Research and Analysis on the Identification Model of Multivariate Economic System

Wanjun Zhang¹, ², ³, a, Feng Zhang¹, b, Jingxuan Zhang¹, c, Jingyi Zhang², d, Jingyan Zhang², e

¹Quanzhou Institute of Information Engineering, 362000, China
²Qingyang Xinyuan Engineering Co., Ltd., 745000, China
³Lanzhou Industry and Equipment Co. Ltd. Lanzhou 730050, China

agszwj_40@163.com, bzhangwanjun40@163.com, cgszhangwj40@163.com, dtszhangwj40@163.com, e116543048@qq.com

Abstract. For the regional economic development of macroeconomics, which is restricted by many variables or factors, this paper establishes a multi-variable economic system identification model, analyses the established multi-variable economic system identification model, and the identified model is basically the same as the real model. Finally, Using MATLAB to identify the multi-variable economic system identification model, the simulation results show that the recognition Economic Management Identification Curve and Original economic management input curve recognition are consistent, demonstrating that the method of identifying the multi-variable economic system is correct and meets the needs of economic development. It has a strong reference value. The simulation results verify the feasibility and effectiveness of the proposed identification and modeling method.

1. Introduction

Any macroeconomic mathematical model is a combination of an economic theory and a mathematical method to describe the quantitative relationship between the main parameters of the object [1-3], so as to achieve the purpose of analysis, prediction, evaluation or decision-making. It is a basic task to analyze the economic system by using the economic mathematical model to describe the dynamic characteristics of the economic system [5-7]. However, most economic systems are difficult to establish mathematical models by analyzing the complexity of thousands of structures and the limitations, fuzziness, and incompleteness of information of economic theories. Therefore, the theory and method of constructing economic mathematical model by using observation data have been paid attention to macroeconomic mathematical model.

The multi-variable controlled regressive sliding average (CARMA) model is a kind of model that is widely used in forecasting field [8-9], especially its special form CAR model, which is most commonly used in practical applications. The literature [10] proves that any multivariate CARMA model can be approximated to any accuracy by a CAR model with a sufficiently high order. So we use CARMA model, which is more convenient than CARMA model [11-36], to model the multivariable economic system uniformly.
This paper establishes a multi-variable economic system identification model, analyzes the established multi-variable economic system identification model, and the identified model is basically the same as the real model. Finally, using MATLAB to identify the multi-variable economic system identification model, the simulation results show that the recognition Economic Management Identification Curve and Original economic management input curve recognition are consistent, demonstrating that the method of identifying the multi-variable economic system is correct and meets the needs of economic development. It has a strong reference value. The simulation results verify the feasibility and effectiveness of the proposed identification and modeling method.

This identification method can also be used for N variable economic systems. In order to make the economic mathematical model describe the economic phenomenon more fundamentally, the identified model must satisfy certain economic theories such as consumption, investment, accumulation, and circulation.

2. Multi-variable economic system identification model

The actual system can be described by the following model

\[
A(z^{-1})y(t) = z^{-k}B(z^{-1})u(t) + e(t)
\]

In the formula: \(y(t) \in R^n\) and \(u(t) \in R^m\) are the input and output variables of the system; \(e(t) \in R^n\) is the additional noise of the system; where, \(k\) is the delay of the system.

\[
\begin{align*}
A(z^{-1}) &= 1 + A_1 z^{-1} + A_2 z^{-2} + \cdots + A_{n_s} z^{-n_s} \\
B(z^{-1}) &= 1 + B_1 z^{-1} + B_2 z^{-2} + \cdots + B_{n_s} z^{-n_s}
\end{align*}
\]

The above model is simply written as \(\text{CAR}(n,n-1)\) or \(\text{CAR}(n)\). Assuming that the system under consideration is open loop stability, the \(n, K, A, B\) in the system is unknown. This problem becomes based on the input and output data \(\{u(t), y(t), t = 1, 2, \ldots, N\}\) identification order \(n\), delay \(K\) and parameter matrix \(A_i(i = 1, 2, \ldots, n), B_i(i = 1, 2, \ldots, n-1)\).

Multi-variable economic system identification

\[
\begin{align*}
\theta_o &= \left[A_1, \ldots, A_{n_s}, B_1, \ldots, B_{n_s}\right]^T \\
B(t) &= \left[-y^T(t), y^T(t)\right]^T = \left[-y(t-1), \ldots, -y(t-A_{n_s}), u(t-1), \ldots, u(t-B_{n_s})\right]^T
\end{align*}
\]

The reference model can be written as a minimum multiplication format

\[
y(t) = \theta_o^T h(t) + e(t)
\]

In the equation, \(e(k)\) is colored noise and can be expressed as
\[e(t) = A\left(y^{-1}\right)n(t) \]

For convenience, consider the case of \(e(t) \).

Consider the following adjustable model

\[y_m(t) = \frac{B\left(y^{-1}\right)}{A\left(y^{-1}\right)} e(t) \]

In the formula, \(e(t) \) and \(y_m(t) \) are the input and output variables of the adjustable model. Supposed

\[
\begin{align*}
\hat{\theta}(t) = & \left[\hat{A}^T(t), \hat{B}^T(t) \right]^T = \left[\hat{A}_1(t) \cdots \hat{A}_{n_a}(t), \hat{B}_1(t) \cdots \hat{B}_{n_b}(t) \right]^T \\
B(t) = & \left[-\tau^T_m(t), u^T(t) \right]^T = \left[-y_m(t-1), \cdots, -y_m(t-n_a), u(t-1), \cdots u(t-n_b) \right]^T
\end{align*}
\]

\[
\begin{align*}
y(t) = & \theta_0^T h(t) \\
y_m(t) = & \hat{\theta}(t) \hat{h}_m(t) = \left[\hat{\theta}^T(t) + \hat{\theta}^p(t) \right]^T \hat{h}_m(t) \\
y_m^0(k) = & \left[\hat{\theta}(t-1) \right]^T \hat{h}_m(t)
\end{align*}
\]

In the formula, \(\hat{\theta}(t) \) and \(\hat{\theta}^p(t) \) correspond to the integral and proportional operation outputs of the parameter adjustment mechanism, respectively.

3. Conditions of Multiple Variable Economic System Identification Model

In this paper, we use the F method to determine the rank of CAR model. The CAR(\(n \)) and CAR(\(n+1 \)) models have been established by the recursive least squares method, and the statistics are constructed.

\[
F' = \frac{S(n)-S(n+1)}{S(n+1)} \cdot \frac{m_{e} \cdot N - 2\times(n+1)\times m_{e} \times m}{2\times m_{e} \times m}
\]

\(F' \) obeys the F distribution and achieves a significant level of \(\lambda \), such as \(\lambda = 5\% \), which \(F \) is available from the \(F_\lambda \) distribution table.

If \(F' < F_\lambda \), CAR(\(n \)) is appropriate.

If \(F' \geq F_\lambda \), CAR(\(n \)) is not appropriate.

4. Validation of Multiple Variable Economic System Identification Model

Consider an economic system:

\[y(t) = A_1 \cdot y(t-1) + B_0 \cdot u(t-1) + B_1 \cdot u(t-2) + e(t) \]
Assuming that $e(t)$ is zero mean and the variance matrix is $\text{diag}(0.025,0.025)$, the white noise. N=100 Calculation results:

If $F' < F_\lambda$, CAR(n) is appropriate.

\[
A_1 = \begin{bmatrix} 0.4 & -0.55 \\ -0.512 & 0.21 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 0.21 & 1 \\ 0.25 & 0.21 \end{bmatrix}
\]

(11)

\[
B_1 = \begin{bmatrix} 0.51 & 0 \\ 0 & 0.51 \end{bmatrix}
\]

(12)

In this way, the identified model is

If $F' < F_\lambda$, CAR(n) is appropriate.

\[
\hat{A}_1 = \begin{bmatrix} -0.046 & -0.0071 \\ 0.0361 & 0.0124 \end{bmatrix}, \quad \hat{A}_2 = \begin{bmatrix} -0.046 & -0.0071 \\ 0.0361 & 0.0124 \end{bmatrix}
\]

(13)

\[
\hat{A}_3 = \begin{bmatrix} -0.0003 & 0.0065 \\ 0.0111 & -0.1164 \end{bmatrix}, \quad \hat{B}_0 = \begin{bmatrix} 0.2021 & 1.0051 \\ 0.2521 & 0.0124 \end{bmatrix}
\]

(14)

\[
\hat{B}_1 = \begin{bmatrix} 0.446 & -0.108 \\ 0.003 & 0.461 \end{bmatrix}, \quad \hat{B}_2 = \begin{bmatrix} -0.0392 & -0.077 \\ -0.0131 & 0.032 \end{bmatrix}
\]

(15)

In this way, the identified model is

\[
y(t) = \begin{bmatrix} 0.396 & -0.497 \\ -0.503 & 0.199 \end{bmatrix} y(t-1) + \begin{bmatrix} 0.2021 & 1.0051 \\ 0.2541 & 0.1951 \end{bmatrix} u(t-1)
\]

\[
+ \begin{bmatrix} 0.5 & 0 \\ 0 & 0.4911 \end{bmatrix} u(t-2)
\]

(18)

The identified model is basically the same as the real model.

This identification method can also be used for n variable economic systems. In order to make the economic mathematical model describe the economic phenomenon more fundamentally, the identified model must satisfy certain economic theories such as consumption, investment, accumulation, and circulation.
5. Experiment simulation and analysis
MATLAB is used to identify the first-order model, second-order model, and third-order model of the multi-variable economic system. The specific identification process is as follows.

5.1. Simulation Example 1
Consider an economic system:

\begin{equation}
y(t) = A_1 \cdot y(t-1) + B_0 \cdot u(t-1) + B_1 \cdot u(t-2) + e(t)
\end{equation}

\begin{align*}
A_1 &= \begin{bmatrix} 0.4 & -0.55 \\ -0.512 & 0.21 \end{bmatrix}, & B_0 &= \begin{bmatrix} 0.21 & 1 \\ 0.25 & 0.21 \end{bmatrix} \\
B_1 &= \begin{bmatrix} 0.51 & 0 \\ 0 & 0.51 \end{bmatrix}
\end{align*}

Assuming that \(e(t) \) is zero mean and the variance matrix is \(\text{diag}(0.025, 0.025) \), the white noise. N=100 Calculation results:

(1) First-order model

\begin{align*}
\hat{A}_1 &= \begin{bmatrix} -0.481 & -0.0751 \\ 0.2361 & 0.4441 \end{bmatrix}, & \hat{B}_0 &= \begin{bmatrix} 0.3651 & 0.9691 \\ 0.2051 & 0.2781 \end{bmatrix}
\end{align*}

If \(F' < F_{\alpha} \), \(\text{CAR}(n) \) is appropriate.

The identified model is basically the same as the real model.

MATLAB is used to identify the multi-variable economic system identification model as a first-order model. The structure of the first-order model multi-variable economic system identification is shown in Figure 1:

It can be seen from Figure 1 that when the multi-variable economic system identification model is a first-order model, the identification of Economic Management Identification Curve and Original economic management input curve recognition are consistent, demonstrating that the method of this kind of multi-variable economic system identification is correct and meets the needs of economic development.
5.2. Simulation Example 2
Consider an economic system:

\[y(t) = A_1 y(t-1) + B_0 u(t-1) + B_1 u(t-2) + e(t) \] \hspace{1cm} (23)

\[A_1 = \begin{bmatrix} 0.4 & -0.55 \\ -0.512 & 0.21 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 0.21 & 1 \\ 0.25 & 0.21 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0.51 & 0 \\ 0 & 0.51 \end{bmatrix} \] \hspace{1cm} (24) and (25)
Assuming that \(c(t) \) is zero mean and the variance matrix is \(\text{diag}(0.025, 0.025) \), the white noise.
\[N=100 \] Calculation results:

(2) Second-order model

\[
\hat{A}_1 = \begin{bmatrix} 0.40810 & -0.4751 \\ -0.4812 & 0.2301 \end{bmatrix}, \quad \hat{A}_2 = \begin{bmatrix} 0.001^* & 0.0014^* \\ 0.0041^* & 0.0119^* \end{bmatrix} \tag{26}
\]

\[
\hat{B}_0 = \begin{bmatrix} 0.2021 & 1.0051 \\ 0.2541 & 0.1951 \end{bmatrix}, \quad \hat{B}_1 = \begin{bmatrix} 0.4021 & -1.0171^* \\ -0.013^* & 0.4711 \end{bmatrix} \tag{27}
\]

If \(F' > F_{\alpha} \), CAR \((n) \) is not appropriate.

![Figure 2. Economic Management Identification Curve Patterns 2.](image)

It can be seen from Figure 2 that when the multi-variable economic system identification model is a Second-order model, the identification of Economic Management Identification Curve and Original economic management input curve recognition are consistent, demonstrating that the method of this kind of multi-variable economic system identification is not correct and meets the needs of economic development.

5.3. Simulation Example 3

Consider an economic system:

\[
y(t) = A_1 \cdot y(t-1) + \hat{B}_0 \cdot u(t-1) + \hat{B}_1 \cdot u(t-2) + e(t) \tag{28}
\]

\[
A_1 = \begin{bmatrix} 0.4 & -0.55 \\ -0.512 & 0.21 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 0.21 & 1 \\ 0.25 & 0.21 \end{bmatrix} \tag{29}
\]
Assuming that $\epsilon(t)$ is zero mean and the variance matrix is $\text{diag}(0.025, 0.025)$, the white noise.

N=100 Calculation results:

(3) Third-Order model

$$
\hat{A}_1 = \begin{bmatrix}
0.4741 & -0.3441 \\
-0.4361 & 0.1641 \\
0.0111 & -0.1164
\end{bmatrix}, \quad \hat{A}_2 = \begin{bmatrix}
-0.046 & -0.0071 \\
0.0361 & 0.0124
\end{bmatrix}
$$

$$
\hat{A}_3 = \begin{bmatrix}
-0.0003 & 0.0065 \\
0.0111 & -0.1164
\end{bmatrix}, \quad \hat{B}_0 = \begin{bmatrix}
0.2021 & 1.0051 \\
0.2521 & 0.0124
\end{bmatrix}
$$

$$
\hat{B}_1 = \begin{bmatrix}
0.446 & -0.108 \\
0.003 & 0.461
\end{bmatrix}, \quad \hat{B}_2 = \begin{bmatrix}
-0.0392 & -0.077 \\
-0.0131 & 0.032
\end{bmatrix}
$$

If $F' < F_k$, CAR(n) is appropriate.

![Economic Management Identification Curve Patterns 3.](image)

It can be seen from Figure 3 that when the multi-variable economic system identification model is a Third-Order model, the identification of Economic Management Identification Curve and Original economic management input curve recognition are consistent, demonstrating that the method of this kind of multi-variable economic system identification is correct and meets the needs of economic development.

6. Summary

(1) This identification method can also be used for n variable economic systems.
In order to make the economic mathematical model describe the economic phenomenon more fundamentally, the identified model must satisfy certain economic theories such as consumption, investment, accumulation, and circulation.

(2) Using MATLAB to identify the multi-variable economic system identification model, the simulation results show that the recognition Economic Management Identification Curve and Original economic management input curve recognition are consistent, demonstrating that the method of identifying the multi-variable economic system is correct and meets the needs of economic development. It has a strong reference value.

Acknowledgements
The authors thank the financial supports from National Natural Science Foundation of China (Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

Author: Wanjun Zhang received the, M.S. and Ph.D. degrees from, Lanzhou University of technology, Xi'an Jiao tong University, in 2011 and 2018, respectively. I am currently an associate professor in the School of Mechanical Engineering, Xi'an Jiao tong University, and I am currently a Senior Engineer and senior economist in Lanzhou Industry and Equipment Co. Ltd. His research involved in artificial intelligence, NC, control of complex mechatronic system and failure diagnoses.

First author (communication author): Zhangwanjun, male, born in 1986, doctoral student in engineering(bachelor's degree in law and management), professorial senior engineer, senior economist (mechanical engineer, CNC senior craftsman), Senior member of China Society of Mechanical Engineering. Senior member of China Agricultural Machinery Society, Senior member of the China Agricultural Machinery Engineering Society, senior member of the China Instrument Society, member of the China Invention Society, director of the China Invention Society, director of the Gansu Invention Society, member of the Standing Committee of the Committee of Experts of the Modern Manufacturing Engineering (Chinese Core, Science and Technology Core), member, and review expert. Mainly engaged in numerical control technology equipment, new energy research and electromechanical transmission control work. We have authorized more than 250 patents for invention and utility models as the first applicant (patentee) and inventor, and nearly 200 patents for design as the first applicant (patentee) and inventor, and published more than 50 academic papers in core or above journals. SCI/EI/ISTP has more than 30 searches papers, including more than EI 20 papers, SCI 5 papers. Email: Gszwj_40@163.com.

References
[1] F. G. Giri, J.M. M. Dion, M. M. S. Aad, L. Dugard. A Globally Convergent Pole Placement Indirect Adaptive Controller [J]. IEEE Trans. Auto. Contr. 1989, Mar, Vol. 34, NO. 3, pp: 353 - 356.
[2] G. C. Goodwin, K. S. Sin. Adaptive Filtering Prediction and Control [M]. Prentice - HALL, Inc, 1984.
[3] Estimating control function benefits. Martin G D, Turpin L E. Hydrocarbon Processing. 1991.
[4] Determining controller benefits via probabilistic optimization. Zhou Y, Forbes J F. International Journal of Adaptive Control and Signal Processing. 2003.
[5] Economic performance assessment with optimized LQG benchmarking in MIMO systems. Marshman D [22] J, Chmelyk T, Sidhu M S. Proceedings of the 9th International Symposium on Dynamics and Control of Process Systems (DYCOPS 2010). 2010.
[6] Study on Economic Performance Assessment for Process Control. Zhao Chao. 2009, pp: 453 - 456.
[7] Sensitivity analysis for selective constraint and variability tuning in performance assessment of industrial MPC. Kwan Ho Lee, Biao Huang, Edgar C. Tamayo. Control Engineering. 2018, pp: 663 - 676.
[8] Process control: C11t1ent shows its profitable than expected. LATOUR P. Hydrocarbon
[9] Loeblein, C., Perkins, J.D., “Structural design for on-line process optimization (1) Dynamic economics of MPC”, AIChE J. 1999, 45 (4), 1018 - 1029.
[10] Muske, K.B., “Estimation the economic benefit from improved process control”, Ind. Eng. Chem. Res. 2003, 42, 4535 - 4544.
[11] Loeblein, C., Perkins, J.D., “Economic analysis of different structures of on-line process optimization systems”, Comput. Chem. Eng. 1998, 22, 1257 - 1269.
[12] Rossiter, J.A., Model-based Predictive Control: A Practical Approach, CRC Press, USA (2003).
[13] Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Fuzzy Control of Wind Turbine Based on Directional Power Conversion,[J]. Electric Power Construction, 2014, 10, 35 (10): 13 - 16.
[14] WeiTai, ZhangWan-jun, Zhang Yan, et al. Finite Element Analysis and Structural Optimization on the Fasteners Testing Head of Wind Power Equipment,[J].Mechanical Research & Application, 2015, 4: 19 - 22.
[15] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on a algorithm of adaptive interpolation for NURBS curve. [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1600 - 1603, December 2014.
[16] WeiTai, ZHANG Wanjun, ZHANG Feng, ZHANG Wanjun. Finite Element Analysis and Structural Optimization on the Fasteners Testing Head of Wind Power Equipment. Mechanical Research & Application, 2014, 35 (10): 13 - 16.
[17] WU Zai-xin, ZHANG Wai-Jun HU Chi-bing, et al. Research on NURBS curve modified interpolation for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8 (8), pp.180-185, October 2011.
[18] Zhang Wanjun, Hu Chi Bing, Zhang Feng, et al. Honing machine motion control card three B spline curve method of interpolation arithmetic for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8 (8), pp.40 - 43, August 2012.
[19] Zhang Wanjun, HU Chi-bing, WU Zai-xin, et al. Research on modification algorithm of Three B Spline curve interpolation technology [J]. Chinese Journal of Manufacturing Technology & Machine Tool,2 pp.141-143, February 2013.
[20] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on modification algorithm of Cubic B-spline curve interpolation technology. [J]. Applied Mechanics and Materials, Vol. 687 - 691, pp.1596 - 1599, December 2014.
[21] Zhang Wanjun, Zhang Feng, Zhang Wanliang. Research on high-grade CNC machines tools CNC system for B-Spline curve method of High-speed real-time interpolation arithmetic [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8 (8), pp.172 - 176, August 2015.
[22] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation. [J]. advances in Engineering Research, 2016, 12, Vol. 83. 507 - 512.
[23] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation. [J]. advances in Engineering Research, 2016, 12, Vol. 83. 513 - 518.
[24] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation. [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol.71. 507 - 512.
[25] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation. [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol.71. 513 - 518.
[26] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A improved algorithm of three B-spline curve interpolation and simulation. [J]. advances in Materials, materials, Machinery, Electronics I, 2017, 2, Vol. 1820. 080004 - 1- 080004 - 6.
[27] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Innovation research on Taylor’s iteration algorithm of NURBS curve and simulation. advances in Materials, materials, Machinery, Electronics I, 2017, 2, Vol. 1820. 080014-1- 080014 - 8.
[28] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. M NURBS curve method Taylor's launch type of interpolation arithmetic. [J]. advances in Engineering Research, 2016, 12, Vol. 118. 43 - 52.

[29] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A Novel of Improved algorithm adaptive of NURBS curve. [J]. advances in Engineering Research, 2016, 12, Vol. 118. 53 - 60.

[30] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A novel on high-grade CNC machines tools for B-Spline curve method of High-speed interpolation arithmetic. [J]. 2016 International Conference on Automotive Engineering, Mechanical and Electrical Engineering, 2017, 3, Vol. 118. 53 - 60.

[31] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Study on Embedded CNC system for NURBS curves method of interpolation arithmetic. [J]. advances in Engineering Research, 2017, 3, Vol. 118. 53 - 60.

[32] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Research on cross coupled contour error compensation technology in CNC multi axis linkage of Machine tool [J]. Chinese Journal of Manufacturing Technology & Machine Tool, June. pp. 154 - 159, 2018.

[33] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Cross coupled contour error compensation technology. [J]. Marerials Science and Engineering, 2018, 8, Vol. 394. 032031:1 - 5.

[34] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Research on the vector control system based on the difference frequency of wind turbine generator. [J]. Marerials Science and Engineering, 2018, 8, Vol. 394. 042020: 1 - 9.

[35] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters. [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1 - 14.

[36] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Flow field analysis and parameter optimization of main and measured nozzles of differential pressure type gas momentum instrument based on CFD. [J]. Journal of Phyics, 2018, 8, Vol. 1064. 012028: 1 - 12.