Lung Function Trajectories: a New Framework to Understand Adult Chronic Respiratory Diseases

Alvar Agustí, MD1-4 and Rosa Faner, PhD2,4

1Respiratory Institute, Hospital Clinic, Barcelona, Spain; 2Institut d’Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain; 3University of Barcelona, Spain; 4Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias. Instituto de Salud Carlos III, Madrid, Spain

ABSTRACT

Lungs grow and mature in utero and after birth until early adulthood. Normally, lung function reaches a peak between 20-25 years of age, earlier in females, and after a relatively brief plateau, it declines slowly due to physiological lung ageing. There are several genetic and environmental factors with the potential to alter this normal lung function trajectory, so it is now recognized that in the general population there is indeed a range of them. Further, it is also known now that some of these trajectories have important health consequences, both for the lungs but also for other organ systems, including premature death. Here we provide a brief overview of these new concepts and discuss the potential implications of this new framework to understand adult respiratory diseases. (BRN Rev. 2020;6(2):118-27)

Corresponding author: Alvar Agustí, aagusti@clinic.cat

Key words: Airway diseases. Asthma. Chronic obstructive pulmonary disease. Emphysema. Lung development. Smoking.
INTRODUCTION

Lung development and growth is extremely complex. It starts in utero and continues after birth, during infancy and adolescence until early adulthood (Fig. 1), where lung function reaches a peak value (earlier in females). After a relatively brief plateau, lung function declines moderately due to physiological lung ageing. This normal lung function trajectory can be altered by several genetic and environmental factors. Indeed, it is now well recognized that there is a range of them in the general population (Fig. 1). Further, it is also now known that some of these trajectories can have important health consequences, both for the lungs and for other organ systems such as the cardiovascular and metabolic ones, including premature death (Fig. 2). Below we briefly review the evidence supporting this new paradigm and discuss its potential implications for the understanding of adult chronic respiratory diseases.

LUNG FUNCTION TRAJECTORIES

Altered lung growth

Between 4-12% of individuals in the general population fail to reach a forced expiratory volume in one second (FEV₁) peak in early adulthood within the predicted “normal range” for their age and sex. This can be due to one or more genetic risk factors and/or environmental conditions in utero and after birth, including maternal tobacco smoking and under-nourishment, premature birth, intrauterine growth restriction and broncho-pulmonary dysplasia, air pollution exposure, lower respiratory tract infections and active smoking during adolescence. Childhood “asthma” is also often considered a risk factor for low lung function in early adulthood but the diagnosis of “asthma” in young children is difficult to establish objectively and, although the presence of “asthma” can conceivably impair lung growth, it is also possible that any other process impairing lung growth can cause similar, nonspecific, symptoms than those traditionally associated to asthma (dyspnoea, cough, wheezing). These environmental risk factors interact in a complex manner and change with time (Fig. 3). Importantly, many of them are preventable. Finally, it is also important to note that individuals who fail to attain a normal peak lung function in early adulthood suffer a higher prevalence and about a decade earlier incidence of cardiovascular and metabolic comorbidities, as well as premature death. These observations have been later reproduced in other cohorts.

Accelerated lung function decline

Chronic obstructive pulmonary disease (COPD) has been traditionally considered the paradigm of an adult respiratory disease characterized by an enhanced rate of lung function decline due to the inflammatory response to tobacco smoking. Recent research, however, has shown that this paradigm is incomplete since about 30% of COPD patients worldwide are never smokers, exposure to other inhaled particles and gases than those of smoking (e.g. biomass, air pollution) can also lead to COPD in adulthood, and not all patients with COPD exhibit enhanced lung function decline. The latter was clearly shown in a recent study by Lange, Celli, Agustí et al. in three large independent cohorts. Results showed that the rate of lung function decline was accelerated in only about half of adult COPD patients whereas the other half had...
evidence of low peak lung function in their thirties and developed COPD with a normal lung function decline rate18. These observations have been confirmed by other subsequent studies19-22. Further, a recent analysis in the Framingham Offspring Cohort and their direct descendants (Gen III cohort) has provided evidence of trans-generational reproducibility of lung function5 (Fig. 4), albeit it should be noted that this transgenerational reproducibility may be due to genetic and/or shared environmental factors.

Implications for a New Understanding of Adult Chronic Respiratory Diseases

The realization that several genetic and environmental risk factors interact dynamically over time in very complex ways (Fig. 3) and that, as a result, there is a range of lung function trajectories in the general population (Fig. 1), some of them with important health consequences, including premature death (Fig. 2), raises questions and challenges and, at the same time, opens new opportunities for prevention and early intervention of chronic respiratory disease in children and adults23.

First, the biological mechanisms underlying these different lung function trajectories are not always well understood. In terms of defective lung growth, the two main, non-mutually exclusive, mechanisms proposed3 include abnormal lung development *in utero* (since about 40\% of lung function deficits at 6-7 years of age are already present at birth24) and failure to “catch-up” lung function during infancy.
Figure 2. Increased prevalence, incidence and mortality in individuals with low lung function in early adulthood [reproduced from Agustí A, et al.4 with permission]. For further explanations, see text.

CI: confidence interval; FEV1: forced expiratory volume in one second; HR: hazard ratio.
and adolescence\(^25\) (the term *catch-up* here refers to the observation that many environmental conditions cause growth impairment but, when they resolve, some (not all) children regain a normal growth trajectory\(^26,27\). On the other hand, in terms of *enhanced lung function decline* in adulthood, albeit oxidative stress, protease-antiprotease imbalance and an abnormal inflammatory response have been traditionally considered their main underlying biological mechanisms\(^28\), now we know that many other ones also participate, including cellular senescence and apoptosis, airway fibrosis and remodelling, stem cell exhaustion, extracellular matrix alterations, autophagy, autoimmune to neo-epitopes and reductions of endogenous anti-ageing molecules\(^6\). In essence, it is the interplay between two major biologic mechanisms, organ development, maintenance and repair (green triangle in figure 5, which decreases with age), and cumulative tissue injury and ageing (red triangle in figure 5,
which increases with age) what determines health and life expectancy (top triangle in figure 5), including lung function trajectories (Fig. 1) and associated comorbidities (Fig. 2). Of note, due to gene-environment interactions (Fig. 3), the slope of these two main mechanisms (green and red triangles in figure 5) may change (for better or worse) in different individuals (as indicated by the dashed arrows, green and red, in figure 5). Understanding much better the role and interactions of all these putative mechanisms may open new therapeutic alternatives to promote lung growth and stop lung function decline.

Second, it is conceivable that, if for whatever genetic and/or environmental factors reviewed above the lungs do not develop properly, other organ systems may do so too. After all, genes are the same in all cells and many environmental factors (e.g., smoking, pollution, diet, exercise…) can affect many other organs than the lungs. In fact, several genetic variants associated with lung function are also associated with birth weight and height as well as with cardio-metabolic risk. Collectively, these observations indicate that low peak lung function in early adulthood may be a warning sign of abnormal development and dysfunction in other systemic organs. If so, spirometry may actually become a reliable, reproducible, non-invasive and cheap method to identify high-risk individuals with disordered lung development (and, potentially, other organ systems too), who

Figure 4. Trans-generational reproducibility of low FEV₁ in early adulthood. Panel A: Box plot showing median FEV₁ (% predicted) of participants in the GenIII cohort with at least one parent in the Framingham Offspring Cohort (FOC) classified as low in early adulthood and participants with both FOC parents classified as normal. Panel B: Scatter plot showing the relationship between early adulthood FEV₁ (% predicted) of GenIII participants and parents’ average early adulthood FEV₁ (% predicted) (reproduced from Agustí A, et al. with permission). For further explanations, see text. FEV₁: forced expiratory volume in one second.
can be monitored over time and treated earlier if necessary29.

Third, to date, three studies have investigated the risk of mortality in different lung function trajectories. Our group was the first to show that all-cause mortality during follow-up in the Framingham Offspring Cohort was higher in individuals with low lung function in early adulthood (hazard ratio [HR] 2.3 [95% CI

\textbf{Figure 5.} The interplay between two major biologic mechanisms (organ development, maintenance and repair [green triangle] and cumulative tissue injury and ageing [red triangle]) determines over a lifetime health and life expectancy (top triangle). Dashed arrows (green and red) indicate that the slope of these lines can vary (for better or worse) in different individuals. ‘Contributing proportion’ refers to the proportion of the processes, represented by the green and red triangles, contributing to health status and life expectancy (reproduced from Agustí A, et al.29 with permission). For further explanations, see text.
1.4–3.7], p = 0.001). Smoking had an additive but independent effect on mortality, and we did not find statistically significant differences in cause-specific mortality between high and low lung function groups, but there was a numerically higher cardiovascular mortality in participants with low lung function. We also explored this relationship in an independent cohort (Coronary Artery Risk Development in Young Adults Study [CARDIA]) and found that all-cause mortality before the age of 50 years in CARDIA participants with low lung function in early adulthood was three times higher than that of people with normal lung function (3% versus 0.7%, odd ratio [OR] 4.1 [95% CI 1.7–9.6], p = 0.001). Subsequently, Vasquez et al. reported similar findings in the Tucson Epidemiological Study of Airway Obstructive Disease (TESAOD), a population-based prospective cohort study of non-Hispanic white households initiated in Tucson, Arizona, in 1972. These authors confirmed our previous observations by showing that individuals who achieve low levels of FEV₁ and forced vital capacity (FVC) in early adulthood had increased risk for early cardiopulmonary mortality. Associations appeared stronger for FEV₁ than FVC, possibly because the former is able to capture deficits related to both obstructive and restrictive patterns. Finally, very recently, Marott et al. have reported somewhat conflicting and difficult to interpret results in patients with COPD recruited from the general population. For this analysis, Marott et al. studied 1,170 young adults who were enrolled in the Copenhagen City Heart Study in 1976–1978 or in 1981–1983, when they were 21-40 years old. About twenty years later, in 2001–2003, when participants were 41-66 years old, 144 individuals (12.3%) had developed COPD: 79 of them (6.8%) through normal maximally attained FEV₁ trajectory, and 65 (5.6%) with reduced peak lung function (FEV₁ 69 ± 7% of reference) at recruitment (21-40 years of age). All participants were then followed until 2018 and mortality was compared between COPD patients who had developed COPD through low maximally attained FEV₁ trajectory (n = 65) versus those who developed the disease through normal maximally attained FEV₁ trajectory (n = 79). Results showed that all-cause mortality from 2001-2003 until 2018 (adjusted HR, 1.93 [95% CI, 1.14–3.26], p = 0.01), and in particular mortality caused by non-malignant respiratory disease (adjusted HR, 6.20 [95% CI, 2.09–18.37], p = 0.001), was higher in individuals who develop COPD through the normal maximally attained FEV₁ trajectory. The authors hypothesized that these two COPD trajectories may reflect different lung pathologies and that the normal maximally attained FEV₁ trajectory represents individuals with emphysema as a predominant pathological disease process, whereas the low maximally attained FEV₁ trajectory mostly includes individuals with less emphysema. As acknowledged by the authors, however, this study has some significant limitations, including: (1) a likely survival bias, since participants had to be alive in 2001-2003, when they were 41-66 years old, to enter the study (baseline data for this analysis), while the two studies previously published in the general population have both shown that individuals with low lung function in early adulthood (< 30 years of age) die prematurely; (2) the rather small number of participants included in the two COPD trajectories (65 versus 79); (3) a potentially confounding effect of medications, which was not considered in the analysis; and, (4) the lack of imaging data or diffusing capacity for carbon monoxide (DLCO) measurement, which may have helped to assess.
the proposed influence of emphysema. In any case, these three studies5,13,32 clearly indicate that there is a significant association between lung function trajectory and mortality risk.

Fourth, in relation to prevention and treatment, it is well established that quitting smoking reduces the rate of lung function decline2,34 and that several other interventions can potentially prevent abnormal lung development, such as decreasing exposure to air pollutants (including maternal smoking) during pregnancy, childhood and puberty4,20,35, close follow-up of survivors of very preterm birth36, encouraging immunization and developing better vaccines against acute infant viral diseases4,20, promoting physical activity37-39 and healthy diet40-42, including vitamin A42 and vitamin C43 supplementation. CC16 is being investigated as a potential therapeutic target in this setting44,45.

A final comment relates to the observation that about 12\% of the general population may follow a “supranormal” lung function trajectory20 (Fig. 1). If exposed to noxious environmental conditions, these individuals may have lost lung function and still remain within the normal range6. Potentially, this can contribute to explaining the apparent paradox of identifying individuals with symptoms and/or evidence of lung damage (emphysema) with preserved spirometry6.

CONCLUSIONS

Several genetic and environmental risk factors conspire to generate a range of lung function trajectories through life, and some of them are associated with significant implications for health and disease. A better understanding of the biological mechanisms underlying these trajectories may help prevent and/or treat them. However, we need to act earlier46. Promoting the use of spirometry in schools may be a good alternative for that46. In this context, spirometry can act as a “canary in a coal mine”47. After all, remember that a key spirometric variable is the “vital” capacity48. What a name!

DISCLOSURES

Dr. Agustí reports grants and personal fees from GSK, Menarini, Chiesi, AZ; and personal fees from Zambon; all outside the submitted work. Dr. Agustí is the editor in chief of BRN Reviews; the journal’s editorial procedure to ensure impartial handling of the manuscript has been followed. Dr. Faner Canet reports grants from GSK and Menarini; all outside the submitted work.

Funding

CP16/00039, FIS15/00799, FIS17/00369, FIS18/01008, SEPAR 17/405, 15/068, SGR 2017/617, Cerca Institutes, Generalitat Catalunya.

REFERENCES

1. Jobe AH, Whitsell JA, Abman SH. Fetal & Neonatal Lung Development. Clinical correlates and technologies for the future. New York: Cambridge University Press; 2016.
2. Kohansal R, Martinez-Camblor P, Agustí A, Buist AS, Mannino DM, Soriano JB. The Natural History of Chronic Airflow Obstruction Revisited: An Analysis of the Framingham Offspring Cohort. Am J Respir Crit Care Med. 2009;180:3-10.
3. Agustí A, Faner R. Lung function trajectories in health and disease. The Lancet Respiratory Medicine. 2019;4:358-64.
4. Martinez FD. Early-Life Origins of Chronic Obstructive Pulmonary Disease. N Eng J Med. 2016;375:871-8.
5. Agustí A, Noell G, Brugada J, Faner R. Lung function in early adulthood and health in later life: a transgenerational cohort analysis. Lancet Respir Med. 2017;5:935-45.
6. Agustí A, Hogg JC. Update on the Pathogenesis of Chronic Obstructive Pulmonary Disease. N Engl J Med. 2019;381:1248-56.
7. Hobbs BD, de Jong K, Lamontagne M et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet. 2017;49:426-32.
8. Anto JM, Bousquet J, Akdis M et al. Mechanisms of the Development of Allergy (MedDALL): Introducing novel concepts in allergy phenotypes. J Allergy Clin Immunol. 2017;139:388-99.
9. Melen E, Koppelman GH, Guerra S. On Genetics, Lung Developmental Biology and Adult Lung Function. Am J Respir Crit Care Med. 2020.
10. Baraldi E, Filippone M. Chronic Lung Disease after Premature Birth. N Engl J Med. 2007;357:1946-55.
11. Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax. 2014;69:805-10.
12. Breyer-Kohansal R, Faner R, Breyer M-K et al. Factors Associated with Low Lung Function in Different Age Bins in the General Population. Am J Respir Crit Care Med. 2020 (in press).
13. Vasquez MM, Zhou M, Hu C, Martinez FD, Guerra S. Low Lung Function in Young Adult Life Is Associated with Early Mortality. Am J Respir Crit Care Med. 2017;195:1399-1401.
14. Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977;1:1645-8.
15. Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009;374:733-43.
16. Olloquequi J, Jaime S, Aklis M et al. Mechanisms of the Development of Allergy (MedDALL): Introducing novel concepts in allergy phenotypes. J Allergy Clin Immunol. 2017;139:388-99.
17. Vestbo J, Edwards LD, Scanlon PD et al. Changes in Forced Expiratory Volume in 1 Second over Time in COPD. N Engl J Med. 2011;365:1184-92.
18. Lange P, Celli B, Agusti A et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. N Engl J Med. 2015;373:111-22.
19. McGeachie MJ, Yates KP, Zhou X. Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma. N Engl J Med. 2016;374:1842-52.
20. Bui DS, Lodge CJ, Burgess JA et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life. Lancet Respir Med. 2018;6:535-44.
21. Ross JC, Castaldi PJ, Cho MH et al. Longitudinal Modeling of Lung Function Trajectories in Smokers with and without Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2018;198:1033-42.
22. Agustí A, Faner R. The Changing Landscape of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2018;198:978-81.
23. Chowkwanyun M, Bayer R, Galea S. “Precision” Public Health — Between Novelty and Hype. N Engl J Med. 2018;379:1398-1400.
24. Bisgaard H, Jensen SM, Bonnellykke K. Interaction between asthma and lung function growth in early life. Am J Respir Crit Care Med. 2017;185:1183-9.
25. Melen E, Guerra S. Recent advances in understanding lung function development. J Thorac Dis. 2017;9:676.
26. Finkelstein GP, Lui JC, Baron J. Catch-up Growth: Cellular and Molecular Mechanisms. World Rev Nutr Diet. 2013;106:300-4.
27. Boersma B, Wit JM. Catch-up growth. Endocr Rev. 1997;18:646-61.
28. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 1999;364:709-21.
29. Agustí A, Faner R. COPD beyond smoking: new paradigm, novel opportunities. Lancet Respir Med. 2018;6:324-6.
30. Obeidat M, Hao K, Rosse Y et al. Molecular mechanisms underlying variations in lung function: a systems genetics analysis. Lancet Respir Med. 2015;3:782-95.
31. Horikoshi M, Beaumont RN, Day FF. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538:248-52.
32. Marott JL, Ingebrigtsen TS, Colak Y, Vestbo J, Lange P. Lung Function Trajectories Leading to Chronic Obstructive Pulmonary Disease as Predictors of Exacerbations and Mortality. Am J Respir Crit Care Med. 2020;202:210-8.
33. Burrows B, Blom JW, Traver GA, Cline MG. The course and prognosis of different forms of chronic airways obstruction in a sample from the general population. N Engl J Med. 1987;317:1309-14.
34. Berntsen S, Wiksztol T, Nafstad P, Nystråd W. Lung function increases with increasing level of physical activity in school children. Pediatr Exerc Sci. 2008;20:402-10.
35. Benck LR, Cuttica MJ, Colangelo LA et al. Association between Cardiorespiratory Fitness and Lung Health from Young Adulthood to Middle Age. Am J Respir Crit Care Med. 2017;195:1236-43.
36. Anthonisen NR, Connett JE, Murray RP. Smoking and lung function of pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA. 2014;311:2074-82.
37. Levine CR, Gewolb IH, Allen K et al. Asthma and dietary intake: an overview of systematic reviews. Allergy. 2016;71:433-42.
38. Litonjua AA, Weiss ST. Vitamin D status through the first 10 years of life: A vital piece of the puzzle in asthma inception. J Allergy Clinical Immunol. 2017;139:459-61.
39. Checkley W, West KP, Jr., Wise RA et al. Maternal Vitamin A Supplementation and Lung Function in Offspring. New Engl J Med. 2010;362:1784-94.
40. McEvoy CT, Schilling D, Clay N et al. Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA. 2014;311:2074-82.
41. Levine CR, Gewolb IH, Allen K et al. The safety, pharmacokinetics, and anti-inflammatory effects of intratracheal recombinant human Clara cell protein in premature infants with respiratory distress syndrome. Pediatr Res. 2005;58:15-21.
42. Laquo-Contreras ME, Polverino F, Tesafrtiz Y, Pilón A, Celi BR, Owen CA. Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin Ther Targets. 2016;20:869-83.
43. Agustí A, Alcazar B, Cosio B et al. Time for a change: anticipating the diagnosis and treatment of chronic obstructive pulmonary disease. Eur Respir J. 2020 (in press).
44. Bush A. Low Lung Function in Young Adult Life Is Associated with Early Mortality. Am J Respir Crit Care Med. 2018;197:538-39.
45. Hutchinson J. On the capacity of the lungs and on the respiratory functions, with a view of establishing a precise and easy method of detecting disease by the spirometer. Med Chir Trans. 1846;29:137-252.