Lacosamide adjunctive therapy for partial-onset seizures: a meta-analysis

Background: The relative efficacy and safety of lacosamide as adjunctive therapy compared to other antiepileptic drugs has not been well established. Objective: To determine if lacosamide provides improved efficacy and safety, reduced length of hospital stay and improved quality of life compared with other anti-epileptic therapies for adults with partial-onset seizures. Data Sources: A systematic review of the medical literature using Medline (1946 – Week 4, 2012), EMBASE (1980 – Week 3, 2012), Cochrane Central Register of Controlled Trials (Issue 1 of 12, January 2012). Additional studies were identified (through to February 7, 2012) by searching bibliographies, the FDA drug approval files, clinical trial registries and major national and international neurology meeting abstracts. No restrictions on publication status or language were applied. Study Selection: Randomized controlled trials of lacosamide in adults with partial-onset seizures were included. Data Extraction: Study selection, extraction and risk of bias assessment were performed independently by two authors. Authors of studies were contacted for missing data. Data Synthesis: All pooled analyses used the random effects model. Results: Three trials (1311 patients) met inclusion criteria. Lacosamide increased the 50% responder rate compared to placebo (RR 1.68 [95% CI 1.36 to 2.08]; I² = 0%). Discontinuation due to adverse events was statistically significantly higher in the lacosamide arm (RR 3.13 [95% CI 1.94 to 5.06]; I² = 0%). Individual adverse events (ataxia, dizziness, fatigue, and nausea) were also significantly higher in the lacosamide group. Limitations: All dosage arms from the included studies were pooled to make a single pair-wise comparison to placebo. Selective reporting of outcomes was found in all of the included RCTs. Conclusions: Lacosamide as adjunctive therapy in patients with partial-onset seizures increases the 50% responder rate but with significantly more adverse events compared to placebo.
Authors:

Sonja C Sawh
Pharmacist, Evidence-Based Medicine/Drug & Therapeutics Committee Resource
Allied Scientist, Lawson Health Research Institute
London Health Sciences Centre
Pharmacy Department, University Hospital
Room C1-202
339 Windermere Rd
London ON N6A 5A5
Phone: (519) 685-8500 Ext 36543
Fax: (519) 663-2968
Email: sonja.sawh@lhsc.on.ca

Jennifer J Newman
Pharmacist, Evidence-Based Medicine
London Health Sciences Centre
Victoria Hospital
Room ELL-210
800 Commissioner’s Road East
London, Ontario
N6A 5W9
Phone: 519-685-8500 x77814
Email: Jennifer.Newman@lhsc.on.ca

Santosh Deshpande
Pharmacist, Evidence-Based Medicine/Drug & Therapeutics Committee Resource

London Health Sciences Centre

Pharmacy Department, University Hospital

Room C1-202

339 Windermere Rd

London ON N6A 5A5

Phone: (519) 685-8500 Ext 36543

Fax: (519) 663-2968

Email: santosh.deshpande@lhsc.on.ca

Philip M Jones

Associate Professor

Department of Anesthesia & Perioperative Medicine

Department of Epidemiology & Biostatistics

University of Western Ontario

519-685-8500 x36306

Room C3-110 UH

pjones8@uwo.ca

Corresponding Author:

Sonja C. Sawh

London Health Sciences Centre

Pharmacy Department, University Hospital

Room C1-202
FUNDING

The evidence synthesis upon which this article was based was not funded. Support for the authors was provided by their employers (Pharmacy Department and Department of Anesthesia & Perioperative Medicine, London Health Sciences Centre, London, Ontario, Canada).

Role of funding source: the funders played no role in study design, collection, analysis, interpretation of data, writing of the report, or in the decision to submit the paper for publication.

They accept no responsibility for the contents.
INTRODUCTION

Epilepsy affects 15,500 new Canadians annually (1) with partial-onset seizures being the most common seizure type in adults - affecting up to 60% of adults who have epilepsy. (1) Up to one-third of newly-diagnosed patients are refractory to drug therapy and this presents a therapeutic challenge (2). Adjunctive therapy with antiepileptic drugs (AEDs) is the standard of care for patients with refractory epilepsy (3). However, current guidelines (3) do not address the more recently-available AEDs, including lacosamide, for the treatment of refractory epilepsy.

Lacosamide is a novel AED, consisting of a functionalized amino acid molecule believed to stabilize hyperexcitable neuronal membranes and inhibit repetitive neuronal firing (4). Health Canada has approved lacosamide for use as adjunctive therapy in the management of partial-onset seizures in adult patients with epilepsy who are not satisfactorily controlled with conventional therapy (5).

All previously-published systematic reviews of lacosamide (2, 6-10) have concluded that lacosamide is efficacious in reducing seizure frequency compared to placebo, but each review had methodological challenges limiting its interpretability. To better estimate the effect size of lacosamide, this systematic review was designed to include all doses of lacosamide studied, using the intention to treat population, and considering all important outcomes, in addition to closely examining lacosamide’s adverse events (which have not been adequately explored in the previous reviews).
The objective of this systematic review was to determine the relative benefits and harms of lacosamide therapy compared to other AEDs or placebo, as adjunctive therapy for adults with partial-onset seizures.

Methods

Protocol and registration

The search strategy, methods of analysis and inclusion criteria were specified in advance and documented in a protocol. The protocol for this systematic review was registered with the Prospective International Register of Systematic Reviews (PROSPERO) and can be found online. (11)

Information sources/Search Strategy

Studies were identified by searching the following electronic databases: Medline (OVID 1946 to Week 4, 2012), EMBASE (OVID, 1980 to Week 3 2012), Cochrane Central Register of Controlled Trials (CENTRAL) (Wiley Issue 1 of 12, January 2012).

We contacted the manufacturer of lacosamide and experts in the field for information about unpublished or ongoing studies. The Food and Drug Administration’s (FDA) Approved Drug Products database was searched for clinical trials used to support marketing approval and/or labelling changes in the United States. Conference abstracts and posters were searched from selected meetings of the American Epilepsy Society, World Congress of Neurology, International Epilepsy Congress, and the European Congress on Epileptology. We also searched the metaRegister of Controlled Trials (mRCT) to identify ongoing trials.

Reference lists of all retrieved studies were reviewed for additional relevant studies.
The search was developed and conducted by one of the authors (SS) and reviewed by a Research Librarian (KC). The last search was run February 7, 2012. We used the following search terms to search all trial registers and databases (modified to suit each specific database): randomized controlled trials, epilepsy, seizures, partial epilepsy, lacosamide, and Vimpat. No language restrictions were imposed on the electronic database searches. The online protocol provides the detailed search strategy used in this review.

Study Selection

Title and abstract screening was conducted in duplicate to identify potentially eligible papers using a standardized guide for trial inclusion based on title and abstract screening. Two reviewers (JN and SS) underwent a calibration process to identify potential discrepancies in interpretation of the form (with the first 100 citations as a sample). Publications that could possibly have met the selection criteria were retrieved as full-text articles and examined.

Full-text screening was conducted, independently by two reviewers, to confirm eligibility using a standardized screening form (See Supplemental Table S1). We used Fleiss and Cohen’s weighted Kappa (using the program Kappa.exe (16)) to assess agreement between the two reviewers on the selection of full-text articles for inclusion (17). All disagreements were resolved by discussion.

We documented the study selection process in a flow chart as recommended in the PRISMA statement (18) showing the total numbers of retrieved references and the numbers of included and excluded studies, and the reasons for exclusion (Fig 1).
Data collection process & Data items

Data were extracted independently by two reviewers (JN and SS) using an *a priori* standardized data extraction form with the aid of a data and validity extraction manual. The two sets of extracted data were compared and all discrepancies were resolved by discussion. Data was extracted from each included trial on the following general areas of information:

Trial characteristics
- Number of participating centres and countries
- Inclusion criteria
- Exclusion criteria
- Number of patients eligible and randomized
- Treatment duration and length of follow-up of patient outcomes
- Data collection time points
- Treatment arms in the trials
- Ethics review board approval and patient consent to participate
- Funding source

Participant Characteristics
- Number of patients randomized and with available outcome data
- Epilepsy diagnosis
- AED use (number and types)

Primary and Secondary Outcomes
- Outcome definition
- Direction of outcome (i.e. harm or benefit)
- Time point(s) of outcome evaluation
- Outcome unit of measurement and measure of error (if continuous). Where possible, for continuous measures, mean outcome values and standard deviations were recorded or determined as measurements of outcome.

Study authors were contacted by e-mail to request information about missing data for included trials. For studies with multiple publications, all versions of the study were reviewed to ensure complete access to maximal trial data. In the event of inconsistency of study data between
multiple publications (for example, between a Food and Drug Administration submission and a peer-reviewed paper published in a journal), the peer-reviewed publication was used as the primary data set.

Risk of bias in individual studies

Two reviewers (JN and SS) independently assessed the risk of bias for each included study using the criteria outlined in the *Cochrane Handbook for Systematic Reviews of Interventions* (19). Reviewers were not blinded to the study authors, journal or outcome data. We specifically assessed the trial characteristics as specified in the protocol.

- sequence generation;
- allocation concealment;
- blinding of the study (participants, personnel, outcome assessors, data collectors, data analysts) as defined by Akl et al. (20)
- incomplete outcome data;
- selective outcome reporting;
- other sources of bias.

A summary table and a graph for risk of bias were created using Review Manager software 5.1.

Synthesis of Results

We calculated the pooled relative risks (RRs) and 95% confidence intervals (CI) for dichotomous variables using the Mantel-Haenszel method (22). For continuous variables measured using the same scales, the mean differences (MD) and its 95% CI were calculated using the inverse variance method. If a continuous outcome variable was measured using different scales across studies, we calculated the standardized mean difference (SMD).
All of our analyses included the total numbers of participants in the treatment groups to which they had been allocated (intention to treat analysis). Participants not completing follow up or with inadequate seizure data were assumed to be non-responders.

We contacted study authors for clarification if more information was needed, and to request missing data.

Randomized trials included multiple dosages of lacosamide in separate randomized arms. For the purpose of the meta-analysis, all lacosamide dosages were combined into one “lacosamide” arm. (23)

We tested statistically for heterogeneity with a chi-square test and used I^2 to measure inconsistency (the percentage of total variation across studies due to heterogeneity). We used “small,” ($\leq 25\%$), “moderate” (between 25% and 50%) and “large” ($\geq 50\%$) to describe the statistical heterogeneity as measured by I^2. (24) Forest plots were visually inspected for possible sources of heterogeneity.

A summary of findings table was created using GRADEpro software for the three primary outcomes of this review (25). We planned to assess the possibility of publication bias by using funnel plots (26).

Additional analyses

The following subgroup analyses were pre-specified for primary outcomes: patients younger than 18 years old (if the pediatric outcome data was reported as a discrete subgroup), placebo vs. active comparators, intravenous vs. oral lacosamide, and comparing studies with high vs. low risk of bias. Post-hoc, the potential of a dose-response relationship of lacosamide was explored
using subgroup analysis to look at the various dosage levels studied for all three primary outcomes.

The \textit{a priori} sensitivity analyses for the primary outcomes were: (1) \textit{Best case} - Participants not completing follow-up or with inadequate seizure data were assumed to be responders in the lacosamide group and non-responders in the control group. For the primary safety outcome, participants not completing follow-up or with inadequate data were assumed to have continued in the trial in the lacosamide arms and discontinued if in the control arm. (2) \textit{Worst case} - Participants not completing follow-up or with inadequate seizure data were assumed to be non-responders in the lacosamide group and responders in the control group. For the primary safety outcome, participants not completing follow-up or with inadequate data were assumed to have discontinued due to adverse events in their respective lacosamide groups and to have stayed in if in the control group.

\textbf{RESULTS}

\textit{Study selection}

A total of 11 reports involving 3 studies were identified for inclusion in the review. The search of Medline, EMBASE, and CENTRAL provided a total of 200 citations. The search for unpublished literature (expert survey, manufacturer request, clinical trial registries, and conference abstract proceedings) provided a total of 207 citations. After removing duplicates, 357 citations independently underwent abstract review and 77 citations were considered potentially relevant studies. Of the 77 full-text articles screened, 66 citations were excluded. Three randomized controlled trials (27) (28) (29) (located as 11 publications (30) (31) (32) (33) (34) (35) (36) (37)), that studied 1311 participants, met the inclusion criteria for this review.
The weighted kappa statistic for inter-rater agreement on including or excluding potential trials was “excellent” \([k = 0.90, 95\% \text{ CI} (0.83, 0.97)]\). (17) See flow diagram Figure 1.

Study characteristics

See Table 1 for the characteristics of the included studies and Supplemental Table S2 for the table of excluded studies.

Methods

All three studies selected for the review were randomized, controlled, parallel group studies published in English. The duration of the intervention was 18 weeks for the Ben-Menachem et al (27) and Chung et al (28) trials and 16 weeks for the Halász et al (29) trial. All trials had an 8-week monitoring period before baseline and a 2 week taper or transition to off or open-label continuation of lacosamide at the end of the maintenance phases. The maintenance phase extension trials (38) (39) (40) did not meet the criteria for inclusion in this review and are not considered further.

Participants

The included studies involved 1311 randomized participants from Australia, Europe, and the USA. Three participants in the Ben-Menachem trial (27) were removed from the study after randomization for protocol violations and it could not be determined which dosage arm they belonged to. Patients were included in these studies if they had a diagnosis of partial-onset seizures (with or without secondary generalizations) that was objectively confirmed (with electroencephalogram (EEG) and magnetic resonance imaging (MR) or computed tomography (CT) scan). In order to be eligible, patients must have had partial-onset seizures for at least the
previous two years despite treatment with at least two AEDs. For all three trials, to be counted as having “current seizures”, participants must have had at least 4 partial-onset seizures per 28 days on average with no seizure-free period longer than 21 days. For the Ben-Menachem trial, the above inclusion criteria applied to the 8 week baseline period, whereas in the Chung et al (28) and Halász et al (29) trials, the seizure frequency criteria also applied to the 8 weeks prior to baseline. All patients needed to have stable AED regimens for the 4 weeks prior to enrollment and the baseline period. In the Ben-Menachem trial, regimens could be 1 or 2 AEDs with or without vagal nerve stimulation (VNS). In the Chung et al and Halász et al trials, patients’ regimens could consist of 1 – 3 AEDs with or without VNS. Participant age was restricted to over 16 years in two trials (37) (29) and over 18 years in one trial. (27) Pediatric data was not presented separately in the two studies that included patients less than 18 years of age.

Intervention

All three studies compared adjunctive oral lacosamide in multiple doses to placebo (no active comparators) in a minimum of three comparator arms. All three trials had a lacosamide 200 mg twice daily arm. Ben-Menachem et al. and Halász et al. both had lacosamide 100 mg twice daily arms. Chung et al and Ben-Menachem included a lacosamide 300 mg twice daily arm. No studies included intravenous lacosamide.

Outcomes

The primary outcomes for the three studies were change in seizure frequency (per 28 days from baseline to the maintenance period) and 50% responder rate. All three publications reported 50% responder rate in percentage, so the efficacy analysis denominators were used to convert to the number of patients who achieved the 50% response rate. Discontinuation due to adverse events

was reported in all studies, as were individual adverse events. If percentages were provided for adverse event endpoints, they were converted to numbers of patients experiencing an event using the denominators provide for the safety analysis in the full publications. Quality of life outcomes were measured by two of the three studies (27) (29), but only reported by Ben-Menachem et al (27). Timing of outcome measures varied with the end of the maintenance period as defined by the individual studies.

Risk of bias within studies

See Fig. 2.

All three studies were randomized-controlled trials, and all studies except Ben-Menachem presented the method of random sequence generation. Allocation concealment and blinding of participants, personnel, and outcome assessors were adequately reported for all trials. Incomplete outcome data reporting was present for all three trials. Selective outcome reporting was noted for all three included trials, as assessed by comparison of the published trials to the studies submitted for FDA approval. None of the three trials did a formal ITT analysis, but used all patients who received at least one dose of study medication as their definition of the study population.

Results of individual studies

Primary Outcomes

The mean change in seizure frequency from maintenance phase to baseline was not provided in any of the three included studies. The authors of each study were contacted in an attempt to procure the seizure frequency change data, but no information was provided.
The primary outcome data available from the three trials ("percent reduction in seizure frequency") is presented in Table 2. There was a larger median percent change (as noted by the trial authors) with the higher dosage arms of lacosamide compared to placebo.

The 50% responder rate was reported for all three included trials and the results are presented in Figure 3. In the meta-analysis of this primary outcome (ITT), lacosamide (all dosage arms pooled) was associated with a significantly higher 50% response rate compared to placebo (RR 1.68, 95% CI 1.36, 2.08). There was no evidence of statistical heterogeneity ($I^2 = 0\%$). The analyses of worst-case scenarios and best-case scenarios both produced similar results to the base analysis (RR = 1.62 (95% CI 1.24, 2.11 $I^2 = 37\%$) and RR = 1.73 (95%CI 1.40, 2.13; $I^2 = 0$), respectively.

Discontinuation of study drug due to adverse events was reported in all three trials. In the meta-analysis of this outcome (ITT), lacosamide (all dosage arms pooled) was associated with a significantly higher rate of discontinuation with a RR 3.13 (95% CI 1.94, 5.06). There was no evidence of heterogeneity ($I^2 = 0\%$), see Figure 4. Best-case and worst-case scenarios were not calculated for this outcome as no patient data was missing.

Secondary Outcomes

Adverse effects Outcomes

Statistically significant changes (higher rates in the lacosamide pooled dosage arm) were seen in the following adverse event outcomes: ataxia (RR 5.03 95%CI 2.23, 11.37, see Figure 5), dizziness (RR 3.49 95%CI 2.43, 5.01, see Figure 6), fatigue (RR 2.04 95%CI 1.08, 3.85, see Figure 7) and nausea (RR 2.36 95% CI 1.22, 4.58, see Figure 8). No heterogeneity was found in any of the adverse events ($I^2 = 0\%$), except for nausea, which showed moderate inconsistency, with
an $I^2 = 34\%$. For the outcome of ataxia, data were included if outcomes were reported as ataxia or “coordination abnormal”.

All other meta-analyses and forest plots including: other adverse event outcomes (headache, somnolence, serious adverse events) seizure-free during the treatment period, the sensitivity analyses for best and worst case scenarios and the dose-response analyses can be found in Supplemental Figures S1 - S10.

Quality of Life Outcomes

The quality of life outcomes were incompletely reported across all included studies. Mean change in QOLIE-31 was reported in the Ben-Menachem trial (27) but no measure of variance (SD) was provided. The measurement of QOLIE-31 was limited by language availability. Since the measurement scale was only available in English, only participants from the United Kingdom or the United States of America were able to contribute to this outcome. The Clinical Global Impression of Change (CGIC) score was not reported as a continuous outcome (mean change), but as a dichotomous outcome from “Very much improved” or “much improved” from baseline to maintenance. No denominators for the groups were provided. There was a numerically larger change in seizure frequency in the lacosamide arms compared to the placebo arms. Although Halász et al (29) reported that they would measure quality of life outcomes; these were not reported in the final publication. The quality of outcome scales as reported by Ben-Menachem et al are provided in Table 3.

Economic Outcomes

No trials reported on hospital admission, length of stay, length of stay in a specialized epilepsy unit or economic outcomes
Additional analysis

The planned sensitivity analyses for the primary efficacy outcome and 50% responder rate were ultimately not undertaken due to the small number of studies and lack of information relating to the pre-specified subgroups.

Post-hoc exploratory analyses were undertaken to explore a dose-effect relationship with efficacy and safety for two of the primary outcomes. The different dosage arms of lacosamide vs. placebo were placed into separate subgroups to explore the dose response of the outcomes for 50% responder-rate and discontinuation of study drug. Both analyses showed that, as the lacosamide dose increased, so too did the trend in the 50% response rate (P for interaction = 0.26) (Supplemental Figure S7) and the discontinuation of study drug due to adverse events (P for interaction = 0.03) (Supplemental Figure S8).

As a post-hoc analysis, we also pooled the lacosamide 100 mg BID and 200 mg BID arms (200 mg or less) and compared them to the 300 mg BID arm (greater than 200 mg). These analyses (Supplemental Figures S9 and S10) support the previous finding that higher doses of lacosamide are associated with greater risk of drug discontinuation due to adverse events (RR 2.28 95% CI 1.46, 3.58, I²=0%).

Risk of bias across studies

No statistical heterogeneity (I² = 0%) was found in the analyses of the primary outcomes and in the majority of the outcomes assessed in the meta-analysis. Funnel plot asymmetry was not tested because only three studies were included in this meta-analysis, rendering this test unreliable (41).
Where heterogeneity did exist in the pre-specified analyses (nausea, 50% responder rate worst-case scenario analysis), it was small to moderate with non-significant p-values. Potential sources of heterogeneity could be: 1) the differing dosage arms of lacosamide used in the trials and, 2) the differing lengths of treatment (dose-titration was 4 weeks in one trial and 6 in the other two trials).

Selective reporting was evident in all three studies included in this review. Consulting the FDA approval documents provided a more complete list of outcomes to be measured in the trials, but no details could be obtained on many outcomes, including one of the pre-defined primary outcomes - change in seizure frequency from baseline. This was the stated primary outcome in all three trials, but was not reported in any of the publications.

The quality of evidence was down-graded for risk of bias and imprecision where appropriate (42). See Summary of Findings Table for the statistically significant outcomes from this review, Table 4 (25).

DISCUSSION

Summary of evidence

Overall, the evidence from three included trials supports that lacosamide improves the 50% responder rate compared to placebo in adults with partial-onset seizures. The reduction in seizures demonstrated by this efficacy outcome must be weighed against the increased rate of discontinuation due to adverse events and the risk of increased ataxia, dizziness, fatigue, and nausea.

Post-hoc analysis demonstrated a possible dose-response relationship with 50% responder rate. While post-hoc analyses should always be interpreted cautiously, the test for interaction for
discontinuation of study drug due to adverse events was statistically significant (p = 0.03), indicating that this is an important area for future research.

Incomplete outcome reporting impacted the final results of this systematic review. As study authors did not report the mean seizure frequency in each group, no quantitative analyses could be conducted on the change in seizure frequency, one of the *a priori* primary outcomes of this review. Quality of life outcomes were only selectively reported, and the data available for this review were not amenable to meta-analysis. All of the authors mentioned that lacosamide had a favourable effect on QOL measures.

None of the included trials reported on economic outcomes. From a strict drug cost perspective, lacosamide is far more expensive compared to other available AEDs, (see Supplemental Table S3). Comparative trials with other AEDs would be helpful in determining the most cost effective role in the treatment of seizures.

The findings from this review can be directly applied to ambulatory patients with partial epilepsy, who are refractory to their current AED therapy. Hospitalized patients were not included in any of the trials in this review.

Limitations

This systematic review used a robust search strategy to consider all of the best available published and unpublished evidence of lacosamide in partial-onset seizures in adults; however there were a few limitations to this review. The post-hoc analyses indicate the possible presence of a dose-response for efficacy and adverse effects for lacosamide. The pooling of all lacosamide doses as the comparator arm compared to placebo could underestimate the benefit of the higher doses and/or overestimate the effect of the lower doses with respect to efficacy. This
pooling of all dose arms of lacosamide would be expected to similarly affect the adverse events outcomes if a dose-response relationship exists.

All of the included studies (which formed the basis of regulatory approvals) were of a very short duration (three months of maintenance therapy), which may have exaggerated the efficacy of lacosamide as adjunctive AED therapy, given that these therapies are usually administered for many years. These regulatory approval trials tend to have limited external generalizability due to exclusion of patients with co-morbidities which are common in a large percentage of epileptic patients (34)(35)

The search strategy was not designed to retrieve economic analyses, so relevant economic studies on lacosamide could have been missed.

Incomplete reporting of outcomes precluded meta-analysis of the mean change in seizure frequency, one of the primary outcomes of this review. Overall, included studies were of moderate quality, as selective outcome reporting, using non-intention-to-treat analyses, and imprecision resulted in a downgrade in the quality of evidence of these randomized controlled trials. In this review, the risk for reporting bias, as evidenced by selective outcome reporting for all included trials, is judged to be the biggest threat to validity. Since only three studies were included, publication bias could not be explored.

This review does not apply to the pediatric population, as the two trials including patients less than 18 years old (28) (29) did not provide separate data on the pediatric participants.

Implications for future research:
Future research (both randomized controlled trials and systematic reviews/meta-analyses) should consider the following:

1) The pediatric population remains largely unstudied and should be addressed as a distinct subgroup of patients with special attention to adverse events.

2) The relative efficacy and safety of lacosamide in comparison to alternative AEDs has not been prospectively studied and is critically important to best inform clinical decision-making.

3) Three cost-effectiveness analyses (European health care payer perspective) were found (43) (44) (45). These analyses do not have direct applicability to the Canadian health care system. Additional cost-effectiveness analyses using multiple perspectives (including Provincial health system payers and society) are required in order to support effective decision making within the context of the Canadian Health Care system.

4) Antiepileptics (such as lacosamide), while efficacious, are not a cure for epilepsy and can have wide-ranging side effects for patients. To better understand the implications of lacosamide therapy in the life of a patient with epilepsy, quality of life assessments and results should be reported completely. The results of the post-hoc dose-response analyses in this review warrant further a priori exploration with respect to safety and efficacy both in future RCTs and systematic reviews.

Conclusions

This review provides evidence that lacosamide as adjunctive therapy in adult patients with partial-onset seizures increases the 50% responder rate, but with significantly more adverse events compared to placebo. The results are in agreement with the previously-published pooled studies and meta-analyses (6) (7) (9) (10) whilst providing a more accurate (ITT) summary estimate of benefit for lacosamide and a detailed look at risk of individual adverse events.
Acknowledgements: The authors would like to thank Kaitryn Campbell for her valuable feedback and suggestions in constructing the search strategy and Dr. Elie Akl for his valuable methodological advice throughout this review.

REFERENCES

1. Epilepsy Canada. [Online]. [cited 2011 October 26]. Available from: http://www.epilepsy.ca/en-CA/Facts/Epidemiology.html.

2. Beyenburg S, Stavem K, Schmidt D. Placebo-corrected efficacy of modern antiepileptic drugs for refractory epilepsy: Systematic review and meta-analysis. Epilepsia. 2010; 51(1): p. 7-26.

3. French J, Kanner A, Bautista J, al E. Efficacy and tolerability of new antiepileptic drugs II: Treatment of refractory epilepsy: Report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology & the American Epilepsy So. Neurology. 2004; 62: p. 1261-1273.

4. Lexi-Drugs Online: Lacosamide. [Online]; 2011 [cited 2011 October 26]. Available from: http://online.lexi.com/crlsql/servlet/crlonline.

5. Canadian Pharmacists Association. Vimpat[product monograph]. [Online]; 2011 [cited 2011 October 26]. Available from: http://www.e-cps.ca.

6. Beydoun A, D'Souza J, Doty P, Hebert D. Lacosamide: pharmacology, mechanisms of action and pooled efficacy and safety data in partial-onset seizures. Expert Review of Neurotherapeutics. 2009 January; 9(1): p. 33-42.

7. Chung S, Ben-Menachem E, Sperling M, al e. Examining the Clinical Utility of Lacosamide. Pooled analyses of three phase II/III clinical trials. CNS Drugs. 2010; 24(12): p. 1041-1054.

8. Simoens S. Lacosamide as adjunctive therapy for partial-onset epileptic seizures: a review of
the clinical and economic literature. Current Medical Research & Opinion. 2011; 27(7): p. 1329-1338.

9. Costa J, Fareleira F, Ascencio R, Borges M, Sampaio C, Vaz-Carneiro A. Clinical comparability of the new antiepileptic drugs in refractory partial epilepsy: A systematic review and meta-analysis. Epilepsia. 2011; 52(7): p. 1280-1291.

10. Ryvlin P, Cucherat M, Rheims S. Risk of sudden unexpected death in epilepsy in patients given adjunctive antiepileptic treatment for refractory seizures; a meta-analysis of placebo-controlled randomised trials. Lancet Neurology. 2011 November; 10: p. 961-968.

11. Sawh S, Newman J. PROSPERO: International prospective register of systematic reviews. [Online].; 2012 [cited 2012 March 9. Available from: http://www.crd.york.ac.uk/prospero/display_record.asp?ID=CRD42012002122.

12. Cramer J, Perrine K, Devinsky O, Bryant-Comstock L, Meador K, Hermann B. Development and cross-cultural translation of a 31-item quality of life questionnaire (QOLIE-31). Epilepsia. 1998; 39: p. 81-88.

13. Baker G, Smith D, Dewey M, Morrow J, Crawford P, Chadwick D. The development of a seizure severity scale as an outcome measure in epilepsy. Epilepsy Res. 1991; 8(3): p. 245-251.

14. Hurst H, Bolton J. Assessing the clinical significance of change scores recorded on subjective outcome measures. J Manipulative Physiol Ther. 2004; 27: p. 26-35.

15. Guy W, editor. ECDEU Assessment Manual for Psychopharmacology Rockville: US Department of Heath, Education, and Welfare Public Health Service Alcohol, Drug Abuse, and Mental Health Administration; 1976.

16. Cyr L, Francis K. Kappa.exe [Computer Program]: Measurement of Clinical Agreement for Categorical Data. 1992.
17. Fleiss J, Cohen J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. 1973; 33: p. 613-619.

18. Liberati A, Altman D, Tetzlaff J, Mulrow C, Gøtzsche P, Al e. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009; 6(7).

19. Higgins JP, Altman DG, Sterne JA. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. [Online]; 2011 [cited 2012 February. Available from: http://www.cochrane-handbook.org.

20. Akl EA, Sun X, Busse JW, Johnston BC, Briel M, et al. Specific instructions for estimating unclearly reported blinding status in randomized trials were reliable and valid. Journal of Clinical Epidemiology. 2012; 65: p. 262-267.

21. The Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager (RevMan) [Computer program]. 2011.

22. Deeks J, Higgins J, Altman D. 9.4.4.1 Mantel-Haenszel Methods. [Online].; 2011 [cited 2012 May 29]. Available from: www.cochrane-handbook.org.

23. Cochrane Handbook for Systematic Reviews of Interventions. [Online]; 2011 [cited 2012 March 13]. Available from: www.cochrane-handbook.org.

24. Higgins J, Thompson S, Deeks J, Altman D. Measuring inconsistency in meta-analyses. British Medical Journal. 2003; 327: p. 557-560.

25. Brozek J, Oxman A, Schunemann H. GRADEpro[computer program] Version 3.2 for Windows. 2008.

26. Egger M, Davey Smith G. Misleading meta-analysis. BMJ. 1995; 310: p. 752-754.

27. Ben-Menachem E, Biton V, Jatuzis D, Abou-Khalil B, Doty P, Rudd G. Efficacy and safety of oral lacosamide as adjunctive therapy in adults with partial-onset seizures. Epilepsia.
28. Chung S, Sperling M, Biton V, Krauss G, Hebert D, Rudd G, et al. Lacosamide as adjunctive therapy for partial-onset seizures: A randomized controlled trial. Epilepsia. 2010; 51(6): p. 958-967.

29. Halasz P, Kalviainen R, Mazurkiewicz-Beldzinska M, Rosenow F, Doty P, Hebert D, et al. Adjunctive lacosamide for partial-onset seizures: efficacy and safety results from a randomized controlled trial. Epilepsia. 2009; 50(3): p. 443-453.

30. Massie T. Food and Drugs Administration (FDA) - Center for Drug Evaluation and Research (CDER). [Online]; 2007 [cited 2012 February]. Available from: http://accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm.

31. Kalviainen R, Halasz P, Mazurkiewicz-Beldzinska M, Rosenow F, Hoepken B, Rudd G. Lacosamide in subjects with partial-onset seizures: evaluation of the effect of oral lacosamide on concomitant antiepileptic drug plasma concentrations. In International Epilepsy Congress; 2007; Singapore: Epilepsia. p. 57 (Abstract 066).

32. Halasz P, Kalviainen R, Mazurkiewica-Beldzinska, Rosenow F, Doty P, Sullivan T. Lacosamide: efficacy and safety as oral adjunctive therapy in adults with partial seizures. In American Epilepsy Society; 2006; San Diego: Epilepsia. p. 3 (Abstract A.07).

33. Chung S, Sperling M, Biton V, Krauss G, Doty P, Sullivan T, et al. Lacosamide: efficacy and safety as oral adjunctive therapy in adults with partial-onset seizures. In 27th International Epilepsy Congress; 2007; Singapore: Epilepsia. p. 57 (Abstract 065).

34. Chung S, Sperling M, Biton V, Krauss G, Beaman M, Hebert D, et al. Efficacy and safety of lacosamide as an adjunctive treatment for partial-onset seizures. In 8th European Congress on Epileptology; 2009; Berlin: Epilepsia. p. 110 (Abstract T231).

35. Jatuzis D, Biton V, Ben-Menachem E, Abou-Khalil B, Doty P, Rudd GD. Evaluation of the
effect of oral lacosamide on concomitant AED plasma concentrations in patients with partial seizures. In American Epilepsy Society Proceedings; 2005; Washington: Epilepsia. p. 170 (Abstract 2.236).

36. Ben-Menachem E, Biton V, Jatuzis D, Abou-Khalil B, Doty P, Rudd DS6SG. Efficacy and Safety of Adjunctive oral Lacosamide for the Treatment of Partial Onset Seizures in Patients with Epilepsy. In 26th International Epilepsy Congress (IEC) Proceedings; 2005; Paris: Epilepsia. p. 57 (Abstract 030).

37. Chung SS, Sperling M, Biton V, Krauss G, Beaman M, Hebert D. Lacosamide: efficacy and safety as oral adjunctive treatment for partial-onset seizures. In American Epilepsy Society; 2007; Philadelphia: Epilepsia. p. 321 (Abstract 3.197).

38. Husain A, Faught E, Chung S, Isojärvi J, McShea C, Doty P. Long-term safety and efficacy of lacosamide as adjunctive therapy in patients with uncontrolled POS: results from a phase III open-label extension trial. In Epilepsia; 2011; Rome, Italy: Wiley. p. 155.

39. Rosenfeld W, Fountain N, Kaubrys G, Ben-Menachem E, McShea C, Isojärvi J, et al. Lacosamide: long-term safety and efficacy in partial-onset seizures. In Epilepsia; 2011; Rome, Italy: Wiley. p. 156.

40. Rosenow F, Kelemen A, Ben-Menachem E, McShea C, Isojärvi J, Doty P. Long-term adjunctive lacosamide in patients with uncontrolled partial-onset seizures: results from the SP774 phase III open-label extension trial. In Epilepsia; 2011; Rome, Italy: Wiley. p. 156.

41. Sterne JA, Egger M, Moher D. The Cochrane Handbook. [Online]; 2011 [cited 2012 March 8]. Available from: http://www.cochrane-handbook.org/.

42. Guyatt G, Oxman A, Vist G, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: what is "quality of evidence" and why is it important to clinicians? British Medical Journal. 2008 May 3; 336: p. 995 - 998.
43. Simoens S, Dedeken P, De Naeyer L, Benhaddi H. Cost-utility analysis of lacosamide adjunctive therapy in the treatment of partial-onset seizures in epileptic patients in Belgium. Value in Health. 2010; 13: p. A393.

44. Soini E, Martikainen J, Vanoli A. Cost-effectiveness and budget impact modelling of lacosamide in the treatment of partial-onset seizures in Finland. Value in Health. 2009; 12: p. A367.

45. Bolin K, Berggren F, Forsgren L. Lacosamide as treatment of epileptic seizures - cost utility results for Sweden. Acta Neurologica Scandinavica. 2010; 121: p. 406-412.

46. Shukralla A MA. Lacosamide add-on therapy for partial epilepsy (Protocol).2010;(11).

47. Bonnardel P. Kappa.exe [Computer Program].

48. Brozek J, Oxman A, Schünemann H. GRADEpro. [Computer program]; 2008.

49. Jensen B. Rx Files. Drug Comparison Charts. 8th ed. Jensen B, Regier L, editors. Saskatoon: Saskatoon City Hospital; 2010.

50. (CEDAC) CEDAC. Canadian Agency for Drugs and Technologies in Health (CADTH): Common Drug Review. [Online].; 2011 [cited 2011 September 7. Available from: http://www.cadth.ca/en/products/cdr.

51. Berggren F, Bolin K, Germe M, Forsgren L. The Cost-effectiveness of adjunctive treatment with lacosamide in patients with uncontrolled partial epilepsy. In Epilepsia (28th International Epilepsy Congress); 2009; Budapest. p. 97.

52. Beyenburg S, Staven K, Schmidt D. Placebo-corrected efficacy of modern antiepileptic drugs for refractory epilepsy: Systematic review and meta-analysis. Epilepsia. 2010; 51(1): p. 7-26.

53. Orwin R. Evaluating coding decisions. In: The Handbook of Research Synthesis Cooper H, Hedges L, editors. New York (NY): Russell Sage Foundation; 1994.
54. Queen’s Printer for Ontario. Ontario Drug Benefit Formulary / Comparative Drug Index (Formulary / CDI) 2012. [Online]; 2012 [cited 2012 April 2. Available from: https://www.healthinfo.moh.gov.on.ca/formulary/index.jsp.

55. Lefebvre C, Manheimer E, Glanville J. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. [Online]; 2011 [cited 2012 February. Available from: www.cochrane-handbook.org.

56. Tabarki B. Highlights from International Neuroscience Meetings - 19th World Congress of Neurology. In Neurosciences; 2010; Bangkok. p. 60 - 62.

57. Gil-Nagel, A BV, Fountain N, Rosenow F, Hebert D, Doty P. The safety and tolerability of lacosamide in randomized, double-blind, placebo-controlled phase II/III clinical trials. In Epilepsia; 2009; Budapest. p. 110.

58. French J, Brodie M, Hebert D, Isojärvi J, Doty P. Evaluation of seizure freedom and 75% responder rates with lacosamide in subjects with partial-onset seizures in phase II/III clinical trials. In Epilepsia; 2009; Budapest. p. 112.

59. Goldenberg M. Overview of drugs used for epilepsy and seizures. P & T. 2010 July; 35(7): p. 392-415.

60. Krämer G, Saußele T. Lacosamid - Neues Antiepileptikum zur Add-on-Therapie bei fokalen Anfällen. Arzneimitteltherapie. 2009; 27: p. 157-162.

61. Rudzinski L, Meador K. Epilepsy - Five new things. Neurology Clinical Practice. 2011 February; 76(Suppl 2): p. S20-S25.

62. Schmidt D, Stöhr T, Uebachs M, Rademacher M, Arnold S, Steinhoff B, et al. Lacosamid (Vimpat): Bericht eines Expertentreffens zu einem neuen Medikament zur Zusatzbehandlung fokaler Anfälle. Z Epileptol. 2008; 21(4): p. 180-189.

63. Sake J, Hebert D, Isojärvi J, Doty P, DeBacker M, Davies K, et al. A pooled analysis of
lacosamide clinical trial data grouped by mechanism of action of concomitant antiepileptic
drugs. CNS Drugs. 2010; 24(12): p. 1055-1068.

64. Rosenfeld W, Biton V, Mameniskien R, et al. Pharmacokinetics and safety of intravenous
lacosamide administered as replacement for adjunctive oral lacosamide in patients with
partial-onset seizures. Epilepsia. 2005; 46(Suppl 8): p. 184.

65. Saussele T. Lacosamide. A new antiepileptic drug as adjunctive therapy in patients with
partial-onset seizures. MMP. 2008; 31(10): p. 374-377.

66. Mil‘chakova L, Gekht A. Efficacy and safety of a new antiepileptic drug lacosamide in
patients with focal epilepsy: data of double-blind placebo controlled trials. Vserossiiskoe
obshchestvo psikhiatrov. 2010; 110(3 Suppl 2): p. 39-43.

67. Mucke H. European Federation of Neurological Societied (EFNS) - Seventh Congress. In
IDrugs; 2003; Helsinki. p. 943-945.

68. Prescrire Editorial Staff. Lacosamide: refractory partial epilepsy: optimise existing
combinations. Prescrire International. 2009 October; 18(103): p. 196.

69. Jatuzis D, Biton B, Ben-Menachem E, Abou-Khalil B, Hackenson M, Rudd D. Evaluation of
the effect of oral lacosamide on adjunctive concomitant antiepileptic drug plasma
concentrations in subjects with partial seizures. In epilepsy; 2006; Helsinki. p. 145.

70. Isojärvi J, Rosenow F, Faught R, Hebert D, Doty P. Efficacy of lacosamide in partial-onset
seizures with and without secondary generalization: a pooled analysis of three phase II/III
trials. In Epilepsia; 2009; Budapest. p. 112.

71. Hebert D, Helmstaedter C, Kanner A, Isojärvi J, Eggert A, Doty P. Preliminary evaluation of
the risk of cognitive adverse events in lacosamid clinical trials for adjunctive treatmetn of
partial onset seizures. In Epilepsia; 2009. p. 260.

72. Hussar D, Bilbow C. New drugs: febuxostat, lacosamide, and rufinamide. Journal of the
American Pharmacists Association. 2009 May/June; 49(3): p. 460-463.

73. Harris J, Murphy J. Lacosamide: an adjunctive agent for partial-onset seizures and potential therapy for neuropathic pain. The Annals of Pharmacotherapy. 2009 November; 43: p. 1809-1817.

74. Hovinga C. SPM-927. IDrugs. 2003; 6(5): p. 479-485.

75. Richard P. Pharamcologie: Derniers développements en thérapeutique. Epilepsies. 2007 April/May/June; 19(2): p. 123-124.

76. Rosenfeld W, Fountain N, Kaubrys G, Heinzen L, McShea C. Lacosamide: an interim evaluation of long-term safety and efficacy as oral adjunctive therapy in subjects with partial-onset seizures. EFNS Eupropean Journal of Neurology. 2008; 15(Suppl 3): p. 13.

77. Rosenfeld W, Rosenow F, Isojärvi J, Hebert D, Doty P. Long-term safety and tolerability of lacosamide for partial-onset seizures: an interim evaluation of patients exposed to lacosamide in double-blind and open-label trials. In Epilepsia; 2009. p. 262.

78. Rosenfeld W, Fountain N, Kaubrys G, Heinzen L MC. Lacosamide: an interim evaluation of long-term safety and efficacy as oral adjunctive therapy in subjects with partial-onset seizures. In Epilepsia; 2009. p. 111.

79. Rosenfeld W, Fountain N, Kaubrys G, et al. Lacosamide: long-term safety and efficacy in partial-onset seizures. In Epilepsia; 2011; Rome. p. 52-53.

80. French J, Brodie M, Hebert D, Isojärvi J, Doty P. Evaluation of seizure freedom and 75% responder rates with lacosamide in subjects with partial-onset seizures in phase II/III clinical trials. In Epilepsia; 2009. p. 89.

81. Faught E, Chung S, Husain A, Isojärvi J, McShea C, Doty P. Long-term efficacy of lacosamide as adjunctive therapy in patients with uncontrolled POS: results from a phase III open-label extension trial. 2010; San Antonio TX.
82. Davies K, Sake J, Hebert D, Doty P, Zackheim J, Eggert-Formella A, et al. Lacosamide as adjunctive therapy with a broad range of AEDs: a pooled analysis of lacosamide clinical trial data by concomitant AED mechanism of action. In Neurocritical Care; 2010; San Francisco. p. S113.

83. Cada D, Levien T, Baker D. Lacosamide. Hospital Pharmacy. 2009; 44(6): p. 497-508.

84. Biton V, Rosenfeld W, Mameniskiene R, Vaiciene N, Whitesides J, Sommerville K. Safety and Tolerability of Intravenous lacosamide as replacement for oral lacosamide in subjects with partial-onset seizures. Epilepsia. 2005; 46(Suppl. 6): p. 120.

85. Biton V, Fountain N, Rosenow F, et al. Safety and tolerability of lacosamide: a summary of adverse events in epilepsy clinical trials. In Epilepsia; 2009; Berlin. p. 110.

86. Ben-Menachem E, French J, Isojärvi J, Hebert D, Doty P. Long-term efficacy of lacosamide for partial-onset seizures: an interim evaluation of completer cohorts exposed to lacosamide for up to 36 months. In Epilepsia; 2009. p. 260.

87. Grellet J. Neurology: Vimpat, lacosamide (Neurologie: Vimpat, lacosamide). Actualites Pharmaceutiques Hospitalieres. 2010 February: p. 32.

88. Bonnaud I, Toffol B de, Sellal F, et al. American Academy of Neurology, Seattle, 25 avril-2mai. 2009; 165: p. 496-510.

89. Ben-Menachem E, Chung S, Rudd D, Hebert D, Doty P. Evaluation of lacosamide efficacy in subjects with partial-onset seizures across the dose range used in phase II/III clinical trials. In Epilepsia; 2009. p. 111.

90. Benbadis S, Elger C, Hebert D, Isojärvi J. Efficacy of adjunctive lacosamide in patients with partial-onset seizures and prior surgical interventions for epilepsy. In Epilepsia; 2009. p. 262.

91. Lacosamide for epilepsy. The Medical Letter on Drugs and Therapeutics. 2009 June 29: p.
50-52.

92. Ben-Menachem B. Lacosamide - Efficacy and tolerability. In Epilepsia; 2006. p. 272.

93. Sake J, Hebert D, Doty P, et al. Lacosamide efficacy and safety in patients taking AEDs that act on non-sodium channel targets. In Epilepsia; 2010. p. 122.

94. French J, Ben-Menachem E, Isojärvi J, Hebert D, Doty P. Long-term efficacy of lacosamide for partial-onset seizures; an interim evaluation of completer cohorts exposed to lacosamide for up to 5 years. In Epilepsia; 2010. p. 15.

95. Isojärvi J, hebert D, Doty P, Zackheim J, Davies K, Sake JK. Evaluation of lacosamide efficacy and safety as adjunctive therapy in patients receiving traditional sodium channel blocking AEDs. In Epilepsia; 2010. p. 69.

96. Isojärvi J, Hebert D, Doty P, Zackheim J, Davies K, Sake JK, et al. Evaluation of lacosamide efficacy and safety as adjunctive therapy in patients receiving traditional sodium channel blocking AEDs. In Annals of Neurology; 2010; San Francisco. p. S39-S40.

97. Perucca E, Yasothan U, Clincke G, P K. Fresh from the Pipeline: Lacosamide. Nature Reviews Drug Discovery. 2008 December; 7: p. 973-974.

98. Rheims S, Perucca E, Ryvlin P. Clinical comparability of the new antiepileptic drugs in refractory partial epilepsy: Reply to Costa et al.. Epilepsia. 2011; 52(11): p. 2139-2141.

99. Schmidt D. Effect of antiepileptic drugs on the postictal state. A critical overview. Epilepsy & Behaviour. 2010; 19: p. 176-181.

100. Schmitz B, Montouris G, Schauble BCS. Assessing the unmet treatment need in partial-onset epilepsy: looking beyond seizure control. Epilepsia. 2010; 51(11): p. 2231-2240.

101. Randomized Controlled Trial to Assess Effects of Lacosamide on Sleep and Wake in Adults With Focal Epilepsy. 2012 January 3.
102. Sake Jk, Hebert D, Doty P, et al. Lacosamide efficacy and safety in patients taking AEDs that act on non-sodium channel targets. In Annals of Neurology; 2010. p. S38.

103. Chung S, Rudd D, Hebert D, Doty P. Evaluation of lacosamide efficacy in subjects with difficult-to-treat partial-onset seizures across the dose range used in phase II/III clinical trials. In Neurology; 2009. p. A352.

104. de La Loge C, Borghs S, Mueller K, Cramer J. Minimally important change in QOLIE-31 scores: estimates from three placebo-controlled lacosamide trials in patients with partial onset seizures. In American Epilepsy Society - Program Book; 2009; San Antonio TX. p. 258 (Abstract 2.224).
Figure 1

Flow diagram of study selection
Table 1 (on next page)

Characteristics of included studies
First Author & Publication Year	Methodologic Quality	Patients	Interventions & Comparators	Outcomes	Funding
Ben-Menachem 2007 (27)	Adequate sequence generation*; AC; Blinding of patients, physicians, outcome assessors and data collectors; not ITT; incomplete reporting of pre-specified outcomes; follow-up to 18 weeks	Mean age (SD) 39.9 (11.3)	- Lacosamide 100 mg PO BID		
- Lacosamide 200 mg PO BID
- Lacosamide 300 mg PO BID
- Placebo PO BID | - Change in seizure frequency per 28 days from baseline to maintenance
- 50 % responder rate

Outcomes assessed at: Weeks 0 & 18 | Schwarz Biosciences Inc. |
| N 421 | Gender: 54% female
Concomitant AEDs: 84% of the population were taking 2 AEDs at baseline, the rest were on 1 AED
Median seizure frequency per 28 days across all treatment groups during the baseline period: 12 | Duration of treatment: 18 weeks (after 8 week baseline monitoring - 6 week dose-titration & 12 week | Adverse event (AE) data: including serious adverse events, and discontinuation due to AEs
- Achievement of seizure-free status
Efficacy outcomes assessed at: weeks 0 & 18
- QOL scales (CGIC & QOLIE-31 – only in UK & USA) assessed at Week 0, 6, & 18
- Adverse effects (assessed Weekly 0 – 6 weeks and 10, 14 and 18 weeks) |
| Author & Publication Year | Methodologic Quality | Patients | Intervention & Comparator | Outcomes | Funding |
|---------------------------|----------------------|----------|---------------------------|----------|---------|
| Chung 2010 (28) | Adequate sequence generation; AC; Blinding of patients, physicians, outcome assessors and data collectors; not ITT; incomplete reporting of pre-specified outcomes follow-up to 18 weeks | N 405 | Mean Age (SD): 38.3 (12.1)
Gender: 50.6% female
Concomitant AEDs: Throughout the trial 82.1% were taking 2 – 3 concomitant AEDs
Median seizure frequency per 28 days across all treatment groups during the baseline period:
P 15.0
L400 11.5
L600 16.5 |
• Lacosamide 200 mg PO BID
• Lacosamide 300 mg PO BID
• Placebo PO BID
Duration of treatment: 18 weeks (after 8 week baseline monitoring - 6 week titration & 12 week maintenance phase) |
• Change in seizure frequency per 28 days from baseline to maintenance
• 50 % responder rate
Outcomes assessed at: Week 0 & 18 |
• Adverse event (AE) data: including serious adverse events, and discontinuation due to AEs
• % change in seizure frequency per 28 days from baseline to maintenance
• 75% responder rate (the proportion of patients who experienced a 75% or greater reduction in seizure frequency from baseline to maintenance
• Number & proportion of patients achieving seizure-free status throughout the maintenance period for patients completing the maintenance period and having complete efficacy data
• Change in seizure frequency and 50% responder rate |
• Schwarz Biosciences Inc., UCB Group |
| Halász 2009 (29) | Adequate sequence generation; AC; Blinding of patients, physicians, outcome assessors and data collectors; not ITT, incomplete reporting of pre-specified outcomes, follow-up to 16 weeks | 485 | **Mean Age (SD):** 37.8 (11.9)
Gender: 48.5% female
Concomitant AEDs: 37% were taking 3 AEDs, 50% were taking 2 AEDs and 13% were taking 1 AED in addition to the trial medication
Median seizure frequency per 28 days across all treatment groups during the baseline period:
 - P 9.9
 - L200 11.5
 - L400 10.3
Lacosamide 100 mg PO BID
Lacosamide 200 mg PO BID
Placebo PO BID
Duration of treatment: 16 weeks (after 8 week baseline - 4 week titration and 12 week maintenance phase)
Change in seizure frequency per 28 days from baseline to maintenance
50 % responder rate
Outcomes assessed at: weeks 0 & 16 | **Number & Proportion of patients achieving seizure-free status through the maintenance period for patients completing the maintenance period**
Proportion of seizure-free days during the maintenance period for patients entering the maintenance period
Efficacy Outcomes assessed at: weeks 0 & 16
Adverse effects Outcomes assessed: weekly 0 – 16 weeks
QOL scores (PGIC, CGIC, SSS, QOLIE-31)
QOL Outcomes assessed at: weeks 0 & 18 | **UCB Group** |

Abbreviations: AC = allocation concealed, ITT = intention-to-treat analysis; N = total number of patients randomized; P=placebo; PO = oral; BID = twice daily; L200 = lacosamide 200 mg/day; L400 = lacosamide 400 mg/day; L600 = lacosamide 600 mg/day; CGIC = Clinical Global Impression of Change score; QOL = quality of life; QOLIE-31 = quality of life in epilepsy; PGIC = Patient’s Global Impression of Change Score; SSS = seizure severity scale
*Randomization method or details not provided by author/manufacturer
Figure 2

Risk of bias summary

![Risk of bias summary table]

- Random sequence generation (selection bias)
- Allocation concealment (selection bias)
- Blinding of participants and personnel (performance bias)
- Blinding of outcome assessment (detection bias)
- Incomplete outcome data (attrition bias)
- Selective reporting (reporting bias)

Studies

- **Ben-Menachem 2007**
 - Random sequence generation: Questionable
 - Allocation concealment: Yes
 - Performance bias: Yes
 - Detection bias: Yes
 - Attrition bias: Questionable
 - Reporting bias: Questionable

- **Chung 2010**
 - Random sequence generation: Yes
 - Allocation concealment: Yes
 - Performance bias: Yes
 - Detection bias: Questionable
 - Attrition bias: Questionable
 - Reporting bias: Questionable

- **Halasz 2009**
 - Random sequence generation: Yes
 - Allocation concealment: Yes
 - Performance bias: Yes
 - Detection bias: Questionable
 - Attrition bias: Questionable
 - Reporting bias: Questionable
Table 2 (on next page)

Median percentage reduction in seizure frequency.
Trial	Placebo	Lacosamide 200 mg/day	Lacosamide 400 mg/day	Lacosamide 600 mg/day		
	N	%	N	%	N	%
Ben-Menachem et al. (27)	96	10%	107	26%	107	39%
Chung et al. (28)	104	20.8%	---	---	201	37.3%
Halász et al. (29)	159	20.5%	160	35.3%	158	36.4%

Compares maintenance phase to baseline period
Figure 3

50% responder rate (ITT)

Primary outcome (ITT) lacosamide (all dosage arms pooled) compared to placebo

Study or Subgroup	Lacosamide Events	Total	Placebo Events	Total	Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
Ben-Menachem 2007	119	321	21	97	27.0%	1.71 [1.14, 2.57]	1.48 [1.10, 2.00]
Chung 2010	118	301	19	104	23.9%	2.15 [1.40, 3.30]	
Halasz 2009	120	322	41	163	49.0%	1.48 [1.10, 2.00]	
Total (95% CI)	**944**	**364**	**494**	**364**	**0.00%**	**1.68 [1.36, 2.08]**	
Total events	357	81					

Heterogeneity: Tau² = 0.00; Chi² = 1.94, df = 2 (P = 0.38); I² = 0%

Test for overall effect: Z = 4.85 (P < 0.00001)
Figure 4

Discontinuation due to adverse events (ITT)

Lacosamide (all dosage arms pooled) compared to placebo
Figure 5

Ataxia

Lacosamide (all dosage arms pooled) compared to placebo
Figure 6

Dizziness

Lacosamide (all dosage arms pooled) compared to placebo.
Figure 7

Fatigue

Lacosamide (all dosage arms pooled) compared to placebo

Study or Subgroup	Lacosamide Events	Total	Placebo Events	Total	Weight	Risk Ratio M-H, Random, 95% CI
Ben-Menachem 2007	45	321	5	97	50.5%	2.72 [1.11, 6.66]
Halasz 2009	18	322	6	163	49.5%	1.52 [0.61, 3.75]
Total (95% CI)	643		260		100.0%	2.04 [1.08, 3.85]

Total events: 63
Heterogeneity: Tau² = 0.00; Chi² = 0.82, df = 1 (P = 0.37); I² = 0%
Test for overall effect: Z = 2.19 (P = 0.03)
Nausea

Lacosamide (all dosage arms pooled) compared to placebo.

![Figure 8](image-url)
Table 3 (on next page)

Quality of Life Outcomes

Mean change in QOLIE-31 as reported in the Ben-Menachem et al (27) trial.
	Placebo	Lacosamide 200 mg	Lacosamide 400 mg	Lacosamide 600 mg
QOLIE-31 Median Change in Overall Score from Baseline	-1.3 points	NR	2.7 points	NR
Clinical Global Impression of Change (CGIC)	25%	35%	40%	38%

An increase in score indicates an improvement in quality of life as measured by the score

QOLIE-31 = quality of life in epilepsy inventory
Summary of findings

Statistically significant outcomes from the review graded for risk of bias and imprecision using GRADE.
Outcomes	Illustrative comparative risks* (95% CI)	Relative effect (95% CI)	No of Participant(s) (studies)	Quality of the evidence (GRADE)
50% Responder Rate (ITT) - Lacosamide (all) vs. placebo Follow-up: 16-18 weeks	Placebo: 223 per 1000 (303 to 463)	RR 1.68 (1.36 to 2.08)	1308 (3 studies)	⊙⊙⊙⊙ **moderate**^{1,2,3}
	Lacosamide: 374 per 1000 (96 to 250)			
Discontinuation of Study Drug due to Adverse Effects (ITT) - Lacosamide (all) vs. placebo Follow-up: 16 - 18 weeks	Placebo: 49 per 1000 (96 to 250)	RR 3.13 (1.94 to 5.06)	1308 (3 studies)	⊙⊙⊙⊙ **moderate**^{1,2,3,4}
	Lacosamide: 155 per 1000 (96 to 250)			
Ataxia Follow-up: 16 - 18 weeks	Placebo: 16 per 1000 (37 to 187)	RR 5.03 (2.23 to 11.37)	1308 (3 studies)	⊙⊙⊙⊙ **moderate**^{1,2,3,4,5}
	Lacosamide: 83 per 1000 (37 to 187)			
Dizziness Follow-up: 16 - 18 weeks	Placebo: 80 per 1000 (194 to 399)	RR 3.49 (2.43 to 5.01)	1308 (3 studies)	⊙⊙⊙⊙ **moderate**^{1,2,3,4}
	Lacosamide: 278 per 1000 (194 to 399)			
Fatigue Follow-up: 16 - 18 weeks	Placebo: 42 per 1000 (46 to 163)	RR 2.04 (1.08 to 3.85)	903 (2 studies)	⊙⊙⊙⊙ **moderate**^{1,2,3,4}
	Lacosamide: 86 per 1000 (46 to 163)			
Nausea Follow-up: 16 - 18 weeks	Placebo: 44 per 1000 (54 to 201)	RR 2.36 (1.22 to 4.58)	1308 (3 studies)	⊙⊙⊙⊙ **moderate**^{1,2,3,4}
	Lacosamide: 104 per 1000 (54 to 201)			

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence (42):

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Trials all had selective reporting of outcomes - outcomes reported in the protocol documents found in the FDA files did not match the outcomes reported in the peer-review publication.
All 3 trials stated "double-blind" without further explanation given. Blinding was assessed as per Akl et al. Journal of Clinical Epidemiology. 2012; 65: 262-267.

None of the 3 trials adhered to the intention-to-treat (ITT) principle - but performed "ITT" analysis with all patients who received at least one dose of study medication

Ben-Menachem trial provided no explanation with regards to their random sequence generation

Total number of events less than 300, based on Mueller et al. Annals of Internal Medicine 2007; 146: 878-881.

Wide confidence intervals suggest a degree of imprecision