HELIUM-LIKE TRIPLET DIAGNOSTICS

J. Dubau1,3 and D. Porquet2,3

1LSAI, U.M.R. 8624, CNRS, Université de Paris Sud, 91405 Orsay Cedex, France
2Service d’Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
3LUTH, F.R.E. 2462 CNRS, Observatoire de Paris, 92195 Meudon Cedex, France

\textbf{Abstract}

The 1s2-1s2l lines are the most intense He-like ions lines. They are used as spectroscopic diagnostics for solar active regions as well as for different laboratory plasmas. Nowadays, it exits very high spectral resolution instruments and, for intense X-ray sources, one can do spectroscopic diagnostics from line ratios. With XMM (RGS) and Chandra (LETGS, HETGS) spectral resolutions and for several atomic elements, it is particularly possible to separate a 3 blended line set, the so-called He-like triplet: Resonance (r), Intercombination (i) and Forbidden (f), which are dominated respectively by lines issued from the following levels: 1s2P\textsubscript{1}, 1s2p 3P\textsubscript{1,2}, and 1s2s3S\textsubscript{1}. We shall show that the measurement of two different ratios between these 3 lines (R = f/i and G = (f + i)/r) give quantitative informations on the nature of the emitting plasma (photo-ionized or collisional) and on its electronic density and temperature. A more refined analysis must also include satellite line contributions.

Key words: atomic data – atomic process – line: formation – techniques: spectroscopic – X-rays

1. INTRODUCTION

In the X-ray range, the three most intense lines of Helium-like ions (“triplet”) are: the resonance line (r, also called w: 1s21S\textsubscript{0} – 1s2p1P\textsubscript{1}), the unresolved intercombination lines (i, also called x + y: 1s21S\textsubscript{0} – 1s2p 3P\textsubscript{2,1}) and the forbidden line (f, also called z: 1s21S\textsubscript{0} – 1s2s3S\textsubscript{1}). They correspond to transitions between the n=2 shell and the n=1 ground-state shell (see Figure 1).

Gabriel & Jordan [1969] were the first to recognize that the ratios of these lines could give important plasma diagnostics on the electron density (n\textsubscript{e}) and temperature (T\textsubscript{e}).

\[R(n_e) = \frac{f}{i} \quad G(T_e) = \frac{f + i}{r} \]

These diagnostics have been used for coronal spectra as well as for many laboratory hot plasmas (e.g. tokamaks).

Helium-like spectral lines 1s2-1s2l have been observed with high spectral resolution for a long time in solar corona X-ray spectra. During the seventies, several instruments have been flown aboard satellites to observe the soft X-ray spectra of solar flares. Spectra in the 1–25Å range, for example, have been obtained from uncollimated crystal spectrometers on the early OSO satellites [Neupert et al. 1973, Doschek et al. 1974,土VII-17 satellite (Walker & Rugge 1977), and OSO 8 (Parkinson et al. 1978)]. Particular spectral regions (e.g. iron lines at 1.9 ˚A) have been examined with the intercosmos-4 spectrometer (Grineva et al. 1973) and the SOLFLEX instrument on the P78-1 satellite (Doschek et al. 1979). Rocket-borne collimated crystal spectrometers have been recorded spectra in various ranges up to 25Å from active regions or weak flares (Parkinson 1975, Pye et al. 1977, Burek et al. 1981), while the collimated SOLFLEX instrument on P78-1 has been obtained very high resolution spectra from sizable flares (McKenzie et al. 1980). Thanks to the Flat Crystal Spectrometer (FCS, Phillips et al. 1982) and Bent Crystal spectrometers (BCS, Culhane et al. 1981) on board the Solar Maximum Mission (SMM), many line blends were resolved for the first time allowing new physical information about the emitting plasma to be extracted. In particular the BCS

Proc. Symposium ‘New Visions of the X-ray Universe in the XMM-Newton and Chandra Era’ 26–30 November 2001.
observed He-like iron and calcium. More recently Yohkoh (Solar A) contained also a BCS which pursued similar solar observations of iron and calcium as SMM, extending the observations to lower temperature by using Helium-like sulfur spectra (Harra-Murnion et al. [1996], Kato et al. [1997]).

For active coronae and solar flares, a temporal analysis of these lines can be carried on during the three consecutive phases: ionization, gradual, recombination (e.g., Mewe & Schrijver [1978a, 1978b, 1978c]; Doyle [1980]; Pradhan & Shull [1981]).

It is now possible, thanks to the spectral resolution of the new generation of X-ray satellites: Chandra and XMM-Newton, to resolve this triplet and to use these diagnostics in case of extra-solar objects. Indeed, the Helium-like “triplet” is a powerful tool in the analysis of high-resolution spectra of a variety of plasmas such as:

- collisional plasmas: e.g., stellar coronae (OB stars, late type stars, active stars, ...)
- photo-ionized or hybrid plasmas (photo-ionization + collisional ionization): e.g., “Warm Absorber” (in AGNs), X-ray binaries, ...
- out of equilibrium plasmas: e.g., SNRs, stellar flares, ...

The wavelength ranges of the RGS (6-35 Å), of the LETGS (2-175 Å), and of the HETGS (MEG range: 2.5-31 Å; HEG range: 1.2-15 Å) contain the Helium-like line “triplets” from C\textsubscript{v} (or N\textsubscript{vi} for the RGS, and for the HETGS-HEG) to Si\textsubscript{xiii} (Table 1).

label	line	CV	N\textsubscript{vi}	O\textsubscript{vii}	Ne\textsubscript{ix}	Mg\textsubscript{xi}	Si\textsubscript{xiii}
\(\tau \) (\(u \)) resonance	40.279	28.792	21.603	13.447	9.168	6.647	
\(i \) (\(x \)) inter-	40.711	29.074	21.796	13.548	9.226	6.683	
\(g \) (\(y \)) combination	40.714	29.076	21.799	13.551	9.229	6.686	
\(f \) (\(z \)) forbidden	41.464	29.531	22.095	13.697	9.313	6.739	

These diagnostics have been recently used in numerous observations of extra-solar objects thanks to Chandra and XMM-Newton such as Active Galactic Nuclei (e.g., NGC 5548: Kaastra et al. [2000]; NGC 4051: Collinge et al. [2001]; MCG-6-30-15: Lee et al. [2001]; NGC 4151: Ogle et al. [2000]; Mrk 3: Sako et al. [2000]; NGC 3783: Kaspi et al. [2000]; Mkn 509: Pounds et al. [2001]); stellar coronae and stellar winds (e.g., Vela X-1: Schulz et al. [2002]; II Pegasi: Huenemoerder et al. [2001]; Capella: Ness et al. [2001]; Audard et al. [2001]; and X-ray binaries (SS 433: Marshall et al. [2002]; 4U 1626-67: Schulz et al. [2001]; EXO 0748-67: Cottam et al. [2003]). As an illustration, the spectra of He-like O\textsubscript{vii} ion of the stellar coronae of Capella and Procyon are shown in Figure 2.

They allow the determination of the ionization process (linked to the temperature) in case of the “Warm Absorber” in AGNs (photo-ionization and/or an additional ionization process such as shock or starburst). However, these diagnostics should be used cautiously in order to avoid any mistaken interpretation of the physical parameters of the observed plasmas. Indeed some neglected atomic processes can lead to wrong determination of the density and of the temperature and of the ionization processes: blended dielectronic satellite lines, photo-excitation due to a strong UV radiation field, resonant scattering (optical depth).

2. Plasma diagnostics

2.1. Density diagnostic

In the low-density limit, all \(n=2 \) states are populated directly or via upper-level radiative cascades by electron impact from the He-like ground state, by recombination (radiative and dielectronic) of H-like ions, and for 1s2s \(^1S_0 \) and \(^3S_1 \) levels, by collisional electron ionization from the 1s\(^2\)2s\(^2\)\(^1S_0 \)/\(^3S_1 \)/\(^1P_1 \) lithium-like ground level (see Figure 3). This later is only important in the out of equilibrium ionization phase such as seen in solar flares (e.g., Mewe & Schrijver [1978a, 1978b, 1978c]; Bely-Dubau [1982]). If the suffix \(\lambda \) represents \(f, i \) and \(r \), the line emissivity \(\epsilon_{\lambda} \) can be written...
as:
\[
\epsilon_\lambda = n_e \left[C_{\text{He}}^H(T_e) N(He - like) + C_{\text{Li}}^H(T_e) N(Li - like) + \alpha_\lambda^H(T_e) N(H - like) \right]
\]

Where \(C_{\text{He}}^H, C_{\text{Li}}^H \), and \(\alpha_\lambda^H \) are effective rate coefficients, i.e. including radiative cascades inside He-like levels, respectively excitation, ionization and recombination rates; and \(N(He - like), N(Li - like), \) and \(N(H - like) \) are the population of \(1s^2, 1s^22s \) and \(1s \) levels.

These \(n=2 \) levels decay radiatively directly or by cascades to the ground level. The relative intensities of the three intense lines are then independent of density. As \(n_e \) increases from the low-density limit, some of these states \((1s2s^2S_1 \text{ and } 1S_0)\) are depleted by collisions to the nearby states where \(n_{\text{crit}} C = A \), with \(C \) being the sum of the collisional rates depopulating the level, \(A \) being the radiative transition probability from \(n=2 \) to \(n=1 \) (ground state), and \(n_{\text{crit}} \) being the critical density. Collisional excitation depopulates first the \(1s2s^2S_1 \) level (upper level of the forbidden line) to the \(1s2p^3P_{0,1,2} \) levels (upper levels of the intercombination lines). The intensity of the forbidden line decreases while those of the intercombination lines increase, hence implying a reduction of the ratio \(R \) (according to Eq. 2) over approximately two or three decades of density (see Fig. 4).

For much higher densities, \(1s2s^1S_0 \) is also depopulated to \(1s2p^1P_1 \), and the resonance line becomes sensitive to the density.

However caution should be taken for low-Z ions (i.e. C V, N vii, O vii) since in case of an intense UV radiation field, the photo-excitation between the \(^3S \) term and the \(^3P \) term is not negligible. This process has the same effect on the forbidden line and on the intercombination line as the collisional coupling, i.e. lowering of the ratio \(R \), and thus could mimic a high-density plasma. It should be taken into account to avoid any misunderstanding between a high-density plasma and a high radiation field (see e.g. Porquet et al. 2001 for more details).

2.2. Temperature/Ionization Process Diagnostics

The ratio \(G \) (see Eq. 3 and Fig. 3) is sensitive to the electron temperature since the collisional excitation rates have not the same dependence with temperature for the resonance line as for the forbidden and intercombination lines.

In addition, as detailed in Porquet & Dubau 2001 (see also Mewe 1999, and Liedahl 1999), the relative intensity of the resonance \(r \) line, compared to the forbidden \(f \) and the intercombination \(i \) lines, contains information about the ionization processes that occur: a strong resonance line compared to the forbidden or the intercombination lines corresponds to collision-dominated plasmas. It leads to a
ratio of $G = (f + i)/r ~1$. On the contrary, a weak resonance line corresponds to plasmas dominated by photo-ionization ($G = (f + i)/r > 4$).

However, as mentioned for the density diagnostic, caution should be taken since photo-excitation can mimic a hybrid plasmas, i.e. photo-ionization plus collisional ionization, e.g. shock or starburst (see § 4).

3. Numerical Modeling

3.1. Atomic data

Wavelengths and radiative probabilities: since 1930 many calculations using different approximations (simple methods up to relativistic many body methods). With the observed resolution of Chandra and XMM-Newton, a good agreement between these calculations can be reached easily, for example, for electron excitation rates see Dubau (1994).

3.2. Blended dielectronic satellite lines

The influence of the blending of dielectronic satellite lines for the resonance, the intercombination and the forbidden lines has been taken into account where their contribution is not negligible in the calculation of R and G, affecting the inferred electron temperature and density. This is the case for the high-Z ions produced in a collisional plasma, i.e. NeIX, MgXI, and SiXIII (Z=10, 12, and 14, respectively).

$$R = \frac{f + satf}{i + sati}$$

$$G = \frac{(f + satf) + (i + sati)}{(r + satr)}$$

where satf, sati and satr are respectively the contribution of blended dielectronic satellite lines to the forbidden line, to the intercombination lines, and to the resonance line, respectively. One can note that at very high density the 3P levels are depleted to the 1P level, and in that case i decreases and R tends to satf/sati.

The intensity of a dielectronic satellite line arising from a doubly excited state with principal quantum number n in a Lithium-like ion produced by dielectronic recombination of a He-like ion is given by:

$$I_s = N_{He} n_e C_s,$$ \hspace{1cm} (4)

where N_{He} is the population density of the considered He-like ion in the ground state $1s^2$ with statistical weight g_1 (for He-like ions $g_1 = 1$).

The rate coefficient (in cm3s$^{-1}$) for dielectronic recombination is given by (Bely-Dubau et al. 1979):

$$C_s = 2.0706 \times 10^{-16} \frac{e^{-E_r/kT_e}}{g_1 T_e^{3/2}} F_2(s),$$ \hspace{1cm} (5)

where E_r is the energy of the upper level of the satellite line s with statistical weight g_s above the ground state of the He-like ion. T_e is the electron temperature in K, and $F_2(s)$ is the so-called line strength factor (often of the order of about 10^{13} s$^{-1}$ for the stronger lines) given by

$$F_2(s) = \frac{g_s A_a A_r}{(\sum A_a + \sum A_r)},$$ \hspace{1cm} (6)

where A_a and A_r are transition probabilities (s$^{-1}$) by auto-ionization and radiation, and the summation is over all possible radiative and auto-ionization transitions from the satellite level s.

At the temperature at which the ion fraction is maximum for the He-like ion (see e.g. Mazzotta et al. 1998), the differences between the calculations for R (or G) with or without taking into account the blended dielectronic satellite lines are only of about 1% (9%), 2% (5%), and 5% (3%) for NeIX, MgXI, and SiXIII at the low-density limit and for $T_{rad}=0$K, respectively (see Porquet et al. 2001). At lower temperature, the contribution of the blended satellite lines become larger and at higher temperature it can be neglected.

For photo-ionized plasmas where recombination prevails and the temperature is much lower (e.g., $T\lesssim 0.1T_m$), the effect on R and G can be much bigger since $I_{sat}/I_{s} \propto T^{-1} e^{(E_r-E_{sat})/kT}$. For very high density n_e the contribution of the blended dielectronic satellite lines to the forbidden line leads to a ratio R which tends to satf/sati, hence decreases much slower with n_e than in the case where the contribution of the blended DR satellites is not taken into account. The importance of the dielectric satellite lines can be seen in the O VII He-like triplet spectra of Procyon on Figure 2, on the right hand side of r and the left hand side of f. They indicate a lower temperature coronal plasma compared to the Capella spectra.
Figure 6. Scaled total radiative recombination rates (upper curves: direct plus cascade contribution from n>2 levels)
\[\alpha_s = \frac{T^4}{\alpha / (Z - 0.5)^2} \times 10^{12} \text{ cm}^3 \text{s}^{-1} \text{ versus } T = \frac{T}{(Z - 0.5)^2} \times 10^{-4} \text{ towards each } n=2 \text{ level (Plus, star, circle and cross are respectively for } Z = 8, 10, 12, 14, \text{ and for comparison the direct contribution (lower curve in each graph). } T \text{ is in Kelvin.} \]

Figure 7. Scaled photoionization cross sections \[\sigma_s = \sigma (Z - 0.5)^2 \text{ in } \text{cm}^{-3} \text{s}^{-1} \text{ as a function of } E / (Z - 0.5)^2 \text{ (E is in Rydberg). Empty circles: photo-ionization cross sections calculated in Porquet & Dubau (2000); solid lines: photo-ionization cross sections available in Topbase for different values of } Z = 6, 10, 14. \]

3.3. Optical depth

If the optical depth of the resonance line is not taken into account, the calculated ratio G could be overestimated (inferred temperature underestimated) when the optically-thin approximation is no longer valid. This has been estimated with an escape-factor method, e.g., for the case of a Warm Absorber in an AGNs (Porquet, Kaastra, Mewe, Dubau 2002).

4. Photo-ionized model

"Warm Absorbers" in AGN are typical examples of photo-ionized (PI) plasmas which are dominantly ionized by an intense radiative source, in such plasmas the electron temperature is relatively small. Then atomic levels are predominantly populated by direct (radiative and/or dielectronic) recombination or by radiative cascades from upper levels, which are very important data. For the modeling of such plasmas the atomic data required are the radiative probabilities, the radiative and dielectronic recombination rates to individual levels, \[1s_n^l S L J, \text{ with } n \leq 10, \text{ plus extrapolation of } n \text{ to infinity. Such a large basis of ionic states is necessary because the radiative recombination is slowly convergent with } n. \]

The cascade contribution of radiative contribution is very important for small temperature, as it can be seen in Figure 6. In Figure 7 the comparison of two different calculations for radiative recombination is done:

1. TOPBASE, a very sophisticated calculation using the R-matrix code;
2. screened hydrogenic data obtained from analytical quantum expression. It is interesting to see in Figures 6 and 7 that the data can be easily scaled along the iso-electronic sequence (Z=8, 10, 12, 14; Porquet & Dubau 2000).

As detailed above the electron density diagnostic is due to the electron excitation inside the n=2 levels. However to get reliable diagnostics, photo-excitation between these close-levels must also be accounted for.

Recently, Kinkhabwala et al. (2002), pointed out also the important effect of the photo-excitation in the high Rydberg series lines. Indeed, the ratio of high-n lines to Lyα bring evidence for photo-excitation in Warm Absorber Seyfert 2. They clearly showed that in addition to

Figure 8. X-ray spectra (XMM-Newton, RGS) of the energy range containing the He-like O VII triplet (r, i, and f lines) showing also the photo-absorbed lines of Ly-α (O VIII), r (O VII) as well two satellite lines q (O VI) and β (O V) (Steenbrugge et al. 2002).
5. Collisional and hybrid models

In pure collisional model, atoms are ionized by electron collision, the free electrons being heated by some external source. Electron collision is the dominant excitation process, and spontaneous emission is the dominant de-excitation process.

A hybrid model is a mixing of both collisional and photo-ionized models. A strong radiation field can mimic a high density if the photo-excitation 3S_1 level (f line) $\rightarrow ^3P_{0,1,2}$ levels (l lines) exceeds the electron collisional excitation. ex: ζ Puppis (Kahn et al. 2001, Cassinelli et al. 2001). Rate of photo-excitation (in s^{-1}) (Mewe & Schrijver 1978a) in a stellar photospheric radiation field with effective black-body radiation temperature T_{rad} is written as:

$$B_{mpk} = \frac{W A_{mpk}(w_{pk}/w_m)}{\exp\left(\frac{\Delta E_{mpk}}{kT_{rad}}\right) - 1},$$

where A and B are the Einstein coefficients and the radiation is diluted by a factor W given by

$$W = \frac{1}{2} \left[1 - \left(1 - \left(\frac{r_s}{r}\right)^{1/2}\right) \right],$$

- $W=1/2$ (close to the stellar surface, $r = r_s$; e.g., Capella and Procyon: Audard et al. 2001, Mewe et al. 2001, Ness et al. 2001).
- $W<<1/2$ (radiation originates from another star at larger distance; e.g., Algol, where K-star is irradiated by B-star, $W \simeq 0.01$: Ness et al. 2002).
- $W<1/2$ (radiation originates from another star at larger distance; e.g., Algol, where K-star is irradiated by B-star, $W \simeq 0.01$: Ness et al. 2002).

Porquet et al. (2001) showed that photo-excitation is important for C V, N VI, O VII for $T_{rad} \geq (5-10) \times 10^3 \text{K}$ (see Fig. 3 in Porquet et al. 2002), and for higher-Z ions when $T_{rad} \geq \text{few} 10^4 \text{K}$.

6. Laboratory spectra

Helium-like lines are now currently observed in many laboratory plasmas: tokamaks (e.g., Doyle & Schwoob 1982), laser produced plasmas (e.g., Renaudin et al. 1994), Z-pinch (e.g., Coulter et al. 1988). The former diagnostics have often been used.

Atomic data can be checked by comparison with laboratory measurements, ions being produced by ionic sources: EBIT (Wargelin et al. 2001).

7. Conclusion

We have shown that the ratios of the three main lines (forbidden, intercombination and resonance) of He-like ions provide very powerful diagnostics for totally or partially photo-ionized media. For the first time, these diagnostics can be applied to non-solar plasmas thanks to the high spectral resolution and the high sensitivity of the new X-ray satellites Chandra, and XMM-Newton:

- collisional lines: e.g., stellar coronae (OB stars, late
type stars, active stars, ...);
• photo-ionized or hybrid plasmas (photo-ionization + collisional ionization):
e.g., “Warm Absorber” (in AGNs), X-ray binaries, ...
• out of equilibrium plasmas: e.g., SNRs, stellar flares, ...

These diagnostics have strong advantages. The lines are emitted by the same ionization stage of one element, thus eliminating any uncertainties due to elemental abundances. In addition, since the line energies are relatively close together, this minimizes wavelength dependent instrumental calibration uncertainties, thus ensuring that observed photon count rates can be used almost directly.

These diagnostics should be used not as stand-alone one but should be used combined to other plasma diagnostics such as those based on radiative recombination continuum (RRC; Liedahl & Paerels 1990), Fe-L shell lines (see review of Liedahl et al. 1992), which give respectively indication on the ionization process as well as on the density.

In a close future high spectral resolution spectra at higher energy range (Astro-E2, Constellation-X, XEUS) will give access to higher Z He-like ions such as sulfur, calcium and iron, which are sensitive to higher range of density and temperature.

ACKNOWLEDGEMENTS

D.P. acknowledges grant support from the “Institut National des Sciences de l’Univers” and from the “Centre National d’Etudes Spatial” (France).

REFERENCES

Audard, M., Behar, E., Güdel, M., Raassen, A. J. J., Porquet, D., Mewe, R., Foley, C. R., Bromage, G. E. (2001), A&A, 365, L329
Bely-Dubau, F., Gabriel, A. H., Volonté, S. (1979), MNRAS, 189, 801
Bely-Dubau F., Dubau J., Faucher P., Gabriel A. H. (1982), MNRAS, 198, 239
Burek A. J., Barrus D. M., Blake R. L., Fenimore E. E. (1981), ApJ, 243, 660
Cassinelli J. P., Miller N. A., Waldron W. L., MacFarlane J. J., Cohen D. H. (2001), ApJ, 554, L55
Collinge M. J., Brandt W. N., Kaspi S., Crenshaw, D. M., Elvis, M., Kraemer, S. B., Reynolds, C. S., Sambruna, R. M., Wills, Beverley J. (2001), ApJ, 557, 2
Cottam J., Kahn S. M., Brinkman A. C., den Herder J. W., Erd C. (2001), A&A, 365, L277
Coulter M. C., Apruzeze J. P., Kepple P. C. (1988), Journal of Applied Physics, 63, 2221
Cullane J. L., Rapley C. G., Bentley R. D., Gabriel, A. H., Phillips, K. J., Acton, L. W., Wolfson, C. J., Catura, R. C., Jordan, C., Antonucci, E. (1981), ApJ, 244, L141
Doyle J.G. (1980), A&A, 87, 183
Doyle J. G., Schwob J. L., 1982, Journal of Physics B Atomic Molecular Physics, 15, 813
Doschek G. A., Meekins J. F., Cowan R. D. (1972), ApJ, 177, 261
Doschek G. A., Kreplin R. W., Feldman U. (1979), ApJ, 233, L157
Dubau J. (1994), Atomic Data and Nuclear Data Tables, 57, 21
Gabriel A.H. & Jordan, C. (1969), MNRAS, 145, 241
Grinev Y. I., Karev V. I. K. V., Krutov V. V., Mandelstam S. L., Vainstein L. A., Vasilyev B. N., Zhitnik I. A. (1973), Solar Physics, 29, 441
Harra-Murrion, L. K., Phillips, K. J. H., Lemen, J. R., Zarro, D. M., Greer, C. J., Foster, V. J., Barnesley, R., Coffey, I. H., Dubau, J., Keenan, F. P., Fludra, A., Rachlew-Kaelhne, E., Watanabe, T., Wilson, M. (1996), A&A 308, 670-684
Huenemoerder D. P., Canizares C. R., Schulz N. S. (2001), ApJ, 559, 1135
Kaastra J. S., Mewe R., Liedahl D. A., Komossa S., Brinkman A. C. (2000), A&A, 354, L83
Kaastra J. S., Mewe R., Porquet D., Raassen A. J. J. (2002), in preparation (Paper IV)
Kahn S. M., Leutenegger, M. A., Cottam, J., Rauw, G., Vreux, J.-M., den Boggende, A. J. F., Mewe, R., Güdel, M. (2001), A&A, 365, L312
Kaspi S., Brandt W. N., Netzer H., Sambruna R., Chartas G., Garmire G. P., Nousek J. A. (2000), ApJ, 535, L17
Kato T., Safronova U., Shlyptseva A., Cornille M., Dubau J., Nilsen J., 1997, Atomic Data and Nuclear Data Tables, 67, 225
Kinkhabwala et al. (2002), these proceedings
Lee J. C., Ogle P. M., Canizares C. R., Marshall H. L., Schulz N. S., Morales R., Fabian A. C., Iwasawa K. (2001), ApJ, 554, L13
Liedahl D. A., Kahn S. M., Osterheld A. L., Goldstein W. H., 1992, ApJ, 391, 306
Liedahl D. A., Paerels, F. (1996), ApJ, 468, 33
Liedahl D. A. (1999), X-Ray Spectroscopy in Astrophysics, 189
Marshall H. L., Canizares C. R., Schulz N. S. (2002), ApJ, 564, 941
Mazzotta P., Mazzitelli, G., Colafrancesco, S., Vittorio, N. (1998), &AS, 133, 403
Mauche C. W., Liedahl D. A., Fournier K. B., 2001, ApJ, 560, 992
McKenzie D. L., Landecker P. B., Broussard R. M., Rugge H. R., Young R. M., Feldman U., Doschek G. A. (1980), ApJ, 241, 409
Mewe R. & Schrijver J. (1978a), A&A, 65, 99
Mewe R. & Schrijver J. (1978b), A&A, 65, 115
Mewe R. & Schrijver J. (1978c), A&A, 365, 171
Mewe R. (1999), X-Ray Spectroscopy in Astrophysics, 109
Mewe R. & Schrijver J. (1978a), A&A, 365, 171
Mewe R. & Schrijver J. (1978b), A&A, 65, 99
Mewe R. & Schrijver J. (1978c), A&A, 365, 171
Mewe R. (1999), X-Ray Spectroscopy in Astrophysics, 109
Mewe R. (1999), X-Ray Spectroscopy in Astrophysics, 109
Mewe R., Raassen A.J.J., Drake J.J., Kaastra J.S., van der Meer R.L.J., Porquet D. (2001), A&A, 368, 888
Mewe R. (2002), these proceedings
Ness J.-U., Mewe R., Schmitt J.H.M.M., Raassen A.J.J., Porquet D., Kaastra J.S., van der Meer R.L.J., Porquet D. (2001), A&A, 368, 888
Neupert W. M., Swartz M., Kastner S. O. (1973), Solar Physics, 31, 171
Ogle P. M., Marshall H. L., Lee J. C., Canizares C. R. (2000), ApJ, 545, L81
Parkinson J. H. (1975), Solar Physics, 42, 183
Parkinson J. H., Wolff R. S., Kestenbaum H. L., Ku, W. H.-M., Lemen, J. R., Long, K. S., Novick, R., Suozzo, R. J., Weisskopf, M. C. (1978), Solar physics, 60, 123
Phillips K. J. H., Fawcett B. C., Kent B. J., Gabriel, A. H., Leibacher, J. W., Wolfson, C. J., Acton, L. W., Parkinson, J. H., Culhane, J. L., Mason, H. E. (1982), ApJ, 256, 774
Porquet D. & Dubau J. (2000), A&AS, 143, 495 (Paper I)
Porquet D., Mewe R., Dubau J., Raassen A. J. J., Kaastra J. S (2001), A&A, 376, 1113 (Paper II)
Porquet D., Kaastra J. S, Mewe R., Dubau J. (2002), in preparation (Paper III)
Pounds K., Reeves J., O’Brien P., Page K., Turner M., Nayakshin S. (2001), ApJ, 559, 181
Pradhan A. K. & Shull J. M. (1981), ApJ, 249, 821
Pye J. P., Evans K. D., Hutcheon R. J. (1977), MNRAS, 178, 611
Renaudin P., Chenais-Popovics C., Gauthier J. C., Peyrusse O., Back C. A. (1994), Physical Review E, 50, 2186
Sako M., Kahn S. M., Paerels F., Liedahl D. A. (2000), ApJ, 543, L115
Schulz N. S., Chakrabarty D., Marshall H. L., Canizares C. R., Lee J. C., Houck J. (2001), ApJ, 563, 941
Schulz N. S., Canizares C. R., Lee J. C., Sako M. (2002), ApJ, 564, L21
Steenbrugge, J. S. Kaastra, A. C. Brinkman, R. Edelson (2002), these proceedings
Vainshtein L. A., Safronova U. I. (1978), Atomic Data and Nuclear Data Tables, 21, 49
Walker A. B. C., Rugge H. R. (1970), A&A, 5, 4
Wargelin B. J., Kahn S. M., Beiersdorfer P., 2001, Phys. Rev. A, 63, 2710