK288776	NI	−39.2666667	174.6333333	N
K. linearis	AK283054	NI	−36.9000000	174.0500000	N
K. linearis	AK283054	NI	−37.3166667	175.4166667	N
K. linearis	AK287326	NI	−36.6666667	174.6333333	N
K. linearis	AK287025	NI	−36.4833333	174.6500000	N
K. linearis	AK297497	NI	−37.9930556	174.1466667	N
K. linearis	AK309446	NI	−36.3600000	174.1680000	Y
K. linearis	AK283245	NI	−36.1666667	174.6333333	N
K. linearis	AK254234	NI	−36.7800000	174.6200000	Y
K. robusta de Lange & Toelken	CHR61860	SI	−43.6403060	172.4780500	Y
K. robusta	CHR551679A	NI	−39.1166667	177.0000000	N
K. robusta	CHR551738	NI	−37.6666667	177.8333333	N
K. robusta	CHR546981A	SI	−42.7333333	171.2000000	N
K. robusta	CHR551251	NI (Ponui I)	−38.8444444	175.1925000	N
K. robusta	CHR546982A	SI	−41.7500000	171.7166667	N
K. robusta	CHR546688A	SI	−39.3258333	174.1000000	N
K. robusta	CHR551683A	SI	−39.3666667	175.3333333	N
K. robusta	CHR550096	SI	−39.3833333	174.0500000	N
K. robusta	CHR546940A	NI	−39.8500000	174.3833333	N
K. robusta	CHR688818	SI	−42.7666667	172.5500000	Y
K. robusta	AK289967	SI	−43.0166667	173.0833333	N
K. robusta	AK289984	SI	−45.8602778	170.5233333	N
K. robusta	AK283916	NI	−39.3166667	174.1000000	N
K. robusta	AK288048	NI	−39.9833333	176.0000000	N
K. robusta	AK297491	NI	−40.0711111	175.5988889	N
K. robusta	AK298622	NI	−40.6305556	176.2555556	N
K. robusta	AK298791	NI	−40.6205556	176.1616667	N
K. robusta	AK288592	SI	−41.3211111	174.2111111	N
K. robusta	AK288657	SI	−42.1666667	173.8833333	N
K. robusta	AK288444	SI	−42.4333333	171.3500000	N
K. robusta	AK286126	SI	−38.7833333	175.1333333	N
K. robusta	AK252130	SI	−43.7500000	172.8333333	N
Species	Herbarium accession no.	New Zealand island	Latitude	Longitude	Coordinates estimated
---------	------------------------	--------------------	----------	-----------	-----------------------
K. robusta	AK289980	SI	−45.8600000	170.5219444	Y
K. robusta	AK289154	NI	−39.2577778	173.9638889	Y
K. robusta	AK288549	NI	−39.5000000	176.5000000	Y
K. robusta	AK285568	SI	−45.8666667	170.5333333	Y
K. robusta	AK285566	SI	−41.4166667	174.0166667	Y
K. robusta 'East Cape'	AK299004	NI	−37.8141667	178.3797222	Y
K. robusta 'East Cape'	AK298982	NI	−38.3822222	178.3222222	Y
K. robusta 'East Cape'	AK288499	NI	−38.1666667	178.0000000	Y
K. robusta 'East Cape'	AK269062	NI	−37.5833333	178.0833333	Y
K. salterae de Lange	AK289814	NI (Whale I)	−37.8569444	176.9675000	Y
K. salterae	AK283253	NI (Whale I)	−37.8500000	176.9666667	Y
K. salterae	AK283250	NI (Whale I)	−37.8500000	176.9666667	Y
K. salterae	AK284105	NI (Whale I)	−37.8500000	176.9666667	Y
K. salterae	AK297561	NI (Whale I)	−37.8500000	176.9666667	Y
K. salterae	AK298088	NI (Whale I)	−37.8569444	176.9675000	Y
K. salterae	AK289815	NI (Whale I)	−37.8525000	176.9683333	Y
K. salterae	AK289813	NI (Whale I)	−37.8552778	176.9675000	Y
K. salterae	AK330883	NI (Mayor I)	−37.2869444	176.2713889	Y
K. serotina de Lange & Toelken	CHR641385	SI	−42.7666667	172.5500000	Y
K. serotina	AK287554	SI	−42.1833333	172.2166667	Y
K. serotina	AK288292	SI	−42.8500000	172.6833333	Y
K. serotina	AK288543	SI	−39.4000000	176.7166667	Y
K. serotina	AK286264	NI	−38.7666667	176.2166667	Y
K. serotina	AK288135	NI	−38.9333333	175.8666667	Y
K. serotina	AK288239	NI	−39.4000000	176.7166667	Y
K. serotina	AK286070	NI	−39.2500000	175.7666667	Y
K. serotina	AK288134	NI	−38.9833333	175.7666667	Y
K. serotina	AK288236	NI	−39.4000000	176.3166667	Y
K. serotina	AK285572	NI	−39.1833333	175.7333333	Y
K. serotina	AK288133	NI	−39.2833333	175.7666667	Y
K. serotina	AK288239	NI	−39.4000000	176.7166667	Y
K. serotina	AK285566	SI	−41.6333333	173.0500000	Y
K. serotina	AK285556	SI	−42.3944444	172.4744444	Y
K. serotina	AK348741	SI	−43.3525000	171.5558333	Y
K. serotina	AK347652	NI	−38.6500000	176.0833333	Y
K. serotina	AK288108	NI	−38.8833333	175.6000000	Y
K. serotina	AK286136	SI	−42.5000000	172.2166667	Y
K. serotina	AK286260	SI	−41.7166667	172.9000000	Y

Appendix 1. Continued.
Appendix 1. Continued.

Species	Herbarium accession no.	New Zealand island	Latitude	Longitude	Coordinates estimated¹
K. toelkenii⁵	CHR500085	NI	−37.900000	176.833333	N
K. toelkenii	AK300905	NI	−38.009029	176.919444	Y
K. toelkenii	AK287045	NI	−37.900000	176.833333	N
K. toelkenii	AK300904	NI	−38.008526	177.131705	Y
K. toelkenii	AK287049	NI	−37.900000	176.833333	N
K. toelkenii	AK300903	NI	−37.941111	176.988333	N
K. toelkenii	AK287047	NI	−37.900000	176.833333	N
K. toelkenii	AK301682	NI	−38.113333	177.379167	N
K. toelkenii	AK287048	NI	−37.900000	176.833333	N
K. toelkenii	AK299633	NI	−37.915000	176.902500	N
K. toelkenii	AK255350	NI	−37.966667	176.833333	N
K. toelkenii	AK299634	NI	−37.918056	176.921944	N
K. toelkenii	AK284553	NI	−37.902130	176.833333	Y
K. toelkenii	AK287042	NI	−37.900000	176.800000	N

Note: AK = Auckland War Memorial Museum; CHR = Allan Herbarium, Lincoln; I = Island; NI = North Island; SI = South Island.

¹Collection records were checked carefully. When coordinates were not documented or did not match the location description, they were determined based on collector’s notes.

²Used for initial primer screen.

³Used for library construction.