Association of Circulating Cathepsin B Levels With Blood Pressure and Aortic Dilation

Tianci Chai¹,²,³†, Mengyue Tian⁴†, Xiaojie Yang²,⁵, Zhihuang Qiu¹,², Xinjian Lin⁴ and Liangwan Chen¹,²*¹

¹ Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China, ² Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China, ³ Department of Anesthesiology, Xinyi People's Hospital, Xuzhou, China, ⁴ Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China, ⁵ Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China

Hypertension is a key risk factor for spontaneous coronary artery dissection (SCAD) and aortic dilation. Circulating proteins play key roles in a range of biological processes and represent a major source of druggable targets. The aim of this study was to identify circulating proteins that were associated with blood pressure (BP), SCAD and aortic dilation. We identified shared genetic variants of BP and SCAD in genome-wide association studies, searched for circulating protein affected by these variants and examined the association of circulating protein levels with BP, aortic aneurysm and dissection (AAD) and aortic diameters by integrating data from circulating protein quantitative trait loci (pQTL) studies and genome wide association study (GWAS) in individuals from the UK Biobank using two-sample Mendelian randomization analysis methods. Single nucleotide polymorphisms (SNPs) in JAG1, ERI1, ULK4, THSD4, CMIP, COL4A2, FBN1, FAM76B, FGGY, NUS1, and HNF4G, which were related to extracellular matrix components, were associated with both BP and SCAD. We found 49 significant pQTL signals among these SNPs. The regulated proteins were encoded by MMP10, IL6R, FIGF, MMP1, CTSB, IGHG1, DSG2, TTC17, RETN, POMC, SCARF2, RELT, and GALNT16, which were enriched in biological processes such as collagen metabolic process and multicellular organism metabolic process. Causal associations between BP and AAD and aortic diameters were detected. Significant associations between circulating levels of cathepsin B, a well-known prorenin processing enzyme, and BP and aortic diameters were identified by using several Mendelian randomization analysis methods and were validated by independent data.

Conclusion: The present study identified the association between circulating cathepsin B and BP and aortic diameters. The findings indicated that BP-associated genetic variants may influence aortic dilation risk by circulating proteins that regulate BP.

Keywords: blood pressure, genome-wide association study, circulating proteins, cathepsin, spontaneous coronary artery dissection (SCAD), aortic dissection (AD)
INTRODUCTION

Aortic dissection (AD) is the major diseases affecting the aorta and a leading cause of morbidity and mortality. Recently, the Global Burden Disease 2010 project demonstrated that the overall global death rate from aortic aneurysms and AD increased from 2.49 per 100,000 to 2.78 per 100,000 inhabitants between 1990 and 2010 (1, 2). The burden increases with age, and men are more often affected than women (1). Spontaneous coronary artery dissection (SCAD) is one of the most dangerous forms of vascular disease and is characterized by endometrial rupture and intramural hematoma formation. Until now, the occurrence and development of SCAD and AD have been unpredictable.

Aortic disease in Marfan syndrome is the result of defects in the fibrillin-1 (FBN1) gene that localizes to chromosome 15q15-31 (3). Genetic studies have demonstrated familial aggregation of AD and have resulted in the mapping of several novel genetic loci for the condition (4–6). Genes associated with AD include FBN1, TGFBR1/2, TGFBR1, EFEMP2, MYH11, ACTA2, COL3A1, SLC2A10, SMAD3, LOX, FOXE3, MFAP5, MAT2A, PRKG1, and so on (7). Genetic variants in LRPI and ULK4 are associated with sporadic thoracic AD (5).

The common occurrence of SCAD in young patients without risk factors for atherosclerosis and the identification of cases with familial association have led to the hypothesis of possibly genetically mediated pathophysiologic mechanisms. Pathogenic variants were found in COL3A1 (8), SMAD3 (8, 9), TGFBR1/2, TGFB 2/3 (10), FBN1, PHACTR1/EDN1 (11), TSRI (12, 13), TLNI (14), and others (14–16). A recent genome wide association study (GWAS) has identified associations at chromosome 1q21.2 in ADAMTS4, chromosome 6p24.1 in PHACTR1 and chromosome 12q13.3 in LRPI and identified associations of non-coding variants in the LRPI gene at chromosome 12q13.3 and near MRPI/KCNE3 at chromosome 21q22.11 for SCAD (15). The findings of these studies support a complex genetic basis of SCAD. However, although some of the identified variants have been shown to affect gene expression, most of the genetic associations have remained unexplained.

Environmental factors such as hypertension (HTN) that cause increased vascular pressure and lead to activation of stress- and stretch-induced pathways in aortic smooth muscle cells contribute to increased risk and progression of SCAD. Therefore, factors associated with increased blood pressure (BP) were risk factors for SCAD and AD. GWAS have identified many genetic loci for BP (17), and there were overlapping associated genes between BP, SCAD and AD. Genetic factors may directly influence the structure of the arterial wall or act indirectly through risk factors such as BP, ultimately resulting in an increase in arterial stiffness. The indirect factors involved in the regulatory pathway by which genetic variants influence SCAD and AD risk via BP may play roles in SCAD and AD prevention by controlling BP. However, these factors were largely unknown. Identification of indirect factors can help to explain genetic associations.

Despite increasing investment in research and development in the pharmaceutical industry, the rate of success for novel drugs continues to fall. Lower success rates make new therapeutics more expensive, reducing the availability of effective medicines and increasing healthcare costs. Systematically evaluating the genetic evidence in support of potential target-indication pairs is a potential strategy to prioritize development programs. Circulating proteins play key roles in a range of biological processes and represent a major source of druggable targets (18, 19). Recently, published GWAS of circulating proteins have identified a large number of single nucleotide polymorphisms (SNPs) associated with circulating proteins (protein quantitative trait loci, or pQTLs) (20–24). These genetic associations offered the opportunity to systematically test the causal effects of a large number of proteins on diseases. Indeed, the GWAS identified loci containing genes that encode proteins or regulate the expression of proteins involved in arterial wall structure and/or function. Circulating proteins such as TGF β receptor, collagen α1 chain, fibrillin, endotelin-1, ribosome maturation factor, and talin 1 were implicated in the development of SCAD (25). Currently, multiple cytokines, including interleukins, interferon, the tumor necrosis factor superfamily, colony stimulating factor, chemotactic factor, growth factor and so on, have all been demonstrated to play a critical role in SCAD.

Identification of functional variants in these genetic loci for BP, SCAD and AD will increase our understanding of the pathological mechanisms. The recently developed two-sample Mendelian randomization (MR) methods based on summary statistics provide feasible ways to integrate omics data from independent GWAS, including pQTL studies (26–28). This study represents an effort to identify potential proteins or biological pathways implicated in the development of SCAD and AD through BP regulation based on their shared genetic basis.

MATERIALS AND METHODS

Determination of Spontaneous Coronary Artery Dissection and Blood Pressure Associated SNPs

In this study, we determined genetic loci for SCAD from five GWASs (5, 15, 16, 29, 30). Genes and top SNPs in the identified loci were collected from the GWAS papers and related supplementary online files (Figure 1). Specifically, genome-wide summary statistics were obtained from a recent GWAS (15). This GWAS comprised 270 SCAD cases and 5,263 controls of European descent. The raw data used in the present analysis were the downloaded summary results from the initial GWAS, which included association P-values of 607,778 genotyped variants with SCAD (15). The SCAD GWAS summary datasets were publicly available at the NHGRI-EBI GWAS Catalog under accession number GCST90000582. SNPs with P-values less than 1.0 × 10⁻⁵ were selected and the SCAD loci were determined. The genome-wide significance level was set to 5.0 × 10⁻⁸ in this study. The BP loci were identified in a GWAS examined associations between more than 10 million SNPs and systolic BP (SBP) and diastolic BP (DBP) in 317,756 individuals enrolled in the UK Biobank (17). SNPs associated with both BP and SCAD were identified.
FIGURE 1 | The flowchart of the study design. We designed this study to explore potential risk factors such as circulating proteins for SCAD. This study comprised several steps of analysis. In the first step we identified SCAD-associated genes from five GWASs. Second, we identified BP-associated SNPs in the SCAD-associated genes from BP GWAS and then identified the shared genes for BP and SCAD. Third, we looked for pQTLs inside these genes using data from five pQTL studies. Fourth, for circulating protein levels that were significantly affected by both SCAD-associated and BP-associated SNPs, we applied four MR methods (IVW, MR-Egger, MR-PRESSO, and CAUSE) to examine whether they were genetically associated with BP, AAD, and aortic diameter. Finally, we inferred that genetic variants influence BP by disturbing circulating proteins, and then affecting the risk of SCAD and aortic dilation.

Identification of Circulating Proteins
We carried out pQTL analysis to obtain relevant evidence for the identified SNPs shared by BP and SCAD. The associations between SNPs and circulating protein levels were searched in five pQTL studies. First, the pQTL data of the KORA study which contained associations between 509,946 SNPs and 1,124 proteins were downloaded from the pGWAS Server (21).

The second pQTL study performed genome-wide testing of 10.6 million imputed autosomal variants against levels of 2,994 circulating proteins in 3,301 individuals of European descent from the INTERVAL study (23). The summary data are available at http://www.phpc.cam.ac.uk/ceu/proteins/. The third pQTL study analyzed 83 proteins measured in 3,394 individuals (20).

The fourth pQTL study provided the results of GWAS of 71 high-value cardiovascular disease proteins in 6,861 Framingham Heart Study participants (24). In the fifth pQTL study, 4,137 proteins covering most predicted extracellular proteins were measured in the serum of 5,457 Icelanders over 65 years of age (22). pQTL signals with P-values less than 1.0×10^{-5} were considered in this study.

Functional Enrichment Analysis
The purpose of gene ontology (GO) is to unify biological factors while integrating specific definitions, clear structures, and controlled vocabulary into a database (31). GO analysis was performed to explore the biological properties of the genes coding the identified proteins. The Database for Annotation, Visualization and Integrated Discovery (DAVID) database, an online bioinformatics tool, was used to illustrate the functional enrichment analysis (32). The advantages of DAVID include the detailed analysis and classification of gene and protein functions. A false positive rate less than 0.1 was considered significant.

MR Analysis on Proteins
To obtain supporting evidence for proteins identified in pQTL analysis, we performed MR analysis to examine the associations between protein levels and BP. The protein data used in these MR analyses were from the pQTL studies described above. The BP GWAS dataset comprised the summary statistics for the association between more than 10 million SNPs and SBP and DBP, which were evaluated in 317,756 individuals enrolled in the UK Biobank (17). This dataset can be downloaded at https://data.broadinstitute.org/alkesgroup/UKBB/. Summary data necessary to MR analysis were unavailable for SCAD, which kept us from examining the associations between protein levels and SCAD.

Instead, we explored the role of the identified proteins in aortic remodeling, which were highly related to BP. GWAS summary data of aortic aneurysm and dissection (AAD) (ICD-10 code: I71), which contains 452,264 individuals from the UK Biobank (30), was obtained. These GWAS included 1,470 AAD
patients and 450,794 controls. The genome-wide association analysis of the UK Biobank GWAS comprised 62,394 genotyped variants and 9,113,133 imputed variants that passed quality control. The summary data for AAD can be found by searching “Aortic aneurysm and dissection” at http://geneatlas.roslin.ed.ac.uk/downloads/. In addition, summary data from GWAS of ascending aortic (AA) and descending aortic (DA) diameters were obtained. AA and DA diameters were evaluated in cardiac magnetic resonance images from the UK Biobank by a deep learning model (33).

We employed the weighted median, inverse-variance weighted (IVW) MR (34), MR-Egger (35), MR pleiotropy residual sum and outlier (MR-PRESSO) (36) and the Causal Analysis Using Summary Effect estimates (CAUSE) (37) methods to test for potential causal relationships between circulating protein levels and BP and SCAD. The inverse-variance weighted method combines the ratio estimates from each IV in a meta-analysis model (34). If the associations with circulating protein levels were to lead to horizontal pleiotropy, the intercept from MR-Egger would be expected to differ from zero (35). In such cases, we interpreted the coefficient from MR-Egger as being the more valid causal estimate. Conversely, in the absence of statistical evidence for horizontal pleiotropy from the intercept on MR-Egger, we used the IVW MR analysis as it retains greater power. The IVW MR and MR-Egger analyses were performed by using the MendelianRandomization R package (38). We also detected horizontal pleiotropy and outlier-corrected causal estimation by using MR-PRESSO tests (36). The outlier test in MR-PRESSO is the procedure to test for the MR assumption of no pleiotropy. The source code and documents for MR-PRESSO are available at https://github.com/rondolab/MR-PRESSO. The default parameters were used for the MR-PRESSO analysis.

TABLE 1 The SCAD loci collected from GWAS.

Study	Loci	Number of SNPs with P-value < 1.0E-5	Number of SNPs with P-value < 5.0E-8	Top SNP	P-value
(15)	1p32.1	7	0	rs11207415	3.23E-06
	1q21.2	291	149	rs12740679	2.19E-12
	2p23.2	1	0	rs4535004	8.32E-06
	2q33.2	3	0	rs78377252	2.43E-06
	4q34.3	1	0	rs2715408	7.64E-06
	5q23.2	1	0	rs17839701	9.94E-06
	6p24.1	5	1	rs9349379	4.38E-08
	6q22.1	3	0	rs7775726	6.94E-06
	6q25.3	11	0	rs78349783	1.03E-06
	12q13.3	14	5	rs11172113	2.63E-08
	12q21.33	1	0	rs2722224	6.71E-06
	12q23.2	3	0	rs1014675	5.45E-06
	21q22.11	3	0	rs28451064	1.19E-07
(16)	1q21.3	–	1	rs49709935	3.26E-16
	1q24.2	1	–	rs6700122	1.40E-06
	3q22.3	1	–	rs189056	7.53E-06
	4q34.3	1	–	rs79603310	7.32E-05
	6p24.1	–	1	rs9349379	4.59E-14
	8q24.3	1	–	rs10096937	5.74E-06
	12q13.3	–	1	rs11172113	1.42E-13
	15q21.1	–	1	rs2015637	2.12E-09
	16p24.1	1	–	rs67049921	5.40E-05
	21q22.11	–	1	rs28451064	1.09E-09
(39)	1p32.1	1	–	rs12402265	2.30E-07
	2q23.2	1	–	rs6741522	2.29E-06
	4q12	–	1	rs6820391	2.36E-08
	6p24.1	–	1	rs9349379	1.00E-11
	12q13.3	2	–	rs11172113	1.90E-07
(5)	3p22.1	–	1	rs2272007	1.15E-09
	12q13.3	–	1	rs11172113	2.74E-08
	15q21.1	–	1	rs1042078	1.08E-10
(4)	15q21.1	–	5	rs2118181	5.80E-12
Total		353	170		
In the pQTL summary data, SNPs with a P-value less than 1.0×10^{-5} were selected as potential instrumental variables. The selection criterion was set to 1.0×10^{-5} for the two pQTL studies because 5.0×10^{-8} would lead to too few instrumental variables. We clumped SNPs (LD $r^2 < 0.01$ within 10,000 kb) based on data from Europeans from the 1000 Genomes project using the “clump_data” function in the R package TwoSampleMR to select independent instrumental variables. The effect allele of each SNP in the BP GWAS and pQTL studies was manually checked for consistency.

For proteins that passed the three MR tests, we applied the CAUSE method to account for horizontal pleiotropic effects by pathways other than those considered in the multivariable approach. CAUSE is a Mendelian randomization accounting for correlated and uncorrelated horizontal pleiotropic effects using genome-wide summary statistics (37). Data used in the CAUSE analysis were from pQTL studies and GWAS described above. We used 1,000,000 genetic variants to estimate the nuisance parameters. Other parameters were left as their defaults in the CAUSE analysis.

RESULTS

The Spontaneous Coronary Artery Dissection-Associated Loci

Based on published GWAS papers, we collected up to 162 SCAD-associated genes (Supplementary Table 1). Genes such as FBN1 and PHACTR1 were confirmed in several GWAS. The most recent GWAS published at Nature Communication identified many novel genes and confirmed previously identified genes. In this GWAS, we selected SNPs in 13 SCAD-associated loci (Table 1). The top signals were located in 1q21.2, in which 149 SNPs showed significant associations with SCAD ($P < 5.0 \times 10^{-8}$). The top SNP associated with SCAD in 1q21.2 was rs12740679 ($P = 2.19 \times 10^{-12}$). There were fewer genome-wide significant SNPs in other selected loci. Five SNPs in 12q13.3 and one SNP in 6p24.1 were significantly associated with SCAD. For the remaining ten selected loci, no SNPs reached the genome-wide significance level. For 2p23.2, 4q34.3, 5q23.2, and 12q21.33, only one SNP reached 1.0×10^{-5} in each locus. In 6q25.3, 11 SNPs passed 1.0×10^{-5}. The top SNP in 6q25.3 was rs78349783 (1.03×10^{-6}).

Spontaneous Coronary Artery Dissection-Associated Genes Shared by Blood Pressure

We selected 230 thousand SNPs inside the 162 SCAD-associated genes according to the UCSC database. Then we looked up associations between these SNPs and BP in GWAS summary data. We found 204 and 228 SNPs that were significantly associated with SBP and DBP ($P < 5.0 \times 10^{-8}$), respectively. These SNPs were located in 11 genes, including JAG1, ERI1, ULK4, THSD4, CMIP, COL4A2, FBN1, FAM76B, FGGY, NUS1, and HNF4G. A total of 111 and 114 SNPs in the ULK4 gene were associated with SBP and DBP ($P < 5.0 \times 10^{-8}$), respectively. SNPs in JAG1 and ER11 both associated with SBP and DBP. SNPs in FGGY, HNF4G and NUS1 were associated with SBP; SNPs in CMIP, COL4A2, FAM76B, FBN1, and THSD4 were associated with DBP. These SNPs were located in SCAD-associated genes, and therefore were considered to be shared SNPs for SCAD and BP. We next searched whether these SNPs were associated with circulating proteins.

Potential Proteins Related to Blood Pressure and Spontaneous Coronary Artery Dissection

We looked for pQTL signals in five studies. We found significant signals in three studies (20, 21, 23) for the shared SNPs (Table 2). A total of 49 pQTL signals were identified. The SNPs were located in FAM76B, COL4A2, JAG1, ITSN1, ER11, and CMIP. The regulated proteins were encoded by 13 genes, including MMP10, IL6R, FIGF, MMP1, CTSB, IGHG1, DSG2, TCC17, RETN, POMC, SCARF2, RELT, and GALNT16. BP-associated SNPs in ERI1 were strongly associated with circulating cathepsin B (CTSB), and evidence was found in KORA and INTERVAL studies (21, 23).

Functional Enrichment Analysis

To examine the potential biological functions of the proteins affected by SCAD and BP-associated SNPs, we performed GO analysis in the DAVID database. Among the 11 shared genes, COL4A2, THSD4, and FBN1 were related to extracellular matrix components ($P = 1.10 \times 10^{-3}$) and proteinaceous extracellular matrix ($P = 8.60 \times 10^{-7}$). The 13 BP- and SCAD-associated proteins were enriched in specific GO biological process, cellular component and molecular function terms (false discovery rate < 0.1), including cellular components such as extracellular space ($P = 2.70 \times 10^{-3}$); biological process such as collagen metabolic process ($P = 5.70 \times 10^{-7}$), multicellular organism metabolic process ($P = 6.90 \times 10^{-7}$); molecular function such as serine-type peptidase activity ($P = 6.50 \times 10^{-4}$), serine hydrolase activity ($P = 6.70 \times 10^{-4}$) and endopeptidase activity ($P = 3.30 \times 10^{-3}$) (Table 3). Proteins encoded by IGHG1, MMP1, MMP10, CTSB, POMC, RETN, and IL6R may have functional roles in BP regulation and the development of SCAD.

Proteins Causally Associated With Blood Pressure and Aortic Remodeling

We tested whether the seven proteins were genetically associated with BP using several MR methods (Table 4). We found that the association between circulating cathepsin B level and DBP was significant in MR-Egger analyses using data from KORA and INTERVAL studies. Significant association between circulating cathepsin B level and DBP was also found in the weighted median analysis using data from INTERVAL study. After adjusting for outliers in MR-PRESSO analysis, the associations between circulating cathepsin B level and DBP was marginal significant ($P = 0.0580$). Significant association between circulating cathepsin B level and SBP was found in the weighted median analysis using data from INTERVAL study. Furthermore, we corrected for correlated and uncorrelated horizontal pleiotropy using the CAUSE method and retained
Proteins related to BP-associated SNPs.

SNP	Gene	CHR	Position (hg19)	GWAS	pQTL	Protein	Study	
rs11776888	ERI1	8	8794801	1.22E-08	SSB	5.23E-05	CTSB	(21)
rs11776888	ERI1	8	8794801	1.33E-12	DBP	5.23E-05	CTSB	(21)
rs2186739	FAM76B	11	95327374	8.55E-11	DBP	2.48E-05	IGHO1	(21)
rs2186739	FAM76B	11	95327374	8.55E-11	DBP	7.98E-05	DSG2	(21)
rs2156468	FAM76B	11	95327412	4.18E-08	DBP	2.41E-05	IGHO1	(21)
rs2508895	FAM76B	11	95321747	5.04E-11	DBP	2.34E-04	MMP10	(20)
rs2524626	FAM76B	11	95327169	8.78E-11	DBP	8.21E-04	MMP10	(20)
rs11776838	ERI1	8	8610267	2.68E-09	SSB	4.69E-05	TTC17	(23)
rs475259	ERI1	8	8610267	6.46E-10	DBP	4.86E-05	TTC17	(23)
rs28446104	ERI1	8	8796901	1.10E-11	DBP	2.95E-05	RETN	(23)
rs28446104	ERI1	8	8796901	1.10E-11	DBP	2.75E-05	CTSB	(23)
rs7819827	ERI1	8	8797055	4.74E-08	SSB	4.90E-05	CTSB	(23)
rs7819827	ERI1	8	8797055	3.34E-12	DBP	4.90E-05	CTSB	(23)
rs7844374	ERI1	8	8798684	2.45E-08	DBP	3.80E-05	CTSB	(23)
rs7844374	ERI1	8	8798684	2.26E-12	DBP	3.80E-05	CTSB	(23)
rs6601274	ERI1	8	8799059	2.03E-08	SSB	2.88E-05	RETN	(23)
rs6601274	ERI1	8	8799059	2.03E-08	SSB	3.89E-05	CTSB	(23)
rs6601274	ERI1	8	8799059	3.31E-12	DBP	3.89E-05	CTSB	(23)
rs6601274	ERI1	8	8799059	3.31E-12	DBP	3.89E-05	CTSB	(23)
rs7837026	ERI1	8	8801692	5.80E-09	SSB	3.80E-05	CTSB	(23)
rs7837026	ERI1	8	8801692	5.80E-09	SSB	3.55E-05	RETN	(23)
rs7837026	ERI1	8	8801692	3.79E-13	DBP	3.55E-05	RETN	(23)
rs7837026	ERI1	8	8801692	3.79E-13	DBP	3.80E-05	CTSB	(23)
rs7823898	ERI1	8	8803487	5.25E-11	DBP	7.59E-06	RETN	(23)
rs12930850	CMP	16	81602212	7.24E-09	DBP	3.24E-06	POMC	(23)
rs12929303	CMP	16	81602264	3.47E-09	DBP	3.24E-06	POMC	(23)
rs11649004	CMP	16	81602499	9.12E-09	DBP	1.66E-06	POMC	(23)
rs11644375	CMP	16	81602681	8.88E-09	DBP	5.00E-06	POMC	(23)
rs8045875	CMP	16	81603235	6.24E-09	DBP	5.25E-06	POMC	(23)
rs8045100	CMP	16	81603400	5.80E-09	DBP	3.09E-06	POMC	(23)
rs11640346	CMP	16	81603848	6.83E-09	DBP	6.03E-06	POMC	(23)
rs12931242	CMP	16	81604778	6.11E-09	DBP	2.09E-06	POMC	(23)
rs7198940	CMP	16	81605559	2.40E-08	DBP	4.27E-06	POMC	(23)
rs12918645	CMP	16	81606569	2.55E-08	DBP	4.07E-06	POMC	(23)
rs12924701	CMP	16	81607756	4.18E-09	DBP	3.31E-06	POMC	(23)
rs4483835	CMP	16	81607833	4.81E-09	DBP	2.51E-06	POMC	(23)
rs7196548	CMP	16	81609774	6.20E-09	DBP	1.91E-06	POMC	(23)
rs1799293	CMP	16	81614892	4.29E-08	DBP	1.78E-06	POMC	(23)
rs6134025	JAG1	20	10743782	4.64E-10	DBP	2.29E-05	SCARF2	(23)
rs75612301	JAG1	20	10744573	5.36E-10	DBP	4.07E-05	RELT	(23)
rs75612301	JAG1	20	10744573	5.36E-10	DBP	2.00E-05	SCARF2	(23)
rs6134028	JAG1	20	10744714	1.76E-09	DBP	3.09E-05	SCARF2	(23)
rs1009757	JAG1	20	10828640	2.67E-14	DBP	3.72E-05	GALNT16	(23)
rs6074192	JAG1	20	10829248	3.28E-14	DBP	4.17E-05	GALNT16	(23)

CHR, Chromosome; GWAS, Genome-wide association study; QTL, Quantitative trait locus; SNP, Single nucleotide polymorphism.
TABLE 3 | Potential biological functions of proteins regulated by BP and SCAD-associated SNPs.

Catalog	Term	Gene	P-value	Benjamini
Molecular function	Serine-type endopeptidase activity	IGHG1, MMP1, MMP10, CTSB	4.90E-04	1.50E-02
Molecular function	Serine-type peptidase activity	IGHG1, MMP1, MMP10, CTSB	6.50E-04	1.50E-02
Molecular function	Serine hydrolase activity	IGHG1, MMP1, MMP10, CTSB	6.70E-04	1.50E-02
Molecular function	Endopeptidase activity	IGHG1, MMP1, MMP10, CTSB	3.30E-03	5.60E-02
Biological process	Collagen metabolic process	MMP1, RETN, IL6R, MMP10, CTSB	5.70E-07	1.80E-04
Biological process	Multicellular organism macromolecule metabolic process	MMP1, RETN, IL6R, MMP10, CTSB	6.90E-07	1.80E-04
Biological process	Multicellular organism metabolic process	MMP1, RETN, IL6R, MMP10, CTSB	1.20E-06	2.20E-04
Cellular component	Extracellular space	POMC, IGHG1, RETN, IL6R, MMP10, CTSB	2.70E-03	6.20E-02

TABLE 4 | The causation between circulating cathepsin B level and BP and aortic diameter.

Trait pQTL study	Weighted median	IVW	Beta	SE	P-value	
DBP KORA	−0.0901	0.0405	0.0263			
INTERVAL	−0.1499	0.0453	9.25 × 10⁻⁴	0.0688	0.0520	0.1864
SBP KORA	−0.0131	0.0057	0.0213	0.0053	0.0098	0.5099
INTERVAL	−0.0214	0.0064	8.56 × 10⁻⁴	0.0120	0.0077	0.1186
AA KORA	−0.0247	0.0135	0.0676	0.0239	0.0148	0.1058
INTERVAL	−0.0596	0.0152	8.34 × 10⁻⁵	0.0397	0.0136	3.63 × 10⁻³
DA KORA	−0.0232	0.0105	0.0282	0.0221	0.0091	0.0153
INTERVAL	−0.0249	0.0134	0.0629	0.0106	0.0134	0.4293

DISCUSSION

This study searched for potential SCAD-related proteins that may act through BP regulation by integrative analysis of data from AAD, aortic diameters and BP GWAS and pQTL studies. We identified shared genetic variants and circulating proteins for BP and SCAD. Additionally, causal associations between BP and AAD and aortic diameters were detected. Moreover, we found proteins associated with BP and aortic diameters and highlighted circulating cathepsin B that was causally associated with BP and aortic diameters.

Genetic factors play roles in the etiology of SCAD. The findings of genetic association studies provided new biological leads for further mechanistic investigation of arterial pathobiology. In this study, we collected SCAD susceptibility genes in GWAS-identified loci and identified BP-associated SNPs in JAG1, ERH1, ULK4, THSD4, CMIP, COLA4A2, FBN1, FAM76B, FGYY, NUS1, and HNF4G. The shared genetic variants in these genes both disturbed BP regulation and affected SCAD risk. As HTN is a causal risk factor for SCAD, the shared genetic variants may first regulate BP and then affect SCAD risk. The shared genes were related to extracellular matrix components, indicating that the effect of the genetic variants on BP regulation and their effects on SCAD risk may act through extracellular matrix components. The regulatory effects of genetic variants on BP should also be indirect. Therefore, identification of the indirect factors in the regulatory pathway was the key to elucidating the genetic association. Circulating proteins are critical factors implicated in the development of SCAD (25). We found that the shared...
genetic variants were strongly associated with many circulating proteins and that the associated proteins have specific biological functions. We found \textit{IGHG1}, \textit{MMP1}, \textit{MMP10}, \textit{CTSB}, \textit{POMC}, \textit{RETN}, and \textit{IL6R}, which were related to endopeptidase activity, collagen metabolic process and extracellular space. Among these associated protein-coding genes, \textit{MMP1}, \textit{CTSB}, \textit{POMC}, \textit{RETN}, and \textit{IL6R} are known to be associated with SCAD (40, 41) or other cardiovascular diseases (42–44). As circulating proteins are
CTSB encodes cathepsin B, which is related to the activated TLR4 signaling and degradation of the extracellular matrix pathway and participates in intracellular degradation and turnover of proteins (45). Cathepsin B could be involved in the intracellular processing of prorenin that is locally synthesized or taken up from the extracellular compartment (46). The circulating level of cathepsin B was associated with cardiovascular events and mortality (42). However, the association between circulating levels of cathepsin B and BP or HTN has not been reported. Renin is the key enzyme of the renin-angiotensin system, which is involved in BP regulation. Cathepsin B has been proposed as a prorenin processing enzyme because of its colocalization with renin and its ability to activate prorenin (47–49). In this study, we found that BP-associated SNPs were strongly associated with cathepsin B levels in two independent studies. The association between cathepsin B level and BP, AAD and aortic diameters was identified by several MR analysis methods and was validated by independent data. Therefore, cathepsin B was associated with BP and may be involved in aortic remodeling.

The present study has some potential limitations. First, although we found significant associations between circulating protein levels and BP and aortic diameters, the direct relationships between circulating protein levels and SCAD were not detected. This was because that necessary summary data (e.g., beta and se) of the SCAD GWAS were unavailable and the sample size of the AAD GWAS was small (n = 1,470), in which the necessary summary data were available. Second, most of the associations between the identified SNPs and proteins have not been validated in another independent sample because of lack of data. Finally, the functional relationships have not been validated by technical and biological experiments. Further in vitro studies are needed to determine their functions in related cell lines such as vascular smooth muscle cells.

CONCLUSION

In summary, the present study identified genetic variants shared by BP and SCAD and found that the associated SNPs may have strong effects on circulating protein levels. Therefore, this study found circulating proteins that were pleiotropically associated with BP and SCAD. Circulating cathepsin B was associated with BP and aortic diameters and therefore may play important roles in BP regulation and aortic remodeling. The findings suggested that genetic variants of BP genes may have regulatory potential to affect circulating proteins involved in BP regulation and ultimately affect risk of cardiovascular disease.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

TC and LC designed this study. TC, XY, and ZQ collected the data. TC was responsible for the statistical analysis. MT and TC wrote the draft. MT, XL, and LC revised this draft. LC
finalized this manuscript. All authors read and approved the final manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (U2005202), the Fujian Province Major Science and Technology Program (2018YZ001-1), the Natural Science Foundation of Fujian Province (2020J01998 and 2020J02056), and the Fujian Provincial Health Technology Project (2019-ZQN-50).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcvm.2022.762468/full#supplementary-material

REFERENCES

1. Sampson UK, Norman PE, Fowkes FG, Aboyans V, Song Y, Harrell FE Jr., et al. Estimation of global and regional prevalence and incidence of abdominal aortic aneurysms 1990 to 2010. *Glob Heart.* (2014) 9:159–70. doi: 10.1016/j.gheart.2013.12.009

2. Sampson UK, Norman PE, Fowkes FG, Aboyans V, Yama S, Harrell FE Jr., et al. Global and regional burden of aortic dissection and aneurysms: mortality trends in 21 world regions, 1990 to 2010. *Glob Heart.* (2014) 9:171–180.e10. doi: 10.1016/j.gheart.2013.12.010

3. Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, et al. Linkage of marfan syndrome and a phenotypically related disorder to two different fibrillin genes. *Nature.* (1991) 352:330–4. doi: 10.1038/352330a0

4. LeMaire SA, McDonald ML, Guo DC, Russell L, Miller CC III, Johnson RJ, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. *Nat Genet.* (2011) 43:996–1000. doi: 10.1038/ng.934

5. Guo DC, Grove ML, Prakash SK, Eriksson P, Hostetler EM, LeMaire SA, et al. Genetic variants in LRP1 and ULK4 are associated with acute aortic dissections. *Am J Hum Genet.* (2016) 99:762–9. doi: 10.1016/j.ajhg.2016.06.034

6. van ‘t Hof FN, Ruigrok YM, Lee CH, Ripke S, Anderson G, de Andrade M, et al. Genetic variants in LRP1 and ULK4 are associated with acute aortic dissection and the SMAD-3 mutation. *Nat Genet.* (2019) 51:17–21. doi: 10.1038/s41588-018-0205-x

7. Inaba N, Nomura H, Hasegawa K, Hata K, Ido Y, et al. Identification of a novel susceptibility locus for aneurysmal dilation of the thoracic aorta. *Nat Genet.* (2000) 25:25–9. doi: 10.1038/75556

8. Grond-Ginsbach C, Böckler D, Newton-Cheh C. Pathogenic TSR1 gene variants in patients with spontaneous coronary artery dissection. *J Am Coll Cardiol.* (2019) 74:177–8. doi: 10.1016/j.jacc.2019.06.005

9. Sun Y, Chen Y, Li Y, Li Z, Li C, Yu T, et al. Association of TSR1 variants and spontaneous coronary artery dissection. *J Am Coll Cardiol.* (2019) 74:167–76. doi: 10.1016/j.jacc.2019.04.062

10. Turley TN, Theis H, Sundsak RS, Evans JM, O’Byrne MM, Gulati R, et al. Rare missense variants in TLN1 are associated with familial and sporadic spontaneous coronary artery dissection. *Circ Genom Precis Med.* (2019) 12:e002437. doi: 10.1161/CIRCGEN.118.002437

11. Solomonica A, Bagur R, Choudhury T, Lavi S. Familial spontaneous coronary artery dissection. *Glob Heart.* (2019) 11:4432. doi: 10.1038/s41467-020-17558-x

12. Turley TN, O’Byrne MM, Kelso ML, de Andrade M, Gulati R, Hayes SN, et al. Identification of susceptibility loci for spontaneous coronary artery dissection. *JAMA Cardiol.* (2020) 5:1–10. doi: 10.1001/jamacardio.2020.0872

13. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pasko R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. *Nat Genet.* (2018) 50:1412–25. doi: 10.1038/s41588-018-0206-y

14. Immink P, Sinning C, Meyer A, Drugs, their targets and the nature and number of drug targets. *Nat Rev Drug Discov.* (2006) 5:821–34. doi: 10.1038/nrd2132

15. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular human proteins link genetics to disease. *Science.* (2018) 361:769–73. doi: 10.1126/science.aag1327

16. Sun BR, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genetic variants in patients with spontaneous coronary artery dissection and myocardial infarction. *Nat Commun.* (2020) 11:4432. doi: 10.1038/s41467-020-17558-x

17. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pasko R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. *Nat Genet.* (2018) 50:1412–25. doi: 10.1038/s41588-018-0206-y

18. Kuik J, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Rafaller J, et al. Connecting genetic risk to disease endpoints through the human blood plasma proteome. *Nat Commun.* (2017) 8:14357. doi: 10.1038/ncomms14357

19. Emilion M, Ilskov M, Lamb JR, Finkel J, Nelnudsson EF, Pitts R, et al. Co-regulatory networks of human serum proteins link genetics to disease. *Science.* (2018) 361:769–73. doi: 10.1126/science.aag1327

20. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank Resource: a comprehensive map of molecular drug targets. *Nat Genet.* (2015) 47:1091–8. doi: 10.1038/ng.3367

21. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. *Nat Genet.* (2016) 48:245–52. doi: 10.1038/ng.3506

22. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Genomic approaches for large-scale transcriptome-wide association studies. *Nat Genet.* (2016) 48:245–52. doi: 10.1038/ng.3506

23. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank Resource: a comprehensive map of molecular drug targets. *Nat Genet.* (2015) 47:1091–8. doi: 10.1038/ng.3367

24. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. *Nat Genet.* (2016) 48:245–52. doi: 10.1038/ng.3506
resources. Nat Protoc. (2009) 4:44–57. doi: 10.1038/nprot.2008.211

33. Pirruccello JP, Chaffin MD, Chou EL, Fleming SJ, Lin H, Nekoui M, et al. Deep learning enables genetic analysis of the human thoracic aorta. Nat Genet. (2022) 54:40–51. doi: 10.1038/s41588-021-00962-4

34. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. (2013) 37:658–65. doi: 10.1002/gepi.21758

35. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. (2015) 44:512–25. doi: 10.1093/ije/dyu080

36. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. (2018) 50:693–8. doi: 10.1038/s41588-018-0099-7

37. Morrison J, Knoblach N, Marcus JH, Stephens M, He X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet. (2020) 52:740–7. doi: 10.1038/s41588-020-0631-4

38. Yavorska OO, Burgess S. mendelianrandomization: an R package for performing mendelian randomization analyses using summarized data. Int J Epidemiol. (2017) 46:1734–9. doi: 10.1093/ije/dyx034

39. Debette S, Kamatani Y, Metso TM, Kloss M, Chauhan G, Engelter ST, et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet. (2015) 47:78–83. doi: 10.1038/ng.3154

40. Landenhed M, Engström G, Göttsäter A, Caulfield MP, Hedblad B, Newton-Cheh C, et al. Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J Am Heart Assoc. (2015) 4:e001513. doi: 10.1161/JAHA.114.001513

41. Zhuang J, Luan P, Li H, Wang K, Zhang P, Xu Y, et al. The Yin-Yang dynamics of DNA methylation is the key regulator for smooth muscle cell phenotype switch and vascular remodeling. Arterioscler Thromb Vasc Biol. (2017) 37:84–97. doi: 10.1161/ATVBAHA.116.307923

42. Ryer EJ, Ronning KE, Schworer CM, Emlcore JR, Peeler TC, et al. The potential role of DNA methylation in abdominal aortic aneurysms. Int J Mol Sci. (2015) 16:11259–75. doi: 10.3390/ijms160511259

43. Mo XB, Lei SE, Zhang YH, Zhang H. Examination of the associations between m(6)A-associated single-nucleotide polymorphisms and blood pressure. Hypertens Res. (2019) 42:1582–9. doi: 10.1038/s41440-019-0277-8

44. Zhou X, Chen Z, Zhou J, Liu Y, Fan R, Sun T. Transcriptome and N6-methyladenosine RNA methylese analyses in aortic dissection and normal human aorta. Front Cardiovasc Med. (2021) 8:627380. doi: 10.3389/fcvm.2021.627380

45. Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, et al. m(6)A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. (2019) 2:e201800233. doi: 10.26508/lsa.201800233

46. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. (2014) 15:293–306. doi: 10.1038/nrg3724

47. Griendling KK, Minieri CA, Ollierenshow JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. (1994) 74:1141–8. doi: 10.1161/01.res.74.6.1141

48. Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. (2019) 139:533–45. doi: 10.1161/CIRCULATIONAHA.118.036146

49. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, et al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation. (2019) 139:518–32. doi: 10.1161/CIRCULATIONAHA.118.033794

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Chai, Tian, Yang, Qu, Lin and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.