HYPERSPACES WITH A COUNTABLE CHARACTER OF CLOSED SUBSETS

CHUAN LIU AND FUCAI LIN

Abstract. For a regular space X, the hyperspace $(CL(X), \tau_F)$ (resp., $(CL(X), \tau_V)$) is the space of all nonempty closed subsets of X with the Fell topology (resp., Vietoris topology). In this paper, we give the characterization of the space X such that the hyperspace $(CL(X), \tau_F)$ (resp., $(CL(X), \tau_V)$) with a countable character of closed subsets. We mainly prove that $(CL(X), \tau_F)$ has a countable character on each closed subset if and only if X is compact metrizable, and $(CL(X), \tau_F)$ has a countable character on each compact subset if and only if X is locally compact and separable metrizable. Moreover, we prove that $(K(X), \tau_V)$ have the compact-G_δ property if and only if X have the compact-G_δ property and every compact subset of X is metrizable.

1. Introduction

In this paper, the base space X is always supposed to be T_1 and regular. Let \mathbb{N} and ω denote the sets of all positive integers and all non-negative integers, respectively. Given a topological space X, the following collections of subsets of X are the hyperspaces that we will consider.

$$F_n(X) = \{A \subset X : |A| \leq n, A \neq \emptyset\},$$

$$F(X) = \bigcup \{F_n(X) : n \in \mathbb{N}\},$$

$$K(X) = \{K \subset X : K \text{ is a non-empty, compact subset in } X\} \text{ and}$$

$$CL(X) = \{H \subset X : H \text{ is non-empty, closed in } X\}.$$

For any open subsets U_1, \ldots, U_k of space X, let

$$\langle U_1, \ldots, U_k \rangle = \{H \in CL(X) : H \subset \bigcup_{i=1}^{k} U_i \text{ and } H \cap U_j \neq \emptyset, 1 \leq j \leq k\}.$$

We endow $CL(X)$ with Vietoris topology defined as the topology generated by

$$\{\langle U_1, \ldots, U_k \rangle : U_1, \ldots, U_k \text{ are open subsets of } X, k \in \mathbb{N}\}.$$

For any open subset U of X, let

$$U^- = \{H \in CL(X) : H \cap U \neq \emptyset\}$$

and

$$U^+ = \{H \in CL(X) : H \subset U\}.$$

We endow $CL(X)$ with Fell topology defined as the topology generated by the following two families as a subbase:

$$\{U^- : U \text{ is any non-empty open in } X\}$$

2020 Mathematics Subject Classification. primary 54B20; secondary 54D99, 54E20.

Key words and phrases. hyperspaces; Vietoris topology; Fell Topology; D_1-space; D_0-space; γ-space.

The second author is supported by the Key Program of the Natural Science Foundation of Fujian Province (No: 2020J02043), the NSFC (No. 11571158), the Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics.
\begin{align*}
\{(K^c)^+ : K \text{ is a compact subset of } X, K \neq X\}.
\end{align*}

We denote the hyperspace with the Vietoris topology and the Fell topology by $\langle CL(X), \tau_V \rangle$ and $\langle CL(X), \tau_F \rangle$ respectively. For T_2 space, it is well known that $F_1(X)$ is homeomorphic to X in hyperspaces with the Vietoris topology or the Fell topology, so we consider all hyperspaces have a closed copy of X.

Let X be a topological space and $A \subseteq X(A \subset \langle CL(X), \tau_V \rangle)$ be a subset of $X(\langle CL(X), \tau_V \rangle)$. Then the closure of $A(A)$ in $X(\langle CL(X), \tau_V \rangle)$ is denoted by $\bar{A}(\bar{CL}(A))$, and $NI(X)$ and $I(X)$ are the sets of all non-isolated points and isolated points of X respectively. For undefined notations and terminologies, the reader may refer to [4, 5] and [13].

It is well known that the topics of the hyperspace has been the focus of much research, see [2, 6, 13, 17]. There are many results on the hyperspace $CL(X)$ of a topological space X equipped with various topologies. In this paper, we endow $CL(X)$ with the Vietoris topology τ_V and the Fell topology τ_F respectively. In 1997, Holá and Levi in [8, Corollary 1.8] gave a characterization of those spaces X such that $(CL(X), \tau_V)$ is first countable; in 2003, Holá, Pelant and Zsilinszky in [7, Theorem 3.1] proved that $(CL(X), \tau_V)$ is developable iff $(CL(X), \tau_V)$ is Moore iff $(CL(X), \tau_V)$ is metrizable iff $(CL(X), \tau_V)$ has a σ-discrete network iff X is compact and metrizable. Recently, F. Lin, R. Shen and C. Liu in [12] considered the following two problems, and gave some partial answers to Problems 1.1 and 1.2 respectively.

Problem 1.1. [12] Problem 1.1] Let C be a proper subclass of the class of first-countable spaces, and let P be a topological property. If $(CL(X), \tau_V) \in C$, does X have the property P?

Problem 1.2. [12] Problem 1.2] Let C be a class of generalized metrizable spaces. If $(CL(X), \tau_V) \in C$, is X compact and metrizable?

Recall that a space X is a D_1-space [1] if every closed subset of X has a countable local base and X is a D_0-space [18] if every compact subset of X has a countable local base. Clearly, each D_1-space is a D_0-space, each D_0-space is first-countable, and each Moore space or space with point-countable base or γ-space is a D_0-space [3]. In [3], M. Dai and C. Liu discussed a characterization, some covering properties and the metrization of D_1-spaces. In [12], F. Lin, R. Shen and C. Liu proved that under (MA+\negCH), $(CL(X), \tau_V)$ is a γ-space if and only if $(CL(X), \tau_V)$ is a D_0-space if and only if X is a separable metrizable space and $NI(X)$ of X is compact. We listed some properties of D_1-spaces in [3, 12] as follows.

Fact 1: If X is a D_1-space, then $NI(X)$ is countably compact, see [3];

Fact 2: If X is a D_1-space, then X is metrizable if and only if $NI(X)$ is metrizable, see [3].

Fact 3: If $(CL(X), \tau_V)$ is a D_1-space, then X is compact metrizable, see [12].

It was proved that if X is a Moore space or space with a point-countable base, so is $(K(X), \tau_V)$, see [15, 16] and [10, Theorem 3.11] respectively.

Our paper is organized as follows. In Section 2, we mainly discuss the D_1-property of the hyperspaces. We first prove that, for a space X, the hyperspace $(CL(X), \tau_F)$ is a D_1-space if and only if X is compact metrizable. Then we prove that, for a space X, $(K(X), \tau_V)$ is a D_1-space if and only if $(F_2(X), \tau_V)$ is a D_1-space if and only if X is

\footnote{A space (X, τ) is a γ-space there exists a function $g : \omega \times X \to \tau$ such that (i) $\{g(n, x) : n \in \omega\}$ is a base at x; (ii) for each $n \in \omega$ and $x \in X$, there exists $m \in \omega$ such that $y \in g(m, x)$ implies $g(m, y) \subset g(n, x)$.}
discrete or compact metrizable. In Section 3, we mainly discuss the D_0-property of the hyperspaces. We prove that, for a space X, $(CL(X), \tau_F)$ is a D_0-space if and only if $(F_2(X), \tau_F)$ is a D_0-space if and only if X is locally compact and separable metrizable. We also prove that, for a space X, $(K(X), \tau_V)$ is a D_0-space if and only if $(F_2(X), \tau_V)$ is a D_0-space if and only if X is a D_0-space and each compact subset of X is metrizable. Finally, we discuss the G_δ-property of hyperspaces and prove that $(K(X), \tau_V)$ have the compact-G_δ property if and only if X have the compact-G_δ property and every compact subset of X is metrizable.

2. The D_1-property of the hyperspaces

In this section, we mainly study the D_1-property of the hyperspaces $(CL(X), \tau_F)$ and $(K(X), \tau_F)$ of those spaces X respectively. First, we give a characterization of a space X such that $(CL(X), \tau_F)$ is a D_1-space. In order to show that, we need some lemmas.

Lemma 2.1. [13] Lemma 2.3.1 Let U_1, \ldots, U_n and V_1, \ldots, V_m be subsets of a space X. Then, in Vietoris topology $(CL(X), \tau_V)$, we have $\langle U_1, \ldots, U_n \rangle \subset \langle V_1, \ldots, V_m \rangle$ if and only if $\bigcup_{j=1}^m U_j \subset \bigcup_{j=1}^m V_j$ and for every V_i there exists a U_k such that $U_k \subset V_i$.

Lemma 2.2. [13] Lemma 2.3.2 Let U_1, \ldots, U_n be subsets of a space X. Then $Cl(\langle U_1, \ldots, U_n \rangle) = \langle \overline{U}_1, \ldots, \overline{U}_n \rangle$, where $Cl(\langle U_1, \ldots, U_n \rangle)$ denotes the closure of the set $\langle U_1, \ldots, U_n \rangle$ in $(K(X), \tau_V)$.

We will need the following lemma, the proof of which we include for the sake of the completeness.

Lemma 2.3. Let K be a compact subset of a topological space X and $\{U_i : i \leq k\}$ be an open cover of K. Then, for each $i \leq k$, there exists a compact subset K_i of X such that $K_i \subset U_i$, $K = \bigcup_{i \leq k} K_i$ and $K_i \neq \emptyset$ whenever $U_i \cap K \neq \emptyset$.

Proof. For each $x \in K$, pick an open subset V_x such that $x \in V_x \subset \overline{V}_x \subset U_i$ for some $i \leq k$. Since K is compact and $\{V_x : x \in K\}$ is an open cover of K, there is a finite subcover $\{V_{x_j} : j \leq m\}$ of K such that for each $i \leq k$ we have $V_{x_j} \subset U_i$ for some $j \leq m$, where $m \in \mathbb{N}$. For each $i \leq k$, let

$$K_i = K \cap \bigcup \{\overline{V}_{x_j} : \overline{V}_{x_j} \subset U_i\};$$

then K_i is compact and $K_i \subset U_i$. Clearly, we have $K = \bigcup\{K_i : i \leq k\}$. Moreover, it is obvious that $K_i \neq \emptyset$ whenever $U_i \cap K \neq \emptyset$. \hfill \Box

Lemma 2.4. Let D be an infinite countable discrete space. Then $(F_2(D), \tau_F)$ is not a D_1-space.

Proof. Enumerate D as $\{d_i : i \in \mathbb{N}\}$. In order to prove this result, we first give the following two Claims.

Claim 1: Each $\{d_i : i \in \mathbb{N}\}$ is a non-isolated point in $(F_2(D), \tau_F)$.

Suppose not, then there exists $i \in \mathbb{N}$ such that $\{d_i\}$ is open in $(F_2(D), \tau_F)$, hence we can pick finitely many open subsets $\{U_i : i \leq n\}$ and a compact K of D such that $\bigcap\{U_i^- : i \leq n\} \cap (K^c)^+ \subset \{d_i\}$. Clearly, $d_i \notin K$ and $K \cup \{d_i\} \neq D$. Pick any $d \in D \setminus (K \cup \{d_i\})$. It easily see that $\{d, d_i\} \in \bigcap\{U_i^- : i \leq n\} \cap (K^c)^+$, thus $\{d, d_i\} \subset \{d_i\}$, that is, $\{d, d_i\} = \{d_i\}$, this is a contradiction. Hence each $\{d_i\}$ is a non-isolated point in $(F_2(D), \tau_F)$.

Claim 2: $\{\{d_i\} : i \in \mathbb{N}\}$ has no cluster point in $(F_2(D), \tau_F)$.

Indeed, suppose that \(A \) is a cluster point of \(\{ \{ d_i \} : i \in \mathbb{N} \} \). Pick any \(x \in A \); then \(\{ x \}^- \cap \mathcal{F}_2(D) \) is a neighborhood of \(A \) in \((\mathcal{F}_2(D), \tau_F)\), but \(\{ x \}^- \) meets at most one \(\{ d_i \} \) in \(\mathcal{F}_2(D) \). Thus \(A \) is not a cluster point of \(\{ \{ d_i \} : i \in \mathbb{N} \} \), which is a contradiction.

Now we assume that \((\mathcal{F}_2(D), \tau_F)\) is a \(D_1 \)-space. By Fact 1, \(NI(\mathcal{F}_2(D), \tau_F) \) is countably compact; however, by Claims 1 and 2, this is impossible since \(\{ \{ d_i \} : i \in \mathbb{N} \} \) has no cluster point in \((\mathcal{F}_2(D), \tau_F)\).

\[\square \]

Lemma 2.5. If \((\mathcal{F}_2(X), \tau_F)\) or \((\mathcal{F}_2(X), \tau_V)\) is perfect\(^2\), then \(X \) has a \(G_\delta \)-diagonal\(^3\).

Proof. We only prove the case for \((\mathcal{F}_2(X), \tau_F)\) since the case of \((\mathcal{F}_2(X), \tau_V)\) can be shown by a similar way. Clearly, it suffices to prove that \(\Delta = \{ (x, y) : x \in X \} \) is the intersection of countably many open subsets of \(X^2 \). Let \(f : X^2 \to (\mathcal{F}_2(X), \tau_F) \) defined by \(f((a, b)) = \{ a, b \} \); then \(f \) is continuous. Indeed, for an open subset \(U \) and compact subset \(K \) of \(X \), we have

\[
f^{-1}(U^- \cap \mathcal{F}_2(X)) = (U \times X) \cup (X \times U)
\]

and

\[
f^{-1}((K^c)^+ \cap \mathcal{F}_2(X)) = (X \setminus K) \times (X \setminus K),
\]

which are open in \(X^2 \). Hence \(f \) is continuous. Since \((\mathcal{F}_2(X), \tau_F)\) is perfect and \(\mathcal{F}_1(X) = \{ \{ x \} : x \in X \} \) is a closed subset of \((\mathcal{F}_2(X), \tau_F)\), it follows that \(\mathcal{F}_1(X) = \bigcap_{n \in \mathbb{N}} \mathcal{G}_n \), where \(\mathcal{G}_n \) is open in \((\mathcal{F}_2(X), \tau_F)\) for each \(n \in \mathbb{N} \). Clearly, \(\Delta = f^{-1}(\mathcal{F}_1(X)) = \bigcap_{n \in \mathbb{N}} f^{-1}(\mathcal{G}_n) \).

Hence \(X \) has a \(G_\delta \)-diagonal. \(\square \)

Now we can prove one of main theorems in this section.

Theorem 2.6. The following statements are equivalent for a space \(X \).

1. \((CL(X), \tau_F)\) is a \(D_1 \)-space;
2. \((K(X), \tau_F)\) is a \(D_1 \)-space;
3. \((\mathcal{F}_n(X), \tau_F)\) is a \(D_1 \)-space for some \(n \geq 2 \);
4. \(X \) is compact metrizable.

Proof. Note that a \(D_1 \)-space is a property closed under taking closed subspaces, (1) \(\Rightarrow \) (3) and (2) \(\Rightarrow \) (3) are trivial. Note that if \(X \) is compact, then \((K(X), \tau_F) = (CL(X), \tau_F) \cong (CL(X), \tau_V) = (K(X), \tau_V)\), the implications (4) \(\Rightarrow \) (1) and (4) \(\Rightarrow \) (2) follow from \([13]\). We only need to prove (3) \(\Rightarrow \) (4).

It suffices to consider the case when \(n = 2 \). Assume that \((\mathcal{F}_2(X), \tau_F)\) is a \(D_1 \)-space. Then \(X \) is a \(D_1 \)-space. By Fact 1 and Lemma 2.5, \(NI(X) \) is a countably compact subspace with a \(G_\delta \)-diagonal. Then \(NI(X) \) is metrizable \([5\text{ Theorem 2.14}]\), hence it is compact. Now we prove that \(X \) is compact. Indeed, let \(\mathcal{U} \) be any open cover of \(X \); then we can find a finite subfamily \(\mathcal{U}' \subset \mathcal{U} \) such that \(NI(X) \subset \bigcup \mathcal{U}' \). Let \(D = X \setminus \bigcup \mathcal{U}' \); then \(D \subset I(X) \). We claim that \(|D| < \omega \). Otherwise, without loss of generality, \(D \) is an infinite countable closed discrete subset of \(X \), then it follows from Lemma 2.4 that \((\mathcal{F}_2(D), \tau_F)\) is not a \(D_1 \)-space, this is a contradiction. Therefore, \(X \) is covered by finitely many elements of \(\mathcal{U} \), thus \(X \) is compact.

By Lemma 2.5, \(X \) has a \(G_\delta \)-diagonal, then \(X \) is metrizable by \([5\text{ Theorem 2.13}]\). \(\square \)

\(^2\)A space \(X \) is called perfect if every closed subset of \(X \) is a \(G_\delta \)-set.

\(^3\)A space \(X \) is said to have a \(G_\delta \)-diagonal if, there is a sequence \(\{ \mathcal{U}_n \} \) of open covers of \(X \), such that, for each \(x \in X \), \(\{ x \} = \bigcap_{n \in \mathbb{N}} \text{st}(x, \mathcal{U}_n) \).
Remark 2.7. However, if X is a discrete space, then it is easily verified that $(\mathcal{K}(X), \tau_V)$ is a discrete space, hence $(\mathcal{F}_n(X), \tau_V)$ is discrete for any $n \in \mathbb{N}$, thus all are D_1-spaces. Therefore, Theorem 2.6 does not hold for the case of the hyperspace with Vietoris topology. However, we have the following theorem.

In [12], we have proved that for a space X if $(CL(X), \tau_V)$ is a D_1-space then X is compact and metrizable. Therefore, it is natural to characterize X such that the subspace $(\mathcal{K}(X), \tau_V)$ of $(CL(X), \tau_V)$ is a D_1-space, see the following theorem.

Theorem 2.8. The following statements are equivalent for a space X.

1. $(\mathcal{K}(X), \tau_V)$ is a D_1-space;
2. $(\mathcal{F}_n(X), \tau_V)$ is a D_1-space for some $n \geq 2$;
3. X is discrete or compact metrizable.

Proof. The implication of $(1) \Rightarrow (2)$ is trivial since a closed subspace of a D_1-space is a D_1-space. It suffices to prove that $(3) \Rightarrow (1)$ and $(2) \Rightarrow (3)$.

$(3) \Rightarrow (1)$. If X is discrete, then it is easy to see that $(\mathcal{K}(X), \tau_V)$ is discrete; if X is compact metrizable, then $(\mathcal{K}(X), \tau_V)$ is compact metrizable by [13]. Hence $(\mathcal{K}(X), \tau_V)$ is a D_1-space.

$(2) \Rightarrow (3)$. We only consider the case for $n = 2$. Assume $(\mathcal{F}_2(X), \tau_V)$ is a D_1-space. Then X is a D_1-space. By fact 1, $NI(X)$ is countably compact, then it follows from Lemma 2.5 that X is metrizable. Suppose X is neither discrete nor compact, there exist a closed infinite countable discrete subset $\{x_i : i \in \mathbb{N}\} \subset I(X)$ and a non-trivial sequence $\{x_n \in \mathbb{N}\}$ of X converging to $x \in NI(X)$. Without loss of generality, we may assume that $\{d_i : i \in \mathbb{N}\} = \emptyset$, $d_n \neq d_m$ and $x_n \neq x_m$ for any $n \neq m$. Clearly, for each $i \in \mathbb{N}$, the set $\{d_i, x \in NI(\mathcal{F}_2(X), \tau_V)\}$ since $\{d_i, x_n \} \rightarrow \{d_i, x\}$ in $(\mathcal{F}_2(X), \tau_V)$ as $n \rightarrow \infty$. In order to obtain a contradiction, we prove the following Claim 3. Indeed, since $(\mathcal{F}_2(X), \tau_V)$ is a D_1-space, it follows that $NI(\mathcal{F}_2(X), \tau_V)$ is countably compact; however, the set $\{\{d_i, x \} : i \in \mathbb{N}\}$ is discrete in $NI(\mathcal{F}_2(X), \tau_V)$.

Claim 3 The set $\{\{d_i, x \} : i \in \mathbb{N}\}$ is discrete in $NI(\mathcal{F}_2(X), \tau_V)$.

Take any $K \in NI(\mathcal{F}_2(X), \tau_V)$. If $|K| = 2$, we write $K = \{a_1, a_2\}$, and let V_j be a neighborhood of a_j for each $j \leq 2$ such that $|\langle V_1 \cup V_2 \rangle \cap \{d_i : i \in \mathbb{N}\}| \leq 1$ and $V_1 \cap V_2 = \emptyset$ (this is possible since $K \in NI(\mathcal{F}_2(X), \tau_V)$ which implies that at least one of the points a_1, a_2 is not a non-isolated point in X). Then it is easily verified that $|\langle V_1, V_2 \rangle \cap \{d_i, x : i \in \mathbb{N}\}| \leq 1$. If $|K| = 1$, then let $K = \{a\}$ and let V be an open neighborhood of a in X with $|V \cap \{d_i : i \in \mathbb{N}\}| \leq 1$. Then $\langle V \rangle$ is a neighborhood of K and $|\langle V \rangle \cap \{d_i, x : i \in \mathbb{N}\}| \leq 1$. Therefore, $\{\{d_i, x \} : i \in \mathbb{N}\}$ is discrete in $NI(\mathcal{F}_2(X), \tau_V)$. \qed

However, for the cases of $(\mathcal{F}(X), \tau_V)$ and $(\mathcal{F}(X), \tau_F)$, the situations are different, see the following two theorems.

Theorem 2.9. Let X be a space. Then $(\mathcal{F}(X), \tau_V)$ is a D_1-space if and only if X is discrete.

Proof. If X is discrete, it is easy to see that $(\mathcal{F}(X), \tau_V)$ is discrete, hence it is a D_1-space. If $(\mathcal{F}(X), \tau_V)$ is a D_1-space, then $(\mathcal{F}_2(X), \tau_V)$ is a D_1-space, by Theorem 2.8 X is discrete or compact metrizable. If X is compact metrizable and non-discrete, then it contains a convergent sequence $S = \{x\} \cup \{x_n : n \in \mathbb{N}\}$ with $x_n \rightarrow x$ as $n \rightarrow \infty$, where x is a non-isolated point in X. Let $\mathcal{A} = \{\{x\} \cup \{x_i : i \leq n\} : n \in \mathbb{N}\}$. Then it is obvious that $\mathcal{A} \subset NI(\mathcal{F}(S))$. We claim that \mathcal{A} is discrete in $\mathcal{F}(S)$.

HYPERSPACES WITH A COUNTABLE CHARACTER OF CLOSED SUBSETS 5
Suppose not, \(A \) has a cluster point \(B \) in \(F(S) \). Let \(B = \{y_1,...,y_k\} \). If \(x \notin B \), then \(\{\{y_1\},...,\{y_k\}\} \) is an open neighborhood of \(B \), \(\{\{y_1\},...,\{y_k\}\} \cap A = \emptyset \), this is a contradiction. If \(x \in B \), say \(y_1 = x \), pick an open neighborhood \(V = \{x\} \cup \{x_n: n > k + 1\} \) of \(y_1 \) in \(S \). Clearly, \(|S \setminus V| > k + 1 \). Then \(\{V,\{y_2\},...,\{y_k\}\} \) is an open neighborhood of \(B \). Since \(\langle V,\{y_2\},...,\{y_k\}\rangle \cap \{\{x\} \cup \{x_i: i \leq n\} : n > k + 1\} = \emptyset \).

Indeed, if \(\{x,x_1,...,x_m\} \in \{V,\{y_2\},...,\{y_k\}\} \cap \{\{x\} \cup \{x_i: i \leq n\} : n > k + 1\} \) for some \(m > k + 1 \), \(\{x,x_1,...,x_m\} \subset V \cap \{y_2,...,y_k\} \), it implies that \(\{x_1,...,x_{k+1}\} \subset \{y_2,...,y_k\} \), which is impossible. It follows that \(\langle V,\{y_2\},...,\{y_k\}\rangle \cap A = \emptyset \), which is a contradiction.

Therefore, \(A \) is discrete in \(F(S) \). From fact 1, \(F(S) \) is not a \(D_1 \)-space, which implies that \((F(X),\tau_V) \) is not a \(D_1 \)-space, this is a contradiction. Hence \(X \) is not compact metrizable. Thus \(X \) is discrete. \(\square \)

Theorem 2.10. Let \(X \) be a space. Then \((F(X),\tau_F) \) is a \(D_1 \)-space if and only if \(X \) is finite.

Proof. If \(X \) is finite, then it is easy to see that \((F(X),\tau_F) \) is a \(D_1 \)-space.

If \((F(X),\tau_F) \) is a \(D_1 \)-space, then \((F_2(X),\tau_F) \) is a \(D_1 \)-space, hence \(X \) is compact metrizable by Theorem 2.8. From [2] Exercise 5.1, problem 3, it follows that

\[
(CL(X),\tau_V) = (CL(X),\tau_F),
\]

then \((F(X),\tau_V) = (F(X),\tau_F) \) is a \(D_1 \)-space, which shows that \(X \) is discrete by Theorem 2.9 hence \(X \) is finite since a discrete compact space is finite. \(\square \)

As some applications of above results, we have the following remark.

Remark 2.11. Let \(X \) be an arbitrary infinite compact metrizable space. Then \((CL(X),\tau_V) \) is a compact metrizable space, thus \((CL(X),\tau_V) \) is a \(D_1 \)-space and \((F(X),\tau_V) \) is metrizable; however, \((F(X),\tau_V) \) is not a \(D_1 \)-space by Theorem 2.4. Therefore, there exists a closed subset \(F \) of \((F(X),\tau_V) \) such that \(F \) has no countable character at \((F(X),\tau_V) \). Moreover, \((K(X),\tau_V) \) is a \(D_1 \)-space; however, \((F(X),\tau_F) \) is not a \(D_1 \)-space.

Finally we consider the space \(X \) such that the subspace \((K(X) \setminus F(X),\tau_V) \) is a \(D_1 \)-space. First, we need two lemmas.

A subset \(P \) of \(X \) is called a *sequential neighborhood* of \(x \in X \), if each sequence converging to \(x \) is eventually\(^4\) in \(P \). A subset \(U \) of \(X \) is called *sequentially open* if \(U \) is a sequential neighborhood of each of its points. A subset \(F \) of \(X \) is called *sequentially closed* if \(X \setminus F \) is sequentially open. The space \(X \) is called a *sequential space* if each sequentially open subset of \(X \) is open.

Lemma 2.12. Let \(X \) be a sequential space. Then \((F(X),\tau_V) \) is open in \((K(X),\tau_V) \) if and only if \(X \) is discrete.

Proof. It suffices to prove the necessity. Assume that \((F(X),\tau_V) \) is open in \((K(X),\tau_V) \), and assume that \(X \) is not discrete. Then there exists a non-trivial sequence \(\{x_n\} \) converging to \(x \) as \(n \to \infty \). Since \(\{x\} \in F(X) \), there exists an open neighborhood \(U \) of \(x \) such that \((U) \subset F(X) \). However, since \(x \in U \) and \(\{x_n\} \) converging to \(x \) as \(n \to \infty \), we can find \(m \in \mathbb{N} \) such that \(\{x\} \cup \{x_n: n \geq m\} \subset U \), then \(\{x\} \cup \{x_n: n \geq m\} \in (U) \subset F(X) \), which is a contradiction since \(\{x\} \cup \{x_n: n \geq m\} \notin F(X) \).

Lemma 2.13. Let \(X \) be a space. Then any point of \((K(X) \setminus F(X),\tau_V) \) is not isolated.

\(^4\)A sequence \(\{x\} \cup \{x_i: i \in \mathbb{N}\} \) with \(x_i \to x \) is called *eventually* in some subset \(P \) if there exists \(k \in \mathbb{N} \) such that \(\{x\} \cup \{x_i: i \geq k\} \subset P \).
Proof. Take any $K \in \mathcal{K}(X) \setminus \mathcal{F}(X)$. Then K is an infinite compact subset of X. Suppose that K is an isolated point in $(\mathcal{K}(X) \setminus \mathcal{F}(X), \tau_\mathcal{V})$. Then there exists a basic neighborhood $\langle U_1, \ldots, U_k \rangle$ of K in $(\mathcal{K}(X), \tau_\mathcal{V})$ such that $\langle U_1, \ldots, U_k \rangle \cap (\mathcal{K}(X) \setminus \mathcal{F}(X)) = \{K\}$, where the family $\{U_i : i \leq k\}$ is a disjoint collection of open subsets of X. Clearly, $K = \bigcup_{i=1}^{k} U_i$; otherwise, we can pick any point $a \in \bigcup_{i=1}^{k} U_i \setminus K$, then $K \cup \{a\} \in \langle U_1, \ldots, U_k \rangle \cap (\mathcal{K}(X) \setminus \mathcal{F}(X))$, which is a contradiction. Since K is infinite, there exists $j \leq k$ such that $|K \cap U_j| \geq \omega$. Since X is Hausdorff, there exist a point $b \in K \cap U_j$ and an open neighborhood $V \subset U_j$ of b such that $|(K \setminus V) \cap U_j| \geq \omega$, hence $K \setminus V \in (\mathcal{K}(X) \setminus \mathcal{F}(X))$, which is a contradiction. Therefore, K is an isolated point in $(\mathcal{K}(X) \setminus \mathcal{F}(X), \tau_\mathcal{V})$.

Since Fell topology is coarser than the Vietoris topology, it follows from Lemmas 2.12 and 2.13 that we have the following two corollaries.

Corollary 2.14. Let X be a sequential space. Then $(\mathcal{F}(X), \tau_\mathcal{F})$ is open in $(\mathcal{K}(X), \tau_\mathcal{V})$ if and only if X is discrete.

Corollary 2.15. Let X be a space. Then any point of $(\mathcal{K}(X) \setminus \mathcal{F}(X), \tau_\mathcal{F})$ is not isolated.

Now we can prove the following theorem.

Theorem 2.16. Let X be a sequential space with a G^*_δ-diagonal\footnote{A space X is said to have a G^*_δ-diagonal if, there is a sequence $\{\mathcal{U}_n\}$ of open covers of X, such that, for each $x \in X$, $\{x\} = \bigcap_{n \in \mathbb{N}} \text{st}(x, \mathcal{U}_n)$}. Then $(\mathcal{K}(X) \setminus \mathcal{F}(X), \tau_\mathcal{V})$ is a D_1-space if and only if X is discrete.

Proof. It suffices to prove the necessity. Suppose that $(\mathcal{K}(X) \setminus \mathcal{F}(X), \tau_\mathcal{V})$ is a D_1-space, and suppose that X is non-discrete. Then $\mathcal{K}(X) \setminus \mathcal{F}(X)$ is countably compact by Fact 1 and Lemma 2.13. Since X has a G^*_δ-diagonal, it follows that $(\mathcal{K}(X), \tau_\mathcal{V})$ has a G^*_δ-diagonal by \cite{claim} Theorem 1, thus $\mathcal{K}(X) \setminus \mathcal{F}(X)$ has a G^*_δ-diagonal too. Therefore, $\mathcal{K}(X) \setminus \mathcal{F}(X)$ is compact by \cite{claim} Theorem 2.14, then $\mathcal{K}(X) \setminus \mathcal{F}(X)$ is closed in $(\mathcal{K}(X), \tau_\mathcal{V})$, which shows that $\mathcal{F}(X)$ is open in $(\mathcal{K}(X), \tau_\mathcal{V})$. However, by Lemma 2.12, $\mathcal{F}(X)$ is not open in $(\mathcal{K}(X), \tau_\mathcal{V})$, which is a contradiction. Therefore, X is discrete.

However, it is still unknown for us if Theorem 2.16 holds for the case of the Fell topology. Therefore, we have the following two questions.

Question 2.17. Let X be a sequential space with a G^*_δ-diagonal. If $(\mathcal{K}(X) \setminus \mathcal{F}(X), \tau_\mathcal{F})$ is a D_1-space, is X discrete?

Question 2.18. Let X be a space. Give a characterization of X such that $(\mathcal{K}(X), \tau_\mathcal{F})$ or $(\mathcal{CL}(X), \tau_\mathcal{F})$ has a G^*_δ-diagonal.

The following theorem gives a characterization of a space X such that $(\mathcal{CL}_0(X), \tau_\mathcal{F})$ is a D_1-space, where $\mathcal{CL}_0(X) = \mathcal{CL}(X) \cup \{\emptyset\}$.

Theorem 2.19. The following statements are equivalent for space X.

1. $(\mathcal{CL}_0(X), \tau_\mathcal{F})$ is a D_1-space;
2. $(\mathcal{F}_n(X) \cup \{\emptyset\}, \tau_\mathcal{F})$ is a D_1-space for some $n \geq 2$;
3. X is locally compact, separable and metrizable.

Proof. By \cite{claim} Theorem 5.1.5, we have (3) \Rightarrow (1). The implication of (1) \Rightarrow (2) is obvious. It suffices to prove that (2) \Rightarrow (3). Assume $(\mathcal{F}_n(X) \cup \{\emptyset\}, \tau_\mathcal{F})$ is a D_1-space for some $n \geq 2$, then $(\mathcal{F}_2(X) \cup \{\emptyset\}, \tau_\mathcal{F})$ is a D_0-space, hence $(\mathcal{F}_2(X), \tau_\mathcal{F})$ is a D_0-space, by Theorem 3.1, X is locally compact, separable and metrizable. \hfill \square
3. The D_0-property of hyperspaces

In this section, we mainly discuss the D_0-property of the hyperspaces. We first give a characterization of a space X such that $(\text{CL}(X), \tau_F)$ is a D_0-space.

Theorem 3.1. The following statements are equivalent for space X.

1. $(\text{CL}(X), \tau_F)$ is metrizable;
2. $(\text{CL}(X), \tau_F)$ is a γ-space;
3. $(\text{CL}(X), \tau_F)$ is a D_0-space;
4. $(K(X), \tau_F)$ is a D_0-space;
5. $(\mathcal{F}(X), \tau_F)$ is a D_0-space;
6. $(\mathcal{F}_2(X), \tau_F)$ is a D_0-space;
7. X is locally compact, separable and metrizable.

Proof. The implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) are trivial. (7) \Leftrightarrow (1) by [2, Theorem 5.1.5]. We only prove (6) \Rightarrow (7).

Assume that $(\mathcal{F}_2(X), \tau_F)$ is a D_0-space, then X is a D_0-space. Fix any $x \in X$; then let \(\{V_n \cap (K_{n,x})^+ \cap \mathcal{F}_2(X) : n \in \mathbb{N}\} \) be a countable local base at \(\{x\} \) in $(\mathcal{F}_2(X), \tau_F)$, where each V_n, $K_{n,x}$ is open, compact in X respectively. For any compact $K \subset \mathcal{K}(X \setminus \{x\})$, $(K^c)^+$ is an open neighborhood of \(\{x\} \), there exists $n \in \mathbb{N}$ such that $V_n^- \cap (K_{n,x}^c)^+ \cap \mathcal{F}_2(X) \subset (K^c)^+ \cap \mathcal{F}_2(X)$, then $K \subset K_{n,x}$. Therefore, \(\{K_{n,x} : n \in \mathbb{N}\} \) is cofinal in $\mathcal{K}(X \setminus \{x\})$.

Claim 4 X is locally compact.

Fix $x \in X$, pick any $y \neq x$ and let \(\{U_n : n \in \mathbb{N}\} \) be a decreasingly local base at x in X with $y \notin U_n$ for each $n \in \mathbb{N}$. We claim that there exist $n \in \mathbb{N}$ and $k \in \mathbb{N}$ such that $U_k \subset K_{n,y}$; otherwise, for any $n \in \mathbb{N}$, pick $x_n \in U_n \setminus K_{n,y}$; then $x_n \rightarrow x$ as $n \rightarrow \infty$ in X and $S = \{x\} \cup \{x_n : n \in \mathbb{N}\} \subset \mathcal{K}(X \setminus \{y\})$, then $S \subset K_{m,y}$ for some $m \in \mathbb{N}$ since \(\{K_{m,y} : n \in \mathbb{N}\} \) is cofinal in $\mathcal{K}(X \setminus \{y\})$. This is a contradiction. Hence X is locally compact.

Fix any compact subset K of X. Since $(\mathcal{F}_2(K), \tau_F)$ is a compact D_0-space, then $(\mathcal{F}_2(K), \tau_F)$ is perfect. By Lemma [2,25 and [5, Theorem 2.13], K is metrizable. Hence X locally metrizable by Claim 4. By the above proof, X is also a σ-compact space, thus it is separable and locally compact metrizable.\]

Remark 3.2. By Theorem 3.1, $(\text{CL}(\mathbb{R}), \tau_F)$ is a D_0-space (indeed, it is metrizable, thus perfect normal), where \mathbb{R} is the real number with the usual topology; however, $(\text{CL}(\mathbb{R}), \tau_F)$ is not a D_1-space by Theorem [2.6].

A space (X, τ) is a γ-space if there exists a function $g : \omega \times X \rightarrow \tau$ such that (i) \(\{g(n, x) : n \in \omega\} \) is a base at x; (ii) for each $n \in \omega$ and $x \in X$, there exists $m \in \omega$ such that $y \in g(m, x)$ implies $g(m, y) \subset g(n, x)$. By [5, Theorem 10.6(iii)], each γ-space is a D_0-space.

In [12], F. Lin, R. Shen and C. Liu proved that under (MA+¬CH), $(\text{CL}(X), \tau_\gamma)$ is a γ-space if and only if $(\text{CL}(X), \tau_\gamma)$ is a D_0-space if and only if X is a separable metrizable space and $NI(X)$ is compact. Therefore, we have the following question.

Question 3.3. If $(\text{CL}(X), \tau_\gamma)$ is a D_0-space, is $(\text{CL}(X), \tau_\gamma)$ a γ-space?

For any non-separable and metrizable space X, it follows from [12, Theorem 5.17] and the following Theorem 3.5 that $(\text{CL}(X), \tau_\gamma)$ is not a γ-space and $(\mathcal{K}(X), \tau_\gamma)$ is a D_0-space.
Lemma 3.4. [14] The following are equivalent for a space X.

1. X is an open compact-covering image of a metric space;
2. Each compact subset of X is metrizable and has a countable neighborhood base in X;
3. Every compact subset of X has a countable outer base in X.

Theorem 3.5. The following statements are equivalent for a space X.

1. $(K(X), \tau_V)$ is an open compact-covering image of a metric space.
2. $(K(X), \tau_V)$ is a D_0-space;
3. $(F(X), \tau_V)$ is a D_0-space;
4. $(F_2(X), \tau_V)$ is a D_0-space;
5. X is a D_0-space and every compact subset of X is metrizable.

Proof. By Lemma 3.4, we have (1) \Rightarrow (2). The implications (2) \Rightarrow (3) \Rightarrow (4) are trivial. We only need to prove (4) \Rightarrow (5), (5) \Rightarrow (2) and (2) \Rightarrow (1).

(4) \Rightarrow (5). Assume that $(F_2(X), \tau_V)$ is a D_0-space, then X is a D_0-space. For any compact subset H of X, $(F_2(H), \tau_V)$ is a compact, D_0-subspace of $(F_2(X), \tau_V)$, then it is perfect. By Lemma 2.5, H has a G_δ-diagonal, then H is metrizable by Theorem 2.14.

(5) \Rightarrow (2). Fix any compact subset K of $(K(X), \tau_V)$. We prove that K has a countable base in $(K(X), \tau_V)$.

Indeed, let $K = \bigcup K_i$. Then K is compact in X by [13, Theorem 2.5.2], hence K has a countable base and is metrizable. By Lemma 3.4, K has a countable outer base B. Let $\Gamma = \{(B^i) : B^i \in B^{\leq \omega}\}$, $\Delta = \{\bigcup C : C \in \Gamma^{\leq \omega}\}$; then $|\Delta| \leq \omega$. Now it suffices to prove that Δ is a countable open base in $(K(X), \tau_V)$.

Take any open neighborhood \hat{U} of K in $(K(X), \tau_V)$; then there exist finitely many basic open neighborhoods $\{\hat{U}_i : i \leq l\}$ such that $K \subset \bigcup\{\hat{U}_i : i \leq l\} \subset \hat{U}$, where we may assume that $\{\hat{U}_i : i \leq l\}$ is a minimal cover of K. Let $\hat{U} = \bigcup i \leq l K_i$ and $K_i \subset \hat{U}_i$ for each $i \leq l$. We will prove that each K_i is contained in an element of Δ itself contained in \hat{U}, which shows that K is contained in an element of Δ that is contained in \hat{U}. Therefore, without loss of generality, we may assume $\hat{U} = \langle U_1, \ldots, U_k \rangle$, where each $U_i (i \leq k)$ is an open subset in X.

Since $(K(X), \tau_V)$ is regular, there exist finitely many open subsets $\{\hat{V}(i) : i \leq n\}$ of $(K(X), \tau_V)$ such that

$K \subset \bigcup_{i \leq n} \hat{V}(i) \subset \bigcup_{i \leq n} \text{Cl}(\hat{V}(i)) \subset \hat{U},$

where $\hat{V}(i) = (V_i(i), \ldots, V_{r_i}(i))$, each $r_i \in \mathbb{N}$ and each $V_j(i)$ is open in X.

Fix any $i \leq n$. Then $\text{Cl}(\hat{V}(i)) \subset \hat{U}$. For each $t \leq k$, it follows from Lemmas 2.1 and 2.2 that $U_t \supset \hat{V}(i)(t)$ for some $i(t) \leq r_i$. Let $A = \{i(t) : t \leq k\}$ and $B = \{1, \ldots, r_i\} \setminus A$. Put

$K(i) = \bigcup\{K : K \in K \cap \text{Cl}(\hat{V}(i))\}.$
Then $K(i)$ is compact in X by [13, Theorem 2.5.2].

For any $K' \in \{K : K \in \mathbf{K} \cap \text{Cl}(\hat{V}(i))\}$, we have $K' \cap \overline{V_j(i)} \neq \emptyset$ for $j \leq r_i$ and $K' \subset \bigcup \{\overline{V_j(i)} : j \leq r_i\}$. It is obvious that $K(i) \subset \bigcup \{\overline{V_j(i)} : j \leq r_i\}$. Note that $K' \subset K(i)$, then $K(i) \cap \overline{V_j(i)} \neq \emptyset$ for each j. Then, by Lemma 2.2 we have

$$K(i) \in \text{Cl}(\hat{V}(i) = \overline{(V_1(i),...,V_{r_i}(i))}).$$

For each $j \in A$,

$$K(i) \cap \overline{V_j(i)} \subset \bigcap \{U_t : t \leq k, i(t) = j\} = W_j.$$

For $x \in K(i) \cap \overline{V_j(i)}$, pick $B_x \in \mathcal{B}$ such that $x \in B_x \subset W_j$. Then there is a finite subfamily $\mathcal{B}(j)$ of $\{B_x : x \in K(i) \cap \overline{V_j(i)}\}$ such that

$$K(i) \cap \overline{V_j(i)} \subset \bigcup \mathcal{B}(j) \subset W_j.$$

For any $j \in B$, choose a finite subfamily $\mathcal{B}(j) \subset \mathcal{B}$ such that

$$K(i) \cap \overline{V_j(i)} \subset \bigcup \mathcal{B}(j) \subset \bigcup U_t.$$

Now put

$$\mathcal{R}(i) = \left\{ \bigcup \mathcal{B}'(j) : \emptyset \neq \mathcal{B}'(j) \subset \mathcal{B}(j), j \leq r_i \right\}.$$

Clearly, $|\mathcal{R}(i)| < \omega$. Then

$$\mathbf{K} \cap \text{Cl}(\hat{V}(i)) \subset \bigcup \{\langle \mathcal{W} \rangle : \mathcal{W} \in \mathcal{R}(i)\} \subset \hat{U},$$

where $\langle \mathcal{W} \rangle = \langle B_1,...,B_m \rangle$ for $\mathcal{W} = \langle B_1,...,B_m \rangle$. Indeed, for any $K \in \mathbf{K} \cap \text{Cl}(\hat{V}(i))$, then $K \subset K(i)$. For each $j \leq r_i$, pick $\mathcal{C}(j) \subset \mathcal{B}(j)$ such that $K \cap \overline{V_j(i)} \cap C \neq \emptyset$ for each $C \in \mathcal{C}(j)$ and $K \cap \overline{V_j(i)} \subset \bigcup \mathcal{C}(j)$. Enumerate $\bigcup_{j \leq r_i} \mathcal{C}(j)$ as $\{C_1,...,C_p\}$; then

$$\mathcal{W}_i = \{C_1,...,C_p\} \in \mathcal{R}(i).$$

Then $K \cap C_l \neq \emptyset$ for each $l \leq p$, $K \subset \bigcup_{i \leq p} C_i$. Therefore, $K \in \langle \mathcal{W}_i \rangle \subset \hat{U}$.

Hence

$$\mathbf{K} = \bigcup_{i \leq n} (\mathbf{K} \cap \text{Cl}(\hat{V}(i)) \subset \bigcup \{\langle \mathcal{W}_i \rangle : \mathcal{W}_i \in \mathcal{R}(i), i \leq n\} \subset \hat{U}.$$

Note that $\mathcal{R}(i) \subset \mathcal{B}$ for $i \leq n$ and $|\Delta| \leq \omega$. Hence \mathbf{K} has a countable base in $(\mathcal{K}(X), \tau_\nu)$.

(2) \Rightarrow (1). By Lemma 3.4 we only prove that each compact subset \mathcal{H} of $(\mathcal{K}(X), \tau_\nu)$ is metrizable. Let $\mathcal{H} = \bigcup \mathbf{H}$. Then \mathcal{H} is compact in X by [13, Theorem 2.5.2], hence it is metrizable since (2) implies (5). Therefore, $(\mathcal{K}(H), \tau_\nu)$ is compact and metrizable, thus $\mathcal{H} \subset (\mathcal{K}(H), \tau_\nu)$ is metrizable.

Since γ-space X is a D_0-space, and every compact subset of X is metrizable, $(\mathcal{K}(X), \tau_\nu)$ is a D_0-space. But, the following question still open.

Question 3.6. If X is a γ-space, is $(\mathcal{K}(X), \tau_\nu)$ a γ-space?

4. The G_δ-property of hyperspaces

Finally we consider the characterization of hyperspaces which have countable pseudocharacter. We say that a space X has a compact-G_δ-property if every compact subset of X is a G_δ-set of X.

Theorem 4.1. Let X be a space. Then $(\mathcal{K}(X), \tau_\nu)$ has a compact-G_δ-property if and only if X has a compact-G_δ property and every compact subset of X is metrizable.
Definition 4.6. The pseudocharacter of a point x in a space X is defined as the smallest cardinal number of the form $|U|$, where U is a family of open subsets of X such that $\bigcap U = \{x\}$; this cardinal number is denoted by $\psi(x, X)$. The pseudocharacter of a space X is defined as the supremum of all numbers $\psi(x, X)$ for $x \in X$; this cardinal number is denoted by $\psi(X)$. If $\psi(X) = \omega$, we say that X has a countable pseudocharacter.

Proof. Necessity. Assume that $(K(X), \tau_V)$ has the compact-G_δ-property. Obviously, X has the compact-G_δ-property. Fix any compact subset K of X. Then the hyperspace $K(K)$ is compact by [13]. Since $K(K)$ is regular and has compact-G_δ property, it follows that $K(K)$ is a D_0-space, hence D_1-space (note that every closed subset of $K(K)$ is compact since $K(K)$ is compact). By Theorem 2.6 K is compact metrizable.

Sufficiency. Let K be a compact subset of $K(X)$, and let $H = \bigcup K$. Then H is compact in X. By the assumption, H is metrizable, hence $K(H)$ is compact metrizable. Let $B = \{(U_1(i), ..., U_{k_i}(i)) : i \in \mathbb{N}\}$ be a countable base of $K(H)$, where each $k_i \in \mathbb{N}$, each $U_j(i)$ ($i \in \mathbb{N}$ and $j \leq k_i$) is open in H. For any $i \in \mathbb{N}$ and $j \leq k_i$, let $V_j(i)$ be an open subset of X such that $U_j(i) = V_j(i) \cap H$. Let $\{W_n : n \in \mathbb{N}\}$ be open subsets of X with $H = \bigcap W_n$. For each $n \in \mathbb{N}$, put

\[P_n = \{(V_1(i) \cap W_n, ..., V_{k_i}(i) \cap W_n) : (V_1(i), ..., V_{k_i}(i)) \cap K \neq \emptyset, i, n \in \mathbb{N}\}; \]

we say that $(V_1(i) \cap W_n, ..., V_{k_i}(i) \cap W_n)$ is associated with $(U_1(i), ..., U_{k_i}(i))$ for each $i \in \mathbb{N}$. Put

\[Q_n = \{\bigcup P' : K \subset \bigcup P', P' \in P_n^<\omega\} \]

for each $n \in \mathbb{N}$; then let $Q = \bigcup_{n \in \mathbb{N}} Q_n$. Clearly, $|Q| \leq \omega$. We claim that $K = \bigcap Q$.

Indeed, it is trivial to verify that $K \subset \bigcap Q$. Let K be an any compact subset of X with $K \notin K$. We prove that there is $\bigcup P' \in Q$ such that $K \notin \bigcup P'$.

Case 1: $K \setminus H \neq \emptyset$.

Then there exists $j \in \mathbb{N}$ such that $K \setminus W_j \neq \emptyset$, hence we can pick a $\bigcup P' \in Q_j$, then $K \notin \bigcup P'$.

Case 2: $K \subset H$.

Since B is a countable base of $K(H)$ and $K \notin K$, it is easily checked that there is a finite family $B' \subset B$ such that $K \notin \bigcup B'$, $K \subset \bigcup B'$ and each element of B' meets K. Fix any $n \in \mathbb{N}$, and let P' be the set of elements of P_n that are associated with the elements of B'. Then it is easily verified that $K \notin \bigcup P'$.

□

Remark 4.2. From Theorems 3.3 and 4.1 we conclude that there exists a space X such that $(K(X), \tau_V)$ has the compact-G_δ-property and is not a D_0-space, such as, the Butterfly space [11] Example 1.8.3]. Moreover, the following questions are still unknown for us.

Question 4.3. If X has the compact-G_δ property and every compact subset of X is metrizable, does $(CL(X), \tau_V)$ have a compact-G_δ-property?

Question 4.4. If X has the compact-G_δ property and every compact subset of X is metrizable, does $(K(X), \tau_F)$ or $(CL(X), \tau_F)$ have a compact-G_δ-property?

Question 4.5. Characterise spaces X such that $(K(X), \tau_F)$, $(CL(X), \tau_F)$, $(CL(X), \tau_V)$ and $(K(X), \tau_V)$ are perfect, respectively?

In order to give a characterization of $(CL(X), \tau_F)$ with the countable pseudocharacter, we need to prove an equality relating the pseudocharacter of hyperspace $\psi(CL(X), \tau_F)$ to other cardinal functions. First, we recall some concepts.
Definition 4.7. Let X be a space. A collection of nonempty open sets U of X is called a π-base if for every nonempty open set O, there exists an $U \in U$ such that $U \subset O$. The π-weight of X is defined as the infimum of all the cardinal numbers of the π-bases of X; this cardinal number is denoted by $\pi w(X)$. For a space X, define

$$\pi w_K(X) = \sup\{\pi w(A) : A \text{ is an arbitrary non-empty closed subset of } X\}.$$

Definition 4.8. Let X be a space and U be open in X. Denote

$$k_U = \inf\{|K| : K \text{ is a family of compact subsets of } X \text{ such that } U = \bigcup K\}$$

and

$$k_o = \sup\{k_U : U \text{ is open in } X\}.$$

Theorem 4.9. For any space X, we have $\psi(CL(X), \tau_F) = \pi w_K(X) \cdot k_o(X)$.

Proof. Suppose $\psi(CL(X), \tau_F) = \kappa$. We first prove that $\pi w(A) \leq \kappa$ for any $A \in CL(X)$, which implies that $\pi w_K(X) \leq \kappa$. Fix any $A \in CL(X)$. Then

$$A = \bigcap\{W_{\alpha_1} \cap \ldots \cap W_{\alpha_k} \cap (K_\alpha^+) : \alpha < \kappa\},$$

where each W_{α_j} is open in X, K_α is compact in X and $k_\alpha \in \mathbb{N}$. Let $V_{\alpha_j} = A \cap W_{\alpha_j}$. Put

$$V = \{V_{\alpha_j} : j \leq k_\alpha, \alpha < \kappa\}.$$

We claim that V is a π-base for A. Indeed, let U' be an any non-empty open subset of A; then it can take an open subset U in X such that $U' = U \cap A$. Let $H = A \setminus U$. Without loss of generality, we may assume $H \neq \emptyset$, then $H \in CL(X)$. Hence there exists an $\alpha < \kappa$ such that $H \notin W_{\alpha_1} \cap \ldots \cap W_{\alpha_k} \cap (K_\alpha^+)$. Since $H \subset A \subset X \setminus K_\alpha$, it follows that $H \in (K_\alpha^+)$, which implies that $H \cap W_{\alpha_j} = \emptyset$ for some $j \in \mathbb{N}$. It follows that $V_{\alpha_j} \subset U'$. Hence $\pi w(A) \leq \kappa$. Therefore, $\pi w_K(X) \leq \kappa$.

Now we prove that $k_o(X) \leq \kappa$. Let U be an any open subset of X such that $B = X \setminus U \in CL(X)$. From our assumption, it follows that

$$B = \bigcap\{W_{\alpha_1} \cap \ldots \cap W_{\alpha_k} \cap (K_\alpha^+) : \alpha < \kappa\},$$

where each W_{α_j} is open in X, K_α is compact in X and $k_\alpha \in \mathbb{N}$. We claim that $U = \bigcup_{\alpha < \kappa} K_\alpha$. Indeed, for any $x \in U$, if $x \notin \bigcup_{\alpha < \kappa} K_\alpha$, then $\{x\} \cup B \in (K_\alpha)^c$ for each $\alpha < \kappa$, hence it follows that

$$\{x\} \cup B \in \bigcap\{W_{\alpha_1} \cap \ldots \cap W_{\alpha_k} \cap (K_\alpha^+) : \alpha < \kappa\},$$

which is a contradiction. Therefore, $k_o(X) \leq \kappa$.

Conversely, suppose $\pi w_K(X) \leq \kappa$ and $k_o(X) \leq \kappa$. Fix any $A \in CL(X)$. Let $V' = \{V_\alpha : \alpha < \kappa\}$ be a π-base for A. For each $\alpha < \kappa$, let V_α be an open set of X with $V_\alpha \cap A = V'_\alpha$. Put $V = \{V_\alpha : \alpha < \kappa\}$, and let

$$\Delta(V) = \{W : W \subset V, |W| < \omega\}.$$

From our assumption, let $X \setminus A = \bigcup_{\beta < \kappa} K_\beta$, where each K_β is compact. We claim that

$$\{A\} = \bigcap\{V_{1}^- \cap \ldots \cap V_{k}^- \cap (K_\beta^+) : \{V_1, \ldots, V_k\} \in \Delta(V), \beta < \kappa\}.$$

Indeed, it is obvious that $A \in V_{1}^- \cap \ldots \cap V_{k}^- \cap (K_\beta^+)$ for each $\{V_1, \ldots, V_k\} \in \Delta(V)$ and $\beta < \kappa$. Take any

$$B \in \bigcap\{V_{1}^- \cap \ldots \cap V_{k}^- \cap (K_\beta^+) : \{V_1, \ldots, V_k\} \in \Delta(V), \beta < \kappa\}.$$
We prove that

Theorem 4.10. If $\text{CL}(X)$ is Hausdorff and has countable pseudocharacter, then $\text{CL}(X), \tau_F$ is first-countable.

Proof. By Theorem 4.9, every closed subset of X is separable and X is hemicompact. We prove that X is first-countable. Since $\text{CL}(X), \tau_F$ is Hausdorff, it follows from [2] Proposition 5.1.2 that X is locally compact. Then X is first-countable since a Hausdorff, locally compact space with a countable pseudocharacter is first-countable. By [2] Corollary 7(1), $(\text{CL}(X), \tau_F)$ is first-countable.

Corollary 4.11. If $\text{CL}(X), \tau_F$ is Hausdorff and has compact-G_δ property, then $\text{CL}(X), \tau_F$ is a D_0-space.

Proof. Since $(\text{CL}(X), \tau_F)$ is Hausdorff. Then X is locally compact [2] Proposition 5.1.2]. By Theorem 4.9, every closed subset of X is separable and X is hemicompact, hence X is paracompact. It is easy to see that each compact subset is metrizable by Lemma 2.5 then X is metrizable. Therefore, $(\text{CL}(X), \tau_F)$ is a D_0-space by Theorem 3.1.

Remark 4.12. There exists a hyperspace $(\text{CL}(X), \tau_F)$ of a space X such that $(\text{CL}(X), \tau_F)$ has a countable pseudocharacter, but $(\text{CL}(X), \tau_F)$ does not have compact-G_δ-property. Indeed, let X be the Alexandroff double-arrow space, see [11] Example 1.8.9. It is well known that X is Hausdorff, first-countable and compact. Then it follows from [9] Example 8 that $(\text{CL}(X), \tau_F)$ is first-countable, hence it has a countable pseudocharacter; however, from Theorem 4.1, it follows that $(\text{CL}(X), \tau_F)$ does not have compact-G_δ-property because X is compact and non-metrizable.

Acknowledgements. The authors wish to thank the reviewers for careful reading preliminary version of this paper and providing many valuable suggestions.

References

[1] C.E. Aull, Closed set countability axioms, Indag. Math., 28(1966) 311–316.
[2] G. Beer, Topologies on Closed and Closed Convex Sets Kluwer, Dordrecht, 1993.
[3] M. Dai, C. Liu, D_1-spaces and their metrization, Northeast Math. J., 11(2)(1995) 215–220.
[4] R. Engelking, General Topology, PWN, Warzawa, 1989.
[5] G. Gruenhage, Generalized metric spaces, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 423–501.
[6] L. Holá, J. Pelant, Recent Progress in Hyperspace Topologies, Recent Progress in General Topology II, ed. by M. Hušek and J. van Mill, Elsevier, (2002)253–279.
[7] L. Holá, J. Pelant, L. Zsilinszky, Developable hyperspaces are metrizable, Applied General Topology, (2003)1–9.
[8] L. Holá, S. Levi, Decomposition Properties of Hyperspace Topologies, Set-Valued Anal., 5(1997) 309–321.
[9] J. Hou, Character and tightness of hyperspaces with Fell topology, Topol. Appl., 84(1998) 199–206.
[10] F. Lin, R. Shen, C. Liu, Generalized metric properties on hyperspaces with the Vietoris topology, Rocky Mountain J. Math., 51(5)(2021)1761–1779.
[11] S. Lin, Z. Yun, Generalized metric spaces and mappings, Atlantis Press, 2016.
[12] C. Liu, F. Lin, A note on hyperspaces by closed sets with Vietoris topology, B. Malays. Math. Sci. So., to appear.
[13] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71(1951)152–182.
[14] E. Michael, Compact-covering images of metric spaces, Proc. Amer. Math. Soc., 37(1973)260–266.
[15] T. Mizokami, On hyperspaces of spaces around Moore spaces, Houston J. Math., 22(2)(1996) 297–306.
[16] T. Mizokami, On hyperspaces of generalized metric spaces, Topol. Appl., 76(2)(1997) 169–173.
[17] S.A. Naimpally, J.F. Peters, Hyperspace Topologies, Topology with Applications: Topological Spaces via Near and Far, World Scientific, Singapore, 2013.
[18] R.R. Sabella, Spaces in which compact sets have countable local base, Proc. AMS, 48(1975) 499–504.

(Chuan Liu) Department of Mathematics, Ohio University Zanesville Campus, Zanesville, OH 43701, USA
Email address: liuc1@ohio.edu

(Fucai Lin) 1. School of mathematics and statistics, Minnan Normal University, Zhangzhou 363000, P. R. China; 2. Fujian Key Laboratory of Granular Computing and Application, Minnan Normal University, Zhangzhou 363000, P. R. China
Email address: linfucai@mnnu.edu.cn