FANTOM PRO DIAGNOSTICKÝ ULTRAZVUK
A DOPPLEROVSKÉ VYŠETŘENÍ

Jana Vránová¹, Roman Matějka², Jana Štěpanovská², Lucie Kolomazníková²,
Jozef Rosina¹,²

¹Department of Medical Biophysics and Medical Informatics, ³rd Faculty of Medicine,
Charles University, Prague, Czech Republic
²Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic

Souhrn
V článku jsou popsány fyzikální mechanizmy vzniku ultrazvukového vlnění, jeho šíření a odraz na rozhraní tkání. Jsou popsány diagnostické metody založené na Dopplerově jevu. Pro výuku studentů byly vytvořeny dva fantomy z materiálu s akustickými vlastnostmi podobnými vlastnostem tkání člověka. První fantom obsahuje echogenní a cystické struktury různých tvarů a rozměrů, z různých materiálů. Ve druhém fantomu je umístěn rozvětvený systém trubic, kterými protéká kapalina simulující průtok krve v těle pacienta. Studenti si na těchto fantomech osvojují základní dovednosti s ultrazvukovým přístrojem, jako je práce v různých módech zobrazení, rozpoznávání struktur tkání, měření ploch a vzdáleností v zobrazených řezech, měření rychlosti a objemového průtoku pomocí Dopplerova jevu.

Klíčová slova
ultrazvuk, ultrasonografie, dopplerův jev, fantom, želatina, n-propanol, grafit

Abstract
In the article the main physical principals of creation, propagation and reflection of ultrasonic waves were described. The diagnostic methods based on Doppler’s effect were explained. The two phantoms for education were created. The first phantom contained echogenic and cystic structures of various shapes and size, from materials with different acoustic properties. In the second phantom the branched system of tubes that carry fluid simulating blood flow in the body was placed. Students in these phantoms acquire basic skills with an ultrasonic diagnostic device, such as working in various display modes, identifying tissue structures, measuring areas and distances displayed in sections, measuring the speed and volume flow using the Doppler effect.

Úvod

Ultrasonografie je v současnosti velice rozšířená, dostupná, relativně levná a nezatěžující diagnostická zobrazovací metoda. Proto v diagnostickém vyšetřovacím algoritmu často patří k metodám první volby.

Ultrazvukové diagnostické zobrazovací metody, určené ke studiu morfologie sledovaných tkání, jsou založeny na detekci rozhraní dvou prostředí o různých akustických impedancích. Metody, založené na Dopplerově principu, slouží k detekci pohybu tkání a k měření rychlosti toku krve.

Fyzikální základy

Ultrazvuk je mechanické kmitání hmotného prostředí o frekvenci vyšší než 20 kHz. V lékařské diagnostice se používají frekvence v megahertzové (MHz) oblasti. Ultrazvukové knity se šíří v měkkých tkáních a tekutinách lidského těla formou podélného vlnění, v kostech se šíří též formou příčného vlnění¹.

V diagnostice používaný ultrazvuk vzniká v ultrazvukové sondě piezoelektrickým jevem v piezoelektrických krystalech (měničích). To znamená, že pokud na piezoelektrický krystal sonda přivedeme
vysokefrezveni elektrický proud, elektrické impulzy rozkrmitají částice krystalu, ty kmitají okolo svých rovnovázných položek a přenášejí kmitovou energii prostřednictvím pružné vazby na další částice krystalu a tím se konstantní rychlosti přenášejí do prostoru mechanické vibrace, vznikne ultrazvukové vlnění. Frekvence ultrazvuku závisí na frekvenci přivedeného elektrického proudu.

Z akustického hlediska jsou živé tkáně charakterizovány několika parametry: rychlosti šíření ultrazvukových vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. V vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.

Rychlost šíření c ultrazvukové vlny v homogenním prostředí vzrůstá přímo úměrně s hustotou tohoto prostředí. Ve vzduchu se šíří stejná rychlost jako zvuk (330 m·s⁻¹), v kapalinách a v tkáních je rychlost časem zvýšena díky vzniku akustického impedančního rozdílu. Impedancí akustických vln, akustickou impedanci a útlumem.
vznik kruhovým vlnoplochám, šířicím se všemi směry. Tyto vlny mezi sebou interferují a dochází k jejich časové i prostorové sumaci. Pro vznik dopplerovského signálu je rozhodující ta část energie ultrazvukové vlny, která se odráží zpět ke zdroji. Při tom platí, že amplituda odrážené vlny je úměrná druhé mocnině celkového počtu erytrocytů. Frekvence odrážené vlny se však v důsledku polybhu erytrocytů liší od frekvence vyslaného ultrazvuku. Rozdíl mezi frekvencí vyslané ultrazvukové vlny a vlny přijaté po odrazu od pohybuje se krve (dopplerovský posuv) je úměrný její rychlosti a kapalinu úhlu, který svírá směr dopplerovského signálu se směrem toku krve (dopplerovský úhel).

Projekt FRVŠ

Ze všeho výše uvedeného je zřejmé, že ultrazvukové zobrazovací metody se stanou nejednou součástí práce většiny klinických lékařů, ale i ultrazvukovými přístroji se sekají i mnozí techničtí zaměstnanci, pracující v nemocnicích jako biomedicinští technici nebo inženýři. Proto je důležité těto problematiku dopplerovského měření zvažovat pro profesionály, abych se na čem nejvíce zaměřili k určení rychlostí kapaliny, možnost změny rychlostí kapaliny, možnost změny tvarů tkání a tím i ke změně uložených ve známé hloubce, měření ve výrobí, kterým se využívají diagnostické kvality a schopnosti ultrasonografie, měření velikosti objektů známých tvarů a rozměrů, uložených ve známé hloubce, měření změn rychlostí kapaliny, možnost změny této rychlosti, možnost změnit kontinuální proudění kapaliny na pulzní tok, detekce rychlosti, kdy dochází k turbulencím, vyžaduje obhajování praktickou výuku a vedou k snazšímu pochopení a zapisování všech potřebných fyzikálních principů.

Vytvořený fantom pro diagnostický ultrazvuk názorně demonstruje šíření ultrazvuku v prostředcích s různými akustickými vlastnostmi, které vyzkoušejí různou echogenicitu a slouží tak k vytvoření ultrasonografického obrazu. Znalosti přesné polohy a přesných rozměrů objektů umožněných ve fantomu si studenti navíc ověří i přesnost sonografického zobrazení. Možnost změny rychlostí průtoku kapaliny fantomem a možnost měření tohoto průtoku pod různými úhly umožní snadný vhled do problematiky dopplerovského měření. Přínosem je také zapojení alternativních metod do výuky, neboť podobné vyšetření by bylo možné demonstrovat pouze vyšetřením na studentech a změny průtoku by nebylo možné demonstrovat vůbec.

Na základě výše uvedených skutečností byl podán a následně získán projekt Fondu rozvoje vysokých škol (FRVŠ) 471/2012, který podpořil mezinárodní spolupráci a aktivně zapojoval vybrané studenty z 3. lékařské fakulty Univerzity Karlovy v Praze a Fakulty biomedicínského inženýrství Českého vysokého učení technického v Praze, čímž nejenom podpořil jejich tváři úsilí, ale rovněž přispěl k mezioborové spolupráci mladých studentů a vytvořil podmínky pro jejich další participaci ve výuce.

Cílem projektu FRVŠ bylo vytvoření 2 fantomů z materiálu s akustickými vlastnostmi podobnými vlastnostem tkání člověka. První fantom v sobě obsahuje echogenní a cystické struktury různých tvarů a rozměrů, z různých materiálů. Ve druhém fantomu byl umístěn rozvětvený systém trubic, kterými protékala kapalina simulující průtoku krve v těle pacienta.

Pro výuku studentů se využívají diagnostické fantomy, které simulují tkání lidského těla a jeho vlastnosti důležité pro ultrazvukové zobrazení a slouží k vysvětlení základních principů šíření ultrazvukových vln v nehomogenním prostředí. Studenti si na těchto fantomech osvojují základní dovednosti s ultrazvukovým přístrojem, jako je práce v různých módách zobrazení, rozpoznání struktur tkání, měření ploch a vzájemnosti v zobrazených řezech, měření rychlosti a objemového průtoku pomocí Dopplerova jevu, zavádění bioprickových jehel pod ultrazvukem a další praktické dovednosti.

Charakterizace UZ materiálu pro použití ve fantomech

Vlastnosti materiálu musí mít podobné akustické vlastnosti tkání, které fantom představuje. Těmito vlastnostmi jsou rychlost šíření ultrazvukových vln prostředí, akustická impédance tkání a její útulný. 8. Jako hlavní složku ultrazvukového fantomu jsme zvolili průmyslovou želatinu, která plní funkci média pro ultrazvukové vlnění mezi povrchem fantomu a sledovanými strukturami. Samotná želatina nedosahuje stejných akustických vlastností jako skutečné tkání a je potřeba ji pomocí příslušného řezu konstruktivní útule modifikovat. Měření rychlosti a objemového průtoku pomocí Dopplerova jevu je zavádění bioprickových jehel pod ultrazvukem a další praktické dovednosti.
šírokopásmové zařízení s měničem o průměru jehly 1 mm, která se zavádí do měřeného materiálu, na jejíž špičce je umístěn piezoelektrický měnič. Důsledkem nepřímého piezoelektrického jevu je generován elektrický signál. Ten je následně zesílen a dále zpracován. Měření probíhá v experimentální sestavě, která obsahovala UZ vysílač a přijímač (hydrofon). Mezi ně byl vložen umělé tkání o průměru jehly 1 mm, která se zavírá do měřeného materiálu, na jejíž špičce je umístěn piezoelektrický měnič. Celá tato sestava byla ve vodní lázní o definované teplotě. Detail experimentální sestavy je zachycen na obrázku 1.

Pro charakterizaci materiálů na výrobu fantomu byly vytvořeny vzorky želatiny s různými poměry složek, čímž se dosáhly různých akustických vlastností pro každou želatinu. Na vzorcích byly naměřeny útlumy vlnění a rychlosti vlnění procházejícího materiálu podle rozdílu času vysílaného a přijímaného signálu.

Další požadovanou vlastností vyrobeného fantomu je odolnost proti okolním vlivům a dlouhá trvanlivost. Toho lze docílit skladováním na stíněných, suchých místech v kontejneru bez přístupu vzduchu. Při výrobě je třeba vyvarovat se drobných i větších bublin ve strukturách fantomu. Ty se na ultrazvukovém zobrazení zobrazují černě a znehodnocují tak výsledný efekt.

Obr. 1: Experimentální uspořádání vysílače a detektoru pro charakterizaci materiálů.

Mechanická konstrukce fantomu

Fantom pro diagnostický ultrazvuk, simulující fyziologické struktury těla různých tkání s různými akustickými vlastnostmi a pro dopplerovské vyšetření, byl vytvořen z plexiskla, které tvořilo samotné tělo fantomu. Jako základní tvar byl zvolen půlválec, který co největším měřením napodobuje abdominální oblast lidského těla. Pro dopplerovské vyšetření bylo navíc na každě čelní straně fantomu vytvořeno 6 otvorů o průměru 13 mm na průchody pro silikonové hadice. Do této platformy byla umístěna soustava elastických silikonových hadic o různých průměrech a hloubce rozvětvení (od 7 do 13 mm), která simuluje krevní řečiště. Celý fluidický systém byl navržen tak, aby byly dobře vidět jednotlivé troušťky hadice, a dala se jednoduše zjistit hloubka jejich uložení. Rozvětvení hadic zobrazuje obrázek 2.

Látkou simulující ve fluidickém systému krev, byla zvolena karbonová suspenze (aktivní uhlí rozdrcené na frakci 5–50 µm). Karbonové mikročástice simulují ve fantomu erytrocyty, od kterých se při ultrazvukovém vyšetření vylučují vlny ultrazvuku, bez nichž by nebylo možné korekté detekovat průtok pomocí Dopplerovského UZ. Tato suspenze je nasávána ze zásobníku umístěného vedle fantomu a je poháněna pomocí motorového čerpadla SEPA MPA 45A12H. Toto čerpadlo bylo vybráno, jelikož poskytuje dostatečný proudový objem a zároveň je možné jednoduše tento objem měnit, případně i simulovat jednoduché dynamické změny jako je například pulzní vlna.

Pro fantom simulující různé tkáně jsme použili skutečnou lidskou hruzní kost (os sternum). Dále jsme vytvořili různé tvarové forem různých orgánů, vylivávání forem různých orgánů a postupné zalévání fantomu vidíme na obrázku 3.
Obr. 3: Nahoře: zalití hrudní kosti. Dole: zalití vytvořených orgánů.

Procesorové řízení

Hlavní řídící část modelu tvoří elektronický obvod s 8bitovým mikroprocesorem PIC 18F4620. Pro tento mikroprocesor byl navržen speciální firmware v programovacím jazyce C / C++, který se stará o řízení celého systému, sběr dat a komunikaci s počítačem. K obvodu byly připojeny periferie pro řízení čerpadla a úpravu signálu ze senzoru.

Ovládací software

Celý systém je řízen pomocí speciálně navrženého ovládacího softwaru, který umožňuje jednak monitorovat parametry modelu, tak také nastavovat průběhy simulací, průtokových křivek a pulzní vláhy. Tento software byl vytvořen pomocí grafického programovacího jazyka LabVIEW.

Uživatel má možnost manuálního zadání průtoku v čase nebo načtení dat ze souboru (Excel), kde mohou být data ze záznamu reálné pulzní vláhy. V průběhu simulace má uživatel možnost zesílením výkonu čerpadla měnit rychlost průtoku, dále měnit průtok laminární na turbulentní a také měnit kontinuální proudění na pulzní.

Závěr

Díky podpoře FRVŠ se podařilo realizovat záměr vytvořit fantomy, vhodné k prohlubování teoretických znalostí a praktických dovedností týkajících se ultrazvukových diagnostických metod. Praktické zkušenosti s použitím vytvořených fantomů na FBMI ČVUT a na 3. LF UK jasně ukazují, že studenti obou fakult díky realizaci grantu daleko lépe chápou principy fungování ultrazvukových přístrojů, mechanismus vzniku ultrazvukového vlnění a současně při praktických cvičeních mají možnost sledovat na vytvořených fantomech s akustickými vlastnostmi podobnými vlastnostem tkání člověka vznik ultrazvukového obrazu.

Poděkování

Práce byla podpořena projektem FRVŠ č. 471/2012.

Literatura

[1] Hrazdira I.: Úvod do ultrasonografie. Klinika zobrazovacích metod. LF MU, Brno 2008, online [cit. 7. 11. 2012] zdroj: http://www.med.muni.cz/dokumenty/pdf/uvod_do_ultrasonografie1.pdf.
[2] Čech, E. a kol.: Ultrazvuk v lékařské diagnostice a terapii. Avicenum, Praha 1982.
[3] Navrátil, L., Rosina, J. a kol.: Medicínská biofyzika. Grada Publishing, Praha 2005.
[4] Musil, D. a kol.: Ultrazvukové výšetření žil dolních končetin. Grada Publishing, Praha 2007.
[5] Burlew, M., Madsen, E., Zagzebski, J. A new Ultrasound Tissue Equivalent Material, Radiology Feb 1980, 134, pp. 517-520.
[6] Kharine, A., Manohar, S., Seeton, R., Kolkman, R.G.M., Bolt, R.A., Steenbergen, W., de Mul, F.F.M. Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography, Physics in Medicine and Biology, 2003, 48 (3), pp. 357-370.
[7] Schuwert, P., E. Characteristics of tissue equivalent gels intended for passive test procedures of ultrasonic scanner performance. Nov 1982, Ultrasonics, pp. 275-278.
[8] Surry, K., J., M., Austin, H., J., B., Fenster, A. Institute of Physics Publishing: PVA Phantoms in ultrasound. Canada 2004.
[9] Opšír, J., Lin, T.: A Calibration-Free Method for Measurement of Sound Speed in Biological Tissue Samples. IEE Trans. Ultrason. Freq. Contrl., 1988, 35 (5), pp. 573-577.

Ing. Jana Vránová, CSc.
Ústav lékařské biofyziky a lékařské informatiky 3. lékařská fakulta, Univerzita Karlova v Praze
Ruská 87, CZ-100 00 Praha 10
E-mail: jana.vranova@lf3.cuni.cz
tel: +420 267 102 303