Modeling and Simulation of Capacitive MEMS Comb Accelerometer for sensitivity improvement with different Proof Mass Patterns

Anusha Ganta, Satyanarayana Talam, Neela. R

Abstract: This Paper presents the sensitivity of a design for three dimensional comb type beam structure based accelerometer. Initially the basic comb accelerometer is developed and displacement sensitivity is observed by modeling and simulation. It is observed that accelerometer sensitivity is improved through the optimum selection of parameters via number of fingers, beam length, beam width, mass width, h spring constant. The movable proof mass is connected to two anchors. The movable fingers are connected to the sides of the proof mass. Every movable finger consists of two fixed fingers are connected to the left and right respectively. Any acceleration along the direction on movable mass, it will induce the inertial force and deflect the beam. Hence the capacitance will performed in between fixed and movable fingers. By changing the parameters like fingers width, number of fingers, proof mass shape, and spring constant the displacement is changed. By adjusting these parameters corresponding sensitivity can be improved.

Keywords: Capacitive Accelerometer, COMSOL Multiphysics, Deformation, Displacement, Sensitivity.

I. INTRODUCTION

An Accelerometer is a mechanical sensor which measures acceleration due to gravity or physical motion. Generally accelerometers are used in two purposes – motion measurements and vibration measurements. MEMS accelerometer can be manufactured to sense single-axis, double-axis, triple-axis acceleration. Micro Electro Mechanical Systems (MEMS) have lot of advantages in terms of sensitivity improvement with the thickness of 30 µm. Behraad Behreyni et.al[1] has reported the high sensitivity with the chip dimension of 1.8mm x 1.8mm. Behraad Behreyni et.al.[2] have reported the displacement with the device structure consisted of a proof mass with circular shape. Zakiya Mohammed et.al[3] have reported the sensitivity with the thickness of 30 µm. Khairun nisa Khamil et.al.[4] reported the sensitivity can be improved by adjusting the length of the beam and adding the number of fingers. Lufeng Che[9] have reported the sensitivity and non linearity percentage of the device using ANSYS software. M. Benmessaud et al[10] reported the sensitivity will increased with increase in distance between plates of capacitive accelerometer.

To improve the sensitivity, to change the below parameters:
1. The displacement of sensitivity is inversely proportional to the beam width. As the beam width decreases, the sensitivity will be increased.
2. The sensitivity is directly proportional to the beam length. As the beam length increases, the sensitivity will be increased.
3. The sensitivity will be increased, by increasing the spring constant.
4. The sensitivity will be increased, by increasing the finger length and width.

The basic parameters of the comb type capacitive accelerometer shows in below table 1. The comb accelerometer having one rectangle proof mass with the two springs and both sides of movable and fixed electrodes. Every electrode is also rectangular shape. When an acceleration applied, the proof mass is displaced by ‘x’ along the X, Y, Z axis.

II. DESIGN

The proof mass is considering two different shapes i.e Square and Rectangle. The shape of the Electrodes are rectangles. The Possibilities due to applied acceleration is

1. Acceleration applied in X-Axis
2. Acceleration applied in Y-Axis.
3. Acceleration applied in Z-Axis.

The comb drive capacitive accelerometer consists of any one shape of proof mass (square or rectangle) with integrated fingers. The fingers are acts like electrodes, the power supply +5V is applied to movable fingers and 0V is applied to stationary fingers. When the power supply is applied to the fingers the capacitance is formed. The acceleration +1g to +10g is applied on the proof mass from, the proof mass is displaced. The proof mass can be finding out by using below formulae [1].

\[M_S = \rho h (W_m \cdot L_m + N_f \cdot W_f \cdot L_f) \]

Where ‘\(\rho \)’ is the Density (2320kg/m3) of Poly-Crystalline Silicon material,

\(h \) is the device thickness.

With the considerations of all above equation values Proof mass is 7685x10\(^{-13}\)Kg.

The spring constant (\(K_s \)) is defined by using below formula
Modeling and Simulation of MEMS Comb type Capacitive Accelerometer with Different proof Mass patterns for Sensitivity improvement

\[K_S = \frac{E h_f^2}{2 L_b} W_b^3 \](2)

Where \(K_s \) is the Spring Constant, \(E \) is an Young’s Modulus (1.60x10^{11}) for Poly-Crystalline Silicon.

For Rectangle proof mass model, the force ranges can be measured with respect to the acceleration from 1g to 10g and proof mass is 7685x10^{-13}Kg.

At 1g acceleration the force can be find out the multiplication of applied mass value and 9.8(1g).

At 2g acceleration the force can be find out the multiplication of applied mass value and 2x9.8(2g) etc.

The below table shows the Force values with respect to the acceleration.

Acceleration(g)	Force(10^{-12}N)
1	753890
2	1507780
3	2261670
4	3015560
5	3769450
6	4523340
7	5277230
8	6031120
9	6785010
10	75389

Comb type accelerometer basically consists of two finger structures, called movable and fixed fingers. The fixed fingers attached to accelerometer frame and movable fingers attached to proof mass. When there is no acceleration, the capacitance gap between each fixed and movable finger is \(d_0 \). When there is no acceleration, the accelerometer capacitance is negligible.

The Capacitance is

The given table shows the different parameter values for rectangle proof mass and square proof mass comb accelerometers.

Parameters	Rectangle proof mass	Square proof mass
Capacitance gap (d₀)	5µm	5µm
Device thickness (h)	5µm	5µm
Width of the mass (Wₘ)	475µm	182µm
Length of the mass (Lₘ)	70µm	182µm
Width of the beam (Wₜ)	10µm	5µm
Length of the beam (Lₜ)	290µm	290µm
Width of the Finger (Wᶠ)	5µm	5µm
Length of the Finger (Lᶠ)	100µm	100µm
Number of sensing fingers (Nᶠ)	66	72
Young’s modulus of poly-crystalline silicon	1.60x10^{11}	1.60x10^{11}
The density of poly-crystalline	2320kg/m³	2320kg/m³
Movable sensing mass (Mᶠ)	7.69x10^{10}	8.01x10^{10}
Spring constant (Kₜotal)	1.28x10^{10}	0.081x10^{10}
Proof Mass(Mₛ)	7685 x10^{12}Kg	481 x10^{12}Kg
\[\Delta C = C_1 - C_2 = 2 \varepsilon \frac{N L r}{d_0} \left(\frac{x}{d_0} \right) = 2 C_0 \left(\frac{x}{d_0} \right) \](3)

From the above equation we can see the small deflection

![Diagram](image)

Fig.2 Differential Capacitance of Accelerometer

III. RESULT

When an acceleration (1g to 10g) applied on top of the proof mass along x, y and z-axis, the corresponding displacement is shown in below Table 2.

Acceleration (g)	Displacement (µm)		
	X-axis	Y-axis	Z-axis
1	1.25e-7	1.25e-7	2.79e-6
2	2.49e-7	2.49e-7	5.58e-6
3	3.74e-7	3.74e-7	8.37e-6
4	4.99e-7	4.99e-7	1.12e-5
5	6.23e-7	6.23e-7	1.39e-5
6	7.48e-7	7.48e-7	1.67e-5
7	8.73e-7	8.73e-7	1.95e-5
8	9.97e-7	9.97e-7	2.23e-5
9	1.12e-6	1.12e-6	2.51e-5
10	1.25e-6	1.25e-6	2.79e-5

Fig.3 Force Vs Displacement of Square Proof Mass along X-Axis

Fig.4 Force Vs Displacement of Square Proof Mass along Y-Axis
Modeling and Simulation of MEMS Comb type Capacitive Accelerometer with Different proof Mass patterns for Sensitivity improvement

Fig. 5 Force Vs Displacement of Square Proof Mass Along Z-Axis

Table III. Acceleration Vs Displacement of Square Proof Mass

Acceleration(g)	Displacement(µm)
1	2.79e-6
2	5.58e-6
3	8.37e-6
4	1.12e-5
5	1.39e-5
6	1.67e-5
7	1.95e-5
8	2.23e-5
9	2.51e-5
10	2.79e-5

Fig. 6. Force Vs Displacement of Rectangle Proof Mass Along X-Axis
Table IV. Acceleration Vs Displacement along X, Y Z Axis
For rectangle proof mass

Acceleration (g)	Displacement (µm)		
	X-axis	Y-axis	Z-axis
1	2.20E-08	7.91E-07	2.12E-05
2	4.39E-08	1.58E-06	4.24E-05
3	6.59E-08	2.37E-06	6.36E-05
4	8.78E-08	3.17E-06	8.48E-05
5	1.10E-07	3.96E-06	1.06E-04
6	1.32E-07	4.75E-06	1.27E-04
7	1.57E-07	5.54E-06	1.48E-04
8	1.76E-07	6.33E-06	1.70E-04
9	1.98E-07	7.12E-06	1.91E-04
10	2.20E-07	7.91E-06	2.2E-04

Fig.7. Force Vs Displacement of Rectangle Proof Mass Along Y-Axis

Fig.8. Force Vs Displacement of rectangle Proof Mass Along Z-Axis

The change in capacitance is represented in below Table 3 for square and rectangular proof mass along X, Y and Z-axis.

Table V. Capacitance for square and rectangle proof mass

Proof mass-Shape	Capacitance ∆C (nF)		
	X-Axis	Y-Axis	Z-Axis
Square	6.49 x 10^{-14}	6.49 x 10^{-17}	7.43 x 10^{-17}
Rectangle	9.33 x 10^{-17}	6.7 x 10^{-17}	1.4 x 10^{-16}

Fig.9. Acceleration Vs Displacement

The sensitivity of Mechanical and Electrical has measured for square and rectangle proof mass.

Table VI. Mechanical Sensitivity and Electrical Sensitivity for square and rectangle proof mass

Proof mass-Shape	Mechanical Sensitivity (nm/g)	Electrical Sensitivity (nF/g)
Square	0.00275	7.43 x 10^{-17}
Rectangle	0.022	1.4 x 10^{-16}

The below graph represents the sensitivity for square and rectangle patterns. The square proof mass accelerometer mechanical sensitivity is 0.00275nm/g and Electrical sensitivity is 7.43 x 10^{-17}. The rectangle proof mass accelerometer electrical sensitivity is 0.022nm/g and Electrical Sensitivity is 1.4 x 10^{-16}.
Modeling and Simulation of MEMS Comb type Capacitive Accelerometer with Different proof Mass patterns for Sensitivity improvement

Fig.10. Acceleration Vs Displacement with width of the fingers 10 µm

IV. CONCLUSION
A comb type capacitive MEMS accelerometer has been designed and simulated under conditions of Square and Rectangle proof mass for the input acceleration from 1g to 10g. At 10g acceleration the displacement of proof mass is found increase. It is observed the rectangle sensitivity is high compare to square proof mass accelerometer.

ACKNOWLEDGMENTS
The authors would like to thank NPMMASS, Govt. of India for establishing NMDC in our institution that facilitates to carry out this work and Management, LBRCE for their continuous motivational support.

REFERENCES:
1. Zakriya Mohammeda, Ghada Dushaq, Aveek Chatterjeeb, Mahmoud Rasras, “An optimization technique for performance improvement of gap-changeable MEMS accelerometers” Mechatronics (Elsevier), 54 (2018) 203–216.
2. Fatemeh Edadfar, Bahareh Yaghootkar, Abdul Qader Ahsan Qureshi, Soheil Azimi, Albert Leung, Behraad Behreyni, “Development of a micromachined Accelerometer for particle acceleration detection” Sensors and Actuators (Elsevier), 280 (2018), 359-367.
3. Mahmoud Rasras, Zakriya Mohammeda, Waqas a.Gill, “Double Comb Finger to Eliminate Cross Axis Sensitivity in a Dual Axis Accelerometer” IEEE/Mechanical Sensors, 1(5)(2017).
4. Khairun Nisa Khamil, Kok Swee Iong, Norizan Bin Mohamad, Norhayati Soin, “Analysis of MEMS Accelerometer for Optimized Sensitivity”, International Journal of Engineering and Technology, 6(6)(2015)2705-2711.
5. Shubham Kandekar, Tushar chaudhari, Abhay Chopde, Yashwant Kappate “Anatomy MEMS Capacitive accelerometer” International Journal of Research in Applied Science & Engineering, 6(6)(2018),532-539.
6. L.Chitra, V. Ramakrishnan “A Novel Design of Capacitive MEMS Pressure Sensor for Lubricating System”, IEEE, (2014)204-208.
7. A.Albarbar, S.H.Teay, "MEMS Accelerometer: Testing and Practical Approach for Smart Sensing and Machinery Diagnostics", Advanced Mechatronics and MEMS Devices, 17(2017)19-40.
8. Toshiyuki Tsuchiya, Hirofumi Funabashi “A Z-Axis Differential Capacitive SOI Accelerometer with vertical comb electrodes”, Sensors and Actuators (Elsevier), 116(2004)378-383.
9. Xiaofeng Zhou, Lafeng Che, Shenglin Liang, Youling Lin, Xiaolin Li, Yuelin Wang “Design and Fabrication of MEMS Capacitive accelerometer with fully Symmetrical double sided H-shaped beam structure”, Micro Electronics Engineering (Elsevier) 131(2015)51-57.
10. M. Benmessoud, Mekkakia, Maaza Naredinne, “Optimization of MEMS Capacitive Accelerometer”, Microsystems Technology 19 (2013)713–720.

AUTHORS PROFILE

Dr. T. Satyanarayana working as a Professor in the Dept. of Electronics and Instrumentation Engineering, Lakreddy Bali Reddy College of Engineering (A) since 2010. He has completed Two Sponsored Research Projects, published 46 papers in highly repute International Journals and presented more than 40 papers in International /National Conferences that includes at USA, Japan, Spain, Portugal & Poland. He is recipient of FCT Fellowship, Portugal and Best Researcher Award from JNTUK Kakinada.

Dr. Neela R Working as a Professor in Electrical and Electronics Engineering Department, Annamalai University. She has 25 years Teaching Experience and published 15 Papers in International Journals of repute.