Interactive learning media innovation: utilization of augmented reality and pop-up book to improve user's learning autonomy

H Elmunysah¹, W N Hidayat², and K Asfani³
¹,²,³ Lecturer, Department of Engineering, Universitas Negeri Malang, Malang, Indonesia
¹ hakkun@um.ac.id, ² wahyu.nur.ft@um.ac.id, ³ khoirudin.asfani.ft@um.ac.id

Abstract. This study discusses the design of innovative learning media based on Augmented Reality (AR) and its development for students of Higher Education. Innovative Learning Media is now an important part of improving the quality of learning. Utilization of mobile device technologies such as android tablets and smartphones with camera features to run AR technology is the main point. Several students and expert of learning media were involved in this research and development. Questionnaires are used as measuring instruments. The results of this study are AR-based interactive learning media to improve user's learning autonomy and recommendations for further development.

1. Introduction
Various efforts and treatment to improve the quality of education have been done. This is related to the importance of education which is a vital need in developing the human resources of a nation. These efforts can include improvements in professionalism and pedagogy of teachers, education systems [1] and curricula, and learning facilities. Improvement of learning that needs to be considered is at the learning facility [2][3], especially the utilization of ICT in learning [4-6].

ICT is currently developing significantly. Some aspects of life are also influenced along with the development of technology, starting from the field of economy, politics, culture, art, and education. Especially in education, the advancement of ICT has changed the functioning of conventional books, teachers, and teaching systems. Many innovations are created to have a positive impact on education, such as the use of computers as a means of presentation [7], e-learning to improve students' learning motivation [8], smartphones to support student learning [9-11].

The existence of the smartphone has become an important spotlight. Almost every learner in senior high school and vocational high school to campus/university is a smartphone user. This is in accordance with the survey of smartphone ownership among the students on the history education program that 87% of total students have their own smartphones [12]. Smartphones can help students to learn where and whenever [13]. Therefore, the use of smartphones as a learning medium that capable of supporting the learning is needed to be considered.

2. Learning Innovation Using Smartphone and AR Technology
The use of smartphones as a learning support affects two things [14], namely: (1) improving access to education and (2) encouraging a new learning. One of the new learning that is being developed today is the utilization of AR technology on smartphones. AR is a combination of existing objects in the
virtual world (virtual) into the real world in the form of two dimensions and three dimensions that can be touched, seen, and heard. AR technology enables users to interact with the digital world, where real-world information is displayed in the digital world, and users can interact in the digital world as in the real world [15]. Implementation of the AR application can make learning more interesting [16] and assist students in improving the learning efficiency and the retention of knowledge [17] related to the lesson material they study.

There are 5 reasons why it is important to use AR technology in the field of education with media integration, these are: 1) interactive learning [18], students are able to understand the concept of teaching materials better through interactive learning; 2) portability and low cost [19], learning using AR technology does not require much funding, for teaching materials physically. For example, using prototypes or physical models and illustrations with multimedia animation; 3) flexible and easy to learn [20], students can access teaching materials when and wherever they are, utilizing AR technology; 4) life cycle completed learning [17], the use of AR technology can create a complete learning cycle with a learning experience on AR model that allows for lifelong learning, it is easy to remember for a long time, and integrated with other access media through internet; and 5) improving critical thinking [21], learning by utilizing AR technology is able to support students' critical thinking skills in a more interesting way of learning.

The implementation of media with AR for education is used in assisting the independent learning process. Optimization of AR needs to be done because it has aspects of entertainment that can increase students’ interest in learning and playing as well as projecting it real and involves the interaction of all the five senses. The enjoyments in learning not only increase students’ interest, it can motivate them to become better so as to produce a good learning achievement [22].

AR-based media embodies the current student learning styles that fall within the Z or "digital native" generation, a generation familiar with digital devices and easy to accept integrated learning models with ICT [23]. Z-generation students are equipped with better multitasking skills and are more productive than previous generations [24]. This is due to the fact that currently, ICT facilities, including the internet are very accessible to students, so the Z-generation has a good ability to process much of the information they collect [25]. Therefore, AR implementation in learning can assist students in developing the cognitive ability and technical skills.

3. Design of Prototype Development
This research and development use 4D model which has been developed by Thiagarajan, et al [26]. This model consists of four stages of development, namely define, design, develop, and disseminate. The stages are shown in figure 1.

![Figure 1. The research and development procedures.](image)

3.1. Define
Defining needs is done to establish basic problems in learning as well as the criteria used as a reference in developing the media. This stage is carried out by conducting interviews and surveys on Class of 2016 Informatics Engineering Education’s Students in Malang State University. The result is all students have their own personal smartphone with hardware specifications that are qualified (mid-end) and they are quite proficient in using it. They also gave a positive response to the use of a learning media that was easy to use, interesting, and interactive using 3D animation.
3.2. Design
This stage aims to prepare the prototype of learning media. At this stage the preparation of media and its support components consisting of four steps namely the preparation of materials, the selection of formats/features, and media design. The storyboard design of AR’s application is shown as in figure 2.

3.3. Develop
A Development stage is intended to make the media in accordance with the design that has been done and validate the media so as to produce media that has been revised based on input from test subjects. Furthermore, the effectiveness test and the attractiveness of media in students’ group (group test) to produce tested media (final product). The development and prototype testing stage will be explained further in product development and testing.

3.4. Disseminate
Stages of dissemination are intended to publish media that have been developed to be utilized more widely. Distribution stage is done through international seminar and socialization to the educational community.

4. Product Development and Testing
The prototype developed using several software tools. Augmented Reality was developed using Unity and Vuforia applications. 3D animation for learning is developed using the Blender application. Some things need to be considered in developing software, which is the quality of 3D animation that will be made, with good quality estimation but not too burdensome device, then the size of Android Package (APK) file installer that is not too big.

The purpose of the product testing is to obtain something that can be used for the basis of revisions for the product (prototype) that have been designed to produce tested AR-based learning media products. This product testing uses descriptive design with a focus on needs analysis and field test. The tests will be conducted by a small group of students using questionnaires. Product testing by students group conducted on students who take computer network courses, to get responses from the users, whether the product is made can be used properly and feasible to be used or need to be revised again. Collected data were analyzed using descriptive analysis with formula percentage’s criteria as shown in table 1.

Table 1. Assessment criteria of questionnaire data processing results.
Percentage (%)
1
2
3
4

5. Results
A pop book has been created. AR application to generate 3D animation about computer network learning has also been developed. Several learning materials were selected based on survey results to
students who had studied computer networks. They are given a choice of several chapters in the lesson to choose which learning materials they want to learn by using interactive 3D animation help. A total of 5 learning materials were selected to be discussed and tested for implementation in the development of an AR-based interactive pop book. The five materials include computer network classification (LAN, MAN, and WAN), network transmission media, and network devices.

Pop-up book development is done with the help of a third party with a long working time of approximately one week. As a result, the resulting pop-up book is still less than satisfactory. The 3D display that appears in the book is still not maximized and impressed. So, it needs to be revised again about the 3D form that will appear in the book as an added value in attracting students' interest (figure 3). Furthermore, the AR application testing in the pop-up book by a small group (a class) of 30 students is done using a questionnaire. They were invited to use the application and give feedback through questionnaires. The results are as shown in table 2.

![Figure 3. Displaying 3D Models of Metropolitan Area Network with AR's Application.](image)

Indicator (Sub-indicator’s items)	Min. Score	Max. Score	Avg. Score
Usefulness (6)	40	100	80
Ease of Use (6)	60	100	80
Ease of Learning (3)	20	80	60
Satisfaction (5)	20	80	60
Total Average			67.5

Based on the results, it is known that the average percentage of assessment scores is 67.5, which means that the prototype is quite valid and feasible with partial revisions. The presentation of the results of testing by students shows that the AR application prototype developed has shown the ease of use and good usefulness. This is indicated by the percentage score for both aspects which amounted to 80%. In more depth, the users stated that the application of AR in learning innovation has a better impact. The 3D animation model that is presented has accommodated the user to get a pleasant experience while learning (learning is enjoyment). AR applications are also easy to use, so users can try and use them without finding significant difficulties.

Prototype testing results by users also found several deficiencies, especially in the ease of learning and satisfaction aspects. This is indicated by the lack of resolution of some smartphone layers which causes difficulties in understanding learning material even though it has been packaged in interactive 3-D animation. This results in the satisfaction level of some users who use smartphones with screen resolutions of less than 5" (inches). However, users with smartphones that have screens larger than 5" stated that learning animation can run smoothly and clearly, so it has a fairly good level of satisfaction.

6. Conclusion
This article produces the design of an innovative learning media development by utilizing smartphone technology and augmented reality to improve student learning autonomy. A smartphone isn’t only supporting the learning activity by improving access to education, but also by encouraging new learning in many ways. Augmented reality technology can also improve the function of smartphones
in learning. Thus, the smartphone usage and augmented reality technology utilization in it can enhance student's learning autonomy that will improve the quality of education [27]. Then, the design of the prototype to be developed has been designed in such a way through a preliminary study of the utilization of ICT in education several stages of the development model. Further research will be carried out in the development process based on the design that has been appointed.

References
[1] Vescio V, Ross D and Adams A 2008 A review of research on the impact of professional learning communities on teaching practice and student learning Teaching and Teacher Education24 80-91
[2] Napitulu D, Rahim R, Abdullah D, Setiawan M I, Abdillah L A, Simarmata J, Hidayat R, Nurdiyanto H and Pranolo A 2018 Analysis of student satisfaction toward quality of service facility Journal of Physics: Conference Series954 1-7
[3] Nashiroh P K, Kamdi W and Elmunsyah H 2017 The effectiveness of web-programming module based on scientific approach to train logical thinking ability for students in vocational high school AIP Conference Proceedings1887 020068
[4] Bayne S 2014 What's the matter with ‘technology-enhanced learning’? Learning, Media and Technology40 5-20
[5] Hidayat W N, Muladi and Mizar M A Studi integrasi tik dalam pembelajaran di sekolah menengah kejuruan Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan1 2281-2291
[6] Herlambang A D and Hidayat W N 2016 Edmodo untuk meningkatkan kualitas perencanaan proyek dan efektivitas pembelajaran di lingkungan pembelajaran yang bersifat asinkron Jurnal Teknologi Informasi dan Ilmu Komputer3 180-187
[7] Husain C 2014 Pemanfaatan teknologi informasi dan komunikasi dalam pembelajaran di sma muhammadiyah tarakan Jurnal Kebijakan dan Pengembangan Pendidikan2 184-192.
[8] Harandi S R 2015 Effects of e-learning on students' motivation Procedia - Social and Behavioral Sciences181 423-430
[9] Woodcock B, Middleton A and Nortcliffe A L 2012 Considering the smartphone learner: developing innovation to investigate the opportunities for students and their interest Student Engagement and Experience Journal1 1-15
[10] Mehdipour Y and Zerekhafi H 2013 Mobile learning for education: benefits and challenges International Journal of Computational Engineering Research3 93-101
[11] Sung Y T, Chang K E and Liu T C 2016 The effects of integrating mobile devices with teaching and learning on students' learning' performance: a meta-analysis and research synthesis Computers & Education94 252-275
[12] Azmi M, Joebagio H and Suryani N 2016 Studi pendahuluan pengembangan aplikasi smartphone sebagai alternatif media pembelajaran sejarah Jurnal Vidyakarya31 57-63
[13] Crescente M L and Lee D 2011 Critical issues of m-learning: design models, adoption processes, and future trends Journal of the Chinese Institute of Industrial Engineers28 111-123
[14] Valk J H, Rashid A T and Elder L 2010 Using mobile phones to improve educational outcomes: an analysis of evidence from asia International Review of Research in Open and Distance Learning11 117-140
[15] Sin A K and Zaman H B 2010 Live solar system (LSS): evaluation of an augmented reality book-based educational tool 2010 International Symposium on Information Technology, Kuala Lumpur 1-6
[16] Wahyudi A K 2014 ARca, pengembangan buku interaktif berbasis augmented reality dengan smartphone android Jurnal Nasional Teknik Elektro dan Teknologi Informasi3 96-102
[17] Billinghurst M and Dunser A 2012 Augmented reality in the classroom Computer45 56-63
[18] Jawad S, Habib A and Ali B 2014 Enhanced interactive learning using augmented reality Multi-Topic Conference 272-276
[19] Persefoni K and Tsinakos A 2015 Use of augmented reality in terms of creativity in school learning The14th International Conference on Entertainment Computing 45-53

[20] Cubillo J, Martin S, Castro M and Boticki I 2015 Preparing augmented reality learning content should be easy—an authoring tool for augmented reality learning environments Computer Applications in Engineering Education23 778-789

[21] Wang H Y, Duh H B L, Li N, Lin T J and Tsai C C 2014 An investigation of university students’ collaborative inquiry learning behaviors in an augmented reality simulation and a traditional simulation Journal of Science Education and Technology23 682-691

[22] Asfani K, Suswanto H and Wibawa A P 2017 Influential factors of students’ competence World Transactions on Engineering and Technology Education14 416-420

[23] Singh T K R and Chan S 2014 Teacher readiness on ict integration in teaching-learning: a malaysian case study International Journal of Asian Social Science4 874-885

[24] Ozkan M and Solmaz B Mobile addiction of generation z and its effects on their social lifes: (an application among university students in the 18-23 age group) Procedia - Social and Behavioral Sciences205 92-98

[25] Hargittai E and Hinnant A 2008 Digital inequality: differences in young adults' use of the internet Communication Research35 602-621

[26] Thiagarajan S, Semmel D S and Semmel M L 1974 Instruction development for training teacher of exceptional children (Bloomington Indiana: Indiana Univercity)

[27] Bacca J, Baldiris S, Fabregat R, Graf S dan Kinshuk 2014 Augmented Reality Trends in Education : A Systematic Review of Research and Applications Educational Technology & Society17 133-149