The efficacy of scaling root planing to inflammation biomarker of periodontitis patients with atherosclerosis

Sekar SAFITRI¹, Agus SUSANTO²*, Ina HENDIANI²

¹Student of Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia
²Department of Periodontology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat Indonesia
*Corresponding Author Email: agus.susanto@fkg.unpad.ac.id

ABSTRACT Periodontitis is a disease of surrounding dental tissue with a prevalence of 74.1% in Indonesia. Many studies show periodontitis plays a role in the progression of atherosclerosis. The relationship between these two conditions shows that scaling root planing intervention can reduce the risk of atherosclerosis. This study aimed to know the efficacy of scaling root planing on changes in inflammatory biomarkers in periodontitis patients with atherosclerosis. This systematic literature review was conducted using the Rapid Review method, referring to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Electronic searches were carried out from 4 electronic databases, including the National Library of Medicine (Medline / PubMed), The Cochrane Library, EbscoHOST, and SAGE Journal. Inclusion and exclusion criteria selected 6 RCT articles to be analyzed qualitatively. Within 2 to 6 months, research in 6 RCT articles showed the results in significantly reducing CRP levels as the main biomarkers of atherosclerosis after scaling root planing intervention. Other biomarkers that were also assessed were cytokines levels, lipid profile components, WBC, and fibrinogen. Overall results showed a positive effect of scaling root planing intervention in reducing the inflammatory biomarker levels of atherosclerosis in periodontitis patients with atherosclerosis. The treatment of scaling root planing is considered effective in reducing the inflammatory biomarker levels of atherosclerosis in periodontitis patients with atherosclerosis to reduce the level of risk.

KEYWORDS: scaling root planing, inflammatory biomarker, atherosclerosis

INTRODUCTION

Periodontal disease is a disease of surrounding dental tissue that is often found in the community, especially in Indonesia.¹ The most common periodontal disease is Periodontitis. According to Riskesdas 2018, the prevalence of Periodontitis in Indonesia is relatively high, reaching 74.1%.² Periodontitis occurs due to complex interactions between bacteria and inflammatory cells that develop in the periodontal tissue.¹,³

Some studies explain the relationship between Periodontitis and systemic diseases. One of them is cardiovascular disease.⁴⁵ Cardiovascular disease is a disorder of the heart and blood vessels, including stroke, coronary heart disease, myocardial infarction, and other conditions.⁶ According to the World Health Organization (WHO) in 2018 regarding the profile of Non-Communicable Diseases (NCD) in Indonesia, cardiovascular disease is a disease with the highest mortality among other NCDs.⁷ One of the conditions found in cardiovascular disease is atherosclerosis, which is the dominant cause of cardiovascular disease.⁶ Atherosclerosis is the accumulation of plaque due to the collection of fat in the walls of the arteries.⁸ Common risk factors for atherosclerosis include tobacco smoking, abnormal lipid levels in the circulation, and diabetes mellitus.⁹
Over the past ten years, several studies have identified an association between periodontal disease and cardiovascular disease based on the inflammatory process in both conditions. There is strong evidence that periodontal pathogens can translocate from the oral cavity to systemic blood vessels. Porphyromonas gingivalis bacteria and its products in lipopolysaccharides (LPS) can cause endothelial cell damage in blood vessel walls and increase inflammatory activities that induce atherogenesis thromboembolic events. Increased inflammatory cells and their activities are identified as the leading cause of atherosclerotic plaque formation and thromboembolic event that manifests in symptoms of cardiovascular disease.

Several studies have also shown that periodontitis is associated with several inflammatory biomarkers such as CRP, TNF-α, and IL-6, known as biomarkers of the risk level for atherosclerosis. Several studies have also stated that periodontal treatment in the form of scaling root planing has been shown to reduce the level of serological risk factors for atherosclerosis in patients diagnosed with periodontitis with atherosclerotic conditions. Based on the possible relationship between periodontitis and cardiovascular disease, scaling root planing treatment in periodontitis patients with atherosclerosis has the potential to influence the level of atherosclerosis risk that can be seen through the story of inflammatory biomarkers. The purpose was to review the literature about the efficacy of scaling root planing interventions on changes in inflammatory biomarkers in periodontitis patients with atherosclerosis.

MATERIALS AND METHODS

This research was conducted using the rapid review method. The specific research question was designed based on the PICO framework concept, as follows: Population: articles that discuss the effect of periodontal treatment on chronic periodontitis patients with atherosclerosis; Intervention: scaling root planing treatment; Comparison: individual without scaling root planing treatment; Outcome: changes in inflammatory biomarkers as a risk factor for atherosclerosis after scaling root planing treatment. Search and selection of articles to be analyzed qualitatively were carried out according to the guidelines of Preferred Reporting of Systematic Reviews and Meta-Analyses (PRISMA). An electronic search for appropriate studies was carried out from four electronic literature databases. These included the National Library of Medicine (MEDLINE / PubMed), The Cochrane Library, EBSCOhost, and SAGE Journal. The search was performed using keywords combined with boolean operators as follows: ((atherosclerosis) OR (coronary heart disease)) AND ((periodontal therapy) OR (nonsurgical periodontal therapy) OR (scaling root planing)). To focus the search and find more relevant references, the authors used Medical Subject Headings (MeSH) to search the MEDLINE / PubMed and The Cochrane Library databases and used free text for searches on other electronic databases. Inclusion criteria for the articles are studies published within the last ten years, written in English, available in full-text, and conducted in randomized controlled trial study design with the following conditions: aimed at assessing the risk of cardiovascular disease, including human subjects with periodontitis or atherosclerosis or cardiovascular disease due to atherosclerosis, the test group was the group that received the scaling root planing intervention, and the outcome variable is the biomarkers of atherosclerosis-related to the risk level. Exclusion criteria for the articles collected are experimental studies on non-humans or animals and themes with a systematic review study design, meta-analysis, and other study designs that have a validity level below RCT based on an evidence-based pyramid. In the initial search, 109 articles were collected from 4 electronic databases, and two articles were collected from the hand manual searching process by reviewing the reference list from relevant studies. Thirty-three articles then were excluded due to duplication. Collectively, the search process resulted in 78 themes. Then 31 articles that not available in full-text were excluded. Forty-seven full-text articles that remained were further assessed by inclusion and exclusion criteria summarized in Table 1. At the end of the search process, six pieces were collected to be analyzed qualitatively. The PRISMA flow chart as an article selection process can be seen in Figure 1.
Figure 1. PRISMA flow diagram for search and selection process
RESULTS

After searching and selecting articles, 6 articles were included in the inclusion criteria. Then, the results of data extraction from the six articles are summarized in Table 2.

Table 2
Data extraction from 6 articles about the efficacy of scaling root planing on periodontitis patients with atherosclerosis

No	Authors (Year)	Participants	Research time	Interventions	Inflammatory Biomarker Parameters	Research result	Conclusion
1	Montenegro et al. (2019)	A total of 82 patients, stable CAD and chronic periodontitis: 1. Test Group: 39, 2. Control Group: 43	3 months, with a follow-up time: 1. Baseline, 2. 1 month, 3. 3 months	1. Test Group: OHI is continued by 4 subgingival SRP sessions per quadrant, 2. Control Group: 1 dental prophylaxis session	1. CRP, 2. Profil lipid, 3. Cytokines (IL-1, IL-6, IL-8, IL-10, and TNF-α), 4. Glycated Hb	After 3 months: 1. There was a significant decrease in biomarker concentrations in the test group, namely: • CRP: 11.3 ± 12.8 mg / L to 5.7 ± 4.1 mg / L • IL-10: 1.50 ± 31.28 pg / ml to 6.31 ± 8.35 pg / ml • IL-8: 14.18 ± 18.20 pg / ml to 11.12 ± 11.86 pg / ml • IL-6: 6.20 ± 17.90 pg / ml to 4.11 ± 11.50 pg / ml • TNF-α: 9.59 ± 5.38 pg / ml to 9.58 ± 5.75 pg / ml 2. There was no significant difference in the levels of glycated Hb. 3. More than 80% of patients in the test and control groups had LDL and total cholesterol under control and HDL under control. 4. After 3 months, there was significant periodontal tissue improvement in the test group. There was a significant decrease in the number of plaques, the PPD value and CAL value in the test group, as well as a significant decrease in the BOP value in both groups.	Standard nonsurgical periodontal treatment has been shown to reduce levels of CRP, IL-6, and IL-8 as indicators of systemic inflammation in cardiovascular disease patients as well as to reduce local periodontal tissue inflammation.
2	Bozoglan et al. (2017)	A total of 40 patients: 1. Test group: 20 patients	6 months, with a follow-up time: 1. Baseline	1. Nonsurgical periodontal treatment	1. CRP, 2. Lipid profile, 3. PLT, 4. WBC	After 6 months: 1. There was a significant decrease in levels of CRP, LDL, PLT, fibrinogen, and microorganisms	An association between decreased microorganisms...
The efficacy of scaling root planing to inflammation biomarker of periodontitis patients with atherosclerosis

Literature Review

Study Authors	Study Details	Intervention	Follow-up Time	Clinical Parameters	Blood Parameters	Potential	Results				
Saftri et al.	The efficacy of scaling root planing to inflammation biomarker of periodontitis patients with atherosclerosis	Scaling root planing	2.6 m	WBC	CRP, Lipid profile, WBC, Fibrinogen	Nonsurgical periodontal treatment has the potential to reduce the risk of atherosclerosis.	There was a significant decrease in the clinical parameters of periodontal disease, include PI, GI, PPD, and CAL in the test and control groups.	5. Fibrinogen which was also in line with the decrease in the number of periodontal pathogens: • CRP: 5.01 ± 2.71 mg / L to 1.14 ± 0.57 mg / L • WBC: 9.3 ± 1.4 103 / ml to 6.8 ± 1.6 103 / ml • PLT: 264.4 ± 74.6 103 / ml to 222.5 ± 64.6 103 / ml • Fibrinogen: 356.4 ± 86.3 mg / dl to 296 ± 64.5 mg / dl • LDL: 223.5 ± 42.2 mg / dl to 162.5 ± 28.2 mg / dl 2. There was a significant decrease in the clinical parameters of periodontal disease, include PI, GI, PPD, and CAL in the test and control groups.	1. CRP	2. Lipid profile	3. WBC
Hada et al.	A total of 55 CHD patients with mild to moderate chronic Periodontitis	Scaling root planing	6 months	CRP, Lipid profile, WBC	CRP, Lipid profile, WBC, Fibrinogen	Nonsurgical periodontal treatment has a positive effect in reducing risk markers in patients with CHD	• There was an increase in CRP levels that was not significant in the test group and significant in the control group • Test Group: 5.10 ± 2.00 mg / L to 6.30 ± 7.53 mg / L • Control Group: 3.62 ± 2.31 mg / L to 4.94 ± 2.04 mg / L (p <0.05) 2. There was a decrease in levels of LDL, TGL, and total WBC in the test group • TGL: 161.97 ± 105.32 mg / dL to 147.00 ± 90.70 mg / dL • VLDL: 37.55 ± 23.20 mg / dL to 32.39 ± 18.43 mg / dL • WBC: 7660.00 ± 2821.79 / cumm to 7553.33 ± 1634.91 / cumm 3. There is a significant decrease in the BOP, PPD, and GI parameters, but not significant in the CAL value.	• Test Group: 5.10 ± 2.00 mg / L to 6.30 ± 7.53 mg / L • Control Group: 3.62 ± 2.31 mg / L to 4.94 ± 2.04 mg / L (p <0.05) 2. There was a decrease in levels of LDL, TGL, and total WBC in the test group • TGL: 161.97 ± 105.32 mg / dL to 147.00 ± 90.70 mg / dL • VLDL: 37.55 ± 23.20 mg / dL to 32.39 ± 18.43 mg / dL • WBC: 7660.00 ± 2821.79 / cumm to 7553.33 ± 1634.91 / cumm 3. There is a significant decrease in the BOP, PPD, and GI parameters, but not significant in the CAL value.	1. SRP	2. OHI in 1, 3, and 6 months	3. WBC
Study	Patients	Intervention	Follow-up	Results							
-------	----------	--------------	-----------	---------							
4. Caula et al. (2014)	64 chronic periodontitis patients	Test Group: 32, Control Group: 32	6 months, with a follow-up time: 1. Baseline 2. 2 months 3. 6 months	After 6 months: 1. Decrease in the median CRP, ESR, total cholesterol, LDL, and TGL values after 6 months in the test group: • CRP: 1.0 to 0.5 • ESR: 12 to 7 • Total cholesterol: 200.5 to 180 • LDL: 116.5 to 114 • TGL: 139 to 115.5 2. There was a significant decrease in the parameters of periodontal disease, namely CAL, BOP, PPD, and PI in the test and control groups							
5. Koppolu et al. (2013)	39 periodontitis patients with myocardial infarction	Test Group: 20, Control Group: 19	2 months, with a follow-up time: 1. Baseline 2. 2 months	After 2 months: 1. CRP and TNF-α levels were significantly reduced in the test group (p <0.05) • CRP: 0.45 ± 0.12 µg / dl to 0.29 ± 0.12 µg / dl • TNF-α: 22.15 ± 1.46 pg / ml to 20.20 ± 1.61 pg / ml 2. There is an increase in both the OHI index and a significant decrease in the PPD value in the test group							
6. Bokhari et al. (2012)	246 patients with CHD and periodontitis	Test Group: 161, Control Group: 85	2 months, with a follow-up time: 1. Baseline 2. 1 month	After 2 months: 1. Significant changes in levels of CRP, WBC, and fibrinogen (p <0.001) in the test group: • CRP: 4.4 ± 0.2 mg / L to 3.1 ± 0.2 mg / L • WBC: 7.8 ± 0.1 x 109 / L to 6.7 ± 0.1 x 109 / L • Fibrinogen: 367.1 ± 10.4 mg / L to 299.3 ± 8.0 mg / L 2. In the control group there was no change in CRP levels (p> 0.8) 3. There was a significant decrease in the parameters of periodontal disease, namely BOP, PPD, and CAL in the test and control groups							

Nonsurgical periodontal treatment is effective in reducing levels of systemic inflammatory biomarkers of cardiovascular disease in patients with advanced chronic periodontitis.

Clinically, successful nonsurgical periodontal treatment can reduce the concentration of pro-inflammatory cytokines that are essential in the development of cardiovascular disease.

In CHD patients with periodontitis, nonsurgical periodontal treatment significantly decreased CRP, fibrinogen, and WBC levels systemically within 2 months of follow-up and without systemic changes in medication regimen.
DISCUSSION

The relationship between periodontal disease and cardiovascular disease, especially in atherosclerotic conditions, has been quite widely studied.1,2,3,24 The formation of atherosclerotic plaques depends on several factors, systemic infections and local factors.6 The presence of chronic inflammation also contributes to the progression of the disease.1,5 The formation of atherosclerotic plaques is influenced by several inflammatory mediators, often used as inflammatory biomarkers to assess cardiovascular disease risk.9,25 The primary biomarker in cardiovascular disease risk assessment is CRP.26 Meanwhile, several biomarkers are often used as parameters for risk assessment of cardiovascular diseases, such as cytokines, fibrinogens, WBC, and molecules that describe lipid profiles such as LDL, HDL, total cholesterol, and triglycerides.17,19

The association that suggests that patients with Periodontitis have an increased risk of the progressive cardiovascular disease shows a question mark whether periodontal disease treatment can be performed as an action that has a positive effect on the level of risk of cardiovascular disease.24-28 Standard periodontal treatment in the form of scaling root planing is considered effective in eliminating plaque and reducing the risk of cardiovascular disease level of inflammation.1-29,30 This was then investigated further to determine the effect of these treatments on the risk of cardiovascular disease.

Research Montenegro et al. (2019) revealed that nonsurgical periodontal treatment positively affected reducing CRP levels.17 Participants who took part in the study were CAD patients in stable conditions accompanied by Periodontitis.17 Examinations were carried out on CAD patients and showed stable cardiovascular disease conditions and found HDL and CRP levels that were uncontrolled in some patients in both the test and control groups.17 This indicates that even though the patient has received cardiovascular treatment so that his condition is stable, there is still systemic inflammation characterized by abnormal levels of CRP biomarkers. CRP, which is a sensitive molecule, is known as the gold standard biomarker that measures systemic inflammation in cardiovascular disease, so it is often used as the primary outcome.5,26,31 Periodontal treatment in the form of SRP and OHI carried out in the test group resulted in a significant reduction in CRP levels after 3 months, thus indicating a decrease in systemic inflammation.17 Decreased inflammatory biomarkers are also found in the cytokines IL-6 and IL-8 as inflammatory mediators that play a role in atherosclerotic plaque formation.17,32 IL-6 is known to have a role in the process of atherosclerotic plaque erosion that triggers thrombogenesis.9 IL-8 is known to have a role in monocyte infiltration as the initiation of atherosclerotic plaque formation.6 Decreased levels of TNF-α cytokines were also mentioned in the study of Koppolu et al. (2013) after SRP in 2 months.21 TNF-α is a type of inflammatory mediator produced by monocytes and neutrophils.33 TNF-α plays a role in causing endothelial cell dysfunction in the pathogenesis of atherosclerosis.6,34 The decrease in cytokine levels occurs due to the reduction in the degree of inflammation post-scaling root planing treatment.3,35 Decreased cytokine levels will also affect CRP levels that decrease due to one of the effects caused by cytokines, excretion of CRP levels.26 Another parameter that was also assessed in the study of Montenegro et al. (2019) are levels of lipid profile components (HDL, LDL, TGL, and total cholesterol) which are finally in control.17 In addition, it was also found that the level of glycated Hb had decreased even though it was not significant.17 Glycated Hb is an indicator of the stability of diabetes, which is one of the risk factors for atherosclerosis.9

The positive effect of nonsurgical periodontal treatment on the reduction of CRP levels was also revealed in the study of Bozoglan et al. (2017), Caula et al. (2014), and Bokhari et al. (2012).18,20,22 Research by Bozoglan et al. (2017) associated decreased levels of CRP along with other parameters of cardiovascular disease such as fibrinogen, WBC, and LDL with the number of periodontal pathogenic microorganisms such as Porphyromonas gingivalis (Pg), Aggregatibacter actinomycetemcomitans (Aa), and several other periodontal pathogens that cause Periodontitis in atherosclerotic plaques.18 Porphyromonas gingivalis are known to be the primary pathogens in chronic Periodontitis, which contribute to the pathogenesis of atherosclerosis through endotoxin in the form of LPS and the ability of bacteria to translocate into systemic blood vessels.3,36-37 The presence of microorganisms such as Pg and Aa plays a role as triggers LDL oxidation in the formation of foam cells, including at the stage of atherosclerotic plaque formation.18 Bozoglan et al. (2017) revealed a positive correlation between a decrease in the number of microorganisms accompanied by a decrease in CRP levels, fibrinogen, WBC, and LDL as essential indicators of cardiovascular disease after SRP.18 This strongly
suggests that nonsurgical periodontal treatment has a positive effect on the prognosis of atherosclerosis. Research by Caula et al. (2014) also assessed other parameters to determine the association of the efficacy of nonsurgical periodontal treatment on the risk of cardiovascular disease. One of the parameters evaluated was ESR as an indicator of red blood cell aggregation, indicating the level of blood viscosity. ESR is also known as an indicator of coronary heart disease. Research by Caula et al. (2014) revealed that the ESR value decreased significantly after six months along with several other biochemical parameters of cardiovascular disease, namely CRP and lipid profile components. Based on these findings, it can be said that nonsurgical periodontal treatment is considered effective in reducing levels of systemic inflammatory biomarkers of cardiovascular disease in patients with chronic Periodontitis.

The results of other studies that were also reviewed were the research of Hada et al. (2015). In contrast to other studies that have shown decreased CRP levels, Hada et al. (2015) revealed an increase in CRP levels after the intervention of nonsurgical periodontal treatment. The study found an increase in CRP levels that were not significant in the test group and significant in the control group within six months of the SRP intervention. As we know, CRP is a sensitive molecule that changed during the systemic process in the body. Still, the systemic inflammatory condition in the test group was better than the control group by looking at the insignificant increase in CRP in the test group. In addition to CRP, other parameters such as levels of lipid profile components and WBC were also assessed. The lipid profile in the test group showed a decrease in TGL and VLDL levels. The number of WBC in 6 months also decreased in the test group and increased in the control group. Periodontal disease causes the WBC levels to increase frequently. After eliminating periodontal infection with nonsurgical periodontal treatment, the decreased level of inflammation may be indicated by a decreased WBC count. Therefore, the management of Periodontitis as a chronic periodontal disease has positively reduced the risk of cardiovascular disease.

Evidence on the effectiveness of nonsurgical periodontal treatment in reducing levels of inflammatory biomarkers of cardiovascular disease is also supported by the results of the study by Bokhari et al. (2012). A significant reduction in CRP levels, WBC, and fibrinogen within three months in the test group indicates a reduced risk of cardiovascular disease. Fibrinogen and CRP are molecules produced by the liver in response to inflammation or infectious stimuli, and these biomarkers will increase when inflammation in the atherogenesis process continues. A limitation in this study is that there is a need to review other RCTs with a longer and more sustained follow-up period. Furthermore, RCT research can be carried out with the consistency of the number of participants at the beginning to the end of the study to be maintained to be carried out with a larger number of samples.

CONCLUSIONS

Based on the analysis results qualitatively, scaling root planing treatment was considered effective in reducing the levels of atherosclerotic inflammatory biomarkers in periodontitis patients with atherosclerosis. This could strengthen the potential for nonsurgical periodontal therapy to reduce the risk of atherosclerosis which plays a dominant role in cardiovascular disease. Reviews of experimental and observational studies with more extended follow-up periods are needed for more reliable results.

ACKNOWLEDGEMENT

We want to thank you for the advice that has been given to this manuscript. Drg. Erna Herawati, M. Kes (Department of Oral Medicine Faculty of Dentistry Universitas Padjadjaran) also drg. Jamas Ari Anggraini, M. Kes and drg. Felisha Balafif, M. Kes (Department of Oral Biology Faculty of Dentistry Universitas Padjadjaran).
The efficacy of scaling root planing to inflammation biomarker of periodontitis patients with atherosclerosis.

REFERENCES

[1]. Newman MG, Takei HH, Klokkevold PR, Carranza FA. Newman and Carranza’s Clinical Periodontology. 13th ed. Philadelphia: Elsevier; 2019.

[2]. Kementrian Kesehatan RI BLK. Laporan_Nasional_RKD2018_FINAL.pdf [Internet]. Badan Penelitian dan Pengembangan Kesehatan. 2018. p. 198. Available from: http://labdata.litbang.kemkes.go.id/images/download/laporan/RKD/2018/Laporan_Nasional_RKD2018_FINAL.pdf

[3]. Könnönen E, Gursoy M, Gursoy U K. Periodontitis: A multifaceted disease of tooth-supporting tissues. Journal of clinical medicine 2019;8(8):1135.

[4]. Carallo C, De Franceschi MS, Tripolino C, Iovane C, Catalano S, Giudice A, et al. Periodontal treatment elevates carotid wall shear stress in the medium term. Med (United States). 2015 Oct 1;94(42):e1724.

[5]. Lopez-Candales A, Hernández Burgos PM, Hernandez-Suarez DF, Harris D. Linking Chronic Inflammation with Cardiovascular Disease: From Normal Aging to the Metabolic Syndrome. J Nat Sci [Internet]. 2017 Apr [cited 2020 Oct 15];3(4). Available from: http://www.ncbi.nlm.nih.gov/pubmed/28670620

[6]. Loscalzo J. 2nd Edition Harrison’s Cardiovascular Medicine. 2nd ed. Longo D, Kasper D, Jameson JL, Fauci A, Hauser S, Loscalzo J, editors. New York: McGraw-Hill Education; 2013.

[7]. World Health Organization. NCDs Country Profiles 2018 WHO. 2018;224. Available from: https://www.who.int/nmh/publications/ncd-profiles-2018/en/

[8]. Frosteård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11(1).

[9]. Lilly L. Pathophysiology of Heart Disease. 6th ed. Lilly L, editor. Philadelphia: Wolters Kluwer; 2016.

[10]. Atarbashi-moghadam F, Havaei SR, Havaei SA. Periopathogens in atherosclerotic plaques of patients with both cardiovascular disease and chronic periodontitis Abstract Original Article. 2018;14(2):53–7.

[11]. Bresolin AC, Pronsatti MM, Pasqualotto LN, Nassar PO, Jorge AS, da Silva EAA, et al. Lipid profiles and inflammatory markers after periodontal treatment in children with congenital heart disease and at risk for atherosclerosis. Vasc Health Risk Manag. 2013;9(1):703–9.

[12]. Geisinger ML, Michalowicz BS, Hou W, Schoenfeld E, Gelato M, Engberston SP, et al. Systemic Inflammatory Biomarkers and Their Association With Periodontal and Diabetes-Related Factors in the Diabetes and Periodontal Therapy Trial, A Randomized Controlled Trial. J Periodontol. 2016 Aug;87(8):900–13.

[13]. Saffi MAL, Furtado MV, Montenegro MM, Ribeiro IWJ, Kampits C, Rabelo-Silva ER, et al. The effect of periodontal therapy on C-reactive protein, endothelial function, lipids and proinflammatory biomarkers in patients with stable coronary artery disease: Study protocol for a randomized controlled trial. Trials. 2013 Sep 6;14(1).

[14]. Saffi MAL, Rabelo-Silva ER, Polanczyk CA, Furtado M V., Montenegro MM, Ribeiro IWJ, et al. Periodontal therapy and endothelial function in coronary artery disease: A randomized controlled trial. Oral Dis. 2018 Oct 1;24(7):1349–57.

[15]. Skilton MR, Maple-Brown LJ, Kapellas K, Celermajer DS, Bartold M, Brown A, et al. The effect of a periodontal intervention on cardiovascular risk markers in Indigenous Australians with periodontal disease: The PerioCardio study. BMC Public Health. 2011;11.

[16]. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med [Internet]. 2009 Jul 21 [cited 2020 Oct 16];6(7):e1000097. Available from: https://dx.plos.org/10.1371/journal.pmed.1000097

[17]. Montenegro MM, Ribeiro IWJ, Kampits C, Saffi MAL, Furtado M V., Polanczyk CA, et al. Randomized controlled trial of the effect of periodontal treatment on cardiovascular risk biomarkers in patients with stable coronary artery disease: Preliminary findings of 3 months. J Clin Periodontol. 2019 Mar 1;46(3):321–31.

[18]. Bozoglan A, Ertugrul AS, Taspınar M, Yuzbasioglu B. Determining the relationship between atherosclerosis and...
periodontopathogenic microorganisms in chronic periodontitis patients. Acta Odontol Scand. 2017 May 19;75(4):233–42.

[19]. Hada DS, Garg S, Ramteke GB, Ratre MS. Effect of Non-Surgical Periodontal Treatment on Clinical and Biochemical Risk Markers of Cardiovascular Disease: A Randomized Trial. J Periodontol. 2015;86(11):1201–11.

[20]. Caüla AL, Lira-Junior R, Tinoco EMB, Fischer RG. The effect of periodontal therapy on cardiovascular risk markers: A 6-month randomized clinical trial. J Clin Periodontol. 2014;41(9):875–82.

[21]. Koppolu P, Durvasula S, Palaparthy R, Rao M, Sagar V, Reddy SK, et al. Estimate of CRP and TNF-alpha level before and after periodontal therapy in cardiovascular disease patients. Pan Afr Med J. 2013 Jul 10;15.

[22]. Bokhari SAH, Khan AA, Butt AK, Azhar M, Hanif M, Izhar M, et al. Nonsurgical periodontal therapy reduces coronary heart disease risk markers: A randomized controlled trial. J Clin Periodontol. 2012 Nov 1;39(11):1065–74.

[23]. Liu W, Cao Y, Dong L, Zhu Y, Wu Y, Lv Z, et al. Cardiovascular Disease in People with Periodontitis (Review). Cochrane Database Syst Rev. 2019;(12).

[24]. Sanz M, Marco del Castillo A, Jepsen S, Gonzalez-Juanatey JR, D’Aiuto F, Bouchard P, et al. Periodontitis and cardiovascular diseases: Consensus report. J Clin Periodontol. 2020 Mar 1;47(3):268–88.

[25]. Bui FQ, Almeida-da-Silva CLC, Huynh B, Trinh A, Liu J, Woodward J, et al. Association between periodontal pathogens and systemic disease. Vol. 42, Biomedical Journal. Elsevier B.V.; 2019. p. 27–35.

[26]. Shrivastava AK, Singh HV, Raizada A, Singh SK. C-reactive protein, inflammation and coronary heart disease. Vol. 67, Egyptian Heart Journal. Egyptian Society of Cardiology; 2015. p. 89–97.

[27]. Li C, Lv Z, Shi Z, Zhu Y, Wu Y, Li L, et al. Periodontal therapy for the management of cardiovascular disease in patients with chronic Periodontitis. Vol. 2017, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2017.

[28]. Javed F, Ahmed HB, Mehmood A, Bain C, Romans GE. Effect of nonsurgical periodontal therapy (with or without oral doxycycline delivery) on glycemic status and clinical periodontal parameters in patients with prediabetes: a short-term longitudinal randomized case-control study. Clin Oral Investig. 2014;18(8):1963–8.

[29]. Tewu WJ, Slot DE, Susanto H, Gerdes VEA, Abbas F, D’Aiuto F, et al. Treatment of Periodontitis improves the atherosclerotic profile: A systematic review and meta-analysis. J Clin Periodontol. 2014;14(1):70–9.

[30]. Mariotti G, Quaranta A, Merli M, Paternò Holtzman L, Piemontese M. Chronic periodontitis and cardiovascular disease: A controlled clinical trial. Eur J Inflamm. 2013;11(2):459–67.

[31]. D’Aiuto F, Orlandi M, Gunsolley JC. Evidence that periodontal treatment improves biomarkers and CVD outcomes. J Periodontol 2013;84:S85-S105.

[32]. Bacchigia BC, Bacchigia AB, Usnayo MJG, Bedirian R, Singh G, Pinheiro G da RC. Interleukin 6 inhibition and coronary artery disease in a high-risk population: A prospective community-based clinical study. J Am Heart Assoc 2017;6(3):e005038.

[33]. Katsiari CG, Bogdanos DP, Sakkas LI. Inflammation and cardiovascular disease. World J Transl Med 2019;8(1):1–8.

[34]. Rastogi P, Singhal R, Sethi A, Agarwal A, Singh VK, Sethi R. Assessment of the effect of periodontal treatment in patients with coronary artery disease: A pilot survey. J Cardiovasc Dis Res 2013;2(3):124–7.

[35]. Suzuki J, Aoyama N, Ogawa M, Hirata Y, Izumi Y, Nagai R, et al. Periodontitis and cardiovascular diseases. Expert Opinion on Therapeutic Targets. 2010; 14(10):1023–7.

[36]. Liljestrand JM, Paju S, Pelttaaenen M, Buhlkin K, Persson G R, Nieminen M S, et al. Immunologic burden links Periodontitis to acute coronary syndrome. Atherosclerosis 2018;268:177–84.

[37]. Reinhardt B, Klocke A, Neering SH, Selbach S, Peters U, Flemmig, T F, et al. Microbiological dynamics of red complex bacteria following full-mouth air polishing in periodontally healthy subjects—a randomized clinical pilot study. Clin Oral Investig 2019;23(10):3905–14.