Einstein submanifolds with flat normal bundle in space forms are holonomic

M. Dajczer, C.-R. Onti and Th. Vlachos

Abstract

A well-known result asserts that any isometric immersion with flat normal bundle of a Riemannian manifold with constant sectional curvature into a space form is (at least locally) holonomic. In this note, we show that this conclusion remains valid for the larger class of Einstein manifolds. As an application, when assuming that the index of relative nullity of the immersion is a positive constant we conclude that the submanifold has the structure of a generalized cylinder over a submanifold with flat normal bundle.

A remarkable class of submanifolds in space forms are those that enjoy the property of being holonomic. An isometric immersion \(f : M^n \to Q^N_c \) of a Riemannian manifold into a space form of constant sectional curvature \(c \) is said to be holonomic if \(M^n \) carries a global system of orthogonal coordinates such that at any point the coordinate vector fields diagonalize its second fundamental form \(\alpha : TM \times TM \to N_fM \) with values in the normal bundle.

Among several interesting facts regarding holonomic submanifolds, we recall that they are a natural play-ground for the Ribaucour transformation \([2]\). As an application of the so called vectorial Ribaucour transformation as given in \([4]\), one can locally parametrically generate any proper holonomic submanifold in terms of a set of smooth functions whose Hessians are all diagonal with respect to the coordinate vector fields of a given orthogonal system of coordinates; see \([3]\) for details.

Since holonomic submanifolds have flat normal bundle, it is a standard fact (see \([6]\)) that at each point \(x \in M^n \) there exist a set of unique pairwise distinct normal vectors \(\eta_i \in N_fM(x), \ 1 \leq i \leq s = s(x) \), and an associated orthogonal splitting of the tangent space as

\[
T_x M = E_1(x) \oplus \cdots \oplus E_s(x)
\]

where

\[
E_i(x) = \{X \in T_x M : \alpha(X, Y) = \langle X, Y \rangle \eta_i \text{ for all } Y \in T_x M\}.
\]

2010 Mathematics Subject Classification. Primary 53B25; Secondary 53C40, 53C42.

Key words and phrases. Einstein submanifolds, holonomic submanifolds, flat normal bundle, principal normals.
Hence, the second fundamental form of f acquires the form
\[
\alpha(X, Y)(x) = \sum_{i=1}^{s} \langle X^i, Y \rangle \eta_i
\]
where $X \mapsto X^i$ is the orthogonal projection from $T_x M$ onto $E_i(x)$.

A submanifold $f : M^n \to \mathbb{Q}^N_c$ with flat normal bundle is said to be proper if $s(x) = k$ is constant on M^n. If this is the case, then the maps $x \in M^n \mapsto \eta_i(x), 1 \leq i \leq k$, are smooth vector fields, called the principal normal vector fields of f, and the distributions $x \in M^n \mapsto E_i(x), 1 \leq i \leq k$, are also smooth.

There are several conditions that imply that a submanifold of a space form has to be locally holonomic. By locally we mean along connected components of an open dense subset of the manifold. For instance, this is the case of any isometric immersion $f : M^n_c \to \mathbb{Q}^N_c$ with flat normal bundle of a manifold with the same constant sectional curvature as the ambient space form provided that index of relative nullity vanishes at any point; see [2] for a more general result. Recall that the index of relative nullity $\nu(x)$ of $f : M^n \to \mathbb{Q}^N_c$ at $x \in M^n$ is the dimension of the relative nullity subspace $\Delta(x) \subset T_x M$ given by
\[
\Delta(x) = \{ X \in T_x M : \alpha(X, Y) = 0 \text{ for all } Y \in T_x M \}.
\]

Isometric immersions $f : M^n_c \to \mathbb{Q}^{n+p}_c$ with sectional curvatures $c < \tilde{c}$ and in the least possible codimension $p = n - 1$ have flat normal bundle and thus are always locally holonomic. This was already known to Cartan [1] who made an exhaustive study of the subject and determined the degree of generality of such submanifolds. Moreover, being holonomic is also necessarily the case for $c > \tilde{c}$ but now under the extra condition that the submanifold is free of weak-umbilic points; see [5].

In this note, we show that results discussed above still hold for isometric immersions of the larger class of Einstein manifolds. In fact, this turns out to be the case even in the presence of a constant positive index of relative nullity, thus in the case of submanifolds of manifolds with the same constant sectional curvature the restriction mentioned above can be removed.

Theorem 1. Any isometric immersion $f : M^n \to \mathbb{Q}^N_c$ with flat normal bundle and proper of an Einstein manifold is locally holonomic.

Proof: It holds that M^n is Einstein with $\text{Ric}_M = \lambda I$ if and only if the vector fields
\[
\dot{\eta}_i = \eta_i - \frac{n}{2} H, \quad 1 \leq i \leq k,
\]
satisfy
\[
\|\dot{\eta}_i\|^2 = \frac{n^2}{4} \|H\|^2 + c(n - 1) - \lambda
\]
where H denotes the mean curvature vector field of f. To see this, we first observe that for any isometric immersion $f : M^n \to \mathbb{Q}^N_c$ a straightforward computation of the Ricci tensor using the Gauss equation yields

$$\text{Ric}_M(X, Y) = c(n - 1)\langle X, Y \rangle + n\langle \alpha(X, Y), H \rangle - \sum_{j=1}^{n}\langle \alpha(X, X_j), \alpha(Y, X_j) \rangle$$

where X_1, \ldots, X_n is an orthonormal tangent base. It follows easily using (1) that

$$\text{Ric}_M(X, Y) = c(n - 1)\langle X, Y \rangle + n\langle \alpha(X, Y), H \rangle - \sum_{i=1}^{s}\langle X^i, Y^i \rangle\|\eta_i\|^2$$

(3)

for all $X, Y \in TM$. From (1) and (3) we have that $\text{Ric}_M = \lambda I$ is equivalent to

$$c(n - 1) - \lambda = \|\eta_i\|^2 - n\langle H, \eta_i \rangle, \quad 1 \leq i \leq k,$$

and this in turn is equivalent to (2).

We claim that at any point the vectors $\eta_i - \eta_j$ and $\eta_i - \eta_\ell$ are linearly independent if $i \neq j \neq \ell \neq i$. Assume to the contrary that

$$\eta_i - \eta_j = \mu(\eta_i - \eta_\ell)$$

for some $\mu \neq 0$. Then

$$(1 - \mu)\hat{\eta}_i = \hat{\eta}_j - \mu\hat{\eta}_\ell$$

yields

$$\|\hat{\eta}_i\|^2 - 2\mu\|\hat{\eta}_i\|^2 + \mu^2\|\hat{\eta}_\ell\|^2 = \|\hat{\eta}_j\|^2 - 2\mu\langle \hat{\eta}_j, \hat{\eta}_\ell \rangle + \mu^2\|\hat{\eta}_\ell\|^2.$$

We have from (2) that the $\hat{\eta}_j$’s are of equal length. Thus

$$\langle \hat{\eta}_j, \hat{\eta}_\ell \rangle = \|\hat{\eta}_j\|\|\hat{\eta}_\ell\|$$

and hence $\hat{\eta}_j = \hat{\eta}_\ell$. This is a contradiction that proves the claim.

In order to conclude holonomicity it is a standard fact that it suffices to show is that the distributions E^\perp_j are integrable for $1 \leq j \leq k$. The Codazzi equation is easily seen to yield

$$\langle \nabla_X Y, Z \rangle(\eta_i - \eta_j) = \langle X, Y \rangle\nabla^\perp_Z \eta_i$$

(4)

and

$$\langle \nabla_X V, Z \rangle(\eta_j - \eta_\ell) = \langle \nabla_Y X, Z \rangle(\eta_j - \eta_\ell)$$

(5)

for all $X, Y \in E_i, Z \in E_j$ and $V \in E_\ell$ where $1 \leq i \neq j \neq \ell \neq i \leq k$.

It follows from (1) that the E_i’s are integrable. Thus, it is sufficient to argue for the case $k \geq 3$. In fact, it suffices to show that if $X \in E_i$ and $Y \in E_j$ then $[X, Y] \in E^\perp_\ell$ if $i \neq j \neq \ell \neq i$. We have from (5) that

$$\langle \nabla_X Y, Z \rangle(\eta_\ell - \eta_j) = \langle \nabla_Y X, Z \rangle(\eta_\ell - \eta_i)$$
for any $Z \in E_k$. We obtain using the result of the claim that

$$\langle \nabla_X Y, Z \rangle = \langle \nabla_Y X, Z \rangle = 0,$$

and this completes the proof. \hfill \Box

Let $g: L^{n-s} \to Q_c^N$, $1 \leq s \leq n - 1$, be an isometric immersion carrying a parallel flat normal subbundle $\mathcal{L} \subset N_gL$ of rank s. The generalised cylinder determined by the subbundle $\pi : \mathcal{L} \to L^{n-s}$ is the n-dimensional submanifold $f : M^n \to Q_c^N$ parametrized (at regular points) by means of the exponential map of Q_c^N as

$$\gamma \in \mathcal{L} \mapsto \exp_{g(\pi(\gamma))} \gamma.$$

We have that $\gamma \in \mathcal{L}$ is a regular point if and only if $P = I - A^g$ is nonsingular where A^g stands for the shape operator of g corresponding to γ. Also $N_fM = \mathcal{L}^\perp$, up to parallel identification along the fibers of \mathcal{L} that are contained in the relative nullity subspaces of f. Moreover, the relation between the second fundamental forms of f and g is given by

$$\alpha_f(X, Y) = (\alpha_g(X, PY))_{\mathcal{L}^\perp}$$

for all $X, Y \in TL$. It follows that f has flat normal bundle if and only if g has flat normal bundle.

The following result obtained in [3] asserts that any submanifold with a relative nullity distribution $x \in M^n \mapsto \Delta(x)$ of constant dimension whose conullity distribution $x \in M^n \mapsto \Delta^\perp(x)$ is integrable has to be a generalised cylinder.

Proposition 2. Let $g: L^{n-s} \to Q_c^N$ be an isometric immersion carrying a parallel flat normal subbundle $\mathcal{L} \subset N_gL$ of rank s such that

$$\{Y \in T_xL : (\alpha_g(Y, X))_{\mathcal{L}^\perp} = 0 \text{ for all } X \in T_xL\} = 0$$

for any point $x \in M^n$. Then the generalised cylinder over g determined by \mathcal{L} has relative nullity of constant dimension s and integrable conullity.

Conversely, any submanifold $f : M^n \to Q_c^N$ with relative nullity distribution Δ of constant dimension s and integrable conullity arises this way locally. This means that $\mathcal{L} = \Delta|_L$ is a parallel flat normal subbundle of $g = f|_L$ for any integral leaf L^{n-s} of the conullity and f is locally an open neighborhood of $g(L)$ in the generalised cylinder over g determined by \mathcal{L}.

We have the following consequence of Theorem [1].

Corollary 3. Let $f : M^n \to Q_c^N$ be an isometric immersion with flat normal bundle of an Einstein manifold that is proper and has constant index of relative nullity $\nu = s \geq 1$. Then f is locally a generalised cylinder over a submanifold $g : L^{n-s} \to Q_c^N$ with flat normal bundle.
Proof: Notice that if the index of relative nullity is \(\nu \geq 1 \) at any point and \(\nu > 1 \) at some point then it has to be constant since \(f \) is proper. The proof follows easily from Theorem 1 and Proposition 2.

References

[1] Cartan, E., *Sur les variétés de courbure constante d’un espace euclidien ou non-euclidien*, Bull. Soc. Math. France. 47, 125–160, (1919); 48, 132–208, (1920).

[2] Dajczer, M. and Tojeiro, R., *An extension of the classical Ribaucour transformation*, Proc. London Math. Soc. 85 (2002), 211–232.

[3] Dajczer, M., Florit, L. and Tojeiro, R., *Reducibility of Dupin submanifolds*, Illinois J. Math. 49 (2005), 759–791.

[4] Dajczer, M., Florit, L. and Tojeiro, R., *The vectorial Ribaucour transformation for submanifolds and applications*, Trans. Amer. Math. Soc. 359 (2007), 4977–4997.

[5] Moore, J., *Submanifolds of constant positive curvature I*, Duke Math. J. 44 (1977), 449–484.

[6] Reckziegel, H., *Krümmungsflächen von isometrischen Immersionen in Räume konstante Krümmung*, Math. Ann. 223 (1976), 169–181.

Marcos Dajczer
IMPA – Estrada Dona Castorina, 110
22460–320, Rio de Janeiro – Brazil
e-mail: marcos@impa.br

Christos-Raent Onti
University of Ioannina
Department of Mathematics
Ioannina–Greece
e-mail: chonti@cc.uoi.gr

Theodoros Vlachos
University of Ioannina
Department of Mathematics
Ioannina–Greece
e-mail: tvlachos@uoi.gr