Human TERT promoter mutations as a prognostic biomarker in glioma

Branka Powter1 · Sarah A. Jeffreys1,2 · Heena Sareen1,3 · Adam Cooper1,2,4 · Daniel Brungs1,5 · Joseph Po1 · Tara Roberts2,3 · Eng-Siew Koh3,4 · Kieran F. Scott1,2 · Mila Sajinovic1 · Joey Y. Vessey4 · Paul de Souza1,2,3,4,5 · Therese M. Becker1,2,3

Received: 16 October 2020 / Accepted: 15 January 2021 / Published online: 6 February 2021 © The Author(s) 2021

Abstract
The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management.

In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.

Keywords Glioma · Biomarker · TERT promoter mutation · Liquid biopsy · ctDNA

Introduction
Telomerase reverse transcriptase (TERT) plays an important role in telomere lengthening and oncogenesis in many human cancers (Moyzis et al. 1988). Two particular mutations in the human TERT promoter (pTERT) region, C228T and C250T, are important as they promote the formation of a novel binding site for transcriptional enhancers. This in turn drives increased expression and activity of telomerase, an event considered critical for cell immortalisation, and a hallmark of oncogenesis (Hanahan and Weinberg 2011; Huang et al. 2015).

pTERT C228T and C250T have been identified in a range of cancers, including primary brain cancers, and are associated with reduced overall survival (OS), suggesting that they may serve as genomic cancer biomarkers (You et al. 2017). Cancer biomarkers are increasingly used in determining disease diagnosis, monitoring of progression, and determining the best outcome-based therapy for patients. Several studies indicate that the presence of pTERT mutations are tightly linked with other biomarkers such as EGFR amplification, IDH wild type (in GBM), 1p19q co-deletion, CDKN2A deletion, chromosome 10q loss and SEL1L, suggesting evolutionary co-selection with pTERT mutations (Labussière et al. 2014a; Mellai et al. 2020; Nonoguchi et al. 2013). In contrast, there is no association between pTERT mutations and other mutations such as IDH and TP53 (Labussière et al. 2014a).

Currently, there are few options for the treatment of brain cancers, regardless of their molecular profile. The Standard-of-care treatment is maximal safe resection (where possible), followed by post-operative radiation and chemotherapy with
adjuvant temozolomide (Stupp et al. 2010). Therefore, new treatment approaches are needed, which are tailored for each patient to improve patient outcomes.

In this review, we examine the effects of pTERT mutations in various cancers focusing on those originating in brain tissues. We also examine the interaction of pTERT mutations with other prognostic biomarkers and their role in cancer progression, OS and potential implementation of pTERT mutation screening from liquid biopsies in clinical settings.

Telomeres and function of telomerase

The telomerase reverse transcriptase (TERT) gene, located on chromosome 5p15.33, encodes the catalytic subunit of telomerase, a ribonucleoprotein enzyme essential for the replication of chromosome termini and extension of telomeres in eukaryotic organisms. This function is required for continued cell division and is implicated in cell immortality. Telomeres are chromosome termini that contain repetitive DNA sequences (TTAGGG). The repetitive telomere DNA hexamers occur at chromosomal 3′-ends and can be hundreds and thousands of copies in repetition (Moyzis et al. 1988). Telomeres, without the presence of telomerase function, become progressively shorter during each successive cell division. Loss of telomere length beyond a certain point may cause chromosomal instability and genomic rearrangement. Thus, telomere shortening has important implications for cell proliferation. Once telomere length has reached a critical size (the Hayflick limit) through serial cell divisions, normal cells will undergo irreversible cell cycle arrest, referred to as senescence (Becker and Haferkamp 2013; Hayflick 1965). Senescence prevents further cell proliferation and DNA replication, protecting cells from genetic mutations and chromosome rearrangements which could result in oncogenesis. Telomerase counters telomere loss by stabilising and elongating telomeres through the addition of the telomere repeat of TTAGGG to the 3′ ends of human chromosomes (Blackburn 2005).

Telomerase is turned off in most normal adult human cells due to the transcriptional repression of the TERT promoter and are only consistently active in proliferative cells such as germline tissue (ovary and testis), lymphoid lineage-committed progenitor cells, at a low level in normal peripheral leukocytes (including lymphocytes) and bone marrow (Broccoli et al. 1995; Kim et al. 1994; Weng et al. 1996). Reactivation of telomere maintenance mechanisms via telomerase expression is essential for the transformation of normal cells into cancer cells allowing for unlimited cell division and immortality (Counter et al. 1992). In approximately 90% of cancers immortality is achieved by reactivation of telomerase, involving reactivation of the TERT gene expression. The remaining cancers use an alternate telomere lengthening (ALT) pathway where homologous recombination occurs to maintain the telomere length (Cesare and Reddel 2010; Heaphy et al. 2011; Patel et al. 2016; Shay and Bacchetti 1997). Reactivation of telomerase reverse transcriptase via pTERT alterations plays a pivotal role in gliomas with pTERT mutations found in 80–90%, correlating with higher TERT mRNA and protein expression, and subsequent increased telomerase activity. (Borah et al. 2015; Huang et al. 2015; Killela et al. 2013).

Telomerase promoter mutations

The TERT gene is located on the short arm of chromosome 5 and consists of 16 exons and 15 introns (Cong et al. 1999). The pTERT, embedded in a CpG island, located from ~1800 to ~2300 relative to the ATG start codon, is rich in binding motifs for various transcription factors (Cong et al. 1999) (Fig. 1). In normal human cells pTERT is unmethylated at the DNA level, while almost all cancer cells harbour methylated promoter regions. While promoter methylation commonly represses transcription, it results in upregulation of TERT expression, possibly by preventing binding of transcriptional repressors to pTERT (Lee et al. 2020).

Several studies have identified two specific promoter point mutations (cytosine to thymine substitution), chr5:1,295,228 C > T and chr5:1,295,250 C > T (also denoted C228T and C250T) in cancer cells implicated in the activation of telomerase (Horn et al. 2013; Huang et al. 2013). These two mutations are mutually exclusive. Either mutation increases TERT expression, and consequently telomerase activity, and are thought to contribute to tumourigenesis by overcoming cellular senescence and inducing cell immortalisation (Brennan et al. 2013; Huang et al. 2013, 2015). At the molecular level, both pTERT mutations create an identical 11 base pair sequence (CCCCGGAAGGGGG). This constitutes a de novo binding site (Fig. 1) for members of the E26 transformation specific (ETS) family of transcription factors such as the GA-binding protein transcription factor (GABPA), likely involved in transcriptional activation of TERT (Bell et al. 2015; Xiao et al. 2002, 2003). GABPA is central to TERT expression in glioblastoma as it had been shown that the knockdown of GABPA significantly reduced mutant promoter activity without affecting wild-type promoter activity (Bell et al. 2015). Furthermore, a tetramer-forming β1L isoform of GABPA is required for full activation of the mutant pTERT, while GABPA β1L does not act on the wild-type pTERT to induce TERT expression in cell culture experiments (Mancini et al. 2018). Additionally, a recent study found that in the BRAFV600E mutated glioma cells also carrying pTERT mutation, several members of ETS family were
hyperactivated: \textit{ETS1}, \textit{GABPA}, \textit{GABPB}, \textit{ETV1}, \textit{ETV4} and \textit{ETV5} (Gabler et al. 2019).

\textbf{pTERT rs2853669 single nucleotide polymorphism (SNP)}

The rs2853669 SNP of \textit{pTERT} is located within a pre-existing ETS2 binding site 5' to the start codon and close to the C228T and C250T loci -245 bases 5' to the transcriptional start ATG codon causing a T > C substitution (Fig. 1).

The rs2853669 variant SNP disrupts the endogenous ETS2 transcriptional site, repressing transcriptional activation of \textit{TERT} (Hsu et al. 2006; Nencha et al. 2016). The telomerase activity was observed to be lower in the double C/C homozygous variant of rs2853669 than that of wild type T/T homozygotes indicating disruption of ETS2 binding site and reduced expression of \textit{TERT} (Hsu et al. 2006).

rs2853669 is associated with poorer prognosis and OS, despite lack of association with risk of developing GBM (Mosrati et al. 2015; Spieggl-Kreinecker et al. 2015). This may be due to the rs2853669 SNP modulating negative effects of other oncogenic driver mutation pathways (Mosrati et al. 2015; Spieggl-Kreinecker et al. 2015). A study of 126 GBM patients, showed that the subgroup of patients with wild-type TERT promoter who were also carriers for rs2853669 had longer median survival than those who were non-carriers for rs2853669 (43.5 vs 20.4 months) (Spieggl-Kreinecker et al. 2015). However, when the homozygous CC rs2853669 SNP variant was found survival was significantly shorter, particularly if coinciding with either the C228T or the C250T \textit{pTERT} mutation, which correlated with a very short overall survival median of 8.1 months (Spieggl-Kreinecker et al. 2015). These findings were corroborated by another study showing that patients with homozygous CC rs2853669 SNP variant in the presence of \textit{pTERT} mutation had a similar short overall survival median of 8.2 months (Mosrati et al. 2015). Together these studies imply that the homozygous CC rs2853669 genotype acts as an independent predictor of short patient survival in \textit{pTERT} mutated patients.

Interestingly, data from other studies are conflicting, regarding the survival impact of homozygous, wild type TT rs2853669 SNP with or without \textit{pTERT} mutation (Batista et al. 2016; Simon et al. 2014) (Nencha et al. 2016) indicating further research is required to clarify the impact of this SNP on GBM patient survival.

\textbf{pTERT mutations in cancer}

While \textit{pTERT} mutations are absent in normal human cells (Kim et al. 1994), they are common in many cancers including in glioblastoma (Kim et al. 1994; Liu et al. 2013) (Table 1). \textit{pTERT} mutations were significantly associated with the higher mean age at diagnosis in brain cancers (Vinagre et al. 2013).
Cancer	Sample	Number of patients with C228T (%)	Number of patients with C250T (%)	Number of patients with C228T and/or C250T (%)	Outcome/conclusion
Brain – Glioma	Tissue	N/A	N/A	93/199 (46.7%)	Radiomics may be used to predict some molecular subtypes, including the pTERT mutation positive and IDH1/2 mutation subtype, with currently limited accuracy. (Arita et al. 2018)
Brain – Glioma	Tissue	32/67 (47.8%)	6/67 (9.0%)	All 38/67 (56.7%)	Patients with pTERT mutation demonstrated significantly reduced OS and PFS (median 15 months and 5 months) as compared with those in pTERT wild type patients (median 33 months and 31 months) (log rank test: P = 0.031, and P = 0.008, respectively)
Brain – Glioma	Tissue	24/56 (42.9%)	10/56 (17.9%)	34/56 (60.7%)	In grade II tumours, MGMT-unmethylated/pTERT-mutated was strongly associated with worse prognosis. (Kim et al. 2018)
Brain – Glioma	Tissue	59/92 (64.1%)	20/92 (21.7%)	72/92 (85.9%)	pTERT mutations are more common in tumours with high SEL1L expression, which is associated with unfavourable prognosis and worse response to combined radiotherapy and adjuvant temozolomide chemotherapy (Mellai et al. 2020)
Brain – Glioma All	Tissue	274/887 (30.9%)	84/887 (9.5%)	12/37 (32.4%)	C228T and C250T were significantly associated with shorter survival in univariate analysis (median 11 vs. 20 months p = 0.002 and 12 vs. 20 months, p = 0.04 for C228T and C250T, respectively) compared to wild type tumours (Mosrati et al. 2015)
Anaplastic astrocytomas	N/A	N/A	N/A	10/19 (52.63%)	pTERT mutations were detected at a low frequency in Astrocytomas and high in Oligodendrogliomas. pTERT mutations were inversely correlated with IDH1/2 mutation. Patients with C250T pTERT mutations tended to have longer survival that those with the C225T mutation. The rate of C250T mutations in newly diagnosed gliomas was twice that of recurrent gliomas (You et al. 2017)
Anaplastic oligoastrocytomas	N/A	N/A	N/A	112/225 (54.2%)	
Anaplastic oligodendrogliomas	N/A	N/A	N/A	10/19 (52.63%)	
Oligoastrocytomas	N/A	N/A	N/A	112/225 (54.2%)	
Oligodendrogliomas	N/A	N/A	N/A	53/70 (75.7%)	
Primary GBMs	N/A	N/A	N/A	89/199 (44.7%)	
Secondary GBMs	N/A	N/A	N/A	15/51 (29.4%)	
Brain—Glioblastoma Tissue	48/74 (64.86)	14/74 (18.92)	62/74 (83.78)	Plays a role in tumourigenesis and pathogenesis of glioblastoma (Liu et al. 2013)	
Brain—Glioblastoma Tissue	17/43 (39.5%)	5/43 (11.6%)	22/43 (51.2%)	TERT mRNA expression higher in patients with pTERT mutations C228T (P < 0.0001) C250T (P = 0.0004) (Huang et al. 2015)	
The C228T mutation is the more prevalent cancer-associated pTERT-variant (see Table 1) (Huang et al. 2013; Johanss et al. 2016; Palsgrove et al. 2019). When 887 gliomas were analysed for pTERT mutations, C250T was found in 9.5% and C228T in 30.9% of all gliomas, with oligodendrogliomas having the highest proportion of mutations (both mutations combined) of 75.7% (You et al. 2017). pTERT C228T was associated with poorer OS compared to patients with C250T gliomas. Furthermore, the study indicated that the pTERT mutation frequency increased with age, and younger patients with pTERT mutation had longer OS than older patients with pTERT mutation (Akyerli et al. 2018). Another study examined 128 GBM samples and detected that 86% had pTERT mutations, 75% the C228T and 25% the C250T variant. In this cohort, GBM patients with pTERT mutations had shorter OS compared to wild-type pTERT patients with median OS 11 versus 20 months, respectively (Mosrati et al. 2015). Other studies confirm this key prognostic role of pTERT mutational status in GBM. (Table 1). Interestingly, an in vitro study has shown that programmable base editing of mutated pTERT blocked the binding of members of the ETS1 transcription factors to the TERT promoter, reduced TERT transcription and TERT protein expression, and induced senescence in glioma cell lines, suggesting that targeting pTERT mutations could be used as a therapeutic approach in cancer management (Li et al. 2020).

pTERT mutations and association with other prognostic biomarkers

Table 2 summarizes the correlation of pTERT mutations and other key biomarkers in gliomas. One key study examined 299 patients with diffuse gliomas and defined them into four distinct molecular groups: IDH mutation only (33.8%), pTERT mutation only (31.4%), IDH-pTERT double mutant (21.4%) or both wild type (13.4%) (Akyerli et al. 2018). Isocitrate Dehydrogenase (IDH) mutations are a well-described favourable prognostic marker in glioma (Vuong et al. 2017). Patients with the IDH-pTERT double mutations had better overall survival than those with IDH only mutations (Akyerli et al. 2018). Moreover, 96.3% of patients with the IDH-pTERT double mutations were also positive for 1p/19q co-deletions. All patients that had 1p/19q co-deletions also harboured pTERT mutations. More importantly, the analysis showed that the pTERT only mutations group was associated with older age and poor OS (Akyerli et al. 2018). These results are supported by the findings of Heidenreich et al., who showed in their cohort of 303 gliomas that the patients with only pTERT mutations had worse OS, while the patients with both IDH and pTERT mutations had the best OS (Heidenreich et al. 2015). Interestingly, one study showed that combined analysis of IDH1/2 and pTERT mutational status could be used to distinguish if a glial lesion is glioma or reactive glioma. The study reported that reactive gliosis samples did not contain C228T or C250T mutations in the TERT promoter region, while 78% of IDH wild type gliomas were found to have pTERT mutation (Hewer et al. 2020).

A study by You and colleagues analysed the rates and clinical outcomes of combined alterations of pTERT mutations and other key markers including IDH1/2, EGFR, TP53, PTEN, MGMT and 1p19q, in gliomas. The prognostic impact of pTERT mutations varied between groups, with improved prognosis in patients with both pTERT and IDH mutations, but the poorest survival in patients with pTERT mutation and EGFR amplification (You et al. 2017).
Table 2 \textit{pTERT} in glioma and co-occurrence with other biomarkers

Biomarker	Clinical utility	Frequency of co-occurrence	Outcome
IDH1/2	Prognostic marker	Low-grade gliomas had the highest frequency (87.3%)	\textit{IDH-mut} + \textit{pTERT-mut} = better OS, \textit{IDH-wt} + \textit{pTERT-mut} = poorer OS in WHO grade II and IV (Akyerli et al. 2018; Eckel-Passow et al. 2015; Labussière et al. 2014b; Lee et al. 2017; You et al. 2017)
EGFR	Prognostic marker	\textit{pTERT-mut} and IDH-wt tumours are highly associated with EGFR amplification (44.1%)	\textit{pTERT-mut} + \textit{EGFRamp} = poor OS (Heimberger et al. 2005a, 2005b; Labussière et al. 2014b; Pelloski et al. 2007; Wikstrand et al. 1997; You et al. 2017)
PTEN	N/D	54.6% of low-grade gliomas, 71.4% GBM, and all anaplastic gliomas had TERT and PTEN co-mutation	N/D (You et al. 2017)
TP53	N/D	TERT and TP53 mutations in low-grade gliomas and anaplastic gliomas were mutually exclusive, where only 2% and 3.6% of TERT mutation tumours harbored TP53 mutations, respectively	\textit{TP53-mut} + \textit{pTERT-mut} = poor prognosis (You et al. 2017)
ATRX		ATRX mutations and pTERT mutations are mutually exclusive in adult gliomas	N/D (Arita et al. 2013; Killela et al. 2013)
MGMT promoter methylation	Prognostic marker	TERT mutation and MGMT promoter hypermethylation is 51% (25/49) in low-grade glioma and 43.6% (31/71) in GBM	\textit{MGMT unmethylated} + \textit{pTERT-mut} = poor prognosis/ worst OS in grade II gliomas (You et al. 2017)
1p19q co-deletion	Prognostic marker	TERT mutation was clustered in tumours with 1p19q LOH (59/99 low-grade gliomas and 8/12 anaplastic gliomas) In 1p19q-codelleted cases (n = 51 [48 oligodendrogliomas and 3 oligoastrocytomas]), the incidence of pTERT-mut was 100% pTERT-mut was identifiable in 87.9% (94 out of 107 of gliomas with 1p19q co-deletion)	1p19qLOH + \textit{pTERT-mut} = better OS (You et al. 2017) (Akyerli et al. 2018) (Labussière et al. 2014b)
SEL1L	Prognostic marker	\textit{pTERT} mutations associated with SEL1L overexpression	SEL1L overexpression results in tumour progression, cell proliferation and decreased OS and response to therapy (Mellai et al. 2020)

\textit{N/D} not determined, \textit{wt} wild-type, \textit{mut} mutation, \textit{OS} overall survival
In contrast, in ALT positive astrocytomas \(pTERT \) and \(IDH1 \) mutations appeared mutually exclusive and \(pTERT \) mutations were generally associated with \(IDH1 \) wild-type astrocytoma (Ferreira et al. 2020). This study indicates that ALT may be the major telomere maintenance mechanism in \(IDH1 \) mutation astrocytoma resulting in histidine substitution at arginine 132 (\(IDH1^{R132H} \)) mutated astrocytomomas and that \(IDH1^{R132H} \) downregulates ATRX expression in vitro resulting in ALT (Ferreira et al. 2020). This potentially contributes to the association of \(IDH1^{R132H} \) mutations, \(\alpha \)-thalassemia/mental retardation syndrome X-linked (ATRX) loss and ALT (Ferreira et al. 2020). The ATRX gene is frequently mutated in gliomas and while its role in gliomagenesis is not clear so far, it is thought to be associated with ALT (Koschmann et al. 2016; Rizzo et al. 2009). A report into the prevalence of ALT mechanism in human cancers found 11% of adult glioblastoma rely on ALT, while the majority of adult glioblastoma relies on the reactivation of telomerase (Heaphy et al. 2011).

As mentioned above, there is a correlation between \(pTERT \) and SNP variant rs2853669, with SNP alone associated with improved OS in glioma, while \(pTERT \) decreases OS and \(pTERT \) together with wild-type SNP rs2853669 further lowers OS in glioma (Rachakonda et al. 2013).

Suppressor of Lin-12-like protein (C. elegans) (SEL1L) is recently emerging as a potential biomarker in brain cancer. SEL1L expression is associated with glioma proliferation and severity, as seen in the human brain glioblastoma cells cultured in vitro and in a formalin-fixed paraffin sections of glial tumours (Cattaneo et al. 2014). A recent study has shown that \(pTERT \) mutations are associated with SEL1L overexpression in glioblastoma; high SEL1L immunoreactivity correlates with tumour progression, cell proliferation, decreased OS and poorer response to therapy (Mellai et al. 2020). Further, it was proposed that SEL1L could be an important biomarker in \(pTERT \) mutant/\(EGFR \) amplified/\(IDH \) wild-type subgroup of glioblastoma (Mellai et al. 2020).

Detection of TERT promoter mutations in liquid biopsies

Currently brain cancer is diagnosed via magnetic resonance imaging (MRI) and, or computerised tomography (CT). A definite diagnosis of glioblastoma is obtained by histopathological confirmation at surgery or biopsy. There is an expanding role for molecular biomarker tests to aid treatment decisions and prognostication such as \(IDH1/2 \) mutation, \(MGMT \) promoter methylation, 1p19q co-deletion, \(pTERT \) (C228T, C250T), \(H3.3 \) (K27M and G34R/V), as well as Next Generation Sequencing Glioma Panel using these tumour tissue samples. Improved biomarker testing is of increasing interest in clinical trials worldwide in glioblastoma (such as Visual Study of Molecular Genotype in Glioma Evolution, NCT03750890) and other cancers (Visual Study of Molecular Genotype in Glioma Evolution).

However, tissue biopsies may poorly reflect tumour heterogeneity. Further, these biopsies are invasive and cancer patient condition or tumour location may be risky and/or prohibitive.

Liquid biopsy is an alternative way of examining molecular tumour profiles and utilises blood, cerebrospinal fluid (CSF), urine and other bodily fluids for detection and isolation of circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA) from cancer patients. ctDNA release into blood and bodily fluids depend on the location of the tumour, size and the vascular infiltration of the tumour (Haber and Velculescu 2014). Analysis of ctDNA in real time can provide important molecular insights into the tumour composition, heterogeneity, prognostic biomarkers and their association with other clinically relevant cancer biomarkers. Previous studies have shown that the levels of ctDNA present in liquid biopsies vary from patient to patient, however, the relative levels on repeated sampling in a single patient can indicate cancer progression (Diehl et al. 2008). Monitoring tumour dynamics via ctDNA before, during and post-treatment serves as an important tool. Using sensitive techniques such as droplet digital PCR has made this much easier as it can detect minute amounts of ctDNA in liquid biopsies (Ding et al. 2018). Accordingly, the potential of screening for \(pTERT \) mutations as biomarkers for future individualised therapies for patients should be considered. Increasing technological development, in the area of liquid biopsies, allow for a more convenient method of biomarker detection and are increasingly being adopted in clinical trials worldwide.

In brain cancer, liquid biopsy analysis may be more challenging due to the blood–brain barrier preventing release of tumour derived entities into the blood. Nevertheless, we and others have shown that CTCs and ctDNA can be isolated and analysed from brain cancer patients (Lynch 2020; Macarthur et al. 2014; Müller et al. 2014; Sareen et al. 2020; Sullivan et al. 2014). Further, ctDNA detection could predict the recurrence of disease earlier than conventional methods of monitoring in many cancer types (Ding et al. 2019; Gao et al. 2016; McEvoy et al. 2019; Sozzi et al. 2001; Tie et al. 2016; Wang et al. 2015). A study analysing the overall detection rate of ctDNA in the 419 primary brain tumours, including 222 glioblastomas, have shown that the detection of genomic alteration via ctDNA is achievable, with 211 patients showing some genomic alteration (Piccioni et al. 2019). Another study, looking at the clinical utility of plasma cell-free DNA (cfDNA) in adult patients with newly diagnosed glioblastoma, have determined that the patients had higher plasma cfDNA concentration at baseline (Bagley et al. 2020). The high baseline plasma cfDNA is associated
with the worse progression-free survival with a median of 4.9 months vs 9.5 months, induating that the plasma taken at that point may be an informative prognostic tool (Bagley et al. 2020). Furthermore, a recent study on diffuse gliomas, indicate that the presence of the ctDNA in CSF may serve as an early indicator of progression in glioma (Miller et al. 2019).

Thus, liquid biopsy may play a major role in diagnosis, monitoring, assessing disease progression and predicting response to brain cancer treatments in the future. Recently, ctDNA isolated from plasma has been successfully screened for pTERT mutations in various cancers, including metastatic melanoma, hepatocellular carcinoma, myxoid liposarcomas and urothelial cancer (Barata et al. 2017; Braig et al. 2019; Calapre et al. 2019; Ikeda et al. 2018; McEvoy et al. 2017). pTERT mutations can be detected using digital droplet PCR assays implying its potential utility in brain cancer therapy decision making and in progression monitoring (Braig et al. 2019; Calapre et al. 2019; Deniel et al. 2019; Hayashi et al. 2019; Wan et al. 2017).

Conclusion

pTERT mutations, C228T and C250T, frequently occur in many cancers, including brain cancers such as glioblastoma (Arita et al. 2013; Kim et al. 1994; Panebianco et al. 2019; Vinagre et al. 2013). These mutations induce the novel ETS1 binding site, which increases the expression of telomerase directly contributing to tumorigenesis, and are associated with poorer OS (Bell et al. 2015; Huang et al. 2013). Presence of pTERT mutations correlates with the presence of other biomarkers, such as IDH1, 1p19q, TP53, EGFR. Screening for the presence of variants in all of these genes may help prognosticate patients which may, in turn, improve clinical decision making (Arita et al. 2018, 2016; Heidenreich et al. 2015; Hewer et al. 2020; Kim et al. 2018; Mosrati et al. 2015; Pellekos et al. 2007; Spiegler-Kreinecker et al. 2015; Yuan et al. 2016). Whilst utility of liquid biopsies, as a minimally invasive approach, in the brain cancer setting is in its infancy, CTC and ctDNA analyses in brain cancer are increasingly common (Sareen et al. 2020). This review shows the detection of ctDNA and cfDNA in plasma and CSF of glioma patients is possible, and hand in hand with improved molecular detection techniques may become an important tool in determining prognosis and progression-free survival (Bagley et al. 2020; Miller et al. 2019).

The investigation of the profile of various biomarkers may hold clues to better understand tumour biology and may predict benefit of potential combination therapies. This area should therefore be a focus of further studies.

References

Akyerli CB et al (2018) Use of telomerase promoter mutations to mark specific molecular subsets with reciprocal clinical behavior in IDH mutant and IDH wild-type diffuse gliomas. J Neurosurg 128:1102–1114. https://doi.org/10.3171/2016.11.Jns16973
Arita H et al (2013) Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 126:267–276. https://doi.org/10.1007/s00401-013-1141-6
Arita H et al (2016) A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathologica Commun 4:79. https://doi.org/10.1186/s40478-016-0351-2
Arita H et al (2018) Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas. Sient Rep 8:1–10
Bagley SJ et al (2020) Clinical utility of plasma cell-free DNA in adult patients with newly diagnosed glioblastoma: a pilot prospective study. Clin Cancer Res 26:397–407. https://doi.org/10.1158/1078-0432.CCR-19-2533
Barata PC et al (2017) Next-generation sequencing (NGS) of cell-free circulating tumor DNA and tumor tissue in patients with advanced urothelial cancer: a pilot assessment of concordance. Ann Oncol 28:2458–2463. https://doi.org/10.1093/annonc/mdx405
Batista R et al (2016) The prognostic impact of TERT promoter mutations in glioblastomas is modified by the rs2853669 single nucleotide polymorphism. Int J Cancer 139:414–423
Becker T, Haferkamp S (2013) Molecular mechanisms of cellular senescence. In: Wang Z, Inuzuka H (eds) Senescence and senescence-related disorders. In Tech. https://doi.org/10.5772/54120
Bell RJA et al (2015) Cancer The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science (New York, NY) 348:1036–1039. https://doi.org/10.1126/science.aab0015

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Compliance with ethical standards

The investigation of the profile of various biomarkers may hold clues to better understand tumour biology and may predict benefit of potential combination therapies. This area should therefore be a focus of further studies.

Funding

This work was supported by a grant (13/TRC/1-01) from the Cancer Institute NSW through the CONCERT Translational Cancer Research Centre, SAJ is a recipient of an Ingham Institute PhD Scholarship, generated by the Liverpool Catholic Club. BP is funded through a Clinical Academic Group Seed Grant from the Sydney Partnership for Health, Education, Research and Enterprise (SPHERE).

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.
Braig D et al (2019) Genotyping of circulating cell-free DNA enables noninvasive tumor detection in myxoid liposarcomas. Int J Cancer 145:1148–1161. https://doi.org/10.1002/ijc.32216

Brennan Cameron W et al (2013) The Somatic Genomic Landscape of Glioblastoma. Cell 155:462–477. https://doi.org/10.1016/j.cell.2013.09.034

Broccoli D, Young JW, de Lange T (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci 92:9082–9086

Calapre L et al (2019) Locus-specific concordance of genomic alterations between tissue and plasma circulating tumor DNA in metastatic melanoma. Mol Oncol 13:171–184. https://doi.org/10.1002/1878-0261.12391

Cattaneo M et al (2014) Down-modulation of SEL1L, an unfolded protein response and endoplasmic reticulum-associated degradation protein, sensitizes glioma stem cells to the cytotoxic effect of valproic acid. J Biol Chem 289:2826–2838

Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11:319–330

Cong Y-S, Wen J, Bacchetti S (1999) The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet 8:137–142

Counter CM et al (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

Deniel A et al (2019) TERTp Mutation Detection in Plasma by Droplet-Digital Polymerase Chain Reaction in Spinal Myxopapillary Ependymoma with Lung Metastases. World Neurosurg 130:405–409. https://doi.org/10.1016/j.wneu.2019.07.111

Diehl F et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990. https://doi.org/10.1038/nm.1789

Ding PN et al (2018) Droplet digital PCR based detection of EGFR mutations in advanced lung cancer patient liquid biopsies: a comparison of circulating tumour DNA extraction kits. J Mol Biomarkers Diag. https://doi.org/10.4172/2155-9929.1000397

Ding PN et al (2019) The predictive and prognostic significance of liquid biopsy in advanced epidermal growth factor receptor-mutated non-small cell lung cancer: A prospective study. Lung Cancer 134:187–193. https://doi.org/10.1016/j.lungcan.2019.06.021

Eckel-Passow JE et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508. https://doi.org/10.1056/NEJMoal407279

Feinendegen LE et al (2015) In pancreatic cancer, expression of hTERT is associated with higher grade tumors and reduces overall survival. Proteomics Clin Appl 9:1615–1624. https://doi.org/10.1002/pca.2752

Feinendegen LE et al (2014) Increased telomerase activity in pancreatic cancer is associated with decreased expression of TERT antisense RNA. PLoS One 9:e114776. https://doi.org/10.1371/journal.pone.0114776

Gao F et al (2016) Circulating tumor cell is a common property of brain glioma and promotes the monitoring system. Oncotarget 7:7130–71340. https://doi.org/10.18632/oncotarget.11114

Haber DA, Velculescu VE (2014) Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 4:650–661. https://doi.org/10.1158/2159-8290.Cd-13-1014

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

Hayashi Y et al (2019) Diagnostic potential of TERT promoter and EGFR3 mutations in urinary cell-free DNA in upper tract urothelial carcinoma. Cancer Sci 110:1771–1779. https://doi.org/10.1111/cas.14000

Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636. https://doi.org/10.1016/0014-4827(65)90211-9

Heaphy CM et al (2011) Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 179:1608–1615. https://doi.org/10.1016/j.ajpath.2011.06.018

Heidenreich B et al (2015) TERT promoter mutations and telomere length in adult malignant gliomas and recurrences. Oncotarget 6:10617–10633. https://doi.org/10.18632/oncotarget.3329

Heimberger AB et al (2005a) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11:1462–1466

Heimberger AB et al (2005b) The natural history of EGFR and EGFRvIII in glioblastoma patients. J Trans Med 3:38

Hewer E et al (2020) TERT promoter mutation analysis to distinguish glioma from gliosis. J Neuropathol Exp Neurol 79:430–436. https://doi.org/10.1093/jnen/nlaa004

Horn S et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961

Hsu CP et al (2006) Ets2 binding site single nucleotide polymorphism at the hTERT gene promoter–effect on telomerase expression and telomere length maintenance in non-small cell lung cancer. Eur J Cancer 42:1466–1474. https://doi.org/10.1016/j.ejca.2006.02.014

Huang FW et al (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959

Huang D-S et al (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 51:969–976

Ikeda S, Lim JS, Kurzrock R (2018) Analysis of tissue and circulating tumor DNA by next-generation sequencing of hepatocellular carcinoma: implications for targeted therapeutics. Mol Cancer Ther 17:1114–1122

Johanns TM et al (2016) High incidence of TERT mutation in brain tumor cell lines. Brain Tumor Pathol 33:222–227. https://doi.org/10.1007/s10014-016-0257-5

Killeda PJ et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci 110:6021–6026

Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:1015–1017

Kim HS et al (2018) Clinical implications of TERT promoter mutation in IDH, and TERT promoter mutations in tumors. N Engl J Med 379:1650–1661. https://doi.org/10.1056/NEJMoal407279

Koschmann C et al (2016) ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in diffuse gliomas. Pathol Res Pract 212:881–888. https://doi.org/10.1016/j.prp.2018.04.002

Labussière M et al (2014) Combined analysis of EGFR-TERT and IDH-TERT in glioblastoma identifies distinct prognostic glioblastoma classes. Neurology 83:1200. https://doi.org/10.1212/wwnl.0000000000000814

Labussière M et al (2014) TERT promoter mutations in gliomas, genetic associations and clinicopathological correlations. Br J Cancer 111:2024–2032. https://doi.org/10.1038/bjc.2014.538

Lee Y et al (2017) The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathol Commun 5:62–62. https://doi.org/10.1186/s40478-017-0465-1
Lee DD et al (2020) DNA methylation of the TERT promoter and its impact on human cancer. Curr Opin Genet Dev 60:17–24. https://doi.org/10.1016/j.gde.2020.02.003

Li X et al (2020) Programmable base editing of mutated TERT promoter inhibits brain tumour growth. Nat Cell Biol 22:282–288. https://doi.org/10.1038/s41556-020-0471-6

Liu X et al (2013) Highly prevalent TERT promoter mutations in bladder cancer and glioblastoma. Cell Cycle 12:1637–1638

Lynch D et al (2020) Isolation of circulating tumor cells from glioblastoma patients by direct immunomagnetic targeting. Appl Sci Special Issue. https://doi.org/10.3390/app10093338

Macarthur KM et al (2016) Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Can Res 74:2152–2159. https://doi.org/10.1158/0008-5472.Can-13-0813

Mancini A et al (2018) Disruption of the beta1 integrin Isoform of GABP reverses glioblastoma replicative immortality in a TERT promoter-mutation-dependent manner. Cancer Cell 34:513-528. e518. https://doi.org/10.1016/j.ccell.2018.08.003

McEvoy AC et al (2017) Sensitive droplet digital PCR method for detection of TERT promoter mutations in cell free DNA from patients with metastatic melanoma. Oncotarget 8:78890–78900. https://doi.org/10.18632/oncotarget.20354

McEvoy AC et al (2019) Monitoring melanoma recurrence with circulating tumor DNA: a proof of concept from three case studies. Oncotarget 10:113–122. https://doi.org/10.18632/oncotarget.26451

Mellai M et al (2020) SEL1L plays a major role in human malignant gliomas. J Pathol Clin Res 6:17–29. https://doi.org/10.1002/jpc2.134

Miller AM et al (2019) Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 565:654–658. https://doi.org/10.1038/s41586-019-0882-3

Mosrati MA et al (2015) TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget 6:16663–16673. https://doi.org/10.18632/oncotarget.4389

Moyzis RK et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG), n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

Müller C et al (2014) Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 6:247ra101. https://doi.org/10.1126/scitranslmed.3009095

Nencha U et al (2016) TERT promoter mutations and rs2853669 polymorphism: prognostic impact and interactions with common alterations in glioblastomas. J Neurooncol 126:441–446. https://doi.org/10.1007/s11060-015-1999-3

Nonoguchi N, Ohta T, Oh J-E, Kim Y-H, Kleihues P, Ohgaki H (2017) TERT promoter mutations stratifies lower-grade glioma into distinct survival subgroups—A meta-analysis of aggregate data. Crit Rev Oncol Hematol 121:1–9

Sareen H et al (2020) The role of liquid biopsies in detecting molecular tumor biomarkers in brain cancer patients. Cancers 12:1831

Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791. https://doi.org/10.1016/S0959-8049(97)00662-2

Simon M et al (2014) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro-Oncology 17:45–52. https://doi.org/10.1093/neuroonc/nou158

Sozzi G et al (2001) Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res 61:4675–4678

Spiegler-Kreinecker S et al (2015) Prognostic quality of activating TERT promoter mutations in glioblastoma: interaction with the rs2853669 polymorphism and patient age at diagnosis. Neuro-Oncology 17:1231–1240

Stupp R, Tonn J-C, Brada M, Pentheroudakis G, Group EGW (2010) High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21:v190–v193

Tie J et al (2016) Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 8:346ra392-346ra392

Vinagre J et al (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4:1–6

Visual Study of Molecular Genotype in Glioma Evolution. https://ClinicalTrials.gov/show/NCT03750890

Vuong HG et al (2017) TERT promoter mutation and its interaction with IDH mutations in glioma: Combined TERT promoter and IDH mutations stratifies lower-grade glioma into distinct survival subgroups—A meta-analysis of aggregate data. Crit Rev Oncol Hematol 120:1–9

Wang J et al (2015) Label-free isolation and mRNA detection of circulating tumor cells from patients with metastatic lung cancer for disease diagnosis and monitoring therapeutic efficacy. Anal Chem 87:11893–11900

Weng NP et al (1996) Regulated expression of telomerase activity in urothelial carcinoma reveals frequent TERT promoter mutations. Proc Natl Acad Sci 93:7415–7419. https://doi.org/10.1073/pnas.93.15.7415

Xiao X et al (2002) Identification and characterization of rapidly dividing U937 clones with differential telomerase activity and gene expression profiles: role of c-Myc/Mad1 and Id/Ets proteins. Leukemia 16:1877

Xiao X et al (2003) Role of Ets/Id proteins for telomerase regulation in human cancer cells. Exp Mol Pathol 75:238–247

You H, Wu Y, Chang K, Shi X, Chen XD, Yan W, Li R (2017) Paradoxical prognostic impact of TERT promoter mutations
in gliomas depends on different histological and genetic backgrounds. CNS Neurosci Ther 23:790–797. https://doi.org/10.1111/cns.12724

Yuan P et al (2016) Clinical characteristics and prognostic significance of TERT promoter mutations in cancer: a cohort study and a meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0146803

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.