Screening Thai plants for DNA protection, anti-collagenase and suppression of MMP-3 expression properties

Kittisak Buddhachat, Maslin Osathanunkul, Wipawan Pukumpuang, Kitti Pumiputavon, Korakot Nganwongpanit, Siriwan Ongchait, Yingmanee Tragooolpu, Weerah Wongkham, Phuping Sucharitakul, Siriwadee Chomdej

1Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 51000, Thailand
3Thailand Excellence Center for Tissue Engineering and Stem Cells and Center of Excellence for Innovation in Chemistry, Department of Biochemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

Article history:
Received 6 Nov 2014
Received in revised form 7 Jan 2015
Accepted 3 Mar 2015
Available online 23 Apr 2015

Keywords:
Matrix metalloproteinase-3
Osteoarthritis
Reporter gene
Phyllanthus niruri
Zingiber cassumunar
Zymography

ABSTRACT

Objective: To explore the suppression effect of six Thai plants on matrix-degrading enzymes such as collagenase and matrix metalloproteinases (MMPs).

Methods: Six Thai plant extracts, Phyllanthus niruri (P. niruri), Vernonia cinerea, Pluchea indica, Rhinocnthus nasutus (R. nasutus), Zingiber cassumunar (Z. cassumunar) and Cissus quadrangularis (C. quadrangularis) were tested for total phenolic content, antioxidant, DNA protection, anti-collagenase properties and inhibitory effects on IL-1β-activated MMP-3 expression. Additionally, the ethanolic extracts of P. niruri and Z. cassumunar were assessed for MMP-2 and -9 production using gelatin zymography.

Results: An evaluation of antioxidant activity and total phenolic content revealed that the ethanolic extract of P. niruri had the highest activity (72.17 and 93.05 mg gallic/g extract, respectively). The ethanolic extracts of P. niruri, Vernonia cinerea, R. nasutus and C. quadrangularis performed a strong activity of DNA protection against hydroxyl radicals. The extracts of C. quadrangularis, R. nasutus and P. niruri (IC50 = 0.3, 0.82 and 0.91 mg/mL, respectively) possessed good activity for the inhibition of bacterial collagenase activity. Using the promoter activity assay, the ethanolic extract of P. niruri and Z. cassumunar (IC50 = 26.24 and 27.82 μg/mL, respectively) decreased IL-1β-stimulated MMP-3 expression in human chondrosarcoma cells (SW1353) cells. Besides, both the ethanolic extracts of P. niruri and Z. cassumunar could alleviate the production of MMP-2 and -9 in IL-1β-activated SW1353.

Conclusions: Taken together, the ethanolic extract of P. niruri had several beneficial effects.

1. Introduction

Tissue remodelling is a common process occurring in a variety of tissues for the balance of the extracellular matrix (ECM). The key enzymes responsible for tissue remodelling are matrix degrading enzymes such as matrix metalloproteinases (MMPs).[1,2] Although these enzymes are typically produced under physiological conditions, the overproduction of these enzymes results in the pathogenesis of various diseases, such as osteoarthritis, tumor invasion and atherosclerosis.[3,4] The treatment of any ailments caused by an irregularity of ECM remodelling is, therefore, an inhibition of their production or activity. MMP-3 is potentially one of the most effective Zn2+-endopeptidases that could regulate ECM remodelling. Most substrates of MMP-3 involve the composites of ECM, such as collagen IV, aggrecan, gelatin, versican and proteoglycan-linked protein, etc. Several studies have reported that MMP-3 is associated with osteoarthritis, rheumatoid and cancer invasion.[1,5,6] Hence, MMP-3 is an interesting alternative target for the therapeutic treatment of various diseases like metastatic cancer, as well as osteoarthritis. Thus, in this study, we have constructed the reporter plasmid to determine the level of MMP-3 expression. Reporter gene technology is another effective tool in better understanding the relevant cellular events, especially the signal transduction pathways in controlling the gene expressions through both intracellular and extracellular stimulations. A n
example of a reporter gene would be the secreted embryonic alkaline phosphatase (SEAP) gene, which has been used as the reporter gene in raw 264.7 murine macrophages that express the SEAP gene stimulated by transcriptional activation of the noncanonical nuclear factor (NF)-κB and activator protein 1 (AP-1) to develop a screen for immunopharmacological activity of cell wall-active antifungal agents[7].

In recent years, the attention of natural products as supplementary agents[7].

Therefore, the purpose of this study was to determine the activities of six Thai plants extracted by ethanol and water, including Phyllanthus niruri L. (P. niruri), Vernonia cinerea Less. (V. cinerea), Pluchea indica Less. (P. indica), Rhinocarthus nasutus Karz (R. nasutus), Zingiber cassumunar Roxb. (Z. cassumunar) and Cissus quadrangularis Linn. (C. quadrangularis). The inhibitory effect of these plants on MMP-3 expression was observed, and their anti-collagenase activity and DNA protection ability were assessed.

2. Materials and methods

2.1. Chemicals and reagents

Human chondrosarcoma cells (SW1353) were obtained from American Type Culture Collection (Manassas, VA, USA). Dulbecco’s modified eagle’s medium (DMEM), trypsin-ethylene diamine tetraacetate acid, penicillin/streptomycin, fetal bovine serum (FBS), type II bacterial collagenase, Clostridium histolyticum and other cell culture materials were purchased from Gibco BRL, Life Technologies (USA). The 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent, 1,1-diphenyl-2-picrylhydrazyl (DPPH), gallic acid, Follic-Ciocalteau solution, para-nitrophenyl phosphate and dimethyl sulfoxide (DMSO) were purchased from Sigma Chemical Co. All other chemicals and solvents were of analytical grade.

2.2. Preparation of plant extracts

Medicinal plants used in this study as P. niruri (whole plant), V. cinerea (whole plant), P. indica (leaves), R. nasutus (leaves), Z. cassumunar (tumeric) and C. quadrangularis (stem) were purchased from Lampang Herb Conservation, Thailand. Plants and plant-materials were dried in a ventilated oven at 60 °C for 72 h, then ground and extracted using two solvents including distilled water, and 95% ethanol with the proportion of 1:10 (w/v). In brief, 250 g of each plant were extracted with distilled water at 45 °C for 3 h or macerated with 95% ethanol for 72 h with frequent agitation, at room temperature[12]. The plant extracts were filtered through Whatman’s No.1. The solvent was removed from the filtrate of the plant extracts by evaporation at 45 °C under reduced pressure at 50 mbar in a rotary evaporator (Buchi TM). The plant extracts were then dissolved in DMSO to give a concentration of 50 mg/mL.

2.3. Determination of total antioxidant activity using DPPH radical scavenging

The DPPH radical scavenging assay was conducted according to the modified method of Brand-Williams et al[13]. The extracts were dissolved with methanol in order to prepare various concentrations, then 0.5 mL of each concentration was incubated with 1.5 mL of 0.1 mmol/L methanolic solution of DPPH in the dark at room temperature for 20 min. The samples were subsequently determined at 517 nm. Methanol was used as a blank solution and DPPH without extract was used as a control. The percentage of free radical inhibition by the extract was calculated by the following equation: % Inhibition = [(A0 - A1) / A0] × 100, where A0 is the absorbance of control and A1 is the absorbance of the tested sample after treatment with extracts. Antioxidant activity of the extracts was expressed as gallic acid equivalent antioxidant capacity (GAE).

2.4. Determination of total phenolic content

The total phenolic compound contents were determined by Folin-Ciocalteau method[14]. Briefly, the plant extract was dissolved with methanol to obtain a concentration of 1 mg/mL. Afterwards, 250 μL of the extract was mixed with 1.25 mL of water and then 250 μL of 95% ethanol and 125 μL of 50% Folin-Ciocalteau were added and mixed thoroughly. The mixture was incubated for 5 min. Subsequently, 250 μL of 5% Na2CO3 was added and incubated for 1 h. The absorbance of the samples was recorded at 725 nm. The standard curve was prepared using a concentration range of 10-100 μg/mL solution of gallic acid. The equivalents were read off the straight line generated by linear regression. The value of the total phenolic content was expressed as gallic acid equivalent antioxidant capacity (GAE).

2.5. DNA protective assay

The plasmid pSEAP2-control (Clontech) DNA (200 ng) was incubated in H2O2 with and without the extracts to evaluate the effect of the extracts on the protection of plasmid before being exposed to UV-C irradiation (254 nm, 100 µJ/cm2) for 5 min[15]. The reaction mixtures (10 µL) were comprised of 2.5 mmol/L H2O2, 200 ng of super coiled pSEAP2-control, 10 or 100 μg/mL of the plant extracts (dissolved in DMSO) and deionized water. The vehicle control contained only 2% DMSO and 2.5 mmol/L H2O2. At the end of the reactions, the plasmid DNA from all samples was subjected in 1% agarose gel in 1 × Tris-acetate-Ethylene Diamine Tetraacetic Acid at 120 V for 40 min. The gel was stained by EtBr and visualized under a UV transilluminator to detect the conformations [super coiled (SC), open circular (OC) and linear (LIN)] of plasmid DNA.

2.6. Examination of plant extracts on the activity of bacterial collagenase type II

To evaluate the effect of six Thai plants extracts on bacterial collagenase, a colorimetric method for gelatinolytic assay was performed[16]. The reaction mixture was prepared in 20 μL in each well of a 96-well plate. Each experiment contained 1 × collagenase buffer (50 mmol/L Tris-HCl, 10 mmol/L CaCl2 and 0.15 mol/L NaCl),
100 ng bacterial collagenase and the plant extracts giving the final concentrations of 0.01-5.00 mg/mL after being incubated at 37 °C for 30 min. Each well was then added with 10 µg of gelatin and incubated at 37 °C for 4 h. The plant extracts were not included in the control group. Subsequently, an amount of gelatin remaining was quantified by the addition of the heated commassie brilliant blue, 20 µL, followed by shaking, either by hand or by a shaker for 5 minutes to mix the reagents. By pipetting, the supernatant was discarded and 50 µL of DMSO was added to dissolve the pellet. The plate was finally read for the absorbance at 600 nm. All experiments were done in triplicate. The inhibitory effect of these agents was expressed in percentage of the control and calculated with the following formula: \(\frac{(A_{600\text{ of sample}} - A_{600\text{ of blank}}) - (A_{600\text{ of control}} - A_{600\text{ of blank}})}{(A_{600\text{ of gelatin}} - A_{600\text{ of blank}})} \times 100 \), where \(A_{600\text{ of sample}} \) is the absorbance value of the sample tested with the agents at different concentrations, \(A_{600\text{ of control}} \) is the absorbance value of the sample without the agents, \(A_{600\text{ of gelatin}} \) is the absorbance value of total gelatin (10 µg) and \(A_{600\text{ of blank}} \) is the absorbance value of the well containing only commassie brilliant blue and DMSO.

2.7. Cell culture and viability measurement of plant extracts

SW1353 were cultured in DMEM supplemented with 10% FBS in the humidified atmosphere of 5% CO2 at 37 °C. Cells were seeded in 96-well plates at \(1 \times 10^4 \) cells/well. The plate was incubated overnight and was then exposed with the plant extracts at various concentrations ranging from 0 to 1000 µg/mL in a total volume of 100 µL, which were diluted in a two-fold series with serum-free DMEM. Cells in the control group were left untreated. All experiments were done in triplicate. After 3 days, cell viability was determined using tetrazolium compound that was MTT. The experiments were done in triplicate. After 3 days, cell viability was determined using tetrazolium compound that was MTT.

2.8. Construction and validation of MMP-3 reporter gene

Genomic DNA was extracted from human lung fibroblasts obtained from the Human and A nimal Cell Technology Research Unit by the phenol-chloroform method. The upstream regulatory element (URE) of MMP-3 was cloned with the PCR procedure using specific primers, MMP3-forward: 5'-GCC ACC ACT CTG TCC TTC TGG TCC T 3' and MMP3-reverse: 5'-TGA GCC CCC AGT GCT ACT GCT A 3'. The PCR product of MMP-3 URE was 2128 bp (interval of MMP-3 promoter used in this study form -1761 bp to +438 bp). The MMP-3 URE was attached to the SEAP reporter plasmid (PscaB-deleted pSEAP2-control; Clontech). The plasmid was called pMMMP3-SEAP (Figure 1). The constructed plasmid was transiently transfected into SW1353 obtained from the American Type Culture Collection. SW1353 were transiently transfected using 3 µL of X-tremEGENE HP DNA transfection reagent (Roche Applied Science, USA) mixed with two micrograms of pMMMP3-SEAP in 100 µL serum free DMEM. Then, the solution was transferred at 10 µL per well. The transfected cells were incubated in a 37 °C, 5% CO2 incubator for 24 h. Then the cells were treated with serum free DMEM containing either recombinant human interleukin (IL)-1β (1-50 ng/mL), or bacterial lipopolysaccharides (LPS; 0.1-10.0 µg/mL), for 48 h. The control groups were treated with only serum-free DMEM. All experiments were tested in triplicate per treatment. The cultured medium was collected to measure the SEAP activity as described by Berger et al.[17].

2.9. Real-time PCR

To establish whether pMMMP3-SEAP could be used in examining the expression level of MMP-3, the correlation between SEAP reporter gene assay and DNA binding sites at MMP-3, stromelysin IL-1-responsive element (SIRE), stromelysin PDGF responsive element (SPRE) and ETS (E26 transformation-specific or E-twenty six) binding sites (EBS), PEA 3 and AP-1.

2.10. The effect of doxycycline on IL-1β induced MMP-3 expression using promoter activity assay

Preliminary validation of the MMP-3 reporter plasmid system for the inhibitory effect of chemicals on MMP-3 expression was evaluated. Thereby, the transfectant cells were exposed with the different concentrations of doxycycline, giving final concentration of 1, 10, 50 and 100 µg/mL in serum free DMEM, containing 10 ng/mL of IL-1β. The control group was treated without doxycycline and the plate was incubated for 48 h. After incubation, the conditioned media was determined for SEAP activity.
2.11. Determination of plant extract on MMP-3 expression by promoter activity assay

SW1353 (3 × 10⁴ cells/well) were seeded into the 96-well plate and maintained in monolayer culture at 37 °C for 24 h, in DMEM supplemented 10% FBS. SW1353 were transiently transfected, using 3 µL of X-treamGENE HP DNA transfection reagent (Roche Applied Science, USA) with 2 µg pMMP3-SEAP, and then maintained at 37 °C in 5% CO₂ incubator for 24 h. The transfected cells were exposed, or not exposed, to plant extracts at various concentrations (1, 10, 50 and 100 µg/mL) in serum-free DMEM and co-stimulated with 10 ng/mL IL-1β for 48 h. Following that, the conditioned media were collected to measure SEAP activity. The control groups were treated only with serum-free DMEM containing 0.4% DMSO. All experiments were tested in triplicate. The results were expressed in IC₅₀.

2.12. SEAP activity assay

To assess SEAP activity, the collected conditioned medium in a 96-well plate was treated with chemical agents and incubated at 65 °C for 30 min to eliminate the endogenous alkaline phosphatase. Then, 100 µL of 4 mg/mL para-nitrophenyl phosphate in buffer (1 mol/L diethanolamine, 0.5 mmol/L MgCl₂, pH 9.8) was added and the mixture was incubated at 37 °C for 3-4 h, or until the color changed to yellow. The absorbance of the plate was then read at 405 nm. This protocol was modified from Berger et al.[17]. The MMP-3 expression was calculated in terms of fold induction by the following formula: fold induction = (A₄₅₀ of treatment - mean A₄₅₀ of blank) / (A₄₅₀ of control-mean A₄₅₀ of blank), where A₄₅₀ of treatment is the absorbance value of the sample tested with the agents (IL-1β and/or extracts) at different concentrations, A₄₅₀ of control is the absorbance value of the sample without agents and A₄₅₀ of blank is the absorbance value of medium alone.

2.13. Gelatin zymography assay

Gelatin zymography was performed for MMP-2 and -9 assay[18]. Conditioned media obtained from the cells, exposed with different concentrations of ethanolic extracts of P. niruri and Z. cassumunar, were precipitated with 2 volume of acetone and then incubated at 12 000 g at 4 °C for at least 1 h. Subsequently, the samples were centrifuged at 12 000 x g for 15 min 4 °C and were then resuspended in 20 µL of phosphate buffered saline. Afer that, they were mixed in a sample buffer containing 62.5 mmol/L Tris-HCl (pH 6.8), 10% glycerol, 2% sodium dodecyl sulphate, and 0.00625% (w/v) bromophenol blue and loaded, without being boiled, in 7.5% acrylamide: bisacrylamide mixture was incubated at 37 °C for 3-4 h, or until the color changed to yellow. The electrophoretic pattern of plasmid DNA (Figure 2) revealed the multimeric forms of plasmid DNA (super coiled, open circular and multimeric forms) in the gel. The consequences of total phenolic content assay revealed that the ethanolic extract of P. niruri had the highest total phenolic content, with (93.05 ± 0.55) mg gallic/g extract. Both ethanolic and aqueous extracts of C. quadrangularis had relatively low total phenolic content, with (27.94 ± 0.52) and (12.95 ± 0.21) mg gallic/g extract, respectively.

2.3. Protection effect of the plant extracts on the plasmid DNA

The electrophoretic pattern of plasmid DNA (Figure 2) revealed the multimeric forms of plasmid DNA (super coiled, open circular and linear) after UV-photolysis of H₂O₂ to generate hydroxyl radicals (·OH), a reactive oxygen species (ROS). The plasmid pSEAP-control DNA provided two bands: super coiled and open circular in the agarose gel. After the plasmid DNA was combined with H₂O₂, there were not any bands of DNA in the gel. This indicated that ·OH radicals could thoroughly damage DNA.

Table 2

Scientific name	Antioxidant (DPPH) (mg gallic/g extract)	Total phenolic content (mg gallic/g extract)		
	Ethanol	Water	Ethanol	Water
P. niruri	72.17 ± 1.09	10.05 ± 0.18	93.05 ± 0.55	31.37 ± 1.09
V. cinerea L.	16.48 ± 0.14	7.45 ± 0.10	29.06 ± 0.59	21.94 ± 0.17
P. indica L.	9.30 ± 0.26	1.77 ± 0.01	27.50 ± 0.66	13.83 ± 0.37
R. nasutus K.	16.53 ± 0.70	9.09 ± 0.24	33.13 ± 1.45	22.38 ± 0.49
Z. cassumunar R.	11.24 ± 0.35	0.76 ± 0.03	43.17 ± 0.67	11.35 ± 0.14
C. quadrangularis	6.01 ± 0.03	1.82 ± 0.02	27.94 ± 0.52	12.95 ± 0.21

*: Data obtained from Pukumpuang et al.[11].
molecules. However, UV-C irradiation contributed to DNA strand breaks resulting in the relaxation of the super coiled form to the linear form. The assay showed that all plant extracts had no activity on the protection of the plasmid DNA from UV-C irradiation, because the linear form could be found in all samples. However, these plant extracts could protect against the destruction of plasmid DNA from the *OH radical, particularly in the ethanolic extracts. Both ethanolic and aqueous extracts of *P. niruri*, at 100 µg/mL, possessed the greatest actions on the DNA defense against *OH radicals, whereas the plasmid DNA was damaged entirely at 10 µg/mL. The ethanolic extracts of *V. cinerea, R. nasutus* and *C. quadrangularis* seemed to possess relatively stronger activity than the aqueous extracts of them, while the results of the *P. indica* extracts were reversed. Additionally, it was found that the extract of *Z. cassumunar* in both ethanol and water had the weakest activity on DNA protection from the *OH radical.

![Figure 2](image2.png)
Figure 2. The effect of plant extracts on the inhibition of DNA fragmentation against hydroxyl radicals. Plasmid DNA (pSEAP2-control) were incubated with H$_2$O$_2$ and then irradiated by UV-C in the presence of 10 µg/mL (L) or 100 µg/mL (H) plant extracts. All stocks of the plant extracts were dissolved with DM SO. The vehicle control thus contained only 2% DM SO. PN: *P. niruri* L.; VC: *V. cinerea* Less.; PI: *P. indica* Less.; ZC: *Z. cassumunar* Roxb.. Their activities were expressed in terms of IC$_{50}$ (mg/mL).

3.3. The effect of plant extracts on the activity of bacterial collagenase, type II

Bacterial collagenase was incubated with gelatin as a substrate in the presence of the different concentrations of plant extracts ranging from 0-5 mg/mL. The results of the tests on the inhibitory effect of the extracts on the enzyme are shown in Figure 3. The results showed that the ethanolic extracts of *C. quadrangularis, R. nasutus* and *P. niruri* (IC$_{50}$ = 0.3, 0.82 and 0.91 mg/mL, respectively) possessed a strong anti-collagenase activity. Moderate anti-collagenase activities were exhibited by the aqueous extracts of *C. quadrangularis, P. niruri* and *Z. cassumunar*, as well as the ethanolic extract of *Z. cassumunar*, with IC$_{50}$ ranging from 1.02-1.81 mg/mL. Some plant extracts had no or less inhibition of collagenase activity (IC$_{50}$ > 5 mg/mL), such as *P. indica* and *V. cinerea* in water and ethanol extracts, as well as the aqueous extract of *R. nasutus*.

![Figure 3](image3.png)
Figure 3. Effect of the six plant extracts in water and ethanol solvents. A: Aqueous plant extracts; B: Ethanol plant extracts. CQ: *C. quadrangularis* Linn.; PI: *P. indica* Less.; PN: *P. niruri* L.; RN: *R. nasutus* Karz.; VC: *V. cinerea* Less.; ZC: *Z. cassumunar* Roxb.. Their activities were expressed in terms of IC$_{50}$ (mg/mL).

3.4. Validation of MMP-3 reporter plasmid to analyze the level of MMP-3 expression

The SEAP activity was found to have increased in a dose-dependent manner after treatment with MMP-3-induced factors, such as recombinant human IL-1β or LPS, indicating an up-regulation of MMP-3 expression (Figure 4A and 4B). These results showed that a significant increase over the control was found when either was incubated with recombinant human IL-1β or LPS, from the concentration ranges of 1-50 ng/mL or 0.1-10.0 µg/mL, respectively.

The results of the level of MMP-3 expression activated by IL-1β showed that the MMP-3 transcript was up-regulated in a dose-dependent manner, using real-time PCR. Furthermore, the MMP-3 expression determined by the MMP-3 promoter activity assay was correlated to the MMP-3 transcript, in terms of the log (normalized MMP-3 expression) by real-time PCR (Figure 4C). Furthermore, by the MMP-3 reporter plasmid system, it was found that doxycycline decreased the SEAP activity in a dose-dependent manner compared to the IL-1β treated group (Figure 4D), indicating that doxycycline tended to inhibit MMP-3 expression from IL-1β induction in SW1353.

Table 3

Scientific name	IC$_{50}$ of IL-1β-induced MMP-3 expression inhibition by promoter activity assay (µg/mL)	IC$_{50}$ of cytotoxicity on SW1353 cells (µg/mL)		
	Ethanol	Water	Ethanol	Water
P. niruri L.	26.94	>100	199.0	759.4
V. cinerea Less.	>100	74.26	626.0	>1000
P. indica Less.	60.54	36.78	357.2	>1000
R. nasutus Karz.	36.49	>100	321.5	>1000
Z. cassumunar Roxb.	27.82	ND	124.1	>1000
C. quadrangularis Linn.	ND	>100	754.4	>1000

ND = not determined.
3.5. Inhibitory effect of six Thai plant extracts on the viability cell and IL-1β induced MMP3 expression and the production of MMP-2 and -9

The cytotoxicity of plant extracts on SW1353 cells was assessed using MTT procedure, as expressed in IC₅₀. The range of cytotoxicity of six plant extracts was 124.1 to >1000 µg/mL. (Table 3). The results demonstrated that all ethanolic extracts had a higher level of cytotoxicity than the aqueous extracts. Among the aqueous extracts, the values of IC₅₀ were more than 1000 µg/mL. Moreover, the ethanolic extract of Z. cassumunar had more cytotoxicity than any of the others with 124.1 µg/mL. Therefore, we selected the range of concentrations for treatment on IL-1β-induced MMP-3 expression as 1, 10, 50 and 100 µg/mL.

![Graph showing the inhibitory effect of six Thai plant extracts on MMP-3 expression](Image)

Figure 4. The MMP-3 expression obtained by examining the SEAP activity in medium conditions of pMMP3-SEAP transfected SW1353 cells. A: Transfected SW1353 cells treated with LPS; B: Transfected SW1353 cells treated with IL-1β. Bar graphs show the varied inductions of MMP-3 when compared to the control group treated with serum free DMEM alone (mean ± SD, n = 3). Asterisk: *P < 0.05 and **P < 0.01. C: Correlation of IL-1β induced MMP-3 expression at mRNA level that was determined by two methods: real-time PCR (X axis) and SEAP reporter gene assay (Y axis). The points show the values of each group of both methods (0, 1, 10 and 50 ng/mL IL-1β in serum free DMEM). D: The inhibitory activity of doxycycline (Dox) on IL-induced MMP-3 expression by SEAP reporter gene assay in medium conditions from pMMP3-SEAP transfected SW1353 with 10 ng/mL IL-1β stimulation. Bar graphs show the induction of MMP-3. +: Present; -: Absent. The control groups were treated with serum free DMEM at 10 ng/mL IL-1β (mean ± SD, n = 3), ′: P < 0.05.

To determine whether the plant extracts have the inhibitory effect on IL-1β activated MMP-3 expression, the transiently transfected SW1353 cells were exposed with the plant extracts in the presence of 10 ng/mL of IL-1β (Table 3). The outcome of the treatment exhibited that the activity of these plant extracts was relatively greater in the ethanolic extracts than aqueous extracts. The greatest activity was found in the ethanolic extract of P. niruri, with 26.94 µg/mL. In addition, the ethanolic extract of Z. cassumunar (27.82 µg/mL) displayed slightly less activity than that of P. niruri. The ethanolic extract of R. nasutus (36.49 µg/mL) and the aqueous extract of P. indica (36.78 µg/mL) revealed quite high levels of activity, while the ethanolic extract of V. cinerea and the aqueous extracts of P. niruri and R. nasutus had values of IC₅₀ of more than 100 µg/mL, indicating that these possessed weak inhibitory effects on IL-1β-induced MMP-3 expression. The moderate effect of suppression on IL-1β-induced MMP-3 was revealed by the aqueous extract of V. cinerea (74.26 µg/mL) and the ethanolic extract of P. indica (60.54 µg/mL). There were two extracts (the aqueous extract of Z. cassumunar and the ethanolic extract of C. quadrangularis), for which the IC₅₀ could not be calculated, due to the fact that these extracts increased or remained at the level of MMP-3 expression.

Gelatin zymography were performed to assess the inhibitory activity of the ethanolic extracts of P. niruri and Z. cassumunar on the production of the MMP-2, and -9 in SW1353 cells activated by IL-1β. Their concentrations were used under the same conditions as those of MMP-3 expression. Consequently, the MMP-2 results were found to be greater than those of MMP-9, owing to the fact that MM-P-2 expresses constitutively in various tissues. Moreover, both extracts significantly decreased the levels of MMP-2 and -9 productions that are stimulated by IL-1β, following the dose-dependent manner (Figure 5). This indicated that both extracts possessed a level of potency on the reduction of both MMP-2 and -9 productions.

![Graph showing the inhibitory effect of ethanolic extracts on MMP-2 and -9 production](Image)

Figure 5. Gelatin zymography shows the effect of the ethanolic extract of P. niruri and Z. cassumunar on the production of MMP-2 and MMP-9 in IL-1β-activated SW1353 cells. PN: P. niruri; ZC: Z. cassumunar.

4. Discussion

The plant kingdom is one of the most important sources for bioactive compound discovery called naturally chemical library. The supplement foods, cosmetics and medicine derived from the extract of natural products, especially in plant kingdom, have been widely focused to be developed as marketing products because they are relatively safer than some synthetic drugs. Moreover, they are available and low cost for the screening of some Thai plants for antioxidant and total phenolic compounds. From the results, the ethanolic extract of P. niruri exhibited better antioxidant property than others. Fang et al.[19] reported that there were many bioactive ingredients in Phyllanthus urinaria, which has a very close relationship with P. niruri. The bioactive compounds methylvoroncarboylate, trimethyl-3,4-dehydrochebulate,
with cell growth\(^22\). Thus, it is indicated that, in normal conditions of the second messengers triggering a genetic program associated to enable quickly screening of any agents on MMP-3 expression promising assay for pharmaceutical applications.

Oxidative DNA damage can be resulted from ROS produced during normal metabolic processes inside the cell. DNA damage can cause and contribute to pathogenesis such as inflammatory response, aging, brain/nervous system and cancers\(^20\). The \(P. \text{niruri}\) extract could inhibit DNA fragmentation from "OH radical generated UV-induced \(\text{H}_2\text{O}_2\). ROS are implicated in cytotoxins, such as cell proliferation, apoptosis, and cell senescence\(^21\). \(\text{H}_2\text{O}_2\) in low concentrations is one of the second messengers triggering a genetic program associated with cell growth\(^22\). Thus, it is indicated that, in normal conditions of the cell, the production of \(\text{H}_2\text{O}_2\) naturally occur. "OH radical is derived from \(\text{O}_2^-\) and \(\text{H}_2\text{O}_2\) can contribute to the oxidative damage in the biological system\(^20\), in which the "OH radical can react with a number of target molecules including proteins, membrane lipids, as well as DNA molecules. Bioflavonoids (rutin, catechin and naringin), generally found in the plant kingdom, have effects on the inhibition of DNA fragmentation\(^15\).

Collagenase plays critical roles in physiological conditions. On the other hand, in the case of excessive collagenases, this leads to the pathogenesis of many diseases. Inhibition of the activity of collagenase is considered another way to ameliorate these ailments. It is notable that three out of the six plants exhibited anti-collagenase activity in both water and ethanol extracts, such as \(C. \quad \text{quadrangularis}\), \(Z. \quad \text{cassumunar}\) and \(P. \quad \text{niruri}\). The plant kingdom contains numerous bioactive compounds, especially polyphenolic compounds. These compounds exhibit various activities, such as antioxidant, anti-inflammatory, anti-microbial, anti-mutagenic and anti-proteolytic effects (anti-collagenase and anti- elastase). Catechin, epigallocatechin gallate and tannic acid have been proven to possess beneficial activities, such as anti-collagenase activity\(^15\). Curcumin (diferuloylmethane), a polyphenolic compound, is the chief component of the spice turmeric including \(Z. \quad \text{cassumunar}\), which could suppress collagenase activity. Isolated green tea polyphenols could possess beneficial activities, such as antioxidant, anti-inflammatory, anti-microbial, anti-mutagenic and anti-proteolytic effects (anti-collagenase activities, such as antioxidant, anti-inflammatory and antibacterial activity. Generally, the antioxidant activity of the plant extracts was related with the total phenolic content\(^10,11\).

Methylgallate and quercitrin have the great capacity for free radical scavenging using DPPH, while phyllanthin and phyltetralin displayed a relatively mild level of antioxidant activity. Furthermore, the ethanolic extract of \(P. \quad \text{niruri}\) has the highest total phenolic content which are considered the major secondary metabolite in the plant kingdom. They possess a wealth of useful biological functions such as antioxidant, anti-inflammation and antibacterial activity. The doxycycline could inhibit the increase of IL-1\(\beta\) induced MMP-3 expression in SW1353 using reporter gene assay, which was similar to the previous reports\(^25,26\). These results exhibited that pMMP3-SEAP has the potential to analyze the MMP-3 expression since the plasmid could respond to environmental stimulation in transfected SW1353 cells. Thus, this would suggest that a pMMP3-SEAP reporter gene plasmid was an ideal system for determining the MMP-3 expression, which could be useful for identifying active pharmacological agents and their relative potency.

Although there are now several chemicals that have been experimentally and clinically proven to be capable of attenuating both the activity and/or production on various MMPs and some have been clinically used as drugs in treatment, some have side effects depending on the individual and his/her race. Thus, the discovery of drugs from new sources is important in terms of the novel bioactive molecules, resulting in more efficient treatment. \(P. \quad \text{niruri}\) extract has been used for hepatoprotection, anticancer, anti-inflammation and anti-diabetic action as well as for the reduction of the quantity of hepatitis B virus in the blood. The standardized extract of \(P. \quad \text{niruri}\) was reported to inhibit the induction of inducible nitric oxide synthase, cyclooxygenase-2 and TNF- production by inhibiting NF-\(\kappa\)B activation. Besides, the stimulation of IL-1\(\beta\), IL-10 and interferon-\(\gamma\) were attenuated in human whole blood by \(P. \quad \text{niruri}\) extracts, which showed the anti-inflammatory action of \(P. \quad \text{niruri}\) extract\(^27\). Furthermore, geraniin, one of the chemical constituents of the \(P. \quad \text{niruri}\) extract, had an inhibitory effect on NF-\(\kappa\)B by blocking the phosphorylation of I kB and could reduce the increase in nitric oxide synthase levels in activated macrophages\(^28\). \(Z. \quad \text{cassumunar}\) has been widely used as a fork medicine for the treatment of various disorders, such as diseases accompanied by tissue inflammation, sprains, rheumatism, muscular pain, wounds and asthma. \(Z. \quad \text{cassumunar}\) is enriched with phenylbutanoids and cassumunols and is capable of anti-invasion of huma fibrosarcoma HT 1080 cells, especially (E)-1-(2,4,5-trimethoxyphenyl)buta-1,3-diene. Curcumin is a common upstream modulator of the transcriptional factors and signal transduction pathways, resulting in attenuating the expression of MMP-3 and the production of MMP-2 and -9. Further investigations involving the elucidation on the mechanism of the plant extracts on suppression of MMP-3 expression are needed.

The ethanolic extract of \(P. \quad \text{niruri}\) seemed to exhibit good effects on the suppression of DNA damage against hydroxyl radicals, anti-collagenase and the inhibitory effect on IL-1\(\beta\)-induced MMP-3 expression. Besides, it could reduce the production of MMP-2 and -9. It was indicated that \(P. \quad \text{niruri}\) had various effects. Hence, it could be a promising herbal agent to be used for pharmaceutical applications.
Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

This research was supported by funding from the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. We also thank the Science Achievement Scholarship of Thailand and the Graduate School, Chiang Mai University, Thailand.

References

[1] Kunicsh E, Kinne RW, Alsalamaj RJ, Alsalamaj S. Pro-inflammatory IL-1beta and/or TNF-alpha up-regulate matrix metalloproteinases-1 and -3 mRNA in chondrocyte subpopulations potentially pathogenic in osteoarthritis: in situ hybridization studies on a single cell level. *Int J Rheum Dis* 2014; doi: 10.1111/1756-185X.12431.

[2] Henrotin Y, Deberg MA, Creilaard JM, Piccardi N, Miska P, Sanchez C. Avocado soybean unsaponifiables prevent the inhibitory effect of osteoarthritic subchondral osteoblasts on aggrecan and type II collagen synthesis by chondrocytes. *J Rheumatol* 2006; 33: 1668-78.

[3] Djurić T, Živković M, Radak D, Jekić D, Radak S, Stojković L, et al. Association of MMP-3 5A/6A gene polymorphism with susceptibility to carotid atherosclerosis. *Clin Biochem* 2008; 41: 1326-29.

[4] Zhang M, Zhu GY, Gao HY, Zhao SP, Xue Y. Expression of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in gastric adenocarcinoma. *J Surg Oncol* 2011; 103: 243-7.

[5] Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. *Front Biosci* 2006; 11: 1696-701.

[6] Ghilardi G, Biondi ML, Caputo M, Di Giacomo C, Virgata G, et al. Bioflavonoids: antiradicals, antioxidants and DNA cleavage protectors. *Cell Biol Toxicol* 2000; 16: 91-8.

[7] Berger J, Hauber J, Hauber R, Geiger R, Cullen BR. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. *Gene* 1988; 66: 1-10.

[8] Sneek-van Beurden PA, Von den Hoff JW. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. *Biotechniques* 2005; 38: 73-83.

[9] Fang SH, Yao YK, Zhao YM. Antioxidant and inflammatory mediator's growth inhibitory effects of compounds isolated from *Phyllanthus urinaria*. *J Ethnopharmacol* 2008; 116: 333-40.

[10] Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM. Role of oxidative induced DNA lesions in human pathogenesis. *Mutat Res* 2010; 704: 152-9.

[11] Guiteridge JM. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate. *Biochem J* 1984; 224: 761-7.

[12] Arnold RS, Shi J, Murad E, Sun CQ, Polavarapu R, et al. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. *Proc Natl Acad Sci U S A* 2001; 98: 5550-5.

[13] Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. *Cytokine* 2008; 42: 145-51.

[14] Borghaei RC, Sullivan C, Mochan E. Identification of a cytokine-induced repressor of interleukin-1 stimulated expression of stromelysin 1 (MMP-3). *J Biol Chem* 1999; 274: 2126-31.

[15] Yao JS, Shen F, Young WL, Yang GY. Comparison of doxycycline and minocycline in the inhibition of VEGF-induced smooth muscle cell migration. *Neurochem Int* 2007; 50: 524-30.

[16] Seftor RE, Seftor EA, De Larco JE, Kleiner DE, Leferson J, Stetler-Stevenson WG, et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. *Clin Exp Metastasis* 1998; 16: 217-25.

[17] Kemper AK, Hartung T, Huber C, Vollmar AM. *Phyllanthus niruri* has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-kappaB pathway. *J Hepatol* 2003; 38: 289-97.

[18] Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theflavin-3,3'-digallate from black tea and other polyphenols through downregulation of IkappaB kinase activity in macrophages. *Biochem Pharmacol* 2000; 59: 357-67.

[19] Matsuoka H, Nakamura S, Iwami J, Li X, Pongpiriyadacha Y, Nakai M, et al. Inhibition by some Thai medicinal plants and their active ingredients of human pro-inflammatory response. *Chem Pharm Bull (Tokyo)* 2011; 59: 167-75.

[20] Kim SY, Jung SH, Kim HS. Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astrogliaoma cells. *Biochem Biophys Res Commun* 2005; 337: 510-6.