Diastereoselective Synthesis of Novel Spiro Indanone Fused Pyrano[3,2-c]Chromene Derivatives following Hetero-Diels-Alder reaction and In Vitro Anticancer Studies

Pravati Panda,¹ Sabita Nayak,¹,* Susanta Ku. Sahoo,¹ Seetaram Mohapatra,¹ Deepika Nayak,² Rajalaxmi Pradhan,² Chanakya Nath Kundu,²*

¹Department of Chemistry, Ravenshaw University, Cuttack, Odisha, India

²Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha-751024

Email id: sabitanayak18@gmail.com, cnkundu@kiitbiotech.ac.in

Table of contents

Title	Page
Title, author’s name, address and table of contents	1-3
General remarks and FIGURE 1	3-5
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $8a$	6-8
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $8b$	8-10
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $8c$	10-12
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $8d$	12-14
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $8e$	14-16
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $8f$	17-19
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $8g$	20-22
Copies of 1H (400 MHz), 13C NMR, IR spectra for $8h$	22-23
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $10a$	24-26
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $10b$	27-28
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $10c$	29-30
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $10d$	31-33
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $10e$	34-35
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $10f$	36-37
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $10g$	38-39
Mass spectra for 10g Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 2a	40-41
---	---
Mass spectra for 2b Copies of 1H (400 MHz), 13C NMR, IR spectra for 2c	42-43
Mass spectra for 3c Copies of 1H (400 MHz), 13C NMR, IR spectra for 2d	44-45
Mass spectra for 2e Copies of 1H (400 MHz), 13C NMR, IR spectra for 2f	45-46
Mass spectra for 2f Copies of 1H (400 MHz), 13C NMR, IR spectra for 2g	47-49
Mass spectra for 2g Copies of 1H (400 MHz), 13C NMR, IR spectra for 2h	50-52
Mass spectra for 2h Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'a	53-54
Mass spectra for 2'a Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'b	54-55
Mass spectra for 2'b Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'c	56-57
Mass spectra for 2'c Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'd	58-60
Mass spectra for 2'd Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'e	60-61
Mass spectra for 2'e Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'f	62-64
Mass spectra for 2'f Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'g	65-66
Mass spectra for 2'g Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'h	66-68
Mass spectra for 2'h Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'h	68-70
Mass spectra for 2'h Copies of 1H (400 MHz), 13C NMR, IR spectra for 2'h	71-73
Mass spectra for 3a Copies of 1H (400 MHz), 13C NMR, IR, Mass, COSY, NOESY spectra for 3a	74-79
Mass spectra for 3b Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 3b	80-84
Mass spectra for 3c Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 3c	85-87
Mass spectra for 3d Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 3d	88-90
Mass spectra for 3e Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 3e	91-93
Mass spectra for 3f Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 3f	94-96
Mass spectra for 3g Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 3g	97-100
Mass spectra for 3h Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 3h	101-104
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for 3h	105-107
---	---
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $3'a$	108-110
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $3'b$	111-114
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $3'c$	115-117
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $3'd$	118-120
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $3'e$	121-123
Copies of 1H (400 MHz), 13C NMR, IR, Mass spectra for $3'f$	124-126
Copies of 1H (400 MHz), 13C NMR, IR spectra for $3'g$	127-128

Experimental Section

General remarks:

1H NMR spectra were recorded on 400 MHz (100 MHz for 13C NMR) JEOL NMR spectrometer with CDCl$_3$ as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts were reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl$_3$ at 7.26 ppm (for 1H NMR) or 77.0 ppm (for 13C NMR). Melting points are uncorrected and were determined with SMP10 digital melting point apparatus using open capillary tubes. All reagents and solvents used in this study were commercially available (from Sigma-Aldrich) and were used without further purification.
FIGURE 1: Structure of all products
% Transmittance

Wavenumbers (cm⁻¹)

4000 3500 3000 2500 2000 1500 1000 500

3048 2820 2707 1670 1570 1457 1216 996 612 520
8a

8b

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Analysis Info
Analysis Name D:\Data\SEPT-2016\INN-SP-SLB-CA 1.d
Method Tune_pos_NAICS-L500A.m
Sample Name INN-SP-SLB-CA 1
Comment C18H12O2

Acquisition Parameter
Source Type ESI
Focus Active
Scan Begin 50 m/z
Scan End 700 m/z
Ion Polarity Positive
Ion Capillary 3700 V
Set End Plate Offset -500 V
Set Collision Cell RF 900 8 Vpp
Set Nebulizer 0.3 Bar
Set Dry Heater 180 °C
Set Divert Valve Source

Intens x10^4

Meas. m/z # Ion Formula m/z err [ppm] mSigma # Sigma Score rdb e-conf N-Rule
250.0730 1 C16H12NaO2 250.0730 -0.0 26.8 1 100.00 10.5 even ok

261.0652
256.0652
264.1368
262.1216
263.1127
271.1093
268.5882
273.0553
MeO

8c

CHO
DEPARTMENT OF CHEMISTRY, I.T.T.(B)

Analysis Info
- Analysis Name: D:\Data\SEPT-2016\INN-SP-SLB-CAT.d
- Sample Name: INN-SP-SLB-CAT.7
- Instrument: maXis impact 282001.00081
- Operator: SIG IN
- Acquisition Date: 9/10/2016 9:49:27 PM

Acquisition Parameter
- Source Type: ESI
- Focus: Active
- Scan Begin: 50 m/z
- Scan End: 1000 m/z
- Ion Polarity: Positive
- Set Capillary: 3700 V
- Set End Plate Offset: -500 V
- Set Collision Cell RF: 900.0 Vpp
- Set Nebulizer: 0.3 Bar
- Set Dry Heater: 180 °C
- Set Dry Gas: 4.0 l/min
- Set Divert Valve: Source

Chemical Structures

1. **8c**
 - Chemical formula: MeO
 - Molecular structure:

2. **8d**
 - Chemical formula: OEt
 - Molecular structure:

Measured m/z
- 285.0837: C17H14NaO3
- 285.0830: 0.7

Chart and Graphs

- Mass spectrum with peaks at 285.0837 and 286.0709
- 3D chemical structure images of 8c and 8d
Generic Display Report

Analysis Info
Analysis Name: D:\Data\AUG-2016\CSP\31082016_CSP_SDPSNT_01.d
Method: Pos_tune_low m
Sample Name: Bruker micro TOF-Q II
Comment:

Acquisition Date: 8/31/2016 7:39:12 PM
Operator: Amit S. Sahu
Instrument: micrOTOF-Q II

Diagram:

- TIC +All MS

- MS, 0.1-0.4min #5-21

- MS, 0.1-0.4min #5-21

Bruker Compass DataAnalysis 4.0
 printed: 9/2/2016 3:09:27 PM
10d

Br-\[\text{CHO}\]

10d

Br-\[\text{CHO}\]
Display Report

Analysis Info
Analysis Name: D:\Data\DEC-2016\NKS\GC\11102017_NKS_GC-PRA-169.d
Method: pos tune_wide.m
Sample Name: ESI-MS
Comment:
Acquistion Date: 10/13/2017 8:26:43 PM
Operator: G.CREDDY
Instrument: microTOF-Q II 10337

Acquisition Parameter
- Source Type: ESI
- Ion Polarity: Positive
- Focus: Not active
- Set Capillary: 4500 V
- Set Ultrasound: 0.4 Bar
- Set End Plate Offset: -500 V
- Set Dry Heater: 180 °C
- Scan Begin: 50 m/z
- Scan End: 3000 m/z
- Set Collision Cell RF: 690.6 Vpp
- Set Divert Valve: Waste
- Mobile Phase: H2O:4.5%
- Flow: 3.5 mL/min

Graphs and spectra showing mass spectrometry data.
Display Report

Analysis Info
Analysis Name: D:\Data\DEC-2016\NKS\GCT1102017_NKS_GC-PRA_165.d
Method: Wash_pos_tune_low_22692017.m
Sample Name: ESI-MS
Comment:

Acquisition Date: 10/12/2017 7:52:56 PM
Operator: Amit S. Sahu
Instrument: microTOF-Q II 10337

Acquisition Parameter
Source Type: ESI
Focus: Active
Ion Polarity: Positive
Set Nebulizer: 0.4 Bar
Set Capillary: 4000 V
Set End Plate Offset: -500 V
Set Dry Heater: 180 °C
Set Collison Cell RF: 200.0 Vpp
Set Divert Valve: Source
Set Dry Gas: 4.0 l/min

Bruker Coroass DataAnalysis 4.0
Compiled: 10/12/2017 8:37:12 PM
Display Report

Analysis Info
- **Analysis Name**: D:\Data\DEC-2016\NKS\GC\11102017\NKS_GC-PRA_73.d
- **Method**: Wash pos tune_low_22092017.m
- **Sample Name**: ESI-MS
- **Operator**: G. CREDDY
- **Instrument**: microTOF-Q II 10337
- **Acquisition Date**: 10/12/2017 8:00:41 PM

Acquisition Parameter
- **Source Type**: ESI
- **Focus**: Active
- **Scan Begin**: 50 m/z
- **Scan End**: 3000 m/z
- **Ion Polarity**: Positive
- **Set Capillary**: 4000 V
- **Set End Plate Offset**: -500 V
- **Set Collision Cell RF**: 200.0 Vpp
- **Set Dry Gas**: 4.0 l/min
- **Set Nebulizer**: 0.4 Bar
- **Set Dry Heater**: 180 °C
- **Set Diver Valve**: Source

Chromatogram

The chromatogram shows the elution profiles of various compounds with peaks at different retention times.

Mass Spectrum

The mass spectrum displays the molecular ion peaks and fragment ions for the compounds of interest.

Structural Diagram

The structural diagram illustrates the molecular structure of the compound, highlighting key functional groups and substituents (e.g., OMe, 3'b).

Peaks at m/z

- 188.0865
- 211.0735
- 226.0777
- 288.0770
- 321.1016
- 349.1124
- 371.0652
- 387.0606

Bruker Compass DataAnalysis 4.0

Printed: 10/12/2017 8:40:10 PM
