In silico analysis of essential and non-homologous proteins in Salmonella typhimurium biofilm

N A Othman and M F Z R Yahya*
Faculty of Applied Sciences, UiTM Shah Alam, 40450 Shah Alam, Selangor, Malaysia

*fakharulzaman@uitm.edu.my

Abstract. Salmonella typhimurium is a Gram negative pathogen that commonly causes severe gastroenteritis. It is resistant to a wide range of antibiotics and is able to form biofilm on both biotic and abiotic surfaces. To date, essential and non-homologous proteins in S. typhimurium biofilm remain not well investigated. Therefore, the present work was performed to analyze essential and non-homologous proteins in S. typhimurium biofilm using a combination of one-dimensional SDS-PAGE, HPLC - ESI - QTOF and bioinformatics. Results demonstrated that seven major protein bands (78.1 kDa, 51.2 kDa, 41.5 kDa, 37.3 kDa, 35.1 kDa, 27.6 kDa, and 25.4 kDa) were present in whole-cell protein extract of S. typhimurium biofilm. A total of 75 proteins were successfully identified from both 25.4 kDa and 51.2 kDa protein bands. Approximately 54.67% of QTOF-identified whole-cell proteins were found to be essential to the survival of S. typhimurium biofilm and were non-homologous to human proteome. Majority of essential and non-homologous S. typhimurium biofilm proteins were associated with transport and protein synthesis. The findings from the present work may be useful for development of novel antibiofilm agent.

1. Introduction
A biofilm refers to a microbial community that attaches to hydrated surface by extracellular polymeric substances (EPS) matrix. This microbial community differs from its floating counterpart in several aspects including protein expression pattern that typically results in distinct metabolic performance [1]. The mixture of monolayer biofilm and three dimensional biofilm often produces highly heterogeneous mature biofilm [2, 3]. It has been established that the spatial heterogeneity in the biofilm structure contributes to failure of antimicrobial treatment, leading to a wide range of global issues. Thus, great efforts in the search for natural products and synthetic chemicals as novel antibiofilm agents still continue [4-7].

Salmonella typhimurium is a Gram-negative pathogen that commonly causes severe gastroenteritis and is an important biofilm producer. Its resistance towards a wide range of antibiotics has previously been reported [8] while EPS matrix has been shown to be crucial for viablity of S. typhimurium biofilm [9]. Analysis by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) has revealed protein expression pattern in S. typhimurium biofilm. 25.4 kDa and 51.2 kDa protein bands have been found to be consistently expressed in all stages of S. typhimurium biofilm and respond towards antimicrobial treatment [10], suggesting their crucial roles in biofilm formation. Considering the facts that the essential and non-homologous proteins in pathogenic microorganisms are
potential drug targets [11], there is a need to identify the essential and non-homologous proteins in *S. typhimurium* biofilm.

Therefore, the present work was carried out to identify the essential and non-homologous proteins in 25.4 kDa and 51.2 kDa protein bands from *S. typhimurium* biofilm. A combination of SDS-PAGE and high performance liquid chromatography-electrospray ionization-quadrupole time of flight (HPLC-ESI-QTOF) was used to resolve and identify biofilm proteins whilst protein basic local alignment search tool (BLASTp) search against related databases was performed to identify essential and non-homologous biofilm proteins.

2. Methodology

2.1 Test microorganism

S. typhimurium ATCC 14028 was used in the present work. Evaluation of culture purity was performed by Gram-staining and assessment of colony morphology. Bacterial inoculum was adjusted to 12×10^8 CFU mL$^{-1}$ for biofilm formation assay.

2.2 Biofilm formation assay

Biofilm was developed in 6-well microplate at 37 °C for 24 h as previously described [10].

2.3 Protein electrophoresis and identification

Whole-cell protein extraction, protein determination by Bradford assay, one-dimensional polyacrylamide gel electrophoresis (SDS-PAGE), Coomassie staining, tryptic digestion and high performance liquid chromatography-electrospray ionization-quadrupole time of flight (HPLC-ESI-QTOF) were performed as previously described [10].

2.4 Analysis of essential and non-homologous proteins

The QTOF-identified whole-cell proteins from *S. typhimurium* biofilm were analyzed using *in silico* subtractive approach as previously described [11].

3. Result and Discussion

In the present work, *in silico* subtractive approach was used to identify essential and non-homologous proteins from *S. typhimurium* biofilm. The QTOF-identified whole-cell proteins were analysed against database of essential genes (DEG) and were compared with the proteome of human host. Application of this method focused on 25.4 kDa and 51.2 kDa protein bands because they have been shown to be important in *S. typhimurium* biofilm [10].

One-dimensional SDS-PAGE analysis showed the presence of seven major protein bands (78.1 kDa, 51.2 kDa, 41.5 kDa, 37.3 kDa, 35.1 kDa, 27.6 kDa, and 25.4 kDa) in whole-cell protein extract of *S. typhimurium* biofilm (Figure 1). A total of 75 proteins were successfully identified from both 25.4 kDa and 51.2 kDa protein bands (Table 1). Approximately 54.67% of QTOF-identified whole-cell proteins were found to be essential to the survival of *S. typhimurium* and were non-homologous to human proteome, making them ideal therapeutic targets for biofilm control (Table 1). Majority of essential and non-homologous *S. typhimurium* proteins were associated with transport and transcription/translation (Table 2).
Figure 1. SDS-PAGE image of whole-cell protein expression in *S. typhimurium* biofilm. 25.4 kDa and 51.2 kDa protein bands were then analysed using HPLC-ESI-QTOF. Estimated protein amount loaded into gel was 4.5 µg.

Table 1. Summary of *in silico* subtractive analysis of QTOF-identified whole-cell proteins.

Proteins	Number	%
QTOF-identified whole-cell proteins	75	100
QTOF-identified whole-cell proteins without matches in human host	47	62.67
QTOF-identified whole-cell proteins with matches in DEG database	41	54.67
QTOF-identified whole-cell proteins considered as ideal therapeutic targets	41	54.67

Numerous protein expression studies have been carried out to study life cycle, antimicrobial resistance and control strategy of *S. typhimurium* due to rapid global spread of multidrug-resistant *S. typhimurium* [8]. In 2010, Aksakal [12] studied 34 Salmonella serovars by one-dimensional SDS-PAGE. They successfully identified consistent expression of protein bands of 78.1 kDa, 51.2 kDa, 41.5 kDa, 37.3 kDa, 35.1 kDa, 27.6 kDa, and 25.4 kDa in all Salmonella serovars. However, they have not identified the expression of these protein bands in biofilm growth mode of Salmonella serovars. A later work by Yahya et al. [10] has demonstrated the expression of these protein bands in *S. typhimurium* biofilm, especially 25.4 kDa and 51.2 kDa protein bands whereby inhibition of 25.4 kDa and 51.2 kDa protein bands has completely kill *S. typhimurium* biofilm. Whole-cell protein expression in *S. typhimurium* biofilm observed herein is consistent with the previous works [10, 12].

One-dimensional SDS-PAGE is an efficient method to separate all types of proteins based on size. It is widely used to profile changes in proteome expression, check sample purity, estimate the size of unknown proteins and monitor protein purification workflow. For protein identification, one-dimensional SDS-PAGE is often combined with HPLC-ESI-QTOF. In the present work, 25.4 kDa and 51.2 kDa protein bands detected by Coomassie staining were excised from the gel and digested with trypsin enzyme for protein identification by HPLC-ESI-QTOF. According to Xiong et al. [13], this combination becomes the most efficient strategy to identify the proteins contained within the membrane fraction. They successfully identified 349 membrane proteins of *Mycobacterium tuberculosis* H37Rv, validated by ≥2 tryptic peptide matches and MOWSE score >75.
Identification has become a method of choice nowadays because it offers greater effectiveness in time based on BLASTp search against DEG database with e-value cutoff score of 1e-06. Homologous proteins when they meet the criteria as follows: i) crucial for the survival of an organism and operational cost. In the present work, biofilm proteins are considered as essential and non-homologous to human.

Computational analysis of essential and non-homologous proteins for therapeutic target identification has become a method of choice nowadays because it offers greater effectiveness in time and operational cost. In the present work, biofilm proteins are considered as essential and non-homologous proteins when they meet the criteria as follows: i) crucial for the survival of an organism based on BLASTp search against DEG database with e-value cutoff score of 1e-06 and ii) present in the microorganisms but do not exist in Homo sapiens based on BLASTp search against non-redundant database with e-value threshold of 1e-06.

Succinate dehydrogenase iron-sulfur subunit is an enzyme involved in conversion of succinate to fumarate. It constitutes respiratory enzyme complex embedded in inner mitochondrial membrane and is the only enzyme that functions in both the TCA cycle and oxidative phosphorylation. The present work identified succinate dehydrogenase iron-sulfur subunit [SDHB_SALTY] as an essential and non-homologous protein in *S. typhimurium* biofilm. This finding is in agreement with Yahya et al. [11]. They identified essential and non-homologous TCA cycle enzymes such as citrate lyase subunit alpha/citrate CoA-transferase and succinate dehydrogenase iron-sulfur subunit from *Vibrio cholerae*, *Pseudomonas aeruginosa*, *Helicobacter pylori*, *Staphylococcus aureus*, *Escherichia coli*, *Campylobacter jejuni* and *Porphyromonas gingivalis*.

Table 2. QTOf-identified whole-cell proteins which are essential to the survival of *S. typhimurium* and non-homologous to human.

Accession	Protein name	Mascot score	Peptides matched	Functional categories
EKT05435	Hypothetical protein	25	18	Unknown
OTSA_SALTY	Alpha-alpha- trehalose-phosphate synthase [UDP-forming]	36	4	Carbohydrate metabolism
SYR_SALTY	Arginine- tRNA ligase	45	4	Proline metabolism
FHIA_SALTY	Formate hydrogenlyase transcriptional activator	17	3	Transcription/Translation
PHOP_SALTY	Vindelic transcriptional regulatory protein	210	6	Cell signaling
CAH68205	citrate kinase like protein	74	7	Carbohydrate metabolism
CC176853	Putative transposase	15	2	Cell proliferation
OMPA_SALTY	Outer membrane protein A	306	18	Transport
CQE27718	Outer membrane protein ToC	33	4	Transport
METQ_SALTY	D-methionine-binding lipoprotein MetQ	105	2	Transport
ARGV_SALTY	Lysine/arginine/ornithine-binding periplasmic protein	82	4	Transport
NFSB_SALTY	Oxygen-insensitive NAD(P)H nitroreductase	51	2	Cofactor metabolism
DGA_A_SALTY	2,5-diketo-D-glucaric acid reductase A	49	2	Vitamin metabolism
AHPQ_SALTY	Alkyl hydroperoxide reductase subunit F	169	10	Cofactor metabolism
RIDA_SALTY	2-iminobutanioate/2-imino propanoate deaminase	74	2	Amino acid metabolism
SDHB_SALTY	Succinate dehydrogenase iron-sulfur subunit	41	2	Carbohydrate metabolism
FLJB_SALTY	Phase 2 flagellin	126	6	Cell motility
AZZ79774	Phase 1 flagellin	42	4	Cell motility
CUR77306	Trigger factor	1176	74	Transcription/Translation
CUG07950	30S ribosomal protein	169	5	Transcription/Translation
KM121978	50S ribosomal protein L1	142	3	Transcription/Translation
ESE73385	ATP synthase subunit alpha	208	13	Transport
AFD30527	Heat shock protein GroEL	58	2	Defense response
AKI93747	Heat shock protein 60kDa	428	25	Defense response
KNI28456	Elongation factor Tu	358	25	Transcription/Translation
AFD60284	DNA directed RNA polymerase	58	2	Transcription/Translation
CQJ80355	Heat shock protein GspL	124	3	Defense response
KN13063	Uridine phosphorylase	50	5	Nucleotide metabolism
AHE4707	Phosphoglycerate mutase	73	2	Carbohydrate metabolism
AHE89904	Rho protein	204	7	Transcription/Translation
KPF04252	Alkyl hydroperoxide reductase	79	7	Cofactor metabolism
CQJ68416	Negative regulator of multiple antibiotic resistance	80	9	Transcription/Translation
CQK73986	Flagellar biosynthesis protein FltC	119	4	Cell motility
CCN37166	Protein-export membrane protein	106	14	Transport
KNI37322	Recombinase A	74	3	DNA repair
CQJ45143	Acetylglutamate kinase	50	2	Amino acid metabolism
KNM51232	Biopolymer transporter ExbB	39	4	Transport
CQJ47592	Alcohol dehydrogenase	45	3	Cofactor metabolism
KPF04525	Membrane protein insertase	236	11	Transport
KLT32309	ABC transporter permease	68	4	Transport
KPF20587	Cystine transporter subunit	67	3	Transport
10 membrane proteins were successfully identified as essential and non-homologous proteins in *S. typhimurium* biofilm, namely outer membrane protein A [OMPA_SALTY], outer membrane protein TolC [CQE27718], membrane protein insertase [KPE94525], protein-export membrane protein [CCW73166], Biopolymer transporter ExxB [KMM51232], ABC transporter permease [KLT32369], Cystine transporter subunit [KPF20588], Lysine/arginine/ornithine-binding periplasmic protein [ARGT_SALTY], D-methionine-binding lipoprotein MetQ [METQ_SALTY] and ATP synthase subunit alpha [ESE73385]. A previous study [14] has identified ATP synthase subunit alpha as an essential and non-homologous protein in *Bacillus anthracis* A0248.

Heat shock protein GroEL is a protein produced by the living cells in response to various stressful conditions such as heat, cold and ultraviolet light. It is also known to be crucial in folding of numerous proteins mediating vital cellular functions. The folding process performed by heat shock protein GroEL involves multiple cycles of substrate and GroES binding and release. In the present work, heat shock protein GroEL [AFD30527] was identified as an essential and non-homologous protein in *S. typhimurium* biofilm. This protein has previously been shown to be an essential and non-homologous protein in *Corynebacterium pseudotuberculosis* [15].

30S ribosomal protein is a protein that assists ribosome assembly during protein synthesis. This protein functions in aligning anticodons of tRNAs with codons of mRNA. It has been established that tetracycline antibiotics inhibit bacterial protein synthesis by targeting 30S ribosomal proteins. The present work successfully identified 30S ribosomal protein [CUC07050] as an essential and non-homologous protein in *S. typhimurium* biofilm. This finding corroborates a previous work showing that 30S ribosomal protein is essential and non-homologous in *Corynebacterium diphtheriae* [16].

4. Conclusions

We have demonstrated successful identification of essential and non-homologous proteins from *S. typhimurium* biofilm. The findings from the present work may be useful for development of novel antibiofilm agent.

References

[1] Giaouris E Samoilis G Chorianopoulos N Ercolini D and Nychas G J 2013 Differential protein expression patterns between planktonic and biofilm cells of Salmonella enterica serovar Enteritidis PT4 on stainless steel surface *Int. J. Food Microbiol.* **162**, p. 105-113.

[2] Entcheva-Dimitrov P and Spormann A M 2004 Dynamics and control of biofilms of the oligotrophic bacterium *Caulobacter crescentus* *J. Bacteriol.* **186**, p.8254-8266.

[3] Mahat M M Aris A H M Jais U S Yahya M F Z R Ramli R Bonnia N N and Mamat M T 2012 A preliminary study on microbiologically influenced corrosion (MIC) of mild steel by *Pseudomonas aeruginosa* by using infinite focus microscope (IFM) *AIP Conf. Proceedings* ID 1455, p. 117-123.

[4] Nguyen U T Wenderska I B Chong M A Koteva K Wright G D Burrows L L 2012 Small-molecule modulators of *Listeria monocytogenes* biofilm development *Appl. Environ. Microbiol.* **78**, p. 1454-1465.

[5] Yahya M F Z R Saifuddin N F H A and Hamid U M A 2013 Zingiber officinale ethanolic extract inhibits formation of *Pseudomonas aeruginosa* biofilm *Int. J. Pharm. Biol. Sci.* **3**, p.46-54.

[6] Yahya M F Z R Ibrahim M S A Jawawi W M A W M and Hamid U M A 2014 Biofilm killing effects of *Chromolaena odorata* extracts against *Pseudomonas aeruginosa* *Res. J. Phytochemistry* **8**, p. 64-73.

[7] Yahya M F Z R Alias Z and Karsani S A 2018 Altered EPS protein secretion in *Salmonella typhimurium* biofilm following treatment with DMSO *Int. J. Eng. Techn.* **7(4.14)**, p. 63-66.

[8] Poppe C Smart N Khakhria R Johnson W Spika J and Prescott J 1998 *Salmonella typhimurium* DT104: a virulent and drug resistant pathogen *Can. Vet. J.* **39**, p. 559-565.

[9] Yahya M F Z R, Alias Z and Karsani S A 2018 Antibiofilm activity and mode of action of DMSO alone and its combination with afatinib against Gram-negative pathogens *Folia*
Microbiologica 63, p. 23-30.

[10] Yahya M F Z R Alias Z and Karsani S A 2017 Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO Protein J. 36, p. 286-298.

[11] Yahya M F Z R Hamid U M A Norfatimah M Y and Kambol R 2014 In silico analysis of essential tricarboxylic acid cycle enzymes from biofilm-forming bacteria Trends Bioinform. 7, p. 19-26.

[12] Aksakal A 2010 Analysis of whole cell protein profiles of Salmonella serovars isolated from chicken, turkey and sheep faeces by SDS-PAGE Veterinarni Medicina 55, p. 259-263.

[13] Xiong Y Chalmers M J Gao F P Cross T A and Marshall A G 2005 Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry J. Proteome Res. 4, p. 855-861.

[14] Rahman A Noore S Hasan A Ullah R Rahman H Hossain A Ali Y and Islam S 2014 Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach Comput. Biol. Chem. 52, p. 66-72.

[15] Folador E L de Carvalho P V Silva W M Ferreira R S Silva A Gromiha M Ghost P Barh D Azevedo V and Rottger R 2016 In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks BMC Syst. Biol. 10, ID 103, p. 1-9.

[16] Jamal S B Hassan S S Tiwari S Viana M V Benevides L Ullah A Turjanski A G Barh D Ghosh P Costa D A Silva A Rotter R and Azevedo V A C 2017 An integrative in silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae PLoS ONE 12, ID e0186401, p. 1-25.