Downregulating oncogenic receptor: From bench to clinic

George Zhu1*, Ali-Akbar Saboor-Yaraghi2, Yosef Yarden3, Joana Santos4 and Neil JC5

1Institute of Oncology of George Zhu, 422407, Beijing, China
2Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
3Department of clinical Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
4Department of Genetics and cancer Genetics Group-CI-IPOP, Portuguese Oncology Institute Porto, Portugal
5Beatson Institute for Cancer Research, Switchback Road, Bearsen, Glasgow G61 IBD, UK

Abstract

In 1989-1991, George Zhu first postulate oncogenic receptor (Voice of America,1992,12:31;Curr Pharm Biotechnol,2013,14:859-863), as a result of his experiments in which steroid PML-RARα fusion receptor gene rearrangement within its(15;17) translocation in acute promyelocytic leukemia (APL), PGRFR-1 receptor induced tumours of the breast glands in two aplastic anemia during the course of testosteron treatment (hormonal tumorigenesis). In the past 2-3 decades, there are at least 30 receptor genes involving in various oncogenic process. These normal physiologic receptors linked to gene amplification, rearrangement, deletion and activating mutations, which converted receptor to oncogenic (also oncogenic receptor) in development, progressive and pathogenesis of benign and malignant diseases. Receptors included nuclear receptor family members (oncogenic estrogen/estrogen receptor alpha signaling, oncogenic androgen receptor, oncogenic receptor pml/RARα, and GRβ); Oncogenic growth factor receptors (EGF/oncogenic receptor EGFR), Neu oncogenic receptor, insulin receptor substrate 4 IRS/insulin receptor/c-ros proto-oncogenic receptor, insulin and IGF-1 and -II/oncogenic IGF-1R, oncogenic PDGFAR, oncogenic TEL/PDGFRB, HGF/HGFR; met oncogenic receptor; Cytokine receptor family members (IL-2-BCM fusion,IL-3/oncogenic IL-3Ra,IL-7/oncogenic IL-7R and IL-21R-BCL6 fusion); Cytokine receptors including the fe family (G-CSF/oncogenic CSF3R, oncogenic EPOR), and oncogenic autocrine growth hormone/nuclear GHR and other VEGFR2. Upon ligand binding or external antigen stimuli, mutated growth factor receptors and mutant cytokine receptors including type 1 cytokine receptor may be activated via ligand binding receptor complex, receptor dimerizes especially receptor homodimerization, and induces transphosphorylation of tyrosine residues in the cytoplasmic domains which serves as docking sites for several adaptor molecular harboring SH2 domain or phosphotyrosine binding domain. These adaptor molecules recruit and activate downstream signaling molecules such as Ras/MAPK, phospholipase C-þJAK-STAT molecules, NF-KB pathways through tyrosine- or serine/threnonine-phosphorylation. Among them, Ras /MAPK/ERK, PI3-K/akt and STAT pathways act as the major oncogenic signaling pathway. Overall, these receptors coupled with their ligands are key importance in human subtle balance in physically regulating multiple cellular processes, for example, in cellular proliferation and differentiation, Oncogenic receptors mutational activation and/or aberrant gene rearrangement are precociously interference with normal cell survival, anti-apoptosis and proliferation, and malignant initiation and progression. Others, in a special APL case, oncogenic pml/RARα fusion behave as a potent (constitutive) transcriptional repressor of RAR and retinoic acid signaling, inducing a differentiation blockage at promyelocytic stage which can be overcome with therapeutic doses of 9-cis retinoic acid or ATRA ligand (see in detail model, George Zhu, January 1991. Curr Pharm Biotechnol, 2013, 14: 849-8E). This is the classical model of retinoic acid action. This encourage receptor normal agonist, and oncogenic receptor antagonists (or inhibitors) target therapy.

Introduction

Since introduction of oncogenic receptor concept by George Zhu from oncogenic pml/RARα fusion in etiology of a specific APL and androgen/androgen receptor oncogenic signaling in role of hormonal tumorigenesis in early 1989s [1-7], de The H and Chomienne C [8,9], at the same peroid, found that in t(15;17) APL, the translocated retinoic acid receptor alpha (an RAR mutant) contribute to leukemiaogenesis. Neil JC [10] is in detail receptor-mediated leukaeogenesis from the oncogenic function of T cell antigen receptor (TCR oncogenic signal) on lymphoid cells not only bind external ligand but are crucial in cellular proliferation. In transgenic mice expressing a mutated TCRbeta lacking the variable chain (Detta V-TCRbeta) developed CD4+, CD8+, IL-2Ra positive T-cell lymphoma [11]. Patients with ataxia-telangectasia are particularly prone to development of T-cell chronic lymphocytic leukemia with chromosomal abnormalities. The breakpoint is composed of a TCR 1 alpha chain region (from 14q11) fused to sequences derived from 14q32 but on the centromeric side of the IgCmu (IgH), indicating that a 14:14 translocation [(t;14;14) (q11;q32); inv(14)(q11q32)] in the development of T-cell tumors [12-13]. Like mutated oncogenic growth factor receptors [14], antigen-independent B cell receptor (BCR) signaling drives the oncogenic process. The genetic defects in heavy-chain disease(HCD) result in the production of abnormal membrane-associated heavy chain lacking an antigen-binding domain, these aberrant B-cell antigen receptors might engage in ligand-independent signaling, indicating a role in the genesis of HCD neoplasia [14-15].

Yarden Y [16] proposes neu oncogenic receptor from neu oncogene-related receptor tyrosine kinase (RTK), and this might be useful in neu oncogenic receptor [17-21] antagonists lapatinib and trastuzumab target therapy in metastatic breast cancer with HER2V659E mutation [22]. In a large trials of 48 HER2-positive early breast cancer patients, the adjuvant trastuzumab treatment demonstrates highly favorable

Key words: receptor; oncogenic receptor; gene mutation; rearrangement tumours/cancers

Received: September 22, 2016; Accepted: October 13, 2016; Published: October 16, 2016

doi:10.15761/HMO.1000106

Hematol Med Oncol, 2016 Open Access
outcome. Five-year overall survival rates and disease free survival rates were 95.8% and 93.8% respectively. Al-Nedawi [23] explore the area that microvesicles containing oncogenic receptor EGFRVIII released to cellular surroundings and blood of tumour-bearing mice, and can merge with the plasma membranes of cancer cells lacking EGFRVIII. This intercellular transfer of membrane-derived microvesicles (‘oncosomes’-small plasma membrane buds, Robinson, [24]) leads to the transfer of oncogenic activity including activation of MAPK and Akt and autocrine activation of its key signaling receptor (VEGF receptor-2), and increases in anchorage-independent growth capacity. Santos [25] studies oncogenic GRPR (gastrin-releasing peptide receptor) in neoplastic multiple signaling pathway. Somatic mutations in cholecystokinin 2 receptor(CCK2R) alter receptor activity that promote oncogenic phenotype, and the importance of evaluating CCK2R inhibitors to block mutant forms of this receptor [26]. Intriguing, epithelial cell adhesion molecule (Epcam), as a homophilic adhesion protein, is a novel oncogenic receptor which frequently overexpressed in epithelia, progenitors, embryonic stem cells, carcinoma and cancer-initiating cells, and target its antibodies [27]. The present will in brief focus on recent innovative diagnostic and therapeutic strategies forthcoming in this area.

Steroid hormone receptors oncogenic signaling

The estrogen receptor(ER) is found in a wide variety of species and is involved in the programming and regulation of gene expression in vertebrate female sex-accessory tissue [28]. Estrogen E2/ERα signaling plays an important role in the regulation of mammary gland development and function, and also contributes to the onset and progression of breast cancer. More than 70% of human breast cancers express ERα, and elevated levels of ERα in benign breast epithelium correlate with increased risk of breast cancer [29]. Green S and Chambon P [28] described oncogenic hormone receptor from human oestrogen receptor cDNA sequence. This carcinogenicity of estrogen is attribute to receptor-mediated stimulation of cellular proliferation. Increased proliferation could result in turn in accumulation of genetic damage and stimulation of the synthesis of growth factors that act on the mammary epithelial cells via an autocrine or paracrine loop [30]. There were evidence that estrogen-dependent cell line(MCF-7) cells under estradiol(E2) stimulation release some known polypeptide growth factor activities (EGF-like, IGF-1-like) [31]. Dickson RB and Stancel GM [32] discuss estrogen receptor-mediated processes in normal and cancer cells. ERα-mediated regulation of gene expression plays many significant roles in normal and cancer cells and this will improve the understanding of hormonal carcinogenesis.

Furthermore, Russo [33], Santen, et al. [34], Yager and Yue [35] discussed estrogen receptor-dependent and independent mechanisms of breast carcinogenesis. ERα mediated stimulation of breast cell proliferation with a concomitant enhanced rate of mutations, and estradiol metabolites to genotoxic DNA mutation cause DNA damage. Thus, ERα function as estrogen activated transcription factor and involved in the stimulation of estrogen target genes in the regulation of cell cycle progression and growth of breast epithelium [36]. As Clarke described [37], some ERα/PR-positive epithelial cells are quiescent breast stem cells that acts as ‘steroid hormone sensors’. Such hormone sensor cells are likely to secrete positive or negative paracrine/juxtacrine factors dependent on the prevailing estrogen or progesterone concentration to influence the proliferative activity of adjacent ERα/PR- epithelial cells. This might represent one step toward the development of neoplasia and malignancy-invasive tumors.

Utilizing ERKO/wnt-1 oncogene mice [38] and aromatase/ERKO transgene mice [39], they demonstrated the role of ERα-dependent in mammary development and carcinogenesis. Lack of ERα mice results in impaired mammary development and much delayed tumor incidence even in the presence of tissue estrogen (50% of mammary tumors at 5 months in ER-positive animals versus 11 months in those without ERα). Whereas introduction ERα into the TTA/Tag mice [40] and DES-treated MT-mER transgene mice [41,42] developed mammary adenocarcinoma (at 8months) and preneoplastic lesion atypical hyperplasia (at 4 months), which implicate that ERα contributes to carcinogenic through ER-mediated signal transduction, increasing estrogen-responsive cell proliferation, and ERα signaling in mammary cancer initiation and progression.

Moreover, mutations in estrogen receptor converted estrogen receptor-dependent breast tumor into estrogen-independent growth [43]. Fuqua [44] found a K303R estrogen receptor alpha (ERα) mutation in human premalignant breast lesions. The K303R mutation formed tumors in nude mice faster than cells expressing wild-type ERα in the presence of low levels of estrogen (at 10-12 M estradiol), and those K303R ERα-expressing tumors are estrogen-independent growth [45]. From screeing of those ERα+ breast cancer, Veeraraghava and colleagues [46,47] detected oncogenic ERα1-CCDC170 fusion positive tumors. This neoplastic ERα1-CCDC170 fusion leads to anchorage-independent growth, reduced endocrine sensitivity and enhanced xenograft tumor formation, suggesting a new concept of this oncogenic receptor ERα1 fusion in pathology in a more aggressive subtype of breast cancer.

Thus far, in addition to tamoxifen and fulvestrant, AZD9496, a nonsteroid small molecule inhibitor of oncogenic (or neoplastic, due to not targeting normal ERα) Erα [2,29,40,41,48], bound and down-regulated clinically relevant ERα mutant patients in vitro and inhibited tumor growth in an ESRI mutant patient-derived xenograft model that included a Y337 and D538G mutation [49,50]. AZD9496 is currently being evaluated in a phase 1 clinical trial [50].

Using heterotypic tissue recombination, Cunha [51] established a stromal androgen receptor for mesenchymal-epithelial transition(EMT) in normal androgen-dependent prostate development and in the etiology of benign prostatic hyperplasia [52]. By different methods including immortalized human prostate cells expressing androgen receptor [53] and androgen receptor transgene [54], they demonstrated that androgen receptor is oncogenic, and this oncogenic receptor induces prostate intraepithelial neoplasia(PIN) and plays a crucial role in transforming process in prostate cells. The AR-expressing PrECs are dependent on circulating testosterone for tumor growth, and immortalized PrECs lacking AR failed to form tumors. But this androgen receptor is difficult to characterize as an oncogene [53]. Mononen [55] and Koivisto [56] detected the R26L mutation of androgen receptor (AR) in Finnish patients with sporadic or familiar prostate cancer, which may confer an up to 6-fold increased risk of a small fraction of prostate cancer in Finlan. T877A mutation of AR was identified in LNCaP cell line and metastatic cells of androgen-independent prostate cancer [57-63], whereas V739M was identified in early stage PCA [64]. Nyquist [65] discovered intragenic AR gene rearrangements in CRPC tissues, rendering expression of truncated AR variants proteins lacking the AR ligand-binding domain, constitutive activity of AR, and intragenic ARv567es CDNA formed tumor faster rate and a CRPC growth independent of full-length AR or androgens. Therefore, targeting oncogenic AR variants [3,53,66-70] (here, please note that it is no need to target a normal AR) includes AR antagonists.
bicalutamide and enzalutamide, which might provide an approach to suppress prostatic intraepithelial neoplasia (PIN) development. In phase II trials, the CBR (clinical benefit rate) of 19% was observed with bicalutamide 150 mg daily dose in selected patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer [71].

In another area, increased thyroid diseases and thyroid papillary carcinoma (PTC) associated with a high dietary iodine intake [3,72-81].

GRβ/STAT-5 pathway was found to be involved in erythrocytosis [82], and GR-SGK1 (including GR-SGK1-FOXO3a signaling pathway and GR-SGK1-MKPI/DUSP1 pathway) network linked to higher tumor grade and antipototic and increased cancer recurrence [83-85]. Moreover, the aberrant glucocorticoid receptor signaling in breast cancer [86-89], prostate hyperproliferation [85,90,91], Cushing's disease [92] and Nelson's syndrome [93]. Thus, GR activation is sufficient to provide a potent signal for cell survival in mammary epithelial cells. Induction of serum and glucocorticoid-regulated kinase-1 (SGK-1) expression is required for GR-mediated epithelial cell survival signaling. SGK-1 is a direct GR target and encodes a serine-threonine kinase with significant homology to Akt-1. In immunohistochemical analysis, nucleus GR-immunostaining and glucocorticoid receptor (GR)- immunopositive cells were abundantly present in subclinical Cushing's disease due to pituitary adenomas (2 macroadenomas and 8 microadenomas), suggesting impaired glucocorticoid action, at least in part, in tumorigenesis of this disease [92]. RU486(mifepristone), a glucocorticoid receptor antagonist, has been successful treatment of the Cushingoid phenotype with markedly elevated lymphocyte glucocorticoid receptor numbers in a transient Cushing's syndrome [94]. Mifepristone may also be a useful strategy for increasing tumor cell apoptosis in chemotherapy-resistant GR+ triple-negative breast cancer (TNBC) [95]. In addition, the cortisol/cortisol-responsive AR (AR(crr)) has two mutations (L701H and T877A) that were detected in the MDA PCa human prostate cancer cell lines established from a castrated patient whose metastatic tumor exhibited androgen-independent growth. GR antagonist RU38486 showed inhibitory activity [90], but its therapeutic application to treat prostate cancer may be limited. Thus, the combination of ARcrr receptor antagonists bicalutamide (casodex) together with a lipid suppressor(triamcinolone) represents a new therapeutic strategy for the treatment of the subset of androgen-independent prostate cancers harboring the L701H or ARcrr type.

So far, there is a conflict among hormone FSH/FSH receptor in etiology of epithelial ovarian cancer [96,97]. Actions of FSH (follicle-stimulating hormone) in reproductive physiology are essential for folliculogenesis and steroidogenesis [98], FSH receptor (FSHR), a transmembrane receptor with a G protein-coupled signaling, is expressed by granulosa cells in developing ovarian follicles. Overexpression of FSHR activates oncogenic pathways through FSHR-induced EGFR amplification, and HER-2/neu and activated ERK1/2 in neoplastic immortalized ovarian surface epithelial (IOSE) cells [99]. The data by epidemiological studies that an increased occurrence in preneoplastic immortalized ovarian surface epithelial (IOSE) cells [99]. The data by epidemiological studies that an increased occurrence in preneoplastic immortalized ovarian surface epithelial (IOSE) cells [99].

The EGF receptor (EGFR) [117] has a key role in normal embryonic development, adult tissue homeostasis and many pathological processes, particular tumor formation. Aberrant EGFR activation becomes oncogenic due to overexpression and/or amplification of the EGFR gene or by autocrine/paracrine growth factor loops, whereas activating dimerization mutants promote EGFR signaling, which lead to ligand-independent [118,119]. Phosphorylation of this oncogenic receptor at residues Tyr845, Tyr1045 and Tyr1173 leads to receptor activation and downstream signaling [120,121]. Oncogenic receptor EGFR [2,5,7,119,122-124] was found to involved in A431 human carcinoma cells [125-128], squamous cell carcinoma (SCC) [129], epithelial cell lines from mammary carcinoma [130], glioblastoma stem cells [5,131,132], EGFR+++ positive in one glioma, George Zhu], and colorectal carcinoma tissue [133]. Oncogenic EGFR mutations are found in 10% to 35% of lung adenocarcinomas, with predominant in a subset of patients with non-small cell lung cancer (NSCLC) [134-136]. These mutations, which commonly occur as either small in-frame deletions in exon19 or point mutations T790M and L858R in exon21 within the EGFR tyrosine kinase domain, confer constitutive activity and sensitivity to EGFR tyrosine kinase inhibitors (TKI) [137,138]. Recent, Gallant [137] identified a novel EGFR alteration in lung cancer: EGFR exon18-25 kinase domain duplication (EGFR-KDD). EGFR-KDD is oncogenic and oncogenic EGFR-KDD-transformed cells are sensitive to the EGFR TKI afatinib. Konduri and colleagues [138] reported five patients with metastatic lung cancer whose tumors harbored EGFR fusion, most commonly RAD51, are recurrent in lung cancer. Four of whom were treated with EGFR TKI erlotinib with documented antitumor response for 5,6,8, and 20 months respectively. These patients whose tumors harbored EGFR fusions are oncogenic in preclinical studies. In mouse model, transgenic mice expressing EGFR L858R in type II pneumocytes developed atypical adenomatous hyperplasia and multifocal adenocarcinoma, and gefitinib inhibited tumorigenesis completely [139]. Blesa [140] present a durable complete remission of a relapsed glioblastoma with a complete radiologic response and the combination of cetuximab and bevacizumab in a third-line setting, that has offered a progression-free survival of 20 months. In Cuba, CimaVax-EGF, promising, an active vaccine targeting EGF as the major ligand of EGFR, it is in use as a cancer therapy against non-small-cell lung cancer (NSCLC) [141,142].
PDGFRα mutations are oncogenic(tumorigenic) and developed 100% of mice with cell overexpressing wild-type PDGFRα developed into brain tumor in vivo [143]. This D842V mutant was effectively inhibited by crenolanib, a specific inhibitor of PDGFRα and PDGFRβ. Golub [144] identified that PDGF receptor β is oncogenic in pathogenesis of chronic myelogenous leukemia with (5;12) chromosomal translocation, targetable oncogenic receptor tyrosine kinases PDGFRα/ PDGFRβ, and FGFR fusions [145-147] in diverse cancers have made some major progress. For example, these hypereosinophilia (HES) patients with FIP1L1/PDGFRα have excellent responses to imatinib treatment [148-153]. At present, Imatinib, a selective inhibitor ofABL, KIT, and PDGFRα/β, is the first line target therapy for gastrointestinal stromal tumor (GIST) [154].

Hepatocyte growth factor (HGF), like other growth factors, has different effect in different cells. HGF regulates cell growth, cell mortality and morphogenesis by acting a tyrosine signaling cascade after binding to the proto-oncogenic receptor for HGF (HGF-R, also proto-oncogenic receptor c-met, met receptor) [155-158]. HGF enhances hepatocyte growth, potentially suppresses apoptic death of hepatocytes and decreases serum bilirubin and serum ALT (alanine aminotransferase), which provide therapeutic action of HGF, including severe hepatitis, falminant hepatic failure [159] and liver cirrhosis [160].

HGF-HGF receptor (met oncogenic receptor) signaling stimulate growth of mouse C127 cells transformed phenotype [161], Caki-1 (a human kidney clear cell carcinomain cell line), U87-MG (a glioblastoma cell line) [162], canine osteosarcoma cells [157], and human hepatoblastoma cells [163], and AML [164].

In vitro HGF can transform immortalized mouse liver epithelial cells [165]. Serum HGF levels are elevated in patients suffering from chronic hepatitis and liver cirrhosis. Moreover, hepatocytes from transgenic mice expressing HGF grew more rapidly than did those from normal siblings. In vivo, Fao HGF cells produced tumors when transplanted into nude mice [166]. These conditions cause persistent hepatocellular damage and regeneration; consequently, there are associated with the subsequent of hepatocellular carcinoma(HCC). Thus, HGF-HGF receptor signaling might play an important role in carcinogenesis [163,167]. PRS-110 (starting at 0.8 mg/kg and going up to 30 mg/kg) specifically binds to Met receptor with high affinity and blocks HGF interaction on ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft model [162]. Animals were randomized for the treatment with a novel met inhibitor EMD1214063 (50 mg/kg/d), which resulted in a complete regression of the sensitive H1112L met variant-derived tumors [168], Foretinib, the first multi-target c-met TKI to under clinical investigation, produced a promising benefit in HCC patients [163]. Recently, the chemically-modified monovalent antibody DN30 was found to inhibit ligand- independent activation of the met oncogenic receptor, providing an another target therapy [169-171].

Cytokine receptors had oncogenic mutant variants in cancer

Growth hormone(GH)/oncogenic GH receptor(GHR) [171-174] was associated with growth hormone receptor deficiency [175]; gigantism, acromegaly and cancer risk [176-180]; GHR determines ‘cancer- like’ features [174]. And GH-releasing hormone GHRH/ GHRH receptor oncogenic signaling [181,182]. Insulin/insulin receptor/Ros proto-oncogenic receptor homologue, and IGF-1,IGF-II/oncogenic receptor PTK IGF-1R linked to physiology and diseases(short stature, oncogenic transformation process) [182-187]; and IGF-1 (Mecasermin) replacement therapy [189-191]. Interesting, the oncogenic mechanism in Ewing sarcoma harboring oncogenic EWS/NR4A3 fusion involves a novel pro-oncogenic IGF/IGF-1 receptor signaling pathway including post-transcriptional depression of IGF signaling by the EWS/Fli1 fusion oncoprotein via miR2 [192], and this provide therapeutic targeting anti-IGF-1 receptor antibody in Ewing Sarcoma [193-195].

G-CSF has been used in clinic for more than 2 decades to treat congenital and acquired neutropenias [196-200]. It is highlight the clinical application of G-CSF to children with severe congenital neutropenia(SCN) and especially in patients with neutropenia harboring in the G-CSF receptor(CSF3R) gene, which is correlated to an increased risk for development of MDS and acute myeloid leukemia(AML) [201]. There are two classes of CSF3R mutant variants: truncations of the cytoplasmic domain [202,203] and membrane proximal point mutations including T618I [204]. Truncated CSF3R mutations are the mutant type nearly almost observed in SCN and abnormal signaling of this oncogenic receptor variants in malignant transformation, whereas membrane proximal mutations (particularly T618I) are the predominant mutation type observed in chronic neutrophilic leukemia(CML) and atypical (BCR-ABL negative) chronic myeloid leukemia (aCML), and confer ligand-independent growth [204]. Maxson and colleagues [205] identified activating mutations for CSF3R in 59% (16/27) of patients with CNL or atypical CML. In vivo, the activating mutation in the CSF3R gene induces hereditary chronic neutrophilia [206]. Mice transplanted with CSF3R T618I-expressing hematopoietic cells developed a myeloproliferative disorder [204]. Treatment with the JAK inhibitor ruxolitinib lowered the white blood cells and reduced spleen weight. These results indicate that activating mutant CSF3R is oncogenic [205] and sufficient to drive a myeloproliferative disorder resembling CML and CNL that is sensitive to pharmacologic JAK inhibition [204].

Another more example is that a translocation t(14;19) (q32;P13) was involved IGH@ and the cytokine receptor EPOR at 19P13 in two patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) [207,208]. An over 230- and 241-fold increase in the expression of EPOR were observed in 2 patients at diagnostic and relapse samples respectively. The EPOR-IGH/IGK chain fusions result in truncation of the cytoplasmic tail of EGFR at residues similar to the mutant EPOR in PFCP, with preservation of the proximal tyrosine essential for receptor activation and loss of distal regulatory residues. Expression of truncated EPOR in mouse B cell progenitors induced ALL in vivo. The data implicate oncogenic erythropoietin receptor in role of both benign erythrocytosis and malignancy [209,210]. Moreover, mutation of erythropoietin receptor (EPORE) was associated with primary familial and congenital polycythemia(PFCP).Truncated mutations of 59 to 84 amino acids of EPORE at c-terminus lead to loss of the intracellular cytoplasmic tail of the receptor, and prolonged proliferative signal resulting in hypersensitivity (5-10 fold increased sensitivity) to erythropoietin, and prolonged activity of AK2 kinase and STAT5 activity [211-214]. The leukemic cells with oncogenic EPORE fusions were sensitive to JAK-STAT inhibition, suggesting a therapeutic option in high-risk ALL.

Accumulated studies, constitutive activation of cytokine interleukin-2(IL-2) gene can induce autocrine growth of IL-2 producing leukemic cells in adult T-cell leukemia [215], in vitro
transformation and tumorigenicity of T cells [216-219], and tumor cells bearing IL-2-BCM fusion in a T cell lymphoma with t(4;16)(q26;p13) translocation [220]. IL-2 binds to IL-2 receptor a(IL-2Ra) and rc subunit of the IL-2 receptor(IL-2RG) sharing with other cytokine receptor superfamily (including IL-7 receptor, IL-21 receptor) that receptor complex transduces growth and differentiation signals [221]. Under physiological condition, IL-2 appears to act on antigen-specific proliferation of T lymphocytes, immune thymocytes, B-lymphocytes, natural killer cells(NK cells) and lymphokine-activated killer cells(LAK cells),which linked to adoptive immune therapy [222].

In vitro nude mice, fibroblasts transfected with a chimera molecule containing the extracellular IL-2 binding domain of the IL-2R cDNA and the transmembrane and intracellular kinase domain of the EGF receptor cDNA, were morphologically transformed and produced rapidly growing tumor [223]. Moreover, retroviral expression of IL-2RG restore signaling by IL-7 receptor to X-SCID precursor cells in T-cell progression to the pro-leukemic effects of ectopic LMO2 [224]. Recently, the chromosomal translocation t(5;9) (q13;q22) in peripheral T cell lymphoma generating the interleukin 2 inducible T cell kinase(ITK)-spleen tyrosine kinase(SYK) fusion kinase mimics a T-cell receptor signal and drives oncogenesis in mouse models.

Activation of the interleukin-3(III-3) gene by the enhancer of the IgH fusion leads to the overexpression of IL-3 gene product in 2 cases of acute lymphocytic leukemia with t(5;14)(q31;q21) translocation[225]. Serum IL-3 correlated with the clinical case. When the patient’s leukemic cell burden was highest (WBC 116,500/ul, lymphoblasts 33,785/ul), the serum IL-3 level was highest (799.5 pg/ml); whereas complete remission (WBC 123,00/ul, lymphoblasts 0/ul), serum IL-3 levels decreased to 105.1 pg/ml. Therefore, overexpression of IL-3 gene coupled with the presence of aberrant IL-3 receptor in these cells could account for oncogenic effects for proliferative advantage and may play a central role in the pathogenesis of leukemia [225,226]. Aberrant presence of cytokine residues was shown to induce homodimerization of mutant interleukin-7 receptor(IL-7R), which drive constitutive signaling via JAK1 and independently of IL-7, rc or JAK3[227], promoting cell transformation. This abnormality is involved in -10% human pediatric T-cell leukemia/lymphomas, paving the way for therapeutic targeting oncogenic IL-7R-mediated signaling in T-ALL [228-230]. Interleukin-21 receptor (IL-21R) is capable of signal transduction through homodimerization or potentially heterodimerization with IL-2R gamma. IL-21 and IL-21R not only regulates proliferation of mature B cells and T cells in response to activating stimuli but also mediate expansion of NK population from bone marrow. The gene for IL-21R is found in the partner of BCL6 in t(3;16)(q27;p11),which is recurrently observed in diffuse large B-cell lymphoma and a lymphoma cell line YM [231].This IL-21R/BCL6 fusion gene is clearly associated with lymphoid cell origin.

Conclusion
To date, antibodies that target oncogenic receptors are often targeted toward lysosome [232] or blockade of translocation from the endoplasmic reticulum to the cell surface of specific antigens such as vascular endothelial growth factor receptors(VEGFR2) or Tie2 [233]. For instance, targeting cells with biotinylated ligands and addition of streptavidin efficiently targets trastuzumab to lysosome and this crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines [232]. Another burgeoning class of targeted chemotherapies called antibody-drug conjugates(ADCs).This ADCs that have demonstrated sufficient efficacy to gain and retain clinical approved are ado-tratuzumab emtansine (brand name Kadcyla) and brentuximab vedotin (brand name Adcetris) [234]. The auristatin-based antibody-drug conjugate BAY1187982 is for the treatment of FGFR2-positive solid tumors [195]. Another, the nicotinic acetylcholine receptor a7- nAchR (toxicology) is the oncogenic receptor, which mediated nicotine(NNN and NNN) oncogenic signaling in an important role in the initiation and progression of cancer including lung cancer and this oncogenic response was in parallel with the mutagenic and cytotoxic effects of tobacco smoke to promote the growth and angiogenesis of the tobacco related cancers [235]. Thus nAchRs yield new targets for the prevention and treatment of tobacco related cancers. Therefore, downregulating oncogenic receptors may be useful paradigm and perspective in our better understanding of clinical cancer biology [236-258].

Acknowledgement
We wish to thank Prof. T. Taniguchi in University of Tokyo in Japan, Nobel Laureates Prof. Ferid Murad in University of Texas Health Center in USA and UNESCO Science Laureates Prof. Atta-ur-rahman in international center for chemical and biological sciences, university of karachi in Pakistan for their valuable help. I especially want to thank my friend Mr. Xu for his precious time and patience in long preparing the article.

References
1. George Zhu (1989-91) Oncogenic receptor hypothesis. FdV (Voice of America) 12: 31.
2. George Zhu (1993-2010) A retrospective study of the combination of chemotherapy with phytomegagluminin (PHA, inducing the generation of interleukin 2) in advanced cancer (1997, unpublished data). Long follow up of patients with advanced cancers after chemotherapy with traditional medicine (2000). A further study of patients with advanced cancer after chemotherapy with traditional chinese medicine. JCCM 2: 618-623. Five to ten years’ survivors of patients with advanced cancers after chemotherapy with traditional chinese medicine, JCCM 4: 512-519 (EBSCO). Use of chemotherapy and traditional medicine for advanced cancers:A retrospective study of 68 patients JCCM 5: 343-350.
3. George Zhu, Musumeci F, Byrne P (2013) Induction of thyroid neoplasm following plant medicine marine algae (sargassum): a rare case and literature. Curr Pharm Biotechnol 14: 859-863.
4. Zhu G (2013) Novel treatment of acute promyelocytic leukemia: As2O3, retinoic acid and retinoid pharmacology. Curr Pharm Biotechnol 14: 849-858. [Crossref]
5. George Zhu, Dong JX, Dharmadhikari D (2013) In, Natural products from traditional biotechnology world congress, Duibai, UAE, pp: 97-98.
6. George Zhu (2014) In Discovery of the molecular basis of retinoic acid action (retinoid signalling).A genetic regulation of eukaryotes in transcription. Proceedings of 3nd biotechnology world congress, Duihui, UAE, pp: 97-98.
7. George Zhu, Ali-AKbar Saboor-Yaraghi (2015) In oncogenic receptor: from molecular physiology to diseases. Abstract in BIT’s 8th Annual World Cancer Congress p: 494.
8. Chomienne C, Ballerin P, Ballirand N, Huang ME, Krawice I, et al. (1996) The retinoic acid receptor alpha gene is rearranged in retinoic acid-sensitive promyelocytic leukaemias. Leukemia 4: 802-807. [Crossref]
9. De Thé H, Lavaux C, Marcho A, Chomienne C, Degos L, et al. (1991) The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukaemia encodes a functionally altered RAR. Cell 66: 675-684. [Crossref]
10. Neil JC, Fulton R, McFarlane R, Rigby M, Stewart M, Terry A, et al. (2004) Receptor-mediated leukaemogenesis: hypothesis revisited. Br J Cancer Suppl 9: 76-79. [Crossref]
11. Strzadala L, Miazek A, Mat uszyk J, Kistelov P (1996) Role of thymic selection in the development of thymic lymphomas in TCR transgenic mice. Int Immunol 9:127-38. [Crossref]
12. Mehlen P and Bredesen DE (2004) The dependence receptor hypothesis. Int Immunol 16: 675-684. [Crossref]
Zhu G (2016) Downregulating oncogenic receptor: From bench to clinic

Volume 1(1): 30-40

Hematol Med Oncol, 2016 doi: 10.15761/HMO.1000106

20. Yarden Y , Peles E (1991) Biochemical analysis of the ligand for the neu oncogenic

15. Denny CT, Yoshikai Y , Mak TW, Smith SD, Hollis GF, et al. (1986) A chromosome

14. Cui YZ, Onozawa M, Garber HR, Samsel L, Wang Z, et al. (2015) Thymic expression

17. Corcos D (2011) Oncogenic potential of the B-cell antigen receptor and its relevance to

16. Davey MP (1988) Juxtaposition of the T-cell receptor alpha-chain locus(14q11) and a

140: 543-553.

29. Santos J, Mesquita D, Barros-Silva JD, Jerónimo C, Henrique R, et al. (2015)

31. Denzel S, Maetzel D, Mack B, Eggert C, Kurrasch C, et al. (2009) Initial activation of

32. Green S, Chambon P (1986) A superfAMILY of potentially oncogenic hormone receptors.

33. Engelován S, Ramachandran S, Venkatesan N, Ananth S, Gnan-Prakash JP, et al. (2011) SIRT1 is essential for oncogenic signalling by estrogen/estrogen receptor α in breast cancer. Cancer Res 71: 6654-6664.

34. Russo BH, Russo J (1998) Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia 3: 49-61. [Crossref]

35. Dickson RB, McManaway ME, Lippman ME (1986) Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 232: 1540-1543. [Crossref]

36. Dickson RJB and Stancil GM (2010) Estrogen receptor-mediated processes in normal and cancer cells. In: Cavaleri E and Rognan E (Eds) NCI Monograph: Estrogen as endogenous carcinogens in breast and prostate. Oxford University Press, Oxford pp: 135-145.

37. Russo J, Larreuf MH, Tahin-Q, Hu YF, Slater C, et al. (2002) 17Beta-estradiol is carcinogenic in human breast epithelial cells. J Steroid Biochem Mol Biol 80: 149-162.

38. Russo J, Fernandez SV, Russo PA, Fernbaugh R, Sheriff FS, et al. (2006) 17-Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEBS J 20: 1622-1634.

39. Abramow W, Warshawsky H (1948) Cancer of the breast in the male, secondary to estrogenic administration; report of a case. J Urol 59: 76-82. [Crossref]

40. Santen R, Cavaleri E, Rognan E, Russo J, Gutterman J, et al. (2009) Estrogen medication of breast tumor formation involves estrogen receptor-dependent, as well as as independent, genotoxic effects. Ann N Y Acad Sci 1155: 132-140. [Crossref]

41. Yue W, Yager JD, Wang JP, Jupe ER, Santen RJ (2013) Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids 78: 161-170. [Crossref]

42. Singh RR, Kumar R (2005) Steroid hormone receptor signalling in tumorigenesis. J Cell Biochem 96: 490-505. [Crossref]

43. Clarke RB (2004) Human breast cell proliferation and its relationship to steroid receptor expression. Clinica ginecologica e obstetricale 7: 129-137. [Crossref]

44. Bocchinfuso WP1, Korach KS (1997) Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 2: 323-334. [Crossref]

45. Tekmal RR, Liu YG, Nair HB, Jones J, Perla RP, et al. (2005) Estrogen receptor alpha is required for mammary development and the induction of mammary hyperplasia and epithelial alterations in the aromatase transgenic mice. J Steroid Biochem Mol Biol 95: 9-15. [Crossref]

46. Tili MT, Frecht MS, Steed ME, Hruska KS, Johnson MD, et al. (2003) Introduction of ERF into the E2A/E47 conditional mouse model precipitates the development of estrogen-responsive mammary adenocarcinoma. Am J Pathol 163: 1713-1719.

47. Couse JF, Davis VL, Hanson RB, Jefferson WN, McLachlan JA (1997) Accelerated onset of uterine tumours in transgenic mice with aberrant expression of the estrogen receptor after neonatal exposure to DES. Mol Cancer 19: 236-242.

48. Davis VL (2012) Expression of a dominant negative estrogen receptor alpha variant in transgenic mice accelerates uterine cancer induction by the potent estrogen diethylstilbestrol. Reprod Toxicol 34: 512-521.

49. Welslade G, McGuire WL (1983) Mutations in the estrogen and androgen receptors contribute to the conversion of steroid-dependent breast tumors and prostate tumors to hormone-independent growth. Adv Cancer Res 38: 61-68.

50. Fuqua SA, Wiltachke C, Zhang QX, Borg A, Castles CG, et al. (2000) A hypersensitive estrogen receptor alpha mutation in pre malignant breast lesions. Cancer Res 60: 4026-4029.

51. Herynk MH (2010) A hypersensitive estrogen receptor alpha mutation that alters dynamic protein interaction. Breast Cancer Res Treat 122: 381-393.

52. Veeraraghavan J, Tan Y, Cao XX, Kim JA, Wang X, et al. (2014) Recurrent ESR1-CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nat Commun 5: 4577. [Crossref]

53. Giltnane JM, Balko JM, Stricker TL, Young C, Estrada MV, et al. (2015) Recurrent ESR1-CCDC170 fusions are associated with endocrine resistance in estrogen receptor positive, HER2 negative breast cancer. Breast Cancer Res Treat 153: 1-11. [Crossref]

54. Takeshita T, Yamamoto Y, Yamamoto-Ibusuki M, Inao T, Sueta A, et al. (2015) Droplet digital polymerase chain reaction assay for screening of ESR1 mutations in 325 breast cancer specimens. Transl Res 166: e5542.

55. Gilmann JM, Balko JM, Stricker TL, Young C, Estrada MV, et al. (2015) Recurrent ESR1 fusion transcripts are associated with endocrine resistance in estrogen receptor positive, HER2 negative breast cancer. Abstract P60-3 in Thirty-seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium, December 9-13,2014, San Antonio, TX, Cancer Res 75.

56. Frecht MS, Halmana ED, Tili MT, Singh B, Gunther ED, et al. (2005) Dereegulated estrogen receptor alpha expression in mammary epithelial cells of transgenic mice results in the development of ductal carcinoma in situ. Cancer Res 65: 681-685.

57. Takeshita T, Yamamoto Y, Yamamoto-Busuki M, Inao T, Sueta A, et al. (2016) Droplet digital polymerase chain reaction assay for screening of ESR1 mutations in 325 breast cancer specimens. Transl Res 166: e5542.

58. Weir HM, Bradbury RH, Lawson M, Rabow AA, Buttar D, et al. (2016) AZD9496: An oral Estrogen Receptor Inhibitor That Blocks the Growth of ER-Positive and ESR1-Mutant Breast Tumors in Preclinical Models. Cancer Res 76: 3307-3318. [Crossref]

59. Cunha GR, Chung LWK (1981) Stromal-epithelial interactions-I. Induction of prostatic
phenotype in urothelium of testicular feminized(Tfm/y) mice. J Steroid Biochem 14: 1317-1324.
58. Izumi K, Mizokami A, Lin WJ, Lui KP, Chang C (2013) Androgen receptor roles in the development of benign prostate hyperplasia. Am J Pathol 182: 1942-1949. [Crossref]
59. Berger R, Febo PG, Majumder PK, Zhao JJ, Makhterje S, et al. (2004) Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res 64: 8657-8661. [Crossref]
60. Stambough M, Leav I, Kwan PW, Bubley GJ, Balk SP (2001) Prostatic intraepithelial neoplasia in mice expressing an androgen receptor transgene in prostate epithelium. Proc Natl Acad Sci U S A 98: 10823-10828. [Crossref]
61. Mononen N, Syrjäkoski K, Matikainen M, Tammela TL, Schleutker J, et al. (2000) Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 60: 6479-6481. [Crossref]
62. Koivisto PA, Hyytinen ER, Matikainen M, Tammela TL, Ikonen T, et al. (2004) A mutation in the androgen receptor gene in a Finnish prostate cancer patient. J Urol 171: 431-433. [Crossref]
63. Harris SE, Rong Z, Harris MA (1990) Androgen receptor in human prostate carcinoma LNCaP/Ad5 cells contains a mutation which alters the specificity of the steroid-dependent transcriptional activation region. In: Bell L (Ed) Proceedings of the 72nd Annual Meeting of the Endocrine Society: Atlanta(GA), Bethesda(MD): The Endocrine Society.
64. Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, et al. (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173: 534-540. [Crossref]
65. Culing Z (1993) Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 7: 1541-1550.
66. Gaddipati JP, McLeod DG, Heidengen HB, Sesterhenn IA, Finger MJ, et al. (1994) Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res 54: 2861-2864. [Crossref]
67. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, et al. (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332: 1393-1398. [Crossref]
68. Suzuki H, Akakura K, Komiya A, Aida S, Akimoto S, et al. (1996) Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 29: 153-158. [Crossref]
69. Southwell J, Chowdhury SF, Gottlieb B, Beitel K, Lombroso R, et al. (2008) An investigation into CAG repeat length variation and N/C terminal interactions in the T877A mutant androgen receptor found in prostate cancer. J Steroid Biochem Mol Biol 111: 138-146. [Crossref]
70. Newmark JR1, Hardy DO, Tont BC, Carter BS, Epstein JI, et al. (1992) Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci U S A 89: 6319-6323. [Crossref]
71. Nyquist MD, Li Y, Hwang TH, Manlove LS, Vessella RL, et al. (2013) TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of an androgen receptor in prostate cancer. Proc Natl Acad Sci USA 110: 17492-17497. [Crossref]
72. Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, et al. (2002) Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res 62: 660.
73. Shi XB, Xue L, Tepper CG, Gandot-Roberts E, Ghosh P, et al. (2007) The oncogenic potential of a prostate cancer-derived androgen receptor mutant. The prostate 67: 591-602.
74. Kung HJ, Evans CP (2009) Oncogenic activation of androgen receptor. Urol Oncol 27: 48-52. [Crossref]
75. Sun SH, Sprenger CCT, Vessella RL, Haugh K, Soriano K, et al. (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120: 2715-2730.
76. Young L, Creevey L, Ali A, Hill ADK, McIvor M (2015) Investigation into the oncogenic potential of the androgen receptor in aromatase inhibitor resistant breast cancer. In Thirty- Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium, San Antonio, TX.
77. Liang M, Adisetiyoh H, Liu A, Liu R, Gill P, et al. (2015) Identification of androgen receptor splice variants in the pten deficient murine prostate cancer model. PLoS One 10: e0131232.
78. Gucaup A (2013) Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res 19: 5565-5572.
79. Coindet J (1821) Nouvelles recherches sur les effects de l'iode,et sur les cautions survere dansle traitment du goitre par ce nuveau remide. Jpn J Med Sci Biol 51: 781-786. [Crossref]
80. Goldberg RC, Chaikoff IL (1952) Induction of thyroid cancer in the rat by radioactive iodine. J Clin Endocrinol Metab 11: 138-146. [Crossref]
81. Mirand EA, Reiniiard MC, Goltz HL, Moore GE (1953) Development of sarcomas in mice injected with a glucocorticoid receptor and breast cancer. J Steroid Biochem 14: 1317-1324.
82. Melhem A, Yamada SD, Fleming GF, Delgado B, Brickley DR, et al. (2009) Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGI1 and MKP1/DUSP1 in ovarian tissues. Cancer Res Clin 215: 3196-3204. [Crossref]
83. Isikbog M, Otto K, Kregel S, Kach J, Cai Y, et al. (2014) Glucocorticoid receptor activity contributes to resistance in androgen-targeted therapy in prostate cancer. Horm Cancer 5: 72-89. [Crossref]
84. Varricchio L (2011) The dominant negative beta isoform of the glucocorticoid receptor is uniquely expressed in erythroid cells expanded from polycythemia vera patients. Blood 118: 425-425.
85. Coindet J (1821) Nouvelles recherches sur les effects de l'iode,et sur les cautions survere dansle traitment du goitre par ce nuveau remide. [Crossref]
86. Young L, Creevey L, Ali A, Hill ADK, McIvor M (2015) Investigation into the oncogenic potential of the androgen receptor in aromatase inhibitor resistant breast cancer. In Thirty- Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium, San Antonio, TX.
87. Liang M, Adisetiyoh H, Liu A, Liu R, Gill P, et al. (2015) Identification of androgen receptor splice variants in the pten deficient murine prostate cancer model. PLoS One 10: e0131232.
101. Newfield RS, Kalaitzoglou G, Licholai T, Chilton D, Ashraf J, et al. (2000) Normocorticoidic Cushing’s syndrome initially presenting with increased glucocorticoid receptor expression. J Clin Endocrinol Metab 85: 14-21.

102. Johanssen S and Allolio B (2007) Mifepristone (RU486) in Cushing’s syndrome. Eur J Endocrinol 157: 561-569.

103. Skor MN, Wonder EL, Kecherginsky M, Goyal A, Hall BA, et al. (2013) Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin Cancer Res 19: 6163-6172. [Crossref]

104. Risch HA (1998) Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst 90: 1774-1786. [Crossref]

105. Althuis MD, Fergenbaum JH, Garcia-Closs M, Sherman ME (2004) Etiology of hormone receptor-defined breast cancer: A systematic review of the literature. Cancer Epidemiol Biomarkers Prev 10: 1558-1568. [Crossref]

106. Richards JS, Farookhi R (1978) Gonadotrophins and ovarian-follicular growth. Obstet Gynecol 5: 363-373. [Crossref]

107. Choi JH, Choi KC, Auerberg N, Leung PCK (2004) Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in premenopausal ovarian surface epithelial cells. J Clin Endocrinol Metab 89: 5506-5516. [Crossref]

108. Hull ME, Kriner M, Schneider E, Maiman M (1996) Ovarian cancer after successful ovulation induction: a case report. J Reprod Med 41: 52-54. [Crossref]

109. Shunah A, Patièl E, Iosovich J, Elchalal U, Peretz T, et al. (1996) Human menopausal gonadotropin and the risk of epithelial ovarian cancer. Fertil Steril 65: 13-18. [Crossref]

110. Brinton LA, Lamb EJ, Moghissi KS, Scoccia B, Althuis MD, et al. (2004) Ovarian cancer risk after the use of ovulation-stimulating drugs. Obstet Gynecol 103: 1194-1203. [Crossref]

111. Hauksdóttir H, Privalsky ML (2001) DNA recognition by the aberrant retinoic acid receptor pathway. Mol Cell 9: 616-623. [Crossref]

112. Grignani F, Ferrucci P, Testa U, Talamo G, Fagioli M, et al. (1993) The acute promyelocytic leukemia-specific PML-RARa fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74: 423-431. [Crossref]

113. Rousselot P, Hardas H, Patel A, Guidera F, Gaken J, et al. (1994) The PML-RARa gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 9: 545-551. [Crossref]

114. Yoshida H, Kitamura K, Tanaka K, Osumi M, Miyazaki T, et al. (1996) Accelerated growth factor receptor activation in glioblastoma through novel missense mutations in its extracellular domain. Cancer Res 56: 2945-2948. [Crossref]

115. Kataria A, Pattri K, Pauk J, Paulet J, et al. (2004) The PML-RARa gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 9: 545-551. [Crossref]

116. Segalla S1, Rinaldi L, Kilstrup-Nielsen C, Badaracco G, Minucci S, et al. (2003) Synergy against PML-RARa: targeting downstream effectors. Mol Cancer Res 1: 133-1342. [Crossref]

117. Marstrand TT (2010) A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia 24: 1265. [Crossref]

118. Lallemand-Breitenbach V, de The H (2010) A new oncoprotein catabolism pathway. Blood 116: 2200-2201. [Crossref]

119. Podhorecka M, Macheta A (2013) Acute promyelocytic leukemia—modest approach to disease pathogenesis and differentiation treatment. Postepy Hig Med Dosw 67: 1083-1089. [Crossref]

120. Dos Santos GA, Kats L, Pandolfo PP (2013) Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J Exp Med 210: 2793-2802. [Crossref]

121. Humbert M (2014) The tumor suppressor gene DAPK2 is induced by myeloid transcription factors pu.1 and c.EBPα during granulocytic differentiation but repressed by PML-RARa in APL. J Leuk Biol 95: 83-93. [Crossref]

122. Braekerle E, Douet-Guilbert N, De Braekeleer M (2014) RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol 7: 347-357. [Crossref]

123. Rietveld LE, Caldenhoven E, Stenvenen HG (2001) Avian erythroleukemia: a model for compressor function in cancer. Oncogene 20: 3190-3198. [Crossref]

124. Cohen S, Ushiro H, Stouchc C, Chinkers M (1982) A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 257: 1523-1531. [Crossref]

125. Brown GL, Nanney LB, Griffin J, Cramer AB, Yancey JM, et al. (1989) Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med 321: 76-79. [Crossref]

126. Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS (2007) Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 19: 2013-2023. [Crossref]

127. Lallemand-Breitenbach V, de Thé H (2010) A new oncoprotein catabolism pathway. Nature Medicine 14: 1333-1342. [Crossref]

128. Merlino GT, Xu YH, Ishii S, Clark AJ, Semb K, et al. (1984) Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells. Science 224: 417-419. [Crossref]

129. Ulrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, et al. (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431epidermoid carcinoma cells. Nature 309: 418-425. [Crossref]

130. Santon JB, Cronin MT, MacLeod CL, Mendelsohn J, Masui H, et al. (1986) Effects of epidermal growth factor receptor concentration on tumorigenicity of A431 cells in nude mice. Cancer Res 46: 4701-4705. [Crossref]

131. Kamata N, Chida K, Rikimaru K, Hortkossi M, Enomoto S, et al. (1986) Growth-inhibitory effects of epidermal growth factor and overexpression of its receptors on human squamous cell carcinomas in culture. Cancer Res 46: 1648-1653. [Crossref]

132. Minke JHM, Schuring VAN, Van der Begehe R (1991) Isolation of two distinct epithelial cell lines from a single feline mammary carcinoma with different tumorigenic potential in nude mice and expressing different levels of epidermal growth factor receptor. Cancer Res 51: 4028-4031. [Crossref]

133. Lee JC, Vivanco I, Beroukhim R, Huang JH, Feng WL, et al. (2006) Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in extracellular domain. PLoS Medicine 3: e485. [Crossref]

134. Miltra S, Han S, Soderstrom K, Wong A (2012) Preferential expression of an oncogenic receptor in brain tumor stem cells: Identification and targeting using an engineered antibody. In: Proc Am Assoc Cancer Res. Cancer Res p. 72. [Crossref]

135. Hembrough T, Thayarambili S, Liao WL, Darfler M, Krishnan D, et al. (2012) Quantitative multiplexed SRM analysis of oncogenic receptors in FFPE colorectal carcinoma tissue. AACR 103rd Annual Meeting Chicago, IL. Cancer Res 72: 5537- [Crossref]

136. Godin-Heymann N, Bryant I, Rivera MN, Ulkus L, Bell DW, et al. (2007) Oncogenic activity of epidermal growth factor receptor kinase mutant alleles is enhanced by the T790M drug resistance mutation. Cancer Res 67: 7319-7326. [Crossref]
145. Rosell R, Molina MA, Costa C, Simonetti S, Gimenez-Capitan A, et al. (2011) Pretreatment EGFR T790M mutation and BRCA1 mRNA expression in erlotinib-treated advanced non-small-cell lung cancer patients with EGFR mutations. *Clin Cancer Res* 17: 1160-1168. [Crossref]

146. Karachaliou N, Gimenez-Capitan A, Drozdowski A, Viteri S, Moran T, et al. (2014) ROR1 as a novel therapeutic target for EGFR-mutant non-small-cell lung cancer patients with the EGFR T790M mutation. *Transl Lung Cancer Res* 3: 122-130. [Crossref]

147. Gallant JN, Sheehan JH (2015) EGFR kinase domain duplication(EGFR-KDD) is a novel oncogenic driver in lung cancer that is clinically responsive to afatinib. *Cancer Discov* 5: 1155-1163.

148. Konduri K, Gallant JN, Chaz YK, Giles FJ, Gitlitz BJ, et al. (2016) EGFR Fusions as Novel Therapeutic Targets in Lung Cancer. *Cancer Discov* 6: 601-611. [Crossref]

149. Ichihara E, Takeda H, Kubo T, Hirano S, Yoshino T, et al. (2009) Chemopreventive effect of gefitinib on nonsmoking-related lung tumorigenesis in activating epithelial growth factor receptor transgenic mice. *Cancer Res* 69:7088-95.

150. Blesa JM1, Mollá SB, Esparcia MF, Ortells JM, Godoy MP, et al. (2012) Durable complete remission of a brainstem glioma treated with a combination of bevacizumab and cetuximab. *Case Rep Oncol* 5: 676-681. [Crossref]

151. Rodriguez PC, Rodriguez G, Gonzalez G, Crombet T, Lage A (2010) Clinical development and perspectives of CIN/Axon EGFr, Cuban vaccine for non-small-cell lung cancer therapy. *MEDICC Rev* 12: 17-23.

152. Gonzalez G, Crebret T, Lage A (2011) Chronic vaccination with a therapeutic EGFR-based cancer vaccine: a review of patients receiving long lasting treatment. *Curr Cancer Drug Targets* 11: 103-110. [Crossref]

153. Paugh BS, Zhu X, Qu C, Endersby R, Diaz AK, et al. (2013) Novel oncogenic PDGFRα mutations in pediatric high-grade gliomas. *Cancer Res* 73: 6219-6229.

154. Yamada Y, Rothenberg ME, Lee AW, Akei HS, Brandt EB, et al. (2006) The FIP1L1-PDGFRα fusion gene cooperates with IL-5 to induce murine hyper- eosinophilic syndrome (HES)/chronic eosinophilic leukemia(CEL)-like disease. *Blood* 107: 4071-79.

155. Golub TR, Barker GF, Lovett M, Gilliland DG (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with (8;12)(p15;q12) chromosomal translocation. *Cell* 77: 307-316. [Crossref]

156. M, Ueda I, Matsumura I, Ishikido I, Schwabe I, et al. (2003) Oncogenic receptor tyrosine kinase in leukemia. *Cell Mol Biol (Noisy-le-grand)* 99: 407-92. [Crossref]

157. Matsuda Y, Matsumoto K, Ichida T, Nakamura T (1995) Hepatocyte growth factor tyrosine kinase suppresses the onset of liver cirrhosis and abrogates lethal hepatic dysfunction in rats. *J. Biochem* 118: 643-649.

158. Olwill SA, Joffroy C, Gillie H, Vigna E, Matschiner G, et al. (2013) A highly potent and specific MET therapeutic protein antagonist with both ligand-dependent and ligand-independent activity. *Mol Cancer Ther* 12: 2459-2471.

159. Goyal L, Muzumdar MD, Zhu AX (2013) Targeting the HGF/c-MET pathway in hepatocellular carcinoma. *Cancer Discov* 3: 122-135. [Crossref]

160. Kentis B, Reed C, Rice KL, Sanda T, Rodig SJ, et al. (2012) Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. *Nat Med* 18: 1118-1122. [Crossref]

161. Kanda H, Tajima H, Lee GH, Nomura K, Ohtake K, et al. (1993) Hepatocyte growth factor/scatter factor-Met signaling induces transformation and the invasive/metastatic phenotype in C127 cells. *Oncogene* 13: 853-866.

162. Shiota G, Rhoads DB, Wang TC, Nakamura T, Schmidt EV (1992) Hepatocyte growth factor inhibits growth of hepatocellular carcinoma cells. *Proc Natl Acad Sci USA* 89: 373-377.

163. Gentile A, Trusolino L, Comoglio PM (2008) The Met tyrosine kinase receptor in development and cancer. *Cancer Metastasis Rev* 27: 85-94. [Crossref]

164. Medová M, Pochon B, Streit B, Blank-Liss W, Francica P, et al. (2013) The novel ATP-competitive inhibitor of the MET hepatocyte growth factor receptor EMD1214063 displays inhibitory activity against selected MET-mutated variants. *Mol Cancer Ther* 12: 2415-2424.

165. Goyal L, Muzumdar MD, Zhu AX (2013) Targeting the HGF/c-MET pathway in hepatocellular carcinoma. *Cancer Discov* 3: 122-135. [Crossref]

166. Medová M, Pochon B, Streit B, Blank-Liss W, Francica P, et al. (2013) The novel ATP-competitive inhibitor of the MET hepatocyte growth factor receptor EMD1214063 displays inhibitory activity against selected MET-mutated variants. *Mol Cancer Ther* 12: 2415-2424.

167. Chuaqui R, Liem B, C, et al. (2005) Inhibition of ligand-independent constitutive activation of the Met oncogenic receptor by the engineered chemically modified antibody DN30. *Mol Oncol* p: S1574.

168. Lobie PE (2005) The oncogenic potential of autocrine human growth hormone in breast cancer. *Twelfth International Congress of Endocrinology, Lisbon.*

169. Zhu T, Starling Emeral B, Zhang X, Lee KO, Gluckman PO, et al. (2005) Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. *Cancer Res.*

Hematol Med Oncol, 2016

doi: 10.15761/HMO.1000106

Volume 1(1): 30-40
188. Conway-Campbell BL, Wooll JW, Brooks AJ, Gordon D, Brown RJ, et al. (2007) Nuclear targeting of the growth hormone receptor results in dysregulation of cell proliferation and tumorigenesis. Proc Natl Acad Sci U S A 104: 13331-13336. [Crossref]

189. Lincoln DT, Kaiser HE, Raju GP, Waters MJ (2000) Growth hormone and colorectal carcinoma: localization of receptors. In Vivo 14: 41-49. [Crossref]

190. Yash C, Waters MJ, Brooks A (2014) The growth hormone receptor mediated oncogenesis. Institute for Molecular Bioscience, The University of Queensland.

191. Rosenbloom AL, Tamkoshi K, Mackney LR, Brandon MR (1990) New murine model for hepatocellular carcinoma, transgenic mice expressing metallothionein-growth hormone fusion gene. J Natl Cancer Inst 82: 393-398.

192. Orme SM, McNally RJ, Cartwright RA, Belchetz PE (1998) Mortality and cancer incidence in acromegaly: a retrospective cohort study. J Clin Endocrinol Metab 83: 2736-2734.

193. Tornell J, Rymo L, Isaksson OG (1991) Induction of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice. Int J Cancer 49: 114-117. [Crossref]

194. Jenkins PJ (2006) Cancers associated with acromegaly. Neuroendocrinology 83: 218-223. [Crossref]

195. mayo KE, hammer RE, swanson LW, Brinster RL, rosenfeld MG, et al. (1988) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion gene. J Clin Endocrinol Metab 84: 4436-4443. [Crossref]

196. Beuschiein F (2000) Acromegaly caused by secretion of growth hormone by a non-Hodgkin's lymphoma. N Engl J Med 342: 1871-1876.

197. Conway-Campbell BL, Wooh JW, Brooks AJ, Gordon D, Brown RJ, et al. (2007) Transgenic neuroendocrine cells expressing the human insulin-like growth factor-1 receptor promote ligand-dependent neoplastic transformation. J Biol Chem 282: 20851-20901. [Crossref]

198. Donini M (2007) G-CSF treatment of severe congenital neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms. Blood 109: 4716.

199. Hankinson SE (1998) Circulating concentrations of IGF-1 and risk of breast cancer. Lancet 351: 1391-1396.

200. Klinger B, Laron Z (1995) Three year IGF-I treatment of children with Laron syndrome. J Pediatr Endocrinol Metab 8: 149-158. [Crossref]

201. Rittmaster RS (2007) G-CSF receptor (CSF3R) mutations in X-linked neutropenia. J Pediatr 150: 196-199. [Crossref]

202. Zerler: C, Boxer L, Dale DC, Freedman MI, Kinye S, et al. (2000) Management of Kostmann syndrome in the G-CSF era. Br J Haematol 109: 490-495. [Crossref]

203. Donini M (2007) G-CSF treatment of severe congenital neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms. Blood 109: 4716.

204. hoover KE, hammer RE, swanson LW, Brinster RL, rosenfeld MG, et al. (1988) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion gene. J Clin Endocrinol Metab 84: 4436-4443. [Crossref]

205. McKinsey EL, Parrish JK, Irwin AE, Niemeyer BF, Kern HB, et al. (2011) A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/FLI1-regulated microRNAs. Oncogene 30: 4910-4920. [Crossref]

206. Iacobucci I (2016) Truncating erythropoietin receptor rearrangements in acute myeloid leukemia. Blood 124: 128-145.

207. Iacobucci I (2014) Cryptic truncating rearrangement of the erythropoietin receptor in ph-like acute lymphoblastic leukemia. Blood 123: 1102-1112. [Crossref]

208. Pisani P (2008) Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Int J Cancers 123: 1102-1112. [Crossref]

209. Orian JM, tamkoshi K, mackney LR, Brandon MR (1990) New murine model for hepatocellular carcinoma, transgenic mice expressing metallothionein-growth hormone fusion gene. J Natl Cancer Inst 82: 393-398.

210. Rosenbloom AL (2009) Mecasermin (recombinant human insulin-like growth factor I) for the management of growth hormone insensitivity syndrome. J Pediatr Endocrinol Metab 22: 115-130. [Crossref]

211. Hunter MG, Avalos BR (2000) Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival. Blood 95: 2132.

212. dormann M (2007) G-CSF treatment of severe congenital neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms. Blood 109: 4716.

213. Iacobucci I (2016) Truncating erythropoietin receptor rearrangements in acute myeloid leukemia. Blood 124: 128-145.

214. Iacobucci I (2016) Truncating erythropoietin receptor rearrangements in acute myeloid leukemia. Blood 124: 128-145.

215. Giorgino F, Belfiore A, Milazzo G, Costantino A, Maddux B, et al. (1991) Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype. Mol Endocrinol 5: 452-459. [Crossref]

216. Beel K, Van den Bergh P (2009) G-CSF receptor (CSF3R) mutations in X-linked neutropenia evolving to acute myeloid leukemia or myelodysplasia. Haematologica 94: 1449-1452. [Crossref]

217. Roemer KE, Dutky J, Polley EA, Fleischman AG, agarwal A, et al. (2013) The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood 122: 3628-3631. [Crossref]

218. Iacobucci I (2014) Cryptic truncating rearrangement of the erythropoietin receptor in ph-like acute lymphoblastic leukemia. Blood 124: 128-145.

219. Iacobucci I (2016) Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell 29: 186-200.

220. Giorgino F, Belfiore A, Milazzo G, Costantino A, Maddux B, et al. (1991) Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype. Mol Endocrinol 5: 452-459. [Crossref]

221. Giorgino F, Belfiore A, Milazzo G, Costantino A, Maddux B, et al. (1991) Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype. Mol Endocrinol 5: 452-459. [Crossref]

222. Vierimaa M, Vaahtera E, Kiviranta P, Leinonen M, Nieminen M, et al. (2012) Novel oncogenic HCC1937/FLI1 fusion gene in acute myeloid leukemia. Cancer Res 72: 1701-1707. [Crossref]

223. Klinger B, Laron Z (1995) Three year IGF-I treatment of children with Laron syndrome. J Pediatr Endocrinol Metab 8: 149-158. [Crossref]

224. Rittmaster RS (2007) G-CSF receptor (CSF3R) mutations in X-linked neutropenia evolving to acute myeloid leukemia or myelodysplasia. Haematologica 94: 1449-1452. [Crossref]

225. Blood 81: 2496.

226. Blood 95: 2132.

227. Blood 122: 3628-3631. [Crossref]

228. Iacobucci I (2014) Cryptic truncating rearrangement of the erythropoietin receptor in ph-like acute lymphoblastic leukemia. Blood 124: 128-145.

229. Iacobucci I (2016) Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell 29: 186-200.

230. Iacobucci I (2014) Cryptic truncating rearrangement of the erythropoietin receptor in ph-like acute lymphoblastic leukemia. Blood 124: 128-145.

231. Blood 95: 2132.

232. Blood 95: 2132.

233. Blood 95: 2132.

234. Blood 95: 2132.

235. Blood 95: 2132.

236. Blood 95: 2132.
233. De la Chapelle A (1993) Truncated erythropoietin receptor cause dominantly inherited benign human erythrocytosis. *Proc Natl Acad Sci USA* 90: 4495-4499.

234. Arcasoy MO, Karayal AF, Segal HM, Sinning JG, Forget BG (2002) A novel mutation in the erythropoietin receptor gene is associated with familial erythrocytosis. *Blood* 99: 3066-3069. [Crossref]

235. Forget BG, Degan BA, Arcasoy MO (2000) Familial polycythemia due to truncations of the erythropoietin receptor. *Trans Am Clin Climatol Assoc* 111: 38-44. [Crossref]

236. Perrotta S, Cucciolla V, Ferraro M, Ronzoni L, Tramontano A, et al. (2010) EPO receptor gain-of-function causes hereditary polycythemia, alters CD34 cell differentiation and increases circulating endothelial precursors. *PLoS One* 5: e12015. [Crossref]

237. Bento C (2013) Molecular study of congenital erythrocytosis in 70 unrelated patients revealed a potential causal mutation in less than half of the cases. *Eur J Hematol* 91: 361-368.

238. Maruyama M, Shibuya H, Harada H, Hatakeyama M, Seiki M, et al. (1987) Evidence for the participation of Oncogene interleukin-2 and IL-4 in the regulation of autonomous growth and tumorigenesis. *EMBO J* 6: 2705-2709. [Crossref]

239. Yamada G, Kitamura Y, Sonoda H, Harada H, Taki S, et al. (1987) Retroviral expression of the human IL-2 gene in a murine T cell line results in cell growth autonomy and tumorigenicity. *EMBO J* 6: 2705-2709. [Crossref]

240. Karasuayama H, Tohyama N, Tada T (1989) Autocrine growth and tumorigenicity of interleukin-2-dependent helper T cells transfected with IL-2 gene. *J Exp Med* 169: 13-25. [Crossref]

241. Nagarkatti M, Hassuneh M, Seth A, Manickasundari K, Nagarkatti PS (1994) Constitutive activation of the interleukin 2 gene in the induction of spontaneous in vitro transformation and tumorigenicity of T cells. *Proc Natl Acad Sci USA* 91: 7638-7642. [Crossref]

242. Hassuneh MR, Nagarkatti PS, Nagarkatti M (1997) Evidence for the participation of interleukin-2 (IL-2) and IL-4 in the regulation of autonomous growth and tumorigenesis of transformed cells of lymphoid origin. *Blood* 89: 610-620. [Crossref]

243. Laihi Y, Gras MP, Carbonnel F, Brouet JC, Berger R, et al. (1992) A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma. *EMBO J* 11: 3897-3904. [Crossref]

244. Goldsmith MA (1995) Growth signal transduction by the human interleukin-2 receptor requires cytoplasmic tyrosines of the beta chain and non-tyrosine residues of the rc chain. *J Biol Chem* 270: 21729-21737.

245. Rosenberg SA (1985) Observation on the systemic administration of autologous lymphokine- activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. *N Engl J Med* 313: 1485.

246. Bernard O, Ulrich A (1987) High-affinity interleukin 2 binding by an oncogenic hybrid interleukin 2-epidermal growth factor receptor molecule. *PNAS* 84:2125-2129.

247. Pike-Overzet K, de Ridder D, Weerkamp F, Baert MR, Venstegen MM, et al. (2006) Gene therapy: is IL2RG oncogenic in T-cell development. *Nature* 443: E5. [Crossref]

248. Grimaldi JC, Meeker TC (1989) The (5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. *Blood* 73: 2081-2085.

249. Steelman LS, Algate PA, Blaolock WL, Wang XY, Prevost KD, et al. (1996) Oncogenic effects of overexpression of the interleukin-3 receptor on hematopoietic cells. *Leukemia* 10: 528-542. [Crossref]

250. Durum SK1 (2014) IL-7 and TSLP receptors: twisted sisters. *Blood* 124: 4-5. [Crossref]

251. Sasson SC, Zaunders JJ, Kelleher AD (2006) The IL-7/IL-7 receptor axis: understanding its central role in T-cell homeostasis and the challenges facing its utilization as a novel therapy. *Cuv Drug Targets* 7: 1571-1582. [Crossref]

252. Shochat C, Tal N, Gryshkova V, Birger Y, Bandapalli OR, et al. (2014) Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. *Blood* 124: 106-110. [Crossref]

253. Mansour MM (2013) Targeting oncogenic interleukin-7 receptor signaling. *Blood* 122: 2535.

254. Ueda C, Akasaka T, Kurata M, Maesako Y, Nishikori M, et al. (2002) The gene for interleukin-21 receptor is the partner of BCL in t(3;16)(q27;p11), which is recurrently observed in diffuse large B-cell lymphoma. *Oncogene* 21: 368-376.

255. Moody P, Sayers EJ, Magnuson JP, Alexander C, Borri P, et al. (2015) Receptor crosslinking: A general method to trigger internalization and lysosomal targeting of therapeutic receptor: ligand complexes. *Molecular Therapy* 23: 1888-1898.

256. Kirschning CJ, Dreher S, Maass B, Fichte S, Schade J, et al. (2010) Generation of anti-TLR2 interbody mediating inhibition of macrophage surface TLR2 expression and TLR2-driven cell activation. *BMC Biotechnol* 10: 31. [Crossref]

257. Ornes S (2013) Antibody-drug conjugates. *Proc Natl Acad Sci USA* 110: 13695. [Crossref]

258. Zhao Y (2016) The oncogenic functions of nicotinic acetylcholine receptors. *Journal of Oncology* 3:1-9.