T-cell allore cognition of donor glutathione S-transferase T1 in plasma cell-rich rejection

María José Martínez-Bravo, Berta Sánchez, José Manuel Sousa, María José Acevedo, Miguel Angel Gómez-Bravo, Antonio Núñez-Roldán, Isabel Aguilera

AIM
To investigate the role of glutathione S-transferase T1 donor-specific T lymphocytes in plasma cell-rich rejection of liver allografts.

METHODS
The study group included 22 liver transplant patients. Among them, 18 patients were mismatched for the glutathione S-transferase T1 (GSTT1) alleles (don+/rec-), and 4 were matched (don+/rec+). Seven of the mismatched patients produced anti-GSTT1 antibodies and developed plasma cell-rich rejection (former de novo immune hepatitis). For the detection of specific T
lymphocytes, peripheral blood mononuclear cells were collected and stored in liquid nitrogen. The memory T cell response was studied by adding to the cell cultures to a mix of 39 custom-made, 15-mer overlapping peptides, which covered the entire GSTT1 amino acid sequence. The specific cellular response to peptides was analyzed by flow cytometry using the markers CD8, CD4, IL-4 and IFNγ.

RESULTS
Activation of CD8⁺ T cells with different peptides was observed exclusively in the group of patients with plasma-cell rich rejection (3 out of 7), with production of IL-4 and/or IFNγ at a rate of 1%-4.92% depending on the peptides. The CD4⁺ response was most common and not exclusive for patients with the disease, where 5 out of 7 showed percentages of activated cells from 1.24% to 31.34%. Additionally, two patients without the disease but with the mismatch had cells that became stimulated with some peptides (1.45%-5.18%). Highly unexpected was the finding of a double positive CD4⁺CD8⁺ T cell population that showed the highest degree of activation with some of the peptides in 7 patients with the mismatch, in 4 patients with plasma cell-rich rejection and in 3 patients without the disease. Unfortunately, CD4⁺CD8⁻ cells represent 1% of the total number of lymphocytes, and stimulation could not be analyzed in 9 patients due to the low number of gated cells. Cells from the 4 patients included as controls did not show activation with any of the peptides.

CONCLUSION
Patients with GSTT1 mismatch can develop a specific T-cell response, but the potential role of this response in the pathogenesis of plasma cell-rich rejection is unknown.

Key words: Donor-specific glutathione S-transferase T1 antibodies; Indirect presentation; Glutathione S-transferase T1-memory T cells; De novo immune hepatitis; Donor/recipient mismatch

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In solid organ transplants, donor recipient mismatch of glutathione S-transferase T1 (GSTT1) alleles triggers a specific immune response with the production of IgG antibodies. In a proportion of mismatched liver and kidney transplants, the clinical outcome is rejection. However, detection of GSTT1-specific T lymphocytes has not been documented. We provide the first evidence of T cells able to become activated by GSTT1 peptides in patients who develop plasma cell-rich (PC-rich) rejection after GSTT1-mismatch liver transplantation. Interestingly, not only CD8⁺ or CD4⁺ cells but also double positive CD4⁺CD8⁻ cells reacted to the antigenic stimulation in vitro.
have indicated that both CD4+ and CD8+ T cells can independently initiate hepatocyte rejection, more rapidly in the case of CD8+ cells, somehow preceding the CD4+ mediated response[9]. In humans, patients with chronic allograft failure of kidney grafts have significantly higher frequencies of CD4+ T cells indirectly activated by allogeneic peptides when compared with controls, whereas CD4+ T cells activated in a direct manner reduced the cytotoxic T cell response[10]. However, there are variables such as immunosuppression therapy that can alter the immunological response in different ways.

In this study, we aim to explore the role of T cells in the context of PC-rich rejection. We have compared the T cell response in PBMCs collected from 18 GSTT1-mismatched liver transplant patients, 7 of which had a diagnosis of PC-rich rejection, with 4 GSTT1-matched transplanted patients after re-stimulation in vitro with the whole set of GSTT1 peptides. In summary, we have the first evidence of GSTT1-specific memory T cells ready to become activated after recall with the antigen, but further studies will be needed to test the potential role of these cells in the pathogenesis of PC-rich rejection.

MATERIALS AND METHODS

Patients

The study group included 22 liver transplant patients, 10 females and 12 males, who had transplants between June 1996 and April 2011. Eighteen of the patients lacked the GSTT1 gene and received a liver from a GSTT1 positive donor (rec-/don+). Consequently, all of them were candidates to develop a specific immune response against this foreign antigen. Four additional patients without the GSTT1 mismatch (rec+/don+) were included as a control group. Within the mismatched patients, we observed three different types of immune and clinical responses regarding the GSTT1 antigen. Group 1 consisted of 7 patients who produced anti-GSTT1 antibodies and developed PC-rich rejection. Group 2 included 2 patients who produced anti-GSTT1 antibodies but did not develop PC-rich rejection. Group 3 included 9 patients who did not produce anti-GSTT1 antibodies (which always precede clinical manifestations) and consequently did not develop the disease. Written informed consent was obtained from all of the participants, and the procedures were in accordance with the Helsinki Declaration. The study protocol was approved by the Ethics Committee of the University Hospital Virgen del Rocío, Seville, Spain. Patient characteristics are described in Table 1. Baseline immunosuppression was cyclosporine in 13 cases and tacrolimus in 9 cases, either alone or combined with mycophenolate mofetil and steroids during the first months. Cells were obtained at a mean time of 6.68 years after the transplant (1-16). Changes in the immunosuppression therapy at the time of cell extraction are described in Table 1. Six of the patients with PC-rich rejection were also receiving prednisone as a specific treatment, and one patient was not adequately diagnosed and died in 2014.

GSTT1 genotyping

Peripheral blood samples from the patients and their donors were collected, and genomic DNA was purified using the QIAamp DNA mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Primers and conditions for the GSTT1 PCR reaction have been described in detail elsewhere[11].

Detection of GSTT1 antibodies

Following the manufacturer’s protocol, total IgG antibodies in sera were analyzed using a commercially available ELISA, which contains the human GSTT1 recombinant protein (Biomedal, Seville, Spain).

GSTT1 peptides

We selected 15-mer peptides that overlapped by 9 amino acids and spanned the GSTT1 protein. In total, there were 39 peptides (Table 2). Peptides were synthesized by Innovative Peptide Solutions, JPT (Berlin, Germany). Peptide purity was higher than 80%, as assayed by HPLC, and the peptide composition was verified by mass spectrometry. Lyophilized peptides were dissolved at 10 mg/mL in DMSO, aliquoted, and stored at -20°C.

Cell isolation and culture with the GSTT1 peptides

Post-transplant PBMCs were isolated using BD Vacutainer CPT ficoll tubes (BD Biosciences, CA, United States), frozen in FCS containing 10% DMSO, and stored in liquid nitrogen. For stimulation experiments, 3-4 x 10^5 cells were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum (Biochrom AG, Berlin, Germany), Penicillin/Streptomycin (100 U penicillin/mL, 100 µg streptomycin/mL), 1 mmol/L Na-Piruvate (Sigma Aldrich, MI, EEUU) and L-Glutamine (2 mmol/L, Irvine Scientific, Wicklow, Ireland) in the presence of 8 pools, each one containing 5 peptides and the last one containing only 4 (10 µg/mL each peptide). Next, 10 µg/mL anti-CD28/CD49d (BD Biosciences, CA, United States) was added for 48 h at 37°C 5% CO2, and 10 µg/mL Brefeldin A was added to the samples during the last four hours (Golgi Plq: BD Biosciences). A negative control (without peptide but with the proportional amount of DMSO) and a positive activation control with 10 ng/mL PMA + 1 µg/mL ionomycin (Sigma Aldrich) were included in each assay. Pre-transplant samples were not available.

In silico analysis of MHC-peptide binding affinity

HLA class I and II binding affinity to GSTT1 peptides was analyzed by the Immune Epitope Database (IEDB) and Analysis Resources NetMHCIIpan.

Flow cytometry

Immunofluorescence staining was performed after
Table 1 Patient characteristics

Group	Patient	Gender	LT date	Original disease	Baseline IS	PBMC extraction date	Years after Tx	Treatment at PBMC extraction
1	1	M	06-05-99	Alcoholic cirrhosis	CYA (N), MMF, ST	12-04-12	13	CYA (N), MMF, ST
2	F	07-05-07	Cirrhosis probably autoimmune	CYA, MMF, ST	16-04-12	5	CYA (N), MMF, ST	
3	F	02-07-00	HCV cirrhosis	CYA (N), ST, BASILSIMAB	13-05-12	12	TAC, AZA, ST	
4	F	18-09-05	Alcoholic cirrhosis	CYA, MMF, ST	09-05-12	9	TAC, MMF, ST	
5	M	02-11-01	HCV + alcoholic cirrhosis	CYA (N), ST, BASILSIMAB	14-06-12	11	MMF, ST	
6	F	27-03-09	Primary biliary cirrhosis	CYA, MMF, ST	12-04-12	3	MMF, ST	
7	F	18-11-06	Secondary biliary cirrhosis	CYA (N), MMF, ST	08-05-12	6	CYA, MMF	
8	M	23-11-96	HBV cirrhosis	CYA (N), MMF, ST	19-06-12	16	CYA (N), MMF	
9	F	03-06-96	Agenesis of the bile ducts	CYA, ST	21-05-12	16	TAC	
10	M	12-07-06	Alcoholic cirrhosis + hepatocarcinoma	TAC, MMF, ST	16-04-12	6	MMF, SIR	
11	M	12-02-09	HBV cirrhosis	TAC, MMF, ST	16-04-12	3	MMF, SIR	
12	M	06-07-10	Non-alcoholic steatohepatitis	TAC (10 d) CYA, RAFA	17-04-12	2	MMF, SIR	
13	M	19-04-11	HCV cirrhosis+ hepatocarcinoma	CYA, ST	18-04-12	1	CYA, ST	
14	M	18-01-09	HCV cirrhosis	TAC, MMF, ST	02-05-12	3	TAC	
15	F	18-06-04	Alcoholic cirrhosis	TAC	07-05-12	8	MMF, EVE	
16	M	30-07-08	HCV cirrhosis	TAC, MMF, ST	08-05-12	4	MMF, EVE	
17	M	20-12-04	HCV cirrhosis	TAC, MMF, ST	22-05-12	7	TAC, MMF	
18	F	20-09-99	HCV cirrhosis	CYA, ST	18-06-12	13	CYA	
4	E	09-03-09	Alcoholic cirrhosis	CYA, ST	21-03-12	3	CYA, MMF	
5	G	16-11-08	HCV cirrhosis	TAC, DACLIZUMAB	30-04-12	3	CYA	
6	J	22-05-10	Hepatocarcinoma	CYA, ST	02-05-12	2	CYA	
7	L	28-07-11	Primary biliary cirrhosis	TAC, MMF, ST	19-06-12	1	TAC	

HBV: Hepatitis B virus; HCV: Hepatitis C virus.

fixation and permeabilization using lysing solution (BD Biosciences, CA, United States) with the following surface and intracellular markers: Anti-human CD4-PerCP/CD8-APC/IFNγ-FITC/IL-4-PE (Becton Dickinson BD Biosciences, CA, United States). Lymphocyte cytokine release patterns were analyzed by flow cytometry (FACSort; BD Biosciences) using CELLQuest software. The specific cellular response to the different pools was calculated by subtracting the percentage of activation of T cells cultured without GSTT1 peptides (negative control). Typically, 50000 events were collected using FL3 (CD4PerCP-Cy5) or FL4 (CD8-APC) as a fluorescent trigger. A second set of gating was drawn to include CD8- or CD8bright and IFNγ and IL-4 expression.

RESULTS

Identification of memory T cell subsets specific for the GSTT1 antigen

We have categorized as positive the populations with more than 1% of activated cells. All of the patients who showed stimulation revealed a polyclonal T cell response since we observed stimulation with more than one peptide. For simplicity reasons, we have categorized as positive the populations with activation of CD8low or CD8low+ or CD8low+ and IFNγ and IL-4 expression. Although cellular activation is not exclusive of group 1 and was also observed in two patients included in group 3 (Table 3). The most striking result was the presence of CD4+CD8bright double positive (DP) cells that seem to be enriched in GSTT1-specific cells, especially cells with a secretion profile of both cytokines tested (3.44% patient 2, 78.95% patient 3, 9.54% patient 4, 4.56% patient 5). Unfortunately, DP cells are not abundant, and only 4 of the 7 patients with PC-rich rejection could be analyzed due to the low number of double positive cells gated in the remaining 3 cases.

The patients with antibodies but without PC-rich rejection (group 2) did not show CD4+ or CD8+ T cell activation, whereas five of the 9 patients included in group 3, without antibodies and therefore without disease, exhibited stimulation with some peptides. Again, the higher percentages of activation occurred in the double positive CD4+CD8bright cells (6.63% patient 10, 29.58% patient 17 and 43.05% patient 18), although in some cases the number of double positive CD4+CD8bright cells was too low to perform further analysis (Table 3). The four patients included as the control group with recipients and donors that were matched for the GSTT1 positive allele did not become activated with any of the peptides assayed.

In summary, 12 out of 18 liver transplant recipients with the GSTT1 mismatch showed different degrees of T lymphocyte activation upon exposure to the GSTT1 peptides. Although we could not test for memory markers, the short time of stimulation (48 h) indicates that this is not a primary response but a reactivation of pre-existing GSTT1-specific lymphocytes. There are 3 cell types involved, including CD4+, CD8+ and...
Table 2 Glutathione S-transferase T1 peptides and amino acid position and sequence

Pool	Amino acid #	Amino acid sequence
1	1-15	MCLELYDLSSQPCR
	7-21	LDLSSLPCRAYVIFA
	13-27	PCRAYVIFAKKNDIP
	19-33	IFAKKNDIPPELIRLV
	25-39	DIPPELIRVLKSGQ
	31-45	RIVDLIKQHLSDAF
	37-51	KQGHLSDFAFQVNPL
	43-57	DAFQVNPLKKVPAL
	49-63	NPLKKVPALKGDGFT
	55-69	PALKGDFTLTLTEVSA
2	61-75	DFTLIESVAILLYLT
	67-81	SVAILLYLTRKYKV
	73-87	YLTRKYPDPYWYPQ
	79-93	KVLTDYQYQDLQARA
	85-99	YPQDLQARARVDEYL
4	91-105	ARARVDEYLAWQHTTT
	97-111	EYLAQHTTTLRRSCL
	103-117	HTTLRRSLRAVWKL
	109-123	SLRLAVHKJWMVPFV
	115-129	WHKVMPPVFGEVPS
	119-133	MPVPVFGEVPSQFTL
	125-139	GEVPSPQTLAATLAE
	131-145	QTLAATLAELDVTLQ
	137-151	LAELDVLQLEDKF
	143-157	TLQLEDKLFQKNAF
5	149-163	DKFLQNKAFTLGPHI
	155-169	KAFLTCHPSLADLV
	161-175	PHSLADLVAITELM
	167-181	DLVAITELMFHVPGAG
	173-187	ELHPVAGCQVFPEG
	179-193	GACGQVFEGRPKLAT
	185-199	FEGRPKLATWQRQVE
	191-205	LATWRQAVEAAVGED
	197-211	RVEAAVGEDFQAEH
	203-217	GEDLFQEAHEVILKA
6	209-223	EAHEVLKADFPPPA
	215-229	LKADDPFPADTPIKQ
	221-235	PPADTPIKQKLMWPV
	226-240	TKQKLMWPVLAMIR

CD4⁺CD8⁺ cells, all of them with diverse cytokine expression patterns whose role is not easy to interpret, although DP cells are known to appear in situations of long-term exposure to antigens.

Antigenic areas of the GSTT1 protein
When we analyzed the relative contribution of each pool to the activation of T lymphocytes in each patient, we found that pools 3 and 4 seemed especially antigenic for the DP cells, whereas pool 4 did not stimulate any of the single CD4⁺ or CD8⁺ T cells of any patient in which other pools seem to have a more relevant role (Figure 2). A representative plot of flow cytometry data with cells gated on CD4⁺ first and then CD8, selecting those cells with a low expression of CD8, is shown in Figure 3. We have selected 3 patients with different degrees of activation after stimulation with the pools of peptides; the negative control (without peptide) is also shown and was subtracted to obtain the final values (Figure 3).

Indirect presentation pathway
These results have to be interpreted in the context of an indirect allo-recognition pathway since the experiments were performed only in the presence of recipient cells. The recipients’ HLA genotypes are described in Table 4, highlighting in bold HLA class I and II alleles with the best percentile ranks for presentation of GSTT1 peptides, as concluded from the in silico analysis. We found a good correlation with part of the experimental results of T cell activation measured in terms of IL-4 and/or IFNγ production by CD8⁺, CD4⁺ and CD4⁺CD8⁺ T cells upon exposure to GSTT1 peptides. However, the fact that HLA genotyping was performed by low resolution methods constitutes a limitation of the analysis. When we placed the in silico-proposed
peptides along the GSTT1 amino acid sequence, we were able to define very clearly a highly antigenic zone of the protein that basically shared amino acids from positions 60 to 80 (Table 5). Interestingly, the selected peptides are long, not only for HLA class I, but also for HLA class II, as expected, but also for HLA class II alleles.

DISCUSSION

In this study, we have demonstrated the existence of memory T cells specific for the GSTT1 antigen in patients with PC-rich rejection after GSTT1-mismatched liver transplants. The results support our initial hypothesis in which both specific B and T cells are required to function simultaneously in the development of the immune response leading to PC-rich rejection. In fact, only patients diagnosed with the disease showed a combined T and B cell response, whereas those patients with specific T cells but lacking the humoral response never experienced this type of rejection.

The fact that GSTT1 is a drug metabolizing enzyme found in the cytoplasm of hepatocytes and cholangiocytes makes it difficult to explain a pathogenic role of anti-GSTT1 antibodies. Although it cannot be assumed that cytosolic antigens are never expressed on the cell surface, the presence of antibodies in all of the patients with a diagnosis of PC-rich rejection is evidence of specific B cells capable of presentation of GSTT1 to specific T cells. B cells are known to be critical for alloreactive T cells to differentiate into memory T cells and class II human leukocyte antigen class II human leukocyte antigen genotypes of the patients.

Table 3 Specific immune response after stimulation of T lymphocytes in culture with glutathione S-transferase T1 peptides

Group	Pat #	CD8*	CD4*	CD4*CD8*T						
		IL-4	IFNγ	IL-4/IFNγ	IL-4	IFNγ	IL-4/IFNγ			
1	1	-	-	1.24%	1.41%	-	Δ			
2	2	1.7%	-	2.04%	-	-	8.23%			
3	3.42%	-	3.54%	4.93%	-	31.34%	10.77%	2.25%	78.95%	
4	4	-	-	-	-	-	-			
6	5	2.26%	2.03%	1.15%	3.71%	2.45%	2.14%	Δ	Δ	Δ
7	6	-	-	3.19%	2.35%	5.63%	Δ	Δ	Δ	
2	8	-	-	-	-	-	Δ	Δ	Δ	
9	9	-	-	-	-	-	Δ	Δ	Δ	
3	10	-	-	-	-	-	Δ	Δ	Δ	
11	-	-	-	-	-	-	Δ	Δ	Δ	
12	-	-	-	-	-	-	Δ	Δ	Δ	
13	-	-	-	-	-	-	Δ	Δ	Δ	
14	-	-	-	-	-	-	Δ	Δ	Δ	
15	-	-	-	-	-	-	Δ	Δ	Δ	
16	-	-	-	-	-	-	Δ	Δ	Δ	
17	-	-	-	-	-	-	Δ	Δ	Δ	
18	-	-	-	-	-	-	Δ	Δ	Δ	
Control	-	-	-	-	-	-	Δ	Δ	Δ	

Table 4 Class I and class II human leukocyte antigen genotypes of the patients

Pat #	HLA-A*	HLA-B*	DRB1*			
1	01	03	57	11	15	
2	01	66	08	41	05	13
3	11	29	07	35	07	13
4	02	11	51	60	04	13
5	30	-	13	18	03	07
6	02	11	35	44	07	08
7	26	29	38	44	01	03
8	23	24	14	52	01	11
9	11	68	35	44	01	14
10	02	33	14	35	01	07
11	01	29	57	61	01	04
12	01	33	44	64	01	07
13	01	-	08	18	04	07
14	29	-	44	-	07	-
15	01	30	08	51	03	07
16	02	29	39	44	07	11
17	03	32	37	44	03	12
18	03	11	14	49	07	-

Pathways of activation are defined by the production of IL-4, IFNγ or both cytokines simultaneously. “−”: No activation; “Δ”: Analysis was not possible due to the low number of gated cells. Group 1: don+/rec−, with Abs, with PC-rich rejection; Group 2: don+/rec−, with Abs, without PC-rich rejection; Group 3: don+/rec+, without Abs, without PC-rich rejection; Control group: don+/rec+.
context of GSTT1 mismatch in the patients described in this study. Mouse models have provided evidence of the role of CD4+ T cells acting as effectors that directly mediate injury in renal allografts, while CD8+ T cells had very little influence in promoting graft dysfunction[17]. Similarly, CD4+ cells were sufficient to mediate rapid rejection of a cardiac allograft through the indirect pathway of alloantigen recognition[18]. Hence, CD4+ specific T cells are key elements for the progression of allograft immunity, especially within the CD4+ T cell indirect response. In the liver of mice with clinical manifestations of hepatitis, MHC class II-expressing hepatocytes are able to act as APCs and activate specific CD4+ T lymphocytes[19].

The pathogenic role of GSTT1-specific CD8+ T cells in PC-rich rejection has not been explored. The results obtained in this study reveal the existence of reactive CD8+ cells in the group of patients with PC-rich rejection, with percentages of activation that range from 1.1% to 8.46%, which is not as low as expected in immunosuppressed patients. A substantial difference between the percentages of IFNγ-producing CD8+ T cells at diagnosis and during treatment with prednisolone has been demonstrated in patients with type 2 autoimmune hepatitis[20]. We should keep in mind that the patients with PC-rich rejection described in this study are under successful treatment with prednisone that has to be maintained throughout life. It would be very interesting to know the level of stimulation of cells obtained at diagnosis, before initiation of the treatment, since cells from immunosuppressed patients exhibit much lower levels of activation than immunocompetent cells. For that reason, it is even more remarkable that certain types of T lymphocytes from the patients with PC-rich rejection showed high percentages of activation.

The results of this study leave many questions about the function of GSTT1-specific CD4+CD8low T cells in the context of transplantation. Subgroups of CD4+CD8low T cells have been described in chronic viral infections, with antigen specificity and memory phenotype[21,22], or in parasitic infections where the frequency of CD4+CD8low T cells was higher in Chagasic patients than in healthy donors[23]. In a study performed with human cells from CMV-seropositive patients, the CD4+CD8low population contained a two- to eight-fold higher frequency of antigen-specific IFNγ+ cells than...
the CD4⁺CD8⁻ population\(^2^4\). It seems that this type of cell appears in chronic processes, mainly in viral infections, but this scenario could also be extended to the transplant setting where sustained expression of a foreign antigen, such as GSTT1, might lead to chronic rejection.

The terminologies used to describe post-transplant clinical situations with overlapping manifestations might be confusing. Late rejection, de novo autoimmune/alloimmune hepatitis or idiopathic post-transplant hepatitis may all be part of immune-mediated injury\(^2^5\). The underlying pathology of the formerly called de novo autoimmune hepatitis was poorly understood, and diagnoses were based mainly on histological findings such as the presence of plasma cell rich infiltrates or hepatocyte rosette formation; however, because rosettes are poorly reproducible, some groups do not consider them a diagnostic feature\(^2^6\).

Although we did not have enough samples to check for memory markers, based on the short time of stimulation in vitro (48 h), we can say that GSTT1-specific lymphocytes are memory cells. It is still too soon to propose a model, as we have not yet tested what would be the response when recipients’ cells are

Figure 3 Representative plots showing CD4⁺CD8⁻ T lymphocyte activation in terms of cytokine production. Production of IL-4 and/or IFN-γ was analyzed after exposure of the cells to the glutathione S-transferase T1 peptides. As an example, patient 3 had 78.85% of the double positive cells activated with pool 3 and 2.9% with pool 6. Patient 4 had 6.05% of cells activated with pool 3, whereas pool 5 did not have any effect. Patient 17 showed 21.21% of cell activation with pool 3, but no response was observed when the cells were cultured with pool 2. In all the cases, the cells produced both cytokines, indicating a Th0 type of response.
confronted with GSTT1 peptides presented via the direct pathway. Apparently, there is not a predominant HLA class I or II allele among the donors of the patients with PC-rich rejection that could explain why some patients develop rejection and others do not. Given that donor cells are not available, in future studies we will have to design strategies to demonstrate the existence of donor HLA-restricted GSTT1-specific T lymphocytes through the use of artificial molecules such as pentamers, as well as cytotoxicity assays on "donor-like" target cells.

REFERENCES

1. Aguilera I, Wichmann I, Sousa JM, Bernardos A, Franco E, Garcia-Lozano Jr, Nuñez-Roldán A. Antibodies against glutathione S-transferase T1 (GSTT1) in patients with de novo immune hepatitis following liver transplantation. *Clin Exp Immunol* 2001; **126**: 535-539 [PMID: 11737073 DOI: 10.1046/j.1365-2249.2001.01682.x]

2. Aguilera I, Sousa JM, Gavilán F, Bernardos A, Wichmann I, Nuñez-Roldán A. Glutathione S-transferase T1 mismatch constitutes a risk factor for de novo immune hepatitis after liver transplantation. *Liver Transpl* 2004; **10**: 1166-1172 [PMID: 15350010 DOI: 10.1002/lt.20299]

3. Rodríguez-Mahou M, Salcedo M, Fernandez-Cruz E, Tiscar JL, Bahares R, Clemente G, Vicario JL, Alvarez E, Rodriguez-Sainz C. Antibodies against glutathione S-transferase T1 (GSTT1) in patients with GSTT1 null genotype as prognostic marker: long-term follow-up after liver transplantation. *Transplantation* 2007; **83**: 1126-1129 [PMID: 17452905 DOI: 10.1097/01.tp.0000259963.47350-da]

4. Demetris AJ, Bellamy C, Hübser SG, O’Leary J, Randhawa PS, Feng S, Neil D, Colvin RB, McLaughan G, Fung JJ, Del Bello A, Reinhold FP, Haga H, Adey O, Craja AJ, Schiano T, Fiel ML, Smith ML, Sebagh M, Tanigawa RY, Yilimaz F, Alexander G, Baiocci C, Balasubramanian M, Batal I, Bhan AK, Bucuvelas J, Cerski CTS, Charlotte F, de Vera ME, ElMonayeri M, Fontes P, Firth EE, Gouw ASH, Hafezi-Bakhtiani S, Hart J, Honseva E, Ismail W, Itoh T, Jhala NC, Khettry U, Klintmalm GB, Knechtel S, Koshita T, Kozlowski T, Lassman CR, Lerut J, Levitsky J, Liciu I, Liotta R, Mazarioges G, Minervini MI, Misraji J, Mohanakumar T, Mólle J, Nasser I, Neuberger J, O’Neill M, Pappo O, Petrovics L, Ruiz P, Sagó Ó, Sanchez Fuego A, Sasatomi E, Shakal A, Shiller M, Shimizu T, Sia B, Sonzogni A, Stevenson HL, Thung SN, Tsione G, Tamandas AC, Wernerson A, Wu T, Zeeki A, Zen Y. 2016 Comprehensive Update of the Banff Working Group on Liver Allograft Pathology: Introduction of Antibody-Mediated Rejection. *Am J Transplant* 2016; **16**: 2816-2835 [PMID: 27273869 DOI: 10.1111/ajt.13990]

5. Aguilera I, Wichmann I, Gentil MA, Gonzalez-Escribano F, Nuñez-Roldan A. Alloimmune response against donor glutathione S-transferase T1 antigen in renal transplant recipients. *Am J Kidney Dis* 2005; **46**: 345-350 [PMID: 16112055 DOI: 10.1053/j.ajkd.2005.04.022]

6. Wichmann I, Aguilera I, Sousa JM, Bernardos A, García Nuñez EJ, Vigil E, Magarillo R, Magarillo I, Torres A, Nuñez-Roldan A. Antibodies against glutathione S-transferase T1 in non-evident de novo organ transplantation patients. *Transfusion* 2006; **46**: 1505-1509 [PMID: 16965576 DOI: 10.1111/j.1537-2995.2006.00938.x]

7. Aguilera I, Espigado I, Martinez-Braavo MJ, Tallon I, Urbano-Ispizua A, Nuñez-Roldan A. Glutathione S-transferase T1 is a potential new target for the hepatic component of graft vs host disease after HSCT. *Bone Marrow Transplant* 2010; **45**: 774-775 [PMID: 19684638 DOI: 10.1038/bmt.2009.206]

8. Bogdanos DP, Gao B, Gershwin ME, Liver immunology. *Compr Physiol* 2013; **3**: 567-598 [PMID: 23720323 DOI: 10.1002/cphy. c120011]

9. Bumgardner GL, Orosz CG. Unusual patterns of alloimmunity evoked by allogeneic liver parenchymal cells. *Immunol Rev* 2000; **174**: 260-279 [PMID: 10807522 DOI: 10.1034/j.1600-0528.2002.01709.x]

10. Baker RJ, Hernandez-Fuentes MP, Brooks PA, Chaudhry AN, Cook HT, Lechler RJ. Loss of direct and maintenance of indirect alloresponses in renal allograft recipients: implications for the pathogenesis of chronic allograft nephropathy. *J Immunol* 2001; **167**: 7199-7206 [PMID: 11739543 DOI: 10.4049/jimmunol.167.12.7199]

11. Martinez-Braavo MJ, Calderón-Cabrera C, Márquez-Malaver FJ, Rodriguez N, Guijarro M, Espigado I, Nuñez-Roldán A, Pérez-Simón JA, Aguilera I. Mismatch on glutathione S-transferase T1 increases the risk of graft-versus-host disease and mortality after allogeneic stem cell transplantation. *Biol Blood Marrow Transplant* 2014; **20**: 1356-1362 [PMID: 24844856 DOI: 10.1016/ j.bbmt.2014.05.008]

12. Rose ML. Activation of autoimmune B cells and chronic rejection. *Transplantation* 2005; **79**: 522-524 [PMID: 15699740 DOI:
13 Linton PJ, Harbertson J, Bradley LM. A critical role for B cells in the development of memory CD4 cells. J Immunol 2000; 165: 5558-5565 [PMID: 11067910 DOI: 10.4049/jimmunol.165.10.5558]

14 Ng YH, Oberbarnscheidt MH, Chandramoorthy HC, Hoffman R, Chalasani G. B cells help alleroactive T cells differentiate into memory T cells. Am J Transplant 2010; 10: 1970-1980 [PMID: 20883532 DOI: 10.1111/j.1600-6143.2010.03225.x]

15 Zeng Q, Ng YH, Singh T, Jiang K, Sherif KA, Ippolito R, Zahalka S, Li Q, Randhawa P, Hoffman RA, Ramaswami B, Lund FE, Chalasani G. B cells mediate chronic allograft rejection independently of antibody production. J Clin Invest 2014; 124: 1052-1056 [PMID: 24509079 DOI: 10.1172/JCI70084]

16 Shiu KY, McLaughlin L, Rebollo-Mesa I, Zhao J, Semik V, Cook HT, Roufosse C, Brookes P, Bowers RW, Galliford J, Taube D, Lechler RI, Hernandez-Fuentes MP, Dorling A. B-lymphocytes support and regulate indirect T-cell alloreactivity in individual patients with chronic antibody-mediated rejection. Kidney Int 2015; 88: 560-568 [PMID: 25830760 DOI: 10.1038/ki.2015.100]

17 Gaughan A, Wang J, Pelletier RP, Nadasdy T, Brudy MA, Roy S, Leach CA, D’Moffat-Brace S, Fairchild RL, Henry ML, Hadley IA. Key role for CD4 T cells during mixed antibody-mediated rejection of renal allografts. Am J Transplant 2014; 14: 284-294 [PMID: 24410909 DOI: 10.1111/ajt.12596]

18 Honjo K, Xu Xy, Bucy RP. CD4+ T-cell receptor transgenic T cells alone can reject vascularized heart transplants through the indirect pathway of alloantigen recognition. Transplantation 2004; 77: 452-455 [PMID: 14966425 DOI: 10.1097/01.TP.0000129357.12491.42]

19 Herkel J, Jagemann B, Wiegard C, Lazarof JF, Lueth S, Kanzler S, Blessing M, Schmitz E, Löhm AW. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocytes. Hepatology 2003; 37: 1079-1085 [PMID: 12717388 DOI: 10.1053/jhep.2003.50191]

20 Longhi MS, Hussain MJ, Bogdanos DP, Quaglia A, Mieli-Vergani G, Ma Y, Vergani D. Cytochrome P450IID6-specific CD8 T cell immune responses mirror disease activity in autoimmune hepatitis type 2. Hepatology 2007; 46: 472-484 [PMID: 17559153 DOI: 10.1002/hep.21658]

21 Nascimbeni M, Shin EC, Chiriboga L, Kleiner DE, Rehermann B. Peripheral CD4+CD8+ T cells are differentiated effectors memory cells with antiviral functions. Blood 2004; 104: 478-486 [PMID: 15044252 DOI: 10.1182/blood-2003-12-4395]

22 Nascimbeni M, Pol S, Sannier B. Distinct CD4+ CD8+ double-positive T cells in the blood and liver of patients during chronic hepatitis B and C. PLoS One 2011; 6: e20145 [PMID: 21647449 DOI: 10.1371/journal.pone.0020145]

23 Giraldo NA, Bolaños NI, Cuellar A, Guzman F, Uribe AM, Bedoya A, Olaga N, Cucunubá ZM, Roa N, Rosas F, Velasco V, Puerta CJ, González JM. Increased CD4+/CD8+ double-positive T cells in chronic Chagasic patients. PLoS Negl Trop Dis 2011; 5: e1294 [PMID: 21886854 DOI: 10.1371/journal.pntd.0001294]

24 Suni MA, Ghanekar SA, Hoack DW, Maecker HT, Wormsky SB, Picker LJ, Moss RB, Maimo VC. CD4+CD8(dim) T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens. Eur J Immunol 2001; 31: 2512-2520 [PMID: 11500836 DOI: 10.1002/1521-4141(200108)31:8<2512::AID-IMMU2512>3.0.CO;2-M]

25 Hübscher SG. What is the long-term outcome of the liver allograft? J Hepatol 2011; 55: 702-717 [PMID: 21426919 DOI: 10.1016/j.jhep.2011.03.005]

26 Sebagh M, Castillo-Rama M, Azoulay D, Coilly A, Delvalv A, Allard MA, Dos Santos A, Johansen C, Roque-Afonso AM, Saliba F, Duclos-Vallée J, Samuel D, Demetrius AJ. Histologic findings predictive of a diagnosis of de novo autoimmune hepatitis after liver transplantation in adults. Transplantation 2013; 96: 670-678 [PMID: 23982338 DOI: 10.1097/TP.0b013e31829eda7f]
