The calculation method of the length of contact of car tires with the road surface

E V Balakina¹, V N Zadvornov², D S Sarbaev¹, I V Sergienko¹ and Yu N Kozlov³

¹Department of Technical operation and car repairs, Volgograd state technical university, 28, Lenina Avenue, Volgograd, 400005, Russian Federation
²Dmitrov Institute of Continuing Education, micro district DZFS, 23, Dmitrov, Moscow region, Dmitrov district, 141801, Russian Federation
³FSUE “NAMI”, Motor Street, 2, Moscow, 125438, Russian Federation

E-mail: fahrgestell2011@yandex.ru

Abstract. In the tasks of modeling the motion stability, controllability and braking dynamics of cars and buses, information is required on the car tires contact length with the road surface. The car tires contact length is usually calculated from geometrical considerations (using the Hedekel formula). In this case, the experimental data of this value turn out to be less than the calculated ones due to the deformation features of the car tires. To account for this reduction in the contact patch length, the authors developed a general method for determining the correction coefficient. Previously, they developed a similar method for low-profile radial passenger car tires. Now it is valid for all passenger and truck tires. This will allow calculating the car tires contact length more correctly.

1. Introduction
In modeling of the properties of movement stability, controllability and braking dynamics of cars and buses, one has to deal with modeling the contact patch length [1-15]. The scheme of the relationship of these performance properties with the contact patch length is shown in figure 1.

Correct calculation of its value determines, among other things, the accuracy of the calculation of the parameters of the sideslip and oscillations of operated wheels.

The contact patch length determines the results of calculating the parameters of the slip and oscillations phenomena of the operated wheels. There are two methods to determine contact patch length. The first method is experimental [1, 16-24]. These articles present the comparison of theoretical and practical research of the contact patch between tire and road in static conditions without applying lateral forces. The authors determined and analyzed the geometric parameters of the contact patch such as shape, sizes, and area depending on the load applied over the tire and the air pressure in the tire.

Also, the influence of radial load and the air pressure against the surface of the contact patch was determined and analyzed. It can be concluded that the experimental method of determining the contact patch length is complex and time-consuming.

The second method is calculation. This way is easier than the experimental one. The contact patch length is calculated by the Hedekel formula [3, 25, 26]. At the same time, the real values of the contact patch length turn out to be less than the calculated ones due to the deformation features of car tires.
The purpose of this work is to develop a general method for determining the correction coefficient K_h for the car tires. This correction coefficient K_h will help calculate the car tires contact patch length more correctly.

Figure 1. The scheme of the relationship of the vehicle active safety properties with the contact patch length.

2. Research methodology

The contact patch length l_c is usually calculated from geometric considerations, using the scheme of figure 2, by a simple relationship, which is commonly called the Hedekel formula [26].

In figure 2, P_z is normal wheel load in N; Δz is radial tire deflection, mm; R_0 is free wheel radius in mm; l_c is contact patch length in mm; b_c is width patch length in mm.

According the Hedekel formula:

$$l_{c0} = 2\sqrt{R_0^2 - (R_0 - \Delta z)^2} = 2\sqrt{\Delta z(2R_0 - \Delta z)}.$$ (1)
In formula (1), l_{c0} is calculated contact patch length according the Hedekel formula in mm; R_0 is free wheel radius in mm; Δz is radial tire deflection in mm.

$$\Delta z = \frac{P_z}{C_{tz}}. \quad (2)$$

In formula (2), P_z is normal wheel load in N; C_{tz} is radial rigidity of the tire in N/mm.

To calculate the radial rigidity of car tires with the participation of the author E V Balakina, universal dependencies [15] were previously obtained for calculations shown in table 1.

In Table 1, C_{tz} is tire radial rigidity in N/mm; B_t is profile width in mm; D_t is tire outer diameter in mm; $P_{z\text{max}}$ is maximum normal load on the tire according to the passport in N; $\frac{P_z}{P_{z\text{max}}}$ is the ratio of workload to the maximum; $\frac{P}{P_{\text{max}}}$ is the ratio of working pressure to maximum.

However, the validity of the Hedekel formula obtained from geometrical considerations requires additional research.

For this purpose, the authors developed a method. Its essence is that the contact patch lengths are measured experimentally for a large number of car tires; then they are calculated using the Hedekel formula. Comparison results were analyzed and a correction coefficient was determined, by which the calculated contact patch lengths should be multiplied to obtain refined results that are close to the experimental ones. This makes it possible to accurately determine the car tires contact patch length by calculation without using time-consuming experiments.

The experimental contact patch length is somewhat less than the calculated one. This is due to the peculiarities of tread deformation in the areas above the contact patch. The value of this difference is determined by the tire design. Therefore, the secondary calculation of the contact patch length is based on the specified reduction. This can be done as follows:

$$l_c = K_h \cdot l_{c0}. \quad (3)$$

In formula (3), K_h is a coefficient of the contact patch length reduction ($K_h = l_{ce}/l_{c0}$).
Table 1. Recommended universal constraints for calculating the radial rigidity of car tires

Tire type	Recommended universal relationship for the calculation of radial rigidity	Maximum relative error, %	Average relative error, %
Passenger radial	$C_{tz} = 166.1429 \cdot \prod_{i=1}^{4} Y_{pi}$	13	4.0
	$Y_{p1} = -0.15771 + 0.0067 B_{z}$		
	$Y_{p2} = 0.62391 + 0.0006172 D_{z}$		
	$Y_{p3} = 0.4053341 + 0.000118836 P_{z_{max}}$		
	$Y_{p4} = 0.3185 + 0.849 \frac{P}{P_{max}}$		
Passenger diagonal	$C_{tz} = 201.6842 \cdot \prod_{i=1}^{4} Y_{pi}$	18	6.8
	$Y_{p1} = -2.10538 + 0.01747 B_{z}$		
	$Y_{p2} = 0.74784 + 0.00040 D_{z}$		
	$Y_{p3} = 0.0631225 + 0.00018329 P_{z_{max}}$		
	$Y_{p4} = 0.25407 + 0.96191 \frac{P}{P_{max}}$		
Truck diagonal	$C_{tz} = 785.95 \cdot \prod_{i=1}^{5} Y_{pi}$	17	5.4
	$Y_{p1} = 0.68765 + 0.0010287 B_{z}$		
	$Y_{p2} = 1 + 0.000004 D_{z}$		
	$Y_{p3} = 0.7721584 + 0.00000785 P_{z_{max}}$		
	$Y_{p4} = 0.46727 + 0.6995645 \frac{P}{P_{z_{max}}}$		
	$Y_{p5} = 0.8821875 + 0.1422837 \frac{P}{P_{z_{max}}}$		
Truck radial	$C_{tz} = 839.436 \cdot \prod_{i=1}^{2} Y_{pi}$	10	3.5
	$Y_{p1} = 0.284905 + 0.0000267347 P_{z_{max}}$		
	$Y_{p2} = 0.2854095 + 0.776038 \frac{P}{P_{z_{max}}}$		
Thus, the contact patch length of the tire with the road can be calculated from the final dependence (4):
\[
l_c = 2K_h\sqrt{\Delta z(2R_0 - \Delta z)}.
\] (4)

FSUE «NAMI» measured the values of the radial rigidity C_{rz} and the contact patch length C_{lz} of passenger and truck tires of different models and structures (47 each) for given normal wheel loads P_z. A photograph of the experimental installation is shown in figure 3.

![Figure 3](image)

Figure 3. Photograph of the experimental stand to determine the characteristics of tires.

According to the experimental data, we calculated tire deformation Δz by the formula (2). To obtain the correction coefficient K_h, the experimental values l_{ce} are divided into the corresponding calculated ones l_{c0}. The results are shown in table 2 and figure 4.

![Figure 4](image)

Figure 4. The results of the calculation of the correction coefficient using the Hedekel formula.
Table 2. Calculation results

Tire model	Tire type	P_{c}, N	$C_{l_{c}}$, m/m	z_{c}, mm	$R_{h_{l}}$, mm	F_{c}, m/m²	b_{c}, mm	l_{c}, mm	l_{c}, mm	k_{h}
1	passenger	3236	158	26	299	19800	125	173	243.9016195	0.7093
2	passenger	3236	177	25.5	299	19800	125	182	241.6505742	0.75315
3	passenger	1863	126	15.5	310	1080	100	109	193.594938	0.56303
4	passenger	4707	186	33	325	26100	153	186	285.3839519	0.65175
5	passenger	4707	196	31.5	325	24400	154	175	279.1612437	0.62688
6	passenger	6227	322	23.6	342.5	18320	116	183	249.8722874	0.73237
7	passenger	7061	342	24.5	342.5	18640	117	184	254.419458	0.72322
8	truck	27810	910	33.3	480.5	41030	207	225	351.524736	0.64007
9	truck	30410	970	35.3	480.5	43350	208	232	361.5367754	0.64171
10	truck	27810	865	32.7	481.5	41200	228	220	348.8312486	0.63068
11	passenger	30410	1010	33.6	481.5	41880	210	206	353.4280125	0.58286
12	passenger	3432	165	25	308	19300	123	194	243.1049156	0.79801
13	passenger	3432	176	24	308	21300	123	196	238.3946308	0.82217
14	passenger	3432	173	24.5	307.5	20600	124	195	240.5597639	0.81061
15	truck	27810	246	23.5	330.5	21800	129	191	244.7958333	0.78024
16	truck	27810	263	21.5	330.5	20400	130	177	234.5143919	0.75475
17	truck	24517	760	36.3	572	61510	249	292	401.0461819	0.7281

Note: Calculation results.
From figure 4 it follows that $K_h \approx 0.7$ for all tires, except low-profile radial passenger tires. Thus, for almost all tires $l_c \approx 1.4\sqrt{\Delta z(2R_0 - \Delta z)}$. It has been previously established [25] that for passenger radial low-profile tires $l_c \approx 1.2\sqrt{\Delta z(2R_0 - \Delta z)}$.

3. Conclusion
The authors developed a general universal method for determining the value of the car tires contact length with the road surface. This method is valid for radial, diagonal, truck and passenger tires, including low profile tires. The application of the method will allow calculating the car tires contact length with the road more correctly and improving the accuracy of modeling the movement stability and controllability of cars.

4. Acknowledgments
The reported study was funded by RFBR according to research project No. 19-08-00011.

References
[1] Lang A and Kluppel M 2014 Temperature and Pressure dependence of the friction properties of tire tread compounds on rough granite in KHK 11th Fall Rubber Colloquium (Germany, Hannover)
[2] Balabin I V, Putin V A and Chabunin I S 2012 Car and tractor wheels and tires (Moscow: MSTU «MAMI») p 920
[3] Balakina E V and Kochetkov A V 2017 Adhesion coefficient of a tire with a road surface (Moscow: “Innovative engineering”) p 292
[4] Balakina E V and Sarbaev D S 2019 Qualitative Research of Combined Friction in Contact of Elastic Wheel with Solid Surface, Proc. of the 4th Int. Conf. on Industrial Eng. (Moscow, Russia) pp. 773–779
[5] Balakina E V and Zotov N M 2011 Stability of the movement of wheeled vehicles (Volgograd: “Polytechnic”) p 464
[6] Balakina E V and Zotov N M 2015 Determination of the relative position of forces, reactions and friction zones in the contact patch of an elastic wheel with a solid surface Friction and Wear 36(1) 36–40
[7] Balakina E V 2017 Calculation of the geometric location and measurements of the zones of friction of rest and sliding in the patch of contact of an elastic wheel with a solid support surface Friction and Wear 38(2) 136–143
[8] Balakina E V 2017 Forms of $\phi_x - s_x$ – diagrams of an automobile tire, Int. Scientific Conf. “Baltrib’2017” (Kaunas, Lithuania) pp. 118–124
[9] Balakina E V, Zotov N M and Fedin A P 2018 Modeling of the motion of automobile elastic wheel in realtime for creation of wheeled vehicles motion control electronic systems IOP Conf. Series: Mater. Sci. and Eng. 315 012004 doi:10.1088/1757-899X/315/1/012004
[10] Knoroz V I et al., 1976 Car tire operation (Moscow: Transport) p 240
[11] M+P.DVS.12.08.3 2013 Influence of road surface type on rolling resistance – Results of the measurements 2013, revision 4
[12] Pacejka H B 2012 Tire and Vehicle Dynamics (Published by Elsevier Ltd, USA)
[13] prEN 13036-2a 2017 Road and airfield surface characteristics – Test methods – Part 2a: Assessment of the skid resistance of a road pavement surface by measurement of the sideway-force coefficient
[14] Svendenius J 2007 Tire Modeling and Friction Estimation (Department of Automatic Control Lund University, Lund, Sweden) p 194
[15] Salnikov V I, Barashkov A A, Zadvornov V N and Balakina E V 2014 Calculated and experimental universal dependences for determining the radial rigidity of tires Automotive industry [in Russian – Avtomobilnaya promyshlennost] 7 13–14

[16] Lorenz B, Oh Y R, Nam S K, Jeon S H and Persson B N J 2015 Rubber friction on road surfaces: Experiment and theory for low sliding speeds J. of Chemical Physics 142 194701 doi: 10.1063/1.4919221

[17] Cristian MINCA 2015 The determination and analysis of tire contact surface geometric parameters. Review of the Air Force Academy 1 149–154

[18] David Woodward et al., 2014 The static contact patch of some friction measuring devices 4th Int. Safer Roads Conf. (Cheltenham, United Kingdom)

[19] Leiva-Villacorta F, Vargas-Nordcbeck A, Aguiar-Moya J P and Loria-Salazar L 2016 Influence of Tire Footprint Area and Pressure Distribution on Pavement Responses, LanammeUCR, San José pp. 11501-2060 (Costa Rica)

[20] Jackowski J and Wieczorek M 2011 Analysis of interaction between tyre tread and road on the basis of laboratory test TRANSBALTICA 7th Int. Conf. Vilnius (Lithuania)

[21] Khaleghian S, Ghasemalizadeh O and Taheri S 2016 Estimation of the Tire Contact Patch Length and Normal Load Using Intelligent Tires and Its Application in Small Ground Robot to Estimate the Tire-Road Friction Tire Science and Technology TSTCA 44(4) 248–261

[22] M+P.PGEL.17.06.1 2017 Enhancements of texture vs rolling resistance model, M+P consulting engineers, Vught (NL)

[23] Parviz Tomaraee et al., 2015 Relationships among the contact patch length and width, the tire deflection and the rolling resistance of a free-running wheel in a soil bin facility Spanish J. of Agricultural Res. 13(2) 1–7

[24] Ivanov V 2010 Analysis of tire contact parameters using visual processing Advances in Tribology p 11

[25] Balakina E V and Sarbaev D S 2018 Method of calculating the contact patch length of passenger radial low-profile tires Automotive industry [in Russian – Avtomobilnaya promyshlennost] 12 31–33

[26] Bukhin B L 1988 Introduction to the mechanics of pneumatic tires (Moscow: Chemistry) p 223