The human parathyroid hormone N-terminal fragment [hPTH-(1-34)] increases the conversion of exogenous unsaturated fatty acids to prostaglandins (PGs) in calvarial homogenates. Enzyme activities were completely blocked by indomethacin (5 \times 10^{-7} \text{M}), a PG synthase inhibitor, and actinomycin D (5 \mu\text{M}), an inhibitor of transcription, by binding to DNA. In addition, a potent inhibitor of protein synthesis, cycloheximide (10 \mu\text{M}), totally inhibited the stimulating effect of hPTH-(1-34) on prostaglandin endoperoxide synthase (PG synthase, EC 1.14.99.1). The stimulatory effect of hPTH-(1-34) on PG synthase was also reduced by the addition of stannous chloride. However, epidermal growth factor (EGF), platelet-derived activating factor (PDGF), and ionophore A23187 did not show the same stimulating effect as hPTH-(1-34) on PG synthase in calvaria. The results further demonstrated that PG synthase is a membrane-bound enzyme in chick calvaria. In this communication, evidence is presented that hPTH-(1-34) stimulates the de novo synthesis of PG synthase as demonstrated by the increased activity in calvarial homogenates and microsomes.

Key words: Calvaria, PG synthase, PTH

Introduction

Parathyroid hormone (PTH) is a single chain 84-amino acid peptide (molecular weight of 9500) secreted by the parathyroid glands. However, the structural requirements necessary for full biological activity are virtually satisfied by the NH2-terminal 34-amino acid fragment. Bone and kidney are the two principal target organs affected by PTH. PTH stimulates the breakdown of phospholipids from the rat tibia which occurs at the same time as calcium mobilization and stimulates phosphoinositide turnover in mouse osteoblasts. In contrast, several reports have demonstrated that PTH stimulates the growth of bone and cartilage. Endogenous skeletal prostaglandin (PG) production may participate in bone resorption and bone formation. PGs may not mediate the action of PTH on bone resorption. However, PGs do show a very close relationship with the action of PTH on skeletal tissues. It has been demonstrated that the human parathyroid hormone N-terminal fragment [hPTH-(1-34)] stimulates PGF2 synthesis by chick calvaria in an organ culture. It appears that hPTH-(1-34) stimulates the bone cells to convert arachidonic acid to prostaglandin E2 (PGF2), but does not activate the release of stored arachidonic acid.

Prostaglandin biosynthesis involves the initial conversion of arachidonic acid to cyclic endoperoxide intermediates designated PGG2 and PGGH2 by prostaglandin endoperoxide synthase. These relatively unstable compounds are then metabolized by other enzymes to form stable PGs, or are transformed into non-prostaglandin derivatives. The mechanism by which hPTH-(1-34) increases the synthesis of PGF2 in chick calvaria appears to be related to the activation of enzyme activity in the biosynthesis of prostaglandins. It is important to investigate whether hPTH-(1-34) can stimulate the de novo synthesis of PG synthase in chick calvaria. In this report, it was found that hPTH-(1-34) increases the conversion of exogenous unsaturated fatty acids to PGs in calvarial homogenates and microsomes.

Materials and Methods

Materials: Preincubated fertilized chick eggs were obtained from Miaoli Livestock Propagation Station, Taiwan Livestock Research Institute.
Synthetic human parathyroid hormone N-terminal 1-34 peptide [hPTH-(1-34), 3 000 IU/mg] was purchased from Bachem Inc. (Torrence, CA, USA). This material was dissolved in a solution containing 0.5% sodium chloride, 0.2% sodium acetate, and 1% bovine serum albumin, aliquoted and stored frozen at −70°C until use. Epidermal growth factor (EGF) and platelet derived growth factor (PDGF) were obtained from Collaborative Research Inc. (Two Oak Park, Bedford, MA, USA).

Labelled compounds, 3H-arachidonic acid (202 Ci/mmol), 3H-PGE2 (184 Ci/mmol), 3H-PGF2α (180 Ci/mmol), 3H-6-keto-PGF1α (157 Ci/mmol), 3H-PGD2 (192 Ci/mmol) and 3H-TXB2 (180 Ci/mmol) were purchased from Amersham Corporation (Arlington Heights, IL, USA). Linear-K preadsorbent thin-layer chromatography plates were purchased from Whatman International Ltd. (Maidstone, England). A BioRad protein assay was obtained from BioRad Laboratories (Richmond, CA, USA). Octadecylsilyl (ODS)-silica columns (Sep-Pak C18 cartridges) were obtained from Waters Associates (Milford, MA, USA).

Trypsin and a penicillin-streptomycin solution were purchased from Gibco Lab. (Grand Island, NY, USA). Foetal calf serum (FCS) was purchased from Biofluids Inc. (Rockville, MD, USA). Fungizone was purchased from E. R. Squibb & Sons Inc. (Princeton, NJ, USA). Dithiothreitol, hydroquinone, methanol, ethanol, isooctane, and acetic acid were purchased from Merck (Darmstadt, Germany). Ethyl acetate was obtained from Mallinkrodt Inc. (Paris, KY, USA). BGJb medium (Fithton–Jackson Modification), arachidonic acid, indomethacin, glutathione, cycloheximide, actinomycin D, stannous chloride, ionophore, haemin, sodium dihydrogen phosphate, sodium phosphate, Trizma hydrochloride, EDTA, sodium chloride, magnesium chloride, sodium bicarbonate, potassium phosphate, calcium chloride, and ascorbic acid were obtained from Sigma Corporation (St Louis, MO, USA).

Methods: Preparation of calvarial homogenates: Calvariae were dissected aseptically from 17-day-old chick embryos and cultivated as previously described by Yang et al. Routinely, the paired bones were preincubated in an organ culture system for 24 h, then the medium was replaced with fresh medium containing different tested additions for appropriate time periods. The paired bones from 20 chicks were randomly assigned to the experimental groups.

After this preincubation, paired bones from each group were harvested, weighed, and resuspended in 4 ml of sodium phosphate buffer (10 mM NaH2PO4, 10 mM Na2HPO4, 100 μM dithiothreitol, pH 7.4) and then homogenized with a Polytron operated at full speed for 2 min. The homogenates were centrifuged at 400 × g for 5 min at 4°C to remove large unminced fragments. The supernatant was removed and incubated with 10 μM cold arachidonic acid (AA) and 10 μCi 3H-arachidonic acid in an equal volume of 0.2 M Tris-chloride buffer (pH 8.5) containing 2 mM glutathione, 1 mM hydroquinone, and 2 μM haemin at 37°C for 10 min. The reaction was terminated by the addition of 2 vol. of ethanol and was ready for extraction and purification of eicosanoids.

Isolation of microsomes from calvariae: The procedures for isolating microsomes from calvariae were a modification of those of Stern and Vance. All procedures were performed at 4°C unless otherwise indicated. After a preincubation period of 36 h with or without hPTH-(1-34), the calvariae were harvested and resuspended in an appropriate volume of sodium phosphate buffer (10 mM NaH2PO4, 10 mM Na2HPO4, 100 μM dithiothreitol, pH 7.4) and then homogenized with a Polytron operated at full speed for 2 min. Homogenates were centrifuged at 12 000 × g for 15 min. The resulting supernatants were harvested and centrifuged at 100 000 × g for 1 h to obtain cytosol and microsomal pellets. The supernatant was removed and the pellet was homogenized in fresh sodium phosphate buffer equivalent to one-half the volume of the total reaction mixture. The microsomes were further incubated with 10 μM cold arachidonic acid and 2 μCi (9.4 nM) 3H-arachidonic acid in an equal volume of 0.2 M Tris-chloride buffer (pH 8.5) containing 2 mM glutathione, 1 mM hydroquinone, and 2 μM haemin at 37°C for 10 min. The reaction was terminated by the addition of 2 vol. of ethanol and was ready for extraction and separation of eicosanoids.

Extraction and purification of eicosanoids: The incubation precipitates from calvarial homogenates and microsomes were centrifuged at 800 × g for 10 min at 4°C, and the supernatant layer was evaporated to aqueous phase. Ethanol was added to the residues to achieve a final concentration of 15% ethanol. The biological sample was further acidified to pH 3.5 with 1 M citric acid and applied to an ODS-silica column (Sep-Pak C18 cartridge). The Sep-Pak cartridge was attached to a 20 ml polypropylene Luerlok syringe and washed with 20 ml of ethanol and water successively. The column was washed with 20 ml of water, 20 ml 15% aqueous ethanol, and 20 ml of petroleum ether sequentially. The eicosanoids were eluted with 10 ml of ethyl acetate The collected samples were dried by evaporation under a stream of nitrogen. The residues were then reconstituted in 1 ml of ethanol and filtered through a 0.45 μm filter (Millipore).
The samples were again dried by evaporation under a stream of nitrogen, reconstituted in 50 µl of chloroform/methanol (2:1, v/v) and prepared for thin-layer chromatography.

Thin-layer chromatography: Thin-layer chromatography was performed by a method described previously. After TLC, the radioactivity of the spots was determined by directly counting the scraped spots using liquid scintillation spectroscopy. The activity of prostaglandin endoperoxide synthase was determined by measuring the conversion of exogenous arachidonic acid to PGE₂.

Results

Previous experiments have shown that a 36-h preincubation with hPTH-(1–34) can activate endogenous PGE₂ synthesis and mineral mobilization in intact chick calvaria. In this report, it was further found that human PTH-(1–34) at a concentration of 0.6 µg/ml stimulates PG synthase activity (about a three-fold increase) in chick calvaria. EGF at a concentration of 20 ng/ml and PDGF at a concentration of 20 mU/ml had no stimulatory effect on PG synthase activity (Fig. 1(A) and Table 1). Ionophore A23187 at a concentration of 10 µM also had no effect on this enzyme activity (Fig. 1(B) and Table 1).

The stimulatory effect of hPTH-(1–34) on PG synthase in chick calvaria, as well as the basal activity of PG synthase, was blocked by a cyclooxygenase inhibitor, indomethacin (5 × 10⁻⁷ M), and a transcription blocker, actinomycin D (5 µM). Moreover, the stimulatory effect of hPTH-(1–34) was completely abolished by a translation inhibitor, cycloheximide (10 µM) (Fig. 1(B) and Table 1), as it brought the activity of PG synthase back to the basal level. It appears that hPTH-(1–34) stimulates the *de novo* synthesis of PG synthase in calvaria.

Stannous chloride was also included in the experiments to reduce untransformed endoperoxide to prostaglandin F₂α (PGF₂α). The stimulatory effect of hPTH-(1–34) on PG synthase was blocked (statistically significant) by the addition of stannous chloride (1.9 mg/ml, 10 µM) in ethanol; however, the total enzyme activity level was still higher than the basal levels (Table 1).

We then tried to identify the location of PG synthase in chick calvaria. Human PTH-(1–34) stimulates the *de novo* synthesis of PG synthase in the microsomal fraction of the calvariae but not in the cytosolic fraction.
The action of PTH on bone metabolism may involve several ‘second messengers’, including cAMP,calcium, the Na+-Ca2+ exchange mechanism and prostaglandins. In previous publications, it was demonstrated that hPTH-(1-34) stimulates calcium mobilization and PGE2 synthesis in chick calvaria. In this communication, it was found that hPTH-(1-34) does not have a stimulatory effect on PG synthesis in rat calvaria, whereas hPTH-(1-34) does show a minor effect (not statistically significant) in mouse calvaria (unpublished data). These observations all support the highly specific action of hPTH-(1-34) on chick calvaria.

The temporal sequence of PG synthase synthesis by human dermal fibroblasts can be separated into an early transcriptional stage and a subsequent translational stage. The results in Table 1 indicate that the DNA transcription effect of hPTH-(1-34) on PG synthase can be blocked by the addition of actinomycin D, and the translational effect can be blocked by the addition of cycloheximide. At this moment, the authors are not able to conclude whether the stimulatory effect of hPTH-(1-34) on PG synthase occurs at the early transcriptional stage and/or the translational stage. It is possible that both stages are affected by hPTH-(1-34). However, it has been reported that hPTH-(1-34) stimulates the synthesis of DNA in the central bone of calvaria. The biosynthesis of this enzyme in chick calvaria may be regulated by a specific gene. Isolation and determination of this specific gene might be a better way to clarify the real mechanism of hPTH-(1-34) acting on chick calvaria.

Epidermal growth factor is a 53-amino acid polypeptide isolated from male mouse submaxillary glands, which stimulates PGE2 synthesis in mouse calvaria. Tashjian et al. found that a low concentration of PDGF stimulates bone resorption via the enhanced local production of PGE2. In previous observations, it was found that the use of different concentrations of EGF, PDGF, bradykinin and ionophore do not stimulate PGE2 synthesis in chick calvaria. It was also noted that ionophore at a concentration of 10 µM has no deleterious effects on chick calvaria (unpublished data). Lack of responsiveness to these agonists may be due to a difference in species. In this study, the results further demonstrated that EGF, PDGF and ionophore have no stimulatory effects on the de novo synthesis of PG synthase in chick calvaria. On the other hand, it was found that hPTH-(1-34) does not have a stimulatory effect on PG synthesis in rat calvaria, whereas hPTH-(1-34) does show a minor effect (not statistically significant) in mouse calvaria (unpublished data). These observations all support the highly specific action of hPTH-(1-34) on chick calvaria.

The calvariae were incubated with different additions for 36 h, with the exception of the indomethacin (INDO) group which was incubated overnight. Indomethacin was preincubated for 1 h before adding hPTH-(1-34) in the hPTH + INDO group. After this preincubation, the bones were harvested and homogenized with a Polytron and centrifuged at 400 x g for 10 min at 4°C. The supernatant was then extracted with a Sep-Pak C18 cartridge and separated by TLC, and the enzyme activity was determined as described (for details of these procedures refer to Materials and Methods). Data are represented as the mean ± S.E. (disintegrations per min) for triplicate incubations of bone homogenates prepared from 20 chick calvariae.

Table 1. The effect of hPTH-(1-34) and other additives on PG synthase activities in chick calvariae

Additions	PG synthase activity, pg of PGE2 synthesized per mg of protein per min
Control (No additions)	50 ± 4
hPTH (0.6 g/ml)	186 ± 16*
EGF (20 ng/ml)	53 ± 5
PDGF (20 mU/ml)	57 ± 7
hPTH + cycloheximide (10 µM)	54 ± 5
hPTH + actinomycin D (5 µM)	0*
hPTH + INDO (5 x 10⁻³ M)	0*
hPTH + SnCl₂ (1.9 mg/ml)	117 ± 12*
Ionophore A23187 (10 µM)	42 ± 3

*Significantly different from control, as determined by Student's non-paired t-test (p < 0.05). **Significantly different from hPTH treatment alone, as determined by Student's non-paired t-test (p < 0.05).

The biosynthesis of this enzyme in chick calvaria may be regulated by a specific gene. Isolation and determination of this specific gene might be a better way to clarify the real mechanism of hPTH-(1-34) acting on chick calvaria.

Since PGE2 was the predominant eicosanoid produced by chick calvaria, the activity of PG synthase was determined by measuring the conversion of exogenous arachidonic acid to PGE2. PGE2 was the second major prostanoit to appear on TLC. Trace amounts of PGB2, PGD2, an unknown product that eluted before 6-keto-PGF1α (more polar than 6-keto-PGF1α), an unknown product that eluted after PGE2 (less polar than PGE2), and an unknown product eluted after PGD2 (less polar than PGD2) were also detected.

The data reveal that the stimulatory effect of hPTH-(1-34) on PG synthase is blocked by the addition of stannous chloride. The basal levels of this enzyme activity are not changed by SnCl₂, and a certain degree of the stimulatory effect of hPTH-(1-34) still remains (Table 1). In addition, the formation of PGE2 is blocked by the addition of stannous chloride.
view of the partial inhibition by SnCl2, it is quite possible that part of the increased activity may be due to induction of the PG endoperoxide E isomerase by hPTH-(1–34) that converts PGH2 to PGE2.

PG synthase contains both cyclooxygenase and peroxidase activities within a single protein. Cyclooxygenase component converts arachidonic acid to a hydroperoxy endoperoxide (PGG2). The PGG2 then reacts with PG synthase in a peroxidation reaction to give compound I (PGHS I), which subsequently converts to compound II (PGHS II). Native PG synthase is therefore regenerated. Hsuanyu and Dunford have demonstrated that the whole peroxidase cycle is rapidly completed (within seconds), and a mixture of compound I and compound II was achieved at a very early stage rather than pure compound I. Although the inductive form of PG synthase is now activated by hPTH-(1–34) in the present study, the authors are not able to conclude which form of PG synthase was activated by hPTH-(1–34) in the present study. PG synthase has been discovered to be a membrane-bound protein in other tissues. However, this enzyme has never been proved to be a membrane-bound protein in skeletal tissues. This communication strongly supports the view that PG synthase is a membrane-bound enzyme in chick calvaria.

References

1. Tregoe GW, van Rietbroeck J, Greene E, et al. Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology 1973; 93: 1349–1353.
2. Guessed RL, Hong KC, Nakamura F. The effect of parathyroid hormone upon release of degradative enzymes from rat bone. Proc Soc Exp Biol Med 1979; 162: 183–186.
3. Fardale RW, Sandy JR, Askinson SJ, et al. Parathyroid hormone and prostaglandin E2 stimulate both inositol phosphates and cyclic AMP accumulation in mouse osteoblast cultures. Biochem J 1988; 252: 263–268.
4. Gaillard FJ, Herrmann-Erlee MP, Hekkelman JW, Burger EH, Juiweide PJ. Skeletal tissue in culture: hormone regulation of metabolism and development. Ann Orthop Res 1979; 79: 196–214.
5. Howard GA, Bottleneck JE, Turner BT, Rader JL, Blaylock DL. Parathyroid hormone stimulates bone formation and resorption into organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 1981; 78; 3204–3208.
6. Suzuki F, Youeda T, Shimomura Y. Catecholamine and parathyroid hormone stimulation of acid mucopolysaccharide synthesis in cultured chondrocytes isolated from growth cartilage. FEBS Lett 1976; 70: 155–158.
7. Burck LB, Lembowitz HE. Parathyroid hormone stimulates growth of embryonic chick pelvic cartilage in vitro. Calcif Tissue Int 1983; 35: 523–5232.
8. Raiss LG, Martin TJ. Prostaglandins in bone and mineral metabolism. In: Pock WA, ed. Bone and Mineral Research. Amsterdam: Elsevier Science Publishers BV, 1983; 286–310.
9. Genn I, Hock JM, Guineas-Hey M, et al. Indomethacin does not inhibit the anabolic effect of parathyroid hormone on the long bones of rats. Calcif Tissue Int 1987; 40: 206–211.
10. MacDonald BR, Gallagher JA, Ahlneft Rone I, et al. Effects of bovine parathyroid hormone and 1,25-dihydroxvitamin D3 on the production of prostaglandins by cells derived from human bone. FEBS Lett 1984; 169: 49–52.
11. Raiss LG, Simmons HA. Effect of parathyroid hormone and cortisoll on osteoblastic bone production by perinatal rat calvaria in vitro. Endocrine Res 1985; 11: 59–74.
12. Feyrer JH, van der Wilt G, Moonen P, et al. Stimulation of arachidonic acid metabolism in primary cultures of osteoblast-like cells by hormones and drugs. Prostaglandins 1984; 28: 769–781.
13. Yang CY, Gonnemara WA, Taylor L, et al. Synthetic human parathyroid hormone fragment stimulates prostaglandin E2 synthesis by chick calvaria. Endocrinology 1987; 120: 63–70.
14. Hamberg M, Svensson J, Waktabayshi T, Samuelson B. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc Natl Acad Sci USA 1974; 71: 345–346.
15. Hamberg M, Samuelson B. Prostaglandin endoperoxides. Novel transformattions of arachidonic acid in human platelets. Proc Natl Acad Sci USA 1974; 27: 340–3404.
16. DeWitt DL, Rollins TE, Day JS, et al. Orientation of the active site and antigenic determinants of prostaglandin endoperoxide synthase in the endoplasmic reticulum. J Biol Chem 1981; 266: 10375–10382.
17. Takata Y, Ward SL, Smith WL. Immunological and kinetic evidence for two different prostaglandin H-prostaglandin E isomerases in sheep vascular gland microsomes. J Biol Chem 1987; 262: 1374–1383.
18. Chrest EJ, Negrerman DSH. The biosynthesis and possible function of prostaglandins in adipose tissue. Biochem Biophys Acta 1970; 216: 296–307.
19. Anggard E, Bohman SO, Griffin JE, et al. Subcellular localization of the prostaglandin synthetase system in the rabbit renal papilla. Acta Physiol Scand 1972; 84: 231–246.
20. Miyamoto T, Ogino N, Yamamoto S, Hayashi O. Purification of prostaglandin endoperoxide synthase from bovine vascular gland microsomes. J Biol Chem 1976; 251: 2629–2636.
21. Rollins TE, Smith WL. Subcellular localization of prostaglandin-forming cyclooxygenase in Swiss Mouse ST3 fibroblasts by electron microscopic immunocytochemistry. J Biol Chem 1980; 255: 4872–4875.
22. Yang CY, Gonnema WA, Polgar PR. The action of parathyroid hormone on bone metabolism may be regulated by endogenously synthesized prostaglandin E2. In: Samuelson B, Wong PYK, Sun FF, et al. Advances in Prostaglandins and Leukotrienes Research. New York: Raven Press, 1989; 19: 435–438.
23. Chase LR, Fedak SA, Aurbach GD. Activation of skeletal adenylyl cyclase by prostaglandins in vitro. Endocrinology 1959; 60: 761–768.
24. Mann S, Extraction of eicosanoids from biological samples. In: Benedetto C, McDonald-Gibson RG, Nigar S, Slater TE, eds. Prostaglandins and Related Substances: a Practical Approach Oxford: IRL Press Limited, 1983; 45–52.
25. Yang CY, Gonnema WA, Mencini M, et al. Isolation and culture of two cell populations from chick calvaria by density gradient: Prostaglandin synthetase by the cells in culture and coculture. Endocrinology 1988; 123: 2549–2556.
26. Stern PH, Vance DE. Phosphatidylycholine metabolism in neonatal mouse calvaria. Biochem J 1987; 244: 409–415.
27. Nigam S. Evidence for coupling mechanism. Proc Natl Acad Sci USA 1987; 78; 127–211.
28. Krieger NS, Tsaihian AH Jr. Parathyroid hormone stimulates bone resorption via a Na–Ca exchange mechanism. Nature 1980; 287: 843–845.
29. Powles TJ, Easty DM, Easty GC., et al. Aspirin inhibition of in vitro osteolysis stimulated by parathyroid hormone and PGE2. Nature [New Biology] 1973; 245: 64–83.
30. Tsaihian AH Jr, Levine L. Epidermal growth factor stimulates prostaglandin production and bone resorption in cultured mouse calvaria. Biochem Biophys Res Commun 1978; 85: 94–97.
31. Byrnes BL, Orth DL, Cohen S, Doyne ES. Epidermal growth factor: effects of androgens and anionic agents. Endocrinology 1974; 95: 776–782.
32. Tsaihian AH Jr, Hohmann EL, Antonadies HN, Levine L. Platelet-derived growth factor stimulates bone resorption via a prostaglandin-mediated mechanism. Endocrinology 1982; 111: 118–124.
33. Raz A, Wyche A, Needlemann P. Temporal and pharmacological division of fibroblast cycloxygenase expression in transcriptional and translational phases. Proc Natl Acad Sci USA 1989; 86: 1375–1377.
34. Dietz R, Nastainczyk W, Ruf HH. Higher oxidation states of prostaglandin H synthase; rapid electronic spectroscopy detected two spectral intermediates during the peroxidase reaction with prostaglandin G2. Eur J Biochem 1988; 171: 321–328.
35. Hsuanyu Y, Dunford HB. Reduction of prostaglandin H synthase compound II by phenol and hydroquinone, and the effect of indomethacin. Arch Biochem Biophys 1992; 292: 213–220.

Received 29 December 1992; accepted in revised form 3 February 1993