Measurement of elliptic and higher order flow from ATLAS experiment at the LHC

Jiangyong Jia for the ATLAS Collaboration
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
Physics Department, Brookhaven National Laboratory, Upton, NY 11796, USA
E-mail: jjia@bnl.gov

Abstract. We present a differential measurement of the azimuthal anisotropy of charged hadron production in Pb+Pb collisions at $\sqrt{s_{\text{NN}}}=2.76$ TeV. This azimuthal anisotropy is expanded into a Fourier series in azimuthal angle, where the coefficient for each term, v_n, characterizes the magnitude of the anisotropy at a particular angular scale. We extract v_2-v_6 via a discrete Fourier analysis of the two-particle $\Delta \phi - \Delta \eta$ correlation with a large $\Delta \eta$ gap ($|\Delta \eta| > 2$), and via an event plane method based on the Forward Calorimeter. Significant v_2-v_6 values are observed over a broad range in p_T, η and centrality, and they are found to be consistent between the two methods in the transverse momentum region $p_T < 3 - 4$ GeV. This suggests that the measured v_2-v_6 obtained from two-particle correlations at low p_T with a large $\Delta \eta$ gap are consistent with the collective response of the system to the initial state geometry fluctuations, and is not the result of jet fragmentation or resonance decay.

Among the many striking results obtained at RHIC, one important observation is the novel “ridge”-like and “cone”-like structures of the two-particle correlation in relative azimuthal angle $\Delta \phi = \phi_a - \phi_b$ and pseudorapidity $\Delta \eta = \eta_a - \eta_b$ in Au+Au collisions [1]. These structures, absent in elementary proton-proton collisions, are found to extend over a large $\Delta \eta$ range, and show rich p_T and centrality dependence. They were initially interpreted as response of the medium to the energy deposited by the quenched jets [2]. However, recent studies [3] suggest that they could be related to the initial geometric fluctuations and strong collective flow. In this scenario, the spatial fluctuations of nucleons lead to shape deformation at various angular scales, which induce high-order anisotropies of the emitted particles through collective expansion:

$$dN/d\phi \propto 1 + 2 \sum_{n=1}^{\infty} v_n(p_T) \cos (n (\phi - \Psi_n)),$$

(1)

where v_n is the magnitude of the n^{th} order harmonic flow [4]. The two-particle correlation, being a simple convolution of two single particle distribution, is naturally influenced by the same harmonic flow:

$$dN/d\Delta \phi \propto 1 + 2 \sum_{n=1}^{\infty} v_n(p_T^a)v_n(p_T^b) \cos (n \Delta \phi)$$

(2)
where the phase of \(n \)th harmonic flow \(\Psi_n \) (known as the event plane or EP) drops out in the convolution.

The \(v_n \) can be extracted directly by correlating single particles with the measured \(n \)th order EP (the event plane method) or via a Fourier transform of the two-particle azimuthal correlation (the two-particle correlation method). We present \(v_n \) results from both methods based on \(\sim 8 \mu b^{-1} \) Pb+Pb data from the 2011 LHC heavy ion run at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) [5]. A detailed comparison is made between the two methods, followed by an interpretation of the long-range structures in terms of geometric fluctuations and collective flow.

1. Event Plane Method

The event plane \(\Psi_n \) is estimated using the transverse energy flow measured in towers from the Forward Calorimeter (FCal) within \(3.3 < |\eta| < 4.8 \). By default, each \(v_n \) is measured by correlating tracks in the Inner Detector covering \(|\eta| < 2.5 \) with the EP from the full FCal, followed by a resolution correction [4]. In a slightly modified method (FCal\(_P(N)\)), tracks are correlated with the EP calculated with FCal in the opposite hemisphere, i.e. tracks with \(\eta \geq 0 \) (\(\eta < 0 \)) are correlated with the EP obtained from FCal\(_N\) (FCal\(_P\)). The FCal\(_P(N)\) method greatly increases the pseudorapidity separation between the tracks and the EP from about 3 units to about 5 units, thus it is much less affected by the so-called “non-flow” correlations, which stem primarily from jet fragmentation and resonance decays. This is especially useful for measuring the pseudorapidity dependence of \(v_n \). We present results from both methods, relying more on the full FCal method when better resolution is needed (e.g. for the higher-order harmonics).

Figure 1 shows the resolution factor in 5% centrality intervals along with a 0-1% most-central interval from the full FCal method. Significant values are observed for \(n=2-6 \). It is interesting to note that the resolution factor for \(n = 3 \) exceeds that for \(n = 2 \) in the 0-1% most central collisions. Figure 2 summarizes the \(\eta \) and \(p_T \) dependence of \(v_2 - v_6 \).
for two centrality selections. A very weak η dependence (less than 5%) is observed for all n within $|\eta| < 2.5$.

All measured harmonics have a similar p_T dependence: they first increase rapidly up to $p_T \sim 3 - 4$ GeV and then fall. The similar p_T dependence motivates us to find a simple scaling relation between different v_n: $v_n^{1/n} \propto v_2^{1/2}$. This is qualitatively understood in a "blast wave" scenario, where $v_n \propto \beta^n$, with β being the radial flow velocity \cite{6}. However, it should be pointed out that this scaling is only approximate. In particular, the ratios for $n = 4 - 6$ are close to each other, while they are systematically higher than those for $n = 3$.

In Fig. 2, $v_2 - v_5$ are shown only up to 12 GeV, so the low p_T region can be seen more clearly. However, ATLAS has measured v_2 out to much larger p_T, as shown in Figure 3 \cite{7}, with much smaller statistical errors at high p_T than previous RHIC results \cite{8}. The v_2 clearly continue to drop out to 10-12 GeV, and only vary slowly beyond that, but at a level that is consistent with pQCD calculations \cite{9}.

2. Two-particle Correlation Method

The correlation function is constructed by dividing the same-event pairs with mixed-event pair, with a pair acceptance extending to $|\Delta \eta| = 5$. The normalization is fixed by equating the counts of the same-event and mixed-event pairs in $2 < |\Delta \eta| < 5$, which is then applied for all $\Delta \eta$ slices. Each 1-D correlation function (obtained by integrating a selected $|\Delta \eta|$ range) is expanded into a Fourier series, with the coefficient $v_{n,n}$ calculated for two centrality selections. A very weak η dependence (less than 5%) is observed for all n within $|\eta| < 2.5$.

All measured harmonics have a similar p_T dependence: they first increase rapidly up to $p_T \sim 3 - 4$ GeV and then fall. The similar p_T dependence motivates us to find a simple scaling relation between different v_n: $v_n^{1/n} \propto v_2^{1/2}$. This is qualitatively understood in a "blast wave" scenario, where $v_n \propto \beta^n$, with β being the radial flow velocity \cite{6}. However, it should be pointed out that this scaling is only approximate. In particular, the ratios for $n = 4 - 6$ are close to each other, while they are systematically higher than those for $n = 3$.

In Fig. 2, $v_2 - v_5$ are shown only up to 12 GeV, so the low p_T region can be seen more clearly. However, ATLAS has measured v_2 out to much larger p_T, as shown in Figure 3 \cite{7}, with much smaller statistical errors at high p_T than previous RHIC results \cite{8}. The v_2 clearly continue to drop out to 10-12 GeV, and only vary slowly beyond that, but at a level that is consistent with pQCD calculations \cite{9}.

2. Two-particle Correlation Method

The correlation function is constructed by dividing the same-event pairs with mixed-event pair, with a pair acceptance extending to $|\Delta \eta| = 5$. The normalization is fixed by equating the counts of the same-event and mixed-event pairs in $2 < |\Delta \eta| < 5$, which is then applied for all $\Delta \eta$ slices. Each 1-D correlation function (obtained by integrating a selected $|\Delta \eta|$ range) is expanded into a Fourier series, with the coefficient $v_{n,n}$ calculated
directly via a discrete Fourier transformation (DFT): $v_{n,n} = \langle \cos (n \Delta \phi) \rangle$. Figure 4a shows one such projection for $2 < |\Delta \eta| < 5$ and the corresponding contributions from individual harmonic components.

If the observed modulations are due only to collective flow, then we expect $v_{n,n}$ to be factorizable into the product of two single-particle flow coefficients:

$$v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a)v_n(p_T^b)$$

Thus for correlations where the two particles are selected from the same p_T range, we calculate the single-particle harmonic coefficient as $v_n = \sqrt{v_{n,n}}$. One such example is shown in Figure 4b. We have repeated this procedure for each $\Delta \eta$ slice and the results are shown in Figure 4c. The peak at small $\Delta \eta$, which comes from near-side jet fragmentation and resonance decay, is excluded by requiring $2 < |\Delta \eta| < 5$.

In order to confirm that the v_n coefficients from the two-particle correlation method...
reflect collective flow, the factorization relation in Eq. 3 has been explicitly checked with correlations of pairs of tracks from different p_T ranges. For correlations with $\mid \Delta \eta \mid > 2$, this factorization indeed holds for $v_2 - v_6$ at 5%-10% level for $p_T < 3 - 4$ GeV in the 70% most central events, where away-side jet contributions are small. One example of such explicit check is shown in Figure 5. Conversely, the factorization is found to break down for v_1, which could be due to the fact that v_1 from collective flow changes sign going from negative η to positive η [10]. However, similar effects can also be caused by momentum conservation effects, e.g. the recoil of the away-side jet in a di-jet system.

Figures 6 shows the extracted Fourier spectra for two fixed-p_T correlations with a large $\Delta \eta$ gap ($2 < \mid \Delta \eta \mid < 5$) in 0-1%. v_2 is the largest at low p_T, but it becomes less than v_3 and v_4 for tracks in $2 < p_T < 3$ GeV. The rate with which the v_n decrease with n were shown to provide important insight on the acoustic horizon and viscous effects [11].

Figure 5. $v_n(p_T^{\text{a}}) = \frac{v_n(p_T^{\text{a}}) - v_n(p_T^{\text{b}})}{v_n(p_T^{\text{b}})}$ vs $\Delta \eta$ for target p_T of $1.4 < p_T^{\text{b}} < 1.6$ GeV, which are extracted from four reference p_T^{a} bins, supporting the factorization relation Eq. 3.

Figure 6. v_n vs n from same-charge, opposite-charge and all pairs in 0-1% centrality bin for two fixed-p_T correlations: 0.5-1, 2-3 GeV.
3. Comparison of the Methods and Discussion

Figure 7 compares the centrality dependence of v_n obtained from the two-particle correlation method and those from the EP method for two p_T intervals. The agreements is within 5% for $v_2 - v_4$ over a broad centrality range, but worsen to about 10% for v_5 and 15% for v_6. However, they are within the quoted systematic errors shown in previous sections.

The consistency between the two methods implies that the structure of the two-particle correlation at large $\Delta \eta$ can be largely accounted for by the collective flow. We check this explicitly by reconstructing the correlation function from v_n measured by the EP method as:

$$C(\Delta \phi) = b^{2p}(1 + 2v_{2p}^{2p} \cos \Delta \phi + 2 \sum_{n=2}^{6} v_n^{EP,a} v_n^{EP,b} \cos n\Delta \phi)$$

where the b^{2p} and v_{2p}^{2p} are the pedestal and first harmonic term from the two-particle correlation analysis, while the remaining terms are calculated from the v_n measured using the EP method. Figure 8 shows excellent agreement between the measured and reconstructed correlation functions. This is more striking for the 2-3 and 3-4 GeV bin in the 0-1% most central collisions, where even a more pronounced “double hump” structure can be well reproduced. The $v_{1,1}$ term not measured by the EP method,
also plays a significant role, but it is not sufficient to explain the near and away-side structures obtained in the correlation function. Figure 8 also shows that the away-side “double-hump” is the result of the detailed interplay between the odd harmonics (v_3 and v_5) and even harmonics (v_2, v_4, and v_6).

![Figure 8](image-url)

Figure 8. Correlation function data compared with that reconstructed from $v_{1,1}$ from two-particle correlation and $v_2 - v_6$ measured from EP method in 0-1% centrality for different p_T ranges.

If the low p_T correlation function with large $\Delta \eta$ gap is dominated by harmonic flow, an important question remains as to where in phase space the jet contributions can be observed. Figure 9 shows the centrality evolution of the 2-D correlation function for particles with $2 < p_T < 3$ GeV. While central events show structures that are long range in $\Delta \eta$ as well as a shorter-range jet correlation around $\Delta \eta = \Delta \phi = 0$, moving towards more peripheral events show that these long-range structures eventually disappear, with clear jet-related peaks emerging on the away-side. Figure 10 shows the p_T evolution of $\Delta \phi$ correlations in the 0-10% most central collisions. A rapidity gap of $|\Delta \eta| > 2$ is required such that the near-side peak reflects mainly the “ridge” contribution. Its magnitude first increases with p_T to 4-5 GeV then decreases, reflecting the fact that all of the v_n reach a maximum at 3-4 GeV as shown in Fig. 2. A narrow away-side peak emerges in the 6-8 GeV bin, which quickly dominates the correlation structure at higher p_T. This away-side peak presumably comes from the fragmentation of the recoil jet. This figure qualitatively suggests that the transition in p_T from being flow-dominated to jet-dominated, for correlations of tracks from the same p_T range, happens somewhere around 6-8 GeV. Interestingly, this is the p_T region where the single hadron suppression is the strongest [12].
4. Conclusion

In summary, the higher-order harmonic coefficients \(v_2 - v_6 \) have been extracted both by correlating tracks with the event plane determined at forward rapidity and by using the two-particle correlation method with a large pseudorapidity gap (|\(\Delta \eta \)| > 2). Significant \(v_2 - v_6 \) are observed and they are consistent between the two methods for \(p_T < 4 \text{ GeV} \). The \(v_2 - v_6 \) are found to decrease only slightly with \(|\eta|\) in \(0 < |\eta| < 2.5 \). All \(v_n \) exhibit similar \(p_T \) dependence, namely, they all increase with \(p_T \) to around 3-4 GeV and then drop for higher \(p_T \). However, the higher-order harmonics show a stronger \(p_T \) variation, which is found to follow a simple scaling relation, \(v_1^{1/n} \propto v_2^{1/2} \), varying only weakly with \(p_T \). We find the main structures of the two-particle correlation at \(|\Delta \eta| > 2\) can be explained by \(v_2 - v_6 \) which largely reflect collective flow, and a \(v_1 \) term which accounts for momentum conservation effects (possibly including a global directed flow). We conclude that the low \(p_T \) correlation functions do not allow significant contributions from a short \(\Delta \eta \) range medium response to jets. Fluctuations in the initial state geometry, along with a non-zero viscosity of the medium, are potentially responsible for the detailed
behavior of the harmonic coefficients. A detailed comparison with viscous hydrodynamic calculations [13] can help elucidate the nature of these fluctuations and better constrain the transport properties of the hot, dense medium.

References

[1] B. I. Abelev et al. Phys. Rev. C 80, 064912 (2009); A. Adare et al., Phys. Rev. C 78, 014901 (2008);
[2] J. Casalderrey-Solana, E. V. Shuryak, D. Teaney, J. Phys. Conf. Ser. 27, 22-31 (2005).
[3] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010) [Erratum-ibid. C 82, 039903 (2010)].
[4] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).
[5] ATLAS Collaboration, Measurement of elliptic flow and higher-order flow coefficients with the ATLAS detector in √s_{NN}=2.76 TeV Pb+Pb collisions, ATLAS-CONF-2011-074, May 2011. [http://cdsweb.cern.ch/record/1352458]
[6] S. Esumi, S. Chapman, H. van Hecke and N. Xu, Phys. Rev. C 55, R2163 (1997).
[7] A. Trzupek, these proceedings.
[8] A. Adare et al., Phys. Rev. Lett. 105, 142301 (2010).
[9] W. A. Horowitz, these proceedings.
[10] B. I. Abelev et al. Phys. Rev. Lett. 101, 252301 (2008).
[11] P. Staig and E. Shuryak, [arXiv:1106.3243 [hep-ph]].
[12] K. Aamodt et al. Phys. Lett. B 696, 30 (2011).
[13] G. Y. Qin, H. Petersen, S. A. Bass and B. Muller, Phys. Rev. C 82, 064903 (2010); B. Schenke, S. Jeon, C. Gale, [arXiv:1102.0575 [hep-ph]]; Z. Qiu and U. W. Heinz, [arXiv:1104.0650 [nucl-th]].