Abstract: This study was conducted in the Poultry Field of the College of Agriculture, Basrah University for the period from 20/9/2019 to 24/10/2019 to investigate the effect of adding different levels of *Portulaca oleracea* L. seeds and leaves powder on some physiological characteristics of broilers. A total 216 one day old unsexed Ross-308 broiler chicks were used in this study. The chicks were randomly distributed into six treatments replicated three times (12 chicks each replicate). The experiment was designed as a completely randomized design (CRD). The first treatment was control (basal diet), *P. oleracea* seed powder was added as 5 & 10 g.kg\(^{-1}\) for the 2\(^{nd}\) and 3\(^{rd}\) treatments. Leaves powder was added as 5 and 10 g.kg\(^{-1}\) to the basal diet in treatment 4\(^{th}\) and 5\(^{th}\). In the 6\(^{th}\) treatment 5 gm of seed and 5 gm of leaves powder was added to the basal diet. The results showed that there was a significant (\(P <0.05\)) decrease in serum glucose, cholesterol and triglyceride concentrations in all additive treatments compared to control. There was also a significant decrease (\(P <0.05\)) in *Escherichia coli* bacteria count, as well as a significant improvement (\(P <0.05\)) in the number of Lactobacilli bacteria in all addition treatments compared to the control group. The addition of *P. oleracea* seeds and leaves powder had no significant effect on some haematological indices and on the total protein concentration in the serum. The study confirms the importance of adding powder of seeds or leaves in the broiler diet because it has a positive role in improving some of the physiological and microbial blood characteristics of the broiler.

Keywords: *Portulaca oleracea*, Broiler chicks, Physiological, Microbial characteristics.

Introduction: The poultry industry is witnessing an increasing growth in production, either meat or eggs, which requires providing balanced diets that meet the increase in the number of birds on the one hand and the rapid broiler growth on the other hand, with the necessity of the diet linked to the quality of the product and the extent of acceptance by the consumer (Oz et al., 2017). As a result of the harm caused by the antibiotics used in feeding poultry to human and animal health through the resistance of pathogens and their residues in poultry meat (Soltan et al., 2008; Dalkili & Guler, 2009). So, the researchers tended to use medicinal plants and
herbs as safe feed additives in poultry diets, as they have a positive role in stimulating growth, improving the immune system and physiological traits of birds (Jugl-Chizzola et al., 2006; Özer et al., 2007; Al-Salhie & Al-Waeli, 2019; Hussein & Jassim, 2019; Sultan et al., 2019; Al-Salhie & Makki, 2020). In addition to stimulating beneficial microorganisms within the intestines of birds, which contributes to the digestion of many nutrients and make them available to birds (Tekeli et al., 2006). Therefore, it has become a modern practice to include poultry diets natural antioxidants to increase bird productivity and resistance to many common diseases (Ognik et al., 2016).

Portulaca oleracea plant is one of the natural additives because it contains many biologically active compounds such as sugars, proteins and fats (Aberoumand, 2009), its high content of minerals such as calcium, potassium, magnesium and iron (Uddin et al., 2012), in addition to beta-carotene, glutathione, melatonin (Naeem & Khan, 2013). This plant is rich in essential amino acids and linoleic acid (omega 3) in addition to tocopherol and ascorbic acid, these compounds improve meat quality, flavour, and total acceptance (Uddin et al., 2014). The addition of *P. oleracea* seed powder to the quail and broiler diet improved the production and enhanced the immune system (Konca et al., 2015; Kartikasari et al., 2018). When leaves powder was used, birds showed better performance and physiological parameters (Ghorbani et al., 2014; Habibian et al., 2017).

This study was conducted to find out the impact of *P. oleracea* seeds and leaves powder on some physiological traits of broiler and its effect on the intestine’s microorganisms.

Materials & Methods

This study was conducted in the Poultry Fields of the Consulting Office of the College of Agriculture, University of Basrah for the period from 20/9/2019 to 24/10/2019 for 35 days. A total of 216 unsexed one day old Ross 308 chicks with an average weight of 38 g were purchased from a private Al-Taji hatchery in Baghdad province. The chicks were randomly distributed into six treatments, at the rate of three replicates per treatment and 12 birds per replicate in. The chicks were raised in 18 cages (70 × 70 cm), with a height of 30 cm from the floor.

All necessary managements for rearing practices from providing heat and ventilation within the ideal limits for the growth of chicks. The chicks were *ad-libitum* fed on a starter diet for 1–21 days and a final ration for the period 22–35 days (Table 1). Chemical analysis of *P. oleracea* seeds and leaves powder were carried out according to AOAC (2016) (Table 2). The experiment included six experimental treatments, the first treatment was control (the basal diet), and *P. oleracea* seeds powder was added to the basal diet at levels of 5 or 10 (g.kg⁻¹) in the second and third treatment respectively, and leaves powder at levels of 5 or 10 (g.kg⁻¹) in the fourth and fifth treatments respectively, and mixing of seeds and leaves powder at level 5 + 5 (g.kg⁻¹) in the sixth treatment throughout the trial period.

Blood samples (5 ml.bird⁻¹) were collected from the birds during their slaughtering at the age of 35 days (3 birds per treatment). Samples distributed to two types of tubes the first type was free of coagulation material was placed after taking blood samples in a centrifuge (3000 rpm) to separate the blood components. Serum kept at a degree (-20) ° C to estimate total
protein, glucose, cholesterol and triglycerides following the instructions in the manual attached with the kits for each estimate.

Table (1): Ingredients and chemical composition of basal diet.

Feed ingredients	Starter diet (%) 1-21 days	Finisher diet (%) 22-35 days
Corn	58.00	60.00
Wheat	4.00	4.00
Soy bean meal (48%)	31.00	29.00
Plant oil	1.00	1.00
Protein concentrate (40%)*	5.00	5.00
Lime stone (CaCO3)	0.70	0.70
Vitamins & minerals premix	0.15	0.15
Table salt (NaCl)	0.15	0.15
Total	100	100

Calculated chemical analysis**

	Starter diet (%) 1-21 days	Finisher diet (%) 22-35 days
Metabolizable energy (kcal. Kg⁻¹)	3010	3035
Crude protein (%)	22.37	21.58
Raw fat (%)	2.76	2.82
Crude fibre (%)	3.72	3.62
Calcium (%)	0.63	0.61
Available phosphorous (%)	0.30	0.33
Lysine (%)	1.19	1.14
Methionine + Cysteine (%)	0.83	0.81
Energy: protein	134.55	140.64

* Protein concentrate (Brocorn-5 special) produced by Allblasserdam-Holland Wafi B. V. contain 40% protein, 2107 Kcal.kg⁻¹ metabolizable energy, 5% fat, 2.20% crude fiber, 7.10% moisture, 28.30% crude ash, 4.2% calcium, 2.65% total phosphorus, 4.65% available phosphorus, 3.85% lysine, 3.70% methionine, 4.12% methionine+ cysteine, 0.42% tryptophan, 1.70% sodium, 4.20% chloride, 200 mg.kg⁻¹ Cu, 1.600 mg.kg⁻¹ Mn, 2000 mg.kg⁻¹ Zn, 2000 mg.kg⁻¹ Fe, 20.00 mg.kg⁻¹ Iodine, 5.00 mg.kg⁻¹ Se.

** Chemical analysis according to NRC (1994).

Table (2) : Chemical analysis of *P. oleracea* seeds and leaves powder based on dry weight.

Sample	Dry matter (%)	Raw fat (%)	Crude protein (%)	Total ash (%)	Dissolved carbohydrates (%)	Crude fibre (%)	Metabolizable energy kcal Kg⁻¹
Watercress seeds powder	91.4	11.03	11	10.7	54.27	13	2939.183
Watercress leaves powder	98.27	5.16	24	13.33	48.85	8.66	2753.757
The complete quantity of lipid peroxidation products in serum was tested using the thiobarbituric acid (TBA) technique, measuring reactive spectrophotometric malondialdehyde (MDA) materials at 532 nm. The second type of tube contains an EDTA anticoagulant to estimate some of the blood characteristics, which included the number of red and white blood cells, PCV and haemoglobin concentration (Al-Daraji et al., 2008). Also, the bursa of fabricius gland was isolated from the carcasses of birds at the age of 35 days and was weighed to determine the relative weight concerning the body weight (Al-Fayyad et al., 2011).

The intestinal microbial characteristics were studied by taking a sample of 1g of intestinal contents from the jejunum under aseptic conditions and transferred by sterile bottles to the laboratory within a period not exceeding 40 minutes and after making decimal dilutions with peptone water, the total, E. coli and Lactobacilli bacteria count were performed as described by Harrigan & McCance (1976).

A completely randomized design (CRD) was used for statistical analysis. Mean differences were tested by the revised least significant differences (RLSD) with the SPSS program (SPSS, 2012, version 21).

Results & Discussion

Blood characteristics

The effect of adding different levels of *P. oleracea* seeds and leaves powder on some haematological parameters was shown in table (3). As it is clear that there was no significant effect on the numbers of red and white blood cells, haemoglobin concentration and the PCV among all experimental treatments. These results were not in agreement with those of Sadeghi et al. (2016) who found significant differences in blood indices (RBC, WBC, PCV and Hb) of broiler chicks fed a ration with *P. oleracea* seed and leaves powder (1.00, 0.75, 0.50, 0.25,0)% compared to control. Also, it did not agree with Habibian et al. (2017) that there were significant differences P <0.05 in the blood indices (RBC, WBC, PCV and Hb) of broiler chicks fed a ration with *P. oleracea* seed and leaves powder (0, 1.5, 3.5 and 4.5) g. kg⁻¹, where 4.5 g. kg⁻¹ gave the best results compared to other treatments at 49 days of age. The reason is due to the different age of birds, as well as the difference in the levels of addition of seed powder.

Table (3). The effect of adding *P. oleracea* seeds and leaves powder on some blood indices of broiler chicks at the age of 35 days (Mean± SD)

Treatments	RBC (x10⁶ cell.ml⁻¹)	WBC (x10⁶ cell.ml⁻¹)	Hb (gm.100⁻¹ ml)	PCV %
T1	2.38±0.14a	21.86±0.58a	7.14±0.05a	27.00±0.58a
T2	2.73±0.00a	21.86±0.02a	7.27±0.00a	27.67±0.33a
T3	2.54±0.19a	21.86±0.02a	7.22±0.06a	28.33±0.33a
T4	2.61±0.07a	21.84±0.02a	7.27±0.01a	27.33±0.88a
T5	2.54±0.19a	21.87±0.00a	7.26±0.02a	27.00±0.58a
T6	2.48±0.14a	21.87±0.00a	7.25±0.01a	27.68±0.33a

T1= control, T2=adding 5 g.kg⁻¹ *P. oleracea* seed powder, T3=10g.kg⁻¹ *P. oleracea* seeds powder, T4=5 g.kg⁻¹ *P. oleracea* leaves powder, T5=10 g.kg⁻¹ *P. oleracea* leaves powder, and T6=5+5 g.kg⁻¹ *P. oleracea* seed+ leaves powder. The same letters vertically are not significant at (P<0.05).
Biochemical parameters

Table (4) shows the effect of different levels of *P. oleracea* seeds and leaves powder on serum biochemical parameters of 35 days old broiler chicks. The absence of significant effect among all levels of addition and control treatment in total protein concentration is evident. However, there was a significant decrease (P≤0.05) in the serum glucose concentration in T2-T6 compared to the control treatment in which the concentration of glucose was 288.37 (mg.100 ml⁻¹), and the T4 treatment recorded the lowest concentration of glucose (236.25 mg.100 ml⁻¹). This decrease is attributed to the presence of active compounds in the seeds and leaves *P. oleracea*, as it has some flavonoids that act similar to insulin action and increase glucose transporters and thus are able to reduce and lower the level of glucose in the blood (Kim *et al.*, 2005).

It was also noted from table (4), a significant decrease in (P≤0.05) in the cholesterol concentration was achieved with seed and leaf of *P. oleracea* treatments (T2, T3, T4, T5 and T6) compared to the control treatment. The low cholesterol level in the serum could be due to the presence of a high percentages of oleic acid in the seeds and leaves of the *P. oleracea*, which improves the health and immune status of the bird and thus lowers the level of cholesterol in the blood (Konca *et al.*, 2015). Likewise, the role of fatty acids, especially (omega 3), works to reduce cholesterol by transporting it to the intestine and oxidized by bile secretions (Uddin *et al.*, 2014).

Treatments	Total protein (g.100 ml⁻¹)	Glucose (mg.100ml⁻¹)	Cholesterol (mg.100ml⁻¹)	Triglycerides (mg.100 ml⁻¹)
T1	4.50±0.24a	288.37±4.90a	162.00±2.31a	125.18±1.74a
T2	4.88±0.40a	270.48±5.51a	105.54±2.33c	110.29±1.22b
T3	4.55±0.21a	277.77±4.22a	124.08±3.47b	105.76±1.14c
T4	4.44±0.00a	236.25±6.96c	122.14±2.80b	114.96±1.47b
T5	4.15±0.01a	240.29±3.20c	125.84±4.67b	105.53±1.50c
T6	4.57±0.05a	263.20±5.31b	120.73±3.00b	94.61±1.79d

Different letters vertically are significant at (P<0.05), T1=control, T2=5g.kg⁻¹ *P. oleracea* seed powder, T3= 10 g.kg⁻¹ *P. oleracea* seed powder, T4= 5g.kg⁻¹ *P. oleracea* leaves powder, T5= 10 g.kg⁻¹ *P. oleracea* leaves powder, T6= (5g+5g).kg⁻¹ *P. oleracea* seed and leaves powder.

Table (4) has shown the effect of the additional levels on the level of triglycerides. It was noticed that a significant decrease (P<0.05) in the concentration of triglycerides in the blood serum concerning the seeds and leaves powder of *P. oleracea* compared to the T1 control (125.18 mg.100ml⁻¹), the most significant decrease in T6 (94.61mg.100ml⁻¹). The decrease in the concentration of triglycerides in the blood serum as a result of the adding seeds and leaves powder of *P. oleracea* is due to the high level of linolenic acid that prevents the synthesis of fatty acids and triglycerides in the liver (Gill *et al.*, 1997).
These results agree with those of Ghorbani et al. (2013), Habibian et al. (2017), who proved that *P. oleracea* seed and leaves powder caused a reduction in cholesterol and triglycerides of broiler chicks.

Immunity characters

The effect of adding different levels of *Portulaca oleracea* seeds and leaves powder on the immune characteristics of broilers at the age of 35 days (Table 5). The results indicated that there was no significant effect on fabricius gland and gland index. However, there was a significant \((P<0.05)\) on some oxidant indices as thiobarbituric acid (TBA) level of chicks’ serum fed diets contain *P. oleracea* seeds or leave powder, as TBA levels of treatments 2, 3, 4, 5 and 6 decreased \((P<0.05)\) in comparison with the control group. Where the occurrence of oxidative rancidity is considered a criterion for increasing the oxidative indicators in the blood serum and as a result of this oxidation, aldehyde compounds are formed that interact these compounds with acid TBA (Zeb, 2015).

Malondyde (MDA) It is considered a measure of the oxidation of unsaturated fatty acids and its knowledge of peroxidation of fats and this peroxide that works to decompose unsaturated fatty acids and thus get rid of the fats accumulated in the membranes and prevent the formation of aldehydes. The common way to measure MDA is the interaction of Thiobarbituric acid (TBARS) with Thiobarbituric acid materials (TBA) at 532 nm reduction due to the addition of *P. oleracea* seeds or leaves powder may be attributed to the presence of lipid peroxide that degrades unsaturated fatty acids in cellular membranes by self-eliminating free radicals to form (hydroperoxides) fat and thus preventing the formation of aldehyde compounds because increasing malondyde means to increase the effectiveness of free radicals (Zeb & Ullah, 2016).

Table (5). The effect of *P. oleracea* seed or leaves powder on fabricia gland, gland index and TBA of broiler chicks at the age of 35 days (Mean± SD).

Treatments	Fabricius gland (%)	Fabricius gland index	TBA(μ mol.ml⁻¹)
T1	0.177±0.009a	1.000±0.000a	0.2020±0.0289a
T2	0.179±0.013a	1.043±0.058a	0.167±0.0018b
T3	0.175±0.014a	1.053±0.022a	0.1567±0.0027c
T4	0.180±0.014a	1.040±0.010a	0.1433±0.0026d
T5	0.169±0.012a	1.063±0.012a	0.0970±0.000f
T6	0.171±0.014a	1.037±0.013a	0.1217±0.0024e

Different letters vertically are significant at \((P<0.05)\), T1=control, T2=5 g.kg⁻¹ *P. oleracea* seeds powder, T3= 10 g. kg⁻¹ *P. oleracea* seeds powder, T4= 5 g.kg⁻¹ *P. oleracea* leaves powder, T5= 10 g. kg⁻¹ *P. oleracea* leaves powder, T6= (5g+5g). kg⁻¹ *P. oleracea* seed and leaves powder.
Jejunum total number of bacteria, *E. coli* and Lactobacilli

Table (6) shows the total bacteria count, *E. coli* and Lactobacilli in the jejunum of broiler chicks at the age of 35 days. A significant difference was observed in the total bacteria count, *E. coli* bacteria and Lactobacilli among all levels of addition and control treatment. The results of the statistical analysis indicated that there was a significant decrease (P <0.05) in the number of total bacteria and *E. coli* in all levels of addition compared with the control treatment, which recorded the highest number of total bacteria and colon bacteria (76.00 and 361.67 respectively). The lowest levels of this bacterium were recorded in the treatments of the *P. oleracea* leaves, followed by the treatments of the *P. oleracea* seed. Whereas, the numbers of Lactobacilli bacteria increased significantly (P<0.05) in all addition treatments compared to the control, and the highest increase in their numbers was recorded in the *P. oleracea* leaves, followed by the seed’s treatments. Perhaps microbial changes in the intestinal environment of the jejunum part of the small intestine are due to the effect of the *P. oleracea* on many pathogenic microbes as a result of the presence of inhibitory substances and other killers’ substances against many harmful bacteria and non-important ones (Ghorbani *et al*., 2013). Seeds and leaves of *P. oleracea* contain many antioxidant and anti-bacterial and fungi substances (Smith *et al*., 2003), and anti-toxic materials (Simopoulos *et al*., 1992). These results are similar with those of Zhao *et al*., (2013). There was a significant decrease (P<0.05) in the number of coliform bacteria (*E. coli*), while there was a significant increase in the number of Lactobacilli bacteria in the intestine of broilers fed on feeds to which watercress leaves were added at levels (0, 0.2 and 0.4)% compared with the control at the age of 42 days. Sadeghi *et al*., (2016) found was a significant decrease (P <0.05) in the number of coliform bacteria (*E. coli*), while there was a significant increase in the number of Lactobacilli bacteria in the intestine of broiler meat fed on feeds to which watercress seeds were added at levels (0, 0.25, 0.50, 0.75 and 1.00, %) compared to control at 43 days old. The reason is due to the difference in the proportions of the addition of seed powder and watercress leaves in the bush, as well as the difference in the age of the broiler chicks.

Table (6): Effect of *P. oleracea* seeds and leaves powder on the number of microbes in the jejunum of broiler at the age of 35 days (means± SD).

Treatments	Total bacteria (log$_{10}$CFU.g$^{-1}$)	Lactobacilli	*E. coli*
T1	361.67c ± 1.45	143.00d ± 1.15	76.00d ± 1.15
T2	266.33a ± 1.45	164.00b ± 2.31	55.00b ± 2.52
T3	280.33b ± 1.45	159.00bc ± 2.89	52.67b ± 1.20
T4	292.33c ± 1.76	177.33a ± 2.19	43.33a ± 1.45
T5	289.00c ± 1.53	155.67c ± 2.91	61.67c ± 3.28
T6	305.00d ± 1.53	162.33bc ± 1.45	54.33b ± 2.40

• Different letters vertically are significant at P<0.05. T1=control, T2=5g.kg$^{-1}$ *P. oleracea* seed powder, T3= 10 g. kg$^{-1}$ *P. oleracea* seed powder, T4= 5 g.kg$^{-1}$ *P. oleracea* leaves powder, T5= 10 g. kg$^{-1}$ *P. oleracea* leaves powder, T6= (5g+5g). kg$^{-1}$ *P. oleracea* seeds and leaves powder.
Conclusion
Addition of either 5 or 10 g. Kg⁻¹ from P. oleracea seeds or leaves powder has no significant impact on blood RBC, WBC, Hb, and PCV. However, serum triglycerides, glucose and cholesterol as well as TBA were significantly reduced. There was a significant reduction in all types of bacteria (Total bacteria, Lactobacilli and E. coli) due to the addition of P. oleracea seeds or leaves powder.

Acknowledgements
We appreciate all kind of help from the Staff of the College of Agriculture Poultry Field, University of Basrah.

Conflict to interest
There is no conflict of interest.

Ethical approval
All applicable institutional, national and international guidelines for the care and use of animals were followed.

ORCID:
Ahmed J. Shirshaab
https://orcid.org/0000-0001-9661-3490
Jaffar M. Jassim
https://orcid.org/0000-0002-3983-9001

References
Aberoumand, A. (2009). Nutritional Evaluation of Edible Portulaca oleracea as plant food. Food Analytical Methods, 2, 204-207.https://doi.org/10.1007/s12161-008-9049-9.

Al-Daraji, H., Al-Hayani, W. K., & Al-Hussaini, A. S. (2008). Avian Haematology. The Iraqi Ministry of Higher Education and Scientific Research. University of Baghdad, 578 pp. (In Arabic).

Al-Fayyad, A. H., Taher, K. N., & Khammas, E. J. (2011). A study the effect of probiotic (Biomin Imbo®) and vitamin E on some productive, quality and biochemical characters for broiler chicks exposed to cyclic heat stress. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 10, 88-96. https://qmeds.iraqjournals.com/article_81032.html.

Al-Salhie, K. C. K. & Al-Waeli, A. M. (2019). The effect of using different levels of red ginseng roots powder on some physiological characteristics of Japanese Quail males (Coturnix japonica). Basrah Journal of Agricultural Sciences, 32, 34-38.https://doi.org/10.37077/25200860.2019.124

Al-Salhie, K. C. K. & Makki, G. A. (2020). Effect of alcoholic extract of garden rocket Eruca sativa Mill. seed on some reproductive traits and carcasses quality of aged local duck males. Basrah Journal of Agricultural Sciences, 33(1), 221-230.https://doi.org/10.37077/25200860.2020.33.1.17

AOAC: Association of Official Analytical Chemists (2016). Official Method Analysis, 20th ed., Washington: 2: 3172pp.
https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367

Dalkili, B., & Guler, T. (2009). The effects of clove extract supplementation on performance and digestibility of nutrients in broilers. Fırat Üniversitesi Sağlık Bilimleri Dergisi, 23, 161-166.http://veteriner.fusabil.org/pdf/pdf_FUSABIL_677.pdf

Ghorbani, M. R., Bojarpur, M., Mayahi, M., Fayazi, J., Tabatabaei, R. F., & Tabatabaei, S. (2013). Effect of purslane (Portulaca oleracea L.) on blood lipid concentration and antioxidant status of broiler chickens. Online Journal of Veterinary Research, 17, 54-63.http://onljvetres.com/purcelaneabs2013.htm

Ghorbani, M. R., Bojarpur, M., Mayahi, V., Fayazi, J., Tabatabaei, S. F., & Tabatabaei, S. (2014). Effect of purslane (Portulaca oleracea L.) on performance and carcass characteristic of broiler chickens. Iranian Veterinary Journal, 41, 88-98. https://www.magiran.com/paper/1228078?lang=en

Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acids, part 1: Occurrence, biological activities and applications. Trends in Biotechnology, 15, 401-409. https://doi.org/10.1016/S0167-7999(97)01076-7
Habibian, M., Sadeghi, G., & Karimi, A. (2017). Effects of purslane (Portulaca oleracea L.) powder on growth performance, blood indices, and antioxidant status in broiler chickens with triiodothyronine-induced ascites. Archiv fuer Tierzucht, 60, 315-325.
https://doi.org/10.5194/aab-60-315-2017

Harrigan, W. F., & McCance, M. E. (1976). Laboratory methods in food and dairy Microbiology. Academic Press Inc. (London), Ltd. 452 pp.

Hussein, H. H., & Jassim, J. M. (2019). The effect of Moringa oleifera leaf meal and their aqueous and ethanolic extracts on immunological parameters, and liver enzymes of broiler chickens. Basrah Journal of Agricultural Sciences, 32, 272-282.
https://doi.org/10.37077/25200860.2019.275

Jugl-Chizzola, M., Ungherhofer, E., Gabler, C., Hagemuller, W., Chizzola, R., Zitterl-Eglseer, K., & Franz, C. (2006). Testing of the palatability of Thymus vulgaris L. and Origanum vulgare L. as flavouring feed additive for weaner pigs on the basis of a choice experiment. Berliner Und Munchener Tierarztliche Wochenschrift, 119, 238-243.
https://europepmc.org/article/med/16729471

Kartiwasari, L. R., Hertanto, B. S., & Nuhriawangsa, A. M. (2018). Carcass and cut yields of broiler chickens fed diet containing purslane meal rich in omega-3 fats. IOP Conf. Series: Earth and Environmental Science, 102, 012088.
https://iopscience.iop.org/article/10.1088/1755-1315/102/1/012088/meta

Kim, Y. M., Jeong, Y. K., Wang, M. H., Lee, W. Y., & Rhee, H. I. (2005). Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition, 21, 756-761.
https://doi.org/10.1016/j.nut.2004.10.014

Konca, Y., Beyzi, S. B., Karabacak, M., & Yaylak, E. (2015). The effect of different dietary purslane seed (Portulaca oleracea L.) levels on carcass, blood lipid profile and antioxidant activity in quails. Tavukçuluk Araştırmaları Dergisi, 12, 1-6. (In Turkish).
https://api.semanticscholar.org/CorpusID:87473417

Naeem, F., & Khan, S. H. (2013). Purslane (Portulaca oleracea L.) as phytogenic Substance- A review. Journal of Herbs, Spices and Medicinal Plants, 19, 216-232.
https://doi.org/10.1080/10496475.2013.782381

NRC, National Research Council. (1994). Nutrient requirements of poultry. 9th ed. National Academy of Science. Washington, D. C., 176pp.
https://doi.org/10.17226/2114

Ognik, K., Cholewińska, E., Sembratowicz, I., Grela, E., & Czech, A. (2016). The Potential of using plant antioxidants to stimulate antioxidant mechanisms in poultry. World's Poultry Science Journal, 72, 291-298.
https://doi.org/10.1017/S0043933915002779

Ož, T. A., & Kafkas, E. (2017). Phytochemicals in Fruits and Vegetables. 175-184. In Waisundara, V. Y., & Shiomi, N. (Eds.). Superfood and Functional Food: An Overview of Their Processing and Utilization. BoD–Books on Demand: Norderstedt, 356pp.
https://www.intechopen.com/books/superfood-and-functional-food-an-overview-of-their-processing-and-utilization/phytochemicals-in-fruits-and-vegetables

Özer, H., Sökmen, M., Güllüce, M., Adigüzel, A., Şahin, F., Sökmen, A., & Barış, Ö. (2007). Chemical composition and antimicrobial and antioxidant activities of the essential oil and methanol extract of Hippomarathrum microcarpum (Bieb.) from Turkey. Journal of Agricultural and Food Chemistry, 55, 937-942.
https://doi.org/10.1021/jf0624244

Sadeghi, G., Karimi, A., Shafeie, F., Vaziry, A., & Farhadi, D. (2016). The effects of Purslane (Portulaca oleracea L.) powder on growth performance, carcass characteristics, antioxidant status, and blood metabolites in broiler chickens. Livestock Science, 184, 35-40.
https://doi.org/10.1016/j.livsci.2015.12.003
Simopoulos, A. P., Norman, H. A., Gillaspy, J. E., & Duke, J. A. (1992). Common purslane: a source of omega-3 fatty acids and antioxidants. *Journal of the American College of Nutrition, 11*(4), 374-382. https://doi.org/10.1080/07315724.1992.10718240

Smith, D. L., Johnson, J. A., Harris, A. D., Furuno, J. P., Perencevich, E. N., & Morris Jr, J. G. (2003). Assessing risks for a pre-emergent pathogen: virginiamycin use and the emergence of streptogramin resistance in *Enterococcus faecium*. *The Lancet Infectious Diseases, 3*, 241-249. https://doi.org/10.1016/S1473-3099(03)00581-4

Soltan, M. A., Shewita, R. S., & El-Katcha, M. I. (2008). Effect of dietary anise seeds supplementation on growth performance, immune response, carcass traits and some blood parameters of broiler chickens. *International Journal Poultry Sciences, 7*, 1078-1088. https://doi.org/10.3923/ijps.2008.1078.1088

SPSS. (2012). SPSS User’s Guide Statistics Version 19. Copyright IBM, SPSS Inc..

Sultan, A. T. M., Al-Salhie, K. C. K. & Shawket, T. F. (2019). Effect of adding *Lycium barbarum* L. extract to drinking water on some productive traits of Japanese quail (Coturnix japonica). *Basrah Journal of Agricultural Sciences, 32*, 208-212. https://doi.org/10.37077/25200860.2019.210

Tekeli, A., Çelik, L., Kutlu, H. R., & Gorgulu, M. (2006). Effect of dietary supplemental plant extracts on performance, carcass characteristics, digestive system development, intestinal microflora and some blood parameters of broiler chicks. In *Proceedings of 12th European Poultry Conference*: pp. 10-14. http://www.cabi.org/Uploads/animal-science/worlds-poultry-science-association/WPSA-italy-2006/10283.pdf

Uddin, M., Juraimi, A. S., Ali, M., & Ismail, M. R. (2012). Evaluation of antioxidant properties and mineral composition of purslane (*Portulaca oleracea* L.) at different growth stages. *International Journal of Molecular Sciences, 13*, 10257-10267. https://doi.org/10.3390/ijms130810257

Uddin, M., Juraimi, A. S., Hussain, M. S., Un, A., Ali, M., & Rahman, M. M. (2014). Purslane weed (*Portulaca oleracea*): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. *The Scientific World Journal, 2014*, 951019. https://doi.org/10.1155/2014/951019

Zeb, A. (2015). Chemistry and liquid chromatography methods for the analyses of primary oxidation products of triacylglycerols. *Free Radical Research, 49*, 549-564. https://doi:10.3109/10715762.2015.1022540

Zeb, A., & Ullah, F. (2016). A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. *Journal of Analytical Methods in Chemistry, 2016*, 9412767. https://doi.org/10.1155/2016/9412767

Zhao, X. H., He, X., Yang, X. F., & Zhong, X. H. (2013). Effect of *Portulaca oleracea* extracts on growth performance and microbial populations in ceca of broilers. *Poultry Science, 92*, 1343-1347. https://doi.org/10.3382/ps.2012-02434
تأثير اضافة مستويات مختلفة من مسحوق بذور وأوراق البقلة
Portulaca oleracea L.
في بعض الصفات الفسيولوجية والميكروبية لفروج اللحم

أحمد جنديل شرشاب و جعفر محمد جاسم
قسم الانتاج الحيواني، كلية الزراعة، جامعة البصرة، العراق

المستخلص: أجريت هذه الدراسة في حقل الدواجن التابع المكتب الاستشاري في كلية الزراعة، جامعة البصرة لمدة من 20/9/2019 إلى 24/10/2019 لدراسة تأثير اضافة مستويات مختلفة من مسحوق بذور وأوراق البقلة (Portulaca oleracea L.) في بعض الصفات الفسيولوجية لفروج اللحم. استخدمت التجربة 216 فرخًا من فروج اللحم (Ross-308) في بتضمين ثلاثة تجربات بواقع 12 فرخًا لكل تجربة بطرق عشوائية (CRD). كانت المعاملة الأولي السيطرة (العليقة الأساسية) وأضيف مسحوق بذور البقلة إلى العليقة الأساسية بالمستويين 5 و 10 (غم.كغم^{-1}) في المعاملة الثانية و 5 و 10 (غم.كغم^{-1}) في المعاملة الثالثة و 5 و 10 (غم.كغم^{-1}) في المعاملة السادسة على التوالي. أظهرت النتائج حصول انخفاض ملحوظ (P<0.05) في تركيز كلوكوز في مصل الدم واحراز ارتفاع في تركيز الكولسترول والكليستيرولاين عند اضافة مسحوق بذور وأوراق البقلة مقارنة بمعاملات السيطرة. وحصول انخفاض ملحوظ عيني في اعداد البكتيريا Escherichia coli في معاملات إضافة مسحوق بذور وأوراق البقلة مقارنة بمعاملات السيطرة. واحراز ارتفاع في اعداد البكتيريا Lactobacillus. وليس له أي تأثير معنوي في بعض الصفات الفسيولوجية للحليب مثل تركيز البروتين البديل في مصل الدم.

الكلمات المفتاحية: البقلة، فروج اللحم، الصفات الفسيولوجية والميكروبية