Nonconventional opponents: A review of malaria and leishmaniasis among United States Armed Forces

Kaylin J Beiter, Zachariah J Wentlent, Adrian R Hamouda, Bolaji Thomas

Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States of America

Corresponding Author: Bolaji Thomas
Email address: bntsbi@rit.edu

As the United States military engage with different countries and cultures throughout the world, personnel become exposed to new biospheres as well. There are many infectious pathogens that are not endemic to the US, but two of particular importance are *Plasmodium* and *Leishmania*, which respectively cause malaria and leishmaniasis. These parasites are both known to cause significant disease burden in their endemic locales, and thus pose a threat to military travelers. This review introduces readers to basic life cycle and disease mechanisms for each. Local and military epidemiology are described, as are the specific actions taken by the US military for prevention and treatment purposes. Complications of such measures with regard to human health are also discussed, including possible chemical toxicities. Additionally, poor recognition of these diseases upon an individual’s return leading to complications and treatment delays in the United States are examined. Information about canine leishmaniasis, poorly studied relative to its human manifestation, but of importance due to the utilization of dogs in military endeavors is presented. Future implications for American health regarding malaria and leishmaniasis are also presented.
Nonconventional Opponents: A Review of Malaria and Leishmaniasis Among United States Armed Forces

**Kaylin J. Beiter, Zachariah J. Wentlent, Adrian R. Hamouda, Bolaji N. Thomas

Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester NY

contributed equally

* MD-PhD Program, Louisiana State University Health Sciences Center, New Orleans

** University of Buffalo Primary Care Research Institute

Zachariah J. Wentlent: zxw9400@rit.edu
Kaylin J. Beiter: kjb3685@rit.edu
Adrian R. Hamouda: arh7409@rit.edu
Bolaji N. Thomas: bntsbi@rit.edu
Corresponding author:

Dr. Bolaji N. Thomas
Department of Biomedical Sciences
Rochester Institute of Technology
153 Lomb Memorial Drive
Rochester NY 14623
Office: (585) 475-6382
Fax: (585) 475-5809
Email: bntsbi@rit.edu
Abstract

As the United States military engage with different countries and cultures throughout the world, personnel become exposed to new biospheres as well. There are many infectious pathogens that are not endemic to the United States but to which deployed personnel are potentially exposed. Of these, *Plasmodium* and *Leishmania*, which cause malaria and leishmaniasis respectively, are of importance because of the significant disease burden in endemic locales, thereby posing a major threat to military travelers. This review examines local and military epidemiology of these diseases, and specific actions by United States military targeted towards prevention and treatment. Potential complications associated with such measures with regard to human health are also discussed, including possible chemical toxicities. In addition, the fact that these diseases are relatively less studied in the United States despite their global significance lends credence to the poor recognition among deployed service men and women and their healthcare providers, resulting in unfortunate clinical complications and treatment delays. Information about zoonotic visceral leishmaniasis, poorly studied in United States relative to its human manifestation, but of importance due to the utilization of dogs in military endeavors is presented. Future implications for American healthcare system regarding malaria and leishmaniasis are discussed.

Running Title: Parasitic diseases among United States military

Keywords: Military, parasites, malaria, leishmaniasis, United States

Introduction
International deployment is a common occurrence in United States (US) Armed Forces, comprising of the Marine Corps, Navy, Air Force and Army, with nearly 200,000 troops currently stationed overseas (Bialik, 2017). Leaving the US and its native biosphere for their posted sites introduces a risk of exposure to, and infection with endemic parasitic, bacterial, viral or fungal diseases (Ciminera and Brundage, 2007). Such hazards are well-known; during World War I, approximately half a million allied soldiers were diagnosed with malaria in just one year (Beaumier et al., 2013; Brabin, 2014). As United States alters its current foreign stance, engaging with new regions in the process, deployment locations shift accordingly, with infectious disease risks paralleling the revisions in political alignment. Most recently, US troops have been highly clustered in the Middle East and Africa, specifically Iraq and Afghanistan, with sprinkling of Special Forces operatives in Syria. Endemic diseases in this Middle Eastern region are caused by an amalgam of local viruses, parasites, and bacteria, with the most clinically relevant including Middle East Respiratory Syndrome (MERS), dengue fever, schistosomiasis, enterotoxigenic Escherichia coli (ETEC), leishmaniasis, brucellosis, and toxoplasmosis (Hotez et al., 2012, Humphrey et al., 2016; Raad et al., 2018, Foster et al., 2018). These pathogens, beyond disease complications, have significantly impacted local economic development, limited infrastructure, and reduced life expectancy of nationals causing an ever-increasing reliance on pharmaceuticals (Hui et al., 2018; Park et al., 2018). Consequently, these same pathogens have negatively affected members of the US military stationed at such locations (Faulde et al., 2008; Fukuda et al., 2011), both with regard to direct infection of troops as well as limitations in treatment accessibility.
High infection rates of parasitic diseases, principally malaria and leishmaniasis, are expected in these locales, and the deployed members of United States military have not been spared (Mitchell et al., 2007; Mace et al., 2018; O’Donnell et al., 2018), with infectious diseases proving to have devastating effects on the military, even contemporarily (Armed Forces Health Surveillance Branch, 2018). Since initiation of the activities in the Middle East, injuries sustained in battle were six times less common than those caused by non-battle injuries (i.e. infection). However, the possibility for disease is not limited to deployed troops. The risk of bioterrorism, domestic or foreign, from increasingly radical groups is growing all over the world (Anderson et al., 2005; Beaumier et al., 2013), leading to the expansion of disease prevention and force protection strategies by the Department of Defense. These efforts are subject to budgetary restrictions and cuts to research funding, despite overall increase in military spending, and could have serious health implications beyond the United States military (Beaumier et al., 2013).

Despite the vast number of clinically relevant pathogens in locales where members of the US military are deployed, this review will address only two of such infections: malaria and leishmaniasis. The seriousness of these diseases and their implications for healthcare system within the homeland demands critical analysis, and form the basis for this review. Due to the chronic and sometimes relapsing nature of these diseases, infected individuals may present symptoms months/years after exposure (Goodrich et al., 2017; Nagarajan and Sloan, 2015), especially following subsequent immune system compromise (Mansueto et al., 2014). Possible re-emergence of pathogenic forms in such individuals allows them to serve as agents of autochthonous infections at home.
Survey Methodology

For the purpose of this review, we divided the article into sections and disease-specific subsections, focusing on specific diseases, one at a time. To access relevant and related publications, we carried out a search on pubmed.gov for armed forces deployment information, using AND as the link word, as the case may be. For others, we searched journal specific or government websites (www.health.mil), in addition to websites of international organizations such as World Health Organization (who.int/tdr), Centers for Disease Control (www.cdc.gov), to retrieve articles focused on parasitic diseases in specific endemic locations. Subject directed keywords or terms utilized in our search include armed forces, deployment, malaria, leishmaniasis, epidemiology, military-related autochthonous parasitic diseases, prevention and treatment. References include articles directly relating to research data, relevant case reports or clinical presentations in the United States, Canada, or Europe from deployed service men and women. Of additional interest in our search were articles relating to zoonotic (canine) leishmaniasis among military dogs deployed overseas alongside their handlers and potential for disease transmission on return to the United States.

Malaria

Despite clinical notoriety and insidiousness of more 100 years, the availability of modern preventative measures and a better understanding of disease dynamics, the worldwide threat of malaria in endemic countries and menace among deployed members of the armed forces remains. At its apex in the Middle East, the United States Armed Forces suffered an incident rate of 52.4 cases per 1,000 troops (Beaumier et al., 2013). Of recent, there has been a significant
reduction in the number of troops stationed in these locations and the implementation of evidence-based preventative measures against malaria. Despite this, an update from 2017 reveal 32 cases of malaria infection among US military stationed overseas, with cases reported from facilities as far as Afghanistan, Korea, Japan, Djibouti (Armed Forces Health Surveillance Branch, 2018). Though the percentage of individuals affected was not given, the total reduction in malaria cases in recent years has been ascribed to US troops leaving the Middle East region (Armed Forces Health Surveillance Branch, 2018). This number however does not include self-limited or subclinical cases, and the true attack rate may be higher than published.

Causes

Human malaria is spread via bloodmeals of the female *Anopheles* mosquito, which picks up gametocytes while feeding on infected individuals, and hosts the developmental stages until full maturation into infective sporozoites, which are then passed on to a new host during another mosquito feeding process (Anderson et al., 2005). Clinical malaria is classically due to any of four different *Plasmodium (P)* species: *P. vivax*, *P. falciparum*, *P. ovale* and *P. malariae*, though an animal species, *P. knowlesi* has been confirmed as responsible for significant human infections in parts of southeast Asia (Muller and Schlangehauf, 2014; Millar and Cox-Singh, 2015; Divis et al., 2015). The dominant species causing infection among the armed forces is *P. vivax* (Ciminera and Brundage, 2007), although the latest update on malaria in the military shows a shift to increasing infections with *P. falciparum*, as the causative agent for the most number of cases (Armed Forces Health Surveillance Branch, 2018), likely due to the locations of reporting.

P. vivax, found primarily in Asia and Latin America, and in some parts of Africa, differs from other species in that its life cycle includes a dormant liver stage, during which transformed
parasites (otherwise called hypnozoites), can remain for months or even years after the initial mosquito bite, becoming symptomatic if the parasites leave the liver to invade healthy red blood cells (Baird et al., 2016), and responsible for relapses. It is uniquely dangerous in that infected patients may remain subclinical for years after returning home from military service (Kotwal et al., 2005), serving as agents of future autochthonous infection. Furthermore, because malaria is no longer endemic in the United States, healthcare providers may see a patient presenting with symptoms similar to flu symptoms, without suspecting malaria as the potential cause of such clinical symptoms. This leads to delays in diagnosis and institution of appropriate treatment.

The symptoms of *P. vivax* malaria are consistent with all types of malaria: fever, chills, nausea/vomiting, myalgia, fatigue, and general malaise (Yohannes et al., 2016), with infection and lysis of red blood cells during the active erythrocytic cycle leading to jaundice and anemia (Markus, 2011). The liver hypnozoites do not all have an equal duration of senescence, and patients may experience paroxysmal symptomology, as parasites enter into active erythrocyte infection at different times (Baird et al., 2016). Such a vague presentation with common symptoms of general malaise often leads to misdiagnosis in the United States, where flu and other common ailments are worked up instead (Evans et al., 2014; Goldman-Yassen et al., 2016).

Prevention and Treatment

United States military prioritizes prevention over treatment, implementing several protocols to this effect, which theoretically should make it almost impossible for service members to get malaria (Kotwal et al., 2005; Shaha et al., 2013). According to military documentation, there are five major malaria prevention strategies namely: (1) use of factory-treated uniforms; (2) regular
application of N,N-diethyl-$meta$-toluamide (DEET) or picaridin to exposed skin; (3) proper wearing of military uniform; (4) use of permethrin-treated bed net, and (5) continuous chemoprophylaxis during all phases of deployment (Robert, 2001). Successful implementation of all five strategies however, is rare, limiting the efficacy of disease prevention. Furthermore, employment of such prophylactic measures, especially with mefloquine, subjects servicemen and women to significant adverse outcomes (Adshead, 2014).

Permethrin is an insecticide that kills mosquitoes by inducing spasms and paralysis (Isaacs et al., 2017), while DEET, created by United States Army in 1946, is less insecticidal, masking human scent to prevent mosquito bites (Toynton et al., 2009). Despite inclusion in malaria prevention programs, both chemicals have known associated dangers (Diaz 2016). DEET is known to have heightened toxicity when applied with sunscreen (Yiin et al., 2015; Rodriguez and Maibach, 2016), a situation likely to arise for military personnel deployed to tropical and subtropical regions of the world. Additionally, synergism has been observed during simultaneous exposure to DEET and permethrin, leading to neuronal degeneration and significant neurobehavioral effects (Abdel-Rahman et al., 2004).

The chemoprophylactic drugs (doxycycline or mefloquine) administered by the military, also have known adverse effects, associated with use. Historically, mefloquine was developed by the US military (Nevin et al., 2005), but is now only considered if doxycycline is not tolerated. The side effects can be extreme, including psychiatric symptoms such as anxiety, paranoia, depression, hallucinations, and psychosis (Tan et al., 2011). Sequelae can also mimic post-traumatic stress disorder (PTSD), a condition for which deployed servicemen are at high risk
(Eick-Cost et al., 2017). Doxycycline is by far safer and more reliable; side effects rare, and when present can range from nausea/vomiting and esophagitis to psychiatric symptoms like depression and anxiety (Brisson and Brisson, 2012).

Until recently, infection with *P. vivax* malaria was treated with primaquine for complete pathogen eradication. It acts by targeting the dormant hypnozoites in the liver, preventing the possibility for recurrence, thereby facilitating complete recovery (Ashley et al., 2014). Adverse effects have been documented in patients with rare preexisting genetic conditions such as glucose-6-phosphate dehydrogenase deficiency (Valencia et al., 2016; Dombrowski et al., 2017; Watson et al., 2018). Otherwise, the side effect profile is mild and comparable to all other anti-malarial drugs: nausea, vomiting, and abdominal cramps (Burgoine et al., 2010). Recently, tafenoquine was approved by the United States Food and Drug Administration for the radical cure of vivax malaria in patients aged 16 years and older (Rajapaske et al., 2015; Tenoro et al., 2015), though some genetic contraindications still exist. Both primaquine and tafenoquine should be made available for the treatment of United States military servicemen and women deployed overseas (Watson et al., 2018).

Leishmaniasis

More than twenty *Leishmania* species have been identified, and the parasite is considered endemic throughout the world, including much of the Middle East (Golding et al., 2015). Since 2001, 2.4 million US troops have been deployed to Iraq and Afghanistan to participate in various military missions (Spelman et al., 2012). With a 2.1% contraction rate, leishmaniasis has become one of the most commonly diagnosed diseases since the commencement of military activities in
both countries (Beaumier et al., 2013). As deployed personnel return home, US cases of leishmaniasis have risen to match levels seen during World War II (Weina et al., 2004). Leishmaniasis is clinically relevant for armed forces and refugees alike, as civil conflict and unrest continues in the Middle East.

Causes

The number of animal species which can serve as Leishmania reservoir hosts is ever increasing, including rodents, canines, and farm animals (Stephens et al., 2016). Leishmaniasis was not traditionally considered endemic to the United States, although recent epidemiologic findings reveal this status may be changing, secondary to globalization and autochthonous infections leading to persistent endemicity, especially along the southern border and new animal hosts (Wright et al., 2008; Barry et al., 2013; McIlwee et al., 2018). Incidence and disease burden are higher in societies where people live in close proximity to host animals (Henry et al., 2015).

Similar to malaria, it is a vector-borne disease, requiring a phlebotomine sand fly to pick up amastigotes during a bloodmeal from an infected (reservoir) host. Amastigotes undergo development and maturity in the fly, which then inoculates infective promastigotes into a new mammalian host during the next blood meal. Disease manifests as 3 distinct clinical forms: cutaneous (including diffuse cutaneous form), mucocutaneous, or visceral. Cutaneous leishmaniasis (CL) has been the most diagnosed of the three among deployed United States servicemen and women (Weil, 2010; Beaumier, et al, 2013), with L. major, the most prevalent (Herwaldt et al., 1999). Overall, 90% of global CL cases occur in Afghanistan, Brazil, Iran, Peru, Saudi Arabia, and Syria. With the United States military active involvement and troop deployment to these locations, increased cases of leishmaniasis were recorded, until drawdown
when the number of deployed soldiers reduced dramatically (Shirian et al., 2013; Henry et al., 2015). Expectedly, this is not unique to US military, with cases of *L. major* infection and multiple reports of cutaneous disease among British, Dutch, and German soldiers as well (Faulde et al., 2008; Bailey et al., 2012).

Symptoms

Each disease pattern has its own set of symptoms and thus differs in severity. Lesions can be self-resolving, as is often the case with many instances of CL, with or without resultant subclinical parasitemia (Micallef et al., 2014; Rosales-Chilama et al., 2015; Thomaidou et al., 2015). The parasite can also disseminate into internal organs, as in visceral leishmaniasis, becoming fatal in the process. IL-12 and CD4+ Th1 cells have especially been implicated in the development of cellular immunity, though the mechanisms and explicit contributions of each are not yet fully understood (Engwerda et al., 2004; McCall et al., 2013; Buxbaum, 2015; Portela et al., 2018). Fortunately, CL has been the dominant clinical form in the US military, though many subclinical cases, which do not require medical treatment occur as well (Reithinger et al., 2007). The infection first manifests as a simple, non-swollen, red ring around the bite from the sand fly. As the host immune system continues to respond locally at the bite site, sores develop on the skin and can further ulcerate, causing discomfort, but generally painless (Reithinger et al., 2007). In severe cases, these sores can develop on mucosal membranes, degrade the tissues of the mouth and tongue, and potentially interfere with swallowing or cause difficulty breathing. The incubation period for CL can range from 2 weeks to many months and even years, with potential delay between contraction of the disease and onset of symptoms. Soldiers may travel between countries, or even back to the United States, unwittingly becoming reservoir hosts in the process.
Nagarajan and Sloan, 2015; Goodrich et al., 2017), leading to delay in diagnosis and institution of appropriate treatment, if symptoms occur after the patient has returned to a non-endemic area.

Prevention and Treatment

The incidence rate of leishmaniasis among United States Armed Forced was 7.2 cases per 100,000 person-years for the period of 2001 to 2016, with the majority of cases being CL (Stahlman et al., 2017). The reduced incidence rate of recent years has been attributed to better equipment and an emphasis on personal protective measures (Rowland et al., 2015).

Nevertheless, there is still a cause for concern when troops are newly deployed to endemic regions; supportive resources may not be fully in place, deployed personnel may have limited knowledge, and a culture of preventative measure necessity may not have yet developed (Coleman et al., 2006). All of these factors can lead to an initial high caseload (Ore et al., 2015).

The first line of protection from CL is through the use of personal protection techniques. However, there are no effective chemoprophylaxis drugs and no fully developed vaccines, and thus prevention of CL can be extremely difficult (Ghorbani and Farhoudi, 2018).

The preventative techniques that do exist focus on avoiding the bite of infected sandflies. Uniforms are impregnated with a type of pyrethroid (usually permethrin), insect repellants are recommended, and personnel are given pyrethrin-treated bed nets (WHO, 2018). Theoretically, these measures should bring the incidence rate to near-zero levels, but this has not been the case so far. In 2003 alone, the incidence rate was estimated at 200 per 1,000 soldiers (Gonzalez et al., 2017). Efforts have also begun to be focused on reducing the population of sandflies, in order to mitigate transmission risk. Cyfluthrin, a pyrethroid insecticide, has been used to decimate sand
fly populations, and chloropiricin, a wide-spectrum nematicide and insecticide, has been used to reduce the rodent (leishmania reservoir) population (Aronson et al., 1998; Crum, 2005).

Fortunately, modern medicine has afforded CL cure rates up to 91%. The most effective treatment is sodium stibogluconate, given intravenously at doses of 20 mg per kilogram of body weight, for 20 days (Mitchell et al., 2007; Stahlman et al., 2017), with side-effects such as fatigue, arthralgia, myalgia, headaches, and chemical pancreatitis. Sodium stibogluconate is efficacious, but development of new drugs is imperative due to these side effect, the threat of drug resistance, and the high cost ($100 per 100 mL) (Aronson et al., 1998). The threat posed by recent reports of treatment failures in South and Latin America leishmaniasis cases, including the induction of transmissible skin microbiota that significantly promotes inflammation, should be a concern for all in the infectious disease community, particularly the military (Mans et al., 2016; Obonaga et al., 2016; Gimblet et al., 2017).

Other: Military Zoonotic Leishmaniasis

Canines are one of the main reservoirs for *Leishmania* species (Burza et al., 2018; Quinnell & Courtenay 2009), with cases often subclinical. As the parasite multiplies in an asymptomatic dog, *Leishmania* is perpetuated locally via phlebotomine vectors (Kilian et al., 2007). The usually implicated species, *L. infantum*, does not typically infect healthy humans, though incidence of associated infection and disease has increased in recent years (Stoeckle et al., 2013; Kroidl et al., 2014; Bennai et al., 2018; Herrera et al., 2018; Risueno et al., 2018; Teimouri et al., 2018), with immunodeficient individuals at a higher risk of disease (Michel et al., 2011).

Zoonotic transmission of *L. infantum* to humans often results in visceral leishmaniasis infection
Though military personnel often have superior baseline health ratings compared to their civilian cohorts upon deployment, the stress of military life can contribute to development of an immunodeficiency state. Additionally, military personnel are at higher risks of smoking/alcohol/substance-abuse initiation and recidivism, frequently spend long periods of time in environments with sub-standard hygiene, may have more erratic sleep schedules, and overall suffer greater declines in mental and physical health (Dau et al., 2009; Spelman et al., 2012). In particular, personnel who have served in the Middle East since the Persian Gulf War have reported higher levels of psychosomatic/psychological pain in comparison to cohort military personnel that served contemporarily but in other locations (Gray et al., 1996; Dlugosz et al., 1999). Thus, troops are at a relatively high risk of zoonotic canine leishmaniasis due to exposure (military dogs becoming infected, local dogs in endemic areas) and high prevalence of immunodeficiency/extreme stress secondary to their service.

Canine Leishmaniasis (CanL) is a common veterinary problem worldwide, with recent prevalence estimates as high as 25-80% (Michel et al., 2011; Akhtardanesh et al., 2017; Baneth et al., 2017; Guven et al., 2017; Ruh et al., 2017; Al Bajalan et al., 2018; Monteiro et al., 2018). Brazil is known to be especially affected (Borja et al., 2016; Torres-Guerrero et al., 2017; da Rocha et al., 2018; Melo et al., 2018), with published reports highlighting increases in diagnoses and advocating for better public health strategies to be focused specifically on dogs (Camargo and Langoni, 2006; Lima et al., 2010). The armed forces regularly use military working dogs (MWD) for special operations, including abroad in Leishmania-endemic regions. CanL has been found multiple times in military animals (Kawamura et al., 2010; Davoust et al., 2013). Of domestic importance, these dogs who are deemed ‘adoptable’ are mandated to return to the US,
with adoption priority given to their former handlers. Approximately 1,000 former-MWDs enter
the US annually (Kilian et al., 2007), potentially serving as a reservoir for *Leishmania*: both
symptomatic and asymptomatic canines have been shown to have similar inoculation abilities
(Moshfe et al., 2009), and CanL prevalence has been shown to correlate with that of human
disease (Bruhn et al 2018). CanL was first found in the United States in the 1980s and 1990s
infected foxhounds, (Enserink, 2000; Petersen, 2009), with limited studies carried out since, to
estimate current levels. Autochthonous infection has been reported since in North American dogs
(Schantz et al., 2005). Without better screening for all MWDs, the possibility remains for import
of CanL via former-MWDs and thus future augmentation in *L. infantum* incidence in US civilian
and military populations. Canine vaccination, one possible solution to mitigating CanL disease
burdens in the United States has shown some success as a human health preventative measure
(Palatnik-de-Sousa et al., 2009; Rezvan and Moafi, 2015; Ribeiro et al., 2018), though vaccine
efficacy remains low (68-71%) (Ribeiro et al., 2018), questioning their utility for preventive
purposes.

Future Implications

Global political alignments often shift, and the US military remains mobile in response, with a
higher likelihood that a greater number of troops may be deployed to the Middle East in response
to current trends. Engagement with local leishmania and malaria-endemic regions puts American
servicemen and women at risk of disease contraction, thereby highlighting the disease burden in
these foreign countries.

Malaria
Malaria is endemic to much of the world, and the United States military will likely continue to engage in endemic areas. Drug-resistant strains of malaria have been found, indicating the need for further preventative measures (Fukuda et al., 2011; Cui et al., 2015). Most of these species are found in Asia (White et al., 2014). Globalization of the Asian continent as well as potential future military involvement in Asia could result in military exposure to such species, resulting in, at a minimum complicated treatment. For example, \textit{P. vivax} is endemic to North Korea (Nishiura et al., 2018), and though present rapprochement between both countries and South Korea seems to have downplayed the threat of military engagement, US troops still engage in military runs in neighboring South Korea. This puts US troops at risk of exposure if military forces press north. Furthermore, malaria was eradicated in South Korea in the 1970s, but soldiers (and increasingly, civilians as well) have been diagnosed with \textit{P. vivax} malaria in the North-South demilitarized zone (Lee et al., 2002; Im et al., 2018), including reports of natural hybridization between local mosquito species and changing meteorological factors, to further perpetuate current observation (Choochote et al., 2014; Phasomkusolsil et al., 2014; Chang et al., 2016; Hwang et al., 2016).

\textit{Leishmaniasis}

CL is found primarily in the Middle East, and the US military continues to be at risk of infection. The \textit{Leishmania} disease burden in the Middle East is estimated at 100,000 cases annually, indicating that exposure risk remains significant (Salam et al., 2018). Iran and Pakistan are of note in this region: both countries steadily trending towards increased prevalence, opposite of most other neighboring nations (Rahman et al., 2010; WHO, 2018). True infection rates may be greater than reported due to the fact that majority of affected rural communities lack the infrastructure for precise diagnosis and reporting, and the persistent antagonistic attitude to
healthcare workers arising from many years of counterintelligence activities and breakdown of trust. Ongoing civil conflicts in Syria compounds the growing and untenable numbers of individuals symptomatic for disease or sub-clinically infected, showing up as refugees and present clinically in North America, Europe and other countries (Koltas et al., 2014; Saroufim et al., 2014; Bradshaw and Litvinov, 2017; Wollina et al., 2018; Mockenhaupt et al., 2016). This further compounds disease status among deployed servicemen and women returning to the West, igniting the need for expanding infectious disease experts into current healthcare system, as well as revising medical school curriculum to include training on ‘exotic’ tropical or subtropical diseases.

400 Conclusions
Parasitic diseases are common worldwide, and exposure is common in most deployment locations of the United States military. The majority are not yet preventable with vaccines, and the treatments and prophylaxis that are available are accompanied by many side effects. It is important to continue funding for the treatment and eradication of infectious diseases worldwide for many reasons, including the exposure danger posed to the armed forces. Significantly, the possibility that these pathogens can be imported into the United States by returning service men and women, unknowingly serving as reservoir hosts, should serve as an alarm bell for us to re-evaluate, refocus and strategize how to face the challenges of the 21st century military deployment, protecting them from local pathogenic insults that can potentially lead to epidemics in the homeland.
Acknowledgements

Bolaji Thomas is supported by a Research Laboratory and Faculty Development Award, College of Health Sciences and Technology, Rochester Institute of Technology. Additional funding from Miller Chair in International Education (BNT) is acknowledged. The views expressed are those of the authors and not necessarily those of the Rochester Institute of Technology.

Author Contributions

BNT conceived the idea; KJB, ZJW and AH gathered materials and wrote the manuscript; KJB, ZJW and BNT edited and contributed to scientific content. All authors read and approved the final version of the manuscript.

Conflict of Interest

The authors declare we have no conflicts of interest.

References

Abdel-Rahman A, Dechkovskaia AM, Goldstein LB, et al. Neurological deficits induced by malathion, DEET, and permethrin, alone or in combination in adult rats. J Toxicol Environ Health A 2004; 67(4):331-356

Adshead S. The adverse effects of mefloquine in deployed military personnel. J R Nav Med Serv. 2014; 100:232-237

Akhtardanesh B, Sharifi I, Mohammadi A, Mostafavi M, Hakimmipour M, Pourafshar NG. Feline visceral leishmaniasis in Kerman, southeast of Iran: Serological and molecular study. J Vector Borne Dis. 2017; 54(1):96-102
Al-Bajalan MMM, Niranji SS, Al-Jaf SMA, Kato H. First identification of L. major in a dog in an endemic area of human cutaneous leishmaniasis in Iraq: molecular and phylogenetic studies. Parasitol Res. 2018; 117(2):585-590

Anderson AD, Smoak B, Shuping E, Ockenhouse C, Petrucelli B. Q fever and the US military. Emerging Infectious Diseases 2005; 11:1320-1322

Armed Forces Health Surveillance Branch. Update: malaria, US Armed Forces, 2017. Medical Surveillance Monthly Report 2018; 25:2-7

Aronson, N E, et al. Safety and Efficacy of Intravenous Sodium Stibogluconate in the Treatment of Leishmaniasis: Recent U.S. Military Experience. Clinical Infectious Diseases 1998; 27(6):1457-1464

Ashley, E. et al. Primaquine: the risks and the benefits. Malaria Journal. 2014; 13:418

Bailey, MS, et al. Outbreak of Zoonotic Cutaneous Leishmaniasis with Local Dissemination in Balkh, Afghanistan. Journal of the Royal Army Medical Corps. 2012; 158:225-228

Baneth G, Yasur-Landau D, Gilad M, Nachum-Biala Y. Canine leishmaniosis caused by Leishmania major and Leishmania tropica: comparative findings and serology. Parasit Vectors. 2017;10(1):113

Baird K, et al. Diagnosis and Treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg 2016; 95(6 supp):35-51

Barry MA, Weatherhead JE, Hotez PJ, Woc-Colburn L. Childhood parasitic infections endemic to the United States. Pediatric clinics of North America 2013; 60(2):471-485

Beaumier CM, Gomez-Rubio AM, Hotez PJ, Weina PJ. United States military tropical medicine: extraordinary legacy, uncertain future. PLoS Negl Trop Diseases 2013; 7(12):e2448
Bennai K, Tahir D, Lafri I, Bendjaballah-Laliam A, Bitam I, Parola P. Molecular detection of *Leishmania infantum* DNA and host blood meal identification in *Phlebotomus* in a hypoendemic focus of human leishmaniasis in northern Algeria. PLoS Negl Trop Dis 2018; 12:e0006513

Bialik K. US active-duty military presence overseas is at its smallest in decades. Pew Research 2017; http://pewrsr.ch/2v2Gf3o

Borja LS, Sousa OMF, Solca MDS, Bastos LA, Bordoni M, Magalhaes JT, Larangeira DF, Barrouin-Melo SM, Fraga DBM, Veras PST. Parasite load in the vlood and skin of dogs naturally infected by *Leishmania infantum* is correlated with their capacity to infect sand fly vectors. Vet Parasitol 2016; 229:110-117

Brabin BJ. Malaria’s contribution to World War 1-the unexpected adversary. Malaria Journal 2014; 13 :497

Bradshaw S, Litvinov IV. Dermal leishmaniasis in a 25-year-old Syrian refugee. CMAJ 2017; 189:E1397

Brisson M, Paul Brisson. Compliance with antimalaria chemoprophylaxis in a combat Zone. Am J Trop Med Hyg 2012; 86(4):587-590

Bruhn FRP, Morais MHF, Cardoso DL, et al. Spatial and temporal relationships between human and canine visceral leishmaniasis in Belo Horizonte, Minas Gerais 2006-2013. Parasit Vectors 2018; 11:372

Burgoine KL, Bancone G, Nosten F. The Reality of Using Primaquine. Malaria Journal 2010; 9:376

Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392(10151):951-970
Buxbaum LU. Interleukin-10 from T cells, but not macrophages and granulocytes, is required for chronic disease in *Leishmania mexicana* infection. Infect Immun 2015; 83:1366-71

Camargo LB, Langoni H. Impact of leishmaniasis on public health. J. Venom. Anim. Toxins incl. Trop. Dis. 2006; 12:527-548

Chang KS, Yoo DH, Ju YR, Lee WG, Roh JY, Kim HC, Klein TA, Shin EH. Distribution of malaria vectors and incidence of vivax malaria at Korean army installations near the demilitarized zone, Republic of Korea. Malar J. 2016; 15:259

Choochote W, Min GS, Intapan PM, Tantrawatpan C, Saeung A, Lulitanond V. Evidence to support natural hybridization between *Anopheles sinensis* and *Anopheles kleini* (Diptera: Culicidae): possibly a significant mechanism for gene introgression in sympatric populations. Parasit Vectors 2014; 7:36

Ciminera P, Brundage J. Malaria in U.S. military forces: a description of deployment exposures from 2003 through 2005. Am J Trop Med Hyg 2007; 76:275-9

Coleman RE, Burkett DA, Putnam JL. Impact of phlebotomine sandflies on US military operations at Tallil air base, Iraq: 1. Background, military situation, and development of a leishmaniasis control program. J Med Entomol. 2006; 43:647-662

Crum, N. History of U.S. Military Contributions to the Study of Parasitic Diseases. Military Medicine 2005; 170(4 suppl):17-29

Cui L, Mharakurwa S, Ndiaye D, et al. Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. *Am J Trop Med Hyg* 2015; 93(3 suppl):57-68

da Rocha ICM, Dos Santos LHM, Coura-Vital W, da Cunha GMR, Magalhães FDC, da Silva TAM, Morais MHF, Oliveira E, Reis IA, Carneiro M. Effectiveness of the Brazilian
visceral leishmaniasis surveillance and control program in reducing the prevalence and
certainty of *Leishmania infantum* infection. Parasit Vectors. 2018; 11(1):586

Dau B, Oda G, Holodniy M. Infectious complications in OIF/OEF veterans with traumatic brain
injury. Journal of Rehabilitation Research and Development 2009; 46:673-684

Davoust B, Roqueplo C, Parzy D, et al. A twenty year follow-up of canine leishmaniosis in three
military kennels in southeastern France. Parasit Vectors 2013; 6:323

Diaz JH. Chemical and plant based insect repellents: efficacy, safety, and toxicity. Wilderness
Environ Med 2016; 27(1):153-163

Divis PC, Singh B, Anderios F, Hisam S, Matusop A, Kocken CH, Assefa SA, Duffy CW,
Conway DJ. Admixture in humans of two divergent Plasmodium knowlesi populations
associated with different macaque host species. PLoS Pathog 2015; 11:e1004888

Dlugosz LJ, Hocter WJ, Kaiser KS, et al. Risk factors for mental disorder hospitalization after
the Persian Gulf War: US Armed Forces, June 1, 1991 – September 20, 1993. J Clin
Epidemiol. 1999;52(12):1267-1278

Dombrowski JG, Souza RM, Curry J, Hinton L, Silva NRM, Grignard L et al. G6PD deficiency
alleles in a malaria-endemic region in the Western Brazilian Amazon. Malar J 2017;
16:253

Eick-Cost AA, Hu Z, Rohrbeck P, Clark LL. Neuropsychiatric outcomes after Mefloquine
exposure among US Military service members. Am J Trop Med Hyg 2017; 96:159-166.

Engwerda CR, Ato M, Kaye PM. Macrophages, pathology and parasite persistence in
experimental visceral leishmaniasis. Trends in Parasitology 2004; 20:524-530

Enserink M. Has Leishmaniasis become endemic in the U.S.? Science 2000; 290:1881-1883
Evans AB, Kulik D, Banerji A, Boggild A, Kain KC, Abdelhaleem M, Morris SK. Imported pediatric malaria at the Hospital for Sick Children, Toronto, Canada: a 16 year review. BMC Pediatr 2014; 14:251

Faulde M, et al. Zoonotic Cutaneous Leishmaniasis Outbreak in Mazar-e Sharif, Northern Afghanistan: An Epidemiological Evaluation. International Journal of Medical Microbiology 2008; 298.5: 543-50

Foster JT, Walker FM, Rannals BD, et al. African lineage Brucella melitensis isolates from Omani livestock. Front Microbiol 2018; 8:2702

Fukuda MM et al. Malaria and other vector-borne infection surveillance in the U.S. Department of Defense Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance program: review of 2009 accomplishments. BMC Public Health 2011; 11(Suppl 2): S9

Gimblet C, Meisel JS, Loesche MA, Cole SD, Horwinski J, Novais FO, Msic AM, Bradley CW et al. Cutaneous leishmaniasis induces a transmissible dysbiotic skin microbiota that promotes skin inflammation. Cell Host Microbe 2017; 22(1):13-24.e4

Ghorbani M, Farhoudi R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des Devel Ther. 2018; 12:25-40

Goldman-Yassen AE, Mony VK, Arguin PM, et al. Higher rates of misdiagnosis in pediatric patients versus adults hospitalized with imported malaria. Pediatr Emerg Care. 2016;32(4):227-231

Golding N, Wilson AL, Moyes CL, Cano J, Pigott DM, Velayudhan R, Brooker SJ, Smith DL, Hay SI, Lindsay SW. Integrating vector control across diseases. BMC Med. 2015; 13:249
Gonzalez AM, Solis-Soto MT, Radon K. Leishmaniasis: Who uses personal protection among military personnel in Colombia? Annals of Global Health 2017; 83(3-4):519-523

Goodrich ES, Sears SC, Sorrells T, et al. A case of cutaneous Leishmaniasis guyanensis mimicking otitis externa. Military Medicine 2017; 7:e1969

Gray GC, Coate BD, Anderson CM, et al. The postwar hospitalization experience of US veterans of the Persian Gulf war. N Engl J Med. 1996;335(20):1505-1513

Guven E, Avcioglu H, Cengiz S, Hayirli A. Vector-Borne pathogens in stray dogs in Northeastern Turkey. Vector Borne Zoonotic Dis. 2017; 17(8):610-617

Henry, J. et al. Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. American Journal of Clinical Dermatology 2015; 16(2):99-109

Herrera G, Higuera A, Patino LH, Ayala MS, Ramirez JD. Description of Leishmanias species among dogs and humans in Colombian visceral leishmanisis. Infect Gen Evol 2018; 64:135-138

Herwaldt, BL. Leishmaniasis. The Lancet. 1999; 354:1191-1199

Hotez PJ, Savioli L, Fenwick A. Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS Negl Trop Dis 2012; 6(2):e1475

Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A. Middle East respiratory syndrome coronavirus: risk factors ad determinants of primary, household, and nosocomial transmission. Lancet Infectious Diseases 2018; pii: S1473-3099(18)30127-0

Humphrey JM, Cleton NB, Reusken CB, et al. Dengue in the Middle East and North Africa: a systemic review. PLoS Negl Trop Dis. 2016; 10:e0005194
567 Hwang SM, Yoon SJ, Jung YM, Kwon GY, Jo SN, Jang EJ, Kwon MO. Assessing the impact of meteorological factors on malaria patients in demilitarized zones in Republic of Korea. Infect Dis Poverty 2016; 5:20

570 Im JH, Huh K, Yoon CG, Woo H, Lee JS, Chung MH, Klein TA, Jung J. Malaria control and chemoprophylaxis policy in the Republic of Korea Armed Forces for the previous 20 years (1997-2016). Malar J. 2018; 17:295

573 Isaacs AT, Lynd A, Donnelly MJ. Insecticide-induced leg loss does not eliminate biting and reproduction in *Anopheles gambiae* mosquitoes. Sci Rep 2017; 7:46674

575 Kawamura Y, Yoshikawa I, Katakura K. Imported leishmaniasis in dogs, US military bases, Japan. Emerg Infect Dis 2010; 16:2017-2019

577 Koltas IS, Eroglu F, Alabaz D, Uzun S. The emergence of *Leishmania major* and *Leishmania donovani* in southern Turkey, *Transactions of The Royal Society of Tropical Medicine and Hygiene* 2014; 108:154-158

580 Kotwal RS, Wenzel RB, Sterling RA, Porter WD, Jordan NN, Petruccelli BP. An outbreak of malaria in US Army Rangers returning from Afghanistan. JAMA 2005; 293:212-6

582 Kroidl A, Kroidl I, Bretzel G, Loscher T. Non-healing old world cutaneous leishmaniasis caused by *L. infantum* in a patient from Spain. BMC Infectious Diseases. 2014; 14:206-209

584 Lima LV, Carneiro LA, Campos MB, Chas EJ, Laurenti MD, Corbett CE et al. Canine Visceral Leishmaniasis due to Leishmania (L.) infantum chagasi in Amazonian Brazil: Comparison of the parasite density from the skin, lymph node and the visceral tissues between symptomatic and asymptomatic, seropositive dogs. Rev Inst Med Trop Sao Paulo 2010; 52(5): 259-65
Lee JS, Lee WJ, Cho SH, Ree HI. Outbreak of vivax malaria in areas adjacent to the demilitarized zone, South Korea 1998. Am J Trop Med Hyg 2002; 66:13-17

Mace KE, Arguin PM, Tan KR. Malaria surveillance-United States, 2015. MMWR Surveillance Summaries 2018; 67:1-28

Malaria Field Guide. Army Public Health Center. USAFRICOM. May 2016

Mans DR, Kent AD, Hu RV, et al. Monitoring the response of patients with cutaneous leishmaniasis to treatment with pentamidine isethionate by quantitative real-time PCR, and identification of Leishmania parasites not responding to therapy. Clin Exp Dermatol. 2016;41(6):610-615

Mansueto P, Seidita A, Vitale G, Cascio A. Leishmaniasis in travelers: a literature review. Travel Med Infect Dis 2014; 12(6):563-581

Markus, M B. Malaria: Origin of the Term ‘Hypnozoite’. J Hist Biol 2011; 44(4):781-786

McCall LI, Zhang WW, Matlashewski G. Determinants for the development of visceral leishmaniasis disease. Plos Pathogens 2013; 9:e1003053-e1003059.

McIlwee BE, Weis SE, Hosler GA. Incidence of endemic human cutaneous leishmaniasis in the United States. JAMA Dermatol 2018; 154(9):1032-1039

Melo SN, Teixeira-Neto RG, Werneck GL, Struchiner CJ, Ribeiro RAN, Sousa LR, de Melo MOG, Carvalho Júnior CG, Penaforte KM, Manhani MN, Aquino VV, Silva ES, Belo VS. Prevalence of visceral leishmaniasis in a population of free-roaming dogs as determined by multiple sampling efforts: A longitudinal study analyzing the effectiveness of euthanasia. Prev Vet Med. 2018; 161:19-24

Micallef C, Azzopardi CM. Atypical cutaneous leishmaniasis in the immunosuppressed. BMJ Case Rep 2014; pii: bcr2014204914
Michel G, Pomares C, Ferrua B, Marty P. Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Tropica 2011; 119:69-75

Millar SB, Cox-Singh J. Human infections with Plasmodium knowlesi—zoonotic malaria. Clin Microbiol Infect 2015; 21:640-648

Mitchell ME, Silvitz LB, Robert Black (eds). Infectious diseases diagnosed in US troops who served in the Persian Gulf War, Operation Enduring Freedom, or Operation Iraqi Freedom. In: Gulf War and Health: Volume 5: Infectious Diseases. National Academies Press, 2007, pp 4-99

Mockenhaupt FP, Barbre KA, Jensenius M, Larsen CS, Barnett ED, Stauffer W, Rothe C, Asgeirsson H, Hamer DH, Esposito DH, Gautret P, Schlagenhauf P. Profile of illness in Syrian refugees: A GeoSentinel analysis, 2013 to 2015. Euro Surveill. 2016;21(10):30160

Monteiro FM, Machado AS, Rocha-Silva F, Assunção CB, Graciele-Melo C, Costa LE, Portela AS, Ferraz Coelho EA, Maria de Figueiredo S, Caligiorne RB. Canine visceral leishmaniasis: Detection of Leishmania spp. genome in peripheral blood of seropositive dogs by real-time polymerase chain reaction (rt-PCR). Microb Pathog. 2018; 126:263-268

Moshfe A, Mohebali M, Edrissian G, Zarei Z, Akhoundi B, Kazemi B et al. Canine visceral leishmaniasis: Asymptomatic infected dogs as a source of L. infantum infection. Acta Tropica 2009; 112:101-105

Muller M, Schlangehauf P. Plasmodium knowlesi in travelers, update 2014. Int J Infect Dis 2014; 22:55-64
Nagarajan P, Sloan BS. Isolated cutaneous leishmaniasis by Leishmania donovani in a soldier returning from Afghanistan. American J Dermatopathol 2015; 37:591-592

Nevin RL. Mefloquine and posttraumatic stress disorder. In: Forensic and Ethical Issues in Military Behavioral Health, PhD student thesis, John Hopkins School of Public Health, Baltimore MD

Nishiura H, Lee H, Uuan B, et al. Infectious disease risks among refugees from North Korea. Int J Infect Dis 2018; 66:22-25

Obonaga R, Fernandez OL, Valderrama L, et al. Treatment failure and miltefosine susceptibility in dermal Leishmaniasis caused by Leishmania subgenus Viannia species. Antimicrob Agents Chemother. 2014;58(1):144-152

O'Donnell FL, Stahlman S, Fan M. Surveillance for vector-borne diseases among active and reserve component service members, U.S. Armed Forces, 2010-2016. MSMR 2018; 25:8-15

Oré M, Sáenz E, Cabrera R, et al. Outbreak of cutaneous leishmaniasis in Peruvian military personnel undertaking training activities in the Amazon Basin, 2010. Am J Trop Med Hyg 2015; 93:340-346

Palatnik-de-Sousa CB, Silva-Antunes I, Morgado AA, et al. Decrease in the incidence of human and canine visceral leishmaniasis after dog vaccination with leishmune in Brazilian endemic areas. Vaccine 2009; 27:3505-3512

Park JE, Jung S, Kim A, Park JE. MERS transmission and risk factors: a systematic review. BMC Public Health 2018; 18:574
Petersen CA. New means of canine leishmaniasis transmission in North America: the possibility of transmission to humans still unknown. Interdiscip Perspect Infect Dis 2009; 2009:802712

Phasomkusolsil S, Kim HC, Pantuwattana K, Tawong J, Khongtak W, Schuster AL, Klein TA. Colonization and maintenance of *Anopheles kleini* and *Anopheles sinensis* from the Republic of Korea. J Am Mosq Control Assoc. 2014; 30:1-6

Portela ASB, Costa LE, Salles BCS, et al. Identification of immune biomarkers related to disease progression and treatment efficacy in human visceral leishmaniasis. Immunobiology 2018; 223:303-309

Quinnell RJ, Courtenay O. Transmission, reservoir hosts, and control of zoonotic visceral leishmaniasis. Parasitology. 2009;136(14):1915-1934

Raad II, Chaftari AM, Dib RW, et al. Emerging outbreaks associated with conflict and failing healthcare systems in the Middle East. Infect Control Hosp Epidemiol 2018; 13:1-7

Rahman K, Islam S, Tahman MW, et al. Increasing Incidence of Post-Kala-Azar Dermal Leishmaniasis in a Population-Based Study in Bangladesh. Clin Infect Dis 2010; 50(1):73-76

Rajapaske S, Rodrigo C, Fernando SD. Tafenoquine for preventing relapse in people with *Plasmodium vivax* malaria. Cochrane Database Syst Rev 2015; 29:CD010458

Reithinger R, Dujardin JC, Louzir H et al. Cutaneous leishmaniasis. Lancet Infect Dis 2007; 7(9):581-596

Rezvan H, Moafi M. An overview on Leishmania vaccines: a narrative review article. Vet Res Forum 2015; 6(1):1-7
Ribeiro RR, Michalick MSM, da Silva ME, et al. Canine Leishmaniasis: An overview of the current status and strategies for control. Biomed Res Int. 2018; 3296893

Risueno J, Ortuno M, Perez-Cutillas P, Goyena E, Maia C et al. Epidemiological and genetic studies suggest a common Leishmania infantum transmission cycle in wildlife, dogs, and humans associated with vector abundance in Southeast Spain. Vet Parasitol 2018; 259:61-67

Robert LL. Malaria Prevention and Control in the United States Military. Medecine Tropicale 2001; 61(1):67-76.

Rodriguez J, Maibach HI. Percutaneous penetration and pharmacodynamics: wash-in and wash-off of sunscreen and insect repellant. J Dermatolog Treat 2016; 27(1):11-18

Rosales-Chilama M, Gongora RE, Valderrama L, et al. Parasitological confirmation and analysis of Leishmania diversity in asymptomatic and subclinical infection following resolution of Cutaneous Leishmaniasis. PLoS Negl Trop Dis. 2015; 9(12): e0004273

Rowland T, Davidson SA, Kobylnski K, et al. Efficacy of permethrin treated bed nets against leishmaniasis major infected sand flies. US Army Med Dep J 2015; 10-5

Ruh E, Bostanci A, Kunter V, Tosun O, Imir T, Schallig H, Taylan-Ozkan A. Leishmaniasis in northern Cyprus: Human cases and their association with risk factors. J Vector Borne Dis. 2017; 54(4):358-365

Salam N, Al-Shaqha WM, Azzi A. Leishmaniasis in the Middle East: incidence and epidemiology. PLoS Negl Trop Dis 2014; 8:e3208

Saroufim M, Charafeddine K, Issa G, Khalifeh H, Habib RH, Berry A, et al. Ongoing epidemic of cutaneous leishmaniasis among Syrian refugees, Lebanon. Emerg Infect Dis. 2014; 20:1712-1715
Shaha DP, Pacha LA, Garges EC, Scoville SL, Mancuso JD. Confirmed malaria cases among active component U.S. Army personnel, January-September 2012. MSMR 2013; 20:6-7; discussion 8-9

Schanz PM, Steurer FJ, Duprey ZH, et al. Autochthonous visceral leishmanaisis in dogs in North America. JAVMA 2005; 226:1316-1322

Shirian S, Oryan A, Hatam GR, Daneshbod Y. Three Leishmania/L. species – L. infantum, L. major, L. tropica – as causative agents of mucosal leishmaniasis in Iran. Pathogens and Global Health 2013; 107:267-272

Spelman JF, Hunt SC, Seal KH, Burgo-Black AL. Post Deployment Care for Returning Combat Veterans. Journal of General Internal Medicine 2012; 27:1200-1209

Stahlman S, Williams VF, Taubman SB. Incident diagnoses of leishmaniasis, active and reserve components, U.S. Armed Forces, 2001-2016. MSMR 2017; 24(2):2-7

Stephens CR, Gonzalez-Salazar C, Sanchez-Cordero V, et al. Can you judge a disease host by the company it keeps? Predicting disease hosts and their relative importance: a case study for leishmaniais. PLoS Negl Trop Dis. 2016; 10:e0005004

Stoeckle M, Holbro A, Arnold A, Neumayr A, Weisser M, Blum J. Treatment of mucosal leishmaniasis (L. infantum) with miltefosine in a patient with Good syndrome. Acta Tropica 2013; 128:168-170

Tan KR, Magill AJ, Parise ME, et al. Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am J Trop Med Hyg 2011; 84(4):517-531
Teimouri A, Mohebali M, Kazemirad E, Hajjaran H. Molecular identification of agents of human cutaneous leishmaniasis in different areas of Iran using internal transcriber spacer 1 PCR-RFLP. J Arthropod Borne Dis 2018; 12:162-171

Tenoro D, Green JA, Goyal N. Exposure-response analyses for tafenoquine after administration for patients with Plasmodium vivax malaria. Antimicrob Agents Chemother 2015; 59:6188-6194

Thomaidou E, Horev L, Jotkowitz D, Zamir M, Ingber A, Enk CD, Molho-Pessach V. Lymphatic dissemination in cutaneous leishmaniasis following local treatment. Am J Trop Med Hyg 2015; 93(4):770-773

Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, et al. Leishmaniasis: A review. F1000Res. 2017; 6:750

Valencia SH, Ocampo ID, Arce-Plata MI, Recht J, Arevalo-Herrera M. Glucose-6-phosphate dehydrogenase deficiency prevalence and genetic variants in malaria endemic areas of Colombia. Malar J 2016; 15:291

Watson J, Taylor WRJ, Bancone G, Chu CS, Jittamala P, White NJ. Implications of current therapeutic restrictions for primaquine and tafenoquine in the radical cure of vivax malaria. PLoS Negl Trop Dis 2018; 12:e0006440

Weil DN. Endemic Diseases and African Economic Growth: Challenges and Policy Responses. J Afr Econ 2010;19(sup 3)

Weina PJ, Neafie RC, Wortmann G. Old world leishmaniasis: an emerging infection among deployed US military and civilian workers. Clin Infec Dis 2004; 39:1674-1680

White NJ, Pukrittayakamee S, Hien TT, et al. Malaria. Lancet 2014; 383(9918):723-735
Wollina U, Koch A, Guarneri C, Tchernev G, Lotti T. Cutaneous leishmaniasis; a case series from Dresden. Open Access Maced J Med Sci 2018; 6:89-92

Wright NA, Davis LE, Aftergut KS, et al. Cutaneous leishmaniasis in Texas: a northern spread of endemic areas. J Am Acad Dermatol 2008; 58:650-652

Yiin LM, Tian JN, Hung CC. Assessment of dermal absorption of DEET-containing insect repellent and oxybenzone-containing sunscreen using human urinary metabolites. Environ Sci Pollut Res Inst 2015; 22:7062-7070

Yohannes D, Ketema T. Complicated malaria symptoms associated with Plasmodium vivax among patients visiting health facilities in Mendi town, Northwest Ethiopia. BMC Infect Dis. 2016; 16(1): 436