Is Higher Roasting of Coffee Less Beneficial to Health?

Suminori Kono*
MedStat Corporation, Hakata-ku, Fukuoka 812-0023, Japan

*Corresponding author: Suminori Kono, MedStat Corporation, Hakata-ku, Fukuoka 812-0023, Japan

ARTICLE INFO

Received: August 05, 2019
Published: August 09, 2019

Citation: Suminori Kono. Is Higher Roasting of Coffee Less Beneficial to Health?. Biomed J Sci & Tech Res 20(3)-2019. BJSTR. MS.ID.003452.

Keywords: Coffee; Chlorogenic Acids; Health Effects; Roasting

ABSTRACT

Coffee drinking has been related to decreased risks of chronic diseases. Chlorogenic acids (CGAs) are not only potent antioxidants in coffee brew, but also have other potentially beneficial effects. Loss of CGAs due to higher roasting raises a concern with respect to health benefit conferred by coffee drinking. In this review, the author summarized recent findings regarding the changes in coffee compounds by roasting and discussed implication of the decrease in CGAs associated with roasting in relation to human health.

Abbreviations: CGAs: Chlorogenic Acids, 5-CQA: 5-O-Caffeoylquinic Acid, ORAC: Oxygen Radical Absorbance Capacity

Introduction

Coffee drinking has been related to decreased risks of chronic diseases. Most consistent findings are decreased risks of type 2 diabetes mellitus, liver diseases of various stages, and Parkinson’s disease associated with coffee drinking [1]. Coffee brew contains a wide variety of bioactive compounds. Caffeine and chlorogenic acids (CGAs) are coffee compounds that have been studied most intensively with respect to occurrence, metabolism, and physiological effects [2,3]. Roasting coffee beans confers different flavors, tastes, and colors to coffee brew according to the extent of roasting. Roasting also alters the composition of coffee compounds, decreasing the content of CGAs, while it does not change caffeine content [2,3]. CGAs are not only potent antioxidants in coffee brew, but also have other potentially beneficial effects against carcinogenesis and neuronal degeneration, anti-platelet effect in relation to cardiovascular protection, and antidiabetic effects on glucose metabolism [1, 2]. Thus, loss of CGAs due to higher roasting raises a concern with respect to health benefit conferred by coffee drinking. In this review, the author summarized recent findings regarding the changes in coffee compounds by roasting and discussed implication of the decrease in CGAs associated with roasting in relation to human health.

Coffee Roasting and Composition Changes

CGAs in coffee are primarily hydroxycinnamic acids (typically, caffeic acid and ferulic acid) esterified with quinic acid. The most abundant CGA in coffee is 5-O-Caffeoylquinic acid (5-CQA) followed by its isomers 3-CQA and 4-CQA. Dicaffeoylquinic acid (3,4-diCQA, 3,5-diCQA, and 4,5-diCQA) and feruloylquinic acids (3-FQA, 4-FQA, and 5-FQA) are also among coffee CGAs [3]. According to the conventional American classification [4], roasting level is classified into light (lowest level), cinnamon, medium, high, city, full city, French, and Italian (highest level). These are often collapsed into broader categories: light roast (light and cinnamon), medium roast (medium and high), medium-dark roast (city and full city), and dark roast (French and Italian). The content of CGAs in coffee brew decreases progressively with increasing levels of roast. In an experiment [5], light, medium, city, and French roasting reduced the content of CGAs in green coffee to 50%, 30%, 5%, and <1%, respectively. In another experiment [6], the content of CGAs in green coffee decreased to 109%, 77%, 42%, 18%, 10%, and 5%, respectively, after roasting of 5 (very light), 6, 7, 8, 9, and 10-15 minutes (very dark) at the maximum temperature of 230°C.

The percent changes were calculated by averaging the reported amounts for multiple species. It may be strange that the total amount of CGAs increased by 9% at 5 minutes of roasting in the latter study [6]. This is largely because of increases of 3-CQA and 4-CQA which are resulted from isomerization (acyl migration) and hydrolysis of other CGAs [3]. In an experiment based on a more natural extraction [7], coffee brew prepared by dark roast coffee contained one third of the amount of CQA (sum of 3-CQA, 4-CQA, and 5-CQA) in coffee brew of light roast coffee. Chemical reactions during roasting also produce CGA lactones and quinic lactone...
Roasting and Biological Effects

Few studies have addressed differential biological effects of coffee according to roasting levels. Effects against lipopolysaccharide-induced inflammation in mice did not differ in pretreatment with coffee brew of light, medium, city, and French roast [11]. Roasted coffee rather than green coffee was shown to be more neuroprotective against oxidative stress in an in vitro study of neuronal cell culture [12]. Interestingly, the study also showed that lipophilic oxygen radical absorbance capacity (ORAC) was markedly higher in roasted coffee extract than in green coffee extract, while there was no difference in hydrophilic ORAC between roasted and green coffee. There are no human studies showing that light roast coffee is better than dark roast coffee. Of particular interest are epidemiological studies in Italy where dark roast coffee is commonly consumed as espresso coffee. A substantial number of Italian studies have reported protective associations between coffee and liver diseases [10], while no study has addressed the association between coffee and type 2 diabetes in Italy. Espresso coffee was related to an increased risk of coronary heart disease in a prospective study [13]. Espresso coffee contains a larger amount of diterpenes than filtered coffee, but espresso coffee was unrelated to blood cholesterol [9], which seem to have potent hepatoprotective properties [10] although they are known to elevate blood cholesterol levels [2].

Conclusion

Higher degree of roasting results in a substantial decrease in the content of CGAs which represent bioactive compounds in coffee brew. The overall antioxidant capacity of coffee brew also decreases with increasing levels of roasting. Nonetheless, roasted coffee may be more neuroprotective than green coffee. There is no epidemiological evidence that heavily roasted coffee such as espresso coffee is less beneficial to human health. It is notable that one serving of espresso coffee purchased in Italy contains almost as large an amount of CQA as a cup of instant coffee [7].

References

1. Poole R, Kennedy OJ, Roderick P, Fellowfield JA, Hayes PC, et al. (2017) Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359: j5024.
2. Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A, et al. (2014) Coffee: biochemistry and potential impact on health. Food Funct 5(8): 1695-1717.
3. Clifford MN, Jaganath IB, Ludwig I, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 34(12): 1391-1421.
4. (2019) National Coffee Association of U.S.A Inc. Coffee Roast Guide.
5. Moon J K, Yoo HS, Shibamoto T (2009) Role of roasting conditions in the level of chlorogenic acid content in coffee beans: Correlation with coffee acidity. J Agric Food Chem 57(12): 5365-5369.
6. Farah, de Paulis T, Trugo LC, Martin PR (2005) Effect of roasting on the formation of chlorogenic acid lactones in coffee. J Agric Food Chem 53(5): 1505-1513.
7. Ludwig IA, Mena P, Calani L, Cid C, Del Rio D, et al. (2014) Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct 5(8): 1718-1726.
8. Perrone D, Farah A, Donangelo CM (2012) Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J Agric Food Chem 60(17): 4265-4275.
9. Williamson K, Hatzakis E (2019) Evaluating the effect of roasting on coffee lipids using a hybrid targeted-untargeted NMR approach in combination with MRL. Food Chem 299: 125039.
10. Heath RD, Brahmibhatt M, Tahan AC, Ibdah JA, Tahan V, et al. (2017) Coffee: The magical bean for liver diseases. World J Hepatol 9(15): 689-696.
11. Choi S, Jung S, Ko KS (2018) Effects of coffee extracts with different roasting degrees on antioxidant and anti-inflammatory systems in mice. Nutrients 10(3) pii: E363.
12. Chu VF, Brown PH, Lyle BJ, Chen Y, Black RM, et al. (2009) Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees. J Agric Food Chem 57(20):9801-9808.
13. Grioni S, Agnoli C, Sieri S, Pala V, Ricceri F, et al. (2015) Espresso coffee consumption and risk of coronary heart disease in a large Italian cohort. PLoS One 10(5): e0126550.
