On Periodic Points of the Order of Appearance in the Fibonacci Sequence

Eva Trojovská

Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic; eva.trojovska@uhk.cz; Tel.: +42-049-333-2859

Received: 10 March 2020; Accepted: 8 May 2020; Published: 12 May 2020

Abstract: Let \((F_n)_{n \geq 0}\) be the Fibonacci sequence. The order of appearance \(z(n)\) of an integer \(n \geq 1\) is defined by \(z(n) = \min\{k \geq 1 : n \mid F_k\}\). Marques, and Somer and Krížek proved that all fixed points of the function \(z(n)\) have the form \(n = 5^k\) or \(12 \cdot 5^k\). In this paper, we shall prove that \(z(n)\) does not have any \(k\)-periodic points, for \(k \geq 2\).

Keywords: diophantine equation; Fibonacci number; order of appearance; \(p\)-adic valuation; arithmetic dynamics

MSC: Primary 11Dxx; 11B39; 37P10; Secondary 11A41; 11Y70

1. Introduction

The Fibonacci sequence \((F_n)\) is presumably the most classical example of a recursion sequence. This sequence is defined by the recurrence \(F_n = F_{n-1} + F_{n-2}\), for \(n \geq 2\), with initial terms \(F_0 = 0\) and \(F_1 = 1\) (see [1–4] for many surprising properties of \((F_n)\) and some generalizations of them, e.g., in [5–9]). The study of this sequence embraces a number of interesting aspects in Diophantine problems. For example, the “ingenious” (and yet unproved) problem of the existence of infinitely many prime Fibonacci numbers is related to the powerful Zaremba’s conjecture in Diophantine approximation.

We point out that the function \(z : \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}\) (known as the order of appearance in the Fibonacci sequence) plays a pivotal role in the characterization of divisibility relations involving Fibonacci numbers. This arithmetical function is defined as

\[
z(n) := \min\{k \geq 1 : n \mid F_k\}.
\]

See Table 1 for some values of \(z(n)\) and Figure 1 for the graphic behavior of \(z(n)\).

In 1878, Lucas [10] (see p. 300) showed that \(z(n)\) is well-defined, for all \(n \geq 1\). An immediate consequence of the Dirichlet’s Box Principle yields \(z(n) \leq (n - 1)^2 + 1\). A better upper bound for \(z(n)\) can be provided by combining the inequalities \(z(n) \leq \sigma(n)\) and \(\sigma(n) \leq 3.5n \log \log n\), for \(n \geq 4\) (this last inequality is a consequence of a result of Robin, see Théorème 2 of [11]), where \(\sigma(n)\) denotes the sum of the positive divisors of \(n\). For a prime number \(p\), the better upper bound \(z(p) \leq p + 1\) holds. In 1975, J. Sallé [12] found the sharpest upper bound for \(z(n)\). Indeed, he proved that \(z(n) \leq 2n\), for all \(n \geq 1\). His result is sharp, since we have infinitely many extremal cases (i.e., where the equality is valid):

\[
z(n) = 2n \quad \text{if and only if} \quad n = 6 \cdot 5^k, \text{for } k \geq 0.
\]
Table 1. Values of $z(n)$ for n from 1 to 50.

n	$z(n)$									
1	1	10	21	8	31	30	41	20		
2	3	12	12	22	30	32	24	42	24	
3	4	13	7	23	24	33	20	43	44	
4	6	14	24	24	12	34	9	44	30	
5	5	15	20	25	25	35	40	45	60	
6	12	16	12	26	21	36	12	46	24	
7	8	17	9	27	36	37	19	47	16	
8	6	18	12	28	24	38	18	48	12	
9	12	19	18	29	14	39	28	49	56	
10	15	20	30	30	30	60	40	30	50	75

The order of appearance in the Fibonacci sequence became an object of much interest in 1992, when Z. H. Sun and Z. W. Sun [13] found a very close connection between the equation $z(n) = z(n^2)$ and Fermat’s Last Theorem (which was an open problem in that time).

Since $z(\mathbb{Z}_{>0}) \subseteq \mathbb{Z}_{>0}$, one may realise the order of appearance z as a discrete dynamical system on $\mathbb{Z}_{>0}$ and ask about the periodic orbits of z for some fixed periods. Recall, that n is called a periodic point of z, if $z^k(n) = n$, for some $k \geq 0$ (Here z^j is the jth iterate of z). The smallest positive integer k with this property is defined as the period of n (under z) and n is named as a k-period point of z (i.e., if $z^k(n) = n$)

Figure 1. The scatterplot of $z(n)$ for n from 1 to 50,000.
and \(z^j(n) \neq n \), for all \(j \in [1, k-1] \). Here, we utilize the usual notation \([a, b] = \{a, a+1, \ldots, b\} \), for integers \(a < b \). For \(k = 1 \), a 1-periodic point is usually denoted as a fixed point.

Marques [14] and Somer and Křížek [15] (independently) found all fixed points of \(z(n) \). More precisely, they proved that

\[
z(n) = n \quad \text{if and only if} \quad n = 5^k \text{ or } 12 \cdot 5^k, \quad \text{for } k \geq 0.
\]

Recently, two extensions of this result were proved. The first one by Trojovský [16] (who dealt with the equation \(z(n) = n + \ell \), for \(\ell \in [-9, 9] \)) and another by Trojovská [17] (who studied the behavior of \(z(n) \) “near” its sharpest upper bound, i.e., solutions of the Diophantine equation \(z(n) = 2n - n/k \), where \(n, k \) are any positive integers). We refer the reader to these two papers (and references therein) to more problems involving the \(z \)-function.

A positive integer \(n \) is called a pre-periodic point (of \(z \)) if \(z^k(n) \) is a periodic point. In other words, \(n \) is pre-periodic if its orbit \(\text{Orb}_z(n) \) under the order of appearance \(z \) (i.e., \(\text{Orb}_z(n) := \{z^k(n) : k \geq 0\} \)) is finite. For example,

- \(\text{Orb}_z(10) = \{10, 15, 20, 30, 60\} \);
- \(\text{Orb}_z(65) = \{65, 35, 40, 30, 60\} \);
- \(\text{Orb}_z(73) = \{73, 37, 19, 18, 12\} \);
- \(\text{Orb}_z(111) = \{111, 76, 18, 12\} \);

and then 10, 65 and 73, 111 are pre-periodic points since 12 and 60 are fixed points of \(z \) (see Figure 2).

![Figure 2](image-url)

Figure 2. The finite orbits of 5 (loop), 13, 10, 21, 65, 73 and 111 (fixed points are colored in blue).

With the help of Wolfram Mathematica we searched the lengths of orbits \(\text{Orb}_z(n) \) for every \(n \) from 1 to 50,000. This experiment showed that the maximal length of the orbit was 10 and Table 2 summarizes how many times each length of the orbit from 1 to 10 was realized (we have included their percentage distribution in the last row).

\(k \)	1	2	3	4	5	6	7	8	9	10
\#\(n \)	13	520	6248	17,988	16,282	6672	1796	418	53	10
\((\#n/500)\%\)	0.03	1.04	12.50	35.98	32.56	13.34	3.59	0.84	0.11	0.02
Figures 1 and 3 show graphically the relationship between n, $z(n)$ and the length of the orbit $\#\text{Orb}_z(n)$ for each natural number less than or equal to 50,000. In Figure 1 we have drawn the points of the coordinates $[n, z(n)]$ and to show the corresponding length of orbits we have colored these points by the colors listed in Table 2, e.g., the red color corresponds to the length of the orbit equal to 1 (i.e., they are fixed points). In Figure 3 we plotted an analogous graph to Figure 1, but we used a 3D-graph to plot a set of all points of coordinates $[n, z(n), \#\text{Orb}_z(n)]$, for n from 1 to 50,000.

Figure 3. The graph of points $[n, z(n), \#\text{Orb}_z(n)]$ in a phase space for n from 1 to 50,000.

Remark 1. We now turn to a brief discussion of another concept which can be helpful to the understanding of the special points (periodic and pre-periodic) in discrete dynamics. A sequence $(a_n)_{n \geq 0}$ is called periodic if it satisfies $a_{n+p} = a_n$, for all $n \geq 0$ (for a smallest integer $p > 0$ which is known as the period of the sequence). A sequence $(a_n)_{n \geq 0}$ is called eventually periodic if it can be made periodic by deleting some finite number of terms from the beginning, i.e., if $(a_n)_{n \geq n_0}$ is periodic, for an $n_0 \geq 0$. Let us denote by Ψ and Ψ_e the sets of the periodic and eventually periodic sequences, respectively (clearly, $\Psi_e \subseteq \Psi$). Since the orbit of a point (as a multiset) may be identified as an infinite sequence, then we can say that n is a periodic point (resp., pre-periodic point) if and only if $\text{Orb}_z(n) \in \Psi$ (resp., $\text{Orb}_z(n) \in \Psi_e$).

Actually, Luca and Tron [18] (see the proof of their Theorem 2.2) proved that every positive integer is a pre-periodic point of z. Actually, they proved that for any positive integer n, there exists a $k \geq 1$, such that $z^k(n)$ is a fixed point of z. Another proof for this fact is the following: if $\pi(n)$ is the Pisano period of n (i.e., $\pi(n)$ is the smallest period of the Fibonacci sequence modulo n), then $\pi(n)/z(n) \in \{1, 2, 4\}$ (see Theorem 7 of [19]) and so, $\pi^k(n)/z^k(n) \in \{2, 24\}$, if $n > 1$ and $k \geq 4$. Thus, by Iteration Theorem of [20], there exists an integer $k \geq 4$, such that $\pi^k(n) > 1$ is a fixed point of π, i.e., $\pi^k(n) = 24 \cdot 5^a$, for some $a \geq 0$ (see Fixed Point Theorem of [20]). Since $\pi^k(n)/z^k(n) \in \{2, 24\}$, then $z^k(n)$ is either 5^a or $12 \cdot 5^a$, as desired.

Since all pre-periodic points of z close their orbit in a fixed point, the following question arises: has the function $z(n)$ some k-periodic point, for $k > 1$?

In this paper, we shall completely answer this question by proving that
Theorem 1. All periodic points of \(z \) are fixed points. In other words, if \(z^k(n) = n \), for some \(k \geq 1 \), then \(z(n) = n \).

Remark 2. We remark that the sets \(\mathcal{P} \) and \(\mathcal{P}_e \) can be written as
\[
\mathcal{P} = \bigcup_{p \geq 1} \mathcal{P}(p) \quad \text{and} \quad \mathcal{P}_e = \bigcup_{p \geq 1} \mathcal{P}_e(p),
\]
where \(\mathcal{P}(p) \) and \(\mathcal{P}_e(p) \) denote, respectively, the sets of the periodic and eventually periodic sequences with period exactly \(p \). Now, observe that (according to Remark 1) Luca and Tron result (in [18]) can be rephrased as: if \(\text{Orb}_z(n) \in \mathcal{P}_e \), then \(\text{Orb}_z(n) \in \mathcal{P}_e(1) \). However, Theorem 1 is equivalent to the fact that: if \(\text{Orb}_z(n) \in \mathcal{P} \), then \(\text{Orb}_z(n) \in \mathcal{P}(1) \).

In brief outline, the main idea of the proof is to use a variant of the fact that \(z(lcm(m,n)) = lcm(z(m),z(n)) \) (where \(lcm(\cdot) \) denotes the least common multiple) together with some properties of \(z(p^k) \) (for a prime \(p \)). Mathematica software was very useful when performing some calculations (for remaining cases).

2. Auxiliary Results

In this section, we shall present two results which will be very important tools in our proofs. Firstly, we have to recall that the \(p \)-adic valuation (the exponent of the highest power of a prime number \(p \) which divides \(n \) is called the \(p \)-adic order of \(n \) and it is denoted by \(\nu_p(n) \), thus \(\nu_p(n) = \max\{s \geq 0 : p^s | n\} \)) of Fibonacci numbers was fully characterized by Halton [21] and Lengyel [22] (see generalizations and applications in [23–25]).

The first essential ingredients are related to the behavior of \(z(n) \) at prime powers arguments.

Lemma 1. We have
\[
(i) \quad \text{Theorem 1.1 of [26]} \quad z(2^k) = 3 \cdot 2^{k-2} \ (\text{for} \ k \geq 3), \quad z(3^k) = 4 \cdot 3^{k-1} \ (\text{for} \ k \geq 1) \quad \text{and} \quad z(5^k) = 5^k \ (\text{for} \ k \geq 0).
\]
\[
(ii) \quad \text{Theorem 2.4 of [20]} \quad \text{If} \ p \ \text{is an odd prime, then}
\]
\[
z(p^k) = p^{\max\{k-e(p,0)\} \nu_p},
\]
where \(e(p) = \nu_p(F_z(p)) \geq 1 \). In particular, since \(z(p) | p - \left(\frac{5}{p} \right) \), it holds that
\[
z(p^k) \text{ divides } p - \left(\frac{5}{p} \right) p^{k-1}, \text{ for all } k \geq 1,
\]
where, as usual, \(\left(\frac{a}{q} \right) \) denotes the Legendre symbol of an integer \(a \) with respect to an odd prime \(q \).

We point out the Wall’s conjecture which states that \(z(p^a) = p^{a-1}z(p) \), when \(p > 2 \) is a prime and \(a \) a positive integer (see [27]).

The second tool is a kind of “formula” for \(z(n) \) depending on \(z(p^a) \) for all primes \(p \) dividing \(n \). The proof of this fact can be found in [28].

Lemma 2. (Theorem 3.3 of [28]) Let \(n > 1 \) be an integer with prime factorization \(n = p_1^{a_1} \cdots p_k^{a_k} \). Then
\[
z(n) = \text{lcm}(z(p_1^{a_1}), \ldots, z(p_k^{a_k})).
\]

Now we are ready to deal with the proof of the theorem.
3. The Proof of Theorem

First, let us make some considerations. For an integer \(n \) with prime factorization \(n = p_1^{a_1} \cdots p_k^{a_k} \), we have, by Lemma 2, that
\[
z(n) = \text{lcm}(z(p_1^{a_1}), \ldots, z(p_k^{a_k})).
\]

However, in view of Lemma 1 (ii) together with the fact that \(\text{lcm}(m_1, \ldots, m_s) \) divides \(m_1 \cdots m_s \), we obtain
\[
z(n) \mid p_1^{a_1-1} \cdots p_k^{a_k-1} (p_1 - \delta_1) \cdots (p_k - \delta_k), \tag{1}
\]
where, to simplify the notation, \(\delta_j \) denotes the Legendre symbol \(\left(\frac{a}{p_j} \right) \).

So, let us suppose that \(n \) is a \(t \)-periodic point, for some \(t \geq 1 \). Let us prove that \(n \) is a fixed point of \(z \), i.e., \(n = \frac{5^a}{n} + 12 \cdot 5^b \), for an integer \(a \geq 0 \). Since \(\# \text{Orb}_z(n) = t \), then there exist distinct positive integers \(n_2, n_3, \ldots, n_t \) such that
\[
z(n) = n_2, z(n_2) = n_3, \ldots, z(n_{t-1}) = n_t, z(n_t) = n.
\]

Now, let us write the prime factorization of \(n_j \) as \(n_j = p_1^{a_{1,j}} \cdots p_k^{a_{k,j}} \), for all \(j \in [1, t] \), where we define \(n_1 := n \) (also, with \(p_1 < \cdots < p_k \)). By using (1), we have (by writing also \(n_{t+1} := n \)) that
\[
p_1^{a_{1,j+1}} \cdots p_k^{a_{k,j+1}} = n_{j+1} = z(n_j) \mid p_1^{a_{1,j}-1} \cdots p_k^{a_{k,j}-1} (p_1 - \delta_1) \cdots (p_k - \delta_k),
\]
for all \(j \in [1, t] \). Thus,
\[
p_1^{a_{1,j+1}} \cdots p_k^{a_{k,j+1}} \mid p_1^{a_{1,j}-1} \cdots p_k^{a_{k,j}-1} (p_1 - \delta_1) \cdots (p_k - \delta_k).
\]

By multiplying all the previous relations (i.e., for all \(j \in [1, t] \)) and after some straightforward computations, we arrive at
\[
p_1^{s_1} \cdots p_k^{s_k} \mid p_1^{s_1-1} \cdots p_k^{s_k-1} (p_1 - \delta_1)^{t} \cdots (p_k - \delta_k)^{t},
\]
where \(s_j := \sum_{i=1}^{t} a_{j,i} \) for all \(j \in [1, k] \). Thus, \((p_1 \cdots p_k)^t \) divides \(((p_1 - \delta_1) \cdots (p_k - \delta_k))^t \) which yields
\[
p_1 \cdots p_k \mid (p_1 - \delta_1) \cdots (p_k - \delta_k). \tag{2}
\]

Now the proof splits into two cases:

Case \(p_k \leq 3 \).

In this case, we can write \(n = 2^a \cdot 3^b \). If \(a \in [0, 5] \) and \(b \in [0, 2] \), then
\[
A := \{ 2^a \cdot 3^b : a \in [0, 5], b \in [0, 2] \} = \{ 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288 \}.
\]

Since for \(n = 2 \) and \(n = 3 \), the orbits
\[
\text{Orb}_z(2) = \{ 2, 3, 4, 6, 12 \} \quad \text{and} \quad \text{Orb}_z(3) = \{ 3, 4, 6, 12 \}
\]
do not return to 2 or 3, we can consider only integers in the set \(A \setminus \{ 2, 3 \} \). For such an integer, we have that \(z(n) \) is a fixed point, for all \(j \geq 3 \) (by using some simple Mathematica routine). So, we can consider only \(k = 2 \). However, \(z^2(n) = n \), for \(n \in A \setminus \{ 2, 3 \} \), only if \(n = 1 \) or 12 which are fixed points. Thus, we may suppose that \(a \geq 6 \) and \(b \geq 3 \). In this case, we have, by Lemmas 1 and 2,
\[
z(n) = \text{lcm}(z(2^a), z(3^b)) = \text{lcm}(3 \cdot 2^{a-2}, 4 \cdot 3^{b-1}) = 2^{a-2} \cdot 3^{b-1}
\]
and so
\[z^2(n) = \text{lcm}(z(2^{a-2}), z(3^{b-1})) = \text{lcm}(3 \cdot 2^{a-4}, 4 \cdot 3^{b-2}) = 2^{a-4} \cdot 3^{b-2}, \]
where we used that \(a \geq 6\) and \(b \geq 3\). Note that if we proceed with this chain, we will have that \(v_2(z^2(n))\) will decrease, by Lemma 1 (ii), (in the form \(a - 2i\)) if \(a\) is large. However, since \(z^k(n) = n\), then, in particular, it holds that \(v_2(z^k(n)) = v_2(n) = a\). So, we must have \(a \in [0,5]\). The same is valid for \(b\) (by using \(v_2\)) and so \(b \in [0,2]\) which contradicts our assumption on \(a\) and \(b\) (i.e., \(a \geq 6\) and \(b \geq 3\)).

Case \(p_k > 3\).

If \(k = 1\), then, by (2), we have that \(p_k \mid (p_k - \delta_k)\) and so \(p_k \mid \delta_k \in \{-1,0,1\}\). This implies that \(0 = \delta_k = \left(\frac{5}{p_k}\right)\) which, by definition of the Legendre symbol, yields that \(p_k \mid 5\) and then \(p_k = 5\). For the case in which \(k > 1\), we have (since \(p_k > 3\)) that \(p_k > p_i + 1 \geq p_i - \delta_i\) (for all \(i \in [1, k-1]\)) and again, by the relation in (2), we infer that \(p_k\) divides \(p_k - \delta_k\) and so \(p_k = 5\) (as previously deduced). In conclusion, the largest prime factor of \(n\) is 5. Therefore, we can write \(n = 2^a \cdot 3^b \cdot 5^c\). Let us suppose that \(a \geq 6\) and \(b \geq 3\). Then, by Lemmas 1 and 2, we have
\[z(n) = \text{lcm}(z(2^a), z(3^b), z(5^c)) = \text{lcm}(3 \cdot 2^{a-2}, 4 \cdot 3^{b-1}, 5^c) = 2^{a-2} \cdot 3^{b-1} \cdot 5^c \]
and so
\[z^2(n) = \text{lcm}(z(2^{a-2}), z(3^{b-1}), z(5^c)) = \text{lcm}(3 \cdot 2^{a-4}, 4 \cdot 3^{b-2}, 5^c) = 2^{a-4} \cdot 3^{b-2} \cdot 5^c, \]
where we used that \(a \geq 6\) and \(b \geq 3\). Observe that as before, by continuing this process, we will infer that \(v_2(z^2(n))\) decreases, by Lemma 1 (ii), for large values of \(a\). Since \(z^k(n) = n\), then \(v_2(z^k(n)) = v_2(n) = a\) which yields that \(a \in [0,5]\). This also holds for \(b\) (again by applying \(v_2\)). So, the possible solutions are in the range \(a \in [0,5]\) and \(b \in [0,2]\). Hence, the possible \(k\)-periodic points must belong to the set
\[\{2^a \cdot 3^b \cdot 5^c : a \in [0,5], b \in [0,2], c \geq 0\}. \]

Since we are interested in iterations of \(z\) and \(z(5^c) = 5^c\) (for all \(c \geq 0\)), then it is enough to search for periodic points of \(z\) belonging to \(A \setminus \{2,3\}\) and after, multiply them by \(5^c\). In this case, the proof proceeds along the same lines as in the previous case. That is, only 1 and 12 are invariant. Now, by multiplying them by \(5^c\), we obtain that \(n = 5^c\) or \(12 \cdot 5^c\) (that is, the fixed points of \(z\)). This completes the proof of Theorem 1.

4. Conclusions

In this paper, we study the dynamics of the order of appearance function \(z(n) = \min\{k \geq 1 : n \mid \ell_k\}\). It is known that the orbit (under \(z\)) of all positive integer is finite. A recent result classifies all orbits with length 1 (loops), i.e., fixed points of \(z(n)\). Namely, all the numbers with this property are of the form \(5^k\) or \(12 \cdot 5^k\), for some integer \(k \geq 0\). Thus, in this work, we study the existence of positive integers with larger closed orbits (i.e., \(k\)-periodic points of \(z\), for \(k > 1\)). In particular, we close the problem of the arithmetic dynamics of \(z\), by proving that if \(z^k(n) = n\), for some positive integers \(n\) and \(k\) (where \(z^k\) is the \(k\)th iteration of \(z\)), then \(z(n) = n\). In particular, the function \(z\) does not admit \(k\)-periodic points, for all \(k > 1\).

Funding: The author was supported by the Project of Specific Research PrF UHK no. 2118/2020, University of Hradec Králové, Czech Republic.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: New York, NY, USA, 2001.
2. Vorobiev, N.N. *Fibonacci Numbers*; Dover Publications: New York, NY, USA, 2013.
3. Kalman, D.; Mena, R. The Fibonacci Numbers—Exposed. *Math. Mag.* **2003**, *76*, 167–181.
4. Benjamin, A.; Quinn, J. The Fibonacci numbers—Exposed more discretely. *Math. Mag.* **2003**, *76*, 182–192.
5. Gabai, H. Generalized Fibonacci k-sequences. *Fibonacci Quart.* **1970**, *8*, 31–38.
6. Dresden, G.P.; Du, Z. A Simplified Binet Formula for k-Generalized Fibonacci Numbers. *J. Integer Seq.* **2014**, *17*, 14.4.7.
7. Chen, Z.; Qi, L. Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence. *Symmetry* **2019**, *11*, 788. [CrossRef]
8. Liu, Y.; Lv, X. Some New Identities of Second Order Linear Recurrence Sequences. *Symmetry* **2019**, *11*, 1496. [CrossRef]
9. Marques, D.; Trojovský, P. On characteristic polynomial of higher order generalized Jacobsthal numbers. *Adv. Differ. Equ.* **2019**, *2019*, 392. [CrossRef]
10. Lucas, E. Théorie des fonctions numériques simplement périodiques. *Am. J. Math.* **1878**, *1*, 184–240, 289–321. [CrossRef]
11. Robin, G. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. *J. Math. Pures Appl.* **1984**, *63*, 187–213.
12. Sallé, H.J.A. A Maximum value for the rank of apparition of integers in recursive sequences. *Fibonacci Quart.* **1975**, *13*, 159–161.
13. Sun, Z.H.; Sun, Z.W. Fibonacci numbers and Fermat’s last theorem. *Acta Arith.* **1992**, *60*, 371–388. [CrossRef]
14. Marques, D. Fixed points of the order of appearance in the Fibonacci sequence. *Fibonacci Quart.* **2012**, *50*, 346–352.
15. Somer, L.; Křížek, M. Fixed points and upper bounds for the rank of appearance in Lucas sequences. *Fibonacci Quart.* **2013**, *51*, 291–306.
16. Trojovský, P. On Diophantine equations related to order of appearance in Fibonacci sequence. *Mathematics* **2019**, *7*, 1073. [CrossRef]
17. Trojovská, E. On the Diophantine Equation $z(n) = (2 - 1/k)n$ Involving the Order of Appearance in the Fibonacci Sequence. *Mathematics* **2020**, *8*, 124. [CrossRef]
18. Luca, F.; Tron, E. The distribution of self-Fibonacci divisors. In *Advances in the Theory of Numbers*; Springer: New York, NY, USA, 2015; pp. 149–158.
19. Mariana Montiel, M.; Peck, R.W. *Mathematical Music Theory: Algebraic, Geometric, Combinatorial, Topological and Applied Approaches to Understanding Musical Phenomena*; World Scientific: Singapore, 2019.
20. Fulton, J.D; Morris, W.L. On arithmetical functions related to the Fibonacci numbers. *Acta Arith.* **1969**, *16*, 105–110. [CrossRef]
21. Halton, J.H. On the divisibility properties of Fibonacci numbers. *Fibonacci Quart.* **1966**, *4*, 217–240.
22. Lengyel, T. The order of the Fibonacci and Lucas numbers. *Fibonacci Quart.* **1995**, *33*, 234–239.
23. Kreutz, A.; Lelis, J.; Marques, D.; Silva, E.; Trojovský, P. The p-adic order of the k-Fibonacci and k-Lucas numbers. *p-Adic Numbers, Ultrametr. Anal. Appl.* **2017**, *9*, 15–21. [CrossRef]
24. Marques, D.; Trojovský, P. The p-adic order of some Fibonomial Coefficients. *J. Integer Seq.* **2015**, *18*, 15.3.1.
25. Phunphayap, P.; Pongsriiam, P. Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients. *J. Integer Seq.* **2018**, *21*, 3.
26. Marques, D. Sharper upper bounds for the order of appearance in the Fibonacci sequence. *Fibonacci Quart.* **2013**, *51*, 233–238.
27. Kłaśka, J. Donald Dines Conjecture. *Fibonacci Quart.* **2018**, *56*, 43–51.
28. Renault, M. Properties of the Fibonacci Sequence under Various Moduli. Master’s Thesis, Wake Forest University, Winston-Salem, NC, USA, 1996. Available online: http://webspace.ship.edu/msrenault/fibonacci/FibThesis.pdf (accessed on 10 March 2020).