Schizophrenia is a common severe psychiatric disorder that affects approximately 1% of general population through the life course. Historically, in Kraepelin’s time, schizophrenia was a disease unit conceptualized as dementia praecox; however, since then, the disease concept has changed. Recent MRI studies had shown that the neuropathology of the brain in this disorder was characterized by mild progression before and after the onset of the disease, and that the brain alterations were relatively smaller than assumed. Although genetic factors contribute to the brain alterations in schizophrenia, which are thought to be trait differences, other changes include factors that are common in psychiatric diseases. Furthermore, it has been shown that the brain differences specific to schizophrenia were relatively small compared to other changes, such as those caused by brain development, aging, and gender. In addition, compared to the disease and participant factors, machine and imaging protocol differences could affect MRI signals, which should be addressed in multi-site studies. Recent advances in MRI modalities, such as multi-shell diffusion-weighted imaging, magnetic resonance spectroscopy, and multimodal brain imaging analysis, may be candidates to sharpen the characterization of schizophrenia-specific factors and provide new insights. The Brain/MINDS Beyond Human Brain MRI (BMB-HBM) project has been launched considering the differences and noises irrespective of the disease pathologies and includes the future perspectives of MRI studies for various psychiatric and neurological disorders. The sites use restricted MRI machines and harmonized multi-modal protocols, standardized image preprocessing, and traveling subject harmonization. Data sharing to the public will be planned in FY 2024. In the future, we believe that combining a high-quality human MRI dataset with genetic data, randomized controlled trials, and MRI for non-human primates and animal models will enable us to understand schizophrenia, elucidate its neural bases and therapeutic targets, and provide tools for clinical application at bedside.

Keywords: Brain/MINDS beyond human brain MRI project, psychiatry, brain development, traveling subject, multi-modal brain image
Introduction

Schizophrenia is a common severe psychiatric disorder that affects around 1% of the general population through the life course. To date, patients have been diagnosed based on symptomatology, with few tools available to support diagnosis and prognosis. The symptomatology is rather clearly characterized compared to other psychiatric disorders, which comprises verbal hallucination, persecutory delusion, and disturbance of self (positive symptoms); impaired motivation, reduction in spontaneous speech, and social withdrawal (negative symptoms); and cognitive impairment in experimental and social situations (Fig. 1). Recent advances in imaging tools, especially MRI, have elucidated structural brain alterations, particularly those in the prefrontal cortex, temporal cortex, and subcortical regions. Schizophrenia has been considered to be a syndrome, and several neural bases have been suggested, including hyperactivity of the dopaminergic and glutaminergic neural systems. However, there is a need to elucidate the brain mechanisms of schizophrenia and apply them to clinically available biomarkers for differential diagnoses and prediction of the illness course of this disorder.

Considering genetic contribution to brain and disease, brain development and aging through the life course, progressive brain pathology around the onset, and common and disease-specific features of the brain characteristics could provide novel insights into understanding this complex condition in schizophrenia. Technical advances in brain measurement and image analysis, such as multi-shell diffusion-weighted imaging (DWI), proton magnetic resonance spectroscopy (1H-MRS), and harmonizing methods for multi-site datasets can help elucidate pathophysiology and identify neurobiological predictors of schizophrenia in clinical research.

In this article, we review the current evidence on brain characteristics in schizophrenia obtained using MRI studies and their limitations. Next, we would like to introduce the recent topics in clinical neuroimaging studies of schizophrenia. Finally, we would like to discuss future directions in neuroimaging research in psychiatry, including clinical trials using brain imaging to develop potential biomarkers, multi-modal investigations using other neuroimaging and neuro-physiological measures, and bidirectional translational studies between human and non-human primates.

Brain MRI Findings in Schizophrenia through the Life Course

Progressive brain pathology around the onset of schizophrenia

As shown in the meta-analyses of MRI findings at various stages of schizophrenia, both first-episode and chronic patients have gray matter reduction predominantly in the frontal and temporo-limbic regions compared with healthy controls, and its extent is assumed to be more extensive in the chronic stages (Fig. 1M and 1N). A series of longitudinal MRI studies on schizophrenia have shown that the brains of patients with first-episode, but not those of chronic patients, exhibited progressive gray matter reduction in the prefrontal and frontal and insula cortices, superior temporal gyrus, and fusiform gyrus, which was associated with the development of positive symptoms and cognitive impairments in a region-specific manner, but could be alleviated by the administration of antipsychotic medication. These active brain changes might reflect excessive dopamine neurotransmission in the peri-Sylvian regions that could cause clinical symptoms. In earlier clinical stages, both cross-sectional and longitudinal neuroimaging findings in individuals with high-risk status for psychosis have suggested that brain changes observed in those with psychotic disorders preceded the onset of florid psychotic symptoms, while the patients further exhibited progressive gray matter reduction in the prefrontal, temporal, and insular regions during the transition period. These findings support the pathological model of schizophrenia that the patients have neurodevelopmental abnormalities but also exhibit active gray matter loss mainly in the frontal and temporo-limbic regions in the initial years around the onset, which may underlie the first manifestation of positive symptoms. Further research is needed on other morphological characteristics (e.g., gyriﬁcation and sulcus pattern) and subcortical structures in the various clinical stages of schizophrenia.

Age-related decline or dementia praecox?

As proposed by Kraepelin, historically, schizophrenia had been conceptually defined as dementia praecox that refers to a chronic and progressively deteriorating psychotic illness with early onset (i.e., late adolescence or early adulthood). While the current evidence supports the notion that schizophrenia arises from an early neurodevelopmental disturbance, the patients likely have a high prevalence of Alzheimer disease in later stages and may have common neurodegenerative markers with those having dementia (e.g., cerebrospinal fluid markers of brain amyloidosis and high frequency of Lewy bodies and argyrophilic grains in autopsy cases) (Fig. 1K). These findings and progressive brain tissue loss in schizophrenia may partly support the concept of Kraepelin’s dementia praecox. However, the clinical course of schizophrenia is not consistent with a neurodegenerative model because a substantial number of patients maintain symptomatic remission and do not necessarily show persistent progression in cognitive and functional deficits throughout the illness stages (Fig. 1D–F, I–J; also see the following section “Schizophrenia is a syndrome and not solely a result of one brain pathology”). Furthermore, in sharp contrast to active gray matter loss during the first-episode,
brain changes in cortical thickness65 and activity66 in chronic stages of schizophrenia are comparable to those observed in age-matched healthy controls (Fig. 1N). Thus, schizophrenia appears to be a neurodevelopmental disorder with limited progressive brain pathology occurring during the evolution and early phases of psychosis, while the patients may exhibit age-related brain changes thereafter. Clinical and biological findings in schizophrenia suggestive of neurodegeneration could be partly explained by normal age-related brain changes67 and/or brain changes secondary to neurodevelopmental or medication effect.68

Genetic factors and brain pathology in schizophrenia

In schizophrenia, subcortical brain volumes, such as hippocampus and putamen, and cortical structures (cortical area, thickness, and volume) are moderately to highly heritable ($h^2 \approx 0.20$–0.80) with a complex polygenic architecture (Fig. 1G and 1K).11,12,21 Brain volumes, particularly in the frontal, temporal, and limbic regions, were linearly differed among schizophrenia patients, while these were unaffected in first-degree relatives of their patients and healthy subjects.13 Large-scale genome-wide association studies (GWASs, $n \approx 13000$–82000) for these traits have been performed using the Psychiatric Genomics Consortium (PGC)14 and the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium,15,16 the Cohorts of Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the UK Biobank.17 Each GWAS has identified several genetic loci associated with the risk of schizophrenia, subcortical brain volumes, and cortical structures.14–17 Since alterations in the subcortical volumes and cortical structures may be useful intermediate phenotypes to understand genetic mechanisms implicated in the pathophysiology of schizophrenia, there could be genetic correlations of schizophrenia with the subcortical volumes and the cortical structures.

We demonstrated a weak shared genetic etiology between the risk for schizophrenia and the hippocampus volume ($r_g = -0.18$) from large-scale GWASs using linkage disequilibrium score regression (LDSC) analysis.18 In addition, in a Japanese population ($R^2 = 0.032$), although based on a small sample size, we indicated that higher polygenic risk scores for schizophrenia were associated with smaller left superior temporal gyrus volumes,20 which was one of the specific cortical alterations for brain pathophysiology in schizophrenia.19 In contrast, recent large-scale studies reported weaker genetic overlap between schizophrenia and cortical structures (cortical area, thickness, and volume) ($r_g < -0.20$), e.g., superior temporal cortical area ($r_g = 0.15$) and insula volume ($r_g = -0.17$).16,17 These findings suggest the shared genetic etiology of schizophrenia with subcortical volumes and cortical structures, although these correlations are relatively small.
Developing psychosis and adolescent brain

Although brain volume and functional alteration around the onset of psychosis have been well investigated in clinical neuroimaging studies, when these alterations are established and spread in those who will later have the onset still remains unknown (Fig. 1L and 1M). Especially, adolescent development has been monitored since the brain regions and the corresponding cognitive functions that are developed during adolescence are similar to those which get altered in schizophrenia, and the onset of schizophrenia and the emergence of attenuated positive symptoms are more prominent during adolescence and early adulthood (Fig. 1A–C). Therefore, prospective cohort neuroimaging studies targeting general population, or familial and/or sub-clinical risk population, are needed. 23,24

In cohort studies, two main concerns should be considered for elucidating schizophrenia-related neural basis: brain development in adolescence (Fig. 1L) and the assessment of subthreshold symptoms (Fig. 1A–C). Although physical development is prominent during adolescence, brain development seen in MRI seems complex. The intracranial volume increases according to physical development, but the cortical thickness, surface area, and subcortical volumes show little difference or reduction during adolescence (Fig. 1L). 25,26 Therefore, most of the structural characteristics decrease relatively according to adolescent development. This means that previous clinical findings must be interpreted cautiously, because most studies found volume reduction in clinical groups. 4–7 Future longitudinal studies will elucidate whether these brain alterations are in line with the brain pathology of schizophrenia and/or normal adolescent development in cohort studies.

The other concern is the continuity of subthreshold symptoms between cohort and clinical studies. Since cohort studies generally enroll thousands of participants from the general population, the surveys assess their symptoms using self-reported questionnaires. One limitation of subjective symptom severity is a response bias which may reduce the validity and reliability to clinical syndromes. 69 Additionally, in assessing psychological symptoms of children and adolescents, reliability of responses from the participants and/or their parents should be considered, based on their understandings of questionnaires and the relationship between children and their parents during adolescence. 69

Psychotic experiences (PEs) 69,70–72 assessed using a self-report questionnaire may demonstrate the continuity between cohort and clinical investigations (Fig. 1A). However, a systematic review did not show a significant difference in later onset of psychosis between adolescents with and without simple PE. 72 The review suggests that continuity, frequency, distress, and multiple positive responses of the PEs (Fig. 1B) may predict later onset of psychosis, and neuropyschological findings showed similar characteristics between population-based severe PE participants and people with clinically determined high-risk status (Fig. 1C). 70 Therefore, severe PEs would be a link between cohort and clinical studies in neuroimaging.

Recent Advances in Brain MRI Studies on Schizophrenia

Multi-shell diffusion weighted image

Since most of the structural alterations in schizophrenia have been found using T1-weighted images, DWI provides morphological information in another perspective by calculating simple tensor images and more complex algorithm images. 73–75 DWI with multi-shells (i.e., multiple b-values) provides even more detailed structural information with neuroanatomical accuracy, taking advantages of different diffusivity degrees of water in tissue structures. For example, diffusion kurtosis image derived from multi-shell DWI provides better contrasts for white matter regions, where the fiber bundles are crossed, as well as gray matter, than diffusion tensor images derived from single-shell DWI. 34–36,76 Novel tools, neurite orientation dispersion and density imaging (NODDI) 77 can estimate neurites structures, and many fiber orientation distribution algorithms derived from multi-shells 34–36 can improve false-positive and true-negative fiber tracking. The meso- and micro-level information, including the structure of neurite and fiber bundles, may provide new insights into brain volume alterations because patients with schizophrenia do not show huge macro-level brain atrophy, but rather meso-level alteration. Furthermore, since postmortem studies in schizophrenia only showed synaptic loss in the cortex, 78 the details of brain volume change according to the disease, as well as brain development and aging, still remain unknown. 79

Magnetic resonance spectroscopy

The glutamatergic hypothesis is one of the mechanisms by which the pathophysiology of schizophrenia is explained. 10 Owing to the development of 1H-MRS, we can non-invasively measure glutamatergic neurometabolite levels in the brain of humans in vivo. A recent meta-analysis was conducted by Merritt et al. to examine glutamatergic neurometabolite levels, as measured by 1H-MRS, in patients with schizophrenia. 37 The authors reported that there were elevations in levels of glutamate (Glu) and glutamate + glutamine (Glx) in the basal ganglia and Glx levels in the medial temporal lobe within that patient population, suggesting that schizophrenia may be associated with the elevations in the levels of glutamatergic neurometabolites across several brain regions. 57 However, it is noteworthy that these findings considered participants with stages of illness that included the high-risk state, first-episode psychosis, and chronic schizophrenia. The authors also conducted subgroup analyses and found increased medial frontal Glx in high-risk individuals, elevated basal ganglia Glx levels in patients with first-episode psychosis, and increased frontal white matter and medial temporal Glx levels in patients with chronic schizophrenia. These findings suggest that glutamatergic dysfunction may be implicated for the pathophysiology of schizophrenia, warranting future research for the development of novel glutamatergic modulators for schizophrenia.
Multi-modal brain image analysis
As described above, different MRI sequences provide different types of brain information: multi-shell DWI provides assumable structural information of axon and neuropils, and MRS provides metabolism levels of neurotransmitters (Fig. 2). Integrating different types of information by scanning multiple MR contrasts would contribute to elucidation of schizophrenia pathogenesis as well as develop better treatment intervention. The Human Connectome Project (HCP) acquired multiple imaging modalities, as well as demographic and behavioral data in healthy individuals. It succeeded in capturing both general and specific features of structural and functional connectives among individuals, as well as creating image preprocessing pipelines for integrating different MR modality data, which provided additional information such as T1-weighted (T1w)/T2-weighted (T2w) ratio myeline map. In addition, using multiple MR contrasts provides better estimate to locate brain surface (T2w) ratio myeline map. In addition, using multiple MR contrasts provides better estimate to locate brain surface and boundaries among brain regions, including its subfields in individual data. For example, Broadman area 55b contributes to language function and its boundary from the frontal eye field and premotor eye field is considerably different among individuals. A multi-modal segmentation using T1-weighted FreeSurfer (https://surfer.nmr.mgh.harvard.edu) Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA) preprocessing, T1w/T2w ratio myelin map, and functional MRI during a language task can successfully differentiate the region 55b from other regions individually.

MRI scans for the target identification in brain stimulation studies
In recent years, there have been an increasing number of attempts to perform MRI measurements before and after the intervention in clinical trials to develop MRI-derived indices as biomarkers for predicting treatment response. MRI is particularly important in repetitive transcranial magnetic stimulation (rTMS), which is exactly the same approach used in the neuroradiology field to precisely identify the target site for gamma knife therapy in brain tumors.

Indeed, over the past quarter century, numerous clinical trials using rTMS have been conducted on patients with depression to investigate its clinical effectiveness worldwide, and, currently, rTMS therapy has emerged as a non-invasive promising strategy for depression, especially in the context of treatment-resistant depression. When patients undergo rTMS, clinical MRI is not only performed as a screening test to exclude organic diseases in the brain but also it is increasingly performed prior to the start of rTMS treatment for the purpose of implementing MRI-guided high-precision neuronavigation to determine the stimulation site in more sophisticated ways. On the other hand, although rTMS has been shown to be useful in depression, the neurobiological mechanisms associated with antidepressant effects have not yet been fully elucidated. Thus, there has been a great amount of research in academia on the use of multimodnal high-quality MRI measurements to elucidate the therapeutic mechanisms of rTMS and to identify predictors of response based on MRI findings prior to treatment initiation.

Furthermore, in recent years, the therapeutic potential of TMS for schizophrenia has also been investigated in academic centers. Although a number of clinical trials indicated moderate therapeutic effect for this disorder, its clinical efficacy remains controversial yet. Moreover, the neurobiological mechanisms of action remain unclear. Thus, MRI measurements are often combined with rTMS clinical trials in patients to investigate the therapeutic mechanisms by which rTMS acts. In this context, TMS-related functional neuroimaging, especially functional MRI, is often performed in patients with schizophrenia to examine the brain functional changes following rTMS treatment.

Open neuroscience in clinical neuroimaging studies
Since the volume of brain images from one participant and the sample size in neuroimaging studies have dramatically increased during recent years, there is a need to provide access to the data for researchers publicly to utilize them. Moreover, most brain imaging software packages have been developed using public funds and are freely available; sharing analytic programs have also been a common practice to utilize and validate the developed analytic techniques via GitHub (https://github.com), GitHub, San Francisco, CA, USA) and other online resources. Several websites are available for open neuroscience where researchers can upload and download MRI data freely to promote neuroimaging studies (e.g., International Neuroimaging Data-Sharing Initiative [INDI]. http://icon1000.projects.nitrc.org; OpenNeuro [https://openneuro.org]; Open fMRI [https://www.openfmi.org/dataset/ds000224]). Data from several, recent large projects, such as HCP, UK BioBank, and the Adolescent Brain Cognitive Development (ABCD) project, are intended for open access. Open access has also been requested for clinical MRI data, and several datasets are publicly available for schizophrenia imaging, such as the Decoded Neurofeedback (DecNet) Project (https://briefreport.org/caneconmedit) and the Brain/MINDS DATA PORTAL (https://www.brainminds.riken.jp). The Human Connectome Studies Related to Human Disease projects (https://www.humanconnectome.org/disease-studies) are further expanding from the original HCP, and open access to the clinical data has been planned for researchers.

The Brain/MINDS Beyond Human Brain MRI project (BMB-HBM, FY2018–FY2023) is a national project in Japan, which aims to establish clinically relevant imaging biomarkers. Data collection in psychiatric and neurological disorders across the lifespan has also been scheduled initially...
at 13 sites where measurement machines and multi-modal scan procedures have been fixed beforehand (Fig. 2). The imaging, demographic, clinical information, and harmonizing database will be made publicly available by the end of the project, FY2024.

Existing Limitations and Future Directions of Brain MRI Studies on Schizophrenia

Schizophrenia is a syndrome and not solely a result of one brain pathology

Schizophrenia includes heterogeneous disorders with regard to divergent clinical course of symptoms, cognitive dysfunction, and treatment response, and in turn the underlying biological mechanisms (Fig. 1E, 1J, and 1O). Currently, the primary treatment for schizophrenia involves dopamine receptor antagonism by antipsychotics. The clinical effects of antipsychotics have provided the basis for the dopamine hypothesis of schizophrenia, which posits that aberrant dopaminergic function is implicated in schizophrenia pathophysiology. However, approximately 20% to 35% of patients with schizophrenia do not respond to first-line antipsychotics and are thus considered to have treatment-resistant schizophrenia (TRS). Clozapine is the most effective antipsychotic for TRS. In contrast to other antipsychotics, clozapine has lower affinity for dopamine D2 receptors. Moreover, previous studies that used positron emission topography demonstrated lower dopamine synthesis capacity in the striatum of patients with TRS compared with that in patients who had treatment-responsive schizophrenia. Taken together, these findings suggest that the pathophysiology of TRS might not be associated with increased striatal dopamine levels. On the contrary, employing 1H-MRS, our group conducted two independent studies noting that glutamatergic neurometabolite levels in the anterior cingulate cortex were increased in patients with TRS and in those with clozapine-resistant schizophrenia in comparison with healthy controls. These findings suggest that dopaminergic dysfunction and glutamatergic dysfunction may contribute to the heterogeneity of schizophrenia. Since there were no replicated neuroimaging findings of TRS, further research is needed to examine glutamatergic dysfunction in patients with TRS in order to elucidate the heterogeneity of schizophrenia.

Clinical and brain characteristics are shared with schizophrenia and other psychiatric disorders

Since most of the clinical studies in neuroimaging have been conducted in case–control fashion, the extent to which the findings are schizophrenia-specific or rather reflect common psychiatric features still needs to be investigated. In genetic and neuropsychological studies, as well as in neuroimaging studies, disease-specific difference from healthy controls includes common features in psychiatric disorders. Nevertheless, several studies showed the possibility of...
differentiation between psychiatric disorders using brain images.30–32 Recently, machine learning algorithms could be used as a better tool for differentiating between the diseases,33,110 which could also be applicable to earlier clinical stages of schizophrenia.110

As described earlier, schizophrenia is thought to consist of various subtypes. Recent machine learning studies also try to differentiate among different subtypes of schizophrenia.8 To be able to visualize the differences among schizophrenia- and subtype-specific brain characteristics, larger sample size (i.e., at least 200) recruited from various methods (e.g., multi-site studies) may be needed. However, to combine those with the large MRI datasets from multi-sites, the differences derived from machine and protocol differences, and individual variance should be considered (see the following two sections in detail).

Smaller disease-specific brain characteristics compared to machine- and protocol-derived differences

In multi-site MRI studies, site differences in scanner and/or image-acquisition protocols negatively impact the reliability and reproducibility of image analyses, resulting in measurement bias (Fig. 3).80 In the initial multi-site MRI study, Jack et al. standardized imaging protocols across sites to reduce the effects of different imaging protocols on the MRI quality.111 Moreover, previous studies have attempted to correct the biases using image preprocessing methods for treating raw MRI data.112–115

The aforementioned attempts were made to standardize imaging protocols and image preprocessing, but the measurement bias could not be eliminated completely.116 Fortin et al. have effectively harmonized fractional anisotropy and mean diffusivity data from diffusion tensor imaging using ComBat42 and estimated the cortical thickness42 to improve the statistical and machine learning classification power. As a more effective method of harmonization, Yamashita et al. extended general linear model (GLM) harmonization using a traveling subject (TS) dataset,44 which can differentiate machine and protocol-derived difference from sampling variability, including sociodemographic factors and disease-related factors, and can diminish only machine and protocol-derived difference (Fig. 3).

Harmonization is a promising method for reducing bias and improving reproducibility of multi-site datasets using a statistical approach41,42,44 and has become an essential process not only for schizophrenia data analysis but also for all imaging multi-site studies. Since patients with schizophrenia have smaller hippocampus (Cohen’s d = −0.46) than healthy control,9 if the measurement bias exceeds this effect size, the disease cannot be identified. BMB-HBM project also planned to measure TS for 13 sites. As of 2020, over 600 sessions from 75 participants were measured and preliminary findings showed that harmonized protocol, preprocessing pipeline, and TS harmonization work are promising (Fig. 2).41

Non-disease-related individual differences are the source of highest variability in brain MRI characteristics

The TS approach can also differentiate among the factors of variation in brain imaging variables in which the signals in resting state during functional connectivity contribute to individual variance, and then measure the bias and disease-specific factors.44 Individual variance in neuroimaging characteristics is thought to consist of age and gender, and then handedness, IQ, socioeconomic status, and other environmental factors.31,32,80 Unlike genetic studies, brain characteristics considering these sociodemographic characteristics could reveal disease-associated factors more accurately.32,80

Previous studies often used linear models to consider the variables; however, these variables are complex and hierarchical.31 For example, men have greater brain volumes compared to women, and smaller brain volumes in patients with schizophrenia suggest severe symptoms and poorer clinical outcomes. However, men with schizophrenia are more likely to have severe symptoms and poorer clinical outcomes compared to women with schizophrenia. Another example regarding medication is that antipsychotics medication is thought to decrease brain volume and function, but the patients with severe forms of condition are prescribed more medication doses.

Translating human brain MRI research into non-human primates

The findings from *in vitro* and animal model studies have been generally applied to human studies or clinical trials, the so-called forward translational approach; however, this approach has been applied to few psychiatric disorders. Instead, a biological candidate from clinical studies is often investigated to provide further basic neuroscience investigation (reverse translational approach). Bi-directional translational approaches would be crucial for elucidating the pathogenesis of neuropsychiatric disorders, since the neural information provided by human brain images is limited in terms of spatial and temporal resolution. On the other hand, cognitive and behavioral phenotypes, as well as social forms, are different between human beings and non-human animals, especially rodents.

To minimize such a gap between human subjects and animal models, a Japanese national brain project, Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS),117 has developed non-human primate, common marmoset (*Callithrix jacchus*), as an animal model.118,119 Compared to other non-human primates, common marmosets develops in the environments which are more similar to those of humans, which may result in their development being comparable to that of human.118,119 and evolution to understand why schizophrenia develops.120 Indeed,
unlike chimpanzees and macaque monkeys, both parents participate raring their offspring, colonized by family unit. Most of the neuropsychiatric diseases are said to have originated from some aberrant neural developmental processes. Taking advantages of its short generational interval, common marmoset is also suitable to study developmental processes. In addition, neuropsychiatric phenotypes are rarely observed in other non-human animals in natural condition, suggesting that humans must have got it through the evolutional process. Thus, comparing and investigating the differences from non-human animals would provide the insights into why only humans develop neuropsychiatric disorders.

Narrowing macro-findings (MRI data) from human studies into micro-studies (cytoarchitectonic, molecular, or genetic data) with animals would efficiently lead to the answers of current hypotheses on neuropsychiatric pathogenesis. Recent advances of neural observation and manipulations, such as calcium imaging, optogenetics, and the designer receptors exclusively activated by designer drugs (DREADD) available in animal models, allowed to observe the trajectory of the alteration in the developmental course. Thus, bi-directional translational approach using both human and animal data with multi-modality would extend further investigations on neuropsychiatric fields.

Interpretation to other brain measurements:

EEG and MEG research in schizophrenia

Due to their non-invasiveness and excellent temporal resolution in the millisecond range, neurophysiological approaches, such as electroencephalography (EEG) and magnetoencephalography (MEG), have revealed novel insights into sensory and cognitive abnormalities in patients with schizophrenia. Among the several EEG/MEG indices, mismatch negativity (MMN) and gamma-band oscillation including auditory steady-state response (ASSR) are currently attracting attention as highly reproducible biomarkers in schizophrenia.

Fig. 3 TS harmonization of the brain images from multi-clinical sites. When considering the data harmonization, the biases from different recruitment methods (sampling bias, i.e., Site a–c) and scanners and protocols (measurement bias, i.e., Machine x–z) should be eliminated. An MRI research is generally conducted for a specific condition (e.g., schizophrenia) using a machine in a site, given that the multi-site data as the aggregation of the case–control studies (i.e., X_{a,x}, X_{b,y}, and X_{c,z}) are unable to differentiate between sampling and measurement biases. TS data are supposed to include only measurement biases, and sampling bias from each site can be estimated. TS, traveling subject.
information processing which may reflect altered predictive coding in schizophrenia.126–128 The amplitude of MMN (especially duration MMN) is reduced in chronic schizophrenia, first-episode schizophrenia, and even at the clinical high-risk state.125,129 Mechanistically, this reduced MMN amplitude may reflect N-methyl-D-aspartate receptor (NMDAR) dysfunction in patients with schizophrenia since NMDAR antagonists reduce the MMN amplitude.129–131 Thus, MMN has the potential to be a useful therapeutic biomarker for detecting disrupted NMDAR-mediated neurotransmission in schizophrenia.

Oscillations in the gamma-band (30–100 Hz) generated in the neocortex by interactions among neurons in local circuits are used as another reliable neurophysiological biomarker in schizophrenia.122 Gamma-band oscillation deficit has been studied extensively in schizophrenia using evoked activity paradigms, especially in ASSR task which is highly reproducible.132,133 Many studies have demonstrated a decreased evoked power and phase synchronization of 40-Hz ASSR (elicited by 40-Hz steady click sounds) in both the early and chronic phases of schizophrenia.134–136 In addition to decreased stimulus-locked 40-Hz ASSR oscillations, recent reports showed increased (non-phase-locked) spontaneous gamma-band oscillation (induced power) during click-sound stimulation in schizophrenia,136 along with the primary auditory cortex volume deficits.133 Progressive reduction in auditory evoked gamma-band oscillation is also seen over time in first-episode, but not in clinical high risk, suggesting that evoked gamma-band oscillation may index the abnormal progressive neural synchronization phenomenon that occurs after the onset of the illness. Biologically, the mutual balance between excitation and inhibition within the neural network is critical for generating gamma-band oscillation.137 Normal neuronal information processes rely on an appropriate excitability and inhibitory (E/I)-balance, while failure to maintain this mutual balance is hypothesized to cause deficits in gamma-band oscillations in schizophrenia.136,138,139 Moreover, our previous discovery of increased spontaneous broadband gamma power in schizophrenia136 resembled the increased spontaneous broadband gamma power that is often reported in animal models of schizophrenia based on E/I-imbalance due to NMDAR hypofunction.140,141 Hence, spontaneous gamma-band oscillation has a huge potential as a translatable neurophysiological biomarker in schizophrenia.

Simultaneous EEG-functional MRI (fMRI) recording has also attracted attention because the combination of EEG and fMRI allows the integration of fine spatial and accurate temporal resolution.142 In EEG/MEG studies, regardless of whether it is a spontaneous activity or an induced activity such as MMN or ASSR, modeling the neural generators of scalp EEG/MEG data is the method of choice since MEG/EEG source modeling is an inverse problem. In this regard, assuming that EEG and fMRI recordings reflect the same brain activity state, simultaneous EEG-fMRI acquisitions may ensure and identify the neural generators of scalp EEG/MEG data which would lead to evaluate precise neural connectivity dynamics. Especially, simultaneous EEG-fMRI recording will enable the evaluation of functional neural networks involving subcortical regions, such as the thalamus. Although there are many challenges, including the strong EEG artefacts generated by MR gradient currents, these modalities are highly complementary and their integration may help to detect detailed abnormal neuronal phenomena in schizophrenia, which require high temporal and spatial resolution (Fig. 2).143,144

Discussion

This review summarized brain alteration of schizophrenia in MRI studies, which identified schizophrenia as a brain disorder, and the illness course was characterized by progressive brain pathology around the onset of disease, but not dementia praecox. However, we have little knowledge on genetic contribution and its relationship with brain alternation from large sample size genome studies. To elucidate this, we need to understand the developing and aging course of the human brain, and then compare it with the corresponding trajectory of schizophrenia brain characteristics, since the size effect from schizophrenia is smaller than that from age, sex, etc. We should also consider schizophrenia as a syndrome which is composed of multiple brain pathologies and subtypes, including various prognoses and common characteristics with other psychiatric disorders. To observe those on brain MRI scans, we need to use a larger sample size dataset from various recruitment methods and backgrounds, considering machine and protocol differences.

In the image acquisition and analysis aspects, recent advances in brain MRI studies could provide different aspects and greater SNR, which could see more robust findings in schizophrenia studies. Multi-shell diffusion-weighted image, MRS, and multi-modal brain image analysis would be promising candidates.

The BMB-HBM project41 was launched considering these limitations and includes the future perspectives of MRI studies, such as multi-site recruitment targeting various psychiatric and neurological disorders, restricted machines and harmonized multi-modal protocols, standardized preprocessing, and TS measurement. A strategy for data sharing to the public has already been discussed and is planned in FY 2024. In the future, combining MRI with genetic data will be needed for elucidating how schizophrenia risk genes contribute to brain pathology in this condition,12,15–17,21 by testing whether schizophrenia-related genetic loci would be associated with the alteration in meso- and micro-structures and cortical myelination. Moreover, harmonizing MRI protocols for non-human primates were developed,145 which may be easier to interpret.
than those protocols in human studies on development and aging. These projects may provide better understandings of schizophrenia, its neural bases and therapeutic targets, and clinical application tools at bedside.

Funding

This study was supported by the Japan Society for the Promotion of Science (JSPS)/MEXT KAKENHI (18K07604, 19H03579, 20KK0193, and 21H02851), the Japan Agency for Medical Research and Development (AMED; JP20dm0307004 and JP20dm0207069), and Japan Science and Technology Agency (JST) Moonshot R&D Grant Number JPMJMS2021. This study was also supported by UTokyo Center for Integrative Science of Human Behavior (CiSHuB) and the World Premier International-International Research Center for Neurointelligence (WPI-IRCN).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5), Fifth Edition. Washington: American Psychiatric Association Publishing, 2013.
2. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet 2016; 388:86–97.
3. Insel TR. Rethinking schizophrenia. Nature 2010; 468:187–193.
4. Birur B, Kraguljac NV, Shelton RC, et al. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr 2017; 3:15.
5. Ellison-Wright I, Glahn DC, Laird AR, et al. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 2008; 165:1015–1023.
6. Dietsche B, Kircher T, Falkenberg I. Structural brain changes in schizophrenia at different stages of the illness: A selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 2017; 51:500–508.
7. Takahashi T, Suzuki M. Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin Neurosci 2018; 72:556–571.
8. Li A, Zalesky A, Yue W, et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat Med 2020; 26:558–565.
9. van Erp TGM, Walton E, Hibar DP, et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta-analysis (ENIGMA) consortium. Biol Psychiatry 2018; 84:644–654.
10. Krystal JH, Karper LP, Selby JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51:199–214.
11. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60:1187–1192.
12. Strike LT, Hansell NK, Couvy-Duchesne B, et al. Genetic complexity of cortical structure: Differences in genetic and environmental factors influencing cortical surface area and thickness. Cereb Cortex 2019; 29:952–962.
13. Ohi K, Shimada T, Nemoto K, et al. Cognitive clustering in schizophrenia patients, their first-degree relatives and healthy subjects is associated with anterior cingulate cortex volume. Neuroimage Clin 2017; 16:248–256.
14. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511:421–427.
15. Hibar DP, Stein JL, Renteria ME, et al. Alzheimer’s Disease Neuroimaging Initiative; CHARGE Consortium; EPIGEN; IMAGEN; SYS, Martin NG, Wright MJ, Schumann G, Franke B, Thompson PM, Medland SE. Common genetic variants influence human subcortical brain structures. Nature 2015; 520:224–229.
16. Grasby KL, Jannahshad N, Painter JN, et al. The genetic architecture of the human cerebral cortex. Science 2020; 367: eay6690.
17. Hofer E, Roshchupkin GV, Adams HHH, et al. Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nat Commun 2020; 11:4796.
18. Ohi K, Shimada T, Kataoka Y, et al. Genetic correlations between subcortical brain volumes and psychiatric disorders. Br J Psychiatry 2020; 216:280–283.
19. Ohi K, Matsuda Y, Shimada T, et al. Structural alterations of the superior temporal gyrus in schizophrenia: Detailed subregional differences. Eur Psychiatry 2016; 35:25–31.
20. Ohi K, Hashimoto R, Ikeda M, et al. Genetic risk variants of schizophrenia associated with left superior temporal gyrus volume. Cortex 2014; 58:224–229.
21. Le BD, Stein JL. Mapping causal pathways from genetics to neuropsychiatric disorders using genome-wide imaging genetics: Current status and future directions. Psychiatry Clin Neurosci 2019; 73:357–369.
22. Thompson PM, Jannahshad N, Ching CRK, et al. ENIGMA Consortium. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020; 10:100.
23. Okada N, Ando S, Sanada M, et al. Population-neuroscience study of the Tokyo TEEN Cohort (pn-TTC): Cohort longitudinal study to explore the neurobiological substrates of adolescent psychological and behavioral development. Psychiatry Clin Neurosci 2019; 73:231–242.
24. Casey BJ, Cannonier T, Conley MI, et al. ABCD Imaging Acquisition Workgroup. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci 2018; 32:43–54.
25. Gennatas ED, Avants BB, Wolf DH, et al. Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood. J Neurosci 2017; 37:5065–5073.
26. Vijayakumar N, Allen NB, Youssef G, et al. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Hum Brain Mapp 2016; 37:2027–2038.

27. Fusar-Poli P, Rudas J, McGuire P, et al. Neuroanatomical maps of psychosis onset: voxel-wise meta-analysis of anti-psychotic-naive VBM studies. Schizophr Bull 2012; 38:1297–1307.

28. Pantelis C, Yücel M, Bora E, et al. Neurobiological markers of illness onset in psychosis and schizophrenia: The search for a moving target. Neuropsychol Rev 2009; 19:385–398.

29. Cannon TD, Chung Y, He G, et al. North American Prodrome Longitudinal Study Consortium. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry 2015; 77:147–157.

30. Nakamura Y, Okada N, Koshiyama D, et al. Differences in functional connectivity networks related to the midbrain dopaminergic system-related area in various psychiatric disorders. Schizophr Bull 2020; 46:1239–1248.

31. Koike S, Sakakibara E, Satomura Y, et al. Shared functional impairment in the prefrontal cortex affects symptom severity across psychiatric disorders. Psychol Med 2020 Dec 18. doi:10.1017/S0033291720004742. [Epub ahead of print]

32. Koike S, Satomura Y, Kawasaki S, et al. Application of functional near infrared spectroscopy as supplementary examination for diagnosis of clinical stages of psychosis spectrum. Psychiatry Clin Neurosci 2017; 71:794–806.

33. Koutsouleris N, Meisenzahl EM, Borgwardt S, et al. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain 2015; 138:2059–2073.

34. Cheng J, Ghosh A, Deriche R, et al. Model-free, regularized, fast, and robust analytical orientation distribution function estimation. Med Image Comput Comput Assist Interv 2010; 13:648–656.

35. Jbabdi S, Sotiropoulos SN, Savio AM, et al. Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn Reson Med 2012; 68:1846–1855.

36. Jeurissen B, Tournier JD, Dholander T, et al. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 2014; 103:411–426.

37. Merritt K, Egerton A, Kempton MJ, et al. Nature of glutamate alterations in schizophrenia: A meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 2016; 73:665–674.

38. Van Essen DC, Smith SM, Barch DM, et al. WU-Minn Human Connectome Project. The WU-Minn human connectome project: an overview. Neuroimage 2013; 80:62–79.

39. Glasser MF, Sotiropoulos SN, Wilson JA, et al. WU-Minn HCP Consortium. The minimal preprocessing pipelines for the human connectome project. Neuroimage 2013; 80:105–124.

40. Glasser MF, Coalson TS, Robinson EC, et al. A multi-modal parcellation of human cerebral cortex. Nature 2016; 536:171–178.

41. Koike S, Tanaka SC, Okada T, et al. Brain/MINDS Beyond Human Brain MRI Group. Brain/MINDS beyond human brain MRI project: A protocol for multi-level harmonization across brain disorders throughout the lifespan. Neuroimage Clin 2021; 30:102600.

42. Fortin JP, Parker D, Tunç B, et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage 2017; 161:149–170.

43. Fortin JP, Cullen N, Sheline YI, et al. Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol 2019; 17:e3000042.

44. Yamashita A, Yahata N, Itahashi T, et al. Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol 2019; 17:e3000042.

45. Kubota M, van Haren NE, Hajjma SV, et al. Association of IQ changes and progressive brain changes in patients with schizophrenia. JAMA Psychiatry 2015; 72:803–812.

46. Chen AT, Nasrallah HA. Neuroprotective effects of the second generation antipsychotics. Schizophr Res 2019; 208:1–7.

47. Kurachi M, Takahashi T, Sumiyoshi T, et al. Early intervention and a direction of novel therapeutics for the improvement of functional outcomes in schizophrenia: A selective review. Front Psychiatry 2018; 9:39.

48. Yung AR, Yuen HP, McGorry PD, et al. Mapping the onset of psychosis: the Comprehensive Assessment of At-Risk Mental States. Aust N Z J Psychiatry 2005; 39:964–971.

49. Seiler N, Nguyen T, Yung A, et al. Terminology and assessment tools of psychosis: A systematic narrative review. Psychiatry Clin Neurosci 2018; 72:226–246.

50. Jalbrzikowski M, Hayes RA, Wood SJ, et al. Association of structural magnetic resonance imaging measures with psychosis onset in individuals at clinical high risk for developing psychosis: An ENIGMA working group mega-analysis. JAMA Psychiatry 2021; 78:753–766.

51. Sasabayashi D, Takayanagi Y, Takahashi T, et al. Increased brain gyriﬁcation in the schizophrenia spectrum. Psychiatry Clin Neurosci 2020; 74:70–76.

52. Nakamura M, Takahashi T, Takayanagi Y, et al. Surface morphology of the orbitofrontal cortex in individuals at risk of psychosis: a multicenter study. Eur Arch Psychiatry Clin Neurosci 2019; 269:397–406.

53. Nogovitsyn S, Souza R, Müller M, et al. Aberrant limbic brain structures in young individuals at risk for mental illness. Psychiatry Clin Neurosci 2020; 74:294–302.

54. Sasabayashi D, Takayanagi Y, Takahashi T, et al. Subcortical brain volume abnormalities in individuals with an at-risk mental state. Schizophr Bull 2020; 46:834–845.

55. Kraepelin E. Dementia Praecox and Paraphrenia. New York: Robert E. Krieger Publishing, 1971.

56. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44:660–669.

57. Brodaty H, Sachdev P, Koschera A, et al. Long-term outcome of late-onset schizophrenia: 5-year follow-up study. Br J Psychiatry 2003; 183:213–219.

58. Frisoni GB, Prestia A, Geroldi C, et al. Alzheimer’s CSF markers in older schizophrenia patients. Int J Geriatr Psychiatry 2011; 26:640–648.
59. Nagao S, Yokota O, Ikeda C, et al. Argyrophilic grain disease as a neurodegenerative substrate in late-onset schizophrenia and delusional disorders. Eur Arch Psychiatry Clin Neurosci 2014; 264:317–331.

60. Olabi B, Ellison-Wright I, McIntosh AM, et al. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry 2011; 70:88–96.

61. Vita A, De Peri L, Deste G, et al. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry 2012; 2:e190.

62. Girgis RR, Phillips MR, Li X, et al. Clozapine v. chlorpromazine in treatment-naive, first-episode schizophrenia: 9-year outcomes of a randomised clinical trial. Br J Psychiatry 2011; 199:281–288.

63. Bora E, Murray RM. Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophr Bull 2014; 40:744–755.

64. Lambert M, Naber D, Schacht A, et al. Rates and predictors of remission and recovery during 3 years in 392 never-treated patients with schizophrenia. Acta Psychiatr Scand 2008; 118:220–229.

65. Kubota M, Miyata J, Yoshiha H, et al. Age-related cortical thinning in schizophrenia. Schizophr Res 2011; 125:21–29.

66. Chou PH, Koike S, Nishimura Y, et al. Similar age-related decline in cortical activity over frontotemporal regions in schizophrenia: a multichannel near-infrared spectroscopy study. Schizophr Bull 2015; 41:268–279.

67. Edgar JC. Identifying electrophysiological markers of autism spectrum disorder and schizophrenia against a backdrop of normal brain development. Psychiatry Clin Neurosci 2020; 74:1–11.

68. Zipursky RB, Reilly TJ, Murray RM. The myth of schizophrenia as a progressive brain disease. Schizophr Bull 2013; 39:1363–1372.

69. Huang Z, Endo K, Yamasaki S, et al. Bi-directional relationships between psychological symptoms and environmental factors in early adolescence. Front Psychiatry 2020; 11:574182.

70. Koike S, Barnett J, Jones PB, et al. Cognitive profiles in childhood and adolescence differ between adult psychotic and affective symptoms: a prospective birth cohort study. Psychol Med 2018; 48:11–22.

71. Khandaker GM, Stochl J, Zammit S, et al. A population-based longitudinal study of childhood neurodevelopmental disorders, IQ and subsequent risk of psychotic experiences in adolescence. Psychol Med 2014; 44:3229–3238.

72. Kaynaz N, Drukker M, Lieb R, et al. Do subthreshold psychotic experiences predict clinical outcomes in unselected non-help-seeking population-based samples? A systematic review and meta-analysis, enriched with new results. Psychol Med 2012; 42:2239–2253.

73. Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond. Magn Reson Med 2011; 65:1532–1556.

74. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006; 51:527–539.

75. Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001; 13:534–546.

76. Jensen JH, Helpem JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53:1432–1440.

77. Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012; 61:1000–1016.

78. Petanjek Z, Judaš M, Šimic G, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A 2011; 108:13281–13286.

79. Natu VS, Gomez J, Barnett M, et al. Apparent thinning of human visual cortex during childhood is associated with myelination. Proc Natl Acad Sci U S A 2011; 116:20750–20759.

80. Nemoto K, Shimokawa T, Fukunaga M, et al. Differentiation of schizophrenia using structural MRI with consideration of scanner differences: A real-world multisite study. Psychiatry Clin Neurosci 2020; 74:56–63.

81. Noda Y. Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: A systematic review. Psychiatry Clin Neurosci 2020; 74:12–34.

82. Bakaen C, Brem AK, Arns M, et al. Repetitive transcranial magnetic stimulation treatment for depressive disorders: current knowledge and future directions. Curr Opin Psychiatry 2019; 32:409–415.

83. Brunoni AR, Chaimani A, Moffa AH, et al. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: A systematic review with network meta-analysis. JAMA Psychiatry 2017; 74:143–152.

84. Garnaat SL, Yuan S, Wang H, et al. Updates on transcranial magnetic stimulation therapy for major depressive disorder. Psychiatr Clin North Am 2018; 41:419–431.

85. Cash RFH, Cocchi L, Anderson R, et al. A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression. Hum Brain Mapp 2019; 40:4618–4629.

86. Cash RFH, Cocchi L, Lv J, et al. Personalized connectivity-guided DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility. Hum Brain Mapp 2021; 42:4155–4172.

87. Noda Y, Silverstein WK, Barr MS, et al. Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review. Psychol Med 2015; 45:3411–3432.

88. Noda Y, Zomorrodi R, Saeki T, et al. Resting-state EEG gamma power and theta-gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clin Neurophysiol 2017; 128:424–432.

89. Philip NS, Barredo J, Aiken E, et al. Neuroimaging mechanisms of therapeutic transcranial magnetic stimulation for major depressive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 2018; 3:211–222.

90. Taylor SF, Ho SS, Abagis T, et al. Changes in brain connectivity during a sham-controlled, transcranial magnetic
stimulation trial for depression. J Affect Disord 2018; 232:143–151.
91. Kar SK. Predictors of response to repetitive transcranial magnetic stimulation in depression: A review of recent updates. Clin Psychopharmacol Neurosci 2019; 17:25–33.
92. Silverstein WK, Noda Y, Barr MS, et al. Neurobiological predictors of response to dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation in depression: a systematic review. Depress Anxiety 2015; 32:871–891.
93. Avissar M, Powell F, Ilieva I, et al. Functional connectivity of the left DLPFC to striatum predicts treatment response of depression to TMS. Brain Stimul 2017; 10:919–925.
94. Drysdale AT, Grosenick L, Downar J, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 2017; 23:28–38.
95. Jiang Y, Guo Z, Xing G, et al. Effects of high-frequency transcranial magnetic stimulation for cognitive deficit in schizophrenia: A meta-analysis. Front Psychiatry 2019; 10:135.
96. Guan HY, Zhao JM, Wang KQ, et al. High-frequency neuronavigated rTMS effect on clinical symptoms and cognitive dysfunction: a pilot double-blind, randomized controlled study in Veterans with schizophrenia. Transl Psychiatry 2020; 10:79.
97. Paillère-Martinot ML, Galinowski A, Plaze M, et al. Active and placebo transcranial magnetic stimulation effects on external and internal auditory hallucinations of schizophrenia. Acta Psychiatr Scand 2017; 135:228–238.
98. Wang J, Zhou Y, Gan H, et al. Efficacy towards negative symptoms and safety of repetitive transcranial magnetic stimulation treatment for patients with schizophrenia: A systematic review. Shanghai Arch Psychiatry 2017; 29:61–76.
99. Briend F, Leroux E, Delcroix N, et al. Impact of rTMS on functional connectivity within the language network in schizophrenia patients with auditory hallucinations. Schizophr Res 2017; 189:142–145.
100. Bais L, Liemburg E, Verscammen A, et al. Effects of low frequency rTMS treatment on brain networks for inner speech in patients with schizophrenia and auditory verbal hallucinations. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:105–113.
101. Zhong S, Hu Y, Fu Y, et al. Functional MRI in the effect of transcranial magnetic stimulation therapy for patients with schizophrenia: a meta-analysis protocol. BMJ Open 2020; 10:e038557.
102. Miller KL, Alfaro-Almagro F, Bangerter NK, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 2016; 19:1523–1536.
103. Suzuki M. Schizophrenia: What determines its clinical features and course? Psychiatry Clin Neurosci 2019; 73:99.
104. Yasuda Y, Okada N, Nemoto K, et al. Brain morphological and functional features in cognitive subgroups of schizophrenia. Psychiatry Clin Neurosci 2020; 74:191–203.
105. Brugger SP, Angelescu I, Abi-Dargham A, et al. Heterogeneity of striatal dopamine function in schizophrenia: Meta-analysis of variance. Biol Psychiatry 2020; 87:215–224.
106. Nakajima S, Takeuchi H, Plitman E, et al. Neuroimaging findings in treatment-resistant schizophrenia: A systematic review: Lack of neuroimaging correlates of treatment-resistant schizophrenia. Schizophr Res 2015; 164:164–175.
107. Howes OD, McCutcheon R, Agid O, et al. Treatment-resistant schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group consensus guidelines on diagnosis and terminolo. Am J Psychiatry 2017; 174:216–229.
108. Iwata Y, Nakajima S, Plitman E, et al. Glutamatergic neurometabolic levels in patients with ultra-treatment-resistant schizophrenia: A cross-sectional 3t proton magnetic resonance spectroscopy study. Biol Psychiatry 2019; 85:596–605.
109. Tarumi R, Tsugawa S, Noda Y, et al. Levels of glutamatergic neurometabolites in patients with severe treatment-resistant schizophrenia: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology 2020; 45:632–640.
110. Yassin W, Nakatani H, Zhu Y, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry 2020; 10:278.
111. Jack CR, Bernstein MA, Fox NC, et al. The alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 2008; 27:685–691.
112. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17:87–97.
113. Lustig R, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010; 29:1310–1320.
114. Janke A, Zhao H, Cowin GJ, et al. Use of spherical harmonic decomposition methods to compensate for nonlinear gradient effects on MRI images. Magn Reson Med 2004; 52:115–122.
115. Maikusa N, Yamashita F, Tanaka K, et al. Japanese alzheimer disease neuroimaging initiative. Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data. Neuroimage 2020; 220:117129.
116. Okano H, Sasaki E, Yamamori T, et al. Brain/MINDS: A Japanese national brain project for marmoset neuroscience. Neuroreport 2016; 9:582–590.
117. Uematsu A, Hata J, Komaki Y, et al. Mapping orbitofrontal-limbic maturation in non-human primates: A longitudinal magnetic resonance imaging study. Neuroimage 2017; 163:55–67.
118. Seki F, Hikishima K, Komaki Y, et al. Developmental trajectories of macroanatomical structures in common marmoset brain. Neuroscience 2017; 364:143–156.
119. Nesic MJ, Stojkovic B, Maric NP. On the origin of schizophrenia: Testing evolutionary theories in the post-genomic era. Psychiatry Clin Neurosci 2019; 73:723–730.
magnetoencephalography devices in psychiatry. Front Psychiatry 2020; 11:863.

122. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 2010; 11:100–113.

123. Oribe N, Hirano Y, Del Re E, et al. Progressive reduction of auditory evoked gamma in first episode schizophrenia but not clinical high risk individuals. Schizophr Res 2019; 208:145–152.

124. Oribe N, Hirano Y, Del Re E, et al. Longitudinal evaluation of visual P300 amplitude in clinical high-risk subjects: An event-related potential study. Psychiatry Clin Neurosci 2020; 74:527–534.

125. Erickson MA, Ruffle A, Gold JM. A meta-analysis of mismatch negativity in schizophrenia: From clinical risk to disease specificity and progression. Biol Psychiatry 2016; 79:980–987.

126. Kirihara K, Tada M, Koshiyama D, et al. A predictive coding perspective on mismatch negativity impairment in schizophrenia. Front Psychiatry 2020; 11:660.

127. Smith R, Badcock P, Friston KJ. Recent advances in the application of predictive coding and active inference models within clinical neuroscience. Psychiatry Clin Neurosci 2021; 75:3–13.

128. Fong CY, Law WHC, Uka T, et al. Auditory mismatch negativity under predictive coding framework and its role in psychotic disorders. Front Psychiatry 2020; 11:557932.

129. Avissar M, Xie S, Vail B, et al. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Arch Gen Psychiatry 1999; 56:1001–1005.

130. Tada M, Nagai T, Kirihara K, et al. Differential alterations of auditory gamma oscillatory responses between pre-onset high-risk individuals and first-episode schizophrenia. Cereb Cortex 2016; 26:1027–1035.

131. Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 2019; 73:204–215.

132. Thune H, Recasens M, Uhlhaas PJ. The 40-Hz auditory steady-state response in patients with schizophrenia: A meta-analysis. JAMA Psychiatry 2016; 73:1145–1153.

133. Hirano Y, Nakamura I, Tamura S, et al. Long-term test-retest reliability of auditory gamma oscillations between different clinical EEG systems. Front Psychiatry 2020; 11:876.

134. Kwon JS, O'Donnell BF, Wallenstein GV, et al. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 1999; 56:1001–1005.