ALLELIC VARIATION AT THE VRN-1 LOCUS OF POLISH CULTIVARS OF COMMON WHEAT (Triticum aestivum L.)

MICHAIŁ NOWAK* AND KRZYSZTOF KOWALCZYK

Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

Received August 31, 2010; revision accepted September 29, 2010

At a molecular level, the length of the vernalization period of common wheat (Triticum aestivum L.) is determined mainly by three loci: VRN-1, VRN-2 and VRN-3. In hexaploid wheat, the Vrn-A1, Vrn-B1 and Vrn-D1 genes are dominant for spring growth habit and epistatic to the alleles for winter growth habit. We used DNA markers to determine the VRN-1 genotypes of 43 common wheat cultivars from the Polish register. All of the 30 examined winter wheat cultivars carried the recessive vrn-A1 allele, and all of the 13 analyzed spring cultivars carried the dominant Vrn-A1a allele. Moreover, 13 winter and 11 spring cultivars carried the dominant Vrn-B1 allele. These results confirmed that the hexaploid wheat growth habit is determined mainly by the VRN-A1 locus.

Key words: VRN-1 locus, vernalization, allelic variation, Triticum aestivum L., DNA markers.

INTRODUCTION

Low-temperature activity at certain stages of cereal development is necessary for flowering and kernel formation. The vernalization process consists in the acquisition or acceleration of the plant’s flowering ability by cold treatment (Chouard, 1960). Vernalization occurs when air temperature oscillates between 0°C to 10°C and lasts for a few weeks (Flood and Halloran, 1984). Physiological studies showed that the vernalization response center is in the tip of a shoot (Amasino, 2004).

Winters in Poland have become milder in the last few years, and the winter period is often split into two or three cold subperiods separated by thaws (Kożuchowski and Degirmendžić, 2005). These changes influence plants’ vernalization process, which affects crop production. This problem is especially important for winter cereal production. Winter bread wheat (Triticum aestivum L.) is the most important crop for Polish agriculture. In 2009, the area of its production reached over 2 million hectares, while the spring wheat production area amounted to only about 340,000 hectares (Central Statistical Office, 2010). At a molecular level, the length of the vernalization period for common wheat is determined mainly by three loci: VRN-1, VRN-2 and VRN-3. The most important mechanism regulating the vernalization requirement is based on epistatic interactions between VRN-1 and VRN-2 loci. The product of VRN-2 expression is a repressor for VRN-1. As the vernalization process reduces the abundance of the VRN-2 product, VRN-1 transcription gradually increases, leading to the competence to flower. According to this model, even a single functional copy of the VRN-2 product can stop flowering (Yan et al., 2003, 2004a).

In hexaploid wheat, the Vrn-A1, Vrn-B1 and Vrn-D1 genes are dominant for spring growth habit and epistatic to the alleles for winter growth habit (Stelmakh, 1987). The Vrn-A1 gene was mapped on the long arm of chromosome 5A near the Fr1 gene (Snape et al., 2001), and it is strongly linked to three RFLP markers: Xwg644, Xpsr426 and Xpsr2021 (Korzun et al., 1997; Sarma et al., 1998; Sutka et al., 1999; Snape et al., 2001). Snape et al. (2001) also established the position of the Vrn-D1 gene in the distal part of the long arm of chromosome 5D, and showed that this gene is closely linked to Xgwm212 and Xgwm292 microsatellite markers. The Vrn-B1 gene was mapped in the distal part of the long arm of chromosome 5B and is closely linked to two microsatellite markers: Xgwm408 and Xgwm604 (Leonova et al., 2003; Tóth et al., 2003).

Allelic variation at the VRN-A1 locus is related to mutations within the promoter sequence (Yan et al., 2003, 2004a).
Allelic variation at VRN-1 locus in Polish wheat cultivars

2004b) or deletions within the first intron of this gene (Fu et al., 2005). For the VRN-B1 and VRN-D1 loci, changes in promoter sequence were not observed; their allelic variation is determined only by deletion within the first intron sequence (Fu et al., 2005).

The VRN-2 locus has so far been described only for Triticum monococcum L. (Yan et al., 2004a). Its characteristics in hexaploid wheat have not been reported. Yan et al. (2006) also identified the Vrn-B3 gene, which is a flowering promoter, and established its position on the short arm of chromosome 7B. This gene is closely linked to ABC158 and GWM569 microsatellite markers. Different genes which control the vernalization process and influence the transition to the generative phase have been identified on chromosomes 3B (Miura and Worland, 1994), 6A, 6B and 6D (Islam-Faridi et al., 1996), but the mechanisms of their activity are not precisely determined.

Allelic variation at the VRN-1 locus has been examined in common wheat cultivars from countries including the United States (Fu et al., 2005; Stelmakh, 1998), Canada (Stelmakh, 1998; Iqbal et al., 2007) and China (Zhang et al., 2008). In view of the lack of information on the occurrence of Vrn alleles in Polish wheat cultivars, here we examined the VRN-1 genotypes of 43 common wheat cultivars from the Polish register.

MATERIALS AND METHODS

We used 43 common wheat cultivars from the Polish register for this study. The winter cultivars are Alcazar, Anthus, Batuta, Bogatka, Boomer, Dorota, Finexja, Flair, Fregata, Izyda, Kobiera, Legenda, Ludwig, Muza, Nadobna, Naridana, Nutka, Olivin, Ostka Srzelecka, Rapsodia, Rubens, Rywalka, Satyna, Slade, Sława, Smuga, Sukces, Tonacja, Trend and Turnia. Spring cultivars include Bombona, Bryza, Griwa, Hewilla, Histra, Kosma, Monsun, Napola, Parabola, Radunia, Triso, Zebra and Żura.

Total DNA from 5-day-old seedlings was extracted according to the CTAB method (Doyle and Doyle, 1987), with modifications.

The Vrn alleles were identified by means of DNA markers. Two STS-PCR (sequence tagged site-polymerase chain reaction) methods were utilized. The first, based on analysis of the Vrn-A1 gene promoter region, allows the Vrn-A1a, Vrn-A1b and vrn-a1 alleles to be identified (Yan et al., 2004b). The second, based on analysis of the presence of a deletion in the first intron of Vrn-1, allows the Vrn-A1c, Vrn-B1 and Vrn-D1 alleles to be determined (Fu et al., 2005). The sequences of the applied primer sets are given in Table 1.

PCR reactions were performed in a 20 μl volume containing 1× PCR buffer (Fermentas), 1.8 mM

Primer	Sequence 5'→3'	Identified allele	Reference
VRN1AF	GAAAGGGAAAAATTCTGCTCG	Vrn-A1a, Vrn-A1b, vrn-a1	Yan et al., 2004b
VRN1R	TGCACCTCCCCCCCCCCAT		
Intr1/A/F2	ACCCTCCAGGTGAAATGAA	Vrn-A1c	Fu et al., 2005
Intr1/A/R3	AAATGAAGACACGAAATGAGA	Vrn-B1	
Intr1/B/F	GAATGGAACCGGTAGGACA	Vrn-B1	
Intr1/B/R3	CTGATGCCAATAATGAAAGTA	Vrn-D1	
Intr1/D/F	TTGTCTGCTTCATCAATCCT	Vrn-D1	
Intr1/D/R3	GTCTACCTGTGCTCTGCT	Vrn-D1	

Step	Allele			
Vrn-A1a, Vrn-A1b, vrn-a1				
Preliminary denaturation	94°C, 4’	94°C, 5’	94°C, 5’	94°C, 5’
Denaturation	94°C, 1’	94°C, 30”	94°C, 30”	94°C, 30”
Primer annealing	56°C, 1’	57.2°C, 30”	57°C, 30”	61.2°C, 30”
Extension	72°C, 1’20”	72°C, 1’10”	72°C, 1’	72°C, 1’40”
Final extension	72°C, 7’	72°C, 10’	72°C, 10’	72°C, 10’
Number of cycles	40	38	38	38
Expected product size	500 bp or 650/750 bp	1170 bp	709 bp	1671 bp
MgCl₂, 0.2 mM of each dNTP, 5 pmol of each primer, 0.4 U Taq DNA Polymerase (Fermentas) and 50 ng template DNA. Table 2 gives the thermal profiles of the reactions. For PCR a Tprofessional Basic (Biometra) thermocycler was used.

The amplification products were separated by electrophoresis on 1.5% agarose gels and visualized under UV light with ethidium bromide. We used GeneRuler™ 100 bp Plus DNA Ladder marker (Fermentas).

RESULTS

After separation of the PCR products on 1.5% agarose gel, a 500 bp DNA band in all of the 30 examined winter wheat cultivars was observed. The presence of this product confirmed the occurrence of the recessive vrn-A1 allele (Fig. 1). In the same reaction, two bands – 650 bp and 750 bp – were amplified for all of the 13 analyzed spring cultivars. This confirmed the occurrence of the dominant Vrn-A1a allele in these cultivars (Fig. 2). None of the 43 examined common wheat cultivars carried the Vrn-A1b or Vrn-A1c alleles.

The amplification reaction with the primer pair Intr1/B/F and Intr1/B/R3 allowed the Vrn-B1 allele to be identified. After electrophoresis, a 709 bp DNA band was observed for 13 winter cultivars: Batuta, Bogatka, Finezja, Flair, Fregata, Izyda, Rapsodia, Rubens, Satyna, Smuga, Sukces, Tonacja and Turnia (Fig. 3). Among the 13 analyzed spring cultivars, 11 carried the dominant Vrn-B1 allele: Griwa, Hewilla, Histra, Kosma, Monsun, Napola, Parabola, Radunia, Triso, Zebra and Żura (Fig. 4). The rest of the examined cultivars contained the recessive vrn-B1 allele. In winter wheat cv. Izyda, amplification showed another product 10 bp smaller (Fig. 3). This may indicate rearrangement within the sequence of the analyzed DNA fragment, or the occurrence of a new, different allelic form of the Vrn-B1 gene.

After the PCR reaction with Intr1/D/F and Intr1/D/R3 primers, no amplification products were observed in any cultivars, neither with winter nor with spring growth habit. This result confirmed the presence of the recessive vrn-D1 allele in all 43 analyzed common wheat cultivars.

DISCUSSION

Information about the Vrn genotype is important in considering the frost tolerance and low temperature response of cereals. The occurrence of Vrn alleles has been described for many wheat cultivars from different regions of the world. In this study we characterized
Allelic variation at VRN-1 locus in Polish wheat cultivars

According to Stelmakh (1987), hexaploid wheat cultivars with winter growth habit are homozygous for the recessive alleles at the three VRN-1 loci. However, subsequent work showed that in some cases the dominant Vrn-B1 or Vrn-D1 allele is not sufficient to determine spring growth habit, and the plants require low temperature activity; this is described as a facultative type (Sun et al., 2009).

The main factor determining flowering initiation is the level of the VRN-1 transcript (Distelfeld et al., 2009; Dhillon et al., 2010). Sometimes the transcript level is too low despite the occurrence of the dominant Vrn allele, and this inhibits flowering.

Our results suggest that some Polish bread wheat cultivars described as winter ones display a facultative growth habit due to the occurrence of the dominant Vrn-B1, but physiological studies are required to confirm this. It has been shown that within the three analyzed loci, the dominant Vrn-B1 has the smallest effect on plant traits (Stelmakh, 1993; Eagles et al., 2010).

Yan et al. (2004b) described the dominant Vrn-A1 allele in 26 lines of hexaploid wheat. A meticulous analysis showed that 18 of them carried the Vrn-A1a allele and 6 carried the Vrn-A1b allele. In two lines, IL369 from Afghanistan and IL162 from Egypt, a new allele named Vrn-A1c was identified. The same authors analyzed the VRN-A1 locus in 200 lines of hexaploid wheat with different growth habits (68 winter and 132 spring), and confirmed the presence of the recessive vrn-A1 allele for all tested winter cultivars. Within the lines with spring growth habit, 55% carried the Vrn-A1a allele and only 6% the Vrn-A1b allele. For the remaining lines they confirmed the occurrence of the recessive vrn-A1 allele. These results are similar in kind to ours. All the examined winter wheat cultivars from the Polish register carried the recessive vrn-A1 allele, and spring cultivars carried the dominant Vrn-A1a allele.

Fu et al. (2005) characterized the VRN-1 locus of 117 spring wheat cultivars from Argentina and California. The dominant Vrn-A1 allele was identified in ~56.5% and Vrn-D1 in ~42% of them, regardless of region of origin. The frequency of the Vrn-B1 allele for cultivars from Argentina amounted to 66.1%, and 49.1% for cultivars from California. The most common allelic combination was Vrn-A1, Vrn-B1, Vrn-D1, observed for 48.4% of the examined cultivars. Stelmakh (1987) did similar studies of 45 wheat cultivars from the U.S.A. and Canada. In these cultivars, the presence of the dominant Vrn-A1 allele was described for 91.1% of the analyzed cultivars, Vrn-B1 for 60%, and Vrn-D1 for only 6.7% of them. Further analysis of 40 spring wheat cultivars and lines from western Canada (Iqbal et al., 2007) showed that 34 of them carried the dominant Vrn-A1a allele. The Vrn-A1b allele was identified in cv. Rescue and its substitu-

Fig. 3. Amplification products obtained for winter wheat cultivars in PCR with Intr1/B/F and Intr1/B/R3 primer pair: M – GeneRuler™ 100 bp Plus DNA Ladder marker, 1 – Alcazar, 2 – Anthus, 3 – Batuta, 4 – Bogatka, 5 – Boomer, 6 – Dorota, 7 – Fineza, 8 – Flair, 9 – Fregata, 10 – Izda, 11 – Kobierna, 12 – Legenda, 13 – Ludwig, 14 – Muza, 15 – Nadobna, 16 – Naridana, 17 – Nutka, 18 – Olvin, 19 – Ostka Strzelecka, 20 – Rapsodia, 21 – Rubens, 22 – Rywalka, 23 – Satyna, 24 – Slade, 25 – Sława, 26 – Smuga, 27 – Sukces, 28 – Tonacja, 29 – Trend, 30 – Turnia.

Fig. 4. Amplification products obtained for spring wheat cultivars in PCR with Intr1/B/F and Intr1/B/R3 primer pair: M – GeneRuler™ 100 bp Plus DNA Ladder marker, 1 – Bombona, 2 – Bryza, 3 – Griwa, 4 – Hewilla, 5 – Histra, 6 – Kosma, 7 – Monsun, 8 – Napola, 9 – Parabola, 10 – Radunia, 11 – Triso, 12 – Zebra, 13 – Żura.
In a study of Vrn genes in 278 Chinese common wheat cultivars, Zhang et al. (2008) confirmed the presence of the dominant Vrn-A1a allele in 68 examined cultivars and of Vrn-A1b in 8 of them. In 202 cultivars they found the recessive vrn-A1 allele. The dominant Vrn-A1c allele was not present in any of the analyzed cultivars. The dominant Vrn-B1 allele was present in 73 of them, and the dominant Vrn-D1 allele in 105. Iwaki et al. (2000) gave similar frequencies of Vrn alleles in wheat cultivars from East Asia.

An examination of 272 wheat cultivars from different geographical regions demonstrated that differences in Vrn genotypes are connected with their origin. In European common wheat cultivars the most frequent allele is Vrn-A1, the dominant Vrn-B1 allele is of moderate frequency, and the dominant Vrn-D1 allele is very rare (Iwaki et al., 2001).

Here we showed that the Vrn genotypes of common wheat cultivars from the Polish register are similar to those obtained for cultivars from the U.S.A. and Canada. The frequencies of Vrn alleles differed from those given for wheat cultivars from Asia and South America.

ACKNOWLEDGEMENT

The results in this paper were presented at a conference held on September 23-25, 2010 in Szczecin, Poland, organized on the occasion of the 25th anniversary of the University of Szczecin.

REFERENCES

AMASINO R. 2004. Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16: 2553–2559.

CENTRAL STATISTICAL OFFICE. 2010. Statistical Yearbook of Agriculture 2009.

CHOUARD P. 1960. Vernalization and its relations to dormancy. Annual Review of Plant Physiology 11: 191–238.

DHILLON T, PEARCE SP, STOCKINGER EJ, DISTELFELD A, LI C, KNOX AK, VASHEGYI I, VAGILIPALVI A, GALIBA G, and DUBCOVSKY J. 2010. Regulation of freezing tolerance and flowering in temperate cereals: The VRN-1 connection. Plant Physiology 153: 1846–1858.

DISTELFELD A, LI C, and DUBCOVSKY J. 2009. Regulation of flowering in temperate cereals. Current Opinion in Plant Biology 12: 178–184.

DOYLE JJ, and DOYLE JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.

EAGLES HA, CANE K, KUCHEL H, HOMMANY GJ, VALLANCE N, EASTWOOD RF, GORORO NN, and MARTIN P.J. 2010. Photoperiod and vernalization gene effects in southern Australian wheat. Crop and Pasture Science 61: 721–730.

FLOOD RG, and HALLORAN GM. 1984. The nature and duration of gene action for vernalization response in wheat. Annals of Botany 53: 363–368.
Allelic variation at VRN-1 locus in Polish wheat cultivars

FU D, SZÜCS P, YAN L, HELGUERA M, SKINNER JS, VON ZITZEWITZ J, HAYES PM, and DUBCOVSKY J. 2005. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. *Molecular Genetics and Genomics* 273: 54–65.

IQBAL M, NAVABI A, YANG RC, SALMON DF, and SPANER D. 2007. Molecular characterization of vernalization response genes in Canadian spring wheat. *Genome* 50: 511–516.

ISLAM-FARIDI MN, WORLAND AJ, and LAW CN. 1996. Inhibition of ear-emergence time and sensitivity to day-length determined by the group-6 chromosomes of wheat. *Heredity* 77: 572–580.

IWAKI K, HARUMA S, NIWA T, and KATO K. 2001. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. *Plant Breeding* 120: 107–114.

IWAKI K, NAKAGAWA K, KUNO H, and KATO K. 2000. Ecogeographical differentiation in east Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype. *Euphytica* 111: 137–143.

KORZUN V, RÖDER M, WORLAND AJ, and BÖRNER A. 1997. Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization (Vrn1) in wheat by using RFLP and microsatellite markers. *Plant Breeding* 116: 227–232.

KOZUCHOWSKI K, and DEGIRMENDZIĆ J. 2005. Contemporary changes of climate in Poland: Trends and variation in thermal and solar conditions related to plant vegetation. *Polish Journal of Ecology* 53(3): 283–297.

LEONOVA I, PESTSOVA E, SALINA E, EFREMOVA T, RÖDER M, and BÖRNER A. 2003. Mapping of the Vrn-B1 gene in *Triticum aestivum* using microsatellite markers. *Plant Breeding* 122: 209–212.

MIURA H, and WORLAND AJ. 1994. Genetic control of vernalization day-length response, and earliness per se by homoeologous group-3 chromosomes in wheat. *Plant Breeding* 113: 160–169.

SARMA RN, GILL BS, SASAKI T, GAILIJA G, SUTKA J, LAURIE DA, and SNAPE JW. 1998. Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. *Theoretical and Applied Genetics* 97: 103–109.

SNAPE JW, SARMA R, QUARRIE SA, FISH L, GALIJA G, and SUTKA J. 2001. Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. *Euphytica* 120: 309–315.

STELMAKH AF. 1987. Growth habit in common wheat (*Triticum aestivum* L. EM. Thell.). *Euphytica* 36: 513–519.

STELMAKH AF. 1993. Genetic effects of Vrn genes on heading date and agronomic traits in bread wheat. *Euphytica* 65: 53–60.

STELMAKH AF. 1998. Genetic systems regulating flowering response in wheat. *Euphytica* 100: 359–369.

SUN Q-M, ZHOU R-H, GAO L-F, ZHAO G-Y, and JIA J-Z. 2009. The characterization and geographical distribution of the genes responsible for vernalization requirement in Chinese bread wheat. *Journal of Integrative Plant Biology* 51(4): 423–432.

SUTKA J, GALIBA G, VAGLIPALVI A, GILL BS, and SNAPE JW. 1999. Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. *Theoretical and Applied Genetics* 99: 199–202.

TÓTH B, GALIBA G, FEHÉR E, SUTKA J, and SNAPE JW. 2003. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. *Theoretical and Applied Genetics* 107: 509–514.

YAN L, LOUKOIANOV A, TRANQUILLI G, HELGUERA M, FAHIMA T, and DUBCOVSKY J. 2003. Positional cloning of the wheat vernalization gene VRN1. *Proceedings of the National Academy of Sciences of the USA* 100(10): 6263–6268.

YAN L, LOUKOIANOV A, BLECHE A, TRANQUILLI G, RAMAKRISHNA W, SAMMIGUEL P, BENNETZEN JL, ECHENIQUE V, and DUBCOVSKY J. 2004a. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. *Science* 303: 1640–1644.

YAN L, HELGUERA M, KATO K, FUKUYAMA S, SHERMAN J, and DUBCOVSKY J. 2004b. Allelic variation at the VRN-1 promoter region in polyploid wheat. *Theoretical and Applied Genetics* 109: 1677–1686.

YAN L, FU D, BLECHE A, TRANQUILLI G, BONAFEDE M, SANCHEZ A, VALARIK M, YASUDA S, and DUBCOVSKY J. 2006. Allelic variation at the VRN-1 promoter in Chinese wheat cultivars and their association with growth habit. *Crop Science* 48: 458–470.