2D DIGE proteomic analysis highlights delayed postnatal repression of α-fetoprotein expression in homocystinuria model mice

Shotaro Kamata a, Noriyuki Akahoshi b, Isao Ishii a,∗

a Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
b Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan

1. Introduction

Elevated levels of plasma homocysteine are an independent risk factor for atherosclerotic cardiovascular diseases, stroke, peripheral arterial occlusive diseases, and venous thrombosis [1]. Hyperhomocysteinemia is caused by several genetic defects, but mainly by deficiency of cystathionine β-synthase (CBS; EC 2.1.2.1). CBS-deficient homocystinuria patients (MIM 236200) exhibit various severe clinical manifestations including thromboembolism, mental retardation, osteoporosis, and skeletal abnormalities. The molecular mechanisms by which accumulated homocysteine may promote such diseases have been the focus of numerous investigations. Endothelial dysfunction appears to play a key role in cardiovascular diseases [2], but the pathogenesis of hepatic steatosis, a sporadic feature in CBS-deficient patients [1,3], remains to be clarified. It is notable that plasma homocysteine levels are elevated in patients with non-alcoholic fatty liver disease (NAFLD) [4].

A genetic model with targeted deletion of the Cbs gene was generated in 1995 [5] and has subsequently been widely used in homocysteine-related research. Homozygous Cbs−/− mice develop fatty liver at a juvenile age (∼2 weeks old) [5,6] and display an abnormal lipoprotein profile [7], but a few escape and fortunately survive beyond this age [8]. This study examined the plasma protein profile of Cbs−/− mice using proteomic analysis with fluorescent two-dimensional difference gel electrophoresis (2D DIGE) to gain insight into the molecular background of hepatic steatosis. For comparison, we utilized mice lacking cystathionine γ-lyase (Cth, also known as CSE; EC 4.4.1.1), which also display homocysteinemia but are free of obvious abnormalities (such as fatty liver) [9]. Here, we found hyperaccumulation of α-fetoprotein (AFP) in the plasma and fatty liver of Cbs−/− mice but not of Cth−/− mice.

2. Materials and methods

2.1. Animals

Heterozygous Cbs+/− mice in a C57BL/6J background (B6.129P2-Cbstm1Unc/J) were obtained from the Jackson Laboratory.
Heterozygous Cth+/− mice were generated by our group [9] and backcrossed for 10 generations (N10) with C57BL/6Jcl [Jcl: Japan Clea, Tokyo, Japan] [10]. N10 Cbs−/− or N10 Cth+/− mice were bred to produce Cbs−/− or Cth+/− mice, and their age-matched progenies were analyzed comparatively. Mice were housed in an air-conditioned room kept on a 12-h dark/light cycle and allowed to free access to a standard dry rodent diet and water. All animal protocols were approved by the Animal Care Committee of Keio University (No. 09187-(4)).

2.2. Polycrylamide gel electrophoresis (PAGE) and western blotting

Male mice were anesthetized with diethyl ether, and blood samples were collected from beating hearts of laparotomized mice, and then EDTA plasma (or serum) was prepared. Livers were collected from beating hearts of laparotomized mice, and then EDTA-free protease inhibitor cocktail (Roche Applied Science) was added to the samples. Liver homogenates (2.5% wt/vol) were prepared using a Polytron homogenizer (Brinkmann Instruments, Westbury, NY, USA) and then EDTA plasma (or serum) was added to the samples. The samples were centrifuged at 12,000 × g for 10 min at 4°C. The supernatants were removed and used for further experiments. Each sample was snap frozen in liquid nitrogen and stored at −80°C until analysis.

2.3. Measurement of plasma albumin levels

Plasma levels of albumin were measured using a Dri-Chem 7000i biochemistry analyzer with ALB-P slides (Fujifilm, Tokyo, Japan).

2.4. 2D DIGE

Plasma (10 μL) was mixed with 90 μL lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 1 mM PMSF, 1 mM Na3VO4). After adjusting the pH to 8.5 by adding 10 mM Tris–HCl (pH 8.5), 0.8 μL samples were labeled with 200 pmol of CyDye DIGE fluor, minimal labeling dye (Cy2, Cy3 or Cy5 [GE Healthcare]) at 4°C for 30 min in the dark. The reaction was stopped by adding 0.5 μL of 10 mM lysine. Labeled samples were mixed with dithiothreitol (DTT) and immobilized pH gradient (IPG) buffer (final 1% each) at 4°C for 10 min in the dark. The samples were immediately subjected to isoelectric focusing (IEF) in an Immobiline DryStrip (13 cm, pH 4–7 [GE Healthcare]) that were rehydrated for 20 h in a rehydration buffer (7 M urea, 2 M thiourea, 2% Triton X-100, 13 mM DTT, 2.5 mM acetic acid, 1% IPG buffer, and a trace amount of bromophenol blue) at 20°C. IEF was performed using a CoolPhoreStar IPG-IEF Type-px system (Anatech, Tokyo, Japan) in the following conditions: 500 V for 1.5 h, linear gradient from 500 V to 3500 V for 4.5 h, and finally 3500 V for 8 h at 20°C. Once IEF was completed, the strips were equilibrated for 30 min in reducing buffer (50 mM Tris–HCl [pH 6.8], 6 M urea, 2% SDS, 30% [v/v] glycerol, 65 mM DTT and a trace amount of bromophenol blue), followed by an alkylating buffer (reducing buffer with 4.5% iodoacetoamide instead of DTT) for an additional 15 min. The strips were sealed on the top of 10% PAGE gels using 0.5% low-melting-point agarose in a Tris–glycine electrophoresis buffer. The second dimension of protein separation was performed at a constant 200 V using an ERICA-S high-speed electrophoresis system (DRC, Tokyo, Japan) [12]. Gels were scanned using a Typhoon Trio image scanner (GE Healthcare).

2.5. Matrix-assisted laser desorption/ionization-time of flight/mass spectrometry (MALDI-TOF/MS) analysis

For silver staining, plasma (10 μL) was subjected to IEF and then SDS–PAGE without CyDye labeling. The gel was stained using a Silver Stain MS kit (Wako, Tokyo, Japan) in accordance with the manufacturer’s instructions. The gel pieces were excised, destained, washed twice with deionized water and four times with 50 mM ammonium bicarbonate: acetonitrile (1:1), and dehydrated once with acetonitrile. Then, the gel pieces were twice alternately rehydrated with 100 mM ammonium bicarbonate and dehydrated with acetonitrile, and dried by vacuum centrifugation. Protein samples were digested at 37°C for 12 h with 5 μL of 0.02 μg/μL Sequencing Grade Modified Trypsin (Promega) dissolved in 25 mM ammonium bicarbonate. Peptides were extracted from the gels in 40 μL of 1% trifluoroacetic acid/50% acetonitrile solution by sonication. Samples were spotted onto a μFocus MALDI plate (900 μm, 384 circles, Hudson Surface Technology; Old Tappan, NJ, USA) with an equal volume of matrix solution, containing 10 mM α-cyano-4-hydroxycinnamic acid in 1% trifluoroacetic acid/50% acetonitrile. Positive ion mass spectra were obtained using an AXIMA-CFR Plus (Shimadzu, Kyoto, Japan) in a reflection mode. MS spectra were acquired over a mass range of 700–4000 m/z and calibrated using peptide calibration standards (~1,000–3,200 Da, Bruker Daltonics, Yokohama, Japan) [12].

2.6. Protein database search

Proteins were identified by matching the peptide mass fingerprint with the Swiss-Prot protein database using the MASCOT Search engine (Matrix Science, http://www.matrixscience.com). Database searches were carried out using the following parameters: taxonomy, Mus musculus; enzyme, trypsin; and allowing one missed cleavage. Carbamidomethylation was selected as a fixed modification, and the oxidation of methionine was allowed as a variable. The peptide mass tolerance was set at 0.5 Da and the significance threshold was set at P < 0.05 probability based values on Mouse scores (≥55).

2.7. Quantitative polymerase chain reaction (qPCR)

Total RNA was isolated from the liver using TRI Reagent (Molecular Research Center, Cincinnati, Ohio, USA). Total RNA (1 μg) was used to produce first-strand cDNA with a ReverTra Ace qPCR RT Kit (Toyobo, Tokyo, Japan). A total of 10 ng of cDNA from each sample was amplified via qPCR using the SYBR Green Master Mix (Toyobo), 18 primer sets (Table 1), and a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) [11]. Each mRNA level was quantified using the comparative CT method with housekeeping gene hypoxanthine guanine phosphoribosyl transferase (Hprt) levels used for normalization, and the relative expression in wild-type mice was set at 1.

2.8. Statistical analysis

Data are expressed as means ± SD of independent samples (n as indicated). Statistical analyses were performed using unpaired two-tailed Student’s t-test, where P values < 0.05 were considered significant.

3. Results

3.1. Plasma protein profiling by 2D DIGE

Cbs−/− mice suffer from hepatic dysfunction/steatosis [6,7] and start to die from 2 weeks of age, and the majority die by 4 weeks...
1-week-old mice (Fig. 1B), but were generally maintained in 1-, 2-, and 4-week-old mice [8], and thus we analyzed plasma protein profiles comparatively in wild-type and

-8a–d), antithrombin-III (spot 9), ceruloplasmin (spots 5a–e), inter-

Gene	Primer sequence	Size
Afp	5′-CGCCGACTCTGAGACGAAAG-3′ (Forward)	218 bp
	5′-ATGAAATGGCTGGCATTCCT-3′ (Reverse)	162 bp
Apoe	5′-TGGCTTGTTGCCATTTCTGT-3′ (Forward)	161 bp
	5′-CTCCAGGCTTGGTAAAC-3′ (Reverse)	120 bp
Aapos4	5′-AACTATGCGACTGGAGCT-3′ (Forward)	127 bp
	5′-CGATGCTAGTGGTCCCGA-3′ (Reverse)	111 bp
A2m	5′-CGAGCAAGAGCAATGACCT-3′ (Reverse)	172 bp
Cps	5′-ACGATCCAGACATCTGGCG-3′ (Forward)	166 bp
	5′-AGTTTGGAAGCTCAGGATG-3′ (Reverse)	122 bp
Hpfs	5′-ATATGGCCGACACAACAA-3′ (Reverse)	216 bp
Kng1	5′-AACCGGGCTTTCGGGAGA-3′ (Reverse)	185 bp
	5′-TCTGAGGCAGGGGCTG-3′ (Reverse)	125 bp
Serpica1c	5′-GGATGGAGACGAGGCTT-3′ (Reverse)	219 bp
	5′-GGATACGCGGATGATTC-3′ (Reverse)	166 bp
	5′-CGGATGGAATGGTCCCGA-3′ (Reverse)	172 bp
	5′-CGGTGGAGATCGTGGATGGA-3′ (Reverse)	176 bp
	5′-CAGGAGCTGGAACAGTTTG-3′ (Reverse)	211 bp

MALDI-TOF/MS and Mascot search analyses identified a total of 10 genes (Table 2). Afp expression levels were similar between wild-type and

Gene	Primer sequence	Size
	5′-TCCTAGGAGACGAGGCTT-3′ (Reverse)	125 bp
	5′-GGATACGCGGATGATTC-3′ (Reverse)	166 bp
	5′-CGGATGGAATGGTCCCGA-3′ (Reverse)	172 bp
	5′-CGGTGGAGATCGTGGATGGA-3′ (Reverse)	176 bp
	5′-CAGGAGCTGGAACAGTTTG-3′ (Reverse)	211 bp

MALDI-TOF/MS and Mascot search analyses identified a total of 10 genes (Table 2). Afp expression levels were similar between wild-type and

-8a–d), antithrombin-III (spot 9), ceruloplasmin (spots 5a–e), inter-

-8a–d), antithrombin-III (spot 9), ceruloplasmin (spots 5a–e), inter-

Gene	Primer sequence	Size
	5′-TCCTAGGAGACGAGGCTT-3′ (Reverse)	125 bp
	5′-GGATACGCGGATGATTC-3′ (Reverse)	166 bp
	5′-CGGATGGAATGGTCCCGA-3′ (Reverse)	172 bp
	5′-CGGTGGAGATCGTGGATGGA-3′ (Reverse)	176 bp
	5′-CAGGAGCTGGAACAGTTTG-3′ (Reverse)	211 bp
carcinoma (HCC), yolk sac tumors, and acute/chronic hepatitis [14,15]. The characteristic machinery of Afp repression has attracted considerable attention from researchers interested in transcriptional regulation [13,16,17]; however, despite over 50 years of research since its first discovery in liver cancer, the physiological functions of AFP still remain obscure [14,18]. The main function of AFP is considered to be the extracellular transport of small molecules including estrogens, fatty acids, and bilirubin [19,20], but AFP-deficient mice develop normally and thus AFP is dispensable for embryonic development [21]. Meanwhile AFP is required for fertility in female mice [21] (i.e. protection of the developing female brain from masculinization/defeminization by estrogens [22]) and may play important immune regulatory roles [19,20]. This is the first demonstration of AFP accumulation during juvenile development in CBS-deficient mice, a homocystinuria model that is widely utilized for homocysteine-related research [5–8,12,23]. Our results may be clinically relevant because markedly lower Cbs expression in 120 HCC specimens compared with

Fig. 1. Altered plasma protein profiles in juvenile Cbs−/− mice revealed by 2D DIGE proteomic analysis. Plasma samples from wild-type (WT) and Cbs−/− male mice (n = 3 each) at 2 (A), 1 (B), and 4 (C) weeks of age were analyzed comparatively. Representative fluorescent image in which plasma samples from WT and Cbs−/− mouse plasma was pseudocolored in green and red, respectively, are presented with approximate isoelectric points (pl) and molecular weights (kDa).
surrounding non-cancer liver cells was found to be associated with high tumor stage and serum AFP level [24], and serum AFP elevation was found in NAFLD patients [25].

Previous studies demonstrated that human AFP contains a single glycosylation site but its structure varies with developmental stage and disease state, probably by alternating glycosylation

Table 2
Differentially expressed plasma proteins between 2-week-old wild-type and Cbs–/– mice.

Spot ID	Uniprot ID	Unigene	Protein (up or down regulated in Cbs–/–)	Mascot score	Sequence coverage (%)	Peptide matches	MWcalc	pIcalc
1 a–d	P02772	Afp	α-fetoprotein (up)	218	64	36/104	69,118	5.65
2	P08226	Apoe	Apolipoprotein E (up)	172	46	20/36	35,901	5.56
3	P06728	Apoa4	Apolipoprotein A-IV (up at 4 weeks)	145	61	23/58	45,001	5.34
4 a–f	Q61838	A2m	α-2-macroglobulin (down)	73	16	14/39	167,116	6.24
5 a–e	Q61147	Cpr	Ceruloplasmin (down)	150	31	26/47	121,872	5.53
6 a–d	A0X035	InhB	Inter α-trypsin inhibitor, heavy chain 4 (down)	100	30	22/79	104,765	5.99
7 a–c	Q01X72	Hpx	Hemopexin (down)	115	42	18/84	52,026	7.92
8 a–d	O08677	Kng1	Kininogen-1 (down)	112	26	18/59	74,140	6.05
9	P12261	SerpinC	Anti-thrombin-III (down)	92	35	16/49	52,484	6.10
10 a–d	Q00896	Serpin1c	α-1-antitrypsin 1–3 (down)	97	37	11/41	45,966	5.25
11 a–c	P29099	Abg	α-2-HS-glycoprotein (down)	72	13	9/34	38,100	6.04
12	P21614	Ga	Vitamin D-binding protein (down)	121	47	16/61	55,162	5.39
13	Q8K0E8	Fgb	Fibrinogen b chain (down)	174	60	35/120	55,402	6.68
14 a–d	Q8VC7M	Fgg	Fibrinogen γ chain (down)	212	71	24/45	50,044	5.54
15 a–c	Q80823	Apoa1	Apolipoprotein A-I (down)	195	50	20/51	30,397	5.51
16 a–c	P07724	Alb	Serum albumin (no change)	263	60	31/72	70,700	5.75

A total 16 proteins identified from MALDI-TOF/MS analysis and Mascot searches are listed with their spot ID (in Fig. 1A), Uniprot ID, Unigene/protein names, Mascot score, sequence coverage, peptide matches, MWcalc (molecular weight calculated from identified protein sequence), and pIcalc (isoelectric point calculated from identified protein sequence).

* Protein has some variant spots and the representative data from spots with the highest Mascot score are shown.

Fig. 2. Increased α-fetoprotein (AFP) expression in 2-week-old Cbs–/– mouse plasma/serum/liver. (A) Two-dimensional PAGE/western blotting analysis of AFP variants in 2-week-old wild-type (WT) and Cbs–/– male mouse plasma (10 μL). (B) PAGE/western blotting analysis of AFP proteins in 2-week-old WT, (heterozygous) Cbs+/-, Cbs–/–, and Cth+/- mouse serum and liver (2.5 μg protein per lane). As for liver samples, GAPDH expression was examined as a loading control. Band intensities of ~79 kDa AFP proteins were densitometrically scanned and the relative values against the average AFP expression level (for serum) or the AFP/GAPDH ratio (for liver) in WT mouse samples were calculated. The representative band images are presented. Bar data show means ± SD (n = 3 each) and differences versus WT are significant at *P < 0.05 and **P < 0.01 by Student’s t-test. (C) PAGE/western blotting analysis of AFP proteins in embryonic day 15.5 (E15.5), postnatal day 0.5 (P0.5), P7.5, and P14.5 WT, Cbs–/–, and Cbs–/– mouse serum and liver (2.5 μg protein per lane). Postnatal repression of AFP expression was delayed in Cbs–/– mouse liver, and thus in Cbs–/– mouse serum.
Lens culinaris agglutinin (LCA)-reactive fraction of AFP (AFP-L3) has been considered as a more specific HCC marker [27]. In this study, we detected hyperaccumulation of all nine AFP variants in 2-week-old Cbs/C0/C0/C0 mouse plasma compared with respective wild-type samples (Fig. 2A), which was attributable to delayed repression of Afp expression in the liver (Fig. 2C). In contrast, expression of most other major plasma proteins was suppressed (Table 2 and Fig. 1A), at least partly, via transcriptional repression (Fig. 3). One plausible explanation is that increased AFP may bind and hold multiple endogenous ligands required for transcriptional activation of such liver proteins. This is because AFP belongs to a three-domain albuminoid gene family that currently consists of four members (AFP, albumin, vitamin D-binding protein, and α1-albumin) and binds steroids, fatty acids, bilirubin, retinoids, and heavy metals [19,20]. Indeed, vitamin D-binding protein, which binds/transport vitamin D and plays important roles in bone/calcium homeostasis [28], was downregulated in 2-week-old Cbs−/− mouse plasma (Table 2 and Fig. 1A). This downregulation could be related to osteoporosis and skeletal abnormalities found in Cbs−/− mice [29], although transgenic mice overexpressing human AFP were found to be generally normal [30], and hereditary persistence of AFP in two unrelated Japanese families exhibited no apparent phenotypes [31]. We reported previously about abnormal and decreased high-density lipoprotein contents in 2-week-old Cbs/C0/C0/C0 mouse serum [7], which may be associated with decreased apolipoprotein A-I levels (Table 2 and Fig. 1A).

In conclusion, we found transcriptionally regulated hyperaccumulation of AFP in fatty liver and plasma of juvenile Cbs−/− mice. Mice lacking methionine adenosyltransferase 1A also displayed...
both fatty liver and AFP accumulation [32], but our Ch^h^mice did not [9]; therefore, the methionine cycle/transsulfuration pathway may play important roles in epigenetic regulation of Afp.

Conflict of interest

The authors declare no competing financial interests.

Acknowledgement

This work was supported by the Grants-in-Aid for Scientific Research (25460072 and 25220103) and the Program for Strategic Research Foundation at Private Universities (2011–2015) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; and Program for the Advancement of Next Generation Research and Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research from the Keio University (to I.I.). S.K. is a research fellow of the Fukuzawa Memorial Fund for the Advancement of Education and Technology (MEXT) of Japan; and Program for the Advancement of Next Generation Research and Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research from the Keio University (to I.I.).

References

[1] Mudd, S.H., Levy, H.L. and Kraus, J.P. (2001) Disorders of transsulfuration in: The Metabolic and Molecular Basis of Inherited Disease (Scriver, C.R., Beaudet, W.S., Sly, W.S. and Valle, D., Eds.), 8th ed, pp. 2007–2056, MaGraw-Hill, New York.

[2] Austin, R.C., Lentz, S.R. and Werstuck, G.H. (2004) Role of homocysteinuria due to cystathionine synthase deficiency: enzymatic and ultrastructural studies. J. Pediatr. 84, 381–390.

[3] Gaul, G., Sturman, J.A. and Schaffner, F. (1974) Homocystinuria due to cystathionine beta-synthase deficiency: a review. Am. J. Med. 57, 564–566.

[4] Gulsen, M., Yesilova, Z., Bagci, S., Uyygun, A., Ozcan, A., Ercan, C.N., Erdil, A., Sanisoglu, S.Y., Cakir, E., Ates, Y., Erbil, M.K., Karaeren, N. and Dagalp, K. (2005) Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 20, 1448–1455.

[5] Watanabe, M., Osada, J., Aratani, Y., Kluckman, K., Reddick, R., Malinin, M.R. and Maeda, N. (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homozygote/eternal. Proc. Natl. Acad. Sci. U.S.A. 92, 1585–1589.

[6] Ikeda, K., Kubo, A., Akahoshi, N., Yamada, H., Miura, N., Hishiki, T., Nagahata, Y., Matsuura, T., Suematsu, M., Taguchi, R. and Ishii, I. (2011) Tricarballylic acid/ phospholipid molecular species profiling of fatty livers and regenerated non-fatty livers in cystathionine beta-synthase-deficient mice, an animal model for homocysteinuria/homocystinuria. Anal. Bioanal. Chem. 400, 1853–1863.

[7] Namekata, K., Enokido, Y., Ishii, I., Nagai, Y., Harada, T. and Kimura, H. (2004) Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J. Biol. Chem. 279, 52961–52969.

[8] Akahoshi, N., Kobayashi, C., Ishizaki, Y., Isumi, T., Himi, T., Suematsu, M. and Ishii, I. (2008) Genetic background conversion ameliorates semi-lethality and permits behavioral analyses in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. Hum. Mol. Genet. 17, 2494–2505.

[9] Matsuura, T., Takano, N., Mori, M., Ishizaki, Y., Izumi, T., Kumagai, Y., Kasahara, T., Suematsu, M. and Ishii, I. (2014) Neutral aminoaciduria in cystathionine beta-synthase-deficient mice, an animal model of homocystinuria. Am. J. Physiol. Renal Physiol. 306, F1462–F1476.

[10] Kim, J., Hong, S.P., Park, J.H., Park, S.Y., Cho, E.Y., Do, I.G., Joh, J.W. and Kim, D.S. (2009) Expression of cystathionine beta-synthase is downregulated in hyperhomocysteinemia and associated with poor prognosis. J. Cell. Physiol. 21, 1449–1454.

[11] Babali, A., Cakal, E., Purnak, T., Biyikoglu, I., Cakal, B., Yuksel, O. and Koklu, S. (2009) Serum alpha-fetoprotein levels in liver steatosis. HEPATOLOGY Int. 3, 551–555.

[12] Takata, K., Sekiya, C., Namiki, M., Akamatsu, K., Ohta, Y., Endo, Y. and Kosaka, K. (1990) Lectin-reactive profiles of alpha-fetoprotein characterizing hepatocellular carcinoma and related conditions. Gastroenterology 99, 508–518.

[13] Akahoshi, N., Kamata, S., Kubota, M., Higuchi, T., Nagahata, Y., Matsuura, T., Yamazaki, C., Yoshida, Y., Yamada, H., Ishizaki, Y., Suematsu, M., Kasahara, T. and Ishii, I. (2014) Neutral aminoaciduria in cystathionine beta-synthase-deficient mice, an animal model of homocystinuria. J. Biol. Chem. 289, 1585–1589.

[14] Taketa, K. (1990) Alpha-fetoprotein: reevaluation in hepatology. Hepatology 12, 1420–1432.

[15] Musuzuki, R., Karp, S.J. and Omata, M. (2012) New serum markers of hepatocellular carcinoma. Semin. Oncol. 39, 434–439.

[16] Gillespie, J.R. and Uversky, V.N. (2000) Structure and function of alpha-fetoprotein: a biophysical overview. Biochim. Biophys. Acta 1480, 41–56.

[17] Mizejewski, G.J. (2004) Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp. Biol. Med. (Maywood) 229, 439–463.

[18] Sanisoglu, S.Y., Cakir, E., Ates, Y., Erbil, M.K., Karaeren, N. and Dagalp, K. (2005) Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 20, 1448–1455.

[19] Watanabe, M., Osada, J., Aratani, Y., Kluckman, K., Reddick, R., Malinin, M.R. and Maeda, N. (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homozygote/eternal. Proc. Natl. Acad. Sci. U.S.A. 92, 1585–1589.

[20] Ikeda, K., Kubo, A., Akahoshi, N., Yamada, H., Miura, N., Hishiki, T., Nagahata, Y., Matsuura, T., Suematsu, M., Taguchi, R. and Ishii, I. (2011) Tricarballylic acid/ phospholipid molecular species profiling of fatty livers and regenerated non-fatty livers in cystathionine beta-synthase-deficient mice, an animal model for homocysteinuria/homocystinuria. Anal. Bioanal. Chem. 400, 1853–1863.

[21] Namekata, K., Enokido, Y., Ishii, I., Nagai, Y., Harada, T. and Kimura, H. (2004) Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J. Biol. Chem. 279, 52961–52969.

[22] Akahoshi, N., Kobayashi, C., Ishizaki, Y., Isumi, T., Himi, T., Suematsu, M. and Ishii, I. (2008) Genetic background conversion ameliorates semi-lethality and permits behavioral analyses in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. Hum. Mol. Genet. 17, 1994–2005.

[23] Matsuura, T., Takano, N., Mori, M., Ishizaki, Y., Isumi, T., Kumagai, Y., Kasahara, T., Suematsu, M. and Ishii, I. (2012) Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine gamma-lyase, an animal model of cystathioninuria. Free Radic. Biol. Med. 52, 1716–1726.

[24] Yamamoto, J., Kamata, S., Miura, A., Nagata, T., Kaimuna, R. and Ishii, I. (2015) Differential adaptive responses to 1- or 2-day fasting in various mouse tissues revealed by quantitative PCR analysis. FEBS Open Bio 5, 357–368.

[25] Lu, S.C., Alvarez, L., Huang, Z.Z., Chen, L., An, W., Corrales, F.J., Avila, M.A., Kanel, G. and Mato, J.M. (2001) Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc. Natl. Acad. Sci. U.S.A. 98, 5560–5565.