COMPARATIVE STUDY ON CHARGED AND NEUTRAL PION-NUCLEON COUPLING CONSTANTS USING YUKAWA POTENTIAL MODEL

Manga, P. J., Likta, E. W. and Teru, P. B.

Department of Physics, University of Maiduguri, Borno State – Nigeria.

*Corresponding authors’ email: 2016peterjohn@unimaid.edu.ng

ABSTRACT
The meson field theory based on the Yukawa model for nuclear forces is estimated using a simple relationship between the charged and neutral pion- nucleon coupling constant. This signifies that the charged coupling constant is larger compared to the value obtains for neutral pions. Therefore since np interaction is stronger than the pp interaction, we look at the value obtained for charged pion – nucleon constant which gives good agreement with one of the recent experimental values, and then the splitting between the charged and neutral pion – nucleon coupling constants is practically the same as that between charged and neutral pion mass. In this case, the mass difference between the charged and neutral pion is also calculated to assess the amount of charge dependence of the Neutron – Neutron scattering length.

PACS numbers: 13.75.Cs, 13.75.Gx, 14.20.Dh, 14.40.Be, 25.40.Cm, 25.40.Dm, 03.70.+k
Keywords: Nuclear forces, pp interaction, splitting, pion-nucleon

INTRODUCTION
The investigation of nucleon-nucleon and pion–nucleon interaction Alarcon et al. (2013) plays an important role in the understanding of the pion–nucleon coupling constants which are said to have fundamental characteristics in nuclear force with a great application in the field of theoretical physics. Their qualitative undertakes the knowledge of their exact instrumental values; this gives us the understanding of a broad variety of hadron and nuclear physics phenomena (Arndt et al., 2006). The of study the pion – nucleon coupling constants was investigate on nucleon – nucleon scattering length to assess the level of charge dependence.

The charge independence of the pion- nucleon coupling constant which is likely to be violated or arise as a result of between a pion – nucleon coupling constant on a neutral and charged pions, is the core problem that had attracted much attention of many researchers for decade. These differences also yielded different values of the charge pion nucleon constant \(g_{\pi}^2 \), rendering it of most importance as in the result of the recent experiment estimated a value of \(g_{\pi}^2 \) which varies between 13.54 and 13.49 (Arndt et al., 1995) and (Arriola et al., 2016). The result of the neutral pion – nucleon constant, \(g_{\pi N}^2 \), gives an estimated value of 13.6/13.6 (Alarcon et al., 2013).

Thus, the estimated measured values of the charged pion constant \(g_{\pi}^2 \) as in Arndt et al. (2004) are slightly close to that of the neutral – pion constant \(g_{\pi}^2 \) which falls within the range of the charged independence based on the pion nucleon coupling. Similarly, the results of the measurement of Alarcon et al.(2013), yield large significant values of \(g_{\pi N}^2 \) than that of \(g_{\pi}^2 \). With this, the results of the charge independence on the pion nucleon constant is said to be the open fundamental problem that calls for more studies with further experimental values, and with theoretical computation (Babenko et al., 2015).

From the investigation of pion nucleon coupling constant based on the Yukawa model (Yukawa 1938) for nucleon-nucleon interaction and with the help of contemporary experimental data on low-energy parameters of nucleon-nucleon scattering. It is known that the nucleon-nucleon system cannot obtained from the Yukawa potential is not accurately as soon as its parameters are defined and selected using fundamental quantities of the field theory. The coupling constants and then pion –masses, by selecting of the parameter value of the Yukawa potential, we tend to rely on the measured low energy parameters of nucleon-nucleon scattering in the effective range theory.

The Yukawa model framework is accepted as the means of analyzing the pion nucleon coupling constant since the Yukawa model is said to correspond to one pion exchange which is corresponding to its dominant mechanism at the lowest collision energies on the nucleon interaction. This signifies long-range interactions. The heavier \(\ell \) – and \(W \)–meson exchange are the two pion exchanges which are power at medium and small distances with quark-gluon degrees of freedom gain remarkably at the smallest interaction ranges. In a nutshell, determining the pion-nucleon coupling constant is said to be characterized by pion-nucleon interaction, which may likely depend on the long-range – data (peripheral) nucleon-nucleon interaction which is one of the pion exchange been dominant Yukawa (1938).

In quantum field theory, Pseudo-scalar (PS) or a pseudo-vector (PV), lagrangian formulae are described in the interaction of pion nucleon as Yukawa (1938).

\[
L_{PV}^{\pi N} = g\pi(\bar{\psi}\gamma\phi\psi)
\]
\[e^{PV}_{\pi N} = \frac{e^{PV}}{M_n} \sqrt{4\pi \mu} \langle \psi \gamma_{\mu} \gamma_5 \psi \rangle \delta^{\mu \nu} \]
\[\frac{g_{\pi N}}{M_{\pi N}} = \frac{f_\pi \pi \nu}{M_{\pi N}} \]
In this case \(M_1 \) and \(M_2 \) are the masses of interacting nucleons. Therefore the \(\pi^0 \) and \(\pi^\pm \) pseudo-scalar coupling constants, \(g_{\pi^0} \) and \(g_{\pi^\pm} \), where \(f_{\pi^0} \) and \(f_{\pi^\pm} \) are the pseudo-vector constants, which be interpolate through (Bergervo et al., 1990).

\[g_{\pi^0} = \frac{M_p}{M_{\pi^0}} f_{\pi^0} \]
\[g_{\pi^\pm} = \frac{M_p + M_n}{M_{\pi^\pm}} f_{\pi^\pm} \]
Where \(M_p \) is the mass of proton and \(M_n \) is the mass of neutron respectively.

Deduces of some major equations between charged and neutral pion – nucleon coupling constants in the Yukawa model

According to the Meson-field theory, there is a strong interaction between two nucleons at their lowest energies which is dominated by the exchange of virtual pions, this helps in determining the long-range nucleon-nucleon interaction. The nucleon-nucleon interaction by meson field theory explains the classical one – pion – exchange potential, which is referred to as Yukawa potential, for the pure singlet \(^1S_0 \) state is expressed in simpler and well-known forms as (Yukawa H, 1938).

\[V_f(r) = -\frac{V_0 e^{-\mu r}}{\mu r} \]
Whereby \(r \) and \(\mu \) are the distance between the nucleon and the pion mass \(m(\pi) \).

\[\mu = \frac{m_\pi C \hbar}{\hbar} \]
Where \(C \) and \(\hbar \) are the speed of light with Planck constant. According to (7) gives us the nuclear – force range \(R \equiv 1/\mu \) which is inversely proportional to the pion mass \(m_\pi \) and has a small value of \(R \sim 1.4 \). Then the depth of the Yukawa potential \((V_0) \) is expressed through pseudo-vector pion-nucleon coupling constant \(f_\pi \) (Blomgren et al., 2000).

\[V_0 = m_\pi C^2 f_\pi^2 \]
This is the direct consequence of the lagrangian presented by the meson–field theory. In the case of interaction between two charged protons mediated by the exchange of the parameters of the Yukawa potential \(V_{pp} \) and a neutral \(\pi^0 \) meson. The \(V_{pp} \) is the expression of \(\pi^0 \) mass \(m_{\pi^0} \) and the coupling constant \(f_\pi \) action involves the exchange of both the exchanged \(\pi^\pm \) mesons and neutral mesons \(\pi^0 \). The estimated \(\mu_{\pi\pi} \) and \(V_0^{\pi\pi} \) parameters of the potential (6) involve the substitutions of the average pion – mass (Bohr, 1969).

\[\bar{m}_\pi = \frac{1}{3} (m_{\pi^0} + 2 m_{\pi^\pm}) \]
Pion – nucleon coupling constant average is given as (Bugg, 2004).

\[\bar{F}_{\pi}^2 = \frac{1}{3} (F_{\pi^0}^2 + 2 F_{\pi^\pm}^2) \]
Unfortunately, there is no accurate quantitative representation of the nucleon-nucleon system which can be deduced from the Yukawa potential as its parameters are defined and also selected from the fundamental quantities of the field theory for both of the pion masses and coupling constants. As the matter of fact in this study, the parameters of the Yukawa potential are frequently assigned values with the nucleon-nucleon scattering in the effective range theory at low energy (Bugg et al., 1973). The measured purely nuclear proton-proton scattering length and effective range one can use to estimate the "effective" mass \(M^e_{\pi^0} \) and pion – nucleon coupling constant \(f_{\pi^0}^e \) for a neutral \(\pi^0 \) meson. For instance, the Yukawa forms for the proton-proton potential. This the effective mass \(M^Y_{\pi^0} \) and the pion – nucleon coupling constant \(f_{Y\pi^0}^2 \) gives values prove to exceeds the directly measured values de Swart et al. (1998) this yield the given expression.

\[M^Y_{\pi^0} = C_1 \bar{m}_{\pi^0} \left(f_{\pi^0}^e \right)^2 = C_2 \bar{F}_{\pi}^2 \]
Whereby \(C_1 \) and \(C_2 \) are computed numerically Dumbrajs et al.(1998), it said to be quite natural to assume that equation as analog which can hold for the masses and pion – nucleon coupling constants of charged \(\pi^\pm \) mesons, and let the average pion – mass and the average pion nucleon coupling constant.
The relationship between neutron-proton Yukawa potential μ_{np} and V_0^{np} is associated with the analog parameter of proton-proton potential, μ_{pp} and V_0^{pp} (Yukawa, 1938).

$$\mu_{np} = \frac{m_n}{m_p} \mu_{pp}$$ \hspace{1cm} (12)

$$V_0^{np} = \frac{m_n}{m_p} f_0^{np} V_0^{pp}$$ \hspace{1cm} (13)

Equation (10) and (13) implies the relationship between the pseudo-vector pion-nucleon coupling constants for the charged and neutral pion (Ebel et al., 1971).

$$f_{2z}^n = C_f^2 f_{2z}^p$$ \hspace{1cm} (14)

Where the factor C_f^2 is expresses as (Yukawa, 1938).

$$C_f^2 = \frac{\mu_n V_0^{np}}{m_n V_0^{pp}} \left(\frac{m_n}{m_p} \right)^2$$ \hspace{1cm} (15)

Equations (4), (5), and (14) we obtain that the pseudo-scalar charged and neutral pion nucleon coupling constants are interrelated as (Dumbrajs et al., 1983)?

$$g_{2z}^n = C_g^2 g_{2z}^p$$ \hspace{1cm} (16)

Where

$$C_g^2 = \left(\frac{m_n + m_p}{2m_p} \right) C_f^2$$ \hspace{1cm} (17)

Equation (15) is the measured pion – masses. In the considered model based on meson field theory, it proportion between the neutron pion – nucleon coupling constant and the charged is said to be fully estimated between the depth of neutron-proton and proton Yukawa potentials, V_0^{np}. Similarly, we illustrate that the neutron-proton potentials are appreciably deeper than the proton-proton one $V_0^{pp} > \frac{\mu_n}{m_n V_0^{np}}$. The factor in equation (15) is more than two, therefore we considered formalizing the charged pion nucleon coupling constants said to be larger than the neutral ones (Ebel et al., 1971).

$$f_{2z}^n > f_{2z}^p, g_{2z}^n > g_{2z}^p$$ \hspace{1cm} (18)

In this case, we can observe that the charged pion-nucleon constant is greater than the neutral one. We also considered a scheme of a strong np and pp interaction in the spin-singlet S_0 state, which is a reliably established phenomenon. It was observed to be a single length of np scattering which is larger than the purely nuclear pp scattering length of Ebel G et al., (1971).

$$|a_{np}| > |a_{pp}|$$ \hspace{1cm} (19)

About literature review of experimental works of (Ebel et al., 1971) gives the values of pion – nucleon coupling constants said to obey the inequalities (Ericson et al., 1995). Similarly, the results of other experiments (Baru et al., 2011) indicate a constant charge independence of the pion nucleon coupling constant. That is the approximate equalities are given by $f_{2z}^n \cong f_{2z}^p$ and $g_{2z}^n \cong g_{2z}^p$ holds therein within the experimental uncertainties. In our proposed model, the violation of change independent of the pion – nucleon coupling constant reveals itself which is associated with charge dependence of nuclear forces.

Estimation of charge independence breaking of the pion – nucleon coupling constant

The Radius $R_{NN} = 1/\mu_{NN}$ and the depth V_0^{NN} of the Yukawa potential based on nucleon-nucleon can be deduced from measured low energies parameters of the expansion in the effective range. Employing the unknown values of the pure nuclear low-energy parameters on nucleon-nucleon scattering (Arriola et al., 1957).

$$a_{pp} = -17.3, \tau_{pp} = 2.85, \ a_{np} = -23.72$$ \hspace{1cm} (20)

The np and pp interaction we obtain from the Yukawa – potential parameters. We then apply the phase variable approach (Arndt et al., 2004).

$$V_0^{pp} = 44.83 \text{ MeV}, \ \mu_{pp} = 0.8392$$ \hspace{1cm} (21)
\[V_0^{\text{np}} = 48.01 \text{ MeV}, \quad \mu_{\text{np}} = 0.8583 \]

(22)

Therefore the neutron-proton interaction was obtained using equation (12) and later on we substitute for the scattering length as (20) the results of the np scattering effective range of the Yukawa potential is given as (Arndt et al., 2006).

\[r_{\text{np}} = 2.69 \]

(23)

These results said to be in agreement with the measured value (Babenko et al., 2016).

\[r_{\text{np}} = 2.70 \]

(24)

We then have (Arndt et al., 2000).

\[V_0^{\text{np}} > \frac{m_n}{m_p} V_0^{\text{pp}} = 45.843 \text{ MeV} \]

(25)

This satisfied the aforementioned condition leading to inequalities. We then substitute the derived value (21) and (22) of the np and pp depth in the potentials with the measured pion and nucleon masses Arriola et al. (2000), as in Ericson et al. (1995) and Bugg et al. (1957), for the neutral pion – nucleon coupling constant and the factors is related to charged pion.

\[C_1^2 = 1.073, \quad C_2^2 = 1.074 \]

(26)

The values of \(C_2^2 \) and \(C_3^2 \) are likely to be the same or similar as it was expected to be obtained from the proximity of the neutron masses band the proton (Arriola et al. 2000).

In contrast with the charged pion – nucleon coupling constant \(g^2_{\pi^+} \) there is no controversy to the reliability of the measured neutral constant \(g^2_n \) from some literature \(g^2_n = 13.52 \), said to be the best measurement which is fully agreed with the recent experimental values of \(g^2_n = 13.55 \) and \(g^2_{\pi^+}=13.61 \) quoted in Babenko et al. (2016) by substituting equation (16) the latest experimental values of the pseudo-scalar and neutral constant.

\[g^2_n = 13.53 \]

(27)

Where by \(C_2^2 \) value for the pseudo-scalar charged pion-nucleon coupling constant we find

\[g^2_{\pi^+} = 14.53 \]

(28)

By employing equation (Babenko et al., 2016) the pion – nucleon coupling constants of the pseudo-vector are determined as.

\[f^2_\pi = 0.0748 \]

(29)

\[f^2_\pi = 0.0803 \]

(30)

The value of \(g^2_{\pi^+} \) in (28) derived by using the Yukawa – model with the recent experimental values

\[g^2_{\pi^+} = 14.53 \]

(31)

THE UPSALA NEUTRON RESEARCH GROUP

The reported experimental result of Uppsala Research Group gives the measurement value as it is in equation (31) which is similar to the measurement of the same group as, \(g^2_{\pi^+} = 14.62 \) and \(g^2_{\pi^+} = 14.74 \) and to the obtained values of \(g^2_{\pi^+} = 14.28 \) earlier obtained in (Alarcon et al., 2013). Closely, the charged pion – nucleon coupling constant reported by Nijmegen Group as \(g^2_{\pi^+} = 13.54 \), these coincide with neutralit1.

The result obtains shows the change independence breaking of the pion-nucleon coupling has the difference between the charged and neutral pion–nucleon coupling constants (Alarcon et al., 2013).

\[\Delta f^2_{\text{CIB}} \equiv f^2_{\pi^+} - f^2_{\pi^0}, \quad \Delta g^2_{\text{CIB}} \equiv g^2_{\pi^+} - g^2_{\pi^0} \]

(32)

Equation (14) and (16) follows the explicit expressions for the quantities

\[\Delta f^2_{\text{CIB}} = (C_2^2 - 1)f^2_{\pi^0} \]

(33)

\[\Delta g^2_{\text{CIB}} = (C_2^2 - 1)g^2_{\pi^0} \]

(34)
By substituting the numerical value Babenko et al. (2015) for the factor C_F, in this both the pseudo-scalar charged and neutral pion – nucleon coupling constants, as well as the reliably measured value (27) for the neutral constant g_{π^0}. In this case, there is an absolute breaking of charge independence of pion nucleon coupling constant in the Yukawa potential model is given as (Alarcon et al., 2013).

$$\Delta g_{\text{CIB}}^2 = 1.006$$

In its relative units, the charge independence breaking of the pion – nucleon coupling constants is given as follows (Alarcon et al., 2013).

$$\frac{\Delta g_{\pi^+}}{g_{\pi^0}} = (C_F^2 - 1) = 0.0729$$

$$\frac{\Delta g_{\pi^0}}{g_{\pi^0}} = (C_F^2 - 1) = 0.0744$$

From this, we concluded that the violation of charge independence of the pion – nucleon coupling constant is approximately about 7.4%.

4.0 The connection between charge splitting of the pion nucleon coupling constant and the pion – mass

as in equation (14) and (26) the neutral pseudo-vector and the charged pion – nucleon coupling constants are in the ratio of (Alarcon et al., 2013).

$$f_{\pi^\pm} \approx f_{\pi^0} = C_F = 1.036$$

This approximately is the same with the ratio between measured masses of the charged and neutral pion (Babenko et al., 2015)

$$\frac{m_{\pi^\pm}}{m_{\pi^0}} = 1.034$$

We have a high precise as

$$f_{\pi^\pm} \approx \frac{m_{\pi^\pm}}{m_{\pi^0}}$$

$$f_{\pi^\pm} = 0.0799$$

Therefore for the pseudo-scalar coupling constant as it is in equation (5) and (41) yield a values of

$$g_{\pi^\pm}^2 = 14.478$$

These values were computed and formulae (28) and (16). Then, from (27) and (42), the pion – nucleon coupling constant break the charge independence which arises from the difference in mass between the π^\pm and π^0 mesons ($\Delta m_{\pi} = 4.51 MeV$) which is estimated as follows.

$$\Delta g_{\text{CIB}}^2 = 0.956$$

With a relative units approximately 7% while the pseudo-scalar coupling constants obey the approximately equation

$$\frac{m_{\pi^\pm}}{m_{\pi^0}} \approx \frac{g_{\pi^\pm}}{g_{\pi^0}}$$

Which is empirically estimated to equation (40) for the pseudo-vector coupling constants for formulae (44) which attracted the attention of researchers as in Babenko et al.(2015) then it was analyzed the low–energy pp and np.

The Scattering parameters by using the traditional classical Yukawa model by relying on measured values (Alarcon et al., 2013) and (Babenko et al., 2015).

Equation (40) can be rewritten as

$$f_{\pi^\pm} R_{\pi^\pm} \equiv f_{\pi^0} R_{\pi^0}$$

Where the meson exchange potential at a radius R_{π^0} for the π^0 exchange

$$R_{\pi^0} \equiv \frac{h}{m_{\pi^0} c^2} = 1.462$$
This is very larger than the radius R_{π^\pm} with reference to the π^\pm exchange

$$R_{\pi^\pm} \equiv \frac{\hbar}{m_{\pi\pi} c} = 1.414$$ \hspace{1cm} (47)

The pion–nucleon coupling constant f_π and the radius of the meson exchange potential R_π. Due to the mass splitting between the π^\pm and π^0 meson which is proved to be charge-dependent quantities. The obtained result shows that the π^\pm mesons are heavier than the π^0 meson these effectively raise the charge pion constant f_{π^\pm} for the neutral—nucleon constant f_{π^0} and then reduces the effect of π^\pm exchange radius R_{π^\pm} concerning the π^0 exchange radius R_{π^0}. Our result shows that the pion nucleon constant f_π and the π-exchange radius R_π given as (Alarcon et al., 2013)

$$f_\pi R_\pi = B$$ \hspace{1cm} (48)

Let substitute the measured value of the neutral pion-nucleon constant

$$F_{\pi^0} = 0.294$$ \hspace{1cm} (49)

The value of (46) for the π^0 exchange radius, where by B is estimated as

$$B = 0.399$$ \hspace{1cm} (50)

Thus, we developed a relationship to correlate the pion–nucleon coupling constant f_π and π–exchange radius R_π through the given relation

$$f_\pi \cong \frac{\mu}{\pi R}$$ \hspace{1cm} (51)

NUCLEON–NUCLEON SCATTERING LENGTH CHANGE DEPENDENCE

$$\Delta a_{\text{CIB}}^{\text{exp}} \equiv a_{pp} - a_{np}$$ \hspace{1cm} (52)

According to the (19) and (20) the difference in the experimental values are given as

$$\Delta a_{\text{CIB}}^{\text{exp}} = 6.423$$ \hspace{1cm} (53)

With relative units of ~30%, that the difference is negligible beyond the experimental prediction which signifies that the hypothesis of the charge independence of the nuclear forces is violated at low energies (Babenko et al., 2015). The recorded charge dependence of the nuclear forces is often influenced by the difference between the charged and the neutral pions Koch R., et al., (1980). Whereby the half difference $\Delta a_{\text{CIB}}^{\text{exp}}$ has been shown recorded due to the mass difference between the π^\pm and π^0 meson. The singlet np–scattering length value where computed, we assume that the inequality Alarcon et al. (2013) is exact.

$$a_{np} = -22.90$$ \hspace{1cm} (54)

This differ in the scattering length of proton–proton as

$$a_{pp} = -17.34$$ \hspace{1cm} (55)

Where by the scattering length of neutron–proton scattering length is

$$\Delta a_{\text{CIB}}^{n} = 5.59$$ \hspace{1cm} (56)

This is consistent with the experimental values (Arriola et al., 2000). Thus, in our model framework, the charge independence of the nuclear forces is fully violated due to the difference in mass between the charge and the neutral pions. It’s also look at the scattering length of proton-proton and neutron-proton by predicting their differences, $\Delta a_{\text{CIB}}^{\text{exp}}$, which is approximately 90% of its corresponding experimental values $\Delta a_{\text{CIB}}^{\text{exp}}$. Similarly to this, the $\Delta a_{\text{CIB}}^{\text{exp}}$ values deduced in the previous analyses reached approximately 50% of $\Delta a_{\text{CIB}}^{\text{exp}}$ (Alarcon et al., 2013).

CONCLUSION

In this study, the developed physical consistent formalization of the nucleon-nucleon interaction by using Yukawa potential based on the meson field model. The parameters are np and pp systems in the spin-singlet state 1S_0 are determined by empirical relation to some characteristic of the pion–nucleon interaction. The model makes use of the pion masses m_π and the pion–nucleon constant as the framework of the study. The employed formulated relationship from equation (14 – 17) between the charged and neutral pion–nucleon coupling constants.

The result obtained shows that the neutral constant f_{3}^\pm is less than the charged proton–nucleon coupling constant f_{3}^\pm. So that the pseudo-vector and the pseudo-scalar pion–nucleon
coupling constant, f_s^2 and g_π^2 said to violate the charge independence of the nuclear forces.

The result of the empirical relation for pseudo-scalar charged constantly to yield a value of $g_{\pi^\pm}^2 = 14.536$, which is similar with the experimental value reported by Uppsala neutron Research Group (6) as $g_{\pi^\pm}^2=14.52$.

The result also shows, difference between the charged and neutral pseudo-scalar pion- nucleon coupling constants, $\Delta f_{\pi^0} \equiv f_{\pi^0} - f_{\pi^\pm}$, which is deduced as $\Delta f_{\pi^0} = 0.00929$. While its relative units, that is the ratio $\frac{\Delta m_{\pi}}{m_{\pi}} = 3.60\%$ is shown to be closely the same as $\frac{\Delta m_{\pi}}{m_{\pi}} = 3.39\%$. Therefore, the relative units of the pion-nucleon coupling constant splitting seem to be the same as that of the pion – masses.

The illustration for both the pion – nucleon coupling constant f_{π} and the π – meson exchange radius R_{π} are all charged dependent to a high precision with a product of $f_{\pi}R_{\pi}$ with a charge independent quantity. Their relative unit is given as the difference between their products for the charged pion and neutral pion said to be less than 0.19%.

In the Yukawa potential model, we approximate like 89.9% of the difference between the experimental values of the pp and np scattering length. Whereby the π^\pm and π^0 mesons is the mass difference between them as follows $\Delta m_{\pi} = 4.548 \text{MeV}$.

REFERENCES

Alarcón J. M., Martin Camalich I., Oller J. A. Improved Description of the Scattering Phenomenology at Low Energies in Covariant Baryon Chiral Perturbation Theory // Ann. Phys. 2013. Vol. 336, P. 413-461.

Arndt R. A., Briscoe W. J., Strakovsky I. I., Workman R. L. Extended Partial-Wave Analysis of πN Scattering Data // Phys. Rev. C. 2006. Vol. 74, No. 4. 045205.

Arndt R. A., Briscoe W. J., Strakovsky I. I., Workman R. L., Pavan M. M. Dispersion Relation Constrained Partial Wave Analysis of πN Elastic and $\pi N\rightarrow\eta N$ Scattering Data: The Baryon Spectrum // Phys. Rev. C. 2004. Vol. 69, No. 3 035213.

Arndt R. A., Strakovsky I. I., Workman R. L. Extraction of the πN Coupling Constant from NN Scattering Data // Phys. Rev. C. 1995. Vol. 52, No. 4. P. 2246-2249.

Arriola E. R., Amaro J. E., Perez R. N. Three Pion Nucleon Coupling Constants // Mod. Phys. Lett. 2016. Vol. A31, No. 28. 1630027.

Babenko V. A., Petrov N. M. Charge Dependence of the Pion-Nucleon Coupling Constant // Nuclear Physics and Atomic Energy. 2015. Vol. 16, No. 2. P. 136-143. [In Russian]

Babenko V. A., Petrov N. M. Study of the Charge Dependence of the Pion-Nucleon Coupling Constant based on Data on Low-Energy Nucleon-Nucleon Interaction // Phys. Atom. Nucl. 2016. Vol. 79, No. 1. P. 67-71; Babenko V. A., Petrov N. M. Study of the Pion-Nucleon Coupling Constant Charge Dependence based on the Low-Energy Data on Nucleon-Nucleon Interaction // arXiv:1604.02912 [nucl-th], 2016. - 10 P.

Baru V., Hanhart C., Hoferichter M., Kubis B., Nogga A., Phillips D. R. Precision Calculation of Threshold π – d Scattering, πN Scattering Lengths, and the GMO Sum Rule // Nucl. Phys. A. 2011. Vol. 872, No. 1. P. 69-116.

Bergervoet J. R., van Campen P. C., Klomp R. A. M., de Kok J.-L., Rijken T. A., Stoks V. G. J., de Swart J. J. Phase Shift Analysis of All Proton-Proton Scattering Data Below $T_{lab} = 350 \text{MeV}$ // Phys. Rev. C. 1990. Vol. 41, No. 4. P. 1435-1452.

Blomgren J., Ed. Critical Issues in the Determination of the Pion-Nucleon Coupling Constant: Proceedings of a Workshop Held in Uppsala, Sweden, June 7-8, 1999. Phys. Scr. 2000. Vol. T87. P. 5-77. Uppsala: Royal Swedish Academy of Sciences, 2000. 77 p.

Bohr A., Mottelson B. R. Nuclear Structure, Vol. I. – New York: Benjamin, 1969. – 47.

Bugg D. V. The Pion Nucleon Coupling Constant // Eur. Phys. J. C. 2004. Vol. 33, No. 4. P. 505-509.

Bugg D. V., Carter A. A., Carter J. R. New Values of Pion-Nucleon Scattering Lengths and f_2 // Phys. Lett. B. 1973. Vol. 44, No. 3. P. 278-280.

Bugg D. V., Carter A. A., Carter J. R. New Values of Pion-Nucleon Scattering Lengths and f_2 // Phys. Lett. B. 1973. Vol. 44, No. 3. P. 278-280.

de Swart J. J., Rentmeester M. C. M., Timmermans R. G. E. The Status of the Pion-Nucleon Coupling Constant // arXiv:9802084 [nucl-th], 1998. - 19 P.

Dumbrajs O., Koch R., Pilkuhn H., Oades G. C., Behrens H., de Swart J. J., Kroll P. Compilation of Coupling Constants and Low-Energy Parameters // Nucl. Phys. B. 1983. Vol. 216, No. 2. P. 277-335.

Ebel G., Mullensiefen A., Pilkuhn H., Steiner F., Wegener D., Gourdin M., Michael C., Petersen J. L., Roos M., Martin B. R., Oades G., De Swart J. J. Compilation of Coupling Constants and Low-Energy Parameters // Nucl. Phys. B. 1971. Vol. 33, No. 2. P. 317-378.

Ericson T. E. O., Loiseau B., Nilsson J., Olsson N., Blomgren J., Cond’e H., Elmgren K., Jonsson O., Nilsson L., Renberg P.-U., Ringbom A., Ronnqvist T., Tibell G., Zorro-16- R. πNN Coupling from High Precision np Charge Exchange at 162 MeV // Phys. Rev. Lett. 1995. Vol. 75, No. 6. P. 1046-1049.

Yukawa H. On the Interaction of Elementary Particles // Proc. Phys. Math. Soc. Jap. 1935. Vol. 17. P. 48-57.