DYADIC WEIGHTS ON \mathbb{R}^n AND REVERSE HÖLDER INEQUALITIES

ELEFTHERIOS N. NIKOLIDAKIS, ANTONIOS D. MELAS

Abstract: We prove that for any weight ϕ defined on $[0,1]^n$ that satisfies a reverse Hölder inequality with exponent $p > 1$ and constant $c \geq 1$ upon all dyadic subcubes of $[0,1]^n$, its non increasing rearrangement ϕ^*, satisfies a reverse Hölder inequality with the same exponent and constant not more than $2^n c - 2^n + 1$, upon all subintervals of $[0,1]$ of the form $[0,t]$, $0 < t \leq 1$. This gives as a consequence, according to the results in [8], an interval $[p, p_0(p,c)) = I_{p,c}$, such that for any $q \in I_{p,c}$, we have that $\phi \in L^q$.

1. Introduction

The theory of Muckenhoupt’s weights has been proved to be an important tool in analysis. One of the most important facts about these is their self improving property. A way to express this is through the so called reverse Hölder inequalities (see [2], [3] and [7]).

Here we will study such inequalities on a dyadic setting. We will say that the measurable function $g : [0,1] \to \mathbb{R}^+$ satisfies the reverse Hölder inequality with exponent $p > 1$ and constant $c \geq 1$ if the inequality

$$\frac{1}{b-a} \int_a^b g^p(u)du \leq c \left(\frac{1}{b-a} \int_a^b g(u)du \right)^p,$$

holds for every subinterval of $[0,1]$.

In [1] it is proved the following

Theorem A. Let g be a non-increasing function defined on $[0,1]$, which satisfies (1.1) on every interval $[a,b] \subseteq [0,1]$. Then if we define $p_0 > p$ as the root of the equation

$$\frac{p}{p_0} - p_0 \left(\frac{p_0}{p_0 - 1} \right)^p \cdot c = 1,$$

we have that $g \in L^q([0,1])$, for any $q \in [p,p_0)$. Additionally g satisfies for every q in the above range a reverse Hölder inequality for possibly another real constant c'. Moreover the result is sharp, that is the value p_0 cannot be increased.

This research has been co-financed by the European Union and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), aristeia code: MAXBELLMAN 2760, research code:70/3/11913.

MSC Number: 42B25
Now in [4] or [5] it is proved the following

Theorem B. If \(\phi : [0, 1] \to \mathbb{R}^+ \) is measurable satisfying (1.1) for every \([a, b] \subseteq [0, 1]\), then it’s non-increasing rearrangement \(\phi^* \), satisfies the same inequality with the same constant \(c \).

Here by \(\phi^* \) we denote the non-increasing rearrangement of \(\phi \), which is defined on \((0, 1]\) by

\[
\phi^*(t) = \sup_{E \subseteq [0, 1], |E|=t} \left\{ \inf_{x \in E} |\phi(x)| \right\}, \quad t \in (0, 1].
\]

This can be defined also as the unique left continuous, non-increasing function, equimeasurable to \(|\phi|\), that is, for every \(\lambda > 0 \) the following equality holds:

\[
| \{ \phi > \lambda \} | = | \{ \phi^* > \lambda \} |,
\]

where by \(| \cdot |\) we mean the Lebesgue measure on \([0, 1]\).

An immediate consequence of Theorem B, is that Theorem A can be generalized by ignoring the assumption of the monotonicity of the function \(g \).

Recently in [8] it is proved the following

Theorem C. Let \(g : (0, 1] \to \mathbb{R}^+ \) be non-increasing which satisfies (1.1) on every interval of the form \((0, t]\), \(0 < t \leq 1 \). That is the following holds

\[
\frac{1}{t} \int_0^t g^p(u)du \leq c \cdot \left(\frac{1}{t} \int_0^t g(u)du \right)^p,
\]

for every \(t \) in \((0, 1]\). Then if we define \(p_0 \) by (1.2), we have that for any \(q \in [p, p_0) \) the following inequality is true

\[
\frac{1}{t} \int_0^t g^q(u)du \leq c' \left(\frac{1}{t} \int_0^t g(u)du \right)^q,
\]

for every \(t \) in \((0, 1]\) and some constant \(c' \geq c \). Thus \(g \in L^q((0, 1]) \) for any such \(q \). Moreover the result is sharp, that is we cannot increase \(p_0 \).

A consequence of Theorem C is that under the assumption that \(g \) is non-increasing, the hypothesis that (1.1) is satisfied only on the intervals of the form \((0, t]\) is enough for one to realize the existence of a \(p' > p \) for which \(g \in L^{p'}([0, 1]) \).

In several dimensions, as far as we know, there does not exists any similar result as Theorems A, B and C. All we know is the following, which can be seen in [3].

Theorem D. Let \(Q_0 \subseteq \mathbb{R}^n \) be a cube and \(\phi : Q_0 \to \mathbb{R}^+ \) measurable that satisfies

\[
\frac{1}{|Q|} \int_Q \phi^p \leq c \cdot \left(\frac{1}{|Q|} \int_Q \phi \right)^p,
\]

for fixed constants \(p > 1 \) and \(c \geq 1 \) and every cube \(Q \subseteq Q_0 \). Then there exists \(\varepsilon = \varepsilon(n, p, c) \) such that the following inequality holds:

\[
\frac{1}{|Q|} \int_Q \phi^q \leq c' \left(\frac{1}{|Q|} \int_Q \phi \right)^q
\]
for every $q \in [p, p + \varepsilon)$, any cube $Q \subseteq Q_0$ and some constant $c' = c'(q, p, n, c)$.

In several dimensions no estimate of the quantity ε, has been found. The purpose of
this work is to study the multidimensional case in the dyadic setting. More precisely
we consider a measurable function φ, defined on $[0, 1]^n = Q_0$, which satisfies (1.5) for
any Q, dyadic subcube of Q_0. These cubes can be realized by bisecting the sides of
Q_0, then bisecting it’s side of a resulting dyadic cube and so on. We define by T_{2^n} the
respective tree consisting of those mentioned dyadic subcubes of $[0, 1]^n$. Then we will
prove the following:

Theorem 1. Let $\varphi : Q_0 = [0, 1]^n \to \mathbb{R}^+$ be such that

\begin{equation}
\frac{1}{|Q|} \int_Q \varphi^p \leq c \cdot \left(\frac{1}{|Q|} \int_Q \varphi \right)^p,
\end{equation}

for any $Q \in T_{2^n}$ and some fixed constants $p > 1$ and $c \geq 1$. Then, if we set $h = \varphi^*$ the
non-increasing rearrangement of φ, the following inequality is true

\begin{equation}
\frac{1}{t} \int_0^t h^p(u)du \leq (2^n c - 2^n + 1) \left(\frac{1}{t} \int_0^t h(u)du \right)^p, \quad \text{for any} \quad t \in [0, 1].
\end{equation}

As a consequence $h = \varphi^*$ satisfies the assumptions of Theorem C, which can be
applied and produce an $\varepsilon_1 = \varepsilon_1(n, p, c) > 0$ such that h belongs to $L^q([0, 1])$ for any
$q \in [p, p + \varepsilon_1)$. Thus $\varphi \in L^q([0, 1]^n)$ for any such q. That is we can find an explicit
value of ε_1. This is stated as Corollary 3.1 and is presented in the last section of this
paper.

As a matter of fact we prove Theorem 1 in a much more general setting. More
precisely we consider a non-atomic probability space (X, μ) equipped with a tree T_k, that is a k-homogeneous tree for a fixed integer $k > 1$, which plays the role of dyadic
sets as in $[0, 1]^n$ (see the definition of Section 2).

As we shall see later, Theorem 1 is independent of the shape of the dyadic sets and
depends only on the homogeneity of the tree T_k. Additionally we need to mention that
the inequality (1.8) cannot necessarily be satisfied, under the assumptions of Theorem
1, of one replaces the intervals $(0, t]$ by $(t, 1]$. That is φ^* is not necessarily a weight on
$(0, 1]$ satisfying a reverse Hölder inequality upon all subintervals of $[0, 1]$ (see [5]).

Additionally we mention that in [6] the study of the dyadic A_1-weights appears,
where one can find for any $c > 1$ the best possible range $[1, p)$, for which the following
holds: $\varphi \in A_1^q(c) \Rightarrow \varphi \in L^q$, for any $q \in [1, p)$. All last results that are connected with
A_1 dyadic weights φ and the behavior of φ^* as an A_1-weight on \mathbb{R}, can be seen in [9].

2. Preliminaries

Let (X, μ) be a non-atomic probability space. We give the notion of a k-homogeneous
tree on X.

Definition 2.1. Let k be an integer such that $k > 1$. A set T_k will be called a k-

homogeneous tree on X if the following hold
(i) $X \in \mathcal{T}_k$
(ii) For every $I \in \mathcal{T}_k$, there corresponds a subset $C(I) \subseteq \mathcal{T}_k$ consisting of k subsets of I such that

(a) the elements of $C(I)$ are pairwise disjoint
(b) $I = \bigcup C(I)$
(c) $\mu(J) = \frac{1}{k} \mu(I)$, for every $J \in C(I)$.

For example one can consider $X = [0, 1]^n$, the unit cube of \mathbb{R}^n. Define as μ the Lebesgue measure on this cube. Then the set \mathcal{T}_k of all dyadic subcubes of X is a tree of homogeneity $k = 2^n$, with $C(Q)$ being the set of 2^n-subcubes of Q, obtained by bisecting it’s sides, for every $Q \in \mathcal{T}_k$, starting from $Q = X$.

Let now (X, μ) be as above and a tree \mathcal{T} on X as in Definition 2.1. From now on, we fix k and write $\mathcal{T} = \mathcal{T}_k$. For any $I \in \mathcal{T}$, $I \neq X$ we set I^* the smallest element of \mathcal{T} such that $I \supseteq I^*$. That is I^* is the unique element of \mathcal{T} such that $I \in C(I^*)$. We call I^* the father of I in \mathcal{T}. Then $\mu(I^*) = k \mu(I)$.

Definition 2.2. For any (X, μ) and \mathcal{T} as above we define the dyadic maximal operator on X with respect to \mathcal{T}, noted as $M_{\mathcal{T}}$, by

\[M_{\mathcal{T}} \phi(X) = \sup \{ \frac{1}{\mu(I)} \int_I |\phi| \, d\mu : x \in I \in \mathcal{T} \}, \tag{2.1} \]

for any $\phi \in L^1(X, \mu)$.

Remark 2.1. It is not difficult to see that the maximal operator defined by (2.1) satisfies a weak-type $(1,1)$ inequality, which is the following:

\[\mu(\{M_{\mathcal{T}} \phi > \lambda\}) \leq \frac{1}{\lambda} \int_{\{M_{\mathcal{T}} \phi > \lambda\}} \phi \, d\mu, \quad \lambda > 0. \]

It is not difficult to see that the above inequality is best possible for every $\lambda > 0$, and is responsible for the fact that \mathcal{T} differentiates $L^1(X, \mu)$, that is the following holds:

\[\lim_{\mu(I) \to 0} \frac{1}{\mu(I)} \int_I \phi \, d\mu = \phi(x), \quad \mu\text{-almost everywhere on } X. \]

This can be seen in [4].

We will also need the following lemma which can be also seen in [4].

Lemma 2.1. Let ϕ be non-negative function defined on $E \cup \hat{E} \subseteq X$ such that

\[\frac{1}{\mu(E)} \int_E \phi \, d\mu = \frac{1}{\mu(\hat{E})} \int_{\hat{E}} \phi \, d\mu \equiv A, \tag{2.2} \]

Additionally suppose that

\[\phi(x) \leq A, \quad \text{for every } x \notin E \cap \hat{E}, \tag{2.3} \]

and

\[\phi(x) \leq \phi(y), \quad \text{for every } X \in \hat{E} \setminus E, \quad \text{and } y \in E, \tag{2.4} \]
Then, for every $p > 1$ the following inequality holds

$$\frac{1}{\mu(E)} \int_E \phi^p d\mu \leq \frac{1}{\mu(E)} \int_E \phi^p d\mu,$$

(2.5)

3. Weights on (X, μ, \mathcal{T})

We proceed now to the

Proof of Theorem 1. We suppose that ϕ is non-negative defined on (X, μ) and satisfies a reverse H"older inequality of the form

$$\frac{1}{\mu(I)} \int_I \phi^p d\mu \leq c \cdot \left(\frac{1}{\mu(I)} \int_I \phi d\mu \right)^p,$$

(3.1)

for every $I \in \mathcal{T}$, where c, p are fixed such that $p > 1$ and $c \geq 1$. We will prove that for any $t \in (0, 1]$ we have that

$$\frac{1}{t} \int_0^t [\phi^*(u)]^p du \leq (kc - k + 1) \left(\frac{1}{t} \int_0^t \phi^*(u) du \right)^p,$$

(3.2)

where ϕ^* is the non-increasing rearrangement of ϕ, defined as in Remark ??, on $(0, 1]$, and k is the homogeneity of \mathcal{T}. Fix a $t \in (0, 1]$ and set

$$A = A_t = \frac{1}{t} \int_0^t \phi^*(u) du.$$

Consider now the following subset of X defined by

$$E_t = \{ x \in X : \mathcal{M}_T \phi(x) > A \},$$

(3.3)

Then for any $x \in E_t$, there exists an element of \mathcal{T}, say I_x, such that

$$x \in I_x \quad \text{and} \quad \frac{1}{\mu(I_x)} \int_{I_x} \phi d\mu > A.$$

(3.4)

For any such I_x we obviously have that $I_x \subseteq E_t$. We set $S_{\phi,t} = \{ I_x : x \in E_t \}$. This is a family of elements of \mathcal{T} such that $U\{ I : I \in S_{\phi,t} \} = E_t$. Consider now those $I \in S_{\phi,t}$ that are maximal with respect to the relation of \subseteq. We write this subfamily of $S_{\phi,t}$ as $S'_{\phi,t} = \{ I_j : j = 1, 2, \ldots \}$ which is possibly finite. Then $S'_{\phi,t}$ is a disjoint family of elements of \mathcal{T}, because of the maximality of every I_j and the tree structure of \mathcal{T}. (see Definition 2.1).

Then by construction, this family still covers E_t, that is $E_t = \bigcup_{j=1}^{\infty} I_j$. For any $I_j \in S'_{\phi,t}$ we have that $I_j \neq X$, because if $I_j = X$ for some j, we could have from (3.4) that

$$\int_0^1 \phi^*(u) du = \int_X \phi d\mu = \frac{1}{\mu(I_j)} \int_{I_j} \phi d\mu > A = \frac{1}{t} \int_0^t \phi^*(u) du,$$

which is impossible, since ϕ^* is non-increasing on $(0, 1]$. Thus, for every $I_j \in S'_{\phi,t}$ we have that I_j^* is well defined, but may be common for any two or more elements of $S'_{\phi,t}$. We may also have that $I_j^* \subseteq I_i^*$ for some $I_j, I_i \in S'_{\phi,t}$.
We consider now the family
\[L_{\phi,t} = \{ I_j^* : j = 1, 2, \ldots \} \subseteq \mathcal{T}. \]
As we mentioned above, this is not necessarily a pairwise disjoint family. We choose a pairwise disjoint subcollection, by considering those \(I_j^* \) that are maximal, with respect to the relation \(\subseteq \).

We denote this family as
\[L'_{\phi,t} = \{ I^*_j \} \subseteq \mathcal{T}. \]
Then of course
\[\bigcup J : J \in L_{\phi,t} = \bigcup J : J \in L'_{\phi,t}. \]
Since, each \(I_j^* \in S'_{\phi,t} \) is maximal we should have that
\[\frac{1}{\mu(I^*_j)} \int_{I^*_j} \phi d\mu \leq A, \]
(3.5)

Now note that every \(I^*_j \) contains at least one element of \(S'_{\phi,t} \), such that \(I \in C(I^*_j) \). Consider for any \(s \) the family of all those \(I \) such that \(I^* \subseteq I^*_j \). We write it as
\[S'_{\phi,t,s} = \{ I \in S'_{\phi,t} : I^* \subseteq I^*_j \}. \]
For any \(I \in S'_{\phi,t,s} \) we have of course that
\[\frac{1}{\mu(I)} \int_I \phi d\mu > A, \quad \text{so if we set} \quad K_s = U \{ I : I \in S'_{\phi,t,s} \}. \]
We must have, because of the disjointness of the elements of family \(S'_{\phi,t} \), that
\[\frac{1}{\mu(K_s)} \int_{K_s} \phi d\mu > A. \]
(3.6)
Additionally, \(K_s \subseteq I^*_j \) and by (3.5) and the comments stated above we easily see that
\[\frac{1}{k} \mu(I^*_j) < \mu(K_s) \leq \mu(I^*_j), \]
(3.7)
By (3.5) and (3.6) we can now choose (because \(\mu \) is non-atomic) for any \(s \), a measurable set \(B_s \subseteq I^*_j \setminus K_s \), such that if we define \(\Gamma_s = K_s \cup B_s \), then \(\frac{1}{\mu(\Gamma_s)} \int_{\Gamma_s} \phi d\mu = A. \)

We set now \(E^*_t = \bigcup_s I^*_j \) \[\Gamma = \bigcup_s \Gamma_s, \quad \Delta = \bigcup_s \Delta_s, \]
where \(\Delta_s = I^*_j \setminus \Gamma_s \), for any \(s = 1, 2, \ldots \).

Then by all the above, we have that
\[\Gamma \cup \Delta = E^*_t \quad \text{and} \quad \frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi d\mu = A_t, \]
which is true in view of the pairwise disjointness of \((I^*_j)_{s=1}^{\infty} \).
Define now the following function

\[h := (\phi/\Gamma)^* : (0, \mu(\Gamma)] \to \mathbb{R}^+. \]

Then obviously

\[\frac{1}{\mu(\Gamma)} \int_0^{\mu(\Gamma)} h(u) du = \frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi d\mu = A_t. \]

By the definition of \(h \) we have that \(h(u) \leq \phi^*(u) \), for any \(u \in (0, \mu(\Gamma)] \). Thus we conclude:

\[(3.8) \quad \frac{1}{\mu(\Gamma)} \int_0^{\mu(\Gamma)} \phi^*(u) du \geq \frac{1}{\mu(\Gamma)} \int_0^{\mu(\Gamma)} h(u) du = A_t = \frac{1}{t} \int_0^t \phi^*(u) du, \]

From (3.8), we have that \(\mu(\Gamma) \leq t \), since \(\phi^* \) is non-increasing.

We now consider a set \(E \subseteq X \) such that \((\phi/E)^* = \phi^*/(0, t] \), with \(\mu(E) = t \) and for which \(\{ \phi > \phi^*(t) \} \subseteq E \subseteq \{ \phi \geq \phi^*(t) \} \).

It’s existence is guaranteed by the equimeasurability of \(\phi \) and \(\phi^* \), and the fact that \((X, \mu)\) is non-atomic. Then, we see immediately that

\[\frac{1}{\mu(E)} \int_E \phi d\mu = \frac{1}{t} \int_0^t \phi^*(u) du = A_t. \]

We are going now to construct a second set \(\hat{E} \subseteq X \). We first set \(\hat{E}_1 = \Gamma \).

Let now \(x \notin \hat{E}_1 \). Since \(\Gamma \supseteq \{ \mathcal{M}_\Gamma \phi > A_t \} \), we must have that \(\mathcal{M}_\Gamma \phi(x) \leq A_t \).

But since \(\mathcal{T} \) differentiates \(L^1(X, \mu) \) we obviously have that for \(\mu \)-almost every \(y \in X : \phi(y) \leq \mathcal{M}_\Gamma \phi(y) \). Then the set \(\Omega = \{ x \notin \hat{E}_1 : \phi(x) > \mathcal{M}_\Gamma \phi(x) \} \) has \(\mu \)-measure zero.

At last we set \(\hat{E} = \hat{E}_1 \cup \Omega = \Gamma \cup \Omega \).

Then \(\mu(\hat{E}) = \mu(\Gamma) \) and for every \(x \notin \hat{E} \) we have that \(\phi(x) \leq \mathcal{M}_\Gamma \phi(x) \leq A_t \).

Let now \(x \notin E \). By the construction of \(E \) we immediately see that \(\phi(x) \leq \phi^*(t) \leq \frac{1}{t} \int_0^t \phi^*(u) du = A_t \). Thus, if \(x \notin E \) or \(x \notin \hat{E} \), we must have that \(\phi(x) \leq A_t \), that is (2.3) of Lemma 2.1 is satisfied for these choices of \(E \) and \(\hat{E} \). Let now \(x \in \hat{E} \setminus E \) and \(y \in E \). Then we obviously have by the above discussion that \(\phi(x) \leq \phi^*(t) \leq \phi(y) \).

That is \(\phi(x) \leq \phi(y) \). Thus (2.4) is also satisfied. Also since \(\hat{E} = \Gamma \cup \Omega \), we obviously have \(\frac{1}{\mu(E)} \int_E \phi d\mu = A_t \), so as a consequence (2.2) is satisfied also.

Applying Lemma 2.1 we conclude that

\[\frac{1}{\mu(E)} \int_E \phi^p d\mu \leq \frac{1}{\mu(\hat{E})} \int_{\hat{E}} \phi^p d\mu, \]

or by the definitions of \(E \) and \(\hat{E} \) that

\[\frac{1}{t} \int_0^t [\phi^*(u)]^p du \leq \frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi^p d\mu, \]

Our aim is now to show that the right integral average in (3.9) is less or equal that \((kc - k + 1)(A_t)^p \). We proceed to this as follows:
We set \(\ell_\Gamma = \frac{1}{\mu(\Gamma)} \int_\Gamma \phi^p d\mu \). Then by the notation given above, we have that:

\[
\ell_\Gamma = \frac{1}{\mu(\Gamma)} \left(\int_{E_t^*} \phi^p d\mu - \int_\Delta \phi^p d\mu \right) \\
= \frac{1}{\mu(\Gamma)} \left(\sum_{s=1}^\infty \int_{I_{js}} \phi^p d\mu - \sum_{s=1}^\infty \int_{\Delta_s} \phi^p d\mu \right) \\
= \frac{1}{\mu(\Gamma)} \sum_{s=1}^\infty p_s,
\]

(3.10)

where the \(p_s \) are given by

\[
p_s = \int_{I_{js}} \phi^p d\mu - \int_{\Delta_s} \phi^p d\mu, \quad \text{for any} \quad s = 1, 2, \ldots.
\]

We find now an effective lower bound for the quantity \(\int_\Delta \phi^p d\mu \). By Hölder’s inequality:

\[
\int_\Delta \phi^p d\mu \geq \frac{1}{\mu(\Delta_s)^{p-1}} \left(\int_\Delta \phi d\mu \right)^p,
\]

(3.11)

Since \(\Delta_s = I_{js}^* \setminus \Gamma_s \), (3.11) can be written as

\[
\int_\Delta \phi^p d\mu \geq \frac{\left(\int_{I_{js}^*} \phi d\mu - \int_{\Gamma_s} \phi d\mu \right)^p}{\mu(I_{js}^*) - \mu(\Gamma_s))^{p-1}},
\]

(3.12)

We now use Hölder’s inequality in the form

\[
\frac{(\lambda_1 + \lambda_2)^p}{\sigma_1 + \sigma_2} \leq \frac{\lambda_1^p}{\sigma_1^{p-1}} + \frac{\lambda_2^p}{\sigma_2^{p-1}}, \quad \text{for} \quad \lambda_i \geq 0 \quad \text{and} \quad \sigma_i > 0
\]

which holds since \(p > 1 \). Thus (3.12) gives

\[
\int_\Delta \phi^p d\mu \geq \frac{1}{\mu(I_{js}^*)^{p-1}} \left(\int_{I_{js}^*} \phi d\mu \right)^p - \frac{1}{\mu(\Gamma_s)^{p-1}} \left(\int_{\Gamma_s} \phi d\mu \right)^p.
\]

(3.13)

Since \(\frac{1}{\mu(I_s)} \int_{I_s} \phi d\mu = A_t \), (3.13) gives

\[
\int_\Delta \phi^p d\mu \geq \frac{1}{\mu(I_{js}^*)^{p-1}} \left(\int_{I_{js}^*} \phi d\mu \right)^p - \mu(\Gamma_s) \cdot (A_t)^p,
\]

so we conclude, by the definition of \(p_s \), that

\[
p_s \leq \int_{I_{js}^*} \phi^p d\mu - \frac{1}{\mu(I_{js}^*)^{p-1}} \left(\int_{I_{js}^*} \phi d\mu \right)^p + \mu(\Gamma_s) \cdot (A_t)^p,
\]

(3.14)

Using now (3.1) for \(I = I_{js}^* \), \(s = 1, 2, \ldots \) we have as a consequence that:

\[
p_s \leq (c - 1) \frac{1}{\mu(I_{js}^*)^{p-1}} \left(\int_{I_{js}^*} \phi d\mu \right)^p + \mu(\Gamma_s)(A_t)^p.
\]

(3.15)
Summing now (3.15) for \(s = 1, 2, \ldots \) we obtain in view of (3.10) that

\[
\ell_{\Gamma} \leq \frac{1}{\mu(\Gamma)} \left((c - 1) \sum_{s=1}^{\infty} \mu(I_{js}^{*}) (A_t)^p + \left(\sum_{s=1}^{\infty} \mu(\Gamma_s) \right) (A_t)^p \right)
\]

(3.16)

Now from

\[
\frac{1}{\mu(I_{js}^{*})} \int_{I_{js}^{*}} \phi d\mu \leq A_t,
\]

we see that

\[
\ell_{\Gamma} \leq \frac{1}{\mu(\Gamma)} \left[(c - 1) \sum_{s=1}^{\infty} \mu(I_{js}^{*}) \cdot (A_t)^p + \mu(\Gamma) \cdot (A_t)^p \right]
\]

(3.17)

Since now \(E_t^{*} \supseteq \Gamma \supseteq E_t \), by (3.7) we have that

\[
\mu(E_t^{*}) \leq k \mu(E_t) \leq K \mu(\Gamma).
\]

Thus (3.17) gives

\[
\frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi^p d\mu \leq [k(c - 1) + 1] (A_t)^p.
\]

Using now (3.9) and the last inequality we obtained the desired result. \(\square \)

Corollary 3.1. If \(\phi \) satisfies (3.1) for every \(I \in \mathcal{T} \), then \(\phi \in L^q \), for any \(q \in [p, p_0) \), where \(p_0 \) is defined by

\[
p_0 - \frac{p}{p_0} \cdot \left(\frac{p_0}{p_0 - 1} \right)^p \cdot (kc - k + 1) = 1.
\]

Proof. Immediate from Theorem 1 and A. \(\square \)

Remark 3.1. All the above hold if we replace the condition (3.1), by the known Muckenhoupt condition of \(\phi \) over the dyadic sets of \(X \). Then the same proof as above gives that the Muckenhoupt condition should hold for \(\phi^{*} \), for the intervals of the form \((0, t]\), and for the constant \(kc - k + 1 \). This is true since there exists analogous lemma as Lemma 2.1 for this case (as can be seen in [4]). Also the inequality that is used in order to produce (3.13) from (3.12) is true even for negative exponent \(p < 0 \). We omit the details. \(\square \)

References

[1] L. D. Appuza and C. Sporzone, *Reverse Hölder inequalities. A sharp result*. Rendiconti Math. **10**, Ser VII, (1990), 357-366.

[2] R. Coifman and C. Fefferman, *Weighted norm inequalities for maximal functions and singular integrals*. Studia Math. **51**, (1974), 241-350.

[3] F. W. Gehring, *The \(L^p \) integrability of the partial derivatives of a quasiconformal mapping*. Acta Math. **130**, (1973) 265-277.

[4] A. A. Korenovskii, *Mean oscillations and equimeasurable rearrangements of functions*. Lecture Notes of the Unione Mathematica Italiana, (2000), Springer.

[5] A. A. Korenovskii, *The exact continuation of a Reverse Hölder inequality and Muckenhoupt’s condition*. Math. Notes **52**, (1992), 1192-1201.

[6] A. D. Melas, *A sharp \(L^p \) inequality for dyadic \(A \), weights in \(\mathbb{R}^n \).* Bull. London Math. Soc. **37**, (2005), 919-926.
[7] B. Muckenhoupt, *Weighted norm inequalities for the Hardy-Littlewood maximal function*. Trans Amer. Math. Soc. 165, (1972), 207-226.

[8] E. N. Nikolidakis, *A Hardy inequality and applications to reverse Hölder inequalities for weights on \mathbb{R}*. Submitted, arXiv:1312.1991.

[9] E. N. Nikolidakis, *Dyadic-A_1 weights and equimeasurable rearrangements of functions*. Submitted, arXiv:1207.7113.

Eleftherios N. Nikolidakis, Antonios D. Melas: National and Kapodistrian University of Athens, Department of Mathematics, Zografou, GR-157 84 E-mail addresses: lefteris@math.uoc.gr, amelas@math.uoa.gr