The Influence of Weather Factors to Mood and Human Behavior on the Stock Market Indices Performance by the Tendency towards Geographical Location

Lai Ferry Sugianto*, Chai Liang Huang

Department of Finance, College of Management, National Chung Cheng University, Taiwan

Received May 28, 2020; Revised June 24, 2020; Accepted August 10, 2020

Copyright©2020 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract This research tries to determine the weather factors affect mood and human behavior. Some previous researches find that weather can influence human behavior and mood, like concentration, optimism, self-confidence, aggression, and performance. Many weather indicators can affect human behavior and mood, but only few of them have been investigated. In this paper, we use temperature, precipitation, hours of sunshine, and humidity. Mood and behavior make people make decisions based on such indicators, including the trading decision in the stock market. Therefore, mood and behavior turn the investors to become more irrational. In this research, geographical locations are also being included because the difference in location can make a difference in the climate. By using indices return from 44 countries, we get that higher temperature creates more aggression and makes investors more aggressive and risk-taking, leading to the higher returns, hours of sunshine also make investors more optimistic and less risk-averse which leads to higher returns. Higher humidity also leads to a higher concentration. We also find that in Europe and Asia, the effect of weather variables is much stronger than in other continents. Additional results show that stock markets in Europe and Asia are easily affected by weather factors, and the high elevation also has a more significant effect.

Keywords Weather, Human Behavior, Mood, Stock Market Indices, Geographical Location

1. Introduction

Stock is the equity that is received by stakeholders investing in and used to generate funds from other parties. It represents the residual asset of a company, so it is influenced by a lot of internal and external factors. Many studies want to find the factors affecting the stock prices, but many have not found the correct form of representation factors of stock prices precisely because of the high volatility of the stocks.

Weather is the most challenging factor to be detected in human behavior because it combines interdisciplinary, such as accounting, economics, statistics, psychology, and sociology (Ackert & Deaves, 2009). The study, which includes human psychology into the finance field, is called Behavioral Finance. However, this study is still widely debated (Wallace, 2010), both by practitioners or academicians, because they still do not trust behavioral finance as a factor that is strong enough to affect stock prices. So many people conduct researches about it and find any evidence that can reinforce the concept of behavior in investments. In his article, Wallace (2010), says that the investors' mood psychological behavior can have a significant impact on markets. People sometimes act irrationally, no exception to the act of buying and selling stocks. This irrationality makes mispricing and bias in stock prices. Mispricing can be affected by under or overreactions to new information (Kent, David, & Avanidhar, 1998), emotion/mood fluctuations, and projection bias (Mehra & Sah, 2002).

Mehra and Sah (2002) summarize the mood fluctuations in several different ways, such as individual endogenously determines discount factor (how much effort and resources to spend on creating future appreciation, probabilities of death (epidemics, armed conflicts, and discoveries in medical treatments), projection bias (misprediction in the future sequence of preferences), weather fluctuation (bright versus non-bright days), observations from the psychology literature (mood fluctuation), and other observations (ongoing interactions among investors and human interactions). Many behavioral factors influence the volatility on the stock market, but in this research, we want to prove the correlation between the weather factors, mood,
and stock prices, represented by indices.

The study that examines the relationship between weather and stock prices is not new longer. David and Tyler (2003) examine the relationship between whether a day is sunny, and stock returns that day at 26 stock index exchanges internationally from 1982-97. They find that sunshine is highly significantly correlated with daily stock returns. Their research proves that people often attribute their feelings to the wrong source, leading to incorrect judgments (misattribution), likes happiness on sunny days than rainy days. In line with this research, Symeonidis, Daskalakis, and Markellos (2010), using the same data of 28 stock indices, add the volatility indices for further support to the previous finding. They conclude that sunny weather influence investors' mood, making them more optimistic and less risk-averse, which leads to higher returns. In the third research, with the different data, Akhtari (2011) tries to imitate the concept of both previous studies and implicate in Dow Jones Industrial Average (DJI) index return data from 1948 until 2010. He finds that hours of sunshine in New York City have a significant correlation with stock prices, and he argues that sunnier day is associated with investors being more willing to make risky investments, such as stocks, as opposed to less risky investments.

Another study tests another weather indicator and finds that it correlates with stock market returns. Cao and Wei (2005), using nine international stock indices, covering eight financial markets in the U.S., Canada, Britain, Germany, Sweden, Australia, Japan and Taiwan, examine the correlation between temperature and stock market returns. They find that temperature is one of the essential meteorological variables affecting people's moods. Low temperature tends to cause aggression, and high temperature tends to cause aggression, hysteria, and apathy. Lower temperature leads to higher stock returns due to investors' aggressive risk-taking, and higher temperatures lead to higher or lower stock returns since aggression and apathy have competing effects on risk-taking.

In these researches, they consider two kinds of weather variables, hours of sunshine, and temperature. However, many weather indicators can be deliberated or tested, especially in the modern era, because in the modern era, many technologies created that can reduce the weather impact, such as air conditioner, heater, and electronic trading, which allows for stock trading indoor. So, now investors do not need to trade in a stock exchange, but they can do trading at their home or office. Furthermore, another consideration is the geographical location. No study includes the geographical location as an important factor, even though the location or region can affect the climate and also influence the weather in a particular area. The climate in a particular region is different from others; it is determined by many factors. The most crucial factor is the earth's position concerning the sun (Boehm, 2002).

In psychological study, there is research that examines the relationship between mood and weather. Howarth and Hoffman (1984) verify that there is the relationship between mood (concentration, cooperation, anxiety, potency, aggression, depression, sleepiness, skepticism, control, and optimism) and weather (hours of sunshine, precipitation, temperature, wind velocity, humidity, and change in barometric pressure) by testing 24 male university students participated in the study to fulfill course requirements. They find that hours of sunshine affect concentration, skepticism, and optimism, as precipitation affects skepticism, temperature affects concentration, and humidity affects concentration, potency, and sleepiness. So, parallel with this model, it is essential to examine other weather factors that may cause changes in mood in the stock trading, especially with the data in this modern era.

2. Literature Review

2.1. Weather Variables

Weather consists of many variables and indicators which can be measured, such as sunshine, temperature, precipitation, humidity, moisture, wind velocity, and barometric pressure. These variables are made by people to represent the atmosphere conditions and to measure the weather situations. Barry and Chorley (1970) in their book, explain the meanings of these variables and how to measure them; also Aguado and Burt (2007) add several variables, they are:

Temperature is an index of the average energy of the molecules comprising a substance. The daily mean temperature is defined as the average of the maximum and minimum temperature of the day. Many geographical factors are influencing the temperature; they are latitude, altitude, atmospheric circulation patterns, local conditions, continentality, and current ocean characteristics among coastal locations. Cao and Wei (2005) find that temperature is an essential meteorological variable affecting people's moods. Low temperature tends to cause aggression, and high temperature tends to cause aggression, hysteria, and apathy. Lower temperature leads to higher stock returns due to investors’ aggressive risk-taking, and higher temperatures also lead to higher stock returns since aggression and apathy are competing effects on risk-taking. However, Howarth and Hoffman (1984) in psychological paper mention that the high temperature increase the concentration. The higher concentration also lead to higher stock returns. Overall, the high temperature dominates the effect. So, using global observations, we want to solve this question.

H1: Temperature positively affects the stock market return.

Precipitation is liquid water or ice that falls to the earth's surface. There are several forms of precipitation, such as
snow, rain, graupel and hail, sleet, and freezing rain. So, people can measure the precipitation by rain gages for rainfall and snow measurement for snow. Rain gage uses precipitation funnels that have a specific size and mounted at a specific height. Nevertheless, it is different from snow measurement. They use water equivalent, the depth of water that would result if all the snow melts. Howarth and Hoffman (1984) find that precipitation affects skepticism. Their result shows that people become more skeptical in raining days. We expect that the skepticism leads to lower returns because people have doubt in trading stock during the raining days.

H2: Precipitation negatively affects the stock market return.

The length of daylight or sunshine duration or sunshine hour is measuring the duration of sunshine in a given period for a given on earth, typically expressed as an average of several years, which can also indicate the cloudiness of a location. The length of daylight affects the amount of radiation that is received. The longer the time during which the sun shines, the higher is the quantity of radiation that a given portion of the earth receives. Howarth and Hoffman (1984) also say that the skepticism scale is negatively related to hours of sunshine, hours of sunshine increased, optimism score also increases. In line with the previous researches about behavioral finance, sunshine is highly significantly correlated with daily stock returns (David & Tyler, 2003).

H3: Sunshine hours positively affect the stock market return.

Humidity means an expression of the amount of water vapor in the air. There are six expressions which can represent humidity factor, like vapor pressure, absolute humidity, specific humidity, mixing ratio, and relative humidity. All methods have advantages and disadvantages depending on the intended use. We use vapor pressure as one of our indicators. It is simply part of the total atmospheric pressure due to water vapor, which depends on temperature and the density of water vapor molecules. Howarth and Hoffman (1984) argue that decreasing humidity and dropping barometric pressure accompanied lower score on concentration.

H4: Vapor pressure positively affects the stock market return.

Dang, Gillett, Weaver, and Zwiers (2007) report that globally-averaged instrumental surface temperatures records show increases estimated to be 0.4-0.8°C since the late 19th century to the year 2000. Surface air temperatures also show warming trends during the same period if the substantial observed changes in ecosystems under observed historical weather factors can be linked to human activities and not possible to link it with the human behavior.

Barry and Chorley (1970) reveal that some studies try to separate periods to show that is the evidence of climate change happened, and some predict the changes over the next 100 years. Climate changes make some changes to the earth, such as:

1. Atmospheric composition. The increases in the atmospheric concentration of greenhouse gases (mainly CO₂, CH₄, and CFC) since the growth of industry and population.
2. Temperature and humidity. The northern hemisphere has employed estimates of temperature variations associated with the observed increase of CO₂ (emission of greenhouse gases) and regular solar oscillations. The significant predictions are general warming of earth’s surface and troposphere by up to more than 12°C in some high southern latitudes, more substantial warming of earth’s surface and troposphere in higher latitudes in autumn and winter by 4°-8°C, tropical warming less than the global mean by 2°-3°C, amplified warming over northern mid-latitude continents in summer by 4°-6°C, soil moisture increases in winter and decreases in summer in northern mid-latitude continents.
3. Sea level. Sea level is influenced by changes in ocean water mass, changes in ocean water volume, changes in earth crustal level, and changes in the global distribution water.

Weather involves factors both external to and within the climate system (Barry & Chorley, 1970). External ones include solar variability, astronomical effects of the earth orbit, and tectonic activity. Internal factors include variability within the atmosphere and ocean and their feedbacks. Climatic changes in geological time-scales involve continental drift, volcanic activity, and possible changes in solar output.

2.2. Geographical Location Variables

The climate varies in different locations; it is different from others; it is determined by many factors (Boehm, 2002). Climate variability also makes the weather differences. Boehm (2002), in his book, tells the difference between weather and climate. Weather is the condition of the atmosphere in one place during a limited period, but the climate has a different meaning. Climate is the term of weather patterns that an area typically experiences over a long period. The main factor which influences climate is the earth's position concerning the sun; it means that the geographic location takes part in the formation of climate and weather. Four geographical factors can be included in this term; they are region/continent, pole, latitude, and elevation.

1. **Latitude.** The geographical factors (latitude and elevation) have the most important effect on the local
climate (Vajda & Venalainen, 2003). It is explained that different parts of the earth's surface receive different amounts of solar radiation (Barry & Chorley, 1970). Latitude is very important to control because the geographical situation of a region will determine both the duration of daylight and the distance traveled through the atmosphere by the oblique rays from the sun. During the earth's annual revolution around the sun, the rays fall in a regular pattern ("Continental-scale temperature variability during the past two millennia," 2013). The pattern is correlated with bands, latitude, and zone to describe the climate regions, so within every latitude zone, the climate happens in a particular pattern.

2. Region/continent/zone. Earth's climate has undergone significant climate variations that have yet to be quantified at the continental scale, where climate variability is arguably more relevant to ecosystems and societies than globally averaged conditions ("Continental-scale temperature variability during the past two millennia," 2013). The change in temperature and cooling varies in seven continental-scale regions. Dang, Gillett, Weaver, and Zwiers (2006) also argue that the subsequent influences of the climatic changes on the bio-systems are very different from region to region.

3. Pole/hemisphere. Boehm (2002) argues that the amount of sunlight at the poles varies most dramatically as the revolutions of earth and tilt cause the changing seasons. For a half year, a pole is tilted toward the sun and receives continuous sunlight, when another pole is tilted away and receives little or no sunlight. Temperatures did not fluctuate uniformly among all regions ("Continental-scale temperature variability during the past two millennia," 2013). In the period from around AD 830 to 1100 generally encompassed a sustain warm interval in all four Northern Hemisphere regions. In South America and Australasia, a sustained warm period occurred later. In the Arctic and Europe, the temperatures were relatively high during the first century AD. But, between AD 1200 and 1500, the transition to colder regional climates is evident in Arctic, Europe, and Asia than in North America or Southern Hemisphere. These conditions emphasize that each region has its own condition or climate; it is represented in the different temperatures found.

4. Elevation. Latitude elevation affects the climate because of the relationship between the elevation of the place and the temperature (Boehm, 2002), as elevation increases, the temperature decrease. Even in the high elevation, the sunlight is brighter because the thinner atmosphere filters fewer rays of the sun (solar radiation), this region is colder than the lowland. Elevation, along with local relief and slope aspect, induce very local characteristics on climatology elements (Vajda & Venalainen, 2003).

2.3. Stock Market Returns and Indices

Stock Market Returns

The purpose of the investment is the return. Many investors invest in many investment instruments in order to get a high return and take benefit from them. So, it is essential to know how to measure returns, especially in stock markets. Return on investment is the change in wealth resulting from the investment (Reilly & Brown, 2000). Changes in wealth are because of cash inflows (interest and dividends) and changes in the price of the asset. The period the investors are holding their assets is holding period, and the return for that period is the holding period return (HPR) which calculated as follows:

\[
HPR = \frac{Ending \ value \ of \ investment}{Beginning \ value \ of \ investment} - 1
\]

HPR helps us express the change in the value of an investment, but it is not practical so many people like changing it into periodical percentage rate, referred to holding period yield (HPY). HPY equals to the HPR minus 1.

\[
HPY = HPR - 1
\]

This return (HPY) represents total return which is a return objective in which the investor wants to increase the portfolio value by both capital gains and current income reinvestment.

Stock Market Indices

The index is the stock market indicator which is derived in the same way as an average but from a broader sampling of securities (Finance, 1985). They are many kinds of stock market indices, and they represent the prices of several or many or all the stock prices in particular fields. Jones (2007) defines that composite indexes indicate peaks and troughs in the business cycle and composite economic indexes used as leading indicators that can indicate some variables in economic activity, such as stock prices, customer expectations, money supply, and interest rate spread. In summary, security market indexes are used (Jones, 2007) as benchmarks to evaluate the performance of professional money managers, to create and monitor an index fund, to measure market rates of return in economic studies, to predict future market movements by technicians, and as a proxy for the market portfolio of risky assets when calculating the systematic risk of an asset.

The studies of weather affects stock index returns are investigated by some previous papers. It is started by David and Tyler (2003) and Symeonidis, Daskalakis, and Markellos (2010) who use 26 stock index exchanges, follows by Cao and Wei (2005), using 9 country indices, and the last, Akhtari (2011) use Dow Jones Industrial Average (DJI) index return. It means that indices are...
representative and have been used in many studies about the relation between stock and weather. We follow the previous researches, but we use more indices; 44 stock indices from 44 countries. With more indices we use, we hope that the results are applicable to all countries.

2.4. Human Behavior, Mood, and the Correlation with Weather

Human Behavior

Behavior in humans can be influenced by many factors, such as emotions, moods, attitudes, cultures, and values. It is inherent in human beings to something and makes decisions. The behavior of individuals, practitioners, markets, and managers is sometimes characterized as irrational. Behavioral finance uses insights from psychology to understand how human nature influences the decisions of individual and professional investors, markets, and managers (Ackert & Deaves, 2009). Behavioral finance is interdisciplinary, which combines accounting, economics, statistics, psychology, and sociology.

Behavioral finance could equip the concept of traditional finance with a set of new lenses, which allows the understanding of many psychological and Behavioral traps involving human actions and emotions (Baker & Nofsinger, 2010). They explain four critical themes in Behavioral finance; they are:

- **Heuristics** are means of reducing the cognitive resources necessary to find a solution to a problem which are mental shortcuts that simplify the sophisticated methods ordinarily required to make judgements.
- **Framing** is a factor influencing people’s perceptions and memories of the choice they have.
- **Emotions** are “animal spirits” which are correlated with universal human unconscious needs, fantasies, and fears that drive many of their decisions. The subtle and sophisticated way our feelings determine psychic reality affect investment judgements. There are six observable features which are defined emotions (Ackert & Deaves, 2009); they are cognitive antecedents, intentional objects, physiological arousal, physiological expressions, valence, and action tendencies.
- **Market Impact.** Market prices do not appear to be fair (mispricing). Market anomalies fed an interest in the possibility that they could be explained by psychology.

Mood

Human Behavior can be affected by emotions and moods (Schwarz & Clore, 1996). George (2000) argues that strong emotions determine short-term action much more strongly than people generally acknowledge, the visceral factor creates difficulty when people make choices that are inter-temporally consistent because the factors frequently change by the environment.

Lucey and Dowling (2005) summarize the connection between mood and economic behavior. They say that the mood effect is mood misattribution. A bad mood indicates to the decision-maker that something is wrong with the current situation to consider the decision more analytically and critically. A good mood is associated with less careful decision making. Allowing a mood that is unrelated to a decision to affect that decision is what psychologists call mood misattribution. Akerlof and Shiller (2010) add that emotional and intangible factors such as confidence in institutions, illusions about the nature of money, or a sense of being mistreated can affect how people make decisions about borrowing, spending, saving, and investing.

Correlation to Weather

Researchers have found that the lack of sunshine has been linked to depression (Eagles, 1994) and suicide (Tietjen & Kripke, 1994). People seem to feel better when they are exposed to more sunshine. Mood research is still controversial because the existence of the proposed mood effects implies profitable trading strategies that do not seem consistent with the arguments of market efficiency (Baker & Nofsinger, 2010). There are several properties that any good mood measure satisfies, such as weather, length of the day, and sporting results. The earliest study relating to investor mood to stock returns found by Saunders (1993). The result is statistically significant and robust relation, showing that sunnier days correspond to a more favourable return for Dow Jones Industrial Average and the NYSE Index.

A similar study was conducted by David and Tyler (2003), they examine the relationship between sunny day and stock returns of 26 stock exchanges internationally from 1982-97. They find that sunshine is highly significantly correlated with daily stock returns. Their research proves that people often attribute their feelings to the wrong source, leading to incorrect judgements (misattribution), likes happiness on sunny days than rainy days. In line with this research, Symeonidis et al. (2010) add the volatility indices for further support to the previous finding. They conclude that sunny weather influences the mood of investors, making them more optimistic and less risk-averse, which leads to higher returns. It strengthens the finding from Kliger and Levy (2003) which say that the effect of mood on returns is that the mood affects risk aversion and mood effects on the market that are driven by external phenomena such as weather. In the third research, with the different data, Akhtari (2011) tries to imitate the concept of both previous studies and implicate in New York City stock return data from 1948 until 2010. He finds that hours of sunshine in New York City have a significant correlation with stock prices and he argues that sunnier day is associated with investors being more willing to take a risky investment, such as stocks, as opposed to less risky investments.

Another study tests another weather indicator and finds
that it also correlates with stock market returns. Cao and Wei (2005) examine the correlation between temperature and stock market returns. They find that temperature is one of the important meteorological variables affecting people’s moods. Low temperature tends to cause aggression, and high temperature tends to cause aggression, hysteria, and apathy. This evidence provided concludes that there is a correlation between weather, especially sunshine and temperature and market returns. While some people may view this relationship as a spurious correlation produced by data mining, but many researchers believe that it is strong evidence that mood affects prices.

3. Data

To examine the relationship between stock indices and weather factors, we combine two data sets. The first one is the monthly stock indices data which we collect from Data Stream from the beginning until December 2013, and the second one is the monthly weather data and some geographical factors from National Climatic Data Center of the National Oceanic and Atmospheric Administration (www.ncdc.noaa.gov) with the same range of time. We follow David and Tyler (2003), Symeonidis, Daskalakis, and Markellos (2010), Cao and Wei (2005), and Akhtari (2011), to pick one corresponding city of each country, where the stock exchanges located or close to.

We choose 44 stock indices from 44 countries (5 continents). The overall samples are 9,239 samples from 44 countries. The list of stock market indices and weather stations is in Table 1. Table 1 also shows the beginning date of our observation.

The stock price indices used to calculate the returns. We calculate the monthly returns that we get from monthly data. For the weather data, we choose four factors; they are temperature, precipitation, hours of sunshine, and vapor pressure. We pick the stations physically closest to the cities which the stock exchanges located. It should be considered in order to make the data valid and avoid bias.

No	Country	Stock Index	Station	Latitude (°)	Elevation (m)	Start Date
1	Canada	Toronto Stock Exchange	Toronto	43.4	113	1979
2	Argentina	Merval Buenos Aires MERV	Cordoba Aero	31.19	484	1996
3	Chile	IPSA Santiago de Chile	Temuco	38.46	93	2002
4	Mexico	IPC MXX	Guanajuato	21	1999	1994
5	Columbia	Columbia IGBC Index	Bogota Eldorado	4.42	2547	2001
6	Venezuela	Venezuela SE General	Merida	8.36	1498	1993
7	UK	London Stock Exchange Group	Eskdalemuir	55.19	242	2001
8	Germany	HDAX Index Perf	Berlin Tegel	52.34	37	1996
9	Switzerland	SMI	Basel	47.33	317	1990
10	Spain	IBEX 35	Madrid Barajas	40.3	633	1993
11	Netherlands	EURONEXT 100	De Bilt	52.06	4	2000
12	Russia	Moscow Interbank Currency Exchange	Moskva	55.5	156	1997
13	Greece	Athens Comp Ind Tot	Heraklion	35.2	39	2002
14	France	CAC 40	Rennes	48.04	43	1990
15	Austria	ATX	Kremstuenster	48.03	389	1992
16	Ireland	ISEQ-Overall Price	Malin Head	55.22	25	1997
17	Italy	IPC MXX	Termoli	42	44	2002
18	Croatia	Croatia Zagreb Crobex	Zagreb Gric	45.49	162	1997
19	Lithuania	OMX Vilnius All-Share Index	Vilnius	54.38	162	2000
20	Malta	MALTEX	Luqa	35.51	91	2003
21	Portugal	Portugal PSI 20 Index	Lisboa Geof	38.43	95	2000
22	Romania	Bucharest BET Index	Varfu Omul	45.27	2509	1999
23	Slovenia	SBI TOP	Ljubljana Bezigrad	46.04	299	2006
Table 1 continued

No	Country	Stock Index	Station	Latitude (°)	Elevation (m)	Start Date
24	Ukraine	PFTS Stock Exchange	Kiev	50.24	167	2001
25	Hungary	Budapest BUX	Budapest	46	203	1991
26	Slovakia	Slovakia SAX 16	Poprad Tatry	49.04	696	1996
27	Luxembourg	Luxembourg SE General	Luxembourg Airport	49.37	376	1999
28	Japan	Nikkei 225	Tokyo	35.41	36	1984
29	South Korea	KOSPI Composite Index	Seoul	37.34	86	1997
30	China	SSE Composite Index	Shang Hai	31.24	8	1993
31	Hong Kong	Hang Seng China Enterprises	Kowloon	22.19	66	1993
32	Singapore	STI Index	Changi Airport	1.22	16	1987
33	Thailand	Bangkok SET	Bangkok	13.44	4	1975
34	India	CNX NIFTY	New Delhi	28.35	216	2007
35	Israel	TEL AVIV 100	Har Knaan	32.58	934	2000
36	Turkey	BIST 100 Index	Isparta	37.45	997	1997
37	Kazakhstan	MSCI Kazakhstan	Astana	51.08	350	2005
38	Australia	All Ordinaries	Sydney Airport	33.56	6	1984
39	New Zealand	NZX 50 Index Gross	Gisborne Aerodrome	38.39	5	2003
40	Egypt	EGX 30 Index	Mersa Matruh	31.2	28	1998
41	Mauritius	SEMDEX	Plaisance	20.26	57	1989
42	South Africa	FTSE/JSE All Share	Bloemfontein Airport	29.06	1359	1995
43	Morocco	Morocco All Share MASI	Rabat Sale	34.3	86	2002
44	Tunisia	Tunisia TUNINDEX	Jendouba	36.29	144	1998

Source: www.ncdc.noaa.gov, processed

4. Research Design and Methodology

The study is causal research because it explains the causal relationship between the variables in the empirical model developed by researchers that is related to the influence of the variables affecting the stock market return. Based on the approach, this research is a quantitative research/positivism that emphasizes the combination of deductive logic and the use of quantitative tools in interpreting a phenomenon objectively (Balnaves & Caputi, 2001).

There are three kinds of variables used in this study, namely dependent variables, independent variables, and control variables. The dependent variable is the stock market return which can be interpreted in indices return from 16 countries. While the independent variables are four weather factors, they are temperature, precipitation, hours of sunshine, and vapor pressure. We also use other control variables to make the groupings, such as latitude, region, pole, and elevation to represent the geographical location. Table 2 until Table 7 display numbers of summary statistics that describe the samples. Table 2 displays the summary statistics of the stock market return in each country. Table 3 until Table 6 show summary statistics of weather variables, they are Table 3 displays the summary statistics of temperature each country, Table 4 displays the summary statistics of precipitation each country, Table 5 displays the summary statistics of hours of sunshine each country, and Table 6 displays the summary statistics of vapor pressure each country. The last one, Table 7, displays summary statistics of geographical location.
Table 2. Summary Statistics – Stock Market Returns

Country	Mean	Median	Std Deviation	Min	Max
AMERICA					
Canada	0.006	0.010	0.046	-0.226	0.143
Argentina	0.017	0.016	0.110	-0.391	0.487
Chile	0.009	0.006	0.047	-0.096	0.161
Mexico	0.014	0.016	0.071	-0.295	0.193
Columbia	0.020	0.019	0.069	-0.223	0.174
Venezuela	0.039	0.019	0.116	-0.401	0.490
EUROPE					
United Kingdom	0.019	0.013	0.102	-0.353	0.431
Germany	0.008	0.018	0.063	-0.246	0.208
Switzerland	0.008	0.012	0.045	-0.189	0.137
Spain	0.004	0.009	0.077	-0.700	0.166
Netherlands	0.000	0.012	0.051	-0.173	0.126
Russia	0.023	0.021	0.131	-0.476	0.490
Greece	0.003	0.009	0.088	-0.278	0.219
France	0.004	0.012	0.055	-0.175	0.134
Austria	0.007	0.012	0.061	-0.278	0.145
Ireland	0.003	0.011	0.060	-0.210	0.195
Italy	0.001	0.012	0.057	-0.157	0.191
Croatia	0.007	0.006	0.092	-0.451	0.391
Lithuania	0.007	0.015	0.059	-0.197	0.150
Malta	0.007	0.013	0.113	-0.896	0.396
Portugal	-0.002	-0.002	0.054	-0.194	0.119
Romania	0.020	0.019	0.098	-0.315	0.406
Slovenia	-0.004	-0.003	0.063	-0.178	0.174
Ukraine	0.022	0.009	0.126	-0.302	0.572
Hungary	0.015	0.015	0.097	-0.349	0.698
Slovakia	0.002	0.003	0.061	-0.185	0.364
Luxembourg	0.002	0.006	0.074	-0.312	0.188
ASIA					
Japan	0.003	0.006	0.061	-0.238	0.201
South Korea	0.009	0.008	0.091	-0.272	0.488
China	0.009	0.002	0.123	-0.288	1.352
Hong Kong	0.011	0.005	0.115	-0.267	0.519
Singapore	0.007	0.011	0.066	-0.239	0.282
Thailand	0.009	0.005	0.085	-0.314	0.489
India	0.006	0.006	0.080	-0.264	0.281
Israel	0.008	0.015	0.056	-0.176	0.152
Turkey	0.033	0.019	0.146	-0.445	0.970
Kazakhstan	0.018	0.008	0.151	-0.302	0.914
AUSTRALIA					
Australia	0.007	0.012	0.047	-0.424	0.150
New Zealand	0.007	0.010	0.035	-0.119	0.087
AFRICA					
Egypt	0.015	0.011	0.104	-0.301	0.393
Mauritius	0.011	0.008	0.048	-0.177	0.254
South Africa	0.012	0.014	0.058	-0.293	0.212
Morocco	0.008	0.005	0.048	-0.124	0.238
Tunisia	0.009	0.006	0.040	-0.157	0.188

Source: Data Stream, processed
Country	Mean	Median	Std Deviation	Min	Max
AMERICA					
Canada	8.210	7.950	9.022	-11.100	23.000
Argentina	18.512	19.500	4.618	8.800	26.600
Chile	12.638	12.200	3.770	4.600	20.200
Mexico	19.547	14.000	2.778	14.000	25.100
Columbia	14.101	14.100	0.800	11.600	16.100
Venezuela	21.271	21.300	0.845	19.000	24.000
EUROPE					
United Kingdom	7.821	7.800	4.425	-2.600	16.500
Germany	10.233	10.400	7.065	-4.800	24.000
Switzerland	10.994	10.700	6.707	-1.400	24.100
Spain	10.770	0.166	8.442	0.000	27.700
Netherlands	10.374	10.150	5.514	-1.500	21.900
Russia	6.194	6.400	9.984	-14.600	25.700
Greece	18.639	17.900	5.205	9.800	27.100
France	12.668	12.600	5.803	1.400	24.600
Austria	9.731	9.950	7.537	-4.900	22.100
Ireland	10.102	10.000	3.321	3.700	17.400
Italy	16.048	15.600	6.711	5.500	28.100
Croatia	12.380	12.800	7.917	-1.200	26.100
Lithuania	7.265	7.700	8.682	-13.400	21.700
Malta	19.254	18.350	5.447	10.300	28.800
Portugal	17.865	17.550	4.260	10.600	25.600
Romania	-1.541	-1.400	6.658	-14.700	19.800
Slovenia	12.164	12.500	7.616	-1.500	23.700
Ukraine	9.020	9.450	9.428	-13.100	26.900
Hungary	11.520	12.050	8.081	-5.800	25.700
Slovakia	6.995	7.750	7.830	-9.500	18.500
Luxembourg	9.911	9.800	6.513	-2.600	23.700
ASIA					
Japan	16.585	17.100	7.593	3.200	30.200
South Korea	12.865	14.600	9.640	-5.700	27.400
China	17.500	18.700	8.502	0.000	32.000
Hong Kong	22.894	0.519	5.032	0.000	29.300
Singapore	27.630	27.700	0.765	25.500	29.500
Thailand	29.127	29.200	1.422	23.700	32.700
India	25.472	27.300	6.771	12.800	36.100
Israel	17.036	17.950	6.424	4.900	27.700
Turkey	12.706	12.050	7.582	-1.100	26.200
Kazakhstan	3.902	6.100	13.809	-23.000	24.300
AUSTRALIA					
Australia	18.472	18.800	3.742	11.700	25.100
New Zealand	14.411	14.200	3.525	8.700	21.000
AFRICA					
Egypt	20.299	20.100	4.562	12.500	27.600
Mauritius	24.207	24.200	2.070	20.400	27.700
South Africa	16.348	17.300	5.386	6.200	24.200
Morocco	15.668	4.200	6.823	4.200	27.800
Tunisia	18.812	18.150	6.914	6.300	31.400

Source: www.ncdc.noaa.gov, processed
The Influence of Weather Factors to Mood and Human Behavior on the Stock Market Indices Performance by the Tendency towards Geographical Location

Table 4. Summary Statistics – Weather Variables, Precipitation (mm)

Country	Mean	Median	Std Deviation	Min	Max
AMERICA					
Canada	70.411	65.750	35.384	4.400	209.200
Argentina	632.130	411.000	681.303	0.000	3488.000
Chile	834.229	694.000	650.759	5.000	2954.000
Mexico	435.092	121.500	721.287	0.000	5903.000
Columbia	648.220	499.500	598.016	0.000	3519.000
Venezuela	1078.610	926.000	824.057	5.000	4223.000
EUROPE					
United Kingdom	153.197	135.200	80.217	17.600	431.600
Germany	46.132	39.150	32.404	0.200	212.100
Switzerland	69.549	63.200	40.868	2.000	196.600
Spain	23.409	10.500	29.650	0.000	171.600
Netherlands	77.377	74.600	40.334	0.500	223.700
Russia	60.573	53.000	32.652	9.300	183.500
Greece	361.947	190.000	424.813	0.000	1698.000
France	50.987	46.200	31.239	1.000	203.800
Austria	856.894	815.000	482.235	0.000	3399.000
Ireland	903.975	833.000	403.998	104.000	2419.000
Italy	628.752	473.000	514.588	0.000	2668.000
Croatia	729.092	701.000	423.985	7.000	1958.000
Lithuania	391.363	329.500	280.790	5.000	1816.000
Malta	472.841	292.000	558.057	0.000	2593.000
Portugal	666.722	427.500	727.536	0.000	3078.000
Romania	738.349	638.000	453.704	14.000	2824.000
Slovenia	1147.033	1101.000	669.753	31.000	4254.000
Ukraine	395.500	290.000	344.579	1.000	1899.000
Hungary	498.272	402.500	478.234	0.000	3110.000
Slovakia	535.830	415.000	409.695	0.000	2204.000
Luxembourg	730.017	645.500	384.286	55.000	1971.000
ASIA					
Japan	117.860	103.600	91.128	0.000	780.000
South Korea	111.199	48.500	156.304	0.000	994.500
China	96.696	80.200	81.151	2.300	570.900
Hong Kong	195.445	111.000	228.902	0.000	1333.000
Singapore	188.393	165.000	131.950	0.000	1364.000
Thailand	1368.619	1034.500	1330.604	0.000	6206.000
India	588.408	126.500	879.403	0.000	3756.000
Israel	571.107	161.000	820.683	0.000	4384.000
Turkey	428.186	309.500	410.560	0.000	2200.000
Kazakhstan	28.134	22.000	20.284	2.000	113.000
AUSTRALIA					
Australia	88.215	62.200	81.330	0.000	581.000
New Zealand	842.045	742.000	559.717	68.000	2513.000
AFRICA					
Egypt	159.770	13.000	380.372	0.000	3560.000
Mauritius	1293.850	878.000	1186.995	10.000	6663.000
South Africa	405.464	229.500	436.849	0.000	1758.000
Morocco	144.451	83.000	172.912	0.000	1072.000
Tunisia	401.005	309.000	365.545	0.000	1938.000

Source: www.ncdc.noaa.gov, processed
Table 5. Summary Statistics – Weather Variables, Hours of Sunshine (hours)

Country	Mean	Median	Std Deviation	Min	Max
AMERICA					
Canada	167.438	162.800	68.330	34.000	324.800
Argentina	244.242	232.000	76.769	102.000	392.000
Chile	177.639	153.000	90.461	0.000	357.000
Mexico	224.179	225.000	41.542	101.000	330.000
Columbia	128.367	124.500	34.457	0.000	236.000
Venezuela	208.960	216.000	43.619	103.000	313.000
EUROPE					
United Kingdom	91.805	84.800	48.267	11.800	233.900
Germany	141.835	134.000	80.867	15.000	372.000
Switzerland	134.242	126.000	69.683	0.000	313.000
Spain	236.348	239.000	85.452	71.000	433.000
Netherlands	139.542	143.500	66.820	0.000	307.000
Russia	155.798	140.000	109.716	5.000	394.000
Greece	240.451	235.000	99.186	82.000	395.000
France	143.789	142.000	72.718	21.000	347.000
Austria	168.854	173.000	88.055	0.000	385.000
Ireland	126.394	127.000	53.069	30.000	262.000
Italy	197.534	190.000	84.185	14.000	352.000
Croatia	166.138	159.000	83.588	22.000	334.000
Lithuania	136.196	120.500	86.183	8.000	331.000
Malta	248.705	236.000	74.160	112.000	386.000
Portugal	237.870	235.000	81.150	91.000	384.000
Romania	184.083	185.000	90.903	23.000	396.000
Slovenia	165.848	157.500	94.836	22.000	349.000
Ukraine	145.658	145.500	88.776	0.000	341.000
Hungary	170.312	166.500	89.440	0.000	361.000
Slovakia	152.274	150.000	80.384	0.000	336.000
Luxembourg	149.028	149.500	85.094	14.000	346.000
ASIA					
Japan	159.987	161.500	39.374	39.200	259.200
South Korea	164.360	169.000	44.741	34.000	256.000
China	147.000	145.000	44.491	33.000	322.000
Hong Kong	151.082	150.000	49.402	0.000	294.000
Singapore	166.645	168.000	40.410	0.000	256.000
Thailand	168.006	164.000	63.458	27.000	293.000
India	164.211	167.000	53.103	45.000	271.000
Israel	212.857	235.500	84.631	60.000	367.000
Turkey	222.490	216.500	87.216	14.000	396.000
Kazakhstan	206.041	191.000	96.064	47.000	395.000
AUSTRALIA					
Australia	180.801	199.000	63.496	53.000	322.000
New Zealand	137.742	156.000	88.812	0.000	308.000
AFRICA					
Egypt	275.686	282.000	73.069	102.000	396.000
Mauritius	208.952	209.000	42.787	63.000	326.000
South Africa	266.248	271.000	37.050	94.000	354.000
Morocco	230.944	236.000	66.999	70.000	350.000
Tunisia	221.807	220.000	65.580	85.000	376.000

Source: www.ncdc.noaa.gov, processed
The Influence of Weather Factors to Mood and Human Behavior on the Stock Market Indices Performance by the Tendency towards Geographical Location

Table 6. Summary Statistics – Weather Variables, Vapor Pressure (mb)

Country	Mean	Median	Std Deviation	Min	Max
AMERICA					
Canada	7.771	6.500	5.073	0.400	19.400
Argentina	12.462	11.800	3.222	0.000	22.000
Chile	11.773	10.700	3.796	0.000	22.100
Mexico	13.818	14.200	3.496	0.000	25.000
Columbia	12.396	12.400	0.991	10.100	16.500
Venezuela	37.615	24.800	39.011	1.000	238.000
EUROPE					
United Kingdom	9.554	8.900	2.689	4.800	19.000
Germany	9.906	9.350	3.505	3.900	18.100
Switzerland	7.129	6.500	4.795	0.000	16.900
Spain	9.342	9.000	2.263	3.900	17.300
Netherlands	10.614	9.800	3.485	1.200	17.900
Russia	8.522	7.700	5.740	-33.000	21.000
Greece	15.500	14.800	4.750	7.300	26.800
France	10.749	10.000	3.645	4.800	21.100
Austria	10.334	9.550	4.341	3.800	18.400
Ireland	10.401	9.950	2.404	6.100	18.000
Italy	13.865	12.500	9.628	0.000	107.000
Croatia	10.761	9.950	4.350	3.800	19.000
Lithuania	8.713	7.700	4.145	1.100	20.300
Malta	16.173	15.150	4.453	8.900	25.600
Portugal	14.568	14.300	3.215	2.100	21.500
Romania	9.942	9.600	4.449	0.600	19.000
Slovenia	10.960	10.200	4.214	3.900	17.900
Ukraine	9.141	8.100	4.446	2.700	17.400
Hungary	10.990	9.500	16.131	1.300	269.000
Slovakia	7.763	7.150	3.944	0.100	15.500
Luxembourg	10.092	9.350	6.708	4.400	89.000
ASIA					
Japan	13.396	12.200	7.502	3.100	28.700
South Korea	11.331	8.800	7.445	2.000	26.500
China	16.724	14.900	12.228	0.000	155.000
Hong Kong	22.242	22.800	7.374	0.000	32.600
Singapore	30.640	30.700	1.523	11.000	33.500
Thailand	28.447	29.900	3.665	16.000	34.200
India	23.970	23.000	8.002	9.500	36.300
Israel	12.658	11.300	4.825	0.000	27.600
Turkey	9.101	8.550	3.453	2.000	17.100
Kazakhstan	6.425	5.800	4.068	0.900	15.200
AUSTRALIA					
Australia	12.379	11.800	4.927	0.000	34.000
New Zealand	12.583	12.300	2.925	0.000	19.100
AFRICA					
Egypt	16.361	15.600	5.445	1.000	28.600
Mauritius	23.288	22.800	4.037	0.300	32.500
South Africa	10.394	10.100	4.027	3.800	31.000
Morocco	16.068	15.350	3.753	8.600	25.000
Tunisia	14.318	14.100	3.779	7.900	22.200

Source: www.ncdc.noaa.gov, processed
Table 7. Summary Statistics – Geographical Location Variables

Variables	Mean	Median	Std Deviation	Min	Max
Latitude	37.527	38.410	13.574	1.220	55.500
Region dummy	dummy	dummy	dummy	dummy	dummy
Pole dummy	dummy	dummy	dummy	dummy	dummy
Elevation	405.023	150.000	639.492	4.000	2547.000

Source: www.ncdc.noaa.gov, processed

Data are processed with models used to analyze the causal relationship between the returns of stock market indices and weather variables using GARCH Model by Eviews 7. As these several graphs in Graph 1, it showed the relation between return and four weather variables.

Return – Temperature (X1)

Return – Precipitation (X2)

Return – Hours of Sunshine (X3)

Return – Vapor Pressure (X4)

Graph 1. Relation Between Return and Weather Variables

We run all countries data into an unbalanced panel data. And the regression equation used is GARCH Model as follows:

\[R = \alpha_0 + \beta_iX_i + \varepsilon \]
290 The Influence of Weather Factors to Mood and Human Behavior on the Stock Market Indices Performance by the Tendency towards Geographical Location

Variance equation:

\[\delta = \gamma_0 + \gamma_1 \cdot \varepsilon(-1)^2 + \gamma_2 \cdot \text{GARCH}(-1) + \gamma_3 \cdot \text{LAT} + \gamma_4 \cdot \text{REG1} + \gamma_5 \cdot \text{REG2} + \gamma_6 \cdot \text{REG3} + \gamma_7 \cdot \text{REG4} + \gamma_8 \cdot \text{POLE} + \gamma_9 \cdot \text{ELEV} \]

Where:

- \(R \) = Return
- \(X_i \) = Weather variables
- \(\text{LAT} \) = Latitude
- \(\text{REG1} \) = Dummy variable for region, US = 1 and non-US = 0
- \(\text{REG2} \) = Dummy variable for region, Europe = 1 and non-Europe = 0
- \(\text{REG3} \) = Dummy variable for region, Asia = 1 and non-Asia = 0
- \(\text{REG4} \) = Dummy variable for region, Australia = 1 and non-Australia = 0
- \(\text{POLE} \) = Dummy variable for pole, South pole = 1 and North pole = 0
- \(\text{ELEV} \) = Elevation
- \(\alpha_0 \) = The magnitude of the constant
- \(\beta_i \) = Regression coefficient
- \(\varepsilon \) = Residual/error
- \(\delta \) = The variance
- \(\gamma_{ij} \) = The parameter of variance equation

And the hypotheses can be examined by t-test and F-test.

However, before running the regression, we examine it by correlation test between weather variables to identify the model or equation has correlation problem or not, even though we run all possible regressions in series combinations of these four weather variables. Table 8 shows the results of correlation between variables, and the result shows that all weather variables have significant correlation, especially temperature (X1) and hours of sunshine (X3) with 42.78% of correlation, also temperature (X1) and vapor pressure (X4) with 60.95% of correlation.

Table 8. Correlations Between Weather Variables

	X1	X2	X3	X4				
X1	1.000	-----						
X2	0.174***	1.000	(17.059)	-----				
X3	0.427***	-0.078***	1.000	(45.497)	(-7.593)	-----		
X4	0.609***	0.219***	0.182***	1.000	(73.884)	(21.655)	(17.791)	-----

Notes: *** Significant at the 1% level, ** Significant at the 5% level, and * Significant at 10% level.

5. Empirical Results

Table 9 displays the results of hypothesis testing, such as types of the relationship between weather variables and stock market return with geographical location as the control variable. This table shows that temperature (X1) has a significant positive impact on the stock market return with the level of significance of 1%. All equations show this evidence, Eq. 1, 2, 6, 7, 8, 12, 13, and 14, it means that temperature (X1) has an absolute impact in stock returns, whatever the combinations and the conditions. It is in line with our hypothesis that says that temperature has a significant positive effect on stock market returns.

Precipitation (X2) shows a weak relationship with stock returns; we can see on the table, in Eq. 6, 10, 12, and 13, precipitation (X2) has positively significant impact on the stock return with the level of significance 5-10%, but in Eq. 1, 3, 9, and 15 the results do not show that it has an impact on stock market returns. This result also contradicts our hypothesis before that says that precipitation harms stock returns; it is caused by the geographical location factors used, elevation. Investors or stock markets in high elevation will not feel sceptic or worried about high precipitation or raining because great locations do not have the risk of flood happened.

Hours of sunshine show good results; all equations show that hours of sunshine (X3) have a significant positive effect on stock market returns. In Eq. 4, 9, 11, and 15 show 1% significant level, Eq. 7 and 14 show 5% significant level, and Eq. 1 and 12 show 10% significant level.

Vapor pressure (X4) has positively significant impact on stock market return with a degree of significance 1% showed in Eq. 5, 10, and 15, 5% in Eq. 11. Nevertheless, in Eq. 1, 8, 13, and 14 show that it does not affect stock returns. It is because these equations are not correct; it may have a correlation problem. So, most of the results can prove our hypothesis that vapor pressure contributes positively significant impact on stock market returns.

Table 9 also shows that geographical locations have contributions to the relationship between weather variables and stock market returns, especially REG2, REG3, and ELEV. These three control variables have a significant positive impact on our models. It means REG2, in Europe the effect of weather variables is much stronger than in other continents. Stock markets in Europe are easily affected by weather factors. Also, in variable REG3, Asia stock markets are easily affected by weather variables rather than the other continents; it is because the effect of weather factor is more reliable than the others. Another geographical location factor is the elevation (ELEV), which shows that high elevation has more contribution to the effect of weather variables on stock market returns. High locations have a stronger effect, and the stock markets in high elevation are easily affected by weather than low elevation.

6. Conclusions and Suggestions

This study finds that weather factors influence the stock
market return because the weather can affect mood and human behavior. It is shown in the results of this research. The temperature has a significant positive effect on the stock market returns. This result strengthens the study found by Cao and Wei (2005). They find that low temperature tends to cause aggression and high temperature tends to cause aggression, hysteria, and apathy. Our result makes a more precise explanation about this that in the global stock market indices temperature affects more aggression and makes investors more aggressive and risk-taking, so the returns are higher, also in line with Howarth and Hoffman (1984), the high temperature makes the concentration increasing.

Another variable, precipitation, has a weak effect to the stock market returns, and it does not prove the hypothesis that precipitation has a negative impact on stock returns, which is argued by Howarth and Hoffman (1984) that precipitation affects skepticism. Some models show that it has a significant positive impact on stock returns; it caused by the geographical location factors used, elevation. Investors or stock markets in high elevation will not feel sceptic or worried about high precipitation or raining because great locations do not have a risk of flood happened.

Hours of sunshine have a significant positive effect on stock market returns. It has the same result as the previous researches. David and Tyler (2003) find that sunshine is highly significantly correlated with daily stock returns. Their research proves that people often attribute their feelings to the wrong source, leading to incorrect judgements (misattribution), likes happiness on sunny days than rainy days. Another research, Symeonidis et al. (2010) adds the volatility indices for further support to the previous finding. They conclude that sunny weather influence the mood of investors, making them more optimistic and less risk-averse, which leads to higher returns. Futhermore, Akhtari (2011) who finds that hours of sunshine in New York City have a significant correlation with stock prices and he argues that sunnier day is associated with investors being more willing to take a risky investment, such as stocks, as opposed to less risky investments.

Most results of vapor pressure show that it has a significantly positive impact on stock market return. It proves our hypothesis that comes from Howarth and Hoffman (1984) who argue that decreasing humidity and dropping barometric pressure accompanied lower score on concentration. Lower concentration tends to make lower returns.

In our research, geographical locations also have contributions to the relationship between weather variables and stock market returns. The effect of weather variables is much stronger in Europe and Asia rather than in other continents. In conclusion, stock markets in Europe and Asia are easily affected by weather factors. Another geographical location factor is the elevation, which shows that high elevation has more contribution to the effect of weather variables on stock market returns. High places have a strong effect, and the stock markets in high elevation are easily affected by weather than low elevation.

This paper still cannot prove the precipitation factors and what is the connection to the sceptic or worry about the flood. So, it needs more efforts to find the relation of these variables. Also, this paper can be developed using other weather variables.
The Influence of Weather Factors to Mood and Human Behavior on the Stock Market Indices Performance by the Tendency towards Geographical Location

Table 9. Relation between Stock Market Return, Weather, and Geographical Location

Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
X1	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(4.477)	(6.096)	(6.393)	(4.817)	(5.589)	(5.118)	(5.550)	(4.426)							
X2	0.000	0.000	0.000**	0.000	0.000**	0.000*	0.000*	0.000							
	(1.512)	(0.881)	(2.009)	(0.521)	(1.811)	(1.670)	(1.802)	(1.256)							
X3	0.000*	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(1.790)	(4.647)	(2.216)	(4.576)	(4.073)	(1.880)	(2.063)	(3.847)							
X4	0.000	0.000***	0.000	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(0.887)	(3.222)	(1.449)	(3.632)	(2.376)	(1.052)	(1.184)	(2.678)							

Control Variable:

LAT	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	(-1.246)	(-1.291)	(-1.143)	(-1.149)	(-1.241)	(-1.349)	(-1.261)	(-1.192)	(-1.162)	(-1.303)	(-1.227)	(-1.137)	(-1.263)	(-1.185)	(-1.272)
REG1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	(1.075)	(1.159)	(1.084)	(0.989)	(1.152)	(1.165)	(1.099)	(1.096)	(0.992)	(1.167)	(1.059)	(1.114)	(1.117)	(1.051)	(1.077)
REG2	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(2.813)	(2.896)	(3.182)	(2.847)	(3.124)	(2.985)	(2.773)	(2.825)	(2.871)	(3.219)	(2.862)	(2.861)	(2.918)	(2.726)	(2.935)
REG3	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(3.340)	(3.395)	(3.617)	(3.434)	(3.520)	(3.434)	(3.310)	(3.385)	(3.443)	(3.558)	(3.382)	(3.346)	(3.322)	(3.303)	(3.411)
REG4	-0.000***	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	(-3.322)	(-0.356)	(-0.400)	(-0.320)	(-0.321)	(-0.304)	(-0.328)	(-0.411)	(-0.313)	(-0.264)	(-0.249)	(-0.291)	(-0.348)	(-0.376)	(-0.221)
POLE	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	(-0.953)	(-0.931)	(-0.771)	(-0.833)	(-0.845)	(-0.981)	(-0.948)	(-0.888)	(-0.841)	(-0.902)	(-0.897)	(-0.943)	(-0.912)	(-0.933)	
ELEV	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(4.265)	(4.215)	(4.309)	(4.495)	(4.230)	(4.199)	(4.297)	(4.223)	(4.489)	(4.204)	(4.408)	(4.426)	(4.207)	(4.291)	(4.378)
Adj-R²	0.002	0.002	0.000	0.000	0.002	0.002	0.002	0.000	0.000	0.000	0.002	0.002	0.002	0.002	0.000

Notes: weather data are from www.ncdc.noaa.gov and indices prices are from Data Stream. *** Significant at the 1% level, ** Significant at the 5% level, and * Significant at 10% level.
REFERENCES

[1] Ackert, L., & Deaves, R. (2009). Behavioral Finance: Psychology, Decision-Making, and Markets: Cengage Learning.
[2] Aguado, E., & Burt, J. E. (2007). Understanding Weather And Climate.
[3] Akerlof, G. A., & Shiller, R. J. (2010). Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism: Princeton University Press.
[4] Akhtari, M. (2011). Reassessment of the weather effect: stock prices and wall street weather. The Michigan Journal of Business, 4(1), 51-70.
[5] Baker, H. K., & Nofsinger, J. R. (2010). Behavioral Finance: Investors, Corporations, and Markets: Wiley.
[6] Balnaves, M., & Caputi, P. (2001). Introduction to Quantitative Research Methods: An Investigative Approach: SAGE Publications.
[7] Barry, R. G., & Chorley, R. J. (1970). Atmosphere, weather, and climate: Holt, Rinehart and Winston.
[8] Boehm, R. G. (2002). World Geography: Texas Edition: Glencoe/McGraw-Hill School Publishing Company.
[9] Cao, M., & Wei, J. (2005). Stock market returns: A note on temperature anomaly. Journal of Banking & Finance, 29(6), 1559-1573. doi: http://dx.doi.org/10.1016/j.jbankfin.2004.06.028
[10] Continental-scale temperature variability during the past two millennia. (2013). Nature Geosci, 6(5), 339-346. doi: 10.1038/ngeo1797
[11] http://www.nature.com/ngeo/journal/v6/n5/abs/ngeo1797.html#supplementary-information
[12] Dang, H., Gillett, N. P., Weaver, A. J., & Zwiers, F. W. (2006). Climate change detection over different land surface vegetation classes. International Journal of Climatology.
[13] Dang, H., Gillett, N. P., Weaver, A. J., & Zwiers, F. W. (2007). Climate Change detection over different land surface vegetation classes. International Journal of Climatology, 27(2), 211-220. doi: 10.1002/joc.1397
[14] David, H., & Tyler, S. (2003). Good Day Sunshine: Stock Returns and the Weather. Journal of Finance, 58(3), 1009-1032.
[15] Eagles, J. M. (1994). The relationship between mood and daily hours of sunlight in rapid cycling bipolar illness. Biological Psychiatry, 36(6), 422-424. doi: http://dx.doi.org/10.1016/0006-3223(94)91216-5
[16] Finance, N. Y. I. o. (1985). The Securities industry glossary: New York Institute of Finance.
[17] George, L. (2000). Emotions in Economic Theory and Economic Behavior. American Economic Review, 90(2), 426-432.
[18] Howarth, E., & Hoffman, M. S. (1984). A multidimensional approach to the relationship between mood and weather. British Journal of Psychology, 75, 15-23.
[19] Jones, C. P. (2007). Investments: Analysis And Management, 9Th Ed: Wiley India Pvt. Limited.
[20] Kent, D., David, H., & Avanidhar, S. (1998). Investor Psychology and Security Market Under- and Overreactions. Journal of Finance, 53(6), 1839-1885.
[21] Kliger, D., & Levy, O. (2003). Mood-induced variation in risk preferences. Journal of Economic Behavior & Organization, 52(4), 573-584. doi: http://dx.doi.org/10.1016/S0167-2681(03)00069-6
[22] Lucey, B. M., & Dowling, M. M. (2005). The Role of Feelings in Investor Decision-Making. Journal of Economic Surveys, 19(2), 211-237.
[23] Mehr, R., & Sah, R. (2002). Mood fluctuations, projection bias, and volatility of equity prices. Journal of Economic Dynamics and Control, 26(5), 869-887. doi: http://dx.doi.org/10.1016/S0165-1889(01)00035-5
[24] Reilly, F. K., & Brown, K. C. (2000). Investment Analysis and Portfolio Management: Dryden Press.
[25] Saunders, E. M., Jr. (1993). Stock Prices and Wall Street Weather. American Economic Review, 83(5), 1337-1345.
[26] Schwarz, N., & Clore, G. L. (1996). Feelings and phenomenal experiences. Social psychology: Handbook of basic principles, (eds.) Arie W. Kruglanski and E. Tory Higgins, 385-407.
[27] Symeonidis, L., Daskalakis, G., & Markellos, R. N. (2010). Does the weather affect stock market volatility? Finance Research Letters, 7(4), 214-223.
[28] Tietjen, G. H., & Kripke, D. F. (1994). Suicides in California (1968–1977): Absence of seasonality in Los Angeles and Sacramento counties. Psychiatry Research, 53(2), 161-172. doi: http://dx.doi.org/10.1016/0165-1781(94)90107-4
[29] Vajda, A., & Venalainen, A. (2003). The influence of natural conditions on the spatial variation of climate in Lapland, Northern Finland. International Journal of Climatology, 23, 1011-1022. doi: 10.1002/joc.928
[30] Wallace, C. (2010, May 12, 2010). Using behavioral finance to better understand the psychology of investors. Institutional Investor.