Title:
Hyperplane Arrangements with Large Average Diameter

Authors:
Antoine Deza and Feng Xie

AdvOl-Report No. 2007/05

April 2007, Hamilton, Ontario, Canada
Hyperplane Arrangements with Large Average Diameter

Antoine Deza and Feng Xie

April 2, 2007
McMaster University
Hamilton, Ontario, Canada
dez, xief@mcmaster.ca

Abstract: Let \(\Delta_A(n, d) \) denote the largest possible average diameter of a bounded cell of a simple arrangement defined by \(n \) hyperplanes in dimension \(d \). We have \(\Delta_A(n, 2) \leq 2 + \frac{2}{n-1} \) in the plane, and \(\Delta_A(n, 3) \leq 3 + \frac{4}{n-1} \) in dimension 3. In general, the average diameter of a bounded cell of a simple arrangement is conjectured to be less than the dimension; that is, \(\Delta_A(n, d) \leq d \). We propose an hyperplane arrangement with \(\binom{n-d}{d} \) cubical cells for \(n \geq 2d \). It implies that the dimension \(d \) is an asymptotic lower bound for \(\Delta_A(n, d) \) for fixed \(d \). In particular, we propose line and plane arrangements with large average diameter yielding \(\Delta_A(n, 2) \geq 2 - \frac{2\lfloor \frac{n}{2} \rfloor}{(n-1)(n-2)}(n-1)(n-2) \) and \(\Delta_A(n, 3) \geq 3 - \frac{6}{n-1} + \frac{6\lfloor \frac{n}{2} \rfloor - 2}{(n-1)(n-2)(n-3)}(n-1)(n-2)(n-3) \).

Keywords: hyperplane arrangements, bounded cell, average diameter, lower bounds

1 Introduction

Let \(A \) be a simple arrangement formed by \(n \) hyperplanes in dimension \(d \). We recall that an arrangement is called simple if \(n \geq d + 1 \) and any \(d \) hyperplanes intersect at a unique distinct point. The number of bounded cells (bounded connected component of the complement of the hyperplanes) of \(A \) is \(I = \binom{n-d}{d} \). Let \(\delta(A) \) denote the average diameter of a bounded cell \(P_i \) of \(A \); that is,

\[
\delta(A) = \frac{\sum_{i=1}^{I} \delta(P_i)}{I}
\]

where \(\delta(P_i) \) denotes the diameter of \(P_i \), i.e., the smallest number such that any two vertices of \(P_i \) can be connected by a path with at most \(\delta(P_i) \) edges. Let \(\Delta_A(n, d) \) denote the largest possible average diameter of a bounded cell of a simple arrangement defined by \(n \) inequalities in dimension \(d \). Deza, Terlaky and Zinchenko [2] conjectured that \(\Delta_A(n, d) \leq d \), and showed that if the conjecture of Hirsch holds for polytopes in dimension \(d \), then \(\Delta_A(n, d) \) would satisfy \(\Delta_A(n, d) \leq d + \frac{2d}{n-1} \). In dimension 2 and 3, they showed that \(\Delta_A(n, 2) \leq 2 + \frac{2}{n-1} \) and \(\Delta_A(n, 3) \leq 3 + \frac{4}{n-1} \). We recall that a polytope is a bounded polyhedron and that the conjecture of Hirsch, formulated in 1957 and reported in [1], states that the diameter of a polyhedron defined by
n inequalities in dimension d is not greater than n − d. The conjecture does not hold
for unbounded polyhedra. A simple line arrangement with average diameter equal to 2 − \(\frac{2}{n-1} \) was
given in [2]. We propose, in Section 2, a line arrangement with average diameter 2 − \(\frac{2}{(n-1)(n-2)} \)
and, in Section 3, a plane arrangement with average diameter 3 − \(\frac{6}{n-1} + \frac{6(\lceil \frac{d}{2} \rceil - 2)}{(n-1)(n-2)(n-3)} \), yielding
\(2 − \frac{2}{(n-1)(n-2)} \leq \Delta_A(n, 2) \leq 2 + \frac{2}{n-1} \) and
\(3 − \frac{6}{n-1} + \frac{6(\lceil \frac{d}{2} \rceil - 2)}{(n-1)(n-2)(n-3)} \leq \Delta_A(n, 3) \leq 3 + \frac{4}{n-1} \). In
Section 4, we propose an hyperplane arrangement with \(\binom{n-d}{d} \) cubical cells for \(n \geq 2d \). It implies
that the dimension d is an asymptotic lower bound for \(\Delta_A(n, d) \) for fixed d. For polytopes and
arrangements, we refer to the books of Grünbaum [4] and Ziegler [6] and the references therein.

2 Line Arrangements with Large Average Diameter

For \(n \geq 4 \), we consider the simple line arrangement \(A^o_{n, 2} \) made of the 2 lines \(h_1 \) and \(h_2 \) forming,
respectively, the \(x_1 \) and \(x_2 \) axis, and \((n-2) \) lines defined by their intersections with \(h_1 \) and \(h_2 \).
We have \(h_k \cap h_1 = \{1 + (k-3)\varepsilon, 0\} \) and \(h_k \cap h_2 = \{0, 1 - (k-3)\varepsilon\} \) for \(k = 3, 4, \ldots, n-1 \), and
\(h_n \cap h_1 = \{2, 0\} \) and \(h_n \cap h_1 = \{0, 2 + \varepsilon\} \) where \(\varepsilon \) is a constant satisfying \(0 < \varepsilon < \frac{1}{n-3} \). See
Figure 1 for an arrangement combinatorially equivalent to \(A^o_{7, 2} \).

Proposition 1 For \(n \geq 4 \), the bounded cells of the arrangement \(A^o_{n, 2} \) consist of \((n-2) \) triangles,
\(\frac{(n-2)(n-4)}{2} \) 4-gons, and one \(n \)-gon.

Proof: The first \((n-1) \) lines of \(A^o_{n, 2} \) clearly form a simple line arrangement which bounded
cells are \((n-3) \) triangles and \(\binom{n-3}{2} \) 4-gons. The last line \(h_n \) adds one \(n \)-gons, one triangle and
\((n-4) \) 4-gons. \(\Box \)

Corollary 2 We have \(\delta(A^o_{n, 2}) = 2 − \frac{2(\lceil \frac{n}{2} \rceil)}{(n-1)(n-2)} \) for \(n \geq 4 \).

Proof: Since the diameter of a \(k \)-gons is \(\lceil \frac{k}{2} \rceil \), we have \(\delta(A^o_{n, 2}) = 2 − 2(\frac{(n-2)}{(n-1)(n-2)}) \cdot \frac{\lceil \frac{n}{2} \rceil - 2}{(n-1)(n-2)} = 2 − \frac{2(\lceil \frac{n}{2} \rceil)}{(n-1)(n-2)} \). \(\Box \)

Remark 3 As there is only one combinatorial type of simple line arrangement for \(n = 4 \),
we have \(\Delta_A(4, 2) = \delta(A^o_{4, 2}) = \frac{4}{3} \). For \(n = 5 \), there are 6 combinatorial types of simple line
arrangement and \(\delta(A^o_{5, 2}) \) is among the ones with maximal average diameter, i.e., \(\Delta_A(5, 2) = \delta(A^o_{5, 2}) = \frac{3}{2} \). We believe that \(\Delta_A(n, 2) = \delta(A^o_{n, 2}) = 2 − \frac{2(\lceil \frac{n}{2} \rceil)}{(n-1)(n-2)} \) for \(n \geq 4 \).

A facet of an hyperplane arrangement belongs to either zero, one or two bounded cells. We call
a facet external if it belongs to exactly one bounded cell and believe that arrangements with
large average diameter have few external facets. The first \((n-1) \) lines of \(A^o_{n, 2} \) form the line
arrangement \(A^o_{n-1, 2} \) proposed in [2]. The arrangement \(A^o_{n, 2} \) has \(3(n-2) \) external facets and
average diameter \(\delta(A^o_{n, 2}) = 2 − \frac{2}{n-1} \). The arrangement \(A^o_{n, 2} \) has \(3(n-1) \) external facets. It was
hypothesized in [2] that any simple arrangement has at least \(d(n-2) \) external facets. We believe
that, in addition of maximizing the average diameter, \(A^o_{n, 2} \) minimizes the number of external
facets. Note that the envelope of the bounded cells of \(A^o_{n, 2} \) has one reflex vertex. In Section 3,
following the same approach, we generalize \(A^o_{n-1, 2} \) to dimension 3 and add one plane to reduce
the number of external facets.
3 Plane Arrangements with Large Average Diameter

For \(n \geq 5 \), we consider the simple plane arrangement \(A_{\text{o},n,3} \) made of the 3 plane \(h_1 \), \(h_2 \) and \(h_3 \) corresponding, respectively, to \(x_3 = 0 \), \(x_2 = 0 \) and \(x_1 = 0 \), and \((n - 3)\) planes defined by their intersections with the \(x_1 \), \(x_2 \) and \(x_3 \) axis. We have \(h_k \cap h_1 \cap h_2 = \{1 + 2(k - 4)\varepsilon, 0, 0\} \), \(h_k \cap h_1 \cap h_3 = \{0, 1 + (k - 4)\varepsilon, 0\} \) and \(h_k \cap h_2 \cap h_3 = \{0, 0, 1 - (k - 4)\varepsilon\} \) for \(k = 4, 5, \ldots, n - 1 \), and \(h_n \cap h_1 \cap h_2 = \{3, 0, 0\} \), \(h_n \cap h_1 \cap h_3 = \{0, 2, 0\} \) and \(h_n \cap h_2 \cap h_3 = \{0, 0, 3 + \varepsilon\} \) where \(\varepsilon \) is a constant satisfying \(0 < \varepsilon < \frac{1}{n-3} \). See Figure 2 for an illustration of an arrangement combinatorially equivalent to \(A_{\text{o},7,3} \) where, for clarity, only the bounded cells belonging to the positive orthant are drawn.

Proposition 4 For \(n \geq 5 \), the bounded cells of the arrangement \(A_{\text{o},n,3} \) consist of \((n - 3)\) tetrahedra, \((n - 3)(n - 4) - 1\) cells combinatorially equivalent to a prism with a triangular base, \(\binom{n-3}{3} \) cells combinatorially equivalent to a cube, and one cell combinatorially equivalent to a shell \(S_n \) with \(n \) facets and \(2(n - 2) \) vertices. See Figure 3 for an illustration of \(S_7 \).
PROOF: For $4 \leq k \leq n - 1$, let $A^*_k, 3$ denote the arrangement formed by the first k planes of $A^0_n, 3$. See Figure 4 for an arrangement combinatorially equivalent to $A^*_6, 3$. We first show by induction that the bounded cells of the arrangement $A^*_n, 3$ consist of $(n - 4)$ tetrahedra, $(n - 4)(n - 5)$ combinatorial triangular prisms and $\binom{n - 4}{3}$ combinatorial cubes. We use the following notation to describe the bounded cells of $A^*_k, 3$: T_+ for a tetrahedron with a facet on h_1 and a vertex above h_1; P_\triangle, respectively P_\square, for a combinatorial triangular prism with a triangular, respectively square, facet on h_1; and C, respectively T and P, for a combinatorial cube, respectively tetrahedron and triangular prism, not touching h_1. The bounded cells of $A^*_{k-1, 3}$ which are to be cut by the addition of h_k are marked with a bar superscript. When the plane h_k is added, the cells $T_+, P_\triangle, P_\square$, and C are sliced, respectively, into T and P_\triangle, P and P_\triangle, P and C, and C and \bar{C}. In addition, one T_+ cell and $(k - 4)$ P_\square cells are created by bounding $(k - 3)$ unbounded cells of $A^*_{k-1, 3}$. Let $c(k)$ denotes the number of C cells of $A^*_{k, 3}$, similarly for C, T, T_+, P, P_\triangle and P_\square. For $A^*_4, 3$ we have $\bar{t}_+(4) = 1$ and $t(4) = p(4) = \bar{p}_\triangle(4) = \bar{p}_\square(4) = c(4) = \bar{c}(4) = 0$. The addition of h_k removes and adds one \bar{T}_+, thus, $\bar{t}_+(k) = 1$. Similarly, all \bar{P}_\square are removed.
and \((k - 4)\) are added, thus, \(\bar{p}_o(k) = (k - 4)\). Since \(t(k) = t(k - 1) + \bar{t}_+(k - 1)\) and \(\bar{p}_\Delta(k) = \bar{p}_\Delta(k - 1) + \bar{t}_+(k - 1)\), we have \(t(k) = \bar{p}_\Delta(k) = (k - 4)\). Since \(p(k) = p(k - 1) + \bar{p}_\Delta(k - 1) + \bar{p}_o(k - 1)\), we have \(p(k) = (k - 4)(k - 5)\). Since \(c(k) = \bar{c}(k - 1) + \bar{p}_o(k - 1)\), we have \(c(k) = (k - 4)\). Since \(c(k) = c(k - 1) + \bar{c}(k - 1)\), we have \(c(k) = (k - 4)\).

Therefore the bounded cells of \(A_{n-1,3}\) consist of \(t(n - 1) + \bar{t}_+(n - 1) = (n - 4)\) tetrahedra, \(p(n - 1) + \bar{p}_\Delta(n - 1) + \bar{p}_o(n - 1) = (n - 4)(n - 5)\) combinatorial triangular prisms, and \(c(n - 1) + \bar{c}(n - 1) = \binom{n - 4}{2}\) combinatorial cubes. The addition of \(h_n\) to \(A_{n-1,3}\) creates one shell \(S_n\) with 2 triangular facets belonging to \(h_2\) and \(h_3\) and one square facet belonging to \(h_1\). Besides \(S_n\), the bounded cells created by the addition of \(h_n\) are below \(h_1\) and consist of one tetrahedron, \(\binom{n - 4}{2}\) combinatorial cubes and \((2n - 9)\) combinatorial triangular prisms. □

Corollary 5 We have \(\delta(A_{n,3}^o) = 3 - \frac{6}{n - 1} + \frac{6\lceil \frac{n}{2} \rceil - 6}{(n - 1)(n - 2)(n - 3)}\) for \(n \geq 5\).

Proof: Since the diameter of a tetrahedron, triangular prism, cube and n-shell is, respectively, 1, 2, 3 and \(\lceil \frac{n}{2} \rceil\), we have \(\delta(A_{n,3}^o) = 3 - \frac{6(1 + 2(n - 3) + (n - 3)(n - 4) - 1 - \frac{1}{2} - \frac{3}{2})}{(n - 1)(n - 2)(n - 3)} = 3 - \frac{6}{n - 1} + \frac{6\lceil \frac{n}{2} \rceil - 6}{(n - 1)(n - 2)(n - 3)}\). □

Remark 6 As there is only one combinatorial type of simple plane arrangement for \(n = 5\), we have \(\Delta_{A}(5, 3) = \delta(A_{5,3}^o) = \frac{3}{2}\). For larger \(n\), the average diameter of \(A_{n,3}^o\) is not maximal as a similar but slightly more complicated arrangement gives a bit larger value.

4 Hyperplane Arrangements with Large Average Diameter

In Section 4.2, the arrangements \(A_{n,2}^*\) and \(A_{n,3}^*\) are generalized to an hyperplane arrangement \(A_{n,d}^*\) which contains \(\binom{d - 1}{2d}\) cubical cells for \(n \geq 2d\). It implies that the average diameter \(\delta(A_{n,d}^*)\) is arbitrarily close to \(d\) for \(n\) large enough. Thus, the dimension \(d\) is an asymptotic lower bound for \(\Delta_{A}(n, d)\) for fixed \(d\). Before presenting in Section 4.2 the arrangement \(A_{n,d}^*\), we recall in Section 4.1 the unique combinatorial structure of a simple arrangement formed by \(d + 2\) hyperplanes in dimension \(d\).

4.1 The average diameter of a simple arrangement with \(d + 2\) hyperplanes

Let \(A_{d+2,d}\) be a simple arrangement formed by \(d + 2\) hyperplanes in dimension \(d\). Besides simplices, the bounded cells of \(A_{d+2,d}\) are simple polytopes with \(d + 2\) facets. The \(\lceil \frac{d}{2} \rceil\) combinatorial types of simple polytopes with \(d + 2\) facets are well-known, see for example [4], but we briefly recall the combinatorial structure of \(A_{d+2,d}\) as some of the notions presented are
used in Section 4.2. As there is only one combinatorial type of simple arrangement with $d + 2$ hyperplanes, the arrangement $A_{d+2,d}$ can be obtained from the simplex $A_{d+1,d}$ by cutting off one its vertices v with the hyperplane h_{d+2}. A prism P with a simplex base is created. Let us call top base the base of P which belongs to h_{d+2} and assume, without loss of generality, that the hyperplane containing the bottom base of P is h_{d+1}. Besides the simplex defined by v and the vertices of the top base of P, the remaining d bounded cells of $A_{d+2,d}$ are between h_{d+2} and h_{d+1}. See Figure 5 illustrating the arrangement $A_{5,3}$. As the projection of $A_{d+2,d}$ on h_{d+1} is combinatorially equivalent to $A_{d+1,d-1}$, the d bounded cells between h_{d+2} and h_{d+1} can be obtained from the d bounded cells of $A_{d+1,d-1}$ by the shell-lifting of $A_{d+1,d-1}$ over the ridge $h_{d+1} \cap h_{d+2}$; that is, besides the vertices belonging to $h_{d+1} \cap h_{d+2}$, all the vertices in h_{d+1} (forming $A_{d+1,d-1}$) are lifted. See Figure 6 where the skeletons of the $d + 1$ bounded cells of $A_{d+2,d}$ are given for $d = 2, 3, \ldots, 6$. The shell-lifting of the bounded cells is indicated by an arrow, the vertices not belonging to h_{d+1} are represented in black and the simplex cell containing v is the one made of black vertices. The bounded cells of $A_{d+2,d}$ are 2 simplices and a pair of each of the $\lfloor \frac{d}{2} \rfloor$ combinatorial types of simple polytopes with $d + 2$ facets for odd d. For even d one of the combinatorial type is present only once. Since all the simple polytopes with $d + 2$ facets have diameter 2, we have $\delta(A_{d+2,d}) = \frac{2+2(d-1)}{d+1}$.

Figure 4: An arrangement combinatorially equivalent to $A_{5,3}^*$.
Proposition 7 As there is only one combinatorial type of simple arrangement with \(d + 2 \) hyperplanes, we have \(\Delta_{\mathcal{A}}(d + 2, 2) = \delta(\mathcal{A}_{d+2,d}) = \frac{2d}{d+1} \).

4.2 Hyperplane Arrangements with Large Average Diameter

The arrangements \(\mathcal{A}^{*}_{n,d} \) and \(\mathcal{A}^{*}_{n,3} \) presented in Sections 2 and 3 can be generalized to the arrangement \(\mathcal{A}^{*}_{n,d} \) formed by the following \(n \) hyperplanes \(h^d_k \) for \(k = 1, 2, \ldots, n \). The hyperplanes \(h^d_k = \{ x : x_{d+1-k} = 0 \} \) for \(k = 1, 2, \ldots, d \) form the positive orthant, and the hyperplanes \(h^d_k \) for \(k = d+1, \ldots, n \) are defined by their intersections with the axes \(\bar{x}_i \) of the positive orthant. We have \(h^d_k \cap \bar{x}_i = \{ 0, \ldots, 0, 1 + (d-i)(k-d-1)\varepsilon, 0, \ldots, 0 \} \) for \(i = 1, 2, \ldots, d-1 \) and \(h^d_k \cap \bar{x}_d = \{ 0, \ldots, 0, 1 - (k-d-1)\varepsilon \} \) where \(\varepsilon \) is a constant satisfying \(0 < \varepsilon < \frac{1}{n-d-1} \). The combinatorial structure of \(\mathcal{A}^{*}_{n,d} \) can be derived inductively. All the bounded cells of \(\mathcal{A}^{*}_{n,d} \) are on the positive side of \(h^d_k \) and \(h^d_2 \) with the bounded cells between \(h^d_3 \) and \(h^d_2 \) being obtained by the shell-lifting of a combinatorial equivalent of \(\mathcal{A}^{*}_{n-1,d-1} \) over the ridge \(h^d_2 \cap h^d_3 \), and the bounded cells on the other side of \(h^d_2 \) forming a combinatorial equivalent of \(\mathcal{A}^{*}_{n-1,1} \). The intersection \(\mathcal{A}^{*}_{n,d} \cap h^d_2 \) is combinatorially equivalent to \(\mathcal{A}^{*}_{n-1,d-1} \) for \(k = 2, 3, \ldots, d \) and removing \(h^d_2 \) from \(\mathcal{A}^{*}_{n,d} \) yields an arrangement combinatorially equivalent to \(\mathcal{A}^{*}_{n-1,d} \). See Figure 4 for an arrangement combinatorially equivalent to \(\mathcal{A}^{*}_{6,3} \).

Proposition 8 The arrangement \(\mathcal{A}^{*}_{n,d} \) contains \(\binom{n-d}{d} \) cubical cells for \(n \geq 2d \).

PROOF: The arrangements \(\mathcal{A}^{*}_{n,2} \) and \(\mathcal{A}^{*}_{n,3} \) contain, respectively, \(\binom{n-2}{d} \) and \(\binom{n-3}{d} \) cubical cells. The arrangement \(\mathcal{A}^{*}_{2d,d} \) has one cubical cell. As \(\mathcal{A}^{*}_{n,d} \) is obtained inductively from \(\mathcal{A}^{*}_{n-1,d} \) by raising \(\mathcal{A}^{*}_{n-1,d-1} \) over the ridge \(h^d_2 \cap h^d_3 \), we count separately the cubical cells between \(h^d_2 \) and \(h^d_3 \) and the ones on the other side of \(h^d_2 \). The ridge \(h^d_2 \cap h^d_3 \) is an hyperplane of the arrangements \(\mathcal{A}^{*}_{n,d} \cap h^d_2 \) and \(\mathcal{A}^{*}_{n,d} \cap h^d_3 \) which are both combinatorially equivalent to \(\mathcal{A}^{*}_{n-1,d-1} \). Removing \(h^d_2^{-1} \) from \(\mathcal{A}^{*}_{n,d} \cap h^d_2 \) yields an arrangement combinatorially equivalent to \(\mathcal{A}^{*}_{n-2,d-1} \). It implies that
Figure 6: The skeletons of the $d + 1$ bounded cells of $\mathcal{A}_{d+2,d}$ for $d = 2, 3, \ldots, 6$.

The $(n-2)-(d-1)$ cubical cells of $\mathcal{A}_{n,d}^* \cap h_2^d$ are not incident to the ridge $h_2^d \cap h_3^d$. The shell-lifting of these $(n-d-1)$ cubical cells (of dimension $d-1$) creates $(n-d-1)$ cubical cells between h_2^d and h_3^d. As removing h_2^d from $\mathcal{A}_{n,d}^*$ yields an arrangement combinatorial equivalent to $\mathcal{A}_{n-1,d}^*$, there are $(n-1-d)$ cubical cells on the other side of h_3^d. Thus, $\mathcal{A}_{n,d}^*$ contains $(n-d-1) + (n-d-1) = (n-d)$ cubical cells. □

Corollary 9 We have $\delta(\mathcal{A}_{n,d}^*) \geq \frac{d(n-d)}{n} \left(\frac{d}{n} \right)$ for $n \geq 2d$. It implies that for d fixed, $\Delta_{\mathcal{A}}(n, d)$ is arbitrarily close to d for n large enough.

Similarly, we can inductively count $(n-d)$ simplices and $(n-d)(n-d-1)$ bounded cells of $\mathcal{A}_{n,d}^*$ combinatorially equivalent to a prism with a simplex base. We have $(n-1) - (d-1)$ simplices in $\mathcal{A}_{n,d}^* \cap h_2^d$ and, since removing h_2^d from $\mathcal{A}_{n,d}^* \cap h_2^d$ yields an arrangement combinatorially
equivalent to $\mathcal{A}_{n-2,d-1}$, only one of these $(n-d)$ simplices of $\mathcal{A}_{n,d}$ is incident to the ridge $h_2^d \cap h_3^d$. Thus, between h_2^d and h_3^d, we have one simplex incident to the ridge $h_2^d \cap h_3^d$ and $(n-d-1)$ cells combinatorially equivalent to a prism with a simplex base not incident to the ridge $h_2^d \cap h_3^d$. In addition, $(n-d-1)$ cells combinatorially equivalent to a prism with a simplex base are incident to the ridge $h_2^d \cap h_3^d$ and between h_2^d and h_3^d. These $(n-d-1)$ cells correspond to the truncations of the simplex $\mathcal{A}_{d+1,d}$ by h_k^d for $k = d + 2, d + 3, \ldots, n$. Thus, we have $2(n-d-1)$ cells combinatorially equivalent to a prism with a simplex base between h_2^d and h_3^d. As the other side of h_3^d is combinatorially equivalent to $\mathcal{A}_{n-1,d}$, it contains $(n-1-d)$ simplices and $(n-d-1)(n-d-2)$ bounded cells combinatorially equivalent to a prism with a simplex base. Thus, $\mathcal{A}_{n,d}$ has $(n-d-1)(n-d-2) + 2(n-d-1) = (n-d)(n-d-1)$ cells combinatorially equivalent to a prism with a simplex base and $(n-d)$ simplices. As a prism with a simplex base has diameter 2 and the diameter of a bounded cell is at least 1, Corollary 9 can be slightly strengthened to the following corollary.

Corollary 10 We have $\Delta_A(n, d) \geq 1 + \frac{(d-1)^{(n-d)}+(n-d)(n-d-1)}{\binom{n-1}{d}}$ for $n \geq 2d$.

Acknowledgments The authors would like to thank Komei Fukuda and Christophe Weibel for their cdd [3] and minksum [5] codes which helped to investigated small simple arrangements.

References

[1] G. Dantzig, Linear Programming and Extensions, Princeton University Press (1963)

[2] A. Deza, T. Terlaky and Y. Zinchenko, Polytopes and arrangements : diameter and curvature, AdvOL-Report 2006/09, McMaster University (2006)

[3] K. Fukuda, cdd, http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html

[4] B. Grünbaum, Convex Polytopes, Graduate Texts in Mathematics 221, Springer-Verlag (2003)

[5] C. Weibel, minksum, http://roso.epfl.ch/cw/poly/public.php

[6] G. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-Verlag (1995)