FREDMAN’S RECIPROCITY, INVARIANTS OF ABELIAN GROUPS, AND THE PERMANENT OF THE CAYLEY TABLE

DMITRI I. PANYUSHEV

ABSTRACT. Let \mathcal{R} be the regular representation of a finite abelian group G and let C_n denote the cyclic group of order n. For $G = C_n$, we compute the Poincaré series of all C_n-isotypic components in $S^m \mathcal{R} \otimes \wedge^r \mathcal{R}$ (the symmetric tensor exterior algebra of \mathcal{R}). From this we derive a general reciprocity and some number-theoretic identities. This generalises results of Fredman and Elashvili–Jibladze. Then we consider the Cayley table, M_G, of G and some generalisations of it. In particular, we prove that the number of formally different terms in the permanent of M_G equals $(S^n \mathcal{R})^G$, where n is the order of G.

1. INTRODUCTION

In the beginning of the 1970s, M. Fredman [7] considered the problem of computing the number of vectors $(\lambda_0, \lambda_1, \ldots, \lambda_{n-1})$ with non-negative integer components that satisfy

\begin{equation}
\lambda_0 + \cdots + \lambda_{n-1} = m \quad \text{and} \quad \sum_{j=0}^{n-1} j \lambda_j \equiv i \mod n.
\end{equation}

He denoted this number by $S(n, m, i)$. Using generating functions, Fredman obtained an explicit formula for $S(n, m, i)$, which immediately showed that $S(n, m, i) = S(m, n, i)$. The latter is said to be Fredman’s reciprocity. Using a necklace interpretation, he also constructed a bijection between the vectors enumerated by $S(n, m, i)$ and those enumerated by $S(m, n, i)$. However, these results did not attract attention and remained unnoticed.

Later, Elashvili and Jibladze [4, 5] (partly with Pataraia [6]) rediscovered these results using Invariant Theory. Let $C_n \simeq \mathbb{Z}/n\mathbb{Z}$ be the cyclic group of order n and \mathcal{R} the space of its regular representation over \mathbb{C}. Choose a basis $(v_0, v_1, \ldots, v_{n-1})$ for \mathcal{R} consisting of C_n-eigenvectors. More precisely, if $\gamma \in C_n$ is a generator and $\zeta = \sqrt[n]{1}$ a fixed primitive root of unity, then $\gamma \cdot v_i = \zeta^i v_i$. Write χ_i for the linear character $C_n \to \mathbb{C}^\times$ that takes γ to ζ^i. The monomial $v_{\lambda_1}^{\lambda_1} \cdots v_{\lambda_{n-1}}^{\lambda_{n-1}}$ has degree m and weight χ_i if and only if $(\lambda_0, \lambda_1, \ldots, \lambda_{n-1})$ satisfies (1.1). Thus, $S(n, m, i)$ is the dimension of the space of C_n-semi-invariants of weight χ_i in the mth symmetric power $S^m \mathcal{R}$. This space can also be understood as the C_n-isotypic component of type χ_i in $S^m \mathcal{R}$, denoted by $(S^m \mathcal{R})^C_n, \chi_i$. To stress the connection with cyclic

Key words and phrases. Molien formula, Poincaré series, permanent, Ramanujan’s sum.
groups, we will write $a_i(C_n, m)$ in place of $S(n, m, i)$. The celebrated Molien formula provides a closed expression for the generating function (Poincaré series)

$$F((S \cdot R)_{C_n, \chi_i}; t) = \sum_{m=0}^{\infty} a_i(C_n, m) t^m,$$

where $(S \cdot R)_{C_n, \chi_i} = \bigoplus_{m \geq 0} (S^m \cdot R)_{C_n, \chi_i}$ is the (C_n, χ_i)-isotypic component in $S \cdot R$. Then extracting the coefficient of t^m yields a formula for $a_i(C_n, m)$, see (2.2). It is worth stressing that Molien’s formula is a very efficient tool that provides a uniform approach to various combinatorial problems and paves the way for further generalisations, see e.g. [12].

In this note, we elaborate on two topics. First, generalising results of Fredman and Elashvili-Jibladze, we compute the Poincaré series for each C_n-isotypic component in the bi-graded algebra $S \cdot R \otimes \wedge \cdot R$ and then $\dim(S^n \cdot R \otimes \wedge^m \cdot R)_{C_n, \chi_i}$ for all p, m, i (Theorem 3.2). From this we derive a more general reciprocity, see (3.5). As a by-product of these computations, we obtain some interesting identities, e.g.,

$$\exp\left(\frac{z}{1-z^2}\right) = \prod_{d=1}^{\infty} (1 + z^d)^{\varphi(d)/d},$$

where φ is Euler’s totient function. In Section 4, several identities related to isotypic components in $\wedge \cdot R$ are given; some of them are valid for an arbitrary finite abelian group G, see Theorem 4.4. Second, in Section 5, we study some properties of the Cayley table, M_G, of G. If $G = \{x_0, x_1, \ldots, x_{n-1}\}$, then M_G can be regarded as an $n \times n$ matrix with entries in $C[x_0, \ldots, x_{n-1}] \simeq S \cdot R$. For $G = C_n$, M_G is nothing but a generic circulant matrix. The permanent of M_G, $\text{per}(M_G)$, is a sum of monomials in x_i’s of degree n. Using [8], we prove that the number of different monomials occurring in this sum equals $\dim(S^n \cdot R)^G$. Then we introduce the extended Cayley table, \tilde{M}_G (which is a matrix of order $n + 1$), and characterise the monomials occurring in $\text{per}(\tilde{M}_G)$ (Theorem 5.8). This characterisation implies that the number of different monomials in $\text{per}(\tilde{M}_G)$ equals $\dim(S^{n+1} \cdot R)^G$. Both $\text{per}(M_G)$ and $\det(M_G)$ belong to $S^n \cdot R$, and we prove that $\text{per}(M_G)$ is G-invariant, whereas $\det(M_G)$ is a semi-invariant whose weight is the sum of all elements of the dual group \hat{G}. The latter means that in many cases $\det(M_G)$ is invariant, too. In Section 6, we discuss some open problems related to $(S \cdot R)^G$ and $\text{per}(M_G)$.

Notation: $\#(M)$ is the cardinality of a finite set M; (n, m) is the greatest common divisor of $n, m \in \mathbb{N}$; G is always a finite group.

Acknowledgements. A part of this work was done during my stay at the Centro di Ricerca Matematica Ennio De Giorgi (Pisa) in July 2009. I am grateful to this institution for the warm hospitality and support.
2. Preliminaries

2.1. Ramanujan’s sums. Two important number-theoretic functions are Euler’s totient function φ and the M"obius function μ. Recall that $\varphi(n)$ is the number of all primitive roots of unity of order n. Given $i, n \in \mathbb{N}, n \geq 1$, the Ramanujan’s sum, $c_n(i)$, is the sum of i-th powers of the primitive roots of unity of order n. In particular, $c_n(0) = \varphi(n)$. There are two useful expressions for Ramanujan’s sums:

$$c_n(i) = \sum_{d \mid (n,i)} \mu\left(\frac{n}{d}\right) d, \quad c_n(i) = \frac{\varphi(n)}{\varphi\left(\frac{n}{(n,i)}\right)} \cdot \mu\left(\frac{n}{(n,i)}\right),$$

see [9, Theorems 271 & 272]. These formulae also show that $c_n(1) = \mu(n), c_n(i) = c_n(n-i)$, and $c_n(i)$ is always a rational integer.

2.2. Molien’s formula for the symmetric algebra. Let G be a finite group and V a finite-dimensional G-module. The original Molien formula computes the Poincaré series of the graded algebra of invariants $(S \cdot V)^G = \bigoplus_{m \geq 0} (S^m V)^G$. More generally, there is a similar formula for the Poincaré series of any G-isotypic component in $S \cdot V$. Let χ be an irreducible representation of G and $(S \cdot V)_{G,\chi}$ the isotypic component of type χ in $S \cdot V$. By definition, the Poincaré series of $(S \cdot V)_{G,\chi}$ is the power series $F((S \cdot V)_{G,\chi}; t) := \sum_{m \geq 0} \dim((S^m V)_{G,\chi}) t^m$. Then

$$F((S \cdot V)_{G,\chi}; t) = \frac{\deg(\chi) \sum_{\gamma \in G} tr(\chi(\gamma^{-1}))}{\#(G) \det_V(I - t\gamma)},$$

see e.g. [12, Thm. 2.1]. Here I is the identity matrix in $GL(V)$. (The algebra of invariants corresponds to the trivial one-dimensional representation, i.e., if $\deg(\chi) = 1$ and $\chi(\gamma) = 1$ for all $\gamma \in G$.)

Let \mathcal{R} be the space of the regular representation of G. For the G-module \mathcal{R}, Molien’s formula can be presented in a somewhat simpler form.

Proposition 2.1 ([2, V.1.8]). Let $\varphi_G(d)$ be the number of elements of order d in G. Then

$$F((S \cdot \mathcal{R})^G; t) = \frac{1}{\#(G)} \sum_{d \geq 1} \frac{\varphi_G(d)}{(1 - t^d)^{(\#G)/d}}.$$

This can easily be extended to an arbitrary χ. If $\text{ord}(\gamma)$ is the order of $\gamma \in G$, then

$$F((S \cdot \mathcal{R})_{G,\chi}; t) = \frac{\deg(\chi)}{\#(G)} \sum_{d \mid \#G} \sum_{\gamma: \text{ord}(\gamma)=d} \frac{tr(\chi(\gamma^{-1}))}{(1 - t^d)^{(\#G)/d}}.$$

In fact, we prove below a more general formula (Lemma 3.1).
2.3. Formulae of Fredman and Elashvili-Jibladze. Recall that \(a_i(C_n, m) = \dim S^m(\mathcal{R})_{\mathcal{C}_n, \chi_i} \) or, equivalently, it is the number of vectors satisfying (1.1). In particular, \(a_0(C_n, m) = \dim S^m(\mathcal{R})_{\mathcal{C}_n} \) if the elements of \(C_n \) are regarded as the roots of unity of order \(n \), then \(\chi_i \) is the character \(\xi \mapsto \xi^i, \xi \in C_n \). Here \(\varphi_{C_n}(d) \) is almost Euler’s totient function. That is, \(\varphi_{C_n}(d) = \varphi(d), \) if \(d | n; \) and \(\varphi_{C_n}(d) = 0 \) otherwise. Using (2.1) with \(G = C_n \) and \(\chi = \chi_i \), we see that \(\deg(\chi_i) = 1 \) and \(\sum_{\gamma: \text{ord}(\gamma) = d} \chi_i(\gamma^{-1}) = c_d(d - i) \). Then extracting the coefficient of \(t^m \) yields a nice-looking formula (Fredman [7], Elashvili-Jibladze [5])

\[
a_i(C_n, m) = \frac{1}{n + m} \sum_{d | (n,m)} c_d(i) \left(\frac{n/d + m/d}{n/d} \right).
\]

Remark 2.2. Both Fredman’s approach, see (1.1), and cyclic group interpretation presuppose that \(a_i(C_n, m) \) is defined for \(n \geq 1 \) and \(m \geq 0 \). But (2.2) shows that \(a_i(C_n, m) \) is naturally defined for \((n, m) \in \mathbb{N}^2, (n, m) \neq (0, 0) \).

It follows from (2.2) that \(a_i(C_n, m) = a_i(C_m, n) \). In [4, 5, 6], this equality is named the “Hermite reciprocity”. As it has no relation to Hermite and was first proved by Fredman, the term Fredman’s reciprocity seems to be more appropriate.

From (2.2), one can derive the equality

\[
\sum_{(n,m) \in \mathbb{N}^2, (n,m) \neq (0,0)} a_i(C_n, m) x^n y^m = - \sum_{d=1}^\infty \frac{c_d(i)}{d} \log(1 - x^d - y^d).
\]

(Cf. [4, Remark 2], [6, Sect. 4].)

3. Symmetric tensor exterior algebra and Poincaré series

As above, let \(V \) be a \(G \)-module. We consider the Poincaré series of the \(G \)-isotypic components in \(S^p V \otimes \wedge^q V \). Let \((S^p V \otimes \wedge^q V)_{G, \chi} \) denote the isotypic component corresponding to an irreducible representation \(\chi \). It is a bi-graded vector space and its Poincaré series is the formal power series

\[
\mathcal{F}((S^p V \otimes \wedge^q V)_{G, \chi}; s, t) = \sum_{p, q \geq 0} \dim(S^p V \otimes \wedge^q V)_{G, \chi} s^p t^q.
\]

(Clearly, it is a polynomial with respect to \(t \).) It is known that

\[
\mathcal{F}((S^p V \otimes \wedge^q V)^G; s, t) = \frac{1}{\#G} \sum_{\chi \in G} \frac{\det_V(I + t\gamma)}{\det_V(I - s\gamma)},
\]

see [1, Theorem 1.33]. A similar argument provides the formula for an arbitrary \(G \)-isotypic component:

\[
\mathcal{F}((S^p V \otimes \wedge^q V)_{G, \chi}; s, t) = \frac{\deg(\chi)}{\#G} \sum_{\gamma \in G} \frac{\tr(\chi(\gamma^{-1}))}{\det_V(I + t\gamma)} \frac{\det_V(I + t\gamma)}{\det_V(I - s\gamma)}.
\]
For, in place of the Reynolds operator \(\frac{1}{\#(G)} \sum_{\gamma \in G} \gamma \) (the projection to the subspace of \(G \)-invariants), one should merely exploit the operator \(\frac{\deg(\chi)}{\#(G)} \sum_{\gamma \in G} \text{tr}(\chi(\gamma^{-1}))\gamma \) (the projection to the isotypic component of type \(\chi \)).

Lemma 3.1. For the regular representation \(\mathcal{R} \) of \(G \), the right-hand side of (3.1) can be written as

\[
\frac{\deg(\chi)}{\#(G)} \sum_{d \geq 1} \left(\sum_{\gamma : \text{ord}(\gamma) = d} \text{tr}(\chi(\gamma^{-1})) \cdot \left(\frac{1 - (-t)^d}{1 - s^d} \right) \right) \quad (\#G/d).
\]

Proof. If \(\gamma \in G \) is of order \(d \), then \(\langle \gamma \rangle \simeq C_d \) and each coset of \(\langle \gamma \rangle \) in \(G \) is a cycle of length \(d \) with respect to the multiplication by \(\gamma \). Hence, in a suitable basis of \(\mathcal{R} \), the matrix of \(\gamma \) in \(GL(\mathcal{R}) \) consists of \((\#G)/d \) diagonal

\[
\begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & 0 \\
1 & 0 & 0 & \ldots & 0
\end{pmatrix}
\]

blocks of size \(d \). Since \(\det \begin{pmatrix} 1 & -s & 0 & \ldots & 0 \\
0 & 1 & -s & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & 0 \\
-s & 0 & 0 & \ldots & 1 \end{pmatrix} = 1 - s^d \), we obtain

\[
\frac{\det_{\mathcal{R}}(1 + t\gamma)}{\det_{\mathcal{R}}(1 - s\gamma)} = \left(\frac{1 - (-t)^d}{1 - s^d} \right)^{(\#G)/d},
\]

which proves the lemma. \(\square \)

Now, we apply this lemma to the regular representation of \(C_n \). Recall that the number \(\binom{a + b + c}{a, b, c} \) is defined to be \(\frac{(a + b + c)!}{a! b! c!} \).

Theorem 3.2. The Poincaré series of the \((C_n, \chi_i)\)-isotypic component equals

\[
(3.2) \quad \mathcal{F}((S^p \mathcal{R} \otimes \wedge^m \mathcal{R})_{C_n, \chi_i}; s, t) = \frac{1}{n} \sum_{d|n} c_d(i) \left(\frac{1 - (-t)^d}{1 - s^d} \right)^{n/d}
\]

\[
= \frac{1}{n} \sum_{d|n} c_d(i) \left(\sum_{a=0}^{n/d} (-1)^{(d+1)a} \binom{n/d}{a} t^{ad} \right) \left(\sum_{b \geq 0} \binom{(n/d) + b}{b} s^{bd} \right).
\]

Consequently,

\[
(3.3) \quad \dim(S^p \mathcal{R} \otimes \wedge^m \mathcal{R})_{C_n, \chi_i} = \frac{(-1)^m}{p + n} \sum_{d|n, p, m} (-1)^{m/d} c_d(i) \left(\frac{(n + p)/d}{m/d, p/d, (n-m)/d} \right).
\]

Proof. This is a straightforward consequence of Lemma 3.1. If \(G = C_n \), then \(\deg(\chi_i) = 1 \) and \(\sum_{\gamma : \text{ord}(\gamma) = d} \chi_i(\gamma^{-1}) = c_d(n-i) = c_d(i) \), which proves (3.2).

We leave it to the reader to extract the coefficient of \(t^m s^p \) in (3.2) and obtain (3.3). \(\square \)
Letting \(n = q + m \) yields a more symmetric form of (3.3):

\[
\dim(S^pR \otimes \wedge^m R)_{c_{q+m, \chi_i}} = \frac{(-1)^m}{p + q + m} \sum_{d|p,q,m} (-1)^{m/d} c_d(i) \left((m + p + q)/d \right).
\]

As the right-hand side is symmetric with respect to \(p \) and \(q \), we get an equality for dimensions of isotypic components related to the regular representations of two cyclic groups, \((C_{q+m}, R)\) and \((C_{p+m}, R)\):

\[
\dim(S^pR \otimes \wedge^m R)_{c_{q+m, \chi_i}} = \dim(S^pR \otimes \wedge^m R)_{c_{p+m, \chi_i}}.
\]

For \(m = 0 \), this simplifies to Fredman’s reciprocity [7, (4)]. It would be interesting to have a combinatorial interpretation of this symmetry in the spirit of Fredman’s approach.

Remark 3.3. (1) Letting \(t = 0 \) in (3.2) or \(m = 0 \) in (3.3), we get known formulae for the isotypic components in the symmetric algebra of \(R \), see [4, 5]. Letting \(s = 0 \) in (3.2) or \(n = 0 \) in (3.3), we get interesting formulae for the isotypic components in the exterior algebra of \(R \), see the next section.

(2) If \(d \) is always odd (e.g. at least one of \(m, p, q \) is odd), then \((-1)^{m+\frac{p+q}{d}} = 1\) and the right-hand side of (3.4) becomes totally symmetric with respect to \(p, q, m \).

The following is a generalisation of (2.3):

Proposition 3.4.

\[
\sum_{(p,q,m) \in \mathbb{N}^3, p+q+m \geq 1} \dim(S^pR \otimes \wedge^m R)_{c_{q+m,\chi_i}} x^p y^q z^m = -\sum_{d=1}^{\infty} \frac{c_d(i)}{d} \log(1 - x^d - y^d + (-z)^d).
\]

Proof. By (3.4), the left-hand side equals

\[
\sum_{p+q+m \geq 1} \frac{(-1)^m}{p + q + m} \sum_{d|p,q,m} (-1)^{m/d} c_d(i) \left(\frac{(p+q+m)/d}{p/d, q/d, m/d} \right)x^p y^q z^m.
\]

Letting \(p/d = \alpha, q/d = \beta, m/d = \gamma \), we rewrite it as

\[
\sum_{d=1}^{\infty} \frac{c_d(i)}{d} \sum_{\alpha+\beta+\gamma \geq 1} \frac{(-1)^{\gamma}}{\alpha + \beta + \gamma} \left(\frac{\alpha + \beta + \gamma}{\alpha, \beta, \gamma} \right) x^\alpha y^\beta (-z)^\gamma d =
\]

\[
\sum_{d=1}^{\infty} \frac{c_d(i)}{d} \sum_{k \geq 1} \frac{1}{k} \left(\frac{k}{\alpha, \beta, \gamma} \right) (x^d)^{\alpha} (y^d)^{\beta} (-(-z)^d)^{\gamma} =
\]

\[
\sum_{d=1}^{\infty} \frac{c_d(i)}{d} \sum_{k \geq 1} \frac{(x^d + y^d - (-z)^d)^k}{k} = -\sum_{d=1}^{\infty} \frac{c_d(i)}{d} \log(1 - x^d - y^d + (-z)^d).
\]

\(\square\)
Specializing the equality of Proposition 3.4, we get some interesting identities.

A) Taking $x = y = 0$ forces that $p = q = 0$ in the left-hand side, which leads to the equality

$$\sum_{m \geq 1} \dim(\wedge^m R_{C_m, \chi}) z^m = -\sum_{d=1}^{\infty} \frac{c_d(i)}{d} \log(1 + (-z)^d).$$

For $i = 0$, we have $c_d(0) = \varphi(d)$ and $\dim(\wedge^m R_{C_m}) = \begin{cases} 1, & m \text{ odd}; \\ 0, & m \text{ even}. \end{cases}$ That is,

$$\frac{z}{1 - z^2} = -\sum_{d=1}^{\infty} \frac{\varphi(d)}{d} \log(1 + (-z)^d).$$

Replacing z with $-z$ and exponentiating, we finally obtain:

$$\exp\left(\frac{z}{1 - z^2}\right) = \prod_{d \geq 1} (1 + z^d)^{\varphi(d)/d}.$$

B) Likewise, for $x = z = 0$ (or just $x = 0$ in (2.3)), we get

$$-\sum_{d=1}^{\infty} \frac{c_d(i)}{d} \log(1 - y^d) = \begin{cases} y/(1 - y), & i = 0 \\ 0, & i \neq 0. \end{cases}$$

In particular,

$$\exp\left(\frac{-y}{1 - y}\right) = \prod_{d \geq 1} (1 - y^d)^{\varphi(d)/d}.$$

4. ON THE EXTERIOR ALGEBRA OF THE REGULAR REPRESENTATION

In case of the exterior algebra of a G-module, the Poincaré series of an isotypic component is actually a polynomial in t, which can be evaluated for any t. Here we gather some practical formulae for the regular representations and for cyclic groups.

First, using (3.1) and Lemma 3.1 with trivial χ and $s = 0$, we obtain

$$F((\wedge \cdot R)^G; t) = \frac{1}{\#(G)} \sum_{d \geq 1} \varphi_G(d)(1 - (-t)^d)^{\#(G)/d}.$$

It follows that $F((\wedge \cdot R)^G; t)$ always has the factor $1 + t$ and

$$\dim(\wedge \cdot R)^G = \frac{1}{\#(G)} \sum_{d \text{ odd}} \varphi_G(d) 2^{\#(G)/d}.$$

Note that here G is not necessarily abelian!

Example 4.1. For $G = S_3$, we have $\varphi_G(1) = 1$, $\varphi_G(2) = 3$, and $\varphi_G(3) = 2$. Therefore,

$$F((\wedge \cdot R)^{S_3}; t) = \frac{1}{6} ((1 + t)^6 + 3(1 - t^2)^3 + 2(1 + t^3)^2) = 1 + t + t^2 + 4t^3 + 4t^4 + t^5.$$
For $G = C_n$, there are precise assertions for all G-isotypic components in $\wedge R$. Using Theorem 3.2 with $s = 0$ and $p = 0$, we obtain

$$\mathcal{F}(\langle \wedge R \rangle_{C_i, \chi}; t) = \frac{1}{n} \sum_{d | n} c_d(i)(1 - (-t)^d)^{n/d},$$

(4.2) for \(\dim((\wedge^m R)_{C_n, \chi}) = \frac{(-1)^m}{n} \sum_{d | n, m} (-1)^{m/d} c_d(i) \left(\frac{n/d}{m/d} \right) =: b_i(C_n, m).$$

(4.3)

Again, it is convenient to replace n with $q + m$ in (4.3). Then

$$b_i(C_{q+m}, m) = \dim((\wedge^m R)_{C_{q+m}, \chi}) = \frac{(-1)^m}{q + m} \sum_{d | q, m} (-1)^{m/d} c_d(i) \left(\frac{q/d + m/d}{m/d} \right).$$

From this we derive the following observation:

Proposition 4.2. If q or m is odd, then $b_i(C_{q+m}, m) = a_i(C_q, m)$ and also $b_i(C_{q+m}, m) = b_i(C_{q+m}, q)$.

Example 4.3. $b_i(C_{2n-1}, n-1) = a_i(C_{n-1}, n)$, and it is the $(n - 1)$-th Catalan number regardless of i.

Remark. If n is odd, then $\wedge^n R$ is the trivial C_n-module and therefore $\wedge^m R \simeq \wedge^{n-m} R$ as C_n-modules. This “explains” the equality $b_i(C_n, m) = b_i(C_n, n - m)$ for n odd.

Substituting $t = 1$ in (4.2) yields a nice formula for dimension of the whole isotypic component:

$$\dim((\wedge R)_{C_n, \chi}) = \frac{1}{n} \sum_{d | n, d \text{ odd}} c_d(i) 2^{n/d}. $$

(4.4)

For $i = 0$, this becomes a special case of (4.1). There is a down-to-earth interpretation of (4.4) that does not invoke Invariant Theory. As in the introduction, choose a basis \{ $v_0, v_1, \ldots, v_{n-1}$ \} for R such that v_i has weight χ_i. Then

$$v_{j_1} \wedge \cdots \wedge v_{j_m} \in (\wedge^m R)_{C_n, \chi} \iff j_1 + \cdots + j_m \equiv i \pmod{n}.$$

Consequently, $\dim(\wedge R)_{C_n, \chi}$ equals the number of subsets $J \subset \{0, 1, \ldots, n-1\}$ such that $|J| \equiv i \pmod{n}$. (Here $|J|$ stands for the sum of elements of J.) Hence our invariant-theoretic approach proves the following purely combinatorial fact:

$$\# \{ J \subset \{0, 1, \ldots, n-1\} | |J| \equiv i \pmod{n} \} = \frac{1}{n} \sum_{d | n, d \text{ odd}} c_d(i) 2^{n/d}.$$

(4.5)

For $i = 0$, this is nothing but the number of subsets of C_n summing to the neutral element (in the additive notation). We provide a similar interpretation for any abelian group.
Theorem 4.4. For an abelian group G, let N_G denote the number of subsets S of G such that $|S| := \sum_{\gamma \in S} \gamma = 0 \in G$. Then $N_G = \dim(\wedge^\cdot R)^G = \frac{1}{\#(G)} \sum_{d \text{ odd}} \varphi(d)2^{\#(G)/d}$.

Proof. In view of (4.1), only the first equality requires a proof. Let (z_0, \ldots, z_{n-1}) be a basis for R consisting of G-eigenvectors, $n = \#(G)$. Here the weight of z_i is a linear character χ_i and $\hat{G} = \{\chi_0, \chi_1, \ldots, \chi_{n-1}\}$ is the dual group of G. One of the χ_i’s is the neutral element of \hat{G}, denoted by $\hat{0}$ in the additive notation. Then

$$z_{j_1} \wedge \cdots \wedge z_{j_m} \in \left(\wedge^m R\right)^G \iff \chi_{j_1} + \cdots + \chi_{j_m} = \hat{0} \in \hat{G}.$$

Thus, $\dim(\wedge^\cdot R)^G$ equals the number of subsets of \hat{G} summing to $\hat{0}$. However, the groups \hat{G} and G are (non-canonically) isomorphic, hence $N_G = N_{\hat{G}}$ and we are done. \hfill \Box

5. ON THE PERMANENT OF THE CAYLEY TABLE OF AN ABELIAN GROUP

In this section, G is an abelian group, $G = \{x_0, x_1, \ldots, x_{n-1}\}$. The Cayley table of G, denoted $M_G = (m_{i,j})$, can be regarded as an n by n matrix with entries in the polynomial ring $\mathbb{C}[x_0, x_1, \ldots, x_{n-1}] \cong S \cdot R$. To distinguish the addition in $\mathbb{C}[x_0, x_1, \ldots, x_{n-1}]$ and the group operation in G, the latter is denoted by ‘+’. By definition, $m_{i,j} = x_i + x_j, i, j = 0, \ldots, n-1$. Hence M_G is a symmetric matrix. The permanent of M_G, $\text{per}(M_G)$, is a homogeneous polynomial of degree n in x_i’s, and it does not depend on the ordering of elements of G. Let $P(G)$ denote the number of formally different monomials occurring in $\text{per}(M_G)$.

Remark 5.1. In place of the Cayley table, one can consider the matrix \hat{M}_G with entries $\hat{m}_{i,j} = x_i \ominus x_j$ (the difference in G). Clearly, \hat{M}_G is obtained from M_G by rearranging the columns only (or, the rows only), using the permutation on G that takes each element to its inverse. Therefore $\text{per}(\hat{M}_G) = \text{per}(M_G)$ and $\text{det}(\hat{M}_G) = \pm \text{det}(M_G)$. Although \hat{M}_G is not symmetric in general, an advantage is that every entry on the main diagonal is the neutral elements of G.

Example 5.2. For $G = C_n$ and the natural ordering of its elements (i.e., x_i corresponds to i), one obtains a generic circulant matrix (the latter means that the rows are successive cyclic permutations of the first row). More precisely, M_{C_n} (resp. \hat{M}_{C_n}) is a circulant matrix in Hankel (resp. Toeplitz) form. For instance, $M_{C_3} = \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_0 \\ x_2 & x_0 & x_1 \end{pmatrix}$. Here $\text{per}(M_{C_3}) = x_0^3 + x_1^3 + x_2^3 + 3x_0x_1x_2$. Therefore $P(C_3) = 4$.

The function \(n \mapsto p(C_n) \) was studied in [3], where it was pointed out that the main result of Hall [8] shows that \(p(C_n) \) equals the number of solutions to

\[
\begin{cases}
\lambda_0 + \cdots + \lambda_{n-1} = n, \\
\sum_{j=0}^{n-1} j\lambda_j \equiv 0 \mod n.
\end{cases}
\]

That is, \(p(C_n) = a_0(C_n, n) \) in our notation. Because results of [8] apply to arbitrary finite abelian groups, one can be interested in \(p(G) \) in this more general setting. Below, we give an invariant-theoretic answer using that result of Hall.

Let \(S_n \) denote the symmetric group acting by permutations on \(\{0, 1, \ldots, n-1\} \). Accordingly, \(S_n \) permutes the elements of \(G \) by the rule \(\pi(x_i) := x_{\pi(i)} \). Recall that

\[
\text{per}(m_{i,j}) = \sum_{\pi \in S_n} \prod_{i=0}^{n-1} m_{i,\pi(i)}.
\]

For the matrix \(M_G \),

\[
\prod_{i=0}^{n-1} m_{i,\pi(i)} = \prod_{i=0}^{n-1} (x_i + x_{\pi(i)}) = \prod_{i=0}^{n-1} x_i^{k_i(\pi)} =: x(\pi)
\]

is a monomial in \(x_i \)'s of degree \(n \). Note that different permutations may result in the same monomial. The following is essentially proved by M. Hall.

Theorem 5.3 ([8, n.3]). A monomial \(m = \prod_{i=0}^{n-1} x_i^{k_i} \) is of the form \(x(\pi) \) for some \(\pi \in S_n \) (i.e., occurs in \(\text{per}(M_G) \)) if and only if \(\sum_i k_i = n \) and \(k_0x_0 + \cdots + k_{n-1}x_{n-1} = 0 \in G \). [Of course, here \(k_i x_i \) stands for \(x_i + \cdots + x_i \) (\(k_i \) times).]

The necessity of the conditions is easy; a non-trivial argument is required for the sufficiency, i.e., for the existence of \(\pi \).

Theorem 5.4. \(p(G) = \dim S^n(\mathcal{R})^G \).

Proof. Let \((z_0, \ldots, z_{n-1}) \) be a basis for \(\mathcal{R} \) consisting of \(G \)-eigenvectors. Recall that the weight of \(z_i \) is \(\chi_i \) and \(\hat{G} = \{\chi_0, \ldots, \chi_{n-1}\} \) is the dual group. The monomial \(z_0^{k_0} \cdots z_{n-1}^{k_{n-1}} \in S^*\mathcal{R} \) is a semi-invariant of \(G \) of weight \(k_0\chi_0 + \cdots + k_{n-1}\chi_{n-1} = 0 \in \hat{G} \). It follows that

\[
\dim S^n(\mathcal{R})^G = \{(k_0, \ldots, k_{n-1}) \mid \sum_i k_i = n \ \& \ k_0\chi_0 + \cdots + k_{n-1}\chi_{n-1} = 0 \}.
\]

Modulo the passage from \(G \) to \(\hat{G} \), these conditions coincide with those of Theorem 5.3. Since \(G \simeq \hat{G} \), we are done. \(\square \)

Our next goal is to extend these results to a certain matrix of order \(n + 1 \). We begin with two assertions on \(\text{per}(M_G) \), which are of independent interest.
Proposition 5.5. There is a natural action \(\ast : G \times S_n \to S_n \) such that, for \(\gamma \in G \) and \(\pi \in S_n \), \(\text{sign}(\gamma \ast \pi) = \text{sign}(\pi) \) and \(\a(\gamma \ast \pi) = \a(\pi) \).

Proof. Every \(\gamma \in G \) determines a permutation \(\sigma_\gamma \) on \(G \) and thereby an element of \(S_n \). Namely:

\[
(x_0, \ldots, x_{n-1}) \mapsto (\gamma + x_0, \ldots, \gamma + x_{n-1}).
\]

Equivalently, \(x_{\sigma_\gamma(i)} = x_i + \gamma \). Define the \(G \)-action on \(S_n \) by \(\gamma \ast \pi = \sigma_\gamma \pi \sigma_\gamma \). Hence \(\text{sign}(\gamma \ast \pi) = \text{sign}(\pi) \). Recall that \(\a(\pi) = \prod_{i=0}^{n-1} (x_i + x_{\pi(i)}) \). Then

\[
\a(\gamma \ast \pi) = \prod_{i=0}^{n-1} (x_i + x_{\sigma_\gamma \pi(i)}) = \prod_{j=0}^{n-1} (x_{\sigma_\gamma^{-1}(j)} + x_{\sigma_\gamma \pi(j)}),
\]

where \(j = \sigma_\gamma(i) \). By definition, \(x_{\sigma_\gamma \pi(j)} = x_{\pi(j)} + \gamma \) and \(x_j = x_{\sigma_\gamma^{-1}(j)} + \gamma \). Thus, the linear factors of \(\a(\gamma \ast \pi) \) remain the same. \(\square \)

Remark 5.6. Our action ‘\(\ast \)' can be regarded as a generalisation of Lehmer’s “operator \(S \)” for circulant matrices [11, p. 45], i.e., essentially, for \(G = C_n \). Using that operator Lehmer proved that, for \(n = p \) odd prime,

\[
\text{det}(M_{C_p}) = x_0^p + \cdots + x_{p-1}^p + pF(x_0, \ldots, x_{p-1}),
\]

where \(F \in \mathbb{Z}[x_0, \ldots, x_{p-1}] \). We note that Lehmer’s argument applies to \(\text{per}(M_{C_p}) \) as well.

Proposition 5.7. Suppose that \(m \) is a monomial in \(\text{per}(M_G) \) such that \(x_k \) occurs in \(m \). If \(x_k = x_i + x_j \) for some \(i, j \), then there is \(\sigma \in S_n \) such that \(\sigma(i) = j \) and \(m = \a(\sigma) \).

Proof. By the assumption on \(m \), there is a \(\pi \in S_n \) such that \(m = \a(\pi) \) and \(x_k = x_\alpha + x_\beta \) for some \(\alpha, \beta \) with \(\pi(\alpha) = \beta \). If \(\{\alpha, \beta\} \neq \{i, j\} \), then we have to correct \(\pi \). Take \(\gamma \in G \) such that \(x_i + \gamma = x_\alpha \). Then \(x_\beta + \gamma = x_j \) and for \(\sigma = \gamma \ast \pi \) we have

\[
\sigma(x_i) = \gamma \pi \sigma_\gamma(x_i) = \sigma_\gamma(x_\alpha) = \sigma_\gamma(x_\beta) = x_\beta + \gamma = x_j.
\]

Thus, \(\sigma(i) = j \) and also \(\a(\sigma) = \a(\pi) \) in view of Proposition 5.5. \(\square \)

The Cayley table of \(G \) is the “addition table” of all elements of \(G \). Define the extended Cayley table as an \(n+1 \) by \(n+1 \) matrix that is the “addition table” of \(n+1 \) elements of \(G \), with the neutral element taken twice. More precisely, we assume that \(x_0 = x_n = 0 \) is the neutral element of \(G \) and consider the matrix \(\tilde{M}_G = (m_{i,j}) \), where \(m_{i,j} = x_i + x_j \), \(i, j = 0, 1, \ldots, n \). In this context, \(S_{n+1} \) is regarded as permutation group on \(\{0, 1, \ldots, n\} \). Then \(\text{per}(\tilde{M}_G) = \sum_{\tilde{\pi} \in S_{n+1}} \a(\tilde{\pi}) \) is a sum of monomials of degree \(n + 1 \).

Example. \(\tilde{M}_{C_3} = \begin{pmatrix} x_0 & x_1 & x_2 & x_0 \\ x_1 & x_2 & x_0 & x_1 \\ x_2 & x_0 & x_1 & x_2 \\ x_0 & x_1 & x_2 & x_0 \end{pmatrix} \), \(\text{per}(\tilde{M}_{C_3}) = 2x_0^4 + 10x_0^2x_1x_2 + 4x_0x_1^3 + 4x_0x_2^3 + 4x_1^2x_2^2. \)
Theorem 5.8. The monomial \(m = \prod_{i=0}^{n-1} x_i^{k_i} \) occurs in \(\text{per}(\tilde{M}_G) \) if and only if
\[
\sum_i k_i = n + 1 \quad \text{and} \quad k_0 x_0 + \cdots + k_{n-1} x_{n-1} = 0 \in G.
\]

Proof. “⇒”. Suppose \(m = \pi(x) \) for some \(\pi \in S_{n+1} \). Obviously, \(\deg m = n + 1 \). Next,
\[
k_0 x_0 + \cdots + k_{n-1} x_{n-1} = (x_0 + x_{\tilde{\pi}(0)}) + (x_1 + x_{\tilde{\pi}(1)}) + \cdots + (x_n + x_{\tilde{\pi}(n)}) = 0,
\]
since the multiset \(\{x_0, x_1, \ldots, x_{n-1}, x_n = x_0\} \) is closed with respect to taking inverses.

“⇐”. Suppose \(m \) satisfies the conditions of the theorem.

- \(k_0 > 0 \). Take \(m' = x_0^{k_0-1} x_1^{k_1} \cdots x_{n-1}^{k_{n-1}} \). Then \(m' \) satisfies the conditions of Theorem 5.3. Therefore \(m' \) is a monomial of \(\text{per}(M_G) \) and there is a \(\pi \in S_n \) such that \(m' = \pi(x) \). Embed \(S_n \) into \(S_{n+1} \) as the subgroup preserving the last element \(n \). Let \(\tilde{\pi} \) denote \(\pi \) considered as element of \(S_{n+1} \). Then \(m = \pi(x) \).

- \(k_0 = 0 \). Choose any binomial \(x_i x_j \) in \(m \) and replace it with \((x_i + x_j)x_0 = x_k x_0 \) (i.e., \(x_i + x_j = x_k \)). That is, \(m = m'' x_i x_j \) is replaced with \(m'' x_k x_0 =: m' x_0 \). By the previous argument, we can find \(\pi \in S_n \) such that \(m' = \pi(x) \) and \(m' x_0 = \pi(x) \). Since \(x_k = x_i + x_j \) occurs in \(\pi(x) \), we can apply Proposition 5.7 and assume that \(\pi(i) = j \) and hence \(\tilde{\pi}(i) = j \). Finally, we replace \(\tilde{\pi} \) with \(\tilde{\pi} \tau \), where the transposition \(\tau \in S_{n+1} \) permutes \(i \) and \(n \). One readily verifies that \(\pi(x) = m'' x_i x_j = m \). \(\square \)

Corollary 5.9. The number of different monomials in \(\text{per}(\tilde{M}_G) \) equals \(\dim(S^{n+1}R)^G \).

The proof is almost identical to that of Theorem 5.4 and left to the reader.

It follows from Frobenius’ theory of group determinants (see e.g. [10, §2]) that, for abelian groups, \(\det(M_G) \) is the product of linear forms in \(x_i \)'s. In case of generic circulant matrices, this fact plays an important role in [11] and [13]. For future use, we provide a quick derivation. Recall that \(G = \{x_0, x_1, \ldots, x_{n-1}\} \) and \(\tilde{G} = \{\chi_0, \chi_1, \ldots, \chi_{n-1}\} \). Consider the \(n \) by \(n \) complex matrix \(K_G \), with \((K_G)_{i,j} = (\chi_j(x_i)) \), and the vectors \(v_j = \sum_{i=0}^{n-1} \chi_j(x_i)x_i \in R, j = 0, 1, \ldots, n-1 \).

Proposition 5.10. Under the above notation, we have:

1. \(v_j \) is an eigenvector of \(G \) corresponding to the weight \(\chi_j^{-1} \);
2. \(\det(M_G) \cdot \det(K_G) = \det(K_G'v_0v_1 \cdots v_{n-1}) \), where ‘bar’ stands for the complex conjugation;
3. \(\det(K_G')/\det(K_G) \) equals the sign of the permutation \(\pi_0 \in S_n \) that takes each \(x_i \) to its inverse. Hence \(\det(M_G) = \text{sign}(\pi_0)v_0v_1 \cdots v_{n-1} \).

Proof. (1) Obvious.

(2) It is easily seen that \((M_G \cdot K_G)_{i,j} = \chi_j(x_i)^{-1}v_j = \overline{\chi_j(x_i)}v_j = (K_G')_{i,j}v_j \).
(3) Assuming that \(x_0 \) is the neutral element, compare the coefficient of \(x_0^n \) in both parts of the equality in (2).

\[\square \]

Note that \(\tilde{M}_G \) has equal columns and hence \(\det(\tilde{M}_G) = 0 \).

Remark 5.11. 1. The set of vectors \(\{v_j\} \) is closed with respect to complex conjugation, and letting \(z_j = \overline{v_j} = \sum x_j(x_i)x_i \) one obtains the eigenvector corresponding to \(\chi_j \).

2. The orthogonality relations for the characters imply that \(K_G(\overline{K}_G)^t = nI_n \); that is, \(\frac{1}{\sqrt{n}}K_G \) is unitary and \(|\det(K_G)|^2 = n^n \).

For the sake of completeness, we mention some other easy properties.

Proposition 5.12. Suppose \(\gamma \in G \) and \(\pi \in S_n \).

1. \(\gamma \cdot x(\pi) = x(\pi\sigma^{-1}) \), where \(\cdot \) stands for the natural \(G \)-action on \(S^n\mathbb{R} \);
2. \(x(\pi) = x(\pi^{-1}) \);
3. \(\text{per}(M_G) \in (S^n\mathbb{R})^G \);
4. If \(\hat{G} \) has a unique element of order 2, say \(\psi \), then \(\det(M_G) \) is a semi-invariant of weight \(\psi \).

In all other cases, \(\det(M_G) \in (S^n\mathbb{R})^G \).

Proof.

1. \(\gamma \cdot x(\pi) = \gamma \cdot \prod_{i=0}^{n-1}(x_i + x_{\pi(i)}) = \prod_{i=0}^{n-1}(x_i + x_{\pi(i)} + \gamma) = \prod_{i=0}^{n-1}(x_{\sigma^{-1}(i)} + x_{\pi(i)}) = x(\pi\sigma^{-1}) \).
2. Obvious.
3. Follows from (1).
4. Proposition 5.10 shows that \(\det(M_G) \) is a semi-invariant whose weight equals the sum of all elements of \(\hat{G} \). The sum of all elements of an abelian group is known to be the neutral element unless the group has a unique element of order 2, in which case the sum is this unique element. \(\square \)

Note that \(\text{per}(\tilde{M}_G) \) is an element of \(S^{n+1}\mathbb{R} \), but it does not belong to \((S^{n+1}\mathbb{R})^G \).

6. SOME OPEN PROBLEMS

Associated with previous results on \(\text{per}(M_G) \), there are some interesting problems. Let \(d(G) \) denote the number of different monomials in \(\det(M_G) \). In view of possible cancellations, we have \(d(G) \leq p(G) \). Using the factorisation of \(\det(M_G) \) and theory of symmetric functions, Thomas [13] proved that \(d(C_n) = p(C_n) \) whenever \(n \) is a prime power. He also computed these values up to \(n = 12 \) (e.g. \(d(C_6) = 68 < 80 = p(C_6) \)) and suggested that the converse could be true.

Problem 1. What are necessary/sufficient conditions on a finite abelian group \(G \) for the equality \(d(G) = p(G) \)? Specifically, is it still true that the condition ‘\(\#(G) \) is a prime power’ is sufficient?
The equality \(\det(M_G) = \text{sign}(\pi_0)v_0v_1\ldots v_{n-1} \) might be helpful in resolving Problem 1. The following problem is more general and vague.

Problem 2. Let \(m \) be a monomial that satisfies conditions of Theorem 5.3. Is there a group-theoretic (or invariant-theoretic) interpretation of the coefficient of \(m \) in \(\text{per}(M_G) \) or \(\det(M_G) \)?

For \(G = C_2 \oplus C_2 \), we have \(p(G) = d(G) = 11 \). Because \(p(C_4) = d(C_4) = 10 \), one may speculate that \(p(G) = p(C_n) \) and \(d(G) = d(C_n) \) if \(\#(G) = n \). By Theorem 5.4, \(p(G) \) is the coefficient of \(t^n \) in the Poincaré series \(F((S^R)^G; t) \), and one can consider a related

Problem 3. Is it true that \([t^m]F((S^R)^G; t) \geq [t^m]F((S^R)^{C_n}; t) \) for any \(m \in \mathbb{N} \) ?

Given \(G = \{x_0, \ldots, x_{n-1}\} \), a family of matrices \(M_{G,l} \in \text{Mat}_l(\mathbb{C}[x_0, \ldots, x_{n-1}]) \), \(l \geq n \), is said to be *admissible*, if \(M_{G,n} = M_G \), \(M_{G,l} \) is a principal submatrix of \(M_{G,l+1} \), and the number of different monomials in \(\text{per}(M_{G,l}) \) equals \(\dim(S^lR)^G \).

Problem 4. For what \(G \), does an admissible family exist?

So far, we only have matrices \(M_{G,l} \) for \(l = n, n + 1 \). It is possible to jump up to \(l = 2n \) by letting \(M_{G,2n} = \begin{pmatrix} M_G & M_G \\ M_G & M_G \end{pmatrix} \). It is the addition table for two consecutive sets of group elements, and it can be proved that \(\text{per}(M_{G,2n}) \) has the required property. Then, similarly to the construction of the extended Cayley table, one defines a larger matrix \(M_{G,2n+1} \). This procedure can be iterated, so one obtains a suitable collection of matrices of orders \(kn, kn + 1, k \in \mathbb{N} \). However, it is not clear whether it is possible to define matrices \(M_{G,l} \) for all other \(l \). Maybe the reason is that, for arbitrary abelian \(G \), there is no natural ordering of its elements. But, for a cyclic group, one does have a natural ordering, and we provide a conjectural definition of an admissible family of matrices.

For \(G = C_n \), it will be convenient to begin with the circulant matrix in the Toeplitz form, see Example 5.2. That is to say, our initial matrix is \(\hat{M}_{C_n} = (\hat{m}_{i,j}) \), where \(\hat{m}_{i,j} = x_{i-j}, i, j = 0, 1, \ldots, n - 1 \), and the subscripts of \(x \)'s are interpreted \(\text{mod } n \). For any \(l \geq n \), we then define the entries of \(\hat{M}_{C_n,l} \) by the same formula, only the range of \(i, j \) is extended. In particular, \(\hat{M}_{C_n,l} \) is a Toeplitz matrix for any \(l \).

Example. \(\hat{M}_{C_3,5} = \begin{pmatrix} x_0 & x_1 & x_2 & x_0 & x_1 \\ x_2 & x_0 & x_1 & x_2 & x_0 \\ x_1 & x_2 & x_0 & x_1 & x_2 \\ x_0 & x_1 & x_2 & x_0 & x_1 \\ x_2 & x_0 & x_1 & x_2 & x_0 \end{pmatrix} \)
Conjecture 6.1. For \(l \geq n \), the monomial \(x_0^{\lambda_0} x_1^{\lambda_1} \cdots x_{n-1}^{\lambda_{n-1}} \) occurs in \(\text{per}(\hat{M}_{c,l}) \) if and only if
\[
\lambda_0 + \cdots + \lambda_{n-1} = l \quad \text{and} \quad \sum_{j=1}^{n-1} j \lambda_j \equiv 0 \mod n.
\]

In particular, the number of different monomials in \(\text{per}(\hat{M}_{c,l}) \) equals \(a_0(c_n, l) \).

It is not hard to verify the necessity of (*) and that the conjecture is true for \(n = 2 \).

References

[1] G. Almkvist. Some formulas in invariant theory, J. Algebra 77, no. 2 (1982), 338–359.
[2] G. Almkvist and R. Fossum. Decomposition of exterior and symmetric powers of indecomposable \(\mathbb{Z}/p\mathbb{Z} \)-modules in characteristic \(p \) and relations to invariants. Séminaire d’Algèbre P. Dubreil (Paris 1976–77), pp. 1–111, Lecture Notes in Math. 641, Springer-Verlag, Berlin, 1978.
[3] R.A. Brualdi and M. Newman. An enumeration problem for a congruence equation. J. Res. Nat. Bur. Standards, Sect. B 74B (1970), 37–40.
[4] A.G. Elashvili and M. Jibladze. Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. 9, no. 2 (1998), 233–238.
[5] A.G. Elashvili and M. Jibladze. “Hermite reciprocity” for semi-invariants in the regular representations of cyclic groups, Proc. Razmadze Math. Inst. (Tbilisi), Vol. 119 (1999), 21–24.
[6] A.G. Elashvili, M. Jibladze, and D. Pataraia. Combinatorics of necklaces and Hermite reciprocity, J. Alg. Combinatorics, 10 (1999), 173–188.
[7] M. Fredman. A symmetry relationship for a class of partitions, J. Combin. Theory, Ser. A 18(1975), 199–202.
[8] M. Hall. A combinatorial problem on abelian groups. Proc. Amer. Math. Soc. 3(1952), 584–587.
[9] G.H. Hardy and E.M. Wright. “An introduction to the theory of numbers”. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979. xvi+426 pp.
[10] K.W. Johnson. On the group determinant, Math. Proc. Camb. Phil. Soc. 109 (1991), 299–311.
[11] D. Lehmer. Some properties of circulants, J. Number Theory 5(1973), 43–54.
[12] R.P. Stanley. Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1, no. 3 (1979), 475–511.
[13] H. Thomas. The number of terms in the permanent and the determinant of a generic circulant matrix, J. Algebraic Combin., 20 (2004), 55–60.

Independent University of Moscow, Bol’shoi Vlasevskii per. 11, 119002 Moscow, Russia
E-mail address: panyush@mccme.ru