Mathematical Model of Rotary Machined Helical Surfaces

Mikhail Popov 1,*

1South Urals State University, Russia, 454080, Chelyabinsk, Lenin Ave. 76

Abstract. The rotary cutting method of materials has a number of advantages over the existing traditional cutting methods, e.g. temperature decrease in the cutting zone, also noncumulative blade wear. Due to its high durability, the rotary tool allows processing hardened and difficult-to-machine materials, high-temperature alloys, as well as composite and laminated materials. However, this machining method is usually not applied for machining various shaped surfaces, which is mainly due to the lack of mathematical calculation of the resulting profiles, and the absence of a wide variety of methods for rotary tools installation. The article discusses the mathematical foundation of the resulting profile when processing helical surfaces when processing the flanks of rotary tools.

1 Introduction

Rotary machining has found a wide application at the beginning of the 20th century [1,2,3]. The research on rotary machining took place mainly in the second half of the 20th century, with the concept of rotary cutting (RC) [4,5,6], which described the machinability of simple-shaped surfaces, primarily cylindrical, consequently flat in difficult-to-machine materials [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The greatest contribution to the development of RC was made in the work [17], which described the machinability of shaped surfaces located on a flat plane by means of RC. The further development of RC proceeded in accordance with the advanced machining methods, e.g. the usage of NC machine tools [18, 19, 20, 21, 22]. However, no research on the obtaining of helical surfaces by means of RC has been conducted thus far.

Two basic RC techniques have been known by now, having a cup-shaped cutting element located either end up (the first technique) or laterally (the second technique) to the machined surface [23]. In this case, the second technique provides a greater number of different positions than the first one. Besides, there are a number of advantages of the second technique over the first one, viz.: no restricted size of bearing assemblies related to the cutting element diameter; a more rigid and reliable support for the cutter; the roughness of 2.5 to 0.63 Ra obtained by high feed speed cutting, due to the larger radius of curvature of the active cutting edge [23]. As for the disadvantages of the technique, the main one is the difficulty of the design of a rigid structure allowing the adjustment of the cutting element towards the workpiece.

* Corresponding author: pmik@gmail.com
Mathematical simulation of the machined helical profile by means of RC allows establishing the relationship between the rotary tool installation and the resulting real workpiece profile. The existing mathematical research on rotary cutters is mainly aimed at the simulation of both cut layers and the active cutting edges of rotary tools [24, 25]. However, no information on current profound research on the rotary tool machining shaped profiles has been provided thus far. Therefore, recently, mathematical simulation of helical surfaces obtained by tools with renewable cutting edges has become urgent.

2 Mathematical model of helical surfaces machined by rotary tools

The profile of the machined helical surface does not match the profile of the machining tool. Such discrepancy is explainable by the fact that any helical surface is obtained by the envelope of a number of successive positions of the moving machining tool. Therefore, there must be established the relation of the tool-fixed coordinate system with the workpiece-fixed coordinate system, by means of successive transitions from one coordinate system to another.

Let us consider a mathematical model of the machined helical profile when installing the cutting element of a rotary tool at two angles (Fig. 1). In this model, let us introduce a workpiece-fixed coordinate system X1Y1Z1 (see Fig. 1, a). The origin of this coordinate system O1 is located on the workpiece axis. The X1 axis is directed along the workpiece axis, whereas the Y1 axis is directed along the centre distance line of the workpiece and the cutting cup. In the initial position, the cutting element axis is perpendicular to the workpiece axis. Subsequently, let us introduce a tool-fixed coordinate system X2Y2Z2. The origin of this coordinate system O1 is located on the cutting element, in the plane where the end of the largest radius is located. The Z2 axis is directed along the axis of the cutting element rotation, and the Y2 axis is directed along the Y1 axis. To form the angle of the cutting element rotation, let us rotate it, together with the X2Y2Z2 coordinate system, around the Y2 axis through an angle θ. After rotating, the cutting element, together with its coordinate system, takes the position X2'Y2'Z2' (see Fig. 1, b). Consequently, to set the angle of inclination of the cutting element in relation to the workpiece axis, let us rotate the cutting element through an angle ß. The rotation through the angle ß is performed by rotating the cutting element together with the X2'Y2'Z2' coordinate system around the X2' axis. Let us fix the X2''Y2''Z2'' coordinate system with this position.

To establish the relation between the tool-fixed coordinate system and the workpiece-fixed coordinate system, let us sequentially perform the transitions between these coordinate systems. Initially, let us establish the cutter-fixed coordinate system:

\[
\begin{align*}
X'_1 &= X_2 \\
Z'_2 &= Z'_2 \cos \beta + Y'_2 \sin \beta \\
Y'_2 &= Y'_2 \cos \beta - Z'_2 \sin \beta \\
X'_2 &= X'_2 \cos \theta - Z'_2 \sin \theta \\
Z' = Z'_2 \cos \theta + X'_2 \sin \theta \\
Y'_2 &= Y'_2
\end{align*}
\]

(1)
While forming a helical profile, the cutting element and the workpiece, together with their coordinate systems, make a relative helical motion. When the workpiece-fixed coordinate system $X_1 Y_1 Z_1$ is rotated around the X_1 axis through an angle φ (see Fig. 1, e), the $X_2 Y_2 Z_2$ tool-fixed coordinate system will move by the value $P \cdot \varphi$ (where P is the helical parameter, and φ is the angle of rotation taken in radians). The helical parameter itself is calculated from the well-known formula (H is the pitch of the helical surface, mm per rotations).

Considering that the tool-fixed coordinate system is located at a distance a from the workpiece-fixed coordinate system, we have the following:

$$
\begin{align*}
X_i &= X_2 - P \varphi \\
Z_i &= Z_2 \cos \varphi - (Y_2 - a) \sin \varphi \\
Y_i &= (Y_2 - a) \cos \varphi + Z_2 \sin \varphi
\end{align*}
$$

(3)

Considering the above-given equations (1) and (2), we obtain the final relation between the coordinates of the cutting element and the workpiece:

$$
\begin{align*}
X_i &= X'_2 \cos \theta - (Z'_2 \cos \beta + Y'_2 \sin \beta) \sin \theta - P \varphi \\
Z_i &= ((Z'_2 \cos \beta + Y'_2 \sin \beta) \cos \theta + X'_2 \sin \theta) \cos \varphi - (Y'_2 \cos \beta - Z'_2 \sin \beta - a) \sin \varphi \\
Y_i &= (Y'_2 \cos \beta - Z'_2 \sin \beta - a) \cos \varphi + ((Z'_2 \cos \beta + Y'_2 \sin \beta) \cos \theta + X'_2 \sin \theta) \sin \varphi
\end{align*}
$$

(4)
Let us give a calculation for a specific point of the cutting edge of the rotary tool. When rotating through an angle β (Fig. 2), the cutting element will move to the distance $b = r \cdot \sin \beta$, while the cutting tip will rise above the centre distance line by $h = b \cdot \sin \alpha$, or $h = r \cdot \sin \beta \cdot \sin(90 - \theta)$.

![Design scheme of the coordinates of the cutter tip point.](image)

Fig. 2. Design scheme of the coordinates of the cutter tip point.

The coordinates of the calculated point along the Z_1, X_1, and Y_1 axes in the workpiece-fixed coordinate system are as follows:

\[
Z_i = h = r \cdot \sin \beta \cdot \sin(90 - \theta) ;
\]
\[
X_i = -b \cdot \cos \alpha = -r \cdot \sin \beta \cdot \cos(90 - \theta)
\]
\[
Y_i = -(R \cdot \cos \gamma - t) = -(R \cdot \cos(\arcsin h / R) - t)
\]

Before calculating the coordinates, let us calculate the parameter a for this case:

\[
a = R + r - l - t ,
\]

where l is the displacement of the cutting element providing its contact with the workpiece, mm.

When rotated through an angle β, the cutting element shifts from the workpiece at the distance $l = c + k$. Based on the design diagram in Fig. 2, the following values are obtained: $k = r - r \cdot \cos \beta$, $c = R - R \cdot \cos \gamma$, $\gamma = \arcsin(h / R)$, and consequently the distance $l = R - R \cdot \cos(\arcsin(h / R)) + r - r \cdot \cos \beta$ is obtained. Finally, the following result is obtained:

\[
a = R \cos \left(\arcsin \left(\frac{r \cdot \sin \beta \cdot \sin(90 - \theta)}{R} \right) \right) + r \cos \beta - t
\]

(5)
The obtained profile coordinates and the centre distance allows further calculation of parametrized workpiece profiles.

4 Conclusions

The calculated mathematical model for the formation of a helical surface with the lateral surface of the cutting element of a rotary tool allows obtaining the coordinates of the helical profile points on the workpiece, with the consideration of the workpiece parameters, the tool parameters and tool-and-workpiece installation. The calculations of the machined helical profiles allows geometric assessment of the mathematical model. The installation parameters of the rotary cutter influence differently on the resulting profile. The angle of rotation of the cutting element axis relative to the feed vector has a significant influence on the curvature and the width of the helical groove, whereas the radius of the groove depends on the angle of inclination of the cutting element relative to the workpiece axis.

References

1. L. Li, H.A. Kishawy, A model for cutting forces generated during machining with self-propelled rotary tools, International Journal of Machine Tools & Manufacture 46, 1388–1394 (2006)
2. Pradeep Kumar Baro, Suhas S. Joshi, S.G. Kapoor, Modeling of cutting forces in a face-milling operation with self-propelled round insert milling cutter, International Journal of Machine Tools & Manufacture 45, 831–839 (2005)
3. V.A. Zemlyanskii, B.V. Lupkin, Obrabotka vysokoprochnykh materialov instrumentami s samovrashchayushchimisya reztsami (Treatment of High-Strength materials by the Tools with Self-Rotating Cutters) (Tekhnika, Kiev, 1980)
4. P.I. Yashcheritsyn, A.V. Borisenko, I.G. Drevotin, V.Ya. Lebedev, Rotatsionnoe rezanie metallov (Rotation Cutting of Metals) (Nauka i Tekhnika, Minsk, 1987)
5. L.A. Gik, Rotatsionnoe rezanie metallov (Rotation Cutting of Metals) (Kaliningr. Knizh. Izd., Kaliningrad, 1990)
6. E.O. Ezugwu, Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique, Journal of Materials Processing Technology 185, 60–71 (2007)
7. Shuting Lei, Wenjie Liu, High-speed machining of titanium alloys using the driven rotary tool, International Journal of Machine Tools & Manufacture 42, 653–661 (2002)
8. S.M. Salodkar, A. Manna, A Study on Self Propelled Rotary Tool During Turning of E0300 Alloy Steel, International Journal of Applied Engineering Research 5, 17 2929-2933 (2010)
9. Joanna Kossakowska, Krzysztof Jemielniak, Application of Self-Propelled Rotary Tools for turning of difficult-tomachine materials, Procedia CIRP 1, 425–430 (2012)
10. Utku Olgun, Erhan Budak, Machining of Difficult-to-Cut-Alloys Using Rotary Turning Tools, Procedia CIRP 8, 81–87 (2013)
11. J.H. Balaji, V. Krishnaraj, S. Yogeswararaj, Investigation on High Speed Turning of Titanium Alloys, Procedia Engineering 64, 926–935 (2013)
12. Halil Çalışkan, Cahit Kurbanoğlu, Peter Panjan, Davorin Kramar, Investigation of the performance of carbide cutting tools with hard coatings in hard milling based on the response surface methodology, Advanced Manufacture Technology 883–893 (2013)
13. Vincent Dessoly, Shreyes N. Melkote, Christophe Lescalier, Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel, International Journal of Machine Tools & Manufacture 44, 1463–1470 (2004)

14. Wangshen Hao, Xunsheng Zhu, Xifeng Li, Gelvis Turyagyenda, Prediction of cutting force for self-propelled rotary tool using artificial neural networks, Journal of Materials Processing Technology 180, 23–29 (2006)

15. H.A. Kishawy, J. Wilcox, Tool wear and chip formation during hard turning with self-propelled rotary tools, International Journal of Machine Tools & Manufacture 43, 433–439 (2003)

16. H.A. Kishawy, Lei Pang, M. Balazinski, Modeling of tool wear during hard turning with self-propelled rotary tools, International Journal of Mechanical Sciences 53, 1015–1021 (2011)

17. Yu. M. Yermakov, Development of rotary cutting methods (VNIITEMR, Moscow, 1989)

18. Takashi Ueda, Turning with Rotary Tools, Procedia CIRP 1255–1262 (2014)

19. Eckart Uhlmanna, Felix Kauferscha, Martin Roeder, Turning of high-performance materials with rotating indexable inserts, Procedia CIRP 14, 610–615 (2014)

20. Hiroyuki Sasaharaa, Atsushi Katoa, Hiroshi Nakajimaa, Hiromasa Yamamotob, Toshiyuki Murakib, Masaomi Tsutsumib, High-speed rotary cutting of difficult-to-cut materials on multitasking lathe, International Journal of Machine Tools & Manufacture 48, 841–850 (2008)

21. Wataru Takahashi, Hiroyuki Sasahara, Hiromasa Yamamoto, Yuji Takagi, FEM Simulation on the Effect of Cutting Parameters in the Driven Rotary Cutting, Key Engineering Materials 625, 564–569 (2015)

22. Sy Quy Nguyen, BoHung Kim, Hyeong-Ho Yu, Sung-Tae Hong, Kyu Yeol Park, Surface Texturing by Turning Process using Circular Driven Rotary Tool with Multiple Cutting Edges, International journal of precision Engineering and Manufacturing 15, 6, 1137–1142 (2014)

23. E.G. Konovalov, V.A. Sidorenko, A.V. Sous, Progressive systems for rotary metal cutting, (Nauka i Tekhnika, Minsk, 1972)

24. H.A. Kishawy, L. Li, A.I. EL-Wahab, Prediction of chip flow direction during machining with self-propelled rotary tools, International Journal of Machine Tools & Manufacture 46, 1680–1688 (2006)

25. T. Carlsson, T. Stjernstoft, A model for calculation of the geometrical shape of the cutting tool-work piece interface, Journal of Materials Processing Technology 180, 23–29 (2006)