Lifting automorphisms on Abelian varieties as derived autoequivalences

TANYA KAUSHAL SRIVASTAVA

Abstract. We show that on an Abelian variety over an algebraically closed field of positive characteristic, the obstruction to lifting an automorphism to a field of characteristic zero as a morphism vanishes if and only if it vanishes for lifting it as a derived autoequivalence. We also compare the deformation space of these two types of deformations.

Mathematics Subject Classification. 14F05, 14J50, 14G17, 11G10, 14D15, 14K99.

Keywords. Abelian varieties, Automorphisms, Positive characteristic, Derived autoequivalences, Lifting to characteristic zero.

Introduction. Investigations into derived categories of coherent sheaves on a smooth projective variety as a geometric invariant started with the seminal papers of Mukai and Bondal-Orlov. (For basics, see Huybrechts’ book [11].) In [4], Bondal-Orlov showed that smooth projective varieties with ample canonical or anti-canonical bundle are determined up to isomorphism by their derived categories. On the other hand, Mukai [15] showed that this was not the case for Abelian varieties by explicitly constructing non-isomorphic derived equivalent Abelian varieties. Further work by many authors led to examples of mostly Calabi–Yau varieties (varieties with vanishing first Chern class) that are non-isomorphic but derived equivalent. In case the variety is a curve or a surface (over \(\mathbb{C} \)) [5] or is an Abelian variety [23], it turned out that the number of non-isomorphic derived equivalent varieties to a chosen variety is finite, although unbounded [10]. However, outside the case of Calabi–Yau varieties, Lesieutre [13] has constructed an example of a rational threefold which is derived equivalent to infinitely many non-isomorphic threefolds. In general, the number of non-isomorphic derived equivalent smooth projective varieties is countable [1]. This approach to understanding geometry via derived categories got a major
boost with the homological mirror symmetry conjecture of Kontsevich [12],
leading to immense interest in understanding and constructing derived au-
toequivalence of smooth projective varieties over \mathbb{C}. On the other hand, the
group of derived autoequivalences for smooth projective varieties over fields of
characteristic p is largely unexplored other than a few results for K3 surfaces
in [27] and for Abelian Varieties in [23], where it is shown that the group of
derived autoequivalences satisfies a short exact sequence.

Any smooth projective variety X over an algebraically closed field admits
the following three kinds of standard derived autoequivalences via shifts of
complexes, automorphism of varieties, and twists by line bundles:

\[
\begin{align*}
\mathbb{Z} & \to \text{Aut}(D(X)), \ n \mapsto [n], \\
\text{Aut}(X) & \to \text{Aut}(D(X)), \ \sigma \mapsto \sigma^* = (\sigma^{-1})^*, \\
\text{Pic}(X) & \to \text{Aut}(D(X)), \ L \mapsto M_L, \quad M_L(F) := F \otimes L.
\end{align*}
\]

All the three morphisms are injective group homomorphisms. They sit inside $\text{Aut}(D(X))$ as the subgroup $\text{Aut}(X) \ltimes \text{Pic}(X) \times \mathbb{Z}$.

We would like to compare this subgroup of autoequivalences between smooth
projective varieties over fields of characteristic p which admit a lift to char-
acteristic zero and their lifts. More precisely, let X be a smooth projective
variety over an algebraically closed field k of characteristic p such that there
exists a smooth projective scheme X_V over V a discrete valuation ring which is
possibly a finite extension of the ring of Witt vectors $W(k)$ over k. The generic
fiber of X_V gives a smooth projective variety over a field K of characteristic
zero. When such an X_V exists for a variety X, we say that X is liftable to
characteristic zero or admits a lift to characteristic zero. The obstruction to
the existence of such a lift is given by $H^2(X, T_X)$ [8]. Furthermore, given a
lift X_V of X, we can try to lift automorphisms of X or line bundles on X
or derived autoequivalences of X to X_V. More precisely, we can ask whether,
given an automorphism (resp. line bundle, resp. derived autoequivalence) on
X, there exists an automorphism (resp. line bundle, resp. derived au-
toequivalence) on X_V such that on restriction to the special fiber X, we get back the
automorphism (resp. line bundle, resp. derived autoequivalence) we started
with. In case a lift of the automorphism (resp. line bundle, resp. derived au-
toequivalence) exists on X_V, we can base change to the generic fiber and this
gives us a way to compare the automorphism group (resp. Picard group, resp.
derived autoequivalence group) of a smooth projective variety over a field of
characteristic p and the generic fiber of a lift of it, which is a smooth pro-
jective variety over a field of characteristic zero. Even when the lift of the
smooth projective variety exists, lifting an automorphism (resp. line bundle,
resp. derived autoequivalence) can be obstructed. The obstruction for lifting
an automorphism (resp. line bundle) on X to some X_V is given by $H^1(X, N_{\Gamma})$
(resp. $H^2(X, O_X)$), where N_{Γ} is the normal sheaf of the graph of the automor-
phism, see Section 2 for more details. There exist a lot of examples of smooth
projective varieties, starting from a surface, which do not lift, see the refer-
ences in [8, Chapter 22], or that the variety lifts but automorphisms (resp. line
bundles) do not lift to some lift or to none of the lifts, see, for example, [22], [6].

In case of smooth projective varieties X, Y over a field, Orlov [24] proved that every derived equivalence is given by a Fourier–Mukai transform, i.e., given a derived equivalence $\varphi : D(X) \cong D(Y)$, there exist a complex, say $P \in D(X \times Y)$, giving a functor of derived categories $\Phi_P : D(X) \to D(Y)$, $\mathcal{F} \mapsto p_Y^* (\mathbb{R} p_X^* \mathcal{F} \otimes^L P)$, where p_X (resp. p_Y) is the projection from $X \times Y$ to X (resp. Y) such that φ is isomorphic to the functor Φ_P. The functor Φ_P is called a Fourier–Mukai functor and P is called the Fourier–Mukai kernel of Φ_P. It is only determined up to isomorphism in the derived category. In the case of the three standard autoequivalences above the Fourier–Mukai kernels are

$$\mathbb{Z} \to \text{Aut}(D(X)), \ n \mapsto [n], \quad \mathcal{O}_\Delta[n],$$

$$\text{Aut}(X) \to \text{Aut}(D(X)), \ \sigma \mapsto \sigma^* = (\sigma^{-1})^*, \quad \mathcal{O}_{\Gamma_\sigma},$$

$$\text{Pic}(X) \to \text{Aut}(D(X)), \ \mathcal{L} \mapsto M_L, M_L(\mathcal{F}) := \mathcal{F} \otimes \mathcal{L}, \ \Delta_* \mathcal{L},$$

where Δ is the diagonal embedding of X in $X \times X$ and Γ_σ is the graph of σ embedded into $X \times X$. We remark that the above result of Orlov is not known for the case of smooth projective schemes over a DVR or any other base other than a field, so we cannot conclude that every derived autoequivalence of a lift X_V is of Fourier–Mukai type. We note that lifting a Fourier–Mukai transform is equivalent to lifting the Fourier–Mukai kernel on $X \times Y$ to some $X_V \times Y_W$. However, it is not known whether one can construct lifts of a Fourier–Mukai transform which on $D(X_V)$ are not of Fourier–Mukai type. Here, we are going to restrict to deforming a derived autoequivalence of X as a Fourier–Mukai transform, and thus deform the Fourier–Mukai kernel. Note that lifting an automorphism on X or the corresponding Fourier–Mukai kernel of the derived autoequivalence on $X \times X$ in the derived category $D(X \times X)$ are different deformation problems. And we would like to compare these deformation problems.

This paper answers in negative the following question: can one construct new derived autoequivalences in characteristic zero using non-liftable automorphisms from characteristic p (cf. [27, Theorem 3.4])? In the sense that maybe one could lift the derived autoequivalence associated to a non-liftable automorphism. Even though, as it turns out, this is not the case, we show that in case of Abelian varieties, the derived autoequivalence associated to an automorphism has more lifts than just as a morphism.

The main idea of the result below is that when we lift an automorphism of X as an autoequivalence, we basically lift, as a coherent sheaf, the structure sheaf of the graph of the automorphism over the product $X \times X$. The support of this lifted sheaf will give a deformation of the graph of the automorphism and since the deformation is flat, it has to come from a lift of the automorphism itself.

The results and arguments presented here most probably will be well known to experts, but since we did not find them written down in literature, we note them down here.
We break the paper into two main sections. In Section 1, we recall the basics of Abelian varieties that we will need for understanding their deformation theory, derived autoequivalences, and the dimensions of the necessary Hodge groups and deformation spaces. Moreover, we observe that the p-rank of an Abelian variety is a derived invariant. Thus, every Abelian variety derived equivalent to an ordinary Abelian variety is ordinary.

In Section 2, we use the deformation-obstruction sequence for the corresponding deformation functors as morphism, or as Fourier–Mukai transform and compare the obstruction and deformation space dimensions.

The main result (Proposition 15, Theorem 11) can be stated as follows:

Theorem 1. An automorphism σ of an Abelian variety X of dimension g lifts as a morphism to X_V if and only if it lifts as a derived autoequivalence of $\mathcal{D}^b(X)$ to an autoequivalence of $\mathcal{D}^b(X_V)$ as a Fourier–Mukai transform. Moreover, in case it lifts, there is a g dimensional space of extra lifts of the automorphism σ as a Fourier–Mukai transform. These extra lifts are derived autoequivalences given by composition of the lifted automorphism with twist by the lift of the structure sheaf of the graph.

Lastly, we note that the first part of the above result still holds for any smooth projective variety over an algebraically closed field of characteristic p that admits a lift to characteristic zero.

Notation. For an algebraically closed field k of positive characteristic, we will denote by $W(k)$ the ring of Witt vectors over k, sometimes also abbreviated as W. K will denote a characteristic zero field.

1. **Abelian varieties.** In this section, we discuss basic properties of Abelian varieties paying special attention to elliptic curves, for which we prove the results first before going to the general case. For basics and proofs of some of the following results, we refer the reader to the excellent book by Mumford [16].

1.1. **Basic properties and deformations.** Let A be a g-dimensional Abelian variety over k, an algebraically closed field.

The **Hodge groups** $H^q(A, \Omega^p_A)$ are canonically isomorphic to $\wedge^p[H^0(A, \Omega^1_A)] \otimes \wedge^q[H^1(A, \mathcal{O}_A)]$, and $\dim H^1(A, \mathcal{O}_A) = \dim H^0(A, \Omega_A) = g$.

Lifting Abelian varieties. Every Abelian variety defined over an algebraically closed field of positive characteristic lifts to characteristic zero, see [18].

The formal deformation space of the lifting of an Abelian variety is given by $H^1(A, T_A)$, see [17, Proposition 6.15]. This has dimension g^2. Since all formal deformations need not be algebraic, the dimension of the algebraic deformations will be smaller than g^2 for $g \geq 2$. However in the case of elliptic curves, note that the algebraization of the lift is automatic because the obstruction to lifting an (ample) line bundle lies in the second cohomology group, which vanishes as we are in dimension 1 and we can use Grothendieck’s existence theorem to conclude.

To construct algebraic lifts for higher dimensional Abelian varieties, we lift a polarization on the base Abelian variety along with it rather than lifting
an ample line bundle as in the case of elliptic curves, (for a reason why we
do this, see Remark 14) and then use Grothendieck’s existence theorem to
conclude. The dimension of the local moduli space of algebraic (polarized) lifts
is \(g(g + 1)/2 \), see [19] for details. We remark that even though every Abelian
variety can be lifted to characteristic 0, this is true only in the weak sense, i.e,
not every Abelian variety would admit a lift over the Witt ring but one would
need a ramified extension of the Witt ring to get a lift, see [22, Section 13].
However, ordinary Abelian varieties admit a lift over the Witt ring.

Lifting automorphisms as morphisms of Abelian varieties. There exist non-
liftable automorphisms for Abelian varieties. Thus, the full automorphism
group of an Abelian variety need not lift. For an example, see [22, Section 14].
The obstruction and deformation space of a particular automorphism have
been computed below in Section 2.

For details about the structure of the automorphism group (or more genera-
ly endomorphisms) of Abelian varieties, we refer the reader to [16, Chapter
IV]. For the explicit description of the group of automorphisms of an elliptic
curve, see Silverman [26, Chapter III, Theorem 10.1].

1.2. Derived equivalent Abelian varieties

Let \(A \) (resp. \(B \)) be an Abelian vari-
ety and \(\hat{A} \) (resp. \(\hat{B} \)) the dual Abelian variety, we will first recall the definition
of the group \(U(A \times \hat{A}, B \times \hat{B}) \) of isometric isomorphisms of \(A \times \hat{A} \) to \(B \times \hat{B} \).
Note that any morphism \(f : A \times \hat{A} \to B \times \hat{B} \) can be written as a matrix
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix},
\]
where the morphism \(a \) maps \(A \to B \), \(b \) maps \(\hat{A} \to B \), \(c \) maps \(A \to \hat{B} \), and
\(d \) maps \(\hat{A} \to \hat{B} \). Each morphism \(f \) determines two other morphisms \(\hat{f} \) and \(\tilde{f} \)
from \(B \times \hat{B} \) to \(A \times \hat{A} \) whose matrices are
\[
\hat{f} = \begin{pmatrix}
\hat{a} & \hat{b} \\
\hat{c} & \hat{d}
\end{pmatrix}, \quad \text{and} \quad \tilde{f} = \begin{pmatrix}
\hat{d} & -\hat{b} \\
-\hat{c} & \hat{a}
\end{pmatrix}.
\]

We define \(U(A \times \hat{A}, B \times \hat{B}) \) as the subset of all isomorphisms from \(A \times \hat{A} \to B \times \hat{B} \) such that \(f^{-1} = \tilde{f} \) and such an isomorphism is called *isometric*. In case
\(A = B \), we call an isometric isomorphism an isometric automorphism and
denote the group of isometric automorphisms by \(U(A \times \hat{A}) \). The following
theorem of Orlov [23] and Polishchuk [25] characterizes derived equivalences
of two Abelian varieties using isometric isomorphisms.

Theorem 2 ([11, Corollary 9.49]). Two Abelian varieties \(A \) and \(B \) over an
algebraically closed field \(k \) define equivalent derived categories, \(D^b(A) \cong D^b(B) \)
if and only if there exists an isomorphism \(f : A \times \hat{A} \to B \times \hat{B} \) with \(\tilde{f} = f^{-1} : D^b(A) \cong D^b(B) \iff f \in U(A \times \hat{A}, B \times \hat{B}). \)

In the case of elliptic curves, recall that the dual of an elliptic curve is
isomorphic to the curve itself, and moreover, using the classification of vector
bundles on elliptic curves, one can show
Theorem 3 ([2, Theorem 2.2]). Let E and F be two elliptic curves over an algebraically closed field k such that $\Phi : D^b(E) \cong D^b(F)$ as k-linear triangulated categories, then there is an isomorphism of k-schemes $E \cong F$.

Theorem 2 has an easy corollary, recall that the p-rank of an Abelian variety over an algebraically closed field k is the rank i of the p-torsion group $A[p] \cong (\mathbb{Z}/p\mathbb{Z})^i$, where $i \in [0, \dim(X)]$ if $\text{char } k = p$, and otherwise $i = 2g$, and an Abelian variety over a field of characteristic p is called ordinary if its p-rank is equal to $\dim(A)$.

Corollary 4. The p-rank of an Abelian variety is a derived invariant.

Proof. This follows from the easy observation that $\hat{A}[p] = A[p]$ and then using the theorem above as isomorphisms preserve p-torsion. \square

This also follows from the result of Honigs [9] that derived equivalent Abelian varieties are isogenous. This implies that any Abelian variety derived equivalent to an ordinary Abelian variety is ordinary.

1.2.1. Derived autoequivalence group of abelian varieties. The derived autoequivalence group of an Abelian variety A over an algebraically closed field k satisfies the following short exact sequence ([23], see [11, Proposition 9.55]):

$$0 \rightarrow \mathbb{Z} \oplus (A \times \hat{A}) \rightarrow Aut(D^b(A)) \rightarrow U(A \times \hat{A}) \rightarrow 0. \quad (1)$$

Here $U(A \times \hat{A})$ is the group of isometric automorphisms. Explicitly, the kernel is generated by shifts $[n]$, translations t_{a*}, and tensor products $L \otimes ()$ with $L \in \text{Pic}^0(A)$.

2. Lifting automorphisms as autoequivalences. In this section, we will compare the two ways of lifting an automorphism of an Abelian variety and prove our main theorem. We begin by analyzing the case of elliptic curves and then generalize to higher dimensional Abelian varieties.

Let E be an elliptic curve with j-invariant not equal to 0 or 1728 over k, an algebraically closed field of characteristic $p > 0$. Let $\sigma : E \rightarrow E$ be an automorphism of E. This automorphism induces a Fourier–Mukai equivalence on the derived categories given by the Fourier–Mukai kernel $\mathcal{O}_{\Gamma(\sigma)}$, where $\mathcal{O}_{\Gamma(\sigma)}$ is the push forward of the structure sheaf of the graph of σ to $X \times X$ considered as a coherent sheaf in $D^b(E \times E)$:

$$\Phi_{\mathcal{O}_{\Gamma(\sigma)}} : D^b(E) \cong \rightarrow D^b(E).$$

This reinterpretation of an automorphism as a perfect complex in the derived category provides us with another way of deforming the automorphism. We can now deform it as a perfect complex rather than deforming it just as a morphism. However, since the complex we start with is just a coherent sheaf, the deformations of it as a perfect complex will still be coherent sheaves, see [27, remark after proof of Theorem 3.4]. Thus we can encode the two ways of lifting an automorphism in the following deformation functors.

Let R be an Artinian local $W(k)$-algebra with residue field k, E_R be an infinitesimal deformation of E over R and consider the following two deformation
functors: first is the **deformation functor of an automorphism as a morphism** given by

\[F_{\text{aut}} : (\text{Artinian local } W(k)\text{-algebras with residue field } k) \to (\text{Sets}), \]

\[R \mapsto \{ \text{Lifts of automorphism } \sigma \text{ to } R, \text{ i.e., pairs } (E_R, \sigma_R) \}, \]

(2)

where by lifting of automorphism \(\sigma \) over \(R \) we mean that there exists an infinitesimal deformation \(E_R \) of \(E \) and an automorphism \(\sigma_R : E_R \to E_R \) which reduces to \(\sigma \), i.e., we have the following commutative diagram:

\[
\begin{array}{ccc}
E_R & \xrightarrow{\sigma_R} & E_R \\
\uparrow & & \uparrow \\
E & \xrightarrow{\sigma} & E.
\end{array}
\]

The second one is the **deformation functor of an automorphism as a coherent sheaf**, defined as follows:

\[F_{\text{coh}} : (\text{Artinian local } W(k)\text{-algebras with residue field } k) \to (\text{Sets}), \]

\[R \mapsto \{ \text{Deformations of } \mathcal{O}_{\Gamma(\sigma)} \text{ to } R \}/\text{iso}, \]

(3)

where by deformations of \(\mathcal{O}_{\Gamma(\sigma)} \) to \(R \) we mean that there exists an infinitesimal deformation \(Y_R \) of \(Y := E \times E \) over \(R \) and a coherent sheaf \(\mathcal{F}_R \), which is a deformation of the coherent sheaf \(\mathcal{O}_{\Gamma(\sigma)} \) and \(\mathcal{O}_{\Gamma(\sigma)} \) is considered as a coherent sheaf on \(E \times E \) via the closed embedding \(\Gamma(\sigma) \hookrightarrow E \times E \). Isomorphisms are defined in the obvious way.

Observe that there is a natural transformation \(\eta : F_{\text{aut}} \to F_{\text{coh}} \) given by

\[\eta_R : F_{\text{aut}}(R) \to F_{\text{coh}}(R), \]

\[(\sigma_R : E_R \to E_R) \mapsto \mathcal{O}_{\Gamma(\sigma_R)}/E_R \times E_R. \]

(4)

There is a deformation-obstruction long exact sequence connecting the two functors.

Proposition 5 ([27, Proposition 3.6]). Let \(i : \Gamma(\sigma) \hookrightarrow E \times E \) be a closed embedding with \(E \) an integral and projective scheme of finite type over \(k \), \(\sigma : E \to E \) an automorphism, and \(\Gamma(\sigma) \) its graph. Then there exists a long exact sequence

\[
0 \to H^0(N_{\Gamma(\sigma)}) \to Ext^1_{E \times E}(\mathcal{O}_{\Gamma(\sigma)}, \mathcal{O}_{\Gamma(\sigma)}) \to H^1(\mathcal{O}_{\Gamma(\sigma)}) \\
\to H^1(N_{\Gamma(\sigma)}) \to Ext^2_{E \times E}(\mathcal{O}_{\Gamma(\sigma)}, \mathcal{O}_{\Gamma(\sigma)}) \to \ldots ,
\]

(5)

where \(N_{\Gamma(\sigma)} \) is the normal bundle of \(\Gamma(\sigma) \).

Remark 6. Note that the obstruction spaces for the functors \(F_{\text{aut}} \) and \(F_{\text{coh}} \) are \(H^1(N_{\Gamma(\sigma)}) \) and \(Ext^2_{E \times E}(\mathcal{O}_{\Gamma(\sigma)}, \mathcal{O}_{\Gamma(\sigma)}) \) respectively. See, for example, [8, Theorem 6.2, Theorem 7.3]. The same results give us the tangent spaces for the functors \(F_{\text{aut}} \) and \(F_{\text{coh}} \) and they are \(H^0(N_{\Gamma(\sigma)}) \) and \(Ext^1_{E \times E}(\mathcal{O}_{\Gamma(\sigma)}, \mathcal{O}_{\Gamma(\sigma)}) \).

Lemma 7. Let \(E \) be an elliptic curve over \(k \) and \(\sigma : E \to E \) an automorphism of \(E \), then the normal bundle of \(\Gamma(\sigma) : E \to E \times E \) is trivial.

Proof. Use [7, Proposition II.8.20] for the case \(r = 1 \).
Thus, for an elliptic curve E and an automorphism σ on it, we can compute the obstruction and deformation spaces for F_{aut} and they are $T_{F_{\text{aut}}} = H^0(E, N_{\Gamma(\sigma)}) = H^0(E, \mathcal{O}_E) = k$ and $\text{Obs}_{F_{\text{aut}}} = H^1(E, N_{\Gamma(\sigma)}) = H^1(E, \mathcal{O}_E) = k$.

Next, note that there is a canonical isomorphism $\text{Ext}_{E \times E}^1(\mathcal{O}_{\Gamma(\sigma)}, \mathcal{O}_{\Gamma(\sigma)})$ and $\text{Ext}_{E \times E}^2(\mathcal{O}_E, \mathcal{O}_E)$ given by σ, so to compute the obstruction and deformation spaces for F_{coh}, we need to compute $\text{Ext}_{E \times E}^1(\mathcal{O}_E, \mathcal{O}_E)$. Recall that these groups are just the Hochschild cohomology groups of the elliptic curve E and using the Hochschild–Kostant–Rosenberg (HKR) isomorphism [3, Theorem 1.3], we get that

$$\text{Ext}_{E \times E}^1(\mathcal{O}_E, \mathcal{O}_E) = H^1(E, \mathcal{O}_E) \oplus H^0(E, T^1_E)$$
$$= H^1(E, \mathcal{O}_E) \oplus H^0(E, \mathcal{O}_E) = k \oplus k,$$

where the second equality follows as T_E is a free sheaf and

$$\text{Ext}_{E \times E}^2(\mathcal{O}_E, \mathcal{O}_E) = H^2(E, \mathcal{O}_E) \oplus H^1(E, T_E) \oplus H^0(E, T^2_E)$$
$$= H^2(E, \mathcal{O}_E) \oplus H^1(E, \mathcal{O}_E) \oplus H^0(E, \wedge^2 \mathcal{O}_E) = H^1(E, \mathcal{O}_E) = k.$$

Thus dimensions of the Ext groups are 2 and 1 respectively. With this, we have computed the deformation and obstruction spaces for F_{coh}, that is deformation as a derived autoequivalence, what is left to show is that the lifted structure sheaf of the graph does induce a derived autoequivalence. Indeed, let F_W be the lift of the structure sheaf of the graph $\mathcal{O}_{\Gamma(\sigma)}$ to $E_W \times E_W$, where E_W is a lift of E over W. Then using Nakayama’s lemma, we note that $\Delta_* \mathcal{O}_{E_W} \to F_W \circ F_W^\vee$ are quasi-isomorphisms, where $F_W \circ F_W^\vee$ denotes the Fourier–Mukai kernel of the composition $\Phi_{F_W} \circ \Phi_{F_W}^\vee$, explicitly given by $p_{13*}(p_{12}^*(F_W) \otimes p_{23}^*(F_W^\vee[1]))$ for the case of elliptic curves. This argument also works for the higher dimensional Abelian varieties case, although the shift in that case is by $[g]$, where g is the dimension of the Abelian variety. Now we are ready to prove the first part of the main result in the case of elliptic curves.

Proposition 8. For an elliptic curve E over an algebraically closed field k of characteristic $p > 0$, any automorphism $\sigma : E \to E$ lifts to a lift E_K of E over a field K of characteristic zero if and only if the Fourier–Mukai transform induced by the structure sheaf of the graph of σ, $\mathcal{O}_{\Gamma(\sigma)} \in D^b(E \times E)$, lifts as an autoequivalence to $D^b(E_K) \to D^b(E_K)$.

Proof. From the long exact sequence (5) above, putting in the computations of the groups from the preceding paragraph, we get the exact sequence

$$0 \to k \to k \oplus k \xrightarrow{\alpha} k \xrightarrow{\beta} k \xrightarrow{\gamma} k \to \ldots,$$

where we note that α has to be a surjection (it cannot be zero, as the exactness would then imply that $k \oplus k \cong k$), thereby making β a zero map and γ an injection. Thus, we get our result. \qed
2.0.1. The case of higher dimensional Abelian varieties. For Abelian varieties of dimension \(g \geq 2 \), just the computations of the obstruction-deformation sequence will be insufficient to conclude that every automorphism lifts as a morphism if and only if it lifts as an autoequivalence. However, in this case we observe that the support of the lifted Fourier–Mukai kernel sheaf is actually the graph of a lift of an automorphism. This argument works for any smooth projective variety, not only for Abelian varieties, see Remark 12 below.

Let \(A \) be an Abelian variety over \(k \), an algebraically closed field of positive characteristic and let \(\sigma : A \rightarrow A \) be an automorphism of \(A \), the definitions of the previous section can be transported directly over to higher dimensional Abelian varieties from the case of elliptic curves.

Lemma 9. The normal bundle \(N_{\Gamma(\sigma)} \) of \(\Gamma(\sigma) : A \rightarrow A \times A \) is a free sheaf of rank \(g \) on \(A \), where \(g \) is the dimension of \(A \).

Proof. This follows from the following maps of the short exact sequences (definition of normal sheaf, [7, Chapter II.8 Page 182])

\[
\begin{array}{ccccccccc}
0 & \rightarrow & T_{A/k} & \rightarrow & T_{A \times A/k} \otimes O_A & \rightarrow & N_{A/A \times A} & \rightarrow & 0 \\
\oplus & & & & & & & & \\
0 & \rightarrow & T_{A,e} \otimes O_A & \rightarrow & (T_{A \times A,(e,e)} \otimes O_{A \times A}) \otimes O_A & \rightarrow & N_{A,e} \otimes O_A & \rightarrow & 0,
\end{array}
\]

where the last isomorphism is induced by the first two. \(\square \)

Thus, we can compute the tangent and deformation spaces for \(F_{\text{aut}} \) as \(H^0(N_A) = k^g \) and \(H^1(N_A) = k^{g^2} \). Next we compute the \(\text{Ext} \) groups and use these computations to show that the exact sequence (5) is not enough anymore to conclude the main result. We will be using the HKR isomorphism to compute the \(\text{Ext} \) groups and over fields of positive characteristic, this isomorphism only exists when the dimension of the variety is less than the characteristic of the base field, we are forced to put the assumption on the characteristic. However, since we are only doing the computations to illustrate the failure of a method, by adding this assumption, we do not lose much.

Lemma 10. The groups \(\text{Ext} \) for Abelian variety \(A \) in the exact sequence (5) can be computed as follows in case the characteristic of the base field \(k \) is greater than the dimension of \(A \):

\[
\text{Ext}^1(O_A, O_A) = k^{2g} \quad \text{and} \quad \text{Ext}^2(O_A, O_A) = k^{2g^2-g}.
\]

Proof. We will again use the HKR isomorphism [3], thus

\[
\text{Ext}^1(O_A, O_A) = HH^1(A) = H^1(A, O_A) \oplus H^0(A, T_A) = k^g \oplus k^g
\]

and

\[
\text{Ext}^2(O_A, O_A) = HH^2(A) = H^2(A, O_A) \oplus H^0(A, T_A^2) \oplus H^1(X, T_A) = k^g(g-1)/2 \oplus k^g(g-1)/2 \oplus k^g^2.
\]

\(\square \)
Thus the deformation-obstruction long exact sequence (5) becomes
\[0 \to k^g \to k^{2g} \xrightarrow{\alpha} k^g \to k^{2g^2-g} \to \ldots. \]
Note that now \(\alpha \) does not have to be surjective to be non-zero. Thus we cannot say that \(\gamma \) is injective. So we need a geometric argument.

Theorem 11. For any Abelian variety \(A \) over an algebraically closed field \(k \) of characteristic \(p > 0 \), any automorphism \(\sigma : A \to A \) lifts to a lift \(A_K \) of \(A \) over a field \(K \) of characteristic zero if and only if the Fourier–Mukai transform induced by the structure sheaf of the graph of \(\sigma \), \(\mathcal{O}_{\Gamma(\sigma)} \in D^b(A \times A) \), lifts as an autoequivalence to \(D^b(A_K) \to D^b(A_K) \).

Proof. Since the deformation of a morphism as an autoequivalence is just the deformation of the structure sheaf of the graph as a coherent sheaf in the derived category, to prove the above statement, we need to show that the support of the lifted coherent sheaf actually gives us a lift of the automorphism. This follows easily from [27, Lemma 3.5] and the fact that given a coherent sheaf \(\mathcal{F} \) on a smooth projective variety, the support of the lifted coherent sheaf \(\mathcal{F}_W \) gives a deformation of the support of \(\mathcal{F} \).

Remark 12. Note that the above argument also works in the case of any smooth projective variety admitting a lifting to characteristic zero.

2.1. **Are there extra lifts of automorphisms as autoequivalences?** First, let us remark that for the case of Abelian varieties, we have the following exact sequence:

Lemma 13. For any Artinian local \(W(k) \)-algebra \(R \) with residue field \(k \), any Abelian scheme \(A \) over \(\text{Spec}(R) = S \), and for any surjection \(R \to R' \) of local Artin \(W(k) \)-algebras such that \(A' = A \otimes_R R' \), there is an exact sequence:
\[0 \to \text{Hom}_S(A, A) \to \text{Hom}'_S(A', A'). \]

Proof. This follows from [17, Corollary 6.2] and
\[
\begin{array}{ccc}
\text{Hom}_S(A, A) & \xrightarrow{\text{down}} & \text{Hom}_k(A_0, A_0) \\
\downarrow & & \downarrow \\
\text{Hom}'_S(A', A'). & & \\
\end{array}
\]

Remark 14. This is the reason that for constructing algebraizable lifts of Abelian varieties, we do not just lift a line bundle but instead, we choose to lift a polarization, which is actually a morphism of the Abelian variety to its dual variety. Thus using again [17, Corollary 6.2], we get that the deformation functor for polarized Abelian varieties is a subfunctor of the deformation functor for Abelian varieties.

The above lemma implies that for Abelian varieties, the answer to the question posed in the heading is yes and we have
Proposition 15. For an Abelian variety A over k, an algebraically closed field with characteristic of k greater than the dimension of A, and an automorphism $\sigma : A \to A$ on it, there is a g-dimensional space of extra lifts of automorphisms as autoequivalences. The extra lifts of the automorphism as an autoequivalence are given by composition of the lifted automorphism with the twist by the lift of the structure sheaf of the graph.

Proof. Lemma 13 above implies that F_{aut} is actually a subfunctor of F_{A_0}, deformations of A_0 as a scheme, and the lift of every automorphism is unique up to lift of the base scheme. On the other hand, one can easily see that this is not true for the deformation functor of coherent sheaves, i.e., given a fixed lift of a base Abelian scheme as a scheme, the lift of a coherent sheaf to the fixed lift will not be unique. It will be a torsor under the Ext^1 group. In the particular case we are working with, note that the number of distinct lifts of the base Abelian variety will be precisely g-dimensional (see Lemma 9 and paragraph after it) and the Ext^1 group in our case is $2g$ dimensional as in Lemma 10.

Note that a lift of the structure sheaf of the graph of $\sigma : A \to A$ will be just a line bundle L_W on the graph of the lifted automorphism $\sigma_W : A_W \to A_W$ which reduces to the structure sheaf of the graph $\mathcal{O}_{\Gamma(\sigma)}$, this follows as lifts of a line bundle as a sheaf are always a line bundle (see [8, Ex. 7.1]). Hence, the lifts of the Fourier–Mukai transform $\Phi_{\mathcal{O}_{\Gamma(\sigma)}}$ are given by Fourier-Mukai transforms of the form $\Phi_{i^*L_W}$, where $i : \Gamma_{\sigma_W} \hookrightarrow A_W \times A_W$ is the graph of the lift of the automorphism σ, and L_W is the line bundle on the graph. Thus the extra lifts of the automorphism are of the form as described in the statement. \hfill \Box

2.1.1. Comparison with the deformations of the induced automorphism on the product $A \times \hat{A}$. Recall from Theorem 2 that to every derived equivalence $\Phi_{\mathcal{F}} : D^b(A) \to D^b(A)$ one can associate an isometric automorphism $f_{\mathcal{F}}$ of $A \times \hat{A}$ (in case of an elliptic curve E, an automorphism of $E \times E$). This association gives a corresponding transformation on the level of deformation functors, i.e., a natural transformation between the deformation functors $F_{\text{coh},\mathcal{F}} \to F_{\text{aut},f_{\mathcal{F}}}$, where \mathcal{F} is a (shifted) coherent sheaf [11, Proposition 9.53]. Note that the association of \mathcal{F} with $f_{\mathcal{F}}$ was not a 1–1 correspondence, therefore the natural transformation is not injective at the level of tangent spaces of $F_{\text{coh},\mathcal{F}}$ and $F_{\text{aut},f_{\mathcal{F}}}$. This fits well with the discrepancy in the number of lifts of \mathcal{F} as a sheaf (which is not unique) and $f_{\mathcal{F}}$, which is unique for a chosen lift of the base Abelian variety as its deformation functor is a subfunctor for the deformation functor of Abelian varieties as schemes.

Acknowledgements. I would like to thank Piotr Achinger, Daniel Huybrechts, Katrina Honigs, Marcin Lara, and Maciek Zdanowicz for the mathematical discussions, Tamas Hausel for hosting me in his research group at IST Austria, and the referees for their valuable suggestions. This research has received
funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie Grant Agreement No. 754411.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Anel, M., Toën, B.: Dénombrabilité des classes d’équivalences dérivées de variétés algébriques. J. Algebr. Geom. 18(2), 257–277 (2009)

[2] Antieau, B., Krashen, D., Ward, M.: Derived categories of torsors for Abelian schemes. Adv. Math. 306, 1–23 (2017)

[3] Antieau, B., Vezzosi, G.: A remark on the Hochschild–Kostant–Rosenberg theorem in characteristic p. Annali della Scuola normale superiore di Pisa, XX(3), 1135–1145 (2020)

[4] Bondal, A., Orlov, D.: Reconstruction of a variety from the derived category and groups of autoequivalences. Comp. Math. 125, 327–344 (2001)

[5] Bridgeland, T., Maciocia, A.: Complex surfaces with equivalent derived categories. Math. Z. 236, 677–697 (2001)

[6] Esnault, H., Oguiso, K.: Non-liftability of automorphism groups of K3 surface in positive characteristic. Math. Ann. 363, 1187–1206 (2015)

[7] Hartshorne, R.: Algebraic Geometry. Graduate Text in Mathematics, 52. Springer, Berlin (1977)

[8] Hartshorne, R.: Deformation Theory. Graduate Texts in Mathematics, 257. Springer, Berlin (2010)

[9] Honigs, K.: Derived equivalent surfaces and Abelian varieties, and their zeta functions. Proc. Amer. Math. Soc. 143(10), 4161–4166 (2015)

[10] Hosono, S., Lian, B.H., Oguiso, K., Yau, S.T.: Kummer structures on a K3 surface—an old question of T. Shioda. Duke Math J. 12, 635–647 (2003)

[11] Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. Oxford Science Publication, Oxford (2006)

[12] Kontsevich M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians (Zürich 1994), pp. 120–139. Birkhäuser (1995)

[13] Lesieutre, J.: Derived equivalent rational three-folds. Int. Math. Res. Not. 2015(15), 6011–6020 (2015)

[14] Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Text in Mathematics, 6. Oxford University Press, Oxford (2002)

[15] Mukai, S.: Duality between $D(X)$ and $D(\hat{X})$ with its applications to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)

[16] Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research, Mumbai (1974)

[17] Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. A Series of Modern Surveys in Mathematics, 34, 3rd edn. Springer, Berlin (2002)
Norman, P., Oort, F.: Moduli of Abelian varieties. Ann. Math. (2) 112(3), 413–439 (1980)

Oort, F.: Finite group schemes, local moduli for Abelian varieties and lifting problems. Compos. Math. 23(3), 256–296 (1971)

Oort, F.: Lifting an endomorphism of an elliptic curve to characteristic zero. Indagationes Mathematicae (Proceedings) 76(5), 466–470 (1973)

Oort, F.: Abelian varieties: moduli and lifting properties. In: Lonsted, K. (ed.) Algebraic Geometry. Lecture Notes in Mathematics, vol. 732. Springer, Berlin (1979)

Oort, F.: Lifting algebraic curves, Abelian varieties, and their endomorphisms to characteristic zero. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985). In: Proceedings Symposium Pure Mathematics, 46, Part 2, pp. 165–195. American Mathematical Society, Providence, RI (1987)

Orlov, D.O.: Derived categories of coherent sheaves on Abelian varieties and equivalences between them. Izv. Math. 66, 569–594 (2002)

Orlov, D.O.: Derived categories of coherent sheaves and equivalences between them. Russ. Math. Surv. 58, 511–591 (2003)

Polischchuk, A.: Symplectic biextensions and generalizations of Fourier–Mukai transforms. Math. Res. Lett. 3, 813–828 (1996)

Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Text in Mathematics, 106. Springer, Berlin (2009)

Srivastava, T.K.: On Derived equivalences of K3 surfaces in positive characteristic. Documenta Math. 24, 1135–1177 (2019)

TANYA KAUSHAL SRIVASTAVA
Institute of Science and Technology
Am Campus 1
3400 Klosterneuburg
Austria
e-mail: tanyakaushal.srivastava@ist.ac.at

Received: 12 July 2020
Revised: 8 October 2020
Accepted: 27 November 2020.