MORPHOLOGICAL AND PHYLOGENETIC STUDY OF OPHIOCORDYCEPS SPHECOCEPHAL A AND OPHIOCORDYCEPS ASIANA FROM VIETNAM

MAI, T. N.1* – THUY, T. P. D.1 – HONG, V. N.2 – TAWAT, T.3 – SHRESTHA, B.4

1Department of Biology, Faculty of Science, Nong Lam University, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam

2Institute of Geography, Vietnam Academy of Science and Technology, A27-No 18, Hoang Quoc Viet street, Cau Giay district, Hanoi, Vietnam

3RSTDC, Maerim–Samerng Road, Moo 1, Tambol Maeram, Amphur Maerim, Chiang Mai, Thailand

4Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal

*Corresponding author
e-mail: ngtpmai@hcmuaf.edu.vn; phone: +84-287-220-262

(Received 20th Mar 2022; accepted 17th Jul 2022)

Abstract. Ophiocordyceps is a megagenus of entomopathogenic fungi belonging to Ophiocordycipitaceae of Hypocreales, Ascomycota. We report here the morphological and phylogenetic analyses of two Ophiocordyceps species from Bidoup Nui Ba National Park, Lam Dong Province, southern Vietnam. Our data showed that one of our studied Ophiocordyceps is a new intraspecies of O. sphecocephala and another is a new record of O. asiana from Vietnam.

Keywords: Bidoup Nui Ba, D1–D2, insect fungi, ITS, species

Introduction

The genus Ophiocordyceps (Hypocreales, Ascomycota) comprises fungal species that exclusively parasitize members of arthropods, kill them and ultimately grow on their cadavers. Ophiocordyceps sinensis, growing on moth larvae in the alpine grasslands of Himalayan range and the Tibetan Plateau, is used in traditional oriental medicine to treat kidney diseases, asthma and lung infection (Paterson, 2008). Recent publications have also reported roles of Ophiocordyceps species in immunomodulation; cellular apoptosis; anticancer, lung, hepatic and renal support (Paterson, 2008; Zhou et al., 2009; Tuli et al., 2013; Wu et al., 2016). Such properties therefore generate interest in the usage of these fungi as potential sources of bioactive compounds (Shrestha and Sung, 2005; Wang and Yao, 2011; Sasaki et al., 2012; Shrestha et al., 2017; Xiao et al., 2019).

Ophiocordyceps have a worldwide distribution in ecosystem, ranging from sea level up to 5000 m above sea level (Shrestha and Sung, 2005; Li et al., 2011; Araújo et al., 2015; Xiao et al., 2019). The biodiversity of Ophiocordyceps is highly endangered due to intensive collection, deforestation and climate change (Hopping et al., 2018; Wei et al., 2021). Hence, study on Ophiocordyceps species is essential to provide valuable information for biodiversity monitoring and conservation of these fungi.

Bidoup Nui Ba National Park is located in the northern part of Lam Dong Province, which lies in the Central Highlands of southern Vietnam. In 2005, UNESCO recognized Bidoup Nui Ba as the core zone of Langbiang Biosphere Reserve due to its rich
biodiversity. We describe here two species of *Ophiocordyceps* collected in Bidoup Nui Ba National Park, using morphological characteristics and phylogenetic analyses of ribosomal sequences (D1–D2 and ITS).

Materials and methods

Field collection

Specimens of *Ophiocordyceps* species were collected in August 2019 and August 2020 in Bidoup Nui Ba National Park (12°00'00" to 12°52'00" N, 108°17'00" to 108°42'00" E) (*Fig. 1*). The light intensity and relative humidity at the sampling areas were measured using an environmental meter (Extech 45170, Taiwan). All the collected specimens were primarily grouped based on the host insects, one group growing on wasps and the others on bugs. These specimens were either kept in sterile sampling boxes, at 4°C for further analysis or air dried and deposited in the Herbarium of Faculty of Science, Nong Lam University, Ho Chi Minh City, Vietnam (http://sweetgum.nybg.org/, NLU).

Morphological observations

Thirty stroma of each group were observed for morphological measurements. For the microscopic measurements, cross sections of the fertile heads were mounted in sterile distilled water and observed under Olympus CX22 microscope (Olympus, Tokyo, Japan).

DNA extraction and sequencing

DNA was extracted from the specimens using CTAB method (Wu et al., 2001). The D1–D2 region of the 28S rRNA subunit was amplified using NL1/NL4 primer pairs (O’Donnell, 1993). Similarly, the ITS sequence was amplified using ITS1/ITS4 primer pairs (White et al., 1990).

DNA amplification was performed in 35 cycles with a ProFlex PCR System (Thermo Fisher Scientific, MA, USA), each cycle consisting of 3 min at 95°C, 30 sec at 55°C and 2 min at 72°C. High fidelity DNA polymerase (BioFact™ H–Star, Korea) was used for the amplification. The PCR reaction mixture was prepared according to the manufacturer’s instruction and the PCR products were kept at 4°C until used further.

The DNA fragments were purified using a PCR purification kit (MEGAquick–spin™ Plus Total Fragment DNA Purification Kit, Intron, MA, USA). The resulted purified fragments were subsequently sequenced using an ABI 3500 genetic analyzer (Thermo Fisher Scientific, MA, USA) with a BigDye® Terminator v3.1 Cycle Sequencing Kit. The sequenced data were deposited in GenBank with accession numbers.

Preliminary species identification was performed using nBLAST against the GenBank nucleotide database (NCBI, Bethesda MD, USA). To evaluate phylogenetic relationships of Vietnamese specimens with closely related *Ophiocordyceps* species (*Table 1*), we conducted multiple sequence alignments using TCoffee (http://tcoffee.crg.cat) with manual corrections using BioEdit (Hall, 1999; Notredame et al., 2000). The alignments were deposited in TreeBASE under accession number ID 28946. Phylogenetic analyses were conducted using RAxML–HPC2 on XSEDE (https://www.phylo.org) (Stamatakis, 2014) with 1000 bootstrap replicates. Default parameters were used under a GTR + G + I model. The tree with the highest likelihood was obtained. The Bayesian inference was performed using MrBayes v.3.2.7a (Ronquist et al., 2012) on XSEDE using default parameters. The outputs were then imported into FigTree v1.4.3 for viewing the phylogenetic trees.
Table 1. List of D1–D2 and ITS sequences used in this phylogenetic analysis. Vietnamese Ophiocordyceps sequences are indicated in bold

Accession No.	Voucher	D1–D2	ITS	Country	Species	Reference
BCC86880	MW280210	MW285716	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC82789	MW280203	MW285710	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC84229	MW280199	MW285706	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC84230	MW280200	MW285707	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC84234	MW280201	MW285708	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC84235	MW280202	MW285709	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC86436	MW280211	MW285717	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC86440	MW280212	MW285718	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC86875	MW280204	MW285711	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC86876	MW280205	MW285712	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC86878	MW280207	MW285713	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC86879	MW280208	MW285714	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
BCC86880	MW280210	MW285716	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
NLU202011	MT235757	MW684019	Vietnam	O. asiana	This study	
NLU202012	MT235758	MW684020	Vietnam	O. asiana	This study	
NLU202013	MT235759	MW525516	Vietnam	O. asiana	This study	
NLU202014	MT235760	MW684021	Vietnam	O. sphecocephala	This study	
NLU202015	MT235761	MW525517	Vietnam	O. asiana	This study	
MY11785	MW280209	MW285715	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
MY11878	MW280213	MW285719	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
MY11884	MW280216	MW285720	Thailand	O. asiana	(Khoa-ngam et al., 2021)	
HUA186097	KC610765	Columbia	O. australis	(Sanjuan et al, 2015)		
Ophau11780	KP200888	Columbia	O. australis	(Sanjuan et al, 2015)		
MFLU17.1961	NG064484	Thailand	O. cylindrospora	GenBank		
BCC82256	MH028157	Thailand	O. granospora	(Araújo et al, 2020)		
BCC82793	MH028141	Thailand	O. irangiensis	(Khosanat et al, 2019)		
NBRC101399	JN941425	JN943334	Thailand	O. irangiensis	(Sanjuan et al, 2015; Schoch et al, 2012)	
NBRC101400	JN941426	JN943335	Thailand	O. irangiensis	(Sanjuan et al, 2015; Schoch et al, 2012)	
NBRC101401	JN941427	JN943336	Thailand	O. irangiensis	(Sanjuan et al, 2015; Schoch et al, 2012)	
NHJ10945	GU723767	Thailand	O. irangiensis	(Luangs-a-Ard et al, 2011)		
NHJ3	AJ786566	Thailand	O. irangiensis	(Stensrud et al, 2005)		
OSC 128579	EF469076	Thailand	O. irangiensis	(Sanjuan et al, 2015)		
BUO537	MH879600	China	O. myrmecophila	(Zihong et al, 2019)		
MFLU16.2913	MF372586	Thailand	O. myrmecophila	(Xiao et al, 2017)		
FMF88	KX197242	Brazil	O. neonutans	(Friedrich et al, 2018)		
KEL110	KX197240	Brazil	O. neonutans	(Friedrich et al, 2018)		
KEL113	KX197239	Brazil	O. neonutans	(Friedrich et al, 2018)		
KEL114	KX197241	Brazil	O. neonutans	(Friedrich et al, 2018)		
KEL138	KX197243	Brazil	O. neonutans	(Friedrich et al, 2018)		
03Y3	AB544452	Japan	O. nutans	(Sasaki et al, 2012)		
06Fuka3	AB544463	Japan	O. nutans	(Sasaki et al, 2012)		
06Fuka7	AB544467	Japan	O. nutans	(Sasaki et al, 2012)		
Voucher	Accession No.	ITS	Country	Species	Reference	
-----------	---------------	-----------	---------	----------------------	----------------------------	
06Tank1	AB544473	Japan	O. nutans	(Sasaki et al, 2012)		
06Tank11	AB544478	Japan	O. nutans	(Sasaki et al, 2012)		
06Tank21	AB544485	Japan	O. nutans	(Sasaki et al, 2012)		
06Tank22	AB544486	Japan	O. nutans	(Sasaki et al, 2012)		
06Yak2	AB544489	Japan	O. nutans	(Sasaki et al, 2012)		
06Yak3	AB544490	Japan	O. nutans	(Sasaki et al, 2012)		
06Yaka1	AB544491	Japan	O. nutans	(Sasaki et al, 2012)		
AUoO113.78	AJ786583	Thailand	O. nutans	(Stensrud et al, 2005)		
G97035	AJ309367	China	O. nutans	(Sasaki et al, 2012)		
GDGM20887	JX177484	China	O. nutans	GenBank		
Iso1	AJ536560	China	O. nutans	(Sasaki et al, 2012)		
KA12.1247	KR673498	Korea	O. nutans	(Kim et al, 2015)		
KA12.1340	KR673559	Korea	O. nutans	(Kim et al, 2015)		
NBRC100944	JN941428	Japan	O. nutans	(Ban et al, 2015)		
NBRC101749	AB968408	Japan	O. nutans	(Sasaki et al, 2012)		
Oph994	KJ917567	Columbia	O. nutans	(Sanjuan et al, 2015)		
OSC110994	DQ518763	n/a	O. nutans	(Sanjuan et al, 2015)		
T37	AB366634	Japan	O. nutans	(Sasaki et al, 2012)		
T62	AB366626	Japan	O. nutans	(Sasaki et al, 2012)		
T70	AB366623	Japan	O. nutans	(Sasaki et al, 2012)		
MRCIF53	EU573348	Thailand	O. oxycephala	(Qu et al, 2018)		
Iso6578	AJ536548	China	O. polyarthra	(JiaJun et al, 2021)		
20877	AJ536550	China	O. sphecocephala	(Tian et al, 2010)		
MRCIF54	EU573347	Thailand	O. sphecocephala	GenBank		
NBRC101416	JN941443	Thailand	O. sphecocephala	(Sanjuan et al, 2015)		
NBRC101752	JN941445	Japan	O. sphecocephala	(Ban et al, 2015)		
NBRC101414	JN943443	Thailand	O. sphecocephala	(Sanjuan et al, 2015; Schoch et al, 2012)		
NBRC101415	JN941442	Thailand	O. sphecocephala	(Sanjuan et al, 2015)		
NBRC101752	JN943351	Japan	O. sphecocephala	(Ban et al, 2015; Schoch et al, 2012)		
NBRC101753	JN943350	Japan	O. sphecocephala	(Ban et al., 2015; Schoch et al., 2012)		
NHJ4224	GU723778	Thailand	O. sphecocephala	(Luangsa-Ard et al., 2011)		
OSC 110998	DQ518765	Thailand	O. sphecocephala	(Sanjuan et al., 2015)		
BCC79226	MW280219	Thailand	O. tesseratominorarum	(Kha-ngam et al., 2021)		
MY10827	MW280217	Thailand	O. tesseratominorarum	(Kha-ngam et al., 2021)		
MY10830	MW280218	Thailand	O. tesseratominorarum	(Kha-ngam et al., 2021)		
MFLU16.2908	MF362990	Thailand	O. thanathonensis	(Xiao et al., 2017)		
NBRC106968	AB968423	Japan	O. tricinti	(Ban et al., 2015)		
BCC49498	KF016996	Outgroup	Aschersonia narathiwatensis	GenBank		
JM0807	HM135162	Outgroup	Cordyceps militarius	(Zhong et al., 2010)		
BCC55524	KF016995	Outgroup	Hypocreella sianensis	GenBank		
Molecular analyses used the dataset of 101 taxa (including 10 new sequenced data) (Table 1). Analysis using the D1–D2 sequences included 45 taxa with a total length of 2200 characters in the final dataset, while the analysis using the ITS sequences included 66 taxa with a total length of 920 characters in the final dataset.

Results and discussion

The analyses of Ophiocordyceps sphecocephala

Ophiocordyceps sphecocephala (Klotzsch ex Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, Stud. Mycol. 2007: 5-59.

MycoBank MB504343.

Taxonomy (Fig. 2, Table 2)

The specimens from Vietnam shared the morphological characteristics with the described morphology of *O. sphecocephala* (Sung et al, 2007).

Diagnosis. Stromata solitary or two, thin, creamy yellow, 72–106 mm long, arising from the region between the head and thorax of the host insect. Stipe stout, 0.7–1.0 mm in diam. Fertile head soft when fresh, 10–13 × 1.5–2.0 mm. Perithecia long, oblique in position, thick-walled and immersed in the fertile head, 610–730 × 130–220 μm. Ascospores thread–like and fragmented, 120–260 × 4–6 μm. Part spores fusoid, 7.5-8.5 × 1.5–2.0 μm.
Host insect. The specimens of *O. sphecocephala* were only found on German wasps (*Vespula germanica*, Vespidae). Similar host insect family is reported in Thai *O. sphecocephala* (Hywel-Jones, 1995a).

Locality. Bidadu Nui Ba National Park, Lam Dong province, Vietnam (12°00'00" to 12°52'00" N, 108°17'00" to 108°42'00" E), between 1200 m to 1600 m altitude above sea level, specimens arising from thick layer of decaying leaves on the floor of mixed forest, near the streams at the relative humidity of 62%–68% and less than 200 lx of scattering light.

Remarks. Even though Vietnamese *Ophiocordyceps sphecocephala* shared many characteristics with previous description of *O. sphecocephala*, we observed that Vietnamese *O. sphecocephala* has longer stromata and fertile head while the asci and part spores were smaller (Table 2).
Table 2. Morphological characteristics of the collected *Ophiocordyceps* and the references from Thailand, Japan and Brazil

Specimen	Host/Voucher	Stroma (mm)	Fertile head (mm)	Peritheticum (mm)	Asci (μm)	Part spore (μm)
O. sphecocephala (This study)	On *Vespula germanica*, Vespidae (NLU202014)	72–106 × 0.7–1	10–13×1.5–2.0	610–730 × 130–220	120–260 × 4–6	7.5–8.5 × 1.5–2
O. sphecocephala Thailand (Hywel-Jones, 1995a)	to 45 × 0.15–0.8	2.2–11 × 1.2–1.9	880–1000 × 200–260	700– up x to 7	10–14 × 1.5–2.5	
on *Halyomorpha halys*	Pentatomidae (NLU202011)					
on *Acanthosoma labiduroides*	Acanthosomatidae (NLU202012)					
on *Clavigralla scutellaris*	Coreidae (NLU202013)					
on *Proxys punctulatus*	Pentatomidae (NLU202015)					
O. asiana Thailand (Khao-ngam et al, 2021)	30–130 × 1–2	5–20 × 2–3	750–1200 × 200–300	200–600 × 5–6	6–14 × 1.5–2	
O. nutans Japan (Type I) (Sasaki et al, 2008)	n/a	n/a	950–970 × 250–260	n/a	n/a	
O. nutans Japan (Type II) (Sasaki et al, 2008)	32–112	2.5–14 × 1.5–3.7	610–1170 ×190–560	200–285 × 5–9	3.5–20 × 1–2	
O. nutans Thailand (Hywel-Jones, 1995b)	50–90 × 0.4–0.8	6–17 × 3–5	550–800 × 130–300	780 × 7–8	9.3–15 × 1.5–2	
O. neonutans Brazil (Friedrich et al, 2018)	23–170 × 1–2	6–19 × 0.9–2.0	550–1200 × 130–360	220–900 × 3–8	6–15 × 1.2–3	
The BLAST analysis using the D1–D2 sequence of *O. sphecocephala* from Vietnam showed 96.87% identity with *O. sphecocephala* sequence (NBRC 101414) and 96.48% with *O. irangiensis* sequence (NBRC 101399). The phylogenetic analysis using the D1-D2 dataset showed that Vietnamese *O. sphecocephala* formed a monophyletic cluster with high support (95% RAxML, BPP 1.00 and 0.02 pairwise distance) to the group of *O. sphecocephala* (NBRC 101414) and *O. irangiensis* (NBRC101399) from Thailand (Fig. 3). It is known that D1–D2 sequences are slowly evolved and the nucleotide substitution values within a species is not higher than 0.01, whereas greater value of nucleotide substitution is recorded in separate biological species (Kurtzman and Robnett, 1997; Raja et al., 2017). In the analysis using the ITS dataset, *O. sphecocephala* again showed its closest relationship to Thai *O. sphecocephala* (NBRC 101414) and *O. irangiensis* (NBRC101399). Even though the support was moderate (79% RAxML, BPP 0.82), the pairwise distances between Vietnamese *O. sphecocephala* and Thai *O. sphecocephala* (NBRC 101414) was 0.09 and the pairwise distance to *O. irangiensis* (NBRC101399) was 0.06 (Fig. 4). Chen et al (2004) reported that the ITS sequence distance within a species should be from 0.00 to 0.05. Our results using ITS sequences therefore indicated a genetic variable between Vietnamese *O. sphecocephala* and Thai *O. sphecocephala* (NBRC101414).

It has been known that *O. irangiensis* infects only ants while *O. sphecocephala* grows on wasps only (Hywel-Jones, 1995a; 1996; Araújo et al., 2020). All specimens of *O. sphecocephala* were found on wasps only. Mains (1958) pointed out the presence of longitudinal hyphae at the core of the fertile head as a key character to distinguish *O. sphecocephala* from similar species. Similar descriptions on *O. sphecocephala* were also reported later (Hywel-Jones, 1995a; Sung et al., 2007). Here, we observed the presence of this diagnostic character in Vietnamese *O. sphecocephala* specimens (Fig. 2).

So far, data on *O. sphecocephala* were either reported as genetic data or morphological data (Hywel-Jones, 1995a; Sung et al., 2007). There is no morphological description for *O. sphecocephala* (NBRC101414) and many other reported *O. sphecocephala*. Only morphological data of *O. sphecocephala* specimens collected in Thailand is available (Hywel-Jones, 1995a) (Table 2), however these specimens are not analyzed phylogenetically. In comparison to the data by Hywel-Jones (1995a), Vietnamese *O. sphecocephala* had longer stromata and fertile heads, while the length of the asc and part spores were smaller (Table 2). Our study therefore the first report providing both morphological and genetic data on *O. sphecocephala*.

Our phylogenetic and morphological data consistently showed the differences of Vietnamese *O. sphecocephala* and other reported *O. sphecocephala*. We therefore propose Vietnamese *O. sphecocephala* as a new intraspecies of *O. sphecocephala*.

The analyses of Ophiocordyceps asiaca

Ophiocordyceps asiaca Mongkolsamrit, Khao-ngam, Himaman, Rungjindamai & Luangsa-Ard, 2021: 341-353.

Mycobank MB838742.

Taxonomy (Table 2, Fig. 5)

The specimens of *O. asiaca* from Vietnam shared morphological characteristics with recently described characteristics of *O. asiaca* from Thailand (Khao-ngam et al., 2021).

Diagnosis. Stromata solitary or up to four, cylindrical, 72–189 mm long, arising from the thorax of adult bugs. Stipe stout, black and wiry, 0.5 to 1.0 mm in diam. Fertile head
cylindrical, yellow to reddish orange and soft when fresh, 4.5–31.5 × 0.5–2.5 mm. Perithecia elongated pyriform, thick-walled and immersed in the fertile head, 140–810 × 4–7 μm. Ascospores are thread-like and fragmented. Partspores 7.5–14 × 1.5–3 μm, cylindrical with truncate ends.

Figure 3. Phylogenetic tree of the studied O. sphecocephala and O. asiana and the related taxa generated from RAxML analysis using D1–D2 sequences. The RAxML and Bayesian posterior probability values were indicated above the nodes as RAxML/BPP. Vietnamese Ophiocordyceps sequences are indicated in bold.
Figure 4. Phylogenetic tree of the studied O. sphecocephala, O. asiana and the related taxa generated from RAxML analysis using ITS sequences. The RAxML and Bayesian posterior probability values were indicated above the nodes as RAxML/BPP. Vietnamese Ophiocordyceps sequences are indicated in bold.
Figure 5. A–D. Stromata of *O. asiana* on *Halyomorpha halys* (Pentatomidae), *Acanthosoma labiduroides* (Acanthosomatidae), *Clavigralla scutellaris* (Coreidae), *Proxys punctulatus* (Pentatomidae), respectively. E, F. Perithecia, G. immature ascus, H. mature ascus with partspores, I. Part spores

Host insects. The collected specimens were found on a broad range of host insect families. They infected black stinkbug (*Proxys punctulatus*, Pentatomidae), brown marmorated stinkbug (*Halyomorpha halys*, Pentatomidae), scissors turtle bug (*Acanthosoma labiduroides*, Acanthosomatidae) and legume bug (*Clavigralla scutellaris*, Coreidae). Similar results are also reported in *O. asiana* from Thai Lan (Khao-ngam et
al., 2021) and *O. nutans* from Japan (Sasaki et al., 2012) while *O. neonutans* is only found in Pentatomidae (Friedrich et al., 2018).

Locality. Bidoup Nui Ba National Park, Lam Dong province, Vietnam (12°00′00″ to 12°52′00″ N, 108°17′00″ to 108°42′00″ E) from 1200 m to 1600 m above sea level, near the stream in mixed forest, specimens arising from thick layers of decaying leaves on the forest floor under 62%–68% relative humidity and less than 200 lx of scattering light.

Remarks. Although the specimens from Vietnam of *O. asiana* shared many characteristics with *O. asiana* and *O. nutans* reported from Thailand, Japan and *O. neonutans* reported from Brazil, we observed that the stroma and the fertile head of Vietnamese specimens are longer than those of Thailand, Japan and Brazil (Table 2), while the perithecia, asci and partspores are shorter (Table 2).

We recorded a broad variation in the morphology of *Ophiocordyceps asiana* infecting different bug species. For example, longer stromata, fertile heads, perithecia and part spores were observed in the specimens infecting *Halyomorpha halys* (Pentatomidae) and *Acanthosoma labiduroides* (Acanthosomatidae) (Table 2). Besides, the differences in the stroma color, the sizes of the stromata, fertile head and perithecia were also recorded (Table 2).

Four groups of *Ophiocordyceps asiana* from Vietnam had identical D1–D2 and ITS sequences regardless of having different families of host insects (Acanthosomatidae, Coreidae and Pentatomidae).

The nucleotide BLAST analyses using D1–D2 sequences of Vietnamese *O. asiana* specimens revealed more than 99.3% of homology with the sequences of *O. nutans* from Japan (NBRC 101749), Thailand (NBRC 100944) and *O. asiana* from Thailand. The phylogenetic analysis using the D1–D2 sequences showed that Vietnamese *O. asiana* sequences formed a monophyletic group with high support (100% RAxML, BPP 1.00) to the group of *O. asiana* in Clade A reported by Khao-ngam et al. (2021) (Fig. 2). This clade includes Thai *O. asiana* (Khao-ngam et al., 2021) and Japanese *O. nutans* type I (Sasaki et al., 2012). In our analysis, the pairwise distance between Vietnamese *O. asiana* and others in clade A was lower than 0.01 (Fig. 3).

It is known that D1–D2 sequences are slowly evolved and the nucleotide substitution values of intraspecies is not higher than 0.01, whereas greater value of nucleotide substitution is recorded in separate biological species (Kurtzman and Robnett, 1997; Raja et al., 2017). The results therefore indicated that *O. asiana* from Vietnam belonged to the Clade A of *O. asiana* of Khao-ngam et al. (2021) and *O. nutans* Type I of Sasaki et al. (2012). Since D1–D2 regions are more conserved than ITS regions, we analyzed *O. asiana* at the ITS region to further investigate if there is any genetic variation between Vietnamese *O. asiana* and other *O. asiana* in clade A. Consistent to the analysis results using D1–D2 sequences, the analysis using ITS sequences also showed that Vietnamese *O. asiana* was in Clade A with high support (100% RAxML, BPP 1.00) and low pairwise distance (0.01) (Fig. 4). It is therefore confirmed the genetic similarity between Vietnamese *O. asiana*, Thai *O. asiana* and *O. nutans* Type I from Japan.

However, we still noticed that Vietnamese *O. asiana* had longer stroma and fertile heads but shorter perithecia, asci and partspores than those of *O. asiana* from Thailand, of *O. nutans* from Japan and also of *O. neonutans* from Brazil (Table 2).

Sasaki et al. (2012) had found that the ITS sequences of *O. nutans* infecting different species of Acanthosomatidae and Pentatomidae are similar. However, the ITS sequences of *O. nutans* infecting Coreidae are different from those on other insect families (Sasaki et al., 2012). Differently, Vietnamese *O. asiana* possessed identical D1–D2 and ITS
sequences in all the recorded bug families: Ancanthosomatide, Pentatomidae and also in Coreidiae (Figs. 3, 4).

In the study of *O. nutans* collected in Japan, Sasaki et al. (2008) did not record any significant differences in the morphology of *O. nutans* among the host insect species. In contrast, we noticed a strong impact of the host insect on the morphological diversity of Vietnamese *O. asiana*, which could be observed in the size of the stroma, fertile heads, asci and part spores (Table 2, Fig. 5).

Conclusions

The collected specimens of *Ophiocordyceps* on wasps were an intraspecies of *O. sphecocephala* and the specimens on bugs were *O. asiana*.

O. asiana could infect a wide range of host insects and the influence of the host insects on *O. asiana* morphology was also observed, while the host of *O. sphecocephala* was more specific and found only on wasps (Vespidae).

Acknowledgment. The authors acknowledge the financial support from the Ministry of Education and Training, Vietnam (B2020-NLS-01).

Conflict of interests. The authors declare that there is no conflict of interests.

REFERENCES

[1] Araújo, J. P. M., Evans, H. C., Geiser, D. M., Mackay, W. P., Hughes, D. P. (2015): Unravelling the diversity behind the *Ophiocordyceps unilateralis* (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon. – Phytotaxa 220(3): 224-238.

[2] Araújo, J. P. M., Evans, H. C., Fernandes, I. O., Ishler, M. J., Hughes, D. P. (2020): Zombie-ant fungi cross continents: II. Myrmecophilous hymenostilboid species and a novel zombie lineage. – Mycologia 112(6): 1138-1170.

[3] Ban, S., Sakane, T., Nakagiri, A. (2015): Three new species of *Ophiocordyceps* and overview of anamorph types in the genus and the family Ophiocordycipitaceae. – Mycological Progress 14(1): 1017-1030.

[4] Chen, Y. Q., Hu, B., Xu, F., Zhang, W., Zhou, H., Qu, L. H. (2004): Genetic variation of *Cordyceps sinensis*, a fruit-body-producing entomopathogenic species from different geographical regions in China. – FEMS Microbiology Letters 230(1): 153-158.

[5] Friedrich, R. C. S., Shrestha, B., Salvador-Montoya, C. A., Tome, L. M. R., Reck, M., Gues-Neto, A., Drechsler-Santos, E. R. (2018): *Ophiocordyceps neonutans* sp. nov., a new neotropical species from *O. nutans* complex (Ophiocordycipitaceae, Ascomycota). – Phytotaxa 344(3): 215-227.

[6] Hall, T. A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. – Nucleic Acids Symposium Series. London: Information Retrieval Ltd., c1979-c2000; pp. 95-98.

[7] Hopping, K. A., Chignell, S. M., Lambin, E. F. (2018): The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. – PNAS 115(45): 11489-11494.

[8] Hywel-Jones, N. (1995a): *Cordyceps sphecocephala* and a *Hymenostilbe* sp. infecting wasps and bees in Thailand. – Mycological Research 99(2): 154-158.

[9] Hywel-Jones, N. (1995b): Notes on *Cordyceps nutans* and its anamorph, a pathogen of hemipteran bugs in Thailand. – Mycological Research 99(6): 724-726.
[10] Hywel-Jones, N. (1996): *Cordyceps myrmecophila*-like fungi infecting ants in the leaf litter of tropical forest in Thailand. – Mycological Research 100(5): 613-619.

[11] JiaJun, H., Dan, D., Gui-Ping, Z., Di-Zhe, G., Yong-Lan, T., Gu, R., Zheng-Xiang, Q., Zheng-Hao, Z., Yu, L., Bo, Z. (2021): Morphology and molecular study of three new Cordycipitoid fungi and its related species collected from Jilin Province, Northeast China. – MycoKeys 83: 161-180.

[12] Khao-ngam, S., Mongkolsamrit, S., Rungjindamai, N., Noisripoon, W., Poissarakul, W., Duanghisan, J., Himman, W., Luangs-Ard, J. J. (2021): *Ophiocordyces asiana* and *Ophiocordyces tesseratorimidaru* (Ophiocordycipitaeae, Hypocreales), two new species on stink bugs from Thailand. – Mycological Progress 20(3): 341-353.

[13] Khonsanit, A., Luangs-Ard, J. J., Thanakitpipattana, D., Kobmoo, N., Piasai, O. (2019): Cryptic species within *Ophiocordyces myrmecaphila* complex on formicine ants from Thailand. – Mycological Progress 18(1): 147-161.

[14] Kim, C. S., Jo, J. W., Kwag, Y.-N., Sung, G.-H., Lee, S.-G., Kim, S.-Y., Shin, C.-H., Han, S.-K. (2015): Mushroom flora of ulleung-gun and a newly recorded *Bovista* species in the Republic of Korea. – Mycobiology 43(3): 239-257.

[15] Kurtzman, C. P., Robnett, C. J. (1997): Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene. – Journal of Clinical Microbiology 35(5): 1216-1223.

[16] Li, Y., Wang, X. L., Jiao, L., Jiang, Y., Li, H., Jiang, S. P., Lhosumteiring, N., Fu, S. Z., Dong, C. H., Zhan, Y., Yao, Y. J. (2011): A survey of the geographic distribution of *Ophiocordyces sinensis*. – Journal of Microbiology 49(6): 913-996.

[17] Luangs-Ard, J. J., Ridkaew, R., Tasanathai, K., Thanakitpipattana, D., Hywel-Jones, N. (2011): *Ophiocordyces halabalaisens*: a new species of *Ophiocordyces* pathogenic to *Camponotus gigas* in Hala Bala Wildlife Sanctuary, Southern Thailand. – Fungal Biology 115(7): 608-614.

[18] Mains, E. B. (1958): North American entomogenous species of *Cordyceps*. – Mycologia 50(2): 169-222.

[19] Notredame, C., Higgins, D. G., Heringa, J. (2000): T-Coffee: A novel method for fast and accurate multiple sequence alignment. – Journal of Molecular Biology 302(1): 205-217.

[20] O'Donnell, K. (1993): Fusarium and its near relatives. – In: Reynolds, D. R., Taylor, J. W. (eds.) The fungal holomorph: miotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford: CAB International, pp. 225-233.

[21] Paterson, R. R. M. (2008): *Cordyceps*—A traditional Chinese medicine and another fungal therapeutic biofactory? – Phytochemistry 69(7): 1469-1495.

[22] Qu, J. J., Yu, L. A. N., Zhang, J., Han, Y., Xiao, Z. (2018): A new entomopathogenic fungus, *Ophiocordyces ponerus* sp. nov., from China. – Phytotaxa 343(2): 116-126.

[23] Raja, H. A., Miller, A. N., Pearce, C. J., Oberlies, N. H. (2017): Fungal identification using molecular tools: A primer for the natural products research community. – Journal of Natural Products 80(3): 756-770.

[24] Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., Huelsenbeck, J. P. (2012): MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. – Systematic Biology 61(3): 539-542.

[25] Sanjuan, T. I., Franco-Molano, A. E., Kepler, R. M., Spatafora, J. W., Tabima, J., Vasco-Palacios, A. M., Restrepo, S. (2015): Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical *Ophiocordyces*. – Fungal Biology 119(10): 901-916.

[26] Sasaki, F., Miyamoto, T., Yamamoto, A., Tamai, Y., Yajima, T. (2008): Morphological and genetic characteristics of the entomopathogenic fungus *Ophiocordyces nutans* and its host insects. – Mycological Research 112(10): 1241-1244.

[27] Sasaki, F., Miyamoto, T., Yamamoto, A., Tamai, Y., Yajima, T. (2012): Relationship between intraspecific variations and host insects of *Ophiocordyces nutans* collected in Japan. – Mycoscience 53(2): 85-91.
[28] Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W. (2012): Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. – PNAS 109(16): 6241-6246.

[29] Shrestha, B., Sung, J. M. (2005): Notes on Cordyceps species collected from the central region of Nepal. – Mycobiology 33(4): 235-239.

[30] Shrestha, B., Tanaka, E., Hyun, M., Han, J., Kim, C., Jo, J., Han, S., Sung, J., Sung, G. H. (2017): Mycosphere Essay 19. Cordyceps species parasitizing hymenopteran and hemipteran insects. – Mycosphere, Journal of Fungal Biology 8(9): 1424-1442.

[31] Stamatakis, A. (2014): RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. – Bioinformatics 30(9): 1312-1313.

[32] Stensrud, Ø., Hywel-Jones, N. L., Schumacher, T. (2005): Towards a phylogenetic classification of Cordyceps: ITS nrDNA sequence data confirm divergent lineages and paraphyly. – Mycological Research 109(1): 41-56.

[33] Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsaa-Ard, J. J., Shrestha, B., Spatafora, J. W. (2007): Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. – Studies in mycology 57(1): 5-59.

[34] Tian, L.-H., Hu, B., Zhou, H., Zhang, W.-M., Qu, L.-H., Chen, Y.-Q. (2010): Molecular phylogeny of the entomopathogenic fungi of the genus Cordyceps (Ascomycota: Clavicipitaceae) and its evolutionary implications. – Journal of Systematics and Evolution 48(6): 435-444.

[35] Tuli, H. S., Sharma, A. K., Sandhu, S. S., Kashyap, D. (2013): Cordycepin: a bioactive metabolite with therapeutic potential. – Life Sciences 93(23): 863-869.

[36] Wang, X. L., Yao, Y. J. (2011): Host insect species of Ophiocordyceps sinensis: A review. – ZooKeys 127: 43-59.

[37] Wei, Y., Zhang, L., Wang, J., Wang, W., Niyati, N., Guo, Y., Wang, X. (2021): Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. – The Science of the total environment 755(Pt 1): 142548-142548.

[38] White, T., Bruns, T., Lee, S., Taylor, J., Innis, M., Gelfand, D., Sninsky, J. (1990): Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. – PCR Protocols: a guide to methods and applications 31. New York: Academic Press. Inc., pp. 315-322.

[39] Wu, Z. H., Wang, T. H. D., Huang, W., Qu, Y. B. (2001): A simplified method for chromosome DNA preparation from filamentous fungi. – Mycosystema 20(1): 575-577.

[40] Wu, D. T., Lv, G. P., Zheng, J., Li, Q., Ma, S. C., Li, S. P., Zhao, J. (2016): Cordyceps collected from Bhutan, an appropriate alternative of Cordyceps sinensis. – Scientific Reports 6(1): 376681.

[41] Xiao, Y. P., Wen, T. C., Hongusan, S., Sun, J., Hyde, K. (2017): Introducing Ophiocordyceps thanathonensis, a new species of entomogenous fungi on ants, and a reference specimen for O. pseudoloydii. – Phytotaxa 328(2): 115-126.

[42] Xiao, Y. P., Hongusan, S., Hyde, K. D., Brooks, S., Xie, N., Long, F. Y., Wen, T. C. (2019): Two new entomopathogenic species of Ophiocordyceps in Thailand. – MycoKeys 47(1): 53-74.

[43] Zhong, X., Peng, Q., Qi, L., Lei, W., Liu, X. (2010): rDNA-targeted PCR primers and FISH probe in the detection of Ophiocordyceps sinensis hypheae and conidia. – Journal of Microbiological Methods 83(2): 188-193.

[44] Zhou, X., Gong, Z., Su, Y., Lin, J., Tang, K. (2009): Cordyceps fungi: natural products, pharmacological functions and developmental products. – Journal of Pharmacy and Pharmacology 61(3): 279-291.

[45] Zihong, C., Yuanbing, W., Yongdong, D., Kai, C., Ling, X., Qingcheng, H. (2019): Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan. – Biodiversity Science 27(9): 993-1001.