Search for dijet resonances using events with three jets in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration∗

Abstract

A search for a narrow resonance with a mass between 350 and 700 GeV, and decaying into a pair of jets, is performed using proton-proton collision events containing at least three jets. The data sample corresponds to an integrated luminosity of 18.3 fb$^{-1}$ recorded at $\sqrt{s} = 13$ TeV with the CMS detector. Data are collected with a technique known as “data scouting”, in which the events are reconstructed, selected, and recorded at a high rate in a compact form by the high-level trigger. The three-jet final state provides sensitivity to lower resonance masses than in previous searches using the data scouting technique. The spectrum of the dijet invariant mass, calculated from the two jets with the largest transverse momenta in the event, is used to search for a resonance. No significant excess over a smoothly falling background is found. Limits at 95% confidence level are set on the production cross section of a narrow dijet resonance and compared with the cross section of a vector dark matter mediator coupling to dark matter particles and quarks. Translating to a model where the narrow resonance interacts only with quarks, upper limits on this coupling range between 0.10 and 0.15, depending on the resonance mass. These results represent the most stringent upper limits in the mass range between 350 and 450 GeV obtained with a flavor-inclusive dijet resonance search.

"Published in Physics Letters B as doi:10.1016/j.physletb.2020.135448."
1 Introduction

Many models of new physics predict the existence of new massive particles coupled to quarks. The production and decay of these particles into two jets, known as dijets, have been searched for since the first high-energy hadron colliders came into operation [1–9]. In some models, these particles act as mediators linking the standard model (SM) to new physics sectors containing dark matter (DM) particle candidates [10–13]. New mediators interacting with both quarks and DM particles ($\chi q \to \chi q$, t-channel) [14–24]; with astrophysics detectors, by looking for SM particles produced through the annihilation of DM particles ($\chi \chi \to qq$, s-channel) [25–39]; and at hadron colliders, by detecting the momentum imbalance due to the production of DM particles ($qq \to \chi \chi$, s-channel) [40–46]. The search for dijet resonances at hadron colliders ($qq \to qq$, s-channel) can be compared with such DM searches and the results are particularly sensitive for models where the decay of the mediator into DM particles is forbidden for kinematic reasons. The search for dijet resonances is also sensitive to the signals predicted by other models [47–57].

Experiments at the CERN LHC have used various techniques to search for resonances in the dijet invariant mass spectrum. From searches where both jets are individually resolved, the ATLAS and CMS Collaborations have set limits for resonances with masses above 450 and 600 GeV, respectively, in $\sqrt{s} = 13$ TeV proton-proton collisions [58–60], and above 250 and 500 GeV, respectively, in 8 TeV collisions [61, 62]. In the sub-TeV mass range, another search by the ATLAS Collaboration at 13 TeV for dijet resonances, produced in association with a photon from initial-state radiation, has set limits in the mass region between 225 and 1100 GeV [63]. A search by the CMS Collaboration at 8 TeV for resonances decaying into two bottom quarks, experimentally identified as b-tagged jets, has set limits in the mass range of 325–1200 GeV [64]. Finally, the ATLAS and CMS Collaborations have set limits in the mass range below 220 and 450 GeV, respectively, from searches for Lorentz-boosted resonances decaying into a quark-antiquark pair reconstructed as a single jet [65–67].

This paper presents a search for a dijet resonance in three-jet events that is sensitive to narrow resonances with mass between 350 and 700 GeV. The search is based on data from pp collisions at $\sqrt{s} = 13$ TeV collected in 2016, corresponding to an integrated luminosity of 18.3 fb$^{-1}$. To obtain a large trigger efficiency in the mass range of 350–700 GeV, we select a three-jet final state and utilize a special high-rate trigger with low jet p_T thresholds. This trigger uses a technique known as “data scouting” described in Section 3. This search is limited to data collected in the year 2016 in order to take advantage of the low trigger thresholds used in that data period. After 2016, these thresholds were raised in order to limit the trigger rate increase due to the larger instantaneous luminosity and pileup.

2 The CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [68]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.
The jets used by this analysis are calorimeter-based jets that are reconstructed from the energy deposits in the calorimeter towers, clustered using the anti-κ_T algorithm \cite{69, 70} with a distance parameter of 0.4. In this process, the contribution from each calorimeter tower is assigned a momentum, the absolute value and the direction of which are found from the energy measured in the tower, and the coordinates of the geometrical center of the tower. The raw jet energy is obtained from the sum of the tower energies, and the raw jet momentum from the vectorial sum of the tower momenta. The raw jet energies are then corrected to establish a uniform relative response of the calorimeter in pseudorapidity η and a calibrated absolute response in transverse momentum p_T. The calorimetric jet energy resolution is typically 40% at a p_T of 10 GeV, 12% at 100 GeV, and 5% at 1 TeV, resulting in a calorimetric dijet mass resolution of about 10% for resonance masses between 350 and 700 GeV. Events of interest are selected using a two-tiered trigger system \cite{71}. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a time interval of less than 4 μs. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage.

3 Data and simulated event samples

We selected events requiring $H_T > 240\text{GeV}$ at the L1 trigger and $H_T > 250\text{GeV}$ at the HLT, where H_T is the scalar p_T sum of jets with $p_T > 40\text{GeV}$ and $|\eta| < 2.5$. The rate of this trigger was about 4 kHz at an instantaneous luminosity of $1 \times 10^{34}\text{cm}^{-2}\text{s}^{-1}$. The amount of data generated by such a high-rate trigger alone using the standard data-taking format would have saturated the computing and storage systems of the CMS experiment. For this reason, we used a special data-taking technique, which consisted of saving only the calorimeter-based jets reconstructed by the HLT, instead of the full detector readout. The size of this reduced data format is about 0.5% of the full event size. This technique is known as “data scouting” and was used in previous CMS dijet resonance searches \cite{60, 62}.

Data scouting allows the analysis of a very large rate of data passing the HLT trigger, only limited by the overall rate of the L1 trigger. To keep a constant rate, the L1 trigger H_T threshold was raised from 240 to 360 GeV as the instantaneous luminosity increased. This search is limited to data collected in 2016 with the lower L1 trigger threshold $H_T > 240\text{GeV}$, in order to obtain the maximum sensitivity for low mass resonances. From a sample of events collected with a minimum-bias trigger and passing the selection discussed below, we measured a trigger efficiency larger than 99% for a dijet invariant mass greater than 290 GeV.

Signal events corresponding to a narrow vector resonance decaying into quark-antiquark pairs were generated using the \textsc{MadGraph5}_aMC@NLO version 2.2.2 generator at leading order \cite{72, 73}, with the \textsc{Pythia} 8.205 generator \cite{74} incorporating the CUETP8M1 underlying event tune \cite{75} providing the description of fragmentation and hadronization. The generated resonance width is negligible compared to the experimental dijet mass resolution, which is about 10%. The detailed simulation of the CMS detector response is performed using the \textsc{Geant4} package \cite{76}. The simulated signal events include multiple overlapping pp interactions per bunch crossing (pileup) as observed in the data. Additionally, to provide a framework for interpreting the results in terms of a DM mediator, signal cross sections were computed at leading order with \textsc{MadGraph} for a vector boson decaying into a quark-antiquark pair, with coupling to quarks $g_q = 0.25$, coupling to DM particles $g_{\text{DM}} = 1.0$, and the mass of DM particles 1 GeV. The NNPDF2.3LO \cite{77} parton distribution functions were used.
4 Event reconstruction and selection

The discriminating variable in this analysis is the invariant mass of the two jets originating from the resonance decay. This variable is calculated using jets, reconstructed at the HLT from energy deposits in the calorimeter, and passing the selection $p_T > 30$ GeV and $|\eta| < 2.5$. Spurious jets originating from instrumental noise are rejected by requiring each jet to be detected by both ECAL and HCAL, with at least 5% of the jet energy in each of the two types of calorimeter. We form “wide jets”, by clustering the jets already reconstructed by the HLT, using the anti-k_T algorithm with a distance parameter of 1.1. This algorithm improves the dijet mass resolution and the resonance search sensitivity, by recombining jets from hard final-state radiation to obtain a reduced number of wide jets. A similar algorithm using a merging distance of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 1.1$ was employed in previous CMS searches [60, 62], but it only reconstructed two wide jets per event. The wide-jet calibrations for the 2016 data scouting sample were already obtained in the low-mass dijet search of Ref. [60], and therefore we apply the same calibrations. We require at least three wide jets, each with $p_T > 72$ GeV, in order to select events that have large H_T and pass the trigger selections. This requirement is particularly effective in selecting events with low dijet invariant mass, which would be rejected if only two jets were required. Applying a common threshold to the p_T of the three jets enabled us to minimize the value of the lowest resonance mass to which we are sensitive. The p_T threshold of the three-jet selection has been chosen with a method that is explained in the next section. Finally, the two leading wide jets are required to have $|\eta_1 - \eta_2| < 1.1$ to reduce the quantum chromodynamics multijet background, which is dominated by t-channel production of jets.

Since we require at least three wide jets in the event, there are multiple ways to select the dijet system, i.e., the pair of wide jets originating from the resonance decay. We select as the dijet the two wide jets with the largest and the next-to-largest p_T in the event. This selection is correct in 70 (50)% of simulated signal events with a resonance mass of 700 (350) GeV. Wrong combinations arise because either an energetic initial-state radiation jet is included in the dijet selection, or an energetic jet from final-state radiation is emitted with a distance $\Delta R > 1.1$ from the leading jets and therefore excluded from the reconstruction of the two leading wide jets. We investigated alternative criteria to select the dijet, such as choosing the jet pair with the largest norm of the vectorial sum p_T. We found that such alternative criteria do have better performance if the resonance p_T is greater than half the mass, but worse performance for this search. This is because, for accepted events, the p_T of the resonance is about 150 GeV, which is less than half the resonance mass considered in this search.

5 Dijet mass spectrum fit

Figure 1 shows the dijet mass (m_{jj}) spectrum. The background is modeled with the following analytic function,

$$\frac{d\sigma}{dm_{jj}} = \frac{p_0 (p_2 x - 1)}{x^{p_1 + p_3 \log x + p_4 \log^2 x}},$$

where x is defined as m_{jj}/\sqrt{s}, and p_0, p_1, p_2, p_3, and p_4 are free parameters of the fit. This function is similar to that used by previous dijet searches [58–62], with a modification to the numerator. The new parameterization better fits the shape of the dijet mass spectrum for three-jet events, which includes the effect of a small inefficiency to pass the trigger for events at the lowest values of dijet mass. The function has been chosen from a pool of functions using a Fisher test [78] with a 95% confidence level (CL). The pool of functions is obtained by changing the number of degrees of freedom of the polylogarithmic function in the exponent of the

\[8\]
denominator of Eq. (1). We perform a maximum likelihood fit of the function in Eq. (1) to our data in the mass range $290 < m_{jj} < 1000$ GeV. The chi-square per number of degrees of freedom of the fit is $\chi^2 / NDF = 19.3 / 13$, corresponding to a p-value of 0.11. Figure 1 also shows the expected dijet mass distributions of a resonance signal for three different values of resonance mass. The data distribution is well modeled by the background parameterization and there is no evidence for a dijet resonance.

Figure 1: Dijet mass spectrum (points) compared to a fitted parameterization of the background (solid curve). The background fit is performed in the range $290 < m_{jj} < 1000$ GeV. The horizontal bars show the widths of each bin in dijet mass. The dashed lines represent the dijet mass distribution from 400, 550, and 700 GeV resonance signals expected to be excluded at 95% CL by this analysis. The lower panel shows the difference between the data and the fitted parametrization, divided by the statistical uncertainty of the data.

The dijet mass bin widths in Fig. 1 are the same as in the previous dijet searches, except for the first bin which is more narrow, starting at a dijet mass value of 290 GeV. This lower bound of the fit range and the jet p_T threshold for the three-jet selection are determined in the following way. We measure the distribution of the dijet mass in a signal-depleted region defined by replacing the requirement $|\eta_1 - \eta_2| < 1.1$ with the requirement $|\eta_1 + \eta_2| < 1.1$. The dijet mass in the signal-depleted region is calculated after flipping the sign of η of the second jet—the sign of the z component of the momentum of the subleading jet is reversed and then the dijet mass is calculated. For background events, the dijet mass distribution in the signal-depleted region, so calculated, is closely similar to the dijet mass distribution in the signal region because the variables $\eta_1 - \eta_2$ in the signal region and $\eta_1 + \eta_2$ in the signal-depleted region have approximately the same uniform distribution between -1.1 and 1.1. The signal-depleted region contains about the same number of background events and 50% fewer signal events, and 35% of the observed events in the signal-depleted region are also in the signal region. Small data-driven corrections, which change the observed number of events by less than 5%, are applied to the dijet mass distribution in the signal-depleted region to make it the same as the background distribution in the signal region. These corrections, which are applied as a function of the product of the two largest values of jet p_T in the event, are obtained by fitting an analytic function describing this product to the ratio of the numbers of events passing the signal selection to the number of events passing the signal-depleted selection. The lower edge of dijet
mass included in the search, 290 GeV, has been chosen to be the lowest value of the corrected
dijet mass in the signal-depleted region for which the fit of the background parameterization
has a Kolmogorov–Smirnov (KS) probability \[79–81\] larger than 33%. The \(p_T \) threshold of the
three-jet selection, 72 GeV, has been chosen to obtain the lowest possible value for the corrected
dijet mass in the signal-depleted region that could be included in the fit and satisfy the same KS
test. We verified that an injected signal with a strength corresponding to the 95% CL expected
upper limit does not change the choice of the fit range and the three-jet selection.

6 Systematic uncertainties

The asymptotic approximation \[82\] of the modified frequentist CLs method \[83, 84\] is utilized
to set upper limits on signal cross sections, following the prescription described in Ref. \[85\].
We use the profiled likelihood ratio as test statistic. The likelihood is the product of the Pois-
son probabilities for each of the bins in Fig. 1. The expected background yield of each bin is
determined from the analytic function described in Eq. (1). The five parameters of the analytic
function are profiled and their uncertainties from the fit to data are the dominant uncertainties.
The shapes of the dijet mass distributions for signals are obtained from simulations. The sys-
tematic uncertainties affecting the signal shape and normalization have a minor impact and are
incorporated into the likelihood function via nuisance parameters with log-normal probability
distributions. We account for the uncertainty of 2% in the jet energy scale \[86\] by shifting the
dijet mass of the signal distribution by \(\pm 2\% \). The effect of the jet energy resolution uncertainty
is included by varying the width of the signal distribution by \(\pm 10\% \) \[86\]. The signal acceptance
depends significantly on the presence of a jet from initial-state or final-state radiation. We es-
timated the uncertainty of the simulation related to this dependence by modifying by a factor
of two both the renormalization (\(\mu_R \)) and the factorization scales (\(\mu_F \)) of the initial-state and
final-state radiation using the method described in Ref. \[87\]. This uncertainty has a negligible
effect on the shape of the dijet mass distribution of the signal, and changes the normalization
by 10%. The uncertainty in the integrated luminosity is 2.5% \[88\] and affects directly the signal
normalization. The systematic uncertainty due to the choice of the background function has
been estimated by measuring the signal yield in pseudo-data spectra generated using alterna-
tive background functions. The measured cross section in each case is the same as that of the
injected signal, and this systematic uncertainty is found to be negligible. We tested the capa-
bility of the alternative functions to fit the multijet background by fitting the signal-depleted
region described in Section 5. The systematic uncertainties related to pileup, parton distribu-
tion functions, underlying events, and parton shower models are also found to be negligible.

7 Results

Figure 2 shows, as a function of resonance mass, observed and expected upper limits at 95% CL
on the product of the cross section, branching fraction, and acceptance of a narrow vector
resonance decaying to jets. Table 1 shows the acceptance calculated using signal simulations.
Limits are presented for resonance masses between 350 and 700 GeV, for which the acceptance
of the dijet mass requirement \(290 < m_{jj} < 1000 \) GeV is large enough to conduct the search. Fig-
ure 3 shows that the 95% CL upper limits on the coupling \(g'_{q} \) of a vector resonance that decays
only to quarks, defined according to the convention of Ref. \[89\], are between 0.10 and 0.15.
Figures 2 and 3 compare the upper limits on the cross section and the coupling \(g'_{q} \), respectively,
with the predictions of a model with a DM mediator that decays to DM particles with masses
of 1 GeV, and also decays to quarks. This analysis excludes a benchmark model of such a DM
mediator with coupling to quarks \(g_{q} = 0.25 \) and coupling to DM particles \(g_{\text{DM}} = 1 \), over the
Figure 2: Upper limits at 95% CL on the product of the cross section, branching fraction, and acceptance as a function of resonance mass for a narrow vector resonance decaying into a pair of quark jets. The acceptance is calculated for the analysis selection, namely three wide jets with $p_T > 72$ GeV and $|\eta| < 2.5$, and $|\eta_1 - \eta_2| < 1.1$. The observed limits (solid curve), expected limits (dashed curve) and their variation at the 1 and 2 standard deviation levels (shaded bands) are shown. The dashed-dotted curve shows the expected cross section times acceptance for a DM mediator (see text).

Table 1: Acceptance for a vector resonance decaying into a dijet as a function of the resonance mass. The acceptance is calculated using signal simulations for the analysis selection, namely three wide jets with $p_T > 72$ GeV and $|\eta| < 2.5$, and $|\eta_1 - \eta_2| < 1.1$. The errors are dominated by the uncertainty related to the modeling of the jet radiation used in signal simulations. We estimated this uncertainty by modifying by a factor of two both the renormalization (μ_R) and the factorization scales (μ_F) of the initial-state and final-state radiation [87].

Resonance mass	Acceptance
300 GeV	(4.0 ± 0.4)%
400 GeV	(6.7 ± 0.7)%
500 GeV	(9.2 ± 0.9)%
600 GeV	(10.9 ± 1.1)%
800 GeV	(13.6 ± 1.4)%

The complete mass range is 350 to 700 GeV. In our notation, g'_q is the coupling for a model in which the resonance couples to quarks only, and g_q is the coupling to quarks for a model in which the resonance also couples to DM particles. We convert g_q into g'_q using the following relationship

$$g'_q = \frac{g_q}{\sqrt{1 + 1/ \left(3N_q(M_{med})g_q^2\right)}}$$ \hspace{1cm} (2)

where $N_q(M_{med})$ is the effective number of quarks

$$N_q(M_{med}) = \sum_q \left(1 - 4\frac{m_q^2}{M_{med}^2}\right)^{1/2} \left(1 + 2\frac{m_q^2}{M_{med}^2}\right)$$ \hspace{1cm} (3)

and the index q runs over the quark flavors (u, d, s, c, b, t) having $m_q < M_{med}/2$ [11, 60].
Figure 3: Upper limits at 95% CL on the universal quark coupling g'_q, as a function of resonance mass, for a narrow vector resonance that only couples to quarks. The observed limits (solid curve), expected limits (dashed curve) and their variation at the 1 and 2 standard deviation levels (shaded bands) are shown. The dashed-dotted curve shows the coupling strength for which the cross section for dijet production in this model is the same as for a DM mediator (see text).

8 Summary

A search for a narrow vector resonance of mass between 350 and 700 GeV decaying into two jets has been performed in events containing at least three jets using proton-proton collision data at $\sqrt{s} = 13$ TeV at the LHC corresponding to an integrated luminosity of 18.3 fb$^{-1}$. The dijet mass distribution of the two leading jets is smooth, and there is no evidence for a resonance. Upper limits at 95% confidence level are set on the product of the cross section, branching fraction, and acceptance as a function of resonance mass. This search excludes a simplified model of interactions between quarks and dark matter particles of mass 1 GeV, where the interactions are mediated by a vector particle with mass between 350 and 700 GeV, for coupling strengths of $g_q = 0.25$ and $g_{DM} = 1$. Upper limits between 0.10 and 0.15 are also set on the coupling to quarks g'_q for a vector particle interacting only with quarks. These results represent the most stringent upper limits in the mass range between 350 and 450 GeV obtained with a flavor-inclusive dijet resonance search.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy
of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFI A (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFI A research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 3.2989.2017 (Russia); the Programa de Fomento de la Investigación Científica y Técnica de Excelencia Maria de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Nvidia Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] UA1 Collaboration, “Two-jet mass distributions at the CERN proton- antiproton collider”, Phys. Lett. B 209 (1988) 127, doi:10.1016/0370-2693(88)91843-6.

[2] UA2 Collaboration, “A measurement of two jet decays of the W and Z bosons at the CERN ¯pp collider”, Z. Phys. C 49 (1991) 17, doi:10.1007/BF01570793.

[3] UA2 Collaboration, “A search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN ¯pp collider”, Nucl. Phys. B 400 (1993) 3, doi:10.1016/0550-3213(93)90395-6.

[4] CDF Collaboration, “The two jet invariant mass distribution at $\sqrt{s} = 1.8$ TeV”, Phys. Rev. D 41 (1990) 1722, doi:10.1103/PhysRevD.41.1722.
[5] CDF Collaboration, “Search for quark compositeness, axigluons and heavy particles using the dijet invariant mass spectrum observed in $p\bar{p}$ collisions”, *Phys. Rev. Lett.* **71** (1993) 2542, doi:10.1103/PhysRevLett.71.2542

[6] CDF Collaboration, “Search for new particles decaying to dijets in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV”, *Phys. Rev. Lett.* **74** (1995) 3538, doi:10.1103/PhysRevLett.74.3538, arXiv:hep-ex/9501001

[7] CDF Collaboration, “Search for new particles decaying to dijets at CDF”, *Phys. Rev. D* **55** (1997) 5263, doi:10.1103/PhysRevD.55.R5263, arXiv:hep-ex/9702004

[8] CDF Collaboration, “Search for new particles decaying into dijets in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. D* **79** (2009) 112002, doi:10.1103/PhysRevD.79.112002, arXiv:0812.4036

[9] D0 Collaboration, “Search for new particles in the two jet decay channel with the D0 detector”, *Phys. Rev. D* **69** (2004) 111101, doi:10.1103/PhysRevD.69.111101, arXiv:hep-ex/0308033

[10] D. Abercrombie et al., “Dark matter benchmark models for early LHC run-2 searches: Report of the ATLAS/CMS dark matter forum”, *Phys. Dark Univ.* **26** (2019) 100371, doi:10.1016/j.dark.2019.100371, arXiv:1507.00966

[11] G. Busoni et al., “Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter”, *Physics of the Dark Universe* (2019) 100365, doi:10.1016/j.dark.2019.100365, arXiv:1603.04156

[12] M. Chala et al., “Constraining dark sectors with monojets and dijets”, *JHEP* **07** (2015) 089, doi:10.1007/JHEP07(2015)089, arXiv:1503.05916

[13] J. Abdallah et al., “Simplified models for dark matter searches at the LHC”, *Phys. Dark Univ.* **9-10** (2015) 8, doi:10.1016/j.dark.2015.08.001, arXiv:1506.03116

[14] XENON100 Collaboration, “Dark matter results from 225 live days of XENON100 data”, *Phys. Rev. Lett.* **109** (2012) 181301, doi:10.1103/PhysRevLett.109.181301, arXiv:1207.5988

[15] XENON100 Collaboration, “XENON100 dark matter results from a combination of 477 live days”, *Phys. Rev. D* **94** (2016) 122001, doi:10.1103/PhysRevD.94.122001, arXiv:1609.06154

[16] XENON Collaboration, “Dark matter search results from a one ton-year exposure of XENON1T”, *Phys. Rev. Lett.* **121** (2018) 111302, doi:10.1103/PhysRevLett.121.111302, arXiv:1805.12562

[17] PandaX-II Collaboration, “Dark matter results from 54-ton-day exposure of PandaX-II experiment”, *Phys. Rev. Lett.* **119** (2017) 181302, doi:10.1103/PhysRevLett.119.181302, arXiv:1708.06917

[18] PandaX-II Collaboration, “Dark matter results from first 98.7 days of data from the PandaX-II experiment”, *Phys. Rev. Lett.* **117** (2016) 121303, doi:10.1103/PhysRevLett.117.121303, arXiv:1607.07400
[19] LUX Collaboration, “Results from a search for dark matter in the complete LUX exposure”, Phys. Rev. Lett. 118 (2017) 021303, doi:10.1103/PhysRevLett.118.021303, arXiv:1608.07648.

[20] LUX Collaboration, “Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure”, Phys. Rev. Lett. 118 (2017) 251302, doi:10.1103/PhysRevLett.118.251302, arXiv:1705.03380.

[21] DarkSide Collaboration, “Results from the first use of low radioactivity argon in a dark matter search”, Phys. Rev. D 93 (2016) 081101, doi:10.1103/PhysRevD.93.081101, arXiv:1510.00702 [Addendum: doi:10.1103/PhysRevD.95.069901].

[22] SuperCDMS Collaboration, “Improved WIMP-search reach of the CDMS II germanium data”, Phys. Rev. D 92 (2015) 072003, doi:10.1103/PhysRevD.92.072003, arXiv:1504.05871.

[23] SuperCDMS Collaboration, “New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment”, Phys. Rev. Lett. 116 (2016) 071301, doi:10.1103/PhysRevLett.116.071301, arXiv:1509.02448.

[24] SuperCDMS Collaboration, “Projected sensitivity of the SuperCDMS SNOLAB experiment”, Phys. Rev. D 95 (2017) 082002, doi:10.1103/PhysRevD.95.082002, arXiv:1610.00006.

[25] AMS Collaboration, “Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station”, Phys. Rev. Lett. 117 (2016) 091103, doi:10.1103/PhysRevLett.117.091103.

[26] AMS Collaboration, “Observation of complex time structures in the cosmic-ray electron and positron fluxes with the alpha magnetic spectrometer on the international space station”, Phys. Rev. Lett. 121 (2018) 051102, doi:10.1103/PhysRevLett.121.051102.

[27] AMS Collaboration, “Towards understanding the origin of cosmic-ray positrons”, Phys. Rev. Lett. 122 (2019) 041102, doi:10.1103/PhysRevLett.122.041102.

[28] IceCube Collaboration, “Search for annihilating dark matter in the sun with 3 years of IceCube data”, Eur. Phys. J. C 77 (2017) 146, doi:10.1140/epjc/s10052-017-4689-9, arXiv:1612.05949 [Erratum: doi:10.1140/epjc/s10052-019-6702-y].

[29] PAMELA Collaboration, “PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy”, Phys. Rev. Lett. 105 (2010) 121101, doi:10.1103/PhysRevLett.105.121101, arXiv:1007.0821.

[30] PAMELA Collaboration, “Cosmic-ray positron energy spectrum measured by PAMELA”, Phys. Rev. Lett. 111 (2013) 081102, doi:10.1103/PhysRevLett.111.081102, arXiv:1308.0133.

[31] R. Bernabei et al., “First model independent results from DAMA/LIBRA-phase2”, Nucl. Phys. At. Energy 19 (2018) 307, doi:10.15407/jnpae2018.04.307, arXiv:1805.10486.
[32] DM-Ice Collaboration, “First search for a dark matter annual modulation signal with NaI(Tl) in the southern hemisphere by DM-Ice17”, *Phys. Rev. D* **95** (2017) 032006, \[doi:10.1103/PhysRevD.95.032006\] [arXiv:1602.05939]

[33] Fermi-LAT Collaboration, “Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data”, *Phys. Rev. Lett.* **115** (2015) 231301, \[doi:10.1103/PhysRevLett.115.231301\] [arXiv:1503.02641]

[34] Fermi-LAT Collaboration, “Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope”, *Phys. Rev. D* **95** (2017) 082007, \[doi:10.1103/PhysRevD.95.082007\] [arXiv:1704.07195]

[35] Fermi-LAT Collaboration, “The Fermi galactic center GeV excess and implications for dark matter”, *Astrophys. J.* **840** (2017) 43, \[doi:10.3847/1538-4357/aa6cab\] [arXiv:1704.03910]

[36] Super-Kamiokande Collaboration, “Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande”, *Phys. Rev. Lett.* **114** (2015) 141301, \[doi:10.1103/PhysRevLett.114.141301\] [arXiv:1503.04858]

[37] F. Aharonian et al., “Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S”, *Astron. Astrophys.* **508** (2009) 561, \[doi:10.1051/0004-6361/200913323\] [arXiv:0905.0105]

[38] H.E.S.S. Collaboration, “Spectrum and variability of the galactic center VHE gamma-ray source HESS J1745-290”, *Astron. Astrophys.* **503** (2009) 817, \[doi:10.1051/0004-6361/200811569\] [arXiv:0906.1247]

[39] H.E.S.S. Collaboration, “Localising the VHE gamma-ray source at the galactic centre”, *Mon. Not. Roy. Astron. Soc.* **402** (2010) 1877, \[doi:10.1111/j.1365-2966.2009.16014.x\] [arXiv:0911.1912]

[40] ATLAS Collaboration, “Search for dark matter at $\sqrt{s} = 13$ TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector”, *Eur. Phys. J. C* **77** (2017) 393, \[doi:10.1140/epjc/s10052-017-4965-8\] [arXiv:1704.03848]

[41] ATLAS Collaboration, “Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector”, *JHEP* **01** (2018) 126, \[doi:10.1007/JHEP01(2018)126\] [arXiv:1711.03301]

[42] ATLAS Collaboration, “Combination of searches for invisible Higgs boson decays with the ATLAS experiment”, *Phys. Rev. Lett.* **122** (2019) 231801, \[doi:10.1103/PhysRevLett.122.231801\] [arXiv:1904.05105]

[43] ATLAS Collaboration, “Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *JHEP* **10** (2018) 180, \[doi:10.1007/JHEP10(2018)180\] [arXiv:1807.11471]

[44] CMS Collaboration, “Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at $\sqrt{s} = 13$ TeV”, *Phys. Rev. D* **97** (2018) 092005, \[doi:10.1103/PhysRevD.97.092005\] [arXiv:1712.02345]
[45] CMS Collaboration, “Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **02** (2019) 074, [doi:10.1007/JHEP02(2019)074](https://doi.org/10.1007/JHEP02(2019)074) [arXiv:1810.00196](https://arxiv.org/abs/1810.00196).

[46] CMS Collaboration, “Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *Eur. Phys. J. C* **78** (2018) 291, [doi:10.1140/epjc/s10052-018-5740-1](https://doi.org/10.1140/epjc/s10052-018-5740-1) [arXiv:1711.00431](https://arxiv.org/abs/1711.00431).

[47] L. A. Anchordoqui et al., “Dijet signals for low mass strings at the LHC”, *Phys. Rev. Lett.* **101** (2008) 241803, [doi:10.1103/PhysRevLett.101.241803](https://doi.org/10.1103/PhysRevLett.101.241803) [arXiv:0808.0497](https://arxiv.org/abs/0808.0497).

[48] S. Cullen, M. Perelstein, and M. E. Peskin, “TeV strings and collider probes of large extra dimensions”, *Phys. Rev. D* **62** (2000) 055012, [doi:10.1103/PhysRevD.62.055012](https://doi.org/10.1103/PhysRevD.62.055012) [arXiv:hep-ph/0001166](https://arxiv.org/abs/hep-ph/0001166).

[49] J. L. Hewett and T. G. Rizzo, “Low-energy phenomenology of superstring inspired E(6) models”, *Phys. Rept.* **183** (1989) 193, [doi:10.1016/0370-1573(89)90071-9](https://doi.org/10.1016/0370-1573(89)90071-9).

[50] U. Baur, I. Hinchliffe, and D. Zeppenfeld, “Excited quark production at hadron colliders”, *Int. J. Mod. Phys. A* **2** (1987) 1285, [doi:10.1142/S0217751X87000661](https://doi.org/10.1142/S0217751X87000661).

[51] U. Baur, M. Spira, and P. M. Zerwas, “Excited quark and lepton production at hadron colliders”, *Phys. Rev. D* **42** (1990) 815, [doi:10.1103/PhysRevD.42.815](https://doi.org/10.1103/PhysRevD.42.815).

[52] P. H. Frampton and S. L. Glashow, “Chiral color: An alternative to the standard model”, *Phys. Lett. B* **190** (1987) 157, [doi:10.1016/0370-2693(87)90859-8](https://doi.org/10.1016/0370-2693(87)90859-8).

[53] R. S. Chivukula, E. H. Simmons, A. Farzinnia, and J. Ren, “Hadron collider production of massive color-octet vector bosons at next-to-leading order”, *Phys. Rev. D* **87** (2013) 094011, [doi:10.1103/PhysRevD.87.094011](https://doi.org/10.1103/PhysRevD.87.094011) [arXiv:1303.1120](https://arxiv.org/abs/1303.1120).

[54] E. H. Simmons, “Coloron phenomenology”, *Phys. Rev. D* **55** (1997) 1678, [doi:10.1103/PhysRevD.55.1678](https://doi.org/10.1103/PhysRevD.55.1678) [arXiv:hep-ph/9608269](https://arxiv.org/abs/hep-ph/9608269).

[55] T. Han, I. Lewis, and Z. Liu, “Colored resonant signals at the LHC: Largest rate and simplest topology”, *JHEP* **12** (2010) 085, [doi:10.1007/JHEP12(2010)085](https://doi.org/10.1007/JHEP12(2010)085) [arXiv:1010.4309](https://arxiv.org/abs/1010.4309).

[56] E. Eichten, I. Hinchliffe, K. D. Lane, and C. Quigg, “Super collider physics”, *Rev. Mod. Phys.* **56** (1984) 579, [doi:10.1103/RevModPhys.56.579](https://doi.org/10.1103/RevModPhys.56.579).

[57] L. Randall and R. Sundrum, “An alternative to compactification”, *Phys. Rev. Lett.* **83** (1999) 4690, [doi:10.1103/PhysRevLett.83.4690](https://doi.org/10.1103/PhysRevLett.83.4690) [arXiv:hep-th/9906064](https://arxiv.org/abs/hep-th/9906064).

[58] ATLAS Collaboration, “Search for new phenomena in dijet events using 37 fb$^{-1}$ of pp collision data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Rev. D* **96** (2017) 052004, [doi:10.1103/PhysRevD.96.052004](https://doi.org/10.1103/PhysRevD.96.052004) [arXiv:1703.09127](https://arxiv.org/abs/1703.09127).

[59] ATLAS Collaboration, “Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV”, *Phys. Rev. Lett.* **121** (2018) 081801, [doi:10.1103/PhysRevLett.121.081801](https://doi.org/10.1103/PhysRevLett.121.081801) [arXiv:1804.03496](https://arxiv.org/abs/1804.03496).
References

[60] CMS Collaboration, “Search for narrow and broad dijet resonances in proton-proton collisions at $\sqrt{s} = 13$ TeV and constraints on dark matter mediators and other new particles”, *JHEP* **08** (2018) 130, [doi:10.1007/JHEP08(2018)130](https://doi.org/10.1007/JHEP08(2018)130), [arXiv:1806.00843](https://arxiv.org/abs/1806.00843).

[61] ATLAS Collaboration, “Search for new phenomena in the dijet mass distribution using pp collision data at $\sqrt{s} = 8$ TeV with the ATLAS detector”, *Phys. Rev. D* **91** (2015) 052007, [doi:10.1103/PhysRevD.91.052007](https://doi.org/10.1103/PhysRevD.91.052007), [arXiv:1407.1376](https://arxiv.org/abs/1407.1376).

[62] CMS Collaboration, “Search for narrow resonances in dijet final states at $\sqrt{s} = 8$ TeV with the novel CMS technique of data scouting”, *Phys. Rev. Lett.* **117** (2016) 031802, [doi:10.1103/PhysRevLett.117.031802](https://doi.org/10.1103/PhysRevLett.117.031802), [arXiv:1604.08907](https://arxiv.org/abs/1604.08907).

[63] ATLAS Collaboration, “Search for low-mass resonances decaying into two jets and produced in association with a photon using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Lett. B* **795** (2019) 56, [doi:10.1016/j.physletb.2019.03.067](https://doi.org/10.1016/j.physletb.2019.03.067), [arXiv:1901.10917](https://arxiv.org/abs/1901.10917).

[64] CMS Collaboration, “Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *Phys. Rev. Lett.* **120** (2018) 201801, [doi:10.1103/PhysRevLett.120.201801](https://doi.org/10.1103/PhysRevLett.120.201801), [arXiv:1802.06149](https://arxiv.org/abs/1802.06149).

[65] ATLAS Collaboration, “Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Lett. B* **788** (2019) 316, [doi:10.1016/j.physletb.2018.09.062](https://doi.org/10.1016/j.physletb.2018.09.062), [arXiv:1801.08769](https://arxiv.org/abs/1801.08769).

[66] CMS Collaboration, “Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *Phys. Rev. D* **100** (2019) 112007, [doi:10.1103/PhysRevD.100.112007](https://doi.org/10.1103/PhysRevD.100.112007), [arXiv:1909.04114](https://arxiv.org/abs/1909.04114).

[67] CMS Collaboration, “Search for low mass quark-antiquark resonances produced in association with a photon at $\sqrt{s} = 13$ TeV”, *Phys. Rev. Lett.* **123** (2019), no. 23, 231803, [doi:10.1103/PhysRevLett.123.231803](https://doi.org/10.1103/PhysRevLett.123.231803), [arXiv:1905.10331](https://arxiv.org/abs/1905.10331).

[68] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, [doi:10.1088/1748-0221/3/08/S08004](https://doi.org/10.1088/1748-0221/3/08/S08004).

[69] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, *JHEP* **04** (2008) 063, [doi:10.1088/1126-6708/2008/04/063](https://doi.org/10.1088/1126-6708/2008/04/063), [arXiv:0802.1189](https://arxiv.org/abs/0802.1189).

[70] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, *Eur. Phys. J. C* **72** (2012) 1896, [doi:10.1140/epjc/s10052-012-1896-2](https://doi.org/10.1140/epjc/s10052-012-1896-2), [arXiv:1111.6097](https://arxiv.org/abs/1111.6097).

[71] CMS Collaboration, “The CMS trigger system”, *JINST* **12** (2017) P01020, [doi:10.1088/1748-0221/12/01/P01020](https://doi.org/10.1088/1748-0221/12/01/P01020), [arXiv:1609.02365](https://arxiv.org/abs/1609.02365).

[72] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* **07** (2014) 079, [doi:10.1007/JHEP07(2014)079](https://doi.org/10.1007/JHEP07(2014)079), [arXiv:1405.0301](https://arxiv.org/abs/1405.0301).

[73] M. Backovic, K. Kong, and M. McCaskey, “MadDM v.1.0: Computation of dark matter relic abundance using MadGraph5”, *Phys. Dark Univ.* **5-6** (2014) 18, [doi:10.1016/j.dark.2014.04.001](https://doi.org/10.1016/j.dark.2014.04.001), [arXiv:1308.4955](https://arxiv.org/abs/1308.4955).
[74] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* **191** (2015) 159, [doi:10.1016/j.cpc.2015.01.024](https://doi.org/10.1016/j.cpc.2015.01.024), [arXiv:1410.3012](https://arxiv.org/abs/1410.3012).

[75] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* **76** (2016) 155, [doi:10.1140/epjc/s10052-016-3988-x](https://doi.org/10.1140/epjc/s10052-016-3988-x), [arXiv:1512.00815](https://arxiv.org/abs/1512.00815).

[76] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, [doi:10.1016/S0168-9002(03)01368-8](https://doi.org/10.1016/S0168-9002(03)01368-8).

[77] R. D. Ball et al., “Parton distributions with LHC data”, *Nucl. Phys. B* **867** (2013) 244, [doi:10.1016/j.nuclphysb.2012.10.003](https://doi.org/10.1016/j.nuclphysb.2012.10.003), [arXiv:1207.1303](https://arxiv.org/abs/1207.1303).

[78] R. A. Fisher, “On the interpretation of χ^2 from contingency tables, and the calculation of P”, *J. Roy. Statis. Soc.* **85** (1922) 87, [doi:10.2307/2340521](https://doi.org/10.2307/2340521).

[79] A. N. Kolmogorov, “Sulla determinazione empirica di una legge di distribuzione”, *Giornale dell’Istituto Italiano degli Attuari* **4** (1933) 83.

[80] N. V. Smirnov, “Estimate of deviation between empirical distribution functions in two independent samples”, *Bull. Moscow Univ.* **2** (1939) 3616.

[81] N. V. Smirnov, “Table for estimating the goodness of fit of empirical distributions”, *Ann. Math. Stat.* **19** (1948) 279, [doi:10.1214/aoms/1177730256](https://doi.org/10.1214/aoms/1177730256).

[82] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* **71** (2011) 1554, [doi:10.1140/epjc/s10052-011-1554-0](https://doi.org/10.1140/epjc/s10052-011-1554-0), [arXiv:1007.1727](https://arxiv.org/abs/1007.1727) [Erratum: [doi:10.1140/epjc/s10052-013-2501-z](https://doi.org/10.1140/epjc/s10052-013-2501-z)].

[83] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instr. Meth. A* **434** (1999) 435, [doi:10.1016/S0168-9002(99)00498-2](https://doi.org/10.1016/S0168-9002(99)00498-2), [arXiv:hep-ex/9902006](https://arxiv.org/abs/hep-ex/9902006).

[84] A. L. Read, “Presentation of search results: the CLs technique”, *J. Phys. G* **28** (2002) 2693, [doi:10.1088/0954-3899/28/10/313](https://doi.org/10.1088/0954-3899/28/10/313).

[85] ATLAS and CMS Collaborations, and the LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, CERN, 2011.

[86] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, *JINST* **12** (2017) P02014, [doi:10.1088/1748-0221/12/02/P02014](https://doi.org/10.1088/1748-0221/12/02/P02014), [arXiv:1607.03663](https://arxiv.org/abs/1607.03663).

[87] S. Mrenna and P. Skands, “Automated parton-shower variations in PYTHIA 8”, *Phys. Rev. D* **94** (2016) 074005, [doi:10.1103/PhysRevD.94.074005](https://doi.org/10.1103/PhysRevD.94.074005), [arXiv:1605.08352](https://arxiv.org/abs/1605.08352).

[88] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, CERN, 2017.

[89] B. A. Dobrescu and F. Yu, “Coupling-mass mapping of dijet peak searches”, *Phys. Rev. D* **88** (2013) 035021, [doi:10.1103/PhysRevD.88.035021](https://doi.org/10.1103/PhysRevD.88.035021), [arXiv:1306.2629](https://arxiv.org/abs/1306.2629) [Erratum: [doi:10.1103/PhysRevD.90.079901](https://doi.org/10.1103/PhysRevD.90.079901)].
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan†, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, T. Bergauer, M. Dragicicvic, J. Erö, A. Escalante Del Valle, M. Flechl,
R. Frühwirth†, M. Jeitler†, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad,
J. Schieck†, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, C.-E. Wulz†, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Drugakov, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, D. Di Croce, X. Janssen, A. Lelek, M. Pieters, H. Rejeb Sfar,
H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovsky, S. Lowette,
I. Marchesini, S. Moortgat, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck,
P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart,
A. Grebenyuk, A.K. Kalsi, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde,
P. Vanlaer, D. Vannerom

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, I. Khvastunov2, M. Niedziela, C. Roskas, M. Tytgat, W. Verbeke,
B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
O. Bondu, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, V. Lemaître,
J. Prisciandaro, A. Saggio, M. Vidal Marono, P. Vischia, J. Zobec

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, E. Coelho, E.M. Da Costa,
G.G. Da Silveira4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza,
L.M. Huertas Guativa, H. Malbouisson, J. Martins5, D. Matos Figueiredo, M. Medina Jaime6,
M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva,
L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote3, F. Torres
Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista †, Universidade Federal do ABC ‡, São Paulo, Brazil
C.A. Bernardes9, L. Calligaris8, T.R. Fernandez Perez Tomei4, E.M. Gregores9, D.S. Lemos,
P.G. Mercadante8, S.F. Novaes8, SandraS. Padula8

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova,
G. Sultanov
University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
G.M. Chen, H.S. Chen, M. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, A. Spiezia, J. Tao,
E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Q. Wang

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, C.F. Gonzalez Hernandez, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lebas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, M. Kolosova, S. Konstantinou, G. Mavromanakakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
F. García, J. Havukainen, J.K. Heikkilä, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris
S. Ahuja, C. Amendola, F. Beaudette, P. Busson, C. Charlot, B. Diab, G. Falmagne, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, S. Jain, F. Lagarde, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
G. Adamov

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaiaide

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Erdmann, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, W. Haj Ahmad, O. Hlushchenko, T. Kress, T. Müller, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, P. Asmuss, I. Babounikau, H. Bakhshiansohi, K. Beernaert, O. Behnke, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras, V. Botta, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, C. Contreras-Campana, V. Danilov, A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren, E. Gallo, A. Geiser, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, A. Jafari, N.Z. Jomhari, H. Jung, A. Kasem, M. Kasemann, H. Kaveh, J. Keaveney, C. Kleinwort, J. Knolle, D. Krückner, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, D. Pérez Adán, S.K. Pfletsch, D. Pitzl, A. Raspereza, A. Saibel, M. Savitskyi, V. Scheurer, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, M. Van De Klundert, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev, R. Zlebcik

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, T. Lange, A. Malara, J. Multhaup, C.E.N. Niemeyer, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, M. Giffels, P. Goldenzweig, A. Gottmann, M.A. Harrendorf, F. Hartmann, U. Husemann, S. Kudella, S. Mitra, M.U. Mozer, D. Müller, Th. Müller, M. Musich, A. Nürnberg, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki

National and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulos, G. Karathanasis, P. Kontaxakis, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, A. Stakia, K. Theofilatos, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis

University of Ioannina, Ioannina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók, R. Chudasama, M. Csanad, P. Major, K. Mandal, A. Mehta, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, F. Sikler, T. A. Vámi, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi
Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, D. Teyssier, Z.L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, W.J. Metzger, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahanipati, C. Kar, G. Kole, P. Mal, V.K. Muraleedharan Nair Bindhu, A. Nayak, D.K. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Lohan, Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, M. Bharti, R. Bhattacharyya, S. Bhattacharyya, U. Bhawandeep, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber, M. Maity, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, G. Saha, S. Sarkar, T. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, P. Kalbhor, A. Muhammad, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, Ravindra Kumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharyya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, N. Sahoo, S. Sawant

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, R. Aly, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, A. Di Florio, W. Elmetenawee, L. Fiore, A. Gelmi, G. Iaselli, M. Ince, S. Lezki, G. Maggi, M. Maggi, J.A. Merlin, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, L. Silvestris, F.M. Simone, R. Venditti, P. Verwilligen
INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi a, C. Battilana a,b, D. Bonacorsi a,b, L. Borgonovi a,b, S. Braibant-Giacomelli a,b, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, C. Ciocca a, G. Codispoti a,b, M. Cuffiani a,b, G.M. Dallavalle a, F. Fabbri a, A. Fanfani a,b, E. Fontanesi a,b, P. Giacomelli a, C. Grandi a, L. Guiducci a,b, F. Iemmi a,b, S. Lo Meo a,b, S. Marcellini a, G. Masetti a, F.L. Navarrina a,b, A. Perrotta a, F. Primavera a,b, A.M. Rossi a,b, T. Rovelli a,b, G.P. Sirotti a,b, N. Tosi a

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergo a,b, S. Costa a,b, A. Di Mattia a, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbagli a, A. Cassese, R. Ceccarelli, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, F. Fiori a,c, E. Focardi a,b, G. Latino a,b, P. Lenzi a,b, M. Meschini a, S. Paoli a, C. Primavera a,b, L. Viliani a

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benucci a, S. Bianco, D. Piccolo a

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzo a,b, F. Ferro a, R. Mulargia a,b, E. Robutti a, T. Sosi a,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benaglia a, A. Besch a,b, F. Brivio a,b, V. Ciriolo a,b,c, M.E. Dinardo a,b, P. Dini a, S. Gennai a, A. Ghezzi a,b, P. Govoni a,b,c, L. Guzzi a,b, M. Malberti a, S. Malvezzi a, D. Menasc a, F. Monti a,b, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, T. Tabarelli de Fatis a,b, D. Valsecchi a,b, D. Zuolo a,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempo a, N. Cavallo a,b,c, A. De Iorio a,b, A. Di Crescenzo a,b, F. Fabozzi a,c, F. Fienga a, G. Galati a, A.O.M. Iorio a,b, L.Lista a,b, S. Meola d, P. Paolucci a, B. Rossi a, C. Sciacca a,b, E. Voevodina a,b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi a, N. Bacchetta a, D. Bisello a,b, A. Boletti a,b, A. Bragagnolo a,b, R. Carlin a,b, P. Checchia a, P. De Castro Manzano a, T. Dorigo a,b, U. Dosselli a, F. Gasparini a,b, U. Gasparini a,b, A. Gozzelino a, S.Y. Hoh a,b, P. Lujan a, M. Margoni a,b, A.T. Meneguzzo a,b, J. Pazzini a,b, M. Presilla b, P. Ronchese a,b, R. Rossin a,b, F. Simonetto a,b, A. Tiko a, M. Tosi a,b, M. Zanetti a,b, P. Zotto a,b, G. Zumerle a,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
A. Braghieri a, D. Fiorina a,b, P. Montagna a,b, S.P. Ratti a,b, V. Re a, M. Ressegotti a,b, C. Riccardi a,b, P. Salvini a, I. Vai a, P. Vitullo a,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasini a,b, G.M. Bilei a, D. Ciangottini a,b, L. Fanò a,b, P. Larcher a,b, R. Leonardi a,b, E. Manoni a, G. Mantovani a,b, V. Mariani a,b, M. Menichelli a, A. Rossi a,b, A. Santocihia a,b, D. Spiga a

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsov a, P. Azzurri a,c, G. Bagliesi a, V. Bertacchi a,c, L. Bianchini a, T. Boccali a, R. Castaldi a, M.A. Ciocca a,b, R. Dell’Orso a, S. Donato a, G. Fedi a, L. Giannini a,c, A. Gissi a, M.T. Grippo a, F. Ligabue a,c, E. Manca a,c, G. Mandorli a,c, A. Messineo a,b, F. Palla a, A. Rizzi a,b, G. Rolandi a,b, S. Roy Chowdhury a, A. Scridano a, P. Spagnolo a, R. Tenchini a, G. Tonelli a,b, N. Turini, A. Venturi a, P.G. Verdini a
Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, M. Górski, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, J. Krolikowski, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, G. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavriilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palchik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voityshin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin
Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko41, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
M. Chadeeva42, P. Parygin, D. Philippov, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin43, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, V. Savrin

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov44, V. Blinov44, T. Dimova44, L. Kardapoltsev44, Y. Skovpen44

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitkii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and Vinca Institute of Nuclear Sciences
P. Adzic45, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic, M. Stojanovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, CristinaF. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cueva, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. Gonzalez Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez,
P. Fernández Manteca, A. García Alonso, G. Gomez, C. Martínez Rivero, P. Martínez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Russo, L. Scodellaro, I. Vila, J. M. Vizan García

University of Colombo, Colombo, Sri Lanka
K. Malagalage

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W. G. D. Dharmaratna, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Aufray, G. Auzinger, J. Baechler, P. Baillon, A. H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, P. Bortignon, E. Bossini, C. Botta, E. Brondolin, T. Camporesi, A. Caratelli, G. Cerminara, E. Chapon, G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, O. Davignon, A. De Roeck, M. Deile, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita, D. Fasanella, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Gruchala, M. Guiolbaud, D. Gulhan, J. Hegeman, C. Heidegger, Y. Iiyama, V. Innocente, T. James, P. Janot, O. Karacheban, J. Kaspar, J. Kieseler, M. Krammer, N. Kratochwil, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F. M. Pitters, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, C. Schäfer, C. Schwik, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas, J. Steggemann, S. Summers, V. R. Tavolaro, D. Treille, A. Tsirou, G. P. Van Onsem, A. Vartak, M. Verzetti, W. D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S. A. Wiederkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, R. A. Manzoni, M. T. Meinhard, F. Micheli, P. Musella, F. Nensi-Tedaldi, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D. A. Sanz Becerra, M. Schönenberger, L. Schutzka, M. L. Vesterbacka Olsson, R. Wallny, D. H. Zhu

Universität Zürich, Zurich, Switzerland
T. K. Aarrestad, C. Amsler, D. Brzhechko, M. F. Canelli, A. De Cosa, R. Del Burgo, B. Kilminster, S. Leontsinis, V. M. Mikuni, I. Neutelings, G. Raouco, P. Robmann, K. Schweiger, C. Seitz, Y. Takahashi, S. Wertz, A. Zucchetta

National Central University, Chung-Li, Taiwan
T. H. Doan, C. M. Kuo, W. Lin, A. Roy, S. S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K. F. Chen, P. H. Chen, W. - S. Hou, Y. Y. Li, R. - S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, A. Celik, S. Cerci, S. Damarseckin, Z. S. Demiroglu, F. Dolek, C. Dozen,
I. Dumanoglu, G. Gokbulut, EmineGurpinar Guler, Y. Guler, I. Hos, C. Isik, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir, S. Ozturk, A.E. Simsek, D. Sunar Cerci, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
B. Kaynak, S. Ozkorucuklu

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, B. Penning, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linaicre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, GurpreetSingh CHAHAL, D. Colling, P. Dauncy, G. Davies, M. Della Negra, R. Di Maria, P. Everaerts, G. Hall, G. Iles, M. Komm, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, A. Morton, J. Nash, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, T. Strebler, A. Tapper, K. Uchida, T. Virdee, N. Wardle, D. Winterbottom, A.G. Zecchinelli, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Albert, D. Arcaro, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, D. Sperka, I. Suarez, L. Sulak, D. Zou
Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubert, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainard, R. Breeden, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA
M. Bachtiis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Li, L. Wang, S. Wimpenny, B.R. Yates, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, D. Klein, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, C. Campagnari, M. Citron, V. Dutta, M. Franco Sevilla, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, J. Richman, U. Sarica, D. Stuart, S. Wang

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, A. Datta, A. Frankenthal, K. Mcdermott, J.R. Patterson, D. Quach, A. Ryd, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauer, D. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünewald, O. Gutsche, AllisonReinsvold Hall, J. Hanlon, R.M. Harris, S. Hasegawa, R. Heller, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klijnsma, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, J. Lewis, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena, G. Rakness, F. Ravera, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobb, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaanderin, C. Vernieri, R. Vidal, M. Wang, H.A. Weber
University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, S.V. Gleyzer, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo

Florida International University, Miami, USA
Y.R. Joshi

Florida State University, Tallahassee, USA
T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, T. Perry, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, T. Roy, M.B. Tonjes, N. Varelas, J. Viinikainen, H. Wang, X. Wang, Z. Wu

The University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki, K. Dilsiz, S. Durgut, R.P. GandrAjula, M. Haytmyradov, V. Khristenko, O.K. Koseyan, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, A.V. Gritsan, W.T. Hung, S. Kyriacou, P. Maksimovic, J. Roskes, M. Swartz

The University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, D. Majumder, W. Mcbrayer, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammedi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, A.C. Mignerey, S. Nabiili, F. Ricci-Tam, M. Seidel, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mccinn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch
University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts³, P. Hansen, J. Hiltbrand, Sh. Jain, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Kamalieddin, I. Kravchenko, J.E. Siado, G.R. Snow¹, B. Stieger, W. Tabb

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, C. Harrington, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, A. Parker, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, B. Marzocchi, D.M. Morse, T. Orimoto, L. Skinnari, F. Golf, R. Rusack, R. Saradhy, N. Schroeder, M.A. Wadud

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, Y. Musienko³⁷, R. Rucht, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, T.Y. Ling, B.L. Winer

Princeton University, Princeton, USA
G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud, D.H. Miller, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
U. Behrens, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, Arun Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A.G. Stahl Leiton, Z. Tu, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus
Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, D. Marley, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa

University of Wisconsin - Madison, Madison, WI, USA
T. Bose, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, K. Long, R. Loveless, J. Madhusudanan Sreekala, D. Pinna, T. Ruggles, A. Savin, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at UFMS, Nova Andradina, Brazil
6: Also at Universidade Federal de Pelotas, Pelotas, Brazil
7: Also at Université Libre de Bruxelles, Bruxelles, Belgium
8: Also at University of Chinese Academy of Sciences, Beijing, China
9: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Suez University, Suez, Egypt
12: Now at British University in Egypt, Cairo, Egypt
13: Also at Purdue University, West Lafayette, USA
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
23: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
24: Also at Institute of Physics, Bhubaneswar, India
25: Also at Shoolini University, Solan, India
26: Also at University of Hyderabad, Hyderabad, India
27: Also at University of Visva-Bharati, Santiniketan, India
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
30: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
31: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
32: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
33: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at University of Florida, Gainesville, USA
41: Also at Imperial College, London, United Kingdom
42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
43: Also at California Institute of Technology, Pasadena, USA
44: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
46: Also at Università degli Studi di Siena, Siena, Italy
47: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
48: Also at National and Kapodistrian University of Athens, Athens, Greece
49: Also at Universitàt Zürich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
51: Also at Burdur Mehmet Akif Ersoy University, BURDUR, Turkey
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Şirnak University, Şirnak, Turkey
54: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
55: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
56: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
57: Also at Mersin University, Mersin, Turkey
58: Also at Piri Reis University, Istanbul, Turkey
59: Also at Gaziosmanpasa University, Tokat, Turkey
60: Also at Ozyegin University, Istanbul, Turkey
61: Also at Izmir Institute of Technology, Izmir, Turkey
62: Also at Marmara University, Istanbul, Turkey
63: Also at Kafkas University, Kars, Turkey
64: Also at Istanbul Bilgi University, Istanbul, Turkey
65: Also at Hacettepe University, Ankara, Turkey
66: Also at Vrije Universiteit Brussel, Brussel, Belgium
67: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
68: Also at IPPP Durham University, Durham, United Kingdom
69: Also at Monash University, Faculty of Science, Clayton, Australia
70: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
71: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
72: Also at Bingol University, Bingol, Turkey
73: Also at Georgian Technical University, Tbilisi, Georgia
74: Also at Sinop University, Sinop, Turkey
75: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
76: Also at Texas A&M University at Qatar, Doha, Qatar
77: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea