Rota—Baxter operators on a sum of fields
V. Gubarev

Abstract

We count the number of all Rota—Baxter operators on a finite direct sum $A = F \oplus F \oplus \ldots \oplus F$ of fields and count all of them up to conjugation with an automorphism. We also study Rota—Baxter operators on A corresponding to a decomposition of A into a direct vector space sum of two subalgebras. We show that every algebra structure induced on A by a Rota—Baxter of nonzero weight is isomorphic to A.

Keywords: Rota—Baxter operator, (un)labeled rooted tree, 2-coloring, subtree acyclic digraph, transitive digraph.

1 Introduction

Given an algebra A and a scalar $\lambda \in F$, where F is a ground field, a linear operator $R: A \to A$ is called a Rota—Baxter operator (RB-operator, for short) on A of weight λ if the following identity

$$R(x)R(y) = R(R(x)y + xR(y) + \lambda xy)$$

holds for any $x, y \in A$. The algebra A is called Rota—Baxter algebra (RB-algebra).

G. Baxter in 1960 introduced the notion of Rota—Baxter operator [3] as natural generalization of by parts integration formula. In 1960–1970s such operators were studied by G.-C.Rota [19], P. Cartier [10], J. Miller [17], F. Atkinson [2] and others.

In 1980s, the deep connection between constant solutions of the classical Yang—Baxter equation from mathematical physics and RB-operators on a semisimple finite-dimensional Lie algebra was discovered by A. Belavin and V. Drinfel’d [1] and M. Semenov-Tyan-Shanskii [20].

About different connections of Rota—Baxter operators with symmetric polynomials, quantum field renormalization, Loday algebras, shuffle algebra see in the monograph [14] written by L. Guo in 2012.

In the paper, we study Rota—Baxter operators on a finite direct sum $A = F \oplus F \oplus \ldots \oplus F$ of n copies of a field F. We continue investigations fulfilled by S. de Braganca in 1975 [6] and by H. An and C. Bai in 2008 [1]. Since all RB-operators on A of weight zero are trivial [12], i.e., equal to 0, we study only RB-operators on A of nonzero weight λ.

In §2, we formulate some preliminaries about RB-operators, including splitting RB-operators which are projections on a subalgebra A_1 parallel to another one A_2 provided the direct vector space sum decomposition $A = A_1 \oplus A_2$.

In §3, we show that RB-operators on A of nonzero weight λ are in bijection with 2-colored transitive subtree acyclic digraphs (subtree acyclic digraphs were defined by F. Harary et al. in 1992 [15]) or equivalently with labeled rooted trees on $n + 1$ vertices.
with 2-colored non-root vertices. For the last, we apply the result of R. Castelo and A. Siebes [11]. Thus, the number of all RB-operators on A of nonzero weight λ equals $2^n(n+1)^{n-1}$. With the help of the bijection, we show that splitting RB-operators on A of nonzero weight λ are in one-to-one correspondence with labeled rooted trees on $n+1$ vertices with properly 2-colored non-root vertices. We also study the number of all RB-operators and all splitting RB-operators on A up to conjugation with an automorphism of A.

In 2012, D. Burde et al. initiated to study so called post-Lie algebra structures [7]. One of the questions arisen in the area [7, 8, 9] is the following one: starting with a semisimple Lie algebra endowed RB-operator of weight 1 what kind of Lie algebras we will get under the new Lie bracket $[R(x), y] + [x, R(y)] + [x, y]$? Such problems could be stated not only for Lie algebras but also for associative or commutative ones. In §4, we show that every algebra structure induced on a finite direct sum A of fields by a Rota–Baxter operator of nonzero weight is isomorphic to A itself.

2 Preliminaries

Trivial RB-operators of weight λ are zero operator and $-\lambda \text{id}$.

Statement 1 [14]. Given an RB-operator R of weight λ,

a) the operator $-R - \lambda \text{id}$ is an RB-operator of weight λ,

b) the operator $\lambda^{-1}R$ is an RB-operator of weight 1, provided $\lambda \neq 0$.

Given an algebra A, let us define a map ϕ on the set of all RB-operators on A as $\phi(R) = -R - \lambda(R)\text{id}$. It is clear that ϕ^2 coincides with the identity map.

Statement 2 [5]. Given an algebra A, an RB-operator R on A of weight λ, and $\psi \in \text{Aut}(A)$, the operator $R^{(\psi)} = \psi^{-1}R\psi$ is an RB-operator on A of weight λ.

Statement 3 [14]. Let an algebra A to split as a vector space into the direct sum of two subalgebras A_1 and A_2. An operator R defined as

$$R(a_1 + a_2) = -\lambda a_2, \quad a_1 \in A_1, \ a_2 \in A_2,$$

is RB-operator on A of weight λ.

Let us call an RB-operator from Statement 3 as splitting RB-operator with subalgebras A_1, A_2. Note that the set of all splitting RB-operators on an algebra A is in bijection with all decompositions A into a direct sum of two subalgebras A_1, A_2.

Remark 1. Given an algebra A, let R be a splitting RB-operator on A of weight λ with subalgebras A_1, A_2. Hence, $\phi(R)$ is an RB-operator of weight λ and

$$\phi(R)(a_1 + a_2) = -\lambda a_1, \quad a_1 \in A_1, \ a_2 \in A_2.$$

So $\phi(R)$ is splitting RB-operator with the same subalgebras A_1, A_2.

Lemma 1 [5]. Let A be a unital algebra, R be an RB-operator on A of nonzero weight λ. If $R(1) \in F$, then R is splitting.

We call an RB-operator R satisfying the conditions of Lemma 1 as inner-splitting one.
Lemma 2. Let $A = A_1 \oplus A_2$ be an algebra, R be an RB-operator on A of weight λ. Then the induced linear map $P: A_1 \to A_1$ defined by the formula $P(x_1 + x_2) = \Pr_{A_1}(R(x_1))$, $x_1 \in A_1$, $x_2 \in A_2$, is an RB-operator on A_1 of weight λ.

3 RB-operators on a sum of fields

Statement 4. Let $A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$ be a direct sum of copies of a field F. A linear operator $R(e_i) = \sum_{k=1}^{n} r_{ik} e_k$, $r_{ik} \in F$, is an RB-operator on A of weight 1 if and only if the following conditions are satisfied:

(SF1) $r_{ii} = 0$ and $r_{ik} \in \{0, 1\}$ or $r_{ii} = -1$ and $r_{ik} \in \{0, -1\}$ for all $k \neq i$;

(SF2) if $r_{ik} = r_{ki} = 0$ for $i \neq k$, then $r_{il} r_{kl} = 0$ for all $l \notin \{i, k\}$;

(SF3) if $r_{ik} \neq 0$ for $i \neq k$, then $r_{ki} = 0$ and $r_{kl} = 0$ or $r_{il} = r_{ik}$ for all $l \notin \{i, k\}$.

Example. Let $A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$. For $n = 2$, we have 12 cases $\{0, -\text{id}\}$. For $n = 1$, we have only two RB-operators $\{0, -\text{id}\}$. For $n = 2$, we have 12 cases $\{0, -\text{id}\}$.

Remark 2. It follows from (SF3) that $r_{ik} r_{ki} = 0$ for all $i \neq k$. In [1], the statement of Statement 4 was formulated with this equality and (SF1) but without (SF2) and the general version of (SF3). That’s why the formulation in [1] seems to be not complete.

Remark 3. The sum of fields in Statement 4 can be infinite.

In advance, we will identify an RB-operator on A with its matrix.

Let us calculate the number of different RB-operators of nonzero weight λ on $A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$. By Statement 1a, we may assume that $\lambda = 1$. For $n = 1$, we have only two RB-operators $\{0, -\text{id}\}$. For $n = 2$ we have 12 cases $\{0, -\text{id}\}$.

$$
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{pmatrix}, \begin{pmatrix}
-1 & 0 \\
0 & -1 \\
0 & 1 \\
\end{pmatrix}, \begin{pmatrix}
0 & 0 \\
0 & 1 \\
0 & 0 \\
\end{pmatrix}, \begin{pmatrix}
-1 & 0 \\
-1 & -1 \\
0 & 0 \\
\end{pmatrix}, \begin{pmatrix}
-1 & 0 \\
0 & 0 \\
0 & 1 \\
\end{pmatrix}, \begin{pmatrix}
-1 & 0 \\
0 & 0 \\
0 & 0 \\
\end{pmatrix}, \begin{pmatrix}
0 & 0 \\
0 & -1 \\
0 & 0 \\
\end{pmatrix}, \begin{pmatrix}
0 & 0 \\
0 & 1 \\
0 & 0 \\
\end{pmatrix}, \begin{pmatrix}
0 & 0 \\
0 & 1 \\
0 & 0 \\
\end{pmatrix}, \begin{pmatrix}
0 & 0 \\
0 & 1 \\
0 & 0 \\
\end{pmatrix}.
$$

Here we identify an RB-operator with its matrix $R \in M_2(F)$ by the rule $R(e_i) = \sum_{k=1}^{n} r_{ik} e_k$.

For $n = 3$, we have $8 \cdot 16 = 128$ variants $\{0, -\text{id}\}$.
For $n = 4$, computer can help to state that there are exactly 2000 RB-operators of weight 1 on A. Thus, we get the first four terms from the sequence $A097629$ [18].

Theorem 1. Let $A = F e_1 \oplus F e_2 \oplus \ldots \oplus F e_n$ be a direct sum of copies of a field F. The number of different RB-operators on A of nonzero weight λ equals $2^n(n + 1)^{\lambda - 1}$.

Proof. Let R be an RB-operator on A of weight λ. We may assume that $\lambda = 1$. We follow the previous notations. We have 2^n variants to choose the values of the elements $r_{ii}, i = 1, \ldots, n$. The choice of any of them, say r_{ii}, influences only on the possible signs of all elements $r_{ik}, k \neq i$. So, we may put $r_{ii} = 0$ for all i and fix the factor 2^n for the answer.

Now, we want to construct a directed graph G on n vertices by any matrix $R = (r_{ij})_{i,j=1}^n$ with chosen $r_{ii} = 0$. We consider the matrix R as the adjacency matrix of a directed graph G. Let us interpretate conditions (SF2) and (SF3) in terms of digraphs. Firstly, we rewrite (SF3) as two conditions:

(SF3a) if $r_{ik} \neq 0$ for $i \neq k$, then $r_{ki} = 0$;
(SF3b) if $r_{ik} \neq 0$ for $i \neq k$, then $r_{kl} = 0$ or $r_{il} = r_{ik}$ for all $l \notin \{i, k\}$.

The condition (SF3a) says that if we have an edge between two vertices $i \neq k$, then the direction of such edge is well-defined, so, it is a correctness of getting a digraph by the matrix R. In graph theory, the condition (SF3b) is called transitivity, i.e., if have edges $(i, k) \in E$ and $(k, l) \in E$, then we have an edge $(i, l) \in E$.

Secondly, we read the condition (SF2) in terms of digraphs in such way: there are no in G induced subgraphs isomorphic to H with $V(H) = \{i, k, l\}$ and $E(H) = \{(i, l), (k, l)\}$ (see Pict. 1). In [11] the subgraph H was called immorality, thus, a digraph without immoralities is called moral digraph [16].

![Picture 1](image)

Picture 1. The forbidden induced subgraph H on three vertices $\{i, k, l\}$ due to (SF2)

We may reformulate our problem of counting the number N of different RB-operators on A of nonzero weight λ in such way: What is the number of all transitive moral transitive digraphs on n vertices? In terms of [11], the last is the same as the number of
all moral TDAGs on \(n \) vertices, here TDAG is the abbreviation for Transitive Directed Acyclic Graph (we are interested on transitive digraphs which are surely acyclic). In the graph-theoretic context, moral DAGs are known as subtree acyclic digraphs \[15\]. Thus,

\[
N/2^n = \#\{\text{moral TDAGs on } n \text{ vertices}\} = \#\{\text{transitive subtree acyclic digraphs on } n \text{ vertices}\}. \tag{3}
\]

In \[11\], the authors constructed a bijection between the set of moral TDAGs on \(n \) vertices and the set of labeled rooted trees on \(n + 1 \) vertices as follows (see Pict. 2). Define the function \(f(i) \) for a vertex \(i \) by induction. For a source \(i \) (i.e., such a vertex \(i \) that there are no edges \((j, i)\) in a digraph), we put \(f(i) = 0 \). For a not-source vertex \(j \), we may find the unique source \(i \) such that there exists a directed path \(p \) from \(i \) to \(j \). So, we define \(f(j) \) as the length of \(p \). Now, we construct a labeled rooted tree \(T = (U, F) \) by a moral TDAG \(G = G(V, E) \):

\[
U = V \cup \{0\}, \quad F = \{(0, i) \mid f(i) = 0\} \cup \{(i, j) \mid (i, j) \in E, f(i) = f(j) - 1\}.
\]

\begin{center}
\begin{tikzpicture}
\node (1) at (0,0) {1};
\node (2) at (1,0) {2};
\node (3) at (2,2) {3};
\node (4) at (1,-2) {4};
\node (5) at (-2,0) {5};
\draw[->] (1) -- (2);
\draw[->] (1) -- (3);
\draw[->] (2) -- (3);
\draw[->] (2) -- (4);
\draw[->] (5) -- (2);
\node (0) at (3,0) {0};
\node (1) at (4,0) {1};
\node (2) at (5,0) {2};
\node (3) at (6,2) {3};
\node (4) at (5,-2) {4};
\node (5) at (4,0) {5};
\draw[->] (0) -- (1);
\draw[->] (1) -- (2);
\draw[->] (2) -- (3);
\draw[->] (2) -- (4);
\end{tikzpicture}
\end{center}

Picture 2. The corresponding graph \(G \) and tree \(T \) to the RB-operator \(R(e_1) = e_2 + e_3 + e_4, R(e_2) = -e_2 - e_3 - e_4, R(e_3) = -e_3, R(e_4) = 0, R(e_5) = -e_5 \).

Applying the above constructed correspondence, the number of moral TDAGs on \(n \) vertices equals \((n + 1)^{n-1}\) by the Cayley theorem, and so \(N = 2^n(n + 1)^{n-1} \). Theorem is proved.

Below we will apply the easy fact that \(\text{Aut}(A) \cong S_n \). It could be derived, e.g., from the Molin—Wedderburn—Artin theory, in particular from the uniqueness up to a rearrangement of summands of decomposition of a semisimple finite-dimensional associative algebra into a finite direct sum of simple ones.

Corollary 1 \[6\]. Let \(A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n \) be a direct sum of copies of a field \(F \) and \(R \) be an RB-operator on \(A \) of nonzero weight 1. There exists an automorphism \(\psi \) of \(A \) such that the matrix of the operator \(R^{(\psi)} \) in the basis \(e_1, \ldots, e_n \) is an upper-triangular matrix with entries \(r_{ij} \in \{0, \pm 1\} \) and \(r_{ii} \in \{0, -1\} \).
Proof. As we did in the proof of Theorem 1, we define by R a labeled rooted tree T. Define $t = \max\{f(i) \mid i \in V(T)\}$ and $k_j = \#\{i \mid f(i) = j\}$. We may reorder indexes $1, 2, \ldots, n$ by action of a permutation from $S_n \cong \text{Aut}(A)$ in a way such that

$$f(1) = \ldots = f(k_0) = 0,\quad f(k_0 + 1) = \ldots = f(k_0 + k_1) = 1,\ldots\quad f(n - k_t + 1) = \ldots = f(n) = t.$$

Due to the definition of T, we get the upper-triangular matrix. The restrictions on the values of elements immediately follow from Statement 4.

Corollary 2. There is a bijection between the set of RB-operators of nonzero weight λ on $Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$ and

a) the set of 2-colored subtree acyclic digraphs on n vertices;

b) the set of labeled rooted trees on $n + 1$ vertices with 2-colored non-root vertices.

Now, we want to compute the number r_n of RB-operators of nonzero weight λ on $A = Fe_1 \oplus \ldots \oplus Fe_n$ which lie in different orbits under the action of the automorphism group $\text{Aut}(A) \cong S_n$. The group $\text{Aut}(A)$ acts on the set of RB-operators of weight λ in the way described in Statement 2, $\psi: R \rightarrow R^{(\psi)} = \psi^{-1} R \psi$.

In a light of Corollary 2b, we may interpretate the number r_n as the number of unlabeled rooted trees on $n + 1$ vertices with 2-colored non-root vertices. It is exactly the sequence A000151 [18], the first eight values are 2, 7, 26, 107, 458, 2058, 9498, 44947 etc. Let us fix that in advance we will use two colors: white and black, white color corresponds to the case $r_{ii} = 0$ and black color corresponds to $r_{ii} = -\lambda$. Considering the rooted tree T with $n + 1$ vertices, we may assume that the root is colored in the third color, say grey.

Note that the map ϕ acts on a labeled (or unlabeled) rooted tree T on $n + 1$ vertices with 2-colored non-root vertices as follows. The ϕ interchanges a color in every non-root vertex.

Let us describe splitting RB-operators of nonzero weight λ on A.

Theorem 2. An RB-operator R of nonzero weight λ on $A = Fe_1 \oplus \ldots \oplus Fe_n$ is splitting if and only if the corresponding (labeled) rooted tree $T = T(R)$ on $n + 1$ vertices is properly colored.

Proof. Without loss of generality, we put $\lambda = 1$. For simplicity, let us consider the graph $T' = T \setminus \{\text{root}\}$, which is a forest in general case.

Let us prove the statement by induction on n. For $n = 1$, we have either $R = 0$ (the only non-root vertex is white) or $R = -\lambda \text{id}$ (the only non-root vertex is black), both RB-operators are splitting with subalgebras F and (0).

Suppose that we have proved Theorem 2 for all natural numbers less than n. Let a graph T' with n vertices be disconnected, denote by T_1, \ldots, T_k the connected components of T'. So, $A = A_1 \oplus \ldots \oplus A_k$ for $A_s = \text{Span}\{e_j \mid j \in V(T_s)\}$. Define R_s as the induced RB-operator $R|_{A_s}$ (see Lemma 2). By the definition, R is splitting if and only if $A =$
ker(R) + ker(R + id) or equivalently $A_s = \ker(R_s) + \ker(R_s + \text{id})$, $s = 1, \ldots, k$. By the induction hypothesis, we have such decomposition for every s if and only if the coloring of T_s is proper.

Now consider the case when T' is connected. We may assume that e_1 corresponds to the vertex 1, the only source in G, and $\{2, \ldots, k\}$ is the set of all vertices of G with the value of $f(x)$ equal to 1. We also define T_s for $s = 2, \ldots, k$ as the connected component of $T' \setminus \{1\}$ which contains the vertex s. Note that R induces the RB-operator of weight λ on the subalgebra $A_s = \text{Span}\{e_j | j \in V(T_s)\}$ for all s by Lemma 2.

The condition of R to be splitting is equivalent to the condition

$$\text{rank}(R) + \text{rank}(R + \text{id}) = n. \quad (4)$$

Analysing the e_1-coordinate, we have

$$n = \text{rank}(R) + \text{rank}(R + \text{id}) \geq 1 + \text{rank}(R') + \text{rank}(R' + \text{id})$$

for R', the induced RB-operator on the subalgebra $\text{Span}\{e_j | j \geq 2\}$. Thus, $\text{rank}(R') + \text{rank}(R' + \text{id}) = n - 1$, i.e. R' is splitting or equivalently $R|_{A_s}$ is splitting for every $s = 2, \ldots, k$. By the induction hypothesis, the graph $T' \setminus \{1\}$ is properly 2-colored. It remains to prove that the vertices 2, \ldots, k are colored in the same color and the vertex 1 is colored in another one.

Up to the action of ϕ, which preserves the splitting structure of an RB-operator (see Remark 1), we may assume that the vertex 1 is colored in white. Since we know that $\text{rank}(R + \text{id}) = \text{rank}(R' + \text{id}) + 1$, we have to state the equality $\text{rank}(R) = \text{rank}(R')$. So, the condition (4) is fulfilled if and only if the first row $(0, 1, 1, \ldots, 1)$ of the matrix R is linearly expressed via other rows. By the definition of the matrix R, the vertices 2, \ldots, k have to be colored in black. Theorem is proved.

Corollary 3. An RB-operator R of nonzero weight λ on $A = F e_1 \oplus \ldots \oplus F e_n$ is inner-splitting if and only if in $T = T(R)$ all vertices with even value of f are colored in one color and all vertices with odd value of f are colored in another color.

Proof. Up to ϕ, we may assume that $R(1) = 0$. Thus, any vertex with the value of $f(x)$ equal to 0 has to be colored in white. By Theorem 2, $T' = T \setminus \{\text{root}\}$ is properly 2-colored, so, all vertices with the value of $f(x)$ equal to 1 are colored in black, all vertices with the value of $f(x)$ equal to 2 are colored in white and so on.

Now, we collect all our knowledges about all RB-operators (in Table 1) and all nonisomorphic RB-operators (in Table 2) of nonzero weight on a sum of fields $A = F e_1 \oplus F e_2 \oplus \ldots \oplus F e_n$.

We have noticed that the first values of number of splitting RB-operators coincides with the sequence A007830 [18] (in labeled case) and coincides with the sequence A000106 [18] (in unlabeled case). Actually it should be proven for all n.

Remark 4. Counting rooted trees on $n + 1$ vertices with properly 2-colored non-root vertices is not the same as counting properly 2-colored forests on n vertices.
Table 1. Number of RB-operators of nonzero weight on a sum of n fields

Class of RB-operators	Description	formula and OEIS [18]
all	labeled rooted trees on $n + 1$ vertices with 2-colored non-root vertices	$2^n(n + 1)^{n-1}$, A097629, 2.12.128, 2000.41472
splitting	labeled rooted trees on $n + 1$ vertices with properly 2-colored non-root vertices	$2(n + 2)^{n-1}$, A007830, 2.8.50, 432.4802
inner-splitting	labeled rooted trees on $n + 1$ vertices (twice)	$2(n + 1)^{n-1}$, 2·A000272, 2.6.32, 250.2592
non-splitting	labeled rooted trees on $n + 1$ vertices with improperly 2-colored non-root vertices	—, 0.4.78, 1568.36670

Table 2. Number of RB-operators of nonzero weight on a sum of n fields (up to conjugation with an automorphism)

Class of RB-operators	Description	OEIS [18]
all	rooted trees on $n + 1$ vertices with 2-colored non-root vertices	A000151, 2.7.26.107.458
splitting	rooted trees on $n + 1$ vertices with properly 2-colored non-root vertices	A000106, 2.5.12.30.74
inner-splitting	rooted trees on $n + 1$ vertices (twice)	2·A000081, 2.4.8.18.40
non-splitting	rooted trees on $n + 1$ vertices with improperly 2-colored non-root vertices	—, 0.2.14.77.384

Let us write down all non-splitting pairwise nonisomorphic RB-operators for $n = 2, 3$.

Statement 5. Up to ϕ, we have the following non-splitting pairwise nonisomorphic RB-operators

a) for $n = 2$: $R(e_1) = e_2$, $R(e_2) = 0$;

b) for $n = 3$:

(RB1) $R(e_1) = e_2 + e_3$, $R(e_2) = e_3$, $R(e_3) = 0$,

(RB2) $R(e_1) = e_2 + e_3$, $R(e_2) = e_3$, $R(e_3) = -e_3$,

(RB3) $R(e_1) = e_2 + e_3$, $R(e_2) = -e_2 - e_3$, $R(e_3) = -e_3$,

(RB4) $R(e_1) = e_2 + e_3$, $R(e_2) = R(e_3) = 0$,

(RB5) $R(e_1) = e_2 + e_3$, $R(e_2) = -e_2$, $R(e_3) = 0$,

(RB6) $R(e_1) = e_2$, $R(e_2) = R(e_3) = 0$,

(RB7) $R(e_1) = e_2$, $R(e_2) = 0$, $R(e_3) = -e_3$.

Proof. a) Non-splitting case appears only when the graph T' is non-empty and improperly 2-colored. Up to ϕ, we may assume that two vertices are colored in white.
b) Cases (RB1)–(RB3) correspond to improperly 2-colorings of the graph T' with $V(T') = \{1, 2, 3\}$ and $E(T') = \{(1, 2), (2, 3)\}$. Cases (RB4), (RB5) correspond to improperly 2-colorings of the graph T' with $E(T') = \{(1, 2), (1, 3)\}$. Finally, cases (RB6), (RB7) correspond to improperly 2-colorings of the graph T' with $E(T') = \{(1, 2)\}$.

Statement 6. Up to ϕ, we have the following splitting but not inner-splitting pairwise nonisomorphic RB-operators:

a) for $n = 2$: $R(e_1) = -e_1, R(e_2) = 0$;
b) for $n = 3$:
(RB1') $R(e_1) = e_2, R(e_2) = 0, R(e_3) = -e_3$,
(RB2') $R(e_1) = -e_1, R(e_2) = R(e_3) = 0$.

4 RB-induced algebra structures on a sum of fields

Let C be an associative algebra and R be an RB-operator on C of weight λ. Then the space C under the product

$$x \circ_R y = R(x)y + xR(y) + \lambda xy \tag{5}$$

is an associative algebra [14, 13]. Let us denote the obtained algebra as C^R. It is easy to see that $C^{\phi(R)} \cong C^R$.

Let us denote by A_n the n-dimensional algebra with zero (trivial) product.

Theorem 3. Given an algebra $A = Fe_1 \oplus \ldots \oplus Fe_n$ and an RB-operator R of weight λ on A, we have $A^R \cong \begin{cases} A_n, & \lambda = 0, \\ A, & \lambda \neq 0. \end{cases}$

Proof. If $\lambda = 0$, then $R = 0$ [12] and $x \circ_R y = 0$. For $\lambda \neq 0$, we may assume that $\lambda = 1$, since recalling of the product does not exchange the algebraic structure.

Let us prove the statement by induction on n. For $n = 1$, we have either $R = 0$ or $R = -\text{id}$. Due to (5) we get either $x \circ y = xy$ or $x \circ y = -xy$, in both cases $A^R \cong A$.

Suppose that we have proved Theorem 3 for all numbers less n. Let a graph $T' = T'(R)$ with n vertices be disconnected, denote by T_1, \ldots, T_k the connected components of T'. As earlier, we define $A = A_1 \oplus \ldots \oplus A_k$ and $A_s = \text{Span}\{e_j \mid j \in V(T_s)\}$ and define R_s as the induced RB-operator $R_s|_{A_s}$. By the induction hypothesis, $A_s^R \cong A_s$ for every s and so $A = A_1 \oplus \ldots \oplus A_k \cong A_1^R \oplus \ldots \oplus A_k^R = A^R$.

Now consider the case when T' is connected. We may assume that e_1 corresponds to the vertex 1, the only source in G. Note the space $I_1 = \text{Span}\{e_j \mid j \geq 2\}$ is an ideal in A^R which is isomorphic to $Fe_2 \oplus \ldots \oplus Fe_n$ by the induction hypothesis. Up to ϕ, we may assume that the vertex 1 in T' is colored in white and $2, \ldots, t$ is a list of all neighbours of 1 in T'. Let us consider the one-dimensional space I_2 in A^R generated by the vector $a = e_1 - c(2)e_2 - \ldots - c(t)e_t$, where

$$c(i) = \begin{cases} 1, & \text{i is colored in white,} \\ -1, & \text{i is colored in black.} \end{cases}$$
In terms of the matrix entries, $c(i) = 1 + 2r_{ii}$. We may assume that $c(2) = c(3) = \ldots = c(s) = 1$ and $c(s + 1) = \ldots = c(t) = -1$ for some $s \in \{2, \ldots , t\}$.

By (5) we compute the product of a with e_k for $k > t$:

$$a \circ e_k = (e_1 + e_2 + \ldots + e_s - e_{s+1} - \ldots - e_t) \circ e_k$$

$$= R(e_1 + e_2 + \ldots + e_s - e_{s+1} - \ldots - e_t)e_k.$$

Since k is connected with only one vertex from $2, \ldots , t$ (due to (SF2)), say j, we have

$$a \circ e_k = R(e_1 - c(j)e_j)e_k = e_k - c(j)(1 + 2r_{jj})e_k = (1 - (c(j))^2)e_k = 0.$$

Analogously we can check that $a \circ e_k = 0$ for all $k > 1$. Thus, I_2 is an ideal in A^R.

Now, we calculate

$$a \circ a = e_1 \circ (e_1 + e_2 + \ldots + e_s - e_{s+1} - \ldots - e_t)$$

$$= R(e_1)(e_1 + e_2 + \ldots + e_s - e_{s+1} - \ldots - e_t) + e_1$$

$$= (e_2 + \ldots + e_s + e_{s+1} + \ldots + e_t)(e_1 + e_2 + \ldots + e_s - e_{s+1} - \ldots - e_t) + e_1$$

$$= e_1 + e_2 + \ldots + e_s - e_{s+1} - \ldots - e_t = a$$

and so I_2 is isomorphic to F.

Summarising, we have $A^R = I_1 \oplus I_2 \cong (Fe_2 \oplus \ldots \oplus Fe_n) \oplus F \cong A$. Theorem is proved.

Acknowledgements

The main part of the paper was done while working in Sobolev Institute of Mathematics in 2017. The research is supported by RSF (project N 14-21-00065).

References

[1] H. An, C. Bai. From Rota-Baxter Algebras to Pre-Lie Algebras. J. Phys. A (1) (2008), 015201, 19 p.

[2] F.V. Atkinson. Some aspects of Baxter’s functional equation. J. Math. Anal. Appl. 7 (1963) 1-30.

[3] G. Baxter. An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10 (1960) 731–742.

[4] A.A. Belavin, V.G. Drinfel’d. Solutions of the classical Yang–Baxter equation for simple Lie algebras. Funct. Anal. Appl. (3) 16 (1982) 159–180.

[5] P. Benito, V. Gubarev, A. Pozhidaev. Rota–Baxter operators on quadratic algebras. Mediterr. J. Math. 15 (2018), 23 p. (N189).
[6] S.L. de Bragança. Finite Dimensional Baxter Algebras. Stud. Appl. Math. (1) 54 (1975) 75–89.

[7] D. Burde, K. Dekimpe and K. Vercaemmen. Affine actions on Lie groups and post-Lie algebra structures. Linear Algebra Appl. (5) 437 (2012) 1250–1263.

[8] D. Burde, K. Dekimpe. Post-Lie algebra structures and generalized derivations of semisimple Lie algebras. Mosc. Math. J. (1) 13 (2013) 1–18.

[9] D. Burde, V. Gubarev. Rota—Baxter operators and post-Lie algebra structures on semisimple Lie algebras. Commun. Algebra (accepted), arXiv:1805.05104 [RA], 18 p.

[10] P. Cartier. On the structure of free Baxter algebras. Adv. Math. 9 (1972) 253–265.

[11] R. Castelo and A. Siebes. A characterization of moral transitive acyclic directed graph Markov models as labeled trees. J. Stat. Plan. Inf. 115 (2003) 235–259.

[12] V. Gubarev. Rota—Baxter operators on unital algebras. arXiv.1805.00723v2, 37 p.

[13] V. Gubarev, P. Kolesnikov. Embedding of dendriform algebras into Rota—Baxter algebras. Cent. Eur. J. Math. (2) 11 (2013) 226–245.

[14] L. Guo. An Introduction to Rota—Baxter Algebra. Surveys of Modern Mathematics, vol. 4, Int. Press, Somerville (MA, USA); Higher education press, Beijing, 2012.

[15] F. Harary, J. Kabell, F. McMorris. Subtree acyclic digraphs. Ars Combin. 34 (1992) 93–95.

[16] S. Lauritzen. Graphical Models. Oxford: Oxford University Press, 1996.

[17] J.B. Miller. Baxter operators and endomorphisms on Banach algebras. J. Math. Anal. Appl. 25 (1969) 503–520.

[18] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, http://oeis.org.

[19] G.-C. Rota. Baxter algebras and combinatorial identities. I. Bull. Amer. Math. Soc. 75 (1969) 325–329.

[20] M.A. Semenov-Tyan-Shanskii. What is a classical r-matrix? Funct. Anal. Appl. 17 (1983) 259–272.

Vsevolod Gubarev
University of Vienna
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
Sobolev Institute of mathematics
Acad. Koptyug ave. 4, 630090 Novosibirsk, Russia
e-mail: vsevolod.gubarev@univie.ac.at