Primary infection by Toxoplasma gondii is habitually food borne and ingestion of foods with animal origins is measured as a risk factor. The current survey was performed to assess the seasonal and age distribution of T. gondii in diverse kinds of raw milk and traditional dairy products. Three-hundred and seventy raw milk and traditional dairy samples were collected and subjected to DNA extraction. B1 specific gene of T. gondii was perceived by means of the molecular technique. Eighteen out of 370 (4.86%) studied samples were positive for T. gondii. Molecular incidence of T. gondii in raw milk was 6.08%. T. gondii was also perceived in 2.85% of studied traditional dairy samples, respectively. Sheep milk (10%) and cheese (6.66%) had the uppermost molecular incidence of parasite. Molecular incidence of T. gondii in raw camel milk and cream and butter samples were 3.33%, 5% and 5%, respectively. Samples which were collected through autumn (15.55%) and summer (9.37%) seasons had the maximum molecular incidence of T. gondii. Raw milk samples of older than 4 years animal species (11.39%) had the maximum molecular incidence of T. gondii. The existing survey is the first report of seasonal and age distribution of T. gondii in diverse kinds of dairy samples. Raw sheep, goat, buffalo, bovine and camel milk and also traditional cheese, cream and butter dairy samples may harbor T. gondii infection. Seasonal and senile distribution should be measured for molecular incidence of T. gondii in milk of primary infected animals and also traditional dairy products.

Keywords: Toxoplasma gondii, Raw milk, Traditional dairy products, Season, Age.
positive relationships amid dairy consumption and transmission of *T. gondii* infection to human [8, 11], others specified irrelevant effects of dairy consumption [15, 16]. Thus, it is important to find the portion of raw milk and traditional dairies in transmission of *T. gondii* infections to human. Furthermore, there is no strict data about the role of season and age of animals in the incidence of *T. gondii*. Some scarce reports disclosed that season and age may affect the incidence of toxoplasmosis [17, 18].

Affording to uncertain role of raw milk and traditional dairies in transmission of *T. gondii*, the current survey was performed to evaluate the seasonal and age distribution of *T. gondii* in raw cow, buffalo, sheep, goat, camel and donkey milk and traditional yoghurt, cheese, butter, cream, doogh, kashk, and ice-cream dairy product samples by means of the nested-Polymerase Chain Reaction (nested-PCR).

Materials and Methods

Moral questions

The survey was permitted by the ethical team of the author’s institute. Licenses of sampling were taken from the Head of the Faculty.

Samples

From April 2016 to April 2017, 370 raw milk and traditional dairy samples including raw buffalo (n= 30), cow (n= 60), sheep (n= 40), goat (n= 50), donkey (n= 20) and camel (n= 30) milk and traditional cheese (n= 30), cream (n= 20), butter (n= 20), yoghurt (n= 30), kashk (n= 20), doogh (n=30) and ice-cream (n=20) samples were arbitrarily obtained through simple random sampling procedure from the retail centers. Samples were collected from diverse provinces located at the center and south-west of Iran. All samples were stored at refrigerator in the retail centers. Sheep, donkey and goat raw milk samples were only collected through the spring and summer seasons. Dairy samples all were derived from cow’s milk. Age of targeted livestock was determined by an expert professor of the field of Animal Sciences. Briefly, Samples (10 mL) were collected through hygienic circumstances by means of sterile glass tubes. First few squirts were overlooked during milk collection. Samples were directly transferred to the laboratory by means of sterile cool boxes.

DNA extraction

DNA was extracted from a 200-μL aliquot of samples by means of the DNA extraction and purification kit (Thermo Fisher Scientific, Germany) rendering the factory’s guidelines. For this purpose, 900 QL of cell lysis solution was added to 300 QL of sample in a cryotube. Samples were subjected to enzymatic pre-digestion by means of proteinase K (20 QL, 20 mg/ml) and incubated at 56°C overnight. Extracted DNA samples were subjected to quantification by NanoDrop device (NanoDrop, Thermo Scientific, Waltham, USA), qualification (2% agarose gel) and purity checking (A260/A280).

Detection of *T. gondii* B1 gene

DNA thermo-cycler (Eppendorf Master cycler 5330, Hamburg, Germany) was applied in PCR reactions. *T. gondii* B1 gene was perceived in DNA samples by means of the method conveyed formerly [19]. Table 1 signifies the PCR circumstances applied for detection of *T. gondii* B1 gene. Visualization was performed by means of electrophoresis on agarose gel (2% in 1× TBE buffer stained with SYBR Green (Thermo Fisher Scientific, Germany). Negative control (PCR grade water (Thermo Fisher Scientific, Germany) and positive control (positive DNA for the B1 gene obtained from the Faculty of Veterinary Medicine, University of Tehran) were applied in PCR reactions.

Statistical analysis

Data obtained from the survey were numerically examined by SPSS 21.0 software. Noteworthy relations amid variables were determined by chi-square and Fisher’s exact two-tailed tests. *P* value <0.05 was determined as level of significance.

Results

Three-hundred and seventy dairies were tested for presence of *T. gondii* B1 gene by the PCR method. Figure 1 signifies the amplification of *T. gondii* B1 gene in first and second (nested) PCR reactions.

Table 2 signifies the molecular incidence of *T. gondii* in diverse kinds of dairies. Eighteen out of 370 (4.86%) raw milk and dairy samples were positive for *T. gondii* B1 gene. Four out of 140 (2.85%) traditional dairy product and 14 out of 230 (6.08%) raw milk samples were also positive for *T. gondii* B1 gene. Sheep milk (10%) was the most commonly contaminated sample amongst the raw milk samples. Additionally, traditional cheese (6.66%) was the most commonly contaminated sample amongst the traditional dairy product samples. Reversely, camel milk (3.33%) and cream (5%) and butter (5%) had the lowermost molecular incidence of *T. gondii*. There were
TABLE 1. PCR circumstances applied for detection of T. gondii B1 gene.

Reactions	Primer sequence (5’-3’)	PCR product (bp)	PCR programs	PCR volume (50 µL)
First PCR	F: GGA ACT GCA TCC GTT CAT GAG R: TCT TTA AAG CGT TCG TGG TC	193	1 cycle: 5 µL PCR buffer 10X 1 cycle: 2 mM MgCl₂ 40 cycle: 150 µM dNTP 40 cycle: 0.75 µM of each primers F & R 40 cycle: 1.5 U Taq DNA polymerase 40 cycle: 3 µL DNA template	1 cycle: 5 µL PCR buffer 10X 1 cycle: 2 mM MgCl₂ 40 cycle: 150 µM dNTP 40 cycle: 0.75 µM of each primers F & R 40 cycle: 1.5 U Taq DNA polymerase 40 cycle: 3 µL DNA template
Second PCR	F: TGC ATA GGT TGC AGT CAC TG R: GGC GAC CAA TCT GCG AAT ACA CC	96	1 cycle: 5 µL PCR buffer 10X 1 cycle: 2 mM MgCl₂ 40 cycle: 150 µM dNTP 40 cycle: 0.75 µM of each primers F & R 40 cycle: 1.5 U Taq DNA polymerase 40 cycle: 3 µL DNA template	1 cycle: 5 µL PCR buffer 10X 1 cycle: 2 mM MgCl₂ 40 cycle: 150 µM dNTP 40 cycle: 0.75 µM of each primers F & R 40 cycle: 1.5 U Taq DNA polymerase 40 cycle: 3 µL DNA template

Fig.1. Results of the gel electrophoresis of the B1 gene of the T. gondii. A: the first step PCR amplification: M: 100 bp ladder (Thermo Fisher Scientific, Germany), 1: Negative control (negative DNA control consisting of PCR grade water (Thermo Fisher Scientific, Germany)), 2: Positive control (positive DNA for the B1 gene) and 3: positive sample (328 bp). B: The nested-PCR amplification. M: 100 bp ladder (Thermo Fisher Scientific, Germany), 1: Negative control (negative DNA control consisting of PCR grade water (Thermo Fisher Scientific, Germany)), 2: Positive control (positive DNA for the B1 gene) and 3: positive sample (198 bp).
TABLE 2. Molecular incidence of T. gondii in diverse kinds of raw milk and traditional dairy product samples.

Type of samples (raw milk and traditional dairy products)	N samples collected	N (%) samples positive for T. gondii
Buffalo milk	30	2 (6.66)
Cow milk	60	3 (5)
Goat milk	40	3 (7.50)
Sheep milk	50	5 (10)
Donkey milk	20	-
Camel milk	30	1 (3.33)
Total raw milk	230	14 (6.08)
Cheese	30	2 (6.66)
Cream	20	1 (5)
Butter	20	1 (5)
Yoghurt	20	-
Kashk	20	-
Doogh	30	-
Total dairies	140	4 (2.85)
Total	370	18 (4.86)

no detectable T. gondii B1 gene in donkey raw milk and yoghurt, kashk and doogh samples. Statistically noteworthy variances were gotten amid kinds of samples and molecular incidence of T. gondii (P<0.05).

Table 3 signifies the seasonal distribution of T. gondii in diverse kinds of dairies. Molecular incidence of T. gondii in spring, summer, autumn and winter seasons were 2.10%, 9.37%, 15.55% and 0%, respectively. Moreover, molecular incidence of T. gondii in traditional dairies collected through spring, summer, autumn and winter seasons were 0%, 5.26%, 17.64% and 0%, respectively. Statistically noteworthy variances were gotten amid season of sampling and molecular incidence of T. gondii (P<0.05).

Table 4 signifies the age distribution of T. gondii in diverse kinds of raw milk. Molecular incidence of T. gondii in raw milk samples of < 2 years old, 2-4 years old and > 4 years old livestock species was 1.81%, 5.26% and 11.39%, respectively. Only

TABLE 3. Seasonal distribution of T. gondii in diverse kinds of raw milk and traditional dairy product samples.

Types of samples (N positive samples)	N samples collected in each season	N (%) samples positive in each season						
	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter
Buffalo milk (2)	8	9	7	6	-	1 (11.11)	1 (14.28)	-
Cow milk (3)	17	15	14	14	-	1 (6.66)	2 (14.28)	-
Goat milk (3)	20	20	-	-	-	1 (5)	2 (10)	-
Sheep milk (5)	25	25	-	-	1 (4)	4 (16)	-	-
Camel milk (1)	8	8	7	7	-	-	1 (14.28)	-
Total raw milk (14)	78	77	28	27	2 (2.56)	8 (10.38)	4 (14.28)	-
Cheese (2)	6	7	8	9	-	1 (14.28)	1 (12.50)	-
Cream (1)	5	5	5	5	-	-	1 (20)	-
Butter (1)	6	7	4	3	-	-	1 (25)	-
Total dairies (4)	17	19	17	17	-	1 (5.26)	3 (17.64)	-
Total (18)	95	96	45	44	2 (2.10)	9 (9.37)	7 (15.55)	-

Egypt. J. Vet. Sci. Vol. 51, No. 2 (2020)
7.14% of raw milk samples of younger than 2 years old ovine were positive for *T. gondii*. There were no detectable *T. gondii* in the raw milk samples of younger than 2 years old buffalo, bovine, caprine and camel. Statistically noteworthy variances were gotten amid age of animal species and molecular incidence of *T. gondii* (*P*<0.05).

Discussion

An existing survey was performed to evaluate the molecular incidence of *T. gondii* in diverse kinds of dairies regarding the age of animal species and season of sampling. As it disclosed, 4.86% of dairies were positive for *T. gondii*. In a same survey[20], incidence of *T. gondii* in raw buffalo, cow, goat, sheep and camel milk samples collected from Iran were 3.65%, 3.50%, 9.44%, 6.48% and 2.50%, respectively. Findings of an existing survey was also like those of Egyptian survey [21]. They exhibited that the incidence of *T. gondii* in raw camel, sheep and goat milk samples were 0%, 5.55% and 3.70%, respectively. *T. gondii* has also been recognized in the milk of numerous hosts, such as goat [22-27], sheep [28-30], donkey [23, 31], cattle [32, 33], camel [21, 34-36], buffalo [11], cat [37], dog [38], rat [39] and even human breast feed [40, 41]. In keeping with this, only consumption of contaminated goat milk was associated with occurrence of human acute toxoplasmosis[42, 43, 54]. Furthermore, *T. gondii*’s tachyzoites can survive in milk for about three to seven days at 4°C [55] and in cheese for a about 8 to 10 days [32]. Thus, presence of *T. gondii* in dairies should be measured as a dangerous concern. Serologic surveys conducted in Iran [56], Czech Republic [57], Romani [58], Brazil [59], Greece [60], and finally Thailand [61].

Our findings also disclosed that dairies collected through autumn and summer seasons had the higher molecular incidence of *T. gondii*. Moreover, raw milk samples collected from older animals (>4 years old) had the higher molecular incidence of *T. gondii*. Higher molecular incidence of *T. gondii* in samples collected through autumn and summer seasons, signifying that fresh grasses may harbor *T. gondii* oocysts. Moreover, humid environment exist in these seasons may favor the survival of *T. gondii* oocysts. Our findings were similar to results of previously published works [53, 62, 63]. Though, some surveys have exposed negative portion of season for incidence of *T. gondii* [64, 65].Previous work [66] described that 85 out of 3531 (2.41%) samples collected through autumn seasons were positive for *T. gondii*. Additionally, higher seroprevalence of this parasite was conveyed on samples collected through autumn seasons.
through autumn (OR 3.462; \(P = 0.039 \)) \[66\]. Dubey \[67\] conveyed that access of livestock to outdoors and grazing pasture (in autumn and summer seasons) are imperative risk factors for incidence of *T. gondii*. Role of age of animals has also been investigated \[31, 68\]. Recent survey \[69\] also disclosed that > 8 months old pigs had the higher seroprevalence of *T. gondii* than young pigs. Previous investigation \[70\] described that animals and especially sheep and goat can be exposed to *T. gondii* at any stage of their life, while incidence increased in higher ages. Recent report \[71\] described that incidence of *T. gondii* increased from 37.70% in young sheep to 73.80% in >6 years ewes. Another survey \[72\] specified the role of age as an substantial risk factor for incidence of *T. gondii*. Totally, portion of food-borne microbes, particularly bacteria, in occurrence of food-borne diseases has been measured in Iran and diverse surveys have been conducted in this field \[20, 73-82\].

Conclusions

We examined the molecular incidence of *T. gondii* in raw milk and traditional dairy product samples collected from different parts of Iran. Nested-PCR reaction was introduced as a safe and accurate diagnostic method for detection of the *T. gondii* B1 gene. *T. gondii* molecular incidence in raw milk and traditional dairies was 6.08% and 2.85%, respectively. Sheep milk and traditional cheese were the most commonly contaminated samples. Camel milk and cream and butter had the lowermost molecular incidence of *T. gondii*. There were no detectable *T. gondii* in donkey raw milk and yoghurt, kashk and doogh samples. Higher molecular incidence of *T. gondii* was found in dairies collected through the autumn and summer seasons. Additionally, higher molecular incidence of *T. gondii* was seen in raw milk samples of older than 4 years old animal species. Our outcomes may disclose that the raw buffalo, cow, goat, sheep, and camel milk samples and traditional cheese, butter and dairies are likely sources of *T. gondii* infection in the community.

Acknowledgment: Authors thank from Dr. Mandana Alipour Amro abadi for her cooperation in sampling and molecular analysis. An existing survey was economically supported by the Islamic Azad University.

Funds statement: The work was financially supported by the Islamic Azad University.

Egypt. J. Vet. Sci. Vol. 51, No. 2 (2020)
10. Boas, R.V., Pacheco, T.d.A., Melo, A.L.T., Oliveira, A.C.S.d., Aguilar, D.M.d. and Pacheco, R.d.C., Infection by Neospora caninum in dairy cattle belonging to family farmers in the northern region of Brazil. Rev. Bras. Parasitol., 24(2),204-208 (2015).

11. Dehkordi, F.S., Haghighi Borujeni, M.R., Rahimi, E. and Abdizadeh, R., Detection of Toxoplasma gondii in raw caprine, ovine, buffalo, bovine, and camel milk using cell cultivation, cat bioassay, capture ELISA, and PCR methods in Iran. Foodborne Pathog. Dis., 10(2),120-125 (2013).

12. McCann, C.M., Vyse, A.J., Salmon, R.L., Thomas, D., Williams, D.J., McGarry, J.W., Pebody, R. and Trees, A.J., Lack of serological evidence of Neospora caninum in humans, England. Emerging Infect. Dis., 14(6),978-980(2008), doi: 10.3201/ eid1406.071128

13. Oshiro, L.M., Motta-Castro, A.R.C., Freitas, S.Z., Cunha, R.C., Dittrich, R.L., Meirelles, A.C.F. and Andreotti, R., Neospora caninum and Toxoplasma gondii serodiagnosis in human immunodeficiency virus carriers. Rev. Soc. Bras. Med. Trop., 48(5),568-572 (2015).

14. Dubey, J.P., Review of Neospora caninum and neosporosis in animals. Korean J. Parasit., 41(1),1-16 (2003). DOI:10.3347/kjp.2003.41.1.1

15. Alvarado-Esquivel, C., Campillo-Ruiz, F. and Liesenfeld, O., Seroepidemiology of infection with Toxoplasma gondii in migrant agricultural workers living in poverty in Durango, Mexico. Parasit Vectors., 6(1),113-119 (2013), doi: 10.1186/1756-3305-6-5-6-113.

16. Minbaeva, G., Schweiger, A., Bodosheva, A., Kuttubaev, O., Hehl, A.B., Tanner, I., Ziaidinov, I., Torgerson, P.R. and Deplazes, P., Toxoplasma gondii infection in Kyrgyzstan: seroprevalence, risk factor analysis, and estimate of congenital and AIDS-related toxoplasmosis. PLoS Negl. Trop. Dis.,7(2),e2043 (2013).

17. Dong, H., Su, R., Lu, Y., Wang, M., Liu, J., Jian, F. Yang, Y., Prevalence, risk factors, and genotypes of Toxoplasma gondii in food animals and humans (2000–2017) from China. Front. Microbio., 9 , 2108 (2018). doi: 10.3389/fmicb.2018.02108

18. Alvarado-Esquivel, C., Pacheco-Vega, S.J., Hernández-Tinoco, J., Sánchez-Anguiano, I.F., Berumen-Segovia, L.O., Rodriguez-Acevedo, F.J.I., Beristain-Garcia, I., Rábago-Sánchez, E., Liesenfeld and O. Campillo-Ruiz, F., Seroprevalence of Toxoplasma gondii infection and associated risk factors in Huicholes in Mexico. Parasit. Vector., 7(1),301-308(2014).

19. Jones, C.D., Okhravi, N., Adamson, P., Tasker, S. and Lightman, S. Comparison of PCR detection methods for B1, P30, and 18S rDNA genes of T. gondii in aqueous humor. Invest. Ophthamol. Vis. Sci., 41(3),634-644 (2000).

20. Dehkordi, F.S., Barati, S., Momtaz, H., Ahari, S.N.H. and Dehkordi, S.N. Comparison of shedding, and antibiotic resistance properties of Listeria monocytogenes isolated from milk, feces, urine, and vaginal secretion of oveine, caprine, buffalo, and camel species in Iran. Jundishapur J. Microbiol., 6(3), 307-313. (2013).

21. Sand, N.M., Hussein, A.A. and Ewida, R.M., Occurrence of Toxoplasma gondii in raw goat, sheep, and camel milk in Upper Egypt. Vet. World, 11(9),1262-1265(2018). doi: 10.14202/vetworld.2018.1262-1265

22. Bezerra, M., Kim, P., Moraes, É.P., Sá, S., Albuquerque, P., Silva, J., Alves, B. and Mota, R., Detection of T oxoplasma gondii in the milk of naturally infected goats in the N ortheast of B razil. Transbound Emerg. Dis., 62(4),421-424 (2015).

23. Manci, F., Nardoni, S., Papini, R., Mugnaini, L., Martini, M., Altmonte, I., Salari, F., D’Ascenzi, C. and Dubey, J.P., Detection and genotyping of Toxoplasma gondii DNA in the blood and milk of naturally infected donkeys (Equus asinus). Parasit. Vector.,7(1),165-168 (2014). doi: 10.1186/1756-3305-7-165.

24. Tavassoli, M., Esmaeilnejad, B., Malekifarid, F., Soleimanzadeh, A. and Dilmaghani, M., Detection of Toxoplasma gondii DNA in Sheep and Goat Milk in Northwest of Iran by PCR-RFLP. Jundishapur J. Microbiol., 6(10), e8201 (2013).DOI: 10.5812/ jimi.8201

25. Dubey, J., Verma, S., Ferreira, L., Oliveira, S., Cassinelli, A., Ying, Y., Kwok, O., Tuo, W., Chiesa, O. and Jones, J., Detection and survival of Toxoplasma gondii in milk and cheese from experimentally infected goats. J. Food Protect.,77(10),1747-1753 (2014).

26. Sadek, O., Abdel-Hameed, Z.M. and Kuraa, H.M., Molecular detection of Toxoplasma gondii DNA in raw goat and sheep milk with discussion of its public health importance in Assiut Governorate. Assiut Vet. Med. J., 61(145),166-177 (2015).

Egypt. J. Vet. Sci. Vol. 51, No. 2 (2020)
27. Amairia, S., Rouatbi, M., Rjeibi, M.R., Nouasri, H., Sassi, L., Mhadhbi, M. and Gharbi, M., Molecular prevalence of Toxoplasma gondii DNA in goats’ milk and seroprevalence in Northwest Tunisia. Vet. Med. Sci., 2(3),154-160 (2016).

28. de Santana Rocha, D., de Sousa Moura, R., Maciel, B., Guimaraes, L., O’dwyer, H., Munhoz, A. and Albuquerque, G., Detection of Toxoplasma gondii DNA in naturally infected sheep’s milk. Genetic Molecul. Res., 14(3),8658-8662 (2015).

29. Luptakova, L., Benova, K., Reneko, A. and Petrovova, E., DNA detection of Toxoplasma gondii in sheep milk and blood samples in relation to phase of infection. Vet. Parasit., 208 (3-4),250-253 (2015).

30. Ossani, R., Borges, H., Souza, A., Sartor, A., Miletti, L., Federle, M. and Moura, A., Toxoplasma gondii in milk of naturally infected dairy ewes in west mesoregion of Santa Catarina state, Brazil. Arq Bras Med. Vet. Zoo., 69(5),1294-1300 (2017).

31. Alvarado-Esquivel, C., Alvarado-Esquivel, D. and Dubey, J.P., Prevalence of Toxoplasma gondii antibodies in domestic donkeys (Equus asinus) in Durango, Mexico slaughtered for human consumption. BMC Vet. Res., 11(1),6-10 (2015). DOI 10.1186/s12917-015-0325-9

32. Hiramoto, R., Mayrbaurl-Borges, M., Galisteo Jr, A., Meireles, L., Macre, M. and Andrade Jr, H., Infectivity of cysts of the ME-49 Toxoplasma gondii strain in bovine milk and homemade cheese. Rev. Saude Pub., 35(4),113-118 (2001).

33. Holec-Gasior, L., Drapala, D., Dominiak-Górski, B. and Kur, J., Epidemiological study of Toxoplasma gondii infection among cattle in Northern Poland. Ann. Agric. Environ. Med., 20(4),653-656(2013).

34. Ishag, M.Y., Magzoub, E. and Majid, M., Detection of Toxoplasma gondii tachyzoites in the milk of experimentally infected lactating She-Camels. J. Anim. Vet. Adv., 5(6), 456-458 (2006).

35. Gebremedhin, E.Z., Yunus, H.A., Tesfiamaryam, G., Tessema, T.S., DAWO, F., Terefe, G., DI MarCO, V. and Vitale, M., First report of Toxoplasma gondii in camels (Camelus dromedarius) in Ethiopia: bioassay and seroepidemiological investigation. BMC Vet. Res., 10(1),222-227 (2014).

36. Medani, M. and Mohamed, H., Camel’s milk as a source of human toxoplasmosis in Butana area-Sudan. Int. J. Infect. Dis., 45,471-472 (2016).

37. Powell, C.C., Brewer, M. and Lappin, M.R., Detection of Toxoplasma gondii in the milk of experimentally infected lactating cats. Vet. Parasitol., 102(1-2),29-33 (2001).

38. Chamberlain, D., Docton, F. and Cole, C., Toxoplasmosis. II. Intra-Uterine Infection in Dogs, Premature Birth and Presence of Organisms in Milk. Soci. Experiment Bio. Med., 82(2),198-200 (1953).

39. Costa, V. and Langoni, H., Detection of Toxoplasma gondii in the milk of experimentally infected Wistar female rats. J. Venomous Animal Toxin Trop. Dis., 16(2),368-374 (2010).

40. Azab, M., Kamel, A., Makled, K., Khattab, H., El-Zayyat, E., Abo-Amer, E. and Samy, G., Naturally occurring toxoplasma antibodies in serum and milk of lactating women. J. Egyptian Soci. Parasitol., 22(2),561-568 (1992).

41. Capobiango, J.D., Mitsuka-Bregano, R., Monica, T.C., Ferreira, F.P. and Reiche, E.M.V., Acute toxoplasmosis in a breastfed infant with possible transmission by water. Rev. Inst. Med. Trop. Sao Paulo, 57(6),523-526 (2015).

42. Riemann, H., Meyer, M., Theis, J., Kelso, G. and Behymer, D., Toxoplasmosis in an infant fed unpasteurized goat milk. J. Pediatric, 87(4),573-576 (1975).

43. Sacks, J.J., Roberto, R.R. and Brooks, N.F., Toxoplasmosis infection associated with raw goat’s milk. JAMA., 248(14),1728-1732 (1982).

44. Skinner, L.J., Timperley, A.C., Wightman, D., Chatterton, J.M. and Ho-Yen, D.O., Simultaneous diagnosis of toxoplasmosis in goats and goatowner’s family. Scandinavian J. Infect. Dis., 22(3),359-361 (1990).

45. Alvarado-Esquivel, C., Liesenfeld, O., Torres-Castorena, A., Estrada-Martínez, S., Urbina-Alvarez, J., Ramos-De la Rocha, M., Márquez-Conde, J. and Dubey, J., Seroepidemiology of Toxoplasma gondii infection in patients with vision and hearing impairments, cancer, HIV, or undergoing hemodialysis in Durango, Mexico. J. Parasitol., 96(3),505-509 (2010).

46. da Silva, M.G., Câmara, J.T., Vinaud, M.C. and de Castro, A.M., Epidemiological factors associated with seropositivity for toxoplasmosis in pregnant women from Gurupi, State of Tocantins, Brazil. Rev. Soci. Brasil. Med. Trop., 47(4),469-475 (2014).
47. Raeghi, S., Akaberi, A. and Sedeghi, S., Seroprevalence of Toxoplasma gondii in sheep, cattle and horses in Urmia North-West of Iran. *Iranian J. Parasitol.*, 6(4),90-94 (2011).

48. Cenci-Goga, B.T., Ciampelli, A., Sechi, P., Veronesi, F., Moretta, I., Cambiotti, V. and Thompson, P.N., Seroprevalence and risk factors for Toxoplasma gondii in sheep in Grosseto district, Tuscany, Italy. *BMC Vet. Res.*, 9(1),25-33 (2013).

49. Tilahun, B., Tolossa, Y.H., Tilahun, G., Ashenafi, H. and Shimelis, S., Seroprevalence and Risk Factors of Toxoplasma gondii Infection among Domestic Ruminants in East Hararghe Zone of Oromia Region, Ethiopia. *Vet. Med. Int.*, 1-7(2018), Article ID 4263470(2018). https://doi.org/10.1155/2018/4263470.

50. Gencer, M., Cevizci, S., Saçar, S., Vural, A., Güngör, A.N.C., Uysal, A., Hacivelügli, S.O., Çelik, M., Duru, E. and Cosar, E., Evaluation of anti-Toxoplasma gondii antibody distribution and risk factors among pregnant women admitted to obstetrics polyclinic of Canakkale Onsekiz Mart University Hospital. *Türk. Parazitol. Derg.*, 38(2),76-85. (2014).

51. Radon, K., Windstetter, D., Eckart, J., Dressel, H., Leitritz, L., Reichert, J., Schmid, M., Praml, G., Schoser, M. and Von Mutius, E., Farming exposure in childhood, exposure to markers of infections and the development of atopy in rural subjects. *Clin. Experiment. Allergy*, 34(8),1178-1183 (2004).

52. Nimri, L., Pelloux, H. and Elkhatab, L., Detection of Toxoplasma gondii DNA and specific antibodies in high-risk pregnant women. *American J. Trop. Med. Hygiene*, 71(6),831-835 (2004).

53. Dubey, J., Re-examination of resistance of Toxoplasma gondii tachyzoites and bradyzoites to pepsin and trypsin digestion. *Parasitol.*, 110(1),43-50 (1998).

54. Johnson, A., Speculation on possible life cycles for the clonal lineages in the genus Toxoplasma. *Parasitol. Today*, 13(10),393-397 (1997).

55. Spišák, F., Turčeková, L., Reiterová, K., Spišovská, S. and Dubinský, P., Prevalence estimation and genotyping of Toxoplasma gondii in goats. *Biologia*, 65(4),670-674 (2010).

56. Razmi, G. and Barati, M., Prevalence of Neospora caninum and Toxoplasma gondii Antibodies in Bulk Milk of Dairy Cattle, Mashhad, Iran. *Arch Razi Institute*, 72(4),265-269 (2017).

57. Bártová, E., Sedlák, K. and Budíková, M., A study of Neospora caninum and Toxoplasma gondii antibody seroprevalence in healthy cattle in the Czech Republic. *Annal. Agri. Env. Med.*, 22(1),32-34(2015) doi: 10.5604/12321966.1141365.

58. Iovu, A., Gjorke, A., Mircean, V., Gavrea, R. and Cozma, V., Seroprevalence of Toxoplasma gondii and Neospora caninum in dairy goats from Romania. *Vet. Parasitol.*, 186(3),470-474 (2012).

59. Ogawa, L., Freire, R., Vidotto, O., Gondim, L.F.P. and Navarro, I., Occurrence of antibodies to Neospora caninum and Toxoplasma gondii in dairy cattle from the northern region of the Paraná State, Brazil. *Arq Brasil Med. Vet. Zool.,* 57(3),312-316 (2005).

60. Anastasia, D., Elias, P., Nikolaos, P., Charilaos, K. and Nektarios, G., Toxoplasma gondii and Neospora caninum seroprevalence in dairy sheep and goats mixed stock farming. *Vet. Parasitol.*, 198(3),379-390 (2013).

61. Jittapalapong, S., Pinyopanuwat, N., Chimnoi, W., Kengradowkij, C., Arunvipas, P., Sarataphan, N., Aruyama, S. and Desquesnes, M., Seroprevalence of Brucella abortus, Neospora caninum, and Toxoplasma gondii Infections of Dairy Cows in the South of Thailand. *Proceedings, The 15th Congress of FAVA.* (2008).

62. Boughattas, S., Behnke, J., Sharma, A. and Abu-Madi, M., Seroprevalence of Toxoplasma gondii infection in feral cats in Qatar. *BMC Vet. Res.*, 13(1),26-32 (2016).

63. Liu, X.-C., Xu, L.-X., Wang, S., Zhao, Q. and Du, R., Prevalence and eCollection. *ISRN Vet. Sci.* (2013), Article ID 269427(2013). eCollection. https://doi.org/10.1155/2013/895165.

64. Elfahal, A.M., Elhassan, A.M., Hussien, M.O., Enan, K.A., Musa, A.B. and El Hussein, A.M., Seroprevalence of Toxoplasma gondii in dairy cattle with reproductive problems in Sadan. *ISRN Vet. Sci.*, 2013,1-4 ID:895165(2013). eCollection. https://doi.org/10.1155/2013/895165.

65. Zhang, X.-X., Zhang, N.-Z., Shi, W., Li, K., Wang, S., Xu, X.-X., Yan, R.-F. and Li, X.-R., Detection of Toxoplasma gondii in chicken and soil of chicken farms in Nanjing region, China. *Infect. Dis. Povert.*, 6(1),62-70 (2017). DOI 10.1186/s40249-017-0277-3.

66. Elfarah, A.M., Elhassan, A.M., Hussien, M.O., Enan, K.A., Musa, A.B. and El Hussein, A.M., Seroprevalence of Toxoplasma gondii in dairy cattle with reproductive problems in Sadan. *ISRN Vet. Sci.*, 2013,1-4 ID:895165(2013). eCollection. https://doi.org/10.1155/2013/895165.

67. Zhang, X.-X., Shi, W., Zhang, N.-Z., Shi, K., Li, J.-M., Xu, P., Zhao, Q. and Du, R., Prevalence and genetic characterization of Toxoplasma gondii in donkeys in northeastern China. *Infect. Gen. Evolut.,* 54,455-457 (2017).
66. Dong, H., Lu, Y.Y., Su, R.J., Wang, Y.H., Wang, M.Y., Jiang, Y.B. and Yang, Y.R., Low prevalence of antibodies against Toxoplasma gondii in dairy cattle from China’s central region. *BMC Vet. Res.*, **14**(1),315-323 (2018). doi: 10.1186/s12917-018-1629-3.

67. Dubey, J.P., Toxoplasmosis of animals and humans, 2nd edn: CRC Press(2010).

68. Garcia-Bocanegra, I., Simon-Grifé, M., Sibila, M., Dubey, J., Cabezón, O., Martin, G. and Almería, S., Duration of maternally derived antibodies in Toxoplasma gondii naturally infected piglets. *Vet. Parasitol.*, **170**(1-2),134-136 (2010).

69. Alvarado-Esquivel, C., García-Machado, C., Alvarado-Esquivel, D., González-Salazar, A., Briones-Fraire, C., Vitela-Corrales, J., Villena, I. and Dubey, J., Seroprevalence of Toxoplasma gondii infection in domestic pigs in Durango State, Mexico. *J. Parasitol.*, **97**(4),616-620 (2011).

70. Dubey, J., Toxoplasmosis in sheep—the last 20 years. *Vet. Parasit.*, **163**(1-2),1-14 (2009).

71. Katzer, F., Brülisauer, F., Collantes-Fernández, E., Bartley, P.M., Burrells, A., Gunn, G., Maley, S.W., Cousens, C. and Innes, E.A., Increased Toxoplasma gondii positivity relative to age in 125 Scottish sheep flocks; evidence of frequent acquired infection. *Vet. Res.*, **42**(1),121-130(2011). http://www.veterinaryresearch.org/content/42/1/121

72. Hutchinson, J., Wear, A., Lambton, S., Smith, R. and Pritchard, G., Survey to determine the seroprevalence of Toxoplasma gondii infection in British sheep flocks. *Vet. Record.*, (2011) *Vet Rec.*, **169**(22),582. doi: 10.1136/vr.d5764. Epub 2011 Sep 27.

73. Dehkordi, F.S., Parsaei, P., Saberian, S., Moshkelani, S., Hajshafiei, P., Hoseini, S., Babaei, M. and Ghorbani, M., Prevalence study of theileria annulata by comparison of four diagnostic t. *Bulgarian J. Vet. Med.*, **15**(2), 123–130(2012).

74. Hemmatinezhad, B., Khamesipour, F., Mohammadi, M., Safarpoor Dehkordi, F. and Mashak, Z., Microbiological Investigation of O-Serogroups, Virulence Factors and Antimicrobial Resistance Properties of Shiga Toxin-Producing Echerichia Coli Isolated from Ostrich, Turkey and Quail Meats. *J. Food Safe.*, **35**(4),491-500 (2015).

75. Madahi, H., Rostami, F., Rahimi, E. and Dehkordi, F.S., Prevalence of enterotoxigenic *Staphylococcus aureus* isolated from chicken nugget in Iran. *Jundishapur J. Microbiol.*, **7**(8),1-6, e10237(2014).. doi: 10.5812/jjm.10237. Epub 2014 Jul 1.

76. Momtaz, H., Davood Rahimian, M. Safarpoor and Dehkordi, F., Identification and characterization of Yersinia enterocolitica isolated from raw chicken meat based on molecular and biological techniques. *J. App. Poultry Res.*, **22**(1),137-145 (2013).

77. Ghorbani, F., Gheisari, E. and Dehkordi, F.S., Genotyping of vacA alleles of Helicobacter pylori strains recovered from some Iranian food items. *Trop. J. Pharma. Res.*, **15**(8),1631-1636 (2016).

78. Rahimi, E., Sepehri, S., Dehkordi, F.S., Shaygan, S. and Momtaz, H., Prevalence of Yersinia species in traditional and commercial dairy products in Isfahan Province, Iran. *Jundishapur J. Microbiol.*, **7**(4),1-6, e9249 (2014). doi: 10.5812/jjm.9249

79. Dehkordi, F.S., Khamesipour, F. and Momeni, M., Brucella abortus and Brucella melitensis in Iranian bovine and buffalo semen samples: The first clinical trial on seasonal, Senile and geographical distribution using culture, conventional and real-time polymerase chain reaction assays. *Kafkas Univ. Vet. Fak. Dergisi.*, **20**(6),821-828 (2014).

80. Dehkordi, F.S., Haghhighi, N., Momtaz, H., Rafsanjani, M.S. and Momeni, M., Conventional vs real-time PCR for detection of bovine herpes virus type 1 in aborted bovine, buffalo and camel foetuses. *Bulgarian J. Vet. Med.*, **16**(2),102-111 (2013).

81. Rahimi, E., Yazdanpour, S. and Dehkordi, F., Detection of Toxoplasma gondii antibodies in various poultry meat samples using enzyme linked immuno sorbent assay and its confirmation by polymerase chain reaction. *J. Pure Appl. Microbiol.*, **8**(1),421-427 (2014).

82. Dehkordi, F.S., Valizadeh, Y., Birgani, T. and Dehkordi, K., Prevalence study of Brucella melitensis and Brucella abortus in cow’s milk using dot enzyme linked immuno sorbent assay and duplex polymerase chain reaction. *J. Pure Appl. Microbiol.*, **8**,1065-1069 (2014).