Virtual Photon Structure Functions to NNLO in QCD

Takahiro Ueda¹, Tsuneo Uematsu² and Ken Sasaki³ *

1- High Energy Accelerator Research Organization (KEK)
Tsukuba 305-0801, Japan
2- Dept. of Physics, Graduate school of Science, Kyoto University
Yoshida, Kyoto 606-8501, Japan
3- Dept. of Physics, Faculty of Engineering, Yokohama National University
Yokohama 240-8501, Japan

Abstract

The unpolarized virtual photon structure functions \(F_2^\gamma(x, Q^2, P^2) \) and \(F_L^\gamma(x, Q^2, P^2) \) are investigated in perturbative QCD for the kinematical region \(\Lambda^2 < P^2 < Q^2 \), where \(-Q^2(-P^2)\) is the mass squared of the probe (target) photon and \(\Lambda \) is the QCD scale parameter. In the framework of operator product expansion supplemented by the renormalization group method, the definite predictions are derived for the moments of \(F_2^\gamma(x, Q^2, P^2) \) up to the next-to-next-to-leading order (the order \(\alpha_s^2 \)) and for the moments of \(F_L^\gamma(x, Q^2, P^2) \) up to the next-to-leading order (the order \(\alpha_s \)).

1 Introduction

In \(e^+e^- \) collision experiments, the cross section for the two-photon processes \(e^+e^- \rightarrow e^+e^- + \text{hadrons} \), shown in Fig. 1, dominates over other processes such as the annihilation process \(e^+e^- \rightarrow \gamma^* \rightarrow \text{hadrons} \) at high energies. In particular, the two-photon processes in the double-tag events, where one of the virtual photon is very far off shell (large \(Q^2 \equiv -q^2 \)) while the other is close to the mass shell (small \(P^2 \equiv -p^2 \)), can be viewed as deep-inelastic electron-photon scattering and provide us the information on the structure of the photon. The unpolarized (spin-averaged) photon structure functions \(F_2^\gamma(x, Q^2) \) and \(F_L^\gamma(x, Q^2) \) of the real photon \((P^2 \approx 0) \) have been studied in perturbative QCD (pQCD). A pioneering work was done by Witten in which he derived the leading order (LO) QCD contributions to \(F_2^\gamma \) and \(F_L^\gamma \). A few years later, the next-to-leading order (NLO) corrections to \(F_2^\gamma \) were calculated.

A unique and interesting feature of the photon structure functions is that, in contrast with the nucleon case, the target mass squared \(-P^2\) is not fixed but can take various values and that the structure functions show different behaviors depending on the values of \(P^2 \). The photon has two characters: The photon couples directly to quarks (pointlike nature) and sometimes it behaves as vector bosons (hadronic nature). Thus the structure function \(F_2^\gamma(x, Q^2) \) of real photon \((P^2 = 0) \) is composed of a pointlike piece and a hadronic piece. The pointlike part, can be calculated, in principle, in a perturbative method. On the other hand, the hadronic

Photon 2007
part, can only be computed by some non-perturbative method like lattice QCD, or estimated by vector meson dominance model. The LO contribution to $F_2^n(x, Q^2, P^2)$, which behaves as $1/\alpha_s(Q^2) \sim \ln(Q^2/\Lambda^2)$, comes from the pointlike part, while the NLO corrections result from both the pointlike and hadronic parts. In terms of the moments, the hadronic energy-momentum tensor operator comes into play at $n = 2$. Because of the conservation of this operator, the hadronic part gives a finite but perturbatively incalculable contribution at $n = 2$. The fact that definite information on the NLO second moment is missing prevents us from fully predicting the shape and magnitude of the photon can also be dealt with the renormalization group (RG) method. We find that the n-th moment of $F_2^n(x, Q^2, P^2)$ for the kinematical region (1) is expressed, up to NNLO, as

$$\int_0^1 dxx^{-2}F_2^n(x, Q^2, P^2)/\left(\frac{\alpha_s}{4\pi} \frac{1}{2\beta_0}\right) = \left\{ \begin{array}{l} \frac{4\pi}{\alpha_s(Q^2)} \sum_i \mathcal{L}_i^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i^n+1} \right] \\ + \sum_i \mathcal{A}_i^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i^n} \right] \\ + \sum_i \mathcal{B}_i^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i^n+1} \right] + \mathcal{C}_n^n \\ + \frac{\alpha_s(Q^2)}{4\pi} \left(\sum_i \mathcal{D}_i^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i^n-1} \right] \\ + \sum_i \mathcal{E}_i^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i^n} \right] \\ + \sum_i \mathcal{F}_i^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i^n+1} \right] + \mathcal{G}_n^n \right\}, \text{ with } i = +, -, NS, \tag{2} \end{array} \right.$$

where $d_i^n = \lambda^n_i/2\beta_0$ and $\lambda^n_i (i = +, -, NS)$ denotes the eigenvalues of 1-loop anomalous dimension matrices. The terms with \mathcal{L}_i^n are the LO (α/α_s) contributions. The NLO (α) corrections are the terms with \mathcal{A}_i^n, \mathcal{B}_i^n and \mathcal{C}_n^n. The coefficients \mathcal{D}_i^n, \mathcal{E}_i^n, \mathcal{F}_i^n and \mathcal{G}_n^n give the NNLO (α_s) corrections and they are new. The explicit expressions of \mathcal{D}_i^n, \mathcal{E}_i^n, \mathcal{F}_i^n and \mathcal{G}_n^n are given in Eqs.(2.34)-(2.37) of Ref.\,[7] and they are written in terms of the 1-, 2- and 3-loop anomalous dimensions, the 1- and 2-loop coefficient functions and the 1- and 2-loop photon matrix elements of hadronic operators.

For the 3-loop anomalous dimensions, we could use the recently calculated results of the three-loop anomalous dimensions for the quark and gluon operators \[7\,8\,9\] and of the three-loop photon-quark and photon-gluon splitting functions \[9\]. The 2-loop photon

\begin{equation} \tag{2} \end{equation}
matrix elements of hadronic operators were derived from the results of the two-loop operator matrix elements calculated up to the finite terms \[10\] by changing color-group factors.

We examine the sum rule of \(F_2^\gamma(x, Q^2, P^2)\), i.e., the second moment, numerically. The NNLO corrections are found to be 7% \(\sim 10\%\) of the sum of the LO and NLO contributions, when \(P^2 = 1\, \text{GeV}^2\) and \(Q^2 = 30 \sim 100\, \text{GeV}^2\) or \(P^2 = 3\, \text{GeV}^2\) and \(Q^2 = 100\, \text{GeV}^2\), and \(n_f\) is three or four.

Next we perform the inverse Mellin transform of \([2]\) to obtain \(F_2^\gamma\) as a function of \(x\). The \(n\)-th moment is denoted as

\[
M_n^\gamma(n, Q^2, P^2) = \int_0^1 dx \, x^{n-1} \frac{F_2^\gamma(x, Q^2, P^2)}{x}. \tag{3}
\]

Then by inverting the moments \([3]\) we get

\[
F_2^\gamma(x, Q^2, P^2) = \frac{1}{2\pi i} \int_{C-i\infty}^{C+i\infty} dn \, x^{-n} M_n^\gamma(n, Q^2, P^2), \tag{4}
\]

where the integration contour runs to the right of all singularities of \(M_n^\gamma(n, Q^2, P^2)\) in the complex \(n\)-plane.

![Figure 2: Virtual photon structure function \(F_2^\gamma(x, Q^2, P^2)\) for \(Q^2 = 100\, \text{GeV}^2\) and \(P^2 = 1\, \text{GeV}^2\) with \(n_f = 4\) and \(\Lambda = 0.2\, \text{GeV}\).](image)

The LO, NLO and NNLO QCD results, as well as the box contribution, for the case of \(Q^2 = 100\, \text{GeV}^2\) and \(P^2 = 1\, \text{GeV}^2\) with \(n_f = 4\), are shown in Fig.2. We observe that there exist notable NNLO QCD corrections at larger \(x\). The corrections are negative and the NNLO curve comes below the NLO one in the region \(0.3 \lesssim x < 1\). At the lower \(x\) region, \(0.05 \lesssim x \lesssim 0.3\), the NNLO corrections to the NLO results are found to be negligibly small.

3 \(F_2^\gamma(x, Q^2, P^2)\) up to NLO

The formula for the \(n\)-th moment of the longitudinal structure function \(F_2^\gamma(x, Q^2, P^2)\) can be obtained from \([2]\) only by replacing the hadronic and photonic coefficient functions \(C_{2,n}(1, \alpha_s)\) and \(C_{2,n}(1, \alpha_s, \alpha)\) with the longitudinal counterparts \(C_{L,n}(1, \alpha_s)\) and \(C_{L,n}(1, \alpha_s, \alpha)\), respectively. Since there is no contribution of the tree diagrams to the hadronic longitudinal coefficient functions (and thus we get \(C_{L,n}^{(0)} = 0\) in the expansion of \(C_{L,n}(1, \alpha_s)\)), the moments of \(F_2^\gamma\) starts at the order \(\alpha\). The \(n\)-th moment is given as follows:

\[
\int_0^1 dx x^{-n-2} F_2^\gamma(x, Q^2, P^2) \bigg/ \left(\frac{\alpha_s}{4\pi} \right)^2 \bigg|_{\beta_0} \bigg| \frac{1}{2} \bigg|_{\beta_0} = \sum_i B_{(L),i}^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i} \right] + C_{(L)}^n
\]

\[
\alpha_s(Q^2) \left(\sum_i E_{(L),i}^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i} \right] + \sum_i F_{(L),i}^n \left[1 - \left(\frac{\alpha_s(Q^2)}{\alpha_s(P^2)} \right)^{d_i} \right] + G_{(L)}^n \right) + O(\alpha_s^2), \quad \text{with} \quad i = +, -, NS, \tag{5}
\]

The coefficients \(B_{(L),i}^n\) and \(C_{(L)}^n\) represent the LO terms \([1, 2, 3]\), while the terms with \(E_{(L),i}^n\), \(F_{(L),i}^n\) and \(G_{(L)}^n\) are the NLO (\(\alpha\alpha_s\)) corrections and they are new. The explicit expressions of \(E_{(L),i}^n\), \(F_{(L),i}^n\) and \(G_{(L)}^n\) are given in Eqs.(6.6)-(6.8) of Ref.\(\[6\]\).
Inverting the moments, we plot in Fig. 3 the longitudinal virtual photon structure function $F_{\gamma L}(x,Q^2,P^2)$ predicted by pQCD for the case of $n_f = 4$, $Q^2 = 100$ GeV2 and $P^2 = 1$ GeV2. We show three curves; the LO and NLO QCD results and the Box (tree) diagram contribution. We see that the NLO QCD corrections are negative and the NLO curve comes below the LO one in the region $0.2 \lesssim x < 1$.

Figure 3: Longitudinal photon structure function $F_{\gamma L}(x,Q^2,P^2)$ for $Q^2 = 100$ GeV2 and $P^2 = 1$ GeV2 with $n_f = 4$ and $\Lambda = 0.2$ GeV.

4 Conclusions

We have investigated the unpolarized virtual photon structure functions $F_2^\gamma(x,Q^2,P^2)$ and $F_2^\gamma(x,Q^2,P^2)$ for the kinematical region $\Lambda^2 \ll P^2 \ll Q^2$ in QCD. In the framework of the OPE supplemented by the RG method, we gave the definite predictions for the moments of $F_2^\gamma(x,Q^2,P^2)$ up to the NNLO (the order α_s) and for the moments of $F_2^\gamma(x,Q^2,P^2)$ up to the NLO (the order α_s). In the course of our evaluation, we utilized the recently calculated results of the three-loop anomalous dimensions for the quark and gluon operators. Also we derived the photon matrix elements of hadronic operators up to the two-loop level.

The inverse Mellin transform of the moments was performed to express the structure functions $F_2^\gamma(x,Q^2,P^2)$ and $F_2^\gamma(x,Q^2,P^2)$ as functions of x. We found that there exist sizable NNLO contributions for F_2^γ at larger x. The corrections are negative and the NNLO curve comes below the NLO one in the region $0.3 \lesssim x < 1$. At lower x region, $0.05 \lesssim x \lesssim 0.3$, the NNLO corrections to the NLO results are found to be negligibly small. Concerning F_2^γ, the NLO corrections reduce the magnitude in the region $0.2 \lesssim x < 1$.

Acknowledgments

This research is supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan No.18540267.

References

[1] E. Witten, Nucl. Phys. B120 189 (1977).
[2] W.A. Bardeen and A.J. Buras, Phys. Rev. D20 166 (1979); Phys. Rev. D21 2041 (1980), Erratum.
[3] T. Uematsu and T. F. Walsh, Nucl. Phys. B199 93 (1982).
[4] T. Uematsu and T. F. Walsh, Phys. Lett. B199 263 (1981).
[5] G. Rossi, Phys. Rev. D29 852 (1984).
[6] T. Ueda, K. Sasaki and T. Uematsu, Phys. Rev. D75 114009 (2007).
[7] S. Moch, J.A.M. Vermaseren and A. Vogt, Nucl. Phys. B688, 101 (2004).
[8] A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004).
[9] A. Vogt, S. Moch and J.A.M. Vermaseren, Acta Phys. Pol. B37, 683 (2006); arXiv:hep-ph/0511122.
[10] Y. Matiounine, J. Smith and W. L. van Neerven, Phys. Rev. D57, 6701 (1998).

Photon 2007