Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolution melting (HRM) analysis

Anna Y. Golovina1,2,3, Margarita M. Dzama1,2,3, Kirill S. Petriukov1,2,3, Timofei S. Zatsepin1,2,3, Petr V. Sergiev1,2,3,*, Alexey A. Bogdanov1,2,3 and Olga A. Dontsova1,2,3

1Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia, 2Department of Bioinformatics and Bioengineering, Lomonosov Moscow State University, Moscow 119992, Russia and 3A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia

Received November 26, 2012; Revised October 16, 2013; Accepted October 28, 2013

ABSTRACT

Chemical landscape of natural RNA species is decorated with the large number of modified nucleosides. Some of those could easily be detected by reverse transcription, while others permit only high-performance liquid chromatography or mass-spectrometry detection. Presence of m6A nucleoside at a particular position of long RNA molecule is challenging to observe. Here we report an easy and high-throughput method for detection of m6A nucleosides in RNA based on high-resolution melting analysis. The method relies on the previous knowledge of the modified nucleoside position at a particular place of RNA and allows rapid screening for conditions or genes necessary for formation of that modification.

INTRODUCTION

More than a 100 modified nucleoside species could be found in various functional RNA molecules (1). Monitoring of their presence at a particular position of RNA is necessary for the identification of conditions affecting RNA modification as well as for the screening for genes responsible for the modification (2). Some of the modified nucleosides, e.g. m5G and m1A, impede reverse transcription and could easily be detected by primer extension assay (3–6). Others need an additional chemical treatment of modified RNA before reverse transcription. For example, m5G nucleoside serves as a chain breakage point on treatment with NaBH4 followed by incubation with aniline (7,8). Pseudouridine could be revealed by reverse transcription if RNA is pre-treated with N2H4 or N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate and is incubated in a mild basic solution (9). Adenosine nucleosides monomethylated at their exocyclic amino group (m6A) are among the hardest to detect. For monitoring of the m6A presence in a specified RNA position within a large RNA, a short fragment of that RNA should be excised. This could be done with either RNase H cleavage in the presence of the complementary oligodeoxyribonucleotide pair (10) or with unspecific RNase digestion of total RNA, while the selected region is protected by the complementary oligodeoxyribonucleotide (11). After purification of RNA fragment, it should be digested with the specific RNase, usually RNase A or RNase T1. The resulting set of oligoribonucleotides should be analyzed by mass spectrometry. Recently published alternative for this method is an immunoprecipitation with m6A-specific antibodies followed by a massively paralleled sequencing (12,13). Application of this method allowed revealing of thousands of m6A nucleosides in eukaryotic mRNAs. Monitoring of m6A presence at specific RNA positions in a variety of conditions is indispensable for understanding presumable regulatory role of m6A nucleosides.

Here we report a new simple method based on high-resolution melting (HRM) analysis, which allows detection of m6A nucleoside at the specific RNA position. The method could easily be adapted to a high-throughput format.

MATERIALS AND METHODS

Strains and media

Escherichia coli strains BW25113 (WT) (14) and JW5107 (AybiN), JW1860 (AyecP), JW4268 (AyjhP), JW0203

*To whom correspondence should be addressed. Tel: +7 495 9395418; Fax: +7 495 9393181; Email: petya@genebee.msu.su

© The Author(s) 2013. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
(ΔyatS), JW0904 (ΔsnrA), JW1123 (ΔynfD), JW4366 (ΔlasT), JW2565 (ΔyiF), JW2559 (ΔyiC), JW3900 (ΔyiII), JW1859 (ΔyecO), JW5501 (ΔygiQ), JW0050 (ΔksqA), JW3466 (ΔyhiR), JW5543 (ΔyhiD) and JW2000 (ΔyatE) (15) were grown at 37°C in LB media to 0.6 A600. Bacillus subtilis transformed with pKH80 plasmid coding for ErmC methyltransferase was grown similarly, with addition of 50 μg/ml ampicillin.

HEK 293 cells (Homo sapiens) were cultivated at 37°C, 5.5% CO2 in Dulbecco’s modified Eagle’s medium:F12 medium (Invitrogen) supplemented with 10% fetal bovine serum.

Ribosome and RNA preparation

Ribosomes and ribosomal subunits were prepared as described (16). Pure 23S ribosomal RNA from the strains tested was prepared by phenol extraction out of the 50S ribosomal subunits (17). Total RNA from bacteria was prepared by QIAGEN RNeasy mini kit. RNA species tested was prepared by phenol extraction out of the 50S ribosomal subunits (16). Pure 23S ribosomal RNA from the strains described (16). Synthetic oligonucleotide probes carrying fluorophore and quencher, and snRNA U6 fragments

We used following pairs of oligonucleotides (B-x–quinener oligodeoxyribonucleotide, F-x–fluorescent oligodeoxyribonucleotide):

| Variation of quencher oligodeoxyribonucleotide length (A2030 of 23S rRNA E.coli). Figure 1A–D. | Name of oligodeoxy-ribonucleotide | Complementary region of RNA |
|---|---|---|
| B-2030_1 | 5'-TCA CAG CG-3'–BHQ1 | 2023–2030nt |
| F-2030_1 | FAM-5'-AGT TCA ATT TCA CTG AGT CTC GG-3' | 2000–2022nt |
| B-2030_2 | 5'-ATC TTC ACA GGC-3'–BHQ1 | 2023–2034nt |
| F-2030_2 | FAM-5'-AGT TCA ATT TCA CTG AGT CTC GG-3' | 2000–2022nt |
| B-2030_3 | 5'-CTG CAT CTT CAC AGG G-3'–BHQ1 | 2023–2038nt |
| F-2030_3 | FAM-5'-AGT TCA ATT TCA CTG AGT CTC GG-3' | 2000–2022nt |
| B-2030_4 | 5'-TACACTGTACCCATACAGCGG-3'–BHQ1 | 2023–2042nt |
| F-2030_4 | FAM-5'-AGT TCA ATT TCA CTG AGT CTC GG-3' | 2023–2042nt |
| B-2030_5 | 5'-TCA CAG CG-3'–BHQ1 | 2023–2038nt |
| F-2030_5 | FAM-5'-AGT TCA ATT TCA CTG AGT CTC GG-3' | 2005–2022nt |
| B-2030_6 | 5'-CTG CAT CTT CAC AGG G-3'–BHQ1 | 2023–2038nt |
| F-2030_6 | FAM-5'-AGT TCA ATT TCA CTG AGT CTC GG-3' | 2000–2022nt |
| B-2030_7 | 5'-CTG CAT CTT CAC AGG G-3'–BHQ1 | 2023–2038nt |
| F-2030_7 | FAM-5'-AGT TCA ATT TCA CTG AGT CTC GG-3' | 1998–2022nt |

Analysis of m6A methylation in A2030 of 23S rRNA E.coli. Figure 1E–H.

**Analysis of m6A methylation in A2030 of 23S rRNA E.coli.** Figure 2A–D.

**Analysis of m6A methylation in A2030 of 23S rRNA E.coli.** Figure 2B–D

**Analysis of m6A methylation in A2030 of 23S rRNA E.coli.** Figure 7D

**Analysis of m6A methylation in A1618 of 23S rRNA E.coli.** Figure 7E

**Analysis of m6A methylation in A2085 of 23S rRNA B.subtilis.** Figure 7E

**Analysis of m6A methylation in A1618 of 23S rRNA E.coli.** Figure 7D

S100 was phenol extracted and then small RNA fraction containing all tRNA species was precipitated by 0.3 M NH4OAc and 80% ethanol solution. Each of RNA isolation was performed three times for three subsequent independent analyses (biological replicates).

Total small RNA fraction (RNAs up to 200-nt long) from 108 HEK 293 cells was prepared by Ambion mirVana™ miRNA Isolation Kit. The approximate content of small nuclear RNA (snRNA) U6 was estimated by producing complementary DNA [cDNA; Maxima First Strand cDNA Synthesis Kit for Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Thermo Scientific] and following RT qPCR, while the control during the amplification was U6 coding DNA with known concentration.

Synthetic oligonucleotide probes carrying fluorophore and quencher, and snRNA U6 fragments

We used following pairs of oligonucleotides (B-x–quinener oligodeoxyribonucleotide, F-x–fluorescent oligodeoxyribonucleotide):
### Probes hybridization and HRM analysis

Each hybridization and melting experiment was reproduced in three technical and three biological replicas (total nine replicates minimum). If not indicated otherwise, for hybridization and melting experiment, 0.4 μM of individual RNA or RNA mixture was combined with 0.4-μM BHQ-x oligonucleotide and 0.2-μM FAM-x oligonucleotide in optically clear PCR tubes. Ionic conditions for the hybridization were 50 mM Tris-HCl, pH 8.3, and 40 mM KCl, the volume of mixture was 10 μl. The mixture was placed into the qPCR analyzer; in our case, we used CFX96 Real-Time System (Bio-Rad). The hybridization was done by heating to 80°C for 3 min followed by cooling to 20°C at a rate 3°C/min. Melting curve were obtained by steady heating back to 80°C at a rate 1°C/min in increments of 0.5°C and monitoring of FAM fluorescence. Fluorescence curves were normalized and differential curves were analyzed. The standard representations of differential fluorescence curves produced by HRM analysis software (18) were shown.

To measure the suitability of melting analysis at various RNA concentrations, essentially the same protocol was used, whereas the concentrations of the 23S rRNA and oligonucleotides were taken as indicated in the text and figures. The total 23S rRNA concentration was kept constant at 0.4 μM, whereas the composition varied from 100% of methylated 23S rRNA purified from the wild-type strain to 100% of unmethylated 23S rRNA purified from the JW3466 (ΔyhiR) strain (11) in increments of 10%. For detection of tRNA modification at m6A37, 4 μg of total tRNA was taken for each probe. For detection of m6A presence in H. sapiens U6 snRNA, 1.4 μg of total small RNA fraction from HEK 293 cells was taken for each probe, which corresponds to 1.4 pmol (0.14 total small RNA fraction from HEK 293 cells was taken for each probe, which corresponds to 1.4 pmol (0.14) of U6 snRNA according to RT qPCR quantification. Same amount of pure synthetic analog of U6 snRNA fragments either containing m6dA43 or unmethylated dA43 was used as a control. We used m6dA instead of m6A because of lack of any commercially available m6A precursor for chemical synthesis of RNA.

### RESULTS

Modified nucleosides in DNA and RNA could influence base-pairing or base-stacking interactions, which could alter melting properties of nucleic acid duplexes (19). We explored the possibility to use melting properties of RNA–DNA duplex to monitor presence of modified nucleosides. We used the segment of E. coli 23S rRNA with the modified nucleoside m6A2030 as a first model. According to our previously published data, this nucleoside is completely modified in the wild-type E. coli strain, while being completely unmodified in the JW3466 (ΔyhiR) strain, lacking the A2030-specific rRNA methyltransferase (11). To test the utility of HRM analysis for the monitoring of adenosine modification, we designed a set of oligodeoxyribonucleotide pairs complementary to the RNA target (Figures 1 and 2). One oligonucleotide in each pair was modified with 6-carboxyfluorescein (FAM) fluorophore at its 5’-end, whereas the other one carried Black Hole Quencher (BHQ1) quencher at its 3’-end. Sequences of both probes are designed in such a way that they should hybridize to target RNA side-by-side, bringing fluorophore and quencher to immediate juxtaposition (Figures 1 and 2). Modified RNA nucleoside is always located within the borders of area covered with the shorter quencher-containing oligonucleotide.

We tested how melting curves of BHQ1-containing oligonucleotides are affected by A2030 nucleoside modification. These BHQ1-containing oligonucleotides share the same 3’-end region and have variable length of 8, 12, 16, and 20 nt. All of them are shorter than FAM-containing oligonucleotide, whose length was 23 nt (Figure 1). We assumed that fluorescence of FAM would be affected by the melting of the shorter BHQ1-containing oligonucleotides, and this melting would be dependent on the presence of the modification in RNA. Obtained differential melting curves demonstrated dependence on the A2030 modification (Figure 1B and C) in such a way that the modification lowered Tm of the shorter oligonucleotide. The recommendation regarding the length of BHQ1-containing oligonucleotide is that it should be sufficiently large to effectively hybridize to the RNA, unlike 8mer oligonucleotide (Figure 1A), but it has to be as small as possible to get the maximal difference in Tm for the modified and unmodified RNA (see decrease in ΔTm in Figure 1B to C to D).

The length of the FAM-containing oligonucleotide was changed in the next set of the experiments (Figure 1E–H). We tested the 18-, 20-, 23- and 25-nt long FAM-
Figure 1. Optimization of probe length. Differential melting curves of duplexes formed by the 23S rRNA from the wild-type and ΔyhiR knockout strains of *E. coli* and a set of pairs of oligonucleotide probes. Schemes of oligonucleotide probes hybridization to the target-modified RNA molecule are depicted below each panel. Green curves correspond to the wild-type strain (23S rRNA modified at m6A2030), and red curves correspond to ΔyhiR knockout strain (23S rRNA unmodified at A2030). The length of probes varied as follows: (A) FAM probe 23 nt, BHQ1 probe 8 nt; (B) FAM probe 23 nt, BHQ1 probe 12 nt; (C) FAM probe 23 nt, BHQ1 probe 16 nt; (D) FAM probe 23 nt, BHQ1 probe 20 nt; (E) FAM probe 18 nt, BHQ1 probe 16 nt; (F) FAM probe 20 nt, BHQ1 probe 16 nt; (G) FAM probe 23 nt, BHQ1 probe 16 nt; and (H) FAM probe 25 nt, BHQ1 probe 16 nt.
containing oligonucleotides combined with the single 16-nt long BHQ1-containing oligonucleotide. The shortest FAM-containing oligonucleotide demonstrated no dependence of Tm on the RNA modification (Figure 1E). We assume that similar differential curves in this case result from the early melting of the duplex formed by the RNA and FAM-containing oligonucleotide, before the melting of the BHQ1-containing oligonucleotide duplex, which is hybridized with the modification site of RNA. The longer is the FAM-containing oligonucleotide (see Figure 1E to F to G to H), the greater is the difference in melting curves for modified and unmodified RNAs.

To optimize hybridization position of BHQ1-containing oligonucleotide relative to the site of the modification in RNA, we tested four pairs of BHQ1 and FAM-containing oligonucleotides (Figure 2). BHQ1-containing oligonucleotides hybridized to different areas of RNA so that the modification site is either complementary to the 3′-end of the quencher oligonucleotide (Figure 2A), or to the middle part of the quencher oligonucleotide (Figure 2B and C) or to the 5′-end region of the quencher oligonucleotide (Figure 2D). We observed much more effect of the BHQ1-oligonucleotide length rather than of the position of quencher oligonucleotide relative to the modified nucleoside in RNA. Curiously, the pair of oligonucleotides hybridized in such a way that modification site in RNA, located opposite to the site of BHQ1 attachment, produced the most pronounced difference between melting curves for modified and unmodified RNAs (Figure 2A). Duplexes formed by oligonucleotide probes with the 23S rRNA carrying methylated nucleoside A2030 melts via biphasic process with two melting peaks at 43°C and 52°C, whereas the duplex formed by the unmethylated 23S rRNA melts at 49°C (Figure 2A). Maximal difference between the methylated and unmethylated RNAs is manifested at 49°C. This pair of oligonucleotides (B-2030_8 and F-2030_8) was chosen for several further experiments.

Could the observation of melting curves of RNA with selected oligonucleotide pair be helpful in searching for gene responsible for particular RNA modification via screening a set of bacterial strains carrying gene knock-outs? To answer this question, we chose a set of strains each of which lacked particular gene coding for actual or hypothetical RNA methyltransferase, namely, ΔyhiN, ΔyecP, ΔyjhP, ΔyafS, ΔsmtA, ΔlasT, ΔyifF, ΔyifC, ΔyifV, ΔyecO, ΔksgA, ΔyhiR, ΔydhD and ΔyafE strains (15). The wild-type strain (14) was used as a control. The 23S rRNA was extracted from these strains and was studied by HRM analysis for the m6A2030 presence (Figure 3). In all the strains, except ΔyhiR strain (11), nucleoside A2030 is modified. Accordingly, we can see highly similar differential melting curves of the 23S rRNA–oligonucleotide duplexes for RNA from Figure 2.

**Figure 2.** Optimization of probe location relative to modified nucleoside. Differential melting curves of duplexes formed by the 23S rRNA from the wild-type and ΔyhiR knockout strains of *E. coli* and a set of pairs of oligonucleotide probes. Schemes of oligonucleotide probes hybridization to the target-modified RNA molecule are depicted below each panel. Green curves correspond to the wild-type strain (23S rRNA modified at m6A2030), and red curves correspond to ΔyhiR knockout strain (23S rRNA unmodified at A2030). The length of probes varied as follows: (A) m6A nucleoside hybridize opposite to the 3′-end of BHQ1 probe; (B) m6A nucleoside hybridize at a 3-nt distance from the 3′-end of BHQ1 probe; (C) m6A nucleoside hybridize at a 8-nt distance from the 3′-end of BHQ1 probe; (D) m6A nucleoside hybridize at a 15-nt distance from the 3′-end of BHQ1 probe.
all of these strains, including wild-type rRNA. Only the duplex formed by the oligonucleotides and the 23S rRNA from the strain ΔyhiR, which lacks A2030 modification, displayed clearly altered melting properties (Figure 3).

We checked if we could detect m6A in modified RNA being mixed with unmodified RNA of the same sequence. To this end, we prepared a set of mixtures of the 23S rRNA containing m6A2030 from the wild-type strain with that from ΔyhiR strain, devoid of the modification at A2030. We used a set of mixtures of modified and unmodified RNA in different proportions ranging from 100% of modified RNA to 100% of unmodified in increments of 10%. The total concentration of RNA was 0.4 μM. The resulting HRM curves of the mixtures changed steadily from the 100% of methylated RNA to 100% of unmethylated, displaying roughly an additive contribution of respective pure RNA species (Figure 4). Approximately 30% of admixture of RNA containing m6A2030 with unmodified one can be detected.

Our next goal was to determine the minimal amount of the RNA, whose modification we could detect using HRM-based method. To do so, we tested the melting behavior of 23S rRNA:B-2030_8:F-2030_8 complexes with the concentration ratios of: 1 μM:1 μM:0.5 μM, 0.4 μM:0.4 μM:0.2 μM, 0.2 μM:0.2 μM:0.1 μM, 0.1 μM:0.05 μM and 0.05 μM:0.1 μM:0.025 μM, 0.02 μM:0.02 μM:0.01 μM (Figure 5). The amplitude of the fluorescence change decreased with the decrease of RNA concentration. The concentrations of 0.1 μM of 23S rRNA, 0.1 μM B-2030_8 oligonucleotide and 0.05 μM F-2030_8 oligonucleotide were found to be minimal for the decisive identification of the RNA modification. In 10-μl volume, the quantity of RNA equals to 1 pmol, that corresponds to the amount of rRNA extracted from 5 × 10⁷ bacterial cells. The molar ratio of 0.4 μM:0.4 μM:0.2 μM seems to be optimal for clear implementing of the method.

Hybridization of oligonucleotide probes to RNA is specific and thus the presence of bulk cellular RNA should not interfere with the detection of the modification at the specific site in the particular RNA. We compared the melting curve analysis done with the purified RNA from the large ribosomal subunit (Figure 6A) with that of total cellular RNA (Figure 6B). Use of total RNA proved to be as effective as usage of purified RNA in melting curve assay for the detection of the m6A2030 modification.

To test the universality of the method, we used four additional models having the modified nucleoside in the different primary and secondary structure contexts. First is the E. coli tRNA_val1 that contains nucleoside m2A37 modified by methyltransferase YfiC. We designed three pairs of oligonucleotides complementary to tRNA_val1 (Figure 7A–C) and investigated melting of their duplexes with total small RNA fraction from the wild-type and ΔyfiC strains (Figure 7A–C). Application of the quencher-containing B-37_1 oligonucleotide that hybridizes with the region 37–48 nt of tRNA_val1 produced highly different melting curves for the RNA prepared from the wild-type and ΔyfiC strain. A distinct melting peak was observed for only unmodified tRNA_val1, whereas no melting was evident for the modified RNA sample (Figure 7A). This difference could be explained by overall lack of oligonucleotide hybridization to the modified tRNA_val1. Modified nucleosides in tRNA are known to stabilize its structure (20) and it is likely that such stabilization prevents efficient competition of complementary oligonucleotide with the secondary and tertiary structure of tRNA. Shifting oligonucleotide hybridization position by two nucleotides (Figure 7B) has not changed the principal difference between the curves corresponding to the modified and unmodified tRNAs. However, for both samples, a peak at similar higher temperature could be observed (Figure 7B, 72°C), which could represent either melting of a duplex formed by
FAM-containing oligonucleotide or other structural rearrangement independent of the modification. Further movement of hybridization position resulted in complete loss of hybridization with both the modified and unmodified tRNA (Figure 7C). Lack of hybridization could be explained by the smaller length of the BHQ-containing oligonucleotide. Alternatively, the presence of other modified nucleoside, uridine 5-oxyacetic acid, in the middle of the tRNA region complementary to the oligonucleotide prevents its hybridization.

As a second additional model, we used the *E. coli* 23S rRNA carrying m6A modification at a nucleoside 1618, which is formed by YbiN methyltransferase. The pair of B-1618 and F-1618 oligonucleotides allowed to observe a reproducible difference between curves for the methylated 23S rRNA from the wild-type and for the unmethylated 23S rRNA from ΔybiN strain (Figure 7D). The difference observed for the m6A1618 modification resembled that for m6A2030 modification (Figure 1). In both cases, modification resulted in lower melting temperature of the RNA–DNA hybrid.

We make use of 23S rRNA adenosine 2058 (*E. coli* numbering) dimethylation introduced by ErnC methyltransferase, an enzyme that causes macrolide resistance in a number of bacteria (21) as our third additional model. Ribosomal RNA was purified from *B. subtilis* and transformed with the plasmid coding for ernC gene. The similar RNA sample from untransformed *B. subtilis* was used as a control. We used pair of oligonucleotides B-2085 and F-2085 complementary to *B. subtilis* 23S rRNA (Figure 7E). The area of B-2085 oligonucleotide complementarity in the 23S rRNA contained modified m6A2085, the nucleoside corresponding to *E. coli* m6A2058. Because adenosine dimethylation completely abolish Watson-Crick base pairing, we observed drastic difference between the melting curves corresponding to the modified and unmodified 23S rRNA (Figure 7E). Melting curve corresponding to unmodified 23S rRNA contain a single pronounced peak, while the melting behavior of the duplex formed by modified 23S rRNA demonstrated several shallow peaks.

Finally, we demonstrated that the method is suitable for the detection of m6A presence in eukaryotic non-ribosomal RNA. To this end, we used one of the few m6A residues in human RNA, which was previously identified at a single-nucleotide resolution, namely, m6A43 of U6 snRNA (22). Unfortunately, an enzyme responsible for this modification is unknown. Thus, we first compared model chemically synthesized fragments of U6 snRNA containing m6A43 or dA43. We used deoxynucleosides due to the unavailability of the m6A ribonucleotide precursor for the RNA chemical synthesis. After initial optimization of the fluorescent and quencher oligonucleotide length, we chose the most optimal pair (Figure 7F). In complete agreement with our results on the previous models, we observed decrease in the melting temperature on m6A modification (Figure 7F, red curve–unmodified versus green curve–modified). Because the enzyme responsible for m6A43 formation in U6 snRNA is unknown, we compared a melting curve corresponding to the natural U6 snRNA present in a total small RNA fraction of human HEK 293 cells with that of control chemically synthesized U6 snRNA fragments. In agreement with our expectations, a melting curve corresponding to the natural human U6 snRNA (Figure 7F, blue curve) demonstrated even lower Tm than the methylated control RNA. The difference between the curves corresponding for the m6A-containing model RNA and the natural U6 snRNA could be attributed to other modifications present in natural U6 snRNA, such as several 2′OMe and Ψ.

**DISCUSSION**

Hereby we report a method for monitoring the presence of m6A nucleoside in a specific position of long RNA...
molecule using HRM analysis. Adenosine nucleosides methylated at their exocyclic amino group are hard to detect (3). Primer extension analysis could not be used for this purpose because m\(^6\)A does not affect reverse transcription of RNA. RNA fragment excision and cleavage followed by mass-spectrometry is extremely laborious and could not be scaled up to high-throughput analysis. RNA immunoprecipitation via anti-m\(^6\)A antibody followed by massively parallel sequencing allows transcriptome-wide identification of m\(^6\)A nucleosides with 50–100 nt fidelity (12,13). However, it could be hardly used to screen many samples in a high-throughput assay. The method described here allows easy screening for the m\(^6\)A presence at a particular position of RNA using total RNA sample and qPCR machine. Although the monomethylation of adenosine exocyclic amino group does not lead to alteration in hydrogen bonding within the nucleic acid duplex, it affects stacking interactions and accordingly its melting properties (19).

Highly precise monitoring of fluorescence in the course of duplex melting is widely used for the monitoring polymorphisms in DNA (23). It was also reported to be useful for studying RNA editing (24) and DNA methylation (25). Both methods described in the literature rely on the changes in nucleic acid sequence and as such are extensions of basic mutation detection technique based on HRM. Here we demonstrated the suitability of HRM method for the direct monitoring of the modified nucleoside presence in the RNA molecules. In contrast to the previously published methods it does not rely on the change in nucleic acid sequence and does not involve any PCR-based amplification. The method described here relies directly on the alteration of nucleic acids duplex melting properties resulting from the RNA modification.

According to our data, the presence of m\(^6\)A in the RNA part of the RNA–DNA duplex lowers its melting temperature. The extent of Tm shift increases with the decrease in length of the quencher-containing oligonucleotide; however, the short quencher-containing oligonucleotide could fail to hybridize with RNA especially if the RNA target possesses strong secondary structure. We recommend 12–13-nt-long probes containing a quencher and >20-nt long probes, containing a fluorophore. We also could advise to design a quencher-containing oligonucleotide in such a way that after hybridization with RNA, the modified RNA nucleoside would be directly opposite to the 3'-terminal nucleotide carrying the quencher.

We demonstrated the universality of the method. The detection of m\(^6\)A nucleosides at three specific positions of rRNA, one position of tRNA and one position of snRNA was successful. Not only purified-specific RNA, but also a bulk cellular RNA is suitable for detection of m\(^6\)A at a pre-defined position due to the specificity of oligonucleotide probe hybridization. Non-ribosomal targets need partial enrichment, such as simple molecular weight-based purification, easily accomplished by commercially available kits.

Possible application of the method is the screening of the knockout/knockdown strain libraries in a search for the gene responsible for the formation of particular m\(^6\)A nucleoside. Another possible application is the detection
of the particular m^6A nucleoside presence at various growth or environmental conditions. The overwhelming majority of modified nucleosides in eukaryotic and particularly human mRNAs are m^6A nucleosides (12,13). Given particular types of mRNA are present at the quantity of up to 10,000 per mammalian cell (26), 10^7 cells would be required to analyze methylation of abundant mRNA with the help of HRM method. However, it is advisable to apply partial mRNA enrichment, such as affinity purification via polyA tails. The role of these modified nucleosides still remains mysterious, while some important regulatory role is likely. The proposed method might help to decipher dynamic events which lead to modification of particular RNAs. Before the application of the described method to eukaryotic mRNA, positions of the modified residues have to be mapped with the nucleotide resolution. We demonstrated the suitability of the method to study eukaryotic RNA species exemplified by U6 snRNA. The latter is the rare example of eukaryotic RNAs where precise position of

Figure 6. Applicability of the method for bulk cellular RNA. Differential melting curves of duplexes formed by the RNA samples from the wild-type and ΔyhiR knockout strains of E. coli and a pair of oligonucleotide probes shown in Figure 2A. Green curves correspond to the wild-type strain (23S rRNA modified at m^6A2030), and red curves correspond to ΔyhiR knockout strain (23S rRNA unmodified at A2030). (A) Purified rRNA from the large ribosomal subunit was used for hybridization with probes; (B) Bulk cellular RNA was used for hybridization with probes.
m6A has been mapped. Because an enzyme responsible for m6A formation in U6 snRNA is unknown, the designed system that could be used for the screening of putative methyltransferase knockout or knockdown cell lines in a search for such an enzyme.

Another application of this method could be the monitoring of modified nucleosides in rRNA that cause antibacterial resistance. A number of m6A methyltransferases mono- or dimethylate the nucleoside A2058 of the 23S rRNA [for reviews see (27,28)]. This modification leads to the resistance to macrolide antibiotics (21). The method described in this work was tested for monitoring such modifications as well. Presence of other modified nucleosides whose presence in the RNA would cause alteration in melting could also be monitored by the method described.

ACKNOWLEDGEMENTS

The authors thank Dr H. Mori for providing them with Keio collection of knockout strains.

FUNDING

Russian Foundation for Basic Research [11-04-01018-a, 11-04-01314-a, 12-04-33026-mol-a-ved, 13-04-00836-a, 14-04-01061-a, 13-04-40211-N and 12-04-31363-mol-a]; the Ministry of Education and Science of Russian Federation, and Moscow University Development Program PNR 5.13. Funding for open access charge: Personal fund.

Conflict of interest statement. None declared.

REFERENCES

1. Machnicka, M.A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olechowik, A., Januszewski, W., Kalinowski, S., Dunin-Horkawicz, S., Rother, K.M. et al. (2013) MODOMICS: a database of RNA modification pathways—2012 update. Nucleic Acids Res., 41, D262–D267.

2. Sergiev, P.V., Golovina, A.Y., Prokhorova, I.V., Sergeeva, O.V., Osterman, I.A., Nestechuk, M.V., Burakovskiy, D.E., Bogdanov, A.A., and Dontsova, O.A. (2011) Modifications of ribosomal RNA: from enzymes to function. In: Rodnina, M.V.,
methylguanine residue in the presence of methylated carrier RNA. *Eur. J. Biochem.*, 146, 679–687.

9. Bakin,A.V. and Olengand,J. (1998) Mapping of pseudouridine residues in RNA to nucleotide resolution. *Methods Mol. Biol.*, 77, 297–309.

10. Sergiev,P.V., Serebryakova,M.V., Bogdanov,A.A. and Dontsova,O.A. (2008) The ybiN gene of *Escherichia coli* encodes adenine-N6 methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. *J. Mol. Biol.*, 375, 291–300.

11. Golovina,A.Y., Dzama,M.M., Osterman,I.A., Sergiev,P.V., Serebryakova,M.V., Bogdanov,A.A. and Dontsova,O.A. (2012) The last tRNA methyltransferase of *E. coli* revealed: the yhiR gene encodes adenine-N6 methyltransferase specific for modification of A2030 of 23S ribosomal RNA. *RNA*, 18, 1723–1734.

12. Dominissini,D., Moshtich-Moshkovitz,S., Schwartz,S., Salmon-Divon,M., Ungar,L., Osenberg,S., Cesarak,K., Jacob-Hirsch,J., Amargiolo,N., Kupiec,M. et al. (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. *Nature*, 485, 201–206.

13. Meyer,K.D., Saletore,Y., Zumbo,P., Elemento,O., Mason,C.E. and Jaffrey,S.R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. *Cell*, 149, 1635–1646.

14. Datsenko,K.A. and Wanner,B.L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl Acad. Sci. USA*, 97, 6640–6645.

15. Baba,T. and Mori,H. (2008) The construction of systematic in-frame, single-gene knockout mutant collection in *Escherichia coli* K-12. *Methods Mol. Biol.*, 416, 171–181.

16. Blaha,G., Stelzl,U., Spahn,C.M., Agrawal,R.K., Frank,J. and Nierhaus,K.H. (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. *Methods Enzymol.*, 317, 292–309.

17. Knud H. Nierhaus (1990) Reconstitution of ribosomes. *Ribosomes and Protein Synthesis: A Practical Approach*. IRL press, Oxford, pp. 161–188.

18. Precision Melt Analysis™ Software | Life Science Research | Bio-Rad.

19. Kierzek,E. and Kierzek,R. (2003) The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. *Nucleic Acids Res.*, 31, 4472–4480.

20. Motorin,Y. and Helm,M. (2010) tRNA Stabilization by modified nucleotides. *Biochemistry*, 49, 4934–4944.

21. Skinner,R., Cundiff,E. and Schmidt,F.J. (1983) Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. *J. Biol. Chem.*, 258, 12702–12706.

22. Shimba,S., Bokar,J.A., Rottman,F. and Reddy,R. (1995) Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro. *Nucleic Acids Res.*, 23, 2421–2426.

23. Vossen,R.H.A.M., Aten,E., Roos,A. and den Dunnen,J.T. (2009) High-resolution melting analysis (HRMA): more than just sequence variant screening. *Hum. Mutat.*, 30, 860–866.

24. Chateigner-Boutin,A.-L. and Small,I. (2007) A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. *Nucleic Acids Res.*, 35, e114.

25. Wojdacz,T.K. and Dobrovic,A. (2007) Methylation-sensitive high-throughput assessment of methylation (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. *Nucleic Acids Res.*, 35, e41.

26. Alberts,B., Bray,D., Lewis,J., Raff,M., Roberts,K. and Watson,J.D. (1994) Molecular Biology of the Cell 3E, 3rd edn. Garland Science, New York.

27. Weisblum,B. (1995) Erythromycin resistance by ribosome modification. *Antimicrob. Agents Chemother.*, 39, 577–585.

28. Mankin,A.S. (2008) Macrolide myths. *Curr. Opin. Microbiol.*, 11, 414–421.