SHIFTED CONVOLUTION OF DIVISOR FUNCTION d_3
AND RAMANUJAN τ FUNCTION

RITABRATA MUNSHI

1. Introduction

This note can be viewed as a bridge between the work of Pitt [5] and my recent paper [3]. In [5] Pitt considers the sum

$$\Psi(f, x) = \sum_{1 \leq n \leq x} d_3(n)a(rn - 1)$$

where $d_3(n)$ is the divisor function of order 3 (the coefficients of the Dirichlet series $\zeta(s)^3$), $a(m)$ is the normalized Fourier coefficients of a holomorphic cusp form f, and r is a positive integer. Without loss one may take $a(m) = \tau(m)/m^{1/2}$ where τ is the Ramanujan function, as one does not expect any new complication to arise while dealing with Fourier coefficients of a general holomorphic cusp form. The trivial bound is given by $O(x^{1+\varepsilon})$. Pitt [5] proved

$$\Psi(f, x) \ll x^{71/72+\varepsilon}$$

where the implied constant is uniform with respect to r in the range $0 < r \ll X^{1/24}$. This sum is intrinsically related to the generalized Titchmarsh divisor problem, where one seeks to estimate the sum (see [5], [6])

$$\sum_{p < x \text{ prime}} a(p - 1).$$

In this paper we will use our method from [3], [4] to prove the following (improved bound).

Theorem 1. For $r \ll X^{1/10}$ we have

$$\Psi(\Delta, x) \ll r^{3/2}X^{34/35+\varepsilon},$$

where the implied constant depends only on ε.

Acknowledgements. I thank the organizers of ‘The Legacy of Srinivasa Ramanujan’, in particular M.S. Raghunathan and Dipendra Prasad for their kind invitation.

2. Twisted Voronoi summation formulae

Let

$$\Delta(z) = e(z) \prod_{n=1}^{\infty} (1 - e(nz))^{24}$$

be the Ramanujan’s Δ function. Here we are using the standard notation $e(z) = e^{2\pi iz}$. The function $\Delta(z)$ is a cusp form for $SL(2, \mathbb{Z})$ of weight 12. The Ramanujan τ function is defined as the Fourier coefficients of $\Delta(z)$, namely

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n)e(nz).$$

1991 Mathematics Subject Classification. 11F66, 11M41.

Key words and phrases. divisor functions, Ramanujan τ function, shifted convolution sum, circle method.
Ramanujan conjectured, and later Deligne proved, that \(|\tau(p)| \leq 2p^{11/2}\) for any prime number \(p\). In light of this bound it is natural to define the normalized \(\tau\) function as
\[
\tau_0(n) = \tau(n)/n^{11/2}.
\]
Using the modularity of \(\Delta(z)\) one can establish the following Voronoi type summation formula for \(\tau_0(n)\).

Lemma 1. Let \(q\) be a positive integer, and \(a\) be an integer such that \((a, q) = 1\). Let \(g\) be a compactly supported smooth function on \(\mathbb{R}_+\). We have
\[
\sum_{m=1}^{\infty} \tau_0(m) e_q(\bar{a}m) g(m) = \frac{2\pi}{q} \sum_{m=1}^{\infty} \tau_0(m) e_q(-\bar{a}m) G \left(\frac{m}{q^2} \right)
\]
where \(\bar{a}\) is the multiplicative inverse of \(a\) mod \(q\), \(e_q(z) = e(z/q)\) and
\[
G(y) = \int_0^\infty g(x) J_{11}(4\pi \sqrt{xy}) \, dx.
\]
Here \(J_{11}(z)\) is the Bessel functions in standard notations.

If \(g\) is supported in \([AY, BY]\) (with \(0 < A < B\)), satisfying \(y'\phi(\gamma(y)) \ll \epsilon\) for \(\epsilon\) small, then the sum on the right hand side of (1) is essentially supported on \(m \ll q^2(qY)^\epsilon/Y\). The contribution from the tail \(m \gg q^2(qY)^\epsilon/Y\) is negligibly small. For smaller values of \(m\) we will use the trivial bound \(G(m/q^2) \ll Y\).

A similar Voronoi type summation formula for the divisor function \(d_3(n)\) is also known (see Ivic [1]). Let \(f\) be a compactly supported smooth function on \(\mathbb{R}_+\), and let \(\hat{f}(s) = \int_0^\infty f(x)x^s \, dx\). We define
\[
F_\pm(y) = \frac{1}{2\pi i} \int_{\{\pm\}} (\pi^3 y)^{-s} \frac{\Gamma^3 \left(\frac{1\pm 1+2s}{4} \right)}{\Gamma^3 \left(\frac{3\pm 1-2s}{4} \right)} \hat{f}(-s) \, ds.
\]

Lemma 2. Let \(f\) be a compactly supported smooth function on \(\mathbb{R}_+\), we have
\[
\sum_{n=1}^{\infty} d_3(n) e_q(an) f(n) = \frac{1}{q} \int_0^\infty P(\log y, q) f(y) dy
\]
\[
+ \frac{\pi^{3/2}}{2q^3} \sum_{a,q=1}^{\infty} D_{3,\pm}(a; q) F_\pm \left(\frac{n}{q^2} \right),
\]
where \(P(y, q) = A_0(q)y^2 + A_1(q)y + A_2(q)\) is a quadratic polynomial whose coefficients depend only on \(q\) and satisfy the bound \(|A_j(q)| \ll q^\epsilon\). Also \(D_{3,\pm}(a; q)\) are given by
\[
\sum_{n_1n_2n_3=n} \sum_{b,c,d=1}^q \{ e_q(bn_1 + cn_2 + dn_3 + abcd) \mp e_q(bn_1 + cn_2 + dn_3 - abcd) \}.
\]

Suppose \(f\) is supported in \([AX, BX]\), and \(x^3 f'(x) \ll H^2\). Then the sums on the right hand side of (3) are essentially supported on \(n \ll q^3H(qX)^\epsilon/X\). The contribution from the tail \(n \gg q^3H(qX)^\epsilon/X\) is negligibly small. This follows by estimating the integral \(F_\pm(y)\) by shifting the contour to the right. For smaller values of \(n\) we shift the contour to left up to \(\sigma = \epsilon\).

3. Setting up the circle method

As in [3], we will be using a variant Jutila’s version of the circle method. For any set \(S \subset \mathbb{R}\), let \(\mathbb{I}_S : \mathbb{R} \to \{0, 1\}\) be defined by \(\mathbb{I}_S(x) = 1\) for \(x \in S\) and 0 otherwise. For any collection of positive integers \(Q \subset [1, Q]\) (which we call the set of moduli), and a positive real number \(\delta\) in the range \(Q^{-2} \ll \delta \ll Q^{-1}\), we define the function
\[
\mathbb{I}_{Q, \delta}(x) = \frac{1}{2\delta L} \sum_{q \in Q} \sum_{\psi \mod q} \mathbb{I}_{[0, 1]} \rho_{[\delta, \delta + \delta]}(x),
\]
where \(L = \sum_{q \in Q} \phi(q)\). This is an approximation for \(\mathbb{I}_{[0, 1]}\) in the following sense (see [3]):
Lemma 3. We have

\[\int_0^1 \left|1 - I_{Q,\delta}(x)\right|^2 dx \ll \frac{Q^{2+\varepsilon}}{\delta L}. \]

Instead of studying the sum in Theorem 1 we examine the related smoothed sum over dyadic segment

\[D = \sum_{n=1}^{\infty} d_3(n)\tau_0(rn - 1)W(n/X) \]

where \(W \) is a non-negative smooth function supported in \([1 - H^{-1}, 2 + H^{-1}]\) (we will chose \(H = X^\theta \) optimally later), with \(W(x) = 1 \) for \(x \in [1, 2] \) and satisfying \(W^{(j)}(x) \ll_j H^j \). Clearly we have

\[\Psi(\Delta, x) = D + O(X^{1+\varepsilon}/H). \]

In the rest of the paper we will prove a compatible bound for \(D \).

Let \(V \) be a smooth function supported in \([1/2, 3]\) satisfying \(V(x) = 1 \) for \(x \in [3/4, 5/2] \), \(V^{(j)}(x) \ll_j 1 \), and let \(Y = rX \). Then we have

\[D = \sum_{n,m=1}^{\infty} d_3(n)\tau_0(m)W(x) V(x) \delta(rn - 1, m) \]

\[= \int_0^1 e(-x) \left[\sum_{n=1}^{\infty} d_3(n)e(xrn)W(x) \right] \left[\sum_{m=1}^{\infty} \tau_0(m)e(-xm)V(x) \right] dx. \]

Let \(Q \), which we choose carefully later, be a collection of moduli of size \(Q \). Suppose \(|Q| \gg Q^{1-\varepsilon} \), so that \(L = \sum_{q \in Q} \phi(q) \gg Q^{2-\varepsilon} \). Let \(\delta = Y^{-1} \), and define

\[\hat{D} := \int_0^1 I_{Q,\delta}(x)e(-x) \left[\sum_{n=1}^{\infty} d_3(n)e(xrn)W(x) \right] \left[\sum_{m=1}^{\infty} \tau_0(m)e(-xm)V(x) \right] dx. \]

It follows that

\[\hat{D} = \frac{1}{2\delta} \int_{-\delta}^{\delta} \hat{D}(\alpha)e(-\alpha) d\alpha, \]

where

\[\hat{D}(\alpha) = \frac{1}{L} \sum_{q \in Q} \sum_{\alpha \mod q} e_q(-\alpha) \left[\sum_{n=1}^{\infty} d_3(n)e(qrn)e(qrn)W(x) \right] \]

\[\times \left[\sum_{m=1}^{\infty} \tau_0(m)e(-am)e(-\alpha m)V(x) \right]. \]

In circle method we approximate \(D \) by \(\hat{D} \), and then try to estimate the latter sum. Lemma 3 gives a way to estimate the error in this process. More precisely we have

\[|D - \hat{D}| \ll \int_0^1 \left[\sum_{n=1}^{\infty} d_3(n)e(xrn)W(x) \right] \left[\sum_{m=1}^{\infty} \tau_0(m)e(-xm)V(x) \right] \left|1 - I_{Q,\delta}(x)\right| dx, \]

Using the well-known point-wise uniform bound

\[\sum_{m=1}^{\infty} \tau_0(m)e(-xm)V(x) \ll Y^{1+\varepsilon} \]

it follows that the right hand side of (5) is bounded by

\[\ll Y^{1+\varepsilon} \int_0^1 \left[\sum_{n=1}^{\infty} d_3(n)e(xrn)W(x) \right] \left|1 - I(x)\right| dx. \]
Now we consider the case where $q = Y X^{-\frac{1}{2} + \delta}$ for any $\delta > 0$, to arrive at the following:

Lemma 4. We have

$$D = \hat{D} + O \left(X^{1-\delta + \varepsilon}\right).$$

We can now decide what will be the optimal choice for H. Naturally we wish to take H as small as possible to aid in our analysis of \hat{D}. Matching the error term in Lemma 4 and that in (3) we pick $H = X^{\delta}$.

4. Estimation of \hat{D}

Now we apply Voronoi summations on the sums over m and n. This process gives rise to several terms as noted in Section 2, Lemma 1 and Lemma 2. As far as our analysis is concerned we can focus our attention on two such terms, namely

$$\hat{D}_0(\alpha) = \frac{2\pi}{L} \sum_{q \in \mathbb{Q}} \frac{1}{q^2} \sum_{m=1}^{\infty} \tau_0(m) S(1, m; q) \left(\frac{m}{q^2}\right) \int_{0}^{\infty} P(\log x) f(x) dx,$$

which is the zero frequency contribution ($S(1, m; q)$ is the Kloosterman sum), and

$$\hat{D}_1(\alpha) = \frac{\pi^{5/2}}{L} \sum_{q \in \mathbb{Q}} \frac{1}{q^4} \sum_{m=1}^{\infty} \tau_0(m) \sum_{n=1}^{\infty} S^*(m, n; q) \left(\frac{m}{q^2}\right) F_+ \left(\frac{n}{q^3}\right),$$

where the character sum is given by

$$S^*(m, n; q) := \sum_{\alpha \mod q} \varepsilon_q(-\alpha m) \sum_{n_1 n_2 n_3 = n} \sum_{b, c, d = 1}^q \varepsilon_q(b n_1 + c n_2 + d n_3 + abc dr)$$

Also here we are taking

$$g(y) = V \left(\frac{y}{Y}\right) e(-\alpha y), \quad \text{and} \quad f(x) = W \left(\frac{x}{X}\right) e(-\alpha x).$$

The functions G and F_+ are defined in Lemma 1 and Lemma 2 respectively. It follows that in both the sums (10) and (11), the sum over m essentially ranges up to $m \ll Q^2 Y^{-1+\varepsilon} = Y X^{-1+2\delta+\varepsilon}$. The tail contribution is negligibly small. So using the Weil bound for the Kloosterman sums it follows that

$$\hat{D}_0(\alpha) \ll X^{1+\varepsilon}/\sqrt{Q}$$

which is smaller than the bound in Lemma 4 (as $Q = Y X^{-\frac{1}{2} + \delta} > X^{2\delta}$ or $Y > X^{\frac{1}{2} + \delta}$). One can use Deligne’s theory to show that there is square root cancellation in the character sum (12). But this is not enough to establish a satisfactory bound for $\hat{D}_1(\alpha)$.

Following 3 we will now make an appropriate choice for the set of moduli. We choose Q to be the product set $Q_1 Q_2$, where Q_i consists of primes in the dyadic segment $[Q_{i-1}, 2Q_i]$ (and not dividing r) for $i = 1, 2$, and $Q_1 Q_2 = Q$. Also we pick Q_1 and Q_2 (whose optimal sizes will be determined later) so that the collections Q_1 and Q_2 are disjoint.

Suppose $q = q_1 q_2$ with $q_i \in Q_i$. The character sum $S^*(m, n; q)$ splits as a product of two character sums with prime moduli. The one modulo q_1 looks like (after a change of variables)

$$S^t(m, n, q_2; q_1) = \sum_{\alpha \mod q_1} \varepsilon_{q_1}(-q_2 \alpha m) \sum_{n_1 n_2 n_3 = n} \sum_{b, c, d = 1}^q \varepsilon_q(b n_1 + c n_2 + d n_3 + abc dr).$$

Now let us consider the case where $q_1 | n$. Suppose $q_1 | n_1$, then summing over b we arrive at

$$q_1 \sum_{d=1}^{q_1} e_{q_1}(dn_3) + q_1 \sum_{c=1}^{q_1} e_{q_1}(cn_2) - q_1.$$

This sum is bounded by $q_1 (q_1, n_2 n_3)$. Then using Weil bound for Kloosterman sums we conclude that

$$S^t(m, q_1 n, q_2; q_1) \ll q_1^{3/2}(q_1, n)d_3(n).$$
On the other hand if \(q_1 \nmid n \) then we arrive at the following expression for the character sum after a change of variables

\[
S^\dagger(m, n, q_2; q_1) = d_3(n) \sum_{a \mod q_1}^* e_q((-q_2^3a - q_2\bar{a}m) \sum_{b,c,d=1}^{q_1} e_q((b + c + d + \bar{n}abcdr)).
\]

Summing over \(b \) we arrive at

\[
S^\dagger(m, n, q_2; q_1) = d_3(n)q_1 \sum_{a \mod q_1}^* e_q((-q_2^3a - q_2\bar{a}m)S(1, -n\bar{a}r; q_1).
\]

This can be compared with the character sums which appear in [3] and [5]. Strong bounds (square root cancellation) have been established for this sums using Deligne’s result. In the light of this, it follows that to estimate the contribution of those \(n \) in (11) with \((n, q) \neq 1\) it is enough to look at the sum

\[
\frac{1}{L} \sum_{q \in \mathbb{Q}} Q^3/ \sum_{0 < m \in \mathbb{Q}^2/Y} Q \sum_{0 < n \in \mathbb{Q}^3H/\min\{Q_1, Q_2\}X} Q^{3/2} \sqrt{\max\{Q_1, Q_2\}} \cdot Y \cdot X\cdot H.
\]

The last sum is bounded by \(O(Q^{2+\varepsilon}H^{3/2}\min\{Q_1, Q_2\}^{-3/2})\), and we get

\[
\tilde{D}_1(\alpha) = \frac{\pi^{5/2}}{L} \sum_{q \in \mathbb{Q}} Q^3/ \sum_{m=1}^{M} \tau_0(m) \sum_{n=1}^{N} d_3(n)S^\dagger(m, n; q)G \left(\frac{m}{q^2} \right) F_+ \left(\frac{n}{q^3} \right) + O \left(\frac{r^2 X^{1+7\delta/2+\varepsilon}}{\min\{Q_1, Q_2\}^{3/2}} \right),
\]

where

\[
S^\dagger(m, n; q) = \sum_{a \mod q}^* e_q(-a - \bar{a}m)S(1, -n\bar{a}r; q),
\]

\(M = Q^{2+\varepsilon}Y^{-1} = rX^{2\delta+\varepsilon}\) and \(N = Q^{3+\varepsilon}H^{-1} = r^4X^{1/2+4\delta+\varepsilon}. \) Next we observe that we can now remove the coprimality restriction \((n, q) = 1\), without worsening the error term. Here we are using square root cancellation in the character sum \(S^\dagger(m, n; q) \). We get

\[
\tilde{D}_1(\alpha) = \frac{\pi^{5/2}}{L} \sum_{q \in \mathbb{Q}} Q^3/ \sum_{m=1}^{M} \tau_0(m) \sum_{n=1}^{N} d_3(n)S^\dagger(m, n; q)G \left(\frac{m}{q^2} \right) F_+ \left(\frac{n}{q^3} \right) + O \left(\frac{r^2 X^{1+7\delta/2+\varepsilon}}{\min\{Q_1, Q_2\}^{3/2}} \right),
\]

5. Estimation of \(\tilde{D}_1(\alpha) \): Final analysis

Applying Deligne’s bound for \(\tau(m) \), the problem now reduces to estimating

\[
\frac{1}{Q^5} \sum_{q_2 \in \mathbb{Q}_2} \sum_{1 \leq m \leq M} \sum_{1 \leq n \leq N} \left| \sum_{q_1 \in \mathcal{Q}_1} S^\dagger(m, n; q)G \left(\frac{m}{q^2} \right) F_+ \left(\frac{n}{q^3} \right) \right|,
\]

where \(q = q_1q_2 \). Applying Cauchy inequality we get

\[
\tilde{D}_1(\alpha) \ll \sqrt{N} Q^\frac{1}{2} \sum_{q_2 \in \mathbb{Q}_2} \sum_{1 \leq m \leq M} \tilde{D}^\dagger(m, q_2)^\frac{1}{2},
\]

where

\[
\tilde{D}^\dagger(m, q_2) = \sum_{n \in \mathbb{Z}} h(n) \left| \sum_{q_1 \in \mathcal{Q}_1} S^\dagger(m, n; q_1q_2)G \left(\frac{m}{q_1q_2^2} \right) F_+ \left(\frac{n}{q_1q_2^3} \right) \right|^2.
\]

Here \(h \) is non-negative smooth function on \((0, \infty)\), supported on \([1/2, 2N]\), and such that \(h(x) = 1 \) for \(x \in [1, N] \) and \(x^j h^{(j)}(x) \ll 1. \)
Opening the absolute square and interchanging the order of summations we get
\[\tilde{D}^2(m, q_2) = \sum_{q_1 \in \mathcal{Q}_1} \sum_{q_1 \in \mathcal{Q}_1} G \left(\frac{m}{q_1 q_2} \right) G \left(\frac{m}{q_1 q_2} \right) \times \sum_{n \in \mathbb{Z}} h(n) S^\dagger(m, n; q_1 q_2) \tilde{S}^\dagger(m, n; \tilde{q}_1 q_2) F_+ \left(\frac{n}{q_1 q_2} \right) F_+ \left(\frac{n}{q_1 q_2} \right). \]

Applying Poisson summation on the sum over \(n \) with modulus \(q_1 \tilde{q}_1 q_2 \), we get
\[\frac{1}{q_2} \sum_{q_1 \in \mathcal{Q}_1} \sum_{\tilde{q}_1 \in \mathcal{Q}_1} \frac{1}{q_1 \tilde{q}_1} G \left(\frac{m}{q_1 \tilde{q}_1 q_2} \right) \tilde{G} \left(\frac{m}{\tilde{q}_1 q_2} \right) \sum_{n \in \mathbb{Z}} T(m, n; q_1, \tilde{q}_1, q_2) \mathcal{I}(n; q_1, \tilde{q}_1, q_2). \]

The character sum is given by
\[T(m, n; q_1, \tilde{q}_1, q_2) = \sum_{\alpha \text{ mod } q_1 \tilde{q}_1 q_2} S^\dagger(m, \alpha; q_1 q_2) \tilde{S}^\dagger(m, \alpha; \tilde{q}_1 q_2) e_{q_1 \tilde{q}_1 q_2}(n \alpha), \]
and the integral is given by
\[\mathcal{I}(n; q_1, \tilde{q}_1, q_2) = \int_{\mathbb{R}} h(x) F_+ \left(\frac{x}{q_1 \tilde{q}_1 q_2} \right) e_{q_1 \tilde{q}_1 q_2}(-nx) dx. \]

Integrating by parts repeatedly one shows that the integral is negligibly small for large values of \(|n| \), say \(|n| \geq X^{2013} \). Observe that differentiating under the integral sign in (2), one can show that \(y^j F_+^j(y) \ll_j XH \). So we have the bound
\[\mathcal{I}(n; q_1, \tilde{q}_1, q_2) \ll \frac{X^2 HQ^3}{|n|}. \]

The following lemma now follows from (15).

Lemma 5. We have
\[\tilde{D}^2(m, q_2) \ll (XY)^2 H \sum_{q_1 \in \mathcal{Q}_1} \sum_{\tilde{q}_1 \in \mathcal{Q}_1} \left\{ \sum_{1 \leq |n| \leq X^{2013}} \frac{H}{|n|} |T(m, n; q_1, \tilde{q}_1, q_2)| + \frac{N}{QQ_1} |T(m, 0; q_1, \tilde{q}_1, q_2)| \right\} + X^{-2013}. \]

It now remains to estimate the character sum. This has been done in [3]. We summarize the result in the following lemma.

Lemma 6. For \(q_1 \neq \tilde{q}_1 \), the character sum \(T(m, n; q_1, \tilde{q}_1, q_2) \) vanishes unless \((n, q_1 \tilde{q}_1) = 1 \), in which case we have
\[T(m, n; q_1, \tilde{q}_1, q_2) \ll q_1^{5/2} q_2^{5/2} (n, q_2)^{5/2}. \]

The character sum \(T(m, n; q_1, q_2) \) vanishes unless \(n \) is divisible by \(q_1 \), in which case we have
\[T(m, q_1 n'; q_1, q_1, q_2) \ll q_1^5 q_2^{5/2} \sqrt{(n', q_1 q_2)}. \]

It follows from Lemma 6 that
\[\sum_{q_1 \in \mathcal{Q}_1} \sum_{\tilde{q}_1 \in \mathcal{Q}_1} \sum_{1 \leq |n| \leq X^{2013}} \frac{|T(m, n; q_1, \tilde{q}_1, q_2)|}{|n|} \ll Q_1^5 Q_2^{5/2} \sum_{1 \leq |n| \leq X^{2013}} \sqrt{(n, q_2)} \ll Q_1^5 Q_2^{5/2} X^{\varepsilon}. \]

Again applying Lemma 6 it follows that
\[H \sum_{q_1 \in \mathcal{Q}_1} \sum_{1 \leq |n| \leq X^{2013}} \frac{|T(m, q_1 n; q_1, q_1, q_2)|}{q_1 |n|} + \frac{N}{Q Q_1} \sum_{q_1 \in \mathcal{Q}_1} |T(m, 0; q_1, q_1, q_2)| \ll HQ^{5/2} X^{\varepsilon} + NQ^2 X^{\varepsilon}. \]
The above two bounds (16), (17) yield
\[\hat{D}^t(m, q_2) \ll (HQ_1^5Q_2^{5/2} + NQ^2)H(XY)^{3+\varepsilon}. \]

Plugging this estimate in (14) we get the following:

Lemma 7. For \(Q_1Q_2 = Q \), we have
\[\hat{D}_1(\alpha) \ll \frac{\sqrt{NQ_2M}}{Q^2}(\sqrt{H}Q_1^{5/4}Q_2^{5/4} + \sqrt{NQ})\sqrt{HYX^{1+\varepsilon}}. \]

The optimal breakup \(Q_1Q_2 = Q \) is now obtained by equating the two terms. We get that \(Q_2 = X^{2/5} \) and \(Q_1 = rX^{1/10+\delta} \). The optimal choice for \(\delta \) is now obtained by equating the resulting error term with the previous error term, namely \(X^{1-\delta} \). We get
\[\delta = \frac{1}{35} - \frac{2}{7} \log \frac{r}{\log X}. \]

Finally one checks that the error term in (13) is satisfactory for the above choice of \(\delta \). This holds as long as \(r \ll X^{4/5} \).

References

[1] A. Ivić: On the ternary additive divisor problem and the sixth moment of the zeta-function; Sieve Methods, Exponential Sums, and their Applications in Number Theory, LMS Lecture Note Series 237, Cambridge University Press, Cambridge, (1997) 205–243.

[2] M. Jutila: Transformations of exponential sums; Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori 1989), Univ. Salerno, Salerno, (1992) 263–270.

[3] R. Munshi: Shifted convolution sums for \(GL(3) \times GL(2) \); to appear in Duke Math. J.

[4] R. Munshi: The circle method and bounds for \(L \)-function - I; preprint available at http://arxiv.org/abs/1202.4068

[5] N. J. E. Pitt: On shifted convolution sums of \(\zeta^2(s) \) with automorphic \(L \)-functions; Duke Math. J. 77 (1995), 383–406.

[6] N. J. E. Pitt: On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms; in press J. American Math. Soc., http://dx.doi.org/10.1090/S0894-0347-2012-00750-4

School of Mathematics, Tata Institute of Fundamental Research, 1 Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India.

E-mail address: rmunshi@math.tifr.res.in