Classical versus quantum probabilities & correlations

Karl Svozil*

Institute for Theoretical Physics, Vienna University of Technology,
Wiedner Hauptstrasse 8-10/136, 1040 Vienna, Austria and
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

(Dated: August 22, 2017)

“Optimal” criteria for quantization are presented and compared to classical criteria and predictions. Thereby several existing approaches involving hull computations for convex correlation polytopes are reviewed, discussed and exploited. Increasingly intertwined contexts impose ever tighter conditions on observables which gradually cannot be satisfied by (quasi-)classical systems. In these regimes, observables of quantized systems clearly outperform classical ones.

PACS numbers: 03.65.Ca, 02.50.-r, 02.10.-v, 03.65.Aa, 03.67.Ac, 03.65.Ud
Keywords: Correlation polytope, Kochen-Specker theorem, Bell inequality, Klyachko inequality

1. BOOLE’S CONDITIONS OF POSSIBLE EXPERIENCE

Already George Boole, although better known for his symbolic logic calculus of propositions aka Laws of Thought [1], pointed out that the probabilities of certain events, as well as their (joint) occurrence are subject to linear constraints [1–19]. A typical problem considered by Boole was the following [2, p. 229]: “Let p_1, p_2, \ldots, p_n represent the probabilities given in the data. As these will in general not be the probabilities of unconnected events, they will be subject to other conditions than that of being positive proper fractions, \ldots. Those other conditions will, as will hereafter be shown, be capable of expression by equations or inequations reducible to the general form $a_1 p_1 + a_2 p_2 + \cdots + a_n p_n + a \geq 0$, a_1, a_2, \ldots, a_n, a being numerical constants which differ for the different conditions in question. These \ldots may be termed the conditions of possible experience.”

Independently, Bell [20] derived some bounds on classical joint probabilities which relate to quantized systems insofar as they can be tested and falsified in the quantum regime by measuring subsets of compatible observables (possibly by Einstein-Podolsky-Rosen type [21] counterfactual inference) – one at a time – on different subensembles prepared in the same state. Thereby, in hindsight, it appears to be a bitter turn of history of thought that Bell, a staunch classical realist, who found wanting [22] previous attempts [23, 24], created one of the most powerful theorems used against (local) hidden variables. The present form of the “Bell inequalities” is due to Wigner [25] (cf. Sakurai [26, p. 241-243] and Pitowsky [27, Footnote 13]). Fine [28] later pointed out that deterministic hidden variables just amount to suitable joint probability functions.

In referring to a later paper by Bell [29], Froissart [30, 31] proposed a general constructive method to produce all “maximal” (in the sense of tightest) constraints on classical probabilities and correlations for arbitrary physical configurations. This method uses all conceivable types of classical correlated outcomes, represented as matrices (or higher dimensional objects) which are the vertices [30, p. 243] “of a polyhedron which is their convex hull. Another way of describing this convex polyhedron is to view it as an intersection of half-spaces, each one corresponding to a face. The points of the polyhedron thus satisfy as many inequations as there are faces. Computation of the face equations is straightforward but tedious.” That is, certain “optimal” Bell-type inequalities can be interpreted as defining half-spaces (“below-above,” “inside-outside”) which represent the faces of a convex correlation polytope.

Later Pitowsky pointed out that any Bell-type inequality can be interpreted as Boole’s condition of possible experience [27, 32–36]. Pitowsky does not quote Froissart but mentions [32, p. 1556] that he had been motivated by a (series of) paper(s) by Garg and Mermin [37] (who incidentally did not mention Froissart either) on Farkas’ Lemma. Their concerns were linear constraints on pair distributions, derivable from the existence of higher-order distributions; constraints which turn out to be Bell-type inequalities; derivable as facets of convex correlation polytopes. The Garg and Mermin paper is important because it concentrates on the “inverse” problem: rather than finding high-order distributions from lower-order ones, they consider the question of whether or not those high-order distributions could return random variables with first order distributions as marginals. One of the examples mentioned [37, p. 2] are “three dichotomic variables each of which assumes either the value 1 or $–1$ with equal probability, and all the pair distributions vanish unless the members of the pair have different values, then any third-order distribution would have to vanish unless all three variables had different values. There can therefore be no third-order distribution.” (I mention this also because of the similarity with Specker’s parable of three boxes [38, 39]). A very similar question had also been pursued by Vorob’ev [40] and Kellerer [41, 42], who inspired Klyachko [43], as neither one of the previous authors are mentioned. [To be fair, in the reference section of an unpublished previous paper [44] Klyachko mentions Pitowsky two times; one reference not being cited in the main text.]
II. THE CONVEX POLYTOPE METHOD

The gist of the convex polytope method is the observation that any classical probability distribution can be written as a convex sum of all of the conceivable “extreme” cases. These “extreme” cases can be interpreted as classical truth assignments; or, equivalently, as two-valued states. A two-valued state is a function on the propositional structure of elementary observables, assigning any proposition the values “0” and “1” if they are (for a particular “extreme” case) “false” or “true,” respectively. “Extreme” cases are subject to criteria defined later in Section IV. The first explicit use [39, 45–47] (see Pykacz [48] for an early use of two-valued states) of the polytope method for deriving bounds using two-valued states on logics with intertwined contexts seems to have been for the pentagon logic, discussed in Sect. VIII C 2 and cat’s cradle logic (also called “Käfer,” the German word for “bug,” by Specker), discussed in Sect. VIII D.

More explicitly, suppose that there be as many, say, k, “weights” $\lambda_1, \ldots, \lambda_k$ as there are two-valued states (or “extreme” cases, or truth assignments, if you prefer this denominations). Then convexity demands that all of these weights are positive and sum up to one; that is,

$$\lambda_1, \ldots, \lambda_k \geq 0, \quad \lambda_1 + \ldots + \lambda_k = 1. \quad (1)$$

At this point a trigger warning regarding some upcoming notation seems to be in order: the Dirac “ket notation” |v_i⟩ for vectors in a vector space is chosen to please the quantum physicists, and to frustrate everybody else. (This might be regarded as a physicist’s revenge for notations in other areas than physics by many.) It needs to be kept in mind that this is a mere matter of notation; and without any quantum mechanical connotation. (That is, quantum mechanics will not be introduce in disguise through a tiny classical window, as Mermin genially did [49].) A superscript “⊺” stands for transposition.

Suppose further that for any particular, say, the ith, two-valued state (or the ith “extreme” case, or the ith truth assignment, if you prefer this denomination), all the, say, m, “relevant” terms – relevance here merely means that we want them to contribute to the linear bounds noted by Boole as conditions of possible experience, as discussed in Sect. VI – are “lumped” or combined together and identified as vector components of a vector |x_i⟩ in an m-dimensional vector space \mathbb{R}^m; that is,

$$|x_i⟩ = (x_{i1}, x_{i2}, \ldots, x_{im})^T. \quad (2)$$

Note that any particular convex [see Eq. (1)] combination

$$w(\lambda_1, \ldots, \lambda_k) = \lambda_1 |x_1⟩ + \cdots + \lambda_k |x_k⟩ \quad (3)$$

of the k weights $\lambda_1, \ldots, \lambda_k$ yields a valid – that is consistent, subject to the criteria defined later in Section IV – classical probability distribution, characterized by the vector |$w(\lambda_1, \ldots, \lambda_k)$⟩. These k vectors |$x_1⟩, \ldots, |x_k⟩$ can be identified with vertices or extreme points (which cannot be represented as convex combinations of other vertices or extreme points), associated with the k two-valued states (or “extreme” cases, or truth assignments). Let $V = \{|x_1⟩, \ldots, |x_k⟩\}$ be the set of all such vertices.

For any such subset V (of vertices or extreme points) of \mathbb{R}^m, the convex hull is defined as the smallest convex set in \mathbb{R}^m containing V [50, Sect. 2.10, p. 6]. Based on its vertices a convex \mathcal{H}-polytope can be defined as the subset of \mathbb{R}^m which is the convex hull of a finite set of vertices or extreme points $V = \{|x_1⟩, \ldots, |x_k⟩\}$ in \mathbb{R}^m:

$$P = \text{Conv}(V) = \left\{ \sum_{i=1}^k \lambda_i |x_i⟩ \mid \lambda_1, \ldots, \lambda_k \geq 0, \sum_{i=1}^k \lambda_i = 1, |x_i⟩ \in V \right\}. \quad (4)$$

A convex \mathcal{H}-polytope can also be defined as the intersection of a finite set of half-spaces, that is, the solution set of a finite system of n linear inequalities:

$$P = P(A, b) = \left\{ |x⟩ \in \mathbb{R}^m \mid A_i |x⟩ \leq b_i \right\} \quad (5)$$

with the condition that the set of solutions is bounded, such that there is a constant c such that $||x|| \leq c$ holds for all $|x⟩ \in P$. A_i are matrices and $|b⟩$ are vectors with real components, respectively. Due to the Minkowski-Weyl “main” representation theorem [50–56] every \mathcal{H}-polytope has a description by a finite set of inequalities. Conversely, every \mathcal{H}-polytope is the convex hull of a finite set of points. Therefore the \mathcal{H}-polytope representation in terms of inequalities as well as the \mathcal{H}-polytope representation in terms of vertices, are equivalent, and the term convex polytope can be used for both and interchangeably. A k-dimensional convex polytope has a variety of faces which are again convex polytopes of various dimensions between 0 and $k - 1$. In particular, the 0-dimensional faces are called vertices, the 1-dimensional faces are called edges, and the $k - 1$-dimensional faces are called facets.

The solution of the hull problem, or the convex hull computation, is the determination of the convex hull for a given finite set of k extreme points $V = \{|x_1⟩, \ldots, |x_k⟩\}$ in \mathbb{R}^m (the general hull problem would also tolerate points inside the convex polytope); in particular, its representation as the intersection of half-spaces defining the facets of this polytope – serving as criteria of what lies “inside” and “outside” of the polytope – or, more precisely, as a set of solutions to a minimal system of linear inequalities. As long as the polytope has a non-empty interior and is full-dimensional (with respect to the vector space into which it is imbedded) there are only inequalities; otherwise, if the polytope lies on a hyperplane one obtains also equations.

For the sake of a familiar example, consider the regular 3-cube, which is the convex hull of the 8 vertices in \mathbb{R}^3 of $V = \{(0, 0, 0)^T, (0, 0, 1)^T, (0, 1, 0)^T, (1, 0, 0)^T, (0, 1, 1)^T, (1, 1, 0)^T, (1, 0, 1)^T, (1, 1, 1)^T\}$. The cube has 8 vertices, 12 edges, and 6 facets. The half-spaces defining the regular 3-cube can be written in terms of the 6 facet inequalities $0 \leq x_1, x_2, x_3 \leq 1$.

Finally the correlation polytope can be defined as the convex hull of all the vertices or extreme points $|x_1⟩, \ldots, |x_k⟩$ in V representing the $(k$ per two-valued state) “relevant” terms...
evaluated for all the two-valued states (or “extreme” cases, or truth assignments); that is,

\[
\text{Conv}(V) = \left\{ |w(\lambda_1, \ldots, \lambda_k)| \right\} \\
|w(\lambda_1, \ldots, \lambda_k)| = \lambda_1|x_1| + \cdots + \lambda_k|x_k|, \quad (6) \\
\lambda_1, \ldots, \lambda_k \geq 0, \lambda_1 + \cdots + \lambda_k = 1, |x_i| \in V.
\]

The convex \(\mathcal{H}\)-polytope – associated with the convex \(\mathcal{V}\)-polytope in (6) – which is the intersection of a finite number of half-spaces, can be identified with Boole’s conditions of possible experience.

A similar argument can be put forward for bounds on expectation values, as the expectations of dichotomic \(E \in \{-1, +1\}\)-observables can be considered as affine transformations of two-valued states \(v \in \{0, 1\}\); that is, \(E = 2v - 1\). One might even imagine such bounds on arbitrary values of observables, as long as affine transformations are applied. Joint expectations from products of probabilities transform non-linearly, as, for instance \(E_{12} = (2v_1 - 1)(2v_2 - 1) = 4v_1v_2 - 2(v_1 + v_2) - 1\).

This method fails if, such as for Kochen-Specker configurations, there are no or “too few” (such that there exist two or more atoms which cannot be distinguished by any two-valued state) two-valued states. In this case one may ease the assumptions; in particular, abandon admissibility, arriving at what has been called non-contextual inequalities [57].

III. CONTEXT AND GREECHIE ORTHOGONALITY DIAGRAMS

Henceforth a context will be any Boolean (sub-)algebra of experimentally observable propositions. The terms block or classical mini-universe will be used synonymously.

In classical physics there is only one context – and that is the entire set of observables. There exist models such as partition logics [46, 47, 58] – realizable by Wright’s generalized urn model [59] or automaton logic [60–63], – which are still quasi-classical but have more than one, possibly intertwined, contexts. Two contexts are intertwined if they share one or more common elements. In what follows we shall only consider contexts which, if at all, intertwine at a single atomic proposition.

For such configurations Greechie has proposed a kind of orthogonality diagram [64–66] in which

1. entire contexts (Boolean subalgebras, blocks) are drawn as solid lines, such as straight (unbroken) lines, circles or ellipses;
2. the atomic propositions of the context are drawn as circles; and
3. contexts intertwining at a single atomic proposition are represented as nonsmoothly connected lines, broken at that proposition.

In Hilbert space realizations, the straight lines or smooth curves depicting contexts represent orthogonal bases (or, equivalently, maximal observables, Boolean subalgebras or blocks), and points on these straight lines or smooth curves represent elements of these bases; that is, two points on the same straight line or smooth curve represent two orthogonal basis elements. From dimension three onwards, bases may intertwine [67] by possessing common elements.

IV. TWO-VALUED MEASURES, FRAME FUNCTIONS AND ADMISSIBILITY OF PROBABILITIES AND TRUTH ASSIGNMENTS

In what follows we shall use notions of “truth assignments” on elements of logics which carry different names for related concepts:

1. The quantum logic community uses the term two-valued state; or, alternatively, valuation for a total function \(v : L \rightarrow [0, 1]\) such that [68, Definition 2.1.1, p. 20]

 (a) \(v(\|) = 1\),
 (b) if \(\{a_i, i \in \mathbb{N}\}\) is a sequence of mutually orthogonal elements in \(L\) – in particular, this applies to atoms within the same context (block, Boolean subalgebra) – then the two-valued state is additive on those elements \(a_i\); that is, \(v(\bigvee_{i \in \mathbb{N}} a_i) = \sum_{i \in \mathbb{N}} v(a_i)\).

2. Gleason has used the term frame function [67, p. 886] of weight 1 for a separable Hilbert space \(\mathcal{H}\) as a total, real-valued (not necessarily two-valued) function \(f\) defined on the (surface of the) unit sphere of \(\mathcal{H}\) such that if \(\{a_i, i \in \mathbb{N}\}\) represents an orthonormal basis of \(\mathcal{H}\) then \(\sum_{i \in \mathbb{N}} f(a_i) = 1\). This must hold for all orthonormal bases forming contexts (blocks) of the logic based on \(\mathcal{H}\).

3. A dichotomic total function \(v : L \rightarrow [0, 1]\) will be called strongly admissible if

 (a) within every context \(C = \{a_i, i \in \mathbb{N}\}\), a single atom \(a_j\) is assigned the value one: \(v(a_j) = 1\); and
 (b) all other atoms in that context are assigned the value zero: \(v(a_i \neq a_j) = 0\). Physically this amounts to only one elementary proposition being true; the rest of them are false. (One may think of an array of mutually exclusively firing detectors.)
 (c) Non-contextuality, stated explicitly: The value of any observable, and, in particular, of an atom in which two contexts intertwine, does not depend on the context. It is context-independent.

4. In order to cope with value indefiniteness (cf. Section VIII F 4), a weaker form of admissibility has been proposed [69–72] which is no total function but rather is a partial function which may remain undefined (indefinite) on some elements of \(L\): A dichotomic partial
function \(v : L \rightarrow [0, 1] \) will be called \textit{admissible} if the following two conditions hold for every context \(C \) of \(L \):

(a) if there exists a \(a \in C \) with \(v(a) = 1 \), then \(v(b) = 0 \) for all \(b \in C \setminus \{ a \} \);

(b) if there exists a \(a \in C \) with \(v(b) = 0 \) for all \(b \in C \setminus \{ a \} \), then \(v(a) = 1 \);

(c) the value assignments of all other elements of the logic not covered by, if necessary, successive application of the admissibility rules, are undefined and thus the atom remains value indefinite.

Unless otherwise mentioned (such as for contextual value assignments or admissibility discussed in Section VIII F 4) the quantum logical (I), Gleason type (II), strong admissibility (III) notions of two-valued states will be used. Such two valued states (probability measures) are interpretable as (pre-existing) truth assignments; they are sometimes also referred to as a \textit{Kochen-Specker value assignment} [73].

\section{V. WHY CLASSICAL CORRELATION POLYTOPES?}

A \textit{caveat} seems to be in order from the very beginning: in what follows correlation polytopes arise from classical (and quasi-classical) situations. The considerations are relevant for quantum mechanics only insofar as the quantum probabilities could violate classical bounds; that is, if the quantum tests violate those bounds by “lying outside” of the classical correlation polytope.

There exist at least two good reasons to consider (correlation) polytopes for bounds on classical probabilities, correlations and expectation values:

1. they represent a systematic way of enumerating the probability distributions and deriving constraints – Boole’s conditions of possible experience – on them;

2. one can be sure that these constraints and bounds are \textit{optimal} in the sense that they are guaranteed to yield inequalities which are best criteria for classicality.

It is not evident to see why, with the methods by which they have been obtained, Bell’s original inequality [22, 29] or the Clauser-Horne-Shimony-Holt inequality [74] should be “optimal” at the time they were presented. Their derivation involve estimates which appear \textit{ad hoc}; and it is not immediately obvious that bounds based on these estimates could not be improved. The correlation polytope method, on the other hand, offers a conceptually clear framework for a derivation of all of classical bounds on higher-order distributions.

\section{VI. WHAT TERMS MAY ENTER CLASSICAL CORRELATION POLYTOPES?}

What can enter as terms in such correlation polytopes? To quote Pitowsky [27, p. 38], “Consider \(n \) events \(A_1, A_2, \ldots, A_n \), in a classical event space \(\ldots \). Denote \(p_i = \text{probability}(A_i) \), \(p_{i_1 i_2 \cdots i_k} = \text{probability}(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) \), whenever \(1 \leq i_1 < i_2 < \ldots < i_k \leq n \). We assume no particular relations among the events. Thus \(A_1, \ldots, A_n \) are not necessarily distinct, they can be dependent or independent, disjoint or non-disjoint etc.”

However, although the events \(A_1, \ldots, A_n \) may be in any relation to one another, one has to make sure that the respective probabilities, and, in particular, the extreme cases – the two-valued states interpretable as truth assignments – properly encode the logical or empirical relations among events. In particular, when it comes to an enumeration of cases, consistency must be retained. For example, suppose one considers the following three propositions: \(A_1 \): “it rains in Vienna,” \(A_2 \): “it rains in Vienna or it rains in Auckland.” It cannot be that \(A_2 \) is less likely than \(A_1 \); therefore, the two-valued states interpretable as truth assignments must obey \(p(A_2) \geq p(A_1) \), and in particular, if \(A_1 \) is true, \(A_2 \) must be true as well. (It may happen though that \(A_1 \) is false while \(A_2 \) is true.) Also, mutually exclusive events cannot be true simultaneously.

These admissibility and consistency requirements are considerably softened in the case of non-contextual inequalities [57], where subclassicality – the requirement that among a complete (maximal) set of mutually exclusiver observables only one is true and all others are false (equivalent to one important criterion for Gleason’s frame function [67]) – is abandoned. To put it pointedly, in such scenarios, the simultaneous existence of inconsistent events such as \(A_1 \): “it rains in Vienna,” \(A_2 \): “it does not rain in Vienna” are allowed; that is, \(p(\text{“it rains in Vienna”}) = p(\text{“it does not rain in Vienna”}) = 1 \). The reason for this rather desperate step is that, for Kochen-Specker type configurations, there are no classical truth assignments satisfying the classical admissibility rules; therefore the latter are abandoned. (With the admissibility rules goes the classical Kolmogorovian probability axioms even within classical Boolean subalgebras.)

It is no coincidence that most calculations are limited – or rather limit themselves because there is no formal reasons to go to higher orders – to the joint probabilities or expectations of just two observables: there is no easy “workaround” of quantum complementarity. The Einstein-Podolsky-Rosen setup [21] offers one for just two complementary contexts at the price of counterfactuals, but there seems to be no generalization to three or more complementary contexts in sight [75].

\section{VII. GENERAL FRAMEWORK FOR COMPUTING BOOLE’S CONDITIONS OF POSSIBLE EXPERIENCE}

As pointed out earlier, Froissart and Pitowsky, among others such as Tsirelson, have sketched a very precise algorithmic framework for constructively finding all conditions of possible experience. In particular, Pitowsky’s later method [27, 33–36], with slight modifications for very general non-distributive propositional structures such as the pentagon logic [39, 46, 47], goes like this:

1. define the terms which should enter the bounds;

2. (a) if the bounds should be on the probabilities: eval-
uate all two-valued measures interpretable as truth assignments;
(b) if the bounds should be on the expectations: evaluate all value assignments of the observables;
(c) if (as for non-contextual inequalities) the bounds should be on some pre-defined quantities: evaluate all value definite pre-assigned quantities;
3. arrange these terms into vectors whose components are all evaluated for a fixed two-valued state, one state at a time; one vector per two-valued state (truth assignment), or (for expectations) per value assignments of the observables, or (for non-contextual inequalities) per value-assignment;
4. consider the set of all obtained vectors as vertices of a convex polytope;
5. solve the convex hull problem by computing the convex hull, thereby finding the smallest convex polytope containing all these vertices. The solution can be represented as the half-spaces (characterizing the facets of the polytope) formalized by (in)equalities – (in)equalities which can be identified with Boole’s conditions of possible experience.

Froissart [30] and Tsirelson [31] are not much different; they arrange joint probabilities for two random variables into matrices instead of “delineating” them as vectors; but this difference is notational only. We shall explicitly apply the method to various configurations next.

VIII. SOME EXAMPLES

In what follows we shall enumerate several (non-)trivial – that is, non-Boolean in the sense of pastings [64, 65, 68, 76] of Boolean subalgebras. Suppose some points or vertices in \mathbb{R}^n are given. The convex hull problem of finding the smallest convex polytope containing all these points or vertices, given the latter, will be solved evaluated with Fukuda’s cddlib package cddlib-094h [77] (using GMP [78]) implementing the double description method [53, 79, 80]. In order to make it accessible, all configurations and codes are explicitly enumerated in an included supplemental material).

A. Trivial cases

1. Bounds on the probability of one observable

The case of a single variable has two extreme cases: false $= 0$ and true $= 1$, resulting in the two vertices (0) as well as (1), respectively. The corresponding hull problem yields a probability “below 0” as well as “above 1,” respectively; thus solution this rather trivial hull problem yields $0 \leq p_1 \leq 1$. For dichotomic expectation values ± 1 a similar argument yields $-1 \leq E_1 \leq 1$.

2. Bounds on the (joint) probabilities and expectations of two observables

The next trivial case is just two dichotomic (two values) observables and their joint probability. The respective logic is generated by the pairs (overline indicates negation) a_1a_2, $\bar{a}_1\bar{a}_2$, \bar{a}_1a_2, $a_1\bar{a}_2$, representable by a single Boolean algebra 2^k, whose atoms are these pairs: $a_1a_2, \bar{a}_1\bar{a}_2, \bar{a}_1a_2, a_1\bar{a}_2$. For single Boolean algebras with k atoms, there are 2^k two-valued measures; in this case $k = 4$.

For didactic purposes this case has been covered in Pitowsky’s introductions [27, 32–36], so it is just mentioned without further discussion: take the probabilities two observables p_1 and p_2, and a their joint variable p_{12} and “bundle” them together into a vector $(p_1, p_2, p_1 \land p_2 \equiv p_{12} = p_1p_2)^T$ of three-dimensional vector space. Then enumerate all four extreme cases – the two-valued states interpretable as truth assignments – involving two observables p_1 and p_2, and their joint variable p_{12} very explicitly false-false-false, false-true-false, true-false-true, or by numerical encoding, 0-0-0, 0,1,0, 1,0,0, and 1-1-1, yielding the four vectors

$$
|v_1\rangle = (0,0,0)^T, |v_2\rangle = (0,1,0)^T,
|v_3\rangle = (1,0,0)^T, |v_4\rangle = (1,1,1)^T.
$$

(7)

Solution of the hull problem for the polytope

$$
\left\{ \lambda_1|v_1\rangle + \lambda_2|v_2\rangle + \lambda_3|v_3\rangle + \lambda_4|v_4\rangle \bigg| \left. \begin{array}{c} \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1, \\
\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0 \end{array} \right\} \right.
$$

(8)

yields the “inside-outside” inequalities of the half-spaces corresponding to the four facets of this polytope:

$$
p_1 + p_2 - p_{12} \leq 1, \\
0 \leq p_{12} \leq p_1p_2.
$$

(9)

For the expectation values of two dichotomic observables ± 1 a similar argument yields

$$
E_1 + E_2 - E_{12} \leq 1, \\
-E_1 + E_2 + E_{12} \leq 1, \\
E_1 - E_2 + E_{12} \leq 1, \\
-E_1 - E_2 - E_{12} \leq 1.
$$

(10)

3. Bounds on the (joint) probabilities and expectations of three observables

Very similar calculations, taking into account three observables and their joint probabilities and expectations, yield

$$
p_1 + p_2 + p_3 - p_{12} - p_{13} - p_{23} + p_{123} \leq 1, \\
-p_1 + p_{12} + p_{13} - p_{123} \leq 0, \\
-p_2 + p_{12} + p_{23} - p_{123} \leq 0, \\
-p_3 + p_{13} + p_{23} - p_{123} \leq 0, \\
p_{12} + p_{13} + p_{23} \geq p_{123} \geq 0.
$$

(11)
\[-E_{12} - E_{13} - E_{23} \leq 1 \]
\[-E_{12} + E_{13} + E_{23} \leq 1, \]
\[E_{12} - E_{13} + E_{23} \leq 1, \]
\[E_{12} + E_{13} - E_{23} \leq 1, \]
\[-1 \leq E_{123} \leq 1. \] (12)

B. Einstein-Podolsky-Rosen type “explosion” setups of joint distributions without intertwined contexts

The first non-trivial (in the sense that the joint quantum probabilities and joint quantum expectations violate the classical bounds) instance occurs for four observables in an Einstein-Podolsky-Rosen type “explosion” setup [21], where \(n \) observables are measured on both sides, respectively.

1. Clauser-Horne-Shimony-Holt case: 2 observers, 2 measurement configurations per observer

If just two observables are measured on the two sides, the facets of the polytope are the Bell-Wigner-Fine (in the probabilistic version) as well as the Clauser-Horne-Shimony-Holt (for joint expectations) inequalities; that is, for instance,

\[0 \leq p_1 + p_4 - p_{13} - p_{14} + p_{23} - p_{24} \leq 1, \]
\[-2 \leq E_{13} + E_{14} + E_{23} - E_{24} \leq 2. \] (13)

To obtain a feeling, Fig. 1(a) depicts the Greechie orthogonality diagram of the 2 particle 2 observables per particle situation. Fig. 1(b) enumerates all two-valued states thereon.

At this point it might be interesting to see how exactly the approach of Froissart and Tsirelson blends in [30, 31]. The only difference to the Pitowsky method – which enumerates the (two particle) correlations and expectations as vector components – is that Froissart and later and Tsirelson arrange the two-particle correlations and expectations as matrix components; so both differ only by notation. For instance, Froissart explicitly mentions [30, pp. 242,243] 10 extremal configurations of the two-particle correlations, associated with 10 matrices

\[
\begin{pmatrix}
 p_{13} = p_1 p_3 & p_{14} = p_1 p_4 \\
 p_{23} = p_2 p_3 & p_{24} = p_2 p_4
\end{pmatrix}
\] (14)

containing 0s and 1s (the indices “1, 2” and “3, 4” are associated with the two sides of the Einstein-Podolsky-Rosen “explosion”-type setup, respectively), arranged in Pitowsky’s case as vector

\[
\begin{pmatrix}
 p_{13} = p_1 p_3 & p_{14} = p_1 p_4 & p_{23} = p_2 p_3 & p_{24} = p_2 p_4
\end{pmatrix}
\] (15)

For probability correlations the number of different matrices or vectors is 10 (and not 16 as could be expected from the 16 two-valued measures), since, as enumerated in Table I some such measures yield identical results on the two-particle correlations; in particular, \(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{13} \) yield identical matrices (in the Froissart case) or vectors (in the Pitowsky case).

\[
\begin{array}{cccc}
 a_1 & \rightarrow & a' _1 _1 & a_1 _2 _1 \\
 a_2 & \rightarrow & a' _2 _2 & a_2 _3 _2 \\
 a_3 & \equiv & b_1 _1 & a' _3 _1 _1 \\
 a_4 & \equiv & b_2 _3 _2 & a' _4 _2 _2
\end{array}
\]

FIG. 1. (Color online) (a) Four contexts \(\{a_1, a'_1\}, \{a_2, a'_2\} \) on one side, and \(\{a_1 \equiv b_1, a'_3 \equiv b'_1\}, \{a_4 \equiv b_2, a'_4 \equiv b'_2\} \) on the other side of the Einstein-Podolsky-Rosen “explosion”-type setup are relevant for a computation of the Bell-Wigner-Fine (in the probabilistic version) as well as the Clauser-Horne-Shimony-Holt (for joint expectations) inequalities; (b) the \(2^4 \) two-valued measures thereon, tabulated in Table I, which are used to compute the vertices of the correlation polytopes. Full circles indicate the value “1 true”

2. Beyond the Clauser-Horne-Shimony-Holt case: 2 observers, more measurement configurations per observer

The calculation for the facet inequalities for two observers and three measurement configurations per observer is straightforward and yields 684 inequalities [36, 81, 82]. If one considers (joint) expectations one arrives at novel ones which are not of the Clauser-Horne-Shimony-Holt type; for instance [81,
TABLE I. (Color online) The 16 two-valued states on the 2 particle two observables per particle configuration, as drawn in Fig. 1(b). Two-particle correlations appear green. There are 10 different such configurations, painted in red.

#	a_1	a_2	a_3	a_4	a_{13}	a_{14}	a_{23}	a_{24}
v_1	0	0	0	0	0	0	0	0
v_2	0	0	0	1	0	0	0	0
v_3	0	0	1	0	0	0	0	0
v_4	0	0	1	1	0	0	0	0
v_5	0	1	0	0	0	0	0	0
v_6	0	1	0	1	0	0	0	1
v_7	0	1	1	0	0	0	1	0
v_8	0	1	1	1	0	0	1	1
v_9	1	0	0	0	0	0	0	0
v_{10}	1	0	0	1	0	1	0	0
v_{11}	1	0	1	0	1	0	0	0
v_{12}	1	0	1	1	1	0	1	0
v_{13}	1	1	0	0	0	0	0	0
v_{14}	1	1	0	1	0	1	0	1
v_{15}	1	1	1	0	1	0	1	0
v_{16}	1	1	1	1	1	1	1	1

p. 166, Eq. (4)].

\[-4 \leq -E_2 + E_3 - E_4 - E_5 + E_{14} - E_{15} + E_{24} + E_{25} + E_{26} - E_{34} - E_{35} + E_{36},
\]
\[-4 \leq E_1 + E_2 + E_4 + E_5 + E_{14} + E_{15} + E_{16} + E_{24} + E_{25} - E_{26} + E_{34} - E_{35}.\] \hspace{1cm} \text{(16)}

Here a word of warning is in order: if one only evaluates the vertices from the joint expectations (and not also the single particle expectations), one never arrives at the novel inequalities of the type listed in Eq. (16), but obtains 90 facet inequalities; among them 72 instances of the Clauser-Horne-Shimony-Holt inequality form, such as

\[E_{25} + E_{26} + E_{35} - E_{36} \leq 2, \]
\[E_{14} + E_{15} + E_{24} - E_{25} \leq 2, \]
\[-E_{25} - E_{26} - E_{35} + E_{36} \leq 2, \]
\[-E_{14} - E_{15} - E_{24} + E_{25} \leq 2. \]

They can be combined to yield (see also Ref. [81, p. 166, Eq. (4)])

\[-4 \leq E_{14} + E_{15} + E_{24} + E_{26} + E_{35} - E_{36} \leq 4. \] \hspace{1cm} \text{(17)}

For the general case of n qubits, algebraic methods different than the hull problem for polytopes have been suggested in Refs. [83–86].

FIG. 2. (Color online) Firefly logic with two contexts $\{a_1, a_2, a_5\}$ and $\{a_3, a_4, a_5\}$ intertwined in a_5.

C. Intertwined contexts

In the following we shall present a series of logics whose contexts (representable by maximal observables, Boolean subalgebras, blocks, or orthogonal bases) are intertwined; but “not much:” by assumption and for convenience, contexts intertwine in only one element; it does not happen that two contexts are pasted [64, 65, 68, 76] along two or more atoms. (They nevertheless might be totally identical.) Such interwines – connecting contexts by pasting them together – can only occur from Hilbert space dimension three onwards, as contexts in lower-dimensional spaces cannot have the same element unless they are identical.

In Sect. VIII C 1 we shall first study the “firefly case” with just two contexts intertwined in one atom; then, in Sect. VIII C 2, proceed to the pentagon configuration with five contexts intertwined cyclically, then, in Sect. VIII D, paste two such pentagon logics to form a cat’s cradle (or, by another term, Specker’s bug) logic; and finally, in Sect. VIII E, connect two Specker bugs to arrive at a logic which has a so “meagre” set of states that it can no longer separate two atoms. As pointed out already by Kochen and Specker [87, p. 70], this is no longer imbeddable into some Boolean algebra. It thus cannot be represented by a partition logic; and thus has neither any generalized urn and finite automata models nor classical probabilities separating different events. The case of logics allowing no two valued states will be covered consecutively.

1. Firefly logic

Cohen presented [88, pp. 21, 22] a classical realization of the first logic with just two contexts and one intertwining atom: a firefly in a box, observed from two sides of this box which are divided into two windows; assuming the possibility that sometimes the firefly does not shine at all. This firefly logic, which is sometimes also denoted by L_1 because it has 12 elements (in a Hasse diagram) and 5 atoms, with the contexts defined by $\{a_1, a_2, a_5\}$ and $\{a_3, a_4, a_5\}$ is depicted in Fig. 2.

The five two-valued states on the firefly logic are enumerated in Table II and depicted in Fig. 3.

These two-valued states induce [46] a partition logic realization [47, 58] $\{\{1\}, \{2, 3\}, \{4, 5\}\}, \{\{1\}, \{2, 5\}, \{3, 4\}\}$ which in turn induce all classical probability distributions, as depicted in Fig. 4. No representation in \mathbb{R}^3 is given here; but this is straightforward (just two orthogonal tripods with one identical leg), or can be read off from logics containing more
2. Pentagon logic

Admissibility of two-valued states imposes conditions and restrictions on the two-valued states already for a single context (Boolean subalgebra): if one atom is assigned the value 1, all other atoms have to have value assignment(s) 0. This is even more so for intertwining contexts. For the sake of an example, consider two firefly logics pasted along an entire block, as depicted in Fig. 5. For such a logic we can state a “true-and-true implies true” rule: if the two-valued measure at the “outer extremities” is 1, then it must be 1 at its center atom.

We shall pursue this path of ever increasing restrictions through construction of pasted; that is, intertwined, contexts. This ultimately yields to non-classical logics which have no separating sets of two-valued states; and even, as in Kochen-Specker type configurations, to logics which do not allow for any two valued state interpretable as preassigned truth assignments.

Let us proceed by pasting more firefly logics together in “closed circles.” The next possibilities – two firefly logics forming either a triangle or a square Greechie orthogonal diagram – have no realization in three dimensional Hilbert space. The next diagram realizably is obtained by a pasting of three firefly logics. It is the pentagon logic (also denoted as orthomodular house [65, p. 46, Fig. 4.4] and discussed in Ref. [13]; see also Birkhoff’s distributivity criterion [89, p. 90, Theorem 33], stating that, in particular, if some lattice contains a pentagon as sublattice, then it is not distributive [90]) which is subject to an old debate on “exotic” probability measures [91]. In terms of Greechie orthogonality diagrams there are two equivalent representations of the pentagon logic: one as a pentagon, as depicted [39] in Fig. 6 and one as a pentagram; thereby the indices of the intertwining edges (the non-intertwining ones follow suit) are permuted as follows: 1 → 1, 9 → 5, 7 → 9, 5 → 3, 3 → 7. From a Greechie orthogonality point of view the pentagon representation is preferable over the pentagram, because the latter, although appearing more “magic,” might suggest the illusion that there are more intertwining contexts and observables as there actually are.

As pointed out by Wright [91, p 268] the pentagon has 11 “ordinary” two-valued states v_1, \ldots, v_{11}, and one “exotic” dispersionless state v_e, which was shown by Wright to have neither a classical nor a quantum interpretation; all defined on the 10 atoms a_1, \ldots, a_{10}. They are enumerated in Table III and depicted in Fig. 7.
FIG. 6. (Color online) Orthogonality diagram of the pentagon logic, which is a pasting of 3 firefly logics (two of which share an entire context), resulting in a pasting of five intertwined contexts \(a = \{a_1, a_2, a_3\}, b = \{a_4, a_5, a_6\}, c = \{a_7, a_8, a_9\}, d = \{a_{10}, a_{11}, a_{12}\}, e = \{a_{13}, a_{14}, a_{15}\} \). They have a (quantum) realization in \(\mathbb{R}^3 \) consisting of the 10 projections associated with the one dimensional subspaces spanned by the vectors from the origin \((0,0,0)^\top\) to \(a_1 = (\sqrt{3}, -\sqrt{3}, 2)^\top, a_2 = (-\sqrt{3}, -\sqrt{2}, \sqrt{3})^\top, a_3 = (-\sqrt{3}, -\sqrt{2}, \sqrt{3})^\top, a_4 = (\sqrt{3}, -\sqrt{3}, 2)^\top, a_5 = (0, -\sqrt{3}, 1)^\top, a_6 = (\sqrt{2}, \sqrt{3}, 2)^\top, a_7 = (\sqrt{3}, 2, -2)^\top, a_8 = (\sqrt{3}, 2, -2)^\top, a_9 = (-\sqrt{3}, \sqrt{3}, 2)^\top, a_{10} = (0, \sqrt{3}, -1)^\top \), respectively [66, Fig. 8, p. 5939]. Another such realization is \(a_1 = (1,0,0)^\top, a_2 = (0,1,0)^\top, a_3 = (0,0,1)^\top, a_4 = (1,-1,0)^\top, a_5 = (1,1,0)^\top, a_6 = (1,-1,2)^\top, a_7 = (-1,1,1)^\top, a_8 = (2,1,1)^\top, a_9 = (0,1,1)^\top, a_{10} = (0,1,1)^\top \), respectively [92].

These two-valued states directly translate into the classical probabilities depicted in Fig. 8.

The pentagon logic has quasi-classical realizations in terms of partition logics [46, 47, 58], such as generalized urn models [59, 91] or automaton logics [60–63]. An early realization in terms of three-dimensional (quantum) Hilbert space can, for instance, be found in Ref. [66, pp. 5392,5393]; other such parametrizations are discussed in Refs. [43, 93–95].

The full hull problem, including all joint expectations of dichotomic \(\pm 1 \) observables yields 64 inequalities enumerated in the supplementary material; among them

\[
E_{12} \leq E_{45}, E_{18} \leq E_{7,10}, \quad E_{16} + E_{26} + E_{36} + E_{48} \leq E_{18} + E_{28} + E_{34} + E_{49}, \quad E_{14} + E_{18} + E_{28} \leq 1 + E_{12} + E_{16} + E_{26} + E_{36} + E_{48} + E_{5,10}. \tag{19}
\]

The full hull computations for the probabilities \(p_1, \ldots, p_{10} \) on all atoms \(a_1, \ldots, a_{10} \) reduces to 16 inequalities, among them

\[
+ p_4 + p_8 + p_9 \geq p_1 + p_2 + p_6, \quad 2p_1 + p_2 + p_6 + p_{10} \geq 1 + p_4 + p_8. \tag{20}
\]

If one considers only the five probabilities on the intertwining atoms, then the Bub-Stairs inequality \(p_1 + p_3 + p_5 + p_7 + p_9 \leq 2 \) results [93–95]. Concentration on the four non-intertwining atoms yields \(p_2 + p_4 + p_6 + p_8 + p_{10} \geq 1 \). Limiting the hull computation to adjacent pair expectations of dichotomic \(\pm 1 \) observables yields the Klyachko-Can-Biniciogolu-Shumovsky inequality [43]

\[
E_{13} + E_{35} + E_{57} + E_{79} + E_{91} \geq 3. \tag{21}
\]
FIG. 9. (Color online) Greechie diagram of the Specker bug (cat’s cradle) logic which results from a pasting of two pentagon logics sharing three common contexts. It is a pasting of seven intertwined contexts $a = \{a_1, a_2, a_3\}$, $b = \{a_3, a_4, a_5\}$, $c = \{a_2, a_6, a_7\}$, $d = \{a_7, a_8, a_9\}$, $e = \{a_9, a_{10}, a_{11}\}$, $f = \{a_{11}, a_{12}, a_{13}\}$, $g = \{a_4, a_{13}, a_{10}\}$. They have a (quantum) realization in \mathbb{R}^7 consisting of the 13 projections associated with the one dimensional subspaces spanned by the vectors from the origin $(0,0,0)^T$ to $a_1 = (1, \sqrt{2}, 0)^T$, $a_2 = (\sqrt{2}, -1, -3)^T$, $a_3 = (\sqrt{2}, -1, 1)^T$, $a_4 = (0, 1, 1)^T$, $a_5 = (\sqrt{2}, 1, -1)^T$, $a_6 = (\sqrt{2}, 1, 3)^T$, $a_7 = (-1, \sqrt{2}, 0)^T$, $a_8 = (\sqrt{2}, 1, -3)^T$, $a_9 = (\sqrt{2}, 1, 1)^T$, $a_{10} = (0, 1, -1)^T$, $a_{11} = (\sqrt{2}, -1, -1)^T$, $a_{12} = (\sqrt{2}, -1, 3)^T$, $a_{13} = (1, 0, 0)^T$, respectively [99, p. 206, Fig. 1] (see also [66, Fig. 4, p. 5387]).

D. Combo of two intertwined pentagon logics forming a Specker Käfer (bug) or cat’s cradle logic

1. Specker’s bug (or Pitowsky’s cat’s cradle) “true implies false” logic

The pasting of two pentagon logics results in ever tighter conditions for two-valued measures and thus truth value assignments: consider the Greechie orthogonality diagram of a logic drawn in Fig. 9. It was called “bug logic” by Specker [96] because of the similar shape with a bug. Pitowsky called it “cat’s cradle” [97, 98] (see Ref [68, p. 39, Fig. 2.4.6] for an early discussion). A partition logic, as well as a Hilbert space realization can be found in Refs. [47, 66] There are 14 dispersion-free states which are listed in Table IV.

As already Pták and Pulmannová [68, p. 39, Fig. 2.4.6] as well as Pitowsky [97, 98] have pointed out, the reduction of some probabilities of atoms at intertwined contexts yields [39, p. 285, Eq. (11.2)]

$$p_1 + p_7 = 3 - \frac{1}{2} (p_{12} + p_{13} + p_2 + p_6 + p_8) \leq \frac{3}{2}. \quad (22)$$

For two-valued measures this yields the “1-0” or “true implies false” rule [100]: if a_1 is true, then a_7 must be false; because (in a proof by contradiction), suppose a_7 were true as well. This would (by the admissibility rules) imply a_3, a_5, a_9, a_{11} to be false, which in turn would imply both a_4 as well as a_{10}, which have to be true in one and the same context – a clear violation of the admissibility rules stating that within a single context there can only be atom which is true. This property, which has already been exploited by Kochen and Specker [87, 88] to construct both a logic with a non-separating, as well as one with a non-existent set of two valued states. These former case will be discussed in the next section. For the time being, instead of drawing all two valued states separately, Fig. 10 enumerates the classical probabilities on the Specker bug (cat’s cradle) logic.

The hull problem yields 23 facet inequalities; one of them relating p_1 to p_7: $p_1 + p_2 + p_7 + p_6 \geq 1 + p_4$, which is satisfied, since, by subadditivity, $p_1 + p_2 = 1 - p_3$, $p_7 + p_6 = 1 - p_5$, and $p_4 = 1 - p_5 - p_3$. This is a good example of a situation in which considering just Boole-Bell type inequalities

| i | a_1 | a_2 | a_3 | a_4 | a_5 | a_6 | a_7 | a_8 | a_9 | a_{10} | a_{11} | a_{12} | a_{13} |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| v_1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| v_2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| v_3 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| v_4 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| v_5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| v_6 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| v_7 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| v_8 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| v_9 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| v_{10} | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| v_{11} | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| v_{12} | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| v_{13} | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| v_{14} | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

FIG. 10. (Color online) Classical probabilities on the Specker bug (cat’s cradle) logic; $\lambda_1 + \cdots + \lambda_{14} = 1$, $0 \leq \lambda_1, \ldots, \lambda_{14} \leq 1$, taken from Ref. [39]. The two-valued states $i = 1, \ldots, 14$ can be identified by taking $\lambda_j = \delta_{i,j}$ for all $j = 1, \ldots, 14$. Table IV. The 14 two-valued states on the Specker bug (cat’s cradle) logic.
has been introduced by Yu and Oh [101, Fig. 2], whose set of two-valued states enforces at most one of the four atoms \(h_0, h_1, h_2, h_3 \) to be 1. The logic has a (quantum) realization in \(\mathbb{R}^3 \) consisting of the 25 projections; associated with the one dimensional subspaces spanned by the 13 vectors from the origin \((0,0,0)^T \) to \(z_1 = (1,0,0)^T, z_2 = (0,1,0)^T, z_3 = (0,0,1)^T, y_1^+ = (0,1,-1)^T, y_2^+ = (1,0,-1)^T, y_3^+ = (1,-1,0)^T, y_1^- = (0,1,1)^T, y_2^- = (1,0,1)^T, y_3^- = (1,1,0)^T, h_0 = (1,1,1)^T, h_1 = (-1,1,1)^T, h_2 = (1,-1,1)^T, h_3 = (1,1,-1)^T \), respectively [101].

![Greechie diagram of the logic considered by Yu and Oh (Color online)](image1)

FIG. 11. (Color online) Greechie diagram of the logic considered by Yu and Oh [101, Fig. 2], whose set of two-valued states enforces at most one of the four atoms \(h_0, h_1, h_2, h_3 \) to be 1. The logic has a (quantum) realization in \(\mathbb{R}^3 \) consisting of the 25 projections; associated with the one dimensional subspaces spanned by the 13 vectors from the origin \((0,0,0)^T \) to the 13 points mentioned in Fig. 9, as well as \(c = (0,0,1)^T, b_1 = (\sqrt{2},1,0)^T, b_7 = (\sqrt{2},-1,0)^T \), respectively [99, p. 206, Fig. 1].

A restricted hull calculation for the joint expectations on the six edges of the Greechie orthogonality diagram yields 18 inequalities; among them

\[
E_{13} + E_{57} + E_{9,11} \leq E_{35} + E_{79} + E_{11,1}. \tag{23}
\]

A tightened “true implies 3-times-false” logic depicted in Fig. 11 has been introduced by Yu and Oh [101]. As can be derived from admissibility in a straightforward manner, its set of two-valued states enforces at most one of the four atoms \(h_0, h_1, h_2, h_3 \) to be 1. Therefore, classically \(p_{h_0} + p_{h_1} + p_{h_2} + p_{h_3} \leq 1 \).

2. Kochen-Specker’s \(\Gamma_1 \) “true implies true” logic

A small extension of the Specker bug logic by two contexts extending from \(a_7 \) and \(a_7 \), both intertwining at a point \(c \) renders a logic which facilitates that, whenever \(a_7 \) is true, so must be an atom \(b_1 \), which is element in the context \(\{a_7, c, b_1\} \), as depicted in Fig. 12.

The reduction of some probabilities of atoms at intertwined contexts yields \((q_1, q_7 \) are the probabilities on \(b_1, b_7 \), respectively), additionally to Eq. (22),

\[
p_{1} - p_{7} = q_{1} - q_{7}, \tag{24}
\]

which, as can be derived also explicitly by taking into account admissibility, implies that, for all the 112 two-valued states, if \(p_1 = 1 \), then [from Eq. (22)] \(p_7 = 0 \), and \(q_1 = 1 \) as well as \(q_7 = 1 - q_1 = 0 \).

Besides the quantum mechanical realization of this logic in terms of propositions identified with projection operators corresponding to vectors in three-dimensional Hilbert space Tkadlec and this author [66, p. 5387, Fig. 4] (see also Tkadlec [99, p. 206, Fig. 1]) have given an explicit collection of such vectors. As Tkadlec has observed (cf. Ref. [66, p. 5390], and Ref. [102, p.]), the original realization suggested by Kochen and Specker [87] appears to be a little bit “buggy” as they did not use the right angle between \(a_1 \) and \(a_7 \), but this could be rectified.

Notice that, if a second Specker bug logic is placed along \(b_1 \) and \(b_7 \), just as in the Kochen-Specker \(\Gamma_3 \) logic [87, p. 70], this imposes an additional “true implies false” condition; together with the “true implies false” condition of the first logic this implies the fact that \(a_1 \) and \(a_7 \) can no longer be separated by a two-valued state: whenever one is true, the other one must be true as well, and vice versa. This Kochen-Specker logic \(\Gamma_3 \) will be discussed in the next Section VIII.

Notice further that if we manage to iterate this process in such a manner that, with every \(i \)th iteration we place another Kochen-Specker \(\Gamma_3 \) logic along \(b_i \), while at the same time increasing the angle between \(b_i \) and \(b_{i+1} \), then eventually we shall
arrive at a situation in which \(b_1 \) and \(b_2 \) are part of a context (in terms of Hilbert space: they correspond to orthogonal vectors). But admissibility disallows two-valued measures with more than one, and in particular, two “true” atoms within a single block. As a consequence, if such a configuration is realizable (say, in 3-dimensional Hilbert space), then it cannot have any two-valued state satisfying the admissibility criteria. This is the Kochen-Specker theorem, as exposed in the Kochen-Specker \(\Gamma_3 \) logic [87, p. 69], which will be discussed in Section VIII.F.

E. Combo of two linked Specker bug logics

As we are heading toward logics with less and less “rich” set of two-valued states we are approaching a logic depicted in Fig. 13 which is a combination of two Specker bug logics linked by two external contexts. It is the \(\Gamma_3 \)-configuration of Kochen-Specker [87, p. 70] with a set of two-valued states which is a combination of two Specker bug logics discussed earlier to obtain “true logic [\(b_1 \)] in particular, \(v \) versa and \(v \) configuration of Kochen-Specker. Whenever \(v(a_1) = 1 \) then \(v(c) = 0 \) because it is in the same context \(\{a_1, c, b_1\} \) as \(a_1 \). Furthermore, because of Eq. (22), whenever \(v(a_1) = 1 \), then \(v(a_2) = 0 \). Because \(b_1 \) is in the same context \(\{a_1, c, b_1\} \) as \(a_1 \) and \(c \), because of admissibility, \(v(b_1) = 1 \). Conversely, by symmetry, whenever \(v(b_1) = 1 \), so must be \(v(a_1) = 1 \). Therefore it can never happen that either one of the two atoms \(a_1 \) and \(b_1 \) have different dichotomic values. (Eq. 24 is compatible with these value assignments.) The same is true for the pair of atoms \(a_7 \) and \(b_7 \).

Note that one needs two Specker bug logics tied together (at their “true implies false” extremities) to obtain non-separability; just extending one to the Kochen-Specker \(\Gamma_1 \) logic [87, p. 68] of Fig. 12 discussed earlier to obtain “true implies true” would be insufficient. Because in this case a consistent two-valued state exists for which \(v(b_1) = v(b_2) = 1 \) and \(v(a_1) = v(a_2) = 0 \), thereby separating \(a_1 \) from \(b_1 \), and vice versa. A second Specker bug logic is needed to eliminate this case; in particular, \(v(b_1) = v(b_2) = 1 \).

Besides the quantum mechanical realization of this logic in terms of propositions which are projection operators corresponding to vectors in three-dimensional Hilbert space suggested by Kochen and Specker [87], Tkadlec has given [99, p. 206, Fig. 1] an explicit collection of such vectors (see also the proof of Proposition 7.2 in Ref. [66, p. 5392]).

The “1-1" or “true implies true” rule can be taken as an operational criterion for quantization: Suppose that one prepares a system to be in a pure state corresponding to \(a_1 \), such that the preparation ensures that \(v(a_1) = 1 \). If the system is then measured along \(b_1 \), and the proposition that the system is in state \(b_1 \) is found to be not true, meaning that \(v(b_1) \neq 1 \) (the respective detector does not click), then one has established that the system is not performing classically, because classically the set of two-valued states requires non-separability; that is, \(v(a_1) = v(b_1) = 1 \). With the Tkadlec directions taken from Figs. 9 and 12, \(|a_1\rangle = (1/\sqrt{3}) (1, \sqrt{2}, 0)^T \) and \(|b_1\rangle = (1/\sqrt{3}) (\sqrt{3}, 1, 0)^T \) so that the probability to find a quantized system prepared along \(|a_1\rangle \) and measured along \(|b_1\rangle \) is \(p_{a_1}(b_1) = |(b_1|a_1\rangle|^2 = 8/9 \), and that a violation of classicality should occur with probability 1/9. Of course, any other classical prediction, such as the “1-0" or “true implies false” rule, or more general classical predictions such as of Eq. (22) can also be taken as empirical criteria for non-classicality [39, Sect. 11.3.2.]). These criteria for non-classicality are benchmarks aside from the Boole-Bell type polytope method, and also different from the full Kochen-Specker theorem.

As every algebra imbeddable in a Boolean algebra must have a separating set of two valued states, this logic is no longer “classical” in the sense of “homomorphically (structure-preserving) imbeddable.” Nevertheless, two-valued states can still exist. It is just that these states can no longer differentiate between the pairs of atoms \(\{a_1, b_1\} \) as well as \(\{a_7, b_7\} \). Partition logics and their generalized urn or finite automata models fail to reproduce two linked Specker bug logics resulting in a Kochen-Specker \(\Gamma_3 \) logic even at this stage. Of course, the situation will become more dramatic with the non-existence of any kind of two-valued state (interpretable as truth assignment) on certain logics associate with quantum
propositions.

Complementarity and non-distributivity is not enough to characterize logics which do not have a quasi-classical (partition logical, set theoretical) interpretation. While in a certain, graph coloring sense the “richness/scarcity” and the “number” of two-valued homomorphisms” yields insights into the old problem of the structural property [103] by separating quasi-classical from quantum logics, the problem of finding smaller, maybe minimal, subsets of graphs with a non-separating set of two-valued states still remains an open challenge.

The “true implies true” rule is associated with chromatic separability; in particular, with the impossibility to separate two atoms \(a_7 \) and \(b_7 \) with less than four colors. A proof is presented in Fig. 14. That chromatic separability on the unit sphere requires 4 colors is implicit in Refs. [104, 105].

F. Propositional structures without two-valued states

1. Gleason-type continuity

Gleason’s theorem [67] was a response to Mackey’s problem to “determine all measures on the closed subspaces of a Hilbert space” contained in a review [106] of Birkhoff and von Neumann’s centennial paper [107] on the logic of quantum mechanics. Starting from von Neumann’s formalization of quantum mechanics [23, 24], the quantum mechanical probabilities and expectations (aka the Born rule) are essentially derived from (sub)additivity among the quantum context; that is, from subclassicality: within any context (Boolean subalgebra, block, maximal observable, orthonormal base) the quantum probabilities sum up to 1.

Gleason’s finding caused ripples in the community, at least of those who cared and coped with it [22, 87, 108–113]. (I recall having an argument with Van Lambalgen around 1983, who could not believe that anyone in the larger quantum community had not heard of Gleason’s theorem. As we approached an elevator at Vienna University of Technology’s Freihaus building we realized there was also one very prominent member of Vienna experimental community entering the cabin. I suggested to stage an example by asking; and voila . . .)

With the possible exception of Specker who did not explicitly refer to the Gleason’s theorem in independently announcing that two-valued states on quantum logics cannot exist [38] – he must have made up his mind from other arguments and preferred to discuss scholastic philosophy; at that time the Swiss may have had their own biotope – Gleason’s theorem directly implies the absence of two-valued states. Indeed, at least for finite dimensions [114, 115], as Zierler and Schlessinger [108, p. 259, Example 3.2] (even before publication of Bell’s review [22]) noted, “it should also be mentioned that, in fact, the non-existence of two-valued states is an elementary geometric fact contained quite explicitly in [67, Paragraph 2.8].”

Now, Gleason’s Paragraph 2.8 contains the following main (necessity) theorem [67, p. 888]: “Every non-negative frame function on the unit sphere \(S \) in \(\mathbb{R}^3 \) is regular.” Whereby [67, p. 886] “a frame function \(f \) (satisfying additivity) is regular if and only if there exists a self-adjoint operator \(\mathbf{T} \) defined on (the separable Hilbert space) \(\mathcal{H} \) such that \(f(|x\rangle) = \langle \mathbf{T}|x\rangle \) for all unit vectors \(|x\rangle\).” (Of course, Gleason did not use the Dirac notation.)

In what follows we shall consider Hilbert spaces of dimension \(n = 3 \) and higher. Suppose that the quantum system is prepared to be in a pure state associated with the unit vector \(|x\rangle\), or the projection operator \(|x\rangle\langle x|\).

As all self-adjoint operators have a spectral decomposition [116, § 79], and the scalar product is (anti)linear in its arguments, let us, instead of \(\mathbf{T} \), only consider one-dimensional orthogonal projection operators \(\mathbf{E}_i = |y_i\rangle\langle y_i| \) (formed by the unit vector \(|y_i\rangle\) which are elements of an orthonormal basis \(\{|y_1\rangle, \ldots, |y_n\rangle\}\) occurring in the spectral sum of \(\mathbf{T} = \sum_{i=1}^{n} \lambda_i \mathbf{E}_i \), with \(\lambda_i = \sum_{i=1}^{n} \mathbf{E}_i \).

Thus if \(\mathbf{T} \) is restricted to some one-dimensional projection operator \(\mathbf{E} = |y\rangle\langle y| \) along \(|y\rangle\), then Gleason’s main theorem states that any frame function reduces to the absolute square of the scalar product; and in real Hilbert space to the square of the angle between those vectors spanning the linear subspaces corresponding to the two projectors involved; that is (note that \(\mathbf{E} \) is self-adjoint). \(f_c(|x\rangle) = \langle \mathbf{E}|x\rangle = \langle x|\mathbf{E}| \rangle = \langle x|y\rangle\langle y|x \rangle = |\langle x|y\rangle|^2 = \cos^2 \angle(x,y) \).

Hence, unless a configuration of contexts is not of the star-shaped Greechie orthogonality diagram form – meaning that they all share one common atom; and, in terms of geometry, meaning that all orthonormal bases share a common vector – and the two-valued state has value 1 on its centre, as depicted
in Fig. 15, there is no way how any two contexts could have a two-valued assignment; even if one context has one: it is just not possible by the continuous, cos²-form of the quantum probabilities. That is (at least in this author’s believe) the watered down version of the remark of Zierler and Schlessinger [108, p. 259, Example 3.2].

2. Finite logics admitting no two-valued states

When it comes to the absence of a global two-valued state on quantum logics corresponding to Hilbert spaces of dimension three and higher – where contexts or blocks can be intertwined or pasted [76] to form chains – Kochen and Specker [87] pursued a very concrete, “constructive” (in the sense of finitary mathematical objects but not in the sense of physical operationalizability [117]) strategy: they presented finite logics realizable by vectors (from the origin to the unit sphere) spanning one-dimensional subspaces, equivalent to observable propositions, which allowed for lesser & lesser two-valued state properties. For the reason of non-imbédability is is already enough to consider two linked Specker bugs logics \(\Gamma_3 \) [87, p. 70], as discussed in Sect. VIII E.

Kochen and Specker went further and presented a proof by contradiction of the non-existence of two-valued states on a finite number of propositions, based on their \(\Gamma_3 \) “true implies true” logic [87, p. 68] discussed in Sect. 12, iterating them until they reached a complete contradiction in their \(\Gamma_2 \) logic [87, p. 69]. As has been pointed out earlier, their representation as points of the sphere is a little bit “buggy” (as could be expected from the formation of so many bugs): as Tkadlec has observed, Kochen-Specker diagram \(\Gamma_2 \) it is not a one-to-one representation of the logic, because some different points at the diagram represent the same element of corresponding orthomodular poset (cf. Ref. [66, p. 5390], and Ref. [102, p.]).

The early 1990’s saw an ongoing flurry of papers recasting the Kochen-Specker proof with ever smaller numbers of, or more symmetric, configurations of observables (see Refs. [66, 73, 99, 102, 118–135] for an incomplete list). Arguably the most compact such logic is one in four-dimensional space suggested by Cabello, Estebaranz and García-Alcaine [124, 136]. For the sake of demonstration, consider a Greechie (orthogonality) diagram of a finite subset of the continuum of blocks or contexts imbeddable in four-dimensional real Hilbert space without a two-valued probability measure. The proof of the Kochen-Specker theorem uses a pasting of nine tightly intertwined contexts \(a = \{a_1,a_2,a_3,a_4\}, b = \{a_4,a_5,a_6,a_7\}, c = \{a_7,a_8,a_9,a_{10}\}, d = \{a_{10},a_{11},a_{12},a_{13}\}, e = \{a_{13},a_{14},a_{15},a_{16}\}, f = \{a_{16},a_{17},a_{18},a_1\}, g = \{a_6,a_8,a_{15},a_{17}\} h = \{a_3,a_5,a_{12},a_{14}\}, i = \{a_2,a_9,a_{11},a_{18}\}. \) They have a (quantum) realization in \(\mathbb{R}^4 \) consisting of the 18 projections associated with the one-dimensional subspaces spanned by the vectors from the origin \((0,0,0,0) \) to \(a_1 = (0,0,1,−1)^{\top}, a_2 = (1,−1,0,0)^{\top}, a_3 = (1,1,−1,−1)^{\top}, a_4 = (1,1,1,1)^{\top}, a_5 = (1,1,1,1)^{\top}, a_6 = (0,1,0,−1)^{\top}, a_7 = (0,1,0,0)^{\top}, a_8 = (1,0,1,0)^{\top}, a_9 = (1,1,1,1)^{\top}, a_{10} = (−1,1,1,1)^{\top}, a_{11} = (1,1,1,1)^{\top}, a_{12} = (1,0,0,0)^{\top}, a_{13} = (0,1,−1,0)^{\top}, a_{14} = (0,1,1,0)^{\top}, a_{15} = (0,0,0,1)^{\top}, a_{16} = (1,0,0,0)^{\top}, a_{17} = (0,1,0,0)^{\top}, a_{18} = (0,0,1,1)^{\top} \), respectively [57, Fig. 1].

The most compact way of deriving the Kochen-Specker theorem in four dimensions has been given by Cabello, Estebaranz and García-Alcaine [124, 136]. For the sake of demonstration, consider a Greechie (orthogonality) diagram of a finite subset of the continuum of blocks or contexts imbeddable in four-dimensional real Hilbert space without a two-valued probability measure. The proof of the Kochen-Specker theorem uses a pasting of nine tightly intertwined contexts \(a = \{a_1,a_2,a_3,a_4\}, b = \{a_4,a_5,a_6,a_7\}, c = \{a_7,a_8,a_9,a_{10}\}, d = \{a_{10},a_{11},a_{12},a_{13}\}, e = \{a_{13},a_{14},a_{15},a_{16}\}, f = \{a_{16},a_{17},a_{18},a_1\}, g = \{a_6,a_8,a_{15},a_{17}\} h = \{a_3,a_5,a_{12},a_{14}\}, i = \{a_2,a_9,a_{11},a_{18}\}. \) They have a (quantum) realization in \(\mathbb{R}^4 \) consisting of the 18 projections associated with the one-dimensional subspaces spanned by the vectors from the origin \((0,0,0,0) \) to \(a_1 = (0,0,1,−1)^{\top}, a_2 = (1,−1,0,0)^{\top}, a_3 = (1,1,−1,−1)^{\top}, a_4 = (1,1,1,1)^{\top}, a_5 = (1,1,1,1)^{\top}, a_6 = (0,1,0,−1)^{\top}, a_7 = (0,1,0,0)^{\top}, a_8 = (1,0,1,0)^{\top}, a_9 = (1,1,1,1)^{\top}, a_{10} = (−1,1,1,1)^{\top}, a_{11} = (1,1,1,1)^{\top}, a_{12} = (1,0,0,0)^{\top}, a_{13} = (0,1,−1,0)^{\top}, a_{14} = (0,1,1,0)^{\top}, a_{15} = (0,0,0,1)^{\top}, a_{16} = (1,0,0,0)^{\top}, a_{17} = (0,1,0,0)^{\top}, a_{18} = (0,0,1,1)^{\top} \), respectively [57, Fig. 1].

In a proof by contradiction consider the particular subset of real four-dimensional Hilbert space with a “parity property,” as depicted in Figure 16. Note that, on the one hand, each atom/point/vector/projector belongs to exactly two – that is, an even number of – contexts. Therefore, any enumeration of all the contexts occurring in the graph depicted in Figure 16 would contain an even number of 1s assigned. Because, due to non-contextuality, any atom \(a \) with \(\forall a = 1 \) along one context must have the same value 1 along the second context which is intertwined with the first one – to the values 1 appear in pairs.

Alas, on the other hand, in such an enumeration there are

FIG. 15. (Color online) Greechie diagram of a star shaped configuration with a variety of contexts, all intertwined in a single “central” atom; with overlaid two-valued state (bold black filled circle) which is one on the centre atom and zero everywhere else (see also Refs. [70–72]).

FIG. 16. The most compact way of deriving the Kochen-Specker theorem in four dimensions has been given by Cabello, Estebaranz and García-Alcaine [124, 136]. For the sake of demonstration, consider a Greechie (orthogonality) diagram of a finite subset of the continuum of blocks or contexts imbeddable in four-dimensional real Hilbert space without a two-valued probability measure. The proof of the Kochen-Specker theorem uses a pasting of nine tightly intertwined contexts \(a = \{a_1,a_2,a_3,a_4\}, b = \{a_4,a_5,a_6,a_7\}, c = \{a_7,a_8,a_9,a_{10}\}, d = \{a_{10},a_{11},a_{12},a_{13}\}, e = \{a_{13},a_{14},a_{15},a_{16}\}, f = \{a_{16},a_{17},a_{18},a_1\}, g = \{a_6,a_8,a_{15},a_{17}\} h = \{a_3,a_5,a_{12},a_{14}\}, i = \{a_2,a_9,a_{11},a_{18}\}. \) They have a (quantum) realization in \(\mathbb{R}^4 \) consisting of the 18 projections associated with the one-dimensional subspaces spanned by the vectors from the origin \((0,0,0,0) \) to \(a_1 = (0,0,1,−1)^{\top}, a_2 = (1,−1,0,0)^{\top}, a_3 = (1,1,−1,−1)^{\top}, a_4 = (1,1,1,1)^{\top}, a_5 = (1,1,1,1)^{\top}, a_6 = (0,1,0,−1)^{\top}, a_7 = (0,1,0,0)^{\top}, a_8 = (1,0,1,0)^{\top}, a_9 = (1,1,1,1)^{\top}, a_{10} = (−1,1,1,1)^{\top}, a_{11} = (1,1,1,1)^{\top}, a_{12} = (1,0,0,0)^{\top}, a_{13} = (0,1,−1,0)^{\top}, a_{14} = (0,1,1,0)^{\top}, a_{15} = (0,0,0,1)^{\top}, a_{16} = (1,0,0,0)^{\top}, a_{17} = (0,1,0,0)^{\top}, a_{18} = (0,0,1,1)^{\top} \), respectively [57, Fig. 1].
nine — that is, an odd number of contexts. Hence, in order to obey the quantum predictions, any two-valued state (interpretable as truth assignment) would need to have an odd number of 1s — exactly one for each context. Therefore, there cannot exist any two-valued state on Kochen-Specker type graphs with the “parity property.”

Of course, one could also prove the nonexistence of any two-valued state (interpretable as truth assignment) by exhaustive attempts (possibly exploiting symmetries) to assign values 0s and 1s to the atoms/points/vectors/projectors occurring in the graph in such a way that both the quantum predictions as well as context independence is satisfied. This latter method needs to be applied in cases with Kochen-Specker type diagrams without the “parity property;” such as in the original Kochen-Specker proof [87]. (However, admissibility (IV) is too weak for a proof of this type, as it allows also a third, value indefinite, state, which spoils the arguments [72].)

3. Chromatic number of the sphere

Graph coloring allows another view on value (in)definiteness. The chromatic number of a graph is defined as the least number of colors needed in any total coloring of a graph; with the constraint that two adjacent vertices have distinct colors.

Suppose that we are interested in the chromatic number of graphs associated with both (i) the real and (ii) the rational three-dimensional unit sphere.

More generally, we can consider n-dimensional unit spheres with the same adjacency property defined by orthogonality. An orthonormal basis will be called context (block, maximal observable, Boolean subalgebra), or, in this particular area, a n-clique. Note that for any such graphs involving n-cliques the chromatic number of this graph is at least be n (because the chromatic number of a single n-clique or context is n).

Thereby vertices of the graph are identified with points on the three-dimensional unit sphere; with adjacency defined by orthogonality; that is, two vertices of the graph are adjacent if and only if the unit vectors from the origin to the respective two points are orthogonal.

The connection to quantum logic is this: any context (block, maximal observable, Boolean subalgebra, orthonormal basis) can be represented by a triple of points on the sphere such that any two unit vectors from the origin to two distinct points of that triple of points are orthogonal. Thus graph adjacency in logical terms indicates “belonging to some common context (block, maximal observable, Boolean subalgebra, orthonormal basis).”

In three dimensions, if the chromatic number of graphs is four or higher, there does not globally exist any consistent coloring obeying the rule that adjacent vertices (orthogonal vectors) must have different colors: if one allows only three different colors, then somewhere in that graph of chromatic number higher than three, adjacent vertices must have the same colors (or else the chromatic number would be three or lower).

By a similar argument, non-separability of two-valued states — such as encountered in Section VIII E with the \(\Gamma_3 \)-configuration of Kochen-Specker [87, p. 70] — translates into non-differentiability by colorings with colors less or equal to the number of atoms in a block (cf. Fig. 14).

Godsil and Zaks [104, 105] proved the following results:

1. the chromatic number of the graph based on points of real-valued unit sphere is four [104, Lemma 1.1].

2. The chromatic number of rational points on the unit sphere \(S^3 \cap \mathbb{Q}^3 \) is three [104, Lemma 1.2].

We shall concentrate on (i) and discuss (ii) later. As has been pointed out by Godsil in an email conversation from March 13, 2016 [137], “the fact that the chromatic number of the unit sphere in \(\mathbb{R}^3 \) is four is a consequence of Gleason’s theorem, from which the Kochen-Specker theorem follows by compactness. Gleason’s result implies that there is no subset of the sphere that contains exactly one point from each orthonormal basis.”

Indeed, any coloring can be mapped onto a two-valued state by identifying a single color with “1” and all other colors with “0.” By reduction, all propositions on two-valued states translate into statements about graph coloring. In particular, if the chromatic number of any logical structure representable as graph consisting of n-atomic contexts (blocks, maximal observables with n outcomes, Boolean subalgebras 2^n, orthonormal bases with n elements) — for instance, as Greechie orthogonality diagram of quantum logics — is larger than n, then there cannot be any globally consistent two-valued state (truth value assignment) obeying adjacency (aka admissibility). Likewise, if no two-valued states on a logic which is a pasting of n-atomic contexts exist, then, by reduction, no global consistent coloring with n different colors exists. Therefore, the Kochen-Specker theorem proves that the chromatic number of the graph corresponding to the unit sphere with adjacency defined as orthogonality must be higher than three.

Based on Godsil and Zaks finding that the chromatic number of rational points on the unit sphere \(S^3 \cap \mathbb{Q}^3 \) is three [104, Lemma 1.2] — thereby constructing a two-valued measure on the rational unit sphere by identifying one color with “1” and the two remaining colors with “0” — there exist “exotic” options to circumvent Kochen-Specker type constructions which have been quite aggressively (Cabello has referred to this as the second contextuality war [138]) marketed by allegedly “nullifying” [139] the respective theorems under the umbrella of “finite precision measurements” [140–145]: the support of vectors spanning the one-dimensional subspaces associated with atomic propositions could be “diluted” yet dense, so much so that the intertwines of contexts (blocks, maximal observables, Boolean subalgebras, orthonormal bases) break up; and the contexts themselves become “free & isolated.” Under such circumstances the logics decay into horizontal sums; and the Greechie orthogonality diagrams are just disconnected stacks of previously intertwined contexts. As can be expected, proofs of Gleason- or Kochen-Specker-type theorems do no longer exist, as the necessary intertwines are missing.

The “nullification” claim and subsequent ones triggered a lot of papers, some cited in [145]; mostly critical — of course,
There is no (not necessarily two-valued) state corresponding to particular direction) is prepared in a definite state exclusive outcomes (such as the spin of a spin-1 particle in a contextuality. Therefore, one might argue that the cases (i) as well as (ii); that is, \(v(\alpha) = v(\beta) = 1 \). as well as \(v(\alpha) = 1 \) and \(v(\beta) = 0 \) might still be predefined, whereas at least one ray in \(\Gamma(\alpha, \beta) \) cannot be pre-defined.

(If you are an omni-realist, substitute “pre-defined” by “non-contextual.”)

This possibility has been excluded in a series of papers [69–72] localizing value indefiniteness. Thereby the strong admissibility rules coinciding with two-valued states which are total function on a logic, have been generalized or extended (if you prefer “weakened”) in such away as to allow for value definiteness. Essentially, by allowing the two-valued state to be a partial function on the logic, which need not be defined any longer on all of its elements, admissibility has been defined by two rules (IV) of Section IV: if \(v(\alpha) = 1 \), then a measurement of all the other observables in a context containing \(\alpha \) must yield the value 0 for the other observables in this context – as well as counterfactually, in all contexts including \(\alpha \) and in mutually orthogonal rays which are orthogonal to \(\alpha \), such as depicted as the star-shaped configuration in Fig. 15.

Likewise, if all propositions but one, say the one associated with \(\alpha \), in a context have value 0, then this proposition \(\alpha \) is assigned the value 1; that is, \(v(\alpha) = 1 \).

However, as long as the entire context contains more than two atoms, if \(v(\alpha) = 0 \) for some proposition associated with \(\alpha \), any of the other observables in the context containing \(\alpha \) could still yield the value 1 or 0. Therefore, these other observables need not be value definite. In such a formalism, and relative to the assumptions – in particular, by the admissibility rules allowing for value indefiniteness – sets of intertwined rays \(\Gamma(\alpha, \beta) \) can be constructed which render value indefiniteness of property \(\beta \) \(\beta \) if the system is prepared in state \(\alpha \) (and thus \(v(\alpha) = 1 \)). More specifically, sets of intertwined rays \(\Gamma(\alpha, \beta) \) can be found which demonstrate that, in accord with the “weak” admissibility rules (IV) of Section IV, in Hilbert spaces of dimension greater than two, in accord with complementarity, any proposition which is complementary with respect to the state prepared must be value indefinite [69–72].

5. How can you measure a contradiction?

Clifton replied with this (rhetorical) question after I had asked if he could imagine any possibility to somehow “operationalize” the Kochen-Specker theorem.

Indeed, the Kochen-Specker theorem – in particular, not only non-separability but the total absence of any two-valued state – has been resilient to attempts to somehow “measure” it: first, as alluded by Clifton, its proof is by contradiction – any assumption or attempt to consistently (in accordance with admissibility) construct two-valued state on certain finite subsets of quantum logics provably fails.

Second, the very absence of any two-valued state on such logics reveals the futility of any attempt to somehow define classical probabilities; let alone the derivation of any Boole’s conditions of physical experience – both rely on, or are, the hull spanned by the vertices derivable from two-valued states (if the latter existed) and the respective correlations. So, in essence, on logics corresponding to...
Kochen-Specker configurations, such as the Γ_2-configuration of Kochen-Specker [87, p. 69], or the Cabello, Estebaran and García-Alcaine logic [124, 136] depicted in Fig. 16 which (subject to admissibility) have no two-valued states, classical probability theory breaks down entirely – that is, in the most fundamental way; by not allowing any two-valued state.

It is amazing how many papers exist which claim to “experimentally verify” the Kochen-Specker theorem. However, without exception, those experiments either prove some kind of Bell-Boole of inequality on single-particles (to be fair this is referred to as “proving contextuality;” such as, for instance, Refs. [148–152]); or show that the quantum predictions yield complete contradictions if one “forces” or assumes the counterfactual co-existence of observables in different contexts (and measured in separate, distinct experiments carried out in different subensembles; e.g., Refs. [136, 153–156]; again these lists of references are incomplete.)

Of course, what one could still do is measuring all contexts, or subsets of compatible observables (possibly by Einstein-Podolsky-Rosen type [21] counterfactual inference) – one at a time – on different subensembles prepared in the same state by Einstein-Podolsky-Rosen type [21] experiments, and comparing the complete sets of results with classical predictions [153]. For instance, multiplying all products of dichotomic ±1 observables within contexts, and summing up the results in parity proofs such as for the Cabello, Estebaran and García-Alcaine logic depicted in Fig. ref2016-pub-bookchapter-qm-f-kspac must yield differences between the classical and the quantum predictions – in this case parity odd and even, respectively.

6. Contextual inequalities

If one is willing to drop admissibility altogether while at the same time maintaining non-contextuality – thereby only assuming that the hidden variable theories assign values to all the observables [157, Sect. 4, p. 375], thereby only assuming non-contextuality [57], one arrives at contextual inequalities [158]. Of course, these value assignments need to be much more general as the admissibility requirements on two-valued states; allowing all 2^n (instead of just n combinations) of contexts with n atoms; such as

$$1 - 1 - 1 - \ldots - 1, \text{ or } 0 - 0 - \ldots - 0.$$

For example, Cabello has suggested [57] to consider fourth order correlations within all the contexts (blocks; really within single maximal observables) constituting the logic considered by Cabello, Estebaran and García-Alcaine [124, 136], and depicted as a Greechie orthogonality diagram in Fig. 16. For the sake of demonstration, consider a Greechie (orthogonality) diagram of a finite subset of the continuum of blocks or contexts imbeddable in four-dimensional real Hilbert space without a two-valued probability measure. More explicitly, the correlations are with nine tightly interconnected contexts

$$a = \{a_1, a_2, a_3, a_4\}, \quad b = \{a_4, a_5, a_6, a_7\}, \quad c = \{a_7, a_8, a_9, a_{10}\},$$

$$d = \{a_{10}, a_{11}, a_{12}, a_{13}\}, \quad e = \{a_{13}, a_{14}, a_{15}, a_{16}\}, \quad f = \{a_{16}, a_{17}, a_{18}, a_1\},$$

$$g = \{a_6, a_8, a_{15}, a_{17}\}, \quad h = \{a_3, a_5, a_{12}, a_{14}\},$$

$$l = \{a_2, a_9, a_{11}, a_{18}\},$$

respectively.

A hull problem can be defined as follows: (i) assume that each one of the 18 (partially counterfactual) observables a_1, a_2, \ldots, a_{18} independently acquires either the definite value “−1” or “+1,” respectively. There are $2^{18} = 262144$ such cases. Note that, essentially, thereby all information on the intertwine structure is eliminated (the only remains are in the correlations taken in the next step), as one treats all observables to belong to a large Boolean algebra of 18 atoms a_1, a_2, \ldots, a_{18}; (ii) form all the 9 four-order correlations according to the context (block) structure $a_1 a_2 a_3 a_4, a_4 a_5 a_6 a_7, \ldots, a_{16} a_{17} a_{18} a_1$, respectively; (iii) then evaluate (by multiplication) each one of these nine observables according to the valuations created in (i); (iv) for each one of the 2^{18} valuations form a 9-dimensional vector $(E_1 = a_1 a_2 a_3 a_4, E_2 = a_4 a_5 a_6 a_7, \ldots, E_9 = a_{16} a_{17} a_{18} a_1)^T$ which contains all the values computed in (iii), and consider them as vertices (of course, there will be many duplicates which can be eliminated) defining a correlation polytope; (v) finally, solve the hull problem for this polytope. The resulting 274 inequalities and 256 vertices (a reverse vertex computation reveals 256 vertices; down from 2^{18}) confirms Cabello’s [57] as well as other bounds [39, Eqs. (8)]; among them

$$-1 \leq E_1 \leq 1,$$

$$E_1 + 7 \geq E_2 + E_3 + E_4 + E_5 + E_6 + E_7 + E_8 + E_9,$$

$$E_1 + E_8 + E_9 + 7 \geq E_2 + E_3 + E_4 + E_5 + E_6 + E_7,$$

$$E_1 + E_6 + E_7 + E_8 + E_9 + 7 \geq E_2 + E_3 + E_4 + E_5 + E_8 + E_9 + 7 \geq E_2 + E_3,$$

$$E_1 + E_2 + E_3 + E_4 + E_5 + E_6 + E_7 + E_8 + E_9 + 7 \geq 0.$$

Similar calculations for the pentagon and the Specker bug logics, by “bundling” the 3rd order correlations within the contexts (blocks, 3-atomic Boolean subalgebras), yield 32 (down from $2^{10} = 1024$ partially duplicate) vertices and 10 “trivial” inequalities for the bug logic, as well as 128 (down from $2^{13} = 8192$ partially duplicate) vertices and 14 “trivial” inequalities for the Specker bug logic.

IX. QUANTUM PROBABILITIES AND EXPECTATIONS

Since from Hilbert space dimension higher than two there do not exist any two-valued states, the (quasi-)classical Boolean strategy to find (or define) probabilities via the convex sum of two-valued states brakes down entirely. Therefore, as this happened to be [23, 24, 159–162], the quantum probabilities have to be “derived” or postulated from entirely new concepts, based upon quantities – such as vectors or projection operators – in linear vector spaces equipped with a scalar product. One guiding principle should be that, among those observables which are simultaneously co-measurable (that is, whose projection operators commute), the classical probability theory should hold.

Historically, what is often referred to as Born rule for calculating probabilities, has been a statistical re-interpretation of Schrödinger’s wave function [163, Footnote 1, Anmerkung bei der Korrektur, p. 865], as outlined by Dirac [159, 160]
correlation functions. It turns out that, whereas on the singlet state the correlation function (A1) \(E_{s,2,2}(\theta) = 2\theta - 1 \) is linear, the quantum correlations (A11) and (D1) are of the “stronger” cosine form \(E_{q,2j+1,2}(\theta) \approx -\cos(\theta) \). A stronger-than-quantum correlation would be a sign function \(E_{s,2,2}(\theta) = \text{sgn}(\theta - \pi/2) \) [169].

When translated into the most fundamental empirical level – to two clicks in \(2 \times 2 = 4 \) respective detectors, a single click on each side – the resulting differences

\[
\Delta E = E_{s,2,2}(\theta) - E_{q,2j+1,2}(\theta) = -1 + \frac{2}{\pi} \theta + \cos \theta - \frac{2}{\pi} + \sum_{k=1}^{n} \left(\frac{(-1)^k}{(2k)!} \right)
\]

(26)

signify a critical difference with regards to the occurrence of joint events: both classical and quantum systems perform the same at the three points \(\theta \in \{0, \frac{\pi}{2}, \pi\} \). In the region \(0 < \theta < \frac{\pi}{2} \), \(\Delta E \) is strictly positive, indicating that quantum mechanical systems “outperform” classical ones with regard to the production of unequal pairs “+−” and “−+”, as compared to equal pairs “++” and “−−.” This gets largest at \(\theta_{\text{max}} = \arcsin(2/\pi) \approx 0.69 \); at which point the differences amount to 38% of all such pairs, as compared to the classical correlations. Conversely, in the region \(\frac{\pi}{2} < \theta < \pi \), \(\Delta E \) is strictly negative, indicating that quantum mechanical systems “outperform” classical ones with regard to the production of equal pairs “++” and “−−” as compared to unequal pairs “+−” and “−+.” This gets largest at \(\theta_{\text{min}} = \pi - \arcsin(2/\pi) = 2.45 \).

Stronger-than-quantum correlations [170, 171] could be of a sign functional form \(E_{s,2,2}(\theta) = \text{sgn}(\theta - \pi/2) \) [169].

In correlation experiments these differences are the reason for violations of Boole’s (classical) conditions of possible experience. Therefore, it appears not entirely unreasonable to speculate that the non-classical behaviour already is expressed and reflected at the level of these two-particle correlations, and not in need of any violations of the resulting inequalities.

X. MIN-MAX PRINCIPLE

Violation of Boole’s (classical) conditions of possible experience by the quantum probabilities, correlations and expectations are indications of some sort of non-classicality; and are often interpreted as certification of quantum physics, and quantum physical features [172, 173]. Therefore it is important to know the extent of such violations; as well as the experimental configurations (if they exist [174]) for which such violations reach a maximum.

Functional analysis provides a technique to compute (maximal) violations of Boole-Bell type inequalities [175, 176]; the min-max principle, also known as Courant-Fischer-Weyl min-max principle for self-adjoint transformations (cf. Ref. [116, § 90], Ref. [177, pp. 75ff], and Ref. [178, Sect. 4.4, pp. 142ff]), or rather an elementary consequence thereof: by the spectral theorem any bounded self-adjoint linear operator \(T \) has a spectral decomposition \(T = \sum_{i=1}^{n} \lambda_i E_i \), in terms of the sum of products of bounded eigenvalues times the associated orthogonal projection operators. Suppose for the sake of simplicity, as mentioned earlier, Gleason’s paper made a high impact on those in the community capable of comprehending it [22, 87, 108–113]. Nevertheless it might not be unreasonable to state that, while a proof of the Kochen-Specker theorem is straightforward, Gleason’s results are less attainable. However, in what follows we shall be less concerned with either necessity nor with mixed states, but shall rather concentrate on sufficiency and pure states. (This will also rid us of the limitations to Hilbert spaces of dimensions higher that two.)

Recall that pure states [159, 160] as well as elementary yes-no propositions [23, 24, 107] can both be represented by (normalized) vectors in some Hilbert space. If one prepares a pure state corresponding to a unit vector \(|x⟩ \) (associated with the one-dimensional projection operator \(E_x = |x⟩⟨x| \)) and measures an elementary yes-no proposition, representable by a one-dimensional projection operator \(E_y = |y⟩⟨y| \) (associated with the vector \(|y⟩ \)), then Gleason notes [67, p. 885] in the second paragraph that in Dirac notation, “it is easy to see that such a [[probability]] measure \(\mu \) can be obtained by selecting a vector \(|y⟩ \) and, for each closed subspace \(A \), taking \(\mu(A) as the square of the norm of the projection of \(|y⟩ \) on \(A \).”

Since in Euclidean space, the projection \(E_y \) of \(|y⟩ \) on \(\mathbb{R} = \text{span}(|x⟩) \) is the dot product (both vectors \(|x⟩, |y⟩ \) are supposed to be normalized) \(|x⟩⟨x| |y⟩ = |x⟩ \cos \angle(|x⟩, |y⟩) \). Gleason’s observation amounts to the well-known quantum mechanical cosine square probability law referring to the probability to find a system prepared a in state in another, observed, state. (Once this is settled, all self-adjoint observables follow by linearity and the spectral theorem.)

In this line of thought, “measurement” contexts (orthonormal bases) allow “views” on “prepared” contexts (orthonormal bases) by the respective projections.

A. Comparison of classical and quantum form of correlations

In what follows quantum configurations corresponding to the logics presented in the earlier sections will be considered. All of them have quantum realizations in terms of vectors spanning one-dimensional subspaces corresponding to the respective one-dimensional projection operators.

The Appendix contains a detailed derivation of two-particle (a digression: a small piece [164] on “the futility of war” by the late Dirac is highly recommended; I had the honour to listen to the talk personally), Jordan [161], von Neumann [23, 24, 162], and Lüders [165–167].
of demonstration that the spectrum is nondegenerate. Then we can (re)order the spectral sum so that \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \) (in case the eigenvalues are also negative, take their absolute value for the sort), and consider the greatest eigenvalue.

In quantum mechanics the maximal eigenvalue of a self-adjoint linear operator can be identified with the maximal value of an observation. Thereby, the spectral theorem supplies even the state associated with this maximal eigenvalue \(\lambda_1 \): it is the eigenvector (linear subspace) \(|e_1\rangle \) associated with the orthogonal projector \(E_1 = |e_1\rangle \langle e_1| \) occurring in the (re)ordered spectral sum of \(T \).

With this in mind, computation of maximal violations of all the Boole-Bell type inequalities associated with Boole’s (classical) conditions of possible experience is straightforward:

1. take all terms containing probabilities, correlations or expectations and the constant real-valued coefficients which are their multiplicative factors; thereby excluding single constant numerical values \(O(1) \) (which could be written on “the other” side of the inequality; resulting if what might look like “\(T(p_1, \ldots, p_n, p_{12}, \ldots, p_{123}, \ldots) \leq O(1) \)” (usually, these inequalities, for reasons of operationalizability, as discussed earlier, do not include higher than 2rd order correlations), and thereby define a function \(T \):

2. in the transition “quantization” step \(T \to T \) substitute all classical probabilities and correlations or expectations with the respective quantum self-adjoint operators, such as for two spin-\(\frac{1}{2} \) particles enumerated in Eq. (A6), \(p_1 \to q_1 = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle) \) \(\otimes \) \(|0\rangle \pm \sigma(\theta_1, \varphi_1) \) \(\otimes \) \(|0\rangle \pm \sigma(\theta_2, \varphi_2) \) \(\otimes \) \(|0\rangle \pm \sigma(\theta_1, \varphi_1) \) \(\otimes \) \(|0\rangle \pm \sigma(\theta_2, \varphi_2) \) \(\otimes \) \(|0\rangle \pm \sigma(\theta_1, \varphi_1) \) \(\otimes \) \(|0\rangle \pm \sigma(\theta_2, \varphi_2) \), \(E_2 \to E_4 \) = \(p_{12++} + p_{12+-} - p_{12-+} - p_{12--} \), as demanded by the inequality. Note that, since the coefficients in \(T \) are all real-valued, and because \((A + B) \dagger = A^\dagger + B^\dagger = (A + B) \) for arbitrary self-adjoint transformations \(A, B \), the real-valued weighted sum \(T \) of self-adjoint transformations is again self-adjoint.

3. Finally, compute the eigensystem of \(T \); in particular the largest eigenvalue \(\lambda_{\max} \) and the associated projector which, in the non-degenerate case, is the dyadic product of the “maximal state” \(|e_{\max}\rangle \), or \(E_{\max} = |e_{\max}\rangle \langle e_{\max}| \).

4. In a last step, maximize \(\lambda_{\max} \) (and find the associated eigenvector \(|e_{\max}\rangle \)) with respect to variations of the parameters incurred in step (ii).

The min-max method yields a feasible, constructive method to explore the quantum bounds on Boole’s (classical) conditions of possible experience. Its application to other situations is feasible. A generalization to higher-dimensional cases appears tedious but with the help of automated formula manipulation straightforward.

A. Expectations from quantum bounds

The quantum expectation can be directly computed from spin state operators. For spin-\(\frac{1}{2} \) particles, the relevant operator, normalized to eigenvalues \(\pm 1 \), is

\[
T(\theta_1, \varphi_1; \theta_2, \varphi_2) = \left[2S_\frac{1}{2}(\theta_1, \varphi_1) \right] \otimes \left[2S_\frac{1}{2}(\theta_2, \varphi_2) \right].
\]

The eigenvalues are \(-1, -1, 1, 1 \) and 0; with eigenvectors for \(\varphi_1 = \varphi_2 = \frac{\pi}{2} \),

\[
\begin{align*}
&\left(-e^{-i(\theta_1 + \theta_2)}, 0, 0, 1 \right)^T, \\
&\left(0, -e^{-i(\theta_1 - \theta_2)}, 1, 0 \right)^T, \\
&\left(e^{-i(\theta_1 + \theta_2)}, 0, 0, 1 \right)^T, \\
&\left(0, e^{-i(\theta_1 - \theta_2)}, 1, 0 \right)^T,
\end{align*}
\]

respectively.

If the states are restricted to Bell basis states \(|\Psi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle) \) and \(|\Phi^\pm\rangle = \frac{1}{\sqrt{2}}(|01\rangle \mp |10\rangle) \) and the respective projection operators are \(E_{\Psi^+} \) and \(E_{\Phi^+} \), then the correlations, reduced to the projected operators \(E_{\Psi^+} \), \(E_{\Phi^+} \), \(E_{\Phi^-} \), \(E_{\Psi^-} \) on those states, yield extrema at \(-\cos(\theta_1 - \theta_2) \) for \(E_{\Psi^+} \), \(\cos(\theta_1 + \theta_2) \) for \(E_{\Psi^-} \), \(-\cos(\theta_1 + \theta_2) \) for \(E_{\Phi^-} \), and \(\cos(\theta_1 + \theta_2) \) for \(E_{\Phi^+} \).

B. Quantum bounds on the Clauser-Horne-Shimony-Holt inequalities

The ease of this method can be demonstrated by (re)deriving the Tsirelson bound [179] of \(2\sqrt{2} \) for the quantum expectations of the Clauser-Horne-Shimony-Holt inequalities (13) (cf. Sect. VIII B 1), which compare to the classical bound 2. First note that the two-particle projection operators along directions \(\varphi_1 = \varphi_2 = \frac{\pi}{2} \) and \(\theta_1, \theta_2 \), as taken from Eqs. (A6) and (A3), are

\[
q_{1, \pm 1, \pm 2}(\theta_1, \varphi_1) = \frac{\pi}{2}; \theta_2, \varphi_2 = \frac{\pi}{2} = 1 \left[|0\rangle \pm |1\rangle \right] \langle 0 | \langle 0 | \pm |1\rangle \langle 1 | \right].
\]

Adding these four orthogonal projection operators according to the parity of their signatures \(\pm 1, \pm 2 \) yields the expectation value

\[
E_{q}(\theta_1, \varphi_1) = \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & e^{-i(\theta_1 - \theta_2)} & 0 & 0 \\
e^{i(\theta_1 + \theta_2)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \right).
\]

Forming the Clauser-Horne-Shimony-Holt operator

\[\text{CHSH}(\theta_1, \theta_2, \theta_3, \theta_4) = E_q(\theta_1, \theta_3) + E_q(\theta_1, \theta_4) + E_q(\theta_2, \theta_1) - E_q(\theta_2, \theta_4). \]

The eigenvalues

\[\lambda_{1,2} = \mp 2\sqrt{1 - \sin^2(\theta_1 - \theta_2) \sin^2(\theta_3 - \theta_4)}, \]
\[\lambda_{3,4} = \mp 2\sqrt{1 + \sin^2(\theta_1 - \theta_2) \sin^2(\theta_3 - \theta_4)}, \]

for \(\theta_1 - \theta_2 = \theta_3 - \theta_4 = \pm \frac{\pi}{2} \), yield the Tsirelson bounds \(\pm 2\sqrt{2} \). In particular, for \(\theta_1 = 0, \theta_2 = \frac{\pi}{4}, \theta_3 = \frac{\pi}{4}, \theta_4 = \frac{3\pi}{4} \), Eq. (31) reduces to

\[\begin{pmatrix} 0 & 0 & 0 & -2i\sqrt{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2i\sqrt{2} & 0 & 0 & 0 \end{pmatrix}; \]

and the eigenvalues are \(\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = -2\sqrt{2}, \lambda_4 = 2\sqrt{2} \); with the associated eigenstates \((0,0,1,0)^\top, (0,1,0,0)^\top, (i,0,0,1)^\top, (-i,0,0,1)^\top\), respectively. Note that, by comparing the components [49, p. 18] the eigenvectors associated with the eigenvalues reaching Tsirelson’s bound are entangled, as could have been expected.

If one is interested in the measurements “along” Bell states, then one has to consider the projectors \(E_{\psi^+}(\text{CHSH}) E_{\psi^+} \) and \(E_{\phi^+}(\text{CHSH}) E_{\phi^+} \) on those states which yield extrema at

\[\lambda_{\psi^+} = -2\left[\cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_1 + \theta_3) - \cos(\theta_1 - \theta_3) \right], \]
\[\lambda_{\phi^+} = \cos(\theta_1 + \theta_3) + \cos(\theta_2 + \theta_4) + \cos(\theta_1 + \theta_4) - \cos(\theta_2 + \theta_4). \]

For \(\theta_1 = 0, \theta_2 = \frac{\pi}{4}, \theta_3 = \frac{\pi}{4}, \theta_4 = -\frac{\pi}{4}, \) \(\cos(\theta_1 + \theta_3) = \cos(\theta_2 + \theta_3) = \cos(\theta_1 + \theta_4) = \cos(\theta_2 + \theta_4) = -\frac{1}{\sqrt{2}} \), and Eq. (34) yields the Tsirelson bound \(\lambda_{\psi^+} = \mp 2\sqrt{2} \). Likewise, for \(\theta_1 = 0, \theta_2 = \frac{\pi}{4}, \theta_3 = -\frac{\pi}{4}, \theta_4 = \frac{\pi}{4}, \) \(\cos(\theta_1 + \theta_3) = \cos(\theta_2 + \theta_3) = \cos(\theta_1 + \theta_4) = -\frac{1}{\sqrt{2}} \), and Eq. (34) yields the Tsirelson bound \(\lambda_{\phi^+} = \mp 2\sqrt{2} \).

Again it should be stressed that these violations might be seen as a “build-up,” resulting from the multiple addition of correlations which they contain.

Note also that, only as single context can be measured on a single system, because other context contain incompatible, complementary observables. However, as each observable is supposed to have the same (counterfactual) measurement outcome in any context, different contexts can be measured on different subensembles prepared in the same state such that, with the assumptions made (in particular, existence and context independence), Boole’s conditions of possible experience should be valid for the averages over each subensemble regardless of whether they are co-measurable or incompatible and complementary. (This is true for instance for models with partition logics, such as generalized urn or finite automaton models.)

C. Quantum bounds on the pentagon

In a similar way two-particle correlations of a spin-one system can be defined by the operator \(S_1 \) introduced in Eq. (B2)

\[A(\theta_1, \phi_1; \theta_2, \phi_2) = S_1(\theta_1, \phi_1) \otimes S_1(\theta_2, \phi_2). \]

Plugging in these correlations into the Klyachko-Can-Binicioglu-Shumovsky inequality [43] in Eq. (21) yields the Klyachko-Can-Binicioglu-Shumovsky operator

\[\text{KCBS}(\theta_1, \ldots, \theta_5, \phi_1, \ldots, \phi_5) = -A(\theta_1, \phi_1, \theta_3, \phi_3) + A(\theta_1, \phi_1, \theta_3, \phi_3) + A(\theta_5, \phi_5, \theta_7, \phi_7) + A(\theta_7, \phi_7, \theta_9, \phi_9) + A(\theta_9, \phi_9, \theta_1, \phi_1). \]

Taking the special values of Tkadlec [92], as enumerated in Cartesian coordinates in Fig. 6, which, is spherical coordinates, are \(a_1 = (1, \frac{\pi}{4}, 0)^\top, a_2 = (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})^\top, a_3 = (1, 0, \frac{\pi}{2})^\top, a_4 = (\frac{\sqrt{2}}{2}, \frac{\pi}{4}, -\frac{\pi}{4})^\top, a_5 = (\frac{\sqrt{2}}{2}, \frac{\pi}{4}, \frac{\pi}{4})^\top, a_6 = (\sqrt{2}, \tan^{-1}(\frac{\pi}{4}), -\frac{\pi}{8})^\top, a_7 = (\sqrt{2}, \tan^{-1}(\frac{\pi}{4}), \frac{\pi}{8})^\top, a_8 = (\sqrt{2}, \tan^{-1}(\frac{\pi}{4}), \tan^{-1}(\frac{\pi}{4}))^\top, a_9 = (\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2})^\top, a_{10} = (\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2})^\top \), yields eigenvalues of \(\text{KCBS} \) in

\[\{ -2.49546, 2.2288, -1.93988, 1.93988, -1.33721, \] \[1.33721, -0.285881, 0.285881, 0.266666 \} \]

all violating Eq. (21).

D. Quantum bounds on the Cabello, Estebaranz and García-Alcaine logic

As a final exercise we shall compute the quantum bounds on the Cabello, Estebaranz and García-Alcaine logic [124, 136] which can be used in a purity proof of the Kochen-Specker theorem in 4 dimensions, as depicted in Fig. 16 (where also a representation of the axes as vectors in \(\mathbb{R}^3 \) suggested by Cabello [57, Fig. 1] is enumerated), as well as the dichotomic observables [57, Eq. (2)] \(A = 2|a_i\rangle\langle a_i| - I_4 \) is used. The observables are then “bundled” into the respective contexts to which they belong; and the context summed according to the contextual inequations from the Hull computation (25), and introduced by Cabello [57, Eq. (1)]. As a result (we use Cabello’s notation and not ours),

\[T = -A_{12} \otimes A_{16} \otimes A_{17} \otimes A_{18} \]
\[-A_{34} \otimes A_{15} \otimes A_{17} \otimes A_{18} - A_{17} \otimes A_{37} \otimes A_{47} \otimes A_{67} \]
\[-A_{12} \otimes A_{23} \otimes A_{28} \otimes A_{29} - A_{35} \otimes A_{56} \otimes A_{58} \otimes A_{59} \]

(38)
\[-A_{18} \otimes A_{28} \otimes A_{48} \otimes A_{68} - A_{23} \otimes A_{34} \otimes A_{47} \otimes A_{79} \]
\[-A_{16} \otimes A_{56} \otimes A_{67} \otimes A_{69} - A_{29} \otimes A_{39} \otimes A_{39} \otimes A_{69} \]

The resulting \(4^4 = 256 \) eigenvalues of \(T \) have numerical approximations as ordered numbers \(-6.94177 \leq -6.67604 \leq \ldots \leq 5.78503 \leq 6.023 \), neither of which violates the contextual inequality (25) and Ref. [57, Eq. (1)].
XI. WHAT CAN BE LEARNED FROM THESE BRAIN TEASERS?

When reading the book of Nature, she obviously tries to tell us something very sublime yet simple; but what exactly is it? I have the feeling that often discussants approach this particular book not with evenly-suspended attention [180, 181] but with strong – even ideologic [182] or evangelical [183] – (pre)dispositions. This might be one of the reasons why Specker called this area “haunted” [184]. With these provisos we shall enter the discussion.

Already in 1935 – possibly based to the Born rule for computing quantum probabilities which differ from classical probabilities on a global scale involving complementary observables, and yet coincide within contexts – Schrödinger pointed out (cf. also Pitowsky [35, footnote 2, p. 96]) that [185, p. 327] “at no moment does there exist an ensemble of classical states of the model that squares with the totality of quantum mechanical statements of this moment.” [186] This seems to be the gist of what can be learned from the quantum probabilities: they cannot be accommodated entirely within a classical framework.

What can be positively said? There is operational access to a single context (block, maximal observable, orthonormal basis, Boolean subalgebra); and for all that operationally matters, all observables forming that context can be simultaneously value definite. (It could formally be argued that an ensemble of non-existing properties, all observables forming that context can be simultaneously value definite, as depicted in Fig. 15.) A single context represents the maximal information encodable into a quantum system. This can be done by state preparation.

Beyond this single context one can get “views” on that single state in which the quantized system has been prepared. But these “views” come at a price: value indefiniteness. (Value indefiniteness is often expressed as “contextuality,” but this view is distracting, as it suggests some existing entity which is changing its value; depending on how – that is, along which context – it is measured.)

This situation might not be taken as a metaphysical conundrum, but perceived rather Socratically: it should come as no surprise that intrinsic [187], embedded [188] observers have no access to all the information they subjectively desire, but only to a limited amount of properties their system – be it a virtual or a physical universe – is capable to express. Therefore there is no omniscience in the wider sense of “all that observers want to know” but rather than “all that is operational.”

Anything beyond this narrow “local omniscience” covering a single context” in which the quantized system has been prepared appears to be a subjective illusion which is only stochastically supported by the quantum formalism – in terms of Gleason’s “projective views” on that single, value definite context. Experiments may enquire about such value indefinite observables by “forcing” a measurement upon a system not prepared or encoded to be “interrogated” in that way. However, these “measurements” of non-existing properties, although seemingly possessing viable outcomes which might be interpreted as referring to some alleged “hidden” properties, cannot carry any (consistent classical) content pertaining to that system alone.

To paraphrase a dictum by Peres [189], unprepared contexts do not exist; at least not in any operationally meaningful way. If one nevertheless forces metaphysical existence upon (value) indefinite, non-existing, physical entities the price, hedged into the quantum formalism, is stochasticity.

ACKNOWLEDGEMENTS

Josef Tkadlec has kindly re-explained some nuances of previous work. Christoph Lemell and the Nonlinear Dynamics group at the Vienna University of Technology has provided the computational framework for the calculations performed. There appears to be a lot of confusion – both in the community at large, as well as with some contributors – and I hope I could contribute towards clarification, and not inflict more confusion.

Appendix A: Two two-state particle correlations and expectations

As has already been pointed out earlier, due to the Einstein-Podolsky-Rosen explosion type setup [21] in certain (singlet) states allowing for uniqueness [75, 190, 191] through counterfactual reasoning, second order correlations appear feasible (subject to counterfactual existence).

1. Classical correlations with dichotomic observables in a “singlet” state

For dichotomic observables with two outcomes \{0, 1\} the classical expectations in the plane perpendicular to the direction connecting the two particles is a linear function of the measurement angle [189]. Assume the uniform distribution of (opposite but otherwise) identical “angular momenta” shared by the two particles and lying on the circumference of the unit circle, as depicted in Fig. 17; and consider only the sign of these angular momenta.

The arc lengths on the unit circle $A_+(\theta_1, \theta_2)$ and $A_-({\theta}_1, {\theta}_2)$, normalized by the circumference of the unit circle, correspond to the frequency of occurrence of even (“+ +” and “− −”) and odd (“+ −” and “− +”) parity pairs of events, respectively. Thus, $A_+(\theta_1, \theta_2)$ and $A_-({\theta}_1, {\theta}_2)$ are proportional to the positive and negative contributions to the correlation coefficient. One obtains for $0 \leq \theta = |\theta_1 - \theta_2| \leq \pi$; i.e.,

$$E_{c,2,2}(\theta) = E_{c,-2,2}(\theta_1, \theta_2) = \frac{1}{2\pi} |A_+({\theta}_1, {\theta}_2) - A_-({\theta}_1, {\theta}_2)|$$

$$= \frac{1}{2\pi} |2A_+({\theta}_1, {\theta}_2) - 2\pi| = \frac{2}{\pi} |\theta_1 - \theta_2| - 1 = \frac{2}{\pi} \theta - 1,$$

(A1)

where the subscripts stand for the number of mutually exclusive measurement outcomes per particle, and for the number of particles, respectively. Note that $A_+({\theta}_1, {\theta}_2) + A_-({\theta}_1, {\theta}_2) = 2\pi$.

The angular momentum operator in some direction specified by θ, φ is given by the spectral decomposition

$$
\mathbf{S}_z (\theta, \varphi) = x\mathbf{M}_x + y\mathbf{M}_y + z\mathbf{M}_z
$$

$$
= \mathbf{M}_x \sin \theta \cos \varphi + \mathbf{M}_y \sin \theta \sin \varphi + \mathbf{M}_z \cos \theta
$$

$$
= \frac{1}{2} \sigma (\theta, \varphi) = \frac{1}{2} \left(\cos \theta \ e^{i \varphi} \sin \theta \right)
$$

$$
= -\frac{1}{2} \left(\sin^2 \theta \frac{\varphi}{2} - \frac{1}{2} e^{-i \varphi} \sin \theta \right)
$$

$$
+ \frac{1}{2} \left(\frac{1}{2} e^{i \varphi} \sin \theta \cos \theta \right)
$$

$$
\in \{ \sin, \cos \} \ . \tag{A3}
$$

The orthonormal eigenstates (eigenvectors) associated with the eigenvalues $-\frac{1}{2}$ and $+\frac{1}{2}$ of $\mathbf{S}_z (\theta, \varphi)$ in Eq. (A3) are

$$
|+\rangle_{\theta, \varphi} = e^{i \delta_+} \left(\cos \frac{\varphi}{2}, e^{i \varphi} \sin \frac{\varphi}{2} \right)
$$

$$
|\rangle_{\theta, \varphi} = e^{i \delta_-} \left(-e^{-i \varphi} \sin \frac{\varphi}{2}, e^{i \varphi} \cos \frac{\varphi}{2} \right)
$$

respectively. δ_+ and δ_- are arbitrary phases. These orthonormal unit vectors correspond to the two orthogonal projectors

$$
\mathbf{F}_\pm (\theta, \varphi) = |\pm\rangle_{\theta, \varphi} \langle \pm| = \frac{1}{2} \left[I_2 \pm \sigma (\theta, \varphi) \right] \ . \tag{A5}
$$

for the “$+$” and “$-$” states along θ and φ, respectively. By setting all the phases and angles to zero, one obtains the original orthonormalized basis $\{ |+\rangle, |-\rangle \}$.

b. Substitution rules for probabilities and correlations

In order to evaluate Boole’s classical conditions of possible experience, and check for quantum violations of them, the classical probabilities and correlations entering those classical conditions of possible experience have to be compared to, and substituted by, quantum probabilities and correlations derived earlier. For example, for n spin-$\frac{1}{2}$ particles in states (subscript i refers to the ith particle) “$+$” or “$-$” along the directions $\theta_1, \varphi_1, \theta_2, \varphi_2, \ldots, \theta_n, \varphi_n$, the classical-to-quantum substitutions are $[75, 193, 194]$:
an enumeration of all possible singlet states of
\(n \) associated with the dimension of Hilbert space per particle,
\(\sigma(\theta, \varphi) \) defined in Eq. (A3).

The two-partite quantum expectations corresponding to the
classical expectation value \(E_{c,2,2} \) in Eq. (A1) can be defined to
be the difference between the probabilities to find the two
particles in identical spin states (along arbitrary directions)
minus the probabilities to find the two particles in different
spin states (along those directions); that is, \(E_{q,2,2} = q_{++} + q_{--} - (q_{+-} + q_{-+}) \), or
\(q_{--} - (q_{+-} + q_{-+}) \) (A8) and
\(q_{\neq} = q_{++} + q_{--} = \frac{1}{2} (1 + E_{q,2,2}) \).

In what follows, singlet states \(|\psi_{d,n,i}\rangle \) will be labelled by
three numbers \(d, n \) and \(i \), denoting the number \(d \) of outcomes
associated with the dimension of Hilbert space per particle,
the number \(n \) of participating particles, and the state count \(i \) in
an enumeration of all possible singlet states of \(n \) particles of
spin \(j = (d - 1)/2 \), respectively. For \(n = 2 \), there is only one
singlet state (see Ref. [75] for more general cases).

Consider the singlet “Bell” state of two spin-\(\frac{1}{2} \) particles
\(|\psi_{2,2,1}\rangle = \frac{1}{\sqrt{2}} (|+\rangle \mp |\mp\rangle) = \frac{1}{\sqrt{2}} [((1,0)^T \otimes (0,1)^T - (0,1)^T \otimes (1,0)^T] \) (A7)

\(= (0, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0)^T \).

The density operator \(\rho_{q,2,2,1} = |\psi_{2,2,1}\rangle \langle \psi_{2,2,1}| \) is just the
projector of the dyadic product of this vector.

Singlet states are form invariant with respect to arbitrary
unitary transformations in the single-particle Hilbert
spaces and thus also rotationally invariant in configuration
space, in particular under the rotations [195, Eq. (7–49)]
\(|+\rangle = e^{i\frac{\pi}{4}} (\cos \frac{\theta}{2} |+\rangle - \sin \frac{\theta}{2} |\mp\rangle) \) and
\(|\mp\rangle = e^{-i\frac{\pi}{4}} (\sin \frac{\theta}{2} |+\rangle + \cos \frac{\theta}{2} |\mp\rangle) \).

The Bell singlet state satisfies the uniqueness property [190] in the sense that
the outcome of a spin state measurement along a particular direction on one particle “fixes”
also the opposite outcome of a spin state measurement along the same
direction on its “partner” particle: (assuming lossless devices) whenever a “plus” or a “minus” is recorded on
one side, a “minus” or a “plus” is recorded on the other side, and vice versa.

\(d. \) Quantum predictions

We now turn to the calculation of quantum predictions. The joint probability to register the spins of the two particles in state \(\rho_{q,2,2,1} \) aligned or anti-aligned along the directions defined by \((\theta_1, \varphi_1) \) and \((\theta_2, \varphi_2) \) can be evaluated by a straightforward calculation of

\(q_{q,2,2,1} = \frac{1}{4} \left(1 + (\cos \varphi_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos (\varphi_1 - \varphi_2)) \right) \)

(A8)

Since \(q_+ + q_- = 1 \) and \(E_{q,2,2} \), \(q_+ - q_- \), the joint probabilities
to find the two particles in an even or in an odd number of
spin-\(\frac{1}{2} \)-states when measured along \((\theta_1, \varphi_1) \) and \((\theta_2, \varphi_2) \) are in terms of the correlation coefficient given by

\(q_+ = q_{++} + q_{--} = \frac{1}{2} (1 + E_{q,2,2}) \)
\(= \frac{1}{2} \left(1 - [\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos (\varphi_1 - \varphi_2)] \right) \),

(A9)

Finally, the quantum mechanical correlation is obtained by the difference \(q_+ - q_- \); i.e.,

\(E_{q,2,2} (\theta_1, \varphi_1, \theta_2, \varphi_2) = -[\cos \theta_1 \cos \theta_2 + \cos (\varphi_1 - \varphi_2) \sin \theta_1 \sin \theta_2] \).

(A10)

By setting either the azimuthal angle differences equal to zero,
or by assuming measurements in the plane perpendicular to
the direction of particle propagation, i.e., with \(\theta_1 = \theta_2 = \frac{\pi}{2} \),
on one obtains

\(E_{q,2,2}(\theta_1, \theta_2) = -\cos (\theta_1 - \theta_2) \),
\(E_{q,2,2}(\theta_1, \theta_2) = -\cos (\varphi_1 - \varphi_2) \).

(A11)
Appendix B: Two three-state particles

1. Observables

The single particle spin one angular momentum observables in units of \hbar are given by [192]

$$\mathbf{M}_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{M}_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \mathbf{M}_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \quad (B1)$$

Again, the angular momentum operator in arbitrary direction θ, ϕ is given by its spectral decomposition

$$\mathbf{S}_1(\theta, \phi) = x\mathbf{M}_x + y\mathbf{M}_y + z\mathbf{M}_z = M_x \sin \theta \cos \phi + M_y \sin \theta \sin \phi + M_z \cos \theta$$

$$= \begin{pmatrix} \cos \theta & e^{-i\theta} \sin \theta & 0 \\ e^{i\theta} \sin \theta & \cos \theta & 0 \\ 0 & 0 & -\cos \theta \end{pmatrix}$$

$$= -F_-(\theta, \phi) + 0 \cdot F_0(\theta, \phi) + F_+(\theta, \phi),$$

where the orthogonal projectors associated with the eigenstates of $\mathbf{S}_1(\theta, \phi)$ are

$$\begin{align*}
F_- &= \begin{pmatrix} \sin^2 \frac{\theta}{2} & -e^{i\phi} \cos \theta \sin \frac{\theta}{2} & -\frac{1}{4} e^{-2i\phi} \sin^2 \theta \\ -e^{-i\phi} \cos \theta \sin \frac{\theta}{2} & \cos^2 \frac{\theta}{2} & e^{-i\phi} \sin \theta \sin \frac{\theta}{2} \\ -\frac{1}{4} e^{2i\phi} \sin^2 \theta & e^{-i\phi} \sin \theta \sin \frac{\theta}{2} & \frac{1}{2} e^{2\phi} \sin^2 \theta \end{pmatrix}, \\
F_0 &= \begin{pmatrix} \cos^2 \frac{\theta}{2} & e^{-i\phi} \sin \theta \sin \frac{\theta}{2} & \frac{1}{4} e^{-2i\phi} \sin^2 \theta \\ e^{i\phi} \sin \theta \sin \frac{\theta}{2} & \cos^2 \frac{\theta}{2} & e^{i\phi} \sin \theta \sin \frac{\theta}{2} \\ \frac{1}{4} e^{2i\phi} \sin^2 \theta & e^{i\phi} \sin \theta \sin \frac{\theta}{2} & \frac{1}{2} e^{-2\phi} \sin^2 \theta \end{pmatrix}, \\
F_+ &= \begin{pmatrix} \sin^2 \frac{\theta}{2} & e^{-i\phi} \cos \theta \sin \frac{\theta}{2} & \frac{1}{4} e^{2i\phi} \sin^2 \theta \\ -e^{i\phi} \cos \theta \sin \frac{\theta}{2} & \cos^2 \frac{\theta}{2} & e^{i\phi} \sin \theta \sin \frac{\theta}{2} \\ \frac{1}{4} e^{-2i\phi} \sin^2 \theta & e^{i\phi} \sin \theta \sin \frac{\theta}{2} & \frac{1}{2} e^{-2\phi} \sin^2 \theta \end{pmatrix}. \quad (B3)
\end{align*}$$

The orthonormal eigenstates associated with the eigenvalues $+1, 0, -1$ of $\mathbf{S}_1(\theta, \phi)$ in Eq. (B2) are

$$\begin{align*}
|\varphi, \theta \rangle &= e^{i\delta_0} \left(\begin{pmatrix} -\frac{\sin \theta}{\sqrt{2}} e^{-i\phi} & e^{i\phi} \sin \theta \\ e^{-i\phi} \cos \theta & e^{i\phi} \cos \theta \end{pmatrix} \right)^T, \\
|0, \theta \rangle &= e^{i\delta_1} \left(\begin{pmatrix} e^{-i\phi} \cos \theta & \frac{1}{\sqrt{2}} e^{i\phi} \sin \theta \\ \frac{1}{\sqrt{2}} e^{-i\phi} \sin \theta & e^{i\phi} \cos \theta \end{pmatrix} \right)^T. \quad (B4)
\end{align*}$$

$$\begin{align*}
|+\rangle, \theta \rangle &= e^{i\delta_1} \left(\begin{pmatrix} e^{-i\phi} \sin \theta & \frac{1}{\sqrt{2}} e^{i\phi} \cos \theta \\ -\frac{1}{\sqrt{2}} e^{i\phi} \cos \theta & e^{-i\phi} \sin \theta \end{pmatrix} \right)^T,
\end{align*}$$

respectively. For vanishing angles $\theta = \phi = 0$, $|\varphi \rangle = (0, 1, 0)^T$, $|0 \rangle = (1, 0, 0)^T$, and $|+\rangle = (0, 0, 1)^T$, respectively.

2. Singlet state

Consider the two spin-one particle singlet state

$$|\Psi_{3,2,1},1\rangle = \frac{1}{\sqrt{3}} (-|00\rangle + |++\rangle + |+-\rangle). \quad (B5)$$

Its vector space representation can be explicitly enumerated by taking the direction $\theta = \phi = 0$ and recalling that $|+\rangle = (1, 0, 0)^T$, $|0\rangle = (0, 1, 0)^T$, and $|-\rangle = (0, 0, 1)^T$; i.e.,

$$|\Psi_{3,2,1},1\rangle = \frac{1}{\sqrt{3}} (0, 1, 0, -1, 0, 1, 0)^T. \quad (B6)$$

Appendix C: Two four-state particles

1. Observables

The spin three-half angular momentum observables in units of \hbar are given by [192]

$$\mathbf{M}_x = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 \\ \sqrt{3} & 0 & 2 \sqrt{3} \\ 0 & 2 \sqrt{3} & 0 \end{pmatrix},$$

$$\mathbf{M}_y = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 \\ -\sqrt{3}i & 0 & -2i \sqrt{3} \\ 0 & 2i \sqrt{3} & 0 \end{pmatrix}, \quad (C1)$$

$$\mathbf{M}_z = \frac{1}{2} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$$

Again, the angular momentum operator in arbitrary direction θ, ϕ can be written in its spectral form

$$\mathbf{S}_1(\theta, \phi) = x\mathbf{M}_x + y\mathbf{M}_y + z\mathbf{M}_z$$

$$= \begin{pmatrix} 3 \cos \theta & \frac{3}{2} e^{-i\phi} \sin \theta & 0 \\ \frac{3}{2} e^{i\phi} \sin \theta & -3 \sin \theta & 0 \\ 0 & 0 & -3 \frac{3}{2} \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & e^{-i\phi} \sin \theta & 0 \\ e^{i\phi} \sin \theta & -\cos \theta & 0 \\ 0 & 0 & \frac{3}{2} e^{-i\phi} \sin \theta \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{2} F_{-1} + \frac{1}{2} F_+ & \frac{1}{2} F_- + \frac{3}{2} F_+ & \frac{1}{2} F_+ + \frac{1}{2} F_+ \\ \frac{1}{2} F_- + \frac{3}{2} F_+ & \frac{3}{2} F_+ & \frac{1}{2} F_- + \frac{1}{2} F_+ \\ \frac{1}{2} F_+ + \frac{1}{2} F_+ & \frac{1}{2} F_- + \frac{3}{2} F_+ & \frac{3}{2} F_+ \end{pmatrix}. \quad (C2)$$

2. Singlet state

The singlet state of two spin-3/2 observables can be found by the general methods developed in Ref. [75]. In this case,
of mutually negative single particle states resulting in total angular momentum zero. More explicitly, for \(j_1 = j_2 = \frac{3}{2} \), \(|\psi_{4,2,1}\rangle\) can be written as

\[
\frac{1}{2} \left(|\frac{3}{2} - \frac{3}{2}\rangle - \left|\frac{3}{2}, \frac{3}{2}\right\rangle - \left|\frac{1}{2}, -\frac{1}{2}\right\rangle + \left|\frac{1}{2}, \frac{1}{2}\right\rangle \right).
\]

Again, this two-particle singlet state satisfies the uniqueness property. The four different spin states can be identified with the Cartesian basis of 4-dimensional Hilbert space

\[
|\frac{3}{2}\rangle = (1,0,0,0)^T, |\frac{3}{2}\rangle = (0,1,0,0)^T, |\frac{1}{2}\rangle = (0,0,1,0)^T, |\frac{1}{2}\rangle = (0,0,0,1)^T,
\]

and \(|\frac{1}{2}\rangle = (0,0,0,1)^T\), respectively, so that

\[
|\psi_{4,2,1}\rangle = (0,0,1,0,0,-1,0,0,0,0,1,0,-1,0,0,0)^T. \quad (C5)
\]

Appendix D: General case of two spin \(j \) particles in a singlet state

The general case of spin correlation values of two particles with arbitrary spin \(j \) (see the Appendix of Ref. [169] for a group theoretic derivation) can be directly calculated in an analogous way, yielding

\[
E_{\psi_{2j+1,1}}(\theta_1, \phi_1; \theta_2, \phi_2) \cong \frac{1}{3} \frac{1}{3} \left[\cos \theta_1 \cos \theta_2 + \cos(\phi_1 - \phi_2) \sin \theta_1 \sin \theta_2 \right]. \quad (D1)
\]

Thus, the functional form of the two-particle correlation coefficients based on spin state observables is independent of the absolute spin value.

[1] G. Boole, An Investigation of the Laws of Thought (1854), URL: http://www.gutenberg.org/ebooks/15114.
[2] G. Boole, Philosophical Transactions of the Royal Society of London \(152 \), 225 (1862), ISSN 02610523, URL: http://doi.org/10.1098/rstl.1862.0015.
[3] M. Fréchet, Fundamenta Mathematicae \(25 \), 379 (1935), URL: http://eudml.org/doc/212798.
[4] T. Hailperin, The American Mathematical Monthly \(72 \), 343 (1965), ISSN 00029890, 19300972, URL: http://doi.org/10.2307/2313491.
[5] T. Hailperin, Boole’s Logic and Probability: Critical Exposition from the Standpoint of Contemporary Algebra, Logic and Probability Theory, vol. 85 of Studies in Logic and the Foundations of Mathematics (Elsevier Science Ltd. 1986), 2nd ed., ISBN 9780444879523, 9780080890051, URL: https://cds.cern.ch/record/111654/.
[6] E. G. Beltrametti and M. J. Maczyński, Journal of Mathematical Physics \(32 \) (1991), URL: http://doi.org/10.1063/1.529326.
[7] J. Pykačz and E. Santos, Journal of Mathematical Physics \(32 \) (1991), URL: http://gen.lib.rus.ec/scimag/index.php?s=10.1063/1.529326.
[8] P. Sylvia and V. Majernik, Journal of Mathematical Physics \(33 \) (1992), URL: http://doi.org/10.1063/1.529638.
[9] E. G. Beltrametti and M. J. Maczyński, Journal of Mathematical Physics \(34 \) (1993), URL: http://doi.org/10.1063/1.530333.
[10] E. G. Beltrametti and M. J. Maczyński, Foundations of Physics \(24 \) (1994), URL: http://dx.doi.org/10.1007/bf02057861.
[11] A. Dvurečenskij and H. Länger, Foundations of Physics \(24 \) (1994), URL: http://doi.org/10.1007/bf02057864.
[12] E. G. Beltrametti, C. Del Noce, and M. J. Maczyński, in The Foundations of Quantum Mechanics — Histori-
S. Filipp and K. Svozil, in Foundations of Probability and Physics-3, Växjö (Sweden) (7-12 June 2004), edited by A. Khrennikov (American Institute of Physics, Melville, NY, 2005), vol. 750 of AIP Conference Proceedings, pp. 87–94, arXiv:quant-ph/0407145, URL http://doi.org/10.1063/1.1874561.

M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, vol. 4 of Methods of Modern Mathematical Physics Volume (Academic Press, New York, 1978), ISBN 0-12-585004-2, ISBN 978-0-12-585004-9, URL https://www.elsevier.com/books/iv-analysis-of-operators/reed/978-0-08-057045-7.

G. Teschl, Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators. Graduate Studies in Mathematics, volume 99 (American Mathematical Society, Providence, Rhode Island, 2009), ISBN 0-8218-4660-4 / 978-0-8218-4660-5, URL http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/schroe.pdf.

B. S. Cirel’son (=Tsirel’son), Letters in Mathematical Physics 4, 93 (1980), ISSN 1573-0530, URL http://doi.org/10.1007/BF00417500.

J. Clauser, in Quantum (Un)speakables: From Bell to Quantum Information, edited by R. Bertlmann and A. Zeilinger (Springer, Berlin, 2002), pp. 61–96, ISBN 978-3-662-05032-3, ISBN 978-3-540-42756-8, URL http://doi.org/10.1007/978-3-662-05032-3_6.

A. Zeilinger, Nature 438, 743 (2005), URL http://doi.org/10.1038/438743a.

E. Specker, Subject header Re: pla (2000), personal mail message to Karl Svozil, October 20th, 2000.

J. D. Trimmer, Proceedings of the American Philosophical Society 124, 323 (1980), ISSN 0003049X, URL http://www.jstor.org/stable/986572.

Note1, german original [197, p. 811]: “Es gibt in keinem Augenblick ein Kollektiv klassischer Modellzustände, auf die die Gesamtheit der quantenmechanischen Aussagen dieses Augenblicks zutrifft.”

K. Svozil, in Inside versus Outside, edited by H. Atmanspacher and G. J. Dalenoort (Springer, Berlin Heidelberg, 1994), vol. 63 of Springer Series in Synergetics, pp. 273–288, ISBN 978-3-642-48649-4, URL http://doi.org/10.1007/978-3-642-48647-0_15.

T. Toffoli, in Applied General Systems Research: Recent Developments and Trends, edited by G. J. Klir (Plenum Press, Springer US, New York, London, and Boston, MA, 1978), pp. 395–400, ISBN 978-1-4757-0555-3, URL http://doi.org/10.1007/978-1-4757-0555-3_29.

A. Peres, American Journal of Physics 46, 745 (1978), URL http://doi.org/10.1119/1.11393.

K. Svozil, New Journal of Physics 8, 391 (2006), arXiv:quant-ph/0401113, URL http://doi.org/10.1088/1367-2630/8/3/039.

K. Svozil, Physical Review A 80, 040102 (pages 4) (2009), URL http://doi.org/10.1103/PhysRevA.80.040102.

L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955).

S. Filipp and K. Svozil, Physical Review Letters 93, 130407 (2004), arXiv:quant-ph/0403175, URL http://doi.org/10.1103/PhysRevLett.93.130407.

K. Svozil, Ukrainian Journal of Physics 55, 547 (2009), arXiv:quant-ph/0503229, URL http://arxiv.org/abs/quant-ph/0503229.

L. E. Ballentine, Quantum Mechanics (Prentice Hall, Englewood Cliffs, NJ, 1968).

N. Zierler and M. Schlessinger, in The Logico-Algebraic Approach to Quantum Mechanics: Volume I: Historical Evolution, edited by C. A. Hooker (Springer Netherlands, Dordrecht, 1975), pp. 247–262, ISBN 978-94-010-1795-4, URL http://doi.org/10.1007/978-94-010-1795-4_14.

E. Schrödinger, Naturwissenschaften 23, 807 (1935), URL http://doi.org/10.1007/BF01491891, http://doi.org/10.1007/BF01491892.

W. R. Inc., Mathematica, Version 11.1 (2017).
Appendix E: Supplemental Material: cddlib codes of examples

Fukuda’s cddlib package cddlib-094h can be obtained from the package homepage [77]. Installation on Unix-type operating systems is with gcc; the free library for arbitrary precision arithmetic GMP (currently 6.1.2) [78], must be installed first.

In its elementary form of the V-representation, cddlib takes in the \(k\) vertices \(|v_1\rangle,\ldots,|v_k\rangle\) of a convex polytope in an \(m\)-dimensional vector space as follows (note that all rows of vector components start with “1”):

\[
\begin{align*}
 V\text{-representation} & \begin{align*}
 \text{begin} \\
 k & \text{ m+1 numbertype} \\
 1 & v_1 l \cdots v_1 m \\
 \cdots \cdots \cdots \cdots \cdots \cdots \\
 1 & v_k l \cdots v_k m \\
 \text{end}
\end{align*}
\end{align*}
\]

\(cddlib\) responds with the faces (boundaries of half-spaces), as encoded by \(n\) inequalities \(A|\mathbf{x}\rangle \leq |b\rangle\) in the H-representation as follows:

\[
\begin{align*}
 H\text{-representation} & \begin{align*}
 \text{begin} \\
 n & \text{ m+1 numbertype} \\
 b & -A \\
 \text{end}
\end{align*}
\end{align*}
\]

Comments appear after an asterisk.

1. Trivial examples

 a. One observable

 The case of a single variable has two extreme cases: \(\text{false} \equiv 0\) and \(\text{true} \equiv 1\), resulting in \(0 \leq p_1 \leq 1\):

 \[
 \begin{align*}
 V\text{-representation} & \begin{align*}
 \text{begin} \\
 2 & \text{ 2 integer} \\
 1 & 0 \\
 1 & 1 \\
 \text{end}
\end{align*}
\end{align*}
\]

 \[
 \begin{align*}
 H\text{-representation} & \begin{align*}
 \text{begin} \\
 2 & \text{ 2 real} \\
 1 & -1 \\
 0 & 1 \\
 \text{end}
\end{align*}
\end{align*}
\]

b. Two observables

The case of two variables \(p_1\) and \(p_2\), and a joint variable \(p_{12}\), result in

\[
\begin{align*}
 p_1 + p_2 - p_{12} & \leq 1, \quad (E1) \\
 -p_1 + p_{12} & \leq 0, \quad (E2) \\
 -p_2 + p_{12} & \leq 0, \quad (E3) \\
 -p_{12} & \leq 0, \quad (E4)
\end{align*}
\]

and thus \(0 \leq p_{12} \leq p_1, p_2\).

\[
\begin{align*}
 \text{begin} \\
 4 & \text{ 4 integer} \\
 1 & 0 0 0 0 \\
 1 & 0 1 0 \\
 1 & 1 0 0 \\
 1 & 1 1 1 \\
 \text{end}
\end{align*}
\]

\[
\begin{align*}
 \text{begin} \\
 4 & \text{ 4 real} \\
 1 & -1 -1 1 \\
 0 & 1 0 -1 \\
 0 & 0 1 -1 \\
 0 & 0 0 1 \\
 \text{end}
\end{align*}
\]

For dichotomous expectation values \(\pm 1\),

\[
\begin{align*}
 \text{begin} \\
 4 & \text{ 4 integer} \\
 1 & -1 -1 -1 \\
 1 & -1 1 -1 \\
 1 & 1 -1 -1 \\
 1 & 1 1 1 \\
 \text{end}
\end{align*}
\]

\[
\begin{align*}
 \text{begin} \\
 4 & \text{ 4 real} \\
 1 & -1 -1 -1 \\
 1 & 1 -1 -1 \\
 1 & -1 1 -1 \\
 1 & 1 1 1 \\
 \text{end}
\end{align*}
\]
c. Bounds on the (joint) probabilities and expectations of three observables

* four joint expectations:
 * p1, p2, p3.
 * p12=p1*p2, p13=p1*p3, p23=p2*p3.
 * p123=p1*p2*p3

V-representation

begin
8 8 integer
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 0
1 1 1 1 1 1 1 1
end

begin
1 -1 -1 -1 -1 -1
1 -1 -1 -1 1 1
1 -1 -1 1 -1 -1
1 -1 1 -1 1 1
1 1 -1 -1 -1 -1
1 1 1 1 1 -1
end

--- cddlib response

H-representation

begin
8 8 real
1 -1 -1 -1 1 1 1 -1
0 1 0 0 -1 -1 0 1
0 0 1 0 -1 0 -1 1
0 0 0 1 0 -1 -1 1
0 0 0 0 1 0 0 -1
0 0 0 0 0 1 0 -1
0 0 0 0 0 0 1 -1
0 0 0 0 0 0 0 1
end

--- cddlib response

If single observable expectations are set to zero by assumption (axiom) and are not-enumerated, the table of expectation values may be redundant.

The case of three expectation value observables E_1, E_2 and E_3 (which are not explicitly enumerated), as well as all joint expectations E_{12}, E_{13}, E_{23}, and E_{123}, result in

\[
-E_{12} - E_{13} - E_{23} \leq 1 \quad (E5)
\]

\[
-E_{123} \leq 1, \quad (E6)
\]

\[
E_{123} \leq 1, \quad (E7)
\]

\[
-E_{12} + E_{13} + E_{23} \leq 1, \quad (E8)
\]

\[
E_{12} - E_{13} + E_{23} \leq 1, \quad (E9)
\]

\[
E_{12} + E_{13} - E_{23} \leq 1. \quad (E10)
\]

* four joint expectations:
 * [E1, E2, E3, not explicitly enumerated]
 * E12=E1+E2, E13=E1+E3, E23=E2+E3.
 * E123=E1+E2+E3

V-representation

begin
8 5 integer
1 1 1 1 1
1 1 -1 -1 -1
end

2. 2 observers, 2 measurement configurations per observer

From a quantum physical standpoint the first relevant case is that of 2 observers and 2 measurement configurations per observer.
a. Bell-Wigner-Fine case: probabilities for 2 observers, 2 measurement configurations per observer

The case of four probabilities \(p_1, p_2, p_3 \) and \(p_4 \), as well as four joint probabilities \(p_{13}, p_{14}, p_{23}, \) and \(p_{24} \) result in

\[
\begin{align*}
-p_{14} & \leq 0 \\
-p_{24} & \leq 0 \\
p_1 + p_4 - p_{13} - p_{14} + p_{23} - p_{24} & \leq 1 \\
p_2 + p_4 - p_{13} - p_{14} - p_{23} - p_{24} & \leq 1 \\
p_2 + p_3 - p_{13} - p_{14} - p_{23} - p_{24} & \leq 1 \\
p_1 + p_3 - p_{13} - p_{14} - p_{23} - p_{24} & \leq 1 \\
-p_{13} & \leq 0 \\
-p_{23} & \leq 0 \\
-p_1 + p_4 - p_{13} + p_{14} - p_{23} + p_{24} & \leq 0 \\
-p_2 + p_4 - p_{13} - p_{14} + p_{23} - p_{24} & \leq 0 \\
-p_2 - p_3 - p_{13} - p_{14} + p_{23} - p_{24} & \leq 0 \\
p_1 - p_3 + p_{13} + p_{14} + p_{23} - p_{24} & \leq 0 \\
p_1 + p_4 & \leq 0 \\
p_2 + p_4 & \leq 0 \\
p_3 + p_{23} & \leq 0 \\
p_3 - p_{13} & \leq 0 \\
p_1 + p_{13} & \leq 0 \\
p_2 + p_{23} & \leq 0 \\
p_4 + p_{24} & \leq 0 \\
p_4 - p_{14} & \leq 0 \\
+p_2 + p_4 - p_{24} & \leq 1 \\
+p_1 + p_4 - p_{14} & \leq 1 \\
+p_2 + p_3 - p_{23} & \leq 1 \\
+p_1 + p_3 - p_{13} & \leq 1.
\end{align*}
\]

\textbf{H-representation}

\begin{verbatim}
begin
24 9 real
0 0 0 0 0 0 1 0 0
1 -1 0 0 -1 1 1 -1 1
1 0 -1 0 -1 1 1 1 1
1 0 -1 -1 0 1 -1 1 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 1 -1 -1 1 -1
0 0 1 0 1 -1 -1 1 -1
0 1 0 1 0 -1 1 -1 -1
1 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 -1
0 0 0 0 1 0 -1 0 0
1 0 -1 0 -1 0 0 0 1
1 -1 0 -1 1 0 1 0 0
1 0 -1 -1 0 0 0 1 0
1 -1 0 -1 0 1 0 0 0
end
\end{verbatim}

b. Clauser-Horne-Shimony-Holt case: expectation values for 2 observers, 2 measurement configurations per observer

The case of four expectation values \(E_1, E_2, E_3 \) and \(E_4 \) (which are not explicitly enumerated), as well as all joint expectations \(E_{13}, E_{14}, E_{23}, \) and \(E_{24} \) result in

\[
\begin{align*}
+E_{13} - E_{14} - E_{23} - E_{24} & \leq 2 \hspace{1cm} (E35) \\
-E_{24} & \leq 1 \hspace{1cm} (E36) \\
-E_{23} & \leq 1 \hspace{1cm} (E37) \\
-E_{13} + E_{14} - E_{23} - E_{24} & \leq 2 \hspace{1cm} (E38) \\
-E_{14} & \leq 1 \hspace{1cm} (E39) \\
-E_{13} - E_{14} + E_{23} - E_{24} & \leq 2 \hspace{1cm} (E40) \\
-E_{13} - E_{14} - E_{23} + E_{24} & \leq 2 \hspace{1cm} (E41) \\
-E_{13} & \leq 1 \hspace{1cm} (E42) \\
-E_{13} + E_{14} + E_{23} + E_{24} & \leq 2 \hspace{1cm} (E43) \\
+E_{24} & \leq 1 \hspace{1cm} (E44) \\
+E_{23} & \leq 1 \hspace{1cm} (E45) \\
+E_{13} - E_{14} + E_{23} + E_{24} & \leq 2 \hspace{1cm} (E46) \\
+E_{14} & \leq 1 \hspace{1cm} (E47) \\
+E_{13} + E_{14} - E_{23} + E_{24} & \leq 2 \hspace{1cm} (E48) \\
+E_{13} + E_{14} + E_{23} - E_{24} & \leq 2 \hspace{1cm} (E49) \\
+E_{13} & \leq 1. \hspace{1cm} (E50)
\end{align*}
\]
c. Beyond the Clauser-Horne-Shimony-Holt case: 2 observers, 3 measurement configurations per observer
3. Pentagon logic

4. Probabilities but no joint probabilities

Here is a computation which includes all probabilities but no joint probabilities:

* ten probabilities:
* p1 ... p10
* begin
11 11 integer
1 1 0 0 1 0 1 0 1 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 1 1 0 0 0 1 0 0 1 0 0 0
1 1 1 0 0 0 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0
end

-------- cddlib response

H-representation
begin
684 16 real
4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[...]
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[...]
end

-------- cddlib response

H-representation
linearity 5 12 13 14 15 16
begin
16 11 real
0 0 0 0 0 0 1 0 0 0 0
5. Joint Expectations on all atoms

This is a full hull computation taking all joint expectations into account:

```
+ p6 ≥ 0 
+ p8 ≥ 0
− p1 + p4 + p8 ≥ 0
+ p4 ≥ 0
+ p1 ≥ 0
− p1 − p2 + p4 − p6 ≥ −1
+ p2 ≥ 0
− 2p1 − p2 + p4 − p6 + p8 ≥ −1
+ p1 + p2 − p4 ≥ 0
+ p1 + p2 − p4 + p6 − p8 ≥ 0
− p1 − p2 ≥ −1
+ p1 + p2 + p3 ≥ 1
− p1 − p2 + p4 + p5 ≥ 0
+ p1 + p2 − p4 + p6 + p7 ≥ 1
− p1 − p2 + p4 − p6 + p8 + p9 ≥ 0
2p1 + p2 − p4 + p6 − p8 + p10 ≥ 1.
```

5. Joint Expectations on all atoms

This is a full hull computation taking all joint expectations into account:

```
+ p6 ≥ 0
+ p8 ≥ 0
− p1 + p4 + p8 ≥ 0
+ p4 ≥ 0
+ p1 ≥ 0
− p1 − p2 + p4 − p6 ≥ −1
+ p2 ≥ 0
− 2p1 − p2 + p4 − p6 + p8 ≥ −1
+ p1 + p2 − p4 ≥ 0
+ p1 + p2 − p4 + p6 − p8 ≥ 0
− p1 − p2 ≥ −1
+ p1 + p2 + p3 ≥ 1
− p1 − p2 + p4 + p5 ≥ 0
+ p1 + p2 − p4 + p6 + p7 ≥ 1
− p1 − p2 + p4 − p6 + p8 + p9 ≥ 0
2p1 + p2 − p4 + p6 − p8 + p10 ≥ 1.
```

This is a full hull computation taking all joint expectations into account:

```
+ p6 ≥ 0
+ p8 ≥ 0
− p1 + p4 + p8 ≥ 0
+ p4 ≥ 0
+ p1 ≥ 0
− p1 − p2 + p4 − p6 ≥ −1
+ p2 ≥ 0
− 2p1 − p2 + p4 − p6 + p8 ≥ −1
+ p1 + p2 − p4 ≥ 0
+ p1 + p2 − p4 + p6 − p8 ≥ 0
− p1 − p2 ≥ −1
+ p1 + p2 + p3 ≥ 1
− p1 − p2 + p4 + p5 ≥ 0
+ p1 + p2 − p4 + p6 + p7 ≥ 1
− p1 − p2 + p4 − p6 + p8 + p9 ≥ 0
2p1 + p2 − p4 + p6 − p8 + p10 ≥ 1.
```

5. Joint Expectations on all atoms

This is a full hull computation taking all joint expectations into account:
If one considers only the five probabilities on the intertwining atoms, then the following Bub-Stairs inequality \(p_1 + p_3 + p_5 + p_7 + p_9 \leq 2 \), among others, results:

\[
E_{13} + E_{14} - E_{34} \leq (E67) \\
-E_{12} + E_{18} + E_{28} \leq (E68) \\
E_{14} + E_{18} - E_{48} \leq (E69) \\
E_{12} - E_{14} - E_{26} + E_{34} - E_{36} \leq (E70) \\
E_{12} + E_{13} + E_{26} + E_{36} \leq (E71) \\
-E_{13} - E_{14} + E_{16} - E_{18} + E_{36} + E_{48} \leq (E72) \\
-E_{12} - E_{16} - E_{26} \leq (E73) \\
E_{16} - E_{18} + E_{26} - E_{36} \leq (E74) \\
E_{26} - E_{28} - E_{34} + E_{36} + E_{48} \leq (E75) \\
E_{14} - E_{16} + E_{34} - E_{36} \leq (E76) \\
-E_{13} - E_{14} - E_{26} + E_{28} - E_{36} - E_{48} \leq (E77) \\
E_{12} - E_{14} - E_{15} \leq (E78) \\
E_{13} + E_{14} - E_{16} - E_{17} \leq (E79) \\
E_{12} - E_{14} + E_{16} - E_{18} - E_{19} \leq (E80) \\
-E_{1,10} + E_{13} + E_{14} - E_{16} + E_{18} \leq (E81) \\
E_{12} - E_{13} - E_{23} \leq (E82) \\
E_{12} - E_{14} - E_{24} \leq (E88) \\
E_{14} - E_{25} \leq (E84) \\
-E_{13} - E_{14} - E_{26} - E_{27} \leq (E85) \\
E_{14} + E_{26} - E_{28} - E_{29} \leq (E86) \\
-E_{12} - E_{13} - E_{14} - E_{2,10} - E_{26} + E_{28} \leq (E87) \\
-E_{12} - E_{34} - E_{35} \leq (E88) \\
E_{34} - E_{36} - E_{37} \leq (E89) \\
E_{13} + E_{14} + E_{26} - E_{28} - E_{34} + E_{36} - E_{38} \leq (E90) \\
-E_{12} - E_{13} - E_{14} - E_{26} + E_{28} - E_{39} \leq (E91) \\
E_{14} + E_{26} - E_{28} - E_{3,10} \leq (E92) \\
E_{12} - E_{45} \leq (E93) \\
E_{34} - E_{35} - E_{46} \leq (E94) \\
E_{36} - E_{47} \leq (E95) \\
E_{12} + E_{34} - E_{36} - E_{48} \leq (E96) \\
-E_{14} + E_{36} - E_{4,10} + E_{48} \leq (E97) \\
E_{16} + E_{26} - E_{34} + E_{36} - E_{38} \leq (E98) \\
-E_{16} - E_{26} - E_{34} - E_{37} \leq (E99) \\
E_{18} + E_{28} - E_{48} - E_{58} \leq (E100) \\
E_{16} - E_{18} + E_{26} - E_{28} - E_{34} + E_{36} + E_{48} \leq (E101) \\
-E_{12} + E_{14} - E_{16} + E_{18} - E_{26} + E_{28} - E_{36} - E_{48} - E_{5,10} \leq (E102) \\
E_{34} - E_{67} \leq (E103) \\
E_{16} - E_{18} + E_{26} - E_{28} - E_{34} + E_{36} + E_{48} - E_{68} \leq (E104) \\
E_{18} + E_{28} - E_{48} - E_{69} \leq (E105) \\
-E_{18} + E_{26} - E_{28} + E_{36} + E_{48} - E_{6,10} \leq (E106) \\
E_{13} + E_{14} - E_{16} + E_{18} - E_{78} \leq (E107) \\
-E_{13} - E_{14} - E_{18} - E_{26} + E_{34} - E_{36} - E_{79} \leq (E108) \\
E_{18} - E_{7,10} \leq (E109) \\
E_{16} + E_{26} - E_{34} + E_{36} - E_{89} \leq (E110) \\
E_{13} + E_{14} - E_{16} - E_{8,10} \leq (E111) \\
-E_{12} - E_{13} - E_{9,10} \leq (E112)
\]

One could also consider probabilities on the non-intertwining atoms yielding; in particular, \(p_2 + p_4 + p_6 + p_8 + p_{10} \geq 1 \).
The following hull computation is limited to adjacent pair expectations; it yields the Klyachko-Can-Binicioglu-Shumovsky inequality $E_{13} + E_{35} + E_{57} + E_{79} + E_{91} \geq 3$:

\begin{verbatim}
+ five joint Expectations: + E13 E35 E57 E79 E91 +
V-representation begin
1 6 real
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
end
--------- cddlib response

H-representation begin
1 6 real
1 0 0 0 1 1 1
1 0 0 0 1 1 1
1 0 0 0 1 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
end
--------- cddlib response

\end{verbatim}

\begin{align*}
-E_{79} & \leq 1 & (E113) \\
-E_{91} & \leq 1 & (E114) \\
-E_{35} & \leq 1 & (E115) \\
-E_{13} - E_{35} - E_{57} - E_{79} - E_{91} & \leq 3 & (E116) \\
-E_{13} & \leq 1 & (E117) \\
-E_{57} & \leq 1 & (E118) \\
-E_{13} + E_{35} + E_{57} + E_{79} + E_{91} & \leq 1 & (E119) \\
+E_{13} - E_{35} + E_{57} + E_{79} - E_{91} & \leq 1 & (E120) \\
-E_{13} + E_{35} + E_{57} - E_{79} + E_{91} & \leq 1 & (E121) \\
+E_{13} - E_{35} + E_{57} - E_{79} + E_{91} & \leq 1 & (E122) \\
+E_{13} + E_{35} - E_{57} + E_{79} - E_{91} & \leq 1. & (E123)
\end{align*}

7. Two intertwined pentagon logics forming a Specker Käfer (bug) or cat’s cradle logic

\begin{verbatim}
a. Klyachko-Can-Binicioglu-Shumovsky inequalities

The following hull computation is limited to adjacent pair expectations; it yields the Klyachko-Can-Binicioglu-Shumovsky inequality $E_{13} + E_{35} + E_{57} + E_{79} + E_{91} \geq 3$:

\end{verbatim}

\begin{verbatim}
a. Probabilities on the Specker bug logic

A Mathematica [198] code to reduce probabilities on the Specker bug logic:

\begin{verbatim}
Reduce[p1 + p2 + p3 == 1
&& p3 + p4 + p5 == 1
&& p5 + p6 + p7 == 1
&& p7 + p8 + p9 == 1
&& p9 + p10 + p11 == 1
&& p11 + p12 + p1 == 1
&& p4 + p10 + p13 == 1,
{p3, p11, p5, p9, p4, p10}, Reals]

--------- Mathematica response

p1 == 3/2 - p12/2 - p13/2 - p2/2 - p6/2 - p7
- p8/2 &
p3 == -(1/2) + p12/2 + p13/2 - p2/2 + p6/2
+ p7 + p8/2 &
p11 == -(1/2) - p12/2 + p13/2 + p2/2 + p6/2
+ p7 + p8/2 &
p5 == 1 - p6 - p7 &
p9 == 1 - p7 - p8 &
p4 == 1/2 - p12/2 - p13/2 + p2/2 + p6/2 - p8
/2 &
p10 == 1/2 + p12/2 - p13/2 - p2/2 - p6/2 +
p8/2

--------- Mathematica response

\end{verbatim}

Computation of all the two-valued states thereon:

\begin{verbatim}
Reduce[p1 + p2 + p3 == 1 && p3 + p4 + p5 == 1
&& p5 + p6 + p7 == 1 && p7 + p8 + p9 == 1 && p10 + p1 +
p11 + p12 + p1 == 1 &&

--------- Mathematica response

\end{verbatim}
Mathematica response

\[
\begin{align*}
p_4 + p_{10} + p_{13} &= 1 \&\& p_{11}^2 = p_1 \&\& p_{21}^2 \\
p_{41}^2 &= p_4 \&\& p_{51}^2 = p_5 \&\& p_{61}^2 = p_6 \\
p_{71}^2 &= p_7 \&\& p_{81}^2 = p_8 \\
p_{91}^2 &= p_9 \&\& p_{101}^2 = p_{10} \&\& p_{111}^2 = p_{11} \\
p_{121}^2 &= p_{12} \\
p_{131}^2 &= p_{13}
\end{align*}
\]

b. Hull calculation for the probabilities on the Specker bug logic

\[
\begin{align*}
*p_{13} \text{ probabilities on atoms all...a13:} & \quad *p_{1} \ldots p_{13} \\
V\text{-representation} & \begin{align*}
\text{begin} & \quad 14 & 14 & \text{real} & \quad 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
& & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
& & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
& & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
& & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
& & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
& & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\text{end} & \quad \text{cstdlib response} & \quad \text{H}\text{-representation} & \quad \text{linearity 7 17 18 19 20 21 22 23} & \begin{align*}
\text{begin} & \quad 23 & 14 & \text{real} & \quad 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
& & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
& & 0 & 1 & 2 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
& & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
& & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
& & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
& & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{align*}
\end{align*}
\]
The resulting face inequalities are

\[-p_4 \leq 0, \quad (E124)\]
\[-p_5 \leq 0, \quad (E125)\]
\[-p_1 - p_2 + p_4 - p_6 + p_8 \leq 0, \quad (E126)\]
\[-p_1 \leq 0, \quad (E127)\]
\[-p_1 - p_2 + p_4 \leq 0, \quad (E128)\]
\[-p_1 - 2p_2 + 2p_4 - p_6 + p_8 \leq 0, \quad (E129)\]
\[-p_2 + p_4 - p_6 \leq 0, \quad (E130)\]
\[-p_2 \leq 0, \quad (E131)\]
\[-p_{10} \leq 0, \quad (E132)\]
\[-p_8 \leq 0, \quad (E133)\]
\[+p_4 + p_{10} \leq 1, \quad (E135)\]
\[+p_1 + p_2 - p_4 + p_6 - p_8 + p_{10} \leq 1, \quad (E136)\]
\[+p_1 + p_2 - p_8 + p_{10} \leq 1, \quad (E137)\]
\[+p_1 + p_2 \leq 1, \quad (E138)\]
\[+p_1 + p_2 - p_4 \leq 1, \quad (E139)\]
\[+p_1 - p_2 - p_3 \leq 1, \quad (E140)\]
\[+p_1 - p_2 - p_5 \leq 0, \quad (E141)\]
\[-p_1 - p_2 + p_4 - p_6 - p_7 \leq -1, \quad (E142)\]
\[+p_1 + p_2 - p_4 + p_6 - p_8 + p_9 \leq 0, \quad (E143)\]
\[-p_1 - p_2 + p_4 - p_6 + p_8 - p_{10} - p_{11} \leq -1, \quad (E144)\]
\[+p_2 - p_4 + p_6 - p_8 + p_{10} - p_{12} \leq 0, \quad (E145)\]
\[-p_4 - p_{10} - p_{13} \leq -1. \quad (E146)\]

H-representation

Lineariy 18

\begin{verbatim}
18 7 real
1 0 0 0 1 0 0
1 -1 0 0 1 -1 0
1 -1 1 -1 1 -1
1 0 0 0 1 0 0
1 1 0 0 1 0 0
1 1 1 1 1 1 1
1 0 0 0 1 0 0
1 0 0 0 1 0 0
end
\end{verbatim}

c. Hull calculation for the expectations on the Specker bug logic

* (13 expectations on atoms a1...a13:
* E1 ... E13 not enumerated)
* 6 joint expectations E1+E3, E3+E5, ..., E11+E1
*

V-representation

14 7 integer
1 -1 -1 -1 -1 -1 -1
1 -1 1 1 -1 -1 -1
1 -1 -1 1 1 1 -1
1 1 -1 -1 -1 -1 1
1 1 -1 -1 1 1 -1

d. Extended Specker bug logic

Here is the Mathematica [198] code to reduce probabilities on the extended (by two contexts) Specker bug logics:

```mathematica
Reduce[
p1 + p2 + p3 == 1
&& p3 + p4 + p5 == 1
&& p5 + p6 + p7 == 1
&& p7 + p8 + p9 == 1
&& p9 + p10 + p11 == 1
&& p11 + p12 + p13 == 1
&& p4 + p10 + p13 == 1
&& p1 + p2 + q7 == 1
&& p7 + p + q1 == 1,
{p3, p11, p5, p9, p4, p10, q3, q11, q5, q9,
 q4, q10, p13, q13, p2, q7, p9}]

---------- Mathematica response
p1 == p7 + q1 - q7 && p3 == 1 - p2 - p7 - q1 + q7 &&
```

p11 = 1 - p12 - p7 - q1 + q7 && p5 = 1 - p6 - p7 &&
p9 = 1 - p7 - p8 && p4 = -1 + p2 + p6 + 2
p7 + q1 - q7 &&
p10 = -1 + p12 + 2 p7 + p8 + q1 - q7 &&
p13 = 3 - p12 - p2 - p6 - 4 p7 - p8 - 2 q1 + 2 q7 &&
pc = 1 - p7 - q1

Computation of all the 112 two-valued states thereon:

Reduce [p1 + p2 + p3 = 1 && p3 + p4 + p5 = 1 && p5 + p6 + p7 = 1 && p7 + p8 + p9 = 1 && p9 + p10 + p11 = 1 && p11 + p12 + p1 = 1 && p4 + p10 + p13 = 1 && p1^2 = p1 && p2^2 = p2 && p3^2 = p3 && p4^2 = p4 && p5^2 = p5 && p6^2 = p6 && p7^2 = p7 && p8^2 = p8 && p9^2 = p9 && p10^2 = p10 && p11^2 = p11 && p12^2 = p12 && p13^2 = p13 && q1^2 = q1 && q7^2 = q7 && pc^2 = pc]

---- Mathematica response
q7 = 0 && q1 = 0 && pc = 0 && p9 = 0 && p8 = 0 && p7 = 1 &&
p6 = 0 && p5 = 0 && p4 = 0 && p3 = 1 && p2 = 0 && p13 = 0 &&
p12 = 1 && p11 = 0 && p10 = 1 && p1 = 0 || (q7 = 0 &&
q1 = 0 && pc = 0 && p9 = 0 && p8 = 0 && p7 = 1 && p6 = 0 &&
p5 = 0 && p4 = 0 && p3 = 1 && p2 = 0 && p13 = 1 && p12 = 0 &&
p11 = 1 && p10 = 0 && p1 = 0) ||
[...] || (q7 = 1 && q1 = 1 && pc = 1 && p9 = 1 && p8 = 0 &&
p7 = 0 && p6 = 1 && p5 = 0 && p4 = 1 && p3 = 0 && p2 = 1 &&
p13 = 0 && p12 = 1 && p11 = 0 && p10 = 0 && p1 = 0)

8. Two intertwined Specker bug logics

Here is the Mathematica [198] code to reduce probabilities on two intertwined Specker bug logics:

Reduce [p1 + p2 + p3 = 1 && p3 + p4 + p5 = 1 && p5 + p6 + p7 = 1 && p7 + p8 + p9 = 1 &&
p9 + p10 + p11 = 1 && p11 + p12 + p1 = 1 && p4 + p10 + p13 = 1 && q1 + q2 + q3 = 1 &&
q3 + q4 + q5 = 1 && q5 + q6 + q7 = 1 && q7 + q8 + q9 = 1 && q9 + q10 + q11 = 1 && q11 + q12 + q1 = 1 && q4 + q10 + q13 = 1 &&
p1 + pc + q7 = 1 && p7 + pc + q1 = 1.

{p3 , p11 , p5 , p9 , p4 , p10 , q3 , q11 , q5 , q9 , q4 , q10 , p13 , q13 , pc }]

----- Mathematica response
p1 = p7 + q1 - q7 && p3 = 1 - p2 - p7 - q1 + q7 &&
p11 = 1 - p12 - p7 - q1 + q7 && p5 = 1 - p6 - p7 &&
p9 = 1 - p7 - p8 && p4 = -1 + p2 + p6 + 2
p7 + q1 - q7 &&
p10 = -1 + p12 + 2 p7 + p8 + q1 - q7 &&
p11 = 1 - q1 - q2 &&
q11 = 1 - q1 - q12 && q5 = 1 - q6 - q7 &&
q9 = 1 - q7 - q8 &&
q4 = -1 + q1 + q2 + q6 + q7 && q10 = -1 + q1 + q12 + q7 + q8 &&
p13 = 3 - p12 - p2 - p6 - 4 p7 - p8 - 2 q1 + 2 q7 &&
q13 = 3 - 2 q1 - q12 - q2 - q6 - 2 q7 - q8
&& pc = 1 - p7 - q1

a. Hull calculation for the contextual inequalities corresponding to the Cabello, Estebaranz and García-Alcaine logic

* (13 expectations on atoms A1...A18: * not enumerated)
* 9 4 th order expectations A1A2A3A4 A4A5A6A7 ... A2A9A11A18
* V-representation begin
262144 10 real
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 -1 -1 1 1
1 1 1 1 1 1 -1 1 1 -1
[...]
1 1 1 1 1 1 -1 1 1 -1
1 1 1 1 1 1 -1 1 1 -1
1 1 1 1 1 1 1 1 1 1
end

----- cddlib response

H-representation begin
274 10 real
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
7 -1 -1 -1 -1 -1 -1 -1 1 1
7 -1 -1 -1 -1 -1 -1 1 1 1
7 -1 -1 -1 -1 -1 1 1 1 1
7 -1 -1 -1 -1 -1 -1 -1 1 1

\[b. \] Hull calculation for the contextual inequalities corresponding to the pentagon logic

\[c. \] Hull calculation for the contextual inequalities corresponding to Specker bug logics
d. Min-max calculation for the quantum bounds of two-two-state particles

\[
\begin{pmatrix}
\begin{array}{c}
\frac{z}{Sqrt[Conjugate[z]]}
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix},
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
m
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
p
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{c}
b
end{pmatrix}
\end{pmatrix}
\]
FullSimplify[
 Normalize[
 Eigenvectors[S2\{[Theta], [Phi]\}][[1]]],
 Element[[Theta], Reals],
 Element[[Phi], Reals]]
ES2M[[Theta]_, [Phi]_] := (-E^(-I \[Phi]))/2, 1)*Cos[[Theta]/2]*E^(-I \[Phi])
ES2P[[Theta]_, [Phi]_] := (E^(-I \[Phi])) Cot[[Theta]/2, 1)*Sin[[Theta]/2]*E^(-I \[Phi])
FullSimplify[ES2M[[Theta], [Phi]], [Theta], Reals],
Element[[Phi], Reals]]
FullSimplify[ES2P[[Theta], [Phi]], [Theta], Reals],
Element[[Phi], Reals]]
FullSimplify[ES2M[[Theta], [Phi]], [Theta], Reals],
Element[[Phi], Reals]]
FullSimplify[ES2P[[Theta], [Phi]], [Theta], Reals],
Element[[Phi], Reals]]
FullSimplify[ES2M[[Theta], [Phi]], [Theta], Reals],
Element[[Phi], Reals]]
FullSimplify[ES2P[[Theta], [Phi]], [Theta], Reals],
Element[[Phi], Reals]]
FullSimplify[ES2M[[Theta], [Phi]]] // MatrixForm
FullSimplify[ES2P[[Theta], [Phi]]] // MatrixForm
(* verification of spectral form *)
FullSimplify[(1/2) ProjectorES2M[[Theta], [Phi]] + (1/2) ProjectorES2P[[Theta], [Phi]]],
Element[[Theta], Reals],
Element[[Phi], Reals]]
SingleParticleSpinOneHalfObservable[x_, p_] := FullSimplify[(1/2) (IdentityMatrix[2] + vecs[1, x, p])]
SingleParticleSpinOneHalfObservable[[Theta], [Phi]] // MatrixForm
Eigensystem[FullSimplify[
 SingleParticleSpinOneHalfObservable[x, p]]]

(* Definition of single operators for occurrence of spin up *)

SingleParticleProjector2first[x_, p_, pm_] := MyTensorProduct[1/2 (IdentityMatrix[2] + pm*vecs[1, x, p]), IdentityMatrix[2]]

SingleParticleProjector2second[x_, p_, pm_] := MyTensorProduct[IdentityMatrix[2], 1/2 (IdentityMatrix[2] + pm*vecs[1, x, p])]

(* Definition of two-particle joint operator for occurrence of spin up and down *)

JointProjector2[x1_, x2_, p1_, p2_, pm1_, pm2_] := MyTensorProduct[1/2 (IdentityMatrix[2] + pm1*vecs[1, x1, p1]), 1/2 (IdentityMatrix[2] + pm2*vecs[1, x2, p2])]

(* Definition of probabilities *)

(* Probability of concurrence of two equal events for two-particle \ probability in singlet Bell state for occurrence of spin up *)

JointProb2s[x1_, x2_, p1_, p2_, pm1_, pm2_] := FullSimplify[
 Tr[DyadicProductVec[psi2s].JointProjector2[x1, x2, p1, p2, pm1, pm2]]]

JointProb2s[x1, x2, p1, p2, pm1, pm2]

JointProb2s[x1, x2, p1, p2, pm1, pm2] // TeXForm

(* sum of joint probabilities add up to one *)

FullSimplify[
 Sum[JointProb2s[x1, x2, p1, p2, pm1, pm2], {pm1, -1, 1, 2}, {pm2, -1, 1, 2}]]

(* Probability of concurrence of two equal events *)

P2Es[x1_, x2_, p1_, p2_] = FullSimplify[
 Sum[UnitStep[pm1*pm2]*
 JointProb2s[x1, x2, p1, p2, pm1, pm2], {pm1, -1, 1, 2}, {pm2, -1, 1, 2}];

P2Es[x1, x2, p1, p2]
Join

FullSimplify[
 Tr[DyadicProductVec[ψ2 s].
 TwoParticleExpectationsRed[A1, B1]]
]

(* -------------------------- plausibility
check *)

FullSimplify[
 Tr[DyadicProductVec[ψ2 s].
 TwoParticleExpectationsRed[A1, B1]]
]

(* -------------------------- end plausibility
check *)

TwoParticleExpectationsRed[A1, B1] //
MatrixForm
TwoParticleExpectationsRed[A1, B1] // TeXForm

Eigenvalues[
 ComplexExpand[
 DyadicProductVec[
 ψ2 s].(TwoParticleExpectationsRed[0,
 Pi/4] +
 TwoParticleExpectationsRed[Pi/2, Pi/4]
 +
 TwoParticleExpectationsRed[0, −Pi/4] −
 TwoParticleExpectationsRed[Pi/2, −Pi
 /4]).DyadicProductVec[
 ψ2 s]]]]

(* observables along ψ1+ *)

Eigenvalues[
 ComplexExpand[
 DyadicProductVec[
 ψ2 mp].(TwoParticleExpectationsRed[0,
 Pi/4] +
 TwoParticleExpectationsRed[Pi/2, Pi/4]
 +
 TwoParticleExpectationsRed[0, −Pi/4] −
 TwoParticleExpectationsRed[Pi/2, −Pi
 /4]).DyadicProductVec[
 ψ2 mp]]]]

FullSimplify[
 Tr[
 Eigenvalues[
 ComplexExpand[
 DyadicProductVec[
 ψ2 mp].(TwoParticleExpectationsRed[0,
 Pi/4] +
 TwoParticleExpectationsRed[Pi/2, Pi/4]
 +
 TwoParticleExpectationsRed[0, −Pi/4] −
 TwoParticleExpectationsRed[Pi/2, −Pi
 /4]).DyadicProductVec[
 ψ2 mp]]]]
 TrigExpand[
 Eigenvalues[
 ComplexExpand[
 DyadicProductVec[
 ψ2 mm].(TwoParticleExpectationsRed[0,
 Pi/4] +
 TwoParticleExpectationsRed[Pi/2, Pi/4]
 +
 TwoParticleExpectationsRed[0, −Pi/4] −
 TwoParticleExpectationsRed[Pi/2, −Pi
 /4]).DyadicProductVec[
 ψ2 mm]]]]

(* observables along ψ1-singlet *)

Eigenvalues[
 ComplexExpand[
 DyadicProductVec[
 ψ2 mm].(TwoParticleExpectationsRed[0,
 Pi/4] +
 TwoParticleExpectationsRed[Pi/2, Pi/4]
 +
 TwoParticleExpectationsRed[0, −Pi/4] −
 TwoParticleExpectationsRed[Pi/2, −Pi
 /4]).DyadicProductVec[
 ψ2 mm]]]]
e. Min-max calculation for the quantum bounds of two three-state particles

(*----*)
(* Start Mathematica Code *)
(*----*)
(* old stuff *)

<<Algebra 'ReIm'

Normalize[z_] := z/Sqrt[z Conjugate[z]]; (* Definition of "my" Tensor Product *)
(*a,b are nxn and mxm-matrices *)

MyTensorProduct[a_, b_] :=
 Table[
 a[[Ceiling[s/Length[b]], Ceiling[t/Length[b]]]]*b[[s - Floor[(s - 1)/Length[b]]*Length[b],
 t - Floor[(t - 1)/Length[b]]*Length[b]]], {s, 1, Length[a]*Length[b]}, {t, 1, Length[a]*Length[b]}];

(* Definition of the Tensor Product between two vectors *)

TensorProductVec[x_, y_] :=
 Flatten[Table[
 x[[i]] y[[j]], {i, 1, Length[x]}, {j, 1, Length[y]}]]; (* Definition of the Dyadic Product *)

DyadicProductVec[x_] :=
 Table[x[[i]] Conjugate[x[[j]]], {i, 1, Length[x]}, {j, 1, Length[x]}]; (* Definition of the sigma matrices *)

vectors[r_, tt, p_] :=
 r*{Cos[tt], Sin[tt] Exp[-I p], {Sin[tt] Exp[I p], -Cos[tt]}} (* Definition of some vectors *)

Basis = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

(*-- 3 State System

%----------------- 2 x 3
%----------------- 2 x 3
%----------------- 2 x 3
%----------------- 2 x 3

*)

(* Definition of operators *)

(* Definition of one-particle operator *)
\[M_X = \left\{ \frac{1}{\sqrt{2}}, 0, 1 \right\}, \left\{ 0, 1, 0 \right\}, \left\{ 0, 0, 1 \right\}; \]
\[M_Y = \left\{ \frac{1}{\sqrt{2}}, 0, -1 \right\}, \left\{ 0, 1, 0 \right\}, \left\{ 0, 0, 1 \right\}; \]
\[M_Z = \left\{ 0, 0, 1 \right\}, \left\{ 0, 0, 0 \right\}, \left\{ 0, 0, -1 \right\}; \]

\[\text{Eigenvectors} [M_X], \text{Eigenvectors} [M_Y], \text{Eigenvectors} [M_Z]; \]
\[S[\theta, p] = M_X \cdot \sin[t] \cdot \cos[p] + M_Y \cdot \sin[t] \cdot \sin[p] + M_Z \cdot \cos[t]; \]
\[\text{FullSimplify} [S[\theta, \phi]]; \]
\[\text{FullSimplify} [\text{ComplexExpand} [S[\pi/2, 0]]]; \]
\[\text{FullSimplify} [\text{ComplexExpand} [S[\pi/2, \pi/2]]]; \]
\[\text{Assuming} [[0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi], \text{FullSimplify} [\text{Eigensystem} [S[\theta, \phi]], \{\text{Element} [\theta, \text{Reals}], \text{Element} [\phi, \text{Reals}]]]]; \]
\[\text{FullSimplify} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]], \{\text{Element} [\theta, \text{Reals}], \text{Element} [\phi, \text{Reals}]]]; \]
\[\text{ES3M}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]][1]]]*E^{(\theta \phi)}, \{\text{Element} [\theta, \text{Reals}], \text{Element} [\phi, \text{Reals}]]]; \]
\[\text{ES30}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]][2]]]*E^{(\theta \phi)}, \{\text{Element} [\theta, \text{Reals}], \text{Element} [\phi, \text{Reals}]]]; \]
\[\text{ES3P}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]][3]]]*E^{(\theta \phi)}, \{\text{Element} [\theta, \text{Reals}], \text{Element} [\phi, \text{Reals}]]]; \]
\[\text{ES30}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{Normalize} [\text{ComplexExpand} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]*E^{(\theta \phi)}, \{\text{Element} [\theta, \text{Reals}], \text{Element} [\phi, \text{Reals}]]]; \]
\[\text{ProjectorES30}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3M}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3P}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES30}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3M}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3P}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES30}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3M}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3P}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES30}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3M}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3P}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES30}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3M}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3P}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES30}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[\text{ProjectorES3M}[\theta, \phi] = \text{FullSimplify} [\text{ComplexExpand} [\text{ComplexExpand} [\text{ComplexExpand} [\text{Normalize} [\text{Eigenvectors} [S[\theta, \phi]]][1]]]]]; \]
\[(\text{full simplify } (S3 \theta, \phi)) := \text{FullSimplify}[\text{my tensor product}[\text{operator3GEN}[x1, p1], \text{operator3GEN}[x2, p2]].\]

\[v3p = \{1, 0, 0\};\]
\[v30 = \{0, 1, 0\};\]
\[v3m = \{0, 0, 1\};\]
\[\psi3s = (1/\sqrt{3})*(-\text{my tensor product}[v30, v30] + \text{my tensor product}[v30, v3m] + \text{my tensor product}[v3m, v3m]).\]

\[\text{expectation3sGEN}[x1, x2, p1, p2] := \text{FullSimplify}[\text{tr}[\text{dyadic product vec}[\psi3s], \text{operator3GEN}[x1, x2, p1, p2]].\]

\[\text{operator3GEN}[\theta, \phi].\]

\[\text{joint projector3GEN}[x1, x2, p1, p2] := \text{my tensor product}[\text{operator3GEN}[x1, p1], \text{operator3GEN}[x2, p2]].\]

\[\text{ex3}[\text{Lm}, \text{L0}, \text{Lp}, x1, x2, p1, p2] := \text{FullSimplify}[1/192 (24 \text{Lm}^2 + 26 \text{L0} + \text{Lp}) + 2 (3 \cos[2(x1)] \cos[x2] + 2 \sin[p1 - p2]*2) + 2 (10 + \cos[2(x1)] \sin[p1 - p2]*2) - 32 (4 \cos[2(x1)] \sin[p1 - p2]*2) + 2 \cos[2(x1)] \sin[p1 - p2]*2) - 32 (4 \cos[2(x1)] \sin[p1 - p2]*2) + 8 (2 \cos[2(x1)] \sin[p1 - p2]*2) \sin[2(x1)]].\]

\[\text{ex3}[-1, 0, 1, x1, x2, p1, p2].\]

\[\text{joint projector3nat}[x1, x2, p1, p2] := \text{my tensor product}[S3[1, p1], S3[1, p2]].\]

\[\text{expectation3snat}[x1, x2, p1, p2] := \text{FullSimplify}[\text{tr}[\text{dyadic product vec}[\psi3s], \text{operator3GEN}[x1, x2, p1, p2]].\]

\[\text{expectation3snat}[x1, x2, p1, p2].\]
\(M y T e n s o r P r o d u c t [a, b] := A[\text{Floor}[t/\text{Length}[a]]] \cdot A[\text{Ceiling}[s/\text{Length}[b]]] \)

\(A[\text{Floor}[t/\text{Length}[a]]] \cdot A[\text{Ceiling}[s/\text{Length}[b]]] \)

\(T[\Theta_1, \Theta_3, \Theta_5, \Theta_7, \Theta_9] := A[\Theta_1] + A[\Theta_3] + A[\Theta_5] + A[\Theta_7] + A[\Theta_9] \)

\(T[\Theta_1, \Theta_3, \Theta_5, \Theta_7, \Theta_9] \)

\(T[2 \text{ Pi}/5, 4 \text{ Pi}/5, 6 \text{ Pi}/5, 8 \text{ Pi}/5, 2 \text{ Pi}] \)

\(f. \text{ Min-max calculation for two four-state particles} \)

\(\text{Normalize} [z] := z/\sqrt{\text{Conjugate}[z]} \)

\(\text{MyTensorProduct}[a, b] := \text{Table}[\)

\(\text{a}[[\text{Ceiling}[s/\text{Length}[b]]], \text{Ceiling}[t/\text{Length}[b]]]* \)

\(\text{b}[[\text{Floor}[\text{Floor}[s-1]/\text{Length}[b]]]*\text{Length}[b], \text{t} - \text{Floor}[\text{Floor}[(t-1)/\text{Length}[b]]*\text{Length}[b]], \{s, 1, \text{Length}[a]*\text{Length}[b]\}, \{t, 1, \text{Length}[a]*\text{Length}[b]\}] \)
(* Definition of the Tensor Product between two vectors *)

TensorProductVec[x_, y_] := Flatten[Table[
 x[[i]] y[[j]], {i, 1, Length[x]}, {j, 1, Length[y]}]];

(* Definition of the Dyadic Product *)

DyadicProductVec[x_] := Table[x[[i]] Conjugate[x[[j]]], {i, 1, Length[x]}, {j, 1, Length[x]}];

(* Definition of the sigma matrices *)

vecs[r_, tt_, p_] :=
 r*{{Cos[tt], Sin[tt] Exp[-I p]}, {Sin[tt] Exp[I p], -Cos[tt]}}

(* Definition of some vectors *)

BellBasis = (1/Sqrt[2]) {{1, 0, 0, 1}, {0, 1, 1, 0}, {0, 1, 0, -1}};

Basis = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

(* ------------------------------- 4 State System ------------------------------- *)

% -------------------------------

(* Definition of operators *)

(* Definition of one-particle operator *)

M4X = (1/2) {{0, Sqrt[3], 0, 0}, {Sqrt[3], 0, 2, 0}, {0, 2, 0, Sqrt[3]}, {0, 0, Sqrt[3], 0}};

M4Y = (1/2) {{0, -Sqrt[3], 1, 0, 0}, {Sqrt[3], 0, -2, 1, 0}, {0, 2, 1, 0, -Sqrt[3]}, {0, 0, Sqrt[3], 1, 0}};

M4Z = (1/2) {{3, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -3}};

Eigenvectors [M4X]

Eigenvectors [M4Y]

Eigenvectors [M4Z]

S4[t_, p_] := FullSimplify[M4X * Sin[t] Cos[p] + M4Y * Sin[t] Sin[p] + M4Z * Cos[t];

(* ------------------------------- general operator ------------------------------- *)

LM32 = -3/2;
LM12 = -1/2;
LP32 = 3/2;
LP12 = 1/2;

ES4M32[[Theta], [Phi]] := FullSimplify[
 Assuming[{0 < [Theta] < Pi, 0 <= [Phi] <= 2 Pi}, Normalize[
 Eigenvectors[S4[[Theta], [Phi]]]];]

ES4P32[[Theta], [Phi]] := FullSimplify[
 Assuming[{0 < [Theta] < Pi, 0 <= [Phi] <= 2 Pi}, Normalize[
 Eigenvectors[S4[[Theta], [Phi]]]];]

ES4M12[[Theta], [Phi]] := FullSimplify[
 Assuming[{0 < [Theta] < Pi, 0 <= [Phi] <= 2 Pi}, Normalize[
 Eigenvectors[S4[[Theta], [Phi]]]];]

ES4P12[[Theta], [Phi]] := FullSimplify[
 Assuming[{0 < [Theta] < Pi, 0 <= [Phi] <= 2 Pi}, Normalize[
 Eigenvectors[S4[[Theta], [Phi]]]];]

JointProjector4GEN[x1_, x2_, p1_, p2_] :=
 TensorProduct[S4[x1, p1], S4[x2, p2]];

v4P32 = ES4P32[0, 0];
v4P12 = ES4P12[0, 0];
v4M12 = ES4M12[0, 0];
v4M32 = ES4M32[0, 0];
FullSimplify[Expectation4sGEN[x1, x2, p1, p2]]

(* -------- general case -------- *)

EPPMMI[L4M32_, L4M12_, L4P12_, L4P32_, \[Theta]_, \[Phi]_] := Assuming[{0 < \[Theta], \[Phi] <= 2 Pi},
FullSimplify[L4M32 * Assuming[{0 < \[Theta] < Pi, 0 <= \[Phi] <= 2 Pi},
 FullSimplify[
 DyadicProductVec[
 ES4M32[\[Theta], \[Phi]], \{Element[\[Theta], Reals],
 Element[\[Phi], Reals]\}]] + L4M12 *
 Assuming[{0 < \[Theta] < Pi, 0 <= \[Phi] <= 2 Pi},
 FullSimplify[
 DyadicProductVec[
 ES4M12[\[Theta], \[Phi]], \{Element[\[Theta], Reals],
 Element[\[Phi], Reals]\}]] + L4P32 * Assuming[{0 < \[Theta] < Pi, 0 <= \[Phi] <= 2 Pi},
 FullSimplify[
 DyadicProductVec[
 ES4P32[\[Theta], \[Phi]], \{Element[\[Theta], Reals],
 Element[\[Phi], Reals]\}]]]]
]
]

EPPMMI[-1, -1, 1, 1, \[Theta]_, \[Phi]_] // MatrixForm

JointProjector4PPMM1[L4M32_, L4M12_, L4P12_, L4P32_, x1_, x2_, p1_, p2_] :=
Assuming[{0 < \[Theta], \[Phi] <= 2 Pi},
 FullSimplify[TensorProduct[EPPMMI[L4M32,
 L4M12, L4P12, L4P32, x1, x2, p1, p2]],
 {Element[\[Theta], Reals],
 Element[\[Phi], Reals]}]];

Expectation4PPMM1[L4M32_, L4M12_, L4P12_, L4P32_, x1_, x2_, p1_, p2_] := Tr[
 DyadicProductVec[psi4s].
 JointProjector4PPMM1[L4M32, L4M12,
 L4P12, L4P32, x1, x2, p1, p2]];

FullSimplify[Expectation4PPMM1[-1, -1, 1, x1, x2, p1, p2]]

Emppp[x1_] := FullSimplify[Expectation4PPMM1[-1, -1, 1, x1, 0, 0, 0));
Emppp[x1_] := FullSimplify[Expectation4PPMM1[-1, 1, -1, x1, 0, 0, 0));
Emppp[x1_] := FullSimplify[Expectation4PPMM1[-1, 1, -1, x1, 0, 0, 0));

(* *********** minmax calculation ***********)

v12 = Normalize[{ 1,0,0,0 }] ;
v18 = Normalize[{ 1,0,0 }] ;
v17 = Normalize[{ 0,0,1,1 }] ;
v16 = Normalize[{ 0,0,1,0 }] ;
v67 = Normalize[{ 1,1,0,0 }] ;
v69 = Normalize[{ 1,1,1 }] ;
v15 = Normalize[{ 1,1,1,1 }] ;
v95 = Normalize[{ 1,1,1,1 }] ;
v45 = Normalize[{ 0,1,0,1 }] ;
v49 = Normalize[{ 0,1,0,1 }] ;
v47 = Normalize[{ 1,1,1,1 }] ;
v34 = Normalize[{ 0,1,1,1 }] ;
v53 = Normalize[{ 0,1,1,1 }] ;
v39 = Normalize[{ 0,0,1,1 }] ;
v32 = Normalize[{ 0,0,1,1 }] ;
v37 = Normalize[{ 0,0,1,1 }] ;
v38 = Normalize[{ 0,0,1,1 }] ;
v23 = Normalize[{ 1,0,0,1 }] ;
v29 = Normalize[{ 1,0,1,1 }] ;
v28 = Normalize[{ 0,0,0,1 }] ;

A12 = 2 * DyadicProductVec[v12] - IdentityMatrix[4];
A18 = 2 * DyadicProductVec[v18] - IdentityMatrix[4];
A17 = 2 * DyadicProductVec[v17] - IdentityMatrix[4];
A16 = 2 * DyadicProductVec[v16] - IdentityMatrix[4];
A67 = 2 * DyadicProductVec[v67] - IdentityMatrix[4];
A69 = 2 * DyadicProductVec[v69] - IdentityMatrix[4];
A56 = 2 * DyadicProductVec[v56] - IdentityMatrix[4];
A59 = 2 * DyadicProductVec[v59] - IdentityMatrix[4];
A58 = 2 * DyadicProductVec[v58] - IdentityMatrix[4];
A45 = 2 * DyadicProductVec[v45] - IdentityMatrix[4];
A48 = 2 * DyadicProductVec[v48] - IdentityMatrix[4];
A47 = 2 * DyadicProductVec[v47] - IdentityMatrix[4];
A34 = 2 * DyadicProductVec[v34] - IdentityMatrix[4];
A37 = 2 * DyadicProductVec[v37] - IdentityMatrix[4];
A39 = 2 * DyadicProductVec[v39] - IdentityMatrix[4];
A23 = 2 * DyadicProductVec[v23] - IdentityMatrix[4];
A29 = 2 * DyadicProductVec[v29] - IdentityMatrix[4];
Mathematica responds with

\[-0.655403, -0.621519, -0.563475, -0.535886, -0.505914, -0.488961, \\
-0.477695, -0.438752, -0.413149, -0.385094, -0.329761, -0.313382, \\
-0.267465, -0.251247, -0.186771, -0.162663, -0.135313, -0.115949, \\
-0.0388241, -0.0285473, 0.0336107, 0.0472502, 0.0664514, 0.0818923, \\
0.137393, 0.170784, 0.18296, 0.254586, 0.311604, 0.337846, 0.347853, \\
0.351775, 0.395505, 0.422414, 0.481815, 0.515078, 0.57488, 0.600515, \\
0.655748, 0.703362, 0.727865, 0.763394, 0.782482, 0.81889, 0.844406, \\
0.888659, 0.920904, 1.00356, 1.02312, 1.03976, 1.08469, 1.1021, \\
1.11609, 1.14654, 1.20192, 1.22992, 1.28624, 1.29287, 1.32196, \\
1.36147, 1.43187, 1.52158, 1.5859, 1.61094, 1.62377, 1.66645, \\
1.68222, 1.77246, 1.8082, 1.86793, 1.92219, 1.94603, 1.98741, \\
2.04197, 2.06058, 2.12728, 2.16917, 2.20299, 2.20934, 2.2568, \\
2.34362, 2.38008, 2.38999, 2.44382, 2.47456, 2.49679, 2.57822, \\
2.62572, 2.63375, 2.67809, 2.73929, 2.81403, 2.82569, 2.87209, \\
2.94084, 2.94773, 2.99356, 3.03768, 3.0484, 3.09975, 3.2194, 3.26743, \\
3.2782, 3.30107, 3.41633, 3.43565, 3.49832, 3.62058, 3.6639, 3.7087, \\
3.78394, 3.83644, 3.94999, 3.98744, 4.01948, 4.12536, 4.33452, \\
4.37928, 4.42565, 4.47313, 4.53695, 4.71925, 4.84841, 4.90328, \\
4.95742, 5.0169, 5.17123, 5.28471, 5.39555, 5.68376, 5.78503, 6.023\]