Determination celiprolol hydrochloride drug by used zero, first, second and third order derivative and peak area spectrophotometry method in its pure form and in pharmaceutical tablets

Mohanad H Halboos¹, Aayad Ammar Sayhood² and Tamara Ala'a Hussein²

¹Department of Ecology, Faculty of Science, University of Kufa, Najaf, Iraq
²Department of Basic Sciences, Faculty of Dentistry, University of Kufa, Najaf, Iraq

Email: muhaned.halbus@uokufa.edu.iq

Abstract. An easy, specified, accurate, precise and reproducible quantitative analyses for determination of celiprolol hydrochloride drug by used zero, first, second and third order derivative and peak area spectrophotometry method. The suggest methods determined the drug in the concentration range (0.5-30) μg.mL⁻¹ at 286.6 nm for 0th order, at 306.6 and 272.2 nm for 1st order, at 319.2, 289.8 and 250.2 nm for 2nd order and at 325.6, 304.8, 242.2 and 219.6 nm for 3rd order derivative spectrophotometry, respectively. The peak area spectrophotometry method also used in the same range for determining celiprolol hydrochloride, at (284.4-379.2) and (248.6-284.4) nm for 1st order, at (306.4-372.2), (271.2-306.4) and (239.4-271.2) nm for 2nd order, and at (318.6-363.8), (290.4-318.6), (233.2-250.4) and (210.8-233.2) nm for 3rd order, respectively. The accuracy and precision of the methods used was calculated and the results were highly satisfactory. The limit of detection (LOD) and limit of quantification (LOQ) was calculated for the suggested methods, Where (LOD) was within range (0.0124-0.0632) μg.mL⁻¹, and (LOQ) within range (0.0415-0.1632) μg.mL⁻¹. The methods were successful in application when estimating celiprolol hydrochloride drug on some pharmaceutical tablets available in the local markets.

Keywords: Celiprolol hydrochloride, derivative spectrophotometry, peak area spectrophotometry method.

Introduction:

Celiprolol hydrochloride, Figure (1), 3-[3-Acetyl-4-[(RS)-3-[1,1-dimethylethyl-amino]-2-hydroxypropoxy]phenyl]-1,1-diethylare hydrochloride, (Cel.HCl), is used for β-adrenoceptor antagonist ¹. Cel.HCl is an activity for direct vasodilator and intrinsic sympathomimetic ². It's used for the control of angina pectoris and hypertension ³. Several methods were used for determination Cel.HCl, such as; HPLC ⁴-⁶, Liquid chromatography ⁷,⁸ spectrophotometric ⁹-¹⁴, fluorometric ¹⁵, potentiometric ¹⁶, voltammetry ¹⁷,¹⁸.
By looking at previous studies, we found that the derivative was not used in conjunction with the peak area to estimate celiprolol hydrochloride drug. In this paper, we proposed a new, simple and inexpensive method and did not need reagents to estimate Cel.HCl drug in its pure form and in pharmaceutical preparations through used zero, first, second and third order derivative and peak area spectrophotometry method.

![Celiprolol hydrochloride structure](image)

Figure (1): Celiprolol hydrochloride structure

Experimental:

Instrumentation and materials:

Shimadzu double beam UV-visible spectrophotometer, model UV-1800 PC with quartz cells of 1.0 cm path length, which connected to a computer have the software UVProbe 2.34 was used for all spectral measurements. Sensitive balance ± 0.0001g (Mettler Toledo/Switzerland). Ultrasonic (Homogenizer/Germany).

The reference standard of celiprolol hydrochloride drug was supplied as a gift sample from the State Company For Drug Industries and Medical Appliance (SDI) Samarra-Iraq.

Preparation of standard and sample solutions:

Cel.HCl 100 μg.mL\(^{-1}\) was prepared by dissolving accurate weighted 0.1000 g of pure drug in a small amount of distilled water then quantitatively transfer into a 1000 mL volumetric flask, diluted to the mark with distilled water and stored in a cool dark place (< 25 °C). Working solutions were freshly prepared each day by serial dilutions in the concentration range (0.5-30) μg.mL\(^{-1}\).

Thirty tablets each containing 200 mg of celiprolol hydrochloride were weighed and crushed to powder and the mean weight was calculated. Powder equivalent to 100 mg of Cel.HCl was transferred in 1000 ml of volumetric flask. A 100 ml of distilled water was added and sonicated for 20 minutes. Then the solution was filtered and diluted up to the mark with distilled water.

Results and discussion:

Linearity and range:

Under the experimental conditions qualified, the scheme obtained for zero, first, second and third order and peak area methods spectra noted the linear correlation. The regression analysis was done for the correlation coefficient values, slope and intercept as shown in the figure (2-8).

In figure (2) the spectra of Cel.HCl drug in the concentration range (0.5-30) μg.mL\(^{-1}\) and the calibration curve at 286.4 nm for 0\(^{th}\) order derivative spectrophotometry, the regression equation of calibration curve was \(y = 0.0861x + 0.0231\) (R\(^2\) = 0.9996).
Figure (2): (A); Zero order derivative spectrum of celiprolol hydrochloride. (B); calibration curve for Cel.HCl at 286.4 nm.

In figure (3) the spectra of Cel.HCl drug in the concentration range (0.5-30) μg.mL⁻¹ and the calibration curves at 306.6 and 272.2 nm for 1st derivative spectrophotometry, the regression equations of calibration curves were \(y = -0.0026x - 0.0001 \) (\(R^2 = 0.9995 \)) and \(y = 0.0009x - 0.0002 \) (\(R^2 = 0.9995 \)), respectively.

In figure (4) the peak area of Cel.HCl drug in the concentration 30 μg.mL⁻¹ and the calibration curves at (284.4-379.2) and (248.6-284.4) nm for 1st derivative spectrophotometry, the regression equations of calibration curves were \(y = -0.0825x - 0.003 \) (\(R^2 = 0.9995 \)) and \(y = 0.0216x - 0.0129 \) (\(R^2 = 0.9997 \)), respectively.

Figure (3): (A); First order derivative spectrum of celiprolol hydrochloride. (B); calibration curve for Cel.HCl at 272.2 nm. (C); calibration curve for Cel.HCl at 306.6 nm.
Figure (4): (A); Peak area for first order derivative spectrum of celiprolol hydrochloride. (B); calibration curve for Cel.HCl at (248.6-284.4) nm. (C); calibration curve for Cel.HCl at (284.4-379.2) nm.

In figure (5) the spectra of Cel.HCl drug in the concentration range (0.5-30) μg.mL⁻¹ and the calibration curves at 319.2, 289.8 and 250.2 nm for 2nd order derivative spectrophotometry, the regression equations of calibration curves were $y = 0.0001x - 0.00006$ ($R^2 = 0.9996$), $y = -0.0002x + 0.00005$ ($R^2 = 0.9996$) and $y = 0.00007x + 0.00004$ ($R^2 = 0.9995$), respectively.
Figure (5): (A); Second order derivative spectrum of celiprolol hydrochloride. (B); calibration curve for Cel.HCl at 250.2 nm. (C); calibration curve for Cel.HCl at 289.8 nm. (D); calibration curve for Cel.HCl at 319.2 nm.

In figure (6) the peak area of Cel.HCl drug in the concentration 30 μg.mL⁻¹ and the calibration curves at (306.4-372.2), (271.2-306.4) and (239.4-271.2) nm for 2nd order derivative spectrophotometry, the regression equations of calibration curves were
y= 0.0026x - 0.0002 (R² = 0.9998), y= -0.0036x + 0.0003 (R² = 0.9997) and y= 0.0012x + 0.0006 (R² = 0.9998), respectively.
In figure (7) the spectra of Cel.HCl drug in the concentration range (0.5-30) μg.mL⁻¹ and the calibration curves at 325.6, 304.8, 242.2 and 219.6 nm for 3rd order derivative spectrophotometry, the regression equations of calibration curves were $y = -0.00008x - 0.000001$ ($R^2 = 0.9994$), $y = 0.00002x - 0.00001$ ($R^2 = 0.9995$), $y = 0.00001x - 0.00003$ ($R^2 = 0.9995$) and $y = -0.00002x + 0.00007$ ($R^2 = 0.9992$).

Figure (7): (A); Third order derivative spectrum of celiprolol hydrochloride. (B); calibration curve for Cel.HCl at 219.6 nm. (C); calibration curve for Cel.HCl at 242.2 nm. (D); calibration curve for Cel.HCl at 304.8 nm. (E); calibration curve for Cel.HCl at 325.6 nm.
In figure (8) the peak area of Cel.HCl drug in the concentration 30 μg.mL⁻¹ and the calibration curves at (318.6-363.8), (290.4-318.6), (233.2-250.4) and (210.8-233.2) nm for 3rd order derivative spectrophotometry, the regression equations of calibration curves were \(y = -0.0003x + 0.0002 \) (\(R^2 = 0.9996 \)), \(y = 0.0004x - 0.0003 \) (\(R^2 = 0.9998 \)), \(y = 0.0001x + 0.00006 \) (\(R^2 = 0.9997 \)) and \(y = -0.0001x - 0.0006 \) (\(R^2 = 0.9996 \)), respectively.

Figure (8): (A); Peak area of third order derivative spectrum of celiprolol hydrochloride. (B); calibration curve for Cel.HCl at (210.8-233.2) nm. (C); calibration curve for Cel.HCl at (290.4-318.6) nm. (D); calibration curve for Cel.HCl at (233.2-250.4) nm. (E); calibration curve for Cel.HCl at (318.6-363.8) nm.
The accuracy:

To investigate the accuracy of the suggested method, recovery investigation was carried out by a standard addition method. The accuracy of the suggested method was evaluated at 60%, 100%, and 140% levels of 10 μg.mL⁻¹ standard solution of Cel.HCl for 0th, 1st, 2nd and 3rd order derivative and peak area method. Five determinations in each level were done, error%, recovery% and RSD% were calculated as shown in table 1.

Methods	Sample con.* µg.mL⁻¹	Standard Added* µg.mL⁻¹	Found* µg.mL⁻¹	Error%	Recovery%	R.S.D.%
0th order derivative	10.00	6.00	16.0255	0.1596	100.1596	0.1394
	10.00	10.00	20.0348	0.1742	100.1742	0.2093
	14.00	24.0069	0.0290	100.0290	0.4047	
1st order derivative	10.00	6.00	15.9976	-0.0145	99.9851	0.2440
	10.00	10.00	20.0301	0.15098	100.1509	0.1720
	14.00	23.9605	-0.1645	99.8354	0.0950	
2nd order derivative	10.00	6.00	15.9744	-0.1596	99.8403	0.2651
	10.00	10.00	20.0348	0.1742	100.1745	0.2167
	14.00	23.9744	-0.1064	99.8935	0.2066	
3rd order derivative	10.00	6.00	15.9698	-0.1887	99.8112	0.2356
	10.00	10.00	20.0255	0.1277	100.1277	0.1759
	14.00	23.9790	-0.0871	99.9128	0.2127	
Peak Area method	10.00	6.00	15.9651	-0.2177	99.7822	0.2218
	10.00	10.00	20.0139	0.0696	100.0696	0.1807
	14.00	23.9558	-0.1838	99.8161	0.2961	

*Average of five measurements

The precision:

To investigate the precision of the suggested method, Cel.HCl solutions at 10 μg.mL⁻¹ were analyzed each five times for all for 0th, 1st, 2nd and 3rd order derivative and peak area method. The interday and intraday precision was expressed by RSD as shown in table 2.

The sensitivity:

The limit of detection (LOD) and limit of quantification (LOQ) was calculated for the suggested methods by the equations:

\[
\text{LOD} = 3.3\sigma/\text{Slope}
\]

\[
\text{LOQ} = 10\sigma/\text{Slope}
\]

Where \(\sigma \) is the standard deviation, the summary of the result was shown in table 3.
Table (2): The precision of the suggested method

Methods	Sample con.* µg.mL⁻¹	R.S.D.%	R.S.D.%
		interday precision	intraday precision
0th order derivative	10.00	0.3695	0.2547
1st order derivative	10.00	0.3594	0.2643
2nd order derivative	10.00	0.3479	0.2019
3rd order derivative	10.00	0.2541	0.3651
Peak Area method	10.00	0.3012	0.3197

*Average of five measurements

Table (3): Calculates LOD and LOQ for the suggested method

Methods	LOD µg.mL⁻¹	LOQ µg.mL⁻¹
0th order derivative	0.0124	0.0415
1st order derivative	0.0235	0.07846
2nd order derivative	0.0632	0.2106
3rd order derivative	0.0487	0.1623
Peak Area method	0.0379	0.1263

Analysis of pharmaceutical tablets:

To investigate the accuracy of the suggested method for determination of Cel.HCl in pharmaceutical tablets, three evaluated the concentration of solution of tablets at 10, 15, and 20 µg.mL⁻¹ and determined by 0th, 1st, 2nd and 3rd order derivative and peak area method. Five determinations in each level were done, error%, recovery% and RSD% were calculated as shown in table 4.

Table (4): Analysis of pharmaceutical tablets

Methods	Taken* µg.mL⁻¹	Found* µg.mL⁻¹	Error %	Recovery %	R.S.D.%
0th order derivative	10.00	10.0534	0.5342	100.5342	0.5753
	15.00	15.0197	0.1316	100.1316	0.2408
	20.00	20.0209	0.1045	100.1045	0.2298
1st order derivative	10.00	10.0301	0.3019	100.3019	0.8005
	15.00	14.9965	-0.0232	99.9767	0.4291
	20.00	19.9953	-0.0232	99.9767	0.4291
2nd order derivative	10.00	10.0069	0.0696	100.0696	0.9765
	15.00	15.0011	0.0077	100.0077	0.4791
	20.00	20.0185	0.0929	100.0929	0.3795
3rd order derivative	10.00	9.9860	-0.1393	99.86062	0.7776
	15.00	15.0197	0.1316	100.1316	0.5396
	20.00	20.0418	0.2090	100.2090	0.3655
Peak Area method	10.00	10.0092	0.0929	100.0929	0.9040
	15.00	15.0662	0.4413	100.4413	0.3983
	20.00	20.0650	0.3252	100.3252	0.3511

*Average of five measurements
Conclusion:

The suggest zero, first, second and third order derivative and peak area spectrophotometry method provides easy, specified, accurate, precise and reproducible quantitative analyses for determination of Cel.HCl drug. The methods were validated as per ICH guidelines in terms of specified, linearity, precision, accuracy, limits of detection (LOD), limits of quantification (LOQ) and reproducibility. The suggested method can be used for the routine analysis and the quality control assay of drug in bulk and pharmaceutical preparations.

References:

[1] M. Towers. British Pharmacopoeia; The Stationery Office: Crown Copyright: London, 2009.
[2] Schaefer, C.; Peters, P. W. J.; Miller, R. K. Drugs during pregnancy and lactation: Treatment options and risk assessment; Elsevier B.V.: Buena Vista, Virginia, U.S.A., 2015.
[3] Eguchi, K.; Hoshide, S.; Kario, K. Effects of Celiprolol and Bisoprolol on Blood Pressure, Vascular Stiffness, and Baroreflex Sensitivity. Am. J. Hypertens. 2015, 28 (7), 858–867 DOI: 10.1093/ajh/hpu245.
[4] Itohda, A.; Tsutsumi, K.; Imai, H.; Iwao, M.; Kotegawa, T.; Ohashi, K. Determination of celiprolol in human plasma using high performance liquid chromatography with fluorescence detection for clinical application. J. Chromatogr. B 2012, 904, 88–92 DOI: 10.1016/j.jchromb.2012.07.026.
[5] Chiu, F. C. K.; Raymond, K. Validated assay for the determination of celiprolol in plasma using high-performance liquid chromatography and a silanol deactivated reversed-phase support. J. Chromatogr. B Biomed. Sci. Appl. 1996, 687 (2), 462–465 DOI: 10.1016/S0378-4347(96)00246-0.
[6] Braza, A. J.; Modamio, P.; Mariño, E. L. Determination of celiprolol and oxprenolol in human plasma by high-performance liquid chromatography and the analytical error function. J. Chromatogr. B Biomed. Sci. Appl. 1998, 718 (2), 267–272 DOI: 10.1016/S0378-4347(98)00378-8.
[7] Caudron, E.; Laurent, S.; Billaud, E.; Prognon, P. Simultaneous determination of the acid/base antihypertensive drugs celiprolol, bisoprolol and irbesartan in human plasma by liquid chromatography. J. Chromatogr. B 2004, 801 (2), 339–345 DOI: 10.1016/j.jchromb.2003.11.009.
[8] Verbesselt, R.; Zugravu, A.; Tjandramaga, T. B.; De Schepper, P. J. Liquid chromatographic determination of total celiprolol or (S)-celiprolol and (R)-celiprolol simultaneously in human plasma. J. Chromatogr. B Biomed. Sci. Appl. 1996, 683 (2), 231–236 DOI: 10.1016/0378-4347(96)00110-7.
[9] Manisha Chavan; Manisha Sutar. Development and Validation of UV Spectrophotometric Methods for Estimation of Celiprolol Hydrochloride in Tablet Formulation. Int. J. Pharm. Sci. Res. 2016, 7 (9), 3781–3786 DOI: 10.13040/IJPSR.0975-8232.7(9).3781-86.
[10] Aljaferyi, A. M. A.; Sayhood, A.; Abdulridha, W. M.; Yousif, A. M. Evaluation the tensile strength of cold-cured acrylic resin denture base material by adding silver nanoparticles. Indian J. Public Heal. Res. Dev. 2018, 9 (10), 917–922 DOI: 10.5958/0976-5506.2018.01258.5.
[11] Radulović, D.; Vujic, Z.; Vasiljević, M. Spectrophotometric Investigation of the Celiprolol-Hydrochloride Ion-Pair. Spectrosc. Lett. 1994, 27 (4), 503–513 DOI: 10.1080/00387019408007255.
[12] Sayhood, A. A.; Mohammed, H. J. Synthesis of new azo reagent for determination of Pd(II), Ag(I) and applied to enhance the properties of silver nano particles. Int. J. Chem. Sci. 2015, 13 (3), 1123–1136.
[13] Al-Shirifi, A. N.; Dikran, S. B.; Halboos, M. H. N. Application of Central Composite Design Method to Oxidative Coupling Spectrophotometric Determination of Metoclopramide Hydrochloride in Pure form and Pharmaceutical Preparations. *J. Glob. Pharma Technol.* 2018, 10 (05), 143–152.

[14] Sayhood, A. A.; Mohammed, H. J. Synthesis of novel azo reagents derived from 4-aminoantipyrine and their applications of enhancement of silver nano particles. *Der Pharma Chem.* 2015, 7 (8), 50–58 DOI: 10.1016/j.powtec.2016.08.052.

[15] Belal, F.; Sharaf El-Din, M.; Aly, F.; Hefnawy, M.; El-Awady, M. Fluorometric Determination of Bopindolol and Celiprolol in Pharmaceutical Preparations and Biological Fluids. *J. Fluoresc.* 2012, 22 (4), 1141–1150 DOI: 10.1007/s10895-012-1053-1.

[16] Nagels, L. J.; Bazylak, G.; Zielinska, D. Designing Potentiometric Sensor Materials for the Determination of Organic Ionizable Substances in HPLC. *Electroanalysis* 2003, 15 (5–6), 533–538 DOI: 10.1002/ELAN.200390065.

[17] Farghaly, O. A. E.-M. Adsorptive stripping voltammetric determination of the antidepressant drug sulpiride. *J. Pharm. Biomed. Anal.* 2000, 23 (5), 783–791 DOI: 10.1016/S0731-7085(00)00376-9.

[18] Wang, J.; Mahmoud, J. S. Determination of traces of streptomycin and related antibiotics by adsorptive stripping voltammetry. *Anal. Chim. Acta* 1986, 186, 31–38 DOI: 10.1016/S0003-2670(00)81771-7.