Feedback about action performed can alter the sense of self-agency

Neeraj Kumar, Jaison A. Manjaly and Krishna P. Miyapuram*
Cognitive Science Program, Indian Institute of Technology Gandhinagar, Ahmedabad, India

INTRODUCTION

Our ability to interact with the environment through action is an essential aspect of our day-to-day life. Intention to act, preparation to move, generating motor commands, and sensory feedback are some of the underlying aspects of sensorimotor experience and sense of agency (Haggard et al., 2002). Sense of agency is the experience of authorship of an action (Gallagher, 2000). Multiple theories have been proposed to describe mechanisms responsible for the sense of agency (see David et al., 2008 for a review). Previous studies have manipulated action-outcome contingency to understand its effect on the sense of agency. More recent studies have shown that cues related to outcome, priming outcome and priming action have an effect on agency attribution. However, relatively few studies have focused on the effect of recalibrating internal predictions on the sense of agency. This study aims to investigate how feedback about action can recalibrate prediction and modulates the sense of agency.

In this study, participants performed a Flanker task (Eriksen and Eriksen, 1974) and generated a tone outcome similar to Sato and Yasuda (2005). The tone generated was either congruent or
We hypothesize that a false feedback would reverse the judgment. We repeated the experiment with 15 participants (Mean age = 19.4 years, 13 males and two females, range: 19–28 years) participated in the Flanker task (Eriksen and Eriksen, 1974) in which the target letter (associated with two tones of 600 and 1000 Hz as sensory outcomes, presses (left/right arrow key). The key presses were, in turn, associating phase, the target letters were assigned two corresponding key stimuli consist of two target letters “H” & “N.” In an initial training phase (see Materials and Methods). Before the occurrence of the outcome, feedback about the validity of the action performed was provided. That is, the feedback could either be true or false, unbeknownst to the participants. When true feedback is given, participants should have higher sense of agency for congruent tones, but low sense of agency for incongruent tones. We hypothesize that a false feedback would reverse the judgment about sense of agency (Table 1). Thus, when a false feedback is given, participants might perceive a discrepancy between performed and intended action. This would lead to a readjustment of the prediction of sensory outcome (tone) based on an alternate action, instead of the actual action performed. Therefore, validity of feedback about the action performed would determine upcoming sensory consequences and the agent would attribute agency accordingly.

PROCEDURE
The participants entered a dimly lit room and were seated in front of a computer screen with a pair of headphones (Sony MDR-ZX700, Over-the-ear). They were provided a printed instruction sheet that explained the task procedure. To induce the setting of the study pertaining to sense of agency, the instruction sheet mentioned that another participant sitting in an adjacent room could also generate the outcome. The experiment consisted of a training phase and a test phase. In the training phase, the target letters (H or N) did not have any flankers. The Participants learnt the association between a key press (right or left arrow key, in response to target letters) and a corresponding sensory outcome (600 Hz or 1000 Hz tone). In the test phase, participants responded to the same target letters in a Flanker task. A Feedback was introduced whether response was correct or not, followed by sensory outcome (600 Hz or 1000 Hz tone). A Self-report measure of the sense of agency pertaining to the tone outcome was obtained. We manipulated two within-subject factors – (a) type of sensory outcome (congruent tone or incongruent tone) with the key press, and (b) validity of feedback (true feedback or false feedback) for key press. Participants completed a brief practice session (30 trials) before the training and the test phases, to familiarize themselves with the task procedures.

In the training phase (See Figure 1A), the participants performed 300 trials. On each trial, 1000 ms after fixation onset, the target stimulus (i.e., “H” or “N”) was presented for 250 ms on the center of the screen. The participants were required to press left or right arrow keys, assigned to target letters ‘H’ and ‘N’, respectively. The responses were made using the index and the ring fingers of the dominant hand. To reduce any possible memory effects, key assignment was displayed on the screen. The participants were instructed to press the assigned key upon the appearance of a target letter. Further, the action performed (key press) would evoke a certain tone (600 Hz tone or a 1000 Hz). The tone was presented immediately after the key press for 200 ms. Incorrect trials resulted in same tone outcome that was contingent on a key press and were excluded from data analysis.

In the test phase (See Figure 1B) the participants performed a Flanker task for 200 trials. Each trial started with the onset of a centrally presented fixation sign. After 1000 ms, a five-letter array (i.e., HHHHH, NNNNN, HHNHH, or NNHNN) was presented for 250 ms. Participants were instructed to respond to one of the two target letters (central H or N) with their right index or ring fingers, respectively. An immediate feedback was provided for 200 ms, which could be a true (green tick for correct response or red cross for wrong response, 60% of total trials) or a false feedback (red cross for a correct response or green tick for a wrong response, 40% of total trials). After 200 ms of offset of feedback, a tone was presented through the headphones for 200 ms either congruent or incongruent with the intended key-press. The participants were then asked to rate their sense of self-agency (“I was the one who produced the tone”). The responses could be “Yes”, “No,” or “Maybe”. The left, right, and down arrow keys on the keyboard were used to record these responses using index, ring, and

- **Table 1 | Hypothesized sense of agency as a function of feedback validity and tone congruency with the action performed.**

	Congruent tone	Incongruent tone
True feedback	High self-agency	Low self-agency
False feedback	Low self-agency	High self-agency
Kumar et al. Feedback and sense of agency

FIGURE 1 | Trial structure of (A) training phase and (B) test phase. In training phase, participants learned the association between action (key press towards target letter) and outcome (tone). In test phase, target letter was flanked by either congruent or incongruent letters. We manipulated the feedback about the validity of action performed, and tone congruency with intended action. The participants reported self-agency ratings in the form of “Yes”, “No”, or “Maybe.”

middle fingers of the right hand, respectively. To prevent demand effects and any other possible bias in responses, such as motor preparation, the key assigned for “Yes” and “No” was randomized between the left and right arrow keys across trials. The “Down” arrow key was consistently assigned for “Maybe.” Our measure of sense-of-agency was based on self-report. To minimize the influence of experimental demand, an additional question on sense of ownership was included. While the sense of agency would be modulated by experimental conditions, the sense of ownership would remain high in all experimental conditions, serving as a control measure (Sato and Yasuda, 2005). After every 10 trials, participants rated the sense of agency (“I was the one who produced the tone”) and the sense of ownership (“I was the one who was listening to the tone”) by moving a slider bar with a mouse on a continuous scale of 0–100 (see Figure 1B). The Presentation of both the questions was counterbalanced across the trials. The experiment was designed and presented using Psychophysics toolbox (Brainard, 1997) in MATLAB (Mathworks Inc.).

In this experiment (hereafter Experiment 1) we assumed that participants believed in the feedback. We did not do an explicit debriefing after the experiment to avoid any information exchange among the participants. To verify our assumption, we repeated the experiment (hereafter Experiment 2) with a debriefing session at the end. The Participants were asked to report the percentage of correct responses they had made out of total trials. They were also asked to rate their belief in the accuracy of feedback on a scale of 0 (Disagree) to 10 (Agree).

DATA ANALYSIS
In the training phase, we measured the reaction time and accuracy of responses. In the test phase, we measured the reaction time and accuracy towards the central target letter of the Flanker stimuli. For each trial, we recorded self-report ratings of the sense of agency (“Yes”, “No”, or “Maybe”) that were transformed into discrete numerical values of 1, 0, and 0.5, respectively. We also recorded response times for the self-report ratings. The sense of agency and the sense of ownership were measured on a continuous scale of 0–100 after every 10 trials.

Reaction time to a target letter in the training and test phase (Flanker task) was analyzed separately using two-sample t-tests. The rating of sense of agency was analyzed using repeated measure analysis of variance (ANOVA) with three factors: Tone congruency with key press (two levels – congruent and incongruent tone) × Validity of feedback (two levels – true and false feedback) × Flanker type (congruent and incongruent with target letter). The sense of ownership rating and the reaction time for the rating of sense of agency were analyzed in a similar repeated measure ANOVA. The sense of agency rating, reaction time to target letter, and sense of ownership were analyzed only for the correct response trials (95.53% in Experiment 1 and 94.82% in Experiment 2).

RESULTS
Between Experiments 1 and 2, only the latter had a debriefing session. In Experiment 2, two participants were removed from further analysis because they reported more than 95% correct trials and rated low belief (Mean = 2.5, on a scale of 0–10) on feedback. The remaining 13 participants reported an average of 65.92% (SD = 5.58) correct trials and they rated high belief (Mean = 7.92, SD = 0.86) in feedback. Comparable estimates of correct trials (65%) with the percentage of true feedback (60%) suggest that the participants believed in feedback ($\chi^2 = 1.04, p = 0.30$).

SENSE OF AGENCY
Repeated measures ANOVA on the sense of agency rating (discrete values) revealed main effect of tone congruency, whereas no
significant main effect of feedback and flanker was found. However, more crucially we found significant interaction between tone congruency and validity of feedback. This suggests that effect of congruency of tone on sense of self-agency was dependent on feedback. There was no significant interaction between flanker and feedback, and flanker and tone congruency (See Table 2). Further paired-sample t-test revealed that the sense of self-agency was significantly reduced for congruent tone and increased for incongruent tone when feedback given was false (See Table 3; Figure 2).

To explore any difference in the self-agency rating due to two different rating scales, we performed bivariate correlation between ratings from discrete (Yes, No, or Maybe) and continuous scales (0–100). A significant correlation between these two measures was obtained [Experiment 1: r(60) = 0.89, p < 0.01, Experiment 2: r(52) = 0.90, p < 0.01] (See Figure 3).

RESPONSE TIME ON AGENCY RATING

The response time taken to rate the sense of self-agency was analyzed using repeated measures ANOVA with three factors – type of Flanker (2), type of feedback (2), and tone congruency with key press (2). This analysis revealed significant interaction between feedback and tone, but no main effect of tone congruency or feedback was found. Moreover, flanker congruency with target letter had no main effect on response time to attribute self-agency (See Table 2). Further, pair-wise comparison showed that response times for agency rating in congruent tone conditions were significantly higher [Experiment 1: t(14) = 3.14, p < 0.01; Experiment 2: t(12) = 2.85, p < 0.01] in false feedback (Experiment 1: 1.91 ± 0.58 s, Experiment 2: 1.80 ± 0.41 s) than in true feedback conditions (Experiment 1: 1.42 ± 0.12 s, Experiment 2: 1.57 ± 0.19 s). In incongruent tone conditions, response times for rating sense of agency were significantly lower [Experiment 1: t(14) = 2.93, p < 0.05; Experiment 2: t(12) = 2.85, p < 0.01] in false feedback (Experiment 1: 1.47 ± 0.11 s, Experiment 2: 1.40 ± 0.14 s) as compared to true feedback conditions (Experiment 1: 1.65 ± 0.12 s, Experiment 2: 1.72 ± 0.15 s). The Participants took similar amounts of time [Experiment 1: t(14) = 1.41, p = 0.17, Experiment 2: t(12) = 1.11, p = 0.28] to attribute agency when they received false feedback and incongruent outcome as compared to true feedback and congruent outcome.

REACTION TIME TO TARGET LETTER

To check the manipulation effect of the Flanker task, we analyzed the reaction time to target letter for correct and incorrect trials in both training and test phases, separately. In the training phase the participants were significantly faster [Experiment 1:

Table 2 | Repeated measure ANOVA on self-agency rating, response time for agency rating, and ownership rating of Experiments 1 and 2.

Measures	Source	Experiment 1	Experiment 2
Self-agency rating	Feedback	F(1,14) = 0.68, p = 0.42	F(1,12) = 1.54, p = 0.23
	Flanker congruency	F(1,14) = 1.22, p = 0.28	F(1,12) = 1.22, p = 0.29
	Tone congruency	F(1,14) = 9.56, p < 0.01	F(1,12) = 5.75, p = 0.03
	Tone congruency × feedback	F(1,14) = 852.01, p < 0.01	F(1,12) = 758.64, p < 0.01
	Flanker × feedback	F(1,14) = 0.24, p = 0.63	F(1,12) = 0.72, p = 0.41
	Flanker × tone congruency	F(1,14) = 0.09, p = 0.76	F(1,14) = 0.008, p = 0.93
Agency rating time	Feedback	F(1,14) = 3.12, p = 0.09	F(1,12) = 3.72, p = 0.07
	Flanker congruency	F(1,14) = 0.07, p = 0.79	F(1,12) = 1.58, p = 0.49
	Tone congruency	F(1,14) = 2.12, p = 0.16	F(1,12) = 0.515, p = 0.48
	Tone congruency × feedback	F(1,14) = 11.04, p < 0.01	F(1,12) = 6.61, p = 0.02
Ownership rating	Feedback	F(1,14) = 0.02, p = 0.88	F(1,12) = 0.08, p = 0.78
	Tone congruency	F(1,14) = 0.54, p = 0.47	F(1,12) = 0.67, p = 0.42
	Tone congruency × feedback	F(1,14) = 1.51, p = 0.23	F(1,12) = 1.32, p = 0.28

Table 3 | Mean ± SD self-agency rating in different conditions of Experiment 1 and 2.

Type of tone	False feedback	True feedback	Paired-sample t-test
Congruent tone			
Experiment 1	0.28 ± 0.08	0.81 ± 0.04	t(14) = 22.13, p < 0.01
Experiment 2	0.23 ± 0.02	0.89 ± 0.04	t(12) = 25.14, p < 0.01
Experiment 2 (excluded participants)	0.75	0.79	
Incongruent tone			
Experiment 1	0.68 ± 0.10	0.18 ± 0.15	t(14) = 10.67, p < 0.01
Experiment 2	0.70 ± 0.07	0.19 ± 0.14	t(12) = 12.80, p < 0.01
Experiment 2 (excluded participants)	0.65	0.17	
FIGURE 2 | Sense of self-agency calculated from discrete scale (e.g., Yes, No, or Maybe) in Experiment 1 (top panels) and Experiment 2 (bottom panels). Standard deviations are plotted as error bars. (A) Average self-agency rating in true and false feedback conditions. (B) Average self-agency rating in congruent and incongruent flankers.

$t(14) = 2.97, p = 0.01$; Experiment 2: $t(12) = 2.75, p < 0.01$ in incorrect responses (Experiment 1: $0.32 \pm 0.15\; s$, Experiment 2: $0.35 \pm 0.17\; s$) than correct responses (Experiment 1: $0.53 \pm 0.18\; s$, Experiment 2: $0.55 \pm 0.15\; s$). The participants responded correctly in 98.95 and 97.84% of total trials (300) in the training phase of Experiments 1 and 2, respectively. In the test phase, participants were significantly slower [Experiment 1: $t(14) = 3.34, p < 0.01$; Experiment 2: $t(12) = 5.82, p < 0.01$] when they made incorrect responses (Experiment 1: $1.5 \pm 0.5\; s$, Experiment 2: $1.23 \pm 0.28\; s$) in comparison to correct responses (Experiment 1: $0.75 \pm 0.06\; s$, Experiment 2: $0.78 \pm 0.04\; s$). The participants responded correctly in 95.53 and 94.82% of total trials (200) in the test phase of experiments 1 and 2, respectively. The participants were significantly slower [Experiment 1: $t(14) = 6.87, p < 0.01$; Experiment 2: $t(12) = 13.16, p < 0.01$] in responding to the target letter when its flankers were incongruent (Experiment 1: $0.83 \pm 0.07\; s$, Experiment 2: $0.86 \pm 0.06\; s$) as compared to congruent (Experiment 1: $0.67 \pm 0.08\; s$, Experiment 2: $0.63 \pm 0.03\; s$).

SENSE OF OWNERSHIP RATING

Rating for sense of ownership was analyzed through repeated measure ANOVA with two within subject factors (tone congruency with prediction, and feedback). There was no main effect of either tone congruency with prediction or feedback on sense of ownership. No significant effect of interaction between tone congruency and feedback on sense of ownership was found (See Table 2).

DISCUSSION

The present study aims to investigate how sense of agency is modulated by feedback about the validity of performed action. Previous research has investigated how factors such as priming the action, priming the outcome, or varying the characteristics of the outcome affect the sense of agency. However, in this study, we address how feedback about action validity affects sense of agency. The results indicate that when true feedback was given, an increased higher sense of agency was observed for congruent as compared to incongruent outcome for the
performed action. The novelty of this study lies in the finding that participants felt a higher sense of agency for the incongruent outcome when false feedback was given. This result suggests that the participants readjusted the prediction of outcome based on the feedback given, and attributed the sense of agency accordingly.

In this study, the participants learned to predict a specific outcome (a pair of tones) contingent on an action performed (a preceding key press). Previous research has shown that manipulating outcome (e.g., tone congruency with the prediction) alters the sense of agency (Fourneret and Jeannerod, 1998; Sato and Yasuda, 2005). Our results confirm the effect of outcome manipulation with a significant main effect for tone congruency on the sense of agency. This is consistent with the comparator model as the prediction generated by the intended action (congruent tone) does not match with the outcome (incongruent tone), i.e., when true feedback was given (consistent with actual action performed), an increased sense of agency was reported for congruent as compared to incongruent tones.

Sato and Yasuda (2005) have found that sense of agency is experienced for both intended and unintended actions (i.e., erroneous actions). In their study, Flanker stimuli introduce ambiguity over action performed and created room for unintended actions /errors. When an error is made, intended action and actual action were different. Hence, predictions of sensory outcomes from intended and actual actions are not the same. Sense of agency was found to be higher when the outcome matched with prediction based on actual action. In contrast, the sense of agency was low when outcome matched with prediction based on intended action, but did not match with actual action (Sato and Yasuda, 2005). These results suggest that a readjustment of prediction of sensory outcome has occurred through error monitoring mechanisms (van Schie et al., 2004; Yordanova et al., 2004).

We used Flanker stimuli similar to Sato and Yasuda (2005) with external feedback about validity of the action performed. The feedback acts as an intermediate outcome before the final tone. If sense of agency depends on intended action independent of feedback, then we should observe a high sense of agency for outcomes (i.e., tone) that are congruent with prediction based on intention (i.e., target letter). On the other hand, if feedback modulates sense of agency, then higher sense of agency would be experienced for incongruent outcome with intended actions when a false feedback is given. Our results support the latter hypothesis that sense of agency has a strong interaction between feedback and outcome congruency with intended action. As expected, sense of agency was high for congruent and low for incongruent outcomes when true feedback was given. In contrast, participants attributed high self-agency for incongruent outcome and low self-agency for congruent outcome, when false feedback was given. We speculate that in case of false feedback, the altered agency attribution would reflect recalibration of sensory predictions.

We assume that participants would believe that experimentally given feedback was always true. We have replicated findings from Experiment 1 with a subset of participants in Experiment 2 who believed in feedback. The estimated correct number of trials matched close to actual number of true feedback trials in Experiment 2. However, during the debriefing session, two of our participants expressed their doubts on the validity of feedback. In the absence of any modulation of the sense of agency by feedback, self-agency should be reported to be high for congruent tones and low for incongruent tones irrespective of feedback. However, for incongruent tones, these participants rated high self-agency with false feedback (Mean = 0.65) in comparison to true feedback (Mean = 0.17; see Table 2). This confirms our findings partially, even when these participants explicitly mentioned low belief in the feedback given. Since there are only two such reports, we have not discussed them in detail.

There could be four possibilities for the modulation of the sense of agency based on the feedback regarding validity of action. (1) Participants could infer that perception of target letter was wrong, (2) Participants could modulate inference of sense of self-agency after the outcome, (3) Participants could readjust the notion of executed motor program, i.e., they inferred that intended action was not actual action, but believed that the other possible action was performed, and (4) Participants could readjust the prediction of sensory outcome from intended action to the outcome of other possible action, irrespective of actual action.

The first possibility is ruled out because we did not find a main effect of flanker on sense of agency. We also argue against any misidentification of key to target map because this information was explicitly displayed until the response was made. Further, these mappings did not change across trials for a given participant. We also rule out the second possibility as low sense of agency was reported for congruent tones with false feedback. If the reconstruction happens after the outcome, participants should have reported a higher sense of agency for congruent tones irrespective of whether the feedback was true or false.

Our results support the third and the fourth possibilities and show that there is a recalibration of sensory prediction based on feedback. However, it is not possible to dissociate whether the
recalibration is based on motor program level (i.e., possibility 3 above) or at the level of predicted outcome (i.e., possibility 4 above). According to this scheme, feedback can override predictions by intended action. Hence, predictions by efference copy of the comparator model would pertain to recalibrated motor program, rather than intended actions alone. Our results support the previous findings of Sato and Yasuda (2005) regarding error trials. In case of error, an internal feedback might be generated, which would in turn recalibrate the predictions of sensory outcome. One further support for our argument comes from the analysis of response times for attribution of sense of agency. Results showed that participants take similar amounts of time to attribute agency when they received false feedback and incongruent outcome as compared to true feedback and congruent outcome. This shows that participants were already expecting the incongruent outcome based on false feedback. While sense of agency was modulated with feedback, such an effect was not apparent on the sense of ownership. Intact sense of ownership in case of false feedback is similar to previous studies on prediction and agency attribution (Sato and Yasuda, 2005). It provides support to previous claims that sense of ownership is driven by mere presence of sensory consequences and is not affected by the characteristics of sensory prediction (Sato and Yasuda, 2005).

Future studies investigating the role of feedback in sense of agency could focus on dissociating recalibration at motor program level vs. predicted outcome level. The feedback stimulus in this study is assumed to be associated with the action performed as part of the Flanker task. However, feedback precedes tone outcome associated with key press. It would be necessary to verify further the exact role of the feedback cue on agency attribution. It also remains to be investigated whether the sense of agency would be modulated or not, if feedback cues were replaced by a prime for outcome. Support for our argument for the role of feedback in recalibration of prediction can be obtained by EEG studies focusing on error related negativity. Alternatively, such a study could also clarify whether the modulation in sense of agency is simply a post hoc reconstruction based on observed outcome with no prediction involved.

In summary, our hypothesis and results suggest that feedback about the validity of action can recalibrate sensory predictions and alter agency attribution. Hence, studies pertaining to sense of self-agency should also include the effect of feedback (which could also be internally driven) beyond the action – outcome contingency driven attribution.

ACKNOWLEDGMENTS
This research was supported by a scholarship from Neotia Foundation to Neeraj Kumar, and Indian Institute of Technology Gandhinagar.

REFERENCES
Aarts, H., Custers, R., and Wegner, D. M. (2005). On the inference of personal authorship: enhancing experienced agency by priming effect information. Conscious. Cogn. 14, 439–458. doi: 10.1016/j.concog.2004.11.001
Brainard, D. H. (1997). The Psychophysics toolbox. Spat. Vis. 10, 433–436. doi: 10.1163/15685697X003357
David, N., Newen, A., and Vogeley, K. (2008). “The ‘sense of agency’ and its underlying cognitive and neural mechanisms.” Conscious. Cogn. 17, 523–534. doi: 10.1016/j.concog.2008.03.004
Dijksterhuis, A., Preston, J., Wegner, D. M., and Aarts, H. (2008). Effects of subliminal priming of self and God on self-attribution of authorship for events. J. Exp. Soc. Psychol. 44, 2–9. doi: 10.1016/j.jesp.2007.01.003
Eriksen, B. A., and Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a non-search task. Percept. Psychophys. 16, 143–149. doi: 10.3758/BF03202667
Fournier, P., and Jeannerod, M. (1998). Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia 36, 1133–1140. doi: 10.1016/S0028-3932(98)00006-2
Frith, C. D. (1992). The Cognitive Neuropsychology of Schizophrenia. Hove: Lawrence Erlbaum. doi: 10.1111/j.1467-8705.1995.tb01057.x
Gallagher, S. (2000). Philosophical conceptions of the self: implications for cognitive science. Trends Cogn. Sci. 4, 14–21. doi: 10.1016/S1364-6613(99)01417-5
Haggard, P., Clark, S., and Kalogeras, J. (2002). Voluntary action and conscious awareness. Nat. Neurosci. 5, 382–385. doi: 10.1038/nn827
Knoblich, G., and Sebanz, N. (2005). Agency in the face of error. Trends Cogn. Sci. 9, 259–261. doi: 10.1016/j.tics.2005.04.006
Sato, A., and Yasuda, A. (2005). Illusion of sense of self-agency: discrepancy between the predicted and actual sensory consequences of actions modulates the sense of self-agency, but not the sense of self-ownership. Cognition 94, 241–255. doi: 10.1016/j.cognition.2004.04.003
Synofzik, M., Thier, P., and Lindner, A. (2006). Internalizing agency of self-action: perception of one’s own hand movements depends on an adaptable prediction about the sensory action outcome. J. Neurophysiol. 96, 1592–1601. doi: 10.1152/jn.00104.2006
Weinke, D., Fleming, S. M., and Haggard, P. (2010). Subliminal priming of actions influences sense of control over effects of action. Cognition 115, 26–38. doi: 10.1016/j.cognition.2009.10.016
Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347. doi: 10.1016/S1364-6613(98)01221-2
Yordanova, J., Falkenstein, M., Hohnbein, J., and Kolev, V. (2004). Parallel systems of error processing in the brain. Neuroimage 22, 590–602. doi: 10.1016/j.neuroimage.2004.01.040
van der Weiden, A., Aarts, H., and Ruys, K. I. (2010). Reflecting on the action or its outcome: behavior representation layer modulates high level outcome priming effects on self-agency experiences. Conscious. Cogn. 19, 21–32. doi: 10.1016/j.concog.2009.12.004
van Schie, H. T., Mars, R. B., Coles, M. G. H., and Bekkering, H. (2004). Modulation of activity in medial frontal and motor cortices during error observation. Nat. Neurosci. 7, 549–554. doi: 10.1038/nn1239

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 April 2013; accepted: 05 February 2014; published online: 25 February 2014.

Citation: Kumar N, Manjaly JA and Miyapuram KP (2014) Feedback about action performed can alter the sense of self-agency. Front. Psychol. 5:145. doi: 10.3389/fpsyg.2014.00145

This article was submitted to Consciousness Research, a section of the journal Frontiers in Psychology.

Copyright © 2014 Kumar, Manjaly and Miyapuram. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.