On the existence of good divisors on Fano varieties of coindex 3

Yuri G. Prokhorov

Introduction

A normal projective variety X is called Fano if some multiplicity $-nK_X$, $n \in \mathbb{N}$ of anticanonical (Weil) divisor $-K_X$ is an ample Cartier divisor. The number $r(X) := \sup\{t \in \mathbb{Q}|-K_X \equiv tH, \ H \text{ is an ample Cartier divisor}\}$ is called the index of a Fano variety X. A Fano variety with only log-terminal singularities (see [7]) we call briefly log-Fano variety, and a Fano variety with only \mathbb{Q}-factorial terminal singularities and Picard number $\rho = 1 - \mathbb{Q}$-Fano variety. If X is a log-Fano variety, then $\text{Pic}(X)$ is a finitely generated torsion-free group. Therefore $r(X) \in \mathbb{Q}$, $r(X) > 0$. In that case there exists the ample Cartier divisor H, called a fundamental divisor of X, such that $-K_X \equiv r(X)H$. It is known that $0 < r(X) \leq \dim(X) + 1$ for any log-Fano variety X (see e.g. [18]).

We say that there exists a good divisor on X if the fundamental linear system $|H|$ is non-empty and contains a reduced irreducible divisor with singularities at worst the same as singularities of the variety X (e.g. if X is non-singular, or has terminal, canonical or log-terminal singularities, then H is non-singular, or has terminal, canonical or log-terminal singularities, respectively).

For the first time the existence of good divisors was proved in three-dimensional non-singular case by Shokurov [17]. In his preprint [11] Reid used Kawamata’s technique for study of linear system $|H|$ and proved the existence of good divisors for Fano threefolds with canonical singularities. Later this technique was applied for Fano fourfolds of index 2 with Picard number 1 by Wilson [14][1] and for log-Fano varieties X of indices $r > \dim(X) - 2$ by Alexeev [1].

In the present paper we study the case $r = \dim(X) - 2$. Mukai classified such non-singular Fano varieties of any dimension under the assumption of the existence of good divisors [9], [10] (see also [15]). We investigate five-dimensional case and prove the following result which is slightly weaker then Mukai’s classification claims [2].

Theorem 1. Let X be a non-singular Fano fivefold of index 3 and let H be a fundamental divisor on X. Then the linear system $|H|$ contains an irreducible divisor with only canonical Gorenstein singularities.

1For any Picard number see [Prokhorov Yu. G. The existence of smooth divisors on Fano fourfolds of index 2, Russian Acad. Sci. Sb. Math. 83 (1995) no. 1, 119–131]. (Added in translation).

2In the paper [Prokhorov Yu. G. On the existence of good divisors on Fano varieties of coindex 3, II Contemporary Math. and its Appl. Plenum. 24 (1995) (to appear)] the author generalized this result and proved that H is non-singular for $\dim X = 5$ and non-singular X. (Added in translation).
The main idea of the proof of the Theorem is to investigate the singular locus \(\text{Sing}(H) \) of a general divisor \(H \). Here the "bad" case is the case when \(\dim \text{Sing}(H) = 3 \). In this situation we study a three-dimensional component of \(\text{Sing}(H) \), applying the minimal model program. In fact using similar arguments one can prove more general result:

Theorem 2. Let \(X \) be a \(n \)-dimensional log-Fano variety of index \(n-2 \) and let \(H \) be a fundamental divisor on \(X \). Assume that in dimension \(n-2 \) flip-conjectures I and II hold (see [7]). Then if the linear system \(|H| \) is not empty and has no fixed components, then it contains an irreducible divisor with only log-terminal singularities.

Remark. If in notations of Theorem 0.2 \(X \) has only canonical Gorenstein singularities, then \(|H| \neq \emptyset \) (see 1.1).

Notations and conventions:

\(\text{Bs}\,|H| \): the scheme-theoretic base locus of a linear system \(|H| \);

\(\text{Sing}(X) \): the singular locus of a variety \(X \);

\(\equiv \): numerical equivalence of cycles;

The ground field is assumed to be the field of complex numbers \(\mathbb{C} \). We will use the basic definitions and concepts of the minimal model program (see [7]).

1. Preliminary results

From Kawamata-Viehweg vanishing theorem for varieties with log-terminal singularities (see [7]) we get

1.1. Lemma [1]. Let \(X \) be a \(n \)-dimensional log-Fano variety of index \(r \), \(H \) be a fundamental divisor on \(X \) and \(H^n = d \). Then

(i) If \(r > n-2 \), then \(\dim |H| = n-2 + d(r-n+3)/2 > 0 \). Moreover \(r = n-3+2k/d \) for some \(k \in \mathbb{N} \), \(k > d/2 \);

(ii) If \(r = n-2 \) and \(X \) has only canonical Gorenstein singularities, then \(\dim |H| = g+n-2 > 0 \), where \(2g-2 = d \), \(g \in \mathbb{Z} \), \(g \geq 2 \).

In [2] Fujita defined \(\Delta \)-genus of a polarized \(n \)-dimensional variety \((X,H)\) as \(\Delta(X,H) = H^n - h^0(X,\mathcal{O}_X(H)) + n \).

1.2. Corollary. In notations (i) of Lemma 1.3 we have \(\Delta(X,H) = d - k + 1 \).

1.3. Theorem [2]. \(\Delta(X,H) \geq \dim(\text{Bs}|H|) + 1 \geq 0 \) for any polarized variety \((X,H)\). Moreover if \(\Delta(X,H) = 0 \), then the divisor \(H \) is very ample.

The following is a consequence from the classification of polarized varieties of \(\Delta \)-genus zero [2]

1.4. Corollary (Fujita). Let \(X \) be a \(\mathbb{Q} \)-Fano threefold of index \(r > 2 \). Then either

\(X = \mathbb{P}^3 \),

\(X = Q \subset \mathbb{P}^4 \) is a smooth quadric, or
\(X = X_4 \subset \mathbb{P}^6\) is a projective cone over the Veronese surface.

1.5. **Theorem** [4], [12]. Let \(X\) be a three-dimensional Fano variety of index 2 with only canonical Gorenstein singularities, let \(E\) be a fundamental divisor on \(X\) and \(d := H^3\). Then

(i) if \(d \geq 3\), then \(H\) is very ample,

(ii) if \(d = 2\), then the linear system \(|H|\) defines a finite morphism \(X \to \mathbb{P}^3\) of degree 2.

2. Kawamata’s technique

We describe briefly the technique of resolution of base loci of linear systems on Fano varieties in connection with our situation (see [11], and also [1],[14]).

Let \(X\) be a non-singular Fano fivefold of index 3 and let \(H\) be a fundamental divisor on \(X\). By Lemma 1.1, \(|H| \neq \emptyset\). Then there exist a resolution \(f : Y \to X\) and a divisor \(\sum E_i\) on \(Y\) with only simple normal crossings such that

1) \(K_Y \equiv f^*K_X + \sum a_i E_i, \quad a_i \in \mathbb{Z}, \quad a_i \geq 0\),

where \(a_i \neq 0\) only if \(f_\ast E_i = 0\);

2) \(f^*|H| = |L| + \sum r_i E_i, \quad r_i \in \mathbb{Z}, \quad r_i \geq 0\),

where the linear system \(|L|\) is free;

3) \(\mathbb{Q}\)-divisor \(q f^*H - \sum p_i E_i\) is ample for some \(0 < p_i \ll 1, 0 < q < \min\{1/r_i | r_i \neq 0\}\).

Set \(c = \min\{(a_i + 1-p_i)/r_i | r_i \neq 0\}\). By changing coefficients \(p_i\) a little one can attain that the minimum will achieve for only one index, say for \(i = 0\). By Kleiman’s criterion for ampleness, the following \(\mathbb{Q}\)-divisor

\[N = N(t) = tf^*H + \sum (-cr_i + a_i - p_i) E_i - K_Y \equiv \]

\[= cL + f^*(t-c+3)H - \sum p_i E_i, \quad t \in \mathbb{Z}\]

is ample for \(t-c+3 \geq q > 0\). Since \(-cr_0 + a_0 - p_0 = -1\) and \(-cr_i + a_i - p_i > -1\) for \(i \neq 0\), for the rounding-up of \(N\) we have \(N = tfH - K + A - E\), where \(E = E_0, A \geq 0\) and \(A\) consists of exceptional for \(f\) components of \(\sum E_i\).

2.1. **Lemma** [1],[11]. If \(4 \geq c + q\), then \(H^0(E, \mathcal{O}_E(f^*H + A)) = 0\). In particular, \(H^0(E, \mathcal{O}_E(f^*H)) = 0\).

Proof. By the Kawamata-Viehweg vanishing theorem (see [6],[13]) the following sequence

\[0 \to H^0(Y, \mathcal{O}_Y(f^*H + A - E)) \to H^0(Y, \mathcal{O}_Y(f^*H + A)) \to H^0(E, \mathcal{O}_E(f^*H + A)) \to 0\]

is exact. If \(H^0(E, \mathcal{O}_E(f^*H + A)) \neq 0\), then we get a contradiction with the fact that \(E\) is a fixed component of the linear system \(|f^*H + A|\).

2.2. **Lemma** [1],[11]. For constants \(a_i\) and \(r_i\) in formulas (2.1) and (2.2) the inequality \(a_i + 1 \geq r_i\) holds for any \(i\).

2.3. **Lemma.** Assume that \(a_i + 1 = r_i\) for some \(i\). Then then there are the following possibilities for the divisor \(E = E_0\):
(i) $a_0 = 0, r_0 = 1, \dim(f(E)) = 4$, and $f(E)$ is a fixed component of $|H|$ of multiplicity 1;

(ii) $a_0 = 1, r_0 = 2, \dim(f(E)) = 3$, and a general divisor $|H|$ has only double singularities along $f(E)$.

Proof. Since $a_i + 1 = r_i$, we have $c \leq 1$. Set $d := \dim(f(E))$. Consider the following polynomial of degree $\leq d$: $p(t) = \chi(O_E(tf^*H + A))$. For $t > q - 2$ \mathbb{Q}-divisor $N(t)$ is ample and by the Kawamata-Viehweg vanishing theorem (see [6],[13]), $p(t) = h^0(E, O_E(tf^*H + A))$, i.e. the polynomial $p(t)$ has zero for $t = -1$, and also, by Lemma 2.1, one more zero for $t = 1$. On the other hand, $p(0) = h^0(E, O_E(A)) = 1$. Hence, if $d \leq 2$, then $p(t) \leq 0$ for $t \gg 0$, a contradiction with ampleness of H. Therefore, $d = 4$ and $d = 3$.

2.4. Lemma. Let E_k be a component of divisor $\sum E_i$ such that $\dim f(E_k) = 3$ and $x \in f(E_k)$ be a general point. Then a general divisor H is non-singular or has only double normal crossings at x.

Proof. A general surface $X' = D_1 \cap D_2 \cap D_3$, where $D_i \in |mH|$, $m \gg 0$ is non-singular. Moreover for the corresponding resolution

$Y' \twoheadrightarrow Y$
$\downarrow f' \quad \downarrow f$
$X' \twoheadrightarrow X$

we have

$K_Y = f^*K_{X'} + \sum a_i E'_{ij}$,
$f^*|H'| = |L'| + \sum r_i E'_{ij}$

where E'_{ij} is a component of $Y' \cap E_i$. Assume that a general divisor H has worse singularity at x than double normal crossings. Then the curve H' has worse singularity at the point x than ordinary double. If $x \in H'$ is not simple cusp, then for the "first" blow-up at x we have $a_1 = 1, r_1 \geq 2$, and for the "second" blow-up $a_2 = 2, r_2 \geq 4$, a contradiction with Lemma 2.2. But if $x \in H'$ is a simple cusp, then similar we have $a_1 = 1, r_1 = 2, a_2 = 2, r_2 = 3, a_3 = 4, r_4 = 6$, again it contradicts to Lemma 2.2. Thus H' has at x only ordinary double point. This proves our lemma.

3. Some corollaries from the minimal model program

3.1. Theorem [8]. Let S be a projective three-dimensional variety. Then there exist birational morphisms $\mu : W' \to S, \nu : W \to W'$ and $\tau = \mu \circ \nu : W \to S$ with the following properties:

(i) W has only terminal \mathbb{Q}-factorial singularities, W' has only canonical singularities;

(ii) K_W is τ-numerically effective, $K_{W'}$ is μ-ample;

(iii) morphism ν is crepant, i.e. $K_W = \nu^*K_{W'}$;

(iv) if $\alpha : V \to S$ is any birational morphism, V has only terminal \mathbb{Q}-factorial singularities, then the map $\tau^{-1} \circ \alpha : V \to W$ is a composition of contractions of extremal rays and flips.

\footnote{i.e. $x \in H$ is analytically isomorphic to $(0 \in \{x_1x_2 = 0\}) \subset (0 \in \mathbb{C}^3)$. (Added in translation).}
Definition. Varieties W and W' from Theorem 3.1 are called by terminal and canonical modifications of S, respectively.

3.2. Theorem [3, §3-4]. Let W be a three-dimensional projective variety with only \mathbb{Q}-factorial terminal singularities and N be a numerically effective big Cartier divisor on W. Assume that there exists an extremal ray on W is generated by a class of a curve ℓ such that $(K_W + 2N) \cdot \ell < 0$ and let $\varphi : W \to C$ be its contraction. Then one of the following holds:

(i) $\varphi : W \to C$ is a birational morphism and $\ell \cdot N = 0$;

(ii) W and C are smooth, $\dim C = 1$, $W = \mathbb{P}_C(\mathcal{E})$ and $N = \mathcal{O}_{\mathbb{P}_C(\mathcal{E})}(1)$, where \mathcal{E} is a locally free sheaf of rank 3 on C;

(iii) C is a point and W is a \mathbb{Q}-Fano variety of index $r > 2$.

3.3. Proposition. Let $\alpha : \hat{S} \to S$ be a birational morphism of three-dimensional normal projective varieties, where \hat{S} has only \mathbb{Q}-factorial terminal singularities, and let M be an ample Cartier divisor on S. Assume that $K_\hat{S} = -2\hat{M} - \hat{R} + \hat{D}$, where $\hat{M} = \alpha^*M$, \hat{R} is an effective \mathbb{Q}-divisor, \hat{D} is a \mathbb{Q}-divisor such that all the components of \hat{D} are contracted by the morphism α. Then for terminal and canonical modifications $\tau : W \to S$ and $\mu : W' \to S$, and also for Cartier divisors $N = \tau^*M$ and $N' = \mu^*M$ we have only one of the following possibilities:

(i) $W = \mathbb{P}_C(\mathcal{E})$, $N = \mathcal{O}_{\mathbb{P}_C(\mathcal{E})}(1)$, where C is a smooth curve, \mathcal{E} is a locally free sheaf on C rank 3;

(ii) $S = W = W' = \mathbb{P}^3$, $M = N = N' = \mathcal{O}_{\mathbb{P}^3}(1)$;

(iii) $S = W = W' = Q \subset \mathbb{P}^4$ is a non-singular quadric, $M = N = N' = \mathcal{O}_Q(1)$;

(iv) $S = W = W' = W_4 \subset \mathbb{P}^6$ is a cone over the Veronese surface, $M = N = N' = \mathcal{O}_W(1)$;

(v) $S = W'$ is a Fano variety of index 2 with only canonical Gornstein singularities, $-K_{W'} = 2N' = 2M$, W has only isolated cDV-points, $-K_W = 2N$ is a numerically effective big divisor.

(vi) $S = W = W' = \mathbb{P}^3$, $M = N = N' = \mathcal{O}_{\mathbb{P}^3}(2)$.

Proof. By Theorem 3.1, the birational map $\beta := \tau^{-1} \circ \alpha : \hat{S} \dashrightarrow W$ is a composition of contractions of extremal rays and flips. In particular the inverse map $W \dashrightarrow \hat{S}$ doesn’t contract divisors. Therefore

$$K_W = -2N - B + G,$$

where $N := \tau^*M$, B is an effective \mathbb{Q}-divisor on W, and G is a \mathbb{Q}-divisor such that all its components are contracted by the morphism τ. From (3.1) we have

$$K_{W'} = -2N' - B' + G',$$

where $N' := \tau^*M$, $B' = v_*B$ is an effective \mathbb{Q}-Weil divisor on W and $G' = v_*G$ is \mathbb{Q}-Weil divisor such that all the components of G are contracted by the morphism μ. First we
assume that \(B = G = 0 \). Then \(B' = G' = 0 \) and \(-K_W' = 2N'\). If \(c \) is a curve in a fiber of \(\mu \), then \(K_W \cdot c = -2N' \cdot c = 0 \), this contradicts to \(\mu \)-ampleness of \(K_W' \). So \(\mu \) is a finite birational morphism on the normal variety \(S \). Hence \(\mu \) is an isomorphism and \(-K_W = 2N\) is an ample divisor. We obtain cases (v), (vi). Now let \(B \neq 0 \) or \(G \neq 0 \). We claim that \(K_W + 2N \) is not numerically effective. Indeed, in the opposite case \(-B + G = K_W + 2N\) is numerically effective and for any irreducible curve on \(S \) we have
\[
0 \leq (-B + G) \cdot \tau^*c = -B \cdot \tau^*c.
\]
Thus \(\tau^*B = 0 \), i.e. we may assume that \(B = 0 \). But then by the Base Point Free Theorem (see e. g. [18],[7]), the linear system \([kG]\) is free for \(k \gg 0 \), it contradicts to contractedness of the divisor \(G \). Further by the Cone Theorem (see [7]), there exists an extremal ray on \(W \) generated by a class of a curve \(\ell \) such that \((K_W + 2N) \cdot \ell < 0\). Let \(\varphi : W \to C \) be the contraction of this extremal ray. Note that if \(\ell \cdot N = 0 \), then \(\ell \) is contained in a fiber of morphism \(\tau \). It contradicts \(\tau \)-numerical effectiveness of the divisor \(K_W \). Using Theorem 3.2 and Corollary 1.7, we obtain cases (i)-(iv).

3.4. Lemma. In the case (i) of Proposition 3.3 the curve \(C \) can be rational or elliptic.

Proof. Denote by \(F \) the class of a fiber of the projection \(\varphi : \mathbb{P}(\mathcal{E}) \to C \). We have the standard formula
\[
K_W = -3N + \varphi(\det(\mathcal{E}) + K_C).
\]
Set \(d := \deg \mathcal{E} \). Then
\[
K_W \equiv -3N + (2g(C) - 2 + d)F.
\]
(3.3)
Comparing (3.1) and (3.3) we obtain
\[
B \equiv N \cdot (2g(C) - 2 + d)F + G
\]
(3.4)
We may assume that the morphism \(\tau \) does not contract components of \(B \). In the Chow ring \(A(W) \) the following conditions are satisfied
\[
N^3 = d, \quad N^2 \cdot F = 1, \quad F^2 = 0
\]
(3.5)
Moreover \(d = N^3 = M^3 \geq 1 \) because \(N = \tau^*M \).

Assume that an irreducible divisor \(P \) is contracted by the morphism \(\tau \). Then \(P \equiv aN + bF \), \(a, b \in \mathbb{Z} \), and from (3.5) one can see \(0 = N^2 \cdot P = da + b \) and \(0 \leq N \cdot F \cdot P = da \), i.e. \(P \equiv a(N - dF) \), \(a \in \mathbb{N} \). If \(\tau \) contracts one more irreducible divisor \(P' \), then \(P' \equiv a'(N - dF) \), \(a' \in \mathbb{N} \) and \(0 \leq P \cdot P' \cdot N = -aa'd < 0 \). The contradiction shows that \(\tau \) may contracts at most one irreducible divisor on \(W \), i.e. \(G = 0 \) or \(G = pP \), where \(p \in \mathbb{Q} \) and \(P \equiv a(N - dF) \) is an irreducible exceptional divisor. First assume that \(B = 0 \). Then from (3.4) and (3.5) we have
\[
N \equiv (2g(C) - 2 + d)F - G, \quad d = N^3 = (2g(C) - 2 + d)N^2, \quad F = 2g(C) - 2 + d, \quad \text{i.e.} \quad g(C) = 1.
\]
But if \(B \neq 0 \), then \(0 < N^2 \cdot B = 2 - 2g(C) \), i.e. \(g(C) = 0 \).

3.5. Corollary. In conditions of Proposition 3.3 we have \(H^0(S, \mathcal{O}_S(M)) \neq 0 \).

Proof. Since \(S \) is normal, then it is sufficient to prove only that \(H^0(W, \mathcal{O}_W(N)) \neq 0 \) or \(H(W', \mathcal{O}_{W'}(N')) \neq 0 \). The last two inequalities are easy in cases (ii), (iii), (iv) and (vi), and in the case (v) they follow from Lemma 1.1. Consider the case (i). Then \(H^0(W, \mathcal{O}(N)) = H^0(C, \mathcal{E}) \) and by Riemann-Roch on \(C \) we have \(h^0(C, \mathcal{E}) = 3(1 - g) + d + h^1(C, \mathcal{E}) \geq 1 \).
4. Proof of Theorem 1

Let X be a non-singular Fano fivefold of index 3 and let H be a fundamental divisor on X. Then by Lemma 1.1, $\dim |H| \geq 6$. It follows from results of [16] that $\text{Pic}(X) \simeq \mathbb{Z} \cdot H$, except the following three cases: $X = \mathbb{P}^2 \times \mathbb{Q}^3$, X is a divisor of bidegree $(1,1)$ on $\mathbb{P}^3 \times \mathbb{P}^3$ or X is the blow-up of \mathbb{P}^5 along \mathbb{P}^1. In all of these cases it is easy to check directly that the linear system $|H|$ contains a smooth divisor. Thus we will suppose that $\text{Pic}(X) \simeq \mathbb{Z} \cdot H$. In particular we suppose that the linear system $|H|$ has no fixed components. We will use all the notations of Section 2. The following proposition is the main step in the proof of Theorem 1.

4.1. Proposition. $r_i < a_i + 1, \forall i$.

Proof. According to Lemma 2.2, $r_i \leq a_i + 1$. Assume that $r_i = a_i + 1$ for some i. Then $c := \min\{(a_i + 1 - p_i)/r_i | r_i \neq 0\} \leq 1$. Set $Z := f(E)$ (with reduced structure). By Lemma 2.3 a general divisor H has only double normal crossings singularities in a general point $x \in Z$. We may suppose that the resolution $f : Y \to X$ is a composition $h : Y \to \tilde{X}$ and $g : \tilde{X} \to X$, where $g : \tilde{X} \to X$ is a resolution of singularities of a general divisor H (i.e. we fix some general divisor H and suppose that g is a composition of blow-ups with centers in subvarieties contained in singular locus of H). We have

$$
K_{\tilde{X}} = g^* K_X + \sum a'_i E'_i, \quad (4.1)
$$

$$
g^* H = \tilde{H} + \sum r'_i E'_i, \quad r_i \geq 2, \quad (4.2)
$$

(here \tilde{H} is a proper transform of H, $\sum E'_i$ is an exceptional divisor). For corresponding E_i, E'_i, r_i, r'_i and a_i, a'_i the following conditions are satisfied:

$$
h(E_i) = E'_i, \quad r_i \leq r'_i, \quad a_i = a'_i.
$$

Denote by E' the component of the divisor $\sum E'_i$, corresponding E. According to Lemma 2.4, there are two possibilities:

$$
(I) \quad \tilde{H} \cap E' = \tilde{Z} + \tilde{Z}_1 + \tilde{Z}_0, \quad (4.3)
$$

where restrictions $g : \tilde{Z} \to Z$ and $g : \tilde{Z}_1 \to Z$ are birational, $g_* \tilde{Z}_0 = 0$;

$$
(II) \quad \tilde{H} \cap E' = \tilde{Z} + \tilde{Z}_0, \quad (4.4)
$$

where the restriction $g : \tilde{Z} \to Z$ is generically finite of degree 2, $g_* \tilde{Z}_0 = 0$.

We study the variety \tilde{Z} and corresponding morphism $\psi := g|_{\tilde{Z}} : \tilde{Z} \to Z$. Denote by T the Cartier divisor $H|_Z$ on Z.

4.2. Lemma. $K_{\tilde{Z}} = -2\tilde{T} - \tilde{B} + \tilde{G}$, where $\tilde{T}, \tilde{B}, \tilde{G}$ Cartier divisors on \tilde{Z}, \tilde{G} is contracted by the morphism ψ, \tilde{B} is effective and $\tilde{T} := \psi^* T$.

Proof. Consider for example the case I. The variety \tilde{Z} is Gorenstein because it is divisor on a non-singular variety. By the adjunction formula we have

$$
K_{\tilde{Z}} = (K_{\tilde{H}} + \tilde{Z})|_{\tilde{Z}} = (K_{\tilde{X}}|_{\tilde{H}} + \tilde{H}|_{\tilde{H}} + \tilde{Z})|_{\tilde{Z}}
$$

$$
= -2\tilde{T} + \left(\sum (a'_i + 1 - r'_i) E'_i|_{\tilde{H}} + E'|_{\tilde{H}} - \tilde{Z}_1 - \tilde{Z}_0 \right)|_{\tilde{Z}} =
$$
(because \(a'_0 = 1, r'_0 = 2\)). It follows from 2.6 that \(\tilde{Z}\) is not contained in \(E'_i\) for \(i \neq 0\). It is sufficient to prove that in the last formula \(a'_i \leq r'_i\), if the corresponding divisor \(E'_i|\tilde{Z}\) is not contracted by the morphism \(\psi\). If \(\dim(g(E'_i)) \leq 1\), then for every component \(F'\) of the divisor \(E'_i|\tilde{Z}\) we have \(\dim(\psi(F')) \leq \dim(g(E'_i)) \leq 1 < \dim(F')\), i.e. \(F'\) is contracted by the morphism \(\psi\) is this case. But if \(\dim(g(E'_i)) = 3\), then by Lemma 2.4, \(r'_i \geq a'_i\). It remains to prove only that the case \(\dim(g(E'_i)) = 2\) and \(a'_i > r'_i\) is impossible. Suppose that \(a'_i > r'_i\) for some \(i\) and consider the following partial ordering of the set \(\{E'_j\}\): \(E'_j \succ E'_k\) (or simply \(j \succ k\), if and only if the center of the \(k\)-th blow-up is contained in the \(j\)-th exceptional divisor. Then the divisor \(E'_i\) cannot be maximal, otherwise \(a'_i = 2, r'_i \geq 2\), that contradicts our assumption. Let \(\sigma : X_i \to X_{i-1}\) be the blow-up of a smooth surface corresponding to the divisor \(E'_i\). Then \(K_{X_i} = \sigma^*_i K_{X_{i-1}} + 2E_i, \sigma^*_i H_{i-1} = H_i + mE_i\), \(m \geq 2\), where \(E_i\) is the exceptional divisor of the blow-up \(\sigma_i\) (its proper transform on \(\tilde{X}\) is the divisor \(E'_i\)), \(H_{i-1}\) and \(H_i\) are proper transforms of \(H\) on \(X_{i-1}\) and \(X_i\), respectively. We obtain

\[
a'_i = 2 + \sum_{j \succ i} a'_j, \quad r'_i = m + \sum_{j \succ i} r'_j, \quad m \geq 2.
\]

Hence \(\sum_{j \succ i} a'_j > \sum_{j \succ i} r'_j\) (we assume, that \(a'_j > r'_j\)). Therefore there exists \(j\) such that \(j \succ i, \dim(g(E'_j)) \geq 2\) and \(a'_j > r'_j\). Thus we may obtain the maximal element \(E'_j\). According the above for that maximal element we have \(\dim(g(E'_j)) \neq 2\), i.e. \(\dim(g(E'_j)) = 3\), but then by Lemma 2.4 \(a'_j = 1, r'_j \geq 2\) and the inequality \(a'_j > r'_j\) is impossible. Lemma is proved.

4.3. Lemma. There exists a resolution \(\sigma : \mathcal{Z} \to \tilde{Z}\) such that

\[
K_{\mathcal{Z}} = -2\hat{T} - \hat{B} + \hat{G},
\]

where \(\hat{T}, \hat{B}, \hat{G}\) are \(\mathbb{Q}\)-divisors on \(\mathcal{Z}\), \(\hat{G}\) is contracted by the morphism \(\hat{\psi} := \psi \circ \sigma\), \(\hat{B}\) is effective and \(\hat{T} = \hat{\psi}^*\hat{T}\).

Proof. It is sufficient to prove that formulas (4.5), (4.6) are preserved under one blow-up \(\sigma_1 : \hat{H} \to \hat{H}\) of non-singular \(k\)-dimensional subvariety in \(\hat{Z}\) \((k \leq 2)\). Let \(\hat{E}\) be an exceptional divisor of \(\sigma_1\) and \(\hat{Z}\) be the proper transform of \(\hat{Z}\). Then \(K_{\hat{H}} = \sigma_1^* K_{\hat{H}} + (3-k)\hat{E}\), \(\hat{Z} \sim \sigma_1^* \hat{Z} - p\hat{E}\), \(p \geq 2, p \in \mathbb{Z}\) (remind that we assumed that \(\hat{Z}\) is singular along our suvartiy). Thus by the adjunction formula \(K_{\mathcal{Z}} = \sigma_1^* K_{\mathcal{Z}} + (3 - k - p)\hat{E}|_{\mathcal{Z}}\), where \(\hat{E}\) is contracted by the morphism \(\sigma_1\) (the case \(k \leq 1\)) or \(k = 2, 3 - k - p = 1 - p < 0\), i.e. formulas (4.5), (4.6) are preserved.

Now applying Proposition 3.3 we obtain the diagram below.

\[
\begin{array}{ccc}
\hat{Z} & \xrightarrow{\beta} & W' \\
\downarrow \alpha & & \downarrow \nu \\
\hat{S} & \xrightarrow{\pi} & S' \\
\downarrow \tau & & \downarrow \nu \\
\hat{Z} & & \end{array}
\]

(4.8)
where \(\nu : Z' \to Z \) is the normalization of \(Z \), \(\pi : S \to Z' \) is the normalization of \(Z' \) in the function field of \(Z \). In the case I \(\pi \) is an isomorphism. In the case II \(\pi \) is a finite morphism of degree 2, and \(Z' \simeq S/\Gamma \), where \(\Gamma \) is the group of order 2. The other notations we fix the same as in Theorem 3.1. For \(W \) and \(W' \) we have only possibilities (i)-(vi) from Proposition 3.4. Set \(M := \pi^*T' \).

The divisor \(E \) is a proper transform of the exceptional divisor of some blow-up of a non-singular model \(Z'' \) of the variety \(Z \) on \(X'' \). Let \(Z'' \to Z \) be a corresponding birational morphism. Clearly that it factors through the normalization \(Z'' \nu'\to Z' \nu \to Z \).

If \(r_i \geq a_i + 1 \) for some \(i \), then by Lemma 2.1 \(H^0(E, \mathcal{O}_E(f^*H)) = 0 \). Therefore to prove Proposition 4.1 it is sufficient to show that

\[
H^0(Z'', \nu'^*\mathcal{O}_{Z'}(T')) \neq 0
\]

or

\[
H^0(Z', \mathcal{O}_{Z'}(T')) \neq 0, \tag{4.8}
\]

where \(T' := \nu^*T \), \(T := H|_Z \). In the case I the inequality (4.8) follows from 3.5. Consider the case II. Then \(Z' = S/G \) and \(H^0(Z', \mathcal{O}_{Z'}(T')) = H^0(Z', \pi_*\mathcal{O}_S \otimes \mathcal{O}_{Z'}(T'))^\Gamma = H^0(S, \mathcal{O}_S(M))^\Gamma \). Further we assume that \(H^0(S, \mathcal{O}_S(M))^\Gamma = 0 \).

4.4. Lemma. If \(H^0(S, \mathcal{O}_S(M))^\Gamma = 0 \), then the rational map \(S-\to S_0 \subset \mathbb{P}^{\dim |M|} \) associated with the linear system \(|M| \) is not birational on its image.

Proof. If \(H^0(S, \mathcal{O}_S(M))^\Gamma = 0 \), then the action of \(\Gamma \) on the linear system \(|M| \) is trivial and if \(|M| \) defines the rational map \(S-\to S_0 \), then it factors through quotient morphism by \(\Gamma \): \(S \overset{\pi}{\to} S/\Gamma = Z'-\to S_0 \).

Lemma 4.4 excludes cases (ii),(iii),(iv),(vi) of Proposition 3.3. In the case (v) of Proposition 3.3 by Theorem 1.5, possibility \(M^3 \geq 3 \) is also impossible. On the other hand, we have \(M^3 = (\pi^*T')^3 = 2(T')^3 \geq 2 \). If \(M^3 = 2 \), then again by Theorem 1.5 \(S_0 = \mathbb{P}^3 \) and \(S-\to S_0 \) is a finite morphism of degree 2, so \(S/\Gamma = S_0 = \mathbb{P}^3 \). It gives us inequality (4.8).

Finally let \(S \) and \(W \) be as in (i) of Proposition 3.3. By Lemma 3.4, \(g(C) = 1 \) or \(g(C) = 0 \). If \(g(C) = 0 \), then the sheaf \(\mathcal{E} \) on \(C = \mathbb{P}^1 \) is decomposable: \(\mathcal{E} = \mathcal{O}(d_1) \oplus \mathcal{O}(d_2) \oplus \mathcal{O}(d_3) \), where \(d_i \geq 0 \). Then the linear system \(|N| = |\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)| \) defines a birational map (see e. g. [5]), again we have a contradiction with Lemma 4.4. The last case 3.3 (i) and \(g(C) = 1 \) is treated similar to 3.3 (v). Here insted Theorem 1.5 we use the following

4.5. Lemma. Let \(W \) and \(N \) be as in (i) of Proposition 3.3. Assume also that \(g(C) = 1 \) and \(d := N^3 \geq 2 \). Then the linear system \(|N| \) on \(W \) defines a morphism \(W \to W_0 \subset \mathbb{P}^{d+1} \). Moreover this morphism is finite of degree 2 if \(d = 2 \) and birational if \(d \geq 3 \).

Proof. It follows from proof of Lemma 3.4 that the morphism \(\tau \) contracts a surface \(P \equiv a(N - dF) \), \(a \in \mathbb{N} \) to a curve. We claim that \(a = 1 \). Indeed in the opposite case every divisor from \(|N| \) is irreducible. Then \(N \) is a smooth geometrically ruled surface over \(C \) and \(P|_N \) is an effective divisor with negative self-intersection number. It is known in this case that \(P|_N \) is a section of the ruled surface \(N \), hence \(a = 1 \). Therefore \(P \) is also a non-singular geometrically ruled surface over \(C \). The morphism \(\tau \) maps \(P \) onto curve and fibers of \(P \to C \) are not contracted. It gives us that \(P \simeq C \times \mathbb{P}^1 \). Consider the exact sequence

\[
0 \to H^0(\varphi^*\mathcal{F}) \to H^0(\mathcal{O}_W(N)) \to H^0(\mathcal{O}_P(N)) \to 0, \tag{4.9}
\]
where \mathcal{F} is a sheaf of degree d on C such that $\mathcal{O}_W(N - P) = \varphi^*\mathcal{F}$. It is easy to see that the sheaf $\mathcal{O}_P(N)$ on $P \simeq C \times \mathbb{P}^1$ has bidegree $(0,1)$. So $h^0(\mathcal{O}_P(N)) = 2$, $h^0(\mathcal{O}_W(N)) = d + 2$ and P is not a fixed component in $|N|$. From (4.9) and $d \geq 2$ we get, that the linear system $|N|$ is free and defines a morphism $\tau_0 : W \to W_0 \subset \mathbb{P}^{d+1}$. Moreover $\text{deg}\, \tau_0 \cdot \text{deg}\, W_0 = N^3 = d$. Applying to variety $W_0 \subset \mathbb{P}^{d+1}$ the inequality $\text{deg}\, W_0 \geq \text{codim}\, W_0 + 1$ we obtain $\text{deg}\, \tau_0 = 2$ for $d = 2$, and $\text{deg}\, \tau_0 = 1$ for $d \geq 3$.

Thus Proposition 4.1 is proved.

Now we prove that Proposition 4.1 implies Theorem 1. By our assumption every divisor H is irreducible and for general H we have $\dim \text{Sing}(H) < 3$ (see 2.4, 4.1). Therefore a general divisor H is normal. For such H by the adjunction formula and by Proposition 4.1 we have $K_L = f|_L^*(K_H) + \sum (a_i - r_i) E_i|_L$ and $a_i - r_i \geq 0$, where $f|_L : L \to H$ is the corresponding resolution of singularities of H. It is equivalent the fact that H has only canonical singularities. This proves our theorem.

References

[1] Alexeev V.A. Theorem about good divisors on log Fano varieties // Lect. Notes in Math. 1991. Vol. 1479. P. 1–9.

[2] Fujita T. On the structure of polarised varieties with Δ—genera zero // J. Fac. Sci. Univ Tokyo. 1975 Vol. 22. P. 103–115.

[3] Fujita T. Remarks on quasi-polarised varieties // Nagoya Math. J. 1989 Vol. 115. P. 105–123.

[4] Fujita T. On singular Del Pezzo varieties // Lect. Notes in Math. 1990 Vol. 1417. P. 117–128.

[5] Iskovskikh V. A. Anticanonical models of three-dimensional algebraic varieties // M:VINITI, 1979. V. 12. P. 159–236; (Itogi Nauki i Tekhniki). English transl., J. Soviet Math. 1980 Vol. 13. P. 745-814.

[6] Kawamata Y. A generalization of Kodaira-Ramanujam’s vanishing theorems // Math. Ann. 1982 Vol. 261. P. 43–46.

[7] Kawamata Y., Matsuda K., Matsuki K. Introduction to the minimal model program // Adv. Stad. in Pure Math. 1987 Vol. 10. P. 283–360.

[8] Mori S. Flip theorem and the existence of minimal models for 3-folds // J. Amer. Math. Soc. 1988 Vol. 1. P. 117–253.

[9] Mukai S. Fano 3-folds // London Math. Soc. Lect. Note Ser. 1992 Vol. 179. P. 255–263.

[10] Mukai S. Biregular classification of Fano threefolds and Fano manifolds of coindex 3 // Proc. Natl. Acad. Sci. USA. 1989 Vol. 86. P. 3000–3002.

[11] Reid M. Projective morphism according to Kawamata // Warwick (Preprint) 1983.

[12] Shin K.-H. 3-dimensional Fano varieties with canonical singularities // Tokyo J. of Math 1989 Vol. 12. P. 375–385.
[13] **Viehweg E.** Vanishing theorems // J. Reine Agnew. Math. 1982 Vol. 335. P. 1–8.

[14] **Wilson P. M. H.** Fano fourfolds of index greater than one // J. Reine Agnew. Math. 1987 Vol. 389. P. 172–181.

[15] **Wiśniewski J. A.** On Fano 4-folds of index 2 with $b_2 \geq 0$. A contributin to Mukai’s classification // Bull Polish Acad. Sci. 1990 Vol. 398. P. 173–184.

[16] **Wiśniewski J. A.** On Fano manifolds of large index // Manuscr. Math. 1991 Vol. 70. P. 145–152.

[17] **Shokurov V. V.** Smoothness of the general anticanonical divisor of a Fano 3-fold // Izv. Acad. Nauk SSSR Ser. Mat. 1978 Vol. 43. P. 430–441; English transl., Math. USSR Izvestiya 1980 Vol. 14. P. 395–405.

[18] **Shokurov V. V.** The non-vanishing theorem // Izv. Acad. Nauk SSSR Ser. Mat. 1985 Vol. 49. P. 635–651; English transl., Math. USSR Izvestiya 1986 Vol. 26. P. 591–604.

Chair of Algebra
Department of Mathematics and Mechanics
Moscow State University
Moscow, 117 234, Russia
E-mail: prokhoromech.math.msu.su