Correlation of histamine-2 receptor antagonist (H$_2$RA) and proton pump inhibitor (PPI) to the platelet count in patient with dengue viral infection

Riyadi Adrizain1, Maharani Simanjuntak2, Andri Rezano3

1Department of Pediatrics, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, 2Faculty of Medicine, Universitas Padjadjaran, 3Department of Biomedical Sciences, Division of Cell Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.

ABSTRACT

Thrombocytopenia is often associated with clinically worse outcomes in dengue viral infection (DVI) patients. Histamine-2 receptor antagonist (H$_2$RA) and proton pump inhibitor (PPI) have been reported to induce thrombocytopenia. These drugs are administered to DVI patients due to misinterpretation of abdominal pain. The study aimed to evaluate the correlation between H$_2$RA and PPI administration with thrombocytopenia event on hospitalized DVI patients. An analytical retrospective cross-sectional study was conducted using medical records of the patient admitted by final diagnosed DVI in seven major hospital in Bandung from January 1st to December 31st, 2015. Patients were separated into two groups i.e. with and without H$_2$RA and PPI. Pearson point biserial analysis was then applied to evaluate the correlation of each drug administration to platelet count of DVI. A total of 4005 patients with final diagnosed DVI involved in this study. About 11.0% and 25.1% of the patients received H$_2$RA and PPI, respectively. Mostly the DVI patients receiving H$_2$RA (55%) and PPI (50.8%) showed the platelet count <50,000/mm3. A very weak positive correlation between the administration of H$_2$RA (p <0.001; r=0.103) and PPI (p <0.001; r=0.138) with the low platelet count of the patients was observed. In conclusion, the administration of H$_2$RA and PPI is correlated to the low platelet count in DVI patients. Although the correlation is weak, H$_2$RA and PPI should be administered with caution due to its thrombocytopenia side effect.

Keywords: dengue viral infection, H$_2$RA, PPI, thrombocytopenia, adverse event

corresponding author: riyadispa@gmail.com
INTRODUCTION

Dengue viral infection (DVI) is a common arboviral disease in humans that remains to be a global burden in tropic and subtropics countries in the world. Dengue viral infection is characterized by hematologic abnormality presentation, namely, thrombocytopenia. Thrombocytopenia is one indicator of clinical severity which indirectly showed the activity of platelet activation. It is also counted to be a risk predictor for disease progression and prognosis in DVI. Furthermore, severe thrombocytopenia (<50,000/mm³) was independently and significantly associated with the risk of mortality.

According to the World Health Organization (WHO) guideline, DVI patients can be administered some symptomatic therapy such as an antiulcer for gastrointestinal bleeding. Empirically, antiulcer administration in the form histamine-2 receptor antagonist (H₂RA) and proton pump inhibitor (PPI) become management for abdominal pain in DVI while this symptom was mostly manifested as the result of liver disturbance. Moreover, these drugs was reported as one of the most drugs prescribed for DVI patients followed analgesic, multivitamin and antipyretic. However, H₂RA and PPI were reported can induce thrombocytopenia event which could worsen the thrombocytopenia condition of DVI patients. In this study, the relationship between the administration of H₂RA and PPI and the lowest platelet counts in DVI patients was reported.

MATERIALS AND METHODS

Patients

This study is part of the Hospital-Based Dengue Case Surveillance in the Municipality of Bandung, West Java, Indonesia in 2015. This analytical retrospective cross-sectional study was conducted using medical records of the patient admitted by final diagnosed DVI in seven major hospital in Bandung from January 1st to December 31st, 2015. The hospitals involved were Dr. Hasan Sadikin Teaching Hospital, St. Borromeous Hospital, Adventist Hospital, St. Yusuf Hospital, Hermina Mother and Child Hospital Pasteur, Limijati Mother and Child Hospital, and Hermina Arcamanik Hospital.

This study included both children and adults which admitted to those hospitals with a final diagnosis confirmed as DF, DHF, and DSS based on WHO-SEARO 2011 criteria. Patient with incomplete platelet examination, no information of final diagnosis was excluded. This study used total sampling, then collected data were grouped based on the demographic characteristic of sex, age group, and final diagnosis.

Protocol of study

The patients were divided into groups that received and did not receive reduced acid secretion drugs (RASDs) during their admission. The output of each group was assessed by the lowest platelet count obtained from platelet examination during the admission period which was classified in an interval manner. The operational definitions used in this case are drugs that cause a reduction in gastric acid secretion, limited to H₂RA and PPI and platelet counts, which were the lowest platelet values during the treatment period. The lowest platelet value was selected in consideration that in dengue patients there was a tendency to have thrombocytopenia during the course of the disease. Therefore, this thrombocytopenia-only condition may be caused by DVI. This study tried to evaluate the correlation whether the lowest platelet values in patients who received RASD compared to those who did not.
not receive RASD during their treatment period were related to drugs or not. The study had passed the ethical clearance by the Research Ethics Committee, Faculty of Medicine, Universitas Padjadjaran, Bandung.

Statistical analysis

Statistics software SPSS version 25 was used for data analysis. Point biserial analysis was used to evaluate the relationship of each H₂RA and PPI administration with the lowest platelet count in DVI patients. The p value <0.05 was considered to be a statistically significant between tested variables. The power of relation interpreted as very weak (r= 0.00-0.199), weak (r=0.2-0.299), moderate (r=0.4-0.599), strong (r=0.6-0.799) and very strong (r=0.8-1).9

RESULTS

A total of 4005 patients who lived in Bandung had admitted to the hospital by final diagnosed DVI were involved in this study. TABLE 1 shows the characteristic of DVI patients demographically and its final diagnosis group. Majority patient was male, accounting for 50.4% of all cases. The patient also dominated respectively by teenagers (12-25) accounting for 31.7%. The most DVI event consecutively was DHF, DF and, DSS.

Characteristic	n (%)
Gender	
Male	2018 (50.4)
Female	1987 (49.6)
Age (years old)	
0-5	992 (24.8)
6-11	805 (20.1)
12-25	1273 (31.7)
26-45	683 (17.1)
>45	252 (6.3)
Final diagnosis	
Dengue fever	1459 (36.4)
Dengue hemorrhagic fever	2420 (60.4)
Dengue shock syndrome	126 (3.1)

The types of drugs given by the hospital to DVI patients in managing the cases were described based on its therapy class in TABLE 2. The most drug prescribed was analgesic-antipyretic, followed by antibiotics then each H₂RA and PPI (FIGURE 1). Some different characteristic of patients received H₂RA and PPI are showed in TABLE 3. Both patient received H₂RA and PPI were mostly female and patients with final diagnose DHF. The H₂RA was mostly prescribed in Child accounted 51% of all cases, while PPI was more prescribed in adults, in the age group teenager age 12-25 years old (48.0%).
TABLE 2. List of prescribed drugs in DVI patients

Drug therapy class	Patients n (%)
Analgesic-antipyretic	3672 (91.8)
Corticosteroid	457 (11.4)
Antibiotic	1541 (38.5)
PPI	1004 (25.1)
H2RA	442 (11.0)
Antacid	140 (3.5)

FIGURE 1. List of prescribed drugs in DVI patients

TABLE 3. Characteristic of patients received H$_2$RA and PPI

Characteristic	PPI	H$_2$RA
	n (%)	n (%)
Gender		
Male	463 (46.1)	212 (48.0)
Female	541 (53.9)	230 (52.0)
Age (years old)		
0-5	35 (3.0)	104 (24.0)
6-11	179 (18.0)	224 (51.0)
12-25	476 (48.0)	107 (24.0)
26-45	309 (31.0)	42 (9.0)
>45	120 (12.0)	19 (5.0)
Final diagnosis		
Dengue fever	251 (25.0)	143 (32.0)
Dengue hemorrhagic fever	729 (73.0)	255 (58.0)
Dengue shock syndrome	24 (2.0)	44 (10.0)
The low platelet counts during hospital admission based on H$_2$RA and PPI status showed in TABLE 4. There was 11% of all patients who received H$_2$RA and 25.1% received PPI during their admission to the hospital showed in TABLE 2. Each of the group received RASD and not received, was dominanted by patients with low platelet count <50,000/mm3, even though mostly in a group of patients received RASD dominated by low platelet count <50,000/mm3, accounted in chronological order for H$_2$RA and PPI, 55% and 50.8%, respectively.

TABLE 5. Correlation of RASD and platelet count

Drug	p	r
H$_2$RA	<0.001	0.103
PPI	<0.001	0.138

The relation of each of RASD group, specifically H$_2$RA and PPI with patient low platelet count is showed in TABLE 4. Administration of H$_2$RA significantly was correlated with low platelet count (p<0.05), although it was classified very weak (r=0.103). Furthermore, administration of PPI was also correlated with low platelet count (p<0.05) with very weak correlation (r=0.138).

DISCUSSION

Dengue viral infection is a common mosquito vector-borne disease in humans. This study presented the drug utilization in managing DVI. Group of antiulcer (RASD) ranked the third most drug prescribed of the hospital, PPI (25.1%) and H$_2$RA (11%) respectively, following analgesic-antipyretic and antibiotic. A retrospective study conducted in Yogyakarta also obtained similar results.10 The provision of this administration based on complaints of abdominal pain of DVI patients, other than to prevent the occurrence of gastrointestinal bleeding.1

This study found that about 11% of DVI patients were given H$_2$RA during their admission. Most of the DVI patients had low platelet counts <50,000 /mm3. However, only 15% of all low platelet group patients <50,000/mm3, which considered severe thrombocytopenia, received H$_2$RA. This large number of patients with severe thrombocytopenia despite not prescribed H$_2$RA could
occur as a result of thrombocytopenia caused by the dengue virus itself. Thrombocytopenia is a manifestation that often occurs in patients with DVI. Dengue virus could cause thrombocytopenia by increasing platelet destruction via immune reactions and releasing inflammatory mediators that could interfere with the process of platelet production.11,12

Previous studies reported that thrombocytopenia could be induced by RASDs, although this event is still considered a relatively rare phenomenon. The evidence of H$_2$RA induced thrombocytopenia events was confirmed by finding the presence of drug-dependent-antibodies (DDA) in the serum of patients who had severe acute thrombocytopenia after receiving H$_2$RA.13 These antibodies formed due to H$_2$RA, which even in pharmacological concentrations, were able to recognize the receptor side of GPIX platelet so that they can destroy platelets and cause thrombocytopenia. Reese et al.14 also analyzed the drugs that cause acute hospital-acquired thrombocytopenia in hospitalized patients using 3 different methods to reassert the truth of this incident. The results showed that the H$_2$RA can cause thrombocytopenia based on clinical data extraction in various case reports, data mining and proven by the presence of antibodies on laboratory examination. Arnold et al.15 also reinforced the occurrence of H$_2$RA induced thrombocytopenia. The study identified drugs that clinically caused the incidence of drug-induced thrombocytopenia (DITP) included H$_2$RA. Although those studies had proved the incidence of thrombocytopenia induced by H$_2$RA. However, all those study were involved non-DVI patients. Until now, the studies reporting the thrombocytopenia induced by H$_2$RA administration in DVI patients are limited. This study reported the positive significant correlation between H$_2$RA and low platelet counts in DVI patients, although the correlation was considered very weak.

This study found about 25.1% of patients with DVI received PPIs during their admission and most (55%) had platelet counts <50,000/mm3 or severe thrombocytopenia. Thrombocytopenia is known not to be a common side effect of PPI drugs. Nevertheless, this study showed a positive significant correlation with very weak strength. Surprisingly, that PPI had a stronger relationship with thrombocytopenia than H$_2$RA. This could occur since H$_2$RA has been more known to be able to cause thrombocytopenia so that its use was less than PPI.

Previous studies also reported the decreasing platelet following PPI administration. Aster et al.16 showed that the PPI group can induce thrombocytopenia occurrence. Various PPI classes were also reported in some case reports and reviews of literature.17,18 Retrospective analytic studies conducted at Duke University Hospital also found an significantly association between thrombocytopenia events in hospitalized patients who received PPIs during their treatment period.19 However, these studies were conducted in patients with acute thrombocytopenia during their admission period not DVI patients. Although many studies support the relationship between PPI administration and thrombocytopenia, this phenomenon was still based on the analysis of various case reports and retrospective studies. Therefore, a prospective study is required to confirm this relationship, even less, in DVI patients.

This study has several limitations. First, this study also did not regard the coinfection of patients which might be another cause of thrombocytopenia. Second, in the obtained data, there was no information regarding the timing of starting the drug and the daily platelet value of each patient. Subsequently, this study also did not adjust the confounding variables thus that it can
not be known which factors influence RASD administration and platelet count in DVI patients. Third, as this study used a retrospective approach with a cross-sectional method, the incidence of thrombocytopenia by the patients receiving RASD cannot be distinguished from the incidence of thrombocytopenia that occurs as a result of DVI itself. The limitation of available data regarding the time of RASDs administration, that it is inconvenient to decide the causal precede the effect. Further, prospective studies are needed to better understand the cause-effect of RASD administration on the platelet count.

CONCLUSION

In conclusion, the administration of H₂RA and PPI is correlated to the low platelet count in DVI patients. Although the correlation is weak, H₂RA and PPI should be administered with caution due to its thrombocytopenia side effect.

ACKNOWLEDGEMENTS

The authors would like to thank all people involved in this study, especially staff and patients from the Division of Tropical Infectious Disease, Department of Pediatrics, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin, Bandung for data collection surveillance and reporting. This study was funded by Internal Grant of Universitas Padjadjaran 2019 through Academic Leadership Grant (ALG) with principal investigator is Professor Alex Chairul Fatah, MD.

REFERENCES

1. WHO. Comprehensive Guidelines for Preventing and Control of Dengue and Dengue Haemorrhagic Fever. World Health Organization-SEARO. 2011; 60:9-45.
2. Pongpan S, Wisitwong A, Tawichasri C, Patumanond J. Prognostic indicators for dengue infection severity. Int J Clin Pediatr 2013; 2(1):12-8. https://doi.org/10.4021/ijcp73w
3. Lam PK, Ngoc T Van, Thu Thuy TT, Hong Van NT, Nhu Thuy TT, Hoai Tam DT, et al. The value of daily platelet counts for predicting dengue shock syndrome: results from a prospective observational study of 2301 Vietnamese children with dengue. PLoS Negl Trop Dis 2017; 11(4):e0005498. https://doi.org/10.1371/journal.pntd.0005498
4. Lee IK, Huang CH, Huang WC, Chen YC, Tsai CY, Chang K, et al. Prognostic factors in adult patients with dengue: developing risk scoring models and emphasizing factors associated with death ≤7 days after illness onset and ≤3 days after presentation. J Clin Med 2018; 7(11):396. https://doi.org/10.3390/jcm7110396
5. Adrizain R, Setiabudi D, Chairulfatah A. Hospital-based surveillance: accuracy, adequacy, and timeliness of dengue case report in Bandung, West Java, Indonesia of 2015. J Glob Infect Dis 2018; 10(4):201-5. https://doi.org/10.4103/jgid.jgid_108_17
6. Departemen Kesehatan RI. Sistem Kesehatan Nasional. Jakarta; 2009.
7. Williamson DR, Albert M, Heels-Ansdell D, Arnold DM, Lauzier F, Zarychanski R, et al. Thrombocytopenia in critically ill patients receiving thromboprophylaxis: risk factors, and outcomes. Chest 2013; 144(4):1207-15. https://doi.org/10.1378/chest.13-0121
8. Chawla P, Yadav A, Chawla V. Clinical implications and treatment of dengue. Asian Pac J Trop Med 2014; 7(3):169-78. https://doi.org/10.1016/S1995-7645(14)60016-X
9. Dahlan SM. Hipotesis korelasi. In:
Dahlan SM. 2014. Statistik untuk kedokteran dan kesehatan. 6th ed. Jakarta: Salemba Medika; 2014: 224-44.

10. Kristin E, Yasmina A, Pinzon RT, Pratiwi WR, Trijayanti C, Setiawan E, Permanasari V, et al. Drug use pattern in dengue patients who visited hospitals and primary health center in Yogyakarta, Indonesia. J Pharm Sci Res 2018; 10(8):2065-8.

11. Ojha A, Nandi D, Batra H, Singhal R, Annarapu GK, Bhattacharyya S, et al. Platelet activation determines the severity of thrombocytopenia in dengue infection. Sci Rep 2017; 7(41697):1-10. https://doi.org/10.1038/srep41697

12. Goldthorpe SC, Conway MJ. New insight on dengue virus-induced thrombocytopenia. Virulence 2017; 8(8):1492-3. https://doi.org/10.1080/21505594.2017.1368943

13. Gentilini G, Curtis BR, Aster RH. An antibody from a patient with ranitidine-induced thrombocytopenia recognizes a site on glycoprotein IX that is a favored target for drug-induced antibodies. Blood 1998; 92(7):2359-65.

14. Reese JA, Li X, Hauben M, Aster RH, Bougie DW, Curtis BR, et al. Identifying drugs that cause acute thrombocytopenia: An analysis using 3 distinct methods. Blood 2010; 116(12):2127-33. https://doi.org/10.1182/blood-2010-03-276691

15. Arnold DM, Kukaswadia S, Nazi I, Esmail A, Dewar L, Smith JW, et al. A systematic evaluation of laboratory testing for drug-induced immune thrombocytopenia. J Thromb Haemost 2013; 11(1):169-76. https://doi.org/10.1111/jth.12052

16. Aster RH, Curtis BR, McFarland JG, Bougie DW. Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management. J Thromb Haemost 2009; 7(6):911-8. https://doi.org/10.1111/j.1538-7836.2009.03360.x

17. Kallam A, Singla A, Silverstein P. Proton pump induced thrombocytopenia: A case report and review of literature. Platelets 2015; 26(6):598-601. https://doi.org/10.3109/09537104.2015.953045

18. Mukherjee S, Jana T, Pan J-J. Adverse effects of proton pump inhibitors on platelet count: a case report and review of the literature. Case Rep Gastrointest Med 2018; 2018:4294805. https://doi.org/10.1155/2018/4294805

19. Fountain EM, Arepally GM. Etiology and complications of thrombocytopenia in hospitalized medical patients. J Thromb Thrombolysis 2017; 43(4):429-36. https://doi.org/10.1007/s11239-016-1467-8