The asymptotics of the Struve function $H_\nu(z)$ for large complex order and argument

R. B. Paris

Division of Computing and Mathematics,
University of Abertay Dundee, Dundee DD1 1HG, UK

Abstract

We re-examine the asymptotic expansion of the Struve function $H_\nu(z)$ for large complex values of ν and z satisfying $|\arg \nu| \leq \frac{1}{2}\pi$ and $|\arg z| < \frac{1}{2}\pi$. Watson's analysis [4, §10.43] covers only the case of ν and z of the same phase with ν/z in the intervals $(0, 1)$ and $(1, \infty)$. The domains in the complex ν/z-plane where the expansion takes on different forms are obtained.

Mathematics Subject Classification: 30E15, 33C10, 34E05, 41A60

Keywords: Struve function, asymptotic expansion, method of steepest descents

1. Introduction

The Struve function $H_\nu(z)$ is a particular solution of the inhomogeneous Bessel equation

$$\frac{d^2 w(z)}{dz^2} + \frac{1}{z} \frac{dw(z)}{dz} + \left(1 - \frac{\nu^2}{z^2}\right) w(z) = \frac{(\frac{1}{2}z)^{\nu-1}}{\sqrt{\pi} \Gamma(\nu + \frac{1}{2})}$$

which possesses the series expansion

$$H_\nu(z) = (\frac{1}{2}z)^{\nu+1} \sum_{n=0}^{\infty} \frac{(-)^n (\frac{1}{2}z)^{2n}}{\Gamma(n + \frac{3}{2}) \Gamma(n + \nu + \frac{3}{2})}$$

valid for all finite z.

An integral representation, valid when $\Re(\nu) > -\frac{1}{2}$, is given by [4, p. 330] as

$$J_\nu(z) \pm iH_\nu(z) = \frac{2(\frac{1}{2}z)^\nu}{\sqrt{\pi} \Gamma(\nu + \frac{1}{2})} \int_0^1 e^{\pm izt} (1 - t^2)^{\nu-\frac{1}{2}} dt,$$

where $J_\nu(z)$ is the usual Bessel function. Upon replacement of the variable t by $\pm iu$, we obtain

$$H_\nu(z) \pm iJ_\nu(z) = \frac{2(\frac{1}{2}z)^\nu}{\sqrt{\pi} \Gamma(\nu + \frac{1}{2})} \int_0^{\pm i} e^{-zu} (1 + u^2)^{\nu-\frac{1}{2}} du \quad (\Re(\nu) > -\frac{1}{2}).$$

1
The integration path corresponding to the upper sign in (1.2) can be deformed to pass along the positive real axis to +∞ and back to the point i along the parallel path i + u (0 ≤ u ≤ ∞). The contribution from the path (i + ∞, i] is equal to iHν(2)(z), where Hν is the Hankel function; see [4, p. 166]. Thus we find the alternative representation [2, p. 292]

$$H_\nu(z) - Y_\nu(z) = \frac{2(\frac{1}{2}z)^\nu}{\sqrt{\pi} \Gamma(\nu + \frac{1}{2})} \int_0^\infty e^{-zu}(1 + u^2)^{\nu - \frac{1}{2}} du$$

valid for unrestricted ν and | arg z | < $\frac{1}{2}$π, where $Y_\nu(z)$ denotes the Bessel function of the second kind.

Here we shall consider the asymptotic expansion of $H_\nu(z)$ for large complex values of ν and z satisfying | arg ν | ≤ $\frac{1}{2}$π and | arg z | < $\frac{1}{2}$π. Values of arg z outside this range can be dealt with by means of the continuation formula

$$H_\nu(ze^{\pi mi}) = e^{\pi mi(\nu + 1)} H_\nu(z), \quad m = \pm 1, \pm 2 \ldots$$

obtained from (1.1).

2. Asymptotic expansion when $z > 0$

We set

$$q := \nu/z = \alpha + i\beta, \quad \theta := \text{arg } z, \quad \omega := \text{arg } q.$$

In view of (1.2) and (1.3), we are led to the consideration of the integral

$$\int_C e^{-|z|\tau} \frac{du}{\sqrt{1 + u^2}} \tau := e^{i\theta}\{u - q \log(1 + u^2)\},$$

where C is a suitably chosen path in the u-plane.

Saddle points are situated at $d\tau/du = 0$; that is, at the points

$$u_\pm = q \pm \sqrt{q^2 - 1}.$$

We shall refer to these saddles as S_1 (upper sign) and S_2 (lower sign). Inversion of (2.1) in the form $u = \sum_{k=1}^\infty a_k(\tau e^{-i\theta})^k$, where $a_0 = 1$, shows that

$$\frac{1}{\sqrt{1 + u^2}} \frac{du}{d\tau} = e^{-i\theta} \sum_{k=0}^\infty c_k(q)(\tau e^{-i\theta})^k$$

valid in a disc centered at $\tau = 0$ of radius determined by the nearest singularity corresponding to the saddles S_1 or S_2 (or both). The values of the coefficients $c_k(q)$ (0 ≤ k ≤ 10) are listed in Table 1; see also [1, p. 203].

Watson [4, §10.43] has considered the two cases (i) $q \in [1, \infty)$ and (ii) $q \in (0, 1)$ when $z > 0$ ($\theta = 0$). The steepest descent paths emanating from the origin in the complex u-plane in these two cases are shown in Fig. 1; branch cuts have been taken along the segments of the imaginary axis [±i, ±∞i). In case (i), the desired path C consists of the real axis between the origin and the saddle S_2 and then either along the arc to the branch point at $u = i$ or along the arc to the branch point at $u = -i$. In case (ii), the path C from the origin coincides with the positive real axis and passes to $+\infty$. In both cases τ increases monotonically from 0 to $+\infty$ as we traverse these paths.
Asymptotics of the Struve function

Figure 1: The steepest paths when $\theta = 0$: (a) when $q \in (1, \infty)$ and (b) when $q \in (0, 1)$. The heavy dots indicate the saddle points and the heavy lines denote the branch cuts.

Table 1: The coefficients $c_k(q)$ for $0 \leq k \leq 10$.

k	$c_k(q)$
0	1
1	$2q$
2	$6q^2 - \frac{1}{2}$
3	$20q^3 - 4q$
4	$70q^4 - \frac{45}{2}q^2 + \frac{3}{8}$
5	$252q^5 - 112q^3 + \frac{23}{2}q$
6	$924q^6 - 525q^4 + \frac{301}{6}q^2 - \frac{5}{16}$
7	$3432q^7 - 2376q^5 + 345q^3 - \frac{22}{3}q$
8	$12870q^8 - \frac{21021}{2}q^6 + \frac{16665}{8}q^4 - \frac{1425}{16}q^2 + \frac{35}{128}$
9	$48620q^9 - 45760q^7 + \frac{139139}{12}q^5 - \frac{1595}{2}q^3 + \frac{563}{64}q$
10	$184756q^{10} - 196911q^8 + 61061q^6 - \frac{287287}{48}q^4 + \frac{133529}{960}q^2 - \frac{63}{256}$

Then in case (i) we find

$$\int_0^{\pm i} e^{-zu}(1 + u^2)^{\nu - \frac{1}{2}} du = \int_0^{\infty} e^{-z\tau} \left(\frac{1}{\sqrt{1 + u^2}} \frac{du}{d\tau} \right) d\tau \sim \sum_{k=0}^{\infty} c_k(q)\Gamma(k + 1) \frac{1}{z^{k+1}}$$

for $z \to +\infty$. Hence, for large real ν and z with $\nu/z \in [1, \infty)$ (when the deformed path

\begin{footnote}
1Suitable rotation of the integration path through an acute angle enables the validity of (1.3) to be extended to the wider sector $|\arg z| < \pi$; see [4, p. 331].

2When $q = 1$, the saddles S_1 and S_2 form a double saddle at $u = 1$. In this case, the path C consists of the real axis $0 \leq u \leq 1$ followed by similar arcs to the points $u = \pm i$.
\end{footnote}
both saddles corresponds to the case when the steepest descent path from the origin connects with

\[(\frac{1}{2}z)^{\nu-1} \sum_{k=0}^{\infty} \frac{c_k(q)\Gamma(k+1)}{z^k}, \]

(2.2)

respectively. Similarly, for \(\nu/z \in (0,1) \) (when the path \(C \) passes to \(+\infty \) along the real axis), we have from (1.3)

\[H_\nu(z) - Y_\nu(z) \sim \frac{(\frac{1}{2}z)^{\nu-1}}{\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \sum_{k=0}^{\infty} \frac{c_k(q)\Gamma(k+1)}{z^k}. \]

(2.3)

These are the results given in [4, §10.43]; see also the discussion in Section 3.

When \(\nu \) is allowed to take on complex values with \(z > 0 \), the steepest descent paths in Fig. 1 undergo a progressive change. Recalling that \(q = \alpha + i\beta \), we find that as \(\beta \) increases from zero when \(\alpha \in (0,1) \) the steepest descent path from the origin \(\Im \tau = 0 \) becomes increasingly deformed in the upper-half plane, until at a critical value \(\beta = \beta^* \) this path connects with the saddle \(S_1 \). For example, when \(\alpha = 0.80 \) the critical value is \(\beta^* \approx 0.143900 \). Then, the path \(\Im \tau = 0 \) passes to infinity when \(\beta < \beta^* \), connects with \(S_1 \) when \(\beta = \beta^* \) and approaches the branch point at \(u = i \) (possibly spiralling onto different Riemann sheets) when \(\beta > \beta^* \). An analogous transition occurs when \(\beta < 0 \) at \(\beta = -\beta^* \), with the saddle \(S_1 \) replaced by \(S_2 \). When \(\alpha > 1 \), the steepest path \(\Im \tau = 0 \) passes to \(u = i \) when \(\beta > 0 \), and to \(u = -i \) when \(\beta < 0 \), without undergoing any transition as \(\beta \) increases.

The transitions that occur when \(z > 0 \) and \(|\arg \nu| \leq \frac{1}{2}\pi \) are summarised in Fig. 2(a). This shows the three curves in the complex \(q \)-plane, on which a transition takes place, that emanate from the point \(P \) (corresponding to \(q = 1 \)). The curves in the upper and lower half-planes are conjugate curves with the third being the segment \([1, \infty)\) of the real \(q \)-axis. In the domain numbered 1 (between the conjugate curves and the imaginary \(q \)-axis), the path \(C \) passes to \(\infty \) and the expansion (2.3) applies. In the domain numbered 2, the path \(C \) terminates at \(u = +i \) and the expansion (2.2) applies with the upper sign; in the domain numbered 3, the terminal point is \(u = -i \) and the expansion (2.2) applies with the lower sign. For \(q \) situated on these curves the transition is associated with a Stokes phenomenon; see below.

3. Asymptotic expansion for complex \(z \)

When \(z \) is complex (\(\theta \neq 0 \)) the transition curves in the sector of the \(q \)-plane given by\(^3\) \((-\frac{1}{2}\pi - \theta, \frac{1}{2}\pi - \theta)\) are \(\theta \)-dependent. In Fig.2(b)–(d) we show these curves for \(\theta/\pi = 0.10, 0.20 \) and 0.30. The curves for \(\theta < 0 \) are the conjugate of those for \(\theta > 0 \). The point \(P \) corresponds to the case when the steepest descent path from the origin connects with both saddles \(S_1 \) and \(S_2 \). The point labelled \(Q \) is the intercept of the lower curve with the positive \(q \)-axis. Values of \(q \) at \(P \) and \(Q \) are presented in Table 2 for different \(\theta \).

As in the case \(\theta = 0 \) in Fig. 2(a), for \(q \)-values in domain 1 the endpoint of the steepest descent path from the origin terminates at infinity, whereas those situated in domains 2 and 3 pass to the branch points (possibly spiralling onto adjacent Riemann surfaces) at \(u = \pm i \), respectively. As one crosses one of these curves, say from domain 1 to domain

\(^3\)This sector corresponds to \(|\arg \nu| \leq \frac{1}{2}\pi \) and \(|\arg z| < \frac{1}{2}\pi \).
Table 2: The coordinates of the triple point P and the intercept Q on the real q-axis as a function of θ.

θ/π	P	Q	θ/π	P	Q
0	1	1	0.30	1.08553 + 1.38238i	0.27561
0.05	0.96385 + 0.08606i	0.83360	0.35	1.36479 + 2.60425i	0.18575
0.10	0.93778 + 0.18745i	0.70952	0.40	2.36238 + 7.23955i	0.10710
0.20	0.93437 + 0.53249i	0.48057	0.42	3.72266 + 14.4826i	0.07942
0.25	0.97678 + 0.84047i	0.37449	0.45	16.4886 + 104.102i	0.04275

Figure 2: The domains in the sector of the q-plane bounded by $-\frac{1}{2}\pi - \theta < \omega < \frac{1}{2}\pi - \theta$ showing the termination points of the steepest descent path from the origin: (a) $\theta = 0$, (b) $\theta = 0.10\pi$, (c) $\theta = 0.20\pi$ and (d) $\theta = 0.30\pi$. The termination point in domain 1 is at infinity and that in domains 2 and 3 is at $\pm i$, respectively.

2, there is a change in the endpoint via a Stokes phenomenon. Examples of the steepest descent paths when $\theta = 0.10\pi$ on the three curves labelled PA, PB and PC in Fig. 2(b), and at P, are shown in Fig. 3 demonstrating that on each curve the change of endpoint is associated with a Stokes phenomenon.
R. B. Paris

Figure 3: The steepest paths the through the saddles when \(\theta = 0.10\pi \): (a) on \(PA \) with \(q = 0.60 + 0.95307i \), (b) on \(PB \) with \(q = 1.40 + 0.39474i \), (c) on \(PC \) with \(q = 0.40 - 0.42914i \) and (d) at \(P \) with \(q = 0.93778 + 0.18745i \). The heavy lines denote the branch cuts.

4. Numerical results

To verify these assertions, we carry out calculations using (2.2) and (2.3) for a series of values of \(q \equiv \nu/z \) situated in different domains in Fig. 2. The results are presented in Table 3 which shows the absolute relative error in the computation of \(H_\nu(z) \). The values of the Bessel functions \(J_\nu(z) \) and \(Y_\nu(z) \) were evaluated with the in-built codes in Mathematica. In each case, the asymptotic series on the right-hand sides of (2.2) and (2.3) is optimally truncated; that is, at or just before the least term.

Table 3: The absolute relative error in the computation of \(H_\nu(z) \) from (2.2) and (2.3) when \(z = 40e^{i\theta} \).

\(q = \nu/z \)	\(\theta = 0 \)	\(\theta = 0.10\pi \)		
	Error	Endpoint	Error	Endpoint
0.60	7.764 \times 10^{-9}	\infty	9.556 \times 10^{-9}	\infty
1.00	1.041 \times 10^{-4}	\pm i	2.751 \times 10^{-5}	-i
1.25	8.835 \times 10^{-4}	\pm i	4.830 \times 10^{-4}	-i
0.60 + 0.40i	2.355 \times 10^{-6}	\infty	3.280 \times 10^{-6}	\infty
1.00 + 0.60i	2.783 \times 10^{-4}	+i	4.136 \times 10^{-3}	+i
1.00 - 0.30i	7.342 \times 10^{-5}	-i	5.000 \times 10^{-5}	-i

In [4, §10.43], Watson claims that (2.3) and (2.2) hold for \(q \in (0, 1) \) and \(q \in [1, \infty) \),
respectively, when $|\arg z| < \frac{1}{2} \pi$. Our calculations have shown that when $\arg z \neq 0$ with $q = \nu/z > 0$ (that is, when ν and z have the same phase), the expansion (2.3) holds for $q \in (0, Q)$ and the expansion (2.2) holds for $q \in [Q, \infty)$, where $Q \equiv Q(\theta)$ is tabulated in Table 2.

References

[1] R.B. Dingle, *Asymptotic Expansions: Their Derivation and Interpretation*, Academic Press, London, 1973.

[2] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (eds.), *NIST Handbook of Mathematical Functions*, Cambridge University Press, Cambridge, 2010.

[3] R.B. Paris, *Hadamard Expansions and Hyperasymptotic Evaluation: An Extension of the Method of Steepest Descents*, Cambridge University Press, Cambridge, 2011.

[4] G.N. Watson, *Theory of Bessel Functions*, Cambridge University Press, Cambridge, 1952.