Elementary excitations in trapped Bose gases beyond mean field approximation

L. Pitaevskii\(^1\)\(^,\)\(^2\)\(^,\)\(^3\)\(^,\)\(^4\), and S. Stringari\(^3\)\(^,\)\(^4\)

\(^1\)Department of Physics, Technion\(^1\), 32000 Haifa, Israel
\(^2\)Kapitza Institute for Physical Problems\(^2\), 117454, Moscow, Russia
\(^3\)Dipartimento di Fisica, Università di Trento\(^3\),
\(^4\)and Istituto Nazionale di Fisica della Materia\(^4\), I-3850 Povo, Italy

(July 23 1998)

Using hydrodynamic theory of superfluids and the Lee-Huang-Yang equation of state for interacting Bose gases we derive the first correction to the collective frequencies of a trapped gas, due to effects beyond mean field approximation. The corresponding frequency shift, which is calculated at zero temperature and for large \(N\), is compared with other corrections due to finite size, non-linearity and finite temperature. We show that for reasonable choices of the relevant parameters of the system, the non-mean field correction is the leading contribution and amounts to about 1%. The role of the deformation of the trap is also discussed.

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.90.+z

The experimental measurements \(^1\)\(^,\)\(^2\) of the collective oscillations of Bose condensed gases confined in magnetic traps have provided an excellent confirmation of the predictions of mean field theory (see \(^2\) for a recent theoretical review). The accuracy of the mean field predictions is not surprising since in these gases the average distance between particles is significantly larger than the range of interatomic forces. Typically, the gas parameter \(n(0)a^3\), where \(n(0)\) is the density evaluated in the center of the trap, and \(a\) is the s-wave scattering length, is smaller than \(10^{-4}\). According to the theory of Lee, Huang and Yang (LHY) \(^1\), the first corrections to the mean field predictions are expected to behave like \(\sqrt{n}n\) and to be consequently of the order of 1% or less in these systems. While such corrections are too small to be observed in the density profiles or in the release energy, they might be observable in the frequency of the collective excitations where the accuracy of measurements is much higher. For example an accuracy of 0.3 \(\sim\) 0.4% has been already achieved in the experiment of \(^1\).

Measuring effects beyond mean field theory is a challenging task and would open new perspectives in the many-body investigation of these novel systems. So far the theoretical investigation of these effects has been limited to the equilibrium properties, either including first quantum corrections in analytic form \(\(^2\)\(^,\)\(^3\)\(^,\)\(^4\)\), or through numerical simulations based on Monte Carlo methods \(\(^3\)\(^,\)\(^4\)\). The purpose of this work is to provide an analytic calculation of the first corrections to the collective frequencies due to non-mean field effects. These corrections are calculated in the large \(N\) limit and at zero temperature.

Our starting point are the hydrodynamic equations of superfluids (see for example \(^2\))

\[
\frac{\partial}{\partial t} n + \nabla (vn) = 0 \tag{1}
\]

and

\[
m \frac{\partial}{\partial t} v + \nabla (\mu + \frac{1}{2} m v^2) = 0 \tag{2}
\]

holding at zero temperature. Here \(n\) is the density of the system, \(v\) is the velocity field and \(\mu\) is the chemical potential. Equations (1-2) permit to describe the low frequency collective excitations also in non-uniform Bose superfluids, provided the density profile varies on a macroscopic scale and one can use the local density approximation for the chemical potential

\[
\mu(r, t) = \mu_l(n(r, t)) + V_{ext}(r) \tag{3}
\]

where \(\mu_l(n)\) is the chemical potential calculated for a uniform gas at density \(n\) and \(V_{ext}\) is the external confining potential.

In the following we will consider the linearized regime of eqs. (1) and (2). We write \(n(r, t) = n(r) + \delta n(r, t)\) and \(\mu(r, t) = \mu_0 + \delta \mu_l(r)\) with \(\delta \mu_l = (\partial \mu_l/\partial n) \delta n\), so that eqs. (1) and (2) can be rewritten in the useful form

\[
m \frac{\partial^2 \delta n}{\partial t^2} - \nabla \left(n \nabla \left(\frac{\partial \mu_l}{\partial n} \delta n \right) \right) = 0. \tag{4}
\]

The ground state density \(n(r)\) entering equation (4) can be easily calculated by imposing the equilibrium condition \(\mu_0 = \mu_l(n(r)) + V_{ext}(r)\) where \(\mu_0\) is the ground state value of the chemical potential, fixed to ensure the proper normalization of \(n(r)\).

Equations (4) do not necessarily require that the trapped gas is weakly interacting. It is also worth noticing that the density \(n\) entering these equations should not be confused with the density of the condensate, which in general does not obey equations of macroscopic type. Only in the weakly interacting limit, where quantum depletion effects are negligible, can the density of the system be identified with the condensate density. In this case eqs. (4) are equivalent to the time dependent Gross-Pitaevskii equations for the order parameter, evaluated in the large \(N\) limit (see, for example, \(^2\)).

According to LHY theory, the chemical potential of a uniform interacting Bose gas is determined by the low density expansion:
\[\mu_l(n) = gn \left(1 + \frac{32}{3\sqrt{\pi}} \sqrt{a^2}n \right) \]

where \(g = 4\pi\hbar^2a/m \) is the interaction coupling constant and \(a \) is the s-wave scattering length. Eq. (9) represents a major result of many body theory and accounts for nontrivial renormalization effects of the interaction coupling constant. It provides the first correction to the result \(\mu = gn \) given by lowest order theory, hereafter called Bogoliubov or mean field approximation. The LHY equation of state (4) can be derived starting from Bogoliubov theory. In this scheme the energy of the system, including the zero-point motion of elementary excitations, is given by \(E = \frac{1}{2} Ng + \frac{1}{2} \sum_{p \neq 0} [\epsilon(p) - p^2/2m - gn] \) where \(\epsilon(p) \) is the energy of elementary excitations in Bogoliubov theory. The zero point energy contains an ultraviolet divergency at large \(N \) and by density oscillations of the form \(\delta n \sim e^{iqz} \) and exhibit a phonon dispersion \(\omega = c q \). In this case Eq. (8) (or, equivalently, (9)) gives the Beliaev result (10) \(\delta c/c = 8\sqrt{a^n/\pi} \) for the shift of the sound velocity with respect to the Bogoliubov value \(c = \sqrt{gn/m} \), calculated at the density \(n \). Notice that even in the uniform case \(n \) differs from \(n_{TF} \) because of Eq. (10). The shift of the sound velocity is consistent with the change in the compressibility \(mc^2 = n \partial \mu/\partial n \) associated with the LHY correction in the equation of state (4).

Equation (11) shows that the so-called “surface” oscillations \(\delta n = r^{2} Y_{\ell m} \), satisfying the condition \(\nabla^2 \delta n = 0 \), are not affected by the LHY correction. Physically this behavior follows from the fact that in the long wavelength limit the hydrodynamic surface oscillations are entirely determined by the external field. For spherical trapping these solutions obey the dispersion relation \(\omega = \sqrt{\ell \omega_0} \) which is simply obtained setting \(n_{r} = 0 \) in (10).

In order to observe effects beyond mean field one has to focus on compressional modes, which are sensitive to the equation of state. The lowest mode in a spherical trap is the monopole (breathing) oscillation \((n_{r} = 1, \ell = 0) \), characterized by the zero-th order dispersion \(\omega = \sqrt{5\omega_0} \) and by density oscillations of the form \(\delta n \sim (r^2 - 3/5R^2) \). In this case Eq. (11) yields the relevant result

\[\frac{\delta \omega_M}{\omega_M} = \frac{63\sqrt{\pi}}{128} \sqrt{a^n/\pi} \]

showing that the fractional shift of the monopole frequency is proportional to the square root of the gas parameter evaluated in the center of the trap. This correction exhibits the same dependence on the gas parameter as the quantum depletion of the condensate, although the
coefficient of proportionality slightly differs in the two cases. It is useful to write the gas parameter in terms of the relevant parameters of the system as

$$a^3 n(0) = \frac{15^{2/5}}{8\pi} \left(N^{1/6} \frac{a}{a_{ho}} \right)^{12/5} \tag{13}$$

where N is the number of atoms in the trap and $a_{ho} = (\hbar/m\omega_0)^{1/2}$ is the oscillator length. Using, for example, $N = 10^3$ and $a/a_{ho} = 6 \times 10^{-5}$, we predict a relative shift of 1%. A similar value is found for the quantum depletion of the condensate. Eq.(13) shows that in order to enhance the value of the ratio a/a_{ho} rather than the value of N which enter the equation with a much lower power. In practice, however, it is not easy to obtain large values of $a^3 n(0)$ and hence large frequency shifts. So far the achievement of high densities is in fact limited by three body recombinations which cause the atoms to leave the trap.

The above shift of the monopole frequency should be compared with other corrections which might be relevant in actual experiments, like finite size, non-linearity and thermal effects. Finite size effects arise because even in the mean field scheme the Thomas-Fermi value $\sqrt{5} \omega_0$ holds only in the large N limit. These corrections arise from the “quantum pressure term” in the equation for the velocity field which is ignored in Eq.(2), and can be calculated by a proper perturbation procedure in the Gross-Pitaevskii equation. Using a sum rule approach one obtains the following result for the leading correction to the monopole oscillation in the large N limit and isotropic trapping

$$\frac{\delta \omega_M}{\omega_M} = -\frac{7}{6} \left(\frac{a_{ho}}{R} \right)^4 \frac{C}{ah_0} \log \left(\frac{R}{Cah_0} \right) \tag{14}$$

where $C = 1.3$ is a dimensionless parameter and $R = a_{ho}(15Na/a_{ho})^{1/5}$ is the radius of the system. For the surface quadrupole mode one finds that the fractional shift has opposite sign and is larger by a factor 5.

It is worth noticing that the corrections to the Thomas-Fermi value due to non-mean (2) and finite size (14) effects depend on different combinations of the relevant parameters of the system. In fact finite size effects depend on the combination Na/a_{ho}, while non-mean field effects depend on $N^{1/6}a/a_{ho}$. In the thermodynamic limit, where $N \rightarrow \infty$ and $\omega_0 \rightarrow 0$, with the product $N\omega_0^3$ kept constant, finite size corrections go to zero, while the gas parameter (13) has a finite value (for a discussion of this limit in trapped Bose gases see, for example, [4]). The large N, thermodynamic limit is reasonably well realized in experiments. For example, using the same values for N and a/a_{ho} employed above, one finds that the finite size shift (14) of the monopole frequency is much smaller ($\sim 0.1\%$) than the non-mean field correction (12).

In general finite size effects are negligible if the condition $N \gg (a_{ho}/a)^2 \log(R/a_{ho})$ is satisfied.

Non-linearity is another important effect to discuss. In fact in actual experiments the amplitude of the oscillation cannot be made arbitrarily small. The effects of non-linearity have been investigated in details in [4] in the framework of the Thomas-Fermi approximation. The leading corrections to the frequency shift can be written in the form $\delta \omega/\omega = A^2 \delta$ where A is the fractional amplitude of the oscillation of the atomic cloud confined in the trap and the coefficient δ can be calculated in an explicit way [4]. For the monopole mode in the spherical trap one has $\delta = -1/6$ so that for fractional amplitudes less than 10%, the effects of non-linearity are very small.

In addition to finite size and non linearity effects, one should also take into account that experiments are carried out at finite temperature. At present there is no fully reliable theory to account for the temperature dependence of the collective frequencies of these trapped gases. However one expects that these effects should vanish very rapidly when kT is smaller than the chemical potential. A rough estimate of the thermal effect can be obtained by assuming that the shift of the real part of ω is of the same order as its imaginary part which is responsible for the damping of the oscillation. This might provide an experimental control of the thermal effect on the frequency shift also in the absence of accurate low temperature thermometry.

Finally an important question concerns the role of the anisotropy of the confining potential. In fact most of magnetic trap are at present non spherical. Furthermore, high density values are at present more easily reached working with highly deformed traps. For an axially deformed trap of the form $V_{ext} = \frac{1}{2} m \omega_0^2 r_\perp^2 + \frac{1}{2} m \omega_z^2 z^2$, where $r_\perp = (x^2 + y^2)^{1/2}$ is the radial coordinate, the HD equations (4) admit several interesting solutions. In addition to the dipole (center of mass) oscillation, the excitations so far investigated experimentally are the $m = 2$ quadrupole mode, whose density varies as $\delta n \sim r^2 Y_{22}$, and the $m = 0$ oscillations resulting from the coupling between the quadrupole and the monopole modes (notice that the z-th component, m, of angular momentum is still a good quantum number in axially deformed systems). The $m = 2$ quadrupole mode has frequency $\omega = 2\omega_\perp$ and is not affected by non-mean field effects since $\nabla^2 \delta n = 0$. Conversely the decoupled frequencies of the $m = 0$ modes are given by

$$s^2 = \frac{\omega^2}{\omega_\perp} = 2 + \frac{3}{2} \lambda^2 \pm \frac{1}{2} (9\lambda^4 - 16\lambda^2 + 16)^{1/2} \tag{15}$$

where $\lambda = \omega_z/\omega_\perp$ characterizes the asymmetry of the trap. The corresponding density oscillations have the form $\delta n \sim -2\mu(s^2 - 2)/m\omega^2 + r_\perp^2 + (s^2 - 4)z^2$. After some length, but straightforward algebra, one derives the result
\[
\frac{\delta \omega}{\omega} = \frac{63\sqrt{\pi}}{128} \sqrt{\frac{s^2 n(0)}{\alpha^3}} f_{\pm}(\lambda)
\]

for the frequency shift of the \(m = 0\) modes where

\[
f_{\pm}(\lambda) = \frac{5}{3} \left(\frac{s^2 - 2}{s^2} \right)^2 = \frac{1}{2} \pm \frac{8 + \lambda^2}{6\sqrt{9\lambda^4 - 16\lambda^2 + 16}}
\]

and the index \(\pm\) refers to the higher (+) and lower (−) solutions of Eq. (13). Notice that for a spherical trap \((\lambda = 1)\) the solutions of (13) are \(s^2 = 5\) (monopole) and \(s^2 = 2\) (quadrupole). In the first case one finds \(f_{+} = 1\) and one recovers result (4) for the breathing mode, while in the second case there is no shift. In the figure we show the functions \(f_{+}\) and \(f_{−}\) relative to the two modes as a function of the deformation parameter \(\lambda\).

Another important consequence of the use of deformed trap concerns the effects of non-linearity. In fact it has been shown [9] that these effects can be amplified or reduced by changing the value of \(\lambda\). For example, choosing \(\lambda = 1.40\) one finds that the non-linearity coefficient \(\delta\) of the high lying solution of (13) vanishes. For this mode one finds \(s^2 = 7.1\) and \(f_{+} = 0.88\). Another interesting case is obtained choosing \(\lambda = \sqrt{3}\). In this case the non-linear effect is vanishingly small for the low energy solution. For this mode one finds \(s^2 = 3.2\) and \(f_{−} = 0.38\).

As already pointed out the largest values of the gas parameter have been so far reached for cigar trap configurations. In this case the frequency shift of the lower mode with dispersion \(s^2 = 5\lambda^2/2\) is reduced significantly \((f_{−}(0) = 1/6)\) with respect to the case of the \(\lambda = 1\) breathing mode \((f_{+}(1) = 1)\). Conversely the higher mode, which corresponds to a compressional radial oscillation with dispersion \(s^2 = 4\), exhibits only a small reduction \((f_{+}(0) = 5/6)\). It is also worth pointing out that for this mode the non-linear effect vanishes as \[14\]

\[
\frac{\delta \omega}{\omega} = -0.0938\lambda^2 A^2.
\]

Finite size effects are also vanishing in the same limit. The fact that non linear and finite size effects vanish for \(\lambda \rightarrow 0\) reflects the occurrence of a hidden symmetry [13] of the Gross-Pitaevskii equation characterizing the radial compressional mode in two-dimensional gases and might be used to improve the accuracy of experimental measurements. One should however notice that, for very small values of \(\lambda\), the trapped gases exhibit, in addition to the radial excitations, also a low-lying branch of axial modes [10]. This could produce a “parametric” instability [17] of the compressional radial oscillation due to decay into two or more axial excitations.

In conclusion in this letter we have derived the first corrections to the collective frequencies of trapped Bose gases arising from effects beyond mean field theory. We have shown that with reasonable choices of the parameters these effects, although small, might be visible experimentally. Their direct observation would represent an important achievement in the study of many-body effects associated with the occurrence of Bose-Einstein condensation.

We would like to thank E. Cornell, J. Dalibar, W. Ketterle and D. Stamper-Kurn for very stimulating discussions.

Figure Caption. Functions \(f_{+}\) and \(f_{−}\) relative to the higher and lower \(m = 0\) modes (see eqs.(13) and (16)), as a function of the deformation parameter \(\lambda = \omega_\perp/\omega_\perp\).

References:

[1] D.S. Jin et al., Phys. Rev. Lett. 77, 420 (1996).
[2] M.-O. Mewes et al., Phys. Rev. Lett. 77, 988 (1996).
[3] D.M. Stamper-Kurn et al., cond-mat/9805022.
[4] F. Dalfovo et al., cond-mat/9806033.
[5] T.D. Lee and C.N. Yang, Phys. Rev. 105, 1119 (1957); T.D. Lee, K. W Huang, and C.N. Yang, Phys. Rev. 106, 1135 (1957).
[6] E. Timmermans, P. Tommasini, and K. Huang, Phys. Rev. A 55, 3645 (1997).
[7] E. Braaten, and A. Nieto, Phys. Rev. B 56, 14745 (1997).
[8] W. Krauth Phys. Rev. Lett. 77, 3695 (1996), M. Holzmann, and W. Krauth, cond-mat/9807014.
[9] P. Nozières and D. Pines, The Theory of Quantum Liquids (Addison-Wesley, Reading, MA, 1990) Vol.II.
[10] S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).
[11] G. Baym and C. Pethick, Phys. Rev. Lett. 76, 6 (1996).
[12] S.T. Beliaev, Soviet Physics JETP 34, 299 (1958).
[13] F. Zambelli, and S. Stringari, to be published.
[14] F. Dalfovo, C. Minniti, and L.P. Pitaevskii, Phys. Rev. A 56, 4855 (1997).
[15] L.P. Pitaevskii. Phys. Lett. A 221, 14 (1996); L.P. Pitaevskii, and A. Rosch, Phys. Rev. A 55, R853 (1997).
[16] M. Fliesser et al., Phys Rev. A 56, R2533 (1997); S. Stringari, Phys. Rev. A, in press.
[17] L.D. Landau, and E.M. Lifshitz, Mechanics, 3-rd edition, Butterworth Heinemann, Oxford, 1987.
