Inorganic fertilizers efficiency with using the liquid organic fertilizer to increase the cabbage yield (*Brassica oleracea* var. *capitata* L.)

A E Marpaung1,*, B Karo1 and S Barus1

1 Research and Assessment Installation of Agricultural Technology Berastagi (Indonesia Vegetables Research Institute) Jl. Raya Medan-Berastagi Km. 60 Berastagi, 22156

* E-mail: agustinamarpaung@yahoo.com

Abstract. Using organic materials as fertilizer has contributed a lot to protecting the environment and the future of human life through sustainable agriculture. Local resources are used in such a way that synthetic nutrients can be reduced as low as possible. This study aims to determine the effect of liquid organic fertilizer (LOF) on cabbage yield with inorganic fertilizers’ efficiency. The research was conducted in Berastagi experimental farm, Karo regency, with the soil type and altitude of 1,340 m asl, which began from July - September 2018. The design used was a randomized block design consisting of 16 treatments with three replication. The treatments tested were: A. Without inorganic fertilizer + LOF 1, B. 25% inorganic fertilizer + LOF 1, C. 50% inorganic fertilizer + LOF 1, D. 75% inorganic fertilizer + LOF 1, E. 100% inorganic fertilizer + LOF 1, F. Without inorganic fertilizer + LOF 2, G. 25% inorganic fertilizer + LOF 2, H. 50% inorganic fertilizer + LOF 2, I. 75% inorganic fertilizer + LOF 2, J. 100% Inorganic Fertilizer + LOF 2, K. Without inorganic fertilizers + LOF 3, L. 25% inorganic Fertilizer + LOF 3, M. 50% inorganic Fertilizer + LOF 3, N. 75% inorganic Fertilizer + LOF 3, O. 100% Inorganic Fertilizer + LOF 3, P. 100% Inorganic Fertilizer + without LOF (Control). The results showed that, in general, the application of liquid organic fertilizer for rabbit urine, fish fertilizer, and fish teillation could stimulate the growth and yield of cabbage better than inorganic fertilizers. Applicationthe liquid organic fertilizer can increase the height growth of cabbage was 0.67 - 0.88%, plant diameter was 0.33 - 2.56%, crop weight per plant was 5.14 - 5.84%, production per plot was 2.96 – 9.78%, and the crop ratio of 3.36 - 10.84% compared to the use of inorganic fertilizers.

1. Introduction

Generally, farmers in Indonesia cultivate a lot of cabbage in the highlands. Cabbage is a vegetable rich in vitamins such as vitamin A 200 IU, B 20 IU, and C 120 IU, which are very important for health. The need for vegetables is increasing with the increasing population. Therefore, vegetables, especially cabbage, need to be increased to provide these needs [1],[2].

Currently, cabbage vegetable farmers in general still use fertilization with synthetic chemical fertilizers. The continued use of synthetic chemical fertilizers has had a negative impact on the soil and the environment. The negative impact that arises is damaging the soil structure (physical) and the environment. The soil becomes hard in the dry season and sticky in the rainy season with decreased soil porosity. Synthetic chemical fertilizers do not have properties that can directly improve soil's...
physical and biological functions[3],[4]. Based on the previous, it is necessary to have organic fertilizers that can increase cabbage production, such as synthetic chemical fertilizers.

Increasing vegetable productivity can be done by handling proper cultivation, one of which is fertilization. Fertilization can be done using synthetic chemical fertilizers and organic fertilizers [5]. Organic fertilizers have an essential role in improving the soil's physical, chemical, and biological properties. Although the nutrient content in organic fertilizers is relatively low, soil chemical properties far exceed synthetic chemical fertilizers [6].

One of the organic fertilizers is in the form of a liquid, one of the essential components in organic agriculture, which contains many macros, micro, hormone, and amino acids needed by plants. Liquid organic fertilizers have several benefits, including reducing the use of chemical fertilizers [7]. Liquid organic fertilizers can also increase the growth and production of mustard plants [8][9], tomatoes [10][11], soybeans [12], sweet corn [13], scallions [14]. The provision of liquid organic fertilizer from kirinyu and rabbit manure can increase cabbage growth and production[15]. Provision of liquid organic fertilizer from rabbit manure as the raw material can increase tuber weight per plant (49.21%), output per plot (48.35%), and tuber length (12.83%) compared without LOF on carrots [16].

Liquid organic fertilizer, which is used as the primary raw material, uses local natural ingredients around the agricultural location, such as rabbit manure, fish fertilizer, fish teillation, and coconut water. Rabbit urine has higher N and mucosa than other animals, which can bind available nutrients [17]. Fertilizers made from fish raw as a nutrient source can also induce Actinomycetes and Rhizobacteria groups that play a role in producing growth hormones around plant roots [18]. Coconut water can replace synthetic root stimulants as a growth regulator, where the results of [19] research resulted in faster sprouting time, shoot length, number of leaves, length, and high root wet weight in tin seeds.

This research aims to determine the effect of giving liquid organic fertilizer on cabbage yield with inorganic fertilizers' efficiency.

2. Methods
The research was conducted at Berastagi experimental farm, Dolat Rayat District, Karo District, with andisol soil type, the altitude of 1,340 m asl, the temperature of 22-28°C, humidity 80-90%, and rainfall 2,500 mm / year, and starting in July until September 2018.

The research used non-factorial Randomized Block Design (RBD) with three replications. The treatments tested were: A. Without inorganic fertilizer + liquid organic fertilizer (LOF) 1, A. Without inorganic fertilizer + LOF 1, B. 25% inorganic fertilizer + LOF 1, C. 50% inorganic fertilizer + LOF 1, D. 75% inorganic fertilizer + LOF 1, E. 100% inorganic fertilizer + LOF 1, F. Without inorganic fertilizer + LOF 2, G. 25% inorganic fertilizer + LOF 2, H. 50% inorganic fertilizer + LOF 2, I. 75% inorganic fertilizer + LOF 2, J. 100% Inorganic Fertilizer + LOF 2, K. Without inorganic fertilizers + LOF 3, L. 25% inorganic Fertilizer + LOF 3, M. 50% inorganic Fertilizer + LOF 3, N. 75% inorganic Fertilizer + LOF 3, O. 100% Inorganic Fertilizer + LOF 3, P. 100% Inorganic Fertilizer + without LOF (Control)

Making Liquid Organic Fertilizer
- LOF 1 (LOF rabbit urine) = EM0 + Coconut water + Rabbit urine (2.5: 5: 4.5)
- LOF 2 (LOF fish fertilizer) = EM0 + Coconut water + fish fertilizer (2.5: 5: 2)
- LOF 3 (LOF of fish teillation) = EM0 + Coconut water + fish teillation (2.5: 5: 2)

All ingredients are cooked to a boil and then fermented for one month.

Experimental plots were made with a size of 1 m x 5 m; the distance between treatment plots was 0.75 m, and the distance between replicates was 1 m. The total population of cabbage consists of 24 plants. Then given manure according to the tested treatment with a dose of 300 g per plant and given at planting. Watering is done when it does not rain. Weeding depends on the growth of weeds in the field. According to the type tested with a concentration of 20 ml LOF/liter of water, the next fertilization of liquid organic fertilizer is given by spraying 1 x 1 week, starting at the age of 2 weeks after the plant (WAP) until the plant at 10 WAP. Pest and disease control is carried out every 1 x 7 days using insecticides with active ingredients. Sipermetrin 50 g / l, Piridaben 135 g / l, and Spinetoram 120 g / l, with a concentration of 0.5 - 1.0 cc / l water and 2 g chlorothalonil fungicide. / l water and
azoxystrobin 200 g / l + difenoconazole 125 g / l 0.5 - 1 ml / l water. Harvesting is carried out at the age of 3 months after planting. The variables observed were as follows: plant height and diameter at 1 and 2 months after plant, leaf width at two months after plant, crop weight per plant, production per plot, and crop ratio.

The observed data were analyzed with the F test and continued with the HSD average difference test at the 5% level.

3. Results and discussion

3.1. Plant height, plant diameter, and leaf width

Based on the results of the analysis of variance, it showed that the fertilization treatment had no significant effect on the growth of plant height, plant width, and cabbage leaf width at the age of 1 and 2 months after planting (Table 1).

Varieties	Plant Height (cm)	Plant Diameter (cm)	Leaf Width (cm)		
	1 MAP	2 MAP	1 MAP	2 MAP	
A. 0% + LOF1	31.08 a	37.25 a	55.38 a	65.25 a	30.25 a
B. 25% + LOF1	30.08 a	36.08 a	54.50 a	65.88 a	27.50 a
C. 50% + LOF1	31.42 a	35.33 a	53.00 a	66.04 a	27.83 a
D. 75% + LOF1	30.58 a	36.67 a	54.88 a	64.58 a	28.50 a
E. 100% + LOF1	28.54 a	32.58 a	51.46 a	61.96 a	28.67 a
F. 0% + LOF2	28.33 a	37.33 a	51.42 a	63.13 a	28.67 a
G. 25% + LOF2	31.33 a	35.33 a	53.25 a	66.79 a	27.67 a
H. 50% + LOF2	31.92 a	34.58 a	55.54 a	64.79 a	26.92 a
I. 75% + LOF2	31.46 a	36.50 a	54.13 a	67.17 a	29.58 a
J. 100% + LOF2	31.38 a	36.00 a	56.83 a	64.67 a	27.50 a
K. 0% + LOF3	29.42 a	36.00 a	50.88 a	63.79 a	27.50 a
L. 25% + LOF3	29.83 a	34.00 a	52.79 a	62.88 a	28.42 a
M. 50% + LOF3	30.92 a	35.58 a	51.71 a	64.04 a	29.33 a
N. 75% + LOF3	31.08 a	35.17 a	53.46 a	65.00 a	27.83 a
O. 100% + LOF3	31.63 a	36.00 a	53.33 a	65.04 a	28.92 a
P. 100% + 0	30.46 a	37.00 a	53.25 a	63.58 a	30.25 a

| CV (%) | 5.94 | 5.92 | 6.65 | 4.57 | 7.11 |

Note: Mean followed by the same letters on the same column is not significantly different according to honestly significantly different test at 5% level

MAP = Month after Planted
LOF 1 (LOF rabbit urine), LOF 2 (LOF fish fertilizer), LOF 3 (LOF of teillation)

Cabbage growth showed no significant difference between inorganic fertilization treatment with the reduced inorganic fertilization addition of liquid organic fertilizer and only LOF application. Application of the LOF can increase the height growth of cabbage was 0.67 - 0.88% and plant diameter were 0.33 - 2.56% compared to inorganic fertilizers. The highest gain of cabbage was found in the treatment of liquid organic fertilizer 1 (rabbit urine) and liquid organic fertilizer 2 (fish fertilizer), each 37.25 cm and 37.33 cm. This shows that liquid organic fertilizer can be used by cabbage for growth. This is consistent with the research results of [20] that the rabbit manure liquid organic fertilizer can support cabbage plants’ vegetative growth. Likewise, the application of fish fertilizer can also increase cabbage growth [21].

Plant diameter at the age of 2 months after plant, application of the liquid organic fertilizer rabbit manure and fish teillation without inorganic fertilizers produced a higher plant diameter, each 65.25 63.79 cm. Likewise, with leaf width, the treatment liquid organic fertilizer of rabbit urine without inorganic fertilizers resulted in the most sweeping leaves than other treatments. This is consistent with the research results of [22], that rabbit urine can also support the height growth of shallot plants.
3.2. Crop weight per plant, production, and crop ratio

The application of liquid organic fertilizer resulted in cabbage crop weight per plant, production, and crop ratio, which were not significantly different from the application of 100% chemical fertilizers (Table 2). This shows that using liquid organic fertilizers can increase cabbage production even though chemical fertilizers are reduced and even without being used.

Treatments	Crop Weight (g)	Production (kg/5 m²)	Crop Ratio (%)
A. 0% + LOF	1.36 a	32.73 a	53.68 a
B. 25% + LOF	1.47 a	31.60 a	55.15 a
C. 50% + LOF	1.38 a	32.50 a	49.96 a
D. 75% + LOF	1.52 a	36.20 a	52.46 a
E. 100% + LOF	1.28 a	29.67 a	49.91 a
F. 0% + LOF2	1.26 a	30.43 a	51.23 a
G. 25% + LOF2	1.37 a	34.57 a	50.32 a
H. 50% + LOF2	1.42 a	34.10 a	53.03 a
I. 75% + LOF2	1.38 a	33.47 a	52.25 a
J. 100% + LOF2	1.41 a	34.67 a	52.21 a
K. 0% + LOF3	1.37 a	31.20 a	55.53 a
L. 25% + LOF3	1.35 a	31.63 a	52.38 a
M. 50% + LOF3	1.35 a	31.47 a	54.55 a
N. 75% + LOF3	1.31 a	29.23 a	51.11 a
O. 100% + LOF3	1.46 a	34.57 a	54.84 a
P. 100% + 0	1.29 a	29.53 a	49.51 a

CV (%) 13.88 13.15 6.36

Note: Mean followed by the same letters on the same column is not significantly different according to honestly significantly different test at 5% level

LOF = Liquid organic fertilizer
LOF 1 (LOF rabbit urine), LOF 2 (LOF fish fertilizer), LOF 3 (LOF of fish teillation)

In general, the cabbage crop weight per plant, production per plot, and crop ratio in the use of liquid organic fertilizers resulted have higher values than the use of 100% chemical fertilizers, although no significant. The liquid organic fertilizer can increase the crop weight per plant was 5.14 - 5.84%, production per plot was 2.96 – 9.78%, and the crop ratio of 3.36 - 10.84% inorganic fertilizers. The highest weight of cabbage crops per plant and production per plot was found in the treatment of using 75% inorganic fertilizer + LOF 1 (rabbit urine), each 1.52 kg, and 35.20 kg per plot. Meanwhile, the highest yield ratio resulted in using LOF 3 (fish teillation) without inorganic fertilizers, 55.53%. This is following the research results by [7], which shows that using liquid organic fertilizers can reduce the use of chemical fertilizers on chicory and increase growth and production. The obtained efficiency of urea fertilizer was 50% and 75 ml/L of liquid organic fertilizer treatment was able to increase the growth and production of chicory, which was higher than the 100% chemical fertilizer treatment although it was not significantly different.

4. Conclusion

In general, the application of liquid organic fertilizer for rabbit urine, fish fertilizer, and fish teillation could stimulate the growth and yield of cabbage better than inorganic fertilizers. Application the liquid organic fertilizer can increase the height growth of cabbage was 0.67 - 0.88%, plant diameter was 0.33 - 2.56%, crop weight per plant was 5.14 - 5.84%, production per plot was 2.96 – 9.78%, and the crop ratio of 3.36 - 10.84% compared to the use of inorganic fertilizers.
References

[1] Kumawatari NPM, Supartha IW and Yuliadih KA 2013 Struktur Komunitas dan Serangan Hama-Hama Penting Tanaman Kubis (Brassica oleracea L.) E-Jurnal Agrokoteknologi Tropika 2 252 ISSN: 2301- 6515https://ojs.unud.ac.id/index.php/JAT/article/view/7014

[2] Mujib A, Syabana MA and Hastuti D 2014 Uji Efektivitas Larutan Pesticida Nabati terhadap Hama Ulat Krop (Crocidolomia pavonana L.) pada Tanaman Kubis (Brassica oleracea) Jurnal Ilmu Pertanian dan Perikanan 3 67 ISSN 2302-6308 http://umbidharma.org/jipp

[3] Mutryarny E, Endriani and Letari SU 2014 Pemanfaatan Urine Kelinci untuk Meningkatkan Pertumbuhan dan Produksi Tanaman Sawi (Brassica juncea) Varietas Tosakan Jurnal Ilmiah Pertanian 11 23 DOI: https://doi.org/10.31849/jip.v11i2.1246

[4] Dewanto FG, Londok JJMR, Tunuroong RAV and Kaunang WB 2013 Pengaruh pemupukan kimia sintetis dan organik terhadap produksi tanaman jagung sebagai sumber pakan Jurnal Zootek 32 1 ISSN 0852-2626DOI: https://doi.org/10.35792/zot.32.5.2013.982

[5] Utomo M, Sabrina T, Sudarsono, Lumbanraja J, Rusman B and Wawan 2016 Ilmu Tanah: Dasar-dasar dan Pengelolaan Kencana, Prenada Media Group, Jakarta, 433.

[6] Hartatik W, Husnain and Widowati LR 2015 Peranan Pupuk Organik dalam Peningkatan Produktivitas Tanah dan Tanaman Jurnal Sumberdaya Lahan 9 107 DOI: http://dx.doi.org/10.21082/jsdl.v9n2.2015.%25p

[7] Sopha GS and Uhan TS 2013 Application of liquid organic fertilizer from city waste on reduce urea application on chinese mustard (Brassica juncea L) cultivation AAB Bioflux 5 39 http://www.aab.bioflux.com.ro

[8] Manullang GS, Rahmi A and Astiti P 2014 Pengaruh jenis dan konsentrasi pupuk organik cair terhadap pertumbuhan dan hasil tanaman sawi (Brassica juncea L.) varietas tosakan Jurnal AGRIFOR XIII 33 ISSN : 1412 – 6885 DOI: https://doi.org/10.31293/af.v13i1.545

[9] ArinongA R and Laisiuda CD 2011 Aplikasi pupuk organik cair terhadap pertumbuhan dan produksi tanaman sawi Jurnal Agrisistem 7 47 ISSN 1858.

[10] Rehatta H, Mahulete A and Pelu AM 2014 Pengaruh konsentrasi pupuk organik cair bioliz dan pemangkasan tunas air/wiwilan terhadap pertumbuhan dan produksi tanaman tomat (Lycopersicon esculentum Miller) Jurnal Budidaya Pertanian 10 88.

[11] Marliah A, Hayati M and Muliansyah I 2012 Pemanfaatan pupuk organik cair terhadap pertumbuhan dan hasil beberapa varietas tomat (Lycopersicum esculentum L.) Jurnal Agrista 16 122.

[12] Hamzah S 2014 Pupuk Organik Cair dan Pupuk Kandang Ayam berpengaruh kepada pertumbuhan dan produksi kedelai (Glycine max L.) Agrium 1 228.

[13] Syofia I, Munar and Sofian M 2014 Pengaruh pupuk organik cair terhadap pertumbuhan dan hasil dua varietas tanaman jagung manis (Zea Mays Saccharata Sturt) Agrium 18 208.

[14] Marpaung AE, Karo B and Dinata K 2016 Pemanfaatan pupuk organik cair (LOF) dari limbah pertanian asal sumber daya alami lokal pada budidaya sayuran bawang daun (Allium fistulosumL.) Prosiding Seminar Nasional Inovasi Teknologi Pertanian Modern Mendukung Pembangunan Pertanian Berkelanjutan, Balai Pengkajian Teknologi Pertanian, Balitbangtan, Bengkulu 316.

[15] Marpaung AE 2017 Pemanfaatan Jenis dan Dosis Pupuk Organik Cair (LOF) untuk Meningkatkan Pertumbuhan dan Hasil Sayuran Kubis Jurnal Agroteknosains 01 117 ISSN: 2598-6228 DOI: http://dx.doi.org/10.36764/ja.v1i2.39

[16] Marpaung AE, Karo B and Sinaga R 2017 Pemanfaatan Kotoran Kelinci sebagai Pupuk Organik Cair (LOF) untuk Meningkatkan Pertumbuhan dan Hasil Wortel (Daucus carota) Varietas Lokal Prosiding Seminar Nasional Peran Teknologi Agromoni dalam Mempercepat Penciptaan dan Hilirisasi Inovasi Pertanian, Perhimpunan Agronomi Indonesia, Bogor 413.

[17] Simorangkir CA, Supriyanto A, Murdiono WE and Nihayati E 2017 Pemberian urine kelinci (Leporidae) dan KNO₃ pada pertumbuhan dan hasil tanaman stroberi (Fragaria sp) Jurnal Produksi Tanaman 5 782.
[18] Zahroh F, Kusrinah and Setyawati SM 2018 Perbandingan Variasi Konsentrasi Pupuk Organik Cair dari Limbah Ikan Terhadap Pertumbuhan Tanaman Cabai Merah (Capsicum annum L.)
Al-Hayat: Journal of Biology and Applied Biology 1 50 DOI : 10.21580/ah.v1i1.2687

[19] Marpaung AE and Hutabarat RC 2015 Respons Jenis Perangsang Tumbuh Berbahan Alami dan Asal Setek Batang Terhadap Pertumbuhan Bibit Tin (Ficus carica L.) J. Hort. 25 37
DOI: http://dx.doi.org/10.21082/jhort.v25n1.2015.p37-43

[20] Marpaung AE, Udiarto BK, Lukman L and Hardiyanto 2018 Potensi Pemanfaatan Formulasi Pupuk Organik Sumber Daya Lokal untuk Budidaya Kubis J.Hort. 28 191
DOI: http://dx.doi.org/10.21082/jhort.v28n2.2018.p191-200

[21] Karo B, Marpaung AE and Hidayat T 2016 Pemanfaatan urin sapidan kelinci sebagai pupuk organik cair dalam peningkatan pertumbuhan dan produksi bawang daun (Allium fistulosum L.) Prosiding Seminar Nasional Inovasi Teknologi Pertanian Modern Mendukung Pembangunan Pertanian Berkelanjutan, Balai Pengkajian Teknologi Pertanian, Balitbangtan, Bengkulu 323.

[22] Simamora ALB, Simanjungkalit T and Ginting J 2014 Respons Pertumbuhan dan Produksi Bawang Merah (Allium ascalonicum L.) Terhadap Pemberian Vermikompos dan Urine Kelinci J. Agroekoteknologi 2 533.