Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

Kraków, Poland. 13-15 September 2017

Published: 27 October 2017

A0
The 20th International Symposium on Signal Transduction at the Blood–Brain Barriers
Andrzej Małecki1, Janina Skipor-Lahuta2, Michal Toborek 1,3
1The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland,
2The Institute of Animal Physiology and Food Research, Polish Academy of Sciences, Olsztyn, Poland, 3University of Miami, Miami, FL, USA

The 20th International Symposium on Signal Transduction at the Blood–Brain Barriers took place from September 13–15, 2017 in Kraków, Poland. The Organizers were the Jerzy Kukuczka Academy of Physical Education in Katowice, the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn as well as the Branches of the Polish Academy of Sciences in Olsztyn & Białystok and in Kraków. The Symposium Organizing Committee included Daniela Kasprowska-Liśkiewicz, Marta Nowacka-Chmielewska, Joanna Śrubańczyk, Andrzej Małecki (all from the Jerzy Kukuczka Academy of Physical Education in Katowice), Mariusz Piskuła (the President of the Olsztyn & Białystok Branch of the Polish Academy of Sciences), Janina Skipor-Lahuta, Aleksandra Szczepkowska (both from the Institute of Animal Physiology and Food Research of the Polish Academy of Sciences in Olsztyn), Irena Nalepa and Władysław Lasoń (both from Institute of Pharmacology of the Polish Academy of Sciences in Krakow). The Committee was chaired by Michal Toborek (the Jerzy Kukuczka Academy of Physical Education in Katowice and University of Miami, USA).

The Symposium program covered all areas of blood–brain barriers research with the focus on the latest developments in neurodegenerative diseases, membrane receptors and transporters, transcytosis regulators, epigenetic and transcriptional regulators, metabolic and nutrition regulation, in vivo and in vitro brain barriers models as well as the role of junctional complexes. In addition, signaling pathways implicated in the development of neurological diseases and brain tumors were addressed. The symposium aimed to encourage interactions between basic science researchers and clinicians working in academia, universities, and industry.

Fig. 1 Participants of the 20th International Symposium on Signal Transduction at the Blood–Brain Barriers as divided by countries in which their research is performed

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The program included three keynote presentations by Mikio Furuse (National Institute for Physiological Sciences, Japan) “Molecular basis of paracellular diffusion barrier”, Michal Schwartz (Weizmann Institute of Science, Israel) “Harnessing systemic immunity to combat Alzheimer’s disease”, and Britta Engelhardt (University of Bern, Switzerland) “Brain Barriers: The movers and shapers in immune privilege of the CNS”. In addition, there were 8 sessions: Session 1: Junctional complexes of the brain barriers—beyond barrier regulation, Session 2: Pathology of the brain barriers—various aspects, Session 3: Blood–brain barrier and HIV reservoirs in the CNS—formation and eradication, Session 4: Pathology of the brain barriers—experimental aspects, Session 5: Pathology of the brain barriers—clinical aspects, Session 6: Interactions between the brain barriers and stem cells in the CNS, Session 7: Brain barriers and the metabolic axis, and Session 8: Behavioral modulations of the blood–brain barrier: diet and exercise. Session 3 was sponsored by the National Institutes of Health/National Institute of Mental Health; NIH/NIMH, USA, and Session 8 was sponsored by the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, and the Jerzy Kukuczka Academy of Physical Education, Poland. In addition, there was a Poster Session. There were 140 participants from 23 countries (Figure 1). The International Brain Barriers Society (IBBS) sponsored the Best Poster Awards. The winners were: Mette Mathiesen Janurek (Copenhagen University, First Place), Chih-Chieh Tsao (University of Zurich, Second Place), and Alexa Fries (Charité-Universitätsmedizin Berlin, Third Place).

A1 The puzzle of the paracellular pathway

N. Joan Abbott
Institute of Pharmaceutical Science, King’s College London, London, UK

Correspondence: N. Joan Abbott (joan.abbott@kcl.ac.uk)

Fluids and Barriers of the CNS 2017, 14(Supp 2):A1

The paracellular pathway (PP) of the BBB is the extracellular cleft between adjacent endothelial cells that form the barrier. The permeability of the pathway is regulated especially by the tight junctions (TJ), supported by the adherens junctions (AJ). Many experimental studies including measuring solute flux across the BBB and transendothelial electrical resistance (TEER) indicate that the PP in brain capillaries is considerably more restricted than that of the peripheral vasculature such as skeletal and heart muscle, largely attributed to tighter TJs. Much recent work has focused on the molecular analysis of tight junction proteins, especially claudins. One main driver for this research is the need to improve drug delivery to the brain, with modulation of TJs to open up the PP a current focus. Some topics relevant to behavior of the PP have received less attention, such as the relation of the TJ to AJ and indeed to gap junctions between endothelial cells, the influence of the glyocalyx on the luminal surface of the endothelium and of associated cells on the basal surface (pericytes, astrocytes). Now is a good time to bring in again the ‘bigger picture’, incorporating some excellent experimental work from the past and insights from recent work, both experimental and modelling, including relating physiological function of the BBB and PP to details revealed by both molecular analysis and high resolution imaging including electron microscopy. The talk will cover cell and molecular biology in the context of the physiological function of the BBB in helping regulate the fluid microenvironment of the brain.

A2 Inhibiting occludin Ser490 phosphorylation prevents intracerebral hemorrhage in stroke

David A. Antonetti1, Emhing Joe Su2, Daniel A. Lawrence2
1Department of Ophthalmology and Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA, 2Department of Internal Medicine and Cardiology, The University of Michigan, Ann Arbor, MI, USA

Correspondence: David A. Antonetti (dantonett@med.umich.edu)

Fluids and Barriers of the CNS 2017, 14(Supp 2):A2

Stroke remains a leading cause of morbidity and mortality with limited therapeutic options. The current standard of care for patients with moderate to severe ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA), which can significantly improve neurological outcome if given within 4 hours of stroke onset. However, later treatment with tPA increases the risk of intracerebral hemorrhage. Understanding and preventing tPA-induced hemorrhage may lead to improved and extended use of thrombolytic therapy. Previous studies reveal that tPA may increase brain vascular permeability through cleavage and activation of PDGF-CC. In addition, research has demonstrated that growth factors in the VEGF and PDGF family lead to increased Ser490 phosphorylation of the tight junction protein occludin in a protein kinase C (PKC) dependent manner and mutating Ser490 to Ala (S490A) can prevent VEGF induced vascular endothelial permeability. In the current study we hypothesized that Ser490 phosphorylation was required for tPA-induced hemorrhagic transformation in the middle cerebral artery occlusion (MCAO) model of stroke. Phototrombhotic MCAO was induced in C57BL/6J mice, tPA gene deletion mice or mice carrying the occludin S490A mutant at the Rosa26 locus under the CAG promoter followed by a flocked stop sequence and crossed with PDGFICre for tamoxifen-induced vascular specific expression. MCAO induced a dramatic increase in OcC5490 phosphorylation in the penumbra as determined by immunofluorescence microscopy using a P-S490 specific antibody. MCAO in tPA deleted animals, which previously were shown to prevent the increase in vascular permeability, also blocked occludin phosphorylation. Pretreatment of animals with a PKC beta inhibitor prevented the MCAO induced permeability to dextran and prevented occludin phosphorylation. Further, expression of S490A occludin also prevented MCAO-induced vascular permeability. Importantly S490A mice also completely blocked hemorrhagic transformation in MCAO with late tPA thrombolysis (5h after MCAO). PKCbeta inhibitors also completely blocked hemorrhagic transformation induced by late tPA thrombolysis after MCAO when the kinase inhibitor was given 1h after MCAO. These results provide compelling evidence that PKCbeta phosphorylation of occludin Ser490 contributes to vascular permeability after MCAO and hemorrhagic transformation with late tPA treatment. The studies suggest that inhibition of PKC beta may provide an opportunity to extend tPA treatment to a broader group of stroke patients.

Grant Support: This study was supported by NIH EY012021 and support from RP8 to DAA and NIH HL-055374 and NS-079639 to DAL

A3 Effects of methyl-beta-cyclodextrin on blood–brain barrier permeability in acute hypertension induced by angiotensin-II

Müge Atış1, Uğur Akcan2, Canan Uğur Yılmaz1, Nurcan Orhan1, Poyraz Düzgün1, Umut Deniz Ceylan2, Nadir Arcan1, Serçin Karahüseynoğlu1, Gizem Nur Şahin1, Bülent Ahıshalı1, Mügde Arıcan2, Mehmet Kaya1
1Koc University, School of Medicine, Department of Cellular and Molecular Medicine, Istanbul, Turkey, 2Koc University, School of Medicine, Department of Neurophysiology, Istanbul, Turkey

Correspondence: Mehmet Kaya (mehmetkaya942@gmail.com)

Fluids and Barriers of the CNS 2017, 14(Supp 2):A3

The loss of blood–brain barrier (BBB) integrity primarily occurs in cerebral venules and veins during acute hypertensive conditions. Methyl-beta-cyclodextrin (MBCD) causes cholesterol depletion from the cell plasma membrane and leads to caveolar transport disruption. The present study was intended to examine the effects of MBCD...
on the functional and structural properties of barrier type of brain microvessels in angiotensin (ANG) II–induced acute hypertension in rats. The experimental groups were designed as control, MBMC, ANG-II, and MBMC+ANG-II. BBB permeability was evaluated by determining extravasation of Evans blue (EB) and horseradish peroxidase (HRP) tracers. At five minutes after MBMC administration (5 mg/kg), acute hypertension was induced by ANG-II (60 μg/kg), and arterial blood pressure measurements were taken. ANG-II caused a significant increase in arterial blood pressure when compared with baseline values (p<0.01). The content of EB dye in the left and right cerebral cortex and left hippocampus regions of animals significantly increased in ANG-II, MBMC, and MBMC+ANG-II groups when compared with controls (p<0.05). Ultrastructurally, frequent vesicles which did not contain HRP reaction products were observed in endothelial cells of venules and veins in the cerebral cortex and hippocampus regions of brains of animals in ANG-II, and MBMC+ANG-II groups. HRP reaction products were mainly observed in astrocytes and neurons of the brain regions. Our results revealed that MBMC did not provide overall protective effects on the BBB integrity in acute hypertensive conditions and even led to BBB disruption in intact animals.

Keywords: Acute hypertension, Blood–brain barrier, Methyl-beta-cyclodextrin, Electron microscopy, Horseradish peroxidase, Evans blue

A4

The role of endothelial antigen-presentation in the migration of CD8+ T cells across the blood–brain barrier in neuroinflammation

Sidar Aydin, Armelle Klopstein, Britta Engelhardt
Theodor Kocher Institute, University of Bern, Bern, Switzerland

Correspondence: Sidar Aydin (sidar.aydin@tki.unibe.ch)
Fluids and Barriers of the CNS 2017, 14(Supp 2):A4

Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS) with unknown etiology to this date. Accumulating evidence points to a critical role of CD8+ T cells in the central nervous system (CNS) with unknown etiology to this date. Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS) with unknown etiology to this date. Administration of a cognate antigen triggers rapid CD8+ T-cell mediated killing of BBB endothelial cells under physiological flow in vitro. Taken together out data suggest that Ag-presentation by brain endothelial cells may lead to CD8+ T-cell mediated focal BBB breakdown, which is recognized as a major hallmark of MS pathogenesis.

A5

Inhibition of Furin arrests brain endothelial cell migration and prevents TGFβ-mediated permeability changes at the blood–brain barrier

Julia Baumann1,2, Chih-Chieh Tsao1,2, Sheng-Fu Huang1,2 and Omolara Ogunshola1,2
1Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland, 2Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland

Correspondence: Julia Baumann (julia.baumann2@uzh.ch)
Fluids and Barriers of the CNS 2017, 14(Supp 2):A5

A stable well-functioning blood–brain barrier (BBB), formed by specialized endothelial cells (EC), is crucial to maintain and control cerebral homeostasis. Indeed increased barrier permeability is a common feature of numerous CNS insults and diseases. Our group has identified transforming growth factor β (TGFβ) to be involved in vessel permeability changes in vivo. TGFβ is known to affect cell migration but also exerts apoptotic effects giving various potential mechanisms to disrupt the barrier. TGFβ induces the expression of proopiomelanocortin convertase that stimulates extracellular matrix degradation and cell movement. This study aimed to investigate the potential roles of TGFβ and Furin in hypoxic barrier disruption.

In a Lucifer yellow-based transwell setup exogenous TGFβ (0.25μM) increased permeability of primary endothelial cells, but had no effect on cell viability. Subsequent in vitro experiments were performed on rat brain microvascular ECs (RBMECs) exposed to normoxia and hypoxia (1% O2) for 6h. EC migration tended to increase already within 6h of hypoxia and exposure to TGFβ significantly potentiated this effect. Hypoxic exposure in presence of exogenous TGFβ increased both Furin protein levels and activity. Blockade of the TGFβ-receptor I (ALKS) with 10μM SB431542 reduced Furin protein levels indicating that its activation relies on the TGFβ signaling pathway. Importantly, pharmacological inhibition of Furin with Naphthofluorescein (20μM) not only prevented hypoxic EC migration but also abrogated the TGFβ-induced potentiation. Taken together our data suggests a crucial role for Furin in mediating hypoxic and TGFβ-induced BBB permeability changes after insult. Such insights present novel potential targets for future therapy during injury and disease.

Grant Support: This work is supported by an SNF Grant 31003A_170129 to O.O

A6

Assessment of viral inflammation in the blood–brain barrier model in vitro

Elizaveta B. Boytsova1,2, Andrey V. Morgun2,3, Elena D. Khalazheva1,2, Elena A. Pozhilenkova1,2, Yana V. Gorina1,2, Galina P. Martynova1, Alla B. Salmina1,2
1Dept. of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky of the Ministry of Public Health, Krasnoyarsk, Russian Federation, 2Research Institute of Molecular Medicine and Pathobiology, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky of the Ministry of Public Health, Krasnoyarsk, Russian Federation, 3Dept. of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky of the Ministry of Public Health, Krasnoyarsk, Russian Federation

Correspondence: Elizaveta B. Boytsova (elizaveta.boicova@mail.ru)
Fluids and Barriers of the CNS 2017, 14(Supp 2):A6

Inhibition of Furin arrests brain endothelial cell migration and prevents TGFβ-mediated permeability changes at the blood–brain barrier

Julia Baumann1,2, Chih-Chieh Tsao1,2, Sheng-Fu Huang1,2 and Omolara Ogunshola1,2
1Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland, 2Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland

Correspondence: Julia Baumann (julia.baumann2@uzh.ch)
Fluids and Barriers of the CNS 2017, 14(Supp 2):A5

A stable well-functioning blood–brain barrier (BBB), formed by specialized endothelial cells (EC), is crucial to maintain and control cerebral homeostasis. Indeed increased barrier permeability is a common feature of numerous CNS insults and diseases. Our group has identified transforming growth factor β (TGFβ) to be involved in vessel permeability changes in vivo. TGFβ is known to affect cell migration but also exerts apoptotic effects giving various potential mechanisms to disrupt the barrier. TGFβ induces the expression of proopiomelanocortin convertase that stimulates extracellular matrix degradation and cell movement. This study aimed to investigate the potential roles of TGFβ and Furin in hypoxic barrier disruption.

In a Lucifer yellow-based transwell setup exogenous TGFβ (0.25μM) increased permeability of primary endothelial cells, but had no effect on cell viability. Subsequent in vitro experiments were performed on rat brain microvascular ECs (RBMECs) exposed to normoxia and hypoxia (1% O2) for 6h. EC migration tended to increase already within 6h of hypoxia and exposure to TGFβ significantly potentiated this effect. Hypoxic exposure in presence of exogenous TGFβ increased both Furin protein levels and activity. Blockade of the TGFβ-receptor I (ALKS) with 10μM SB431542 reduced Furin protein levels indicating that its activation relies on the TGFβ signaling pathway. Importantly, pharmacological inhibition of Furin with Naphthofluorescein (20μM) not only prevented hypoxic EC migration but also abrogated the TGFβ-induced potentiation. Taken together our data suggests a crucial role for Furin in mediating hypoxic and TGFβ-induced BBB permeability changes after insult. Such insights present novel potential targets for future therapy during injury and disease.

Grant Support: This work is supported by an SNF Grant 31003A_170129 to O.O
Neuroinflammation caused by infectious agents (bacteria, viruses, fungi) is an important component in the pathogenesis of numerous brain diseases. The key mechanisms of brain tissue alterations and increased permeability of the blood–brain barrier (BBB) at the loci of neuroinflammation remain insufficiently studied, thereby limiting the approaches to establish novel effective protocols for the pharmacotherapy of central nervous system inflammatory diseases. The problems of modelling neuroinflammation in vitro remain to be solved as well. The aim of the study was to create an aseptic model of viral neuroinflammation in vitro using poly (I:C) as a viral inflammatory inducer and cerebrospinal fluid (CSF) derived from patients with viral meningitis to study some mechanisms of BBB impairment in neuroinflammation. We used methods of molecular profiling to evaluate the expression of molecules in the BBB model in vitro cells involved in the response of cells to the effects of poly (I:C) and cerebrospinal fluid from patients with viral meningitis: tight gap junction proteins (ZO1, CLDN5), matrix metalloproteinase-9 (MMP9), components of inflammasome NLRP3. We applied cell biology approaches for the isolation of rat progenitor cells (neuronal precursors and astroglia), rat cerebral endothelial cells, establishment of mixed cultures (neurons, astrocytes, endothelial cells) and BBB model in vitro. Transendothelial electrical resistance (TEER) of endothelial cell layer was registered to evaluate BBB permeability in vitro. The study design included 6 groups. Group 1 was the BBB model in vitro exposed to CSF. Group 2 was the BBB model in vitro exposed to cerebrospinal fluid obtained from patients with viral meningitis. Group 3 was a culture of cerebral endothelial cells with the addition of poly (I:C). Group 4 was a culture of endothelial cells exposed to CSF derived from patients with viral meningitis. Group 5 was a non-treated rat BBB model in vitro. Group 6 was a non-treated culture of rat cerebral endothelial cells.

We found that in groups 1, 2, 3, and 4, the number of cells expressing CLDN5, MMP9 and NLRP3 was significantly increased comparing with group 1 (p<0.05). The maximum changes have been registered in cerebral endothelial cells cultured with viral CSF: the number of cells expressing CLDN5, MMP9, NLRP3 was significantly increased comparing with group 1 (poly (I:C)). The number of cells expressing ZO1 did not differ from the control group. Nevertheless, the TEER in all the experimental groups was significantly decreased in comparison with the control group (p<0.05).

Application of the BBB model in vitro with the addition of poly (I:C) and/or cerebrospinal fluid obtained from patients with viral meningitis is useful for modelling neuroinflammation and studying the permeability of BBB.

The study is supported by the grant #16-44-243073 given by the RFBR and the Krasnoyarsk scientific foundation.

A7 Regulation of embryonic cerebrospinal fluid composition: evolutionary implications for brain development and function

David Bueno, Jordi Garcia-Fernández
Biomedical Genetics, Evolution and Development Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia (Spain)

Correspondence: David Bueno (dbueno@ub.edu)

Fluids and Barriers of the CNS 2017, 14(Suppl 2):A7

The evolution of the centralised nervous system is believed to have been a critical step in the adaptive radiation of vertebrates, especially in terms of brain structure and function. The architecture of the vertebrate brain primordium reveals the existence of connected internal cavities, the cephalic vesicles, which during foetal development become the ventricular system of the brain seen in adults. These cavities are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). In this respect, chordates invariably possess a dorsal neural tube, while ambulacrarians exhibit an open plate-like nervous system, which is in close contact with the environment. It has been proposed that the evolutionary occurrence of a hollow nerve chord was fundamental to the origin of chordates, as the composition of the fluid in contact with the neurons no longer depended directly on the surrounding environment, but became much more strictly regulated by the activity and metabolism of the organism. Interestingly, this evolutionary process parallels developmental and regulatory aspects of some vertebrates. It has been demonstrated in higher vertebrates that embryonic CSF is key to delivering diffusible signals and nutrients to the developing brain, thereby contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has also been shown that the composition and homeostasis of CSF are tightly controlled from early stages of brain development, just after the closure of the anterior neuropore, before the choroid plexus (the organ producing CSF in foetuses and adults) becomes physiologically functional. Thus, this developmental process, from the closure of the neuropores to the maturation of the choroids plexus, together with the evolution of brain cavities and CSF formation constitute a fertile example of what it is called evo-devo (for evolutionary development). It has important implications for brain development and function.

A8 Regulatory impact of occludin on the formation of HIV reservoirs in neural progenitor cells and brain pericytes

Victor Castro, Marta Skowronska, Michal Toborek
Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL, USA

Correspondence: Michal Toborek

Fluids and Barriers of the CNS 2017, 14(Suppl 2):A8

HIV interactions with the cells of the blood-brain barrier (BBB) and the role of tight junction proteins in brain infection by HIV are poorly understood. HIV infection of pericytes results in biphasic changes in occludin levels, which are inversely correlated with the rate of infection. Specifically, depletion in occludin levels in the first 48 h of infection is strongly associated with an active HIV transcription and decreased expression and activation of the class-III histone deacetylase SIRT-1. Indeed, occludin has activity of a NADH oxidase that controls the expression and activation of SIRT-1. Furthermore, the viral core promoter contains two binding sites for the nuclear factor-kB (NF-kB), which plays a central role in the proviral activation pathway and stimulation of transcriptional elongation by the p65 subunit. The activity of NFkB is modulated by acetylation; thus, decreased deacetylation due to lower SIRT-1 activity may drive stimulation of HIV transcription. Interestingly, decreased levels of occludin resulted in a substantial stimulation in HIV transcription rates but only limited increase in viral release, implying that far more virus is produced in pericytes than released into the medium. Similar results were obtained in neural progenitor cells, suggesting that both cell types may potentially form viral reservoirs in the brain. Indeed, at later stages of infection, elevated levels of occludin were associated with incorporation of HIV DNA into the host genome in both pericytes and neural progenitor cells. Our findings show for the first time that occludin plays an important role in HIV infection by regulating the NFkB/SIRT-1 pathway and can influence the transition between active and latent HIV infection.

This work was supported by the National Institutes of Health (NIH), grants MH072567, MH098891, HL126559, and DA039576.

A9 Modulation of blood–brain barrier integrity through anti-inflammatory effect of combined exercise training and taurine supplementation in elderly

Matheus Uba Chupel1, Luciele Guerra Minuzzi1, Edith Filaire2, Ana Maria Teixeira1
1Research Center for Sport and Physical Activity, Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal, 2CIMAS, University of Orleans, Orleans, France

Correspondence: Matheus Uba Chupel (mtborek@med.miami.edu)

Fluids and Barriers of the CNS 2017, 14(Suppl 2):A9
Immunosenescence can lead to increased concentrations of pro-inflammatory cytokines such as IL-1β and TNF-α, which could induce blood–brain barrier (BBB) permeability in elderly people [1, 2], leading to cognitive impairment [3]. Exercise and nutritional therapies are non-pharmacological tools which emerged against immunosuppression-related diseases [4, 5]. Exercise is pointed out to modulate immune function in elderly [6, 7], however, evidence regarding long-term exercise and BBB integrity is still unknown in this population. Concerning nutrition, taurine supplementation has been investigated in humans due to its anti-inflammatory and antioxidant effects [8], nevertheless, little is known regarding its effects in BBB permeability, cognition and inflammation in elderly persons. The objective of this study was to verify the effects of exercise and supplementation with taurine on blood levels of peripheral markers of BBB permeability (S100β and neuronal specific enolase—NSE), and on IL-1β, IL-1ra, IL-17, myeloperoxidase (MPO), matrix-metalloprotease-9 (MMP-9) and cognition of elderly women.

48 institutionalized elderly women (83.58±6.9 years) were enrolled in the study. Subjects were divided into four groups: combined exercise training (CET: n=13), taurine supplementation (TAU: n=12), exercise with taurine (CET+TAU: n=11) and control group (CG: n=12). CET was done 2 times per week involving strength, aerobic and flexibility components. Taurine supplementation was given (1,5g/day). Interventions lasted 14 weeks, and subjects were evaluated before (T0) and after (T1) this period. Blood was collected in both moments to determine the biological markers concentration and the Mini-Mental State Examination (MMSE) was applied to examine global cognition. There was a significant time×treatment effect on S100β, NSE and MMSE after intervention (p<0.05). S100β slightly decreased in all intervention groups, and increased in controls, where NSE levels also rose. Regression analyses including cytokines change showed that only group membership significantly determined change in S100β, while there was also a trend for change in IL-1 to be independently associated with variations in S100β (p=0.05). Subsequently, univariate analyses were carried out and indicated that MPO and MMP-9 decreased in TAU group (p<0.05) and no changes were observed for the other groups. Group membership was an independent predictor of MMSE changes with variation in monocytes as an independent predictor. Meanwhile, correlation between changes showed an association between IL-17 and S100β changes. Exercise and taurine supplementation reduced the peripheral marker of BBB permeability by an immunomodulatory mechanism, however, only the exercising elderly improved cognition.

1. Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol. 2000;20: 131–47.
2. Kevin Howcroft K, Campisi J, Louis GB, Smith MT, Wise B, Wys-Coray T, Augustine AD, McElhaney JE, Kohanski R., Sierra F. The role of inflammation in age-related disease. Aging. 2013;5: 84–93.
3. Taheri S, Gasparovic C, Huisa BN, Adair JC, Edmonds E, Prestopnik J, Grossetete M, Shah NJ, Wills J, Qualls C, Rosenberg GA. Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke. 2011;42: 2158–63.
4. Woods JA, Wilund KR, Martin S, Kistler BM. Exercise, inflammation and aging. Aging Dis. 2012;3: 130–40.
5. Pillon Barcelos R, Freire Royes LF, Gonzalez-Gallego J, Bresciani G. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free Rad Res. 2017;51: 222–36.
6. Simpson RJ, Lowder TW, Spielmann G, Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free Rad Res. 2017;51: 222–36.
7. Chapel NU, Diogion F, Furtado GE, Minuzzi LG, Filipa M, Colado J, Ferreira JP, Filiaire, Tixeira AM. Strength training decreases inflammation and increases cognition and physical fitness in older women with cognitive impairment. Front Physiol. 2017;8: 1–13.
8. Marcinkiewicz J, Kontny E. Taurine and inflammatory diseases. Amino Acids. 2014;46: 7–20.

Alzheimer’s disease (AD) is severe progressive neurodegenerative disorder characterized by abnormal accumulation of the β-amyloid (Aβ) peptides in senile plaques as well as in the walls of intracerebral microvessels forming the blood–brain barrier (BBB). This barrier represents a tight and highly regulated barrier between the blood and the brain cells and is a key player in AD. To date, there are no effective drug therapies for AD, and the development of new alternative therapeutic approach is therefore necessary, such as nutritional strategies; one possible approach is represented by the ketogenic diet (KD), already used as a non-drug treatment for epilepsy. KD is a diet high in fat, adequate-proteins and low carbohydrates producing ketone bodies (KBS) which represent an alternative energy source to glucose for brain cells and, unlike glucose transport, their entry across the BBB is not affected in AD. Animal studies suggest that KBS have a beneficial effect on AD by their neurotrophic effect, but also by decreasing the amount of Aβ peptides accumulation. However, why and how KBS impact brain microvessels and consequently cerebral Aβ accumulation is not well elucidated.

With this consideration in mind, it seems essential to focus on the BBB’s receptors/transporters and enzymes involved in Aβ peptide transport and metabolism, to better understand the influence of a KD on the onset and the evolution of this disease.

For 12 weeks, Wild type 129Sv (WT) and transgenic TgCRND8 (AD) mice were maintained on KD or Control Diet (CD) diets (N=6 per diet). Body weight was measured, and microvessel fractions were isolated from total brain. qPCR analyses were performed to study expression of transporters, receptors and enzymes implicated in KBS, glucose and in Aβ peptide transport and synthesis at the BBB level.

Our results showed a weight gain in AD mice after three months KD and a modulation in the expression of some Aβ transporters and enzymes at brain microvessels level. In particular in response to KD, the expression levels of these genes return to similar values to those of WT mice.

This work suggests that it may be possible to modulate Aβ transport and synthesis at the BBB level by controlling dietary intakes. However, a period of less than three months needs to be tested to evaluate the impact of this diet for a shorter period in order to be easily transferred to clinical trials.
third one, brain microvascular pericytes [1, 2]. These complex models revealed that brain pericytes are able to strengthen the barrier properties of brain endothelial cells, which is reflected by increased transendothelial resistance and decreased permeability for marker molecules. Co-culture with pericytes increase the expression and junctional localization of claudin-5, occludin and ZO-1. The expression of important BBB transporters, like BCRP (ABCG2), EAAT-1 and-2, and enzymes such as γ-glutamyl-transpeptidases, and nitric oxide synthase 1 and 2 are elevated by pericytes. Extracellular matrix components of pericytes also contribute to BBB properties and enhanced expression of tight junction proteins. The complex effects of pericytes were observed in BBB culture models from different species, including rat, mouse, porcine, monkey and human. Co-culture with pericytes increases key barrier properties, thus contributes to better BBB function of the in vitro models.

Grant support: GINOP-2.2.1-15-2016-00007; GINOP-2.3.2-15-2016-00060

1. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54:253–63
2. Walter FR, Valkai S, Kincses A, Petneházi A, Czélter T, Veszélka S, Ormos P, Deli MA, Dé D A. A versatile lab-on-a-chip tool for modeling biological barriers. Sens Actuat B Chem. 2016;222:1209–19.

A12

A role for colony stimulating factor 1 receptor signalling in the generation of cerebrovascular and BBB pathology

Conor Delaney,1 Eoin O’Keefe1, Michael Farrell1, Sarah Doyle1, Matthew Campbell1

1Smurfit Institute of Genetics, Trinity College Dublin, Ireland, 2Department of Neuropathology Beaumont Hospital, Ireland, 3Department of Clinical Medicine, Trinity College Dublin, Ireland

Correspondence: Matthew Campbell (campbellm2@tcd.ie)

Fluids and Barriers of the CNS 2017, 14(Suppl) A12

Hereditary Diffuse Leukoencephalopathy with Spheroids (HDLS) is a rare neurodegenerative leukoencephalopathy presenting clinically as cognitive dysfunction, memory deficit and motor impairment. Neuropathological examination reveals axonal swellings (spheroids), neurofilament and Ab positivity within the white matter of affected individuals. The causative gene for this monogenic dominant disorder encodes the colony stimulating factor 1 receptor (CSF1R); previously known to be involved in the differentiation, maturation and regulation of immune cells in the myeloid lineage and brain microglia, this receptor tyrosine kinase and binds two ligands CSF1 and interleukin-34 the macrophage function, the CSF1R gene has been revealed to have a critical role in microglial viability as well as the response of the central nervous system (CNS) to injury and stress revealing a new regulator in central nervous system (CNS) homeostasis. Recently we have identified two familial cohorts of HDLS with perivascular pathologies including amyloid beta accumulation like identical to that observed in Alzheimer’s disease, astroglial and microglial activation, and an accompanying increase in BBB permeability. Functional analyses of HDLS variant CSF1R in vitro revealed conserved but reduced translation and membrane localization, indicating that CSF1R haploinsufficiency alone may not be required for HDLS pathogenesis. We have identified aberrant post-translational processing and functionality of mutant-CSF1R and propose these altered characteristics and subsequent BBB dysfunction, rather than loss of function, may drive HDLS pathology.

A13

Blood–brain transport pathologies: a growing challenge to the field

Lester R. Drewes

Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, USA

Correspondence: Lester R. Drewes (ldrewes@umn.edu)

Fluids and Barriers of the CNS 2017, 14(Suppl) A13

To maintain the brain with energy substrates and essential nutrients, endothelial cells express specific transporters of the SLC-type that are located in their luminal and/or abluminal membranes and transfer substrates down prevailing concentration gradients. (Brain endothelial cells also express ATP-dependent efflux transporters that work against concentration gradients, prevent entry of xenobiotics and drugs, and export physiological end products.) Of the more than 450 SLC-type transporters in the human genome, many are present in brain endothelial cells. Because of the critical role that endothelial cells and the neurovascular unit play in maintaining brain homeostasis, it is predicted that any disruption in transporter activity will lead to disruption of brain function and a neuropathological outcome. This, indeed, is the case and more than eight of the major blood–brain transporters, when dysfunctional in humans due to mutation, cause a serious neurological consequence ranging from microcephaly to intellectual disability. As the number of defective blood–brain transporters expands so does the challenge to find cures or treatments that ameliorate the associated conditions.

A recent addition to this list is the monocarboxylic acid transporter-1(MCT1, SLC16A1) and is documented by two reports of human subjects with MCT1 deficiency. A cohort of 96 pediatric patients with unexplained severe ketoadacidosis was examined by a Dutch group [1] and subjects with both homozygous and hemizygous MCT1 inactivating mutations were identified. This study was corroborated by a report of MCT1 heterozygous Australian children who experienced similar symptoms [2]. Mutations in MCT1 may also lead to lactic acid accumulation in muscle and inhibition of contraction. To gain new insights, MCT1 function and regulation were investigated in cells that are devoid of MCT1 or are functionally blocked by specific inhibitors. Using Seahorse technology, we have examined glycolysis and respiration in human Hap1 cells in which MCT1 is knocked out. Compared to wild type Hap1 cells, the respiratory rate for Hap1 MCT1(−/−) cells is ~50% and the glycolytic rate is ~90% indicating that mitochondrial function is greatly compromised compared to glycolysis when MCT1 is not expressed. In addition, the growth (proliferation) rate of the Hap1 KO cells is about 50% of the wild type. Furthermore, no difference in mitochondrial content as determined by quantifying COXIV expression was observed. This strongly suggests that MCT1 plays a dual role in plasma membrane transport and also mitochondria function. Not only will our results provide new insights into MCT1 function, but the findings may be transferable to studies of other brain barrier transporters, their functions, expression regulation and the design of potential therapeutic strategies.

Grant Supported: DOD W81XWH-15-1-0060 and the UM Foundation

A14

A novel human blood–brain barrier co-culture model processed from human induced pluripotent stem cells

R. Fischer1, A. Appelt-Menzel1,2, A. Cubukova1, M. Metzger1,2

1Fraunhofer-Institut für Silicatforschung ISC, Translationszentrum für Regenerative Therapien, Würzburg, Germany, 2Fraunhofer Translational Center Würzburg Regenerative Therapies in Oncology and Musculoskeletal Disease, Würzburg, Germany

Correspondence: R. Fischer (robin.m.fischer@uni-wuerzburg.de)

Fluids and Barriers of the CNS 2017, 14(Suppl) A14

Previously, many efforts were done to date to create a cell culture model closely mimicking the properties of the human blood–brain barrier (BBB) in vivo. By using primary cells or immortalized cell lines, only unsatisfying results comprising children who could be produced so far. A promising alternative represent human induced pluripotent stem cells (hiPSC). The advantage of using hiPSC is, next to eliminating
species-specific differences, the infinite and ethically inoffensive cell source that can be used as donor material. In addition, it is well-known that cell-cell communication between single players of the neurovascular unit, established through physical interaction or diffusion of certain molecules predominantly transported by extracellular vesicles, is necessary to simulate in vivo-like barrier properties. Here, we present a highly suitable, easy to culture in vitro model combining hiPSC-derived BBB endothelial cells with astrocytes, pericytes and NSCs, showing in vivo like characteristics including a transendothelial electrical resistance (TEER) up to 2,500 Ω cm² and distinct upregulation of typical BBB genes i.e. tight junction proteins and BBB-specific transporters [1].

One prospective focus to obtain further knowledge about cell-cell communication and target cell modification would pose inclusion of non-destructive analysis techniques like multi electrode arrays and impedance measurements that can be implemented to optimize and simplify the model evaluation in mid and high throughput pre-clinical screening applications. Therefore, an interdisciplinary consortium of industrial and scientific research facilities recently joined within a newly BMBF-funded project named HiPSTAR (Human iPS Cell-Based BBB Technology in Alzheimer Research), combining individual expertise like organ on a chip systems, high-throughput screens of certain drug libraries, patient-specific BBB modeling or in silico prediction of the BBB. This consortium might reveal valuable new tools not only for Alzheimer research but also other related neurodegenerative and brain inflammatory disorders with increasing prevalence.

1. Appelt-Menzel A, Cubukova A, Günther K, Edenhofer F, Piontek J, Krause G, Stüber T, Walles H, Neuhaus W, Metzger M. Establishment of a human blood–brain barrier co-culture model mimicking the neurovascular unit using induced pluripotent stem cells. Stem Cell Rep. 2017;8: 894–906.

A15
BBBHub: an expression database for brain barriers
David M. F. Francisco1, Rémy Bruggmann1
1Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
Correspondence: David M. F. Francisco (david.francisco@bioinformatics.unibe.ch)
Fluids and Barriers of the CNS 2017, 14(Supp 2):A15

Due to the highly specialized nature of the brain barriers tissues, as well as their development and maintenance process, transcriptome profiling is a vital tool to better understand processes in the blood–brain Barrier (BBB). In particular, RNA-seq techniques have provided the ozportunity of more thorough studies in many fields of life sciences. Interestingly, the number of studies taking advantage of this technique to study the brain barriers is still very low when compared to the total number of publications concerning the brain barriers. However, we expect that (i) the number of studies using RNA-seq will increase dramatically and (ii) these methodologies will help to bring the knowledge of the BBB to a new level.

We are currently developing “BBBHub”—a web based data hub platform (i) to collect existing and new data (ii) to integrate and organize the omics-data (mainly RNA-seq) (iii) to implement data-mining tools and (iv) to provide the data to both researchers and general public. For the implementation of the BBBHub, we will use the frame work “openBIS”, an open source platform for managing scientific information, as its backbone. Furthermore, we are developing an easy-to-use front-end system to allow all researchers to use it independently of their computational expertise.

In the context of the BBBHub, we are setting up standardized data analysis workflows to allow for a more efficient comparison between datasets that are currently working on quality control determination features. These features will be very helpful to understand the utility and limitations of each dataset.

Grant support: EU H2020-MSCA-ITN-2015 675619 BTRAIN

A16
The role of IL6 in the dysregulation of the neurovascular unit and secondary brain injury after SAH
Alexa Fries1, Kings G. Blechacz1, Josephin Wagner1, Lars Winkler2, Ulf Schneider1 and Peter Vajkoczy1
1Institut für Experimentelle Neurochirurgie, Charité-Universitätsmedizin Berlin, Berlin, Germany, 2Leibnitz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Berlin, Germany
Correspondence: Alexa Fries (alexa.fries@charite.de)
Fluids and Barriers of the CNS 2017, 14(Supp 2):A16

Despite decades of research, processes leading to the intravascular inflammatory response accompanying subarachnoid hemorrhage (SAH) remain elusive. The herein presented study focusses on investigating the extent and the progression of the blood–brain barrier (BBB) disruption in a SAH mouse model and the influence of proinflammatory interleukin (IL) 6 on BBB integrity and composition post SAH. SAH was induced in wildtype (WT) and IL6 knockout (IL6KO) mice by filament perforation. BBB breakdown was evaluated by the extravasation of the fluorescent tracer Evans Blue on day 4 in SAH- and SHAM-operated mice (controls). Endothelial expression of cell contact molecules and pro-inflammatory mediators IL6, tumor-necrosis factor α (TNFα), IL1β and matrix metalloproteinase 9 (MMP9) was examined in freshly isolated cerebral capillaries employing real-time qPCR. The distribution of collagen IV as well as apoptotic pericytes (stained by desmin) were analyzed by immunofluorescence and TUNEL-Kit, respectively.

The most remarkable BBB leakage (approximately 4-fold of the control) and IL6 gene overexpression (2.7 ± 0.5-fold) was observed on day 4 due to SAH in WT mice. The pronounced expression of IL6 accompanying BBB breakdown makes this molecule interesting for further investigation. BBB leakage was significantly reduced in IL6-deficient mice. Our analysis revealed SAH-operated WT mice to show a significant decrease in the transcript level of occludin (0.5 ± 0.3-fold) but not claudin-5 (1.3 ± 0.3-fold) compared to IL6KO mice. Furthermore, we detected an upregulation of proinflammatory TNFα and IL1β in WT mice while this overexpression was attenuated in IL6KO mice (3.3 ± 1.2-fold and 2.8 ± 1.2-fold, respectively). The extracellular matrix degrading protease MMP9 was significantly elevated in SAH WT compared to IL6KO mice (2.2 ± 0.4-fold). Additionally, the MMP9 substrate collagen IV was significantly lowered in SAH WT mice (0.7 ± 0.2-fold) whereas both, SAH as well as SHAM IL6KO mice showed a relatively low expression of this molecule. Finally, we noted a higher number of apoptotic pericytes in SAH-operated WT mice in comparison to IL6KO mice after SAH (3.1 ± 1.0-fold).

The dynamics observed in IL6 deficient mice nominate this molecule as an important target in the reduction of BBB breakdown post SAH. Its proinflammatory influence on cerebrovascular leakage and its regulation of barrier tightening molecules implicate the critical involvement of this cytokine in secondary brain injury.

Grant support: This study was financially supported by Deutsche Forschungsgemeinschaft (DFG TRR43) to PV, travel cost were in part supported by Verein der Freunde und Förderer der Berliner Charité e.V.

A17
Molecular basis of paracellular diffusion barrier
Mikio Furuse
Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
Correspondence: Mikio Furuse (furuse@nips.ac.jp)
Fluids and Barriers of the CNS 2017, 14(Supp 2):A17

Epithelial and endothelial tight junctions (TJs) restrict free diffusion of solutes through the paracellular pathway to separate two fluid compartments. The claudin family, which comprises more than 20 subtypes, are major structural integral membrane proteins directly involved the barrier function of TJs. A multitude of studies have revealed that part of claudin subtypes function as pores for electrolytes rather than strict barriers in TJs, and the combinations of expressed claudin subtypes determine the permeability properties of
A18

Protocadherins at the blood–brain barrier

Lydia Gabbert¹, Christina Dilling¹, Dmitri Sisario², Vladimir Soukhoroukov² and Malgorzata Burek¹

¹University of Würzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany. ²University of Würzburg, Department of Biotechnology and Biophysics, Würzburg, Germany

Correspondence: Malgorzata Burek (burek_M@ukw.de)

Fluids and Barriers of the CNS 2017, 14(Supp 2) A18

Protocadherins (Pcdhs) belong to a large family of cadherin-related molecules and are organized in three large clusters, alpha, beta and gamma Pcdhs. They are highly expressed in the central nervous system (CNS). Pcdhs play a role in cell adhesion, cellular interactions and development of the CNS. Expression of Pcdhs has been well characterized in neurons, astrocytes, pericytes and in epithelial cells of the choroid plexus. Recently, we analyzed the expression of multiple Pcdhs in endothelial cells from several vascular beds. We analyzed human (hCMEC/D3) and mouse brain microvascular endothelial cell lines (BMVEC) (cEND and cerebE1D) as well as primary mouse BMVEC. In addition, we analyzed mouse myocardial microvascular endothelial cell line (MyEND) and human umbilical vein endothelial cells (HUVEC). Using qPCR, Western blot and immunostaining we showed a strong mRNA expression of Pcdhs in all endothelial cells tested. We studied in more detail the expression of Pcdh-gamma. All members of Pcdh-gamma family can be detected with an antibody against the conserved C-terminal domain. Immunostaining of Pcdh-gamma showed diffused cytoplasmic localization in mouse BMVEC. Interestingly, Pcdh-gamma protein level was higher in confluent endothelial cell cultures in comparison to non-confluent cultures. In order to study the role of Pcdh-gamma in BMVEC in detail, we established a knockout of one representative Pcdh-gamma family member, PcdhgC3, using CRISPR/Cas9 system. Deletion of PcdhgC3 led to changes in the permeability and transendothelial electrical resistance (TER). Moreover, expression of several tight junction proteins as well as transporters and cellular receptors was changed in knockout cells. The knockout cells migrated faster that the wild type cells and showed differences in adhesion to extracellular matrix components. Our results thus suggest a central role of Pcdhs in the barrier-stabilizing pathways at the blood–brain barrier. However, more studies are needed to clarify the role of Pcdhs in brain endothelial cells and other cell types of the neurovascular unit.

A19

Astrocyte-derived Wnts regulate brain vascular permeability in mice affecting BBB maintenance

S. Gueirit 1, E. Fidan1, K. Devraj1,2, C.J. Czupalla1, J. Maca1, S. Thom1, K.H. Plate1, H. Gerhardt2, S. Liebner1

1Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany. 2Neurovascular Lipid Signaling Group, Pharma Center, Goethe University, Frankfurt, Germany. 3Integrative Vascular Biology, MDC & Charité Berlin, Berlin, Germany

Correspondence: S. Liebner (stefan.liebner@kgu.de)

Fluids and Barriers of the CNS 2017, 14(Supp 2) A19

Endothelial Wnt/β-catenin signaling is necessary for developmental angiogenesis of the central nervous system (CNS) and differentiation of the blood–brain barrier (BBB), and it appears to be active at low levels also in the adult to maintain BBB characteristics. In the adult brain, pericytes and astrocytes are the closest cellular neighbours of the barrier endothelium in the neuro-vascular unit (NVU). Although both cell types participate in BBB maintenance and integrity, their contribution to Wnt growth factor release and Wnt/β-catenin signaling is poorly understood. To characterise AC-derived Wnts in BBB maintenance, we made use of GFAP-CreEvi/wntless mice (ACΔEvi), in which ACs cannot release Wnts, because the Evi/wntless gene is missing, which is crucial for Wnt growth factor secretion. ACΔEvi mice are viable and show no obvious gross phenotype. However, detailed analysis revealed a mild brain oedema and increased tracer permeability in vivo, indicating a partially dysfunctional BBB that did not affect mouse viability. Interestingly, significant oedema was observed in the cortex and subcortical regions but not in the cerebellum of ACΔEvi mice, suggesting regional differences in Wnt secretion from ACs. Analysis of vascular structure showed no significant alterations of vessel density and branching however, the structure of aquaporin-4 positive End-feet on microvessels was altered in ACΔEvi mice. Electron microscopy confirmed a selective swelling of astrocyte end-feet, likely accounting for the observed BBB defect. Moreover, microvessels of ACΔEvi mice showed increased vesicle incidence. Isolated brain microvascular fragments revealed downregulated barrier-related and Wnt target genes in ACΔEvi mice. Additionally, ACΔEvi mice displayed structural alterations of endothelial cell-to-cell junctions.

In summary, ACΔEvi mice reveal that astrocyte-derived Wnt growth factors are required to maintain the adult BBB function and cellular integrity of the NVU in an astrocyte-cell-autonomous fashion.

A20

Blood–brain barrier is protected against cytokine-induced damage by α-melanocyte stimulating hormone: a culture study

András Harazin¹, Alexandra Bocsik¹, Judit Váradi², Ferenc Fenyvesi³, Vilmos Tubák¹, Miklós Vecseryné², Mária A. Déli³

¹Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary. ²Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary. ³Creative Laboratory Ltd, Szeged, Hungary

Correspondence: András Harazin (harazin.andras@brc.mta.hu)

Fluids and Barriers of the CNS 2017, 14(Supp 2) A20

The anti-inflammatory and protective effect of the α-melanocyte stimulating hormone (αMSH) was demonstrated in animal models of diseases, such as ischemia-reperfusion or inflammations. In these pathological situations inflammatory mechanisms are triggered and maintained by proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) which also damage the functional biological barriers. Recently we have demonstrated, that αMSH could attenuate the inflammatory effects of TNFα and IL-1β on Caco-2 intestinal epithelial cells [1]. The effect of this neuropeptide on blood–brain barrier culture model has not been investigated yet. Our aim was to examine the effect of αMSH on cytokine-treated brain endothelial cells using a co-culture model.

Primary rat brain endothelial cells were co-cultured with rat brain pericytes and glial cells. We examined the expression of melanocortin-1 receptor (MC1R) by immunohistochemistry and RT-PCR. TNFα and IL-1β (10 ng/ml) were used to induce cell damage. Cell viability was measured by impedance (RTCA-SP, ACEA Biosciences) and MTT assay. Function of the barrier was tested by electrical resistance (TEER) and permeability measurement. Morphological changes of the junctional proteins and translocation of the inflammatory NF-κB transcription factor p65 subunit were visualized by immunohistochemistry and confocal microscopy. Reactive oxygen species production in brain endothelial cells was measured by DCFDA reagent.
We verified the presence of the MC1R mRNA and protein in brain endothelial cells. The neuropeptide αMSH (1 and 10 pM) showed no effect on rat brain endothelial cells alone, but increased the cell viability, decreased brain endothelial permeability, inhibited reactive oxygen species production, the morphological changes of junctional proteins and the nuclear translocation of NF-κB in cytokine-induced damage. We demonstrated for the first time the protective effect of αMSH on cultured brain endothelial cells indicating the potential application of αMSH to protect the blood–brain barrier.

Grant support: GINOP-2.2.1-15-2016-00007; GINOP-2.3.2-15-2016-00060

1. Váradi J, Harazin A, Fenyesi E, Réti-Nagy K, Gogolák P, Vámosi G, Bácskay I, Fehér P, Übjely Z, Vaszvári G, Róka E, Haines D, Deli MA, Vecseryns M. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers. PLoS ONE. 2017;12: e0170537.

A21 Transport and metabolism of L-glutamate in brain capillary endothelial cells and astrocytes

Hans Christian Helms1, Helle Sønderby Waagepetersen2, Carsten Uhd Nielsen3, Birger Brodin1

1Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 2Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 3Department of Physics, Pharmacy and Chemistry, University of Southern Denmark, Odense, Denmark

Correspondence: Birger Brodin (Birger.brodin@sund.ku.dk)

Fluids and Barriers of the CNS 2017, 14(Suppl 2) A21

The amino acid L-glutamate is an important excitatory neurotransmitter in the mammalian brain and a key player in a number of pathologies. Excessive interstitial fluid concentrations of L-glutamate cause excitotoxicity, and several mechanisms in the CNS act to keep L-glutamate levels low. The role of astrocytes in this respect is well characterized, however the role of the brain endothelial cells is still unclear. Excitatory amino acid transporters (EAAT’s of the SLC1 family) have been shown to be expressed in the abluminal membrane of brain endothelial cells from humans, rats, calves and pigs. A number of studies also indicate that the brain endothelium can mediate a vortical transport of L-glutamate in the brain-to-blood direction. We evaluated the luminal and abluminal uptake and transendothelial transport of radiolabelled L-glutamate in electrically and chemically stimulated brain capillary endothelial cells cultured either as non-contact or contact co-cultures with rat astrocytes. Both luminal and abluminal uptake followed apparent Michaelis-Menten kinetics. The abluminal uptake appeared to be dominated by EAAT-1, whereas luminal uptake was mediated via a carrier mechanism, which could not readily be identified on the molecular level. The metabolism of L-glutamate and transport of metabolites was investigated using [U-13C] L-glutamate, and it was demonstrated that intact L-glutamate, as well as metabolites were transported in the brain-to-blood direction. Overall, our studies indicated that the concerted action of abluminal and luminal L-glutamate transporters mediate transendothelial transport of L-glutamate, but also that overall clearance of abluminal L-glutamate is highly dependent on metabolism.

Grant support: Birger Brodin and Hans Christian Helms would like to acknowledge the support from the Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery (RIBBDD).
crosstalk between AC and EC under stress. Our results show that exogenous GSH improves EC tight junction localization and maintains EC morphology during 48h of normoxia and hypoxia/ischemia. Furthermore, exogenous GSH prevented hypoxia/ischemia-induced EC barrier impairment suggesting it benefits barrier stability. Interestingly, ACs rapidly secrete GSH during 16h of hypoxia and ischemia. In correlation, mRNA levels of the GSH transporters (MRP2 and MRP4) significantly increase in AC between 6h and 24h of hypoxia/ischemia. Moreover, the γ-glutamyl transferase mRNA, an extracellular GSH stabilizer, was upregulated after 6h hypoxia/ischemia. These evidences indicate that ACs increase the secretion and stability of GSH during hypoxia/ischemia. We are currently tracking isotope labeled endogenous GSH movement in our AC-EC culture system to confirm GSH shuttling from AC to endothelial cells. Such knowledge will provide potential candidates to develop novel strategies to reduce BBB impairment and brain injury.

Grant support: Swiss National Science Foundation grant 31003A_170129 to O.O.

A24 The blood–brain barrier is altered during Rett Syndrome: Implications for Rett-therapeutic applications
Anton Reitner1, 2, Samar Osmen1, 3, Kathrin Hahn1, 3, Neli Bourzina1, Anna Gerhartl1, Anna Schönegger1, Hannes Steinkellner1, 4, 1Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria, 2Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria, 3AIT-Austrian Institute of Technology GmbH, Competence Center Health and Bioreources, Competence Unit Molecular Diagnostics, Vienna, Austria.

Correspondence: Winfried Neuhaus (winfried.neuhaus@ait.ac.at)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A24

The Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 live births. It represents the second most common cause of intellectual disability in females. Children with RTT develop normally until 6–12 months of life. However, they subsequently lose learned skills like language and purposeful hand use, and develop irregular respirations in the wake period, gait abnormalities and seizures. RTT is known to be caused in 95% of the cases by sporadic de novo loss-of-function mutations in the MECP2 gene. In recent years the focus of research expanded from neurons (which express MeCP2 to the highest content) to other CNS cells such as astrocytes and confirmed their mechanistic relevance for the disease. Despite the importance of the blood–brain barrier (BBB) for drug delivery of Rett-therapeutics and although it is known that the BBB functionality is changed during several neurodegenerative diseases, no data exist about the BBB and possible functional alterations during RTT until now. Therefore, we studied the presence and functional relevance of MeCP2 at the BBB by comparing wild-type to MeCP2 knock-out mice. According to our results, MeCP2 is present in mouse brain endothelial cells shown in brain sections, isolated capillaries and isolated cells as well as in human cells of the neurovascular unit. After evaluation of tight junction and transporter molecule expression in vivo, significant differences could be found indicating changes of BBB functionality during RTT, which could be confirmed in vitro. Recombinant TAT-MeCP2 is currently under development as a therapeutic protein. Comprehensive uptake and functional in vitro as well as in vivo evaluation studies about the potential of TAT-MeCP2 as a drug were accomplished. In addition, an in vitro BBB model was established to evaluate the BBB permeability of different TAT-MeCP2 preparations in order to lead and optimize the production process.

In summary, our data indicate that the BBB is changed during RTT and this probably influences CNS accessibility for drugs. Moreover, RTT is a novel example for a neurodegenerative disease with altered BBB functionality. However, it has still to be investigated if this altered BBB functionality is causally linked to the disease progression.

Grant support: This work was supported by the Germans parents association for children with RETT syndrome (“Elternhilfe für Kinder mit RETT-Syndrom”).

A25 Circadian regulation of the inner retinal vasculature: A paradigm for geographic atrophy development
Natalie Hudson1, Lucia Cekova1, Sarah Doyle1, 3, Matthew Campbell1, 3, 1Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland, 2School of Clinical Medicine, Trinity College Dublin, Dublin, Ireland, 3National Children’s Research Centre (NCRC), Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland.

Correspondence: Matthew Campbell (campbem2@tcd.ie)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A25

Circadian rhythms are intrinsic biological processes that occur in 24 hour oscillations. These enable an organism to anticipate and prepare for regular environmental changes and are regulated by external cues such as light and temperature. Photoreceptor outer segment (POS) phagocytosis is one process that occurs daily upon light onset. The involvement of circadian rhythms in retinal function, however, is still not fully elucidated. Here, we wished to study the role of circadian clock components in the regulation of processes directly related to the replenishment of shed POS.

Wild-type C57BL6/J mice (10–12 weeks) were sacrificed at 8AM, 2PM, and 2AM (8AM and 8PM corresponding to 12 h lights off cycle) for in vivo analyses. Retinal protein and mRNA was extracted and tight junction (TJ) and circadian clock components analysed by western blotting and qRT-PCR, respectively. For verification that the response was circadian rather than diurnal, further cohorts of C57BL6/J mice were housed in either 24 h of darkness or dark-adapted for three weeks, in which the light cycle was reversed, and subsequently sacrificed and retinal protein and mRNA analysed as above. Serum shock experiments were found to re-establish circadian rhythms in in vitro primary human retinal microvascular endothelial cells.

We found that TJ component claudin-5 cycled in the retinal vasculature throughout the day and the clock component BMAL1 was required for claudin-5 cycling. Claudin-5 transcript and protein levels cycled throughout the day in a circadian-dependent, rather than diurnal manner, with lower levels at 8PM compared to 8AM. These changes phenotypically led to more permeable retinal vessels in the evening compared to morning as observed by fundus fluorescein angiography (FFA) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) analyses. The observed effects were similarly seen in other wild-type mouse strains. Circadian-regulated changes in retinal vascular permeability was not evident in BMAL1−/−/Tie-2 mice, where the clock gene BMAL1 was lacking in endothelial cells. Mice exposed to a high fat diet in tandem with persistent suppression of claudin-5 developed rapid onset of a geographic atrophy (GA) like phenotype, which is the end stage of the condition dry age-related macular degeneration (AMD).

We have discovered that the inner blood-retinal barrier is highly dynamic and plays a critical role in replenishing POS. Circadian regulation of claudin-5 facilitates the exchange of material between blood and the neural retina. Therefore, regulating claudin-5 or circadian clock components may represent a novel therapeutic target for treating GA. This work has been supported by: Science Foundation Ireland and Health Research Board.

A26 Novel insights into the blood–brain barrier crossing ability of Apo-E and polysorbate-80 modified human serum albumin nanoparticles and their distribution within the CNS: a possible strategy for protein and other therapeutic delivery to the brain
Anne Iltsche, Svetlana Dnideck, David J. Begley1, 2, 3, 4, 5, 3Institute of Pharmaceutical Science, Kings College London, London, United Kingdom.

Correspondence: David J. Begley (david.begley@kcl.ac.uk)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A26

Human serum albumin (HSA) nanoparticles, modified with apolipoprotein E (ApoE) or a polysorbate-80 coating, cross the blood–brain barrier (BBB) in vivo after intra-jugular injection. The biodegradable and non-antigenic nanoparticles were produced at a size of 200nm
diameter using the desolvation method and their surface modified with ApoE or polysorbate-80. Electron microscopy showed the brain intracellular localization of the modified nanoparticles 15 min after intra-jugular injection. Whereas unmodified HSA nanoparticles were not seen within the brain tissue. The BBB crossing ability of the modified nanoparticles is mediated by receptor-mediated endocytosis followed by transcytosis involving the LRP1 receptor as demonstrated in vitro. However, the rapid speed of nanoparticle movement within the brain tissue remains surprising. Confocal microscopy confirmed electron microscopic findings, underlining the rapid movement of the modified HSA nanoparticles through the brain tissue following brain BBB endothelial cell internalization. Furthermore, it allowed for the precise quantification of the number of nanoparticles per cell in the brain and calculation of injected dose subsequently found in the brain. Surface modified HSA nanoparticles were located over 4μm from the closest vessel 15 min after injection. With an average size of 200 nm the nanoparticles are too far to travel freely through the highly tortuous extracellular space. Furthermore, the modified nanoparticles were never seen extracellularly within brain, except for the basal lamina. Astrocytic end-feet covering the brain endothelial cells are well positioned to mediate further transport towards the brain tissue. Cytoplasmic flow rates of 2-16 mm/hr would explain the rapid rate of intracellular movement observed. Furthermore, the modified HSA nanoparticles were highly concentrated at the astrocytic end-feet 5 min after injection, shown by confocal microscopy, and localized in the distal astrocytic processes 15 min after injection, as shown by 3D reconstruction. Within 30 minutes the HSA nanoparticles are distributed within the cytoplasm of neurones. These observations lead to a re-evaluation of the role of astrocytes in the rapid movement of large structures within the brain. Quantification of the polysorbate-80 coating revealed a monomolecular surfactant coverage of the nanoparticles. Investigating the protein corona developed on the nanoparticle surface upon contact with serum, with and without polysorbate-80 coating, is crucial in elucidating the biological identity and handling of the nanoparticles in vivo. SDS-PAGE and LC-MS analysis of the protein corona revealed a highly complex corona composition of adsorbed serum proteins including the presence of multiple LDL(LRP)-receptor ligands. An in depth understanding of the intracellular transport mechanism utilized by ApoE and polysorbate-80 modified HSA nanoparticles bears great promise for the future design of CNS targeted drug delivery systems for large protein-based therapeutics.

A28
The functional and inflammatory response of brain endothelial cells to toll-like receptor agonists
Rebecca H Johnson1,2, Dan T Kho1,2, Simon J O’Carroll1,3, Catherine E Angel1, E. Scott Graham1, Centre for Brain Research, University of Auckland, Auckland, New Zealand, 2 Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand, 3 Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
Correspondence: E. Scott Graham (s.graham@auckland.ac.nz) Fluids and Barriers of the CNS 2017, 14(Supp 2) A28
Toll-Like Receptors (TLRs) represent an important early warning mechanism for the immune system to detect infection or tissue damage, however there has been limited research investigating how different TLR ligands function in human brain microvascular endothelial cells. The focus of this research was to determine the downstream neuro-inflammatory responses of various TLR ligands and their effect on endothelial barrier strength. A range of commercially available TLR ligands were tested for their pharmacological response profiles using xCELLigence Biosensor technology which revealed that the brain endothelial cells responded to the TLR3 ligand Poly(I:C), the TLR 4 ligand LPS and the FDA approved TLR7 ligand Imiquimod, but not to any other TLR agonists. Using Cytometric Bead Array it was found that whilst Poly(I:C) and LPS induced a pronounced pro-inflammatory response, Imiquimod did not induce the secretion of any pro-inflammatory cytokines. ECIS technology was used to determine temporal changes in endothelial barrier strength, which revealed that both Poly(I:C) and LPS have a similar effect on barrier integrity as TNFα. In contrast, Imiquimod was able to induce a rapid and sustained increase in barrier strength. In addition to this, it was further observed that Imiquimod was able to abrogate the production of some but not all of the inflammatory cytokines and chemokines secreted during inflammatory activation of the brain endothelial cells. PCR analysis revealed that the brain endothelial cells lacked TLR7, and further xCELLigence experiments revealed that the novel response to Imiquimod was not replicated with a panel of alternative TLR7 ligands. This finding indicates that novel receptors exist for Imiquimod (polypharmacology), which do not mediate a pro-inflammatory signal but can attenuate various pro-inflammatory responses including TNα, TLR3 and TLR4.
agonists. The challenge now is to identify these immunosuppressive receptors and assess their therapeutic potential.

A29 Real-time biosensor technology reveals the temporal dynamic changes in BBB endothelial barrier strength following exposure to inflammatory cytokines present in the serum of MS patients

Rebecca H. Johnson1, Sarah Gough1, Dan T. Kho1,2, Simon J. O’Carroll1,3, Catherine E. Angel1,2, Jennifer Pereira1, E. Scott Graham1,2, John Kealy1

1Centre for Brain Research, University of Auckland, Auckland, New Zealand, 2Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand, 3Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand, 4School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand, 5Neurology Department, Auckland District Health Board, Auckland, New Zealand

Correspondence: E. Scott Graham (s.graham@auckland.ac.nz)

Fluids and Barriers of the CNS 2017, 14(Supp 2):A29

In this research we have investigated the temporal regulation of brain endothelial barrier function following exposure to a variety of inflammatory mediators elevated in the serum of MS patients. It is well known that Relapsing Remitting MS is a chronic inflammatory disease with evidence of autoimmune dysfunction, therefore, their serum cytokine panel was biased towards Th1, Th17 and leucocyte recruitment/activation mediators. In the MS sera, we detected elevated levels of (i) IL-1β, IL2, IL-4, IL6, IL-12, IL17, IFNs, (ii) the chemokines fractalkine, MCP-1, IP-10, RANTES, IP-10, MIP 1α, and (iii) various growth factors including GCSF and GMCSF. Each of these were then applied to an immortalised human brain endothelial cell culture model system with barrier function measured using ECIS technology. Of all the cytokines assessed, IL-1β and TNFa had the greatest effect on barrier strength. We observed a small transient reduction in barrier strength (in the first 10-14 hours), which was followed by a sustained strengthening by both IL-1β and TNFa (50-500pg/ml). IFNα mediated a transient increase in barrier integrity. The responses were concentration dependent with IL-1β being the most potent. In contrast, IFNa caused the immediate strengthening of the barrier, whereas both IL6 and IL4 caused progressive weakening. Even though these cytokines influenced barrier function in different ways as demonstrated by the temporal power of ECIS technology, they each stimulated the brain endothelial cells causing increased secretion of various pro-inflammatory cytokines and chemokines. Most of the other factors measured in the sera from the MS patients did not have any influence on the barrier function or viability of the brain endothelial cells used in this study. We conclude that human brain endothelial cells are sensitive to a range of pleiotropic cytokines that are elevated in the sera of patients with RRMS. It is quite plausible that some or a combination of these may influence the BBB integrity and contribute to the leakiness occurring in regions of the brain susceptible to the formation of lesions.

Research Support: Neurological Foundation of New Zealand, and the University of Auckland Faculty Research Development Fund.

A30 The impact of brain metastasis on endothelial cell function

Christina Simoglou Karali1, Vinton Cheng2, Niloufar Zarghami1, Manuel Sarmiento Soto1, Yvonne Couch1, Daniel C. Anthony1 and Nicola R. Sibson1

1Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK, 2Radcliffe Department of Medicine (RDM), University of Oxford, Oxford, UK

Correspondence: Christina Simoglou Karali (christina.simogloukarali@oncology.ox.ac.uk)

Fluids and Barriers of the CNS 2017, 14(Supp 2):A30

The presence of an intact, impermeable blood–brain barrier (BBB) during the early (micrometastatic) stages of tumour cell colonisation significantly limits early detection and effective treatment of brain metastasis. Systemic administration of tumour necrosis factor (TNF) in murine models transiently permeabilises the BBB selectively at sites of micrometastasis in the brain. This phenomenon facilitates enhanced detection of metastatic colonies with contrast-enhanced MRI and improved delivery of therapeutically-relevant molecules to the tumour site [1]. The aim of this study was to determine why tumour-associated endothelium becomes susceptible to TNF-induced BBB permeabilisation.

Immortulized human brain microvascular endothelial cells (hCMEC/D3) were exposed to the supernatants of human brain-seeking metastatic cancer cells (breast, MDMB231Br; lung, SEBTA001; or melanoma, H1D1L2), non-brain-targeting cancer cells (MDAMB231), cytokines (human TNF, huTNF, or a novel TNFR1-selective mutein, mutTNF) and TNFR1 siRNA. Expression of the endogenous receptors for TNF (TNFR1, TNFR2) was evaluated by qPCR and immunostaining. Alterations in paracellular permeability were measured using fluorescent dextrans.

The hCMEC/D3 monolayer showed significantly increased TNFR1 expression when stimulated with either brain-trophic tumour cells or tumour-conditioned media (ca. 120-fold for breast, 280-fold for lung, 260-fold for melanoma, p<0.001). In contrast, hCMEC/D3 TNFR2 expression was minimal on stimulation with breast or lung metastatic cells, and only modestly increased for melanoma cells (ca. 97-fold, p<0.001). No effect of non-brain targeting cancer cells on expression of either receptor was evident. Importantly, hCMEC/D3 treatment with cytokines, after stimulation of TNFR1 expression with tumour conditioned media from metastatic breast cancer cells, significantly increased permeability (ca. 15-fold for huTNF, 11-fold for mutTNF, p<0.001), whereas similar treatment on TNFR1-silenced, stimulated hCMECs did not exert any significant alterations in permeability.

Histological evaluation of tumours revealed that 55-80% (depending on tumour type) of vessels were TNFR1 positive up to a distance of 0.001-0.099mm from the tumour boundary and 15-30% of vessels at a distance of 0.1-1mm from the tumour. Less than 10% of vessels were TNFR2 positive in all models.

These data confirm the specific upregulation of TNFR1 on tumour-activated endothelial cells both in vitro and in vivo within the tumour microenvironment. This study reveals that brain-seeking metastatic tumours secrete factors that alter normal brain endothelial cell function and may, in turn, enable the permeabilising effect of TNF on the BBB.

1. Connell JJ, Chatain G, Cornelissen B, Vallis KA, Hamilton A, Seymour L, Anthony DC, Sibson NR. Selective permeabilization of the blood–brain barrier at sites of metastasis. J Natl Cancer Inst. 2013; 105: 1634–43.

A31 Unifying the neurovascular unit: Neurophysiology, behaviour and the blood–brain barrier

John Kealy1

1School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland

Correspondence: John Kealy (kealyjo@tcd.ie)

Fluids and Barriers of the CNS 2017, 14(Supp 2):A31

While it is accepted that the neuron is the fundamental cell of the nervous system, it is increasingly appreciated that neurons work in concert with numerous other cell types including glia, pericytes, and endothelial cells as a neurovascular unit (NVU). The components of the NVU act together to ensure that neurons are able to respond quickly and efficiently to changes in input. This is achieved through control of metabolism, removal of waste, regulation of neurotransmitters, and responding to immunological and inflammatory insults. Though we know much about the molecular and physiological functions of individual parts of the NVU, there is less known about how the NVU directly affects behaviour. My aim is to study NVU function across its various components in relation to behaviour. Using RNA interference, suppression of blood–brain barrier (BBB) tight junction proteins...
occludin and claudin-5 provide insights on to the effects of BBB permeability on behaviour with claudin-5 suppression in particular showing a marked effect on learning and memory, anxiety, and social behaviour. Targeted claudin-5 suppression reveals region-specific effects on behaviour. Importantly, long-term claudin-5 suppression may provide a potential to understand not only normal brain function but also the progression of numerous neurological disorders. Beyond the BBB, implantable amperometric sensors allow for simultaneous measurements of changes in neurochemistry along with local field potential in freely-moving rodents—allowing for direct comparison between neuronal function and NVU activity. This allows for crucial insights into how supply and utilisation of metabolic substrates by the NVU relates to changes in behavior.

Grant support: Science Foundation Ireland (12/ TIDA/I2308; 12/TV/ B2614; 11/PI/1080); Irish Research Council (GOIPD/2013/420); Bright-Focus Foundation (A20155485).

A32
Endogenous mechanisms involved in barrier protection
Richard F. Keep1, Lisa J. Routhe2, Jianming Xiang1, Hong Ye1, Ya Hua1, Torben Moos2, Guohua Xi1
1Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA, 2Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

Correspondence: Richard F. Keep (rkeep@umich.edu)

The brain, including the blood–brain and the blood-CSF (choroid plexus) barriers, has a range of mechanisms that are induced by and limit injury. For example, intraventricular hemorrhage, a devastating component of germinal matrix hemorrhage in premature infants and intracerebral hemorrhage in adults, upregulates iron handling proteins at the choroid plexus. Hemoglobin-derived iron is a major cause of injury after cerebral hemorrhage and an induction of such proteins may limit choroid plexus injury. There is also an upregulation of proteins involved in CSF secretion at the choroid plexus and increased CSF secretion might help clear the intraventricular hematoma. However, if the CSF flow pathway is blocked, it may also lead to hydrocephalus. While endogenous protective mechanisms can be induced after an injury, they can also be induced prior to injury by preconditioning stimuli. Preconditioning stimuli at the blood–brain and blood-CSF barriers include brief periods of ischemia and pharmacological agents such as isothiocyanates. Isothiocyanates, by inducing oxidative stress, activate the transcription factor nrf2, a master regulator of anti-oxidant defense mechanisms and thus induce many different proteins. The impact of current pharmacological strategies for treating stroke on endogenous neuroprotective mechanisms has received little attention. For example, do exogenous anti-oxidants prevent the activation of nrf2 and the upregulation of endogenous protective proteins? As endogenous neuroprotection involves multiple interlinked pathways, any negative impact of exogenous neuroprotectors on endogenous protection may serve to limit their effectiveness. Such effects may have contributed to the failure of many neuroprotectors that have gone into clinical trial for stroke.

A33
The cell-penetrating peptide Tat facilitates delivery of a conjugated peptide drug across the blood–brain barrier
M. Kristensen1, A. Bach2, K. Strømgaard1, B. Brodin1
1Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 2Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Correspondence: M. Kristensen (mie.kristensen@sund.ku.dk)

Fluids and Barriers of the CNS 2017, 14(Supp 2) A33

A number of peptide drugs for the treatment of brain diseases are available. However, to reach their target site of action, they must pass the blood–brain barrier (BBB). The capillary endothelium comprises the major physical barrier of the BBB and allows only passive permeation of molecules <400 Da. Brain delivery of the larger biopharmaceuticals, which today includes an increasing number of novel peptide-drug entities, is therefore restricted; both due to their large molecular size and hydrophilic nature. Thus, the development of peptide-drugs for the treatment of brain specific diseases requires a delivery strategy for overcoming the endothelial BBB in order to reach its final target within the brain.

The cell-penetrating peptides (CPPs) comprise a promising tool to facilitate delivery of macromolecular drug entities not only into cells but also across biological barriers, such as the BBB. The CPP Tat, an 11-residue cationic peptide [1], has demonstrated potential as vector for brain delivery of the PSD-95 inhibitor NR2B9c, which hinders cell death following a stroke [2]. However, the mechanism by which Tat facilitates translocation of conjugated NR2B9c across the endothelial BBB is not known, and understanding the cellular events leading to Tat-membrane translocation likely lead to future development of optimized CPP-peptide drug constructs.

In the present study the delivery propensity of Tat was assessed using a primary bovine BBB model [3] and the porcine epithelial IPEC J2 cell line displaying transepithelial electrical resistance values (>1000 Ω·cm²) comparable to the that of a tight BBB. Tat significantly improved BBB translocation of NR2B9c across both the primary bovine BBB model as well as the IPEC J2 cell line. In order to explain the overall mechanism by which Tat facilitates NR2B9c barrier translocation, being via endocytic uptake or direct membrane translocation, transport studies were conducted at temperatures <37°C (25°C, 4°C) or in the presence of sodium acid, which hinders energy-dependent endocytic uptake. Neither at low temperature nor in the presence of sodium acid Tat mediated transport of NR2B9c across the IPEC-J2 cell culture model, thus demonstrating endocytic uptake being involved. In addition, heparin pre-incubation, which binds heparan sulphates (HS) at the cell surface, hindered transport of the Tat-NR2B9c conjugate, therefore indicating that the initial binding of Tat to HS may be important for mediating endocytic uptake.

1. Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272: 16010–17.
2. Aarts M. Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor-PSD-95 Protein Interactions. Science. 2002; 298: 846–50.
3. Hans C Helms BB. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes. Methods Mol Biol. 2014;1135: 205–11.

A34
Confocal and two-photon microscopy of cerebral capillaries
Martin Lauritzen1,2, Mette Mathiesen Janiurek1, Nikolay Kutuzov1, Krzysztof Kucharz1
1Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark, 2Department of Neurophysiology, Rigshospitalet, Glostrup, Denmark

Correspondence: Martin Lauritzen (martin.johannes.lauritzen@regionh.dk)

Fluids and Barriers of the CNS 2017, 14(Supp 2) A34

The association of brain microvessels, astrocytes, pericytes, and neurons constitutes the neurovascular unit (NVU), and the interplay between these cell types controls the properties of the blood–brain barrier (BBB). Brain capillaries have traditionally been viewed as tubes that passively conduct blood from the heart to active nerve cells, but recent studies suggest that mural cells on brain capillaries are much more active than previously thought. First order capillaries are the first to dilate during neuronal activity and pericytes constrict capillaries in cerebral ischemia, which is expected to promote brain damage. However, the physiology of pericytes and brain capillaries is not completely understood and a number of important questions remain unanswered. For example, we know little about how capillaries communicate with one another to coordinate a blood flow response and the BBB tight and how this control affects the transport of nutrients...
and drugs across the BBB. This talk will summarize novel findings using two-photon microscopy in vivo on how capillary flow and permeability is controlled, how it can be quantified repeatedly in single and multiple capillaries in living mice.

A35

Molecular control of the brain barriers in multiple sclerosis

Melissa A. Lopes-Pinheiro, Jamie Lim2, Alvin Kamermans2, Jack van Horssen1, Wendy W.J. Unger1, Ruud Fontijn1, Helga E. de Vries2

1Department of Pediatrics, ErasmusMC, Rotterdam, The Netherlands, 2Department of Molecular Cell Biology and Immunology, VUMc MS Center Amsterdam, VU medical center, Amsterdam, The Netherlands

Correspondence: Helga E. de Vries (he.devries@vumc.nl)

Fluids and Barriers of the CNS 2017, 14(Supp 2):A35

Dysfunction of the neuroprotective blood–brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) and inflammation thereof are key events in multiple sclerosis (MS). In early stages of MS, inflammation of the brain barriers actively aids in immune cell influx, inducing neuro-inflammation and demyelination. Upon MS progression, chronic BBB dysfunction is apparent, which contributes to gliosis and neurodegeneration. Moreover, barrier dysfunction goes hand in hand with a profound tissue damage. In turn, inflamed brain endothelium contributes to disease progression by its release of pro-inflammatory factors which activates the surrounding glia cells, together reinforcing astrogliosis, microglia activation and consequently neurodegeneration. Our recent work suggests that under inflammatory conditions, brain endothelial cells (BECs) stimulate the migration of myelin-reactive T-cells by acting as non-professional antigen presenting cells through the processing and presentation of myelin-derived antigens in MHC-II. Inflamed BECs internalized myelin which was routed to endo-lysosomal compartment for processing in a time-dependent manner and subsequently induce T-cell activation and migration. In the transmigration of leukocytes across inflamed BECs, the enzyme acid sphingomyelinase (ASM), involved in the production of bio-active lipids such as ceramide, is essential for the coordination of the function of the endothelial adhesion molecule ICAM-1. These results demonstrate that BECs are capable of enhancing antigen-specific T cell recruitment. Moreover, current treatment regimens for MS, such as dimethylfumarate, are capable of reducing immune cell trafficking through the induction of endogenous anti-oxidant enzyme systems. Together this illustrates that identification of the pathways that counteract BBB inflammation and reestablish proper BBB function will provide new and selective means to fight MS in different stages of disease. Work was funded through grants of the Dutch MS research foundation.

A37

Cellular and molecular mechanisms directing the pathway of Th1 versus Th17 T-cell diapedesis across the blood–brain barrier

Luca Marchetti1, David Francisco2, Isabelle Gruber1, Ruth Lyck1, Rémy Bruggmann2 and Britta Engelhardt1

1Theodor Kocher Institute, University of Bern, Bern, Switzerland, 2Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland

Correspondence: Luca Marchetti (luca.marchetti@tki.unibe.ch)

Fluids and Barriers of the CNS 2017, 14(Supp 2):A37

The endothelial blood–brain barrier (BBB) maintains central nervous system (CNS) homeostasis and strictly controls T-cell trafficking into the CNS. During multiple sclerosis (MS) or its animal model, experimental autoimmune encephalomyelitis (EAE), autoimmune γ-interferon-producing CD4+ Th1 or IL-17-producing CD4+ Th17 enter the CNS causing neuroinflammation. The molecular mechanisms mediating Th1 cells migration across the BBB are quite well studied, and we could previously show that endothelial cell surface levels of ICAM-1 direct CD4+ T cell to paracellular or transcellular sites for diapedesis. It has been suggested that Th17 cells may use different mechanisms from Th1 cells to extravasate. This prompted us to directly compare the cellular and molecular mechanisms used by those two CD4+ T-cells subsets to cross the BBB. Using primary mouse brain microvascular endothelial cells (pMBMECs) as an in vitro BBB model, we compared the multi-step extravasation of in vivo polarized myelin oligodendrocyte (MOG) transgenic T-cell receptor Th1 and Th17 cells by live cell imaging under physiological flow. Our preliminary observations show higher numbers of Th1 than Th17 cells arrested on pMBMECs under inflammatory and inflammatory conditions, whereas Th17 cells have higher tendency to detach. After subsequent polarization, Th1 cells crawled with higher speed over the pMBMECs compared to Th17 cells. Similar numbers of diapedesis events were observed for both subsets. It remains to be shown if Th1 and Th17 cells cross the BBB preferentially via the paracellular or transcellular route. Thus, we have demonstrated that the dynamic interaction of Th1 cells with the BBB is distinguishable from that of Th17 cells. To analyse their potential molecular mechanism, we are currently comparing the trafficking molecule signature of both T-cell subsets by multi-parameter flow cytometry. To identify genes involved in regulating the cellular pathway of T-cell diapedesis across the BBB, we have performed RNAseq analysis from pMBMECs expressing high or low levels of endothelial ICAM-1 and thus favouring transversus transcellular T-cell diapedesis, respectively. After sequential selections, we have identified a set of candidate genes for biological validation.
Identification of distinct molecular mechanisms mediating Th1 and Th17 cells’ migration across the BBB will allow us to accurately foresee CNS-specific adverse effects of the increasing numbers of therapies in many chronic inflammatory diseases targeting T-cell trafficking or even depleting peripheral T cells. Furthermore, our approach will allow us to identify novel therapeutic targets within the successful framework of therapeutic targeting of immune cell trafficking to the CNS for the MS treatment.

A38
Targeted delivery of vesicular nanoparticles across a culture model of the blood–brain barrier
Mária Mészáros¹, Gergő Pórkolab², Lőránd Kiss¹, Ana-Maria Pilbar³, Zsolt Torok¹, Zsolt Bozóko¹, Lívia Fülpő³, Mária A. Déll¹ and Szilvia Veresszkal¹
¹Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, ²Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, ³Department of Medical Chemistry, University of Szeged, Szeged, Hungary
Correspondence: Mária Mészáros (meszaros.maria@brc.mta.hu)
Fluids and Barriers of the CNS 2017, 14(Supp 2): A38

Efficient drug delivery across central nervous system (CNS) barriers is a central problem in pharmaceutical treatment of neurological diseases. Most pharmaceutical drug candidates including hydrophilic molecules, biopharmaceuticals, and efflux transporter ligands have a low permeability across the blood–brain barrier. Targeted nanoparticles are new tools to increase drug delivery to brain. The aim of our study was to compare different ligands of transporters present at the blood–brain barrier for targeting vesicular nanoparticles. Non-ionic surfactant and cholesterol-based nanoparticles, so-called niosomes were derivatized with alamin and glutathione using lipid or PEG linkers. The cargo of the niosomes was Evans blue-albumin complex. Treatments with niosomes did not influence the viability of primary rat brain endothelial cells. The presence of targeting ligands on niosomes increased the uptake of the cargo molecule in cultured brain endothelial cells which could be visualized by confocal microscopy. The cellular uptake of niosomes was temperature dependent and could be decreased with sodium azide, a metabolic inhibitor indicating an active transport process. Filipin and cytochalasin D, inhibitors of endocytosis decreased the uptake of the targeted nanoparticles in brain endothelial cells. The modifications of the charge of the endothelial glyocalix with TMA-DPH (1-(1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate) or removing the glyocalix with neuraminidase elevated the uptake of the targeted nanocarriers. Targeting ligands enhanced the permeability of the cargo across brain endothelial monolayers. Treatment with niosomes increased plasma membrane fluidity in endothelial cells, suggesting the fusion of the niosomes with the cell membranes. Our data indicate that nutrient transporter ligands can potentially be exploited for CNS targeting of nanoparticles.

Supported by grants from the Hungarian Scientific Research Fund (OTKA PD105622), and the National Research, Development and Innovation Office (GINOP-2.2.1-15-2016-00007, GINOP-2.3.2-15-2016-00060). S.V. was supported by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences (BO/00724/12). G.P. is a Szent-Györgyi student in the Szeged Scientists Academy Program of the Foundation for the Future of Biomedical Sciences in Szeged implemented with the support of the Ministry of Human Resources (TSZ-34232-3/2016/INTFIN).

A40
Analysis of the changes on the choroid plexus barrier in tauopathies
Sandra Mihaljevic
Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
Correspondence: Sandra Mihaljevic (sandra.mihaljevic@gmail.com)
Fluids and Barriers of the CNS 2017, 14(Supp 2): A40

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that damages the higher brain functions. Control of traffic of different substances between CNS and blood circulation is controlled by three barriers: arachnoid epithelium, blood–brain barrier (BBB) and choroid plexus epithelium (BCSFB). They represent highly dynamic system of cells and are involved in optimal brain functioning, synaptic transmission, synaptic remodeling, angiogenesis, neurogenesis etc. In case that barrier’s integrity is disrupted on any mode, many of vital brain functions may be endangered. Today, we know that brain is not “immune privileged” and that many pathological states are involved in BBB breakdown and disorders, including AD. Better understanding of the anatomy and cell biology of these neurovascular units in health and disease is critical for advancement of therapeutic development. While BBB being extensively studied, BCSFB has been largely understudied, but there are indications that its role is crucial in maintaining brain homeostasis, and even has a compensatory effect in case of BBB malfunctioning.

In our work we are focused on role of BCSFB in neurodegeneration. We showed presence of tau protein in epithelial cells of choroid plexus in animal model for tauopathy. We analyzed expression of transport proteins: LRP-1 and RAGE and showed changes in expression of pro-inflammatory epithelial molecules. A thickening of epithelial basal membrane and greater collagen-IV depositions occurred around
capillaries in choroid plexus. These findings indicate structural and functional changes of choroid plexus in animal model for tauopathies.

This work was supported by competitive academic grants VEGA 2/0159/15 and APVV-14-0547 and structural funds 26240220008, 26240220046.

A41 In vitro analysis to evaluate brain metastatic potential of cancer cells from human surgical specimens—preliminary report
Yoichi Morofuji1, Takashi Fujimoto2, Daisuke Watanabe1, Shinuke Nakajima1, Kenta Ujifuku1, Nobutaka Horie1, Tsuyoshi Izumi1, Takeo And1, Takayuki Matsuo1
1Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan, 2Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Correspondence: Yoichi Morofuji (yoichi51@hotmail.com)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A41

Brain metastases are the most common brain neoplasms seen clinically in the adults and comprise more than half of all brain tumors. Brain metastasis presents an emerging and urgent unmet medical need and that has been historically understudied. To evaluate brain metastatic process, our group has developed in vitro blood–brain barrier (BBB) model and established the method of isolation and culture of primary cancer cells from human surgical specimens. Our model possesses the unique capability to examine brain metastases of human cancer cells and their therapeutic responses to chemotherapies. In our model, cancer cells were introduced to the luminal chamber. Cancer cells could pass through the BBB and drop onto the astrocytes in abluminal chamber. We observed the colony formation of cancer cells that expressed specific tumor markers and reduction of transendothelial electrical resistance (TEER). The results also suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the proliferation of cancer cells. Such primary human cancer cell cultures can serve as a model of choice for the study of the mechanisms behind key aspects of brain metastases biology, including metastatic process and drug testing. The goal of this study is to establish personalized treatment protocol for brain metastases based on cell culture.

Grant support: This work was supported by JSPS KAKENHI Grant number 17K10840 and 15K00349

A42 Cocaine-mediated secretion of IP-10 from pericytes: implication for monocyte recruitment into the CNS
Fang Niu1, Shilpa Buch2
1Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
2Department of Psychology, Beaumont Hospital, Dublin 8, Ireland.

Correspondence: Shilpa Buch (sbuch@unmc.edu)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A42

Drug abuse and addiction have been closely linked with HIV/AIDS because the infection easily spreads among drug abusers. Epidemiological studies on drug abusers with AIDS link cocaine abuse, more than other drugs, to acceleration of HIV infection and the progression of NeuroAIDS. Cocaine has been known to facilitate the transmigration of inflammatory leukocytes into the brain, which is an important mechanism for HIV entry into the central nervous system (CNS). Pericytes, as important constituents of the blood–brain barrier (BBB), play a key role in maintaining the BBB integrity yet remain poorly studied in the context of CNS inflammation. In the present study, we demonstrate that human brain vascular pericytes (HBVPs) exposed to cocaine manifest increased secretion of the chemokine IP-10, with a concomitant induction of monocyte transmigration across BBB both in vitro and in vivo. Furthermore, our findings demonstrated a time-dependent translocation of NF-κB in HBVPs after cocaine-stimulation. Further dissection of NF-κB regulation using both the pharmacological and genetic approaches revealed that the NF-κB nuclear translocation was dependent on a-1R, c-Src and PDGFR-β signal activation. Finally, our study demonstrated that IP-10 release was mediated by activation and translocation of sigma-1 receptor (σ-1R) and subsequent interaction of a-1R with c-Src kinase leading to activation of Src-PDGFR-β-NF-κB pathway and up-regulation of IP-10 expression. These findings implicate a novel role of IP-10 in the crosstalk of pericytes and monocytes in cocaine-mediated neuroinflammation in the CNS, further underscoring the role of pericytes as active components of the innate immune responses.

Keywords: IP-10, pericytes, cocaine, monocyte transmigration, sigma-1 receptor, blood–brain barrier

Acknowledgements: This work was supported by grants DA04397 from the National Institutes of Health.

A43. Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes
Ádám Nyúl-Tóth1, Mihály Kozma1, Péter Nagy2,3, Krisztina Nagy1, Csilla Fazakas1, János Haskó1, Kinga Molnár1, Attila E. Farkas1, Péter Galajda1, Imola Wilhelm1, István A. Krizbai1
1Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary

Correspondence: István A. Krizbai (krizbai@brc.hu)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A43

Cerebral pericytes are mural cells embedded in the basement membrane of capillaries. Increasing evidence suggests that they play important role in controlling neurovascular functions, i.e. cerebral blood flow, angiogenesis and permeability of the blood–brain barrier. These cells can also influence neuroinflammation which is highly regulated by the innate immune system. Therefore, we systematically tested the pattern recognition receptor expression of brain pericytes. We detected expression of NOD1, NOD2, NLRP3, NLRP1-3, NLRP3, NLRP9, NLRP10 and NLRX mRNA in non-treated cells. Among the ten known human Toll-like receptors (TLRs), TLR2, TLR4, TLR5, TLR6 and TLR10 was found to be expressed. Inflammatory mediators induced the expression of NLRA, NLR4 and TLR9 and increased the levels of NOD2, TLR2, inflammasome-forming caspases and inflammasome-cleaved interleukins. Oxidative stress, on the other hand, upregulated expression of TLR10 and NLRP9. Activation of selected pattern recognition receptors can lead to inflammasome assembly and caspase-dependent secretion of IL-1β, TNF-α and IFN-γ increased the levels of pro-IL-1β and pro-caspase-1 proteins; however, no canonical activation of NLRP1, NLRP2, NLRP3 or NLR4 inflammasomes could be observed in human brain vascular pericytes. On the other hand, we could demonstrate secretion of active IL-1β in response to non-canonical inflammasome activation, i.e. intracellular LPS or infection with E. coli bacteria. Our results indicate that pericytes might have an important regulatory role in neuroinflammation.

Grant support: This work was supported by the National Research, Development and Innovation Office (grant numbers: OTKA K-116158, OTKA PD-121130, OTKA PD-112509, GINOP-2.3.2-15-2016-0002, GINOP-2.3.2-15-2016-0034, GINOP-2.3.2-15-2016-0030 and GINOP-2.3.2-15-2016-00001). Á.N-T. was supported by the Doctoral Scientific Scholarship of the Doctoral Institute of University of Szeged and by the ÚNKP-16-3/1. VI. 2. New National Excellence Program of the Ministry of Human Capacities. I.W. was supported by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences (BO/0034/16/8).

A44 Dynamic blood brain barrier regulation in sub-concussive brain injuries
Eoin O’Keeffe1, Eoin Kelly1, Eugene Wallace2, Chris Greene3, Stephanie Hughes3, John Kealy3, Niamh Doyle3, Marian M. Humphries1, Michael Farrell1, Gerald A. Grant4, Alon Friedman5, Ronel Veksler6, Michael G. Molloy7, James F. Meaney7, Niall Pender7, Colin P. Doherty7 and Matthew Campbell1
1Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland,
2Department of Neurology, Health Care Centre, Hospital 5, St James’s Hospital, Dublin 8, Ireland, 3Department of Psychology, Beaumont Hospital, Dublin 8, Ireland,
4Department of Infections, Imperial College London, London, UK,
5Department of Physics, Trinity College Dublin, Dublin 2, Ireland,
6Department of Physics, University of Limerick, Limerick, Ireland,
Fluids Barriers CNS 2017, 14(Suppl 2):A44

A44

Traumatic brain injury (TBI) continues to be a global a health issue, contributing to the deaths of thousands and the debilitation of many more each year. While moderate and severe TBI may be recognised by overt symptoms or abnormalities on conventional imaging modalities (MRI or CT scans), injuries categorised as mild, injuries commonly referred to as concussions, rely on individual neuropsychological assessments. While undetected by current neuroimaging paradigms, subtle changes in the gliovascular unit that may following mild or sub-mild TBI may contribute to development of neurodegenerative conditions later in life, as suggested by findings of Blood Brain Barrier disruption (BBBD) in an individual diagnosed with Chronic Traumatic Encephalopathy, a condition primarily associated with repeated mild TBI. Here we present evidence of changes at the Blood Brain Barrier in a subset of children following a season of Rugby Union, measured by Gadolinium extravasation signal. Paired with this were findings of increased levels of BDNF and MCP-1 in plasma samples, in addition to increased pro-inflammatory response by Peripheral Blood Mononuclear Cells post-stimulation. In addition, examining a young adult cohort produced similar findings when examined within hours of engaged in a Rugby Union match. These finding suggest that a combination of analytical methods are required in order to gain an understanding of potential neural damage occurring due to mild TBI or sub-concussive blows.

Grant support: Science Foundation Ireland, Health Research Board of Ireland, BrightFocus Foundation, St. James’ Hospital Foundation.

A45

Protective impact of exercise on methamphetamine-induced BBB disruption and aberrant neurogenesis in the hippocampus

Minseon Park, Arkadiusz Lisiewicz, Marta Przybyla, Daniela Kasprowska-Lisiewicz, Marta Nowacka-Chmielewska, Andrzej Malecki, Michal Toborek.

1Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA, 2Department of Physical Medicine, Medical University of Silesia, Katowice, Poland, 3Department for Experimental Medicine, Medical University of Silesia, Katowice, Poland

Correspondence: Michal Toborek (mtoborek@med.miami.edu)

Fluids and Barriers of the CNS 2017, 14(Suppl 2):A45

There is no effective therapeutic intervention developed targeting cerebrovascular toxicity of drugs of abuse, including methamphetamine (METH). We hypothesize that exercise can protect against METH-induced neurotoxicity by enhancing the blood–brain barrier (BBB) integrity and protection against aberrant hippocampal neurogenesis. To address this notion, mice were administered with METH for 5 days with an escalating dose regimen, followed by voluntary wheel running for 2 weeks resembling the voluntary pattern of human exercise. The frequency, duration, and intensity of each running session were monitored for each mouse via a direct data link to a computer and the running data are analyzed by Clocklab™ Analysis software. Controls included sedentary mice that did not have access to running wheels and/or were injected with saline. METH administration disrupted hippocampal neurogenesis by inducing aberrant differentiation of neural progenitor cells to both immature and mature neurons. In addition, METH increased hippocampal BBB permeability by disrupting expression and localization of tight junction proteins. These changes were preserved in sedentary mice; however, exercise significantly attenuated METH-induced aberrant neurogenesis and disruption of the BBB integrity. Importantly, abnormal neurogenesis observed in METH-treated mice was associated with alternations of spatial memory as evaluated by Morris water maze. These behavioral changes were also attenuated by exercise. Overall, our results indicate that physical exercise can protect against METH-induced alterations of neurogenesis presumably by stabilization of the BBB.

Grant support: This work was supported by the NIH, grants DA039576, DA044579, HL126559, MH098891, MH072567, and by the NSC grant 2015/17/B/NE7/02985.

A46

Cellular interactions in the neurovascular unit during brain development

Ana Pomboro, Raquel Garcia-Lopez, Marta Martinez-Morga and Salvador Martinez.

Instituto de Neurociencias de Alicante, Alicante, Spain

Correspondence: Salvador Martinez (smartinez@umh.es)

Fluids and Barriers of the CNS 2017, 14(Suppl 2):A46

Neurogenesis and angiogenesis are processes that occur at the same time during brain development. Neurogenesis is a basic process occurring during embryonic development that proceeds throughout the adult life in the neurogenic areas, such as subventricular zone and the subgranular zone of the dentate gyrus (DG). In the DG the maintained neurogenesis represents a structural and functional singularity, which may determine its complex vascular pattern. Neurogenesis and angiogenesis share molecular signals and are mutually promotive, which support the concept of neurogenic niche in the brain, a functional unit between the precursor cells and their local microenvironment, in which blood vessel represent a key element. Whereas it is well-known that vascular development controls proliferation during brain development and in the adult by neurotrophic factors release, it still remains elusive how neural cells signal to vascular components during angiogenesis. We have demonstrated that the reduction of neural progenitor cells leads to an important impairment of the vascular development together with a reduction of the quantity of proliferating cells near blood vessels. Since VEGF is a potential regulator in neurogenesis and angiogenesis crosstalk, we are interested in assess the potential role of this molecule in the hippocampal neurovascular niche. Our results point out that neural progenitors secrete VEGF-A to regulate the vascular development in the dentate gyrus.

A47

Neurovascular interactions under blood–brain barrier dysfunction

Ofer Prager, Lyna Solomon-Kamitsky, Karl Schoknecht, Guy Bar-Klein, Dan Milikovsky, Udi Vazana, Dori Rosenbach, Richard Kovács, Alon Friedman.

1Departments of Physiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 2Department of Neurophysiology, Charité—University Medicine Berlin, Berlin, Germany, 3Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 4Department of Medical Neuroscience, Faculty of Medicine, Dalfhouse University, Halifax, Canada

Correspondence: Alon Friedman (alonf@bgu.ac.il)

Fluids and Barriers of the CNS 2017, 14(Suppl 2):A47

The microvascular endothelial cells in the brain, connected by tight junctions, are surrounded by pericytes, astrocytes, microglia and neurons. Together they act as a functional unit, named the neurovascular unit (NVU). Proper functioning of the NVU in general is critical for normal brain functions and homeostasis. Accumulated recent data from human and animal studies reveal that increased permeability of the blood–brain barrier (BBB) is a major determinant in common neurological disorders. We have previously shown that long-lasting dysfunction of the BBB leads to astrocytic transformation and epileptogenesis [1, 2, 3, 4]. Inversely, vascular injury and specifically BBB dysfunction are well-documented outcomes of...
epileptic seizures. However, the detailed endothelial pathology and mechanisms underlying increased permeability of the BBB are poorly understood. Here we will present recent data, directing for the role of neuronal-enhanced glutamate release and NMDA-receptors in seizure-induced opening of the BBB [5]. We will next describe our recent studies on the key role of NVU interactions in the regulation of oxygenated-blood supply to the metabolic demand of activated brain cells (“neurovascular-coupling”). As pericytes were described to have an important role in the integrity of the BBB, we will show that recurrent seizures are associated with pericytic injury and BBB dysfunction, and result with impaired vascular response to seizures at both capillary and arteriolar levels. Finally, we will discuss new data suggesting endothelial pathology as a diagnostic and treatment target for brain disorders [6, 7].

Grant support: European Union’s Seventh Framework Program (EU, FP7), DFG and EXC Neurocure grants, NIH Israel Science Foundation (ISF), German Science Foundation (DFG), the CURE Epilepsy Foundation, the Nova Scotia Health Research Foundation and Canada Institute for Health Research (CIHR).

1. Seifert E, Drejer JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A. Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2014;34:7829–36.
2. Ivens S, Kaufer D, Flores LP, Bechmann I, Zunsteg D, Tomkins O, Seifert E, Heinemann U, Friedman A. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 130: 535–47.
3. Cacheux LP, Ivens S, David Y, et al. Transcriptome Profiling Reveals TGF-β Signaling Involvement in Epileptogenesis. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2009;29(28):892–35.
4. Bar-Klein G, Cacheux LP, Kamintsky L, et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol. 2014;75: 864–75.
5. Vazana U, Vetsler R, Pell GS, et al. Glutamate-Mediated Blood–Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery. J Neurosci. 2016;36; 7727–39.
6. Bar-Klein G, Klee R, Brandt C, Bankstahl M, Bascuñana P, Töllner K, Dalipaj H, Bankstahl JP, Friedman A, Löschner W. Isolurane prevents acquired epilepsy in rat models of temporal lobe epilepsy. Ann Neurol. 2014;60: 896–908.
7. Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Vetsler K, Dalipaj H, Senatorov VV Jr, Swissa E, Rosenbach D, Elazary N, Milikovsky DZ, Milk N, Kassirer M, Rosman Y, Serlin Y, Eisenkraft A, Chassidim Y, Parmet Y, Kaufer D, Friedman A. Imaging blood–brain barrier dysfunction as a biomarker for epileptogenesis. Brain. 2017;140: 1692–1705

A49
The role of the choroid plexus in multiple sclerosis
Sabela Rodriguez-Lorenzo1, David M. F. Francisco2, Remy Bruggmann2, Gis Kooij1, Helga E. de Vries1
Department of Molecular Cell Biology and Immunology, VUMc MS center Amsterdam, Neuroscience Campus Amsterdam, VUMc, Netherlands, 2 Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
Correspondence: Helga E. de Vries (he.devries@vumc.nl)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A49

The choroid plexi (CP) are highly vascularised projections of the brain ventricles that act as barriers between the blood and the cerebrospinal fluid (CSF), forming the blood-CSF-barrier (BCSFB). Their best known function is to produce CSF, but increasing evidence indicates CP are also involved in the maintenance of immune homeostasis of the central nervous system (CNS), thereby indirectly regulating immune cell entry into the CNS. Multiple sclerosis (MS) is an autoimmune demyelinating disease of the CNS characterized by chronic inflammation and neurodegeneration. We hypothesise that, due to its essential function, a dysregulation of the CP could contribute to MS pathology. To reveal potential alterations in the CP associated with MS, we performed RNA-sequencing on human post-mortem CP derived from the lateral ventricles of 6 progressive MS patients and 6 non-neurological controls. Total RNA was isolated and only samples with good quality RNA (RIN > 7) were selected, enriched by RNA depletion and used for paired-end sequencing. Significant alterations in the CP transcriptome were identified which predominantly revealed pathways involved in cell migration, adhesion, inflammation, angiogenesis, and oxidative stress. We identified 14 genes differentially expressed (padj < 0.05, baseMean > 50) between the MS and the control CP. Further validation and functional studies of the identified genes will shed light on the specific roles of the CP in MS. The identification of CP specific pathways contributing to MS pathogenesis will provide novel insights into the disease and may yield new targets for treatment.

Grant support: BTRAIN Marie-Curie Network, NAUTA fonds and VUMc MS Center Amsterdam

A50
Sound as safe and cost-effective method for brain drug delivery
Semyachkina-Glushkovskaya Oxana, Bragin Denis, Bragina Olga, Vodovozova Elena, Alekseeva Anna, Salmina Alla, Salmin Vladimir, Morgun Andrey, Malinovskaya Nataliya, Khlazheva Elena, Boytsova Elizaveta, Shirokov Alexander, Maslyakov Alexander, Novolokon Nikita, Bucharskaya Alla, Yang Yirong, Abdurashitov Arkady, Gekalyuk Artem, Ulanova Mariya, Shushunova Natalia, Bodrova Anastasia, Sagatova Madina, Khorovodov Alexander, Shareef Ali Esmat, Pavlov Alexey, Tuchin Valery, Kurths Jürgen
Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Department of Physiology of Human and Animals, Saratov, Russian Federation
Correspondence: Semyachkina-Glushkovskaya Oxana (glushkovskaya@mail.ru)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A50

Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, modulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Regular physical exercise and nutritional intervention decrease both the incidence and symptom intensity of Alzheimer’s disease (AD) and moreover. When APP/PS1 mice were subjected to exercise and probiotics they significantly outperformed controls, whereas exercise, prebiotics alone and the two together resulted in decreases in beta-amyloid plaques, and increased microglia numbers around the plaques. Moreover, data also showed that exercise training increased the levels of anti-inflammatory microorganisms, such as bacteria that are involved in butyrogenesis. Overall, it is clear that physical exercise exerts neuroprotective effects on brain via complex mechanisms. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well-known neuroprotective effects of exercise are partly due to redox-associated adaptation.
The motivation of our study is the actual problem in neurosciences as the development of methods for the brain drug delivery, which can open the door of progress to the therapy of central nervous systems diseases. There are more than 70 technologies for overcoming of the blood–brain barrier (BBB). However, no one of them is widely used in daily clinical practice due to invasiveness, limitation of treatment area or drug concentration and other complications. This study is focused on the development of new non-invasive method for the reversible opening of BBB by sound (110 dB, 370 Hz, duration 2h), which is usual for daily life in modern big cities. The independent ex vivo and in vivo results on mice obtained in twelve different research groups clearly demonstrate that sound significantly increases the BBB permeability to both high and low molecular weight substances as well as to liposomes (100 nm) that mimics the delivery into the brain solutes, proteins and nanocarrier materials. The physiologists, chemists, and physicists studied the effectiveness of sound to open the BBB and mechanisms underlying these process using classical and modern approaches in the assessment of the BBB permeability and cerebral microcirculation, such as confocal and magnetic resonance imaging, two photon microscopy, spectrofluorometric assay. The safety and reversibility of non-invasive effects of sound on the BBB permeability were confirmed by histological analysis of the brain tissues and vessels on the large groups of mice that as evaluated by qualified anatomists. Thus, sound as natural factor due to its high effectiveness and easy execution has good perspective to be widely introduced in daily clinical practice for successful brain drug delivery.

This work was supported by Grant of Russian Science Foundation № 17-15-01263.

A51 Toxicity and internalization of polymeric nanoparticles in brain endothelial cells
Marcelle Silva de Abreu¹, Ana C. Calpena¹, Marta Espina¹, Maria Luisa García¹, Ignacio A. Romero ², David Male ³
1University of Barcelona, Faculty of Pharmacy and Food Sciences, Department of Pharmacy, Pharmaceutical Technology and Physicochemical, Barcelona, Catalonia, Spain, 2 School of Life Science, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, United Kingdom.

Correspondence: Marcelle Silva de Abreu (marcellesabreu@gmail.com)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A51

The blood brain barrier (BBB) is a barrier that protects the brain against various harmful substances. However, it is an important limitation for the development of new drugs. For this reason, there is a constant search in find new alternatives to deliver drugs to the brain. In this way, polymeric nanoparticles (NPs) from (DL-lactide-co-glycolide) poly(ethylene glycol) (PLGA-PEG) could be an important strategy to facilitate the transport of therapeutic molecules across the BBB; they are a drug delivery systems that is biodegradable, biocompatible and approved by Food and Drug Administration (FDA). The main objective of this work was the encapsulation of an anti-diabetic drug in polymeric NPs of PLGA-PEG to analyze its toxicity and internalization using a human brain microvascular endothelial cell line (hCMEC/D3). The NPs were prepared by the solvent displacement technique. An initial study used a factorial design to modify the independent variables determining NP synthesis. Subsequently, physicochemical, biopharmaceutical and stability characterization studies were done. To evaluate the toxicity and uptake, NPs, at concentrations up to 10 µg/mL, were applied to the hCMEC/D3 cell line. Uptake was measured by flow cytometry (FACSCalibur) with rhodamine-labelled NPs. The experiment was standardized to 10,000 events on the gate and at voltage of 410 mV with respect to the control sample (untreated cells). The results demonstrated that the NPs (mean size around 160 nm and negative charge of −14.4 mV), were internalized by the cells, and showed the character of a monodisperse systems. The release profile showed a slow release with a Fick’s passive diffusion. In the toxicity assay, cells were 80% viable up to a concentration of 5 µg/mL. Fluorescence and electron microscopy indicated that NPs were primarily present in the cells’ cytosol. Taken together, the results demonstrate that these nanoparticles could be effective in delivering therapeutics to the central nervous system.

Grant support: This work was supported by the EU Joint Programme—Neurodegenerative Disease Research (JND) project (PROP-AD J.P. and C.U.P.) and the DFG (J.P. and C.U.P.)

A52 Clearance mechanisms of amylogenic proteins across the blood brain barrier
Steffen Stocke1, Anika Hartz2, Jens Pahnke1, Claus U. Pietrzik1
1University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Pathobiocchemistry, Mainz, Germany, 2 University of Kentucky, Sanders-Brown Center on Aging Department of Pharmacology and Nutritional Sciences, Lexington, KY, USA, 3 University of Oslo (UiO) & Oslo University Hospital (OUS), Department of Neuro-Pathology, Oslo, Norway.

Correspondence: Claus U. Pietrzik (pietzzik@uni-mainz.de)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A52

According to the neurovascular hypothesis, impaired clearance of the amyloid-beta (Aβ) peptide across the blood–brain barrier (BBB) contributes to Alzheimer’s disease (AD) pathology. However, conflicting findings on the involvement of different Aβ transporters at the BBB and their expression in brain endothelium have questioned the role of LRP1 and Pgp at the BBB. As global knockout of Lrp1 in mice is lethal, there is a lack of appropriate models to study the function of LRP1. Moreover, the relevance of systemic Aβ clearance remains unclear as no BBB-specific knockout models had been available. We used in vitro and in vivo methods to quantify the rate of Aβ clearance across the BBB. With a novel Slo1c1-CreERT2 mouse, we generated the first brain endothelial-specific Lrp1 knockout mouse to accurately evaluate LRP1-mediated Aβ BBB-clearance in vivo. Using stereotactical injections of physiological concentrations of radiolabeled Aβ peptides, we were able to quantify the rate of LRP1-mediated clearance at the BBB in vivo. Crossing the LRP1 KO mice to the 5xFAD mouse model resulted in reduced plasma Aβ and elevated soluble brain Aβ leading to aggravated spatial learning and memory deficits, thus, emphasizing the importance of systemic Aβ elimination via the BBB. By combining primary mouse brain endothelial cells from these animals with Pgp inhibitors, we are able to identify the role of each transporter at the BBB for Aβ clearance in vitro. Dissecting the function of these transporters may provide new approaches for treatment and prevention of Aβ brain accumulation in AD.

Grant support: The authors would like to thank CAPES (Coordination for the Improvement of Higher Education Personnel) the Brazilian and the Spanish Ministries of Science and Innovation grant (MAT2014-59134R) and Sheffield Hospitals Trust for financial support.

A53 Does perfluorooctanoic acid (PFOA) cross the blood–brain barrier?
M. Surma1, Z. Gizejewski2, H. Zielinski1
1Malopolska Centre of Food Monitoring, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland, 2Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Division of Reproductive Biology, Olsztyn, Poland, 3Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Division of Food Science, Olsztyn, Poland.

Correspondence: M. Surma (m.surma@ur.krakow.pl)
Fluids and Barriers of the CNS 2017, 14(Supp 2) A53

Perfluoroalkyl substances (PFASs) are classified as persistent and biaccumulative substances. They are metabolites of several polyfluorinated precursor compounds that are produced and used commercially. PFASs have been detected globally as pollutants in water, plants, food-stuffs, and in fish, birds, in mammals’ tissues as well as in human breast milk and blood. Moreover, they have been found in wildlife samples.
Changes in leptin receptors were observed only during SD, when leptin did not affect but LPS reduced (p<0.05) mRNA expression of Ob-Rb. CP responded on LPS treatment, through mRNA elevation of all examined cytokines/cytokine receptors and chemokine, but for Tlr2, Il1B, Il1r1, Il1r2, Il6 and Socs3 this reaction was significantly higher during SD vs. LD. Leptin increased (p<0.05) the response of CP to immune stress for Il1r2, Il1r1, Il6, Il6s, Ccl2, Jak2 and Socs3, during LD and Il1r2 during LPS treatment decreased expression of Cldn2 in SD and LD. Leptin did not affect Aqp1 and Cldn2. In case of VEGF/VEGFR system, the impact of LPS and leptin was photoperiodically differentiated. LPS did not affect Vegf120 and Vegf164, however increased (p<0.05) Vegfr1 and Vegfr2 but only in SD. In SD leptin increased (p<0.05) Vegfr1, Vegfr2 and Vegfr1 and increasing tendency was observed for Vegfr2 (p=0.06). During LD Vegfrs increased only in leptin/LPS group. This results, confirmed hypothesis that leptin modulates CP response to immune stress in photoperiodically differentiated way.

Funded by the National Science Centre of Poland, grant SONATA no 2013/11/D/NZ9/02536. Participation of AS, MK and JS was supported by statutory research funds of Ministry of Higher Education.

A55
Pericyte HIF-1 deficiency modulates stroke outcome: implications for a therapeutically window of HIF-1 intervention
Chih-Chieh Tsao1,2, Nicole Kachappilly1 & Omolara Ogunshola1,2
Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland, 1 Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland

Correspondence: Chih-Chieh Tsao (chih-chieh.tsao@uzh.ch)
Fluids and Barriers of the CNS 2017, 14(Suppl 2):A55

Activation of hypoxia inducible factor-1 (HIF-1) is crucial for cells to adapt to hypoxic/ischemic stresses. For decades, HIF-1 stroke research has mainly been limited to neurons with stabilization of HIF-1 suggested a potential neuroprotective strategy. However, successful employment of such strategy means the impact of HIF-1 induction on non-neuronal cells needs to be thoroughly understood during cerebral ischemia. Pericytes play a key regulatory and structural role in the ischemic blood–brain barrier (BBB). However, the consequences of altered pericyte HIF-1 signaling during stroke remain unknown.

Recently, we have generated a mouse line with pericyte-targeted HIF-1α knockout (KO) under the control of the inducible Cre/Lox system. The mouse line enables us to specifically explore effects of pericyte-mediated HIF-1 signaling on stroke outcome and BBB modulation after ischemic insult. We subjected pericyte HIF-1 KO and WT mice to transient middle cerebral artery occlusion (mMCAo) for 45 mins using intraluminal filament method followed by reperfusion up to 14 days. Ischemic damage, BBB permeability, neurological scores were assessed. Intriguingly, our data suggested stabilization of HIF-1 in pericytes differentially modulates barrier integrity and stroke outcome during stroke progression. Firstly, at 72h post-mMCAo HIF-1 deletion reduced IgG extravasation and Evans blue leakage. Although overall infarct volume was unaffected, reduced neuronal degeneration, less cell apoptosis and more astrocyte activation were observed in HIF-1 KO peri-infarct cortex by immunostaining. Therefore, HIF-1 deletion preserves barrier integrity and improves stroke outcome at the subacute stage. Surprisingly however, at 14 days reperfusion, reversal of positive effects of HIF-1 deletion was seen. HIF-1 KO mice exhibited higher blood vessel density compared to WT controls. In stroke outcome at the subacute stage. Surprisingly however, at 14 days reperfusion, reversal of positive effects of HIF-1 deletion was seen. HIF-1 KO mice exhibited higher blood vessel density compared to WT controls. In stroke outcome at the subacute stage. Surprisingly however, at 14 days reperfusion, reversal of positive effects of HIF-1 deletion was seen. HIF-1 KO mice exhibited higher blood vessel density compared to WT controls.
Mechanisms of CNS viral seeding by transmigration of HIV + CD14 + CD16 + monocytes across the blood brain barrier: establishment and reseeding of viral reservoirs contributing to HAND

Mike Veenstra1, Rosiris Leon Rivera1, Diona W. Williams2, Susan Morgello3, Joan W. Berman4

1Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY, USA; 2Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 3Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 4Departments of Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY, USA

Correspondence: Joan W. Berman (joan.berman@einstein.yu.edu)

Fluids and Barriers of the CNS 2017, 14(Suppl 2):A56

HIV associated neurocognitive disorders (HAND) develop in >50% of HIV infected individuals, despite successful combined antiretroviral therapy (cART). HAND is mediated by mature CD14+CD16+ monocytes that transmigrate across the blood–brain barrier (BBB) in response to CCL2, a chemokine highly elevated in the CNS of HIV infected people, and establish viral reservoirs and an inflammatory and toxic environment in the CNS, leading to HIV neuropathogenesis. Our laboratory showed that transmigration of mature monocytes across the BBB is significantly greater in people with HAND than those without HAND, in part due to increased expression of CCR2, the CCL2 receptor. Additionally our laboratory showed the junctional proteins JAM-A and ALCAM are significantly increased on mature monocytes of HIV-infected people, and that these proteins are essential to transmigration across the BBB. We now show for the first time in HIV-infected individuals by FACS detection of cells that are infected with HIV, HIV+CD14+CD16+ monocytes, and cells that are not infected but that have been exposed to viral proteins and inflammatory mediators, HIVexpCD14+CD16+monocytes. We demonstrate that HIV+CD14+CD16+ monocytes express higher JAM-A and ALCAM than HIV+CD14+CD16+ monocytes. Additionally, we demonstrate that primary human HIV+CD14+CD16+ monocytes preferentially transmigrate across the BBB in response to CCL2 in comparison to HIV+CD14+CD16+ monocytes. We propose that this is mediated, in part, due to increased JAM-A, ALCAM, and CCR2 on the HIV+ mature monocytes. Antibodies against JAM-A and ALCAM, and the novel CCR2/CCRS5 dual inhibitor cenicriviroc, prevented or significantly reduced preferential transmigration of HIV+CD14+CD16+ monocytes. This indicates that JAM-A, ALCAM, and CCR2 may be potential therapeutic targets to block entry of these infected cells into the brain, and prevent or reduce the establishment and replenishment of viral reservoirs within the CNS, resulting in decreased neuroinflammation, toxicity, and HAND.

This work was supported by U.S. National Institutes of Health Grants R01MH075679 (J.W.B.), R21MH102113-01A1 (to J.W.B.), R01MH090958 (J.W.B.), 1R01MH112391 (J.W.B.), U24MH100931 (Manhattan HIV Brain Bank), P30AI24414 (Einstein-Rockefeller-CUNY Center for AIDS Research), TL1TR001072 (Einstein-Montefiore CTSAs), and by the eCLIPSE program fellowship supported by the Burroughs Wellcome Foundation Grant program “Unifying Population and Laboratory Science” (MV).

Blood–brain barrier dynamics of nanotechnological drug carriers in animal model of temporal lobe epilepsy

Canan Üğur Yılmaz1, Nurcan Orhan2, Arzu Temizyürek3, Müge Atış4, Üğur Akcan5, Rouhollah Khodadoust6, Nadir Arcan7, Mutlu Küçük8, Candan Gürses9, Bülent Ashahili10, Serkan Emik11, Mehmet Kaya12

1Department of Laboratory Animals Science, Aaz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; 2Department of Neuroscience, Aaz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; 3Center for Life Sciences and Technologies, Bosphorus University, Istanbul, Turkey; 4Department of Celluar and Molecular Medicine, Medical Faculty, Koc University, Istanbul, Turkey; 5Department of Neuroscience, Medical Faculty, Koc University, Istanbul, Turkey; 6Department of Biotechnology, Medical Faculty, Koc University, Istanbul, Turkey; 7Department of Forensic Science, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; 8Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; 9Department of Histology and Embryology, Koc University, Istanbul, Turkey; 10Department of Chemical Technologies, Faculty of Engineering, Istanbul University, Istanbul, Turkey; 11Department of Physiology, Medical Faculty, Koc University, Istanbul, Turkey

Correspondence: Mehmet Kaya (mkaya942@gmail.com)

Fluids and Barriers of the CNS 2017, 14(Suppl 2):A58

Although there are many antiepileptic drugs currently used for the treatment of epilepsy, drug resistance is still a main problem with the underlying mechanisms still poorly understood. One of the major reasons for the failure of antiepileptic drugs in resistant epilepsy is the blood–brain barrier (BBB). In this study, temporal lobe epilepsy (TLE) was induced in adult Wistar rats using kainic acid. Glucose coated gold nanoparticles (GNP) were loaded with lacosamide (LCD) and labeled with a fluorescent probe and presented into the circulation to be transported into the brain for treatment. The amount of GNP in the brain tissue was measured with inductively coupled plasma mass spectrometry, and fluorescent signals were observed by in vivo imaging. Electroencephalography (EEG) was recorded from the hippocampus of the animals. Electrophysiological evaluation was performed to show GNP in the brain parenchyma. The main amplitude of the EEG records returned to the basal values right after GNP-LCD administration in animals with TLE. A time-related increase in the fluorescent signals was observed by GNP-LCD injection in the brains of animals with
showed stable or improved cognitive status at a median follow-up of 12 years after diagnosis [2]. Patients receiving BBBD chemotherapy in our series showed equivalent cognition and neuroimaging outcomes compared to patients treated with high dose methotrexate without BBBD [3]. Current studies are evaluating immunotherapy with monoclonal antibodies (mAB) targeting B-lymphoma antigens as a mechanism to further improve the complete response rate and overall survival.

2. Novel magnetic resonance imaging (MRI) techniques for measuring changes in brain tumor vasculature and inflammation. In preclinical brain tumor studies, ferumoxytol improves the consistency of relative cerebral blood volume (rCBV) measurements in rats before and after treatment with anti-angiogenic and therapeutic mAbs [4]. At later time points, >24 h, ferumoxytol crosses the BBB in intracerebral lesions where it is taken up by activated microglia, astrocytes, and tumor-associated macrophages [5]. Neuroimaging with ferumoxytol provides a mechanism to differentiate tumor progression from pseudoprogression, which can resolve the clinical dilemma of continuation of effective therapy or transferring non-responders to novel therapies.

3. Chemoprotection and chemo-enhancement for brain tumor therapy. Platinum-based chemotherapy is used to treat a variety of childhood malignancies, but is associated with progressive and irreversible toxicities, in particular ototoxicity [6]. Research from our lab has shown that the thiols N-acetylcysteine (NAC) and sodium thiosulfate (STS) can protect against cisplatin-induced ototoxicity, and NAC is also protective against bone marrow and kidney toxicity. In patients with brain tumors treated with carboplatin based chemotherapy in conjunction with BBBD, we have shown that STS protects against carboplatin-based hearing loss and may also protect against carboplatin-induced severe thrombocytopenia [7]. To date, STS has been shown to be protective against cisplatin-induced hearing loss in children, and has not shown any evidence of tumor protection in children with localized disease.

4. Anavelo L, Doolittle ND, Kraemer DF, Siegal T, Barnett GH, Peerbooom DM, Stevens G, McGregor J, Jahkke L, Macy CA, Hedrick NA, Shalom E, Ference S, Sorenson L, Tyson RM, Haluska M. Blood–brain barrier disruption and intra-arterial methotrexate-based therapy for newly diagnosed primary CNS lymphoma: a multi-institutional experience. J Clin Oncol. 2009;27:3503–9.

5. Doolittle ND, Đosa E, Fu R, Muldoon LL, Maron LM, Lubow MA, Tyson RM, Macy CA, Kraemer DF, Butler RW, Neuwell EA. Preservation of cognitive function in primary CNS lymphoma survivors a median of 12 years after enhanced chemotherapy delivery. J Clin Oncol. 2013;31:4026–7.

6. Doolittle ND, Korfel A, Lubow MA, Schorb E, Schlegel U, Rogowski S, Fu R, Đosa E, Illerhaus G, Kraemer DF, Muldoon LL, Calabrese P, Hedrick N, Tyson LM, Jahkke K, Maron LM, Butler RW, Neuwell EA. Long-term cognitive function, neuroimaging, and quality of life in primary CNS lymphoma. Neurology. 2013;81:84–92.

7. Gahramanov S, Muldoon LL, Li X, Neuwell EA. Improved perfusion MR imaging assessment of intracerebral tumor blood volume and antangiogenic therapy efficacy in a rat model with ferumoxytol. Radiology. 2011;261:796–804.

8. McConnell HL, Schwartz DL, Richardson BE, Woltjer RL, Muldoon LL, Neuwell EA. Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. Nanomedicine. 2016;12:1535–42.

9. Neuwell EA, Brock P. Critical need for international consensus on ototoxicity assessment criteria. J Clin Oncol. 2010;28:1630–2.

10. Doolittle ND, Muldoon LL, Culp AY, Neuwell EA. Delivery of chemotherapeutics across the blood–brain barrier: challenges and advances. Adv Pharmacol. 2014;71:203–43.
A61

The effect of lidocaine on the surface charge of brain endothelial cells
Ana Raquel Santa Maria, Ana Rita Bras, Dóra Lipka, Sándor Valkai, András Kincses, András Dér, Maria A. Deli
Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
Correspondence: Ana Raquel Santa Maria (anaraquel.santamaria@brc.mta.hu)
Fluids and Barriers of the CNS 2017, 14(Suppl 2):A61

Plasma membrane surface charge originating from negatively charged lipid head groups and the glycocalyx play an important role as a defence system at the blood–brain barrier. It can regulate permeability across brain endothelial cells including drug transport. Lidocaine, a cationic and lipophilic molecule used as anaesthetic and antiarrhythmic drug can change the surface charge of lipid membranes, and this is one of the hypothesized ways of its mode of action. However, the direct action of lidocaine on surface charge of endothelial cells was not yet measured. Our aim was to study the direct effect of lidocaine on the surface charge and barrier properties of brain endothelial cells. Surface charge of hCMEC/D3 human brain endothelial cells was measured by Zetasizer Nano (Malvern). Barrier properties of hCMEC/D3 monolayers were evaluated by measuring transendothelial electrical resistance, permeability for hydrophilic marker molecules, and morphology of intercellular junctions stained by immunochemistry.

Lidocaine changed the surface charge of the brain endothelial cells, the negative zeta potential became more positive. After both short term (30 min) and 2-day lidocaine treatment a decrease in the electrical resistance of brain endothelial monolayers was found indicating an increased ion movement across the paracellular space, but no significant change was detected in the permeability for large paracellular marker molecules or in the morphology of interendothelial junctions. We suggest that the effect of lidocaine is due to a change in the lipid part of the plasma membrane, which became more positive after lidocaine treatment. As a summary, we could demonstrate by direct measurements, that lidocaine makes the surface charge of human brain endothelial cells more positive. While lidocaine may not damage directly the blood–brain barrier in vivo, a significant surface change in brain endothelial cells may modulate brain penetration of charged drug molecules.

Grant support: European Training Network Brain Barriers Training H2020-MSCA-ITN-2015 675619, GINOP-2.3.2-15-2016-00001, GINOP-2.3.2-15-2016-00060

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.