Management Of Depressed Skull Fracture
Liaqat Ali¹, Adnan Badar²

ABSTRACT

Background: Head injury is the most serious problem all around the world. Over the last 200 years both surgical and conservative management have been evolved. Chronological surgical management yields better outcome by decreasing mortality and morbidity. Wound debridement, repair of dural defect and closure of wound are standard principles in management.

Objective: To study the outcomes of surgical management of depressed skull fracture.

Material and methods: This study was conducted in Shifa Medical center from 1st June 2016 to 30th June 2019. Clinical features cause, and computerized tomography (CT) pictures were compiled in proforma. Whenever depressed fracture size exceeded than 5mm, cosmetically disfiguring and fracture over the sinus were operated. All the patients were followed for six months.

Results: Total of 60 patients were included 42 patients (70%) were male and 18(30%) were female. Pediatric population was major contributor 36 out of 60 patients (ratio 60%). 56 patients (93.33%) operated, 4 patients (6.67%) were treated conservatively. These 4 patients(6.67%) had severe head injury and were put on ventilator 32 patients (53.3%) fully recovered, 12 patients (20%) had moderate disability, 8 patients (13%) had severe disability and 3 patients (4.8%) pass away in this study.

Conclusion: It was found that, depressed skull fracture was mostly common in children. Usage of antibiotic and anticonvulsants had effective results in term of preventing infection and epilepsy during perioperative period. Initial stage surgical treatment is exceptionally required where size of fracture exceed 5mm. Outcome depended upon the sternness of injury and existence of associated intra cerebral lesion.

Key words: surgical management, depressed skull fracture (DSF) and CSF leakage.

INTRODUCTION

The most serious problem worldwide is head trauma.¹ Last 200 years of development in field of surgical approaches to open and closed depressed skull fractures, but primary bone or regional fragment replacement (after usage and treatment with antiseptics) is the most consistent option.²,³ Chronologically surgical management delivers best outcomes by decreasing mortality and morbidity.⁴ To describe the clinical, sociodemographic and radiological results of findings of patients with depressed skull fractures covering cranial dural sinuses that we have faced impervious institute reports.⁵ When fragment of skull fracture bone is displaced inward for distance equal to or greater the width of calvarias is known as depressed skull fracture.⁶ Skull fracture can occur with or without damage to the brain. It is common in low speed trauma. The principles of management had gone through considerable evaluation in the past few decades both surgical and conservative management were adopted even compound fracture can be manage without operation.⁷ Patients presented with infected depressed fracture, ragged scalp laceration, severely

CT scan is the study of choice for diagnosing of skull fracture (DSF) and associated intracranial lesion.⁶,¹⁰ Along with this the depressed fractures above or overlying venous sinuses are left undisturbed to skip hemorrhage.¹¹

Depressed skull fracture with the evidence of dural tear and increase in intracranial pressure (ICP) particularly above middle and posterior ³⁰⁰ of superiorsagittal sinus, should be surgically managed.¹²

Early placement of bone pieces in compound depressed skull fractures don’t increase the risk of infection.¹³

Usage of prophylactic antibiotics did not decrease the infection rate. Existence of dural tear was not concerned with a huge risk of post-traumatic epilepsy.¹⁴,¹⁵

Received: July 15th, 2020, Accepted: September 21, 2020

1. Associate Professor, Anatomy Department, Swat Medical College, Swat.
2. Assistant Professor, Anatomy Department, Swat Medical College, Swat.

Correspondence: Dr. Liaqat Ali (FRCS)
Shifa Medical Centre Saidu Sharif Swat
Email: liaqatsurgeon@yahoo.com
MATERIAL AND METHODS
This descriptive study was conducted in Shifa Medical Centre Swat form 1st June 2016 to 30th June 2019.

Depressed skull fracture: When fragment of skull fracture bone is displaced inward for distance equal to or greater the width of calvarias is known as depressed skull fracture. Patients from 1 to 63 years of age presented with skull fracture and consented for surgical intervention, were included in the study.

Patients below 1 year and above 63 years were excluded. Patients not having depressed skull fracture and those who did not give consent were excluded.

CT scan was done in all depressed skull fracture, removal of in driven bone fragments, debridement of wound margins, elevation of depressed skull bone fragment, evacuation of hematoma, repair of Dural tear and initial repair were done in respective patients. CT scan was reported by qualified radiologist with 18 years experience. All the patients included in this study were operated by qualified neurosurgeon, who in FRCS (neurosurgery) and having more than 25 years of experience.

RESULTS
In this study 60 patients were included, 42 patients (70%) were male and 18 female (30%). Majority of patients were in first decade 33% and in second decade were 25% of life. Mostly they were involved in road traffic accident (RTA) 32 patients (52.33%), falls were responsible for 16 patients (26.67%) physical assault in 12 patients (20.00%).

Patients presented with symptoms of headache and vomiting were 70%, loss of consciousness were 33 %, bleeding from nose and ear were 40%, CSF leakage 17%. 70 % were presented with increase intracranial pressure (ICP), 17% with extradural hematoma, 1.6% has acute sub duralhematoma and 16% had underline brain contusions.

S. No	Cause of Injury	Total No. of Patients	Percentage
1	Road Traffic Accident (RTA)	32	53.33%
2	Fall	25	
	Fall from roof top	16	26.67%
	Fall from physical assault	12	20.00%
Total	60		100%

S.No	Affected Regions	Patients	
		No. of Patients	Percentage
1	Temporal Region	30	50.00%
2	Frontal Region	12	20.00%
3	Parietal Region	10	16.67%
4	Occipital Region	4	06.67%
5	Many Regions Involvement	4	06.67%
Total	60		100%

S.No	Outcome on Glasgow Comma Scale (CGS)	Patients	
1	Fully Recovered	32	53.33%
2	Moderate Disability	12	20.00%
3	Sever Disability	8	13.33%
4	Develop Wound Infection	8	13.33%
Total		60	100%
56 patients were operated 4 patient were treated conservatively these 4 patients had severe head injury and were put on ventilator.

Outcome calculated on Glasgow Comma Scale (GCS) scoring system. 32 patients 53.3% fully recovered. 12 patients 20% modrate disability 8 patients 13% had severe disability. 8 patients develop wound infection and were treated with antibiotic but 2 patients develop subdural empyema and were treated surgically. Only 4 patients 6.66% manage conservatively that were in GCS 3-4 and were on ventilator. In these cases initial surgery was performed. In surgical procedures all foreign bodies were removed, elevation of depressed fracture and repair of Dura matter done.

CONCLUSION
Young adults and children, male gender was commonly affected. Road traffic accident and falls from heights were common modes of injuries. Antibiotic and anticonvulsant were affective in prevention of epilepsy and infection. If treated promptly most of the cases of compound depress skull fracture revealed good results but outcomes of the depress skull fracture be contingent upon the severity of injury and absence or presence of related intracranial lesion.

REFERENCES
1. Amir S. Depressed skull fracture: surgical management and outcome. J Med Sci. 2017;25(3):336-9.
2. Stein SC. The evolution of modern treatment for depressed skull fractures. World Neurosurg. 2019;121:186-92.
3. Imran M, Khan AA, Ahmed SI, Ghouri SA, Khan AR, Farooqui MO. Compound depressed fractures. Prof Med J. 2018;25(05):633-8.
4. Ahmad S, Afzal A, Lal Rehman FJ. Impact of depressed skull fracture surgery on outcome of head injury patients. Pakistan J Med Sci. 2018;34(1):130-38.
5. Mohamed Mostafa A, El Molla ST, Abdelrahiem HA, Dawood OM. Depressed Skull Fractures Overlying Dural Venous Sinuses: Management Modalities and Review of Literature. Turk Neurosurg. 2019;29(6):856-63.
6. Ali M, Ali L, Roghani IS. Surgical management of depressed skull fracture. J Postgrad Med Inst. 2003;17(1):83-89.
7. Miller JD, Murray LS, Teasdale GM. Development of a traumatic intracranial hematoma after a “minor” head injury. Neurosurgery. 1990;27(5):669-73.
8. AZAM F, Khattak A, Alam W. Surgical Management and Outcome of Depressed Skull Fracture. Pakistan J Neurol Surg. 2010;14(1):304-09.
9. Kirkwood JR. Head trauma, in essential of neurosurgery. Churchill living Stone, New York; 1990.
10. Blankenship JB, Chadduck WM, Boop FA. Repair of compound-depressed skull fractures in children with replacement of bone fragments. Pediatr Neurosurg. 1990;16(6):297-300.
11. Prakash A, Harsh V, Gupta U, Kumar J, Kumar A. Depressed fractures of skull: an institutional series of 453 patients and brief review of literature. Asian J Neurosurg. 2018;13(2):222-29.
12. Van Den Heever CM, van der Merwe DJ. Management of depressed skull fractures: Selective conservative management of nonmissile injuries. J Neurosurg. 1989;71(2):186-90.
13. Wylen EL, Willis BK, Nanda A. Infection rate with replacement of bone fragment in compound depressed skull fractures. Surg Neurol. 1999;51(4):452-7.

14. Al-Haddad SA, Kirollos R. A 5-year study of the outcome of surgically treated depressed skull fractures. Ann R Coll Surg Engl. 2002;84(3):196-201.

15. Richard Kuehl, Andrea Büchler, Andreas F Widmer, Manuel Bättega. Digging Out the Evidence: How Strong Is the IDSA Recommendation Against Antibiotic Prophylaxis in Basilar Skull Fracture and Cerebrospinal Fluid Leakage?, Clinical Infectious Diseases. 2018;66(8):1319-1320, https://doi.org/10.1093/cid/cix984

16. Zbinden B, Kaiser G. Specific aspects of depressed skull fractures in childhood. Zeitschrift für Kinderchirurgie. 1989;44(01):37-42.

17. Mlay SM, Sayi EN. The management of depressed skull fractures in children at Muhimbili Medical Centre, Dar es Salaam, Tanzania. East Afr Med J. 1993;70(5):291-3.

18. Ogunleye AOA, Adeleye AO, Ayodele KH, Usman MO, Shokunbi MT. Arrow injury to the skull base. West Afr J Med. 2004;23(1):946-52.

19. Du Plessis JJ. Depressed skull fracture involving the superior sagittal sinus as a cause of persistent raised intracranial pressure: a case report. J Trauma Acute Care Surg. 1993;34(2):290-2.

20. Thomas LM. Skull fracture in Ramgchay SS, Wilkins W (ed) Neurosurgery New York 1985.

21. Lihai Ren, Dangdang Wang, Xi Liu, Huili Yu, Chengyue Jiang, and Yuanzhi Hu. Influence of Skull Fracture on Traumatic Brain Injury Risk Induced by Blunt Impact Int J Environ Res Public Health. 2020 Apr; 17(7): 2392-99.

22. Barbosa A, Fernandes FAO, Alves de Sousa RJ, Ptak M, Wilhelm J. Computational Modeling of Skull Bone Structures and Simulation of Skull Fractures Using the YEAHM Head Model. Biology (Basel). 2020 Sep 4;9(9):267. doi: 10.3390/biology9090267. PMID: 32899779; PMCID: PMC7566004.

DATA SHARING STATEMENT: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

CONFLICT OF INTEREST: Authors declare no conflict of interest.

GRANTED SUPPORT AND FINANCIAL DISCLOSURE: Nil

AUTHOR'S CONTRIBUTION
Following authors have made substantial contributions to the manuscript as under

Ali L: Concept and design of study, Collection of data, statistical analysis, Writing of manuscript, critical review of manuscript

Badar A: Analysis and interpretation of data, statistical analysis, Data collection, bibliography

Authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.