Eukaryotic gene expression relies on extensive crosstalk between transcription and RNA processing. Changes in this composite regulation network may provide an important means for shaping cell type-specific transcriptomes. Here we show that the RNA-associated protein Srrt/Ars2 sustains embryonic stem cell (ESC) identity by preventing premature termination of numerous transcripts at cryptic cleavage/polyadenylation sites in first introns. Srrt interacts with the nuclear cap-binding complex and facilitates recruitment of the spliceosome component U1 snRNP to cognate intronic positions. At least in some cases, U1 recruited in this manner inhibits downstream cleavage/polyadenylation events through a splicing-independent mechanism called telescripting. We further provide evidence that the naturally high expression of Srrt in ESCs offsets deleterious effects of retrotransposable sequences accumulating in its targets. Our work identifies Srrt as a molecular guardian of the pluripotent cell state.
Eukaryotes are characterized by a remarkable degree of coordination between different steps of their gene expression program. Most mRNA precursors (pre-mRNAs) are modified by the addition of a 7-methylguanosine cap to the 5′ end, excision of introns by the spliceosome, and 3′-terminal cleavage and polyadenylation. Aberrant RNA species are degraded by specialized quality control mechanisms. All these events can occur co-transcriptionally, receiving regulatory inputs from elongating RNA polymerase II (Pol II) but also modulating the efficiency of RNA synthesis through various forms of functional feedback.

Co-transcriptional capping of Pol II transcripts followed by the assembly of the nuclear cap-binding complex (CBC) provides a critical line of communication between RNA synthesis and subsequent processing events. The two core subunits of the CBC, Ncbp1/Cbc80 and the Ncbp2/Cbc20, can recruit several additional co-factors including the conserved multipurpose adapter protein Srrt/Ars2 (refs. 10–13). Srrt has been shown to mediate degradation of promoter-proximal transcripts in an exosome-dependent manner, promote termination, and regulate cleavage of replication-dependent histone mRNAs and several other Pol II transcripts, and control production of small non-coding RNAs (ref. 10–12, 14–16). Of note, CBC can stimulate pre-mRNA splicing by recruiting U1 snRNP and other components of the spliceosome complex to cap-proximal introns (ref. 24), but whether this activity depends on Srrt is an open question.

Unlike the core CBC components expressed at relatively stable levels across different conditions, Srrt tends to be substantially more abundant in proliferating cells than in their differentiated or quiescent counterparts. Consistent with this behavior, Srrt has been shown to promote proliferation of mammalian cells both in vitro and in vivo (ref. 14, 20, 21). These effects may be facilitated by the microRNA or and histone mRNA regulation activities of Srrt (ref. 10–14, 22–23). On the other hand, Srrt contributes to maintenance of mouse neural stem cells (NSCs) in a microRNA-independent manner, by promoting expression of the critical transcription factor Sox2 (ref. 24). Notably, Srrt is critical for early development in vertebrates (ref. 25, 26). However, molecular mechanisms underlying this effect remain poorly understood.

Pre-mRNA cleavage and polyadenylation is another crucial point of gene regulation. These two coupled reactions involve co-transcriptional assembly of multisubunit protein complexes at a 6-nt polyadenylation signal (PAS) and its adjacent sequences, cleavage of the nascent transcript at the cleavage/polyadenylation site (CS) located typically 10–30 nt downstream of the PAS, and subsequent addition of a poly(A) tail to the newly formed 3′ end (ref. 27–29). Co-transcriptional cleavage/polyadenylation triggers a rapid release of the elongating Pol II complex from the DNA template (ref. 30).

Interestingly, recruitment of U1 snRNP to 5′ splice sites (SSs) or other cognate motifs can repress downstream CSSs through a splicing-independent mechanism known as telescoping (ref. 31, 32). Telescoping is required for normal expression of relatively long mammalian genes (ref. 33, 34), and its efficiency can be modulated by global changes in transcriptional activity of the cell altering the ratio between free and pre-mRNA-associated U1 (ref. 32). However, it is unclear if telescoping can be controlled in a more nuanced cell type-specific manner. Similarly, the emerging link between telescoping and early steps of Pol II elongation awaits further experimental characterization (ref. 35–36).

Embryonic stem cells (ESCs) are developmentally early progenitors capable of self-renewal and differentiation into the three germ layers of the embryo proper. Several transcription factors including Pou5f1/Oct4, Nanog, and Sox2 are known to play a key part in specifying molecular identity of this and other types of pluripotent stem cells (ref. 37–39). Here we identify Srrt as a top candidate in a screen for additional regulators involved in ESC maintenance. We show that Srrt functions in this context by suppressing premature termination of transcription at cryptic cleavage/polyadenylation sites in first introns. This mechanism affects hundreds of genes active in ESCs and is mediated by CBC-dependent recruitment of U1 snRNP to 5′-proximal pre-mRNA sequences. In addition to its possible contribution to evolutionarily conserved gene regulation events, this activity limits deleterious effect of retrotransposable elements (RTEs) accumulating in first introns of its target genes. Overall, our work uncovers a transcription-wide antitermination circuitry with important roles in ESC biology.

Results

ESC maintenance depends on naturally high expression of Srrt. To understand possible role of RNA-based regulation mechanisms in maintenance of mouse ESCs, we inspected genes downregulated during neuronal and spontaneous differentiation of this cell type (Fig. 1a). A stringent shortlisting procedure identified 84 top candidates with expression levels decreasing monotonically in both differentiation models (Supplementary Data 1). The list contained several previously characterized ESC-enriched transcription factors including but not limited to Pou5f1/Oct4 and Sox2 (Supplementary Data 1). Among putative regulators of RNA processing Srrt was a particularly promising candidate since its knockout (KO) results in preimplantation embryonic lethality but its role in ESCs, i.e. cells matching this stage of mouse development, has not been investigated systematically.

Srrt protein was readily detectable in mouse ESCs and its levels were substantially reduced in proliferating NSCs (fold change (FC) = 2.9; t-test p = 1.3e-04) and post-mitotic neurons (FC = 5.8; t-test p = 8.8e-04; Fig. 1b). Srrt expression was also downregulated upon withdrawal of 2i inhibitors and LIF, the compounds required to maintain ESCs in an undifferentiated naıve state (Supplementary Fig. 1a, b; FC = 2.4; t-test p = 0.034; ref. 42). Of note, the expression of the CBC subunit Ncbp1 remained constant under these conditions (Supplementary Fig. 1a, b; t-test p = 0.78).

To address functional significance of the naturally high expression of Srrt in ESCs, we downregulated it to a level comparable to that observed in more differentiated cells using a mixture of four Srrt-specific siRNAs (siSrrt; Fig. 1c; compare with Fig. 1b and Supplementary Fig. 1a, b). This led to a loss of the characteristic rounded morphology of ESC colonies and reduced ESC-specific alkaline phosphatase activity compared to cultures treated with a control siRNA (siCtrl; Fig. 1d). Srrt knockdown also led to a readily detectable differentiation effect in a colony formation assay (Fig. 1e, f, Supplementary Fig. 1c–f). Moreover, siSrrt triggered a modest but statistically significant decrease in the expression of ESC-enriched surface markers SSEA1 and Pecam1/CD31 (Supplementary Fig. 1g, h). This suggests that maintenance of ESCs depends on relatively high expression of Srrt.

Srrt knockdown has a global effect on the ESC transcriptome. RNA-sequencing (RNA-Seq) analysis uncovered considerable changes in the transcriptome of siSrrt-treated ESCs with 1828 downregulated and 1590 upregulated genes (FC ≥ 1.5 and false discovery rate (FDR) < 0.05; Supplementary Data 2). The regulated genes showed a partial overlap with those changing their expression during spontaneous differentiation of ESCs (Supplementary Fig. 2a). Although expression of many pluripotency markers including Pou5f1/Oct4, Sox2, and Nanog remained unchanged in response to siSrrt, some examples of this category (e.g. Nr0b1, Pecam1, and Zic2) were detectably
Fig. 1 Srrt is required for mouse ESC maintenance.

a Bioinformatics workflow used to identify putative regulators of mouse ESC identity.

b Top: immunoblot analysis of Srrt expression in mouse ESCs, cortical NSCs, and cortical neurons prepared and cultured in vitro as described. Bottom: Srrt protein expression was quantified from three independent experiments (mean ± SD) and compared using a two-tailed t-test.

c Top: ESCs were transfected with an Srrt-specific siRNA mixture (siSrrt) or a non-targeting control siRNA (siCtrl) and Srrt knockdown efficiency was analyzed by immunoblotting 48 h later. Bottom: the experiment was repeated twice (mean ± SD) and the samples were compared using a two-tailed t-test.

d ESCs were transfected with siSrrt as in c and assayed for alkaline phosphatase (AP) activity. Note pronounced changes in morphology of colonies and individual cells and a decrease in the AP staining intensity.

e Colony assay data showing that siSrrt does not change the overall number of ESC colonies but significantly increases the fraction of flattened differentiated colonies compared to siCtrl. The assay was repeated three times (mean ± SD) and analyzed by a two-tailed t-test.

f Left: RT-qPCR data showing that, while Srrt knockdown does not change expression of pluripotency markers Pou5f1, Sox2, Nanog, and Zfp42/Rex1, it leads to significant downregulation of Nr0b1, Pecam1, and Zic2 and upregulation of early differentiation markers Etv4, Otx2, and Runx1 (refs.39,43,87). Right: targets strongly downregulated by siSrrt include additional examples of known ESC markers and factors with possible regulatory roles in proliferating cells (refs.43–47).

All RT-qPCR experiments were done at least in triplicate and shown as mean ± SD. The expression levels in siCtrl-treated samples were set to 1, and the p values were calculated using a two-tailed t-test. Source data are provided as a Source Data file.
downregulated (Supplementary Fig. 2b). Conversely, expression of many developmental and differentiation markers increased (Supplementary Fig. 2b), in line with enrichment of corresponding gene ontology (GO) terms among the upregulated genes (Supplementary Data 3). For example, the GO terms developmental process, multicellular organismal development, and cell differentiation were enriched with FDRs 3.6E-6, 7.4E-6, and 1.5E-5, respectively (Supplementary Data 3). We confirmed RNA-Seq expression data for 20 pluripotency and differentiation markers selected for RT-qPCR validation (Fig. 1g, Supplementary Fig. 1c).

Notably, downregulated genes were over-represented among the most reliable changes triggered by siSrrt (Supplementary Fig. 2d). Although we did not detect significantly enriched GO terms for this category of genes, some of the especially robust downregulation targets (FC ≥ 2 and FDR < 1E-50; dark red dots in Supplementary Fig. 2d) encoded known ESC markers and positive regulators of cell proliferation. Relevant examples included alkaline phosphatase Alpl (the enzyme assayed in Fig. 1d and Supplementary Fig. 1c,e), epigenetic regulator Cdyl2, activin receptor Acvr1b/Alk4, nuclear receptor co-activator Dcaf6/NRIP, and a conserved RAGNYA domain protein Ammecl1 mutated in the Alport syndrome with mental retardation, midface hypoplasia, and elliptocytosis[43–47]. Downregulation of these genes was confirmed by RT-qPCR (Fig. 1g). Thus, Srrt may help ESCs to maintain their undifferentiated status by regulating extensive sets of genes.

Srrt limits expression of prematurely terminated transcripts. We noticed that many genes responded to Srrt knockdown by accumulating RNA-Seq reads in first (5′-proximal) introns (Supplementary Fig. 3a). This often coincided with downregulation of the corresponding genes (the lower right quadrant in Supplementary Fig. 3b and the blue line in Supplementary Fig. 3c) and when it did, the increase in the RNA-Seq coverage was strongly biased towards the 5′ end of the first intron (Supplementary Fig. 3d). Relevant examples included the genes in the right plot in Fig. 1g (see below). To check if this behavior could be due to premature termination of transcription, we mapped the position of cleavage/polyadenylation sites (CSs) using 3′-proximal RNA-sequencing (3′RNA-Seq). This revealed a widespread activation of CSs within first introns in siSrrt-treated ESCs (Fig. 2a, Supplementary Fig. 4a). Significant changes in premature cleavage/polyadenylation were less common in other introns and lacked the upregulation trend observed for first introns (Fig. 2a). Upregulated CSs in first introns tended to occur relatively close to the 5′ splice site (5′ss) (Fig. 2b). Significantly fewer of these CSs were previously annotated in the polyA_DB3 database[48] compared to their counterparts located in 3′UTRs of the same genes (30.1% vs 81.4%; Fisher’s exact test p = 3.9E-179). However, the incidence of canonical cleavage/PAS AATAAA or its common variant ATTAAA upstream of these two CS categories was virtually indistinguishable (Supplementary Fig. 4b). Hence, Srrt dampens the expression of multiple transcripts terminated at a poorly characterized class of CSs in first introns.

Srrt blocks cleavage/polyadenylation in first introns. Two possibilities could account for accumulation of prematurely terminated transcripts in response to Srrt knockdown: (1) enhanced pre-mRNA cleavage and polyadenylation at the corresponding intronic positions or (2) increased stability of these relatively short RNA species. The former mechanism should lower the production of full-length mRNA isoforms, while the latter is unlikely to produce this effect. Notably, activation of CSs in first introns strongly correlated with an overall decrease in expression levels of the corresponding genes (Fig. 2c, Supplementary Fig. 4c, Supplementary Data 4) and downregulation of CSs in their 3′UTRs (Supplementary Fig. 4d). There were 284 genes with intronic CS (iCS) upregulated ≥2-fold, FDR < 0.05 and expression level reduced ≥1.5-fold, FDR < 0.05, and an even larger number of genes showing this trend was detected using less stringent cutoffs (Supplementary Data 4). Genes upregulated despite the activation of iCSs were clearly a minority, and the increase in the overall expression levels in this case tended to be due to accumulation of prematurely terminated isoforms (e.g. the Till1 gene in Supplementary Data 4).

RNA-Seq and 3′RNA-Seq coverage plots for individual targets were consistent with our transcriptome-wide analyses (Fig. 2d, Supplementary Fig. 5a). We used the 3′-terminal version of rapid amplification of cDNA ends (3′RACE) to map the regulated iCSs for three genes selected for experimental validation, Ammecl1, Cdyl2, and Dcaf6 (Supplementary Fig. 5b). In all three cases, siSrrt increased the RT-qPCR signal upstream of the iCSs and simultaneously reduced the abundance of downstream RNA sequences (Fig. 5a). This corresponded to a ~3–7-fold decrease in the ratio between the full-length and prematurely terminated transcripts, a statistic that we refer to as iCS readthrough efficiency (Supplementary Fig. 5c). A similar decrease in readthrough efficiency was evident when we substituted the siSrrt mixture with any of its three most efficient constituents, siSrrt#1, siSrrt#2, or siSrrt#3 (Supplementary Fig. 6a, b). The three individual siRNAs also caused largely similar to siSrrt effects on the expression of pluripotency and differentiation markers (Supplementary Fig. 6c–e).

To directly test the impact of intronic cleavage/polyadenylation on gene expression, we focused on Ammecl1. The overall expression of this biomedically important gene[45] decreased while the relative abundance of the iCS-terminated species increased during ESC differentiation into neurons, consistent with the Srrt downregulation trend (Supplementary Fig. 7a–d). Furthermore, knockdown of the full-length Ammecl1 transcripts induced detectable upregulation of a subset of the siSrrt-induced differentiation markers (Supplementary Fig. 7e, f). Ammecl1 is encoded on the X chromosome, which also makes it an easy target for reverse genetics in male ESCs.

Importantly, when we deleted Ammecl1 sequence containing two PAS upstream of the strongest Srrt-regulated iCS using CRISPR-Cas9 (Fig. 3a, b), the mutant allele (APAS) lost its ability to undergo premature cleavage and reduce its expression output following Srrt knockdown (Fig. 3c–e). Together, these data suggest that Srrt promotes expression of full-length mRNAs by blocking premature cleavage/polyadenylation in first introns.

iCS repression does not depend on the exosome or small RNAs. Since Srrt has been previously shown to destabilize transcription start site (TSS)-proximal transcripts in an exosome-dependent manner[12], we compared our 3′RNA-Seq data with results of 3′ end-proximal RNA-Seq (2P-Seq) for mouse ESCs where the exosome complex was inactivated by knockout of its core subunit Exosc3[36]. Metaplot analysis of siSrrt-regulated genes showed a robust accumulation of TSS-proximal RNAs transcribed in the sense but not the antisense direction (Supplementary Fig. 8a). On the other hand, Exosc3 KO increased the abundance of both sense and antisense transcripts in the same genomic regions (Supplementary Fig. 8b), as described previously[36]. In stark contrast to siSrrt, Exosc3 KO had no detectable effect on the abundance of full-length mRNAs transcribed from Srrt-dependent genes (Supplementary Fig. 8c). Although downregulation of the catalytic exosome subunits Exosc10 and Dis3 by corresponding siRNAs promoted some accumulation of
prematurely terminated Ammecr1 RNA (Supplementary Fig. 8d, e), neither these nor an Exosc3-specific siRNA decreased the abundance of full-length Ammecr1 transcripts (Supplementary Fig. 8d, e). Conversely, exosome-specific siRNAs caused more efficient accumulation of TSS-proximal upstream antisense transcripts compared to siSrrt (Supplementary Fig. 8e).

To check the possibility that intronic cleavage/polyadenylation might be controlled through Srrt-stimulated production of small noncoding RNAs, we turned to published RNA-Seq data for Dicer1/Dicer KO in mouse ESCs with a validated effect on microRNA activity. The gene expression changes induced by Srrt knockdown and Dicer1 KO showed no global correlation (Supplementary Fig. 9a) and the expression of Srrt-regulated genes did not generally change in response to Dicer1 KO (Supplementary Fig. 9b). Moreover, inspection of RNA-Seq coverage profiles for individual Srrt targets showed no evidence for iCS regulation by Srrt.
Srrt-mediated repression of iCSs relies on the CBC. To examine possible contribution of the CBC to the Srrt-dependent anti-termination activity, we knocked down Ncbp1 in mouse ESCs and compared the effect of this treatment with that induced by siSrrt (Fig. 4a). RNA-Seq and 3′RNA-Seq analyses revealed a noticeable correlation between the siNcbp1- and the siSrrt-treated samples in terms of overall gene expression changes and activation of CSs in first introns (Fig. 4b, c, Supplementary Fig. 10a–c).

To test if Srrt and Ncbp1 functioned in the same pathway, we generated an ESC line containing a doxycycline (Dox)-inducible human SRRT transgene (SRRT-Tg) resistant to mouse-specific siSrrt (Fig. 4d, Supplementary Fig. 10d). Importantly, SRRT-Tg was sufficient to repress termination of Ammecr1 transcripts in the first intron induced by siSrrt but not by siNcbp1 (Fig. 4e, f). In line with this functional interaction between the two proteins and published data for their human counterparts,[11,12] Srrt and Ncbp1 interacted physically in mouse ESCs in a nucleic acid-independent manner (Supplementary Fig. 10e). RNA immunoprecipitation (RIP) with Ncbp1-specific antibodies showed that siSrrt did not alter the ability of Ncbp1 to interact with (pre-)mRNAs (Supplementary Fig. 10f), suggesting that Ncbp1 might be required for recruiting Srrt to its targets but not the other way around.

We concluded that the ability of Srrt to repress cleavage/polyadenylation in first introns depends on its interaction with the CBC.

Srrt facilitates U1-binding upstream of regulated iCSs. CBC can promote recruitment of U1 to cap-proximal introns, and this snRNP can in turn antagonize cleavage/polyadenylation via telescripting[18,31]. To assess possible contribution of these mechanisms, we mapped U1-binding sites in formaldehyde-crosslinked ESCs using RNA antisense purification-sequencing.
Rescues the effect of siSrrt but not siNcbp1 in the SRRT-Tg cells suggesting that Ncbp1 is essential for Srrt-mediated repression of iCSs. Data in averaged from three experiments ± SD and compared by a two-tailed showing that significant bias towards the 5′ clusters deduced using a previously described approach was similar to siSrrt (Fig. 2c), siNcbp1-mediated activation of iCSs often coincides with downregulation of corresponding genes. Red, genes with significantly regulated by both siSrrt and siNcbp1 (FDR < 0.05; red) show an increase in relative efficiency (top right quadrant). c Scatter plot showing that, similar to siSrrt (Fig. 2c), siNcbp1-mediated activation of iCSs often coincides with downregulation of corresponding genes. Red, genes with significant changes in relative CS efficiency in first introns (FDR < 0.05) and expression levels (FC ≥ 1.5 and FDR < 0.05). Gray, the rest of the genes. d ESCs containing a human SRRT transgene (SRRT-Tg; TRE-SRRT-r3′UTR) or a control expression cassette (Control-Tg; TRE-EGFP-r3′UTR) were pre-treated with 2 μg/ml Dox for 24 h and transfected with siCtrl, siNcbp1, or siSrrt. Expression levels of the Ncbp1 and Srrt proteins were analyzed by immunoblotting 48 h later. Note that, compared to siCtrl, siNcbp1 and siSrrt reduce the abundance of the corresponding proteins in both transgenic backgrounds. However, the combined Srrt/SRRT expression in the SRRT-Tg/siSrrt sample still exceeds the Srrt levels in Control-Tg/siCtrl. Erk1/2, lane loading control. TRE, Dox-inducible promoter; r3′UTR, recombinant 3′UTR from SV40 virus. For quantification of this experiment see Supplementary Fig. 10d. e, f RT-qPCR analysis showing that both siSrrt and siNcbp1 decrease transcriptional readthrough of iCS in the Ammecr1 gene in the Control-Tg background. f Recombinant SRRT rescues the effect of siSrrt but not siNcbp1 in the SRRT-Tg cells suggesting that Ncbp1 is essential for Srrt-mediated repression of iCSs. Data in e, f were averaged from three experiments ± SD and compared by a two-tailed t-test. Source data are provided as a Source Data file.

(RAP-Seq; ref. 50; Fig. 5a). We ascertained that the U1 pull-down procedure worked successfully by monitoring enrichment of U1 snRNA precursors and depletion of the 45S ribosomal RNA (Supplementary Fig. 11a). Reflecting the known U1 interaction preferences, input-normalized RAP-Seq reads showed a detectable bias towards the 5′ end of all introns and first introns containing Srrt-repressed iCSs (Supplementary Fig. 11b, c).

Although the siCtrl- and the siSrrt-treated ESCs showed generally similar U1-binding profiles (Supplementary Fig. 11b, c), we noticed a discernable U1 peak upstream of the Srrt-regulated iCSs in the siCtrl but not the siSrrt sample (Supplementary Fig. 11d). Supporting this observation, the incidence of U1 clusters deduced using a previously described approach was significantly higher in a 250-nt window upstream of Srrt-repressed iCSs than in a similarly sized downstream window in the siCtrl-treated cells (Fig. 5b). This was consistent with enrichment of relatively strong U1-binding motifs upstream of iCSs compared to corresponding downstream positions and 250-nt windows adjoining CSs in 3′UTRs of the same genes (Fig. 5c). Importantly, Srrt knockdown led to a significant drop in U1 cluster coverage upstream of the regulated iCSs (Fig. 5b).

The above effects were also detectable for individual Srrt targets. For example, two prominent U1 RAP-Seq peaks between the 5′s and the strongest Srrt-repressed CSs in the first intron of the Ammecr1 gene were significantly enriched over the input in the siCtrl- but not the siSrrt-treated samples (Fig. 5d). RT-qPCR analyses of the pull-down and the input fractions confirmed that U1 binding to the corresponding intronic positions was significantly reduced by Srrt knockdown (Fig. 5e). In contrast, U1 occupancy in the first intron of Ncbp2, a control gene not regulated by Srrt, showed no significant difference between the siCtrl and siSrrt samples (Fig. 5e, Supplementary Fig. 11e).

The siSrrt effect on U1 recruitment was not due to major changes in U1 snRNA steady-state levels or its processing efficiency (Supplementary Fig. 12a, b). The levels of the U1 snRNPs Srnra/U1-A and Snrp70/U1-70K were also unaffected (Supplementary Fig. 12c, d). Furthermore, we compared our RAP-Seq data for siSrrt-treated samples with a similar analysis published for mouse ESCs where U1 was inactivated by an antisense morpholino oligonucleotide (AMO). Although both treatments promoted premature cleavage/polyadenylation in first introns, inactivation of U1 clearly differed from Srrt knockdown
by additionally inducing this effect in non-first introns on a transcriptome-wide scale (Supplementary Fig. 12e, f).

These data suggest that Srrt facilitates U1 recruitment upstream of regulated CSs in first introns rather than substantially altering overall activity of this snRNP in mouse ESCs.

Srrt-recruited U1 can promote telescripting. As a direct test of the U1 effect on iCSs, we treated ESCs with a U1-specific AMO (amoU1; Fig. 6a). This enhanced the efficiency of premature cleavage/polyadenylation in the first intron of Ammecr1 pre-mRNA compared to samples treated with a non-targeting control

Fig. 5 Srrt stimulates U1-binding upstream of CSs in first introns. a Outline of the U1 RAP-Seq experiment. b Boxplot of U1 RAP-Seq cluster coverage showing stronger binding of U1 snRNP in a 250-nt window upstream of Srrt-regulated iCSs than in a similarly sized window downstream of these sites in siCtrl-treated samples. Note that U1-binding efficiency is diminished following Srrt knockdown. P values were calculated using a two-tailed Wilcoxon signed rank test. The box bounds represent the first and the third quartiles and the thick black lines at the bottom of the boxes show the medians. Since the distributions are skewed towards 0, only the top whisker is evident, extending to 1.5× of the range between the third and the lowest and highest data points or, if there are outliers, 1.5× of the interquartile range. Open circles, outliers.

c Consistent with the data in b, the 250-nt window upstream of Srrt-repressed CSs tends to contain stronger putative U1-binding motifs (measured as the maximum 5′ss MaxEnt value) than the 250-nt downstream window or similarly sized windows abutting CSs in the corresponding 3′UTRs. P values were calculated using a two-tailed Wilcoxon rank sum test. Violin plot outlines show kernel density estimates of probability densities; open circles, the medians; and bounds of the black boxes, the first and the third quartiles. Whiskers extend from the first and the third quartile to the lowest and highest data points or, if there are outliers, 1.5× of the interquartile range. b, c iCSs were considered regulated if they were upregulated ≥2-fold, FDR < 0.05 and their host gene was downregulated ≥1.5-fold, FDR < 0.05 in response to siSrrt. d Input-normalized RAP-Seq coverage profile and Piranha clusters (U1-1 and U1-2) showing strong interaction of U1 snRNP with at least two intronic positions preceding the Srrt-repressed CS in the Ammecr1 gene in the siCtrl- but not siSrrt-treated ESCs. Sequences enriched in RAP-Seq vs input are shown in black and those depleted are in gray. Primers used in the RT-qPCR validation experiment in e are shown at the bottom. e RT-qPCR validation of RAP-Seq results using primer pairs matching U1 Piranha clusters in b and Supplementary Fig. 11e. Note that input-normalized signals are significantly higher in siCtrl U1 RAP samples than in their siSrrt-treated counterparts for the two regulated Ammecr1 clusters but not for a control cluster in the Ncbp2 pre-mRNA. Data were averaged from three experiments ± SD and compared by a two-tailed t-test. Source data are provided as a Source Data file.
(amoCtrl) or an antisense morpholino against another spliceosomal snRNA, U2 (amoU2). The noticeably stronger effect of amoU1 than that of amoU2 suggested that Srrt-stimulated recruitment of U1 snRNP could inhibit iCSs through telescripting rather than the spliceosome assembly pathway.

To test this hypothesis, we prepared a minigene construct by fusing the exon 1-intron 1 junction and the Srrt-regulated iCS region of the Ammecr1 gene with a recombinant 3′UTR containing a constitutive CS (Fig. 6b). Since it lacked a functional 3′ss, this cassette allowed us to assay telescripting in the absence of pre-mRNA splicing. The minigene was expressed in ESCs pre-treated with siSrrt or siControl, and the use of the Ammecr1 iCS was analyzed by RT-qPCR (Fig. 6c). Recapitulating the behavior of endogenous Ammecr1 pre-mRNAs, minigene-derived transcripts showed more efficient iCS readthrough in the siCtrl than in the siSrrt samples (Fig. 6c).

Mutation of the 5′ss, i.e. the site where U1 binds to initiate splicing of endogenous Ammecr1 transcripts, had no detectable effect on the minigene response to siSrrt (Fig. 6c). However, when we mutated three additional positions predicted to interact with U1, the minigene was terminated at the iCS regardless of the Srrt expression levels (Fig. 6c). On the other hand, deletion of the PAS hexamers (∆PAS) preceding the iCS led to a constitutive telescripting readthrough phenotype (Fig. 6c).

These results confirm that Srrt can block intronic cleavage/polyadenylation through a U1-dependent telescripting mechanism. Many iCSs emerged through retrotransposition. Our data so far suggested that productive transcription of a large subset of genes active in ESCs depends on Srrt abundance. To understand evolutionary mechanisms underlying this regulation, we examined interspecies conservation scores52 for 50 nt windows bounded by 40 nt upstream and 10 nt downstream of Srrt-regulated iCSs (Fig. 7a). A fraction of these sequences (39.6%) showed detectable conservation (average PhastCons score ≥ 0.1). This category included Ammecr1, Cdy2, and Dcaf6, which had their iCS-associated PAS hexamers present in several mammalian species (Supplementary Fig. 13).

A majority of the Srrt-regulated sequences (60.4%) were conserved poorly or not at all (average PhastCons score < 0.1). Since RTEs provide an important source of interspecies diversity33,34, we wondered if mouse/rodent-specific iCSs could appear as a result of relatively recent retrotransposition events. Strikingly, an RTE density plot revealed a prominent peak of these elements integrated in the sense orientation immediately upstream of the Srrt-repressed iCSs (Fig. 7b). Conversely, antisense RTE sequences were depleted in this region (Fig. 7b).

The iCS-associated sense-strand peak was ~200 nt wide suggesting that it could be dominated by relatively short RTEs (Fig. 7b). Indeed, most of the sense-strand RTEs that terminated around an iCS (±50 nt) belonged to the group of short interspersed nuclear elements (SINEs), although a few long
interspersed nuclear elements (LINEs) and long terminal repeats (LTRs) were also detected (Fig. 7c). Members of the B2 SINE family were especially common at this position (Supplementary Fig. 14a), consistent with the presence of canonical PASs in their consensus sequence. Overall, 31.2% of all regulated iCSs were associated with 3' ends of sense-strand RTEs.

iCS-associated B2 SINEs were found for example in genes encoding activin receptor Acvr1b (see also Fig. 1g), WNT pathway modulator Ankrd6/Diversin, Down Syndrome critical
region protein Dscr3, and heat-shock protein-associated factor Hspbp1 (Fig. 7d, Supplementary Data 4; https://www.genecards.org). Genes with iCSs occurring at the end of a LINE repeat included those encoding ankyrin repeat and SOCS box protein Asb3 and a component of a regulatory complex interacting with unmethylated DNA in ESCs, Zbtb25 (Fig. 7e, Supplementary Data 4; https://www.genecards.org). In many cases, PAS hexamers preceding iCSs matched corresponding elements in the parental RTEs (Fig. 7d, e).

iCSs occurring at the 3’ end of sense-strand RTEs were significantly less conserved than the rest of the iCSs (Fig. 8a), suggesting that the corresponding RTE sequences might be a result of relatively recent jumps. Indeed, the iCS-associated repeats were less divergent from the master copies, as compared to control groups comprising all sense or antisense repeats from first introns or the entire collection of repeats found in the mouse genome (Fig. 8b).

Regardless of the RTE association status of their iCSs, all Srrt-regulated first introns showed a significantly higher density of RTE-derived sequences compared to non-regulated first or non-first introns (Fig. 8c, Supplementary Fig. 14b). We also observed a strong bias towards antisense orientation of RTEs in all groups of introns (Fig. 8c), suggesting that sense-oriented RTEs might be more disruptive and therefore subject to stronger purifying selection than their antisense counterparts.

We concluded that, in addition to controlling evolutionarily conserved events, Srrt might repress deleterious iCSs appearing as a result of retrotransposition.

Discussion

Our study uncovers a global antitermination mechanism responsible for productive expression of multiple genes in pluripotent stem cells (Fig. 8b). This mechanism relies on the ability of Srrt to associate with the CBC and block premature cleavage/polyadenylation of pre-mRNAs in first introns by promoting recruitment of U1 snRNP to cap-proximal sequences. We show that, at least in the case of the disease-associated gene Ammecr1, Srrt-augmented U1 binding can promote transcriptional read-through of a downstream iCS as a result of telesequencing.

Three lines of evidence argue that Srrt is an important regulator of ESC identity. (1) Srrt is substantially more abundant in ESCs than in other cell types including actively proliferating NSCs (Fig. 1b, Supplementary Fig. 1a, b). (2) Normal expression of hundreds of iCS-containing genes active in ESCs relies on the naturally high levels of Srrt (Fig. 2c, Supplementary Fig. 4d and Supplementary Data 4). (3) Srrt downregulation in ESCs to levels considered physiological in other cell types induces several differentiation-specific changes (Fig. 1b–g and Supplementary Figs. 1 and 2a–c). It is possible that the latter effect depends, at least in part, on reduced expression of a subset of the iCS genes. Indeed, knockdown of Ammecr1 leads to statistically significant upregulation of some differentiation markers induced in response to Srrt-specific siRNAs (Supplementary Fig. 7f). Further research will be required to understand molecular functions of the Ammecr1 protein and identify other Srrt targets that may contribute to the ESC differentiation phenotype.

The role of Srrt in ESCs appears to be distinct from its function as a transcriptional activator of Sox2 gene in NSCs24. Sox2 mRNA levels did not change in our siSrrt-treated samples implying that other mechanisms must ensure robust expression of this important transcription factor in ESCs. This may be achieved through cross-activation of Sox2 by Pou5f1, Nanog, or other transcriptional regulators present in ESCs but not NSCs25–29. Alternatively, it is possible that the residual amount of Srrt protein in siSrrt-treated ESCs (Fig. 1c) is sufficient for promoting Sox2 transcription but not for blocking iCSs. Consistent with a possible difference in quantitative requirements of the two mechanisms, Srrt is ~3 times more abundant in ESCs than in NSCs cultured in vitro (Fig. 1b).

Our data support the emerging view that, in addition to their reliance on transcription factors, pluripotent stem cells depend on adequate expression patterns of a number of RNA-associated proteins. These include for example pre-mRNA splicing regulators identified in recent studies36–38. It is likely that further quantitative analyses of expression changes triggered by ESC differentiation or transition of differentiated cells to induced
Fig. 8 Recurrent retrotransposition may increase gene dependence on Srrt. a Regulated iCSs associated with 3' ends of sense-strand RTEs show significantly lower evolutionary conservation (PhastCons) score than other regulated iCSs. b Sense-strand RTEs terminated in iCS vicinity are typically less divergent from the corresponding master copies than control groups. c The overall RTE density is significantly higher in Srrt-regulated first introns than in non-regulated first or non-first introns. Also note a strong bias towards antisense orientation of RTEs in all groups of introns. d Length of first introns positively correlates with the percent of sequence occupied by RTEs on both strands. Dashed line, linear regression. e Consistent with their higher RTE load, the length of first introns in Srrt-dependent genes tends to exceed that of non-regulated or non-first introns. a–c, e iCSs were considered regulated if they were upregulated in response to siSrrt ≥2-fold, FDR < 0.05, and their host gene was downregulated ≥1.5-fold, FDR < 0.05. In a–c and e, box bounds, the first and the third quartiles; thick black lines, the medians. Whiskers extend from the first and the third quartile to the lowest and highest data points or, if there are outliers, 1.5× of the interquartile range. Outliers are not shown. f Gene expression in ESCs shows a negative relationship with the length of the first intron even in the presence of normal amounts of Srrt. Shown are mean expression values ± SEM in siCtrl-treated ESCs for genes with short (shorter than the 1/3 quantile; i.e. <1524 nt), midsize (i.e. longer than or equal to the 1/3 quantile but shorter than the 2/3 quantile; i.e. 1524 and <7251 nt), and long first introns (longer than or equal to the 2/3 quantile; i.e. ≥7251 nt). Note that genes with AATAAA(s) in the first intron are expressed at levels statistically indistinguishable from their AATAAA-free counterparts. g Srrt knockdown leads to preferential downregulation of genes with long first introns containing at least one AATAAA hexamer. h Naturally high levels of Srrt help ESCs to maintain their gene expression program through a transcription antitermination mechanism.
pluriopotency will uncover additional factors altering RNA processing and tuning the way it communicates with transcription. Mounting evidence suggests that U1 snRNP-dependent readthrough of premature CSs is a widespread mechanism facilitating efficient transcription of long mammalian genes\(^1,13,34\). Furthermore, many Pol II promoters are inherently bidirectional and the preferred direction for productive elongation appears to be selected based on the ability of promoter-proximal RNA sequences to recruit U1 snRNPs and limit the effect of premature cleavage/polyadenylation\(^34-38\). Interestingly, the efficiency of telescripting can be modulated by dynamic interactions between the U1 snRNP and nascent pre-mRNA pools, linking rapid transcriptional activation in cells responding to external cues with corresponding changes in alternative cleavage/polyadenylation patterns\(^32\).

We extend this line of research by showing that the ability of U1 to inhibit cryptic CSs can be tuned depending on the cell type and the 5′ to 3′ position of regulated sequences. This regulation logic is conceptually similar to prokaryotic antitermination used for example by bacteriophage λ to switch between immediate and delayed early phases of its gene expression programs\(^39\). Despite fundamental mechanistic differences both systems rely on elevated expression of key RNA-associated factors, Srrt in ESCs and the N protein in λ, to repress transcription termination signals.

We cannot currently rule out that, in a subset of genes, Srrt-recruited U1 may antagonize intronic cleavage/polyadenylation through kinetic competition with splicing, instead of or in addition to telescripting. Supporting possible involvement of Srrt in splicing, some of its targets not regulated at the level of mRNA abundance appear to retain first introns in siiRt-treated ESCs (yellow line in Supplementary Fig. 3d). Moreover, Srrt is known to control splicing decisions in plants\(^61,62\). What might determine the choice between telescripting- and splicing-dependent mechanisms on a transcriptome-wide scale is an interesting question for future studies.

It will also be important to understand how different molecular activities of Srrt are balanced depending on the cell type and RNA target identity. Especially intriguing is the ability of Srrt to promote 3′-terminal processing/termination in some cases\(^11,12,34,63\) while antagonizing it in a transcriptome-wide manner in mouse ESCs (Fig. 2c, Supplementary Fig. 4d and Supplementary Data 4). We envisage at least two non-mutually exclusive explanations. (1) Srrt may block cleavage/polyadenylation only in the presence of sufficiently strong U1-binding motifs between the 5′-terminal cap and the iCS. In addition to promoting telescripting, U1 recruited to these positions might potentially compete with cleavage/polyadenylation machinery for overlapping interaction sites in the Srrt protein. (2) Alternatively, ESCs may express yet-to-be-identified Srrt-associated factors overriding the ability of this multipurpose adaptor to stimulate cleavage/polyadenylation or/and strengthening its contacts with U1.

Several Srrt-regulated iCSs appear to be conserved in evolution (Fig. 7a, Supplementary Fig. 13), pointing at their potential adaptive value. For example, such intronic elements may limit the abundance of iCS-terminated Ammecr1 transcripts (Supplementary Fig. 13), pointing at their potential adaptive or/and strengthening its contacts with U1.

What could be the role of Srrt in this context? Interestingly, Srrt-regulated first introns have a higher RTE load compared to non-regulated first and non-first introns (Fig. 8c, Supplementary Fig. 14b). This might reflect possible integration bias of RTEs to open chromatin, making first introns in genes transcriptionally active at the preimplantation stage especially vulnerable to recurrent and potentially heritable retrotransposition\(^44-46\). Accumulation of RTEs in this region would in turn dampen gene expression by introducing PAs/ICs directly (Fig. 7) or making the acquisition of new PAS-like mutations more likely due to an increase in intron length (Fig. 8c–g, Supplementary Fig. 14b).

We propose that the natural over-expression of Srrt helps ESCs to alleviate potentially damaging consequences of this genome-wide effect. The largely negative impact of RTEs on individual fitness is often discussed in conjunction with their role as an important source of evolutionary innovation\(^34,35,47-70\). Hence, an intriguing possibility that should be investigated in the future is that, besides protecting the transcriptome, Srrt may also function as a genetic capacitor allowing initially deleterious events to be repurposed for building new regulation modules.

Methods

Cell culture techniques. Azl2o mouse ESCs\(^71\) were cultured in a humidified incubator at 37 °C, 5% CO\(_2\), in plates or dishes coated with gelatin (Millipore, cat# E006-B) in 2i medium\(^37\) containing a 1:1 mixture of Neurobasal (Thermo Fisher Scientific, cat# 21103069) and DMEM/F12 (Sigma, cat# D9523) media supplemented with 100 units/ml PenStrep (Thermo Fisher Scientific, cat# 15104022), 1 µM PD0329910 (Cambridge Bioscience, cat# SM26-2), 3 µM CHIR99021 (Cambridge Bioscience, cat# SM13-1), 0.5 mM l-glutamine (Thermo Fisher Scientific, cat# 25300022), 1 µM h-mercaptoethanol (Sigma, cat# M3148), 1000 units/ml ESGRO LIF (Millipore, cat# ESG1107), 0.5% B-27 supplement without vitamin A (Thermo Fisher Scientific, cat# 12587010) and 0.5X N2 supplement. N2 100X stock was prepared using DMEM/F12 medium as a base and contained 5 mg/ml BSA (Thermo Fisher Scientific, cat# 15260037), 2 µg/ml progesterone (Sigma, P7873-1G), 1.6 mg/ml putrescine (Sigma, P5780-5G), 3 µg/mL sodium selenite solution (Sigma, S5261-1G), 10 mg/ml apo-transferrin (Sigma, T1147-100MG), and 1 mg/ml insulin (Sigma, I0516-5ML) and stored in single-use aliquots at −80 °C.

Cells were typically passaged every 2–3 days by treating the cultures with 0.05% TrypLE-EDTA (Thermo Fisher Scientific, cat#15400054) for 8–10 min at 37 °C. After quenching trypsin with FBS (Thermo Fisher Scientific, cat# SH3007003E), cells were washed once with neurobasal medium and plated at a 1:6 dilution. For RNA interference (RNAi) experiments, 2 × 10\(^5\) cells were seeded in 1 ml of 2i medium per gelatinized well of a 12-well and immediately transfected with 50 pmol of an appropriate siRNA (Horizontal Discovery; see Supplementary Data 5 for details) premixed with 3 µl of Lipofectamine 2000 (Thermo Fisher Scientific, cat# 11668019) and 100 µl of Opti-MEM I (Thermo Fisher Scientific, cat# 31985070), as recommended. The cultures were then incubated for 48 h without changing the medium. In minigene experiments, cells pre-treated with siRNAs for 24 h were transfected with 50 pmol of appropriate DNA (Horizontal Discovery) and 100 µl of Opti-MEM 100 µl of Opti-MEM I and incubated for another 24 h prior to RNA extraction.

Stable knock-in lines were generated as follows. Azl2o cells were pre-treated overnight with 1 μg/ml doxycycline (Dox; Sigma, cat# D9891-1G) to activate Cre expression, trypsinized, and then transfected in suspension with an appropriate pLox-based plasmid mixed with 3 µl of Lipofectamine 2000 and 100 µl of Opti-MEM I and incubated for 48 h prior to RNA extraction.

2×10\(^5\) cells were seeded in a 6-cm dish and transfection was done using FuGENE HD (Promega) according to the manufacturer’s instructions. Cells were transfected with 1 µg/ml Dox overnight, transfected with a mixture containing two synthetic EditR gRNAs flanking the deletion region (50 pmol each; Horizon Discovery; see Supplementary Data 5) or two EditR Non-Targeting control gRNAs (50 pmol each; Horizon Discovery, cat# U-007501-01-05 and U-007501-01-65) and 100 pmol of synthetic EditR tracrRNA (Horizon Discovery, cat# U-002005-05) at 1–2 × 10\(^5\) cells per well of a 12-well plate using conditions described for RNAi experiments. Cells were trypsinized 24 h post-transfection, FBS-quenched, passed through Falcon 40 μm cell strainers (Corning, cat# 352340) to obtain a single-cell suspension, and serially diluted in 2i medium prior to re-plating in six-well format. The cultures were then maintained for 8–12 days with regular medium changes and colonies originating from individual cells were picked, expanded, and their genomic DNA was analyzed for the presence of desired deletion using PCR genotyping (see below).

For AMO delivery, 2 × 10\(^5\) ESCs were electroporated in the presence of 7.5 μM of U2-specific, U2-2 specific, or a scrambled AMO (Gene Tools, LLC; see Supplementary Data 5) in Amaxa Nucleofector II (Lonza) using ESC-specific program A-23 and Mouse Embryonic Stem Cell Nucleofector Kit (Lonza, cat#...
Pluripotency/differentiation assays. To assess gene knockdown effects on ESC pluripotency/differentiation status, siRNA-transfected cells were incubated in 2i medium supplemented with 2% FBS for 48 h and stained using an alkaline phosphatase detection kit (Millipore, cat# SCR004) as recommended. In colony medium supplemented with 2% FBS for 48 h and stained using an alkaline phosphatase, imaged, and analyzed using ImageJ (https://imagej.nih.gov/ij/; see Supplementary Data 5 for further information on the computer software used in this study).

RT-qPCR. Cells were transfected with siRNA using the PicoNeX Ultra Mix Red (PCR Biosystems, PB10.33-05): (1) with the 3′ RACE_Q0 primer and a gene-specific primer GS1 and (2) with the RACE_Q1 primer and a gene-specific primer GS2 (Supplementary Data 7). The PCR products were then agarose gel-purified using a NucleoSpin gel and PCR clean-up kit (Macherey Nagel cat# 740069.250) and analyzed by Sanger sequencing.

Northern blotting. Northern blotting was performed using a DIG Northern starter kit (Merck, cat# 12039672910), as recommended. To prepare a 1-μm-specific antisense digoxigenin-labeled probe, pML475 plasmid (Supplementary Data 6) was linearized with PvuII (New England Biolabs), purified using a Nucleospin gel and PCR clean-up kit, and used as a template for SRO RNA polymerase. 2.0 × 10^6 A2lox ESCs were cultured in 10 cm gelatinized dishes in 10 ml of 2i medium and immediately transfected with pmol of either siCtrl or siSrrt premixed with 27 μl of Lipofectamine 2000 and 1.5 ml of Opti-MEM I. Total RNA was extracted 48 h post-transfection using TRIZol as described above. Purified RNA samples were dissolved in nucleic acid-free water at ~1 μg/ml and 2-μg aliquots were mixed with 8 μl of the gel loading buffer containing 98% Formamide (Thermo Fisher Scientific, cat# 15310526), 10 mM EDTA, 200 μg/ml bromophenol blue (Thermo Fisher Scientific, cat# 10243420), and 200 μg/ml xylene cyanol (Severn Biotech Ltd, cat# 30-60-01). The samples were then denatured at 70 °C for 5 min, chilled on ice, and resolved by electrophoresis in 8% polyacrylamide gels (acrylamide/bis: 29:1; Severn Biotech Ltd, cat# 20-3500-05) containing 8 M urea (Thermo Fisher Scientific, cat# 15505-027) and 1× TBE (Sigma, cat# T4415). RNA transfers were performed to the gels to Hybond-N+ membranes (Merck, cat# GERPN1210B) using a Trans-Blot SD semi-dry transfer cell (Bio-Rad) in 0.5× TBE at 3 mA/cm². Membranes were stained with 0.1% maleine blue phenol (Fisher Scientific, cat# 11443697) in 0.3 M sodium acetate pH 5.2 (Sigma, cat# S7899) and photographed. After destaining in 0.2× SSC (Sigma, cat# S6639) and 1× SDS (Promega, cat# H5114) membranes were blocked with DIG Easy Hyb solution at 68 °C for 30 min and hybridized with 100 ng/ml probe in DIG Easy Hyb solution at 68 °C overnight. The membranes were then washed twice in 2× SSC with 0.1% SDS at room temperature and twice in 0.1× SSC with 0.1% SDS at 68 °C, 5 min each wash. The subsequent steps were done at room temperature. Membranes were washed in the Washing solution containing 0.1 M maleic acid-NaOH, pH 7.5 (Sigma, cat# M0375), 0.15 M NaCl (Sigma, cat# 71376-1KG) and 0.3% (v/v) Tween 20 (Sigma, cat# P9416) for 5 min and blocked in 1× DIG Northern starter kit blocking solution for 30 min. This was followed by incubation with anti-digoxigenin-AP (1:10,000) in blocking solution for 30 min at 37 °C, washed twice with the Washing buffer, 15 min each. Membranes were finally rinsed in the Detection buffer (0.1 M Tris-Cl, pH 9.5 (Thermo Fisher Scientific, cat# BP152-1) and 0.1 M NaCl) for 5 min and chemiluminescence was detected using the CDP-Star reagent and an Odyssey imaging system (LI-COR Biosciences).

Immunoblotting. Cells grown in six-well plates were washed three times with ice-cold 1× PBS and proteins were extracted using 100–200 μl/well of RIPA lysis buffer (Santa Cruz Biotechnology; cat# sc-364162) supplemented with 1 mM PMSF (New England Biolabs, cat# 8553 S) and the recommended amount of Complete EDTA-free protease inhibitor cocktail (Roche, cat# 4963132001). Protein concentrations were determined using a Pierce BCA Protein Assay Kit. Protein samples (10–25 μg) were run on an 8% PAGE gel and transferred to PVDF membrane, blocked with 5% skim milk powder in TBS-T and incubated overnight. Membranes were washed three times with TBS-T and probed with primary antibodies at the following dilutions: 1:100 for β-actin, 1:1000 for Phospho ERK1/2 (Cell Signaling Technology, cat# 4370) and 1:1000 for phospho-p38 MAPK (Cell Signaling Technology, cat# 4511). Membranes were washed again three times and incubated with anti-mouse or anti-rabbit IgG conjugated to HRP (Cell Signaling Technology, cat# 7074 and 7026). The membranes were washed three times and developed using chemiluminescence substrate for ECL+ (Amersham, cat# RPN2232) as recommended by the manufacturer. Films were exposed on a x-ray film (Kodak, cat# X-OMAT) for 1-5 min. The bands were detected using a Bio-Rad ChemiDoc XRS+ imaging system and bands were quantified using the Image Lab software (Bio-Rad).
co-IP/RIP lysis buffer was additionally supplemented with 100 μg/mL of uridine RNAse inhibitor. The lysates were centrifuged at 16,000 × g for 10 min at 4 ºC and the supernatant was pulsed with a microtip and centrifuged again. In some experiments, the lysates were supplemented with 25 μg of Dynabeads protein G beads (Thermo Fisher Scientific, cat# 10030D) preloaded with 5 μg of protein-specific antibodies (Supplementary Data 5) or a non-immune rabbit IgG control (Thermo Fisher Scientific, cat# 10500C). Lysates were incubated with rotation at 4 ºC overnight. In some experiments, lysates were supplemented with 25 units/mL of benzamidine (Merck, cat# 70664-3) before mixing them with the beads. Beads were washed three times with 200 μL PBS and 0.5% Tween 20 and bead-associated proteins and RNAs were eluted using 1× Laemmli sample buffer or TRizol and analyzed by immunoblotting or RT-qPCR, respectively.

RNA-Seq. For RNA-Seq, A202g cells were transfected with appropriate siRNAs as described above. Total RNAs were extracted 48 h post-transfection using TRizol Plus RNA Purification Kit (Thermo Fisher Scientific cat# 12183555). RNAs were eluted in nuclease-free water, quality-controlled using a Bioanalyzer (Agilent), and hybridized with oligo(dT) magnetic beads to isolate the poly(A) RNA fraction used for subsequent library preparation steps. Stranded mRNA sequencing libraries were prepared using the TruSeq Stranded mRNA Library Preparation Kit (Illumina cat# RS-122-1201 and RS-122-2102). Purified libraries were qualified on an Agilent Technologies 2200 TapeStation using a D1000 ScreenTape assay (cat# 3067-5852 and 3067-5853). The molarity of adapter-modified molecules was defined by quantitative PCR using the Kapa Library Quant Kit (Kapa Biosystems; cat# KPR-1002). Indexed libraries were normalized to 10 nM and cycled up to 200 ng each, then pooled in preparation for Illumina sequence analysis. Sequencing libraries (25 pM) were chemically denatured and applied to an Illumina HiSeq v4 single-read flow cell using an Illumina cBot. Hybridized molecules were clonally amplified and analyzed by single-end sequencing. Sequencing reagents (Illumina; cat# FC-401-4002). All library preparation and sequencing steps were carried out by the Huntsman Cancer Institute High-Throughput Genomics facility, University of Utah, USA.

RAP-Seq. RNA antisense purification (RAP) of formaldehyde-crosslinked samples was performed in principle as described48, 3.5 × 10⁶ A202g ESCs were plated in 10 cm gelatinized dishes in 10 mL of 2i medium and immediately transfected with 500 pmol of siRNAs premixed with 27 μL of Lipofectamine 2000 and 1.5 μL of OptiMem I. Medium was replaced only 24 h post-transfection and the culture was incubated for another 24 h. The cells (~8 × 10⁶) were then washed once with 10 mL PBS and crosslinked with 7 mL of prewarmed 2% formaldehyde freshly diluted in PBS from 10% stock (Thermo Fischer Scientific, cat# 10030003) for 10 min at 37 ºC with agitation (1000 rpm). Formaldehyde was quenched by adding 2.5 M glycine (Sigma, cat# G8988-500G) to a final concentration of 500 mM and incubating the plate at 37 ºC for 5 min. Cells were then washed three times with cold PBS and scrapped off the plate in 2 mL of ice-cold Scraping Buffer (1 × PBS and 0.3% DNase/RNAse-free BSA (Thermo Fischer Scientific, cat# 209080) for 5 min at 4 ºC). Cells were then lysed with cold 1% SDS in 1× PBS for 40 min on ice. The lysates were centrifuged at 3000 × g for 7 min at 4 ºC and the pellets containing nuclei were resuspended in 1 mL of GuSCN Hybridization Buffer (20 mM Tris-HCl pH 7.5, 5 mM EDTA, 3 mM EGTA (Sigma, cat# E3889-10G), 150 mM KCl (Sigma, cat# S4256-100G), 1% NP-40 (Sigma, cat# 8806-100ML), 0.2% N-lauroylsarcosine (Sigma, cat# L7144-10ML), 0.1% sodium deoxycholate (Sigma, cat# D6750-25G), 3 M guanidine thiocyanate (Sigma, cat# G9277-100G), and 2.5 mM TCEP). We solubilized chromatin and fragmented RNA by sonicating the samples for 8 min using a Sonics Vibra-Cel VC130 Ultrasonic Processor equipped with a 0.25 μm tip at an output of 50% and 100% amplitude. The lysates were centrifuged at 16,000 × g for 10 min at 4 ºC and the supernatants were pre-cleared by incubating them for 30 min with MyONE Streptavidin C1 magnetic beads (100 μl original volume, coated to 25 μl in GuSCN Hybridization Buffer; Thermo Fisher Scientific, cat# 65010) followed by magnetic separation in a DynMag-2 rack (Thermo Fisher Scientific, cat# 13221D). Small aliquots (~10 μl) of pre-cleared lysates were saved and used later as RNA input controls.

For RAP, pre-cleared lysates from 5 × 10⁶ cells were hybridized with 50 pmol of biotinylated RNA oligonucleotide probe against U1 snRNA (Supplementary Data 5) at 1200 °C with agitation (1000 rpm). Chromatin crosslinking (Eppendorf). The mixtures were then combined with MyONE Streptavidin C1 magnetic beads (500 μl original volume, coated to 125 μl in GuSCN Hybridization Buffer) and incubated at 37 °C for 30 min with shaking. The beads were washed at 45 °C with six changes of 500 μl GuSCN Wash Buffer (20 mM Tris-HCl pH 7.5, 10 mM EDTA, 1% NP-40, 0.2% N-Lauroylsarcosine, 0.1% sodium deoxycholate, 3 M guanidinium thiocyanate, and 2.5 mM TCEP), and one of 10 μl of NaH Elution Buffer. The beads were subsequently resuspended in 55 μl of NaH Elution Buffer mixed with 7.5 mM NaH (5 μl/vial; New England Biolabs, cat# M0297S) and incubated at 37 ºC for 30 min with shaking to digest ssDNA-RNA hybrids and release U1-associated RNAs. The resultant eluates were stored on ice. Second elution step was performed by resuspending the beads in 62.5 μl GuSCN Hybridization Buffer and shaking for 5 min at 37 ºC. The first and second eluates were then combined. The combined eluates and RNA inputs were mixed with 312.5 μl NLS Elution Buffer (20 mM Tris-HCl pH 7.5, 10 mM EDTA, 2% N-Lauroylsarcosine, 2.5 mM TCEP), 50 μl of NaCl, and 12.5 μl Proteinase K (Thermo Fisher Scientific, cat# E00491) and incubated at 60 °C for 2 h. RNAs were then purified by mixing the eluates 1 μl of DNAse I Solution (Thermo Fisher Scientific, cat# D7002D) preincubated in RLT buffer (Qiagen, cat# 79215) and resuspended in 50 μl of 5 M NaCl. The suspensions were supplemented with 550 μl of 100% isopropanol, incubated for 2 min at room temperature, and magnetically separated. The beads were washed twice with 600 μl 70% ethanol and dried for 10 min. RNAs were eluted from the beads in 25 μl of nuclease-free water and treated with 2 units of TURBO DNase in 1× TURBO DNase buffer for 10 min at 37 ºC, without removing the beads from the tubes. The RNAs were then bound to the beads once again by adding 87.5 μl RLT and 112.5 μl isopropanol. The beads were washed twice in 70% ethanol, air-dried and RNAs were eluted from the beads in 25 μl of nuclease-free water.

RNAs were then processed using a NEBNext® RNA Depletion Kit (New England Biolabs, cat# E6350S) as recommended. RNA-Seq libraries were generated using NEBNext® Ultra II Directional RNA Library Preparation kit (New England Biolabs, cat# E7765S; following the protocol for RNA Depleted FFPE/Strongly fragmented RNA). Individual libraries were normalized using Qubit and then pooled. The merged library was analyzed using TapeStation 4200. Individual libraries were normalized and pooled together accordingly. The pooled library was diluted to ~10 nM for storage. The 10 nM library was denatured and further diluted prior to loading on the sequencer. Paired-end sequencing was performed using a HiSeq4000 75 bp platform (Illumina, HiSeq 3000/4000 PE Cluster Kit and 150 cycle SBS Kit). All library sequencing steps were carried out by the Oxford Genomics Centre, University of Oxford, UK.

Bioinformatics. All analyses were carried out using mmul UCSC mouse genome and transcriptome files from Illumina (https://support.illumina.com/sequencing/sequencing_software/genome.html) and UCSC Genome Browser (https://genome.ucsc.edu/). Canonical UCSC transcripts were used for most of the analyses (knownCanonical UCSC transcripts). Genomic intervals were analyzed using Bedtools or custom R scripts. Duplicated features with identical genome positions and gene names were removed from the analyses.

Scallop. Known splice-site files <hisat2_known_splice_sites.txt> were aligned with HISAT2 (ref. 74) using an mm10 UCSC-based genome index and a list of known splice junctions derived from the UCSC-based mm10 genes.file (ftp://hgdownload.cse.ucsc.edu/goldenPath/mm10/mm10/mm10Genome_resources.79216.tar.gz). The alignment was done as follows: hisat2 -p 4 -c <threads> -S <salted_pairwise> -t <hisat2_known_splice_sites.txt> -x <hisat2_genome_index> -U <file.fastq> -S <file.bam>

HISAT2-mapped reads were converted to BAM format using SAMTools75 and annotated to annotated exons from the genes.file using the featureCounts function of the Rsubread package76,77 in a strand-specific manner. Differentially expressed genes were then identified using the edgeR package with the estimateGLMRobustDisp function78,79. GO-term enrichment was calculated using the gosim package79 with gene lengths taken into account. Venn diagrams and gene expression heat maps were generated using VennDiagram (https://cran.r-project.org/web/packages/VennDiagram/) and heatmap packages (https://cran.r-project.org/web/packages/pheatmap/), respectively. RNA-Seq coverage metabolites were prepared using ngs.plot80.
Relative intron coverage (RIC) statistic was calculated as

\[
\text{RIC} = \frac{I}{E},
\]

where \(I\) is the total number of intronic reads and \(E\) are spanning junctions between the intron and the adjacent exons by \(\geq 10\) nt and \(E\) is the number of reads matching the adjacent exons and their splice junction. Reads were assigned to the \(J\) and \(E\) intervals using BedTools\(^4\). Significant statistical difference of RIC changes was assessed by two-tailed Fisher’s exact test comparison of \(E\) to \(I\) values between two experimental conditions. Entries with \(I < 5\) and \(E < 10\) in both conditions were excluded from the analysis. FDR was calculated by adjusting the resultant \(p\) values using the Benjamini–Hochberg method.

To analyze changes in cleavage/polyadenylation patterns, 3′-proximal RNA-Seq data were aligned to mm10 genome using Bowtie2 (ref. \(^8\)) with trimming the excluded from the analysis. FDR was calculated by adjusting the resultant \(p\) values between CSs. Individual CSs were then clustered by merging positions spaced by 12 nt to remove poly(A) tail-derived sequences: poly(A) tails were identified using Bedtools. Exonic features from the mm10 UCSC annotation using Bedtools.

Incidence of PAS hexamers in a 50 nt window bounded by 40 nt upstream and 10 nt downstream of the middle of CS clusters was calculated using a custom Python script. Cleavage/polyadenylation clusters were considered novel if their middle was >50 nt away from annotated cleavage/polyadenylation sites from the polya_DB3 database\(^4\) converted from mm9 to mm10 coordinates using UCSC Genome Browser liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver).

RNA-Seq data (Supplementary Fig. 8a, b), genomic regions of interest were split into equally sized bins and a normalized change in each bin using Bedtools and plotted as mean ± SEM. Divergence of individual RICs from consensus sequence was assessed using RepeatMasker multiDiv statistic (base mismatches in parts per thousand; http://www.repeatmasker.org). Cluster density in specific genomic regions was calculated using Benjamini–Hochberg correction (FDR). Numbers of experimental replicates, \(p\) values, and the tests used are indicated in the figures and/or figure legends.

To prepare metaplots for RAP-Seq data, genomic regions of interest were divided into 100 bins and the bamCompare-processed values were averaged for each bin using Bedtools and plotted as mean ± SEM.

PhastCons data for placental mammals\(^5\) were downloaded from UCSC Genome Browser (http://hgdownload.cse.ucsc.edu/goldenpath/mm10/phastCons60way/mm10.60way.phastCons60wayPlacental.bw) and average PhastCons scores were calculated for 50 nt windows bounded by 40 nt upstream and 10 nt downstream of the middle of CS clusters.

RepeatMasker data for RTEs were retrieved from UCSC Genome Browser. RTE consensus sequences were obtained from https://www.girinst.org/repbase/. To generate RTE density maps, 2 kb windows centered on the middle of CS clusters were divided into 100 bins and SINE, LINE andLTR coverage for each bin was calculated using Bedtools and plotted as mean ± SEM. Divergence of individual RTEs from consensus sequence was assessed using RepeatMasker multiDiv statistic (base mismatches in parts per thousand; http://www.repeatmasker.org).

Cluster density in specific genomic regions of interest was calculated using Benjamini–Hochberg correction (FDR). Numbers of experimental replicates, \(p\) values, and the tests used are indicated in the figures and/or figure legends.

Data availability

A reporting summary for this article is available as a Supplementary Information file. The RNA-Seq, 3′-RNA-Seq, and RAP-Seq data generated in this study are available from ArrayExpress (E-MTAB-7626, E-MTAB-7635). Publicly available sequencing data used in our study are summarized in Supplementary Data 5. The source data underlying Figs. 1b, c-e, g-d, 3b, 3d-e, 4d-f, 5e and 6a, c and Supplementary Figs. 1a, b, 2c, e, 5a, 6a-c, 7e, f, 8d, e, 10d-e, 11a and 12a-d are provided as a Source Data file. All data are available from the corresponding author upon reasonable request.

Code availability

Computer code used in this study is described in the Methods and Supplementary Data 5.

Received: 26 April 2019; Accepted: 11 December 2019; Published online: 17 January 2020

References

1. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. *Nature* **416**, 499–506 (2002).

2. Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. *Cell* **136**, 688–700 (2009).

3. Skalska, L., Beltran-Netob, M., Ule, J. & Jenner, R. G. Regulatory feedback from nascent RNA to chromatin and transcription. *Nat. Rev. Mol. Cell Biol.* **18**, 331–337 (2017).

4. Saldi, T., Cortazar, M. A., Sheridan, R. M. & Bentley, D. L. Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing. *J. Mol. Biol.* **428**, 2623–2635 (2015).

5. Bresson, S. & Tollervey, D. Surveillance-ready transcription: nuclear RNA decay as a default fate. *Open Biol.* **8**, https://doi.org/10.1098/rsob.170270 (2018).

6. Hsin, J. P. & Manley, J. L. The RNA polymerase II CTD coordinates transcription and RNA processing. *Genes Dev.* **26**, 2119–2137 (2012).

7. Jensen, T. H., Jacquier, A. & Libri, D. Dealing with pervasive transcription. *Cell* **52**, 473–484 (2012).

8. Gonatopoulos-Pournatzis, T. & Cowling, V. H. Cap-binding complex (CBC). *Biochem. J.* **457**, 231–242 (2014).

9. Muller-McNicoll, M. & Neugebauer, K. M. Good cap/bad cap: how the cap-binding complex determines RNA fate. *Nat. Struct. Mol. Biol.* **21**, 9–12 (2014).
Acknowledgements

We thank Carolina Barcellos Machado, Georgii Bazykin, Fursham Hamid, Michael Kyba, Ivo Lieberam, Stefan Mockenhaupt, Karen Yap, Feng Zhang, and Anna Zhuravskaya for reagents and helpful discussions. We are also grateful to Snezhka Oliferenko for valuable comments on the manuscript. This work was supported by the Biotechnology and Biological Sciences Research Council (BB/M001199/1, BB/M007103/1, and BB/R001049/1) and European Commission (H2020-MSCA-RISE-2016; Project ID 734794).

Author contributions

Y.A.K. designed and conducted the experiments, analyzed the data, and wrote the paper. E.V.M. designed experiments, analyzed the data, and wrote the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-14204-z.

Correspondence and requests for materials should be addressed to E.V.M.

Peer review information Nature Communications thanks Yangming Wang, Xuebing Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020