Nitrous oxide/oxygen plus acetaminophen versus morphine in ST elevation myocardial infarction: open-label, cluster-randomized, non-inferiority study

Sandrine Charpentier, Michel Galinski, Vincent Bounes, Agnès Ricard-Hibon, Carlos El-Khoury, Meyer Elbaz, François-Xavier Ageron, Stéphane Manzo-Silberman, Louis Soulat, Frédéric Lapostolle, Alexandre Gérard, Delphine Bregeaud, Vanina Bongard, Eric Bonnefoy-Cudraz, and for the SCADOL II investigators

Abstract

Background: Studies have shown disparate results on the consequences of morphine use in ST-segment elevation myocardial infarction (STEMI). No study has evaluated alternative treatments that could be at least non-inferior to morphine without its potentially damaging consequences for myocardial function and platelet reactivity. The aim of this study was to evaluate whether nitrous oxide/oxygen plus intravenous acetaminophen (NOO-A) is non-inferior to morphine to control chest pain in STEMI patients.

Methods: This multicenter, open-label, cluster-randomized, controlled, non-inferiority study compared NOO-A with morphine in 684 prehospital patients with ongoing suspected STEMI of < 12 h duration and a pain rating score ≥ 4. The primary endpoint was the proportion of patients achieving pain relief (numeric rating score ≤ 3) after 30 min. Secondary safety endpoints included serious adverse events and death at 30 days.

Results: The median baseline pain score was 7.0 in both groups. The primary endpoint occurred in 51.7% of the NOO-A group and 73.6% of the morphine group (absolute risk difference − 21.7%; 95% confidence interval − 29.6 to − 13.8). At 30 days, the rate of serious adverse events was 16.0 and 18.8% in the NOO-A and morphine groups respectively (p = NS). The rate of death was 1.8% (NOO-A group) and 3.8% (morphine group) (p = NS).

Conclusion: Analgesia provided by NOO-A was inferior to morphine at 30 min in patients with acute STEMI in the prehospital setting. Rates of serious adverse events did not differ between groups.

Trial registration: ClinicalTrials.gov: NCT02198378.

Keywords: ST-segment elevation myocardial infarction, Analgesia, prehospital
Background

Pain can be particularly intense in ST-segment elevation myocardial infarction (STEMI), leading to tachycardia, increased stress, higher workload of the heart and damaging effects on the myocardium [1]. Analgesia, administered as soon as possible after symptom onset, is therefore of paramount importance. Opioids (most commonly morphine) are recommended, [2] although their efficacy and safety have not been fully evaluated in randomized trials. Recently, the deleterious effect of morphine on inhibition of platelet reactivity in STEMI patients treated with P2Y12 inhibitors has been reported [3–6]. Studies have reported that morphine is associated with a delayed onset of action of oral antiplatelet drugs due to vomiting or delayed gastric emptying, which reduce the absorption of these drugs [4].

Nitrous oxide/oxygen gas as an equimolar mixture is widely used in emergency medicine and has been tested in acute myocardial infarction [7]. It acts by activating opioid neurons, leading to activation of the descending noradrenergic inhibitory pathways that inhibit nociception [8]. It has minor, rapidly reversible secondary effects and no reported haemodynamic effects [9]. Few studies in emergency medicine have compared Nitrous Oxide-Oxygen to morphine with heterogenous results [10–12]. Acetaminophen is an effective and safe painkiller for emergency department patients [13]. It has been successfully used in multimodal analgesia especially postoperative analgesia [14]. Nitrous oxide/oxygen plus intravenous acetaminophen (NOO-A) could therefore be a suitable alternative to morphine. The association nitrous oxide/oxygen plus intravenous acetaminophen was chosen for reasons of delay in action. NOO has a 3–5 min onset of action and intravenous acetaminophen reaches its peak concentration at the end of the 15-min infusion. Thereafter, the duration of action of acetaminophen is 6 h while the effect of nitrous oxide-oxygen stops 5 min after inhalation is stopped. Thus, Acetaminofen allowed continuing the pain management once NOO was stopped.

The aim of the SCADOL II study was to assess in patients with acute STEMI managed in the prehospital setting the non-inferiority in achieving analgesia at 30 min of an equimolar mixture of NOO plus intravenous acetaminophen compared with intravenous morphine. The secondary safety objectives were the rates of serious adverse events and death at 30 days.

Methods

Study design

SCADOL II was a multicenter, open-label, cluster-randomized, controlled, non-inferiority trial. Thirty-eight mobile intensive care unit centers were randomized (1:1) to perform analgesia with NOO-A or intravenous morphine. A computerized randomization process was used to generate the random allocation sequence and was carried out by the methodologist from the list provided by participating centers. The details of the SCADOL II investigators list is provided in Additional file 1: Appendix 1.

The study has complied with the Declaration of Helsinki, the locally appointed ethics committee has approved the research protocol and informed consent has been obtained from the subjects (or their legally authorized representative).

Selection of participants

Patients aged ≥18 years with suspected STEMI managed by an emergency physician in a mobile intensive care unit were eligible if they had symptom duration of < 12 h and a pain intensity score, assessed on a numeric rating scale, ≥4 (pain scale range 0–10).

Exclusion criteria were severe haemodynamic, respiratory, or neurological failure; heart failure; known allergy or contraindication to morphine or nitrous oxide; morphine or nitrous oxide administration within previous 4 h; incapacity to self-assess pain intensity on a numeric rating scale; legal guardianship; pregnancy; or air ambulance transport.

The reperfusion strategy (thrombolysis or angioplasty) was chosen by the emergency physicians according to guidelines [15]. To prevent delays in the performance of revascularization, centers were randomly allocated before the start of the study, using a cluster design, to the NOO-A or morphine group.

Study procedures

Analgesics were started by the emergency physician as soon as possible after enrollment. In the control group, morphine administration was titrated every 5 min according to pain intensity, assessed on a numeric rating scale: a 2 mg bolus (or 1 mg, for body weight < 60 kg) was given for a numeric rating scale score 4–5; and a 3 mg bolus (or 2 mg, for body weight < 60 kg) for a score ≥6 [16]. In the intervention group, nitrous oxide/oxygen was administered according to the marketing authorization and under supervision of the emergency physician, and was given for ≥30 min (a minimum of 5 min is necessary to obtain an analgesic effect) [17]. Nitrous oxide/oxygen was combined with 1 g intravenous acetaminophen in the framework of a multimodal analgesia. After 15 min of use, if the pain was still intense (numeric rating scale ≥6) the emergency physician could change the analgesic strategy and use morphine; such patients were considered treatment failures. After 30 min and until arrival at hospital, the emergency physician could change the strategy of analgesia.
Study endpoints

The primary endpoint was the proportion of patients achieving pain relief with NOO-A (without any morphine administration) or morphine, defined as a pain intensity score on a numeric rating scale ≤3 [12, 18], 30 min after starting analgesia [19].

Secondary endpoints included the rate of pre-specified adverse events in the two groups: respiratory depression, defined as a respiratory rate < 10 cycles per minute, or a respiratory score of ≥1 (see Additional file 1, definitions); nausea; vomiting; sedation (measured by a Sedation Scale score) of ≥2; dizziness; and pruritus.

Data on pain intensity, adverse events, and tolerance (heart rate, non-invasive arterial pressure, pulse oximetry) were collected at baseline, every 5 min up to 30 min after the start of analgesia, and at hospital arrival.

A 30-day safety analysis was done on incidence of serious adverse events and death occurring in the 30 days post-treatment.

Study oversight

The executive and steering committee oversaw the conduct of the trial and the data analysis. The trial was monitored by a clinical research assistant and the data management was done by a data manager independent of the steering committee. Statistical analysis were performed blinded to treatment allocation. Finally, we completed the CONSORT checklist (Additional file 1: Appendix 2).

Statistical analysis

We estimated that 684 patients and 38 mobile intensive care unit centers (19 clusters) were needed to assess the non-inferiority of NOO-A to achieve pain relief at 30 min, given an 80% expected proportion of pain achievement in the control group, a 10% non-inferiority margin, a 2.5% one-sided alpha error rate, 80% power, and the intracluster correlation coefficient calculated ignoring potential treatment effects may be biased [20].

Additional analysis of the primary endpoint included an adjustment for potential risk factors associated with analgesia (baseline pain score, age, sex, and thrombolysis). Random imputations were performed on the basis of the observed values to replace missing pain scores at baseline. Finally, a pre-specified subgroup analysis was done in patients with a confirmed STEMI diagnosis.

The per-protocol population (i.e. patients evaluable for the primary endpoint without major protocol deviations) was used for the primary endpoint analysis, as recommended for a non-inferiority trial [21]. Secondary analysis were done in the intention-to-treat population (i.e. all patients who entered the study, with the exception of patients from prematurely closed centers); pain scores missing at 30 min were imputed by means of the last-observation-carried-forward method. If no pain score was present after baseline, missing values were taken to indicate failure (i.e. a pain score at 30 min of > 3).

In the safety analysis, the incidence of expected adverse events (i.e. sedation, respiratory depression, vomiting, nausea, pruritus, and dizziness), unexpected adverse events, and adverse events leading to treatment discontinuation in the 30 min following initiation of analgesia were computed. The proportions of patients with ≥1 expected adverse event in the 30 first minutes, and of serious adverse events that occurred in the 30 days post-treatment, were compared between groups using a generalized estimating equation model, to account for clustering.

Results

Study population

Between November 2014 and December 2016, 38 centers were randomized to the NOO-A or the morphine strategy (19 in each arm). A total of 684 patients were enrolled and composed the intention-to-treat population (340 in the NOO-A group; 344 in the morphine group), all of whom received the study treatment.

The per-protocol population comprised 644 patients (315 in the NOO-A group; 329 in the morphine group) (Fig. 1). The patient characteristics were well balanced between groups (Table 1 and Additional file 1: Appendix Table 1). Median pain intensity was 7.0 (interquartile Q1 to Q3: 5.0 to 8.0).

Efficacy

Patients in the morphine group were more likely to achieve pain relief than those in the NOO-A group (Fig. 2): the primary endpoint was obtained respectively in 73.6% in the morphine group versus 51.7% of patients in the NOO-A group. The absolute risk difference was −21.7% [95% Confidence Interval (CI) −29.6 to −13.8; *intracluster correlation coefficient* 0.009975), which was below the non-inferiority margin of −10% defined in the
Analysis of the primary endpoint in the intention-to-treat population showed the same effect (absolute risk difference -0.217; 95% CI -0.297 to -0.136; intracluster correlation coefficient 0.01518).

A similar observation (more likely to achieve pain relief with morphine) was made in the subgroup of patients with a confirmed diagnosis of STEMI (NOO-A: 144 [50.3\%] vs. morphine: 218 [71.7\%]), with an absolute risk difference of -0.21 (95% CI -0.29 to -0.13).

Analysis of the primary endpoint in the per-protocol population, adjusted for potential risk factors, showed that better relief of chest pain was associated with morphine treatment, lower pain score at baseline and increasing age (Table 2).

Safety

The percentage of patients with a predefined adverse event occurring within 30 min of starting analgesia was similar in the two study groups (13.2\% with NOO-A and 10.2\% with morphine).

(Table 3) (absolute risk difference of 0.032 [95\% CI 0.01 to 0.07]; $P = 0.14$). The most frequent expected adverse event was vomiting (5.0\% with NOO-A and 4.7\% with morphine).

The percentage of patients with an unexpected (not predefined) adverse event within 30 min of starting analgesia was 6.2\% with NOO-A and 3.5\% with morphine, the most frequent being ventricular fibrillation (1.2\% with NOO-A and 0.9\% with morphine). The rate of adverse events that led to treatment interruption within the first 30 min was 7.1\% with NOO-A and 1.2\% with morphine, the most frequent being vomiting (2.9\% with NOO-A and 0.3\% with morphine).

The incidence of serious adverse event in the 30 days following inclusion was 18.8\% with NOO-A and 16.0\% with morphine (Table 3) (absolute risk difference of 0.033 [95\% CI -0.030 to 0.096]; $P = 0.3$). The most frequent were ventricular tachycardia (3.8\%), ventricular fibrillation (1.9\%), cardiogenic shock (1.8\%), and heart failure (1.1\%). Most cases of ventricular tachycardia (21 out of 26) were observed in the NOO-A group.

Nineteen patients died during the 30 days following inclusion (Additional file 1: Appendix Table 2), 6 in the NOO-A group (1.8\%) and 13 in the morphine group.
Table 1 Characteristics of patients in the per-protocol population

Characteristic	Nitroso-oxyde/oxygen plus acetaminophen (n = 315)	Morphine (n = 329)
Age, years, mean ± SD	61.9 ± 13.7	62.1 ± 13.0
Male sex, n (%)	255 (81.0)	249 (75.7)
Body mass index, kg/m²	n = 296	n = 307
Median (Q1; Q3)	25.8 (23.7; 28.1)	26.0 (23.9; 29.0)
≥30 kg/m², n (%)	42 (14.2)	58 (18.9)
Smokers, n/N (%)	147/314 (46.8)	150/321 (46.7)
Diabetes, n/N (%)	36/312 (11.5)	38/323 (11.8)
Hypertension, n/N (%)	131/312 (42.0)	119/318 (37.4)
Hypercholesterolaemia, n/N (%)	82/305 (26.9)	95/315 (30.2)
Family history of cardiovascular disease, n/N (%)	94/274 (34.3)	87/278 (31.3)
Previous coronary artery disease, n/N (%)	55/311 (17.7)	56/324 (17.3)
Thrombolyis, n (%)	30 (9.5)	46 (14.0)
Decision of angioplasty, n (%)	296 (94.0)	308 (93.6)
Treatments at baseline, n (%)	Aspirin 313 (99.4)	323 (98.2)
	Clopidogrel 301 (95.6)	314 (95.4)
	Ticagrelor 168 (53.3)	145 (44.1)
	Prasugrel 81 (25.7)	113 (35.3)
	Heparin 136 (43.2)	163 (49.5)
	Low-molecular-weight heparin 159 (50.5)	124 (37.7)
	Bivalirudin 21 (6.7)	32 (9.7)
	Anticoagulant (heparin, low-molecular-weight hepiran or bivalirudin) 307 (97.5)	318 (96.7)
	Beta-blocker 4 (1.3)	0
	Glycoprotein Illb/Illa inhibitor 6 (1.9)	9 (2.7)
	Anxiolytic 2 (0.6)	10 (3.0)
	Other treatment (administered in mobile intensive care unit) 47 (14.9)	69 (21.0)
Delay between chest pain and study treatment start, minutes n = 314	n = 329	
Median (Q1; Q3)	91.0 (65.0; 161.0)	100.0 (62.0; 167.0)
Pain score on numeric rating scale at study treatment start n = 314	n = 328	
Median (Q1; Q3)	7.0 (5.0; 8.0)	7.0 (5.0; 8.0)

Q = quartile, SD = Standard deviation

*Body mass index is the weight in kilograms divided by the square of the height in meters

**Treated

(3.8%). None of the deaths were judged to be directly related to the study treatment.

Limitations

The study has several limitations. Firstly, the low rate of events in both groups made the study underpowered to detect a clinically relevant difference in safety endpoints. It is a common drawback encountered in STEMI studies with prehospital recruitment that select lower risk patients. It does not by itself alter the conclusions of our study. Secondly, even if the cluster randomization provided a pragmatic comparison of chest pain control strategies in the prehospital setting, randomization takes place before consent to participate and individual recruitment. We tried to limit selection bias by a strict monitoring of the study and the rigorous recording of selection criteria. Of note, cluster randomization allowed for the NOO-A treatment to be better included in MICUs routine care. Influence of selection bias cannot be completely ruled out. Thirdly, participants, physicians and patients, were not blinded to the fact that they were receiving morphine or NOO-A. It is therefore possible that a measure reported by patients such as the numeric rating score be influenced by physicians’ pre-existing convictions. From a practical perspective—a double-blind study would have necessitated the transport and management of two gas cylinders in addition to the standard equipment. The open design simplified prehospital logistics and limited treatment delay.

Discussion

Contrary to our hypotheses, the main finding of our study are that 1) NOO-A was actually inferior to intravenous morphine for the reduction of pain at 30 min in patients with STEMI; 2) there were no more adverse events in the morphine group. Controlling pain at the acute phase of STEMI is challenging. Morphine has been used for years and the issues of its efficacy and its safety have been regularly raised [22, 23]. It has also been linked to a delayed onset of action of oral antiplatelet drugs [4, 5] Few alternatives to morphine have been studied in STEMI, and analgesics that are appropriate for the emergency setting (e.g. non-steroidal anti-inflammatory drugs) are contraindicated [24–26]. The choice of NOO-A combination was especially relevant for use in STEMI. Nitrous oxide/oxygen has short onset of action. It has few unwanted effects [9]. Acetaminophen is an effective and safe painkiller for patients in the emergency department [13]. It was therefore intriguing that the NOO-A combination provided such a relatively low rate of pain relief with only half of the patients expressing a pain intensity less than 3 at 30 min. In contrast, in the morphine group, the proportion of patients with adequate pain relief was high (73%) and consistent
with other studies [27, 28]. Intravenous acetaminophen was administered at the recommended dose [16]. This dose proved at least as potent than morphine in patients with renal colitis [9]. It is possible that the NOO-A dosage was suboptimal in view of the high pain intensity of patients with STEMI. Importantly, both treatments were well tolerated. The rate of nausea or vomiting, events that were specifically followed per protocol, was low and did not differ between morphine and NOO-A groups. Morphine is usually considered as responsible of vomiting hence drug interactions, concerns for use in routine. Since NOO-A is not supposed to increase the rate of nausea and vomiting, it may be inferred that the role of morphine in causing nausea and vomiting in STEMI has been overstated. Other factors, especially parasympathetic effect in STEMI with an inferior location and pain

Fig. 2 Percent of patients with pain score (numeric rating scale [NRS]) > 3. T, time in minutes

Fig. 3 Primary endpoint. CI, confidence interval

Possible scenarios of observed treatment differences in NI trials	SCADOL II Per-Protocol results
Inferior	-29.6%
Inconclusive	-21.7%
Superior	-13.8%

-10% Non-inferiority margin

Treatment difference on absolute risk of analgesia (Oxide/oxygen-Morphine)
observation adds to the uncertainties surrounding the safety of morphine in ACS even if recent studies have not shown an increase in mortality in patients treated with morphine [5].

Conclusion

NOO-A was inferior to morphine analgesia at 30 min in patients with acute STEMI in the prehospital setting. Rates of adverse events were not significantly different between the two treatment groups. Because morphine appears to be such a potent agent of pain control in STEMI, a randomised study specifically addressing its safety is warranted.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s13049-020-00731-y.

intensity may play a more important role. It is clinically relevant because vomiting and delayed gastric emptying have been incriminated in the delayed onset of action of oral antiplatelet drugs in patients treated with morphine [4].

Overall, the rate of adverse events was not significantly different between the NOO-A and the morphine groups. The number of deaths was numerically higher in the morphine group (3.8% vs 1.8% at 1 month). This statistically non-significant higher death rate in the morphine group should not be an argument to renounce to this potent analgesic in STEMI patients. However, this

Table 2 NOO-A plus acetaminophen versus morphine: adjusted effect on primary endpoint estimated with estimating equations model

Parameter	OR (95% CI)	P-Value
Nitrous oxide/oxygen plus acetaminophen (vs. morphine)	0.32 (0.21–0.49)	< 0.0001
Pain score on numeric rating score at baseline (per 1-point increase)	0.58 (0.51–0.67)	< 0.0001
Age (per 1-year increase)	1.02 (1.00–1.03)	0.017
Thrombolysis (vs. none)	0.96 (0.51–1.79)	0.89
Male sex	0.83 (0.58–1.18)	0.29

NOO-A Nitrous oxide oxygen, CI Confidence interval, OR Odds ratio

Table 3 Incidence of adverse events (intention-to-treat population)

Event, n (%)	Nitrous oxide/oxygen plus acetaminophen (n = 340)	Morphine (n = 344)
≥1 expected adverse event	45 (13.2)	35 (10.2)
Respiratory depression (<10 cycles/min or score ≥ R1)	4 (1.2)	5 (1.5)
Nausea (without vomiting)	11 (3.2)	8 (2.3)
Vomiting	17 (5.0)	16 (4.7)
Sedation (score of ≥2)	15 (4.4)	7 (2.0)
Dizziness	3 (0.9)	3 (0.9)
Pruritus	0	3 (0.9)
≥1 unexpected serious adverse event	21 (6.2)	12 (3.5)
Adverse event that led to treatment interruption	24 (7.1)	4 (1.2)
Serious adverse event in the 30 days after enrolment	64 (18.8)	55 (16.0)
Adverse event occurring in ≥1% of patients		
Ventricular tachycardia	21 (6.2)	5 (1.5)
Ventricular fibrillation	8 (2.4)	5 (1.5)
Cardiogenic shock	5 (1.5)	7 (2.0)
Heart failure	3 (0.9)	5 (1.5)
Death in the 30 days after enrolment	6 (1.8)	13 (3.8)

Abbreviations

STEMI: ST-segment elevation myocardial infarction; NOO: Nitrous Oxide/Oxygen; NOO-A: Nitrous oxide/oxygen plus intravenous Acetaminophen; MICU: Medical intensive care unit; ACS: Acute coronary syndrome

Acknowledgements

The authors acknowledge the sponsor, Toulouse University Hospital, the patients, physicians, and nurses who participated in the study; Elodie Tournay, who checked the statistical section; Christophe Moret, who performed the data management; and the research assistants Vanessa Houze Cerfon, Manon Hebrard, Caroline Peyrot, and Alexandra Seux. Sophie K. Rushton-Smith, PhD (MedLink Healthcare Communications, London) provided editorial support on the final version and was funded by the authors. This work was supported by a grant from the Clinical Research Hospital Program of the French Ministry of Health [PHRC 2013], the French Society of Emergency Medicine, and the French Society of Cardiology. SCADOL II Investigators list

Vincent Bounes, SAMU 31, Toulouse University Hospital, University Toulouse III Paul Sabatier, Toulouse, France
Claire Vallenet, SMUR Annemasse, Annemasse-Bonneville Hospital, Annemasse, France
Elise Robeley, SAMU 25, Jean Minjoz University Hospital, Besançon, France
Frédéric Lapostolle, SAMU 93, UP Recherche-Enseignement-Qualité Université Paris 13, Sorbonne Paris Cité, Inserm U942 Hôpital Avicenne, AP-HP, Bobigny, France
Catherine Pradeau, SAMU 33, Pellegrin University Hospital, Bordeaux, France
Elise Serre, SMUR Bourg en Bresse, Fleuriat, Bourg en Bresse
Carole El Khoury, Emergency Department and RESCUe Network, Lucien Hussel Hospital, Vienne, France
Jean-Claude Vannier, SMUR Besançon, Besançon, France
Christine Lesspiau, SAMU 63, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
Sonja Curac, SMUR Beaujon, Beaujon Hospital, Clichy, France
Julie Jardon, SAMU 09, Val d’Ariège Hospital, Foix, France
Pierre Arnaud Fort, SAMU 47, Agen Hospital, Agen, France
Armelle Severin, SAMU 92, Poincaré University Hospital, Garches, France
Guillaume Debaty, SAMU 38, Grenoble University Hospital, Grenoble France
Anne-Sophie Lucas, SAMU 85, La-Roche-Sur-Yon Hospital, La-Roche-Sur-Yon, France
Bahram Chaybany, SAMU 59, Lilles University Hospital, Lilles, France
Alexandre Gerard, SAMU 69, Edouard Herriot University Hospital, Lyon, France
Marc Fournier, SAMU 13, La Timone University Hospital, Marseille, France
Anais Bauer, SAMU 57, Metz University Hospital, Metz, France
Mustapha Sebbane, SAMU 34, Montpellier University Hospital, Montpellier, France
Tahar Chouihed, SAMU 54, Nancy University Hospital, Nancy, France
Camille Mâchet, SAMU 44, Nancy University Hospital, Nancy, France
Julie Labiau, SAMU 06, Nice University Hospital, Nice, France
Claire Broche, SMUR Lariboisière, Lariboisière University Hospital, Paris, France
Céline Maisondieu, SMUR Pitié- Salpêtrière, Pitié- Salpêtrière University Hospital, Paris, France
Matthieu Marchetti, SAMU 86, Poitiers University Hospital, Poitiers, France
Agnès Ricard-Hilton, Pole Emergency Department – SAMU – René Dubos Hospital, Pontoise, France
François-Xavier Ageron, Emergency Department, Centre Hospitalier Annecy Genevois, Annecy, France
Nicolas Bohrer, SAMU 97, Felix Guyon University Hospital, Saint Denis de la Réunion, France
Laurent Teillol, SMUR Saint Gaudens, Comminges Pyrenees Hospital, Saint Gaudens, France
Muriel Vergné, SAMU 83, Toulon University, Toulon, France
Didier Dansou, SAMU 37, Tours University Hospital, Tours, France
Dominique Caillote, SAMU 87, Limoges University Hospital, Limoges, France
David Sapir, SMUR Corbeil, Sud Francilien Hospital, Corbeil Essonnes, France

Authors’ contributions
Sandrine Charpentier (SC), Eric Bonnefoy (EB), Vincent Bounes (VB), Agnès Ricard-Hilton, Pole Emergency Department – SAMU – René Dubos Hospital, Pontoise, France
Dominique Caillote, SAMU 87, Limoges University Hospital, Limoges, France
David Sapir, SMUR Corbeil, Sud Francilien Hospital, Corbeil Essonnes, France

Funding
This work was supported by the French Society of Emergency Medicine and the French Society of Cardiology and obtained a grant from the Clinical Research Hospital Program of the French Ministry of Health (PHRC 2013).

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The study has complied with the Declaration of Helsinki, the locally appointed ethics committee (Comité de Protection des Personnes Sud-Ouest et Outre-mer II, 2–14–12) has approved the research protocol and informed consent has been obtained from the subjects (or their legally authorized representative). It was registered at Clinical trial, number NCT02198378. All patients provided written consent before participation.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Emergency Department, Toulouse University Hospital, INSERM UMR 1027, University Toulouse III Paul Sabatier, Toulouse, France. 2Emergency Department, Rangueil University Hospital, Toulouse, France. 3Emergency Department, Centre Hospitalier René Dubos Pontoise, 95300 Pontoise, France. 4Emergency Department and RESCue Network, Lucien Hussel Hospital, Venne, France. 5Univ. Lyon, Claude Bernard Lyon 1 University, HESPER EA, 7425 Lyon, France. 6Department of Cardiology, Rangueil University Hospital, Toulouse, France. 7Department of Cardiology, Lariboisière University Hospital, APHP, Paris, France. 8Paris VII University UMR 942, Paris, France. 9SAMU 35 SMUR Urgences adultes, Centre Hospitalier Universitaire Rennes, Université Rennes 1, Rennes, France. 10SAMU 93 - UF Recherche-Enseignement-Qualité Université Paris 13, Sorbonne Paris Cité, INSERM U942 Hôpital Avicenne, AP-HP, 125, rue de Stalingrad, 93009 Bobigny, France. 11Hospices Civils de Lyon SAMU 69 - Hôpital Edouard HERRIOT S, place d’Arsonval, 69437 LYON Cedex 03, France. 12Hospital Centre of Chateauroux, Chateauroux, France. 13Department of Epidemiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France. 14Department of Public Health, Université Toulouse 3; UMR 1027 INSERM - Université Toulouse 3, Toulouse, France. 15Hôpital cardiologique Louis-Pradel, 69500 Lyon, France. 16Université Lyon-1, 69100 Lyon, France.

Received: 17 March 2020 Accepted: 28 April 2020

Published online: 12 May 2020

References
1. Leach A, Fisher M. Myocardial ischaemia and cardiac pain - a mysterious relationship. Br J Pain. 2013;7:23–30.
2. Ibanez B, James S, Agewall S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39:119–77.
3. Montalescot G, van't Hof AW, Lapostolle F, et al. Prehospital ticagrelor in ST-segment elevation myocardial infarction. N Engl J Med. 2014;371:1016–27.
4. Kubica J, Adamski P, Ostrowska M, et al. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction: the randomized, double-blind, placebo-controlled IMPRESSION trial. Eur Heart J. 2016;37:245–52.
5. Bellandi B, Zocchi C, Xanthopoulou I, et al. Morphine use and myocardial reperfusion in patients with acute myocardial infarction treated with primary PCI. Int J Cardiol. 2016;221:567–71.
6. Duarte S, Nunes-Ferreira A, Rodrigues FB, et al. Morphine in acute coronary syndrome: systematic review and meta-analysis. BMJ Open. 2019; 9(3):e025322.
7. Kerr F, Brown MG, Irving JB, et al. A double-blind trial of patient-controlled nitrous-oxide/oxygen analgesia in myocardial infarction. Lancet. 1975;2:1397–400.
8. Oni R, Ochisi Y, Hakker S, et al. GABAergic interneurons at supraspinal and spinal levels differentially modulate the antinociceptive effect of nitrous oxide in Fischer rats. Anesthesiology. 2003;98:134–40.
9. Colman PM. Safety of inhalation of a 50% nitrous oxide/oxygen premix: a prospective survey of 35,828 administrations. Drug Saf. 2006;29:633–40.
10. Volmanen P, Akural E, Raudaskoski T, et al. Comparison of remifentanil and nitrous oxide in myocardial infarction. Lancet. 1975;2:391–400.
11. Kariman H, Majidi A, Amiri A, et al. Nitrous oxide/oxygen compared with fentanyl in reducing pain among adults with isolated extremity trauma: a randomized trial. EMA. 2011;23:761–8.
12. Paris A, Horvath R, Basset P, et al. Nitrous oxide-oxygen mixture during care of bedsores and painful ulcers in the elderly: a randomized, crossover, open-label pilot study. J Pain Symptom Manag. 2008;35:171–6.
13. Bektas F, Eken C, Karadeniz O, et al. Intravenous paracetamol or morphine for the treatment of renal colic: a randomized, placebo-controlled trial. Ann Emerg Med. 2009;54:588–74.
14. Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth. 1997;78:606–17.
15. The Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–619.
16. Ricard-Hibon A, Bounes V. Sedation and analgesia in emergency structure. Which sedation and analgesia for the spontaneously breathing patient in emergency units? Ann Fr Anesth Reanim. 2012;31:295–312.
17. Maslekar S, Balaji P, Gardiner A, et al. Randomized controlled trial of patient-controlled sedation for colonoscopy: entonox vs modified patient-maintained target-controlled propofol. Color Dis. 2010;13:48–57.
18. Ohnhaus EE, Adler R. Methodological problems in the measurement of pain: a comparison between the verbal rating scale and the visual analog scale. Pain. 1975;1:379–84.
19. Lvovschi V, Aubrun F, Bonnet P, et al. Intravenous morphine titration to treat severe pain in the ED. Ann J Emerg Med. 2008;26:676–82.
20. Giraudeau B. Model misspecification and overestimation of the intraclass correlation coefficient in cluster randomized trials. Stat Med. 2006;25:957–64.
21. Piaggio G, Elbourne DR, Pocock SJ, et al. Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement. JAMA. 2012;308:2594–604.
22. Everts B, Karlsson BW, Herlitz J, Hedner T. Morphine use and pharmacokinetics in patients with chest pain due to suspected or definite acute myocardial infarction. Eur J Pain. 1998;2:115–25.
23. Meine TJ, Roe MT, Chen AY, et al. Association of intravenous morphine use and outcomes in acute coronary syndromes: results from the CRUSADE quality improvement initiative. Am Heart J. 2005;149:1043–9.
24. Parodi G. Editor’s choice—chest pain relief in patients with acute myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2016;5:277–81.
25. Gillison GH, Jacobsen S, Rasmussen JN, et al. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal anti-inflammatory drugs after acute myocardial infarction. Circulation. 2006;113:996–13.
26. Gardman M, Dellborg M, Brunnhage C, et al. Effect of intravenous metoprolol before hospital admission on chest pain in suspected acute myocardial infarction. Am Heart J. 1999;137:821–9.
27. Hoff HR, Hotz MM, Sperber RJ, et al. Analgesia in myocardial infarction: double-blind comparison of Pimelodine and morphine. Am J Med Sci. 1965;249:495–8.
28. Zedigh C, Alho A, Hammar E, et al. Aspects on the intensity and the relief of pain in the prehospital phase of acute coronary syndrome: experiences from a randomized clinical trial. Coron Artery Dis. 2010;21:113–20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.