Introduction

Tomatillo is belong to Solanaceae family like tomato, potato and tobacco. Physalis is a Greek word inferred to 'bladder-pouch' which refers to swollen flowers [1]. Then ame of tomatillo, Physalis ixocarpa Brot. became known in English tomatillo, husk tomato, jambey, in Spanish; tomate de cascara, tomate de fresasilla, in Mexico; tomate milpero, tomate verde, tomatillo and Guatemala; miltomate [2]. From ancient times it has become a vegetable spreading from the South of the United States to Mexico-Guatemala and tomatillo lead the way the indigenous communities in there called Mesoamericans, have built up their livelihood based on agriculture [2]. Particularly, 78% of 90 Physalis species grow in Mexico in wide scope the from North America to Argentina [3]. During to the improvement of technology and industry, the agricultural sector has also developed, tomatillo taking its place cost-efficient and a manufactured product [4]. Tomatillo has the potential to become a commercial exotic vegetable that attracts attention in the food industry all over the World. Tomatillos are valuable products that exported from several countries such as Colombia, Egypt, Zimbabwe, Kenya, Madagascar, South Africa and Asia to around the World. Among these countries, it is the most produced, consumed and exported vegetable (2nd rank of 15 vegetables or fruits) in Colombia [5,6].

The ash content of tomatillo is 7.3-7.8%. Tomatillos has less iron content and higher sodium level than tomatoes and also is rich in magnesium [7]. Organic acid composition in tomatillo is high based citric acid while it contains more organic acid than fresh and cooked tomatoes [8]. Tomatillos contain 7% reduced sugar. In their fresh consumption, they contain less fructose and more glucose and sucrose than tomatoes. With cooked forms, fructose and sucrose increase while glucose decreases. In case of cooked tomatillo ensamples, the amount of glucose is less than that of cooked tomatoes and the quantity of sucrose is higher than that of cooked tomatoes, sucrose degree is higher and the fructose values are the equal [8]. Tomatillo comprise decanoic acid and 3 times more fatty acid. In cooked tomatillos, it was observed that the amount of linoleic acid enhanced and decanoic acid decreased. The presence of polyunsaturated fatty acid preserves the public health and diminishes the risk of cardiovascular diseas [8,9].

The total of pectin which is obtained from tomatillo (EA:13.9-18.3kJ/mol) is less than blackcurrant/apple (EA:32-39kJ/mol) and ad orange (EA:25kJ/mol) though, due to the activation energies of pectin formation, it is more qualified than others. In addition, the pectin of tomatillo was found having higher fragility than citrus by penetration test. Therefore, using of tomatillo origin pectins in food formulations has high potential [10-12]. A total of 52 volatile components were identified in fresh tomatillos, 22 items which were tomatillo includes; hydroxy esters, aromatic esters, decanoic acid and terpens specifically. These phenols have antioxidant and antiseptic properties
Physalis ixocarpa}

Besides to revitalizing unsuitable soil types and respirable areas such as dry form consumption, sucrose esters, phenolic parts of tomatillo; It is essential to conduct academic studies in unexplored areas of tomatillo and its plant for their compatibility with other amateurly to improve the rheological properties of dough in fusion cooking currents. Leaves surrounding tomatillos are used in fresh and cooked tomatillo with red plum tomato. Food Flavors Formation Analysis and Packing Influences 295-313. Martinez-Cayuela M (1995) Oxygen free radicals and human disease. Biochimiea 77(3): 147-161. Pereira RB, Singh H, Munno PA, Luckman MS (2003) Sensory and instrumental textural characteristics of acid milk gels. International Dairy Journal 13 (8): 655-667. Sousa G, Nielsen HL, Armagan I, Larsen I, Isaksson SO (2015) The impact of rhamnogalacturonan I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocolloids 47: 130-139. Morales-Contreras BE, Rosas-Flores W, Contreras-Enriquez JC, Wicker I, Morales-Castro J (2018) Pectin from husk tomato (Physalis ixocarpa Brot): Rheological behavior at different extraction conditions. Carbohydrate Polymers 179: 282-289.

Conclusion
Tomatillo adapt to the climatic conditions in Turkey will increase crop efficiency and tomatillo cultivation in Turkey. More than one harvest in a year may bring economic vitality to agriculture. In addition tomatillo facilitate to find fresh products in markets. Also high mineral content (like Mg, K and Fe etc.) and involve superior pectin can thought to be suitable for use in food processes such as jam and marmelade. Furthermore tomatillo has a similar antiinflammatory effects such as aspirin, ibuprofen and naproxen medicines in the pharmaceutical industry. Medical researches of tomatillo extractions in cancer prevention empirical studies might bring out that beneficial in promoting and sustaining the consumption of this plant itself and its products.

References
1. Kindscher K, Long Q, Corbett S, Bosnak K, Loring H, et al. (2012) The ethnobotany and ethnopharmacology of wild tomatillos, Physalis longifolia Nutt. and related Physalis species: A review. Econ Bot 66 (3): 298-310. 2. Bermejo JEH, Leon J (1992) Neglected crops 1492 from a different perspective. Botanical Garden of Cordoba (Spain 9 Etnobotanica 92 Programme Andalucia 117-122. 3. Valdivia-Mares LE, Zaragoza FAR, Sanchez Gonzalez JJ (2016) Phenology agronomic and nutritional potential of three wild husk tomato (Physalis, Solanaceae) species. Scientia Horticulturae 200: 83-94. 4. Kervankiran I (2011) Afyonkarahisar ilinde alternatif tarım çağılmalarına bir örnek: Jeotermal seracılık. Marmara Çiftçilik Dergisi 24: 383-402. 5. Bayer Crop Science (2006) The Bayer crop science magazine for modern agriculture. 6. El Sheikh AF, Durand N, Sarter S, Okullo JBL, Montet D (2012) Study of the microbial discrimination of fruits by PCR-DGGE: application to the determination of the geographical origin of Physalis fruits from Colombia, Egypt, Uganda and Madagascar. Food Control 24: 57-63. 7. Ostrzyca J, Hurbowicz M, Dobrzenski W, Jankiewicz L, Zborkowski J (1988) Nutritive value of tomatillo fruit (Physalis ixocarpa Brot) Acta Societatis Botanicon Polonae 57(4): 507-521. 8. McGorrin RJ, Gimelfarb L (1998) Comparison of flavor components in fresh and cooked tomatillo with red plum tomato. Food Flavors Formation Analysis and Packing Influences 295-313. 9. Martinez-Cayuela M (1995) Oxygen free radicals and human disease. Biochimiea 77(3): 147-161. Pereira RB, Singh H, Munno PA, Luckman MS (2003) Sensory and instrumental textural characteristics of acid milk gels. International Dairy Journal 13 (8): 655-667. Sousa G, Nielsen HL, Armagan I, Larsen I, Isaksson SO (2015) The impact of rhamnogalacturonan I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocolloids 47: 130-139. Morales-Contreras BE, Rosas-Flores W, Contreras-Enriquez JC, Wicker I, Morales-Castro J (2018) Pectin from husk tomato (Physalis ixocarpa Brot): Rheological behavior at different extraction conditions. Carbohydrate Polymers 179: 282-289.
13. Zaragoza FAR, Valdivia-Mares LE, Gonzalez JJS, Vargas-Ponce O (2016) Phenology, agronomic and nutritional potential of three wild husk tomato species (Physalis, Solanaceae) from Mexico. Scientia Horticulturae 200: 83-94.

14. Fiedorow ZG, Jankiewicz LS (1993) Virus diseases of tomatillo plant (Physalis ixocarpa Brot) in Poland. Phytopathol Polonica 5: 31-38

15. Dyki B, Jankiewicz LS, Staniaszek M (1998) Anatomical structure and surface micromorphology of tomatillo leaf and flower (Physalis ixocarpa Brot, Solanaceae). Acta Societatis Botanicorum Poloniae 67 (2): 181-191.

16. Zhang CR, Khan W, Bakht J, Nair MG (2016) New antiinflammatory sucrose esters in the natural sticky coating of tomatillo (Physalis philadelphica) an important culinary fruit. Food Chemistry 196: 726-732.

17. Smith and Jimenez, (1999) Tomatillo production in California. Vegetable Research and Information Center, Division of Agriculture and Natural Resources Publication 7246.

18. Masabni J, King S, Taylor C (2013) Easy Gardening: Tomatillos. Texas Agrilife Extension 1-3.

19. Cooper MR, Catauro P, Perchonok M (2012) Development and evaluation of bioregenerative menus for Mars habitat missions. Acta Astronautica 81(2): 555-562.

20. Garcia-Mendieta A, Olguin MT, Solache-Rios M (2012) Biosorption properties of green tomato husk (Physalis philadephica Lam) for iron, manganese and iron-manganese from aqueous systems. Desalination 284: 167-174.

21. Eren A (2014) Andızotu, fenerotu veognitoğruğu bitkilerinin ağır metallerce kirlenmiş toprakların temizlenmesinde kullanılabileceklerinin belirlenmesi. Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilim Dalı, Doktora Tezi (Danışman: Prof. Dr. Ersin Can).