SPICE model of memristive device using Tukey window function

Yasuhiro Takahashi\(^{1a)}\), Toshikazu Sekine\(^1\), and Michio Yokoyama\(^2\)

\(^1\) Dept. of EEC Engineering, Faculty of Engineering, Gifu University,
1–1 Yanagido, Gifu 501–1193, Japan
\(^2\) Graduate School of Science and Engineering, Yamagata University,
4–3–16 Jonan, Yonezawa 992–8510, Japan

\(^{a)}\) yasut@gifu-u.ac.jp

Abstract: This paper proposes a memistor SPICE model using the Tukey window (or tapered cosine window) function. Compared with the previously proposed models based on the boundary function, the proposed model is resistant to numerical errors. From the SPICE result of a relaxation oscillator, we observe that the proposed model can be effectively used to minimise the effect of round-off errors.

Keywords: memristor, modeling, Tukey window, SPICE

Classification: Electron devices, circuits, and systems

References

[1] L. O. Chua: IEEE Trans. Circuit Theory 18 (1971) 507. DOI:10.1109/TCT.1971.1083337
[2] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams: Nature 453 (2008) 80. DOI:10.1038/nature06932
[3] Y. Ho, G. M. Huang and P. Li: Proc. IEEE Int. Conf. Computer Aided Design (ICCAD 2009) (2009).
[4] K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang, D. Abbott and S.-M. S. Kang: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19 (2010) 1407. DOI:10.1109/TVLSI.2010.2049867
[5] J. Rajendran, H. Manem, R. Karri and G. S. Rose: Proc. IEEE Int. Symp. Nanoscale Architectures (NANOARCH 2010) (2010) 5. DOI:10.1109/NANOARCH.2010.5510933
[6] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Medeiros-Ribeiro and R. S. Williams: Nano Lett. 9 (2009) 3640. DOI:10.1021/nl901874j
[7] E. Lehtonen and M. Laiho: Proc. IEEE Int. Workshop Networks and Their App. (CNNA 2010) (2010) 1. DOI:10.1109/CNNA.2010.5430304
[8] Y. N. Joglekar and S. J. Wolf: Eur. J. Phys. 30 (2009) 661. DOI:10.1088/0143-0807/30/4/001
[9] Z. Biolek, D. Biolek and V. Biolkova: Radioengineering 18 (2009) 210.
[10] D. Biolek, M. Di Ventra and Y. V. Pershin: Radioengineering 22 (2013) 945.
[11] T. Prodromakis, B. P. Peh, C. Papavassiliou and C. Tournazou: IEEE Trans. Electron Dev. 58 (2011) 3099. DOI:10.1109/TED.2011.2158004
[12] S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser: IEEE Trans. Circuits Syst. I, Reg. Papers 60 (2013) 211. DOI:10.1109/TCSI.2012.2215714

© IEICE 2015
DOI: 10.1587/elex.12.20150149
Received February 5, 2015
Accepted February 12, 2015
Publicized February 25, 2015
Copyedited March 10, 2015
1 Introduction

In 1971, Chua pointed out the existence of the fourth passive component called memristor [1]. This element is defined by a non-linear relationship between the charge and the flux, and it can be used as a non-linear resistance memory. After 37 years, the first experimental realisation of the memristor was demonstrated in a solid-state thin-film two-terminal device (as shown in Fig. 1) by HP Labs [2]. The memory effect has been achieved by moving the doping front along the device. This discovery has attracted significant research attention and many potential applications have been reported, e.g. memories for low-cost technology [3, 4], programmable logic [5], and reconfigurable logic [6].

To design/simulate many applications, several SPICE models of the memristor have been presented, for example in [7, 8], and [9]. In these models, the boundary conditions of the memristor are solved using the window function. However, Biolek et al. [10] reported that, because the sensitivity of such boundary function models depends on the truncation error, the analysis may produce a false result.

In this paper, we propose a new memristor SPICE model with a window function for achieving numerical stability. The proposed window function is applied with a tapered cosine window (Tukey window) function. Compared with the results obtained by the conventional model, the results achieved using the proposed model are stable and unaffected by round-off errors.

2 Memristor

2.1 Theory

In [1], a charge-controlled memristor, shown in Fig. 2, is defined as a two-terminal element in which the flux ϕ between the terminals is a function of the amount of electric charge q. The voltage $v(t)$ across the memristor is given by $v(t) = M(q(t))i(t)$, where $M(q(t)) = d(q(t))/dq(t)$ is the memristance. When the memristance becomes a constant, the element functions as a resistance owing to the linear relationship. However, $\phi-q$ relation is non-linear and the element is referred to as a memristance, which can be charge-controlled.
2.2 SPICE model of HP’s memristor

A memristor consisting of a thin layer of TiO$_2$ and a second oxygen-deficient layer of TiO$_{2-x}$ sandwiched between two Pt nanowires was fabricated [2]. The voltage–current relationship of this memristor is modeled as

$$M(q(t)) = \left[\frac{R_{ON}}{L} w(t) + R_{OFF} \left(1 - \frac{w(t)}{L} \right) \right], \quad (1)$$

where R_{ON} is the resistance of the completely doped memristor, R_{OFF} is the resistance of the undoped region, and L is thickness of the TiO$_2$ film. The width of the doped region $w(t)$ is given by

$$\frac{dx(t)}{dt} = \mu \frac{R_{ON}}{L^2} i(t), \quad (2)$$

where μ represents the average dopant mobility. Although Eqs. (1) and (2) can yield a linear equation between memristance M and charge q, this model does not consider the boundary non-linear dopant drift. To overcome this drawback, a window function $w(D - w) = D^2$ is multiplied to the right side of (2). Let the state variable $x = w(t) = D$. The HP physical model with the window function can now be described as

$$v(t) = (R_{ON} x + R_{OFF}(1 - x)) i(t), \quad (3)$$

$$\frac{dx(t)}{dt} = a i(t) f(x), \quad (4)$$

where the window function $f(x) = x(1 - x)$, and the constant coefficient $a = \mu v R_{ON}/D^2$. In general, a class of memristor models can be obtained using different window functions.

3 Proposed memristor model with Tukey window function

The proposed memristor model using the Tukey window function is expressed as follows:

$$w(x) = \begin{cases}
\frac{1}{2} \left[1 + \cos \left(\frac{2\pi}{r} \left[x - \frac{r}{2} \right] \right) \right] & (0 < x \leq \frac{r}{2}) \\
1 & \left(\frac{r}{2} < x \leq 1 - \frac{r}{2} \right) \\
\frac{1}{2} \left[1 + \cos \left(\frac{2\pi}{r} \left[x - 1 + \frac{r}{2} \right] \right) \right] & \left(1 - \frac{r}{2} < x \leq 1 \right)
\end{cases} \quad (5)$$

Using the proposed windows function, the memristor model is described as

$$v(t) = (R_{ON} x + R_{OFF}(1 - x)) i(t), \quad (6)$$

$$\frac{dx(t)}{dt} = a i(t) w(x). \quad (7)$$

Fig. 3(a) and (b) show the conventional window model [8] and the proposed model respectively. Unlike the conventional model, the advantage of the proposed model is that the expression of memristance $M(q)$ can be easily obtained and the numerical value of $M(q)$ can be readily calculated from this expression. Because the conventional window function as shown in Fig. 3(a) is $f(x) = 1 - (2x - 1)^2p$ (where p is a positive integer number), the numerical analysis depends on the value
of p. This means that the convergence of numerical solutions degrades when p has a large value.

![Graph showing the effect of p on the window function](image)

Fig. 3. Conventional window function: (a), and proposed window function: (b).

Table I summarizes a comparison between different window functions shown in [12]. Compared with the other window function models, window function of the proposed model is a simple numerical equation. And the proposed model has also simple bound constraints. This characteristic is useful for simulations, where the bounds can be exceeded due to the discrete nature of simulation engines.

A complete SPICE model based on the proposed window function is listed in Table II. In the next section, we will show the difference in the responses related to the window functions obtained through SPICE simulations.

4 Simulation results

4.1 Voltage–current plane of memristor model

To confirm the pinched hysteresis loop of the memristor, the voltage–current (v–i) plane is observed using SPICE. The memristor is driven by a sinusoidal voltage source: $1.5 \sin(\omega t)$. The parameter values of the memristor are listed in Table II.

Fig. 4(a) illustrates the simulation result of the memristor model based on the window function [8]. Simulation results show a significant difference between the state variable curves of the two excitation cycles. This is caused by the numerical error that occurs during simulation.
Table I. Comparison of different memristor models using window function.

Window function	Joglekar [8]	Biolek [9]
\(f(w) = 1 - (2w/D - 1)^2p \)	Symmetric	Yes
\(f(w) = 1 - (w/D - stp(-j))^2p \)	Yes	
Resolve boundary conditions	No	Yes
Implose non-linear drift	Partially	Partially
Scale factor \((f_{out} < 1)\)	No	No
Fits memristive device model	L/N/TEAM	L/N/TEAM

Prodromakis [11]	Kvatinsky [12]	Proposed		
\(f(w) = f[1 - ((w - 0.5)^2 + 0.75)^p] \)	Yes	Practically Yes		
\(f_{on, off} = e(-c	x - x_{on, off}	- w_c) \)	Not necessarily	Practically Yes
Partially	Yes	Practically Yes		
No	No	No		

L/N/TEAM = Threshold adaptive memristor

Table II. SPICE netlist of memristor model using Tukey window function.

```
SUBCKT memristor Plus Minus
.PARAMS Ron=100 Roff=16K Rinit=1K D=10N + uv=24F r=0.8

DIFFERENTIAL EQUATION MODELING
Gx 0 x value={I(Emem)*uv*Ron/D**2*f(V(x),r)}
Cx x 0 1 IC={(Roff-Rinit)/(Roff-Ron)}
Raux x 0 1T

RESISTIVE PORT OF THE MEMRISTOR
Emem plus aux value={-I(Emem)*V(x)*(Roff-Ron)}
Roff aux minus (Roff)

PROPOSED WINDOW FUNCTION
.func f(x,r)={if(x>=0 & x<2,r/2,1)*1/2*(1+cos(2*pi/r*(x-r/2)))+
if(x>=r/2 & x<1-r/2,1,0)+if(x>1-r/2 & x<=1,1,0)*1/2*(1+cos(2*pi/r*(x-1+r/2)))}
.ENDS
```
On the other hand, Fig. 4(b) shows the $v-i$ curve results of the proposed model. From the simulation results, we summarise that the expression of memristance $M(q)$ can be easily obtained and the numerical value of $M(q)$ can be readily calculated using the proposed model.

4.2 Application: relaxation oscillator

Fig. 5 shows a target application circuit: a relaxation oscillator using a memristor. In this circuit, the oscillation frequency depends on the variation in the memristance value. Fig. 6 shows the simulation results obtained using conventional and proposed memristor models. As shown by the red rectangle marked in Fig. 6(b), we can minimise the effect of round-off errors using the proposed model. On the other hand, in the case of the conventional model, round-off errors are not minimised; hence, the output voltage, as shown by the blue rectangle marked in Fig. 6(a), is always zero despite the continuing rise in memristance.

On the other hand, Fig. 4(b) shows the $v-i$ curve results of the proposed model.

![Fig. 4. Simulation results of the memristor model when driving source $v(t) = 1.5 \sin(\omega t)$.](image)

(a) Conventional window function model.

(b) Proposed window function model.

Fig. 4. Simulation results of the memristor model when driving source $v(t) = 1.5 \sin(\omega t)$.

4.2 Application: relaxation oscillator

Fig. 5 shows a target application circuit: a relaxation oscillator using a memristor. In this circuit, the oscillation frequency depends on the variation in the memristance value. Fig. 6 shows the simulation results obtained using conventional and proposed memristor models. As shown by the red rectangle marked in Fig. 6(b), we can minimise the effect of round-off errors using the proposed model. On the other hand, in the case of the conventional model, round-off errors are not minimised; hence, the output voltage, as shown by the blue rectangle marked in Fig. 6(a), is always zero despite the continuing rise in memristance.

![Fig. 5. Relaxation oscillator using memristor.](image)
5 Conclusion

In this paper, the window function for a memristor model was presented. The proposed model used the tapered cosine window (Tukey window) function. Using SPICE, the proposed model is shown to be numerically more stable compared to conventional model.

Acknowledgments

One of the authors (Y. Takahashi) would like to thank Mr. Motonari Hirabayashi for his help and support in this study.