The dynamic of a Lie group endomorphism

Abstract: For a given endomorphism ϕ on a connected Lie group G this paper studies several subgroups of G that are intrinsically connected with the dynamic behavior of ϕ.

Keywords: Lie group, Dynamic, Endomorphism

MSC: 20K30, 22E15

1 Introduction

In [1] was shown that associated to a given continuous flow of automorphisms on a connected Lie group G there are dynamical subgroups of G that are intrinsically connected with the behavior of the flow. The author shows there that only by looking at such subgroups one can get information about the controllability of any control system whose drift generates a 1-parameter flow of automorphisms. In the present paper we extend such results by showing that for any G-endomorphism, one can also define such subgroups and they still share many of the properties of the continuous case.

On the other hand, we use the results of this article to study the notion of entropy in our forthcoming paper "Topological entropy of Lie group automorphisms".

The paper is structured as follows. In Section 2 we introduce the subalgebras induced by an arbitrary endomorphism ϕ on the Lie algebra \mathfrak{g}. Then, we show that \mathfrak{g} decomposes in a dynamical way. In Section 3 we prove that the \mathfrak{g}-decompositions can be carried on to a connected Lie group. And the associated endomorphism ϕ of G allows us to associate to ϕ subgroups that contains most of its dynamical behavior. In the sequence, we establish the main properties of such subgroups. At the end we show an example on the Euclidean Lie group \mathbb{R}^d and on $\text{Sl}(n, \mathbb{R})$, the group of real matrices of order 2 and trace 0.

2 Lie algebra endomorphisms

The aim of this section is to introduce the Lie subalgebras induced by a \mathfrak{g}-endomorphism and show their main properties. For general facts on Lie algebras we use the reference [2].

Let \mathfrak{g} be a Lie algebra of dimension d and assume that $\phi: \mathfrak{g} \to \mathfrak{g}$ is an endomorphism of \mathfrak{g}. That is, ϕ is a linear map satisfying

$$\phi[X,Y] = [\phi X, \phi Y]$$

for any $X, Y \in \mathfrak{g}$.
Proposition 2.1. Let \(g \) be a Lie algebra over a closed field and \(\phi : g \to g \) an endomorphism. For any eigenvalue \(\alpha \) of \(\phi \) let us consider its generalized eigenspace given by

\[
g_\alpha = \{ X \in g; \ (\phi - \alpha)^n X = 0, \ \text{for some} \ n \geq 1 \}.
\]

If \(\beta \) is also an eigenvalue of \(\phi \) then

\[
[g_\alpha, g_\beta] \subset g_{\alpha\beta},
\]

where \(g_{\alpha\beta} = \{0\} \) if \(\alpha\beta \) is not an eigenvalue of \(\phi \).

Proof. In order to decomposes the \(\phi \)-eigenspace \(g_\lambda \) in its Jordan components, we consider \(r \) linear independent vectors \(Z_1, \ldots, Z_r \in g_\lambda \) such that

\[
\phi(Z_j) = \lambda Z_j + Z_{j-1}, \ j = 1, \ldots, r \quad \text{with} \quad Z_0 = 0.
\]

To prove the proposition it is enough to show the following:

if \(\{X_1, \ldots, X_n\} \subset g_\alpha \) and \(\{Y_1, \ldots, Y_m\} \subset g_\beta \)

are linearly independent sets, hence

\[
[X_i, Y_j] \subset g_{\alpha\beta}, \ i = 1, \ldots, n; \ j = 1, \ldots, m.
\]

The proof is done by induction on the sum \(i + j \). In fact, since

\[
\phi[X_i, Y_j] = [\phi X_i, \phi Y_j] = [\alpha X_i + X_{i-1}, \beta Y_j + Y_{j-1}]
\]

we obtain

\[
(\phi - \alpha\beta)[X_i, Y_j] = \alpha[X_i, Y_{j-1}] + \beta[X_{i-1}, Y_j] + [X_{i-1}, Y_{j-1}].
\] \((2) \)

If \(i = j = 1 \) we get \((\phi - \alpha\beta)[X_1, Y_1] = 0 \) which implies \(\{X_1, Y_1\} \in g_{\alpha\beta} \). Let us assume that the result holds for \(i + j < n \) and let \(i + j = n \). By the induction hypothesis, every term in the right-side of equation \((2) \) is in \(g_{\alpha\beta} \) which implies

\[
(\phi - \alpha\beta)[X_i, Y_j] \in \ker ((\phi - \alpha\beta)^n) \ \text{for some} \ n \geq 1.
\]

Consequently,

\[
(\phi - \alpha\beta)^{n+1}[X_i, Y_j] = 0
\]

showing that \([X_i, Y_j] \in g_{\alpha\beta} \) and concluding the proof. \(\square \)

In the sequel we prove a primary decomposition for any \(g \)-automorphism.

Proposition 2.2. Let \(\phi \) be an automorphism of \(g \) and consider its Jordan decomposition

\[
\phi = \phi^S \phi^N = \phi^N \phi^S
\]

with \(\phi^S \) semisimple and \(\phi^N \) unipotent. Then \(\phi^S \) and \(\phi^N \) are also \(g \)-automorphisms.

Proof. Without lost of generality we can assume that the field of the scalars is algebraically closed. To prove that \(\phi^S \) is an automorphism, it is enough to show that

\[
\phi^S([X, Y]) = [\phi^S(X), \phi^S(Y)]
\]

for every couple of basis elements.

Since \(g \) is decomposed in generalized eigenspaces of \(\phi \) it is enough to show that \(\phi^S \) satisfies the property of automorphisms for \(X \in g_\alpha, Y \in g_\beta \) and \(\alpha, \beta \) eigenvalues of \(\phi \). From Proposition 1, \([X, Y] \in g_{\alpha\beta} \). On the other hand, since the eigenspaces of \(\phi \) and \(\phi^S \) coincide, we get

\[
\phi^S([X, Y]) = \alpha \cdot \beta [X, Y] \quad \text{and} \quad [\phi^S(X), \phi^S(Y)] = [\alpha X, \beta Y] = \alpha \cdot \beta [X, Y]
\]
showing that \(\phi^5 \) is in fact an automorphism. Therefore,
\[
\phi^N = (\phi^5)^{-1} \phi
\]
is also an automorphism ending the proof. \(\square \)

Let \(g \) be a Lie algebra over a closed field. Proposition 2.2 allows to associate to any endomorphism \(\phi \) of \(g \) several Lie subalgebras that are intrinsically connected with its dynamics. In fact, let us define the following subsets of \(g \) where \(a \) is an arbitrary \(\phi \)-eigenvalue
\[
\mathfrak{g}_\phi = \bigoplus_{a=0}^{\infty} \mathfrak{g}_a, \quad \mathfrak{t}_\phi = \ker(\phi^d)
\]
\[
\mathfrak{g}^+ = \bigoplus_{|a| > 1} \mathfrak{g}_a, \quad \mathfrak{g}^0 = \bigoplus_{a=0}^{\infty} \mathfrak{g}_a, \quad \mathfrak{g}^- = \bigoplus_{0 < |a| < 1} \mathfrak{g}_a,
\]
\[
\mathfrak{g}^{+,0} = \mathfrak{g}^+ \oplus \mathfrak{g}^0 \quad \text{and} \quad \mathfrak{g}^{-,0} = \mathfrak{g}^- \oplus \mathfrak{g}^0.
\]
Also, we denote by \(\bar{g}_\phi = g^+ \oplus g^0 \oplus g^- \) and \(g = \bar{g}_\phi \oplus \mathfrak{t}_\phi \). By the property (1) is easy to see that all these subspaces are in fact Lie subalgebras. Moreover, \(g^+ \) and \(g^- \) are nilpotent.

If \(g \) is a real Lie algebra, the subalgebras above are well defined. In fact, let us denote by \(\tilde{g} \) the complexification of \(g \). By considering the \(\tilde{g} \)-endomorphism \(\tilde{\phi} \) induced by \(\phi \) we can define the subalgebras
\[
\tilde{\mathfrak{g}}_\phi, \quad \tilde{\mathfrak{t}}_\phi, \quad \tilde{\mathfrak{g}}^*, \quad \text{where} \quad * = +, 0, -.
\]
Moreover, since all the mentioned \(\tilde{g} \)-subalgebras are invariant by complex conjugation, they are also the complexification of the following \(\phi \)-invariant subalgebras of \(g \)
\[
\mathfrak{g}_\phi = \tilde{\mathfrak{g}}_\phi \cap \mathfrak{g}, \quad \mathfrak{t}_\phi = \tilde{\mathfrak{t}}_\phi \cap \mathfrak{g}, \quad \text{and} \quad \mathfrak{g}^* = \tilde{\mathfrak{g}}^* \cap \mathfrak{g}
\]
with \(g^+ \) and \(g^- \) nilpotent Lie subalgebras. We should notice that the equality \(\mathfrak{t}_\phi = \ker(\phi^d) \) is still true.

Remark 2.3. In the real or complex case the restriction of \(\phi|_{\mathfrak{g}_\phi} \) is an automorphism of \(\mathfrak{g}_\phi \). Furthermore, the restriction of \(\phi \) to the Lie subalgebras \(g^+ \), \(g^0 \) and \(g^- \) satisfies the inequalities
\[
|\phi^m(X)| \geq c \mu^{-m}|X| \quad \text{for any} \quad X \in g^+ \quad \text{and} \quad m \in \mathbb{N},
\]
and
\[
|\phi^m(Y)| \leq c^{-1} \mu^m|Y| \quad \text{for any} \quad Y \in g^- \quad \text{and} \quad m \in \mathbb{N},
\]
for some \(c \geq 1 \) and \(\mu \in (0, 1) \).

Furthermore, for all \(a > 0 \) and \(Z \in g^0 \) it holds that
\[
|\phi^m(Z)| \mu^{a|m|} \to 0 \quad \text{as} \quad m \to \pm \infty.
\]
In the sequel we prove that any linear map commuting with two endomorphisms preserves their associated decompositions.

Proposition 2.4. For \(i = 1, 2 \), let \(\phi_i : g_i \to g_1 \) an endomorphism of the Lie algebra \(g_i \) over a closed field. Assume that \(f : g_1 \to g_2 \) is a surjective linear map such that \(f \circ \phi_i = \phi_2 \circ f \). Hence, it holds
\[
f(g_{\phi_1}) = g_{\phi_2}, \quad f(\mathfrak{t}_{\phi_1}) = \mathfrak{t}_{\phi_2},
\]
\[
f(g_1^+) = g_2^+, \quad f(g_1^0) = g_2^0 \quad \text{and} \quad f(g_1^-) = g_2^-.
\]
Proof. Let \(a \) be an eigenvalue of \(\phi_2 \) and \(X \in g_\alpha \). There exists \(n \geq 1 \) such that \((\phi_1 - a)^n X = 0 \). By the commutating property, we get
\[
(\phi_2 - a)^n f(X) = f\left((\phi_1 - a)^n X\right) = f(0) = 0.
\]
Consequently, \(f((\phi_1)_G) \subset (\phi_2)_G \), where \((\phi_2)_G = \{0\} \) if \(a \) is not an eigenvalue of \(\phi_2 \). In particular we obtain
\[
f(\phi_{\phi_1}) \subset g_{\phi_2}, \quad f(\phi_{\phi_1}) \subset g_{\phi_2}, \quad f(g^0) \subset g^0_2 \quad \text{and} \quad f(g^0_1) \subset g^0_2.
\]
Since for \(i = 1, 2 \), \(g_i = g_{\phi_i} \oplus f_{\phi_i} \) and \(f \) is a surjective linear map, we must have
\[
f(g_{\phi_1}) = g_{\phi_2} \quad \text{and} \quad f(\phi_{\phi_1}) = \phi_{\phi_2}.
\]
By the restriction of \(f \) to \(g_{\phi_1} \), we recover all the equalities ending the proof. \(\Box \)

Proposition 2.4 is still true for the real case.

Corollary 2.5. For \(i = 1, 2 \), let \(g_i \) be real algebras and \(\phi_i : g_i \rightarrow g_i \) an endomorphism. If \(f : g_1 \rightarrow g_2 \) is a surjective linear map such that \(f \circ \phi_1 = \phi_2 \circ f \), the same equalities as in Proposition 2.4 hold.

Proof. The proof follows by considering the complexification of \(g_i, i = 1, 2 \) and the complex extensions of \(\phi_1, \phi_2 \) and \(f \). Then, we apply Proposition 2.4. \(\Box \)

3 Lie group endomorphisms

In the sequel all the Lie groups considered are real. For given Lie groups \(G, H \) a continuous map \(\varphi : G \rightarrow H \) is said to be a homomorphism if it preserves the group structure. That is,
\[
\varphi(gh) = \varphi(g)\varphi(h) \quad \text{for any} \quad g, h \in G.
\]
If \(G = H \) such map is said to be an endomorphism of \(G \).

Our aim here is to show that associated with any endomorphism of a connected Lie group \(G \) there are connected Lie subgroups which contain most of the dynamic information of the endomorphism. Throughout the paper we always assume the Lie groups and their subgroups are connected.

Definition 3.1. Let \(G, H \) be Lie groups with Lie algebras \(g, h \), respectively, and \(\varphi : G \rightarrow H \) an homomorphism. If there are constants \(c \geq 1 \) and \(\mu \in (0, 1) \) such that
\[
\|(d\varphi)^m_{\nu} X\| \leq c^{-1}\mu^m|X|, \quad \text{for any} \quad m \in \mathbb{Z}^+, X \in g
\]
we say that \(\varphi \) is contracting. On the other hand, if
\[
\|(d\varphi)^m_{\nu} X\| \geq c\mu^{-m}|X|, \quad \text{for any} \quad m \in \mathbb{Z}^+, X \in g
\]
the homomorphism \(\varphi \) is said to be expanding.

Next, we characterize some general topological property of Lie subgroups that will be needed in the next sections.

Lemma 3.2. Let \(G \) be a Lie group with Lie algebra \(g \) and, \(H \) and \(K \) Lie subgroups of \(G \) with Lie algebras \(h \) and \(t \), respectively such that \(h \oplus t = g \). Then,
\[
H \text{ and } K \text{ are closed} \Leftrightarrow H \cap K \text{ is a discrete subgroup.}
\]
Proof. If \(H \) and \(K \) are closed subgroups then \(H \cap K \) is also a closed Lie subgroup. As \(g \) decomposes into a direct sum of the corresponding Lie subalgebras, it follows that \(\dim(H \cap K) = 0 \). Hence, the result follows.

Reciprocally, assume that \(H \cap K \) is a discrete subgroup of \(G \). By Proposition 6.7 of [3] and also by the hypothesis on \(\mathfrak{h} \) and \(\mathfrak{t} \), there exist open neighborhoods \(U, V \) and \(W \) with

\[
0 \in U \subset \mathfrak{h}, \ 0 \in V \subset \mathfrak{t} \text{ and } e \in W \subset G
\]
such that the map

\[
f : U \times V \to W \text{ defined by } f(X, Y) = e^X e^Y
\]
is a diffeomorphism.

Without loss of generality, we can assume that \(W \) is small enough in order to obtain

\[
W \cap (H \cap K) = \{ e \}.
\]

In particular, if \(g = xy \) where \(x \in e^U \subset H \), \(y \in e^V \subset K \) and \(g \in W \cap H \), we get

\[
K \ni y = x^{-1}g \in H \Rightarrow y \in W \cap (H \cap K) = \{ e \}.
\]

Thus, \(H \cap W = e^U = f(U \times \{ 0 \}) \). Therefore, \(H \cap W \) is closed in \(W \) since \(U \times \{ 0 \} \) is closed in \(U \times V \). As a consequence

\[
H \cap W = \overline{cl(H)} \cap W.
\]

Hence, \(H \) has nonempty interior in \(\overline{cl(H)} \) which only happens if \(H = \overline{cl(H)} \), showing that \(H \) is in fact a closed subgroup of \(G \). Analogously, it is possible to prove that \(K \) is a closed subgroup of \(G \) as stated. \(\square \)

Definition 3.3. Let \(\varphi \) be an endomorphism of a Lie group \(G \). A Lie subgroup \(H \subset G \) is said to be \(\varphi \)-invariant if \(\varphi(H) \subset H \).

If \(H \subset G \) is a \(\varphi \)-invariant Lie subgroup, the restriction \(\varphi|_H \) is an endomorphism of \(H \) in the induced topology. Let us consider a Lie group \(G \) and \(\varphi : G \to G \) a continuous endomorphism. In order to avoid cumbersome notations, from here we write \(\varphi = (d\varphi)_e \). The **dynamical subgroups** of \(G \) induced by \(\varphi \) are the Lie subgroups, \(G_{\varphi}, K_{\varphi}, G^+, G^0, G^-, G^{+\cdot0} \) and \(G^{-\cdot0} \) associated with the Lie subalgebras \(g_{\varphi}, t_{\varphi}, g^+, g^0, g^-, g^{+\cdot0} \) and \(g^{-\cdot0} \), respectively.

The subgroups \(G^+, G^0 \) and \(G^- \) are called the **unstable**, **central** and **stable** subgroups of \(\varphi \) in \(G \), respectively. The following result sets the main properties of these subgroups.

Proposition 3.4. It holds:
1. All the dynamical subgroups are \(\varphi \)-invariant
2. There exists a natural number \(d \) such that the subgroup \(K_{\varphi} = \ker(\varphi^d)|_0 \) is normal. Moreover,

\[
G = G_{\varphi} K_{\varphi} \quad \text{and} \quad G_{\varphi} = \overline{\text{Im}(\varphi^d)}
\]
3. The restriction of \(\varphi \) is expanding on \(G^+ \) and contracting on \(G^- \)
4. If \(G_{\varphi} \) is a solvable Lie group it holds that

\[
G_{\varphi} = G^{+\cdot0} G^- = G^{-\cdot0} G^+ = G^+ G^- G^0
\]

(3)
5. If \(G_{\varphi} \) is semisimple and \(G^0 \) is compact, then \(G_{\varphi} = G^0 \). Therefore, if \(G \) is any connected Lie group such that \(G^0 \) is compact, then \(G_{\varphi} \) has also the decomposition (3).

Proof. 1. It is well known that the following diagram is commutative,
Since the Lie subgroups are connected, their \(\varphi \)-invariance follows directly from the \(\phi \)-invariance of their own Lie algebras.

2. \(K_\varphi \) and \(\ker(\varphi^d) \) are connected Lie subgroups with the same Lie algebra

\[\mathfrak{t}_\varphi = \ker(\phi^d). \]

So, the desired equality follows.

Moreover, since \(\ker(\varphi^d) \) is a normal subgroup of \(G \), its connected component of the identity \(K_\varphi \) is also normal. In particular, the product \(G_\varphi K_\varphi \) is a connected subgroup of \(G \) with Lie algebra \(\mathfrak{g}_\varphi \oplus \mathfrak{t}_\varphi = \mathfrak{g} \). Therefore, by uniqueness we get \(G = G_\varphi K_\varphi \). From this \(G \)-decomposition and the \(\varphi \)-invariance of \(G_\varphi \) we obtain

\[\text{Im}(\varphi^d) = \varphi^d(G) = \varphi^d(G_\varphi)\varphi^d(K_\varphi) \subset G_\varphi. \]

On the other hand, since \(\phi \) restricted to \(\mathfrak{g}_\varphi \) is an automorphism, it turns out that

\[e^X = e^{\phi^d(\varphi^{−1}(X))} = \varphi^d(e^{\phi^{−1}(X)}) \in \text{Im}(\varphi^d), \quad \text{for all } X \in \mathfrak{g}_\varphi. \]

Consequently, \(G_\varphi \subset \text{Im}(\varphi^d) \) which concludes the proof

3. Follows directly by the definition of \(G^+ \) and \(G^- \) and by Remark 2.3.

4. For the decomposition \(G = G_\varphi K_\varphi \), one can easily show that

\[G^{+,0} = G^+ G^0 = G^0 G^+ . \]

Thus, \(G^{−,0} = G^- G^0 = G^0 G^- \). Hence, in order to prove the result it is enough to show that

\[G_\varphi = G^{+,0} G^- . \]

We prove it by induction on the dimension of \(G_\varphi \).

\[\]

\[i) \text{ If } \dim(G_\varphi) = 1 \text{ the group } G_\varphi \text{ is Abelian and the result is certainly true} \]

\[ii) \text{ Let us assume that the result holds for any endomorphism } \varphi \text{ such that } G_\varphi \text{ is solvable with } \dim(G_\varphi) < n . \]

\[iii) \text{ Consider a } \varphi \text{-endomorphism of } G \text{ with } G_\varphi \text{ solvable and } \dim(G_\varphi) = n . \]

The assumption of \(G_\varphi \) solvable implies that there exists a nontrivial closed normal Lie subgroup \(B_\varphi \) of \(G_\varphi \) which is Abelian and \(\varphi \)-invariant, (see for instance the proof in Proposition 2.9 of [1]). By considering the homogeneous space \(H_\varphi = G_\varphi / B_\varphi \) we obtain a connected solvable Lie group \(H_\varphi \) such that

\[\dim(H_\varphi) = \dim(G_\varphi) - \dim(B_\varphi) < n . \]

Moreover, the canonical projection \(\pi : G_\varphi \rightarrow H_\varphi \) induces on \(H_\varphi \) a well-defined surjective endomorphism \(\bar{\varphi} \) given by \(\bar{\varphi}(\pi(\varphi(g))) = \pi(\varphi(g)). \)

By the induction hypothesis we obtain \(H_\varphi = H^{+,0} H^- \). By taking derivative

\[\bar{\varphi} \circ (d\pi)_e = (d\pi)_e \circ \phi . \]

Therefore, Proposition 2.4 and the fact that all the subgroups are connected give us

\[\pi(G^{+,0}) = H^{+,0} \text{ and } \pi(G^-) = H^- . \]

Consequently,

\[H_\varphi = \pi(G^{+,0} G^-) \text{ and so } G_\varphi = G^{+,0} G^- B_\varphi . \]

The Lie subgroup \(B_\varphi \) is Abelian, hence \(B_\varphi = B^{+,0} B^- \) with \(B^{+,0} \subset G^{+,0} \) and \(B^- \subset G^- \). But, \(B \) is also normal, so

\[G = G^{+,0} G^- B_\varphi = G^{+,0} B_\varphi G^- = G^{+,0} B^{+,0} B^- G^- = G^{+,0} G^- \]

which ends the proof of item 4.
5. Let us start by proving that the second assertion is implied by the first one. We know that R_{φ} is φ-invariant. As before, we obtain an induced surjective endomorphism $\tilde{\varphi}$ on G_{φ}/R_{φ} such that

$$(G_{\varphi}/R_{\varphi})^0 = \pi(G^0), \text{ where } \pi : G_{\varphi} \to G_{\varphi}/R_{\varphi}$$

is the canonical projection.

But, G_{φ}/R_{φ} is semisimple and $\pi(G^0)$ is compact, therefore

$$\pi(G^0) = (G_{\varphi}/R_{\varphi})^0 = G_{\varphi}/R_{\varphi} \text{ hence } G_{\varphi} = G^0 R_{\varphi}.$$

Moreover, R_{φ} is a solvable Lie subgroup which by item 4. decomposes as $R_{\varphi} = R^{+,0} R^-$. Finally,

$$G_{\varphi} = G^0 R_{\varphi} = G^0 R^{+,0} R^- \subset G^{+,0} G^- \subset G_{\varphi}$$

as stated.

Now, assume that G_{φ} is semisimple and G^0 is a compact subgroup. Since $\phi_{|_{\phi^0}}$ is an automorphism, Theorem 5.4 of [4] implies that there exists $k \in \mathbb{N}$ such that $\phi^{1/k}_{|_{\phi^0}} = \operatorname{Ad}(g)$ for some $g \in G_{\varphi}$. It follows that

$$\mathfrak{g}^+_{\operatorname{Ad}(g)} = \mathfrak{g}^+, \quad \mathfrak{g}^0_{\operatorname{Ad}(g)} = \mathfrak{g}^0 \quad \text{and} \quad \mathfrak{g}^-_{\operatorname{Ad}(g)} = \mathfrak{g}^-.$$

Now, because G_{φ} is semisimple, there exists an Iwasawa decomposition $G_{\varphi} = KAN$ and elements $a \in A$, $u \in K$ and $n \in N$ such that

$$\operatorname{Ad}(g) = \operatorname{Ad}(u) \operatorname{Ad}(a) \operatorname{Ad}(n)$$

with $\operatorname{Ad}(a)$ hyperbolic, $\operatorname{Ad}(n)$ unipotent and $\operatorname{Ad}(u)$ elliptic commuting matrices (see Chapter IX, Lemma 7.1 of [4]). Therefore,

\begin{enumerate}
 \item $\mathfrak{g}^+ = \mathfrak{g}^+_{\operatorname{Ad}(g)}$ is the sum of eigenspaces with positive eigenvalues of $\operatorname{Ad}(a)$
 \item $\mathfrak{g}^- = \mathfrak{g}^-_{\operatorname{Ad}(g)}$ is the sum of eigenspaces with negative eigenvalues of $\operatorname{Ad}(a)$, and
 \item $\mathfrak{g}^0 = \mathfrak{g}^0_{\operatorname{Ad}(g)} = \ker(\operatorname{Ad}(a))$.
\end{enumerate}

Furthermore, the subgroup A is a simply connected Abelian Lie group and $A \subset G^0$. By the compactness hypothesis of G^0 we must have $a = e$. So, $\mathfrak{g}^+ = \mathfrak{g}^- = \{0\}$ implying that $G^0 = G$ as stated.

Definition 3.5. Let φ be an endomorphism of the Lie group G. We say that φ decomposes G if G_{φ} satisfy (3), i.e.,

$$G_{\varphi} = G^{+,0} G^- = G^{-,0} G^+ = G^+ G^0 G^-.$$

Let us assume that φ restricted to G_{φ} is in fact an automorphism. From 2.3 we get that for any right (left) invariant Riemannian metric g

$$g(\varphi^n(x), e) \leq c^{-1} \mu^n g(x, e), \quad \text{for any } x \in G^-, n \in \mathbb{N}, \text{ and} \quad (4)$$

$$g(\varphi^n(y), e) \geq c \mu^{-n} g(y, e), \quad \text{for any } y \in G^+, n \in \mathbb{N}. \quad (5)$$

Moreover, for any $a > 0$,

$$g(\varphi^n(z), e) \mu^{|n|} \to 0, \quad n \to \pm \infty \quad \text{for any } z \in G^0. \quad (6)$$

These facts bring topological consequences on the induced subgroups.

Proposition 3.6. Suppose that φ restricted to G_{φ} is an automorphism in the induced topology of G. Then,

1. $G^{+,0} \cap G^- = G^+ \cap G^- = G^0 \cap G^- = G^{-,0} \cap G^+ = G^+ \cap G^0 = \{e\}$
2. The dynamical subgroups induced by φ are closed in G
3. For $n \geq d$, $\ker(\varphi^n) = K_{\varphi}$. In particular, $\ker(\varphi^n)$ is connected.

Proof. Since other cases are analogous, we just show $G^{-,0} \cap G^+ = \{e\}$
Let \(y \in G^{-0} \cap G^{+} \), \(x \in G^{-} \) and \(z \in G^{0} \) such that \(y = xz \). The right invariance of the metric gives
\[

g(\varphi^{n}(y), e) = g(\varphi^{n}(x)\varphi^{n}(z), e) \leq g(\varphi^{n}(x), e) + g(\varphi^{n}(z), e).
\]
Since \(y \in G^{+} \) and \(x \in G^{-} \), from (5) and (4), it follows that
\[
c\mu^{-n}g(y, e) \leq g(\varphi^{n}(z), e) + c^{-1}\mu^{n}g(x, e).
\]
Hence,
\[
g(y, e) \leq c^{-1}g(\varphi^{n}(z), e)\mu^{n} + c^{-2}\mu^{2n}g(x, e).
\]
Because \(z \in G^{0} \), equation (6) implies that in the last inequality, each term on the right hand goes to zero as \(n \to +\infty \). Therefore,
\[
g(y, e) = 0 \Rightarrow G^{-0} \cap G^{+} = \{ e \}
\]
as desired.

2. For \(n \in \mathbb{N} \) we know that
\[
G_{\varphi} \cap \ker(\varphi^{n}) = \ker(\varphi^{n}|_{G_{\varphi}}).
\]
By the assumption, \(\varphi|_{G_{\varphi}} \) is an automorphism. From that we get \(G_{\varphi} \cap K_{\varphi} = \{ e \} \). Then, Proposition 3.2 implies that \(G_{\varphi} \) is closed in \(G \). Using again Proposition 3.2 and item 1., we also obtain that \(G^{+}, G^{0}, G^{-}, G^{-0} \) and \(G^{+0} \) are closed subgroups of \(G_{\varphi} \), as a consequence, they are also closed subgroups of \(G \).

3. Let \(n \geq d, x \in \ker(\varphi^{d}) \) and consider the decomposition \(x = gk \) with \(g \in G_{\varphi} \) and \(k \in K_{\varphi} \) given by item 2. of Proposition 3.4. Hence,
\[
G_{\varphi} \ni g = xk^{-1} \in \ker(\varphi^{n})K_{\varphi} \subset \ker(\varphi^{n}).
\]
Therefore, (7) implies \(x = k \in K_{\varphi} \), concluding the proof. \(\qed \)

In the sequel we prove that some strong topological property of \(G \) are also maintained by \(\varphi \).

Proposition 3.7. Let \(\varphi \) be an endomorphism of a simply connected Lie group \(G \). Then, \(G_{\varphi} \) and \(K_{\varphi} \) are simply connected. Moreover, the restriction of \(\varphi \) to \(G_{\varphi} \) is an automorphism.

Proof. By Proposition III.3.17 of [5] both, the subgroup \(\ker(\varphi^{d}) \) and the quotient \(G/\ker(\varphi^{d}) \) are simply connected, for any \(n \geq d \). Since the application
\[
G/\ker(\varphi^{d}) \rightarrow G/\ker(\varphi^{d})
\]
is a covering map, Proposition 6.12 of [6] implies that \(K_{\varphi} = \ker(\varphi^{d}) \).

Moreover, from the decomposition \(G = G_{\varphi}K_{\varphi} \) we obtain that \(\varphi^{d} : G \rightarrow G_{\varphi} \) is a surjective continuous homomorphism. Thus, by the canonical isomorphism theorem it follows that \(G_{\varphi} \) and \(G/\ker(\varphi^{d}) \) are isomorphic, showing in particular that \(G_{\varphi} \) is simply connected.

Knowing that \(\varphi \) restricted to \(g_{\varphi} \) is an automorphism and \(G_{\varphi} \) is simply connected, we must have that \(\varphi \) restricted to \(G_{\varphi} \) is an automorphism, ending the proof. \(\qed \)

Corollary 3.8. Let \(G \) be a simply connected Lie group. Then, any subgroup induced by an endomorphism \(\varphi \) of \(G \) is closed.

The next result shows that the unstable/stable subgroup of a compact \(\varphi \)-invariant subgroup of \(G_{\varphi} \) is contained in its center. This implies the decomposition of the group when \(G_{\varphi} \) is compact.

Theorem 3.9. Let \(G \) be a Lie group and \(\varphi \) an endomorphism of \(G \). If \(H \subset G_{\varphi} \) is a \(\varphi \)-invariant compact subgroup, then \(H^{+}, H^{-} \subset Z_{H} \) the center of \(H \). In particular, if \(G_{\varphi} \) is compact \(G \) is decomposable.

Proof. Since \(H \) is a compact subgroup it is in particular reducible and so \(H = Z_{H}H^{'} \), where \(H^{'} \) is the derivated subgroup. Since both, \(H^{'} \) and \(Z_{H} \) are \(\varphi \)-invariant subgroups and \(H^{'} \) is semisimple, item 5. of Proposition 3.4 implies that \((H)^{0} \) and by the \(\varphi \)-invariance, \(H^{+} \) and \(H^{-} \) are subsets of \(Z_{H} \).
If \(G_{\varphi} \) is compact, we get
\[
G_{\varphi} \subset G^0 \text{ and so } G_{\varphi} = Z_{G^0} G^0.
\]
Since \(Z_{G^0} \) is solvable subgroup, item 4. of Proposition 3.4 implies that \(Z_{G^0} \) is contained in \(G^+ G^- \) which gives us the desired conclusion.

For the special case of solvable Lie groups more is true. In fact,

Theorem 3.10. Let \(G \) be a solvable Lie group and \(\varphi \) an endomorphism of \(G \). If \(\varphi|_{G^0} \) is an automorphism, then any fixed point of \(\varphi \) is contained in \(G^0 \).

Proof. Since \(\varphi|_{G^0} \) is an automorphism we know that \(G_{\varphi} \cap K_{\varphi} = \{ e \} \). Therefore, the decomposition of \(x \in G \) as \(x = gk \) with \(g \in G_{\varphi} \) and \(k \in K_{\varphi} \) is unique. Thus, \(x = gk \) is a fixed point of \(\varphi \) if and only if \(g \) and \(k \) are fixed points of \(\varphi \). Since \(\varphi^d(k) = e \) we must have \(k = e \). So, we only have to analyze the case where \(g \in G_{\varphi} \) is a fixed point.

By Proposition 3.4 item 4., we know that
\[
g = g_1 g_2 g_3 \text{ with } g_1 \in G^*, \ g_2 \in G^0 \text{ and } g_3 \in G^-.
\]
Moreover, by Proposition 3.6 item 1. and the \(\varphi \)-invariance of the subgroups it turns out that \(g \) is a fixed point of \(\varphi \) if and only if \(g_i \) is a fixed point of \(\varphi \) for \(i = 1, 2, 3 \). However, since \(g_1 \in G^* \), from the equation (5) we obtain
\[
\varphi(g_1, e) = \varphi(\varphi^n(g_1), e) \equiv c\mu^{-n}\varphi(g_1, e), \quad \text{for any } n \in \mathbb{N}
\]
which happens if and only if \(g_1 = e \).

In the same way, by using the fact \(g_3 \in G^- \) is a fixed point and the equation (4), we get that \(g_2 = e \) showing that \(x = g_2 \in G^0 \) as we stand.

Examples

Example 3.11. Take \(G = \mathbb{R}^d \), \(A \in \text{gl}(d) \) a \(d \times d \) matrix and the endomorphism \(\varphi_A \) of \(G \) given by \(\varphi_A(x) = Ax \). In this case, the subgroups induced by \(\varphi_A \) are given by sums of the eigenspaces of \(A \).

Example 3.12. Consider \(G = \text{Sl}(n, \mathbb{R}) \), the group of the invertible matrices with determinant equals to one. If \(A = \text{diag}(a_1 > \ldots > a_d) \) is a matrix with trace equal to zero we can induce the automorphism \(\varphi_A : G \to G \) defined by
\[
\varphi_A(B) = e^A B e^{-A}
\]
where \(e^A \) is the exponential of the square matrix \(A \).

An easy calculation shows that in this case
\[
G^+ = \{ B \in G : \ B \text{ is upper triangular with 1's in the main diagonal} \},
\]
\[
G^- = \{ B \in G : \ B \text{ is lower triangular with 1's in the main diagonal} \}
\]
and
\[
G^0 = \{ B \in G; \ B \text{ is diagonal} \}.
\]

Acknowledgement: The first author was supported by Proyecto Fondecyt n° 1150292, Conicyt. The second author was supported by Proyecto Fondecyt n° 1151159, Conicyt, Chile. The third author was supported by Fapesp grant n 2016/11135-2.

The first and third author would like to thank the Centro de Estudios Científicos, CECs in Valdivia, Chile, through Prof. Jorge Zanelli, to provide an excellent work environment for developing part of this article.
References

[1] Da Silva, A., Controllability of linear systems on solvable Lie groups, SIAM Journal on Control and Optimization, 54, 1 (2016), pp. 372-390.

[2] San Martin L. A. B., Algebras de Lie, Second Edition, Editora Unicamp, (2010).

[3] San Martin L. A. B., Grupos de Lie, Editora Unicamp, ISBN: 978-85-268-1356-4 (2016).

[4] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, American Mathematical Society, Providence-Rhode Island, (2001).

[5] Hilgert, J and Neeb K. H., Lie-Gruppen und Lie-Algebren, Vieweg, Braunschweig, (1991).

[6] Lima E. L., Fundamental Groups and Covering Spaces, English version, A. K. Peters, (2003).