Larvicidal, pupicidal and insecticidal activities of *Cosmos bipinnatus*, *Foeniculum vulgare* and *Tagetes minuta* against *Culex quinquefasciatus* mosquitoes

Serero Abiot Modise and Anofi Omotayo Tom Ashafa*

Department of Plant Sciences, University of Free State, Qwaqwa campus, Private Bag X 13, Phuthaditjhaba, 9866, South Africa

*For correspondence: Email: ashafaaot@ufs.ac.za; Tel: +27587185313; Fax: +27587185444

Received: 22 May 2015 Revised accepted: 3 April 2016

Abstract

Purpose: To evaluate the larvicidal, pupicidal and insecticidal activities of *Cosmos bipinnatus*, *Foeniculum vulgare* and *Tagetes minuta* leaf extracts against *Culex quinquefasciatus* mosquitoes.

Methods: The leaves of the plants were extracted with distilled water, ethanol (95 %), and hexane and the extracts screened for their phytochemical profile. While larvicidal and pupicidal activities were assayed at concentrations ranging from 0.1 - 10 mg/mL, insecticidal property was tested at varying amounts (0.25 - 2 g) of the plant sample. The respective larval mortality was thereafter evaluated using Probit analysis.

Results: Sapons, terpenoids, flavonoids and steroids were detected in the plant extracts. The ethanol extracts of *F. vulgare*, *T. minuta* and *C. bipinnatus* exhibited larvicidal activity half-maximal lethal concentration (LC$_{50}$) of 0.10, 1.17 and 1.18 mg/mL, followed by hexane extracts with LC$_{50}$ value of 1.03, 1.01 and 1.27 mg/mL, respectively, against the larvae of *C. quinquefasciatus* mosquito. Hexane extracts displayed pupicidal activity with LC$_{50}$ of 1.07, 1.12 and 1.16 mg/mL against *F. vulgare*, *T. minuta* and *C. bipinnatus*, respectively, while the ethanol extracts of *T. minuta* and *F. vulgare* displayed pupicidal activity at LC$_{50}$ of 1.11, 1.14 and 1.31 mg/mL respectively, against pupa of *C. quinquefasciatus* mosquito. The aqueous extracts had no (p > 0.05) lethal effects on both larvae and pupa of *C. quinquefasciatus* at all evaluated concentrations. *F. vulgare* had the highest (p < 0.05) half-maximal knock-down effect (KD$_{50}$ = 7.52 min$^{-1}$), followed by *T. minuta* (KD$_{50}$ = 8.64 min$^{-1}$) on adult *C. quinquefasciatus* mosquitoes after 6 h of exposure. *F. vulgare* and *T. minuta* killed all evaluated mosquito adults within 12 h with LD$_{99}$ = 0.25 g/air, while the leaves of *C. bipinnatus* had no (p > 0.05) knock-down or lethal effects on the adult mosquito.

Conclusion: *C. bipinnatus*, *F. vulgare* and *T. minuta* possess larvicidal and pupicidal properties against *C. quinquefasciatus*, whereas only *F. vulgare* and *T. minuta* displayed insecticidal properties. Consequent upon these findings, all the plants can be considered naturally potent larvicidal and pupicidal agents against *C. quinquefasciatus*.

Keywords: *Cosmos bipinnatus*, *Culex quinquefasciatus*, Botanical insecticides, Knock-down effect, Larvicidal, Pupicidal, Insecticidal, *Foeniculum vulgare*, *Tagetes minuta*

INTRODUCTION

Mosquitoes (Diptera: Culicidae) are widely known for their role as vectors of disease-causing pathogens in the world [1]. *Culex quinquefasciatus* are involved in transmitting viral, bacterial and protozoan diseases around the world [2]. The adults of *C. quinquefasciatus*...
prefer to inhabit areas where there is human dense settlement, larvae dwells in polluted standing water [2]. A study by Berticat et al [3] reported that mosquitoes of C. quinquefasciatus have developed multiple resistance towards carbosulfan and permethrin insecticides, and that has being caused by resistant gene mutation, wrongfu[...]

Apiceae is represented by 78 genera with 368 species in the sub-Saharan region, and genus Foeniculum is found worldwide and adds to the 19 endemic Apiceae genera in southern Africa [12]. The essential oils from F. vulgare seeds showed larvicidal activities against mosquitoes of Anopheles stephensi and Culex pipiens [13]. The present study evaluated leaf formulations of C. bipinnatus, F. vulgare and T. minuta for their secondary metabolite constituents, larvicidal, pupicidal and insecticidal activities against Culex quinquefasciatus mosquitoes.

EXPERIMENTAL

Plant collection

Plants were collected from their plantation in March 2013 around Qwaqwa Township, eastern Free State Province, South Africa. They were identified and authenticated by Dr. AOT Ashafa of the Department of Plant Sciences, University of the Free State, Qwaqwa campus, and voucher specimens ModMed.2013/3, ModMed.2013/4, and ModMed.2013/5 for Cosmos bipinnatus, Foeniculum vulgare, and Tagetes minuta, respectively, were thereafter deposited in the University's Herbarium for future reference.

The fresh leaves of each plant were dried to constant weight in Ecotherm oven (Laboratory Consumables Pty, RSA) at 40 °C prior to pulverizing into fine powder using electric blender (Nanning Mainline Food Machinery Company Ltd, China).

Extract preparation

The powdered samples of each material were divided into three portions of 5 g each and extracted with 150 mL each of distilled water, ethanol (95 %) and hexane, and kept on orbital Labcon Platform shaker (Laboratory consumables, PTY, Durban, South Africa) in lidded 500 mL flasks at 110 rpm for 48 h. The resulting infusion in each case was filtered and evaporated to dryness in a rotary evaporator (Cole-Parmer, Laboratory Consumables and Chemical Supplies Co. Ltd, China) in respect of the organic solvent extracts. The aqueous extracts on the other hand were concentrated over water bath (45 °C). The crude extracts obtained in each case were kept refrigerated (4 °C) prior to use.
Secondary metabolites screening

Adopting standard procedures [14-16], eight secondary metabolites were screened for.

Mosquito collection

Mosquito larvae were collected from Kroonstad in Free State of South Africa from standing water pools, at sites (27°38'27.30" S, 27°11'20.40" E and 1372 m latitude) and (27°39'36.30" S, 27°10'18.90" E and 1338 m latitude). Larvae and female mosquitoes were identified using identification keys as previously described [17]. Museum voucher specimens were prepared for fourth instar larvae (UFSCulex01/Mod2013) and adult female (UFSCulex02/Mod2013) type specimens and deposited at the Department of Zoology and Entomology Museum, University of the Free State, Qwaqwa campus. Mosquito fourth instar larvae were used for larvicidal bioassay evaluation according to WHO [18]. The other earlier larval developmental stages were allowed to develop into adults, while held at temperature of 27 ± 2 °C, humidity of 70 ±1% and a photoperiod regime of 14:10 h (light/dark). To maintain the larval colonies, the aquatic larvae were reared in dechlorinated water and yeast solution.

Larvicidal bioassays

Different extract concentrations (0.1, 0.5, 1, 2, 5, 10 mg/mL) were prepared into separate opened McCartney (20 mL) glass vial for each plant extract. While ten fourth instar larvae were separately pipetted into each graded concentration and served as experimental treatments, the control experiments were conducted using 5 mL of double distilled water without plant extracts. Experimental treatments and control were kept under same conditions that were used to maintain Culex mosquito larval colonies as mentioned above. The larval mortalities were counted and recorded after 24 h for analysis. Mosquito pupas were declared dead when just floated above water surface without motion, or does not respond to any stimuli.

Insecticidal bioassay

Varying amounts (0.25, 0.5, 1, 1.5, 2 g) of dried powdered leaf material were used. A Whatman No-1 filter paper was cut into a circular (25 mm diameter), and placed under plastic vials cap (25 mm diameter) to fit. The graded concentrations of the powdered leaf were poured onto the filter paper and covered with perforated vial (65.66 mm diameter, area of 13546.55 mm²) in an inverted position. Ten two day old adult Culex mosquitoes were incubated inside the perforated plastic vial. The steps were repeated three times for every tested plant containing the dried plant material and the best two results were recorded at 6 and 24 h and used for analysis.

Data analysis

Probit analysis was used to determine the median lethal concentration (LC50), median lethal dose (LD50), and mean knock-down (KD50). Repetitive-measure of analysis of variance (ANOVA) test was used to determine statistical difference between concentration mortality counts.

RESULTS

Crude extract yield and secondary metabolite constituents

The percentage yield for crude extract of Cosmos bipinnatus, Foeniculum vulgare and Tagetes minuta were higher in aqueous extracts with 27.00, 23.10 and 13.60 %, followed by ethanolic extracts with 7.00, 11.00 and 7.40 %, while hexane extracts had 1.20, 6.0 and 2.40 %, respectively (Table 1).

Saponins, flavonoids, steroids and terpenoids were common for C. bipinnatus and T. minuta extracts. Tannins were present in aqueous and ethanolic extracts of F. vulgare, and alkaloids were detected mostly in T. minuta and F. vulgare (Table 1).

Larvicidal activity

A similar pattern of complete larvicidal activity was observed at both 5 and 10 mg/µL concentrations of all the investigated extracts.
Table 1: Phytochemical profile of leaf extracts of *Cosmos bipinnatus*, *Foeniculum vulgare* and *Tagetes minuta*

Plant Species	Solvents	% Yield	Alk.	Tan	Phl.	Sap.	Fla.	Ste.	Ter.	Car.
Cosmos bipinnatus	Aqueous	27.00	-	+	-	+	+	+	+	-
	Ethanol	7.00	-	-	+	+	+	-	+	-
	Hexane	1.20	+	-	-	+	-	-	-	+
Foeniculum vulgare	Aqueous	23.10	-	+	-	+	+	+	+	-
	Ethanol	11.00	+	+	-	+	-	-	+	-
	Hexane	6.00	+	-	-	+	-	-	-	-
Tagetes minuta	Aqueous	13.60	+	-	-	+	+	+	-	-
	Ethanol	7.40	+	-	+	+	+	-	+	+
	Hexane	2.40	+	-	-	+	-	-	+	-

Key: + = presence, - = absence, Alk = Alkaloids, Tan = Tanins, Phl = Phlobatannins, Sap = Saponins, Fla = Flavonoids, Ste = Steroids, Ter = Terpenoids, Car = Cardiac glycosides

Generally, the ethanol and hexane extracts exhibited larvicidal activity for *F. vulgare* with LC$_{50}$ values of 0.10 and 1.03 mg/mL, *T. minuta* with LC$_{50}$ values of 1.17 and 1.01 mg/mL, while *C. bipinnatus* had the least larvicidal activity with LC$_{50}$ values of 1.18 and 1.27 mg/mL respectively, against *Culex quinquefasciatus* mosquito larvae after 24 h of exposure (Table 2). The aqueous extracts of all plants had no fatal effects on the larvae at all test concentrations. For the hexane extracts, statistically significant differences existed between larval percentage mortalities at $F_{5,2} = 6.46$ ($p < 0.05$) and also between concentration dependent mortalities at $F_{5,2} = 5.77$ ($p < 0.05$) (Table 2). There was significant difference for ethanol extracts between plant concentration dependent mortalities at $F_{5,2} = 3.57$ ($p < 0.05$), and no significant difference between larval percentage mortalities. A positive correlation was displayed between extract concentrations and larval mortality of larvae for the tested ethanol and hexane extracts (Fig 1A and B).

Table 2: Median lethal concentration indicating larvicidal activities of *Cosmos bipinnatus*, *Foeniculum vulgare* and *Tagetes minuta* ethanol and hexane extracts against *Culex quinquefasciatus* larvae after 24 h of exposure

Conc [mg/µl]	Int no.	*C. Bipinnatus*	*F. vulgare*	*T. Minuta*	$F_{5,2}$	p value	*C. bipinnatus*	*F. vulgare*	*T. minuta*	$F_{5,2}$	p value
0.10	10.00	0.00	100.00	0.00	3.57*	0.04	0.00	50.00	20.00	5.77*	0.01
0.50	10.00	40.00	100.00	80.00	1.86	0.21	10.00	80.00	100.00	6.46*	0.02
1.00	10.00	100.00	100.00	100.00	1.00	0.00	10.00	90.00	60.00		
2.00	10.00	100.00	100.00	100.00	5.00	0.00	100.00	100.00	100.00		
5.00	10.00	100.00	100.00	100.00	100.00	0.00	100.00	100.00	100.00		
10.00	10.00	100.00	100.00	100.00	100.00	0.00	100.00	100.00	100.00		

LC$_{50}$ = median lethal concentration, * = significant difference

Fig 1: Larvicidal activities of *Cosmos bipinnatus*, *Foeniculum vulgare* and *Tagetes minuta*, ethanol (A) and hexane (B) extracts against *Culex quinquefasciatus* larvae after 24 h of exposure.
Pupicidal activity

Except for hexane extract of *C. bipinnatus* and *T. minuta*, all other extracts of the two plants (at 5 and 10 mg/µL) elicited uniform and complete 100% larvicidal activity against the mosquito pupa. Overall, the ethanol and hexane extracts displayed pupicidal activity for *T. minuta* with LC$_{50}$ value of 1.11 and 1.12 mg/mL, *C. bipinnatus* extracts had LC$_{50}$ value of 1.14 and 1.16 mg/mL, and *F. vulgare* with LC$_{50}$ value of 1.31 and 1.07 mg/mL, against *Culex quinquefasciatus* mosquito pupa after 24 h of exposure (Table 3). The aqueous extracts had no fatal effects towards the pupa at all tested concentrations. While the ethanol extracts had significant difference only between plant mortality at $F_{5,2} = 4.29$ ($p < 0.05$), the hexane extracts had significant difference only between pupa percentage mortalities at $F_{5,2} = 3.73$ ($p < 0.05$) (Table 3). Ethanol and hexane extract concentrations displayed positive correlation with percentage pupa mortalities (Fig 2A and B).

Insecticidal activity

Although, *T. minuta* exhibited a dose-dependent knock-down rate with total and most prominent effects at 1.5 and 2 g/air concentration, complete knock-down effects were evidently displayed by *F. vulgare* at concentration range of 1-2 g/air (Table 4). After 6 h of exposure, *F. vulgare* leaves performed the most with an average rate of knock-down effect with KD$_{50}$ = 7.52 min at a knock-down range between 65 - 77 %, while *T. minuta* displayed at KD$_{50}$ = 8.64 min with a knock-down range of 43-55 %, towards adults of *C. quinquefasciatus* mosquitoes. Knock-down rate had significant difference between plant leaves with $F_{4,2} = 10.09$ ($p < 0.01$), while there was no significant difference between plant dose concentration. Also, it is noteworthy that leaves of *F. vulgare* and *T. minuta* killed all evaluated mosquito adults within 12 h of exposure with LD$_{99}$ = 0.25 g/air against *C. quinquefasciatus* mosquitoes adults. However, *C. bipinnatus* leaves had no knock-down or fatal effects on mosquito adults.

Table 3: Pupicidal activities with median lethal concentrations of ethanol and hexane extracts of *Cosmos bipinnatus*, *Foeniculum vulgare* and *Tagetes minuta* against *Culex quinquefasciatus* larvae after 24 h of exposure

Conc (mg/µL)	Int no.	C. bipinnatus	F. vulgare	T. minuta	$F_{5,2}$	p value	C. bipinnatus	F. vulgare	T. minuta	$F_{5,2}$	p value
0.10	10.00	20.00	70.00	50.00	3.14	0.06	50.00	40.00	60.00	3.73	0.04
0.50	10.00	20.00	100.00	100.00	4.29*	0.05	10.00	100.00	50.00	2.06	0.18
1.00	10.00	30.00	100.00	90.00			60.00	80.00	90.00		
2.00	10.00	100.00	100.00	100.00	90.00		90.00	100.00	100.00		
5.00	10.00	100.00	100.00	100.00	80.00		80.00	100.00	90.00		
10.00	10.00	100.00	100.00	100.00	100.00		100.00	100.00	90.00		
LC$_{50}$	1.14	1.31	1.11								

Conc = Concentration, Int no. = Initial number, LC$_{50}$ = median lethal concentration, * = significant difference

Fig 2: Pupicidal activities of ethanol (A) and hexane (B) extracts of *Cosmos bipinnatus*, *Foeniculum vulgare* and *Tagetes minuta* against *Culex quinquefasciatus* mosquito pupa after 24 h of exposure
DISCUSSION

The aquatic immature larvae stage is recognised as the most vulnerable and best control strategy to effectively reduce mosquito population densities during infestations [2]. Ethanol and hexane leaf extracts of *F. vulgare*, *T. minuta* and *C. bipinnatus* displayed good larvicidal and pupicidal activities, and may be considered effective for larve control since their LC50 values were lower than 100 mg/mL [19]. *C. bipinnatus* and *T. minuta* ethanol leaf extracts contained terpenoids, flavonoids, saponins, steroids and tannins that play a role in plant defence against insect pests, and might have been responsible for larval and pupa deaths. Ethanol extracts of *Citrus sinensis* have displayed both larvicidal and pupicidal activities against *Aedes aegypti*, *Anopheles stephensi* and *Culex quinquefasciatus* mosquitoes [20], and similar bioactivities were observed for *F. vulgare*, *C. bipinnatus* and *T. minuta* ethanol extracts in this study against larva and pupa of *C. quinquefasciatus* mosquitoes. *F. vulgare* seed essential oil extract was reported for larvicidal activity on both 2nd and 4th larval instar of *Culex pipiens* [21], and the non-polar compounds present in the hexane extract can similarly act on larvae of *C. quinquefasciatus* mosquitoes.

F. vulgare, *C. bipinnatus* and *T. minuta* aqueous leaf extracts had no fatal effects against *C. quinquefasciatus* larvae and pupa. Similar trends were observed in previous larvicidal activity studies, where ethanol and hexane leaf extracts of *Cassia occidentalis* and *Lantana camara* displayed better larvicidal activities toward *Anopheles stephensi* and *Aedes aegypti* larvae, respectively than aqueous extracts [21,22]. The aquatic immature life stages (larvae and pupa) prefer to inhabit water pools that are polluted [23], and such behaviour may act to assist larvae and pupa to develop metabolic defence strategies against plant aqueous extracts that they might have been exposed to previously. This observation may be attributed to the differences in polarity of the extractants used in this study [7,22].

Generally, the attributes elicited by all the investigated plants in this study may be adduced to their secondary metabolites as revealed by the results of the phytochemical analyses. The biologically active terpenoids of *T. minuta* extracts such as dihydrotagetone, tagetones, ocimenones and piperitone have been reported for possible synergistic larvicidal effects [9]. The phytonutrients of *F. vulgare* foliage extracts were also found to be toxic and effective against *Anopheles dirus* and *Aedes aegypti* mosquitoes [24]. These phytonutrients have been opined to penetrate mosquito integument to disrupt important metabolic reactions. Such disruption may deprive adult mosquitoes of oxygen and death resulting from suffocation could occur [25]. This was observed at higher investigated concentrations of *T. minuta* and *F. vulgare* in this study. Extracts or chemicals with respective KD50 and LD50 values of lower than 20 min and 80 g/air have been pharmacologically adjudged to be potent insecticides [5]. Therefore, *T. minuta* and *F. vulgare* leaves powder could be said to have exhibited rapid and effective insecticidal activity towards *C. quinquefasciatus* adult mosquitoes.

CONCLUSION

F. vulgare, *C. bipinnatus* and *T. minuta* leaf extracts exhibit larvicidal and pupicidal activities against aquatic *C. quinquefasciatus* larvae and pupa, but the aqueous extracts do not. Only *F. vulgare* and *T. minuta* dried extracts has insecticidal activity against adult *C. quinquefasciatus* mosquitoes. Further studies should be conducted to monitor and evaluate the mode of action at the molecular level for each plant extract to clarify the observed effects in this study. Since *F. vulgare*, *C. bipinnatus* and *T. minuta* plants as well as *C. quinquefasciatus* mosquitoes are widely distributed around the world, these plants have a potential to be used in

Table 4: Median lethal dose and knock-down of leaf powder of *Cosmos bipinnatus*, *Foeniculum vulgare* and *Tagetes minuta* against *Culex quinquefasciatus* adult mosquitoes after 6 and 12 h exposure periods

Dose (g/air)	Int no.	Cosmos bipinnatus	Foeniculum vulgare	Tagetes minuta	F4,2	P-value
0.25	10.00	0.00	0.00	0.00	3.16	0.08
0.50	10.00	0.00	70.00	30.00	10.09*	0.01
1.00	10.00	0.00	100.00	50.00		
1.50	10.00	0.00	100.00	100.00		
2.00	10.00	0.00	100.00	100.00		
LD50				7.52	8.64	

Int no. = Initial number, LD50 = median lethal dose, * = significant difference
local communities for mosquito control during breeding and infestation seasons, thus promoting the use of natural pesticides.

ACKNOWLEDGEMENT

The authors acknowledge National Research Foundation (NRF) Scarce Skills, and Prof. NJL Heideman, Dean, Faculty of Natural and Agricultural Sciences, for bursary, as well as UFS-Qwaqwa Research Committee which provided funding (grant no. 211427604).

CONFLICT OF INTEREST

No conflict of interest associated with this work.

CONTRIBUTION OF AUTHORS

We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors.

REFERENCES

1. World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. Geneva. 2005. HO/CDS/WHOPES/GCDPP/13.
2. Goddard J. Infectious diseases and arthropods, 2nd edn. New Jersey: Humana Press; 2008; p31.
3. Bretain C, Bonnet J, Dochon S, Agnew P, Weill M, Corbel V. Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evol Biol 2008; 8: 104-113.
4. Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 2010; 29: 913-920.
5. World Health Organization. WHO Traditional medicine strategy 2002-2005. Geneva. 2002. WHO/EDM/TRM/2002.1.
6. van Wyk BE, van Heerden F, van Oudtshoorn B. Medicinal plants of South Africa. Pretoria: Briza Publications; 2002; p 24.
7. Jang IC, Park JH, Park E, Park HR, Lee SC. Antioxidative and antigenotoxic activity of extracts from Cosmos (Cosmos bipinnatus) flowers. Plant Foods Hum Nutr 2008; 63: 205-210.
8. Ashafa AOT, Olajuyigbe FO. Chemical composition and antibacterial activity of essential oil of Cosmos bipinnatus Cav. leaves from South Africa. Iranian J Pharmaceutical Res 2014; 13: 1417-1423.
9. Nchu F, Magano SR, Eloff JK. In vitro anti-tick properties of essential oil of Tagetes minuta L. (Asteraceae) on Hyalomma rufipes (Acar: Ixodidae). Ondersteypoort J Vet Res 2012; 79: 385-340.
10. Cestari IM, Sarti SJ, Waib OM, Branco AC. Evaluation of potential insecticidal activities of Tagetes minuta (Asteraceae) essential oil against the head lice Pediculus humanus capitis (Phthiraptera: Pediculidae). Neotrop Entomol 2004; 38: 805-807.
11. Ireri LN, Kongoro J, Nhure P, Mutai C, Langat B, Tonui W, Kimutai A, Muchery O. The potential of the extracts of Tagetes minuta Linnaeus (Asteraceae), Acalypha fruticosa (Euphorbiaceae) and Tarchonanthus camphoratus L. (Compositae) against Phlebotomus duboscqi Neveu Lemaire (Diptera: Psychodidae), the vector for Leishmania major Yakimoff and Schokhor. J Vector Borne Dis 2010; 47: 168-174.
12. van Wyk BE.; Tilney P.M. Aapiacea. In: Germishuizen G.; Meyer NL, editors. Plants of Southern Africa and annotated checklist. Sterlitizia 14. Pretoria, South Africa: National Botanical Institute; 2003; p 123-132
13. Zoubiri S, Bailleouamer A, Seba N, Chamouni N. Chemical composition and larvicidal activity of Algerian F. vulgare seed essential oil. Arabian J Chem 2011.
14. Harborne JB. Phytochemical Methods - A Guide to Modern Techniques of plant analysis. London: Chapman and Hall; 1998.
15. Trease GE, Evans WC. Textbook of Pharmacognosy, 15th edition London: Saunders publishers; 2002.
16. Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. African J Biotech 2005; 4: 685-688.
17. Harbach R, Kitching U. Phylogeny and classification of the Culicidae (Diptera). Syst Ent 1998; 23: 327-370.
18. Snell AE. Identification keys to larval and adult female mosquitoes (Diptera: Culicidae) of New Zealand. New Zealand J Zool 2005; 32(2): 99-110.
19. World Health Organization. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Mimeographed document. Geneva. 1981. WHO/VBC/81.807.
20. Zahran HEM, Abdelgaleil SAM. Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae). J Asia-Pacific Entomol 2010; 14: 46-51.
21. Marcombe S, Mathieu RB, Pocquet N, Riaz M-A, Poupardin R, Sélior S, Darriet F, Reynaud S, Yébakima A, Corbel V, Jean-Philippe D, Chandre F. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS ONE 2012; 7(2): e30989.
22. Murugan K, Kumar PM, Kovenderan K, Amerasan D, Subramaniam J, Hwang JS, Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 2012; 111: 1757–1769.
23. Dhandapani A, Kadarkarai M. HPTLC quantification of flavonoids, larvicidal and smoke repellent activities of Cassia occidentalis L. (Caesalpinaceae) against malaria vector Anopheles stephensi Liston (Diptera: Culicidae), J Phytop 2011; 3: 60-72.
24. Kumar S, Wahab N, Mishra M, Warkoo R. Evaluation of 15 local plants species as larvicidal agents against
Indian strain of dengue fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Front Physiol 2012; 3: 104.

25. Service M. Mosquitoes (Culicidae). In: Lane RP; Crosskey RW, editors. Medical Insects and Arachnids. London: Chapman and Hall; 1993; pp 120-240.