Retrospective Cohort Study

Prognostic factors of survival and a new scoring system for liver resection of colorectal liver metastasis

Kai-Chi Cheng, Ada Sze-Man Yip

ORCID number: Kai-Chi Cheng 0000-0002-6440-7825; Ada Sze-Man Yip 0000-0003-4785-3003.

Author contributions: Cheng KC designed the research study; Cheng KC and Yip ASM performed the research; Yip ASM analyzed the data and wrote the manuscript; all authors have read and approved the final manuscript.

Institutional review board statement: The protocol was approved by the Research Ethics Committee (Kowloon Central/Kowloon East) (Ref: KC/KC-21-0103/ER-1) in accordance with the laws and regulations (including Hong Kong laws), Hospital Authority policy, professional code of conduct, guidance of ICH GCP, and Declaration of Helsinki.

Informed consent statement: This study protocol was reviewed and approved by Hospital Authority Clinical Research Ethics Review Committee, reference number KCC/KEC-2021-0097. Written consent was not required as this is a retrospective study, and all data were retrospective. There was no prospective component to this study (i.e., patients were all anonymized, and there was no prospective follow-up). No patient

Kai-Chi Cheng, Ada Sze-Man Yip, Department of Surgery, Kwong Wah Hospital, Hong Kong, China

Corresponding author: Kai-Chi Cheng, FRCS (Ed), Doctor, Department of Surgery, Kwong Wah Hospital, No. 25 Waterloo Road, Kowloon, Hong Kong, China.
thomascheng@hotmail.com

Abstract

BACKGROUND
Hepatic resection has become the preferred treatment of choice for colorectal liver metastasis (CLM) patients.

AIM
To identify the prognostic factors and to formulate a new scoring system for management of CLM.

METHODS
Clinicopathologic and long-term survival data were analyzed to identify the significant predictors of survival by univariate and multivariate analyses with the Cox model. A clinical score was constructed based on the analysis results.

RESULTS
Three factors of worse overall survival were identified in the multivariate analysis. They were number of liver metastases ≥ 5, size of the largest liver lesion ≥ 4 cm, and the presence of nodal metastasis from the primary tumor. These three factors were chosen as criteria for a clinical risk score for overall survival. The clinical score highly correlated with median overall survival and 5-year survival (P = 0.002).

CONCLUSION
Priority over surgical resection should be given to the lowest score groups, and alternative oncological treatment should be considered in patients with the highest score.

Key Words: Colorectal cancer; Liver metastasis; Liver resection; Long-term outcome; Overall survival; Disease-free survival; Prognosis; Score
was contacted for this study. All data were fully anonymized so that they cannot be traced back to an individual in this study.

Conflict-of-interest statement: The authors have no conflicts of interest to declare.

Data sharing statement: The datasets generated during and/or analyzed during the current study are not publicly available due to the potential that individual privacy could be compromised, but they are available in an anonymized form from the corresponding author upon reasonable request.

STROBE statement: The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.

Country/Territory of origin: China

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): A
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Core Tip: Using multivariate analysis with the Cox model, we identified three criteria-number of liver metastases ≥ 5, size of the largest liver lesion ≥ 4 cm, and the presence of nodal metastasis from the primary tumor-for a new clinical scoring system. This new clinical score highly correlated with median overall survival and 5-year survival. We propose to use this score to formulate cancer-specific treatment for the patients. Priority over surgical resection should be given to the lowest score groups, and alternative oncological treatment should be considered in patients with the highest score.

INTRODUCTION

Colorectal cancer (CRC) is the third leading cause of cancer-related death in developed countries[1]. About half of the cases will develop liver metastasis, and 25% of them will present synchronously[2]. Hepatic resection has become the standard management in selected patients, with a reported 5-year survival rate ranging from 36% to 60% after curative liver resection[2-4]. Yet, this is a heterogeneous group of patients with variable prognoses[2]. As such, many studies have been directed towards the investigation of factors that might influence the recurrence and survival of patients with colorectal liver metastasis (CLM), with a goal to differentiate patients that would best benefit from surgical resection from those who should be directed to palliative care[5-8]. The objectives of the present study were to identify the prognostic factors of survival in patients subjected to resection of CLM and to propose a risk score accordingly, to differentiate these patients.

MATERIALS AND METHODS

Data source and study population
Between June 1999 and June 2020, all resections of CLM in Kwong Wah Hospital were recorded prospectively in the institution’s database and retrospectively analyzed. Patients who underwent palliative resection or ablation treatment only were excluded from analysis.

All patients were followed according to a defined protocol including serum carcinoembryonic antigen level, chest X-ray, and computed tomography scan of the abdomen with contrast or ultrasonography of the liver if the patient was contraindicated for contrast injection. Patients were followed every 3 mo for the first 2 years after the operation and every 6 mo afterwards. Patients were actively called back for follow-up if they missed the appointment.

Patient demographics were extracted, including age at resection of liver metastasis and sex. Information on preoperative factors such as the site of the primary tumor, American Joint Committee on Cancer stage of primary tumor, primary tumor nodal stage, extrahepatic metastasis, disease-free interval from CRC resection to development of metastatic liver disease, carcinoembryonic antigen (CEA) level, and administration of systemic chemotherapy before liver resection was recorded. Regional lymph node metastasis of primary tumor was defined as mesenteric lymph node metastasis found histologically after resection of primary CRC. Synchronous metastases were defined as metastases detected by preoperative screening or during resection of the primary tumor or occurring within 6 mo of the initial diagnosis of CRC[9].

Data on operative details including the extent of liver resection (major vs minor hepatectomy), concomitant use of ablation and operative approach (laparoscopic vs open), volume of blood loss, and requirement of blood transfusion were collected;
Factors affecting survival

The median overall survival of the entire cohort was 45 mo. The 1-, 3-, and 5-year overall survival rates were 93.6%, 65.8%, and 35.5%, respectively. The overall survival curve is shown in Figure 1A. The median disease-free survival was 19 mo. The 1-, 3-, and 5-year disease-free survival rates were 64.4%, 36.8%, and 27.4%, respectively. The disease-free survival curve is shown in Figure 1B. Univariate analyses of factors affecting overall survival and disease-free survival are shown in Tables 2 and 3.
Table 1 Clinicopathological data of patients

Characteristic	Total (n = 98)
Age in yr, median (IQR)	65.5 (59-72)
Sex, n (%)	
Male	62 (63.3)
Female	36 (36.7)
Location of primary colorectal tumor, n (%)	
Right	26 (26.5)
Left	40 (40.8)
Rectum	32 (32.7)
LN involvement in primary tumor, n (%)	
Yes	62 (63.3)
No	36 (36.7)
Time of diagnosis of liver metastasis, n (%)	
Synchronous	59 (60.2)
Metachronous	
Disease-free interval < 12 mo	9 (9.2)
Disease-free interval ≥ 12 mo	30 (30.6)
Synchronous extrahepatic metastasis, n (%)	
Yes	4 (4.1)
No	94 (95.9)
Preoperative CEA level in ng/mL, n (%)	
< 200	90 (91.8)
≥ 200	6 (6.1)
Systemic chemotherapy before liver resection, n (%)	
Yes	9 (9.2)
No	89 (90.8)
Number of liver metastases, n (%)	
< 5 lesions	91 (92.9)
≥ 5 lesions	7 (7.1)
Size of largest liver metastasis, n (%)	
< 4 cm	67 (68.4)
≥ 4 cm	28 (28.6)
Surgical margin, n (%)	
Positive	19 (19.4)
Negative	78 (79.6)
Concurrent ablation, n (%)	
No	90 (91.8)
Yes	8 (8.2)
Operative approach, n (%)	
Laparoscopic	57 (58.2)
Open	41 (41.8)
Type of hepatectomy, n (%)	
Minor 61 (62.2)
Major 37 (37.8)

Intraoperative blood loss, n (%)	
< 500 mL	49 (50.0)
≥ 500 mL	47 (48.0)

Requirement of blood transfusion, n (%)	
No	79 (80.6)
Yes	19 (19.4)

CEA: Carcinoembryonic antigen; IQR: Interquartile range; LN: Lymph node.

respectively.

On multivariate analysis, the number of liver metastases ≥ 5 [HR: 2.962, 95% confidence interval (CI): 1.174-7.473, \(P = 0.022 \)], the size of the largest liver lesion ≥ 4 cm [HR: 2.983, 95%CI: 1.343-6.625, \(P = 0.007 \)], and the presence of nodal metastasis from the primary tumor [HR: 1.955, 95%CI: 1.031-3.707, \(P = 0.040 \)] were associated with a worse overall survival (Table 4). On the other hand, the number of liver metastases ≥ 5 (HR: 2.753, 95%CI: 1.052-7.205, \(P = 0.039 \)) and the presence of nodal metastasis (HR: 2.234, 95%CI: 1.219-4.093, \(P = 0.009 \)) were associated with a worse disease-free survival on multivariate analysis (Table 5).

Risk score
Three factors—the number of liver metastases ≥ 5, the size of the largest liver lesion ≥ 4 cm, and the presence of nodal metastasis from the primary tumor—were chosen as criteria for a clinical risk score for overall survival. As the HRs of these three factors were similar, for the sake of simplicity, each criterion was assigned 1 point. The total score was compared with overall survival using the log-rank test (Figure 1C). Although the survival of patients with score 0 (5-year survival: 46.8%, median survival of 50 mo) and score 1 was similar (5-year survival: 49.7%, median survival of 49 mo), overall survival clearly separated from those with score 2 (5-year survival: 10.8%, median survival of 33 mo) and score 3 (no 5-year survivors, median survival of 17 mo, \(P = 0.002 \)).

DISCUSSION
The management of CLM has seen a marked change over the last decade, owing to the advancement of surgical techniques and perioperative treatments\[^3\]. The achievement of curative resection of liver metastasis has transformed the 5-year survival from 11% to a range of 36%-60%\[^2\]–\[^4\]. The current study demonstrated a 5-year overall survival rate of 35.5%, slightly lower than the reported survival rate. This is probably due to the extended duration of the study period, which could be traced back to as early as 1999, in which management of CLM was less aggressive.

Many studies have investigated the prognostic factors of survival after resection of CLM. The most frequently cited prognostic factors are the number and the largest size of CLM, regional lymph node metastasis of the primary tumor, and preoperative CEA level\[^2\]. Other proposed factors included disease-free interval from the treatment of primary CRC, location of primary CRC, and surgical resection margin\[^4\],\[^11\],\[^12\]. The present study confirmed that a larger number of liver metastases, a larger size of the liver tumor, and the presence of regional lymph node metastasis of the primary tumor were associated with a poorer long-term survival. Among them, the number of liver lesions and the size of the largest liver tumor had the highest HRs (2.962 and 2.983, respectively).

Our study also identified that the largest tumor size 4 cm was the optimal cutoff value for prognostic purposes. Fong et al\[^5\] and Nordlinger et al\[^6\] were among the earliest groups of investigators to produce a clinical risk score, which utilized the size of the largest tumor > 5 cm as one of the criteria. This cutoff value has been used in subsequent studies as well\[^13\],\[^14\]. Yet, this cutoff value was not universal; other size parameters (i.e., 2 cm, 3 cm, or 4 cm) have been adopted as well\[^4\],\[^15\],\[^16\]). Hence, size parameter of liver metastasis is a generally accepted risk factor, and our study is
Table 2 Univariate analysis of factors associated with overall survival

Variable	HR	95%CI	P value
Age	1.015	0.984-1.047	0.350
Sex			
Male	Ref		
Female	1.259	0.733-1.162	0.405
Location of primary tumor			
Rectum	Ref		
Right	1.542	0.780-3.048	0.213
Left	1.370	0.737-2.545	0.319
Regional LN metastasis			
No	Ref		
Yes	1.444	0.836-2.492	0.187
Time of diagnosis of liver metastasis, %			
Synchronous	Ref		
Metachronous			
Disease-free interval < 12 mo	0.814	0.317-2.094	0.670
Disease-free interval ≥ 12 mo	0.750	0.416-1.352	0.338
Synchronous extrahepatic metastasis			
No	Ref		
Yes	1.884	0.253-14.0	0.536
Preoperative CEA level			
< 200 ng/mL	Ref		
≥ 200 ng/mL	1.104	0.392-3.111	0.851
Systemic chemotherapy before liver resection			
No	Ref		
Yes	1.104	0.439-2.776	0.833
Number of liver metastases			
< 5 lesions	Ref		
≥ 5 lesions	2.506	1.124-5.585	0.025
Size of the largest liver lesion			
< 4 cm	Ref		
≥ 4 cm	1.645	0.934-2.896	0.085
Surgical margin			
Clear	Ref		
Involved	0.965	0.509-1.829	0.912
Concurrent ablation			
No	Ref		
Yes	1.449	0.573-3.663	0.434
Operative approach			
Laparoscopic	Ref		
Open	1.069	0.624-1.832	0.808
Intraoperative blood loss, %			
consistent with previous studies.

The current study evaluated that number of liver metastases 5 was the cutoff value that predicted a negative survival. The number of liver metastases is another frequently reported prognostic factor\(^\text{[2-5,6,13,14,16-18]}\). Again, there was not a universally accepted cutoff value for the number of liver metastases. However, a Japanese group of researchers analyzed 727 patients who had undergone CLM resections and reported that 4-5 was the most reliable cutoff value (HR: 2.35)\(^\text{[19]}\). Some studies also demonstrated that solitary liver metastasis had a significantly better prognosis than multiple metastases\(^\text{[16,18,20]}\). The present study echoed the past studies and was able to demonstrate the prognostic significance of the number of liver metastases.

Our study failed to show that the preoperative CEA level had a significant impact on long-term survival. Half of the published data referred to preoperative CEA level as a poor prognostic factor\(^\text{[2]}\). One of the possible explanations is that the sample size of the current study was too small to detect a significant result for this factor.

Concerning the surgical approach, past studies suggested that laparoscopic surgery was a favorable alternative to open surgery in selected CLM patients\(^\text{[21,22]}\). The OSLO-COMET randomized controlled trial, which compared laparoscopic and open parenchyma-sparing liver resection for CLM, concluded that laparoscopic surgery was associated with significantly less postoperative complications\(^\text{[23,24]}\). Although the evidence of the benefit of laparoscopic surgery on long-term survival is limited, there was a meta-analysis published in 2020 that aimed to evaluate the long-term oncologic outcome of laparoscopic and open liver surgery for CLM patients\(^\text{[25]}\). The study included 13 propensity-score matched studies and two randomized controlled trials, with a total of 3148 patients. The study concluded that laparoscopic surgery had a restricted mean survival time 8.6 mo longer at 10 years (\(P < 0.0001\)) and 30.0 mo longer at 15 years (\(P < 0.0001\)) than the open surgery group. The current study concurred with previous findings of similar survival between laparoscopic and open liver resections. Further research on this subject using a case-matched cohort study would be helpful.

Elderly patients are bound to have less physiological reserve and suffer from more medical comorbidity than younger patients. These factors will cause older patients to be more prone to surgical risks and mortality from other non-cancer related causes. Yet, from our study, liver surgery in elderly patients appeared to be safe, with a comparable outcome to younger patients, and these patients should not be denied surgery due to the sole reason of advanced age\(^\text{[26,27]}\). As a result of this argument, age should not be used as a criterion in formulating management of CLM.

The first large-scale clinical scoring system was the Nordlinger score, which incorporated preoperative and postoperative factors\(^\text{[6]}\). Then, Fong et al\(^\text{[5]}\) developed a frequently cited clinical score system in 1999. Recently, the Tumor Burden Score was incorporated preoperative and postoperative factors\(^\text{[16,18,20]}\). As a result of this argument, age should not be used as a criterion in formulating management of CLM.

The present study echoed the past studies and was able to demonstrate the prognostic significance of the number of liver metastases. Half of the published data referred to preoperative CEA level as a poor prognostic factor\(^\text{[2]}\). One of the possible explanations is that the sample size of the current study was too small to detect a significant result for this factor.

Concerning the surgical approach, past studies suggested that laparoscopic surgery was a favorable alternative to open surgery in selected CLM patients\(^\text{[21,22]}\). The OSLO-COMET randomized controlled trial, which compared laparoscopic and open parenchyma-sparing liver resection for CLM, concluded that laparoscopic surgery was associated with significantly less postoperative complications\(^\text{[23,24]}\). Although the evidence of the benefit of laparoscopic surgery on long-term survival is limited, there was a meta-analysis published in 2020 that aimed to evaluate the long-term oncologic outcome of laparoscopic and open liver surgery for CLM patients\(^\text{[25]}\). The study included 13 propensity-score matched studies and two randomized controlled trials, with a total of 3148 patients. The study concluded that laparoscopic surgery had a restricted mean survival time 8.6 mo longer at 10 years (\(P < 0.0001\)) and 30.0 mo longer at 15 years (\(P < 0.0001\)) than the open surgery group. The current study concurred with previous findings of similar survival between laparoscopic and open liver resections. Further research on this subject using a case-matched cohort study would be helpful.

Elderly patients are bound to have less physiological reserve and suffer from more medical comorbidity than younger patients. These factors will cause older patients to be more prone to surgical risks and mortality from other non-cancer related causes. Yet, from our study, liver surgery in elderly patients appeared to be safe, with a comparable outcome to younger patients, and these patients should not be denied surgery due to the sole reason of advanced age\(^\text{[26,27]}\). As a result of this argument, age should not be used as a criterion in formulating management of CLM.
Table 3 Univariate analysis of factors associated with disease-free survival

Variable	HR	95%CI	P value
Age	0.984	0.957-1.012	0.271
Sex			
Male			
Female	1.000	0.614-1.628	0.999
Location of primary tumor			
Rectum			
Right	0.892	0.499-1.593	0.698
Left	0.678	0.362-1.271	0.226
Regional LN metastasis			
No			
Yes	2.324	1.348-4.008	0.002*
Synchronous liver metastasis			
No			
Yes	0.820	0.502-1.342	0.431
Time of diagnosis of liver metastasis			
Synchronous			
Metachronous			
Disease-free interval < 12 mo	1.066	0.452-2.509	0.884
Disease-free interval ≥ 12 mo	0.765	0.446-1.312	0.330
Preoperative CEA level			
< 200 ng/mL			
≥ 200 ng/mL	1.064	0.426-2.657	0.894
Systemic chemotherapy before liver resection			
No			
Yes	1.724	0.779-3.818	0.179
Number of liver metastases			
< 5 lesions			
≥ 5 lesions	3.138	1.409-6.987	0.005*
Size of the largest liver lesion			
< 4 cm			
≥ 4 cm	1.272	0.763-2.121	0.355
Surgical margin			
Clear			
Involved	1.110	0.616-2.000	0.728
Concurrent ablation			
No			
Yes	1.705	0.777-3.739	0.183
Operative approach			
Laparoscopic			
Open	0.785	0.480-1.285	0.336
Intraoperative blood loss, %			
Table 4 Multivariate analysis of factors associated with overall survival

Variable	Adjusted HR	95%CI	P value
Age	1.039	0.999-1.080	0.054
Sex			
Male	Ref		
Female	1.874	0.984-3.572	0.056
Location of primary tumor			
Rectum	Ref		
Right	1.180	0.572-2.435	0.654
Left	0.943	0.427-2.084	0.884
Regional LN metastasis			
No	Ref		
Yes	1.955	1.031-3.707	0.040^a
Time of diagnosis of liver metastasis, %			
Synchronous	Ref		
Metachronous			
Disease-free interval < 12 mo	1.192	0.431-3.295	0.735
Disease-free interval ≥ 12 mo	0.668	0.324-1.378	0.275
Synchronous extrahepatic metastasis			
No	Ref		
Yes	2.454	0.306-19.572	0.397
Preoperative CEA level			
< 200 ng/mL	Ref		
≥ 200 ng/mL	0.495	0.137-1.785	0.282
Systemic chemotherapy before liver resection			
No	Ref		
Yes	1.031	0.363-2.929	0.954
Number of liver metastases			
< 5 lesions	Ref		
≥ 5 lesions	2.962	1.174-7.473	0.022^a
Size of the largest liver lesion			
< 4 cm	Ref		
≥ 4 cm	2.983	1.343-6.625	0.007^a
Concurrent ablation			
No	Ref		

^aP < 0.05. CEA: Carcinoembryonic antigen; CI: Confidence interval; HR: Hazard ratio; LN: Lymph node; Ref: Reference.
Table 5 Multivariate analysis of factors associated with disease-free survival

Variable	Adjusted HR	95%CI	P value
Age	0.988	0.955-1.021	0.467
Sex			
Male	Ref		
Female	1.022	0.579-1.805	0.941
Location of primary tumor			
Rectum	Ref		
Right	1.044	0.538-2.025	0.899
Left	0.635	0.302-1.337	0.232
Regional LN metastasis			
No	Ref		
Yes	2.234	1.219-4.093	0.009*
Time of diagnosis of liver metastasis, %			
Synchronous	Ref		
Metachronous			
Disease-free interval < 12 mo	1.392	0.536-3.615	0.496
Disease-free interval ≥ 12 mo	0.846	0.445-1.610	0.611
Synchronous extrahepatic metastasis			
No	Ref		
Yes	9.716	2.034-46.413	0.004*
Preoperative CEA level			
< 200 ng/mL	Ref		
≥ 200 ng/mL	0.734	0.238-2.263	0.591
Systemic chemotherapy before liver resection			
No	Ref		
Yes	1.878	0.774-4.557	0.163
Number of liver metastases			
< 5 lesions	Ref		
≥ 5 lesions	2.753	1.052-7.205	0.039*
Size of the largest liver lesion			
< 4 cm	Ref		
≥ 4 cm	1.690	0.847-3.374	0.137

*P < 0.05. CEA: Carcinoembryonic antigen; CI: Confidence interval; HR: Hazard ratio; LN: Lymph node; Ref: Reference.
Concurrent ablation

	Ref	0.788	0.267-2.324	0.666
Yes				
No				

Operative approach

	Ref	1.000	0.572-1.748	1.000
Laparoscopic				
Open				

Requirement of blood transfusion, %

	Ref	0.692	0.342-1.399	0.306
Yes				
No				

\(^a \) \text{P} < 0.05. CEA: Carcinoembryonic antigen; CI: Confidence interval; HR: Hazard ratio; LN: Lymph node; Ref: Reference.

Figure 1 Kaplan-Meier curves. A: Overall survival of patients with colorectal liver metastasis undergoing resection; B: Disease-free survival of patients with colorectal liver metastasis undergoing resection; C: Overall survival of patients with colorectal liver metastasis undergoing resection with difference risk scores.

This was applicable to our clinical scoring system, which was basically a simplified version of the Fong score. Apart from its simplicity, the factors of the current scoring system are easily available and are available before resection of the liver tumor (except in cases of synchronous resection). This is of vital importance when clinicians are formulating the cancer-specific treatment for patients. The distinct difference in overall survival between the higher and lower score groups means that we can identify two groups of patients who are the most and the least likely to benefit from surgical treatment. A more reserved attitude should be given to the group of patients with the highest score (score = 3), in which there were no 5-year survivors, and the median survival was 17 mo, which was similar to patients without liver resection (15.5-21.3 mo) \[33,34\]. With the advancement in chemotherapeutic and radiological treatment, this group of patients may achieve a comparable life expectancy without the need to sustain surgical risks and discomforts. The lowest score groups (score = 0 or 1) are clearly the group of patients that can enjoy the benefit of extension of overall survival as a result of surgical treatment. Grey area existed for the average score (score = 2) group. In this group, additional factors, such as patient premorbid status, should be taken into consideration (Table 6).
Several limitations should be considered when interpreting the results of the current study. The retrospective design may limit its conclusions on associations over time. Second, it is a single-center study involving only a small study population with data recorded over 21 years. Perioperative management, including chemotherapy, changes over time, and consequently survival, may be influenced.

CONCLUSION

Nodal metastasis from the primary tumor, number of liver metastasis, and size of the largest liver tumor have a significant negative impact on overall survival of the patient after resection of CLM. In clinical practice, laparoscopic surgery should be an available option for a selected group of patients due to its potential benefits. When formulating cancer-specific treatment for patients with CLM, we proposed using a simplified clinical scoring system consisting of three significant prognostic factors. Priority over surgical resection should be given to the lowest score groups, and alternative oncological treatment should be considered in the group of patients with the highest score.

ARTICLE HIGHLIGHTS

Research background

Colorectal cancer is the third leading cause of cancer-related death in developed countries. About half of the cases will develop liver metastasis. Hepatic resection has become the standard management in selected patients, with a reported 5-year survival rate ranging from 36% to 60% after curative liver resection.

Research motivation

Patients with colorectal liver metastasis (CLM) are a heterogeneous group, with variable prognoses even after liver resection. As such, many studies have investigated factors that might influence the recurrence and survival of this group of patients, with a hope to differentiate patients that would best benefit from surgical resection from those who should be directed to palliative care.

Research objectives

The objectives of the present study were to identify the prognostic factors of survival in patients subjected to resection of CLM and to propose a risk score accordingly, to differentiate these patients.

Research methods

Between June 1999 and June 2020, all resections of CLM at Kwong Wah Hospital were recorded prospectively in the institution’s database and retrospectively analyzed. Variables affecting long-term survival were determined using the Cox proportional hazards regression model. A clinical risk score for overall survival was formulated according to factors identified by multivariate analysis.

Research results

On multivariate analysis, the number of liver metastases ≥ 5 [hazard ratio (HR): 2.962, 95% confidence interval (CI): 1.174-7.473, \(P = 0.022 \)], the size of the largest liver lesion ≥ 4 cm [HR: 2.983, 95%CI: 1.343-6.625, \(P = 0.007 \)], and the presence of nodal metastasis...
from the primary tumor (HR: 1.955, 95%CI: 1.031-3.707, \(P = 0.040 \)) were associated with a worse overall survival. These three factors were chosen as criteria for a clinical risk score for overall survival, and the total risk score was compared with overall survival using the log-rank test. Lower total risk score groups had a significantly improved overall survival than the higher total risk score group.

Research conclusions

The newly proposed clinical risk score consisting of three significant prognostic factors (nodal metastasis from the primary tumor, number of liver metastases, and size of the largest liver tumor) is simple and easy to use. Priority over surgical resection should be given to the lowest score groups, and alternative oncological treatment should be considered in the group of patients with the highest score.

Research perspectives

Small study population (98 patients) and retrospective design limit the conclusions on associations over time. Future study with an expanded study population may allow weighting assignment to each component of the clinical risk score for a more accuracy in prognosis prediction. An external validation study is needed for the actual application of this clinical score in clinical use.

REFERENCES

1. Bonjer HJ, Deijen CL, Abis GA, Cuesta MA, van der Pas MH, de Lange-de Klerk ES, Lacy AM, Bemelman WA, Andersson J, Angenete E, Rosenberg J, Faerest A, Haglind E. COLOR II Study Group. A randomized trial of laparoscopic vs open surgery for rectal cancer. *N Engl J Med* 2015; 372: 1324-1332 [PMID: 25830422 DOI: 10.1056/NEJMoa1414882]

2. Coimbra FJF, Brando PHM, Diniz AL, de Castro Ribeiro HS, da Costa Junior WL, de Godoy AL. Prognostic Factors of Colorectal Cancer Liver Metastasis. In: Correia M, Choti M, Rocha F, Wakabayashi G, editors. Colorectal Cancer Liver Metastases, Springer, 2020: 87

3. Margonis GA, Sasaki K, Kim Y, Samaha M, Buettnier S, Amini N, Antoniou E, Pawlik TM. Tumor Biology Rather Than Surgical Technique Dictates Prognosis in Colorectal Liver Metastases. *J Gastrointest Surg* 2016; 20: 1821-1829 [PMID: 27384430 DOI: 10.1007/s11605-016-3198-8]

4. Acciuffi S, Meyer F, Bauschke A, Settmacher U, Lippert H, Croner R, Altendorf-Hofmann A. Analysis of prognostic factors after resection of solitary liver metastasis in colorectal cancer: a 22-year bicentre study. *J Cancer Res Clin Oncol* 2018; 144: 593-599 [PMID: 29340767 DOI: 10.1007/s00432-018-2383-y]

5. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. *Ann Surg* 1999; 230: 309-18; discussion 318 [PMID: 10493478 DOI: 10.1097/00000658-199909000-00004]

6. Nordlinger B, Guiguet M, Vaillant JC, Balladur P, Boudjema K, Mace J, Pauli S, Laplace P. Surgical resection of colorectal carcinoma metastases to the liver. A prognostic scoring system to improve case selection, based on 1568 patients. Association Française de Chirurgie. *Cancer* 1996; 77: 1254-1260 [PMID: 8680500]

7. Sasaki K, Moroika D, Conci S, Margonis GA, Sawada Y, Ruzzenente A, Kumamoto T, Iacono C, Andreatos N, Guglielmi A, Endo I, Pawlik TM. The Tumor Burden Score: A New "Metro-ticket" Prognostic Tool For Colorectal Liver Metastases Based on Tumor Size and Number of Tumors. *Ann Surg* 2018; 267: 132-141 [PMID: 27763897 DOI: 10.1097/SLA.0000000000002064]

8. Brudvik KW, Jones RP, Giulianti F, Shindoh J, Passot G, Chung MH, Song J, Li L, Dagenborg VJ, Fretland AA, Rosok B, De Rose AM, Ardito F, Edwin B, Panettieri E, Larocca LM, Yamasita S, Conrad C, Aloia TA, Poston GJ, Bjørnbeth BA, Vauthey JN. RAS Mutation Clinical Risk Score to Predict Survival After Resection of Colorectal Liver Metastases. *Ann Surg* 2019; 269: 120-126 [PMID: 28549012 DOI: 10.1097/SLA.0000000000002319]

9. Siriwadana AK, Mason JM, Mullamitha S, Hancock HC, Jegatheeswaran S. Management of colorectal cancer presenting with synchronous liver metastases. *Nat Rev Clin Oncol* 2014; 11: 446-459 [PMID: 24889770 DOI: 10.1038/nrcionc.2014.90]

10. Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. *J Clin Epidemiol* 1996; 49: 907-916 [PMID: 8699212 DOI: 10.1016/0895-4356(96)00025-x]

11. McVey JC, Sasaki K, Margonis GA, Nowacki AS, Firl DJ, He J, Berger E, Wolfgang C, Miller CC, Weiss M, Aucejo FN. The impact of resection margin on overall survival for patients with colon cancer liver metastasis varied according to the primary cancer location. *HPB (Oxford)* 2019; 21: 702-710 [PMID: 30501989 DOI: 10.1016/j.hpb.2018.11.001]

12. Spelt L, Andersson B, Nilsson J, Andersson R. Prognostic models for outcome following liver resection for colorectal cancer metastases: A systematic review. *Eur J Surg Oncol* 2012; 38: 16-24 [PMID: 22079259 DOI: 10.1016/j.ejso.2011.10.013]

13. Partelli S, Mukherjee S, Mawire K, Hutchins RR, Abraham AT, Bhattacharya S, Kocher HM. Larger
Cheng KC et al. Prognosis and scoring for colorectal liver metastasis

hepatic metastases are more frequent with N0 colorectal tumours and are associated with poor prognosis: implications for surveillance. *Int J Surg* 2010; 8: 453-457 [PMID: 20601252 DOI: 10.1016/j.ijsu.2010.05.013]

14 Beppu T, Sakamoto Y, Hasegawa K, Honda G, Tanaka K, Koteru Y, Nitta H, Yoshidome H, Hatano E, Ueno M, Takamura H, Baba H, Kosuge T, Kukudo N, Takahashi K, Endo I, Wakabayashi G, Miyazaki M, Uemoto S, Ohba T, Kikuchi K, Yamauhe H, Yamamoto M, Takada T. A nomogram predicting disease-free survival in patients with colorectal liver metastases treated with hepatic resection: multicenter data collection as a Project Study for Hepatic Surgery of the Japanese Society of Hepato-Biliary-Pancreatic Surgery. *J Hepatobiliary Pancreas Sci* 2012; 19: 72-84 [PMID: 22020927 DOI: 10.1007/s00534-011-0460-z]}

15 Moro A, Mehta R, Tsilimigras DI, Sahara K, Paredes AZ, Bagante F, Guglielmi A, Alexandrescu S, Poultsides GA, Sasaki K, Auecoo FN, Pawlik TM. Prognostic factors differ according to KRAS mutational status: A classification and regression tree model to define prognostic groups after hepatectomy for colorectal liver metastasis. *Surgery* 2020; 168: 497-503 [PMID: 32675301 DOI: 10.1016/j.surg.2020.05.019]

16 Ren W, Sell NM, Ferrone CR, Tanabe KK, Lillemoe KD, Qadan M. Size of the Largest Colorectal Liver Metastasis Is an Independent Prognostic Factor in the Neoadjuvant Setting. *J Surg Res* 2021; 259: 253-260 [PMID: 33160635 DOI: 10.1016/j.jss.2020.09.039]

17 Hokuto D, Nomu T, Yasuda S, Yoshiwaka T, Ishioka K, Yamada T, Akahori T, Nakagawa K, Nagai M, Nakamura O, Obara S, Kanasako H, Sho M. Risk Factors for Unresectable Recurrence After Up-Front Surgery for Colorectal Liver Metastasis. *World J Surg* 2018; 42: 884-891 [PMID: 28879511 DOI: 10.1007/s00268-017-4195-0]

18 Chan KM, Wu TH, Cheng CH, Lee WC, Chiang JM, Chen JS, Wang JY. Prognostic significance of the number of tumors and aggressive surgical approach in colorectal cancer hepatic metastasis. *World J Surg Oncol* 2014; 12: 155 [PMID: 24885967 DOI: 10.1186/1477-7819-12-155]

19 Beppu T, Sakamoto Y, Hasegawa K, Honda G, Tanaka K, Koteru Y, Nitta H, Yoshidome H, Hatano E, Ueno M, Takamura H, Baba H, Kosuge T, Kukudo N, Takahashi K, Endo I, Wakabayashi G, Miyazaki M, Uemoto S, Ohba T, Kikuchi K, Takayama T, Yamauhe H, Yamamoto M, Takada T. Optimal cut-off value for the number of colorectal liver metastases: a project study for hepatic surgery of the Japanese Society of Hepato-Biliary-Pancreatic Surgery. *J Hepatobiliary Pancreas Sci* 2014; 21: 169-175 [PMID: 24307562 DOI: 10.1002/jhbp.58]

20 Bouquet A, Andreou A, Vauthay JN. The management of solitary colorectal liver metastases. *Surgseon* 2011; 9: 265-272 [PMID: 21843821 DOI: 10.1016/j.surge.2010.12.005]

21 Kazaryan AM, Marangos IP, Rouss BI, Rossela AR, Villanger O, Fosse E, Mathisen O, Edwin B. Laparoscopic resection of colorectal liver metastases: surgical and long-term oncologic outcome. *Ann Surg* 2010; 252: 1005-1012 [PMID: 21107111 DOI: 10.1097/SLA.0b013e3181669f4]

22 Shim JR, Lee SD, Park HM, Lee EC, Park B, Han SS, Kim SH, Park SJ. Outcomes of liver resection in patients with colorectal liver metastases by laparoscopic or open surgery. *Ann Hepatobiliary Pancreat Surg* 2018; 22: 223-230 [PMID: 30213041 DOI: 10.14701/ahbps.2018.22.3.223]

23 Fretland ÅA, Dagenburg VJ, Bjornelv GMW, Kazaryan AM, Kristiansen R, Fagerland MW, Haakenk J, Tomensen TJ, Abildgaard A, Barkalov L, Yaqub S, Rouss BI, Bjomeland BA, Anderssen MH, Flatmark K, Aas E, Edwin B. Laparoscopic Versus Open Resection for Colorectal Liver Metastases: The OSLO-COMET Randomized Controlled Trial. *Ann Surg* 2018; 267: 199-207 [PMID: 28657937 DOI: 10.1097/SLA.0000000000002353]

24 Chan AKC, Jamdar S, Sheen AJ, Siriwardena AK. The OSLO-COMET Randomized Controlled Trial of Laparoscopic Versus Open Resection for Colorectal Liver Metastases. *Ann Surg* 2018; 268: e69 [PMID: 29203089 DOI: 10.1097/SLA.0000000000002640]

25 Syn NL, Kabir T, Koh YX, Tan HL, Wang LZ, Chin BZ, Lee SD, Sheen AJ, Siriwardena AK. The OSLO-COMET Randomized Controlled Trial of Laparoscopic Versus Open Resection For Colorectal Liver Metastases: A Meta-analysis of Individual Patient Data From Randomized Trials and Propensity-score Matched Studies. *Ann Surg* 2020; 272: 253-265 [PMID: 32675358 DOI: 10.1097/SLA.0000000000003672]

26 Schmidt T, Strowitzki MJ, Reissfelder C, Rahbari NN, Nienhueser H, Bruckner T, Rahäuser C, Kappler U, Schneider M, Büsscher MW, Ulrich A. Influence of age on resection of colorectal liver metastases. *Int J Surg Oncol* 2015; 111: 729-739 [PMID: 25597497 DOI: 10.1002/jso.23872]

27 van Tuil T, Dhain AA, Te Riele WW, van Ramshorst B, van Santvoort HC. Systematic Review and Meta-Analysis of Liver Resection for Colorectal Metastases in Elderly Patients. *Dig Surg* 2019; 36: 111-123 [PMID: 29502126 DOI: 10.1159/000487274]

28 Passiglia F, Bronte G, Bazan V, Galvano A, Vincenzi B, Russo A. Can KRAS and BRAF mutations limit the benefit of liver resection in metastatic colorectal cancer patients? *Crit Rev Oncol Hematol* 2016; 99: 150-157 [PMID: 26775732 DOI: 10.1016/j.critrevonc.2015.12.015]

29 Beamish P, Lenke M, Li J, Dixon E, Abraham MT, Hernandez-Alejandro R, Bennett S, Martin G, Kaminolas P; HPB CONCEPT Team. Validation of clinical risk score for colorectal liver metastases resected in a contemporary multicenter cohort. *HPB (Oxford)* 2017; 19: 675-681 [PMID: 28495435 DOI: 10.1016/j.hpb.2017.03.010]

30 Ribeiro HS, Costa WL Jr, Diniz AL, Godoy AL, Herman P, Coudry RA, Begnanni MD, Mello CA, Silva MJ, Zurstrassen CE, Cimbra FJ. Extended preoperative chemotherapy, extent of liver resection and blood transfusion are predictive factors of liver failure following resection of colorectal liver metastasis. *Eur J Surg Oncol* 2013; 39: 380-385 [PMID: 23351680 DOI: 10.1016/j.ejso.2012.12.020]

31 Creasy JM, Sadot E, Koerkamp BG, Chou JF, Gonen M, Kemeny NE, Balachandran VP, Kingham
Cheng KC et al. Prognosis and scoring for colorectal liver metastasis

TP, DeMatteo RP, Allen PJ, Blumgart LH, Jarnagin WR, D'Angelica MI. Actual 10-year survival after hepatic resection of colorectal liver metastases: what factors preclude cure? *Surgery* 2018; 163: 1238-1244 [PMID: 29455841 DOI: 10.1016/j.surg.2018.01.004]

32 Araujo RL, Gönen M, Allen P, DeMatteo R, Kingham P, Jarnagin W, D'Angelica M, Fong Y. Positive postoperative CEA is a strong predictor of recurrence for patients after resection for colorectal liver metastases. *Ann Surg Oncol* 2015; 22: 3087-3093 [PMID: 25582745 DOI: 10.1245/s10434-014-4358-2]

33 Beppu T, Miyamoto Y, Sakamoto Y, Inai K, Nitta H, Hayashi H, Chikamato A, Watanabe M, Ishiko T, Baba H. Chemotherapy and targeted therapy for patients with initially unresectable colorectal liver metastases, focusing on conversion hepatectomy and long-term survival. *Ann Surg Oncol* 2014; 21 Suppl 3: S405-S413 [PMID: 24570379 DOI: 10.1245/s10434-014-3577-x]

34 Nagashima I, Takada T, Matsuda K, Adachi M, Nagawa H, Muto T, Okinaga K. A new scoring system to classify patients with colorectal liver metastases: proposal of criteria to select candidates for hepatic resection. *J Hepatobiliary Pancreat Surg* 2004; 11: 79-83 [PMID: 15127268 DOI: 10.1007/s00534-002-0778-7]
