Abstract

Classical \mathcal{W}_3 transformations are discussed as restricted diffeomorphism transformations (W-Diff) in two-dimensional space. We formulate them by using Riemannian geometry as a basic ingredient. The extended \mathcal{W}_3 generators are given as particular combinations of Christoffel symbols. The defining equations of W-Diff are shown to depend on these generators explicitly. We also consider the issues of finite transformations, global $SL(3)$ transformations and W-Schwarzsians.
1 Introduction

Non-linear extensions of the Virasoro algebra are known as W-algebras \cite{1}. The classical counterparts of these algebras are obtained through Drinfel’d-Sokolov (DS) Hamiltonian reduction for Kac-Moody current algebras \cite{2} and the zero-curvature approaches \cite{3}. Classical W-algebras are also related to the theory of integrable systems through the Gel’fand-Dickey brackets \cite{4}. For example, classical W_N transformations are the symmetries of the equation

$$LX \equiv \partial X + \sum_{j=0}^{N-2} U_{N-j} \partial^j X = 0,$$

(1.1)

where X and U_j fields are regarded as functions of a single variable t \cite{5}. The reparametrizations of t induce diffeomorphism transformations (Diff) on X and U_j, whereas W-transformations cannot be understood as reparametrizations in one-dimensional base space. In order to understand all W-transformations as diffeomorphisms it is natural to extend the base space to a multi-dimensional one (W-space) \cite{6}.

In W-space we will consider multi-time extension equations associated with (1.1) given by:

$$LX = 0, \quad \partial_t k X = L_{k/N}^{k/N} X, \quad k = 2, \ldots, N - 1,$$

(1.2)

where X and U_j depend now on $N - 1$ time parameters: t^1, \ldots, t^{N-1} and $L_{k/N}^{k/N}$ is the differential part of the pseudo-differential operator $L^{k/N}$ \cite{4}. Therefore X is a truncation of the Baker-Akhiezer function associated to the generalized hierarchies of partial differential equations generated by L. In this framework the W_N transformations are those leaving the whole set of multi-time equations (1.2) invariant. They are induced by some restricted class of Diff in W-space which we refer to as W-Diff.

We will also show how Riemannian geometry is useful for the formulation of the multi-time equations. We derive them from a set of covariant equations by imposing suitable gauge-fixing conditions on the Christoffel symbols. In particular for $N = 3$ we will explicitly see how W_3 generators appear as some combinations of the Christoffel symbols and how they transform under finite W-Diff. The W-Diff are defined by a set of differential equations involving the extended W-generators. W-space is in some sense a bosonic version of the superspace used in the covariant description of superconformal theories \cite{7}. However the dynamical fields are not present in the defining relations of superconformal transformations in superspace.

The organization of the paper is as follows: In sect. 2 we introduce a set of covariant equations used to construct the multi-time W_N equations in W-space. In sect. 3 we consider the $N = 3$ case explicitly. Finite W-Diff and the finite W-transformations of
the extended generators are obtained in sect. 4. Conclusions and discussions are given in the last section.

2 Covariant Formalism for Multi-time Equations

Let us consider a system described by a set of fundamental covariant equations [8],

$$\nabla_\alpha \nabla_\beta X^A(t^1, t^2, \ldots, t^{N-1}) = 0, \quad \alpha, \beta = t^1, \ldots, t^{N-1}. \quad (2.1)$$

We assume (2.1) to have \(N\) independent solutions labeled by the index \(A = 1, \ldots, N\). Each \(X^A\) is a scalar density of weight \(h = 1/N\) under general coordinate transformations in \(N - 1\) dimensional space. The covariant derivative is defined by

$$\nabla_\rho X = \partial_\rho X + h \Gamma^\sigma_{\rho \sigma} X = (\partial_\rho + h \Gamma_\rho) X, \quad (2.2)$$

and the second derivative is

$$\nabla_\nu \nabla_\rho X = \partial_\nu \nabla_\rho X - \Gamma^\sigma_{\rho \nu} \nabla_\sigma X + h \Gamma^\sigma_{\rho \nu} \nabla_\rho X = \{\partial_\nu - (A_\nu)_\rho \} \nabla_{\sigma} X, \quad (2.3)$$

where

$$(A_\nu)_\rho = (\Gamma_\nu - h \Gamma_\nu)_\rho^\sigma, \quad (\Gamma_\alpha)_\beta^\gamma = \Gamma_\beta^\gamma_\alpha, \quad \Gamma_\alpha = \Gamma^\beta_\beta_\alpha = \text{tr}(\Gamma_\alpha). \quad (2.4)$$

The Christoffel symbol \(\Gamma_\alpha\) is regarded as \(gl(N - 1)\) valued gauge field and \(\Gamma_\alpha\) as its trace.

We can show that equation (2.1) is only consistent when the Riemann-Christoffel curvature tensor vanishes. Let us write the integrability condition of (2.1),

$$\nabla_{[\mu} \nabla_{\nu]} \nabla_\rho X = - (F^\lambda_{\mu \nu})^\rho_\lambda \nabla_\lambda X - \Gamma^\sigma_{\lambda \nu} \nabla_\sigma \nabla_\rho X = 0. \quad (2.5)$$

Here \(F\) is the field strength for \(A\),

$$F_{\alpha \beta} \equiv \partial_\alpha A_\beta - \partial_\beta A_\alpha - [A_\alpha, A_\beta] = \partial_\alpha \Gamma_\beta - \partial_\beta \Gamma_\alpha - [\Gamma_\alpha, \Gamma_\beta] - h \text{tr}(\partial_\alpha \Gamma_\beta - \partial_\beta \Gamma_\alpha - [\Gamma_\alpha, \Gamma_\beta]). \quad (2.6)$$

The assumption of \(N\) independent solutions for \(X^A\) requires zero field strength, \(F = 0\). By taking the trace of (2.6), the vanishing of \(F\) implies zero Riemann-Christoffel curvature,

$$R^\delta_{\alpha \beta} = \{\partial_\alpha \Gamma_\beta - \partial_\beta \Gamma_\alpha - [\Gamma_\alpha, \Gamma_\beta]\}_\gamma^\delta = 0. \quad (2.7)$$

Equation (2.1) also requires symmetric Christoffel connections. In fact from (2.3),

$$0 = [\nabla_\alpha, \nabla_\beta] X = h(\partial_\alpha \Gamma_\beta - \partial_\beta \Gamma_\alpha) X - \Gamma^\gamma_{[\beta \alpha]} \nabla_\gamma X. \quad (2.8)$$
The first term in the r.h.s. is just the trace of (2.7) and vanishes for the solutions. Thus the Christoffel symbols are symmetric and there is no torsion,
\[\Gamma_{\beta\alpha}^{\gamma} = \Gamma_{\alpha\beta}^{\gamma}. \] (2.9)

Since the Riemann-Christoffel tensor is zero there exists a set of flat coordinates \(k^a \)'s \((a = 1, \ldots, N - 1)\) such that the Christoffel symbols vanish. Equation (2.1) has trivial solutions there. For a generic system of coordinates we can write the Christoffel symbols as
\[\Gamma_{\nu\rho}^{\mu} = (\Gamma_{\mu})^{\rho}_{\nu} = (\partial_{\mu} J_{\nu}^{a})(J^{-1})^{\rho}_{a}, \quad J \in GL(N - 1). \] (2.10)
where \((J)_{\nu}^{a} = \partial_{\nu} k^{a}(t^{a})\). Due to the fact that \(X \) is a scalar density of weight \(h \) the solution in generic coordinates is
\[X(t^{a}) = |J|^{-h} (C_{a} k^{a}(t^{a}) + C_{N}). \] (2.11)
where \(C_{a} \) and \(C_{N} \) are integration constants.

The relation between the covariant system of equations (2.1) and the multi-time equations for \(\mathcal{W}_{N} \) (1.2) is established through a suitable set of gauge conditions on the Christoffel symbols. The form of gauge-fixing conditions for general \(\mathcal{W}_{N} \) have been discussed in [8] and worked out for \(N = 3 \) and 4 explicitly. In the following sections we restrict ourselves to the \(\mathcal{W}_{3} \) case and make the analysis of \(\mathcal{W}\text{-Diff} \) in detail.

3 Multi-time \(\mathcal{W}_{3} \) equations

We consider two-dimensional space with the local coordinates \(t \equiv t^{1} \) and \(z \equiv t^{2} \). Let us impose the following gauge-fixing conditions [3]:
\[\Gamma_{tt}^{t} = 1, \quad \Gamma_{tz}^{t} = 2\Gamma_{tz}^{t}. \] (3.1)

Zero-curvature condition (2.7) imposed on Riemann-Christoffel curvature gives 4 equations. It is used to express \(\Gamma_{tz}^{t} \) and \(\Gamma_{zz}^{t} \) in terms of independent Christoffel symbols, \(\Gamma_{tz}^{t} \) and \(\Gamma_{zz}^{t} \),
\[\Gamma_{tz}^{t} = \Gamma_{tz}^{t} + \Gamma_{zz}^{t} - \partial_{t} \Gamma_{tz}^{t}, \] (3.2)
and
\[\Gamma_{zz}^{t} = \Gamma_{zz}^{t} + \Gamma_{tz}^{t} \partial_{t} \Gamma_{tz}^{t} - \frac{1}{3} \Gamma_{tz}^{t} \partial_{t} \Gamma_{tz}^{t} - \frac{1}{3} \partial_{t} \Gamma_{zz}^{t} - \frac{1}{3} \partial_{t}^{2} \Gamma_{tz}^{t}. \] (3.3)
It also gives \(z \)-derivative of \(\Gamma_{tz}^{t} \) and \(\Gamma_{zz}^{t} \) as functions of \(\Gamma_{tz}^{t} \) and \(\Gamma_{zz}^{t} \) and their \(t \) derivatives:
\[\partial_{z} \Gamma_{tz}^{t} = \frac{1}{3} \partial_{t} (\Gamma_{tz}^{t} + \Gamma_{zz}^{t}) = \frac{1}{3} (2\Gamma_{tz}^{t} \partial_{t} \Gamma_{tz}^{t} + 2 \partial_{t} \Gamma_{zz}^{t} - \partial_{t}^{2} \Gamma_{tz}^{t}), \] (3.4)
\[\partial_{z} \Gamma_{zz}^{t} = \frac{1}{3} \left(10 \Gamma_{tz}^{t} \partial_{t} \Gamma_{tz}^{t} + 6 \Gamma_{zz}^{t} \partial_{t} \Gamma_{tz}^{t} - 2 (\partial_{t} \Gamma_{tz}^{t})^{2} - 2 \partial_{t} \Gamma_{zz}^{t} + 2 \partial_{t} \Gamma_{zz}^{t} \partial_{t} \Gamma_{tz}^{t} + \partial_{t}^{2} \Gamma_{zz}^{t} - 2 \partial_{t}^{2} \Gamma_{tz}^{t} \right). \] (3.5)
In this gauge the covariant equations (2.1) are expressed as
\[\partial_t^3 X(t, z) + T(t, z) \partial_t X(t, z) + \left(W_3(t, z) + \frac{1}{2} \partial_t T(t, z) \right) X(t, z) = 0 \] (3.6)
and
\[\partial_z X(t, z) = \partial_t^2 X(t, z) + \frac{2}{3} T(t, z) X(t, z). \] (3.7)
They are the multi-time \(W_3 \) equations in which \(T \) and \(W_3 \) are defined as functions of Christoffel symbols:
\[T(t, z) = -2 \Gamma_{tz}^2 - \Gamma_{zz} - 2 \partial_t \Gamma_{tz} = \Gamma_{zz} - 2 \Gamma_{tz}, \] (3.8)
\[W_3(t, z) = -\Gamma_{tz}^3 - \Gamma_{zz} \Gamma_{tz} + \frac{1}{2} \partial_t \Gamma_{zz} = -\Gamma_{zt} - \frac{1}{6} \partial_t T(t, z). \] (3.9)
The \(z \)-extension equations (3.4) and (3.5) for \(\Gamma_{zt} \) and \(\Gamma_{zz} \) are translated to those for \(T \) and \(W_3 \),
\[\partial_z T(t, z) = 2 \partial_t W_3(t, z), \] (3.10)
\[\partial_z W_3(t, z) = -\frac{2}{3} T(t, z) \partial_t T(t, z) - \frac{1}{6} \partial_t^3 T(t, z). \] (3.11)
They are nothing but the integrability conditions of the multi-time \(W_3 \) equations (3.6) and (3.7).

In sect. 2 we have determined solutions of (2.1) for \(X^A \) and the Christoffel symbols in terms of \(N - 1 \) arbitrary functions \(k^a \). After imposing the gauge-fixing conditions (3.1) the functions \(k^a \) are no longer arbitrary but must satisfy a set of partial differential equations. The first gauge-fixing condition of (3.1), \(\Gamma_{tt} = 1 \), requires
\[|J| \equiv \partial_t k^1 \partial_z k^2 - \partial_t k^2 \partial_z k^1 = \partial_t k^1 \partial_t^2 k^2 - \partial_t k^2 \partial_t^2 k^1 \equiv K_3. \] (3.12)
Using the second gauge-fixing condition of (3.1), \(\Gamma_{tt} = 2 \Gamma_{tz} \), we have
\[\partial_z k^a = \partial_t^2 k^a + Q \partial_t k^a, \quad Q = -\frac{2}{3} \frac{\partial_t K_3}{K_3}, \quad (a = 1, 2). \] (3.13)
It is worth noticing that the extension equation for \(k^a \) (3.13) shows a global \(SL(3) \) invariance. It is non-linearly realized as
\[k^a \rightarrow k^b B_{b}^{\ a} + \tilde{B}_{b}^{\ a}, \quad a = 1, 2, \quad \tilde{B} \in SL(3)_{\text{global}}. \] (3.14)
We also point out that the extension equation has a trivial set of solution \(k^1 = t, \ k^2 = z + \frac{t^2}{2} \) giving zero values for \(T \) and \(W_3 \).

The solutions of the multi-time \(W_3 \) equations (3.6), (3.7), (3.10) and (3.11) are now expressed in terms of \(k^a \) satisfying (3.13). Using (2.11), (3.8) and (3.9) we obtain:
\[X^A(t, z) = \{ k^1 K_3^{-1/3}, \ k^2 K_3^{-1/3}, \ K_3^{-1/3} \}, \] (3.15)
and

\[T(t, z) = \frac{\partial^2 K_3}{K_3} - \frac{4}{3} \left(\frac{\partial t K_3}{K_3} \right)^2 + \frac{1}{K_3} \left(\partial^2_t k^1 \partial^3_t k^2 - \partial^2_t k^2 \partial^3_t k^1 \right) \] (3.16)

and

\[W_3(t, z) = \frac{1}{6} \frac{\partial^2 K_3}{K_3} + \frac{5}{6} \frac{\partial t K_3}{K_3} \left(\frac{\partial^2_t k^1}{K_3} \frac{\partial^3_t k^2}{K_3} - \frac{\partial^2_t k^2}{K_3} \frac{\partial^3_t k^1}{K_3} \right) \]
\[- \frac{20}{27} \left(\frac{\partial t K_3}{K_3} \right)^3 + \frac{1}{2} \frac{\partial^2_t K_3}{K_3} - \frac{1}{2} \frac{\partial^2 t K_3}{K_3} - \frac{5}{12} \frac{\partial t \partial^2 K_3}{K_3} + \frac{1}{4} \frac{\partial \partial^2 t K_3}{K_3}. \] (3.17)

These formulas coincide for \(z = 0 \) with the well-known expressions of the \(W_3 \) generators as obtained using, for example, the Wronskian method \[9\]. If we use the extension equations for \(k^a \) (3.13) we can obtain an alternative expression for \(T(t, z) \) and \(W(t, z) \) in terms of \(K_3 \) in (3.12) only:

\[T(t, z) = -\frac{2}{3} \left(\frac{\partial^2 K_3}{K_3} \right) + \frac{1}{2} \frac{\partial^2 K_3}{K_3} - \frac{1}{2} \frac{\partial^2 t K_3}{K_3}, \]
\[W_3(t, z) = \frac{4}{27} \left(\frac{\partial t K_3}{K_3} \right)^3 - \frac{1}{3} \frac{\partial^2 t K_3}{K_3} + \frac{1}{2} \frac{\partial^2 K_3}{K_3} - \frac{5}{12} \frac{\partial t \partial^2 K_3}{K_3} + \frac{1}{4} \frac{\partial \partial^2 t K_3}{K_3}. \] (3.18)

The extension equation (3.13) is different from that discussed by Gervais and Matsuo \[12\]. They consider an equation corresponding to (3.13) with \(Q = 0 \). The condition that the two-dimensional infinitesimal Diff preserve (3.6) and \(\partial_a k^a = \partial^2_t k^a \) cannot be written in a local way in terms of \(T \) and \(W_3 \). It can be shown that (3.13) is the only possible form of the extension equation satisfying this local property.

4 \(\mathcal{W} \)-diffeomorphisms and Finite \(\mathcal{W} \)-Symmetry

We have shown that the covariant equations (2.1) in the gauge (3.1) are the multi-time \(\mathcal{W}_3 \) equations (3.6), (3.7), (3.10) and (3.11) for \(N = 3 \). In this section we will show how the general coordinate transformations that preserve the gauge conditions do generate the classical \(\mathcal{W}_3 \) transformations in the extended space.

Under general coordinate transformations \(t = f(\tilde{t}, \tilde{z}), z = g(\tilde{t}, \tilde{z}) \) the scalar density \(X \) and the Christoffel symbols transform according to:

\[\tilde{X}(\tilde{t}, \tilde{z}) = J^{-\frac{1}{2}} X(t, z), \quad J = \frac{\partial t}{\partial \tilde{t}} \frac{\partial z}{\partial \tilde{z}} - \frac{\partial t}{\partial \tilde{z}} \frac{\partial z}{\partial \tilde{t}}. \] (4.1)
\[\tilde{\Gamma}^{\alpha}_{\beta \gamma}(\tilde{t}, \tilde{z}) = \left(\frac{\partial t^\mu}{\partial \tilde{t}} \frac{\partial t^\nu}{\partial \tilde{z}} \Gamma^\rho_{\mu \nu}(t, z) + \frac{\partial^2 t^\rho}{\partial \tilde{t} \partial t^\gamma} \right) \frac{\partial \tilde{t}^\alpha}{\partial \tilde{t}^\rho}. \] (4.2)

From the requirement that general coordinate transformations keep the gauge conditions (3.1) invariant we find a set of equations to be satisfied by the transformation functions \(f(\tilde{t}, \tilde{z}) \) and \(g(\tilde{t}, \tilde{z}) \):

\[f' = \tilde{f} - \frac{2}{3} \tilde{t}^\prime \tilde{t} - \frac{2}{3} \tilde{f} \tilde{g} T(t, z) - \tilde{g}^2 V_3(t, z), \]
\[g' = \tilde{g} - \frac{2}{3} \tilde{g} \tilde{f} + \tilde{f}^2 + \frac{1}{3} \tilde{g}^2 T(t, z). \] (4.3)
Here $\dot{f} = \frac{\partial f(\tilde{t}, \tilde{z})}{\partial \tilde{t}}$, $f' = \frac{\partial f(\tilde{t}, \tilde{z})}{\partial \tilde{z}}$ and so on. Equations (3.8) and (3.9) have been used to give the expressions of T and $V_3 \equiv W_3 + \frac{1}{6} \partial_\tilde{t} T$ in terms of Christoffel symbols. Then we define a \mathcal{W}-Diff as a general coordinate transformation $t = f(\tilde{t}, \tilde{z})$, $z = g(\tilde{t}, \tilde{z})$ satisfying equations (4.3) for given T and V_3. In contrast to the conformal and superconformal transformations they depend on the connections T and V_3. In other words, the two-dimensional coordinate \mathcal{W}-transformations cannot be performed independently of the \mathcal{W}-generators of the system.

The finite transformations of X are given by (4.1) with the Jacobian determined from (4.3):

$$J(\tilde{t}, \tilde{z}) = \dot{f} \tilde{g} - \tilde{f} \dot{g} + \dot{f} \tilde{g}^2 T(t, z) + \tilde{g}^3 V_3(t, z).$$

(4.4)

The finite transformations of the extended \mathcal{W}-generators are obtained from those of Christoffel connections,

$$\tilde{T}(\tilde{t}, \tilde{z}) = \frac{1}{J} \left(\dot{f} g'' - f'' \tilde{g} - 2(f' \dot{g}' - f' \dot{g}') + 3 \dot{f} f' + \left(\dot{f} g'' + 2f' \dot{g}g' \right) T(t, z) + 3 \dot{g} \tilde{g}^2 V_3(t, z) \right),$$

$$\tilde{V}_3(\tilde{t}, \tilde{z}) = \frac{1}{J} \left(\dot{f} g'' - f'' \dot{g}' + f^3 + f' \dot{g} g'^2 T(t, z) + g^3 \tilde{V}_3(t, z) \right).$$

(4.5)

Notice that f and g are not arbitrary functions but satisfy (4.3) and depend implicitly on T and V_3. Thus the \tilde{T} and \tilde{V}_3 in (4.3) have non-linear dependence on T and V_3.

Let us consider a coordinate system on which $T = 0$ and $W_3 = 0$ and consider a subset of \mathcal{W}-Diff which can be performed on this coordinate system. It can be constructed using solutions k^a of the extension equations (3.13) by

$$f = k^1 \quad \text{and} \quad g = k^2 - \frac{1}{2}(k^1)^2.$$

(4.6)

The Jacobian J of this particular transformation is K_3 given in (3.14), and the transformed generators T and W_3 take the same form as (3.18). They can be rewritten in a more compact form as

$$T = \frac{3}{2} J^{1/3} (\partial_\tilde{z} - \partial_\tilde{t}^2) J^{-1/3}, \quad W_3 = \frac{1}{2} J^{1/3} (\partial_\tilde{t}^3 - 3 \partial_\tilde{t} \partial_\tilde{z}) J^{-1/3} + \frac{1}{2} \partial_\tilde{t} T.$$

(4.7)

Finite global \mathcal{W}-Diff are defined as those leaving the values $T = 0$ and $W_3 = 0$ invariant. They have the general form

$$t = \frac{a \tilde{t} + b(\tilde{z} + \frac{\tilde{r}}{2}) + c}{q \tilde{t} + r(\tilde{z} + \frac{\tilde{r}}{2}) + s}, \quad z + \frac{\tilde{t}^2}{2} = \frac{m \tilde{t} + n(\tilde{z} + \frac{\tilde{r}}{2}) + p}{q \tilde{t} + r(\tilde{z} + \frac{\tilde{r}}{2}) + s},$$

$$\begin{pmatrix} a & b & c \\ m & n & p \\ q & r & s \end{pmatrix} = \text{constant} \in SL(3).$$

(4.8)
The Jacobian of the transformations (4.7) gives vanishing T and W_3 in (1.7). This property suggests to consider the expressions (1.7) as the associated \mathcal{W}-Schwarzians.

Note that (3.14) is a projective realization of an $SL(3)$ transformation law which is generalizing the projective $SL(2)$ (Möbius) transformation in the standard conformal theories. Therefore it is rather natural to consider the two-dimensional space where we describe \mathcal{W}_3 as being RP^2.

For the infinitesimal general coordinate transformations $\delta t = \epsilon^t(t,z)$ and $\delta z = \epsilon^z(t,z)$ the conditions of \mathcal{W}-Diff (1.3) are expressed as:

$$\partial_z \epsilon^z(t,z) = 2 \partial_t \epsilon^t(t,z) + \partial_t^2 \epsilon^z(t,z), \quad (4.9)$$

$$\partial_z \epsilon^t(t,z) = - \frac{2}{3} T(t,z) \partial_t \epsilon^z(t,z) - \frac{2}{3} \partial_t \partial_z \epsilon^z(t,z) + \frac{1}{3} \partial_t^2 \epsilon^t(t,z). \quad (4.10)$$

The infinitesimal \mathcal{W}-Diff transformations of the extended \mathcal{W}_3-generators are

$$\delta T = \epsilon^z \partial_z T + \epsilon^t \partial_t T + T \partial_z \epsilon^z + \partial_t^2 \epsilon^z + 3 V_3 \partial_t \epsilon^z - 2 \partial_t \partial_z \epsilon^t$$

$$\delta V_3 = \epsilon^z \partial_z V_3 + \epsilon^t \partial_t V_3 + T \partial_z \epsilon^z + 2 V_3 \partial_t \epsilon^z - \partial_t^2 \epsilon^t - V_3 \partial_t \epsilon^t. \quad (4.11)$$

To see the relations of these transformations with the standard \mathcal{W}_3 transformations in one dimension we express all z-derivatives in terms of t-derivatives using (3.10), (3.11), (1.9) and (4.10). The resulting transformations are:

$$\delta T(t,z) = \alpha \partial_t T + 2 \partial_t \alpha T + 2 \partial_t^2 \alpha + 2 \rho \partial_t W_3 + 3 \partial_t \rho W_3,$$

$$\delta W_3(t,z) = \alpha \partial_t W_3 + 3 \partial_t \alpha W_3 - \rho \left(\frac{2 T \partial_t T}{3} + \frac{\partial_t^2 T}{6} \right) - \partial_t \rho \left(\frac{2 T^2}{3} + \frac{\partial_t^2 T}{4} \right)$$

$$- \frac{1}{6} \partial_t^2 \rho \partial_t T - \frac{1}{3} \partial_t \partial_t \rho T - \frac{1}{6} \partial_t^3 \rho,$$ \quad (4.13)

$$\delta X(t,z) = \alpha \partial_t X - \partial_t \alpha X + \rho \left(\partial_t^2 X + \frac{2}{3} T X \right) - \frac{1}{3} \partial_t \rho \partial_t X + \frac{1}{3} \left(\partial_t^2 \rho \right) X.$$ \quad (4.14)

where $\alpha(t,z) \equiv \epsilon^t(t,z) + \frac{1}{2} \partial_t \epsilon^z(t,z)$ and $\rho(t,z) \equiv \epsilon^z(t,z)$.

The transformations (4.13)-(4.15) are reduced to the classical infinitesimal \mathcal{W}_3 transformations by putting $z = 0$ and considering $\alpha(t,0)$ and $\rho(t,0)$ as arbitrary transformation functions of t. The parameter α generates t diffeomorphism transformations under which T, W_3 and X transform respectively as weight 2 quasi-primary, weight 3 and weight -1 primary fields. The transformations generated by ρ are the well-known \mathcal{W}_3 transformations.

The algebra of two infinitesimal \mathcal{W}-Diff is given by

$$[\delta_1, \delta_2] = \delta_3, \quad \epsilon_3^\mu = \epsilon_2^\nu \partial_\nu \epsilon_1^\mu - \epsilon_1^\nu \partial_\nu \epsilon_2^\mu + \delta_1 \epsilon_2^\mu - \delta_2 \epsilon_1^\mu.$$ \quad (4.16)
Here the last two terms of ϵ_3 are contributions coming from the T dependence of ϵ’s through (4.9) and (4.10). They satisfy, for example:

$$
\partial_z (\delta \epsilon^t) = -\frac{2}{3} (T \partial_t (\delta \epsilon^z) + (\delta T) \partial_t \epsilon^z) - \frac{2}{3} \partial_t \partial_z (\delta \epsilon^z) + \frac{1}{3} \partial_t^2 (\delta \epsilon^t).
$$

(4.17)

Taking this into account it can be shown that the transformation with parameter ϵ_3 is also a \mathcal{W}-Diff because it satisfies equations (4.9) and (4.10). Therefore we can say that the \mathcal{W}-Diff have a composition law, at least locally, forming a quasi-group.

The existence of a composition law enables us to define the \mathcal{W}-surface in general. Let us consider the manifold $M = \mathbb{RP}^2$ with a flat affine connection Γ. We define a \mathcal{W}-neighborhood as an ordinary one supplemented with the conditions $\Gamma^t_{tt} = 1$ and $\Gamma^t_{tt} - 2 \Gamma^z_{tz} = 0$. These conditions single out some special parametrizations of each patch of M. General two-dimensional Diff will not preserve these conditions but \mathcal{W}-Diff, as defined above, do preserve them. Hence we can define the \mathcal{W}-surface as a collection of \mathcal{W}-neighborhoods patched together by \mathcal{W}-Diff.

5 Conclusion

We have studied \mathcal{W}_3 transformations in the language of Riemannian geometry. The \mathcal{W}-generators are given as particular combinations of the Christoffel symbols in a suitable gauge. We have seen that \mathcal{W}-Diff preserving the gauge-fixing conditions depend in general on T and W_3. In general the finite transformations of T and W_3 are expressed as non-linear functions of the fields. Explicit expressions for the finite global transformations and the \mathcal{W}-Schwarzians have been given. We have also indicated how to recover the well-known one-dimensional \mathcal{W}_3-transformations from our results.

It is desirable that the gauge-fixing condition (3.1) is interpreted geometrically in order to have a better understanding of \mathcal{W}-surfaces. We would like to emphasize that the definition of \mathcal{W}-Diff (4.3) given above may be valid for more general cases and we believe that it will be useful, for example, in the study of the classical limit of the \mathcal{W}_3 string theory.

Acknowledgements: K.K. would like to thank Dept. of ECM (Barcelona) for their hospitality during his stay. J.R. thanks the Spanish Ministry of Education and the British Council for financial support. J.H. acknowledges a fellowship from Generalitat de Catalunya. This work has been partially supported by CYCYT under contract number AEN93-0695 and by Commission of the European Communities contract CHRX-CT93-0362(04).

References
[1] A.B. Zamolodchikov, *Theor. Math. Phys.* **63** (1985) 1205. For reviews see; P. Bouwknegt and K. Schoutens, *Phys. Rep.* **223** (1993) 186 and L. Fehér, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, *Phys. Rep.* **222** (1992) 1.

[2] V. Drinfel’d and V. Sokolov, *J. Sov. Math.* **30** (1984) 1975; J. Balog, L. Fehér, L. O’Raifeartaigh, P. Forgács and A. Wipf, *Ann. Phys.* **203** (1990) 76; F.A. Bais, T. Tjin and P. van Driel, *Nucl. Phys.* **B357** (1991) 632; J.M. Figueroa-O’Farrill, *Nucl. Phys.* **B343** (1990) 450.

[3] A.M. Polyakov, *Int. J. Mod. Phys.* **A5** (1990) 833; A. Bilal, V.V. Fock and I.I. Kogan, *Nucl. Phys.* **B359** (1991) 635; A. Das, W.-J. Huang and S. Roy, *Int. J. Mod. Phys.* **A7** (1992) 3447; J. de Boer and J. Goeree, *Nucl. Phys.* **B401** (1993) 369.

[4] L.A. Dickey, *Soliton Equations and Hamiltonian Systems* (1991) World Scientific.

[5] A.O. Radul, *Sov. Phys. JETP Lett.* **50** (1989) 371; *Funct. Anal. and Its Appl.* **25** (1991) 25.

[6] Y. Matsuo, *Phys. Lett.* **277B** (1992) 95; J.-L. Gervais and Y. Matsuo, *Phys. Lett.* **274B** (1992) 309, *Commun. Math. Phys.* **152** (1993) 317.

[7] D. Friedan, “Notes on String Theory and Two-Dimensional Conformal Field Theory” in *Proc. Santa Barbara Workshop on Unified String Theories*, ed. M.B. Green and D. Gross (1986) World Scientific.

[8] J. Gomis, J. Herrero, K. Kamimura and J. Roca, “Geometrical Approach to W-Symmetries in a Multi-Time Formalism”, Contribution paper of ICHEP94 (Glasgow 1994). Reference number: gls0894.

[9] A. Marshakov and A. Morozov, *Nucl. Phys.* **B339** (1990) 79; A. Bilal and J.-L. Gervais, *Nucl. Phys.* **B314** (1989) 646.