UPPER BOUNDS FOR BERGMAN KERNELS ASSOCIATED TO POSITIVE HERMITIAN LINE BUNDLES WITH SMOOTH METRICS

MICHAEL CHRIST

Abstract. Off-diagonal upper bounds are established away from the diagonal for the Bergman kernels associated to high powers L^λ of holomorphic line bundles L over compact complex manifolds, asymptotically as the power λ tends to infinity. The line bundle is assumed to be equipped with a Hermitian metric with positive curvature form, which is C^∞ but not necessarily real analytic. The bounds are of the form $\exp(-h(\lambda) \sqrt{\lambda \log \lambda})$ where $h \to \infty$ at a non-universal rate. This form is best possible.

1. Introduction

1.1. The setting. Let X be a compact complex manifold, without boundary. Let X be equipped with a C^∞ Hermitian metric g, along with the metrics on the bundles $B^{(p,q)}(X)$ of forms of bidegree (p,q) induced by g, and the volume form on X associated to the induced Riemannian metric. Denote by $\rho(z,z')$ the Riemannian distance from $z \in X$ to $z' \in X$.

Let L be a positive holomorphic line bundle over X. Let L be equipped with a C^∞ Hermitian metric ϕ whose curvature is positive at every point. ϕ is not assumed to be real analytic.

For each positive integer λ, let the line bundle L^λ be the tensor product of λ copies of L. L^λ inherits from ϕ a Hermitian metric in a natural way; if $v \in L_z$ then the λ-fold tensor product $v \otimes v \otimes \cdots \otimes v$ satisfies $|v \otimes v \otimes \cdots \otimes v| = |v|^\lambda$.

Let $L^2_\lambda = L^2(X, L^\lambda)$ be the Hilbert space of equivalence classes of all square integrable Lebesgue measurable sections of L^λ. Likewise there are the Hilbert spaces $L^2(X, B^{(0,q)} \otimes L^\lambda)$. Let H^2_λ be the closed subspace of L^2_λ consisting of all holomorphic sections. The Bergman projection is defined to be the orthogonal projection B_λ from L^2_λ onto H^2_λ. The Bergman kernel $B_\lambda(z,z')$ is the associated distribution-kernel; $B_\lambda(z,z')$ is a complex linear endomorphism from the fiber $L^2_{z'}$ to the fiber L^2_z.

A great deal is known concerning the nature of these Bergman kernels. In particular, detailed asymptotic expansions are known near the diagonal $z = z'$, that is, when $\rho(z,z')$ is bounded by a constant multiple of $\lambda^{-1/2}$. See for instance [1, 6, 20, 23] as well as the related work [5] of Boutet de Monvel and Sjöstrand on the Bergman and Szegö kernels associated to domains in \mathbb{C}^{n+1}. This paper is concerned with upper bounds when z, z' are far apart, that is, behavior for large λ when $\rho(z,z')$ is bounded below by a positive quantity independent of λ. If ϕ and g are real analytic, then

Date: June 17, 2013.

The author was supported in part by NSF grant DMS-0901569.
for large λ, $|B_\lambda(z, z')| \leq C_\delta e^{-c_\delta \lambda}$ whenever $\rho(z, z') \geq \delta > 0$, where $C_\delta < \infty$ and $c_\delta > 0$ are independent of λ. This is interpreted in the theory of Bleher, Shiffman and Zelditch \cite{3, 16} of random zeroes of sections of L^λ as an exponentially small upper bound on the degree of correlation between zeros at distinct points.

1.2. **Subexponential off-diagonal decay.** It was shown in \cite{9} that this exponential decay fails to hold, in general, if ϕ is merely infinitely differentiable. More quantitatively, for any function h satisfying $h(t) \to \infty$ as $t \to +\infty$ there exists \cite{9} an example for which

$$\limsup_{\lambda \to \infty} \sup_{\rho(z, z') \geq \delta} e^{h(\lambda) \sqrt{\lambda \log \lambda}} |B_\lambda(z, z')| = \infty$$

for all $\delta > 0$. In this paper we establish an upper bound which dovetails with these lower bounds.

Theorem 1. Let L be a positive holomorphic line bundle over a compact complex manifold X. Let there be given a C^∞ positive metric on L with strictly positive curvature form, and a C^∞ Hermitian metric on X. For any $\delta > 0$ there exist $\Lambda < \infty$ and a function h satisfying $h(\lambda) \to \infty$ as $\lambda \to \infty$ such that for all $z, z' \in X$ satisfying $\rho(z, z') \geq \delta$,

$$|B_\lambda(z, z')| \leq e^{-h(\lambda) \sqrt{\lambda \log \lambda}} \quad \text{for all } \lambda \geq \Lambda.$$

The analysis below of B_λ is based on its connection with the fundamental solution of a partial differential operator, \Box_λ. Denote by $\bar{\partial}^*_\lambda$ the usual Dolbeault operator, mapping sections of $B^{(0,q)} \otimes L^\lambda$ to sections of $B^{(0,q+1)} \otimes L^\lambda$. Denote by $\bar{\partial}^*_\lambda$ its formal adjoint, with respect to the Hilbert space structures L^2_λ defined above. Define

$$\Box_\lambda = \begin{cases} \bar{\partial}^*_\lambda \bar{\partial}^*_\lambda + \bar{\partial}^*_\lambda \partial^*_\lambda & \text{for } n > 1, \\ \bar{\partial}^*_\lambda \partial^*_\lambda & \text{for } n = 1, \end{cases}$$

acting on sections of $B^{(0,1)} \otimes L^\lambda$. For each λ, \Box_λ is an elliptic second-order linear system of partial differential operators with C^∞ coefficients. When it is expressed in local coordinates, its coefficients are $O(\lambda^2)$ in any C^N norm.

Because the metric ϕ is positive, there exists a constant $c > 0$ such that for all sufficiently large $\lambda \in \mathbb{N}$,

$$\langle \Box_\lambda u, u \rangle \geq c\lambda \|u\|^2_{L^2}$$

for all twice continuously differentiable sections u of $B^{(0,1)} \otimes L^\lambda$. This bound is deduced from a well-known integration by parts calculation \cite{13}. Because of this lower bound and because \Box_λ is formally self-adjoint and elliptic, there exists a unique self-adjoint bounded linear operator G_λ on $L^2(X, B^{(0,1)} \otimes L^\lambda)$ satisfying $\Box_\lambda \circ G_\lambda = I$, the identity operator.

The operator B_λ is related to \Box_λ by

$$B_\lambda = I - \bar{\partial}^*_\lambda \circ G_\lambda \circ \bar{\partial}^*_\lambda.$$

Thus the Bergman kernel is expressed in terms of certain derivatives of the distribution-kernel for the operator G_λ. We denote this distribution-kernel by $G_\lambda(z, z')$. Because
G_λ(z, z') is a solution of \(\Box_G \lambda = 0 \) with respect to the variable \(z \) and its complex conjugate is a solution of the same equation with respect to \(z' \), elliptic regularity theory guarantees that \(G_\lambda(z, z') \) is a \(C^\infty \) function of \((z, z') \) on the complement of the diagonal.

We will show that \(G_\lambda(z, z') = O(e^{-h(\lambda)\sqrt{\lambda\log \lambda}}) \) for \((z, z') \) at any positive distance from the diagonal. The corresponding bound holds for those partial derivatives that express the distribution-kernel for \(\partial_\lambda \circ G_\lambda \circ \bar{\partial}_\lambda \) at \((z, z') \) will be an easy consequence.

For real analytic metrics, the Bergman kernel is \(O(e^{-c\lambda}) \) away from the diagonal. Combining the result established here with that of [9], one knows that for \(C^2 \) metrics, decay can in some instances be essentially as slow as \(e^{-h(\lambda)\sqrt{\lambda\log \lambda}} \), but is never slower. Zelditch has raised the question of which, or what, behavior is typical, and whether properties of the metric can be inferred from the off-diagonal decay rate of the associated Bergman kernels. This issue will be examined in [10].

1.3. Orientation

A weaker upper bound \(|B_\lambda(z, z')| \leq e^{-c\sqrt{\lambda}}\), valid whenever \(\rho(z, z') \geq \delta \), is a simple consequence of (1.4), and requires only \(C^2 \) or even \(C^{1,1} \) regularity of \(\phi \).

In the context of global analysis on \(\mathbb{C}^1 \), this was shown in [9]. For positive line bundles over complex manifolds, it was noted by Berndtsson [2]. Closely related results are found in works of Delin [11] and Lindholm [15]. The novelty in Theorem 1 is a double improvement of the exponent, from \(c\sqrt{\lambda} \) to \(h(\lambda)\sqrt{\lambda\log \lambda} \).

To establish the weaker bound, consider any real-valued auxiliary weight \(\psi \in C^2(X) \). For any \(\varepsilon > 0 \) and all sufficiently large \(\lambda \),

\[
|B_\lambda(z, z')| \leq e^{-c\sqrt{\lambda}}
\]

for all sections \(u \in C^2(X, B^{(0,1)}) \), where \(C \) depends on the \(C^2 \) norm of \(\psi \). This is \(\geq \|u\|^2 \) for all sufficiently large \(\lambda \), provided that \(\varepsilon \) is chosen to be sufficiently small as a function of \(\|\psi\|_{C^2} \). The inequality (1.6) can alternatively be interpreted as a weighted inequality for the inverse operator \(\Box_\lambda^{-1} \), with weight \(e^{2\varepsilon\sqrt{\lambda\psi}} \). Whenever \(U, U' \) are disjoint sets satisfying distance \((U, U') \geq \delta > 0 \), by choosing \(\psi \) so that \(\psi \geq 1 \) on \(U' \) and \(\psi \leq 0 \) on \(U \) we conclude that \(\Box_\lambda^{-1} \) maps \(L^2(U) \) to \(L^2(U') \), where these norms are defined without reference to the auxiliary weight \(\psi \), with operator norm \(O(e^{-c\sqrt{\lambda}}) \).

2. Variants

Here are two variants of Theorem 1 concerning metrics \(\phi \) with more limited regularity. For simplicity we continue to assume that the underlying Hermitian/Riemannian metric on \(X \) itself is \(C^\infty \).
Theorem 2. Let \(n \geq 1 \), let \(X \) be a compact complex manifold, and let \(L \) be a positive holomorphic line bundle over \(X \). Let \(\delta > 0 \). There exist a positive integer \(N_0 \) and \(\eta > 0 \) such that for every \(N \geq N_0 \) and every \(C^N \) metric on \(L \) with positive curvature there exists \(\Lambda \) such that

\[
|B_\lambda(z, z')| \leq e^{-\eta \sqrt{N \lambda \log \lambda}},
\]

whenever \(\rho(z, z') \geq \delta \) and \(\lambda \geq \Lambda \).

A natural question is whether the indicated dependence on \(N \), as \(N \to \infty \), is optimal. The construction in [9] could be used to obtain a bound in the opposite direction; we have not reexamined the details to determine whether it shows that the bound obtained here is optimal. A proof of Theorem 2 is implicit in the proof given below of Theorem 1; it is simply a matter of tracing the dependence on \(N \) of the auxiliary parameter \(A \) introduced in that proof.

The following variant is not proved in this paper, but could be established by augmenting the method used here with a more precise version of Lemma 6, below. Such a refinement can be established by arguments closely related to those in [8]. For \(\alpha \in (0, 1) \) let \(C^{2, \alpha} \) denote the class of all \(C^2 \) functions whose second order partial derivatives are all Hölder continuous of order \(\alpha \).

Claim. Let \(n \geq 1 \) and \(\alpha \in (0, 1) \). Let \(L \) be a holomorphic line bundle over a compact complex manifold \(X \) of complex dimension \(n \). Let there be given a positive metric of regularity class \(C^{2, \alpha} \) on \(L \), and a \(C^\infty \) Hermitian metric on \(X \). Then for each \(\delta > 0 \) there exist \(\Lambda < \infty \) and \(\eta > 0 \) such that for all \(\lambda \geq \Lambda \) and for any open sets \(U, U' \subset X \) satisfying \(\rho(U, U') \geq \delta \), for any section \(f \in L^2(X, L^\lambda) \) supported in \(U' \),

\[
\|B_\lambda f\|_{L^2(U)} \leq e^{-\eta \sqrt{\lambda \log \lambda}} \|f\|_{L^2}.
\]

These \(L^2 \) norms are computed with respect to the weight \(\phi \). The proof uses Taylor expansion of degree 2, rather than of high degree.

3. Unweighted bounds and twisted operators

It will be convenient to work in an equivalent framework, in a coordinate patch in \(X \), in which \(L \) is trivial and norms are defined by integrals without \(\lambda \)-dependent weights, but the underlying operators \(\bar{\partial}_\lambda, \Box_\lambda \) are twisted. This framework is more natural for discussion of regularity.

Let \(U \) be a small coordinate patch on \(X \), over which \(L \) may be identified with \(\mathbb{C} \). Functions and differential forms may be regarded as scalar–valued. For each \(q \), \(\bar{\partial}_\lambda \), mapping sections of \(B^{(0, q)} \otimes L^\lambda \) over \(U \) to sections of \(B^{(0, q+1)} \otimes L^\lambda \) over \(U \), is naturally identified with the standard Cauchy-Riemann operator \(\bar{\partial} \), which maps sections of \(B^{(0, q)} \) to sections of \(B^{(0, q+1)} \).

\(\phi \in C^\infty \) is \(\mathbb{R} \)-valued, and the positive curvature assumption means precisely that its complex Hessian matrix \((\partial^2 \phi/\partial z_j \partial \bar{z}_k) \) is strictly positive definite at each point of \(U \). The \(C^\infty \) Hermitian metric \(g \) given for \(X \) is interpreted as a \(C^\infty \) Hermitian metric on \(U \), and gives rise to a volume form, expressed as a measure \(\mu \) on \(U \), which is a smooth nonvanishing multiple of Lebesgue measure on \(\mathbb{C}^n \). It also gives rise, for each \(q \), to a \(C^\infty \) metric on \(B^{(0, q)} \) over \(U \). The \(L^2 \) norm squared of a section of \(B^{(0, q)} \) over \(U \),
regarded as a scalar-valued function f, is expressed as $\int_U |f(z)|^2 e^{-2\lambda\phi(z)} \, d\mu(z)$, where $|f(z)|$ is measured according to g.

Substituting $fe^{-\lambda\phi} = u$, the norm squared of f with respect to the weight ϕ becomes $\|f\|_2^2 = \int_U |u(z)|^2 \, d\mu(z)$; there is no weight in this integral. Moreover

$$e^{-\lambda\phi} \overline{\partial} f = e^{-\lambda\phi} \overline{\partial} (ue^{\lambda\phi}) = \overline{\partial} u + \lambda au$$

where $a = \overline{\partial} \phi \in C^\infty$. For each η define

$$\overline{D}_\lambda = e^{-\lambda\phi} \circ \overline{\partial} \circ e^{\lambda\phi} = \overline{\partial} + \lambda a \cdot.$$

This is a first-order linear partial differential operator with smooth coefficients, but with a zero-th order term proportional to the large parameter λ. The formal adjoint(s) \overline{D}_λ^* are defined with respect to the given metric g and associated volume form. These data are assumed to be only C^∞, rather than C^ω, but their potential lack of analyticity is less significant than that of ϕ because they are not multiplied by the large parameter λ.

Define

$$\Delta_\lambda = \begin{cases} \overline{D}_\lambda \overline{D}_\lambda^* + \overline{D}_\lambda^* \overline{D}_\lambda & \text{for } n > 1, \\ \overline{D}_\lambda \overline{D}_\lambda^* & \text{for } n = 1, \end{cases}$$

acting on $(0,1)$ forms over U. Under these identifications,

$$\Delta_\lambda = e^{-\lambda\phi} \circ \Box_\lambda \circ e^{\lambda\phi}.$$

The function

$$G_\lambda(z,w) = e^{-\lambda\phi(z) + \lambda\phi(w)} G_\lambda(z,w)$$

represents a fundamental solution for Δ_λ with pole at w, in the usual sense. This is a section of the complex endomorphism bundle of $B^{(0,1)}$ over $U \times U$ minus the diagonal; in this local coordinate system, it is a matrix-valued function. Its size $|G_\lambda(z,w)|$ is defined with respect to given smooth metrics which do not depend on λ, so upper bounds with respect to these metrics are uniformly equivalent to upper bounds with respect to the standard metrics on these bundles.

Theorem 1 is therefore equivalent to an upper bound for all (z,w) in $U \times U$ minus the diagonal of the form

$$|G_\lambda(z,w)| \leq e^{-\frac{A}{\sqrt{\lambda}} \log \lambda} \quad \text{for all } \lambda \geq \Lambda(\delta,A),$$

with corresponding upper bounds for all first and second-order derivatives of G_λ with respect to z,w in this same region.

4. A NEAR-DIAGONAL UPPER BOUND

Theorem 1 which is concerned with the nature of G_λ far from the diagonal, will be derived from a description of G_λ much nearer the diagonal. The main point is the manner in which the bounds depend on λ,A; these bounds are completely independent of the exponent A, provided only that λ exceeds a certain threshold, which does depend on A. The reasoning below will require bounds for derivatives of G_λ, as well as for G_λ itself. These bounds are more naturally expressed in terms of
the twisted kernels G_{λ} introduced above. ∇ will denote the gradient in $\mathbb{C}^n \times \mathbb{C}^n$, with respect to both coordinates z, z'.

Proposition 3. There exist $c_0, A_0 \in \mathbb{R}^+$ such that for any $A \in [A_0, \infty)$ there exists $\Lambda = \Lambda(A) < \infty$ such that for any $\lambda \geq \Lambda$ and any $z, z' \in U$ satisfying

\begin{align}
A_0 \lambda^{-1/2} \log \lambda \leq |z - z'| \leq A \lambda^{-1/2} \log \lambda, \tag{4.1}
\end{align}

$G_{\lambda}(z, z')$ satisfies

\begin{align}
|G_{\lambda}(z, z')| + |\nabla_{z, z'} G_{\lambda}(z, z')| \leq e^{-c_0 \lambda |z - z'|^2}. \tag{4.2}
\end{align}

Here op denotes the operator norm on the Hilbert space $L^2(X, B^{(0,1)} \otimes L^\lambda)$.

As is well understood, there is a natural scale $\asymp \lambda^{-1/2}$ inherent in this situation. In the model situation in which $X = \mathbb{C}^n$ and $\phi(z) \equiv \frac{1}{2} |z|^2$, $|G_{\lambda}(z, z')| \asymp e^{-c_0 \lambda |z - z'|^2} |z - z'|^{2 - 2n}$ for $n > 1$, with the power of $|z - z'|$ replaced by $\log(1/|z - z'|)$ for $n = 1$. Proposition 5 asserts essentially that this model upper bound persists up to a distance which is greater by a multiplicative factor of $A \sqrt{\log \lambda}$ than the natural scaled distance, for arbitrarily large A. The lower bound $|z - z'| \geq A_0 \lambda^{-1/2} \sqrt{\log \lambda}$ is an inessential technicality introduced in order to simplify the statement and proof of the lemma; otherwise the upper bound would have to be modified in order to take the near-diagonal factor $|z - z'|^{2 - n}$ into account.

In the next section we will show how Theorem 1 is an essentially formal consequence of Proposition 3. We will then review and establish foundational results, none of which involve significant novelty, before finally proving the Proposition.

5. The Near-Diagonal Bound Implies the Far-From-Diagonal Bound

$\|T\|_{\operatorname{op}}$ will denote the operator norm of T, as an operator on $L^2(X, B^{(0,1)} \otimes L^\lambda)$. Recall that ρ denotes the Riemannian distance function on X^2. The following obvious statement is at the heart of the construction.

Lemma 4. Let T_1, T_2 be bounded linear operators on $L^2(X, B^{(0,q)} \otimes L^\lambda)$. Let $r_i > 0$ and suppose that for $i = 1, 2$, the distribution-kernel associated to T_i is supported in $\{(z, z') \in X^2 : \rho(z, z') \leq r_i\}$. Then the distribution-kernel associated to $T_1 \circ T_2$ is supported in $\{(z, z') \in X^2 : \rho(z, z') \leq r_1 + r_2\}$.

This will be used to prove:

Lemma 5. Let $A < \infty$ and $\delta > 0$. There exist $C < \infty$ and $\Lambda < \infty$ such that for every $\lambda \geq \Lambda$ there exists a bounded linear map T from the space of L^2 sections of $B^{(0,1)} \otimes L^\lambda$ to itself with these two properties: Firstly, the distribution-kernel for T is supported in $\{(z, z') : \rho(z, z') \leq \delta\}$. Secondly,

\begin{align}
\|T \circ \square_{\lambda} - I\|_{\operatorname{op}} \leq e^{-A \lambda^{1/2} \sqrt{\log \lambda}}. \tag{5.1}
\end{align}

Proof. Choose an auxiliary function $\eta \in C^\infty([0, \infty))$ that satisfies $\eta(x) \equiv 1$ for $x \leq \frac{1}{2}$, and $\eta(x) \equiv 0$ for all $x \geq 1$. Let $A < \infty$. Let P be the operator with distribution-kernel

\[K(z, w) = G_{\lambda}(z, w) \eta(A^{-2} \lambda (\log \lambda)^{-1} \rho^2(z, w)). \]
Thus so that for all sufficiently large \(\lambda\), Proposition 3 holds. In this region, according to Proposition 3,

\[|G_\lambda(z, w)| + |\nabla G_\lambda(z, w)| \leq C\lambda^C e^{-c\lambda A^2 \log \lambda} \leq C\lambda^{C-cA^2}. \]

So in all,

\[|\Box_\lambda (K(z, w) - G_\lambda(z, w))| \leq \lambda^{C-cA^2} \]

for all sufficiently large \(\lambda\), uniformly for all pairs \((z, w)\) in \(X^2\) minus the diagonal. Since \(\Box_\lambda \circ G_\lambda = I\), this is an upper bound for the operator norm of \(\Box_\lambda \circ P - I\). Since both \(\Box_\lambda\) and \(P\) are formally self-adjoint, the same bound holds for \(P \circ \Box_\lambda - I\).

Given \(\delta > 0\), choose \(N\) to be the largest integer such that \(NA\lambda^{-1/2} \log \lambda^{1/2} \leq \delta\). Thus

\[N \approx A^{-1} \lambda^{1/2} (\log \lambda)^{-1/2}. \]

Set

\[E = I - \Box_\lambda \circ P \quad \text{and} \quad T = P \circ \sum_{j=0}^{N-1} E^j \]

so that

\[\Box_\lambda \circ T = I - E^N. \]

Because the distribution-kernel for \(P\) is supported where \(\rho(z, w) \leq A\lambda^{-1/2} \sqrt{\log \lambda}\), the distribution-kernel for \(T\) is supported where

\[\rho(z, w) \leq NA\lambda^{-1/2} \sqrt{\log \lambda} \leq \delta, \]

according to Lemma 4.

Since \(\|E\|_{op} = \|\Box_\lambda \circ P - I\|_{op} \leq \lambda^{C-cA^2}\),

\[\|E^N\|_{op} \leq \lambda^{(C-cA^2)N} \leq \lambda^{(C-cA^2)A^{-1} \lambda^{1/2} (\log \lambda)^{-1/2} \delta} \leq e^{-c' A \lambda^{1/2} \sqrt{\log \lambda}} \]

for all sufficiently large \(A\). \(\square\)

Proof of Theorem 1. Consider any \(z' \neq z'' \in X\). To prove the upper bound for \(B_\lambda(z', z'')\), consider any \(L^2\) section \(f\) of \(B^{(0,1)} \otimes L^\lambda\) that is supported in \(B'' = B(z'', \frac{A}{2} \rho(z', z''))\) and satisfies \(\|f\|_{L^2} \leq 1\). Choose \(T\) as in Lemma 3 with distribution-kernel supported within distance \(\frac{1}{2} \rho(z', z'')\) of the diagonal. Then in \(B' = B(z', \frac{1}{4} \rho(z', z''))\),

\[G_\lambda f = T \Box_\lambda G_\lambda f + O\left(e^{-A\sqrt{\lambda \log \lambda}} \|G_\lambda f\|\right) = Tf + O\left(e^{-A\sqrt{\lambda \log \lambda}} \|f\|\right). \]

Since \(T\) has distribution-kernel supported within distance \(\frac{1}{2} \rho(z, z')\) of the diagonal, \(Tf \equiv 0\) in \(B'\). Therefore

\[G_\lambda f = O\left(e^{-A\sqrt{\lambda \log \lambda}} \|f\|\right) \text{ in } L^2(B') \text{ norm}. \]

Thus as an operator from \(L^2(B'')\) to \(L^2(B')\), \(G_\lambda\) has operator norm \(O(e^{-A\sqrt{\lambda \log \lambda}})\). Because \(G_\lambda(z, w)\) is a solution of elliptic linear partial differential equations with
C^∞ coefficients with respect to both variables z, w, and because the coefficients of those equations are $O(\lambda^2)$ in every C^N norm, it follows from standard bootstrapping arguments that for any N, $G_\lambda \in C^N(B' \times B'')$, with norm $O(e^{-A\sqrt{\log \lambda}})$. Since the Bergman kernel is the distribution-kernel for $I - \bar{\partial}_\lambda G_\lambda \partial_\lambda$, this result with $N = 2$ includes the desired upper bound.\[\square\]

6. Off-the-shelf upper bounds

6.1. Low regularity upper bounds. Thus far the argument has been purely formal. We now state two quantitative estimates on which the proof of Proposition 3 will rely. One concerns metrics with nearly minimal regularity; the other, real analytic metrics. The C^∞ case is intermediate between the two.

Lemma 6. For each $n \geq 1$ there exists $N < \infty$ with the following property. Let L be a positive holomorphic line bundle over a compact complex manifold X of dimension n, equipped with a Hermitian metric ϕ of class C^N. Assume that likewise that X is equipped with a Hermitian metric g of class C^N. Let U, G_λ be as defined above. Then there exists $C < \infty$ such that for all sufficiently large positive integers λ,

$$|G_\lambda(z, z')| + |\nabla G_\lambda(z, z')| \leq (\lambda + |z - z'|^{-1})^C$$

for all $z \neq z' \in U$.

Here ∇ denotes the gradient with respect to both variables z, z'.

Considerably sharper upper bounds can be established, but they will not be needed in the proof of Theorem [8].

Proof. The fact that integration with respect to G_λ defines a bounded operator on $L^2(U, B^{(0,1)})$, uniformly in λ can be interpreted as a weak a priori upper bound for G_λ, as for instance in [8]. Routine localization and bootstrapping arguments, exploiting the ellipticity of Δ_λ and the $O(\lambda^2)$ bounds for its coefficients, lead directly to (6.1). \square

6.2. High regularity upper bounds. We work now in the unweighted twisted framework introduced above. Let $B \subset \mathbb{C}^n$ be any fixed open ball of positive radius, and let $\tilde{B} \subset B$ be an arbitrarily compact subball.

Lemma 7. Let the ball $B \subset \mathbb{C}^n$ be equipped with a C^ω Hermitian metric g. Let L be any holomorphic line bundle over B, equipped with a positive C^ω Hermitian metric ϕ. There exist $\Lambda < \infty$ and $c > 0$ such that for any $\lambda \geq \Lambda$ and any solution u of $\Delta_\lambda u \equiv 0$ on B

$$|u(z)| \leq e^{-c\lambda}\|u\|_{L^2(B)}$$

for all $z \in \tilde{B}$.

Moreover, given a family of such metrics g, ϕ, c may be taken to be independent of g, ϕ, provided that g, ϕ are uniformly C^ω and that the metrics ϕ are uniformly positive.

Positivity of ϕ means that in local coordinates, $\sum_{i,j=1}^n \frac{\partial^2 \phi(z)}{\partial z_i \partial \bar{z}_j} \bar{\zeta}_i \zeta_j \geq a|\zeta|^2$ for all $\zeta \in \mathbb{C}^n$ and all z, for some $a > 0$. We say that a family of metrics ϕ is uniformly positive if a is bounded below by some positive constant uniformly for all elements.
of the family in question. Likewise we say that such a family is uniformly C^ω if there exists $C < \infty$ for which

$$
\left| \frac{\partial^\alpha \phi}{\partial (z, \bar{z})^\alpha} \right| \leq C^{1+|\alpha|} |\alpha|!
$$

uniformly on B for every multi-index α and all metrics ϕ. The same applies to g.

Proof of Lemma 7. This is a consequence of a fundamental result on analytic hypoellipticity of related subelliptic partial differential equations. Consider first the case $n > 1$. Work in $B \times \mathbb{R}$ with coordinates (z, t), and set $U(z, t) = u(z)e^{i\lambda t}$. Then

$$
e^{i\lambda t} \Delta_\lambda u(z) = \bar{\partial}_b U(z, t),$$

where $\bar{\partial}_b$ is a Cauchy-Riemann operator associated to a strictly pseudoconvex CR structure on $B \times \mathbb{R}$; Δ_λ is related to the Kohn Laplacian \square_b for this CR structure by the corresponding equation

$$
e^{i\lambda t} \Delta_\lambda u(z) = \square_b U(z, t).$$

For $n > 1$, \square_b is analytic hypoelliptic on $(0, 1)$ forms, for any C^ω, strictly pseudoconvex CR structure. Proofs of this and/or closely related results can be found in [7], [12], [18], [19], [22]. Identifying $B \subset \mathbb{C}^n$ with a ball in \mathbb{R}^{2n}, we regard $B \times \mathbb{R}$ as a subset of \mathbb{C}^{2n+1}, hence as a totally real submanifold of \mathbb{C}^{2n+1}. Any real analytic function of $(z, t) \in B \times \mathbb{R}$ thus extends holomorphically to a neighborhood in \mathbb{C}^{2n+1}.

Analytic hypoellipticity of \square_b implies such extension, in a quantitative sense: there exist a complex neighborhood Ω of $\breve{B} \times [-1, 1]$ and a constant $C < \infty$ such that any bounded solution U of $\square_b U = 0$ in $B \times (-2, 2)$ extends to a bounded holomorphic function in Ω, and moreover,

$$
sup_\Omega |U| \leq C \sup_{B \times (-2, 2)} |U|.$$

By analytic continuation, any holomorphic extension of $u(z)e^{i\lambda t}$ must take the product form $\tilde{u}(z)e^{i\lambda t}$. For positive λ we then set $t = -i$ to deduce that

$$
sup_B |u(e^{\lambda}) \leq C \sup_B |u|.$$

An examination of any of the proofs [18] [19] [22] of analytic hypoellipticity of \square_b confirms that these provide uniform upper bounds, given uniform upper bounds on the coefficients of $\bar{\partial}_b$ in some fixed coordinate patch, and on the Hermitian metric used to define $\bar{\partial}_b^*$, and given that the hypothesis of strict pseudoconvexity holds in a uniform way. In our setting, the latter amounts to uniform strict positivity of the metric ϕ.

The case $n = 1$ requires an alternative treatment, because $\square_b = \bar{\partial}_b \bar{\partial}_b^*$ fails to be analytic hypoelliptic for three-dimensional CR manifolds. Instead, a variant of analytic hypoellipticity holds in two alternative (but equivalent) forms. One of these

\[1\] The other alternative asserts that u is C^ω, microlocally outside a conic neighborhood of one of the two ray bundles whose union is the characteristic variety of $\bar{\partial}_b$. This implies holomorphic extendibility to an appropriate wedge, and the above reasoning may then be repeated to gain the factor $\exp(-c\lambda)$.

asserts that if \(\bar{\partial} \partial^\ast U = 0 \) then
\[
(6.4) \quad \sup_{\Omega} |\bar{\partial}^\ast U| \leq C \sup_{B \times (-2,2)} (|U| + |\bar{\partial}^\ast U|),
\]
with the same type of uniform dependence of the constant \(C \) on the data as for \(n > 1 \). Together with the reasoning above, this yields the conclusion
\[
(6.5) \quad \sup_{\tilde{B}} |D^\lambda u| \leq e^{-c\lambda} \sup_{B} (|u| + |D^\lambda u|).
\]

The bound for \(u \) itself now follows from Lemma 8 below. \(\Box \)

The justification of the above form of analytic hypoellipticity rests on several facts and results, combined according to an outline introduced by Kohn [14] for the analysis of related questions concerning (weakly) pseudoconvex three-dimensional CR manifolds. Denote by \(\Box = \bar{\partial}_b \partial^\ast b \) the Kohn Laplacian over a strictly pseudoconvex three (real) dimensional CR manifold \(M \). Assume that \(\Box u \in C^\omega \) in an open set.

(i) The analytic wave front set of \(u \) is contained in the characteristic variety of \(\Box \).

(ii) This characteristic variety is a real line bundle over \(M \), thus a union of two ray bundles.

(iii) In a conic neighborhood of one of these two ray bundles, \(\bar{\partial}_b \) is of principal type and satisfies (microlocally) the Poisson bracket hypothesis which ensures analytic hypoellipticity [21], and therefore is microlocally analytic hypoelliptic. The microlocal version of this theorem of Treves follows for instance by the techniques in [17]. Consequently since \(\bar{\partial}_b (\bar{\partial}^\ast_b u) \in C^\omega \), the analytic wave front set of \(\bar{\partial}^\ast_b u \) is disjoint from this ray bundle.

(iv) In a conic neighborhood of the complementary ray bundle, \(\Box \) has double characteristics and satisfies the hypotheses of the theorem of Sjöstrand [18]; see also [12] where more degenerate operators are analyzed by the same techniques. Therefore the analytic wave front set of \(u \), and hence also the analytic wave front set of \(\bar{\partial}^\ast_b u \), are disjoint from this ray bundle.

(v) If a distribution has empty analytic wave front set, then it is analytic.

(vi) These steps can be made quantitative, where appropriate, to justify the stated uniformity.

6.3. Exponential localization for a first-order equation.

Lemma 8. Let \(n \geq 1 \). Let \(U, U' \) be open subsets of \(X \) with \(U \subseteq U' \). There exists \(c > 0 \) such that for all sufficiently large \(\lambda \geq 0 \), and all \(u \in C^1(U') \),
\[
\|u\|_{L^2(U)} \leq C\|D^\lambda u\|_{L^2(U')} + Ce^{-c\lambda}\|u\|_{L^2(U')}.
\]

Proof. It suffices to show that for each \(z_0 \in U \), there exists a neighborhood \(V \) of \(z_0 \) such that \(\|u\|_{L^2(V)} \) satisfies the required upper bound. In a small open set, represent \(D^\lambda = -e^{\lambda\phi}(\partial + a)e^{-\lambda\phi} \) where \(a \in C^\infty \). In a sufficiently small neighborhood it is possible to solve \(\partial \alpha = a \) and thus to write \(D^\lambda = -e^{-\alpha}e^{\lambda\phi}\partial e^{-\lambda\phi}e^\alpha \). Since multiplication by \(e^{\pm\alpha} \) preserves \(L^2 \) norms up to a bounded factor, it suffices to prove the inequality with \(\alpha \equiv 0 \).
It is possible to write, for all z, w in a sufficiently small neighborhood of z_0,
\[\phi(w) = \psi(z, w) + \varphi(z, w) \]
where ψ, φ are C^∞ functions, $\varphi(z, w)$ is an antiholomorphic function of w for each z, and
\[\text{Re} \left(\psi(z, w) \right) \geq \text{Re} \left(\psi(z, z) \right) + c|z - w|^2 \]
for a certain constant $c > 0$. Such a decomposition is obtained by exploiting the Taylor series of order 2 for ϕ at z. Then for each z, when acting on functions of w,
\[D^*_\lambda u(w) = -e^{\lambda\psi(z,w)} \left(\partial e^{-\lambda\psi(z, \cdot^*)} \right) u(w). \]

Let $\eta \in C^\infty(X)$ be a function supported in a neighborhood of z_0 which is contained in a coordinate patch contained in a relatively compact subset of U', within which the above expression for ϕ is valid; and η is identically equal to one in a smaller neighborhood. Then ηu can be regarded as a function defined on \mathbb{C}^1. Let $v = D^*_\lambda (\eta u) = \eta D^*_\lambda u - u\partial \eta$.

Since
\[\partial_w e^{-\lambda\psi(z,w)} (\eta u)(w) = -e^{-\lambda\psi(z,w)} v(w) \]
is a compactly supported continuous function defined on \mathbb{C}^1, for each z sufficiently close to z_0 one may recover $\eta(z)u(z) = u(z)$ by
\[u(z) = -c_0 \int_{\mathbb{C}^1} v(w)(\bar{z} - \bar{w})^{-1} e^{\lambda(\psi(z,z) - \psi(z,w))} dm(w) \]
where m denotes Lebesgue measure on \mathbb{C}^1 and c_0 is a certain constant. Now
\[|e^{\lambda(\psi(z,z) - \psi(z,w))}| = e^{\lambda|\text{Re} \left(\psi(z,z) - \psi(z,w) \right)|} \leq e^{-c|w - z|^2}. \]
Therefore
\[|u(z)| \leq C \int_{\mathbb{C}^1} |z - w|^{-1} |v(w)| e^{-c|w - z|^2} dm(w) \]
\[\leq C \int_{\mathbb{C}^1} \left(|\eta(w)u(w)| + |u(w)\partial \eta(w)| \right) |z - w|^{-1} e^{-c|w - z|^2} dm(w) \]
Since $|z - w|$ is bounded below by a positive quantity uniformly for all z in U and w in the support of $\nabla \eta$, the required bound follows. \(\square\)

7. PROOF OF PROPOSITION 3

7.1. Globalization. We introduce a variant situation in which X is replaced by \mathbb{C}^n and sections of $B^{(0,1)} \otimes L^\lambda$ over X are replaced by sections of $B^{(0,1)}(\mathbb{C}^n)$ over \mathbb{C}^n. This variant will facilitate λ-dependent coordinate changes to be made below.

Let $\varepsilon > 0$ be given. Let U be a relatively compact open subset of a coordinate patch in X. Fix a holomorphic coordinate system on that coordinate patch, and express $D^*_\lambda = e^{-\lambda\phi} \partial e^{\lambda\phi}$ where $\phi \in C^\infty$ is \mathbb{R}-valued, and satisfies the positivity hypothesis
\[\left(\frac{\partial^2 \phi}{\partial z_i \partial \bar{z}_j} \right)_{i,j} \geq c(\delta_{i,j})_{i,j} \]
in the sense of Hermitian forms.

Sections of L^2 over U are thus identified with \mathbb{C}-valued functions in such a way that the L^2 norm squared, over U, of such a section can be expressed as $\int_U |f(z)|^2 \alpha(z) \, d\mu(z)$ where μ is Lebesgue measure on \mathbb{C}^n, $\alpha \in C^\infty(\mathbb{C}^n)$ is bounded above in C^N norm for all N by constants independent of λ, z', z, and $\alpha(z)$ is positive and bounded below by a positive constant independent of λ, z, z'. Extend α to a strictly positive C^∞ function $\tilde{\alpha}$ on \mathbb{C}^n, still with uniform upper and lower bounds. Likewise extend γ to a C^∞ Hermitian metric on \mathbb{C}^n, independent of λ. Assign to $(0, k)$ forms f defined on \mathbb{C}^n the L^2 norm squared $\int_{\mathbb{C}^n} |f(z)|^2 \tilde{\alpha}(z) \, d\mu(z)$ where $|f(z)|$ is measured using this extension of γ.

Fix an auxiliary function $\eta \in C_0^\infty(\mathbb{C}^n)$, supported in $\{z : |z| < 4\}$ and satisfying $\eta(z) \equiv 1$ for $|z| \leq 2$. For each z' in a fixed relatively compact subset $U \Subset U'$, make the affine coordinate change

$$B \times U \ni (\zeta, z') \mapsto (z, z') = (z' + \zeta, z') \in U \times U,$$

where B is the ball of radius ε_0 centered at $0 \in \mathbb{C}^n$. In these coordinates, z' is the origin, $\zeta = 0$. We will work in the variable $z \in B$, suppressing z' in the notation; all estimates will be uniform in $z' \in U$, as the proof will show.

Let Q_2 be the Taylor polynomial of degree 2 for ϕ at $\zeta = 0$. Define

$$\tilde{\phi}(\zeta) = Q_2(\zeta) + \eta(\varepsilon_0^{-1})|\phi(\zeta) - Q_2(\zeta)|.$$

Consider the modified operator $e^{-\lambda \tilde{\phi}} \partial_i e^{\lambda \tilde{\phi}}$, which agrees with $e^{-\lambda \phi} \partial_i e^{\lambda \phi}$ for all sufficiently small ζ, but has the advantage of being defined globally for $\zeta \in \mathbb{C}^n$. For sufficiently large λ,

$$\nabla^2 \tilde{\phi}(z) - \nabla^2 \phi(0) = O(\varepsilon_0)$$

uniformly for all $z \in \mathbb{C}^n$. Therefore it is possible to choose $\varepsilon_0 > 0$ sufficiently small that for all sufficiently large λ, the quadratic form defined by $(\partial^2 \tilde{\phi}(z)/\partial z_i \partial z_j)_{i,j=1}^n$ is bounded below by a strictly positive constant, independent of z and λ. This holds uniformly in $z' \in U$. Choose and fix such a value of ε_0.

Consider the associated operator defined for $n > 1$ by

$$\tilde{\Delta}_\lambda = (e^{-\lambda \tilde{\phi}} \partial_i e^{\lambda \tilde{\phi}})(e^{-\lambda \phi} \partial_i e^{\lambda \phi})^* + (e^{-\lambda \tilde{\phi}} \partial_i e^{\lambda \tilde{\phi}})^*(e^{-\lambda \phi} \partial_i e^{\lambda \phi}),$$

and for $n = 1$ by

$$\tilde{\Delta}_\lambda = (e^{-\lambda \tilde{\phi}} \partial_i e^{\lambda \tilde{\phi}})(e^{-\lambda \phi} \partial_i e^{\lambda \phi})^*,$$

where adjoints are interpreted with respect to the Hilbert space structure on $L^2(\mathbb{C}^n)$ introduced above.

For $n > 1$, for all sufficiently large λ, a well-known computation based on integration by parts \[13\] gives

$$\langle \tilde{\Delta}_\lambda u, u \rangle \geq c\lambda \|u\|_{L^2}^2$$

for all twice continuously differentiable and compactly supported $(0, 1)$ forms u, where $c > 0$ is a positive constant.

For $n = 1$, for all sufficiently large λ,

$$[e^{-\lambda \tilde{\phi}} \partial_i e^{\lambda \tilde{\phi}}, (e^{-\lambda \phi} \partial_i e^{\lambda \phi})^*] \geq c\lambda I,$$
in the sense of operators on $L^2(\mathbb{C}^n)$ with respect to the same Hilbert space structure. Consequently, (7.2) also holds for $n = 1$.

Since $\tilde{\Delta}_\lambda$ is a formally self-adjoint operator, it follows that there exists a bounded linear operator \tilde{G}_λ from $L^2(\mathbb{C}^n, B^{(0,1)})$ to itself such that $\tilde{\Delta}_\lambda \circ \tilde{G}_\lambda$ is the identity operator on $L^2(\mathbb{C}^n, B^{(0,1)})$, and the operator norm of \tilde{G}_λ is $O(\lambda^{-1})$ for all sufficiently large λ.

This inverse is bounded in L^2 operator norm, uniformly for all sufficiently large λ, provided that ε_0 is kept fixed. Lemma 6 also applies to this situation, so the distribution-kernel $\tilde{G}_\lambda(z, 0)$ for \tilde{G}_λ with pole at $\zeta = 0$ satisfies

$$\tag{7.4} |\tilde{G}_\lambda(z, 0)| \leq (\lambda + |z|^{-1})^C$$

for all sufficiently large λ, and the same holds for all of its partial derivatives. These bounds are uniform in λ provided that λ is sufficiently large.

7.2. Gauge change. Denote by p the harmonic part of the Taylor polynomial of $\tilde{\phi}$ of degree 2 at $w = 0$. That is, expand

$$\tilde{\phi}(z) = \tilde{\phi}(0) + \operatorname{Re} \left(\sum_{k=1}^{n} \alpha_k z_k + \sum_{i,j=1}^{n} \beta_{i,j} z_i z_j \right) + \sum_{i,j=1}^{n} \gamma_{i,j} z_i \bar{z}_j + O(|z|^3),$$

and set

$$p(z) = \tilde{\phi}(0) + \operatorname{Re} \left(\sum_{k=1}^{n} \alpha_k z_k + \sum_{i,j=1}^{n} \beta_{i,j} z_i z_j \right).$$

Denote by \tilde{p} the real-valued harmonic conjugate of p, normalized to vanish at 0. Then $[\tilde{\phi}, e^{\lambda p + i \tilde{p}}] = \tilde{\phi}(p + i \tilde{p}) \equiv 0$ and consequently

$$\tag{7.5} e^{-\lambda \tilde{\phi}} \bar{\partial} e^{\lambda \tilde{\phi}} = e^{i \lambda \tilde{p}} e^{-\lambda (\tilde{\phi} - p)} \bar{\partial} e^{\lambda (\tilde{\phi} - p)} e^{-i \lambda \tilde{\phi}}.$$

Likewise

$$\left(e^{-\lambda \tilde{\phi}} \bar{\partial} e^{\lambda \tilde{\phi}} \right)^* = \left(e^{i \lambda \tilde{p}} e^{-\lambda (\tilde{\phi} - p)} \bar{\partial} e^{\lambda (\tilde{\phi} - p)} e^{-i \lambda \tilde{\phi}} \right)^* = e^{i \lambda \tilde{p}} \left(e^{-\lambda (\tilde{\phi} - p)} \bar{\partial} e^{\lambda (\tilde{\phi} - p)} \right)^* e^{-i \lambda \tilde{\phi}}$$

and consequently

$$e^{-\lambda \tilde{\phi}} \bar{\partial} e^{\lambda \tilde{\phi}} \left(e^{-\lambda \tilde{\phi}} \bar{\partial} e^{\lambda \tilde{\phi}} \right)^* + \left(e^{-\lambda \tilde{\phi}} \bar{\partial} e^{\lambda \tilde{\phi}} \right)^* e^{-\lambda \tilde{\phi}} \bar{\partial} e^{\lambda \tilde{\phi}}$$

$$= e^{i \lambda \tilde{p}} \left(e^{-\lambda (\tilde{\phi} - p)} \bar{\partial} e^{\lambda (\tilde{\phi} - p)} \left(e^{-\lambda (\tilde{\phi} - p)} \bar{\partial} e^{\lambda (\tilde{\phi} - p)} \right)^* + \left(e^{-\lambda (\tilde{\phi} - p)} \bar{\partial} e^{\lambda (\tilde{\phi} - p)} \right)^* e^{-\lambda (\tilde{\phi} - p)} \bar{\partial} e^{\lambda (\tilde{\phi} - p)} \right) e^{-i \lambda \tilde{\phi}}.$$

Hence upon replacement of $\tilde{\phi}$ by $\tilde{\phi} - p$ in the definition of \Box_λ, a unitarily equivalent operator on $L^2(\mathbb{C}^n, B^{(0,1)})$ is obtained. Moreover, the absolute value of the distribution-kernel for the inverse of this unitarily equivalent operator is identically equal to $|\tilde{G}_\lambda|$. In deriving upper bounds for $|G_\lambda(z, w)|$, where G_λ is the distribution-kernel for \Box_λ^{-1} on X, we may therefore assume without loss of generality that the harmonic part of the Taylor polynomial of degree 2 for ϕ at w vanishes identically. Likewise, because $\bar{\partial}_\lambda$ and $\bar{\partial}_\lambda^*$ have been conjugated by the unitary multiplicative factor $e^{\tilde{p}}$,
the same assumption can be made when deriving upper bounds for $|\bar{\partial}_x G_\lambda(z, w)|$ and $|\partial_x^* G_\lambda(z, w)|$.

7.3. **Taylor expansion and dilation.** Let $\bar{\phi}$ be as above, and suppose, as we may achieve through a gauge change, that the harmonic portion of the Taylor polynomial of degree 2 for $\bar{\phi}$ at 0 vanishes identically, while the complex Hessian matrix of $\bar{\phi}$ is bounded below by a strictly positive constant, and all partial derivatives of $\bar{\phi}$ are bounded above, uniformly in λ.

Let N be a large positive integer, independent of λ, to be chosen below. Define P_N to be the Taylor polynomial of degree N for $\bar{\phi}$, at $\zeta = 0$. For any $r > 0$ satisfying $\lambda^{-1/2} \leq r \leq \lambda^{-1/4}$ define

$$
(7.6) \quad \psi(z) = r^{-2} P_N(r z) + r^{-2} (1 - \eta(z))(P_2(r z) - P_N(r z)).
$$

For all sufficiently large λ, the complex Hessian of ψ evaluated at an arbitrary point $z \in \mathbb{C}^n$, equals the complex Hessian of $\bar{\phi}$ evaluated at 0, plus $O(r) = O(\lambda^{-1/4})$.

Moreover on $\{z : |z| < 3\}$, where $1 - \eta \equiv 0$, ψ is real analytic, uniformly in λ and in N provided that $\lambda \geq \Lambda(N)$ where $\Lambda(N)$ is some appropriately large quantity depending only on N and the data X, L, ϕ, g. This uniformity, which is crucial to our analysis, is a consequence of the normalizations $\bar{\phi}(0) = 0$, $\nabla \phi(0) = 0$ achieved by subtracting the degree one Taylor polynomial of $\bar{\phi}$; indeed, for z in any bounded set and $N \geq 2$, $P_N(r z) = P_2(r z) + O(r^3 |z|)$ so that

$$
\begin{align*}
& r^{-2} P_N(r z) = P_2(z) + O_{M,N}(r) \\
& \text{in any } C^M \text{ norm on any bounded set}. \\
& \text{Once } M, N \text{ are chosen, the term } O_{M,N}(r) \text{ becomes arbitrarily small as } \lambda \text{ becomes arbitrarily large.}
\end{align*}
$$

Define a globalized locally analytic approximation g^{\dagger} to the Hermitian metric g by

$$
(7.7) \quad g^{\dagger}(z) = P_N(r z) + (1 - \eta(z))(g(0) - P_N(r z))
$$

where now P_N is the Taylor polynomial of degree N for g at 0, in the natural sense. Define

$$
(7.8) \quad \kappa = r^2 \lambda
$$

and

$$
\mathcal{D} = e^{-\kappa \psi} \bar{\partial} e^{\kappa \psi},
$$

that is, $\mathcal{D} u = e^{-\kappa \psi} \bar{\partial}(e^{\kappa \psi} u)$, for $(0, q)$ forms u defined on \mathbb{C}^n. Define \mathcal{D}^* to be the adjoint of \mathcal{D} with respect to the Hilbert space structures on L^2 sections of $B^{(0, q)}(\mathbb{C}^n)$ specified by $g^{\dagger}(z)$. Define

$$
\Box^{\dagger} = \begin{cases}
\mathcal{D} \mathcal{D}^* + \mathcal{D}^* \mathcal{D} & \text{for } n > 1, \\
\mathcal{D} & \text{for } n = 1.
\end{cases}
$$

These are differential operators. On the region $|z| < 4$, \Box^{\dagger} is related to \Box_{λ} as follows: If $u(z) = v(r z)$ then

$$
(7.9) \quad \Box^{\dagger} u(z) = r^2 \Box_{\lambda} v(r z) + O(\lambda^{-cN}) O(v, \bar{\partial}_{\lambda} v, \bar{\partial}_{\lambda}^* v, \bar{\partial}_{\lambda} (bv), \bar{\partial}_{\lambda}^* (bv))
$$

2 Subtraction of the harmonic second degree terms is natural, but inessential here.
where the error term denoted $O(v, \bar{\partial}_A v, \bar{\partial}^*_A v, \bar{\partial}_A (bv), \bar{\partial}^*_A (bv))$ is a linear combination of v, $\bar{\partial}_A (v)$, $\bar{\partial}^*_A (v)$, $\bar{\partial}_A (bv)$ and $\bar{\partial}^*_A (bv)$ where all coefficients are bounded uniformly in λ, z, and bv denotes either the wedge product or the interior product of v with a real analytic $(0, 1)$ form b. Moreover, in this region, these forms b are uniformly analytic as $\lambda \to \infty$.

Applying (7.9) with

$$u(z) = G_\lambda(rz, 0),$$

using the upper bounds $|G_\lambda(z, 0)| \leq C \lambda^C$ and $|\bar{\partial}_A G_\lambda(z, 0)| + |\bar{\partial}^*_A G_\lambda(z, 0)| \leq C \lambda^C$ for $|z| \geq \lambda^{-1/2}$, and using the assumption $\lambda^{-1/2} \leq r \leq \lambda^{-1/4}$, we conclude that

$$\|\Box u(z)\| \leq \lambda^{-cN}$$

for $\frac{1}{2} \leq |z| \leq 2$, where $c > 0$ is independent of λ, z and of N, provided that $\lambda \geq \Lambda(N)$.

Provided that $\kappa = r^2 \lambda$ is sufficiently large, the standard integration by parts calculation together with the uniform lower bound for the complex Hessian of ψ give the lower bound

$$\langle \Box u, u \rangle \geq c \kappa \|u\|_{L^2}^2$$

for all C^2 forms u of bidegree $(0, 1)$ with compact support. The effect of the localization and rescaling has been to replace λ by κ.

7.4. Conclusion of Proof of Proposition 3 Let N be a large positive integer. Suppose that λ is large, that $\lambda^{-1/2} \leq r \leq \lambda^{-1/4}$, and that $\kappa = r^2 \lambda$ is large. Consider $u(z) = G_\lambda(rz, 0)$, defined as above using Taylor polynomials of order N. In the annular region $\frac{1}{2} < |z| < 2$, $|u| \leq \Lambda^C$ and $\|\Box u\| \leq \lambda^{-cN}$, provided that $\lambda \geq \Lambda(N)$.

Let $\tilde{\eta}$ be a C^∞ function which is identically equal to 1 in $\{z : \frac{1}{3} \leq |z| \leq 3\}$ and supported in $\{z : \frac{1}{2} < |z| < 4\}$. Provided that κ is sufficiently large, the global lower bound (7.10) ensures that the equation $\Box u = \tilde{\eta} \Box u$ is solvable in $L^2(\mathbb{C}^n)$, and that there exists a solution satisfying

$$\|v\|_{L^2} \leq C \kappa^{-1} \|\tilde{\eta} \Box u\|_{L^2} \leq \lambda^{-cN},$$

provided that $\lambda \geq \Lambda(N)$.

Now $\Box(u - v) \equiv 0$ where $\frac{1}{2} < |z| < 2$, so Lemma 7 can be applied to conclude that

$$|(u - v)(z)| \leq C e^{-c\kappa} = C e^{-c r^2 \lambda} \quad \text{for} \quad \frac{3}{4} \leq |z| \leq \frac{4}{3}.$$

Therefore in this same region,

$$|G_\lambda(rz, 0)| \leq C e^{-c r^2 \lambda} + C \lambda^{-cN}$$

for all $\lambda \geq \Lambda(N)$.

Equivalently, by choosing $r = |z|^{-1}$, we find that there exists a constant $B < \infty$ such that for all $\lambda \geq \Lambda(N)$ and all $|\zeta| \geq B \lambda^{-1/2}$,

$$|G_\lambda(\zeta, 0)| \leq C e^{-c \lambda |\zeta|^2} + C \lambda^{-cN} = C e^{-c \lambda |\zeta|^2} + C e^{-c N \log \lambda}.$$
If A_0 is sufficiently large, if $A < \infty$ is fixed, and if $A_0 \lambda^{-1/2} \sqrt{\log \lambda} \leq |\zeta| \leq A \lambda^{-1/2} \sqrt{\log \lambda}$, choose $N = A^2$ to obtain

\begin{equation}
|G_\lambda(\zeta, 0)| \leq C e^{-c\lambda|\zeta|^2}.
\end{equation}

After reversing the change of variables made above, this is the desired bound $|G_\lambda(z, z')| \leq C e^{-c\lambda \rho(z, z')^2}$.

This analysis cannot be extended to a larger range of $|\zeta|$, because bounds only hold for $\lambda \geq \Lambda(N)$ and a larger range would require that N depend on $|\zeta|$, hence that N depend on λ, introducing circularity into the reasoning.

Since $G_\lambda(z, z')$ is a solution on the complement of the diagonal $z = z'$ of homogeneous elliptic partial differential equations, separately with respect to each of the two variables z, z', and since the coefficients of these equations are $O(\lambda^2)$ in any C^M norm, it follows from routine bootstrapping arguments that each derivative of G_λ satisfies the same upper bound with a possibly smaller value of the constant $c > 0$.

Each of the finitely many steps in the bootstrapping process loses at most a factor of $C\lambda^2$. Since

$$\lambda^C e^{-A \sqrt{\lambda \log \lambda}} \leq e^{-(A-1) \sqrt{\lambda \log \lambda}}$$

for all sufficiently large λ, the loss of finitely many such factors is of no importance here. \hfill \Box

References

[1] R. Berman, B. Berndtsson, J. Sjöstrand, A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat. 46 (2008), no. 2, 197–217
[2] B. Berndtsson, Bergman kernels related to Hermitian line bundles over compact complex manifolds, in Explorations in complex and Riemannian geometry, 1–17, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003
[3] P. Bleher, B. Shiffman, and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000), no. 2, 351–395
[4] ______, Poincaré-Lelong approach to universality and scaling of correlations between zeros, Comm. Math. Phys. 208 (2000), no. 3, 771–785
[5] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, in Journées: Équations aux dérivées partielles de Rennes (1975), Astérisque 34–35, pp. 123–164, Soc. Math. France, Paris, 1976
[6] D. Catlin, The Bergman kernel and a theorem of Tian, in: Analysis and Geometry in Several Complex Variables, G. Komatsu and M. Kuranishi, eds., Birkhäuser, Boston 1999
[7] G. Chinni, A proof of hypoellipticity for Kohn’s operator via FBI, Rev. Mat. Iberoam. 27 (2011), no. 2, 585–604
[8] M. Christ, On the $\bar{\partial}$ equation in weighted L^2 norms in C^1, J. Geom. Anal. 1 (1991), no. 3, 193–230
[9] ______, Slow off-diagonal decay for Szegö kernels associated to smooth Hermitian line bundles, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), 77–89, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003
[10] ______, On a conjecture of Zelditch regarding Bergman kernels, in preparation
[11] H. Delin, Pointwise estimates for the weighted Bergman projection kernel in C^n, using a weighted L^2 estimate for the $\bar{\partial}$ equation, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 4, 967–997
[12] A. Grigis and J. Sjöstrand, Front d’onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J. 52 (1985), no. 1, 35–51
[13] L. Hörmander, *An introduction to complex analysis in several variables*, Third edition. North-Holland Mathematical Library, 7. North-Holland Publishing Co., Amsterdam, 1990

[14] J. J. Kohn, *The range of the tangential Cauchy-Riemann operator*, Duke Math. J. 53 (1986), no. 2, 525–545

[15] N. Lindholm, *Sampling in weighted L^p spaces of entire functions in \mathbb{C}^n and estimates of the Bergman kernel*, J. Funct. Anal. 182 (2001), no. 2, 390–426

[16] B. Shiffman and S. Zelditch, *Distribution of zeros of random and quantum chaotic sections of positive line bundles*, Comm. Math. Phys. 200 (1999), no. 3, 661–683

[17] J. Sjöstrand, *Singularités analytiques microlocales*, Astérisque, 95, 1–166, Astérisque, 95, Soc. Math. France, Paris, 1982

[18] , *Analytic wavefront sets and operators with multiple characteristics*, Hokkaido Math. J. 12 (1983), no. 3, part 2, 392–433

[19] D. Tartakoff, *On the local real analyticity of solutions to \Box_b and the $\bar{\partial}$–Neumann problem*, Acta Math. 145 (1980), 117-204.

[20] G. Tian, *On a set of polarized Kähler metrics on algebraic manifolds*, J. Differential Geom. 32 (1990), 99–130

[21] F. Treves, *Analytic-hypoelliptic partial differential equations of principal type*, Comm. Pure Appl. Math. 24 (1971), 537–570

[22] , *Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the $\bar{\partial}$–Neumann problem*, Comm. Partial Differential Equations 3 (1978), no. 6-7, 475–642.

[23] S. Zelditch, Szegő kernels and a theorem of Tian, Int. Math. Res. Notices 6 (1998), 317–331.

MICHAEL CHRIST, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840, USA

E-mail address: mchrist@math.berkeley.edu