SET OF ALL DENSITIES OF EXPONENTIALLY S-NUMBERS

VLADIMIR SHEVELEV

Abstract. Let G be the set of all finite or infinite increasing sequences of positive integers beginning with 1. For a sequence $S = \{s(n)\}, n \geq 1,$ from G a positive number N is called an exponentially S-number ($N \in E(S)$), if all exponents in its prime power factorization are in S. The author [2] proved that, for every sequence $S \in G$, the sequence of exponentially S-numbers has a density $h = h(E(S)) \in [\frac{6}{\pi^2}, 1]$. In this note we study the set $\{h(E(S))\}$ of all such densities.

1. Introduction

Let G be the set of all finite or infinite increasing sequences of positive integers beginning with 1. For a sequence $S = \{s(n)\}, n \geq 1,$ from G, a positive number N is called an exponentially S-number ($N \in E(S)$), if all exponents in its prime power factorization are in S. The author [2] proved that, for every sequence $S \in G$, the sequence of exponentially S-numbers has a density $h = h(E(S)) \in [\frac{6}{\pi^2}, 1]$. More exactly, the following theorem was proved in [2]:

Theorem 1. For every sequence $S \in G$ the sequence of exponentially S-numbers has a density $h = h(E(S))$ such that

$$\sum_{i \leq x, \ i \in E(S)} 1 = h(E(S))x + O(\sqrt{x \log x e^{\sqrt{\log \log x}}}),$$

with $c = 4\sqrt{\frac{2.4}{\log 2}} = 7.443083...$ and

$$h(E(S)) = \prod_{p} \left(1 + \sum_{i \geq 2} \frac{u(i) - u(i-1)}{p^i}\right),$$

where $u(n)$ is the characteristic function of sequence S: $u(n) = 1$, if $n \in S$ and $u(n) = 0$ otherwise.

Note that Sloane’s Online Encyclopedia of Integer Sequences [3] contains some sequences of exponentially S-numbers, $S \in G$. For example, A005117 ($S = \{1\}$), A004709 ($S = \{1, 2\}$), A268335 ($S = A005408$), A138302 ($S = \{2^n\}_{n\geq0}$), A197680 ($S = \{n^2\}_{n\geq1}$), A115063 ($S = \{F_n\}_{n\geq2}$), A209061 ($S = A005117$), etc.

Everywhere below we write $\{h(E(S))\}$, understanding $\{h(E(S))\}_{S \in G}$. In
(Section 6) the author posed the question: is the set \(\{ h(E(S)) \} \) dense in the interval \([\frac{6}{\pi^2}, 1] \)? Berend [1] gave a negative answer by finding a gap in the set \(\{ h(E(S)) \} \) in the interval

\[
\left(\prod_p (1 - \frac{p - 1}{p^3}), \prod_p (1 - \frac{1}{p^3}) \right) \subset \left[\frac{6}{\pi^2}, 1 \right].
\]

Berend’s idea consists of the partition of \(G \) into two subsets - of those sequences which contain 2 and those that do not contain 2 - and applying \(G \) Berend’s idea consists of the partition of \(G \) into two subsets - of those sequences which contain 2 and those that do not contain 2 - and applying

Lemma 1. \(G \) is uncountable.

Proof. Trivially \(G \) is equivalent to the set of all subsets of \(\{ 2, 3, 4, \ldots \} \). \(\square \)

Lemma 2. For every two distinct \(A, B \in G \), we have \(h(E(A)) \neq h(E(B)) \).

Proof. Let \(A = \{ a(i) \}_{i \geq 1}, \ B = \{ b(i) \}_{i \geq 1} \). Let \(n \geq 1 \) be maximal index such that \(a(i) = b(i), \ i = 1, \ldots, n \), while \(a(n + 1) \neq b(n + 1) \). Note that, if \(A_n = \{ a(1), \ldots, a(n) \}, \ A^* = \{ a(1), \ldots, a(n), a(n + 1), a(n + 1) + 1, a(n + 1) + 2, \ldots \} \), then

\[
h(E(A_{n+1})) \leq h(E(A)) \leq h(E(A^*))
\]

and analogously for sequence \(B \).

Distinguish four cases:

(i) \(a(n + 1) = a(n) + 1, \ b(n + 1) \geq a(n) + 2 \);

(ii) \(\text{for} \ k \geq 2, \ a(n + 1) \geq a(n) + k, \ b(n + 1) = a(n) + 1 \);

(iii) \(\text{for} \ k \geq 3, \ a(n + 1) = a(n) + k, \ a(n) + 2 \leq b(n + 1) \leq a(n) + k - 1 \);

(iv) \(\text{for} \ k \geq 2, \ a(n + 1) = a(n) + k, \ b(n + 1) \geq a(n) + k + 1 \).

(i) By (2) and (4), we have

\[
h(E(A)) = \prod_p \left(1 + \sum_{i=2}^{a(n)} \frac{u(i) - u(i - 1)}{p^i} \right),
\]

where \(u(n) \) is the characteristic function of \(A \). Since here \(u(a(n + 1)) - u(a(n + 1) - 1) = 0 \), then in the right hand side we sum up to \(a(n) \). On the other hand,

\[
h(E(B^*)) \leq \prod_p \left(1 + \sum_{i=2}^{a(n)} \frac{u(i) - u(i - 1)}{p^i} - \frac{1}{p^{a(n)+1}} + \frac{1}{p^{a(n)+2}} \right).
\]

By (5)-(6), \(h(E(B)) < h(E(A)) \).
(ii) Symmetrically to (i), we have

\[h(E(B)) \geq \prod_p \left(1 + \sum_{i=2}^{a(n)} \frac{u(i) - u(i-1)}{p^i} \right). \]

On the other hand,

\[h(E(A^*)) \leq \prod_p \left(1 + \sum_{i=2}^{a(n)} \frac{u(i) - u(i-1)}{p^i} - \frac{1}{p^{a(n)+1}} + \frac{1}{p^{a(n)+2}} \right). \]

So, \(h(E(A)) < h(E(B)) \).

(iii) Again, by (2) and (4), we have

\[h(E(B)) \geq \prod_p \left(1 + \sum_{i=2}^{a(n)} \frac{u(i) - u(i-1)}{p^i} - \frac{1}{p^{a(n)+1}} + \frac{1}{p^{a(n)+k-1}} \right), \]

while

\[h(E(A^*)) \leq \prod_p \left(1 + \sum_{i=2}^{a(n)} \frac{u(i) - u(i-1)}{p^i} - \frac{1}{p^{a(n)+1}} + \frac{1}{p^{a(n)+k}} \right). \]

Hence, \(h(E(A)) < h(E(B)) \).

(iv) Symmetrically,

\[h(E(B^*)) \leq \prod_p \left(1 + \sum_{i=2}^{a(n)} \frac{u(i) - u(i-1)}{p^i} - \frac{1}{p^{a(n)+1}} + \frac{1}{p^{a(n)+k+1}} \right), \]

while

\[h(E(A)) \geq \prod_p \left(1 + \sum_{i=2}^{a(n)} \frac{u(i) - u(i-1)}{p^i} - \frac{1}{p^{a(n)+1}} + \frac{1}{p^{a(n)+k}} - \frac{1}{p^{a(n)+k+1}} \right) \]

and since \(\frac{2}{p^{a(n)+k+1}} \leq \frac{1}{p^{a(n)+k}} \), where the equality holds only in case \(p = 2 \), then \(h(E(A)) > h(E(B)) \). \(\square \)

Lemmas 1 and 2 directly imply

Theorem 2. The set \(\{h(E(S))\}_{S \in G} \) is uncountable.

Denote by \(G(F) \) the subset of the finite sequences from \(G \). Since the set of all finite subsets of a countable set is countable, then \(G(F) \) is countable and then the set \(\{h(E(S))\}_{S \in G(F)} \) is also countable.

3. **Perfectness**

Lemma 3. Every point of the set \(h(E(S)) \) is an accumulation point.

Proof. Distinguish two cases: a) \(S \) is finite set; b) \(S \) is infinite set.
a) Let $S = \{s(1), ..., s(k)\} \in G(F)$. Let $n \geq s(k) + 2$. Denote by S_n the sequence $S_n = \{s(1), ..., s(k), n\}$. Then, by (2),

\[
\prod_p \left(1 + \sum_{i=2}^{s(k)} \frac{u(i) - u(i-1)}{p^i} - \frac{1}{p^{s(k)+1}} + \frac{1}{p^n} \right) - \prod_p \left(1 + \sum_{i=2}^{s(k)} \frac{u(i) - u(i-1)}{p^i} - \frac{1}{p^{s(k)+1}} \right).
\]

For the first product $\prod_p (n)$,

\[
\prod_p (n) = \exp \left(\sum_p \log \left(1 + \sum_{i=2}^{s(k)} \frac{u(i) - u(i-1)}{p^i} - \frac{1}{p^{s(k)+1}} + \frac{1}{p^n} \right) \right),
\]

the series over primes converges uniformly since

\[
\sum_p \sum_{i \geq 2} \frac{|u(i) - u(i-1)|}{p^i} \leq \sum_p \sum_{i \geq 2} \frac{1}{p^i} = \sum_p \frac{1}{(p-1)p}.
\]

Therefore, $\lim_{n \to \infty} (\prod_p (n)) = \prod_p (\lim_{n \to \infty} (\ldots))$ which coincides with the second product. So $\lim_{n \to \infty} h(E(S_n)) = h(E(S))$.

b) Let $S = \{s(1), ..., s(k), \ldots\} \in G$ be infinite sequence. Let $S_n = \{s(1), ..., s(n)\}$ be the n-partial sequence of S. In the same way, taking into account the uniform convergence of the product for density of S_n, we find that $\lim_{n \to \infty} h(E(S_n)) = h(E(S))$. \hfill \Box

Theorem 3. The set \(\{h(E(S))\}\) is a perfect set.

A proof we give in Section 5.

4. Gaps

Let us show that, for every finite $S \in G$, with the exception of $S = \{1\}$, there exists an $\varepsilon > 0$ such that the image of h is disjoint from the interval $(h(E(S))) - \varepsilon, h(E(S))$.

We need a lemma.

Lemma 4. Let $A, B \in G$ be distinct sequences. Let $s^* = s^*(A, B)$ be the smallest number which is a term of one of them, but not in another. If, say, $s^* \in A$, then $h(E(A)) > h(E(B))$.

Proof. In fact, the lemma is a corollary of the proof of Lemma 2. Comparing with the proof of Lemma 2, we have $s^*(A, B) = n + 1$. We see that in all four cases in the proof of Lemma 2, the statement of Lemma 4 is confirmed. \hfill \Box
Lemma 5. \(h \) is the smallest of which is \(h(S) \in S \) that contradicts the condition: 2) if \(i \), \(1 \leq i \leq k \), is the smallest for which \(S \) misses \(s(i) \), then, by the condition, all terms of \(S \) are more than \(s(i) \). So \(h(S_1, S_2) = s(i) \in S_2 \), if \(i < k \), while, if \(i = k \), since \(S \) differs from \(S_2 \), \(h(S, S_2) = s(k) + j \in S_2 \), where \(j \) is the smallest for which \(s_k + j \) is not in \(S \). Hence, by Lemma 3, \(h(E(S_2)) > h(E(S)) \) and again \(h(E(S)) \) is not in interval (14). \(\square \)

Lemma 5. Every gap in \(\{h(E(S))\} \) has the form described in Proposition 1.

Proof. Indeed, the gap (14) is in a right neighborhood of \(h(E(S_2)) \). Let a sequence \(S \in \mathcal{G} \) do not contain any infinite set of positive integers \(K \). Adding to \(S \) \(k \in K \), which goes to infinity, we obtain set \(S_k \) such that \(h(E(S_k)) > h(E(S)) \) and \(h(E(S_k)) \to h(E(S)) \). So, in a right neighborhood of \(h(E(S)) \) cannot be a gap of \(\{h(E(S))\} \). In opposite case, when \(S \in \mathcal{G} \) does not contain only a finite set of positive integers, in a right neighborhood of \(h(E(S)) \) a gap of \(\{h(E(S))\} \) is possible, but in this case \(S \) has the form of \(S_2 \) in Proposition 1. Also, if \(S \in \mathcal{G} \) is infinite, then in a left neighborhood of \(h(E(S)) \) cannot be a gap of \(\{h(E(S))\} \), since \(h(E(S)) \) is a limiting point of \(\{h(E(S_n))\} \), where \(S_n \) is the \(n \)-partial sequence of \(S \). \(\square \)

It is easy to see that, for distinct sequences \(S_1 \), the gaps (14) are disjoint.

From Propositions 1 and Lemma 5 we have the statement:

Theorem 4. The set \(\{h(E(S))\} \) has countably many gaps.

5. Proof of Theorem 3

Proof. By Lemma 3, the set \(\{h(E(S))\} \) does not contain isolated points. For a set \(A \subseteq \left[\frac{6}{\pi^2}, 1 \right] \), let \(\overline{A} \) be \(\left[\frac{6}{\pi^2}, 1 \right] \setminus A \). Let, further, \(\{g\} \) be the set of all gaps of \(\{h(E(S))\} \). Then we have
\[\{h(E(S))\} = \bigcup g = \bigcap \overline{g}. \]

Since a gap \(g \) is an open interval, then \(\overline{g} \) is a closed set. But arbitrary intersections of closed sets are closed. Thus the set \(\{h(E(S))\} \) is closed without isolated points. So it is a perfect set. \(\square \)

6. Conclusion

Thus, by Theorems 2.4, the set \(\{h(E(S))\} \) is a perfect set with a countable set of gaps which associate with some left-sided neighborhoods of the densities of all exponentially finite \(S \)-sequences, \(S \in G \), except for \(S = \{1\} \). It is natural to conjecture that the sum of lengths of all gaps equals the length of the whole interval \([\frac{\pi}{2}, 1] \), or, the same, that the set \(\{h(E(S))\} \) has zero measure. This important question we remain open.

Remark 1. Possible to solve this problem could help a remark that the deleting in (2) 0’s (when \(u_i = u_{i-1} \)) we obtain an alternative sequence of \(-1, 1\).

7. Acknowledgement

The author is grateful to Daniel Berend for very useful discussions.

References

[1] D. Berend, Private communication.
[2] V. Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences [http://oeis.org]

Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. e-mail:shevelev@bgu.ac.il