TYPE I D-BRANES IN AN H-FLUX AND TWISTED KO-THEORY

VARGHESE MATHAI, MICHAEL MURRAY, AND DANNY STEVENSON

Abstract. Witten has argued that charges of Type I D-branes in the presence of an H-flux, take values in twisted KO-theory. We begin with the study of real bundle gerbes and their holonomy. We then introduce the notion of real bundle gerbe KO-theory which we establish is a geometric realization of twisted KO-theory. We examine the relation with twisted K-theory, the Chern character and provide some examples. We conclude with some open problems.

1. Introduction

It has been argued by Witten [22], that Type I D-branes charges take values in KO-theory, based on explicit calculations by [1] and [21]. Now the Neveu-Schwarz B-field in Type I string theory is a local closed 2-form B on M which defines a class H in $H^2(M, \mathbb{Z}_2)$, as argued in [21] and the paragraphs after equation (5.7) in Witten (op. cit.). When the Neveu-Schwarz B-field B is turned on, Type I D-branes can be wrapped on a submanifold Z of spacetime only if the following equation holds,

$$ [H]_Z + w_2(Z) = 0 \quad \in H^2(Z, \mathbb{Z}_2), \quad (1.1) $$

where $w_2(Z)$ denotes the second Stieffel-Whitney class of the tangent bundle of Z. Moreover, the normal bundle NZ of Z is KO-oriented if and only if it has a spin structure, i.e. $w_2(NZ) = 0$. However, this is not the case when there is a Neveu-Schwarz B-field if equation (1.1) is to be satisfied. This and other considerations enabled Witten in (op. cit.) to deduce that in the presence of a background flux $H \in H^2(M, \mathbb{Z}_2)$, Type I D-branes charges take values in twisted KO-theory, $KO(M, H)$. This forces one to work with twisted KO-theory. In this note, we first of all give a geometric interpretation of such 2-torsion B-fields as the holonomy of connections for real bundle gerbes, which is the real analog of the bundle gerbe theory in [15] and which was briefly discussed in [14]. Just as the holonomy of an orthogonal connection on a real line bundle represents the first Stieffel-Whitney class of the real line bundle, we establish here that the holonomy of an orthogonal connection on a real bundle gerbe represents its Dixmier-Douady class in $H^2(M, \mathbb{Z}_2)$, which is sometimes referred to in the physics literature as the t’Hooft class. We also give a geometric realization of twisted KO-theory as the KO-theory of real bundle gerbe modules, or briefly, real bundle gerbe KO-theory. We give both finite dimensional and infinite dimensional geometric realizations of twisted KO-theory, as both occur naturally in examples. This part can be viewed as the real analog of the paper [5]. Since dimension 10 is not crucial for our analysis, it is possible that it applies to more general orientifolds in string theory. As it was

1991 Mathematics Subject Classification. 81T30, 19K99.

The authors acknowledge the support of the Australian Research Council.
first shown Gukov’s paper [10]. KO and KSp groups of spheres classify D-branes localized on orientifold planes of various dimension, of which type I string theory is the simplest example. Therefore, one could expect that the twisted KO-groups discussed in our paper classify D-branes on orientifold planes in the presence of an H-flux, so that the dimensionality of the orientifold plane is related to the degree of suspension of the twisted KO-group. We thank Sergei Gukov for these comments.

This paper is organised as follows. Section 2 summarises the theory of real bundle gerbes. These are geometric objects that are associated with degree 2, \mathbb{Z}_2-valued Čech cohomology classes on M, and is the real analog of the paper by Murray [15]. The notion of stable equivalence of real bundle gerbes, which is essential for the understanding of the sense in which the degree 2 class (known as the Dixmier-Douady class of the real bundle gerbe) determines an associated bundle gerbe is the subject of Section 3. Section 4 studies the Chern-Weil description of the Dixmier-Douady class of real bundle gerbes, using a generalization of holonomy. Here we encounter a problem that in a very small class of manifolds, the holonomy does not determine the Dixmier-Douady class of the real bundle gerbe, and we leave the geometric description of the Dixmier-Douady class of the real bundle gerbe for these manifolds as an open problem in the final section. Real bundle gerbe modules are introduced in section 5, and the KO-theory of real bundle gerbe modules in section 6. In Section 7, we establish the equivalence between the real bundle gerbe KO-theory and the twisted KO-theory as defined in [7] and [18] in terms of real Azumaya algebra bundles. In Section 8, an equivalent description of twisted KO-theory is given in terms of infinite dimensional real bundle gerbe modules with structure group O_K, as well as other manifestations. In Section 9, we briefly give the relation with the KO-theory of continuous trace real C^*-algebras. Sections 5-9 can be viewed as the real analog of the paper by Bouwknegt, Carey, Mathai, Murray and Stevenson [5]. In section 10, we define the complexification map, which is a homomorphism from $KO(M, H)$ to $K(M, \beta(H))$, where β is the Bockstein homomorphism. The complexification map complexifies the real bundle gerbe into a complex bundle gerbe, as well as real bundle gerbe modules into bundle gerbe modules. This enables us to define the twisted Chern character from KO-theory to cohomology and we establish that all the components of degree $(4n - 2)$ vanish for any positive integer n. In this section, we also consider examples where we write down non-trivial generators for twisted K-theory, when the twist is a non-torsion class. We end with some concluding remarks and open problems in section 11.

2. Real Bundle Gerbes

2.1. Real bundle gerbes and Dixmier-Douady classes.

Here we define real bundle gerbes in analogy with the definition given in [14] in the complex case. We refer to [15] for standard notation regarding fibre products etc. Recall that an orthogonal line bundle $L \to M$ is a real line bundle with a fibrewise orthogonal inner product. For such a real line bundle the set of all vectors of norm 1 is a principal \mathbb{Z}_2 bundle. Conversely if $P \to M$ is a principal \mathbb{Z}_2 bundle then associated to it is a real line bundle with fibrewise orthogonal inner product. This is formed in the standard way as the quotient of $P \times \mathbb{R}$ by the action of \mathbb{Z}_2 given by $(p, z)w = (pw, w^{-1}z)$ where $w \in \mathbb{Z}_2$. The theory of real bundle gerbes can use either principal \mathbb{Z}_2 bundles or equivalently orthogonal line bundles. In the discussion below we will mostly adopt
the latter point of view. All maps between orthogonal line bundles will be assumed to preserve the inner product unless we explicitly comment otherwise.

A real bundle gerbe over \(M \) is a pair \((L, Y)\) where \(\pi: Y \to M \) is a locally trivial fibration and \(L \) is an orthogonal line bundle \(L \to Y^{[2]} \) on the fibre product \(Y^{[2]} \) which has a product, that is, an isometric isomorphism

\[
L_{(y_1, y_2)} \otimes L_{(y_2, y_3)} \to L_{(y_1, y_3)}
\]

(2.1)

for every \((y_1, y_2) \) and \((y_2, y_3) \) in \(Y^{[2]} \). We require the product to be smooth in \(y_1, y_2 \) and \(y_3 \) but in the interests of brevity we will not state the various definitions needed to make this requirement precise, they can be found in [15]. The product is required to be associative whenever triple products are defined. Also in [15] it is shown that the existence of the product and the associativity imply isomorphisms \(L_{(y_1, y)} \simeq \mathbb{R} \) and \(L_{(y_1, y_2)} \simeq L_{(y_2, y_1)} \). We shall often refer to a real bundle gerbe \((L, Y)\) as just \(L \). If the bundle gerbe \((L, Y)\) has \(Y \) finite-dimensional we will say that it is a finite-dimensional bundle gerbe.

One defines such notions as morphisms of real bundle gerbes, products and duals exactly as one does for the case of complex bundle gerbes. It is perhaps worth emphasising the point that the product of two real bundle gerbes \((L, Y)\) and \((J, X)\) is formed over the fibre product \(Y \times_M X \) so that \(L \otimes J \) is the real line bundle over \((Y \times_M X)^{[2]} \) whose fibre at a point \((y_1, x_1), (y_2, x_2)\) is \(L_{(y_1, y_2)} \otimes J_{(x_1, x_2)} \). If \(J \) is an orthogonal line bundle over \(Y \) then we can define a real bundle gerbe \(\delta(J) \) by \(\delta(J) = \pi_1^{-1}(J) \otimes \pi_2^{-1}(J)^* \), that is \(\delta(J)_{(y_1, y_2)} = J_{y_2} \otimes J_{y_1}^* \). The product on \(\delta(J) \) is induced by the natural pairing

\[
J_{y_2} \otimes J_{y_1}^* \otimes J_{y_3} \otimes J_{y_2}^* \to J_{y_3} \otimes J_{y_1}^*.
\]

A real bundle gerbe which is isomorphic to a real bundle gerbe of the form \(\delta(J) \) is called trivial. A choice of \(J \) and a real bundle gerbe isomorphism \(\delta(J) \simeq L \) is called a trivialisation. As is the case for complex bundle gerbes, any two trivialisations \(J \) and \(K \) of a real bundle gerbe \(L \) differ by the pullback of a real line bundle on \(M \). Hence the set of all trivialisations of a given real bundle gerbe is naturally acted on by the set of all orthogonal line bundles on \(M \). This is analogous to the way in which the set of all trivialisations of an orthogonal line bundle \(L \to M \) is acted on by \(\mathbb{Z}_2 \).

One can think of real bundle gerbes as one stage in a hierarchy of objects with each type of object having a characteristic class in \(H^p(M, \mathbb{Z}_2) \). For example if \(p = 1 \) we have real line bundles on \(M \), the characteristic class is the first Stieffel-Whitney class. When \(p = 2 \) we have real bundle gerbes and they have a characteristic class \(d(L) = d(L, Y) \in H^2(M, \mathbb{Z}_2) \) called the Dixmier-Douady class of \((L, Y)\), and is the obstruction to the gerbe being trivial. The class \(d(L) \) is constructed in essentially the same way as in [15]. Let \(P \to Y^{[2]} \) be the orthogonal frame bundle associated to the orthogonal line bundle \(L \). Choose an open cover \(\{U_i\}_{i \in I} \) of \(M \) such that there exist local sections \(s_i: U_i \to Y \) of \(\pi: Y \to M \) and each non-empty intersection \(U_{i_1} \cap \cdots \cap U_{i_k} \) is contractible. Form maps \((s_i, s_j): U_{ij} \to Y^{[2]} \) in the usual way by sending \(m \in U_{ij} = U_i \cap U_j \) to \((s_i(m), s_j(m)) \in Y^{[2]} \). Let \(P_{ij} \) denote the pullback bundle on \(Y^{[2]} \). The product on the bundle gerbe \(L \) induces one on the principal \(\mathbb{Z}_2 \) bundle \(P \) and hence we have isomorphisms \(P_{ij} \otimes P_{jk} \to P_{ik} \). Choose sections \(\sigma_{ij} \) of \(P_{ij} \) and define \(\epsilon_{ijk}: U_{ijk} \to \mathbb{Z}_2 \) by \(\sigma_{ij} \sigma_{jk} = \sigma_{ik} \epsilon_{ijk} \). The associativity
We let Y bundle gerbe, whose Dixmier-Douady class is the obstruction to lifting.

Theorem 2.1. A real bundle gerbe (L, Y) has zero Dixmier-Douady class precisely when it is trivial.

The proof is the obvious adaption of that in \[15\]. If the bundle is trivial we can make the sections in the discussion above global and thus obtain a trivial class. If the class is trivial then we can find h_{ij} such that $(h_{ij} \sigma_{ij})(h_{ik} \sigma_{ik})^{-1}(h_{jk} \sigma_{jk}) = 1$. We let $Y_i = \pi^{-1}(U_i)$ and define a bundle Q_i by $(Q_i)_y = P_{\pi(y)}(\pi(y), y)$. Over $Y_i \cap Y_j$ the bundle gerbe multiplication and the $h_{ij} \sigma_{ij}$ define clutching isomorphisms $\sigma_{ij}: Y_i \rightarrow Y_j$ which satisfy $\sigma_{ij} \sigma_{ik}^{-1} \sigma_{jk} = 1$ and hence glue the Q_i together to define a global bundle $Q \rightarrow Y$. It is straightforward to show that this is a trivialisation of P.

Notice that the same is true of the other objects in our hierarchy, line bundles are trivial if and only if their Stieffel-Whitney class vanishes. The Dixmier-Douady class behaves as one would expect, it is additive under forming products, it changes sign when we take duals, and it is natural with respect to pullbacks.

2.2. Lifting real bundle gerbes, Pfaffian line bundles and surjectivity. We will need one type of example of a real bundle gerbe in a number of places. Consider a central extension of groups

$$\mathbb{Z}_2 \rightarrow \hat{G} \rightarrow G.$$

If $Y \rightarrow M$ is a principal G bundle then it is well known that the obstruction to lifting Y to a \hat{G} bundle \hat{Y} that covers Y is a class in $H^2(M, \mathbb{Z}_2)$. It will be shown that a real bundle gerbe can be constructed from Y, the so-called lifting real bundle gerbe, whose Dixmier-Douady class is the obstruction to lifting Y to a \hat{G} bundle. The construction of the lifting real bundle gerbe is quite simple. As Y is a principal bundle there is a map $g: Y^{[2]} \rightarrow G$ defined by $y_1g(y_1, y_2) = y_2$. We use this to pull back the \mathbb{Z}_2 bundle $G \rightarrow G$ and form the associated orthogonal line bundle $L \rightarrow Y^{[2]}$. The real bundle gerbe product is induced by the group structure of \hat{G}.

Some finite dimensional examples of lifting real bundle gerbes that we will be interested in are those associated to the central extensions,

$$\mathbb{Z}_2 \rightarrow SO(n) \rightarrow PO(n), \quad \mathbb{Z}_2 \rightarrow Spin(n) \rightarrow SO(n).$$

It is well known that the obstruction to lifting a principal $SO(n)$ bundle Y to a $Spin(n)$ bundle is the second Stieffel-Whitney class $w_2(Y) \in H^2(M, \mathbb{Z}_2)$, which is also equal to the second Stieffel-Whitney class of the associated orthogonal vector bundle $Y \times_{SO(n)} \mathbb{R}^n$. In the physics literature, the real line bundle on $SO(n)$ that is associated to the $Spin(n)$ double cover is known as the Pfaffian line bundle Pfaff. It occurs as a topological anomaly as follows. Real vector bundles E of rank n over S^1 are determined by an element $g \in SO(n)$ by the clutching construction. So the self-adjoint family of Dirac operators $\partial_{S \otimes E_g}$ on the real vector bundles $S \otimes E_g$, where S is the non-trivial real bundle of spinors on S^1, is parametrized by the group $SO(n)$. Freed and Witten \[8\] explained that the real determinant line bundle of this family, which is essentially defined as the highest exterior power of the kernel of the family, defines a non-trivial real line bundle Pfaff on the group $SO(n)$, which has the property that its lift to $Spin(n)$ is the trivial real line bundle. They also determine a connection and holonomy of the Pfaffian line bundle.
Another interesting \mathbb{Z}_2 central extension that occurs in physics is

$$\mathbb{Z}_2 \to Mp(n) \to Sp(n),$$

where $Sp(n)$ denotes the symplectic group in \mathbb{R}^{2n} and $Mp(n)$ the metaplectic group. It is well known that the obstruction to lifting a principal $Sp(n)$ bundle Y to a $Mp(n)$ bundle is the second Stieffel-Whitney class $w_2(Y) \in H^2(M, \mathbb{Z}_2)$, which is also equal to the second Stieffel-Whitney class of the associated symplectic vector bundle $Y \times_{Sp(n)} \mathbb{R}^{2n}$.

An infinite dimensional \mathbb{Z}_2 central extension that occurs in physics is

$$\mathbb{Z}_2 \to SO(\mathcal{H}) \to PO(\mathcal{H}),$$

for \mathcal{H} an infinite dimensional, separable, real Hilbert space. By Kuiper’s theorem, one knows that $SO(\mathcal{H})$ is a contractible group. Therefore $PO(\mathcal{H})$ is a model for the Eilenberg-Maclane space $K(\mathbb{Z}_2, 1)$, and so $H^2(X, \mathbb{Z}_2) = [X, BPO(\mathcal{H})]$. Therefore,

Theorem 2.2. The lifting real bundle gerbes of principal $PO(\mathcal{H})$ bundles over X are classified up to isomorphism by their Dixmier-Douady invariant in $H^2(X, \mathbb{Z}_2)$. Moreover, every element in $H^2(X, \mathbb{Z}_2)$ determines a lifting real bundle gerbe of a principal $PO(\mathcal{H})$ bundle over X, up to isomorphism.

The following examples of real bundle gerbes follow the analogous construction in [2]. Let M be a compact Riemann surface, and choose a point $p \in M$. Now cover M with two open sets, $U_1 \cong \mathbb{R}^2$ a coordinate neighbourhood of p, and $U_0 = M \setminus \{p\}$. Then

$$U_0 \cap U_1 \cong \mathbb{R}^2 \setminus \{0\} \cong S^1 \times \mathbb{R}$$

We define a real bundle gerbe \mathcal{G}_p as follows. Let Y be the disjoint union of U_0 and U_1; then there is a submersion $Y \to M$. Consider the real line bundle $L = L_{01}$ on $U_0 \cap U_1$ which is the pull-back from S^1 of the real line bundle whose first Stieffel-Whitney class is the generator of $H^1(S^1, \mathbb{Z}_2)$ and whose associated principal bundle is the non-trivial double cover of S^1. The choice of orientation on M gives an orientation on S^1 and hence a choice of generator. It is easy to see that $L \to Y^{[2]}$ defines a bundle gerbe. Since M is compact, the Dixmier-Douady class of \mathcal{G}_p is the generator of $H^2(M, \mathbb{Z}_2) \cong \mathbb{Z}_2$. More generally, consider an oriented codimension 2 submanifold Q of a compact oriented manifold M. The previous construction can be routinely generalized to this situation. Take coordinate neighbourhoods U_α of M along Q, then $U_\alpha \cong (U_\alpha \cap Q) \times \mathbb{R}^2$ Now take $U_0 = X \setminus N(Q)$, where $N(Q)$ is the closure of a sufficiently small tubular neighbourhood of Q that is diffeomorphic to the disc bundle in the normal bundle. Then

$$U_0 \cap U_\alpha \cong U_\alpha \cap Q \times \{x \in \mathbb{R}^2 : \|x\| > \epsilon\}$$

and as before we define Y to be the disjoint union of the U_α and U_0 so that we have a submersion $Y \to M$. Define the real bundle gerbe $L \to Y^{[2]}$ as follows. Let L_{01} be the pull-back by $x \mapsto x/\|x\|$ of the real line bundle with non-trivial Stieffel-Whitney class on S^1. The real line bundle $L_{01} = L_{01} \oplus L_{01}^{-1}$ is defined on

$$U_0 \cap U_\beta \setminus N(Q) \cong (U_\alpha \cap U_\beta \cap Q) \times \{x \in \mathbb{R}^2 : \|x\| > \epsilon\} \cong S^1$$

But by construction $w_1(L_{01}) = 0$ is zero on S^1 and so extends to a trivial real line bundle on the whole of $U_\alpha \cap U_\beta$. This defines real line bundles on overlaps, and hence the real line bundle $L \to Y^{[2]}$ It is not hard to see that the real bundle gerbe property is satisfied, hence it defines a real bundle gerbe \mathcal{G}_Q on M that is associated to Q.

3. Stable isomorphism of real bundle gerbes

There are many real bundle gerbes which have the same Dixmier-Douady class but which are not isomorphic. We can define a notion of stable isomorphism for real bundle gerbes in exactly the same way as we can for complex bundle gerbes. Just as is the case for complex bundle gerbes, two real bundle gerbes have the same Dixmier-Douady class precisely when there is a stable isomorphism between them.

Definition 3.1. A stable isomorphism between real bundle gerbes \((L, Y)\) and \((J, Z)\) is a trivialisation of \(L^* \otimes J\).

The proof of the following Proposition is entirely analogous to the proof for complex bundle gerbes.

Proposition 3.2. A stable isomorphism exists from \((L, Y)\) to \((J, Z)\) if and only if \(d(L) = d(J)\).

If a stable isomorphism exists from \((L, Y)\) to \((J, Z)\) we say that \((L, Y)\) and \((J, Z)\) are stably isomorphic. It follows easily that stable isomorphism is an equivalence relation. Theorem \[2.2\] establishes that every class in \(H^2(M, \mathbb{Z}_2)\) is the Dixmier-Douady class of some real bundle gerbe. Hence we can deduce from Proposition \[3.2\] the

Theorem 3.3. The Dixmier-Douady class defines a bijection between stable isomorphism classes of real bundle gerbes and \(H^2(M, \mathbb{Z}_2)\).

Stable isomorphisms between real bundle gerbes can be composed in exactly the same way as stable isomorphisms for complex bundle gerbes. We refer to \[9\] for more details. Following Serre, Patterson \[16\] established that every element in \(H^2(X, \mathbb{Z}_2)\) determines a principal \(PO(n)\) bundle over \(X\). By the construction above this determines a lifting bundle gerbe and combining this with Theorem \[3.3\] one has,

Theorem 3.4. The Dixmier-Douady class defines a bijection between stable isomorphism classes of finite dimensional real bundle gerbes and \(H^2(M, \mathbb{Z}_2)\).

4. Holonomy and Chern Weil theory of real Dixmier-Douady classes

A \(U(1)\) bundle gerbe with connection and curving determines a Deligne cohomology class. Interpreted as a Cheeger-Simons differential character this is a pair consisting of a homomorphism \(h: \mathbb{Z}_2(M) \rightarrow U(1)\) and a three-form \(\omega\) on \(M\) satisfying

\[
h(\partial \sigma) = \exp \left(\int_{\sigma} \omega \right)
\]

for any three-cycle \(\sigma\). The map \(h\) applied to smooth surfaces is just the holonomy and \(\omega\) is the three-curvature. We will concentrate attention for the remainder of this section on the case where \(H_2(M, \mathbb{Z})\) is generated by fundamental strings, which are just smooth maps of surfaces into \(M\). \(h\) will be the holonomy for a real \(\mathbb{Z}_2\) bundle gerbe, which takes its values in \(\mathbb{Z}_2\).

For a real \(\mathbb{Z}_2\) bundle gerbe the connection is flat and its curvature is zero. We can therefore take as a curving just the zero two-form on \(Y\) and it follows that the three-curvature on \(M\) is zero. In such a case \(h\) applied to boundaries is one so that it factors to a homomorphism \(h: H_2(M, \mathbb{Z}) \rightarrow \mathbb{Z}_2\).
On the other hand for a real \(\mathbb{Z}_2 \) bundle gerbe we have the Dixmier-Douady class in \(H^2(M, \mathbb{Z}_2) \) which we can map, as in the universal coefficient theorem cf. [11] to \(\text{Hom}(H_2(M, \mathbb{Z}), \mathbb{Z}_2) \).

We wish to show that this map is just the holonomy. As we are assuming that \(H_2(M, \mathbb{Z}) \) is generated by fundamental strings, it suffices to prove this for \(M = \Sigma \) a smooth surface.

Let \(\Sigma \) then be a closed surface. Choose an open cover \(U_0, U_1 \) where \(U_0 \) is a neighbourhood of a point in \(\Sigma \) and \(U_1 \) is a slightly enlarged open neighbourhood of the complement of \(U_0 \) chosen so that \(U_0 \cap U_1 \) is an annular region.

Consider a \(\mathbb{Z}_2 \) real bundle gerbe \((P, Y) \) over \(\Sigma \). This classified by a class in \(H^2(\Sigma, \mathbb{Z}_2) = \mathbb{Z}_2 \). Let \(Y_i = \pi^{-1}(U_i) \). As \(H^2(U_i, \mathbb{Z}_2) = 0 \) the restriction of \((P, Y) \) to \(U_0 \) and \(U_1 \) is trivial. So we can find a \(\mathbb{Z}_2 \) bundles \(Q_i \rightarrow Y_i \) such that \(\delta(Q_i) = P \) for each \(i = 0, 1 \). Denote by \(Q_{01} \) the \(\mathbb{Z}_2 \) bundle over \(U_0 \cap U_1 \) which is the difference between \(Q_0 \) and \(Q_1 \). If we put on \((P, Y) \) a flat connection then this is inherited by \(Q_{01} \) and its holonomy is either \(+1 \) if \(Q_{01} \) is trivial or \(-1 \) if \(Q_{01} \) is not trivial. The original bundle gerbe \((P, Y) \) is stably isomorphic to its pullback to the disjoint union of the two open sets \(U_0 \) and \(U_1 \) and hence is trivial if and only if we can find \(\mathbb{Z}_2 \) bundles \(T_i \rightarrow U_i \) with \(T_0 = Q_{01} \otimes T_1 \) on \(U_0 \cap U_1 \). As \(U_0 \) is a disk we have that \(T_0 \) is trivial. Also from Mayer-Vietoris we have that \(H^1(U_1, \mathbb{Z}_2) = H^1(\Sigma, \mathbb{Z}_2) \) so that \(T_1 \) extends to all of \(\Sigma \), hence restricted to \(U_0 \cap U_1 \) it is trivial. Thus \(Q_{01} \) is trivial. We conclude that \((P, Y) \) is trivial if and only if \(Q_{01} \) is trivial and hence the class in \(H^2(\Sigma, \mathbb{Z}_2) = \mathbb{Z}_2 \) is the same as the class determined by \(Q_{01} \) in \(H^1(U_0 \cap U_1, \mathbb{Z}_2) = \mathbb{Z}_2 \).

Now we calculate the holonomy. Because \(H^3(\Sigma, \mathbb{Z}) = 0 \) we can find a \(U(1) \) bundle \(R \rightarrow Y \) such that \(\delta(R) = R \times_{\mathbb{Z}_2} U(1) \). Denote by \(R_i \) the \(U(1) \) bundle over \(U_i \) which is the difference between the trivialisations \(Q_i \times_{\mathbb{Z}_2} U(1) \) and \(R \). We have \(\pi^{-1}(R_0) \otimes Q_0 = R = \pi^{-1}(R_1) \otimes Q_1 \) and \(Q_0 = \pi^{-1}(Q_{01}) \otimes Q_1 \) and hence on \(U_0 \cap U_1 \) we must have

\[
R_1 = Q_{01} \otimes R_0.
\]

General bundle gerbe theory tells us that we can choose a connection on \(R \) which under \(\delta \) is equal to the connection on \(Q \). This means that we can choose connections \(D_i \) on \(R_i \) such that on \(U_0 \cap U_1 \) we have

\[
D_1 = D + D_0
\]

where \(D \) is the flat connection on \(Q_{01} \). We claim that the holonomy of the connection and curving of \((P, Y) \) is the holonomy of \(D \) around any non-trivial loop in \(U_0 \cap U_1 \). To see this note first that \(F_0 \), the curvature of \(D_0 \), is a closed two-form on a disk so we have \(F_0 = d\alpha_0 \) and hence \(D_0 - \alpha_0 \) is flat. If we restrict \(\alpha_0 \) to \(U_0 \cap U_1 \) we can extend it to \(\alpha_1 \) on \(U_0 \cap U_1 \). Letting \(\tilde{D}_i = D_i - \alpha_i \) we note that we still have

\[
\tilde{D}_1 = D + \tilde{D}_0
\]

but now \(\tilde{D}_0 \) is flat. The holonomy of the bundle gerbe is the exponential of the integral of the global two-form \(F \) which is \(F_1 \) on \(U_1 \) and \(F_0 \) on \(U_0 \) but \(F_0 = 0 \) so the integral is just over \(U_1 \). Hence the holonomy of the bundle gerbe is the holonomy of \(D_1 \) over \(U_0 \cap U_1 \) but that is the product of the holonomy of \(D \) and the holonomy of \(D_0 \). The latter is the identity as \(F_0 = 0 \). So we have the required result.

These results apply also to lifting bundle gerbes which for \(SO(3) \) bundles we can also see directly. Let \(P \rightarrow \Sigma \) be a principal \(SO(3) \) bundle. This is classified by the class in \(H^2(\Sigma, \mathbb{Z}_2) = \mathbb{Z}_2 \) which is the obstruction to lifting to \(SU(2) \). Indeed if \(P \) is trivial it lifts to \(SU(2) \) and the class vanishes. If \(P \) is not trivial and it lifts to an
SU(2) bundle \hat{P} then, as $SU(2)$ is simply-connected \hat{P} is trivial so that $P = \hat{P}/\mathbb{Z}_2$ is trivial. Hence P is trivial if and only if the class in $H^2(\Sigma, \mathbb{Z}_2)$ vanishes. This also implies that $P \to \Sigma$ is trivial on restriction to U_0 and U_1 and $H^2(U_i, \mathbb{Z}_2) = 0$ so there is a clutching map $U_0 \cap U_1 \to SO(3)$ and, as $\pi_1(SO(3)) = \mathbb{Z}_2$ there are two cases, either the map is homotopic to a constant and P is trivial or the map is not homotopic to a constant and P is not trivial. Equivalently the clutching map defines a class in $H^1(U_0 \cap U_0, \mathbb{Z}_2) = \mathbb{Z}_2$ which vanishes precisely when P is trivial i.e. as an element of \mathbb{Z}_2 it is the same as the class in $H^2(\Sigma, \mathbb{Z}_2)$.

One can ask the question as to what extent does the holonomy of the real bundle gerbe determine the bundle gerbe? This is revealed by the universal coefficient theorem, which in this case is the split exact sequence

$$0 \to \text{Ext}(H_1(M, \mathbb{Z}), \mathbb{Z}_2) \to H^2(\Sigma, \mathbb{Z}_2) \to \text{Hom}(H_2(M, \mathbb{Z}), \mathbb{Z}_2) \to 0$$

(4.1)

It is well known that $\text{Ext}(H_1(M, \mathbb{Z}), \mathbb{Z}_2) = 0$ whenever the torsion subgroup of $H_1(M, \mathbb{Z})$ has only odd order torsion subgroups, cf. [11], page 195.

5. REAL BUNDLE GERBE MODULES

We can also define modules for real bundle gerbes in an almost identical fashion to the complex case. Thus let (L, Y) be a real bundle gerbe over a manifold M and let $E \to Y$ be a finite rank, orthogonal vector bundle. Assume that there is a vector bundle isomorphism

$$\phi: L \otimes \pi_1^{-1} E \sim \pi_2^{-1} E$$

(5.1)

which is compatible with the real bundle gerbe multiplication in the obvious sense. In such a case we call E a real bundle gerbe module and say that the real bundle gerbe acts on E.

We define two real bundle gerbe modules to be isomorphic if they are isomorphic as real vector bundles and the isomorphism preserves the action of the real bundle gerbe. Denote by $\text{Mod}_g(L)$ the set of all isomorphism classes of real bundle gerbe modules for L. If (L, Y) acts on E and also on F then it acts on $E \oplus F$ in the obvious diagonal manner. The set $\text{Mod}_g(L)$ is therefore a semi-group. Note that if E is a real bundle gerbe module, then it is of rank a multiple of $2^{[\mu/2]}$.

Suppose the real bundle gerbe L has a trivialisation K. Then we have fibre-wise isomorphisms $L_{(y_1, y_2)} = K_{y_2} \otimes K_{y_1}^*$ for points y_1 and y_2 of Y lying in the same fibre over M. Therefore if E is an (L, Y) real bundle gerbe module then we have fibre-wise isomorphisms $K_{y_2} \otimes E_{y_2} \simeq K_{y_1} \otimes E_{y_1}$. In fact it can be shown (see [3]) that the bundle $K \otimes E$ descends to a real vector bundle on M. Conversely if F is a real vector bundle on M then L acts on $K \otimes \pi^{-1}(F)$. Denote by $\text{Bun}_g(M)$ the semi-group of all isomorphism classes of real vector bundles on M. Then we have, we have

Proposition 5.1. A trivialisation of (L, Y) defines a semi-group isomorphism from $\text{Mod}_g(L)$ to $\text{Bun}_g(M)$.

Notice that this isomorphism is not canonical but depends on the choice of the trivialisation. If we change the trivialisation by tensoring with the pull-back of a real line bundle J on M then the isomorphism changes by composition with the endomorphism of $\text{Bun}_g(M)$ defined by tensoring with J.

Recall that a stable isomorphism from a real bundle gerbe (L, Y) to a real bundle gerbe (J, X) is a trivialisation of $L^* \otimes J$. This means there is a real line bundle
Let \(E \to Y \) be a real bundle gerbe module for \(L \) and define \(\hat{F}(y,x) = K^*(y,x) \otimes E_y \) a bundle on \(Y \times_f X \). We have isomorphisms

\[
\hat{F}(y_2,x) = K^*(y_2,x) \otimes E_{y_2} = \hat{F}(y_2,x).
\]

It is not hard to see that the bundle \(\hat{F} \) must in fact be the pullback under the map \(Y \times_f X \to X \) of an orthogonal bundle \(F \) on \(X \). The bundle \(F \) on \(X \) is in fact a \((J, X) \) module since we have isomorphisms

\[
J_{(x_1, x_2)} \otimes F_{x_2} = J_{(x_1, x_2)} \otimes K^*(y, x_2) \otimes E_y = K^*(y_1, x_1) \otimes E_{y_1} = F_{x_1}.
\]

Therefore a choice of stable isomorphism defines a map

\[
\text{Mod}_R(L) \to \text{Mod}_R(J).
\]

In a similar fashion we can define an inverse map

\[
\text{Mod}_R(J) \to \text{Mod}_R(L).
\]

Hence we have the following real analogue of Proposition 4.3 of [5].

Proposition 5.2. A stable isomorphism from \((L, Y)\) to \((J, Y)\) induces an isomorphism of semi-groups between \(\text{Mod}_R(L)\) and \(\text{Mod}_R(J)\).

Note that, as in the trivial case, this isomorphism is not canonical but depends on the choice of stable isomorphism. Changing the stable isomorphism by tensoring with the pull-back of a real line bundle \(J \) over \(M \) changes the isomorphism in Prop. 4.2 by composition with the endomorphism of \(\text{Mod}_R(J)\) induced by tensoring with the pull-back of \(J \).

There is a close relationship between real bundle gerbe modules and bundles of real projective spaces. Recall that a bundle of real projective spaces \(P \to M \) is a locally trivial fibration whose fibres are isomorphic to \(P(V) \) for \(V \) a real Hilbert space, either finite or infinite dimensional, and whose structure group is \(PO(V) \). This means that there is a \(PO(V) \) bundle \(X \to M \) and \(P = X \times_{PO(V)} P(V) \). Associated to \(X \) is a lifting real bundle gerbe \(J \to X \) and a Dixmier-Douady class. This Dixmier-Douady class is the obstruction to \(P \) being the projectivisation of a real vector bundle. The lifting real bundle gerbe acts naturally on the real bundle gerbe module \(E = X \times H \) because each \(J_{(x_1, x_2)} \subset O(V) \) by construction.

Let \((L, Y)\) be a real bundle gerbe and \(E \to Y \) a real bundle gerbe module. Then the projectivisation of \(E \) descends to a real projective bundle \(\mathcal{P}_E \to M \) because of the real bundle gerbe action. It is straightforward to check that the class of this real projective bundle is \(d(L) \). Conversely if \(\mathcal{P} \to M \) is a real projective bundle
with class $d(L)$ the associated lifting real bundle gerbe has class $d(L)$ and hence is stably isomorphic to (L, Y). So the module on which the lifting real bundle gerbe acts defines a module on which (L, Y) acts. From the discussion before Proposition 5.2 one can see that if two modules are related by a stable isomorphism they give rise to the same real projective bundle on M. We also have that $E \rightarrow Y$ and $F \rightarrow Y$ give rise to isomorphic projective bundles on M if and only if there is a line bundle $K \rightarrow M$ with $E = \pi^{-1}(K) \otimes F$. Denote by $\text{Ling}(M)$ the group of all isomorphism classes of real line bundles on M. Then this acts on $\text{Mod}_{\mathbb{R}}(L)$ by $E \mapsto \pi^{-1}(K) \otimes E$ for any real line bundle $K \in \text{Ling}(M)$. If $[H] \in H^2(M, \mathbb{Z}_2)$, denote by $\text{Pro}_{\mathbb{R}}(M, [H])$ the set of all isomorphism classes of real projective bundles with class $[H]$. Then we have

Proposition 5.3. If (L, Y) is a real bundle gerbe then the map which associates to any element of $\text{Mod}_{\mathbb{R}}(L)$ a real projective bundle on M whose Dixmier-Douady class is equal to $d(L)$ induces a bijection

$$\frac{\text{Mod}_{\mathbb{R}}(L)}{\text{Ling}(M)} \rightarrow \text{Pro}_{\mathbb{R}}(M, d(L)).$$

We next give some examples of real bundle gerbe modules. The first example involves Clifford algebras and spinors. Suppose that P is a principal $SO(n)$ bundle that does not have a $Spin(n)$-structure i.e. $w_2(P) \neq 0$, for example, P can be the principal bundle of oriented frames on a manifold M with $w_2(M) \neq 0$. We can consider the lifting real bundle gerbe and obtain a principal \mathbb{Z}_2 bundle $L \rightarrow P[2]$ (or equivalently a real line bundle over $P[2]$). It is natural to call this the $Spin$ real bundle gerbe. The Dixmier-Douady invariant of the $Spin$ real bundle gerbe coincides with the second Stieffel-Whitney class of P in $H^2(M, \mathbb{Z}_2)$. The pullback π^*P of P to P has a lifting to a $Spin(n)$ bundle $\pi^*\tilde{P} \rightarrow P$. We consider the associated bundle of spinors by taking an irreducible spin representation V of $Spin(n)$ and forming the associated real vector bundle $S = \pi^*P \times_{Spin(n)} V$ on P. S is a bundle gerbe module for L, called a spinor real bundle gerbe module. It is not hard to show that the possible spinor bundle gerbe modules for the $Spin$ bundle gerbe $L \rightarrow P[2]$ are parametrised by $H^1(M, \mathbb{Z}_2)$, i.e. the real line bundles on M, by following closely the proof given above in the $Spin$ case in [14].

The second example involves Weyl algebras and real symplectic spinors. Suppose that P is a principal $Sp(n)$ bundle that does not have a $Mp(n)$-structure i.e. $w_2(P) \neq 0$, for example, P can be the principal bundle of symplectic frames on a symplectic manifold M with $w_2(M) \neq 0$. We can consider the lifting real bundle gerbe and obtain a principal \mathbb{Z}_2 bundle $L \rightarrow P[2]$ (or equivalently a real line bundle over $P[2]$). It is natural to call this the metaplectic real bundle gerbe. The Dixmier-Douady invariant of this metaplectic real bundle gerbe coincides with the second Stieffel-Whitney class of P in $H^2(M, \mathbb{Z}_2)$. The pullback π^*P of P to P has a lifting to a $Mp(n)$ bundle $\pi^*\tilde{P} \rightarrow P$. We consider the associated bundle of symplectic spinors by taking an irreducible oscillator representation on $L^2(\mathbb{R}^n)$ of $Mp(n)$ and forming the associated real Hilbert bundle $\mathcal{W} = \pi^*\tilde{P} \times_{Mp(n)} L^2(\mathbb{R}^n)$ on P. \mathcal{W} is a bundle gerbe module for L, called a metaplectic real bundle gerbe module. It is not hard to show that the possible metaplectic bundle gerbe modules for the metaplectic bundle gerbe $L \rightarrow P[2]$ are parametrised by $H^1(M, \mathbb{Z}_2)$, i.e. the real line bundles on M.
6. KO-theory for real bundle gerbes

Given a real bundle gerbe \((L, Y)\) we denote by \(\text{KO}^0_{bg}(L)\) the Grothendieck group of the semi-group \(\text{Mod}_B(L)\) and call this the \(\text{KO}\) group of the real bundle gerbe. We also define \(\text{KO}^j_{bg}(L) = \text{KO}^0_{bg}(p^*_j L)\) where \(p_j : M \times \mathbb{R}^j \to M\) is the projection and \(p^*_j L\) is the pullback real bundle gerbe over \(M \times \mathbb{R}^j\). By Proposition 5.2, one has:

Proposition 6.1. A choice of stable isomorphism from \(L\) to \(J\) defines a canonical isomorphism \(\text{KO}^j_{bg}(L) \simeq \text{KO}^j_{bg}(J)\) for all \(j \geq 0\).

Notice that the group \(\text{KO}^\bullet_{bg}(L)\) depends only on the Dixmier-Douady class \(d(L) \in H^2(M, \mathbb{Z}_2)\) and for any class \([H]\) in \(H^2(M, \mathbb{Z}_2)\) we can define a real bundle gerbe \(L\) with \(d(L) = [H]\) and hence the groups \(\text{KO}^\bullet_{bg}(M, [H])\). When we want to emphasise the dependence on \([H]\) we denote this by \(\text{KO}^\bullet_{bg}(M, [H])\).

It is easy to deduce from the theory of real bundle gerbes various properties of this \(\text{KO}\)-theory:

Proposition 6.2. Real bundle gerbe \(\text{KO}\) theory satisfies the following properties:

1. If \((L, Y)\) is a trivial real bundle gerbe over \(M\), then \(\text{KO}^\bullet_{bg}(L) = \text{KO}^\bullet(M)\).
2. If \((L, Y)\) is a real bundle gerbe over \(M\), then \(\text{KO}^\bullet_{bg}(L)\) is a module over \(\text{KO}^0(M)\).
3. If \((L, Y)\) and \((J, X)\) are real bundle gerbes over \(M\), then there is a homomorphism
 \[
 \text{KO}^\bullet_{bg}(L) \otimes \text{KO}^\bullet_{bg}(J) \to \text{KO}^{\bullet+j}_{bg}(L \otimes J)
 \]
 where \(L \otimes J\) denotes the bundle gerbe over the fibre product of \(Y\) and \(X\).
4. If \((L, Y)\) is a real bundle gerbe over \(M\) and \(f : N \to M\) is a continuous map, there is a homomorphism
 \[
 \text{KO}^\bullet_{bg}(L) \to \text{KO}^\bullet_{bg}(f^*L)
 \]
 where \(f^*L\) denotes the pullback bundle gerbe over \(N\).

The proofs of these statements are entirely analogous for the corresponding Proposition 5.2 of [5]. There is another construction that associates to any class \([H]\) in \(H^2(M, \mathbb{Z}_2)\), groups \(\text{KO}^\bullet(M, [H])\) called the twisted \(\text{KO}\) group. Twisted \(\text{KO}\)-theory shares the same properties as those in Prop. 6.2. In the next section we discuss twisted \(\text{KO}\)-theory and show that real bundle gerbe \(\text{KO}\)-theory and twisted \(\text{KO}\)-theory coincide.

7. Type I D-brane charges in an \(H\)-flux, twisted \(\text{KO}\)-theory and real bundle gerbe modules

7.1. Twisted \(\text{KO}\)-theory. We recall the definition of twisted \(\text{KO}\)-theory [13]. Given a class \([H]\) in \(H^2(M, \mathbb{Z}_2)\) choose a \(PO(\mathcal{H})\) bundle \(Y\) whose class is \([H]\). It is known that that the group \(\text{Aut}(\mathcal{K})\) of automorphisms of the \(C^*\)-algebra of real compact operators on \(\mathcal{H}\) is equal to \(PO(\mathcal{H})\), cf. [13]. We can form an associated algebra bundle,

\[
\mathcal{E} = Y \times_{PO(\mathcal{H})} \mathcal{K},
\]
where $PO(\mathcal{H})$ acts on \mathcal{K} via the adjoint action. Then the twisted KO-theory is by definition

$$KO^j(M, [H]) = KO_j(C_0(M, \mathcal{E}))$$

i.e. the KO-theory of the C^*-algebra of sections vanishing at infinity of \mathcal{E}. We recall that

$$KO_j(C_0(M, \mathcal{E})) = KO_0(C_0(M, \mathcal{E}) \otimes C_0(\mathbb{R}^j)) = KO_0(C_0(M, \mathcal{E}) \otimes Cl_j) \quad (7.1)$$

where Cl_j denotes the Clifford algebra of \mathbb{R}^j.

Now let \mathcal{H} be a real infinite dimensional Hilbert space that is a $*$-module for the real Clifford algebra of \mathbb{R}^{j-1}, namely Cl_{j-1}. Recall that when Cl_{j-1} is simple, then this representation is unique up to equivalence, and when it is not simple, then it is the direct sum of two simple algebras. The assumption made is that each simple subalgebra is represented with infinite multiplicity on \mathcal{H}. Let \widetilde{Fred} denote the space of all skew-adjoint Fredholm operators on \mathcal{H}. For $k \geq 1$, let \widetilde{Fred}_j denote the subspace of all skew-adjoint Fredholm operators \widetilde{Fred}, that commute with the action of Cl_{j-1}. Then it has been shown in [3] that \widetilde{Fred}_j is the classifying space for KO^j. One can form the associated bundle

$$Y(\widetilde{Fred}_j) = Y \times_{PO(\mathcal{H})} \widetilde{Fred}_j$$

where \widetilde{Fred}_j is acted on by conjugation. Let $[M, Y(\widetilde{Fred}_j)]$ denote the space of all homotopy classes of sections of $Y(\widetilde{Fred}_j)$ then one has, cf. [10],

$$KO^j(M, [H]) = [M, Y(\widetilde{Fred}_j)] = [Y, \widetilde{Fred}_j]^{PO(\mathcal{H})},$$

where the right hand side denotes the space of all homotopy classes of equivariant maps with the homotopies being by equivariant maps.

7.2. **Real bundle gerbe KO-theory and twisted KO-theory.** Here we will prove that real bundle gerbe KO-theory and twisted KO-theory are the same and indicate their relationship with equivariant KO-theory.

The Serre-Patterson theorem cf. [10] says that, given an element $[H] \in H^2(M, \mathbb{Z}_2)$, there is a principal $PO(n)$ bundle $X \to M$, with Dixmier-Douady invariant equal to $[H]$. We can define an action $SO(n)$ on $\mathbb{R}^n \otimes \mathcal{H} = \mathcal{H}^n$ letting g act as $g \otimes 1$. This gives a representation $\rho_n : SO(n) \to O(\mathcal{H}^n)$ and induces a $PO(\mathcal{H}^n)$ bundle with Dixmier-Douady class $[H]$. As $\mathcal{H}^n \simeq \mathcal{H}$ and all $PO(\mathcal{H})$ bundles are determined by their Dixmier-Douady class we can assume that this bundle is Y and contains X as a $SO(n)$ reduction. Then we have

$$(Y \times \widetilde{Fred})/PO(\mathcal{H}) \cong (X \times \widetilde{Fred})/PO(n),$$

so that

$$KO^0(M, [H]) = [Y, \widetilde{Fred}]^{PO(\mathcal{H})} \cong [X, \widetilde{Fred}]^{PO(n)}.$$

The lifting real bundle gerbe for $Y \to M$ pulls-back to become the lifting real bundle gerbe L for $X \to M$. We will now prove that $KO^0_{bg}(M, L) = KO^0(M, [H])$. Notice that this will prove the result also for any real bundle gerbe with torsion Dixmier-Douady class as we already know that real bundle gerbe K-theory depends only on the Dixmier-Douady class.

In the case where there is no twist, Atiyah and Janich showed that $KO(M) = [M, \widetilde{Fred}]$ and we will follow Atiyah’s proof indicating just what needs to be modified to cover this equivariant case.

First we have have the following
Lemma 7.1. If W is a finite dimensional subspace of $\mathbb{R}^n \otimes \mathcal{H}$ there is a finite co-dimensional subspace V of \mathcal{H} such that $\mathbb{R}^n \otimes V \cap W = 0$.

Proof. Let U be the image of V under the map $\mathbb{R}^n \otimes \mathbb{R}^n \otimes \mathcal{H} \to \mathcal{H}$ where we contract the two copies of \mathbb{R}^n with the inner product. Then $V \subset \mathbb{R}^n \otimes U$. So take $W = U^\perp$.

Using the compactness of X and the methods in Atiyah we can show that if $f: X \to \text{Fred}(\mathbb{R}^n \otimes \mathcal{H})$ then there is a subspace $V \subset \mathcal{H}$, of finite co-dimension, such that $\ker(f(x)) \cap \mathbb{R}^n \otimes V = 0$. Then \mathcal{H}/V and $\mathcal{H}/f(V)$ will be vector bundles on X and moreover they will be acted on by $SO(n)$ in such a way as to make them real bundle gerbe modules. So we define

$$\text{ind}: [X, \text{Fred}(\mathbb{R}^n \otimes \mathcal{H})]_{SO(n)} \to KO_{bg}(M, L)$$

by $\text{ind}(f) = \mathcal{H}/V - \mathcal{H}/f(V)$. Again the methods of [11] will show that this index map is well-defined and a homomorphism.

As in [11] we can identify the kernel of ind as $[X, O(\mathbb{R}^n \otimes \mathcal{H})]_{SO(n)}$ and use the result of Segal [20] which shows that $O(\mathbb{R}^n \otimes \mathcal{H})$ is contractible so ind is injective.

Finally we consider surjectivity. First we need from [13] the following

Proposition 7.2. If $E \to X$ is a real bundle gerbe module for L then there is a representation $\mu: SO(n) \to SO(\mathbb{R}^n \otimes \mathcal{H})$ such that E is a sub-real bundle gerbe module of $\mathbb{R}^N \otimes X$.

If $E \to X$ is a real bundle gerbe module then Proposition 7.2 enables us to find a $SO(n)$ equivariant map $\tilde{f}: X \to \text{Fred}(\mathbb{R}^N \otimes X)$ whose index is E. The action of $SO(n)$ used here on $\mathbb{R}^N \otimes X$ is that induced from the representation μ. To prove surjectivity of the index map it suffices to find a map $f: X \to \text{Fred}(\mathbb{R}^n \otimes X)$ whose index is E. Then if $E - F$ is a class in $KO_{bg}(M, L)$ we can apply a similar technique to obtain a map whose index is $-F$ and combine these to get a map whose index is $E - F$ and we are done.

To construct f we proceed as follows. We have a representation $\rho_n: SO(n) \to \mathbb{R}^n \otimes \mathcal{H}$ and a representation $\rho_N : SO(n) \to \mathbb{R}^N \otimes \mathcal{H}$. These can be used to induce a $PO(\mathbb{R}^n \otimes \mathcal{H})$ bundle and a $PO(\mathbb{R}^N \otimes \mathcal{H})$ bundle, both with Dixmier-Douady class $[H]$. So they must be isomorphic. We need the precise form of this isomorphism. Choose an isomorphism $\phi: \mathbb{R}^n \otimes \mathcal{H} \to \mathbb{R}^N \otimes \mathcal{H}$. This induces an isomorphism $O(\mathbb{R}^n \otimes \mathcal{H}) \to O(\mathbb{R}^N \otimes \mathcal{H})$ given by $u \mapsto \phi u \phi^{-1}$ which we will denote by $\phi[u]$ for convenience. There is a similar identification $\text{Fred}(\mathbb{R}^n \otimes \mathcal{H}) \to \text{Fred}(\mathbb{R}^N \otimes \mathcal{H})$. The two PU bundles are given by $X \times_{\rho_n} O(\mathbb{R}^n \otimes \mathcal{H})$ and $X \times_{\rho_N} O(\mathbb{R}^N \otimes \mathcal{H})$ and consist of cosets $[x, u] = [xg, \rho_n^{-1}(g)u]$ and $[x, u] = [xg, \rho_N^{-1}(g)u]$ respectively. The action of $O(\mathbb{R}^n \otimes \mathcal{H})$ is $[x, u]v = [x, uv]$ and similarly for $O(\mathbb{R}^N \otimes \mathcal{H})$. Because these are isomorphic bundles there must be a bundle map

$$\phi: X \times_{\rho_n} O(\mathbb{R}^n \otimes \mathcal{H}) \to X \times_{\rho_N} O(\mathbb{R}^N \otimes \mathcal{H})$$

satisfying $\phi([x, u]v) = \phi([x, u])\phi[v]$ and hence $\phi([x, u]) = \phi([x, 1])\phi[u]$. Define $\alpha: X \to O(\mathbb{R}^N \otimes \mathcal{H})$ by requiring that $\phi([x, 1]) = [x, \alpha(x)]$. Then for $g \in SO(n)$, a calculation analogous to [13] shows that

$$\alpha(xg) = \rho_N(g)^{-1}\alpha(x)\phi([\rho_n(g)])$$

(7.2)

We can now define $f: X \to \text{Fred}(\mathbb{R}^n \otimes X)$ by

$$f(x) = \alpha(x)^{-1}[\tilde{f}(x)]$$
and it is straightforward to see that this is $SO(n)$ equivariant by applying the equation \[(7.1) \]. It is clear that $a(x)$ and φ can be used to establish an isomorphism between $\ker(f)$ and $\ker(\tilde{f})$ and hence between $\ker(f)$ and E.

This proves

Proposition 7.3. If L is a real bundle gerbe over M with Dixmier-Douady class $[H] \in H^2(M, \mathbb{Z}_2)$, then $K_{O_{bg}}(M, L) = KO^0(M, [H])$.

The lifting real bundle gerbe for $Y \to M$ pulls-back to become the lifting real bundle gerbe for $X \to M$. A real bundle gerbe module for this is a bundle $E \to X$ with a $SO(n)$ action covering the action of $PO(n)$ on X. This $SO(n)$ action has to have the property that the center $\mathbb{Z}_2 \subset SO(n)$ acts on the fibres of E by scalar multiplication. Considered from this perspective we see that we are in the context of equivariant KO theory \[19 \]. Notice that by projecting to $PO(n)$ we can make $SO(n)$ act on X. Of course this action is not free, the center \mathbb{Z}_2 is the isotropy subgroup at every point. The equivariant KO theory $KO_{SO(n)}(X)$ is the KO theory formed from vector bundles on X which have an $SO(n)$ action covering the action on X. We need a subset of such bundles with a particular action. To understand this note that because the center $\mathbb{Z}_2 \subset SO(n)$ is the isotropy subgroup for the $SO(n)$ action on X it must act on the fibres of E and hence define a representation of \mathbb{Z}_2 on \mathbb{R}^r if the bundle E has rank r. This defines an element of $R(\mathbb{Z}_2)$, the representation ring of \mathbb{Z}_2, and to be a real bundle gerbe module this representation must be scalar multiplication on \mathbb{R}^r. In terms of equivariant KO theory we can consider the map which is restriction to a fibre of $X \to M$ and then we have

$$K_{SO(n)}(X) \to KO_{SO(n)}(SO(n)/\mathbb{Z}_2) = R(\mathbb{Z}_2).$$

$KO_{bg}(M, L)$ is the pre-image under this map of the representation of \mathbb{Z}_2 on \mathbb{R}^n by scalar multiplication.

Defining $KO^j_{bg}(M, L) = KO^0_{bg,c}(M \times \mathbb{R}^j, L)$, where $KO^0_{bg,c}$ denotes compactly supported bundle gerbe K-theory, we deduce from Proposition 7.3 that

Proposition 7.4. If L is a real bundle gerbe over M with Dixmier-Douady class $[H] \in H^2(M, \mathbb{Z}_2)$, then $KO^j_{bg}(M, L) = KO^j(M, [H])$ for all $j \geq 0$.

Using the definition in equation \[(7.1) \], one sees that objects in $KO^j_{bg}(M, L)$ can also be described as differences $[E] - [F]$, where E, F are real bundle gerbe modules with an action of the real Clifford algebra Cl_j.

8. **Infinite dimensional model for twisted KO-theory.**

We have seen that twisted KO-theory can be defined using finite rank real bundle gerbes. But sometimes it is useful to get an infinite dimensional generalisation such as to allow real bundle gerbe modules which are infinite dimensional real Hilbert bundles. In that case the induced projective bundle on M is a $PO(\mathcal{H})$ bundle for \mathcal{H} an infinite dimensional real Hilbert bundle and it is well known that there is only one such bundle for a given Dixmier-Douady class and hence Proposition 7.3 implies that

Proposition 8.1. Every real bundle gerbe admits exactly one real bundle gerbe module which is a bundle of infinite dimensional Hilbert spaces with structure group $O(\mathcal{H})$.
Proposition 8.2. Given a $PO(\mathcal{H})$ bundle $Y \to M$ with Dixmier-Douady class $[H] \in H^2(M, \mathbb{Z}_2)$ the following are equivalent, with a proof analogous to that given in [2].

1. $\tilde{KO}(M, [H])$
2. space of homotopy classes of sections of $Y \times_{PO(\mathcal{H})} BO_K$
3. space of homotopy classes of $PO(\mathcal{H})$ equivariant maps from Y to BO_K
4. space of isomorphism classes of $PO(\mathcal{H})$ covariant O_K bundles on Y, and
5. space of isomorphism classes of $O_K \times PO(\mathcal{H})$ bundles on M whose projection to a $PO(\mathcal{H})$ bundle has class $[H]$.

Note 8.1. Notice that if we worked with Fred instead of BO_K then it has connected components $Fred_n$ consisting of operators of index n. We can then consider sections of $Y \times_{PO(\mathcal{H})} Fred_n$ for every n, not just zero. Such a section will pull back a KO class and if we take the determinant of this KO class we will obtain a line bundle on Y on which the gerbe L^n acts. Hence we will have $n[H] = nd(L) = 0$ and so we deduce the result noted in [2] that if $[H]$ is not torsion then there are no sections of $Y \times_{PO(\mathcal{H})} Fred_n$ except when $n = 0$ so $\tilde{KO}(M, [H]) = KO(M, [H])$.

In particular if E and F are Hilbert real bundle gerbe modules then $E = F$ so that the class $E = F$ in the induced KO group is zero. So the KO group is zero.

In the remainder of this section we discuss another approach to twisted cohomology where the structure group of the real bundle gerbe module is the group O_K, the subgroup of $O(\mathcal{H})$ of orthogonal operators which differ from the identity by a compact operator (here K denotes the compact operators on \mathcal{H}). To see how this arises notice that in Rosenberg’s definition [18] we can replace Fred by a homotopy equivalent space. For our purposes we choose $BO_K \times \mathbb{Z}$. This can be done in a $PO(\mathcal{H})$ equivariant fashion as follows. For BO_K we could choose the connected component of the identity of the invertibles in the real Calkin algebra $B(\mathcal{H})/\mathcal{K}$ which is homotopy equivalent in a $PO(\mathcal{H})$ equivariant way to the real Fredholms of index zero under the quotient map $\pi : B(\mathcal{H}) \to B(\mathcal{H})/\mathcal{K}$. Note however that the identity component of the invertibles in the Calkin algebra is just $GL(\mathcal{H})/GL_K$ where $GL(\mathcal{H})$ denotes the invertible operators on \mathcal{H} and GL_K are the invertibles differing from the identity by a compact. Thus we can take BO_K to be $GL(\mathcal{H})/GL_K$ and this choice is $PO(\mathcal{H})$ equivariant. We could equally well take $BO_K = O(\mathcal{H})/O_K$.

As $O(\mathcal{H})$ acts on O_K by conjugation there is a semi-direct product

$$O_K \to O_K \times PO(\mathcal{H}) \to PO(\mathcal{H}).$$

Note that this means that any $O_K \times PO(\mathcal{H})$ bundle over M induces a $PO(\mathcal{H})$ bundle and hence a class in $H^2(M, \mathbb{Z}_2)$. If $R \to Y$ is a O_K bundle we call it $PO(\mathcal{H})$ covariant if there is an action of $PO(\mathcal{H})$ on the right of R covering the action on Y such that $(rg)[u] = r[u]u^{-1}gu$ for any $r \in R$, $[u] \in PO(\mathcal{H})$ and $g \in O_K$. Here $[u]$ is the projective class of some $u \in O(\mathcal{H})$.

Because BO_K is homotopy equivalent to only the connected component of index 0 of Fred it is convenient to work with reduced twisted KO theory, $\tilde{KO}(M, [H])$, defined by

$$\tilde{KO}(M, [H]) = [M, Y(BO_K)].$$

We have
8.1. O_K real bundle gerbe modules. Given a $PO(\mathcal{H})$ covariant O_K bundle R over Y we can define the associated bundle

$$E = R \times_{O_K} \mathcal{H} \to Y.$$ \hfill (8.1)

We claim that this is a real bundle gerbe module for the lifting real bundle gerbe P. Let $[r,v] \in E_{y_1}$ be a O_K equivalence class where $r \in R_{y_1}$, the fibre of R over $y_1 \in Y$ and $v \in \mathcal{H}$. Let $u \in L_{y_1,y_2}$ be an element of the lifting bundle gerbe. Then, by definition, $u \in O(\mathcal{H})$ and $y_1[u] = y_2$. We define the action of u by $[r,v]u = [r[u], u^{-1}v]$. It is straightforward to check that this is well defined. Hence we have associated to any $PO(\mathcal{H})$ covariant O_K bundle R on Y a module for the lifting real bundle gerbe.

The inverse construction is also possible if the real bundle gerbe module is a O_K real bundle gerbe module which we now define. Let $E \to Y$ be a Hilbert bundle with structure group O_K. We recall what it means for a Hilbert bundle to have structure group O_K. To any Hilbert bundle there is associated a $O(\mathcal{H})$ bundle $O(E)$ whose fibre, $O(E)_y$, at y is all unitary isomorphisms $f: \mathcal{H} \to E_y$. If $u \in O(\mathcal{H})$ it acts on $O(\mathcal{H})$ by $fu = f \circ u$ and hence $O(E)$ is a principal $O(\mathcal{H})$ bundle. For E to have structure group O_K means that we have a reduction of $O(E)$ to an O_K bundle $R \subset O(E)$. Each $R_y \subset O(E)_y$ is an orbit under O_K, that is R is a principal O_K bundle.

For E to be an O_K real bundle gerbe module we need to define an action of the real bundle gerbe on it. By comparing with the action on the bundle E defined in (8.1) we see that we need to make the following definition. If $u \in O(\mathcal{H})$ such that $y_1[u] = y_2$ then $u \in L_{y_1,y_2}$ where $L \to Y$ is the lifting real bundle gerbe so if $f \in R_y$, then $ufu^{-1} \in O(E)_y$. We require that $ufu^{-1} \in R_y$. So a lifting real bundle gerbe module which is an O_K Hilbert bundle and satisfies this condition we call an O_K real bundle gerbe module. By construction we have that the associated R is an O_K bundle over Y on which $PO(\mathcal{H})$ acts. Let us denote by $\text{Mod}_{O_K}(M,[H])$ the semi-group of all O_K real bundle gerbe modules for the lifting real bundle gerbe of the $PO(\mathcal{H})$ bundle with Dixmier-Douady class $[H] \in H^2(M;\mathbb{Z}_2)$. As any two $PO(\mathcal{H})$ bundles with the same Dixmier-Douady class are isomorphic we see that $\text{Mod}_{O_K}(M,[H])$ depends only on $[H]$.

We have now proved

Proposition 8.3. If (L,Y) is the lifting real bundle gerbe for a $PO(\mathcal{H})$ bundle with Dixmier-Douady class $[H]$

$$\tilde{K}O(M,[H]) = \text{Mod}_{O_K}(M,[H]).$$

If L_1 and L_2 are two $PO(\mathcal{H})$ covariant O_K bundles on Y note that $L_1 \times L_2$ is an $O_K \times O_K$ bundle. Choose an isomorphism $\mathcal{H} \times \mathcal{H} \to \mathcal{H}$ which induces an isomorphism $O_K \times O_K \to O_K$ and hence defines a new $PO(\mathcal{H})$ covariant bundle $L_1 \otimes L_2$. It is straightforward to check that

$$(L_1 \otimes L_2)(H) \simeq L_1(H) \times L_2(H).$$

This makes $\text{Mod}_{O_K}(M,[H])$ a semi-group and the map $\tilde{K}O(M,[H]) = \text{Mod}_{O_K}(M,[H])$ is a semi-group isomorphism. Note that with our definition BO_K is a group. Moreover the space of all equivariant maps $Y \to BO_K$ is a group as well. To see this notice that if f and g are equivariant maps and we multiply pointwise then for
$y \in Y$ and $[u] \in PO(H)$ we have

$$(fg)(y[u]) = f(y[u])g(y[u])$$

$$= (u^{-1}f(y)u)(u^{-1}g(y)u)$$

$$= u^{-1}(fg)(y)u$$

and if f^{-1} is the pointwise inverse then $f^{-1}(y[u]) = (u^{-1}f(y)u)^{-1} = u^{-1}f^{-1}(y)u$.

This induces a group structure on $\text{Mod}_{O_K}(M,[H])$. We have already noted that it is a semi-group but this implies more, for every O_K bundle gerbe module E there is an O_K real bundle gerbe module E^{-1} such that $E \oplus E^{-1}$ is the trivial O_K real bundle gerbe. Hence we have

Proposition 8.4. If (L,Y) is the lifting real bundle gerbe for a $PO(H)$ bundle with Dixmier-Douady class $[H]$ then

$$K_{O_K}(M,[H]) = \text{Mod}_{O_K}(M,[H]) = \tilde{K}O(M,[H])$$

Note 8.2. (1) The group O_K used here could be replaced by any other group to which it is homotopy equivalent by a homotopy equivalence preserving the $PO(H)$ action. In particular we could consider O_1, the subgroup of $O(H)$ consisting of orthogonal operators which differ from the identity by a trace class operator. In Section 9 we show that the computation in Section 6 of real bundle gerbe characteristic classes generalizes, with some modifications, to O_1 real bundle gerbe modules.

8.2. Local description of O_K real bundle gerbe modules

Let $\{U_i\}_{i \in I}$ be a good cover of M and let $U_{i,j,...,k} = U_i \cap U_j \cap \cdots \cap U_k$. The trivial bundle has a sections s_i which are related by

$$s_i = s_j[u_{ji}]$$

where $[u_{ji}] : U_{ij} \to PO(H)$ for some $u_{ji} : U_{ij} \to O(H)$ where $u_{ij}u_{jk}u_{ki} = g_{ijk}1$ where 1 is the identity operator and the g_{ijk} are non-zero scalars.

Over each of the $s_i(U_i)$ are sections σ_i of the O_K bundle R. We can compare σ_i and $\sigma_j[u_{ji}]$ so that

$$\sigma_i = \sigma_j[u_{ji}][g_{ji}]$$

where $g_{ij} : U_{ij} \to O_K$. These satisfy

$$g_{ki} = ([u_{ji}]^{-1}g_{kj}[u_{ji}])g_{ji}. \quad (8.2)$$

If $Y_i = \pi^{-1}(U_i)$ one can define a section of R over all of Y_i by $\tilde{\sigma}_i(s_i[u]) = \sigma_i[u]$. The transition functions for these are \tilde{g}_{ij} where $\tilde{g}_{ij}(s_j[u]) = [u^{-1}]g_{ji}[u]$ and the identity σ_i is equivalent to $\tilde{g}_{ki} = \tilde{g}_{kj}\tilde{g}_{ji}$.

9. Continuous trace real C^*-algebras

There is a well-known construction of a continuous trace real C^* algebra from a groupoid. This can be used to construct a C^* algebra from real bundle gerbes as follows. If the fibres of $Y \to M$ have an appropriate Haar measure and we can define a product on two sections $f,g : Y'[2] \to P$ by

$$(fg)(y_1,y_2) = \int f(y_1,y)g(y,y_2)dy$$

where in the integrand we use the real bundle gerbe product so that $f(y_1,y)g(y,y_2) \in L_{(y_1,y_2)}$. Closing this space of sections in the operator norm topology gives a continuous trace real C^* algebra with spectrum M and Dixmier-Douady class the
Dixmier-Douady class of \((L, Y)\). Some constructions in the theory of \(C^*\) algebras become easy from this perspective. For example if \(A\) is continuous trace real \(C^*\)-algebra with spectrum \(X\) and \(f : Y \to X\) is a continuous map, then there is continuous trace real \(C^*\)-algebra \(f^{-1}(A)\) with spectrum \(Y\). This is just the pullback of real bundle gerbes. Then the \(KO_{bg}\)-theory is just the \(KO\)-theory of the associated continuous trace real \(C^*\)-algebra. This works as long as we take finite dimensional real bundle gerbes, which we know represent all classes in \(H^2(M, \mathbb{Z}_2)\).

10. Type I D-brane charges ⇒ Type II D-brane charges

Here we discuss the natural complexification map from twisted \(KO\)-theory to twisted \(K\)-theory, which can be used to define the twisted Chern character homomorphism in twisted \(KO\)-theory. This homomorphism is analysed in some detail, together with examples.

10.1. The complexification homomorphism. We use the well known and fundamental fact that the complexification of a real vector bundle is a complex vector bundle that is isomorphic to its own conjugate vector bundle, cf. [1]. We begin with a real bundle gerbe \((L, Y)\) over \(M\), where \(\pi : Y \to M\) is a locally trivial fibre bundle and \(L \to Y^{[2]}\) is a real line bundle satisfying equation \([\mathbf{1.1}]\). The complexification of the real bundle \((L, Y)\) determines the bundle gerbe \((L \otimes \mathbb{C}, Y)\) over \(M\) which is automatically isomorphic to \((\overline{L} \otimes \mathbb{C}, Y)\). If the Dixmier-Douady invariant of \((L, Y)\) is \(d(L) \in H^2(M, \mathbb{Z}_2)\), then it is easy to see that the Dixmier-Douady invariant of \((L \otimes \mathbb{C}, Y)\) is \(d(L \otimes \mathbb{C}) \in H^3(M, \mathbb{Z})\), where \(d(L \otimes \mathbb{C}) = \beta(d(L))\) and \(\beta : H^2(M, \mathbb{Z}_2) \to H^3(M, \mathbb{Z})\) is the Bockstein homomorphism. Observe also that \(d(L \otimes \mathbb{C}) = d(\overline{L} \otimes \mathbb{C}) = -d(L \otimes \mathbb{C})\). The complexification map is compatible with stable isomorphism of real and complex bundle gerbes, and therefore defines a homomorphism from stable equivalence classes of real bundle gerbes and stable equivalence classes of bundle gerbes.

Now let \((L, Y)\) be a real bundle gerbe over a manifold \(M\) and let \(E \to Y\) be a finite dimensional real bundle gerbe module. Then it is straightforward to see that the complexification \(E \otimes \mathbb{C} \to Y\) is a bundle gerbe module for the bundle gerbe \((L \otimes \mathbb{C}, Y)\) over \(M\). This map is compatible with real and complex bundle gerbe stable equivalences, and isomorphism of real and complex bundle gerbe modules, therefore defining a well defined homomorphism,

\[
\otimes \mathbb{C} : KO^0(M, d(L)) \to K^0(M, d(L \otimes \mathbb{C})) \quad (10.1)
\]

where we recall that \(d(L \otimes \mathbb{C}) = \beta(d(L))\) as above.

We can use this homomorphism to define the twisted Chern character,

\[
ch_{d(L)} : KO^0(M, d(L)) \to H^{even}(M, \mathbb{R}) \quad (10.2)
\]

by \(ch_{d(L)}(E) := ch_{d(L \otimes \mathbb{C})}(E \otimes \mathbb{C})\), where we have used the twisted chern character as defined in [3]. Explicitly, it is determined by the property

\[
\pi^*(ch_{d(L)}(E)) = e^{c_1(L \otimes \mathbb{C})} ch(E \otimes \mathbb{C}).
\]

It is a homomorphism with the usual properties, namely,

1) \(ch_{d(L)}\) is natural with respect to pullbacks,
2) \(ch_{d(L)}\) respects the \(KO^0(M)\)-module structure of \(KO^0(M, d(L))\),
3) \(ch_{d(L)}\) reduces to the ordinary Chern character in the untwisted case when
Recall that where and where as a character \(\chi \) group. This defines the homomorphism in (10.4).

Now define function. This ensures that we get a twisted norm continuous family of self-adjoint Fredholm operators. We need to know this commutes with the bundle gerbe action. Multiplication is the tensor product \(\otimes \), then the bundle gerbe action is \(v_n \) if \(v_n \in L^m_2 \), where \(f : \mathbb{R}_a \to \mathbb{R}_a \) is a bounded uniformly continuous function. This ensures that we get a twisted norm continuous family of self-adjoint Fredholm operators. We need to know this commutes with the bundle gerbe action. Let \(v_n \in L^m_2 \), then the bundle gerbe action is \(v_{m, n} = v_n v_m \) where this latter multiplication is the tensor product \(L^m \otimes L^n \to L^{m+n} \). Hence we need to show \(v_m F(t, x) v_n = F(t + m, x) v_m v_n \). But the LHS is

\[
v_m f(t - n)v_n = f(t - n)v_m v_n
\]

and the RHS is

\[
f(t + m - (m + n))v_m v_n = f(t - n)v_m v_n
\]
Notice that if \(t \) is not an integer \(F(t, x) \) is an isomorphism and if \(t \) is an integer \(F(t, x) \) has 1 dimensional kernel and 1 dimensional cokernel. That is, \(F(t, x) \) is a Fredholm operator for all \((t, x) \in \mathbb{R} \times S^2 \), and since it commutes with the bundle gerbe action, it determines an element in the odd degree bundle gerbe \(K^1(L, Y) \). We will compute the degree one component of the odd dimensional Chern character of this element and show that it is not trivial.

We digress to discuss twisted cohomology. Suppose \(H \) is a closed differential 3-form on a compact manifold \(M \). We can use \(H \) to construct a differential \(\delta_H \) on the algebra \(\Omega^\bullet(M) \) of differential forms on \(M \) by setting \(\delta_H(\omega) = d\omega - H\omega \) for \(\omega \in \Omega^\bullet(M) \). It is easy to check that indeed \(\delta_H^2 = 0 \). If \(\omega \in \Omega^{odd}(M) \) so that \(\omega = \omega_1 + \omega_3 + \omega_5 + \ldots \), where \(\omega_j \in \Omega^j(M) \), then \(\omega \) is in the kernel of \(\delta_H \) if the following set of equations are satisfied,

\[
\begin{align*}
 d\omega_1 &= 0 \\
 d\omega_3 &= H\omega_1 \\
 d\omega_5 &= H\omega_3 \\
 &\vdots
\end{align*}
\]

Thus the degree 1-component of \(\omega \), \(\omega_1 \), is always a closed form. In particular, the degree 1-component of the twisted Chern character is always a closed 1-form.

The degree one component of the Chern character of the twisted self-adjoint Fredholm family is \(c_5^{odd}(\mathcal{F}) = \exp(2\pi i\eta(\mathcal{F}))^*\Theta \), where \(\Theta \) is the standard generator of the first cohomology of \(U(1) \). If we choose \(f \) to be the sign function, then \(\exp(2\pi i\eta(\mathcal{F}))^*\Theta \) can be calculated using a result by Gilkey, (\cite{Gilkey} Section 1.10) to be \(2\pi \Theta \neq 0 \), where \(pr_1 : S^1 \times S^2 \to S^1 \) is the projection onto the first factor. In general, if the function \(f \) is chosen to take on both positive and negative values on the set \(A = \{ t - n : n \in \mathbb{N} \} \) infinitely often then the construction above is likely to also yield a non-trivial class in twisted \(K \)-theory. Therefore \((\mathcal{E}, \mathcal{F}) \) defines a non-trivial, in fact non-torsion, class in \(K^1(S^1 \times S^2, \xi) \), where \(\xi = a \cup b \in H^3(S^1 \times S^2, \mathbb{Z}) \).

This example is motivated by the Schrödinger representation of the Heisenberg group given by a \(U(1) \) extension of \(S^1 \times \mathbb{Z} \). This construction extends without significant change to the general case given by a product of two manifolds.

10.2.2. Decomposable case: generator in twisted \(K \). Here we extend the construction to the case when the cohomology class on the manifold \(M \) is the product of a 1-class and a 2-class. Assume that \(M \) is endowed with a good cover. Locally a line bundle has transition functions \(g_{ab} \) and the 1-class comes from a \(\mathbb{Z} \) cocycle \(n_{ab} \) with \(n_{ab} = s_a - s_b \) where the \(s_a \) are real valued functions. One verifies that

\[
w_{abc} = g_{ab}^{n_{bc}} g_{bc}^{n_{ca}} g_{ca}^{n_{ab}}
\]

is the class in \(H^2(M, U(1)) \) which is the DD class of the bundle gerbe we want and is decomposable being the cup product of the 1 class and the 2-class defined above. This example also features in Brylinski’s work \(\cite{Brylinski} \).

Let \(\mathcal{E} \) be the Hilbert bundle \(\bigoplus L^j \) with fibre \(\mathcal{H} \) and \(T \) a shift operator relative some orthonormal basis \(e_n \) i.e. \(T(e_n) = e_{n+1} \). Define \(G_{ab} = (g_{ab}T)^{n_{ab}} \). This is a unitary and

\[
G_{ab}G_{bc}G_{ca} = w_{abc} 1
\]
So the collection of G_{ab} defines a $PU(H)$ bundle P over M. Now define F_a a local Fredholm map by

$$F_a(e_n) = f(s_a - n)e_n$$

where $f : \mathbb{R} \to \mathbb{R}$ is a bounded measurable function. A computation as in the previous example shows that

$$F_a = G^{-1}_{ab}F_bG_{ab},$$

so this is a well-defined Fredholm map commuting with the bundle gerbe actions.

To calculate the degree one component of the odd Chern class, we first observe that there are canonical determinant line bundles on P; the universal case is given by the product construction given in section 3.1, but applied to $S^1 \times BS^1$. In that case, the degree 1 component of the odd Chern character is given by $2pr_1^*\Theta \neq 0$. Now the decomposable class is given by a map $\Lambda : M \to S^1 \times BS^1$. By the naturality property of the Chern character, we see that the degree 1 component of the odd Chern character of (E,F) is given by $2\Lambda^*pr_1^*\Theta = 2[n_{ab}] \neq 0$.

10.2.3. Twisted Fredholm families and twisted K^0. We begin by defining a canonical homomorphism

$$\det : K^0(M,P) \to H^2(M,\mathbb{Z}). \tag{10.5}$$

Recall that $K^0(M,P)$ is represented by differences $E - F$, where E, F are Hilbert bundles over P, with given reduction of structure group to U_1, and with an action of the lifting bundle gerbe associated to the principal PU-bundle P. We first observe that there are canonical determinant line bundles on P determined by E, F and defined as $\det(E) = P_E \times U_1, U(1)$ and $\det(F) = P_F \times U_1, U(1)$. Then $\det(E) \otimes \det(F)^*$ is a line bundle on P that is invariant under the action of PU, so it descends to a line bundle on M. This defines the homomorphism in (10.5).

Let $L \to X$ denote a line bundle whose first Chern class is equal to $b \in H^2(X,\mathbb{Z})$. Define the Hilbert direct sum of line bundles,

$$E_m = \bigoplus_{n \geq m} L^n,$$

which determines a Hilbert bundle over X. Then we have the exact sequence

$$E_2 \to E_1 \to L$$

where the map $F : E_1 \to E_2$ is inclusion. F is a Fredholm map which realizes a non-trivial element in $K^0(X)$ whenever $b \neq 0$. In particular, it realizes a generator in K-theory over X when $c_1(L)$ is a generator of $H^2(X,\mathbb{Z})$: this is since $\ker(F) = 1$ and $\coker(F) = L$ and so $\text{index}(F) = [1] - [L] \in K^0(X)$ is a nontrivial generator.

We can cover S^1 by two charts U_a, U_b. On the overlaps, the transition function $g_{ab} = b^{n_{ab}} : X \to PU$, where n_{ab} is a Cech representative of the class p_1^*a where $a \in H^1(S^1,\mathbb{Z})$. All of this can be pulled back to $U_a \times X$ and $U_b \times X$ by the projection map onto X — we call the pulled back bundles E^n_a, E^n_b respectively. Choose trivializations $\phi_{a,j} : E^n_a \to U_a \times X \times \mathcal{H}$ and $\phi_{b,j} : E^n_{ab+1} \to U_b \times X \times \mathcal{H}$. Then we have $g_{ab}\phi_{a,j} = \phi_{b,j}$ for $j = 1, 2$.

If we denote by $F_a : E^n_1 \to E^n_2$ and $F_b : E^n_{ab+1} \to E^n_{ab+2}$ the inclusion maps, which are Fredholm as discussed earlier, then we have $g_{ab}[\phi_{a,1} \circ F_a \circ \phi_{a,2}] = g_{ab}\phi_{a,1} \circ F_a \circ \phi_{a,2}g_{ab} = \phi_{b,1} \circ F_b \circ \phi_{b,2}$. That is, \{ F_a, F_b \} forms a section of twisted Fredholm operators, where the twist is the principal PU bundle defined by the transition function $b^{n_{ab}}$, and whose Dixmier-Douady class is $a \cup b \in H^3(S^1 \times X,\mathbb{Z})$.

Here is an argument which shows that the element of $K^0(S^1 \times X; a \cup b)$ defined by the section of the bundle of twisted Fredholm operators above is non-zero. We have an inclusion $i: U_a \times X \rightarrow S^1 \times X$. The class $a \cup b$ vanishes when pulled back to $U_a \times X$ and hence the twisted K-group $K^0(U_a \times X; i^*(a \cup b)) = K^0(U_a \times X)$. The image of the section determined by the pair $\{F_a, F_b\}$ under the map $i^*: K^0(S^1 \times X; a \cup b) \rightarrow K^0(U_a \times X)$ is the element of $K^0(U_a \times X)$ determined by the map $F_a: U_a \times X \rightarrow \text{Fred}$. This has non-zero index equal to $[1] - [L]$.

10.2.4. Decomposable case: generator in twisted K^0. Here we extend the construction in the previous subsection to the case when the cohomology class on the manifold M is the product of an integer 1-class a and an integer 2-class b.

As before, we notice that the universal space for decomposable classes is $S^1 \times BS^1$, for which the product space construction of section 10.2.3 applies. Since a determines a map $f_a: M \rightarrow S^1$ and b determines a map $f_b: M \rightarrow BS^1$, the Cartesian product $f_a \times f_b: M \rightarrow S^1 \times BS^1$ is a continuous map, which can be used to pullback the section of twisted Fredholm operators on $S^1 \times BS^1$ to M.

10.3. Remarks on the spectral sequence relevant to calculations. We will now briefly discuss some calculations of twisted KO-groups of compact surfaces, in terms of the untwisted KO-groups. The first non-trivial differential in the spectral sequence as described in [15] is $d_2 = H + Sq^2$, where Sq^2 denotes the second Steenrod square, which vanishes for compact surfaces. Therefore $d_2 = H$. Again for compact surfaces, there are no other non-trivial differentials. It follows that $KO^i(\Sigma, H) \cong KO^i(\Sigma)$ whenever $i \neq -2, -3$, since $KO^{-i}(pt)$ is equal to $\mathbb{Z}, \mathbb{Z}_2, \mathbb{Z}_2, 0, \mathbb{Z}, 0, 0, 0$ when i ranges from 0 to 7. Now let Σ be a compact surface and $[H] \in H^2(\Sigma, \mathbb{Z}_2) \cong \mathbb{Z}_2$ be nontrivial. Then following the spectral sequence, one obtains $KO^{-3}(\Sigma, H) \cong KO^{-2}(\Sigma)/\mathbb{Z}_2$ and also $KO^{-3}(\Sigma, H) \cong KO^{-3}(\Sigma)/\mathbb{Z}_2$.

11. Concluding remarks

In this paper we have developed the foundations of real bundle gerbes and the geometric interpretation of twisted KO-theory as the KO-theory of real bundle gerbe modules, as it may prove useful in the geometric understanding of D-brane charges and fields in Type I string theory. We have also studied the fundamental properties of twisted KO-theory including the Chern character as well as its relation to twisted K-theory etc.

In some work in progress, we study the real index bundle gerbe, called the Pfaffian gerbe, that is associated to a family of skew adjoint real Dirac type operators, together with a natural metric on it as well as a compatible connection and curving for it. We also relate it to the (complex) index bundle gerbe under the complexification homomorphism. This serves as one of the motivations for this paper.

An interesting open question that remains unanswered is the following. A missing Chern-Weil or geometric interpretation of the Dixmier-Douady invariant of real bundle gerbes when the group $\text{Ext}(H_1(M, \mathbb{Z}), \mathbb{Z}_2)$ does not vanish: this can happen whenever the torsion subgroup of $H_1(M, \mathbb{Z})$ has 2-torsion elements as discussed in section 2, equation (4.4).

References

[1] M. Atiyah, K-theory, (W.A. Benjamin, New York, 1967).
[2] M. Atiyah, K-theory Past and Present, [math.KT/0012213]
[3] M. Atiyah and I. M. Singer, *Index of skew-adjoint Fredholm operators*, Pub. I.H.E.S. (1968).

[4] Micha Berkooz, Robert G. Leigh, Joseph Polchinski, John H. Schwarz, Nathan Seiberg, Edward Witten, *Anomalies, Dualities, and Topology of D=6 N=1 Superstring Vacua*, Nucl.Phys. B**475** (1996) 115-148, hep-th/9605184.

[5] P. Bouwknegt, A. Carey, V. Mathai, M. Murray and D. Stevenson, *Twisted K-theory and K-theory of bundle gerbes*, Commun. Math. Physics **228**, no. 1, (2002) 17-49, hep-th/0106194.

[6] J.-L. Brylinski, *Loop spaces, characteristic classes and geometric quantization*, Prog. Math., **107**, (Birkhäuser Boston, Boston, 1993).

[7] P. Donovan and M. Karoubi, *Graded Brauer groups and K-theory with local coefficients*, Inst. Hautes Études Sci. Publ. Math., **38** (1970) 5-25.

[8] D. Freed and E. Witten, *Anomalies in String Theory with D-Branes*, Asian J. Math. **3**(1999), no. 4, 819–851, hep-th/9907189.

[9] P. B. Gilkey, *Invariance theory, the heat equation, and the Atiyah-Singer index theorem*, Mathematics Lecture Series, 11. Publish or Perish, Inc., Wilmington, DE, 1984. viii+349 pp.

[10] S. Gukov, *K-Theory, Reality, and Orientifolds*, Commun.Math.Phys. **210** (2000) 621-639.

[11] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge (2002) 544 pages.

[12] N. Hitchin, *Lectures on Special Lagrangian Submanifolds*, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 151–182, AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 2001.

[13] S. Johnson, *Constructions with bundle gerbes*, Adelaide University Ph.D. thesis (2002).

[14] V. Mathai and D. Stevenson, *Chern character in twisted K-theory: equivariant and holomorphic cases*, Commun. Math. Physics **236**, no. 1, (2003) 161-186, hep-th/0201010.

[15] M.K. Murray, *Bundle gerbes*, J. London Math. Soc. (2) **54**(1996), no. 2, 403-416.

[16] Patterson, Richard R. *The Hasse invariant of a vector bundle*, Trans. Amer. Math. Soc. 150 (1970) 425–443.

[17] J. Renault, *A groupoid approach to C*-algebras*, Springer Lecture Notes in Mathematics, 793, (Springer-Verlag, New York, 1980).

[18] J. Rosenberg, *Continuous trace C*-algebras from the bundle theoretic point of view*, J. Aust. Math. Soc. **A47** (1989) 368.

[19] G. Segal, *Equivariant K-theory*, Inst. Hautes Études Sci. Publ. Math. **34**, 1968, 129–151.

[20] G. Segal, *Equivariant contractibility of the general linear group of Hilbert space*, Bull. London Math. Soc. **1**, 1969, 329–331.

[21] Ashoke Sen, Savdeep Sethi, *The Mirror Transform of Type I Vacua in Six Dimensions*, Nucl.Phys. B**499** (1997) 45-54, hep-th/9703157.

[22] E. Witten, *D-Branes and K-theory*, J. High Energy Phys. **12** (1998) 019, hep-th/9810188.

(Varghese Mathai) Department of Pure Mathematics, University of Adelaide, Adelaide, SA 5005, Australia
E-mail address: vmathai@maths.adelaide.edu.au

(Michael Murray) Department of Pure Mathematics, University of Adelaide, Adelaide, SA 5005, Australia
E-mail address: mmurray@maths.adelaide.edu.au

(Danny Stevenson) Department of Pure Mathematics, University of Adelaide, Adelaide, SA 5005, Australia
E-mail address: dstevens@maths.adelaide.edu.au