The study of photovoltaic systems performance using various azimuth angles and solar array tilt positions

Banu Poobalan, Haziah Abdul Hamid, Noor Hasnizam Hanafi and Wooi Chin Leong

School of Electrical System Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia.

E-mail: banu@unimap.edu.my

Abstract: The study of photovoltaic energy and load predictions have become essential with the increase of energy demand. The objective of this paper is to present an analytical study on the performance of photovoltaic system with various azimuth angles and solar array tilt positions. The output power of a solar module is mainly dependent on its tilt position, solar irradiation, type of solar cell, and the technical properties of the module. The data used in this work consist of two different locations. The outcome of this work shows that the energy production influenced heavily on the weather conditions, location, azimuth angles and tilt positions. Within this work, parameters such as planes-of-array irradiance, net to inverter output power, net to grid output power and performance ratio have been studied. The developed analytical study is anticipated to provide a better understanding on the energy production and load usage in accordance with suitable tilt angle of solar array in a specific location.

Keywords: Photovoltaic system, azimuth angle, solar panels tilt positions, energy efficiency

1. Introduction

The different approach of generating energy in non-polluting environment has open up interest in the exploration of renewable energy field [1,2]. The introduction of solar energy helps to reduce the rising concern on carbon dioxide emissions [1,3,4]. The major disadvantage of solar energy is the dependency on weather conditions and solar irradiation [5-7]. Therefore it is important to study the produced energy and load demand for a certain location. It helps the customer to install solar panels and determine the amount of energy can be generated from it. On the other hand, it is important for the electric utilities to determine the produced energy on hourly or monthly basis especially when planning and scheduling the power system.

Although solar manufacturer has a given a nominal for each output panels, however, not all panels produce specified values any time of day. The position of the solar panels are important in order to absorb the maximum solar radiation of the day which varies in accordance to the weather conditions [5-11]. The purpose of this paper is to study an economical method for PV generation in various solar array tilt positions. The study in this work is valid for Chennai, India and Beijing, China, however, the introduced method can be applied to the data collected in any geographical location. First, the theoretical background of the selected location and its dependence on weather conditions is presented. Then the results variation of azimuth angle and tilt positions are analyzed. Finally the paper discusses the PV systems performance in obtaining the maximum power based on azimuth angle and tilt positions.

2. Background Research

Installation of solar panels requires many factors to be taken into account. In order to maintain consistent maximum output over seasons, solar arrays are installed in various methods thought out the world. Sun’s irradiance plays important role in photovoltaic installation [12,13]. Therefore, it is crucial to determine the azimuth angle and solar array tilts position to make the solar array work on its maximum peak [5-7]. Photovoltaic works at its most efficient manner when maximum amount of light particles
from sun hits their cells at a perpendicular (90 degree) [14]. Hence, it is important for solar panels to be installed and tilted according to the sun’s movement. Other factors such as the layer ozone obstacles and seasons impact too play equal importance in determining the amount of sun reaches the location.[15,16] In this work, two location has been chosen which are Chennai, India and Beijing, China. The reason for this two areas selection as these two locations are very highly populated and large amount of power supply demand is required [17,18]. On the other hand, this two counties are of the largest solar panels installation throughout the world [18]. As an average, solar radiation in Chennai, India is 4-7 kWh/m²/day and Beijing, China is 3-7.5 kWh/m²/day [19]. Location coordinates for Chennai, India and Beijing are as shown in Table 1 [20].

Table 1: Location coordinates for Chennai and Beijing region

Location	Latitude	Longitude
Chennai, India	13.0827° N	80.2707° E
Beijing, China	39.9042° N	116.4074° E

In general, the photovoltaic systems need to be aligned with the Sun’s movement to track the sun minute by minute since the sun moves throughout of the day [21]. In order to track the Sun’s movement, the automated solar tracker is used but it is very expensive as buying additional panels to compensate [19,22]. Furthermore, extra amount of power is used by the solar tracker to track the sun which negates much of its benefits. The highest point of sun is in the afternoon each day and it generates the most power. In this study, focus is given on the fixed solar panels. Determining the best position of azimuth and solar panels angles, the optimum performance of the system can be obtained. System Advisor Model (SAM) has been used as simulation tool in this study for both locations. The specifications for module, inverter and array parameters are presented in Table 2. The value settings are applied for both locations to maintain the consistency of results during simulation.

Table 2: Table shows the modules, inverter and array setting used in this work

Modules	Values
Cell material	Mono-c-Si
Module area	1.6 m²
Module capacity	335.2 DC Watts
Quantity	14
Total capacity	4.7 DC kW
Total area	22 m²
Inverters	Values
Unit capacity	3.8 AC kW
Input voltage	250-480 VDC DC V
Quantity	1
Total capacity	3.8 AC kW
DC to AC Capacity Ratio	1.23
AC losses (%)	1.0
Array	Values
Strings	2
Modules per string	7

3. Results and Discussions

Plane-of-array (POA) is defined as the beam radiance incident on the entire array before shading and soiling factors are applied. From the results obtained in Table 3 and Table 4, it has been noticed that Chennai has more radiance incident than Beijing. The reason for this difference is mainly because of its geographical location and climate influence. Chennai is located in the thermal equator and on the coast as well, which prevents extreme variation in seasonal temperature [23]. On the other hand, Beijing is located in the region whereby mountains shield the city to the north, northwest and west [24]. Beijing receives 2,671 hours of bright sunshine annually whereas Chennai receives 2762 hours of bright sunshine annually [24]. As for Chennai, placement of arrays in the South, Southeast and Southwest give the optimum radiance within 0º-36º tilt angle. On the other hand, as for Beijing, azimuth with 0º-54º tilt angles in the position of South, Southeast and Southwest give the optimum radiation results. The Sun is always in the South in the northern hemisphere. Hence, regions between the latitudes of 23º and 90º, the modules on an array are directed to the south in order to get the most out of the Sun’s energy. In the
southern hemisphere, it is the opposite [27]. Though 0º tilt angle gives optimum results, but in reality panels are not recommended to be fixed totally flat on the roof. The reason is that the tendency of the rainwater to maintain on the panels are high. Therefore, it is suggested that that the panels mounted at an angle of at least 10º. It is important because it will allow any rain to run off the modules. Figure 1 shows the values of POA at various cities. If the rainwater pools on the surface of the solar panel, it is more likely to eventually get through the panels' seals and into the solar cells[8].

Azimuth vs Tilt	0º	18º	36º	54º	72º	90º
North	5	4	3	3	2	1
Northeast	5	4	4	3	2	2
East	5	4	4	3	3	2
Southeast	5	4	4	3	3	2
South	5	4	4	3	3	2
Southwest	5	4	4	3	3	2
West	5	4	4	3	3	2
Northwest	5	4	4	3	3	2

Azimuth vs Tilt	0º	18º	36º	54º	72º	90º
North	3	3	2	1	1	1
Northeast	3	3	2	2	1	1
East	3	3	3	3	2	2
Southeast	3	4	4	4	3	2
South	3	4	4	4	3	2
Southwest	3	4	4	4	3	2
West	3	3	3	3	2	2
Northwest	3	3	2	2	1	1

Figure 1: Figure 1(a) and Figure 1(b) show the values of POA (kW/m²/day) at Chennai, India and Beijing, China regions respectively for various azimuth and tilt angles

Net to inverter is defined as the amount of power is supplied to inverter upon the solar panels power generation. Figure 2 and 3 show the values of Net to inverter. From the results in Table 5 and Table 6, it has been noticed that Chennai give the maximum power to inverter at South azimuth with 0º-18º tilt angle. As for Beijing, South azimuth with 36º-54º tilt angle gives the optimum power to inverter.
Table 5: Net to inverter (DC kWh) output values accordance to azimuth versus tilt angles at Chennai, India region

Azimuth vs Tilt	0°	18°	36°	54°	72°	90°
North	7530	6930	5770	4320	3100	2230
Northeast	7530	7320	6090	4910	3780	2880
East	7530	7320	6660	5740	4720	3720
Southeast	7530	7590	7090	6150	4960	3730
South	7530	7700	7270	6260	4820	3420
Southwest	7530	7590	7090	6160	4960	3720
West	7530	7330	6670	5760	4730	3710
Northwest	7530	7050	6100	4920	3780	2880

Table 6: Net to inverter (DC kWh) output values accordance to azimuth versus tilt angles for Beijing, China region

Azimuth vs Tilt	0°	18°	36°	54°	72°	90°
North	6000	4770	3570	2650	2040	1810
Northeast	6000	5110	4130	3310	2700	2240
East	6000	5880	5470	4880	4160	3380
Southeast	6000	6600	6710	6360	5610	4540
South	6000	6900	7250	7030	6260	5020
Southwest	6000	6600	6700	6430	5580	4520
West	6000	5860	5440	4850	4130	3350
Northwest	6000	5100	4110	3290	2680	2220

Figure 2: Figure 2(a) and Figure 2(b) shows the values of Net to inverter (DC kWh) at Chennai, India and Beijing, China region respectively for various azimuth and tilt angles.

Table 7: Net to grid (AC kWh) output values accordance to azimuth versus tilt at Chennai, India region

Azimuth vs Tilt	0°	18°	36°	54°	72°	90°
North	7190	6610	5500	4100	2930	2080
Northeast	7190	6990	5810	4670	3580	2710
East	7190	6990	6350	5470	4490	3520
Southeast	7190	7250	6760	5860	4710	3530
South	7190	7360	6940	5970	4580	3230
Southwest	7190	7250	6770	5870	4720	3220
West	7190	6990	6360	5480	4500	3510
Northwest	7190	6730	5810	4680	3580	2710
Table 8: Net to grid (AC KWh) output values accordance to azimuth versus tilt angles at Beijing, China region

Azimuth vs Tilt	0°	18°	36°	54°	72°	90°	
North	0°	5720	4530	3380	2490	1900	1670
Northeast	45°	5720	4270	3920	3200	2530	2090
East	90°	5720	5600	5210	4630	3950	3200
Southeast	135°	5720	6300	6400	6060	5340	4310
South	180°	5720	6590	6910	6690	5060	4780
Southwest	225°	5720	6290	6390	6050	5320	4290
West	270°	5720	5590	5180	4610	3920	3170
Northwest	315°	5720	4860	3900	3110	2520	2070

Figure 3: Figure 3(a) and Figure 3(b) shows the values of Net to Grid (AC KWh) for Chennai, India and Beijing, China respectively for various Azimuth and Tilt angles

Net to grid is defined as the amount of power is supplied to grid after calculating energy losses in inverter and modules upon the solar panels power generation [25]. The variation in results may due to be power loss in the inverter during the DC to AC conversion, module mismatch, wiring and connections [25]. From the results in Table 7 and Table 8, it has been noticed that Chennai gives the maximum power to inverter with South azimuth with 0°-18° tilt angles. As for Beijing, South azimuth with 36°-54° tilt angle give the optimum power to inverter.

Table 9: Performance ratio values accordance to azimuth versus tilt angles at Chennai, India region

Azimuth vs Tilt	0°	18°	36°	54°	72°	90°	
North	0°	0.78	0.78	0.77	0.75	0.73	0.72
Northeast	45°	0.78	0.78	0.77	0.76	0.75	0.74
East	90°	0.78	0.78	0.78	0.77	0.77	0.76
Southeast	135°	0.78	0.78	0.78	0.77	0.77	0.76
South	180°	0.78	0.78	0.78	0.77	0.77	0.76
Southwest	225°	0.78	0.78	0.78	0.78	0.77	0.76
West	270°	0.78	0.78	0.78	0.78	0.77	0.76
Northwest	315°	0.78	0.78	0.77	0.76	0.75	0.74

Performance ratio is a measure of a photovoltaic system’s annual electric generation output in AC kWh compared to its nameplate rated capacity in DC kW, taking into account the solar resource at the system’s location, and shading and soiling of the array [25]. Figure 4 shows the values of performance ratio for different cities.

Performance ratio = annual energy (kWh) / (annual POA total radiation (nominal) (kWh) x module efficiency (%)
Table 10: Performance ratio values accordance to azimuth versus tilt angles at Beijing, China region

Azimuth vs Tilt	0°	18°	36°	54°	72°	90°
North	0°	0.81	0.79	0.77	0.76	0.76
North	45°	0.81	0.79	0.79	0.78	0.78
East	90°	0.81	0.81	0.81	0.81	0.8
Southeast	135°	0.81	0.82	0.83	0.82	0.81
South	180°	0.81	0.82	0.83	0.83	0.81
Southwest	225°	0.81	0.82	0.82	0.82	0.81
West	270°	0.81	0.81	0.81	0.81	0.80
Northwest	315°	0.81	0.79	0.78	0.78	0.77

Figure 4(a) and Figure 4(b) shows the values of performance ratio for Chennai, India and Beijing, China respectively for various azimuth and tilt angles.

From the results in Table 9 and Table 10, it has been noticed that Chennai gives the maximum performance ratio at South Azimuth with 0°-36° tilt angle. As for Beijing, South azimuth with 36°-72° tilt angle gives the best performance ratio. Alternately this studies also indicates that panels can be installed in the South azimuth position with its location’s latitude for optimum function of the solar panels in Chennai and Beijing. This is because the latitude is the same as the angle of the sun in the sky halfway between midwinter and midsummer. During winter, the sun will be about 15 degrees higher in the sky in summer and 15 degrees lower in the sky [8,26]. Hence, tilting the panels to the midway point will maximize the sun captured throughout the year [8].

4. Conclusion

From this work, it shows that the azimuth or the direction of the face of solar panels and the tilt of the panel play significant role in obtaining the maximum power efficiency. The solar irradiance, the net to inverter power, net to grid power and performance ratio has been studied in this work. Although, the study has been carried out in two regions, the study can be implemented in other geographical location as well. Hence, the maximum energy and higher efficiency can be produced if the direction and tilt angle of solar panels are placed accordingly. From the study, it shows placing the solar panels close to latitude position of the selected location gives the optimum results in terms of power generation. Hence, it is important to determine the correct tilt positions and azimuth angles for solar panels as it can help to generate most energy form the installed solar power system.

Acknowledgments

One of the authors (BP) would like to thank School of Electrical Systems Engineering, Universiti Malaysia Perlis (UniMAP) for its collaboration and support throughout the completion of this research work. Special appreciation to National Renewable Energy Laboratory (NREL) for providing the access to the software and made this work possible.
References

[1] Osunmuyiwa, O. and Kalafagianih, A., Transitions in unlikely places: Exploring the conditions for renewable energy adoption in Nigeria, Environmental Innovation and Societal Transitions, Volume 22, March 2017, Pages 26-40

[2] Fina, B., Fleischhacker, A., Auer, H. and Lettner, G., Economic Assessment and Business Models of Rooftop Photovoltaic Systems in Multiapartment Buildings: Case Studies for Austria and Germany, Journal of Renewable Energy Volume 2018, Article ID 9759680, 16 pages

[3] Owusu, P. A. and Asumadu-Sarkodie, S., A review of renewable energy sources, sustainability issues and climate change mitigation, Civil & Environmental Engineering, 04 Apr 2016, Article ID: 1167990

[4] Mashail S. Arif, Residential Solar Panels and Their Impact on the Reduction of Carbon Emissions, Reduction of Carbon Emissions using Residential Solar Panels Spring 2013, P.1-18

[5] Chen Y. M., Lee C. H., Wu, H. C., Calculation of the optimum installation angle for fixed solar cell panels based on the genetic algorithm and the simulated-annealing method., IEEE Trans. Energy Convers. 2005;20(2):467–73.

[6] Gunerhan, H and Hepbasli, A., Determination of the optimum tilt angle of solar collectors for building applications, Build Environ. 2007;42(2):779–83.

[7] Yakup, M. A. H. M and Malik, A. Q., Optimum tilt angle and orientation for solar collector in Brunei Darussalam., Renew. Energy. 2001;24(2):223–34.

[8] Is Your Roof Angle Suitable For Solar Panels?Solarquotes, 2009 to 2018 Peacock Media Group [Accessed on 6 June 2018], Available from World Wide Web: https://www.solarquotes.com.au/panels/angle/

[9] Dricus, Solar Panel Angle: how to calculate solar panel tilt angle? 2018 Sinovoltaics Group Limited [Accessed on 6 June 2018] Available from World Wide Web: http://sinovoltaics.com/learning-center/system-design/solar-panel-angle-tilt-calculation/

[10] How to Figure the Correct Angle for Solar Panels - Solar Energy Systems [Accessed on 6 June 2018] Available from World Wide Web: http://www.solarpoweristhefuture.com/how-to-figure-correct-angle-for-solar-panels.shtml

[11] Solar panel tilt and orientation in Australia, Solar Choice Staff on 3 May, 2017 in Installation Advice, Positioning Solar PV Panels [Accessed on 6 June 2018] Available from World Wide Web: https://www.solarchoice.net.au/blog/solar-panel-tilt-and-orientation-in-australia/

[12] Nakkela H, Factors Affecting Solar Photovoltaic Power Output at Particular Location and Cost Estimation, Journal of Electrical & Electronic Systems, ISSN: 2332-0796, 5:166

[13] Fondriest Environmental, Inc. Solar Radiation and Photosynthetically Active Radiation.” Fundamentals of Environmental Measurements. 21 Mar. 2014. Accessed on 6 June 2018] Available from World Wide Web: http://www.fondriest.com/environmental-
measurements/parameters/weather/solar-radiation/.

[14] Harburn, J Solar Panel Installation: How Tilt, Shading and Orientation Affect Performance, 2011, Solar Selections [Accessed on 6 June 2018] Available from World Wide Web: http://www.solarselections.co.uk/blog/solar-panel-installation-how-tilt-shading-and-orientation-affect-performance

[15] McKenzie, E.L., Mattheus, W.A. and Johnson R.V. The relationship between erythemal UV and ozone, derived from spectral irradiance measurements. Geophys Res Lett. 1991;18:2269-2272. http://dx.doi.org/10.1029/91GL02786

[16] Efthathiou M., Varotsos C., Kondratyev K.Y. An estimation of the surface solar ultraviolet irradiance during an extreme total ozone minimum. Meteorol Atmos Phys. 1998;68:171-176. http://dx.doi.org/10.1007/BF01030208

[17] Global electricity demand up 3.1 per cent in 2017; China, India account for 70 per cent: IEA, March 26, 2018, ETEnergyWorld [Accessed on 6 June 2018] Available from World Wide Web: https://energy.economictimes.indiatimes.com/news/power/global-electricity-demand-up-3-1-per-cent-in-2017-china-india-account-for-70-per-cent-iea/63459450

[18] Watanabe, C., China, India Lead Global Solar Power Expansion, May 21, 2018, [Accessed on 6 June 2018] Available from World Wide Web: https://www.bloomberg.com/news/articles/2018-05-21/china-india-lead-global-solar-power-expansion-as-costs-fall

[19] Solar Electricity Handbook 2017 Edition, Boxwell, M. ISBN number 978-1-907670-67-1 [Accessed on 6 June 2018] Available from World Wide Web: http://solarelectricityhandbook.com/solar-irradiance.html

[20] GPS Coordinates [Accessed on 6 June 2018] Available from World Wide Web: https://gps-coordinates.org/chennai-latitude.php

[21] Zipp, K. How does a solar tracker work? April 4, 2013 [Accessed on 6 June 2018] Available from World Wide Web: https://www.solarpowerworldonline.com/2013/04/how-does-a-solar-tracker-work/

[22] Tharamuttam, J.K. and Ng, A.K. Design and Development of an Automatic Solar Tracker, Energy Procedia Vol. 143, December 2017, Pages 629-634

[23] Geography of Chennai, Wikipedia [Accessed on 6 June 2018] Available from World Wide Web: https://en.wikipedia.org/wiki/Geography_of_Chennai

[24] Geography of Beijing, Wikipedia [Accessed on 6 June 2018] Available from World Wide Web: https://en.wikipedia.org/wiki/Geography_of_Beijing

[25] System Advisor Model Version 2017.9.5 (SAM 2017.9.5) User Documentation. Weather File Formats. National Renewable Energy Laboratory. Golden, CO.

[26] Landau, C.R., Optimum Tilt of Solar Panels (2017) [Accessed on 6 June 2018] Available from World Wide Web: http://www.solarpaneltilt.com/

[27] Calculating Your Optimal Azimuth Angle, CivicSolar [Accessed on 6 June 2018] Available from
World Wide Web: https://www.civicsolar.com/support/installer/articles/calculating-your-optimal-azimuth-angle