The Novel Compounds with Biological Activity Derived from Soil Fungi in the Past Decade

Danyu Zhang¹, Shoujie Li¹, Mohan Fan², Changqi Zhao¹

¹Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China; ²Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China

Correspondence: Changqi Zhao, Tel +86-5880-5046, Email 04020@bnu.edu.cn

Abstract: The secondary metabolites isolated from soil fungi have received more and more attention, especially new compounds that exhibited good biological activities. In this review, a total of 546 new compounds are included in the relevant literature since 2011. The new compounds are isolated from soil fungi. We divided these compounds into seven categories, including alkaloids, terpenoids, steroids, ketones, phenylpropanoids, quinones, esters, lactones, etc. In addition, the biological activities and structure–activity relationships of these compounds have also been fully discussed. The activities of these compounds are roughly divided into eight categories, including anticancer activity, antimicrobial activity, anti-inflammatory activity, antioxidant activity, antiviral activity, antimalarial activity, immunosuppressive activity and other activities. Since natural products are an important source of new drugs, this review may have a positive guiding effect on drug screening.

Keywords: soil fungi, new compounds, chemical structure, biological activity

Introduction

During the period of 1981 to 2019, almost 60% of the clinically approved drugs were derived directly or indirectly from natural products.¹ Nature can breed many species, including prokaryotes and eukaryotes. Among them, fungi play an important role in the ecosystems of plants, animals and humans.² Soil is an excellent natural habitat for microorganisms and has a large number of microorganisms.³ Soil represents a very heterogeneous environment for its microbiota. Among the soil inhabitants, bacteria and fungi are important organisms as they are involved in key biogeochemical cycling processes.⁴ Terrestrial microorganisms have long been regarded as profile producers of specialised metabolites with unique structures or new modes of action, and particularly in recent years, the discovery of new active natural products from soil-derived microorganisms has increased rapidly, contributing significantly to drug development.⁵ Since Alexander Fleming discovered penicillin in 1928, fungi have become a considerable resource for novel compounds and new drugs.⁶ The secondary metabolites of fungi are a rich source of small molecule compound libraries, and some metabolites have significant biological activities,⁷ such as the antibacterial agent penicillins, immunosuppressive drug cyclosporin A, antifungal drug echinocandin B, and cholesterol-lowering agent lovastatin.⁸ Fungi are an ideal source for obtaining novel skeletons through large-scale culture: compared with plants, fungi can proliferate rapidly from small amounts of spores to a mass of branching hyphae, which are more environmentally friendly than collecting plant materials; compared with bacteria, fungi can be cultured in a solid medium for a longer time.⁹ Therefore, soil-derived fungi are receiving continuous attention as the source of biologically active secondary metabolites. Since 2011, a large number of new compounds have been obtained from soil-derived fungi, but few people have summarized and analyzed these compounds. This review summarizes the compounds derived from soil fungi from 2011 to 2022, and classifies their structures and activities. Importantly, we made statistical analysis of these new compounds, readers can clearly understand which genus of soil fungi has great potential to produce new compounds. In addition, through the analysis of activity data, readers can clearly understand which kind of structural compounds account for the majority of compounds with certain activities, which kind of structural compounds account for the majority of compounds with certain activity. By summarizing the structure and activity of the new compound, a total of 546 compounds were isolated...
from the metabolites of soil fungi during the decade of 2011–2022, mainly including alkaloids, terpenes, steroids, ketones, phenylpropanoids, quinones, esters and lactones, of which ketones (31.9%), terpenoids and steroids (22.2%) are the main structural types. Among the 546 compounds, 279 compounds (approximately 51%) have good biological activities, including anticancer, antimicrobial, anti-inflammatory, antioxidant, antiviral, antimalaria, and immunosuppressive activities. Among them, anticancer and antimicrobial activities accounted for the highest proportion (Figure 1).

In the author’s personal view, this review can provide a positive guidance for the screening of new drugs. This is also the significance of writing this review. In addition, we also analyzed the habitat sources of these soil fungi, which provides some directions for researchers who want to obtain new compounds from soil fungi from special habitats.

Structure Types of New Compounds Derived from Soil Fungi

Alkaloids

Indole alkaloids

A quinazolinone-containing indole derivative, named pseudofischerine 1 (Figure 2A), was isolated from the fungus *Neosartorya pseudofischeri* S.W. Peterson.\(^{10}\) Two new compounds, named peneciraistins E 2 and F 3 (Figure 2A), were isolated from saline soil-derived fungus *Penicillium raistrickii*. Compounds 2 and 3 are the first naturally occurring 3-indoleformic acid derivatives.\(^{11}\) A new indole alkaloid named exopisiod 4 (Figure 2A) was obtained from the fermentation products of *Exophiala pisciphila* PHF-9.\(^{12}\) Waikialoid A 5 (Figure 2A) was isolated from *Aspergillus* sp.\(^{13}\) Effusin A 6 and dihydrocryptoechinulin D 7 (Figure 2A), two new spiropolyketide-diketopiperazines were isolated from the fungus *Aspergillus effuses* H1-1. Effusin A 6 possessed an unprecedented 3′,3a′,5′,6′-tetrahydrospiro[piperazine-2,2′-pyran][2,3,4-de]chromene] skeleton.\(^{14}\) One new prenylated indole diketopiperazine alkaloid, named dihydroneochinulin B 8 (Figure 2A), was isolated from the mangrove rhizosphere soil-derived fungus, *Aspergillus effuses* effuses H1-1.\(^{15}\) A new azsonalenin analogue 9c (Figure 2A) was isolated from the culture of the soil fungus *Neosartorya fischeri* (KUFC 6344).\(^{16}\) Six new indole-diterpenoids 10–15 (Figure 2A and B) were isolated from the fermentation broth of an aciduric fungal strain *Penicillium camemberti* OUCMDZ-1492 grown at pH 5.0.\(^{17}\) Asperdiazapinones A-F 16–21 (Figure 2B) were isolated from the mycelial extract of the soil fungus *Aspergillus* sp. PSU-RSPG185.\(^{18}\) Mangrovamides A-C 22–24 (Figure 2B), featured a bicyclo[2.2.2] diazoctane core and possessed a novel γ-methyl proline and isoprene derived dimethyl γ-pyrone functionalities hitherto unknown among the family of paraherquamides, were isolated from the fungus *Penicillium* sp. SYFz-1.\(^{19}\) Rubrumazines A-C 25–27 (Figure 2B) were isolated and identified from a culture extract of *Eurotium rubrum* MA-150, a fungus obtained from mangrove-derived rhizospheric soil collected from the Andaman Sea.

![Figure 1](https://doi.org/10.2147/DDDT.S377921)

Figure 1 The percentage of various compounds.
coastline, Thailand.20 Three new indolyl diketopiperazine derivatives, penillines A 28 and B 30 (Figure 2B), isopenilline A 29 (Figure 2B), were isolated from the Antarctic soil-derived fungus \textit{Penicillium} sp. SCSIO 05705.21 Cultivation and fractionation of secondary metabolites from \textit{Aspergillus kumbius} revealed a unique chemotype comprising three new bis-indolyl benzenoids, kumbics A-C 31–33 (Figure 2B and C).22 Two new bisindolylbenzenoid alkaloids asterriquins E 34 and F 35 (Figure 2C) were isolated from the fermentation products of the fungus \textit{Aspergillus} sp. CBS-P-2.23 Cyclopiamines C 36 and D 37 (Figure 2C) were obtained from \textit{Penicillium} sp. CML 3020, a fungus sourced from an
Atlantic Forest soil sample. Tolypoclads A-J 38–47 (Figure 2C and D) have been isolated from a culture of a mine-soil-derived fungus, *Tolypocladium* sp. XL115. Two novel cytochalasan alkaloids, chaetomadrasins A 48 and B 49 (Figure 2D), were isolated from the solid-state fermented culture of desert soil-derived *Chaetomium madrasense* 375. Paraherquamide J 50 (Figure 2D) was isolated from the fermentation product of the fungus *Penicillium janthinellum* HK1-6. Two new compounds tryptoquivalines W 51 and X 52 (Figure 2D) were isolated from a Hawaiian soil fungal strain *Aspergillus terreus* FS107. Three new cytochalasins Z24, Z25, Z26 (53–55, resp.) (Figure 2D) were isolated from the fungus *Eutypella* sp. D-1 which was isolated from the soil of high latitude of the Arctic. Purification of an extract from the broth of the soil fungus *Aspergillus* sp. PSU-RSPG185 resulted in the isolation of one new cytochalasin,
aspergilluchalasin 56 (Figure 2D). Two new alkaloids, iizukines C 57 and D 58 (Figure 2D), were isolated from the culture of Aspergillus iizukae. Chemical screening of culture medium from the soil fungus Stachybotrys sp. resulted in the isolation of the three new phenylspirodrimanes MBJ-0030 59 (Figure 2D), MBJ-0031 60 and MBJ-0032 61 (Figure 2D). Pycnidioforones A-D 62–65 (Figure 2E) were isolated from cultures of the wetland-soil-derived fungus Pycnidiofora dispersa. Clonorosins A 66 and B 67 (Figure 2E), two novel indole alkaloids featuring unprecedented 6/5/6/6/5 and 6/5/5 cores, were isolated from the soil-derived fungus Clonostachys rosea YRS-06.
Other Alkaloids

Gymnastatins T-Y 68–73 (Figure 2E) and dankastatin D 74 (Figure 2E), were isolated from the soil fungus *Gymnascella dankaliensis* through fermentation on solid rice medium following addition of NaBr.35 Two new threonine-containing metabolites, N-[4-hydroxy-3-prenyl-benzoyl]-L-threonine 75 (Figure 2E) and N-[2,2-dimethyl-2H-chromene-6-carbonyl]-L-threonine 76 (Figure 2E), were isolated from the fermentation broth of the soil fungus *Curvularia inaequalis* strain HS-FG-257.36 A new isoquinolinone alkaloid, (5S)-3,4,5,7-tetramethyl-5,8-dihydroxy-6(5H)-isoquinolinone 77 (Figure 2E) was isolated from *Penicillium* sp. H9318.37 Compound 78 (Figure 2E), named 3,8-Diacetyl-4-(3-methoxy-4,5-methylenedioxy)benzyl-7-phenyl-6-oxa-3,8-diazabicyclo[3.2.1]octane, was isolated from the fungus *Neosartorya*...
pseudofischeri S.W. Peterson. In search for antibiotics from soil and endophytic fungi, the secondary metabolites of *Fusarium avenaceum* SF-1502. An alkaloid, fusaravenin 79 (Figure 2E), representing a new naphthoisoxazole formic acid connected with a morpholino carbon frame, the first example of a natural naphthoisoxazole type zwitter-ionic alkaloid, was characterized.\(^{38}\) (–) Benzomalvins E 80 (Figure 2F) was isolated from solid cultures of an interrhizospheric fungus *Penicillium* sp. SYPF 8411.\(^{39}\) A new tryptoquivaline analog, tryptoquivaline V 81 (Figure 2F) and a new brasiliamide analog, brasiliamide G 82 (Figure 2F), were isolated from the fungus *Neosartorya pseudofischeri*.\(^{40}\) A new compound, talarodone A 83 (Figure 2F) in co-culture of *Talaromyces pinophilus* and *Paraphaeosphaeria* sp. isolated from soil collected in Miyazaki Prefecture, Japan.\(^{41}\) One new pyrrolidine derivative, asperidine A 84 (Figure 2F), and two new piperidine derivatives, asperidines B 85 and C 86 (Figure 2F), were isolated from the soil-derived fungus *Aspergillus sclerotiorum* PSU-RSPG178. Compound 86 possessed an unprecedented 7-oxa-1-azabicyclo[3.2.1]octane
skeleton with four chiral centers. A new alkaloid, named iizukine E (Figure 2F) was isolated from the culture of *Aspergillus iizukae*. In order to investigate bioactive metabolites from aciduric fungi, *Aspergillus* sp. OUCMDZ-1914 was isolated from the mangrove soil in Wenchang Hainan, China. The strain was fermented under low pH and the products were extracted and the extract was purified by column chromatography over silica gel, Sephadex LH-20 and semi-preparative HPLC. The structures were identified by means of NMR, MS, UV, IR and X-ray single crystal diffraction. As a result, a new compound, methyl (2Z,3E,5E,7E,9E)-4,10-dimethyl-11-(2,5-dioxopyrrolidin-3-yl)-2-(2-hydroxyethylidene)-11-oxoundeca-3,5,7,9-tetraenoate (Figure 2F) was obtained. A new γ-lactam, virgaricin B (Figure 2F), was isolated from a fermentation broth of the fungus *Virgaria boninensis* FKI-4958. From this active
Paecilomyces lilacinus extract, a novel pyridone alkaloid, named Paecilomide 90 (Figure 2F), was isolated and its structure was elucidated by modern nuclear magnetic resonance techniques and mass spectrometric analyses. The soil-derived fungus Clonostachys rosea. Fermentation of the fungus on white beans instead of rice afforded a new γ-lactam 91 (Figure 2F), named Clonostalactam. A new nitrogen-containing compound, trichothioneic acid 92 (Figure 2F), was discovered from the metabolites of fungal strain Trichoderma virens FKI-7573.

Terpenoids and Steroids
Terpenoids
Sesquiterpene
Two new drimane sesquiterpenoids, fudecadiones A 93 and B 94 (Figure 3A), were isolated from the soil fungus Penicillium sp. BCC 17468. Two new trichothecenes, named 8α-hydroxyroridin H 95 and myrotheacin A 96 (Figure 3A), were isolated from the fermentation broth of a halotolerant fungus Myrothecium sp. GS-17, which was separated from the soil sample of a salina. Among them, compound 96 represents a class of rare trichothecenes with the linkage from C-13 to C-10, missing the epoxide group normally observed at C-12, C-13. Penicilinales A 97 and B 98 (Figure 3A) were characterized from Penicillium bilaiae MA-267, a fungus obtained from the rhizospheric soil of the mangrove plant Lumnitzera racemosa. Two eremophilane sesquiterpenes, penicilleremophilanes A 99 and B 100 (Figure 3A) were isolated from the soil fungus Penicillium coticola PSURSPG138. A new sesquiterpenoid derivative, named aspergiketone 101 (Figure 3A), was isolated from the coastal saline soil fungus Aspergillus fumigatus.

Ochraceopones A-E 102–106 (Figure 3A) were isolated from an Antarctic soil-derived fungus, Aspergillus ochraceopetaliformis SCSIO 05702. Ochraceopones A-D 107–110 (Figure 3A) were characterized from the green Chinese onion-derived fungus Penicillium copticola SCSIO 05702. Ochraceopones A-D 111–115 (Figure 3A) were discovered from the brown Chinese cowpea-derived fungus Eutypella sp. 1–15. A new acarone sesquiterpene, 3β-hydroxy-β-acoreno1 112 (Figure 3A), has been discovered from the brown Chinese onion-derived fungus Eupenicillium AF-04. and a sesquiterpenoid 113 (Figure 3A), cyclonerotriol B, was isolated from the extracts of the soil fungus F. avenaceum SF-1502. Three new sesquiterpenes Trichodermapenes A-C 113–115 (Figure 3A) were isolated from the soil-derived fungus Trichoderma reesei PSU-SPSF015. Chemical investigation of the Dicytosporium digitatum fungus resulted in the identification of three undescribed compounds 116–118 (Figure 3A), which were named Dictyosporin A 116, Dictyosporin B 117, Dictyosporin C 118 respectively. Two new sesquiterpenes, trichocitrinovirenes A 119 and B 120 (Figure 3A), were isolated from the soil-derived fungus Trichoderma citrinovireide PSU-SPSF346. Five new sesquiterpenoids (121–125) (Figure 3B), one new ophiobolin sesterterpenoid (126) (Figure 3B), and one new 3.5-dimethylorsellinic acid (DMOA)-based meroterpenoid (127) (Figure 3B), were isolated and characterized from fungus Aspergillus calidoustus, which was separated from the wetland soil collected at Dianchi Lake, Yunnan Province.

Diterpene
A new meroditerpene sartorypyrone A 128 (Figure 3B) was isolated from the culture of the soil fungus Neosartorya fischeri (KUFC 6344). Interestingly, sartorypyrone A 128, which possesses a monocyclic diterpene core, Libertellenones G 129 and H 130 (Figure 3B) were isolated from the fungus Eutypella sp. D-1 isolated from the soil of high latitude of Arctic. Compounds 131 and 132 (Figure 3B) were isolated from the fermentation broth and the mycelia of the soil fungus Penicillium sp. CM-7. Libertellenones O-S 133–137 (Figure 3B and C), eutypellenones A 138 and B 139, libertellenones M 140 and N 141 (Figure 3C), were isolated from the culture of Eutypella sp. D-1 obtained from high-latitude soil of the Arctic. Structurally, compounds 133–137 possess a cyclopropyl-fused pimarane diterpene moiety, whereas compounds 138 and 139 share an unusual cyclobutyl-fused pimarane diterpene skeleton. Five new diterpenoid glycosides, dongtingnoids A-E 142–146 (Figure 3C), two new diterpenoid aglycones, dongtingnoids F 147 and G 148 (Figure 3C), were isolated from the fungus Penicillium sp. DT10, which was derived from wetland soil from Dongting Lake. Tolypocladiins K 149 and L 150 (Figure 3C), were isolated from the solid fermentation culture of a mine soil-derived fungus Tolypocladium sp. XL115.
Other Terpenoids

One new monoterpene named Trichodermanene 151 (Figure 3C) was isolated from the soil-derived fungus *Trichoderma reesei* PSU-SPSF013. Three new meroterpenoid derivatives, 4,25-dehydrominiolutelide B 152 (Figure 3C), 4,25-dehydro-22-deoxyminiolutelide B 153 and isominiolutelide A 154 (Figure 3C), were isolated from the shaken culture of the fungus *Penicillium* sp. MA-37. Purpurogenolides A-E 155–159 (Figure 3C and D), were isolated from the solid substrate fermentation cultures of the fungus *Penicillium purpurogenum* MHZ 111. A search for cytotoxic agents from cultures of the *Penicillium* sp., isolated from the rhizosphere soil of *Penicillium* sp., led to the isolation of four new hybrid polyketide-terpenoid metabolites 160–163 (Figure 3D). Terretonin M 164 (Figure 3D), a new highly oxygenated tetracyclic meroterpenoid, was isolated from the thermophilic fungus *Aspergillus terreus* TM8. Nine novel polyketide...
terpenoid hybrids 165–173 (Figure 3D), characterized by a 1-alkylated-3,5-dihydroxyphenyl derivative coupled with a modified farnesyl pyrophosphate (FPP) unit, were isolated from a soil-derived fungus Bipolaris zeicola. Compound 173 represents the first example of meroterpenoid having an unusual thiazol-2(3H)-one moiety. Four dimeric acremines, bisacremines A-D 175–178 (Figure 3D), with a novel carbon skeleton and a new monomer, acremine T 174 (Figure 3D), were obtained from cultures of the soil-derived fungus Acremonium persicinum SC0105. Three dimeric acremines, bisacremines E-G 179–181 (Figure 3D and E), with an unusual carbon skeleton were isolated from cultures of the soil-derived fungus Acremonium persicinum SC0105. By employing a large-scale culture approach, five undescribed compounds, namely asperanstinoids A–E 182–186 (Figure 3E), were obtained from fungus Aspergillus calidoustus, which was isolated from the wetland soil collected at Dianchi Lake, Yunnan Province. Ten new meroterpenoids,
bipolaquinones A–J 187–196 (Figure 3E), were isolated and identified from the fermented rice cultures of a soil-derived fungus, Bipolaris zeicola. 72

Six new meroterpenoids, bipolarinoids A—F 197–202 (Figure 3E and F), were isolated from a soil-derived fungus Bipolaris zeicola. 73

Three nortriterpenoids aspergorakhins B–D 203–205 (Figure 3F) were obtained from Aspergillus gorakhpurensis F07ZB1707, which was fermented by a salt-containing medium. 6 Encindolenes D–H 206–210 (Figure 3F), were isolated from the fungus Penicillium sp. HFF16 from the rhizosphere soil of Cynanchum bungei Decne. 74
Steroids

Compound 211 (Figure 3F) was isolated from a soil fungus *Curvularia borreriae* (Pleosporaceae) strain HS-FG-237.75 One new steroid 212 (Figure 3F) was discovered in the extract of a soil-derived fungus *Aspergillus flavus* JDW-1.76 Aspergorakhin A 213 (Figure 3F) was obtained from the extract of soil-derived fungus *Aspergillus gorakhpurensis* F07ZB1707.6

Figure 3 Continued.
Ketones

Polyketides

A new polyketide compound 214 (Figure 4A) was characterized from the ethyl acetate extract of a soil-derived fungal strain, *Exophiala pisciphila* PHF-9.77 Pyrenocine J 215 and pyrenoacetic acid D 216 (Figure 4A) were obtained from the fermentation broth of *Curvularia affinis* strain HS-FG-196.78 Phytochemical investigation of the soil microfungus *Eupenicillium parvum* led to the isolation of two new compounds: a chromone derivative euparvione 217 and a new mycophenolic derivative euparvilactone 218 (Figure 4A).79 A new polyketide penicillither 219 (Figure 4A), was isolated from the soil fungus *Penicillium* sp. PSU-RSPG9.80 Tanzawaic acids I-L 220–223 (Figure 4A), were isolated from the culture filtrates of the fungal strain *Penicillium* sp. IBWF104-06 isolated from a soil sample.81 Four new pyrenoacetic acid derivatives pyrenoacetic acids E-H 227–230 (Figure 4A), three new secalonic acid analogues Blennolides H-J 224–226 (Figure 4A) were purified from an *Alternaria* sp. isolate obtained from a Hawaiian soil sample.82 Three new
polyketides, namely, asperochrins A-C 231–233 (Figure 4A), were isolated from *Aspergillus ochraceus* MA-15, a fungus obtained from the rhizospheric soil of marine mangrove plant *Bruguiera gymnorrhiza*. A new diphenyl derivative, named iizukine A 234 (Figure 4A) was isolated from coastal saline soil-derived fungus *Aspergillus iizukae*. Three new pyran rings containing polyketides, penicipyrans A-B 235–236 (Figure 4A), and penicipyran E 237 (Figure 4A) were isolated from the saline soil-derived *Penicillium raistrickii*. Cultivation of the mangrove rhizosphere soil-derived fungus *Penicillium janthinellum* HK1-6 with NaBr led to the isolation of two new tricyclic polyketides, penijanthinones A 238 (Figure 4A) and B 239 (Figure 4B). Two novel oxaphenalenone dimers, talaroketals A 240 and B 241 (Figure 4B), were isolated from the soil fungus *Talaromyces stipitatus*. Compound 240 features a rare benzannulated
5.6-spiroketal ring system within the dimeric bis(oxaphenalenone) skeleton, while the parent compound 241 harbors a fused bicyclic furano-pyran moiety. Aspergorakhins E–J, L (242–247, 248) (Figure 4B) were obtained from the extract of soil-derived fungus *Aspergillus gorakhpurensis* F07ZB1707. Six new polyketide-derived oxaphenalenone dimers, talaromycesone C 249 and macrosporuses A–E 250–254 (Figure 4B), were isolated from the mycelium of the fungus *Talaromyces macrosporus* KFU-1NK8. Four new oxaphenalenone dimers (bacillisporins I 255 and J 256 (Figure 4B), duclauxamides B 257 and C 258 (Figure 4C)) were isolated from the soil fungus *Talaromyces bacillisporus* BCC17645.
Duclauxamides B and C were the rare N-containing oxaphenalenone dimers isolated from this fungus. New polyketide-derived oligophenalenone dimers, 9a-epi-bacillisporin E 259 and bacillisporins F-H 260–263 (Figure 4C), were isolated from the fungus Talaromyces stipitatus. A new chromanone derivative Aspergone 264 (Figure 4C) was isolated from Aspergillus sp. SCSIO41002. A novel compound 7-methoxy-2,2-dimethyl-4-octa-4′,6′-dienyl-2H-naphthalene-1-one 265 (Figure 4C) was isolated from Penicillium sp. Aspereusins C-E 266–268 (Figure 4C) were obtained from the fermentation product of Aspergillus terreus YIM PH30711.

Flavones
One new xanthone, penicillixanthone 269 (Figure 4C), was isolated from the soil fungus Penicillium sp. PSU-RSPG9. Castochrin 270 (Figure 4C), a new dimer of sulochrin linked by thioether bonds and a new secalonic acid analogues (∓)-Blennolide G 271 (Figure 4C) were purified from an Alternaria sp. isolate obtained from a Hawaiian soil sample. One new xanthone, penicillone C 272 (Figure 4C), is isolated from the soil fungus Penicillium citrinum PSU-RSPG95.
Compound 273 (Figure 4C) was found from the fermentation product of *Penicillium* sp., HT-28 by various spectroscopic techniques. In order to investigate new bioactive compounds, a piece of fungi *Aspergillus aculeatus* was obtained from the Jinyun mountain soil in Chongqing, China. A new compound 2-(2',4',6'-Trihydroxyphenyl)-(7-hydroxy-5-methyl) chromone 274 (Figure 4C) was obtained. A new xanthone (penicillanthone, 275) (Figure 4C) was isolated from the soil-derived fungus *Penicillium aculeatum* PSU-RSPG105. Two new sterigmatocystin derivatives, oxisterigmatocystins E 276 and F 277 (Figure 4D), were isolated from the fungus *Botryotrichum piluliferum*. Penixanthones A 278 and B 279 (Figure 4D), were isolated from the ethyl acetate extract of a culture of the fungus *Penicillium* sp. SYFz-1. Five
new 280–284 (Figure 4D) xanthones were isolated from the coastal saline soil-derived \emph{Aspergillus iizukae} by application of an OSMAC (one strain many compounds) approach.100 Three new blennolide derivatives, blennolides L–N 285–287 (Figure 4D), were isolated from the soil-derived fungus \emph{Trichoderma asperellum} PSU-PSF14.101 A new metabolite, wentixanthone A 288 (Figure 4D), was obtained from the fungus \emph{Aspergillus wentii}, isolated from soil of the hypersaline lake El Hamra in Wadi El-Natrun, Egypt.102

Other ketones

Fusarpyrones A 289 and B 290 (Figure 4D), two new pyrone derivatives, were isolated from the soil fungus \emph{Fusarium solani} PSU-RSPG37.103 Two new benzopyranones, named coniochaetones E 291 and F 292 (Figure 4D), and one new
benzophenone, penicillanone 293 (Figure 4D), are isolated from the soil fungus *Penicillium citrinum* PSU-RPG95. 94 Five new secondary metabolites 294–297 (Figure 4D) and 298 (Figure 4E) of *Cephalotrichum microsporum* were isolated, which were described, respectively, as 8′-O-(3R-Hydroxy-butryl)-rasfonin 294, Cemironin A 295, Cemironin B 296, Cemironin C 297, 4-Methyl-8,10-dihydroxy-caprylic acid 298. 104 Two new meroditerpene pyrones, chevalone F 299 and 11-hydroxychevalone E 300 (Figure 4E), were isolated from the fungus *Neosartorya pseudofischeri*. 80 Peninaphones A-C 301–303 (Figure 4E), were isolated from mangrove rhizosphere soil-derived fungus *Penicillium* sp. HK1-22. 105 The fungus, *Aspergillus nidulans* BF0142, was isolated from hot spring-derived soil collected at Hell Valley in Noboribetsu, Hokkaido, Japan. A new furanone compound designated helvafuranone 304 (Figure 4E) was isolated from a culture broth of *A. nidulans*.
Enantiomers of a 2-benzofuran-1(3H)-one derivative [(−)-1 and (+)-1] described as (±)-europhenol A 305 (Figure 4E), was isolated and identified from the culture extract of Eurotium rubrum MA–150, a fungus obtained from the mangrove-derived rhizospheric soil. 107 Chromatographic separation of the broth extract of the soil-derived fungus Aspergillus sclerotiorum PSURSPG178 resulted in isolation of a furanone derivative, aspersclerotiorone E 306 (Figure 4E). 108 Three new secondary metabolites identified as harzianone 307 (Figure 4E), harzianol 308 (Figure 4E), harzianol acid 309 (Figure 4E) were isolated from a culture of Cephalotrichum microsporum. 109 Two new aromatic butenolides, gotjawaside 310 and gotjawalide 311 (Figure 4E), possessing the 4-benzyl-3-phenylbutenolide motif, were isolated from a soil ascomycete.
Ten novel furancarboxylic acids including four pairs of epimers (314, 315; 316, 317; 318, 319; 320, 321) (Figure 4E), were isolated from the fermentation of the soil-derived fungus *Penicillium* sp. sb62. Compounds 312–317 represent the first class of natural furancarboxylic acids featuring a thiophene moiety. We present a new furanone derivative from a white, woolly and fast-growing soil fungus, *Penicillium* sp. FG9RK, isolated from a soil sample collected from Agulu in Anambra state, Nigeria. The compound was identified as a new natural product, *R*-hexitronic acid 322 (Figure 4E). Three new compounds, named peneciraistins A-C 323–325 (Figure 4F), were isolated from saline soil-derived
fungus *Penicillium raistrickii*. Among them, compounds 323 and 324 are rare benzannulate 6,6-spiroketalts.\(^{11}\) Sporulosol 326 (Figure 4F), a new ketal, has been isolated from the liquid fermentation cultures of a wetland-soil-derived fungus, *Paraconiothyrium sporulosum*.\(^{113}\) Three pairs of new isopentenyl dibenzo[b,e]oxepin enantiomers, (+)-(5S)-arugosin K 327, (+)-(5R)-arugosin K 328, (+)-(5S)-arugosin L 329, (+)-(5R)-arugosin L 330, (+)-(5S)-arugosin M 331, (+)-(5R)-arugosin M 332, and a new isopentenyl dibenzo[b,e]oxepinone, arugosin N 333 (Figure 4F), were isolated from a wetland soil-derived fungus *Talaromyces flavus*.\(^{114}\) Two new indanones, asperunguisones A 334 and B 335 (Figure 4F), were isolated from the soil-derived fungus *Aspergillus unguis* PSU-RSPG204.\(^{115}\) A pair of enantiomeric cyclopentenones (336a new and 336b new natural) were isolated from *Aspergillus sclerotiorum*.\(^{116}\) Polluxochrin 337 and dioschrin 338 (Figure 4F), two new dimers of sulochrin linked by thioether bonds, and an additional new asteric acid analogue Dimethylamide asterrate 339 (Figure 4F), were purified from an *Alternaria* sp. isolate obtained from a Hawaiian soil sample.\(^{82}\) Two new cyclohexanone derivatives, nectriatones A 340 and B 341 (Figure 4F), and one new natural product, nectriatone C 342 (Figure 4F), were isolated from the culture of *Nectria* sp. B-13 obtained from high-latitude soil of the Arctic.\(^{117}\) Two new curvularin derivatives, curvulopyran 343 and *ent*-curvulone A 344 (Figure 4F), were isolated from a culture broth of the soil-derived fungus *Aspergillus polyporicola* PSU-RSPG187.\(^{118}\) 7-methoxy-2,3,6-trimethylchromone 345 was obtained from the ethyl acetate extract of a soil-derived fungal strain, *Exophiala piscipila* PHF-9.\(^{77}\) Cultivation of the mangrove rhizosphere soil-derived fungus *Penicillium janthinellum* HK1-6 with NaBr led to the isolation of two new brominated azaphilones, penicilones G 346 and H 347 (Figure 4F).\(^{86}\) As part of the ongoing search for antibiotics from fungi obtained from soil samples, the secondary metabolites of *Clonostachys rosea* YRS-06 were investigated. Through efficient bioassay-guided isolation, three new bisorpicillinoids
possessing open-ended cage structures, tetrahydrotrichodimer ether 348 (Figure 4G) and dihydrotrichodimer ether A 349 and B 350 (Figure 4G), were obtained. Compounds 348–350 are rare bisorbigclinoïds with a γ-pyrene moiety. Isochaetomium A 351 (Figure 4G), a new bis(naphthodihydropyan-4-one), was isolated from the solid-state fermented rice culture of Chaetomium microcephalum. Dong et al obtained a new compound 4,8-dihydroxy-5-(hydroxymethyl)-3-methylisochroman-1-one 356 (Figure 4F) was isolated from the fungus Aspergillus wentii. Four new azaphilones, penicilones A–D 353–356 (Figure 4G), were isolated from the mangrove rhizophore soil-derived fungus Penicillium janthinellum HK1–6. Six new azaphilone derivatives, talaraculones A–F 357–362 (Figure 4G), were obtained from the saline soil-derived fungus Talaromyces aculeatus. One new double bond isomer of asteltoxin, isoasteltoxin 363 (Figure 4G), was isolated from a soil fungus Aspergillus oryzae. Aspergillus ochraceocephaliformis SCSIO 05702. Pang et al found curvularone A 364 and 4-hydroxyradiantan 365 (Figure 4F) from Curvularia inaequalis strain HS-FG-257. A new compound 1-(2′,4′-dihydroxy-5′-methyl-3′-methylsulfanylmethylphenyl)-ethanone 366 (Figure 4G) was isolated from the ethyl acetate extract of the fermentation broth of the fungus Penicillium crustosum YN-HT-15 isolated from the red soil in Yunnan Province, China. A new compound (E)-4-hydroxy-3-[(4-hydroxy-3-methylbut-2-en-1-yl)oxy] benzoic acid 367 (Figure 4G) was obtained from Aspergillus aculeatus. Two new metabolites, talaflavuols B 368 and C 369 (Figure 4G) were isolated from the wetland soil-derived fungus Talaromyces flavus BYD07-13. Aspereusin B 370 (Figure 4G) was isolated from the culture of Aspergillus terreus YIM PH30711. Compounds Pyrenochaetayum 371 and compound Galinsogisoliyu 372 (Figure 4G and H) were successfully separated from the fermentation broth of Seltsamia galinsogisoli sp. nov. A novel compound 1-(4-hydroxy-2,6-dimethoxy-3,5-dimethylphenyl)-2-methyl-1-butanone 373 (Figure 4H) was obtained from the soil-derived fungus Aspergillus sp. isolated from the rhizospheric soil of Phoenix dactylifera (Date palm tree). Chemical investigation of the Dictyosporium digitatum fungus resulted in the identification of nine undescribed compounds 374–382 (Figure 4H): Dictyosporin D 374, Dictyophthalide A 375, Dictyofuran A 376, Dictyofuran B 377, Dictyofuran C 378, Dictyofuran D 379, Dictyosporone A 380, Xylariolide E 381, Xylariolide F 382. Cyclohexanone derivative aspergar-akhin K 383 (Figure 4H) was obtained from Aspergillus gorakhpurensis F07ZB1707. Yanchao Xu et al fermented Aspergillus fumigatus GZWMIZ-152 in a rice solid medium and isolated four new sulfur-containing benzophenones, sulfuraperines A–D 384–387 (Figure 4H).

Phenylpropanoids

Eight new polyphenols namely spiromastols A–F 388–393 and spiromastols J–K 394–395 (Figure 5A) were obtained from the fermentation broth of Sporormiastix sp. MCCC 3A00308. Three new tetratol analogs, myrochromanols A–C 396–398 (Figure 5A), were isolated from a soil fungus Myrothecium verrucaria HL-P-1. Peneciraistin D 399 (Figure 5A), which belong isocoumarin, was isolated from saline soil-derived fungus Penicillium raistrickii. Three new isocoumarins, A 400 and B 401 (Figure 5A), were isolated from the ethyl acetate extract of the wetland soil-derived fungus Talaromyces flavus BYD07-13. Compounds 402–404 (Figure 5A) were isolated from the fermentation broth of a deep sea-derived fungus Sporormiastix sp. MCCC 3A00308. Eight new isocoumarin glycosides 405–412 (Figure 5A) were obtained from the solid culture of the wetland soil-derived fungus Metarhizium anisopliae (No. DTH12-10). Two new isocoumarin derivatives, talaisocoumarins A 413 and B 414 (Figure 5A), and one new related metabolite, talaflavuel A 415 (Figure 5A) were isolated from the wetland soil-derived fungus Talaromyces flavus BYD07-13. Penicipyrans C 416 and D 417 (Figure 5A), were isolated from Penicillium raistrickii. In research on novel secondary metabolites from microorganisms, two new 418–419 (Figure 5B) were derived from soil fungus Hypoxylon sp. The two new compounds are assigned as (3R, 4R)-4,8-Dihydroxy-5-(hydroxymethyl)-3-methylisochroman-1-one 418 and (3R, 4S)-4,8-dihydroxy-5-(hydroxymethyl)-3-methylisochroman-1-one 419. Two new epimeric dihalogenated diaporthins, (9R*)-8-methyl-9,11-dichlorodiaporthin 420 and (9S*)-8-methyl-9,11-dichlorodiaporthin 421 (Figure 5B), have been isolated from the soil fungus Hamigera fusca NRRL 35721. Chemical characterization of ethyl acetate extract of Exophiala sp. has afforded the isolation of three compounds including a new isocoumarin named exophiafin 422 (Figure 5B).

Quinones

Two new benzoquinones, citriquinones A 423 and B 424 (Figure 6), were isolated from Penicillium citrinum. Penicillicquinone 425 (Figure 6) was isolated from the fermentation product of Penicillium sp. PSU-RSPG9. Tansakul et al investigated secondary metabolites produced by Penicillium herquei PSU-RSPG93 isolated from soil.
Figure 5 Phenylpropanoids 388–422. (A) Phenylpropanoids 388–417. (B) Phenylpropanoids 418–422.
collected from the Plant Genetic Conservation Project under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sirindhorn at Ratchaprapa Dam in Suratthani province, Thailand. They obtained one new phenalenone derivative, peniciherqueinone 426 (Figure 6). They obtained two new phenalenones, aspergillussanones A 427 and B 428 (Figure 6) were obtained from the mycelial extract of the soil fungus *Aspergillus* sp. PSU-RSPG185. A new naphthoquinone, solaninaphthoquione 429 (Figure 6), was isolated from the soil fungus *Fusarium solani* PSU-RSPG227. Cultivation and fractionation of secondary metabolites from *Aspergillus kumbius* revealed a new bis-indolyl benzoquinone, kumbicin D 430 (Figure 6). Membrane active compound PA3-d10 431 (Figure 6) produced by *Aspergillus flavus* strain demonstrated antimicrobial activities against bacteria and yeast strains. The diastereomeric mixtures of the bianthrones wentibianthrone A (432a, b) (Figure 6) and wentibianthrone B (433a, b) (Figure 6), as well as (10R,10'S)-...
wentibianthrone C (434a) and (10R,10'R)-wentibianthrone C (434b) (Figure 6) were obtained from the fungus *Aspergillus wentii*. The study of a Hawaiian volcanic soil-associated fungal strain *Penicillium herquei* FT729 led to the isolation of one unprecedented benzoquinone-chromanone, herqueilenone A (435) (Figure 6) Herqueilenone A (435) contains a chroman-4-one core flanked by a tetrahydrofuran and a benzoquinone with an acetophenone moiety. Three unreported phenalenone derivatives 436–438 (Figure 6), named ent-12-methoxyisohercequinone (436) (Figure 6), (−)-scleroamide (437) (Figure 6), and (−)-scleroamide (438) (Figure 6) were isolated from the Hawaiian soil fungus *Penicillium herquei* FT729, collected on the Big Island, Hawaii.

Esters and Lactones

Esters

A new ester of 2.4-dihydroxy-6-methylbenzoic acid (439) (Figure 7A) named 3-Hydroxy-5-methylphenyl 2.4-dihydroxy-6-methylbenzoate was isolated from the fungus *Neosartorya pseudofischeri* S.W. Peterson. Six new polyesters, talapolyesters A-F (440–445) (Figure 7A), were isolated from the wetland soil-derived fungus *Talaromyces flavus* BYD07-13. All the polyesters are composed of (R)-2,4-dihydroxy-6-(2-hydroxypropyl)benzoic acid and (R)-3-hydroxybutyric acid/S)-3,4-dihydroxybutyric acid residues. Liu et al. obtained a new compound R-3-(3′-acetyl-2′,6′-dihydroxy-5′-methylphenyl)-2-methylpropionic acid methyl ester (446) (Figure 7A) isolated from the ethyl acetate extract of the fermentation broth of the fungus *Penicillium crustosum* YN-HT-15. Compound 4-(4-hydroxyphenethoxy)-4-oxobutanoic acid (447) (Figure 7A), was isolated from the soil fungus *Fusarium solani* PSU-RSPG227. Penicillithiophenols A (448) and B (449) (Figure 7A) were isolated from *Penicillium coticola* PSURSPG138.

Lactones

In search for anti-influenza virus inhibitors from marine-derived fungi, a strain identified as *Aspergillus terreus* Gwq-48, was isolated from a mangrove rhizosphere soil sample collected in the coast of Fujian province. The study of its chemical components led to the isolation of one new aspulvinone, isoaspulvinone E (450) (Figure 7A). One new γ-butyro lactone, aspergillulactone (451) (Figure 7A) was isolated from the mycelial extract of the soil fungus *Aspergillus* sp. PSU-RSPG185. Two new hydroxycitric acid lactone derivatives named cinatrins D (452) and E (453) (Figure 7A), were obtained from the fungus *Virgaria boninensis* FKI-4958. One phthalide (asperlide, 454) and one dopsidone (asperdione, 455) (Figure 7B) were obtained from the fungus *Aspergillus unguis* Liu et al. obtained a new compound 4-(4-hydroxyphenethoxy)-4-oxobutanoic acid (456–460) (Figure 7B) and penicimenolide F (461) (Figure 7B) were isolated from the culture broth of a strain of *Penicillium* sp. (NO. SYP-F-7919). Chromatographic separation of the broth extract of the soil-derived fungus *Aspergillus sclerotiorum* PSURSPG178 resulted in isolation of four γ-butenolide-furanone dimers, aspersclerotiorones A-D (462–465) (Figure 7B), and two γ-butenolide derivatives, aspersclerotiorones F (466) and G (467) (Figure 7B). Zhou et al. isolated and identified a new sesquiterpene lactone named *eut*-Guaiane sesquiterpene (468) (Figure 7B) from the fungus *Eutypella* sp. derived from the soil of high latitude of Arctic. New natural products, designated pochoniolides A and B (469–470) (Figure 7B), were isolated from the cultured broth of fungal strain FKI-7537 using a physicochemical screening methodology. Three new γ-hydroxy butenolides named aspersclerolides A-C (473–474) (Figure 7B), a pair of new enantiomeric spiro-butenolides named (+)-aspersclerolide D (474) (Figure 7B), were isolated from *Aspergillus sclerotiorum*. Investigation of the soil-derived fungus *Lasiodiplodia theobromae* NSTRU-PN1.4 resulted in the isolation of two new dimeric c-lactones botryosphaerilactones D (475) and E (476) (Figure 7B). One new metabolite, theralanbutanolide A (477) (Figure 7C), was isolated from the YGP culture broth of *Thermomyces lanuginosus*. During screening for microbial regulators of bone metabolism, a new compound, 6-ethoxy-5,6-dihydopenilic acid (477) (Figure 7B), was isolated from the culture broth of the soil-derived fungus *Penicillium* sp. BF-0343. Twelve new resorcylic acid lactones (RALs) including three new 16-membered RALs (479–481) (Figure 7C), eight new 14-membered RALs (482–488) (Figure 7C), and one new 12-membered RAL (490) (Figure 7C), were identified from the fermentation of the soil-derived fungus *Ilyonectria* sp. **s.b65**. These new compounds are assigned, respectively, as Ilyoresorcy A (479), Atrop-ilyoresorcy A (480) Ilyoresorcy B (481), Ilyoresorcy C (482), Ilyoresorcy D (483), Ilyoresorcy E (484), Ilyoresorcy F (485), Ilyoresorcy G (486), Ilyoresorcy H (487), Ilyoresorcy I (488), Ilyoresorcy J (489) and Ilyoresorcy K (490).
Other Compounds

Prenylterphenyllins A-C 491–493 (Figure 8A) and prenylcandidusins A-C 495–497 (Figure 8A), and one new polyhydroxy-pterphenyl named 4ď”-dehydro-3-hydroxyterphenyllin 494 (Figure 8A), were obtained from Aspergillus taichungensis ZHN-7-07, a root soil fungus isolated from the mangrove plant Acrostichum aureum. A new benzoic acid derivative 4-hydroxy-3-(3-methoxy-3-methylbutyl)-benzoic acid 498 (Figure 8A) was isolated from Curvularia inaequalis strain HS-FG-257. Eight new 2-pentenedioic acid derivatives 499–506 (Figure 8A) were isolated from a soil-
derived fungus *Gongronella butleri* collected in Cameroon. The isolated compounds feature a 2-pentenedioic acid core structure substituted by a 2-alkyl chain that has even number of carbon atoms (C₆, C₈, and C₁₀) with or without an oxygenated substituent.¹⁵⁴ Peniciketals A–C 507–509 (Figure 8A), three new spiroketals with a benzo-fused 2,8-dioxabicyclo[3.3.1]nonane moiety, were isolated from the saline soil-derived fungus *Penicillium raistrichi*.¹⁵⁵ Masaphy et al report on the purification and characterization of a novel antifungal echinocandin – MIG0310 510 (Figure 8A) from *Fusarium brachygibbosum* strain MS-R1 and the elucidation of its molecular structure.¹⁵⁶ Two new cyclic carbonate derivatives, aspergillusols A 511 and B 512 (Figure 8A) which contain an unusual cyclic carbonate functionality, and one new eutypinic acid derivative, aspergillus acid 513 (Figure 8A) were found from *Aspergillus* sp.
The soil fungus *Gymnascella dankaliensis* was collected in the vicinity of the Giza pyramids, Egypt. When grown on solid rice medium the fungus yielded four new compounds including 11′-carboxygymnastatin N, gymnastatin S, dankamide, and aranorosin-2-methylether (Figure 8B). A new diphenyl derivative, named iizukine B (Figure 8B), was isolated from coastal saline soil-derived fungus *Aspergillus iizukae*. A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one was isolated from an ethyl acetate extract of the borne fungi *Sclerotium rolfsii*. The new compound is also known as Sclerotium. A new lovastatin analogue versicorin (Figure 8B), was isolated from mycelial solid cultures of *Aspergillus versicolor* SC0156. Three new lovastatin analogues were isolated from the soil-derived fungus *Aspergillus sclerotiorum* PSU-RSPG178. Four previously undescribed metabolites including two lovastatin analogues, asterreusin A and one unnamed compound, additionally aspereusin A (Figure 8B) were isolated from the culture of *Aspergillus terreus* YIM PH30711. Three new lovastatin analogues (Figure 8B) were isolated from the soil-derived fungus *Aspergillus sclerotiorum* PSU-RSPG178. Four previously undescribed metabolites including two lovastatin analogues, asterreusin A and one unnamed compound, additionally aspereusin A (Figure 8B) were isolated from the culture of *Aspergillus terreus* YIM PH30711. Three new lovastatin analogues (Figure 8B) were isolated from the soil-derived fungus *Aspergillus sclerotiorum* PSU-RSPG178. Three new diphenyl ethers, aspergillusethers B-D (Figure 8B), were isolated from the soil-derived fungus *Aspergillus unguis* PSU-RSPG204. Two new aspinotriol derivatives determined as melleusin A, B were isolated from a soil-borne fungus *Aspergillus melleus*. A new diphenyl ether 3-methylpentyl-2, 4-dichloroasterrate (Figure 8C) was isolated from the metabolites of a wetland fungus *Aspergillus flavipes*. Two new unsaturated fatty acids, 6R,8R-dihydroxy-9Z,12Z-octadecadienoic acid and methyl-6R,8R-dihydroxy-9Z,12Z-octadecadienoate were isolated from the mangrove rhizosphere soil-derived fungus *Penicillium javanicum* HK1-22. A new azo compound, penoxalin (Figure 8C), a new isochromane carboxylic acid, penisochroman B (Figure 8C), two new natural products,
penisochroman A 540 (Figure 8C) and 2,6-dihydroxy-4-[(2R)-2-hydroxyheptyl] benzoic acid 542 (Figure 8C), were isolated from wetland soil fungus *Penicillium oxalicum* GY1. Fan et al report a new pentacyclic decalinoylspirotetramic acid derivative, pyrenosetin D 543 (Figure 8C), from an endophytic strain *Pyrenochaetopsis* FVE-087. One new benzofuranoid 544 (Figure 8C), was isolated and characterized from fungus *Aspergillus calidoustus*. Two new benzothiazoles (545 and 546) (Figure 8C) were isolated from the cave soil-derived fungus *Aspergillus fumigatus* GZWMJZ-152.
Biological Activity of New Compounds Derived from Soil Fungi Anticancer Activities

The cytotoxicity of compounds 491, 494 and 496 was evaluated on HL-60, A-549, and P-388 cell lines using the SRB and MTT methods with adriamycin (ADM) as positive control. Compound 491 exhibited moderate activities against all three cell lines (IC$_{50}$ 1.53–10.89 μM), whereas compounds 494 and 496 displayed moderate activities only against the P-388 cell line (IC$_{50}$ of 2.70 and 1.57 μM, respectively). Compound 93 exhibited anticancer activity against MCF-7.
Compound 214 exhibited moderate growth inhibition against A-549, Hela, PANC-28 and BEL-7402 cell lines with the IC\(_{50}\) values of 16.4, 23.4, 20.3, and 30.1 \(\mu\)g/mL, respectively. 10-hydroxycamptothecin was used as the positive control with the IC\(_{50}\) values of 0.5, 5.9, 10.6, and 4.6 \(\mu\)g/mL, respectively.\(^7\) The cytotoxic effects of compound peneciraistin C 325 were preliminarily evaluated against human lung adenocarcinoma (A549) and human breast adenocarcinoma (MCF-7) cell lines by the MTT method. Compound 325 showed comparatively significant cytotoxicities against A549 and MCF-7-60 cell lines with IC\(_{50}\) values of 3.2 and 7.6 \(\mu\)M, respectively.\(^11\) Pan et al report the anticancer mechanisms of Pe-C in a variety of lung cancer cells. The results showed that Pe-C induced caspase-independent autophagic cell death and elevated mitochondrial-derived reactive oxygen species levels, which indicated that Pe-C could be a potential drug candidate for therapy of lung cancer.\(^166\) Compound pyrenocine J 215 showed cytotoxic activity against the human hepatic cancer cell line HepG2 with an IC\(_{50}\) value of 28.5 \(\mu\)g/mL.\(^78\) Compound 4 showed cytotoxic activity against A-549, Hela, PANC-28 and BEL-7402 cell lines with IC\(_{50}\) values of 76.3, 77.2, 107.5 and 89.5 \(\mu\)mol·L\(^{-1}\), respectively.\(^12\) Compound 7 showed remarkable activities with IC\(_{50}\) values of 1.83 and 4.80 \(\mu\)M on P388 and HL-60 cells, respectively. The target of racemic 7 was also investigated and the (12R,28S,31S)-7 enantiomer showed selectivity against topoisomerase I.\(^14\) Compound 8 showed weak activity with IC\(_{50}\) values of 55.1 and 30.5 \(\mu\)M on BEL-7402 and A-549 cells, respectively.\(^15\) Compound 364

Figure 8 Other compounds 491–546. (A) Other compounds 491–513. (B) Other compounds 514–534. (C) Other compounds 535–546.
exhibited cytotoxic activity against the ACHN and HepG2 cell lines with IC\textsubscript{50} values of 4.78 and 13.11 μg mL -1, respectively. The values of 365 were 54.18 and 52.07 μg mL -1.123 Sartorypyrone A 128 was evaluated for its capacity to inhibit the in vitro growth of MCF-7 (breast adenocarcinoma), NCI-H460 (nonsmall cell lung cancer) and A375-C5 (melanoma) cell lines, using the protein binding dye SRB method. Interestingly, sartorypyrone A 128, which possesses a monocyclic diterpene core, was more selective, exhibiting similar inhibitory activity to sartorypyrone B against A375-C5 (GI\textsubscript{50}=21.5±1.9 μM), but less active against MCF-7 (GI\textsubscript{50}=46.3±7.6 μM) and NCI-H460 (GI\textsubscript{50}=37.3±4.0 μM) cell lines.16 Citriquinone A 423 was assayed for cell migration inhibitory activity using human cancer cell line HEp 2. After growing cells in vitro in 96 well plates a scratch was made on wells with cells at the confluence stage. Citriquinone A 423 at a concentration of 0.5 mg/mL (dissolved in growth medium containing 1% DMSO) was introduced into wells and incubated for 24 h. Development of new cells to reduce the width of the scratch from its initial stage was determined qualitatively by comparing the width of the scratch after incubation in each well in the presence of test sample and control (1% DMSO in the growth medium) using microscopic images. It was revealed that 423 had a moderate inhibitory effect on the growth/migration of the HEp2 cells when compared with the control.136 Compounds 444 and 445 were evaluated by MTT method for their cytotoxic activities against five tumor cell lines, HL-60, SMMC-7721, A-549, MCF-7, and SW480, with cisplatin and paclitaxel as the positive controls. They exhibited cytotoxicity against the tested tumor cell lines. The IC\textsubscript{50} values of compound 444 are 14.81, 18.39, 17.66, 14.59 and 26.62 μM respectively. The IC\textsubscript{50} values of compound 445 are 13.62, 15.74, 11.09, 15.96 and 15.54 μM, respectively.142 Peniciketals A-C 507–509 showed selective activities against HL-60 cells with IC\textsubscript{50} values of 3.2, 6.7, and 4.5 μM, respectively (doxorubicin as a positive control (IC\textsubscript{50}s: 0.31, 0.085, and 0.23 μM, respectively)), while were not active on other cells (IC\textsubscript{50} > 10 μM).155 Libertellenone H 130 showed cytotoxicity against seven human tumor cell lines: U251, SW-1990, SG7901, MCF-7, Huh-7, Hela and H460 cell lines at a range between 3.31 and 44.1 μM.59 Compound cytochalasin Z\textsubscript{24} 53 exhibited moderate cytotoxicity toward human breast cancer MCF-7 cell line with IC\textsubscript{50} of 9.33 μM.29 Compound aspergillassanone A 427 exhibited weak activity toward KB and Vero cells with IC\textsubscript{50} values of 48.4 and 34.2 μM, respectively.30 Compounds Polluxochrin 337, dioschirin 338 and Castochrin 270 showed weak mammalian cell cytotoxicity effects against pancreatic cancer cells (MIA PaCa-2) with IC\textsubscript{50} values of 50.8, 30.3, and 29.3 μM, respectively.82 Bisacremines A-B 175–176 exhibited weak cytotoxicity against HeLa cells with IC\textsubscript{50} values of 10.7±1.0 and 9.3±1.7 μM respectively. And 176 also showed modest activity against A549 and HepG2 cells with IC\textsubscript{50} values of 41.3±4.1 and 31.1±2.1 μM respectively.5 Compound aranorosin-2-methylether 517 showed potent cytotoxicity against the murine lymphoma cell line L5178Y with IC\textsubscript{50} values of 0.44 μM.157 Compound solaninaphthoquinone 429 showed significant cytotoxic activity against breast cancer (MCF-7) and mild cytotoxic activity against oral human carcinoma (KB) cells (IC\textsubscript{50} values of 21.3 and 22.6 μM, respectively) compared to standard compound.138 Iizukines A 234 and B 518 were tested their cytotoxicities against HL-60 (human promyelocytic leukemia), BEL-7402 (human hepatoma) and A-549 (human lung carcinoma) were tested by the MTT assay in vitro with 5-fluorouracil (5-FU) as positive control. The two compounds showed weak cytotoxic activities. IC\textsubscript{50} values of compound 234 were 26.5, 32.7 and 18.2 μM respectively, and IC\textsubscript{50} values of compound 518 were 48.7, 56.6 and 32.3 μM.84 Penicillerephospholane A 99 was obtained from Penicillium coticola PSURSPG138. It showed much weaker cytotoxic activity.51 Cytotoxicity studies of the compound 265 on cancer cell lines showed a valuable cytotoxic potential against all tested human cancer cell lines. Further, the compound induces apoptosis in lung cancer (A549) cells revealed by increase the distribution of nuclear DNA in Sub-G1 phase as observed in flow cytometry.92 For compound 519, in the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose-dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound 519 also showed better results as compared with the standard.158 Kumbicin C 33 was found to inhibit the growth of mouse myeloma cells (IC\textsubscript{50} 0.74 μg mL -1).32 Penicimenolides B-D 457–459 exhibited potent cytotoxicity against the U937 and MCF-7 tumour cell lines and showed moderate cytotoxic activity against the SH-SY5Y and SW480 tumour cell lines. There is experimental evidence that compound 457 may act as a potential MEK/ERK inhibitor, it is still need further study in the future.145 Penicipyran E 237 showed cytotoxicity effects on HL-60 and K562 cell lines with IC\textsubscript{50} values of 4.4 and 8.5 μM, respectively.85 Compounds 68–74 showed potent to moderate cytotoxicity against the L5178Y mouse lymphoma cell line with IC\textsubscript{50} values ranging from 0.99 to 14.1 μM.35 Asterrinquinol E 34 was bioassayed.
for its inhibitory effects on NO production induced by LPS in microglia cells with N6-monomethyl-L-arginine (L-NAME) as a positive control (IC\textsubscript{50} 4.8 μM). The results showed that compound 34 showed moderate activity with IC\textsubscript{50} 49.7 μM. Cell viability was determined at the same time by the MTT method and only compound 1 exhibited cytotoxicity with an IC\textsubscript{50} 9.7 μM.23 Bacillisorpin H 263 exhibited modest cytotoxicity against HeLa cells.90 Compound Aspergiketone 101 was cytotoxic towards HL-60 and A549 cell lines with IC\textsubscript{50} values of 12.4 and 22.1 μM, respectively.52 Oxisterigmatocystins E and F (276 and 277, respectively) exhibited cytotoxicity against KB, MCF-7, and NCI-H187 cell lines (IC\textsubscript{50} = 7.7–78.6 μM). However, compounds 276–277 showed cytotoxic effects against the Vero cell line (IC\textsubscript{50} = 4.3–9.7 μM).99 Compound 107 displayed growth inhibitory effect against human Mantle cell lymphoma JEKO-1 and human hepatoma carcinoma HepG2 with IC\textsubscript{50} values of 8.4 and 28.5 μM, respectively.54 Compound penixanthone A 278 had weak cytotoxicity against the tested cancer cell lines, H1975, MCF-7, K562, HL7702 at concentration of 30 μM.99 Compound 211 exhibited poor cytotoxicity toward HCT-116 cells (20.5% inhibition at the dose of 100 μM, IC\textsubscript{50} >100 μM), while the IC\textsubscript{50} value of the positive control (doxorubicin) was 0.365±0.023 μM.75 Compound 468 exhibited in vitro a little cytotoxicity towards SGC7901 cell line with IC\textsubscript{50} value of 39.8 μM.146 Compound 160 showed potent cytotoxic capability against HL-60, THP-1 and Caco 2 cell with IC\textsubscript{50} values of 3.4 μM, 4.3 μM, 10.5 μM, and compound 161 showed significant inhibiting activities against HL-60 cell line and THP-1 cell line (IC\textsubscript{50} =7.9 μM, 11.3 μM, respectively), using 5-fluorouracil as the positive drug with IC\textsubscript{50} values of 6.4 μM, 4.4 μM, 56.6 μM for HL-60, THP-1 and Caco 2 cells, respectively.67 The cytotoxic effects of 3-methylpentyl-2, 4-dichlorosterrate 536 was evaluated using the MTT method on HL-60, HCT116, PC-3, and HT-29 cancer cell lines. The results showed that its IC\textsubscript{50} values were larger than 5-fluorouracil, smaller than 80 μM.162 Libertellenones O-S 133–137 and eutypellenones A and B (138 and 139) exhibited cytotoxicities against HeLa, MCF-7, HCT-116, PAN-C1, and SW1990 cells, with IC\textsubscript{50} values in the range of 0.8 to 29.4 μM. Compounds 138 and 139 could dose-dependently inhibit the activity of NF-κB and exhibited significantly inhibitory effects on nitric oxide production induced by lipopolysaccharide.61 (9R(*))-8-methyl-9,11-dichlorodiaporthin 420 and (9S(*))-8-methyl-9,11-dichlorodiaporthin 421, were evaluated the cytotoxicity against seven cancer cell lines: human-derived cell lines CCD25sk (human fibroblasts), SHSY5 (neuroblastoma), MiaPaca-2 (epithelial pancreas carcinoma), MCF-7 (breast adenocarcinoma), HepG2 (hepatocellular carcinoma), A2058 (epithelial melanoma), and A549 (lung carcinoma), exhibiting moderate activity against two of them. While both dichlorinated compounds 420–421 were active against neuroblastoma (SHSY5y cells: 420 CC\textsubscript{50} = 39.2 μM, and 421 CC\textsubscript{50} = 36.2 μM). These results correlate well with the cytotoxicity against HeLa cells recently reported for dichlorodiaporthin (CC\textsubscript{50} = 9 μg/mL = 28 μM), a compound considered as a mycotoxin.134 Sporulosol 326 showed modest cytotoxicity toward the human tumor cell line T24, with an IC\textsubscript{50} value of 18.2 μM.113 Libertellenone M 140 and libertellenone N 141 were tested for cytotoxic activities against HeLa, MCF-7, HCT-116, K562, and SW1990 cell lines. Compound 141 displayed potent cytotoxicity against K562 cells with IC\textsubscript{50} value of 7.67 μM and moderate cytotoxicity against HeLa, MCF-7, and SW1990 cell lines with IC\textsubscript{50} values of 30.06, 18.52, and 24.36 μM, respectively, and compound 140 showed weaker cytotoxic activity against these five tumor cell lines with IC\textsubscript{50} values of 34.78, 32.20, 26.67, 40.85 and 24.36 μM, respectively.62 Compound izukine C 57 exhibited cytotoxic effect towards HL-60 and A549 cell lines with IC\textsubscript{50} values of 3.8 and 7.2 μM, respectively.31 Compounds 471 and 473 showed selective cytotoxicity against HL60 (IC\textsubscript{50}: 6.5 and 12.1 μM, respectively), A549 (IC\textsubscript{50}: 8.9 and 16.7 μM, respectively), and HL-7702 (IC\textsubscript{50}: 17.6 and 22.8 μM, respectively) cell lines.116 The cytotoxicities of Compound 212 was evaluated against A-549, HeLa, HCT-116, MGC-803, and HO-8910 cell lines. Compound 212 exhibited various activities with the IC\textsubscript{50} values 5.0 to 22.4 μM, respectively.76 Tolypocladin A 38 displayed weak cytotoxicity against A549, Huh7, LN229, MGC and MHCC97H, LOVO and MDA231 cell lines with IC\textsubscript{50} values from 16.32 to 37.80 μM (positive control camptothecin: 0.32–31.8 nM) and suppressed the growth and viability of the HCC cells T1224 in the patient-derived organoids (PDOs) model.25 8′-O-(3R-Hydroxy-butyryl)-rasfonin 294 and Cemironin A 295 displayed significant cytotoxicity on five human cancer cell lines: 786-O, A549, HeLa and MCF-7 cell lines, with the IC\textsubscript{50} values <20 μM, which are more effective than positive control 5-fluorouracil and could be considered to be potential as antitumor agents, in which they could significantly inhibit the cancer cells growth in a dose-dependent manner.104 Nectriatone A 340 showed cytotoxicities against SW1990, HCT-116, MCF-7, and K562 cells, with IC\textsubscript{50} values in the range of 26.37–42.64 μM.117 Compound 251 also showed cytotoxicity against NCI-H187 cells with an IC\textsubscript{50} value of 16.73 μM. Moreover, macrosporones A-B 250–251 and
Macrophorosunone D \text{253} exhibited cytotoxicity against Vero cells with IC\textsubscript{50} values in the range of 13.74–69.77 μM.88 Compounds 48 and 49 showed moderate cytotoxicity against HepG2 human hepatocellular carcinoma cells with an IC\textsubscript{50} of 8.7 and 19.4 μM, respectively. The IC\textsubscript{50} value of the positive control (cis-platin) was 3.14 μM.26 Compound \text{542} displayed significant cytotoxicity against human esophageal carcinoma cells OE19 with an IC\textsubscript{50} value of 5.50 μM.164 Compounds \text{255}–\text{258} had low cytotoxicity against both cancerous (MCF-7 and NCleH187) and non-cancerous (Vero) cells.89 Compounds 62–65 showed moderate cytotoxicity against five tested human tumor cell lines: HeLa, PC-3, A549, HepG-2 and HL-60.33 Pyrenosetin D \text{543} showed toxicity towards both A-375 and HaCaT cells with IC\textsubscript{50} values of 77.5 and 39.3 μM, respectively.165 Compounds 165,166, and 168 exhibited moderate cytotoxic activities with IC50 values ranging from 18.4 to 29.4 μM.69 The cytotoxicity assay revealed that asperanstonid D \text{185}, dehydroaoxistil, and austin displayed considerable cytotoxicity against the HL-60 and SU-DHL-4 tumor cell lines with IC\textsubscript{50} values ranging from 15.7 to 27.8 μM.71 Protein tyrosine phosphatases (PTPs) are signaling enzymes that regulate tyrosine phosphorylation. The disorder of PTPs could induce human diseases such as tumor, diabetes, autoimmune diseases, and infectious diseases. Compounds 213, 203, and 383 showed inhibitory effect against PTPs including PTP1B, SHP1, and TCPTP in vitro. Among them, compound 213 might exhibit selective activities against PTP1B and SHP1 over TCPTP with IC\textsubscript{50} values 0.57, 1.19, and 22.97 μM, respectively. Compounds 213 and 203 exhibited modest cytotoxicity against tumor cell lines A549, HeLa, Bel-7402, and SMMC-7721 with IC\textsubscript{50} values in the range of 6.75–83.4 μM.6 The inhibitory activity of the isolated compounds (436–438) against indoleamine 2,3-dioxygenase 1 (IDO1) was assessed. Compounds 436 inhibited IDO1, with the IC\textsubscript{50} value of 32.59 μM.141

Antimicrobial Activities

Compounds 95 and 96 were tested for antifungal activities. 95 and 96 were active against plant pathogenic fungi \textit{Rhizoctonia solani} and \textit{Fusarium oxysporum} using standard agar diffusion tests at 20 μg/disk.49 Compound 5 was tested for its abilities to inhibit both cell viability and biofilm formation of \textit{Candida albicans}. It demonstrated dose-dependent activity in the biofilm inhibition assay with an IC\textsubscript{50} value of 1.4 ± 0.2 μM.13 Citriquinone A \text{423} was evaluated for antibacterial activity against \textit{Bacillus} sp. At a dose of 250 μg/disc using the Kirby-Bauer Disc Diffusion method. Amoxicillin 25 μg and a disc soaked with MeOH and dried completely served as positive and negative control, respectively. It was found that 423 had moderate antibacterial activity compared with amoxicillin.136 Compounds 97 and 98 exhibited selective activity against \textit{Colletotrichum gloeosporioides} with MIC values of 1.0 and 0.125 μg/mL, respectively, the latter of which is better than that of the positive control, zeocin (MIC 0.25 μg/mL). This result indicated that compounds 97 and 98 are responsible for the activity against \textit{C. gloeosporioides} during the preliminary assay of the crude extract, and acetylation of 4-OH likely enhanced the activity.50 Libertellenone G \text{129} exhibited antibacterial activity against \textit{Escherichia coli}, \textit{Bacillus subtilis}, and \textit{Staphylococcus aureus}.39 Novel echinocandin compound MIG0310 \text{510} exhibiting antifungal activity, MIG0310 showed activity against two ATCC strains and 10 clinical isolates of \textit{Candida albicans}. It also showed activity against a clinical isolate of \textit{C. tropicalis}, showing a potential inhibition of this particular \textit{Candida} species as well. The antifungal agent had MFC values (killing activity) similar to the MIC for \textit{C. albicans}, reminiscent of other echinocandins used as drugs, which showed also kill at growth-inhibiting concentrations for most of \textit{Candida} species isolates (Moore et al 2001).156 Isochaetomium A\textsubscript{2} \text{351} possessed significant antimicrobial activity against \textit{Escherichia coli} 1.044, \textit{Staphylococcus aureus} 1.252, and \textit{Bacillus subtilis} 1.079.120 Minimum inhibitory concentration (MIC) of the active compound 273 ranged from 0.5 to 15 μg/mL. Viable cell count studies of the active compound 273 showed \textit{Staphylococcus aureus}, \textit{Escherichia coli}, \textit{Staphylococcus epidermis}, and \textit{Salmonella typhimurium} 1 to be the most sensitive.95 Compounds Polluxochrin 337, dioschirin 338 and Castochrin 270 exhibited anti-MRSA activity, with MIC values of 4.1, 4.9, and 3.2 μg (2.9, 3.2, and 2.0 μg/mL), respectively, whereas the MIC for chloramphenicol was 5 μg (1.6 μg/mL).82 Compounds 388–390 exhibited potent antibacterial activities against all tested strains of bacteria, including \textit{Xanthomonas vesicatoria} ATCC 11633, \textit{Pseudomonas lachrymans} ATCC11921, \textit{Agrobacterium tumefaciens} ATCC11158, \textit{Ralstonia solanacearum} ATCC11696, \textit{Bacillus thuringiensis} ATCC 10792, \textit{Staphylococcus aureus} ATCC 25923 and \textit{Bacillus subtilis} CMCC 63501, with minimal inhibitory concentration (MIC) values ranging from 0.25 to 4 μg/mL, while compounds 394–395 and 404 showed moderate inhibition with MIC values in the range of 8–64 μg/mL.129 The antibacterial activity of asperochrin A \text{231} was evaluated. Compound 231 showed inhibitory activity against aquatic pathogenic bacterial \textit{Aeromonas hydrophila}, \textit{Vibrio anguillarum}, and \textit{Vibrio harveyi}. However, compound 231 displayed
selective antibacterial activity against *A. hydrophilia, V. anguillarum,* and *V. harveyi,* with IC\textsubscript{50} values ranging from 8.0 to 16.0 μg/mL.83 Compounds 452 and 453 were shown to be weakly active against the bacteria *Bacillus subtilis* KB 211 (ATCC 6633) with inhibition zones of 7.3 and 7.2 mm, respectively, as well as against *E. coli* KB 213 (NIHJ), with inhibition zones of 10.9 and 14.7 mm, respectively, at 100 μg per 6 mm disc. Compound 89 displayed only weak antibacterial activity against *E. coli* KB 213 (NIHJ) with an inhibition zone of 7.8 mm at 30 μg per 6 mm disc.44 Penicilleremophilane A 99 was approximately half as active against *Plasmodium falciparum* with the IC\textsubscript{50} value of 3.45 μM.51 MIC of the compound 265 ranged from 0.5 to 15 μg/mL, which was found to be comparable with the standard antibiotics.92 Compound 349 (MIC 25 μg/mL) exhibited stronger antibacterial activity against *E. coli* than erythromycin, streptomycin, and ampicillin. Compound 350 (MIC 50 μg/mL) exhibited more prominent activity than streptomycin against *Bacillus subtilis.* Compound 350 (MIC 50 μg/mL) also displayed similar activity against *Escherichia coli* compared to erythromycin and ampicillin, and greater than streptomycin.119 Kumbicin C 33 was found to inhibit the growth of Gram-positive bacterium *Bacillus subtilis* (MIC 1.6 μg mL−1).22 Compound 405 showed antibacterial activity comparable with (Z)-4-bromo- 5-(bromomethylene)-2(5H)-furanone (BF), which may block the QS system of *Pseudomonas aeruginosa* with the mechanism of reducing biofilm formation and virulence factor secretion.132 Talaroketals A 240 and B 241 display modest antimicrobial activity against *Staphylococcus aureus* with an IC\textsubscript{50} value around 50 μg mL−1 but no activity against the other bacterial strains:*Staphylococcus haemolyticus,* *Escherichia coli* and *E. faecalis.*87 The antimicrobial activity of bacillispinor H 263 was evaluated against a panel of human pathogenic bacteria: *Escherichia coli* (ATCC 8739), *Staphylococcus aureus* (ATCC 6538), *Staphylococcus hemolyticus* (MNHN26), and *Enterococcus faecalis* (CIP 103014). Also of note is the effect of compound 263 against *Staphylococcus aureus* with a MIC value of 5.0 μM.90 Compound 533 exhibited moderate antifungal activity against *Candida albicans* (NCPF3153), fluocytosine-resistant *Cryptococcus neoformans* (ATCC90113) and *Penicillium marneffei* with the MIC values of 16, 8 and 16 μg/mL, respectively.115 Compound 107 exhibited inhibitory efficacy against *Bacillus subtilis* CMCC63501 and *Bacillus pumilus* CMCC63202 with IC\textsubscript{50} value of 18.1 and 23.8 μM, respectively.54 The antibacterial activities of Penicilones B-D 354–356 were evaluated with Gram-positive *S. aureus* (ATCC 43300), *S. aureus* (ATCC 33591), *S. aureus* (ATCC 29213), *S. aureus* (ATCC 25923), *Enterococcus faecalis* (ATCC 51299), *E. faecium* (ATCC 35667), and Gram-negative *Escherichia coli* (ATCC 25922). The results indicated that 354–356 showed significant antibacterial activities against the tested Gram-positive bacteria including both antibiotic-resistant and -susceptible strains with MIC values ranging from 3.13 to 12.5 μg/mL, while none of the tested compounds exhibited activity against *E. coli.*121 The antibacterial activities of talaraculone B 358 against three Gram-positive bacteria and three Gram-negative bacteria were tested. It showed selective activities against the pathogenic bacteria *Vibrio anguillarum,* with the same MIC values of 0.26 μg/mL, stronger than the positive control ciprofloxacin (MIC = 0.52 μg/mL).122 When the compound was 50 μg on the antibacterial paper (Ø 6 mm), compound 468 showed strong antibacterial activities against *Escherichia coli, Bacillus subtilis* and *Staphylococcus aureus* such as the positive control ampicillin.146 Compound 160 showed antibacterial activity toward *Bacillus cereus* (IC\textsubscript{90} =49 μg/mL, IC\textsubscript{90} =111 μg/mL) and *Bacillus subtilis* (IC\textsubscript{50}=10 μg/mL, IC\textsubscript{90}=85 μg/mL) [191]. Libertellenone M 140 exhibited antibacterial activity against *Escherichia coli* (ATCC 25922), *Staphylococcus aureus* (ATCC 27217), and *Vibrio vulnificus* (ATCC 27562) with MIC values of 32, 32, and 16 μg/mL, respectively.62 Compound 285 displayed antifungal activity against *Cryptococcus neoformans* ATCC90112 and ATCC90113 fluocytosine-resistant with the MIC values of 128 and 64 μg/mL, respectively.101 11-Hydroxychevalone E 300 showed weak antibacterial activity against *Escherichia coli* and *Salmonella enterica* serovar *Typhimurium,* both with MIC 128 μg/mL.40 Membrane active compound PA3-d10 431 produced by *Aspergillus flavus* strain demonstrated antimicrobial activities against bacteria and yeast strains.139 Compounds 346 and 347 showed moderate to strong inhibitory activity against the tested Gram-positive bacteria. It is worth noting that 347 and 238 displayed potent antibacterial activities against methicillin-resistant *Staphylococcus aureus* ATCC 35971 with the same MIC value of 3.13 μg/mL, which was close to the positive control vancomycin (MIC 1.56 μg/mL).86 Compounds 372 and 371 both displayed antimicrobial activities against *Staphylococcus aureus* with MIC values of 25 and 75 μg/mL, respectively. Moreover, morphological observation showed the coccoid cells of *S. aureus* to be swollen to a volume of 1.4 and 1.7-fold after treatment with compounds 371 and 372, respectively. Microbial filamentous temperature-sensitive protein Z (FtsZ) is a novel target for drug discovery, which plays a key role in cell division. The inhibitors of FtsZ prevent the cellular fusion of bacteria, which lead to apoptosis of bacteria. Molecular docking was carried out to investigate interactions of filamentous temperature-sensitive protein Z (FtsZ) with compounds 371 and 372. The results indicated that compounds 372 might form lower potential energies
and more stable binding sites with the target protein FtsZ compared to compound 371 which validated the observed antimicrobial activities.126 MIC values of 200 μg/mL were obtained for compounds 472–473 towards \textit{Staphylococcus aureus} and \textit{Escherichia coli} using the micro-broth dilution method.116 Penicillaphones A-C (301–303) showed antibacterial activity against \textit{Staphylococcus aureus}. Compound 303 exhibited significant activity against the rice sheath blight pathogen \textit{Rhizoctonia solani}.105 Compounds 308 and 309 displayed moderate inhibitory effects on \textit{Staphylococcus aureus} and \textit{Bacillus cereus} with an inhibition rate of more than 50%. Additionally, compounds 307–309 showed weak antibacterial effects on MR \textit{Staphylococcus aureus}.109 Compounds 38 and 45 displayed significant antimicrobial activities. Compound 38 showed obvious inhibitory activities against seven pathogenic fungi (\textit{Alternaria fragariae}, \textit{Corynespora cassiicola}, \textit{Alternaria alternata}, \textit{Botrytis cinerei} Pers., \textit{Cercospora personata}, \textit{Verticillium dahliae} Kleb, \textit{Sclerotinia sclerotiorum}) with MIC values of 6.25–25 μg/mL (ketoconazole: 0.78–1.56 μg/mL), and compounds 38–47 except for 45 were active against \textit{A. fragariae} with MIC values of 6.25–50 μg/mL (ketoconazole: 0.78 μg/mL). Compounds 38–47 were also evaluated for their antibacterial activity toward Gram-positive and Gram-negative human pathogenic bacterial strains. The results indicated that compound 45 was active against all tested bacteria and compound 38 was active against \textit{Bacillus cereus} and methicillin-resistant \textit{Staphylococcus aureus}. Moreover, compound 39 exhibited weak activity against methicillin-resistant \textit{S. aureus}.25 Compound 373 exhibited potent antimicrobial activities against \textit{Staphylococcus aureus} with MIC values of 2.3 μg mL−1 and significant growth inhibitions of 82.3 ± 3.3 against \textit{Candida albicans} and of 79.2 ± 2.6 against \textit{Candida parapsilosis}. Compound 373 further showed strong activity against the pathogenic bacteria \textit{Escherichia fergusonii} with MIC of 3.1 μg mL−1.127 Compounds 115 and 151 displayed interesting antifungal activity against \textit{Cryptococcus neoformans} ATCC90113 with the respective MIC values of 8 and 4 μg/mL. Moreover, only 115 was active against \textit{C. neoformans} ATCC90112 with the MIC value of 32 μg/mL.55 Compounds 295–297 also displayed moderate inhibitory effects on MR \textit{Staphylococcus aureus}, \textit{Staphylococcus aureus} and \textit{Bacillus subtilis}, which could be the major anti-bacterial constituents of \textit{Cephalotrichum microsporum}.104 Tolypocladin K 149 displayed moderate antifungal activity against \textit{Sclerotinia sclerotiorum}, \textit{Helminthosporium maydis}, \textit{Botrytis cinereal} Pers. and \textit{Colletotrichum acutatum} Simmonds with an MIC value of 50 μg/mL.64 Duclauxamide B 257 showed anti-\textit{Mycobacterium tuberculosis} activity with MIC value of 12.5 μg/mL and also had anti-\textit{Bacillus cereus} and anti-\textit{Staphylococcus aureus} with equal MIC values of 12.5 μg/mL.89 Compounds 312–321 showed antimicrobial inhibitory activities against \textit{Escherichia coli}, \textit{Staphylococcus aureus}, and \textit{Candida albicans} with MIC values ranging from 0.9 to 7.0 μg/mL, from 1.7 to 3.5 μg/mL, and from 3.3 to 7.0 μg/mL, respectively.111 Compound 66 was active against \textit{Fusarium oxysporum} with an MIC value of 50 μg/mL.34

Anti-Inflammatory Activities

In the in vitro anti-inflammation assay, bisacremine G 181 exhibited dose-dependent inhibitory effects on the production of TNF-α, IL-6, and nitric oxide (NO) in LPS-stimulated RAW 264.7 macrophages. At 50 μM, it inhibited TNF-α, IL-6, and NO production by 80.1%, 89.4%, and 55.7%, respectively. The inhibition was comparable to that of dexamethasone (inhibition rates at 50 μM: 78.0%, 92.6%, and 62.6%, respectively).70 Compounds 156–158 showed inhibitory activity against NO production in BV-2 microglial cells using the Griess assay with IC\textsubscript{50} values of 30.0 ± 1.5, 15.5 ± 0.5 and 8.8 ± 0.1μM, respectively. Indomethacin was used as a positive control (IC\textsubscript{50} = 34.5 ± 1.2 μM).66 Compounds 457–459 exhibited a significant inhibitory effect on the production of nitric oxide (NO) in murine macrophages (RAW 264.7) activated by lipopolysaccharide (LPS).145 Asterriquinol E 34 and asterriquinol F 35 have inhibitory effects on NO production induced by LPS in microglia cells with LL-monomethyl-LL-arginine (LL-NMMA) as a positive control (IC\textsubscript{50} 4.8 μM) with IC\textsubscript{50} values of 11.3 μM and 49.7 μM respectively.23 Compared with dimethyl fumarate (DMF), a potent inflammation inhibitor, compound 211 exhibited weak anti-inflammatory activity in an ANA-1 murine macrophages model.75 There is experimental evidence that 138 and 139 could dose-dependently inhibit the activity of NF-κB and exhibited significantly inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in the murine RAW 264.7 macrophage cells.61 Mycroromanols A 396 and C 398 inhibited lipopolysaccharide (LPS)-induced NO production in BV2 cells with IC\textsubscript{50} values of 26.04 and 25.80 μM, respectively.130
Antioxidant Activities
Compounds 323, 324 and 399 showed radical scavenging activity against DPPH with IC$_{50}$ values of 38.9, 42.7, and 87.5 μM, respectively.11 (E)-4-hydroxy-3-[(4-hydroxy-3-methylbut-2-en-1-yl)oxy] benzoic acid 367 showed radical scavenging activity against DPPH with IC$_{50}$ value of 0.51 mg/mL.96 Compound 305 exhibited potent DPPH radical scavenging activities with IC$_{50}$ value of 1.23μg/mL.107 Pochoniolides A 469 and B 470 showed hydroxyl radical-scavenging and singlet oxygen-quenching activities. Quercetin, pochoniolides A 469 and B 470 all showed scavenging activity against ·OH as well as a quenching effect on O$_2$. The detected values of ·OH and O$_2$ were suppressed by 6.7% and 4.3% in quercetin, 7.9% and 3.1% in pochoniolide A, and 1.2% and 0.5% in pochoniolide B, with being assumed that 100% generation represented a negative control.147 Trichotheic acid 92 exhibited hydroxyl radical-scavenging and singlet oxygen-quenching activities.47 Compounds 545–546 displayed radical-scavenging activity against 2,2-diphenyl-1-picyrylhydrazyl free radicals with the IC$_{50}$ values of 3.45 ± 0.02, 23.73 ± 0.08 μM, respectively. Compounds (±)-385, 387 exhibited potent antioxidant capacity with oxygen radical absorbance capacity values of 1.73 ± 0.13, 1.65 ± 0.03 μmol TE/μmol, respectively. Compounds (±)-385 and (±)-386 also exhibited protective effects on oxidative injury of PC12 cells induced by H$_2$O$_2$.128

Antiviral Activities
Isoaspluvinone E 450 showed significant anti-influenza A H1N1 virus activities, with IC$_{50}$ value of 32.3 μg/mL.143 When compared with ribavirin (IC$_{50}$ 113.1 μM), compounds 10–12 and 14–15 exhibited significant protection against H1N1 virus-induced cytopathogenicity in MDCK cells with IC$_{50}$ values of 28.3, 38.9, 32.2, 73.3, 34.1 μM, respectively.17 Ochraceopeone A 102 and isoasteltoxin 363 exhibited antiviral activities against the H1N1 and H3N2 influenza viruses with IC$_{50}$ values of >20.0/12.2 ± 4.10 and 0.23 ± 0.05/0.66 ± 0.09 μM, respectively. It was noteworthy that the selectivity indexes (SI) of anti-H1N1 activity of 363 was 2.35.53 Compounds 280 and 281 exhibited anti-H1N1 activity with IC$_{50}$ values of 133.4, 44.6, respectively (ribavirin was used as the positive control, IC$_{50}$ 101.4 μM). They also showed a strong anti-HSV-1 activity with IC$_{50}$ values of 55.5 and 21.4 μM, respectively, compared with the positive control (acyclovir, IC$_{50}$ 150.2 μM). Compound 281 also possessed a strong anti-HSV-2 effect with IC$_{50}$ value of 76.7 μM (acyclovir as the positive control, IC$_{50}$ 128.6 μM), respectively.100

Antimalarial Activities
Compound 17 was tested for antimalarial activity against the parasite Plasmodium falciparum (K1, multidrug resistant strain), and it showed weak antimalarial activity with an IC$_{50}$ value of 16.7 μM.18 Solaninaphthoquione 429 displayed weak antimalarial activity (IC$_{50}$ of 26.1 μM).138 Penicillermophile A 99 was approximately half as active against Plasmodium falciparum with the IC$_{50}$ value of 3.45 μM.51 Oxisterigmatocystin E 276 showed antimalarial activity against Plasmodium falciparum with IC$_{50}$ value of 7.9 μM.98 Macrosporone B 251 exhibited antimalarial activity against Plasmodium falciparum with IC$_{50}$ values of 10.28 μM.88

Immunosuppressive Activities
Isochaetomium A2 351, compound 351 showed obvious inhibitory effects on mouse spleen cell proliferation with successive IC$_{50}$ values of 0.52 μM.120 Compounds 481 and 482 exhibited significant inhibition of ConA-induced T-cell proliferation, with IC$_{50}$ values of 4.1 and 1.9 μM, and LPS-induced B-cell proliferation with IC$_{50}$ values of 9.8 and 1.1 μM, respectively. Compounds 484, 485, and 488 exhibited selective immunosuppressive effects toward the LPS-induced B-cell proliferation with IC$_{50}$ values ranging from 5.5 to 21.9 μM.151 The bioactivity assays revealed that compounds 165, 166, 169, 170, and 173 exhibited a significant immunosuppressive effect against concanavalin A (ConA)-induced T lymphocyte proliferation with IC$_{50}$ values ranging from 5.6 to 8.8 μM.69 The immunosuppressive activity assay revealed that compounds 188, 189, and 193–196 showed significant inhibitory activity against concanavalin A (ConA)-induced T lymphocyte proliferation with IC$_{50}$ values ranging from 4.1 to 9.4 μM.72 In the immunosuppressive activity assay, compounds 201–202 showed potent inhibitory activity against concanavalin A (ConA)-induced T
lymphocyte proliferation with IC\textsubscript{50} values of 78.3, 81.1 nmol/L, respectively, which provided promising leads for designing and developing new immunsuppressive agents to treat auto-immunological diseases.73

Other Activities

Paecilomide 90 was evaluated for acetylcholinesterase inhibition, presenting 57.5±5.50\% of acetylcholinesterase inhibition.45 Compound 217 was evaluated using in vitro binding assays of opioid receptors (subtypes δ, κ, and μ) and cannabinoid receptors (CB1 and CB2). Compound 217 selectively inhibited 42\% of the specific binding of [3H]-DAMGO to CHO-K1 cell membranes expressing human μ-opioid receptors at 10 μM.79 For antiacetylcholinesterase activity, Mangrovamide C 24 showed moderate acetylcholinesterase inhibitory effect with an IC\textsubscript{50} value of 58.0 μM.19 Compounds 222 and 223 were found to inhibit the conidial germination in the rice blast fungus \textit{Magnaporthe oryzae} at concentrations of 25 μg/mL, 50 μg/mL, respectively.81 Talacoumarins A 400 and B 401 had moderate anti-Aβ\textsubscript{42} aggregation activity, with relative inhibitory rates of (49.33 ± 3.16)\% and (44.99 ± 3.64)\% [the positive control EGCG had a relative inhibitory rate of (67.23 ± 2.51)\%] at the concentration of 100 μM, and this is the first report on the Aβ\textsubscript{42} inhibitory aggregation activity of coumarins.131 In the brine shrimp lethality assay, rubrumazine B 26 exhibited potent activity, with LD\textsubscript{50} value of 2.43 μM, Compounds 25, 27 displayed modest activities, with LD\textsubscript{50} values of 29.8 and 16.5 μM.20 Compound 523 exhibited the most potent activity against HMG-CoA reductase, with an IC\textsubscript{50} value of 387 μM. In addition, the present study indicated the direct interaction of compound 523 with HMG-CoA reductase.160 Talaraculones A and B (357 and 358) exhibited stronger inhibitory activity against α-glucosidase than the positive control acarbose (IC\textsubscript{50} = 101.5 μM), with IC\textsubscript{50} values of 78.6 and 22.9 μM, respectively.122 Asperuein A 526 was active against acetylcholinesterase (AchE) with a ratio of 62\% at the concentration of 50 μM.93 (–) Benzomalvins E 80 enhanced the cytotoxic capability of 5-fluorouracil against A549 on a different level.39 Compounds 142, 145, and 146 showed comparable seed-germination-promoting activities to that previously reported for the growth regulator cotylenin E.63 Exophiarin 422 has been evaluated by glucose uptake assay (GUA) using L6 skeletal muscle cells (myotubes), which takes up glucose for its metabolic activities through the glucose transporter protein, GLUT4. And exophiarin 422 with TPI-2 and TPI-5 have displayed moderate improvement in glucose uptake activity when tested in rat skeletal muscle cell line L6.135 Compound 478 dose-dependently inhibited bone morphogenetic protein–induced alkaline phosphatase activity in myoblasts with half-maximal inhibitory concentration values of 19.8 μM.150 Compounds 206–210 could inhibit the hepatic glucose production with EC\textsubscript{50} values of 17.6, 30.1, 21.3, 9.6, and 9.9 μM, respectively, and decrease the cAMP contents in glucagon-induced HepG2 cells.74

Concluding Remarks and Discussion

Based on the above literature, as mentioned above, we analyzed the classification of these new compounds and the proportion of different types of these new compounds. From the analysis data, 279 of the 546 new compounds are active. In these activity categories, anticancer and antimicrobial active compounds accounted for a large proportion, 36.2\% and 30.8\%, respectively (Figure 9). From the strain sources of these new compounds, \textit{Aspergillus}, \textit{Penicillium} and \textit{Talaromyces} accounted for the majority, accounting for about 56\%. We also classified and analyzed the compounds from different strains, as illustrated in Figure 10. In addition, we also analyzed the habitats of these source strains. Compared with special habitats, such as alpine, polar regions, oceans, etc., most of the strains are from non-extreme living environments (66.9\%) and rhizosphere soil (21.8\%) (Figure 11). We also made an interesting analysis to analyze the proportion of different compounds in the same activity, for example, among the 86 compounds with antimicrobial activity, there are 44 ketone compounds, accounting for about 51\%. Among the compounds with immunosuppressive activity, terpenes and steroids accounted for about 68\% (Figure 12).

In this review, we summarized 546 new compounds derived from soil fungi, classified them according to their structures, and classified their activities, including anticancer, antimicrobial, anti-inflammatory, antioxidant, antiviral, antimalaria, and immunsuppressive activities. From the 546 new compounds from soil fungi and their activities summarized in this review since 2011, it is noteworthy that among these active compounds, anticancer and antimicrobial activities account for almost 51\%. In order to facilitate readers’ understanding, we have made a table In this table, readers can more clearly and simply understand the microbial sources, biological activities, habitats of microbial sources, and
relevant references of these new compounds. All information about the new compounds are briefly summarized in Table 1. It may provide a lot of help for future drug research and development. Microorganisms have provided abundant sources of natural products, which have been developed as commercial products for human medicine, animal health, and plant crop protection.

Fungi are an ideal source for obtaining novel skeletons through large-scale culture: compared with plants, fungi can proliferate rapidly from small amounts of spores to a mass of branching hyphaes, which are more environmentally friendly than collecting plant materials; compared with bacteria, fungi can be cultured in a solid medium...
for a longer time. Specifically, a large-scale culture can produce unexpected rearrangements and combinatorial chemistry, which serve as “dark tunnels” to novel scaffolds. Artifacts are formed during isolation/purification of natural products. Factors such as pH, temperature, light, oxygen, humidity, and metal ions can lead to structural changes. Specific examples have been discussed in detail in a recent review on the formation of natural-product artifacts. Artifacts are often intentionally or unintentionally overlooked, but in large-scale culture it is an issue that cannot be ignored. Extensive separation of large-scale extracts exposes natural products to longer exposure to solvents, heat, air, light, and pH variations during extraction, partitioning, chromatography and drying. The change of these external factors will inevitably affect the metabolism of microorganisms and the change of compound structure. Therefore, one problem arising from the use of large-scale cultivation of fungi is how to obtain stable access to those minor metabolites with novel skeletons. This may need to be solved in combination with chemical synthesis. Another problem is the habitat source of the strains. In this review, we analyzed the habitats of the strains involved. Although most of the strains come from non-extreme habitats, we still expect to obtain fungal strains from some extreme habitats. The extremobiosphere encompasses a broad range of biomes that include hyperarid deserts, deep-sea sediments and permafrost soils, as well as acid and high-temperature environments. Such extreme habitats are characterized by combinations of environmental
Table 1 Brief Summary of New Compounds

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
	Alkaloids				
1	Pseudofischerine	Neosartorya pseudofischeri	Anngthong Province, Thailand	--	[10]
2–3	Peneciraistins E-F	Penicillium raistrickii	Shandong Province, China	-	[11]
4*	Exopisiod	Exophiala piscipha strain PHF 9	Yunnan Province, China	Induction of apoptosis	[12]
5*	Walskiazoid A	Aspergillus sp.	Honolulu, Hawaii	Suppresses Hyphal Morphogenesis and Inhibits Biofilm Development in Pathogenic Candida albicans	[13]
6	Effusin A	Aspergillus effusae	Fujian Province, China	Antitumor activity	[14]
7*	Dihydrocryptochoxinulin D				
8*	Dihydroneochinulin B	Aspergillus effusae	Fujian Province, China	Cytotoxic activity	[15]
9	Unnamed	Neosartorya fischeri	KUFC 6344	-	[16]
10*	3-deoxo-4b-deoxypaxilline	Penicillium camemberti	Hainan Province, China	Antiviral activity against the H1N1 virus	[17]
11*	4a-demethylpapaline-4a-carboxylic acid				
12*	4a-demethylpapaline-3,4,4a-triol				
13	2'-hydroxyxapilline				
14*	9,10-disopentenylxapilline				
15*	(6,7R,10E,14E)-16-(1H-Indol-3-yl)-2,6,10,14-tetramethylhexadeca-2,10,14-tetraene-6,7-diol				
16, 17*, 18-21	Asperdiazapiones A-F	Aspergillus sp. PSU- RSPG185	Suratthani Province, Thailand	Antimalarial activity	[18]
22-23, 24*	Mangrovamides A-C	Penicillium sp. SYFz-	Hainan Province, China	Moderate acetylcholinesterase inhibitory activity	[19]
25*, 26*, 27*	Rubrumazines A-C	Eurotium rubrum MA-150	Andaman Sea coastline, Thailand	Brine shrimp lethality	[20]
28	Penilline A	Penicillium sp. SCSIO 05705	Chinese Antarctic station	-	[21]
29	Isopenilline A				
30	Penilline B				
31–32, 33*	Kumbicins A-C	Aspergillus kumbias FRR6049	Southern Queensland, Australia	Antitumour activity; Antimicrobial activity	[22]
34*, 35*	Astarriquinols E-F	Aspergillus sp.CBS- P-2	Jilin Province, China	Inhibitory activities against LPS-induced NO production in microglia BV-2 cells (34*, 35*); Cytotoxicity (34*)	[23]
36–37	Cyclopiamines C-D	Penicillium sp. CML 3020	Atlantic Forest, Brazil	-	[24]

(Continued)
Table 1 (Continued).

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
38*, 39*, 40*, 41*, 42*, 43*, 44*, 45*, 46*, 47*	Tolypocladins A-J	Tolypocladium sp. XLI15	Hunan Province, China	Cytotoxic activity (38*); Antibacterial activity (38*, 39*, 45*); Antifungal activity (38*, 40*, 41*, 42*, 43*, 44*, 46*, 47*)	[25]
48*, 49*	Chaetomadrasins A-B	Chaetomium madrasense 375	Sinkiang Province, China	Cytotoxicity	[26]
50	Paraherquamide J	Penicillium janthinellum HKI-6	Hainan Province, China	-	[27]
51–52	Trypomadrasins W-X	Aspergillus terreus FS107	Top of Mauna Kea, Hawaii	-	[28]
53*, 54–55	Cytochalasins Z24-26	Eustypella sp. D-1	London Island of Kongsfjorden, Arctic	Cytotoxicity	[29]
56	Aspergillichalasin	Aspergillus sp. PSU-RSPG185	Surat Thani Province, Thailand	-	[30]
57*, 58	Iizukines C-D	Aspergillus iizukae	Shandong Province, China	Cytotoxicity	[31]
59	MBj-0030	Stachybotrys sp. Ω23793	Shizuoka prefecture, Japan	-	[32]
60	MBj-0031				
61	MBj-0032				
62*, 63*, 64*, 65*	Pycnidiphorones A-D	Pycnidiphora dispersa	Hebei Province, China	Cytotoxicity	[33]
66*	Clonorosin A	Clonostachys rosea	Bank of the Yellow River in Lanzhou, Gansu, China	Active (66*) against Fusarium oxysporum	[34]
67	Clonorosin B		Bank of the Yellow River in Lanzhou, Gansu, China		
68*, 69*, 70*, 71*, 72*, 73*	Gymnastatins T-Y	Gymnascella dankaliensis	Giza pyramids, Egypt	Cytotoxicity	[35]
74*	Dankastatin D				
75	N-[4-hydroxy-3-prenyl-benzoyl]-L-threonine	Curvularia inaequalis strain HS-FG-257	Heilongjiang Province, China	-	[36]
76	N-[2,2-dimethyl-2H-chromene-6-carbonyl]-L-threonine	Penicillium sp. H9318	Malaysia	-	[37]
77	(S5)-3,4,5,7-tetraamethyl-5,8-dihydroxy-6(5H)-isoquinolione	Neosartorya pseudofischeri	Anhong Province, Thailand	-	[10]
78	3,8-Diacetyl-4-(3-methoxy-4,5-methyleneoxy)benzyl-7-phenyl-6-oxa-3,8-diazabicyclo[3.2.1]octane	Neosartorya pseudofischeri	Anhong Province, Thailand	-	
79	Fusaravenin	Fusarium oxysporum SF-1502	Gansu Province, China	-	[38]
NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
----	------------	---------------	-------	---------------------	------
80*	(-) Benzomalvins E	*Penicillum* sp. SYPF 0411	Xinjiang Uygur Autonomous Region, China	Indoleamine 2,3-dioxygenase (IDO) inhibitor	[39]
81	Tryptoquivaline V	*Neosartorya pseudofischeri*	Chiang Mai forest, Thailand	-	[40]
82	Brasiliamide G				
83	Talarodone A	Co-culture of *Talaromyces pinophilus* and *Paraphaeosphaeria* sp.	Miyazaki Prefecture, Japan	-	[41]
84–86	Asperidines A-C	*Aspergillus* sclerotiorum PSU-RSPG178	Surat Thani Province, Thailand	-	[42]
87	Iizukine E	*Aspergillus iizukae*	Shandong Province, China	-	[31]
88	Methyl (2Z,3E,5E,7E,9E)-4,10-dimethyl-11-(2,5-dioxopyrrolidin-3-yl)-2-(2-hydroxyethylidene)-11-oxoundeca-3,5,7,9-tetraenoate	*Aspergillus* sp. OUCMDZ-1914	Hainan Province, China	-	[43]
89*	Virgarcin B	*Virginia boninensis* FKI-4958	The Bonin Islands, Tokyo, Japan	Antibacterial activity	[44]
90*	Paecilomide	*Poeckonomyces lilacinus*	UPMG, MG, Brazil	Acetylcholinesterase inhibitory activity	[45]
91	Clonostalactam	*Clonostachys rosea*	Banyumas, Indonesia	-	[46]
92*	Trichothioneic acid	*Trichoderma virens* FKI-7573	Obihiro, Hokkaido, Japan		
	Terpenoids and steroids				
93*, 94	Fudecadiones A-B	*Penicillum* sp. BCC 17468	Khao Yai National Park, Nakhon Ratchasima, Thailand	Anticancer activity	[48]
95*	Bu-Hydroxyroridin H	*Myrothecium* sp. GS-17	Gansu Province, China	Antifungal Activity	[49]
96*	Myrotheacin A				
97*, 98*	Penicibitaenes A-B	*Penicillum biliae* MA-267	Hainan Province, China	Antifungal activity	[50]
99*, 100	Penicilleremophilanes A-B	*Penicillum copécalus* PSU-RSPG138	Surat Thani Province, Thailand	Cytotoxic activity; Antimycobacterial activity; Antimalarial activity	[51]
101*	Aspergiketone	*Aspergillus fumigatus*	Shandong Province, China	Cytotoxicity	[52]
102*, 103–106	Ochraceopones A-E	*Aspergillus ochraceopetaliformis* SCSIO 05702	Chinese Antarctic station	Antiviral activity	[53]

(Continued)
NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
107*	13-Hydroxy-3,8,7(11)-eudesmatrien-12,8-olide	Eutypella sp. 1–15	Fujian Province, China	Antibacterial activity; Anticancer activity	[54]
108	13-Hydroxy-3,5,8,7(11)-eudesmatetraen-12,8-olide				
109	2-One-13-hydroxy-3,5,8,7(11)-eudesmatetraen-12,8-olide				
110	8,13-Dihydroxy-3,7(11)-eudesmadien-12,8-olide				
111	3/-hydroxy-3/-acoreniol	Fusarium proliferatum AF-04	Green Chinese onion	-	[38]
112	Cyclonerotriol B	Fusarium oxysporum SF-1502		-	
113–114, 115*	Trichodermapenes A-C	Trichoderma reesei PSU-SPSF013	Narathiwat Province, Thailand	Antifungal activity	[55]
116–118	Dictyosporins A-C	Dictyosporium digitatum	Herod, Illinois, USA	-	[56]
119	Trichoctinovirene A	Trichoderma citrinoviride PSU-SPSF346	Sirindhorn Peat Swamp Forest, Narathiwat Province, Thailand	-	[57]
120	Trichoctinovirene B				
121	unnamed	Aspergillus calidoustus	Dianchi Lake, Yunnan Province.China	-	[58]
122	unnamed				
123	unnamed				
124	unnamed				
125	unnamed				
126	unnamed				
127	unnamed				
128*	Sarotrypyrone A	Neosartorya fischeri KUFC 6344	Thailand	Anticancer activity	[16]
129*, 130*	Libertellenones G-H	Eutypella sp. D-I	London Island of Kongsfjorden, Arctic	Antibacterial activity (129*); Anticancer activity (130*)	[59]
131	4b-deoxy-1'-D-acetylpenicilline	Penicillium sp. CM-7	Yunnan Province, China	-	[60]
132	4b-deoxy-1'-O-acetylpaxilline				
133*, 134*, 135*, 136*, 137*	Libertellenones O-S	Eutypella sp. D-I	London Island of Kongsfjorden, Arctic	Cytotoxicity (133*,139*); Inhibit the activity of NF-κB inhibitory effects on nitric oxide production induced by lipopolysaccharide (138*, 139*)	[61]
138*, 139*	Eutypellenones A-B				
140*, 141*	Libertellenones M-N	Eutypella sp. D-I	London Island of Kongsfjorden, Arctic	Cytotoxicity (140*, 141*); Antibacterial activity (140*)	[62]
142*, 143, 144, 145*, 146*, 147, 148	Dongtingnoids A-G	Penicillium sp. DT10	Hunan Province, China	Seed-germination-promoting activity	[63]

(Continued)
Table 1 (Continued).

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
149*, 150	Tolypocladins K-L	Tolypocladium sp. XL115	Hunan Province, China	Antifungal activity (149*)	[64]
151*	Trichodermanene	Trichoderma reesei PSU-SPSF013	Narathiwat Province, Thailand	Antifungal activity	[55]
152	4,25-dehydrodiminolutelide B	Penicillium sp. MA-37	Hainan Province, China		[65]
153	4,25-dehydro-22-deoxyminolutelide B				
154	Isominolutelide A				
155, 156*,	Purpurogenolides A-E	Penicillium purpureum MHz111	Heilongjiang Province, China	Inhibition of nitric oxide production	[66]
157*, 158*,					
159					
160*, 161*,	Unnamed	Penicillium sp.	Liaoning Province, China	Cytotoxic activity (160*, 161*); Antibacterial activity (160*)	[67]
162–163					
164	Terretonin M	Aspergillus terreus TMB	A hot (~50 °C) desert place, South Egypt		[68]
165*	Δ12,19-dehydroxyarthripenoid A	Bipolaris zeicola	Hubei Province, China	Significant inhibitory effect against concanavalin A (ConA)-induced T lymphocyte proliferation (165*, 166*, 169*, 170*, 173*); Cytotoxic activity (163*, 166*, 168*)	[69]
166*	12,19-didehydroxy-arthripenoid A				
167	Tetrahydrofuran-3-epi-cochlioquinone A				
168*	Isotetrahydrofuran-3-epi-cochlioquinone A				
169*	19-dehydroxy-arthripenoid A				
170*	Δ1,19-dehydroxy-arthripenoid A				
171	4-acetoxy-isocochlioquinone D				
172	4-acetoxy-31α-methoxy-isocochlioquinone D				
173*	19-dehydroxyl-31-keto-3-epi-arthripenoid A				
174	Acremine T	Acremonium persinicum SCO10S	Guangdong Province, China	Cytotoxicity	[5]
175*, 176*, 177–178	Bisacremines A-D				
179–180,181*	Bisacremines E-G	Acremonium persinicum SCO10S	Guangdong Province, China	Anti-inflammatory activity	[70]
182	Asperanstinoid A	Aspergillus calidoustus	Dianchi Lake, Yunnan Province, China	Cytotoxicity (185*) against the HL- 60 and SU-DHL-4 tumor cell lines.	[71]
183	Asperanstinoid B				
184	Asperanstinoid C				
185*	Asperanstinoid D				
186	Asperanstinoid E				

(Continued)
NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
187	Bipolaquinone A	Bipolaris zeicola	Mo Mountain of East Lake, Wuhan City of Hubei Province, China	Inhibitory activity (188*, 189*, 193*, 194*, 195*, 196*) against concanavalin A (ConA)-induced T lymphocyte proliferation	[72]
188*	Bipolaquinone B				
189*	Bipolaquinone C				
190	Bipolaquinone D				
191	Bipolaquinone E				
192	Bipolaquinone F				
193*	Bipolaquinone G				
194*	Bipolaquinone H				
195*	Bipolaquinone I				
196*	Bipolaquinone J				
197	Bipolarinoid A	Bipolaris zeicola	Mo Mountain of East Lake, Wuhan City of Hubei Province, China	Inhibitory activity (201*, 202*) against concanavalin A (ConA)-induced T lymphocyte proliferation	[73]
198	Bipolarinoid B				
199	Bipolarinoid C				
200	Bipolarinoid D				
201*	Bipolarinoid E				
202*	Bipolarinoid F				
203*	Aspergorakhin B	Aspergillus gorakhpurensis F07ZB1707	Mountainous region of shennongjia Forestry District, Hubei Province of China	Inhibitory effect (203*) against Protein tyrosine phosphatases including PTP1B, SHP1, and TCPTP in vitro.	[6]
204	Aspergorakhin C				
205	Aspergorakhin D				
206*	Encindolene D	Penicillium sp. HFF16	Rhizosphere soil of Cynanchum bungei Deone., in Mount Tai, China	Inhibit the hepatic glucose production(206*, 207*, 208*, 209*, 210*)	[74]
207*	Encindolene E				
208*	Encindolene F				
209*	Encindolene G				
210*	Encindolene H				
211*	4α-methyl-9α-methoxyandrosta-8,15-diene-3,17-dione	Curvularia borreri strain HS-FG-237	-	Cytotoxicity; anti-inflammatory activity	[75]
212*	unnamed	Aspergillus flavus JDW-1	-	Cytotoxicity	[76]
213*	Aspergorakhin A	Aspergillus gorakhpurensis F07ZB1707	Mountainous region of Shennongjia Forestry District, Hubei Province of China	Inhibitory effect against Protein tyrosine phosphatases including PTP1B, SHP1, and TCPTP in vitro.	[6]

Ketones

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
214*	1-(3,5-dihydroxyphenyl)-4-hydroxypentan-2-one	Exsiphia pascipha PHF-9	Yunnan Province, China,	Cytotoxicity	[77]
215*	Pyrenocine J	Curvularia affinis strain HS-FG-196	Jilin Province, China	Cytotoxicity	[78]
216	Pyrenochaetic acid D				
NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
------	-----------------------	------------------------------	------------------------------	--	------
217*	Euparvione	Eupenicillium parvum	Cuba	Binding human µ- opioid receptors	[79]
218	Euparvilactone				
219	Penicillither	Penicillium sp. PSU-RSPG99	Surat Thani Province, Thailand		
220-221, 222*, 223*	Tanzawaic acids I-L	Penicillium sp. IBWF104-06	Kaiserslautern, Germany	Inhibited the conidial germination in Magnaporthe oryzae	[81]
224-226	Blennolides H-J	Alternaria sp.	Vicinity of Wailua Falls, Hawaii		
227-230	Pyrenochoaetic acids E-H				
231*, 232,233	Asperochrins A-C	Aspergillus ochraceus MA-15	Hainan Province, China	Antibacterial activity	[83]
234*	Iizukine A	Aspergillus iizukae	Shandong Province, China	Cytotoxicity against cancer cell	[84]
235-236	Penicipyran A-B	Penicillium rostrincki	Shandong Province, China	Cytotoxicity	[85]
237*	Penicipyran E				
238*, 239	Penijanthinones A-B	Penicillium janthinellum HK1-6	Hainan Province, China	Displayed potent antibacterial activity	[86]
240*, 241*	Talaroketals A-B	Talaromyces stipitis ATCC 10500		Antimicrobial activity	[87]
242	Aspergorakhin E	Aspergillus gorakhppurensis F07ZB/1707	Mountainous region of Shennongia Forestry District, Hubei Province of China		[6]
243	Aspergorakhin F				
244	Aspergorakhin G				
245	Aspergorakhin H				
246	Aspergorakhin I				
247	Aspergorakhin J				
248	Aspergorakhin L				
249	Talaromycesone C	Talaromyces macrosporus KU-KNK8	Khon Kaen Province, Thailand	Antimalarial activity (251*); Cytotoxicity (250*, 251*, 253*)	[88]
250*, 251*, 252, 253*, 254	Macroporusones A-E				
255*, 256*	Bacillisporsin I-J	Talaromyces bacillisporsin BCC17645	Khao Yai National Park, Nakhon Ratchasima Province, Thailand	Cytotoxicity (255*-258*); Antibacterial activity (257*)	[89]
257*, 258*	Duclauxamides B-C				
259	9a-epi-Bacillisporsin E	Talaromyces stipitis		Antimicrobial activity; Cytotoxicity	[90]
260	Bacillisporsin F				
261	1-epi-bacillisporsin F				
262, 263*	Bacillisporsins G-H				
264	Aspergone	Aspergillus sp. SCSIO41002	Hainan Province, China		[91]

(Continued)
NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
265*	7-methoxy-2,2-dimethyl-4-octa-4',6'-dienyl-2H-naphthalene-1-one	Penicillium sp	Punjab, India	Antimicrobial activity; Cytotoxicity	[92]
266–268	Aspereusins C-E	Aspergillus terreus YIM PH30711	New Delhi, India	-	[93]
269	Penicilloxanthone	Penicillium sp. PSU-RSPG99	Surat Thani Province, Thailand		[80]
270*	Catochrin	Alternario sp.	Vicinity of Waiula Falls, Hawaii	Antibacterial activity; Cytotoxic activity	[82]
271	Blennolide G				
272	Penicilloxanthone	Penicillium citrinum PSU-RSPG95	Surat Thani Province, Thailand	-	[94]
273a	6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one	Penicillium sp. HT-28	Punjab, India	Antibacterial activity	[95]
274	2-(2',4',6'-Trihydroxyphenyl)-(7-hydroxy-5-methyl)chromone	Aspergillus aculeatus	Chongqing, China	-	[96]
275	Penicillanthone	Penicillium aculeatum PSU-RSPG105	Surat Thani Province, Thailand	-	[97]
276*, 277*	Oxisterigmatocystins E-F	Botryatrium piliferum	Sangkhla Buri, Kanchanaburi Province, Thailand	Antimalarial activity (276*); Cytotoxicity(276*, 277*)	[98]
278*, 279	Penixanthones A-B	Penicillium sp. SYFz-1	Hainan Province, China	Cytotoxicity	[99]
280*	Methyl-(2-chloro-6-dihydroxy-3-methylxanthone)-8-carboxylate	Aspergillus iizukae	Shandong Province, China	Antiviral activity	[100]
281*	Methyl-(4-chloro-6-dihydroxy-3-methylxanthone)-8-carboxylate				
282	Methyl-(4-chloro-6-hydroxy-1-methoxy-3-methylxanthone)-8-carboxylate				
283	Methyl-(6-hydroxy-1-methoxy-3-methylxanthone)-8-carboxylate				
284	4-chloro-1,6-dihydroxy-3-methylxanthone-8-carboxylic acid				
285*–286–287	Blennolides L-N	Trichoderma asperellum PSU-PSF14	Narathiwat Province, Thailand	Antifungal activity	[101]
288	Wentixanthone A	Aspergillus wenti	Hypersaline lake El Hamra in Wadi El-	-	[102]
289–290	Fusarpynes A-B	Fusarium solani PSU-RSPG37	Surathani Province, Thailand	-	[103]
291–292	Coniochetonones E-F	Penicillium citrinum PSU-RSPG95	Surat Thani Province, Thailand	-	[94]
293	Penicillanone				

(Continued)
Table 1 (Continued).

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
294	8′-O-(3R-Hydroxy-butryl)-rasfonin	Cephalotrichum microsporum	Yunnan Province, China	Antibacterial (295*-297*) activity; Anti-tumor activity (294*, 295*)	[104]
295-297	Cemironins A-C				
298	4-Methyl-B,10-dihydroxy-caprylic acid				
299	Chevalone F	Neosartorya pseudofischeri		Antibacterial activity	[40]
300	11-hydroxychevalone E				
301*, 302*, 303*	Peninaphones A-C	Penicillium sp. HK1-22	Hainan Province, China	Antibacterial activity (301*, 302*); Antimicrobial activity (303*)	[105]
304	Helvafuranone	Aspergillus nidulans BF0142	Hokkaido, Japan	-	[106]
305*	(α)-europhenol A	Eurotium rubrum MA-150	Andaman Sea coastline, Thailand	DPPH radical scavenging activities	[107]
306	Aspersclerotiorone E	Aspergillus sclerotiorum PSU-KSPG178	Surat Thani Province, Thailand	-	[108]
307*	Harzianone	Cephalotrichum microsporum	Yunnan Province, China	Antibacterial activity	[109]
308*	Harzialol				
309*	Harzialol acid				
310	Gotjawaside	Auxarthron sp. KCB15F070	Volcanic island Jeju, Korea	-	[110]
311	Gotjawalide				
312*, 313*	Thiocarboxylics A-B	Penicillium sp. zb62	Hunan Province, China	Antibacterial activity	[111]
314*, 315*	Thiocarboxylics C1-2				
316*, 317*	Thiocarboxylics D1-2				
318*, 319*	Gregatin F1-2				
320*, 321*	Gregatin G1-2				
322	R-Hexitronic acid	Penicillium sp. FG9RK	Agulu in Anambra state, Nigeria	-	[112]
323*, 324*, 325*	Penecirastins A-C	Penicillium rasnitzky	Shandong Province, China	Radical scavenging activity against DPPH (323*, 324*); Induces caspase-independent autophagic cell death through mitochondrial-derived reactive oxygen species production in lung cancer cells (325*)	[11,166]
326*	Sporulosol	Pantoconiumtium sporulosum	Jiangxi Province, China	Cytotoxicity	[113]
327	(+)-(S)-arugosin K	Tolotomyces flavus	Sinkiang Province, China	-	[114]
328	(-)-(S)-arugosin K				
329	(+)-(S)-arugosin L				
330	(-)-(S)-arugosin L				
331	(+)-(S)-arugosin M				
332	(-)-(S)-arugosin M				
333	Arugosin N				
Table 1 (Continued).

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
334–335	Asperunnguisones A-B	Aspergillus unguis	PSU-RSPG204 (Thailand)		[115]
336	(±)-4-hydroxy-3-methoxy-5-methyl-2-cyclopentenone	Aspergillus Seratrum	Shandong Province, China		[116]
337*	Polluxochrin	Alternaria sp.	Vicinity of Wailua Falls, Hawaii	Antibacterial activity; Cytotoxic activity	[82]
338*	Dioschin				
339	Dimethylamide asterrate				
340*, 341–342	Nectriatones A-C	Nectria sp. B-13	Arctic island of Spitzbergen, Svalbard	Cytotoxicity	[117]
343	Curvulopyran	Aspergillus polyporicola PSU-RSPG187	Surat Thani Province, Thailand		[118]
344	ent-curvulone A				
345	7-methoxy-2,3,6-trimethylchromone	Exaphilo pisciphila	Yunnan Province, China		[77]
346*, 347*	Penicilones G-H	Penicillium janthellum HK1-6	Hainan Province, China	Show moderate inhibitory activity against Gram-positive bacteria (346*); Antibacterial activity (347*)	[86]
348	Tetrahydrotrichodimer ether	Clonostachys rosea	Gansu Province, China	Antibacterial activity	[119]
349*, 350*	Dihydrotrichodimer ethers A-B				
351*	Isochaetomium A$_2$	Chaetomium microcephalum	Sichuan Province, China	Antibacterial activity; Inhibitory effects on mouse spleen cell proliferation	[120]
352	Wensthenone A	Aspergillus wentii	Hypersaline lake El Hamra in Wadi El-Natrun, Egypt		[102]
353, 354*, 355*, 356*	Penicilones A-D	Penicillium janthellum HK1-6	Hainan Province, China	Antibacterial activity	[121]
357*, 358*, 359–362	Talaraculones A-F	Tolaramyces aculeatus	Shandong Province, China	Inhibitory activity against α-glucosidase (357*, 358*); Antibacterial activity (358*)	[122]
363*	Isoasteltoxin	Aspergillus ochraceopetaliformis SCSIO 05702	Chinese Antarctic station	Antiviral activity	[53]
364*	Curvularone A	Curvulario inequalis strain HS-FG-257	Heilongjiang Province, China	Antitumor activity	[123]
365*	4-hydroxyradianthin				
366	1-(2',4'-dihydroxy-5'-methyl-3'-methylsulfanyl(methylphenyl)-ethanone	Penicillium crustosum YN-HT-15	Yunnan Province, China		[124]
367*	(E)-4-Hydroxy-3-[(4-hydroxy-3-methylbut-2-en-1-yl)oxy] benzoic acid	Aspergillus aculeatus	Chongqing, China	Antagonism to DPPH	[96]
368–369	Talatflavols B-C	Tolaramyces flavus BYD07-13	Guangzhou Province, China		[125]
370	Aspereusin B	Aspergillus terreus YIM PH30711	New Delhi, India		[93]
371*	Seltsamiayu	Seltsania galinsgooli sp. nov.	Liaoning Province, China	Antibacterial activity	[126]
372*	Galinsogoolyu				

(Continued)
Table 1 (Continued).

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
373*	1-(4-hydroxy-2,6-dimethoxy-3,5-dimethylphenyl)-2-methyl-1-butanone	Aspergillus sp.	Riyadh, Saudi Arabia	Antimicrobial activity	[127]
374	Dictyosporin D	Dictyosporium digitatum	Herod, Illinois, USA	-	[56]
375	Dictyocyclhalide A				
376–379	Dictyofurans A-D				
380	Dictyosporon A				
381–382	Xylariolides E-F				
383*	Aspergorakhin K	Aspergillus gorakhpurensis	Mountainous region of Shennongjia Forestry District, Hubei Province of China	Inhibitory effect against Protein tyrosine phosphatases including PTP1B, SHP1, and TCPTP in vitro.	[6]
384	Sulfurasperine A	Aspergillus fumigatus F07ZB1707			
385*	Sulfurasperine B ((±)-2)		Caves in Guizhou province of China	Antioxidant capacity (385*, 387*); protective effects (385*, 386*) on oxidative injury of PC12 cells induced by H2O2	[128]
386*	Sulfurasperine C ((±)-3)				
387*	Sulfurasperine D				

Phenylpropanoids

388*, 389*, 390*, 391–393	Spiromastols A-F	Spiromastix sp. MCCC 3A00308	South Atlantic Ocean	Antibacterial activity	[129]
394*, 395*	Spiromastols J-K				
396*, 397*, 398*	Myrochromans A-C	Myrothecium verrucaria HL-P-1	Heilongjiang Province, China	Inhibited lipopolysaccharide (LPS)-induced NO production in BV2 cells	[130]
399*	Penecraistin D	Penicillum raistrickii	Shandong Province, China	Radical scavenging activity against DPPH	[11]
400* , 401*	Talacoumarins A-B	Talaromyces flavus BYD07-13	Hebei Province, China	Anti-β₄₂ aggregation activity	[131]
402–403, 404*	Spiromastols G-I	Spiromastix sp. MCCC 3A00308	South Atlantic Ocean	Antibacterial activity	[129]
405*	(35)-6-O-((4'-O-methyl-6'-acetetyl-β-D-glucopyranoside)-7-O-methyl-8'-hydroxyl-3-[(3E)-pent-3-enyl]-3,4-dihydroisocoumarin	Metarhizium anisopliae DTH12-10	-	Antibacterial activity	[132]
406	(35)-7-O-((4'-O-methyl-6'-glucopyranoside)-6,8-dihydroxyl-3-[(3E)-pent-3-enyl]-3,4-dihydroisocoumarin				
407	(35)-6-O-((4'-O-methyl-6'-glucopyranoside)-7-O-methyl-8'-hydroxyl-3-[(3E)-pent-3-enyl]-3,4-dihydroisocoumarin				
408	(35)-6-O-((4'-O-methyl-6'-glucopyranoside)-8-hydroxyl-3-[(3E)-pent-3-enyl]-3,4-dihydroisocoumarin				

(Continued)
NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
409	(3S)-6-O-(4'-O-methyl-D-glucopyranoside)-5,8-dihydroxy-3-[(3E)-pent-3-enyl]-3,4-dihydroisocoumarin				
410	6-O-(4'-O-methyl-D-glucopyranoside)-7-O-methyl-8-hydroxy-3-[(3E)-pent-3-enyl]-isocoumarin				
411	(3R)-6-O-(4'-O-methyl-D-glucopyranoside)-8-hydroxy-3-[(1E,3E)-penta-1,3-dienyl]-dihydroisocoumarin				
412	(3R)-6-O-(4'-O-methyl-D-glucopyranoside)-7-O-methyl-8-hydroxy-3-[(1E,3E)-penta-1,3-dienyl]-dihydroisocoumarin				
413–414	Talaisocoumarins A-B	Talaromyces flavus BYD07-13	Guangzhou Province, China		[125]
415	Talaflavuol A				
416–417	Penicipyrans C-D	Penicillium raistrickii	Shandong Province, China		[85]
418	(3R,4R)-4,8-Dihydroxy-5-(hydroxymethyl)-3-methylisochroman-1-one	Hypoxylon sp.	Heilongjiang Province, China		
419	(3R,4S)-4,8-Dihydroxy-5-(hydroxymethyl)-3-methylisochroman-1-one				
420*	(9R*)-8-methyl-9,11-dichlorodiaporthin	Hamigera fusca NRRL 35721	Maoueni, Grande Comore Island	Cytotoxic activity against cancer cell lines	[134]
421*	(9S*)-8-methyl-9,11-dichlorodiaporthin				
422*	Exophiarin	Exophiala sp.	Kaziranga National Park, Assam	Improvement in glucose uptake activity when tested in rat skeletal muscle cell line L6	[135]

Quinones

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
423*, 424	Citriquinones A-B	Penicillium citrinum	University of Srijayawardenepura, Sri Lanka	Antibacterial activity; Cell migration inhibitory activity	[136]
425	Penicilliquinone	Penicillium sp. PSU-RSPG99	Surat Thani Province, Thailand		[80]
426	Penicherqueinone	Penicillium herquei PSU-RSPG93	Surat Thani Province, Thailand		[137]
427*, 428	Aspergillusansones A-B	Aspergillus sp. PSU-RSPG185	Surat Thani Province, Thailand	Cytotoxicity	[30]
429*	Solaninaphthoquione	Fusarium solani PSU-RSPG227	Surat Thani Province, Thailand	Cytotoxic; Antimalarial activity	[138]
430	Kumbicin D	Aspergillus kumbius FRR6049	Queensland, Australia		[22]
431*	PA3-d10	Aspergillus flavus	Iran	Antimicrobial activity	[139]
Table 1 (Continued).

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
432–433	Wentibianthrones A-B	Aspergillus wentii	Hypersaline lake El Hamra in Wadi El Nazrun, Egypt	-	[102]
434	Wentibianthrones C (cis/trans)	Penicillium hortense FT729	Active volcano, Hawaii	-	[140]
435	Herqueilenone A	Penicillium hortense FT729	Big Island, Hawaii	Inhibitory activity (436*) against indoleamine 2,3-dioxygenase 1 (IDO1)	[141]
436*	(-)-scleroamide	Penicillium hortense FT729	Big Island, Hawaii	Inhibitory activity (436*) against indoleamine 2,3-dioxygenase 1 (IDO1)	[141]
437	(+)-scleroamide	Penicillium hortense FT729	Big Island, Hawaii	Inhibitory activity (436*) against indoleamine 2,3-dioxygenase 1 (IDO1)	[141]
438	Esters and lactones	Neosartorya pseudofischeri	Anghong Province, Thailand	-	[10]
439	R-3-(3'-acetyl-2',6'-dihydroxy-5'-methylphenyl)-2-methyl-propanoic acid methyl ester	Penicillium crustulatum YN-HT-15	Yunnan Province, China	-	[124]
440–443, 444*, 445*	Telapolyesters A-F	Tolomoryses flavus BY067-13	Hebei Province, China	Cytotoxic activity	[142]
446	4-(4-Hydroxyphenethoxy)-4-oxobutanoic acid	Fusarium solani PSU-RSPG227	Surat Thani Province, Thailand	-	[138]
447	Penicillithiophenols A-B	Penicillium coticola PSU-RSPG138	Surat Thani Province, Thailand	-	[51]
448–449	Isoasapulinone E	Aspergillus terreus Gwoq-48	Fujian Province, China	Anti-influenza A viral (H1N1)	[143]
450*	Aspergillusulstone	Aspergillus sp. PSU-RSPG185	Surat Thani Province, Thailand	-	[30]
451	Cinartrins D-E	Virgaria boninensis FKI-4958	Bonin Islands, Tokyo, Japan	Antibacterial activity	[44]
452*, 453*	Aspersclerotiorones A-D	Aspergillus unguis PSU-RSPG199	Surat Thani Province, Thailand	-	[144]
454	Aspersclerotiorones F-G	Aspergillus unguis PSU-RSPG199	Surat Thani Province, Thailand	-	[144]
456, 457*, 458*, 459*, 460, 461	Penicimenoles A-F	Penicillium sp. SYP-F-7919	Yunnan Province, China	Cytotoxicity; Inhibitory effect on NO production	[145]
462–465	Aspersclerotiorones A-D	Aspergillus sclerotiorum PSU-RSPG178	Surat Thani Province, Thailand	-	[108]
466–467	Aspersclerotiorones F-G	Aspergillus sclerotiorum PSU-RSPG178	Surat Thani Province, Thailand	-	[108]
468*	eut-Guaines sesquiterpene	Eutypella sp. D-1	London Island of Kongfjorden, Arctic	Antibacterial activity; Cytotoxicity	[146]
469*, 470*	Aspersclerotiorones A-B	Pochonia chamydiaspora var. spinulospora FKI-7537	Nichima, Tokyo, Japan	Antioxidant activity	[147]
471*, 472*, 473*	Aspersclerotiorones A-C	Aspergillus Sclerotiorum	Shangdong Province, China	Cytotoxic activity (471*, 473*); Antibacterial activity (472*, 473*)	[116]
474	(z)-Aspersclerolide D	Aspergillus Sclerotiorum	Shangdong Province, China	Cytotoxic activity (471*, 473*); Antibacterial activity (472*, 473*)	[116]

(Continued)
Table 1 (Continued).

NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
475–476	Botryosphaerilactones D-E	Lasiodiplodia theobromae NSTRU-PN1.4	Nakhon Si Thammarat Province, Thailand	-	[148]
477	Therlanubutanolide A	Thermomyces lanuginosus	Yunnan Province, China	-	[149]
478*	6-ethoxy-5,6-dihydropenillic acid	Penicillium sp. BF-0343	Fuji Cemetery, Shizuoka, Japan	Inhibited BMP-induced ALP activity	[150]
479	Ilyoresorcy A	Ilyonectria sp. sb65	Hunan Province, China	Inhibition of ConA-induced T-cell proliferation (481*, 482*); Immunosuppressive effects toward the LPS-induced B-cell proliferation (484*, 485*, 488*)	[151]
480*	Acrop-ilyoresorcy A	Ilyoresorcs B-K			
481*, 482, 483*, 484*, 485, 486, 487*, 488–490	Other compounds				
491*, 492–493	Prenylphenyllins A-C	Aspergillus taichungensis ZHN-7-07		-	[152]
494*	4'-dehydro-3-hydroxytrypophenyllin				
495, 496*, 497	Preynycandidusins A-C				
498	4-hydroxy-4-(3-methoxy-3-methylbutyl)-benzoic acid	Curvularia inaequalis strain HS-FG-257	Heilongjiang Province, China	-	[153]
499	(Z)-2-(5-hydroxyhexyl)pent-2-enedioic acid	Gongronella butleri	Forest at Koukoue, Cameroon	-	[154]
500	(Z)-2-hexylpent-2-enedioic acid				
501	(Z)-2-(5-oxohexy)pent-2-enedioic acid				
502	(Z)-oct-2-ene-1,3,8-tricarboxylic acid				
503	(Z)-2-(5-hydroxyoctyl)pent-2-enedioic acid				
504	(Z)-2-(3-methoxy-3-oxopropylidene) decanoic acid				
505	(Z)-2-(7-oxooctyl)pent-2-enedioic acid				
506	(Z)-2-(8-hydroxyoctyl)pent-2-enedioic acid				
507*, 508*, 509*	Peniciketals A-C	Penicillium raistrichii	Shangdong Province, China	Cytotoxic activity	[155]
510*	MIG0310	Fusarium brachygibbus strain MS-R1	Mediterranean forest, Israel	Antimicrobial activity	[156]
511–512	Aspergilusols A-B	Aspergillus sp. PSU-RSPG185	Surat Thani Province, Thailand		[30]
513	Aspergillic acid				

(Continued)
NO	Compounds	Fungal Strain	Place	Biological activity	Ref.
514	11'-carboxygymnastatin N	Gymnascella dankaliensis	Giza pyramids, Egypt	Cytotoxicity	[157]
515	Gymnastatin S				
516	Dankamide				
517*	Aranorosin-2-methylether				
518*	izukine B	Aspergillus izukian	Shandong Province, China	Cytotoxicity against cancer cell	[84]
519*	Scerotiumol	Sclerotium rolfsai	District Malakand, Khyber Pakhtunkhwa Pakistan	Effective multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) modulator	[158]
520	Versicorin	Aspergillus versicolor SC0156	Guangdong Province, China		[159]
521–522, 523*	Unnamed	Aspergillus sclerotinum PSU-RSPG178	Surat Thani Province, Thailand	Activity against HMG-CoA reductase	[160]
524	Asterreusin A	Aspergillus terreus YIM PH30711	New Delhi, India	Inhibitive activities against acetylcholinesterase (AChE)	[93]
525	Unnamed				
526*	Aspereusin A				
527	Epiaspereusin A				
528–530	Penicillidic acids A-C	Penicillium oculatum PSU-RSPG105	Surat Thani Province, Thailand		[97]
531–532, 533*	Aspergilusethers B-D	Aspergillus unguis PSU-RSPG204	Surat Thani Province, Thailand	Antifungal activity	[115]
534–535	Melleusins A-B	Melleus YIM PH001	New Delhi, India		[161]
536*	3-methylpentyl-2,4-dichloroasterrinate	Aspergillus flavipes PJ03-11	Lisoning Province, China	Cytotoxic activity	[162]
537	6R,8R-dihydroxy-9Z,12Z-octadecadienoic acid	Penicillium javanicum HK1-22	Hainan Province, China		[163]
538	Methyl-6R,8R-dihydroxy-9Z,12Z-octadecadienoate	Penicillium oculatum PSU-RSPG105	Surat Thani Province, Thailand		
539	Penoxalin	Penicillium oculatum	Shanghai, China	Cytotoxic activity	[164]
540–541	Penisochromans A-B	Penicillium oculatum	Shanghai, China	Cytotoxic activity	[164]
542*	2,6-dihydroxy-4-[[2R]-2-hydroxyheptyl] benzoic acid	Penicillium oculatum	Shanghai, China	Cytotoxic activity	[164]
543*	Pyrenosetin D	Pyrenochetops sp. PVE-087	Falckenstein Beach, Kiel Fjord, Baltic Sea, Germany	Cytotoxic activity	[165]
544	Unnamed	Aspergillus calidustus	Dianchi Lake, Yunnan Province, China		[58]
545*	4-Methoxy-7-methylbenzo[d]thiazole-5,6-diol	Aspergillus flavipes GZVMHz-152	Caves in Guizhou province of China	Radical-scavenging activity (545*, 546*) against 2,2'-diphenyl-1-picrylhydrazyl free radicals	[128]
546*	2'-Hydroxymethyl-4-methoxy-7-methylbenzo[d]thiazole-5,6-diol	Aspergillus flavipes GZVMHz-152	Caves in Guizhou province of China	Radical-scavenging activity (545*, 546*) against 2,2'-diphenyl-1-picrylhydrazyl free radicals	[128]

Note: *Bioactive compounds.
variables, such as anoxia, aridity, extreme temperatures, low concentrations of organic matter, high salinity and intense irradiation. The search for new bioactive compounds from the extremobiosphere rests on the premise that harsh abiotic conditions select for novel microorganisms that express new chemistry.169 In order to adapt to extreme habitats, the strains are bound to adjust their metabolism, and new secondary metabolites will increase in this process, we may get some compounds with good biological activity.

Acknowledgments

We thank the authors of all the references cited herein for their valuable contributions. This work was supported by grants from the National Major Scientific and Technological Special Project for “Food Safety” (No. 2019YFC1604604).”

Disclosure

The authors report no conflicts of interest in this work.

References

1. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. *J Nat Prod*. 2020;83(3):770–803. doi:10.1021/acs.jnatprod.9b01285
2. Brüse S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. *Chem Rev*. 2009;109(9):3903–3990. doi:10.1021/cr080001f
3. Petit R. Soil DNA libraries for anticancer drug discovery. *Cancer Chemother Pharmacol*. 2004;54(1):1–6. doi:10.1007/s00280-004-0771-8
4. Nazir R, Warmjka JA, Boersma H, van Elsas JD. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. *FEMS Microbiol Ecol*. 2010;71(2):169–185. doi:10.1111/j.1574-6941.2009.00807.x
5. Wu P, Yao L, Xu L, Xue J, Wei X. Bisacremines A–D, dimeric acremines produced by a soil-derived *Acremonium persicicum* strain. *J Nat Prod*. 2015;78(9):2161–2166. doi:10.1021/np501037x
6. Ji Y, Zhou Q, Liu G, et al. New protein tyrosine phosphatase inhibitors from fungus *Aspergillus gorakhpurensis* FO7ZB1707. *RSC Adv*. 2021;11(17):10144–10153. doi:10.1039/D1RA00788B
7. Keller NP, Turner G, Bennett JW. Fungal secondary metabolism - from biochemistry to genomics. *Nat Rev Microbiol*. 2005;3(12):937–947. doi:10.1038/nrmicro1286
8. Evidente A, Kornienko A, Cimmino A, et al. Fungal metabolites with anticancer activity. *Nat Prod Rep*. 2014;31(5):617–627. doi:10.1039/C3NP00785F
9. Hu Z, Ye Y, Zhang Y. Large-scale culture as a complementary and practical method for discovering natural products with novel skeletons. *Nat Prod Rep*. 2021;38(10):1775–1793. doi:10.1039/D0NP00069H
10. Eamvijarn A, Gomes N, Dethoup T, et al. Bioactive meroditerpenes and indole alkaloids from the soil fungus *Penicillium camemberti* OUCMDZ-149. *J Nat Prod*. 2020;83(7):1328–1336. doi:10.1021/np500304q
11. Ma L, Liu W, Shen L, et al. Spiroketalts, isocoumarin, and indoleformic acid derivatives from saline soil derived fungus *Aspergillus effuses* sp. CBS-P-2 with anti-inflammatory activity. *J Nat Prod*. 2015;78(10):2276–2282. doi:10.1021/np5009994
12. Wang C, Liu M, Wei J, Wang H, Lin X. Chemical metabolites from fungus PHF-9 and their anti-tumor activity. *Chin J New Drugs*. 2012;21(14):94–100.
13. Wang X, You J, King JB, Powell DR, Cichewicz RH. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic *Candida albicans*. *J Nat Prod*. 2012;75(4):707–715. doi:10.1021/np2009994
14. Gao H, Liu W, Zhu T, et al. Diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus *Aspergillus effuses* H1-1. *Org Biomol Chem*. 2012;10(47):9501–9506. doi:10.1039/c2ob26757h
15. Gao H, Zhu T, Li D, Gu Q, Liu W. Prenylated indole diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus *Aspergillus effuses* H1-1. *Arch Pharm Res*. 2013;36(8):952–956. doi:10.1007/s12272-013-0107-5
16. Eamvijarn A, Gomes N, Dethoup T, et al. Bioactive meroditerpenes and indole alkaloids from the soil fungus *Neosartorya fischeri* (KUFC 6344), and the marine-derived fungi *Neosartorya laciniosa* (KUFC 7896) and *Neosartorya tsunodae* (KUFC 9213). *Tetrahedron*. 2013;69(40):8583–8591. doi:10.1016/j.tet.2013.07.078
17. Fan Y, Wang Y, Liu P, et al. Indole-derpenoids with anti-H1N1 activity from the aciduric fungus *Penicillium camemberti* OUCMDZ-1492. *J Nat Prod*. 2013;76(7):1328–1336. doi:10.1021/np400304q
18. Rakuchaisirikul V, Rungrawattana N, Klaikslay S, et al. Indole-benzodiazepine-2,5-dione derivatives from a soil fungus *Aspergillus* sp. PSU-RSPG185. *Tetrahedron*. 2013;69(52):11116–11121. doi:10.1016/j.tet.2013.11.009
19. Yang B, Dong J, Lin X, Zhou X, Zhang Y, Liu Y. New prenylated indole alkaloids from fungus *Penicillium* sp. derived of mangrove soil sample. *Tetrahedron*. 2014;70(25):3859–3863. doi:10.1016/j.tet.2014.04.043
20. Meng LH, Du FY, Li XM, et al. Indoleketopiperazines of the isochinulin class from *Eurotium rubrum* MA-150, a fungus obtained from marine-mangrove-derived rhizospheric soil. *J Nat Prod*. 2015;78(4):909–913. doi:10.1021/np5007839
21. Wang J, He W, Qin X, et al. Three new indolyl diketopiperazine metabolites from the Antarctic soil-derived fungus *Penicillium* sp. SCSIO 05705. *RSC Adv*. 2015;5(84):68736–68742. doi:10.1039/C5RA10828D
22. Lacey HJ, Vuong D, Pitt J, Lacey E, Piggott AM. Kambicins A–D: bis-indolyl benzenoid and benzoquinone from an Australian soil fungus, *Aspergillus kumbius*. *Aust J Chem*. 2016;69(2):152. doi:10.1071/CH15488
23. An X, Feng BM, Chen G, Chen SF, Wang HF, Pei YH. Two new asterriquinols from *Aspergillus* sp. CBS-P-2 with anti-inflammatory activity. *J Asian Nat Prod Res*. 2016;18(8):737–743. doi:10.1080/10286020.2016.1161613
24. Kildgaard S, de Medeiros LS, Phillips E, et al. Cyclopamine C and D: epoxide spiropodilone alkaloids from Penicillium sp. CML 3020. J Nat Prod. 2018;81(4):785–790. doi:10.1021/acs.jnatprod.7b00825

25. Xu LL, Hai P, Zhang SB, et al. Prenylated indole diterpene alkaloids from a mine-soil-derived Tolypocladium sp. J Nat Prod. 2019;82(2):221–231. doi:10.1021/acs.jnatprod.8b00589

26. Guo QF, Yin ZH, Zhang JJ, et al. Chaetomadrasins A and B, two new cytotoxic cytchalasans from desert soil-derived fungus Chaetomium madrasense 375. Molecules. 2019;24(18):3240. doi:10.3390/molecules24183240

27. Zheng YY, Shen NX, Liang ZY, Shen L, Chen M, Wang CY. Paraferaquinamide J, a new prenylated indole alkaloid from the marine-derived fungus Penicillium janthinellum HK1-6. Nat Prod Res. 2020;34(3):378–384. doi:10.1080/14787177.2018.1534105

28. Zaman KAU, Hu Z, Wu X, Cao S. Tryptoquivalines W and X, two new compounds from a Hawaiian fungal strain and their biological activities. Tetrahedron Lett. 2020;61(14):15170–15173.

29. Liu J, Hu B, Gao Y, et al. Bioactive tyrosine-derived cytchalasins from fungus Eutypella sp. D-1. Chem Biodivers. 2014;11(5):800–806. doi:10.1002/cbdv.201300218

30. Rukachaisirikul V, Rungsaiwattana N, Klaiklay S, Phongpaichit S, Borwornwiriyapan K. Sakayaroj, J., g-Butyrolactone, cytochalasin, cyclic carbonates, eutypinic acid, and phenalenone derivatives from the soil fungus Clonostachys rosea J Nat Prod. 2019;82(2):468–474. doi:10.1021/acs.jnatprod.8b00872

31. Kang HH, Zhong MJ, Ma LY, Rong XG, Liu DS, Liu WZ. Iizukines C-E from a saline soil fungus Penicillium bilaiae sp. FKI-4958. J Nat Prod. 2019;82(3):793–798. doi:10.1021/acs.jnatprod.8b00324b

32. Kawahara T, Itoh M, Izumikawa M, et al. New phenylspirodrimane metabolites MBJ-0030, MBJ-0031, and MBJ-0032 isolated from the soil fungus Neosartorya pseudofischeri PSU-SPSF013. J Nat Prod. 2019;82(1):103–106. doi:10.1021/acs.jnatprod.8b00650

33. Wang J, Wei X, Qin X, et al. Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod. 2019;81(6):791–795. doi:10.1021/acs.jnatprod.8b00650

34. Wang Y, Wang Y, Wu AA, et al. New 12,8-Eudesmanolides from Eutypella sp. J Antibiot (Tokyo). 2017;70(10):1029–1032. doi:10.1038/ja.2017.89

35. Rukachaisirikul V, Chinphphaichit S, Phongpaichit S, Saikhwon N, Sakayaroj J, Preedanon S. Sesquiterpene and monoterpene derivatives from the soil-derived fungus Trichoderma reesi PSU-SPSF013. Phytochem Lett. 2019;30:124–129. doi:10.1016/j.phytol.2019.01.023
Drug Design, Development and Therapy 2022:16
Dovepress

Zhang et al

98. Wang Q, Yang YB, Yang QX, et al. Lovastatin analogues and other metabolites from soil-derived Aspergillus terreus YIM PH30711. Phytochemistry. 2018;145:146–152. doi:10.1016/j.phytochem.2017.11.006

99. Trisuwan K, Rukachaisirikul V, Borvornwiryiapan K, Phongpaichit S, Sakayaroj J. Pyrone derivatives from the soil fungus Paraconiothyrium sp. MA-150. Arch Pharm Res. 2017;40(11):1499. doi:10.1007/s12272-016-0549-y

100. Maha A, Phainuphong P, Rukachaisirikul V, et al. Blennolide derivatives from the soil-derived fungus Clonostachys rosea Talaromyces stipitatus PSU-RSPG187. Appl Biochem Biotechnol. 2019;24(14):2642. doi:10.3390/molecules24142642

101. Kim J, Son S, Kim G, et al. Aromatic butenolides produced by a soil ascomycete Auxarthron sp. KCB15F070 derived from a volcanic island. Tetrahedron Lett. 2019;60(45):151227. doi:10.1016/j.tetlet.2019.151227

102. Chang JL, Xu HZ, Zhou J, et al. Antimicrobial furancarboxylic acids from a Penicillium sp. J Nat Prod. 2020;83(12):3606–3613. doi:10.1021/acs.jnatprod.0c00458

103. Ngwone KG, El-Kashef DH, Daleots G, et al. R-Hexitronic acid, a new tetronic acid derivative isolated from a soil fungus FG9RK. Nat Prod Res. 2020;24(1):1–6.

104. Zhao C, Fu P, Zhang Y, Liu X, Ren F, Che Y. Sporulosol, a new ketol from the fungus Paraconiothyrium sporulosum. Molecules. 2018;23(6):1263. doi:10.3390/molecules23061263

105. Phainuphong P, Rukachaisirikul V, Tadpetch K, et al. g-Butenolide and furanone derivatives from the soil-derived fungus Cephalotrichum microsporum sp. B-13. Bioorg Med Chem. 2019;27(20):122–127. doi:10.1016/j.bmc.2019.07.021

106. Phainuphong P, Rukachaisirikul V, Tadpetch K, et al. Butenolide and furanone derivatives from the soil-derived fungus Cephalotrichum microsporum sp. PSU-PSF14. Tetrahedron. 2018;74(39):5659–5664. doi:10.1016/j.tet.2018.07.041

107. Zhao C, Fu P, Zhang Y, Liu X, Ren F, Che Y. Sporulosol, a new ketol from the fungus Paraconiothyrium sporulosum. Molecules. 2018;23(6):1263. doi:10.3390/molecules23061263

108. Liu X, Qu L, Yang X, et al. New naphtho-g-pyrones isolated from marine-derived fungus Chaetomium microcephalum. Mar Drugs. 2016;14(7):1336–1338. doi:10.3390/md14071336

109. Zhang et al. Isolation, purification, and characterization of novel antimicrobial compound 7-methoxy-2,2-dimethyl-4-octa-4,6-dienyl-2H-naphthalene-1-one from Penicillium sp. and its cytotoxicity studies. AMB Express. 2015;5(1):1–13. doi:10.1186/s13568-015-0120-9

110. An Y, Zhu H, Deng S, et al. New butenolides and cyclopentenones from saline soil-derived fungus Penicillium sp. HT-28. Appl Biochem Biotechnol. 2014;173(8):1963–1976. doi:10.1007/s12010-014-0979-y

111. Ma LY, Zhang HB, Kang HH, et al. New butenolides and cyclopentenones from saline soil-derived fungus Penicillium sp. HT-28. Appl Biochem Biotechnol. 2014;173(8):1963–1976. doi:10.1007/s12010-014-0979-y

112. Xu Y, Tian S, Yu H, Yang W, Zhu H. Two new compounds isolated from Aspergillus aculeatus. Chem J Chin Universities. 2015;36(6):1107–1111.

113. Zhao C, Fu P, Zhang Y, Liu X, Ren F, Che Y. Sporulosol, a new ketol from the fungus Paraconiothyrium sporulosum. Molecules. 2018;23(6):1263. doi:10.3390/molecules23061263

114. Phainuphong P, Rukachaisirikul V, Tadpetch K, et al. Antimicrobial compound 6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one from a mangrove-derived fungus Fusarium solani. J Antibiotics. 2018;71(10):961–969. doi:10.1093/antibiotics/acy134

115. Zhao C, Fu P, Zhang Y, Liu X, Ren F, Che Y. Sporulosol, a new ketol from the fungus Paraconiothyrium sporulosum. Molecules. 2018;23(6):1263. doi:10.3390/molecules23061263

116. Phainuphong P, Rukachaisirikul V, Tadpetch K, et al. g-Butenolide and furanone derivatives from the soil-derived fungus Cephalotrichum microsporum sp. PSU-PSF14. Tetrahedron. 2018;74(39):5659–5664. doi:10.1016/j.tet.2018.07.041

117. Form IC, Bonus M, Gohlke H, Lin W, Daletos G, Proksch P. Xanthone, benzophenone and bianthrone derivatives from the hypersaline lake-shore derived fungus Penicillium sp. PSU-RSPG37. Phytochem Lett. 2013;6(3):495–497. doi:10.1016/j.phytol.2013.06.008

118. Choochuay J, Xu X, Rukachaisirikul V, et al. Curvularin derivatives from the soil-derived fungus Aspergillus polyporicola PSU-RSPG204. Tetrahedron. 2017;73(40):5920–5925. doi:10.1016/j.tet.2017.08.039

119. Zhai MM, Qi FM, Li J, et al. Isolation of secondary metabolites from the soil-derived fungus Clonostachys rosea YRS-06, a biological control agent, and evaluation of antibacterial activity. J Agric Food Chem. 2016;64(11):2298–2306. doi:10.1021/acs.jafc.6b00556

120. Xu GB, Yang T, Bao JK, Fang DM, Li GY. Isochaetomium A2, a new bis(naphthodihydropyran-4-one) with antimicrobial and immunological activities from fungus Chaetomium microcephalum. Arch Pharm Res. 2014;37(5):575–579. doi:10.1007/s12272-013-0206-3
121. Chen M, Shen NX, Chen ZQ, Zhang FM, Chen Y. Penicilones A-D. Anti-MRSA azaphilones from the marine-derived fungus Penicillium janthinellum HK-1-6. J Nat Prod. 2017;80(4):1081–1086. doi:10.1021/acs.jnatprod.6b01179

122. Ren J, Ding SS, Zhu A, Cao F, Zhu HJ. Bioactive azaphilone derivatives from the fungus Talaromyces aculeatus. J Nat Prod. 2017;80(8):2199–2203. doi:10.1021/acs.jnatprod.7b00032

123. Pang YW, Zhang LJ, Fang JS, et al. Two new antitumor constituents from a soil fungus Curvularia inaequalis (strain HS-FG-257). J Antibiot. 2013;66(5):287–289. doi:10.1038/ja.2012.128

124. Liu YP, Chen G, Wang HF, Zhang XL, Pei YH. Two new compounds from the fungus Penicillium crustosum YN-HT-15. J Asian Nat Prod Res. 2014;16(3):281–284. doi:10.1080/10286020.2013.867581

125. He J, Xu H, Yang L, et al. New isoumarins and related metabolites from Talaromyces flavus. Nat Prod Commun. 2016;11(6):805–808. doi:10.1177/193457581601100627

126. Zhang TY, Wu YY, Zhang MY, et al. New antimicrobial compounds produced by Seltsamia galinosgissi sp. nov., isolated from Galinoga parasite as potential inhibitors of FxsZ. Sci Rep. 2019;9(1):8319. doi:10.1038/s41598-019-44810-5

127. Orfali R, Perveen S. Secondary metabolites from the fungus Penicillium crustosum YN-HT-15. J Nat Prod. 2014;77(5):1103–1107. doi:10.1021/acs.jnatprod.3b00322

128. Zhang YW, Wang J, Xiang W, Liu Q, Wang X. A new benzoic acid derivative from a soil fungus Curvularia inaequalis strain HS-FG-257. Nat Product Res Dev. 2012;24(10):1331–1334.
154. Akone S, Rahn S, Henrich B, et al. 2-Pentenedioic acid derivatives from a soil-derived fungus Gongronella butleri. Phytochem Lett. 2014;10:184–188. doi:10.1016/j.phytol.2014.09.001

155. Liu WZ, Ma LY, Liu DS, et al. Peniciketals A-C, new spiroketals from saline soil derived Penicillium raistrichii. Org Lett. 2014;16(1):90–93. doi:10.1021/ol403076s

156. Masaphy S. A novel echinocandin MIG0310 with anticandida activity from newly isolated Fusarium sp. strain MS-R1. J Appl Microbiol. 2014;116(6):1458–1464. doi:10.1111/jam.12493

157. Hannmerschmidt L, Aly AH, Abdel-Aziz M, et al. Cytotoxic acyl amides from the soil fungus Gymnascella dankaliensis. Bioorg. Med Chem. 2015;23(4):712–719. doi:10.1016/j.bmc.2014.12.068

158. Ahmad B, Rizwan M, Rauf A, et al. Isolation and structure elucidation, molecular docking studies of scelrotiumol from soil borne fungi Sclerotium rolfsii and their reversal of multidrug resistance in mouse lymphoma cells. Asian Pacific J Cancer Prevention. 2016;17(4):2083–2087. doi:10.7314/APJCP.2016.17.4.2083

159. Fu Y, Wu P, Xue J, Wei X, Li H. Versicorin, a new lovastatin analogue from the fungus Aspergillus versicolor SC0156. Nat Prod Res. 2015;29(14):1363–1368.

160. Phamuphong P, Rukachaisirikul V, Saithong S, et al. Lovastatin analogues from the soil-derived fungus Aspergillus sclerotiorum PSU-RSG178. J Nat Prod. 2016;79(6):1500–1507. doi:10.1021/acs.jnatprod.5b00961

161. Wang Q, Yang X, Miao C, et al. A new pair of pentaketide diastereoisomers from Aspergillus melleus YIM PHI001. Records Natural Products. 2018;12(3):216–221. doi:10.25135/mp.12.17.04.065

162. Liu F, Chen G, Zhang LH, et al. Isolation and structure elucidation of a new compound from the fungus Aspergillus flavipes PJ03-11. Nat Prod Res. 2018;32(1):30–35.

163. Liang ZY, Shen NX, Zheng YY, et al. Two new unsaturated fatty acids from the mangrove rhizosphere soil-derived fungus Penicillium javanicum HK1-22. Bioorg Chem. 2019;93:103331. doi:10.1016/j.bioorg.2019.103331

164. Ding T, Zhou Y, Qin JJ, Yang LJ, Zhang WD, Shen YH. Chemical constituents from wetland soil fungus Penicillium oxalicum GY1. Fitoterapia. 2020;142:104530. doi:10.1016/j.fitote.2020.104530

165. Fan B, Dewapriya P, Li F, et al. Pyrenosetin D, a new pentacyclic decalinoyltetramic acid derivative from the algalcolous fungus Pyrenochaetopsis sp. FVE-087. Mar Drugs. 2020;18(6):281. doi:10.3390/md18060281

166. Pan X, Liu D, Wang J, et al. Peneciraistin C induces caspase-independent autophagic cell death through mitochondrial-derived reactive oxygen species production in lung cancer cells. Cancer Sci. 2013;104(11):1476–1482. doi:10.1111/cas.12253

167. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2–3):155–176. doi:10.1007/s10295-015-0122-5

168. Capon RJ. Extracting value: mechanistic insights into the formation of natural product artifacts - case studies in marine natural products. Nat Prod Rep. 2020;37(1):55–79. doi:10.1039/C9NP00013E

169. Okoro CK, Brown R, Jones AL, et al. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek. 2009;95(2):121–133. doi:10.1007/s10482-008-9295-2