Editorial: Acute myeloid leukemia (AML): Is it time for MRD-driven treatment?

Fabio Guolo1,2*, Claudio Cerchione3, Chiara Vernarecci1 and Alessandro Isidori4

1Clinic Of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy, 2Dipartimento di Oncologia ed Ematologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy, 3Hematology Unit, IRCCS Istituto Scien
tifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy, 4Haematology and Stem Cell Transplant Center, Azienda Ospedaliera Ospedali Riuniti Marche Nord (AORMN), Pesaro, Italy

KEYWORDS
acute myeloid leukemia (AML), minimal residual disease (MRD), immunotherapy, allogeneic stem cell transplantation, leukemic stem cell (LSC)

An increasing number of genetic and epigenetic abnormalities have been shown to display prognostic value in acute myeloid leukemia (AML) (1). Risk stratification at diagnosis, as defined by European LeukemiaNet (ELN) risk score, is important in order to define prognosis for AML patients (1). However, minimal residual disease (MRD) assessment during the therapeutic course further refines baseline risk definition (2, 3). There is indeed strong evidence that the persistence of MRD after first line treatment is associated with an inferior outcome in AML, regardless of baseline risk assessment (4–6).

Even in the setting of allogeneic stem cell transplantation (HSCT), the presence of MRD before transplant, detected by any method, is related with significantly shorter survival, as it is confirmed by recent meta-analysis (7).

Traditionally, multicolour flow cytometry (MFC) and real time PCR based techniques targeting recurrent specific molecular alterations were the most widely used tools for MRD assessment in AML. More recently, next-generation sequencing (NGS) has been introduced. Despite good sensitivity of those methods, there are still some pitfalls in MRD evaluation in AML, for example, mutations associated with nonmalignant clonal hematopoiesis or immunophenotypic abnormalities due to regenerating bone marrow can determine a “background noise” that may result in false positive tests (8, 9).

Furthermore, the optimal timepoints for MRD assessment still have to be defined (10–12). In this view, Liu et al. evaluated a combination of PCR and MFC in a large cohort of AML patients treated with conventional 3 + 7 induction, demonstrating that the integration of the two techniques depends on the specific AML subtype, whereas the post-consolidation time point provided the most significant prognostic information. It is possible however that if more
intensive induction therapies are adopted, the optimal timepoint for MRD assessment may differ (13, 14).

Differently from acute lymphoblastic leukemia, where almost all therapeutic protocols are MRD driven, in AML, despite the relevant prognostic role of MRD, only a small minority of protocols incorporate MRD information for therapeutic decisions (15). Furthermore, in most AML subtypes, MRD follow-up is not standardized yet, and, for relapsing patients, salvage therapy is usually administered at the time of overt hematological relapse (1). On the contrary, MRD assessment is crucial for many relevant clinical decisions in acute promyelocytic leukemia (APL) and, to a lesser extent, in core-binding factor (CBF) AML and in AML with NPM1 mutation (16–18). Those AML subtypes have canonical genetic translocations that are essential for the pathogenesis of the leukemia and are present almost uniformly in all leukemia cells and subclones. Overall, more data are available in the post-HSCT setting, where MRD may be used in order to trigger interventions aimed to reduce hematological relapse risk (19, 20). In this issue, Fan et al. report on the efficacy of different immune intervention strategies in AML patients with t (8;21), according to PCR-based MRD levels after HSCT. They showed that whereas administration of IFNa appears to be the best strategy for patients with low levels of RUNX/RUNXT1 transcript, for patients with higher burden of disease, donor lymphocyte infusions (DLI) represent the most efficient immunological intervention.

In patients lacking a specific transcript, aspecific markers could be used with the same aim. In this view, Georgi et al. reported how donor/recipient chimerism assessment may effectively trigger immune intervention in most AML patients.

Another issue of MRD assessment in AML is represented by the genetic heterogeneity of leukemic cells, both within an individual patient and between different patients (20). Even if nowadays many details on the molecular complexity of AML have been discovered, it is still impossible to identify the biological characteristics of the subset of AML stem cells, which are able to cause relapse in the single patient. It is also very difficult to distinguish with conventional methods those leukemic stem cells (LSC) from the bulk of the disease (20). Furthermore, recent data suggest that, besides LSC, there are also larger subclones of more committed leukemic cells, retaining LCS-like properties, that are able to cause relapses as well (21). This may reflect one of the possible mechanisms of clonal shift in AML, explaining why at relapse immunophenotypic and genetic features may not completely correspond to the ones at diagnosis. High level of MRD after treatment may reflect the presence of larger compartments of chemo-resistant LCS or with stem cell-like properties, as suggested by Kamel et al.

Finally, in the last year with the introduction of the combination of hypomethylating agents and novel drugs such as the BCL-2 inhibitor Venetoclax, the treatment of elderly AML patients has dramatically changed (22–24). However, there are still few data about the relevance and most informative timepoints for MRD assessment with these approaches (25, 26). In this setting, the definition of MRD itself and the timepoints for its assessment could be significantly different from intensive treatment. In the present issue, Bernardi et al. provide an updated and comprehensive review of currently available data, comparing different MRD assessment methods and timepoints. In most studies, MRD clearance in patients treated with HMA + Venetoclax seems indeed to have different kinetics than in intensively treated patients, so that further studies are warranted.

In conclusion, despite significant advances in the standardization of MRD assessment in AML, there are still only few examples of MRD-driven treatment, mostly in AML with specific genetic lesions and in the post-transplant setting.

A better understanding of the biology of the disease and the widespread introduction and integration of more sensitive and specific techniques will probably increase the clinical value of MRD information, leading to more MRD-directed clinical trials in the next future.

Author contributions

FG: conceptualization. CV: draft writing. FG, CC and AI: draft revision. All Authors approved the final version of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References

1. Döhner H, Estey E, Grimwade D, Amadori D, Appelbaum FR, Büchner T. Diagnosis and management of AML in adults: 2017 EZN recommendations from an international expert panel. Blood (2017) 129(4):424–47. doi: 10.1182/blood-2016-08-733196

2. Voso MT, Ottone T, Lavorgna S, Venditt i A, Maurillo L, Lo Coco F, et al. MRD in AML: The role of new techniques. Front Oncol (2019) 9:655. doi: 10.3389/fonc.2019.00655

3. Schuurhuys GJ, Heuser M, Freeman S, Bénec MC, Bucissano F, Closus J. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD working party. Blood (2018) 131(12):1275–91. doi: 10.1182/blood-2017-09-801498

4. Aitken MJL, Ravandi F, Patel KP, Short NJ. Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia. J Hematol Oncol (2021) 14(1):137. doi: 10.1186/s13045-021-01148-5

5. Walter RB, Ofan Y, Wierzchowska A, Ravandi F, Hourigan CS, Ngi LL, et al. Wierzchowska A. Measurable residual disease as a biomarker in acute myeloid leukemia: theoretical and practical considerations. Leukemia (2021) 35(6):1529–38. doi: 10.1038/s41375-021-01250-4

6. Short NJ, Zhou S, et al. Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: A systematic review and meta-analysis. JAMA Oncol (2020) 6(12):1890–9. doi: 10.1001/jamaoncol.2020.4600

7. Buckley SA, Wood BL, Othus M, Hourigan CS, Ustun C, Linden MA, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: A meta-analysis. Haematologica (2017) 102(5):865–73. doi: 10.3324/haematol.2016.159343

8. Ghannam J, Dillon LW, Hourigan CS. Next-generation sequencing for minimal residual disease detection in acute myeloid leukemia. Br J Haematol (2020) 188(1):77–85. doi: 10.1111/bjh.16362

9. Godwin CD, Zhou Y, Othus M, Asmuth MM, Shaw CM, Gardner KM, et al. Donor lymphocyte infusions for the treatment of minimal residual disease – a systematic review of the literature. J Hematol Oncol (2019) 12:1890. doi: 10.1182/blood-2019-01-894980

10. Othus M, Gale RP, Hourigan CS, Walter RB. Statistics and measurable residual disease monitoring by quantitative RT-PCR in core binding factor AML. Leukemia (2021) 35(6):1529–38. doi: 10.1038/s41375-021-01250-4

11. Ommeto P, Guolo F, Clavio M, Kunkl A, Colombo N, Carminati E, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Br J Haematol (2020) 141(6):782–91. doi: 10.1111/bjh.16362

12. Ommeto P, Guolo F, Clavio M, Kunkl A, Colombo N, Carminati E, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Br J Haematol (2020) 141(6):782–91. doi: 10.1111/bjh.16362

13. Ommeto P, Guolo F, Clavio M, Kunkl A, Colombo N, Carminati E, et al. Current strategies for detection and approach to measurable residual disease response and prognosis in treatment naïve acute myeloid leukemia. Minerva Med (2020) 111(5):386–94. doi: 10.2378/50026-4806.20.07016-0

14. Minetto F, Guolo F, Clavio M, Kunkl A, Colombo N, Carminati E, et al. Early minimal residual disease assessment after AML induction with fludarabine, cytarabine and idarubicin (FLAI) provides the most useful prognostic information. Br J Haematol (2019) 184(5):547–60. doi: 10.1111/bjh.15106

15. Wierzbowska AM. Measurable residual disease as a biomarker in acute myeloid leukemia: A systematic review and meta-analysis. Blood (2021) 137(4):569–72. doi: 10.1182/blood.2020-07-219470

16. Othus M, Gale RP, Hourigan CS, Walter RB. Statistics and measurable residual disease (MRD) testing: uses and abuses in hematopoietic cell transplantation. Bone Marrow Transplant (2020) 55(5):843–50. doi: 10.1038/s41409-019-0728-4

17. Shibli LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trottman-Grant A, et al. Tracing the origins of relapse in acute myeloid leukemia to stem cells. Nature (2017) 547(7661):104–8. doi: 10.1038/nature2293

18. Winters AC, Gutman JA, Purev E, Nakic M, Tobin J, Chase S, et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv (2019) 3(20):2911–9. doi: 10.1182/bloodadvances.2019000243

19. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med (2020) 383(7):617–26. doi: 10.1056/NEJMoa2012971

20. Cerchione C, Romano A, Daver N, Di Nardo C, Jabbour EJ, Konopleva M, et al. IDH1/IDH2 inhibition in acute myeloid leukemia. Front Oncol (2021) 11:639387. doi: 10.3389/fonc.2021.639387

21. Pratz KW, Jonas BA, Pullarkat V, Recher C, Schub AC, Thirman MJ, et al. Longitudinal minimal residual disease (MRD) evaluation in acute myeloid leukemia with NPM1 mutation: From definition of molecular relapse to MRD-driven salvage approach. Br J Haematol (2019) 186(6):e223–9. doi: 10.1111/bjh.16111

22. Winter RS, Gutman JA, Purev E, Nakic M, Tobin J, Chase S, et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv (2019) 3(20):2911–9. doi: 10.1182/bloodadvances.2019000243

23. Mertens TP, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med (2020) 383(7):617–26. doi: 10.1056/NEJMoa2012971

24. Cerchione C, Romano A, Daver N, Di Nardo C, Jabbour EJ, Konopleva M, et al. IDH1/IDH2 inhibition in acute myeloid leukemia. Front Oncol (2021) 11:639387. doi: 10.3389/fonc.2021.639387

25. Pratz KW, Jonas BA, Pullarkat V, Recher C, Schub AC, Thirman MJ, et al. Longitudinal minimal residual disease (MRD) evaluation in acute myeloid leukemia with NPM1 mutation: From definition of molecular relapse to MRD-driven salvage approach. Br J Haematol (2019) 186(6):e223–9. doi: 10.1111/bjh.16111

26. Winter RS, Gutman JA, Purev E, Nakic M, Tobin J, Chase S, et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv (2019) 3(20):2911–9. doi: 10.1182/bloodadvances.2019000243

27. Mertens TP, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med (2020) 383(7):617–26. doi: 10.1056/NEJMoa2012971

28. Cerchione C, Romano A, Daver N, Di Nardo C, Jabbour EJ, Konopleva M, et al. IDH1/IDH2 inhibition in acute myeloid leukemia. Front Oncol (2021) 11:639387. doi: 10.3389/fonc.2021.639387

29. Pratz KW, Jonas BA, Pullarkat V, Recher C, Schub AC, Thirman MJ, et al. Longitudinal minimal residual disease (MRD) evaluation in acute myeloid leukemia with NPM1 mutation: From definition of molecular relapse to MRD-driven salvage approach. Br J Haematol (2019) 186(6):e223–9. doi: 10.1111/bjh.16111