Introduction

Microscopic transsphenoidal surgery is a widely accepted and highly effective therapy for pituitary adenomas [1], [2]. In the last decade, more centers have converted from microscopic to completely endoscopic transsphenoidal approach, suggesting that this technique provides more complete tumor resection and/or reduction, controlling the usual complications at the same time [3], [4]. However, only a few worldwide multicentric studies exist to document the results of this procedure.

This study is a comparative overview of both of the above-mentioned surgical procedures in our institution for our population. It presents our experience in the treatment of pituitary adenomas, comparing the two procedures to each other. At the same time, an analogous comparison is made of the outcome of treatment in our institution of patients who have been treated with complete endoscopic transsphenoidal pituitary surgery versus the results of patients treated with microscopic technique. Its purpose is to establish and implement a procedure that will provide safer, more effective treatment with a better cost-benefit index.

Diagnostic procedures, clinical evaluation

Assessment of patients undergoing surgical treatment of pituitary adenomas begins with a multidisciplinary evaluation of subjective symptoms, objective clinical signs, initially performed by a primary care physician, neurosurgeon, endocrinologist, ophthalmologist, or neurologist. Anatomical and functional assessment of the pituitary gland is of great importance. A neurosurgeon and an endocrinologist evaluate the pituitary lesion. Indications for surgical treatment of pituitary adenomas are based on functional symptoms, objective clinical signs, computed tomography, and magnetic resonance imaging (MRI) findings [5], [6].

Ophthalmic symptoms are manifested by contact or compression of the chiasm and anterior
visual pathways with the lesion [7]. Oculomotor nerve palsy is manifested by penetration and compression of the lesion in the cavernous sinus [8], [9]. Extensive growth of the lesion by suprasellar progression, compression of the third ventricle, compromising the foramen of Monroe, and the liquid flux can potentially cause obstructive hydrocephalus.

Initial symptoms and signs may be discrete latent and are evidenced by sophisticated endocrinological functional tests, but also ophthalmological, and neuroradiological findings.

Surgical treatment of primary adenomas needs to be critically compared to other treatment options such as medical therapy, and sometimes radiotherapy and/or gamma knife, which is often performed as an alternative procedure. An indication for operative treatment is either tumor recurrence or progressive growth in a residual tumor [10].

Study design

This study is a retrospective-prospective randomized clinical trial, evaluating both treatment technologies. The randomization is performed with the patient's free choice of the operative team.

In the period of 2011–2018, 85 patients were treated, respectively, with microscopic and/or endoscopic-assisted technology, as well as endoscopic transsphenoidal resection of pituitary adenomas, that is now the subject of this study. They are processed with inclusive and exclusive criteria. Patients were randomized into two groups. The first group is patients treated with transsphenoidal microscopic and microscopically assisted hypophysectomy. The second group includes patients surgically treated with a fully transsphenoidal endoscopic technique.

The subject of this study will be patients with a recorded lesion, pituitary adenomas, hormonally active as well as hormonally inactive, or dysfunctional. A retrospective review of patient records, post-operative, clinical, and outpatient data was used, and prospective patients will be used to determine the outcome of treatment.

The first group, the majority of treated patients were retrospectively analyzed, until 2014, treated with transsphenoidal microscopic and microscopically assisted hypophysectomy. The second group includes patients surgically treated with a fully transsphenoidal endoscopic technique.

There are several goals defined in this study: First, to determine the prevalence of pre-operative visual acuity affection; second, to determine the type of visual acuity; and third, to determine post-operative ophthalmologic status comparatively in both operating methods.

Materials and Methods

The study was conducted in the University Clinic of Neurosurgery at the Clinical Center Mother Teresa, Skopje, Macedonia. Designed as a retrospective-prospective clinical trial, aiming to evaluate and compare both technologies in the period 2011-2018.

This study treated 85 patients, 46 of whom were treated with microscopic and/or endoscopic-assisted microscopic resection and 39 patients treated only with endoscopic transsphenoidal resection of pituitary adenomas as the subject of this study. Initially treated patients were mainly treated with a microscopic transnasal technique as the only possible option in our institution until 2014.

The procurement of the necessary equipment and resources has opened the possibility for endoscopic assisted and fully endoscopic technology for resection of pituitary adenomas.

Inclusion criteria

The following criteria were included in the study:
- Patients over 14 years of age of both sexes;
- Patients with clinically diagnosed adenomas;
- Patients with sellar lesions which, by configuration, volume and anatomic configuration without distortion, provide safe transsphenoidal resection;
- Patients with lesions in which the diaphragm of the sella is intact;
- Patients with invasive lesions, penetrating over the diaphragm of the sella, but with prior strategy and consent for double phase resection, the first of which is transnasal endoscopic approach;
- Patients with microadenomas with Cushing's disease as life threatening; and
- Patients previously treated with transnasal transsphenoidal microscopic approach, and endoscopically assisted resection with diagnosed recurrence with clinical manifestation.

Exclusion criteria

The following criteria were excluded from the study:
- Patients under 14 years of age of both sexes;
- Patients with lesions with unfavorable anatomical configuration for safe resection along this corridor (close carotid artery, high suprasellar, parasellar tumor extension, cavernous sinus involvement...);
• Patients with sellar lesions of other histological and etiopathogenic structure;
• Patients with microadenomas that are favorable for conservative treatment; and
• Patients with previous operative procedures across this corridor with reported complications and high risks.

Results

Neuroendoscopy is an impressive high-tech surgical procedure, with relaxed, comfortable accessibility, and simplicity, at the same time complemented by continuous expertise in continuous medical education and training, provided with improved field of vision, angle of view, brightness, bimanual manipulation, and better potential for manipulation in case of complications, ensuring marked improvement in the outcome of treating patients with hypophyseal adenomas.

Namely, with the implementation of neuroendoscopy in our institution, the expectations are that there will be a significant improvement and facilitation in the management of sellar pathology, in terms of volume of resection, i.e., less voluminous residual tumor, reduced risk for recurrence, general extended grace period in case of recurrence, improvement of hormonal status, reducing the risk of complications, shortening hospital treatment, or better cost-benefit index.

The results regarding pre-operative visual acuity in both patient groups are shown in Table 1.

Table 1: Pre-operative visual acuity affection

Procedure	Pre-operative visual acuity affection	Total				
	No affection	Affected visual acuity				
Microscopic	Count	%	Count	%	Count	%
Count	12	26.1%	34	73.9%	46	100.0%
Endoscopic	Count	%	Count	%	Count	%
Count	16	41.0%	23	59.0%	39	100.0%
Total	Count	%	Count	%	Count	%
Count	28	32.9%	57	67.1%	85	100.0%

In the group of 46 patients treated with microscopic transsphenoidal surgery, 12 (26.10%) patients were preoperatively unaffected and 34 (73.90%) patients were afflicted. In the group of 39 patients treated with endoscopic transsphenoidal approach, 16 (41.00%) patients were preoperatively without visual acuity affection and 23 (59.00%) patients had affected visual acuity.

For Pearson Chi-square = 2.13 and p > 0.05 (p = 0.14), there was no significant difference between the two groups of patients in terms of pre-operative visual acuity.

Table 2: Type of visual affection

Procedure	Type of visual affection	Total						
	Scotoma	Hemianopsia	Reduced Visual Acuity	Amblyopia	Amaurosis	Diplopia	Total	
Microscopic	Count	9	11	7	0	6	1	34
%	26.5%	32.4%	20.6%	0.0%	17.6%	2.9%	100.0%	
Endoscopic	Count	1	6	8	5	3	0	23
%	4.3%	26.1%	34.8%	21.7%	13.0%	0.0%	100.0%	
Total	Count	10	17	15	5	9	1	57
%	17.5%	28.9%	26.3%	8.8%	15.8%	1.8%	100.0%	

In the group of 34 patients undergoing microscopic transsphenoidal surgery, the following results were obtained with regard to the type of visual acuity: 9 (26.50%) patients had visual field scotoma, 11 (32.40%) patients had hemianopsia, 7 (20.60%) patients had reduced acuity, 6 (17.60%) patients had amaurosis, and 1 (2.90%) patients had diplopia.

In the group of 23 patients treated with endoscopic transsphenoidal approach, the following results were obtained in terms of the type of visual acuity: 1 (4.30%) patients had visual field scotoma, 6 (26.10%) patients had hemianopsia, 8 (34.80%) patients had reduced acuity, 5 (21.70%) amblyopia, and 3 (13.00%) patients had amaurosis.

For Fisher’s exact test = 12.89 and p < 0.05 (p = 0.015)/Monte Carlo Sig./0.012–0.018/there is a significant difference in the type of visual acuity in patients treated with both operating methods.

Results regarding post-operative ophthalmologic status in patients with pre-operative visual acuity treated with both operating methods are shown in Table 3.

Table 3: Post-operative ophthalmologic status in patients with pre-operative visual affection

Procedure	Post-operative ophthalmologic status	Total				
	Unchanged	Partially improved	Significantly improved	Normalized	Total	
Microscopic	Count	14	14	6	0	34
%	41.2%	41.2%	17.6%	0.0%	100.0%	
Endoscopic	Count	0	2	14	7	23
%	0.0%	8.7%	60.9%	30.4%	100.0%	
Total	Count	14	16	20	7	57
%	24.6%	28.1%	35.1%	12.3%	100.0%	

Of the 34 patients treated with microscopic transversal surgery, in 14 (41.20%), the post-operative ophthalmologic status remained unchanged; in 14 (41.20%), the post-operative ophthalmologic status partially improved; and in 6 (17.60%), the post-operative ophthalmologic status was significantly improved.

Of the 23 patients treated with endoscopic transsphenoidal approach, in 2 (8.70%), the post-operative ophthalmologic status was partially improved; in 14 (60.90%), the post-operative ophthalmologic
status improved significantly; and in 7 (30.40%), the post-operative the ophthalmic operating status was normalized.

For Fisher's exact test = 34.16 and p < 0.001 (p = 0.000)/Monte Carlo Sig., there is a significant difference in post-operative ophthalmologic status in patients treated with both operating methods.

Discussion

Pituitary adenoma surgery has gradually evolved toward less invasive approaches, primarily the transsphenoidal corridor, with endoscopic technique. There has been more and more evidence that endoscopic surgery is a safe, minimally invasive alternative for the treatment of pituitary adenomas [11], [12], [13], [14], [15], [16]. Endoscopy is already expanding borders, eliminating surgical limitations, improving performance, primarily by improving visualization, lighting, and reliability, allowing removal of lesions that were inaccessible by prior technology and corridors. It is already clearly noted that the feature of minimal invasiveness significantly affects the positive outcomes and lowers the post-operative complications in endoscopic procedures compared to the microscopic approach [17].

The results of our meta-analysis clearly favor endoscopic technology for pituitary surgery compared to microscopic technique. The endoscopic approach was a significant improvement in the extend of resection, with a markedly reduced number and volume of lesion residues, and thus a reduced number and volume of recurrent adenomas, followed by shorter hospital stay/treatment, less incidence of defects, and bleeding. Furthermore, there was a significant improvement in complications such as meningitis, cerebrospinal fluid (CSF) fistula, hypopituitarism, and diabetes mellitus.

Preoperatively, visual acuity is almost identical in both groups. Post-operative ophthalmologic examinations (ophthalmologic examination, visual acuity, perimeter, fundus, and VEP), by comparison, showed a significant difference.

Namely, of 34 patients with preoperatively affected visual acuity that was treated microsurgically, 14 remained unchanged, 14 had partial improvement, and 6 had significant benefit.

The group treated with the endoscopic approach reported improvement in almost all patients. In 2 patients, there was a partial improvement in 14 significant improvements and in 7 patients, post-operative normalization was achieved.

In addition, comparing cross-tabulation findings, volume of resection and post-operative ophthalmologic status in patients with pre-operative visual acuity affection, there is a significant difference in favor of endoscopic technology.

In our opinion, this difference is due to a number of objective and subjective factors. Endoscopic technology, although two-dimensional, provides the full panorama of a well-lit field of vision in the sella itself, supra and partially antero-sellarly, with a clear view of the chiasm, as well as optic nerves securely decompressed by radical resection, with preservation of the arachnoid and their anatomic CSF cisterns, documented with post-operative MRI which is only partially possible or not at all possible with microscopic technology. This option is certainly a result of technical progress as well as continuous training of the team itself, with growing agility, security, reliability, and expertise.

Conclusion

The results of our study, comparing the endoscopic versus microscopic transnasal, transsphenoidal resection of pituitary adenomas, have unequivocally shown that the endoscopic transnasal transsphenoidal procedure is a rational, effective, efficient, and above all safe technique, with numerous favorable advantages that allow for a higher degree of radicality.

Safe radical resection – gross total resection is the primary goal of every surgical oncologist, including this procedure, by providing neoplasm resection, preventing recurrence, and minimizing complications, thereby reducing/eliminating residuals, prolonging the grace period, i.e., tumor-free interval, better endocrinological, ophthalmologic and oncologic results, reduction of hospital days of patient stay, reduction of frequency and hazard of intra- and post-operative complications, and crucial to improve the general and specific quality of life of patients. These are inevitable factors for the promotion and establishment of endoscopic transsphenoidal resection of pituitary adenomas in the future as a possible gold standard in the treatment of these lesions.

Certainly, nowadays, both technologies still have their place in the treatment of pituitary adenomas, but the technological evolution of optical equipment, and in symbiosis with continuous education and training of pituitary surgeons, will inevitably become a new global standard in the treatment of pituitary adenomas.

It is undisputed that this complex procedure is possible only as team collaboration with an endocrinologist, ophthalmologist, otorhinolaryngologist, neuroradiologist, anesthesiologist, oncologist, and as a long-term, comprehensive, and complex process of treating patients.
References

1. Jane JA Jr., Catalino MP, Laws ER Jr. Surgical treatment of pituitary adenomas. In: Feingold KR, Anawalt B, Boyce A, editors. Endotext. South Dartmouth, MA: MDText.com, Inc.; 2000.

2. Varlamov EV, McCartney S, Fleseriu M. Functioning pituitary adenomas current treatment options and emerging medical therapies. Eur Endocrinol. 2019;15:30-40. https://doi.org/10.17925/eer.2019.15.1.30 PMid:31244908

3. Nishioka H. Recent evolution of endoscopic endonasal surgery for treatment of pituitary adenomas. Neurol Med Chir (Tokyo). 2017;57(4):151-8. https://doi.org/10.2176/nmc.ra.2016-0276 PMid:28239067

4. Neal JG, Patel SJ, Kulbersh JS, Osguthorpe JD, Schlosser RJ. Comparison of techniques for transsphenoidal pituitary surgery. Am J Rhinol. 2007;21(2):203-6. https://doi.org/10.2500/ajr.2007.21.2981 PMid:17424881

5. Zervas NT. Surgical results in pituitary adenomas: Results in an international survey. In: Black PM, Zervas NT, Ridgway EC, Martin JB, editors. Secretory Tumors of the Pituitary Gland. New York: Raven Press; 1984. p. 377-85.

6. Shimon I, Melmed S. Management of pituitary tumors. Ann Intern Med. 1998;129(6):472-83. PMid:9735086

7. Madill SA, Riordan-Eva P. Disorders of the anterior visual pathways. J Neurol Neurosurg Psychiatry. 2004;75(Suppl 4):v12-19. PMid:15564426

8. Sasaki R, Motoyama Y, Nakagawa I, ParkYS, Nakase H. Asymptomatic penetration of oculomotor nerve by internal carotid-posterior communicating artery aneurysm presenting pure acute subdural hematoma: A case report. Neurol Med Chir (Tokyo). 2018;58(4):173-7. https://doi.org/10.2176/nmc.cr.2017-0147 PMid:29375086

9. Raza HK, Chen H, Chansysouphanthong T, Cui G. The aetiologies of the unilateral oculomotor nerve palsy: A review of the literature. Somatosens Mot Res. 2018;35(3-4):229-39. https://doi.org/10.1080/08990220.2018.1547697 PMid:30592440

10. Dai C, Liu X, Ma W, Wang R. The treatment of refractory pituitary adenomas. Front Endocrinol (Lausanne). 2019;10:334. PMid:31191457

11. Ebersold MJ, Quast LM, Laws ER Jr., Scheithauer B, Randall RV. Long-term results in transsphenoidal removal of nonfunctioning pituitary adenomas. J Neurosurg. 1986;64(5):713-9. https://doi.org/10.3171/jns.1986.64.5.0713 PMid:3701419

12. Guiot G., editor. Hypophysaire. Paris: Masson; 1958.

13. Guiot G, Thebaul B. L’Exirpation des adenomas hypophysaires par voie trans-sphenoidale. Neuro Chirug. 1959;1:133. https://doi.org/10.1055/s-0028-1095527

14. Hardy J. L’Exerese des adenomas hypophysaires par voie trans-sphenoideale. Union Med Can. 1962:91-933.

15. Hardy J. Transsphenoidal microsurgery of the normal and pathological pituitary. Clin Neurosurg. 1969;16:185-217.

16. Hardy J. Trans-sphenoidal approach to the pituitary gland. In: Wilkins, R.H., Rengachary SS., editors. Neurosurgery. New York: MacGraw-Hill; 1996. p. 1375-84.

17. Gao Y, Zhong C, Wang Y, Xu S, Guo Y, Dai C, et al. Endoscopic versus microscopic transsphenoidal pituitary adenoma surgery: A meta-analysis. World J Surg Oncol. 2014;12:94. https://doi.org/10.1186/1477-7819-12-94 PMid:24721812