Review

Pharmaceutical Implications of Sex-Related RNA Divergence in Psychiatric Disorders

Alon Simchovitz-Gesher¹ and Hermona Soreq¹,²,*

Male–female differences have long been observed in the epidemiology and clinical presentation of psychiatric disorders. Current understanding is based on sex hormones and on transcription patterns governed by the sex chromosomes, and specific sexually dimorphic pathways were only recently identified. However, the underlying molecular mechanisms and pharmaceutical implications remain unclear. We highlight the importance of studying the sex-specific patterns of mental diseases at all levels from genomics to pharmaceutics. In particular, we discuss transcriptional level differences between the sexes in psychiatric disorders and outline the possible impact of such research on future pharmaceutical developments.

Differences between Sexes in Psychiatric Disorders

The fact that psychiatric disorders display different prevalences between the sexes is not new. Whereas anxiety and stress-related disorders such as post-traumatic stress disorder (PTSD) [1,2] and major depressive disorder (MDD) [3] are more common in females, addiction is more common in males [4]. Disease characteristics may also vary between the sexes, including earlier age of schizophrenia (SCZ) onset in males [5], and different suicidal tendencies between the sexes. Females show a higher rate of suicide attempts, whereas males present higher suicide rates. A recent cross-national study identified increased suicidal intent in males as a possible contributing factor to this difference [6]. Sociological factors may explain some of these gaps. For example, females are more likely to be exposed to specific stressors that cause PTSD, such as sexual violence [2]. However, these factors fail to fully explain the epidemiological variability between the sexes. This indicates that biological differences also participate in defining the sexually dimorphic nature of many psychiatric disorders [2,3].

The association of mental conditions with hormonal changes supports this claim. Examples include depression associated with antiandrogen therapy in males [7] and with menopause in females [8]. In addition, premenstrual dysphoric disorder is associated with both sex hormone levels and so far unidentified genetic and epigenetic mechanisms [9]. Animal models have also revealed effects of sex hormones on a plethora of brain-related attributes such as neurotransmitter levels [10], fear extinction [2] and hypothalamic–pituitary–adrenal axis activation [11] that is known to be related to the development of psychiatric disorders.

More recently, genome-wide association studies (GWAS, see Glossary) in humans have identified sex-specific genetic risk factors for PTSD [12] and for risky sexual behavior [13]. However, some psychiatric disorders do not show a genetics-based sex bias. Comparison of GWAS and population data for attention-deficit hyperactivity disorder (ADHD) revealed no sex-dependent genetic risk factors despite the higher prevalence of ADHD in males compared with females [14]. Continued sex-based analyses of epidemiologic studies are therefore called for, and accumulating GWAS data on psychiatric disorders will hopefully assist in such analyses.

Highlights

Sex differences in various epidemiological features of psychiatric diseases may have both sociological and biological etiologies.

General and psychiatric drugs demonstrate sexually dimorphic pharmacokinetics and pharmacodynamics. Research on sex differences in disease mechanisms and drug therapies is necessary.

Brain transcriptome profiling has revealed many sex- and disease-specific expression patterns. These include regulatory pathways in major depressive disorder, bipolar disorder, and schizophrenia.

Brain long noncoding RNA (IncRNA) expression patterns are often sex-biased.

IncRNAs are prominent at the interface between psychiatric and neurodegenerative disease, such as in the case of NEAT1.

IncRNA expression is often affected by drugs. Pharmacotranscriptomic aspects of common drugs may have a sex-specific role involving IncRNA expression. Further study is needed in this developing field.

¹The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
²The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
*Correspondence: hermona.soreq@mail.huji.ac.il (H. Soreq).

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Notably, both drug efficacy and the nature and prevalence of side effects in response to treatment with neurotrophic and nonneurotrophic drugs differ between males and females, reflecting both differences in basic physiology and different disease mechanisms [15,16]. For example, sex-related differences have been observed in the pharmacokinetics of several neurotrophic drugs (Figure 1). Several antipsychotics such as clozapine, olanzapine and amisulpride were demonstrated to reach higher concentrations in the plasma of female patients, whereas ziprasidone and quetiapine did not exhibit such differences, and others such as risperidone exhibited conflicting trends in different studies [17].

Similar observations were also made for antidepressants. For example, the tricyclic antidepressant clomipramine reaches higher concentrations in the plasma of females [18], as do many antidepressants of the selective serotonin reuptake inhibitor (SSRI) class [19]. Although some studies mark the difference in SSRI levels as more prominent in young patients [20], others point to elderly patients [19], stressing the need for additional research on larger populations. Conversely, low-dose ketamine, which is also used as an antidepressant, reached higher levels in the plasma and brain of male compared with female rats [21]. Inhaled substances may also have sex-biased pharmacokinetics, as observed for smoked cannabis. Plasma concentrations of the active component tetrahydrocannabinol (THC) were higher in males compared with females [22].

Sex-specific differences in drug efficacy have also been observed in diseases such as Alzheimer’s disease (AD) and MDD. A study of 184 AD patients revealed a stronger response of females to treatment with cholinesterase inhibitors, possibly mediated through specific genotypes of the estrogen receptor ESR1 [23]. The underlying sex-related differences in cholinergic brain circuits [24] may mediate this effect. In addition, comparing electroencephalography (EEG) patterns and drug responses in MDD identified a female–specific association between particular EEG patterns and drug response. Specifically, females with specific EEG patterns displayed remission in response to the SSRIs escitalopram and sertraline, but not to the selective serotonin/noradrenaline reuptake inhibitor (SNRI) venlafaxine [25].

Importantly, sex-biased side effects include psychosis induced by antiepileptic drugs, which is more common in females [26]. In addition, many widely used antipsychotics cause depletion of bone mineral density (BMD), which may result in osteoporosis. Recent reports identify greater antipsychotic-induced BMD decline in males compared with females [27]. This is accompanied by sex-biased risk factors for BMD depletion (such as concomitant SSRI use in females) [28]. Together, this growing body of evidence reinforces the importance of taking sex differences into account when selecting treatment modalities in patients with psychiatric disease. However, a recent meta-analysis demonstrated that women were under-represented in most clinical trials of new long-acting antipsychotic drugs. Consequently, both main and secondary variables were generally not analyzed separately by sex [29], which calls for amendments.

Sex Chromosome-Driven Transcriptional Differences between Males and Females
The basic biological difference between males and females stems from two general mechanisms. One is the activation of the sex-determining region Y (SRY) gene in the gonads during embryogenesis, which initiates the formation of testicles (or ovaries in the absence of SRY) and results in differential sex hormone secretion patterns [30]. The sex hormones themselves then exert numerous effects on various aspects of cell function including transcription [31], mitochondrial activity [32], and activation of signaling via cell surface and intracellular receptors [33], among others. The second mechanism lies in the sex chromosomes, X and Y: males carry one X and one Y chromosome, whereas females carry two copies of the X chromosome (Figure 2A).
females, one X chromosome is largely inactivated by the X-inactive specific transcript (XIST) **long noncoding RNA (lncRNA)** [34], although, importantly, some areas on the X chromosome do escape inactivation [35], thus producing a sexually dimorphic transcription pattern [36]. Notably, XIST is regulated by the small microRNAs (miRs), and subsequent ‘sponging’ of these miRs draws them away from their other targets, thus reducing their regulatory effects on these targets [37,38]. This in turn suggests that XIST, that is also expressed in the brain, may exert substantial effects on the female transcriptome in general. Recent research has identified the transcription of male-specific lncRNAs such as TTTY15 and Inc-KDM5D-4 from the Y chromosome as well [39,40]. Another group of small noncoding RNAs includes the recently rediscovered **tRNA fragments (tRFs)** that may function like miRs and whose levels changes in the plasma of pre-seizure epileptic patients [41], in blood cells of ischemic stroke patients [42], and in a sex-dependent manner in the serum of Parkinson’s disease (PD) patients, suggesting that they are relevant for brain activities and for sex differences.

Additional complexity is added by the existence of gametologs – pairs of **homologous genes** on the X and Y chromosome which exert similar functions, and whose activities lead to similar combined protein levels in males and females (because they escape X inactivation) [35]. Although the...
protein coding sequence of homologs is generally conserved, miR regulation of their untranslated regions sometimes differs [43,44]. The same is likely to also apply to gametologs (Figure 2B). For example, bioinformatic predictions of miR regulation using the miRWalk 2.0 algorithm [45] display very little overlap for the gametologs KDM5C and KDM5D, but substantial overlap for the gametologs DDX3X and DDX3Y, indicating distinct regulation patterns of such gametologs by miRs. This mechanism of transcriptional variance, based on differential miR ‘sponging’ and consequent effects on large transcriptional networks, awaits investigation.

The relevance of sex chromosome-driven transcriptional changes to the human brain has only been shown in a handful of cases, including the expression of Y-chromosome IncRNAs in the developing human brain [46], elevated XIST levels in post-mortem brains of female bipolar disorder (BD) and MDD patients [47], and the involvement of SRY expression in the substantia nigra dopaminergic cell death in PD, which often involves mental impairments [48] (Figure 2C). Notably, syndromes with characterized karyotype alterations in sex chromosomes (such as XO, XXY, XYY, and others) could be helpful in studying the effects of the sex chromosomes on transcription, including large regulatory autosomal networks [96]. Further research into these syndromes may help to elucidate the interactions between noncoding RNAs and gametologs and the potential transcriptome-wide effects of differential miR regulation over gametologs.

Differences in Transcription Patterns between Male and Female Brains

Discoveries of brain transcriptomic differences between sexes have been fueled by the recent blossoming of ‘big-data’ studies characterizing the entire molecular landscape of various tissues,
organisms, and diseases (often referred to as 'omic' studies – transcriptomics, proteomics, metabolomics, and others). These studies present an outstanding opportunity for scientists to coanalyze their biomedical findings with large web-available datasets and reach novel, well-substantiated conclusions. Indeed, careful comparison has revealed substantial differences between brain transcription patterns from healthy male and female donors [49], and some genes also display conserved sex-biased expression patterns across mammalian species [50]. Moreover, microglia from murine male and female brains display different transcription patterns. Ovariectomy does not reverse these patterns entirely, thus indicating the involvement of additional causes apart from circulating estrogens [51]. Transcriptomic analyses further revealed delayed microglial maturation in developing male compared with female mice [52]. Proteomics, morphological features, and the distribution of microglia in different brain regions also revealed sexually dimorphic properties [53]. Likewise, the developing mouse hippocampus showed sexually distinct transcription patterns [54].

Although comparisons of the molecular landscapes in male versus female brain disease are still rare, probably because of low tissue accessibility, several such comparisons have recently been published that report sex-related transcriptomic differences in psychiatric diseases. Specifically, brain transcriptome differences suggest sex-biased mechanisms associated with MDD. In stressed mice, which serve as a model for depression, inhibitory interneurons in the prefrontal cortex display sexually dimorphic transcriptional changes [55]. Supporting this notion, miR–mRNA network analysis in the nucleus accumbens of similarly stressed mice revealed mostly nonoverlapping pathways between males and females [56]. In addition, whole-tissue transcriptomes of mRNA across six human brain regions revealed distinct male and female MDD networks [57]. Cortical transcriptomes from SCZ and BD patients have also revealed sex-biased pathways. Although some BD pathways were enriched for both male- and female-specific transcripts, a larger sex-bias was observed in SCZ where different pathways were enriched for transcripts that change differently in males and in females [58]. Sex-specific transcription patterns in the brain have therefore been identified in several psychiatric diseases, although the underlying mechanisms often remain obscure.

The dual roles of the neurotransmitter acetylcholine as both a neuromodulator [59] and a modifier of inflammation [60] make it a potential mediator of such sex differences. A prominent example can be seen in the metabolic side effects of antipsychotic drugs in patients with SCZ. These side effects have been shown to involve the histaminergic and cholinergic systems [61], and appeared to affect males and females to a different extent [62,63]. Intriguingly, short RNA-Seq from neuroblastoma-derived cell lines of human male and female origin revealed sexually dimorphic miR profiles upon cholinergic differentiation. Specifically, that analysis highlighted female-biased expression of the miR-10 family and male-biased expression of the miR-199 family, both of which regulate cholinergic activities [58]. This suggests that the cholinergic system may be involved in some of the observed sex differences in these and possibly other psychiatric disorders through sex-specific miR regulation, with possible implications for studying and understanding disease development, progression, and treatment.

Transcriptional networks revolve around hub genes whose expression patterns correlate best with the network and that are often regulatory genes in these networks; in human MDD patients, different hub genes were identified for each sex, including DUSP6 in females and EMX1 in males. In a mouse model, these genes demonstrated sex-specific functional roles in the susceptibility to depression [57]. Furthermore, pathway analysis of MDD brain transcriptomes revealed male-associated enrichment of pathways linked to neurological and psychiatric disorders [64]. The traditionally biased male-centric preclinical research [65] may hence lead in some cases to the identification of 'disease-associated genes' which might actually be 'male disease-associated
genes’. Comparative analysis of transcription patterns in male and female brains with or without disease may resolve this issue.

Lack of Correlation between the Brain Transcriptome and Proteome
Although transcriptome differences between male and female brains of patients with psychiatric diseases are relatively well established, it is important to note that transcriptome–proteome correlations in general are only modest [66], affecting the validity of the observed transcriptional changes in protein-coding genes. Specific transcriptome–proteome inconsistencies have been observed in multiple datasets, including in the brain, for example, in the developing murine hippocampus [54]. In another example, meta-analysis of synaptic proteins in the brains of SCZ patients revealed several proteome–transcriptome inconsistencies, including changes in the mRNA levels of CPLX1 and CPLX2 but not in the levels of the proteins they encode – complexin I and complexin II [67]. In addition, the levels of brain-derived neurotrophic factor (BDNF) mRNA but not its protein product displayed sexually dimorphic behavior in MDD brain, indicating that transcriptome–proteome inconsistencies may also be relevant for sex differences in psychiatric diseases [68]. These studies stress the importance of performing both RNA and protein measurements in brain disorders to fully understand the functionality of the transcriptome of coding genes. However, proteomic characterizations pose distinct challenges and require considerably larger amounts of biological material compared with transcriptomic analysis. This complicates studies of brain disorders, where biological material is often very scarce.

The Potential of IncRNAs for Studying Sex-Specific Differences in Brain Disorders
Apart from protein-coding genes and transcriptional networks, transcriptomic analysis can also identify deregulation of noncoding RNAs such as IncRNAs [69]. Unlike coding transcripts, IncRNAs are functional at the RNA level [70], simplifying the interpretation of their activities based on transcriptomic data alone and making their study in such methods more revealing.

Recent research has identified the expression of IncRNAs from the Y chromosome in the developing human brain [46]. Similarly, a nonbiased transcriptomic analysis of several areas from the macaque brain revealed substantial sex-biased IncRNA changes. Interestingly, the observed sex bias was larger for IncRNAs than for mRNAs [71], although the underlying mechanism(s) is unknown. IncRNAs were also identified at the intersection of psychiatric disease and sex differences, in both peripheral tissues and the brain. A recent survey of six candidate IncRNAs in peripheral blood cells from SCZ patients and controls revealed a female-specific change in the expression of five of those IncRNAs – HOXA-AS2, Linc-ROR, MEG3, SPRY4-IT1, and UCA1 [72]. However, 83 other peripheral blood IncRNAs showed no sex-specific expression differences in MDD patients compared with controls [73], indicating that this difference is not global. In human brain, recent research has identified an important role for IncRNAs in sex differences. An example is NEAT1, an IncRNA that forms the scaffold enabling the formation of nuclear paraspeckles that bind transcription factors, miRs, and other small molecules to regulate their function [74]. Interestingly, NEAT1 levels are reduced in the cortex of patients with SCZ [75], whereas they are elevated in the caudate nucleus of Huntington’s disease patients [76], as well as in the substantia nigra of PD patients [77], neurodegenerative conditions that both often involve mental impairments and dementia [78,79]. Notably, NEAT1 is regulated by the estrogen receptor [31], suggesting a potential sexual dimorphism for its function and/or its manipulation. In addition, NEAT1 levels are modified under treatment with a variety of drugs, including lipid-lowering agents [77] and psychotropic drugs [80]; such changes may affect the various functions of NEAT1, including those involving psychiatric disorders.

Although IncRNAs may readily be investigated using transcriptome data, several aspects of their biology pose particular research challenges. For example, the function of many IncRNAs remains
unknown, precluding further follow-up such as pathway analysis [81]. In addition, lncRNAs show high interindividual variability [82], which translates to lower P values for similar fold changes of transcript levels when interrogating their differential expression between groups. Further, many lncRNAs show very low evolutionary conservation and are expressed at very low levels that are considered by some to be ‘transcriptional noise’ [70]. The combination of these challenges

Figure 3. Screening for Long Noncoding RNA (lncRNA) Roles in Psychiatric Disease. (A) A three-stage approach to identifying sex-specific gene expression patterns; the first two steps are also applicable to lncRNA analysis. (B) lncRNAs show higher variability and lower expression levels compared with protein-coding mRNAs. (C) The main challenges to lncRNA analysis are high variability, low expression levels, and unknown biologically significant functions. The combined calculated score (CCS), based on combined global expression level and P values, can overcome part of these difficulties and provide a more reproducible prediction of the roles of lncRNAs than the P value alone. Abbreviation: DE genes, differentially expressed genes.
impedes identification of specific lncRNAs that are involved in particular conditions using traditional analysis based on P values alone. To address this issue, we propose that combining expression levels and P values would enable better identification of sexually dimorphic lncRNAs. To challenge this concept, we analyzed lncRNA expression via a scoring approach which ranks lncRNAs by both the P values of their expression differences and their expression levels. This combined calculated score (CCS) \[83,84\] provides more reproducible results than those achieved by P value alone \[84\] (Figure 3). Using this method, we found that RP11-386G11.10

Gene Expression Omnibus identifier	Disease	Tissue (as defined by data submitter)	Number of samples available			
			Control male	Control female	Diagnosed male	Diagnosed female
GSE125583	AD	Fusiform gyrus	37	33	121	97
GSE102741	ASD	Dorsolateral prefrontal cortex (DLPFC)	30	8	10	3
GSE9288 + GSE51264	ASD	Prefrontal cortex (PFC)	27	12	18	7
GSE80655	BD	Anterior cingulate cortex	27	3	19	9
GSE80655	BD	DLPFC	27	3	20	8
GSE80655	BD	Nucleus accumbens (Nac)	25	2	21	10
GSE112523	BD	Frontal cortex	14	3	5	5
GSE80336	BD	Dorsal striatum	7	11	6	12
GSE53239	BD	DLPFC	6	5	6	5
GSE78306	BD	BA11	9	3	8	8
GSE42546	BD	Dentate gyrus granule cells	17	12	9	7
GSE80655	MDD	Anterior cingulate cortex	27	3	24	6
GSE80655	MDD	DLPFC	27	3	22	9
GSE80655	MDD	Nucleus accumbens	25	2	25	8
GSE42546	MDD	Dentate gyrus granule cells	17	12	10	7
GSE102556	MDD	Nac	13	9	15	13
GSE102556	MDD	Orbitofrontal cortex (OFC; BA11)	13	9	13	13
GSE102556	MDD	DLPFC (BA8/9)	13	9	13	13
GSE102556	MDD	Cingulate gyrus 25 (Cg25)	8	7	3	10
GSE102556	MDD	Anterior insula (aINS)	13	9	13	13
GSE102556	MDD	Subiculum (Sub)	12	7	12	12
GSE101521	MDD	DLPFC (BA09)	23	6	19	11
GSE114517	PD	Substantia nigra	4	5	10	4
GSE110716 (Coding exome only)	PD	Cingulate gyrus	4	4	4	4
GSE80655	Schizophrenia	Anterior cingulate cortex	27	3	25	3
GSE80655	Schizophrenia	DLPFC	27	3	25	4
GSE80655	Schizophrenia	Nac	25	2	23	4
GSE107638	Schizophrenia	BA46 (neuronal nuclei)	18	9	11	12
GSE107638	Schizophrenia	BA46 (oligodendrocyte nuclei)	15	7	7	10
GSE78336	Schizophrenia	BA11	9	3	11	5
GSE42546	Schizophrenia	Dentate gyrus granule cells	17	12	9	8

*Abbreviations: AD, Alzheimer's disease; ASD, autism spectrum disorder; BA, Brodmann area; BD, bipolar disorder; MDD, major depressive disorder; PD, Parkinson's disease. [www.ncbi.nlm.nih.gov/geo].
is involved in autism, compatible with other reports [85], and identified functionally important lncRNAs in PD brain [84].

Concluding Remarks and Future Perspectives

Sexual dimorphism in psychiatric disorders is repeatedly observed in epidemiology, drug efficacy, and side-effect studies. However, both preclinical and clinical trials largely fail to balance the male and female participants, and further often neglect to analyze the results in a sex-separated manner, hindering proper characterization of such sex differences.

Recent developments have changed our understanding of the molecular mechanisms underlying sex differences in mental disorders. In particular, studies have identified sex-dimorphic transcriptomic networks in MDD, SCZ, and BD. In the latter two cases, the cholinergic system is involved both in disease pathology and in drug response, and the findings associated sex differences with impaired cholinergic regulation.

The recent emergence of lncRNAs as pivotal to sex-related differences calls for focusing on these transcripts in the context of mental diseases: because some lncRNAs display sexually dimorphic properties, they constitute a possible mechanism by which drugs may cause sexually dimorphic outcome and/or side effects. However, the scarce data on the differential functions of lncRNAs in male and female disease patterns complicates that goal.

Our review suggests several avenues for studying the sex-specific divergence of RNA expression patterns in psychiatric disease between male and female brains that have effects on treatment (see Outstanding Questions), focusing on noncoding RNA species such as lncRNAs and tRFs. Importantly, we stress the need for awareness of the pressing issue of balancing male and female participants in preclinical and clinical trials for psychiatric disorders.

We also call for studying selective sex-related targeting of cholinergic networks. New insights into these networks may assist in disease treatment, fine-tuning of drug efficacy, and reducing side effects. Future transcriptome-wide analysis of sex differences in lncRNA expression patterns in disease may also be of value, and we have compiled a list of web-available datasets that can be reanalyzed towards that goal (Table 1). Finally, correct pharmacotranscriptomic analysis can identify sex-related effects of commonly used drugs on the transcription of brain lncRNAs and shed new light on the clinical relevance of such effects.

Acknowledgments
The authors are grateful to Dr Ester R. Bennett (Jerusalem) for scientific advice and for language and style editing. We acknowledge support of this study from the Israel Science Foundation (grant 1016/18 to H.S.). A.S-G. was supported by a predoctoral Clore Foundation fellowship.

Disclaimer Statement
H.S. declares research support from the Michael J. Fox Foundation and from Grunenthal Ltd on unrelated research topics.

References

1. Li, S.H. and Graham, B.M. (2017) Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry 4, 73–82
2. Ramikie, T.S. and Ressler, K.J. (2018) Mechanisms of sex differences in fear and posttraumatic stress disorder. Biol Psychiatry 83, 876–885
3. Issler, O. and Nestler, E.J. (2018) The molecular basis for sex differences in depression susceptibility. Curr.Opin. Behav. 23, 1–6
4. Zakinaesz, Y. and Poterza, M.N. (2018) Gender-related differences in addiction: a review of human studies. Curr.Opin. Behav. Sci. 23, 171–175
5. Recher-Rosler, A. et al. (2018) Sex and gender differences in schizophrenia psychoses: a critical review. Arch Womens Ment. Health 21, 627–648
6. Freeman, A. et al. (2017) A cross-national study on gender differences in suicide intent. BMC Psychiatry 17, 234
7. Nead, K.T. et al. (2017) Association of androgen deprivation therapy and depression in the treatment of prostate cancer: a systematic review and meta-analysis. Urol. Oncol. 35, 664.e1–664.e9
8. Georgakis, M.K. et al. (2016) Association of age at menopause and duration of reproductive period with depression after

Outstanding Questions

What can be done to facilitate sex-related preclinical research and ensure the performance of clinical trials that analyze drug efficacy, side effects, and impact on disease pathology in men and women separately?

In which ways does miR and lncRNA regulation of gametologs affect the brain transcriptome in health and disease, and in males compared with females?

Does sexually dimorphic cholinergic signaling selectively modulate psychiatric disorder symptoms and the side effects of therapeutics?

To what extent does sexual dimorphism affect the expression patterns of brain lncRNAs in psychiatric diseases, and does it relate to patient responses to therapeutics?

What is the clinical significance of sex-related drug effects on lncRNA transcription?

Do the recently rediscovered tRNA fragments show sex-related differences in specific brain regions and responses to pharmacology?
menopause: a systematic review and meta-analysis. JAMA Psychiatry 73, 139–149

9. Dubey, N. et al. (2017) The ESC/ECG complex, an effector of re-
sponse to ovarian steroids, manifests an intrinsic difference in
cells from women with premenstrual dysphoric disorder. Mol.
Psychiatry 22, 1172–1184

10. Kokras, N. et al. (2018) Sex differences in behavioral and neuro-
chemical effects of gonadectomy and aromatase inhibition in
rats. Psychoneuroendocrinology 87, 30–107

11. Jacobski, J.S. et al. (2017) Hypothalamic–pituitary–adrenal
axis responsiveness to methamphetamine is modulated by
gonadectomy in males. Brain Res. 1677, 74–95

12. Duncan, L.E. et al. (2018) Largest GWAS of PTSD (N=20 073)
yields genetic overlap with schizophrenia and sex differences in
h nederland. Mol. Psychiatry 23, 666–673

13. Polimanti, R. et al. (2017) Ancestry-specific and sex-specific risk
alleles identified in a genome-wide gene-by-alcohol dependence
interaction study of risky sexual behaviors. Am. J. Med. Genet. B
Neuropsychiatr. Genet. 174, 845–853

14. Martin, J. et al. (2018) A genetic investigation of sex bias in the
prevalence of attention-deficit/hyperactivity disorder. Biol.
Psychiatry 83, 1044–1050

15. Rydberg, D.M. et al. (2018) Sex differences in spontaneous re-
ports on adverse drug events for common antihypertensive
drugs. Eur. J. Clin. Pharmacol. 74, 1165–1173

16. Tamagno, J. et al. (2017) Gender differences in the effects of cardio-
vascular drugs. Eur. J. Heart. J. Cardiovasc. Pharmacother. 3, 163–182

17. Maun, M.C. et al. (2018) Clinical pharmacokinetics of atypical anti-
psychotics: an update. Clin. Pharmacokinet. 57, 1493–1528

18. Gea-Fabry, M. et al. (2019) Cholinergic metabolism. Model-
based analysis of variability factors from drug monitoring data.
Clin. Pharmacokinet. 19, 241–255

19. Kokras, N. et al. (2011) Sex differences in pharmacokinetics of
antidepressants. Expert Opin. Drug Metab. Toxicol. 7, 215–226

20. Ronfeld, R.A. et al. (2017) Pharmacokinetics and N-demethyl
metabolite in elderly and young male and female young adults.

21. Chen, C.Y. et al. (2018) Long non-coding RNA XIST regulates
gastric cancer progression by acting as a molecular sponge of
miR-101 to modulate EZH2 expression. J. Exp. Clin. Cancer
Res. 35, 142

22. Chakravarty, D. et al. (2017) Gender differences in brain
mitochondrial metabolism: influence of endogenous steroids and stroke. J. Neuroendocrinol. 30, e12497

23. Macias, M. et al. (2016) Sphingosine-1-phosphate and estrogen
signaling in breast cancer. Adv. Biol. Regul. 60, 160–165

24. Richler, C. et al. (1992) X inactivation in mammalian testis is
correlated with inactive X-specific transcription. Nat. Genet. 2,
192–195

25. Carrel, L. and Willard, H.F. (2005) X-inactivation profile reveals
extensive variability in X-linked gene expression in females. Nature
434, 400–404

26. Raziman, A. et al. (2018) Sex-chromosome dosage effects on
gene expression in humans. Proc. Natl. Acad. Sci. U. S. A.
115, 7398–7403

27. Chen, D.L. et al. (2018) Long non-coding RNA XIST regulates
gastric cancer progression by acting as a molecular sponge of
miR-101 to modulate EZH2 expression. J. Exp. Clin. Cancer
Res. 35, 142

28. Chang, S. et al. (2017) Long non-coding RNA XIST regulates
PTEN expression by sponging miR-181a and promotes hepatocyte-
cellular carcinoma progression. BMC Cancer 17, 248

29. Xiao, G. et al. (2018) The long noncoding RNA TTTY15, which is
located on the Y chromosome, promotes prostate cancer pro-
gression by sponging let-7. Eur. J. Urol. 76, 315–326

30. Chakravarty, D. et al. (2017) Long non-coding RNA XIST regulates
PTEN expression by sponging Mir-181a and promotes hepatocyte-
cellular carcinoma progression. BMC Cancer 17, 248

31. Molina, E. et al. (2017) A novel Y-specific long non-coding RNA
associated with cellular lipid accumulation in HepG2 cells and
augments the Y-chromosome-related genes. Sci. Rep. 7, 16710

32. Hogg, M.C. et al. (2019) Elevations in plasma RNA fragments
precede seizures in human epilepsy. J. Clin. Invest. 129,
2946–2956

33. Winik, K. (2020) Transfer RNA fragments replace microRNA regu-
lators of the cholinergic post-stroke immune blockade. MicroRepecial
Published online July 5, 2020. https://www.medrxiv.org/content/
10.1101/2020.07.02.20144212v1

34. Chen, K. and Rajewsky, N. (2006) Deep conservation of
microRNA-target relationships and 3’UTR motifs in vertebrates,
flies, and nematodes. Cold Spring Harb. Symp. Quant. Biol.
71, 149–156

35. Jojic, B. et al. (2018) Distinct 3’UTR regulatory motifs of two TCTP paralogs in Trypanosoma brucei. J. Cell Sci. 131, jcs206417

36. Dweep, H. and Grett, N. (2015) miRWalk2.0: a comprehensive
atlas of microRNA-target interactions. Nat. Methods 12, 697

37. Johansson, M.M. et al. (2019) Novel Y-chromosome long
non-coding RNAs expressed in human male CNS during early
development. Front. Genet. 10, 891

38. Ji, B. et al. (2015) Over-expression of XIST, the master gene for X
chromosome inactivation, in females with major affective disorders. ElifeMedicine 2, 909–918

39. Lee, J. et al. (2019) Sex-specific neuroprotection by inhibition of the
Y-chromosome gene, SRY, in experimental Parkinson’s disease.
Proc. Natl. Acad. Sci. U. S. A. 116, 16577–16582

40. Genshoni, M. and Pietrokovski, S. (2017) The landscape of sex-
differential transcriptome and its consequent selection in human
adults. BMC Biol. 15, 7

41. Nazvi, S. et al. (2019) Conservation, acquisition, and functional
impact of sex-biased gene expression in mammals. Science
365, eaav7317

42. Vila, A. et al. (2018) Sex-specific features of microglia from adult
mice. Cell Rep. 23, 3501–3511

43. Hanamgara, R. et al. (2017) Generation of a microglial develop-
mental index in mice and in humans reveals a sex difference in
maturaton and immune reactive. Glia 65, 1504–1520

44. Guneykaya, D. et al. (2018) Transcriptional and translational dif-
ferences of microglia from male and female brains. Cell Rep.
24, 2773–2783

45. Bandy, J.L. et al. (2017) Sex differences in the molecular signa-
ture of the developing mouse hippocampus. BMC Genomics
18, 237

46. Girgenti, M.J. et al. (2019) Prefrontal cortex interneurons display
dynamic sex-specific stress-induced transcriptomes. Transl.
Psychiatry 9, 322

47. Phu, M.L. et al. (2016) Integrative analysis of sex-specific
microRNA networks following stress in mouse nucleus accumbens.
Brain Res. 1646, 139–149

48. Labonte, B. et al. (2017) Sex-specific transcriptional signatures
in human depression. Nat. Med. 23, 1102–1111

49. Lobentanzer, S. et al. (2019) Integrative transcriptomics reveals
Sexually dimorphic control of the cholinergic/neurokinine interface
in schizophrenia and bipolar disorder. Cell Rep. 29, 764–777

Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11849

CellPress
REVI WES
59. Changeux, J.-P. (2003) Discovery of the first neurotransmitter receptor: the acetylcholine nicotinic receptor. Biomolecules 10, 547

60. Borovikova, L.V. et al. (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 455–462

61. Nasrallah, H.A. (2008) Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol. Psychiatry 13, 27–35

62. Wu, R.R. et al. (2007) Sex difference in effects of typical and atypical antipsychotics on glucose-insulin homeostasis and lipid metabolism in first-episode schizophrenia. J. Clin. Psychopharmacol. 27, 374–379

63. Kraal, A.Z. et al. (2017) Sex differences in antipsychotic related metabolic functioning in schizophrenia spectrum disorders. Psychopharmacol. Bul. 47, 8–21

64. Shi, L. et al. (2016) Sex biased gene expression profiling of human brains at major developmental stages. Sci. Rep. 6, 21181

65. Karp, N.A. and Reavey, N. (2019) Sex bias in preclinical research and an exploration of how to change the status quo. Br. J. Pharmacol. 178, 4107–4118

66. Wang, D. et al. (2019) A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 15, e8103

67. Osimo, E.F. et al. (2019) Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol. Psychiatry 24, 549–561

68. Kight, K.E. and McCarthy, M.M. (2017) Sex differences and estrogen regulation of BDNF gene expression, but not propeptide content, in the developing hippocampus. J. Neurosci. Res. 95, 345–354

69. Patilshah, N.N. et al. (2015) Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16, 441–458

70. Quinn, J.J. and Chang, H.Y. (2016) Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62

71. Liu, S. et al. (2017) Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in mesus macaque brain. Genome Res. 27, 1608–1620

72. Fallah, H. et al. (2019) Sex-specific up-regulation of IncRNAs in peripheral blood of patients with schizophrenia. Sci. Rep. 9, 12737

73. Seki, T. et al. (2019) Altered expression of long noncoding RNAs in patients with major depressive disorder. J. Psychiatr. Res. 117, 92–99

74. Fox, A.H. et al. (2018) Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem. Sci. 43, 124–135

75. Katsel, P. et al. (2018) The expression of long non-coding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription. AJU Schizophr. 5, 3

76. Sunwoo, J.S. et al. (2017) Altered expression of the long non-coding RNA NEAT1 in Huntington’s disease. Mol. Neurobiol. 54, 1577–1586

77. Simchovitz, A. et al. (2019) NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J. 33, 11223–11234

78. Hanagasi, H.A. et al. (2017) Dementia in Parkinson’s disease. J. Neurol. Sci. 374, 26–31

79. Caine, E.D. et al. (1978) Huntington’s dementia. Clinical and neuropsychological features. Arch. Gen. Psychiatry 35, 377–384

80. Zygmunt, M. et al. (2018) Expression of alternatively spliced variants of the Dclk1 gene is regulated by psychotropic drugs. BMC Neurosci. 19, 55

81. Köpp, F. and Mendell, J.T. (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 383–407

82. Kommerko, A.E. et al. (2016) Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans. Genome Biol. 17, 14

83. Guffanti, A. et al. (2014) Emerging bioinformatics approaches for analysis of NGS-derived coding and non-coding RNAs in neurodegenerative diseases. Front. Cell. Neurosci. 8, 89

84. Simchovitz, A. et al. (2020) A lncRNA survey finds increases in neuroprotective LINC-PINT in Parkinson’s disease substantia nigra. Aging Cell 19, e13115

85. Lin, M. et al. (2014) Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon. PLoS One 9, e94968

86. Ivanov, P. et al. (2011) Angiogenin-induced lRNA fragments inhibit translation initiation. Mol. Cell 43, 613–623