Azospirillum brasilense and nitrogen fertilization affecting wheat productivity

Junia Maria Clemente1*, Aurinelza Batista Teixeira Conde2, Alex Teixeira Andrade2, Carine Rezende Cardoso3, Iara da Mata Flor3, Fábio Aurélio Dias Martins3, Willian Tadeu de Lima3 and Cleiton Burnier de Oliveira3

1Pós-Doutora - Faculdade do Noroeste de Minas, FINOM, Brazil.
2Bolsistas BIP da FAPEMIG; Empresa de Pesquisa Agropecuária de Minas Gerais – EMBRAPA, Brazil.
3Laboratório de Biocontrole Farroupilha, Brazil.

Received 15 April, 2016; Accepted 20 May, 2016

In order to optimize the use of nitrogen (N), the aim of this work was to evaluate the efficiency of foliar application of Azospirillum brasilense Ab-V5 strain, as regards the productivity of wheat plantations combined with different N doses. The experiments were carried out in four municipalities in Minas Gerais (Brazil) under randomized block design with four replications. Forty percent of the N dose was applied at planting time and 60% as topdressing at tillering stage of the crop. Azospirillum brasilense was applied as foliar spray at a dose of 500 ml/ha. The treatments consisted of: (1) Control-without N or Ab-V5; (2) 50% of the N recommended; (3) 100% of the N; (4) Application of Ab-V5 strain; (5) 50% of N and Ab-V5 strain; (6) 100% of N and Ab-V5 strain; (7) 100% of N and seed inoculation with a commercial product (Master Fix). For all the locations, productivity increased with application of 100% of N recommended and foliar spray containing A. brasilense compared to the treatment that had only 100% of N recommended.

Key words: Foliar spray, nitrogen fertilization, diazotrophic bacteria, Triticum aestivum L.

INTRODUCTION

Wheat is the second cereal most produced in the world. In Brazil, it is grown in the South, Southeast and Midwest regions. In the 2015 to 2016 crop season, the cultivated area with wheat in Brazil was 2103 million hectares; with an average yield of 2770 kg ha⁻¹ (Conab, 2016).

Nitrogen fertilization is essential, in order to ensure the production and quality of grains. This is the most limiting nutrient for wheat productivity (Rodrigues et al., 2014). Adequate N supplying determines the number of tillers, which may favor the nodes formation and cause the stem elongation. The increase in the number of tillers and greater elongation of the stem allow higher uptake of solar radiation and, therefore, greater productivity (Fornasieri Filho, 2008). In addition, the number of ears per area and the number of spikelets per ears increase the adequate availability and application of this nutrient...
The objective of this study was to evaluate in field conditions the efficiency of foliar application of *Azospirillum brasilense*, Ab-V5 strain, as regard to the productivity of wheat cultivated with different N doses.

MATERIALS AND METHODS

The experiments were carried out in four experimental fields located in the following municipalities of Minas Gerais state: Madre de Deus de Minas, Uberaba, Lambari and Patos de Minas. The plots were 6.0 m long and 4.0 m wide and presented 10 rows spaced at 0.17 m with 80 seeds/linear meter at sowing; the four central rows were considered the useful plot (12 m²). The experiment was designed as randomized block with 4 replications. The chemical and physical characteristics of the soil are presented in Table 1.

The dose of N indicated for the crop under irrigation was 60 kg...
per hectare. It was applied as 40% of the N dose at planting time and 60% as topdressing at tillering stage. The *A. brasilense* strain Ab-V5 was used at a concentration of 1×10⁶ colony forming units per ml. The Ab-V5 bacterium has been widely studied by "Embrapa Soja" and Federal University of Paraná; nowadays it is in the list of inoculant bacteria approved by Ministry of Agriculture, Livestock and Food Supply (MAPA) for corn and wheat. Ab-V5 was applied via foliar spray at the dose of 500 ml/ha at the beginning of tillering stage with a flow of 200 l/ha.

Nitrogen fertilization varied according to the treatments as it follows: (1) Absolute control, without N or Ab-V5 strain; (2) 50% of the N dose recommended for the crop; (3) 100% of the N dose recommended for the crop; (4) Ab-V5 without N; (5) 50% of the N recommended for the crop with Ab-V5; (6) 100% of the N recommended for the crop with Ab-V5; (7) 100% of the N recommended for the crop and seeds inoculation with Master Fix (100 ml/20 kg of seeds) which is a commercial product containing *A. brasilense*.

Inoculation with the commercial product "Master Fix" composed by *A. brasilense* (Ab-V5 and Ab-V6 strains) was directly performed in the seed previous to sowing at a dose of 100 ml ha⁻¹ of the inoculant liquid, containing around 2.0 × 10⁸ colony forming units/ml.

The crop management practices were uniform in all the experiments, except for N fertilization and in the experiment of Madre de Deus de Minas city where the wheat was grown in rainfed system. Sowing was made using a seeder for grooves opening, as well as marking the sowing lines and the N fertilizer was manually distributed. The experiments were performed in four different locations, as described follow:

(a) Madre de Deus de Minas municipality in a field of “Fazenda Liberdade” located at “21°27’04” S and “44°19’14” W at the altitude of approximately 1026 m. Coodetec 108 wheat cultivar was cultivated. Sowing was performed on February 29th 2012 and the harvest was done on June 08th 2012.

(b) Uberaba municipality in a field of IFTM (Federal Institute of Triângulo Mineiro) located at “19°43’36.94” S and “47°57’28.29” W at the altitude of approximately 810 m. Coodetec 108 wheat cultivar was cultivated. Sowing was performed on May 24th 2012 and the harvest on September 02nd 2012.

(c) Lambari municipality in a field of EPAMIG (Agricultural Research Company of Minas Gerais) located at “21°56’40.85” S and “45°18’40.91” W at the altitude of approximately 883 m. Coodetec 207 cultivar was cultivated. Sowing was performed on April 03rd 2013 and harvest on September 15th 2013.

(d) Patos de Minas municipality in a field of EPAMIG (Agricultural Research Company of Minas Gerais) located at “18°31’01.90” S and “46°26’19.08” W at the altitude of approximately 926 m.

Table 2. Variance analysis for the productivity of wheat (bags/ha) evaluated in Madre de Deus de Minas, Uberaba, Lambari and Patos de Minas municipalities.

Location	FV	FD	Mean square
Location	3	3	3443.34**
Treatment	6	6	920.43**
Replication	3	18	426.71
Residue	18	18	114.32
CV (%)			16.86
Average			63.40

**Significant at 1% probability by the F test.

Coode tec 207 cultivar was cultivated. Sowing was performed on May 17th 2013 and the harvest on September 17th 2013. In all experiments, the ears were harvested from the useful plots, corresponding to 12 m² (four central rows). To determine the grain yield, the ears were threshed and weighed in threshing electric machine. The grains had moisture corrected to 13% on wet basis. The experimental data were submitted to variance analysis and the effects of treatments and interactions were evaluated by F test, whereas the treatment means were compared by the Scott-Knott test (Ferreira et al., 2014).

RESULTS AND DISCUSSION

The individual variance analyses showed significant results for productivity. In this experiment, for most of the treatments, wheat cultivars showed higher yield than the national average which is 47.65 bags/ha (Conab, 2016). The analysis showed significant results for different locations, treatments and their interaction (Table 2).

Three groups of treatments were performed in Uberaba and Patos de Minas municipalities and two groups in Lambari and Madre de Deus de Minas. For all of them, the use of 100% N + *Azospirillum* via foliar spray yielded the best results. For the treatments with no application of *A. brasilense* (0, 50 and 100% of N) the productivity was significantly lower compared to the treatments with *Azospirillum*, however they belonged to the same group (Table 3). This lack of response may be related to the residual effect of N fertilizers applied to cultivate previous crops in all of these areas. In these regions the adoption of crop rotation system with leguminous and horticulture crops which leaves high amounts of N in the soil is common. It ensures the positive effect of *Azospirillum* on the N use efficiency.

As this bacterium was applied via foliar spray, probably this increasing productivity might be related to changes in phytohormone metabolism and N metabolism, even in rainfed systems such as Lambari municipality. However, *Azospirillum*’s action on the plant’s metabolism is found to be controversial.

Recent reports states its increasing ability to fix N from atmosphere (Huergo et al., 2008); increasing effects on activity of nitrate reductase when they grow endophytically (Cassàn et al., 2008), production of hormones such as auxins, cytokinins (Tien et al., 1979), gibberellins (Bottini et al., 1989); ethylene (Strzelczyk et al., 1994) and a variety of other molecules in the cell (Perrig et al., 2007); phosphate solubilization (Rodriguez et al., 2004) and biological control of pathogens (Correa et al., 2008). So they are able to promote the development of roots and shoots, increase water and mineral absorption and optimize the tolerance to abiotic stresses such as salinity or drought (Roscoe and Miranda, 2013).

It is widely known that nitrate reduction occurs in the cytosol and involves the action of the nitrate reductase producing nitrite; it enters the plastids of roots or chloroplasts of leaves and it is reduced to ammonia by the action of the enzyme nitrite reductase, which is
Table 3. Average of the grain productivity of wheat evaluated in Madre de Deus de Minas, Uberaba, Lambari and Patos de Minas and conjoint analysis of the locations.

Treatments	Madre de Deus de Minas	Uberaba	Lambari	Patos de Minas	Conjoint analysis
0% N	64.06b	50.26c	54.68b	54.38b	55.85b
50% N	58.37b	56.83b	56.29b	59.22b	57.66b
100% N	68.12b	59.17b	58.54b	59.48b	61.39b
0% N + Ab-V5	92.62a	46.37c	59.75b	34.77c	58.53b
50% N + Ab-V5	88.50a	47.08c	66.86a	51.20b	63.41b
100% N + Ab-V5	93.50a	66.62a	75.27a	72.37a	76.95a
100% N + Master Fix	90.31a	56.38b	64.56a	68.89a	70.04a

1Means followed by the same letter in the columns do not differ at 5% probability, except in Lambari that was 10% probability, by Scott Knott test.

attached via glutamate synthase/glutamine synthase (GS/GOGAT) in amino acids such as glutamine and glutamate which, in its turn serve as substrate for transamination reactions that are essential for the production of amino acids and proteins (Donato et al., 2004).

Nitrate reductase is one of the most sensitive enzymes to any stress in the plants, because it is highly dependent on NADPH derived from photosynthesis. Therefore, factors that enhance the photosynthetic efficiency, probably improves the N use efficiency. Nitrate reductase has been widely studied, because it controls protein synthesis in plants that absorbs nitrate as the main source of N (Marschner, 2011).

Possibly A. brasilense applied via foliar spray had a great effect on nitrate reductase and it increased the use efficiency of N applied via fertilization. Besides this, A. brasilense can also work fixing N from the atmosphere, which may help the plants save energy with the N reduction. Adequate nitrate reductase activity is primordial to guarantee high productivity; once N is one of the most limiting nutrients to form organic molecules (Taiz and Zeiger, 2013). This effect was observed in this experiment.

According to Sala et al. (2007) some wheat cultivars may present increases around 27 to 45% on grain production with A. brasilense inoculation. Nozaki et al. (2013) observed a significant increase on wheat productivity applying 290 kg/ha with 1.5 ml of Azospirillum spp. Martins et al. (2012) observed that A. brasilense inoculation as foliar spray was more efficient in different corn hybrids and showed an excellent choice for use on grass, because it coincided with the herbicide application phase. However, Mendes et al. (2011) did not observed any difference between the treatments with reduction of the N fertilization and inoculation of A. brasilense for the number of tillers, number of ears and weight of 1000 grains.

According to Kapulnik et al. (1983), wheat plants inoculated with A. brasilense increased the contents of N, P and K. The contents of nitrate in the vacuole are directly related to nitrate reductase activity (Li and Gresshoff, 1990). Panwar (1991) observed that seeds of wheat inoculated with A. brasilense increased intensively the activity of this enzyme. Didon et al. (2000) inoculated 245 strains with 10 isolates of A. brasilense in wheat plants with different doses of N and concluded that they provide better use of N accumulated in the biomass, translocating N more efficiently. Śwędryńska (2000) concluded that A. brasilense can be a factor to increase vigor and yield of wheat. In water stress conditions the author observed an increase of 27% in wheat productivity.

Initially, some authors expected that the benefits with the use of A. brasilense were basically derived from biological N fixation (Dobbelaere et al., 2004). But it seems that the positive effects provided by these microorganisms are mainly derived from the morphological and physiological changes in the roots of inoculated plants, causing an increase in the uptake of water and nutrients (Okon and Vanderleyden, 1997).

Probably this is the reason that the productivity had been so high, even in rainfed systems such as in Lambari municipality. Previous studies show an increasing concentration of the following phytohormones when Ab-V5 strain was inoculated in the plants: Kinetin which induces root growth; salicylic acid which may have an acclimatization effect providing increased tolerance to many different kinds of abiotic stresses; jasmonic acid that may induce gene expression regarding stress defense; indolbutyric acid which is a root promoter; indoleacetic acid which is growth promoter and gibberellic acid that stimulates plant growth.

Quadros et al. (2014) concluded that the use of Azospirillum stimulated the growth of plants in the vegetative period, which increased the uniformity of plant stand, greater resistance to stress and greater concentration of chlorophyll in leaves. The Ab-V5 strain induces the production of these phytohormones in a balanced way and possibly is capable to be absorbed by leaves, demonstrating the effectiveness of foliar application. Therefore, in the present study the use of A.
brasilense may have a combined effect on wheat productivity, by phytohormones and N metabolism.

Conclusion

The foliar application of *A. brasilense*, Ab-V5 strain, promotes an increasing productivity combined with 100% of the N dose. *A. brasilense* is a complementary technology focused on increasing wheat productivity especially under water stress conditions.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGMENTS

The authors appreciate the Foundation of the State of Minas Gerais Research (FAPEMIG) for financial support and the grants awarded and Biocontrol Laboratory Farrukhabad for their help in conducting the tests.

REFERENCES

Bottini R, Fulchieri M, Pearce D, Pharis R (1989). Identification of gibberellins A1, A3, and iso-A3 in cultures of *A. lipoforum*. Plant Physiol. 90:45-47.

Campos BHC, Theisen S, Gnatta V (2008). Produção de fitohormonas por *Azospirillum* sp.: Aspectos fisiológicos e tecnológicos de la promoción del crecimiento vegetal. In: Cassán FD, Garcia de Salamone I (Eds) *Azospirillum* sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asoc. Argent. Microbiol. pp. 81-86.

Conab (2016). Companhia Nacional de Abastecimento : Acompanhamento da safra brasileira de grãos. Available at: http://www.conab.gov.br accessed date May 2016.

Correa OS, Romero AM, Soria MA, De Estrada M (2008). *Azospirillum brasilense*-plant genotype interactions modify tomato response to bacterial diseases, and root and foliar microbiocal communities. In: Cassán FD, Garcia de Salamone I, (Eds) *Azospirillum* sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asoc. Argent. Microbiol. pp. 81-86.

Panwar JDS (1991). Effect of VAM and Azospirillum brasilense on photosynthesis, nitrogen metabolism and grain yield in wheat. Indian J. Plant Physiol. 34:357-361.

Perrig D, Boeiro L, Masciarelli O, Penna C, Cassán F, Luna V (2007). Plant growth promoting compounds produced by two agronomically important strains of *Azospirillum brasilense*, and their implications for inoculants formulation. Appl. Environ. Microbiol. 73:1143-1150.

Radwan TEE, Mahamed ZK, Reis VM (2004). Efeito de inoculação de *Azospirillum* e Herbaspirillum na produção de compostos indólicos em plântulas de milho e arroz. Pes. Agropec. Bras. 39:987-994.

Rodrigues LFS, Guimarães VF, Silva MB, Pinto Junior AS, Klein J, Costa ACPR (2014). Características agronómicas do trigo em função de *Azospirillum brasilense*, ácidos húmicos e nitrogênio em casa de vegetação. R. Bras. Eng. Agríc. Amb. 18:31-37.

Rodriguez H, Gonzalez T, Goire I, Basham Y (2004). Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium *Azospirillum* spp. Natunwissenschaften 91:552-555.

Roscoe R, Miranda RAS (2013). Fixação Biológica de Nitrogênio e Promoção de Crescimento em Milho Safra, In: Roscoe R, Lourenço ALF, Grigoli JFJ, Melotto AM, Pitol C, Miranda RAS. Tecnologia e produção: milho safra e culturas de inverno. Midiograf, Curitiba, Brasil P 70.

Sala VMR, Cardoso EJBN, Freitas JG, Silveira APD. (2007). Resposta de genótipos de trigo à inoculação de bactérias diazotróficas em condições de campo. Pesqui. Agropecu. Bras. 42:833-842.

Sala VMR, Freitas SS, Donzelli VP, Freitas JG, Gallo PB, Silveira APD (2005). Ocorrência e efeito de bactérias diazotróficas em genótipos de trigo. Rev. Bras. Cien. Solo 29(3):345-352.

Strzelczyk E, Kamper M, Li C (1994). Cytocinin-like substances and
ethylene production by Azospirillum in media with different carbon sources. Microbiol. Res. 149:55-60.
Swędryńska D (2000). Effect of inoculation with Azospirillum brasilense on development and yielding of winter wheat and oat under different cultivation conditions. Pol. J. Environ. Stud. 9(5):423-428.
Taiz L, Zeiger E (2013). Fisiologia Vegetal. Porto Alegre: Artmed, P 954.

Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37:1016-1024.