Generic Emergence of Power Law Distributions and Lévy-Stable
Intermittent Fluctuations in Discrete Logistic Systems

Ofer Biham, Ofer Malcai, Moshe Levy and Sorin Solomon
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
biham@flounder.fiz.huji.ac.il, malcai@flounder.fiz.huji.ac.il, shiki@cc.huji.ac.il,
sorin@vms.huji.ac.il

Abstract

The dynamics of generic stochastic Lotka-Volterra (discrete logistic) systems
of the form $w_i(t + 1) = \lambda(t)w_i(t) + aw(t) - bw_i(t)\bar{w}(t)$ is studied by com-
puter simulations. The variables w_i, $i = 1,...,N$, are the individual system
components and $\bar{w}(t) = \frac{1}{N}\sum w_i(t)$ is their average. The parameters a and b
are constants, while $\lambda(t)$ is randomly chosen at each time step from a given
distribution. Models of this type describe the temporal evolution of a large
variety of systems such as stock markets and city populations. These systems
are characterized by a large number of interacting objects and the dynamics is
dominated by multiplicative processes. The instantaneous probability distrib-
ution $P(w, t)$ of the system components w_i, turns out to fulfill a (truncated)
Pareto power-law $P(w, t) \sim w^{-1-\alpha}$. The time evolution of $\bar{w}(t)$ presents inter-
mittent fluctuations parametrized by a truncated Lévy distribution of index
α, showing a connection between the distribution of the w_i’s at a given time
and the temporal fluctuations of their average.
I. INTRODUCTION

Power-law distributions have been observed in all domains of the natural sciences as well as in economics, linguistics and many other fields. Widely studied examples of power law distributions include the energy distribution between scales in turbulence [1], distribution of earthquake magnitudes [2], diameter distribution of craters and asteroids [3], the distribution of city populations [4,5], the distributions of income and of wealth [6–10], the size-distribution of business firms [11,12] and the distribution of the frequency of appearance of words in texts [4]. A related phenomenon is the fact that in a variety of systems the temporal fluctuations exhibit a scale invariant behavior in the form of (truncated) Lévy-stable distributions. Well known examples are the fluctuations in stock markets [7,13].

Although systems which exhibit power-law distributions have been studied extensively in recent years there is no universally accepted framework which can explain the origin of the abundance and diversity of power-law distributions. One context in which the emergence of scaling laws and long range correlations in space and time is well understood is equilibrium statistical physics at the critical point [14–17]. By contrast, scaling behavior, power law distributions as well as spatial and temporal power law correlations in generic natural systems is still the subject of intense study [18–31].

An approach that proved to be useful in the study of complex systems is to identify for each system the relevant elementary degrees of freedom and their interactions and to follow-up (by monitoring their computer simulation) the emergence in the system of the macroscopic collective phenomena [32]. This approach was applied to the study of multiscale dynamics in spin glasses [33] and stock market dynamics [34]. Using a generic class of models with a large number of interacting degrees of freedom, it was shown that macroscopic dynamics emerges under rather general conditions. This dynamics exhibits power law scaling as well as intermittency [34–36]. These models turn out to be particularly suitable to describe systems such as stock market dynamics with many individual investors [37,38,41,44,42] where each system component describes a single investor (or stock [40]). Such systems
involve complex temporal dynamics of many degrees of freedom but no spatial structure. The models introduced in [36] can also describe systems such as population dynamics [16, 17, 18], spatial domains in magnetic [50] or turbulence models [51, 52] or regions in generic phase spaces [53, 55], which have spatial dependence.

In this paper we present numerical studies of generic stochastic Lotka-Volterra systems. These systems [36] basically consist of coupled dynamic equations which describe the discrete time evolution of the basic system components \(w_i, i = 1, \ldots, N \). The structure of these equations resembles the logistic map and they are coupled through the average value \(\bar{w}(t) \). The dynamics includes autocatalysis both at the individual level and at the community level as well as a saturation term. We find that under very general conditions, the system components spontaneously evolve into a power-law distribution \(P(w, t) \sim w^{-1-\alpha} \). The time evolution of \(\bar{w}(t) \) presents intermittent fluctuations parametrized by a (truncated) Lévy-stable distribution with the same index \(\alpha \), showing an intricate relation between the instantaneous distribution of the system components and the temporal fluctuations of their average.

The paper is organized as follows. In Sec. II we present the generalized logistic model introduced in [36]. Simulations and results are reported in Sec. III. Discussion of previous results as well as of our findings is given in Sec. IV, and a summary in Sec. V.

II. THE MODEL

The generalized logistic system [36] describes the evolution in discrete time of \(N \) dynamic variables \(w_i, i = 1, \ldots, N \). At each time step \(t \), an integer \(i \) is chosen randomly in the range \(1 \leq i \leq N \), which is the index of the dynamic variable \(w_i \) to be updated at that time step. A random multiplicative factor \(\lambda(t) \) is then drawn from a given distribution \(\Pi(\lambda) \), which is independent of \(i \) and \(t \). This can be, for example, a uniform distribution in the range \(\lambda_{\text{min}} \leq \lambda \leq \lambda_{\text{max}} \), where \(\lambda_{\text{min}} \) and \(\lambda_{\text{max}} \) are predefined limits. The system is then updated according to
\[w_i(t + 1) = \lambda(t)w_i(t) + aw(t) - bw_i(t)\bar{w}(t) \]

\[w_j(t + 1) = w_j(t), \quad j = 1, \ldots, N; \ j \neq i. \] \hspace{1cm} (1)

This is an asynchronous update mechanism. The average value of the system components at time \(t \), is given by

\[\bar{w}(t) = \frac{1}{N} \sum_{i=1}^{N} w_i(t). \] \hspace{1cm} (2)

In general, using instead of the average, a weighted average of the \(w_i \)'s would lead to similar results. The parameters \(a \) and \(b \) may, in general, be slowly varying functions of time, however we will now consider them as constants. The first term on the right hand side of Eq. (1), describes the effect of auto-catalysis at the individual level. For instance, in a stock-market system it represents the increase (or decrease) by a random factor \(\lambda(t) \) of the capital of the investor \(i \) between time \(t \) and \(t + 1 \). The second term in Eq. (1), describes the effect of auto-catalysis at the community level. In an economic model, this term can be related to the social security policy or to general publicly funded services which every individual receives. In molecular or magnetic systems, this term may represent the mean-field approximation to the effect of diffusion or convection [50]. The third term in Eq. (1), describes saturation or the competition for limited resources. In an ecological model, this term implies that for large enough densities, the population starts to exhaust the available resources and each sub-population loses from the competition over resources a term proportional to the product between the average density population and its own size. We refer to Eq. (1) as the generalized discrete logistic (GL) system because when averaged over \(i \), this system gives the well known discrete logistic (Lotka-Volterra) equation [56,57]

\[w(t + 1) = (\bar{\lambda} + a)w(t) - bw^2(t). \] \hspace{1cm} (3)

In the general case, the parameters \(a, b \) and the distribution \(\Pi(\lambda) \) may depend on time. Consequently, even the solution of the asymptotic stationarity condition \(\bar{w}(t + 1) = \bar{w}(t) \) may depend on time according to
\[\bar{w}(t) = (\bar{\lambda}(t) + a - 1)/b(t). \]

(4)

In fact, the typical dynamics of microscopic market models is generically not in a steady state. As will be shown below, systems which exhibit an effective GL dynamics [Eq. (1)] lead, under very general conditions, to a power law distribution of the values \(w_i \):

\[P(w) \sim w^{-1-\alpha}. \]

(5)

Moreover, the time evolution of \(\bar{w}(t) \) presents intermittent fluctuations following a (truncated) Lévy-stable distribution with the same index \(\alpha \).

III. SIMULATIONS AND RESULTS

To examine the behavior of the GL model introduced in we performed extensive computer simulations. Most simulations were done with \(N = 1000 \) system components, using various values of the parameters \(a \) and \(b \) and different distributions \(\Pi(\lambda) \) of the multiplicative factor \(\lambda \). We focused on the power law distribution of the system components \(w_i \) as well as on the fluctuations of \(\bar{w} \). Fig. 1 shows the distribution of \(w_i \), \(i = 1, \ldots, N \), obtained for \(N = 1000 \), \(a = 0.00023 \), \(b = 0.01 \) and \(\lambda \) uniformly distributed in the range \(1.0 \leq \lambda \leq 1.1 \). A power law distribution is found within the range

\[\bar{w} < w_i < N\bar{w} \]

(6)

which is bounded from below by the average wealth and from above by the total wealth, and spans nearly three decades.

The robust nature of the power-law distribution is demonstrated in Fig. 2 for \(b = 0 \). In this case \(\bar{w}(t) \) does not reach a steady state and keeps increasing (or decreasing) indefinitely. However, the power-law behavior is maintained. Moreover we find that the the exponent \(\alpha \) is insensitive to variations in \(b \): even for values of \(b \) differing by an order of magnitude (corresponding to \(\bar{w} \) varying by an order of magnitude), the power law exponent \(\alpha \) is virtually unchanged.
At each time step the system component to be updated is chosen randomly. Since the system components w_i exhibit a power-law distribution, given by Eq. \((5)\), the impact of the update move on $\bar{w}(t)$ exhibits a broad distribution. The dynamics involves, according Eq. \((4)\), a generalized random walk with steps sizes distributed according to Eq. \((5)\). Therefore, the stochastic fluctuations
\[
r(\tau) = \frac{\bar{w}(t + \tau) - \bar{w}(t)}{\bar{w}(t)}
\]
of $\bar{w}(t)$ after τ time steps, are governed by a truncated Lévy stable distribution $L_\alpha(r)$. This means that rather than shrinking like $N^{-1/2}$ the fluctuations of $\bar{w}(t)$ have infinite variance in the thermodynamic limit (modulo the truncation). The truncation in the Lévy-stable distribution corresponds to the cutoffs in the power-law distribution, given in Eq. \((6)\). Typically, the truncation in r is bounded by the relative width of λ times the largest $w_i/(N\bar{w})$ value.

Fig. 3 shows the distribution $P(r)$ of the stochastic fluctuations $r(\tau)$, for $\tau = 50$, which is given by a Lévy-stable distribution $L_\alpha(r)$. We find indeed that all the values of r are smaller than the relative width of λ (0.1) times the maximal value of $w_i/(N\bar{w})$ from Fig. 4. The cut-off in the distribution of the temporal fluctuations originates therefore in the cut-off in the Pareto power law in Fig. 4. In the absence of this cut-off the variance of the distribution of fluctuations would be infinite. The divergence of the variance modulo finite size effects is analogous to the divergence of the susceptibility in ordinary statistical mechanics systems at criticality.

The peak of the (truncated) Lévy-stable distribution scales with τ according to
\[
L_\alpha(r = 0) \sim \tau^{-1/\alpha}
\]
where α is the index of the distribution. In Fig. 4 we show the height of the peak $P(r = 0)$ of the distribution of fluctuations in \bar{w} as a function of τ for the parameters used in Fig. 4, which give rise to a power-law distribution of the w_i’s with $\alpha = 1.4$. It is found that the slope of the fit in Fig. 4 is -0.71 which is equal to $-1/\alpha$, following the scaling relation of Eq. \((8)\).
This is a further indication that the fluctuations of \bar{w} follow a Lévy-stable distribution with the index α which equals the exponent of the Pareto power law in Fig. 1. It is gratifying that an explanation of the 100 years old Pareto power law in these non-equilibrium systems which we have studied is provided by a straightforward explicitation of the almost as old Lotka-Volterra equation \[56,57\].

To provide more intuition about the dynamics leading to the power law distribution of w_i, we show in Fig. (5) the time evolution of a GL system starting from a uniform distribution of $w_i, i = 1, \ldots, 1000$. We observe that the distribution gradually broadens. In the first stages it becomes of log-normal form and then it evolves into a power-law as the non-multiplicative effects in the vicinity of the lower bound become significant.

IV. DISCUSSION

A. Previous Results

The numerical results of the previous Section show convincingly that generic (even non-stationary) systems with effective dynamics governed by the GL system of Eq.(1), lead to (truncated) Pareto distributions of the system components. They also lead to (truncated) Lévy-stable laws of the fluctuations of the average. Let us now explain intuitively why this is the case. Consider first the Kesten system which is well known to present power laws \[62,64,66,68\]

\[w(t + 1) = \lambda(t)w(t) + \rho(t)\]

(9)

where the random numbers λ and ρ are extracted from two positive distributions independent of t. The Kesten system has a number of shortcomings which makes it unfit for most practical applications in natural systems:

- In Eq. (9), there is only one variable, (no index i). It describes a non-interacting investor (animal, city) in a market (ecology, country) which induces effectively to him
the return (growth) \(\lambda(t) - 1 \) after each trade (reproduction/replication/multiplication) period \(t \).

- In order for this system to exhibit a power law distribution, \(\lambda \) has to be predominantly less than 1 such that it causes \(\lambda w \) to be on average smaller than \(w \). Otherwise, the resulting \(w \) distribution is a log-normal with width expanding in time. This would correspond in the infinite time limit to a power law of the form \(P(w) \sim w^{-1} \). The dependence of the Kesten model on a shrinking dynamics is incompatible with most of the natural systems in which the growth is positive. For instance, the shrinking multiplicative dynamics is certainly not a good model for a stock market where the investors \(i \) expect their wealth to increase on average (otherwise they just stay out of the market).

- In realistic markets (ecologies, societies), the average wealth (population) \(\bar{w} \) varies significantly in time. In the Kesten model this can be realized only by varying the distributions of \(\lambda \) and \(\rho \) which in turn would significantly affect the exponent \(\alpha \) of the power law [Eq. (3)]. In the GL system, on the other hand, changes in the environment are represented by changes in the coefficient \(b \) of the resources limitation/competition term. This can lead to changes by orders of magnitude in the total wealth/population \(N \bar{w} \) without affecting the exponent \(\alpha \). Interestingly, it turns out that the exponent \(\alpha \), in the distribution of wealth, has been stable for the last one hundred years and across most western (capitalist) countries.

We will see later how the GL system solves the shortcomings of the Kesten model. Meantime let us give an intuitive explanation of why the Kesten system leads to a power law given by Eq. (4). First one should realize that due to the \(\rho(t) \) term in Eq. (4), the values of \(w(t) \) are typically kept above a certain minimal value of order \(\bar{\rho} \). Let us therefore effectively substitute the \(\rho \) term in the Kesten equation [Eq.(2)] with the condition that \(w(t) > \bar{\rho} \). More precisely, each time \(w(t) \) becomes smaller than \(\bar{\rho} \), it is reposed "by hand" to the value \(\bar{\rho} \).
In the resulting system: \(w(t + 1) = \lambda(t)w(t) \), with \(w(t) > \bar{\rho} \) one can take the logarithm: \(\ln w(t + 1) = \ln w(t) + \ln \lambda(t) \). The lower bound condition becomes then \(\ln w(t) > \ln \bar{\rho} \). This represents a system in which \(\ln w \) undergoes a random walk with a drift towards smaller values and with a reflecting barrier at \(\ln \bar{\rho} \). One can compare this with a molecule in gravitational field submitted to the collisions with the rest of the gas (resulting in friction and Brownian motion) and bounded from below by the ground level. It is not surprising therefore that (by analogy to the barometric equation) the resulting probability distribution for \(\ln w \) is an exponential:

\[
p(\ln w) \sim e^{-\beta \ln w}
\]

(10)

which written in terms of \(w \) itself gives:

\[
P(w) \sim w^{-1-\beta}
\]

(11)

The particular value of \(\beta \) depends in the Kesten system on the details of the distribution \(\Pi(\lambda) \) and is such that the drift towards lower values induced by \(\lambda \) is balanced by the drift to larger values induced by \(\rho \). As a consequence, this model, if (mistakenly) applied to the stock market (ecology, society etc.), would predict not only negative average returns (growth) but also an exponent \(\alpha \) in the power law that is highly sensitive to the parameters [62–64,66,67].

On top of all these shortcomings, the Kesten system does not predict a (truncated) Lévy-stable distribution of the \(\bar{w} \) fluctuations (as repeatedly measured in nature [19–28]). To get the (truncated) Lévy-stable distribution the following conditions should be satisfied: the index \(i \), of the component \(w_i \) to be updated at time \(t \), is chosen randomly, the \(w_i \)'s satisfy a power-law distribution and the update step is multiplicative, namely, the change in \(w_i \) is proportional to its current value. For example, even if the dynamics leads to a power-law distribution of \(w_i \), the fluctuation may not be described by Lévy-stable distribution if the magnitude of the update of \(w_i \) is not proportional to \(w_i \) itself.
B. How Does Our Model Work

Let us now see how the GL model [36] solves the problems with the Kesten system. The main new ingredients in the GL model are the appearance of \(\bar{w} \) and the appearance of an index \(i \) in \(w_i \). These two objects allow the introduction of a crucial ingredient which was absent in the Kesten system: the interaction between the investors (sub-ecologies, sub-systems). While the interaction in the stock market (ecology, society) is represented in the Kesten system only implicitly by the stock returns (growth) \(\lambda(t) - 1 \) we introduce now additional interactions between the investors (individuals, families) \(i \) which are mediated by the average \(\bar{w}(t) \) and are crucial for the dynamics of the system. Obviously, such terms, containing \(\bar{w}(t) \) could not appear in an equation like Kesten which considers only the dynamics of one variable at a time. In order to introduce the crucial terms including \(\bar{w} \) one has to give up the picture of a single random investor and to embrace the picture of a macroscopic set of microscopic investors, interacting among themselves through the market mechanisms. The result is the system of nonlinear GL equations which are coupled through \(\bar{w}(t) \) [Eq. (1)]. In order to gain insight into the emergence of the power law and Lévy-stable intermittency in the GL system, one can express it formally as:

\[
w_i(t + 1) = [\lambda(t) - b(t)\bar{w}(t)] w_i(t) + a(t)\bar{w}(t)
\]

(12)

If one ignores for the moment the effect of the changes of \(w_i \)'s on the value of \(\bar{w} \), the system [Eq. (12)] is of the Kesten type [Eq. (9)] and we expect therefore the emergence of a scaling law, given by Eq. (5). If the effect of the changes in \(w_i \) on \(\bar{w} \) is considered, then one sees that (for non-vanishing \(b \)) the system is self-tuning towards the value of \(\bar{w} \) given by Eq. (4). This self-tuning is realized by the dynamics of the average in Eq. (12). If \(\bar{w}(t) \) is small, then according the first term in Eq. (12), \(w_i \) will typically increase and will make \(\bar{w}(t) \) increase too. If \(\bar{w}(t) \) is large, then according the first term in Eq. (12), \(w_i \) will typically decrease and will make \(\bar{w}(t) \) decrease. While in the synchronous Lotka-Volterra [with a global time step updating based on Eq. (3)] the system may have large steps and get into behavior alternating
chaotically between large and small $w(t)$ values, in the case of the sequential updating [Eq. (1)] of the w_i's, the average will eventually self tune to a value of $\bar{w}(t)$ given by Eq. (4). The fluctuations around this value will be dominated by the first term in Eq. (12) and will consist of a random walk with steps proportional to w_i. Since w_i are distributed by a power law, the fluctuations will be distributed by a Lévy-stable distribution of corresponding index [69,70]. In order to understand why the w_i distribution is only weakly dependent on $b(t)$, one can substitute Eq. (4) in to Eq. (12) and use the normalized variables $v_i = w_i/\bar{w}$. One then obtains an equation of the Kesten form:

$$v_i(t + 1) - v_i(t) \approx \left[\lambda(t) - \bar{\lambda}(t) - a(t) \right] v_i(t) + a(t) $$

Note that we used here the approximation that the dynamics of \bar{w} is much slower than the dynamics of w_i. One observes that both $b(t)$ and $\bar{w}(t)$ are absent from Eq. (13): their respective effects cancel. In fact, one finds in simulations (Fig. 2) that the distribution of $v_i(t)$ (and therefore of $w_i(t)$) fulfills a power law of Eq. (3) with exponent α independent on the variations of $\bar{w}(t)$. One also sees from Eq. (13) that the dynamics is invariant to an overall shift in the distribution $\Pi(\lambda)$. This means that in particular the GL multiplicative factors λ can be significantly (and generically) larger than unity allowing (in contrast to the Kesten system) for expanding (growing) dynamics. Eq. (12) implies time correlations in the amplitude of the fluctuations of \bar{w}. It was brought to our attention by D. Sornette that our data seem consistent with the log-periodic corrections due to complex exponents discussed in [33] as well as other the other data collected in the stock market [19, 28, 71, 73, 72, 76].

Our mechanism relates the emergence of power-laws and macroscopic fluctuations to the existence of auto-catalyzing sub-sets in systems composed of many microscopic entities. In particular, the use of the \bar{w} is not mandatory: generic systems of the type $w_i(t + 1) = \sum_j \lambda_{ij} w_j(t) - \sum_{j,k} b_{ijk} w_j(t) w_k(t)$ may also present similar properties. At a more conceptual level, the challenge is to identify, in an as wide as possible range of natural systems, the elementary objects i, the degrees of freedom w_i associated with them and the GL interactions explaining in each case the emergence of scaling and intermittency.
V. SUMMARY

In summary, we have studied the dynamics of a generic class of stochastic Lotka-Volterra (discrete logistic) systems introduced in [36] using computer simulations. These systems consist of a large number of interacting degrees of freedom $w_i(t), i = 1, \ldots N$, which are updated asynchronously. The time evolution of each system component is dominated by a stochastic individual autocatalytic dynamics, in addition to a global autocatalytic interaction mediated by the average $\bar{w}(t)$, and a saturation term. These models describe a large variety of systems such as stock markets and city populations. We find that the distribution $P(w, t)$ of the system components w_i, fulfills a Pareto power-law $P(w, t) \sim w^{-1-\alpha}$. The average $\bar{w}(t)$ exhibits intermittent fluctuations following a (truncated) Lévy-stable distribution with the same index α. This intricate relation between the distribution of system components and the temporal fluctuations resembles the behavior of a variety of empirical systems. For example, it provides a connection between the power-law distribution of wealth in society and the fluctuations in the stock market which follow a (truncated) Lévy-stable distribution.
REFERENCES

[1] A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).

[2] B. Gutenberg and C.F. Richter, Ann. Geophys. 9, 1 (1956).

[3] H. Mizutani, The Science of Craters (Tokyo University Press, Tokyo, 1980).

[4] G. K. Zipf, Human Behavior and the Principle of least Effort (Addison-Wesley Press, Cambridge, MA, 1949).

[5] D.H. Zanette and S.C. Manrubia, Phys. Rev. Lett. 79, 523 (1997).

[6] V. Pareto, Cours d’Economique Politique, Vol 2 (1897).

[7] B. Mandelbrot, Econometrica 29, 517 (1961).

[8] B. B. Mandelbrot, Comptes Randus 232, 1638 (1951).

[9] B. B. Mandelbrot, J. Business 36, 394 (1963).

[10] A.B. Atkinson and A.J. Harrison, Distribution of Total Wealth in Britain (Cambridge University Press, Cambridge, 1978).

[11] H.A. Simon and C.P. Bonini, Amer. Econ. Rev. 48, 607 (1958).

[12] Y. Ijiri and H.A. Simon, Skew Distributions and the Sizes of Business Firms (North-Holland, Amsterdam, 1977).

[13] P. Bak, M. Paczuski and M. Shubik, Physica A 246, Dec. 1, No 3-4, 430 (1997).

[14] L.P. Kadanoff, Physics 2, 263 (1966).

[15] M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).

[16] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

[17] M. Gell-Mann, The Quark and the Jaguar (Little Brown, London, 1994).

[18] B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
[19] P. Cizeau, Y. Liu, M. Meyer, C-K. Peng and H.E. Stanley, Physica A 245, 441 (1997).

[20] P. Cizeau, Y. Liu, M. Meyer, C-K. Peng and H.E. Stanley, Power Law Scaling for a System of Interacting Units with Complex Internal Structure (http://xxx.lanl.gov/cond-mat/9707342).

[21] R. N. Mantegna and H. E. Stanley, Phys. Rev. Lett. 73, 2946 (1994).

[22] R. N. Mantegna and H. E. Stanley, Physica A 239, 255 (1997).

[23] R. N. Mantegna and H. E. Stanley, Nature 383, 587 (1996).

[24] R. N. Mantegna and H. E. Stanley, Nature 376, 46 (1995).

[25] M. H. R. Stanley, S. V. Buldyrev, S. Havlin, R. Mantegna, M.A. Salinger, and H. E. Stanley, Europhys. Lett. 49, 453 (1995).

[26] M. H. R. Stanley, L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, and H. E. Stanley, Nature 379, 804 (1996).

[27] L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, H. E. Stanley, and M. H. R. Stanley, J. Phys. I France 7, 621 (1997).

[28] S. V. Buldyrev, L. A. N. Amaral, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, H. E. Stanley, and M. H. R. Stanley, J. Phys. I France 7, 635 (1997).

[29] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

[30] P. Bak, K. Chen, and M. Creutz, Nature 342, 780 (1989).

[31] P. Bak, K. Chen and C. Tang, Phys. Lett. 147, 297 (1990).

[32] S. Solomon, Annual Reviews of Computational Physics II, Ed. D. Stauffer, p. 243 (World Scientific, 1995).

[33] N. Persky and S. Solomon, Phys. Rev. E 54, 4339 (1996).
[34] M. Levy, N. Persky and S. Solomon, Int. J. of High Speed Computing 8, 93 (1996).

[35] M. Levy and S. Solomon, Int. J. Mod. Phys. C 7, 595 (1996).

[36] S. Solomon and M. Levy, Int. J. Mod. Phys. C 7, 745 (1996) (adap-org/9609002).

[37] S. Moss De Oliveira, P.M.C de Oliveira, D. Stauffer, Sex, Money, War and Computers: Nontraditional Applications of Computational Statistical Mechanics (Springer, Verlag, 1998).

[38] T. Hellthaler, Int. J. Mod. Phys. C 6, 845 (1995).

[39] P.W. Anderson, J. Arrow and D. Pines, The Economy as an Evolving Complex System (Addison-Wesley, Redwood City, CA, 1988).

[40] M. Marsili, S. Maslov and Y-C Zhang, cond-mat/9801239

[41] G. Caldarelli, M. Marsili, Y.-C. Zhang, Europhysics. Lett. 40 (1997) 479.

[42] M. Marsili, Y.-C. Zhang, Physica A, 245, 181, (1997)

[43] M. Marsili, Y.-C. Zhang, cond-mat/9801289

[44] D. Challet and Y-C. Zhang, Physica A 246 (1997) 407.

[45] G. Caldarelli, P. G. Higgs, A. J. McKane, adap-org/9801003

[46] R. M. May, Nature 261, 207 (1976).

[47] B.A. Hubermann and R.M. Lukose, Science 277, 535 (1997).

[48] G. Weisbuch, E.A. Stanley, G. Duchateau-Nguyen, M. Antona and H. Clement-Pitiot, Theory Bioscienc. 116, 97 (1997).

[49] S.L. Pimm, The Balance of Nature? Ecological Issues in the Conservation of species and Communities (University of Chicago Press, Chicago, 1991).

[50] Yuhai Tu, G. Grinstein and M.A. Munoz, Phys. Rev. Lett, 1997 Jan 13, V78 N2:274-277.
[51] R. Friedrich and J. Peinke, Phys. Rev. Lett. 78, 863 (1997).

[52] R. Friedrich and J. Peinke, Physica D 102, 147 (1997).

[53] T. Asselmeyer, W. Ebeling, Biosystems 41 (1997) 167; Phys. Rev. E 1997 56 PTB 1171.

[54] W. Ebeling, A. Neiman, T. Paschel, Smoothing representation of fitness landscapes - the genotype-phenotype map of evolution ad(http://xxx.lanl.gov/adap-org/9508002).

[55] W. Ebeling, T. Peschel, Entropy and Long range correlations in literary English (http://xxx.lanl.gov/chao-dyn/9309005).

[56] Elements of physical Biology, edited by A.J. Lotka (Williams and Wilkins, Baltimore, 1925).

[57] V. Volterra, Nature 118, 558 (1926).

[58] M. Levy, H. Levy and S. Solomon, Europhys. Lett. 45, 103 (1994).

[59] M. Levy, H. Levy and S. Solomon, J. Phys. I France 5, 1087 (1995).

[60] S. Solomon and M. Levy, Int. J. Mod. Phys. C 7, 65 (1996).

[61] M. Levy and S. Solomon, Physica A 242, 90 (1997).

[62] D. Sornette and R. Cont, J. Phys. I France 7 (1997) 431

[63] U. Frisch and D. Sornette, J. Phys. I France 7, 1155 (1997).

[64] D. Sornette, Physica A 250, 295 (1998)

[65] D. Sornette, Physics Reports, in press April (1998), (http://xxx.lanl.gov/abs/cond-mat/9707012)

[66] D. Sornette, Phys. Rev. E to appear April 1998, (http://xxx.lanl.gov/cond-mat/9708231).

[67] D. Sornette and A. Johansen, Physica A 245, 411 (1997).
[68] H. Kesten, Acta. math. **131**, 207 (1973).

[69] P. Lévy, *Theorie de l’Addition des Variables Aleatoires* (Gauthier-Villiers, Paris, 1937).

[70] E.W. Montroll and M.F. Shlesinger, Proc. Nat. Acad. Sci. USA **79**, 3380 (1982).

[71] J-P. Bouchaud and D. Sornette, J. Phys. I France 863 (1994).

[72] Bouchaud J.P. and Potters M., *Theorie des Risques Financieres*, Alea-Saclay/Eyrolles 1997.

[73] Ghashghaie, S., Breymann, W., Peinke, J., Talkner, P., Dodge, Y. (1996), Nature **381**, 767-770 (1996)

[74] A. Matacz, Financial Modeling and Option Theory with the Truncated Levy Process, http://xxx.lanl.gov/cond-mat/9710197.

[75] R. Cont, M.E Potters and J-P. Bouchaud, , Europhys.Lett. 41, 239 (1998).

[76] R. Cont, M.E Potters and J-P. Bouchaud, , in *Scale Invariance and beyond*, Dubrulle et al. (eds), Berlin, Springer 1997)
FIGURES

FIG. 1. The distribution of wealth w_i, $i = 1, \ldots, N$ (the number of investors $P(w)$ possessing wealth w) for $N = 1000$ investors obtained from a numerical integration of Eq. (1) with parameters $a = 0.00023$, $b = 0.01$ and $\Pi(\lambda)$ uniformly distributed in the range $1.0 < \lambda < 1.1$. The distribution (presented here on a log–log scale) exhibits a knee on the left hand side and a broad tail of power law distribution on the right hand side. This power law behavior is described by $P(w) \sim w^{-1-\alpha}$, where the exponent $\alpha = 1.4$. The distribution is bounded by an upper cutoff around $w_{max} = N\bar{w}$.

FIG. 2. The distribution of the values of w_i, $i = 1, \ldots, N$ for $N = 1000$, $a = 0.0001$, $b = 0.0$ and $\Pi(\lambda)$ uniformly distributed in the range $1.0 < \lambda < 1.1$. Because of the absence of the saturation term ($b = 0$), the system is not stationary and \bar{w} varies in time by orders of magnitude. In spite of this, the instantaneous normalized w distribution at each instant remains always a power law of constant exponent α.

FIG. 3. The distribution of the variations of \bar{w} after τ steps $r(\tau) = [\bar{w}(t+\tau) - \bar{w}(t)]/\bar{w}(t)$, where $\tau = 50$, for the same parameters as in Fig. 1. This distribution has a Lévy-stable shape with $\alpha = 1.4$. One can see that the shape on a semi-logarithmic scale differs from a parabola (Gaussian distribution) in that it has significantly larger probabilities for large w_i values.

FIG. 4. The scaling with τ of the probability that $r(\tau) = [\bar{w}(t+\tau) - \bar{w}(t)]/\bar{w}(t)$ is 0. The parameters of the process are like in Fig. 1 and Fig. 3. The slope of the straight line on the logarithmic scale is 0.71 which corresponds to a Lévy-stable process with $\alpha = 1/0.71 = 1.4$.

FIG. 5. The time evolution of $P(w)$ for a system starting from an uniform distribution of w_i. In the first stages the distribution is log-normal and it then becomes power-law as the non-multiplicative effects at the lower bound start being effective. The process of convergence to the power law is much shorter than the actual equilibration of the \bar{w} value.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5