Self-reported dental hygiene, obesity, and systemic inflammation in a pediatric rural community cohort

Stephanie J Frisbee¹,²,³*, Christopher B Chambers⁴, Jefferson C Frisbee³,⁵, Adam G Goodwill³,⁵, Richard J Crout⁴

Abstract

Background: A growing body of epidemiologic evidence links oral health, obesity, and cardiovascular health, though few studies have reported on these relationships in children. While underlying mechanisms are unclear, adult studies have suggested sub-acute systemic inflammation, also implicated in the etiology of both obesity and cardiovascular disease. This study investigated associations between self-reported dental hygiene, obesity, and systemic inflammation in children.

Methods: 128 children < 19 years of age from rural counties in West Virginia participated in a community-based health screening that included anthropometric assessments, blood collection, and a questionnaire about dental hygiene and self-assessed oral health.

Results: Participants ranged from 3.0-18.7 years. Univariate analysis demonstrated an association between parent-reported dental hygiene, including frequency of preventive dental care and parent-assessed overall dental health, and markers of systemic inflammation but not obesity. In multivariable regression, parent-assessed overall dental health and obesity were independent predictors of systemic inflammation, after adjustment for age, gender, and parent education.

Conclusions: This is the first known study of the association between dental hygiene, obesity, and systemic inflammation in children. These results highlight the importance of preventive dental care in overall, systemic health in children and are consistent with previous reports in adults.

Background

There have been substantial recent research efforts investigating the relationship between oral and systemic health, aided in part by the focus given the topic by the 2000 Surgeon General’s report on “Oral Health in America” [1]. This report cited that dental caries affects almost ¾ of children ages 5-17, with the burden of disease higher in poorer children [1]. Substantial socioeconomic and geographic oral health disparities have also been noted. Untreated tooth decay has been reported in three times as many children aged 6-11 from families with incomes below the U.S. federal poverty line compared to children from families with incomes above the poverty line (12% vs. 4%, respectively) [2]. Geographic disparities in adult oral health are particularly seen in areas of Appalachia, especially West Virginia, Kentucky, Louisiana, and Arkansas [3]. In children in West Virginia, 65.6% of children had at least 1 cavity by age 8, a proportion well above the national average [4].

In adults, there is a growing literature linking oral and periodontal health to increased risk for chronic health conditions, including obesity and cardiovascular disease. Some studies have reported a link between body mass index (BMI), as a proxy measure for obesity, and periodontal pockets [5]. Additional epidemiologic studies have associated poor oral health with increased risk for myocardial infarction and coronary atherosclerosis [6-14]. Systemic inflammation and/or bacterial pathogenesis have been identified as possible mechanistic pathways. Investigators have reported a relationship between the cumulative burden of periodontal pathogenic burden and coronary heart disease [15], the presence of periodontal...
bacteria in atherosclerotic plaques [16-19], and elevated levels of systemic C-reactive protein (CRP) and interleukin(IL)-6 [20]. Further, recent reports of randomized trials have reported improvement in systemic inflammation and endothelial function after treatment for periodontitis [21-26].

Currently, the body of scientific knowledge from studies of associations between oral health and obesity or cardiovascular health in children is not as well developed as it is in adults. To date, many studies on oral health in children have focused on issues related to access and efficacy of treatment recommendations [27-32]. Recent studies have reported a link between childhood oral health and obesity [33-36], though the observation of a positive correlation between dental caries and obesity has not been universal [37,38] leading to the recommendation of additional study [39]. Further, understanding an etiologic (causative) compared to correlative association between dental caries or other indicators of dental health and obesity or cardiovascular disease risk factors in children will likely require consideration of complex interrelations between nutritional status and habits, socioeconomic status, general health habits, and family influences among other factors [40]. However, given the demonstrated association between oral health, obesity, and cardiovascular disease in adults, and that a plausible biologic mechanism is cumulative pathogenic burden leading to systemic inflammation, early emphasis on good oral health in children would be prudent. In particular, routine preventive care and robust dental hygiene, given the well established link between dental hygiene habits and oral health, would be highlighted to forestall or avoid adverse pathogenic effects.

The purpose of this exploratory study was to assess the association between self- and parent-reported dental hygiene and self- and parent-assessed oral health, obesity, and systemic inflammation in children living in rural communities. An association between dental hygiene and self- or parent-assessed oral health and systemic inflammation after controlling for measures of obesity would provide preliminary support for an etiologic link between these conditions in children.

Methods

Participants

Participants were recruited from 5 different counties in West Virginia. Counties ranged in rurality from 3-9 on the United States Department of Agriculture Economic Research Service 2003 Rural-Urban Continuum Codes (9 being the most rural). Children and families in these counties were invited to participate in a comprehensive health screening taking place in their community during the spring-fall months of 2006. As there were no exclusion criteria for participation in the health screenings, participants in this study are considered a cross-sectional, convenience sample. In total, 128 children < 19 years of age participated in the health screenings. The average age of these participants was 11.1 ± 2.9 (standard deviation) years (range: 3.0-18.7) and 52% were girls. All methods and protocols were approved by the West Virginia University Institutional Review Board, and participants completed the appropriate informed consent procedures.

Data Collection

Mobile data collection teams were stationed in community-based facilities for morning health screenings (7 AM-11 AM). Participants, having completed ≥8 hour fast, underwent standard anthropometric assessments that included height, weight, hip and waist circumference, and blood pressure (Omron HEM-711AC, Omron Healthcare, Kyoto, Japan). All anthropometric measures were taken in duplicate and results were averaged for analysis. For BMI, age- and gender-based percentiles were calculated using the Epi Info™ Nutrition module (Version 3.3.2, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA).

Participants provided a blood sample for determination of a fasting lipid profile and systemic inflammation; blood glucose levels were determined immediately (Free-Style Flash Blood Glucose Monitoring System, Abbott Laboratories, Abbott Park, Illinois, USA). Children ≥10 years of age completed questions about health and lifestyle habits including a questionnaire about their dental health and dental hygiene practices, for which questions were derived in part from the National Health and Examination Survey (NHANES) developed as part of a multi-site study of dental health in Appalachia [41]. Parents of all children completed a similar questionnaire about their child’s dental health and dental hygiene practices, similarly developed [41].

Biochemical Analysis

All physiologic samples were processed at the time of screening, with plasma fractions snap-frozen on dry ice. Plasma samples were analyzed in a nearby hospital laboratory to obtain a fasting lipid profile (total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, triglycerides). Endocrine, cytokine, and other inflammatory markers, including insulin, were obtained from frozen plasma using the LumineX100® system with the appropriate Lincoplex™ multiplex assay kits and protocols from LincoResearch (LumineX Corporation, Austin TX; Linco Research Corporaton now Millipore Corporation, Billerica, Massachusetts, USA). Concentrations for all markers determined via the LumineX100® system were obtained in duplicate; only concentrations with a coefficient of variation ≤ 0.5 were included. As sharply elevated CRP is considered indicative of acute...
infection, individuals with CRP > 10 mg/dL were excluded from analysis of variance (ANOVA) and regression statistical analysis [42]. Of the 128 participants in this study, 91 children contributed blood samples. Of these, two samples were excluded due to concerns about fasting or limited volume, seven excluded due to indication of acute infection, and nine excluded per data quality control procedures, resulting in a final sample of n = 73 available for statistical analysis.

Statistical Analysis
All statistical analyses were performed with SPSS (SPSS Inc., Chicago, Illinois, USA). To better approximate normality in distribution, BMI z-score and not BMI was used in statistical analyses. Univariate analyses (ANOVA) were performed to identify associations to pursue with multivariable analysis. As univariate analysis was being used to guide further analysis and not to explicitly test hypotheses, correction for multiple testing was not used. For all multivariable models using ordinary least squares (OLS) linear regression, all models were assessed for violation of the fundamental assumptions. There was no meaningful heteroskedasticity or autocorrelation in any models. While some multicollinearity was present in all models, for all models all variables were retained due to a priori theoretical considerations, or because of potential confounding effects identified during univariate analysis.

Results
In total, 128 children < 19 years of age at the time of enrollment participated in the community-based health screenings. Almost ¾ (73%) of the children were from a family where at least one parent had completed more than a high school education, and almost ½ (47%) were covered by employer-sponsored dental insurance. While there was no difference between girls and boys with regard to dental insurance (p (X²) > 0.10), boys were more likely than girls to live in a household without a parent having completed more than high school (84% vs. 62%, respectively, p (X²) = 0.006). Other characteristics of participants included: average BMI percentile of 68.2 ± 31.8 (standard deviation) with 56% above the 85th percentile (overweight or obese); average total cholesterol of 156.2 ± 27.7 mg/dL with 8% above 200 mg/dL; average HDL cholesterol of 41.7 ± 11.4 mg/dL with 48% below 40 mg/dL; average triglycerides of 72.6 ± 47.5 mg/dL with 21% above 150 mg/dL; and average fasting glucose of 89.5 ± 7.9 mg/dL with 7 participants having blood glucose 100-126 mg/dL.

Of the health screening participants, 91 children > 10 years of age, 118 parents (92% response rate for parents), and 90 parent-child pairs (where the child was > 10 years of age) completed the dental health survey. Summary descriptions of dental hygiene, attitudes, preventive practices, and self- or parent-assessed dental health are presented in Table 1 and the comparison of

Table 1 Self-Reported Dental Hygiene, Attitudes, Preventive Care, and Self-Assessed Dental Health as Reported by Participants (>10 Years of Age Only) and Parents of Participants (Participants of All Ages), Unmatched

Dental Hygiene Habits	Frequency of Brushing	Child	Parent
	At Least Daily	91%	89%
	Less Than Daily	9%	11%
Frequency of Flossing			
At Least 2-6 Times Weekly	39%	47%	
Weekly or Less	61%	53%	
Dental Health Attitudes	Importance of Dental Health		
Very Important	59%	–	
Not Very - Somewhat	41%	–	
Fear of Going to the Dentist	Not at all Afraid	71%	–
Some - Much Fear	29%	–	
Dental Health Preventive Care	Dental Health Care Home		
Has Regular Dental Home	94%	96%	
No Regular Dental Home	6%	4%	
Last Dental Care Visit	Within Last 6 Months	83%	84%
More than 6 Months Ago	17%	16%	
Self- or Parent-Assessed Dental Health	Now or Ever Had a Cavity		
Yes	69%	61%	
No	31%	39%	
Now or Ever Had a Filling	Yes	63%	56%
No/Don't Know	37%	44%	
Now or Ever Had a Tooth Pulled	Yes	48%	36%
No/Don't Know	52%	64%	
Overall Dental Health	Excellent or Very Good	49%	55%
Poor - Good	51%	45%	
Table 2 Comparison of Self-Reported Dental Hygiene, Attitudes, Preventive Care, and Self-Assessed Dental Health as Reported by Participants (>10 Years of Age Only) and Matched Responses by Their Parents

Dental Hygiene Habits	Frequency of Brushing	Child	Parent	p (X^2)
	At Least Daily	91%	87%	0.001
	Less Than Daily	9%	13%	

| Frequency of Flossing | At Least 2-6 Times Weekly | 40% | 51% | <0.0001 |
| | Weekly or Less | 60% | 49% | |

Dental Health Preventive Care	Dental Health Care Home	Child	Parent
	Has Regular Dental Home	94%	97%
	No Regular Dental Home	6%	3%

| Last Dental Care Visit | Within Last 6 Months | 84% | 86% | <0.0001 |
| | More than 6 Months Ago | 16% | 14% | |

Self- or Parent-Assessed Dental Health	Overall Dental Health	Child	Parent
	Excellent or Very Good	49%	55%
	Poor - Good	51%	45%

Table 3 Univariate (ANOVA) Associations Between Parent-Reported Dental Hygiene, Preventive Dental Care, Self-Assessed Dental Health, and Obesity

Dental Hygiene Habits	Flossing (2-6 Times Weekly vs. Weekly or Less)	BMI z-Score	p > 0.1

Dental Health Preventive Care	Preventive Care (Every 6 Months vs. Annually or Less)	BMI z-Score	p > 0.1

Parent-Assessed Dental Health	Overall Dental Health (Excellent or Very Good vs. Poor - Good)	BMI z-Score	p > 0.1

Frisbee et al. BMC Oral Health 2010, 10:21
http://www.biomedcentral.com/1472-6831/10/21

Page 4 of 8
Discussion and Conclusions

This study assessed the association between parent-reported measures of dental hygiene, preventive care, and parent-assessed overall dental health with obesity and markers of systemic inflammation in children living in rural communities. This is among the first known studies to demonstrate a link between these self-reported measures of dental health and systemic inflammation independent of obesity in children. In this study, univariate analysis demonstrated statistically significant associations between parent-reported indicators of dental hygiene, preventive dental care, and parent-assessed overall dental health and multiple markers of systemic inflammation but not obesity. In OLS regression analysis, after controlling for age, gender, and socioeconomic status, parent-assessed overall dental health maintained statistically significant, *Ceteris paribus* predictive effects on markers of systemic inflammation independent of obesity.

Results from this study, particularly that obesity was not univariately associated with indicators of dental

Dependent Variable*	n	R²	Adjusted R²	F Statistic	pF	Independent Variables	β***	Standard Errorβ	Pf
e-Selectin	65	0.2	0.2	4.2	0.005	BMI z-Score	3.2	1.6	0.05
						Parent-Assessed Overall Dental Health	-1.01	3.9	0.1
Haptoglobin	69	0.2	0.2	5.5	0.001	BMI z-Score	1.6e5	6.2e4	0.01
						Parent-Assessed Overall Dental Health	4.1e5	1.5e5	0.008
sVCAM-1	67	0.4	0.2	3.5	0.01	BMI z-Score	-9.9	4.4	0.03
						Parent-Assessed Overall Dental Health	-2.180	10.66	0.04
tPAI-1	68	0.5	0.3	6.6	<0.0001	BMI z-Score	258.3	64.6	<0.0001
						Parent-Assessed Overall Dental Health	-4927.8	15613.0	0.002

*All regression models included age, gender, and parent education in addition to BMI z-score, and parent-assessed overall dental health (coded as 0 = Overall Rating < Very Good (Poor-Good) and 1 = Overall Rating Excellent or Very Good).

Abbreviations for markers of systemic inflammation: sVCAM-1 (soluble vascular cell adhesion molecule-1); tPAI-1 (tissue plasminogen activator inhibitor-1).

***β coefficients not standardized.
hygiene, preventive care, or health, are consistent with previous reports of equivocal associations between dental caries and obesity [39]. Of note, however, was the finding that obesity and parent-assessed overall dental health were simultaneously and independently predictive of multiple markers of systemic inflammation. While the magnitude of relationships in OLS regression were modest, these relationships are consistent with a prevailing theory explaining the biologic mechanism linking oral health and obesity, and oral health and cardiovascular disease in adults. Relationships of smaller magnitude are expected in younger age groups, where pathogenic effects have not had sufficient time to accumulate and result in clinically detectable disease. Results from the current study provide preliminary evidence that poorer dental hygiene and oral health, which is presumed to lead to periodontal disease, and obesity may share a common, physiologic pathway in systemic inflammation. Further, longitudinal study is particularly recommended to understand the temporal development of these pathologies and how one may compound or contribute to the other.

It is important to acknowledge the limitations of this study. First, it is a cross-sectional, convenience sample of children living in rural, Appalachian communities and so the generalizability of results is unclear. Additionally and importantly, periodontal health was not directly measured, though self-reported dental health and hygiene behavior have been shown to be adequate proxies in epidemiologic or population-based studies [43]. Nevertheless, the results reported in this study using these epidemiologic and self-report survey methods would benefit from further study using more robust and direct measurements, including direct assessment of periodontal health using an oral exam, to ascertain whether directly assessed periodontal health is associated with local tissue inflammation as well as systemic inflammation. Additionally and consistent with requirements for establishing etiologic causality, determination of temporal associations is needed. Finally, both biochemical and statistical protocols used in this study contributed to cautious interpretation of results. The conservative criteria established for inclusion of inflammatory markers in the final analysis limited the sample size and, consequently, the regression analyses may be underpowered. However, this reduced sample sized combined with some multicollinearity both work to bias conclusions to accepting the null hypothesis of no effect and thus the observed effects of dental health habits on systemic inflammation are less likely to be attributable to type 1 error (false positive).

Results reported here will clearly benefit from additional studies in larger and more diverse populations. However, the initial results reported here suggest that poorer dental health in children may contribute to systemic pathophysiologic mechanisms common to obesity and cardiovascular disease. These observations, if affirmed by future, larger and more rigorous studies that include more robust measures of socioeconomic status and confounding by factors such as nutritional status and habits or other metabolic risk factors such as serum lipids or the metabolic syndrome, further underscore the importance of proactive dental health care as an integral component of holistic, overall health. Additionally, the findings of this study are consistent with recent interest in and calls for increased collaboration between primary care providers - both clinical (pediatricians) and dental (dentist and/or dental hygienist) - in identifying and addressing coincident obesity and poor dental health [44-47].

Acknowledgements
The authors gratefully acknowledge the support provided through the Translational Research Core (TRI-CHAMP, Translational Research Initiative in Cardiorespiratory Health in Appalachia from Mechanisms to Policy), and Dr. MA Boegehold, Director, Center for Cardiovascular and Respiratory Sciences at the West Virginia University Health Sciences Center. The authors acknowledge the contributions of Dr. Wm A Neal, Director, Coronary Artery Risk Detection in Appalachian Communities Project. Additionally, the authors acknowledge the Center for Oral Health in Rural Appalachia (COHRA) Project for providing some of the questionnaire material (DE14889). Thank you to the individuals and families that participated as subjects in this effort.

Author details
1Department of Community Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia, USA. 2Department of Dental Practice and Rural Health, School of Dentistry, West Virginia University, Morgantown, West Virginia, USA. 3Center for Cardiovascular and Respiratory Sciences, School of Medicine, West Virginia University, Morgantown, West Virginia, USA. 4School of Dentistry, West Virginia University, Morgantown, West Virginia, USA. 5School of Medicine, West Virginia University, Morgantown, West Virginia, USA. 6Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.

Authors' contributions
SJF made substantial contributions to the conception and design of this study, participated in data collection and biochemical analysis, performed statistical analysis and interpretation of results, drafted and revised the final manuscript, and read and approved the final manuscript. AGG contributed substantially to the data collection and biochemical analysis, participated in the interpretation of results, assisted in reviewing and revising the final manuscript, and read and approved the final manuscript. CBC participated in statistical analysis and interpretation of results, assisted in reviewing and revising the final manuscript, and read and approved the final manuscript. RJC made substantial contributions to the conception and design of this study, contributed to the data collection and biochemical analysis, participated in the interpretation of results, assisted in reviewing and revising the final manuscript, and read and approved the final manuscript. JCF made substantial contributions to the conception and design of this study, contributed to the data collection and biochemical analysis, participated in the interpretation of results, assisted in reviewing and revising the final manuscript, and read and approved the final manuscript. SJF made substantial contributions to the conception and design of this study, participated in data collection and biochemical analysis, performed statistical analysis and interpretation of results, drafted and revised the final manuscript, and read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 3 December 2008 Accepted: 18 September 2010
Published: 18 September 2010
References

1. U.S. Department of Health and Human Services: Oral Health in America: A Report of the Surgeon General, Rockville, MD: U.S. Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health 2000 [http://www.surgeongeneral.gov/library/oralhealth/].

2. Dye BA, Tan S, Smith V, Lewis BG, Barker LK, Thornton-Evans G, et al. Trends in oral health status: United States, 1988-1994 and 1999-2004. National Center for Health Statistics. Vital Health Stat 2007; 111(248):104 [http://www.cdc.gov/nchs/data/pressroom/07newsreleases/oralhealth.htm].

3. Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey Data. Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2001, 2004 and 2005 [http://www.cdc.gov/brfss/].

4. West Virginia Bureau for Public Health (WVBP), Office of Maternal, Child & Family Health (OMCFH). Research Epidemiological Snapshot 1999, 3:1.

5. Ylöstalo P, Suominen-Tapale L, Reunanen A, Knuttila M. Association between body weight and periodontal disease. J Clin Periodontol 2008, 35(4):297-304.

6. Mattila KJ, Nieminen MS, Valtonen VV, Rasi VP, Kersameni YA, Syrjälä SL, Jungell PS, Isolomaa M, Hietanen K, Jokinen MJ. Association between dental health and acute myocardial infarction. BMJ 1989, 289(6967):779-81.

7. Mattila KJ, Valle MS, Nieminen MS, Valtonen VV, Hietanen KL. Dental infections and coronary atherosclerosis. Atherosclerosis 1993, 103(2):205-11.

8. Mattila KJ. Dental infections as a risk factor for acute myocardial infarction. Eur Heart J 1999, 19(Suppl K):S1-3.

9. DeStefano F, Anda RF, Kohn HS, Williamson DF, Russell CM. Oral health, atherosclerosis, and cardiovascular disease. BMJ 1993, 306:688-691.

10. Arbes SJ Jr, Slade GD, Beck JD. Association between extent of periodontal attachment loss and self-reported history of heart attack: an analysis of NHANES III data. J Dent Res 1999, 78(12):1777-82.

11. Holmlund A, Holm G, Lind L. Severity of periodontal disease and number of remaining teeth are related to the prevalence of myocardial infarction and hypertension in a study based on 4254 subjects. J Periodontol 2006, 77:1173-1178.

12. Elter JR, Champagne CM, Offenbacher S, Beck JD. Relationship of periodontal disease and tooth loss to prevalence of coronary heart disease. J Periodontol 2004, 75(6):762-90.

13. Leivaíadros E, van der Velden U, Bizzarri S, ten Heggeler JMAG, Gerdes VEA, Joek FJ, Nagy TOM, Schmaler J, Bakker SJL, Gans RDB, ten Cate H, Loos BG. A pilot study into markers of periodontal atherosclerosis in periodontitis. J Periodontol 2005, 76:121-128.

14. Briggs JE, Kechiepov PP, Crawford VL, Woodside IV, Stout RW, Evans A, Linden GJ. Angiographically confirmed coronary heart disease and periodontal disease in middle-aged men. J Periodontol 2006, 77:95-102.

15. Spahr A, Klein E, Khuseyinova N, Boeckh C, Muche R, Kunze M, Rothenbacher D, Pezzeshki G, Hofmeister A, Koenig W. Periodontal infections and coronary heart disease: role of periodontal bacteria and importance of total pathogen burden in the Coronary Event and Periodontal Disease (CORODONT) study. Arch Intern Med 2006, 166:554-559.

16. Haraszythy V, Zambon JJ, Trevisan M, Zied M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000, 71(10):1546-60.

17. Carlo F, Gaeta C, Dongo W, Oggoni MR, Pratesi C, Prin Prato GP, Pozzi G. Periodontal pathogens in atheromatous plaques. A controlled clinical and laboratory trial. J Periodontol Res 2004, 39B(4):442-6.

18. Fiehn NE, Larsen T, Christiansen N, Holmstrup P, Schroeder TV. Identification of periodontal pathogens in atherosclerotic vessels. J Periodontol 2005, 76(3):731-6.

19. Padilla C, Lobo D, Hubert E, Gonzalez C, Matus S, Pereira M, Hasburn S, Descouviers C. Periodontal pathogens in atheromatous plaques isolated from patients with chronic periodontitis. J Periodontol 2006, 77(4):550-3.

20. Loos BG, Caandjik D, Hoek FJ, Wertheim-van Dillen PM, van der Velden U. Elevation of systemic markers related to cardiovascular diseases in the peripheral blood of periodontitis patients. J Periodontol 2000, 71(10):1526-34.

21. D’Auito F, Parkar M, Tonetti MS. Acute effects of periodontal therapy on bio-markers of vascular health. J Clin Periodontol 2007, 34:124-129.

22. D’Auito F, Parkar M, Nibali L, Suvan J, Lessem J, Tonetti MS. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am Heart J 2008, 151:977-984.

23. D’Auito F, Parkar M, Andreou G, Suvan J, Brett PM, Ready D, Tonetti MS. Periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers. J Dent Res 2004, 83:156-160.

24. Tonetti MS, D’Auito F, Nibali L, Donald A, Story C, Parkar M, Suvan J. Dingorani AD, Vallance P, Deanfield J. Treatment of periodontitis and endothelial function. N Engl J Med 2007, 356:911-920.

25. Elter JR, Hinderliter AL, Offenbacher S, Beck JD, Caughey M, Brodala N, Madianos PN. The effects of periodontal therapy on vascular endothelial function: a pilot trial. Am Heart J 2006, 151:47-51.

26. Seinos G, Wimmer G, Skorer M, Thaller E, Brodman M, Gasser R, Bratschko RO, Pilger E. Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis. Am Heart J 2005, 149:1050-1054.

27. Mayle J, Gonzales JR. Influences of systemic diseases on periodontitis in children and adolescents. Periodontol 2000, 26:92-112.

28. American Academy of Pediatrics Section on Pediatric Dentistry. Oral health risk assessment, timing, and establishment of the dental home: A policy statement. Pediatrics 2003, 111:1113-1116.

29. Lewis CW, Johnston BD, Lassenmyr KA, Williams A, Mouradian W. Preventive dental care for children in the United States: a national perspective. Pediatrics 2007, 119(3):e544-53.

30. del-Cruz GS, Roiger RS, Slade G. Dental screening and referral of young children by pediatric primary care providers. Pediatrics 2004, 114(5):e642-52.

31. Leske GS, Leske MC. The pediatrician in community dental health. Pediatrics 1974, 54(2):182-9.

32. Jones K, Tornar SL. Estimated impact of competing policy recommendations for age of first dental visit. Pediatrics 2005, 115(4):906-14.

33. Willershausen B, Haas G, Krummenauer F, Hohenfellner K. Relationship between high weight and caries frequency in German elementary school children. Eur J Oral Res 2004, 9(8):400-404.

34. Willershausen B, Moschos D, Azak B, Blettner M. Correlation between oral health and body mass index (BMI) in 2071 primary school pupils. Eur J Med Res 2007, 12(7):295-299.

35. Al-Ansari JM, Al-Jaрайn LY, Gillespie GM. Dietary habits of the primary to secondary school population and implications for oral health. J Allied Health 2006, 35(2):75-80.

36. Ahn A. On dental caries and caries-related factors in children and teenagers. Swed Dent J Suppl 2000, 185:153-71.

37. Pittro A, Kim S, Wadenskjold R, Rosenberg H. Relationship of dental caries among US children. Pediatr Dent 2004, 12(7):153-157.

38. Fisher-Owens SA, Gansky SA, Platt LJ, Weintraub JA, Soodaber MJ, Bramlett MD, Newacheck PW. Influences on children’s oral health: a conceptual model. Pediatrics 2007, 120(3):eS10-52.

39. Malaizah M, Weyant R, Tarter R, Crout RJ, Michell D, Thomas J. Family-based paradigm for investigations of oral health disparities. J Dent Res 2005, 84(Spec Iss A):239.

40. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, Criqui M, Fadl YY, Fortmann SP, Hon Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F, Centers for Disease Control and Prevention, American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107(3):499-511.

41. Blcher B, Jospurka K, Eke P. Validation of self-reported periodontal disease: a systematic review. J Dent Res 2005, 84(10):881-890.
44. Tavares M, Chomitz V: A healthy weight intervention for children in a dental setting: a pilot study. J Am Dent Assoc 2009, 140(3):313-316.
45. Grossi SG, Collier DN, Perkin RM: Integrating oral health to the care of overweight children: a model of care whose time has come. J Pediatr 2008, 152:451-452.
46. Spector ND, Kelly SF: Pediatrician's role in screening and treatment: bullying, prediabetes, oral health. Curr Opin Pediatr 2006, 18(6):661-670.
47. Vann WF Jr, Bouwens TJ, Braithwaite AS, Lee JY: The childhood obesity epidemic: a role for pediatric dentists? Pediatr Dent 2005, 27(4):271-276.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1472-6831/10/21/prepub

doi:10.1186/1472-6831-10-21
Cite this article as: Frisbee et al: Self-reported dental hygiene, obesity, and systemic inflammation in a pediatric rural community cohort. BMC Oral Health 2010 10:21.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit