Proteomic analysis of an extreme halophilic archaeon,

Halobacterium sp. NRC-1

Young Ah Goo, Eugene C. Yi, Nitin S. Baliga, Weiguo A. Tao, Min Pan, Ruedi Aebersold, David R. Goodlett, Leroy Hood, Wailap V. Ng*

Institute for Systems Biology, 1441 N 34th St, Seattle, WA 98103

Running title: Proteomic analysis of *Halobacterium* NRC-1

*Corresponding Author

Phone: 206-732-1412; Fax: 206-732-1260; Email: vng@systemsbiology.org
Summary

Halobacterium sp. NRC-1 insoluble membrane and soluble cytoplasmic proteins were isolated by ultracentrifugation of whole cell lysate. Using a Finnigan LCQ-DECA mass spectrometer equipped with a C18 trap ESI-emitter/micro-LC column, a number of trypsin generated peptide tags from 426 unique proteins were identified. This represents approximately one-fifth of the theoretical proteome of *Halobacterium*. Of these, 232 proteins were found only in the soluble fraction, 165 were only in the insoluble membrane fraction, and 29 were in both fractions. There were 72% and 61% previously annotated proteins identified in the soluble and membrane protein fractions, respectively. Interestingly, fifty-seven of previously un-annotated proteins found only in *Halobacterium* NRC-1 were identified. Such proteins could be interesting targets for understanding unique physiology of *Halobacterium* NRC-1. A group of proteins involved in various metabolic pathways were identified among the expressed proteins suggesting these pathways were active at the time the cells were collected. This data containing a list of expressed proteins, their cellular locations and biological functions could be used in future studies to investigate the interaction of the genes and proteins in relation to genetic or environmental perturbations.
Introduction

Since the completion of the first bacterial genome, *Haemophilus influenzae* (1), more than one hundred microbial genome sequences including *Halobacterium* sp. NRC-1 (2,3) have been determined (www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html). These sequences constitute the primary digital information for global understanding of physiology, pathogenicity, and molecular machineries essential for the survival or adaptation of the organisms in different environmental conditions. The *Halobacterium* genome consists of a 2,014-kb large chromosome and two smaller chromosomes (191 kb and 365 kb) encoding approximately 2,630 putative protein genes (2,3). Among these, 41% matched to genes of known function in public databases. The predicted proteome is highly acidic with a median isoelectric point of 4.9 (4). The high negative surface charge of predicted proteins provides a major mechanism for stabilizing the proteins in nearly saturated intracellular salinity where other conventional proteins would become denatured (4,5).

The archaeon *Halobacterium* sp. NRC-1 provides a relatively simple model for understanding a complex system of how cells adjust to various environmental stimuli. *Halobacterium* flourishes in extremely saline environments (> 4M salts) and its metabolism is subject to fluctuations in sunlight, oxygen, temperature, nutrients and salinity. *Halobacterium* thrives in this harsh environment by appropriately tuning its extraordinary physiology in response to different environmental stimuli. For example, it can relocate, in search of favorable environments, using sensors that can discriminate beneficial and detrimental spectra of light (6,7,8), aerotaxis transducer (HtrVIII) (9), and buoyant gas-filled vesicles (10,11). The *Halobacterium* transducer, HtrVIII, combines subunit I core structures of eukaryotic cytochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins to mediate aerotaxis (9). One of
interesting features of Halobacterium is its ability to survive aerobically as a chemoheterotroph and anaerobically using light and/or arginine as energy sources. Halobacterium sp. derives energy from light by its retinal-containing light-driven ion transporters, bacteriorhodopsin and halorhodopsin (12-16). Halobacterium can also ferment arginine via the arginine deiminase pathway to yield one mole of ATP for each mole of fermented arginine (17,18).

Its intriguing physiology together with the availability of a complete genome sequence, led us to catalogue via a simplified shotgun proteomic methodology (19,20) the proteins expressed by Halobacterium sp. NRC-1 in membrane and cytoplasmic compartments. In addition, the proteins involved in metabolic pathways in Halobacterium sp. NRC-1 under standard culture conditions were investigated. Herein we present the results of our initial investigation of the Halobacterium proteome using a simple shotgun proteomic approach that involves bulk digestion of co-purified proteins with trypsin followed by a single stage of microcapillary HPLC electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) analysis of peptides using an ion trap mass spectrometer. The data contains a list of expressed proteins derived by searching peptide tandem mass spectra against the theoretical protein database of Halobacterium sp. NRC-1 (2,3), their cellular locations (i.e. membrane, cytoplasm or both) deduced from subcellular fractionation prior to proteome analysis, and the putative biological functions of proteins.

Experimental procedure

Strain. Halobacterium sp. NRC-1 (ATCC700922) was cultured at 37 °C in basal salt medium containing 1% peptone (Oxoid, Hampshire, England) and trace metals as previously described (21).

Protein preparation. Membrane and soluble-cytoplasmic proteins were isolated using a
protocol modified from a halophiles laboratory manual and Oesterhelt (21,22). One liter of *Halobacterium sp. NRC-1* culture was grown to OD$_{600} = \sim 2.0$ and pelleted by centrifugation at 7,500 rpm at 4 °C for 10 minutes. Pellets were resuspended in 20 ml basal salt solution containing 0.5 mg each of DNaseI and RNaseA, and 1 mM of proteinase inhibitor, phenylmethylsulfonyl fluoride (PMSF). Cells were lysed by osmotic shock against a 40X excess of deionized water within a dialysis tubing bag (spectra/por® membrane MWCO: 3,500, Spectrum, CA). Cell debris was removed by centrifugation at 10,000g for 30 minutes. The remaining cell lysates were then separated into the soluble and membrane fractions by ultracentrifugation at 53,000g for 2 hours. The membrane fraction, a pellet at the bottom of the tube, and the soluble fraction, the aqueous supernatant portion, were then collected. The membrane was loaded on top of 30 % sucrose cushion and ultracentrifuged at 53,000g at 10 °C over night. The membrane fraction was collected and washed three times in 10 ml basal salt solution using a hand held electrical homogenizer (Tissue-Tearor, Fisher). Membrane proteins were then collected by centrifugation at 53,000g for 2 hours at 10 °C. The pellet was resuspended in residual basal salt solution and then transferred to a microcentrifuge tube. The residual aqueous basal salt solution was removed by a brief spin at 14,000 rpm. The soluble protein fraction was dialyzed against five changes of 100X volume of deionized water at 4 °C to reduce the salt concentration that in excess might inhibit the protease reaction and mass spectrometry analysis.

Protease digestion. One hundred µg of proteins were digested with 2 µg of trypsin (Promega, Madison, WI) in 50 mM sodium bicarbonate (pH 8.3) at 37 °C overnight. Soluble proteins were lyophilized after digestion. Membrane proteins were digested in the presence of 0.5% SDS to
aid solubilization. After the protease reaction, SDS was removed by precipitating proteins with 70 % acetone or by chromatography using cation exchange cartridge (OASIS MCX, Waters, MA) according to manufacturer’s procedure. The proteins were lyophilized and stored at –80 °C and resuspended in 100 µl of 0.4 % acetic solution prior to mass spectrometer analysis.

Tandem mass spectrometry. Trypsin digested peptides were analyzed by µLC-ESI-MS/MS using an LCQ-DECA mass spectrometer (Thermo Finnigan, San Jose, CA) equipped with a C18 trap ESI-emitter/micro-LC column. Trypsin digested peptides (2 µg) were loaded to a Hewlett Packard/Agilent 1100 Series HPLC system using a Famos Autosampler (LC Packings, San Francisco). The peptides bound to the C18 matrix were eluted by acetonitrile gradient (5 % to 35 %) by mixing acetonitrile with 0.4 % acetic acid in water. The eluted peptides were injected into the mass spectrometer by nano electrospray ionization (19,23). Mass spectra were acquired by data-dependent ion selection from a full range as well as discrete and narrow survey scan m/z ranges to increase the number of identifications. Proteins were identified from tandem mass spectra using the SEQUEST (24) database search engine to search against the *Halobacterium* NRC-1 predicted protein database (3).

Membrane domain prediction. *Halobacterium* putative proteins were analyzed for the presence of transmembrane domains using the TMpred (25) and TMHMM programs (26,27). The TMpred program predicts membrane spanning regions (MSRs) and their orientation based on the statistical analysis of TMbase, a database of transmembrane proteins and their helical membrane-spanning domains. The prediction is based on an algorithm using a combination of several weight-matrices for investigating the local properties of amino acid sequences. The
program TMHMM, on the other hand, takes a global approach to determine the topology of an entire protein based on Hidden Markov models. The stand-alone TMpred program was installed on a SUN Microsystem Enterprise 420R server. TMHMM (v. 2.0) was run through the web interface (www.cbs.dtu.dk/services/TMHMM).

Results

Membrane protein prediction. The *Halobacterium* NRC-1 genome encodes 2,682 putative protein-coding genes (3). Among these, 2,413 genes are unique. The TMHMM program predicted 544 membrane proteins containing 1 to 24 MSR(s), among which 163 were annotated proteins, 122 were conserved hypothetical proteins (CHP), and 259 were hypothetical proteins (HP). On the other hand, TMpred detected 929 membrane proteins containing 1 to 22 MSR(s) with total score more than 1000, among which 377 were annotated proteins, 202 were CHP, and 350 were HP. A score >500 is considered to be statistically significant in TMpred prediction (25). TMpred also detected all 544 membrane proteins predicted by the TMHMM program with a minimal TMpred total score of 1194.

Mass spectrometry peptide analysis. Two µg of trypsin digested peptide mixtures from the membrane and soluble proteins were analyzed by µLC-ESI-MS/MS with the following different m/z ranges from which ions were selected for collision-induced dissociation (CID): 1 (400 to 2000 m/z), 4 (400~800, 800~1200, 1200~1600, and 1600~2000 m/z), or 16 (400~500, 500~600, 600~700, ..., and 1900~2000 m/z). Using a different m/z range has been shown to increase the number of novel peptides selected for CID (28,29). The tandem mass spectra were analyzed using the SEQUEST database search program (24) with the *Halobacterium* NRC-1 protein...
database. Search results were processed using the INTERACT web interface, a software tool that allows internet-based data display, data filtering, and data sorting (30). Recently developed statistical modeling algorithms to compute probabilities associated with peptide (PeptideProphetTM) (31) and protein (ProteinProphetTM) (32) sequence assignments that distinguish correct from incorrect database search results were used to validate the search results. These tools allowed assigning probabilities to all identifications and offering standardized interpretation of results by reducing the need for manual verification. In particular, these tools enabled rapid and objective evaluation of large proteomic datasets. A detailed application of these tools has been recently published (33). More information on these applications can be found on the Proteomics pages at http://www.systemsbiology.org/ and they are open source. In this study, we report proteins with probability at least 0.5. Probability 0.5 means that according to the statistical model, the sequence match given is 50% likely to be correct. These resulted in the identification of 426 proteins with false-positive rate of 3.7% (Figure 1).

Proteins in membrane fraction. In the tandem mass spectrometry analysis, 165 proteins were identified only in the membrane fraction but not in the soluble protein fraction (Table 1). There were 100 (60.6%) annotated proteins, 29 (17.6%) conserved hypothetical proteins (CHP), and 36 (21.8%) hypothetical proteins (HP). The transmembrane domain prediction program TMHMM predicted 90 (54.5%) proteins containing 1 to 22 membrane domains and TMpred detected 123 (74.5%) proteins with 1 to 22 membrane domains with scores greater than 1000. No membrane domain was detected by either program in 31 (18.8%) proteins.

Proteins in soluble fraction. A total of 232 proteins were identified only in the soluble fraction
but not in the membrane fraction. Of these, 168 (72.4%) were annotated proteins, 45 (19.4%) were CHP, and 19 (8.2%) were HP (Table 2). TMHMM detected only three membrane proteins and each contained only a single putative membrane domain. TMpred detected 40 (17.2%) putative membrane proteins with scores greater than 1000.

Proteins in both membrane and soluble fractions. A total of twenty-nine proteins were identified in both soluble and membrane fractions. These included protein components involved in large complex structures such as the ribosome, flagella, and gas vesicle (Table 3). There were 27 annotated proteins and 2 HP. TMHMM predicted three of the proteins contain one membrane domain, and TMpred predicted that eight of the proteins contain one or two membrane domains with >1000 score. No membrane domain was predicted in 20 (69%) proteins.

Discussion

In this study, we applied a simplified shotgun proteomic approach using LC-ESI-MS/MS and computational analysis to characterize the peptides in complex mixtures of trypsin digested membrane and soluble proteins. While this is a powerful technique for rapidly screening the peptide components and by inference the parent proteins in a sample, there are certain limitations to this approach which include: 1) peptide ion selection for CID during LC introduction is "top-down" and to some degree random (29), meaning that peptides which ionize well and that are from the more abundant proteins in the original mixture are the most likely to be selected; 2) for a protein to be identified, the peptide tandem mass spectrum used in the database search must be of sufficient "quality" (which in part is related to the abundance of the peptide) to match a sequence in the database; 3) the absence of a sequence in the database for
which a high quality peptide tandem mass spectrum is generated may lead to a false-positive because the software can generate a best-fit to a highly similar sequence that is present, although the probability scoring routine used minimizes this; 4) high versus low protein sequence coverage lends more weight to a protein identification and may be an indication of its relative abundance amongst proteins present in the original mixture; 5) our search results were based solely on matching predicted genome sequences (i.e., post-translational modifications of amino acids were not considered). The simplified shotgun proteomic approach was chosen instead of two-dimensional polyacrylamide gel electrophoresis – mass spectrometry methods (34,35) primarily because LC-MS/MS allows direct analysis of hydrophobic membrane proteins, and also because it serves as a relatively rapid screen of expressed proteins.

A total of 401 chromosome proteins and 25 minichromosome pNRC100 and pNRC200 proteins were identified. In order to obtain functional and physiological information regarding these expressed proteins, 295 of the expressed proteins with putative functions were searched against the KEGG Enzymes/Compounds/Genes Pathway Database (http://www.genome.ad.jp/kegg-bin/mk_point_html). A number of metabolic pathways showed more than 50% of their members present in the group of expressed proteins, and thus suggests such pathways were active at the time the cells were collected or identified proteins are constitutively expressed (Table 4).

Proteome analysis data supports the previous observation that pNRC100 and pNRC200 contain indispensable gene sequences (2,3). Among the approximately forty putative genes on the pNRC100 and pNRC200 likely to be essential or important for cell viability, ten proteins were identified in this study. These include the pNRC200 proteins, arginine deiminase (ArcA), ornithine carbamoyltransferase (ArcB), carbamate kinase (ArcC), aspartate carbamoyltransferase
catalytic subunit (PyrB), aspartate carbamoyltransferase regulatory chain (PyrI), cytochrome d oxidase chain I (CydA; also on pNRC100), sn-glycerol-1-phosphate dehydrogenase (GldA), arginine-tRNA synthetase (ArgS), Na+/H+ antiporter (NhaC3), and glycerol-3-phosphate-binding protein (UgpB).

There were twenty-nine proteins with tryptic peptides identified from both membrane and soluble protein fractions. These included cell surface glycoprotein (Csg), fifteen ribosomal proteins, four flagella proteins, a gas vesicle protein, GvpC, and eight other proteins. Among these proteins, only Csg, FlaA1a, and FlaB1 contained both TMHMM and TMpred membrane domains and DppA, FlaA2, FlaB3, SdhA, and NrdB2 contained TMpred membrane domains (scores > 1000) but no TMHMM predicted membrane domain. It is unusual to find flagellar proteins in the soluble fraction. They may be present in the soluble fraction as flagella fragments that have been detached from the basal body (36) where they are connected to the cytoplasmic membrane, or alternatively, as unassembled precursor proteins. In *Halobacterium*, the formation of gas vesicles is induced under low oxygen conditions, enabling cells to float to the surface and grow phototrophically (10,11). Interestingly, the major gas vesicle protein, GvpA, was identified only in the membrane fraction. The GvpC peptides detected in the soluble protein mixture might have come from GvpC molecules detached from gas vesicle surfaces.

Ribosomal proteins were found in soluble (thirty-two), membrane (four) or both fractions (fifteen). Since ribosomal protein complexes are large structures, some ribosomes might have co-purified with the membrane during ultracentrifugation while most of them remained in the soluble fraction. The cell surface glycoprotein (Csg) was one of the most frequently identified proteins in our analysis. Of the approximately 800 tandem mass spectra matched to Csg, 43% were from the membrane fractions. Csg may be observed in the soluble fraction if it detached
from the cell membrane surface, or possibly as very small membrane fragments suspended in the supernatant after ultracentrifugation.

We next evaluated the extent to which our biochemical fractionation was successful in segregating membrane from soluble proteins. To do this we examined the peptides from the top three membrane and soluble proteins separately. Top protein candidates were those proteins with the highest number of matched tandem mass spectra and for which all tandem mass spectra had a \(\geq 0.9 \) probability of being correctly matched. The top three soluble proteins were CctB, CctA and ArcB. Of these three proteins, peptides from CctB were selected for CID 715 times in the soluble fraction but only 5 in the membrane fraction indicating that very little of this soluble protein was found in the membrane fraction. By this same measure, CctA and ArcB were also well segregated to the soluble fraction as demonstrated by finding that 638 out of 646 tandem mass spectra were selected only in the soluble fraction for CctA and 436 out of 444 for ArcB. Likewise, the top three membrane proteins, YqgG, DppD, and Vng1802H also appeared to be well segregated to the membrane fraction because 605 out of 681, 224 out of 244 and 110 out of 124 of their tandem mass spectral matches were found only in the membrane fraction. This test suggested that the ultracentrifuge purification procedure effectively partitioned most of the proteins to either soluble or membrane fraction, reflecting their original cellular location.

There are several sets of proteins of interest in *Halobacterium sp.* NRC-1 important to its physiology. They include the six TATA-box binding protein (TBP), seven transcription factor B (TFB) proteins, seventeen Htr signal transducer family, and gas vesicle proteins (2,3). In this study, only the expression of TbpE and TfbG were detected among the multiple putative transcription factor proteins. It raises the question of whether the other transcription factors would be expressed under different physiological conditions or growth phases. This observation
may also be due to the protein being expressed at levels too low for detection. Interestingly, TbpE is located on the chromosome, while all the other Tbps are found on the pNRC100 or pNRC200 minichromosomes. Another possibility is that TbpE is the major TBP controlling transcription with TfbG. At least eleven (Htr1, Htr2, Htr3, Htr4, Htr5, Htr6, Htr8, Htr13, Htr14, Htr15, and Htr16) of the seventeen signal transducers were detected. Expression of multiple transducer proteins suggests dynamic cellular functions in response to rapidly changing environmental conditions.

The gas vesicle gene clusters, gvpACNO and gvpDEFGHIJKLM, on pNRC100 had been extensively studied by genetic approaches to identify the essential genes required for gas vesicle biogenesis (11,37-42). Through analyses of spontaneous gas vesicle deficient mutants caused by transposition of insertion sequence (ISH) elements, site-specific linker insertion, and deletion mutants, at least ten of the fourteen gvp genes were determined to be necessary for gas vesicle synthesis. Our tandem mass spectrometry analysis identified the GvpA, GvpH, and GvpN in the membrane fraction, GvpO in the soluble fraction and GvpC in both fractions. Interestingly, GvpH, and GvpO were not identified from purified gas vesicles by μLC-ESI-MS/MS analysis in our recent study (unpublished data). This suggests GvpH and GvpO may not be gas vesicle structural proteins.

Four rhodopsins involved in photobiology (6-8,12-16,43); bacteriorhodopsin (Bop), halorodopsin (Hop), sensory rhodopsin I (Sop1), and sensory rhodopsin II (Sop2) were all identified in the membrane fraction.

Our study compared the results of two transmembrane helix prediction programs used to predict the presence of membrane domains in the expressed proteins. In most cases, TMpred predicted a larger number of MSRs than TMHMM. A previous comparison of fourteen
membrane protein prediction programs on 883 defined MSRs of 188 well-characterized proteins indicated the TMHMM is currently the best performing transmembrane prediction program (44). Thus, in our study, TMHMM was primarily used to predict the membrane domains while TMpred was used as a supplemental program to support the results generated by TMHMM.

The computationally predicted membrane domains were somewhat in agreement with the results of the mass spectrometry. More than 99% of the soluble fraction proteins do not contain TMHMM predicted MSRs, and 82.8% do not contain TMpred predicted MSRs with total score greater than 1000. Accordingly, 74.5% of the membrane fraction proteins contained one or more TMpred predicted MSR(s) with scores greater than 1000, and 54.5% contained at least one TMHMM predicted MSR(s). The low percentage may due to the presence of non-integral or peripheral membrane proteins without MSRs that are unlikely to be detected by either prediction program.

Analysis of a genome sequence can provide a list of all predicted genes, yet the information regarding the expression of transcriptome or proteins is difficult to measure. It is unlikely that all of the predicted putative proteins are expressed. Among the expressed proteins, post-translational or chemical modifications could lead to the formation of new or functionally different proteins. Our study was based on matching predicted proteins of genome sequences and post-translational modifications were not considered. The failure to detect a protein in this study thus does not mean that it is absent. Sophisticated developments in mass spectrometers and enhanced sample preparation protocols will enable more expressed proteins to be identified in the future.

The integrated computational and mass spectrometry data analysis in this study gives a better understanding of the expressed proteins and cellular locations of membrane and cytoplasmic proteins in *Halobacterium sp.* NRC-1. The information obtained from this study will be useful
for subsequent work, such as expression of proteins of interest to investigate certain aspects of *Halobacterium* biology. It can also be used with integrated microarray and ICAT data (45) for systems biological approaches (46) to study novel biological processes in halophiles.
References

1. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M., et al. (1995) Science 269, 496-512

2. Ng, W. V., Ciufo, S. A., Smith, T. M., Bumgarner, R. E., Baskin, D., Faust, J., Hall, B., Loretz, C., Seto, J., Slagel, J., et al. (1998) Genome Res. 8, 1131-1141

3. Ng, W. V., Kennedy, S. P., Mahairas, G. G., Berquist, B., Pan, M., Shukla, H. D., Lasky, S. R., Baliga, N. S., Thorsson, V., Sbrogna, J., et al. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 12176-12181

4. Kennedy, S. P., Ng, W. V., Salzberg, S. L., Hood, L., and DasSarma, S. (2001) Genome Res. 11, 1641-1650

5. Lanyi, J. K. (1974) Bacteriol. Rev. 38, 272-274

6. Bogomolni, R. A., and Spudich, J. L. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6250-6254

7. Spudich, J. L., and Bogomolni, R. A. (1984) Nature 312, 509-513

8. Spudich, J. L. (1993) J. Bacteriol. 175, 7755-7761

9. Brooun, A., Bell, J., Freitas, T., Larsen, R. W., and Alam, M. (1998) J. Bacteriol. 180, 1642-1646

10. DasSarma, S., Damerval, T., Jones, J. G., and Tandeau de Marsac N. (1987) Mol. Microbiol. 1, 365-370

11. DasSarma, S., Arora, P., Lin, F., Molinari, E. and Yin, L. R. (1994) J. Bacteriol. 176, 7646-7652

12. Oesterhelt, D., Meentzen, M., and Schuhmann, L. (1973) Eur. J. Biochem. 40, 453-463
13. Dunn, R., McCoy, J., Simsek, M., Majumdar, A., Chang, S. H., Rajbhandary, U. L., and Khorana, H.G. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 6744-6748

14. Schobert, B., and Lanyi, J. K. (1982) J. Biol. Chem. 257, 10306-10313

15. Krebs, M. P., and Khorana, H.G. (1993) J. Bacteriol. 175, 1555-1560

16. Kolbe, M., Besir, H., Essen, L. O, and Oesterhelt, D. (2000) Science 288, 1390-1396

17. Hartmann, R., Sickinger, H. D., and Oesterhelt, D. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 3821-3825

18. Ruepp, A., and Soppa, J. (1996) J. Bacteriol. 178, 4942-4947

19. Figeys, D., Ducret, A., Yates, J. R. 3rd, and Aebersold, R. (1996) Nat. Biotechnol. 14, 1579-1583

20. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., Yates, J. R. 3rd. (1999) Nat. Biotechnol. 17, 676-682

21. Oesterhelt, D., and Stoeckenius, W. (1974) Methods Enzymol. 31, 667-678

22. DasSarma, S., Robb, F. T., Place, A. R., Sowers, K. R., Schreier, H. J., and Fleischmann, E. M. (1995) Archaea: a laboratory manual: halophiles, Cold Spring Harbor Laboratory Press, Plainview, NY

23. Ducret, A., Van Oostveen, I., Eng, J. K., Yates, J. R. 3rd and Aebersold, R. (1998) Protein Sci. 7, 706-719

24. Eng J. K., McCormack, A. L., Yates, J. R. 3rd. (1994) J. Am. Soc. Mass Spectrom. 5, 976-989

25. Hofmann, K., and Stoffel, W. (1993) Biol. Chem. Hoppe-Seyler 374, 166

26. Sonnhammer, E. L., von Heijne, G., and Krogh, A. (1998) Nucleic Acids Res. 26, 320-322
27. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) J. Mol. Biol. 305, 567-580
28. Spahr, C. S., Davis, M. T., McGinley, M. D., Robinson, J. H., Bures, E. J., Beierle, J., Mort, J., Courchesne, P. L., Chen, K., Wahl, R. C., Yu, W., Luethy, R., and Patterson, S. D. (2001) Proteomics 1, 93-107
29. Yi, E. C., Marelli, M., Lee, H., Purvine, S. O., Aebersold, R., Aitchison, J. D., and Goodlett, D. R. (2002) Electrophoresis 23, 3205-3216
30. Han, D. k., Eng, J., Zhou, H., and Aebersold, R. (2001) Nat. Biotechnol. 19, 946-951
31. Nesvizhskii, A. L., Keller, A., Kolker, E., and Aebersold, R. (2003) Anal. Chem. In press
32. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Anal. Chem. 74, 5383-5392
33. von Haller, P. D., Yi, E. C., Donohoe, S., Vaughn, K., Keller, A., Nesvizhskii, A. I., Eng, J., Li, X., Goodlett, D. R., Aebersold, R., and Watts, J. D. (2003) Mol. Cell. Proteomics In press
34. Garrels, J. I., McLaughlin, C. S., Warner, J. R., Futzer, B., Latter, G. I., Kobayashi, R., Schwender, B., Volpe, T., Anderson, D. S., Mesquita-Fuentes, R., and Payne, W. E. (1997) Electrophoresis 18, 1347-1360
35. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., and Aebersold, R. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 9390-9395
36. Tarasov, V. Y., Pyatibratov, M. G., Tang, S. L., Dyall-Smith, M., and Fedorov, O. V. (2000) Mol. Microbiol. 35, 69-78
37. Jones, J. G., Hackett, N. R., Halladay, J. T., Scothorn, D. J., Yang, C. F., Ng, W. L., and
DasSarma, S. (1989) Nucleic Acids Res. 17, 7785-7793

38. Jones, J. G., Young, D. C., and DasSarma, S. (1991) Gene 102, 117-122

39. Ng, W. L., Kothakota, S., and DasSarma, S. (1991) J. Bacteriol. 173, 1958-1964

40. Halladay, J. T., Ng, W. L., and DasSarma, S. (1992) Gene 119, 131-136

41. Halladay, J. T., Jones, J. G., Lin, F., MacDonald, A. B., and DasSarma, S. (1993) J. Bacteriol. 175, 684-692

42. Pfeifer, F., Gregor, D., Hofacker, A., Plosser, P., and Zimmermann, P. (2002) J. Mol. Microbiol. Biotechnol. 4, 175-181

43. Haupts, U., Haupts, C., and Oesterhelt, D. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 3834-3838

44. Moller, S., Croning, M. D. and Apweiler, R. (2001) Bioinformatics 17, 646-653

45. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Nat. Biotechnol. 17, 994-999

46. Baliga, N. S., Pan, M., Goo, Y. A., Yi, E. C., Goodlett, D.R., Dimitrov, K., Shannon, P., Aebersold, R., Ng, W. V., and Hood, L. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 14913-14918
Figure Legends

Figure 1. Identification of membrane and soluble proteins from *Halobacterium sp.* NRC-1. ProteinProphet™ was used to identify 426 proteins with a probability ≥ 0.5. Of these 232 proteins were found only in the soluble fraction, 165 were only in the insoluble membrane fraction, and 29 were in both fractions.
Table 1. Proteins identified in membrane fraction.

The functional categories of proteins, the gene ID numbers, the probability calculated by empirical statistical model, the abbreviated name of protein, putative function, and the predicted number of transmembrane domains by TMHMM and TMpred are listed. Conserved hypothetical proteins (CHP), and hypothetical proteins (HP) are listed under the functional categories.

Functional Categories	Gene ID	Probability	Protein	Putative Function	TMHMM	TMpred
Amino acid metabolism	VNG0104G	1	SerA3	phosphoglycerate dehydrogenase	0	2
	VNG1814G	1	CarB	carbamoyl-phosphate synthase large subunit	0	0
	VNG2120G	1	YusM	proline dehydrogenase	0	0
	VNG2418G	1	AspC1	aspartate aminotransferase	0	1*
	VNG2421G	1	Hal	O-acetyl homoserine	0	2
Cell envelope component	VNG0180G	0.98	Hop	halorhodopsin	7	7
	VNG0321G	1	Ids	bifunctional short chain isoprenyl diphosphate synthase	1	1
	VNG1187G	1	Pan1	membrane protein	0	1
	VNG1467G	1	Bop	bacteriorhodopsin	6	7
	VNG1660G	1	Sop1	sensory rhodopsin I	7	7
	VNG1764G	0.98	Sop2	sensory rhodopsin II	7	7
	VNG6265G	1	YcdH	adhesion protein	0	1
Cellular process	VNG0129G	1	Hsp4	heat shock protease protein	4	4
	VNG0355G	1	Htr14	Htr14 transducer	1	2
	VNG0375G	1	SecE	protein translocase	1	1
	VNG0614G	0.79	Htr16	Htr16 transducer	1	1
	VNG0793G	1	Htr6	Htr6 transducer	2	2
	VNG0806G	1	Htr4	Htr4 transducer	2	3
	VNG0971G	0.99	CheA	chemotaxis protein	0	2
	VNG0976G	1	cheW1	chemotaxis protein	0	0
	VNG1523G	1	Htr8	Htr8 transducer	5	5
	VNG1529G	1	Htr1	Htr1 transducer	1	2
	VNG1760G	1	Htr5	Htr5 transducer	2	2
	VNG1765G	1	Htr2	Htr2 transducer	1	3
	VNG1801G	1	Hsp1	small heat shock protein	0	0
	VNG1856G	1	Htr3	Htr3 transducer	1	1
	VNG1987G	1	SecD	protein-export membrane protein	6	5
	VNG1988G	1	SecF	protein-export membrane protein	6	5
	VNG5025G	1	GvpH1	GvpH protein, cluster A	0	0
	VNG6024G	1	GvpN1	GvpN protein, cluster A	0	0
	VNG5030G	1	GvpA1	GvpA protein, cluster A	0	0
	VNG6029G	1	GvpA2	GvpA protein, cluster A	0	0
	VNG5033G	1	GvpN1	GvpN protein, cluster A	0	0
	VNG6032G	1	GvpN2	GvpN protein, cluster A	0	0
Cofactor Metabolism	VNG1635G	0.98	CbiM	cobalamin biosynthesis protein	6	6
---------------------	----------	------	------	--------------------------------	---	---
	VNG1776G	1	NirH	heme biosynthesis protein	0	0
DNA Replication,	VNG0884G	1	Top6A	DNA topoisomerase VI subunit A	0	0
Repair, and	VNG2372G	1	Rad24c	DNA repair protein	0	0
Recombination	VNG2473G	1	RadA1	DNA repair protein	0	1
Energy Metabolism	VNG0412G	1	FolP	dihydropteroate synthase	0	0
	VNG0637G	1	NdhG5	NADH dehydrogenase/oxidoreductase	0	1
	VNG0639G	1	NdhG4	NADH dehydrogenase/oxidoreductase	6	7
	VNG0646G	1	NuoL	F420H2:quinone oxidoreductase	17	15
	VNG0648G	1	NdhG3	NADH dehydrogenase/oxidoreductase	11	10
	VNG0657G	1	CoxA2	cytochrome c oxidase subunit I	13	14
	VNG0665G	1	CoxB1	cytochrome c oxidase subunit II	3	3
	VNG0891G	1	YjI	NADH dehydrogenase	0	1
	VNG1308G	1	SdhB	succinate dehydrogenase subunit B	0	1
	VNG1498G	1	CelM	endoglucanase	0	0
	VNG2141G	1	AtpC	H^+-transporting ATP synthase subunit C	0	1*
	VNG2143G	1	AtpK	H^+-transporting ATP synthase subunit K	2	2
	VNG2193G	1	CoxA1	cytochrome c oxidase subunit I	10	11
	VNG2195G	1	CoxB2	cytochrome c oxidase subunit II	0	0
	VNG5055G,	1	CydA	cytochrome d oxidase chain I	9	11
	VNG5242G,					
	VNG6055G,					
	VNG6473G					
Miscellaneous	VNG0249G	1	Fbr	cytochrome-like protein	0	2
	VNG0303G	1	Lon	ATP-dependent proteinase homolog	1	2
	VNG0459G	1	NodP	nodulation protein	0	0
	VNG0540G	1	Imp	immunogenic protein	0	1*
	VNG0620G	1	Edp	proteinase IV homolog	1	3
	VNG0635G	1	NoIB	NADH dehydrogenase/oxidoreductase-like protein	3	3
	VNG0640G	0.98	NoID	NADH dehydrogenase/oxidoreductase-like protein	0	0
	VNG0795G	1	HcpC	halocyanin precursor-like	0	2
	VNG1428G	1	HtA	Htr-like protein	7	7
	VNG1932G	1	NolA	NADH dehydrogenase/oxidoreductase-like protein	0	2
	VNG2086G	1	Hpb	possible phosphate binding protein	0	1
	VNG2196G	1	HcpB	halocyanin precursor-like	3	3
	VNG2308G	1	Hlp	hemolysin protein	2	3
	VNG2320G	1	HdrD	heterodisulfid reductase	5	6
	VNG2358G	1	AppA	oligopeptide binding protein	0	1
	VNG6301G	1	Aph	alkaline phosphatase	0	1
Nucleotide Metabolism	VNG0632G	1	PurK	phosphoribosylaminomimidazole carboxylase ATP binding subunit	0	0
	VNG1408G	1	Ush	UDP-sugar hydrolase	2	2
Gene	Accession	Predicted Protein Function				
------------	-----------	---				
VNG2507G	0.99	PyrD dehydroorotate dehydrogenase				
VNG0177G	1	Rpl15e 50S ribosomal protein L15E				
VNG0551G	1	Rpl44e 50S ribosomal protein L44E				
VNG1433G	1	Rps17e 30S ribosomal protein S17E				
VNG1866G	0.98	Map methionyl aminopeptidase				
VNG2469G	1	Rpl39e 50S ribosomal proteins L39E				
VNG0002G	1	YvrO amino acid ABC transporter, ATP-binding protein				
VNG0174G	1	Cat1 cationic amino acid transporter				
VNG0453G	1	PstA2 phosphate ABC transporter permease				
VNG0455G	1	PstC2 phosphate ABC transporter permease				
VNG0457G	1	PhoX phosphate ABC transporter periplasmic phosphate-binding				
VNG0794G	1	YufN ABC transporter (lipoprotein)				
VNG0924G	1	Ibp iron-binding protein				
VNG1634G	0.97	CbiN cobalt transport protein				
VNG1762G	0.99	ProX putative ABC transporter				
VNG2343G	1	YkID oligopeptide ABC transporter ATP-binding				
VNG2346G	1	DppC2 dipeptide ABC transporter permease				
VNG2347G	1	DppB1 dipeptide ABC transporter permease				
VNG2359G	0.99	AppB oligopeptide ABC permease				
VNG2378G	1	NosF1 copper transport ATP-binding protein				
VNG2483G	1	PstA1 phosphate ABC transporter permease				
VNG2486G	1	YutG phosphate ABC transporter binding				
VNG2527G	1	DppD dipeptide ABC transporter ATP-binding				
VNG2529G	1	DppB2 dipeptide ABC transporter permease				
VNG6277G	1	UgpB glycerol-3-phosphate-binding protein precursor				
VNG6313G	1	NhaC3 Na+/H+ antiporter				
VNG0593G	0.99	Dmd diphosphate decarboxylase				
VNG0748G	1	PrkA kinase anchor protein				
VNG1068G	1	Tot transmembrane oligosaccharyl transferase				
VNG2106G	0.99	Sdh succinate dehydrogenase subunit				
VNG2422G	0.99	GlcD glycolate oxidase subunit				
VNG0361C	0.99	Conserver hypothetical protein				
VNG0406C	0.98	Conserver hypothetical protein				
VNG0439C	0.99	Conserver hypothetical protein				
VNG0498C	1	Conserver hypothetical protein				
VNG0537C	1	Conserver hypothetical protein				
VNG0560C	1	Conserver hypothetical protein				
VNG0573C	0.96	Conserver hypothetical protein				
VNG0582C	1	Conserver hypothetical protein				
VNG0586C	1	Conserver hypothetical protein				
VNG0675C	1	Conserver hypothetical protein				
VNG0727C	1	Conserver hypothetical protein				
VNG0754C	1	Conserver hypothetical protein				
VNG0801C	1	Conserver hypothetical protein				
VNG0903C	1	Conserver hypothetical protein				
VNG1021C	0.98	Conserver hypothetical protein				
VNG1323C	0.98	Conserver hypothetical protein				
VNG1475C	1	Conserver hypothetical protein				
Accession	TMpred Score	Description	TMpred Score	Description		
--------------	--------------	------------------------------	--------------	------------------------------		
VNG1746C	1	Conserver hypothetical protein	0	0		
VNG2121C	0.86	Conserver hypothetical protein	2	2		
VNG2282C	1	Conserver hypothetical protein	0	2		
VNG2285C	1	Conserver hypothetical protein	2	2		
VNG2329C	0.51	Conserver hypothetical protein	4	4		
VNG2395C	1	Conserver hypothetical protein	0	1		
VNG2549C	1	Conserver hypothetical protein	0	1		
VNG2555C	1	Conserver hypothetical protein	1	1		
VNG2587C	0.98	Conserver hypothetical protein	0	0		
VNG5143C	1	Conserver hypothetical protein	10	11		
VNG6268C	1	Conserver hypothetical protein	15	16		
VNG6296C	1	Conserver hypothetical protein	0	2		

HP	VNG0001H	Hypothetical protein	2	2
	VNG0005H	Hypothetical protein	11	14
	VNG0058H	Hypothetical protein	9	9
	VNG0322H	Hypothetical protein	3	3
	VNG0331H	Hypothetical protein	2	2
	VNG0352H	Hypothetical protein	1	1
	VNG0509H	Hypothetical protein	1	1
	VNG0516H	Hypothetical protein	2	2
	VNG0578H	Hypothetical protein	4	4
	VNG0584H	Hypothetical protein	0	1
	VNG0585H	Hypothetical protein	2	2
	VNG0590H	Hypothetical protein	4	4
	VNG0617H	Hypothetical protein	0	0
	VNG0743H	Hypothetical protein	0	1*
	VNG0759H	Hypothetical protein	2	3
	VNG0767H	Hypothetical protein	2	2
	VNG0913H	Hypothetical protein	11	12
	VNG1002H	Hypothetical protein	5	7
	VNG1034H	Hypothetical protein	4	4
	VNG1120H	Hypothetical protein	0	1
	VNG1250H	Hypothetical protein	1	1
	VNG1315H	Hypothetical protein	0	1*
	VNG1440H	Hypothetical protein	2	2
	VNG1538H	Hypothetical protein	1	1
	VNG1619H	Hypothetical protein	5	5
	VNG1802H	Hypothetical protein	0	0
	VNG1934H	Hypothetical protein	2	2
	VNG1965H	Hypothetical protein	8	8
	VNG2328H	Hypothetical protein	3	3
	VNG2380H	Hypothetical protein	5	4
	VNG2403H	Hypothetical protein	0	1
	VNG2413H	Hypothetical protein	4	3
	VNG2562H	Hypothetical protein	0	2
	VNG2599H	Hypothetical protein	1	1
	VNG2678H	Hypothetical protein	2	2
	VNG6251H	Hypothetical protein	1	1

* TMpred total score < 1000
Table 2. Proteins identified in soluble fraction.

The functional categories of proteins, the gene ID numbers, the probability calculated by empirical statistical model, the abbreviated name of protein, putative function, and the predicted number of transmembrane domain by TMHMM and TMpred are listed. Conserved hypothetical proteins (CHP), and hypothetical proteins (HP) are listed under the functional categories.

Functional Categories	Gene ID	Probability	Protein	Putative Function	TMHMM	TMpred
Amino acid metabolism	VNG0161G	1	GdhB	glutamate dehydrogenase	0	2
	VNG0606G	1	YrhA	cysteine synthase	0	2
	VNG0628G	1	GdhA1	glutamate dehydrogenase	0	1*
	VNG0629G	1	AspB2	aspartate aminotransferase	0	1*
	VNG0796G	1	Cgs	cystathionine gamma-synthase	0	2
	VNG1172G	1	MetB	cystathionine alpha synthase	0	1
	VNG1414G	1	GlyA	glycine hydroxymethyltransferase	0	0
	VNG1912G	1	TrpD2	phosphoribosyl transferase	0	1
	VNG2093G	1	GlnA	glutamine synthetase	0	0
	VNG2100G	1	IleA	threonine dehydratase	0	2
	VNG2224G	1	Ocd1	ornithine cyclodeaminase	0	1*
	VNG2251G	1	AchY	adenosylhomocysteinase	0	0
	VNG2294G	0.98	HisA	phosphoribosylformimino-5-aminomimidazole carboxamide ribotide isomerase	0	1*
	VNG2424G	1	SerA1	phosphoglycerate dehydrogenase	0	1
	VNG6315G	1	ArcB	ornithine carbamoyltransferase	0	0
	VNG6316G	1	ArcC	carbamate kinase	0	0
	VNG6317G	1	ArcA	arginine deiminase	0	0
Cell envelope component	VNG0428G	1	Fad2	enoyl-CoA hydratase	0	2
	VNG0679G	1	Acd4	acyl-CoA dehydrogenase	0	1*
	VNG0681G	1	Hbd1	3-hydroxyacyl-CoA dehydrogenase	1	1
	VNG0771G	1	AldY2	aldehyde dehydrogenase (retinol)	0	1
	VNG0775G	1	Acd2	acyl-CoA dehydrogenase	0	1*
	VNG1313G	1	Hbd2	3-hydroxyacyl-CoA dehydrogenase	0	1*
	VNG1482G	1	Acd5	acyl-CoA dehydrogenase	0	2
	VNG1532G	1	Acc	biotin carboxylase	0	0
	VNG2122G	1	IlvE2	branched-chain amino-acid aminotransfer	0	0
	VNG2513G	1	AldY1	aldehyde dehydrogenase (retinol)	0	1*
	VNG5084G,		Crt	carotenoid biosynthetic protein	0	0
	VNG5213G, VNG6081G,					
	VNG6445G					
Cellular process	VNG0101G	1	CspD1	cold shock protein	0	0
	VNG0166G	1	PsmB	proteasome, subunit beta	0	0
Gene ID	Gene Name	Description	Value 1	Value 2		
------------	-------------------------------	--	---------	---------		
VNG0491G	DnaK	heat shock protein	0	1*		
VNG0494G	GrpE	heat shock protein	0.98	0		
VNG0880G	PsmA	proteasome, subunit alpha	1	2		
VNG0942G	CheW2	chemotaxis protein	0.76	0		
VNG0958G	Htr15	Htr15 transducer	0	1*		
VNG1013G	Htr13	Htr13 transducer	0.76	1*		
VNG1147G	Cdc48b	cell division cycle protein	1	1*		
VNG1667G	Cdc48c	cell division cycle protein	0	0		
VNG1836G	CspD2	cold shock protein	0	0		
VNG1933G	FtsZ3	cell division protein	0	2		
VNG2096G	CctB	thermosome subunit beta	0	3		
VNG2226G	CctA	thermosome subunit alpha	0	1		
VNG2443G	DpsA	starvation induced DNA binding protein	0	0		
VNG5034G,	GvpO1	GvpO protein, cluster A	0	0		
VNG5089G,	SojC1	Spo0A activation inhibitor	0	0		
VNG5208G,						
VNG6086G	GvpO2	GvpO protein, cluster B	0	0		
VNG6246G		peroxidase / catalase	0	1*		
VNG1555G	CobH	cobalamin biosynthesis	0	3		
VNG1566G	CobN	cobalamin biosynthesis protein	0	1*		
VNG2604G	Thi1	thiamine biosynthetic enzyme	0	1*		
VNG2606G	ThiD	hydroxymethylpyrimidine phosphate kinase	0	0		
VNG1190G	Sod1	superoxide dismutase	0	1*		
VNG2256G	Pcn	proliferating-cell nuclear antigen	0	0		
VNG2280G	RfaC	replication factor C small subunit	0	0		
VNG2620G	UvrD	repair helicase	0	0		
VNG0095G	GapB	glyceraldehyde 3-phosphate dehydrogenase	0	0		
VNG0259G	Ipp	inorganic pyrophosphatase	0	0		
VNG0330G	PpsA	phosphoenolpyruvate synthase	0	0		
VNG0467G	YafB	aldehyde reductase	0	0		
VNG0474G	PorA	pyruvate ferrodoxin oxidoreductase, subunit alpha	0	2		
VNG0684G	Fbp	fructose-bisphosphatase	0	2		
VNG0940G	Acs3	acetyl-CoA synthetase	0	1*		
VNG0997G	Acs2	acetyl-CoA synthetase	0	3		
VNG1128G	KorA	putative 2-ketoglutarate ferrodoxin oxidoreductase (alpha)	0	1*		
VNG1142G	Eno	phosphopyruvate hydratase	0	1*		
VNG1356G	FumC	fumarate hydratase	0	0		
VNG1541G	SucC	succinyl-CoA synthetase beta chain	0	1*		
VNG1542G	SucD	succinyl-CoA synthetase alpha chain	0	0		
VNG1873G	Icd	isocitrate dehydrogenase, NADP	0	1*		
VNG1914G	PpiA	peptidyl-prolyl isomerase	0	0		
VNG2102G	CitZ	citrate synthase	0	1*		
VNG2138G	AtpB	H+-transporting ATP synthase subunit B	0	0		
VNG2139G	AtpA	H+-transporting ATP synthase subunit A	0	0		
VNG2142G	AtpE	H+-transporting ATP synthase subunit E	0	0		
VNG2151G	EtfA	electron transfer flavoprotein subunit alpha	0	1*		
Gene Name	Protein Name	Description	ORF	Notes		
---------------	---------------------------	---	-----	--------		
VNG2217G	PdhA2	pyruvate dehydrogenase alpha subunit	1	*		
VNG2218G	PdhB	pyruvate dehydrogenase beta subunit	1	*		
VNG2219G	Dsa	dihydrolipoamide S-acetyltransferase	1	*		
VNG2220G	LpdA	dihydrolipoamide dehydrogenase	2	0		
VNG2229G	FerA2	ferredoxin	0	0		
VNG2367G	MdhA	L-malate dehydrogenase	0	1		
VNG2496G	FerB	ferredoxin	0	3		
VNG2574G	Can	aconitase	0	1		
VNG2617G	Adh2	alcohol dehydrogenase	0	1		
VNG6270G	GldA	sn-glycerol-1-phosphate dehydrogenase	0	0		
VNG0186G	PepB1	aminopeptidase homolog	0.56	0		
VNG0523G	Inb	oxidoreductase homolog	1	0		
VNG1416G	FoD	methylenetetrahydrofolate dehydrogenase	0.99	0		
VNG0414G	PurH	phosphoribosylaminomimidazole-succinocarboxamide formyltransferase	1	2		
VNG0448G	PyrE1	orotate phosphoribosyl transferase	0.99	0		
VNG0559G	Apt	adenine phosphoribosyltransferase	0	1		
VNG0890G	Imd2	inosine-5'-monophosphate dehydrogenase	0	0		
VNG0893G	Udp2	uridine phosphorylase	0.99	0		
VNG1001G	GuaB	inosine monophosphate dehydrogenase	0	1		
VNG1048G	Udg1	UDP-glucose dehydrogenase	0	1		
VNG1089G	PurA	adenylosuccinate synthase	0	0		
VNG1160G	Ndk	nucleoside diphosphate kinase	0	1		
VNG1305G	PurD	phosphoribosylglycinamidase synthetase	0	0		
VNG1724G	Adk	adenylate kinase	0	0		
VNG1830G	PyrG	CTP synthase	0.98	1		
VNG2118G	PyrE2	orotate phosphoribosyl transferase	0	2		
VNG2600G	TrxA2	thioredoxin	0	0		
VNG6309G	PyrB	aspartate carbamoyltransferase catalytic subunit	0	0		
VNG6311G	PyrI	aspartate carbamoyltransferase regulatory chain	0	0		
VNG0550G	Rps27e	30S ribosomal protein S27E	0.95	0		
VNG0787G	Rps3e	30S ribosomal protein S3E	0	0		
VNG0790G	Rps15p	30S ribosomal protein S15P	0	0		

Miscellaneous

Gene Name	Protein Name	Description	ORF	Notes
VNG2616G	PepB2	aminopeptidase homolog	0	0
VNG1136G	Rpb3	RNA-directed RNA polymerase II	0	0
VNG11160G	Ndk	nucleoside diphosphate kinase	0	0
VNG1922G	Trh5	transcription regulator	0	0
VNG2036G	Hix1	HoxA-like transcriptional regulator	0	0
VNG2094G	Trh4	transcription regulator	0	0

Nucleotide Metabolism

Gene Name	Protein Name	Description	ORF	Notes
VNG0451G	PhoU	transcriptional regulator	0.99	0
VNG0536G	SirR	transcription repressor	0	0
VNG1922G	TrhS	transcription regulator	0	0
VNG2036G	Hix1	HoxA-like transcriptional regulator	0.98	0
VNG2094G	Trh4	transcription regulator	0.98	0

Transcription

Gene Name	Protein Name	Description	ORF	Notes
VNG0401G	Epf2	mRNA 3'-end processing factor homolog	1	1
VNG1136G	Rpb3	DNA-directed RNA polymerase II	1	0
VNG2243G	TbpE	transcription initiation factor IID	1	0
VNG2662G	RpoC	DNA-directed RNA polymerase subunit C	1	0
VNG2664G	RpoA	DNA-directed RNA polymerase subunit A	1	0
VNG2665G	RpoB'	DNA-directed RNA polymerase subunit B'	1	0
VNG2666B	RpoB''	DNA-directed RNA polymerase subunit B''	1	0

Translation

Gene Name	Protein Name	Description	ORF	Notes		
VNG0461G	AspS	aspartyl-tRNA synthetase	0	0		
VNG0550G	Rps27e	30S ribosomal protein S27E	0.95	0		
VNG0787G	Rps3e	30S ribosomal protein S3E	0	0		
VNG0790G	Rps15p	30S ribosomal protein S15P	0	0		
Accession Number	Gene ID	Description	Rpl10p	50S ribosomal protein L10P	0	0
-------------------	---------	------------------------------------	--------	---------------------------	----	----
VNG1104G	1	Rpl10p			0	0
VNG1105G	1	Rpl1p		50S ribosomal protein L1P	0	0
VNG1108G	1	Rpl1lp		50S ribosomal protein L11P	0	0
VNG1112G	1	Rps13p		30S ribosomal protein S13P	0	0
VNG1133G	1	Rps4p		30S ribosomal protein S4P	0	0
VNG1138G	1	Rpl13p		50S ribosomal protein L13P	0	0
VNG1143G	1	Rps2p		30S ribosomal protein S2P	0	0
VNG1157G	1	Rps6p		30S ribosomal protein HS6	0	1*
VNG1158G	1	Rps28e		30S ribosomal protein S28E	0	0
VNG1170G	1	Rpl21e		50S ribosomal protein L21E	0	0
VNG1190G	1	Rpl4e		50S ribosomal protein L4E	0	0
VNG1191G	1	Rpl23p		50S ribosomal protein L23P	0	0
VNG1193G	1	Rps19p		30S ribosomal protein S19P	0	0
VNG1195G	1	Rpl22p		50S ribosomal protein L22P	0	0
VNG1197G	1	Rps3p		30S ribosomal protein S3P	0	0
VNG1198G	1	Rpl29p		50S ribosomal protein L29P	0	0
VNG1700G	1	Rps17p		30S ribosomal protein S17P	0	0
VNG1702G	1	Rpl24p		50S ribosomal protein L24P	0	0
VNG1703G	1	Rps4e		30S ribosomal protein S4E	0	0
VNG1705G	1	Rpl5p		50S ribosomal protein L5P	0	0
VNG1709G	1	Rpl6p		50S ribosomal protein L6P	0	0
VNG1715G	1	Rps5p		30S ribosomal protein S5P	0	0
VNG1716G	1	Rpl30p		50S ribosomal protein L30P	0	0
VNG1997G	1	InfB		bacterial-like IF2	0	0
VNG2005G	1	HisS		histidyl-tRNA synthetase	0	1*
VNG2010G	1	Rps19e		30S ribosomal protein S19E	0	0
VNG2048G	1	Rps24e		30S ribosomal protein S24E	0	0
VNG2072G	1	SerS		serine-tRNA synthetase	0	1*
VNG2190G	1	IleS		isoleucyl-tRNA synthetase	0	1*
VNG2352G	1	GlyS		glycine-tRNA synthetase	0	1*
VNG2467G	1	Rpl31e		50S ribosomal protein L31E	0	0
VNG2514G	1	Rps6e		30S ribosomal protein S6E	0	0
VNG2649G	1	Eef1a		translation elongation factor eEF-1A subunit alpha	0	0
VNG2654G	1	Eef2		translation elongation factor eEF-2	0	0
VNG6312G	1	ArgS		arginine-tRNA synthetase	0	1*
Transport						
VNG0115G	1	YusZ1		oxidoreductase	0	0
VNG0524G	1	YurY		ABC transporter, ATP-binding protein	0	0
VNG1924G	1	TrkA6		TRK potassium uptake system protein	0	0
Uncharacterized						
VNG0937G	1	Gap		glyceraldehyde-3-phosphate dehydrogenase	0	1*
VNG0998G	1	YajO2		probable oxidoreductase	0	0
VNG1294G	1	SlyD		peptidyl-prolyl cis-trans isomerase	0	0
VNG2001G	1	yjbG		oligopeptidase	0	2
VNG2593G	1	TssA		probable thiosulfate sulfurtransferase	0	0
VNG2639G	1	Uae		UDP-N-acetyllucosamine 2-epimerase	0	0
CHP						
VNG0096C	1	Conserved hypothetical protein		Conserved hypothetical protein	0	1*
VNG0153C	1	Conserved hypothetical protein		Conserved hypothetical protein	0	1*
VNG0234C	1	Conserved hypothetical protein		Conserved hypothetical protein	0	0
VNG0239C	1	Conserved hypothetical protein		Conserved hypothetical protein	0	0
VNG0309C	1	Conserved hypothetical protein		Conserved hypothetical protein	0	0
VNG0310C	1	Conserved hypothetical protein		Conserved hypothetical protein	0	0
VNG0394C	1	Conserved hypothetical protein		Conserved hypothetical protein	0	0
VNG0424C	1	Conserved hypothetical protein	0	0		
VNG0525C	1	Conserved hypothetical protein	0	1		
VNG0527C	1	Conserved hypothetical protein	0	1		
VNG0546C	1	Conserved hypothetical protein	0	1		
VNG0654C	1	Conserved hypothetical protein	0	0		
VNG0683C	1	Conserved hypothetical protein	0	0		
VNG0758C	1	Conserved hypothetical protein	0	0		
VNG0849C	1	Conserved hypothetical protein	0	0		
VNG0941C	1	Conserved hypothetical protein	0	0		
VNG1038C	1	Conserved hypothetical protein	0	0		
VNG1088C	1	Conserved hypothetical protein	0	0		
VNG1093C	1	Conserved hypothetical protein	0	0		
VNG1149C	1	Conserved hypothetical protein	0	0		
VNG1168C	1	Conserved hypothetical protein	0	0		
VNG1169C	1	Conserved hypothetical protein	0	0		
VNG1276C	1	Conserved hypothetical protein	0	0		
VNG1297C	1	Conserved hypothetical protein	0	1*		
VNG1325C	1	Conserved hypothetical protein	0	0		
VNG1339C	1	Conserved hypothetical protein	0	2		
VNG1524C	1	Conserved hypothetical protein	0	1*		
VNG1663C	1	Conserved hypothetical protein	0	0		
VNG1748C	0.98	Conserved hypothetical protein	0	0		
VNG1752C	1	Conserved hypothetical protein	0	0		
VNG1793C	1	Conserved hypothetical protein	0	1*		
VNG1898C	1	Conserved hypothetical protein	0	0		
VNG2021C	1	Conserved hypothetical protein	0	0		
VNG2099C	1	Conserved hypothetical protein	0	0		
VNG2117C	0.91	Conserved hypothetical protein	0	2		
VNG2160C	1	Conserved hypothetical protein	0	0		
VNG2162C	0.99	Conserved hypothetical protein	0	0		
VNG2259C	1	Conserved hypothetical protein	0	1*		
VNG2351C	1	Conserved hypothetical protein	0	0		
VNG2371C	0.51	Conserved hypothetical protein	0	1*		
VNG2465C	1	Conserved hypothetical protein	0	0		
VNG2508C	1	Conserved hypothetical protein	0	0		
VNG2584C	1	Conserved hypothetical protein	0	0		
VNG2615C	1	Conserved hypothetical protein	0	0		
VNG5069C, VNG5228C, VNG6066C, VNG64609C	1	Conserved hypothetical protein	0	1*		
HP	VNG0207H	1	Hypothetical protein	0	0	
HP	VNG0557H	1	Hypothetical protein	0	1*	
HP	VNG0597H	1	Hypothetical protein	0	1*	
HP	VNG0782H	1	Hypothetical protein	0	0	
HP	VNG1257H	1	Hypothetical protein	0	0	
HP	VNG1289H	1	Hypothetical protein	0	0	
HP	VNG1291H	0.66	Hypothetical protein	0	0	
HP	VNG1412H	1	Hypothetical protein	0	0	
HP	VNG1562H	1	Hypothetical protein	0	0	
HP	VNG1925H	1	Hypothetical protein	0	0	
HP	VNG2008H	0.98	Hypothetical protein	0	0	
HP	VNG2146H	1	Hypothetical protein	0	0	
Protein ID	Multiplicity	Description	TMpred Score	TMD Score		
-------------	--------------	-------------------	--------------	-----------		
VNG2273H	1	Hypothetical protein	0	0		
VNG2392H	1	Hypothetical protein	0	0		
VNG2509H	1	Hypothetical protein	1	1		
VNG2603H	1	Hypothetical protein	0	0		
VNG2643H	1	Hypothetical protein	0	0		
VNG5049H,	1	Hypothetical protein	0	0		
VNG5248H,						
VNG6047H						
VNG6479H						
VNG5145H	1	Hypothetical protein	0	0		

* TMpred total score < 1000
Table 3. Proteins identified in both membrane and soluble fraction.

The functional categories of proteins, the gene ID numbers, the probability calculated by empirical statistical model, the name of protein, putative function, and the predicted number of transmembrane domain by TMHMM and TMpred are listed. Hypothetical proteins (HP) are listed under the functional categories.

Functional Categories	Gene ID	Probability	Protein	Putative Function	TMHMM	TMpred
Cell envelope component	VNG2679G	1	Csg	cell surface glycoprotein	1	2
Cellular process	VNG0960G	1	FlaB1	flagellin B1 precursor	1	1
	VNG0962G	1	FlaB3	flagellin B3 precursor	0	1
	VNG1008G	1	FlaA1a	flagellin A1 precursor	1	1
	VNG1009G	1	FlaA2	flagellin A2 precursor	0	1
	VNG5032G, VNG6031G	1	GvpC1	GvpC protein, cluster A	0	0
Cofactor Metabolism	VNG1550G	1	CbiT	cobalamin biosynthesis glutamate-1-semialdehyde aminotransferase	0	0
	VNG2326G	0.99	HemL		0	0
Energy Metabolism	VNG1125G	1	KorB	putative 2-ketoglutarate ferredoxin oxidoreductase (beta) succinate dehydrogenase subunit A	0	0
	VNG1306G	1	SdhA		0	2
Nucleotide Metabolism	VNG1644G	1	NrdB2	ribonucleoside reductase large chain	0	2
Translation	VNG0099G	1	Rpl10e	50S ribosomal protein L10E	0	0
	VNG1134G	1	Rps11p	30S ribosomal protein S11P	0	0
	VNG1137G	1	Rpl18e	50S ribosomal protein L18E	0	0
	VNG1139G	1	Rps9p	30S ribosomal protein S9P	0	0
	VNG1668G	1	Rps8e	30S ribosomal protein S8E	0	0
	VNG1689G	1	Rpl3p	50S ribosomal protein L13P	0	0
	VNG1692G	1	Rpl2p	50S ribosomal protein L2P	0	0
	VNG1701G	1	Rpl14p	50S ribosomal protein L14P	0	0
	VNG1707G	1	Rps8p	30S ribosomal protein S8P	0	0
	VNG1711G	1	Rpl32e	50S ribosomal protein L32E	0	0
	VNG1713G	1	Rpl19e	50S ribosomal protein L19E	0	0
	VNG1714G	1	Rpl18p	50S ribosomal protein L18P	0	1
	VNG1718G	1	Rpl15p	50S ribosomal protein L15P	0	0
	VNG2657G	1	Rps7p	30S ribosomal protein S7P	0	0
	VNG2658G	1	Rps12p	30S ribosomal protein S12P	0	0
Transport	VNG2349G	1	DppA	dipeptide ABC transporter dipeptide-binding	0	2
HP	VNG1220H	0.99		Hypothetical protein	0	0
	VNG2400H	0.99		Hypothetical protein	0	0

* TMpred total score < 1000
Table 4. Expressed proteins in metabolic pathways.

Expressed proteins were analyzed for pathway involvement by searching the KEGG Enzymes/Compounds/Genes pathway database. Pathway, known number of proteins involved in a pathway in *Halobacterium sp. NRC-1*, number of protein identified in this study, gene identification number, abbreviated protein name, and putative function are listed. Some proteins are involved in more than one pathway.

Pathway	Total number of proteins	Identified proteins	Gene ID	Protein and Putative function
Glycolysis / Gluconeogenesis	17	8	VNG0771G AldY2; aldehyde dehydrogenase (retinol)	
			VNG0997G Acs2; acetyl-CoA synthetase	
			VNG1142G Eno; EnOlaSe	
			VNG2217G PdhA2; pyruvate dehydrogenase alpha subunit	
			VNG2218G PdhB; pyruvate dehydrogenase beta subunit	
			VNG2219G Dsa; dihydrolipoamide S-acetyltransferase	
			VNG2220G LpdA; dihydrolipoamide dehydrogenase	
			VNG2513G AldY1; aldehyde dehydrogenase (retinol)	
Citrate cycle (TCA cycle)	18	14	VNG0474G PorA; pyruvate ferredoxin oxidoreductase, subunit alpha	
			VNG1125G KorB; 2-oxoglutarate ferredoxin oxidoreductase, beta subunit	
			VNG1128G KorA; 2-oxoglutarate ferredoxin oxidoreductase, alpha subunit	
			VNG1306G SdhA; SucCinate dehydrogenase subunit A	
			VNG1308G SdhB; SucCinate dehydrogenase subunit B	
			VNG1356G FumC; fumarate hydratase	
			VNG1532G Acc; pyruvate Carboxylase subunit A	
			VNG1541G SucC; SucCinky-CoA synthetase beta chain	
			VNG1542G SucD; SucCinky-CoA synthetase alpha chain	
			VNG1873G Icd; isocitrate dehydrogenase, NADP	
			VNG2102G CitZ; citrate synthase	
			VNG2220G LpdA; dihydrolipoamide dehydrogenase	
			VNG2367G MdhA; L-malate dehydrogenase	
			VNG2574G Can; aconitase	
Ascorbate and aldarate metabolism	3	2	VNG0771G AldY2; aldehyde dehydrogenase (retinol)	
			VNG2513G AldY1; aldehyde dehydrogenase (retinol)	
Fatty acid biosynthesis (path 2)	7	4	VNG0428G Fad2; Enoyl-CoA hydratase	
			VNG0681G Hbd1; 3-hydroxyacyl-CoA dehydrogenase	
			VNG1313G Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase	
			VNG2063G Aca; probable acetyl-coa acetyltransferase	
Pathway	Count 1	Count 2	Gene ID	Description
-------------------------------	---------	---------	----------	---
Fatty acid metabolism	13	6	VNG0428G	Fad2; Enoyl-CoA hydratase
			VNG0681G	Hbd1; 3-hydroxyacyl-CoA dehydrogenase
			VNG0771G	AldY2; aldehyde dehydrogenase (retinol)
			VNG1313G	Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase
			VNG2063G	Acac; probable acetyl-coa acetyltransferase
			VNG2513G	AldY1; aldehyde dehydrogenase (retinol)
Sterol biosynthesis	7	1	VNG0593G	Dmd; diphosphomevalonate deCarboxylase
Bile acid biosynthesis	11	6	VNG0679G	Acd4; acyl-CoA dehydrogenase
			VNG0771G	AldY2; aldehyde dehydrogenase (retinol)
			VNG0775G	Acd2; acyl-CoA dehydrogenase
			VNG1482G	Acd5; acyl-CoA dehydrogenase
			VNG2063G	Acac; probable acetyl-coa acetyltransferase
			VNG2513G	AldY1; aldehyde dehydrogenase (retinol)
Ubiquinone biosynthesis	18	7	VNG0635G	NolB; NADH dehydrogenase I chain A
			VNG0637G	NdhG5; NADH dehydrogenase I chain C / D
			VNG0639G	NdhG4; NADH dehydrogenase I chain H
			VNG0640G	NolD; NADH dehydrogenase I chain I
			VNG0646G	NuoL; NADH dehydrogenase I chain L
			VNG0648G	NdhG3; NADH dehydrogenase I chain N
			VNG1932G	NolA; NADH dehydrogenase/oxidoreductase-like protein
Oxidative phosphorylation	30	20	VNG0259G	Ipp; inorganic pyrophosphatase
			VNG0635G	NolB; NADH dehydrogenase I chain A
			VNG0637G	NdhG5; NADH dehydrogenase I chain C / D
			VNG0639G	NdhG4; NADH dehydrogenase I chain H
			VNG0640G	NolD; NADH dehydrogenase I chain I
			VNG0646G	NuoL; NADH dehydrogenase I chain L
			VNG0648G	NdhG3; NADH dehydrogenase I chain N
			VNG0657G	CoxA2; cytochrome c oxidase subunit I
			VNG0665G	CoxB1; cytochrome c oxidase subunit II
			VNG1306G	SdhA; SucCinate dehydrogenase subunit A
			VNG1308G	SdhB; SucCinate dehydrogenase subunit B
			VNG1932G	NolA; NADH dehydrogenase/oxidoreductase-like protein
			VNG2138G	AtpB; H+ transporting ATP synthase subunit B
			VNG2139G	AtpA; H+ transporting ATP synthase subunit A
			VNG2141G	AtpC; H+ transporting ATP synthase subunit C
			VNG2142G	AtpE; H+ transporting ATP synthase subunit E
			VNG2143G	AtpK; H+ transporting ATP synthase subunit K
			VNG2144G	AtpI; H+ transporting ATP synthase subunit I
			VNG2193G	CoxA1; cytochrome c oxidase subunit I
			VNG2195G	CoxB2; cytochrome c oxidase subunit II
ATP synthesis	8	6	VNG2138G	AtpB; H+ transporting ATP synthase subunit B
			VNG2139G	AtpA; H+ transporting ATP synthase subunit A
			VNG2141G	AtpC; H+ transporting ATP synthase subunit C
			VNG2142G	AtpE; H+ transporting ATP synthase subunit E
			VNG2143G	AtpK; H+ transporting ATP synthase subunit K
			VNG2144G	AtpI; H+ transporting ATP synthase subunit I
Metabolic Pathway	Code	Genes		
-----------------------------------	--------	---		
Urea cycle and metabolism of amino groups	6	VNG0161G: GdhB; glutamate dehydrogenase		
		VNG0628G: GdhA1; glutamate dehydrogenase		
		VNG6315G: ArcB; ornithine CarBamoyltransferase		
Purine metabolism	26	VNG0414G: PurH; phosphoribosylaminomimidazoleCarboxamide formyltransferase / IMP cyclohydrodase		
		VNG0559G: Apt; adenine phosphoribosyltransferase		
		VNG0632G: PurK; phosphoribosylaminomimidazole Carboxylase ATP binding subunit		
		VNG1001G: GuaB; inosine monophosphate dehydrogenase		
		VNG1089G: PurA; adenyloSuccinate synthase		
		VNG1160G: Ndk; nucleoside diphosphate kinase		
		VNG1305G: PurD; phosphoribosylglycinamide synthetase		
		VNG1644G: NrdB2; ribonucleoside-diphosphate reductase alpha chain		
		VNG1724G: Adk; adenylate kinase		
		VNG6316G: ArcC; CarBamoyl kinase		
Pyrimidine metabolism	26	VNG0448G: PyrE1; orotate phosphoribosyltransferase		
		VNG0893G: Udp2; uridine phosphorylase		
		VNG1160G: Ndk; nucleoside diphosphate kinase		
		VNG1644G: NrdB2; ribonucleoside-diphosphate reductase alpha chain		
		VNG1814G: CarB; CarBamoyl-phosphate synthase large subunit		
		VNG1830G: PyrG; CTP synthase		
		VNG2118G: PyrE2; orotate phosphoribosyl transferase		
		VNG2507G: PyrD; dihydroorotate dehydrogenase		
		VNG6309G: PyrB; aspartate CarBamoyltransferase catalytic subunit		
		VNG6311G: PyrI; aspartate CarBamoyltransferase regulatory chain		
Glutamate metabolism	18	VNG0161G: GdhB; glutamate dehydrogenase		
		VNG0628G: GdhA1; glutamate dehydrogenase		
		VNG0629G: AspB2; aspartate aminotransferase		
		VNG1814G: CarB; CarBamoyl-phosphate synthase large subunit		
		VNG2093G: GlnA; glutamine synthetase		
		VNG6316G: ArcC; CarBamoyl kinase		
Alanine and aspartate metabolism	16	VNG0461G: AspS; aspartyl-tRNA synthetase		
		VNG0629G: AspB2; aspartate aminotransferase		
		VNG1089G: PurA; adenyloSuccinate synthase		
		VNG1532G: Acp; pyruvate Carboxylase subunit A		
		VNG6309G: PyrB; aspartate CarBamoyltransferase catalytic subunit		
		VNG6311G: PyrI; aspartate CarBamoyltransferase regulatory chain		
Glycine, serine and threonine metabolism	22	VNG1172G: MetB; cystathionine alpha synthase		
		VNG1414G: GlyA; glycine hydroxymethyltransferase		
		VNG2072G: SerS; serine-tRNA synthetase		
		VNG2100G: IleA; threonine dehydratase		
		VNG2220G: LpdA; dihydrolipoamide dehydrogenase		
		VNG2352G: GlyS; glycine-tRNA synthetase		
		VNG2424G: SerA1; phosphoglycerate dehydrogenase		
Methionine metabolism	6	VNG0796G: Cgs; cystathionine gamma-synthase		
Metabolism	Number of Genes	Genes		
--	----------------	--		
Cysteine metabolism	10	MetB; cystathionine alpha synthase		
		VNG1172G		
		YrhA; cysteine synthase		
		VNG2251G		
		AchY; adEnosylhomocysteinate		
		VNG2421G		
		Hal; O-acetyl homoserine		
	5	VNG0606G		
		VNG0629G		
		AspB2; aspartate aminotransfer		
		VNG0796G		
		Cgs; cystathionine gamma-synthase		
		VNG1172G		
		MetB; cystathionine alpha synthase		
		VNG2421G		
		Hal; O-acetyl homoserine		
Valine, leucine and isoleucine	15	Fad2; Enoyl-CoA hydratase		
degradation	7	VNG0428G		
		VNG0681G		
		Hbd1; 3-hydroxyacyl-CoA dehydrogenase		
		VNG0771G		
		AldY2; aldehyde dehydrogenase (retinol)		
		VNG1313G		
		Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase		
		VNG2063G		
		Aca; probable acetyl-coa acetyltransferase		
		VNG2122G		
		IlvE2; branched-chain amino acid aminotransfer		
		VNG2513G		
		AldV1; aldehyde dehydrogenase (retinol)		
Valine, leucine and isoleucine	8	IlvE2; branched-chain amino acid aminotransfer		
biosynthesis	4	VNG2122G		
		VNG2190G		
		IleS; isoleucyl-tRNA synthetase		
		VNG2217G		
		PdhA2; pyruvate dehydrogenase alpha subunit		
		VNG2218G		
		PdhB; pyruvate dehydrogenase beta subunit		
Lysine biosynthesis	6	AspC1; putative aminotransfer		
	1	VNG2418G		
Lysine degradation	9	Fad2; Enoyl-CoA hydratase		
	6	VNG0428G		
		VNG0681G		
		Hbd1; 3-hydroxyacyl-CoA dehydrogenase		
		VNG0771G		
		AldY2; aldehyde dehydrogenase (retinol)		
		VNG1313G		
		Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase		
		VNG1414G		
		GlyA; glycine hydroxyethyltransferase		
		VNG2224G		
		Ocd1; ornithine cyclodeaminase		
		VNG2513G		
		AldV1; aldehyde dehydrogenase (retinol)		
Arginine and proline metabolism	17	GdhB; glutamate dehydrogenase		
	9	VNG0161G		
		VNG0628G		
		GdhA1; glutamate dehydrogenase		
		VNG0629G		
		AspB2; aspartate aminotransfer		
		VNG0771G		
		AldY2; aldehyde dehydrogenase (retinol)		
		VNG2224G		
		Ocd1; ornithine cyclodeaminase		
		VNG2513G		
		AldV1; aldehyde dehydrogenase (retinol)		
		VNG6312G		
		ArgS; arginine-tRNA synthetase		
		VNG6315G		
		ArcB; ornithine CarBamoyltransferase		
		VNG6316G		
		ArcC; CarBamate kinase		
Histidine metabolism	17	AldY2; aldehyde dehydrogenase (retinol)		
	4	VNG0771G		
		HisS; histidyl-tRNA synthetase		
		VNG2005G		
		HisA; phosphoribosylformimin-5-aminoimidazole		
		VNG2224G		
		CarBoxamido ribotide isomerase		
		VNG2513G		
		AldV1; aldehyde dehydrogenase (retinol)		
Tyrosine metabolism	9	AspB2; aspartate aminotransfer		
	1	VNG0629G		

35
Pathway	Gene Count	Gene Count	Gene Name	Function	
Phenylalanine metabolism	5	1	VNG0629G AspB2; aspartate aminotransferase		
Benzoate degradation	5	1	VNG2063G Aca; probable acetyl-coa acetyltransferase		
Tryptophan metabolism	12	6	VNG0428G Fad2; Enoyl-CoA hydratase		
			VNG0681G Hbd1; 3-hydroxyacyl-CoA dehydrogenase		
			VNG0771G AldY2; aldehyde dehydrogenase (retinol)		
			VNG1313G Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase		
			VNG2513G AldY1; aldehyde dehydrogenase (retinol)		
			VNG6294G PerA; peroxidase / catalase		
Phenylalanine, tyrosine and tryptophan biosynthesis	21	2	VNG0629G AspB2; aspartate aminotransferase		
			VNG1142G Eno; ENolAse		
beta-Alanine metabolism	6	4	VNG0428G Fad2; Enoyl-CoA hydratase		
			VNG0771G AldY2; aldehyde dehydrogenase (retinol)		
			VNG1313G Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase		
			VNG2513G AldY1; aldehyde dehydrogenase (retinol)		
Aminophosphonate metabolism	2	1	VNG2418G AspC1; putative aminotransferase		
Selenoamino acid metabolism	6	4	VNG0606G YrhA; cysteine synthase		
			VNG0796G Cgs; cystathionine gamma-synthase		
			VNG1172G MetB; cystathionine alpha synthase		
			VNG2251G AchY; adEnosylhomocysteinase		
Cyanoamino acid metabolism	2	1	VNG1414G GlyA; glycine hydroxymethyltransferase		
D-Glutamine and D-glutamate metabolism	3	2	VNG0161G GdhB; glutamate dehydrogenase		
			VNG0628G GdhA1; glutamate dehydrogenase		
Glutathione metabolism	1	1	VNG1873G Icd; isocitrate dehydrogenase, NADP		
Starch and sucrose metabolism	8	1	VNG1498G CelM; endogluCanase		
Peptidoglycan biosynthesis	1	1	VNG2093G GlnA; glutamine synthetase		
Glycerolipid metabolism	13	3	VNG0771G AldY2; aldehyde dehydrogenase (retinol)		
			VNG2513G AldY1; aldehyde dehydrogenase (retinol)		
			VNG6270G GldA; sn-glycerol-1-phosphate dehydrogenase		
Sphingoglycolipid metabolism	6	3	VNG0679G Acd4; acyl-CoA dehydrogenase		
			VNG0775G Acd2; acyl-CoA dehydrogenase		
			VNG1482G Acd5; acyl-CoA dehydrogenase		
Metabolism Type	Gene ID	Gene Product	Description		
---------------------------------------	---------	--------------	---		
Pyruvate metabolism	15	VNG0330G	PpsA; phosphoEnolpyruvate synthase		
		VNG0771G	AldY2; aldehyde dehydrogenase (retinol)		
		VNG0997G	Acs2; acetyl-CoA synthetase		
		VNG1532G	Acc; pyruvate Carboxylyase subunit A		
		VNG2217G	PdhA2; pyruvate dehydrogenase alpha subunit		
		VNG2218G	PdhB; pyruvate dehydrogenase beta subunit		
		VNG2219G	Dsa; dihydrolipoamide S-acetyltransferase		
		VNG2220G	LpdA; dihydrolipoamide dehydrogenase		
		VNG2367G	MdhA; L-malate dehydrogenase		
		VNG2513G	AldY1; aldehyde dehydrogenase (retinol)		
Glyoxylate and dicarboxylate metabolism	5	VNG1416G	FdD; methylenetetrahydrofolate dehydrogenase		
		VNG2102G	CitZ; citrate synthase		
		VNG2367G	MdhA; L-malate dehydrogenase		
		VNG2574G	Can; aconitase		
1,2-Dichloroethane degradation	2	VNG0771G	AldY2; aldehyde dehydrogenase (retinol)		
		VNG2513G	AldY1; aldehyde dehydrogenase (retinol)		
Benzoate degradation via CoA ligation	9	VNG0428G	Fad2; Enoyl-CoA hydratase		
		VNG0681G	Hbd1; 3-hydroxyacyl-CoA dehydrogenase		
		VNG1306G	SdhA; SucCinate dehydrogenase subunit A		
		VNG1308G	SdhB; SucCinate dehydrogenase subunit B		
		VNG1313G	Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase		
Propanoate metabolism	13	VNG0428G	Fad2; Enoyl-CoA hydratase		
		VNG0771G	AldY2; aldehyde dehydrogenase (retinol)		
		VNG0997G	Acs2; acetyl-CoA synthetase		
		VNG1313G	Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase		
		VNG1541G	SucC; SucCinyl-CoA synthetase beta chain		
		VNG1542G	SucD; SucCinyl-CoA synthetase alpha chain		
		VNG2513G	AldY1; aldehyde dehydrogenase (retinol)		
Butanoate metabolism	16	VNG0428G	Fad2; Enoyl-CoA hydratase		
		VNG0681G	Hbd1; 3-hydroxyacyl-CoA dehydrogenase		
		VNG0771G	AldY2; aldehyde dehydrogenase (retinol)		
		VNG1306G	SdhA; SucCinate dehydrogenase subunit A		
		VNG1308G	SdhB; SucCinate dehydrogenase subunit B		
		VNG1313G	Hbd2; 3-hydroxyacyl-CoA dehydrogenase / Enoyl-CoA hydratase		
		VNG2217G	PdhA2; pyruvate dehydrogenase alpha subunit		
		VNG2218G	PdhB; pyruvate dehydrogenase beta subunit		
		VNG2513G	AldY1; aldehyde dehydrogenase (retinol)		
C5-Branch dibasic acid metabolism	3	VNG1541G	SucC; SucCinyl-CoA synthetase beta chain		
		VNG1542G	SucD; SucCinyl-CoA synthetase alpha chain		
One carbon pool by folate	7	VNG0414G	PurH; phosphoribosylaminomimidazoleCarboxamide formyltransferase / IMP cyclohydrolase		
Pathway	Gene Symbols	Genes			
--	--------------	--			
Methane metabolism	VNG1414G	GlyA; glycine hydroxymethyltransferase			
	VNG1416G	FolD; methylenetetrahydrofolate dehydrogenase			
	VNG6294G	PerA; peroxidase / catalase			
Carbon fixation	VNG0629G	AspB2; aspartate aminotransfer			
	VNG2367G	MdhA; L-malate dehydrogenase			
Reductive carboxylate cycle (CO2 fixation)	VNG0330G	PpsA; phosphoEnolpyruvate synthase			
	VNG0474G	PorA; pyruvate ferredoxin oxidoreductase, subunit alpha			
	VNG0997G	Acs2; acetyl-CoA synthetase			
	VNG1125G	KorB; 2-oxoglutarate ferredoxin oxidoreductase, beta subunit			
	VNG1128G	KorA; 2-oxoglutarate ferredoxin oxidoreductase, alpha subunit			
	VNG1306G	SdhA; SucCinate dehydrogenase subunit A			
	VNG1308G	SdhB; SucCinate dehydrogenase subunit B			
	VNG1356G	FumC; fumarate hydratase			
	VNG1541G	SucC; SucCyl-CoA synthetase beta chain			
	VNG1542G	SucD; SucCyl-CoA synthetase alpha chain			
	VNG1873G	lcd; isocitrate dehydrogenase, NADP			
	VNG2367G	MdhA; L-malate dehydrogenase			
	VNG2574G	Can; aconitase			
Thiamine metabolism	VNG2606G	ThiD; hydroxymethylPyrImidine phosphate kinase			
Pantothenate and CoA biosynthesis	VNG2122G	IlVE2; branched-chain amino acid aminotransfer			
Folate biosynthesis	VNG0412G	FolP; folypeolylglutamate synthase / dihydrofolate synthase / dihydroproteoate synthase			
Porphyrin and chlorophyll metabolism	VNG1555G	CobH; precorrin-3B C17-methyltransferase			
	VNG2326G	HemL; glutamate-1-semialdehyde aminotransfer			
Nitrogen metabolism	VNG0161G	GdhB; glutamate dehydrogenase			
	VNG0628G	GdhA1; glutamate dehydrogenase			
	VNG0796G	Cgs; cystathionine gamma-synthase			
	VNG2093G	GlnA; glutamine synthetase			
	VNG6316G	ArcC; CarBamate kinase			
Sulfur metabolism	VNG0606G	YrhA; cysteine synthase			
	VNG1172G	MetB; cystathionine alpha synthase			
Caprolactam degradation	VNG2418G	AspC1; putative aminotransfer			
Alkaloid biosynthesis I	VNG0629G	AspB2; aspartate aminotransfer			
Aminoacyl-tRNA biosynthesis	VNG0461G	AspS; aspartyl-tRNA synthetase			
	VNG2005G	HisS; histidyl-tRNA synthetase			
	VNG2072G	SerS; serine-tRNA synthetase			
	VNG2190G	IleS; isoleucyl-tRNA synthetase			
	VNG2352G	GlyS; glycine-tRNA synthetase			
	VNG6312G	ArgS; arginine-tRNA synthetase			
RNA polymerase	VNG1336G	Rpb3; DNA-directed RNA polymerase subunit D			
	VNG2662G	RpoC; DNA-directed RNA polymerase subunit A”			
----------------------	-----	-----	----------------------	----------------------	----------------------
			VNG2664G RpoA; DNA-directed RNA polymerase subunit A'		
Transcription	13	2	VNG2243G TbpE; transcription initiation factor IID		
factors					
Protein export	9	2	VNG1987G SecD; protein-export membrane protein SecD	VNG1988G SecF; protein-export membrane protein SecF	
Figure 1

- Soluble: 232
- Membrane: 165
- Two overlapping sets: 29

Total number of unique proteins: 426