ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article GENOME-WIDE ASSOCIATION STUDY OF MITOCHONDRIAL DNA IN CHINESE MEN IDENTIFIES SEVEN NEW SUSCEPTIBILITY LOCI FOR HIGH-ALTITUDE PULMONARY OEDEMA

Authors Caizhi Tang1, Yu Chen1, Xinyuan Liu1, Zhuang Ran1, Yongjun Luo1#, Vojnosanitetski pregled (2020); Online First June, 2020.

UDC:

DOI: https://doi.org/10.2298/VSP191027063T

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
GENOME-WIDE ASSOCIATION STUDY OF MITOCHONDRIAL DNA IN CHINESE MEN IDENTIFIES SEVEN NEW SUSCEPTIBILITY LOCI FOR HIGH-ALTITUDE PULMONARY OEDEMA

Caizhi Tang¹, Yu Chen¹, Xinyuan Liu¹, Zhuang Ran¹, Yongjun Luo¹#

¹ Department of Military Medical Geography, Army Medical Service Training Base, Army Medical University, Chongqing 400038, China

Address for correspondence and reprints:
Prof. Yongjun Luo, Fax: +86 23 68771868; Telephone: +86 23 68771868; Mail address: Department of Military Medical Geography, Army medical training base, Army Medical University, Chongqing 400038, P.R. China; E-mail address: ajun-333333@163.com.
Abstract

Background / Aim: High-altitude pulmonary oedema (HAPE), which normally occurs at altitudes in excess of 3,000 m, is a potentially fatal disease due to hypoxia. The role of mitochondrial genomes in determining an individual's susceptibility to HAPE has not been determined. However, a number of genetic polymorphisms have recently been found to be overrepresented in HAPE patients. Most published genome-wide association studies (GWASs) have investigated only a small number of top-ranking single-nucleotide polymorphisms (SNPs)/genes by overview of nuclear DNA and considered each of the identified SNPs/genes independently. Little research has been conducted on mitochondrial genomes in relapsing HAPE patients by GWASs.

Methods: To identify biological pathways important to HAPE occurrence, we examined approximately 500,000 SNPs genome-wide from 10 unrelated cases of relapsing HAPE, and we compared the SNPs in these cases with those in the CHB population (45 controls) to find the association between genotypes and HAPE susceptibility among the mitochondrial function-related genes. We used the FUMA platform to expand those SNPs to selected candidate SNPs.

Results: A total of 369 candidate SNPs, 4 lead SNPs, 4 genomic risk loci and 5 mapped genes were obtained. The 7 mapped genes were ADAMTS9-AS2, NEK1, CLCN3, C4orf27(HPF1), RP11-219J21.2, ANKRD26 and YME1L1.

Conclusions: This study confirms the association of ADAMTS9-AS2, NEK1, CLCN3, C4orf27(HPF1), RP11-219J21.2, ANKRD26 and YME1L1 with HAPE, which may provide future targets for the treatment of this disease.

Keywords: polymorphisms; high altitude pulmonary oedema; genome-wide association study.

Apstrakt :

Uvod / Cilj. Visok plućni edem (HAPE), koji se obično javlja na visinama većim od 3.000 m, potencijalno je smrtonosna bolest usled hipoksije. Uloga mitohondrijalnih genoma u određivanju podložnosti pojedinca na HAPE nije određena. Međutim, nedavno je otkriveno da je veliki broj genetskih polimorfizama prekomerno zastupljen kod pacijenata sa HAPE. Većina objavljenih studija vezanih za genom (GVAS) istraživala je samo mali broj vrhunskih jedno-nukleotidnih polimorfizama (SNPs) / gena pregledom...
nuklearne DNK i razmotrila svaki od identifikovanih SNP / gena nezavisno. Malo istraživanja je provedeno na mitohondrijskim genima kod relapsiranih HAPE pacijenata od strane GVAS-a.

Metode: Da bismo identifikovali biološke puteve važne za pojavu HAPE, ispitali smo približno 500 000 SNP-a širom genoma iz 10 nepovezanih slučajeva relapsa HAPE, i uporedili smo SNPS u tim slučajevima sa onima iz CHB populacije (45 kontrola) da bismo pronašli povezanost između genotipovi i osjetljivost na HAPE među genima koji se odnose na funkciju mitohondrija. Koristili smo FUMA platformu da proširimo te SNP-ove na odabrane SNP-ove kandidata.

Rezultati: Ukupno je dobijeno 369 SNP-ova kandidata, 4 olova SNP-a, 4 lokusa genomskog rizika i 5 mapiranih gena. 7 mapiranih gena su bili ADAMTS9-AS2, NEK1, CLCN3, C4orf27 (HPF1), RP11-219J21.2, ANKRD26 i IME1L1.

Zaključak: Ova studija potvrđuje povezanost ADAMTS9-AS2, NEK1, CLCN3, C4orf27 (HPF1), RP11-219J21.2, ANKRD26 i IME1L1 sa HAPE, što može pružiti buduće ciljeve za lečenje ove bolesti.

Ključne reči: polimorfizmi; plućni edem na velikoj visini; studija povezanosti u genomu.
Introduction

High-altitude pulmonary oedema (HAPE) is a kind of pulmonary oedema that occurs primarily in the hypoxic environment at high altitude. HAPE occurs mostly among residents of low-lying areas who enter the plateau for the first time or when the inhabitants of the plateau enter the higher-altitude areas. The incidence rate is 0.4%~2%. Because HAPE has acute onset and rapid progress and causes considerable harm to the body, if the treatment is not timely, it can develop to coma or even death in a relatively short time, which seriously threatens life and health[1-4]. High-altitude pulmonary oedema has an obvious susceptibility tendency.

Previous studies have shown that there are significant individual differences in susceptibility to HAPE in the same high-altitude hypoxia environment[5-6]. Accumulated evidence has suggested that a large number of genetic factors are associated with genetic susceptibility to HAPE, including nitric oxide synthase 3 (NOS3), cytochrome b-245 (CYBA), angiotensin converting enzyme (ACE), surfactants A1 and A2, and hypoxia-inducible factor-1 (HIF-1)[5-8]. The genetic analysis of these studies was based on an overview of nuclear DNA. However, the role of mitochondria and their genomes is an area of genetic investigation that has been neglected.

Mitochondria are organelles that produce energy in aerobic cells and contain their own genome. Maintaining a sufficient quantity of mitochondrial DNA (mtDNA) in specific tissues is essential for cell viability. Therefore, many common human diseases, such as cancer[9, 10], cardiomyopathy[11] and liver disease[12], are associated with changing mtDNA levels. In a previous study, we sequenced the mtDNA of Ochotona curzoniae (Chinese red pika) and identified 15 novel mtDNA-encoded amino acid changes, including 3 in the subunits of cytochrome c oxidase. These amino acid substitutions may modulate mitochondrial complexes and electron transport efficiency during cold weather conditions and hypoxia adaptation[7]. In another study, we found that the sperm mtDNA copy number for those living at high altitude (5,300 m) for one month was significantly higher than for those at the lower altitude (1,400 m) or in donors who had been living at the 5,300-m altitude for 1 year[13]. However, the association between mitochondria and HAPE occurrence has not been determined.

In addition, with the emergence of genome-wide linkage disequilibrium (LD)–based marker panels and improvements in high-throughput genotyping technology, genome-wide
association studies (GWAS) have become feasible[14]. GWAS can systematically survey the whole genome for causal genetic variants for complex traits/diseases and is a powerful tool for dissecting the genetic basis for HAPE. Combining the modest association signals in the GWAS data with information on biological pathways and networks, the emerging pathway-based approaches can be designed to utilize the GWAS data to a greater extent and are likely to yield new insights into HAPE aetiology.

To identify the important aetiology mechanism of HAPE occurrence more systematically and comprehensively, we used a novel pathway-based GWAS to approximately 871166 SNPs from 10 unrelated re-occurrence HAPE, which is different from other studies based on GWAS[15]. Those studies chose patients occurring for only one time, which cannot demonstrate that these patients have HAPE susceptibility compared with the data of CHB (Chinese in Beijing, China). Although these patients did not go to high-altitude areas, the incidence rate of HAPE is too low (0.4%~2%) to affect CHB as a control group; therefore, we investigated the association between mtDNA function-related genes and HAPE susceptibility.

Materials and Methods

Patients and controls

Relapsing HAPE patients (n=10) were recruited from the Han ethnic group in China. We compared the allele frequency of HAPEs with the CHB (Chinese in Beijing, China) population (control=45) to exclude 185646 SNPs with minimum allele frequency (MAF) <0.01. The SNPs with the last successful assay were 673843. The recurrent HAPE patients consisted of 10 individuals (25.01±10.70 years old) who had at least two episodes of HAPE, as determined by the standard diagnostic criteria[16], including cough and dyspnea at rest, with pulmonary rales, cyanosis, and patchy shadows detected using chest X-ray. Relapsing HAPE patients and controls were unrelated to each other and matched gender and age. This study was approved by the ethics committee of the Third Military Medical University in China.

Isolation of DNA

The samples of HAPE patients were collected before using drugs; the venous blood (2 ml) was collected from HAPE cases and healthy controls and placed in EDTA-anticoagulation tubes, which were stored at -80 °C prior to analysis. Genomic DNA was extracted from peripheral blood according to the introduction of Omega DNA extraction
kits (Omega, USA). Genomic DNA was tested using gel electrophoresis on a 0.8% agarose gel stained with ethidium bromide.

Genotyping

Affymetrix Genome Wide SNP 6.0 arrays were used following the protocol supplied by the manufacturer (Affymetrix, Santa Clara, CA) at Capital Bio Corporation (Beijing, China). Briefly, 250 ng of genomic DNA was digested with Nsp and Sty enzymes, ligated with specific adaptors, and amplified by PCR using the kit primers. The amplicons were purified and quantified. The products were fragmented and labelled followed by hybridization to the array chips at 48 °C for 16–18 h. Excess unhybridized products were washed followed by scanning with a GeneChip Scanner 3000 (Affymetrix, Santa Clara, CA [19481479]). Genotypes were called using the Affymetrix BRLMM algorithm as implemented in the Genotyping Console software (Affymetrix, Santa Clara, CA). All samples had BRLMM call rates greater than the 95% cutoff. We used default parameters for the Birdseed algorithm (version 2) to determine genotypes for all samples (Affymetrix, Santa Clara, CA, USA). Genotypic data were analysed using the Affymetrix Genotyping Console 3.1 (Affymetrix) and included all autosomes but excluded the X and Y chromosomes and mitochondrial genome. First, we performed principal components analysis based on genetic distances as previously described between HAPEs (n=10) and controls (n=45). We tested 871166 SNPs, of which 177502 SNPs failed. Then, we compared the allele frequency of HAPEs with the CHB (Chinese in Beijing, China) population to exclude 185646 SNPs with minimum allele frequency (MAF) <0.01. The SNP with the last successful assay was number 673843.

Statistical analysis

Allele frequencies between patient and control groups were compared using the χ^2 test. A stringent P value < 5×10^{-8} was considered significant for GWAS. We used Haploview 4.2 (http://www.broadinstitute.org/haplovie) to create a Manhattan plot of p values from the GWAS study. A quantile-quantile (QQ) plot of p values from GWAS was created using R project (http://www.r-project.org). We used the FUMA platform (http://fuma.ctglab.nl/tutorial) to analyse GWAS results and selected single nucleotide polymorphisms (SNPs) of P<10^{-8}, which was the GWAS significance[17].
Results

In the GWAS, we genotyped a total of 871,166 SNPs, and 673,843 SNPs were successfully genotyped (77.35%). We ranked genotyped SNPs based on the strength of association using the allelic association test. Nominally significant results were detected for 1558 SNPs (p<5×10^-8) (Supplementary Table 1). This analysis indicates that HAPE cases are genetically similar to the combined CHB population. HapMap populations provide context for the patterns of variation observed among these populations. Genotyping data yielded an average call rate of 96.6%, and apparent inheritance errors in trio samples were detected in <0.2% of all SNPs. A Manhattan plot was generated for the SNPs in patients with recurrent HAPE in Figure I. A quantile-quantile (QQ) plot for association results is provided in Figure II for all SNPs. The group of SNPs that slightly deviated from a diagonal straight line in the QQ plot are considered to reflect SNPs with weak genetic effects, and from the plot, it seems that there is not gross inflation of false-positive results derived from genotyping errors.

We used the FUMA platform to expand those of SNP p <5×10^-8 to SNPs that included their linkage disequilibrium (r^2 ≥ 0.6). After the data were imported into FUMA, we chose the East Asian population (EAS, consistent with the GWAS population), selected the SNP minimum allele frequency (MAF≥ 0.01) and r^2 (minimum r^2 ≥ 0.6). A total of 369 candidate SNPs (Supplementary Table 2), 4 lead SNPs, 4 genomic risk loci and 5 mapped genes were obtained. The 7 mapped genes were ADAMTS9-AS2, NEK1, CLCN3, C4orf27(HPF1), RP11-219J21.2, ANKRD26 and YME1L1 (Table 1).
Figure I Manhattan plot for the whole SNPs in recurrent HAPE subjects of Chinese Han decent. Demonstrating the distribution of P values of Fisher's exact test in the whole genome under four genetic models of allele, genotype, recessive and dominant. The horizontal axis is the physical position of each SNP, and the vertical axis is the negative logarithm of the P value.
Figure II Quantile-quantile (QQ) plot for association results of the first-stage analysis. Red plots are the cases for all loci, and blue plots are the cases after removing the significant locus.

Table 1 Main effects of tested SNPs on HAPE risk by FUMA.

Symbol	Gene	Chromosome	Start	End	Strand	Type
ADAMTS9-AS2		3	64670585	64997143	1	antisense
NEK1		4	170314426	170533780	-1	protein coding
CLCN3		4	170533784	170644824	1	protein coding
C4orf27		4	170650616	170679104	-1	protein coding
RP11-219J21.2		8	25634195	25634972	1	lncRNA
ANKRD26		10	27280843	27389421	-1	protein coding
YME1L1		10	27399383	27444195	-1	protein coding
Discussion

We performed a GWAS to identify susceptibility genes and risk variants for HAPE in Chinese populations. Seven novel candidate genes have emerged from our staged association analyses. Specifically, NEK1, CLCN3, C4orf27, ANKRD26 and YME1L1 are protein-coding genes, and ADAMTS9-AS2 and YME1L1 are RNA genes.

ADAMTS9-AS2 (ADAMTS9 antisense RNA 2) is located at the positive strand of chromosome 3 (chr3: 64, 684, 935-65, 053, 439) with a length of 2.258 kb and is classified as an lncRNA. ADAMTS9-AS2 is an antisense transcription of ADAMTS9. ADAMTS plays important roles in connective tissue organization, coagulation, inflammation, arthritis, and angiogenesis and is regulated by the tissue inhibitor of metalloproteinase 3 gene (TIMP3)[18, 19]. In addition, studies by Kobayashi et al. in the Japanese population showed that TIMP3 was associated with HAPE susceptibility[20-22]. TIMP plays a key role in the physiological turnover of the extracellular matrix (ECM) by closely regulating the activity of matrix metalloproteinase (MMP). TIMP3 is the only TIMP closely integrated with ECM. The balance between MMP and TIMP plays an important role in maintaining the integrity of healthy tissues. The disturbance of the TIMP/MMP system is related to various pathological conditions of the lung, including pulmonary inflammation, oedema, emphysema and fibrosis, among which the loss of ECM integrity is the main feature[23]. Our results, together with those of previous studies, suggest that the balance between MMPs and TIMPs plays an important role in the pathogenesis of HAPE.

CIC-3 (chloride voltage-gated channel 3) is a protein coding gene. Among its related pathways are ion channel transport and transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds[24]. This protein plays a role in both acidification and transmitter loading of GABAergic synaptic vesicles and in smooth muscle cell activation and neointima formation[25]. This protein is required for lysophosphatidic acid (LPA)-activated Cl- current activity and fibroblast-to-myofibroblast differentiation. Yan-Ping Dai et al[26] observe that CIC-3 in rat hypertensive lung and heart is a novel upregulation. These researchers also suggest that upregulation of CIC-3 is an adaptive response of the inflamed pulmonary artery. CIC-3 may be associated with the adaptability of the pulmonary artery to the plateau environment in HAPE.

ANKRD26 (ankyrin repeat domain 26) is a protein coding gene. Diseases associated with ANKRD26 include thrombocytopenia 2 and platelet disorder, familial, with associated
myeloid malignancy. There is a case reported that ANKRD26-related thrombocytopenia resulting in lower-limb deep vein thrombosis complicated by pulmonary embolism[27]. NEK1 (NIMA-related kinase 1) is a protein coding gene. Diseases associated with NEK1 include short-rib thoracic dysplasia 6 with or without polydactyly and amyotrophic lateral sclerosis. NEK1 is involved in DNA damage checkpoint control and proper DNA damage repair[28]. In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death[28]. YME1L1 (YME1-like 1 ATPase) is a protein coding gene. Diseases associated with YME1L1 include optic atrophy 11 and spastic paraplegia 7, autosomal recessive[29]. Gene Ontology (GO) annotations related to this gene include metalloendopeptidase activity. This protein is localized in the mitochondria and can functionally complement a YME1 disruptant yeast strain. It is proposed that this gene plays a role in mitochondrial protein metabolism and could be involved in mitochondrial pathologies[30]. ATP-dependent metalloprotease, which catalyses the degradation of folded and unfolded proteins with a suitable degron sequence in the mitochondrial intermembrane region[31], plays an important role in regulating mitochondrial morphology and function by cleaving OPA1 at position S2, giving rise to a form of OPA1 that promotes maintenance of normal mitochondrial structure and mitochondrial protein metabolism[31-33]. C4orf27 (also known as HPF1, histone PARylation factor 1) is a protein coding gene[34]. C4orf27 acts as a cofactor for serine ADP-ribosylation by conferring serine specificity on PARP1 and PARP2: this protein interacts with PARP1 and PARP1 and is able to change amino acid specificity towards serine[35]. However, ANKRD26, NEK1, YME1L1 and C4orf27 in HAPE remain unknown and require additional studies.

This study has several limitations. The small size of this study does not provide sufficient power for a conclusive analysis of association. We hope that collaboration with other investigators with access to more HAPE patients will lead to the identification of gene(s) responsible for HAPE. We do not know whether controls had travel to high-altitude regions. We believe that only 0.5-2% of the population experienced HAPE after ascending to high-altitude regions. Considering the rarity of HAPE, we think that all of these people can be used as healthy controls. In summary, we provide evidence for the contribution of ADAMTS9-AS2, NEK1, CLCN3, C4orf27 (HPF1), RP11-219J21.2, ANKRD26 and
YME1L1 to the pathogenesis of HAPE in Chinese populations. This prioritized gene deserves further evaluation to improve the understanding of HAPE genetics.

Acknowledgements
Not applicable.

Funding
We are grateful to all the people who participated in this study. This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Programme (STEP) (Grant No. 2019QZKK0607), the Key Project of the Logistics Research Programme, PLA(BLJ18J005) and the National Natural Science Foundation of China (81571843).

Authors' contributions
Yongjun Luo participated in the design of the present study and performed the statistical analysis. Caizhi Tang, Yu Chen and Xinyuan Liu conducted the study and analyses and collected patient information. We also appreciate assistance in data analysis from Dr. Liyuchun in State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.
References

1. Menon ND. High-Altitude Pulmonary Edema: A Clinical Study. N Engl J Med. 1965;273:66-73. doi: 10.1056/NEJM196507082730202. PubMed PMID: 14301200.
2. Peacock AJ. High altitude pulmonary oedema: who gets it and why? Eur Respir J. 1995;8(11):1819-21. PubMed PMID: 8620944.
3. Sartori C, Trueb L, Scherrer U. High-altitude pulmonary edema. Mechanisms and management. Cardiologia. 1997;42(6):559-67. PubMed PMID: 9234564.
4. Schoene RB. High-altitude pulmonary edema: more lessons from the master. Wilderness Environ Med. 1997;8(4):202-3. PubMed PMID: 11990162.
5. Mortimer H, Patel S, Peacock AJ. The genetic basis of high-altitude pulmonary oedema. Pharmacol Ther. 2004;101(2):183-92. Epub 2004/02/06. doi: 10.1016/j.pharmthera.2003.11.003. PubMed PMID: 14761704.
6. Ahsan A, Mohd G, Norboo T, Baig MA, Pasha MA. Heterozygotes of NOS3 polymorphisms contribute to reduced nitrogen oxides in high-altitude pulmonary edema. Chest. 2006;130(5):1511-9. Epub 2006/11/14. doi: 10.1378/chest.130.5.1511. PubMed PMID: 17099031.
7. Luo Y, Gao W, Chen Y, Liu F, Gao Y. Rare mitochondrial DNA polymorphisms are associated with high altitude pulmonary edema (HAPE) susceptibility in Han Chinese. Wilderness Environ Med. 2012;23(2):128-32. Epub 2012/06/05. doi: 10.1016/j.wem.2012.02.003. PubMed PMID: 22656658.
8. Charu R, Stobdan T, Ram RB, Khan AP, Qadar Pasha MA, Norboo T, et al. Susceptibility to high altitude pulmonary oedema: role of ACE and ET-1 polymorphisms. Thorax. 2006;61(11):1011-2. Epub 2006/10/31. doi: 10.1136/thx.2006.066019. PubMed PMID: 17071838; PubMed Central PMCID: PMCPMC2121168.
9. Wang Y, Liu VW, Xue WC, Tsang PC, Cheung AN, Ngan HY. The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecologic oncology. 2005;98(1):104-10. doi: 10.1016/j.ygyno.2005.04.015. PubMed PMID: 15921730.
10. Xing J, Chen M, Wood CG, Lin J, Spitz MR, Ma J, et al. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. Journal of the...
11. Lewis W, Day BJ, Kohler JJ, Hosseini SH, Chan SS, Green EC, et al. Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Laboratory investigation; a journal of technical methods and pathology. 2007;87(4):326-35. doi: 10.1038/labinvest.3700523. PubMed PMID: 17310215; PubMed Central PMCID: PMC1831462.

12. Morten KJ, Ashley N, Wijburg F, Hadzic N, Parr J, Jayawant S, et al. Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion. 2007;7(6):386-95. doi: 10.1016/j.mito.2007.09.001. PubMed PMID: 17981517.

13. Luo Y, Liao W, Chen Y, Cui J, Liu F, Jiang C, et al. Altitude can alter the mtDNA copy number and nDNA integrity in sperm. Journal of assisted reproduction and genetics. 2011;28(10):951-6. Epub 2011/09/13. doi: 10.1007/s10815-011-9620-y. PubMed PMID: 21909897; PubMed Central PMCID: PMCPmc3220446.

14. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6(2):95-108. Epub 2005/02/18. doi: 10.1038/nrg1521. PubMed PMID: 15716906.

15. Yang Y-Z, Wang Y-P, Ma L, Du Y, Ge R-L. [Genome-wide association study of high-altitude pulmonary edema in Han Chinese]. Yi Chuan. 2013;35(11):1291-9. doi: 10.3724/sp.j.1005.2013.01291. PubMed PMID: 24579312.

16. Hultgren HN, Marticorena EA. High altitude pulmonary edema. Epidemiologic observations in Peru. Chest. 1978;74(4):372-6. Epub 1978/10/01. doi: 10.1378/chest.74.4.372. PubMed PMID: 699645.

17. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8(1):1826. doi: 10.1038/s41467-017-01261-5. PubMed PMID: 29184056; PubMed Central PMCID: PMCPMC5705698.

18. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez-Otin C. Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene.
19. Apte SS. A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol. 2004;36(6):981-5. doi: 10.1016/j.biocel.2004.01.014. PubMed PMID: 15094112.

20. Hotta J, Hanaoka M, Droma Y, Katsuyama Y, Ota M, Kobayashi T. Polymorphisms of renin-angiotensin system genes with high-altitude pulmonary edema in Japanese subjects. Chest. 2004;126(3):825-30. doi: 10.1378/chest.126.3.825. PubMed PMID: 15364762.

21. Loffek S, Schilling O, Franzke CW. Series "matrix metalloproteinases in lung health and disease": Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191-208. Epub 2010/12/24. doi: 10.1183/09031936.00146510. PubMed PMID: 21177845.

22. Churg A, Zhou S, Wright JL. Series "matrix metalloproteinases in lung health and disease": Matrix metalloproteinases in COPD. Eur Respir J. 2012;39(1):197-209. Epub 2011/09/17. doi: 10.1183/09031936.00121611. PubMed PMID: 21920892.

23. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1-73. Epub 2017/04/18. doi: 10.1016/bs.pmbts.2017.02.005. PubMed PMID: 28413025; PubMed Central PMCID: PMCPMC5430303.

24. Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev. 2018;98(3):1493-590. Epub 2018/05/31. doi: 10.1152/physrev.00047.2017. PubMed PMID: 29845874.

25. Guan YY, Wang GL, Zhou JG. The CIC-3 Cl- channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci. 2006;27(6):290-6. Epub 2006/05/16. doi: 10.1016/j.tips.2006.04.008. PubMed PMID: 16697056.

26. Dai YP, Bongalon S, Hatton WJ, Hume JR, Yamboliev IA. CIC-3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery. Br J Pharmacol. 2005;145(1):5-14. Epub 2005/02/22. doi: 10.1038/sj.bjp.0706135. PubMed PMID: 15723096; PubMed Central PMCID: PMCPMC1576111.
27. Guison J, Blaison G, Stoica O, Hurstel R, Favier M, Favier R. Idiopathic Pulmonary Embolism in a case of Severe Family ANKRD26 Thrombocytopenia. Mediterr J Hematol Infect Dis. 2017;9(1):e2017038. Epub 2017/07/13. doi: 10.4084/MJHID.2017.038. PubMed PMID: 28698781; PubMed Central PMCID: PMCPMC5499493.

28. Chen Y, Gaczynska M, Osmulski P, Polci R, Riley DJ. Phosphorylation by Nek1 regulates opening and closing of voltage dependent anion channel 1. Biochem Biophys Res Commun. 2010;394(3):798-803. Epub 2010/03/17. doi: 10.1016/j.bbrc.2010.03.077. PubMed PMID: 20230784; PubMed Central PMCID: PMCPMC2859727.

29. El-Hattab AW, Suleiman J, Almannai M, Scaglia F. Mitochondrial dynamics: Biological roles, molecular machinery, and related diseases. Mol Genet Metab. 2018;125(4):315-21. Epub 2018/10/27. doi: 10.1016/j.ymgme.2018.10.003. PubMed PMID: 30361041.

30. Quiros PM, Langer T, Lopez-Otin C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015;16(6):345-59. Epub 2015/05/15. doi: 10.1038/nrm3984. PubMed PMID: 25970558.

31. Rainbolt TK, Lebeau J, Puchades C, Wiseman RL. Reciprocal Degradation of YME1L and OMA1 Adapts Mitochondrial Proteolytic Activity during Stress. Cell Rep. 2016;14(9):2041-9. Epub 2016/03/01. doi: 10.1016/j.celrep.2016.02.011. PubMed PMID: 26923599; PubMed Central PMCID: PMCPMC4785047.

32. Guillery O, Malka F, Landes T, Guillou E, Blackstone C, Lombes A, et al. Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell. 2008;100(5):315-25. Epub 2007/12/14. doi: 10.1042/BC20070110. PubMed PMID: 18076378.

33. Hartmann B, Wai T, Hu H, MacVicar T, Musante L, Fischer-Zirnsak B, et al. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. Elife. 2016;5. Epub 2016/08/09. doi: 10.7554/eLife.16078. PubMed PMID: 27495975; PubMed Central PMCID: PMCPMC4991934.

34. Bartlett E, Bonfiglio JJ, Prokhorova E, Colby T, Zobel F, Ahel I, et al. Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Rep. 2018;24(13):3488-502 e5. Epub 2018/09/27. doi: 10.1016/j.celrep.2018.08.092. PubMed PMID: 30257210; PubMed Central PMCID: PMCPMC6172693.
Supplementary Table 1 Significantly different SNPs between 10 recurrent HAPE cases and 45 Hapmap CHB subjects in the first stage

SNP ID	Chr	Position	Band	Allele A	Allele B	min_P_Chi	HWE	MAF
rs4353667	2	162025114	q24.2	A	G	4.099E-19	0.940	0.011
rs509193	13	101618897	q33.1	C	G	2.021E-16	0.572	0.078
rs890527	3	142257543	q23	A	T	3.287E-15	0.879	0.022
rs12593141	15	25878695	q13.1	C	T	6.838E-15	0.402	0.111
rs744306	3	186272442	q27.2	A	G	1.632E-14	0.693	0.056
rs9470449	6	37055364	p21.2	A	G	2.140E-14	0.939	0.012
rs4810414	20	42306337	q13.12	C	G	5.139E-14	0.122	0.133
rs10016530	4	184061978	q35.1	A	C	4.779E-13	0.940	0.011
rs8010479	14	80195033	q31.1	C	T	4.779E-13	0.940	0.011
rs2505465	10	26080532	p12.1	A	G	5.504E-13	0.693	0.056
rs12796975	11	132811275	q25	C	T	3.196E-12	0.755	0.044
rs7948049	11	98403015	q22.1	A	C	3.620E-12	0.701	0.189
rs2904699	8	17135169	p22	A	G	3.672E-12	0.362	0.100
rs7929194	11	62269326	q12.3	C	T	4.884E-12	0.318	0.159
rs10075708	5	35582672	p13.2	A	G	5.540E-12	0.940	0.011
rs9364178	6	168952425	q27	A	G	1.235E-11	0.693	0.056
rs3785499	17	17355942	p11.2	A	G	2.244E-11	0.879	0.022
rs7523787	1	94103203	p22.1	A	G	2.927E-11	0.456	0.100
rs6471504	8	96060736	q22.1	C	T	3.137E-11	0.502	0.222
rs1992305	7	41347571	p14.1	C	G	3.419E-11	0.000	0.022
rs9668938	12	9405128	p13.31	A	G	3.419E-11	0.000	0.022
rs8046088 16 77670982 q23.1 A T 3.419E-11 0.000 0.500								
rs1484545 3 641971 p26.3 A G 3.819E-11 0.940 0.011								
rs7199767 16 81560851 q23.3 C G 3.950E-11 0.879 0.022								
rs1536688 9 16119553 p22.3 A G 4.179E-11 0.000 0.500								
rs2132766 4 78019649 q21.1 C T 5.684E-11 0.001 0.044								
rs4707773 6 93740627 q16.1 A C 6.125E-11 0.708 0.233								
rs2253804 17 45710559 q21.3 A G 6.770E-11 0.201 0.144								
rs3780410 9 4588116 q26.3 A G 6.838E-11 0.996 0.211								
rs907425 8 57038847 q12.1 A G 9.168E-11 0.675 0.239								
rs6020381 20 48277755 q13.1 A C 1.169E-10 0.578 0.244								
rs13379947 15 59972093 q22.2 A G 1.269E-10 0.996 0.211								
rs4799715 18 29531002 q12.1 C T 1.465E-10 0.701 0.189								
rs803302 1 25328122 p36.11 A G 1.880E-10 0.000 0.022								
rs11577001 1 192870487 p31.3 C T 1.880E-10 0.000 0.022								
rs4428669 8 22951725 q21.3 A T 1.880E-10 0.000 0.022								
rs784814 14 47539712 q21.3 C T 1.880E-10 0.000 0.022								
rs16967738 17 37799793 q22.2 C T 1.880E-10 0.000 0.022								
rs7275393 21 40817980 q22.2 G T 1.880E-10 0.000 0.022								
rs11860414 16 13097760 p13.12 C T 2.257E-10 0.000 0.023								
rs6705908 2 238098704 q37.3 A G 2.998E-10 0.227 0.151								
rs17024521 1 120268277 p12 C G 3.761E-10 0.000 0.033								
rs9498354 6 149804544 q25.1 A G 3.761E-10 0.000 0.033								
rs13258727 8 16617623 p22 G T 3.761E-10 0.000 0.033								
rs497022 10 85442083 q23.1 C T 3.761E-10 0.000 0.033								
rs11051790 12 32132279 p11.21 C G 3.761E-10 0.000 0.033								
rs2941948 16 77117341 q23.1 C G 3.761E-10 0.000 0.033								
rs907661 1 117548617 p13.1 A T 3.761E-10 0.940 0.011								
rs2581409 1 112577867 p13.2 A G 3.761E-10 0.940 0.011								
rs10776807 1 109757679 p13.3 A G 3.761E-10 0.940 0.011								
rs12127734 1 102738259 p21.1 C T 3.761E-10 0.940 0.011								
rs1931256 1 95930004 p21.3 A C 3.761E-10 0.940 0.011								
SNP	Chr	Genomic Location	Gene Symbol	Reference Allele	Major Allele	Minor Allele	p-value	FDR
-------------	-----	------------------	-------------	------------------	--------------	--------------	---------	------
rs6420974	1	86496645		A	C		3.76E-10	0.940
rs6424623	1	79258910		A	T		3.76E-10	0.940
rs12121720	1	75159525		C	T		3.76E-10	0.940
rs10157120	1	52983476		A	G		3.76E-10	0.940
rs7525612	1	47664398		C	T		3.76E-10	0.940
rs41524944	1	44894612		C	T		3.76E-10	0.940
rs2816602	1	43040557		C	T		3.76E-10	0.940
rs2182111	1	29637387		A	T		3.76E-10	0.940
rs2746535	1	17264939		C	T		3.76E-10	0.940
rs16862547	1	19316539		C	T		3.76E-10	0.940
rs6703014	1	151806944		A	G		3.76E-10	0.940
rs10752607	1	152983427		C	T		3.76E-10	0.940
rs6702567	1	157784484		A	G		3.76E-10	0.940
rs1288913	1	161882823		C	T		3.76E-10	0.940
rs4987357	1	167932764		C	T		3.76E-10	0.940
rs12117954	1	19316539		C	T		3.76E-10	0.940
rs539038	1	189048657		A	G		3.76E-10	0.940
rs613232	1	209836516		C	T		3.76E-10	0.940
rs714214	1	228825228		C	T		3.76E-10	0.940
rs4658949	1	230014942		A	C		3.76E-10	0.940
rs6665236	1	246060280		A	G		3.76E-10	0.940
rs4852883	2	72708531		C	T		3.76E-10	0.940
rs262501	2	63712161		A	G		3.76E-10	0.940
rs6751340	2	54041121		A	G		3.76E-10	0.940
rs17389310	2	42343095		C	G		3.76E-10	0.940
rs13416119	2	42316434		A	G		3.76E-10	0.940
rs17024325	2	39845266		C	G		3.76E-10	0.940
rs4648234	2	37191174		A	G		3.76E-10	0.940
rs12104627	2	35364483		A	T		3.76E-10	0.940
rs11893869	2	106032330		A	G		3.76E-10	0.940
rs260711	2	108923531		C	T		3.76E-10	0.940
rs17783857 2 140102541 q22.1 C G 3.761E-10 0.940 0.011								
rs10185178 2 171064520 q31.1 A G 3.761E-10 0.940 0.011								
rs3914402 2 174296267 q31.1 C G 3.761E-10 0.940 0.011								
rs12989588 2 194838617 q32.3 A G 3.761E-10 0.940 0.011								
rs16842071 2 201639975 q33.1 A G 3.761E-10 0.940 0.011								
rs11902586 2 213683899 q34 C G 3.761E-10 0.940 0.011								
rs11898042 2 220596890 q35 A G 3.761E-10 0.940 0.011								
rs6431283 2 233888576 q37.1 C T 3.761E-10 0.940 0.011								
rs10175460 2 231048405 q37.1 A G 3.761E-10 0.940 0.011								
rs10933609 2 241092142 q37.3 A G 3.761E-10 0.940 0.011								
rs6548631 3 79729007 p12.3 C G 3.761E-10 0.940 0.011								
rs9847658 3 70073539 p14.1 A C 3.761E-10 0.940 0.011								
rs755358 3 62509509 p14.2 C T 3.761E-10 0.940 0.011								
rs9830403 3 27938612 p24.1 C T 3.761E-10 0.940 0.011								
rs778044 3 10255233 p25.3 C T 3.761E-10 0.940 0.011								
rs352748 3 6615700 p26.1 C G 3.761E-10 0.940 0.011								
rs1144107 3 101924406 q12.2 C T 3.761E-10 0.940 0.011								
rs2056534 3 115966848 q13.31 A G 3.761E-10 0.940 0.011								
rs13326852 3 1216419170 q13.33 C T 3.761E-10 0.940 0.011								
rs6769033 3 137066778 q22.2 C T 3.761E-10 0.940 0.011								
rs344076 3 158035479 q25.31 C T 3.761E-10 0.940 0.011								
rs25566339 3 159791569 q25.32 C T 3.761E-10 0.940 0.011								
rs1684656 3 174240032 q26.31 C T 3.761E-10 0.940 0.011								
rs6788878 3 178926662 q26.32 G T 3.761E-10 0.940 0.011								
rs10002498 4 47623342 p12 C G 3.761E-10 0.940 0.011								
rs5743591 4 38479523 p14 C G 3.761E-10 0.940 0.011								
rs13105862 4 36976442 p14 C T 3.761E-10 0.940 0.011								
rs41339448 4 19206250 p15.31 A G 3.761E-10 0.940 0.011								
rs13148734 4 63013453 q13.1 A G 3.761E-10 0.940 0.011								
rs313139 4 127754207 q28.1 C G 3.761E-10 0.940 0.011								
rs1201202 4 152060202 q31.3 A G 3.761E-10 0.940 0.011								
SNP	Chromosome	Position	Location	Allele 1	Allele 2	p-Value	OR	
---	---	---	---	---	---	---	---	---
rs1594869	4	158681812	q32.1	A	G	3.76E-10	0.940	
rs17628308	4	171106945	q33	A	G	3.76E-10	0.940	
rs2173826	4	170922763	q33	A	G	3.76E-10	0.940	
rs17057390	4	172849798	q34.1	C	T	3.76E-10	0.940	
rs17074536	4	184417378	q35.1	C	T	3.76E-10	0.940	
rs4862023	4	183246608	q35.1	A	C	3.76E-10	0.940	
rs6879532	5	23092333	p14.3	A	G	3.76E-10	0.940	
rs17295893	5	14125258	p15.2	C	T	3.76E-10	0.940	
rs10472006	5	56791259	q11.2	C	T	3.76E-10	0.940	
rs158342	5	55661090	q11.2	A	C	3.76E-10	0.940	
rs10057147	5	53473290	q11.2	A	G	3.76E-10	0.940	
rs255233	5	56633746	q11.2	C	T	3.76E-10	0.940	
rs6896756	5	66947893	q13.1	C	T	3.76E-10	0.940	
rs11959381	5	75724016	q13.3	C	T	3.76E-10	0.940	
rs16902631	5	86679983	q14.3	A	T	3.76E-10	0.940	
rs2963029	5	108782510	q21.3	C	G	3.76E-10	0.940	
rs4272129	5	124365847	q23.2	C	T	3.76E-10	0.940	
rs7707878	5	126011942	q23.2	A	C	3.76E-10	0.940	
rs3861854	5	141280553	q31.3	C	T	3.76E-10	0.940	
rs1432672	5	143945814	q32	C	T	3.76E-10	0.940	
rs10037531	5	156738482	q33.3	A	G	3.76E-10	0.940	
rs4868935	5	16491974	q34	A	G	3.76E-10	0.940	
rs10462997	5	169942958	q35.1	C	T	3.76E-10	0.940	
rs10067345	5	171183175	q35.1	A	G	3.76E-10	0.940	
rs10039715	5	173603095	q35.2	C	T	3.76E-10	0.940	
rs3129704	6	30342679	p21.33	C	T	3.76E-10	0.940	
rs7767176	6	28033346	p22.1	C	T	3.76E-10	0.940	
rs10484632	6	20755639	p22.3	A	C	3.76E-10	0.940	
rs13206084	6	16653930	p22.3	A	G	3.76E-10	0.940	
rs11969660	6	14503352	p23	A	G	3.76E-10	0.940	
rs6919114	6	10780583	p24.2	A	G	3.76E-10	0.940	
SNP	Chromosome	Position	Gene	Alleles	p-value	p-value_adj	Minor allele frequency	
-----------	------------	--------------	------------	---------	---------	-------------	------------------------	
rs3804481	6	6577398	p25.1	A	G	3.76E-10	0.940	
rs2110903	6	107679904	q21	G	T	3.76E-10	0.940	
rs3757302	6	108478901	q21	C	G	3.76E-10	0.940	
rs6913809	6	113957665	q22.1	A	C	3.76E-10	0.940	
rs6569290	6	123195382	q22.31	A	G	3.76E-10	0.940	
rs12110924	6	118674618	q22.31	C	G	3.76E-10	0.940	
rs12205922	6	128127367	q22.33	A	G	3.76E-10	0.940	
rs9480356	6	156948860	q25.3	A	G	3.76E-10	0.940	
rs10486806	7	40468520	p14.1	A	G	3.76E-10	0.940	
rs12536300	7	33159362	p14.3	A	G	3.76E-10	0.940	
rs17675986	7	29077382	p15.1	A	T	3.76E-10	0.940	
rs10251505	7	7221014	p21.3	A	G	3.76E-10	0.940	
rs1207867	7	78239513	q21.11	A	G	3.76E-10	0.940	
rs7802018	7	94898249	q21.3	A	G	3.76E-10	0.940	
rs1558005	7	100936342	q22.1	A	G	3.76E-10	0.940	
rs10252737	7	101486484	q22.1	A	C	3.76E-10	0.940	
rs13231181	7	103979084	q22.1	C	T	3.76E-10	0.940	
rs10261618	7	136853662	q33	A	C	3.76E-10	0.940	
rs4335058	7	132550141	q33	A	C	3.76E-10	0.940	
rs851734	7	146993038	q35	C	G	3.76E-10	0.940	
rs6967282	7	150538127	q36.1	A	G	3.76E-10	0.940	
rs2101138	8	26186805	p21.2	C	G	3.76E-10	0.940	
rs2410675	8	20915740	p21.3	G	T	3.76E-10	0.940	
rs369240	8	55686306	q12.1	C	T	3.76E-10	0.940	
rs35711827	8	76793565	q21.11	G	T	3.76E-10	0.940	
rs1448676	8	92396335	q21.3	A	C	3.76E-10	0.940	
rs16870588	8	104706458	q22.3	C	G	3.76E-10	0.940	
rs3018507	8	103347864	q22.3	C	G	3.76E-10	0.940	
rs7826950	8	134980387	q24.22	A	C	3.76E-10	0.940	
rs10088738	8	139205255	q24.23	A	G	3.76E-10	0.940	
rs17247766	9	33098605	p13.3	G	T	3.76E-10	0.940	
rs	ch	pos	chr	pos	pos	pos	p-value	p-value
-------------	-----	---------------	-----	---------	-----	-----	---------	---------
rs1885170	9	17554267	p22.2	C	T	3.76E-10	0.940	0.011
rs13285034	9	74559353	q21.13	A	T	3.76E-10	0.940	0.011
rs10993086	9	95990540	q22.32	G	T	3.76E-10	0.940	0.011
rs10441773	9	107233498	q31.2	C	T	3.76E-10	0.940	0.011
rs12553905	9	121402295	q33.1	C	T	3.76E-10	0.940	0.011
rs16929767	9	129113684	q33.3	A	T	3.76E-10	0.940	0.011
rs3011286	9	134883811	q34.13	C	T	3.76E-10	0.940	0.011
rs2643955	10	29197524	p11.23	G	T	3.76E-10	0.940	0.011
rs11015156	10	26863974	p12.1	G	T	3.76E-10	0.940	0.011
rs11001982	10	78468130	q22.3	A	G	3.76E-10	0.940	0.011
rs17465850	10	17812128	q26.12	A	C	3.76E-10	0.940	0.011
rs12358414	10	3707846	p15.2	C	T	3.76E-10	0.940	0.011
rs17501883	10	44506780	q11.21	A	C	3.76E-10	0.940	0.011
rs17594946	10	122702917	q26.12	A	C	3.76E-10	0.940	0.011
rs12412522	10	122789916	q26.12	C	T	3.76E-10	0.940	0.011
rs2818393	10	133792619	q26.3	A	G	3.76E-10	0.940	0.011
rs4755364	11	34249101	p13	A	G	3.76E-10	0.940	0.011
rs1482734	11	23211390	p14.3	A	T	3.76E-10	0.940	0.011
rs793909	11	13862425	p15.2	C	G	3.76E-10	0.940	0.011
rs12807017	11	9635721	p15.4	A	G	3.76E-10	0.940	0.011
rs1770441	11	60939964	q12.2	C	T	3.76E-10	0.940	0.011
rs3017605	11	6101794	q12.2	A	C	3.76E-10	0.940	0.011
rs632280	11	78178911	q14.1	G	T	3.76E-10	0.940	0.011
rs7121003	11	86964252	q14.2	A	C	3.76E-10	0.940	0.011
rs4512880	11	86955572	q14.2	A	G	3.76E-10	0.940	0.011
rs655922	11	100153283	q22.1	G	T	3.76E-10	0.940	0.011
rs522819	11	100460929	q22.1	A	G	3.76E-10	0.940	0.011
rs7113906	11	101758880	q22.2	C	T	3.76E-10	0.940	0.011
SNP	Chromosome	Position	Location	Genotype	Minor Allele Frequency	Minor Allele Frequency		
------------	------------	------------	----------	----------	------------------------	------------------------		
rs1375423	11	104601723	q22.3	A	T	3.76E-10	0.940	0.011
rs1902238	11	106468971	q22.3	C	T	3.76E-10	0.940	0.011
rs7122110	11	120527150	q23.3	A	G	3.76E-10	0.940	0.011
rs11216478	11	117016434	q23.3	A	G	3.76E-10	0.940	0.011
rs41507249	11	122112574	q24.1	C	T	3.76E-10	0.940	0.011
rs583194	11	125456998	q24.2	C	T	3.76E-10	0.940	0.011
rs10894844	11	133952614	q25	C	T	3.76E-10	0.940	0.011
rs17472165	12	26494853	p11.23	C	T	3.76E-10	0.940	0.011
rs3863355	12	25850114	p12.1	C	T	3.76E-10	0.940	0.011
rs4350408	12	22043980	p12.1	G	T	3.76E-10	0.940	0.011
rs11045116	12	19186252	p12.3	A	T	3.76E-10	0.940	0.011
rs12307636	12	9512800	p13.31	C	T	3.76E-10	0.940	0.011
rs1805731	12	8986493	p13.31	A	G	3.76E-10	0.940	0.011
rs7312896	12	662066	p13.33	C	T	3.76E-10	0.940	0.011
rs9325199	12	70273227	q21.1	A	C	3.76E-10	0.940	0.011
rs310836	12	76001666	q21.2	C	T	3.76E-10	0.940	0.011
rs4143188	12	81326916	q21.31	A	C	3.76E-10	0.940	0.011
rs10877572	12	92977940	q22	A	T	3.76E-10	0.940	0.011
rs9669774	12	113260669	q24.21	C	G	3.76E-10	0.940	0.011
rs17441172	12	117352644	q24.23	C	T	3.76E-10	0.940	0.011
rs7298854	12	125553390	q24.32	A	C	3.76E-10	0.940	0.011
rs10847172	12	125560866	q24.32	A	G	3.76E-10	0.940	0.011
rs9314935	13	28583729	q12.3	A	G	3.76E-10	0.940	0.011
rs9548515	13	38338848	q13.3	A	C	3.76E-10	0.940	0.011
rs2503454	13	46987969	q14.2	A	G	3.76E-10	0.940	0.011
rs12429341	13	47347285	q14.2	A	G	3.76E-10	0.940	0.011
rs17060868	13	61588183	q21.31	A	C	3.76E-10	0.940	0.011
rs9516058	13	91762201	q31.3	A	G	3.76E-10	0.940	0.011
rs9514865	13	107995471	q33.3	C	T	3.76E-10	0.940	0.011
SNP	Chromosome	Position	Gene	Minor Allele	Major Allele	p-value	Effect Size	
--------	------------	----------	------	--------------	--------------	---------	-------------	
rs6650482	13	111970835	q34	A	G	3.76E-10	0.940	
rs7160516	14	43848866	q21.3	A	G	3.76E-10	0.940	
rs10484082	14	51162516	q22.1	C	T	3.76E-10	0.940	
rs17107847	14	78091511	q24.3	G	T	3.76E-10	0.940	
rs6574673	14	81183387	q31.1	G	T	3.76E-10	0.940	
rs6574612	14	80473827	q31.1	C	T	3.76E-10	0.940	
rs4905612	14	97248348	q32.2	A	G	3.76E-10	0.940	
rs7160516	14	43848866	q21.3	A	G	3.76E-10	0.940	
rs8041819	15	50401611	q21.2	A	G	3.76E-10	0.940	
rs11858794	15	57498627	q22.2	A	G	3.76E-10	0.940	
rs9944345	15	49976666	q12.1	A	G	3.76E-10	0.940	
rs2058673	15	45580279	p12.1	A	C	3.76E-10	0.940	
rs16957304	16	65892470	q22.3	A	C	3.76E-10	0.940	
rs935976	16	85593861	p12.1	A	C	3.76E-10	0.940	
rs6540041	16	85961876	q24.2	A	T	3.76E-10	0.940	
rs12150174	17	62856936	q24.2	A	C	3.76E-10	0.940	
rs7503902	17	59833749	q23.3	A	G	3.76E-10	0.940	
rs1790534	17	30665290	q12.1	A	G	3.76E-10	0.940	
SNP	Chromosome	Position	Gene	Effect	Minor Allele	Minor Allele Value	P Value	Bonferroni Corrected P Value
--------------	------------	----------------	-------------	--------	--------------	--------------------	---------	------------------------------
rs11873775	18	24417919	C	T	3.76E-10	0.940	0.011	
rs654975	18	58418480	G	T	3.76E-10	0.940	0.011	
rs1704816	18	62280193	C	T	3.76E-10	0.940	0.011	
rs12962239	18	73493166	A	G	3.76E-10	0.940	0.011	
rs12981996	19	20342025	A	T	3.76E-10	0.940	0.011	
rs16996008	19	19226400	A	G	3.76E-10	0.940	0.011	
rs6511939	19	14545425	A	G	3.76E-10	0.940	0.011	
rs11672838	19	14948335	C	T	3.76E-10	0.940	0.011	
rs7003	19	14486790	C	T	3.76E-10	0.940	0.011	
rs12983312	19	10190245	C	T	3.76E-10	0.940	0.011	
rs407743	19	6593417	C	G	3.76E-10	0.940	0.011	
rs1558133	19	1253965	C	T	3.76E-10	0.940	0.011	
rs8112607	19	3816246	C	G	3.76E-10	0.940	0.011	
rs1661906	19	58201490	A	T	3.76E-10	0.940	0.011	
rs6510101	19	62999086	G	T	3.76E-10	0.940	0.011	
rs6042568	20	1418343	C	T	3.76E-10	0.940	0.011	
rs13041282	20	29836903	A	G	3.76E-10	0.940	0.011	
rs2868093	20	42397212	G	T	3.76E-10	0.940	0.011	
rs6073310	20	42139597	C	T	3.76E-10	0.940	0.011	
rs928072	20	48368185	A	G	3.76E-10	0.940	0.011	
rs6020818	20	48926335	C	G	3.76E-10	0.940	0.011	
rs1980424	21	15164448	A	G	3.76E-10	0.940	0.011	
rs13048221	21	14381307	A	G	3.76E-10	0.940	0.011	
rs551680	21	39876578	A	G	3.76E-10	0.940	0.011	
rs2535708	22	16564169	A	G	3.76E-10	0.940	0.011	
rs7293008	22	2772666	C	T	3.76E-10	0.940	0.011	
rs3730114	22	24421306	C	T	3.76E-10	0.940	0.011	
rs17834914	22	45605985	A	G	3.76E-10	0.940	0.011	
rs8137937	22	45846062	C	G	3.76E-10	0.940	0.011	
rs243505	7	148066272	A	G	4.008E-10	0.360	0.267	
rs7119096	11	127453448	C	T	4.429E-10	0.649	0.122	
rs	SNP	CHROM	POS	CHRPOS	AF1	AF2	OR	P
-------	-------	-------	-----	--------	-----	-----	------	-----
rs7872136	9	85091738	q21.32	A	G	4.597E-10	0.939	0.011
rs4584989	2	108686189	q13	C	T	4.597E-10	0.939	0.011
rs4378452	12	109988416	q24.11	A	G	4.597E-10	0.939	0.011
rs8130198	21	42503393	q22.3	C	T	4.597E-10	0.939	0.011
rs7909124	10	97709510	q23.33	C	G	5.641E-10	0.939	0.012
rs17261573	2	80528623	p12	C	G	5.868E-10	0.996	0.211
rs6762195	3	126740626	q21.2	C	T	7.214E-10	0.726	0.278
rs11199331	10	122174433	q26.12	A	T	8.142E-10	0.290	0.244
rs6854931	4	6828065	p16.1	A	G	1.034E-09	0.940	0.011
rs6720335	2	233540064	q37.1	A	G	1.128E-09	0.000	0.044
rs41453247	14	54982693	q22.3	A	G	1.128E-09	0.000	0.500
rs581459	1	36147697	p34.3	C	T	1.129E-09	0.848	0.222
rs250238	5	50302287	q11.1	A	C	1.129E-09	0.502	0.222
rs16992471	19	4591295	p13.3	A	C	1.129E-09	0.502	0.222
rs241301	1	227029050	q42.13	C	T	1.276E-09	0.103	0.289
rs2078330	16	73137556	q22.3	C	T	1.276E-09	0.859	0.289
rs8100750	19	55775407	q13.33	C	T	1.462E-09	0.667	0.178
rs7221423	17	78551921	q25.3	C	T	1.561E-09	0.130	0.078
rs8118315	20	4109500	p13	C	T	1.573E-09	0.000	0.489
rs17483466	2	111513929	q13	A	G	1.880E-09	0.940	0.011
rs9878562	3	53864028	p21.1	C	T	1.880E-09	0.000	0.033
rs31745	5	10400408	q31.3	A	G	1.880E-09	0.000	0.033
rs1778994	9	125595350	q33.2	A	C	1.880E-09	0.940	0.011
rs10501627	11	86029148	q14.2	A	C	1.880E-09	0.000	0.033
rs568739	11	127565639	q24.3	A	G	1.880E-09	0.940	0.011
rs7142084	14	91892784	q32.12	C	T	1.880E-09	0.000	0.033
rs11854845	15	69688499	q23	A	G	1.880E-09	0.940	0.011
rs11806573	1	62591934	p31.3	A	C	1.880E-09	0.940	0.011
rs473223	1	54896976	p32.3	A	G	1.880E-09	0.940	0.011
rs12066062	1	149925647	q21.3	C	T	1.880E-09	0.940	0.011
rs11583867	1	183984337	q25.3	A	G	1.880E-09	0.940	0.011
SNP	Chr	Pos	Ref	Alt	p-value			
-------------	-----	------	------	------	---------			
rs2867890	1	203736379	q32.1	A	G	1.880E-09	0.940	0.011
rs12731771	1	202027279	q32.1	C	T	1.880E-09	0.940	0.011
rs11118935	1	206171611	q32.2	A	G	1.880E-09	0.940	0.011
rs12074002	1	209897308	q32.3	C	G	1.880E-09	0.940	0.011
rs2965012	1	216853172	q41	G	T	1.880E-09	0.940	0.011
rs6696165	1	242834795	q44	C	T	1.880E-09	0.940	0.011
rs11125521	1	54205862	p16.2	A	T	1.880E-09	0.940	0.011
rs1403450	2	45696779	p21	C	T	1.880E-09	0.940	0.011
rs908679	2	22283114	p24.1	A	G	1.880E-09	0.940	0.011
rs1983376	2	17289515	p24.2	A	C	1.880E-09	0.940	0.011
rs1188931	2	106141807	q12.2	C	T	1.880E-09	0.940	0.011
rs13021341	2	144247607	q22.2	C	T	1.880E-09	0.940	0.011
rs1113988	2	168059681	q24.3	A	C	1.880E-09	0.940	0.011
rs3914752	2	170833364	q31.1	A	C	1.880E-09	0.940	0.011
rs10179515	2	212255007	q34	C	G	1.880E-09	0.940	0.011
rs1082901	3	77834657	p12.3	A	G	1.880E-09	0.940	0.011
rs1502616	3	59505361	p14.2	C	T	1.880E-09	0.940	0.011
rs9845785	3	31504110	p23	C	G	1.880E-09	0.940	0.011
rs17015506	3	24956816	p24.2	A	G	1.880E-09	0.940	0.011
rs17036852	3	12518475	p25.1	A	G	1.880E-09	0.940	0.011
rs9864656	3	137126228	q22.2	C	T	1.880E-09	0.940	0.011
rs7639012	3	155697801	q25.2	G	T	1.880E-09	0.940	0.011
rs16832690	3	183003503	q26.33	A	T	1.880E-09	0.940	0.011
rs17513709	4	40496876	p14	G	T	1.880E-09	0.940	0.011
rs6831500	4	17810438	p15.32	C	T	1.880E-09	0.940	0.011
rs17592868	4	68897521	q13.2	C	T	1.880E-09	0.940	0.011
rs3792662	4	95689234	q22.3	C	G	1.880E-09	0.940	0.011
rs10517681	4	159059047	q32.1	A	C	1.880E-09	0.940	0.011
rs11723043	4	189744112	q35.2	C	T	1.880E-09	0.940	0.011
rs16901423	5	31715101	p13.3	A	G	1.880E-09	0.940	0.011
rs13362111	5	33328915	p13.3	C	G	1.880E-09	0.940	0.011
rs	Chromosome	Position	Allele 1	Allele 2	p-Value	OR	95% CI Lower	95% CI Upper
--------------	------------	--------------	----------	----------	---------	-----	--------------	--------------
rs7734697	5	7469304	A	T	1.880E-09	0.940	0.011	
rs2897554	5	8311997	C	T	1.880E-09	0.940	0.011	
rs41459348	5	94239098	C	T	1.880E-09	0.940	0.011	
rs10477915	5	107955270	C	T	1.880E-09	0.940	0.011	
rs10042652	5	141636901	G	T	1.880E-09	0.940	0.011	
rs10072565	5	166242667	A	G	1.880E-09	0.940	0.011	
rs9313568	5	17134886	A	C	1.880E-09	0.940	0.011	
rs6867969	5	172157416	C	T	1.880E-09	0.940	0.011	
rs13156607	5	168832565	C	T	1.880E-09	0.940	0.011	
rs9475536	6	56008167	p12.1	C	1.880E-09	0.940	0.011	
rs513248	6	53546485	p12.1	A	1.880E-09	0.940	0.011	
rs7766333	6	25070202	p22.2	A	1.880E-09	0.940	0.011	
rs6900027	6	10760336	p24.2	A	1.880E-09	0.940	0.011	
rs10455706	6	71345716	q13	C	1.880E-09	0.940	0.011	
rs10944336	6	88718737	q15	C	1.880E-09	0.940	0.011	
rs9489754	6	98342750	q16.1	A	1.880E-09	0.940	0.011	
rs4377817	6	115194976	q22.1	C	1.880E-09	0.940	0.011	
rs17250161	6	153849770	q25.2	C	1.880E-09	0.940	0.011	
rs1737317	6	163709828	q26	A	1.880E-09	0.940	0.011	
rs856588	7	46703840	p12.3	C	1.880E-09	0.940	0.011	
rs11979904	7	38684422	p14.1	A	1.880E-09	0.940	0.011	
rs10257031	7	35907991	p14.2	A	1.880E-09	0.940	0.011	
rs2098273	7	36484536	p14.2	C	1.880E-09	0.940	0.011	
rs17457143	7	20559116	p15.3	C	1.880E-09	0.940	0.011	
rs3807573	7	5636086	p22.1	C	1.880E-09	0.940	0.011	
rs6463483	7	5497369	p22.1	C	1.880E-09	0.940	0.011	
rs6460734	7	71597254	q11.22	C	1.880E-09	0.940	0.011	
rs4730058	7	104347376	q22.1	C	1.880E-09	0.940	0.011	
rs706561	7	136925970	q33	C	1.880E-09	0.940	0.011	
rs17667159	7	156988826	q36.3	A	1.880E-09	0.940	0.011	
rs17595134	8	40076812	p11.21	C	1.880E-09	0.940	0.011	
rs7822050	8	72730829	q13.3	C	T	1.880E-09	0.940	0.011
rs16938568	8	74209396	q21.11	C	T	1.880E-09	0.940	0.011
rs16874193	8	107268534	q23.1	A	C	1.880E-09	0.940	0.011
rs2799753	9	38475256	p13.1	A	T	1.880E-09	0.940	0.011
rs7021837	9	13844176	p23	A	G	1.880E-09	0.940	0.011
rs10959547	9	11110180	p23	C	G	1.880E-09	0.940	0.011
rs35613585	9	74634393	q21.13	C	G	1.880E-09	0.940	0.011
rs1330288	9	74626903	q21.13	A	G	1.880E-09	0.940	0.011
rs12686427	9	88530367	q21.33	C	T	1.880E-09	0.940	0.011
rs4314720	9	112411728	q31.3	C	T	1.880E-09	0.940	0.011
rs41407147	9	121795392	q33.1	G	T	1.880E-09	0.940	0.011
rs12554146	9	13317958	q34.13	A	T	1.880E-09	0.940	0.011
rs2797468	10	29197311	p11.23	A	C	1.880E-09	0.940	0.011
rs16926660	10	26523271	p12.1	C	T	1.880E-09	0.940	0.011
rs11256585	10	10468085	p14	C	T	1.880E-09	0.940	0.011
rs1005907	10	4863106	p15.1	A	G	1.880E-09	0.940	0.011
rs4881163	10	3395755	p15.2	C	G	1.880E-09	0.940	0.011
rs12242220	10	49698112	q11.22	C	T	1.880E-09	0.940	0.011
rs17500631	10	52297578	q11.23	G	T	1.880E-09	0.940	0.011

Received on October 27, 2019.
Accepted June 23, 2020.
Online First June, 2020.