Comment on “Uncertainty Relation for Photons”

Zhi-Yong Wang, Cai-Dong Xiong, and Qi Qiu

School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, CHINA

In a recent interesting Letter [Phys. Rev. Lett. 108, 140401 (2012)] I. Bialynicki-Birula and his coauthor have derived the uncertainty relation for the photons in three dimensions. However, some of their arguments are problematical, and this impacts their conclusion.

PACS numbers: 03.65.Ta, 03.70.+k

1. The authors of Ref. [1] have confused helicity with spin

Let \(\hat{A}^\mu(x) = (\hat{A}^0, \hat{A}) \) be a four-dimensional (4D) electromagnetic potential, in the Lorentz gauge condition, it can be expanded as (\(k \cdot x = \omega t - k \cdot r \)):

\[
\hat{A}^\mu(x) = \frac{\text{d}^3k}{\sqrt{2\omega(2\pi)^3}} \sum_{s=0}^{3} \eta_\mu(k,s)[c(k,s)\exp(-ik \cdot x) + c^+(k,s)\exp(ik \cdot x)],
\]

where \(\eta_\mu(k,s) \ (s = 0,1,2,3 \ , \mu = 0,1,2,3) \) are four 4D polarization vectors, the four indices of \(s=0,1,2,3 \) describe four kinds of photons, respectively. One can choose

\[
\begin{align*}
\eta_\mu(k,0) &= (1,0,0,0), & \eta_\mu(k,1) &= (0,\varepsilon(k,1)) \\
\eta_\mu(k,2) &= (0,\varepsilon(k,2)), & \eta_\mu(k,3) &= (0,\varepsilon(k,3)),
\end{align*}
\]

where \(\varepsilon(k,i) \ (i = 1,2,3) \) are the 3D linear polarization vectors whose matrix forms are

\[
\varepsilon(k,1) = \frac{1}{|k|} \begin{pmatrix}
 k_2^2k_3 + k_2^2 |k| \\
 k_1^2 + k_2^2 \\
 k_1k_2(k_3 - |k|) \\
 -k_1
\end{pmatrix}, \quad \varepsilon(k,2) = \frac{1}{|k|} \begin{pmatrix}
 k_1k_2(k_3 - |k|) \\
 k_1^2 + k_2^2 \\
 k_1^2 |k| + k_2^2k_3 \\
 -k_1
\end{pmatrix}, \quad \varepsilon(k,3) = \frac{k}{|k|} \begin{pmatrix}
 1 \\
 k_1 \\
 k_2 \\
 k_3
\end{pmatrix}.
\]

One has \(\varepsilon(k,1) \times \varepsilon(k,2) = \varepsilon(k,3) = k/|k| \). Obviously, let \(k = (0,0,k_3) \) and \(k_3 = |k| \geq 0 \),
one has \(\varepsilon(k,1) = (1,0,0) \), \(\varepsilon(k,2) = (0,1,0) \), and \(\varepsilon(k,3) = (0,0,1) \), where \(\varepsilon(k,1) \) and \(\varepsilon(k,2) \) (perpendicular to \(k \)) are two transverse polarization vectors, while \(\varepsilon(k,3) \) (parallel to \(k \)) is the longitudinal polarization vector, in the 3D space they satisfy the orthonormality and completeness relations (\(T \) denotes the matrix transpose, \(I_{3\times3} \) denotes the \(3 \times 3 \) unit matrix):

\[
e^T(k,i)\varepsilon(k,j) = \delta_{ij}, \quad \sum_i \varepsilon(k,i)e^T(k,i) = I_{3\times3}, \quad i,j = 1,2,3.
\]

(4)

The spinor representations of \(\varepsilon(k,i) \) (\(i = 1,2,3 \)) form the circular polarization vectors, i.e.,

\[
e'_1(k) = \varepsilon_1(k) = \frac{\varepsilon(k,1) + i\varepsilon(k,2)}{\sqrt{2}} = \frac{1}{\sqrt{2} |k|} \begin{pmatrix} k_1k_3 - ik_2 |k| \\ k_1 - ik_2 \\ k_2k_3 + ik_1 |k| \\ k_1 - ik_2 \\ -(k_1 + ik_2) \end{pmatrix}, \quad e_0(k) = \varepsilon(k,3),
\]

(5)

where \(e'_1(k) \) denotes the complex conjugate of \(e_1(k) \) (while \(e'_1(k) \) denotes the hermitian conjugate of \(e_1(k) \), and so on). Using Eq. (5) one can prove the orthonormality and completeness relations as follows:

\[
e^\dagger_\lambda(k)e^\lambda_\lambda(k) = \delta_{\lambda\lambda'}, \quad \sum_{\lambda} e^\lambda_\lambda(k)e^\dagger_{\lambda'}(k) = I_{3\times3}, \quad \lambda, \lambda' = \pm 1,0.
\]

(6)

In 3D space, the spin matrices of the electromagnetic field are:

\[
\tau_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ i & 0 & 0 \end{pmatrix}, \quad \tau_2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \tau_3 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

(7)

They form the spin matrix vector \(\tau = (\tau_1, \tau_2, \tau_3) \). Let \(\tau \cdot k = \tau_1k_1 + \tau_2k_2 + \tau_3k_3 \), using Eqs. (5) and (7) one can prove that

\[
\frac{\tau \cdot k}{|k|} e_\lambda(k) = \lambda e_\lambda(k), \quad \lambda = \pm 1,0.
\]

(8)

Eq. (8) implies that \(e_0(k) \) (parallel to \(k \)) denotes the longitudinal polarization vector,
while $e_{\pm}(k)$ (perpendicular to k) correspond to the right- and left-hand circular polarization vectors, respectively, and $\lambda = \pm 1, 0$ represent the spin projections in the direction of k (i.e., $\lambda = \pm 1, 0$ represent the helicities of photons).

For simplicity let us consider the electromagnetic field in vacuum. In the units of $\hbar = c = 1$, in terms of the electromagnetic field intensities $\hat{E}(r,t)$ and $\hat{B}(r,t)$ one can define the Riemann-Silberstein vectors $\hat{F}^{(\pm)}(r,t) = [\hat{E}(r,t) \pm i\hat{B}(r,t)]/\sqrt{2}$. Substituting Eq. (1) into $\hat{E} = -\nabla \hat{A}^0 - \partial \hat{A}^\mu / \partial t$ and $\hat{B} = \nabla \times \hat{A}$ one can prove that (note that $\omega = |k|$)

$$\hat{E} = \int \frac{d^4k}{\sqrt{2\omega(2\pi)^3}} \sum_{i=1}^3 \{ |k| \varepsilon(k,i) [\hat{b}(k,i) \exp(-ik \cdot x) + \hat{b}^\dagger(k,i) \exp(ik \cdot x)] \}, \quad (9)$$

$$\hat{B} = \int \frac{d^4k}{\sqrt{2\omega(2\pi)^3}} \sum_{i=1}^3 \{ k \times \varepsilon(k,i) [\hat{b}(k,i) \exp(-ik \cdot x) + \hat{b}^\dagger(k,i) \exp(ik \cdot x)] \}, \quad (10)$$

where

$$\hat{b}(k,1) = ic(k,1), \quad \hat{b}(k,2) = ic(k,2), \quad \hat{b}(k,3) = i[\hat{c}(k,3) - \hat{c}(k,0)]. \quad (11)$$

Using Eq. (3) one can obtain $k \times \varepsilon(k,1) = |k| \varepsilon(k,2)$, $k \times \varepsilon(k,2) = -|k| \varepsilon(k,1)$, and $k \times \varepsilon(k,3) = (0,0,0)$. Therefore, when the electromagnetic field is described by the 4D electromagnetic potential $\hat{A}^\mu(x)$, there involves four 4D polarization vectors $\eta^\mu(k,s)$ ($s = 0,1,2,3$) together describing four kinds of photons; while described by the electromagnetic field intensities \hat{E} and \hat{B}, there only involves three 3D polarization vectors $\varepsilon(k,i)$ ($i = 1,2,3$), and Eq. (11) shows that the $i = 1,2$ solutions describe two kinds of transverse photons ($s=1, 2$), while the $i = 3$ photons correspond to the admixture of the longitudinal ($s=3$) and scalar ($s=0$) photons. According to QED, only those state vectors (say, $|\Phi\rangle$) are admitted for which the expectation value of the Lorentz gauge condition is satisfied: $\langle \Phi | \partial^\mu \hat{A}_\mu | \Phi \rangle = 0$, which implies that
\[
\{\phi | \hat{b}(k,3) | \phi \} = i \{\phi | [\hat{c}(k,3) - \hat{c}(k,0)] | \phi \} = 0. \tag{12}
\]

Then, we will only take into account the transverse photons. Define
\[
\hat{a}_{\pm}(k) = \sqrt{\omega/2}[\hat{b}(k,1) \mp i \hat{b}(k,2)], \quad \hat{a}_0(k) = \sqrt{\omega/2}\hat{b}(k,3), \tag{13}
\]
one can prove that \(\hat{F}^{(\pm)}(r,t) = [\hat{E}(r,t) \pm i \hat{B}(r,t)]/\sqrt{2} \) are given by
\[
\hat{F}^{(1)}(r,t) = \int \frac{d^3k}{(2\pi)^{3/2}} \epsilon_i(k)[\hat{a}_i(k) \exp(-ik \cdot x) + \hat{a}^+_i(k) \exp(ik \cdot x)], \tag{14}
\]
\[
\hat{F}^{(-1)}(r,t) = \int \frac{d^3k}{(2\pi)^{3/2}} \epsilon_i(k)[\hat{a}_{-i}(k) \exp(-ik \cdot x) + \hat{a}^+_{-i}(k) \exp(ik \cdot x)], \tag{15}
\]
where Eq. (14) is equivalent to Eq. (9) of Ref. [1]. The annihilation and creation operators in Eq. (1) satisfy the commutation relations,
\[
[\hat{c}(k',s'), \hat{c}^+(k,s)] = -g_{ss'} \delta^{(3)}(k - k'), \quad s,s' = 0,1,2,3, \tag{16}
\]
where \(\delta^{(3)}(k' - k) = \delta(k'_1 - k_1) \delta(k'_2 - k_2) \delta(k'_3 - k_3) \), \(\ g_{ss'} = \text{diag}(1, -1, -1, -1) \). Using Eqs. (11), (13) and (16), one has
\[
[\hat{a}_\lambda(k), \hat{a}^+_\lambda'(k')] = \omega \delta_{\lambda \lambda'} \delta^{(3)}(k - k'), \quad \lambda, \lambda' = \pm 1, \tag{17}
\]
with the others vanishing. In particular, one has \([\hat{a}_0(k), \hat{a}^+_0(k')] = 0 \).

Eq. (8) implies that the circular polarization vectors \(\epsilon_{\pm\lambda}(k) \) are the eigenvectors of photonic helicity operator (with the eigenvalues of \(\lambda = \pm 1 \), respectively), which implies that a photon with the polarization vector \(\epsilon_{\lambda}(k) \) has the spin projection of \(\lambda = \pm 1 \) onto the direction of the photon’s momentum, and then Eqs. (14) and (15) imply that \(\hat{F}^{(1)}(r,t) \) and \(\hat{F}^{(-1)}(r,t) \) describe the transverse photons with the helicities of \(\lambda = \pm 1 \), respectively.

On the other hand, taking \(\hat{F}^{(1)}(r,t) \) for example, if its positive-frequency part has the momentum of \(k \in (-\infty, +\infty) \), then its negative-frequency part has the momentum of \(-k \). As a result, if the state vector of \(\hat{a}^+_\lambda(k)|0\rangle \) has the spin of “up”, then the one of \(\hat{a}^+_\lambda(k)|0\rangle \)
has the spin of “down”, but both of them have positive helicity (because \(\hat{F}(r,t) \) has positive helicity). That is, both the annihilation and creation operators in Eq. (9) of Ref. [1] have positive helicity, while their spins are respectively “up” and “down”. Therefore, the authors of Ref. [1] have confused helicity with spin, and the statements before Eq. (9) in Ref. [1] are not appropriate.

BTW, in terms of our circular polarization vector \(e_\lambda(k) \), one can express the normalized vector \(e(k) \) given by Eq. (10) in Ref. [1] as

\[
e(k) = \frac{k_1 - i k_2}{k_1^2 + k_2^2} e_1(k) = \exp(i \theta)e_1(k), \quad \theta = -\arctan(k_2/k_1),
\]

Then the normalized vector \(e(k) \) is also the eigenvector of Eq. (8) with the eigenvalue \(\lambda = 1 \), i.e., it is also the right-hand circular polarization vector. In fact, rotating \(e_{\pm_1}(k) \) round the wave number vector \(k \), one can obtain another right- and left-hand circular polarization vectors, respectively. The polarization vectors \(e_{\pm_1}(k) \) have the following properties (\(\lambda = \pm 1 \)):

\[
\begin{align*}
\hat{e}_\lambda^\dagger(-k)e_\lambda(k) &= 0, \quad \frac{\partial}{\partial k}\hat{e}_\lambda^\dagger(-k)e_\lambda(k) = (0, 0, 0), \quad \frac{\partial^2}{\partial k^2}\hat{e}_\lambda^\dagger(-k)e_\lambda(k) = 0, \\
\left[\frac{\partial}{\partial k} e_\lambda^\dagger(k) \right] e_\lambda^\dagger(k) &= \frac{-i \lambda}{||k||}(k_2^2, 0, 0), \quad \frac{\partial}{\partial k} \left\{ \frac{\partial}{\partial k} e_\lambda^\dagger(k) e_\lambda^\dagger(k) \right\} = 0, \\
\left[\frac{\partial^2}{\partial k^2} e_\lambda^\dagger(k) \right] e_\lambda^\dagger(k) &= \frac{-2}{||k||(||k||+k_3^2)}.
\end{align*}
\]

Note that \(\partial^2/\partial k^2 = (\partial/\partial k)\cdot(\partial/\partial k) = \partial^2/\partial k_1^2 + \partial^2/\partial k_2^2 + \partial^2/\partial k_3^2 \), and so on. The vector \(e_\lambda(k) \) is expressed in matrix forms, such that the scalar product of \(e_\lambda(k) \) with itself is \(e_\lambda^\dagger(k)e_\lambda(k) \), for example. However, the vector such as \([\hat{\partial} e_\lambda^\dagger(k)/\hat{\partial} k] e_\lambda(k) \) is expressed in the usual form, because its vectorial property comes from \(\hat{\partial}/\hat{\partial} k \).

2. Eq. (15) (and then Eq. (27)) in Ref. [1] is wrong
To show this, similar to Ref. [1], we replace all field operators with the corresponding classical fields, and rewrite Eqs. (14) and (15) as \((\hbar = c = 1) \)

\[
F^{(\lambda)}(r, t) = \int \frac{d^3k}{(2\pi)^{3/2}} e_x(k)[a_x(k)\exp(-ik\cdot x) + a_{x}^\dagger(k)\exp(ik\cdot x)].
\] (23)

Note that our \(a_{\lambda}(k) \) are identical with \(f_{\lambda}(k) \) in Ref. [1], while our \(\hat{a}_{\lambda}(k) \) are identical with \(a_{\lambda}(k) \) in Ref. [1]. To calculate an energy moment, one should simultaneously take into account two kinds of transverse photons with the helicities of \(\lambda = \pm 1 \), which also lies in the fact that, the field quantities of \(E(r, t) \) and \(B(r, t) \) together are equivalent to the ones of \(F^{(1)}(r, t) \) and \(F^{(-1)}(r, t) \) together, rather than to \(F^{(1)}(r, t) \) only. Then, in spite of \(\left| F^{(1)} \right| = \left| F^{(-1)} \right| \), conceptually, the first and second moments of the classical energy density should be

\[
M_1 = \frac{1}{2} \int d^3r \left[\left| F^{(1)} \right|^2 + \left| F^{(-1)} \right|^2 \right], M_2 = \frac{1}{2} \int d^3r r^2 \left[\left| F^{(1)} \right|^2 + \left| F^{(-1)} \right|^2 \right].
\] (24)

For the moment one has \(a_{\lambda}(k)a_{\lambda}^\dagger(k') = a_{\lambda'}^\dagger(k')a_{\lambda}(k) \) (\(\lambda, \lambda' = \pm 1 \)). For \(t = 0 \), one can prove that (see Appendix A)

\[
M_1 = -i \int d^3k [a_i(k)D_k a_i^\dagger(k) - a_{i}^\dagger(k)D_k a_i(k)],
\] (25)

\[
M_2 = \int d^3k \left\{ \frac{1}{|k|}[|a_i(k)|^2 + |a_{i}^\dagger(k)|^2] - [a_i(k)D_k a_i^\dagger(k) + a_{i}^\dagger(k)D_k a_i(k)] \right\},
\] (26)

where \(D_k = \partial/\partial k - iA \) and \(A = (-k_z, k_i, 0)/|k|(|k| + k_z) \). Our Eq. (26) is different from Eq. (15) in Ref. [1], such that in Ref. [1] the conclusion based on Eqs. (15) and (27) are questionable. Using the facts that \(M_1 \) is a real number and \(M_2 \) is nonegative definite, one can obtain some relations.

3. The definition Eq. (8) in Ref. [1] is not reasonable

The classical energy is
\[M_0 = (1/2) \int \text{d}^3 r \left[|F^{(0)}|^2 + |F^{(-)}|^2 \right] = \int \text{d}^3 k [d_1(k)^2 + d_{-1}(k)^2]. \]

(27)

Let us denote

\[\langle r^n \rangle = \frac{M_n}{M_0} = \frac{(1/2) \int \text{d}^3 r r^n \left[|F^{(0)}|^2 + |F^{(-)}|^2 \right]}{(1/2) \int \text{d}^3 r \left[|F^{(0)}|^2 + |F^{(-)}|^2 \right]}, \quad n = 1, 2. \]

(28)

Obviously, \(\langle r^n \rangle = M_n/M_0 \) have the dimension of \([\text{length}]^n\). One can define

\[(\Delta r)^2 = \langle r^2 \rangle - \langle r \rangle^2. \]

(29)

We do not think the definition Eq. (8) in Ref. [1] is reasonable. Instead, we think that \(\Delta r \) should be defined via Eq. (29).

To provide a heuristic insight, let us consider a single-mode field with the frequency \(\omega = |k| \) and let \(a_{-1}(k) = 0, |a_1(k)|^2 = 1 \). For the moment one has \(\partial a_1^*(k)/\partial k = 0 \), \(M_0 = 1, \quad \langle r \rangle = M_1 = -A, \quad \langle r^2 \rangle = M_2 = -L \), and then \(\Delta r = \sqrt{-L - |A|^2} = 1/|k| \).

4. Conclusion

The statements before Eq. (9) in Ref. [1] have confused the concept of helicity with that of spin; Eq. (15) in Ref. [1] should be replaced with our Eq. (26). As a result, in Ref. [1] the conclusions related to (15) and Eq. (27), etc., have not been proven. Moreover, conceptually, we do not think the definition Eq. (8) in Ref. [1] is reasonable. Instead, we think that \(\Delta r \) should be defined via Eq. (29).

*E-mail: zywang@uestc.edu.cn

[1] I. Bialynicki-Birula and Z. Bialynicka-Birula, Phys. Rev. Lett. 108, 140401 (2012).

Appendix A Proof of Eq. (26)

Let us calculate the second moment of the classical energy density
\[M_2 = \frac{1}{2} \int d^3rr^2 \left(|F^{(1)}|^2 + |F^{(-1)}|^2 \right) = \int d^3rr^2 |F^{(1)}|^2, \]
\quad (a1)

where \((k \cdot x = \omega t - k \cdot r)\)

\[F^{(1)}(r, t) = \int \frac{d^3k}{(2\pi)^3/2} \epsilon_1(k) [a_1(k) \exp(-ik \cdot x) + a_1^*(k) \exp(ik \cdot x)]. \]
\quad (a2)

Substituting (a2) into (a1), one has (note that the vectors \(e_i(k) \) is expressed in matrix form, such that the scalar product of \(e_i(k) \) with itself is \(e_i(k) e_i(k) \)):

\[M_2 = \int d^3rr^2 \left[\int \frac{d^3k'}{(2\pi)^3/2} \epsilon_1(k') [a_1^*(k') \exp(ik' \cdot x) + a_{-1}(k') \exp(-ik' \cdot x)] \right] \]

\[= \int d^3k \int d^3k' \int r^2 \frac{d^3r}{(2\pi)^3} \]

\[\{ e_i^*(k') a_1^*(k') e_i(k) a_1(k) \exp(ik' \cdot x) \exp(-ik \cdot x) \]
\[+ e_i^*(k') a_{-1}(k') e_i(k) a_{-1}^*(k) \exp(-ik' \cdot x) \exp(ik \cdot x) \]
\[+ e_i^*(k') a_1^*(k') e_i(k) a_{-1}(k) \exp(ik' \cdot x) \exp(-ik \cdot x) \]
\[+ e_i^*(k') a_{-1}(k') e_i(k) a_1(k) \exp(-ik' \cdot x) \exp(-ik \cdot x) \}

\[= -\int d^3k \int d^3k' \int \frac{d^3r}{(2\pi)^3} \]

\[\{ e_i^*(k') a_1^*(k') e_i(k) a_1(k) \frac{\partial^2}{\partial k'^2} \exp(ik' \cdot x) \exp(-ik \cdot x) \]
\[+ e_i^*(k') a_{-1}(k') e_i(k) a_{-1}^*(k) \frac{\partial^2}{\partial k'^2} \exp(-ik' \cdot x) \exp(ik \cdot x) \]
\[+ e_i^*(k') a_1^*(k') e_i(k) a_{-1}(k) \frac{\partial^2}{\partial k'^2} \exp(ik' \cdot x) \exp(-ik \cdot x) \]
\[+ e_i^*(k') a_{-1}(k') e_i(k) a_1(k) \frac{\partial^2}{\partial k'^2} \exp(-ik' \cdot x) \exp(-ik \cdot x) \} \quad . \]
\quad (a3)

Using

\[\int \frac{d^3r}{(2\pi)^3} \exp[\pm i(k' - k) \cdot r] = \delta^{(3)}(k' - k), \int \frac{d^3r}{(2\pi)^3} \exp[\pm i(k' + k) \cdot r] = \delta^{(3)}(k' + k), \]
\quad (a4)

one has
Using \(\frac{\partial^2}{\partial k'^2} = \frac{\partial^2}{\partial k_1'^2} + \frac{\partial^2}{\partial k_2'^2} + \frac{\partial^2}{\partial k_3'^2} \), \(\delta^{(3)} (k' - k) = \delta (k'_1 - k_1) \delta (k'_2 - k_2) \delta (k'_3 - k_3) \), and

\[
f(x')[\frac{\partial^n}{\partial x^n} \delta (x' - x)] = (-1)^n \delta (x' - x) [\frac{\partial^n}{\partial x^n} f(x')], \quad (a6)
\]

one has

\[
M_2 = - \int d^3k \int d^3k' \left\{ \frac{\partial^2}{\partial k'^2} e_i^*(k') a_i (k') \exp(i \omega t') e_i (k) a_i (k) \exp(-i \omega t) \delta^{(3)} (k' - k) + \frac{\partial^2}{\partial k'^2} e_i^*(k') a_i (k') \exp(-i \omega t') e_i (k) a_i (k) \exp(-i \omega t) \delta^{(3)} (k' - k) \\
+ \frac{\partial^2}{\partial k'^2} e_i (k') a_i^* (k') \exp(i \omega t') e_i (k) a_i^* (k) \exp(i \omega t) \delta^{(3)} (k' + k) + \frac{\partial^2}{\partial k'^2} e_i (k') a_i^* (k') \exp(-i \omega t') e_i (k) a_i^* (k) \exp(-i \omega t) \delta^{(3)} (k' + k) \right\} = - \int d^3k \left\{ \frac{\partial^2}{\partial k'^2} e_i^*(k) a_i (k) \exp(i \omega t) e_i (k) a_i (k) \exp(-i \omega t) + \frac{\partial^2}{\partial k'^2} e_i^*(k) a_i (k) \exp(-i \omega t) e_i (k) a_i (k) \exp(i \omega t) \\
+ \frac{\partial^2}{\partial k'^2} e_i (k) a_i^* (k) \exp(i \omega t) e_i (k) a_i^* (k) \exp(i \omega t) + \frac{\partial^2}{\partial k'^2} e_i (k) a_i^* (k) \exp(-i \omega t) e_i (k) a_i^* (k) \exp(-i \omega t) \right\}. \quad (a7)
\]

where
\[B_1 = \frac{\partial^2}{\partial k^2} e_i^t(k) a_i^t(k) \exp(i\omega t) e_i(k) a_i(k) \exp(-i\omega t), \quad (a8) \]
\[B_2 = \frac{\partial^2}{\partial k^2} e_i^t(k) a_{-1}(k) \exp(-i\omega t) e_i(k) a_{-1}(k) \exp(i\omega t), \quad (a9) \]
\[B_3 = \frac{\partial^2}{\partial k^2} e_i^t(-k) a_i^t(-k) \exp(i\omega t) e_i(k) a_i(k) \exp(i\omega t), \quad (a10) \]
\[B_4 = \frac{\partial^2}{\partial k^2} e_i^t(-k) a_{-1}(k) \exp(-i\omega t) e_i(k) a_{-1}(k) \exp(-i\omega t). \quad (a11) \]

One can prove that
\[e_i^t(-k)e_i(k) = 0, \quad \left[\frac{\partial}{\partial k} e_i^t(-k) \right] e_i(k) = (0, 0, 0), \quad \left[\frac{\partial^2}{\partial k^2} e_i^t(-k) \right] e_i(k) = 0, \quad (a12) \]
and then one has \(B_3 = B_4 = 0 \), it follows that
\[
M_2 = -\int \! \! d^3 k \\ \left\{ \left[\frac{\partial^2}{\partial k^2} e_i^t(k) a_i^t(k) \exp(i\omega t) e_i(k) a_i(k) \exp(-i\omega t) \right] + \left[\frac{\partial^2}{\partial k^2} e_i^t(k) a_{-1}(k) \exp(-i\omega t) e_i(k) a_{-1}(k) \exp(i\omega t) \right] \right\} \quad (a13)
\]
Here the vectors \(e_i(k) \) is expressed in matrix form, such that the scalar product of \(e_i(k) \) with itself is \(e_i^t(k)e_i(k) \). However, the vector such as \([\frac{\partial}{\partial k} e_i^t(k) / \frac{\partial}{\partial k}] e_i(k) \) is expressed in the usual form, because its vectorial property comes from \(\frac{\partial}{\partial k} \). Let \(t = 0 \), (a13) becomes
\[
M_2 = -\int \! \! d^3 k \\ \left\{ \left[\frac{\partial^2}{\partial k^2} e_i^t(k) a_i^t(k) \exp(i\omega t) e_i(k) a_i(k) + \left[\frac{\partial^2}{\partial k^2} e_i^t(k) a_{-1}(k) \exp(-i\omega t) e_i(k) a_{-1}(k) \right] \right\} \quad (a14)
\]
where
\[
\frac{\partial^2}{\partial k^2} e_i^t(k) a_i^t(k) = \left[\frac{\partial^2}{\partial k^2} e_i^t(k) a_i^t(k) + 2\left[\frac{\partial}{\partial k} e_i^t(k) \right] \left[\frac{\partial}{\partial k} a_i^t(k) \right] + e_i^t(k) \frac{\partial^2}{\partial k^2} a_i^t(k), \quad (a15) \right]
\]
\[
\frac{\partial^2}{\partial k^2} e_i^t(k) a_{-1}(k) = \left[\frac{\partial^2}{\partial k^2} e_i^t(k) a_{-1}(k) + 2\left[\frac{\partial}{\partial k} e_i^t(k) \right] \left[\frac{\partial}{\partial k} a_{-1}(k) \right] + e_i^t(k) \frac{\partial^2}{\partial k^2} a_{-1}(k). \quad (a16) \right]
\]
Substituting (a15) and (a16) into (a14), and define

\[A = i \left[\frac{\partial}{\partial k} e_i^+(k) e_i(k) \right] = \frac{1}{|k|(|k| + k_3)} (-k_2, k_1, 0), \quad L = \left[\frac{\partial^2}{\partial k^2} e_i^+(k) e_i(k) \right] = \frac{-2}{|k|(|k| + k_3)}, \]

one has (note that \(e_i^+(k) e_i(k) = 1 \))

\[M_2 = - \int d^3k \{ \mathcal{L}[a_i^+(k)a_i(k) + a_{i-1}(k)a_{i-1}^+(k)]
- 2i A \cdot \left[\frac{\partial}{\partial k} a_i^+(k) \right] a_i(k) - 2i A \cdot \left[\frac{\partial}{\partial k} a_{i-1}(k) \right] a_{i-1}^+(k)
+ \left[\frac{\partial^2}{\partial k^2} a_i^+(k) \right] a_i(k) + \left[\frac{\partial^2}{\partial k^2} a_{i-1}(k) \right] a_{i-1}^+(k) \} \]

(a18)

Let \(D_k = \partial / \partial k - i A \), using \(\frac{\partial}{\partial k} A = \partial A_1 / \partial k_1 + \partial A_2 / \partial k_2 + \partial A_3 / \partial k_3 = 0 \), one has

\[a_i D_k^+ a_i^* = a_i \left(\frac{\partial}{\partial k} - i A \right) \left(\frac{\partial}{\partial k} - i A \right) a_i^* = a_i \left(\frac{\partial^2}{\partial k^2} a_i^* \right) - 2i A \cdot \left(\frac{\partial}{\partial k} a_i^* \right) a_i - |A|^2 |a_i|^2, \]

\[a_{i-1}^* D_k^+ a_{i-1} = a_{i-1}^* \left(\frac{\partial}{\partial k} - i A \right) \left(\frac{\partial}{\partial k} - i A \right) a_{i-1} = a_{i-1}^* \left(\frac{\partial^2}{\partial k^2} a_{i-1} \right) - 2i A \cdot \left(\frac{\partial}{\partial k} a_{i-1} \right) a_{i-1}^* - |A|^2 |a_{i-1}|^2. \]

(a19)

(a20)

Using (a19) and (a20), and consider that \(L + |A|^2 = -1 / |k|^2 \) one can obtain Eq. (26), i.e.,

\[M_2 = \frac{1}{2} \int d^3r r^2 \left(|F^{(1)}|^2 + |F^{(-1)}|^2 \right) = \int d^3r \left| F^{(1)} \right|^2 \]

\[= \int d^3k \left[\frac{1}{|k|^2} [a_i(k)]^2 + [a_{i-1}(k)]^2 \right] - [a_i(k) D_k^+ a_i^+(k) + a_{i-1}(k) D_k^+ a_{i-1}^+(k)] \]

(a21)

BTW, likewise, one can prove that

\[M_1 = \frac{1}{2} \int d^3r \left[|F^{(1)}|^2 + |F^{(-1)}|^2 \right] = \int d^3r \left| F^{(1)} \right|^2 \]

\[= -i \int d^3k [a_i(k) D_k^+ a_i^+(k) - a_{i-1}(k) D_k^+ a_{i-1}^+(k)] \]

\[M_0 = \frac{1}{2} \int d^3r \left[|F^{(1)}|^2 + |F^{(-1)}|^2 \right] = \int d^3r \left| F^{(1)} \right|^2 \]

\[= \int d^3k [a_i(k)]^2 + [a_{i-1}(k)]^2 \]

(a22)

(a23)