Constraining the deformed dispersion relation with the hydrogen atom 1S-2S transition

Jin Pu1,2*, Guo-Ping Li2†, Qing-Quan Jiang2‡ and Xiao-Tao Zu1§

1School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China and

2College of Physics and Space Science, China West Normal University, Nanchong 637002, China

Abstract

In this paper, we use the latest results of the ultra-high accuracy 1S-2S transition experiments in hydrogen atom to constrain the forms of the deformed dispersion relation in the nonrelativistic limit. For the leading correction in the nonrelativistic limit, the experiments set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing another example of the Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments. And for the next-to-leading term, bound has two orders of magnitude away from the Planck scale, but it still amounts to the best limit, in contrast to previously obtained bound in the nonrelativistic limit from the cold-atom-recoil experiments.

*email: pujin@cwnu.edu.cn
†email: gpliphys@yeah.net
‡email: qqjiangphys@yeah.net
§email: xtzu@uestc.edu.cn
I. INTRODUCTION

Establishing a complete and self-consistent quantum theory of gravity is one of the main challenges in modern physics. Till now, a full understanding of quantum gravity is lacking, but some phenomenological attempts to explore quantum gravity effects have attracted many people’s attentions [1–56]. Especially, gaining experimental insights on quantum gravity realm is very challenging, because most quantum gravity effects are expected to occur on the ultra-high Planck energy scale \(E_p = \sqrt{\hbar c^5/G} \approx 1.2 \times 10^{19}\text{GeV} \), leaving only minuscule traces on processes we can access experimentally. But thanks to a large and determined efforts made over the last decade, we do now have at least a few research lines in quantum gravity phenomenology where it is established that quantum properties of gravity could be investigated with the desired Planck-scale sensitivity. For example, due to the ultra-high levels of accuracy of atom interferometry, the cold-atom-recoil experiments have been used to establish meaningful bounds on parameters characterizing quantum gravity effects, and the exceptional sensitivity of the experiments set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing the first example of the Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments [45, 57]. In this paper, we attempt to find another example to close to or reach the desired Planck-scale sensitivity by using the latest results of the hydrogen atom 1S-2S transition experiments to constrain the forms of the deformed dispersion relation in the nonrelativistic limit. In [58, 59], quantum gravity corrections to Lamb Shift have computed in the framework of Generalized Uncertainty Principle (GUP) where the accuracy of precision measurement of Lamb Shift of about \(1 \times 10^{-12} \) leads to the upper bounds on parameters of quantum gravity effects \(\beta_0 < 10^{36} \). On the other hand, the progress of frequency conversion technology, such as frequency doubling and frequency division in laser research, makes precision of Lamb Shift experiments in hydrogen atom and deuterium atom ultra high. In Ref. [60, 61], the accuracy of precision measurement of the hydrogen 1S-2S frequency (Lamb Shift experiments) reaches \(4.5 \times 10^{-15} \). In our case, we use the latest results of the hydrogen atom 1S-2S transition experiments to observe the Planck-sale sensitivity of quantum gravity.

The remainder of this paper is organized as follows. In Sec. II we briefly introduce the deformed dispersion relation in nonrelativistic limit. Then, by comparing the results of a detailed calculation of the deformed dispersion relation effects on the 1S-2S transition in
hydrogen atom with its accuracy of precision measurement, upper bounds on the parameters of the deformed dispersion relation are obtained in Sec. III. Sec. IV ends up with some conclusions.

II. THE DEFORMED DISPERSION RELATION IN THE NONRELATIVISTIC LIMIT

In 2002, Amelino-Camelia has constructed the famous Doubly Special Relativity (DSR), which has two observer-independent constants, i.e. speed of light c and Planck length L_p, of relativity [1]. In the DSR, the deformed dispersion relation naturally leads to the Planck scale departure from Lorentz symmetry, which is referred to as the Lorentz invariance violation of dispersion relations. The related studies were advocating that a general implication of spacetime quantization is a modification of the classical-spacetime dispersion relation between energy E and (modulus of) momentum p of a microscopic particle with mass m, usually of the form

$$E^2 = p^2 + m^2 + p^2(\xi_n \frac{E}{M_p})^n.$$ (1)

where the speed of light c is set to 1. The past decade of vigorous investigations of these modifications of the dispersion relation reached its most noteworthy results in analyses of observational astrophysics data, which of course concern the ultrarelativistic ($p \gg m$) regime of particle kinematics [33, 44, 62–66].

In the nonrelativistic limit ($p \ll m$), the deformed dispersion relation (1) should be taken the form [45, 48]

$$E \simeq m + \frac{p^2}{2m} + \frac{1}{2M_p} \left(\xi_1 mp + \xi_2 p^2 + \xi_3 \frac{p^3}{m} \right).$$ (2)

The dispersion relation includes correction terms that are linear in $1/M_p$. The model-dependent dimensionless parameters ξ_1, ξ_2, ξ_3 should (when different from zero) have values roughly of order one, so that indeed the new effects are introduced in some neighborhood of the Planck scale. Evidence that at least some of these parameters should be non-zero has been found most notably in Loop Quantum Gravity [67–69], and in particular the framework introduced in Refs. 67, 70, which was inspired by Loop Quantum Gravity, produces a term linear in p in the nonrelativistic limit (the effect here parameterized by ξ_1). In our case,
it is reasonable to use the deformed dispersion relation in the nonrelativistic limit because $p \ll m$ (the energy of the electron for $n = 1$ state of hydrogen is about $13.6\,eV$, but its mass $m \cong 0.5 \times 10^6\,eV$).

Unfortunately, as usual in quantum gravity research, the theoretically-favoured range of values of the parameters of the dispersion relation translates into a range of possible magnitudes of the effects that is extremely challenging. If the Planck scale is the characteristic scale of quantum gravity effects, the values of these parameters such as ξ_1, ξ_2, ξ_3 in the deformed dispersion relation (2) should indeed be close to 1. It means that the effects of the deformed terms characterized quantum gravity effects is extremely small as a result of the overall factor $1/M_p$. Some researches have suggested that, the quantum gravity scale might be somewhat smaller than the Planck scale, and might even coincide with the grand unification scale in particle physics, which is 3 orders of magnitude smaller (see Refs. [48, 71, 72] and references therein). This means that these parameters such as ξ_1, ξ_2, ξ_3 gain 3 orders of magnitude, but the prospect of detectable quantum gravity effects remains very small.

Recently, The Planck-scale sensitivity in the deformed dispersion relation (2) has been studied by using cold atom recoil experiments in Ref. [45], and the meaningful bounds on the parameters ξ_1 and ξ_2 have been obtained. The results shown that $\xi_1 = -1.8 \pm 2.1$ and $|\xi_2| < 10^9$, by using the experiments data of Caesium-atom recoil measurements in Ref. [73] and electron-anomaly measurements in Ref. [74]. As discussed above, the range of values of ξ_1 indicates that the cold-atom recoil experiments can be considered as the first example of controlled laboratory experiments probing the form of the dispersion relation with sensitivity that is meaningful from a Planck scale perspective. But the bound on parameter ξ_2 in the dispersion relation was still a few orders of magnitude away from the Planck scale.

Therefore, our main objective here is to show that the experiment of the ultra-high accuracy 1S–2S transition in hydrogen atom can be used to establish improved bounds on the parameters ξ_1 and ξ_2 that characterized the nonrelativistic limit of the deformed dispersion relation (2).
III. BOUNDS ON THE PARAMETERS OF THE DEFORMED DISPERSION RELATION

The hydrogen atom has played a central position in the development of quantum mechanics. As it is the simplest of atoms, it has played an important role for the development and testing of fundamental theories through ever-refined comparisons between experimental data and theoretical predictions, and hydrogen spectroscopy is closely related to the successive advances in the understanding of atomic structure. In recent years, with the advance of experimental technology, the absolute frequency of the 1S-2S transition in atomic hydrogen via two photon spectroscopy has been measured with particularly high precision, so that it can be used to achieve various accurate measurement. For example, the Rydberg constant R_∞ and the proton charge radius have been further improved through the advance of measurement precision of the 1S-2S two photo transition \[^{15}\]. A value of $R_\infty = 10973731.56854(10) m^{-1}$ was obtained. The 1S-2S hydrogen spectroscopy can also be used to search new limits on the drift of fundamental constants \[^{76, 77}\]. Another important application of the 1S-2S two photo transition is used to test electron boost invariance \[^{77}\]. Inspiring by these achievements with the absolute 1S-2S transition frequency in atomic hydrogen, we think about the possibility of studying quantum gravity effects on the hydrogen atomic spectroscopy.

Neglecting hyperfine structure, the hydrogen energy levels are given by the sum of the following contributions \[^{78}\]

$$E(n, J, L) = E_{DC}(n, J) + E_{RM}(n, J) + E_{LS}(n, J, L), \quad (3)$$

where E_{DC} denotes the Dirac-Coulomb energy as the main energy contribution, E_{RM} the leading recoil corrections due to the finite mass of the nucleus, and E_{LS} the Lamb shift. The first two energy contributions are the main one, which are well-known functions of the Rydberg constant R_∞, the fine structure constant α and the ratio of the electron and nuclear mass m_e/m_N. The Lamb shift contains QED corrections and corrections for the finite size and polarizability of the nucleus. Reviews of the contributions in hydrogenic atoms have been given by in \[^{78-80}\]. We follow here the expression derived by Bethe for the energy level shift. It has been pointed out by Bethe \[^{81}\] that the displacement of the 2S level of hydrogen observed by Lamb and Retherford \[^{82}\], can be simply explained as a shift in the energy of the atom arising from its interaction with the radiation field. Subsequently, by
calculating the mean square amplitude of oscillation of an electron coupled to the zero-point fluctuations of the electromagnetic field, the shift of \(nS \) energy levels has been given by \[83\]

\[
\Delta E_n = \frac{4\alpha^2}{3m^2} (\ln \frac{1}{\alpha}) |\psi_n(0)|^2
= \frac{8\alpha^3}{3\pi n^3} (\ln \frac{1}{\alpha}) \left(\frac{1}{2} \alpha^2 m \right) \delta_{00}.
\]

Since the scale of quantum electrodynamical effect is related to the principle quantum number \(n \) as \(1/n^3 \), so the 1S Lamb shift is the largest in atomic hydrogen.

Our main objects here is to expose sensitivity to a meaningful range of values of the parameters \(\xi_1 \) and \(\xi_2 \), let us focus on the Planck scale corrections with coefficient \(\xi_1 \) and \(\xi_2 \). Thus, the Planck scale correction terms are regarded as the perturbation terms of the levels energy of hydrogen atom with a well defined quantum Hamiltonian. In the deformed dispersion relation \[2\], the leading correction and the next-to-leading correction are respectively denoted by Hamiltonian \(\hat{H}' \) and \(\hat{H}'' \), where

\[
\hat{H}' = \xi_1 \frac{m}{2M_p} \hat{p},
\]
\[
\hat{H}'' = \xi_2 \frac{\hat{p}^2}{2M_p}.
\]

Now, we compute the bounds on parameters \(\xi_1 \) and \(\xi_2 \) by studying the Planck scale correction of the hydrogen energy levels.

A. Bound on the parameter \(\xi_1 \)

Since the hydrogen atom is spherically symmetric, the Coulomb potential of the hydrogen atom is given by

\[
V(r) = -\frac{k}{r},
\]

where \(k = e^2/4\pi\varepsilon_0 = \alpha \hbar \), \(e \) is electronic charge. To first order, the perturbing Hamiltonian \(\hat{H}' \) shift the energy to

\[
E_n = E_n^{(0)} + \xi_1 \frac{m}{2M_p} \langle nlm|\hat{p}|nlm \rangle,
\]

where \(E_n^{(0)} = -k/2an^2 \), \(a \) is the Bohr radius. As discussed above, the 1S Lamb shift is the largest in atomic hydrogen, so we are concerned only with the effects of the Planck scale
TABLE I: Quantities used in our calculation

Quantity	Value
α	$137.035999139(31)$
R_∞	$10973731.568508(65) m^{-1}$
a	$0.52917721067(12) \times 10^{-10} m$
m	$0.5109989461(31) / c^2 MeV$
M_p	$1.220910(29) \times 10^{19} / c^2 GeV$

correction on the shift of 1S energy levels. We have $l = m = 0$, and utilize the following to calculate the energy shift: $R_{10}(r) = 2a^{-3/2}e^{-r/a}$, $Y_{00} = 1/\sqrt{4\pi}$. We derive

$$<100|\hat{p}|100> = -i\hbar\langle 100|\frac{\partial}{\partial r}|100\rangle = \frac{i\hbar}{a}. \quad (8)$$

Thus, the shift of energy levels due to the leading correction in the DSR framework is expressed as

$$\Delta E = \left| \xi_1 \frac{m}{2M_p} \langle 100|\hat{p}|100\rangle \right| = \frac{m\hbar}{2M_p a}. \quad (9)$$

The additional contribution due to the correction of the parameter ξ_1 term in proportion to the original value 1S Lamb shift is given by

$$\frac{\Delta E}{\Delta E_1} = \xi_1 \frac{3m}{32M_p aR_\infty a^3 \ln \frac{1}{\alpha}} \approx 3.5 \times 10^{-15} \xi_1, \quad (10)$$

where some values in Table 1 have been used. As discussed above, if the Planck scale is the characteristic scale of quantum gravity effects, parameter ξ_1 should indeed be close to 1, and then the additional contribution in proportion to the original value (10) is approximately equal to 3.5×10^{-15}. The current accuracy of precision measurement of the hydrogen 1S-2S transition reach the 4.5×10^{-15} regime [50]. It interestingly means that the hydrogen 1S-2S transition experiment we here considered can indeed probe the Planck-scale sensitivity on basis of the deformed dispersion relation [2].
B. Bound on the parameter ξ_2

Following the same steps that we performed above for the correction term with coefficient ξ_1, it is easy to verify that the correction term with coefficient ξ_2 would produce the following modification of the hydrogen 1S energy levels

$$\Delta E' = |\langle 100|\hat{H}'|100\rangle| = \xi_2 \frac{1}{2M_p}|\langle 100|p^2|100\rangle|. \tag{11}$$

Using the expression

$$\hat{p}^2 = 2m[\hat{H}_0 + \frac{k^2}{r}], \tag{12}$$

where $\langle 100|\hat{H}_0|100\rangle = E_1^{(0)}$, we have

$$\langle 100|\hat{p}^2|100\rangle = \frac{mk}{a} = \frac{m\hbar\alpha}{a}. \tag{13}$$

The shift of energy levels due to the next-to-leading correction in the DSR framework is expressed as

$$\Delta E' = \xi_2 \frac{m\alpha\hbar}{2M_p a}. \tag{14}$$

Thus, the additional contribution due to the correction of the parameter ξ_2 term in proportion to the original value 1S Lamb shift is given by

$$\frac{\Delta E'}{\Delta E_1} = \xi_2 \frac{3m}{32M_p aR_\infty\alpha^2 \ln \frac{1}{\alpha}} \approx 2.6 \times 10^{-17}\xi_2. \tag{15}$$

According to the current accuracy of precision measurement of the hydrogen 1S-2S transition, the result allow us to establish that $|\xi_2| < 10^2$, which means that we indeed can probe the spacetime structure down to length scales of order $10^{-33}m \sim \xi_2/M_p$. This bound is the best limit on the scenario for the deformation of Lorentz symmetry in the nonrelativistic limit, since previous attempts to constrain the parameter ξ_2 is at level $|\xi_2| < 10^9$ by using the cold atom recoil experiments $[45]$. By comparing (9) with (14), it is easy to find that the magnitude of the energy shifts of the hydrogen atom caused by the leading correction term and the next-to-leading correction term differs by the fine structure constant $\alpha \sim 10^2$. However, in the study of constraining bounds on quantum gravity effects in the deformed dispersion relation by using the cold atom recoil experiment, the leading correction term and the next-to-leading correction term cause the energy correction to differ by a factor $m/(\hbar\nu_{\ast} + p) \sim 10^9$(see details in [45]). Thus, the hydrogen 1S-2S transition experiments can be considered to be able to investigate the desired Planck scale sensitivity.
IV. CONCLUSIONS

We use the latest results of the ultra-high accuracy 1S-2S transition experiments in hydrogen atom to establish upper bounds on parameters ξ_1 and ξ_2 characterizing the nonrelativistic limits of the deformed dispersion relation. The results show that the exceptional sensitivity of the experiments sets a limit on parameter ξ_1 within a single order of magnitude of the desired Planck-scale level, thereby providing another example of the Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments. At the same time, bound of parameter ξ_2 has two orders of magnitude away from the Planck scale, but it still amounts to the best limit, in contrast to previously obtained bounds in the nonrelativistic limit from the cold-atom-recoil experiments [45, 57]. We can expect that, as the hydrogen atom 1S-2S transition experiments continue to improve, more stringent bounds on parameters ξ_1 and ξ_2 could be found in the near future.

V. ACKNOWLEDGEMENTS

This work is supported by the Program for NCET-12-1060, by the Sichuan Youth Science and Technology Foundation with Grant No. 2011JQ0019, and by FANEDD with Grant No. 201319, and by the Innovative Research Team in College of Sichuan Province with Grant No. 13TD0003, and by Sichuan Natural Science Foundation with Grant No. 16ZB0178, and by the starting funds of China West Normal University with Grant No.17YC513 and No.17C050.

[1] G. Amelino-Camelia, Dually Special Relativity, Nature 418 (2002) 34.
[2] V. A. Kostelecký, S. Samuel, Spontaneous breaking of lorentz symmetry in string theory, Phys. Rev. D 39 (1989) 683; Photon and graviton masses in string theories, Phys. Rev. Lett. 66 (1991) 1811.
[3] G. M. Shore, Strong Equivalence, Lorentz and CPT Violation, Anti-Hydrogen Spectroscopy and Gamma-Ray Burst Polarimetry, Nucl. Phys. B 717 (2005) 86.
[4] D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel. 8 (2005) 5.
[5] T. Jacobson, S. Liberati, D. Mattingly, *A strong astrophysical constraint on the violation of special relativity by quantum gravity*, Nature **424** (2003) 1019; *Lorentz violation at high energy: concepts, phenomena and astrophysical constraints*, Ann. Phys. **321** (2006) 150.

[6] R. Bluhm, V. A. Kostelecký, N. Russell, *CPT and Lorentz Tests in Hydrogen and Antihydrogen*, Phys. Rev. Lett. **82** (1999) 2254; R. Bluhm, V. A. Kostelecký, C. D. Lane, *CPT and Lorentz tests with muons*, Phys. Rev. Lett. **84** (2000) 1098.

[7] J. Albert, et al., *Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope*, Phys. Lett. B **668** (2008) 253.

[8] K. G. Zloschastiev, *Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences*, Grav. Cosmol. **16** (2010) 288.

[9] B. R. Heckel, E. G. Adelberger, C. E. Cramer, T. S. Cook, S. Schlamminger, U. Schmidt, *Preferred-frame and CP-violation tests with polarized electrons*, Phys. Rev. D **78** (2008) 092006.

[10] W. A. Christiansen, Y. Jack Ng, H. van Dam, *Probing Spacetime Foam with Extragalactic Sources*, Phys. Rev. Lett. **96** (2006) 051301.

[11] X. Calmet, *Effective theory for quantum gravity*, Int. J. Mod. Phys. D **22** (2013) 1342014.

[12] P. Wolf, F. Chapelet, S. Bize, A. Clairon, *Cold Atom Clock Test of Lorentz Invariance in the Matter Sector*, Phys. Rev. Lett. **96** (2006) 060801.

[13] H. Müller, P. L. Stanwix, M. E. Tobar, E. Ivanov, P. Wolf, S. Herrmann, A. Senger, E. Kovalchuk, A. Peters, *Tests of Relativity by Complementary Rotating Michelson-Morley Experiments*, Phys. Rev. Lett. **99** (2007) 050401; H. Müller, S. Chiow, S. Herrmann, S. Chu, *Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity*, Phys. Rev. Lett. **100** (2008) 031101.

[14] S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. Kovalchuk, A. Peters, *Rotating optical cavity experiment testing Lorentz invariance at the 10^{-17} level*, Phys. Rev. D **80** (2009) 105011.

[15] C. Eisele, A. Yu. Nevsky, S. Schiller, *Laboratory Test of the Isotropy of Light Propagation at the 10^{-17} Level*, Phys. Rev. Lett. **103** (2009) 090401.

[16] G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, *The principle of relative locality*, Phys. Rev. D **84** (2011) 084010.

[17] G. Saathoff, S. Karpuk, U. Eisenbarth, G. Huber, S. Krohm, R. Muñoz Horta, S. Reinhardt, D. Schwalm, A. Wolf, G. Gwinner, Phys. Rev. Lett. **91**, (2003) 190403.
[18] C. D. Lane, *Probing Lorentz violation with Doppler-shift experiments*, Phys. Rev. D 72 (2005) 016005.

[19] F. W. Stecker and S. T. Scully, *Lorentz Invariance Violation and the Spectrum and Source Power of Ultrahigh Energy Cosmic Rays*, Astropart. Phys. 23 (2005) 203.

[20] M. Takeda, et al., *Energy determination in the Akeno Giant Air Shower Array experiment*, Astropart. Phys. 19 (2003) 447.

[21] R. U. Abbasi, et al., *Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Flys Eye Experiment*, Phys. Rev. Lett. 92 (2004) 151101; *First Observation of the Greisen-Zatsepin-Kuzmin Suppression*, Phys. Rev. Lett. 100 (2008) 101101.

[22] T. Padmanabhan, *Thermodynamical Aspects of Gravity: New insights*, Rep. Prog. Phys. 73 (2010) 046901; *Equipartition of energy in the horizon degrees of freedom and the emergence of gravity*, Mod. Phys. Lett. A 25 (2010) 1129.

[23] L. Smolin, *MOND as a regime of quantum gravity*, Phys. Rev. D 96 (2017) 083523.

[24] T. Jacobson, S. Liberati and D. Mattingly, *A strong astrophysical constraint on the violation of special relativity by quantum gravity*, Nature 424 (2003) 1019; *TeV astrophysics constraints on Planck scale Lorentz violation*, Phys. Rev. D 66 (2002) 081302.

[25] B. Altschul, *Limits on Lorentz Violation from Synchrotron and Inverse Compton Sources*, Phys. Rev. Lett. 96 (2006) 201101; *Synchrotron and inverse Compton constraints on Lorentz violations for electrons*, Phys. Rev. D 74 (2006) 083003.

[26] F. R. Klinkhamer, M. Risse, *Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory*, Phys. Rev. D 77 (2008) 016002.[addendum: Phys. Rev. D 77, (2008) 117901].

[27] V. A. Kostelecký and M. Mewes, *Astrophysical Tests of Lorentz and CPT Violation with Photons*, Astrophys. J. Lett. 689 (2008) L1.

[28] A. A. Abdo, et al., *A limit on the variation of the speed of light arising from quantum gravity effects*, Nature 462 (2009) 331.

[29] L. Freidel, R. G. Leigh, D. Minic, *Quantum spaces are modular*, Phys. Rev. D 94 (2016) 104052.

[30] J. M. Link, et al., *Charm system tests of CPT and Lorentz invariance with FOCUS*, Phys. Lett. B 556 (2003) 7.

[31] B. Aubert, et al., *Search for T, CP and CPT Violation in B0-B0bar Mixing with Inclusive
Dilepton Events, Phys. Rev. Lett. 96, 251802 (2006).

[32] S. M. Carroll and G. B. Field, Is There Evidence for Cosmic Anisotropy in the Polarization of Distant Radio Sources?, Phys. Rev. Lett. 79 (1997) 2394.

[33] G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, S. Sarkar, Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo, Nature 393 (1998) 763; G. Amelino-Camelia, Quantum theory’s last challenge, Nature 408 (2000) 661; G. Amelino-Camelia and T. Piran, Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes, Phys. Rev. D 64 (2001) 036005.

[34] R. Gambini, J. Pullin, Nonstandard optics from quantum spacetime, Phys. Rev. D 59 (1999) 124021.

[35] J. Alfaro, H. A. Morales-Tecotl, L. F. Urrutia, Quantum Gravity Corrections to Neutrino Propagation, Phys. Rev. Lett. 84 (2000) 2318.

[36] C. P. Burgess, J. M. Cline, E. Filotas, J. Matias, and G. D. Moore, Loop-Generated Bounds on Changes to the Graviton Dispersion Relation, J. High Energy Phys. 0203 (2002) 043.

[37] L. J. Garay, Spacetime foam as a quantum thermal bath, Phys. Rev. Lett. 80 (1998) 2508.

[38] J. R. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Derivation of a vacuum refractive index in a stringy space-time foam model, Derivation of a Vacuum Refractive Index in a Stringy Space-Time Foam Model, Phys. Lett. B 665 (2008) 412.

[39] J. Kowalski-Glikman, Observer-independent quanta of mass and length, Phys. Lett. A 286 (2001) 391.

[40] S. M. Carroll, J. A. Harvey, V. A. Kostelecký, C. D. Lane, and T. Okamoto, Noncommutative Field Theory and Lorentz Violation, Phys. Rev. Lett. 87 (2001) 141601.

[41] A. Matusis, L. Susskind and N. Toumbas, The IR/UV Connection in the Non-Commutative Gauge Theories, JHEP 0012 (2000) 002.

[42] N. R. Douglas and N. A. Nekrasov, Noncommutative Field Theory, Rev. Mod. Phys. 73 (2001) 977.

[43] T. J. Konopka, S. A. Major, Observational limits on quantum geometry effects, New J. Phys. 4 (2002) 57.

[44] G. Amelino-Camelia, Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35; Proposal
of a second generation of quantum-gravity-motivated Lorentz-symmetry tests: sensitivity to effects suppressed quadratically by the Planck scale, *Int. J. Mod. Phys. D* **12** (2003) 1633.

[45] G. Amelino-Camelia, C. Lammerzahl, F. Mercati, G. M. Tino, *Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms*, *Phys. Rev. Lett.* **103** (2009) 171302.

[46] L. J. Shao, B. Q. Ma, *Lorentz violation effects on astrophysical propagation of very high energy photons*, *Mod. Phys. Lett. A* **25** (2010) 3251.

[47] F. Mercati, D. Mazón, G. Amelino-Camelia, J. M. Carmona, J. L. Cortés, J. Induráin, C. Laemmerzahl, Guglielmo M. Tino, *Probing the quantum-gravity realm with slow atoms*, *Class. Quant. Grav.* **27** (2010) 215003.

[48] G. Amelino-Camelia, *Quantum-Spacetime Phenomenology*, *Living Rev. Rel.* **16** (2013) 5.

[49] A. Bibeau-Delisle, A. Bisio, G. M. D’Ariano, P. Perinotti, A. Tosini, *Doubly-Special Relativity from Quantum Cellular Automata*, *Euro. Phys. Lett.* **109** (2015) 50003.

[50] F. Briscese, *Trapped Bose-Einstein condensates with Planck-scale induced deformation of the energy-momentum dispersion relation*, *Phys. Lett. B* **718** (2012) 214.

[51] G. Amelino-Camelia, Niccolo’ Loret, G. Mandanici, F. Mercati, *Gravity in quantum spacetime*, *Int. J. Mod. Phys. D* **19** (2010) 2385.

[52] M. Arzano, J. Kowalski-Glikman, A. Walkus, *A Bound on Planck-scale modifications of the energy-momentum composition rule from atomic interferometry*, *Euro. Phys. Lett.* **90** (2010) 30006.

[53] E. Castellanos, C. Läiemmerzahl, *Ideal-Modified Bosonic Gas Trapped in an Arbitrary Three Dimensional Power-Law Potential*, *Mod. Phys. Lett. A* **27** (2012) 1250181; *Modified Bosonic Gas Trapped in a Generic 3-dim Power Law Potential*, *Phys. Lett. B* **731**, (2014) 1.

[54] M. Coraddu, S. Mignemi, *The Nonrelativistic limit of the Magueijo-Smolin model of deformed special relativity*, *Euro. Phys. Lett.* **91** (2010) 51002.

[55] G. P. Li, J. Pu, Q. Q. Jiang, X. T. Zu, *An Application of Lorentz Invariance Violation in Black Hole Thermodynamics*, *Euro. Phys. J. C* **77** (2017) 666.

[56] L. Maccione, S. Liberati, *GZK photon constraints on Planck scale Lorentz violation in QED*, *JCAP* **0808** (2008) 027.

[57] D. F. Gao, M. S. Zhan, *Constraining the generalized uncertainty principle with cold atoms*, *Phys. Rev. A* **94** (2016) 013607.
[58] S. Das, E. C. Vagenas, *Universality of Quantum Gravity Corrections*, Phys. Rev. Lett. 101 (2008) 221301.

[59] A. F. Ali, S. Das, E. C. Vagenas, *A proposal for testing Quantum Gravity in the lab*, Phys. Rev. D 84 (2011) 044013.

[60] C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, et al., *Improved Measurement of the Hydrogen 1S-2S Transition Frequency*, Phys. Rev. Lett. 107 (2011) 203001.

[61] A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, et al., *Precision Measurement of the Hydrogen 1S-2S Frequency via a 920-km Fiber Link*, Phys. Rev. Lett. 110 (2013) 230801.

[62] Z. Xiao, B. Q. Ma, *Constraints on Lorentz invariance violation from gamma-ray burst GRB090510*, Phys. Rev. D 80 (2009) 116005.

[63] U. Jacob, T. Piran, *Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation*, Nature Phys. 3 (2007) 87.

[64] S. D. Biller, etc., *Limits to quantum gravity effects from observations of TeV flares in active galaxies*, Phys. Rev. Lett. 83 (1999) 2108.

[65] A. Saveliev, L. Maccione, G. Sigl, *Lorentz Invariance Violation and Chemical Composition of Ultra High Energy Cosmic Rays*, JCAP 1103 (2011) 046.

[66] J. R. Ellis, N. E. Mavromatos, A. S. Sakharov, *Synchrotron radiation from the Crab Nebula discriminates between models of space-time foam*, Astropart. Phys. 20 (2004) 669.

[67] J. Alfaro, H. A. Morales-Tecotl and L. F. Urrutia, *Quantum gravity corrections to neutrino propagation*, Phys. Rev. Lett. 84 (2000) 2318.

[68] R. Gambini, J. Pullin, *Nonstandard optics from quantum space-time*, Phys. Rev. D 59 (1999) 124021.

[69] L. Smolin, *Three roads to quantum gravity*, London, UK: Weidenfeld and Nicolson (2000) p231.

[70] J. Alfaro, H. A. Morales-Tecotl, L. F. Urrutia, *Quantum gravity and spin 1/2 particles effective dynamics*, Phys. Rev. D 66 (2002) 124006.

[71] G. Amelino-Camelia, *Are we at the dawn of quantum gravity phenomenology?*, Lect. Notes Phys. 541 (2000) 1.

[72] S. P. Robinson, F. Wilczek, *Gravitational correction to running of gauge couplings*, Phys. Rev. Lett. 96 (2006) 231601.
[73] A. Wicht, et al., Phys. Script. T 102, (2002) 82; V. Gerginov, et al., Optical frequency measurements of $6s^2S_{1/2} - 6p^2P_{1/2}$ (D1) transitions in 133Cs and their impact on the fine-structure constant, Phys. Rev. A 73 (2006) 032504.

[74] D. Hanneke, S. Fogwell, G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100 (2008) 120801.

[75] F. Biraben, Spectroscopy of atomic hydrogen, Eur. Phys. J. Special Topics 172 (2009) 109.

[76] M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, Th. Udem, T. W. Haensch, et al., New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett. 92 (2004) 230802.

[77] B. Altschul, Testing Electron Boost Invariance with 2S-1S Hydrogen Spectroscopy, Phys. Rev. D 81 (2010) 041701.

[78] W. R. Johnson, G. Soff, The lamb shift in hydrogen-like atoms, $1 \leq Z \leq 110$, At. Data Nucl. Data Tables 33 (1985) 405.

[79] G. W. Erickson, Energy levels of one-electron atoms, J. Phys. Chem. Ref. Data 6 (1977) 831.

[80] K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. König, T. W. Hänsch, Theory of the energy levels and precise two-photon spectroscopy of atomic hydrogen and deuterium, J. Phys. B Atom. Mole. Optical Phys. 29 (1999) 1573.

[81] J. R. Sapirstein, D. R. Yennie, Theory of hydrogenic bound states, Advanced Series on Directions in High Energy Physics (1990) 560.

[82] H. A. Bethe, The Electromagnetic shift of energy levels, Phys. Rev. 72 (1947) 339.

[83] W. E. Lamb, Jr., R. C. Retherford, Fine Structure of the Hydrogen Atom by a Microwave Method, Phys. Rev. 72 (1947) 241.

[84] P. J. Mohr, David B. Newell, Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, J. Phys. Chem. Ref. Data 45 (2016) 043102.