MEASURING OF THE ALTERATION OF RETROTRANSPOSITION IN THE RESPONSE OF SALINITY STRESS USING IRAP AND SCOT MARKERS

Marwa M. Shehata*, Eman M. Fahmy, Fatma M. Badawy and Lamyaa M.K. Sayed
Genetics Dept., Fac. of Agric., Ain Shams Univ., P.O. Box 68, Hadayek Shubra 11241, Cairo, Egypt

*Corresponding author: marwa_gene@agr.asu.edu.eg

ABSTRACT

Retrotransposons comprise the major part of eukaryotic genomes. They have the ability to replicate themselves through RNA intermediate via reverse transcription process. During normal development, these elements become quiescent, but they are stimulated by stresses. The availability of PCR-based techniques to detect the variation in retrotransposition rate due to salinity was tested. IRAP and SCoT markers were applied in two salinity-tolerant eukaryotic genomes: Yeast (Saccharomyces cerevisiae L.) and Barley (Hordeum vulgare L.). The genomes of the yeast strain EMCC-49 and two barley cultivars Giza-123 and Giza-2000 were extracted. Five IRAP primers with two combinations and nine SCoT primers were applied. The yeast strain was grown in the YPG media with 0.5 M, 1 M, 1.5 M NaCl or the control. The barley cultivars were irrigated with 0.25 M, 0.6 M NaCl or just distilled water. IRAP technique developed three markers in the yeast under the different levels of salinity. ScM1 IRAP primer showed a band with molecular size of 456 bp in the yeast under 0.5 and 1.5 M only. Another band with molecular size of 409 bp appeared under the control and disappeared in all salinity treatments. The third IRAP marker was shown by the ScM2 primer with molecular size of 1911 bp. IRAP primers with molecular size of 1911 bp with SCoT 31 and SCoT 26 primers, respectively. SCoT 26 primer gave the highest number of markers per SCoT primer (five different markers). In barley, 18 SCoT markers were detected under high salt conditions. They molecular sizes were between 1762 (SCoT 26) and 281 bp (SCoT 7). SCoT 32 primer showed five markers in barley under salinity as the highest number of markers per SCoT primer. The results showed different patterns between control and treatments and the high levels of salinity led to new retrotransposition. This study confirmed that PCR techniques; like IRAP and SCoT can exhibit the activation of retrotransposition due to high salt conditions. Good positive results were obtained and we recommend using these techniques for different molecular purposes due to their advantage; easy, fast, cheap and effectiveness.

Keywords: Retrotransposon, salinity, IRAP and SCoT techniques

INTRODUCTION

Transposable elements comprises about of 3% from the Saccharomyces cerevisiae, 15% of Arabidopsis thaliana, 20% of Drosophila melanogaster, 45% of Homo sapiens and 80% of Zea mays genomes (Kim et al 1998; Smit, 1999; Lander et al 2001; Kaminker et al 2002; Sabot and Schulman, 2006; and Maumus et al 2009). The majority components of most plant genomes are retrotransposons (Mansour, 2007). Retrotransposons are detected in all eukaryotes
Retrotransposons are found in a random distribution in the genome (Bayram et al. 2012). Retrotransposons use the "copy and paste" mechanism in its replication. They replicate via reverse transcription using an mRNA intermediate (Ikeda et al. 2001; Maumus et al. 2009).

Retrotransposons seem the lentiviruses in its structure and life cycle (Feschotte et al. 2002; Kalendar and Schulman, 2006; Sabot and Schulman, 2006). Most retrotransposons produce proteins which are needed for their own retrotransposition (Bayram et al. 2012). Both of Kalendar et al. 2000; Sabot and Schulman, 2006 and Sabot et al. 2006 reported that retrotransposons that didn’t have these proteins use the proteins encoded from another retrotransposons. Retrotransposons integrate themselves to many loci inside the genome. They produce polymorphism among individuals (Bonchev et al. 2010). The methylation is one of different mechanisms that cause inactivated majority of retrotransposons during development (Hirochika et al. 2000).

Mansour 2009 and Alzohairy et al. 2012 discussed the role of stress in the enrichment of the retrotransposition rate. Stress leads to production larger pools of transcripts of retrotransposons (Mansour 2007, 2008 and Salazar et al. 2007). Bayram et al. 2012 stated that activation of retrotransposons can stimulate due to the effect of some stress conditions. Salazar et al. 2007 found that the promoters of retrotransposons play the main role in the success of retrotransposition process.

SCoT or "start codon targeted" marker is a PCR-based technique for detection polymorphism developed by Collard and Mackill, 2009. SCoT analysis depends on the short conserved regions around the start codon. Al-qurainy et al. 2015 stated that SCoT markers became one of the best choices to study the genetic diversity. Wu et al. 2013 counts the advantages of the SCoT technique. They reported that SCoT marker is simple, rapid, cheap, effective, repeatable, and reproducible. IRAP or "inter retrotransposon amplified polymorphism" technique amplify the distance between two LTR-retrotransposons (Kalendar and Schulman, 2006).

The purposes of the present study were to study the effect of salinity on the activation of retrotransposition rate in different eukaryotic organisms such as higher-flowering-plants (barley) and lowering-eukaryotic single-cell organisms (yeast) and to test the effectiveness of IRAP and SCoT markers in the detection of retrotransposition and distinguish their banding patterns differences due to salt-activated retrotransposons.

MATERIALS AND METHODS

Yeast strain and barley cultivars

One yeast (Saccharomyces cerevisiae L.) strain and two barley (Hordeum vulgare L.) cultivars (Table 1) were used to study the effect of salinity stress on the activation of retrotransposition.

Table 1. The names and sources of the yeast strain and barley cultivars

Name	Source
EMCC-49	Microbiological Resources Centre (Cairo MIRCEN)
Giza-123	Field Crop Research Institute, Agricultural Research Center (ARC), Giza, Egypt
Giza-2000	

IRAP- and SCoT-PCR techniques

DNA extraction and PCR-amplification

Pure culture for EMCC-49 yeast strain was grown in YPG medium; yeast extract, pepton and glucose (Curran and Bugeja, 2006) on a water bath with shaker at 30°C for 48h. The control medium without any salt and treated media with high salt concentrations, 0.5 M, 1 M or 1.5 M NaCl. Then, the genomic DNA was isolated using a method described by Beringer (1974). Barley cultivars treated with high levels of salinity (0.25 M or 0.6 M NaCl) and the genomic DNA was isolated from leaves after nine days of treatment using a method described by Dellaporta et al (1983).

Five IRAP primers were used in this study. Two (ScM1 and ScM2) were applied with their combination on yeast (Table 2). While, the other three (LTR, Sukkula and WLTR 2105) with their combinations were used with the two barley cultivars as shown in Table (3).

For SCoT technique nine SCOT primers were used with both yeast and barley. Table (4) represents the names and the sequences of the nine SCOT primers.
Table 2. The names and the sequences of yeast IRAP primers

Primer	Sequence
ScM1	5' GCTGTACAGGGGATTAC
ScM2	5' AGAAGATGACCAATTAC

Table 3. The names and sequences of barley IRAP primers

Primer	Sequence
5’LTR	5’ ATCATTGCCTTGGAGGCTAA
Sukkula	5’ GATAGGGTCGGATCGTGGAG
Wlitr2105	5’ ACTCCATAGTGATCTG

Table 4. The names and sequences of barley and yeast SCoT primers

Primer	Sequence
SCoT 5	5’ CAACAATGGCTACACGA
SCoT 7	5’ CAACAATGGCTACCCAG
SCoT 18	5’ ACCATGGCTACACCCAG
SCoT 22	5’ ACCATGGCTACACCCAG
SCoT 26	5’ ACCATGGCTACACCCAG
SCoT 31	5’ CCATGGCTACACCCAG
SCoT 32	5’ CCATGGCTACACCCAG
SCoT 34	5’ ACCATGGCTACACCCAG
SCoT 35	5’ CATGGCTACACCCAG

Table 5. The molecular sizes of different bands of yeast IRAP primers

Primer	Bp	C	T1	T2	T3
ScM1	456	0	1	0	1
ScM2	409	1	0	0	0

Table 6. The molecular sizes of different bands of barley IRAP primers

Primer	Bp	Giza-123	Giza-2000			
	C	T1	T2	C	T1	T2
LTR	886	0	0	1	0	0
Sukkula	330	0	0	0	0	1
Fig. 1. IRAP banding patterns for yeast (ScM1, ScM2 and ScM1+ScM2 primers) and barley (LTR, Sukku-la, Wltr2105 and LTR+Sukkula primers) under the control (C), 0.5 M (T1), 1 M (T2) and 1.5 M NaCl (T3) for yeast, whereas, under the control, 0.25 M (T1) and 0.6 M NaCl (T2) for barley cultivars; Giza-123 and Giza-2000. The arrows refer to the different "polymorphic" bands.
From the previous IRAP results, four primers showed different bands between the control and treatments while the other primers gave the same bands with both the control and treatments such as Wtr2105 primer and the combinations LTR + Sukkula and ScM1 + Scm2. ScM1 primer with yeast gave two different bands, one of them with molecular size 456 bp was present only in T1 (0.5 M), that mean there is new retrotransposition due to this level of salinity. While the other band was found in the control and absent from any treatments, as shown in Fig. (1) and Table (5). With Scm2 primer only one band with molecular size 1952 bp appeared in only in T1, that mean there is new retrotransposition due to this level of salinity. In barley, only one different band appeared with each primer. Giza-123 didn’t show any different bands between the control and treatments with any primer, whereas Giza-2000 exhibit one different band with each primer (Fig. 1 and Table 6).

Start Codon Targeted Polymorphism (SCoT)

Is a new PCR-based technique for detection polymorphism developed by Collard and Mackill, 2009. SCoT analysis depends on the short conserved regions around the start codon (ATG). Nine SCoT primers (Table 4) were used to study the efficiency of SCoT technique in the i) detection of the differences in the transposition rate due to salinity stress, and ii) determination if these differences are related to the coding regions in the yeast and barley genomes? Fig. (2) and Tables (7 and 8) illustrate the different bands which appeared / disappeared under the salinity stress compared with the normal conditions for both yeast (Fig. 2 and Table 7) and barley (Fig. 2 and Table 8).

SCoT results of yeast showed that the eight from nine primers gave different bands between the control and treatments; as an example; SCoT7 showed three bands with molecular sizes 1042, 390 and 300 bp respectively, the first band was found only in treatment 1 while it was absent in the control and other treatments, the second band was found only in treatment 1 and treatment 2 while it absent in both the control and treatment 3, the third band found only in treatment 2. Each of SCoT 31, 32 and 34 displayed only one different band between the control and treatments as shown in Fig. (2) and Table (7).

Table 7. The molecular sizes of different bands of yeast SCoT primers

Primer	Bp	C	T1	T2	T3
SCoT 5	1091	1	1	1	0
	313				
SCoT 7	1042	0	1	0	0
	390	0	1	1	0
	300	0	0	1	0
SCoT 18	784	0	1	0	0
	462	0	1	0	1
SCoT 22	1630	1	0	0	0
	366	1	1	1	0
SCoT 26	814	1	0	0	1
	423	1	0	0	1
	350	1	0	0	1
	321	0	0	0	1
	271	1	0	0	0
SCoT 31	1911	0	1	0	0
SCoT 32	844	1	0	0	0
SCoT 34	517	1	0	1	1

Primer	Bp	Giza-123	Giza-2000				
		C	T1	T2	C	T1	T2
SCoT 5	462	0	0	0	1	0	0
SCoT 7	1374	1	1	0	0	0	1
	1131	1	0	0	0	0	1
	1042	0	0	0	0	1	0
	281	1	0	0	0	0	1
SCoT 26	1762	0	1	1	0	0	0
	1594	0	1	0	0	0	0
SCoT 31	564	0	0	0	0	1	1
SCoT 32	1488	0	0	0	1	0	0
	1161	0	0	0	1	1	0
	1000	0	0	0	1	0	0
	977	0	0	0	1	1	0
	844	1	0	0	0	0	0
SCoT 34	472	0	0	1	0	0	0
	437	0	1	0	0	0	0
	360	0	0	0	0	1	0
	332	1	0	0	0	0	0
SCoT 35	710	0	0	0	1	0	1

Whereas in barley, there are two primers didn’t show different bands between the control and treatment, but the other primers gave different bands between them such as, SCoT 35 didn’t show any different bands in Giza-123 between the control and treatments, whereas it showed one polymorphic band that appeared in both the control and treatment two but absent in treatment 1 as shown in Fig. (2) and Table (8).
Fig. 2. SCoT banding patterns for yeast strain and barley cultivars under the control (C), 0.5 M (T1), 1 M (T2) and 1.5 M NaCl (T3) for yeast and under the control, 0.25 M (T1) and 0.6 M NaCl (T2) for barley cultivars; Giza-123 and Giza-2000. The arrows refer to the different "polymorphic" bands.
The results which obtained in this research are in agreement with Bayram et al (2012), where they found activation in mobilization of Nikita retrotransposon where they used different ages of calli that originated from the same embryo and at the same time. Their results showed that the conditions of tissue culture caused this retrotransposition activation. Kartal-Alacam et al (2014) cultured mature barley embryos (Hordeum vulgare L.) for callus formation. They investigated Sukkula (a non autonomous retrotransposon) polymorphism in calli with different culturing time using IRAP technique, their results showed that conditions of tissue culture and the age of callus affected on the movements of Sukkula retrotransposon. Our results also exhibit that salinity stress cause retrotransposon movements.

On the other hand, SCoT marker is a new PCR-based technique developed for the polymorphism detection. This method based on conserved regions around the ATG regions (Sadek and Ibrahim, 2018). Our result showed that SCoT markers are a good method for distinguished between the different bands in the control and several treatments due to salinity stress.

Wu et al (2013) considered SCoT technique as modern way for differential expression of genes. They predict that, the SCoT markers will be a promising method to discover the novel genes. This investigating agreed with our results that showed presence of new patterns due to the stress and exhibit an effect of Retrotransposons on coding regions.

This study applied to confirm that PCR techniques can exhibit the activation of retrotransposition due to salinity stress. The obtained data from this result represents that not only real time PCR technique can detect the retrotransposition due to different stresses but we can use other techniques that be easy, fast, cheap and effectiveness for detect retrotransposition and the effect of these elements on other coding regions, like IRAP and SCoT techniques. These techniques achieve these purposes and gave good positive results and we recommend using these techniques for different purposes due to their advantage.

CONCLUSION

Environmental stresses have been reported to activate retrotransposons. In this study, IRAP technique; retrotransposons-based technique and SCoT markers confirmed the effect of salinity stress on the movement of retrotransposons on other coding regions. Salinity stress affect on retrotransposons movement and on coding genes. IRAP and SCoT are suitable PCR - markers for detect the retrotransposition and the effect on other regions.

REFERENCES

Al-qura oily F., Khan S., Nadeem M. and Tarroum M. 2015. Sct marker for the Assessment of Genetic Diversity in Saudi Arabian Date Palm Cultivars. Pak. J. Bot., 47(2), 637-643.
Alzohairy A.M., Yousef M.A., Edris S., Kerti B., Gyulai G. and Bahieldin A. 2012. Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in Barley (Hordeum vulgare) via RT-qPCR. Life Sci. J., 9(4), 5019-5026.
Bayram E., Yilmaz S., Hamat-Mecbur H., Kartal-Alacam G. and Nermin Gozukirmiz 2012. Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.) POJ, 5(3), 211-215.
Beringer J.E. 1974. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbial., 84, 188-198.
Bonchev G., Georgiev S. and Pearce S. 2010. Retrotransposons and ethyl methanesulfonate-induced diversity in hexaploid wheat and triticale. Cent. Eur. J. Biol., 5(6), 765-776.
Collard B.C.Y. and Mackill D.J. 2009. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in Plants. Plant Mol. Biol. Rep., 27, 86-93.
Curran B.P.G. and Virginia Bugeja 2006. Basic yeast protocols investigations in Saccharomyces cerevisiae. In Xiao, W. 2nd ed., Methods in Mol. Biol., (313). Humana Press Inc. Totowa, New Jersey, USA.
Dellaporta S.L., Wood J. and Hicks J.B. 1983. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. Doi: 10.1007/s11105-008-0060-5.
Feschotte C., Jiang N. and Wessler S.R. 2002. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet., 3, 329–341.
Hirochika H., Okamoto H. and Kakutani T. 2000. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell, 12, 357-369.
Ikeda K., Nakayashiki H., Takagi M., Tosa Y. and Mayama S. 2001. Heat shock, copper sulfate and oxidative stress activate the retrotransposon AMGGY resident in the plant pathogenic fungus, *Magnaporthe grisea*. *Molecular Genetics and Genomics*, 266(2), 318-325.

Kalendar R. and Schulman A.H. 2006. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. *Nature Protocols*, 1(5), 2478-2484.

Kalendar R., Tanskanen J., S. Immonen, E. Nevo and Schulman A.H. 2000. Genome evolution of wild barley (*Hordeum spontaneum*) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. *Proc. Natl. Acad. Sci.*, 97(12), 6603-6607.

Kaminker J.S., Bergman C.M., Kronmiller B., Carlson J., Svirska S., Patel S., Frise E., Wheeler D.A., Lewis S.E., Rubin G.M., Ashburner M. and Celinker S.E. 2002. The transposable elements of the *Drosophila melanogaster* euchromatin: a genomics perspective. *Genome Biol.*, 3(12), Research0084. Doi: 10.1186/gb-2002-3-12-research0084.

Kartal-Alacam G., Yilmaz S., Marakli S. and Gozukirmizi N. 2014. Sukkula retrotransposon insertion polymorphisms in Barley 1. *Russian J. of Plant Physiology*, 61(6), 828-833.

Kim J.M., Vanguri S., Boeke J.D., Gabriel A. and Voytas D.F. 1998. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete *Saccharomyces cerevisiae* genome sequence. *Genome Res.*, 8, 464-478.

Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov J.P., Miranda C., Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A. and Sougnez C. 2001. Initial sequencing and analysis of the human genome. *Nature*, 409, 860-921.

Mansour A. 2007. Epigenetic activation of genomic retrotransposon. *J. of Cell and Molecular Biology*, 6, 99-107.

Mansour A. 2008. Utilization of genomic retrotransposon as cladistic molecular markers. *J. of Cell and Molecular Biology*, 7, 17-28.

Mansour A. 2009. Water deficit induction of Copia and Gypsy genomic retrotransposons. *Plant Stress*, 3, 33-39.

Maumus F., Allen A.E., Mhiri C., Hu H., Jabbari K., Vardi A., Marie-Angèle Grandbastien and Bowling C. 2009. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. *BMC Genomics*, 10, 624-628. Doi: 10.1186/1471-2164-10-624.

Sabot F. and Schulman A.H. 2006. Parasitism and the retrotransposon life cycle in plants: a hitchhik’s guide to the genome. *Heredity*, 97, 381-388.

Sabot F., Kalendar R., Jääskeläinen M., Wei C., Tanskanen J. and Schulman A.H. 2006. Retrotransposons: Metaparasites and agents of genome evolution. *Isr. J. Ecol. Evol.*, 52, 319-330.

Sadek M.S.E. and Ibrahim S.D. 2018. Genetic relationships among maize inbred lines as revealed by start codon targeted (SCoT) analysis. *JIPBS*, 5(1), 103-107.

Salazar M., González E., Casaretto J.A., Casacuberta J.M. and Lara S. Ruiz 2007. The promoter of the TLC1.1 retrotransposon from *Solanum chilense* is activated by multiple stress-related signaling molecules. *Plant Cell Rep.*, 26(10), 1861-1868.

San Miguel P., Gau B.S., Tikhonov A., Nakajima Y. and Bennetzen J.L. 1998. The paleontology of intergene retrotransposons of maize. *Nat. Genet.*, 20, 43-45.

Smit A.F. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. *Curr. Opin. Genet. Dev.*, 9, 657-663.

Wu J.M., Li Y.R., Yang L.T., Fang F.X., Song H.Z., Tang H.Q., Wang M. and Weng M.L. 2013. cDNA-SCoT: A novel rapid method for analysis of gene differential expression in sugarcane and other plants [online]. *AJCS*, 7(5), 659-664.
قياس التغير في معدل الانتقال الرجعي استجابة للإجهاد الملحي باستخدام

تقنيات IRAP و SCoT

[207]

مرأة: محمود شحاتة – إيمان محمود فهمي – فاطمة محمد بدوي – لمى مصطفى كمال سيد

قسم الوراثة – كلية الزراعة – جامعة عين شمس – ص. ب. 68 – حي شبرا 11241 – القاهرة – مصر

Corresponding author: marwa_gene@agr.asu.edu.eg

Received 30 October, 2019
Accepted 2 December, 2019

الموجز:

تمثل العناصر الوراثية المتقلبة الرجعية جزء كبير من جينومات الكائنات الحية حقيقية النواة، وهي العناصر التي لها القدرة على تكرار نفسها من خلال mRNA عن طريق عملية النسخ العكسي. أثناء مراحل النمو الطبيعية للكائن الحي تكون هذه العناصر في حالة سكون ولكن عندما يتعرض الكائن الحي للضغوط البيئية فإنها تصبح أكثر نشاطًا وانتقالا. تم استخدام تقنيتي IRAP و SCoT مع اثنين من جينومات حقيقيات النواة المتقلبة للملوحة للأنواع ScCoT و Saccharomyces cerevisiae (EMCC 49) لاستخدام هذه التقنيات في الدراسات الوراثية الجزيئية نظراً لما لها من مميزات حيث أنها سهلة التطبيق، دقيقة، سريعة التنفيذ وفعالة. وتشير النتائج إلى وجود تأثر تراوحي في اتجاهات الانتقال في المجموعات المختلفة من البذور المتقلبة للملوحة. وبالتالي، يمكننا استغلال هذه التقنيات في الدراسات الوراثية الجزيئية للعناصر الوراثية المتقلبة الرجعية تحت ظروف الإجهاد الملحي.