Supplemental Online Content

de Breuk A, Heesterbeek TJ, Bakker B, et al. Evaluating the occurrence of rare variants in the complement factor H gene in patients with early-onset drusen maculopathy. JAMA Ophthalmol. Published online October 14, 2021. doi:10.1001/jamaophthalmol.2021.4102

eTable 1. Age-related macular degeneration stages according to Rotterdam classification

eTable 2. Fifty-two AMD-associated variants included in GRS calculation

eTable 3. Relevant medical conditions EODM group

eTable 4. Patients with EODM carrying rare complement variants

eTable 5. Logistic regression analysis for the association of CFH rare variant carrierrship with EODM phenotype

eTable 6. Characteristics complete and incomplete data

eTable 7. Details of rare complement variants identified in patients with early-onset drusen maculopathy

eFigure 1. Patients with EODM with large colloid drusen and temporal drusen

eFigure 2. Genetic risk score distribution in EODM and AMD cohorts

eFigure 3. Patient with PRPH2 Arg142Trp mutation

eReferences

This supplemental material has been provided by the authors to give readers additional information about their work.

© 2021 de Breuk A et al. JAMA Ophthalmology.
eTable 1. Age-related macular degeneration stages according to Rotterdam classification

Grades Rotterdam classification	Definition
0	No signs of AMD or hard drusen (< 63 μm) only
1	Soft indistinct drusen (≥ 63 μm) or pigmentary abnormalities
2	Soft indistinct drusen (≥ 125 μm) or reticular drusen or soft indistinct drusen (≥ 63 μm) with pigmentary abnormalities
3	Soft indistinct drusen (≥ 125 μm) or reticular drusen with pigmentary abnormalities
4	Atrophic, neovascular or mixed AMD

Table detailing the different stages of age-related macular degeneration according to Rotterdam classification. AMD = age-related macular degeneration.
eTable 2. Fifty-two AMD-associated variants included in GRS calculation

Locus name	Variant	Alternative variant
ABCA1	rs2740488	
ACAD10/BRAP	rs61941274	rs61941272 (R² 1.0)
ADAMTS9-AS2	rs62247658	
APOE	rs429358	
APOE(EXOC3L2/MARK4)	rs73036519	
ARHGAP21	rs12357257	
ARMS2/HTRA1	rs3750846	
B3GALT2	rs9564692	
C2/CFB/SKIV2L	rs116503776/rs429608	
C2/CFB/SKIV2L	rs144629244/rs2746394	
C2/CFB/SKIV2L (PBX2)	rs114254831/rs204993	
C20orf85	rs201459901	rs117420707 (R² 0.99)
C3	rs2230199	
C3	rs147859257	
C3 (NRTN/FUT6)	rs12019136	rs17855739 (R² 0.95)
C9	rs62358361	
CETP	rs5817082	
CETP	rs17231506	
CFH	rs10922109	
CFH	rs570618	
CFH	rs121913059	
CFH	rs148553336	
CFH	rs187328863	rs79436252 (R² 1.0)
CFH	rs35292876	
CFH	rs191281603	
CFH (CFHR3/CFHR1)	rs61818925	rs61818924 (R² 0.80)
CFI	rs10033900	
CFI	rs141853578	
CNN2	rs67538026	rs113772652 (R² 0.996)
COL4A3	rs11884770	
COL8A1	rs140647181	
COL8A1	rs55975637	
CTRB2/CTRB1	rs72802342	rs55993634 (R² 0.89)
KMT2E/SRPK2	rs1142	
LIPC	rs2043085	
LIPC	rs2070895	
MIR6130/RORB	rs10781182	
MMP9	rs142450006	
NPL oc4/TSPAN10	rs6565597	
PIRLB/PILRA	rs7803454	
PRLR/SPEF2	rs114092250	rs74767144 (R² 0.77)
RAD51B	rs61985136	
RAD51B	rs2842339	
RDH5/CD63	rs3138141	
SLC16A8	rs8135665	
SYN3/TIMP3	rs5754227	
TGFBR1	rs1626340	
TMEM97/VTN	rs11080055	
TNFRSF10A	rs79037040/rs13278062	
TRPM3	rs71507014	
VEGFA	rs943080	

Table detailing the genetic variants included for calculation of the genetic risk score. AMD = age-related macular degeneration, GRS = genetic risk score.
eTable 3. Relevant medical conditions EODM group

Medical condition	No. of patients affected	Comments
C3 glomerulopathy (dense deposits disease [DDD] / membranoproliferative glomerulonephritis type 2 [MPGN type 2])	3	- Macular drusen can be observed in patients with C3 glomerulopathy.¹ ²
- Mutations in the complement factor H (CFH) gene are identified in patients with C3 glomerulopathy, as well as several single nucleotide polymorphisms (SNPs) in the CFH gene.¹ ³ ⁴ ⁵ |
| Membranoproliferative glomerulonephritis type 1 (MPGN type 1) | 1 | - In contrast to C3 glomerulopathy (complement-related), MPGN type 1 (immune complex related) is not associated with drusen. However, drusen are reported in 1 case report (patient with MPGN type 1).⁶ |
| Behcet’s Disease | 1 | - Ocular conditions associated with Behcet’s Disease include iritis, uveitis, retinal vasculitis, vitritis and optic neuropathy. Drusen are not associated with Behcet’s Disease. |
| X-linked agammaglobulinemia (XLA) | 1 | - XLA is characterized by a lack of antibodies, resulting in increased risk of infections. In literature, drusen are not associated with XLA. |

Table detailing medical conditions reported in early-onset drusen maculopathy patients that are relevant in light of this study.
eTable 4. Patients with EODM carrying rare complement variants

No.	Variant 1	Source variant 1	Variant 2	Source variant 2	Variant 3	Source variant 3
1	C9 Pro167Ser	WES				
2	CFH c.350+6T>G	Sanger				
3	CFH Gln408*	WES, smMIPs	C3 Arg735Trp	smMIPs, exome chip, KASPar		
4	CFH Gln408*	Sanger				
5	CFH Ala301Glnfs*22	smMIPs				
6	C3 Arg735Trp	KASPar				
7	C9 Cys54*	WES				
8	CFH 1697-17-8delATTTTACCTT	WES, Sanger				
9	CFH Ala161Ser	smMIPs, Sanger	CFH Gln950His	smMIPs, Sanger	C9 Met45Leu	smMIPs
10	CFH Gln400Lys	smMIPs, Sanger				
11	CFH Gly255Glu	smMIPs, Sanger				
12	CFH Ile184Leufs*33	smMIPs, Sanger				
13	CFH Gln950His	WES, exome chip				
14	CFI Gly188Ala	smMIPs, WES				
15	CFH Arg1078Ser	WES				
16	CFH Arg166Trp	smMIPs, WES				
17	CFH Trp858Arg	smMIPs, WES				
18	C3 Lys155Gln	smMIPs	CFH Gln950His	smMIPs	C9 Pro167Ser	smMIPs
19	C9 Val69Ile	smMIPs				
20	CFH Ala425Val	smMIPs				
21	CFH Tyr243His	smMIPs	CFB Lys533Arg	smMIPs		
22	CFH Tyr916*	smMIPs, Sanger				
23	CFI Pro50Ala	smMIPs, Sanger				
24	CFH Cys357Ser	smMIPs, Sanger				
25	CFH Gln376*	smMIPs, Sanger				
26	C9 Pro167Ser	smMIPs				
27	CFH Gly255Glu	smMIPs, Sanger				
28	CFH Lys204Thrfs*26	smMIPs, Sanger				
29	CFH Arg175Gln	smMIPs, KASPar				
30	CFH Arg303Gln	smMIPs, WES	CFH Ser193Leu	smMIPs, WES		
31	CFH Leu3Val	WES, smMIPs				
No.	Variant 1	Source variant 1	Variant 2	Source variant 2	Variant 3	Source variant 3
-----	-----------------	----------------------	-----------------	------------------	-----------	------------------
32	CFH Arg303Gln	WES, exome chip	CFH Ser193Leu	WES, KASPar		
33	C3 Ser1619Arg	smMIPs				
34	CFH Gln950His	smMIPs, WES	C3 Arg735Trp	smMIPs, WES		
35	CFH Gln846Arg	smMIPs, WES, Sanger				

Table detailing the 35 patients with early-onset drusen maculopathy carrying one or more rare variants in the complement genes CFH, CFI, CFB, C3 or C9, and the corresponding genotype platform where the variant was identified. CFH = complement factor H, CFI = complement factor I, CFB = complement factor B, C3 = complement 3, C9 = complement 9, WES = whole exome sequencing, smMIPs = single molecule molecular inversion probes; empty cells indicate no additional variants were identified.
eTable 5. Logistic regression analysis for the association of CFH rare variant carriership with EODM phenotype

Variable	OR	95% CI	P value
CFH rare variant carriership			
No [reference]	1	-	-
Yes	7.209	2.657-19.562	<.001
Sex			
Male [reference]	1	-	-
Female	2.342	1.163-4.717	.02
Smoking status			
Never [reference]	1	-	-
Past	0.376	0.175-0.809	.01
Current	0.734	0.282-1.909	.53

Table detailing the results of the binary logistic regression analysis for the association of CFH rare variant carriership with EODM phenotype, adjusted for sex and smoking status. CFH = complement factor H, OR = odds ratio, CI = confidence interval.
eTable 6. Characteristics complete and incomplete data

	Complete data	Incomplete data
	EODM (n = 89	AMD (n = 91
	[178 eyes])	[182 eyes])
	EODM (n = 81	AMD (n = 82
	[162 eyes])	[164 eyes])
Sex, No. (%)		
Male	31 (34.8)	46 (50.5)
Female	58 (65.2)	45 (49.5)
CFH rare variant carrier, No. (%)	27 (30.3)	7 (7.7)
Predominant drusen type in grid, No. of eyes (%)	26 (32.1)	6 (7.3)
Hard drusen	1 (0.6)	4 (2.2)
Soft drusen < C1	10 (5.6)	23 (12.6)
Soft distinct drusen	8 (4.5)	29 (15.9)
Soft indistinct drusen	154 (86.5)	75 (41.2)
Reticular drusen	3 (1.7)	27 (14.8)
Cannot grade or not applicable	2 (1.1)	24 (13.2)
Largest drusen size within grid, No. of eyes (%)	2 (1.9)	24 (14.6)
< C0 (63 μm)	1 (0.6)	5 (2.7)
< C1 (125 μm)	23 (12.9)	24 (13.2)
< C2 (250 μm)	49 (27.5)	48 (26.4)
≥ C2 (250 μm)	98 (55.1)	90 (55.6)
Reticular	4 (2.2)	26 (14.3)
Cannot grade or not applicable	3 (1.7)	26 (14.3)
Small drusen in grid, No. of eyes (%)	53 (29.8)	54 (29.7)
Absent	121 (68.0)	104 (57.1)
Present	13 (7.1)	107 (66.0)
Cannot grade or not applicable	9 (5.6)	90 (54.9)
Intermediate drusen in grid, No. of eyes (%)	9 (5.6)	13 (7.9)
Absent	165 (92.7)	145 (79.7)
Present	13 (7.1)	150 (92.6)
Cannot grade or not applicable	4 (2.2)	24 (13.2)
Large drusen in grid, No. of eyes (%)	24 (13.5)	24 (14.2)
Absent	151 (84.8)	124 (68.1)
Present	13 (7.1)	136 (84.0)
Cannot grade or not applicable	4 (2.2)	108 (65.9)
Proportion of grid area covered by drusen, No. of eyes (%)	24 (14.8)	32 (19.5)
0 to 10 %	45 (25.3)	42 (25.9)
10 to 50 %	103 (57.9)	94 (58.0)
> 50 %	27 (15.2)	24 (14.9)
Cannot grade or not applicable	3 (1.7)	23 (14.2)
Drusen outside grid, No. of eyes (%)	24 (13.5)	22 (13.6)
Absent	153 (86.0)	139 (85.2)
Present	13 (7.1)	138 (85.2)
Cannot grade or not applicable	2 (1.1)	2 (1.2)
Increased pigment, No. of eyes (%)	2 (1.1)	2 (1.2)

© 2021 de Breuk A et al. *JAMA Ophthalmology.*
	Complete data	Incomplete data		
RPE degeneration, No. of eyes (%)	EODM (n = 89 [178 eyes])	AMD (n = 91 [182 eyes])	EODM (n = 81 [162 eyes])	AMD (n = 82 [164 eyes])
Absent	112 (62.9)	142 (78.0)	101 (62.3)	130 (79.3)
< C2 (250 μm)	15 (6.4)	10 (6.5)	14 (8.6)	8 (4.9)
≥ Central grid	36 (20.2)	22 (12.1)	32 (19.8)	21 (12.8)
Cannot grade or not applicable	12 (6.7)	2 (1.1)	12 (7.4)	2 (1.2)
Geographic atrophy, No. of eyes (%)	Absent	Present	Cannot grade or not applicable	
Absent	141 (79.2)	109 (59.9)	126 (77.8)	97 (59.1)
Present	36 (20.2)	72 (39.6)	35 (21.6)	66 (40.2)
Cannot grade or not applicable	1 (0.6)	1 (0.5)	1 (0.6)	1 (0.6)
Choroidal neovascularization, No. of eyes (%)	Absent	Present	Cannot grade or not applicable	
Absent	132 (74.2)	119 (65.4)	122 (75.3)	107 (65.2)
Present	41 (23.0)	62 (34.1)	35 (21.6)	56 (34.1)
Cannot grade or not applicable	5 (2.8)	1 (0.5)	5 (3.1)	1 (0.6)
Serous detachment (if CNV), No. of eyes (%)	Absent	Present	Cannot grade or not applicable	
Absent	11 (26.8)	16 (25.8)	11 (31.4)	16 (28.6)
Present	24 (58.5)	45 (72.6)	21 (60.0)	39 (69.6)
Cannot grade or not applicable	6 (14.6)	1 (1.6)	3 (8.6)	1 (1.8)
Subretinal hemorrhage (if CNV), No. of eyes (%)	Absent	Present	Cannot grade or not applicable	
Absent	35 (85.4)	44 (71.0)	31 (88.6)	40 (71.4)
Present	2 (4.9)	18 (25.8)	2 (5.7)	14 (25.0)
Cannot grade or not applicable	4 (9.8)	2 (3.2)	2 (5.7)	2 (3.6)
Fibrous scar (if CNV), No. of eyes (%)	Absent	Present	Cannot grade or not applicable	
Absent	13 (31.7)	12 (19.4)	9 (25.7)	9 (16.1)
Present	26 (63.4)	49 (79.0)	25 (71.4)	46 (82.1)
Cannot grade or not applicable	2 (4.9)	1 (1.6)	1 (2.9)	1 (1.8)
Hard exsudates (if CNV), No. of eyes (%)	Absent	Present	Cannot grade or not applicable	
Absent	33 (80.5)	39 (62.9)	29 (82.9)	35 (62.5)
Present	4 (9.8)	23 (37.1)	4 (11.4)	21 (37.5)
Cannot grade or not applicable	4 (9.8)	0 (0.0)	2 (5.7)	0 (0.0)

Table detailing characteristics in the complete and incomplete dataset due to missing smoking status in 17 patients. Chi-square tests and t-tests were performed between a dummy variable for smoking (0 = missing; 1 = observed) and other variables in the dataset (category, sex, GRS, disease stage, CFH rare variant carriership). Smoking status was missing at random, as missingness on this variable was not related to the values of the other variables in the dataset (category, sex, GRS, disease stage, CFH rare variant carriership). Multiple imputation was not performed. AMD = age-related macular degeneration, EODM = early-onset drusen maculopathy, CNV = choroidal neovascularization, CFH = complement factor H.
eTable 7. Details of rare complement variants identified in patients with early-onset drusen maculopathy

Chr	Position	Gene	Nucleotide change	Protein change	PhyloP	CADD_Phred	Grantham Score	Functional effect
1	196621254	CFH	7C>G	Leu3Val	0.004	11.9	32	Unknown
1	196643098	CFH	350+6T>G	-	2.744	20.4	0	Noncoding splice site variant, predicted to severely affect splicing⁷
1	196646659	CFH	481G>T	Ala161Ser	-0.839	12.1	99	Normal FH levels⁸
1	196646674	CFH	496C>T	Arg166Trp	-0.047	22.2	101	Unknown
1	196646702	CFH	524G>A	Arg175Gln	-0.059	0.019	43	Reduced ability to degrade C3b⁹
1	196646728	CFH	550delA	Ile184Leufs*33	-100	15.04	0	Frameshift variant
1	196646756	CFH	578C>T	Ser193Leu	1.024	23.1	145	Reduced ability to degrade C3b⁹
1	196646782	CFH	607 610dup	Lys204Thrfs*26	0.193	33	1000	Frameshift variant
1	196648860	CFH	727T>C	Tyr243His	0.141	11.72	83	Unknown
1	196648897	CFH	764G>A	Gly255Glu	3.912	23.9	98	Unknown
1	196654304	CFH	901delG	Ala301Glnfs*22	-100	11.31	0	Frameshift variant
1	196654311	CFH	908G>A	Arg303Gln	-1.875	0.229	43	Normal FH, FI and C3 plasma levels¹⁰
1	196658654	CFH	1069T>A	Cys357Ser	3.961	23.3	112	Unknown
1	196658711	CFH	1126C>T	Gln376*	-1.265	34	1000	Protein-truncating variant
1	196659231	CFH	1198C>A	Gln400Lys	-2.435	0.015	53	Lower FH levels⁴
1	196659255	CFH	1222C>T	Gln408*	0.317	34	1000	Protein-truncating variant
1	196659307	CFH	1274C>T	Ala425Val	-1.015	0.001	64	Unknown
1	196694235	CFH	1697-17del	0	2.065	4.57	0	Noncoding splice site variant, predicted to affect splicing⁹
1	196706077	CFH	2537A>G	Gln846Arg	0.403	10.67	43	Unknown
1	196706112	CFH	2572T>A	Trp858Arg	4.743	24.9	101	Unknown
1	196706756	CFH	2748C>G	Tyr916*	-0.619	35	1000	Protein-truncating variant
1	196709816	CFH	2850G>T	Gln950His	-0.273	14.41	24	Normal FH levels, normal cofactor binding for FI¹¹
1	196712682	CFH	3234G>T	Arg1078Ser	-6.447	1.728	110	Unknown
4	110687890	CFI	148C>G	Pro50Ala	5.75	24.8	27	Reduced FI levels¹²
4	110682768	CFI	563G>C	Gly188Ala	5.386	24.3	60	Reduced FI levels; reduced ability to degrade C3b¹³
5	39342243	C9	133A>T	Met45Leu	0.44	15.22	15	Elevated C9 levels, but normal TCC levels¹⁴
5	39342214	C9	162C>A	Cys54*	1.273	35	1000	Protein-truncating variant
5	39341781	C9	205G>A	Val69Ile	0.028	11.24	29	Unknown
5	39331894	C9	499C>T	Pro167Ser	3.414	23.9	74	Elevated C9 levels¹⁴

© 2021 de Breuk A et al. JAMA Ophthalmology.
Chr	Position	Gene	Nucleotide change	Protein change	PhyloP	CADD_Phred	Grantham Score	Functional effect
Chr 6	31918154	CFB	1598A>G	Lys533Arg	3.242	15.95	26	Unknown
Chr 19	6718146	C3	463A>C	Lys155Gln	-0.429	14.8	53	Decreased binding of C3b to CFH¹⁵
Chr 19	6707129	C3	2203C>T	Arg735Trp	0.721	23.1	101	Normal MCP binding, FI cofactor activity, FB and FH binding¹⁶
Chr 19	6678030	C3	4855A>C	Ser1619Arg	0.671	22.5	110	Unknown

Table detailing the annotation, prediction scores and functional effects of the identified rare complement variants. Chr = chromosome, CADD = combined annotation dependent depletion, CFH = complement factor H, CFI = complement factor I, CFB = complement factor B, C3 = complement 3, C9 = complement 9, FH = factor H, FI = factor I, FB = factor B, MCP = membrane cofactor protein.
eFigure 1. Patients with EODM with large colloid drusen and temporal drusen

Figure detailing three examples of EODM patients with large colloid drusen and two examples of patients with drusen located temporal to the macula. Panel A: color fundus photographs of all three patients showed large yellow lesions. The location of the lesions varied from predominantly outside the vascular arcades (panel A3), to predominantly temporal to the macula (panel A2) and spread across the whole posterior pole (panel A1). Fundus autofluorescence images showed hyperautofluorescent lesions surrounded by hypoautofluorescent halos. Infrared reflectance images showed white round lesions surrounded by dark halos. Optical coherence tomography scans showed dome-shaped sub-retinal pigment epithelium deposits (panels A1 and A2; in panel A3 the central macula was dominated by atrophy). The patient in panel A2 is carrier of rare variants in the complement factor H (CFH) gene (Gln950His) and in the Complement 3 (C3) gene (Arg735Trp). Panel B1: color fundus photographs of a 47-year-old female with drusen located temporal to the fovea. Panel B2: color fundus photographs of a 41-year-old female with drusen isolated temporal to the fovea. Numbers in the right upper corner of each panel represent the age of the patient. The genetic risk score (GRS) is depicted in the right bottom corner of each panel.

© 2021 de Breuk A et al. JAMA Ophthalmology.
eFigure 2. Genetic risk score distribution in EODM and AMD cohorts

Panel A: all disease stages (RC 1-4)
- EODM (n = 72)
 - GRS, Mdn (IQR): 1.03 (0.16 - 1.94)
- AMD (n = 87)
 - GRS, Mdn (IQR): 1.50 (0.84 - 2.94)

Panel B: early and intermediate (RC 1-3) disease stages
- EODM (n = 36)
 - GRS, Mdn (IQR): 0.53 (0.14 - 1.95)
- AMD (n = 15)
 - GRS, Mdn (IQR): 1.42 (0.48 - 2.06)

Panel C: late (RC 4) disease stages
- EODM (n = 34)
 - GRS, Mdn (IQR): 1.34 (0.18 - 2.09)
- AMD (n = 72)
 - GRS, Mdn (IQR): 1.87 (1.03 - 2.84)

Figure detailing the distribution of the genetic risk score between patients with early onset drusen maculopathy and age-related macular degeneration. Panel A: all disease stages (RC 1-4), Panel B: only early and intermediate (RC 1-3) disease stages, Panel C: only late (RC 4) disease stages. Red dotted lines represent the median GRS. EODM = early onset drusen maculopathy, AMD = age-related macular degeneration, GRS = genetic risk score, RC = Rotterdam classification, Mdn = median, IQR = interquartile range.
Figure detailing a 48-year-old female primarily diagnosed with early onset drusen maculopathy. Panel A: color fundus photographs showed small yellow deposits and retinal pigment epithelium alterations in the fovea. Optical coherence tomography images showing small elevations of the retinal pigment epithelium in and around the fovea. Panel B: follow-up images of the same patient after two years. Optical coherence tomography images showed a serous detachment in the fovea in both eyes. Numbers in the right upper corner of each panel indicate the age of the patient. The genetic risk score is depicted in the right bottom corner of panel A. GRS = genetic risk score.
1. Appel GB, Cook HT, Hageman G, et al. Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. *J Am Soc Nephrol.* 2005;16(5):1392-1403.

2.Dalvin LA, Fervenza FC, Sethi S, Pulido JS. Manifestations of Complement-Mediated and Immune Complex-Mediated Membranoproliferative Glomerulonephritis: A Comparative Consecutive Series. *Ophthalmology.* 2016;123(7):1588-1594.

3. Abrera-Abeleda MA, Nishimura C, Smith JL, et al. Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). *J Med Genet.* 2006;43(7):582-589.

4. Dragon-Durey MA, Fremeaux-Bacchi V, Loirat C, et al. Heterozygous and homozygous factor H deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. *J Am Soc Nephrol.* 2004;15(3):787-795.

5. van de Ven JP, Boon CJ, Fauser S, et al. Clinical evaluation of 3 families with basal laminar drusen caused by novel mutations in the complement factor H gene. *Arch Ophthalmol.* 2012;130(8):1038-1047.

6. Han DP, Sievers S. Extensive drusen in type I membranoproliferative glomerulonephritis. *Arch Ophthalmol.* 2009;127(4):577-579.

7. Boon CJ, Klevering BJ, Hoyng CB, et al. Basal laminar drusen caused by compound heterozygous variants in the CFH gene. *Am J Hum Genet.* 2008;82(2):516-523.

8. Servais A, Noël LH, Roumenina LT, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. *Kidney Int.* 2012;82(4):454-464.

9. Geerlings MJ, Kremlitzka M, Bakker B, et al. The Functional Effect of Rare Variants in Complement Genes on C3b Degradation in Patients With Age-Related Macular Degeneration. *JAMA Ophthalmol.* 2017;135(1):39-46.

10. Fakhouri F, Jablonski M, Lepercq J, et al. Factor H, membrane cofactor protein, and factor I mutations in patients with hemolysis, elevated liver enzymes, and low platelet count syndrome. *Blood.* 2008;112(12):4542-4545.

11. Mohlin FC, Nilsson SC, Levar TK, et al. Functional characterization of two novel non-synonymous alterations in CD46 and a Q950H change in factor H found in atypical hemolytic uremic syndrome patients. *Mol Immunol.* 2015;65(2):367-376.

12. Kavanagh D, Yu Y, Schramm EC, et al. Rare genetic variants in the CFI gene are associated with advanced age-related macular degeneration and commonly result in reduced serum factor I levels. *Hum Mol Genet.* 2015;24(13):3861-3870.

13. van de Ven JP, Nilsson SC, Tan PL, et al. A functional variant in the CFI gene confers a high risk of age-related macular degeneration. *Nat Genet.* 2013;45(7):813-817.

14. Kremlitzka M, Geerlings MJ, de Jong S, et al. Functional analyses of rare genetic variants in complement component C9 identified in patients with age-related macular degeneration. *Hum Mol Genet.* 2018;27(15):2678-2688.

15. Seddon JM, Yu Y, Miller EC, et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. *Nat Genet.* 2013;45(11):1366-1370.

16. Frémeaux-Bacchi V, Miller EC, Liszewski MK, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. *Blood.* 2008;112(13):4948-4952.