Personalised prophylaxis to meet a wide range of activity demands according to patients’ PK profile1–5

ADYNOLI is indicated for the treatment and prophylaxis of bleeding in patients \geq 12 years with haemophilia A (congenital factor VIII deficiency).1

For long-term prophylaxis, the recommended dose is 40 to 50 IU/kg twice weekly at intervals of 3 to 4 days. Adjustments of doses and administration intervals may be considered based on achieved FVIII levels and individual bleeding tendency.1

LOW ABR1,2,4,6

- 90% ABR reduction with twice-weekly prophylaxis (n=120) vs on-demand (n=17) treatment in patients with severe haemophilia A (absolute mean reduction 39%: from 4.3 to 4.6) (primary endpoint met, $p<0.0001$).1,2,6

- Mean ABR 1.6 in real-world study vs 6.2 with previous SHL FVIII ($p=0.001$) (n=30).6

WHAT TREATMENT GOALS DO YOU HAVE FOR YOUR PATIENTS?

- How attainable are zero bleeds with a FVIII trough level of 8–12% vs 1–3%? Clinically meaningful trend for improved bleed protection in some patients with a target FVIII trough level of 8–12% (62% [95% CI, 49–75%]; n=58) vs 1–3% (42% [95% CI, 29–55%]; n=57). (PROPEL proof-of-concept study: primary endpoint compared patients achieving zero bleeds at two FVIII levels [6-month dose adjustment period]; not significant; $p=0.0545$).

- Can dosing intervals potentially be extended in some patients? Potential for reduced dosing frequency in some patients with zero spontaneous bleeds for 6 months on ADYNOLI prophylaxis (CONTINUATION study (n=151): co-primary endpoints were incidence of confirmed FVIII inhibitory antibody development and ABR for all spontaneous bleeds).14

ADYNOLI SAFETY PROFILE1

- Very common adverse reactions (≥1/10): headache.
- Common adverse reactions (≥1/100 to <1/10): diarrhea, nausea, rash, dizziness.
- Hypersensitivity or allergic reactions have been observed rarely and may, in some cases, progress to severe anaphylaxis (including shock).
- Development of neutralising antibodies to factor VIII (inhibitors) may occur.

See the Summary of Product Characteristics for a full list of adverse reactions.

SCAN QR CODE TO FIND MORE INFORMATION AND RESOURCES ON ADYNOLI VIA THE NEWLY LAUNCHED RARE DISEASE HUB.

Or speak to your Takeda representative to find out more.
INTRODUCTION

The red pulp of the spleen filters blood to remove pathogenic microorganisms and senescent or diseased red blood cells (RBCs). Cells migrate from the cords into venous sinuses, then squeeze through interendothelial slits (IESs) on the sinus walls to return to systemic circulation. Several ligands have been implicated in uptake of whole cells, including phosphatidylserine, autoantibodies and complement bound to oxidatively degraded molecules, adhesion molecules and CD47, as well as physicochemical changes such as loss of membrane deformability. The relative importance of these mechanisms remains uncertain. It is plausible that the importance of this process is such that extensive redundancy is necessary.
Splenic phagocytes also scavenge selected cellular constituents, failure of which results in retention of intracellular inclusions within RBCs such as Howell–Jolly, Heinz and Pappenheimer bodies. A further mechanism removes RBC membrane, sometimes known as membrane editing, with surface areas, volumes and densities progressively decreasing with age. Despite being described over 50 years ago, the molecular and cellular bases for these processes are poorly understood. Some membrane loss results from vesiculation, possibly mediated by weakened cohesion between the lipid bilayer and the cytoskeleton. However, most membrane loss is thought to take place in the spleen.

In this study, we investigate oligosaccharides, or glycans, carried on the surface of RBC from patients after splenectomy. Glycosylation of membrane proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus. In the ER, N-glycosylation results in asparagine residues being linked to a chitobiose core capped by several mannose residues, which contrasts with the often mannose-rich cell walls of microbes. Phagocytic cells such as macrophages expressing mannosen-binding receptors are then able to use these lectins as pathogen recognition receptors. We recently reported that oxidative damage, in the contexts of both laboratory-induced as well as sickle cell disease, and infection by malarial parasites, results in aggregates of cross-linked RBC membrane proteins that are marked by high-mannose glycans (HMGs). HMGs induce uptake of cells by macrophages mediated, at least in part, by the mannosen receptor (CD206). HMG levels correlated with extravascular, but not intravascular, haemolysis in sickle cell disease. The mannosen receptor is generally deemed to be more involved in recognition and uptake of smaller molecules and structures than whole cells. These observations raise the possibility that the high-mannose–mannose receptor ligand pair might also mediate removal of oxidised molecules and membrane editing in healthy individuals.

We therefore assessed the expression of glycans on the surface of RBCs from patients with poor splenic function as well as conditions where oxidative stress might also be important.

MATERIALS AND METHODS

Donors

Healthy controls, patients with sickle cell disease and the patient who underwent splenectomy during the study gave informed consent for the study (North of Scotland REC Number 11/NS/0026). Samples from patients with splenectomies carried out at least a year previous to the study; those used to assess functional hypoplenism and healthy controls (chosen on the basis of unrelated diagnoses with normal or near-normal full blood count parameters) were obtained using the NHS Grampian Biorepository scheme (application number TR000224), which permits access to anonymised samples from routinely collected clinical samples, once all requested tests have been completed and tubes are ready for disposal. No extra blood samples were taken for research purposes in this scheme. A sample was also obtained from King’s College Hospital, London, where patients were informed that discarded, anonymised samples might be used for research by displaying a written notice. All samples were collected into EDTA tubes (Becton-Dickinson).

RBC isolation

For Percoll density fractionation and western blotting, blood was transferred into acid citrate dextrose solution (ACD, 455055; Grenier) and RBC purified by sodium metrizoate density gradient centrifugation (1.077 g/ml, Lymphoprep; 1114547 Axis-Shield). Packed RBCs were diluted with an equal volume of Dulbecco’s modified Eagle’s medium (DMEM; 4.5 g/l glucose, l-glutamine; 41965; Gibco), stored in ACD (9 ml RBC/DMEM per ACD tube) at 4°C and used within 3 days.

FIGURE 1 Red blood cells (RBCs) from patients after splenectomy express high levels of high-mannose glycans. (A) Flow cytometric analysis of blood samples from seven healthy donors versus five patients after splenectomy. RBCs are stained with nine fluorescently labelled plant lectins that bind a range of glycans, detailed in the Materials and methods section. Lectins GNA and NPL bind terminal mannosen residues. Vertical axes show normalised mean fluorescence (gMFI). Individual data points from individual samples measured on a single occasion are shown with medians ± interquartile ranges. p values above each graph test the differences between samples from donors with intact versus absent spleen, calculated using two tailed Mann–Whitney tests. (B) Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectra (m/z versus relative intensity) for glycomic analysis of permethylated N-glycans from membrane ghosts from red blood cells (RBCs) from a single patient after splenectomy (patient A). Red boxes indicate high-mannose structures. All ions are [M + Na]+. Annotation uses conventional symbols for carbohydrates in accordance with the symbol nomenclature for glycans (SNFG): purple diamond, sialic acids; yellow circle, galactose; yellow square, N-acetyl galactosamine; blue square, N-acetyl glucosamine; green circle, mannose; red triangle, fucose. Only major structures are annotated for clarity. (C) Representative images of post-splenectomy patient’s RBCs stained with fluorescently labelled mannosen-binding lectin GNA. Bright field (BF), immunofluorescent (GNA) and merged (merge) views are shown. (D) Western blot from RBC ghosts probed with GNA (top) or β-spectrin (bottom) from healthy controls (indicated HbA and splenectomy –), patients after splenectomy (HbA and splenectomy +), or HbAS indicating heterozygosity for the sickle cell allele and splenectomy +) and sickle cell disease patients (HbSS and splenectomy –). AAL, Alnus aurantia lectin; dRCA, Ricinus communis agglutinin I; GNA, Galanthus nivalis agglutinin; G.Simp, Griffonia simplicifolia lectin II; MAL-11, Maackia amurensis lectin II; NPL, Narcissus pseudonarcissus lectin; S.Japan, Sophora japonica lectin; SNA, Sambucus nigra lectin; STL, Solanum tuberosum lectin.
Lectins

Biotinylated lectins were purchased from Vector Laboratories. They include: *Galanthus nivalis* agglutinin (GNA, B-1245, 4 μg/ml), *Narcissus pseudonarcissus* lectin (NPL, B-1375, 4 μg/ml), *Griffonia simplicifolia* lectin II (G.Simp, B-1215, 4 μg/ml), *Solanium tuberosum* lectin (STL, B-1165, 20 ng/ml), *Aleuria aurantia* lectin (AAL, B-1395, 33 ng/ml), *Maackia amurensis* lectin II (MAL II, B-1265, 67 ng/ml), *Sambucus nigra* lectin (SNA, B-1305-2, 57 ng/ml), *Sophora japonica* lectin (S.Japan), *Ricinus communis* agglutinin I (dRCA, B-1085-5, no longer available, 50 ng/ml).

Flow cytometry

Whole-blood flow cytometry assays were used for Figures 1A, 2A–C, 2E and 3A–C. Purified RBCs were used for Figures 2D and 4C,D. RBC gating was applied by forward and side scatter gating of both whole blood and purified RBC flow cytometry experiments. Staining with anti-glycophorin A (GPA) confirmed gates contained >99% RBCs (data not shown). For lectin flow cytometry, ~5 × 10⁶ RBCs were washed three times in phosphate-buffered saline and incubated for 10 min at room temperature in calcium buffer (10 mM HEPES, 150 mM NaCl₂, 2.5 mM CaCl₂, pH 7.4) containing 10% Carbo-Free Blocking Solution (SP5040; Vector Laboratories), then stained in the dark for 30 min. Annexin V staining was carried out according to the manufacturer’s instructions (640945; BioLegend). For biotinylated lectin staining, cells were then washed and incubated with streptavidin PE (0.67 μg/ml, 554 061; BD Pharmingen) for 30 min at room temperature in blocking buffer.

Red blood cell ghost preparation

Washed RBCs were subjected to ice-cold hypotonic lysis in 20 mM Tris, pH 7.6, with protease inhibitor (05056489001; Roche). Lysates were washed three times in lysis buffer (37 000 g, 4°C, 30 min) before resuspension.

Concentrations were determined by protein BCA assay (23227; Pierce). No trypsinisation was performed before any glycan analysis.

Glycomic mass spectrometry

N-linked glycan analysis from RBC ghosts was performed according to Jang-Lee et al.²⁰ mass spectrometry (MS) and MS/MS data from the permethylated purified glycan fractions were acquired on a 4800 MALDI-TOF/TOF mass spectrometer (Applied Biosystems). Data were processed using Data Explorer 4.9 Software (Applied Biosystems). The processed spectra were subjected to manual assignment and annotation with the aid of a glycobioinformatics tool, GlycoWorkBench.²¹ Proposed assignments for the selected peaks were based on ¹³C isotopic composition together with knowledge of the biosynthetic pathways, and structures were confirmed by data obtained from MS/MS experiments.

LECTIN/IMMUNO-BLOTTING

Ghost preparations were mixed in equal volumes with sodium dodecyl sulphate (SDS) sample buffer containing 8 M urea⑲ and heated at 100°C for 10 min. Western blotting used NuPage 4%–12% Bis-Tris gel (Invitrogen; NP0312BOX) and transfer (30 V, 1 h) to polyvinylidene fluoride membrane (P 0.45 μm; 10660023 Amersham Hybond; GE Healthcare). Blots were probed with biotinylated GNA lectin (40 μg/ml, B1245; Vector Laboratories) and Streptavidin HRP (1:2500 dilution, 3999S; Cell Signalling) in calcium binding buffer (10 mM HEPES, 150 mM NaCl₂, 2.5 mM CaCl₂, pH 7.4) containing 1× Carbo-Free Binding Solution (Vector Laboratories; SP-5040) and protease inhibitor cocktail (11836145001; Roche) before development in Amersham ECL Select substrate (RPN2235; GE Healthcare). 0.1% Tween-20 was added in probing and washing steps. Loading of wells was normalised by protein concentration (~6 μg per sample).

FIGURE 2 HMG expression after splenectomy. (A) Flow cytometric histograms of mannose-binding lectin (NPL and GNA) binding to RBCs versus secondary stain-only control for four patients: Two post-splenectomy, a healthy donor and a patient with sickle disease (HbSS), both with intact spleens. PE-H indicates intensity/height of phycoerythrin staining. (B) Time course of binding of lectins to RBCs obtained from patient A after undergoing splenectomy at day 0. RBCs stained with 1 of 10 fluorescently labelled plant lectins that bind a wide range of glycans, detailed in the Materials and methods section, or annexin-V (AnV). Lectins GNA and NPL bind terminal mannos. Lectin-binding gMFI expressed as fold change compared to day 7 post splenectomy sample. (C) Examples of GNA staining of RBCs from three patients. From top to bottom: (i) patient A 4 months post splenectomy, (ii) control autoimmune haemolytic anaemia (AIHA) patient with intact spleen, (iii) patient with sickle cell disease. Staining of CD71+ cells, indicating reticulocytes, are compared with mature CD71+ RBCs. GNA binding is indicated in blue and secondary antibody-only control in red. (D) Surface HMG expression on RBCs obtained from patient A 3 months after splenectomy, marked PA, and six healthy controls with intact spleens, marked C1–6. Cells are fractionated by density, with fractions 1 to 6 indicating increasing density/age. HMG expression is measured by binding of lectins GNA or NPL, assessed by flow cytometry and expressed as normalised gMFI. PE-H indicates intensity/height of phycoerythrin staining. (E) GNA expression on CD71+ RBCs from patients with sickle cell disease (HbSS, n = 7), post-splenectomy (n = 9) and healthy controls with intact spleens (n = 19). Medians with interquartile ranges are shown; p value calculated using the Mann–Whitney test, non-significant for splenectomy versus healthy controls. PE-A indicates area under curve of phycoerythrin staining. AnV, Annexin-V; g-MFI, geometric mean fluorescence intensity; HMG, high-mannose glycan; RBC, red blood cell. For abbreviations of lectins, see caption to Figure 1.
Immunofluorescence microscopy

Cell surface GNA lectin binding for immunofluorescence was performed as for flow cytometry with minor alterations: 8 μg/ml GNA lectin and 1 μg/ml streptavidin PE were pre-complexed overnight. Stained cells were washed and pulse-centrifuged (<300 g) for 30 s (including acceleration), in 24-well, flat-bottom tissue culture plates (Greiner). Cells were imaged at 32× magnification using an immunofluorescence microscope (Zeiss AxioObserver Z1). Images were analysed by Zen (Black and Blue versions; Zeiss).

Statistical analysis

Statistical significance was assessed by either a two-tailed Mann–Whitney test for unpaired group data or two paired
Spearman’s rank tests for correlation analysis. Calculations were implemented in Prism version 5.04 (GraphPad Software).

RESULTS

High-mannose glycan expression after splenectomy

A panel of nine fluorescently labelled lectins was used to investigate the surface glycans of RBCs from patients after splenectomies. Only two, GNA and NPL, both with high affinities for terminal mannose residues, bound to a systematically greater extent than to RBCs from donors with intact spleens (Figure 1A). Another, Maackia amurensis lectin II (MAL-II), which binds α2,3-linked sialic acids, also bound RBCs from splenectomised patients at moderately greater levels, although this difference was not statistically significant and not investigated further. Phosphatidylserine, as judged by binding of annexin V, was also noted to be similar between the two groups. A glycomic analysis was made of the N-linked glycans from the RBC ghosts of two patients by lectin blotting, which showed that lectin-binding activity comigrated with those for both full-molecular-weight structures (Figure 1B; Figure S1), which are the only glycans identified that would be predicted to bind lectins GNA and NPL. Binding of GNA was visualised using microscopy and found to comprise discrete patches (Figure 1C), similar to those previously observed in sickle cell disease. The structural basis for these HMGs was investigated further by lectin blotting, which showed that lectin-binding activity comigrated with those for both full-molecular-weight spectrin, as well as several lower-molecular-weight bands (Figure 1D). The latter were similar in size to those previously observed in sickle cell disease, which arose from protease-resistant, spectrin-containing fragments derived from high-molecular-weight aggregates.

Kinetics of high-mannose glycan accumulation

We noted that HMG expression on RBCs from postsplenectomy patients comprised single peaks (Figure 2A), indicating that their accumulation affected all RBCs rather than a sub-population with specific properties. The kinetics of this process was investigated using several approaches. A time course from 7 days to 4 months post splenectomy for autoimmune haemolytic anaemia (AIHA) for an individual (‘patient A’) yielded a linear increase of GNA and NPL binding, in contrast to that of other lectins and annexin V (Figure 2B). By 110 days post operatively, corresponding to the typical life span of RBCs, the level of HMGs was similar to those from patients whose splenectomies had been performed years previously. These data indicate HMG accumulation is a gradual process.

We also investigated the levels of HMG expression on RBCs with respect to the course of their life spans. RBCs newly released from the bone marrow can be identified by high surface levels of the transferrin receptor, CD71. Patient A’s CD71+ cells 3 months post splenectomy did not express HMG, in contrast to their CD71+ population (Figure 2C), indicating that the oxidative stress that resulted in surface HMG expression arose in RBCs older than reticulocytes. In addition, we noted that only a minority of RBCs expressed high CD71 levels, indicating there must be an alternative location for removing this molecule other than the spleen.24 RBCs from a control patient with AIHA, but an intact spleen, did not express high levels of surface HMG on either CD71+ or CD71− fractions (Figure 2C). By contrast, RBCs from a patient with sickle cell disease exhibited high levels of HMGs on both CD71+ and CD71− RBCs (Figure 2C), showing that sufficient oxidative stress can accumulate at stages prior to and/or at the reticulocyte stage. We interpret this to indicate that, in contrast to patient A, pathologically high levels of oxidative stress are able exceed membrane-editing capacity in the bone marrow. Finally, we used discontinuous density gradients to fractionate Patient A’s RBCs from three months post splenectomy. All fractions expressed high levels of HMGs, although denser fractions expressed greater amounts (Figure 2D).

We extended these approaches to RBCs from other donors. All density fractions from six healthy donors exhibited low levels of HMGs (Figure 2D), suggesting that spleens are effective in removing oxidatively damaged membrane marked by HMGs at all stages in the life spans of RBCs. Average levels of HMG expression by CD71+ RBCs obtained from seven patients after splenectomies were similar to those from healthy donors and less than those observed from patients with sickle cell disease (Figure 2E). However, there was appreciable overlap, with only the difference between healthy and donors with sickle cell disease being statistically significant.

High-mannose glycans as a splenic function test

The high levels of RBC HMGs observed post-splenectomy and their ease of measurement suggested they might act as a useful test of splenic reticuloendothelial function. To explore this possibility, we measured RBC HMG expression from 13 more patients with previous splenectomies (Figure 3A). Ten of these yielded clearly high values. However, two of the 10 patients exhibited levels similar to those from healthy controls, which may reflect clinically important residual splenic function. As these samples were anonymised, we could not investigate this possibility further.

RBC HMG levels might also be useful to assess patients with anatomically intact spleens but possible functional hypoplasplenism. We therefore measured RBC HMGs in samples from patients with conditions previously reported to cause poor splenic function: inflammatory bowel disease (IBD)25 and allogeneic haematopoietic stem cell transplantation.26
Most patients with IBD had HMG levels within the range seen in healthy donors (Figure 3A). However, a few patients had higher levels (Figure 3A), which might justify prophylactic measures against infection. One of the five post-transplant patients exhibited high levels of HMG expression (Figure 3A) and it is probably relevant that this sample was also labelled as having graft-versus-host disease.²⁶

Splenic function has been conventionally assessed by counting Howell–Jolly bodies using conventional microscopy or, less frequently, RBC pits using differential interference microscopy.²⁷ We compared HMG levels to values obtained using both of these techniques. Howell–Jolly bodies were infrequent (<0.1 per high-power field) in all post-splenectomy samples and not seen in any sample from patients with functional hyposplenism, in keeping with their known poor sensitivity. However, good correlations were observed between HMG expression and pit numbers (Figure 3B,C).

DISCUSSION

Here we report that RBCs from patients who have had splenectomies exhibit high levels of binding to lectins with high affinities for terminal mannose residues. The surface ligands appear to be N-linked high mannosae covalently linked to oxidatively cross-linked membrane protein aggregates.

Oxidatively damaged proteins can have pathological properties, are difficult to repair²⁸ and so must be degraded. Minor degrees of damage are generally recognised by chaperones that recruit ubiquitinases, which direct the damaged molecules to proteolysis by the proteasome.²⁹,³⁰ More extensively damaged proteins form aggregates that cannot be digested by the proteasome and are delivered by chaperone-mediated autophagy to lysosomes.³¹,³² Removal of oxidatively damaged proteins in plasma membranes presents particular challenges. The proteasome has relatively limited access and delivery to lysosomes is more important;³³ membrane is removed as part of this process. The extensive autophagy that takes place during terminal erythroid differentiation uses proteasomal degradation³⁵ and mature RBCs retain functional components of the system. However, uniquely among human cells, they lack lysosomes. Autophagic digestion is therefore unavailable, which raises the question as to how oxidatively damaged membrane aggregates resistant to proteasomal degradation are removed. As red cells age, membrane is removed in the spleen so becoming smaller and denser.¹² Our discovery that surface HMGs are removed by the spleen therefore implicates these glycans as candidate ligands involved in membrane editing as well as phagocytosis of whole cells. The only other implicated ligand, phosphatidylyserine, is involved in the removal of autophagic vacuoles containing intracellular organelles.³⁶

The identities of the cognate phagocytic ligands were not identified in this study. However, it is likely that the mannose receptor (CD206) is involved. CD206 is known to be important in the uptake of molecules and structures bearing high mannosae and has been shown to mediate uptake of oxidised RBCs.³⁷ Its expression in human spleens is confined to LYVE-1 expressing cells lining the IESs that must be traversed for RBCs to exit the sinuses.³⁸ Given the lack of CD206 expression elsewhere, the documented ability of endothelial cells to effect phagocytosis and their anatomical location, we believe these endothelial cells are the most plausible candidates to perform membrane editing. Other mannose-binding lectins, such as dectin-2, SIGNR1³⁹ and DC-SIGN,⁴⁰ are also likely to have roles.

Red cells are especially prone to several forms of oxidative stress, at least in part because of the high concentrations of oxygen and iron in several valency states that cause high rates of reactive oxygen species production.⁴⁰,⁴¹ This situation pertains throughout the life span of red cells from the erythroblast stage onwards. Concerning the time course of appearance of HMGs with respect to the life span of RBCs, our data indicate most accumulate gradually in circulating erythrocytes from healthy individuals, with only low levels seen in immature CD71⁺ cells. In contrast, reticulocytes from patients with sickle cell disease exhibit high HMG levels, indicating higher levels of oxidative stress⁴⁶ at earlier stages of differentiation. In sickle cell disease, we presented evidence that HMGs mediated extravascular haemolysis. Whether there is a role for HMGs acting as an end-of-life signal remains to be determined. If so, the enhanced induction of HMGs by *P. falciparum* seen in RBCs from donors with sickle cell trait can be viewed as the sickle mutation exploiting the mechanisms of natural clearance of RBCs at the end of their lives.

It remains to be seen whether macrophage-mediated removal of oxidised surface molecules is used in tissues other than blood. CD206 is a prototypical marker of M2 activation and so widely expressed by tissue macrophages, including the bone marrow, whose macrophages are known to express CD206, at least in mice.⁴³ If so, the HMG expression we noted in some patients’ reticulocytes presumably arises only if the capacity of this and other lysosomal systems is exceeded by differentiating erythroblasts.

Our work indicates that RBC HMG expression is a test of splenic reticuloendothelial function. The main complication of hyposplenism is overwhelming infection with encapsulated bacteria, notably *Streptococcus pneumoniae*.²⁵,⁴⁴ Various mechanisms have been proposed, but none is generally accepted.²⁵ Together with the observation that the mannose receptor binds the cell wall of *S. pneumoniae* with high affinity,⁴⁵ our findings suggest that an important mechanism is loss of filtering function mediated by lectins on the surface of the cells lining the IESs. Measuring HMG levels may therefore be of direct clinical importance, in contrast to methods such as counting pits,²⁷ Howell–Jolly bodies or platelets.⁴⁵ Furthermore, and again in contrast to manually-based methods, it should be automatable. The test may therefore be useful for checking complete removal of splenic function after splenectomies as well as stratifying treatments in situations where...
functional hyposplenism may be important, such as post-haematopoietic stem cell transplantation and inflammatory bowel disease.

In summary, we present data showing that physiological oxidative damage to RBCs results in membrane aggregates characterised by HMGs that are removed by passage through the spleen. Measurement of RBC HMGs therefore offers great potential as a test of splenic function.

ACKNOWLEDGEMENTS
This work was funded by Aberdeen University Development Trust and Friends of Anchor. The University of Aberdeen is applying for a patent based on this work.

AUTHOR CONTRIBUTIONS
Huan Cao performed the laboratory work, analysed the data and wrote the paper. Abhinav Mathur, Charlotte Robertson, Sadie Henderson, Louis-Pierre Girard, Jin Hien Wong and Anne Dell performed laboratory work. Sonja Wright, John Brewin and David C. Rees provided samples. Aristotelis Antonopoulos, Adam Davie and Stuart M. Haslam performed and analysed the glycomic data. Mark A. Vickers supervised the project and wrote the paper.

ORCID
Huan Cao https://orcid.org/0000-0002-0122-5856
Charlotte Robertson https://orcid.org/0000-0002-5956-5191
John Brewin https://orcid.org/0000-0002-6129-4300
David C. Rees https://orcid.org/0000-0003-3647-1050

REFERENCES
1. Crosby WH. Normal functions of the spleen relative to red blood cells: a review. Blood. 1959 April 01;14(4):399–408.
2. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005 August 01;5(8):606–16.
3. Bratosin D, Mazurier J, Tissier JP, Estaquier J, Huart JJ, Ameisen JC, et al. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie. 1998 February 01;80(2):173–95.
4. Lutz HU. Innate immune and non-immune mediators of erythrocyte clearance. Cell Mol Biol (Noisy-le-Grand). 2004 March 01;50(2):107–16.
5. Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol. 2013 December;25(4):387.
6. Klei TR, Meinderts SM, van den Berg TK, van Bruggen R. From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front Immunol. 2017 February 02;8(8):73.
7. de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells: a complex love story. Front Physiol. 2014 January;30(5):9.
8. Klei TRL, de Back DZ, Asif PJ, Verkuijlen PJJH, Veldthuis M, Ligthart PC, et al. Glycoporphin-C sialylation regulates Lu/BCAM adhesive capacity during erythrocyte aging. Blood Adv. 2018 January 03;2(1):14–24.
9. Pivkin IV, Peng Z, Karniadakis GE, Buffet PA, Dao M, Suresh S. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc Natl Acad Sci U S A. 2016 July 12;113(28):7804–9.
10. Zimring JC. Turning over a new leaf on turning over RBCs. Blood. 2020 October 01;136(14):1569–70.
11. Thiagarajan P, Parker CJ, Prchal JT. How do red blood cells die? Front Physiol. 2021 March;15(12):655393.
12. Piomelli S, Seaman C. Mechanism of red blood cell aging: relationship of cell density and cell age. Am J Hematol. 1993 January 01;42(1):46–52.
13. Asaro RJ, Zhu Q, Cabralaes P. Erythrocyte aging, protection via vesiculation: an analysis methodology via oscillatory flow. Front Physiol. 2018 November;16(9):1607.
14. Li H, Lu L, Li X, Buffet PA, Dao M, Karniadakis GE, et al. Mechanisms of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Proc Natl Acad Sci U S A. 2018 September 18;115(38):9574–9.
15. Reilly C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019 June 01;15(6):346–66.
16. Strander MB, Jana S, Meng F, Heaven MR, Shet AS, Then SL, et al. Post-translational modification as a response to cellular stress induced by hemoglobin oxidation in sickle cell disease. Sci Rep. 2020 August 26;10(1):14218–20.
17. Cao H, Antonopoulos A, Henderson S, Wassall H, Brewin J, Masson A, et al. Red blood cell mannosens as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat Commun. 2021 March 19;12(1):1792.
18. Brown GD, Crocker PR. Lectin receptors expressed on myeloid cells. Microbiol Spectr. 2016 October 01;4(5). https://doi.org/10.1128/microbiolspec.MCHD-0036
19. Barker RN, Casswell KM, Reid ME, Sokol RJ, Elson CJ. Identification of autoantigens in autoimmune haemolytic anaemia by a non-radiosotope immunoprecipitation method. Br J Haematol 1992 September 01;82(1):126–132.
20. Jang-Lee J, North SJ, Sutton-Smith M, Goldberg D, Panico M, Morris H, et al. Glycomic profiling of cells and tissues by mass spectrometry: fingerprinting and sequencing methodologies. Methods Enzymol. 2006;415:59–86.
21. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res. 2008 April 01;7(4):1650–9.
22. Shibuya N, Goldstein JJ, Van Damme EJ, Peumans WJ. Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem. 1988 January 15;263(2):728–34.
23. Neelamegham S, Aoki-Kinoshita K, Bolton E, Frank M, Lisafek C, Lutteke T, et al. Updates to the symbol nomenclature for glycans guidelines. Glycobioi. 2019 August 20;29(9):620–4.
24. Rhodes MM, Koury ST, Kopsombut P, Alford CE, Price JO, Koury MJ. Stress reticulocytes lose transferrin receptors by an extrinsic process involving spleen and macrophages. Am J Hematol. 2016 September 01;91(9):875–82.
25. Mathur A, McLean MH, Cao H, Vickers MA. Hyposplenism and gastrointestinal diseases: significance and mechanisms. Dig Dis 2021 May 25.
26. Rozmus J, Mallihi K, Ke J, Schultz KR. Functional hyposplenism after hematopoietic stem cell transplantation. Bone Marrow Transplant 2015 October 01;50(10):1343–1347.
27. Rogers DW, Serjeant BE, Serjeant GR. Early rise in the “pitted” red cell count as a guide to susceptibility to infection in childhood sickle cell anaemia. Arch Dis Child. 1982 May 01;57(5):338–42.
28. Marques C, Guo W, Pereira P, Taylor A, Patterson C, Evans PC, et al. The triage of damaged proteins: degradation by the ubiquitin-proteasome pathway or repair by molecular chaperones. FASEB J. 2006 April 01;20(6):741–3.
29. Jung T, Hohn A, Grune T. The proteasome and the degradation of oxidized proteins: part II - protein oxidation and proteasomal degradation. Redox Biol. 2014;2:99–104.
30. Pickering AM, Davies KJ. Degradation of damaged proteins: the main function of the 20S proteasome. Proc Mol Biol Transl Sci. 2012;109:227–48.
31. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012 August 01;22(8):407–17.
32. Jackson MP, Hewitt EW. Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem. 2016 October 15;60(2):173–80.
33. Houck SA, Singh S, Cyr DM. Cellular responses to misfolded proteins and protein aggregates. Methods Mol Biol. 2012;832:455–61.
34. Houck SA, Cyr DM. Mechanisms for quality control of misfolded transmembrane proteins. Biochim Biophys Acta. 2012 April 01;1818(4):1108–14.
35. Nguyen AT, Prado MA, Schmidt PJ, Sendamarai AK, Wilson-Grady JT, Min M, et al. UBE2O remodels the proteome during terminal erythroid differentiation. Science. 2017 August 04;357(6350). https://doi.org/10.1126/science.aan0218
36. Mankelow TJ, Griffiths RE, Trompeter S, Flatt JF, Cogan NM, Massey EJ, et al. Autophagic vesicles on mature human reticulocytes explain phosphatidylserine-positive red cells in sickle cell disease. Blood. 2015 October 08;126(15):1831–4.
37. Martinez-Pomares L. The mannose receptor. J Leukoc Biol. 2012 December 01;92(6):1177–86.
38. Martinez-Pomares L, Hanitsch LG, Stillion R, Keshav S, Gordon S. Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen. Lab Invest 2005 October 01;85(10):1238–1249.
39. McGeer EP, Rosas M, Brown GD, Zamze S, Wong SY, Gordon S, et al. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology. 2006 May 01;16(5):422–30.
40. Vona R, Sposi NM, Mattia L, Gambardella L, Straface E, Pietraforte D. Sickle cell disease: role of oxidative stress and antioxidant therapy. Antioxidants (Basel). 2021 February 16;10(2):296. https://doi.org/10.3390/antioxid10020296
41. Fujii J, Homma T, Kobayashi S, Warang P, Madkaikar M, Mukherjee MB. Erythrocytes as a preferential target of oxidative stress in blood. Free Radic Res. 2021 May 01;55(5):562–80.
42. Gordon S, Pluddemann A. Tissue macrophages: heterogeneity and functions. BMC Biol. 2017 June 29;15(1):53-017.
43. Bisgaard LS, Mogensen CK, Rosendahl A, Cucak H, Nielsen LB, Rasmussen SE, et al. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression - implications for atherosclerosis research. Sci Rep. 2016 October;13(6):35234.
44. Zamze S, Martinez-Pomares L, Jones H, Taylor PR, Stillion RJ, Gordon S, et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem. 2002 November 01;277(44):41613–23.
45. Mathur A, Samaranayake S, NPF S, Vickers MA. Investigating thrombocytosis. BMJ. 2019 July;04(366):1483.
46. Majhail NS, Rizzo JD, Lee SJ, Aljurf M, Atsuta Y, Bonfim C, et al. Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation. Rinsho Ketsueki. 2014 June 01;55(6):607–32.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Cao H, Mathur A, Robertson C, Antonopoulos A, Henderson S, Girard L-P, et al. Measurement of erythrocyte membrane mannoses to assess splenic function. Br J Haematol. 2022;00:1–10. https://doi.org/10.1111/bjh.18164