Signaling through the TGF Beta-Activin Receptors ALK4/5/7 Regulates Testis Formation and Male Germ Cell Development

Denise C. Miles1,*, Stephanie I. Wakeling1,*, Jessica M. Stringer1, Jocelyn A. van den Bergen2, Dagmar Wilhelm3, Andrew H. Sinclair2, Patrick S. Western1

1 Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia, 2 Department of Paediatrics, University of Melbourne, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia, 3 Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia

Abstract

The developing testis provides an environment that nurtures germ cell development, ultimately ensuring spermatogenesis and fertility. Impacts on this environment are considered to underlie aberrant germ cell development and formation of germ cell tumour precursors. The signaling events involved in testis formation and male fetal germ cell development remain largely unknown. Analysis of knockout mice lacking single Tgfβ family members has indicated that Tgfβ's are not required for sex determination. However, due to functional redundancy, it is possible that additional functions for these ligands in gonad development remain to be discovered. Using FACS purified gonadal cells, in this study we show that the genes encoding Activin's, Tgfβ's, Nodal and their respective receptors, are expressed in sex and cell type specific patterns suggesting particular roles in testis and germ cell development. Inhibition of signaling through the receptors ALK4, ALK5 and ALK7, and ALK5 alone, demonstrated that Tgfβ signaling is required for testis cord formation during the critical testis-determining period. We also show that signaling through the Activin/NODAL receptors, ALK4 and ALK7 is required for promoting differentiation of male germ cells and their entry into mitotic arrest. Finally, our data demonstrate that Nodal is specifically expressed in male germ cells and expression of the key pluripotency gene, Nanog, was significantly reduced when signaling through ALK4/5/7 was blocked. Our strategy of inhibiting multiple Activin/NODAL/TGFβ receptors reduces the functional redundancy between these signaling pathways, thereby revealing new and essential roles for TGFβ and Activin signaling during testis formation and male germ cell development.

Citation: Miles DC, Wakeling SI, Stringer JM, van den Bergen JA, Wilhelm D, et al. (2013) Signaling through the TGF Beta-Activin Receptors ALK4/5/7 Regulates Testis Formation and Male Germ Cell Development. PLoS ONE 8(1): e54606. doi:10.1371/journal.pone.0054606

Editor: Jean-Marc A. Lobaccaro, Clermont Université, France

Received September 25, 2012; Accepted December 14, 2012; Published January 16, 2013

Copyright: © 2013 Miles et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by funding from the Monash University Faculty of Medicine, Nursing and Health Sciences funding granted to PW, and the Victorian Government’s Operational Infrastructure Support Program and ARC Centre of Excellence for Biotechnology and Development awarded to AHS. DM was supported by a Sydney Parker Smith Postdoctoral Research Fellowship from the Cancer Council Victoria. DW is supported by an ARC Future Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: patrick.western@monash.edu

† These authors contributed equally to this work.

Introduction

Spermatogenesis and oogenesis are founded on the development of the male and female germ cell lineages in the fetal testis and ovary, respectively. In mice, primordial germ cells populate the developing gonads at approximately embryonic day (E)10.5 and differentiate down the spermatogenic or oogenic pathways in response to their respective environments [1,2,3,4]. However, the molecular pathways directing male or female developmental pathways in response to signaling during the functional redundancy between these signaling pathways, thereby revealing new and essential roles for TGFβ and Activin signaling during testis formation and male germ cell development.

The testis contains a diverse population of cells that interact to form a functional tissue, which is essential for spermatogenesis. The testis is composed of germ cells, Sertoli cells, Leydig cells, and peritubular myoid cells [6,7,8]. The testis cords enclose the germ cells and define the interstitial space, where Leydig cells differentiate and reside. Sry is normally absent in XX females, allowing pathways driven by Wnt4 (wingless-related MMTV integration site 4) Rspo1 (R-spondin homolog), Ctnnb1 (β-catenin) and Foxl2 to promote ovarian development [8,9,10,11,12,13,14,15]. At the onset of testis or ovary development germ cells enter the male or female developmental pathways in response to signaling pathways that are largely unknown [1,3,4,16]. The earliest indication of sex-specific germ cell development is their entry into mitotic arrest in a testis or meiosis in an ovary, which occurs from E12.5 and E13.5, respectively [3]. Entry of germ cells into meiosis requires the retinoic acid (RA) responsive gene, stimulated by retinoic acid gene 8 (Stra8), for which RA supplied by the adjacent mesonephros is considered to be an activator [17,18,19]. In testes, RA activity is blocked by the RA metabolising enzyme encoded by cytochrome P450, family 26, subfamily b, polypeptide 1
bioactive Activin b have Activin function mutations in Inhba results in increased germ cell numbers proliferation and testis cord expansion from E15.5 [39]. Loss of expressed by Leydig cells, is required for proper Sertoli cell developing testis than the somatic cells of the ovary [36,38]. Inhba, Inhbb are expressed at higher levels in the somatic cells of the TGF b family members Inhba and Inhbb evade Inhba 2 co-receptor, Tgfbr3, (also known as Activin A and B and NODAL, which initiate signaling in many cellular contexts, TGFb proteins form homo- or hetero-dimers and bind their specific type II receptor, before forming a complex with their respective type I receptors, and activating signal transduction [36,37]. Receptor activation results in phosphorylation of effector proteins of the mothers against decapentaplegic (SMAD) family, which are transported to the nucleus, where they activate transcription of target genes. The identity of the receptors and SMADs activated by each TGF ligand differs, providing specificity of action. However, since target overlap exists between both the receptors and activated SMADs, there is considerable potential for functional redundancy between different TGFβ mediated signaling pathways.

After sex determination the Tgf b family members Inhba and Inhbb are expressed at higher levels in the somatic cells of the developing testis than the somatic cells of the ovary [36,38]. Inhba, expressed by Leydig cells, is required for proper Sertoli cell proliferation and testis cord expansion from E15.5 [39]. Loss of function mutations in Inhba results in increased germ cell numbers during the later stages of fetal testis development [40]. Mice that have ActivinBα (encoded by Inhba) replaced with the less bioactive Activinββ (encoded by Inhbb) evade Inhba –/– lethality and display delayed spermatogenesis [41,42]. Inhbb is required for proper formation of the coelomic vessel in the testis [43], but additional roles in testis determination and germ cell development remain unknown. Similarly, the impact of compound loss of function mutations in Inhba and Inhbb on testis and germ cell development remain unknown.

Tgb1-Tgb3 are expressed in the embryonic testis, with Tgb1 expression detected in Sertoli cells, Tgb2 in Sertoli cells and Leydig cells and Tgb3 in peritubular myoid cells and germ cells [44,45]. Loss of function analyses in mice indicate that individual TGFβs are not required for somatic cell sex determination [44]. However, compensation between TGFβ ligands may obscure unknown functions in testis and germ cell development. Supporting this, loss of the TGFβ co-receptor, Tgb3, (also known as betaglycan) results in reduced fetal Leydig cell function and compromised testis cord structure, indicating that TGFβ signaling is required for testis development [46].

In this study, using ALK5 and ALK4/ALK5/ALK7 inhibitors in ex vivo gonad cultures we demonstrate that loss of TGFβ function depleted SMAD phosphorylation, resulting in almost complete disorganization of the developing testis cords in embryonic XY gonads, and errant entry of germ cells into meiosis. We also demonstrate that blocking Activin-TGFβ signaling in E12.5 testes significantly reduces Sertoli cell proliferation from E12.5 and prevents entry of male germ cells into mitotic arrest. Finally, we showed that Nodal was highly, and specifically, expressed by male germ cells and that blocking signaling through ALK4/5/7 led to reduced Nanog expression, indicating that NODAL regulates germ cell pluripotency through Nanog. Combined, these data reveal new and important roles for Activin-TGFβ signaling in formation of the embryonic testis and regulation of male germ cell development.

Results

We first used qRT-PCR to assess the expression of Inhba, Inhbb, Tgb1-3 and Nodal and their respective type I (ALK4, ALK5 and ALK7) and type II (Acvrb2 and Acvrb2b) receptors in FACs purified XX female and XY male E12.5–E15.5 somatic and germ cells (Figure 1). The observed expression patterns are summarized as follows.

Expression of Tgb’s and their receptors indicate a role in somatic cell development during testis formation

Of Tgb1-3, Tgb1 was the only gene expressed at appreciable levels in germ cells (Figure 1A). Initially, Tgb1 levels were relatively low in male and female germ cells. However, during E13.5–E15.5 Tgb1 expression increased 8 fold in male germ cells (p<0.05, E12.5 vs E15.5), and decreased 7 fold between E14.5 and E15.5 in female germ cells (p<0.05, E12.5 vs E15.5). Tgb1 was also expressed in male and female somatic cells, but at similar, relatively constant levels in both sexes and at all stages. Like Tgb1, Tgb2 and Tgb3 were expressed in male and female somatic cells. However, in germ cells expression of Tgb2 and Tgb3 was negligible. The TGFβ type I receptor, ALK5, was expressed at its highest levels in female germ cells. ALK5 expression was very low in male germ cells, but it was expressed at similar, moderate levels in male and female germ cells (Figure 1B). The type II receptor Tgbβ2 was expressed at high levels in male and female somatic cells, but was essentially undetectable in male and female germ cells (Figure 1B).

Activins A and B are expressed by male somatic cells, while Nodal is expressed by male germ cells

At E12.5, Inhba (which encodes Activin A) was expressed at three fold higher levels in male somatic cells compared to female somatic cells, and by E15.5 Inhba levels had increased to levels 28 fold higher in male somatic cells than those observed in female somatic cells (p<0.05, E12.5 male vs female somatic cells). At E12.5 Inhbb (which encodes ACTIVIN B) was expressed at similar levels in male and female somatic cells, but by E15.5 Inhbb expression in female somatic cells had decreased to levels four fold lower than those observed in male somatic cells (p<0.05, E15.5 male germ vs female somatic cells). Expression of Inhba and Inhbb was essentially undetectable in germ cells (Figure 1C). By contrast, Nodal was expressed at high levels only in E12.5–E15.5 germ cells. Nodal expression was 8–10 fold higher in E12.5 and E13.5 male than in E12.5 and E13.5 female germ cells, respectively (p<0.05, E12.5 male germ vs female germ cells), but decreased more than 10 fold in male germ cells between E13.5 and E15.5 (Figure 1C).

Activin/NODAL receptors are expressed by somatic and germ cells

The type I receptors for Activin and NODAL signaling are ALK4 and ALK7. ALK4 was expressed at similar levels in male and female somatic and germ cells. Although ALK4 levels were approximately two fold higher in somatic than germ cells, its
expression increased two fold in male germ cells between E13.5 and E14.5 (Figure 1D). Alk7 was expressed at higher levels in male and female somatic cells compared to germ cells. Expression of Alk7 was negligible in E12.5-E14.5 germ cells. The type II receptors Acrv2a and Acrv2b were also expressed at similar levels in all cell types, although there was a moderate increase in Acrv2a expression in E14.5-E15.5 male and female germ cells, and Acrv2b levels were moderately higher in germ cells than somatic cells (Figure 1D).

Inhibition of ALK4/5/7 or ALK5 at E11.5 prevents testis cord formation

To elucidate the role of Activin, TGFβ and NODAL signaling in testis development we cultured male and female E11.5 gonad/mesonephros and E12.5 gonad only samples ex vivo with a vehicle control (DMSO), an ALK4/5/7 inhibitor (SB431542), or an ALK5 inhibitor (ALK5i-I) [27,28,56]. Flow cytometric analysis of the MVH negative cells, which were actively engaged in S-phase (by measuring EdU incorporation) and cell cycle state by cellular DNA content (PI staining), revealed that 6.3% of cells from germ and interstitial cells (Figure 3D). This analysis also confirmed blockage of signaling through ALK4/5/7 and ALK5 as the ovarian marker FOXL2 was not detected. To determine the proportion of cells that were somatic cells of these gonads, we performed flow cytometry using SOX9 to separate the Sertoli cells, which outlined well-developed cords that were evident throughout the gonad. SOX9 positive cells, these cells were distributed throughout the gonad and did not outline well-formed testis cords. Consistent with this, the ovarian marker FOXL2 was not detected in XY gonads treated with SB431542 or ALK5i-I for 72 hours, indicating that the somatic cells of these gonads were not sex reversed.

Signaling through ALK4/7 is required for Sertoli cell proliferation

To determine whether the inhibition of signaling through ALK4/5/7 also disrupted cord structure after testis cords had formed, we treated E12.5 testes with SB431542 and ALK5i-I. Although robust testis cords were evident within E12.5 testes treated with DMSO, SB431542 and ALK5i-I for 72 hours, cord growth was affected in samples treated with SB431542 and ALK5i-I, with cords exhibiting a stunted and wider appearance compared to DMSO treated gonads (Figure 3A). This phenotype was highly reproducible, occurring in all experiments performed (n=10), and was used as a routine marker for these gonads in culture. However, based on whole mount examination of GFP, all germ cells were enclosed in the testis cords. Moreover, immuno-fluorescent analysis of SOX9 demonstrated that Sertoli cells clearly delineated the cords in these testes (Figure 3B). Consistent with this, the ovarian marker FOXL2 was not detected. To determine the basis of this stunted cord phenotype we examined proliferation of the somatic cells in these gonads. We routinely use MVH to separate germ cells from somatic cells in a flow cytometric assay that allows assessment of the proportion of cells actively engaged in S-phase (by measuring EdU incorporation) and cell cycle state by cellular DNA content (PI staining) [27,28,56]. Flow cytometric analysis of the MVH negative cells, which consist of a range of cell types including Sertoli and interstitial cells, in E12.5 testes cultured for 72 hours revealed significantly lower numbers of EdU positive (15.9±0.6; SEM, n=10) (p=0.001) (Figure 3C). To determine which somatic cell type was affected in the SB431542 treated testes we performed flow cytometry using SOX9 to separate the Sertoli cells from germ and interstitial cells (Figure 3D). This analysis revealed that 6.3±1.1% (SEM, n=3) of Sertoli cells incorporated EdU in SB431542 treated testes compared to 33.2±0.4% (SEM, n=3) in DMSO treated controls (Figure 3E), clearly demonstrating a significant reduction in Sertoli cell proliferation as a result of abrogated ALK4/5/7 signaling (p<0.001) (Figure 3E). Moreover,
in E12.5 fetal testes treated with SB431542 or DMSO for 24 hours, 12.6% and 20.8% of Sertoli cells were detected in S-phase, respectively, demonstrating that blocking signaling through ALK4/5/7 resulted in reduced Sertoli cell proliferation very early in testis development.

Germ cells enter meiosis in E11.5 XY gonads treated with SB431542 or ALK5i-I

Male germ cell sex determination is dependent on signaling from testicular somatic cells, and failure of this mechanism blocks male germ cell differentiation and allows germ cells to enter meiosis [3,4]. Since E11.5 XY gonads treated with SB431542 or ALK5i-I were highly disorganized and germ cells were not contained within testis cords, we speculated that this might affect male germ cell development, and allow entry into meiosis, an obvious ovarian characteristic at this stage. Phosphorylated γH2AX (γH2AX-P), synaptonemal complex protein 3 (SYCP3) and STRA8 mark female germ cells entering meiosis. As expected, STRA8, SYCP3 and γH2AX-P were robustly expressed in the germ cell population of DMSO treated XX gonads. With the inclusion of the specific ALK4/5/7 inhibitor SB431542, γH2AX-P, SYCP3 and STRA8 expression were reduced, and SOX9 staining was preserved, suggesting a role for signaling through ALK4/5/7 in male germ cell development.

Figure 2. E11.5 XY gonads cultured in the presence of ALK4/5/7 inhibitor (SB431542) or ALK5 inhibitor (ALK5i-I) exhibit disrupted testis cord formation. A) E11.5 (gonad/mesonephros) and E12.5 (gonad only) XY and XX gonad samples cultured for 24 hours in the presence of DMSO, SB431542 or ALK5i-I and analysed using immunoblotting with antibodies specific for SMAD2 and phosphorylated SMAD2 (P-SMAD2). B) Bright field and GFP images of XY and XX gonads collected from E11.5 Oct4-GFP transgenic embryos and cultured for 72 hours in the presence of DMSO, SB431542 or ALK5i-I. C) Immunofluorescence analysis of E11.5 XY and XX gonads cultured for 72 hours in the presence of DMSO, SB431542 or ALK5i-I. SOX9 staining is in red, while MVH (green) staining marks the germ cells. DAPI (blue) marks the nucleus. Scale bars; 200 μm.

doi:10.1371/journal.pone.0054606.g002
exception of a small number of STRA8 positive germ cells close to the mesonephric-gonadal border, these proteins were absent in germ cells of DMSO treated XY gonads that had been cultured for 72 hours (STRA8, SYCP3) or 96 hours (cH2A-X) (Figure 4A–C). In contrast to XY control treated gonads, essentially all germ cells were positive for STRA8 in E11.5 XY gonads treated with SB431542 or ALK5i-I (Figure 4A). However, a smaller proportion of the germ cells in XY SB431542 or ALK5i-I gonads were SYCP3 or cH2AX-P positive than were STRA8 positive (Figure 4B–C). Combined these results indicate that although blocking signaling through ALK5 alone in E11.5 XY testes was sufficient to permit most germ cells to initiate the meiotic program, only a subset of these germ cells proceeded further through the meiotic program. To determine whether germ cells entering the meiotic program under these conditions were apoptotic we performed TUNEL staining and immunofluorescence for cleaved-PARP on sections of XY gonads treated with DMSO or SB431542 for 72 hours. Although some TUNEL positive somatic cells were detected in both the DMSO and SB431542 treated gonads, their numbers were similar in both treatments and very few germ cells were TUNEL positive in either treatment (Figure 4D). Similarly, no cleaved-PARP positive germ cells were detected in either treatment (not shown).

To establish the critical timing of TGFβ function in relation to germ cell meiosis we cultured E12.5 male gonads without mesonephros for 72 hours (approximately equivalent to E15.5) and performed immunohistochemistry for STRA8, γH2AX-P and another marker of meiotic female germ cells, phosphorylated CHEK2 (P-CHEK2) [18,56,57]. With the exception of one sample, in which we detected five germ cells expressing γH2AX-P, STRA8, γH2AX-P and P-CHEK2 were not detected in germ cells of E12.5 testes treated for 72 hours with SB431542 or DMSO (Figure 4E, γH2AX shown), indicating that blocking TGFβ function in the testis from E12.5 does not permit germ cell entry into meiosis. As with E11.5 gonads treated with DMSO or SB431542, levels of apoptosis as assessed by TUNEL staining were
Figure 4. Blocking ALK4/5/7 or ALK5 in E11.5 XY gonads, but not E12.5 testes, permits germ cell entry into meiosis.

Immunofluorescence analysis of: A–C) E11.5 XY and XX gonads cultured for 72 hours or 96 hours in the presence of DMSO, SB431542 or ALK5i-I. STRA8 (A), SYCP3 (B) and γH2AX-P (C) staining is in red, while MVH or DPPA4 (green) staining marks the germ cells. DAPI (blue) is included as a
antibody for the germ cell marker MVH revealed strong DMSO. In contrast, clusters of germ cells that did not express immunofluorescent analysis of p27KIP1, phosphorylated RB (RB-P) and KI67 [27,28] were affected in the presence of SB431542 we compared to DMSO, while treatment with the ALK5 specific inhibitor significantly reduced the efficiency of germ cell mitotic arrest (p < 0.001) compared to DMSO, while treatment with the ALK5 specific inhibitor did not block mitotic arrest (p = 0.20) (Figure 5B).

To determine whether markers of germ cell entry into mitotic arrest were affected in the presence of SB431542 we treated gonads in organ culture for 72 hours and performed immunofluorescent analysis of p27KIP1, phosphorylated RB (RB-P) and KI67 [27,28]. Co-staining of sections for p27KIP1 and an antibody for the germ cell marker MVH revealed strong expression of p27KIP1 in the nucleus of germ cells treated with DMSO. In contrast, clusters of germ cells that did not express p27KIP1 were detected in gonads treated with SB431542 (Figure 5D). KI67 expression is eliminated from germ cells that have entered mitotic arrest [27,28,56,58]. Analysis of gonads treated with SB431542 revealed clusters of germ cells expressing nuclear KI67, indicating that they had not entered mitotic arrest. In contrast, in DMSO treated testes none of the germ cells expressed KI67 (Figure 5E). Consistent with this, RB-P was readily detected in the nucleus of germ cells treated with SB431542, but rarely detected in germ cells of gonads treated with DMSO (Figure 5F). Combined, these results clearly demonstrated that the molecular control of G0 arrest in male germ cells was disrupted in fetal testes treated with the ALK5/4/7 inhibitor SB431542.

We next assessed male germ cell differentiation by examining expression of Nodal, Lefty1, Dppa4, Dmnt3l and Mili (also known as Pivwil1), which are all normally upregulated in differentiating male germ cells [28,30,59]. To determine whether blocking ALK4/5/7 would disrupt male specific expression of Nodal, Lefty1, Dppa4, Dmnt3l and Mili, we performed qRTPCR on E12.5 gonads treated with DMSO or SB431542. After 24 hours of culture expression levels of both Nodal and Lefty1 were significantly decreased in SB431542 treated gonads, compared to the DMSO control (p < 0.05) (Figure 6A). After 72 hours of culture, Nodal and Lefty1 levels were reduced to only 10% of their peak levels in both the DMSO control and SB431542 treated gonads. Transcription of Dppa4 was not significantly reduced in SB431542 treated gonads at either 24, or 72 hours (p = 0.18), compared to the DMSO treated testes. Similarly, transcription of the male germ cell differentiation marker Dmnt3l was also similar in testes treated with the SB431542 for 72 hours (p = 0.12). It is likely that expression changes assessed by qRTPCR are underestimated due to the mix of affected (proliferating) and unaffected (arrested) germ cells in this system. To circumvent this problem and to support the qRTPCR analyses we used immunofluorescence to monitor protein levels of DPPA4, MILI, FGF3 and KI67 on an individual germ cell basis in XY gonads isolated at E12.5 and treated for 72 hours with SB431542. Within testes treated with SB431542, DPPA4 expression was substantially reduced in a subset of germ cells compared to the DMSO control levels, whereas in the remainder of the germ cells DPPA4 levels were normal. To determine whether germ cells that lacked high levels of DPPA4 expression also escaped mitotic arrest, we co-stained sections of SB431542 treated gonads with DPPA4, KI67 and MVH (Figure 6B). Proliferative germ cells were identified by their continued expression of KI67, as loss of this marker is an accurate indicator of mitotic arrest [27,28]. In SB431542 treated gonads, KI67 positive cells displayed very low levels of DPPA4, while KI67 negative germ cells contained high levels of DPPA4 (Figure 6B). In DMSO treated gonads all cells were KI67 negative and contained high levels of DPPA4 (Figure 6B); MILI protein expression is induced in differentiating male germ cells between E14.5 and E15.5 [28]. In two out of three samples tested, immunofluorescent analysis of MILI indicated reduced levels in the SB431542 treated testes compared to DMSO treated controls (Figure 6C). In the third sample MILI was indistinguishable between the SB431542 and DMSO treated samples (Figure 6C). No differences in the levels of FGF3 were detected between treated and untreated testes (Figure 6C).

Nodal is required for Nanog expression in pre-gastrulation embryos and pluripotent stem cells [52,60]. We showed that Nodal expression was high in E12.5 and E13.5 male germ cells, but was reduced to 10% of its peak levels by E15.5 (Figure 1). To determine whether blocking Activin/NODAL signaling in E12.5 testes altered expression of Nanog and other pluripotency genes in germ cells we used qRTPCR to examine transcription of Nanog and Sox2, and immunofluorescence to monitor protein levels of SOX2 and OCT4 in E12.5 testes treated with SB431542 or DMSO. After 24 hours of culture, Nanog levels were significantly reduced in SB431542 treated testes compared to DMSO controls (p < 0.05), although Sox2 transcription was not affected (Figure 6D). After 72 hours of treatment, both Sox2 and Nanog were downregulated to less than 10% of the levels detected in 24 hour DMSO treated testes (Figure 6D). Despite readily detecting SOX2 and OCT4 protein in the nucleus of E12.5 germ cells, only very low levels of OCT4 and SOX2 were detected in fetal testes treated for 72 hours with SB431542 or DMSO (Figure 6E).

Discussion
The differentiating testis provides the niche in which the male germ line and spermatogonial stem cells develop. Tight regulation of male germ cell differentiation underpins fertility and prevents the formation of pluripotent germ cell tumours from fetal germ cells. However, the signaling processes that initiate these events and establish this niche are poorly understood.
Figure 5. Inhibition of ALK4/5/7 disrupts germ cell cycle arrest in E12.5 testes. A) Typical example of a flow cytometric analysis of germ cells from E12.5 testes cultured for 72 hours with DMSO or SB431542. MVH positive germ cells were gated from somatic cells (left panels) and analysed for active proliferation by measuring incorporation of EdU during S-phase (middle panels) and for cell cycle stage by measuring DNA content (right panels). B–C) E12.5 testes treated with DMSO (n = 10), ALK5i-I (n = 3) or SB431542 (n = 10) for 72 hours B) Germ cell proliferation based on EdU incorporation C) ModFit analysis of germ cell cycle state, based on propidium iodide staining for DNA content. Error bars represent standard
TGFβ and Activin control distinct processes during testis and male germ cell development

We demonstrate here that TGFβ and Activin signaling controls distinct processes during testis formation and male germ cell development. Our expression analyses of FACS purified E12.5–E15.5 male and female germ and gonadal somatic cells showed that the genes encoding TGFβ, Activin and NODAL and their receptors are sex, stage and cell type specifically expressed in the developing gonad. Moreover, using well defined ALK4/5/7 and ALK5 inhibitors [47,48,49,50,51,32,33,34,35], which completely or partially block SMAD activation (Figure 2A), we demonstrated that TGFβ signaling through ALK5 is required for testis cord formation and to prevent male germ cell entry into meiosis. Using flow cytometric techniques we also showed that Activin (and/or NODAL) signaling promotes Sertoli cell proliferation from as early as E12.5, and that male germ cells do not enter mitotic arrest or differentiate properly when the Activin-NODAL receptors ALK4 and ALK7 are blocked. Therefore, TGFβ and Activin signaling are required for different aspects of testis cord formation and male germ cell development. Consistent with known roles for NODAL in pluripotent stem cells and the early embryo, blocking ALK4/5/7 resulted in reduced male germ cell expression of Nanog, supporting a role for NODAL in germ cell expression of this pluripotency gene. These data define new and essential roles for TGFβ, Activin and NODAL signaling in testis and germ cell development.

We used qRT-PCR to analyse expression of Inhba (which encodes ACTIVIN A), Inhbb (which encodes Activin B), Nodal, Tgfb1-3 and their respective type I and type II receptors in male and female somatic and germ cells from E12.5–E15.5 gonads (Figure 1). Tgfb2 and Tgfb3 were expressed at high levels in testicular and ovarian somatic cells, but their expression was not detected in germ cells of either sex. Consistent with a role for TGFβ in somatic cell development, Alk5 and Tgfb2 were expressed at relatively high levels in E12.5 XY somatic cells (Figure 1), and blocking signaling through ALK5 in E11.5 XY gonads was sufficient to prevent testis cord formation (Figure 2). This phenotype is likely a result of failed Sertoli cell organization, rather than defective specification, as robust levels of SOX9 were detected in the Sertoli cells. TGFβ ligands signal through ALK5, while Activin and NODAL signal through ALK4 and ALK7, thus inhibition of ALK5 in E11.5 male gonads prevented testis cord organization. Similarly, fetal testis cord organization is compromised in Tgfb3 null mice [46]. Therefore, it is likely that testis cord organization requires TGFβ signaling. Proper cord formation is dependent on endothelial cell migration from the mesonephros [61]. Inhibition of this endothelial cell migration results in disrupted cord formation without affecting Sertoli cell differentiation as shown by SOX9 expression [61]. This phenotype closely resembles the phenotype observed in this study, suggesting that TGFβ signaling might not only regulate testis cord formation by inducing Sertoli cell proliferation at later stages during early development [39], but also through Sertoli cell proliferation and possibly cell migration at early stages of testis differentiation.

Despite these combined data, mice lacking individual Tgfb genes have normal testis cord formation [44,45]. However, functional redundancy may obscure testicular phenotypes in these models. Unfortunately, Tgfb double knockouts are embryonic lethal and appropriate compound conditional knockout models are not yet available to examine functional redundancy between these genes. The current ex vivo organ culture model provides an important alternative for demonstrating roles for TGFβs in male sex determination and testis development.

XY fetal germ cells enter meiosis in the absence of TGFβ signaling

In addition to failed testis cord formation, our data demonstrated that male germ cells aberrantly enter meiosis in ALK5i-I and SB431542 treated E11.5 XY gonads (Figure 4). Similarly, Nodal is specifically expressed by XY germ cells and treatment of E11.5 male gonads with SB431542 resulted in germ cell entry into meiosis [59]. It was concluded that cell-autonomous NODAL signaling prevents male germ cell entry into meiosis [59]. However, SB431542 blocks ACTIVIN and TGFβ signaling, as well as NODAL signaling, while ALK5i-I only blocks TGFβ signaling through ALK5. Therefore, our study demonstrated that treatment of E11.5 XY gonads with either SB431542 or ALK5i-I blocks testis cord formation, revealing an important role for TGFβ signaling in testis development. Since germ cells are apparently not required for testis cord formation [62], it is unlikely that blocking the action of NODAL accounts for the disrupted testis cord structure observed in our experiments. It is more likely that TGFβ signaling from the somatic cells regulates cord formation in the developing testis. Moreover, blocking ALK5 alone resulted in both disrupted testis cord formation and entry of male germ cells into meiosis, demonstrating that TGFβ signaling is required to prevent germ cells in a fetal testis from entering meiosis. This block of meiosis by TGFβ may be either direct, or indirect. Indirectly, TGFβ may act through signaling from neighboring somatic cells. Hence, blocking TGFβ signaling from somatic cells would lead to both failed testis cord formation and reduced male germ cell differentiation. Consistent with an indirect role, our study demonstrates that multiple TGFβ ligands and their receptors are expressed at high levels in XY somatic cells. Although, ALk5 is expressed in E12.5 male germ cells, the levels were seven fold lower than in somatic cells, and the co-receptor, Tgfr2, is not expressed by XY germ cells. Therefore, TGFβ is most likely to act indirectly to prevent male germ cells from entering meiosis and depends on Sertoli cell products or organization of the testis cords to facilitate delivery of male germ cell promoting products, rather than direct TGFβ signaling to germ cells (Figure 7).

Activin promotes XY germ cell differentiation and germ cell mitotic arrest in the fetal testes

Treatment of E12.5 testes with the Activin, TGFβ and NODAL signaling inhibitor (ALK4/5/7 inhibitor) SB431542, resulted in increased germ cell proliferation and decreased Sertoli cell proliferation, while ALK5i-I did not affect germ cell proliferation. Flow cytometric analysis of E12.5 testes treated for 72 hours with SB431542 demonstrated that 14.3% of germ cells were proliferative, while only 4.9% and 3.2% of germ cells were proliferative in ALK5i-I and DMSO treated testes (Figure 5). Using the same assay on E12.5 in vivo isolated testes, around 50% of germ cells were proliferative [27,28,36]. Based on the proliferation difference in germ cells of E12.5 testes treated with SB431542 or DMSO for 72 hours, we estimate that around 20–25% of the male germ cell population escaped mitotic arrest in SB431542 treated testes.
while essentially all germ cells entered mitotic arrest in ALK5i-I treated testes (compared to DMSO control). As SB431542 blocks ALK4/5/7 and ALK5i-I blocks ALK5, it appears that signaling through ALK4 and/or ALK7 is required for male germ cell mitotic arrest. This conclusion is consistent with the relatively high expression levels of ALK4, and its co-receptors Acrv2a and Acrv2b, but low levels of ALK5 and the absence of its co-receptor Tgfb2 in male germ cells (Figure 1).

Germ cells entering mitotic arrest upregulate p27KIP1 and DPPA4, while losing RB-P and KI67 [27,28,56]. However, in the current study immunofluorescent analysis demonstrated reduced p27KIP1 and DPPA4, and abnormal maintenance of RB-P and KI67 in germ cells of testes treated with SB431542, but not in DMSO treated testes. Multicolor staining demonstrated that DPPA4 was specifically reduced in KI67 positive germ cells in SB431542 treated samples. Since KI67 expression is normally lost in all fetal male germ cells entering mitotic arrest, this data strongly indicates that the KI67 positive/DPPA4 –ve germ cells detected in the SB431542 treatment have not entered the mitotic arrest or male differentiation programs properly, while other germ cells appear unaffected. It remains unclear what the differences between the different subsets of germ cells are that influence their susceptibility to inhibition of Activin-TGFβ signalling. However, variability in germ cell response to SB431542 treatment in the E12.5 testes may explain the moderate reduction in transcription of Dppa4 in SB431542 treated testes as measured by qRTPCR, while DPPA4 protein levels were substantially reduced only in germ cells that remain KI67 positive (Figure 6B). Despite the variability detected in KI67/DPPA4 expression in SB431542 treated testes, the combined flow cytometric and immunofluorescence data clearly demonstrate that blocking Activin and/or NODAL after male sex determination, but early in testis development, results in compromised male germ cell development.

Analysis of KI67 and DPPA4 staining in SB431542 treated E12.5 testes clearly demonstrated that affected KI67/MVH double positive DPPA4 negative germ cells were mixed with neighbouring unaffected KI67 negative MVH/DPPA4 positive germ cells (Figure 6B). These affected and unaffected germ cells are presumably exposed to similar environments, indicating that they have qualitatively different responses to the treatment. Although perplexing, this stochastic response in germ cells is not unusual, as we have made similar observations in fetal germ cells of Ret null mice (in which all germ cells lack Ret) and in an epigenetic model that we are currently analyzing [63]. Such variation in germ cell development may prove informative by providing important clues to the mechanisms underlying failed germ cell development and formation of germ cell tumours.

Autocrine Nodal signaling regulates the core pluripotency gene Nanog in XY germ cells

The high levels of Nanog and Tgfb1 expression by E12.5–13.5 and E14.5–15.5 male germ cells, respectively (Figure 1), indicate that signaling occurs from male germ cells to either the somatic cells of the developing testis, or to germ cells in autocrine signaling pathways, as suggested by [59]. A possible role of NODAL in this context is the regulation of pluripotency. Nodal has been previously shown to maintain Nanog expression in early embryos and pluripotent cells [52,60]. Interestingly, when Activin/NODAL signaling was blocked in E12.5 testes levels of Nanog transcription decreased in 24 hours, while Sox2 transcription was unaffected. Moreover, SB431542 also resulted in reduced Nodal and Lefty 1 expression. Considering these findings and the close relationship between fetal germ cells and pluripotent stem cells, an intriguing possibility is that SB431542 blocks autocrine NODAL signaling in the germ cells, resulting in reduced levels of Nodal, Lefty and Nanog transcription. If correct, this indicates that although Activin promotes male germ cell differentiation, NODAL might operate in opposition to this activity. In this...
capacity NODAL may also play a protective role in the male germ line, preventing male germ cells from entering meiosis [59].

Activin promotes Sertoli cell proliferation from early stages of testis formation

SB431542 and ALK5i-I treatment had differential effects in the somatic compartment of the testis. Our flow cytometric analysis of E12.5 testes treated with SB431542 or ALK5i-I demonstrated significant reductions in proliferation over the whole somatic cell population (Somatic cell proliferation: SB431542 12.3% ± 0.81%, DMSO 15.9% ± 0.6, p = 0.001) and, more specifically, the Sertoli cells (6.3% compared to 33.2%) (Figure 3). Interestingly, Sertoli cell proliferation (9.8% compared to 25.9%) was also decreased by ALK5i-I, but to a lesser extent than for SB431542 treatment. Combined, this data strongly indicates that Activin and TGFB signaling combine to promote Sertoli cell proliferation during testis formation.

Previous work demonstrated that deletion of Inhba leads to compromised Sertoli-Leydig cell signaling and a later phenotype (ie at E15.5) in Sertoli cell proliferation than observed in this study [39]. Our work extends these findings by demonstrating a requirement for Activin/TGFB signaling in Sertoli cell prolifer-

Organism	Gene	Genbank/ENSEMBL	UPL probe	Primer name	Sequence
mouse	Acvr1b	NM 007395.3	49	left	tgctggactgcctggtgcat
mouse	Acvr1b	NM 007395.3	49	right	gagaagcagcagcgctcaga
mouse	Acvr1c	NM 00103369.1	72	left	ttgtaacagactacatcagtg
mouse	Acvr1c	NM 00103369.1	72	right	catcagtcgctccgtgtaaa
mouse	Acvr2a	NM 003796.3	95	left	ttgacttctccccaaagactc
mouse	Acvr2a	NM 003796.3	95	right	ttctcagctgtagacgctcca
mouse	Acvr2b	NM 003797.2	32	left	gacctcctgcaccactggtg
mouse	Acvr2b	NM 003797.2	32	right	tcactgctccccgctgttg
mouse	Canx	NM 007597.2	50	left	ccacataaggaggctgacagc
mouse	Canx	NM 007597.2	50	right	caccacacagctctccaaaaa
mouse	Inhba	NM 008380	106	left	attgggtgaagactggtgat
mouse	Inhba	NM 008380	106	right	ggctcctccccacactaata
mouse	Inhbb	NM 008381.3	81	left	agcactgctgctcactggtg
mouse	Inhbb	NM 008381.3	81	right	acacacacatcagctcctc
mouse	Mapk1	NM 01194	21	left	gcctttcagacactcca
mouse	Mapk1	NM 01194	21	right	aacacaaaaaggcatccac
mouse	Nodal	NM 013611.3	52	left	gaggggtagcgtcttaacc
mouse	Nodal	NM 013611.3	52	right	tctgtagtgagctggtg
mouse	Tgfb1	NM 011577.1	66	left	caactctgccgtacccttg
mouse	Tgfb1	NM 011577.1	66	right	agaaggccacagctggtg
mouse	Tgfb2	NM 009367.3	45	left	ggactaagcagctccttggtgga
mouse	Tgfb2	NM 009367.3	45	right	gagaaggctgcgacagcag
mouse	Tgfb3	NM 009368.3	38	left	taccctgacacccgttgct
mouse	Tgfb3	NM 009368.3	38	right	aggctccccggtacttg
mouse	Tgfb4	NM 009370.2	67	left	agtgcgctgccgtgcttcttc
mouse	Tgfb4	NM 009370.2	67	right	gttaaacaccgctcacc
mouse	Tgfb2	NM 009371.3	75	left	caacacagcgggcctggcat
mouse	Tgfb2	NM 009371.3	75	right	gtgcgcctaccaatactct
mouse	Lefty1	NM, 010094	Sybr	left	tgcagcttcctcttattgg
mouse	Lefty1	NM, 010094	Sybr	right	tggctgtaggcagctgtaag
mouse	Dppa4	NM, 028610	Sybr	left	gctgaggctgacagggttttg
mouse	Dppa4	NM, 028610	Sybr	right	gctctctggctgctcact
mouse	Dmnt3l	BC083147	Sybr	left	agtcagacagcggagcag
mouse	Dmnt3l	BC083147	Sybr	right	aacaggggagagggactt
mouse	Nanog	NM, 028016	Sybr	left	ttggagacagagtggaggtcat
mouse	Nanog	NM, 028016	Sybr	right	ctggtgtaggggtggcttgag
mouse	Sox2	NM, 011443	Sybr	left	cgcccaagtacgctcaca
mouse	Sox2	NM, 011443	Sybr	right	cccctcactgctgcagacag
Germ and somatic cells were previously sorted from Oct4-GFP transgenic embryos and sexed using PCR as previously described [66]. XX and XY gonads were placed onto 25 mm Polycarbonate, polyvinyl pyrrolidone free (PVPF), 12.0 micron filters (GE Water and Process Technologies) placed onto 25 mm Polycarbonate, polyvinyl pryolidine free (PVPF), 12.0 micron filters (GE Water and Process Technologies) containing 1500 μl organ culture media (250 μM sodium pyruvate, 2 mM L-glutamate, 1X non-essential amino acids, 1 mM N-acetylcysteine, 55 μM β-mercaptoethanol, FCS (10%)) in DMEM in the inner well and 3 ml of PBS in the outer well to maintain a humid environment. 10 μM (final concentration) ALK4/5/7 inhibitor (SB431542, Sigma S4317, stock dissolved in DMSO), 2.5 μM ALK5i-1 (TGFβ RI Kinase Inhibitor I, Calbiochem, Calbio 616451, stock dissolved in DMSO) or DMSO (1 in 1000), were added to the culture medium at the outset of the experiment. The inhibitor concentrations used were based on previous analyses of their efficacy in blocking Activin/TGFβ signaling through ALK4/ 5/7 and ALK5 respectively [47,48,49,50,51,52,53,54,55]. Gonads were cultured for 24, 72 or 96 hours in 5.0% CO2 at 37°C with organ culture media changed daily. All organ cultures were replicated at least 3 times using 4–8 individual gonads per replicate. EdU was added at a final concentration of 20 μM to the organ culture media for the final 2 hours of culture. Gonads were removed from the filters, photographed under bright field and fluorescence optics, dissociated using trypsin and fixed for flow cytometric analysis, immunofluorescence or used for RNA or protein preparation. Flow cytometry was performed as described [27,28,56]. Statistical significance was determined using the two-tailed t test assuming equal variance. A p value of less than 0.05 was considered significant.

Table 2. Antibodies for immunofluorescence (IF) and western blotting.

Protein	Source & Catalogue #	Species	Dilution
FOXL2	Dr Dagmar Wilhelm	Rabbit	IF: 1:1000
γH2AX (Ser139) (20E3)	Cell Signalling 9718	Rabbit	IF: 1:1000
MVH	Abcam 13840-100	Rabbit	IF: 1:10000
SOX9	Dr Dagmar Wilhelm	Rabbit	IF: 1:200
SOX2	AbCam 97959	Rabbit	IF: 1:1000
OCT4	Cell Signalling 2840	Rabbit	IF: 1:500
MILI	Cell Signalling 2071	Rabbit	IF: 1:200
SMAD2	Cell Signalling 5339	Rabbit	W: 1:1000
P-SMAD2	Cell Signalling 3108	Rabbit	W: 1:1000
RB-P	Cell Signalling 9308	Rabbit	IF: 1:1000
p27RFP	Cell Signalling 3688	Rabbit	IF: 1:200
FGFR3	Santa Cruz sc123	Rabbit	IF: 1:200
R07	NeoMarkers Rm-9106	Rabbit	IF: 1:50
DPPA4	R&D Systems AF3730	Goat	IF: 1:400
SYCP3	Abcam 15902	Rabbit	IF: 1:500
STRA8	Abcam 49405	Rabbit	IF: 1:1000
Cleaved-PARP	Cell Signalling 9544	Rabbit	IF: 1:100

Conclusion

This study identifies new roles for TGFβ and Activin in testis and male germ cell development. We demonstrate that TGFβ signaling regulates Sertoli cell proliferation and formation of testis cords within the developing testis, while Activin (and potentially NODAL) plays key roles in Sertoli cell proliferation, testis cord growth and male germ cell differentiation, including the entry of male germ cells into mitotic arrest. Further delineation of these processes will contribute to understanding the molecular events underlying failed germ cell differentiation in germ cell tumour formation and sub/infertility and will be highly relevant for understanding male reproductive disorders in mammals, including humans.

Materials and Methods

Animals

Mice used in all experiments were derived from OG2 (Oct4-GFP; octamer-binding transcription factor 4, also known as Pou5f1) transgenic male (C57BL/6) x CD1 female matings. The presence of a vaginal plug in the morning was used to indicate mating and was recorded as E0.5. All animal procedures were carried out under Murdoch Childrens Research Institute Animal Ethics Committee or Monash University Animal Ethics Committee approvals.

Fluorescent Activated Cell Sorted Somatic and Germ Cell RNAs and qRT-PCR

Germ and somatic cells were previously sorted from Oct4-GFP embryonic gonads and RNA extracted, and amplified as described [27,64]. These amplified RNA libraries provide germ and somatic cell specific sources of RNA for gene expression analyses in E12.5-E15.5 testes and ovaries. The purity of this material was extensively verified using independent assays [27,64]. For example, flow cytometric analysis indicated that these samples represent somatic and germ cell populations of ≥99% purity [64,65]. Details of primer and UPL Probe sets used are shown in Table 1. Results were analysed using LightCycler 480 software (Roche) and relative expression levels were determined by normalisation against verified reference genes Canx and Mapk1 [64]. Each sampling point (E12.5–E15.5) and cell type (germ and somatic cells) was analysed in biological triplicate and PCRs performed in technical duplicate.

Organ Culture

E11.5 gonad and mesonephros of E12.5 gonad only samples were collected from Oct4-GFP transgenic embryos and sexed using PCR as previously described [66]. XX and XY gonads were placed onto 25 mm Polycarbonate, polyvinyl pyrrolidone free (PVPF), 12.0 micron filters (GE Water and Process Technologies) in single well organ culture dishes (NUNC) containing 1500 μl organ culture media (250 μM sodium pyruvate, 2 mM L-glutamate, 1X non-essential amino acids, 1 mM N-acetylcysteine, 55 μM β-mercaptoethanol, FCS (10%)) in DMEM in the inner well and 3 ml of PBS in the outer well to maintain a humid environment. 10 μM (final concentration) ALK4/5/7 inhibitor (SB431542, Sigma S4317, stock dissolved in DMSO), 2.5 μM ALK5i-1 (TGFβ RI Kinase Inhibitor I, Calbiochem, Calbio 616451, stock dissolved in DMSO) or DMSO (1 in 1000), were added to the culture medium at the outset of the experiment. The inhibitor concentrations used were based on previous analyses of their efficacy in blocking Activin/TGFβ signaling through ALK4/ 5/7 and ALK5 respectively [47,48,49,50,51,52,53,54,55]. Gonads were cultured for 24, 72 or 96 hours in 5.0% CO2 at 37°C with organ culture media changed daily. All organ cultures were replicated at least 3 times using 4–8 individual gonads per replicate. EdU was added at a final concentration of 20 μM to the organ culture media for the final 2 hours of culture. Gonads were removed from the filters, photographed under bright field and fluorescence optics, dissociated using trypsin and fixed for flow cytometric analysis, immunofluorescence or used for RNA or protein preparation. Flow cytometry was performed as described [27,28,56]. Statistical significance was determined using the two-tailed t test assuming equal variance. A p value of less than 0.05 was considered significant.
antibodies was used to stain tissues, the first antibody was bound and detected using an Alexa 594 anti-rabbit secondary antibody and then the second primary antibody applied after direct labelling using the Zenon 488 Labelling Kit (Life Technologies) according to manufacturer’s instructions. Staining of treated samples and their corresponding controls was performed in the same experiment, with each slide receiving antibody dilutions from the same batch prepared stock. Staining with each marker was repeated as a minimum in biological triplicate. TUNEL staining was performed as described in Miles et al 2012 [63].

RNA isolation and qRT-PCR

Total RNA was isolated from 6–8 testes treated with DMSO or SB431542 for 24 or 72 hours using standard Trizol (Life Technologies) extraction method. The RNA was DNase treated and quantified using a Nanodrop spectrophotometer. Reverse transcription qRT-PCR was performed as previously described [64] using primers listed in Table 1 and sybr green quantification. Samples were examined in biological triplicate and technical duplicate.

Immunoblotting

Western blot analyses were performed using samples prepared as previously described [27,66]. Two gonads were boiled in 15 μl of 2x Laemml buffer and protein separated on 10% pre-cast NuPage Tris-Acetate gels (Life Technologies) and blotting performed using standard procedures. Antibodies are listed in Table 2.

Acknowledgments

We thank Christine Hall and the MCRI Animal Facility staff, Rhiannon Leighton, Nicolle Gibson and Robyn Charman and staff at the Monash Animal Research Platform for animal care.

Author Contributions

Conceived and designed the experiments: PSW DCM SIW PSW. Performed the experiments: DCM SIW JMS JAvAd PSW. Analyzed the data: DCM SIW PSW. Contributed reagents/materials/analysis tools: DCM DW AHS. Wrote the paper: DCM SIW DW PSW.

References

1. McLaren A (2003) Primordial germ cells in the mouse. Developmental Biology 256: 1–15.
2. Guerquin MJ, Duquenne C, Lahaye JB, Tourpin S, Habert R, et al. (2010) New testicular mechanisms involved in the prevention of fetal meiotic initiation in mice. Dev Biol 346: 320–330.
3. Adams BR, McLaren A (2002) Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129: 1155–1164.
4. Kocer A, Reichmann J, Best D, Adams BR (2009) Germ cell sex determination in mammals. Mol Hum Reprod 15: 205–213.
5. Brittejohn RR, Finogold MJ, Caet RL (1994) Mullerian-inhibiting substance function during mammalian sexual development. Cell 79: 415–425.
6. Chaboissier M-C, Kobayashi A, Vidal VIP, Lutzendorf S, van de Kant HJG, et al. (2004) Functional analysis of Sosti and Sost during sex determination in the mouse. Development 131: 1891–1901.
7. Colvin JS, Green RP, Schmalh J, Capel B, Ornitz DM (2001). Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104: 875–889.
8. Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, et al. (2006) Fgf9 and Wnt1 act as antagonistic signals to regulate mammalian sex determination. Plos Biology 4: e167.
9. Ottoenghi C, Pelosi E, Tran J, Colominho M, Douglas E, et al. (2009) Loss of Wnt4 and Fox2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16: 2759–2764.
10. Garcia-Ortiz JE, Pelosi E, Omari S, Nedorezov T, Piao Y, et al. (2009) Fox2 functions in sex determination and histogenesis throughout mouse ovarian development. BMC Dev Biol 9: 36.
11. Chassot AA, Ranc F, Gregoire EP, Roepers-Gajadien HL, Taketo MM, et al. (2008) Loss of Wnt4 act as antagonistic signals to regulate mammalian sex determination. Plos Biology 6: e207.
12. Ottolenghi C, Pelosi E, Tran J, Colominho M, Douglas E, et al. (2009) Loss of Fox2 functions in sex determination and histogenesis throughout mouse ovarian development. BMC Dev Biol 9: 36.
13. Chassot AA, Ranc F, Gregoire EP, Roepers-Gajadien HL, Taketo MM, et al. (2008) Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Human Molecular Genetics 17: 2949–2953.
14. Tomizuka K, Horikoshi K, Kitada R, Sugavara Y, Iba Y, et al. (2008) R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17: 1278–1291.
15. Vainio S, Heikkilä M, Kispert A, Chinn N, McMahon AP (1999). Female development in mammals is regulated by Wnt-4 signaling. Nature 397: 405–409.
16. Yao EH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, et al. (2004) Follistatin regulates growth factors 2 regulates proliferation and Sertoli cell differentiation during male sex determination. Proceedings of the National Academy of Sciences of the United States of America 101: 16558–16563.
17. Bagheri-Fam S, Sim H, Bernard P, Jayakody I, Taketo MM, et al. (2008) Loss of Fgf9 leads to partial XY sex reversal. Dev Biol 314: 71–83.
18. Bowles J, Feng CW, Spiller C, Davidson TL, Jackson A, et al. (2010) FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev Cell 19: 440–449.
19. Borries F, Filipponi D, Piloni M, Paronetto MP, Di Siena S, et al. (2010) Ongoing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123: 871–880.
20. Best D, Sahlender DA, Walther N, Peden AA, Adams BR (2008) Smdg1 is a conserved transmembrane protein associated with germ cell sex determination and germine-sona interactions in mice. Development 135: 1415–1425.
21. Kumar S, Chatzi C, Bradle T, Cunningham TJ, Zhao X, et al. (2011) Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signalling. Nat Commun 2: 151.
22. Western PS, Miles DC, van den Bergen JA, Burton M, Sinclair AH (2008) Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells 26: 339–347.
23. Western PS, Palli RA, Wakeling SI, Lo C, van den Bergen JA, et al. (2011) Mitotic arrest in teratoma susceptible fetal male germ cells. PLoS One 6: e20736.
24. Spiller CM, Wilhelm D, Koopman P (2010) Retinoblastoma 1 Protein Modulates XY Germ Cell Entry into G1/G0 Arrest During Fetal Development in Mice. Biol Reprod 82: 433–443.
25. Western PS, van den Bergen JA, Miles DC, Sinclair AH (2010) Male germ cell differentiation involves complex repression of the regulatory network controlling pluripotency. FASEB J 24: 3026–3035.
26. La Nalle S, Martinet C, Taketo T, Moens PB, Bestor TH, et al. (2004) Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Developmental Biology 268: 403–415.
27. Western P (2009) Foetal germ cells: striking the balance between pluripotency and differentiation. Int J Dev Biol 53: 393–409.
28. Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T (2005) Nanog expression in mouse germ cell development. Gene Expression Patterns 5: 639–646.
29. Cook MS, Coveney D, Batchvarov I, Nadeau JH, Capel B (2009) BAX-mediated cell death affects early germ cell loss and incidence of testicular teratomas in DnD(1)Ter/Ter) mice. Dev Biol 328: 377–383.
30. Krentz AD, Murphy MW, Kim S, Cook MS, Capel B, et al. (2009) The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci U S A 106: 22323–22328.
31. Itman C, Mendi S, Barakat B, Loveland KL (2006) All in the family: TGF-beta family action in testis development [see comment]. Reproduction 132: 235–246.
32. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.
33. Neel S, Schaad O, Stallings NR, Cederroth CR, Pitetti JL, et al. (2005) Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Developmental Biology 287: 361–377.
34. Archambault DR, Yao HF (2010) Activins A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proc Natl Acad Sci U S A 107: 10526–10531.
40. Mendis SH, Meachem SJ, Sarraj MA, Loveland KL (2011) Activin A balances Sertoli and germ cell proliferation in the fetal mouse testis. Biol Reprod 84: 379–391.

41. Brown CW, Houston-Hawkins DE, Woodruff TK, Matzuk MM (2000) Insertion of Inhibin into the Inhba locus rescues the Inhba-null phenotype and reveals new activin functions. Nat Genet 25: 453–457.

42. Mithraprabhu S, Mendis S, Meachem SJ, Tubino L, Matzuk MM, et al. (2010) Activin bioactivity affects germ cell differentiation in the postnatal mouse testis in vivo. Biol Reprod 82: 980–990.

43. Yao HH, Aardema J, Holthusen K (2006) Sexually dimorphic regulation of inhibin beta B in establishing gonadal vasculature in mice. Biol Reprod 74: 978–983.

44. Memon MA, Anway MD, Covert TR, Uzumcu M, Skinner MK (2008) Transforming growth factor beta (TGFbeta, TGFbeta2 and TGFbeta3) null-mutant phenotypes in embryonic gonadal development. Mol Cell Endocrinol 294: 70–80.

45. Moreno SG, Attali M, Allemand I, Messiaen S, Fouchet P, et al. (2010) TGFbeta signaling in male germ cells regulates gonocyte quiescence and fertility in mice. Dev Biol 342: 74–84.

46. Sarraj MA, Escalona RM, Umbers A, Chua HK, Small C, et al. (2010) Fetal testis dysgenesis and compromised Leydig cell function in Tgfbr3 (beta glycan) knockout mice. Biol Reprod 82: 153–162.

47. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, et al. (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62: 65–74.

48. Lapin NJ, Grygielko E, Madhar A, Butter S, Bomberger J, et al. (2002) Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 62: 58–64.

49. DaCosta Byfield S, Major C, Lapin NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65: 744–752.

50. Singh J, Chuaqui CE, Borsack-Sjoedin CE, Lee WC, Pountz T, et al. (2003) Successful shape-based virtual screening: the discovery of a potent inhibitor of the type I TGFbeta receptor kinase (TbetaRI). Bioorg Med Chem Lett 13: 4355–4359.

51. Sawyer JS, Anderson BD, Beight DW, Campbell RM, Jones ML, et al. (2003) Synthesis and activity of new ary1-heteroary1-substituted pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. J Med Chem 46: 3953–3956.

52. Valler I, Mendjan S, Brown S, Chng Z, Teo A, et al. (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136: 1339–1349.

53. Valler I, Reynolds D, Pedersen RA (2004) Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Developmental Biology 275: 403–421.

54. Morizane A, Doi D, Kikuchi T, Nishimura K, Takahashi J (2011) Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J Neurosci Res 89: 117–126.

55. Huang DY, Lin GJ, Huang SH, Liu LW, Ju DT, et al. (2011) Inhibition of Nodal suppresses angiogenesis and growth of human gliomas. J Neurooncol 104: 21–31.

56. Miles DC, van den Bergen JA, Sinclair AH, Western PS (2010) Regulation of the female mouse germ cell cycle during entry into meiosis. Cell Cycle 9: 408–418.

57. Lin Y, Gill ME, Koubova J, Page DC (2008) Germ cell-intrinsic and extrinsic factors govern meiotic initiation in mouse embryos. Science 322: 1665–1667.

58. Miles DC, Western PS (2012) Germ cell sex and cell cycle. Hormonal and Histopathology 27: 445–457.

59. Souquet D, Tourpin S, Messiaen S, Moison D, Habert R, et al. (2012) Nodal signaling regulates the entry into meiosis in fetal germ cells. Endocrinology 153: 2466–2473.

60. Mesnard D, Guzman-Ayala M, Constan D (2006) Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 133: 2497–2505.

61. Comber AN, Willems D, Davidson T, Dejana E, Harley V, et al. (2009) Endothelial cell migration directs tests cord formation. Dev Biol 326: 112–120.

62. Brennan J, Kapel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5: 509–521.

63. Miles DC, van den Bergen JA, Wakeling SJ, Anderson RD, Sinclair AH, et al. (2012) The proto-oncogene Ret is required for fetal germ cell survival. Developmental Biology 365: 101–109.

64. van den Bergen JA, Miles DC, Sinclair AH, Western PS (2009) Normalizing Gene Expression Levels in Mouse Fetal Germ Cells*. Biol Reprod 81: 362–370.

65. Daggag H, Svingen T, Western PS, van den Bergen JA, McClone PJ, et al. (2008) The rhox homeobox gene family shows sexually dimorphic and dynamic expression during mouse embryonic gonad development. Biology of Reproduction 79: 468–474.

66. McClone PJ, Sinclair AH (2001) Rapid DNA extraction and PCR-sexing of mouse embryos. Mol Reprod Dev 60: 225–226.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Miles, DC; Wakeling, SI; Stringer, JM; van den Bergen, JA; Wilhelm, D; Sinclair, AH; Western, PS

Title:
Signaling through the TGF Beta-Activin Receptors ALK4/5/7 Regulates Testis Formation and Male Germ Cell Development

Date:
2013-01-16

Citation:
Miles, D. C., Wakeling, S. I., Stringer, J. M., van den Bergen, J. A., Wilhelm, D., Sinclair, A. H. & Western, P. S. (2013). Signaling through the TGF Beta-Activin Receptors ALK4/5/7 Regulates Testis Formation and Male Germ Cell Development. PLOS ONE, 8 (1), https://doi.org/10.1371/journal.pone.0054606.

Persistent Link:
http://hdl.handle.net/11343/209038

File Description:
Published version

License:
CC BY