Enhancement of thermal conductivity of PCM using filler graphite powder materials

P Bharadwaj Reddy 1,*, C Gunasekar 2, Atul Shalikrao Mhaske 3, Mr N Vijay Krishna 4

1,2,3,4 Department of Mechanical Engineering, SRM Institute Of Science And Technology

*Corresponding author email: bharadwajreddy11@gmail.com

Abstract. The thermal conductivity of paraffin wax which is a phase change materials is enhanced by adding filler particle Graphite powder to the paraffin matrix. Praffin wax is melted in a heating mantle to its melting point of 60°C. Graphite particles are slowly added while the mixture is continuously stirred. The mixture is taken into the mould and cooled to get the composite. The time taken for melting the paraffin wax and solidifying it is noted down for each and every composition. Nielsen equation is used to calculate the thermal conductivity value analytically. SEM analysis is done to check the interaction between the matrix and the filler particles. The necessary graphs were plotted between the solidification time vs volume fraction, melting time vs volume fraction, thermal conductivity vs volume fraction. In the end we observed that the thermal conductivity value of the paraffin wax is significantly increased. The highest thermal conductivity is obtained for the paraffin wax with 60% composition and the value is found to be 7.1 w/mk.

Keywords: Thermal conductivity, paraffin wax, Graphite powder, SEM analysis, Nielsen equation, volume fraction

1 Introduction:

Phase change materials make use of the latent heat that can be stored or released from a material over a particular temperature range. The best advantages of using latent heat, rather than sensible heat are decrement in the temperature variation, thermal energy storage and more efficient way to transfer heat over a small temperature difference. [1]
Latent heat storage is done through various phase change transformations. However, only solid→liquid and liquid→solid phase changes are practical for PCMs. Although liquid–gas transitions have a higher efficiency than solid–liquid transitions, liquid→gas phase changes are not preferred for thermal energy storage. Solid–solid phase changes are typically very slow and have a relatively low heat of transformation.

PROPERTY	VALUE
Latent heat of fusion	214kJ/kg
Specific heat capacity (solid)	1.85kJ/kg.k
Specific heat capacity (liquid)	2.384kJ/kg.k
Thermal conductivity	0.4W/mk
Density (solid)	856kg/m³
Density (liquid)	775kg/m³
Melting point	60°C

Table 1. Thermo-physical properties of paraffin wax

PROPERTY	VALUE
Atomic mass	12 amu
Melting point	4000 K
Density	2.266g/cm³
Thermal conductivity	80 W/mk

Table 2. Thermo-physical properties of Graphite powder
2. Applications:

Applications of phase change materials include, but are not limited to[3]:

- Storing thermal energy
- Cooking using solar energy
- Keeping temperature constant in buildings.
- Cooling heat engines
- Used in medical industry
- Textiles
- Wasteheat management

3 Processing:

Figure 1. Flow chart of all the processes conducted in the experimented
This involves the melting of paraffin wax and adding Graphite particles to it. Before melting the weight of different samples are measured. Now paraffin wax is taken into a glass beaker. The heating mantle is turned on. From the study it is known that paraffin wax melting point is around 60°C. So the temperature of the heating mantle is adjusted to 60 degrees. Now the beaker is kept on the heating mantle. Due to the heat generation, the paraffin wax is melted. The time for melting is noted down. The Graphite powder is poured slowly into the liquid paraffin wax and it is slowly stirred. This allows the mixing of paraffin wax and Graphite particles. Now the mixture is taken into mould and it is allowed to cool down. In this way the composite is obtained.

4 Analytical calculations:

The thermal conductivity is determined analytically using Nielsen equation[1]. The equation is

\[K = K_p \frac{(1 + A.B. \phi)}{(1 - B. \varphi. \phi)} \]

\[B = \frac{k_f}{k_p} \]

\[\varphi = 1 + \frac{(1 + \phi_m)\phi}{\phi_m} \]

Where

\(K \) = Thermal conductivity of composite in W/mk

\(K_p \) = Thermal conductivity of paraffin wax in W/mk
K_f = thermal conductivity of filler particles in W/mk

Ø = Volume fraction of filler particles

φ = a constant calculated based on the volume fraction of filler particles

A = a constant determining the shape of the filler particles

B = a constant calculated based on the thermal conductivities of filler particles and matrix.

Sample calculation for 10% filler particles:

For Graphite

A = 1.3, Ø = 0.1[4]

\[
B = \frac{k_f - 1}{k_p + A}
\]

\[
B = \frac{80 - 1}{0.4 + 1.3}
\]

= 0.988

\[
\phi = 1 + \frac{(1 + \phi_m)\phi}{\phi_m^2}
\]

\[
\phi = 1 + \frac{(1 + 0.52) 0.1}{0.52^2}
\]

= 1.37

\[
K = K_p \frac{(1 + A.B.\phi)}{(1 - B.\phi.\phi)}
\]

\[
K = 0.4 \frac{(1 + 1.3 \times 0.988 \times 0.1)}{(1 - 0.988 \times 1.56 \times 0.1)}
\]

= 0.534 W/mk
5. SEM analysis:

The microstructure of all the composites were observed using scanning electron microscope. The interaction between the paraffin wax and the Graphite powder is observed.

![Figure 6. 90% wax](image6)
![Figure 7. 80% wax](image7)

![Figure 8. 70% wax](image8)
![Figure 9. 60% wax](image9)
![Figure 10. 50% wax](image10)

6. Tabulation and graphs:

Various results were obtained for the melting time and solidification time of the composite. The values of thermal conductivity were measured using Neilsen’s equation. The graphs were plotted between the solidification time vs volume fraction, melting time vs volume fraction, thermal conductivity vs volume fraction. The slope of the curves in the graphs between melting point vs volume fraction, solidification time vs volume fraction is almost constant. If we observe the graph between thermal conductivity vs volume fraction, there is a rapid increase in thermal conductivity from 70% to 60% paraffin wax concentration. Further by adding filler particles, the thermal conductivity of paraffin wax is increased. The
highest thermal conductivity is obtained for the paraffin wax with 60% composition and the value is found to be 7.1 w/mk

Table 3. Melting and solidification time

Volume fraction	Heating time in seconds	Solidification time in seconds
100% paraffin wax	913	1773
90% paraffin wax	829	1320
80% paraffin wax	775	1170
70% paraffin wax	676	963
60% paraffin wax	630	890
50% paraffin wax	542	724

Table 4. Thermal conductivity values

Volume fraction	Thermal Conductivity W/mk
100% paraffin wax	0.4
90% paraffin wax	0.534
80% paraffin wax	1.19
70% paraffin wax	2.77
60% paraffin wax	-2.1
Figure 11. Solidification time vs volume fraction

Figure 12. Melting time vs volume fraction
7. Results and discussion:

In SEM analysis, we observe that for 90% paraffin wax, the volume concentration is very less. But if we observe for 50% paraffin wax, the filler particle concentration is more. There is an increasing trend in the volume concentration when filler particles concentration is increasing. The slope of the curves in the graphs between melting point vs volume fraction, solidification time vs volume fraction is almost constant. If we observe the graph between thermal conductivity vs volume fraction, there is a rapid increase in thermal conductivity from 80% to 70% paraffin wax concentration. Further by adding filler particles, the thermal conductivity of paraffin wax is increased. This results showed that using high thermal conductive fillers are effective for enhancing the thermal conductivity of PCM. The highest thermal conductivity is obtained for the paraffin wax with 70% composition and the value is found to be 2.77 W/mK.
8. References

[1] Yaxue Lin, Yuting Jia, Guruprasad Alva (2012) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, *Renewable and sustainable energy reviews*. 82(3), 2730-2742.

[2] Jatin Vadhera, Amandeep Sura, Gopal Nandan, Gaurav Dwivedi, (2018) Study of Phase Change materials and its domestic application, *International Conference of Materials Processing and Characterization*, 44, 2727-2737.

[3] Ahmet Sari, Zhang Qian, Wu Gaohui, (2005), Preparation and Enhanced Heat Capacity of Nano-titania Doped Graphite as Phase Change Material, (2015), *International journal on Heat and Mass Transfer*, 80, 653-659.

[4] Ahmed Elgafy, Liang Wang, Ningning Xie, Xipeng Lin and Haisheng Chen, 2016 Experimental study on the Melting and Solidification behaviour of nano fibre additives with Erythritol in a Vertical Shell and Tube Latent Heat Thermal Storage Unit, *International journal on Heat and Mass Transfer*. 99, 770-781.

[5] Xia Liu, Ali Karaieki, 2007 Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, *International journal on applied Thermal Engineering*, 27, 1271-1277.

[6] Changhong Wang, Khalid Lafdi, Effect of carbon nanofiber additives on thermal behaviour of phase change material: copper foams, (2005), *International journal on carbon*, 43, 3067-3074.