Experimental Investigation of Single Cylinder Diesel Engine By Diesel – Citrullus Vulgaris With n-Butanol And Its Blends

R. Sabarish¹, M. PremJeyaKumar²

¹Research Scholar, Department of Automobile engineering, BIHER, Chennai, Tamilnadu-73.

²Professor, Department of Automobile engineering, BIHER, Chennai, Tamilnadu-73.

¹sabarish5041@gmail.com, ²prem.auto@bharathuniv.ac.in

Corresponding Author: R. Sabarish

https://doi.org/10.26782/jmcms.spl.2019.08.00080

Abstract

Everyday a need for energy sources and fossil fuel is growing high. Also that this type of fossil fuel is not an eco-friendly. So it is necessary to look forward for alternate fuel for vehicles. The best and most suitable alternate source of fuel is Biodiesel. Because Biodiesel contain long chain alkyl esters. Also that it is prepared from renewable sources and it is bio-degradable. In this project citrullus vulgaris oil is used as a biodiesel. It is used due to its low cost and high availability. This biodiesel is prepared by using the process of transesterification process. Experimental investigation of diesel engine is carried away to find out the performance characteristics and Emission analysis of the CI (compression ignition) diesel engine, when using n-Butyl alcohol (n-butanol) as an additive with neat diesel and Biodiesel blends. This experiment consists of mixing of Biodiesel and Diesel with additive n-butyl alcohol (commonly known as n-butanol) in 80% of diesel, remaining 20% of Biodiesel and additives in mass basis. The final results yields that performance and emission characteristics of the single cylinder diesel engine can be improved slightly by using Biodiesel blend than neat diesel and it is compare with standard diesel. The performance characteristics were carried out the BTE, SFC, TFC, and at the same time the emission analysis and result getting the HC, CO, CO₂ and NOx.

Keywords: Performance, Emission analysis, n-butanol, Biodiesel, Diesel Engine, Transesterification.

I. Introduction

I.i. Diesel:

In our modern world, most of the people have their own four wheeler vehicle. Because of that, usage of diesel is rapidly increasing now. In today world, Diesel plays a major role in our life. Generally, Diesel being produced from different...
sources, mostly by using petroleum. It can also be produced by some other sources like Bio-mass, animal fat, bio gas and coal liquefaction. Generally Petroleum Diesel also named as Fossil Diesel or Petro Diesel. Nowadays, most of the people use petroleum Diesel for their four wheeler vehicles. Diesel Fuel are generally used in Diesel engines only, it cannot be used in petrol Engines. Because Diesel fuel is not as volatile as compared to petrol and will not form droplets and vapour as easily as petrol, in fact Diesel fuel is fairly viscous. Generally, In Diesel Engine, Inlet air is compressed to a certain volume, then the Diesel fuel is sprayed on the compressed air, thus the combustion takes place in that engine. There is no need of spark plug in this diesel engine. Thus increasing the usage of Diesel fuel, increasing the demand for diesel fuel. But, Availability of diesel fuel in the world is going down. According to one survey, Availability of Diesel fuel in the world would last for around 80 years only [XX]. Due to that less availability and high demand for diesel fuel, rapidly increasing its cost in day-to-day. Also that, by burning of biodiesel in Diesel engine, emits the highly carbonated carbon monoxide and other some impurities to the atmosphere. Thus makes the environment as pollution, also that it increases the global warming in the world. Due to the problems like less availability, high cost and high emission in the Diesel fuel, we are looking for alternate fuel, i.e. Biodiesel. Nowadays many experiments are carried out by people all over the world for implement of biofuel as an alternate for diesel fuel [I], [XIX], [XXXVI], [XLVII].

I.ii. Biodiesel from WSO

The research of biofuel produced from citrullus vulgaris (watermelon seed oil) is made by transesterification process. Because transesterification process is a most economical way for producing Biodiesel from seed oil when compared to other process. In transesterification process, methanol (CH3-OH) plays a major role for producing biodiesel from watermelon seed oil. In this method of using CH3-OH (methanol) in the occurrence of catalyst NaOH for synthetically break the molecules from raw watermelon seed oil into ester and glycerol. Here, catalyst also plays important role for biodiesel production. Generally, for biodiesel preparation by transesterification process, a catalyst of NaOH or KOH only mostly used for biodiesel production. In our case, sodium hydroxide (NaOH) is used as catalyst for biodiesel production. Because sodium hydroxide removes the fatty acids present in the oil. The combination or mixture of alcohol and catalyst i.e. methanol and sodium hydroxide, is named as alkoxide preparation. In this transesterification process, watermelon seed oil (citrullus vulgaris) is react with methyl alcohol (commonly known as methanol) in the occurrence of catalyst, sodium hydroxide to generate glycerol and full of fat acid ester. [XXXI], [XXXV].

For our process, the ratio of 1000 ml of methyl alcohol and 0.040 kilograms of NaOH has been taken. They are mixed in the bottom flask to form sodium methoxide. Then watermelon seed oil of 1 litre (5000 ml) was taken and this oil is mixed with sodium methoxide solution. The mixture was heat upto 333 K [XXI], maintain the same temperature and stirring at constant speed for two hours to form ester. After this mixture is allowed to cool down upto 12 hours or half a day without stirring in the separation flask. Then, this mixture was temperature raised upto 60°C and held at that temperature by methods for steady speed mixing for two hours to
frame the ester. At that point this blend was permitted to cool and settle in a division container for 12 hours. Following 12 hours, 2 layers were formed in the container (burette type). In that flask, the bottom layer is drained in a separate container or vessel, it consists of glycerol & the upper layer is separated in another vessel or container, it consists of methyl ester. After that glycerol can be separated from mixture by the process of solvent separation or decantation. Then methyl ester was going to under purification process. The purification process is done by methyl ester is wash down with distilled water to take away the excess methanol [XXXV]. Finally glycerol and methanol can be retrieved from the mixture and pure biodiesel can be obtained. This transesterification process plays an essential role in improving the property of biofuel are density, viscosity, flash & fire point, and heating value.

I.iii. Transesterification:

Initially, in transesterification, there are 3 fundamental routes to produce biodiesel from oils and fat. They are base catalyzed transesterification of the oil, direct corrosive catalyzed transesterification of the oil and move the oil to its unsaturated fats and after that changed to biodiesel. Almost of the Biodiesel is produced by using the method of bottom catalyzed transesterification, because it is the most inexpensive method compared to other process, it barely requiring depressed temperature and pressure and lengthen 98% renovation yield. [XXIV], [XLI].

Transesterification is a changing one or more chemicals of transform giant, come apart, three molecules of dissimilar fatty acid is related to the alcohol glycerol of vegetable oils and fats into slight, direct or rectilinear chain molecules, [XXX], [XLIV], almost correspondent in size to the molecules of the mintage available in the diesel fuel. The method happens by the response of oil with alcohol in the being there of a medium [VII].The good number of frequently used catalyst in transesterification process is NaOH or KOH [XXXIV], [XXX].
The WSO can be extracted in 3 methods are

1. **cold pressing**,
2. **oil expellers**,
3. **Solvent extractors** and etc.

In oil expeller technique the seed is squashed a turning screw in an even chamber and as a result the oil progress during a time opening. [XLI]. The cold squeezed technique is utilized to keep up the most extreme amount of nutrients.[XXII] The crisp squeezed technique is like the expeller technique yet it ought to keep up temperature less 50°C (T < 50°C). Be that as it may, the dissolvable extraction technique utilizes some dissolvable to concentrate oil from the seed at a high temperature. This strategy is utilized monetarily for high generation [IX].

Flow chart for oil preparation

![Flow chart](chart1.png)

Chart. 1. Oil preparation chart

![Watermelon seed](fig2.png)

Fig. 2. Watermelon seed
II. Blends or Preparation of Biodiesel of Fuel Preparation

Blending the 2 or more types of fuel is added. It was found to reduce the properties of fuel are density and viscosity of biodiesels. They are two methods are available to blending the fuels are:

1. By mass basis,
2. By volume basis.

The proportion of Citrullus vulgaris mixture is increased and directly, heating valve of citrullus vulgaris also increased [XX], [XXX]. In this research method was considered as by mass basis blending the liquids [XVIII], [VIII], [XXII], [XLIX], [XXIII].

COMPARISON OF PROPERTIES

S. no	Properties	Diesel	Citrullus Vulgaris	n-butanol	B20
1.	DENSITY (kg/m³)	852	925	810	867
2.	VISCOSITY @ 40°C (mm²/s)	2.98	6.98	3.64	3.78
3.	CALORIFIC VALUE (KJ/kg)	44800	38400	32500	43500
4.	FLASH PONIT 52°C	94°C	35°C	62°C	
5.	FIRE POINT 68°C	123°C	118°C	86°C	

Table 1. properties of fuel

B20	80% Diesel + 20%Citrullus Vulgaris
TB1	95% B20 + 5% n Butanol
TB2	90% B20 + 10% n Butanol
TB3	85% B20 + 15% n Butanol
III. Experimental Setup

Initially, the piston is connected to dynamometer through coupling and crank shaft. Then air filter and air flow meter is connected to the inlet of the piston through inlet manifold [III]. As like the inlet, exhaust gas analyzer and smoke analyzer is associated to outlet tube, of the piston. Here gas analyzer and smoke meter plays a main role in to find out the emissions of Engine. Here, this gas analyzer and smoke analyzer are connected to the central processing system (CPU) which is connected to the piston or Engine, so that the exhaust gas data can be processed. And also there is two important sensors can be used [XIII], [XLII]. One is pressure sensor and another one is angle sensor [XXII]. The pressure sensor is used to determine the pressure of the system and the angle sensor is used to determine he angle as well as rotation of crank shaft [XI]. From the setup, performance and emission test can be approved away for these three blends at various loading conditions and compare with standard diesel. The representation drawing of experimental setup is shown in fig 5 and the photography of engine setup is shown in fig 6. The performance characteristic is carried out BTE, SFC, and TFC. At the same time the emission parameters and result getting the HC, CO, CO₂ and NOx [XXIII], [XXXIII].
3.1 ENGINE SPECIFICATION

S. NO	NAME OF THE SPECIFICATION	VALUE
1	Make	Kirloskar
2	Model	SV1
3	Number of cylinders	1
4	Swept Volume	0.662 litre
5	Max Power	6hp (4.41kW)
6	Constant Speed	1500 rpm
7	Compression Ratio	17.5:1
8	Constant Injection Pressure	200 bar
9	Injection timing	28° bTDC
10	Constant Injection Temperature	23°C

IV. Result and Discussion

Experimental investigation of single cylinder diesel engine by running by diesel – citrullus vulgaris with n-butanol and its blends were conducted in a four stroke water cooled engine & speed is constant or fixed for different or variant loading or stages are 0 %, 25 %, 50%, 75% and 100%. The graphs of performance of engine are BTE, TFC, and SFC. The emission parameters are HC, CO, CO₂.
IV.i. Engine Performance

IV.i.a. LOAD VS BTE

The dissimilarity of Brake Thermal Efficiency with regard to neat diesel and ternary blends are diesel > TB1 > TB2 > TB3 as exposed in figure 7. Here, in this graph all diesel blended and pure diesel fuels are increased, as increasing the load. The greatest BTE is 31.095% at maximum load for pure diesel and the nearest efficiency is 6.5% lesser for TB1 compare to neat diesel at maximum load. Commonly, Brake thermal efficiency is used to find out the efficiency of exchange of heat energy from biodiesel to the mechanical power. This might be due to high viscosity [VIII], & density compare to pure diesel and premixed combustion for the reason that of low calorific value or heating valve and CN of n-Butanol [XIV], [XLIIV], [IV].

IV.i.b. LOAD VS TFC

The dissimilarity of Total fuel consumption with regard to neat diesel and ternary blends are diesel < TB1 < TB2 < TB3 as exposed in figure 8. Here, in this graph all diesel blended and pure diesel fuels are increased, as increasing the load. The least TFC is 1.18 kJ/hr at maximum load condition and the nearest efficiency is 10.55% higher for TB1 compare to pure diesel at maximum load condition. Commonly, Total fuel consumption (TFC) can be defined, the quantity of biodiesel consumed by the engine per unit time while a certain power is developed by engine [XIV]. Here, in this graph all diesel blended and pure diesel fuels are increased, as increasing the load. This might be due to poor atomization and ignition delay and compare to neat diesel [XLIX], [XXXVI]. Total fuel consumption is generally measured in kg/hr.
IV.i.c. LOAD VS SFC

The dissimilarity of SFC with regard to neat diesel and ternary blends are diesel $<$ TB1 $<$ TB2 $<$ TB3 as exposed in figure. 9. Here, in this graph all diesel blended and pure diesel fuels are decreased, as increasing the load. The least SFC is 290 g / kW hr at maximum load condition for diesel & the nearest efficiency is 4.67% higher for TB3 compare to pure diesel at maximum load condition. SFC can be defined as the ratio of fuel consumed per unit time to the power produced. The unit for the SFC is g/kw.hr. This might be due to low calorific valve [II], [XVII] and high latent of evaporation of n-Butanol by means of increasing the availability of n-Butanol, [XXXIX], [XLIV], [XLI] leads to lesser increase of SFC compare to neat diesel [V].

Fig. 8. Load Vs Total Fuel Consumption
IV.ii. Emission characteristics

IV.ii.a LOAD VS HC

The dissimilarity of Hydrocarbon (HC) Emission with regard to pure diesel and ternary blends are diesel < TB1 < TB2 < TB3 as exposed in figure 10. Here, in this graph all diesel blended and pure diesel fuels are decreased, as increasing the load and compare with pure diesel. The least HC is 49 PPM at maximum load condition for pure diesel and the nearest HC is 8.78 % higher for TB1 compare to pure diesel at maximum load.
condition. Commonly, Hydrocarbon (HC) is measured in units of ppm. This might be due to larger size of droplets of the fuel sprays plays a major role in temperature increasing, [V], [XI], combustion in the combustion chamber and fuel atomization [XXVI], [XXVII], [XVI], [XXIX], [II].

IV.ii.b. LOAD VS CO

The dissimilarity of (CO) Carbon monoxide Emission with regard to pure diesel & ternary blends are diesel < TB1 < TB2 < TB3 as exposed in figure 11. Here, in this graph all diesel blended and pure diesel fuels are decreased, as increasing the load and compare with pure diesel. The least CO is 0.04 % at maximum load condition for diesel and the nearest CO is 10.82 % higher for TB3 compare to pure diesel at maximum load condition. Commonly, Carbon monoxide (CO) is measured in percentage of volume. This might be due to oxygen content of ternary blends which makes the higher complete combustion at higher loads [XVII], [XXXV], [XLVIII]. Temperature of the diesel engine increments will get increments with the goal that ignition will be fairly great and CO becomes CO$_2$ [XXXV].

![Fig. 11. Load Vs carbon mono oxide](image)

IV.ii.c. LOAD VS CO$_2$

The dissimilarity of Carbon Dioxide (CO$_2$) Emission with regard to pure diesel and ternary blends are diesel < TB1 < TB2 < TB3 as exposed in figure 12. Here, in this graph all diesel blended and pure diesel fuels are increased, as increasing the load and compare with pure diesel. The least CO$_2$ is 8.2 % at maximum load condition for pure diesel and the nearest CO$_2$ is 13.2 % higher for TB1 compare to pure diesel at maximum load condition. Commonly, Carbon Dioxide (CO$_2$) is measured in percentage of volume.

Copyright reserved © J. Mech. Cont.& Math. Sci.
R. Sabarish et al
This might be due to Temperature rise because of the high temperature CO is converted into CO$_2$ [XXXV], A/F Ratio, Incomplete combustion [XLV], premixed combustion and high viscosity [XXXIII], [XXXVII].

IV.ii.d. LOAD VS NO$_X$

Fig. 12. Load Vs carbon di oxide

Fig. 13. Load Vs oxide of nitrogen
The dissimilarity of (NOx) oxides of nitrogen or nitrogen oxides with regard to pure diesel and ternary blends are diesel < TB1 < TB2 < TB3 as exposed in figure 13. Here, in this graph all diesel blended and pure diesel fuels are increased, as increasing the load and compare with pure diesel. The least NO\textsubscript{x} is 233PPM at maximum load condition for diesel and the nearest efficiency is 11.62 % higher for TB1 compare to pure diesel at maximum load condition. Commonly, NOx is measured in percentage of PPM. The NOx emission is mainly based on high temperature[XXXIV], [XXXIII], high oxygen concentration of chemical structure, lower heating value, latent heat of vaporization and ignition delay [XXIX], [IX], [XI], [XXVIII], [XXXI].

V. Conclusions

In the present investigation was studied, 4 different fuels (diesel – citrullus vulgaris – n-Butanol) are ternary blends. The special effects of fuel properties of TB on engine performance and emission parameters is discuss in details

✓ Diesel engine can be run utilizing blend without any alteration of setup.
✓ TB valuated in this examination can be utilized at room temperature without any changes on the blends
✓ Heating valve of citrullus vulgaris is lesser compare to diesel
✓ Density and viscosity of citrullus vulgaris is higher compare to diesel
✓ CV of citrullus vulgaris is lesser than diesel.
✓ Density of citrullus vulgaris is higher than diesel.
✓ The expected brake power reduction is due to low calorific value of citrullus vulgaris.
✓ Increasing the presence of n-Butanol in the blends is affecting the BTE. The excepted BTE is obtained in TB1 due to viscosity; exhaust temperature of ternary blend is more comparing to diesel. If increasing the blends of diesel- citrullus vulgaris and decreasing the calorific value and viscosity.
✓ Total fuel consumption (TFC) found to be more for blends when compare to diesel. The needed output is obtained in TB1, might be reason for the drop is poor atomization
✓ Specific fuel consumption (SFC) found to be more for blends when compare to diesel the better outcome is obtained in TB3, drop reason is increasing of n-Butanol
✓ HC is better for TB1, comparing to diesel may be due to larger size of droplet & increasing the temperature in CC
✓ CO is well again TB3, reason for the drop is higher oxygen content of n-Butanol
✓ CO\textsubscript{2} is improved TB1, reason for the drop is temperature rise b’coz of high temperature, CO is converted into CO\textsubscript{2}
✓ The excepted NO\textsubscript{x} is reduced in TB1, is mainly based on temperature and heating value.
✓ Presence of higher n-Butanol concentration in the blends is affecting the engine performance and Emission.
✓ Study (or) Research reveals performance and emission analysis of TBI (95% B20 + 5% n Butanol) is very real to that of diesel could be successfully used as an alternative fuel.

Abbreviations

- **BP**: Brake Power in kW
- **CO**: Carbon Monoxide
- **NOₓ**: Nitric oxides
- **CO₂**: Carbon di oxide
- **CV**: Heating Value of fuel
- **HC**: Hydro carbon
- **T**: Torque
- **BTE**: Brake Thermal Efficiency
- **SFC**: Specific Fuel consumption
- **ρ**: Density of fuel kg/m³
- **PPM**: Parts Per Million
- **NaOH**: Sodium Hydroxide
- **CI**: Compression Ignition
- **B20**: 80% Diesel + 20% Citrullus Vulgaris
- **TB**: Ternary Blend
- **TB1**: Ternary Blend 1
- **TB2**: Ternary Blend 2
- **TB3**: Ternary Blend 3
- **TB1**: 95% B20 + 5% n Butanol
- **TB2**: 90% B20 + 10% n Butanol
- **TB3**: 85% B20 + 15% n Butanol
- **KOH**: Potassium hydroxide
References

I. Abbas Alli Taghipoor Bafghi, Hosein Bakhoda, Fateme Khodaei Chegeni, “Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine”, International Journal of Mechanical and Mechatronics Engineering, Vol:9, No:8, (2015) pg. no. 1507-1512.

II. Ahmet Necati Ozsezen, Mustafa Canakci, “Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil. methyl esters”, Energy Conversion and Management, vol. 52, (2011), pg. no. 108–116

III. Alemayehu Gashaw and Amanu Lakachew, “Production of biodiesel from non edible oil and its properties”, International Journal of Science, Environment and Technology, Vol. 3, No 4, (2014), pg. no. 1544 – 1562.

IV. Alpaslan Atmanlı, Erol Ileri, Bedri Yuksel, “Effects of higher ratios of n-butanol addition to diesel-vegetable oil blends on performance and exhaust emissions of a diesel engine”, Journal of the Energy Institute xxx (2014), pg. no. 1 -12.

V. Asokan M.A, S. Senthur prabu, Shikhar Kamesh, Wasiuddin Khan, “Performance, Combustion and Emission Characteristics of diesel engine fuelled with papaya and watermelon seed oil bio-diesel/diesel blends”, Energy, vol. 145, (2018), pg. no. 238 – 246

VI. Christopher M and R. Sabarish, “Emission Analysis of a Single Cylinder DI Engine Running on Biodiesel Blend as Fuel”, Middle-East Journal of Scientific Research, (2014), vol 20, iss 6, pg no 681-684.

Copyright reserved © J. Mech. Cont.& Math. Sci.
R. Sabarish et al
VII. Dhandapani Kannan, Senthilkumar Pachamuthu, Md. Nurun Nabi, Johan Einar Hustad, Terese Lovas, “Theoretical and experimental investigation of diesel engine performance, combustion and emissions analysis fuelled with the blends of ethanol, diesel and jatropha methyl ester”, Energy Conversion and Management, vol. 53, (2012), pg. no. 322–331.

VIII. Duduyemi, Oladejo, Adesanjo S.A, Oluoti Kehinde, “Extraction And Determination Of Physico- Chemical Properties Of Watermelon Seed Oil (Citrullus Lanatus L) For Relevant Uses”, International journal of scientific & technology research vol. 2, iss. 8, (2013), pg. no. 66-68.

IX. Erol ileri and gunnur kocar, “Experimental investigation of the effect of fuel injection advance on engine performance and exhaust emission parameters using canola oil methyl ester in a turbocharged direct-injection diesel engine”, Energy Fuels, (2009), vol. 23, pg. no. 5191–5198.

X. Erol Ileri, Gunnur Kocar, “Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester–diesel blend”, Energy Conversion and Management, vol. 76, (2013), pg. no. 145–154.

XI. Erol Ileri, Gunnur Kocar, “Experimental investigation of the effect of antioxidant additives on NOx emissions of a diesel engine using biodiesel”, Fuel, vol. 125, (2014), pg. no. 44–49.

XII. Fontaras G, T. Tzamkiozis, E. Hatziemmanouil and Z. Samaras, “experimental study on the potential application of cottonseed oil—diesel blends as fuels for automotive diesel engines”, study on automotive diesel engines, Trans IChemE, Part B, Vol 85, (2007), pg. no. 396–403.

XIII. Frank Lujaji, Lukács Kristof, Akos Bereczky, Makame Mbarawa, “Experimental investigation of fuel properties, engine performance, combustion and emissions of blends containing croton oil, butanol, and diesel on a CI engine”, Fuel 90, (2011), pg. no. 505–510.

XIV. Girimurugan R, A.Jayachandhr, G.Magudeshwaran, M.Prakash, M.Sasikumar, “Performance Analysis of an I.C Engine Operating With Different Honge Oil Blends”, International Journal of Research in Advent Technology,2014, Vol.2, iss.11, pg no 131- 135

XV. Gnanamoorthi V, G. Devaradjane, “Effect of compression ratio on the performance, combustion and emission of DI diesel engine fueled with ethanol – Diesel blend”, Journal of the Energy Institute xxx (2014) pg. no. 1-8.
XVI. Gokhan Tuccar, Tayfun Ozgur, Kadir Aydin, “Effect of diesel–microalgae biodiesel–butanol blends on performance and emissions of diesel engine”, Fuel, vol. 132, (2014), pg. no.47–52.

XVII. Gvidonas Labeckas, Stasys Slavinskas, “Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends”, Energy Conversion and Management 50, (2009), pg. no. 792–801.

XVIII. Hemant Y. Shrirame, N. L. Panwar, B. R. Bamiya, “Bio Diesel from Castor Oil - A Green Energy Option”, Low Carbon Economy, (2011), vol.2, pg. no. 1-6.

XIX. Isaac Joshua Ramesh Lalvani J, K. Kirubhakaran, M.Parthasarathy, R.Sabarish, Dr.K.Annamalai, “Performance Characteristics and Emission Analysis of a Single Cylinder Diesel Engine Operated on Blends of Diesel and Waste Cooking Oil”, the International Conference on Energy Efficient technologies for sustainability (ICEETS), St. Xavier's Catholic College of Engineering, Nagercoil, Kanyakumari Dist, Tamilnadu, India,(2013), pg. no. 781 – 785.

XX. Jaichandar S, and K. Annamalai, “The Status of Biodiesel as an Alternative Fuel for Diesel Engine – An Overview”, Journal of Sustainable Energy & Environment vol.2, (2011), pg.no. 71-75.

XXI. Jayashri N Nair, J. Deepthi, K. Siva kalyani, “Study of biodiesel blends and emission characteristics of biodiesel”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Iss 8, (2013), pg. no. 3710 – 3715.

XXII. Krishna Moorthy Ramalingam, Annamalai Kandasamy, Dinesh Balasubramanian, J. Paul James Thadhani, “An assessment of combustion, performance characteristics and emission control strategy by adding anti-oxidant additive in emulsified fuel”, Atmospheric Pollution Research xxx, (2018), pg. no. 1-9

XXIII. Lujaji F, A. Bereczky, L. Janosi, Cs. Novak, M. Mbarawa, “Cetane number and thermal properties of vegetable oil, biodiesel, 1-butanol and diesel blends”, J Therm Anal Calorim, (2010), vol. 102, pg. no.1175–1181.

XXIV. Manickam AR, K.Rajan, N.Manoharan & KR. Senthil Kumar, “Experimental analysis of a Diesel Engine fuelled with Biodiesel Blend using Di-ethyl ether as fuel additives”, International Journal of Engineering and Technology (IJET), Vol 6, No 5, (2014), pg. no. 2412 -2420.

XXV. Mevlut Sureyya Kocak, Erol Ileri, and Zafer Utlu, “Experimental Study of Emission Parameters of Biodiesel Fuels Obtained from Canola, Hazelnut, and Waste Cooking Oils”, Energy & Fuels vol 21, (2007), pg. no. 3622–3626.
XXVI. Mingfa Yao, Hu Wang, Zunqing Zheng, Yan Yue, “Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions”, Fuel vol. 89, (2010), pg. no. 2191–2201.

XXVII. Mohamed F. Al-Dawody, S.K. Bhatti, “Optimization strategies to reduce the biodiesel NOx effect in diesel engine with experimental verification”, Energy Conversion and Management, vol. 68, (2013), pg. no. 96–104.

XXVIII. Muralidharan K, D. Vasudevan, K.N. Sheeba, “Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine”, Energy, vol. 36 (2011), pg. no. 5385 –5393.

XXIX. Mushtaq Ahmad, Mir Ajab Khan, Muhammad Zafar and Shazia Sultana, “Biodiesel from Non Edible Oil Seeds:a Renewable Source of Bioenergy”, Economic Effects of Biofuel Production, (2011) chapter – 1, pg.no. 259-279.

XXX. Mustafa Atakan Akar, “Performance and emission characteristics of compression ignition engine operating with false flax biodiesel and butanol blends”, Advances in Mechanical Engineering, Vol. 8, iss. 2, (2016), pg. no. 1–7

XXXI. Nadir Yilmaz , Francisco M. Vigil, “Potential use of a blend of diesel, biodiesel, alcohols and vegetable oil in compression ignition engines”, Fuel, vol. 124, (2014), pg. no. 168–172.

XXXII. Oguzhan Dogan, “The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions”, Fuel, vol. 90 (2011), pg. no. 2467-2472.

XXXIII. Oladeji A. OGUNWOLE, “Production of biodiesel from watermelon (Citrullus lanatus) seed oil”, Leonardo Journal of Sciences, Iss. 27, (2015) pg. no. 63-74.

XXXIV. Onkar s. Tyagi, neeraj atray, basant kumar and aruna bha datta, “Production, Characterization and Development of Standards for Biodiesel - A Review”, Journal of Metrology Society of India, vol.25, no.3, (2010), pg. no. 197-218.

XXXV. Panneerselvam N, A. Murugesan, C. Vijayakumar & D. Subramaniam, “Optimization of biodiesel produced from watermelon (Citrullus vulgaris) using batch-type production unit”, Energy sources, part a: recovery, utilization, and environmental effects, (2016), vol. 38, iss. 16, pg. no.2343–2348.

XXXVI. Pugazhvadivu M, K. Jeyachandran, “Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel”, Renewable Energy, Vol. 30, (2005), pg. no. 2189–2202.

XXXVII. Rakesh Chaudhari, Jay Vora, Vishal Wankhede, Ankur Chaurasia, Parth Prajapati, “Experimental Investigation of Engine Performance and Exhaust Emissions of Produced Biodiesel from Waste Cooking Oil”, International Journal
on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE)
Volume: 5 Issue: 4, (2018), pg. no. 07 – 11.

XXXVIII. Rakopoulos C.D. A.M. Dimaratos, E.G. Giakoumis, D.C. Rakopoulos, “Study of
turbocharged diesel engine operation, pollutant emissions and combustion noise
radiation during starting with bio-diesel or n-butanol diesel fuel blends”, Applied
Energy vol. 88 (2011), pg. no. 3905–3916.

XXXIX. Recep Altın a, Selim Cetinkaya, Huseyin Serdar Yucesu, “The potential of using
vegetable oil fuels as fuel for diesel engines”, Energy Conversion and
Management, vol. 42, (2001), pg. no. 529 – 538.

XL. Rekha G, Dr. A. Leema Rose, “Extraction and characterization of watermelon
seed oil”, International Journal of Agriculture and Environmental Research,
Vol. 03, Iss.01, pg. no. 2295-2301.

XLI. Sabarish R, M. Premjeyakumar, “The Design And Analysis Of Piston - Steady
State Thermal Analysis Using “Ansys””, International Journal of Mechanical and
Production Engineering Research and Development (Ijmperd), (2019), Vol. 9,
Issue 3, Jun (2019), pg. no. 197-204.

XLII. Sabarish R, D. Mohankumar, Dr. M. PremJeyaKumar, “Performance and
emission characteristics of diesel engine with biodiesel blend at various
compression ratio” International Journal of Pure and Applied Mathematics, 2018,
Vol 11,8 iss. 18, pg no 957-965.

XLIII. Senthur Prabu S, M.A. Asokan, S. Prathiba, Shakkeel Ahmed, George Puthean,
“Effect of additives on performance, combustion and emission behavior of
preheated palm oil/diesel blends in DI diesel engine”, Renewable Energy, vol.
122, (2018), pg. no. 196 –205

XLIV. Soham Chattopadhyay, Ankush Karemore, Sancharini Das, Asoke Deysarkar,
Ramkrishna Sen, “Biocatalytic production of biodiesel from cottonseed oil:
Standardization of process parameters and comparison of fuel characteristics”,
Applied Energy, vol. 88, (2011), pg. no. 1251–1256.

XLV. Soo-Young No, “Inedible vegetable oils and their derivatives for alternative
diesel fuels in CI engines: A review”, Renewable and Sustainable Energy
Reviews, vol.15, (2011), pg. no. 131–149.

XLVI. Sri Elumagandla surendar, Ms. Vajra Navatha, “Performance Evaluation of four
stroke single cylinder C.I engine using diesel and methonal - diesel blended fuel
as alternate fuels”, International Research Journal of Engineering and
Technology (IRJET) e-ISSN: 2395-0056 Vol 02 Iss 07, pg no – 1267 – 1274.

Copyright reserved © J. Mech. Cont.& Math. Sci.
R. Sabarish et al
XLVII. Srinivasan, G.R. and Jambulingam, R, “Comprehensive Study on Biodiesel Produced from Waste Animal Fats-A Review”, Journal of Environmental Science and Technology, Vol.11, iss. 3,(2018), pg. no.157-166.

XLVIII. Srinivasan, G.R., Shankar, V. and Jambulingam, R., “Experimental study on influence of dominant fatty acid esters in engine characteristics of waste beef tallow biodiesel”, Energy Exploration & Exploitation, vol. 37, iss. 3,(2019), pg. no.1098-1124.

XLIX. Wong C. S, R. Othman, “Biodiesel Production by Enzymatic Transesterification of Papaya Seed Oil and Rambutan Seed Oil”, International Journal of Engineering and Technology (IJET), Vol. 6, iss .6, (2014), pg. no. 2773 – 2777.