INTRODUCTION

Species distribution models (SDMs) encompass a variety of methods used to predict the occurrence of a species from the environmental conditions at a given site, thus providing a proxy of habitat suitability (Warren & Seifert, 2011). These methods are increasingly used in various fields of ecology (Guisan & Thuiller, 2005), often with the aim of guiding decision-making in species conservation management and planning (Guisan et al., 2013). Indeed, SDMs represent a crucial and cost-effective tool to identify current important areas for threatened species, and to forecast ecosystem impacts of rapid human-induced environmental change (Beaumont et al., 2016; Elith, Kearney, & Phillips, 2010; Franklin, 2013; Guillera-Arroita et al., 2015; Guisan et al., 2013; Schwartz, Iverson, Prasad, Matthews, & O’Connor, 2006). Among the variety of available algorithms, machine learning approaches are becoming increasingly popular, facilitated by the recent...
availability of high computational power, and due to their ability to fit complex nonlinear relationships without requiring an a priori definition of a data model (Breiman, 2001). However, there still are many decisions to be made at various steps of the model building process that can influence the final output (Guisan & Thuiller, 2005). For example, the amount of complexity should be cautiously controlled to avoid models that underfit or overfit the underlying data (Merow et al., 2014; Warren & Seifert, 2011).

In general, the amount of complexity of a model depends on the number of chosen predictors and their transformations (Merow et al., 2014). Moreover, each machine learning algorithm has a series of parameters, known as hyperparameters. In contrast to model parameters, which are estimated from the data during model training, hyperparameters have a fixed value that must be defined before model training. Even if most machine learning algorithms have predefined default values, the optimal value of each hyperparameter is unknown, as it is specific to the modeling problem and the dataset. However, its choice affects model complexity and/or performance. For example, in a neural network, the maximum number of iterations controls the amount of iterations executed by its optimization algorithm. This value does not affect model complexity but if it is too low the algorithm might not converge, thus generating a model with lower performance. On the other hand, increasing the size of the hidden layer increases the number of parameters of the model and consequently its complexity, which in turn might affect its performance. In a Maxent model (Phillips, Anderson, & Schapire, 2006), the amount of regularization controls overfitting by shrunk some parameters toward zero which consequently penalizes model complexity. Although several authors have stressed the importance of inspecting the hyperparameters because default settings did not always yield an optimal performance (Elith et al., 2010; Merow, Smith, & Silander, 2013; Warren & Seifert, 2011; Warren, Wright, Seifert, & Shaffer, 2014), the time-consuming task of comparing models trained with a multitude of possible combinations of hyperparameters' values (e.g., Zeng, Low, & Yeo, 2016) may discourage many researchers from doing so in practice.

In order to optimize model complexity and performance, both the predictors used to build the model and the values of hyperparameters should be carefully selected which represents a challenge given the often numerous possible options. The new package SDMtune described here offers a framework to build and systematically tune SDMs. The package includes utilities that help R users (R Core Team, 2019) all along the analysis process, from data preparation to graphical representation of the results and reporting. In particular, it contains dedicated functions to perform variable selection and hyperparameter tuning. Hyperparameter tuning, also called hyperparameter optimization, is a process usually based on a trial and error experiment during which several models with different values of the hyperparameters are trained and evaluated in order to identify which combination yields the best performance. The simplest algorithm for hyperparameter tuning, grid search, trains and compares models with all possible combinations of the defined hyperparameters' values and can thus be a very time-consuming process. While other available R packages contain functions for tuning one (e.g., ENMeval (Muscarella et al., 2014), wallace (Kass et al., 2018)), kuenm (Cobos, Townsend Peterson, Barve, & Osorio-Olvera, 2019) or several statistical model types (e.g., biomod2 (Thuiller, Georges, & Breiner, 2019), sdm (Naimi & Araújo, 2016), zoon (Golding et al., 2018) and caret (Kuhn et al., 2019)), functions for data-driven variable selection are not always included and the hyperparameter tuning is always based on grid search or random search algorithms. SDMtune offers an alternative that relies on a genetic algorithm for exploring the hyperparameter configuration space (Lessmann, Stahlbock, & Crone, 2005; Young, Rose, Karnowski, Lim, & Patton, 2015), applicable to the most commonly used SDM algorithms. This method significantly reduces the time required to find a near-optimal or the optimal model configuration. As an additional advantage, all functions for selecting the variables and tuning the hyperparameters are supported by an interactive real-time displayed chart that shows the change in model performance during the different steps of function execution. The chart is created in the RStudio (RStudio Team, 2018) viewer pane using the open source library Chart.js (https://www.chartjs.org), thus facilitating the understanding of the underlying algorithm action through a graphical representation of the output and avoiding the user’s feeling of handling a black box that usually comes up when dealing with complex methods.

2 | PACKAGE WORKFLOW AND DESCRIPTION

In this section, we present a possible use of the SDMtune package that covers a complete analysis in seven steps (Figure 1): (1) preparing data for the analysis; (2) training and evaluating a model; (3) performing variable selection; (4) tuning model hyperparameters; (5) optimizing model parsimony; (6) evaluating the final model; and (7) generating an output report. Users can combine the available functions in a way that best suits them. For example, step 4 could be repeated after step 5 to further fine-tune model hyperparameters.

2.1 | Preparing data for the analysis

SDMtune uses a special object to compile the data for the analysis. This object, called SWD (samples with data, a format similar to the one used by the Maxent software), bundles all the information related to each record (name of the species, coordinates of the species’ presence and absence/background locations, and the values of the environmental variables at these locations), thereby reducing the risk of mistakes in further analyses.

Before starting the analysis the user should decide which evaluation strategy to use. SDMtune provides two methods: (1) simple hold-out validation and (2) k-fold cross-validation. The k folds for the cross-validation can be created either randomly, using the provided randomFolds function, or spatially/environmentally clustered, using functions included in the packages ENMeval and blockCV (Valavi, Elith,
In this case, SDMtune will internally convert the folds into the required format. The selected validation strategy is used to perform the variable selection and/or tune the model hyperparameters in order to optimize the model performance and address overfitting. When tuning the hyperparameters, several models with different configurations are trained and evaluated in an iterative process that aims at improving the predictive performance on the validation dataset, or—if cross-validation is used—on the arithmetic mean of the evaluation metric across all folds. During this process, part of the information contained in the validation dataset...
is inevitably transferred into the trained model, even if the validation data are not directly used to train the model (Chollet & Allaire, 2018; Müller & Guido, 2016). It is therefore advisable to hold apart an independent partition of the data, that is, the testing dataset, to obtain an unbiased evaluation of the final model (Hastie, Tibshirani, & Friedman, 2009; Merow et al., 2014).

The selection of a metric and a validation strategy should therefore be done early in the model tuning process, because it has implications on how the data should be split before training the first model. Note that the AICc score is computed using all the observation locations (Warren & Seifert, 2011) and does not require to partition the observation data into training and validation.

2.2 | Training and evaluating a model

Currently, four machine learning methods are available (Table 1): artificial neural networks (ANN), boosted regression trees (BRT), maximum entropy (ME), and random forest (RF). Two different implementations of the ME method can be selected: “Maxent” to use the Java implementation (version 3.4.1 or higher) and “Maxnet” for the R implementation using the maxnet package (Phillips, Anderson, Dudik, Schapire, & Blair, 2017; Phillips et al., 2006). There are specific arguments of the train function that can be used to set the model hyperparameters. By default, these arguments are set to the same values as implemented in the dependent packages.

A trained model can be evaluated using one of the three implemented metrics: (1) the area under the receiver operating characteristic (ROC) curve (AUC) (Fielding & Bell, 1997), (2) the true skill statistic (TSS) (Allouche, Tsoar, & Kadmon, 2006), and (3) Akaike’s information criterion corrected for small sample sizes (AICc, only for ME method) (Burnham & Anderson, 2004; Warren & Seifert, 2011). It should be noted that AIC is a relative measure describing the model fit in relation to complexity (parsimony) but holds no information on predictive performance. It can thus only be used to compare competing models trained using the same data but not for final model evaluation.

2.3 | Performing the variable selection

When the environmental variables used to train the model are highly correlated, it is difficult to interpret the model output, especially the relative importance of the variables and their response curves. A common practice is thus to select a subset of variables among which collinearity falls below a predefined threshold. A reasonable approach to remove highly correlated variables is to base the selection on expert knowledge, that is, retaining the environmental variable that is most likely to be ecologically meaningful for the target species. When this is unknown, an alternative approach is a “data-driven” variable selection that uses the information contained in the data to select the variable with the highest explanatory value among those that are highly correlated. The function varSel iterates through several steps: Starting from a trained model, it checks if the variable ranked as the most important (using the permutation importance or, optionally for Maxent models, the percent contribution (Phillips, 2017a)) is correlated with any of the other variables, using a given correlation criterion (e.g., Spearman’s rho) and correlation threshold. If so, a leave-one-out Jackknife test is performed, starting with the full model, and among all correlated variables the one that decreases least model performance on the training dataset is discarded. A new model without this variable is then trained and again checked for highly correlated variables. The process is repeated until the correlations among all retained variables fall below the predefined threshold. During the execution of the function varSel, a real-time chart shows which variable is removed and the relative effect on the model performance.

2.4 | Tuning the model hyperparameters

Tuning the model hyperparameters is a long process, as it requires testing many combinations of the hyperparameters in order to identify the best performing model. The simplest tuning method, known as “grid search,” is implemented in the function gridSearch. The user has the possibility to define a set of possible values for one or several hyperparameters, out of which the function will create all possible combinations. The function also returns the value of the chosen evaluation metric so that the user can see the effect of varying the hyperparameters on the model performance.

Grid search is based on a brute force method that results in a very time-consuming process with high computational costs. A possible alternative is to randomly select some hyperparameters’ combinations among the user-defined values (Bergstra & Bengio, 2012). This approach is implemented in the randomSearch function that usually finds a better performing model compared with the starting one. However, the disadvantage of the grid search and random search methods is that they do not use any information acquired during the iteration through the hyperparameter configuration space in order to improve the model performance. The function optimizeModel applies a genetic algorithm (Holland, 1992) instead, to more quickly optimize the combination of the hyperparameters (an example of a genetic algorithm used to define hyperparameters and architecture of a deep neural network is presented by Miikkulainen et al. (2018)). The algorithm (Figure 2) starts by generating a random initial “population” of models (using the randomSearch algorithm), with a given “population size”. The “fitness” of the population is measured with the chosen evaluation metric computed on the validation dataset and models are ranked accordingly. During the evaluation of the “fitness,” underfitting is controlled by ensuring that models for which the evaluation metric computed for the validation dataset is higher than the one computed for the training dataset are ranked in the last positions. At this point starts, the selection process during which some models (“individuals”) are selected according to their “fitness” from the initial “population” to create the first “generation.” There are two selection criteria. At first, a predefined proportion of the “fittest” models (i.e., models ranked in the first positions) is retained. Afterward, a small portion of the poor performing models (i.e., those not selected as “fittest”) is randomly retained in order to keep more variation in the
population and reduce the possibility that the algorithm falls in a local optimum. The retained models are then submitted to the optimization process: they are "bred" (i.e., combined) to create other "individuals" and to reach again the predefined "population" size. In this process, two models, called "parents," are randomly selected from the retained models ("selected individuals") to "breed" and generate a "child." This new model will randomly inherit a value for each hyperparameter from one of the "parents," a process called "crossover." A "mutation" chance with a predefined probability is added to increase the variation in the population. When the "mutation" is triggered one of the model's hyperparameter is randomly selected and its value is randomly sampled from those available but not included in the "parents." Once the population reaches the defined size, the "fitness" is calculated again, and the process is repeated for the number of generations specified in the function. The user can set all the arguments: population size, number of generations, fractions of both best and worst performing models to be retained at each generation as well as the probability of mutation during crossover episodes, but default values—that will work in most cases—are also defined. All the functions described in this section come with a real-time chart showing the model performance while the algorithm is running in the background.

2.5 Optimizing model parsimony

As soon as an optimal hyperparameter combination has been selected, we may want to reduce model complexity by removing some environmental variables ranked as less important.
The function reduceVar automates this with two alternative approaches: (a) removing all the variables with an importance lower than a given threshold in a stepwise fashion, starting from the variable with the lowest importance; (b) removing the variables only if the model performance does not decrease compared to the initial model, according to a given evaluation metric. In the second case, a leave-one-out Jackknife test is performed. If removing one of the variables ranked below the given threshold does not decrease the performance of the model on the validation dataset compared to the initial model, that variable is discarded. A new model, trained without this variable, is checked again with the Jackknife test, and the process is repeated until all the variables with an importance lower than the given threshold are either retained or discarded. A real-time chart showing the removed variable together with its relative effect on model performance is generated during the execution of the function.

2.6 Evaluating the final model

At this point, after the variable set has been optimized (varSel and reduceVar) and the hyperparameters of the model have been tuned (gridSearch, randomSearch, or optimizeModel) the model can be evaluated on the held apart testing dataset, which was never used during the tuning procedure, using one of the functions that compute the chosen metric (i.e., AUC or TSS). Another possibility would be to train a new model using the selected variables and hyperparameter combinations with the full dataset (i.e., without applying cross-validation or data partitioning) and evaluate it on the held apart testing dataset (Chollet & Allaire, 2018). This way the model can avail of a greater amount of information and might thus be able to generalize better.

2.7 Creating the output

There are several functions for visualizing the model results and predictions. The user can plot the response curves, the variable importance, the ROC curve, project the predicted relative probability of species occurrence to the extent of the environmental variables, plot and save the results as a map with either continuous (relative occurrence probabilities) or binary (presence-absence) values based on various threshold values. SDMtune implements its own algorithm to make predictions for “Maxent” models without calling the Java software. This results in a much faster execution that allows considerably speeding up projections, which is particularly useful when models are evaluated using the AICc, as this metric requires computing the Maxent raw output for the full geographic extent of the environmental variables. The prediction produced by our algorithm may—in some cases—differ marginally from the output of the Java implementation, which could result in only slightly different prediction values. Finally, the modelReport function creates a report similar to the one produced by the Maxent software, for all methods.

3 PERFORMANCE ASSESSMENT OF GENETIC ALGORITHM

We evaluated the performance of the genetic algorithm in terms of time-saving and model accuracy for the four SDM-methods available in SDMtune by comparing the output of the optimizeModel and gridSearch functions. We used the virtualSp dataset provided with the package. This dataset contains simulated presence, absence, and background locations generated with the package virtualSpecies (Leroy, Meynard, Bellard, & Courchamp, 2016). For artificial neural network, boosted regression trees, and random forest we used the presence and absence datasets, while for the maximum entropy method we used the presence and background datasets. The maximum entropy method was performed with the “Maxnet” implementation. In all cases, a 10-fold cross-validation was used as validation strategy and the AUC was used as evaluation metric. As first step, we trained a model with default hyperparameters’ values (for artificial neural network we used an inner layer of a size equal to the number of environmental variables), and then executed the two functions testing 1200 possible hyperparameters’ combinations (Table A1, for the optimizeModel function we used default arguments). The results of the analysis are presented in Table 2. In all cases, the optimizeModel functions found a near-optimal solution in a significantly reduced amount of time.

Table 2 Performance assessment of the gridSearch compared to the optimizeModel function for model tuning regarding execution time (expressed as HH:MM:SS) and evaluation metric (on the training dataset “Train AUC,” the validation dataset “Val AUC,” given as arithmetic mean across the folds of a 10-fold cross-validation) for the four methods implemented in SDMtune

Method	Default model	Genetic algorithm	Time	Grid search	Train AUC	Val AUC	Time
ANN	0.8600	0.8619	0.9839	0.9590	00:11:44		
BRT	0.9873	0.9750	0.9905	0.9779	00:01:33		
RF	1	0.9724	1	0.9740	00:02:16		
Maxnet	0.8681	0.8561	0.8710	0.8565	00:17:49		

Note: Models were trained using the virtualSp dataset available with the package and 1200 possible hyperparameters’ combinations. Presence and background locations were used for the Maxnet method, presence and absence locations for the other methods.
The whole analysis was conducted using R version 3.6.0 (R Core Team, 2019). The value of the respective variable within a 1 km² circular moving window was assessed at a resolution of 100×100 m, with each cell containing the average value of the respective variable within a 1 km² circular moving window. This approach allows for a better illustration of the advantages and disadvantages of each variable. By adjusting the resolution, we were able to increase the accuracy of the model while providing a near-optimal solution when the number of hyperparameters combinations increases.

In a next step, we investigated whether the final evaluation of the resulting models provided similar results. For this purpose, we selected the models with the optimized hyperparameters’ combination (i.e., the output of the `optimizeModel` function, Table A4), we conducted a simple experiment to investigate the performance of the `optimizeModel` compared to the `gridSearch` function in terms of execution time and best hyperparameter combination. We selected the AUC as the performance metric running a fourfold cross-validation. The folds were created by randomly splitting the training dataset with the function `randomFolds`. For the `optimizeModel` function, we used the default arguments: a population size of 20 models, five generations, kept 40% of the best performing models, randomly retained 20% of the less performing ones and used a mutation chance of 40%. We tested different sets of hyperparameters (Table A5 and Figure A1), varying the feature class combinations, the regularization multiplier and the number of iterations. The results illustrate how the `optimizeModel` function tremendously reduces computation time while providing a near-optimal solution when the number of hyperparameter combinations increases (Table 3). In our experiment, with 1200 possible hyperparameter combinations, the execution time dropped from 21 hr 14 min and 45 s using `gridSearch` to 1 hr 6 min and 58 s using `optimizeModel` with a similar predictive performance of the resulting models (mean validation AUC across the fourfold of 0.8588 and 0.8550, respectively).

In a next step, we investigated whether the final evaluation of the resulting models provided similar results. For this purpose, we selected the models with the optimized hyperparameters’ combination (i.e., the output of the `optimizeModel` and `gridSearch` functions run with 1200 different hyperparameters’ combinations). We used the `reduceVar` function to test if some variables with low contribution could be removed without affecting the validation AUC. We

h	Algorithm	Exec. time	Train AUC	Val AUC	Diff AUC	FC⁴	reg	iter
75	gridSearch	01:29:24	0.8687	0.8581	0.0106	lqph	3.0	500
	optimizeModel	01:06:50	0.8687	0.8581	0.0106	lqph	3.0	500
150	gridSearch	02:29:16	0.8687	0.8581	0.0106	lqph	3.0	500
	optimizeModel	01:16:26	0.8687	0.8581	0.0106	lqph	3.0	500
300	gridSearch	04:56:44	0.8691	0.8584	0.0107	lqph	2.9	500
	optimizeModel	01:15:09	0.8691	0.8584	0.0110	lqph	2.8	500
600	gridSearch	10:57:43	0.8707	0.8588	0.0119	lqph	2.7	700
	optimizeModel	01:18:46	0.8707	0.8588	0.0119	lqph	2.7	700
1200	gridSearch	21:14:45	0.8706	0.8588	0.0118	lqph	2.8	900
	optimizeModel	01:06:58	0.8700	0.8550	0.0149	lqph	1.9	700

Note: The models were trained using the Maxent method. The number of tested hyperparameters’ combinations is given by “h”. A description of the exact hyperparameters’ combinations is provided in Appendix A, Table A5. “FC” represents the feature class combination, “reg” the regularization multiplier and “iter” the number of iterations for the best performing model.

⁴FC: (l) linear, (q) quadratic, (p) product, and (h) hinge.

4 | EXAMPLE OF APPLICATION: BEARDED VULTURE IN THE SWISS ALPS

To demonstrate possible applications of SDMtune, we used 1947 observation locations of the Bearded vulture (Gypaetus barbatus) collected in Switzerland between 2004 and 2017. The occurrences were gathered from two databases: the International Bearded Vulture Monitoring (IBM) database and ornitho.ch, the official birding exchange platform in Switzerland. Clumped observations were removed with a spatial thinning of 250 m using the `spThin` package (Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson, 2015). We randomly split the observations into two partitions and used 80% (1536 observations) as training dataset and the remaining 20% (584) as testing dataset. A set of 39 environmental predictors that might be relevant for the species was prepared for the analysis, as using numerous predictors together with a large amount of species observations allows for a better illustration of the advantages and time-saving functionalities provided by our package. The variables included information on topography, climate, geology, anthropogenic infrastructure, land cover, and food availability, referring to Hirzel et al. (2004). All predictors were prepared as raster maps with a resolution of 100×100 m, with each cell containing the average value of the respective variable within a 1 km² circular moving window (a list of the variables is provided in Appendix A, Table A2). The whole analysis was conducted using R version 3.6.0 (R Core Team, 2019).

We performed the data-driven variable selection using the function `varSel` on the initial set of 39 predictors. As a first step, we trained a model using the “Maxent” method with default settings (i.e., linear, quadratic, product and hinge as feature class combinations, regularization multiplier equal to 1, 10,000 background locations and 500 iterations) and the 39 environmental variables. We then used the `varSel` function to execute the variable selection using the percent contribution to rank variable importance and the AUC as performance metric. The function arguments were set to check for Spearman’s correlation coefficients $|\rho|$ greater than equal to 0.7, based on 30,000 random background locations (Table A3).

Starting with the model trained using the 28 selected variables (i.e., the output of the `varSel` function, Table A4), we conducted a simple experiment to investigate the performance of the `optimizeModel` compared to the `gridSearch` function in terms of execution time and best hyperparameter combination. We selected the AUC as the performance metric running a fourfold cross-validation. The folds were created by randomly splitting the training dataset with the function `randomFolds`. For the `optimizeModel` function, we used the default arguments: a population size of 20 models, five generations, kept 40% of the best performing models, randomly retained 20% of the less performing ones and used a mutation chance of 40%. We tested different sets of hyperparameters (Table A5 and Figure A1), varying the feature class combinations, the regularization multiplier and the number of iterations. The results illustrate how using the `optimizeModel` function tremendously reduces computation time while providing a near-optimal solution when the number of hyperparameter combinations increases (Table 3). In our experiment, with 1200 possible hyperparameter combinations, the execution time dropped from 21 hr 14 min and 45 s using `gridSearch` to 1 hr 6 min and 58 s using `optimizeModel` with a similar predictive performance of the resulting models (mean validation AUC across the fourfold of 0.8588 and 0.8550, respectively).

TABLE 3 Performance of the `gridSearch` compared to the `optimizeModel` function for model tuning regarding execution time (expressed as HH:MM:SS) and evaluation metric (on the training dataset ”Train AUC,” the validation dataset ”Val AUC” and the difference between both ”Diff AUC,” given as arithmetic mean of the fourfold cross-validation) on the case example data of the bearded vulture.
considered the Maxent percent contribution to rank the environmental variables, a threshold of 2% for variable removal and used the Jackknife approach. We could remove nine and seven environmental variables, respectively, without reducing the mean validation AUC (Table A6 and Figure A2).

Finally, we trained a model using the full training dataset without cross-validation, the selected environmental variables and the best hyperparameter configuration found by the two functions. We estimated the performance of these tuned models on the held apart testing dataset, obtaining very similar results (Table 4).

5 | DISCUSSION

Most of the algorithms supported by the package have predefined default values for the hyperparameters, while ANN requires the size of the hidden layer to be specified (Table 1). Default values are not necessarily the best choice for any given dataset and modeling problem, and a tuning procedure can improve model performance considerably. For example, the default hyperparameters’ values of the Maxent algorithm were derived based on an empirical tuning experiment conducted on 226 species (Phillips & Dudík, 2008), however, several authors found that these values were not always optimal for their specific datasets (Anderson & Gonzalez, 2011; Merow et al., 2013; Radosavljevic & Anderson, 2014; Warren & Seifert, 2011; Warren et al., 2014). While dedicated R packages are available for fine-tuning Maxent’s hyperparameters, like ENMeval (Muscarella et al., 2014), wallace (Kass et al., 2018), and kuenn (Cobos et al., 2019), this process can be very time consuming (Table 2 and 3) and limiting, especially when performed for multiple species. With SDMtune, we introduce a genetic algorithm that drastically reduces the computation time of hyperparameter tuning while achieving an optimal or near-optimal model configuration.

While the gridSearch function can be preferred for tuning a single or a few hyperparameters, it quickly comes to its limits when testing numerous hyperparameters’ combinations. In this case, the randomSearch function may represent a valid and time-efficient alternative for finding a better model compared to the one trained with default settings. By taking a random subsample from predefined hyperparameters’ combinations, it has to train only n models (with n equal to the population size, i.e., 20 by default). During this process, it may select the best combination simply by chance. This chance, however, decreases with an increasing amount of possible combinations. The function optimizeModel, in contrast, can achieve a better result in a reasonable amount of time, as it makes use of the information generated during the tuning process, thanks to the genetic algorithm. This function also trains a reduced amount of models compared to gridSearch with the amount depending on: (1) the population size; (2) the fractions of both best and worst performing models to be retained at each generation; (3) the number of generations, which results in 60 models when using the default settings.

Although there is no rule of thumb to decide when optimizeModel should be preferred to gridSearch or randomSearch, the choice can be supported by considering four important factors. The first and most important factor is the time necessary to train one model, which in turn depends on the sample size, the number of predictors, the selected method, and the setting of the hyperparameters. For instance, increasing the number of trees in RF or BRT increases the computation time as does decreasing the amount of regularization or using hinge or threshold future class combinations in ME methods. The second is the selected evaluation strategy: when k-fold cross-validation is performed, the required time to train one model is inflated by the factor k. Moreover, using k-fold cross-validation requires to compute the evaluation metric k times and compute their mean value, and this marginally increases the overall computation time. The third factor is the selected evaluation metric. To compute, the AICc is necessary to get the prediction and compute their mean value, and this marginally increases the overall computation time. The fourth factor is the number of hyperparameters’ combinations used for the tuning procedure. Considering these aspects, the total amount of time necessary to tune the hyperparameters with the function gridSearch can be roughly estimated based on the time necessary to train and evaluate one model multiplied by the number of possible hyperparameters’ combinations.

Furthermore, the two functions could also be used in conjunction: the optimizeModel function returns n models, with n equal to the size of the predefined “population” of models (20 by default), ordered by decreasing model performance. The user could inspect the values of the hyperparameters of the returned models and further

Table 4
Comparison of model performance between models tuned using the genetic algorithm and grid search implemented in the optimizeModel and gridSearch function respectively, on the case example data of the Bearded vulture

Step	Dataset	Model performance	Genetic algorithm	Grid search
Starting model	Training	0.863		
	Validation	0.846		
	Testing	0.836		
Hyperparameter tuning	Training	0.870	0.871	
	Validation	0.856	0.859	
	Testing	0.848	0.853	
Optimize parsimony	Training	0.865	0.868	
	Validation	0.856	0.859	
	Testing	0.846	0.854	
Final model evaluation	Training	0.862	0.867	
	Testing	0.846	0.855	

Note: Performance is evaluated with the AUC metric on the training, validation and testing datasets as mean AUC of the fourfold cross-validation at different steps of the modeling workflow. For the final model evaluation the model is trained merging training and validation datasets. The testing dataset refers to the dataset held apart and not used during the hyperparameter tuning and optimize parsimony steps and the starting model is the model trained after removing highly correlated variables.
refine them using gridSearch. Finally, in case different hyperparameter-configurations result in models with equal or similar values of the evaluation metric, the selection of one among the competing models can be based on further exploration, for example, by computing multiple evaluation metrics. It should be stressed that hyperparameter tuning is limited to the values of the hyperparameters defined by the user and thus is not exhaustive. What we defined "best model" refers to the best model among those trained with all the possible combinations of the predefined values. Therefore, the definition of these values determines the quality of the final model.

The genetic algorithm implemented in the function optimizeModel relies on some parameters that govern the optimization process (i.e., population size, number of generations, fractions of both best and worst performing models to be retained at each generation, and probability of mutation during crossover episodes), which are provided with default values. We defined these values based on a deep understanding of the algorithm and after testing it multiple times on varying datasets. Nevertheless, although these values could have been hard coded into the source code, we decided to provide a more flexible function making them available as arguments. In the performance assessment of the genetic algorithm and in the example of application presented here (Table 2 and 3), default values worked when testing as much as 1200 predefined hyperparameters' combinations. In case of a similar or higher amount of hyperparameters' combinations, these values might require small adjustments to introduce more variability, for instance by increasing the population size and the probability of mutation.

With the implementation of the genetic algorithm, we introduced a new way of hyperparameters optimization in the field of SDMs. This way could be extended further by testing different modifications. For example, in our implementation only one model is created during the "crossover" event, but two "sibling" models could be produced instead. Furthermore, other optimization algorithms, like the Bayesian optimization, could be implemented. With our optimizeModel function, we provide a first implementation of a new algorithm that can be extended in future releases of the package.

Not only the tuning of hyperparameters, but also the selection of environmental variables for SDMs has gained attention in recent years (Jueterbock, Smolina, Coyer, & Hoarau, 2016; Warren et al., 2014; Zeng et al., 2016). Despite the fact that highly correlated environmental variables are not a problem when the aim of the study is prediction in the same extent of the observed data, reducing collinearity is recommended in order to reduce model complexity and increase the interpretability of the predictors (Dormann et al., 2013; Merow et al., 2013). In addition, although the degree of accepted model complexity varies according to the modeling scope(s) (Halvorsen, 2012; Halvorsen, Mazzoni, Bryn, & Bakkestuen, 2015), it has been pointed out that models might perform best when trained with a reduced number of predictors (Brun et al., 2020; Halvorsen et al., 2015). Even though the selection should be driven by the knowledge of the modeled species, this might be difficult when the user must decide among several a priori ecologically relevant predictors for the species, or if the ecology of the species is poorly known. Cobos et al. (2019), with their package kuenm, provide a framework that enables tuning several models starting with different sets of environmental variables. Yet, this process still requires predefining the predictor sets. Warren et al. (2014) described a method where environmental variables are removed in a stepwise approach that accounts for regularization tuning, variable importance, and improvements in the AICc metric. A similar approach has been implemented in the package MaxentVariableSelection (Jueterbock, 2015), used by Jueterbock et al. (2016) to model the effect of climate change on the Arctic seaweed (Fucus distichus). In both examples, all predictors with a contribution-score lower than a given threshold and predictors highly correlated with the most important variable were removed simultaneously at each step. Given that removing a variable affects the contribution-score of the remaining predictors and therefore their resulting rank, our functions for data-driven variable selection remove only one variable at a time. For the same reason, removing highly correlated variables and variables with low contribution is performed by two distinct functions and not combined into the same process, as described in the previous examples. Furthermore, instead of relying merely on a variable's rank of importance for deciding which one to retain, our functions base the selection on a leave-one-out Jackknife test, while controlling the desired performance metric. Note that the varSel function aims at maintaining the value of the selected metric for the training dataset (i.e., removes the variables that decreases least the evaluation metric) while the reduceVar function aims to at least maintain the value of the selected metric for the validation dataset (i.e., removes a variable if the evaluation metric does not drop). The reasons are, first, that highly correlated predictors should be removed before performing any tuning, and second, that optimizing the selected metric for the training dataset allows capturing the information contained in the data, which is especially important if ecological selection criteria are lacking. The over- or underfitting can then be controlled later by fine-tuning the hyperparameters. On the other hand, removing variables with low predictive contribution aims to reduce model complexity and increase model generalization, which is why the validation dataset is used.

There are other R packages which include functions for variable selection. Caret, for instance, implements several methods based, among others, on simulated annealing, recursive elimination, or a genetic algorithm. Whereas these methods aim at identifying the best subset of the available variables, our implementations address different problems: varSel removes variables to reduce collinearity, and reduceVar removes variables that contribute least to the model to increase parsimony. The functions for data-driven variable selection can be particularly useful when the fitted model is extrapolated in space or time. In such cases, the currently prevailing correlations among the environmental variables may differ from those observed in the new time periods or geographical areas (Braunisch et al., 2013), causing unexpected predictions (Warren et al., 2014). This risk is reduced with a reduced number of predictors. Moreover, reducing the number of predictors may
limit overfitting, and thus result in a model that generalizes better and thus yields more accurate predictions for data not used during training. The selection of a threshold to reduce the number of variables with the function `reduceVar` is quite arbitrary. If the aim is to remove as many variables as possible while preserving model performance, the threshold could be set to 100 and the Jackknife method must be selected. On the contrary, if the user, based on his expertise, judges a certain variable as ecologically important for the species and wants to retain it in the model, he could define a threshold that is lower than the importance of this variable. Nevertheless, the functions presented in this article should not be applied blindly. Therefore, `SDMtune` provides interactive real-time charts to visualize every step of the algorithms with the idea that the user further evaluates the validity of the final output.

These charts are particularly useful for two reasons. First, because they are updated in real time, they confirm that the running function is working properly and is not frozen at some unknown step. This is especially important for functions that take long to be executed. Second, because they are interactive, different types of information can be provided without overloading a single graph, since extra information is embedded in a tooltip that appears when the user hovers over a specific element of the chart. Interactive real-time charts are well known and used in other fields that represent the state-of-the-art of machine learning, and available in few R packages such as `keras` (Allaire & Chollet, 2020) which allows the user to build complex deep learning models.

6 | CONCLUSION

The new R package `SDMtune` enables data-driven variable selection and hyperparameters tuning within a unified and user-friendly framework. The core functions provide interactive real-time charts that represent the effect of each step of the implemented algorithms in relation to the model performance and allow a deeper understanding of the automated processes. The new functions we present in this paper (i.e., genetic algorithm for hyperparameter tuning and automated variable selection) are implemented in a framework that also integrates functions already available in other packages. This unification, combining all required functions in a single package, offers the advantage for the user to learn a unique framework instead of jumping from one package to the other, each time having to adapt data structures. Currently, `SDMtune` supports three evaluation metrics (i.e., AUC, TSS, and AICc) and four modeling methods (i.e., ANN, BRT, RF, and ME) and more can be easily added in future releases.

Despite providing comprehensive descriptions and visual illustration of the functions, we still stress that users should be familiar with their data and the selected algorithm used to train their model. Particular attention should be paid to preprocessing the data before modeling. `SDMtune` also offers functions to prepare the data, but it is upon the user’s knowledge and expertise to decide upon the most appropriate way to partition and filter the dataset, accounting for sample size and possible sampling biases, or which metric is best to evaluate the model in relation to the modeling objectives. In this respect Araújo et al. (2019) defined best-practice standards for SDMs stressing the importance of evaluating models with a temporally or spatially independent dataset (Araújo et al., 2019: Supplement S2.4B). For this reason, `SDMtune` supports functions well developed in other packages (`blockCV` and `ENMeval`) to produce such data partitions. These best-practices have recently gained importance and have been integrated in the ODMAP standard protocol (Zurell et al., 2020) that provides a workflow for reproducible and good quality analyses.

The package documentation provides a more complete description of all the available functions, and the articles hosted on the package webpage (https://consbiol-unibe.ch/SDMtune/) describe meaningful examples of application in various fields of ecological research. These examples are also included in the package and accessible through the vignettes.

7 | INSTALLATION

The package `SDMtune` is available in the CRAN repository at https://CRAN.R-project.org/package=SDMtune and can be installed in R with the command `install.packages("SDMtune")`. The package is under development and the source code is hosted in GitHub (https://github.com/ConsBiol-unibe/SDMtune). We encourage future users to provide feedback and report bugs by opening an issue on the GitHub platform.

ACKNOWLEDGMENTS

We thank the Stiftung Pro Bartgeier, the International Bearded Vulture Monitoring, and the Swiss Ornithological Institute for providing the Bearded vulture locations used in the case study. This research was supported by the Swiss Federal Office for Energy, the Swiss Federal Office for the Environment and the following foundations: Parrotia Stiftung, Margarethe und Rudolf Gsell-Stiftung, Alfons und Mathilde Suter-Caduff Stiftung, WWF Switzerland, Beat und Dieter Jutzler Stiftung, UniBern Forschungsstiftung, Stiftung Dreiklang für ökologische Forschung und Bildung, Sophie und Karl Binding Stiftung, Stiftung Temperatior, Ernst Göhner Stiftung, Steffen Gysel Stiftung für Natur und Vogelschutz, and Samy Harshallanos.

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

Sergio Vignali: Conceptualization (equal); formal analysis (equal); funding acquisition (supporting); methodology (equal); software (lead); validation (equal); visualization (lead); writing—original draft (lead). Arnaud G. Barras: Methodology (supporting); software (supporting); validation (equal); writing—review and editing (equal). Raphaël Arlettaz: Funding acquisition (lead); project administration (lead); resources (lead); supervision (supporting); writing—review and editing (equal). Veronika Braunisch: Conceptualization (equal);
formal analysis (equal); funding acquisition (supporting); methodology (equal); software (supporting); supervision (lead); writing—original draft (lead).

DATA AVAILABILITY STATEMENT
The Bearded vulture locations and the environmental variables used in the case example have not been archived because part of the data cannot be made publicly available due to data property rights and conservation vulnerability of the species. However, the analysis steps illustrated in the case example could also be reproduced following the articles published on the SDMtune website (https://consbio.unibern.github.io/SDMtune/) and using the virtualSp dataset provided with the package. The code necessary to reproduce the performance assessment of the genetic algorithm is provided in Appendix A.

ORCID
Sergio Vignali https://orcid.org/0000-0002-3390-5442
Arnaud G. Barras https://orcid.org/0000-0003-0850-6965
Raphaël Arlettaz https://orcid.org/0000-0001-6360-5339
Veronica Braunisch https://orcid.org/0000-0001-7035-4662

REFERENCES
Aiello-Lammens, M.E., Borja, R.A., Radosavljevic, A., Vilela, B., & Anderson, R.P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. *Ecography*, 38, 541–545. https://doi.org/10.1111/ecog.01132
Allaire, J.J., & Chollet, F. (2020). *keras: R Interface to “Keras”*. R Package. Retrieved from https://CRAN.R-project.org/package=keras
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). *Journal of Applied Ecology*, 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Anderson, R.P., & Gonzalez, I. (2011). Species-specific tuning increases biodiversity assessments. *Science Advances*, 5(eaa4858), eaa4858. https://doi.org/10.1126/sciadv.aat4858
Beaumont, L.J., Graham, E., Duursma, D.E., Wilson, P.D., Cabrelli, A., Baumgartner, J.B., … VanDerWal, J. (2016). Which species distribution models are more than simple habitat models. *Ecology Letters*, 8, 993–1009. https://doi.org/10.1111/1461-0248.12390
Beaumont, L.J., Graham, E., Duursma, D.E., Wilson, P.D., Cabrelli, A., Baumgartner, J.B., … VanDerWal, J. (2016). Which species distribution models are more than simple habitat models. *Ecology Letters*, 8, 993–1009. https://doi.org/10.1111/1461-0248.12390
Braunisch, V., Coppe, J., Arlettaz, R., Suchant, R., Schmid, H., & Bollmann, K. (2013). Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. *Ecography*, 36, 971–983. https://doi.org/10.1111/j.1600-0583.2013.01383.x
Breiman, L. (2001). Statistical modeling: The two cultures. *Source: Statistical Science*, 16, 199–215.
Brun, P., Thuiller, W., Chauviré, Y., Pellissier, L., Wüst, R.O., Wang, Z., & Zimmermann, N.E. (2020). Model complexity affects species distribution projections under climate change. *Journal of Biogeography*, 47, 130–142. https://doi.org/10.1111/jbi.13734
Bundesamt für Energie BFE (2016). *Windatlas Schweiz: Jahresmittel der modellierten Windgeschwindigkeit und Windrichtung*. Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK.
Burnham, K.P., & Anderson, D.R. (2004). *Multimodel Inference Understanding AIC and BIC in Model Selection*. *Sociological Methods & Research*, 33, 261–304. https://doi.org/10.1177/0049124104268644
Chollet, F., & Allaire, J.J. (2018). *Deep learning with R*. Shelter Island, New York: Manning.
Cobos, M.E., Townsend Peterson, A., Barve, N., & Osorio-Olvera, L. (2019). Kuenm: An R package for detailed development of ecological niche models using Maxent. *PeerJ*, 7, e6281. https://doi.org/10.7717/peerj.6281
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. *Ecography*, 36, 027–046. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. *Methods in Ecology and Evolution*, 1, 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Fielding, A.H., & Bell, J.F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. *Environmental Conservation*, 24, 38–49. https://doi.org/10.1017/S0376892997000088
Franklin, J. (2013). *Species distribution models in conservation biogeography: Developments and challenges*. *Diversity and Distributions*, 19, 1217–1223. https://doi.org/10.1111/ddi.12125
Golding, N., August, T.A., Lucas, T.C.D., Gavaghan, D.J., van Loon, E.E., & McNerney, G. (2018). The zoom r package for reproducible and shareable species distribution modelling. *Methods in Ecology and Evolution*, 9, 260–268. https://doi.org/10.1111/2041-210X.12858
Greenwell, B., Boehmke, B., Cunningham, J., & GBM Developers (2019). *gbm: Generalized Boosted Regression Models*. R package. Retrieved from https://CRAN.R-project.org/package=gbm
Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., … Wintle, B.A. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. *Global Ecology and Biogeography*, 24, 276–292. https://doi.org/10.1111/geb.12268
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. *Ecology Letters*, 8, 993–1009. https://doi.org/10.1111/1461-0248.2005.00792.x
Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutilcliffe, P.R., Tulloch, A.T., … Buckley, Y.M. (2013). Predicting species distributions for conservation decisions. *Ecology Letters*, 16, 1424–1435. https://doi.org/10.1111/ele.12189
Halvorsen, R. (2012). A gradient analytic perspective on distribution modelling. *Sommerfeltia*, 35(1), 1–165. https://doi.org/10.2478/v10248-v10208-011-0015-3
Halvorsen, R., Mazzoni, S., Bryn, A., & Bakkestuen, V. (2015). Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. *Ecography*, 38, 172–183. https://doi.org/10.1111/ecog.00565
Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The elements of statistical learning data mining, inference, and prediction*. New York: Springer.
Hijmans, R.J., Phillips, S., Leathwick, J., & Elith, J. (2017). *dismo: Species Distribution Modeling*. R Package. Retrieved from https://CRAN.R-project.org/package=dismo
Hirzel, A., Poss, B., Oggier, P.-A., Crettenand, Y., Gavaghan, D., & Arlettaz, R. (2004). Ecological requirements of reintroduced Bearded vultures colonizing the Alps: Implications for release policy. *Journal of Applied Ecology*, 41, 1–24.
Holland, J.H. (1992). *Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence*. Cambridge, MA: MIT Press.
APPENDIX A

R CODE TO REPRODUCE THE PERFORMANCE ASSESSMENT OF THE GENETIC ALGORITHM

The output presented in the article has been produced using R version 3.6 in a Linux operating system. Results might be slightly different with other versions of R or operating systems due to possible different random numbers generated after setting the seed.

```r
library(SDMtune)
# Set general seed for all experiments
seed = 186546
## Load and prepare data-----------------------------------------------
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"), pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
p_coords <- virtualSp$presence
a_coords <- virtualSp$absence
data <- prepareSWD(species = "Virtual species", p = p_coords, a = a_coords, env = predictors[[1:8]])
folds <- randomFolds(data, k = 10, seed = seed)
## ANN experiment 1200 hyperparameters---------------------------------
# Train starting model
model_ann <- train("ANN", data = data, size = 8, folds = folds)
auc(model_ann)
auc(model_ann, test = TRUE)
# 1200 hyperparameters' combinations
h_ann <- list(size = 2:81, decay = c(0.01, 0.05, 0.1, 0.3, 0.5),
               maxit = c(100, 500, 1000))
nrow(expand.grid(h_ann)) == 1200 # Make sure there are 1200 combinations
# Genetic Algorithm
om_ann <- optimizeModel(model_ann, hypers = h_ann, metric = "auc", seed = seed)
om_ann@results[1:5,
# Grid Search
set.seed(seed)
gs_ann <- gridSearch(model_ann, hypers = h_ann, metric = "auc", save_models = FALSE)
head(gs_ann@results[order(-gs_ann@results$test_AUC),])
## BRT experiment 1200 hyperparameters---------------------------------
# Train starting model
set.seed(seed)
model_brt <- train("BRT", data = data, folds = folds)
auc(model_brt)
auc(model_brt, test = TRUE)
# 1200 hyperparameters' combinations
h_brt <- list(n.trees = seq(40, 1020, 20), interaction.depth = c(1:4), shrinkage = seq(0.05, 0.1, 0.01))
nrow(expand.grid(h_brt)) == 1200 # Make sure there are 1200 combinations
# Genetic Algorithm
om_brt <- optimizeModel(model_brt, hypers = h_brt, metric = "auc", seed = seed)
om_brt@results[1:5,
# Grid Search
gs_brt <- gridSearch(model_brt, hypers = h_brt, metric = "auc", save_models = FALSE)
head(gs_brt@results[order(-gs_brt@results$test_AUC),])
## RF experiment 1200 hyperparameters---------------------------------
# Train starting model
set.seed(seed)
model_rf <- train("RF", data = data, folds = folds)
auc(model_rf)
auc(model_rf, test = TRUE)
```
1200 hyperparameters' combinations

```r
h_rf <- list(ntree = seq(420, 1000, 20), mtry = 3:6, nodesize = 1:10)
nrow(expand.grid(h_rf)) == 1200 # Make sure there are 1200 combinations
```

Genetic Algorithm

```r
om_rf <- optimizeModel(model_rf, hypers = h_rf, metric = "auc", seed = seed)
```

Grid Search

```r
gs_rf <- gridSearch(model_rf, hypers = h_rf, metric = "auc", save_models = FALSE)
head(gs_rf@results[order(-gs_rf@results$test_AUC),])
```

Maxnet experiment 1200 hyperparameters---------------------------------------

Train starting model

```r
bg_coords <- virtualSp$background
data <- prepareSWD(species = "Virtual species", p = p_coords, a = bg_coords, env = predictors[[1:8]])
folds <- randomFolds(data, k = 10, only_presence = TRUE, seed = seed)
model_mx <- train("Maxnet", data = data, folds = folds)
auc(model_mx)
auc(model_mx, test = TRUE)
```

1200 hyperparameters' combinations

```r
h_mx <- list(reg = seq(0.1, 4.88, 0.02), fc = c("l", "lh", "lqp", "lqph", "lqpht"))
nrow(expand.grid(h_mx)) == 1200 # Make sure there are 1200 combinations
```

Genetic Algorithm

```r
om_mx <- optimizeModel(model_mx, hypers = h_mx, metric = "auc", seed = seed)
```

Grid Search

```r
gs_mx <- gridSearch(model_mx, hypers = h_mx, metric = "auc", save_models = FALSE)
head(gs_mx@results[order(-gs_mx@results$test_AUC),])
```

TABLE A1 Hyperparameter values used during the performance assessment of the genetic algorithm

Method	Hyperparameters' values
ANN	size = 2:81, decay = c(0.01, 0.05, 0.1, 0.3, 0.5), maxit = c(100, 500, 1000)
BRT	n.trees = seq(40, 1020, 20), interaction.depth = 1:4, shrinkage = seq(0.05, 0.1, 0.01)
RF	ntree = seq(420, 1000, 20), mtry = 3:6, nodesize = 1:10
ME (Maxnet)	reg = seq(0.1, 4.88, 0.02), fc = c("l", "lh", "lqp", "lqph", "lqpht")

Note: The values are provided using the R code to generate them.
Variable	Abbreviation	Source
Average altitude (m a.s.l.)	altitude_av	DHM*
Distance from anthropogenic areas (m)	an_area_d_av	Vector 25b
Bush frequency (%)	bush_fr*	Vector 25
Limestone frequency (%)	compact_limestone_fr*	GeoKarten500c
Distance from cableways without ski-lifts (m)	c_way_d_av*	Vector 25
Sine of the aspect (-1 to 1)	eastness*	DVM
Forest frequency (%)	forest_fr*	Vector 25
Glacier frequency (%)	glacier_fr*	Vector 25
Gneiss frequency (%)	gneiss_fr*	GeoKarten500
Granite frequency (%)	granite_fr*	GeoKarten500
Ibex density in the warm season (N/ha)	ibex_summer_density_av*	BAFU + CSCF
Ibex density in the cold season (N/ha)	ibex_winter_density_av*	BAFU + CSCF
Distance from lakes (m)	lake_d_av*	Vector 25
Marshland frequency (%)	marsh_fr*	Vector 25
Cosine of the aspect (-1 to 1)	northness_av*	DVM
Open forest frequency (%)	open_forest_fr	Vector 25
Other rock frequency (%)	other_rocks_fr*	GeoKarten500
Grassland and unproductive vegetation frequency (%)	other_soil_fr*	Vector 25 + BFs
Permanent culture frequency (%)	permanent_fr*	Vector 25
Average precipitation in the cold season (mm)	prec_122_av*	WSL*
Average precipitation in the warm season (mm)	prec_57_av*	WSL
Distance from rivers and creeks (m)	riv_cre_d_av*	Vector 25
Distance from roads and railways (m)	ro_rail_d_av*	Vector 25
Rock frequency (%)	rock_fr	Vector 25
Distance from rock steeper than 45° (m)	rock45_d_sv	Vector 25 + DVM
Standard deviation (SD) of the altitude (m)	roughness*	DVM
Chamois occurrence probability (0–1)	rupicapra_hs_av*	CSCF
Scree frequency (%)	scree_fr*	Vector 25
Sheep and goat warm season density (N/ha)	sheep_goat_d_av*	BSF
Distance from ski-lifts (m)	ski_d_av*	Vector 25
Slope (degree)	slope_av	DVM
Frequency of slopes steeper than 30° (%)	slope30_fr	DVM
Average solar radiation in the cold season (WH/m²)	solar_rad122_av	DVM
Average solar radiation in the warm season (WH/m²)	solar_rad57_av*	DVM
Average temperature in the cold season (°C)	tave_122_av	WSL
Average temperature in the warm season (°C)	tave_57_av	WSL
Topographic Position Index (h)	tpi_av*	DVM
Distance from water (m)	water_d_av	Vector 25
Average wind speed at 100 m above ground (m/s)	wind_100_av*	BFE

Note: Variables were calculated as average value within a circular moving window with r = 564 m (1 km²) on raster data of 100 × 100 m resolution. The 28 variables selected by the varSel function are marked using the * symbol.

*Digital Height Model of Switzerland (Swisstopo):https://shop.swisstopo.admin.ch/en/products/height_models/dhm25.
*Digital Cartographic Model of Switzerland (Swisstopo):https://shop.swisstopo.admin.ch/en/products/maps/national/vector/smv25.
*Geo Maps:https://shop.swisstopo.admin.ch/de/products/maps/geology/GK500.
*Distribution of ibex colonies:https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/zustand/karten.html.
*Centre suisse de cartographie de la faune (CSCF):http://www.cscf.ch/cscf/de/home.html.
*Federal Administration for Statistic Switzerland (BSF):https://www.bfs.admin.ch/bfs/de/home/statistiken.html.
*Federal Institute for Forest, Snow and Landscape Research WSL; available upon request: www.wsl.ch.
*Topographic position index according to Wilson (1984).
*Swiss Wind Atlas (Bundesamt für Energie BFE, 2016).
TABLE A3
Spearman' correlation coefficient of highly correlated environmental variables ($r_s \leq -0.7$ and $r_s \geq 0.7$). For variable codes see Table A2

Var1	Var2	r_s
tave122_av	tave57_av	0.996
altitude_av	tave57_av	-0.996
altitude_av	tave122_av	-0.995
forest_fr	open_forest_fr	0.993
slope_av	slope30_fr	0.970
riv_cre_d_av	water_d_av	0.925
rock_fr	rock45_d_av	-0.903
roughness	slope_av	0.882
roughness	slope30_fr	0.863
altitude_av	ro_rail_d_av	0.826
ro_rail_d_av	tave57_av	-0.826
northness_av	solar_rad122_av	-0.814
rock45_d_av	slope_av	-0.814
ro_rail_d_av	tave122_av	-0.814
rock45_d_av	slope30_fr	-0.813
an_area_d_av	ro_rail_d_av	0.803
solar_rad122_av	solar_rad57_av	0.797
an_area_d_av	tave57_av	-0.774
an_area_d_av	tave122_av	-0.764
altitude_av	an_area_d_av	0.762
altitude_av	scree_fr	0.738
scree_fr	tave57_av	-0.734
scree_fr	tave122_av	-0.732
open_forest_fr	tave122_av	0.731
open_forest_fr	tave57_av	0.731
altitude_av	open_forest_fr	-0.718
forest_fr	tave122_av	0.718
forest_fr	tave57_av	0.718
rock45_d_av	roughness	-0.717
rock_fr	scree_fr	0.707
altitude_av	forest_fr	-0.705

TABLE A4
List of the environmental variables selected by the varSel function and relative percent contribution rounded to the first decimal place before executing the optimizeModel function

Variable	P. contribution
bush_fr	0.7
compact_limestone_fr	3.5
c_way_d_av	1.1
eastness_av	0.6
forest_fr	0.8
glacier_fr	0.6
gneiss_fr	1.4
granite_fr	1.3
ibex_summer_density_av	9.8
ibex_winter_density_av	41.3
lake_d_av	0.1
marsh_fr	0.0
northness_av	3.9
other_rocks_fr	0.5
other_soil_fr	1.4
permanent_fr	0.8
prec_122_av	11.2
prec_57_av	1.9
riv_cre_d_av	0.4
ro_rail_d_av	0.1
roughness	0.5
rupicapra_hs_av	2.4
scree_fr	4.2
sheep_goat_d_av	1.4
ski_d_av	1.4
solar_rad57_av	0.9
tpi_av	6.7
wind_100_av	1.0
TABLE A6 List of the remaining environmental variables after the execution of the reduceVar function (Figure A2) and relative percent contribution rounded to the first decimal place

Variable	Percent contribution	
	optimizeModel	**gridSearch**
bush_fr	0.9	
compact_limestone_fr	6.8	
c_way_d_av	1.7	1.9
eastness_av	1.4	1.4
forest_fr	1.3	1.4
gneiss_fr	1.5	1.7
granite_fr	1.5	1.3
ibex_summer_density_av	19.0	18.5
ibex_winter_density_av	6.8	7.0
northness_av	6.8	6.8
other_rocks_fr	2.2	3.2
other_soi_fr	-	0.8
permanent_fr	0.7	0.7
prec_122_av	24.6	24.2
prec_57_av	2.5	2.4
roughness	1.5	1.0
rupicapra_hs_av	3.5	3.5
scree_fr	9.0	9.9
ski_d_av	1.3	1.3
solar_rad57_av	5.2	3.4
wind_100_av	1.7	1.9

Note: The model parsimony optimization was performed based on the output of the optimizeModel and gridSearch functions respectively, executed to tune 1200 possible combinations of hyperparameters.
FIGURE A1 Snapshot of the real-time chart after executing the optimizeModel function (with a "population size" of 20 models and five model generations) using 1200 different hyperparameter combinations on the case example data of the Bearded vulture. The scatterplot on top shows the training AUC (in orange) and the validation AUC (in blue) of the 20 ranked models at the end of the fifth generation, given as the arithmetic mean of the fourfold cross-validation. The line plot at the bottom shows the increase in model performance (based on the AUC on both training and validation dataset) at each generation with start: the starting model before running the optimization process, 0: the best performing model after the random population is created, 1–5: the best performing models in each of the five generations of the optimization process.
FIGURE A2 Snapshot of the real-time chart after executing the `reduceVar` function on the case example data of the Bearded vulture. The bar chart on top shows the 28 uncorrelated environmental variables with the percent contribution of the retained environmental variables at the end of the selection process, calculated according to Phillips et al. (2006). The line chart at the bottom shows the change in model performance (based on the AUC on both the training and validation dataset, given as arithmetic mean of the fourfold cross-validation) at each iteration where a single variable is removed. In the RStudio viewer pane, the chart is interactive and when the user hovers over the line or bar chart a tooltip reports the variable that has been removed and the relative model performance values. Variable codes are provided in Table A2.