Amino Acids Activate Mammalian Target of Rapamycin (mTOR) Complex 1 without Changing Rag GTPase Guanyl Nucleotide Charging

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Oshiro, Noriko, Joseph Rapley, and Joseph Avruch. 2013. “Amino Acids Activate Mammalian Target of Rapamycin (mTOR) Complex 1 without Changing Rag GTPase Guanyl Nucleotide Charging.” Journal of Biological Chemistry 289 (5): 2658–74. https://doi.org/10.1074/jbc.m113.528505.

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41482915

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Amino Acids Activate Mammalian Target of Rapamycin (mTOR) Complex 1 without Changing Rag GTPase Guanyl Nucleotide Charging*

Received for publication, October 19, 2013, and in revised form, December 2, 2013. Published, JBC Papers in Press, December 11, 2013, DOI 10.1074/jbc.M113.528505

Noriko Oshiro, Joseph Rapley, and Joseph Avruch

From the Department of Molecular Biology and Diabetes Unit, Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Background: Signaling by mTOR complex 1 requires its amino acid-stimulated binding to Rag GTPase heterodimers.

Results: mTOR complex 1-Rag binding in vitro is independent of Rag guanyl nucleotide charging, and withdrawal of amino acids from cells does not alter Rag GTP charging.

Conclusion: Amino acids promote Rag binding to mTOR complex 1 without changing Rag GTP charging.

Significance: Amino acids promote Rag-mTORC1 binding by undefined mechanisms.

Activation of mammalian target of rapamycin complex 1 (mTORC1) by amino acids is mediated in part by the Rag GTPases, which bind the raptor subunit of mTORC1 in an amino acid-stimulated manner and promote mTORC1 interaction with Rheb-GTP, the immediate activator. Here we examine whether the ability of amino acids to regulate mTORC1 binding to Rag and mTORC1 activation is due to the regulation of Rag guanyl nucleotide charging. Rag heterodimers in vitro exhibit a very rapid, spontaneous exchange of guanyl nucleotides and an inability to hydrolyze GTP. Mutation of the Rag P-loop corresponding to RasSer-17 abolishes guanyl nucleotide binding. Such a mutation in RagA or RagB inhibits, whereas in RagC or RagD it enhances, Rag heterodimer binding to mTORC1. The binding of wild-type and mutant Rag heterodimers to mTORC1 in vitro parallels that seen with transient expression, but binding to mTORC1 in vitro is entirely independent of Rag guanyl nucleotide charging. HeLa cells stably overexpressing wild-type or P-loop mutant RagC exhibit unaltered amino acid regulation of mTORC1. Despite amino acid-independent raptor binding to Rag, mTORC1 is inhibited by amino acid withdrawal as in parental cells. Rag heterodimers extracted from 32P-labeled whole cells, or just from the pool associated with the lysosomal membrane, exhibit constitutive [32P]GTP charging that is unaltered by amino acid withdrawal. Thus, amino acids promote mTORC1 activation without altering Rag GTP charging. Raptor binding to Rag, although necessary, is not sufficient for mTORC1 activation. Additional amino acid-dependent steps couple Rag-mTORC1 to Rheb-GTP.

2 The abbreviations used are: mTORC1, mammalian target of rapamycin complex 1; TSC, tuberous sclerosis complex; Ab, antibody, AA, amino acid(s); DPBS, Dulbecco’s phosphate-buffered saline; GAP, GTPase-activating protein; GMP-PNP, guanosine 5’-(β,γ-imido)triphosphate.
Amino Acid Removal Does Not Alter Rag GTP Charging

weak rescue, a heterodimer containing RagBQ99L (a switch II mutation corresponding to RasQ61L) that promotes Ras occupancy by GTP (15) can more effectively restore mTORC1 signaling, and the additional mutation of the RagC/D partner at the residue corresponding to RasSer-17 (the mutation of which effectively restricts Ras to GDP binding in cells (16), although having modest (RagD) or very little (RagC) activating effect by itself, yields a substantial further increase in RagBQ99L-stimulated mTORC1 signaling. Rag heterodimers containing the RagAThr-21/RagBThr-54 mutants (which correspond to RasSer-17) behave as dominant inhibitors, suppressing mTORC1 activity in amino acid-replete cells (12, 13). These results led to the conclusion that activation of mTORC1 by the Rag heterodimer is achieved by enhanced GTP charging of the RagA/B partner, with a secondary assist by conversion of the RagC/D partner to the GDP-bound state. Notably, overexpression of the optimal Rag heterodimer in amino acid-deprived cells yields mTORC1 activation that is far short of that enabled by Rbe overexpression. Moreover, RagA T21N does not inhibit the ability of overexpressed Rheb to restore mTORC1 signaling in amino acid-deprived cells (13). In Drosophila, dRheb is required for the growth-promoting effects of the activated dRagQ61L, whereas dRag is not required for the growth-promoting effects of dRhe (13). These results indicated that the Rag heterodimer acts upstream of or parallel to Rbe-GTP to activate mTORC1.

In fact, Sancak et al. (12) demonstrated that the RagA/B-RagC/D heterodimer associates directly with mTORC1 through an amino acid-stimulated binding to raptor. The binding of endogenous mTORC1 to the recombinant Rag heterodimer is much more avid than to recombinant Rheb. They reported that, as compared with wild-type Rag heterodimers, a Rag heterodimer containing RagBQ99L exhibits greatly increased binding to raptor, whereas a Rag heterodimer containing a RagC or D mutant in the residue corresponding to RasSer-17 shows slightly increased raptor binding. Moreover, heterodimers containing a RagB T54L mutation (corresponding to RasSer-17) exhibit greatly reduced raptor binding. These findings, which appeared to parallel the functional effects of the Rag mutants, led to the conclusion that the RagA/B partner, when GTP-bound, plays the primary role in raptor binding by the Rag heterodimer as well as in mTORC1 activation.

In amino acid-deprived HEK293T cells, mTOR is distributed diffusely in a punctate fashion throughout the cytoplasm. Readition of amino acids is accompanied by a Rag- and raptor-dependent relocalization of mTOR to a perinuclear compartment that contains Rab7 and is enriched in recombinant Rheb. Cells expressing RagBQ99L show a persistent perinuclear localization of mTOR despite amino acid withdrawal. The subcellular localization of the Rag polypeptides is not altered by amino acid withdrawal (12). Rags reside in this late endosomal/lysosomal compartment through a noncovalent association with the Regulator complex, an assembly of five polypeptides anchored to the membrane by the myristoylated/palmitoylated protein p18/LAMTOR1 (17, 18). These results support the conclusion that amino acids, presumably by their ability to promote the binding of raptor to the Rag heterodimer, translocate mTORC1 into the membrane compartment containing Rheb, the proximate activator of mTORC1. This formulation provides a satis-
Amino Acid Removal Does Not Alter Rag GTP Charging

DNA Constructs—RagA, B, C, and D cDNA clones were purchased from Origene and PCR-cloned into the pEBG and pCMV5-FLAG expression vectors using Taq polymerase according to the instructions of the manufacturer (Roche). Mutations were created using a site-directed mutagenesis kit according to the instructions of the manufacturer (Stratagene/Agilent Technologies). To generate pLV-CMV-EGFP-strep-Rag, pEGFP-strep-Rag was constructed first. A Strep tag was inserted first into pEGFP-C1 using annealed oligos at the EcoRI and KpnI sites. RagA and RagC were excised from pCMV5-FLAG-RagA and RagC and subcloned into pEGFP-strep-C1. EGFP-strep-Rag was then PCR-cloned into pLV-CMV. To generate pcDNA1-FLAG-RagA, a myc tag was inserted into pcDNA1-FLAG-RagA Raptor using annealed oligos with the BamHI and EcoRI restriction sites. The plasmids pCMV5-FLAG-RagB, pEBG-RagWT, pEBG-Ha-Ras G12V, pEBG-Ha-Ras WT, and pEBG-RagLpB are described in Ref. 5. pcDNA1-HA-mTOR, pCMV5-FLAG-mTOR, pMT2-HA-S6Kα, and pcDNA3-myc-Raptor are described in Ref. 1.

Radioisotopes—[α-32P]GTP, [γ-32P]GTP, inorganic phosphorus-32, and [3H]GDP were purchased from PerkinElmer Life Sciences. [3H]GDP was purchased from American Radio-labeled Chemicals, Inc.

Chemicals and Other Materials—Anti-FLAG® M2 affinity gel (catalog no. A2220) and all chemicals, except as noted, were purchased from Sigma-Aldrich. Acetonitrile (catalog no. A998), hydrochloric acid solution (catalog no. SA56), and Fisherbrand™ pure cellulose chromatography paper (catalog no. 05-714-4) were from Fisher Scientific. Protein G-Sepharose 4B (catalog no. 17-0756) were from GE Healthcare Life Sciences. StreptAvidin Superflow Plus (catalog no. 30004) and tungsten carbide beads (3 mm) (catalog no. 69997) were from Qiagen. TLC PCF cellulose F plates (catalog no. 5725-7) were from EMD Chemicals Inc. The ProteoExtract subcellular proteome extraction kit (catalog no. 539791) was from Calbiochem. DMEM (catalog no. 11995), DPBS “Ca” (catalog no. 14040), DMEM phosphate-free (catalog no. 11971), Opti-MEM (catalog no. 31985), sodium pyruvate (catalog no. 11360) (100 mM), minimal essential medium vitamin solution (100×) (catalog no. 11120), minimal essential medium amino acid solution (50×) (catalog no. 11130), minimal essential medium non-essential amino acids (100×) (catalog no. 11140), and l-glutamine (catalog no. 25030) were purchased from Invitrogen.

Cell Culture and Transfection—HEK293T, HEK293E, and HeLa cells were cultured in DMEM supplemented with 10% FBS, 100 units/ml penicillin, and 0.1 mg/ml streptomycin in a 5% CO₂ atmosphere at 37 °C. Transient transfection was performed by lipofection with Lipofectamine or Lipofectamine 2000 according to the instructions of the manufacturer, and the cells were harvested 48 h later with or without stimulation, as indicated in the figures. For amino acid starvation, complete medium was replaced with fresh DMEM (without FBS) for 1 h, and then cells were rinsed twice with DPBS, incubated in DPBS for 1 h, and harvested. To evaluate recovery from AA withdrawal, DPBS-rinsed cells were incubated for 50 min (HEK293T cells) or 1.5 h (HeLa cells) in DPBS. The medium was replaced with fresh DPBS (AA-) or DMEM (AA+) without or with insulin (1 μM, AA+1) for 10–30 min before harvest.

Cell Lysis, Immunoprecipitation, and Strep Tag Pull-down—Cells were frozen with liquid nitrogen, followed by addition of ice-cold lysis buffer. Lysates were subjected to centrifugation at 13,200 rpm for 10 min. Primary antibodies and 30 μl of a 50% slurry of protein G-Sepharose beads were added to the supernatants and incubated with rotation for 2 h at 4 °C. For GST or FLAG and Strep tag pull-down, 30 μl of a 50% slurry of GST-Sepharose beads, FLAG M2 affinity gel beads, or Strep-Tactin superflow beads, respectively, were added to the supernatants. After 2 h at 4 °C, the immunoprecipitates or the pull-downs were washed sequentially with lysis buffer and wash buffers.

Protein Purification—The plasmids pEBG and CMV5-FLAG encoding Rag polypeptides were expressed transiently in HEK293T cells. To retrieve RagA or B/RagC or D heterodimers, GST-tagged RagA or RagB was cotransfected with pCMV5-FLAG-RagC or RagD and harvested 48 h later by extracting frozen cells into ice-cold lysis buffer A (20 mM HEPES (pH 7.4), 2 mM MgCl₂, 150 mM NaCl, 0.3% CHAPS, 2 mM DTT, and one tablet of EDTA-free protease inhibitor/25 ml of buffer), followed by centrifugation in a microfuge at top speed for 10 min. Supernatants were incubated with GSH-Sepharose beads (2 h at 4 °C) and washed three times with lysis buffer A and three times with wash buffer A (20 mM HEPES (pH 7.4), 2 mM MgCl₂, and 2 mM DTT). GST-tagged proteins were eluted with GST elution buffer (wash buffer A (pH 8.0) plus 10 mM GSH). For purification of the mTOR/Raptor complex, pcDNA1-myc-FLAG-Raptor was cotransfected with pcDNA1-HA-mTOR or pCMV5-FLAG-mTOR into HEK293T cells and harvested 48 h later into lysis buffer B (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 10 mM MgCl₂, 50 mM β-glycerophosphate, 0.3% CHAPS, 1 mM DTT, and one tablet of EDTA-free protease inhibitor/25 ml of lysis buffer). The cell lysates were subjected to anti-FLAG M2 immunoprecipitates and washed three times with lysis buffer B and three times with wash buffer B (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 10 mM MgCl₂, 50 mM β-glycerophosphate, and 1 mM DTT), and then the mTOR/Raptor complex was eluted with FLAG elution buffer (wash buffer B containing 100 μg/ml of FLAG peptide).

Stable Cell Lines—Lentiviral infection was employed to generate HeLa and HEK293T cell lines stably expressing GFP-tagged Rag variants. Recombinant lentiviruses were generated by Lipofectamine transfection of 4 μg of pLV-CMV, 2 μg of vesicular stomatitis virus spike glycoprotein, and 3 μg of Δ8.9 onto a 10-cm plate of HEK293T cells. The medium was

[2660 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 5 • JANUARY 31, 2014]
charged to fresh DMEM/10% FBS 24 h later and collected 48 h post-transfection. Debris removed by centrifugation at 230 \times g for 5 min at room temperature. The viral supernatant was filtered through a 0.45-\mu m filter and stored at 4 °C for viral infection. 1000 HeLa cells or HEK293T cells in 0.5 ml of medium, supplemented with Polybrene (6 \mu g/ml final) were plated per well of a 24-well plate. After 24 h, the medium was replaced with DMEM (1 ml) containing 1, 10, 100, and 500 \mu l of viral supernatant and 6 \mu g/ml Polybrene for a further 24 h. At confluency, recombinant protein expression was estimated as GFP fluorescence using a Nikon Eclipse TE2000-E microscope. Wells with >50% of cells showing GFP expression were expanded progressively and flow-sorted by fluorescence intensity into high, medium, and low GFP expression.

\[\gamma^{32P}\]GTP/\[^3H\]GDP Binding Assays—Binding assays employing \[\gamma^{32P}\]GTP or \[^3H\]GDP at 25 °C in 40 \mu l contained purified GST-tagged proteins (0.5–1 \mu m, final), 20 mm HEPES (pH 7.4), 1–5 mm EDTA, and 2 mm DTT and were started by addition of guanyl nucleotide to the final concentrations indicated in Fig. 2. Aliquots of 5 \mu l were removed at various times into ice-cold stop buffer (20 mm Tris-Cl (pH 7.5), 25 mm MgCl\(_2\), and 100 mm NaCl), and protein-bound nucleotides were recovered after filtration through nitrocellulose membranes and three washes with 4 ml of stop buffer. Radioactivity was determined by liquid scintillation counting. \[^3H\]GDP dissociation was measured after equilibration of the Rag proteins with 68 \mu m (Fig. 2C) or 0.5 \mu m \[^3H\]GDP (Fig. 2D) for 10 min at 30 °C in 40 \mu l of binding buffer (as above), followed by addition of 5 \mu m of a MgCl\(_2\)/nucleotide mixture, yielding a final concentration of (Fig. 2C) 20 mm MgCl\(_2\), and 5 mm ADP or GDP or (D) 20 mm MgCl\(_2\), and 5 \mu m GDP or GDP. The reactions was stopped at intervals thereafter by addition of 1 ml of stop buffer, followed by nitrocellulose filtration, washing, and determination of protein-bound \[^3H\]GDP.

Intrinsic GTPase Activity—For estimation of protein-bound \[\gamma^{32P}\]GTP, purified GTPase-tagged proteins (in 40 \mu l of 20 mm HEPES (pH 7.4), 1 mm EDTA, and 2 mm DTT) were charged with 50 nm of \[\gamma^{32P}\]GTP at 25 °C for 10 min. Charging was stopped by adding 9 volumes (360 \mu l) of GAP assay buffer (20 mm HEPES (pH 7.4), 2 mm MgCl\(_2\), and 2 mm DTT), and 25 \mu l of \[\gamma^{32P}\]GTP-labeled protein mixture was added to 75 \mu l of GAP assay buffer at 30 °C containing 0.1 mg/ml of BSA. The reaction was stopped at intervals by adding 1 ml of stop buffer. Unhydrolysed protein-bound \[\gamma^{32P}\]GTP was recovered by nitrocellulose filtration. For the assay by TLC separation of [\(\alpha^{32P}\)]GTP, recombinant GTPases were immobilized on 30 \mu l of a 50% slurry of GSH beads, washed, resuspended in 35 \mu l of nucleotide charging buffer, and charged with tracer [\(\alpha^{32P}\)]GTP so that all nucleotide was bound. After 15 min at 30 °C, 50 \mu l of an assay buffer (50 mm Tris-HCl (pH 7.5), 100 mm NaCl, 40 mm MgCl\(_2\), 50 mm \beta\)-glycerophosphate, and 1 mm DTT) was added. At the indicated times, \[^3P\]GTP-labeled nucleotides were extracted and analyzed by TLC as above.

GAP Assay—[\(\gamma^{32P}\)]GTP-charged proteins (25 \mu l) were incubated at 30 °C with 75 \mu l of GAP assay buffer containing 10 \mu l of cell lysate for various times (Fig. 3D) or with 75 \mu l of GAP assay buffer containing 5 \mu l of MonoQ fraction sample for 30 min (E). The reaction was stopped by adding 1 ml of stop buffer, and unhydrolysed protein-bound \[\gamma^{32P}\]GTP was trapped on nitrocellulose filters. The experiment shown in Fig. 3D used a lysate from HEK293T cells prepared with MOPS-based buffers containing EDTA-free protease inhibitor (20 mm MOPS (pH 6.9) and 1 mm DTT) without or with detergent (Detergent-), with 0.3% CHAPS, 1% Triton X-100, or 1% Triton X-100/1% sodium deoxycholate/0.1% SDS. For Fig. 3E, an 8 × 10 cm dish of HEK293T cells was lysed into 6 ml of buffer (20 mm Tris-HCl (pH7.6), 1 mm EDTA, 1 mm NaF, 1 mm DTT, and EDTA-free protease inhibitor) with three cycles of freezing and thawing. Supernatants were separated by centrifugation at 13,200 rpm for 10 min by microcentrifuge and filtered by a 0.22-\mu m filter. Supernatants were separated by a MonoQ 5/50 GL column at a rate of 0.5 ml/min with MonoQ buffer A (20 mm Tris-HCl (pH 7.6), 1 mm EDTA, 1 mm NaF, and 1 mm DTT) and MonoQ buffer B (20 mm Tris-HCl (pH 7.6), 1 mm EDTA, 1 mm NaF, 1 mm DTT, and 1 mm NaCl). In Fig. 3B, the specificity of the Rag heterodimer was analyzed by incubation with purified maltose-binding protein-tagged Ras GAP NF1. 25 \mu l of \[\gamma^{32P}\]GTP-labeled Rag protein was incubated at 30 °C with 75 \mu l of GAP assay buffer containing maltose-binding protein-NF1-GRD at a final concentration of 1 nm in 100 \mu l. The reaction was stopped at intervals by adding 1 ml of charcoal buffer (4% charcoal, 0.1 \textrm{m} \text{HCl}, 0.2 mg/ml BSA, 1 mm NaH\(_2\)PO\(_4\), H\(_2\)O, and 1 mm pyrophosphate), which adsorbs \[\gamma^{32P}\]GTP but not \[^3P\]P. After 15 min at 4 °C, the charcoal mixture was filtered through 0.45 \mu m membranes, and the \[^3P\]P was measured by liquid scintillation.

Rag-Raptor Binding in Vitro—GST-tagged proteins (approximately 30 pmol, judged by Coomassie Blue stain) immobilized on GSH-Sepharose beads were washed once with lysis buffer B, twice with ice-cold wash buffer C (wash buffer B with 1 mm Mg), once with ice-cold nucleotide charging buffer (50 mm Tris-HCl (pH 7.5), 100 mm NaCl, 5 mm EDTA, 50 mm \beta\)-glycerophosphate, 1 mm DTT, and one tablet of EDTA-free protease inhibitor/25 ml of lysis buffer) and resuspended in 0.1 ml of nucleotide charging buffer containing 0.2 mm GDP, GTP, or GDP-PNP. After 30 min at 25 °C, 0.9 ml of ice-cold lysis buffer B was followed by addition of HA-mTOR/myc-FLAG-Raptor or FLAG-mTOR/myc-FLAG-Raptor (approximately 1 pmol). After 2 h at 4 °C, the beads were washed three times with lysis buffer B, and retained proteins were analyzed by SDS-PAGE and immunoblotting.

In Vivo \[^3P\]P Labeling—The determination of Rag- and unhydrolysed protein-bound \[\gamma^{32P}\]GTP was recovered by nitrocellulose
Amino Acid Removal Does Not Alter Rag GTP Charging

phate, 1 mM NaVO₃, 10 mg/ml aprotinin, 10 mg/ml leupeptin, and 10 mM benzamidine), the lysates were subjected to centrifugation at 13,200 rpm for 10 min, and Strep-Tactin beads were added to the supernatants. After 1 h at 4 °C, Strep-Tactin-bound proteins were retrieved by centrifugation. The beads were washed three times with labeling wash buffer (50 mM HEPES (pH 7.4), 0.5 mM LiCl, 5 mM MgCl₂, 0.5% Triton X-100, and 0.005% SDS), and the bound nucleotides were eluted into 25 μl of nucleotide elution buffer (5 mM EDTA, 2 mM DTT, 0.2% SDS, 0.5 mM GTP, and 0.5 mM GDP) by incubation at 68 °C for 20 min, followed by centrifugation. The eluates were mixed with methanol (120 μl) and chloroform (60 μl) with vortexing. Phase separation was achieved by the addition of 90 μl of water, vigorous vortexing, and centrifugation for 1 min at 12,000 rpm. The upper phase was dried and resuspended in 15 μl of nucleotide elution buffer.

To estimate the overall HeLa cell GTP/GDP ratio, 0.3 ml of ice-cold acetonitrile, followed by 0.2 ml of ice-cold water, was added to one set of ³²P-labeled cells expressing GFP-streptag cells and treated as described above for AA-, AA+, and AA+/I. After a second addition and centrifugation of the combined extracts, the supernatants were transferred to a new tube, and the acetonitrile was evaporated. In some experiments, 0.4 ml of ice-cold perchloric acid (0.3 M) was added to each well, and after 10 min on ice, the extracts were centrifuged and the supernatants neutralized with saturated KHCO₃. Finally, all samples were spotted on glass-backed PEI cellulose TLC plates, dried at room temperature for 1–2 h, and then the chromatograms were developed in 1.2 M ammonium formate, 0.8 M HCl. The plate was dried for 5 min in an 80 °C incubator, and the ³²P content of the spots corresponding to GTP and GDP were quantitated by PhosphorImage. The percentage of GTP nucleotide elution was calculated by [GTP / (GTP + 1.5GDP)].

To examine nucleotide binding of endogenous RagC, HEK293T cells (1 × 10⁷) were grown in 10-cm plates, labeled with [³²P]orthophosphate, treated as described above for AA- or AA+, rinsed, and frozen with liquid nitrogen. The cells were lysed in a low ionic strength lysis buffer (20 mM HEPES (pH 7.4), 1 mM KH₂PO₄, 1 mM ATP, 10 mM MgCl₂, 1 μM calyculin A, 10 mg/ml aprotinin, 10 mg/ml leupeptin, and 10 mM benzamidine) and cleared by centrifugation. To preclar the supernatants, protein G beads (20 μl) were washed with 50 mM sucrose, 90 mM potassium gluconate, 5 mM glucose, 2.5 mM ATP, and EDTA-free protease inhibitor. The resuspended cells were mechanically disrupted by TissueLyser (Qiagen) with tungsten carbide 3-mm beads for 6 min at 30/sec frequency. Extracts were centrifuged at 1000 × g for 10 min. The supernatant was centrifuged at 16,100 × g for 30 min, and the pellet of this centrifugation, which was highly enriched in LAM2P (see Fig. 7C), was mixed with 150 μM of membrane isolation buffer containing 1% Triton X-100. After resuspension, the volume was brought to 1 ml in this buffer and preclarified by incubation with protein G beads (30 μl of a 50% slurry) for 2 h at 4 °C. Strep tag proteins were retrieved with Strep-Tactin beads, washed, and then bound ³²P nucleotides were analyzed after TLC as above.

Subcellular Fractionation by Kit (Calbiochem)—One 10-cm plate of HEK293E cells was grown to 90% confluency and then fractionated into cytoplasmic, membrane, nuclear, and cytoskeletal fractions using a subcellular proteome extraction kit according to the instructions of the manufacturer.

Immunofluorescence—HeLa cells were plated on noncoated glass coverslips in 6-well tissue culture plates grown to 50% confluency. Cells were deprived of amino acids for 1 h, stimulated with amino acids for 30 min, washed once in PBS, and fixed with 3% paraformaldehyde/2% sucrose in PBS for 10 min. Cells were rinsed twice with PBS and permeabilized with 0.5% Triton X-100 in PBS for 5 min. After rinsing twice with PBS, cells were blocked in 1% BSA/PBS for 10 min and then incubated in 3% BSA/PBS with anti-RagC antibodies for 1 h. Cells were washed three times in PBS and then incubated in 3% BSA/PBS with goat anti rabbit FITC antibodies for 1 h. Cells were then washed three times in PBS and mounted using Vectashield containing DAPI (Vector Laboratories, catalog no. H-1200). Images were captured using a Nikon Eclipse 80i microscope and IPLab software.

Sucrose Density Gradient—HEK293T cells (4 × 10⁸) were grown to ~90% confluency, washed, scraped up in ice-cold PBS, pelleted at 230 × g for 5 min at 4 °C, and resuspended in 1 ml of homogenization buffer (5 mM Tris-HCl (pH 7.4), 1 mM EDTA, 0.25 mM/9% sucrose, 0.25 mM PMSF, and an EDTA-free protease inhibitor mixture tablet (Roche)). Cells were sheared open by four passages through a 25-gauge needle. MgCl₂ and KCl were then added at a final concentration of 1 mM and 100 mM, respectively. The homogenate was centrifuged at 1000 × g for 10 min at 4 °C, and the supernatant was removed on ice. A 10-ml sucrose density gradient of 0.4 ×/13%-2.25 M/60% buffered in 10 mM HEPES (pH 7.4) was poured using a gradient maker and 1 ml supernatant layered on the top. The gradient was centrifuged at 100,000 × g for 4.5 h at 4 °C in an SW41 rotor in an L8—80 M ultracentrifuge (Beckman). Fractions were then collected in 0.5-ml aliquots from the top of the gradient and subjected to SDS-PAGE and immunoblot analysis.

RESULTS

Rag Heterodimer Binding and Activation of mTORC1 in Cells—Transiently expressed recombinant RagB/RagC heterodimer coprecipitates endogenous (Fig. 1A) and recombinant mTOR complex 1 (Fig. 1B) specifically and considerably more efficiently than recombinant Rheb. The heterodimers containing wild-type RagB or the RagB switch II mutant (Q99L) retrieve comparable amounts of raptor (Fig. 1, A and B). However, those containing
RagBQ99L cause a substantial phosphorylation of coexpressed S6K1 at Thr-389 in amino acid-deprived cells (although less than a comparable expression of Rheb) (Fig. 1C). Thus, the greater stimulatory effect of RagBQ99L as compared with RagBWT on mTOR signaling is not attributable to increased mTORC1 binding. The stimulatory effect of RagBQ99L on mTORC1 signaling is further augmented if the RagBQ99L is coexpressed with the RagC P-loop mutant (S75L) (Fig. 1D, lane 8 versus lanes 6 and 7) or the comparable RagD P-loop mutant (S76L or S77L) (lanes 18 and 19 versus lanes 16 and 17). RagCQ75L has little or no stimulatory effect as compared with wild-type RagC when coexpressed with wild-type RagB in amino acid-deprived cells (Fig. 1D, lane 3 versus lane 5), whereas both RagDS76L and RagDS77L, in complex with wild-type RagB, do stimulate S6K1 (Thr-389) phosphorylation (Fig. 1D, lane 12 versus lanes 14 and 15), suggesting a greater intrinsic potency of RagD as compared with RagC. Regarding the effect of these RagC/D P-loop mutations on the binding of the Rag heterodimer to mTORC1, Rag heterodimers containing RagBWT in complex with the RagCQ75L or RagDQ76L or Q77L mutants exhibit a greatly increased binding of raptor as compared with Rag heterodimers containing RagBWT in complex with RagCWT (Fig. 1E, lane 3 versus lane 5) or RagDWT (lane 12 versus lanes 14 and 15). A similar pattern is seen with RagBQ99L (Fig. 1E, lane 6 versus lane 8 and lane 16 versus lane 18). Thus, it is likely that the stimulatory effects of the RagCQ75L/RagDQ76L/RagDQ77L mutations on S6K1 phosphorylation are attributable, in large part, to enhanced Rag binding to raptor. Rag heterodimers containing the RagB P-loop mutant (T54L) together with any RagC (or RagD, not shown) variant act as dominant inhibitors of S6K1 (T389) phosphorylation in amino acid-replete cells (Fig. 1C). Notably, the RagBT54L mutant

FIGURE 1. mTOR complex 1 regulation by and binding to transiently expressed wild-type and mutant Rag heterodimers. A and B, binding of endogenous (A) and recombinant (B) mTORC1 by various RagB/C dimers or Rheb in amino acid-replete cells. The FLAG-tagged RagB and RagC variants indicated or wild-type Rheb were expressed in HEK293T cells together with or without HA-mTOR and myc-Raptor. Anti-FLAG or anti-myc immunoprecipitates (IP) were immunoblotted as indicated. C, regulation of S6K phosphorylation by coexpressed RagB/C dimers or Rheb with or without amino acid withdrawal. 48 h after cotransfection of HA-S6K with the FLAG-RagB/C dimers indicated or with FLAG-Rheb to HEK293T cells, the medium was replaced by fresh DMEM for 1 h and then by DPBS. After 50 min, the medium of plates AA- was replaced with fresh DPBS, whereas that of plates AA+ was replaced with DMEM, with harvest 10 min thereafter. The extracts and anti-HA immunoprecipitates were immunoblotted for the proteins indicated and for the phosphorylation of HA-S6K. D, regulation of S6K phosphorylation by coexpressed RagB/C and RagB/D dimers in amino acid-deprived cells. 48 h after cotransfection of HA-S6K with the FLAG-RagB/C or FLAG-RagB/D dimers indicated, the HEK293T cells were incubated in fresh DMEM for 1 h and deprived of amino acids by DPBS treatment for 1 h. The extracts and the anti-HA immunoprecipitates were immunoblotted for the proteins indicated and for the phosphorylation of HA-S6K. The RagC identified as D was S75L, and that identified as T was Q120L. The RagD identified as D1 was S76L, and that identified as D2 was S77L, whereas that labeled T was Q121L. E, the binding of recombinant Raptor to coexpressed RagB/C and RagB/D dimers in amino acid-deprived cells. 48 h after cotransfection of myc-Raptor with the FLAG-RagB/C or FLAG-RagB/D dimers indicated, the HEK293T cells were treated as in D, and the extracts and anti-FLAG immunoprecipitates were immunoblotted as indicated. The labeling of RagC and RagD is as in D.
Amino Acid Removal Does Not Alter Rag GTP Charging

suppresses the enhanced binding of raptor to Rag heterodimers containing RagC^{S75L} (Fig. 1E, lanes 5 and 8 versus lane 11) or RagD^{S78L} (lanes 14, 15, and 18 versus lanes 21 and 22).

On the basis of the inhibitory effects of the RagA P-loop mutant (T21L, the residue homologous to RagB^{T54L}) and RagA switch I mutations on raptor binding and S6K1 activation, it has been proposed previously that the primary interaction surface of the Rag heterodimer with raptor is through the RagA-B subunit (19, 20). These results are compatible with this conclusion. Nevertheless, the stimulatory effect of RagC/D P-loop mutation on Rag heterodimer binding to raptor is impressive and, together with the inability of single RagA/B/C/D polypeptides to regulate raptor (not shown), emphasizes the importance of both heterodimer partners in configuring the raptor binding site.

Current concepts concerning the role of Rag guanyl nucleotide charging on the regulation of raptor binding and the way that Rag P-loop and switch II mutations alter Rag function rely heavily on extrapolation from the behavior of Ras GTPase. Effector binding to Ras is determined by the extent of Ras GTP charging (21). The Ras^{S17N} P-loop mutation results in GDP-only binding and loss of effector binding, leading to the inference that the homologous Rag P-loop mutants also bind GDP preferentially and that the diminished binding of raptor to RagA^{T21L}/RagB^{T54L} is presumed because of the replacement of GTP by GDP. The paradoxically enhanced binding of raptor to the comparable RagC/D P-loop mutants (also presumably GDP-charged) is explicable as an indirect action of the RagC/D mutant on the configuration of the RagA/B partner. Extending this reasoning, the ability of amino acid sufficiency to stimulate mTORC1/raptor binding to the wild-type Rag heterodimer in cells has been plausibly attributed to an ability of amino acids to regulate the guanyl nucleotide charging of the Rag heterodimers, either by promoting GTP binding to the RagA/B partner or, alternatively, enhancing the GDP content of the RagC/D partner or both. We sought to examine these inferences by characterizing the guanyl nucleotide binding of wild-type and mutant Rags in vitro and in cells and the effect of guanyl nucleotides on Rag binding to raptor in vitro.

Rag Heterodimer Guanyl Nucleotide Binding in Vitro—We examined the ability of the purified epitope-tagged wild-type and mutant Rag heterodimers, transiently expressed and purified from HEK293T cells, to bind, release, and hydrolyze guanyl nucleotides in comparison with Ras or Rheb. The recombinant wild-type RagB/C heterodimer binds [γ³²P]GTP rapidly in a manner similar to recombinant c-Ha-Ras or Rheb (Fig. 2A, top and center panels) and binds [³H]GDP (bottom panel) as well. Regarding the ability of the mutant Rags used for functional studies to bind guanyl nucleotides, we first examined the Rags mutated at the site homologous with Ras^{Ser-17}, i.e. RagB^{T54L} and RagC^{S75L} (Fig. 2A, top and bottom panels, and B). When either mutant was paired with a wild-type heterodimer partner, the heterodimer containing the mutant partner bound roughly half as much tracer [γ³²P]GTP (Fig. 2A, center panel) or [³H]GDP (bottom panel) as a wild-type RagB/C heterodimer. The RagB^{T54L}/RagC^{S75L} heterodimer was entirely unable to bind [γ³²P]GTP or [³H]GDP. Moreover, at 100 μM GTP (corresponding approximately to the intracellular GTP concentra- tion), the binding of GTP to wild-type RagA or B/C heterodimers plateaued at a stoichiometry of ~0.6–1.0 mol/mol Rag dimer (Fig. 2B, first and third panels). The wild-type heterodimers bind approximately twice as much GTP as Rag heterodimers containing a wild-type RagA or B with a RagC P-loop mutant (S75L), confirming the inability of RagC^{S75L} to bind guanyl nucleotide and indicating that the P-loop mutation in the RagC heterodimer partner does not affect nucleotide binding to a wild-type RagA/B partner at saturating levels of GTP (Fig. 2B). Thus, in contrast to Ras^{S17N}, which exhibits a nearly 1000-fold decrease in affinity for GTP with only a mildly reduced affinity for GDP (16), the corresponding Rag P-loop mutants appear unable to bind either GDP or GTP. The RagB^{S99L} mutant corresponding to Ras^{Q61L}, when partnered with a Rag C P-loop mutant (S75L), binds [γ³²P]GTP to an extent indistinguishable from a RagB^{WT}/C^{S75L} heterodimer (Fig. 2B, fifth panel).

We next examined the rate of dissociation of guanyl nucleotide, comparing the Rag heterodimers with Ras (Fig. 2C). Wild-type Ha-Ras-bound [³H]GDP exhibits little or no dissociation upon addition of ADP or GDP (+20 mM Mg). In contrast, GDP, but not ADP, causes a rapid dissociation of wild-type RagB/C heterodimer-bound [³H]GDP with a_{1/2} of 1–2 min at 30 °C (Fig. 2C, bottom panel, and D). [³H]GDP bound to RagB^{WT}/RagC^{WT}, RagB^{WT}/RagC^{S75L}, or RagB^{T54L}/RagC^{WT} is displaced comparably by excess GDP or GTP (Fig. 2D). The rapid spontaneous dissociation of guanyl nucleotide from Rag heterodimers indicates that guanyl nucleotide exchange is unlikely to be a rate-limiting step for the conversion of RagB to the GTP-bound state.

Although wild-type Ha-Ras has a low intrinsic GTPase activity, this is completely abolished in the Ras^{G12V} mutant (Fig. 3A). Moreover, the increased GTPase activity caused by addition of the catalytic domain of Ras GAP NF1 to wild-type Ha-Ras is entirely absent in the Ras^{G12V} mutant (Fig. 3B). Likewise, conversion of [γ³²P]GTP to [γ³H]GDP by the wild-type RagB/C heterodimer is not detectable in the absence (Fig. 3, A–C) or presence (B) of NF1. Therefore, we sought evidence for the presence of a Rag-GTPase-activating activity in cell extracts. Incubation of [γ³²P]GTP-loaded RagB/C with extracts prepared from amino acid-deprived HEK293T cells (Fig. 3D) with homogenates of mouse liver or brain and various membrane fractions from these sources (not shown), treated with or without nonionic or ionic detergents, or after brief treatment in vitro with trypsin (1–10 μg/ml), did not cause detectable hydrolysis of RagB/C-bound [γ³²P]GTP, whereas most of these extracts caused a readily measurable increase in the rate of hydrolysis of Ras-bound GTP (D). Similarly, chromatographic separation of cytosolic extracts from amino acid-deprived HEK293T cells by anion exchange gave a clear major peak of Ras-GAP activity, whereas no such peak was evident with a RagB/C-GTP substrate (Fig. 3E), nor was Rag-GAP activity evident in cation exchange chromatography (not shown). Thus, we are unable to detect an intrinsic RagB/C GTPase during incubations of the purified Rags up to 1 h at 30 °C in vitro or a RagB/C GTPase-activating protein.
Rag Heterodimer Binding to mTORC1 in Vitro Is Guanyl Nucleotide-independent—Recombinant Rag heterodimers, expressed with amino terminal FLAG or GST fusions, were purified by the epitope after transient expression in HEK293T cells and charged in vitro with nonradioactive GDP or GMP-PNP (0.2 mM). Epitope-tagged raptor, coexpressed with mTOR, was affinity-purified, eluted, and mixed with an excess of immobilized GST or the GST-Rag heterodimer. As seen in Fig. 4A, Raptor binds to the GST-Rag A/C heterodimer but not to GST. The RagA/C wild-type heterodimer binds raptor to a similar extent, whether nucleotide-free or charged with either GDP or GMP-PNP. Specific, nucleotide-independent binding of GST-Rag heterodimers, but not of GST to raptor, is also evident if the raptor, rather than GST-Rag, is immobilized (Fig. 4B).

FIGURE 2. Guanyl nucleotide binding to and dissociation from Rag heterodimers. A, time course of guanyl nucleotide tracer binding to variant RagB/C heterodimers. Equal Coomassie Blue-stained amounts of GST-Ha-Ras (■, top panel), GST-Rheb (□, top panel), GST-RagB/FLAG-RagC heterodimers (BWT/CWT, ○; B154K/CWT, ▲; B154K/C*75L, ●; BWT/C*75L, ■) were incubated with [32P]GTP (50 nM, top and center panels) or [3H]GDP (68 μM, bottom panel) at 30 °C. B, stoichiometry of guanyl nucleotide binding to variant RagA or B/C heterodimers. Various GST-RagA or B/FLAG-RagC heterodimers were incubated with 0.1 mM [32P]GTP at 25 °C. The ordinate indicates the moles GTP bound per dimer. C, wild-type RagB/C heterodimers exhibit rapid spontaneous exchange of bound [3H]GDP. Equal Coomassie Blue-stained amounts of GST-Ha-Ras (top panel) and wild-type GST-RagB/FLAG-RagC heterodimer (bottom panel) were preincubated with [3H]GDP (68 μM) to a steady state at 30 °C. At t = 0, nonradioactive ADP (5 mM, ■, ▲, and ○) or GDP (5 mM, □, and △) was added, and the protein-bound [3H]GDP was measured at intervals thereafter. D, [3H]GDP bound to wild-type RagB or RagC within heterodimers is displaced by GTP and GDP with similar efficacy. GST-Ha-Ras (first panel), GST-Rheb (second panel), and various GST-RagB/FLAG-RagC heterodimers were incubated with 0.5 mM [3H]GDP to a steady state at 25 °C. At t = 0, water (■, ▲, ○, and ●), nonradioactive GTP (5 μM, gray symbols), or GDP (5 μM, □, △, ○, and ●) was added, and the protein-bound [3H]GDP was measured at intervals thereafter.
compare lanes 10–12 to lanes 16–18), as also seen when comparing RagB WT with Q99L (Fig. 4D). In contrast, RagAT21L partnered with RagCWT binds less raptor as compared with RagA/C wild-type (Fig. 4A, lanes 7–9 versus lanes 13–15), mimicking the behavior in cells of this RagA P-loop mutant (Fig. 1, A and B). In summary, Rag heterodimers bind raptor in vitro to a similar extent, whether the RagA/B partner is nucleotide-free or GDP- or GTP-charged. Conversely, mutation of RagC P-loop (S75L) enhances, whereas mutation of RagA P-loop or GDP- or GTP-charged. Conversely, mutation of RagC similar extent, whether the RagA/B partner is nucleotide-free any effects on Rag nucleotide binding. mutations on Rag regulation of mTORC1 are independent of raptor binding in cells and cells. The significant effects of Rag P-loop mutation on raptor binding during transient expression in vitro, Rag heterodimers lack detectable GTPase activity in vitro. A, the RagB/C wild-type heterodimer does not hydrolyze [γ-32P]GTP in vitro. GST-Ha-RasWT (Δ), GST-Ha-RasS12V (●), and GST-RagBWT/FLAG-RagCWT (○) were charged with [γ-32P]GTP and examined for intrinsic GTPase activity. The amount of unhydrolysed [γ-32P]GTP on proteins was measured at intervals thereafter by nitrocellulose filter binding assay. B, a recombinant catalytic fragment of NF1 stimulates GTP hydrolysis by Ha-RasWT but not Ha-RasS12V or RagBWT/CWT. GST-Ha-RasWT (●), dashed line), GST-Ha-RasS12V (○, dashed line), or GST-RagBWT/FLAG-RagCWT (○, solid line) were charged with [γ-32P]GTP, and a catalytic fragment of NF1 was added. The release of 32P at 30 °C was measured at intervals thereafter by the charcoal method. C, neither RagB wild-type or RagC wild-type within a heterodimer hydrolyze [α-32P]GTP detectably in vitro. GST and various Rag-RagB/FLAG-RagC heterodimers were charged with [α-32P]GTP, and at intervals thereafter, nucleotides were extracted and separated on TLC on PEI cellulose. D, extracts from HEK293T cells do not promote the ability of RagB/C to hydrolyze [γ-32P]GTP. HEK293T cells were lysed in the absence of detergent (solid line) or with CHAPS (0.3%, dotted line), TritonX-100 (1%, short dashes), or RIPA buffer (Pierce) (long dashes). GST-Ha-RasWT (triangles) and GST-RagBWT/FLAG-RagCWT (circles) charged with [γ-32P]GTP were mixed with each of these extracts at 30 °C, and the amount of protein-bound [γ-32P]GTP was measured by filtration through nitrocellulose filters. E, MonoQ anion exchange chromatography of a HEK293T cell extract contains GAP activity toward Ha-Ras wild-type, not RagB/C wild-type. HEK293T cells were extracted by freezing and thawing and separated by anion exchange chromatography. Each fraction was incubated at 30 °C with GST-Ha-RasWT (Δ, dashed lines), GST-Ha-RasS12V (●, dashed lines), and GST-RagBWT/FLAG-RagCWT, each charged with [γ-32P]GTP. After 30 min, protein-bound [γ-32P]GTP was measured as in C. -We next examined the state of Rag GTP charging in intact cells. HeLa and HEK293T cell lines that stably express GFP-strep tag fused to the amino termini of RagC or RagA wild-type polypeptides and to the RagC S75L or RagA T21L mutant polypeptides. Control lines expressed GFP-strep tag alone. Inasmuch as RagA T21L and RagC S75L do not bind nucleotide, the guanyl nucleotide retrieved with the P-loop mutant Rags can be attributed to the endogenous Rag heterodimer partner. Fig. 5 demonstrates some effects of recombinant RagC wild-type and S75L stably overexpressed at several levels of abundance. Immunoblot analysis of HeLa lysates with an antibody directed to an epitope shared by RagA and RagB demonstrates that RagA is far more abundant (not shown). Note that stable overexpression of recombinant GFP-strep-RagC is accompanied by an increased abundance of endogenous RagA (Fig. 5, Lysate, second panel) but does not alter the abundance of raptor. Streptactin pull-downs of GFP-strep-RagC (Fig. 5, Streptactin PD panels) retrieve endogenous RagA as expected, although recovery of RagA with GFP-strep-RagC S75L is less efficient than with RagCWT. Amino acid withdrawal does not alter the amount of RagA retrieved with GFP-strep-RagC. In the HeLa cell line designated strept-GFP-RagC WT-1, endogenous raptor is retrieved by Strept-Tactin in an amino acid-dependent manner, confirming earlier results (12). However, the same strept-GFP-RagC WT polypeptide expressed at a higher level (designated strept-GFP-RagC WT-2) binds endogenous raptor in a constitutive, amino acid-independent manner. Strept-GFP-RagC S75L expressed at an even higher level also exhibits constitutive, amino acid-independent binding of endogenous raptor.
Although overall pull-down of raptor is diminished comparing GFP-streptag-RagC^{S75L} with strept-GFP-RagC^{WT}, the efficiency of raptor retrieval, as judged by the concomitant retrieval of endogenous RagA, is higher for GFP-streptag-RagC^{S75L} (Fig. 5, Streptacin PD, first and second panels). Importantly, overexpression of GFP-streptag^{WT} or GFP-streptag-RagC^{S75L} does not significantly alter the inhibition or restoration of 4E-BP[Thr-37/Thr-46] phosphorylation engendered by amino acid withdrawal and readdition (Fig. 5, bottom panel). Inasmuch as amino acid sufficiency does not alter Rheb GTP charging (9, 11), this indicates that there are one or more additional, necessary regulatory steps, other than raptor binding to Rag, between amino acids and mTORC1 activation unless mTORC1 is effectively approximated with Rheb-GTP.

To determine the effects of amino acid sufficiency on Rag guanyl nucleotide charging, cells were labeled with ³²P_i (0.2 mCi/ml) for 4 h in the presence of P_i-free DMEM containing 10% dialyzed calf serum. Thereafter, the cells were washed in the serum-free medium used for the next phase of incubation (either P_i and amino acid-free medium or P_i-free, amino acid-containing medium) followed by readdition of either P_i and amino acid-free medium with ³²P_i or P_i-free, amino acid-containing medium with ³²P_i (32P_i-conditions as in the first incubation). After 2 h, the medium was removed, and the cells were rapidly rinsed at 4 °C and extracted into a buffer containing magnesium. Strep-Tactin-bound proteins were isolated and washed. The nucleotides were extracted, mixed with nonradioactive GTP and GDP, and separated by TLC on PEI cellulose.

FIGURE 4. The binding of mTOR complex 1 to various RagA or B/C heterodimers in vitro. A, variant RagA/C heterodimers bind mTOR complex 1 specifically and in a guanyl nucleotide-independent manner. Equal amounts of GST tagged proteins indicated were immobilized on GSH-Sepharose; loaded with 0.2 mM GDP, GMP-PNP, or water; and incubated with purified HA-mTOR/myc-FLAG-Raptor. The bound Raptor was analyzed by immunoblotting, and GST-proteins were detected by Coomassie Blue staining (C.B.). PD, pull-down. B, immobilized mTOR complex 1 binds RagBWT/FLAG-RagC^{S75L} in a guanyl nucleotide-independent manner. Coexpressed FLAG-mTOR/myc-FLAG-Raptor was isolated using Sepharose-bound anti-myc and mixed with GST or GST-RagB^{WT}/FLAG-RagC^{S75L} charged with 0.2 mM GDP, GTP, or water. After washing, the Sepharose-bound proteins were analyzed by anti-GST immunoblot analysis and Coomassie Blue staining. C, GST-RagA/RagC^{S75L}, but not GST-HA-RasG^{12V}, binds mTOR complex 1 in vitro. GST, GST-RagA/RagC^{S75L}, and GST-HA- RasG^{12V} immobilized on GSH-Sepharose were charged with 0.2 mM GDP or GMP-PNP and incubated with recombinant HA-mTOR/myc-FLAG-Raptor. After incubation and washing, the retained proteins were analyzed by immunoblot analysis for myc (top panel) and Raptor (center panel) and by Coomassie Blue staining. D, the constitutively active GST-RagB^{Q99L}/FLAG-RagC^{S75L} heterodimer and the minimally active GST-RagB^{WT}/FLAG-RagC^{S75L} heterodimer bind mTOR complex 1 to a similar extent in vitro. GST or the GST-Rag heterodimers immobilized on GSH-Sepharose were charged with 0.2 mM GDP, GMP-PNP, or water and incubated with recombinant FLAG-mTOR/myc-FLAG-Raptor. After incubation and washing, the retained proteins were immunoblotted with anti-myc and stained with Coomassie Blue.
Amino Acid Removal Does Not Alter Rag GTP Charging

The regulation of mTORC1 signaling in these experiments was examined. The regulation of S6K(Thr-389) phosphorylation is not detectably different in the three GFP-streptag-expressing cell lines. Transfer of cells into amino acid–free medium for 2 h before harvest abolishes S6K(Thr-389) phosphorylation as compared with cells incubated in amino acid-containing medium, and phosphorylation is slightly increased by the further addition of insulin (Fig. 6A). The phosphorylation of 4E-BP(Thr-37/46) is altered in a subtle manner. After 2 h, amino acid withdrawal 4E-BP(Thr-37/46) phosphorylation is very low or absent in the control (GFP-streptag) cells, whereas it is detectably greater in the cells expressing GFP-streptag-RagCWT and increased further in the cells expressing GFP-streptag-RagCS75L (Fig. 6B). Readdition of amino acids gives robust phosphorylation of 4E-BP(Thr-37/46) in all three cell lines. PRAS40(Thr-246) phosphorylation, which is catalyzed by Akt, is responsive to insulin rather than amino acids.

Regarding the whole cell GTP/GDP+GTP ratio, deproteinized extracts prepared by direct addition of acetonitrile to [32P]GTP-labeled cells were examined by TLC on PEI cellulose. The [32P]-labeled spots comigrating with GTP and GDP appear to be clearly separated, and the ratio of [32P]GTP/[15 × [32P]GDP + [32P]GTP] in the extract from amino acid-deprived cells is estimated to be ∼60–70%. This ratio is well within the range of those reported for a variety of cell and tissue sources (22). Nevertheless, the calculated extract ratio, which is very similar to that of the GFP-streptag-RagC-bound guanyl nucleotides, may be low because of contamination of the GDP spot by [32P]-labeled cellular components other than [32P]GDP. Note that amino acid readdition increases the [32P] comigrating [32P]GDP without alteration in the [32P]GTP spots, resulting in an apparent decrease in the calculated fractional content of [32P]GTP. We are uncertain whether this reflects an amino acid–induced increase in [32P]GDP content or some comigrating [32P]-labeled metabolite. We have been unable improve our estimate of extract fractional GDP/GTP content using chromatographic methods because sufficient separation of GDP from more abundant A260 absorbing substances were not achieved. Nevertheless, it is notable that, during the incubation of the cell extracts for pull-down of the GFP-streptag complex, extensive hydrolysis of lysate [32P]GTP occurs so that the fractional content of lysate [32P]GTP at the time of Strep-Tactin harvest is reduced to 10–15% (Fig. 6C). Thus, the finding that the guanyl nucleotide recovered with the RagC complexes is ∼60–85% [32P]GTP strongly reinforces the conclusion that the RagA/B-bound GT strongly exchanges with lysate guanyl nucleotides or hydrolysis in vitro and is actually protected from GTPase activity, both in the cell and in the extract, as inferred from the in vitro experiments described in Fig. 3. Thus, the fractional GTP charging of endogenous RagA in complex with GFP-streptag-RagC is constitutively very high, probably equivalent to the ratio of cellular GTP/GDP + GDP, and is not altered by amino acid sufficiency or insulin.

We sought to confirm that the GTP charging of the recombinant RagC heterodimers reflects that of the endogenous complex. However, the amounts of endogenous RagC retrieved from HeLa cells using anti-RagC antibodies were inadequate. A sufficient yield of endogenous RagC was recovered from [32P]-labeled HEK293T cells. In a single experiment, we found the fractional content of [32P]GTP bound to the endogenous complex to be ∼90% and unaffected by amino acid withdrawal (Fig. 7). This estimate may be somewhat high because of the very small difference in [32P]GTP comigrating with GDP in the anti-RagC and control immunoprecipitates. Nevertheless, withdrawal of amino acids is clearly without effect.

Nucleotide Charging of Membrane-bound Rag Heterodimers—Sabatini and coworkers (17, 18) reported that the ability of amino acids to activate mTORC1 through the Rag heterodimers is critically dependent on the binding of the latter to a complex of five proteins they called the “Ragulator” that is localized to the cytoplasmic face of the lysosome. The protein...
p18/LAMTOR1 is attached to the cytoplasmic surface of the lysosome through amino-terminal myristoylation/palmitoylation (23, 24) and serves as a scaffold for the rest of the Ragulator complex. Loss or depletion of p18/LAMTOR1 eliminates raptor and Rag localization to the lysosome and prevents amino acid activation of mTORC1, emphasizing the importance of late endosomal/lysosomal localization for the amino acid regulation of mTORC1. Appending the Rheb C-terminal 15 amino acids (containing the CAAAX and other localization signals) to raptor eliminates the requirement for the Rags and the Ragulator (17). mTORC1 is thereby activated and rendered insensitive to amino acid withdrawal. Altogether, these results indicate that it is the pool of Rag colocalized with Ragulator (and, ultimately, with Rheb) that is subject to amino acid regulation of raptor binding and, thus, relevant to the ability of the Rag heterodimer to mediate amino acid activation of mTORC1.

In view of these considerations, we sought to determine the effects of amino acid sufficiency on the guanyl nucleotide charging of Rag heterodimers associated with lysosomes. Extraction of HEK293E cells using a commercial kit suggested

FIGURE 6. The effect of amino acid withdrawal and insulin on the \(^{32}\text{P}\)guanyl nucleotide content of stably expressed RagC\(^{\text{WT}}\) and RagC\(^{\text{S75L}}\) heterodimeric complexes in \(^{32}\text{P}\)-labeled HeLa cells. A, B, and C, replicate plates of HeLa cells stably expressing GFP-streptag, GFP-streptag-RagC\(^{\text{WT}}\), or GFP-streptag-RagC\(^{\text{S75L}}\) were incubated in \(^{32}\text{P}\)-free DMEM containing \(^{32}\text{P}\) (0.2 mCi/ml). After 4 h, the cells were rinsed and incubated in either homemade \(^{32}\text{P}\)-free medium (AA\(^{-}/\text{H11001}\)) or \(^{32}\text{P}\)-free medium lacking amino acids (AA\(^{-}\)), each containing \(^{32}\text{P}\) (0.2 mCi/ml), for another 2 h. In A and B, insulin (1.0 \(\mu\text{M}\)) was added to some of the cells in DMEM (AA\(^{+}/\text{I}\)) 30 min before harvest. The nucleotides bound to Strept-Tactin (strept) pull-downs were extracted and separated by TLC on PEI cellulose. One set of \(^{32}\text{P}\)-labeled HeLa cells expressing FP-streptag, treated as described above for AA\(^{-}\), AA\(^{+}/\text{I}\), and AA\(^{-}/\text{H11001}\), were rinsed, extracted directly into acetonitrile, and then the solubilized total nucleotides were separated by TLC. The \(^{32}\text{P}\) comigrating with GDP and GTP was quantitated by phosphorimaging. After subtraction of the averaged values found in the GFP-streptag lanes, the percentage of \[^{32}\text{P}\]GTP was calculated as \([^{32}\text{P}]\text{GTP} / (1.5 \times \[^{32}\text{P}\]\text{GDP} + \[^{32}\text{P}\]\text{GTP})\], and the averaged values are shown. In A, the top and center panels on the right show GFP immunoblot analyses of the cell lysates and representative Strept-Tactin pull-downs (corresponding to lanes 1, 4, and 7 of each set). The bottom panel shows an immunoblot analysis of S6K(T389P) corresponding to lanes 1, 4, and 7 of each set. In B, the top panel on the right shows a GFP immunoblot analysis of the lysates, whereas the center and bottom panels show lysate immunoblot analyses for 4E-BP(T37P/T46P) and PRAS40(S246P), respectively. In C, one set of \(^{32}\text{P}\)-labeled HeLa cells expressing GFP-streptag, treated as in Fig. 6, were rinsed, extracted directly into \(\text{HClO}_4\) (0.3 M, 0 \(^\circ\text{C}\), HClO\(_4\) extract). The HClO\(_4\) supernatants were neutralized with KHCO\(_3\), and the \[^{32}\text{P}\]guanyl nucleotides were quantitated as above. In addition, the nucleotides in the lysate after pull-down of the Strept-Tactin beads were also analyzed. Immunoblot analyses of the lysates and representative Strept-Tactin pull-downs are shown in the right panel. Ori, origin; std, guanyl nucleotide standards; Ins, insulin; ACN, acetonitrile; Ct, C-terminal.
Amino Acid Removal Does Not Alter Rag GTP Charging

In contrast to the robust expression of stably expressed GFP-strep fusions of RagCWT, RagCSE75L, and RagAWT, the abundance of stably expressed GFP-streptag-RagAT21L in HeLa or HEK293T cells was very low, below that sufficient to cause an inhibition of mTORC1 signaling, as seen during transient expression of this RagA variant. Nevertheless, a comparison of the [32P]guanyl nucleotide content of GFP-streptag-RagAWT with GFP-streptag-RagAT21L associated with the lysosomal fraction was accomplished in one experiment (Fig. 8E). As with Rag heterodimers containing recombinant RagCWT, the [32P]guanyl nucleotide bound to heterodimers containing recombinant RagAWT is ~70% [32P]GTP in the presence and absence of extracellular amino acids. In contrast, only ~35–40% of the [32P]guanyl nucleotide bound to Rag heterodimers containing RagA(T21L) is [32P]GTP. Inasmuch as RagA(T21L) does not bind guanyl nucleotide in vitro, the [32P]guanyl nucleotide retrieved with these heterodimers is that bound to the endogenous RagC/D partners (the relative abundance of RagC versus RagD in the RagA(T21L) heterodimers is not known). The finding that RagC/D is preferentially occupied by [32P]GDP indicates that, in contrast to the lack of detectable GTPase activity in short-term incubations in vitro, RagC/D in cells is capable of GTP hydrolysis, whether intrinsic or GAP-mediated. This result should be compared with the finding of Jeong et al. (25), who observed that in the x-ray crystal structure of a recombinant wild-type Gtr1-Gtr2 complex isolated from Escherichia coli, Gtr1 (equivalent to RagA/B) contained only GTP, whereas Gtr2 (equivalent to RagC/D) contained only GDP (however, at ~40% the occupancy as compared with Gtr1).

DISCUSSION

These studies provide two unexpected findings that will require revision of hypotheses concerning the mechanisms by which amino acids regulate Rag function and the manner in which Rags contribute to mTORC1 activation. First, although we confirm that amino acid sufficiency promotes the association of raptor/mTORC1 with recombinant Rag, our results demonstrate that amino acid sufficiency does not regulate the extent of guanyl nucleotide charging of the Rag heterodimer so that amino acids must control the Rag-raptor association through another mechanism. We show that recombinant RagC (wild-type or S75L-containing) heterodimers, whether retrieved from the whole cell or from a LAMP2-enriched membrane fraction, recombinant RagA wild-type heterodimers recovered from a LAMP2-enriched membrane fraction, and endogenous RagA(mostly)-B/C wild-type heterodimers retrieved from whole cell lysates all exhibit a very high fractional content of GTP in both amino acid-replete and amino acid-deprived cells, roughly 60–70%, a fraction similar to that observed for overall cellular guanyl nucleotides. Moreover, withdrawal of amino acids, although strongly inhibitory to mTORC1 signaling and to the binding of endogenous raptor to recombinant Rag heterodimer, does not alter Rag fractional GTP content. Inasmuch as RagC(S75L) does not bind guanyl nucleotides, these results indicate that the endogenous RagA (mostly) partner is constitutively bound to GTP in the presence or absence of extracellular amino acids. The high level of GTP charging of RagA/B in cells is consistent with the very rapid rate

Amino Acid Removal Does Not Alter Rag GTP Charging

In contrast to the robust expression of stably expressed GFP-strep fusions of RagCWT, RagCSE75L, and RagAWT, the abundance of stably expressed GFP-streptag-RagAT21L in HeLa or HEK293T cells was very low, below that sufficient to cause an inhibition of mTORC1 signaling, as seen during transient expression of this RagA variant. Nevertheless, a comparison of the [32P]guanyl nucleotide content of GFP-streptag-RagAWT with GFP-streptag-RagAT21L associated with the lysosomal fraction was accomplished in one experiment (Fig. 8E). As with Rag heterodimers containing recombinant RagCWT, the [32P]guanyl nucleotide bound to heterodimers containing recombinant RagAWT is ~70% [32P]GTP in the presence and absence of extracellular amino acids. In contrast, only ~35–40% of the [32P]guanyl nucleotide bound to Rag heterodimers containing RagA(T21L) is [32P]GTP. Inasmuch as RagA(T21L) does not bind guanyl nucleotide in vitro, the [32P]guanyl nucleotide retrieved with these heterodimers is that bound to the endogenous RagC/D partners (the relative abundance of RagC versus RagD in the RagA(T21L) heterodimers is not known). The finding that RagC/D is preferentially occupied by [32P]GDP indicates that, in contrast to the lack of detectable GTPase activity in short-term incubations in vitro, RagC/D in cells is capable of GTP hydrolysis, whether intrinsic or GAP-mediated. This result should be compared with the finding of Jeong et al. (25), who observed that in the x-ray crystal structure of a recombinant wild-type Gtr1-Gtr2 complex isolated from Escherichia coli, Gtr1 (equivalent to RagA/B) contained only GTP, whereas Gtr2 (equivalent to RagC/D) contained only GDP (however, at ~40% the occupancy as compared with Gtr1).

DISCUSSION

These studies provide two unexpected findings that will require revision of hypotheses concerning the mechanisms by which amino acids regulate Rag function and the manner in which Rags contribute to mTORC1 activation. First, although we confirm that amino acid sufficiency promotes the association of raptor/mTORC1 with recombinant Rag, our results demonstrate that amino acid sufficiency does not regulate the extent of guanyl nucleotide charging of the Rag heterodimer so that amino acids must control the Rag-raptor association through another mechanism. We show that recombinant RagC (wild-type or S75L-containing) heterodimers, whether retrieved from the whole cell or from a LAMP2-enriched membrane fraction, recombinant RagA wild-type heterodimers recovered from a LAMP2-enriched membrane fraction, and endogenous RagA(mostly)-B/C wild-type heterodimers retrieved from whole cell lysates all exhibit a very high fractional content of GTP in both amino acid-replete and amino acid-deprived cells, roughly 60–70%, a fraction similar to that observed for overall cellular guanyl nucleotides. Moreover, withdrawal of amino acids, although strongly inhibitory to mTORC1 signaling and to the binding of endogenous raptor to recombinant Rag heterodimer, does not alter Rag fractional GTP content. Inasmuch as RagC(S75L) does not bind guanyl nucleotides, these results indicate that the endogenous RagA (mostly) partner is constitutively bound to GTP in the presence or absence of extracellular amino acids. The high level of GTP charging of RagA/B in cells is consistent with the very rapid rate
of spontaneous guanyl nucleotide exchange exhibited by the purified Rag heterodimers in vitro (Fig. 2, C and D). Consequently, as compared with the localizing function of Ragulator/LAMTOR, its Rag guanyl nucleotide exchange factor activity detected in vitro (18) may not be consequential in cells, at least in regard to the regulation of Rag function by amino acids. On the basis of the high, amino acid-insensitive GTP charging of RagA/B (Figs. 6–8) and the lack of biochemically detectable RagA/B GAP activity in cell extracts regardless of prior amino acid sufficiency (Fig. 3, D and E), we conclude that the RagA/B GAP activity reported for the cytoplasmic GATOR complex (26) is not activated by amino acid withdrawal. Constitutive charging with GTP and a lack of intrinsic and GAP-stimulated GTPase activity is not unprecedented. The Rho GTPase subfamily of Rnd1, Rnd2, and Rnd3/RhoE exhibits constitutively high charging with GTP. Rnd activity is regulated at a transcriptional level and by phosphorylation (27–29). In contrast to RagA/B, however, RhoE contains substitutions at residues equivalent to Ras12, 59, and 61 that would inhibit Ras GTPase activity. Thus, a rationalization for the low GTPase of the RagA/B is lacking.

The RagAT21L-RagC/D heterodimer, wherein bound nucleotide is attributable entirely to the RagC/D partner, exhibits 35–40% occupancy by GTP. This much lower GTP charging is

FIGURE 8. The effect of amino acid withdrawal on [32P]guanyl nucleotide content of recombinant Rag heterodimeric complexes associated with lysosomal membranes in 32P-labeled HEK293T cells stably expressing recombinant RagA or RagC variants. A, subcellular distribution of endogenous RagC in HEK293E cells. A commercial kit was employed to extract selected subcellular fractions from HEK293E cells. Markers included HSP90 (cytosol, C), calnexin (endoplasmic reticulum and membranes, M), poly-ADP ribose polymerase (PARP) (nucleus, N), and vimentin (intermediate filaments and cytoskeleton, CS). The image shows the immunocytochemical localization of endogenous RagC in HeLa cells. Scale bar = 10 μm. RagC, green; DAPI, blue. S, sucrose density gradient fraction of HEK293T cells. HEK293T cells were sheared open and fractionated upon a 10–60% sucrose density gradient at 100,000×g for 4.5 h. 500-μl fractions were collected, and 50 μl of each even-numbered fraction (Fxns) plus the top fraction (1), was subjected to SDS-PAGE and analyzed by immunoblotting as indicated. Two exposures are shown for RagA. C, isolation of lysosomes from HeLa cells by differential centrifugation. T, cell homogenate; S1, supernatant from centrifugation of T at 1000×g for 10 min; P1, pellet from centrifugation of T at 1000×g for 10 min; S2, supernatant from centrifugation of S1 at 16,100×g for 30 min; P2, the pellet from the latter centrifugation; S3, the supernatant after centrifugation of S2 at 105,000×g for 30 min. Each fraction was brought to the volume of the original homogenate, and an equal volume was subjected to SDS-PAGE and analyzed by immunoblotting as indicated. D, the effect of amino acid withdrawal on the [32P]guanyl nucleotide content of stably expressed RagCWT and RagCS75L heterodimeric complexes associated with a LAMP2-containing fraction of 32Pi-labeled HEK293T cells. Replicate plates containing the GFP-streptag-RagC variants indicated were incubated with 32Pi in P- and P-free DMEM for 4 h, rinsed, and incubated in either phosphate-free medium or P-free medium lacking amino acids (AA−), each containing 32Pi as in Fig. 6. The cells were extracted two h later, the fraction corresponding to P2 (C) was isolated, and the [32P]guanyl nucleotide content of Strep-Tactin-isolated Rag complexes in P2 was determined as in Fig. 6. Immunoblot analyses of GFP in the P2 fraction and 4E-BP(T37P/T46P) in the lysate are shown in the right panel. E, the effect of amino acid withdrawal on the [32P]guanyl nucleotide content of stably expressed RagAWT and RagAT21L heterodimeric complexes associated with a LAMP2-containing fraction of 32Pi-labeled HEK293T cells. The cells and extracts were processed as described in D. Immunoblots of GFP and RagA in the P2 fraction and 4E-BP/T37P/T46P in the lysate are shown in the right panel.
Amino Acid Removal Does Not Alter Rag GTP Charging

not due to a greater affinity of RagC/D for GDP over GTP inasmuch as GTP and GDP exhibit a similar ability to displace bound guanyl nucleotide from the RagB^{T54L}/RagC^{CWT} heterodimer (Fig. 2D, bottom panel). Rather, the lower GTP content of RagC/D is probably due to RagC/D GTPase, either a lower level intrinsic activity that is not readily detected in vitro or the action of a RagC/D-specific GAP in cells. The Rag GAP of the GATOR complex is reported to be highly selective for RagA/B in vitro (26). However, Tsun et al. (30) recently identified a RagC/D-specific GAP activity associated with the Birt–Hoge-Dube-associated protein folliculin in complex with folliculin interacting protein 1. In addition, Han et al. (31) described a leucine-stimulated GAP activity associated with leucyl tRNA synthetase that is highly preferential for RagD over RagC. Leucyl tRNA synthetase is, therefore, also a candidate RagD GAP, pending determination of the relative RagC/RagD content of the RagA^{T21L} heterodimers, although the unaltered guanyl nucleotide charging of RagC/D upon amino acid withdrawal is inconsistent.

If endogenous RagA/B is ~70% GTP-charged and the RagC/D heterodimer partner is 35–40% GTP-charged, it might be expected that a wild-type RagA/B-RagC/D heterodimer would be ~50–55% GTP-charged. However, our estimates for the recombinant GFP-streptag-Rag wild-type heterodimers are consistently in the 60–70% range. One potential explanation for this discrepancy is suggested by the crystal structure of the recombinant Gtr1-Gtr2 heterodimer isolated from E. coli (25). Although only GTP is bound to Gtr1 and only GDP is bound to Gtr2, the occupancy of Gtr2 by GDP was ~40% lower than that of Gtr1 by GTP. They found that Mg²⁺ participates in guanyl nucleotide binding to Gtr1 but not to Gtr2 and speculated that Gtr2 may have a lower affinity for guanyl nucleotide than Gtr1 and may lose GDP during isolation. A preferential loss of [³²P]GDP from RagC/D during isolation would result in a spuriously high estimate for the [³²P]GTP content of the wild-type heterodimer.

It is important to emphasize that the high level of RagA/B GTP charging observed is not an artifact of RagA/B charging post-extraction. Although cells are extracted in the presence of Mg²⁺, there is high dilution of cellular guanyl nucleotides. More importantly, during the incubation of the extract with Strep-Tactin (for isolation of recombinant Rag), the [³²P]GTP in the extract is extensively hydrolyzed, reduced from ~60 to ~15% of [³²P]GDP + GTP (Fig. 6C), whereas the Rag-bound nucleotide retrieved from that incubation is ~70% [³²P]GTP. Thus, although nucleotides may be dissociating from the RagC/D partner during purification, nucleotide exchange on RagA/B does not occur under the conditions prevailing in these extracts.

A potential caveat to our conclusion that amino acids regulate the Rag-raptor interaction independently of Rag GTP charging is that it is claimed that amino acid regulation of the raptor-Rag interaction occurs at the cytoplasmic surface of the lysosome (17, 18), and most of our experiments examine the guanyl nucleotide charging of Rag isolated from the whole cell lysate. By cell fractionation and immunocytochemistry, we find that whereas approximately half of endogenous Rag is membrane-associated, differential and sucrose density gradient centrifugation indicate that no more than 5–10% of endogenous or recombinant Rag is recovered with LAMP2-containing, i.e. lysosomal, membranes. If that is so, then only the guanyl nucleotide charging of that small fraction of total Rag may be relevant to mTORC1 regulation. To address this concern, we isolated the fraction of recombinant Rag retained in the lysosomal fraction and found that guanyl nucleotide charging of this fraction of recombinant Rag was no different than that observed for total endogenous and recombinant Rag.

A lysosomal site for amino acid regulation of mTORC1 is attractive because the generation of amino acids from autophagy occurs at this site, and independent evidence indicates that the V-ATPase proton pump participates physically in amino acid activation of mTORC1 (32, 33). The finding that less than 10% of endogenous Rag colocalizes with lysosomes was surprising. Although loss of Rag from this fraction could have occurred during cell disruption and fractionation, it is clear that Rag that remains lysosomally associated, like the bulk of cellular Rag, exhibits high, amino acid-independent GTP charging. Components of the LAMTOR complex, including p18/pdro, p14, and MP1, as well as V-ATPase assemblies, are distributed widely in the late endosomal compartment in addition to the lysosome, and late endosomes may also participate in amino acid regulation of mTORC1 (34). Amino acid sufficiency is reported to promote the binding of raptor to Rag without altering Rag localization or the Rag-LAMTOR association (12, 17). The critical function of Rag in mTORC1 regulation is proposed to be the amino acid-induced colocalization of mTORC1 with Rheb-GTP. However, although Rheb has been found in the Golgi and endoplasmic reticulum (35, 36), and, more recently, with peroxisomes (37) and the mitochondrial outer membrane (38), there is little evidence (39) that Rheb resides in the late endosomal/lysosomal compartment where Rag is bound to LAMTOR. Thus, the steps by which amino acids acting upstream of Rag bring mTORC1 into proximity with active Rheb remain to be fully determined.

A second significant finding of this work relates to the differential effects of Rag mutations on mTORC1 binding and activation. Thus, the RagCS75L mutation, partnered with RagB^{WT}, exhibits much stronger binding of raptor than the RagB^{WT}/RagC^{WT} heterodimer, but neither Rag heterodimer gives robust mTORC1 activation when overexpressed in amino acid-deprived cells, indicating that raptor binding to a Rag heterodimer is not sufficient for mTORC1 activation. This view is further supported by the finding that, with sufficient overexpression of wild-type RagC (and the accompanying increase in endogenous RagA abundance), raptor associates with Rag heterodimers in a constitutive, amino acid-independent manner without alteration of mTORC1 activity either in the presence or absence of amino acids (Fig. 5). Thus, the raptor-Rag association is necessary, but not sufficient, for mTORC activation. An additional amino acid-regulated step is required that results in the effective approximation of mTORC1 with Rheb-GTP (12, 17), its proximate activator. This putative amino acid-dependent step does not involve altered Rheb (9, 11) or Rag GTP charging (Fig. 6 – 8) but may involve an alteration in Rag configuration. RagB^{T399F}/RagC^{WT} and RagB^{WT}/RagC^{WT} bind rap-
tor comparably in vitro and during transient expression (Fig. 1, A and B), whereas only the former gives strong mTORC1 activation (C). Thus, the heterodimer configuration engendered by the RagC/D P-loop mutant partner favors raptor binding but enables little mTOR activation, which depends more strongly on the configuration of the switch I and switch II segments of GTPase domain of the RagA/B partner. There is as yet no information on the structural changes caused by the mutations that render the Rag heterodimer optimally active in mTORC1 regulation. Two reports describe the crystal structure of a Gtr1-Gtr2 heterodimer (20, 25). Both reports describe a U-shaped dimer, with dimerization mediated by the extended C termini and the GTPase domains on the upper limbs of the U. If both Gtr subunits are charged with GTP, their switch regions face in opposite directions, perpendicular to the plane of the dimer with little contact. In contrast, the Gtr1-Gtr2 crystals containing Gtr2 charged with GDP (25) show little change in Gtr1-GTP structure, but the Gtr2 GTPase domain shows an ~28° rotation from its GTP structure, involving the switch I through switch II segments and resulting in a greatly increased contact with the Gtr1 GTPase domain as well as with its own C-terminal domain. How this marked, GDP/GTP-regulated change in Gtr2 structure affects raptor binding and the location of the Rag residues crucial to raptor binding and how mutations such as RagA^{G66L} and RagC^{S75L} alter Rag structure remain to be determined. Although it has been assumed that amino acids promote the optimal Rag configuration by altering guanyl nucleotide content, these data point to the likely operation of other mechanisms, e.g. amino acid-dependent changes in Rag covalent modification or altered Rag protein-protein interactions.

In conclusion, we find that, in cells, the RagA/B partner of Rag heterodimers exhibits 60–70% fractional GTP charging comparable with the overall cellular GTP/GTP+GDP, whereas 35–40% of the guanyl nucleotide bound to the RagC/D partner is GTP. Most significantly, withdrawal of extracellular amino acids, although capable of inhibiting the Rag-raptor interaction and mTORC1 signaling, does not alter Rag guanylyl nucleotide charging. Consequently, the ability of amino acids to promote the binding of mTORC1 to the Rag heterodimer must require some other alteration of Rag, mTORC1, and/or the participation of other proteins. In addition, mTORC1 binding to the Rag heterodimer is not per se sufficient for mTORC1 activation. When bound, the configuration of the GTPase domain of the RagA/B partner plays a critical role that is yet to be defined. Considerable evidence indicates the importance of the Ragulator (17, 18), V-ATPase (32), GATOR/SEAC (26), and FLCN-FNIP1 (30, 40) complexes in the amino acid- and Rag-dependent regulation of mTORC1. The present data indicate, however, that these elements do not act through the amino acid regulation of RagA/B guanylyl nucleotide charging.

REFERENCES

1. Haru, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidaya, S., Tokunaga, C., Avruch, J., and Yonezawa K. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR activation. Cell 110, 177–189
2. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latke, R. R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175
3. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Opplinger, W., and Jenoe, P., and Hall, M. N. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468
4. Laplante, M., and Sabatini, D. M. (2012) mTOR signaling in growth control and disease. Cell 149, 274–293
5. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K., and Avruch, J. (2005) Rheb binding and regulates the mTOR kinase. Curr. Biol. 15, 702–713
6. Huang, J., and Manning, B. D. (2008) The TSC1-TSC2 complex. A molecular switchboard controlling cell growth. Biochem. J. 412, 179–190
7. Nakashima, A., Yoshino, K., Miyamoto, T., Eguchi, S., Oshiro, N., Kikkawa, K., and Yonezawa, K. (2007) Identification of TBC7 having TBC domain as a novel binding protein to TSCI-TSC2 complex. Biochem. Biophys. Res. Commun. 361, 218–223
8. Dibble, C., C., Ellis, W., Monen, S., Qin, W., Klektota, J., Asara, J. M., Finan, P. M., Kviatkowski, D. J., Murphy, L. O., and Manning, B. (2012) TBC1D7 is a third subunit of the TSCI-TSC2 complex upstream of mTORC1. Mol. Cell 47, 535–548
9. Roccio, M., Bos, J. L., and Zwartkruis, F., J. (2006) Regulation of the small GTPase Rheb by amino acids. Oncogene 25, 657–664
10. Haru, K., Yonezawa, K., Weng, O. P., Kozlowski, M. T., Belham, C., and Avruch, J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494; Correction (1998) J. Biol. Chem. 273, 22160
11. Long, X, Ortiz-Vega, S., Lin, Y., and Avruch, J. (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 280, 23433–23436
12. Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., and Sabatini, D. M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501
13. Kim, E., Gorakshka-Hicks, P., Li, L., Neufeld, T. P., and Guan, K. L. (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945
14. Sekiguchi, T., Hirose, E., Nakashima, N., Thoreen, C. C., Bar-Peled, L., and Sabatini, D. M. (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303
15. Bar-Peled, L., Schweitzer, L. D., Zoncu, R., and Sabatini, D. M. (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208
16. Jewell, J. L., Russell, R. C., and Guan, K. L. (2013) Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 14, 133–139
17. Gong, R., Li, L., Liu, Y., Wang, P., Yang, H., Wang, L., Cheng, J., Guan, K. L., and Xu, Y. (2011) Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25, 1668–1673
18. Wittinghofer, A., and Assar, N. (1996) How Ras-related proteins talk to their effectors. Trends Biochem. Sci. 21, 488–491
19. Traut, T. W. (1994) Physiological concentrations of purines and pyrimidines. Mol. Cell Biochem. 140, 1–22
20. Nada, S., Honda, A., Kusai, A., Koike, M., Saito, K., Uchiyama, Y., and Okada, M. (2009) The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J. 28, 477–489
21. Guillaumot, P., Luquin, C., Malek, M., Huber, A. L., Brugiere, S., Garin, J., Grunwald, D., Rénier, D., Pétrilli, V., Lefai, E., Manie, S. N. (2010) Pdro, a protein associated with late endosomes and lysosomes and implicated in cellular cholesterol homeostasis. PLoS ONE 5, e10977
22. Jeong, J. H., Lee, K. H., Kim, Y. M., Kim, D. H., Oh, B. H., and Kim, Y. G. (2012) Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex
Amino Acid Removal Does Not Alter Rag GTP Charging

reveals large structural rearrangements triggered by GTP-to-GDP conversion. *J. Biol. Chem.* 287, 29648–29653

26. Bar-Peled, L., Chantranupong, L., Cherniack, A. D., Chen, W. W., Ottina, K. A., Grabiner, B. C., Spear, E. D., Carter, S. L., Meyerson, M., and Sabatini, D. M. (2013) A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. *Science* 340, 1100–1106

27. Foster, R., Hu, K. Q., Lu, Y., Nolan, K. M., Thissen, J., and Settleman, J. (1996) Identification of a novel human Rho protein with unusual properties. GTPase deficiency and *in vivo* farnesylation. *Mol. Cell Biol.* 16, 2689–2699

28. Boulter, E., Estrach, S., Garcia-Mata, R., and Féral, C. C. (2012) Off the beaten paths. Alternative and crosstalk regulation of Rho GTPases. *FASEB J.* 26, 469–479

29. Riou, P., Kjær, S., Garg, R., Purkiss, A., George, R., Cain, R. J., Bineva, G., Reymond, N., McColl, B., Thompson, A. J., O’Reilly, N., McDonald, N. Q., Parker, P. J., and Ridley, A. J. (2013) 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins. *Cell* 153, 640–653

30. Tsun, Z. Y., Bar-Peled, L., Chantranupong, L., Zoncu, R., Wang, T., Kim, C., Spooner, E., Sabatini, D. M. (2013) The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. *Mol. Cell* 52, 495–505

31. Han, J. M., Jeong, S. J., Park, M. C., Kim, G., Kwon, N. H., Kim, H. K., Ha, S. H., Ryu, S. H., and Kim, S. (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. *Cell* 149, 410–424

32. Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., and Sabatini, D. M. (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H⁺-ATPase. *Science* 334, 678–683

33. Efeyan, A., Zoncu, R., and Sabatini, D. M. (2012) Amino acids and mTORC1. From lysosomes to disease. *Trends Mol. Med.* 18, 524–533

34. Flinn, R. J., Yan, Y., Goswami, S., Parker, P. J., and Backer, J. M. (2010) The late endosome is essential for mTORC1 signaling. *Mol. Biol. Cell* 21, 833–841

35. Buerger, C., DeVries, B., and Stambolic, V. (2006) Localization of Rheb to the endomembrane is critical for its signaling function. *Biochem. Biophys. Res. Commun.* 344, 869–880

36. Hanker, A. B., Mitin, N., Wilder, R. S., Henske, E. P., Tamanoi, F., Cox, A. D., Der, C. J. (2010) Differential requirement of CAAX-mediated post-translational processing for Rheb localization and signaling. *Oncogene* 29, 380–391

37. Zhang, J., Kim, J., Alexander, A., Cai, S., Tripathi, D. N., Dere, R., Tee, A. R., Tait-Mulder, J., Di Nardo, A., Han, J. M., Kwiatkowski, E., Dunlop, E. A., Dodd, K. M., Folkther, R. D., Faust, P. L., Kastan, M. B., Sahin, M., and Walker, C. L. (2013) A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. *Nat. Cell Biol.* 15, 1186–1196

38. Melser, S., Chatelain, E. H., Lavie, J., Mahfouf, W., Jose, C., Obre, E., Goorden, S., Priault, M., Elgersma, Y., Revzani, H. R., Rossignol, R., and Bénard, G. (2013) Rheb regulates mitophagy induced by mitochondrial energetic status. *Cell Metab.* 17, 719–730

39. Saito, K., Araki, Y., Kontani, K., Nishina, H., and Katada, T. (2005) Novel role of the small GTPase Rheb. Its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. *J. Biochem.* 137, 423–430

40. Petit CS, Roczniak-Ferguson A, Ferguson SM. (2013) Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. *J. Cell Biol.* 202, 1107–1122
Amino Acids Activate Mammalian Target of Rapamycin (mTOR) Complex 1 without Changing Rag GTPase Guanyl Nucleotide Charging
Noriko Oshiro, Joseph Rapley and Joseph Avruch

J. Biol. Chem. 2014, 289:2658-2674.
doi: 10.1074/jbc.M113.528505 originally published online December 11, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M113.528505

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 39 references, 13 of which can be accessed free at http://www.jbc.org/content/289/5/2658.full.html#ref-list-1