Structural and Thermal Retrofitting of Masonry Walls: The Case of a School in Vittoria (RG)

Flavio Stochino, Mauro Sassu, and Fausto Mistretta

Department of Civil, Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy
fstochino@unica.it

Abstract. Sustainability awareness of buildings life-cycle represents one of the most important engineering challenge. This is more important in developed country like Italy in which buildings age and importance can be huge. Consequently, the whole life-cycle of constructions should be analyzed and assessed during the design of retrofitting interventions. This works reports on the application of an integrated approach to evaluate structural and thermal retrofitting strategies for masonry walls. Ecological (equivalent CO$_2$) and economic costs of each examined retrofitting solution are evaluated and compared. In this way the structural and thermal capacity of the masonry walls is represented by an iso-cost mapping. The environmental demand considering both thermal and seismic load of the construction site is represented by an equivalent function that is used to find the optimal retrofitting solution for each considered cost.

In this case study the masonry walls of a school located in Vittoria (RG - Italy) are considered. Six retrofitting techniques are described and the comparison between ecological and economical cost allowed to highlight the characteristics of the different interventions and the best retrofitting strategy.

Keywords: Masonry · Retrofitting · CO$_2$ equivalent · Structural engineering

1 Introduction

Masonry constructions represents a large part of traditional European buildings. Most of them were built in absence of seismic codes and thermal requirements. For this reason, the needs of integrated retrofitting interventions to fulfill current standards requirements is often patent.

In addition, the sustainability awareness of buildings life cycle has grown in the last years and re-use of construction demolition waste is becoming a common approach to reduce the construction environmental impact [1–3]. It is then necessary to design the retrofitting, considering how much energy will be spent for the refurbishment and how much the thermal and structural performance of the construction will be changed.

The literature devoted to structural retrofitting is wide. A general approach to this theme is presented in [4]. In the latter paper the problem of associating a cost to each different retrofitting procedure is discussed with a cost-benefit analysis to compare alternative choices in order to optimize the refurbishments.

© Springer Nature Switzerland AG 2020
O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12255, pp. 309–320, 2020.
https://doi.org/10.1007/978-3-030-58820-5_24
Surface treatment of masonry panels represents a quite common retrofitting technique: reinforced plaster [5], ferrocement [6], and shotcrete sprayed [7, 8].

An interesting evolution of this set of techniques is the application of Fiber Reinforced Polymers FRP nets on the masonry wall [9–12]. A recent trend is the use of Fiber Reinforced Cementitious Matrix (FRCM), for example: basalt textile coupled to different inorganic matrices see [13].

Also grout and epoxy injection represent an interesting retrofitting method. With this approach it is possible to restore the original integrity of the cracked or damaged masonry wall, see [14, 15].

Finally, external reinforcements represent useful retrofitting techniques for masonry: steel plates, tubes, grids are directly applied to the masonry to improve the lateral in and out of plane resistance of the wall. The introduction of horizontal connectors (diaton) to avoid masonry walls out-of-plane displacements [16–18].

The whole set of interventions aimed at reducing its energy needs can defined as “energy retrofitting”. In this paper the focus is on the improvement of the thermal insulation of masonry buildings. A State-of-Art review for the energy retrofitting methods applied to existing buildings can be found in [19]. The improvement of thermal insulation and waterproofing properties of masonry walls is described in [20, 21]. Examples of masonry walls with high thermal insulation properties are in [22, 23].

Building thermal performances are strictly linked to sustainability considerations. Indeed, the construction sector is responsible for a significant part of the primary energy consumption and for a large part of the greenhouse gas (GHG) emissions all over the world, see [24, 25].

Sustainable refurbishment of existing buildings is promoted by the political strategies of several European countries. Actually, it is often required by political decision makers to consider the seismic and the energetic demands in a given area with a multicriteria analysis. The aim is to take into account both structural and energy needs of building in an integrated way. Unfortunately, there is not an international standard method for this kind of analysis.

![Fig. 1. Retrofitting strategies.](image)

The authors recently published a proposal [26, 27] for a synthetic performance parameter considering both structural and thermal issues. Calvi et al. [28] presented the idea of a common indicator for both structural and energy performances with a cost/benefit analysis characterizing different retrofitting strategies.
Instead, this work reports on the application to a real case study of the integrated approach to evaluate structural and thermal retrofitting strategies for masonry walls introduced in [27]. Ecological (equivalent CO$_2$) and economic costs of each examined retrofitting solution are evaluated and compared. In this way, the structural and thermal capacity of the masonry walls is represented by an iso-cost mapping. The environmental demand, considering both thermal and seismic load of the construction site, is represented by an equivalent function to find the optimal retrofitting solution for each considered cost.

The paper is organized as follows: the retrofitting scenarios are discussed in Sect. 2. The iso-cost capacity curves are calculated in Sect. 3. Section 4 presents local demands and a design criterion. The main results are in Sect. 5 and finally, in Sect. 6, some conclusive remarks are drawn.

2 Retrofitting Strategies

In order to explain the proposed method a set of six emblematic retrofitting scenarios are presented in Fig. 1. Intervention (a) consists in applying single insulating polystyrene panel, characterized by a thermal conductance $\lambda = 0.04$ W/mK, on traditional plaster through adhesive glue. Clearly, it does not increase the strength, while it strongly improves the thermal performance. In case (b), both thermal resistance and structural strength have been improved using a polystyrene panel with lime plaster and transverse steel connectors (diaton). Intervention (c) is characterized by the application to both side of the wall panel of a CFRP (Carbon Fiber Reinforced Polymers) reinforced plaster, thermal conductance $\lambda = 0.08$ W/mK. Transverse connectors are present also in this case. The CFRP is characterized by a tensile strength f_{frp} equal to 2.8 GPa and an elastic modulus E_{frp} of 350 GPa. Similarly, a GFRP (Glass Fiber Reinforced Polymers) reinforced plaster is applied to both side of the wall panel in addition to transverse connectors in case (d). The GFRP characteristics are: tensile strength f_{frp} equal to 1.0 GPa and elastic modulus E_{frp} equal to 45 GPa. Finally, a net of CFRP and GFRP is respectively applied on both sides of the wall panel in case (e) and (f). In these last cases, thermal resistance is not appreciably increased due to the lack of any insulation layer, thus only the structural resistance is enhanced.

Table 1. Existing masonry characteristics, $f_{M,k}$ is the compressive strength, τ_0 is the shear strength, E is the longitudinal elastic modulus, G is the shear elastic modulus, λ is the thermal conductance.

E [N/mm2]	$f_{M,k}$ [N/mm2]	τ_0 [N/mm2]	λ [W/mK]
2000	4.9	0.07	1.4
3 Capacity Iso-Cost Curves

The relative variation of a generic performance parameter ΔC is defined by the ratio of the performance variation between its value before (C_0) and after the retrofitting (C_1) and the initial value C_0:

$$\Delta C = \frac{(C_1 - C_0)}{C_0}$$ (1)

Thus, for each wall panel is possible to calculate the relative increment of structural resistance referring to bending moment ΔM:

$$\Delta M = \frac{(M_1 - M_0)}{M_0}$$ (2)

or shear force ΔV:

$$\Delta V = \frac{(V_1 - V_0)}{V_0}$$ (3)

and the relative variation in the thermal resistance ΔR obtained after retrofitting:

$$\Delta R = \frac{(R_1 - R_0)}{R_0}$$ (4)

In the following, the variation of ΔM, ΔV and ΔR is considered for a single 1 \times 1 m wall panel. The masonry characteristics adopted for the numerical analysis are presented in Table 1. These are the characteristics of the emblematic case study of the school in Vittoria (Ragusa – Italy) made of 70 cm thick stone blocks.

The resistant bending moment of FRP retrofitted masonry is calculated by the methods presented in [29]. The equilibrium conditions of the wall cross sections yield to the definition of the neutral axis and of bending moment capacity. The shear force strength V of the wall panel is assessed following the methods presented in [30]. Considering the contribution of the masonry and of the possible FRP reinforcement, the resistant shear value is obtained considering an equivalent truss approach; more details can be found in [27].

Thermal insulation resistance has been assessed by a layer-wise approach:

$$R = \sum \frac{s_i}{\lambda_i}$$ (5)

where λ_i and s_i are the thermal conductance and the thickness of the i-th layer of the panel, see [31].

Material	Spec. ecological cost	Spec. economic cost
CFRP web	77700 kgCO$_2$/m3	650000 €/m3
GFRP web	520 kgCO$_2$/m3	344000 €/m3
Polystirene panel	138 kgCO$_2$/m3	1517 €/m3
Diatons	0.25 kgCO$_2$/m2	80 €/m2
CFRP reinf. plaster	1096 kgCO$_2$/m3	17133 €/m3
GFRP reinf. plaster	734 kgCO$_2$/m3	10767 €/m3
The thickness of the retrofitting layers strongly modifies the economic cost of the six interventions. In order to obtain a general economic cost relationship between ΔM and ΔR, six different cost varying between 100 €/m2 and 350 €/m2 have been taken into account. In the construction cost both supply and manpower have been considered, see Table 2. These values have been obtained from the Italian public works market. In this way, six points define each cost scenario. These points represent retrofitting conditions in which the economic cost is the same. Then, a hyperbolic regression curve has been found to fit these data, see Fig. 2:

$$\Delta R(\alpha_1 - \Delta M) = \alpha_0$$

(6)

where the numerical parameters (α_0, α_1) are determined by least squares approach.

The cost regression lines have been found for the $\Delta R - \Delta V$ plane, see Fig. 3. As expected, CFRP reinforced plaster retrofitting scenario (c) obtained the best structural performance while scenario (a) yields to the most effective thermal performance.

![Fig. 2. Capacity regression functions $\Delta R - \Delta M$ corresponding to six different budgets per square meter for the six retrofitting scenarios (a–f).](image)

Now, it is interesting to see the problem no longer from an economic cost but from an ecological one. Given that carbon footprint can be defined as the total set of greenhouse gas emissions during the life cycle of a building, the ecological cost of each retrofitting intervention can be expressed as equivalent kg of CO$_2$ necessary for constructing the single 1 \times 1 m masonry panel. Clearly, this computation does not assess the life cycle carbon footprint of a complete building, but it is focused only on the
masonry component and the construction stage. The detailed kg CO\textsubscript{2} equivalent is reported in Table 2 and has been taken from [32–34].

Fig. 3. Capacity regression functions $\Delta R - \Delta V$ corresponding to six different budgets per square meter for the six retrofitting scenarios (a–f).

Fig. 4. Capacity regression functions $\Delta R - \Delta M$ for six different scenarios of Carbon footprint in terms of CO\textsubscript{2} equivalent for the six retrofitting scenarios (a–f).
In this way, a set of hyperbolic regression curves, see Eq. (6) has been calculated for six scenarios characterized by a fixed mass of CO₂ equivalent. Figure 4 presents the ΔR - ΔM results and Fig. 5 the ΔR - ΔV one.

Figures 2, 3, 4 and 5 presents the iso-cost performance curves as an integrated capacity measure for the retrofitting interventions.

4 Local Demands

The retrofitting performance analysis should be based on the specific site of the building location. Indeed, there are zones in which the seismic risk is critical in comparison to the thermal conditions and vice versa. Considering the Italian example, the seismic demand is commonly expressed throughout the peak ground acceleration (PGA), see [35]. Furthermore, the thermal demand is measured throughout the Degree Day (DD) [36]

\[c_R = \frac{PGA_i}{PGA_M} \] \hspace{1cm} (7)

\[c_U = \frac{DD_i}{DD_M} \] \hspace{1cm} (8)

where \(PGA_M \) denotes the maximum PGA of Italy and \(PGA_i \) represents the peak ground acceleration for the considered i-th location of the building. Similarly, \(DD_M \) is the maximum Degree Day value for the same area and \(DD_i \) is the corresponding value for the considered i-th location.
c_R and c_U represent the “weights” of the structural and energy demands in that area. Italy is divided into 107 districts, assigning conventionally to each of them the values of PGA_i and DD_i.

In this work the assumed location is Vittoria (RG) in Sicily with c_R equal to 0.368 and c_u equal to 0.187.

A possible criterion to infer both thermal and structural demands for the design of masonry panel retrofitting intervention is represented by Eqs. (9, 10) considering respectively the $\Delta R - \Delta M$ performance plane and the $\Delta R - \Delta V$ plane.

\[
\Delta R = \alpha \frac{c_R}{c_U} \Delta M \tag{9}
\]

\[
\Delta R = \alpha \frac{c_R}{c_U} \Delta V \tag{10}
\]

Where α is a tuning parameter that can be assigned by the political decision-makers. Indeed, modifying α, it is possible to encourage thermal retrofitting interventions or structural ones.

5 Results

Based on the above-mentioned location (Vittoria, Ragusa) the criterions expressed in Eqs. (9, 10) and the economic (Figs. 6, 7) or ecological (Figs. 8, 9) cost regression line can be plot on the $\Delta R - \Delta M$ plane or on the $\Delta R - \Delta V$ plane. These Figures represent a synthetic way to evaluate the integrated retrofitting. Each crossing between a retrofitting criterion (Eqs. (9, 10)) and a cost regression curve represents an optimal retrofitting solution.

Fig. 6. Retrofitting strategy considering economic costs for plane $\Delta R - \Delta M$.

It is interesting to highlight that varying the α parameter (the so called “political parameter”) it is possible to modify the results of the above described optimization of the retrofitting interventions, to fulfil different political strategies.

It is also important to underline that Figs. 6, 7, 8 and 9 can compare the ecological and economic cost of the same performance improvement. For example, in the given case an improvement of $\Delta R = \Delta R = 0.5$ corresponds to 300 €/m2 and in an equivalent way to 26 kgCO$_2$/m2. This information can be of primary importance to plan a sustainable retrofitting of urban areas and infrastructures.

Fig. 7. Retrofitting strategy considering economic costs for plane $\Delta R - \Delta V$.

Fig. 8. Retrofitting strategy considering ecologic costs for plane $\Delta R - \Delta M$.
6 Conclusions

In this paper the application of an integrated approach to evaluate structural and thermal retrofitting strategies for masonry walls has been presented. Ecological (equivalent CO$_2$) and economic costs of each examined retrofitting solution have been evaluated and compared. Six representative retrofitting interventions have been parameterized by the improvement of thermal resistance, bending moment and the shear structural strength. The economic and ecological costs of the retrofitting have been evaluated to map the capacity of the retrofitting interventions in the structural and thermal framework. The local site demand has been accounted with specific parameters based on the seismic and the thermal characteristics of the zone.

The main results presented by Figs. 6, 7, 8 and 9 are a synthetic view of the possible alternative masonry building retrofitting strategies. In this way given a fixed cost (economic or ecological) it is possible to find the best solution.

Thus, in order to establish an urban redevelopment plan, this approach can give to the political decision makers an effective and synthetic view to manage both economic and environmental aspects. Indeed, the retrofitting strategy can be extended to the territorial scale similarly to what has been done for the thermal case in China [37].

Further developments of this approach are expected considering other constructive components. Indeed, an extension of this approach to existing concrete and steel frames (see [38, 39]) can be useful and effective.

Funding Statement. The support of the Autonomous Region of Sardinia under grant P.O.R. SARDEGNA 2014–2020, CCI: 2014 - IT05SFOP021, Project: Retrofitting, rehabilitation and requalification of the historical cultural architectural 506 heritage (R3-PAS), and of ReLuis DPC – Department of Civil Protection, project: ReLUIS-DPC 2019-2021 -WP5 – Rapid, low-impact and integrated retrofit interventions are acknowledged.
References

1. López Gayarre, F., Suárez González, J., Blanco Viñuela, R., López-Colina Pérez, C., Serrano López, M.A.: Use of recycled mixed aggregates in floor blocks manufacturing. J. Clean. Prod. 167, 713–722 (2018)
2. Francesconi, L., Pani, L., Stochino, F.: Punching shear strength of reinforced recycled concrete slabs. Constr. Build. Mater. 127, 248–263 (2016)
3. Sassu, M., Giresini, L., Bonannini, E., Puppio, M.L.: On the use of vibro-compressed units with bio-natural aggregate. Buildings 6(3), 40 (2016)
4. Calvi, G.M.: Choices and criteria for seismic strengthening. J. Earthquake Eng. 17, 769–802 (2013)
5. Yardim, Y., Lalaj, O.: Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing. Constr. Build. Mater. 102, 149–154 (2016)
6. El-Diasity, M., Okail, H., Kamal, O., Said, M.: Structural performance of confined masonry walls retrofitted using ferrocement and GFRP under in-plane cyclic loading. Eng. Struct. 94, 54–69 (2015)
7. Shabdin, M., Attari, N.K.A., Zargaran, M.: Experimental study on seismic behavior of Un-Reinforced Masonry (URM) brick walls strengthened with shotcrete. Bull. Earthq. Eng. 16(9), 3931–3956 (2018). https://doi.org/10.1007/s10518-018-0340-x
8. Lin, Y., Lawley, D., Wotherspoon, L., Ingham, J.M.: Out-of-plane testing of unreinforced masonry walls strengthened using ECC shotcrete. Structures 7, 33–42 (2016)
9. Malena, M., Focacci, F., Carloni, C., De Felice, G.: The effect of the shape of the cohesive material law on the stress transfer at the FRP-masonry interface. Compos. Part B Eng. 110, 368–380 (2017)
10. Ramirez, R., Maljaee, H., Ghiassi, B., Lourenço, P.B., Oliveira, D.V.: Bond behavior degradation between FRP and masonry under aggressive environmental conditions. Mech. Adv. Mater. Struct. 26, 6–14 (2018)
11. D’Altri, A.M., Carloni, C., de Miranda, S., Castellazzi, G.: Numerical modeling of FRP strips bonded to a masonry substrate. Compos. Struct. 200, 420–433 (2018)
12. Oskouei, A.V., Jafari, A., Bazli, M., Ghahri, R.: Effect of different retrofitting techniques on in-plane behavior of masonry wallets. Constr. Build. Mater. 169, 578–590 (2018)
13. Barducci, S., Alecci, V., De Stefano, M., Misseri, G., Rovero, L., Stipo, G.: Experimental and analytical investigations on bond behavior of Basalt-FRCM systems. J. Compos. Constr. 24(1), 04019055 (2020)
14. Wang, M., et al.: In-plane cyclic tests of seismic retrofits of rubble-stone masonry walls. Bull. Earthq. Eng. 16(5), 1941–1959 (2017). https://doi.org/10.1007/s10518-017-0262-z
15. Al-Jaberi, Z., Myers, J.J., El Gawady, M.A.: Out-of-plane flexural behavior of reinforced masonry walls strengthened with near-surface-mounted fiber-reinforced polymer. ACI Struct. J. 115(4), 997–1010 (2018)
16. Solarino, F., Oliveira, D., Giresini, L.: Wall-to-horizontal diaphragm connections in historical buildings: a state-of-the-art review. Eng. Struct. 199, 109559 (2019)
17. Giresini, L., Solarino, F., Paganelli, O., Oliveira, D.V., Froli, M.: One-sided rocking analysis of corner mechanisms in masonry structures: Influence of geometry, energy dissipation, boundary conditions. Soil Dyn. Earthq. Eng. 123, 357–370 (2019)
18. Casapulla, C., Giresini, L., Argiento, L.U., Maione, A.: Non-linear static and dynamic analysis of rocking masonry corners using rigid macro-block modelling. Int. J. Struct. Stabil. Dyn. 19(11), 1950137 (2019)
19. Ma, Z., Cooper, P., Daly, D., Ledo, L.: Existing building retrofits: methodology and state-of-the-art. Energy Build. 55, 889–902 (2012)
20. Al-Homoud, M.S.: Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 40, 353–366 (2005)
21. Jelle, B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43, 2549–2563 (2011)
22. Al-Jabri, K.S., Hago, A.W., Al-Nuaimi, A.S., Al-Saidy, A.H.: Concrete blocks for thermal insulation in hot climate. Cement Concr. Res. 35, 1472–1479 (2005)
23. Lin, M.W., Berman, J.B., Khoshbakht, M., Feickert, C.A., Abatan, A.O.: Modeling of moisture migration in an FRP reinforced masonry structure. Build. Environ. 41(5), 646–656 (2006)
24. Lanza, C.: A stochastic formulation to assess building performances in terms of environmental impact. Ph.D. thesis (2018)
25. Börjesson, P., Gustavsson, L.: Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives. Energy Policy 28(9), 575–588 (2000)
26. Sassu, M., Stochino, F., Mistretta, F.: Assessment method for combined structural and energy retrofitting in masonry buildings. Buildings 7(3), 71 (2017)
27. Mistretta, F., Stochino, F., Sassu, M.: Structural and thermal retrofitting of masonry walls: An integrated cost-analysis approach for the Italian context. Build. Environ. 155, 127–136 (2019)
28. Calvi, G.M., Sousa, L., Ruggeri, C.: Energy efficiency and seismic resilience: a common approach. In: Gardoni, P., LaFave, J.M.M. (eds.) Multi-Hazard Approaches to Civil Infrastructure Engineering, pp. 165–208. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29713-2_9
29. Valluzzi, M.R., Valdemarca, M., Modena, C.: Behavior of brick masonry vaults strengthened by FRP laminates. J. Compos. Constr. ASCE 5(3), 163–169 (2001)
30. CNR, D 200/R1/2012. Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. Advisory committee on technical recommendation for construction of national research council, Rome, Italy (2014)
31. UNI EN ISO 6946: Building components and building elements - Thermal resistance and thermal transmittance - Calculation methods (2018)
32. Duflo, J.R., Deng, Y., Van Acker, K., Dewulf, W.: Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study. MRS Bull. 37(4), 374–382 (2012)
33. Takahashi, J., et al.: Life cycle assessment of ultra lightweight vehicles using CFRP. In: 5th International Conference on EcoBalance, Tsukuba, Japan, 7–9 Nov 2002, pp. 1–4 (2002)
34. Zhou, H.: The Comparative Life Cycle Assessment of Structural Retrofit Techniques. Arizona State University. SSEBE-CESEM-2013-CPR-009 (2013)
35. Italian Institute of Geophysics and Volcanology, Map of seismic hazard. https://www.ingv.it
36. Italian Technical Norm on Energy Regulations. http://www.gazzettaufficiale.it/eli/id/1993/10/14/093G0451/sg
37. Wang, J.S., Demartino, C., Xiao, Y., Li, Y.Y.: Thermal insulation performance of bamboo-and wood-based shear walls in light-frame buildings. Energy Build. 168, 167–179 (2018)
38. Sassu, M., Puppio, M.L., Mannari, E.: Seismic reinforcement of a R.C. school structure with strength irregularities throughout external bracing walls. Buildings 7(3), 58 (2017)
39. De Falco, A., Froli, M., Giresini, L., Puppio, M.L., Sassu, M.: A proposal for the consolidation of a R.C. social housing by means of external hybrid steel-glass frameworks Appl. Mech. Mater. 638–640, 3–8 (2014)