Epidemiology and prognostic factors of nosocomial candidemia in Northeast Brazil: A six-year retrospective study

Mariana Araújo Paulo de Medeiros¹, Ana Patrícia Vieira de Melo¹, Aurélio de Oliveira Bento¹, Luanda Bárbara Ferreira Canário de Souza¹, Francisco de Assis Bezerra Neto¹, Jarmilla Bow-Ltaif Garcia¹, Diana Luzia Zuza-Alves¹, Elaine Cristina Francisco², Analy Salles de Azevedo Melo, Guilherme Maranhão Chaves¹*

¹ Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal city, Rio Grande do Norte State, Brazil, ² Special Mycology Laboratory, Department of Medicine, Federal University of Sao Paulo, São Paulo City, São Paulo State, Brazil

* guilherme.chaves@ufrnet.br

Abstract

Candidemia has been considered a persistent public health problem with great impact on hospital costs and high mortality. We aimed to evaluate the epidemiology and prognostic factors of candidemia in a tertiary hospital in Northeast Brazil from January 2011 to December 2016. Demographic and clinical data of patients were retrospectively obtained from medical records and antifungal susceptibility profiling was performed using the broth microdilution method. A total of 68 episodes of candidemia were evaluated. We found an average incidence of 2.23 episodes /1000 admissions and a 30-day mortality rate of 55.9%. The most prevalent species were Candida albicans (35.3%), Candida tropicalis (27.4%), Candida parapsilosis (21.6%) and Candida glabrata (11.8%). Higher mortality rates were observed in cases of candidemia due to C. albicans (61.1%) and C. glabrata (100%), especially when compared to C. parapsilosis (27.3%). Univariate analysis revealed some variables which significantly increased the probability of death: older age ($P = 0.022$; odds ratio [OR] = 1.041), severe sepsis ($P < 0.001$; OR = 8.571), septic shock ($P = 0.035$; OR = 3.792), hypotension ($P = 0.003$; OR = 9.120), neutrophilia ($P = 0.046$; OR = 3.080), thrombocytopenia ($P = 0.002$; OR = 6.800), mechanical ventilation ($P = 0.009$; OR = 8.167) and greater number of surgeries ($P = 0.037$; OR = 1.920). Multivariate analysis showed that older age ($P = 0.040$; OR = 1.055), severe sepsis ($P = 0.009$; OR = 9.872) and hypotension ($P = 0.031$; OR = 21.042) were independently associated with worse prognosis. There was no resistance to amphotericin B, micafungin or itraconazole and a low rate of resistance to fluconazole (5.1%). However, 20.5% of the Candida isolates were susceptible dose-dependent (SDD) to fluconazole and 7.7% to itraconazole. In conclusion, our results could assist in the adoption of strategies to stratify patients at higher risk for developing candidemia and worse prognosis, in addition to improve antifungal management.
Introduction

Candidemia, or the bloodstream infection (BSI) caused by Candida species, is a subset of invasive candidiasis (IC) with increased incidence over the last few decades, considered a persistent public health problem with great impact on health care-associated costs and high crude (35% to 75%) and attributable mortality, despite advances achieved in diagnosis and treatment [1–6].

Candida species are generally referred as the fourth leading cause of nosocomial BSI in the United States (US), accounting for 8 to 10% of all hospital-acquired BSIs [1–3]. Recently, a study encompassing several US states reported Candida spp. as the most prevalent pathogens obtained from nosocomial BSIs, even overcoming some common bacterial species [7].

At least 15 different Candida spp. have been reported to cause human invasive infections. Nevertheless, more than 90% of them are caused by five main species, as follows: Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis and Candida krusei [2, 3, 8, 9]. The distribution of Candida spp. causing candidemia presents temporal and geographic variation, alongside the considerable influence of patient characteristics, antifungal stewardship and clinical practices [2, 3, 8]. Although C. albicans remains the most frequently isolated species from Candida BSI episodes, its incidence has recently decreased [2, 3, 8, 10].

Most candidemia predisposing factors are very common among critically ill patients in the ICU. This fact, together with the delay and lack of sensitivity of diagnostic tools, impair the prompt recognition and treatment of this infection [2, 6]. Moreover, antifungal susceptibility profiling may vary according to each Candida species and even within strains of the same species, whilst the development of microbial resistance may occur to any class of antifungal agents, making the management of candidemia even more difficult [2, 11].

Since the indiscriminate use of antifungals can generate great economic and ecological impact, antifungal prophylaxis and empirical treatment should be considered only in high-risk patients selected through strategies such as the colonization index, Candida score, and predictive rules based on combinations of risk factors [2, 5, 6, 12, 13, 14].

Considering the scarcity of Candida BSIs studies conducted in Northeast Brazil (Brazil’s lowest income region) and the relevance of the knowledge of local peculiarities to assist the optimization of strategies for prevention and treatment of infections, we aimed to evaluate the epidemiology of candidemia and risk factors associated with mortality in a tertiary hospital in this Brazilian region over 6 years.

Materials and methods

Study design

This is a retrospective, single-center, observational cohort study conducted at Onofre Lopes Hospital (Natal city, Brazil), a tertiary University Hospital with 248 beds. All patients who developed candidemia during a 6-year period (from January 2011 to December 2016) were included in the study. Candidemia or Candida BSI was defined as at least one positive blood culture for Candida spp. in patients hospitalized for more than 48 h. Only the first episode of candidemia was recorded for each patient. Therefore, Candida BSI episodes which occurred before 48 hours of hospitalization or represented relapses were excluded. Demographic and clinical data were collected from medical records within the preceding 30 days from the onset of Candida BSI (defined as the day of first Candida spp. positive blood culture) up to a 30-day follow-up period, except for data on surgery (collected up to 3 months before the onset of candidemia). Clinical data included vital signs, blood count, other infections/positive cultures, underlying conditions, predisposing factors for candidemia, previous exposure to antifungals,
clinical management and outcome (survival or death). Vital signs were classified according to the parameters established in the literature [15, 16] together with the medical interpretation in the patients' records. Classification of blood cell counts were based on the reference ranges defined locally by the hospital laboratory. Sepsis, severe sepsis and septic shock were defined according to Angus and van der Poll [17]. Crude mortality rate was calculated at 7 and 30 days from candidemia onset. The following antifungal dosages were considered adequate: fluconazole (FLU) 400 mg/day, amphotericin B deoxycholate (AMB) 0.5–1.0 mg/kg/day, amphotericin B lipid complex (ABLC) 3.0–5.0 mg/kg/day, caspofungin (CPF) 50 mg/day, micafungin (MCF) 100 mg/day, anidulafungin (ADF) 100 mg/day [18].

Ethics

This study was approved by the Local Research Ethics Committee (“Comitê de Ética em Pesquisa da Liga Norte Riograndense Contra o Câncer”) under the protocol number 042/042/2012. Written patient consent was not required because of the observational nature of the study.

Laboratory procedures

Blood samples were processed using the Bact/Alert system (BioMérieux, France). All positive cultures were inoculated onto the surface of Sheep Blood Agar and incubated at 30°C for 48–96 h. Yeast growth was confirmed by Gram staining and the initial identification was performed at the referred hospital with the Vitek 2 Compact YST system (BioMérieux, France), according with manufacturer’s instructions. The strains were sent to the Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte and a confirmation in identification was performed according to classical methods [19]. Of note, accurate identification was also performed using MALDI-TOF [20] when necessary. Unfortunately, some strains were not identified at the species level due to limitations of the initial screening performed at the hospital microbiology laboratory and lack of viability/or availability of some strains for further analysis. Antifungal susceptibility to amphotericin B (Sigma Chemical Corporation, St. Louis, MO, USA), fluconazole (Pfizer Incorporated, New York, NY, USA), itraconazole (Pfizer Incorporated, New York, NY, USA) and micafungin (Merck, Rahway, NJ, USA) was performed using the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) document M27-A3 [21]. The reference strains *C. parapsilosis* ATCC 22019 and *C. krusei* ATCC 6258 were used as quality controls. Minimum inhibitory concentration (MIC) values were interpreted according to the current clinical breakpoints suggested by CLSI for the most common species of *Candida* [22, 23].

Statistical analysis

Continuous variables were expressed as mean ± standard deviation (SD) and compared using Student *t* test or Mann-Whitney test. Categorical variables were expressed as frequencies and percentages and compared using Chi-square (χ^2) test or Fisher’s exact test, as appropriate. Logistic regression analysis was performed with variables that presented $P \leq 0.1$ in the comparisons of groups to identify possible risk factors associated with mortality at 30 days after candidemia. Variables of clinical relevance and with sample size ≥ 60 found to be significant in the univariate analysis were included in a multivariate logistic model. All tests were 2-tailed, and a *P*-value <0.05 was determined to represent statistical significance. Statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS) software, version 20 (IBM SPSS, Chicago, IL, USA).
Results

A total of 87 patients out of 37,768 admitted to the study hospital between 2011 and 2016 had at least one episode of candidemia. However, 19 individuals were excluded (16 patients who had candidemia before 48 h of hospitalization and 3 patients with no medical records). The mean incidence of candidemia cases was 2.23/1000 admissions, ranging from 1.03 to 3.02 throughout each different year of study, with a trend to increase from 2014–2016 (Fig 1).

The 7-day and 30-day mortality rates were 33.8% (23/68) and 55.9% (38/68), respectively. The 30-day mortality rate was much higher in the ICU (70.8%, 17/24) compared to other sectors of the hospital (20/40; 50%). Over the 6 years of the study, the 30-day mortality rate ranged from 43.8% (7/16) in 2016 to 76.9% (10/13) in 2013, with a trend to increase between 2011 and 2013; and decrease between 2013 and 2016 (Fig 2A).

Positive cultures for bacteria were obtained from 73.5% (50/68) of the patients, including blood cultures (32/68; 47.1%). Mixed bacterial and yeast bloodstream infection occurred on the day of candidemia onset in 8 cases (8/68; 11.8%). Other yeast-positive cultures were obtained from 47.1% (32/68) of the patients, comprising sterile (24/68; 35.3%) and non-sterile body sites (16/68; 23.5%).

At the onset of candidemia, 37.5% (24/64) of the patients were in the ICU, 23.4% (15/64) in internal medicine wards, 18.8% (12/64) in surgical wards, 7.8% (5/64) in cardiovascular wards (Table 1), 7.8% (5/64) in isolation wards, 3.1% (2/64) in transplantation wards and 1.6% (1/64) in oncohematology wards.

Candida albicans was the most prevalent species obtained from blood cultures, accounting for 35.3% (18/51) of candidemia episodes, followed by *Candida tropicalis* (14/51; 27.4%), *Candida parapsilosis* (11/51; 21.6%), *Candida glabrata* (6/51; 11.8%) and other less common species (2/51; 3.9%), including one episode caused by *Candida lusitaniae* (2%) and another by *Kodamaea ohmeri* (2%).

Tables 1 to 4 present the main demographic and clinical characteristics of all the patients included in the present study, classified according to the outcome of candidemia after 30 days (survival or death).
Fig 2. 30-day mortality rate during a 6-year period (A) and age class distribution (B) of patients with candidemia in a tertiary hospital in Northeast Brazil.

https://doi.org/10.1371/journal.pone.0221033.g002
The main predisposing factors found were the previous use of antibacterial agents (66/68; 97.1%), the presence of CVC (54/68; 79.4%), corticosteroid therapy (38/68; 55.9%) and surgery (38/68; 55.9%; Table 3).

Of the 68 patients included in the study, 19 came from another hospital at admission (27.9%), 41 were female (60.3%) with a mean age of 56.0 ± 15.5 years (Table 1), mean hospital length of stay (LOS) of 63.9 ± 50.5 days and mean time between admission and development of candidemia of 35.6 ± 32.2 days.

The predominant age class ranged from 61 to 70 years (18/68; 26.5%; Fig 2B). It is worth mentioning that 45.6% (31/68) of the patients were elderly (aged between 61 and 90 years); while only one 12-year-old child was enrolled in the study since our hospital did not have a pediatric ward (Fig 2B).

The most prevalent underlying conditions were cardiovascular disease (49/68; 72.1%), diabetes mellitus (22/37; 59.5%) and renal failure (35/68; 51.5%; Table 1). Other important comorbidities were cancer (28/68; 42.4%), including three cases of hematological malignancy (3/28; 10.7%); and gastrointestinal disease (25/68; 36.8%; Table 1).

Most of the patients presented sepsis (53/68; 77.9%) and, to a lesser extent, severe sepsis (29/68; 42.6%) and/or septic shock (18/68; 26.5%) at the time of candidemia (Table 2). Among the 53 patients who developed sepsis, 19 of them had only sepsis (19/68; 27.9%), 16 developed severe sepsis (16/68; 23.5%), five developed septic shock (5/68; 7.4%), while 13 patients had both severe sepsis and septic shock (13/68; 19.1%).

The use of antifungal agents before the onset of candidemia was observed in 16.2% (11/68) of the patients (Table 4), of which 63.6% (7/11) used fluconazole and 63.6% (7/11) used antifungal drugs for very short periods (1 to 5 days). The previous exposure to antifungals did not influence the isolation of NCAC species ($P = 0.451$).

Antifungal treatment was instituted in 61.2% of the patients (41/67; Table 4) and the most commonly used antifungal agent was fluconazole (38/41; 92.7%), alone (27/41; 65.9%) or in combination with other antifungal agents (11/41; 26.8%), mainly with amphotericin B deoxycholate (6/41; 14.6%). Echinocandins were used only in four patients among the group receiving treatment (9.8%).

Table 1. Demographic characteristics and underlying conditions of patients with candidemia, including comparison between subgroups according to the outcome.

Characteristics of patients, N (%)	All patients (N = 68)	30-day outcome	P-value*	
	Survival (N = 30)	Death (N = 38)		
Gender (male)	27 (39.7)	10 (33.3)	17 (44.7)	0.340
Age (years; mean ± SD)	56.0 ± 15.5	51.0 ± 17.0	60 ± 13.2	0.017

Underlying Conditions

Condition	All patients (N = 68)	Survival (N = 30)	Death (N = 38)	P-value*
Cancer	28 (42.4)	10 (33.3)	18 (50.0)	0.173
Cardiovascular Disease	49 (72.1)	21 (70.0)	28 (73.7)	0.737
Gastrointestinal Disease	25 (36.8)	9 (30.0)	16 (42.1)	0.304
Renal Failure	35 (51.5)	12 (40.0)	23 (60.5)	0.093
Chronic Renal Failure	15 (23.1)	7 (58.3)	8 (40.0)	0.964
Acute Renal Failure	17 (26.2)	5 (41.7)	12 (60.0)	0.107
Lung Disease	5 (7.4)	1 (3.3)	4 (10.5)	0.374
Diabetes Mellitus	22 (32.9)	11 (55.0)	11 (64.7)	0.549
Obesity	4 (5.9)	1 (3.3)	3 (7.9)	0.624

Some information was missing in patients’ records; therefore the valid N varies according to the variable.

* Student t Test/Mann-Whitney Test (continuous data) or Chi-Square Test/Fisher Exact Test (categorical data).

https://doi.org/10.1371/journal.pone.0221033.t001
Antifungal treatment did not influence the outcome of candidemia ($P = 0.254$; Table 4), and it is worth mentioning that 34.6% (9/26) of patients who were not treated survived.

Compared to patients who survived, patients who died within 30 days after candidemia were older ($P = 0.017$), had a higher frequency of sepsis ($P = 0.046$), severe sepsis ($P < 0.001$), septic shock ($P = 0.029$), hypotension ($P = 0.006$), neutrophilia ($P = 0.042$), thrombocytopenia ($P = 0.006$), the use of MV on candidemia onset ($P = 0.004$; Tables 1–3) and C. albicans and C. glabrata in blood cultures ($P = 0.046$; Fig 3).

The relationship between these variables and the outcome was confirmed in the univariate logistic regression, except for sepsis and $Candida$ species isolated (Table 5). Some characteristics of the patients significantly increased the probability of death: older patients ($P = 0.022$; OR = 1.041), severe sepsis ($P < 0.001$; OR = 8.571), septic shock ($P = 0.035$; OR = 3.792), hypotension vs. hypertension ($P = 0.003$; OR = 9.120), neutrophilia ($P = 0.046$; OR = 3.080),

Table 2. Clinical condition of patients on candidemia onset, including comparison between subgroups according to the outcome.

Characteristics of patients, N (%)	All patients (N = 68)	30-day outcome	P-value*	
	Survival (N = 30)	Death (N = 38)		
Sepsis	53 (77.9)	20 (66.7)	33 (86.8)	0.046
Severe Sepsis	29 (42.6)	5 (16.7)	24 (63.2)	<0.001
Septic Shock	18 (26.5)	4 (13.3)	14 (36.8)	0.029

Vital Signs

Fever	Survival (N = 30)	Death (N = 38)	P-value*	
	29 (44.6)	16 (53.3)	13 (37.1)	0.191

Heart Rate	Survival (N = 30)	Death (N = 38)	P-value*	
Bradycardia	2 (3.3)	1 (3.8)	1 (2.9)	0.936
Normocardia	20 (32.8)	9 (34.6)	11 (31.4)	
Tachycardia	39 (63.9)	16 (61.5)	23 (65.7)	

Respiratory Frequency	Survival (N = 30)	Death (N = 38)	P-value*	
Bradypnea	0	0	0	0.609
Eupnea	21 (32.3)	10 (35.7)	11 (29.7)	
Tachypnea	44 (67.7)	18 (64.3)	26 (70.3)	

Blood Pressure	Survival (N = 30)	Death (N = 38)	P-value*	
Hypotension	24 (40.0)	5 (19.2)	19 (55.9)	0.006
Normotension	19 (31.7)	9 (34.6)	10 (29.4)	
Hypertension	17 (28.3)	12 (46.2)	5 (14.7)	

Blood Count	Survival (N = 30)	Death (N = 38)	P-value*	
Leukopenia	5 (8.5)	1 (4.2)	4 (11.4)	0.224
Normal	20 (33.9)	11 (45.8)	9 (25.7)	
Leukocytosis	34 (57.6)	12 (50.0)	22 (62.9)	

Blood Neutrophil Count	Survival (N = 30)	Death (N = 38)	P-value*	
Neutropenia	3 (5.1)	0	3 (8.6)	0.042
Normal	24 (40.7)	14 (58.3)	10 (28.6)	
Neutrophilia	32 (54.2)	10 (41.7)	22 (62.9)	

Blood Lymphocyte Count	Survival (N = 30)	Death (N = 38)	P-value*	
Lymphopenia	18 (30.5)	7 (29.2)	11 (31.4)	0.175
Normal	33 (55.9)	16 (66.7)	17 (48.6)	
Lymphocytosis	8 (13.6)	1 (4.2)	7 (20.0)	

Anemia	Survival (N = 30)	Death (N = 38)	P-value*	
	55 (91.7)	23 (92.0)	32 (91.4)	0.937

Blood Platelet Count	Survival (N = 30)	Death (N = 38)	P-value*	
Thrombocytopenia	27 (46.6)	5 (21.7)	22 (62.9)	
Normal	28 (48.3)	17 (73.9)	11 (31.4)	0.006

Thrombocytosis	Survival (N = 30)	Death (N = 38)	P-value*	
	3 (5.2)	1 (4.3)	2 (5.7)	

Candidemia onset was defined as the day of first positive blood culture for $Candida$ species. Some information was missing in patients’ records; therefore the valid N varies according to the variable.

* Student t Test/Mann-Whitney Test (continuous data) or Chi-Square Test/Fisher Exact Test (categorical data).

https://doi.org/10.1371/journal.pone.0221033.t002

Antifungal treatment did not influence the outcome of candidemia ($P = 0.254$; Table 4), and it is worth mentioning that 34.6% (9/26) of patients who were not treated survived.

Compared to patients who survived, patients who died within 30 days after candidemia were older ($P = 0.017$), had a higher frequency of sepsis ($P = 0.046$), severe sepsis ($P < 0.001$), septic shock ($P = 0.029$), hypotension ($P = 0.006$), neutrophilia ($P = 0.042$), thrombocytopenia ($P = 0.006$), the use of MV on candidemia onset ($P = 0.004$; Tables 1–3) and C. albicans and C. glabrata in blood cultures ($P = 0.046$; Fig 3).

The relationship between these variables and the outcome was confirmed in the univariate logistic regression, except for sepsis and $Candida$ species isolated (Table 5). Some characteristics of the patients significantly increased the probability of death: older patients ($P = 0.022$; OR = 1.041), severe sepsis ($P < 0.001$; OR = 8.571), septic shock ($P = 0.035$; OR = 3.792), hypotension vs. hypertension ($P = 0.003$; OR = 9.120), neutrophilia ($P = 0.046$; OR = 3.080),
thrombocytopenia \((P = 0.002; \text{OR} = 6.800)\), MV on candidemia onset \((P = 0.009; \text{OR} = 8.167)\) and greater number of surgeries \((P = 0.037; \text{OR} = 1.920; \text{Table 5})\).

Multivariate analysis included age, severe sepsis, septic shock, use of MV and blood pressure on candidemia onset (Table 6). Age \((P = 0.040; \text{OR} = 1.055)\), severe sepsis \((P = 0.009;\)

Table 3. Predisposing factors for *Candida* bloodstream infection and other characteristics of patients with candidemia, including comparison between subgroups according to the outcome.

Characteristics of patients, N (%)	All patients (N = 68)	30-day outcome	P-value*	
		Survival (N = 30)	Death (N = 38)	
Medical Devices				
Central Venous Catheter (CVC)	54 (79.4)	26 (86.7)	28 (73.7)	0.189
CVC removal within 48 hours	12 (23.1)	8 (34.8)	4 (13.8)	0.074
Total Parenteral Nutrition	23 (33.8)	11 (36.7)	12 (31.6)	0.660
Mechanical Ventilation (MV)	22 (32.4)	9 (30.0)	13 (34.2)	0.712
MV on candidemia onset	16 (23.5)	2 (6.7)	14 (36.8)	0.004
Other Features				
Previous Bacteremia	19 (27.9)	9 (30.0)	10 (26.3)	0.737
Previous use of antibacterial agents	66 (97.1)	29 (96.7)	37 (97.4)	0.865
N° of antibacterial agents used previously \((\text{mean} \pm \text{SD})\)	3.4 ± 1.6	3.0 ± 1.2	3.7 ± 1.8	0.057
Post use of antibacterial agents	62 (92.5)	25 (86.2)	37 (97.4)	0.158
Corticosteroid Therapy	38 (55.9)	17 (56.7)	21 (55.3)	0.908
Other immunosuppressants	4 (5.9)	3 (10.0)	1 (2.6)	0.314
Chemotherapy	5 (7.4)	2 (6.7)	3 (7.9)	0.847
Hemodialysis	19 (27.9)	10 (33.3)	9 (23.7)	0.379
Surgery	38 (55.9)	20 (66.7)	18 (47.4)	0.112
Number of surgeries \((\text{mean} \pm \text{SD})\)	2.1 ± 1.4	1.7 ± 0.7	2.7 ± 1.7	0.105
Abdominal Surgery	31 (45.6)	16 (53.3)	15 (39.5)	0.255
Kidney Transplantation	3 (4.4)	3 (10.0)	0	0.081

Characteristics of patients with unspecified temporal relation or named as "previous" were collected from medical records only within the preceding 30 days from the candidemia onset (defined as the day of first positive blood culture for *Candida* species), except for data on surgery (collected up to 3 months before candidemia onset).

Characteristics of patients named as "post" were collected from medical records up to a 30-day follow-up period from the candidemia onset. Some information was missing in patients’ records; therefore the valid N varies according to the variable.

* Student t Test/Mann-Whitney Test (continuous data) or Chi-Square Test/Fisher Exact Test (categorical data).

https://doi.org/10.1371/journal.pone.0221033.t003

Table 4. Antifungal stewardship in patients with candidemia, including comparison between subgroups according to the outcome.

Characteristics of patients, N (%)	All patients (N = 68)	30-day outcome	P-value*	
		Survival (N = 30)	Death (N = 38)	
Previous exposure to antifungals	11 (16.2)	4 (13.3)	7 (18.4)	0.572
Antifungal Treatment	41 (61.2)	20 (69.0)	21 (55.3)	0.254
Timing of antifungal administration \((\text{days; mean} \pm \text{SD})\)	5.0 ± 6.0	5.8 ± 7.3	4.2 ± 4.3	0.423
Adequate antifungal dosage	28 (86.3)	13 (65.0)	15 (71.4)	0.658

Previous exposure to antifungals was collected from medical records within the preceding 30 days from the candidemia onset (defined as the day of first positive blood culture for *Candida* species). Some information was missing in patients’ records; therefore the valid N varies according to the variable.

* Student t Test/Mann-Whitney Test (continuous data) or Chi-Square Test/Fisher Exact Test (categorical data).

https://doi.org/10.1371/journal.pone.0221033.t004
Table 5. Univariate logistic regression analysis of risk factors for 30-day mortality.

Characteristics of patients	Univariate analysis		
	P-value	Odds ratio	95% CI
Age (years; mean ± SD)	0.022	1.041	1.006–1.078
Sepsis	0.053	3.300	0.985–11.052
Severe Sepsis	<0.001	8.571	2.675–27.470
Septic Shock	0.035	3.792	1.095–13.129
Blood Pressure	0.003	9.120	2.172–38.296
Blood Neutrophil Count	0.046	3.080	1.022–9.284
Blood Platelet Count	0.002	6.800	1.983–23.314
C. tropicalis vs. C. albicans	0.308	0.477	0.115–1.976
C. parapsilosis vs. C. albicans	0.085	0.239	0.047–1.219
C. glabrata vs. C. albicans	0.999	-	-
CVC removal within 48 hours	0.083	0.300	0.077–1.169
MV on candidemia onset	0.009	8.167	1.684–39.598
N° of antibacterial agents used previously (mean ± SD)	0.064	1.393	0.981–1.978
Surgery	0.114	0.450	0.167–2.121
Number of surgeries (mean ± SD)	0.037	1.920	1.041–3.544
Kidney Transplantation	0.999	-	-
Renal Failure	0.095	2.300	0.865–6.117
Acute Renal Failure	0.113	2.609	0.796–8.550

CI: confidence interval; CVC: central venous catheter; MV: mechanical ventilation.
OR = 9.872) and hypotension vs. hypertension (P = 0.031; OR = 21.042) were independently associated with higher probability of death (Table 6). It is worth mentioning that the probability of death increased about 10-fold in patients who had severe sepsis and 21-fold in patients with hypotension compared to those who had hypertension at the onset of candidemia.

Table 7 shows the results of the in vitro activity of 4 systemically active antifungal agents against BSI isolates of Candida spp. All isolates tested were susceptible to amphotericin B and micafungin, while a few of them were resistant (2/39; 5.1%) and susceptible dose-dependent (SDD; 8/39; 20.5%) to fluconazole and SDD to itraconazole (3/39; 7.7%). There were two strains (an isolate of C. albicans and another of C. tropicalis) SDD to both fluconazole and itraconazole (2/39; 5.1%).

Discussion
The overall incidence rate of candidemia observed in our study (2.23 episodes per 1000 admissions) was close to the findings of Brazilian multicenter studies (2.42 to 2.49/1000 admissions) [24, 25] and also those reported in the US (1.9 to 2.4/1000 admissions) [2], but higher than the rates reported in a multicenter study in Latin America (1.18/1000 admissions) [26], in several European countries (0.23 to 1.5/1000 admissions) [27–34] and in a recent study conducted in Japan (0.056/1000 admissions) [35].

Compared to other studies around the world [32, 35, 36, 37], our patient’s mortality rate (55.9%) is higher, corroborating other Brazilian studies, ranging from 54 to 72.2% [24, 38, 39].

The distribution of Candida species observed in our study is consistent with other studies conducted in Brazil and Latin America, showing a relatively lower prevalence of C. albicans (although it is still the most prevalent species) and a higher prevalence of C. parapsilosis and C. tropicalis among the NCAC species (alternating between second and third places), and C. glabrata as the fourth most prevalent species [24, 26, 38, 39]; whereas in the US and several other European countries C. glabrata appears generally as the second most prevalent species [8].

C. albicans and C. glabrata were the species most associated with mortality, especially when compared to C. parapsilosis. Other studies have also found a correlation between C. albicans and C. glabrata with higher mortality, as well as lower mortality rates in cases of candidemia due to C. parapsilosis [11, 24, 31, 32, 35].

Another important finding of our study was the high frequency of fluconazole use, being the first choice in most cases. A recent guideline for the management of candidiasis recommended an echinocandin as initial therapy for candidemia [9], however this class of antifungal drugs is not yet very accessible due to its high cost [40]. Amphotericin B deoxycholate was the
The second most commonly used antifungal drug, however its lipid formulations are preferable because of its high toxicity [41], except in some specific cases [9].

Comparing our results using univariate and multivariate logistic regression analysis with the existing literature, we found other studies that have demonstrated an association between age, clinical condition (sepsis, septic shock, APACHE score) and mechanical ventilation with a higher mortality risk in patients with candidemia [30, 32, 35, 42, 43]. It is important to mention that hypotension is one of the criteria for the definition of septic shock [17] and it is also evaluated in the APACHE score, therefore its association with worse prognosis found in our study was expected; although we highlighted that its association as an independent risk factor had not yet been described.

Despite the low rate of antifungal resistance found in our study, there was a higher proportion of strains susceptible dose-dependent to fluconazole (20.5%), mainly among C. glabrata isolates (80%), consistent with the widely known lower susceptibility of C. glabrata to fluconazole [11]. These results indicate a greater probability of therapeutic failure if fluconazole is used, especially in cases of C. glabrata BSI.

Table 7. Antifungal susceptibility test results for Candida spp. isolates.

Species / Antifungal agent	MIC (µg/ml)	Resistance N (%)	S-DD N (%)	
	Range	MIC₅₀	MIC₉₀	
All isolates tested (N = 39)				
Amphoterin B	0.06–1.0	0.25	1.0	0
Fluconazole	0.125–64.0	1.0	2.0	2 (5.1)
Itraconazole	<0.03–0.25	0.03	0.06	0
Micafungin	<0.015–1.0	<0.015	0.03	0
Candida albicans (N = 13 tested)				
Amphoterin B	0.125–1.0	0.25	0.5	0
Fluconazole	0.125–4.0	0.5	4.0	0
Itraconazole	0.03–0.25	0.06	0.125	0
Micafungin	<0.015–0.06	<0.015	0.03	0
Candida tropicalis (N = 12 tested)				
Amphoterin B	0.06–1.0	0.25	1.0	0
Fluconazole	0.5–4.0	0.5	4.0	0
Itraconazole	0.03–0.125	0.03	0.06	0
Micafungin	<0.015–0.06	<0.015	0.03	0
Candida parapsilosis (N = 9 tested)				
Amphoterin B	0.125–1.0	0.5	0.5	0
Fluconazole	0.125–16.0	0.5	1 (11.1)	0
Itraconazole	<0.03–0.03	<0.03	0	0
Micafungin	<0.015–1.0	0.03	0	0
Candida glabrata (N = 5 tested)				
Amphoterin B	0.06–1.0	0.25	0.25	0
Fluconazole	0.5–64.0	1.0	1 (20)	4 (80)
Itraconazole	0.03–0.06	0.03	0	0
Micafungin	<0.015–0.06	<0.015	0	0

MIC: Minimum Inhibitory Concentration. MIC₅₀ and MIC₉₀: MIC required to inhibit 50% and 90% of the isolates, respectively. S-DD: Susceptible-Dose Dependent. Resistance breakpoints: fluconazole: MIC of ≥8 µg/ml; ≥64 µg/ml for C. glabrata; itraconazole: ≥1 µg/ml; amphoterin B: ≥2 µg/ml; micafungin: ≥1 µg/ml; ≥8 µg/ml for C. parapsilosis; ≥0.25 µg/ml for C. glabrata. S-DD breakpoints: fluconazole: MIC of 4 µg/ml; ≤32 µg/ml for C. glabrata; itraconazole: 0.25–0.5 µg/ml.

https://doi.org/10.1371/journal.pone.0221033.t007
Finally, our antifungal susceptibility profile corroborates with other studies conducted in Brazil and Latin America in general, where *Candida* spp. resistance to echinocandins and amphotericin B remains rare [39, 44].

In conclusion, we observed a high incidence of candidemia, displaying a tendency to increase over the 6 years of the study, as well as a high mortality rate, proving a nosocomial problem that deserves attention. We believe that our study contributed to the knowledge of the local epidemiology of candidemia and could be used to assist in the adoption of strategies to stratify patients at higher risk for developing candidemia and worse prognosis in low income regions of the globe, in addition to improve antifungal management (prophylaxis, empirical and definitive therapy) which has not been shown to be effective in the study hospital. We emphasize that this is the first study in Northeast Brazil that has made such a deep analysis in this regard, despite our limitations, mainly due to the nature of the study (retrospective and single center).

Supporting information

S1 File. Manuscript data set.
(XLSX)

Acknowledgments

We would like to thank to Professor Arnaldo Colombo for the donation of *Candida* spp. reference strains and Dr. Daniel Kacher, from the Department of Biophysics, Federal University of São Paulo, for the help with MALDI-TOF analysis. We are very grateful to Dr. Suzanne Hamilton for critically proofreading and editing the manuscript.

Author Contributions

Conceptualization: Guilherme Maranhão Chaves.

Data curation: Mariana Araújo Paulo de Medeiros.

Formal analysis: Mariana Araújo Paulo de Medeiros.

Funding acquisition: Guilherme Maranhão Chaves.

Investigation: Mariana Araújo Paulo de Medeiros, Ana Patrícia Vieira de Melo, Aurélio de Oliveira Bento, Luanda Bárbara Ferreira Canário de Souza, Francisco de Assis Bezerra Neto, Jarmilla Bow-Ltaif Garcia, Diana Luzia Zuza-Alves, Elaine Cristina Francisco.

Methodology: Mariana Araújo Paulo de Medeiros, Analy Salles de Azevedo Melo, Guilherme Maranhão Chaves.

Project administration: Mariana Araújo Paulo de Medeiros, Analy Salles de Azevedo Melo, Guilherme Maranhão Chaves.

Resources: Guilherme Maranhão Chaves.

Supervision: Analy Salles de Azevedo Melo, Guilherme Maranhão Chaves.

Visualization: Mariana Araújo Paulo de Medeiros.

Writing – original draft: Mariana Araújo Paulo de Medeiros.

Writing – review & editing: Guilherme Maranhão Chaves.
References

1. Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, et al. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis. 2003; 37(9): 1172–1177. https://doi.org/10.1086/378745 PMID: 14557960
2. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007; 20(1): 133–163. https://doi.org/10.1128/CMR.00029-06 PMID: 17223626
3. Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag. 2014; 10: 95–106. https://doi.org/10.2147/TCRM.S40160 PMID: 24611015
4. Duggan S, Leonhardt I, Hüning K, Kurzai O. Host response to *Candida albicans* bloodstream infection and sepsis. Virulence. 2015; 6(4): 316–326. https://doi.org/10.4161/viru.21055594.2014.988096 PMID: 25785541
5. Eggimann P, Que YA, Revelly JP, Pagani JL. Preventing invasive candida infections. Where could we do better? J Hosp Infect. 2015; 89(4): 302–308. https://doi.org/10.1016/j.jhin.2014.11.006 PMID: 25785541
6. Pfaller MA, Castanheira M. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis. Med Mycol. 2016; 54(1): 1–22. https://doi.org/10.1093/mmy/mvy076 PMID: 26385381
7. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014; 370(13): 1198–208. https://doi.org/10.1056/NEJMoa1306801 PMID: 24670166
8. Guinea J. Global trends in the distribution of *Candida* species causing candidemia. Clin Microbiol Infect. 2014; 20 Suppl 6: 5–10.
9. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016; 62(4): e1–50. https://doi.org/10.1093/cid/civ933 PMID: 26679628
10. Arendrup MC. *Candida* and candidaemia. Susceptibility and epidemiology. Dan Med J. 2013; 60(11): B4698. PMID: 24192146
11. da Matta DA, Souza ACR, Colombo AL. Revisiting Species Distribution and Antifungal Susceptibility of *Candida* Bloodstream Isolates from Latin American Medical Centers. J Fungi (Basel). 2017; 3(2). pii: E24. https://doi.org/10.3390/jof3020024 PMID: 29371542
12. Pittet D, Monod M, Suter PM, Frenk E, Auckenthaler R. Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg. 1994; 220(6): 751–758. https://doi.org/10.1097/00000658-199412000-00008 PMID: 7966142
13. León C, Ruiz-Santana S, Saavedra P, Almirante B, Nolla-Salas J, Alvarez-Lerma F, et al. A bedside scoring system ("Candida score") for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006; 34(3): 730–737. https://doi.org/10.1097/01.CCM.0000202208.7364.7D PMID: 16505659
14. Chaves GM, Santos FP, Colombo AL. The persistence of multifocal colonisation by a single ABC genotype of *Candida albicans* may predict the transition from commensalism to infection. Mem Inst Oswaldo Cruz. 2012; 107(2): 198–204. https://doi.org/10.1590/s0074-02762012000200008 PMID: 22415258
15. Guyton AC, Hall JE. Textbook of Medical Physiology. 11th ed. Philadelphia, PA: Saunders Elsevier; 2006.
16. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson J, Loscalzo J. Harrison’s Principles of Internal Medicine. 18th ed. New York: McGraw-Hill; 2012.
17. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013; 369(9): 840–851. https://doi.org/10.1056/NEJMr1208623 PMID: 23984731
18. EdwardsJE Jr.. Candidiasis. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson J, editors. Harrison’s Principles of Internal Medicine. New York: McGraw-Hill; 2012. pp. 1651–1655.
19. Yarrow D. Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW, editors. The Yeasts, a taxonomic study. Amsterdam: Elsevier Science; 1998. pp. 77–100.
20. Zuza-Alves DL, de Medeiros SS, de Souza LB, Silva-Rocha WP, Francisco EC, de Araújo MC, et al. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of *Candida tropicalis* Isolated from the Coastal Environment of Northeast Brazil. Front Microbiol. 2016; 7: 1783. https://doi.org/10.3389/fmicb.2016.01783 PMID: 27895625
21. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard 3rd ed. CLSI document M27-A3. 2008; Clinical and Laboratory Standards Institute, Wayne, PA.
22. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; third informational supplement. CLSI document M27-S3, 2008; Clinical and Laboratory Standards Institute, Wayne, PA.

23. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; fourth informational supplement. CLSI document M27-S4. 2012; Clinical and Laboratory Standards Institute, Wayne, PA.

24. Colombo AL, Nucci M, Park BJ, Nouer SA, Arthington-Skaggs B, da Matta DA, et al. Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers. J Clin Microbiol. 2006; 44(8):2823–2828. https://doi.org/10.1128/JCM.00773-06 PMID: 16891497

25. Colombo AL, Garnica M, Aranha Camargo LF, Da Cunha CA, Bandeira AC, Borghi D, et al. Candida glabrata: an emerging pathogen in Brazilian tertiary care hospitals. Med Mycol. 2013; 51(1): 38–44. https://doi.org/10.3109/13693786.2012.698024 PMID: 22762208

26. Nucci M, Queiroz-Telles F, Alvarado-Matute T, Tiraboschi IN, Cortes J, Zurita J, et al. Epidemiology of candidemia in Latin America: a laboratory-based survey. PLoS One. 2013; 8(3): e59373. https://doi.org/10.1371/journal.pone.0059373 PMID: 23527176

27. Cisterna R, Ezpeleta G, Tellaria O, Spanish Candidemia Surveillance Group. Nationwide sentinel surveillance of bloodstream Candida infections in 40 tertiary care hospital in Spain. J Clin Microbiol. 2010; 48(11): 4200–4206. https://doi.org/10.1128/JCM.00920-10 PMID: 20826636

28. Pernán J, Cantón E, Quindós G, Eraso E, Alcoba J, Guinea J, et al. Epidemiology, species distribution and in vitro antifungal susceptibility of fungaemia in a Spanish multicentre prospective survey. J Antimicrob Chemother. 2012; 67(5): 1182–1189. https://doi.org/10.1093/jac/dks019 PMID: 22351683

29. Berdal JE, Haagensen R, Ranheim T, Bjernholm JV. Nosocomial candidemia; risk factors and prognosis revisited; 11 years experience from a Norwegian secondary hospital. PLoS One. 2014; 9(7): e103916. https://doi.org/10.1371/journal.pone.0103916 PMID: 25079361

30. Bassetti M, Merelli M, Ansaldi F, de Florentiis D, Sartor A, Scarparo C, et al. Clinical and therapeutic aspects of candidemia: a five year single centre study. PLoS One. 2015; 10(5): e0127534. https://doi.org/10.1371/journal.pone.0127534 PMID: 26010361

31. Caggiano G, Coretti C, Bartolomeo N, Lovero G, De Giglio O, Montagna MT. Candida Bloodstream Infections in Italy: Changing Epidemiology during 16 Years of Surveillance. Biomed Res Int; 2015; 2015: 265680. https://doi.org/10.1155/2015/265680 PMID: 26064890

32. Barchiesi F, Orsetti E, Gesuita R, Skrami E, Manso E; Candidemia Study Group. Epidemiology, clinical characteristics, and outcome of candidemia in a tertiary referral center in Italy from 2010 to 2014. Infection. 2016; 44(2): 205–213. https://doi.org/10.1007/s10157-015-0845-z PMID: 26410297

33. Trouvé C, Blot S, Hayes MP, Jonckheere S, Patteet S, Rodriguez-Villalobos H, et al. Epidemiology and reporting of candidaemia in Belgium: a multi-centre study. Eur J Clin Microbiol Infect Dis. 2017; 36(4): 649–655. https://doi.org/10.1007/s10096-016-2841-3 PMID: 27858242

34. Kocmanová I, Lysková P, Chrenkova V, Olišárová P, Dobíáš R, Janouskovcová H, et al. Nosocomial candidemia in the Czech Republic in 2012–2015: results of a microbiological multicentre study. Epidemiol Mikrobiol Imunol. 2018; 67(1): 3–10. PMID: 30157661

35. Hirano R, Sakamoto Y, Kitazawa J, Yamamoto S, Kayaba H. Epidemiology, practice patterns, and prognostic factors for candidemia; and characteristics of fourteen patients with breakthrough Candida bloodstream infections: a single tertiary hospital experience in Japan. Infect Drug Resist. 2018; 11: 821–833. https://doi.org/10.2147/IDR.S156833 PMID: 29910625

36. Rodriguez L, Bustamante B, Huaro L, Agurto C, Illanes R, Ramirez R, et al. A multi-centric Study of Candida bloodstream infection in Lima-Callao, Peru: Species distribution, antifungal resistance and clinical outcomes. PLoS One. 2017, 12(4): e0175172. https://doi.org/10.1371/journal.pone.0175172 PMID: 28419092

37. Ding X, Yan D, Sun W, Zeng Z, Su R, Su J. Epidemiology and risk factors for nosocomial Non-Candida albicans candidemia in adult patients at a tertiary care hospital in North China. Med Mycol. 2019; 53(7): 684–690. https://doi.org/10.1093/mycol/myv060 PMID: 26229193

38. Braga PR, Cruz IL, Ortiz I, Barreiros G, Nouér SA, Nucci M. Secular trends of candidemia at a Brazilian tertiary care teaching hospital. Braz J Infect Dis. 2018; 22(4): 273–277. https://doi.org/10.1016/j.bjid.2018.07.008 PMID: 30118654

39. Dolf AM, Pignatari AC, Edmond MB, Marra AR, Camargo LF, Siqueira RA, et al. Epidemiology and microbiologic characterization of nosocomial candidemia from a Brazilian National Surveillance Program. PLoS One. 2016; 11(1): e0146909 https://doi.org/10.1371/journal.pone.0146909 PMID: 26808778

40. Poulat C, Nivoix Y, Launoy A, Lunten P, Bachelier P, Rohr S, et al. Assessment of high-priced systemic antifungal prescriptions. Med Mal Infect. 2017; 47(6): 382–388. https://doi.org/10.1016/j.medmal.2017.03.004 PMID: 28412043
41. Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013; 73 (9): 919–934. https://doi.org/10.1007/s40265-013-0069-4 PMID: 23729001

42. De Rosa FG, Corcione S, Filippini C, Raviolo S, Fossati L, Montruccchio C, et al. The Effect on mortality of fluconazole or echinocandins treatment in candidemia in internal medicine wards. PLoS One. 2015; 10(5): e0125149. https://doi.org/10.1371/journal.pone.0125149 PMID: 25938486

43. Sbrana F, Sozio E, Bassetti M, Ripoli A, Pieralli F, Azzini AM, et al. Independent risk factors for mortality in critically ill patients with candidemia on Italian Internal Medicine Wards. Intern Emerg Med. 2018; 13 (2): 199–204. https://doi.org/10.1007/s11739-017-1783-9 PMID: 29322386

44. Nucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL. Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis. 2010; 51: 561–570 https://doi.org/10.1086/655683 PMID: 20658942