New solvable quantum mechanical potentials
by iteration of the free $V = 0$ potential

Pedro BLECUA, * Luis J. BOYA † and Antonio SEGUI ‡
Departamento de Física Teórica, Facultad de Ciencias
Universidad de Zaragoza.- E-50009 ZARAGOZA, Spain

June 20, 2018

Abstract

A huge family of solvable potentials can be generated by systematically exploiting the factorization (Darboux) method. Starting from the free case, a large class of the known solvable families is thus reproduced, together with new ones. We explicitly find and solve several new singular potentials obtained by iteration from the $V = 0$ case; some of them have an $E = 0$ bound state and constant phase shift without being explicitly scale invariant. The new potentials are rational functions, and can be related to rational solutions of the KdV family.

PACS # 03.65 (Fd,Ge,Nk)
1 Introduction

The search for solvable potentials in quantum mechanics is an old and large industry. In this paper we use the factorization method of Darboux ([1],[2]) to formally construct infinite families of fully solvable potentials, all related to the free $V(x) = 0$ case.

The essence of the method is the following. We start from a hamiltonian H_0 and a particular solution (E_0, ϕ_0) ($D \equiv \frac{d}{dx}$ will be used throughout the paper)

$$H_0 = -D^2 + V_0(x); \quad H_0\phi_0(x) = E_0\phi_0(x) \quad (1.1)$$

The solution ϕ_0 needs not to be physical, i.e. it might blow up at finite or infinite distances. Then we construct the partner potential

$$V_1(x) - E_0 = W''(x) + W''(x), \quad \text{with } \phi_o(x) \equiv \exp(-W(x)) \quad (1.2)$$

such that the new hamiltonian $H_1 = -D^2 + V_1(x)$ has as solutions

$$H_1\psi_k = E_k\psi_k \quad \text{where } \psi_k = A\phi_k, \quad A = D + W'(x) \quad \text{and } H_0\phi_k = E_k\phi_k \quad (1.3)$$

In other words, all the solutions (ϕ_k, E_k) of the first problem generate solutions $(A\phi_k, E_k)$ of the new problem. But as $A\phi_0 = 0$, the new solution is $\psi_0 = \phi_o^{-1}$. At times, some solutions have to be excluded by physical reasons.

We shall need also the second solution from the known one ψ_1 at the same energy; it is

$$\psi_2 = \psi_1 \int \psi_1^{-2} dx \quad (1.4)$$

These results are fairly well-known; for convenience of the reader we supply simple proofs of the above statements in Appendix I.

Our program is to start with the zero potential (free particle) $V(x) = V_0 = 0$ and iterate new potentials from its solutions. There are four types of different potentials, from four solutions as follows: [3]

$$(E = k^2 > 0, k = 1): \quad \phi = \cos(x), \Rightarrow V_1(x) = +2\sec^2(x)$$

$$(E = 0): \quad \phi = x, \Rightarrow V_1(x) = \frac{2}{x^2}$$
\[(E = -k^2 < 0, k = 1) : \phi = \cosh(x), \Rightarrow V_1(x) = -2 \cosh^{-2}(x) \]
\[\phi = \sinh(x), \Rightarrow V_1(x) = +2 \sinh^{-2}(x) \] (1.5)

Notice the last three "solutions" are unphysical; a fifth potential \(V_1(x) = 2 \csc^2(x) \) is just the first one displaced \(\frac{\pi}{2} \).

The complete solutions for these first-step potentials are obtained by pulling from the free solution by the corresponding \(A \) operator, see (1.3). Here we recall only the situation for one of the more important cases, providing the only case with a potential valid in the whole straight line \((-\infty, +\infty)\):

\[V(x) = -2 \cosh^{-2}(x), \quad W'(x) = -\tanh(x) \] (1.6)

There is a ground state

\[\psi_0 = \phi_0^{-1}(x) = \cosh^{-1}(x) \quad (unnormalized) \] (1.7)

and scattering solutions

\[\psi_k(x) = (D - \tanh(x)) \exp(ikx) = (ik - \tanh(x)) \exp(ikx) \] (1.8)

corresponding to a transparent (reflectionless) potential, with pure transmission

\[t(k) = \text{transmission} = \frac{ik - 1}{ik + 1} \] (1.9)

This potential is critical, having an \(E = 0 \) resonance; in fact, all transparent potentials are critical [4]; our potential (1.6) corresponds to a single soliton.

2 Study of a second-step potential

The power of the method can be seen now; as the \(V(x) = 0 \) case is trivially solvable for any energy \(E \), physical or unphysical, we have now four potentials, all fully solvable; and from each solution of each energy of each potential, we can in principle obtain a new, still fully solvable potential. In this paper we shall elaborate only in the families associated to the \(E = 0 \) (intermediate) case.

We start now from the "centrifugal" potential \(V(x) = \frac{2}{x^2} \) and recall the (unphysical!) solutions: one is \(\frac{1}{x} \), as \(\phi_0(x) = x \) is the starting solution for the
Figure 1: The potential (2.10), with two independent parts ($\mu \equiv 1$)

$V(x) = 0$, $E = 0$ case; the other is (cf. (1.4)) $\frac{1}{2} \int x^2 dx \sim x^2$. Although both solutions blow up at $x = 0$ and $x = \infty$ respectively, they are instrumental in obtaining a one-parameter family of bona-fide, physical potentials:

From the general $E = 0$ wavefunction $\phi(x) = \frac{a}{2} + bx^2$, with $W''(x) = -\frac{\phi'(x)}{\phi(x)}$ and $\mu \equiv \frac{a}{b} > 0$ we get the new, second-step potential family

$$V_\mu(x) = W'^2(x) + W''(x) = \frac{6x(x^3 - 2\mu)}{(x^3 + \mu)^2}$$

(2.10)

The new potential(s) is singular: it has a double pole at $x = -c$, $c \equiv \mu^{1/3}$, $0 < \mu < \infty$. For $x > -c$ it has an attractive part, and a repulsive tail; for $x < -c$ is purely repulsive; both interpolate between

$$V(x) \sim \frac{2}{(x + c)^2} \ (x \simeq -c) \ldots V(x) \sim \frac{6}{|x|^2} \ (x \to \pm \infty)$$

(2.11)

See Fig.1

Both $V_1 = \frac{2}{x^2}$ and our potential (2.10) correspond to some rational solutions of the KdV equation [5]; the relation is interesting and we elaborate on it in Appendix II.
Of course, the barrier at \(x = -c \) is impenetrable: we have two different physical problems.

1) **Case** \(x \geq -c \). A *bound state* candidate with \(E = -\kappa^2 < 0 \) would behave like \(\exp(-\kappa x) \) at large \(x \), so we try the \(E < 0 \) (unphysical) solution \(\phi(x) = \exp(-\kappa x) \) of the \(V(x) = 0 \) case and *prolongate it twice*, as explained above. We find

\[
\psi_0(x) = A_2 A_1 \phi(x) = \left(D - \frac{2x^3 - \mu}{x(x^3 + \mu)} \right) \exp(-\kappa x)
\]

\[
= (\kappa^2 + 3x \frac{1 + \kappa x}{\mu + x^3}) \exp(-\kappa x)
\]

For this wavefunction to be physical it has to be zero at the singularity: this leads to the eigenvalue equation \(1 + \kappa(x = -c) = 0 \). Hence there is a single bound state with energy \(E = -\kappa^2 \), \(\kappa = 1/c = \mu^{-1/3} \), and whose (un-)normalized wavefunction is

\[
\psi_0(x) = (1/c^2 + \frac{3x/c}{x^2 - cx + c^2}) \exp(-x/c) = \frac{(x/c + 1)^2}{x^2 - cx + c^2} \exp(-x/c)
\]

which behaves in the expected way for a ground state: nodeless, normalizable, decaying fast at \(x \to \infty \). By construction, this state is the only bound state.

For \(E = k^2 > 0 \) we have total reflection; we write the wavefunction as

\[
\psi_k(x) = A_2 A_1(a \exp(ikx) + b \exp(-ikx))
\]

and impose \(\psi_k(x = -c) = 0 \); this fixes \(a/b \) as a phase,

\[
a/b = \frac{1 - ikc}{1 + ikc} \exp(2ikc)
\]

From the asymptotic behaviour we extract the S-matrix as usual in scattering in one radial dimension

\[
\psi_k(x >> 0) \equiv \exp(-ik(x + c)) - S(k) \exp(ik(x + c))
\]

and comparing with (2.14), we derive

\[
S(k) = \frac{1 - ikc}{1 + ikc}
\]
Or, for the phase shift $S(k) \equiv \exp(2i\delta(k))$

$$\delta(k) = -\arctan(kc) \mod \pi$$ \hspace{1cm} (2.18)

which has to be interpreted carefully: with centrifugal tails $V(x) \to \frac{A}{x^2}$, for $x \gg 0$ the usual rule $\delta(\infty) = 0$ does not apply. The interpretation of (2.18) is as follows:

At $k = 0$, the bound state contributes $+\pi$ to the phase shift (Levinson's theorem) and the long tail ($x \gg 0$) of the potential, which is $6/x^2 \equiv l(l+1)/x^2$ ($l = 2$), contributes $-2(\pi/2)$; hence, $\delta(k = 0) = 0$. At very large k, the phase shift is dominated only by the short tail, still centrifugal $+2/(x+c)^2$, which should produce a $-\pi/2$ shift. All this is reproduced by (2.18) with the determination $\arctan(0) = 0$.

Notice the S-matrix (2.17) is about the simplest with the pole at the bound state $k = +i/c$: this is very similar to the forward amplitude for the solitonic scattering (1.9): it seems that the fact that there is a single bound state determines the phase shift, and other features of the potential are somehow irrelevant.

2) Case $x < -c$. Here there is also total reflection, but obviously no bound state, and an analogous calculation gives the S-matrix as inverse of the previous one, and we get

$$\delta(k) = +\arctan(kc) \mod \pi$$ \hspace{1cm} (2.19)

At $k = 0$ the long tail contributes $-2(\pi/2)$, hence we determine $\arctan(0) = -\pi$; as $k \to \infty$, the short tail dominates with $\delta(\infty) = -\pi/2$; of course, the only invariant statement is the difference, that is, the span $\Delta \equiv \delta(0) - \delta(\infty)$.

A surprising property of the potential (2.10) has to do with the golden ratio $\Phi \equiv (1 + \sqrt{5})/2$: for $x > 0$, the maximum x_M and minimum x_m of $V(x)$ in (2.10) are

$$x^3_m = (2 + 3\Phi), \quad x^3_M = (2 - 3/\Phi) = x^3_m \ (\Phi \to -1/\Phi)$$ \hspace{1cm} (2.20)

and the same happens for the values of the potential:

$$V(x_m) = 2\Phi \left(\frac{2 + 3\Phi}{1 + \Phi}\right)^{1/3}, \quad V(x_M) = V(x_m) \ (\phi \to -1/\Phi) \hspace{1cm} (2.21)$$

\footnote{It is well known, e.g. in 3D scattering, that a purely centrifugal potential $V_{cent} = l(l+1)/x^2$ produces a negative constant phase shift $\delta_{cent}(k) = -l\pi/2$}
While we do not fully understand this relation, we notice the same thing appears in the KdV for two solitons with velocities \(k_1 \) and \(k_2 \): \(\Phi = k_2/k_1 \), separates the overlapping and non-overlapping profiles ([5], p. 190; the discovery seems due to Lax) ; it is another intriguing connection between solitons and special potentials.

3 Some generalizations

For the next step we start with the potential \(V(x) = 6/x^2 \), take the general \(E = 0 \) solution \(\phi(x) = \mu/x^2 + x^3 \) and construct, as before, the new, interesting potential

\[
V(x) = \frac{2}{x^2} \frac{6x^{10} - 18\mu x^5 + \mu^2}{(x^5 + \mu)^2} \tag{3.22}
\]

that we plot in Fig.2

This potential contains three disconnected pieces:
- I- \(x > 0 \) . Attraction plus repulsion.
- II- \(-c < x < 0 \) . A confining potential (\(c \equiv \mu^{1/5} > 0 \))
- III- \(x < -c \) . A repulsive potential.
The solutions are again straightforward but tedious, the procedure to obtain them is as in the previous case, and we just indicate and quote the results:

I- $x > 0$. There is a single bound state with $k = 0$ and (unnormalized) wavefunction

$$\psi_0(x) = \frac{x^2}{\mu + x^5} = \phi^{-1}$$

(3.23)

and total reflection with wavefunction

$$\psi_R(x) = A_3 A_2 \phi_k(x)$$

(3.24)

with

$$A_3 = D + W' = D + \frac{2\mu - 3x^5}{x(\mu + x^5)}$$

(3.25)

and $A_2 = D - 2/x$, $A_1 = D - 1/x$. Hence, if $S(k)$ is the S-matrix for the previous $V(x) = 6/x^2$ and $\hat{S}(k)$ the new one,

$$\psi_k(x >> 0) = (D + W'(\infty))\Phi_k(x >> 0) = (D + W'(\infty))(\exp(-ikx) - S(k)\exp(ikx))$$

$$= N(\exp(-ikx) - \hat{S}(k)\exp(ikx)), \text{ hence}$$

$$\hat{S}(k) = S(k)(W'(\infty) + ik)/(W'(\infty) - ik) = (1)(-1) = -1$$

(3.26)

because $W'(\infty) = 0$ and $S(k)$, due to $2(2 + 1)/x^2$, is $= +1$. So

$$\hat{S}(k) = 1 \quad \text{or} \quad \delta(k) = \frac{\pi}{2} \text{ mod } \pi!$$

(3.27)

These results are worth commenting: First, the $E = 0$ bound state is obvious, because $A\phi = 0$ in the previous $V = 6/x^2$ potential implies $A^l\phi^{-1} = 0$, and ϕ^{-1} zero-less, normalizable. Because of the repulsive tail, it is a bona fide bound state, not an $E = 0$ resonance, so it will contribute $+\pi$ to Levinson’s theorem [7].

The constant phase shift is suspicious of some kind of scale invariance.

In fact, an scale-invariant bound state can exist if at all, at $E = 0$; this is our case! The interpretation of the phase shift “span” is this: for $k \rightarrow 0$, the bound state contributes $+\pi$, the long tail $12/x^2$ gives $-3\pi/2$: so $\delta(0) = -\pi/2$, or $S(k = 0) = -1$. At $k \rightarrow \infty$, the short tail contributes $-\pi/2$, so $\delta(k = \infty) = -\pi/2$, and the total span of $\delta(k)$ is zero (while it was $+\pi/2$ in the previous case).
It is remarkable that a variable (i.e., not purely centrifugal) potential, indeed supporting a \((E = 0!\) bound state is still “conformal” and produces constant phase shift. We offer the following explanation:

The previous potential \(V_0(x) = 6/x^2\) is manifestly scale invariant:

\[
[D, H_0] = -2H_0 \quad \text{where} \quad H_0 = -D^2 + V_0 = A^\dagger A
\]

(3.28)

and \(\hat{D} \equiv x \cdot D\) is a dilatation generator. Now

\[
H_1 = AA^\dagger = A \cdot (A^\dagger \cdot A) \cdot A^{-1} = A \cdot H_0 \cdot A^{-1}
\]

(3.29)

Hence

\[
[D_A, H_1] = -2H_1 \quad \text{with} \quad \hat{D}_A = A \cdot \hat{D} \cdot A^{-1}
\]

(3.30)

(Notice \(A\) is invertible outside the bound state). Now for \(x \gg 0\), \(W'(\infty) = 0\), so \(A = D + W' \to D\), and therefore

\[
\hat{D}_A \to D(x \cdot D)D^{-1} = x \cdot D + 1 = \hat{D} + 1
\]

(3.31)

That is: the traslated symmetry of the new hamiltonian still guarantees constancy of the phase shift.

To the best of our knowledge, this is a first case of a potential, not purely centrifugal, with constant phase shift.

II- \(-c < x < 0\). This confining potential produces of course an uninteresting, infinite ladder of bound states, reminiscent of the potential \(V(x) = -2 \cosh^{-2}(x)\) alluded to in Sect. 1. The eigenvalues are \(E_n = k_n^2\) where

\[
\tan(k_n c) = \frac{3k_n c}{3 - (k_n c)^2}
\]

(3.32)

which is a simple transcendent equation with infinite roots \(0 < k_1 < k_2 < k_3 < ...\) which tend to \(n\pi\) for \(n \gg 1\); hence the spectrum is asymptotically parabolic, as for a particle in an infinite box; this is to be expected, as the potential (also in the \(V(x) = 2 \sec^2(x)\) case) is negligible for higher excited wavefunctions. In fact, the normalizable wavefunctions can be written easily, but we refrain of doing it.

III- \(x < -c\). At the left, a purely repulsive potential produces only total reflection, and the S-matrix and the phase shift are computed to be

\[
S(k) = \frac{(kc)^2 - 3ikc - 3}{-(kc)^2 - 3ikc + 3}, \quad \tan(\delta + \pi/2) = \frac{-3kc}{(kc)^2 - 3}
\]

(3.33)
So the total span $\delta(0) - \delta(\infty)$ is now $= \pi$, and the phase shift is \textit{not} constant, going smoothly from $-3\pi/2$ to $-\pi/2$ in the interval $k = 0 \to k = \infty$. Of course, “conformal” invariance has been lost because the singular point is at $x = -c$, not at $x = 0$.

From the many possible generalizations, we consider in this paper just one more case: the general partner of the n-step manifest scale invariant potential $V_0(x) = n(n+1)/x^2$. The two $E = 0$ solutions (both unphysical again) are x^{n+1} and x^{-n}; so defining

$$\phi(x) = \mu/x^n + x^{n+1} \quad \mu > 0$$

(3.34)

the partner family is

$$V_\mu(x) = \frac{(n+1)(n+2)x^{2n+2} - 6\mu n(n+1)x^{2n+1} + \mu^2 n(n-1)}{x^2(\mu + x^{2n+1})^2}$$

(3.35)

which again exhibits the three regions as before. In particular

$$x > 0: \text{a partly attractive potential, which supports again just a bound state at zero energy}; \text{ total reflection occurs with (again) \textit{constant} phase shift.}$$

The bound state is ϕ^{-1}, of course, and it turns out that

$$S(k) = (-1)^{n+1}$$

(3.36)

by the same argument as before, namely $S(k) = -S_n(k)$, where $S_n(k)$ is the S-matrix for $V_0(x) = n(n+1)/x^2$, namely $S_n(k) = (-1)^n$.

We have therefore found and infinite family of “scale” invariant potentials, with a unique $E = 0$ normalizable bound state, and constant (in fact ± 1) S-matrix. The (modified) Levinson theorem applies; namely the span $\delta(0) - \delta(\infty)$ is zero; at low k, there is a $+\pi$ contribution from the bound state, and $-n(n+1)\pi/2$ value from the long tail. At large k, the short tail takes over, contributing $-(n-1)\pi/2$. The constancy of $\delta(k)$ comes, as before, from the appropriate conjugation of the manifest dilatation symmetry of the previous potential, just as in the worked-out case $n = 2$.

In the confining region $-c < x < 0$, with $c = +\mu^{1/(2n+1)} > 0$, there is a pure point spectrum, with again a limiting parabolic growth in the energy. The spectral equation is a natural generalization of (3.32); we state only the next case, $n = 3$; the transcendental eigenvalue equation is

$$\tan(kc) = \frac{7(kc)^3 - 105(kc)}{42(kc)^2 + 105}$$

(3.37)
Finally, in the pure repulsive part of the potential, \(x < -c \), there is only total reflection with a simply variable phase shift. The total span is

\[
\delta(0) - \delta(\infty) = -(n + 1)\pi/2 - (-\pi/2) = -n\pi/2 \quad (3.38)
\]

because the potential behaves like \(+2/(x + c)^2\) close to the pole. The exact S-matrix can be calculated as before. We just quote the result only again for \(n = 3 \):

\[
S(k) = \frac{42(kc)^2 + 105 - i(7(kc)^3 - 105(kc))}{(\text{complex conjugate})} \quad (3.39)
\]

The general \(S(k) \) starts at \(S(0) = +1 \) for \(n = 3, 5, 7, ... \), and \(S(0) = -1 \) for \(n \) even; it becomes \(S(\infty) = -1 \) after \(n \) half-turns. The phase shift connects smoothly \(-(n + 1)\pi/2 \) at \(k = 0 \) with \(-\pi/2 \) at \(k = \infty \).

We can see also why the first case \(n = 1 \) is special: at right the potential is \(+6/x^2\) for \(n = 2 \), and at \(x = 0 \) is \(V = 0 \), as \(n - 2 = 0 \) so in this case there are only two regions with no confining part.

4 Other potentials

Once the general procedure is understood, is a matter of mechanical calculations to find and to solve any other \(V = 0 \)-related potentials. We shall report on a full investigation elsewhere [11].

Here we just report that we can, by our procedure, recover many of the “shape invariant” potentials in the review Infeld-Hull paper [1]; in fact, all the families included in the “A-type” classification of [1]. The other types B...I are in some way degenerate: they include, among others, the oscillators, Kepler and Morse potentials, which are not directly connected to the \(V = 0 \) case, but still are “shape invariant” and solvable. As shown in [11], the Kepler problem is related to the \(V = 0 \) potential in a constant curvature (spherical for bound states) space.

The natural minimal generalization of \(V = 2/x^2 \) is obviously the centrifugal potential

\[
V(x) = \frac{n(n + 1)}{x^2} \quad n = 0, 1, 2... \quad (4.40)
\]

This is obtained from \(V = 0 \) by making use of the solutions \(x, x^2, x^3, ..., x^n \) in each step.
The minimal natural extension of $V = 2 \sec^2(x)$ is

$$V(x) = +n(n + 1) \sec^2(x) \quad n = 0, 1, 2... \quad (4.41)$$

The intertwining superpotential satisfies $W_n'(x) = n \tan(x)$, with $\phi_n(x) = \cos^n(x)$ as the generating wavefunction.; notice the energy scale gets displaced; this confining-potential family contains a pure discrete spectrum, approaching the parabolic infinite-box situation.

Similarly

$$V(x) = -n(n + 1) \cosh^{-2}(x) \quad n = 0, 1, 2... \quad (4.42)$$

comes from $W_n'(x) = -n \tanh(x)$ and $\phi_n(x) = \cosh^n(x)$.

There are n bound states and a $E = 0$ resonance, plus perfect transmission (no reflection); it is the well known “n-solitonic” potential, with all the elementary solitons on top of each other at $x = 0$ [5].

The final minimal family is

$$V(x) = +n(n + 1) \sinh^{-2}(x) \quad n = 0, 1, 2,... \quad (4.43)$$

This comes from $W_n'(x) = +n \coth(x)$ and $\phi_n(x) = \sinh^n(x)$. It corresponds to total reflection, with variable phase shifts, and no bound states.

All these four families are still exactly solved even for $n \to \lambda$ noninteger, by “prolongation” (see [1] or the review [8]) ; they are shape-invariant [12] and therefore included in [1]. As they are not related directly with the vacuum $V = 0$ case, we do not discuss them.

The only potential of “A” type of [1] not include so far is

$$V(x) = \frac{a + b \cos(x)}{\sin^2(x)} \quad (4.44)$$

This can still be also obtained in our scheme in the following, indirect way: the potential

$$V(x) = \frac{3/4}{\sin^2(x)} \quad (4.45)$$

is a prolongation of the $V_1(x) = 2 \csc^2(x)$ of § 1, and it admits the unphysical eigenfunction

$$\phi(x) = \sqrt{\sin(x)} \cot(x/2) \quad (4.46)$$
Hence the corresponding partner potential is, with \(W'(x) = -\cot(x/2) + \csc(x) \),

\[
V_1(x) = \frac{7/4 - 2\cos(x)}{\sin^2(x)}
\] (4.47)

which is of type (4.44). The energy of the unphysical solution \(\phi \) is \(+1/4\), whereas the ground state of (4.47) is \(\sin^{3/2}(x) \), with energy = \(+9/4\). We conclude that the “A” type family of Infeld-Hull [1] can be included also in our scheme of things.

5 Conclusion

The whole set of analytically soluble potentials (not to speak of the quasi-soluble ones [13]) is very, very large. In this paper we have shown how starting with the free case, \(V(x) = 0 \), and just by playing around with the unphysical solutions for \(E = 0 \) only, a large family is obtained; the generic case includes a confining potential defined in a segment of the line, a purely repulsive half-line defined potential, and an also half-line defined potential, supporting a \textit{bona fide} unique \(E = 0 \) bound state with trivial (i.e. constant \(= \pm 1 \)) S-matrix.

The natural generalization of the four different potentials obtained in the first step from \(V(x) = 0 \) includes all the non-degenerate cases in the Infeld-Hull series, if we include prolongations, that is, substituting \(n(n+1) \ n \in \mathbb{N} \), by \(\lambda(\lambda + 1) \) for arbitrary, real positive \(\lambda \). They correspond to solutions of the hypergeometric equation, which is also related to the \(SL(2, R) \) group. ; the degenerate I-H cases B...I (i.e. Coulomb,...) correspond to solutions of the \textit{confluent} hypergeometric equation.

There is still work in progress; we have not exhausted even the \(E = 0 \) family (for example, we can iterate the potential (3.35)!). As stated, we plan to report on other cases in a later publication; see also [11]

The two Appendices explain the Darboux method and elaborate on the KdV connection, as promised.
Acknowledgements

One of us (LJB) started this work some time ago in collaboration with A. del Sol, and we want to thank him for some early calculations. Discussions with Prof. M. Asorey and Dr. A. Ramos in our Department were clarifying. We have been partially supported by a grant MCyT FPA-2.000 # 1252.

A Appendix

We probe the results used in §1. From $H\Psi = (-D^2 + V)\Psi = E\Psi$, define

$$\exp(-W(x)) \equiv \Psi \quad (A.1)$$

W satisfies a Riccati first order equation $V - E = W'^2 - W''$: the scale invariance $\psi \to \lambda \psi$ becomes translation invariance for W, hence W itself does not appear in the new equation. ψ needs not to be physical, i.e. it can be singular. But now the hamiltonian factorizes:

$$-D^2 + W'^2(x) - W''(x) = (D + W'(x))(D + W'(x)) = A^\dagger A \quad (A.2)$$

with $A = D + W'(x)$. We obtain

$$A^\dagger A \Psi = (H - E)\Psi \quad (A.3)$$

The partner hamiltonian is defined as $H' = AA^\dagger + E$, so

$$H\phi' = E'\phi' = (A^\dagger A + E)\phi' \quad \Rightarrow \quad (AA^\dagger + E')A\phi' = E'A\phi' \quad (A.4)$$

For each solution (ϕ', E') of the former H we obtain a solution $(A\phi', E')$ of the new H'. Of course, ϕ' might be physically unacceptable. This is the essence of the method.

Now for the second solution. $\phi = \exp(-W)$ implies $A\phi = 0$, $A = D + W'$. Or $(\exp(-W) \cdot D \cdot \exp(+W)) \exp(-w) = 0$, hence $(\exp(+W) \cdot D \cdot \exp(-W))\phi^{-1} = 0$, $A^\dagger \phi^{-1} = 0$ so ϕ^{-1} corresponds to ϕ for $E' = E$. Now if ϕ' is the second solution of the original H with energy E, $A^\dagger A\phi' = 0$ but $A\phi' \neq 0$, hence $A\phi'$ is in the kernel of A^\dagger, and therefore

$$\exp(-W) \cdot D \cdot \exp(+W)\phi' = \exp(W), \quad \text{or} \quad \phi' = \phi \int \phi^{-2} dx \quad (A.5)$$

as stated.

The use of the second solution to generate new potentials seems to start with [9]; see also the previous work of Abraham and Moses [10].
Appendix

The KdV equation \((u = u(x,t), \ U_{,t} = \partial u / \partial t \text{ etc.})\)

\[
 u_{,t} = 6uu_{,x} - u_{,xxx} \tag{B.1}
\]
is one of the deformation equations associated to the Schrödinger equation, \(H(\mu) = -D^2 + u(x,\mu)\), where \(\mu(= t)\) is the deformation parameter. For this reason some simple solutions of KdV are interesting potentials for the linear problem; we take some results from [5]. The travelling wave solution \(u = u(x - vt)\)

\[
 u(x,t) = -(1/2)v \cosh^{-2}(\sqrt{v}(x - vt - x_0)) \tag{B.2}
\]
corresponds to our first step with \(E < 0\) and \(\phi = \cosh(x)\); it is the solitonic potential. Multisolitonic potentials correspond to iteration from this solution, but these are not considered in this paper.

Rational solutions of KdV are closer to our potentials; for example \(u = 2/x^2\) arises as the simplest t-independent rational solution, and it is our first potential from the \(E = 0\), \(\phi = x\) solution. The natural scaling invariance of KdV \(x \rightarrow \lambda x, \ t \rightarrow \lambda^3 t, \ u \rightarrow \lambda^{-2} u\) leads at once to the rational solution

\[
 u(x,t) = \frac{6x(x^3 - 24t)}{(x^3 + 12t)^2} \tag{B.3}
\]
which is our potential (2.10) (with \(\mu = 12t\)). Similarly the other rational potentials we obtain are connected with rational solutions of higher-order KdV-hierarchy equations; we shall report on a full investigation elsewhere.

References

[1] INFELD, L. and HULL, T. E.
 “The Factorization Method”
 Rev. Mod. Phys. *23*, 21-68 (1951)

[2] INCE, E. L.
 “Ordinary Differential Equations”
 Dover, N. Y. 1.956, pag. 132
[3] BOYA, L. J., WEHRHAHN, R. F. and RIVERO, A.
“Supersymmetry and Geometric Motion”
J. Phys. A 26, 5825-5834 (1993)

[4] BOYA, L. J.
“Supersymmetric Quantum Mechanics and Critical Potentials”
in Lect. Not. Phys. 313, p. 126 (Varna, 1987)

[5] DRAZIN, P. G. and JOHNSON, R. S.
“Solitons. An Introduction”
Cambridge U. P. 1989, p. 30

[6] BOHM, A., BOYA, L. J. and KMIECIK, M.
“Calculations with Supersymmetric Potentials”
Phys. Rev. D 35, 1255-1261 (1987)

[7] NEWTON, R. G.
“Scattering of Waves and Particles”
McGraw-Hill, N. Y. 1966

[8] COOPER, F., KHARE, A. and SUKHATME, U.
“Supersymmetry and Quantum Mechanics”
Phys. Rep. 251, 267-385 (1995)

[9] MIELNIK, B.
“Factorization Method and new potentials with the oscillator spectrum”
J. Math. Phys. 25, 3387-3389 (1984)

[10] ABRAHAM, P. B. and MOSES, H. E.
“Changes in potentials due to changes in the point spectrum...”
Phys. Rev. A 22, 1333-1340 (1980)

[11] BLECUA, P.
M. Sc. paper in preparation
[12] ANDRONOV, A. A., BORISOV, M. V. and IOFFE, M. I.
“Supersymmetric Mechanics: a new look at the equivalence of Quantum Systems”
Theor. and Math. Phys., 61, 965-972, (1984)

[13] USHERIDZE, A. G.
“Quasi-exactly Solvable Models in Quantum Mechanics”
(Bristol: IOP)