Global Marine N\textsubscript{2} Fixation Estimates: From Observations to Models

Angela Landolfi*, Paul Kähler, Wolfgang Koeve and Andreas Oschlies

GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Fixed nitrogen (N) limits productivity across much of the low-latitude ocean. The magnitude of its inventory results from the balance of N input and N loss, the latter largely occurring in regionally well-defined low-oxygen waters and sediments (denitrification and anammox). The rate and distribution of N input by biotic N\textsubscript{2} fixation, the dominant N source, is not well known. Here we compile N\textsubscript{2} fixation estimates from experimental measurements, tracer-based geochemical and modeling approaches, and discuss their limitations and uncertainties. The lack of adequate experimental data coverage and the insufficient understanding of the controls of marine N\textsubscript{2} fixation result in high uncertainties, which make the assessment of the current N-balance a challenge. We suggest that a more comprehensive understanding of the environmental and ecological interaction of marine N\textsubscript{2} fixers is required to advance the field toward robust N\textsubscript{2} fixation rates estimates and predictions.

INTRODUCTION

Marine N\textsubscript{2} fixation, the largest source of fixed N to the ocean, maintains ocean fertility by compensating for N-losses via denitrification. Global warming, likely inducing ocean deoxygenation (Keeling et al., 2010), and increasing N load from the atmosphere and/or rivers, are perturbing the N cycle leading to increasing N loss via denitrification on the one hand (Codispoti et al., 2001; Codispoti, 2007) and to alterations of the niche of marine N\textsubscript{2} fixers on the other (Landolfi et al., 2017), with an unknown net effect on the N inventory. A prolonged mismatch between N inputs and losses would cause changes to the oceanic fixed N inventory, potentially affecting ocean productivity and ocean carbon (C) storage. Narrowing down the uncertainties in current N\textsubscript{2} fixation estimates is key to diagnosing any imbalance in the marine N budget and its effect on the marine C budget.

N\textsubscript{2} fixation can be inferred experimentally from incubation assays (Capone, 1993; Montoya et al., 1996), and from its geochemical imprint on nutrient (Gruber and Sarmiento, 1997) and stable N isotope distributions (Altabet, 2007). Geochemical estimates use the integrated N\textsubscript{2} fixation signature over large scales of space and time, smoothing any small-scale variability inherent in experimental N\textsubscript{2} fixation measurements. Traditionally, geochemical (Gruber, 2004) and experimental (Capone et al., 2005) estimates suggested highest N\textsubscript{2} fixation rates in the Tropical North Atlantic, remote from the region of largest pelagic N-loss in the Eastern Tropical Pacific. Although such spatial separation was difficult to reconcile with paleo-oceanographic evidence of a closely balanced N-cycle, considered to require tight stabilizing feedbacks between N-loss and N\textsubscript{2} fixation (Altabet, 2007), it was in line with the well-documented high energy and iron requirements of diazotrophs (Kustka et al., 2003) that would restrict them to warm and...
iron-rich waters. This view has been challenged by a model-based geochemical \(\text{N}_2 \) fixation estimate suggesting prevailing control by N deficits and close spatial coupling of \(\text{N}_2 \) fixation and N loss (Deutsch et al., 2007), and by new evidence from molecular techniques demonstrating a wider diversity of \(\text{N}_2 \) fixers and \(\text{N}_2 \) fixation strategies. This includes free-living unicellular cyanobacteria (Zehr et al., 1998; Montoya et al., 2004), cyanobacterial symbionts and heterotrophic phylotypes (see Foster et al., 2011; Bombar et al., 2016; Caputo et al., 2018), covering novel habitats such as aphotic waters (Bonnet et al., 2013; Benavides et al., 2015, 2016) and oxygen deficient zones (ODZs) (Fernandez et al., 2011; Jayakumar et al., 2012; Bonnet et al., 2013; Lösch et al., 2014, 2016; Turk-Kubo et al., 2014; Knapp et al., 2016). Recently, severe problems in applying the \(\text{N}_2 \) fixation assays came to light (Mohr et al., 2010). Considering this new evidence, using a constant correction factor of historical data, a doubling of \(\text{N}_2 \) fixation has been suggested (177 ± 8 Tg N y\(^{-1}\), Groškopp et al., 2012). Despite the pace of new discoveries, global \(\text{N}_2 \) fixation estimates remain highly uncertain (Gruber, 2016). The incomplete knowledge of the organisms involved and their physiological and ecological controls prevent any robust prediction of their distribution and activity. Here we present a brief overview of recent work covering experimental, geochemical, and model-based \(\text{N}_2 \) fixation estimates and discuss knowledge gaps. We suggest future research strategies to reduce the current uncertainty.

EXPERIMENTAL ESTIMATES

The compilation of surface marine \(\text{N}_2 \) fixation rate measurements (MARine Ecosystem DATa) by Luo et al. (2012), with more recent data from the North Pacific (Shiozaki et al., 2015a,b, 2017), western Pacific (Bonnet et al., 2009, 2015, 2017, 2018; Shiozaki et al., 2013, 2014b; Berthelot et al., 2017), eastern tropical South Pacific (Lösch et al., 2014, 2016; Knapp et al., 2016), Indian Ocean (Shiozaki et al., 2014a), and the tropical Atlantic (Groškopp et al., 2012; Singh et al., 2017), is presented in Figure 1. The measurements reported are mostly from bulk unfiltered upper ocean samples, including cyanobacteria and potentially other diazotrophs. Although highly variable, the highest depth-integrated \(\text{N}_2 \) fixation rates are found in the western tropical South Pacific (638 ± 1689 µmol N m\(^{-2}\) d\(^{-1}\), 201 profiles). These are larger than the traditionally high rates in the subtropical North Atlantic (182 ± 479 µmol N m\(^{-2}\) d\(^{-1}\), 636 profiles) and North Pacific (118 ± 101 µmol N m\(^{-2}\) d\(^{-1}\), 272 profiles). In the phosphate-rich waters of the eastern South Pacific average \(\text{N}_2 \) fixation is 86 ± 99 µmol N m\(^{-2}\) d\(^{-1}\) (213 profiles). Low rates are found in the southern Indian Ocean (<20 µmol N m\(^{-2}\) d\(^{-1}\), Shiozaki et al., 2014a), and in cold Bering Sea waters (10 µmol N m\(^{-2}\) d\(^{-1}\), Shiozaki et al., 2017). Based on the MAREDAT database, Luo et al. (2012) estimated a global \(\text{N}_2 \) fixation rate of 137 ± 9.2 Tg N y\(^{-1}\) (Table 1). Global extrapolations are difficult as observations remain sparse and highly variable in space and time (Figure 1). Only few ocean regions have sufficient data coverage to assess spatial, seasonal, or inter-annual variability (SD, Figure 1B). The large standard deviation in the western tropical South Pacific suggests a large spatio-temporal variability. The North Atlantic variability appears related to the strong spatial and temporal gradients of physical forcing and associated environmental factors (e.g., Mourino-Carballedo et al., 2011; Landolfi et al., 2016). The variability in the North Pacific is mostly associated with seasonal changes (Böttjer et al., 2016) and variable mesoscale activity (e.g., Church et al., 2009).

Experimental measurements have technical drawbacks. The acetylene reduction assay (Capone, 1993), a proxy measurement of both incorporated and exuded (gross) fixed \(\text{N}_2 \), measures the rate of ethylene production from added acetylene. Microbial activity repression (Fulweiler et al., 2015), low sensitivity and highly variable conversion factors for \(\text{C}_2\text{H}_4\text{N}_2 \) (Wilson et al., 2012), limit the robustness of this technique. The more widely (~75% of the measurements) applied method involves adding \(^{15}\text{N}_2 \) to a water sample and measuring the net incorporation of \(^{15}\text{N}_2 \) into plankton biomass after filtration (Montoya et al., 1996). This method may result in significant underestimation of \(\text{N}_2 \) fixation rates if the added \(^{15}\text{N}_2 \) gas is not equilibrated before the start of the incubation (Mohr et al., 2010; Wilson et al., 2012; Wannicke et al., 2018). The degree of underestimation is variable and dependent on the experimental conditions (incubation time, size of bottle, shaking vigor), making the correction of historical data with a constant factor arbitrary. The \(^{13}\text{N}_2 \) gas stock contamination by \(^{15}\text{NH}_4^+ \) or \(^{15}\text{NO}_3^- \), may result in \(\text{N}_2 \) fixation overestimate (Dabundo et al., 2014). Fixation rates may be underestimated if small cells (<2 µm) are lost during filtration, particularly affecting rates where small diazotrophs may dominate the \(\text{N}_2 \)-fixing community (Bombar et al., 2018). Robust quantification of low rates is currently limited by the low sensitivity and high potential errors of present methods (Gradoville et al., 2017; Moisander et al., 2017). Inadequate consideration of experimental biases must be warned against. Community efforts are being made toward a consensus on methods and protocols refinement\(^1\) for yielding more accurate and comparable fixation rates.

GEOCHEMICAL ESTIMATES

Geochemical estimates of \(\text{N}_2 \) fixation have been inferred from excess \(\text{NO}_3^- \) with respect to the Redfield-equivalent \(\text{PO}_4^- \) (the N* method), constructed from the high-quality global nutrient surveys (e.g., JGOFS/WHOCE; Conkright et al., 2002), combined with information on ocean ventilation ages derived from measurements of abiotic transient tracers such as chlorofluorocarbons (CFCs). This method rests on the assumption that nutrients’ departure from the global average ratio of \(\text{NO}_3^-:\text{PO}_4^- = 16:1 \) (RR, the Redfield ratio) is due to \(\text{N}_2 \) fixation adding (N:P > RR), and denitrification removing (N:P < RR), nitrogen. This approach has been used to compute North Atlantic \(\text{N}_2 \) fixation rates (Michaels et al., 1996; Gruber and Sarmiento, 1997; Hansell et al., 2004, 2007; Kähler et al., 2010), and derive a global estimate of

\(^1\)https://www.us-ocb.org/n-fixation-working-group/
FIGURE 1 | 1 × 1 degree grid (A) average and (B) standard deviation (SD) of depth integrated N_2 fixation rate (μmol N m$^{-2}$ d$^{-1}$) experimental measurements from the MAREDAT database (Luo et al., 2012) and 800 additional data points (see text for details). Gray squares in SD plot indicate one-only data point. Data distribution histogram is shown in the color bar. (C) Experimental (black), geochemical (blue), and model (red)-based estimated contribution (%) of the North Atlantic to global N_2 fixation rates. Models include those of the Coupled Model Intercomparison Project (CMIP5, see Table 1), a model with additional energetic costs of DOP uptake (UVIC2.9-ESM, Landolfi et al., 2017) and model experiments of Landolfi et al. (2015) accounting for preferential phosphorus remineralization (PREF), P^* and iron limitation and DOP uptake without (P^* and Fe and DOP), and with additional energetic and also N costs (P^*_{cost} and Fe and DOP cost).
110 ± 40 Tg N y\(^{-1}\) (Gruber and Sarmiento, 1997; Table 1). While this method has the advantage of integrating over large scales of space and time and implicitly includes potential contributions of non-cyanobacterial N\(_2\) fixation, several potential shortcomings have been discussed: Impacts of non-Redfield remineralization of organic matter were addressed in Landolfi et al. (2008), have been discussed: Impacts of non-Redfield remineralization of organic matter were addressed in Landolfi et al. (2008),

Table 1

Source	Pacific Tg N y\(^{-1}\)	Indian Tg N y\(^{-1}\)	Atlantic Tg N y\(^{-1}\)	Global Tg N y\(^{-1}\)
Luo et al., 2012	102 ± 20	–	34 ± 7	137 ± 9
Gruber and Sarmiento, 1997	28	110 ± 40		
Deutsch et al., 2007\(^{1}\)	95	22	20	137
CMIP5-MPI-ESM-LR\(^{3}\)	132	32	38	213
CMIP5-GFDL-ESM2G\(^{3}\)	106	28	36	181
CMIP5-GFDL-ESM2M\(^{3}\)	75	30	40	154
CMIP5-CanESM\(^{2}\)	72	28	28	130
CMIP5-IPSL-CMS2-LR\(^{2,4}\)	54	14	16	89
CMIP5-ESM\(^{6}\)	72	48	46	173
ESM-UVC2.9\(^{9}\)	73	31	24	128

\(^{1}\) Estimate from the Standard model that includes DOP\(^{*}\), which is 5% higher than P\(^{*}\)-only estimate. Coupled Model Intercomparison Project (CMIP5) model output has been retrieved from https://esgf-node.llnl.gov/projects/cmip5/.
\(^{2}\) Estimated from model C:N = 122:16. References a–f listed the model descriptions of the respective biogeochemical modules.
\(^{3}\) Estimated from model C:N = 122:16. References a–f listed the model descriptions of the respective biogeochemical modules.
\(^{4}\) Estimated from model C:N = 122:16. References a–f listed the model descriptions of the respective biogeochemical modules.
\(^{5}\) Estimated from model C:N = 122:16. References a–f listed the model descriptions of the respective biogeochemical modules.
\(^{6}\) Estimated from model C:N = 122:16. References a–f listed the model descriptions of the respective biogeochemical modules.
\(^{7}\) Estimated from model C:N = 122:16. References a–f listed the model descriptions of the respective biogeochemical modules.
\(^{8}\) Estimated from model C:N = 122:16. References a–f listed the model descriptions of the respective biogeochemical modules.
\(^{9}\) Estimated from model C:N = 122:16. References a–f listed the model descriptions of the respective biogeochemical modules.

Global N\(_2\) fixation estimates have been derived from models using both implicit (diagnostic) and explicit (prognostic) N\(_2\) fixation parameterizations. Implicit N\(_2\) fixation parameterizations used in some IPCC-type earth-system-models (ESM) are based on restoring-type approaches that simulate N\(_2\) fixation by restoring upper-ocean nutrient ratios toward Redfield NO\(_3:\)PO\(_4\) stoichiometry (MPI-ESM, Ilyina et al., 2013). This implies that N\(_2\) fixation is mainly restricted to areas with observed low NO\(_3:\)PO\(_4\) ratios. Other models restrict N\(_2\) fixation to N limited areas, but account also for light and temperature dependence (Can ESM, Zahariev et al., 2008) and phosphate and iron limitation (IPSL-PISCES, Aumont et al., 2015). These methods implicitly assume a constant standing stock of diazotrophs and thereby require fewer assumptions on not well-known ecophysiological processes and parameters compared to models that explicitly model the dynamics of diazotrophs. Explicit parameterizations of N\(_2\) fixation are mostly based on the assumption that diazotrophs are slow-growing photosynthetic organisms that can fix N\(_2\). This simple mechanistic approach results in diazotrophs being outcompeted by the faster growing ordinary phytoplankton in N-replete regions, yielding a control by excess PO\(_4\), or P\(^{*}\), in early on simple box-models (Tyrrell, 1999). Controls by other environmental factors such as temperature, light, iron (CESM, Moore et al., 2013) and also specific trade-offs (e.g., DOP-uptake, Landolfi et al., 2015) or nitrate and oxygen inhibition (GFDL-TOPAZ, Dunne et al., 2013) have been implemented in more complex functional-types ecosystem-ocean circulation models, modulating the rates and regional patterns of fixation. Some studies also parameterize different groups of diazotrophs, in particular Trichodesmium-type, unicellular cyanobacteria, and diatom-cyanobacterial associations (Monteiro et al., 2010). There is a significant spread in global and regional N\(_2\) fixation estimates by ESMs (Table 1). This arises from differences in model parameterizations and parameter values, and the different underlying circulation fields. In restoring approaches, N\(_2\) fixation is strongly associated with regions of NO\(_3\) deficits, or high P\(^{*}\), from denitrification in low-oxygen waters (Ilyina et al., 2013). This tight coupling is relaxed in parameterizations with temperature-dependent and Fe-limited growth rates, and also with NO\(_3\) uptake by diazotrophs (Moore et al., 2013; Landolfi et al., 2017) or NO\(_3\) inhibition of N\(_2\) fixation (Zahariev et al., 2008; Dunne et al., 2013; Aumont et al., 2015), which all tend to
reduce the simulated rates of N_2 fixation in NO$_3$-replete regions (e.g., Eastern Tropical South Pacific upwelling) and enhance them toward warm, dusty and P-rich waters in line with the traditional paradigm (Redfield et al., 1963; Falkowski, 1997). Most models do not reproduce the observed high fixation rates in the oligotrophic, dusty, North Atlantic due to the modeled low supply of P$^+$ in this region. This implies that unaccounted factors may also be important in controlling marine diazotrophs and require to go beyond the traditional paradigm. In a recent model study, we found that preferential phosphorus remineralization, dissolved organic phosphorus uptake (DOP), or Fe-limited growth, were all not able to significantly enhance P$^+$ supply and expand the diazotrophs’ niche in this region. Only accounting for the elevated N-cost of dissolved organic P scavenging allowed the success of diazotrophs in the N-rich P-poor North Atlantic (Landolfi et al., 2015; Figure 1C). This theory, however, awaits experimental testing. Current global models do not account for non-cyanobacterial N_2 fixation, which requires a more in-depth understanding of the relevant players, their ecophysiology and their environmental controls.

IMPLICATIONS FOR THE N BUDGET

As N_2 fixation and denitrification may be uncoupled, the oceanic N inventory is susceptible to imbalances. Despite the relatively short residence time of oceanic N of less than 3000 years (e.g., Somes et al., 2013), the geological isotopic record suggests a close-to-balanced budget over the past 3000 years (Altabet, 2007). This indicates the existence of negative feedbacks that stabilize the marine N reservoir. The nature, intensities and timescales of these feedbacks are still debated. Their effect on time scales shorter than those associated with the global ocean overturning circulation is assumed to require a spatial proximity of regions of N_2 fixation and N removal, such that any N deficit generated by denitrification in ODZs is rapidly compensated for by N_2 fixation (Deutsch et al., 2007). However, because denitrification consumes more N than is fixed per mole of organic P, a too tight spatial coupling would lead to net N removal (Landolfi et al., 2013). Thus any N deficit may need to be transported and compensated for far away from ODZ-influenced regions, suggesting that longer (ocean-circulation) timescales may be required to counteract any N imbalance (Landolfi et al., 2013; Somes et al., 2016).

Some studies suggested that N loss by denitrification may exceed, by more than 100 Tg N y$^{-1}$, the inputs of N from N_2 fixation, atmospheric and riverine supply, as a result of anthropogenic perturbations (Codispoti et al., 2001; Codispoti, 2007). While the recent revised estimates of N_2 fixation (Table 1), atmospheric and river N supply (39 and 34 Tg N y$^{-1}$, respectively, Jickell et al., 2017), and denitrification (120–240 Tg N y$^{-1}$, DeVries et al., 2013) may suggest a reduced imbalance to less than 100 Tg N y$^{-1}$, the annual rate and distribution at which N enters the ocean is still highly uncertain, making current and future N inventory projections speculative. The persistence of a 50–100 Tg N y$^{-1}$ imbalance for 100 years would cause the N inventory to decline by 0.75–1.5% (N inventory of 6.6 10^5 Tg N, Gruber and Galloway, 2008) possibly weakening the biological carbon pump.

Quantification of non-cyanobacterial N_2 fixation is currently hampered by the lack of reliable data (Moisander et al., 2017; Benavides et al., 2018) and knowledge of their metabolisms and environmental controls (Riemann et al., 2010; Bombar et al., 2016). However, biogeochemical observations can provide strong constraints on the potential magnitude of this process, which should leave its imprint on the spatial and vertical cumulative distributions of nutrients and the δ^{15}NO$_3$ signature in the ocean. Although thermodynamically favorable ($\Delta G < 0$), the reduction of N_2 to NH$_3$ requires a large input of energy, from light or organic matter degradation, to proceed at measurable rates (Postgate, 1982) and maintain a low-oxygen cellular environment for the functioning of the enzyme complex nitrogenase. In ODZs the energy requirements may be reduced and iron limitation, a further constraint in oxic surface waters, may be relaxed. Here fixing N_2 might be energetically advantageous compared with NO$_3$-uptake (Grosskopf and LaRoche, 2012). However, the low energetic efficiency of the anaerobic metabolism may quantitatively constrain the rates of non-cyanobacterial N_2 fixation, which may result in invisible (“cryptic”) nutrient and isotopic tracer-distributions patterns as denitrification and anammox may override its signature. Further investigations should assess the contribution of this process.

Our current understanding of stabilizing N-inventory feedbacks stands on the regulatory-competition between N_2 fixers and non-fixing phytoplankton (Redfield, 1963; Gruber, 2004). N_2 fixers fertilize the ocean with N until fixed N levels are, relative to P, high enough for their competitive exclusion. The potential for N inputs via non-cyanobacterial N_2 fixation independent of N deficits would fail this regulatory mechanism. Overall, the detailed mechanisms by which N_2 fixation responds to N losses are not well understood to have high confidence of marine nutrient cycles future predictions. In this context, the extent to which the North Atlantic stands out as a region of high N_2 fixation may be a pivotal question. Answering it will help to better understand how tight the feedback is between N_2 fixation and N loss processes.

SYNTHESIS AND OUTLOOK

All approaches to constrain global rates of N_2 fixation (experimental, geochemical, and model-based estimates) have their own uncertainties and biases. Albeit the recent progress we still lack a comprehensive knowledge of the relevant environmental and ecological interactions, which prevent us from making robust N_2 fixation rates estimates and predictions. To reduce the current level of uncertainty an improved understanding of the players, their ecological interactions, and the factors that control N_2 fixation in the ocean must be drawn from a collective research effort. This requires to take novel approaches that go beyond assuming simple correlations/sensitivities, but rather consider a combination of environmental factors and emerging ecological interactions, both in the field and in the laboratory. To this end, identifying essential
traits and ecological interactions experimentally, and develop mechanistic based models, may help us decipher the complexity of marine N\textsubscript{2} fixation and allow robust fixation estimates. As of now, the large uncertainties in existing N\textsubscript{2} fixation estimates and in the underlying feedbacks with N loss processes rule out reliable predictions. This task needs a fresh turn.

AUTHOR CONTRIBUTIONS

AL designed and wrote the paper. All authors contributed to the writing of the paper.

FUNDING

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) project SFB754.

REFERENCES

Altabet, M. A. (2007). Constraints on oceanic N balance/imbalance from sedimentary 15N records. *Biogeochemistry* 4, 75–86. doi: 10.5194/bg-4-75-2007

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M. (2015). PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies. *Geosci. Model Dev.* 8, 2465–2513. doi: 10.5194/gmd-8-2465-2015

Benavides, M., Bonnet, S., Berman-Frank, I., and Riemann, L. (2018). Deep into marine non-cyanobacterial diazotrophs: moving beyond molecular detection. *Front. in Microbiology*, 10:e0143775. doi: 10.1371/journal.pone.0143775

Bonnet, S., Caffin, M., Berthelot, H., Grosso, O., Benavides, M., Helias-Nunige, S., et al. (2018). In depth characterization of diazotrophic activity across the western tropical south pacific hot spot of N\textsubscript{2} fixation (OUTPACE cruise). *Biogeosciences* 15, 4215–4232. doi: 10.5194/bg-15-4215-2018

Böttjer, D., Dore, Karl, J. E., D. M. Letelier, R. M., Mahaffey, C., Wilson, S. T., Zehr, J., et al. (2016). Temporal variability of nitrogen fixation and particulate nitrogen export at Station ALOHA. *Limnol. Oceanogr.* 62, 200–216. doi: 10.1002/ino.10386

Capone, D. G. (1993). "Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure," in *Handbook of Methods in Aquatic Microbial Ecology*, eds P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (Boca Raton, FL: Lewis Publishers), 62–631.

Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C., Gunderson, T., et al. (2005). Nitrogen fixation by *Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean*. *Global Biogeochem. Cycles* 19:GB2024. doi: 10.1029/2004GB002331

Caputo, A., Stengen, M., Pernice, M. C., and Foster, R. A. (2018). A short comparison of two marine planktonic diazotrophic symbioses highlights an un-quantified disparity. *Front. Mar. Sci.* 5:2. doi: 10.3389/fmars.2018.00002

Church, M. J., Mahaffey, C., Letelier, R. M., Lukas, R., Zehr, J. P., and Karl, D. M. (2009). Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific Subtropical Gyre. *Glob. Biogeochem. Cycles* 23:GB2020. doi: 10.1029/2008GB003148

Codispoti, L. (2007). An ocean fixed nitrogen sink exceeding 400 Tg N a-1 vs the concept of homeostasis in the fixed nitrogen inventory. *Biogeochemistry* 4, 233–253. doi: 10.5194/bg-4-233-2007

Codispoti, L. A., Brandes, J. A., Christensen, J. P., Devol, A. H., Naqvi, S. W. A., Paerl, H. W., et al. (2001). The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? *Sci. Mar.* 65, 85–105. doi: 10.3989/scimar.2001.65s285

Conkright, M. E., Locarnini, R. A., Garcia, H. E., O’Brien, T. D., Boyer, T. P., Stephens, C., et al. (2002). *World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures* [CD-ROM Documentation]; Silver Spring, MD: National Oceanographic Data Center, 1–17.

Dabundo, R., Lehmann, M. F., Treibergs, L., Tobias, C. R., Altabet, M. A., Moisander, P. H., et al. (2014). The contamination of commercial 15N gas stocks with 15N-labeled nitrate and ammonium and consequences for

ACKNOWLEDGMENTS

We would like to thank S. Bonnet, C. Löschter, T. Shiozaki, and A. Singh for providing their N\textsubscript{2} fixation measurements. We acknowledge the Coupled Model Intercomparison Project (CMIP) for providing accessible model output (http://cmip9.llnl.gov). We acknowledge the World Climate Research Program’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. For CMIP the United States Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Many thanks to G. Volpe for his helpful input. Data to reproduce Figure 1 is available on https://data.geomar.de.
Fernandez, C., Farías, L., and Ulloa, O. (2011). Nitrogen fixation in denitrified marine waters. BioSci. 61, 235ñ246. doi: 10.1038/sj.bsci.2011.353

Gruber, N. (2004). High rates of

Montoya, J. P., Voss, M., Kähler, P., and Capone, D. G. (2004). High rates of

Keeling, R. F., Kortzinger, A., and Gruber, N. (2010). Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199ñ229. doi: 10.1146/annurev.marine.010908.163855

Knapp, A. N., Casciotti, L., Berelson, W. M., Prokopenko, M. G., and Capone, D. G. (2016). Low rates of nitrogen fixation in eastern tropical South Pacific surface waters. Proc. Natl. Acad. Sci. U.S.A. 113, 4398ñ4403. doi: 10.1073/pnas.1515641113

Koeve, W., and Kahler, P. (2016). Oxygen utilization rate (OUR) underestimates ocean respiration: a model study. Global Biogeochem. Cycles 30, 1166ñ1182. doi: 10.1002/2015GB005354

Kustka, A., Sanudo-Wilhelmy, S., Carpenter, E. J., Capone, D. G., and Rau, A. (2003). A revised estimate of the iron use efficiency of nitrogen fixation, with special reference to the marine cyanobacterium Trichodesmium spp. (Cyanophyta). J. Phycol. 39, 12ñ25. doi: 10.1046/j.1529-8817.2003.01156.x

Landolfi, A., Dietz, H., Koeve, W., and Oschlies, A. (2013). Overlooked runway feedback in the marine nitrogen cycle: the vicious cycle. Biogeosciences 10, 1351ñ1363. doi: 10.5194/bg-10-1351-2013

Landolfi, A., Dietz, H., and Volpe, G. (2016). Longitudinal variability of organic nutrients in the North Atlantic subtropical gyre. Deep Sea Res. Part I 111, 50ñ60. doi: 10.1016/j.dsr.2015.11.009

Landolfi, A., Koeve, W., Dietz, H., Kahler, P. N., and Oschlies, A. (2015). A new perspective on environmental controls of marine nitrogen fixation. Geophys. Res. Lett. 42, 4482ñ4489. doi: 10.1002/2015GL063756

Landolfi, A., Oschlies, A., and Sanders R. (2008). Organic nutrients and excess nitrogen in the North Atlantic subtropical gyre. Biogeosciences 5, 1199ñ1213. doi: 10.5194/bg-5-1199-2008

Landolfi, A., Somes, C. J., Koeve, W., Zamora, L. M., and Oschlies, A. (2017). Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene. Global Biogeochem. Cycles. 31, 1236ñ1255. doi: 10.1002/2016GB005633

Löscher, C. R., Bourbonnais, A., Dekaezemacker, J., Charoenpong, C. N., Altabet, M. A., Bange, H. W., et al. (2016). N2 fixation in eddies of the eastern tropical South Pacific Ocean. Biogeosciences 13, 2889ñ2889. doi: 10.5194/bg-13-2889-2016

Löscher, C. R., Großkopf, T., Desai, F. D., Gill, D., Schunck, H., Croot, P. L., et al. (2014). Facets of diazotrophy in the oxygen minimum zone waters off Peru. ISME J. 8, 2180ñ2192. doi: 10.1038/ismej.2014.71

Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., et al. (2012). Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst. Sci. Data 4, 47ñ73. doi: 10.5194/essd-4-47-2012

Michaels, A. F., Olson, D., Sarmiento, J. L., Ammerman, J. W., Fanning, K., Jahnke, R., et al. (1996). Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochemistry 35, 181ñ226. doi: 10.1023/A:1006197827

Mills, M. M., and Arrigo, K. R. (2010). Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton. Nat. Geosci. 3, 439ñ443. doi: 10.1038/ngeo856

Mohr, W., Großkopf, T., Wallace, D. W. R., and Laroche J. (2010). Methodological underestimation of oceanic nitrogen fixation rates. PLoS One 5:e0012583. doi: 10.1371/journal.pone.0012583

Moisander, P. H., Benavides, M., Bonnet, S., Berman-Frank, I., White, A. E., and Riemann, L. (2017). Chasing after non-cyanobacterial nitrogen fixation. Front. Microbiol. 8:1736. doi: 10.3389/fmicb.2017.01736

Montoya, J. P., Voss, M., Kähler, P., and Capone, D. G. (1996). A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl. Environ. Microbiol. 62, 986ñ993.
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K. (2013). Marine ecosystem dynamics and biogeochemical cycling in the community Earth system model [CESM1(BGC)]: comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. J. Clim. 26, 9291–9312. doi: 10.1175/JCLI-D-12-0566.1

Mourino-Carballido, B., Graña, R., Fernández, A., Bode, A., Varela, M., Domínguez, J. F., et al. (2011). Importance of N$_2$ fixation vs. nitrate eddy diffusion along a latitudinal transect in the Atlantic Ocean. Limnol. Oceanogr. 56, 999–1007. doi: 10.4319/lo.2011.56.3.0999

Postgate, J. R. (1982). The Fundamentals of Nitrogen Fixation. Cambridge: Cambridge University Press.

Redfield, A. C., Ketchum, B. H., Richards, F. A. (1963). “The influence of organisms on the composition of sea-water,” in The Composition of Seawater: Comparative and Descriptive Oceanography. The Sea: Ideas and Observations on Progress in the Study of the Seas, Vol. 2, ed. M. N. Hill (Hoboken, NJ: Wiley-Interscience), 26–77.

Riemann, L., Farmelid, H., and Steward, G. F. (2010). Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat. Microb. Ecol. 61, 235–247. doi: 10.3354/ame01431

Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi, T., et al. (2017). Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea. Global Biogeochem. Cycles 31, 1009–1009. doi: 10.1002/2017GB005681

Shiozaki, T., Ijichi, M., Kodama, T., Takeda, S., and Furuya. K. (2014a). Heterotrophic bacteria are major nitrogen fixers in the eutrophic zone of the Indian Ocean. Global Biogeochem. Cycles 28, 1096–1110. doi: 10.1002/2014GB004886

Shiozaki, T., Kodama, T., and Furuya K. (2014b). Large-scale impact of the island mass effect through nitrogen fixation in the western South Pacific Ocean. Geophys. Res. Lett. 41, 2907–2913. doi: 10.1002/2014GL059835

Shiozaki, T., Kodama, T., Kitajima, S., Sato, M., and Furuya, K. (2013). Advection transport of diazotrophs and importance of their nitrogen fixation on new and primary production in the western Pacific warm pool. Limnol. Oceanogr. 58, 49–60. doi: 10.4319/lo.2013.58.1.0049

Shiozaki, T., Nagata, T., Ijichi, M., and Furuya, K. (2015a). Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific. Biogeochemistry 12, 4751–4764. doi: 10.5194/bg-12-4751-2015

Shiozaki, T., Takeda, S., Itoh, S., Kodama, T., Liu, X., Hashihama, F., et al. (2015b). Why is Trichodesmium abundant in the Kuroshio? Biogeosciences 12, 6931–6943. doi: 10.5194/bg-12-6931-2015

Singh, A., Bach, L. T., Fischer, T., Hauss, H., Kiko, R., Paul, A. J., et al. (2017). Niche construction by non-diazotrophs for N$_2$ fixers in the eastern tropical North Atlantic Ocean. Geophys. Res. Lett. 44, 6904–6913. doi: 10.1002/2017GL074218

Somes, C. J., Landolfi, A., Koewe, W., and Oschlies, A. (2016). Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model. Geophys. Res. Lett. 43, 4500–4509. doi: 10.1002/2016GL068335

Somes, C. J., Oschlies, A., and Schmittner, A. (2013). Isotopic constraints on the pre-industrial oceanic nitrogen budget. Biogeosciences 10, 5889–5910. doi: 10.5194/bg-10-5889-2013

Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–553. doi: 10.1038/22941

Turk-Kubo, K. A., Karamchandani, M., Capone, D. G., and Zehr, J. P. (2014). The paradox of marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environ. Microbiol. 16, 3095–3114. doi: 10.1111/1462-2920.12346

Wilson, S. T., Böttjer, D., Church, M. J., and Karl, D. M. (2012). Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 78, 6516–6523. doi: 10.1128/AEM.01146-12

Zahariev, K., Christian, J. R., and Denman, K. L. (2008). Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N$_2$ fixation. Progr. Oceanogr. 77, 56–82. doi: 10.1016/j.pocean.2008.01.007

Zamora, L. M., Landolfi, A., Oschlies, A., Hansell, D. A., Dietze, H., and Dentener, F. (2010). Atmospheric deposition of nutrients and excess N formation in the North Atlantic. Biogeosciences 7, 777–793. doi: 10.5194/bg-7-777-2010

Zehr, J. P., Mellon, T., and Zani. S. (1998). New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl. Environ. Microbiol. 64, 3444–3450.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.