BaOsO₃: A Hund’s metal in the presence of strong spin-orbit coupling

Max Bramberger,¹,², * Jernej Mravlje,³ Martin Grundner,¹,² Ulrich Schollwöck,¹,² and Manuel Zingl⁴

¹Arnold Sommerfeld Center of Theoretical Physics, Department of Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
²Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 Munich, Germany
³Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
⁴Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

(Dated: May 10, 2021)

Hund’s metals are a class of material which have recently drawn a lot of attention. The inter-orbital Hund’s coupling J_H in these materials leads to important electronic correlation effects despite the fact, that J_H is usually only 10-20% of the intra-orbital Hubbard repulsion U. So far the effects of spin-orbit coupling (SOC) in Hund’s metals have for example been studied in the context of Sr₂RuO₄ and Sr₂MoO₄, however while the interplay with electronic correlations gave rise to a static effective enhancement of SOC, one did not observe any influence on dynamical quantities. In order to learn more about the interplay between SOC and Hund’s metal physics we therefore study BaOsO₃ a 5d transition metal oxide with 4 electrons in the t_{2g} shell similar to ruthenates but with stronger SOC ($\lambda = 0.3$ eV) using a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT). We find that BaOsO₃ can be best pictured as a moderately correlated Hund’s metal in which the physics is governed by an intriguing interplay of SOC, Hund’s coupling J_H and a van-Hove singularity (vHs) close to the Fermi level.

*email: M.Bramberger@physik.uni-muenchen.de