Isolation and Characterization of a 60–70-kD Plasma Membrane
Glycoprotein Involved in the Contact-dependent Inhibition of Growth

Raimund J. Wieser,* Sonja Schütt,* Georg Tschank,* Helmut Thomas,* Hans-Peter Dienes,†
and Franz Oesch*†

*Institute of Toxicology and †Pathologisch-Anatomisches Institut, University of Mainz, D-65000 Mainz,
Federal Republic of Germany

Abstract. Previous studies have shown that plasma membrane compounds are involved in the contact-dependent inhibition of growth of human diploid fibroblasts. The purification of the active plasma membrane glycoprotein is described in this report. The glycoprotein has an apparent molecular mass of 60–70 kD and, due to differential sialylation, isoelectric points between pH 5.5 and 6.2. Treatment with sialidase yielded one spot in two-dimensional gel electrophoresis with an isoelectric point of 6.3. After removal of the N-glycosidically linked oligosaccharide chains, the apparent molecular mass is reduced by ~22 kD. Treatment was diluted NaOH, which removes the O-glycosidically linked portion of oligosaccharides, resulting in a reduction of the apparent molecular mass by ~5 kD. The addition of 50 ng/ml of this glycoprotein—for which the term "contactinhibin" is proposed—in immobilized form to sparsely seeded human fibroblasts resulted in a reversible 70–80% inhibition of growth. The inhibition was not confined to human fibroblasts as other cells were also inhibited, with the exclusion of transformed cells, which are refractory to contactinhibin. The inhibitory activity was abolished by treatment with β-galactosidase or glycopeptidase F, indicating that the glycan moiety is the biologically active part of the molecule.

Confluent cultures treated with antibodies raised against contactinhibin were released from the contact-dependent inhibition of growth. In addition to enhanced saturation density, these cultures exhibited a crisscross growth pattern and the formation of foci. Immunocytochemical studies showed that contactinhibin was associated with vimentin. Furthermore, contactinhibin was found to be not expressed in a species- or organ-specific manner.

Normal diploid mammalian cells are characterized by their density-dependent regulation of growth in vitro (Holley, 1975). Growth regulation is thought to be the result of the interplay between the diffusible microenvironment (e.g., growth factors and hormones) and the contact environment comprising extracellular matrix compounds and the cell membrane of neighboring cells. In transformed cells, the balance between the two compartments seems to be disturbed, thereby conferring a growth advantage to transformed cells over nontransformed cells. It has been suggested that enhanced synthesis of growth factors or growth factor receptors (Goustin et al., 1986; Heldin et al., 1987; Klein and Klein, 1986), and/or altered cell–cell or cell–matrix adhesion (Bolscher et al., 1988; Brackenbury et al., 1984; Burger, 1971; Vollmers et al., 1985) results in uncontrolled growth or unbalanced differentiation (Wille and Scott, 1986).

Confluent cultures of human diploid cells show a strongly reduced proliferation rate compared with sparsely seeded cells (Bard and Elsdale, 1986; Augenlicht and Baserga, 1974). In cultured cells the addition of isolated plasma membranes, or of membrane proteins, reduced the growth rate in a concentration-dependent fashion (Natraj and Datta, 1978; Kinders et al., 1980; Raben et al., 1981; Fritze et al., 1985; Heimark and Schwartz, 1985; Nilsson et al., 1983; Pereira-Smith et al., 1985; Stein and Atkins, 1986; Yaoi, 1984). Using a similar approach in hepatocytes, a correlation between the degree of inhibition of proliferation and the induction of differentiated functions has been found (Nakamura et al., 1983). From other studies it is well known that cell–cell contacts induce certain mature biochemical properties (Archeson and Rutishauser, 1988; Hatten, 1987; Saadat and Thoenen, 1986). In cultures of sparsely seeded human fibroblasts, growth is strongly inhibited by the addition of glutaraldehyde-fixed fibroblasts and isolated plasma membranes (Wieser et al., 1985) or immobilized plasma membrane proteins (Wieser and Oesch, 1986, 1987). In this and several other systems, the glycan moiety has been found to participate in the biological activity. In previous studies, we have shown that a crude detergent extract of isolated plasma membranes inhibited the growth of human diploid fibroblasts in a reversible, nontoxic manner (Wieser and Oesch, 1986). The inhibitory activity was strongly dependent on the immobilized state of the proteins. Here we describe the iso-
lation and characterization of the active compound, a 60-70-kD plasma membrane glycoprotein, for which the term "contactinhibin" is proposed. In addition, immunohistochemical data is presented as well as data on the effects on cultured cells of anti-contactinhibin antibodies.

Materials and Methods

Cells, Immunization, and Antibody Purification

The human diploid fibroblasts used in this study have been described elsewhere (Wieser et al., 1985). Rabbits (New Zealand White) were immunized by subcutaneous injection of contactinhibin (10 μg) adsorbed to nitrocellulose powder (Diano et al., 1987). After two boosts, at an interval of 2 wk, the rabbits were bled, and IgGs were isolated by protein A-Sepharose (Pharmacia Fine Chemicals, Piscataway, NJ) affinity chromatography. Affinity-purified antibodies were obtained by incubation with nitrocellulose-bound contactinhibin and subsequent elution with glycine/HCl (0.1 M), pH 2.3, followed by dialysis against PBS at 4°C. Fab fragments were prepared by digestion of IgGs with immobilized papain (Pierce Chemical Co., Munich, FRG) according to the manufacturer's instructions, followed by affinity chromatography over protein A-Sepharose to separate Fab fragments from Fc fragments. IgGs and Fabs were stored at −30°C at a protein concentration of 1 mg/ml.

Isolation of Contactinhibin

Plasma membranes isolated according to Scott (1976) were concentrated by filtration over XM 300 filters (Amicon Corp., Witten, FRG) and precipitated by the addition of cold acetone. The precipitate was resuspended in SB buffer (PBS, 4 mM CHAPS, 1 mM PMSF). After 30 min at 4°C the sample was centrifuged (30,000 × g for 30 min) and the proteins of the supernatant were precipitated by cold acetone. The pellet was solubilized in PB buffer (50 mM sodium phosphate, pH 8.0, 0.15 M NaCl, 10 mM EDTA, 1% β-mercaptoethanol, 5% SDS, 1 mM PMSF) and heated for 10 min at 96°C. The solubilized sample was applied onto a gel permeation chromatography column (96 × 1.6 cm), packed with Fractogel HW 65 F (Merck, Darmstadt, FRG), which had been equilibrated with RB buffer (PB buffer containing 1% β-mercaptoethanol and 0.5% SDS). The sample was eluted at a flow rate of 25 ml/h. 2.3-ml fractions were collected and assayed for protein content and the presence of the growth inhibitory compounds. The active fractions were combined and the proteins were precipitated by the addition of cold acetone.

Immobilization of Solubilized Proteins and Growth Assays

Covalent binding of solubilized proteins to derivatized silica beads was done as described (Wieser and Oesch, 1987). For measurement of DNA synthesis, 5 ×10⁵ cells were seeded per well of a microtiter plate in DME/0.5% FCS. After 24 h membrane proteins bound to silica beads in DME/10% FCS were added. Controls received silica beads which had been reacted with DME or a control protein (asialofetuin or BSA). After 24 h, 0.25 μCi of [3H]thymidine (New England Nu-
Confluent cultures of HDF

Plasma membranes

Concentration over Amicon XM 300 membrane

pellet solubilized in 4 mM CHAPS

supernatant precipitated by acetone

size exclusion chromatography

Fractions 370-350 kD

isolation of gp60-70 by preparative SDS-PAGE

Figure 1. Purification scheme of contactinhibin. (Insert) Fractionation of solubilized plasma membrane glycoproteins by size exclusion chromatography. ([3H]thymidine incorporation rate given as a percentage of controls) of the individual fractions in immobilized form. (Solid line) Protein content of the individual fractions. The arrows on top of the figure point to the elution position of the following marker proteins (from left to right): catalase (230 kD), aldolase (158 kD), β-galactosidase (reduced form, 116 kD), BSA (67 kD).

Table I. Purification of Contactinhibin

Preparation	Activity recovered	Protein recovered	sp act
Plasma membranes	4,500	150	34
CHAPS-extract	90,000	30	3,300
Size exclusion chromatography	30,000	0.3	100,000
SDS-PAGE	10,000	0.02	500,000

1 U is defined as the amount of immobilized protein (mg) in 200 µl of culture medium which inhibited the proliferation rate by 50%.

Functional Characterization of Contactinhibin

The influence of immobilized contactinhibin on the proliferation of sparsely seeded fibroblasts was measured either after 28 h by the [3H]thymidine incorporation assay, or by counting the cell number after a cultivation period of 8 d. In the presence of ~10 ng/ml of immobilized contactinhibin the thymidine incorporation of human fibroblasts was reduced by 50% compared with cultures grown in the presence of control beads. Control beads had no significant effect on the growth behavior of the cells. A 70-80% inhibition was achieved at a concentration of ~50 ng/ml of contactinhibin (Fig. 3). Variations in concentration were achieved by binding various amounts of contactinhibin to a constant number of glycosylated proteins. The three minor proteins as well as the 60-70-kD component, which have been observed after SDS-PAGE of the fractions 21-23, were isolated by preparative SDS-PAGE and tested for biological activity. Only the 60-70-kD form, contactinhibin, showed strong growth-inhibitory activity. Upon reelectrophoresis, contactinhibin migrated as a broad diffuse band, characteristic for microheterogeneous glycoproteins, and migration was reduced with increasing concentrations of β-mercaptoethanol (Fig. 2), which may be indicative of the presence of intramolecular disulfide bridges. When the proteins of the fractions 21-23 were electrophoresed under nonreducing conditions, three additional proteins of 320, 240, and 180 kD were observed. Upon isolation of these forms followed by SDS-PAGE under reducing conditions, they were found to be oligomers of contactinhibin. Upon prolonged storage of contactinhibin, a 50-kD fragment has been found to appear. The inhibitory peaks observed after gel permeation chromatography have been shown to contain material cross-reacting with anti-contactinhibin antibodies in dot blots, suggesting that they contain aggregates and the 50-kD fragment of contactinhibin (data not shown).

Figure 2. SDS-PAGE analysis of contactinhibin isolated by preparative SDS-PAGE followed by electroelution and treated with increasing concentrations of β-mercaptoethanol. The positions of reduced BSA (67 kD) and catalase (60 kD) are shown on the right.
Effect of immobilized contactinhibin on the \[^{3}H\]thymidine incorporation rate of sparsely seeded fibroblasts. Various amounts of immobilized contactinhibin (5–100 ng/well) were added to sparsely seeded cells and proliferation rate was determined as described in Materials and Methods. Values are given as a percentage of controls ± SD (n = 3) from three independent experiments.

Figure 4. Effect of immobilized contactinhibin on net cell growth of sparsely seeded fibroblasts. Net cell growth was measured over an 8-d period as described in Materials and Methods. (○) Cells grown without beads; (●) cells grown in the presence of control beads; (■) cells grown in the presence of immobilized contactinhibin; (□) cells grown for 5 d in the presence of immobilized contactinhibin, after which time beads were removed.

Table II. Effects of Various Treatments of Contactinhibin on Growth-Inhibitory Activity

Preparation	\[^{3}H\]Thymidine incorporation rate	% of control
Soluble contactinhibin (1 μg/ml)	69 ± 13 (9)*	
Immobilized contactinhibin (0.1 μg/ml)	19 ± 9 (14)*	
\(\beta\)-Galactosidase–treated		
immobilized contactinhibin (0.1 μg/ml)	87 ± 7 (4)*	
Glycopeptidase F–treated		
immobilized contactinhibin (0.1 μg/ml)	78 ± 11 (3)*	

The data are given as a percentage ± SD of controls.
* Number of independent experiments performed (n = 3).

Biochemical and Immunochemical Characterization of Contactinhibin

Since isolation of contactinhibin by the procedure described
is relatively expensive because of the minute amounts which can be obtained (∼2–4 μg from ∼10⁶ cultured cells), some of the characterizations mentioned here were performed after immunoprecipitation or by Western blots using crude membrane extracts and anti-contactinhibin antibodies.

Immunoprecipitation followed by two dimensional gel electrophoresis and silver staining showed that contactinhibin consisted of five discrete spots with pIs in the pH 5.5–6.2 range (Fig. 5). An identical picture has been observed by separating isolated contactinhibin (not shown). After complete digestion of contactinhibin with sialidase from A. ureafaciens, the protein pattern shifted towards the most basic spot, indicating that contactinhibin consisted of an unsialylated form and several more forms that were increasingly higher sialylated (Fig. 5, b and c). In addition, this experiment clearly showed that the isolated contactinhibin was present in homogeneous form.

Treatment of contactinhibin with glycopeptidase F, which removes N-linked oligosaccharide side chains with broad specificity, resulted in a molecular mass shift of ∼22 kD, although the diffuse migration behavior remained unchanged (Fig. 6, GP-F, incomplete digest; for a complete digest please see the Western blot in Fig. 8, lane C). On the other hand, this detergent extract of human fibroblasts has been incubated with preimmune serum (left; pI) or with anti-contactinhibin antiserum (right; αC) followed by isolation of the immune complexes with protein A-Sepharose. The immune complexes were analyzed by two-dimensional gel electrophoresis followed by silver staining. For optimal comparison, both the pI and αC gels from the IEF step were applied together on one SDS slab gel. On the top of the αC gel, the basic and acidic ends of the IEF gel are indicated. On the right, the position of the molecular mass marker proteins myosin (200 kD), BSA (69 kD), and lactate dehydrogenase (36.5 kD) is indicated. pI, Immunoprecipitation using preimmune serum; αC, immunoprecipitation using anti-contactinhibin antiserum; C, contactinhibin; hc, heavy chains of immunoglobulins. (♂) enlarged picture of contactinhibin. (b and c) Two-dimensional gel electrophoretic analysis of isolated contactinhibin after partial (b) and complete digest with sialidase (c). Isolated contactinhibin has been treated with sialidase as described in Materials and Methods and analyzed by two-dimensional gelelectrophoresis followed by silver staining.

Figure 6. Glycosylation analysis of contactinhibin. Treatment of isolated contactinhibin with glycopeptidase F to remove N-linked (GP-F) and with dilute alkali solution to remove the O-linked glycan chains (NaOH), respectively. (CONTROL) Untreated contactinhibin; (GP-F) contactinhibin treated with glycopeptidase F; (NaOH) contactinhibin treated with dilute NaOH.

Figure 7. Two-dimensional gel electrophoresis of a detergent extract of human fibroblasts followed by Western blotting. The proteins of the detergent extract were separated by two-dimensional gel electrophoresis, blotted onto nitrocellulose, and reacted with anti-contactinhibin antibodies and peroxidase-conjugated anti-rabbit antibodies. The position of the prestained molecular mass marker proteins (Sigma Chemical Co., Munich, FRG) α-macroglobulin (180 kD), β-galactosidase (116 kD), fructose-6-phosphate kinase (84 kD), pyruvate kinase (58 kD), fumarase (48 kD), and lactic dehydrogenase (36.5 kD) is shown on the left side. At the bottom, an enlarged picture of the immunoreactive protein is shown.
contactinhibin ran as a focussed band after treatment with dilute alkali solutions, which leads to the removal of O-glycosidically linked oligosaccharide chains (Fig. 6, NaOH). This may be indicative of the presence of sialic acids exclusively on the O-linked glycans. We have previously found that plasma membrane proteins isolated from sparse cells had strongly reduced growth inhibitory potency, compared with the proteins isolated from confluent cultures (Wieser and Oesch, 1988b). The degree of inhibition could be fully restored after sialidase treatment. In addition, we have shown that the N-linked oligosaccharides are indispensable for an effective inhibition of growth (Wieser et al., 1985). In agreement with the data shown above, this would imply that the N-linked oligosaccharide chains are sialylated only in sparsely growing cells, while in confluent cultures sialic acids are restricted to the O-linked carbohydrate moieties.

In Western blots of plasma membrane proteins separated by two-dimensional gel electrophoresis, again only one protein consisting of several spots with the same apparent molecular masses and isoelectric points as contactinhibin itself was recognized by the anti-contactinhibin antibodies (Fig. 7). The antibodies also reacted specifically with glycopeptidase F- or sialidase-treated or (C) glycopeptidase F-treated contactinhibin.

Contactinhibin is most likely an integral plasma membrane glycoprotein, as shown by the following experiments: (a) It was solubilized only by detergents and was not released from isolated plasma membranes by high/low pH or salt (not shown). (b) It was not released by trypsin treatment in the presence of either Ca++ or EDTA (not shown). (c) After extraction with detergents, a portion of contactinhibin remained associated with the cytoskeleton (Fig. 9). In general, in confluently grown cells a larger portion was found in the detergent-insoluble fraction than in sparse cells, although the total amount is the same in both cell types.

Cytoskeletal association has been confirmed by double immunofluorescence studies. Cells were fixed with paraformaldehyde and incubated with anti-contactinhibin antibodies. After several wash steps the cells were permeabilized by Triton X-100 and incubated with mouse anti-vimentin antibodies. Binding of the two antibodies was visualized by incubation with rhodamine anti-rabbit and FITC anti-mouse antibodies, respectively. As shown in Fig. 10, contactinhibin shows a fibrillar distribution which exactly correlates with the distribution of vimentin. Previous immunocytochemical studies on the cytoskeletal components of the fibroblasts used in these studies excluded the association of contactinhibin with other components (not shown here). On the electronmicroscopical level, a distinct patchy binding of the anti-contactinhibin antibodies to the cell membrane has been found (Fig. 11). As shown in Table IV, contactinhibin has been found to be expressed in almost all of the cells and tissues studied until now.

Anti-contactinhibin Antibodies Release Confluent Cultures of Human Fibroblasts from Contact-dependent Inhibition of Growth

According to our working hypothesis that the growth of confluent cultures of human fibroblasts is mainly inhibited by the interaction of contactinhibin with postulated receptors on neighboring cells, the presence of anti-contactinhibin antibodies in confluent cultures should prevent this interaction. This was tested by adding affinity-purified antibodies or Fab fragments (10μg/ml culture medium) to cells seeded with increasing densities from 1,000 to 80,000 per well and culturing them for 24 h with an additional 4 h in the presence of [3H]thymidine. The proliferation rate was found to increase over controls grown in the presence of preimmune IgGs or Fab fragments with increasing cell densities, culminating at the highest cell density in a two- to threefold higher proliferation rate (Fig. 12). On the other hand, the growth of sparsely seeded cells was not affected by the presence of the antibodies, thus excluding an intrinsic activity of the antibodies in a manner similar to some anti-growth receptor factor antibodies. Highest stimulation of proliferation has been found with 10μg/ml of anti-contactinhibin antibodies or fragments, with a slight stimulation found at 5μg/ml. Higher concentrations of IgGs led to a slight inhibition of proliferation, which may be explained by reinforcement of cell–cell contacts. Increasing the concentration of Fab fragments was without effect. Culturing cells, which have been seeded at a density of 10⁴ cells/cm² (confluence) for 4 d in the presence of anti-contactinhibin antibodies, resulted in a 1.8-fold increase in cell number over control cultures (3.4 + 0.4 x 10⁴ cells/cm² vs. 1.8 + 0.3 x 10⁴ cells/cm²). The exact cell number of the anti-contactinhibin antibodies was prevented from interacting with postulated receptors on neighboring cells, resulting in a higher proliferation rate.

Figure 8. Western blot analysis of contactinhibin. (A) Plasma membrane proteins were electrophoresed under non-reducing conditions and, after blotting onto nitrocellulose, reacted sequentially with anti-contactinhibin antibodies (1: 5,000) and peroxidase-conjugated anti-rabbit antibodies (1:1,000). (B) Western blot of sialidase-treated or (C) glycopeptidase F-treated contactinhibin.

Figure 9. Cytoskeletal association of contactinhibin as shown by immunoblotting. Total proteins (T), detergent-soluble (S), or -insoluble (I) proteins of sparsely seeded cells (s), or confluent cultures (c) were separated by SDS-PAGE and after blotting onto nitrocellulose reacted sequentially with anti-contactinhibin antibodies and anti-rabbit antibodies.
Figure 10. Demonstration of the cytoskeletal association of contactinhibin by double immunofluorescence. After fixation by paraformaldehyde, human fibroblasts have been incubated with rabbit anti-contactinhibin antibodies (top). After several wash steps, cells were permeabilized by Triton X-100 and incubated with mouse anti-vimentin antibodies (bottom). Binding of the antibodies was visualized by FITC-labeled anti-mouse antibodies and by rhodamine-labeled anti-rabbit antibodies, respectively. Bar, 2 μm.

tinhibin antibody-treated cultures may in reality be slightly higher because it was not possible to obtain single cell suspensions without aggregates, even when both trypsin and collagenase were used for dissociation. In addition to enhanced proliferation rate and saturation density, the anti-contactinhibin antibody-treated cultures showed an extensive crisscross growth pattern and the massive emergence of foci (Fig. 13).

Incubation of detergent extracts of plasma membranes with Sepharose-bound anti-contactinhibin antibodies showed that the growth-inhibitory activity was found exclusively in the bound fraction, while the nonbound fraction was almost inactive with respect to growth inhibition (Table V).

Discussion

Molecular Properties of Contactinhibin

We have described the isolation of a 60–70-kD plasma membrane glycoprotein, which in immobilized form inhibits the growth of human diploid fibroblasts in a reversible, nontoxic manner at picomolar concentrations. The purification led to a 16,000-fold enrichment of the specific activity of the isolated glycoprotein. In SDS-PAGE, it migrated as a broad band, characteristic for glycosylated proteins, of 50–60 kD in nonreduced form, while in fully reduced form it migrated slower with an apparent molecular mass of 60–70 kD. This may be indicative of the presence of intramolecular disulfide bridges. The smeared running behavior was still present after digestion of contactinhibin with glycopeptidase F, indicating that the microheterogeneity might reside on the O-glycosidically linked oligosaccharide side chains. This has been confirmed by removal of the O-linked glycans, which led to a reduction in apparent molecular mass by ~5 kD and a focusing of the protein band. In two-dimensional gel electrophoresis, contactinhibin has been shown to consist of five distinct forms which, after treatment with sialidase from A. ureafaciens, were converted to only one form. These results give evidence for the presence of sialic acids on O-linked
Figure 11. Immunoelectronmicroscopical localization of contactinhibin. Cells were fixed in situ with a mixture of periodate lysin paraformaldehyde and permeabilized by Triton X-100 treatment. After incubation with anti-contactinhibin antibodies cells were incubated with gold-labeled secondary antibodies, dehydrated, and embedded in Epon. The ultrathin sections were counterstained with uranylacetate and lead citrate. Note the intense decoration of the plasma membrane with gold particles (arrows). Bar, 60 nm.

glycans. We have previously found that plasma membrane proteins isolated from sparse cells had strongly reduced growth inhibitory potency, compared with the proteins isolated from confluent cultures (Wieser and Oesch, 1988b). The degree of inhibition could be fully restored after sialidase treatment. In addition, we have shown that the N-linked oligosaccharides are indispensable for an effective inhibition of growth (Wieser et al., 1985). In agreement with the data shown above, this would imply that the N-linked oligosaccharide chains are sialylated only in sparsely growing cells, while in confluent cultures sialic acids are restricted to the O-linked carbohydrate moieties. The different sialylation pattern could either reflect the actual growth state of the cells, or could be due to the action of plasma membrane-bound sialidases, which would remove sialic acids upon the establishment of cell–cell contacts. The higher degree of sialylation of contactinhibin in sparsely seeded proliferating cells is consistent with our findings (Renauer et al., 1987) and those of other groups on the higher content of plasma membrane glycoprotein–bound sialic acids on growing cells, compared with resting cells (Muramatsu et al., 1983; Sasak et al., 1983). It is not known whether the different sialylation pattern on contactinhibin has a functional importance or not, which is for example the case with N-CAM (Hoffman and Edelman, 1983). While the N-linked glycans have clearly been shown to be implicated in the biological activity, the O-linked glycans could be responsible for the determination of the level of cell surface expression (Reddy et al., 1989).

Are There Similar Compounds Identified or Is Contactinhibin a Unique Functional Plasma Membrane Glycoprotein?

Although cell–cell contacts have clearly been shown to be involved in the homeostasis of a cell population in vitro, only rudimentary data is available on the molecular properties of the compounds involved. The molecules which have been described as being involved in the regulation of growth of normal, and in some cases transformed cells, have molecular masses which differ greatly from that of contactinhibin (for review see Miyazaki and Horio, 1989). These molecules include TGF-β (25 kD; Massague, 1987), the FRGs (13 kD; Hsu and Wang, 1986) and the IDF45 (45 kD; Blat et al., 1987).
Table IV. Expression of Contactinhibin by Various Tissues and Cells

Human Tissue	Expression of contactinhibin
Skin	++ +
Sarcoma	-
Muscle	++ +
Kidney	+
Renal cell carcinoma	+
Adrenal gland	-
Intestine	++ +
Colon carcinoma	++
Pancreas	++ +
Liver	++
Lung	++ +
Spleen	+
Lymphoma	++ +
Mammary carcinoma	++ +
Cells	
WI 38 SV40 transformed	++ +
HT1080	++ +
3T3	++ +
C3H/10T1/2	++ +
C3H/10T1/2 MC transformed	++ +
Rat liver fibroblasts	++ +
Rat liver epithelial cells	++ +
Mouse splenocytes	++ +
Human osteocytes	++ +
Human erythrocytes	-
Others	
Human serum	++ +
Serum from tumor patients	++ +

The analyses have been performed by Western blotting.

- , No reaction.
+ , Weak reaction.
++ , Good reaction.
+++ , Strong reaction.

1989), growth inhibitors from bovine milk (13 kD; Herrmann and Grosse, 1986), and mammary-derived growth inhibitors (13 kD, Böhmer et al., 1987) from V79 cells (2 kD; Koga et al., 1986), from mouse cerebral cortex (18 kD; Kinders et al., 1980), from melanocytes (160 kD; Lipkin et al., 1978), and from rat liver (26 kD; McMahon et al., 1982). In addition to different molecular masses, these compounds are all active as solutes. This is also true for heparin and heparan sulfate, which have been shown to inhibit the proliferation of smooth (Fritze et al., 1985; Castellot et al., 1986) and skeletal muscle cells (Kardami et al., 1988) of human fibroblasts (Matuoka and Mitsui, 1981) and of endothelial cells (Imamura and Mitsui, 1987). Recently, mammary cell–specific growth-inhibitory proteins with molecular masses of 47 and 65 kD have been described (Ervin et al., 1989). In contrast, contactinhibin has been shown to be also active on cells other than human fibroblasts.

Figure 12. Release of confluent cultures of human diploid fibroblasts from contact-dependent inhibition of growth by anti-contactinhibin antibodies. Increasing numbers of human fibroblasts were seeded in wells of a microtiter plate and cultured for 28 h in the presence or absence of anti-contactinhibin antibodies (10 μg/ml). Proliferation rate was determined by the measurement of incorporation of [3H]thymidine into DNA. Values are given as a percentage ± SD (n = 5) of controls which were cultured in the presence of antibodies from preimmune serum.

Table V. Removal of Growth-inhibiting Compounds from Crude Plasma Membrane Extract (100 μg Protein) by Affinity Chromatography on Immobilized Anti-contactinhibin Antibodies

Human fibroblasts cultured in the presence of immobilized proteins	Proliferation rate
Untreated detergent extract	34 ± 5
Fraction not bound to Sepharose-bound anti-contactinhibin antibodies	93 ± 8
Fraction bound to Sepharose-bound anti-contactinhibin antibodies	43 ± 8
With respect to human fibroblasts, one report has been published on some molecular properties of plasma membrane proteins inhibiting the growth by contact-dependent mechanisms (Stein and Atkins, 1986). In agreement with our findings, the inhibitory activity has been found to be sensitive to periodate treatment, suggesting the involvement of glycans in the biological activity. On the other hand, the inhibitory activity has been described to be abolished after heat or trypsin treatment, which agrees with findings in the 3T3 cell system (Raben et al., 1981), but is contrary to our data. The differences in these findings could be ascribed to the different test systems. In growth-arrested and senescent human fibroblasts, a 57-kD protein has been described (Wang, 1985) that is confined to nuclei. Furthermore, the appearance of a 240-kD glycoprotein has been described that accumulates in contact inhibited and aging fibroblasts (Poot et al., 1986), but no functional studies have been done with these compounds. In 1987, a meeting abstract on a few purification steps of detergent extracts of human diploid fibroblasts with growth-inhibiting activity appeared in In Vitro, again without further molecular data (Smith, J. R., A. L. Spiering, and O. M. Pereira-Smith, unpublished observations).

In other systems, such as in mouse fibroblasts (Whittenberger and Glaser, 1977; Natraj and Datta, 1978; Yaoi, 1984; Raben et al., 1981), in endothelial cells (Heimark and Schwartz, 1985), and in hepatocytes (Nakamura et al., 1983, 1984) growth regulation via cell–cell contacts has been studied so far only with isolated plasma membranes, with crude membrane extracts or with partially enriched preparations.

Recently, a new family of cell adhesion molecules has been described, i.e., the “addressins” (Stoolman, 1989). It has been suggested that these endothelial cell surface glycoproteins represent the ligands for several lectinlike proteins on recirculating lymphocytes, enabling the adhesion to, and extravasation of, the endothelium of high endothelium venules. One addressin has been characterized as being a glycoprotein of 58–66 kD with a characteristic shift in molecular weight upon reduction (Streeter et al., 1988). In contrast to contactinhibin, it has been shown by immunohistochemistry that the tissue-specific expression of this glycoprotein is highly restricted. In addition, it has been shown that contactinhibin has no function as a cell adhesion molecule (Janik-Schmitt, 1989).

A further family that has been shown to be involved in the regulation of cell behavior is the cell surface proteoglycan family (for review see RuoLahtti, 1989). Again, no component has been described with molecular properties similar to contactinhibin, although human diploid fibroblasts have been studied extensively with respect to proteoglycans.

How Could Contactinhibin Exert its Inhibitory Activity?

From the various experiments performed to elucidate the biologically active part of contactinhibin, it is postulated that terminal, β-glycosidically-linked galactose residues on N-linked glycans are the crucial moiety. This has been deduced from the following observations: (a) Treatment of glutaraldehyde-fixed fibroblasts, of isolated plasma membranes (Wieser et al., 1985), of a crude membrane extract (Wieser and Oesch, 1986), and of contactinhibin itself (shown here) with β-galactosidase resulted in an almost complete loss of growth inhibitory activity. (b) Plasma membranes isolated from cells grown in the presence of tunicamycin were without effect on the growth of sparsely seeded fibroblasts (Wieser et al., 1985). (c) Removal of the N-glycosidically linked oligosaccharide chains by glycopeptidase F treatment abolished the growth-inhibitory activity of contactinhibin (shown here). (d) Plasma membranes isolated from pronase-treated cells lost their inhibitory activity, while the released compounds, even after exhaustive digestion, had still growth-inhibitory activity (Wieser and Oesch, 1986). This is in agreement with data obtained by Yaoi (1984). (e) Growing cells in the presence of β-galactosidase or α-lactalbumin, which acts as a modulator of the activity of galactosyltransferases (Morrison and Ebner, 1971), resulted in an enhanced proliferation rate and saturation density (Wieser and Oesch, 1988a). In this context, it might be interesting to mention that fibroblasts from patients with certain lysosomal storage diseases, leading for example to impaired sialylation, are deficient with respect to density-dependent regulation of growth (Oohira et al., 1987).

The mechanism of interaction of contactinhibin with neighboring cells could be of a homophilic or a heterophilic nature. Homophilic interaction has been implicated in N-CAM-mediated cell adhesion (Hoffman and Edelman, 1983), and in the form of carbohydrate–carbohydrate interactions between various cells of the nervous system (Keilhauer et al., 1985; Cole et al., 1986), as well as during embryogenesis and organogenesis (Eggens et al., 1989). Initial experiments with an aggregation assay, where contactinhibin was bound to fluorescently labeled acrolein beads, clearly showed that there was no homophilic binding between contactinhibin, while there was strong binding to immobilized proteins of a plasma membrane extract (data not shown). It could be speculated therefore that the interaction of contactinhibin with neighboring cells might occur by a receptor-mediated process. This could occur in a lectin/carbohydrate-like fashion (Zalik and Milos, 1986), as shown in the adhesion between lymphocytes and endothelial cells, or in the binding of sperms to the fertile egg (Bleil and Wassarman, 1988; Peterson and Hunt, 1989). A further possibility could be the interaction of contactinhibin with a plasma membrane-localized galactosyltransferase (Bayna et al., 1988). Another crucial mechanism regulating the function of contactinhibin could be the connection with the cytoskeleton, most likely with vimentin. Although we have no further proof, the relative inability of soluble contactinhibin to effectively inhibit in vitro growth suggests that contactinhibin not connected to vimentin might be without biological activity. Cytoskeletal connection has been shown for many cell–substrate and cell–cell adhesion proteins (Taron et al., 1984; Lacy and Underhill, 1987; Horwitz et al., 1986; Nelson et al., 1990). In addition, concentration at contact sites of these compounds has been described together with an increased insolubility to detergents, which indicates cytoskeletal binding. This is in agreement with the findings that contactinhibin is concentrated at cell–cell contact sites and that in confluent cells, compared to sparse cells, a larger portion of contactinhibin is detergent resistant.

The expert technical assistance of Rosario Heck and Renate Engel is gratefully acknowledged. Special thanks are given to Dr. H. P. Rodemann,
University of Bielefeld, Bielefeld, FRG, for invaluable help in two-dimensional gel electrophoresis techniques.

This work was supported by the Deutsche Forschungsgemeinschaft SFB 302 and TS 30/2-1, and is part of the Ph. D. thesis of S. Schütz.

Received for publication 2 May 1990 and in revised form 27 July 1990.

References

Archer, A., and R. Ritschauer. 1988. Neural cell adhesion molecules regulate cell contact–mediated changes in choline acetyltransferase activity of embryonic chick sympathetic neurons. J. Cell Biol. 106:479-486.

Augenlicht, L. H., and R. Baserga. 1974. Changes in the G state of WI-38 fibroblasts at different times after confluence. Exp. Cell Res. 89:255-262.

Bard, J., and T. Elsdale. 1986. Growth regulation in multilayered cultures of human diploid fibroblasts: the role of contact, movement and matrix production. Cell Tissue Kinet. 19:141-154.

Bayna, E. M., J. H. Shaper, and B. D. Shur. 1988. Temporally specific involvement of cell surface B-1,4 galactosyltransferase during mouse embryo morula compaction. Cell 53:145-157.

Biehl, J. D., and P. M. Wassarman. 1988. Galactose at the nonreducing terminus of O-linked oligosaccharides of mouse egg zeta galactocelipid glycoprotein ZP3 is essential for the glycoprotein's sperm receptor activity. Proc. Natl. Acad. Sci. USA. 85:5775-5782.

Böhmer, F.-D., R. Kraft, and A. Otto. 1987. Identification of a polypeptide growth inhibitor from bovine mammary gland-sequence homology to fatty-acid and retinoid-binding proteins. J. Biol. Chem. 262:15137-15143.

Bolscher, J. G. M., M. W. van der Blij, J. J. Neefjes, A. Hall, L. A. Smets, and H. C. Ploegh. 1988. Ras(gp)ose oncogene induces N-linked carbohydrate modification: temporal relationship with induction of invasive potential. EMBO (Eur. Mol. Biol. Organ.) J. 7:3361-3368.

Brackenbury, R. M., E. Greenberg, and G. M. Edelman. 1984. Phenotypic changes and loss of N-CAM–mediated adhesion in transformed embryonic chicken retinal cells. J. Cell Biol. 99:1944-1954.

Burg, M. M. 1971. Cell surface in neoplastic transformation. Cell Biol. Rev. 2:455-497.

Castellot, J. J., J. Choay, J.-C. Lormeau, M. Petitou, E. Sache, and M. J. Karavsky. 1986. Structural determinants of the capacity of heparin to inhibit changes and loss of N-CAM-mediated adhesion in transformed embryonic chicken retinal cells. J. Cell Biol. 99:1944-1954.

Cleland, L. A., and M. J. Karavsky. 1986. Growth inhibitors: molecular diversity and stimulatory factors on membranes prepared from mouse liver. Biochem. Biophys. Res. Commun. 129:891-897.

Clowes, G. M., E. M. Knecht, and M. Rosenberg. 1978. A potent inhibitor of normal and transformed cell growth derived from contact-inhibited cells. Cancer Res. 38:635-643.

Lowry, O. H., M. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurements with the folin phenol reagent. J. Biol. Chem. 193:265-275.

Massagué, J. 1987. The TGF-β family of growth and differentiation factors. Cell. 49:437-438.

Miyazaki, K., and T. Horio. 1989. Growth inhibitors: molecular diversity and roles in cell proliferation. In Vitro Cell. Dev. Biol. 25:866-872.

Morrison, J. F., and K. E. Ehner. 1971. Studies on galactosyl-transferase. Kinetic effects of α-lactalbumin with N-acetyl-glucosamine and glucose as galactosyl group acceptors. J. Biol. Chem. 246:3992-3998.

Muramatsu, T., P. H. Atkinson, and S. G. Nathanson. 1983. Cell-surface glycoproteins: growth dependent changes in the carbohydrate–peptide linkage region. J. Biol. Chem. 258:445-449.

McMahon, B. J., G. F. Farrelly, and P. T. Type. 1982. Purification and properties of a rat liver protein that specifically inhibits the proliferation of non-malignant epithelial cells from rat liver. Proc. Natl. Acad. Sci. USA. 79:85-89.

Miyazaki, K., and T. Horio. 1989. Growth inhibitors: molecular diversity and roles in cell proliferation. In Vitro Cell. Dev. Biol. 25:866-872.

Morrison, J. F., and K. E. Ehner. 1971. Studies on galactosyl-transferase. Kinetic effects of α-lactalbumin with N-acetyl-glucosamine and glucose as galactosyl group acceptors. J. Biol. Chem. 246:3992-3998.

Muramatsu, T., P. H. Atkinson, and S. G. Nathanson. 1983. Cell-surface glycoproteins: growth dependent changes in the carbohydrate–peptide linkage region. J. Biol. Chem. 258:445-449.

Nakamura, T., K. Yoshimoto, Y. Nakayama, Y. Tomita, and A. Ichihara. 1983. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell–cell contact and cell membrane interaction. Proc. Natl. Acad. Sci. USA. 80:7229-7233.

Nakamura, T., Y. Nakayama, and A. Ichihara. 1984. Reciprocal modulation of growth and liver functions of mature rat hepatocytes in primary culture by anti-hepatocyte growth factor antibody. J. Biochem. 95:357-368.

Nagaoka, Y., C. V. Natraj, and P. Datta. 1978. Control of DNA synthesis in growing Balb/c3T3 mouse cells by a fibroblast growth regulatory factor. Proc. Natl. Acad. Sci. USA. 75:6115-6119.

Nelson, W. J., E. M. Shook, Z. Wang, and R. W. Hamerton. 1990. Identification of a membrane–cytoskeletal complex containing the cell adhesion molecule uromorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 110:349-357.

Nilsson, J., T. Kälkäj, J. Thyberg, and A. Wasteson. 1983. Cell surface components and growth regulation in cultivated arterial smooth muscle cells. J. Cell Sci. 64:107-121.

Oohira, A., F. Matsui, T. Oki, and H. Nagami. 1987. Deficiency of density-dependent regulation of cell growth in cultured skin fibroblasts from patients with mucolipidosis II. J. Cell Sci. 87:249-257.

Pereira-Smith, O. M., S. F. Fischer, and J. R. Smith. 1985. Senescent and quiescent cell inhibitors of DNA synthesis. Exp. Cell. Res. 160:297-306.

Peterson, R. N., and W. P. Fishman. 1988. Identification, isolation and properties of a plasma membrane protein involved in the adhesion of boar sperm to the porcine zona pellucida. Gamete Res. 23:103-118.

Poot, M., A. Verkerk, and J. F. Jongkind. 1986. Accumulation of a high molecular weight glycoprotein during in vitro ageing and contact inhibition of growth. Mech. Ageing Dev. 34:219-232.

Raben, D., M. Lieberman, and L. Glaser. 1981. Growth inhibitory protein(s) in 3T3 cell plasma membrane. Partial purification and dissociation of growth inhibitory events from inhibition of amino acid transport. J. Cell Physiol. 108:35-45.

Reddy, P., I. Caras, and M. Krieger. 1989. Effects of O-linked glycosylation on the cell surface expression and stability of decay-accelerating factor, a glycosylphosphatidylinositol–anchored protein. J. Biol. Chem. 264:17329-17336.

Renaut, D., F. Oesch, K. K. Unger, and R. J. Wieser. 1987. Structural glycan
differences between and plasma membrane glycoproteins of normal and transformed human fibroblasts. *Biol. Chem. Hoppe-Seyler.* 368:706.

Rinderknecht, S. B., and J. W. Weiler. 1983. Termination of tritiated thymidine incorporation by freezing TH3 cells. *J. Immunol. Methods.* 65:293-294.

Rodeck, H. P., and K. Bayreuther. 1986. Differential degradation of [3H]methionine polypeptides in Duchenne muscular dystrophy skin fibroblasts in vitro. *Proc. Natl. Acad. Sci. USA.* 83:2086-2090.

Ruoslahti, E. 1989. Proteoglycans in cell regulations. *J. Biol. Chem.* 264:13369-13372.

Rodemann, H. P., and K. Bayreuther. 1986. Differential degradation of [3SS]methionine polypeptides in Duchenne muscular dystrophy skin fibroblasts in vitro. *J. Biol. Chem.* 264:13369-13372.

Rodemann, H. P., and K. Bayreuther. 1986. Differential degradation of [3SS]methionine polypeptides in Duchenne muscular dystrophy skin fibroblasts in vitro. *Cell.* 103:991-1997.

Sasa, W., A. Quaroni, and S. Herscovic. 1983. Changes in cell surface fucose-containing glycopeptides and adhesion of cultured intestinal epithelial cells as a function of cell density. *Biochem. J.* 211:75-80.

Scott, R. E. 1976. Plasma membrane vesiculation: a new technique for isolation of plasma membranes. *Science (Wash. DC).* 194:743-745.

Stein, G. H., and L. Atkins. 1986. Membrane-associated inhibitor of DNA synthesis in senescent human diploid fibroblasts: characterization and comparison to quiescent cell inhibitor. *Proc. Natl. Acad. Sci. USA.* 83:9030-9034.

Stoolman, L. M. 1989. Adhesion molecules controlling lymphocyte migration. *Cell.* 56:907-910.

Streeter, P. R., E. L. Berg, B. T. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. A tissue-specific endothelial cell molecule involved in lymphocyte homing. *Nature (Lond.)* 331:41-46.

Tarone, G., R. Ferracini, G. Galetto, and P. Comoglio. 1984. A cell surface integral membrane glycoprotein of 85,000 mol wt (gp85) associated with Triton X-100-insoluble cell skeleton. *J. Cell Biol.* 99:512-519.

Towbin, H., T. Staehlin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. *Proc. Natl. Acad. Sci. USA.* 76:4350-4354.

Vollmers, H. P., B. A. Imhof, I. Wieland, A. Hiesel, and W. Birchmeier. 1985. Monoclonal antibodies NORM-1 and NORM-2 induce more normal behavior of tumor cells in vitro and reduce tumor growth in vivo. *Cell.* 40:547-557.

Wang, E. 1985. A 57,000-mol-wt protein uniquely present uniquely in non-proliferating cells and senescent human fibroblasts. *J. Cell Biol.* 100:545-551.

Wessel, D., and U. J. Flügge. 1984. A method for the quantitative recovery of proteins in dilute solutions in the presence of detergents and lipids. *Anal. Biochem.* 138:141-143.

Wittenberger, B., and L. Glaser. 1977. Inhibition of DNA-synthesis in cultures of 3T3 cells by isolated surface membranes. *Proc. Natl. Acad. Sci. USA.* 74:2251-2255.

Wieser, R. J., and F. Oesch. 1985. Involvement of plasma membrane glycoproteins in the contact-dependent inhibition of growth of human fibroblasts. *Exp. Cell Res.* 158:495-499.

Wieser, R. J., and F. Oesch. 1986. Contact inhibition of growth of human diploid fibroblasts by immobilized plasma membrane glycoproteins. *J. Cell Biol.* 103:361-367.

Wieser, R. J., and F. Oesch. 1987. Plasma membrane glycoproteins covalently bound to silica beads as a model for molecular studies of cell-cell interactions in culture. *J. Biochem. Biophys. Methods.* 15:13-22.

Wieser, R. J., and F. Oesch. 1988a. Contact-dependent inhibition of growth of diploid human fibroblasts is dependent upon the presence of terminal galactose residues on plasma membrane glycoproteins. *Exp. Cell Res.* 176:80-86.

Wieser, R. J., and F. Oesch. 1988b. The biological activity of the plasma membrane glycoproteins involved in contact-dependent inhibition of growth is dependent upon the degree of sialylation. *In Sialic Acids 1988. R. Schauer, and T. Yamakawa, editors. B. Mende Verlag Kiel.* 276-277.

Wille, J. J., and R. E. Scott. 1986. Suppression of tumorigenicity by the cell-cycle-dependent control of cellular proliferation and differentiation. *Int. J. Cancer.* 37:875-881.

Yaoi, Y. 1984. Growth-inhibitory glycopeptides obtained from the cell surface of cultured chick embryo fibroblast. *Exp. Cell Res.* 154:147-154.

Zalik, S. E., and N. C. Milos. 1986. Endogenous lectins and cell adhesion in embryonic cells. *In Developmental Biology. Vol. 2. L. W. Browder, editor. Plenum Publishing Corp., New York.* pp. 145-194.