Assembly accession	bioproject	biosample	taxid	Organism name	Infraspecific name	isolate
GCA_000258425.1	PRJNA91117	SAMN02603095	1163730	Fervidicoccus fontis Kam940	strain=Kam940	
GCA_001871415.1	PRJNA297582	SAMN04328224	1805424	Candidatus Woesearchaeota archaeon	CG1_02_57_44	
GCA_002779065.1	PRJNA362739	SAMN06659264	1974404	Candidatus Diapherotrites archaeon	CG08_land_8_20_14_0_20_34_12	
GCA_000349645.1	PRJNA168253	SAMN02261087	1198116	Thermoplasmatales archaeon SCGC AB-539-N05	SCGC_AB-539-N05	
GCA_000015945.1	PRJNA17449	SAMN02598390	399550	Staphylothermus marinus F1	strain=F1	
GCA_003144275.1	PRJNA383916	SAMN07236661	2012493	Candidatus Heimdallarchaeota archaeon	B3_Heim	
GCA_000145985.1	PRJNA33361	SAMN00016987	583356	Ignisphaera aggregans DSM 17230	strain=DSM 17230	
GCA_000011185.1	PRJNA206	SAMD00061089	273116	Thermoplasma volcanium GSS1	strain=GSS1	
GCA_000025685.1	PRJNA12524	SAMN02604027	309800	Halofex volcanii DS2	strain=DS2	
GCA_000018305.1	PRJNA17421	SAMN00623034	397948	Caldivirga maquilingensis IC-167	strain=IC-167	
GCA_000009965.1	PRJNA13213	SAMD00061071	69014	Thermococcus kodakarenis KOD1	str=KOD1	
GCA_003345545.1	PRJNA406094	SAMN08287972	2053491	Candidatus Thorarchaeota archaeon	OWC2	
GCA_000200715.1	PRJNA202	SAMN02744041	414004	Cenarchaeum symbiosum A		
GCA_000008645.1	PRJNA289	SAMN02603244	187420	Methanothermobacter thermautotrophicus str. Delta H	strain=Delta H	
GCA_000007065.1	PRJNA300	SAMN02603290	192952	Methanosarcina mazei Go1	str=Go1	
GCA_000008665.1	PRJNA104	SAMN02603985	224325	Archaeoglobus fulgidus DSM 4304	str=DSM 4304	
GCA_000007225.1	PRJNA172	SAMN02604075	178306	Pyrobaculum aerophilum str. IM2	str=IM2	
GCA_000019605.1	PRJNA16525	SAMN02598368	374847	Candidatus Korarchaeum cryptofilum OPF8		
Accession	Project	SampleID	SequenceLength	Organism Description	Strain	
------------	-----------	------------	----------------	---	-----------------	
GCA_005223125.1	PRJNA383916	SAMN07236659	2012491	Candidatus Lokiarchaeota archaeon	Loki_b32	
GCA_000015145.1	PRJNA208	SAMN02604082	415426	Hyperthermus butylicus DSM 5456	strain=DSM 5456	
GCA_0000303155.1	PRJNA60505	SAMN02603264	1237085	Candidatus Nitrosophaera gargensis	enrichment culture Ga9.2	
GCA_000017945.1	PRJNA13914	SAMN02598324	453591	Ignicoccus hospitalis KIN4/I	strain=KIN4/I	
GCA_011364945.1	PRJNA495098	SAMN10218972	2026747	Candidatus Heimdallarchaeota archaeon		
GCA_000007185.1	PRJNA294	SAMN02603235	190192	Methanopyrus kandleri AV19	strain=AV19	
GCA_013343275.1	PRJNA588232	SAMN13231772	2594798	Nanohaloarchaeae archaeon	strain=M3_22	
GCA_000011125.1	PRJNA211	SAMD00061092	272557	Aeropyrum pernix K1		
GCA_000025665.1	PRJNA38403	SAMN02598523	439481	Aciduliprodufum boonei T469	strain=T469	
GCA_000011005.1	PRJDA20361	SAMD00060931	304371	Methanocella paludicola SANAE	strain=SANAE	
GCA_000270325.1	PRJDA49157	SAMD00016619	311458	Candidatus Caldiarchaeum subterraneum		
GCA_000018465.1	PRJNA19265	SAMN00000302	436308	Nitrosopumilus maritimus SC1	strain=SC1	
GCA_013375405.1	PRJNA599172	SAMN14414634	2719382	Candidatus Helarchaeota archaeon	CR_Bin_291	
GCA_000007305.1	PRJNA287	SAMN02604284	186497	Pyrococcus furiosus DSM 3638	strain=DSM 3638	
GCA_009911715.1	PRJNA258248	SAMN02991093	1535962	Methanomassiliicoccales archaeon	strain=DOK	
GCA_000015225.1	PRJNA16331	SAMN02598366	368408	Thermofilum pendens Hrk 5	strain=Hrk 5	
GCA_008000775.1	PRJNA557562	SAMN12405820	2594042	Candidatus Prometheoarchaeum syntrophicum	strain=MK-D1	
GCA_000011085.1	PRJNA105	SAMN02603385	272569	Haloarcula marismortui ATCC 43049	strain=ATCC 43049	
GCA_008080735.1	PRJNA521734	SAMN10909897	2053489	Candidatus Lokiarchaeota archaeon	BC3	
GCA_000008085.1	PRJNA9599	SAMN02603208	228908	Nanoarchaeum equitans Kin4-M		
GCA_000013445.1	PRJNA13015	SAMN02598287	323259	Methanospirillum hungatei JF-1	strain=JF-1	
GCA_001940655.1	PRJNA288027	SAMN04958229	1849166	Candidatus Lokiarchaeota archaeon	CR_4	
Accession	Project ID	Sample ID	Length	Organism	Strain	
--------------	------------	-----------	--------	-----------------------------------	--------------	
GCA_000091665.1	PRJNA102	SAMN02603984	243232	Methanocaldococcus jannaschii DSM 2661	strain=DSM 2661	
GCA_000349625.1	PRJNA168252	SAMN02261086	1198115	Thaumarchaeota archaeon SCGC AB-539-E09	SCGC AB-539-E09	
Table S2
Network robustness estimates using distinct I_{ES} thresholds, from coarse (0.3 edge weight threshold) to fine-grained (0.9 edge weight threshold), in increments of 0.05. Robustness of resulting networks are measured by calculating Variation of Information (VI) and Normalized Mutual Information (NMI) between clusters obtained using consecutive I_{ES} threshold. Stable threshold values are expected to produce network clusters resistant to further increase in threshold stringency.

I_{ES} threshold	Compared I_{ES} threshold	VI	NMI	cluster modularity	edge count
0.3	0.35	1.0134	0.622	0.1008	352603
0.35	0.4	1.3584	0.4994	0.1293	231194
0.4	0.45	1.7815	0.3842	0.1503	141248
0.45	0.5	1.5218	0.566	0.1774	81638
0.5	0.55	2.0925	0.5957	0.1961	45268
0.55	0.6	1.916	0.7476	0.2221	23550
0.6	0.65	1.4829	0.8493	0.252	11558
0.65	0.7	0.9883	0.9141	0.2777	5300
0.7	0.75	0.7833	0.9386	0.3453	2142
0.75	0.8	0.4126	0.9699	0.4147	618
0.8	0.85	0.1398	0.9901	0.5479	157
0.85	0.9	0.0397	0.9972	0.6846	30
Fig. S1: Similarities between evolutionary histories of gene families as sampled taxa randomly decrease. wODR R^2 (orange) tends to increase as taxa representing deviations between evolutionary histories are randomly removed. Bray-Curtis (blue) and I_{ES} (green) both show steady decreases as differential gene losses accumulate between gene families, with I_{ES} initially at a slower pace than Bray-Curtis. Both gene families initially contain 50 taxa, and their phylogenies diverge from each other by 5 SPR transformations.
Fig S2: OLS regression of the number of phylogenetic perturbations and estimated dissimilarities between perfectly aligned simulated gene families. All scatterplots display the number of phylogenetic perturbations between two trees in the X-axis, while varying the method to quantify shared evolution displayed in the Y-axis. OLS regressions are fitted in each scatterplot, with fixed Y-axis intercepts through the origin. The OLS coefficient of determination (R^2) shows the association between number of perturbations and estimated difference between evolutionary histories. Low R^2 values represent a poor estimation of distance between evolutionary histories based on the number of perturbations, and $R^2 < 0$ occur as estimate distances fail to reflect the number of perturbations between trees. Each subfigure contains ten replicates from trees simulated using weak perturbations (a, random SPR moves within the 10% closest branches); medium (b, random SPR moves within the 50% closest branches); and strong (c, random SPR moves to any branch in the tree). I_{ES} in blue, D_{geo} in red, RF in green, D_{ms} in pink, and D_{qe} in brown.
Fig. S3b

replicates

replica
Fig S3: OLS regression of the number of phylogenetic perturbations and estimated dissimilarities between realigned simulated gene families reconstructed using JTT. All scatter plots display the number of phylogenetic perturbations between two trees in the X-axis, while varying the evolution similarity metric displayed in the Y-axis. OLS regressions are fitted between axes in each scatterplot, with fixed Y-axis intercepts: one for I_{ES} and zero for tree-based methods. OLS coefficient of determination (R^2) is depicted the association between number of perturbations and estimated distance between evolutionary histories. Low R^2 represent a poor estimation of distance between evolutionary histories based on the number of perturbations, and $R^2 < 0$ occur as estimate distances fail to reflect the number of perturbations between trees. Each subfigure contains ten replicates from trees simulated using weak perturbations (a, random SPR moves within the 10% closest branches); medium (b, random SPR moves within the 50% closest branches); and strong (c, random SPR moves to any branch in the tree). I_{ES} in blue, D_{geo} in red, RF in green, D_{ms} in pink, and D_{qt} in brown.
Fig S4: Shared evolution estimates from realigned simulated gene families. Each set of grouped boxplots shows OLS R^2 values for simulated gene families using varying ranges of SPR moves (10%, 50%, and 100%). Each dataset was replicated ten times, and scatterplot and fitted OLS regressions are available in Supplementary Fig. S2. Negative R^2 occur as fitted linear regressions do not explain the association between variables, and in this scenario reflect strong saturation of evolutionary similarity measurements. Gene trees were reconstructed using the JTT substitution model.
Fig S5: Impact of alignment and evolutionary model errors to the accuracy of shared evolution estimates. Comparisons of OLS R^2 displayed in Fig. 2 and Supplementary Fig. S3, assessing the impact of multiple sequence alignment errors and suboptimal evolutionary model to estimates from each method; using distributions of OLS R^2 between shared evolution estimates against number of simulated phylogenetic perturbations as benchmark. Low OLS R^2 reflect weak predictive power of a methods estimate, likely caused by loss of resolution as numbers of perturbations increase. Differences between distributions of OLS R^2 values obtained using perfectly aligned and realigned gene families was evaluated using Wilcoxon non-parametric test (p) and Common Language Effect Size (f).
Fig S6a: Clustered heatmap of I_{ES} values between pairs of archaeal gene families. Pairs of gene families with low I_{ES} are colored in blue, while pairs of gene families with high I_{ES} are colored red. Complete linkage clustering was performed using correlation distances.
Fig 6b: Clustered heatmap of I_{ES} values between pairs of archaeal gene families. Pairs of gene families with low I_{ES} are colored in blue, while pairs of gene families with high I_{ES} are colored red. Complete linkage clustering was performed using euclidean distances between average genetic distances between gene families.
Fig S7: Decrease in the proportion of co-evolving over non-co-evolving gene pairs as genomic window size increases. The approximation of a log-log linear relationship suggests a power-law decrease in the predictive power of gene co-evolution from genomic linkage.
Fig S8: Representation of cluster robustness metrics. A) Closeness centrality distributions calculated from subgraphs comprised by nodes from each co-evolving cluster independently. B) Average weighted degree centrality, a.k.a. strength, calculated from cluster specific subgraphs. In order, boxplots represent values estimated from cluster#3, cluster#4, cluster#2, cluster#0, cluster#5, cluster#8, cluster#1, and cluster#15.
Fig. S9: Phylogenetic trees reconstructed from concatenations of genes from each co-evolving cluster. Genomes missing more than 25% of concatenated sites were removed before phylogenetic reconstruction. Leaf names are colored in the same structure as Fig. 7. Trees were reconstructed using LG+F+G+C60 evolutionary model. Trees from each co-evolving cluster were independently rooted using MAD [1].
Fig. S10: wODR between pairwise distances for concatenated sequences from CES cluster#4 and CES cluster#1. Datapoints corresponding to intra and inter-phylum distances were assigned weights ten and one, respectively. This weighting scheme was used to anchor the regression model using intra-phylum pairwise distances, which better reflect the estimated vertical signal, and evaluate how inter-phyla distances fit the expected linear association.
Fig. S11: Distribution of intra-phylum distances for cluster#4 and cluster#1. Pairwise distances were calculated using concatenated sequences from each CES cluster. Intra-phylum (blue) and inter-phyla (orange) distances show a greater difference in cluster#4 than in cluster#1. The smaller difference between intra and inter-phyla distances in cluster#1 is likely due horizontal exchange of its constituent genes between Euryarchaeota and Thaumarchaeota.
Fig. S12: wODR between pairwise distances calculated from concatenated sequences from CES cluster#4 and CES cluster#0. Datapoints corresponding to intra and inter-phylum distances were assigned weights ten and one, respectively. This weighting scheme was used to anchor the regression model using intra-phylum pairwise distances, which better reflect the estimated vertical signal, and evaluate how inter-phyla distances fit the expected linear association.
Fig. S13: Distribution of wODR residuals between cluster#4 and cluster#0 distance matrices. Residuals were estimated from wODR fitted using intra and inter-phylum distances weights of ten and one, respectively. Using Common Language effect size statistics, Crenarchaeota-Euryarchaeota displayed very similar residuals to intra-phylum residuals ($f = 0.62$), while Euryarchaeota-Thaumarchaeota and Crenarchaeota-Thaumarchaeota displayed much larger residuals ($f = 0.97$ and $f = 0.90$, respectively).
Fig. S14: wODR between pairwise distances calculated using concatenated sequences from CES cluster#8 and CES cluster#0. Datapoints corresponding to intra and inter-phylum distances were assigned weights ten and one, respectively. This weighting scheme was used to anchor the regression model using intra-phylum pairwise distances, which better reflect the estimated vertical signal, and evaluate how inter-phyla distances fit the expected linear association.
Fig. S15: wODR between pairwise distances calculated using concatenated sequences from CES cluster#8 and CES cluster#0. Datapoints corresponding to intra and inter-phylum distances were assigned weights ten and one, respectively. This weighting scheme was used to anchor the regression model using intra-phylum pairwise distances, which better reflect the estimated vertical signal, and evaluate how inter-phyla distances fit the expected linear association.
Fig. S16: Frequency with which the most frequent gene copy was selected as best representing the shared evolution between two gene families in the same CES cluster. Empirical values observed in 237 occasions in which a gene family occurred in multiples within a genome (blue). Expected null distribution assuming that each copy among the multiples within a genome had the same chance of been selected (orange).
References
1. Tria FDK, Landan G, Dagan T. Phylogenetic rooting using minimal ancestor deviation. Nat Ecol Evol. 2017;1: 0193. doi:10.1038/s41559-017-0193