Antimicrobial properties of marine seaweed, *Sargassum muticum* against human pathogens

Puthamohan Vinayaga Moorthi*, Chelliah Balasubramanian

Department of Zoology and Microbiology, Thiagarajar College, Madurai-09, Tamil Nadu, India

Objective: To evaluate the antibacterial efficiency of the seaweed, *Sargassum muticum* (*S. muticum*) collected from Pudumadam, Ramanathapuram, Tamil Nadu, India.

Methods: Crude solvent extracts of *S. muticum* were obtained by using Soxhlet extraction and the solvents like acetone, methanol and chloroform. These different extracts were tested against different human bacterial pathogens such as *Micrococcus* sp., *Staphylococcus aureus* (methicillin resistance), *Salmonella paratyphi* B, *Staphylococcus epidermis* (3615), *Enterobacter aerogenus* (111), *Klebsiella pneumonia* (109), *Shigella flexneri* (1457) (*S. flexneri*), *Proteus vulgaris* (1771), *Staphylococcus aureus* (96) and *Salmonella typhymurium* (SP7) which were obtained from Microbial Type Culture Collection, Indian Institute of Microbial Technology, Chandigarh, India.

Results: The results revealed that acetone extract had unveiled the maximum of 11 mm zone of inhibition at 40 µL against *S. fleschneri*. Similar zone of inhibition (11 mm) was also observed at 50 µL against *Micrococcus* sp. and *S. fleschneri*. Followed by acetone extract, chloroform extract also contributed 11 mm zone of inhibition against *S. fleschneri* and *Salmonella paratyphi* B at 40 and 50 µL respectively. Besides, methanol extracts revealed meager antibacterial activity (9 mm).

Conclusions: The present investigation suggests that the phytochemical constituent of the *S. muticum* might be suitable agents for the control of human deadly diseases.

Keywords

Sargassum muticum, Seaweed, Acetone extract, Chloroform extract, Methanol extract, Bacterial pathogens

1. Introduction

Seaweeds are macroscopic algae which attached to the bottom in relatively shallow coastal waters. They form one of the important living resources grouped under three divisions viz., Chlorophyceae, Phaeophyceae and Rhodophyceae. Seaweeds are considered as a potential source of bioactive compounds as they are able to produce a great variety of secondary metabolites characterized by a broad spectrum of biological activities including antibacterial activity[1].

They are excellent source of vitamins such as A, B₁, B₁₂, C, D and E, riboflavin, niacin, panthothanic acid, folic acid as well as minerals such as Ca, P, Na, K[2]. Among marine algae, brown algae have been reported to contain higher phlorotannin contents as marine phenolic compounds[3]. *Sargassum* species have been identified for such a purpose and are both very effective and easily available. Besides, the growing need for the development or discovery of highly potential bioactive compounds from natural sources is due to the resistance to chemical drugs which often leads to the reemergence of agents of air...
as well as water borne disease in a new phenotypic as well genotypic forms.

Recently, infections have become the leading cause of death worldwide one next to cancer which has led to an increase in antibacterial resistance, making it a global growing problem. Thus, there is an urgent need to discover new antimicrobial compounds from plants with diverse chemical structures and novel mechanism of action for new and reemerging infectious disease. The new therapeutic agents should be effective and have a novel mode of action that renders them impervious to existing resistance mechanism. Hence, curbing the genetically diverse pathogenic infectious diseases and searching the novel biologically active sources of seaweeds are considered now as a potential antimicrobial agent. Therefore, the present investigation aims to detect the bactericidal efficiency of the brown alga, Sargassum muticum (S. muticum).

2. Materials and methods

2.1. Preparation of aqueous seaweed extract

S. muticum was collected by hand picking method at a depth of 1–2 m in Gulf of Mannar, Pudumadam in Rameshwaram, Tamil Nadu, India. The surface of seaweed was washed with tap water and subsequently roughly with sterile distilled water and then they were identified, shade dried for 15 d and powdered using mixer grinder. Later, aqueous extract was prepared by dissolving 200 mg of powdered seaweed in 100 mL of sterile distilled water. The extract was subject to heat at 60 °C for 20 min and centrifuged at 8000 r/min. The decanted supernatant was used throughout the study.

2.2. Solvent extraction and antibacterial activity

About 10 g of powdered seaweed was soaked in 100 mL of solvents such as chloroform, acetone and methanol and Soxhlet extraction was performed to obtain the crude extract. Then they were centrifuged at 5000 r/min for 20 min at 4 °C and filter sterilized using 0.2 µm membrane syringe. The seaweed extract was subjected to phytochemical screening as described by Harborne[4]. Bacterial cultures such as *Micrococcus* sp., *Staphylococcus aureus* (*S. aureus*) (methicillin resistance), *Salmonella paratyphi* B (*S. paratyphi*), *Staphylococcus epidermis* (3615) (*S. epidermis*), *Enterobacter aerogenes* (111) (*E. aerogenes*), *Klebsiella pneumonia* (109) (*K. pneumonia*), *Shigella flexneri* (1457) (*S. flexneri*), *Proteus vulgaris* (*P. vulgaris*) (1771), *S. aureus* (96) and *Salmonella typhymurium* (SP7) (*S. typhymurium*) were obtained from Microbial Type Culture Collection, Indian Institute of Microbial Technology, Chandigarh, India. The bioassay was carried out using the agar disc diffusion method and for each bacterial species, three replications were maintained[4].

3. Results

In the present investigation, the marine brown algae, *S. muticum*, was collected from Pudumadam (9’30’’N and 78’97’’E) by hand picking and was identified at Madurai Kamaraj University’s Marine Ecotoxicology Field Research Facility, Pudumadam, Ramanathapuram District, Tamil Nadu, India. As for the solvent extracts, acetone and chloroform exhibited higher antibacterial activity against tested human pathogenic bacteria compared to methanol extract. Solvent extracts such as acetone and chloroform had inhibited the bacterial pathogens such as *Micrococcus* sp., *S. paratyphi* B, *Salmonella typhi*, *S. aureus* and *S. flexneri* accordingly by 11 mm. The concentration exhibited higher zone of inhibition in acetone and chloroform extract was 30 and 50 µL/mL respectively. It has been observed that the tested solvent extracts were highly efficient against Gram-negative bacteria compared to Gram-positive bacteria (Tables 1, 2 and 3). The phytochemical analysis also revealed that the active acetone extracts were endowed with flavonoids, alkaloids, sterols, phytosterols, tannins and coumarins (Table 4).

Table 1: Zone of inhibition of acetone extract of *S. muticum* against human pathogenic bacteria.

Organism	Zone of inhibition (mm)
Control	10 µL 20 µL 30 µL 40 µL 50 µL
Micrococcus sp.	- 9 9 11 11
S. aureus	- 7 8 9 10
S. paratyphi B	- 10 10 11 11
S. epidermis	- 6 6 6 6 6
E. aerogenes	- 8 8 9 10
K. pneumonia	- - - -
S. flexneri	- 7 9 11 11
P. vulgaris	- 10 10 10 10
S. aureus	- 9 10 10 11
S. typhymurium	- 8 8 10 11

Table 2: Zone of inhibition of chloroform extract of *S. muticum* against human pathogenic bacteria.

Organism	Zone of inhibition (mm)
Control	10 µL 20 µL 30 µL 40 µL 50 µL
Micrococcus sp.	- 7 7 8 8 9
S. aureus	- 7 8 9 9 9
S. paratyphi B	- 7 8 8 9 10
S. epidermis	- 6 7 8 9 10
E. aerogenes	- 8 8 9 10
K. pneumonia	- 8 8 8 9 10
S. flexneri	- 7 8 9 10 11
P. vulgaris	- - - - - 8 9 10
S. aureus	- - - - - 8
S. typhymurium	- 8 8 9 9 9

Table 3: Zone of inhibition of methanol extract of *S. muticum* against human pathogenic bacteria.

Organism	Zone of inhibition (mm)
Control	10 µL 20 µL 30 µL 40 µL 50 µL
Micrococcus sp.	- 6 6 7 7 7
S. aureus	- 9 9 9 9 9
S. paratyphi B	- - - - - -
S. epidermis	- 6 6 7 7 7
E. aerogenes	- 0 0 0 0 0
K. pneumonia	- 6 6 6 6 7
S. flexneri	- - - - - 7
P. vulgaris	- - - - - -
S. aureus	- - - - - -
S. typhymurium	- - - - - - 6 7

Notes: Methicillin resistance.
4. Discussion

In the early, there are a number of reports evaluated the antibacterial activity of marine plants, marine algae or seaweeds[5-7]. In India, meager information was available on the antibacterial activity of marine algae. In the present investigation, acetone and chloroform extracts (11 mm zone of inhibition) of the S. maticum exhibited higher antibacterial activity compared to the other solvent extracts. Similar to the present investigation, acetone and chloroform extracts against all the bacteria tested[13]. Besides, they also found maximum activity against methicillin-resistant S. aureus. In addition, the acetone extracts and chloroform extracts also revealed antibacterial activity against tested human pathogenic bacteria including methicillin-resistant S. aureus[9]. Vijayabaskar and Shiyamala reported that the acetone extract of S. muticum showed little or no activity against S. aureus[9]. Lee et al. isolated an antibacterial compound, polyhydroxylated fucophlorethol[11]. Gupta et al. also reported 100% inhibition of common food spoilage and food pathogenic bacteria using extracts from brown seaweed, Helianhpora elongata, Laminaria saccharina and Laminaria digitatad9]. Tetracyclic brominated diterpenes isolated from the organic extract of Sphaerococcus coronopifolius and collected from the rocky coasts of Corfu Island showed minimal inhibitory concentrations between 16 and 128 µg/mL against a range of bacteria including multidrug-resistant and methicillin-resistant S. aureus[16]. Five bromophenols were isolated from the methanolic extract of the marine alga, Rhodomela confervoides. The compound bis (2,3-dibromo-4,5-dihydroxybenzyl) ether was the most active against several strains of Staphylococcus coli, Pseudomonas coli and E. coli with minimal inhibitory concentration being less than 70 µg/ml[17]. Two bromoditerpenes, 12 S-hydroxybromosphaerodiol and bromosphaerone, isolated from red seaweed and Sphaerococcus coronopifolius showed an antibacterial activity against S. aureus with a minimal inhibitory concentration of 0.104 and 0.146 µmol/L, respectively[18]. Wang et al. reported that phlorotannin from Ascophyllum nodosum was bacteriostatic at concentrations of 25 µg/mL or higher and was bactericidal above 50 µg/mL against E. coli[19]. Thus, the present investigation unveiled the highly potent antimicrobial substance containing brown seaweed, S. maticum.

The antimicrobial substance is considered as the inhabitants of seaweeds. The S. maticum used in the present investigation detailed the tested human pathogenic bacteria including methicillin-resistance S. aureus. Brown seaweeds including S. maticum are source of phenolic compounds that have exhibited its potent antibacterial activity. It could be further evaluated for its medicinal applications for the welfare of human beings.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

Authors are grateful to the president, secretary, principal and head of the Department of Zoology and Botany for their needful facilities and support to complete this project in time. A author, Vinayaga Moorthi, thank UGC-RGNF (Ref. No: 14–2 (SC)/2007-SA-III), New Delhi for their partial financial support.

Table 4

Phytochemical tests	S. maticum
Carbohydrate	+
Sterols, phytosterols, triterpenoid sapogenins	+
Coumarins	+
X-antiprotein	-
Aromatic acid	+
Essential oil	-
Tannins	+
Flavanoids	+
Aikaloids	+
Saponins	-
Reducing sugar	+

+: Present; -: Absent.
phytochemical constituents of *S. muticum* were also determined.

Related reports

Earlier reports documented the antibacterial activity of marine plants, marine algae or seaweeds. Specially, seaweeds are considered as a potential source of bioactive compounds, including a great variety of secondary metabolites with a broad spectrum of biological activities such as antibacterial activity.

Innovations and breakthroughs

The authors open new insights into the knowledge of metabolites contained on the antibacterial activity of the brown seaweed *S. muticum*, including the effects on antibiotic resistant strains.

Applications

This scientific study suggests the use of *S. muticum* extracts as antimicrobial agents. Further evaluations will support its medicinal applications for the welfare of human beings.

Peer review

This is an important research work in which authors have demonstrated the antimicrobial activity of several extracts obtained from the seaweed *S. muticum* on human pathogens. *S. muticum* was found to be a promising natural source for developing antimicrobial drugs with diverse chemical structures and novel mechanism of action for new and reemerging human infectious diseases.

References

[1] Osman MEH, Abushady AM, Elshobary ME. *In vitro* screening of antimicrobial activity of extracts of some macroalgae collected from Abu-Qir bay Alexandria, Egypt. *Afr J Biotechnol* 2010; 9(42): 7203-7208.

[2] Dhargalkar VK, Pereira N. Seaweed: promising plant of the millennium. *Sci Cult* 2005; 71: 60-66.

[3] Kostić DA, Velicković JM, Mitić SS, Mitić MN, Randelović SS. Phenolic content and antioxidant and antimicrobial activities of *Crataegus oxyacantha* L. (Rosaceae) fruit extract from Southeast Serbia. *Trop J Pharm Res* 2012; 11(1): 117-124.

[4] Harborne JB. *Phytochemical methods: a guide to modern technique of plant analysis*. London: Champman and Hall; 1998.

[5] Rajasekar T, Priyadharshini P, Kumaran S, Devasagamani B, Sakhthivel M, Balamurugan S, et al. Screening of marine seaweeds for bioactive compound against fish pathogenic bacteria and active fraction analysed by gas chromatography-mass spectrometry. *J Coast Life Med* 2014; 2(5): 367-375.

[6] Seenivasan R, Rekha M, Indu H, Geetha S. Antibacterial activity and phytochemical analysis of selected seaweeds from Mandapam Coast, India. *J Appl Pharm Sci* 2012; 2(10): 159-169.

[7] Marudhupandi T, Kumar TTA. Antibacterial effect of fucoidan from *Sargassum wightii* against the chosen human bacterial pathogens. *Int Curr Pharm J* 2013; 2(10): 156-158.

[8] Rosaline XD, Sakhthivelkumar S, Rajendran K, Janarthanan S. Screening of selected marine algae from the coastal Tamil Nadu, South India for antibacterial activity. *Asian Pac J Trop Biomed* 2012; 2: S140-S146.

[9] Gupta S, Rajauria G, Abu-Ghannam N. Study of the microbial diversity and antimicrobial properties of Irish edible brown seaweeds. *Int J Food Sci Technol* 2010; 45: 482-489.

[10] Vijayabaskar P, Shiyamala V. Antibacterial activities of brown marine algae (*Sargassum wightii* and *Turbinaria ornata*) from the Gulf of Mannar Biosphere Reserve. *Adv Biol Res* 2011; 5(2): 99-102.

[11] Lee JH, Eom SH, Lee EH, Jung YJ, Kim HJ, Jo MR, et al. *In vitro* antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed *Eisenia bicyclis* against acnecer-related bacteria. *Algae* 2014; 29(1): 47-55.

[12] Wessels M, König GM, Wright AD. A new tyrosine kinase inhibitor from the marine brown alga *Stypodium zonale*. *J Nat Prod* 1999; 62: 927-930.

[13] Rhimou B, Hassane R, José M, Nathalie B. The antibacterial potential of the seaweeds (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean Coast of Morocco. *Afr J Biotechnol* 2010; 9: 6365-6372.

[14] Jebasingh SEJ, Rosemary S, Elaiyaraja S, Sivaraman K, Lakshmikandan M, Murugan A, et al. Potential antibacterial activity of selected green and red seaweeds. *J Pharm Biomed Sci* 2011; 5: 1-7.

[15] Alghazeer R, Whida F, Abduerhman E, Gammoudi F, Azwai S. Screening of antibacterial activity in marine green, red and brown algae (*S. muticum*). *Adv Biol Res* 2011; 2(2): 99-102.

[16] Smyrniotopoulos V, Vagias C, Rahman MM, Gibbons S, Roussis V. Structure and antibacterial activity of brominated diterpenes from the red alga *Rhodomela confervoides*. *Chem Biodivers* 2010; 7: 186-195.

[17] Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK. An antibacterial bromocepholone from the marine red alga *Rhodomela confervoides*. *Phytochemistry* 2003; 62: 1221-1224.

[18] Etafiri S, Bultel-Poncé V, Caux C, Guyot M. New bromoditerpenes from the red alga *Sphaerococcus coronopifolius*. *J Nat Prod* 2001; 64: 1024-1027.

[19] Wang Y, Xu Z, Bach SJ, McAllister TA. Sensitivity of *Escherichia coli* to seaweed (*Ascophyllum nodosum*) phlorotannins and terrestrial tannins. *Asian Australas J Anim Sci* 2009; 22: 238-245.