NONSTANDARD SOLUTIONS OF THE YANG-BAXTER EQUATION

ANTHONY GIAQUINTO AND TIMOTHY J. HODGES

Abstract. Explicit solutions of the quantum Yang-Baxter equation are given corresponding to the non-unitary solutions of the classical Yang-Baxter equation for \(\mathfrak{sl}(5) \).

1. Introduction

Etingof and Kazhdan recently proved that any finite dimensional Lie bialgebra \(g \) may be quantized [3]. That is, there exists a topological Hopf algebra structure on \(U(\mathfrak{g})[[\hbar]] \) such that the Lie bialgebra structure on \(g \) is the one induced on \(g \) by passing to the “semi-classical limit”. From this they deduced a general procedure for quantizing solutions of the classical Yang-Baxter equation (CYBE). Thus, at least in theory, one can construct solutions of the quantum Yang-Baxter equation from given solutions of the classical Yang-Baxter equation. Unfortunately, their procedure is not easy to implement explicitly, even in small dimensional situations.

In this note we exhibit an explicit answer to this problem for a particularly interesting family of Lie bialgebra structures on \(\mathfrak{sl}(5) \). These are the bialgebra structures associated to non-unitary solutions of the CYBE (or equivalently of the modified classical Yang-Baxter equation (MCYBE)) as classified by Belavin and Drinfeld [1]. For each such solution of the CYBE we construct an \(R \)-matrix using the Gerstenhaber-Giaquinto-Schack (GGS) conjecture [4]. The YBE was verified in each case using Mathematica.

The GGS conjecture concerns the form of the quantization of such solutions of the CYBE in the case of \(\mathfrak{sl}(n) \). The case of \(\mathfrak{sl}(5) \) is to some extent the first interesting case. For \(\mathfrak{sl}(2) \) there are no solutions of the MCYBE except the standard one. For \(\mathfrak{sl}(3) \) the only non-standard solution is that associated to the well-known Cremmer-Gervais quantization and for \(\mathfrak{sl}(4) \) the nonstandard solutions are essentially of three types, the Cremmer-Gervais solution and two other fairly simple examples. The corresponding \(R \)-matrices for the latter two types can be constructed using other techniques [5]. On the other hand for \(\mathfrak{sl}(5) \) there are 13 different types of solutions to the MCYBE and for many of these the corresponding \(R \)-matrix was hitherto unknown. The validity of the GGS conjecture for \(\mathfrak{sl}(5) \) gives strong evidence that the conjecture should be true for all \(n \).

Date: November 17, 1997.

1991 Mathematics Subject Classification. Primary 81R50, 17B37; Secondary 16W30.

Key words and phrases. Quantum group, R-matrix.

The first author was supported in part by a grant from the National Security Agency.

The second author was supported in part by a grant from the National Science Foundation.
2. Solutions to the CYBE and quantization

2.1. The Belavin-Drinfeld description of solutions to the CYBE. Let \(g \) be a complex simple Lie algebra and let \(h \) be a Cartan subalgebra. Let \(\Delta \) be the associated root system and \(\Gamma \) a set of simple roots. A classical \(r \)-matrix over \(g \) is an element \(r \in g \otimes g \) satisfying the classical Yang-Baxter equation

\[
[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0
\]

Take an invariant bilinear form on \(g \) and let \(t \in g \otimes g \) be the associated Casimir element. In \([1] \) Belavin and Drinfeld gave the following description of solutions of the CYBE which satisfy \(r_{12} + r_{21} = t \). These are the “non-unitary” solutions.

Let \(\Gamma_1, \Gamma_2 \) be two subsets of \(\Gamma \) and let \(\tau : \Gamma_1 \to \Gamma_2 \) be a bijection satisfying

1. \((\tau \alpha, \tau \beta) = (\alpha, \beta) \) for all \(\alpha, \beta \in \Gamma \);
2. For every \(\alpha \in \Gamma_1 \), there is a \(k \geq 0 \) with \(\tau^k \alpha \in \Gamma_1 \) but \(\tau^{k+1} \alpha \notin \Gamma_1 \).

The data \((\tau, \Gamma_1, \Gamma_2) \) (or more concisely just \(\tau \)) is often called a Belavin-Drinfeld triple. Given such a triple \(\tau \), an element \(r^0 \in h \otimes h \) is called \(\tau \)-admissible if

1. \(r^0_{12} + r^0_{21} = t^0 \)
2. \((\tau \alpha \otimes 1)r^0 + (1 \otimes \tau \alpha)r^0 = r^0 \)

where \(t^0 \) is the component of \(t \) in \(h \otimes h \). A \(\tau \)-admissible \(r^0 \) is necessarily of the form \(t^0/2 + \bar{r}^0 \) where \(\bar{r}^0 \in h \wedge h \). The set of all \(\bar{r}^0 \) forms a linear subvariety of \(h \wedge h \) of dimension \(\binom{\Delta}{2} \) where \(d = \#(\Gamma - \Gamma_1) \).

Now \(\tau \) can be extended to an isomorphism of Lie subalgebras \(\tau: g_1 \to g_2 \) where \(g_i \) is the Lie subalgebra of \(g \) associated to \(\Gamma_i \). Choose \(e_\alpha \in g_\alpha \) such that \((e_\alpha, e_{-\alpha}) = 1 \) and \(\tau(e_\alpha) = e_{\tau \alpha} \) and define an ordering on \(\Delta \) by \(\alpha \prec \beta \) if \(\tau^k \alpha = \beta \) for some positive integer \(k \). View \(g \otimes g \) as a subset of \(g \otimes g \) via the identification \(x \wedge y = 1/2(x \otimes y - y \otimes x) \). Then Belavin and Drinfeld showed \([1] \)

\[
r = r^0 + \sum_{\alpha > 0} e_{-\alpha} \otimes e_\alpha + \sum_{\alpha, \beta > 0, \alpha < \beta} e_{-\alpha} \wedge e_\beta
\]

is a solution of the Yang-Baxter equation satisfying \(r_{12} + r_{21} = t \) and that every such solution is of this form for some choice of \(h \), \(\Gamma \), \(\tau \) and \(r^0 \).

For any \(g \) there is the “trivial” triple which has \(\Gamma_1 = \Gamma_2 = \emptyset \) and \(\bar{r}^0 \in h \wedge h \) arbitrary. A particularly interesting triple for \(sl(n) \) is the “Cremmer-Gervais” triple which has \(\Gamma_1 = \{2\alpha_1, \alpha_2, \ldots, \alpha_{n-1}\} \), \(\Gamma_2 = \{\alpha_1, \alpha_2, \ldots, \alpha_{n-2}\} \), and \(\tau(\alpha_i) = \alpha_{i-1} \). In contrast to the trivial triple, there is a unique admissible \(\bar{r}^0 \) for the Cremmer-Gervais triple.

2.2. The Gerstenhaber-Giaquinto-Schack conjecture. The Gerstenhaber-Giaquinto-Schack conjecture is a conjectured form for the quantization of the above classical \(r \)-matrices in the case where \(g = sl(n) \), considered as a subset of \(M_n(\mathbb{C}) \). In this setting, a quantization of a classical \(r \)-matrix is an \(R \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C}) \) which has semi-classical limit \(r \) and satisfies the quantum Yang-Baxter equation

\[
R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}.
\]

Take the form to be the trace form \((x, y) = \text{Tr}(xy) \) and let \(h \) be the Cartan subalgebra consisting of diagonal matrices of trace zero. The standard Cartan-Weyl basis is then \(e_{\alpha_i} = e_{i, i+1} \), \(e_{-\alpha_i} = e_{i+1, i} \) and \(h_{\alpha_i} = [e_{\alpha_i}, e_{-\alpha_i}] = e_{ii} - e_{i+1, i+1} \). Let
\(\tau \) be a Belavin-Drinfeld triple as described above and let \(r^0 \in h \otimes h \) be \(\tau \)-admissible. Set
\[
a = \sum_{\alpha, \beta > 0} e_{-\alpha} \wedge e_\beta
\]
and
\[
c_+ = \sum_{\alpha > 0} e_{-\alpha} \otimes e_\alpha, \quad c = \sum_{\alpha > 0} e_{-\alpha} \wedge e_\alpha.
\]
Set \(\epsilon = -(ac + ca + a^2) \). Now define \(\tilde{a} \) by
\[
\tilde{a} = \sum_{i,j,k,l} a_{ij}^{ik} q^{a_{ij}^{ik}} e_{ij} \otimes e_{kl}
\]
where \(a = \sum a_{ij}^{kl} e_{ij} \otimes e_{kl} \) and similarly for \(\epsilon \). Set \(\tilde{q} = q - q^{-1} \). The standard \(R \)-matrix is then
\[
R_s = q^{\tilde{q}^2 + 1/n} + \tilde{q} c_+ = q \sum_i e_{ii} \otimes e_{ii} + \sum_{i \neq j} e_{ii} \otimes e_{jj} + \tilde{q} \sum_{i > j} e_{ij} \otimes e_{ji}.
\]
It is easy to check that \(R_s \) satisfies the quantum Yang-Baxter equation and that \(PR_s \) satisfies the Hecke relation \((PR_s - q)(PR_s + q^{-1}) = 0 \) where \(P \) is the permutation matrix.

Gerstenhaber-Giaquinto-Schack Conjecture. Let \(\tau \) be a Belavin-Drinfeld triple for \(\mathfrak{sl}(n) \) and suppose \(r^0 = t^0/2 + r^0 \) is \(\tau \)-admissible. Then the matrix
\[
R = q^{\tilde{q}^2} (R_s + \tilde{q} \tilde{a}) q^{\tilde{q}^2}
\]
satisfies the quantum Yang-Baxter equation and \(PR \) satisfies the Hecke relation.

Taking \(\tau \) to be the trivial triple yields the standard \(R \)-matrix when \(r^0 = t^0/2 \) and the standard multiparameter \(R \)-matrices when \(r^0 \) is arbitrary. For use later, let \(R(r^0) = q^{\tilde{q}^2} (R_s) q^{\tilde{q}^2} \) denote the standard multiparameter \(R \)-matrices. As is well known, if \(r^0 = t^0/2 + \sum_{i < j} e_{ii} \otimes e_{jj} \) then
\[
R(r^0) = q^{\tilde{q}^2} (R_s) q^{\tilde{q}^2} = q \sum_i e_{ii} \otimes e_{ii} + \sum_{i < j} (q^{e_{ii}} e_{ii} \otimes e_{jj} + q^{-e_{ii}} e_{jj} \otimes e_{ii}) + \tilde{q} \sum_{i > j} e_{ij} \otimes e_{ji}.
\]
For the Cremmer-Gervais triples described above the formula gives the Cremmer-Gervais \(R \)-matrices.

2.3. The GGS conjecture for \(\mathfrak{sl}(5) \)

We now consider the explicit form of the \(R \)-matrices associated to the Belavin-Drinfeld triples on \(\mathfrak{sl}(5) \). According to the GGS Conjecture, each \(R \) is of the form \(R(r^0) + \tilde{q} q^{\tilde{q}^2} a q^{\tilde{q}^2} \) for an admissible \(r^0 \). The specific form of \(R(r^0) \) has already been exhibited. The other summand, \(q^{\tilde{q}^2} a q^{\tilde{q}^2} \), is always a sum of "quantized" wedge products. Specifically, for positive roots \(\alpha \) and \(\beta \) and any constant \(c \), set \(e_{-\alpha} \wedge c e_\beta = q^{-c} e_{-\alpha} \otimes e_\beta - q^c e_\beta \otimes e_{-\alpha} \). For all triples, the term \(q^{\tilde{q}^2} a q^{\tilde{q}^2} \) is always of the form \(\sum_{\alpha, \beta > 0} e_{-\alpha} \wedge c(\alpha, \beta) e_\beta \) where the constants \(c(\alpha, \beta) \) are determined by \(r^0 \) and \(\epsilon \).

Denote by \(\mathcal{T} \) the set of triples on \(\mathfrak{sl}(5) \). Notice that if \((\tau, \Gamma_1, \Gamma_2) \) is a triple, then \((\tau^{-1}, \Gamma_2, \Gamma_1) \) is also a triple. Also the graph automorphism of \(A_4 \) induces a bijection on the set of triples. Since these two involutions of \(\mathcal{T} \) commute, this gives an action of the group \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) on \(\mathcal{T} \).
Proposition 2.1. The Gerstenhaber-Giaquinto-Schack conjecture is true for \(n = 5 \). The triples below comprise a complete set of representatives from the 13 orbits under the action of \(C_2 \times C_2 \) on \(T \). For each triple the generic admissible \(r^0 \) and the Hecke \(R \)-matrix produced by the GGS conjecture are also explicitly given.

1. \(|\Gamma_1| = 3\)

 (a) The “Cremmer-Gervais” triple: \(\Gamma_1 = \{\alpha_2, \alpha_3, \alpha_4\} \), \(\Gamma_2 = \{\alpha_1, \alpha_2, \alpha_3\} \), \(\tau(\alpha_i) = \alpha_{i-1} \).

 \[
 r^0 = t^0/2 + \frac{1}{5}(-3h_{\alpha_1} \wedge h_{\alpha_2} - 4h_{\alpha_1} \wedge h_{\alpha_3} - 3h_{\alpha_1} \wedge h_{\alpha_4} \\
 - 4h_{\alpha_2} \wedge h_{\alpha_3} - 4h_{\alpha_2} \wedge h_{\alpha_4} - 3h_{\alpha_3} \wedge h_{\alpha_4})
 \]

 \[
 R = R(r^0) + \hat{q}(e_{54} \wedge_2 e_{34} + e_{54} \wedge_4 e_{23} + e_{54} \wedge_6 e_{12} + e_{43} \wedge_2 e_{23} \\
 + e_{43} \wedge_4 e_{12} + e_{32} \wedge_2 e_{12} + e_{53} \wedge_2 e_{24} + e_{53} \wedge_4 e_{13} \\
 + e_{42} \wedge_2 e_{13} + e_{52} \wedge_2 e_{14})
 \]

 (b) The “generalized Cremmer-Gervais” triple: \(\Gamma_1 = \{\alpha_1, \alpha_3, \alpha_4\} \), \(\Gamma_2 = \{\alpha_1, \alpha_2, \alpha_4\} \), \(\tau(\alpha_i) = \alpha_j \), where \(j \equiv i + 3 \pmod{5} \).

 \[
 r^0 = t^0/2 + \frac{1}{5}(h_{\alpha_1} \wedge h_{\alpha_2} - 2h_{\alpha_1} \wedge h_{\alpha_3} + h_{\alpha_1} \wedge h_{\alpha_4} \\
 - 2h_{\alpha_2} \wedge h_{\alpha_3} - 2h_{\alpha_2} \wedge h_{\alpha_4} + h_{\alpha_3} \wedge h_{\alpha_4})
 \]

 \[
 R = R(r^0) + \hat{q}(e_{54} \wedge_2 e_{23} + e_{21} \wedge_4 e_{23} + e_{43} \wedge_6 e_{23} + e_{21} \wedge_2 e_{45} \\
 + e_{43} \wedge_4 e_{45} + e_{43} \wedge_2 e_{12} + e_{53} \wedge_2 e_{13})
 \]

2. \(|\Gamma_1| = 2\)

 (a) \(\Gamma_1 = \{\alpha_3, \alpha_4\} \), \(\Gamma_2 = \{\alpha_1, \alpha_2\} \), \(\tau(\alpha_i) = \alpha_{i-2} \).

 \[
 r^0 = t^0/2 + ch_{\alpha_1} \wedge h_{\alpha_2} + ((c - 1)/2)h_{\alpha_1} \wedge h_{\alpha_3} + ch_{\alpha_1} \wedge h_{\alpha_4} \\
 - ((1 + 3c)/4)h_{\alpha_2} \wedge h_{\alpha_3} + ((c - 1)/2)h_{\alpha_2} \wedge h_{\alpha_4} + ch_{\alpha_3} \wedge h_{\alpha_4}
 \]

 \[
 R = R(r^0) + \hat{q}(e_{43} \wedge (3+c)/8 e_{12} + e_{54} \wedge (3+c)/8 e_{23} + e_{53} \wedge (1-c)/2 e_{13})
 \]

 (b) \(\Gamma_1 = \{\alpha_3, \alpha_4\} \), \(\Gamma_2 = \{\alpha_1, \alpha_2\} \), \(\tau(\alpha_i) = \alpha_{5-i} \).

 \[
 r^0 = t^0/2 + \frac{1}{5}(-c h_{\alpha_1} \wedge h_{\alpha_2} - (1 + c)h_{\alpha_1} \wedge h_{\alpha_3} - 3h_{\alpha_1} \wedge h_{\alpha_4} \\
 - 2h_{\alpha_2} \wedge h_{\alpha_3} + (c - 1)h_{\alpha_2} \wedge h_{\alpha_4} + ch_{\alpha_3} \wedge h_{\alpha_4})
 \]
\[R = R(r^0) + \hat{q}(e_{54} \wedge_{3/5} e_{12} + e_{43} \wedge_{4/5} e_{23} + e_{53} \wedge_{-9/5} (-e_{13})) \]

(c) \(\Gamma_1 = \{\alpha_2, \alpha_4\}, \quad \Gamma_2 = \{\alpha_1, \alpha_3\}, \quad \tau(\alpha_i) = \alpha_{i-1} \)

\[r^0 = \frac{t^0}{2} + c h_{\alpha_1} \wedge h_{\alpha_2} + (1 + 3c) h_{\alpha_1} \wedge h_{\alpha_3} + (8c/3 + 1) h_{\alpha_1} \wedge h_{\alpha_4} \]
\[+ (1 + 3c) h_{\alpha_2} \wedge h_{\alpha_3} + (1 + 3c) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4} \]

\[R = R(r^0) + \hat{q}(e_{32} \wedge_{1+c} e_{12} + e_{54} \wedge_{1+c} e_{34}) \]

(d) \(\Gamma_1 = \{\alpha_2, \alpha_4\}, \quad \Gamma_2 = \{\alpha_1, \alpha_3\}, \quad \tau(\alpha_4) = \alpha_1, \quad \tau(\alpha_2) = \alpha_3 \)

\[r^0 = \frac{t^0}{2} + \frac{1}{5}(2 - c) h_{\alpha_1} \wedge h_{\alpha_2} + (1 - c) h_{\alpha_1} \wedge h_{\alpha_3} - 3 h_{\alpha_1} \wedge h_{\alpha_4} \]
\[+ 2 h_{\alpha_2} \wedge h_{\alpha_3} + (c - 1) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4} \]

\[R = R(r^0) + \hat{q}(e_{32} \wedge_{2/5} e_{12} + e_{32} \wedge_{2/5} e_{34}) \]

(e) \(\Gamma_1 = \{\alpha_1, \alpha_3\}, \quad \Gamma_2 = \{\alpha_1, \alpha_4\}, \quad \tau(\alpha_i) = \alpha_j, \text{ where } j \equiv i + 3 \pmod{5}. \)

\[r^0 = \frac{t^0}{2} + ((1 - 3c)/2) h_{\alpha_1} \wedge h_{\alpha_2} + ((c - 1)/2) h_{\alpha_1} \wedge h_{\alpha_3} + c h_{\alpha_1} \wedge h_{\alpha_4} \]
\[+ (3c - 1) h_{\alpha_2} \wedge h_{\alpha_3} + (3c - 1) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4} \]

\[R = R(r^0) + \hat{q}(e_{43} \wedge_{1+3c}/4 e_{12} + e_{21} \wedge_{(1+3c)/4} e_{45} + e_{43} \wedge_{1-e} e_{45}) \]

(f) \(\Gamma_1 = \{\alpha_3, \alpha_4\}, \quad \Gamma_2 = \{\alpha_1, \alpha_2\}, \quad \tau(\alpha_i) = \alpha_{i-1} \)

\[r^0 = \frac{t^0}{2} + ((c - 3)/6) h_{\alpha_1} \wedge h_{\alpha_2} + ((c - 1)/2) h_{\alpha_1} \wedge h_{\alpha_3} + c h_{\alpha_1} \wedge h_{\alpha_4} \]
\[+ ((c - 1)/2) h_{\alpha_2} \wedge h_{\alpha_3} + (4c/3) h_{\alpha_2} \wedge h_{\alpha_4} + c h_{\alpha_3} \wedge h_{\alpha_4} \]

\[R = R(r^0) + \hat{q}(e_{32} \wedge_{1/2+c/6} e_{12} + e_{43} \wedge_{1/2+c/6} e_{23} + e_{43} \wedge_{1+c/3} e_{12}) \]

3. \(|\Gamma_1| = 1 \)

(a) \(\Gamma_1 = \{\alpha_1\}, \quad \Gamma_2 = \{\alpha_2\}, \quad \tau(\alpha_1) = \alpha_2 \)

\[r^0 = \frac{t^0}{2} + ((1 + y)/3) h_{\alpha_1} \wedge h_{\alpha_2} + y h_{\alpha_1} \wedge h_{\alpha_3} + ((3z - x)/3) h_{\alpha_1} \wedge h_{\alpha_4} \]
\[+ y h_{\alpha_2} \wedge h_{\alpha_3} + z h_{\alpha_2} \wedge h_{\alpha_4} + x h_{\alpha_3} \wedge h_{\alpha_4} \]
\[R = R(r^0) + \hat{q} (\varepsilon_{21} \wedge (2-y)/3 \varepsilon_{23}) \]

(b) \(\Gamma_1 = \{\alpha_1\}, \quad \Gamma_2 = \{\alpha_3\}, \quad \tau(\alpha_1) = \alpha_3 \)

\[
r^0 = t^0/2 + ((z-2y)/2) h_{\alpha_1} \wedge h_{\alpha_2} + ((1+x)/2) h_{\alpha_1} \wedge h_{\alpha_3} + x h_{\alpha_1} \wedge h_{\alpha_4} \\
+ y h_{\alpha_2} \wedge h_{\alpha_3} + z h_{\alpha_2} \wedge h_{\alpha_4} + x h_{\alpha_3} \wedge h_{\alpha_4}
\]

\[R = R(r^0) + \hat{q} (\varepsilon_{21} \wedge (z-2)/4 \varepsilon_{34}) \]

(c) \(\Gamma_1 = \{\alpha_1\}, \quad \Gamma_2 = \{\alpha_4\}, \quad \tau(\alpha_1) = \alpha_4 \)

\[
r^0 = t^0/2 + ((y-2z)/2) h_{\alpha_1} \wedge h_{\alpha_2} + ((-2x)/2) h_{\alpha_1} \wedge h_{\alpha_3} + ((1-x-z)/2) h_{\alpha_1} \wedge h_{\alpha_4} \\
+ y h_{\alpha_2} \wedge h_{\alpha_3} + z h_{\alpha_2} \wedge h_{\alpha_4} + x h_{\alpha_3} \wedge h_{\alpha_4}
\]

\[R = R(r^0) + \hat{q} (\varepsilon_{21} \wedge (y+2)/4 \varepsilon_{45}) \]

(d) \(\Gamma_1 = \{\alpha_2\}, \quad \Gamma_2 = \{\alpha_3\}, \quad \tau(\alpha_2) = \alpha_3 \)

\[
r^0 = t^0/2 + (-1+3y-z) h_{\alpha_1} \wedge h_{\alpha_2} + (-1-x+3y) h_{\alpha_1} \wedge h_{\alpha_3} + 3(z-x) h_{\alpha_1} \wedge h_{\alpha_4} \\
+ y h_{\alpha_2} \wedge h_{\alpha_3} + z h_{\alpha_2} \wedge h_{\alpha_4} + x h_{\alpha_3} \wedge h_{\alpha_4}
\]

\[R = R(r^0) + \hat{q} (\varepsilon_{32} \wedge (1-x-y+z) \varepsilon_{34}) \]

4. \(|\Gamma_1| = 0\) The “trivial triple:” \(\Gamma_1 = \Gamma_2 = \emptyset \)

\[
r^0 = t^0/2 + \tilde{r}^0 \quad \text{with} \quad \tilde{r}^0 \in \mathfrak{h} \wedge \mathfrak{h} \quad \text{arbitrary.}
\]

\[R = R(r^0) \quad \text{is the standard multiparameter } R\text{-matrix.} \]

Perhaps the most interesting new \(R\)-matrix is that associated to type 1 (b), the generalized Cremmer-Gervais triple. Like the Cremmer-Gervais triple, its \(\Gamma_1 \), which must omit at least one root, omits precisely one and thus its \(r^0 \) is uniquely determined. Setting \(\tilde{p} = -\hat{q} \), the matrix form of the generalized Cremmer-Gervais \(R\)-matrix is
produce genuine nonstandard quantizations of C to the category of comodules over A as in the commutative case. Thus Poincaré series of the associated quantum space and exterior algebra are the same.

We have constructed here quantizations of each type of non-unitary solution of the classical Yang-Baxter equation for $\mathfrak{sl}(5)$. In so doing we verified in this case the conjecture of Gerstenhaber, Giaquinto and Schack. This gives further evidence that the GGS conjecture should be true for all Belavin-Drinfeld triples on $\mathfrak{sl}(n)$.

One can proceed in the usual way to construct for each of these R, a quantization of $\mathbb{C}[SL(5)]$, the algebra of algebraic functions on $SL(5)$. First one constructs the associated bialgebra $A(R)$. Using a case-by-case analysis one can see that the Poincaré series of the associated quantum space and exterior algebra are the same as in the commutative case. Thus $A(R)$ contains a group-like q-determinant element D which turns out to be central. Hence one may define a Hopf algebra structure on $\mathbb{C}_R[SL(5)] = A(R)/(D-1)$. Since R is a Hecke symmetry in the sense of Gurevich, it is possible to exploit some Hecke algebra techniques to show that the category of comodules over these Hopf algebras is equivalent as a rigid monoidal category to the category of comodules over $\mathbb{C}_q[SL(5)]$. Hence these R-matrices do produce genuine nonstandard quantizations of $\mathbb{C}[SL(5)]$.

3. Conclusion

References

[1] A. A. Belavin and V. G. Drinfeld, Triangle equations and simple Lie algebras, Mathematical Physics reviews (S. P. Novikov, ed.), Harwood, New York 1984, 93–116.

[2] E. Cremmer and J.-L. Gervais, The quantum group structure associated with non-linearly extended Virasoro algebras, Comm. Math. Phys., 134 (1990), 619-632.

[3] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras I, Selecta Math. (N.S.), 2 (1996), 1-41.
[4] M. Gerstenhaber, A. Giaquinto, and S. D. Schack, Construction of quantum groups from Belavin-Drinfeld infinitesimals, in *Quantum Deformations of Algebras and their Representations*, A. Joseph and S. Shnider, eds., Israel Math. Conf. Series 7, Bar-Ilan Univ., Ramat Gan, 1993, 45-64.
[5] D. I. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation *Leningrad Math. J.*, 2 (1991), 801-828.
[6] T. J. Hodges, Nonstandard quantum groups associated to certain Belavin-Drinfeld triples, *Contemp. Math.*, to appear.
[7] Phung Ho Hai, On matrix quantum groups of type A_n, preprint [q-alg 9708007](http://arxiv.org/abs/q-alg/9708007).
[8] D. Kazhdan and H. Wenzl, Reconstructing a monoidal category, *Adv. Soviet Math.*, 16 (1993), 111-136.

Department of Mathematics, Texas A & M University, College Station, TX 77843-3368

E-mail address: tonyg@math.tamu.edu

University of Cincinnati, Cincinnati, OH 45221-0025, U.S.A.

E-mail address: timothy.hodges@uc.edu