Mastrostefano, Daniele
On maximal product sets of random sets. (English) [Zbl 1472.11059]
J. Number Theory 224, 13–40 (2021).

Summary: For every positive integer N and every $\alpha \in [0, 1)$, let $B(N, \alpha)$ denote
the probabilistic model in which a random set $A \subset \{1, \ldots, N\}$ is constructed by choosing
independently every element of $\{1, \ldots, N\}$ with probability α. We prove that, as $N \to +\infty$,
for every A in $B(N, \alpha)$ we have $|AA| \sim |A|^2/2$ with probability $1 - o(1)$, if and only if
$$\frac{\log(\alpha^2 \log N^{\log 4 - 1})}{\sqrt{\log \log N}} \to -\infty.$$ This improves on a theorem of Cilleruelo, Ramana and Ramaré [J. Cilleruelo et al., Proc. Steklov Inst.
Math. 296, 52–64 (2017; Zbl 1371.11023); translation in Tr. Mat. Inst. Steklova 296, 58–71 (2017)],
who proved the above asymptotic between $|AA|$ and $|A|^2/2$ when $\alpha = o(1/\sqrt{\log N})$, and
supplies a complete characterization of maximal product sets of random sets.

MSC:
11B30 Arithmetic combinatorics; higher degree uniformity

Keywords:
product sets; random models; localised divisor functions; distribution of the number of prime factors

Full Text: DOI arXiv

References:
[1] Cilleruelo, J.; Guijarro-Ordóñez, J., Ratio sets of random sets, Ramanujan J., 43, 2, 327-345 (2017) - Zbl 1421.11077
[2] Cilleruelo, J.; Ramana, D. S.; Ramaré, O., Quotient and product sets of thin subsets of the positive integers, Proc. Steklov Inst.
Math., 296, 52-64 (2017) - Zbl 1371.11023
[3] Ford, K., The distribution of integers with a divisor in a given interval, Ann. Math., 168, 367-433 (2008) - Zbl 1181.11058
[4] Ford, K., Extremal properties of product sets, Proc. Steklov Inst. Math., 303, 1, 220-226 (2018) - Zbl 1414.05288
[5] Luca, F.; Tóth, L., The rth moment of the divisor function: an elementary approach, J. Integer Seq., 20, 7 (2017)
[6] Norton, K. K., On the number of restricted prime factors of an integer. I, Ill. J. Math., 20, 681-705 (1976) - Zbl 0329.10035
[7] Sanna, C., A note on product sets of random sets, Acta Math. Hung., 162, 76-83 (2020) - Zbl 1474.11164
[8] Shiu, P., A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313, 161-170 (1980) - Zbl 0412.10030
[9] Tao, T.; Vu, V. H., Additive Combinatorics (2006), Cambridge University Press - Zbl 1127.11002
[10] Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, Graduate Studies in Mathematics, vol. 163 (2015) - Zbl 0788.11001

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically
matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.