An iron-based beverage, HydroFerrate fluid (MRN-100), alleviates oxidative stress in murine lymphocytes in vitro
Mamdooh Ghoneum*†1, Motohiro Matsuura2 and Sastry Gollapudi†3

Address: 1Charles Drew University of Medicine and Science, Department of Otolaryngology, Los Angeles, California 90059, USA, 2Jichi Medical University, School of Medicine, Department of Infection and Immunity, Tochigi, 329-0498, Japan and 3University of California, Irvine, Division of Basic and Clinical Immunology, Irvine, California 92697, USA

Email: Mamdooh Ghoneum* - mghoneum@ucla.edu; Motohiro Matsuura - mmatsuur@jichi.ac.jp; Sastry Gollapudi - svgollap@uc.edu
* Corresponding author †Equal contributors

Abstract
Background: Several studies have examined the correlation between iron oxidation and H2O2 degradation. The present study was carried out to examine the protective effects of MRN-100 against stress-induced apoptosis in murine splenic cells in vitro. MRN-100, or HydroFerrate fluid, is an iron-based beverage composed of bivalent and trivalent ferrates.

Methods: Splenic lymphocytes from mice were cultured in the presence or absence of MRN-100 for 2 hrs and were subsequently exposed to hydrogen peroxide (H2O2) at a concentration of 25 μM for 14 hrs. Percent cell death was examined by flow cytometry and trypan blue exclusion. The effect of MRN-100 on Bcl-2 and Bax protein levels was determined by Western blot.

Results: Results show, as expected, that culture of splenic cells with H2O2 alone results in a significant increase in cell death (apoptosis) as compared to control (CM) cells. In contrast, pre-treatment of cells with MRN-100 followed by H2O2 treatment results in significantly reduced levels of apoptosis.

In addition, MRN-100 partially prevents H2O2-induced down-regulation of the anti-apoptotic molecule Bcl-2 and upregulation of the pro-apoptotic molecule Bax.

Conclusion: Our findings suggest that MRN-100 may offer a protective effect against oxidative stress-induced apoptosis in lymphocytes.

Introduction
Oxidative stress represents the imbalance between the cellular production of oxidants and the capacity of cellular antioxidant defenses to scavenge these oxidants. It is produced in cells by oxygen-derived species which include free radicals and peroxides; it is also produced at a low level by normal aerobic metabolism and nutritional deficiency in trace metal [1,2]. Increasing evidence indicates that oxidative stress is a major inducer of cell death [3]. In this process some of the reactive oxygen species (such as superoxide) are converted into hydrogen peroxide which can cause controlled apoptotic cell death [4,5].

Oxidative stress is associated with many diseases, including chronic inflammation, arteriosclerosis, diabetes, stroke, Alzheimer's and Parkinson's diseases, and aging [6-8]. In addition, nutritional deficiencies like lack of iron have been shown to induce oxidative stress [9,10] and

Published: 2 May 2009
Received: 17 December 2008
Accepted: 2 May 2009
This article is available from: http://www.nutritionj.com/content/8/1/18
© 2009 Ghoneum et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Iron has the capacity to accept and donate electrons readily, and this characteristic makes it a useful component of cytochromes and oxygen-binding molecules. Recent studies have suggested ferritin is a protectant against oxidative damage in endothelial cells as well as murine and human leukemia cells [11,12].

In the current study, we examined the possible effect of MRN-100 on oxidative stress-induced apoptosis in murine splenic cells. MRN-100 is an iron-based compound derived from bivalent and trivalent ferrates, and it is sold as a beverage in Japan. The results show that MRN-100 attenuates H$_2$O$_2$-induced apoptosis in splenic cells.

Materials and methods

MRN-100

MRN-100 is an iron-based compound derived from bivalent and trivalent ferrates and was prepared in distilled water (DW) with the concentration of Fe$^{2+}$ and Fe$^{3+}$ ions at \sim2 x 10^{-12} mol/l. MRN-100 is obtained from phytosin as previously described [13]. MRN-100 was provided by ACM Co., Ltd., Japan.

Complete medium (CM)

Complete medium (CM) consisted of RPMI-1640, supplemented with 10% fetal calf serum (FCS), 2 mM glutamine and 100 μg/ml of streptomycin and penicillin.

Animals

C57BL/6 (4–5 weeks old, 20–25 g female mice) were purchased from Harlan Laboratories (Chicago, IL, USA) and from Saitama Experimental Animal Co. Ltd., (Saitama, Japan). The mice were accommodated for 1 week prior to experimentation. Mice were maintained in the animal facility at Charles Drew University of Medicine and Science, Los Angeles, CA, USA and in the Laboratory Animal Center at Jichi Medical University in Japan. Mice were housed 2 per micro-isolator cage and were fed sterilized standard cube pellets and water *ad libitum*. Animal protocols were in compliance with the Guide for the Care and Use of Laboratory Animals in the USA.

Preparation of splenic lymphocytes

Mice were killed by cervical dislocation. Spleens were removed, teased in CM, and contaminating erythrocytes were lysed with distilled water for 20 seconds. Splenic lymphocytes were centrifuged, and washed three times with HBSS. Cell viability was 95%, as determined by the trypan blue exclusion test. Cells were counted using a hemocytometer and a light microscope, and were re-suspended to a concentration of 107 cells/ml in CM.

Experimental protocol

Spleenic lymphocytes (1 x 106 cells/ml) were cultured in CM and divided into four groups: group 1 – cells were incubated with 25 μm hydrogen peroxide (H$_2$O$_2$) for 16 hrs; group 2 – cells were incubated with MRN-100 (100 μl/ml) for 16 hrs; group 3 – cells were incubated with MRN-100 for 2 hrs and were subsequently exposed to H$_2$O$_2$ for 14 additional hrs; group 4 – control group, in which cells were incubated with CM alone for 16 hrs.

Apoptosis by flow cytometry

Spleenic lymphocytes were cultured as described above. The percentage of hypodiploid, apoptotic cells was examined by the propidium iodide (PI) technique using flow cytometry. Briefly, spleenic cells (1 x 106/ml) were fixed in 70% methanol, re-suspended in the DNA extraction buffer, washed in PBS and incubated with 50 μg/ml of PI for 30 min at room temperature in the dark; and analyzed by FACS-Scan (Becton Dickinson, San Jose, California, USA).

Cell death detected by trypan blue exclusion

At 16-hrs post-lymphocyte culture, cells from the different groups (H$_2$O$_2$, MRN-100, MRN-100 + H$_2$O$_2$, and control [CM]) were treated with trypan blue stain (100 μl/ml) for 5 minutes and counted using a light microscope (Nikon, Tokyo, Japan) and hemocytometer. The percent of dead cells was calculated blindly out of a total of 300 cells by the same investigator.

Determination of nitric oxide (NO) production

Spleenic lymphocytes (1 x 106 cells/ml) were cultured in the presence or absence of H$_2$O$_2$ at concentrations of 0–50 μM for 16 hrs. The mouse macrophage cell line, RAW-264.7, was also tested for NO production in the presence or absence of lipopolysaccharide (LPS) as well as H$_2$O$_2$ at the above-mentioned concentrations. Production of NO was determined as the amount of nitrite, a stable end-product of NO, in the culture supernatant obtained at 48 hr post stimulation. Nitrite was measured by a colorimetric assay using the Griess reagent (1% sulfanilamide and 0.1% N-1-naphthylethylenediamine dihydrochloride in 2.5% H$_3$PO$_4$ solution) [14]. The absorbance at 540 nm was measured and the nitrite concentration was quantified (in μM) using sodium nitrite as the standard in each assay.

Intracellular calcium (Ca$^{2+}$) flux

The effect of H$_2$O$_2$ on Ca$^{2+}$ levels was examined in two models: spleenic lymphocytes and the mouse macrophage cell line, RAW264.7 cells. Cellular Ca$^{2+}$ flux was determined using Screen Quest™ Fluo-8 NW Calcium Assay Kit (ABD Bioquest Inc, Sunnyvale, California, USA) as follows. Spleenic lymphocytes (1 x 107/2 ml CM) were cultured for 2 hrs with either PBS (control) or MRN-100 (10% v/v CM) in a 60 mm culture plate (Corning Inc, Corning, New York, USA). The cells were harvested by centrifugation and resuspended with

Nutrition Journal 2009, 8:18
http://www.nutritionj.com/content/8/1/18
8:18
1.5 ml of Fluo-8 NW dye-loading solution in the kit. The cell suspension was plated 100 μl per well in a 96-well black well/clear bottom plate (Costar, Cambridge, Massachusetts, USA). In the case of RAW264.7 cells, adherent cells (1 × 10⁵ cells/well) in a 96-well black well/clear bottom plate were cultured with either PBS or MRN-100. At 2 hrs, the supernatant was discarded and 100 μl Fluo-8 NW dye-loading solution was added. The plates were incubated at 37°C for 30 minutes, and then placed at room temperature for another 30 minutes. H₂O₂ solution (25 μl/well) was added to a final concentration of 10, 50 or 250 μM. Fluorescence at Ex = 490/Em = 525 nm was measured by SPECTRAMax M5 (Molecular Devices Corp, Sunnyvale, California, USA).

Western blot analysis

The protein levels of Bcl-2 and Bax were determined using Western blot analysis. Splenic cells were treated as described above. Cells were harvested, washed with cold PBS [10 mM (pH 7.4)], lysed with ice-cold M-PER mammalian protein extraction reagent (Pierce Biotechnology, Rockford, Illinois, USA) for 30 minutes, and centrifuged at 14,000 g for 20 minutes at 4°C. The supernatant was collected and protein concentration was determined using BCA protein assay (Pierce Biotechnology). Seventy-five μg of cell lysates were subjected to Western blot analysis by 4%–12% SDS polyacrylamide gel electrophoresis. Membranes were probed using 1:500 anti-Bcl-2 or anti-Bax (BD Bioscience, San Diego, California USA) primary antibody. The washed PVDF membranes were then incubated with 1:2000 dilution of monoclonal secondary antibody. Immunoreactive bands were visualized by using ECL detection system (Amersham, Buckinghamshire, UK). To verify equal protein loading and transfer, the blots were stripped and re-probed with β-actin using an anti-actin rabbit polyclonal antibody. Data are represented as mean ± SEM. The ratio of Bcl-2/Bax was examined using densitometry of each band.

Statistical analysis

Using the Student’s t-test, we tested the significance of the difference in the percent of apoptotic splenic cells between treated and control cells. We considered the cutoff of $p < 0.05$ as significant.

Results

Apoptosis by flow cytometry

Results in Figure 1 show, as expected, that culture of splenic cells with H₂O₂ alone results in a significant increase in cell apoptosis as compared to control (CM) cells. In contrast, pre-treatment of cells with MRN-100 followed by H₂O₂ treatment results in significantly reduced levels of apoptosis and inhibits the H₂O₂-induced apoptosis to the level of control (CM) cells.
Discussion

Oxidative stress is caused by the persistent generation of reactive oxygen species (ROS) in cells, which is stimulated by carcinogens, pathogen invasion, inflammation, environmental factors such as toxins and UV stress, nutrients and mitochondrial respiration, and is an inevitable consequence of aging in aerobic organisms [15-17]. Oxidative stress is associated with many human diseases [6-8]. Other studies have shown that oxidative stress dysregulates the functions of immune cells [18,19] and provokes allergies, autoimmune diseases and immune senescence [20,21]. Results of this study show that MRN-100 pre-treatment can protect murine splenic lymphocytes from oxidative stress-induced apoptotic insults. The protective action appears to involve a mitochondria-dependent mechanism.

Recent studies by us and others have shown that oxidative stress induces apoptotic cell death by an intrinsic (mitochondrial) pathway of apoptosis [18,19,22]. This pathway is dependent on the process of mitochondrial outer membrane permeabilization (MOMP) which leads to the release cytochrome C, apoptosis-inducing factor (AIF) and endonuclease G from the mitochondrial intermembrane space into the cytosol [23]. The proteins released from mitochondria induce apoptosis by caspase-dependent and caspase-independent pathways [24]. Mitochondrial membrane permeabilization is regulated by members of Bcl-2 family [24,25]. The pro-apoptotic Bcl-2 family member, Bax, is present in most cells in inactive form, and their activation causes MOMP. The anti-apoptotic molecule Bcl-2 inhibits MOMP by preventing the action of pro-apoptotic molecules [26]. Furthermore Bcl-2 can complex with Bax and it has been suggested that Bcl-2/Bax ratio determines cellular susceptibility to apoptosis [27]. In this study we have shown that MRN-100 inhibits the H$_2$O$_2$-induced upregulation of Bax and down regulation of Bcl-2. This would suggest that MRN-100 protects...
splenic cells by maintaining mitochondrial membrane integrity.

The mechanism(s) by which MRN-100 neutralizes the action of reactive oxygen species is not known. MRN-100 is an iron-based compound derived from bivalent and trivalent ferrates. Iron is known to interact with free radicals. Important chemical reactions through which iron is involved are Fenton reaction and Haber-Weiss reaction [28]. Therefore it is possible that MRN-100 may interact with H₂O₂ and prevent its action. Alternatively, MRN-100 may inhibit the H₂O₂-induced signaling pathways that culminate in apoptosis. The latter hypothesis is based on the reports which show that H₂O₂ induces apoptosis by mobilizing multiple signaling pathways [29,30]. It should be mentioned that in this study we did not observe in vitro activation of Ca²⁺ and NO pathways of apoptosis in splenic cells, suggesting that MRN-100 may alleviate oxidative stress-induced apoptosis in splenic cells by a mechanism other than NO and Ca²⁺ pathways.

Several studies have examined the correlation between iron oxidation and H₂O₂ degradation. Iron has the capacity to accept and donate electrons readily. This capability makes it physiologically essential as a useful component of cytochromes and oxygen-binding molecules. For example, free iron oxidized on clay surfaces efficiently catalyzes the decomposition of H₂O₂ [9]. Fe(II) and H₂O₂ reaction analysis indicates the participation of further Fe intermediates and, therefore, Fenton redox activities [31]. Iron enhances the protective effect of flavonoids against H₂O₂-induced DNA damage [32]. The pre-treatment of several cell lines, including endothelial cells [33], murine and human leukemia cells [34], with acute iron loads which are then exposed to H₂O₂, protected the cells against the oxidative damage and various other types of oxidative insults.
The typical American diet may be short in a number of nutrients including iron. Furthermore, the recommended daily allowance (RDA) for many nutrients might be well below what is optimally needed. Iron is incorporated into heme complexes which are typically associated with oxygen carrier proteins. In addition to its ability to protect against oxidative stress, we have shown elsewhere that MRN-100 also possesses anti-HIV activity [13].

Conclusion
MRN-100, an iron based beverage attenuates oxidative stress-induced apoptosis in immune cells by modulating Bcl-2 and Bax protein levels. Our findings suggest that MRN-100 may have a therapeutic potential in apoptotic disorders associated with excess oxidative stress.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MG and SG shared designing the experiments and writing the manuscript. MM was responsible for calculating and writing the metabolic analysis. The authors declare that they have no competing interests.

Acknowledgements
This work was supported by ACM Pharmaceutical Co., LTD. Tokyo, Japan. Data was presented briefly at Federation of Clinical Immunology Societies (FOCIS) Annual Meeting, San Francisco, California. June 1–5, 2006

References
1. Kulkarni AC, Kuppusamy P, Parinandi N: Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal. 2007, 9(10):1717-1730.
2. Loguercio C, De Girolamo V, Federico A, Feng SL, Crafa E, Cataldi V, Gialanella G, Moro R, Del Vecchio Blanco C: Relationship of blood trace elements to liver damage, nutritional status, and oxidative stress in chronic nonalcoholic liver disease. Biol Trace Elem Res. 2001, 81(3):245-254.
3. Pyo CW, Lee SH, Choi SY: Oxidative stress induces PKR-dependent apoptosis via IFN-gamma activation signaling in Jurkat T cells. Biochem Biophys Res Commun. 2008, 377(3):1001-1006.
4. Awasthi YC, Sharma R, Sharma A, Yadav S, Sinhal SS, Chaudhary P, Awasthi S: Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radic Biol Med. 2008, 45(11):1-8.
5. Gloire G, Legrand-Poels S, Piette J: NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006, 72:493-499.
6. Polidori MC: Oxidative stress and risk factors for Alzheimer’s disease: clues to prevention and therapy. J Alzheimers Dis 2004, 6:185-91.
7. Fridlyand LE, Phillipson LH: Reactive species, cellular repair and risk factors in the onset of type 2 diabetes mellitus: review and hypothesis. Curr Diabetes Rev 2006, 2:241-59.
8. Henchcliffe C, Beal MF: Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008, 4(11):600-609.
9. Song W, Chen M, Ma J, Ma W, Chen C, Zhao J: Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay. Environ Sci Technol 2006, 40:4782-7.
10. Galaris D, Pantopoulos K: Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 2008, 45:1-23.
11. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM: Ferritin: a cytoprotective antioxidant stratege of endothelium. J Biol Chem 1999, 274:18148-53.
12. Lin F, Girotti AW: Elevated ferritin production, iron containment, and oxidant resistance in hemin-treated leukemia cells. Arch Biochem Biophys 1997, 346:131-41.
13. Ghoneum M, Shaheen M: MRN-100, an Iron-Based Compound Ostrizes Anti-HIV Activity in vitro. 6. 2005, 153:225-33.
14. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tanenbaum SR: Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982, 126:131.
15. Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420:860-67.
16. Beckmann KB, Ames BN: The free radical theory of aging matures. Physiol Rev 1998, 78:547-81.
17. Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408:239-47.
18. Fridlyand LE, Kim D, Kim S, Tel L, Gollapudi S, Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol Cancer Ther. 2003, 2(8):711-719.
19. Bayasan A, Tel L, Gollapudi S, Su H, Gupta S: Arsenic trioxide induces apoptosis via the mito-成为中国和美国之间文化的桥梁。Bladder cancer is one of the most common types of cancer and is associated with an increased risk of death. This work was supported by ACM Pharmaceutical Co., LTD. Tokyo, Japan. Data was presented briefly at Federation of Clinical Immunology Societies (FOCIS) Annual Meeting, San Francisco, California. June 1–5, 2006

References
1. Kulkarni AC, Kuppusamy P, Parinandi N: Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal. 2007, 9(10):1717-1730.
2. Loguercio C, De Girolamo V, Federico A, Feng SL, Crafa E, Cataldi V, Gialanella G, Moro R, Del Vecchio Blanco C: Relationship of blood trace elements to liver damage, nutritional status, and oxidative stress in chronic nonalcoholic liver disease. Biol Trace Elem Res. 2001, 81(3):245-254.
3. Pyo CW, Lee SH, Choi SY: Oxidative stress induces PKR-dependent apoptosis via IFN-gamma activation signaling in Jurkat T cells. Biochem Biophys Res Commun. 2008, 377(3):1001-1006.
4. Awasthi YC, Sharma R, Sharma A, Yadav S, Sinhal SS, Chaudhary P, Awasthi S: Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radic Biol Med. 2008, 45(11):1-8.
5. Gloire G, Legrand-Poels S, Piette J: NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006, 72:493-499.
6. Polidori MC: Oxidative stress and risk factors for Alzheimer’s disease: clues to prevention and therapy. J Alzheimers Dis 2004, 6:185-91.
7. Fridlyand LE, Phillipson LH: Reactive species, cellular repair and risk factors in the onset of type 2 diabetes mellitus: review and hypothesis. Curr Diabetes Rev 2006, 2:241-59.
8. Henchcliffe C, Beal MF: Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008, 4(11):600-609.
9. Song W, Chen M, Ma J, Ma W, Chen C, Zhao J: Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay. Environ Sci Technol 2006, 40:4782-7.
10. Galaris D, Pantopoulos K: Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 2008, 45:1-23.
11. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM: Ferritin: a cytoprotective antioxidant stratege of endothelium. J Biol Chem 1999, 274:18148-53.
12. Lin F, Girotti AW: Elevated ferritin production, iron containment, and oxidant resistance in hemin-treated leukemia cells. Arch Biochem Biophys 1997, 346:131-41.
13. Ghoneum M, Shaheen M: MRN-100, an Iron-Based Compound Ostrizes Anti-HIV Activity in vitro. 6. 2005, 153:225-33.
14. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tanenbaum SR: Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982, 126:131.
15. Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420:860-67.
16. Beckmann KB, Ames BN: The free radical theory of aging matures. Physiol Rev 1998, 78:547-81.
17. Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408:239-47.
18. Fridlyand LE, Kim D, Kim S, Tel L, Gollapudi S, Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol Cancer Ther. 2003, 2(8):711-719.
19. Bayasan A, Tel L, Gollapudi S, Su H, Gupta S: Arsenic trioxide induces apoptosis via the mito-成为中国和美国之间文化的桥梁。