HOMOTOPY CLASSES IN SOBOLEV SPACES
AND ENERGY MINIMIZING MAPS

BY BRIAN WHITE

Let M and N be compact Riemannian manifolds. The energy of a lipschitz map $f : M \to N$ is $\int_M |Df|^2$ (where $|Df(x)|^2 = \sum |\partial f/\partial x_i|^2$ if x_1, \ldots, x_m are normal coordinates for M at x). Mappings for which the first variation of energy vanishes are called harmonic. The identity map from M to M is always harmonic, but it may be homotopic to mappings of less energy. For instance, the identity map on S^3 is homotopic to mappings of arbitrarily small energy (namely, conformai maps that pull points from the North Pole toward the South Pole). That suggests the question: For which manifolds M is the identity map homotopic to maps of arbitrarily small energy? In this paper we give the simple answer: Those M such that $\pi_1(M)$ and $\pi_2(M)$ are both trivial. More generally, we consider energy functionals like $\Phi(f) = \int_M |Df|^p$ and ask:

(1) When is the infimum of $\Phi(f)$ in some homotopy class of mappings $f : M \to N$ nonzero?

(2) When is the infimum of $\Phi(g)$ (among maps satisfying some homotopy condition) actually attained?

To answer such questions, it is convenient to regard N as isometrically embedded in a euclidean space \mathbb{R}^ν and to work with the Sobolev norm

$$\|f\|_{1,p} = \left(\int_M |f|^p\right)^{1/p} + \left(\int_M |Df|^p\right)^{1/p}$$

(where $f : M \to \mathbb{R}^\nu$ has distribution derivative Df) and with the associated Sobolev spaces,

$$L^{1,p}(M, N) = \{f : M \to \mathbb{R}^\nu \mid f(x) \in N \text{ for a.e. } x, \text{ and } \|f\|_{1,p} < \infty\}$$

and

$$W^{1,p}(M, N) = \text{the closure of } \{\text{lipschitz maps } f : M \to N\} \text{ in } L^{1,p}(M, N).$$

Say that two continuous maps $f, g : M \to N$ are k-homotopic (or have the same k-homotopy type) if their restrictions to the k-dimensional skeleton of some triangulation of M are homotopic. We have the following theorem about $W^{1,p}(M, N)$ (where $[p]$ is the integer part of p).

THEOREM 1. Two lipschitz maps are in the same connected component of $W^{1,p}(M, N)$ if and only if they are $[p]$-homotopic. Consequently every map in $W^{1,p}(M, N)$ has a well-defined $[p]$-homotopy type. Furthermore, the set of
lipschitz maps homotopic to a given map \(f \) is dense (with respect to \(\| \cdot \|_{1,p} \)) in the connected component containing \(f \).

As a corollary we have the answer to (1).

Corollary. The infimum of \(\Phi(g) \) among lipschitz maps \(g: M \to N \) homotopic to a given lipschitz map \(f: M \to N \) is equal to the infimum of \(\Phi(g) \) among all lipschitz maps that are merely \([p]-\)homotopic to \(f \). In particular, the infimum is 0 if and only if the restriction of \(f \) to the \([p]-\)skeleton of \(M \) is homotopically trivial.

The space \(W^{1,p}(M,N) \) is not, however, suitable for studying existence questions such as (2) because it lacks nice compactness properties. In \(L^{1,p}(M,N) \), on the other hand, closed bounded sets are compact in the weak topology. We have

Theorem 2. Every \(f \in L^{1,p}(M,N) \) has a well-defined \([p - 1]-\)homotopy type. If \(f_i \in L^{1,p}(M,N) \) is a \(\| \cdot \|_{1,p} \)-bounded sequence of functions with a given \([p - 1]-\)homotopy type, and if \(f_i \) converges weakly to \(f \), then \(f \) has the same \([p - 1]-\)homotopy type.

This gives the answer to (2).

Corollary. The infimum of \(\Phi(g) \) among all maps \(g \in L^{1,p}(M,N) \) with a given \([p - 1]-\)homotopy type is attained.

In case \(p = 2 \), then \(\Phi(g) \) is the ordinary energy of \(g \), and the minimizing map \(g \) is locally energy minimizing in the sense studied by Schoen and Uhlenbeck [SU1,2]. By combining the above existence result with their regularity theorems, we obtain

Theorem 3. In every 1-homotopy class of mappings in \(L^{1,2}(M,N) \), there is a map \(g \) of least energy. Such a map is a smooth harmonic map except on a closed set \(K \subset M \) of Hausdorff dimension \(\leq \dim(M) - 3 \).

Furthermore, if \(N \) has negative sectional curvatures or if \(\dim M = 3 \) and \(N \) is any surface other than \(S^2 \) or \(\mathbb{R}P^2 \), then the map is completely regular. Since in these cases \(N \) has a contractible covering space, the homotopy type of \(g \) is determined by its 1-homotopy type. Consequently

Theorem 4. If (1) \(N \) has negative sectional curvatures, or
(2) \(\dim M = 3 \) and \(N \) is a surface other than \(S^2 \) or \(\mathbb{R}P^2 \), then every homotopy class of mappings from \(M \) to \(N \) contains a smooth map \(g \) of least energy.

The main tools in the proofs are: a deformation procedure analogous to the Federer-Fleming one [F, 4.2.9], versions of the Poincaré and Sobolev inequalities that hold for polyhedral complexes (such as the \(k \)-skeleton of \(M \)), and the homotopy extension theorem. All of the results generalize in the expected way to manifolds \(M \) with boundary.

Some special cases of these results were known previously: see [W2] and [W3] for details and references. Also, Theorem 4(1) was originally proved in a different way by Eells and Sampson [ES]. The analogous questions for
area instead of energy are studied in [SU, SY] (when dim M = 2) and [W1] (when dim M > 2).

In [EL, II.2.4-5] it is pointed out that Theorem 4(2) follows from the case p = 2 of Theorem 2. However, it seems that no proof (even in that case) has been published (though Schoen and Yau [SY] gave a proof when dim M = p).

I would like to thank R. Schoen for bringing these questions to my attention and for helpful conversations, and J. Eells for pointing out some errors.

REFERENCES

[EL] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conf. Ser. in Math., no. 50, Amer. Math. Soc., Providence, R. I., 1983.
[ES] J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.
[F] H. Federer, Geometric measure theory, Springer-Verlag, Berlin-Heidelberg-New York, 1969.
[SU] J. Sacks and K. Uhlenbeck, The existence of minimal 2-spheres, Ann. of Math. (2) 113 (1981), 1–24.
[SU1] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307–335.
[SU2] ______, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253–268.
[SY] R. Schoen and S. T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with non-negative scalar curvature, Ann. of Math. (2) 110 (1979), 127–142.
[W1] B. White, Mappings that minimize area in their homotopy classes, J. Differential Geom. (to appear).
[W2] ______, Infima of energy functionals in homotopy classes of mappings, preprint.
[W3] ______, Mappings that minimize energy functionals in their homotopy classes (in preparation).