Thyroid cancer in a patient with a germline $MSH2$ mutation.
Case report and review of the Lynch syndrome expanding tumour spectrum

Rein P. Stulp1, Johanna C. Herkert1, Arend Karrenbeld2, Bart Mol1, Yvonne J. Vos1, Rolf H. Sijmons1

1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
2Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Key words: Lynch syndrome, mutations, $MSH2$, thyroid cancer

Corresponding author: Rein P. Stulp, Department of Genetics, University Medical Center Groningen, PO-Box 30.001, 9700 RB Groningen, The Netherlands, phone: +31 50 361 72 29, fax: +31 50 361 72 31, e-mail: r.p.stulp@medgen.umcg.nl

Submitted: 8 February 2008
Accepted: 14 February 2008

Abstract

Lynch syndrome (HNPCC) is a dominantly inherited disorder characterized by germline defects in DNA mismatch repair (MMR) genes and the development of a variety of cancers, predominantly colorectal and endometrial. We present a 44-year-old woman who was shown to carry the truncating $MSH2$ gene mutation that had previously been identified in her family. Recently, she had been diagnosed with an undifferentiated carcinoma of the thyroid and an adenoma of her coecum. Although the thyroid carcinoma was not MSI-high (1 out of 5 microsatellites instable), it did show complete loss of immunohistochemical expression for the $MSH2$ protein, suggesting that this tumour was not coincidental. Although the risks for some tumour types, including breast cancer, soft tissue sarcoma and prostate cancer, are not significantly increased in Lynch syndrome, MMR deficiency in the presence of a corresponding germline defect has been demonstrated in incidental cases of a growing range of tumour types, which is reviewed in this paper. Interestingly, the $MSH2$-associated tumour spectrum appears to be wider than that of $MLH1$ and generally the risk for most extra-colonic cancers appears to be higher for $MSH2$ than for $MLH1$ mutation carriers. Together with a previously reported case, our findings show that anaplastic thyroid carcinoma can develop in the setting of Lynch syndrome. Uncommon Lynch syndrome-associated tumour types might be useful in the genetic analysis of a Lynch syndrome suspected family if samples from typical Lynch syndrome tumours are unavailable.

Introduction

Lynch syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is an autosomal dominant disorder associated with a germline mutation in one of the DNA mismatch repair (MMR) genes, most commonly $MLH1$ and $MSH2$ and less frequently $MSH6$ and $PMS2$. Lynch syndrome is characterized by a strongly increased risk of developing colorectal cancer and several extra-colonic malignancies including carcinomas of the endometrium, ovary, ureter, stomach and small intestine. Tumours develop at a relatively young age. Although the risks for some common types of cancer, for example breast cancer [1-3], or rarer tumour types, for example malignant fibrous histiocytoma (MFH) [4], do not appear to be significantly increased in Lynch syndrome, MMR deficiency in the presence of a corresponding germline defect has been demonstrated in incidental cases of these tumours.
Here we report a 44-year-old woman from a Lynch syndrome, Amsterdam positive family who was referred for DNA testing. She had a recent history of a colorectal adenoma and an undifferentiated carcinoma of her thyroid and was shown to carry the truncating MSH2 mutation that was known to segregate in her family. Traditionally, thyroid cancer is not considered to be part of the Lynch syndrome tumour spectrum. Our findings, however, suggest that this tumour was not coincidental, but likely developed in association with the underlying germline defect in the MSH2 gene. We reviewed the literature on unusual manifestations of inherited mismatch repair gene mutations.

Methods

After genetic counselling, DNA analysis of the MSH2 gene was performed in this 44-year-old woman by extracting DNA from lymphocytes, followed by a PCR amplification of exon 11 of the MSH2 gene. The PCR product was analyzed by denaturing gradient gel electrophoresis (DGGE) and compared with DNA from a family member carrying the mutation [5].

Immunohistochemical staining for MLH1, PMS2, MSH2 and MSH6 protein expression was performed on formalin-fixed, paraffin-embedded sections of tumour as described previously [6].

DNA was extracted from both tumour and normal tissue. Microsatellite instability analysis was performed on formalin-fixed, paraffin-embedded sections of tumour and corresponding normal tissue. Following DNA amplification using fluorescent labelled primers, a panel of five microsatellites recommended by the NCI [7] and consisting of BAT25, BAT26, D2S123, D5S346 and D17S250 was analyzed for allelic shift. The amplified PCR products were analyzed on an ABI Genetic Analyzer.

We searched the English literature through Entrez PubMed (www.ncbi.nlm.nih.gov/sites/entrez) using sets of keywords to identify publications on tumours reported in patients with germline mismatch repair gene mutations. The reference lists of publications found through this approach were searched for additional relevant papers.

Results

Genetic analysis of the MSH2 gene in the patient revealed the c.1704_1705delAG mutation, already known to segregate in her family. Her undifferentiated thyroid carcinoma showed complete loss of immunohistochemical expression of the MSH2 and MSH6 protein in the presence of normal positive internal controls, and no loss of the MLH1 and PMS2 protein. Of the five microsatellite markers tested, BAT26 showed instability. Therefore the thyroid tumour was classified as MSI-low.

The acknowledged Lynch syndrome tumour spectrum is shown in Table 1. The cumulative risks and average ages at diagnosis are detailed for different tumour sites.

Table 1. Lynch syndrome tumour spectrum. Cumulative risks and average ages at diagnosis

Tumour site	MLH1	MSH2	MSH6			
	male	female	male	female	male	female
Colorectum	22-65% (41-47 years)	18-54% (41-47 years)	30-73% (44-46 years)	25-54% (44-46 years)	60-70% (50-54 years)	30-40% (50-54 years)
Endometrium	22-65% (59 year)	22-61% (59 year)	60-70% (54 year)			
Small intestine	7%	4%	n.a.			
Stomach	2%	4%	n.a.			
Ovary	3%	10%	10-28%			
Ureter and renal pyelum	1%	12%	n.a.			
Brain	n.a.	1%	n.a.			
Sebaceous glands	n.a.	n.a.	n.a.			
Pancreas	n.a.	n.a.	n.a.			
Biliary tract	n.a.	n.a.	n.a.			

n.a. — not available

Shown in brackets are the ranges of average ages at diagnosis. For the PMS2 gene no cumulative risks are available.

Modified from a table developed by D Voskuil and RH Sijmons for the Dutch National Guidelines on Hereditary Colorectal Cancer (Menko F, ed. Richtlijn Erfelijke Darmkanker, VKGN, VIKC and CBO, 2007), used with permission.
Diagnosis

Undifferentiated thyroid carcinoma is not commonly associated with Lynch syndrome. In our patient the immunohistochemical loss of expression for the MSH2 and MSH6 protein suggested that this tumour was not coincidental, but due to the underlying mutation in the MSH2 gene. Loss of MSH6 expression in tumours is often observed in case of germline MSH2 mutations and can be explained by loss of its stabilizing partner MSH2. Broaddus et al. [18] contended that for both an adrenal and a thyroid carcinoma an MSH2 gene mutation was causally linked because the tumour showed loss of MSH2 protein with immunohistochemical staining, but retained expression of MLH1. This staining pattern was similar to that seen in the more common Lynch syndrome related malignancies in these families. Although both adrenal and thyroid carcinoma showed loss of MSH2 immunohistochemical expression, neither tumour was microsatellite unstable (MSI-high). Loss of protein expression in the absence of MSI has been observed before in Lynch syndrome, most notably in patients with MSH6 mutations [6, 19].

Table 2. Unusual tumours in patients with Lynch syndrome

Tumour type	Age	Gene	Mutation	MSI	IHC MLH1	IHC MSH2	IHC MSH6	Ref.
Non-Hodgkin’s lymphoma	48	MSH2	large rearrangement	high	+	–	–	45
Rhabdomyosarcoma, pleomorphic	34	MSH2	not published	high	+	–	ND	46
Breast carcinoma, ductal	49	MSH2	c.1705-1706 del GA	high	+	–	ND	3
Fibrous histiocytoma, malignant	45	MSH2	p.G429X	high	+	–	ND	4
Adrenal cortical carcinoma	34	MSH2	c.IVS10+1G>A	low	+	–	ND	18
Thyroid carcinoma, anaplastic	39	MSH2	p.Q824X	low	+	–	ND	18
Thyroid carcinoma, undifferentiated	44	MSH2	c.1704_1705 del AG	low	+	–	ND	c
Pancreatic medullary carcinoma	63	MSH2	c.C1147T p.R383X	high	+	–	ND	47
Prostate adenocarcinoma	61	MSH2	c.del exon 5	high	+	–	ND	48
Liposarcoma	40	MSH2	c.del AT codon 677	ND	+	–	ND	49
Hepatic cholangiocarcinoma, mucinous	41	MSH2	c.T2026C	high	+	–	ND	50
Uterine carcinosarcoma	46	MLH1	c.G1896C p.E632D	ND	–	+	ND	51
Renal cell carcinoma, clear cellA	51	MLH1	c.C1528T	high	–	ND	ND	1
Breast carcinomaA, ductal	34	MLH1	c.C1528T	high	–	ND	ND	1
Breast carcinoma, male ductal	71	MLH1	4 bp dup in codon 755-756	high	ND\(^6\)	ND	ND	52
Breast carcinoma, male	46	MLH1	c.2215-2218 dup AAAC	high	ND\(^6\)	ND	ND	2

ND – not determined, IHC – results from immunohistochemical staining of the tumour for the protein coded by that gene, MSI – classification of the tumour microsatellite instability test results

\(^6\)In this South-African family 5 breast cancer patients and a relative with renal cell cancer all carried the same mutation and showed microsatellite instability and loss of MLH1 protein in their tumours

\(\)In this tumour loss of heterozygosity for MLH1 was detected

\(\)Patient reported in this paper
have a significantly increased risk of developing in their patients. Cumulative cancer risks for Lynch syndrome were usually based on retrospective cohort analysis of families meeting the Amsterdam criteria, often including families without proven mutations and untested first-degree relatives. More recently studies have focused on proven mutation carriers only. The risk figures listed in Table 1 are based on the latter type of studies [8-17]. Interestingly, the risk for gastric, ovarian, ureter/renal pelvis and brain tumours appears to be higher for carriers of MSH2 mutations than for carriers of MLH1 mutations. In addition to the statistical

Table 3. Tumours observed in patients with bi-allelic MMR gene germline mutations

Tumour type	MSH1 mean age (range), N	MSH2 mean age (range), N	MSH6 mean age (range), N	PMS2 mean age (range), N
Acute leukaemia	2, 1/14			
Acute myeloid leukaemia	6, 1/14	7, 1/15		
Atypical chronic myeloid leukaemia	1, 1/14			
B-acute lymphatic leukaemia				10 (10), 1/43
T-acute lymphatic leukaemia/	2, 1/7	2 (2), 1/43		
T cell leukaemia				
Lymphoblastic lymphoma	5, 1/15	9 (6-15), 3/43		
NHL/T-cell lymphoma	3, 1/14	10 (1-2), 3/7	11 (3-17), 4/43	
Small bowel carcinoma, not specified			15 (15-16), 2/43	
Adenocarcinoma duodenum	11, 1/14			
Breast cancer	35, 1/14			
Colorectal cancer	22 (9-35), 3/14	11.5 (11-12), 2/7	16.6 (8-31), 5/15	15.9 (11-24), 10/43
Endometrial cancer	24, 1/15	23.5 (23-24), 2/43		
Brain tumour, not specified	24 (24), 1/43			
Glioma	4, 1/14	15 (15), 1/43		
Astrocytoma/glioblastoma (multiforme)	4, 1/14	3, 1/7	8 (7-9), 3/15	7.1 (2-17), 8/43
Glioblastoma of the spinal cord	2, 1/15			
Oligodendroglioma	10, 1/15	16.5 (14-19), 2/43		
Infantile myofibromatosis	1 (1), 1/43			
Medulloblastoma	7, 1/14	7, 1/15		
Neuroblastoma			13 (13), 1/43	
Primitive neuroectodermal tumour (PNET) of brain or ovary	11 (4-21), 5/43			
Sarcoma	65, 1/14			
Ureter/renal pelvis carcinoma	15 (15), 1/43			
Wilms’ tumour	4, 1/14			

Total 14 (11 patients) 7 (7 patients) 15 (10 patients) 43 (28 patients)

For each MMR gene and each of the tumours, the mean age at diagnosis is given in years. If more than one tumour was reported for each type then the range of ages at diagnosis is shown between brackets. The number of each of the tumour types observed for a particular MMR gene is shown as number/total of tumours reported for that gene in bi-allelic mutation carriers. Multiple primary tumours were reported frequently and the total number of reported tumours and total number of patients are presented in the last row for each of the genes [20-44].
approach, the tumour spectrum can be broadened through analysis of tumours occurring in MMR gene mutation carriers. Again, patients with atypical Lynch syndrome tumours as listed in Table 2 more often have been reported to carry an MSH2 than an MLH1 mutation. Also a wider range of tumours is observed for MSH2 than for MLH1 in these patients. At this point we can only speculate on the reason for these differences. MLH1 and MSH2 each create a heterodimer with different partners and have different roles in the detection and repair of DNA mismatches. For each of these protein complexes, deficiency might have a different impact on types and quantity of mismatches left unrepaired and the effect deficiency has on different target genes. The absence of MSH6 and PMS2 mutations in Table 2 might simply be caused by the fact that these mutations have been less frequently observed in Lynch syndrome in general. Ascertainment bias, however, cannot be excluded as laboratories did not test MSH6 and PMS2 in their analyses of Lynch syndrome suspected patients until fairly recently. Nevertheless, the absence of MSH6 and PMS2 from the listed reports might also reflect a true difference in associated tumour spectrum.

The tumours listed in Table 2 are not known to develop significantly more frequently in MMR gene mutation carriers than in the general population. Loss of MMR function may or may not have contributed significantly to tumour development in these particular cases. Generally, in these organs loss of the wild type allele in MMR gene mutation carriers and/or subsequently the accumulation of clinically important unrepaired mutations in cancer-associated target genes are apparently relatively rare. It is interesting to look at the types of cancer that develop in patients who have inherited bi-allelic MMR gene mutations (Tabele 3.). These patients are born with a mismatch repair deficiency and can present with tumours that rarely occur in carriers of single allele MMR gene mutations who need to lose their WT allele in their tissues first. Several studies have demonstrated that these bi-allelic mutations can lead to a phenotypically distinct recessive syndrome with predominantly childhood onset brain tumours, leukaemia and lymphoma, bowel tumours and endometrial carcinoma [20-44]. A striking feature of these patients is that nearly all of them display some features, spotty hyperpigmentation of the skin and Lisch nodules of the irides, usually observed in neurofibromatosis type I. Some of the reported tumour types, sarcoma, NHL and early-onset breast cancer match the types incidentally reported in patients with single allele MMR gene mutations, which further supports the notion that these tumour types could be causally linked to inherited MMR gene mutations.

Whether or not MMR deficiency contributed significantly to development of the types of cancer occasionally seen in Lynch syndrome patients remains to be determined. From a practical point of view, we conclude that unusual tumours in Lynch syndrome can show loss of immunohistochemical staining that corresponds to the MMR germline mutation. Therefore these tumours, especially of those types that rarely occur in the general population, could be useful when trying to predict MMR gene mutations in Lynch syndrome suspected families for mutation analysis [6, 19] if the typical Lynch syndrome-associated tumours are unavailable.

References

1. Blokhuis MM, Goldberg PA, Petersen GE, Algar U, Vorster AA, Govender D, Ramesar RS. The extracolonic cancer spectrum in females with the common ‘South African’ hMLH1 c.C1528T mutation. Fam Cancer 2007 November 30.
2. Risinger Ji, Barrett JC, Watson P, Lynch HT, Boyd J. Molecular genetic evidence of the occurrence of breast cancer as an integral tumor in patients with the hereditary nonpolyposis colorectal carcinoma syndrome. Cancer 1996; 77: 1836-1843.
3. Westenend PJ, Schutte R, Hoogmans MM, Wagner A, Dirinjen WN. Breast cancer in an MSH2 gene mutation carrier. Hum Pathol 2005; 36: 1322-1326.
4. Sijmons R, Hofstra R, Hollema H, Mensink R, van der Hout A, Hoekstra H, Kleibeuker JH, Molenaar W, Wijnen J, Fodde R, Vasen H, Buys C. Inclusion of malignant fibrous histiocytoma in the tumour spectrum associated with hereditary non-polyposis colorectal cancer. Genes Chromosomes Cancer 2000; 29: 353-355.
5. Wu Y, Nyström-Lahti M, Ozinga J, Looman MW, Peltomäki P, Aaltonen LA, de la Chapelle A, Hofstra RM, Buys CH. MSH2 and MLH1 mutations in sporadic replication error-positive colorectal carcinoma as assessed by two-dimensional DNA electrophoresis. Genes Chromosomes Cancer 1997; 18: 269-278.
6. Berends MJ, Wu Y, Sijmons RH, Mensink RG, van der Sluis T, Hordijk-Hos JM, de Vries EG, Hollema H, Karrenbeld A, Buys CH, van der Zee AG, Hofstra RW, Kleibeuker JH. Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 2002; 70: 26-37.
7. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J, Fishel R, Lindor NM, Burtjlg LI, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomäki P, Ramsey SD, Rodriguez-Bigas MA, Vassen HD, Hark EW, Barrett JC, Freedman AN, Srivastava S. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004; 96: 261-268.
8. Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, van der Zee AG, Hofstra RM, Peltomäki P, Mecklin JP, Lääräniemi H. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 1999; 81: 214-8.
9. Dunlop MG, Farrington SM, Carothers AD, Wylie AH, Sharp L, Burn J, Liu B, Kinzler KW, Vogelstein B. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet 1997; 6: 105-110.
10. Hendriks YM, Wagner A, Morreau H, Menko F, Stormarken A, Quenhenberger F, Sandkuil L, Mellor P, Genroardi M, Van Houwelingen H, Tamps C, Van Puijenbroek M, Verkuijlen P, Kenter G, Van Mil A, Meijers-Heijboer H, Tan GB, Breuning MH, Fodde R, Wijnen JT, Bröcker-Vriends AH, Vasen H. Cancer risk
in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 2004; 127: 17-25.

11. Plaschke J,Engel C, Krüger S, Holinski-Feder E, Pagenstecher C, Mangold E, Moeslein G, Schulmann K, Gebert J, von Knebel Doeberitz M, Rüschoff J, Laeffler M, Schackert HK. Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: the German Hereditary Nonpolyposis Colorectal Cancer Consortium. J Clin Oncol 2004; 22: 4466-4494.

12. Quehenberger F, Vassen HF, van Houwelingen HC. Risk of colorectal and endometrial cancer for carriers of mutations of the hMLH1 and hMSH2 gene: correction for ascertainment. J Med Genet 2005; 42: 491-496.

13. Vassen HF, Wijnen JT, Menko FH, Kleibeuker JH, Taal BG, Griffin G, Nagengast FM, Meijer-Jensboer EH, Bertario L, Versaca L, Bisgaard ML, Mohr J, Fodde R, Khan PM. Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 1999; 110: 1020-1027.

14. Vassen HF, Stormorken A, Menko FH, Nagengast FM, Kleibeuker JH, Griffin G, Taal BG, Moller P, Wijnen JT. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families. J Clin Oncol 2001; 19: 4074-4080.

15. Hampel H, Stephens JA, Pukkala E, Sankila R, Aaltonen LA, Mecklin JP, de la Chapelle A. Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset. Gastroenterology 2005; 129: 415-421.

16. Carayol J, Khlat M, Maccario J, Bonalli-Pellié C. Hereditary nonpolyposis colorectal cancer: current risks of colorectal cancer largely overestimated. J Med Genet 2002; 39: 335-339.

17. Buttin BM, Powell MA, Mutch DG, Babb SA, Huettert PC, Edmonston TB, Herzog TJ, Rader JS, Gibb RK, Whelan AJ, Goodfellow PJ. Penetrance and expressivity of MSH6 mutations in seven kindreds not ascertained by family history. Am J Hum Genet 2004; 74: 1262-1269.

18. Broadus RR, Lynch PM, Lu KH, Luthra R, Michelson SJ. Unusual tumors associated with the hereditary nonpolyposis colorectal cancer syndrome. Mad Pathol 2004; 17: 981-989.

19. Nienas RC, Berends MJ, Wu Y, Sijmons RH, Colleoni M, Uhlig B, Vasishta A, van Kijssel G. Identification of mismatch repair gene mutations in young patients with colorectal cancer and in patients with multiple tumours associated with hereditary nonpolyposis colorectal cancer. Gut 2006; 55: 1781-1788.

20. Agostini M, Tibletti MG, Lucci Cardoso E, Chiarenti A, Morreau H, Furlan D, Baccalò L, Pucciarrelli S, Capella C, Bocciottrei M, Vito A. Two PMS2 mutations in a Turcot syndrome family with small bowel cancer. Am J Gastroenterol 2005; 100: 1886-1891.

21. Auclair J, Leroux D, Desseigne F, Lasser C, Saurin JC, Joly MO, Pinson S, Xu XL, Montmain G, Ruano E, Navarro C, Puisset C, Wang Q. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation. Hum Mutat 2007; 28: 1084-1090.

22. Bougard G, Charbonnier F, Moerman A, Martin C, Rouchoux MM, Droout N, Fribourg T. Early onset brain tumor and lymphoma in MSH6-deficient children. Am J Hum Genet 2003; 72: 213-216.

23. Decaës M, Fumero C, Parantello L, Scarano M, Bels G, Lennami A, Ciciliano F, Ippol F. Evidence for a recessive inheritance of Turcot's syndrome caused by compound heterozygous mutations within the PMS2 gene. Oncogene 2003; 19: 1719-1723.

24. De Vos M, Hayward BE, Picton S, Sheridan E, Bonthron DT. Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet 2004; 75: 954-964.

25. De Vos M, Hayward BE, Charlton R, Taylor GR, Glaser AW, Picton S, Cole TR, Maher ER, Meckown CM, Mann JR, Yates JR, Baralle D, Rankin J, Bonthron DT, Sheridan E. PMS2 mutation in childhood cancer. J Nall Cancer Inst 2006; 98: 338-341.

26. Gallinger S, Aronson M, Shayan K, Ratcliffe EM, Gerstle JT, Parkin PC, Rothenmund H, Croitoru M, Baumann E, Durie PR, Weksberg R, Pollett A, Riddell RH, Nguyen BY, Cuzie E, Lagarde AE, Chan HS. Gastrointestinal cancers and neurofibromatosis type 1 features in children with a germline homozgyous MLH1 mutation. Gastroenterology 2004; 126: 576-585.

27. Hackman P, Tannergard P, Osei-Mensah S, Chen J, Kane MF, Kolodner R, Lambert B, Hellgren D, Lindblom A. A human compound heterozygote for two MLH1 missense mutations. Nat Genet 1997; 17: 135-136.

28. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tebu B, et al. The molecular basis of Turcot’s syndrome. N Engl J Med 1995; 332: 839-847.

29. Hegde MR, Chong B, Blazo ME, Chiu LH, Ward PA, Chintagumpala MM, Kim YJ, Plan SE, Richards CS. A homozgyous mutation in MSH6 causes Turcot syndrome. Clin Cancer Res 2005; 11: 4689-4693.

30. Krüger S, Kinzel M, Walldorff C, Gottschling S, Bier A, Tinschert S, Henn W, Görgens H, Boue S, Kalbte B, Böttner R, Schackert HK. Homozgyous PMS2 germline mutations in two families with early-onset haematological malignancy, brain tumours, HNPCC-associated tumours, and signs of neurofibromatosis type 1. Eur J Hum Genet 2008; 16: 62-72.

31. Li T, Tannergard P, Hackman P, Rubio C, Kresse U, Lindmark G, Hellgren D, Lambert B, Lindblom A. Missense mutations in hMLH1 associated with colorectal cancer. Hum Genet 1999; 105: 437-441.

32. Menko FH, Kaspers GL, Meijer GA, Claes K, van Hagen JM, Gille JJ. A homozgyous MSH6 mutation in a child with cafe-au-lait spots, oligodendroglioma and rectal cancer. Fam Cancer 2004; 3: 123-127.

33. Müller A, Schackert HK, Lange B, Rüschoff J, Füzesi L, Willert J, Burfeind P, Shah P, Becker H, Epplen JT, Stemmler S. A novel MSH2 germline mutation in homozgyous state in two brothers with colorectal cancers diagnosed at the age of 11 and 12 years. Am J Med Genet A 2005; 139: 96-105.

34. Ostergaard JR, Sunde L, Okkels H. Neurofibromatosis von Recklinghausen type I phenotype and early onset of cancers in siblings compound heterozygous for mutations in MSH6. Am J Med Genet A 2005; 139: 96-105.
Thyroid cancer in a patient with a germline MSH2 mutation. Case report and review of the Lynch syndrome expanding tumour spectrum.

38. Ricciardone MD, Ocşêlik T, Cevher B, Ozdag H, Tuncer M, Gürgey A, Uzunalmişoğlu O, Cetinkaya H, Tanyeli A, Erken E, Öztürk M. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res 1999; 59: 290-293.

39. Scott RH, Mansour S, Pritchard-Jones K, Kumar D, MacSweeney F, Rahman N. Medulloblastoma, acute myelocytic leukemia and colonic carcinomas in a child with biallelic MSH6 mutations. Nat Clin Pract Oncal 2007; 4: 130-134.

40. Scott RH, Hamfray T, Huxter NL, Mitton SG, Nash R, Potter MN, Lancaster D, Rahman N. Familial T-cell non-Hodgkin lymphoma caused by biallelic MSH2 mutations. J Med Genet 2007; 44: e83.

41. Trimbath JD, Petersen GM, Erdman SH, Ferre M, Luce MC, Giardiello FM. Cafe-au-lait spots and early onset colorectal neoplasia: a variant of HNPCC? Fam Cancer 2001; 1: 101-105.

42. Vilki S, Tao JL, Loukola A, Poyhonen M, Vierimaa O, Herva R, Aaltonen LA, Shibata D. Extensive somatic microsatellite mutations in normal human tissue. Cancer Res 2001; 61: 4541-4544.

43. Wang Q, Lasset C, Desseigne F, Frappaz D, Bergeron C, Navarro C, Ruano E, Puiseux A. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res 1999; 59: 294-297.

44. Whiteside D, McLeod R, Graham G, Steckley JL, Booth K, Somerville MJ, Andrew SE. A homozygous germ-line mutation in the human MSH2 gene predisposes to hematological malignancy and multiple cafe-au-lait spots. Cancer Res 2002; 62: 359-362.

45. Pineda M, Castellsague E, Musulen E, Llort G, Frebourg T, Baert-Desurmont S, Gonzalez S, Capella G, Blanco I. Non-Hodgkin lymphoma related to hereditary nonpolyposis colorectal cancer in a patient with a novel heterozygous complex deletion in the MSH2 gene. Genes Chromosomes Cancer 2008; 47: 326-332.

46. den Bakker MA, Seynaeve C, Kliffen M, Dinjens WN. Microsatellite instability in a pleomorphic rhabdomyosarcoma in a patient with hereditary non-polyposis colorectal cancer. Histopathology 2003; 43: 297-299.

47. Banville N, Geraghy R, Fox E, Leary DT, Green A, Keegan D, Geaghegan J, O’Donoghue D, Hyland J, Sheahan K. Medullary carcinoma of the pancreas in a man with hereditary nonpolyposis colorectal cancer due to a mutation of the MSH2 mismatch repair gene. Hum Pathol 2006; 37: 1498-1502.

48. Soravia C, van der Klift H, Bründler MA, Blauin JL, Wijnen J, Hutter P, Fodde R, Delozier-Blanchet C. Prostate cancer is part of the hereditary non-polyposis colorectal cancer (HNPCC) tumor spectrum. Am J Med Genet A 2003; 121: 159-162.

49. Hirata K, Kanemitsu S, Nakayama Y, Nagata N, Itah H, Ohnshi H, Ishikawa H, Furukawa Y, HNPCC registry and genetic testing project of the Japanese Society for Cancer of the Colon and Rectum (JSCCR). A novel germline mutation of MSH2 in a hereditary nonpolyposis colorectal cancer patient with liposarcoma. Am J Gastroenterol 2006; 101: 193-196.

50. Vernez M, Hutter P, Monnerat C, Halkic N, Gugerli O, Bouzourene H. A case of Muir-Torre syndrome associated with mucinous hepatic cholangiocarcinoma and a novel germline mutation of the MSH2 gene. Fam Cancer 2007; 6: 141-145.

51. South SA, Hutton M, Farrell C, Mhawech-Fauceglia P, Radabaugh KJ. Uterine carcinosarcoma associated with hereditary nonpolyposis colorectal cancer. Obstet Gynecol 2007; 110: 543-545.

52. Boyd J, Rhei E, Federici MG, Borgen PI, Watson S, Franklin B, Karr B, Lynch J, Lerman SJ, Lynch HT. Male breast cancer in the hereditary nonpolyposis colorectal cancer syndrome. Breast Cancer Res Treat 1999; 53: 87-91.