Broadband dielectric behavior of MIL-100 metal-organic framework as a function of structural amorphization

Arun Singh Babal, a Barbara E. Souza, a Annika F. Möslein, a Mario Gutiérrez, a
Mark D. Frogley, b and Jin-Chong Tan a,*

a Multifunctional Materials and Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom

b Diamond Light Source, Harwell Campus, Chilton, Oxford, OX11 0DE, United Kingdom

*E-mail: jin-chong.tan@eng.ox.ac.uk
Contents

1. Powder X-ray diffraction (XRD) ... 3

2. Fourier-transform infrared spectroscopy (ATR-FTIR) .. 4

3. Thermogravimetric analysis (TGA) .. 6

4. Dielectric properties .. 7
 4.1 Basolite F300 .. 7
 4.1.1 Real Part of Dielectric Constant (ε') ... 7
 4.1.2 Imaginary Part of Dielectric Constant (ε'') ... 10
 4.1.3 Dielectric Loss (tan δ) ... 13
 4.2 MIL-100-MG .. 16
 4.2.1 Real Part of Dielectric Constant .. 16
 4.2.2 Imaginary Part of Dielectric Constant .. 19
 4.2.3 Dielectric Loss .. 22
 4.3 Comparative dielectric loss .. 25

5. Reflectivity spectra $R(\omega)$ in the far-IR and mid-IR regions .. 26

6. Refractive index in THz region .. 27

7. The imaginary part of dielectric constant in the THz region .. 28

8. AC conductivity ... 29
 8.1 Basolite F300 ... 29
 8.2 MIL-100-MG ... 32
1. Powder X-ray diffraction (XRD)

Figure S1: The XRD patterns for: (a) Basolite F300 and (b) MIL-100-MG pellets, both normalized with respect to the highest data point. (c) XRD patterns in absolute intensities for
MIL-100-MG pellets. Inset of table shows the pellet crystallinity (%), estimated from the area ratio of the crystalline peaks to the total area found under the XRD pattern.

2. Fourier-transform infrared spectroscopy (ATR-FTIR)
Figure S2: (a) The pressure-dependent ATR-FTIR spectra for Basolite F300 pellets, (b) Derivative of peak shift over pelleting pressure.
3. Thermogravimetric analysis (TGA)

Figure S3: The pressure-dependent thermal stability measurement (TGA) for Basolite F300 pellets.
4. Dielectric properties

4.1 Basolite F300

4.1.1 Real Part of Dielectric Constant (ε')
Supporting Information / 20 Jan 2021

Figure S4: The real part of dielectric constant for Basolite F300 pellets prepared under a compression load of: (a) 0.5-ton, (b) 1-ton, (c) 2-ton, (d) 3-ton (e) 5-ton (f) 7-ton, and (g) 10-ton, corresponding to the pressure of 36.96, 73.92, 147.84, 221.76, 369.6, 517.44 and 739.20 MPa, respectively.
4.1.2 Imaginary Part of Dielectric Constant (ε'')

(a) Dielectric Constant (ε'') vs. Frequency (f) / MHz for Basolite F300-0.5t

(b) Dielectric Constant (ε'') vs. Frequency (f) / MHz for Basolite F300-1t

(c) Dielectric Constant (ε'') vs. Frequency (f) / MHz for Basolite F300-2t
Figure S5: The imaginary part of dielectric constant for Basolite F300 pellets prepared under a compression load of: (a) 0.5-ton, (b) 1-ton, (c) 2-ton, (d) 3-ton (e) 5-ton (f) 7-ton, and (g) 10-ton, respectively.
4.1.3 Dielectric Loss (\(\tan \delta\))
Figure S6: The dielectric loss for Basolite F300 pellets prepared under a compression load of:

(a) 0.5-ton, (b) 1-ton, (c) 2-ton, (d) 3-ton (e) 5-ton (f) 7-ton, and (g) 10-ton, respectively.
4.2 MIL-100-MG

4.2.1 Real Part of Dielectric Constant
Figure S7: The real part of dielectric constant for MIL-100-MG pellets prepared under a compression load of: (a) 0.5-ton, (b) 1-ton, (c) 2-ton, (d) 3-ton (e) 5-ton (f) 7-ton, and (g) 10-ton, corresponding to the pressure of 36.96, 73.92, 147.84, 221.76, 369.6, 517.44 and 739.20 MPa, respectively.
4.2.2 Imaginary Part of Dielectric Constant

![Graphs showing the imaginary part of the dielectric constant for different samples over frequency.](image-url)
Figure S8: The imaginary part of dielectric constant for MIL-100-MG pellets prepared under a compression load of: (a) 0.5-ton, (b) 1-ton, (c) 2-ton, (d) 3-ton (e) 5-ton (f) 7-ton, and (g) 10-ton, respectively.
4.2.3 Dielectric Loss

(a) Dielectric Loss (tan δ) vs. Frequency (f) / MHz for MIL-100-MG-0.5t

(b) Dielectric Loss (tan δ) vs. Frequency (f) / MHz for MIL-100-MG-1t

(c) Dielectric Loss (tan δ) vs. Frequency (f) / MHz for MIL-100-MG-2t
Figure S9: The dielectric loss for MIL-100-MG pellets prepared under a compression load of:
(a) 0.5-ton, (b) 1-ton, (c) 2-ton, (d) 3-ton (e) 5-ton (f) 7-ton, and (g) 10-ton, respectively.
4.3 Comparative dielectric loss

Figure S10: Dielectric loss of MOF pellets as a function of pelleting pressure and temperature:
(a) Basolite F300 and, (b) MIL-100-MG pellets specific frequencies (0.01, 0.1, and 1 MHz).
5. Reflectivity spectra $R(\omega)$ in the far-IR and mid-IR regions

Figure S11: Reflectance spectra of MIL-100-MG pellets. Inset: (a) reflectivity spectra in the near-IR region, (b) joining of the far-IR and mid-IR spectra at 517 cm$^{-1}$ (~15.5 THz), (c) pelleting pressure-dependent redshift in transition mode of peaks obtained from the Gaussian peak fitting and (d) plot for pressure-dependent peak shift in peak positions.
6. Refractive index in THz region

Figure S12: (a) Real and (b) imaginary parts of the refractive index of MIL-100 pellets in IR frequency range. Inset (c)-(d) shows the optically insensitivity of the framework in near-IR region.
7. The imaginary part of dielectric constant in the THz region

Figure S13: The imaginary part of dielectric constant (ε'') in the IR frequency range for MIL-100 pellets. Inset (a) shows the ε'' spectrum in the near-IR region. Inset (b) doesn’t show any shift in the transition mode, whereas, in inset (c)-(d) the redshift is evident in the transition modes caused by the pelleting force-induced amorphization.
8. AC conductivity

8.1 Basolite F300

![AC Conductivity Graphs for Basolite F300](image)

- Basolite F300-0.5t
- Basolite F300-1t
- Basolite F300-2t

AC Conductivity
Figure S14: The AC conductivity of Basolite F300 pellets prepared under a compression load of: (a) 0.5-ton, (b) 1-ton, (c) 2-ton, (d) 3-ton (e) 5-ton (f) 7-ton, and (g) 10-ton, corresponding to the pressure of 36.96, 73.92, 147.84, 221.76, 369.6, 517.44 and 739.20 MPa, respectively.
8.2 MIL-100-MG
Figure S15: The AC conductivity of MIL-100-MG pellets prepared under a compression load of: (a) 0.5-ton, (b) 1-ton, (c) 2-ton, (d) 3-ton, (e) 5-ton, (f) 7-ton, and (g) 10-ton, corresponding to the pressure of 36.96, 73.92, 147.84, 221.76, 369.6, 517.44 and 739.20 MPa, respectively.