On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

Bartosz Bednarczyk
Computational Logic Group, Technische Universität Dresden, Germany
Institute of Computer Science, University of Wroclaw, Poland

Maja Orłowska
Institute of Computer Science, University of Wroclaw, Poland

Anna Pacanowska
Institute of Computer Science, University of Wroclaw, Poland

Tony Tan
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

Abstract
During the last decades, a lot of effort was put into identifying decidable fragments of first-order logic. Such efforts gave birth, among the others, to the two-variable fragment and the guarded fragment, depending on the type of restriction imposed on formulae from the language. Despite the success of the mentioned logics in areas like formal verification and knowledge representation, such first-order fragments are too weak to express even the simplest statistical constraints, required for modelling of influence networks or in statistical reasoning.

In this work we investigate the extensions of these classical decidable logics with percentage quantifiers, specifying how frequently a formula is satisfied in the intended model. We show, surprisingly, that all the mentioned decidable fragments become undecidable under such extension, sharpening the existing results in the literature. Our negative results are supplemented by decidability of the two-variable guarded fragment with even more expressive counting, namely Presburger constraints. Our results can be applied to infer decidability of various modal and description logics, e.g. Presburger Modal Logics with Converse or \textit{ALCI}, with expressive cardinality constraints.

2012 ACM Subject Classification
Theory of computation → Logic and databases

Keywords and phrases
statistical reasoning, knowledge representation, satisfiability, fragments of first-order logic, guarded fragment, two-variable fragment, (un) decidability

Digital Object Identifier
10.4230/LIPIcs.FSTTCS.2021.36

Related Version
Full Version: https://arxiv.org/abs/2106.15250

Funding
Bartosz Bednarczyk: supported by “Diamentowy. Grant” no. DI2017 006447.
Tony Tan: supported by Taiwan Ministry of Science and Technology under grant no. 109-2221-E-002-143-MY3 and National Taiwan University under grant no. 109L891808.

1 Introduction
Since the works of Church, Turing and Trakhtenbrot, it is well-known that the (finite) satisfiability and validity problems for the First-Order Logic (\textit{FO}) are undecidable [29]. Such results motivated researchers to study restricted classes of FO that come with decidable satisfiability problem, such as the prefix classes [9], fragments with fixed number of variables [28], restricted forms of quantification [1, 30] and the restricted use of negation [6]. These fragments have found many applications in the areas of knowledge representation, automated reasoning and program verification, just to name a few. To the best of our knowledge, none of the known decidable logics incorporate a feature that allows for stating
even a very modest statistical property. For example, one may want to state that “to qualify to be a major, one must have at least 51% of the total votes”, which may be useful to formalise, e.g. the voting systems.

Our results. In this paper, we revisit the satisfiability problem for some of the most prominent fragments of FO, namely the two-variable fragment FO² and the guarded fragment GF. We extend them with the so-called percentage quantifiers, in two versions: local and global. Global percentage quantifiers are quantifiers of the form $\exists = q\% x \varphi(x)$, which states that the formula $\varphi(x)$ holds on exactly $q\%$ of the domain elements. Their local counterparts are quantifiers of the form $\exists = q\% R y \varphi(x,y)$, which intuitively means that exactly $q\%$ of the R-successors of an element x satisfy φ.

In this paper, we show that both FO² and GF become undecidable when extended with percentage quantifiers of any type. In fact, the undecidability of GF already holds for its three variable fragment GF³. Our results strengthen the existing undecidability proofs of ALCISCC++ from [4] and of FO² with equicardinality statements (implemented via the Härtig quantifier) from [18] and contrast with the decidability of FO² with counting quantifiers (C²) [17, 23, 26] and modulo and ultimately-periodic counting quantifiers [8].

Additionally, we show that the decidability status of GF can be regained if we consider GF², i.e. the intersection of GF and FO², which is still a relevant fragment of FO that captures standard description logics up to ALCIHB[bf] [5, 14]. We in fact show a stronger result here: GF² remains decidable when extended with local Presburger quantifiers, which are essentially Presburger constraints on the neighbouring elements, e.g. we can say that the number of red outgoing edges plus twice the number of blue outgoing edges is at least three times as many as the number of green incoming edges.

We stress here that the semantics of global percentage quantifiers makes sense only over finite domains and hence, we study the satisfiability problem over finite models only. Similarly, the semantics of local percentage quantifiers only makes sense if the models are finitely-branching. While we stick again to the finite structures, our results on local percentage quantifiers also can be transferred to the case of (possibly infinite) finitely-branching structures.

Related works. Some restricted fragments of GF² extended with arithmetics, namely the (multi) modal logics, were already studied in the literature [11, 20, 2, 4], where the decidability results for their finite and unrestricted satisfiability were obtained. However, the logics considered there do not allow the use of the inverse of relations. Since GF² captures the extensions of all the aforementioned logics with the inverse relations, our decidability results subsume those in [11, 20, 2, 4]. We note that prior to our paper, it was an open question whether any of these decidability results still hold when inverse relations are allowed [4]. In our approach, despite the obvious difference in expressive power, we show that GF² with Presburger quantifiers can be encoded directly into the two-variable logic with counting quantifiers [17, 23, 26], which we believe is relatively simple and avoids cumbersome reductions of the satisfiability problem into integer programming.

2 Preliminaries

We employ the standard terminology from finite model theory [21]. We refer to structures/-models with calligraphic letters A, B, M and to their universes with the corresponding capital letters A, B, M. We work only on structures with finite universes over purely relational (i.e.
constant- and function-free) signatures of arity ≤ 2 containing the equality predicate \equiv. We usually use a, b, \ldots to denote elements of structures, \bar{a}, \bar{b}, \ldots for tuples of elements, x, y, \ldots for variables and \bar{x}, \bar{y}, \ldots for tuples of variables (all of these possibly with some decorations). We write $\varphi(\bar{x})$ to indicate that all free variables of φ are in \bar{x}. We write $\mathcal{M}, x/a \models \varphi(x)$ to denote that $\varphi(x)$ holds in the structure \mathcal{M} when the free variable x is assigned with element a. Its generalization to arbitrary number of free variables is defined similarly. The (finite) satisfiability problem is to decide whether an input formula has a (finite) model.

2.1 Percentage quantifiers

For a formula $\varphi(x)$ with a single free-variable x, we write $|\varphi(x)|_\mathcal{M}$ to denote the total number of elements of \mathcal{M} satisfying $\varphi(x)$. Likewise, for an element $a \in \mathcal{M}$ and a formula $\varphi(x, y)$ with free variables x and y, we write $|\varphi(x, y)|_\mathcal{M}^{x/a}$ to denote the total number of elements $b \in \mathcal{M}$ such that (a, b) satisfies $\varphi(x, y)$.

The percentage quantifiers are quantifiers of the form $\exists q\% x \varphi(x, y)$, where q is a rational number between 0 and 100, stating that exactly $q\%$ of domain elements satisfy $\varphi(x, y)$ with y known upfront. Formally:

$$\mathcal{M}, y/a \models \exists q\% x \varphi(x, y) \quad \text{iff} \quad |\varphi(x, y)|_\mathcal{M}^{x/a} = \frac{q}{100} \cdot |\mathcal{M}|.$$

Percentage quantifiers for other thresholds (e.g. for $<$) are defined analogously. We stress here that the above quantifiers count *globally*, i.e. they take the whole universe of \mathcal{M} into account. This motivates us to define their local counterpart, as follows: for a binary relation R and a rational q between 0 and 100, we define the quantifier $\exists_R^{q\%} y \varphi(x, y)$, which evaluates to true whenever exactly $q\%$ of R-successors y of x satisfy $\varphi(x, y)$. Formally,

$$\mathcal{M}, x/a \models \exists_R^{q\%} y \varphi(x, y) \quad \text{iff} \quad |R(x, y) \land \varphi(x, y)|_\mathcal{M}^{x/a} = \frac{q}{100} \cdot |R(x, y)|_\mathcal{M}^{x/a}.$$

We define the percentage quantifiers w.r.t. R^- (i.e. the inverse of R) and for other thresholds analogously.

2.2 Local Presburger quantifiers

The local Presburger quantifiers are expressions of the following form:

$$\sum_{i=1}^{n} \lambda_i \cdot \#^r_y [\varphi_i(x, y)] \oplus \delta$$

where λ_i, δ are integers; r_i is either R or R^- for some binary relation R; $\varphi_i(x, y)$ is a formula with free variables x and y; and \oplus is one of $=, \neq, \leq, \geq, <, >, \equiv_d$ or $\not\equiv_d$, where $d \in \mathbb{N}_+$. Here \equiv_d denotes the congruence modulo d. Note that the above formula has one free variable x.

Intuitively, the expression $\#^r_y [\varphi_i(x, y)]$ denotes the number of y’s that satisfy $r_i(x, y) \land \varphi_i(x, y)$ and evaluates to true on x, if the (in)equality \oplus holds. Formally,

$$\mathcal{M}, x/a \models \sum_{i=1}^{n} \lambda_i \cdot \#^r_y [\varphi_i(x, y)] \oplus \delta \quad \text{iff} \quad \sum_{i=1}^{n} \lambda_i \cdot |r_i(x, y) \land \varphi_i(x, y)|_\mathcal{M}^{x/a} \oplus \delta$$

Note that local percentage quantifiers can be expressed with Presburger quantifiers, e.g. $\exists_R^{50\%} y \varphi(x, y)$ can be expressed as local Presburger quantifier: $\#^R_y [\varphi(x, y)] - \frac{1}{2} \#^R_y [\top] = 0$.

1 Local percentage quantifiers for predicates of arity higher than two can also be defined but we will never use them. Hence, for simplicity, we define such quantifiers only for binary relations.
2.3 Logics

In this paper we mostly consider two fragments of first-order logic, namely the two-variable fragment \(\text{FO}^2 \) and the guarded fragment \(\text{GF} \). The former logic is a fragment of \(\text{FO} \) in which we can only use the variables \(x \) and \(y \). By allowing local and global percentage quantifiers in addition to the standard universal and existential quantifiers, we obtain the logics \(\text{FO}^2_{\text{LOC}} \) and \(\text{FO}^2_{\text{GL}} \). The latter logic is defined by relativising quantifiers with relations. More formally, \(\text{GF} \) is the smallest set of first-order formulae such that the following holds.

- \(\text{GF} \) contains all atomic formulae \(R(\vec{x}) \) and equalities between variables.
- \(\text{GF} \) is closed under boolean connectives.
- If \(\psi(\vec{x}, \vec{y}) \) is in \(\text{GF} \) and \(\gamma(\vec{x}, \vec{y}) \) is a relational atom containing all free variables of \(\psi \), then both \(\forall \vec{y} \, \gamma(\vec{x}, \vec{y}) \rightarrow \psi(\vec{x}, \vec{y}) \) and \(\exists \vec{y} \, \gamma(\vec{x}, \vec{y}) \land \psi(\vec{x}, \vec{y}) \) are in \(\text{GF} \).

By allowing global percentage quantifiers additionally in place of existential ones, we obtain the logic \(\text{GF}_{\text{GL}} \). We obtain the logic \(\text{GF}_{\text{LOC}} \) by extending \(\text{GF} \)’s definition with the rule:

- \(\exists_{\text{R}}^{x\%} y \, \varphi(x, y) \) is in \(\text{GF}_{\text{LOC}} \) iff \(\varphi(x, y) \) in \(\text{GF} \) with free variables \(x, y \).

Similarly, we obtain \(\text{GF}_{\text{PRE}} \) by extending \(\text{GF} \)’s definition with the rule:

- \(\sum_{i=1}^{n} \lambda_i \cdot \#_{y_i}^{x\%}(\varphi_i(x, y)) \oplus \delta \) is in \(\text{GF}_{\text{PRE}} \) iff \(\varphi_i(x, y) \) are in \(\text{GF} \) with free variables \(x, y \).

Finally, we use \(\text{GF}_{\text{GL}}, \text{GF}_{\text{LOC}} \) and \(\text{GF}_{\text{PRE}} \) to denote the \(k \)-variable fragments of the mentioned logics. Specifically, we use \(\text{GF}_{\text{GL}}^k, \text{GF}_{\text{LOC}}^k \) and \(\text{GF}_{\text{PRE}}^k \) for the two-variable fragments.

2.4 Semi-linear sets

Since we will exploit the semi-linear characterization of Presburger constraints, we introduce some terminology. The term vector always means row vectors. For vectors \(\vec{v}_0, \vec{v}_1, \ldots, \vec{v}_k \in \mathbb{N}^d \), we write \(L(\vec{v}_0; \vec{v}_1, \ldots, \vec{v}_k) \) to denote the set:

\[
L(\vec{v}_0; \vec{v}_1, \ldots, \vec{v}_k) := \left\{ \vec{u} \in \mathbb{N}^d \mid \vec{u} = \vec{v}_0 + \sum_{i=1}^{k} n_i \vec{v}_i \text{ for some } n_1, \ldots, n_k \in \mathbb{N} \right\}
\]

A set \(S \subseteq \mathbb{N}^d \) is a linear set, if \(S = L(\vec{v}_0; \vec{v}_1, \ldots, \vec{v}_k) \), for some \(\vec{v}_0, \vec{v}_1, \ldots, \vec{v}_k \in \mathbb{N}^d \). In this case, the vector \(\vec{v}_0 \) is called the offset vector of \(S \), and \(\vec{v}_1, \ldots, \vec{v}_k \) are called the period vectors of \(S \). We denote by \(\text{offset}(S) \) the offset vector of \(S \), i.e. \(\vec{v}_0 \) and \(\text{prd}(S) \) the set of period vectors of \(S \), i.e. \(\{ \vec{v}_1, \ldots, \vec{v}_k \} \). A semilinear set is a finite union of linear sets.

The following theorem is a well-known result by Ginsburg and Spanier [13] which states that every set \(S \subseteq \mathbb{N}^d \) definable by Presburger formula is a semilinear set. See [13] for the formal definition of Presburger formula.

> **Theorem 1** ([13]). For every Presburger formula \(\varphi(x_1, \ldots, x_t) \) with free variables \(x_1, \ldots, x_t \), the set \(\{ \vec{u} \in \mathbb{N}^d \mid \varphi(\vec{u}) \text{ holds in } \mathbb{N} \} \) is semilinear. Moreover, given the formula \(\varphi(x_1, \ldots, x_t) \), one can effectively compute a set of tuples of vectors \(\{(\vec{v}_{1,0}, \ldots, \vec{v}_{1,k_1}), \ldots, (\vec{v}_{p,0}, \ldots, \vec{v}_{p,k_p})\} \) such that \(\{ \vec{u} \in \mathbb{N}^d \mid \varphi(\vec{u}) \text{ holds in } \mathbb{N} \} \) is equal to \(\bigcup_{i=1}^{p} L(\vec{v}_{i,0}; \vec{v}_{i,1}, \ldots, \vec{v}_{i,k_i}) \).

\[2\] Note that \(R \) in the subscript of a quantifier serves the role of a “guard”.
2.5 Types and neighbourhoods

A 1-type over a signature Σ is a maximally consistent set of unary predicates from Σ or their negations, where each atom uses only one variable x. Similarly, a 2-type over Σ is a maximally consistent set of binary predicates from Σ or their negations containing the atom $x \neq y$, where each atom or its negation uses two variables x and y.

Note that 1-types and 2-types can be viewed as quantifier-free formulae that are the conjunction of their elements. We will use the symbols π and η (possibly indexed) to denote 1-type and 2-type, respectively. When viewed as formula, we write $\pi(x)$ and $\eta(x, y)$, respectively. We write $\pi(y)$ to denote formula $\pi(x)$ with x being substituted with y. The 2-type that contains only the negations of atomic predicates is called the null type, denoted by η_{null}. Otherwise, it is called a non-null type.

For a Σ-structure \mathcal{M}, the type of an element $a \in M$ is the unique 1-type π that a satisfies in \mathcal{M}. Similarly, the type of a pair $(a, b) \in M \times M$, where $a \neq b$, is the unique 2-type that (a, b) satisfies in \mathcal{M}. For an element $a \in M$, the η-neighbourhood of a, denoted by $\mathcal{N}_{\mathcal{M}, \eta}(a)$, is the set of elements b such that η is the 2-type of (a, b). Formally,

$$\mathcal{N}_{\mathcal{M}, \eta}(a) := \{ b \in M \mid \mathcal{M}, x/a, y/b \models \eta(x, y) \}.$$

The η-degree of a, denoted by $\deg_{\mathcal{M}, \eta}(a)$, is the cardinality of $\mathcal{N}_{\mathcal{M}, \eta}(a)$.

Let η_1, \ldots, η_r be an enumeration of all the non-null types. The degree of a in \mathcal{M} is defined as the vector $\deg_{\mathcal{M}}(a) := (\deg_{\mathcal{M}, \eta_1}(a), \ldots, \deg_{\mathcal{M}, \eta_r}(a))$. Intuitively, $\deg_{\mathcal{M}}(a)$ counts the number of elements adjacent to a with non-null type. We note that our logic can be easily extended with atomic predicates of the form of a linear constraint C over the variables $\deg_{\eta_i}(x)$’s or $\deg(x) \in S$, where S is a semilinear set. Semantically, $\mathcal{M}, x/a \models C$ if the linear constraint C evaluates to true when each $\deg_{\eta_i}(x)$ is substituted with $\deg_{\mathcal{M}, \eta_i}(a)$ and $\mathcal{M}, x/a \models \deg(x) \in S$ if $\deg_{\mathcal{M}}(a) \in S$. We stress that these atomic predicates will only be used to facilitate the proof of our decidability result.

3 Negative results

In this section we turn our attention to the negative results announced in the introduction.

3.1 Two-Variable Fragment

We start by proving that the two-variable fragment of FO extended with percentage quantification has undecidable finite satisfiability problem. Actually, in our proof, we will only use the $\exists^{=50\%}$ quantifier. Our results strengthen the existing undecidability proofs of \mathcal{ALC}_{TSCC}^+ from [4] and of FO^Σ with equicardinality statements (implemented via the Hártig quantifier) from [18]. Roughly speaking, our counting mechanism is weaker: we cannot write arbitrary Presburger constraints (as it is done in [4]) nor compare sizes of any two sets (as it is done in [18]). Nevertheless, we will see that in our framework we can express “functionality” of a binary relation and “compare” cardinalities of sets, but under some technical assumptions of dividing the intended models into halves. Due to such technicality, we cannot simply encode the undecidability proofs of [4, 18] and we need to prepare our proof “from scratch”.

3 We should remark here that the standard definition of 2-type, such as in [16, 26], a 2-type also contains unary predicates or its negation involving variable x or y. However, for our purpose, it is more convenient to define a 2-type as consisting of only binary predicates that strictly use both variables x and y. Note also that we view a binary predicate such as $R(x, x)$ as a unary predicate.
Our proof relies on encoding of Hilbert’s tenth problem, whose simplified version is introduced below. In the classical version of Hilbert’s tenth problem we ask whether a diophantine equation, i.e. a polynomial equation with integer coefficients, has a solution over \(\mathbb{N} \). It is well-known that such problem is undecidable [22]. By employing some routine transformations (e.g. by rearranging terms with negative coefficients, by replacing exponentiation by multiplication and by introducing fresh variables for partial results of multiplications or addition), one can reduce any diophantine equation to an equi-solvable system of equations, where the only allowed operations are addition or multiplication of two variables or assigning the value one to some of them. We refer to the problem of checking solvability (over \(\mathbb{N} \)) of such systems of equations as SHTP (simpler Hilbert’s tenth problem) and present its precise definition next. Note that, by the described reduction, SHTP is undecidable.

Definition 2 (SHTP). An input of SHTP is a system of equations \(\varepsilon \), where each of its entries \(\varepsilon_i \) is in one of the following forms: (i) \(u_i = 1 \), (ii) \(u_i = v_i + w_i \), (iii) \(u_i = v_i \cdot w_i \), where \(u_i, v_i, w_i \) are pairwise distinct variables from some countably infinite set \(\text{Var} \). In SHTP we ask whether an input system of equations \(\varepsilon \), as described before, has a solution over \(\mathbb{N} \).

3.1.1 Playing with percentage quantifiers

Before reducing SHTP to \(\text{FO}^{2}_{gl\%} \), let us gain more intuitions of \(\text{FO}^{2}_{gl\%} \) and introduce a useful trick employing percentage quantifiers to express equi-cardinality statements. Let \(\mathcal{M} \) be a finite structure and let \(\text{Half} \), \(R \), \(J \) be unary predicates. We say that \(\mathcal{M} \) is (\(\text{Half}, R, J \))-separated whenever it satisfies the following conditions: (a) exactly half of the domain elements from \(\mathcal{M} \) satisfy \(\text{Half} \) (b) the satisfaction of \(R \) implies the satisfaction of \(\text{Half} \) (c) the satisfaction of \(J \) implies the non-satisfaction of \(\text{Half} \). Roughly speaking, the above conditions entail that the elements satisfying \(R \) and those satisfying \(J \) are in different halves of the model. We show that under these assumptions one can enforce the equality \(|R(x)|_{\mathcal{M}} = |J(x)|_{\mathcal{M}} \). Indeed, such a property can be expressed in \(\text{FO}^{2}_{gl\%} \) with the following formula \(\varphi_{eq}(\text{Half}, R, J): \)

\[
\mathcal{A} := \begin{array}{c}
\text{Half} \\
\text{R} \\
\neg\text{Half} \\
\text{J}
\end{array}
\models \varphi_{eq}(\text{Half}, R, J) := \exists x = 50\% x \ (\text{Half}(x) \land \neg R(x)) \lor J(x)
\]

For intuitions on \(\varphi_{eq}(\text{Half}, R, J) \), consult the above picture. We basically take all the elements satisfying \(\text{Half} \) (so exactly half of the domain elements, indicated by the green area) and replace them with the elements satisfying \(R \) (the red circle, note that \(J^\mathcal{A} \) and \(R^\mathcal{A} \) are disjoint!). The total number of selected elements is equal to half of the domain, thus \(|J^\mathcal{M}| = |R^\mathcal{M}| \). The following fact is a direct consequence of the semantics of \(\text{FO}^{2}_{gl\%} \).

Fact 1. For (\(\text{Half}, R, J \))-separated \(\mathcal{M} \) we have \(\mathcal{M} \models \varphi_{eq}(\text{Half}, R, J) \) iff \(|R(x)|_{\mathcal{M}} = |J(x)|_{\mathcal{M}} \).

3.1.2 Undecidability proof

Until the end of this section, let us fix \(\varepsilon \), a valid input of SHTP. By \(\text{Var}(\varepsilon) = \{u, v, w, \ldots\} \) we denote the set of all variables appearing in \(\varepsilon \), and with \(|\varepsilon| \) we denote the total number of entries in \(\varepsilon \). Let \(\mathcal{M} \) be a finite structure.

The main idea of the encoding is fairly simple: in the intended model \(\mathcal{M} \) some elements will be labelled with \(A_u \) predicates, ranging over variables \(u \in \text{Var}(\varepsilon) \), and the number of such elements will indicate the value of \(u \) in an example solution to \(\varepsilon \). The only tricky part
here is to encode multiplication of variables. Once ε contains an entry $w = u \cdot v$, we need to ensure that $|A_u(x)|_M = |A_u(x)\cdot A_v(x)|_M$ holds. It is achieved by linking, via a binary relation Mult^M, each element from A^M_u with exactly $|A_v(x)|_M$ elements satisfying A_u, which relies on imposing equi-cardinality statements. To ensure that the performed multiplication is correct, each element labelled with A^M_w has exactly one predecessor from A^M_u and hence the relation Mult^M is backward-functional.

We start with a formula inducing a labelling of elements with variable predicates and ensuring that all elements of M satisfy at most one variable predicate. Note that it can happen that there will be auxiliary elements that are not labelled with any of the variable predicates.

$$\forall x \bigwedge_{u \neq v \in \text{Var}(\varepsilon)} \neg(A_u(x) \land A_v(x)).$$

We now focus on encoding the entries of ε. For an entry ε_i of the form $u_i = 1$ we write:

$$\exists x A_u(x) \land \forall x \forall y \big(A_u(x) \land A_u(y) \big) \rightarrow x = y$$

Fact 2. $M \models \varphi_{u_i=1}$ holds iff there is exactly one element in M satisfying $A_u(x)$.

To deal with entries ε_i of the form $w_i = u_i + v_i$ or $w_i = u_i \cdot v_i$ we need to “prepare an area” for the encoding, similarly to Section 3.1.1. First, we cover domain elements of M by layers. The i-th layer is divided into halves with F_{Half}^i and S_{Half}^i predicates with:

$$\forall x \big(F_{\text{Half}}^i(x) \leftrightarrow \neg S_{\text{Half}}^i(x) \big) \land \exists x F_{\text{Half}}^i(x)$$

Fact 3. $M \models \varphi_{\text{Halves}}^i$ holds iff exactly half of the domain elements from M are labelled with F_{Half}^i and the other half of elements are labelled with S_{Half}^i.

Second, we need to ensure that in the i-th layer of M, the elements satisfying A_{u_i} or A_{v_i} are in the first half, whereas elements satisfying A_{w_i} are in the second half. We do it with:

$$\forall x \big([A_{u_i}(x) \lor A_{v_i}(x)] \rightarrow F_{\text{Half}}^i(x) \big) \land [A_{w_i}(x) \rightarrow S_{\text{Half}}^i(x)]$$

Fact 4. $M \models \varphi_{\text{Part}}(u_i, v_i, w_i)$ holds iff for all elements $a \in M$, if a satisfies $A_{u_i}(x) \lor A_{v_i}(x)$ then a also satisfies $F_{\text{Half}}^i(x)$ and if a satisfies $A_{w_i}(x)$ then a also satisfies $S_{\text{Half}}^i(x)$.

Gathering the presented formulae, we call a structure M well-prepared, if it satisfies the conjunction of all previous formulae over $1 \leq i \leq |\varepsilon|$ and over all entries ε_i from the system ε. The forthcoming encodings will be given under the assumption of well-preparedness.

Now, for the encoding of addition, assume that ε_i is of the form $u_i + v_i = w_i$. Thus in our encoding, we would like to express that $|A_u(x)|_M + |A_v(x)|_M = |A_w(x)|_M$, which is clearly equivalent to $|A_u(x)|_M - |A_u(x)|_M - |A_v(x)|_M = 0$ and also to $|A_u(x)|_M + \neg F_{\text{Half}}^i(x)|_M - |A_u(x)|_M - |A_v(x)|_M = \neg F_{\text{Half}}^i(x)|_M$. Knowing that exactly 50% of domain elements of an intended model satisfy $F_{\text{Half}}^i(x)$ and that A_{u_i}, A_{v_i} and A_{w_i} label disjoint parts of the model, we can write the obtained equation as an FO_{2^3}^x formula:

$$\exists x F_{\text{Half}}^i(x) \lor (\neg F_{\text{Half}}^i(x) \land \neg A_{u_i}(x) \land \neg A_{v_i}(x))$$

Note that the above formula is exactly the $\varphi_{\text{eq}}(\text{Half}, R, J)$ formula from Section 3.1.1, with $\text{Half} = F_{\text{Half}}^i(x)$, $J = A_{w_i}$ and R defined as a union of A_{u_i} and A_{v_i}. Hence, we conclude:

Lemma 3. A well-prepared M satisfies $\varphi_{\text{add}}(u_i, v_i, w_i)$ iff $|A_u(x)|_M + |A_v(x)|_M = |A_w(x)|_M$.
The only missing part is the encoding of multiplication. Take ε_i of the form $u_i \cdot v_i = w_i$. As already described in the overview, our definition of multiplication requires three steps:

- **link** A binary relation Mult_{i}^M links each element from $A^M_{u_i}$ to some element from $A^M_{w_i}$.
- **count** Each element from M satisfying $A_{u_i}(x)$ has exactly $|A_{v_i}(x)|^M_{i}$ Mult_{i}^M-successors.
- **bfunc** The binary relation Mult_{i}^M is backward-functional.

Such properties can be expressed with the help of $\exists = 50\%$ quantifier, as presented below:

\[
\varphi^i_{\text{link}}(u_i, w_i) \Rightarrow \forall y A_{w_i}(y) \rightarrow \exists x \text{ Mult}_{i}(x, y) \land \forall x \forall y \text{ Mult}_{i}(x, y) \rightarrow (A_{u_i}(x) \land A_{w_i}(y))
\]
\[
\varphi^i_{\text{count}}(u_i, v_i, w_i) \Rightarrow \forall x A_{u_i}(x) \rightarrow \exists = 50\% y \left([\text{SHalf}^i(y) \land \neg \text{Mult}_{i}(x, y)] \lor A_{v_i}(y) \right)
\]
\[
\varphi^i_{\text{bfunc}}(u_i, v_i, w_i) \Rightarrow \forall x A_{w_i}(x) \rightarrow \exists = 50\% y \left([\text{SHalf}^i(y) \land x \neq y] \lor \text{ Mult}_{i}(y, x) \right)
\]

While the first formula, namely $\varphi^i_{\text{link}}(u_i, w_i)$, is immediate to write, the next two are more involved. A careful reader can notice that they are actually instances of $\varphi_{eq}(\text{Half}, R, J)$ formula from Section 3.1.1. In the case of $\varphi^i_{\text{count}}(u_i, v_i, w_i)$ we have $\text{Half} = \text{SHalf}^i$, $J = A_{v_i}$ and the Mult_i-successors of x play the role of elements labelled by R. For the last formula one can see that we remove exactly one element from SHalf^i (y that is equal to x) and we replace it with the Mult_i-predecessors of x, which implies that there is the unique such predecessor. We summarise the mentioned facts as follows:

\begin{itemize}
 \item \textbf{Lemma 4.} Let M be a well-prepared structure satisfying $\varphi^i_{\text{link}}(u_i, w_i)$. We have that (i) M satisfies $\varphi^i_{\text{count}}(u_i, v_i, w_i)$ iff every $a \in M$ satisfying A_{u_i} is connected via Mult_i to exactly $|A_{v_i}|$ elements satisfying A_{u_i}, and (ii) M satisfies $\varphi^i_{\text{bfunc}}(u_i, v_i, w_i)$ iff the binary relation Mult_{i}^M linking elements satisfying $A_{u_i}(x)$ with those satisfying $A_{w_i}(x)$ is backward-functional.
\end{itemize}

Putting the last three properties together, we encode multiplication as their conjunction:

\[
\varphi^i_{\text{mult}}(u_i, v_i, w_i) = \varphi^i_{\text{link}}(u_i, v_i, w_i) \land \varphi^i_{\text{count}}(u_i, v_i, w_i) \land \varphi^i_{\text{bfunc}}(u_i, v_i, w_i)
\]

\begin{itemize}
 \item \textbf{Lemma 5.} If a well-prepared M satisfies $\varphi^i_{\text{mult}}(u_i, v_i, w_i)$, then $|A_{u_i}(x)|_M \cdot |A_{v_i}(x)|_M = |A_{w_i}(x)|_M$.
\end{itemize}

Let φ^i_{red} be φ^i_{var} supplemented with a conjunction of formulae $\varphi^{\varepsilon_i}_{\text{entry}}$, where $\varphi^{\varepsilon_i}_{\text{entry}}$ is respectively: (i) $\varphi^i_{\text{entry}1} = 1$ if ε_i is equal to 1, (ii) $\varphi^{\varepsilon_i}_{\text{halves}} \land \varphi^{\varepsilon_i}_{\text{parti}}(u_i, v_i, w_i)$ for ε_i of the form $u_i \cdot v_i = w_i$, and (iii) $\varphi^{\varepsilon_i}_{\text{halves}} \land \varphi^{\varepsilon_i}_{\text{parti}}(u_i, v_i, w_i)$ for ε_i of the form $u_i \cdot v_i = w_i$. As the last piece in the proof we show that each solution of the system ε corresponds to some model of φ^i_{red}. Its proof is routine and relies on the correctness of all previously announced facts (consult [7, Appendix B] for more details). Hence, by the undecidability of SHTP, we immediately conclude:

\begin{itemize}
 \item \textbf{Theorem 6.} The finite satisfiability problem for $\text{FO}^2_{\exists = 50\%}$ is undecidable, even when the only percentage quantifier allowed is $\exists = 50\%$.
\end{itemize}

Note that in our proof above, all the presented formulas can be easily transformed to formulae under the local semantics of percentage quantifiers as follows. First, we introduce a fresh binary symbol U and enforce it to be interpreted as the universal relation with $\forall x \forall y (U(x, y))$. Then, we replace every occurrence of $\exists = 50\%_x \varphi$ by $\exists = 50\%_x \varphi$. Obviously, the resulting formula is FO^2 formula with local percentage quantifiers. Thus we conclude:

\begin{itemize}
 \item \textbf{Corollary 7.} The finite satisfiability problem for $\text{FO}^2_{\text{loc}=50\%}$ is undecidable.
\end{itemize}
3.2 Guarded Fragment

We now focus on the second seminal fragment of \(\text{FO} \) considered in this paper, namely on the guarded-fragment \(\text{GF} \). We start from the global semantics of percentage quantifiers. Consider a unary predicate \(H \), whose interpretation is constrained to label exactly half of the domain with \(\exists^=50\% x \ H(x) \). We then employ the formula

\[
\forall x \ x = x \rightarrow \exists^{=50\%} y [U(x, y) \land H(y)] \land \exists^{=50\%} y [U(x, y) \land \neg H(y)],
\]

whose satisfaction by \(M \) entails that \(U^M \) is the universal relation. Hence, by putting \(U \) as a dummy guard in every formula in the undecidability proof of \(\text{FO}_2^{\text{loc}} \), we conclude:

▶ Corollary 8. The finite satisfiability problem for \(\text{GF}_{\text{gl}}^{\%} \) is undecidable, even when restricted to its two-variable fragment \(\text{GF}_2^{\text{gl}}^{\%} \).

It turns out that the undecidability still holds for \(\text{GF} \) once we switch from the global to the local semantics of percentage counting. In order to show it, we present a reduction from \(\text{GF}^3[F] \) (i.e. the three-variable fragment of \(\text{GF} \) with a distinguished binary \(F \) interpreted as a functional relation), whose finite satisfiability was shown to be undecidable in [15].

▶ Theorem 9. The finite satisfiability problem for \(\text{GF}_{\text{loc}}^{\%} \) (and even \(\text{GF}_3^{\%} \)) is undecidable.

Proof sketch. By reduction from \(\text{GF}^3[F] \) it suffices to express that \(F \) is functional. Let \(H, R \) be fresh binary relational symbols. We use a similar trick to the one from Section 3.1.1, where \(H(x, \cdot) \) plays the role of \(\text{Half} \) (note that \(H \) may induce different partitions for different \(x \)), \(R(\cdot, y) \) plays the role of \(R \) and \(y \) in \(x = y \) plays the role of \(J \).

The functionality of \(F \) can be expressed with:

\[
\varphi_{\text{func}} := \forall x \ x = x \rightarrow [(\forall y \ F(x, y) \rightarrow R(x, y)) \land (\exists^{=50\%} y \ H(x, y)) \land \\
(\forall y \ F(x, y) \rightarrow (\neg H(x, y) \lor x = y)) \land (\exists^{=50\%} y \ ((H(x, y) \land x \neq y) \lor F(x, y)))]
\]

In the appendix we will show that if \(M \models \varphi_{\text{func}} \) then \(F \) is indeed functional and every structure \(M \) with functional \(F \) can be extended by \(H \) and \(R \), such that \(\varphi_{\text{func}} \) holds. ◀

The similar proof techniques do not work for \(\text{GF}^2 \), since \(\text{GF}^2 \) with counting is decidable [27]. Thus, in the forthcoming section we show that decidability status transfers not only to \(\text{GF}^2 \) with percentage counting, but also with Presburger arithmetic. This can be then applied to infer decidability of several modal and description logics, see [7, Appendix A].

4 Positive results

We next show that the finite satisfiability problem for \(\text{GF}_2^{\text{pres}} \) is decidable, as stated below.

▶ Theorem 10. The finite satisfiability problem for \(\text{GF}_2^{\text{pres}} \) is decidable.

It is also worth pointing out that Theorem 10 together with a minor modification of existing techniques [3] yields decidability of conjunctive query entailment problem for \(\text{GF}_2^{\text{pres}} \), i.e. a problem of checking if an existentially quantified conjunction of atoms is entailed by \(\text{GF}_2^{\text{pres}} \) formula. This is a fundamental object of study in the area of logic-based knowledge representation. All the proofs and appropriate definitions are moved to [7, Appendix D].

▶ Theorem 11. Finite conjunctive query entailment for \(\text{GF}_2^{\text{pres}} \) is decidable.
The rest of this section will be devoted to the proof of Theorem 10, which goes by reduction to the two-variable fragment of FO with counting quantifiers \exists^k, $\exists^\leq k$ for $k \in \mathbb{N}$ with their obvious semantics. Since the finite satisfiability of C^2 is decidable [26], Theorem 10 follows.4

\subsection{Transforming $\text{GF}^2_{\text{pres}}$ formulae into C^2}

It is convenient to work with formulae in the appropriate normal form. Following a routine renaming technique (see e.g. [19]) we can convert in linear time a $\text{GF}^2_{\text{pres}}$ formula into the following equisatisfiable normal form (over an extended signature):

$$
\Psi_0 := \forall x \gamma(x) \land \bigwedge_{i=1}^{n} \left(\forall x \forall y \, e_i(x, y) \rightarrow \alpha_i(x, y) \right) \land \forall x \left(\sum_{j=1}^{m} \lambda_{i,j} \cdot \#_{\eta}^{i,j} [x \neq y] \oplus \delta_j \right),
$$

where $\gamma(x)$ and each $\alpha_i(x, y)$ are quantifier-free formulae, each $e_i(x, y)$ is atomic predicate and all $\lambda_{i,j}$’s and δ_j’s are integers, and \oplus is as in Section 2.2.

Then, for every non-null type η, we replace each of the expressions $\#_{\eta}^{i,j} [x \neq y]$ with the sum of all the degrees $\deg_{\eta}(x)$ with η containing $r_{i,j}(x, y)$, i.e. the sum $\sum_{r_{i,j}(x, y) \in \eta} \deg_{\eta}(x)$. Moreover, since $\land \land$ commutes, we obtain the following formula:

$$
\Psi' := \forall x \gamma(x) \land \bigwedge_{i=1}^{n} \left(\forall x \forall y \, e_i(x, y) \rightarrow \alpha_i(x, y) \right) \land \forall x \left(\sum_{j=1}^{m} \lambda_{i,j} \cdot \sum_{r_{i,j}(x, y) \in \eta} \deg_{\eta}(x) \oplus \delta_j \right)
$$

Note that the conjunction $\bigwedge_{i=1}^{n} \left(\sum_{j=1}^{m} \lambda_{i,j} \cdot \sum_{r_{i,j}(x, y) \in \eta} \deg_{\eta}(x) \oplus \delta_j \right)$ is a Presburger formula with free variables $\deg_{\eta}(x)$’s, for every non-null type η.5 Thus, by Theorem 1, we can compute a set of tuples of vectors $\{(\bar{v}_{1,0}, \bar{c}_{1,1}, \ldots, \bar{v}_{1,k_1}), \ldots, (\bar{v}_{p,0}, \bar{v}_{p,1}, \ldots, \bar{v}_{p,k_p})\}$ and further rewrite Ψ' into the following formula:

$$
\Psi = \forall x \gamma(x) \land \bigwedge_{i=1}^{n} \left(\forall x \forall y \, e_i(x, y) \rightarrow \alpha_i(x, y) \right) \land \forall x \deg(x) \in S
$$

where $S = \bigcup_{i=1}^{p} L(\bar{v}_{i,0}; \bar{c}_{i,1}, \ldots, \bar{c}_{i,k_i})$. We stress that technically Ψ is no longer in $\text{GF}^2_{\text{pres}}$.

In the following we will show how to transform Ψ into a C^2 formula Ψ^* such that they are (finitely) equi-satisfiable. For every $i = 1, \ldots, p$, let $S_i = L(\bar{v}_{i,0}; \bar{v}_{i,1}, \ldots, \bar{v}_{i,k_i})$. Recall that $\text{offset}(S_i)$ is the offset vector $\bar{v}_{i,0}$ and $\text{prd}(S_i)$ is the set of periodic vectors of S_i, i.e. $\{\bar{v}_{i,1}, \ldots, \bar{v}_{i,k_i}\}$. Consider the following formulae ξ and ϕ.

$$
\xi := \forall x \bigvee_{i=1}^{p} \deg(x) = \text{offset}(S_i) \lor \deg(x) \in \text{prd}(S_i), \quad \phi := \forall x \bigwedge_{i=1}^{p} \deg(x) \neq \text{offset}(S_i) \rightarrow \exists y \varphi(x, y)
$$

where $\varphi(x, y)$ is the conjunction expressing the following properties:

\begin{itemize}
 \item The 1-types of x and y equal. It can be expressed with the formula $\bigwedge U \, U(x) \leftrightarrow U(y)$, where U ranges over unary predicates appearing in Ψ.
 \item $\deg(x) \in \text{prd}(S_j)$ and $\deg(y) = \text{offset}(S_j)$ for some $1 \leq j \leq p$.
\end{itemize}

4 Note that we propose a reduction into C^2, not into the \textit{guarded} C^2, which might seem to be more appropriate. As we will see soon, a bit of non-guarded quantification is required in our proof.5 Technically speaking, in the standard definition of Presburger formula, the equality $f \equiv_d g$ is not allowed. However, it can be rewritten as $\exists x_1 \exists x_2 (f + x_1 d = g + x_2 d)$. \hfill \square
Note that $\deg(x) = \text{offset}(S_i)$ can be written as a C^2 formula. For example, if $\bar{v}_{i,0} = (d_1, \ldots, d_t)$, it is written as $\land_{j=1}^{t} \exists y \eta_j(x, y)$. We can proceed with $\deg(x) \in \text{prd}(S_i)$ similarly, since $\text{prd}(S_i)$ contains only finitely many vectors. Finally, we put Ψ^* to be

$$\Psi^* := \forall x \gamma(x) \land \land_{i=1}^{n} \forall x \forall y \, \epsilon_i(x, y) \rightarrow \alpha_i(x, y) \land \xi \land \phi.$$

We will show that Ψ and Ψ^* are finitely equi-satisfiable, as stated formally below.

Lemma 12. Ψ is finitely satisfiable if and only if Ψ^* is.

We delegate the proof of Lemma 12 to the next section. We conclude by stating that the complexity of our decision procedure is 3NExpTime. For more details of our analysis, see Section 4.3. Note that if we follow the decision procedure described in [13] for converting a system of linear equations to its semilinear set representation we will obtain a non-elementary complexity. This is because we need to perform $k-1$ intersections, where k is the number of linear constraints in the formula Ψ', and the procedure in [13] for handling each intersection yields an exponential blow-up. Instead, we use the results in [12, 25, 10] and obtain the complexity 3NExpTime, which though still high, falls within the elementary class.

4.2 Correctness of the translation

Before we proceed with the proof, we need to define some terminology. Let \mathcal{M} be a finite model. Let $a, b \in A$ be such that the 2-type of (a, b) is η_{null}, i.e. the null-type and that a and b have the same 1-type. Suppose c_1, \ldots, c_s are all elements such that the 2-type of each (a, c_j), denoted by η'_j, is non-null. Likewise, d_1, \ldots, d_t are all the elements such that the 2-type of (b, d_j), denoted by η''_j, is non-null. Moreover, $c_1, \ldots, c_s, d_1, \ldots, d_t$ are pair-wise different.

“Merging” a and b into one new element \hat{a} is defined similarly to the one in the graph-theoretic sense where a and b are merged into \hat{a} such that the following holds:

- The 2-types of each (\hat{a}, c_j) are equal to the original 2-types of (a, c_j), for all $j = 1, \ldots, s$.
- The 2-types of each (\hat{a}, d_j) are equal to the original 2-types of (a, d_j), for all $j = 1, \ldots, t$.
- The 2-types of (\hat{a}, a') is the null type, for every $a' \notin \{c_1, \ldots, c_s, d_1, \ldots, d_t\}$.
- The 1-type of \hat{a} is the original 1-type of a (which is the same as the 1-type of b).

$$\begin{align*}
\begin{array}{c}
a \\
\downarrow \eta'_1 \\
\vdots \\
\downarrow \eta'_s \\
\hat{a} \\
\downarrow \eta''_1 \\
\vdots \\
\downarrow \eta''_t \\
b
\end{array}
\end{align*}$$

Note that we require that the original 2-type of (a, b) is the null type. Thus, after the merging, the degree of \hat{a} is the sum of the original degrees of a and b. Moreover, the 1-type of \hat{a} is the same as the original 1-type of a and b. Thus, if $\forall x \forall y \, \epsilon_i(x, y) \rightarrow \alpha_i(x, y)$ holds in \mathcal{M}, after the merging, it will still hold. Likewise, if $\forall x \gamma(x)$ holds in \mathcal{M}, it will still hold after the merging.

For the inverse, we define the “splitting” of an element \hat{a} into two elements a and b as illustrated above, where the 1-type of a and b is the same as the 1-type of \hat{a} and the 2-type of (a, b) is set to be η_{null}. After the splitting, the sum of the degrees of a and b is the same as the original degree of \hat{a}. Moreover, since the 2-type of (a, b) is η_{null}, $\mathcal{M}, x/a, y/b \not\vDash \epsilon_i(x, y)$. Thus, if $\forall x \forall y \, \epsilon_i(x, y) \rightarrow \alpha_i(x, y)$ holds in the original \mathcal{M}, it will still hold after the splitting.
Lemma 13. If Ψ is finitely satisfiable then Ψ^* is.

Proof. Let \mathcal{M} be a finite model of Ψ. We will construct a finite model $\mathcal{M}^* \models \Psi^*$ by splitting every element in \mathcal{M} into several elements so that their degrees are either one of the offset vectors of S or one of the period vectors.

Let $a \in A$ and $\text{deg}_\mathcal{M}(a) \in S_i$, for some $1 \leq i \leq p$. Suppose $\text{deg}_\mathcal{M}(a) = \bar{v}_{i,0} + \sum_{j=1}^{k_i} n_j \bar{v}_{i,j}$, for some $n_1, \ldots, n_{k_i} \geq 0$. Let $N = 1 + \sum_{j=1}^{k_i} n_j$. We split a into N elements b_1, \ldots, b_N. Let \mathcal{M}^* denote the resulting model after such splitting. Note that it should be finite since the degree of a is finite. It is straightforward to show that $\mathcal{M}^* \models \Psi^*$. ◀

Lemma 14. If Ψ^* is finitely satisfiable then Ψ is.

Proof. Let \mathcal{M}^* be a finite model of Ψ^*. Note that the degree of every element in \mathcal{M}^* is either the offset vector or one of the period vectors of S_i, for some $1 \leq i \leq p$. To construct a finite model $\mathcal{M} \models \Psi$, we can appropriately “merge” elements so that the degree of every element is a vector in S_i, for some $1 \leq i \leq p$.

To this end, we call an element a in \mathcal{M}^* a periodic element, if its degree is not an offset vector of some S_i. Let N be the number of periodic elements in \mathcal{M}^*. We make $3N$ copies of \mathcal{M}^*, which we denote by $\mathcal{M}_{i,j}$, where $0 \leq i \leq 2$ and $1 \leq j \leq N$. Let \mathcal{M} be a model obtained by the disjoint union of all of $\mathcal{M}_{i,j}$’s, where for every b, b' that do not come from the same $\mathcal{M}_{i,j}$, the 2-type of (b, b') is the null-type.

We will show how to eliminate periodic elements in \mathcal{M} by appropriately “merging” its elements. We need the following terminology. Recall that $S = S_1 \cup \cdots \cup S_n$, where each S_i is a linear set. For two vectors \bar{u} and \bar{v}, we say that \bar{u} and \bar{v} are compatible (w.r.t. the semilinear set S), if there is S_i such that \bar{u} is the offset vector of S_i and \bar{v} is one of the period vectors of S_i. We say that two elements a and b in \mathcal{M} are merge-able, if their 1-types are the same and their degrees are compatible.

We show how to merge periodic elements in $\mathcal{M}_{0,j}$, for every $j = 1, \ldots, N$.

- Let b_1, \ldots, b_N be the periodic elements in $\mathcal{M}_{0,j}$.
- For each $l = 1, \ldots, N$, let a_l be an offset element in $\mathcal{M}_{1,l}$ such that every b_l and a_l are merge-able. (Such b_l exists, since \mathcal{M}^* satisfies Ψ^* and each $\mathcal{M}_{i,j}$ is isomorphic to \mathcal{M}^*.)
- Then, merge a_l and b_l into one element, for every $l = 1, \ldots, k$.

See below, for an illustration for the case when $j = 1$.

![Diagram](image)

Obviously, after this merging, there is no more periodic element in $\mathcal{M}_{0,j}$, for every $j = 1, \ldots, N$. We can perform similar merging between the periodic elements in $\mathcal{M}_{1,1} \cup \cdots \cup \mathcal{M}_{1,N}$ and the offset elements in $\mathcal{M}_{2,1} \cup \cdots \cup \mathcal{M}_{2,N}$, and between the periodic elements in $\mathcal{M}_{2,1} \cup \cdots \cup \mathcal{M}_{2,N}$ and the offset elements in $\mathcal{M}_{0,1} \cup \cdots \cup \mathcal{M}_{0,N}$.

After such merging, there is no more periodic element in \mathcal{M} and the degree of every element is now a vector in S_i, for some $1 \leq i \leq p$. Moreover, since the merging preserves the satisfiability of $\forall x \gamma(x)$ and each $\forall x \forall y e_i(x, y) \rightarrow \alpha_i(x, y)$, the formula Ψ holds in \mathcal{M}. That is, Ψ is finitely satisfiable. ◀
4.3 Complexity analysis of the decision procedure

We need to introduce more terminology. For a vector/matrix X, we write $\|X\|$ to denote its L_∞-norm, i.e. the maximal absolute value of its entries. For a set of vector/matrices B, we write $\|B\|$ to denote $\max_{X \in B} \|X\|$.

Let $P = \{\bar{v}_1, \ldots, \bar{v}_k\} \subseteq \mathbb{N}^\ell$ be a finite set of (row) vectors of natural number components. To avoid clutter, we write $L(\bar{u}; P)$ to denote the linear set $L(\bar{u}; \bar{v}_1, \ldots, \bar{v}_k)$. For a finite set $B \subseteq \mathbb{N}^\ell$, we write $L(B; P)$ to denote the set $\bigcup_{\bar{u} \in B} L(\bar{u}; P)$.

We will use the following fact from [12, 25]. See also Proposition 2 in [10].

\begin{itemize}
 \item Proposition 15. Let $A \in \mathbb{Z}^{\ell \times m}$ and $\bar{c} \in \mathbb{Z}^m$. Let Γ be the space of the solutions of the system $\bar{x}A = \bar{c}$ (over the set of natural numbers \mathbb{N}). Then, there are finite sets $B, P \subseteq \mathbb{N}^\ell$ such that the following holds.
 \begin{itemize}
 \item $L(B; P) = \Gamma$.
 \item $\|B\| \leq ((m + 1)\|A\| + \|\bar{c}\| + 1)^\ell$.
 \item $\|P\| \leq (m\|A\| + 1)^\ell$.
 \item $\|B\| \leq (m + 1)^\ell$.
 \item $|P| \leq m^\ell$.
 \end{itemize}
 \end{itemize}

By repeating some of the vectors, if necessary, we can assume that Proposition 15 states that $|B| = |P| = (m + 1)^\ell$.

Proposition 15 immediately implies the following naïve construction of the sets B and P in deterministic double-exponential time (in the size of input A and \bar{c}).

- Enumerate all possible sets $B, P \subseteq \mathbb{N}^\ell$ of cardinality $(m + 1)^\ell$ whose entries are all bounded above by $((m + 1)\|A\| + \|\bar{c}\| + 1)^\ell$.
- For each pair B, P, where $P = \{\bar{v}_1, \ldots, \bar{v}_k\}$, check whether for every $i_1, \ldots, i_k \in \mathbb{N}$ and every $\bar{u} \in B$, the following equation holds.

 \begin{equation}
 (\bar{u} + \sum_{j=1}^k i_j \bar{v}_j)A = \bar{c}.
 \end{equation}

The number of bits needed to represent the sets B and P is $O(\ell^2(m + 1)^\ell \log K)$, where $K = (m + 1)\|A\| + \|\bar{c}\| + 1$. Since Eq. 1 can be checked in deterministic exponential time (more precisely, it takes non-deterministic polynomial time to check if there is i_1, \ldots, i_k such that Eq. 1 does not hold) in the length of the bit representation of the vectors in B, P, A and the vector \bar{c}, see, e.g. [24], constructing the sets B and P takes double-exponential time.

For completeness, we repeat the complexity analysis in Section 4. First, the formula Ψ_0 takes linear time in the size of the input formula. Constructing the formula Ψ' requires exponential time (in the number of binary predicates), i.e. $\ell = 2^k - 1$, where k is the number of binary predicates. Thus, constructing the sets B and P takes deterministic triple exponential time in the size of Ψ_0. However, the size of B and P is $O(2^{2^k} (m + 1)^{2^k} \log K)$, i.e. double exponential in the size of Ψ_0. The C^2 formulas ξ and ϕ are constructed in polynomial time in the size of B and P. Since both the satisfiability and finite satisfiability of C^2 formulas is decidable in nondeterministic exponential time, we have another exponential blow-up. Altogether, our decision procedure runs in 3NExpTime.

\footnote{Recall that vectors in this paper are row vectors. So, \bar{x} and \bar{c} are row vectors of ℓ variables and m constants, respectively.}
5 Concluding remarks

In the paper we studied the finite satisfiability problem for classical decidable fragments of FO extended with percentage quantifiers (as well as arithmetics in the full generality), namely the two-variable fragment FO^2 and the guarded fragment GF. We have shown that even in the presence of percentage quantifiers they quickly become undecidable.

The notable exception is the intersection of GF and FO^2, i.e. the two-variable guarded fragment, for which we have shown that it is decidable with elementary complexity, even when extended with local Presburger arithmetics. The proof is quite simple and goes via an encoding into the two-variable logic with counting (C^2). One of the bottlenecks in our decision procedure is the conversion of systems of linear equations into the semilinear set representations, which incurs a double-exponential blow-up. We leave it for future work whether a decision procedure with lower complexity is possible and/or whether the conversion to semilinear sets is necessary.

We stress that our results are also applicable to the unrestricted satisfiability problem (whenever the semantics of percentage quantifiers make sense), see [7, Appendix C].

References

1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal Languages and Bounded Fragments of Predicate Logic. *J. Philosophical Logic*, 1998.
2 Franz Baader. A new description logic with set constraints and cardinality constraints on role successors. In Clare Dixon and Marcelo Finger, editors, *FroCoS*, 2017.
3 Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability checking and conjunctive query answering in description logics with global and local cardinality constraints. In *DL*, 2019.
4 Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability and query answering in description logics with global and local cardinality constraints. In *ECAI*, 2020.
5 Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. *An Introduction to Description Logic*. Cambridge University Press, 2017.
6 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. *J. ACM*, 2015.
7 Bartosz Bednarczyk, Maja Orłowska, Anna Pacanowska, and Tony Tan. On Classical Decidable Logics extended with Percentage Quantifiers and Arithmetics. *CoRR*, abs/2106.15250, 2021. [arXiv:2106.15250].
8 Michael Benedikt, Egor V. Kostylev, and Tony Tan. Two variable logic with ultimately periodic counting. In *ICALP 2020*, 2020.
9 Egon Börger, Erich Grädel, and Yuri Gurevich. *The Classical Decision Problem*. Perspectives in Mathematical Logic. Springer, 1997.
10 Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In *ICALP*, 2016.
11 Stéphane Demri and Denis Lugiez. Complexity of modal logics with presburger constraints. *J. Appl. Log.*, 2010.
12 Eric Domenjoud. Solving systems of linear diophantine equations: An algebraic approach. In *MFCS*, 1991.
13 Seymour Ginsburg and Edwin Henry Spanier. Semigroups, presburger formulas, and languages. *Pac. J. of Math.*, 16:285–296, 1966.
14 Erich Grädel. Description logics and guarded fragments of first order logic. In *DL*, 1998.
15 Erich Grädel. On the restraining power of guards. *J. Symb. Log.*, 1999.
16 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-variable first-order logic. *Bulletin of Symbolic Logic*, 1997.
17 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable. In *LICS*, 1997.
Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics. Arch. Math. Log., 1999.

Yevgeny Kazakov. A polynomial translation from the two-variable guarded fragment with number restrictions to the guarded fragment. In JELIA, volume 3229 of LNCS, 2004.

Clemens Kupke and Dirk Pattinson. On modal logics of linear inequalities. In Lev D. Beklemishev, Valentin Goranko, and Valentin B. Shehtman, editors, AIML, 2010.

Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

Yuri V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.

Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity results for first-order two-variable logic with counting. SIAM J. Comput., 29(4):1083–1117, 2000.

Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768, 1981.

Loic Pottier. Minimal solutions of linear diophantine systems: Bounds and algorithms. In RTA, 1991.

Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers. J. Log. Lang. Inf., 14(3):369–395, 2005.

Ian Pratt-Hartmann. Complexity of the guarded two-variable fragment with counting quantifiers. J. Log. Comput., 17(1):133–155, 2007.

Dana Scott. A decision method for validity of sentences in two variables. Journal of Symbolic Logic, 1962.

B. Trakhtenbrot. The impossibility of an algorithm for the decidability problem on finite classes. In Proc. USSR Acad. Sci., volume 70(4), pages 569–572, 1950.

Willard van Orman Quine. The Ways of Paradox and Other Essays, Revised Edition. Harvard University Press, 1976.