Diagnostic Snapshot

Dyspnea in the Oncology Patient

Robin Sommers, DNP, ANP-BC, AOCNP®
From Dana-Farber Cancer Institute, Boston, Massachusetts
Correspondence to: Robin Sommers, DNP, ANP-BC, AOCNP®, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana 1210, Boston, MA 02215. E-mail: robin_sommers@dfci.harvard.edu

History
Ms. G.M. is a 79-year-old woman who was diagnosed with esophageal cancer in June 2008, at which time she underwent neoadjuvant chemoradiation. This was followed by a three-hole esophagectomy with a thorascopic right chest dissection in May 2009, with complete pathologic response. Unfortunately, in May 2010 she was found to have a recurrence on chest CT; a CT-guided biopsy demonstrated metastatic carcinoma. Ms. G.M. underwent a video-assisted thoracic surgery wedge resection, and pathology revealed a squamous cell carcinoma consistent with her prior esophageal cancer. Subsequently, she developed another recurrence in the right upper lobe of the lung with mediastinal lymphadenopathy consistent with recurrent esophageal cancer. She began systemic chemotherapy with the FOLFOX (fluorouracil, leucovorin, oxaliplatin) regimen.

Chief Complaint
Following three cycles of FOLFOX, Ms. G.M. presented to the clinic with a chief complaint of shortness of breath as well as facial and arm swelling. The IV team nurses were unable to elicit a blood return from her portacath.

Review of Systems
Ms. G.M. reported weakness and increasing shortness of breath over 2 weeks, as well as intermittent nausea, vomiting, and constipation following her last cycle of chemotherapy. On physical examination, vital signs were notable for temperature 97.5°F, pulse 89, blood pressure 140/80 mm Hg, respiratory rate 18, and O₂ saturation of 97% on room air. Chest exam was notable for bibasilar crackles with evidence of dilated chest veins. Ms. G.M. underwent a vascular flow study (see Figure 1), and a chest CT scan with contrast had been obtained following vascular access placement (see Figure 2).

Differential Diagnosis

- Pulmonary emboli
- Pleural effusion
- Superior vena cava syndrome

See back for answer.
Superior vena cava syndrome (SVCS) results from the obstruction of the superior vena cava (SVC), commonly due to malignant tumors; other etiologies may include fibrosing mediastinitis and thrombosis from indwelling central venous access devices (CVAD; Lewis, Hendrickson, & Moynihan, 2011). Regardless of etiology, dyspnea is the most common symptom of SVCS (Bell, Woods, & Levi, 1986). When the SVC is obstructed, collateral vessels develop to accommodate diverted blood flow from the SVC, often taking several weeks (Wilson, Detterbeck, & Yahalom, 2007). The severity of symptoms depends on the acuity and speed of onset of the obstruction. Often there is a constellation of symptoms, most commonly including edema of the face, neck, and arm; dyspnea; cough; and dilated chest veins. Dysphagia, stridor, hoarseness, confusion, and syncope may also be present (Wan & Bezjak, 2009). Catheter thrombosis should be suspected when there is evidence of catheter dysfunction with accompanying signs and symptoms of facial, neck, or arm swelling (Nakazaw, 2010).

Management of SVCS depends on the cause of the compression. Often there is a constellation of symptoms, most commonly including edema of the face, neck, and arm; dyspnea; cough; and dilated chest veins. Dysphagia, stridor, hoarseness, confusion, and syncope may also be present (Wan & Bezjak, 2009). Catheter thrombosis should be suspected when there is evidence of catheter dysfunction with accompanying signs and symptoms of facial, neck, or arm swelling (Nakazaw, 2010).

Management of SVCS depends on the cause of the compression. In Ms. G.M.’s case, the vascular flow study demonstrated central venous thrombosis involving the brachiocephalic veins with evidence of extensive collaterals and SVC and/or obstruction of the SVC, which could also be the result of compression of the chest wall mass. CT scan of the chest demonstrated both thrombosis and compression from the mass.

The goals of management for SVCS associated with malignancy are to alleviate symptoms and treat the underlying cause. Management of SVCS may include angioplasty, stenting, and thrombolysis (Baskin et al., 2009). For management of suspected CVAD portacath thrombosis, alteplase (Cathflow, Activase) may be used to restore blood flow. Alteplase is an FDA-approved agent for clearing CVAD occlusions (Genentech, 2005). Ms. G.M. had clinical evidence of improvement in symptoms following the initiation of therapeutic dalteparin (Fragmin), and as such, vascular medicine deferred endovascular stenting.

Follow-Up
Ms. G.M. was readmitted for recurrent symptoms of SVCS 6 days after discharge. Vascular angiography demonstrated a segment of right subclavian vein occlusion and new thrombosis of the left subclavian vein. She underwent successful endovascular stent placement within the left subclavian vein with improvement in symptoms. The SVC was not stented as her CVAD would have had to have been removed. Endovascular treatment is a viable option for patients with SVCS given its high success rate in symptom relief, decreased time to SVC obstruction relapse, and improvement in overall survival (Zarogoulidis et al., 2011).

References
Baskin, J. L., Pui, C. H., Reiss, U., Wilimas, J. A., Metzger, M. L., Ribeiro, R. C., & Howard, S. C. (2009). Management of occlusion and thrombosis associated with long term indwelling central venous catheters. Lancet, 374(9684), 159–169. http://dx.doi.org/10.1016/S0140-6736(09)60220-8
Bell, D. R., Woods, R. L., & Levi, J. A. (1986). Superior vena cava obstruction: A 10-year experience. Medical Journal of Australia, 145(11–12), 566–568.
Genentech. (2005). Cathflo Activate package insert. Retrieved from http://www.cathfab.com/home/index.jsp
Lewis, M. A., Hendrickson, A. W., & Moynihan, T. J. (2011). Oncologic emergencies: Pathophysiology, presentation, diagnosis and treatment. CA: A Cancer Journal for Clinicians, 61, 287–314. http://dx.doi.org/10.3322/caac.20124.
Mulroy, J. F. (2008). Differential diagnosis of pleural effusions: A case study. Dimensions in Critical Care Nursing, 27(3), 110–113. http://dx.doi.org/10.1097/01.DCC.0000286838.03345.bl
Nakazaw, N. (2010). Infectious and thrombotic complications of central venous catheters. Seminars in Oncology Nursing, 26(2), 121–131. http://dx.doi.org/10.1016/j.socn.2010.02.007
Stein, P. D., Beemath, A., Matta, F., Weg, J. G., Yusen, R. D., Hales, C. A., Woodard, P. K. (2007). Clinical characteristics of patients with acute pulmonary embolism: Data from PIOPED II. American Journal of Medicine, 120(10), 871–879. http://dx.doi.org/10.1016/j.amjmed.2007.03.024
Stein, P. D. & Matta, F. (2010). Acute pulmonary embolism. Current Problems in Cardiology, 35, 314–376. http://dx.doi.org/10.1016/j.cpcardio.2010.03.002
Wan, J. F. & Bezjak, A. (2009). Superior vena cava syndrome. Emergency Medical Clinics of North America, 27, 243–255. http://dx.doi.org/10.1016/j. emc.2009.01.003
Wilson, L., Detterbeck, F. C., & Yahalom, J. (2007). Superior vena cava syndrome with malignant causes. New England Journal of Medicine, 356, 1862–1869. http://dx.doi.org/10.1056/NEJMcp067190
Zarogoulidis, P., Terzi, E., Kouliatias, G., Zervas, V., Kontakiotis, T., Mitrikas, A., & Zarogoulidis, K. (2011). Subclavian thrombosis in a patient with advanced lung cancer: A case report. Journal of Medical Case Reports, 5, 173. http://dx.doi.org/10.1186/1752-1947-5-173