Abstract

The global pandemic has made it more important than ever to quickly and accurately retrieve relevant scientific literature for effective consumption by researchers in a wide range of fields. We provide an analysis of several multi-label document classification models on the LitCovid dataset, a growing collection of 8,000 research papers regarding the novel 2019 coronavirus. We find that pre-trained language models fine-tuned on this dataset outperform all other baselines and that the BioBERT and novel Longformer models surpass all others with almost equivalent micro-F1 and accuracy scores of around 81% and 69% on the test set. We evaluate the data efficiency and generalizability of these models as essential features of any system prepared to deal with an urgent situation like the current health crisis. Finally, we explore 50 errors made by the best performing models on LitCovid documents and find that they often (1) correlate certain labels too closely together and (2) fail to focus on discriminative sections of the articles; both of which are important issues to address in future work. Both data and code are available on GitHub.

1 Introduction

The COVID-19 pandemic has made it a global priority for research on the subject to be developed at unprecedented rates. Researchers in a wide variety of fields, from clinicians to epidemiologists to policy makers, must all have effective access to the most up to date publications in their respective areas. Automated document classification can play an important role in organizing the stream of articles by fields and topics to facilitate the search process and speed up research efforts.

To explore how document classification models can help organize COVID-19 research papers, we use the LitCovid dataset (Chen et al., 2020), a collection of 8,000 newly released scientific papers compiled by the NIH to facilitate access to the literature on all aspects of the virus. This dataset is updated daily and every new article is manually assigned one or more of the following 8 categories: General, Transmission Dynamics (Transmission), Treatment, Case Report, Epidemic Forecasting (Forecasting), Prevention, Mechanism and Diagnosis. We leverage these annotations and the articles made available by LitCovid to compile a timely new dataset for multi-label document classification.

Apart from addressing the pressing needs of the pandemic, this dataset also offers an interesting document classification dataset which spans different biomedical specialities while sharing one overarching topic. This setting is distinct from other biomedical document classification datasets which tend to exclusively distinguish between biomedical topics such as hallmarks of cancer (Baker et al., 2016), chemical exposure methods (Baker, 2017) or diagnosis codes (Du et al., 2019). The dataset’s shared focus on the COVID-19 pandemic also sets it apart from open-domain datasets and academic paper classification datasets such as IMDB or the aRxiv Academic Paper Dataset (AAPD) (Yang et al., 2018) in which no shared topic can be found in most of the documents, and it poses unique challenges for document classification models.

We evaluate a number of models on the LitCovid dataset and find that fine-tuning pre-trained language models yields higher performance than traditional machine learning approaches and neural models such as LSTMs (Adhikari et al., 2019b; Kim, 2014; Liu et al., 2017). We also notice that BioBERT (Lee et al., 2019), a BERT model pretrained on the original corpus for BERT plus a large set of PubMed articles, performed slightly better than the original BERT base model. We also observe that the novel Longformer (Beltagy et al.,
model, which allows for processing longer sequences, matches BioBERT’s performance when 1024 subwords are used instead of 512, the maximum for BERT models.

We then explore the data efficiency and generalizability of these models as crucial aspects to address for document classification to become a useful tool against outbreaks like this one. Finally, we discuss some issues found in our error analysis such as current models often (1) correlating certain categories too closely with each other and (2) failing to focus on discriminative sections of a document and get distracted by introductory text about COVID-19, which suggest venues for future improvement.

2 Datasets

In this section, we describe the LitCovid dataset in more detail and briefly introduce the CORD-19 dataset which we sampled to create a small test set to evaluate model generalizability.

2.1 LitCovid

The LitCovid dataset is a collection of recently published PubMed articles which are directly related to the 2019 novel Coronavirus. The dataset contains upwards of 14,000 articles and approximately 2,000 new articles are added every week, making it a comprehensive resource for keeping researchers up to date with the current COVID-19 crisis.

For a large portion of the articles in LitCovid, either the full article or at least the abstract can be downloaded directly from their website. For our document classification dataset, we select 8,002 from the original 14,000+ articles which contain full texts or abstracts. As seen in Table 1, these selected articles contain on average approximately 51 sentences and 1,200 tokens, reflecting the roughly even split between abstracts and full articles we observe from inspection.

Each article in LitCovid is assigned one or more of the following 8 topic labels: Prevention, Treatment, Diagnosis, Mechanism, Case Report, Transmission, Forecasting and General. Even though every article in the corpus can be labelled with multiple tags, most articles, around 76%, contain only one label. Table 2 shows the label distribution for the subset of LitCovid which is used in the present work. We note that there is a large class imbalance, with the most frequently occurring label appearing almost 20 times as much as the least frequent one.

We split the LitCovid dataset into train, dev, test with the ratio 7:1:2.

2.2 CORD-19

The COVID-19 Open Research Dataset (CORD-19) (Wang et al., 2020) was one of the earliest datasets released to facilitate cooperation between the computing community and the many relevant actors of the COVID-19 pandemic. It consists of approximately 60,000 papers related to COVID-19 and similar coronaviruses such as SARS and MERS since the SARS epidemic of 2002. Due to their differences in scope, this dataset shares only around 1,200 articles with the LitCovid dataset.

In order to test how our models generalize to a different setting, we asked biomedical experts to label a small set of 100 articles found only in CORD-19. Each article was labelled independently by two annotators. For articles which received two different annotations (around 15%), a third annotator broke ties. Table 1 shows the statistics of this small set and Table 2 shows its category distribution.

3 Models

In the following section we provide a brief description of each model and the implementations used. We use micro-F1 (F1) and accuracy (Acc.) as our evaluation metrics, as done in (Adhikari et al., 2019a). All reproducibility information can be found in Appendix A.

3.1 Traditional Machine Learning Models

To compare with simpler but competitive traditional baselines we use the default scikit-learn (Pe-
Model	Dev Set Acc.	F1	Test Set Acc.	F1
LR	53.3	67.5	58.5	72.2
SVM	58.8	72.4	62.6	76.0
LSTM	57.7 ±0.7	75.8 ±0.5	59.1 ±1.3	76.1 ±0.5
LSTMreg	59.4 ±2.4	74.6 ±1.2	61.7 ±1.9	75.9 ±1.2
KimCNN	59.3 ±1.1	75.7 ±0.4	61.0 ±0.1	76.2 ±0.2
XML-CNN	61.9 ±1.0	77.2 ±0.3	64.6 ±0.4	77.9 ±0.3
BERTbase	66.1 ±1.3	79.1 ±0.1	68.1 ±0.9	80.6 ±0.2
BERTlarge	66.4 ±0.5	79.0 ±0.7	68.1 ±1.1	79.5 ±1.2
Longformer	66.7 ±1.1	79.9 ±0.5	69.2 ±0.2	80.7 ±0.7
BioBERT	66.5 ±0.6	80.2 ±0.1	68.5 ±1.0	81.2 ±0.3

Table 3: Performance for each model expressed as mean ± standard deviation across three training runs.

dregosa et al., 2011) implementation of logistic regression and linear support vector machine (SVM) for multi-label classification which trains one classifier per class using a one-vs-rest scheme. Both models use TF-IDF weighted bag-of-words as input.

3.2 Conventional Neural Models

Using Hedwig\(^2\), a document classification toolkit, we evaluate the following models: KimCNN (Kim, 2014), XML-CNN (Liu et al., 2017) as well as an unregularized and a regularized LSTM (Adhikari et al., 2019b). We notice that they all perform similarly and slightly better than traditional methods.

3.3 Pre-Trained Language Models

Using the same Hedwig document classification toolkit, we evaluate the performance of DocBERT (Adhikari et al., 2019a) on this task with a few different pre-trained language models. We fine-tune BERT base, BERT large (Devlin et al., 2019) and BioBERT (Lee et al., 2019), a version of BERT base which was further pre-trained on a collection of PubMed articles. We find all BERT models achieve best performance with their highest possible sequence length of 512 subwords. Additionally, we fine-tune the pre-trained Longformer (Beltagy et al., 2020) in the same way and find that it performs best when a maximum sequence length of 1024 is used. As in the original Longformer paper, we use global attention on the [CLS] token for document classification but find that performance improves by around 1% if we use the average of all tokens as input instead of only the [CLS] representation. We hypothesize that this effect can be observed because the LitCovid dataset contains longer documents on average that the Hyperpartisan dataset used in the original Longformer paper.

\(^2\)https://github.com/castorini/hedwig

Figure 1: Data efficiency analysis. Pre-trained language models achieve their maximum performance on only 20% of the training data.

We find that all pre-trained language models outperform the previous traditional and neural methods by a sizable margin in both accuracy and micro-F1 score. The best performing models are the Longformer and BioBERT, both achieving a similar micro-F1 score of around 81% on the test set and an accuracy of 69.2% and 68.5% respectively.

4 Results & Discussion

In this section, we explore data efficiency, model generalizability and discuss potential ways to improve performance on this task in future work.

4.1 Data Efficiency

During a sudden healthcare crisis like this pandemic it is essential for models to obtain useful results as soon as possible. Since labelling biomedical articles is a very time-consuming process, achieving peak performance using less data becomes highly desirable. We thus evaluate the data efficiency of these models by training each of the ones shown in Figure 1 using 1%, 5%, 10%, 20% and 50% of our training data and report the micro-F1 score on the dev set. When selecting the data subsets, we sample each category independently to make sure they are all represented.

We observe that pre-trained models are much more data-efficient than other models and that BioBERT is the most efficient, demonstrating the importance of domain-specific pre-training. We also notice that BioBERT performs worse than other pre-trained models on 1% of the data, suggesting that its pre-training prevents it from leveraging potentially spurious patterns when there is very little data available.
We analyze 50 errors made by both highest scoring BioBERT and the Longformer models on LitCovid documents to better understand their performance. We find that 34% of these were annotation errors which our best performing model predicted correctly. We also find that 10% of the errors were nearly impossible to classify using only the text available on LitCovid, and the full articles are needed to make better-informed prediction. From the rest of the errors we identify some aspects of this task which should be addressed in future work.

4.2 CORD-19 Generalizability

To effectively respond to this pandemic, experts must not only learn as much as possible about the current virus but also thoroughly understand past epidemics and similar viruses. Thus, it is crucial for models trained on the LitCovid dataset to successfully categorize articles about related epidemics. We therefore evaluate some of our baselines on such articles using our labelled CORD-19 subset. We find that the micro-F1 and accuracy metrics drop by around 10 and 30 points respectively. This massive drop in performance from a minor change in domain indicates that the models have trouble ignoring the overarching COVID-19 topic and isolating relevant signals from each category.

Acc.	F1	
SVM	26.0	55.6
LSTMreg	31.3 ±2.5	62.9 ±2.4
Longformer	37.3 ±4.9	66.9 ±2.1
BioBERT	39.7 ±3.1	68.1 ±1.3

Table 5: Performance on the CORD-19 Test Set expressed as mean ± standard deviation across three training runs.

It is interesting to note that Mechanism is the only category for which BioBERT performs better in CORD-19 than in LitCovid. This could be due to Mechanism articles using technical language and there being enough samples for the models to learn; in contrast with Forecasting which also uses specific language but has far fewer training examples. BioBERT’s binary F1 scores for each category on both datasets can be found in Appendix B.

4.3 Error Analysis

We analyze 50 errors made by both highest scoring BioBERT and the Longformer models on LitCovid documents to better understand their performance. We find that 34% of these were annotation errors which our best performing model predicted correctly. We also find that 10% of the errors were nearly impossible to classify using only the text available on LitCovid, and the full articles are needed to make better-informed prediction. From the rest of the errors we identify some aspects of this task which should be addressed in future work.

5 Conclusion

We provide an analysis of document classification models on the LitCovid dataset for the COVID-19 literature. We determine that fine-tuning pre-trained language models yields the best performance on this task. We study the generalizability and data efficiency of these models and discuss some important issues to address in future work.
References

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy Lin. 2019a. Docbert: Bert for document classification. ArXiv, abs/1904.08398.

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy Lin. 2019b. Rethinking complex neural network architectures for document classification. In NAACL-HLT.

Simon Baker. 2017. Corpus and Software.

Simon Baker, Ilona Silins, Yufan Guo, Imran Ali, Johan Högborg, Ulla Stenius, and Anna Korhonen. 2016. Automatic semantic classification of scientific literature according to the hallmarks of cancer. Bioinformatics, 32:3:432–40.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The long-document transformer. arXiv:2004.05150.

Q. Chen, A. Allot, and Z. Lu. 2020. Keep up with the latest coronavirus research. Nature, 579(7798):193.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv, abs/1810.04805.

Jingcheng Du, Qingyu Chen, Yifan Peng, Yang Xiang, Cui Tao, and Zhiyong Lu. 2019. Mi-net: multi-label classification of biomedical texts with deep neural networks. Journal of the American Medical Informatics Association : JAMIA.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In EMNLP.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2019. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep learning for extreme multi-label text classification. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jacob VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:2825–2830.

Lucy Lu Wang, Kyle Lo, Yoganannd Chandrasekhar, Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn Funk, Rodney Michael Kinney, Ziyang Liu, William Merrill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong Shen, Brandon Stilson, Alex D. Wade, Kuansan Wang, Christopher Wilhelm, Boya Xie, Douglas M. Raymond, Daniel S. Weld, Oren Etzioni, and Sebastian Kollmeier. 2020. Cord-19: The covid-19 open research dataset. ArXiv, abs/2004.10706.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei Wu, and Houfeng Wang. 2018. Sgm: Sequence generation model for multi-label classification. In COLING.
A Experimental Set-up

We split the LitCovid dataset into train, dev, test with the ratio 7:1:2.

We adopt micro-F1 and accuracy as our evaluation metrics, same as (Adhikari et al., 2019a). We use scikit-learn (Pedregosa et al., 2011) and Hedwig evaluation scripts to evaluate all the models. For preprocessing, tokenization and sentence segmentation, we use the NLTK library.

All the document classification models used in the paper, logistic regression ¹ SVM ² DocBERT ³, Reg-LSTM ⁴, Reg-LSTM ⁵, XML-CNN ⁶, Kim CNN ⁷ are run based on the implementations listed here and strictly followed their instructions. We used the following pre-trained language models, BioBERT ⁸, BERT base ⁹, BERT large ¹⁰ and the Longformer ¹¹.

For reproducibility, we list all the key hyperparameters, the tuning bounds and the # of parameters for each model in Table A1. For the logistic regression and the SVM all hyperparameters used were default to scikit-learn and therefore are excluded from this table. For all models we train for a maximum of 30 epochs with a patience of 5. We used micro-F1 score for all hyperparameter tuning. All models were run on NVIDIA GeForce GTX 1080 GPUs.

¹https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
²https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
³https://github.com/castorini/hedwig/blob/master/models/bert
⁴https://github.com/castorini/hedwig/blob/master/models/reg_lstm
⁵https://github.com/castorini/hedwig/blob/master/models/reg_lstm
⁶https://github.com/castorini/hedwig/blob/master/models/xml_cnn
⁷https://github.com/castorini/hedwig/blob/master/models/kim_cnn
⁸https://huggingface.co/monologg/biobert_v1.1_pubmed
⁹https://huggingface.co/bert-base-uncased
¹⁰https://huggingface.co/bert-large-uncased
¹¹https://github.com/allenai/longformer
Model	Hyperparameters	Hyperparameter bounds	Number of Parameters
Kim CNN	batch size: 32, learning rate: 0.001, dropout: 0.1	batch size: (16, 32, 64), learning rate: (0.001, 0.0001, 0.0001), dropout: (0.1, 0.5, 0.7)	362,708
	mode: static, output channel: 100, word dimension: 300, embedding dimension: 300		
XML-CNN	batch size: 32, learning rate: 0.001, dropout: 0.7, dynamic pool length: 8	batch size: (32, 64), learning rate: (0.001, 0.0001, 1 × 10⁻⁵), dropout: (0.1, 0.5, 0.7), dynamic pool length: (8, 16, 32)	1,653,716
	mode: static, output channel: 100, word dimension: 300, embedding dimension: 300		
LSTM	batch size: 8, learning rate: 0.001, dropout: 0.1, hidden dimension: 512, mode: static	learning rate: (0.01, 0.001, 0.0001), hidden dimension: (300, 512)	3,342,344
	output channel: 100, word dimension: 300, embedding dimension: 300, number of layers: 1		
	epoch decay: 15, weight decay: 0, bidirectional: true, bottleneck layer: true		
LSTMReg	batch size: 8, learning rate: 0.001, dropout: 0.5, hidden dimension: 300, mode: static	batch size: (8, 16), learning rate: (0.01, 0.001, 0.0001), hidden dimension: (300, 512), dropout: (0.5, 0.6)	1,449,608
	output channel: 100, word dimension: 300, embedding dimension: 300, number of layers: 1		
	epoch decay: 15, weight decay: 0, bidirectional: true, bottleneck layer: true		
	temporal averaging: 0.99, temporal activation regularization: 0.0		
	activation regularization: 0.0		
BERTbase	learning rate: 2 × 10⁻⁵, max sequence length: 512	learning rate: (0.001, 0.0001, 2 × 10⁻⁵), maximum sequence length: (256, 512)	110M
	model: bert-base-uncased, warmup proportion: 0.1		
	gradient accumulation steps: 1		
BERTlarge	learning rate: 2 × 10⁻⁵, max sequence length: 512	learning rate: (0.001, 0.0001, 2 × 10⁻⁵), maximum sequence length: (256, 512)	336M
	model: bert-large-uncased, warmup proportion: 0.1		
	gradient accumulation steps: 1		
BioBERT	learning rate: 2 × 10⁻⁵, max sequence length: 512	learning rate: (0.001, 0.0001, 2 × 10⁻⁵), maximum sequence length: (256, 512)	108M
	model: monologg/biobert_v1.1_pubmed, warmup proportion: 0.1		
Longformer	learning rate: 2 × 10⁻⁵, max sequence length: 1024	learning rate: (0.001, 0.0001, 2 × 10⁻⁵), maximum sequence length: (1024, 3584)	148M
	batch size: 3, model: longformer-base-4096, warmup proportion: 0.1		
	gradient accumulation steps: 1		

Table A1: Hyperparameters, tuning bounds and number of parameters for each method.
B Performance by Category

Category	Binary F1 Score	LitCovid Dev	CORD-19 Set
Prevention	88.2 ±0.2	65.8 ±2.9	
Case Report	87.2 ±1.1	66.7 ±0.0	
Treatment	81.5 ±0.5	60.5 ±4.2	
Diagnosis	75.7 ±2.0	58.0 ±1.4	
Mechanism	71.1 ±1.6	81.4 ±3.8	
Forecasting	70.9 ±1.1	0.0 ±0.0	
General	64.4 ±8.6	0.0 ±0.0	
Transmission	48.3 ±3.7	52.0 ±11.0	

Table A2: BioBERT Binary F1 scores per category on the LitCovid dev set and the CORD-19 test set. Scores are given as mean ± standard deviation across three BioBERT training runs.

C Category Correlation

Category	Full Label	Percentage of Docs with Category	
Forecasting	Single Label	39.1	23.7
	+ Prevention	43.4	71.1
Transmission	Single Label	17.3	3.4
	+ Prevention	48.0	55.0

Table A3: This table shows how the Longformer model predicts (Forecasting & Prevention) and (Transmission & Prevention) much more frequently than can be found in the labels. The numbers are percentages of total number of documents with that category label.