Genome analysis

Mosdepth: quick coverage calculation for genomes and exomes

Brent S. Pedersen1,2,3,* and Aaron R. Quinlan1,2,3,*

1Department of Human Genetics, 2Department of Biomedical Informatics and 3USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA

*To whom correspondence should be addressed.
Associate Editor: John Hancock

Received on September 7, 2017; revised on October 9, 2017; editorial decision on October 26, 2017; accepted on October 30, 2017

Abstract

Summary: Mosdepth is a new command-line tool for rapidly calculating genome-wide sequencing coverage. It measures depth from BAM or CRAM files at either each nucleotide position in a genome or for sets of genomic regions. Genomic regions may be specified as either a BED file to evaluate coverage across capture regions, or as a fixed-size window as required for copy-number calling. Mosdepth uses a simple algorithm that is computationally efficient and enables it to quickly produce coverage summaries. We demonstrate that mosdepth is faster than existing tools and provides flexibility in the types of coverage profiles produced.

Availability and implementation: mosdepth is available from https://github.com/brentp/mosdepth under the MIT license.

Contact: bpederse@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Measuring the depth of sequencing coverage is critical for genomic analyses such as calling copy-number variation (CNV), e.g. by cn.mops (Klambauer et al., 2012), quality control (Pedersen et al., 2017), and determining which genomic regions have too low, or too high (Li, 2014) coverage for reliable variant calling. Given the scope of applications for coverage profiles, there are several existing tools that calculate genome-wide coverage. Samtools depth (Li et al., 2009) outputs per-base coverage; BEDTools genomecov (Quinlan and Hall, 2010; Quinlan, 2014) can output per-region or per-base coverage; Sambamba (Tarasov et al., 2015) also provides per-base and per-window depth calculations. The need for efficient coverage calculation increases with the number and depth of whole genome sequences, and existing methods require roughly an hour or more of computation for a typical human genome with 30× coverage. Here, we introduce mosdepth and show that it is faster than existing methods and has additional utility.

2 Materials and methods

Mosdepth uses HTSLib (http://www.htslib.org/) via the nim programming language (https://nim-lang.org/); it expects the input BAM or CRAM file to be sorted by position. In contrast to samtools, which uses a ‘pileup’ engine that tracks each nucleotide in every read, mosdepth only tracks chunks of read alignments. Only the start and end position of each chunk of an alignment (each alignment may have multiple chunks if it is split by a deletion or other event) are tracked in an array (of 32 bit integers) whose size is the length of the chromosome. For each chunk of an alignment to the reference genome, mosdepth increments the start and decrements the end for the the value at the index in the array corresponding to that chromosomal position (Fig. 1). It avoids double-counting coverage when the ends of a paired-end sequencing fragment have overlapping alignments (Fig. 1, black alignment). Once the coverage array has tracked all alignment starts and ends in a BAM or CRAM file, the depth at a particular position is calculated as the cumulative sum of all array positions preceding it (a similar algorithm is used in BEDTools which track starts and ends separately).

The coverage along a chromosome is calculated in place by replacing the composite start and end counts with the cumulative sum up to each element in the array. Once complete, the coverage of a region is simply the mean of the elements in the array spanning from start to end. This makes it possible to calculate coverage...
and can be even faster with multiple decompression threads (Table Material). With a single CPU, mosdepth is faster than existing tools, understand (see Supplementary Material for example uses).

Mosdepth put to samtools depth.

threads as shown in Supplementary Figure S1. With four threads, there is no additional benefit to adding more decompression depth calculations are shown in Supplementary Table S1. At four threads, there is no additional benefit to adding more decompression threads as shown in Supplementary Figure S1.

To evaluate consistency between the tools, we compared the output to samtools depth. Mosdepth cannot include or exclude individual bases because of low base-quality (BQ) as can samtools depth. In contrast, samtools depth cannot avoid double-counting overlapping regions unless the BQ cutoff is set to a value \(> 0 \). Therefore, we compared mosdepth without mate overlap correction to samtools depth with a BQ cutoff of \(\geq 0 \) for chromosome 22 of the dataset used for Table 1. With this comparison set up to evaluate differences, we found no discrepancies in reported depth among the tools for the entire chromosome.

3 Results

We compared the time and memory requirements of mosdepth (v0.1.6) to samtools (v1.5), BEDTools (v2.26.0) and sambamba (v0.6.6) on a BAM with about 30x coverage from the Simons Genome Diversity Panel (Mallick et al., 2016) (Supplementary Material). With a single CPU, mosdepth is faster than existing tools, and can be even faster with multiple decomposition threads (Table 1). Results for CRAM and for other options such as window-based depth calculations are shown in Supplementary Table S1. At four threads, there is no additional benefit to adding more decomposition threads as shown in Supplementary Figure S1.

To evaluate consistency between the tools, we compared the output to samtools depth. Mosdepth cannot include or exclude individual bases because of low base-quality (BQ) as can samtools depth. In contrast, samtools depth cannot avoid double-counting overlapping regions unless the BQ cutoff is set to a value \(> 0 \). Therefore, we compared mosdepth without mate overlap correction to samtools depth with a BQ cutoff of \(\geq 0 \) for chromosome 22 of the dataset used for Table 1. With this comparison set up to evaluate differences, we found no discrepancies in reported depth among the tools for the entire chromosome.

4 Discussion

Mosdepth is a quick, convenient tool for genome-wide depth calculation. The optional coverage distribution is useful for quality control and the depth output is applicable without further processing as input to many CNV detection tools. While the method it employs requires greater memory use, it makes the implementation simple and fast, enables a straightforward coverage distribution calculation, and expedites the depth calculations for even millions of regions.

Table 1. Comparison of depth tools for time and memory use on a 30x BAM

Tool	Threads	Relative time	Time (hh:mm:ss)	Memory (MiB)
Mosdepth	1	1	25:23	1196
Mosdepth	3	0.37	14:27	1196
Samtools	1	1.98	50:12	27
Sambamba	1	5.71	2:24:53	166
BEDtools	1	5.31	2:14:44	1908

Note: Mosdepth and BEDTools use much more memory, but mosdepth is nearly twice as fast as the next fastest tool, samtools. The threads column reflects the number of threads for BAM/CRAM decompression.

Mosdepth is useful for exome, whole-genome, and targeted sequencing projects. It is available from source-code, as a binary, and from bioconda (https://bioconda.github.io/).

Funding

This research was supported by awards to A.R.Q. from the US National Human Genome Research Institute (NIH R01HG006693 and NIH R01HG009141), the US National Institute of General Medical Sciences (NIH R01GM124355) and the US National Cancer Institute (NIH U24CA209999).

Conflict of Interest

None declared.

References

Klambauer,G. et al. (2012) cn.MOPS: mixture of poisson for discovering copy number variations in next-generation sequencing data with a low false discovery rate. *Nucleic Acids Res.*, 40, e69.

Li,H. (2014) Toward better understanding of artifacts in variant calling from high-coverage samples. *Bioinformatics*, 30, 2843–2851.

Li,H. et al. (2009) The sequence alignment/map format and samtools. *Bioinformatics*, 25, 2078–2079.

Mallick,S. et al. (2016) The simons genome diversity project: 300 genomes from 142 diverse populations. *Nature*, 538, 201–206.

Pedersen,B.S. et al. (2017) Indexcov: fast coverage quality control for whole-genome sequencing. *Gigascience*, 11, 1–6.

Quinlan,A.R. (2014) Bedtools: the swiss-army tool for genome feature analysis. *Curr. Protoc. Bioinformatics*, 47, doi:10.1002/9781118032857.112047.

Quinlan,A.R. and Hall,I.M. (2010) Bedtools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*, 26, 841–842.

Tarasov,A. et al. (2015) Sambamba: fast processing of ngs alignment formats. *Bioinformatics*, 31, 2032–2034.