Exploring complex and heterogeneous correlations on hypergraph for the prediction of drug-target interactions

Highlights
- A hypergraph framework to model high-order correlations in heterogenous biological network
- An embedding learning method for drugs and targets using hypergraphs
- High-order correlation between drugs and targets can contribute to DTI predictions

Authors
Ding Ruan, Shuyi Ji, Chenggang Yan, ..., Yue Gao, Changqing Zou, Qionghai Dai

Correspondence
gaoyue@tsinghua.edu.cn (Y.G.), aaronzou1125@gmail.com (C.Z.), qhdai@tsinghua.edu.cn (Q.D.)

In brief
Ruan et al. propose a new method for predicting drug-target interactions (DTIs). They pay attention to the high-order correlations in heterogeneous biological networks and use the hypergraph to model them. Their experimental results indicate that the high-order correlations among drugs and targets contribute significantly to DTIs predictions, and other associations besides DTIs are also useful in this task.
Exploring complex and heterogeneous correlations on hypergraph for the prediction of drug-target interactions

Ding Ruan,1,7 Shuyi Ji,2,3,7 Chenggang Yan,1,7 Junjie Zhu,2 Xibin Zhao,2 Yuedong Yang,4 Yue Gao,2,3,8,* Changqing Zou,5,* and Qionghai Dai3,6,*

1School of Automation, Hangzhou Dianzi University, Hangzhou, China
2School of Software, KLASS, BNRist, Tsinghua University, Beijing, China
3Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
4School of Computer Science, Sun Yat-sen University, Guangzhou, China
5Huawei Vancouver Research Center, Huawei Canada Technologies, Vancouver, Canada
6Department of Automation, Tsinghua University, Beijing, China
7These authors contributed equally
8Lead contact

SUMMARY

The continuous emergence of drug-target interaction data provides an opportunity to construct a biological network for systematically discovering unknown interactions. However, this is challenging due to complex and heterogeneous correlations between drug and target. Here, we describe a heterogeneous hypergraph-based framework for drug-target interaction (HHDGI) predictions by modeling biological networks through a hypergraph, where each vertex represents a drug or a target and a hyperedge indicates existing similar interactions or associations between the connected vertices. The hypergraph is then trained to generate suitably structured embeddings for discovering unknown interactions. Comprehensive experiments performed on four public datasets demonstrate that HHDGI achieves significant and consistently improved predictions compared with state-of-the-art methods. Our analysis indicates that this superior performance is due to the ability to integrate heterogeneous high-order information from the hypergraph learning. These results suggest that HHDGI is a scalable and practical tool for uncovering novel drug-target interactions.

INTRODUCTION

The prediction of drug-target interactions (DTIs) plays a crucial role in drug discovery.5 However, the biochemical experimental approaches widely used in wet laboratories are expensive and time consuming, thus slowing down the progress of drug discovery. The ever-growing demand for inexpensive, effective, and rapid prediction methods has driven the development of...
computational approaches, which provide a cheaper and faster way to predict potential interactions between drugs and targets. Conventional computational approaches tend to begin with the inherent properties of drugs and targets, such as the chemical structure of drugs and the three-dimensional (3D) structure of proteins. Molecular docking, an important tool in structural molecular biology and computer-assisted drug design, is used to predict the binding mode(s) of a ligand with a protein of known 3D structure. Keiser et al.8 use a complementary technique based on the chemical similarity of ligands to quantitatively group and relate proteins and discover unexpected ligand-target links. However, molecular docking predictions cannot be successful without a known and accurate 3D protein structure, and ligand-based methods require several known binding ligands.

Recently, machine learning methods9 have attracted more attention and shown greater promise in drug discovery. Unlike the aforementioned methods, one key idea of current machine learning-based approaches is that similar drugs may share similar targets and vice versa.1 Typical computational approaches adopt machine learning methods to catalog the similarities of drugs and targets based on biological features and then predict DTIs.10–12 Yamanishi et al.13 made the first attempt to predict DTIs based on biological feature information, such as the similarity between drug chemical structure and target protein sequence, unifying the chemical and genomic spaces of known drugs and targets into pharmacological spaces. Yu et al.14 integrated features from chemical and genomic space for large-scale drug discovery using random forest and support vector machine algorithms. Gao et al.15 used low-level representations such as Gene Ontology annotations, amino acids sequences, and chemical structural graphs as inputs to the neural network, generating embeddings for the targets and drugs, respectively, and then calculating the similarity between the embeddings to predict the interaction. This type of approach adequately extracts information from inherent properties, but problems arise when sufficient and reliable information is not available.

In addition to the inherent properties of drugs and targets, there is increasing interest in exploring the correlations among drugs, targets, and other biological entities in the data structure of a heterogeneous biological network. Compared with biological feature-based methods, network topology information-based methods make predictions based on the topology information of the network.16,17 Several recent attempts have explored topological structures of model DTIs, with biological entities such as drugs, targets, side effects, and diseases denoting vertices in the biological graph and the interactions or associations indicating edges among them. Campillos et al.18 constructed a network of 1,018 side effect–driven drug-drug relations and validated 13 implied drug-target relations. Cheng et al.19 compared network-based inference with drug-based similarity inference and target-based similarity inference, showing that the former achieved higher-quality results. Chen et al.20 integrated and annotated data from public datasets to build a semantic-linked network. They developed a statistical model to assess the association of drug-target pairs and observed that drugs from the same disease area will cluster together. They noted that this mode of clustering is difficult to infer based on inherent properties alone. We hypothesized that correlation among various biological entities can provide useful information that cannot be obtained from inherent properties. Some recent methods formulate DTI prediction tasks as “link predictions” in complex networks.17,21,23 TriModel1 represents heterogeneous topological correlations in the form of a knowledge graph and generates embeddings to predict whether there is a link between a drug and a target (supplementary note). Furthermore, similarities based on both inherent properties and topological correlations can be used to predict DTIs. DTInet2 integrates diverse inherent properties and topological correlations through a network diffusion process. It generates representations for drugs and targets, containing the similarities of vertices in the biological network, and then performs predictions using these representations (supplementary note). DeepDTNet is another network-based method that integrates information based on the inherent properties of drugs and targets (supplementary note). NeoDTI22 also integrates information from heterogeneous network data and predicts DTIs by learning the topological preservation representations of drugs and targets.

In summary, previous methods have performed DTI predictions by extracting the similarities between drugs and targets. However, they describe the interactions between drugs and targets in a low-order manner where only pairwise correlations are taken into consideration, i.e., one-drug, one-target paradigms. However, the connections among biomedical entities can be far more intricate than merely pairwise links. For example, a single drug may be connected to a number of targets (so-called multi-target drugs, which can target various complex diseases as they are ubiquitous and effective23), and these targets may share subtle but important pharmacological characteristics that contribute to the interactions. When further considering more connections, such as drug-disease associations and target-disease associations, the overall heterogeneous biological network becomes even more complex and emerges in a many-to-many pattern. Under such circumstances, it is important to formulate and explore the underlying higher-order topological correlations for drug discovery, which is beyond the capability of the pairwise correlation-based methods. To tackle this issue, we adopted a heterogeneous hypergraph-based model to explore complex and heterogeneous correlations for drug-target interaction prediction (HHDTI) (see section “experimental procedures” for more details).

Unlike traditional graphs that model pairwise correlations, the hypergraph can model higher-order correlations and is thus more flexible and powerful, with the ability to incorporate complex correlations. There are precedents for modeling biological networks using hypergraphs, but they have not been used to predict DTIs. Vaida et al.24 modeled relations between pairs of drugs as a hypergraph and used a two-layer graph convolution neural network as an encoder to predict drug interactions. Niu et al.25 used diseases as hyperedges, connected microbes associated with them, and developed a hypergraph-based random walk model for microbe-disease association prediction. Hypergraphs are indeed suitable for modeling drug-target interaction networks. When a drug-target hypergraph is constructed, targets are denoted by vertices, and the interactions between a specific drug and a certain number of targets can be modeled by a hyperedge. In this hypergraph, all targets interacting with the same drug are connected by a hyperedge; therefore, all the target vertices connected by one hyperedge can be regarded as a set. Rather than a graph edge in a
heterogeneous biological graph representing a two-order pairwise correlation (i.e., indicating direct DTIs), a hyperedge in a heterogeneous biological hypergraph instead models high-order multilateral (i.e., many-to-many) correlations between targets and drugs. Moreover, to provide a thorough understanding of DTIs, we comprehensively integrated several types of connections among various vertices (e.g., drug-target, target-disease, and drug-disease connections) in the heterogeneous biological networks. A representation modeled on higher-order correlations can significantly improve the prediction performance of DTIs.

 Specifically, HHDTI infers candidate DTIs by fusing two types of embeddings: key and side embeddings. Key embeddings provide initial and major vector representations for all drugs and targets, which are learned using the direct drug-target interaction information. By contrast, side embeddings offer complementary representations learned by leveraging disease-relevant information. Structural drug-target embeddings are achieved by fusing the key embeddings and the side embeddings, with HHDTI estimating drug-target similarity to perform DTI predictions. We have demonstrated that, based on this embedding learning process, HHDTI consistently achieved higher-quality prediction results when analyzing several popular datasets compared with alternative state-of-the-art methods. Comprehensive evaluations have determined that the proposed HHDTI is a promising and powerful tool for drug discovery.

RESULTS

Overview of HHDTI

We propose a computational framework for DTI prediction, called HHDTI, which captures implicit high-order topological correlations in heterogeneous biological networks. HHDTI first uses a generative model to construct key embeddings from drug-target and target-drug interactions (Figure 1). It then extracts drug-disease correlations and target-disease correlations to generate side embeddings using hypergraph neural networks (HGNNs). Ultimately, HHDTI fuses the key embeddings and side embeddings and obtains structural embeddings to perform DTI prediction. Integrating diverse information from heterogeneous biological data can assist in determining higher-order topological correlations among different vertices. HHDTI then can infer potential DTIs by computing and ranking the prediction scores of all candidate interactions. In summary, embeddings encode both topological properties and association information, resulting in a low-dimensional vector space where the distance between drug-target pairs correlates with their likelihood of interaction. More details of the HHDTI framework can be found in the section “experimental procedures.”

Better DTI prediction performance by HHDTI

We initially evaluated the overall prediction performance of HHDTI using a 10-fold cross-validation procedure. We conducted these experiments on three public datasets (DTINet_17, deep-DTnet_20, and KEGG_MED) and compared HHDTI with four...
state-of-the-art network-based drug discovery methods: DTINet, NeoDTI, deepDTnet, and TriModel. Under the experimental setting, 10% of the known drug-target interaction pairs and non-interaction pairs were randomly chosen as the positive and negative samples, respectively, for testing. The remaining 90% were used for training. Two widely used metrics, the area under the receiver operating characteristic (AUROC) curve and the area under the precision-recall (AUPR) curve, were calculated to comprehensively compare the performance of different methods. We conducted separate experiments on these three datasets and found that there was no data overlap between the training and test sets within each dataset. The four methods were consistent with the results provided in the original papers for their corresponding datasets (Figure 2). However, HHDTI outperformed each of these competitive baselines, consistently achieving the highest prediction results for all three datasets. All four methods are network-based methods, each with minor differences. DTINet, deepDTnet, and NeoDTI blend the inherent properties of drugs and targets and the topological correlations among biological entities. For this reason, both methods perform poorly on the KEGG_MED dataset, which does not include any information related to inherent properties such as the chemical structures of drugs and the primary sequences of proteins. Although these baseline methods attempt to fuse diverse information in heterogeneous biological networks, they are still limited in terms of data modeling as they can only capture low-order pairwise correlations between vertices rather than high-order correlations.

The superior performance of the prediction methods might result from the easy predictions of homologous proteins or similar drugs in the dataset. To investigate this issue, we refer to the work of Luo et al.6 and performed an additional test on the DTINet_17 dataset without the DTIs involving homologous proteins (sequence identity scores >40%). In this test, the removal of homologous proteins can reduce the potential redundancy in the DTIs that may lead to an inflated performance evaluation. The test results were robust even after removing homologous proteins from the training data, suggesting that HHDTI capturing high-order correlation information can still achieve good performance and outperform other prediction methods even in the absence of similar targets (Figure S1.).

Additional association information for DTI prediction

We further investigated how the quantity of potential isolated data influences DTI prediction results. We extracted all known drug-target interaction pairs of three different amounts of drugs (20%, 50%, and 80%) within the datasets as positive samples and the same number of non-interaction pairs as negative samples to generate the test sets (i.e., there are no known drug-target interaction pairs in the training data for these drugs). This experimental setting simulated the so-called cold-start problem by artificially creating isolated vertices, resulting in extremely difficult DTI predictions. Our analysis showed that the side embeddings generated from the association information (i.e., drug-disease and target-disease associations) can help improve DTI predictions to some extent, despite the absence of any known drug-target interaction pairs within the training sets (Figure 3). These studies also showed that additional association information can be captured by the
proposed HHDTI to enhance DTI predictions, which may provide new insights into understanding interaction mechanisms among drugs, targets, and diseases.

High-order topological correlations for DTI prediction

We conducted ablation experiments on the DTINet_17, deepDTnet_20, and KEGG_MED datasets, respectively, to study the advantages and disadvantages of high-order topological correlations relative to low-order pairwise correlations. To this end, we replaced the hypergraph representation in HHDTI with plain graph representations and used this as the comparative method (specifically, we constructed standard plain graphs on these three datasets and performed a similar key-side embedding learning procedure as HHDTI for DTI prediction). The experimental results showed that HHDTI consistently outperformed the low-order correlations-based comparative method when used on either of the three datasets (Figure 4).

Practical drug discovery

Our goal was to study HHDTI’s capability as a practical tool for unknown DTI discovery. We chose Target Drug-UniProt Links (approved) of the DrugBank database in version 5.1.0 for the evaluation, as it contains detailed and complete interaction information for targets and drugs. DeepDTnet was chosen as the comparative method because it achieved the highest quantitative prediction among the baselines. Since there is no disease association information in this dataset, we compared HHDTI (no disease) with DeepDTNet. We trained the two methods using all the data in Target Drug-UniProt Links (approved) and produced a top-10 target prediction list for each drug using each of the two methods (Table S1). Data S1 and S2 are the lists of DTIs predicted by HHDTI (no disease) and deepDTnet, respectively, and validated by the literature. In the lists predicted by both methods, aside from the known targets in the training set, we observed that there was a subset of new predicted DTIs that were unknown in the training set but had been reported in the literature. Statistical analysis showed that HHDTI successfully predicted 17.9% more DTIs than deepDTnet. To further compare HHDTI (no disease) and deepDTnet, we used “recall @ top-10” as the evaluation metric, which is defined as the fraction of true interacting targets retrieved in the list of top-10 predictions for a drug. With this evaluation metric, the average recall at top-10 of HHDTI (no disease) and deepDTNet were 0.0590 and 0.0573, respectively. This indicates that both methods can successfully discover targets that interact with a given drug and that HHDTI (no disease) is more powerful than deepDTNet.

Figure 5 illustrates specific practical drug discovery results produced by HHDTI (no disease) and deepDTNet. The data in the training set show that the anti-epileptic drug phenytoin acts on nuclear receptor subfamily 1, group I, member 2 (NR1I2) and several targets from the sodium channel family (SCN1A, SCN3A, and SCN5A). The drug brivaracetam, which is commonly used in the treatment of partial-onset seizures, is a ligand of synaptic vesicle protein 2A (SV2A) and inhibits voltage-gated sodium channels. Existing low-order correlation-
phenytoin acts on KCNH2. As shown in Figure 5, the training
contrast, HHDTI (no disease) successfully predicted that
only able to predict targets that are similar to known targets. In
NR1I2 or the sodium channel family. The experimental results
predicted that phenytoin acts on a member of sodium channel
family SCN8A. However, deepDTNet failed to predict the inter-
action between phenytoin and KCNH2, which is not similar to
NR1I2 or the sodium channel family. The experimental results
reveal that the problem with these methods is that they are
only able to predict targets that are similar to known targets.
In contrast, HHDTI (no disease) successfully predicted that
phenytoin acts on KCNH2. As shown in Figure 5, the training
data reveal the similarity between NR1I2 and KCNH2 because
both NR1I2 and KCNH2 have interactions with the same drug,
ketoconazole. The two targets NR1I2 and KCNH2 are thus linked
by a hyperedge and are regarded as a set. We first train the
model to find a certain similarity between the targets in the set
and project it into a low-dimensional common feature space as
the embedding of the drug. In the same way, we can obtain the
embedding of the target. The drug embedding and the target
embedding with known interactions are then positioned close to
each other (i.e., the embedding of ketoconazole and the embed-
ding of KCNH2 are close in the low-dimensional feature space).
Since phenytoin and ketoconazole also act on SCN5A, their em-
bbeddings will also be near each other in the feature space. Due
to the transfer of similarity, HHDTI successfully predicted the in-
teraction of phenytoin with KCNH2. The interaction of propafenone
with SCN5A and KCNH2 can also help predict the interaction be-
tween phenytoin and KCNH2. Furthermore, SCN5A and KCNH2
belong to the voltage-gated ion channel superfamily, suggesting
that our method finds some similarity between these two pro-
teins and facilitates us to further explore the role and structure
of the proteins. The high-order topological correlation allows
HHDTI to take full advantage of known interaction information
in the heterogeneous biological network and recall more potential
DTIs in a top-N prediction list.

We conducted additional rigorous testing. We downloaded the
earliest available release (v4.6.0, released on 20 April 2016)
from the DrugBank database.30 Using all the data in Target
Drug-UniProt Links (approved) from this release, we obtained
some results that prove the validity of HHDTI. As shown in Table
S2, these results have been validated in the literature and the
publication time of these literatures is later than April 2016. For
example, the interactions related to the drug celiprolol
(DB04846) in the training set were first documented in the litera-
ture in 2007.31 HHDTI predicts that the drug also interacts with
beta-3 adrenergic receptor (ADRB3, P13945) and alpha-2A
adrenergic receptor (ADRA2A, P08913), and these results were
proved by the literature in 2017.32

DISCUSSION

The HHDTI method presented here is a computational approach
based on hypergraph networks and deep neural networks.
Based on known DTIs, HHDTI extracts the intrinsic characteristics of
drugs and targets, models these correlations with a hyper-
graph capable of higher-order modeling, and then enhances
these correlations with complementary information to generate
structural embeddings for both drugs and targets. The major
advantage of the proposed method lies in its powerful capability
of modeling high-order correlations among various entities and
its flexible framework capable of integrating several types of
complementary information. Our study found it can discover
more DTIs that have been previously validated by the literature
than other state-of-the-art computational approaches. It can
therefore identify potential DTI candidates to efficiently guide
validation experiments in the wet laboratory. In the future, we
plan to perform wet experimental validation as a method of
cross-validation through cooperation with drug discovery indus-
try partners, which will help us further improve the framework in
return.

Although network-based methods have been applied,1,2 the
correlation modeling based on one-to-one correspondence
may not produce the essential features reflecting a single drug
acting on multiple targets or multiple drugs acting on the same
target. Integrating network biology and polypharmacology
promises an expanded opportunity for druggable targets,33
which cannot be achieved without effective high-order correla-
tion modeling. Capturing the high-order topological correlations
among various vertices in a heterogeneous biological network
can achieve more accurate and robust prediction performance,
which is worthy of more attention for further study. Although
computational approaches have achieved decent results after years of development, there are still many under-resolved problems. The biological data used in this study are considered large-scale datasets, but the number of drug vertices, target vertices, and DTIs included in each dataset is quite limited. For example, the approved Target Drug-UniProt Links in DrugBank database (version 5.1.0) only contains 2,020 drugs, 2,669 targets, and 9,796 DTIs. To construct a large-scale comprehensive heterogeneous biological network, more types of vertices in addition to drugs and targets should be provided to obtain complex relationships at different levels. It is not easy to accomplish this task using a single dataset. Fortunately, we may integrate complementary information from different public databases. For instance, we can integrate the known drug-disease associations from Drug Central, reported drug side effects from the Comparative Toxicogenomics Database (CTD), protein-protein interactions data from the Human Protein Resource Database (HPRD) and the HuRI, and clinically reported drug-drug interactions data from the DrugBank database. Even with plenty of data, coping with the noise from multiple databases is a challenging problem for data integration. The sample imbalance problem may also be raised by collecting only positive sample information and ignoring information for non-interaction pairs. Furthermore, even an evaluated DTI may be rejected in the future. We believe that a high-quality, large-scale dataset that integrates various classes of information will significantly progress the development of computational approaches.

By convention, the HHDTI selects drug-target pairs with no known interactions as negative samples. These negative samples are potentially positive, making it difficult to select genuine no-interaction drug-target pairs. The proposed HHDTI method can be further expanded to incorporate more topological information (e.g., drug side effect associations) and other types of information. For example, the similarity computed from the inherent property information of drugs and targets, such as drug chemical similarity and protein sequence similarity, can also be modeled in the form of hypergraphs to explore the high-order correlations in this respect, which will be considered in our future research. Importantly, although HHDTI was developed for DTI predictions, it can also be used as a general framework to address link prediction-related problems in other fields (e.g., drug interactions).

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for code and data should be directed to and will be fulfilled by the lead contact, Yue Gao (gaoyue@tsinghua.edu.cn).

Materials availability

This study did not generate any physical materials.

Data and code availability

The four datasets used in the experiments can be found in DTINet, deepDTnet, TriModel, and DrugBank database. HHDTI source code can be downloaded from https://github.com/iMoonLab/HHDTI.

The framework of the HHDTI

The framework of the proposed HHDTI is shown in Figure 1. Taking the biological hypergraphs as input, HHDTI can achieve prediction performance that outperforms other state-of-the-art methods by simultaneously optimizing both the high-order association capture process and the DTI prediction model in an end-to-end manner. We first construct hypergraphs to model the biological network and then employ a structural embedding learning framework to capture the
high-order correlation and generate structural embeddings for both targets and drugs. The interaction likelihood between a given drug and target is predicted by estimating the similarity of their structural embeddings. Specifically, for drug \(i\) and target \(j\), the DTI score can be computed as \(\text{Sigmoid}(\langle \mathbf{F}_d^i, \mathbf{F}_t^j \rangle / \langle \mathbf{F}_d^i, \mathbf{F}_d^i \rangle)\), where \(\mathbf{F}_d^i\) and \(\mathbf{F}_t^j\) denote the drug structural embeddings and target structural embeddings, respectively. These low-dimensional structural embeddings, \(\mathbf{F}_d^i\) or \(\mathbf{F}_t^j\), are generated by fusing key and side embeddings by a biembedding attention fusion module; drug (target) structural embeddings \(\mathbf{F}_d^i(\mathbf{F}_t^j)\) are generated by fusing the key drug embeddings \(\mathbf{F}_d^i(\mathbf{F}_t^j)\) and side drug embeddings \(\mathbf{F}_d^i(\mathbf{F}_t^j)\).

Heterogeneous hypergraph modeling of biological networks

Biological networks in this work present both direct and indirect relationships among drugs and targets. A heterogeneous biological network \(G_\mathcal{H} = (\mathcal{V}_\mathcal{H}, \mathcal{E}_\mathcal{H})\) refers to a biological network containing multiple types of vertices and edges, where \(\mathcal{V}_\mathcal{H}\) represents the set of vertices and \(\mathcal{E}_\mathcal{H}\) represents the set of edges. In our biological network, the sets of vertex types \(\mathcal{O}\) include (drug, target, disease), the sets of correlation types \(\mathcal{R}\) include (drug-target interaction, target-drug interaction, drug-disease association, target-disease association).

Given different types of correlations, a heterogeneous multiple hypergraph \(G = (\mathcal{V} = \{v_1, \ldots, v_m\}, \mathcal{E} = \{e_1, \ldots, e_n\})\) with \(M\) vertices and \(N\) hyperedges is constructed to model the biological networks, where \(r\) represents different types of correlations and \(r = 1, 2, 3, 4\). In this work, the heterogeneous hypergraph modeling of the biological networks is illustrated in Figure 1A. For each correlation, we achieve an individual sub-hypergraph. We achieve four types of sub-hypergraph in total. The heterogeneous hypergraph modeling results are four incidence matrices, which can be represented by \(H_{\mathcal{O}}^{MN}\), where \(H_{\mathcal{O}} = 1\) if vertex \(i\) has connected with hyperedge \(j\); otherwise, \(H_{\mathcal{O}} = 0\). We obtain four types of incidence matrices \((H_{\mathcal{O}}^{1}, H_{\mathcal{O}}^{2}, H_{\mathcal{O}}^{3}, H_{\mathcal{O}}^{4})\) based on \(\mathcal{R}\). Both drugs and targets employ the same structural embedding learning framework to generate the structural embeddings. For conciseness, we next present how drug structural embeddings are generated from this structural embedding learning framework.

Drug structural embedding learning

We introduce a Bayesian deep generative model that is a framework for unsupervised learning on a hypergraph-structured data-based variational auto-encoder\(^{25}\) to learn drug key embeddings from \(H_{\mathcal{O}}^{1}\) and employ the HGNN\(^{26}\) model to generate the drug side embeddings from \(H_{\mathcal{O}}^{2}\). For the drug-target interaction hypergraph \(H_{\mathcal{O}}^{3}\), this Bayesian generative model is instantiated as a vertex encoder, which models the similarity and correlations of the drugs interacting with the same target. The vertex encoder (Figure 1B, vertex encoder) performs a nonlinear mapping from the observed space \(H_{\mathcal{O}}^{1}\) to the common latent space \(\mathcal{H}_{\mathcal{O}}^{1}\) by

\[
\Phi_{\mathcal{O}}^{i} = f(H_{\mathcal{O}}^{1}W_{\mathcal{O}}^{i} + b_{\mathcal{O}}^{i})
\]

where \(f(\cdot)\) is a nonlinear activation function to enable our model to approximate a nonlinear function.\(^{24}\) Based on our experiments (Figure 5A), we adopted the hyperbolic tangent \(\text{tanh}(x) = (\exp(x) - \exp(-x)) / (\exp(x) + \exp(-x))\) for the activation function due to its simplicity and superiority of performance. \(W_{\mathcal{O}}^{i} \in \mathbb{R}^{D_i \times D_{in}}\) and \(b_{\mathcal{O}}^{i} \in \mathbb{R}^{D_i}\) are the weight and bias learned by the encoder, and \(D_{in}\) and \(D_i\) are the dimensionalities of \(H_{\mathcal{O}}^{1}\) and \(\Phi_{\mathcal{O}}^{i}\), respectively. After obtaining \(\Phi_{\mathcal{O}}^{i}\), two individual fully connected layers are used to estimate the means \(\mu_{\mathcal{O}}^{i}\) and variances \(\sigma_{\mathcal{O}}^{i}\):\(^\dagger\)

\[
\mu_{\mathcal{O}}^{i} = f(\Phi_{\mathcal{O}}^{i}W_{\mathcal{O}}^{i} + b_{\mathcal{O}}^{i})
\]

\[
\sigma_{\mathcal{O}}^{i} = f(\Phi_{\mathcal{O}}^{i}W_{\mathcal{O}}^{i} + b_{\mathcal{O}}^{i})
\]

where \(W_{\mathcal{O}}^{i} \in \mathbb{R}^{D_i \times D_{in}}\) and \(b_{\mathcal{O}}^{i} \in \mathbb{R}^{D_i}\) are the learnable weights and biases, respectively. The dimensionality of the drug key embedding \(\Phi_{\mathcal{O}}^{i}\) is \(D\), and we sample this by

\[
\Phi_{\mathcal{O}}^{i} = \mu_{\mathcal{O}}^{i}, \sigma_{\mathcal{O}}^{i} \odot \epsilon
\]

where \(\epsilon \sim \mathcal{N}(0, I)\), and \(\odot\) stands for the element-wise product.

The key embeddings characterize the high-order topological correlations from the direct relationships between targets and drugs. Recent studies have found that integrating multiple types of information can improve prediction accuracy.\(^{27}\) For example, drug side effects are observable phenotypic effects resulting from drugs acting on genetic off-targets in human bodies.\(^{28}\) Phenotypic side effect similarity can be used to infer whether two drugs share a target.\(^{29}\) Hu et al.\(^{30}\) found that targets can be used as bridges to link drugs and diseases. Inspired by these studies, we integrated additional types of association correlations in HHDTI to provide complementary information so that the method can predict correctly even in the case of extreme challenges like the cold-start problem.

As shown in Figure 1B, we learn drug side embeddings from the drug-disease incidence matrices \(H_{\mathcal{O}}^{2}\) to provide complementary information for the drug key embeddings. This is achieved by the HGNN\(^{26}\) model (Figure 1B, hypergraph convolutional layers). HGNN consists of hypergraph convolutional layers that encode high-order correlations:

\[
\text{Conv}(H, X; W) = f(D^{-1}H(D^{-1}H(D^{-1}XW))\right)
\]

where \(D\) and \(D^\dagger\) are the diagonal degree matrices of the vertex and hyperedge respectively, \(D^{-1}H(D^{-1})^{-1}\) being the degree of vertex and \(D^{-1}H(D^{-1})^{-1}\) being the degree of hyperedge, \(\mathbf{W}\) is the learnable weight matrix, and \((\cdot)^{-1}\) is the transposition operator.

The output of the HGNN model is the side embeddings, which represent high-order correlations. The adopted HGNN has two hypergraph convolutional layers. Taking the drug side embedding learning on \(H_{\mathcal{O}}^{2}\) as an example, each layer can be formulated as

\[
\Phi_{\mathcal{O}}^{(i)} = \text{Conv}(H_{\mathcal{O}}^{2}; \Phi_{\mathcal{O}}^{(i-1)}; W^{(i-1)})
\]

where \(\Phi_{\mathcal{O}}^{(i-1)}, \Phi_{\mathcal{O}}^{(i)}, \text{and } W^{(i)}\) are the input, output, and trainable weight matrix of the \((i-1)\)-th layer, respectively. The vertex feature \(X\) is the inherent properties of the drugs, and we replaced with an identity matrix for \(\Phi_{\mathcal{O}}^{(1)}\) is \(X = I\). Then, we employ attention modules to fuse the key and side embeddings into a shared vector space to construct low-dimensional structural embeddings. We propose the bi-embedding attention fusion (Figure 1B, attention) to compute the coefficients \(\alpha^*\) to give different weights to the key embeddings and side embeddings:

\[
\alpha^* = \frac{\exp(f(\Phi_{\mathcal{O}}^{(k)}W + b) - P^*)}{\sum_{k \in S} \exp(f(\Phi_{\mathcal{O}}^{(k)}W + b) - P^*)}
\]

where \(\Phi_{\mathcal{O}}^{(k)}\) and \(\Phi_{\mathcal{O}}^{(k)}\) are the key and side embeddings, respectively.

Target structural embedding learning

By contrast, the target structural embedding learning uses the target-drug interaction hypergraph and the target-disease association hypergraph as inputs. It models the similarity and correlations of the targets interacting with the same drug to generate the target key embeddings \(\Phi_{\mathcal{O}}^{t}\) through a vertex encoder (with the same structure as the vertex encoder in drug structural embedding learning). It also uses the HGNN\(^{26}\) model to generate the target side embeddings \(\Phi_{\mathcal{O}}^{t}\) from \(H_{\mathcal{O}}^{4}\) and fuses the target key embeddings and target side embeddings by biembedding attention fusion to obtain target structural embeddings \(\Phi_{\mathcal{O}}^{t}\).
DTI prediction
The DTI predictions are produced from the reconstruction space \(\mathbf{A} \), which is achieved by computing the likelihood of the drug and target structural embeddings.

\[
\mathbf{A} = \text{Sigmoid} (\mathbf{\Phi}_d \mathbf{\Phi}_t \mathbf{T})
\]

(Equation 9)
where sigmoid(\(\cdot \)) is the sigmoid activation function. We optimize the variational lower bound \(\mathcal{L} \):

\[
\mathcal{L} = \mathbb{E}_q [\log p (\mathbf{A} | \mathbf{\Phi}_d, \mathbf{\Phi}_t)] - \beta [\text{KL}(q(\mathbf{\Phi}_d | \mathbf{A}) || p(\mathbf{\Phi}_d)) + \text{KL}(q(\mathbf{\Phi}_t | \mathbf{A}) || p(\mathbf{\Phi}_t))]
\]

(Equation 10)
where \(\text{KL}(q(\cdot) || p(\cdot)) \) is the Kullback-Leibler divergence between \(q(\cdot) \) and \(p(\cdot) \). Varying \(\beta \) encourages different learned representations by changing the degree of applied learning pressure during training. Referring to the work of the variational autoencoder, we further take Gaussian priors \(p(\mathbf{\Phi}_d) = \prod_i \mathcal{N}(\mathbf{\Phi}_d^i | 0, 1) \) and \(p(\mathbf{\Phi}_t) = \prod_i \mathcal{N}(\mathbf{\Phi}_t^i | 0, 1) \). \(\mathbb{E}_q [\log p(\cdot)] \) is the likelihood of reconstruction space \(\mathbf{A} \) learned by HHDIT.

Model evaluation metrics
We introduced two evaluation metrics, the AUROC curve and the AUPR curve, to evaluate prediction performance. A confusion matrix is shown in Figure S3. In the receiver operating characteristic (ROC) space, the ROC curve gives a pair of \(x \) and \(y \) values where \(x \) is the false-positive rate (FPR) and \(y \) is the true-positive rate (TPR). We connected all points obtained by changing the cutoff to create the ROC curve.

\[
\text{TPR} = \frac{TP}{TP + FN}
\]

(Equation 11)
\[
\text{FPR} = \frac{FP}{TN + FP}
\]

(Equation 12)
where true-positives (TPs) and false-positives (FPs) are positive samples correctly predicted as positive and negative samples incorrectly predicted as positive, respectively. True-negatives (TNs) are negatives correctly identified as negative. False-negatives (FNs) correspond to positives incorrectly predicted as negative.

The precision-recall curve is plotted in a comparable way to the ROC curve but with the \(x \) axis being recall and the \(y \) axis being precision:

\[
\text{recall} = \frac{TP}{TP + FN}
\]

(Equation 13)
\[
\text{precision} = \frac{TP}{TP + FP}
\]

(Equation 14)
As discussed in previous work, \(^{46,47}\) AUPR can provide a better assessment when the data for testing are highly skewed (supplementary note).

Datasets
The three public datasets proposed in DTINet, \(^1\) deepDTnet, \(^2\) and TriModel \(^3\) (named DTINet_17, deepDTnet_20, and KEGG_MED, respectively) as well as the Target Drug-UniProt Links (approved) from the DrugBank database (version 5.1.0)\(^{4}\) were used for evaluation.

The data in DTINet_17 were collected from public databases, Drug vertices, protein vertices, and disease vertices were obtained from the DrugBank database (version 3.0), \(^{36}\) the HPRD database (release 9), \(^{48}\) and CTD, \(^{51}\) respectively. The known DTIs were imported from the DrugBank database (version 3.0), \(^{36}\) and the drug-disease and target-disease associations were extracted from the CTD. \(^{36}\)

The deepDTnet_20 dataset was also derived from the integration of information in multiple databases. The DTIs were collected from the DrugBank database (version 4.3), \(^{35}\) the Therapeutic Target Database, \(^{36}\) and the PharmGKB database. \(^{35}\) The drug-disease association information came from the DrugBank database (version 4.3), \(^{36}\) Drug Central, \(^{37}\) and repoDB. \(^{35}\) The drug-disease association data were integrated from the bioinformatics data sources CTD \(^{36}\) and HuGe navigator. \(^{36}\)

The KEGG_MED dataset was larger than the above two datasets and was extracted from multiple databases, including KEGG, \(^{53}\) DrugBank database, \(^{34}\) InterPro, \(^{46}\) and UniProt. \(^{56}\)

The Target Drug-UniProt Links (approved) dataset was extracted from the DrugBank database (version 5.1.0). \(^4\)

More specific information regarding the four datasets is shown in Table S3. For more information about the datasets, please refer to the works of DTINet, deepDTNet, TriModel, and DrugBank database (version 5.1.0).

Statistical analysis
All statistical analyses were performed using GraphPad Prism software (version 8.0.2). The data shown in the study were obtained from at least five independent experiments. Values in different experimental groups are expressed as the mean ± standard deviation. \(p < 0.05 \) was considered statistically significant.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.patter.2021.100390.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Development Program of China under grant 2020YFB1406604 and National Natural Science Foundation of China (62088102, U1701262, U1801263).

AUTHOR CONTRIBUTIONS
D.R., C.Z., Y.G., and Q.D. conceived the research project. D.R., S.J., C.Y., Y.G., and J.Z. designed the methodology. D.R., S.J., C.Y., J.Z., and C.Z. conducted experiments. D.R., X.Z., Y.Y., C.Z., Q.D., and Y.G. analyzed the results. All authors wrote the paper and contributed to the revision of the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: June 11, 2021
Revised: July 23, 2021
Accepted: October 21, 2021
Published: November 16, 2021

REFERENCES
1. Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., Peng, J., Chen, L., and Zeng, J. (2017). A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8, 1–13.
2. Zeng, X., Zhu, S., Lu, W., Liu, Z., Huang, J., Zhou, Y., Fang, J., Huang, Y., Guo, H., and Li, L. (2020). Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci. 11, 1775–1797.
3. Mohamed, S.K., Nováček, V., and Noumi, A. (2020). Discovering protein drug targets using knowledge graph embeddings. Bioinformatics 36, 603–610.
4. Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., et al. (2017). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082.
5. Barabási, A.-L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68.
6. Whitebread, S., Hamon, J., Bojanic, D., and Urban, L. (2005). Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10, 1421–1433.
7. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. (2009). AutoDock4 and AutoDockTools:...
Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791.

8. Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J., and Shoichet, B.K. (2007). Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206.

9. Bagherian, M., Sabeti, E., Wang, K., Sartor, M.A., Nikolaovska-Coleska, Z., and Najarian, K. (2020). Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief. Bioinform. 22, 247–269.

10. Lavecchia, A. (2015). Machine-learning approaches in drug discovery: methods and applications. Drug Discov. Today 20, 318–331.

11. Mayr, A., Klamt, G., Unterrainer, T., Steijaert, M., Wegner, J.K., Ceulemans, H., Clevert, D.-A., and Hochreiter, S. (2018). Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9, 5441–5451.

12. Lo, Y.-C., Renzi, S.E., Torng, W., and Altman, R.B. (2018). Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 23, 1538–1546.

13. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa, M. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, 2323–2420.

14. Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., Li, X., Zhou, W., Wang, W., and Wang, Y. (2012). A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmaceutical data. PLoS one 7, e37608.

15. Gao, K.Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., and Zhang, P. (2018). Interpretable Drug Target Prediction Using Deep Neural Representation (UCAI).

16. Nascimento, A.C., Prudêncio, R.B., and Costa, I.G. (2016). A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics 17, 46.

17. Zong, N., Kim, H., Ngo, V., and Harismendy, O. (2017). Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations. Bioinformatics 33, 2337–2344.

18. Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L.J., and Bork, P. (2008). Drug target identification using side-effect similarity. Science 321, 263–266.

19. Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J., and Tang, Y. (2012). Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8, e1002503.

20. Chen, B., Ding, Y., and Wild, D.J. (2012). Assessing drug target association using semantic linked data. PLoS Comput. Biol. 8, e1002574.

21. Liu, L., and Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A 390, 1150–1170.

22. Wan, F., Hong, L., Xiao, A., Jiang, T., and Zeng, J. (2019). NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics 35, 104–111.

23. Pei, J., Yin, N., Ma, X., and Lai, L. (2014). Systems biology brings new dimensions for structure-based drug design. J. Am. Chem. Soc. 136, 11556–11565.

24. Vaida, M., and Purcell, K. (2019). Hypergraph link prediction: learning drug interaction networks embeddings. In Paper Presented at: 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE), pp. 1860–1865. https://doi: 10.1109/ICMLA.2019.00299.

25. Niu, Y.W., Ou, C.Q., Wang, G.H., and Yan, G.Y. (2019). RWMDA: random walk on hypergraph for microbe-disease association prediction. Front. Microbiol. 10, 1578.

26. Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. (2019). Hypergraph neural networks. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), pp. 3558–3565.

27. Powers, D.M. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Tech. 2, 37–63.

28. Natarajan, N., and Dhillon, I.S. (2014). Inductive matrix completion for predicting gene–disease associations. Bioinformatics 30, 460–468.

29. Singh-Blom, U.M., Natarajan, N., Tewari, A., Woods, J.O., Dhillon, I.S., and Marcotte, E.M. (2013). Prediction and validation of gene–disease associations using methods inspired by social network analyses. PLoS One 8, e58977.

30. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., et al. (2013). DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097.

31. Hayashi, T., Juliet, P.A., Miyazaki-Akita, A., Funami, J., Matsui-Hirai, H., Fukushima, A., and Iguchi, A. (2007). beta1 antagonist and beta2 agonist, celiprolol, restores the impaired endothelial dependent and independent responses and decreased TNFalpha in rat with type II diabetes. Life Sci. 80, 592–599.

32. Nawarskas, J.J., Cheng-Lai, A., and Frishman, W.H. (2017). Celiprolol: a unique selective adrenocortical receptor. Cardioi. Rev. 25, 247–253.

33. Hopkins, A.L. (2008). Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690.

34. Lim, H., Gray, P., Xie, L., and Poleksic, A. (2016). Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem. Sci. Rep. 6, 1–11.

35. Yao, Y., Tong, H., Yan, G., Xu, F., Zhang, X., Szymanski, B.K., and Lu, J. (2014). Dual-regularized one-class collaborative filtering. In Proceedings of the 23rd ACM International Conference on Conference Information and Knowledge Management (ACM), pp. 759–768.

36. Sun, M., Zhao, S., Gilvary, C., Elemento, O., Zhou, J., and Wang, F. (2019). Graph convolutional networks for computational drug development and discovery. Brief. Bioinform. 21, 919–935.

37. Ursu, O., Holmes, J., Knockel, J., Bologa, C.G., Yang, J.J., Mathias, S.L., Nelson, S.J., and Oprea, T.I. (2016). DrugCentral: online drug compendium. Nucleic Acids Res. 45, D932–D939.

38. Davis, A.P., Grondin, C.J., Johnson, R.J., Sciaky, D., McMorran, R., Wiegers, J., Wiegers, T.C., and Mattingly, C.J. (2018). The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res. 47, D948–D954.

39. Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, M., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopala, A., et al. (2009). Human protein reference database—2009 update. Nucleic Acids Res. 37, D767–D772.

40. Luck, K., Kim, D.-K., Lambourne, L., Spirohn, K., Begg, B.E., Bian, W., Brignall, R., Cafarelli, T., Campos-Laborie, F.J., Charloette, B., et al. (2020). A reference map of the human binary protein interactome. Nature 580, 402–408.

41. Kingma, D.P., and Welling, M. (2013). Auto-Encoding Variational Bayes (arXiv), arXiv:1312.6114.

42. Gardner, M.W., and Dorling, S.R. (1998). Artificial neural networks (the multilayer perceptor)—a review of applications in the atmospheric sciences. Atmos. Environ. 32, 2627–2636.

43. Madhukar, N.S., Khade, P.K., Huang, L., Gayvert, K., Galletti, G., Stogniew, M., Allen, J.E., Giannakakou, P., and Elemento, O. (2019). A Bayesian machine learning approach for drug target identification using diverse data types. Nat. Commun. 10, 1–14.

44. Zhou, M., Chen, Y., and Xu, R. (2019). A drug-side effect context-sensitive network approach for drug target prediction. Bioinformatics 35, 2100–2107.

45. Hu, Q.N., Deng, Z., Tu, W., Yang, X., Meng, Z.B., Deng, Z.X., and Liu, J. (2014). VNP: interactive visual network pharmacology of diseases, targets, and drugs. CPT Pharmacometrics Syst. Pharmacol. 3, e105.

46. van Laarhoven, T., Nabuurs, S.B., and Marchiori, E. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27, 3036–3043.
47. Davis, J., and Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning (ACM), pp. 233–240.

48. Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolikis, A., Pon, A., Banco, K., Mak, C., Neveu, V., et al. (2010). DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 39, D1035–D1041.

49. Yang, H., Qin, C., Li, Y.H., Tao, L., Zhou, J., Yu, C.Y., Xu, F., Chen, Z., Zhu, F., and Chen, Y.Z. (2015). Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 44, D1069–D1074.

50. Sangkuhl, K., Berlin, D.S., Altman, R.B., and Klein, T.E. (2008). PharmGKB: understanding the effects of individual genetic variants. Drug Metab. Rev. 40, 539.

51. Brown, A.S., and Patel, C.J. (2017). A standard database for drug repurposing. Sci. Data 4, 170029.

52. Yu, W., Gwinn, M., Clyne, M., Yesupriya, A., and Khoury, M.J. (2008). A navigator for human genome epidemiology. Nat. Genet. 40, 124–125.

53. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361.

54. Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., and Woolsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672.

55. Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A., Brown, S.D., Chang, H.-Y., Eib-bail, S., Fraser, M.I., et al. (2018). InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360.

56. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. (2004). UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32, D115–D119.
Supplemental information

Exploring complex and heterogeneous correlations on hypergraph for the prediction of drug-target interactions

Ding Ruan, Shuyi Ji, Chenggang Yan, Junjie Zhu, Xibin Zhao, Yuedong Yang, Yue Gao, Changqing Zou, and Qionghai Dai
Supplementary Note

Baseline drug discovery methods

We compare our method against three previously-proposed drug discovery methods, including DTINet, deepDTnet, and TriModel.

DTINet predicts novel drug-target interactions (DTIs) from a constructed heterogeneous network, which integrates diverse drug-related information. Specifically, DTINet integrates the inherent properties of drugs and targets, and the topological correlations among biological entities. DTINet focuses on learning a low-dimensional vector representation of features, which accurately explains the topological properties of individual nodes in the heterogeneous network, and then makes predictions based on these representations via a vector space projection scheme. DTINet can provide a practically useful tool for integrating heterogeneous information to predict new drug–target interactions and repurpose existing drugs.

NeoDTI is an upgrade method for DTINet. It is an end-to-end learning model that integrates neighborhood information of the heterogeneous network constructed from diverse data source (e.g., drug structure similarity, drug-side-effect association, drug-protein interaction) via a number of information transfer and aggregation operations, which are enabled by the powerful nonlinear feature extraction capability of the neural network. After that, NeoDTI automatically learns topology-preserving representations of drugs and targets to facilitate DTI prediction.

DeepDTnet is a deep learning methodology for new target identification and drug repurposing in a heterogeneous drug–gene–disease network by integrating chemical, genomic, phenotypic, and cellular network profiles. Briefly, deepDTnet based on DTINet and integrates more information on the inherent properties of drugs and targets. DeepDTnet offers a powerful network-based deep learning methodology for target identification to accelerate drug repurposing and minimize the translational gap in drug development.

A specific knowledge graph embedding model TriModel is a novel computational method for predicting drug target proteins. The method is based on formulating the
problem as link prediction in a knowledge graph (robust, machine-readable representation of network knowledge). The biomedical knowledge base is first used to create a knowledge graph of the entities associated with the drug and its potential targets. The method then used to learn the vector representation (i.e., embeddings) of all drugs and targets in the created knowledge graph. In other words, TriModel use only topological information in knowledge graph to generate representations without any inherent property information. Therefore, these representations can be used to infer the candidate DTIs based on the known DTIs calculated by the trained TriModel model.

Due to the limitation of the datasets used in the manuscript, each method uses different information on different datasets. We list the specific information used by each method (including HHDTI) on each dataset, as follows:

HHDTI

- **DTINet_17**: Drug-protein interaction, protein-disease interaction, drug-disease association.
- deepDTnet_20: Drug-protein interaction, protein-disease association, drug-disease association.
- KEGG_MED: Drug-gene interaction, gene-disease association, drug-disease association.

DTINet

- **DTINet_17**: Drug-side effect association, protein-protein interaction, drug-protein interaction, drug-drug interaction, protein-disease association, drug-disease association, drug similarity based on chemical structures, protein similarity based on primary sequences.
- deepDTnet_20: Drug-side effect association, protein-protein interaction, drug-protein interaction, drug-drug interaction, protein-disease association, drug-disease association, drug chemical similarity, drug therapeutic similarity, drug sequence similarity, drug biological process similarity, drug cellular component similarity, drug molecular function similarity, protein sequence similarity, protein biological processes similarity, protein cellular component similarity, protein molecular function similarity.
KEGG_MED: Drug-gene interaction, gene-disease association, drug-disease association.

NeoDTI

DTINet_17: Drug-side effect association, protein-protein interaction, drug-protein interaction, drug-drug interaction, protein-disease association, drug-disease association, drug similarity based on chemical structures, protein similarity based on primary sequences.

deeperDTnet_20: Drug-side effect association, protein-protein interaction, drug-protein interaction, drug-drug interaction, protein-disease association, drug-disease association, drug chemical similarity, protein sequence similarity.

KEGG_MED: Drug-gene interaction, gene-disease association, drug-disease association.

DeepDTnet

DTINet_17: Drug-side effect association, protein-protein interaction, drug-protein interaction, drug-drug interaction, protein-disease association, drug-disease association, drug similarity based on chemical structures, protein similarity based on primary sequences.

deeperDTnet_20: Drug-side effect association, protein-protein interaction, drug-protein interaction, drug-drug interaction, protein-disease association, drug-disease association, drug chemical similarity, drug therapeutic similarity, drug sequence similarity, drug biological process similarity, drug cellular component similarity, drug molecular function similarity, protein sequence similarity, protein biological processes similarity, protein cellular component similarity, protein molecular function similarity.

KEGG_MED: Drug-gene interaction, gene-disease association, drug-disease association.

TriModel

DTINet_17: Drug-side effect association, protein-protein interaction, drug-protein
interaction, drug-drug interaction, protein-disease association, drug-disease association.

deePDnet_20: Drug-side effect association, protein-protein interaction, drug-protein interaction, drug-drug interaction, protein-disease association, drug-disease association.

KEGG_MED: Drug-gene interaction, gene-disease association, drug-disease association.

Evaluation metrics

The prediction of drug-target interaction is actually a binary decision problem, so we introduce two evaluation metrics to evaluate the performance of all DTI prediction methods, namely the area under receiver operator characteristic curves (AUROC) and the area under precision-recall curves (AUPR).

AUROC and AUPR are global evaluation metrics. To understand the characteristics of AUROC and AUPR, we will introduce receiver operator characteristic (ROC) curves and precision-recall (PR) curves in detail.

The decisions made by the predictor can be represented as a confusion matrix. The confusion matrix has four categories: True positives (TP) are positive samples correctly predicted as positives. False positives (FP) are negative samples incorrectly predicted as positives. True negatives (TN) are negative samples correctly predicted as negatives. False negatives (FN) are positive samples incorrectly predicted as negatives. A confusion matrix is shown in Figure S2. In ROC space, the false positive rate (FPR) is plotted on the x-axis and the true positive rate (TPR) is plotted on the y-axis. In PR space, the recall is plotted on the x-axis and the precision is plotted on the y-axis. A sample with a predictive value greater than cutoff is considered to be a positive sample, otherwise it is a negative sample. The ROC is obtained by changing the cutoff to calculate the TPR and the FPR. In a similar way to the ROC, the PR is obtained by changing the cutoff to calculate the precision and recall. TPR, FPR, recall, and precision are calculated as follows:
\[\text{TPR} = \text{recall} = \frac{TP}{TP + FN} \]
(Equation 1)

\[\text{FPR} = \frac{FP}{FP + TN} \]
(Equation 2)

\[\text{precision} = \frac{TP}{TP + FP} \]
(Equation 3)

As studied in previous works46,47, AUROC may be overly optimistic in assessing the performance of prediction methods, especially on highly skewed data, and AUPR can provide a better evaluation in this scenario. This is evident from the way in which ROC and PR are plotted. We analyze TPR, FPR, recall, and precision for changes in the number of negative samples to clarify why AUPR is a better choice than AUROC when the data is highly skewed. Since TPR measures the fraction of positive samples correctly predicted as positives, it does not change with the number of negative samples in the test set when cutoff is certain, the same is true for recall. However, it is difficult for any predictor to predict all positive samples and negative samples perfectly, and some negative samples will be incorrectly predicted as positives because their prediction value is greater than the cutoff. As the number of negative samples in the test set increases, more negative samples will be incorrectly predicted as positives, resulting in a change in the FP, but TP will not be affected, so the denominator of equation (3) will definitely change but the numerator will remain unchanged. In other words, precision will definitely change with the number of negative samples. This is not necessarily the case for FPR. When the number of negative samples increases, both FP and TN change, and according to equation (2), it is difficult to judge whether FPR will change. Therefore, when the test set is highly skewed, AUROC may no longer be relevant for evaluation, and we should choose AUPR as the evaluation metric.
Supplementary Figures

Figure S1. Performance comparisons between different prediction approaches on the DTINet_17 datasets after removal of similar targets. All methods are trained and tested on a modified data set, in which homologous proteins were excluded. A pair of two proteins are said to be homologous if their sequence identity score is above 40%. The results of five trials for each method are expressed as mean ± SD; *: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$; ****: $p < 0.0001$.
Figure S2. Comparison of different activation functions. Based on the results using the three data sets, the tanh function performs best among four activate functions of tanh, ReLU, Leakey-ReLU and Sigmoid and was adopted for our model. The results of five trials for each method are expressed as mean ± SD.
	actual positive	actual negative
predicted positive	TP	FP
predicted negative	FN	TN

Figure S3. Confusion matrix.
Supplementary Tables

Method	# validated predictions	# validated predictions by HHDTI (no disease) and deepDTnet
HHDTI (no disease)	132	
deepDTnet	112	70

Table S1. Statistics of the validated DTIs in the top-10 prediction lists of HHDTI (no disease) and deepDTnet.
Drug	Target
DB00315	P28223
DB00315	P41595
DB00929	P34995
DB01069	P35368
DB04846	P13945
DB04846	P08913
DB04948	P35348

Table S2. The list of drug-target interactions that were predicted by HHDTI and validated in the literature. And the literature is later than April 2016 when using all data in Target Drug-UniProt Links (approved) dataset from DrugBank database (Version 4.6.0) as the training set.
Dataset	Node	Edge	Note																					
	\(V_1	\)	\(V_2	\)	\(V_3	\)	\(V	\)	\(E_1	\)	\(E_2	\)	\(E_3	\)	\(E	\)
DTINet_17	708	1,512	5,603	7,828	1,923	199,214	1,596,745	1,797,882																
deepDTnet_20	732	1,915	440	3,087	4,978	1,208	23,080	29,266																
KEGG_MED	4,284	945	360	5,589	12,112	365	433	12,910																
DrugBank (5.1.0)	2,020	2,669	-	4,689	9,796	-	-	9,796																

Table S3. Statistics of the number of nodes and edges in the four datasets used in experiments.
Supplementary Pseudocode

Algorithm 1: HHDTI

Input:

- H_{dr-ta}: The incidence matrix of drug-target interactions;
- H_{ta-dr}: The incidence matrix of target-drug interactions;
- H_{dr-di}: The incidence matrix of drug-disease associations;
- H_{ta-di}: The incidence matrix of target-disease associations.

Output:

- A: The reconstructed incidence matrix of drug-target interactions.

1: for epoch = 1 to T do
2: Project the observed spaces H_{dr-ta} and H_{ta-dr} to common latent spaces Φ_{dr-ta} and Φ_{ta-dr} by node encoder and hyperedge encoder, respectively;
3: Sample the drug key embeddings Φ_d^k and target key embeddings Φ_t^k from the estimated posterior distribution;
4: Generate drug side embeddings Φ_d^s and target side embeddings Φ_t^s, respectively, by using H_{dr-di} and H_{ta-di} as the input of HGNN;
5: Learn the different importance of the key and side embedding and merge them according to their weight to generate the drug structured embeddings Φ_d^s and target structured embeddings Φ_t^s;
6: Reconstruct A from the estimated distribution $p(A_{i,j} \mid (\Phi_d^s)_i, (\Phi_t^s)_j)$;
7: Update the HHDTI with stochastic gradient descent.
8: end for