Traditional uses, phytochemistry, pharmacology and toxicity of Arisaema (Areaceae): a review

Heena Ali1 and Ubaid Yaqoob2*

Abstract

Background: The genus Arisaema (Areaceae), popularly known as cobra lilies and jack in pulp is mainly found in temperate to tropical areas of all continents except South America, Europe and Australia and contain about more than 250 species. Arisaema genus is being used by the different folks of human populations for medicinal as well as food purposes. Arisaema plants are used for the treatment of different types of diseases. There have been several attempts to highlight different aspects of genus Arisaema by describing it in terms of phytochemistry and medicinal uses. The present study is, however, an attempt to put together all the former data available related to the phytochemistry and medicinal uses of genus Arisaema.

Main body: The phytochemicals of the plant include alkaloids, phenols, terpenes, flavonoids, lectins, saponins, glycosides, triterpenoids, stigmasterols, n-alkanes, n-alkanols sitosterols, campesterol, oxalates, coumarins, tannins etc. Moreover, the properties such as antioxidant, antifungal, antibacterial, insecticidal, antimicrobial, cytotoxic, nematocidal, antiallergic antitumour and anticancer activities are also shown by the plants belonging to genus Arisaema. Arisaema plants have been traditionally used to treat various ailments such as resolving phlegm, dampness, and to treat asthma, bronchitis, cold, cough, and laryngitis etc. It has been found that there are several species which are toxic by nature. The development of clinical applications of arisaematis rhizomes had been seriously constrained due to its toxic properties like, mouth and lingua pain, even respiration slowing and suffocation, mucous membrane and skin irritation etc. and this toxicity of arisaematis rhizomes is due to raphide components.

Conclusions: The collection of data available on the phytochemistry of genus Arisaema is not sufficient as further work is required to do on phytochemical and medicinal basis. The data available on phytochemistry and medicinal properties of the plants belonging to genus Arisaema throws light on various species of Arisaema which are medicinally important and have been exploited to treat different types of diseases in the world.

Keywords: Arisaema, Areaceae, Phytochemistry, Medicinal uses, Toxicity

Background

The human beings are in search of cure to different diseases by natural therapies especially by different parts of plants and herbs. This paved way to the study of different plants to find novel ways of treatment and several plants have been recognized as medicinally important. Consequently, the research on medicinal plants has gone at a pace that matches no parallel in the history (Newman et al. 2000). Among these medicinally important plants comes the name of genus Arisaema that has around 250 species and every known species is used for different medicinal purposes. The species of Arisaema have been found in different parts of the world which include Eastern Africa, central Africa, Asia and eastern North America (Suresh et al. 2017).

*Correspondence: ubaidyaqoob@spcollege.edu.in
2 Department of Botany, Sri Pratap College, M. A. Road, Srinagar, J&K 190001, India
Full list of author information is available at the end of the article
A brief account of morphology of some of the species is given below:

(a) *Arisaema tortuosum* commonly known as whipcord Lily has whip like green and purple spadix. Flower can be up to 30 cm long and bisexual. Plant attains a height up to 2 m and grows in aggregation. It is usually regenerated by offsets or seeds (Fig. 1a).

(b) *Arisaema erubescens* has spathe inflorescence which is greenish having cylindrical 6 cm tubers. The tuber is globose in outline and is having 3 cataphylls which are dark green in colour carrying white spots (Fig. 1b).

(c) *Arisaema serratum* is a perennial herb which produces two leaves with 7–13 leaflets. Its blooming period is from May to June. The flowering bract can exhibit variety of shades and is differentiated from others by its small size spathe blade which came to end on the upper part of the mouth (Fig. 1c).

(d) *Arisaema amurense* is a short cobra lily which forms rapidly growing aggregates in woodland gardens. It forms leaves with five leaflets. The spathe inflorescence arises over the small sized spadix (Fig. 1d).

(e) *Arisaema yunnanense* is a perennial herb that usually arises from tubers. It exhibits 20–75 cm tall stem with 1–2 leaves. Sometimes the tuber of the plant form short tubercles which get detached from the tubers and can be the source of new plant in the proceeding years (Fig. 1e).

(f) *Arisaema leschenaultii* is a perennial herb with leaves having tapering tips, lens shaped with 7–12 leaflets. Leaves containing many veins which form an intramarginal vein (Fig. 1f).

(g) *Arisaema jacquemontii* is having perennial behavior developing from tubers. It forms a flowering stem up to 50 cm tall. The new plants in the subsequent years can be developed from the tubercles and from older tubers.

Present in the East and the West, the plant has been called by different names. As per the different appearance of its flowers, the *Asiatic species* are often called *cobra lilies* while *Western species* are often called *jack-in-the-pulpit*. Among its species, the present study would focus on few medicinally important species such as *Arisaema erubescent*, *Arisaema flavum*, *Arisaema tortuosum*, *Arisaema intermedium* Blume, *Arisaema jacquemontii* Blume, *Arisaema murrayi* Hook, *Arisaema utile*, etc.
Arisaema leschenaultii, Arisaema amurense, Arisaema yunnanense, Arisaema serratum, Arisaema calcareum, Arisaema anurans among others. In the present study, an attempt is made to highlight the phytochemistry and medicinal uses of different species of genus Arisaema, including their location (where the plant is found), traditional uses, toxicity etc.

Main text

Location

The species of the genus *Arisaema* are found in different parts of the world. The location of some of its species is given in Table 1.

Traditional uses

In the ancient times when the modern science was yet to develop, the people used different plants and herbs as treatment to different diseases and ailments. The species of genus *Arisaema* were also used for such purposes. Some of the traditional uses of some species of genus *Arisaema* are briefly given as under (Table 2):

(a) *Arisaema tortuosum*Among the species of *Arisaema*, it has been exploited traditionally to cure rheumatism and stomachache (Jain et al. 2005; Hussain et al. 2006), snake-bite (Bhatt and Negi 2006), piles (Suresh et al. 2011), digestive tract ailments including constipation, indigestion, abdominal pain, dysentery (Gangwar et al. 2010) and used as contraceptive (Paulsamy et al. 2017). It has been also used against nematodal infections (Choudhary et al. 2008), dog bite and liver complaints (Jain et al.2005). The rhizomes of the plant are used as antihelmentic whereas tubers are used as anti-nematodal and wound healing (Verma et al. 2012).

(b) *Arisaema leschenaultii* Blume The Asiatic species *Arisaema leschenaultii* Blume is commonly known as Dhei or cobra (Shaw and Willis 1973). It is used traditionally in Ayurveda system of medicine to cure urinary tract diseases, colitis, eczema, purging, gonorrhea, piles, haemorrhoids, syphilis, roundworm, fistula and sinus (Mathew 1999).

(c) *Arisaema erubescens* Several biological disorders have been treated by this plant in the Chinese traditional medicine. *Arisaema erubescens* (Wall.) is used in Chinese traditional medicine to discard damp-phlegm, to prevent convulsions, and to elevate the subsidence of induration and swelling (Yang et al. 2007).

Table 1 Location of some of the species of *Arisaema*

PLANT	Location	References
Arisaema erubescens	Central and Southern China	Ducki et al. (1995)
Arisaema flavum	Nanital and Uttrakhand (India)	Singh and Kamboj (2004)
Arisaema tortuosum	In the regions of scrub and alpine meadows in the Himalaya Southern India, western China, Myanmar and Rhododendron forest areas, Baragali, Khyber Pakhtunkhwa Pakistan	Nile and Park (2014), Azam et al. (2016)
Arisaema intermedium	Shimal, Asia, Africa, Pacific	Damme et al. (1995), Kaur et al. (2005), Kaur et al. (2009)
Arisaema wallichianum	Shimal, Asia, Africa, Pacific	Damme et al. (1995), Kaur et al. (2005), Kaur et al. (2009)
Arisaema jacquemontii	Shimal, Lakary mountains, Shamshaki, District Karak, Khyber Pakhtunkhwa Pakistan, Pakistan, Khyber Pakhtunkhwa Pakistan, Afghanistan, China, Nepal	Kunkel (1984), Damme et al. (1995), Kaur et al. (2006), Sudan et al. (2014), Banyal et al. (2014), Tabassum et al. (2019)
Arisaema murrayi	Maharashtra including, Lonavala, Khandala, Mulshi (Dongarwad) Satara (kas), Mahableshwar and Radhanagari	Sagar et al. (2014)
Arisaema utile	Pulwama (Jammu & Kashmir)	Mubashir and Shah (2012)
Arisaema leschenaultii	Sri Lanka, south India in the hills of Karnataka,Kerala and Tamil Nadu	Fyson (1932), Shaw and Will (1973), Selvakumari (2015)
Arisaema anurans	China, Siberia, Mongolia, and Korea	Zhu et al. (2013), Jia et al. (2018)
Arisaema franchechianum	China including‘Yunan,Sichuan, Guizhou and Guanxi, Song-mong country of Yunan region China, Guang wan	Hu et al. (2012), Li et al. (2013)
Arisaema curvatum	Hills of Nantial situated in the western range of Himalayas at altitude of ascending upto 2300 m	Singh et al. (2008)
Arisaema lipens	Mossy forests and bamboo copses of Hunan, South east Tibet, Yuman, S.chuan, Guizhou and Guangxi	Li et al. (1979)
Table 2 Traditional uses of some species of genus *Arisaema*

S.no	Species	Common Name	Part used	Traditional uses	References
1	*Arisaema amurense*	Amur jack in pulpit	Tubers and rhizomes	It is used to cure rheumatism, ulcers of digestive tract, tumour, and is used against pests. It has also been used as pain killer and as anticonvulsant	Chung et al. (1995), Jung et al. (1996a, b), Zhao et al. (2010)
2	*Arisaema Tortuosum*	Whipcord cobra lily	Tubers	It is used to cure rheumatism, stomach, snake bite, piles, constipation, indigestion, abdominal pain, dysentery, contraceptive, nematodal infections, dog bite and liver infections. It is also used to cure inflammation, stress, wounds of cattle to kill parasites, gout, hyperuricemia, and is used to detect the poisonous effects of snake bite. It's dried tubers are used in respiratory problems.	Hussain et al. (2006), Sharma and Majumdar (2003), Jain et al. (2005), Unyal and Shiva (2005), (Bhatt and Negi, 2006), Paulsamy et al. (2017), Choudhary et al. (2008), Gangwar et al. (2010), Kamble et al. (2011), Pragada et al. (2012), Nile and Park (2014)
3	*Arisaema jaquemontii*	Sap-ki booti or snake herb	Tubers	It is used to cure respiratory infections, intestinal worms, skin problems including pimples, blisters, ring worms, and is used as a massage on muscles to regain muscular strength. It is also used as anti convulsant and as antidote for snake bites.	Rao (1981), Bibi et al. (2010), Verma et al. (2012), Iqbal et al. (2018)
4	*Arisaema leschenaultii*	Dhei or cobra lily	Corm	It is used to treat urinary tract diseases, colitis, eczema, purging, gonorrhea, piles, haemorrhoids, syphilis, round worm, sinus, wound healing, and skin diseases	Fyson (1932), Shaw and Will (1973), Agarwal (1997), Mathew (1999), Pallithanam and Mathew (1999)
5	*Arisaema erubescens*	Blushing cobra lily	Rhizome	Its rhizomes are used to in eliminating dampness, resolving phlegm, expelling wind, relieving convulsions, removing swelling and lumps and to elevate subsidence of induration. These rhizomes are also used for stomachic disorders.	Zhu et al. (1999), Mao et al. (2001), Liu et al. (2011), Duet al. (2011)
6	*Arisaema lobatum*	Chinese cobra lily	Tubers	It is used against malaria, intestinal parasites, snake and insect bites in humans and animals.	Zhu et al. (2013)
7	*Arisaema cumbile*	rhizomes		It is exploited to treat dermatitis and neurological disorders	Hu et al. (2009), Sudman et al. (2014)
8	*Arisaema franchetianum*	Hugo aka cobra lily	Tubers	It is used for snake bites, used to elevate subsidence of induration, swelling, quicken blood-flow, relieve pains, and as anti-inflammatory. It has also been used to kill the intestinal parasites of humans and animals.	Li et al. (2013), Zhu et al. (2013)
9	*Arisaema calcareum*, *Arisaema serratum*, *A. asperatum*, *A. heterophyllum*	Rhizomes and tubers		These species are used to cure tumour, to kill pests, and as pain killer	Zhao et al. (2010)
10	*Arisaema heterophyllum*, *A. peninsulae*, *A. robustum*, *A. consanguineum* and *A. joponicum*	Tubers, rhizome		Used as anticonvulsants	Jung et al. (1996a)
(d) *Arisaema calcareum* In traditional Chinese medicine the rhizomes or tubers of *A. calcareum* are used against tumour and pests and also used as painkiller (Zhao et al. 2010).

(e) *Arisaema serratum* In traditional Chinese medicine the rhizomes or tubers of this plant are used against tumour and pests and also used as painkiller (Zhao et al. 2010).

(f) *Arisaema asperatum* In traditional Chinese medicine the rhizomes or tubers of this plant are used against tumour and pests and also used as painkiller (Zhao et al. 2010).

(g) *Arisaema heterophyllum* Blume In traditional Chinese medicine the rhizomes or tubers of this plant are used against tumour and pests and also used as painkiller (Zhao et al. 2010).

(h) *Arisaema amurense* In traditional Chinese medicine the rhizomes or tubers of this plant are used against tumour and pests and also used as painkiller (Ducki et al. 1996).

(i) *Arisaema yunnanense* This is a plant belonging to genus *Arisaema* which adulterates the tubers of a plant namely Pinellia ternata which were used in Chinese traditional medicine (Liu and Guo 2010).

(j) *Arisaema jacquemontii* Blume It is an herbaceous plant used as traditional cure to different ailments. Its usage is recorded as an anti-convulsant in the Chinese traditional medicine. It is also known for its physiological properties in the folk medicine system (Kunkel 1984). The juice extracted from the tubers of this plant applied to the skin is used to cure ring worms and other skin diseases by the Garo and khasi tribes of Meghalaya (Rao 1981).

The oil obtained by grinding the rhizomes of *Arisaema jacquemontii* is used to make a paste that can be used for massage purposes to recover muscular strength and is also used to cure skin problems including pimples and blisters (Khan 2007). Fruit decoction is used against snake bites (Banyal et al. 2014).

(k) *Arisaema tortuosum* (Wall.) It is also called Whipp-cord Cobra Lily. It is used in Indian folk medicine to cure different diseases related to stress and inflammation (Pragada et al. 2012; Nile and Park 2014). The juice and dried powder obtained from the tubers were used to apply for snake bites and to the wounds of cattle in order to kill any parasites (Sharma and Majumdar 2003; Choudhary et al. 2008). The plant was also used by Indian tribal people to cure various ailments associated with digestive tract like constipation, indigestion, abdominal pain and dysentery (Murty and Rao 2010).

Medicinal uses and phytochemical description:
Various chemical compounds obtained from different species of *Arisaema* are summarized in Table 3.

(a) *Arisaema erubescens* The extracts from *Arisaema erubescens* have shown anticancer properties. The agents which bestow anticancer action to this plant are not known yet. Paeonol and a crystalline solid which has been identified as aurantiamide acetate (4) (Fig. 2) have been obtained from methanol extract of dried *Arisaema erubescens* (Ducki et al. 1996). These extracts have shown growth inhibitory effects in vitro and these same extracts have shown antitumour effects against Si80, solid hepatoma and U14 cervical cancers in vivo. Clinically the plant extract from *Arisaema erubescens* was effective in treating patients suffering from cervical cancer (cure rate: 78%). Gastric, oesophageal, pituitary, lung, and brain cancers have also been treated by this plant. *A. erubescens* contain alkaloids and saponins but the components which bestow antitumour effects are not known yet (Ducki et al. 1995). Various researches have revealed that *Arisaema rhi-zome* is rich in alkaloids, saponins, triterpenoids and lectins (Shangary et al. 1995), so exhibited the abilities of eliminating dampness, resolving phlegm, expelling wind, relieving convulsions, removing swelling and lumps. The ethanolic extract of tubers of *Arisaema erubescens* (Wall.) yielded two nematocidal flavone-C-glycosides namely Schaftoside and isoschaftoside (5) which possess great nematocidal activity against the root-knot nematode (*Meloidogyne incognita*) nematode responsible for huge crop losses (Du et al. 2011). Different chemical compounds were obtained from this *A. erubescens* which have been listed as aurantiamide acetate, calcium oxalate (2), paeonol, monoterpenoids, fatty acids, flavonoids and alkaloids (Ducki et al. 1995), and ethanolic extracts of its tubers exhibit insecticidal activity against the house flies (*Musca domestica*). The n-butanol obtained from the ethanolic extracts of tubers of *A erubescens* strongly shows molluscidial activity against *Oncomliania hupensis* (Zhang et al. 2009).

Administration of Arisaematisit rhizomes in rats showed poisonous effect as revealed by interruption in energy metabolism, perturbation of gut microflora environment, vacuole formation in glomerular matrix, inflammation of renal tubular epithelial cells in kidney, membrane damage, and folate deficiency and injury. Rhizomes of *Arisaema erube-
Table 3 Various chemical compounds obtained from different species of *Arisaema*

S no	Plant species	Compound	Used against	Result	References
1	*Arisaema curvatum* Kunth	Lectins	Bactrocera cucurbitae	significant reduction in the percentage pupation and emergence of the adults	Singh et al. (2008)
2	*Arisaema jacquemontii*	Lectins	Bactrocera cucurbitae and in vitro proliferation of HCT-15 (82%), HOP-62 (77%), SW-620 (73%) and HT-29 (70%) cancer cell lines	A monocot lectin having potent anti-insect and anti-proliferative activity, anticancerous activity	Kaur et al. (2006), Tanveer et al. (2013)
		oxalic acid (1) (Fig. 2) and calcium oxalate (2) crystals, tannins, steroids, flavonoids, saponins, a calcium oxalate (2),alkaloid, protein, carbohydrates and oils	Skin diseases, ring worm, against insects, bacteria etc	Antibacterial activity, insecticidal activity, antiproliferative activity, and successful in curing skin diseases and ring worms	Iqbal et al. (2018)
3	*Arisaema erubescens*	Aurantiamide acetate (N-benzoyl-1-phenylalanyl-1-phenylalaninol acetate); Paenol alkaloids, saponins, triterpenoids and lectins	Cancer disease	anticancer properties both in vitro and in vivo; Cytotoxic and anticancerous	Ducki et al. (1995)
4	*A. Intermedium* Blume and *A. wallichianum* Hook	Lectins	Insect pests, Bactrocera cucurbitae (Coquillett),	Antinsect	Kaur et al. (2005)
5	*Arisaema decipiens*	piperidine alkaloid (2-dimethyl-3-hydroxy-6-(9-phenylnonyl) piperidine, and tetranortriterpenoids (6-deacetyl-nimbolin, 28-deoxonimbolide and nimbin and limnoids	MCF-7 cell line, KS62 and SK-OV-3 cell cancer cells and tumour	Inhibition on MCF-7 cell line, KS62 and SK-OV-3 cell cancer cells and against tumour	Zhao et al. (2010)
6	*A. amurense*	Cytotoxic diacylglycerylgalactosides and antihepatotoxic cerebrosides	murine leukemia P388 and human colon adenocarcinoma DLD-1 cells	Hepatotoxicity and Anti-cancerous	Jung et al (1996a)
S no	Plant species	Compound	Used against	Result	References
------	--------------------------	--	--	--	--
7	*A. helleborifolium* Schott	Lectins	Insect pest (*Bactrocera cucurbitae*) and in vitro proliferation of [HOP-62 (fung), HCT-15 (colon)]	Insecticidal and inhibition to in vitro proliferation of [HOP-62 (lung), HCT-15 (colon)]	Kaur et al. (2006)
8	*A. flavum*	Lectins, 13-phenyltridecanoic Acid, Asparagine (28), Cysteine, Glycine (30), Nonaline (31), Ornithine (32), β-soteryl Galactoside (34), α,β and beta amyrin (33)	J774 and P388D1 murine macrophage cancer cell lines	Antiproliferation of J774 and P388D1 murine macrophage cancer cell lines	Rastogi and Mehrotra, (1979), Singh et al. (2004)
9	*A. vulgare* Targ	2-octylpyrrolidine and 2-octylpiperidine alkaloids		Antitumour activity	Pezzuto et al. (1999)
10	*Arisaema yunnanense*			adulterant of traditional medicine *Pinellia ternate*	Liu and Guo (2010)
11	*Arisaema tortuosum* Schott			Anticancerous	Dhuna et al. (2005)
		Flavonoids, carbohydrate, glycoside and steroids			
		human cancer cell lines HT29, SiHa and OVCAR-5		inhibit in vitro proliferation of human cancer cell lines HT29	Migliani (1978), Pullaiah (2006), Nile and Park (2014)
		Stress and inflammation		Reduces stress level	Nile and Park (2014)
		Nematodes		Antihelmenthic activity, wound healing property and growth inhibition of some bacterial and fungal strains	Verma et al (2015)
		Nematodes, bacteria (such as p. melabulus aureus, E. coli, B. cerus, S typhi, K pneumonia, p. aeruginosa, E faecalis) and against fungi including A. alternata, A. niger, A flavus, F solani, F sporium, and P notatum			Verma et al. (2012), Azam et al. (2016)
		Microbes, free radicals, allergies and against reproduction in cattles and pigs		Antiseptic properties in buffalo’s antimicrobial activity, wound healing activity, antioxidant activity, free radical scavenging activity, antiulcer activity, antiallergic activity, and against reproduction in pigs and cattle	Kumari and Narasimhan (2003), Gunde et al (2009), Vinay jain et al. (2010, 20122015), Suruse et al. (2011), Suresh et al. (2017)
S no	Plant species	Compound	Used against	Result	References
------	-----------------------------	--	--	--	---
13	*Arisaema utile* Schott	Lectins	six human cancer cell-lines and human lymph, antimicrobial activity, antioxidant activity, wound healing activity	Potent inhibition towards six human cancer cell-lines and potent mitogenic response towards human lymphocytes	Dhuna et al. (2010)
14	*Arisaema ringens*	Basic lectins	Inhibition of haemagglutination	Inhibition of haemagglutination	Yagi et al. (2008)
15	*Arisaema utile*	Methanolic extract, N-acetyl-D-lactosamine	human cancer cell lines including THP-1 (leukemia), A-549 (lung), HCT-15 (Colon), Cervix (Hela) and Prostate (PC-3), *P. aeruginosa - P. vulgaris - S. aureus - B. subtilis - S. epidermidis*, DPPH	Antimicrobial, cytotoxic and antioxidant	Mubashir and Shah (2012)
16	*Arisaema franchetianum*	Cubenol (38), guaiol (39), eugenol (37), m-linalool (36), Alfa bisabolol (41), carvacrol (40), A novel pyrrolidine alkaloid, (2R*,3S*,5S*), N2-dimethyl-3-hydroxy-5-(10-phenyldecyl) pyrrolidine, and 17 compounds were bergenin emodin, caffeic acid, nobiletin, 3-O-b-D-galactopyranosyl-hederagenin 28-O-b-Dxylopyranosyl(1->4)-b-D-galactopyranosyl ester, coniferin, qingyangshengenin methylconiferin, syringaresinol 40-O-b-D-glucopyranoside, gagaminine, perlyrine, (S)-1-(10-hydroxyethyl)-b-carboline, 1-(b-carboline-1-yl)-3,4,5-trihydroxy-1-pentanone, 1-methoxy carbonyl-b-carboline (48), indolo[2,3-a] carbazole (49), 4-hydroxycinnamic acid methyl ester, and methyl 4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethyl] ferulate	Inflammation, against porcine respiratory and reproductive syndrome virus (PRRSV), human leukemic K562 cells, and human breast cancer MCF-7 cells	Anti-inflammatory effect, Inhibitory effect on porcine respiratory and reproductive syndrome virus (PRRSV), human leukemic K562 cells and human breast cancer MCF-7 cells	Miglani et al. (1978), Ducki et al. (1996), Jung et al. (1996a, b), Li and Long (1998), Lee et al. (2000), He et al. (2002), Huang et al. (2004), Bremner et al. (2004), Lamkadem et al. (2005), Mao et al. (2001), Nunomura et al. (2009), Zhao et al. (2010), Sun et al. (2011), Tao et al. (2011), Wang et al. (2007), Sun et al. (2013), Mubashir and Shah (2012), Jia et al. (2018)
S no	Plant species	Compound	Used against	Result	References
------	-----------------------------------	------------------------------	----------------------	---	------------
17	*Arisaema murrayi* Hook	Poison	Albino mice	Poisoining on Albino mice that resulted in changes in behavior such as: tremor, dizziness, dilation in pupils, and ultimately leading to death. Liver, kidney and small intestine got affected which carries some changes such as liver turns to black on edges and slightly congested, color of kidney changed to black and small intestine showed black or sometimes yellowish patches	Sagar et al. (2014)
18	*Arisaema airorubens*, *A. stewartsonii*, *A. Triphyllum* (L.) Torr	Oxalates	Has toxic properties	Intense irritation and burning of the mouth and tongue, with associated inflammation, Edema and Salivation. Deadly if tongue swells, blocking the air passage	Pandita et al. (2014)
19	*Arisaema anurans*	Oxygenated terpenes, phenyl propanoids	Microbes, fungi	Antimicrobial and antifungal	Jia et al. (2018)
20	*Arisaema cumbile*	Inflammation, skin diseases and mental disorders		Inhibits the production of proinflammatory cytokinins including interleukins, helps to cure dermatitis and neurological disorders	Sudan et al. (2014)
Fig. 2 Chemical structures of various phytochemicals. (1) Oxalic Acid; (2) Calcium Oxalate; (3) Tannins; (4) Aurentiamide Acetate; (5) Isoschaftoside; (6) Piperidine Alkaloid; (7) Camphesterol; (8) Cerebroside; (9) Stigsterol; (10) Stigmsterol; (11) Cholesterol; (12) Choline Chloride; (13) Stachyhydride Hydrochloride; (14) Rutin; (15) Quercetin; (16) Luteolin; (17) Alamine; (18) Arginine; (19) Aspartic Acid; (20) Leucine; (21) Lysine; (22) Serine; (23) Threonine; (24) Tyrosine; (25) Arisaeminone; (26) Valine; (27) 13-Phenyltridecanoic Acid; (28) Asparginine; (29) Cysteine; (30) Glycine; (31) Norvaline; (32) Ornithine; (33) α and β Amyrin; (34) β -Setosteryl Galactoside; (35) N-Acetyl-D-Glucosamine; (36) Linalool; (37) Eugenol; (38) Cubenol; (39) Threonine; (40) Carvacrol; (41) Basobalol; (42) Pyrolidine Alkaloid; (43) Berganin; (44) Emodin; (45) Caffeic Acid; (46) Nobelitin; (47) Gagaminine; (48) 1-Methoxycarbonyl-B-Carboline; (49) Indolo[2.3-A]Carbazole; (50) Piperdine Iodide; (51) Coumarin; (52) Flavonoid; (53) Anthraquinone

Arisaema flavum Lectin obtained from Arisaema flavum shows antiproliferative activity towards murine cancer cell lines, and potent mitogenic activity towards human peripheral blood mononuclear cells (HPBMC and BALB/c splenocytes as indicated by lymphoproliferation after incorporation of lectin into the cultures. It is known to synthesize biogenic silver nano particles effectively which imparts photocatalytic and antibacterial property to it. It showed potential antimicrobial activity against both gram negative and gram positive bacteria (E. coli BL-21, Bacillus subtilis, Staphylococcus aureus, Pseudomonas putida and Engineered E. coli sub strain QH4) (Rahman et al. 2019).

Arisaema tortuosum From the tubers of Arisaema tortuosum, popularly known as Himalayan Cobra lily, a lectin with in-vitro anticancer activity against established human cancer cell lines has been purified by affinity chromatography on asialofetuin-linked amino activated silica beads. Arisaema tortuosum is having complex specificity towards a serum glycoprotein asialofetuin and also towards Nacetyl-D-lactosamine (LacNAc) (Dhuna et al. 2005). In addition, aesthetic, antihepatotoxic, anticancerous, antimicrobial and antioxidant properties are exhibited by its tubers. The juice and dried powder obtained from the tubers were used to apply for snake bites and to the wounds of cattle in order to kill any parasites (Choudhary et al. 2008). Aesthetic, antihepatotoxic, anticancerous, antimicrobial and antioxidant properties are exhibited by its tubers (Murty and Rao 2010). Flavonoids, alkaloids, saponins, triterpenoids and lectins are present in A. tortuosum (Kamble et al. 2010) and a lectin was found to be the dominant pro-inflammatory component, exhibiting anticancer activity against human cancer cell lines (Dhuna et al. 2005). Its tubers were used in Indian folk medicine and Ayurveda for the treatment of gout, hyperuricemia, and cancer. The presence of quercetin (15), rutin (14), luteolin (16) and lectin in A. tortuosum was revealed by phytochemical observation and analysis (Nile and Park 2014). Arisaema tortuosum is exploited for abscess and antinematodal activity, its tuber decoction is given to animals for early recovery of fractured bone as well as administered internally to cure piles. It was used to cure stomachache, liver disorders, digestive tract problems including constipation, abdominal pain, dysentery, indigestion and antidote for dog bite by the tribals. Its tubers exhibited good aesthetic, antihepatotoxic, anticancerous, antimicrobial and antioxidant properties. It contains numerous phytochemicals like carbohydrate, glycoside and steroids (Verma et al. 2015). The leaf and tuber extracts of Arisaema tortuosum wall found to exhibit strong antibacterial activity due to the presence of various active constituents being solubilized in promising function (Bibi et al. 2011). The assessment of bacterial resistance to antibiotics helps in the administration of various infectious diseases. The uncertain components obtained from different extracts of Arisaema tortuosum wall may further helps in coming researches against bacterial illness (Kant et al. 2019).

(d) Arisaema intermedium Blume and Arisaema wallichianum Hook A. intermedium Blume and A. wallichianum Hook were proved to be very useful for the detection of various types of cancers as they showed specificity towards N-acetyl-D-lactosamine which is important cancer marker (Verma et al. 2015). The lectins from A.intermedium Blume and A. wallichianum showed greater almost double mitogenic potential towards human peripheral blood mononuclear cells as compared to that of well known mitogen concanavalin A (con A) and these lectins can be used as a means to study the lymphocytes transformation as a model of initia-
Fig. 2 continued
Fig. 2 continued
tion of growth and cell division, antigen activation and to detect the immune potential of an individual (Kaur et al. 2005) like other commercially famous mitogenic lectins such as concanavalin and phytohemagglutinin (PHA). By the process of affinity chromatography on asialofetuin-linked amino activated silica beads, two new lectins were purified from the tubers of Arisaema intermedium Blume and A. wallrichianum Hook. The lectins obtained from these two plant species comprise a major proportion of total protein content and contain glycoproteins 3.4% and 2.9% carbohydrates respectively. These lectins are homotetramers and their subunits are not linked by disulphide linkages (Kaur et al. 2005).

(e) Arisaema jacquemontii Blume The main phytochemicals were obtained from the polar solvent extracts of A. jacquemontii which possess marvellous cytotoxic, anticancerous, antioxidant properties and has a strong kinase inhibitor activity. The methanolic and ethanolic A. jacquemontii tuber extracts exhibited strong radical scavenging and antioxidant activity. It also possesses great anti-cancerous activity against some cancer cells for instance HL-60 human leukemia cancer cell lines, DU-145 prostate cancer cell lines. Its roots exhibit two triterpenoids (Jeelani et al. 2010). The extracts of A. jacquemontii possess large number of secondary metabolites which paves way to its usage in Pharmaceutical industries (Tabassum et al. 2019). From the tubers of a wild Himalayan cobra lily Arisaema jacquemontii Blume a monocot lectin having potent anti-insect and anti-proliferative activity was refined and was nominated as AJL (A. jacquemontii lectin) (Kaur et al. 2005). In the storage tissues of A. jacquemontii there is presence of the high lectin content of the total extractable proteins and these lectins under reducing as well as non-reducing conditions revealed the absence of disulphide linkages among various subunits which is indicated by the feature of lacking cysteine (29) residues in the amino acid composition of lectins from the araceous plants (Kaur et al. 2006).

Anti-insect Property These lectins are useful in defending the crop plants from the invasion and attack of fungal pathogens and insects. There is increasing evidence that these lectins provide shield from the attack of herbivores and other insects and also may act as a precise biodegradable active ingredient in the administration of insect pests (Kaur et al. 2006).

Lectins are proteinaceous compounds formed in species of Arisaema. They are found to have capability of agglutinating erythrocytes. They have a special property of binding carbohydrates due to the presence of non-catalytic domain present in them that actually reversibly get attached to monosaccharides or disaccharides. They actually cause agglutination of erythrocytes by binding with the carbohydrate present on the surface of erythrocytes (Dhuna et al. 2005). Arisaema lectins are exploited to know the immune status of an individual suffering from immune disorders, as a source to study the lymphocyte transformation and is useful in cancer research (Singh and Kamboj 2004).

Anti-proliferative activity A. jacquemontii lectin showed significant constraint on the in vitro multiplication of HCT-15 (82%), HOP-62 (77%), SW-620 (73%) and HT-29 (70%) cancer cell lines. The leaves of Arisaema jacquemontii showed immune stimulating effect as depicted by its potential abrogative effect on delayed type hypersensitivity response in immune suppressed balb/c mice, on humoral antibody response and also showed antioxidant activity. As revealed by phytochemical study Arisaema jacquemontii contain high amounts of terpenoids, coumarins, quinones, moderate amounts of phenols, glycosides and low quantity of alkaloids, anthraquinones. The paste formed by grounding of Arisaema jacquemontii rhizomes with edible oil is used in skin problems like pimples and blisters and also used as massage to recover muscular strength (Sudan et al. 2014). Arisaema jacquemontii is an herbaceous plant found in the northern regions of Kashmir and Pakistan and is also found in upper forest and lower alpine zone in the drier areas of Himalayas in the range of 2400–4000 m (Kunkel 1984). A tuber lectin extracted from this plant bestow anti-insect and anti-proliferative activity to it (Kaur et al. 2006) and its fruits and roots are used to treat nervous and psychic disorders. Tetra cyclic triterpenoid and substituted benzophenol (arisae-manone) have been isolated from this plant and it also contains some phytochemicals like terpenes, saponins and glycosides. Its usage is recorded as an anticonvulsant in the Chinese traditional medicine and is known for its physiological properties in the folk medicine system (Tanveer et al. 2014). Its tubers, leaves, and fruits exhibited antimalarial activity against Plasmodium berghei vincke but tubers exhibited strong antimalarial activity against Plasmodium berghei (Baba and Malik 2015). It is used in the treatment of respiratory infections, intestinal worms, dermatitis, and as an antidote for snakebites (Verma et al. 2015). Anti-insect and anti-proliferative properties were shown by the lec-
tins obtained from its tubers (Kaur et al. 2006). The leaves of *A. jacquemontii* shows antioxidant, immuno-modulating potential (Sudan et al. 2005), anti-convulsant activity and an effect on platelet aggregation (Jeelani et al. 2010). Due to the presence of high concentration of flavonoids *A. jacquemontii* exhibits strong antimicrobial activity and is known to inhibit some metabolic processes (Cushnie and Lamb 2005) and biosynthesis of nucleic acid. Spore germination of plant pathogens was found to be retarded by *A. jacquemontii* flavonoids. *A. jacquemontii* showed antifungal, antimicrobial and antibacterial properties. The potential antibacterial activity was shown against some bacteria including *Salmonella enteritidis*, *Micrococcus luteus*, *Streptococcus faecalis* and *Staphylococcus aureus* (Baba and Malik 2015). The juice extracted from the tubers of *A. jacquemontii* is used by the people of India to cure some skin diseases and ringworm and lectin obtained from it has insecticidal and antiproliferative activity. The tubers of *Arisaema jacquemontii* were procured from the mountainous areas of Kalam (Swat), Khyber Pakhtunkhwa province of Pakistan. Phytochemicals present in this plant include tannins, sterols, flavonoids, saponins, alkaloid, protein, carbohydrates and oils and it is due to these bioactive compounds *A. jacquemontii* is bestowed with antibacterial activity (Iqbal et al. 2018).

(f) *Arisaema murrayi* Hook The phytochemicals found to be present in aqueous extract of *Arisaema murrayi* Hook were picric acid, tannin, protein, sugar, anthraquinone, polyphenols etc. whereas its alcoholic extract contains phytochemicals like flavonoids, alkaloids and glycosides (Sagar et al. 2014).

(g) *Arisaema ringens* A basic lectin was refined from the bulbs of *Arisaema ringens*. This lectin has two carbohydrate binding sites and identified monooligosacharides and terminal N acetyllactosamine revealed by hemagglutination inhibition (Yagi et al. 2008).

(h) *Arisaema utile* Schott A plant lectin has been refined from the tubers of *Arisaema utile* which is a homotetrameric molecule of 54 kDa with subunit molecular mass of 13.5 kDa and shows mitogenic and antiproliferative activity. This lectin exhibited powerful mitogenic response towards human lymphocytes i.e. it initiates the state of growth and production of quiescent, non-dividing lymphocytes and had shown noticeable proliferation restrain towards some human cancer cell lines viz. SK-N-SH (CNS), MCF-7 (Breast), Colo-205 (Colon), 502713 (Colon), HCT-15 (Colon), Hep-2 (Liver), HT 29 (Colon), SW-620 (Colon), IMR-32 (Neuroblastoma), DU-145 (Prostate) and PC-3 (Prostate) (Dhuna et al. 2010). The carbohydrates like N-acetyl-D-lactosamine and asialofetuin inhibits this lectin induced hemagglutination, N-acetyl-D-lactosamine (35) which acts as a particular inhibitor of *Arisaema utile* lectin (AUL) is one of the necessary cancer markers (Ito et al. 1996).

(i) *Arisaema curvatum* Kunth By affinity chromatography using asialofetuin-linked amino activated porous silica beads the lectin from tubers of cobra lily, *Arisaema curvatum* was refined. The influence of this lectin was studied on the larvae of Bactrocera cucurbitae. This treatment lead to prolongation of the remaining larval development period and a significant decrease in the percentage pupation and emergence of the adults from these treated larvae (Singh et al. 2008).

(j) *Arisaema franchetianum* *Arisaema franchetianum* is well known medicinal plant used to treat the snake bites and as an anti-inflammatory agent in Chinese folk medicine since for a long time. The chemical constituents like pyrrolidine alkaloid, -N,2-dimethyl-3-hydroxy-5-(10-phenyldecyl) pyrrolidine (Su et al. 2013), and many different compounds like bergenin (43) (Migliani et al. 1978), emodin (44) (Ducki et al. 1996), caffeeic acid (45) (Zhao et al. 2010), nobiletin (46), (Jung et al. 1996a), 3-0-b-D-galactopyranosyl-hederagenin 28-O-b Dxylopyranosyl (1 ! 6)-b-D-galactopyranosyl ester (Jung et al. 1996b), coniferin (Li et al. 2013) qingyangshen-gin (Lamkadem et al. 2005), methylconiferin (Nonumura et al. 2009), syringaresinol 40-O-b-D-glucopyranoside (Sun et al. 2011), gagaminine (47) (Tao et al. 2011), perlolyrine (Wang et al. 2007) (S)-1-(10-hydroxyethyl)-b-carboline, (He et al. 2002) 1-(b-carboline-1-yl)-3,4,5-trihydroxy-1-mpentanone, (Huang et al. 2004) 1-methoxycarbonyl-b-carboline (Ma et al. 2006), (47) (Tao et al. 2011), perlolyrine (Wang et al. 2007) (S)-1-(10-hydroxyethyl)-b-carboline, (He et al. 2002) 1-(b-carboline-1-yl)-3,4,5-trihydroxy-1-mpentanone, (Huang et al. 2004) 1-methoxycarbonyl-b-carboline (Ma et al. 2006), and 14-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl) ethyl] ferulate (Bremner et al. 2004) have been extracted from *Arisaema franchetianum* tubers. The pyrrolidine alkaloid (42) exhibited inhibitory action against human leukemic K562 cells, human breast cancer MCF-7 cells, porcine respiratory and reproductive syndrome virus (PRRSV). The cytotoxic piperdine alkaloid (50) obtained from
A. decipiens Schott, and its N-methyl derivative showed inhibitory response against the K562 and MCF-7 cell line. Collection of A. franchetianum tubers was done from Songming County of Yunnan region, China, in June 2010 (Su et al.2013).

(k) Arisaema amurense Several species of Arisaema are exploited in the folk medicine for curing ulcer of digestive tract, rheumatism and cancer. The extracts obtained from Arisaema amurense Max Var serratum revealed strong phospholipase A2 inhibitory activity due to the presence of the compound 2,3-dihydroxypropyl, 9Z,12Z octadecadienoate (Chung et al. 1995).

(l) Arisaema leschenaultii Arisaema leschnaultii plant is endemic to Sri Lanka and south India which is used to treat skin diseases and piles. The corn of this plant contains cyanogenic glycosides, and high levels of calcium due to the presence of calcium oxalate (2) crystals and free calcium (Selvakumari 2015).

(m) Arisaema decipiens A dicipiens is one of the perennial herbaceous plant belonging to genus Arisaema. From the extracts of the rhizomes of this plant three known tetrannortriterpenoids and a new piperidine alkaloid (6) were isolated and their chemical structures were recognized as (−)-(2R*,3S*,6S*)-N,2-dimethyl-3-hydroxy-6-(9-phenylnonyl) piperidine, 6-deacetylnimbin, 28-deoxonimbolide and nimbin. This plant is also designated as a natural antitumor herbal medicine as it is the prime source of limnoids.

From A. amurense cytotoxic diacylglyceryl galactosides against murine leukemia P388, human colon adenocarcinoma DLD1 cells and antipathopotic cerebrosides(8), from A. helleborifolium Schott insecticidal (Bactrocera cucurbitae) and in vitro antiproliferative[HOP-62 (lung),HCT-15 (colon) and so forth] lectins and from A. flavum antiproliferative lectins against J774 and P388D1 murine macrophage cancer cell lines (Singh et al. 2004) were recognized. Similarly, from A. vulgare Targ some alkaloids like 2-alkylpyrrolidine and alkylpiperidine which significantly interact with DNA have been extracted (Melhaoui and Belouali 1998).

(n) A. propinquum It has been revealed through large number of experimental evidences that Arisaema propinquum exhibits a strong anti-helminthic property. This disclosure was based on investigational studies done on aqueous and methanolic extracts obtained from the rhizomes of Arisaema propinquum (Mir et al. 2020).

Toxicity

By the research on the plants, especially on the species of genus Arisaema, it has been found that there are several species which are toxic by nature. The development of clinical applications of arisaematis rhizomes had been seriously constrained due to its toxic properties like, mouth and lingua pain, even respiration slowing and suffocation, mucous membrane and skin irritation etc. and this toxicity of arisaematis rhizomes is due to raphide components including calcium oxalate (2), protein and trace carbohydrates as revealed by previous researches (Liu et al. 2011). Some of the species which are found toxic are mentioned as under:

(a) Arisaema tortuosum The plant has toxic character as revealed by the research. The researchers argue that the plant contains calcium oxalate (2) crystals. The presence of these crystals is the cause to produce annoying sensation. Moreover, the intake of its leaf induces vomiting in animal due to its poisonous character.

(b) Arisaema jacquemontii Blume Though the plant is used for medicinal purposes, yet it contains toxicity. It is said that because of its similarity with snake cobra, the plant is classified as poisonous plant. In its native region, the people call it by the name of “sap-ki-booti” (The snake herb). The plant also contains minute needle like crystals of calcium oxalate (2). These crystals present in this plant are extremely annoying when brought to contact with the mucus membrane of the mouth, nose and throat, or with tender skin (Kaur et al. 2006).

(c) Arisaema murrayi Hook The plant is a poisonous herb. In an experiment, Arisaema murrayi (Hook) showed poisonous effect on Albino mice due to which several changes occurred in its behavior like, drowsiness, dilation in pupils, convulsion of limbs and finally lead to death. The affected organs including kidney, small intestines and liver bear some changes such as kidney changed to black, small intestine showed black or sometimes yellowish patches and liver got congested and turned slightly black on edges.

Conclusions

To top it all, it can be said that there are many medicinally important plants among which Arisaema genus has not been studied as it should be. The collection of data available on the phytochemistry of genus
Arisaema is not sufficient as further work is required to do on phytochemical and medicinal basis. The present study, among others, authenticate the fact that the world is full of vast diversity of medicinally important plants. Among this diversity, genus Arisaema also has large number of plant species which are useful as medicines but some of them have been explored and the rest are unexplored. The large number of data available on phytochemistry and medicinal property of the plants belonging to genus Arisaema throws light on various species of Arisaema which are medicinally important and have been exploited to treat different types of diseases in the old world as well as in the modern times. The Phytochemicals like lectins, phenols, cerebroside, alkaloids, calcium oxalates, hydrochlorides, campes terol, choline chloride, stachy hydrine, glycosides, terpenoids, coumarins, quinones etc. have been extracted from the different species of Arisaema which are used against different diseases. The enormous work although have been done on the phytochemistry of Arisaema but there is still a need to explore more of its species on phytochemical and medicinal basis so that it can be used as a powerful medicine against large number of ailments. Some of its species have also been used as insecticides, for instance against insect pest, Bacteriosa curcurbitae. The medicinal properties exhibited by the genus has revealed that it could play a vital role in modern medicinal industry as well as in the therapeutics. As cancer disease has become a serious issue in present times, various species of Arisaema have been used to treat cancer, for instance Arisaema utile, Arisaema schott, Arisaema franchiatum.

Acknowledgements
Not applicable.

Authors’ contributions
HA contributed mostly in writing of the manuscript and collection of information. UY framed the idea and revised the whole manuscript after the writing. All the authors have read and approved the manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Author details
1 Department of Botany, Cluster University, S. P. College Campus, M. A. Road, Srinagar, J&K 190008, India. 2 Department of Botany, Sri Pratap College, M. A. Road, Srinagar, J&K 190001, India.

References
Agarwal VS (1997) Drug plants of India, vol 2. Kalyani Publishers, New Delhi, p 194
Airy Shaw HK, Willis JC (1973) Dictionary of flowering plants and ferns, 8th edn. Cambridge University Press, Cambridge
Azami S, Saqib MS, Zaf F, Ahmad E, Khan I, Zeib Z, Khan I (2016) Antibacterial, antifungal, phytotoxic, antioxidant and hemagglutination activities of organic fractions of Arisaema tortuosum. Pak J Pharm Sci 29(3):991–997
Baba SA, Malik SA (2015) Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema Jacquemontii Blume. J Taibah Univ Sci 9(4):449–454
Banyal H, Tandon A, Nainta M (2014) Antimalarial effects of extracts of Arisaema Jacquemontii Bl. on Plasmodium berghei Vinke and Lips (1948). Asian J Biol Sci 7(3):131–134
Bhatt V, Negi G (2006) Ethnomedicinal plant resources of Jaunsari tribe of Garhwal Himalaya, Uttarakhand. Indian J Tradit Knowl 5(3):331–335
Bibi Y, Nisa S, Waheed A (2010) Evaluation of Viburnum foetens. for anti cancer and potential and phytochemical analysis. Afr J Biotechnol 9(34):5611–5615
Bibi Y, Nisa S, Chaudhary FM, Zia M (2011) Antibacterial activity of some selected medicinal plants of Pakistan. BMC Complement Altern Med 11(1):52
Bremner JB, Sengpracha W, Southwell I, Bourke C, Skelton BW, White AH (2004) A revised structure for the alkaloid, tribulusterine, from Tribulus terrestris L. Aust J Chem 57(3):273–276
Choudhary K, Singh M, Pillai U (2008) Ethnobotanical survey of Rajasthan-an update. Amc Eur J Bot 1(2):38–45
Chung W, Goo YM, Na DS, Kim KJ (1995) A phospholipase A 2 inhibitor from Arisaema amunere Max. var serratum Nakai. Arch Pharmachal Res 18(4):295–294
Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356
Dhuna V, Bains JS, Kamboj SS, Singh J, Saxena AK (2005) Purification and characterization of a lectin from Arisaema tortuosum Schott having in-vitro anticancer activity against human cancer cell lines. J Biochem Mol Biol 38(5):526
Dhuna V, Dhuna K, Singh J, Saxena AK, Agrawal SK, Kamboj SS (2010) Isolation, purification and characterization of an N-acetyl-D-lactosamine binding mitogenic and anti-proliferative lectin from tubers of a cobra lily Arisaema utile Schott. Adv Biosci Biotechnol 10(2):79
Du SS, Zhang HM, Bai CQ, Wang CF, Liu GZ, Liu ZL, Wang YY, Deng ZW (2011) Nematicidal flavone-C-glycosides against the root-knot nematode (Meloidogyne incognita) from Arisaema erubescens tubers. Molecules 16(6):5079–5086
Ducki S, Hadfield JA, Lawrence NJ, Zhang XG, McGown AT (1995) Isolation of paenonol from Arisaema erubescens. Planta Med 61:586–587
Ducki S, Hadfield JA, Zhang X, Lawrence NJ, McGown AT (1996) Isolation of Aurantiamide acetate from Arisaema erubescens. Planta Med 62(03):277–278
Fyson PF (1932) The flora of the South Indian hill stations, Ootacamund, Coonoor, Kotagiri, Kodaiakanal, Yercaud and the country round, vol 1, 2
Gangwar K, Deepali GR, Gangwar R (2010) Ethno medicinal plant diversity in Kumaun Himalaya of Uttarakhand, India. Nat Sci 8(5):66–78
Gunde MC, Suruse PB, Amnerkar ND, Lohe RW, Godbole MD, Kale MK, Pathak AK (2009) Antioxidant activity of tubers of Arisaema leschenuaitii (Blume). Res J Pharm Technol 2:134–137
He JFL, He XJ, Qiu F, Shoyama Y, Tanaka H, Yao XS (2002) The active constituents from Gaulou-xieiba-bajiu-tang part i: active saponins. J Asian Nat Prod Res 4(3):189–196
Hu R, Yin CL, Wu N, Cui GY, Meng H, Wu XG, Hai-shui L, Gang T, Hu S, Shi J, Lin JK (2009) Traditional Chinese herb Dihuang Yinzi (DY) plays neuroprotective and anti-dementia role in rats of ischemic brain injury. J Ethnopharmacol 121(3):444–450
Huang P, Karaganis G, Waterman PG (2004) Nat Prod Res Dev 16:403. In: Su Y, Xu JJ, Bl JL, Wang YH, Hu GW, Yang J, & Long CL (2013) Chemical
constituents of *Arisaema franchetianum* tubers. J Asian Nat Prod Res 15(1): 71–77

Hussain F, Badshah L, Dastagir G (2006) Folk medicinal uses of some plants of South-Westistan, Pakistan. Pak J Plant Sci 12(1):27–39

Iqbal M, Bakht J, Shaﬁ M (2018) Phytochemical screening and antibacterial activity of different solvent extracted samples of *Arisaema jacquemontii*. Pak J Pharm Sci 31:75–81

Ito N, Imai S, Haga S, Nagaike C, Morimura Y, Hatake K (1996) Localization of binding sites of *Ulex europaeus* I, Helix pomatia and *Griffonia* simplicifolia-I-B4 lectin ananalysis of their backbone structures by several and poly-N-acetyllactosamine-speciﬁc lectins in human breast carcinoma. Histochem Cell Biol 106:331–339

Jain A, Katewa S, Galap P (2005) Some phytotherapeutic claims by tribals of southern Rajasthan. Indian J Tradit Knowl 4(3):291–297

Jeelani S, Khuroo MA, Razdan TK (2010) New triterpenoids from *Arisaema jacquemontii*. J Asian Nat Prod Res 12:251–157

Jia M, He Q, Wang W, Dai J, Zhu L (2018) Chemical composition and acaricidal activity of *Arisaema anurans* essential oil and its major constituents against *Rhipecephalus microplus* (Acari: Ixodidae). Vet Parasitol 261:59–66

Jung JH, Lee H, Kang SS (1996a) Diacylglycerolylglycalsides from *Arisaema amurense*. Phytochemistry 42:447–452

Jung JH, Lee CO, Kim YC, Kang SS (1996b) New bioactive cerebrosides from *Arisaema amurense*. J Nat Prod 59:319–322

Kamble SY, Patil SR, Sawant PS, Sawant S, Pawar SG, Singh EA (2010) Studies on plants used in traditional medicine by Bhilla tribe of Madharsahar. Indian J Tradit Knowl 9:591–598

Kant K, Lal UR, Gosh M (2019) Antibacterial activity with bacterial growth kinetics and GC-MS analysis on leaf and tubers of *Arisaema tortuosum* (Wall.) Schott. Indian J Pharm Educ Res 5:3280–3287

Kaur M, Singh J, Kamboj SS, Singh J, Kaur A, Sood SK, Saxena AK (2005) Isolation and characterization of two N-acetyl-D-lactosamine speciﬁc lectins from tubers of *Arisaema intermedium* Blume and *A. wallachianum* Hook f. Indian J Biochem Biophys 42:34–40

Kaur M, Singh K, Rup JP, Kamboj SS, Saxena AK, Sharma M, Bhagat M, Sood SK, Singh J (2006) A tuber lectin from *Arisaema jacquemontii* Blume with anti-insect and antiproliferative properties. J Biochem Mol Biol 39:432–440

Kaur M, Singh K, Rup JP, Kamboj SS, Singh J (2009) Anti-insect potential of lectins from *Arisaema* species towards *Bactrocerca curculifera*. J Environ Biol 30(6):1019–1023

Khan SM (2007) Ethanobotanical plants resources of shaver valley. Pak J Biol Sci 10:1743–1746

Kletter C, Krichbaum M (2001) DWA-BA-Arisaema, Typhonium. In: Tibetan medicinal plants. Medpharma Scientiﬁc Publisher, pp 77–84

Kumari MR, Narasimhan D (2003) Abortifﬁcent and contraceptive plants used by malayalis of Jalal hills. J Econ Taxon Bot 27(4):788–790

Kunkel G (1984) Plants for human consumption. Koeltz Scientiﬁc Books, Koenigstein, pp 393–394

Lamkadem M, Schwob I, Mimouni J, Azz M, Rouali A, Rabier J, Fontonge R, Kunkel G (1984) DNA as an afﬁnity probe useful in the detection and isolation of biologically active natural products. J Nat Prod 54:1522–1530

Lee DU, Kang SI, Yoon SH, Budesinsky M, Kasal A, Mayer KK, Wiegrebe W (2000) Study of some ethnomedicinal plant species of Andhra Pradesh, India. J Ethnopharmacol 3(U):1368

Li HG, Zhu H, Jin M (1979) *Arisaema*. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China. vol 23. Science Press, Beijing, p 43

Liu XH, Zhang YJ, Yang CR (2007) New pregnane glycosides from the roots of *Cynomorium otophyllum*. Steroids 72(11–12):778–786

Majumdar AM (2003) Traditional knowledge of plants from Toranmal Plateau of Maharashtra. Indian J Tradit Knowl 2:292–296

Mao SJ, Cheng LP, Wu LY (2001) J Chin Med Mater 24:813–814 In: Dong G, Wang J, Guo P, Wei D, Yang M, Kong L (2015) Toxicity assessment of *Arisaema rhizoma* in rats by a 1H NMR-based metabolomics approach. Molecular BioSystems 11(2):407–417

Mathew KM (1999) The ﬂora of the Palani hills (Monocotyledons), vol III. Rapi nat Herbarium, Tiruchirapalli, pp 1368–1371

Melhauoi A, Belouali H (1998) DNA afﬁnity of active alkaloids from *Arisarum vulgare* Tag. J Ethnopharmacol 62:67–71

Miglani BD, Chawla AS, Gaind KN (1978) Chemical investigation of *Arisaema tortuosum* Corm. Indian J Pharm 26:25

Mir PA, Dar MA, Bader GN (2020) Pharmacognostical standardization, phytochemical investigation, and anthemic activity of *Arisaema propinquum* Schott rhizomes. Pharmacogn Res 12(2):181

Mubashir S, Shah WA (2012) Antimicrobial, cytotoxic and antioxidant activities of *Arisaema utile*. J Pharm Res 5(3):1368

Murty PP, Narasimha-Rao GM (2010) Unique ethnomedicinal uses of some plant species of Andhra Pradesh, India. J Photol 21:7–21

Newman DJ, Cragg GM, Snader KM (2000) The inﬂuence of natural products upon drug discovery. Nat Prod Rep 17(3):215–234

Nile SH, Park SW (2014) HPTLC analysis, antioxidant, anti-inﬂammatory and antiproliferative activities of *Arisaema tortuosum* tuber extract. Pharm Biol 52(2):221–227

Nunomura R, Oliveira KG, Da Silva SL, Nunomura SM (2009) Characterization of bergenin in *Endopleura uchi* bark and its anti-inﬂammatory activity. J Braz Chem Soc 20(6):1060–1064

Pulliathanam JM, Mathew KM (1999) A pocket ﬂora of Sirumali hills. Rapin Herbanum, Tiruchirapalli, pp 262–326

Pandita D, Pandita A, Pandita S (2014) The phytochemistry, toxicology and warning signs of the poisonous ﬂora of Jammu and Kashmir, India

Paulamy S, Vijayakumar M, Murugesan M, Senthilkumar P (2017) Ecological status of medicinal and other economically important plants in the shola understories of Nilgiris, the Western Ghats. Nat Prod Radiance 6(1):55–61

Pezzuto JM, Che C-T, McPherson DZ, Zhu JP, Topcu G, Erdelmeier CA, Cordell GA (1999) DNA as an afﬁnity probe useful in the detection and isolation of biologically active natural products. J Nat Prod 54:1522–1530

Pragada PM, Rao DS, Malleviboyina V (2012) Study of some ethnomedicinal plants for treatment of dysentery of North Coastal Andhra Pradesh, India. Int J Biosci 2:18–24

Pulliath T (2006) Encyclopedia of world medicinal plants, volume I. Regency Publication New, New Delhi

Rahman AU, Khan AU, Yuan Q, Wei Y, Ahmad A, Ullah S, Khan ZUH, Shams S, Tariq M, Ahmad W (2019) Tuber extract of *Arisaema flavum* eco-benignly and effectively synthesizes silver nanoparticles: photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4. J Photochem Photobiol B 193:31–38

Rao PR (1981) Ethnobotany of Meghalaya medicnal plants used by Khasi and Garo tribes. Econ Bot 35:4–9

Rastogi RP, Mehrotra BN (1979) In a compendium of medicinal plants, vol 2. Central Drugs Research Institute, Lucknow and Publication and Information Directorate, New Delhi, p 833

Sagar T, Vidya N, Raghunath P (2014) Toxicity effect of biopesticide, *Arisae ma murrayi* (Hook) on the Swiss Albino Mice. Group 1, p 2

Selvakuman PAS (2015) Pharmacognostical standardization of *Arisaema leschenaultii* Blume. Ind J Nat Prod Resour 6(2):12–14

Shangary S, Singh J, Kamboj SS, Kamboj KK, Sandhu RS (1995) Purification and properties of four monosaccharide lectins from the family Araceae. Phytochemistry 40(2):449–455

Singh J, Kamboj SS (2004) A novel mitogenic and antiproliferative lectin from a wild cobra lily, *A. propinquum* Flavum. Biochem Biophys Res Commun 318(4):1057–1065

Singh J, Singh J, Kamboj SS (2004) A novel mitogenic and antiproliferative lectin from a wild cobra lily, *Arisaema flavum*. Biochem Biophys Res Commun 318(4):1057106520041

Singh K, Kaur M, Rup MK, Singh J (2008) Effects of plant lectin from cobra lily, *Curvatum Kunth* on development of melon fruity, *Bactrocera cucurbitae* (Coq.). J Environ Biol 29(6):911–916
Su Y, Xu JJ, Bi JL, Wang YH, Hu GW, Yang J, Yin GF, Long CL (2013) Chemical constituents of Arisaema franchetianum tubers. J Asian Nat Prod Res 15(1):71–77

Sudan RRM, Bhagat S, Gupta J, Singh A (2014) Kouli, Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan cobra lily). Biomed Res Int 2014:179865

Sun H, Zhang X, Cai Y, Han W, Wang Y, Ye W (2009) Stud on chemical constituents of ilix rotunda Thumb. Chem Ind For Prod 29(1):111–114

Sun J, Yin Z, Zhang Q, Ye W, Wang Y, Zhao S (2011) Chemical constituents from ethyl acetate extract of Ganoderma lucidum. J China Pharm Univ 42(3):220–222

Suresh S, Pradheesh G, Manickavasakam R, Ramani VA (2017) Antimicrobial activity and identification of potential compounds from the ethanolic extract of the medicinal plant arisaema leschenaultii (Blume). World J Pharm Pharmacol Sci 6(7):1334

Suresh S, Pradhesh G, Manickavasakam R, Ramani VA (2017) Anti bacterial activity and identification of potential compounds from the ethanolic extract of the medicinal plant arisaema leschenaultii (Blume). World J Pharm Pharmacol Sci 6(7):1334

Suruse PB, Kale MK, Gunde M, Pathak AK (2011) Evaluation of wound healing activity Arisaema leschenaultii (Blume). Derpharmacia Lett 3(4):200–206

Tabassum S, Zia M, de Blanco EJC, Batoel R, Aslam R, Hussain S, Wali Q, Gudzar MM (2019) Phytochemical, in-vitro biological and chemo-preventive profiling of Arisaema Jacquemonti Blume tuber extracts. BMS Complement Altern Med 19(1):256

Tanveer M, Habib ur-Rehmaan, Sims J, Choudhary MI, Hamann MT (2013) First profiling of Arisaema Jacquemontii Blume. J Med Plant Res 7:2040–2042

Tanveer M, Habib ur-Rehmaan, Sims J, Choudhary MI, Hamann MT (2013) First profiling of Arisaema Jacquemontii Blume. J Med Plant Res 7:2040–2042

Tao SH, Chen YF, Li Z, Yang CY, Yan YS, Wu YW, Xu PTJ (2011) Guangdong Pharm Univ 27:364. In: Su Y, Xu JJ, Bi JL, Wang YH, Hu GW, Yang J, & Long CL (2013) Chemical constituents of Arisaema franchetianum tubers. J Asian Nat Prod Res 15(1):71–77

Vinay J, Panigrahi MK (2012) Freee radical scavenging activity of Arisaema leschenaultii Blume. Int J Phytochem 3(5):437–440

Vinay J, Panigrahi MK (2012) Freee radical scavenging activity of Arisaema leschenaultii Blume. Int J Phytochem 3(5):437–440

Verma H, Lal VK, Pant KK (2015) Pharmacognostic evaluation and physicochemical analysis of the rhizomes of Arisaema turtuosum. Wall. J Pharm Res 9(1):60–63

Vinay J, Panigrahi MK (2010) Evaluation of anti-ulcer activity of Arisaema leschenaultii Blume. Int J Phytochem 3(5):437–440

Vinay J, Panigrahi MK (2012) Freee radical scavenging activity of Arisaema leschenaultii Blume. Int J Phytochem 3(5):437–440

Publisher’s Note
 Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.