Optimise 3D printing parameter on the mechanical performance of PLA-wood fused filament fabrication

*S F Khan¹,², M M Zukhi, H Zakaria³, M A M Saad¹

¹School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Main Campus, 02600 Arau, Perlis, Malaysia.
²Additive Manufacturing and Design Lab, School of Mechatronic Engineering, Universiti Malaysia Perlis, Malaysia.

*corresponding author: sfkhan@unimap.edu.my

Abstract. The effect of printing parameter of tensile and compression specimens on production cost and mechanical performance of the material which is PLA with 20% wood content had been identified. The printing parameters selected are nozzle temperature, raster angle and printing speed. The raster angle and printing speed shows higher impact of tensile specimen on production cost while compression specimen only printing speed. Furthermore, for tensile experiment, raster angle gives highest impact than other parameter while for compression experiment each printing parameter giving an equal reaction to mechanical performance. By plotting the S/N ratio graph, higher nozzle temperature, lower raster angle and printing speed show the optimum printing parameters for tensile specimen. While optimum printing parameters for compression specimen are lower nozzle temperature, higher raster angle and printing speed.

1. Introduction
Additive manufacturing (AM) is the technology used to build 3D objects where the joining process of material was added layer by layer such in fused filament fabrication (FFF). There are many types of polymer that used in FFF which common material are ABS and PLA [1]. Thermoplastic is usually used in additive manufacturing because of the unique physicochemical properties and characteristic such as low cost, light weight, easy to fabricate and variability of compositions [2]. Yedige Tlegenov et al. [3], the lower nozzle temperature had tended to clog more than higher nozzle temperature. K. G. Jaya Christiyanto et al. [4] state the tensile strength will be increase as well as the printing speed decrease. Lastly, Y. Wang et al. [5] state the higher raster angle will lower tensile strength. These three printing parameters gave highly impact for mechanical performance of the material. Based on literature reviews, there are many studies about pure PLA and ABS but still less study about composite material which mixed particularly with PLA or ABS. Most current study on literatures or experiments finding about how printing parameter affect to mechanical performance of pure PLA and ABS. Lastly, the literatures or experiments of the pass usually were about 3D printing to find on printing parameter effect in mechanical performance but not on production cost.

2. Methodology
This experiment will focus on characterizing tensile and compression strength of fused filament fabrication parts produced with PLA with 20% content of wood powder utilizing open source 3D printing software. The addition of 20% wood content increases the modulus of elasticity (MOE) value and reduce the density, any further addition of wood will result in lower MOE values [6]. The printing filament was obtained from Magma3DP and used as it.

2.1. Design of Experiment
To design the experiment, Taguchi method was chosen to simplify the experimental while analysis of variance (ANOVA) was used to determine the influence of each printing parameter on each mechanical property. The selected parameter was list in the table which shown in Table 1 before conducting Taguchi method.
Table 1: Selected printing parameter

Printing Parameter	Value
Nozzle temperature (°C)	195, 205, 215
Raster angle (°)	0, 45, 60
Printing speed (mm/s)	30, 40, 50

Taguchi table being plotted after identify the selected printing parameters which is shown in Table 2. There are nine levels for each testing (tensile and compression) according to Taguchi L₉.

Table 2: Taguchi model for experiment

Level	Nozzle Temperature (°C)	Raster Angle (°)	Printing Speed (mm/s)	No. of specimens
1	195	0	30	5
2	195	45	40	5
3	195	60	50	5
4	205	0	40	5
5	205	60	50	5
6	205	45	30	5
7	215	0	50	5
8	215	45	30	5
9	215	60	40	5

2.2. 3D printing specimens

The 3D model be designed using CATIA V5 software by referring ASTM standard [7] [8] for tensile and compression dimension and testing specification. Then the CAD translated to STL file in order to slice the 3D printing software. The tensile and compression specimens were printed based on Taguchi table. The material that used is particle reinforced polymer composite which is PLA with 20% wood content.

2.3. Mechanical Testing and Scanning Electron Microscope (SEM)

Tensile and compression were tested experimentally using universal testing machine (UTM) which namely as SHIMADZU AG-100kN. An UTM machine has maximum 100kN of load and been set up constantly with 2 mm/min of speed for all tensile specimens while 5 mm/min for all compression specimens. SEM had been utilized during fracture surface analysis of 3D printed specimens to provide a vision to the failure mode by using SEM machine from HITACHI TM3000.

3. Result and Discussion

3.1. Tensile Strength

Based from Table 3, the highest average of ultimate tensile stress is level 8 which have 215°C of nozzle temperature, 45° of raster angle and 30 mm/s of printing speed. The circle plotted which shown in Figure 1 is S/N ratio of larger the better as the optimum for each printing parameter. The optimum tensile specimen for printing parameter of nozzle temperature, raster angle and printing speed are 215°C, 0° and 30 mm/s.

3.2. Compression Strength

Based from Table 4, the highest average of maximum compression stress is level 3 which have 195°C of nozzle temperature, 60° of raster angle and 50 mm/s of printing speed. The circle plotted which shown in Figure 2 is S/N ratio of larger the better as the optimum for each printing parameter. The optimum compression specimen for printing parameter of nozzle temperature, raster angle and printing speed are 195°C, 60° and 50 mm/s.
Table 3: Tabulated raw data of tensile test

Level	Ultimate Tensile Strength (MPa)	Average (MPa)	S/N ratio				
1	12.92067	12.54519	11.71875	13.82212	13.52163	12.905672 (Middle)	22.2156
2	11.64375	13.22115	12.31971	11.64375	11.94389	12.15447	21.6947
3	9.390144	11.49351	12.54519	12.54519	12.99567	11.79394	21.4332
4	13.14615	13.29639	13.44639	12.84567	12.31971	13.01086	22.2861
5	13.14615	13.14615	13.14615	12.54519	12.92067	12.98086	22.2661
6	12.09447	11.56851	11.86899	11.79375	11.64375	11.79389	21.4330
7	12.16947	12.46995	13.22115	13.59688	12.99567	12.89062	22.2055
8	13.14615	13.29639	13.89736	13.07091	13.14615	13.31139 (Highest)	22.4845
9	11.79375	11.79375	12.09447	11.41827	11.49531	11.71875 (Lowest)	21.3776

Figure 1: Tensile S/N plot for each printing parameter

3.3 Scanning Electron Microscope Result
As aforementioned, microstructure of specimens for tensile test and compression were inspected with
the highest properties which is level 8.3 for tensile specimen and level 3.5 for compression specimen.

3.3.1 SEM of Tensile and Compression Specimens
In Figure 3, the breaking areas of every layer showed that the specimen had been made with 45°/45°
of raster angle making the specimen stronger among other. Thus, the higher nozzle temperature and
slower printing speed which are 215°C and 30 mm/s occur stronger bonding with layer by layer. This
is because the contact area of each layer is bigger than other printing parameter.
Table 4: Tabulated raw data of compression test

Level	Maximum Compression Strength (MPa)	Average (MPa)	S/N ratio				
	1	2	3	4	5		
1	96.5054	96.8014	96.0120	96.3574	96.4314	96.42152	39.6835
2	95.3953	96.1847	99.4164	96.1107	96.2587	96.67316	39.7061
3	100.650	96.3081	99.2437	98.2322	100.551	**98.997** (Highest)	39.9124
4	95.4940	94.9019	91.3249	98.2076	96.3327	95.25222 (Lowest)	39.5775
5	95.9380	95.4940	95.8640	99.0957	95.5186	96.38206	39.6799
6	95.9380	95.1239	96.1600	97.6402	96.1354	96.1995 (middle)	39.6635
7	95.8640	95.3706	96.2587	96.8261	96.2834	96.12056	39.6563
8	94.5072	95.3706	96.0860	95.2473	95.9133	95.42488	39.5932
9	95.9133	95.6913	95.5186	97.6895	96.4561	96.25376	39.6684

Figure 2: Compression S/N plot for each printing parameter

Figure 3: Highest strength of tensile specimen

Figure 4: Highest strength of compression specimen
In Figure 4, the printing conditions gave the highest strength; however, tension break occurred due to failure of the strength that have a higher air gap which is maximum at 201µm. The higher size of air gap is proof that the stress occurred is higher stress.

4. Conclusion

The relationship between printing parameter and mechanical performance showed a good significant effect especially for tensile test where the raster angle is most influencing the printing parameter to the mechanical performance of specimen and also easily can be detected by using SEM for validate the result obtain. The research finding show consistency with others similar research [9-11]. For this research, the optimum printing parameters of PLA with wood content material for tensile strength are at 215°C of nozzle temperature, 0° of raster angle and 30 mm/s of printing speed. While the optimum printing parameters for compression strength are at 195°C of nozzle temperature, 60° of raster angle and 50 mm/s of printing speed. Thus, PLA with wood content can be used in scope of application area same as pure PLA such as medical tool, household item, architecture and engineering models, automotive prototype, and others.

Acknowledgement

The authors would like to express profound gratitude and deep appreciation to the School of Mechatronics Engineering, School of Manufacturing Engineering and Universiti Malaysia Perlis in providing researching platform well as providing the facilities and equipment.

References

[1] Bourell D et al. 2017 Materials for additive manufacturing CIRP Ann. - Manuf. Technol. 66 (2) 659–681.
[2] Yuan S, Shen F, Chua C K and Zhou K 2018 Polymeric composites for powder-based additive manufacturing: Materials and applications Prog. Polym. Sci. 1–28.
[3] Tlegenov Y, Hong G S and Lu W F 2018 Nozzle condition monitoring in 3D printing Robot. Comput. Integr. Manuf. 54 45–55.
[4] Christiyan K G J, Chandrasekhar U and Venkateswarlu K 2016 A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite IOP Conf. Ser. Mater. Sci. Eng. 114 (1).
[5] Wu W, Ye W, Wu Z, Geng P, Wang Y and Zhao J 2017 Influence of layer thickness, raster angle, deformation temperature and recovery temperature on the shape-memory effect of 3D-printed polylactic acid samples Materials (Basel) 10 (8).
[6] Kariz M, Sernek M, Obučina M and Kuzman M K 2018 Effect of wood content in FDM filament on properties of 3D printed parts Materials Today Communications 14 135-140.
[7] ASTM D638 2015 Standard test method for tensile properties of plastics ASTM Int. 08 46–58.
[8] van Apeldoorn J, Gilyén A, Gribling S and de Wolf R 2018 Convex optimization using quantum oracles 1 1–8.
[9] Fernandes J, Deus A M, Reis L, Vaz M F and Leite M 2018 Study of the influence of 3D printing parameter the mechanical properties of PLA Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore.
[10] Tymrak, Kreiger, and Pearce 2014 Mechanical properties of components fabricated with open-source 3- d printers under realistic environmental conditions Materials & Design 58 242–246.
[11] Wittbrodt and Pearce 2015 The effects of pla color on material properties of 3-d printed components Additive Manufacturing 8 110–116.