Predicting early outcomes of liver transplantation in young children: The EARLY study

Rashid Alobaidi, Natalie Anton, Dominic Cave, Elham Khodayari Moez, Ari R Joffe

Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta T6G 1C9, Canada

ORCID number: Rashid Alobaidi (0000-0001-7910-1944); Natalie Anton (0000-0002-0651-7575); Dominic Cave (0000-0002-7986-2265); Elham Khodayari Moez (0000-0002-9639-4205); Ari R Joffe (0000-0002-4583-707X).

Author contributions: Alobaidi R, Anton N, Cave D and Joffe AR contributed to conception and design of the study, interpretation of data and revision of the manuscript critically for intellectual content, and have read and approved the version to be published; Moez EK contributed to interpretation of data, confirmation of statistical analyses and revision of the manuscript critically for intellectual content, and has read and approved the version to be published; Joffe AR contributed to acquisition and interpretation of data, wrote the first draft of the manuscript, and had final approval of the version to be published; Alobaidi R contributed to acquisition and interpretation of data and revision of the manuscript critically for intellectual content, and had final approval of the version to be published; Moez EK had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis; all authors participated sufficiently in the work to take public responsibility for the manuscript content.

Institutional review board statement: This study was approved by the University of Alberta Health Research Ethics Board (Pro00031805).

Informed consent statement: The need for written informed consent was waived for this retrospective chart review study by the Research Ethics Board.

Conflict-of-interest statement: The authors declare that there is no conflict of interest.

Data sharing statement: The dataset is available from the corresponding author at ari.joffe@ahs.ca upon reasonable request.

Abstract

AIM
To determine potentially modifiable predictors of early outcomes after liver transplantation in children of age < 3 years.

METHODS
This study was a retrospective chart review including all consecutive children of age less than 3-years-old having had a liver transplant done at the Western Canadian referral center from June 2005 to June 2015.
Pre-specified potential predictor variables and primary and secondary outcomes were recorded using standard definitions and a case report form. Associations between potential predictor variables and outcomes were determined using univariate and multiple logistic [odds ratio (OR); 95%CI] or linear (effect size, ES; 95%CI) regressions.

RESULTS

There were 65 children, of mean age 11.9 (SD 7.1) mo and weight 8.5 (2.1) kg, with biliary-atresia in 40 (62%), who had a living related donor [LRD; 29 (45%)], split/reduced [21 (32%)] or whole liver graft [15 (23%)]. Outcomes after liver transplant included: ventilator-days of 12.5 (14.1); pediatric intensive care unit mortality of 5 (8%); re-operation in 33 (51%), hepatic artery thrombosis (HAT) in 12 (19%), portal vein thrombosis (PVT) in 11 (17%), and any severe complication (HAT, PVT, bile leak, bowel perforation, intraabdominal infection, retransplant, or death) in 32 (49%) patients. Predictors of the prespecified primary outcomes on multiple regression were: (1) HAT: split/reduced (OR 0.06; 0.01, 0.76; P = 0.030) or LRD (OR 0.16; 0.03, 0.95; P = 0.044) vs whole liver graft; and (2) ventilator-days: surgeon (P < 0.05), lowest antithrombin (AT) postoperative day 2-5 (ES -0.24; -0.47, -0.02; P = 0.034), and split/reduced (ES -12.5; -21.8, -3.2; P = 0.009) vs whole-liver graft. Predictors of the pre-specified secondary outcomes on multiple regression were: (1) any thrombosis: LRD (OR 0.10; 0.05; 0.01, 0.71; P = 0.021) or split/reduced (OR 0.10; 0.01, 0.85; P = 0.034) vs whole liver graft, and lowest AT postoperative day 2-5 (OR 0.93; 0.87, 0.99; P = 0.038); and (2) any severe complication: surgeon (P < 0.05), lowest AT postoperative day 2-5 (OR 0.92; 0.86-0.98; P = 0.016), and split/reduced (OR 0.06; 0.01, 0.78; P = 0.032) vs whole-liver graft.

CONCLUSION

In young children, whole liver graft and surgeon was associated with more complications, and higher AT postoperative day 2-5 was associated with fewer complications early after liver transplantation.

Key words: Liver transplantation; Pediatric; Complications; Thrombosis; Antithrombin

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In a retrospective review of 65 consecutive children having had liver transplant at age less than 3-year-old, done at a single referral institution, earlier post-operative complications were independently statistically associated with whole liver graft (compared to split/reduced or living related graft), surgeon, and lower antithrombin levels day 2-5 postoperatively. The finding that lower antithrombin levels were associated with any thrombosis, any severe complication, and ventilator days is a novel finding that should be confirmed by others.

INTRODUCTION

One-year graft and survival rates after pediatric liver transplantation (LT) approach 80%-90% and 90% respectively[1-2]. We found that long-term neurocognitive outcome in patients under 3-years-old at time of LT, assessed in 89% of survivors at 4.5 years of age, was shifted to the left of population norms (full scale intelligence quotient mean 93.9, standard deviation (SD) 17.1), with intelligence scores < 70 (below two SDs from the population mean, expected in 2.27% of the normative population) in 6%[3]. These patients often had significant postoperative complications in the intensive care unit, and these acute posttransplant illnesses (e.g., use of inotropes, infection, higher creatinine) were associated with adverse neurocognitive outcomes[3]. These findings are important because “the early years” are increasingly recognized as the period of greatest vulnerability to, and greatest return on investment from, preventing adverse events[4-7]. Adverse long-term outcomes can have lasting and profound impacts on future quality of life, education, earning potential, and healthcare utilization[4-7]. In addition, these complications are life-threatening, involve repeat surgeries, prolong intensive care unit stay, and are stressful for patients, families, and the medical team.

There have been previous studies reporting the incidence of acute complications in the pediatric intensive care unit (PICU) postLT. The main complications include the following: hepatic artery thrombosis (HAT; < 10%)[8], portal vein thrombosis (PVT; < 10%)[9], biliary leak (< 15%)[10], bowel perforation (< 10%)[11], infection, and resulting retransplantation (in < 15%) and reoperations (in up to 50%)[12]. These postLT complications are predictors of 6-mo graft and patient survival[13]. Some risk factors for these complications have been suggested, including graft type, and transplant era (year of surgery); however, these are variable between studies[8,13-15]. Recipient age and weight are often not predictors[8,16-18].

In this study, we aimed to determine potentially modifiable prespecified acute care variables that may be associated with prespecified primary and secondary acute intensive care postoperative outcomes in young LT recipients at our center over the past 10 years. In addition, we aimed to explore novel potential predictors of adverse outcomes, including: written comments made about abnormal liver vessels or biliary anatomy in the dictated operating report, measures of postoperative fluid balance (i.e., highest hemoglobin, first day of negative fluid balance, first day of using furosemide, lowest central venous pressure); and
MATERIALS AND METHODS

Ethics statement
This study was approved by the University of Alberta Health Research Ethics Board (Pro00031805).

Study design
This was a retrospective observational cohort study. The charts of all patients meeting the eligibility criteria were reviewed. Inclusion criteria were having a LT done at age < 3 years at the Stollery Children’s Hospital between June 2005 to June 2015. Patients having a multivisceral transplant were excluded. Potential predictor variables collected included descriptive pretransplant demographics, transplant surgery details, and early postoperative variables (see Tables E1 to E3 in Additional File 1). PICU outcomes recorded included length of stay, mortality, graft survival, retransplant, reoperations, and complications (HAT, PVT, bile leak, bowel perforation, and infection) (see Table E4 in Additional File 1). A severe complication was defined as any one of: HAT, PVT, bile leak, bowel perforation, intraabdominal infection, death, or retransplant.

Variables and outcomes were determined by review of the patient chart by one of the authors (RA), including: written notes, laboratory results, radiology reports, operating room surgical dictations, and anesthesia records. To verify accurate recording of severe complication outcomes, all patient charts with a severe complication were reviewed by a second author (ARJ) to ensure agreement, and severe complications were cross-checked in the independent LT database at our institution. A case report form, including strict conservative definitions of variables and outcomes, was agreed upon by all authors prior to chart review (Additional File 2).

Prior to any data analysis, we prespecified the primary and secondary outcomes. The primary outcomes were HAT and ventilator days; the secondary outcomes were any severe complication and any thrombosis (HAT or PVT). After local presentation of results, we were asked to add posthoc secondary outcomes of 6-mo graft survival, and to compare outcomes by year category and weight category; we include these results, acknowledging them to be posthoc, exploratory, and to be interpreted with caution.

Also prior to any data analysis, the following variables were prespecified to be used in the univariate analyses: preoperative (biliary atresia; growth failure - < 5th percentile for weight or height; albumin; graft type - whole liver; split/reduced, or living donor), operative (surgery duration; cold ischemia time; warm ischemia time; artery vascularity end-to-end anastomosis or graft; fascia closed; comment about hepatic artery, portal vein, biliary, or any one of these anatomical concerns in the dictated operative report; packed red blood cell volume transfused), and postoperative (heparin started - hour; therapeutic heparin level by day 3; highest hemoglobin day 1 and day 2-5; lowest anti-thrombin day 1 and day 2-5; other anticoagulant used - dipyridamole, dextran, or aspirin; first day of negative fluid balance; first day of furosemide use; lowest central venous pressure day 1 and day 2-5) variables.

Statistical analysis
The statistical methods of this study were reviewed by Elham Khodayari Moez, MSc, PhD candidate, from School of Public Health, University of Alberta, Edmonton, Alberta, Canada. Data was entered into a REDCap database, and transferred to SPSS version 19 for analysis[19]. For binary outcomes, univariate followed by multiple logistic regression was used to identify potential predictors. For continuous outcomes, univariate followed by multiple linear regression was used to identify potential predictors. The possibility of presence of any correlation structure in the data caused by surgeon clusters was assessed using intraclass correlations (ICCs). For all the outcomes, ICCs were small and indicated no correlation structure among the observations within surgeon clusters. Therefore, the assumption of independent observations, required for regression modelling, was met.

In all multiple regressions, the following prespecified, as likely clinically significant, variables were included: Weight, pediatric end-stage liver disease (PELD) score, year of surgery, and surgeon. All three surgeons were Fellows of the Royal Society of Surgeons of Canada and performed all the adult and pediatric LTs during the entire 10-year period; transplant cases were done by whichever surgeon was on service at that time. Variables significant at P < 0.10 on univariate analysis were also used in the multiple regressions. In patients having a retransplant during their PICU stay, only variables from the first LT surgery, and the first 5 days’ time after the first LT were used. Dummy variables were created for analysis of graft type (in three categories) and surgeon (in three categories). Multiple regressions were performed if missingness of a variable was < 5%, with those patients excluded from the analysis (i.e., no imputation of missing variables). Results are presented as odds ratios (ORs) with 95%CIs for logistic regressions, and effect sizes (ESs) with 95%CIs for linear regressions. For the multiple regressions, a P-value ≤ 0.05 was accepted as statistically significant.

RESULTS

Description of the cohort
There were 65 patients meeting the eligibility criteria over the 10 years. The patients were 11.9 (SD 7.1)
mo of age, of 8.5 (SD 2.1) kg weight (23% ≤ 7 kg; 52% with growth failure), with biliary atresia in 40 (62%), and with 34 (52%) having had a previous Kasai procedure. Graft type was whole liver in 15 (23%), reduced size/split graft in 21 (32%), and living related graft in 29 (45%) patients. A comment about concerning anatomy of the vessels or biliary tract was recorded for 39 (60%) patients. A therapeutic heparin level by day 3 was obtained for 20 (31%) patients. PICU mortality was 5 (8%), and in survivors the ventilation days and PICU days were 12.5 (SD 14.1) and 21 (SD 21) d respectively. Complications were common, with HAT in 12 (19%), PVT in 11 (17%), biliary leak in 15 (23%), bowel perforation in 5 (8%), intraabdominal infection in 18 (28%), retransplant in 9 (14%), and any severe complication in 32 (49%) patients. First graft survival was 52 (80%) in the PICU, and 51 (78%) at 6 mo. More details of the preoperative, operative, postoperative, and outcome variables are given in Tables S1-4 (Additional File 1).

Primary outcomes

The univariate and multiple logistic regression results for HAT are shown in Table 1. Reduced/split liver (OR 0.06; 95%CI: 1.07; P = 0.03), and living donor liver (OR 0.16; 95%CI: 0.03, 0.95; P = 0.044) transplant had lower risk of HAT than whole liver transplant. The later the first use of furosemide (OR 1.67; 95%CI: 1.03, 2.73; P = 0.039) was also associated with higher risk of HAT.

The univariate and multiple linear regression results for ventilator days in the 60 survivors are shown in Table 2. Ventilator days were shorter for reduced/split liver (ES -12.5; 95%CI: -21.8, -3.2; P = 0.009) than for whole liver transplants. The lowest antithrombin day 2-5 was associated with ventilator days: The higher the antithrombin, the shorter the ventilator days (ES -0.23; 95%CI: -0.47, -0.02; P = 0.034). This is shown graphically in Figure S1 (Additional File 1).

Secondary outcomes

The univariate and multiple logistic regression results for any severe complication are shown in Table 3. Reduced/split liver (OR 0.06; 95%CI: 0.01, 0.78; P = 0.03) transplant had a lower severe complication risk than whole liver transplantation. The lowest antithrombin day 2-5 was associated with severe complication risk: the higher the antithrombin, the lower the risk (OR 0.92; 95%CI: 0.86, 0.98; P = 0.016). This is shown graphically in Figure S2 (Additional File 1).

The univariate and multiple logistic regression results for any thrombosis are shown in Table 4. Reduced/split liver (OR 0.10; 95%CI: 0.01, 0.85; P = 0.034) and living donor liver (OR 0.10; 95%CI: 0.01, 0.71; P = 0.021) transplants had a lower risk of thrombosis than whole liver transplants. The lowest antithrombin day 2-5 was associated with thrombosis: the higher the antithrombin, the lower the risk (OR 0.93; 95%CI: 0.87, 0.99; P = 0.038). This is shown graphically in Figure S3 (Additional File 1).

Posthoc outcomes

The univariate and multiple logistic regression results for 6-mo graft survival are shown in Table 5. Reduced/split liver (OR 15.4; 95%CI: 1.03, 234.9; P = 0.049) had better graft survival than whole liver transplant. The lowest antithrombin day 2-5 was associated with graft survival: the higher the anti-thrombin, the higher the graft survival (OR 1.08; 95%CI: 1.00, 1.16; P = 0.049). This is shown graphically in Figure S4 (Additional File 1).

Year (2005-2010 vs 2011-2015) and weight (> 7 kg vs ≤ 7 kg) were analyzed as categorical variables for their association with the primary and secondary outcomes and mortality. On univariate analysis (independent sample t-test or Fisher’s exact test, no meaningful difference if we use “any operating note comment” instead of “hepatic artery any comment” in the multiple regression; no multiple regression is done with first day of furosemide (data available for n = 54), furosemide is significant with OR 1.67 (95%CI: 1.03, 2.73), P = 0.039, meaning the later furosemide is started the higher is the risk of HAT. CI: Confidence interval; HAT: Hepatic artery thrombosis; LR: Living related liver graft; PELD: Pediatric end-stage liver disease score; R/SL: Reduced or split liver graft; WL: Whole liver graft.

Table 1 Univariate and multiple logistic regressions for the primary outcome of hepatic artery thrombosis after liver transplantation

Variable	Univariate logistic regression, n = 65	Multiple logistic regression, n = 65
	Odds ratio (95%CI)	P-value
Yr	1.10 (0.89, 1.35)	0.371
Weight	0.65 (0.41, 1.04)	0.073
PELD	0.98 (0.93, 1.04)	0.514
Surgeon 2 vs 1	2.04 (0.41, 10.27)	0.388
Surgeon 3 vs 1	4.33 (0.87, 21.60)	0.074
Surgeon 2 vs 3	0.47 (0.10, 2.17)	0.334
Fascia closed on admission	3.9 (1.1, 14.3)	0.04
Hepatic artery any comment	3.9 (1.06, 14.13)	0.04
Any operating note comment1	9.82 (1.18, 81.58)	0.034
First day use of furosemide, n = 543	1.21 (1.05, 1.41)	0.011
Graft type R/SL vs WL	0.04 (0.01, 0.42)	0.006
Graft type LR vs WL	0.10 (0.02, 0.48)	0.004

1No meaningful difference if we use “any operating note comment” instead of “hepatic artery any comment” in the multiple regression; If multiple regression is done with first day of furosemide (data available for n = 54), furosemide is significant with OR 1.67 (95%CI: 1.03, 2.73), P = 0.039, meaning the later furosemide is started the higher is the risk of HAT. CI: Confidence interval; HAT: Hepatic artery thrombosis; LR: Living related liver graft; PELD: Pediatric end-stage liver disease score; R/SL: Reduced or split liver graft; WL: Whole liver graft.
as appropriate), year category was not statistically significantly associated with any outcome, and this was confirmed when year was used as a categorical variable in the multiple logistic and linear regressions (Table S5, Additional File 1). On univariate analysis, weight category was associated with ventilator days (10.5, SD 13.2 vs 20.4, SD 15.2, $P = 0.03$), with a trend toward an association with graft survival (43/50, 86% vs 9/15, 60%; $P = 0.06$). However, these associations were not confirmed when weight was used as a categorical variable in the multiple logistic and linear regressions (Table S6, Additional File 1).

DISCUSSION

Liver transplant in young children is life-saving for end-stage liver disease, yet patients are known to have a high risk of post-operative complications[20,21]. We aimed to determine potentially modifiable perioperative variables that are independently associated with complications post LT. There are several important findings from this study of 65 young patients having LT over the past 10 years. First, although PICU patient (92%) and graft (80%) survival were high, patients experienced a combination of significant postoperative complications.
The EARLY study

Table 4 Univariate and multiple logistic regression for the secondary outcome of any thrombosis after liver transplantation

Variable	Univariate logistic regression, n = 65	Multiple logistic regression, n = 62		
	Odds ratio (95%CI)	P-value	Odds ratio (95%CI)	P-value
Yr	0.96 (0.81, 1.14)	0.656	0.99 (0.87, 1.00)	0.330
Weight	0.74 (0.53, 1.03)	0.075	0.86 (0.67, 1.10)	0.248
PELD	0.97 (0.93, 1.02)	0.218	0.99 (0.93, 1.04)	0.556
Surgeon 2 vs 1	1.50 (0.37, 6.03)	0.568	2.55 (0.84, 7.78)	0.110
Surgeon 3 vs 1	7.20 (1.75, 29.57)	0.006	8.66 (0.99, 75.63)	0.051
Surgery duration, n = 591	0.21 (0.05, 0.88)	0.033	0.34 (0.17, 0.70)	0.034
Fascia closed on admission	5.12 (1.08, 24.20)	0.039	0.03 (0.01, 0.99)	0.021
Biliary anatomy comment1	3.44 (0.99, 11.94)	0.052	0.03 (0.01, 0.99)	0.021
Lowest anti-thrombin d2-5, n = 62	0.95 (0.91, 1.00)	0.03	0.93 (0.87, 0.99)	0.038
First day use of furosemide, n = 541	1.24 (1.04, 1.47)	0.018	0.03 (0.01, 0.99)	0.021
Graft type R/SL vs WL	0.12 (0.03, 0.54)	0.006	0.10 (0.01, 0.71)	0.021
Graft type LR vs WL	0.10 (0.03, 0.44)	0.002	0.10 (0.01, 0.71)	0.021

1If multiple regression is done with first day furosemide (n = 54) a trend for first day of furosemide [OR 1.37 (0.99, 1.90), P = 0.062] is found, meaning the later the furosemide is started, the higher the risk of thrombosis; 2Any operating note comment was used as it is collinear with “hepatic artery any comment” and “biliary anatomy comment”. If instead, we remove “any operating note comment” and add “hepatic artery any comment” and “biliary anatomy comment”, there is no meaningful change to the regression results. LR: Living related liver graft; OR: Odds ratio; PELD: Pediatric end-stage liver diseases score; R/SL: Reduced or split liver graft; WL: Whole liver graft.

Table 5 Univariate and multiple logistic regression for the posthoc secondary outcome of 6-mo first graft survival after liver transplantation

Variable	Univariate logistic regression, n = 65	Multiple logistic regression, n = 62		
	Odds ratio (95%CI)	P-value	Odds ratio (95%CI)	P-value
Yr	1.08 (0.88, 1.32)	0.46	1.08 (1.00, 1.16)	0.049
Weight	1.65 (1.01, 2.68)	0.046	1.08 (1.00, 1.16)	0.049
PELD	1.02 (0.97, 1.07)	0.508	1.08 (1.00, 1.16)	0.049
Surgeon 2 vs 1	0.49 (0.10, 2.47)	0.388	0.03 (0.01, 0.99)	0.021
Surgeon 3 vs 1	0.17 (0.04, 0.84)	0.05	0.03 (0.01, 0.99)	0.021
Surgery duration, n = 591	2.83 (0.63, 12.71)	0.174	0.03 (0.01, 0.99)	0.021
Fascia closed on admission	0.21 (0.06, 0.75)	0.016	0.10 (0.01, 0.71)	0.021
Biliary atresia	0.23 (0.05, 1.14)	0.072	0.10 (0.01, 0.71)	0.021
Heparin started (h), n = 622	1.01 (1.00, 1.01)	0.097	0.10 (0.01, 0.71)	0.021
Lowest anti-thrombin d2-5, n = 62	0.97 (0.94, 0.99)	0.019	0.10 (0.01, 0.71)	0.021
First day furosemide used, n = 541	1.07 (1.01, 1.13)	0.018	0.10 (0.01, 0.71)	0.021
Graft type R/SL vs WL	0.88 (0.78, 0.99)	0.035	0.10 (0.01, 0.71)	0.021
Graft type LR vs WL	8.31 (4.41, 49.06)	0.019	15.39 (1.01, 234.9)	0.049

Surgery duration and surgeon are collinear, so we could not enter both in the regression. If we added “first day furosemide used” (n = 54), furosemide is not significant; If we added “heparin started h”, it was not significant. LR: Living related liver graft; PELD: Pediatric end-stage liver diseases score; R/SL: Reduced or split liver graft; WL: Whole liver graft.

complications, including HAT (19%), PVT (17%), bile leak (23%), bowel perforation (8%), intraabdominal bleeding (11%), abdominal compartment syndrome (12%), and intraabdominal infection (28%). These complications necessitated reoperation of the abdomen for 51% (median 2 episodes, interquartile range 1-4), retransplantation for 14%, and renal replacement therapy for 14% of all patients. Second, there were few independent predictors of our primary and secondary outcomes. When adjusted for prespecified clinically important variables (weight, year, PELD score, and surgeon) and those variables significant at \(P \leq 0.10 \) on univariate analysis, whole liver graft had higher risk of complications (of HAT, ventilator days, any severe complication, any thrombosis, and graft loss), and a novel predictor, the lower the antithrombin level on day 2-5 postoperative, had higher risk of complications (ventilator days, any severe complication, any thrombosis, and graft loss). Third, we found no statistically significant change in outcomes over time on multiple regressions. Fourth, we found no statistically significant association of recipient weight with adverse outcomes on multiple regressions. Fifth, some of the novel predictors we examined were not associated with complication rates on multiple regressions. This included growth
failure (below 5th percentile on weight or height), surgical comments about concerning anatomy of the transplant vessels (hepatic artery or portal vein) or biliary tract, whether fascia was closed on admission to PICU, measures of postoperative fluid status (e.g., use of furosemide, lowest central venous pressure, and highest hemoglobin), and measures of anticoagulation (e.g., achieving a therapeutic heparin level).

This study cohort was similar to those reported in the literature, allowing cautious generalization of the findings to other centers. For example, the United States Scientific Registry of Transplant Recipients 2014 annual data report found 50.6% of recipients had previous abdominal surgery, and 4.8% had previous PVT, compatible with our rate of previous (Kasai procedure) surgery for 52%, and previous PVT in 9%[31]. The SPLIT database found that in LT for biliary atresia, retransplant rates were 11%, and reoperation was required in 48%, comparable to our rates of 14% and 51% respectively[12]. The SPLIT group also found that reoperation within 30 d was more common in split, reduced and living donor grafts (which accounted for 77% of our grafts)[14], and that 30-d survival was 93%, again comparable to our findings[14]. A recent meta-analysis found that 1-year pediatric patient and graft survival for whole liver grafts was 91% and 84.9%, and for technical variant grafts 87.7% and 77.2% respectively, comparable to our 6-mo patient and graft survivals of 89% and 78%[15].

Nevertheless, there are some differences from other reported cohorts that should be acknowledged. The rates of HAT, PVT, and bile leak were higher than in most reports. For example, HAT is often in the range of 5%-10% (compared to our rate of 19%)[8,11,14,15,17,18,22-27], PVT in the range of 5%-15% (compared to our rate of 17%)[8,11,15,18,24,26,28,29], and bile leak in the range of 2%-15% (compared to our rate of 23%)[10,15,16,26,29].

A report from the SPLIT database found high rates of vascular complications (25%), PVT (16%), and bile leak (21%) in the 6.7% of recipients with complex vascular anomalies[30]; however, we did not find an association of abnormal anatomy comments and thrombosis or severe complications. Although some reports have found complication rates to have improved over time, these are usually reports from the 1990s, with the improvements seen by the early-to-mid 2000s[10,11,14,17,18,24,28,31]. This is similar to reports that have found that young age and smaller weight is no longer a risk factor for complications[2,8,13,14,16,18,22,26,27,29,31]. Indeed, we did not find that year or weight was an independent predictor of complication rates. Finally, there are few reports of the incidence of bowel perforation or intraabdominal infection rates for comparison[11,13,21,29]. Quality improvement initiatives at all centers, including our own, may be needed to reduce these complication rates[32,33].

There are some novel findings from this study that warrant further investigation. First, the independent association of low antithrombin levels postLT with any thrombosis, any severe complication, graft loss, and ventilation days has not, to our knowledge, previously been examined or reported. Antithrombin is an anticoagulant produced by the liver, with its effect mediated by irreversibly inhibiting plasma serine proteases (including activated factors X and thrombin); this effect is greatly accelerated by heparin[34]. In addition, antithrombin has antiinflammatory properties[34]. Although antithrombin does not have beneficial effects in critically ill patients in general, it has not been studied in the setting of LT patients who are high risk for thrombosis[34]. Anticoagulation management after liver transplant is not standardized and often not reported in publications[35,36]. The hemostatic system during liver transplant is in a complex and precarious balance, with thrombotic complications often higher than bleeding complications, and is an area in need of extensive study[37-41]. The SPLIT research agenda specifically suggests a randomized trial of different anticoagulation profiles measuring the combined endpoints of PVT, HAT, and reexploration for intraabdominal bleeding[42]. Treatment with antithrombin concentrate intravenously should be considered for low antithrombin levels in such protocols.

Second, the independent association of surgeon with outcomes has not, to our knowledge, previously been reported. The literature suggests that this is an expected finding, for several reasons. The outcomes among centers are highly variable, with most large centers reporting excellent outcomes[11,17,18,24-26,28], and some smaller centers reporting poor outcomes[43-47]. Some authors have reported a decrease in complication rates over time associated with what they call technical experience[10,17,18,27,28,48]. The SPLIT group has reported that the center where transplant is done is a predictor of patient and graft survival (which in turn are predicted by complication rates), and that after adjusting for center there is no effect of age on transplant outcomes[13]. The Kid’s Inpatient Database also found mortality varied by region[48]. The SPLIT Clinical Care and Quality Improvement Committee recently reported that they considered HAT and biliary complications as “essentially surgical complications”[42]. These data suggest that surgical technique is a potentially modifiable variable affecting outcome, and more study is needed to determine what accounts for these differences in outcomes among surgeons, something that is beyond the scope of our study.

Third, whole liver grafts were associated with higher complication rates in our study. This is contrary to the findings from a recent meta-analysis comparing outcomes between whole liver vs technical variant grafts in pediatrics, where the ORs for 1-year patient and graft survival were 1.62 and 1.78, and for PVT biliary complications were 0.45 and 0.42 for whole liver grafts compared to technical variant grafts[15]. The SPLIT group also reported that whole liver grafts have lower rates of biliary complications, PVT, and reoperation compared to split, reduced or
living donor grafts[14]. Nevertheless, there is conflicting literature. Some groups have reported that graft type is not related to biliary complications[10,16,29]. Most groups have reported that graft type is not related to HAT[15], and UNOS data and some single center data suggests graft survival is better after living donor grafts than deceased donor grafts, particularly in younger patients[11,27,49,50]. It is possible that our findings of higher complication rates with whole liver grafts is due to the small patient size in which whole liver grafts contributed to intraabdominal hypertension and vascular compression[0,23]. In support of our findings, an analysis of the UNOS database examining liver transplants for biliary atresia from 2002-2014 found that in recipients ≤7 kg the 1-, 5- and 10-year graft survival was lowest for whole liver grafts, and the vascular thrombosis and liver retransplantation rates highest for whole liver grafts, unlike in recipients weighing 7-14 kg and >14 kg[51]. Future studies should determine whether graft type affects outcome differently in the youngest patients.

There are limitations to this study. First, this was a single-center, retrospective, observational study of 65 patients having had LT at age < 3 years over a time-period of 10 years. Some variables were missing from the medical records for several patients (e.g., blood products given during the transplant surgery; size of hepatic artery, hepatic veins, or portal vein; and graft-to-recipient body size ratio). The subjective evaluations of the vessels and biliary anatomy in the surgical notes were not standardized, and thus difficult to interpret. As such, the findings cannot show cause and effect, and are only hypothesis generating; whether treatment to increase antithrombin levels can improve outcomes is unknown and requires prospective study, ideally in a randomized trial as suggested in the SPLIT research agenda[52]. In addition, other centers should confirm the findings to determine the generalizability of the results. Second, the “any severe complication” outcome was not based on the Clavien-Dindo classification of surgical complications; however, the definition we used would include only complications of Grade III-V, and mostly of Grade IV (life-threatening requiring ICU management)[52]. In addition, the main outcomes overlapped; for example, HAT was a component of “any thrombosis” and “any severe complication”, and graft survival was often determined by thrombosis and other severe complications. Third, the novel predictor, lowest antithrombin on day 2-5 postoperative, could have been a finding during the development of the adverse outcome (i.e., thrombosis), and thus may not be a modifiable predictor. Finally, the posthoc outcomes should be interpreted with caution given the multiple statistical testing and small cohort.

This study has several strengths. This was a modest sample size of young patients having a LT. Although retrospective, the outcomes and potential predictor variables collected were objective, and were all clearly defined prior to data collection. The predictors and primary and secondary outcomes were prespecified prior to analysis, to prevent “data dredging”. Some novel variables were examined, and found not associated with outcomes (e.g., central venous pressure, heparin therapeutic level by day 3, surgical comments about concerning anatomy of the transplant vessels or biliary tract). Some other novel predictors were associated with outcomes (e.g., antithrombin level day 2-5 and surgeon) which generate novel hypotheses for future research.

Patients under 3-years-old having LT had high patient (92%) and graft (80%) survivals. These patients not infrequently experienced a combination of significant postoperative complications, including HAT, PVT, bile leak, bowel perforation, intraabdominal bleeding, abdominal compartment syndrome, and intraabdominal infection, sometimes necessitating reoperation of the abdomen, retransplantation, and kidney dialysis. Whole liver graft was independently associated with a higher risk of complications. A novel predictor, the lower the antithrombin level on days 2-5 postoperative, was independently associated with a higher risk of complications. Other centers should determine whether antithrombin levels are associated with outcomes after LT in young children, and a prospective trial comparing anticoagulation strategies that incorporate antithrombin treatment should be considered.

ARTICLE HIGHLIGHTS

Research background

Postoperative intensive care unit complications after liver transplantation in young children are common, and associated with significant morbidity and mortality. Risk factors for these early complications are poorly studied.

Research motivation

Postoperative intensive care unit complications in young children can require reoperation, threaten liver graft viability, and prolong length of stay. These complications include thrombosis of vessels necessary for blood flow to the liver graft (i.e. hepatic artery thrombosis and portal vein thrombosis), other life-threatening events requiring intensive care management (i.e. bile leak, bowel perforation, intraabdominal infection, or retransplant), or death. Identifying risk factors for these complications can generate hypotheses for future research testing, leading to improved outcomes after liver transplantation.

Research objectives

The authors aimed to determine potentially modifiable prespecified acute care variables that may be associated with prespecified primary and secondary acute intensive care postoperative outcomes in young liver transplant recipients at our center over the past 10 years. In addition, the authors aimed to explore novel potential predictors of adverse outcomes, including written comments made about abnormal liver vessels or biliary anatomy in the dictated operating report, measures of postoperative fluid balance, and measures of post-operative coagulation status. The authors identified risk factors that are potentially modifiable and that should be confirmed by future research.

Research methods

This study was a retrospective chart review including all consecutive children of age less than 3-years-old having had a liver transplant done at the Western Canadian referral center from June 2005 to June 2015. Prespecified potential predictor variables and primary and secondary outcomes were recorded using...
standard definitions and a case report form. Associations between potential predictor variables and outcomes were determined using univariate and multiple logistic (odds ratio, OR; 95% confidence interval, CI) or linear (effect size, ES; 95%CI) regressions.

Research results

There were several important results from this study. First, although pediatric intensive care unit (PICU) patient (92%) and graft (80%) survivals were high, patients experienced a combination of significant postoperative complications, including hepatic artery thrombosis (19%), portal vein thrombosis (17%), bile leak (23%), bowel perforation (6%), intraabdominal bleeding (11%), abdominal compartment syndrome (12%), and intraabdominal infection (28%). These complications necessitated reoperation of the abdomen for 51% (median 2 episodes, interquartile range 1-4), retransplantation for 14%, and renal replacement therapy for 14% of all patients. Second, there were few independent predictors of our primary and secondary outcomes. When adjusted for prespecified clinically important variables (weight, year, pediatric end-stage liver disease score, and surgeon) and those variables significant at P<0.10 on univariate analysis, whole liver graft had higher risk of complications (of hepatic artery thrombosis, ventilator days, any severe complication, any thrombosis, and graft loss). A novel predictor, the lower the antithrombin level on day 2-5 post-operative, had higher risk of complications (ventilator days, any severe complication, and graft loss). The independent association of surgeon with outcomes (of any thrombosis, any severe complication, and ventilator days) has not, to our knowledge, previously been reported. Third, the authors found no statistically significant change in outcomes over time on multiple regressions. Fourth, the authors found no statistically significant association of recipient weight with adverse outcomes on multiple regressions. Fifth, some of the novel predictors the authors examined were not associated with complication rates on multiple regressions. This included: growth failure (below 5th percentile on weight or height), surgical comments about concerning anatomy of the transplant vessels (hepatic artery or portal vein) or biliary tract, whether fascia was closed on admission to PICU, measures of postoperative fluid status (e.g., use of furosemide, lowest central venous pressure, and highest hemoglobin), and measures of anticoagulation (e.g., achieving a therapeutic heparin level). Future study is required to confirm our findings. Treatment with antithrombin concentrate intravenously should be considered for low antithrombin levels in studies of anticoagulation protocols.

Research conclusions

Patients under 3-years-old having liver transplant had high patient (92%) and graft (80%) survival. These patients not infrequently experienced a combination of significant postoperative complications, including hepatic artery thrombosis, portal vein thrombosis, bile leak, bowel perforation, intraabdominal bleeding, abdominal compartment syndrome, and intraabdominal infection, sometimes necessitating reoperation of the abdomen, retransplantation, and kidney dialysis. Whole liver graft was independently associated with a higher risk of complications. Surgeon was independently associated with a higher risk of complications. A novel predictor, the lower the antithrombin level on day 2-5 postoperative, was independently associated with a higher risk of complications. Antithrombin is an anticoagulant produced by the liver, with its effect mediated by irreversibly inhibiting plasma serine proteases (including activated factors X and thrombin); this effect is greatly accelerated by heparin. In addition, antithrombin has anti-inflammatory properties. Although antithrombin does not have beneficial effects in critically ill patients in general, it has not been studied in the setting of liver transplant patients who are high risk for thrombosis. Other centers should determine whether antithrombin levels are associated with outcomes after liver transplant in young children, and a prospective trial comparing anticoagulation strategies that incorporate antithrombin treatment should be considered. In addition, more study is needed to determine what accounts for differences in outcomes among surgeons.

Research perspectives

The findings are hypothesis generating and require confirmation by other centers, ideally in prospective studies. Future prospective observational research is needed to confirm the findings that whole liver graft, surgeon, and low antithrombin postoperatively are risk factors for portal vein thrombosis (17%). If confirmed, future randomized controlled trials of anticoagulation strategies after liver transplant in young children are needed, and these should include monitoring and treatment of antithrombin levels.

REFERENCES

1. Kim WR, Lake JR, Smith JM, Skeans MA, Schladt DP, Edwards EB, Harper AM, Wainright JL, Snyder JJ, Israfi AK, Kasiske BL. OPTN/SRTR 2013 Annual Data Report: liver. Am J Transplant 2015; 15 Suppl 2: 1-28 [PMID: 25626341 DOI: 10.1111/ajt.13197]
2. Sundaram SS, Alonso EM, Anand R; Study of Pediatric Liver Transplantation Research Group. Outcomes after liver transplantation in young infants. J Pediatr Gastroenterol Nutr 2008; 47: 486-492 [PMID: 18852642 DOI: 10.1097/MPG.0b013e318175d7d2]
3. Robertson CM, Dinu IA, Jofe AR, Alton YG, Yap YJ, Asthana S, Acton BV, Suave RS, Martin SR, Knoweman NM, Gilmore SM, Western Canadian Therapies Follow-up Group. Neurocognitive outcomes at kindergarten entry after liver transplantation at <3 yr of age. Pediatr Transplant 2013; 17: 621-630 [PMID: 23961979 DOI: 10.1111/petr.12134]
4. Johnson SB, Riley AW, Grainger DA, Ris J. The science of early life toxic stress for pediatric practice and advocacy. Pediatrics 2013; 131: 319-327 [PMID: 23339224 DOI: 10.1542/peds.2012-0469]
5. Garner AS, Shookoff JP. Committee on Psychosocial Aspects of Child and Family Health; Committee on Early Childhood, Adoption, and Dependent Care; Section on Developmental and Behavioral Pediatrics. Early childhood adversity, toxic stress, and the role of the pediatrician: translating developmental science into lifelong health. Pediatrics 2012; 129: e224-e231 [PMID: 22201484 DOI: 10.1542/peds.2011-2662]
6. Campbell F, Conti G, Heckman Jf, Moon SH, Pinno R, Pangelino E, Pan Y. Early childhood investments substantially boost adult health. Science 2014; 343: 1478-1485 [PMID: 24675955 DOI: 10.1126/science.1248429]
7. Walhovd KB, Krosgrud SK, Amlien IK, Bartsch H, Bjørnerud A, Due-Tønnessen P, Grydeland H, Hagler DJ Jr, Hägbek AK, Kremen WS, Ferschmann L, Nyberg L, Panizzon MS, Rohani DA, Skranes J, Storsve AE, Solnes AE, Tamnes CK, Thompson WK, Reuter C, Dale AM, Fjell AM. Neurodevelopmental origins of lifespan changes in brain and cognition. Proc Natl Acad Sci USA 2016; 113: 9357-9362 [PMID: 27432992 DOI: 10.1073/pnas.1524259113]
8. Bekker J, Poelm S, de Jong KP. Early hepatic artery thrombosis after liver transplantation: a systematic review of the incidence, outcome and risk factors. Am J Transplant 2009; 9: 746-757 [PMID: 19298450 DOI: 10.1111/j.1600-6143.2008.02541.x]
9. Hackl C, Schlitt HJ, Melter M, Knoppke B, Loss M. Current developments in pediatric liver transplantation. World J Hepatol 2015; 7: 1509-1520 [PMID: 26085910 DOI: 10.4245/wjh.v7.i11.1509]
10. Feier FH, da Fonseca EA, Seda-Neto J, Chapchap P. Biliary complications after pediatric liver transplantation: Risk factors, diagnosis and management. World J Hepatol 2015; 7: 2162-2170 [PMID: 26328028 DOI: 10.4245/wjh.v7.i11.2162]
11. Diem HV, Evard V, Vinh HT, Sokal EM, Janssen M, OTte JB, Reding R. Pediatric liver transplantation for biliary atresia: results of primary grafts in 328 recipients. Transplantation 2003; 75: 1692-1697 [PMID: 12777858 DOI: 10.1097/01.TP.0000062570.83203.A3]
12. Uterson EC, Shepherd JP, Sokol RJ, Bucavulas J, Magee JC, McDermid SV, Anand R; Split Research Group. Biliary atresia: clinical profiles, risk factors, and outcomes of 755 patients listed for liver transplantation. J Pediatr 2005; 147: 180-185 [PMID: 16126046 DOI: 10.1016/j.jpeds.2005.04.073]
13. McDermid SV, Anand R, Martz K, Millis MJ, Mazariogues G. A multivariate analysis of pre-, peri-, and post-transplant factors affecting outcome after pediatric liver transplantation. Ann Surg 2011; 254: 145-154 [PMID: 21666838 DOI: 10.1097/SLA.0b013e31821a886c]
14. Diamond JR, Feier FH, Millis JM, Losasso JF, Ng V, Anand R, Song C; SPLIT Research Group. Impact of graft type on outcome in pediatric liver transplantation: a report from Studies of Pediatric...
Liver Transplantation (SPLIT). Ann Surg 2007; 246: 301-310 [PMID: 17667510 DOI: 10.1097/SLA.0b013e3180caa415]

Ye H, Zhao Q, Wang Y, Wang D, Zheng Z, Schroder PM, Lu Y, Kong Y, Liang W, Shang Y, Guo Z, He X. Outcomes of Technical Variants Liver Transplantation versus Whole Liver Transplantation for Pediatric Patients: A Meta-Analysis. PLoS One 2015; 10: e0138202 [PMID: 26368552 DOI: 10.1371/journal.pone.0138202]

Laurence JM, Sapisochin G, DeAngelis M, Seal JB, Misericardia MM, Marquez M, Zair M, Fecteau A, Jones N, Hrycko A, Avitzur Y, Ling SC, Ng V, Cattral M, Grant D, Kamath BM, Ghanekar A. Biliary complications in pediatric liver transplantation: Incidence and management over a decade. Liver Transs 2015; 21: 1082-1090 [PMID: 25909184 DOI: 10.1002/lt.24180]

Farmer DG, Venick RS, McDiamid SV, Ghobrial RM, Gordon SA, Yersiz H, Hong J, Candell L, Cholakians A, Wozniak L, Martin M, Vargas J, Ament M, Hiatt JB, Busuttil RW. Predictors of outcomes after pediatric liver transplantation: an analysis of more than 800 cases performed at a single institution. J Am Coll Surg 2007; 204: 904-914; discussion 914-916 [PMID: 17481508 DOI: 10.1016/j.jamcollsurg.2007.01.061]

Evard V, Otte JB, Sokal E, Rochet JS, Haccourt F, Gennari F, Latinine D, Jamart J, Reding R. Impact of surgical and immunological parameters in pediatric liver transplantation: a multivariate analysis in 500 consecutive recipients of primary grafts. Ann Surg 2004; 239: 272-280 [PMID: 14745337 DOI: 10.1097/01.sla.0000108681.24374.02]

Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009; 42: 377-381 [PMID: 18929686 DOI: 10.1016/j.jbi.2008.08.010]

Emre S, Umman C, Cimsit B, Rosenkrantz R. Current concepts in pediatric liver transplantation. Mt Sinai J Med 2012; 79: 199-213 [PMID: 22494941 DOI: 10.1002/msj.21305]

Boudi FB. Pediatric Liver Transplantation. In: Medscape. 2015. Available from: URL: http://emedicine.medscape.com/article/1012910-overview#showall

Ooi CY, Brandão LR, Zolpys L, De Angelis M, Drew W, Jones N, Ling SC, Fecteau A, Ng VL. Thrombotic events after pediatric liver transplantation. Pediatr Transplant 2010; 14: 476-482 [PMID: 19849808 DOI: 10.1111/j.1399-3046.2009.01252.x]

Uchida Y, Sakamoto S, Egawa H, Ogawa K, Ogura Y, Taira K, Kasahara M, Uryuhara K, Takaya Y, Kamiyama Y, Tanaka K, Uemoto S. The impact of meticulous management for hepatic artery thrombosis on long-term outcome after pediatric living donor liver transplantation. Clin Transplant 2009; 23: 392-399 [PMID: 19191812 DOI: 10.1111.j.1399-0012.2008.00924.x]

Tao GM, Alonso M, Bezzera J, Yazigi N, Heubi J, Balistreri W, Bucuvalas J, McDiarmid SV, Ghobrial RM, Gordon SA, Brandão LR, Zolpys L, De Angelis M, Drew W, Jones N, Cholakians A, Wozniak L, Martin M, Vargas J, Ament M, Hiatt JB, Busuttil RW. Predictors of outcomes after pediatric liver transplantation: an analysis of more than 800 cases performed at a single institution. J Am Coll Surg 2007; 204: 904-914; discussion 914-916 [PMID: 17481508 DOI: 10.1016/j.jamcollsurg.2007.01.061]

Stravitz RT, Tripodi A, Trotter JF, Valla DC, Porte RJ; Coagulation and practical approach to haemostasis in paediatric liver disease. J Hepatol 2010; 53: 362-371 [PMID: 20546962 DOI: 10.1016/j.jhep.2010.01.042]

Lisman T, Bernal W. Management of Bleeding and Thrombosis in Critically Ill Patients with Liver Disease. Blood 2010; 116: 878-885 [PMID: 20406681 DOI: 10.1182/blood-2010-02-261891]

Lisman T, Stravitz RT. Rebalanced Hemostasis in Patients with Acute Liver Failure. Semin Thromb Hemost 2015; 41: 468-473 [PMID: 26049071 DOI: 10.1055/s-0035-1550430]

Venhoff SE, Lee YE, Jawan B, Cheng YF, Cheng KW. Living donor liver transplantation with body-weight more or less than 10 kilograms. World J Gastroenterol 2015; 21: 7248-7253 [PMID: 26109812 DOI: 10.3748/wjg.v21.i23.7248]

Engelsle MJ, Kelly B, Goss J, Fecteau A, Mitchell J, Andrews W, Krapohl G, Magee JC, Mazariagos G, Horslen S, Bucuvalas J. Reducing pediatric liver transplant complications: a potential roadmap for transplant quality improvement initiatives within North America. Am J Transplant 2012; 12: 2301-2306 [PMID: 22883313 DOI: 10.1111/j.1600-6134.2012.04204.x]

Cramm SL, Waits SA, Engelsle MJ, Bucuvalas JC, Horslen SP, Mazariagos GV, Sultys KA, Anand R, Magee JC. Failure to Rescue as a Quality Improvement Approach in Transplantation: A First Effort to Evaluate This Tool in Pediatric Liver Transplantation. Transplantation 2016; 100: 801-807 [PMID: 26910329 DOI: 10.1097/TP.0000000000001121]

Allingstrup M, Wetsers J, Ravn FB, Moller AM, Asfari A. Antithrombin III for critically ill patients: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med 2016; 42: 505-520 [PMID: 26862016 DOI: 10.1007/s00134-016-4225-7]

Kamran Hejazi Kenari S, Mirzakhani H, Eslami M, Sairi RF. Current state of the art in management of vascular complications after pediatric liver transplantation. Pediatr Transplant 2015; 19: 18-26 [PMID: 25422338 DOI: 10.1111/petr.12407]

Alvarez F, Porto C, Forte C, Torroja R. Prevention of portal vein thrombosis after pediatric liver transplantation.Curr Gastroenterol Rep 2012; 14: 270-274 [PMID: 22434261 DOI: 10.1186/s11894-012-0257-5]

Lisman T, Porte RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood 2010; 116: 878-885 [PMID: 20406681 DOI: 10.1182/blood-2010-02-261891]

Lisman T, Stravitz RT. Rebalanced Hemostasis in Patients with Acute Liver Failure. Semin Thromb Hemost 2015; 41: 468-473 [PMID: 26049071 DOI: 10.1055/s-0035-1550430]

Roberts LN, Bernal W. Management of Bleeding and Thrombosis in Critically Ill Patients with Liver Disease. Semin Thromb Hemost 2015; 41: 520-526 [PMID: 26080305 DOI: 10.1055/s-0035-1550431]

Lisman T, Caldwell SH, Burroughs AK, Northup PG, Senzolo M, Stravitz RT, Tripodi A, Trotter JF, Valla DC, Porte RJ; Coagulation in Liver Disease Study Group. Hemostasis and thrombosis in patients with liver disease: a systematic review. Hepatology 2010; 53: 362-371 [PMID: 20546962 DOI: 10.1016/j.hep.2010.01.042]

Magnusson M, Ignjatovic V, Hardikar W, Monagle P. A conceptual and practical approach to haemostasis in paediatric liver disease. Arch Dis Child 2016; 101: 854-859 [PMID: 27013527 DOI: 10.1136/archdischild-2015-309535]

Alonso EM, Ng VL, Anand R, Anderson CD, Ekong UD, Fredericks EM, Furuya KN, Gupta NA, Lerret SM, Sundaram S, Tao G; Studies of Pediatric Liver Transplantation (SPLIT)

Plunkett JL, Goss J, Fecteau A, Jones N, Hrycko A, Avitzur Y, Ling SC, Ng VL, Anand R, Anderson CD, Ekong UD, Fredericks EM, Furuya KN, Gupta NA, Lerret SM, Sundaram S, Tao G; Studies of Pediatric Liver Transplantation (SPLIT)
Alobaidi R et al. The EARLY study

Research Group. The SPLIT research agenda 2013. Pediatr Transplant 2013; 17: 412-422 [PMID: 23718800 DOI: 10.1111/petr.12090]

43 Iglesias J, López JA, Ortega J, Roqueta J, Asensio M, Margaret C. Liver transplantation in infants weighing under 7 kilograms: management and outcome of PICU. Pediatr Transplant 2004; 8: 228-232 [PMID: 15176958 DOI: 10.1111.j.1399-3046.2004.00128.x]

44 Ciria R, Sánchez-Hidalgo JM, Briceño J, Naranjo A, Pleguezuelo M, Díaz-Nieto R, Luque A, Jiménez J, García-Menor E, Gilbert JJ, de la Mata M, Pérez-Navero JL, Solórzano G, Rufián S, Pera C, López-Cillero P. Establishment of a pediatric liver transplantation program: experience with 100 transplantation procedures. Transplant Proc 2009; 41: 2444-2446 [PMID: 19715946 DOI: 10.1016/j.transproceed.2009.06.072]

45 Mohamed El Moghazy W, Ogura Y, Mutsuko M, Harada K, Koizumi A, Uemoto S. Pediatric living-donor liver transplantation for acute liver failure: analysis of 57 cases. Transpl Int 2010; 23: 823-830 [PMID: 20158695 DOI: 10.10111/j.1432-2277.2010.01059.x]

46 Gelas T, McKiernan PJ, Kelly DA, Mayer DA, Mirza DF, Sharif K. ABO-incompatible pediatric liver transplantation in very small recipients: Birmingham’s experience. Pediatr Transplant 2011; 15: 706-711 [PMID: 21762327 DOI: 10.1111/j.1399-3046.2011.01541.x]

47 Mekeel KL, Langham MR Jr, Gonzalez-Peralta RP, Hemming AW. Liver transplantation in very small infants. Pediatr Transplant 2007; 11: 66-72 [PMID: 17239125 DOI: 10.1111/j.1399-3046.2006.00610.x]

48 Wagenaar AE, Tashiro J, Sola JE, Ekwenna O, Tekin A, Perez EA. Pediatric liver transplantation: predictors of survival and resource utilization. Pediatr Surg Int 2016; 32: 439-449 [PMID: 27001031 DOI: 10.1007/s00383-016-3881-6]

49 Roberts JP, Hulbert-Shearon TE, Merion RM, Wolfe RA, Port FK. Influence of graft type on outcomes after pediatric liver transplantation. Am J Transplant 2004; 4: 373-377 [PMID: 14961989]

50 Berg CL, Steffick DE, Edwards EB, Heimbach JK, Magee JC, Washburn WK, Mazariagos GV. Liver and intestine transplantation in the United States 1998-2007. Am J Transplant 2009; 9: 907-931 [PMID: 19341415 DOI: 10.1111/j.1600-6143.2009.02567.x]

51 Alexopoulos SP, Nekrasov V, Cao S, Groshen S, Kaur N, Genyk YS, Matsuoka L. Effects of recipient size and allograft type on pediatric liver transplantation for biliary atresia. Liver Transpl 2017; 23: 221-233 [PMID: 27862929 DOI: 10.1002/lt.24675]

52 Diando D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213 [PMID: 15273542]

P- Reviewer: Citores MJJ, Gad EH, Reichert MC
S- Editor: Ji FF L- Editor: Filipodia E- Editor: Song XX