Physical and Functional Association of p56^{ck} with FcγRIIIA (CD16) in Natural Killer Cells

By Theodora W. Salcedo,* Tomohiro Kurosaki,† Palanisamy Kanakaraj,* Jeffrey V. Ravetch,‡ and Bice Perussia*

From the *Department of Microbiology and Immunology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; and the †Division of Molecular Biology, DeWitt Wallace Research Laboratory, Memorial Sloan-Kettering Cancer Institute, New York 10021

Summary
The transmembrane receptor for immunoglobulin G immune complexes on natural killer (NK) cells and macrophages, FcγRIIIA (CD16), mediates cellular activation through a tyrosine kinase-dependent pathway. We show that FcγRIII crosslinking results in activation of the src-related kinase p56^{ck} in NK cells and demonstrate a physical association of p56^{ck} with FcγRIIIA in immunoprecipitates from NK cells obtained using anti-FcγRIII antibodies or immune complexes. Our studies show that the γ chain, the signal transducing subunit of FcγRIIIA and of T cell receptor, associates with p56^{ck} and, in NK cells, is a substrate for this kinase. Such direct association of p56^{ck} with the γ subunit was confirmed by demonstrating the interaction in heterologous cells transfected with cDNA expressing p56^{ck} and γ. Our findings demonstrate both functional and physical association of p56^{ck} with FcγRIIIA, through direct interaction of the kinase with the γ and/or the χ signal transducer subunits of the receptor. These data suggest a possible mechanism by which activation via FcγRIIIA occurs.

The receptor for the Fc fragment of IgG (FcγRIIIA) (CD16) binds IgG immune complexes with low affinity and mediates the antibody-dependent cytotoxicity of NK cells (1). This receptor is a multimeric complex composed of three functionally and biochemically distinct proteins: IIIA_{αx}, a 254-amino acid transmembrane glycoprotein containing the extracellular ligand binding domain, and IIIA_{γ} and IIIA_{χ}', membrane-spanning subunits responsible for both assembly and signal transduction (1). The γ and χ chains are members of a family of homologous proteins present as homo- or heterodimers, first described as subunits of the high affinity Fc receptor for IgE, FcεRI, and of the TCR-CD3 complex (2). Ligand binding and crosslinking of FcγRIII induce NK cell activation with the release of intracytoplasmic granules and upregulation of genes encoding surface activation molecules and cytokines relevant to NK cell biology and functions (3, 4). The early biochemical events induced in NK cells upon engagement of FcγRIII include tyrosine phosphorylation of intracellular substrates (γ and χ chains, phospholipase C [PLC]-γ1 and PLC-γ2, phosphatidylinositol-3-[PI-3] kinase), hydrolysis of membrane phosphoinositides (PIP2), increased intracellular calcium concentration ([Ca^{2+}],), and activation of PI-3 kinase (5–7, and Kanakaraj, P., and B. Perussia, manuscript in preparation). The observation that treatment of NK cells with tyrosine kinase inhibitors blocks both FcγRIII-induced hydrolysis of membrane PIP2 and subsequent increase in [Ca^{2+}], (5) and later activation events (8) has indicated the involvement of a tyrosine kinase(s) in initiating and/or mediating FcγRIII-induced signal transduction events. No intrinsic enzymatic activities have been described for FcγRIII that could account for its ability to activate cells upon crosslinking. Results from experiments with chimeric molecules containing γ or χ cytoplasmic domains linked with extracellular domains of heterologous molecules support the hypothesis that a nonreceptor kinase(s) associates with FcγRIII possibly via the γ or χ subunits (9–13). In cells expressing these chimeric molecules, stimulation of the extracellular domains results in signal transduction. We set out to determine how FcγRIII stimulates protein tyrosine phosphorylation in NK cells by testing the hypothesis that FcγRIII interacts directly with protein tyrosine kinases in these cells.

Materials and Methods

NK Cell Preparations and Stimulation. PBL, obtained by density gradient centrifugation of venous peripheral blood from healthy donors, were cultured with 30-Gy irradiated RPMI-8866 B lymphoblastoid cells (14). NK cells were purified from the 10-d cocultures by negative selection after sensitization with anti-CD3 (OKT3), anti-CD5 (B36.1), and anti-CD14 (B52.1) mAb and indirect antiglobulin rosetting (14). The purity of each preparation (>95% CD16^+ /CD56^- /CD3^- cells) was confirmed in indirect immunofluorescence (flow cytometry) using a panel of mAb.

Transfections. COS cells were cultured in modified Eagle's medium containing 10% FCS. Mouse Fyn cDNA (15) (from R.
Perlmutter, University of Washington, Seattle, WA), human yes
cDNA (16) (from T. Yamamoto, Tokyo University, Tokyo, Japan),
and J. Sukegawa, Rockefeller University, New York), and human
lck cDNA (17) (from T. Mak, Ontario Cancer Institute, Toronto,
Canada) were cloned into the pcEXV-3 vector. DNA (15 μg each
DNA/60-mm dish) was transfected into COS cells using the
calcium-phosphate method (18) in the presence of 100 μM chloro-
quione. The IIIA-β chain construct contained the extracellular region of
FcyRIIIa and the transmembrane and cytoplasmic regions of human
β chain (19). Cells were analyzed 2 d after transfection.

Monoclonal and Polyclonal Antibodies and IgG. The mAb 3G8
(IgG1, anti-CD16) and B159.5 (IgG1, anti-CD56) have been previ-
ously described (5, 14); anti-yes (20) and anti-p56ki (mAb) were
from T. Yamamoto and J. Sukegawa, and Y. Koga (Kyushu Univer-
sity, Fukuoka, Japan), respectively. Polyclonal rabbit antisera to ym
and yes were purchased from Upstate Biotechnology Inc. (Lake
Placid, NY) and provided by T. Yamamoto and J. Sukegawa, respec-

tively. The anti-p56ki polyclonal serum was produced in rabbits
immunized with a synthetic peptide corresponding to amino acids
39-64 of the murine p56ki sequence (5). Goat anti-rabbit and
sheep anti-mouse Ig antibodies conjugated to horseradish peroxi-
dase (HRP) were from Amersham Corp. (Arlington, Arlington, IL).

The goat anti-mouse Ig (GaMIg) used for precipitation was pro-
duced in our laboratory. IgG from the rabbit anti-yes and anti-yi chain
sera (prepared at Sloan-Kettering) were purified on a protein
A-Sepharose column. Human IgG (Cohn fraction IV, Sigma Chemi-
cal Co., St. Louis, MO), and their F(ab')2 fragments prepared by
pepsin digestion, were heat aggregated (63°C, 30 min).

Immunoprecipitation and Western Blotting. The indicated numbers
of the different cell types were lysed in: (a) 1% digitonin, 150 mM
NaCl, 20 mM Tris, pH 8, 1 μM PMSF, 10 μg/ml aprotinin, and
2 mM PMSF, and 25 μg/ml each aprotinin, leupeptin, antipain;
or (c) 3% NP-40, 50 mM NaCl, 50 mM NaF, 10 μM molybdate, 0.2 mM
Na vanadate, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 2.5 μg/ml antipain,
and 0.1 mM PMSF; as indicated. Postnuclear supernatants were precleared (30 min–15 h) with:
(a) CNBr-activated/quenched Sepharose (Pharmacia Fine Chem-
icals, Uppsal, Sweden); (b) protein G-Sepharose to which GaMIg
had been immobilized using dimethylpimelidate; or (c) protein
A-Sepharose, as indicated. Immunoprecipitations (2 h, 4°C) were
performed with the indicated antibodies or with immune com-
xomes and the appropriate controls, as indicated. The immuno-
precipitates were washed five to six times with the respective
lysis buffer, Sepharose-bound complexes were eluted into sample buffer
containing 2% SDS and 1% 2-ME, as indicated. Postnuclear cell
lyastes or immunoprecipitates were separated in reducing SDS-
PAGE, transferred to Immobilon-P sheet or nitrocellulose membrane
and subjected to Western immunoblotting (5) using the indicated
antibodies. Filters were developed using a goat anti-rabbit or a
sheep anti-mouse Ig antibody conjugated to HRP and enhanced
chemiluminescence (ECL) (Amersham Corp.), or 125I-labeled
anti-p56ki mAb.

In Vitro Kinase Assays. src-related kinases were immunoprecip-
itated from postnuclear supernatants of cells solubilized in 1% Triton
X-100, 1% sodium deoxycholate, 0.1% SDS, 150 mM NaCl,
10 mM Tris, 5 mM EDTA, or from the NP-40 eluate of FcyRIII
immunoprecipitated from NK cells lysed in 1% digitonin, using
protein A-Sepharose (rabbit polyclonal antisera) or protein A-Sep-
harose coated with anti-mouse Ig (anti-src mAb). Precipitates were
washed twice with lysis buffer and once with 100 mM NaCl, 10
mM Tris, pH 7.5, 5 mM MmCl. The kinase reaction was per-
formed (15 min, 20°C) in 30-μl assay buffer in the presence of 1 μM
ATP and 10 μCi γ-[32P]ATP (sp act 4,500 Ci/mmol, ICN Bio-
medical, Costa Mesa, CA) without or with 1 μg enolase (5, 22).
The proteins were electrophoresed in reducing SDS-PAGE, as
indicated.

Results and Discussion

Expression of src-related kinases was analyzed in homoge-
aneous NK cell populations obtained from short-term (10 d)
ocultures of PBL with irradiated RPMI-8666 B lymphoblastoid
cells (14). These NK cell preparations are >95% homo-
igeneous and have phenotypic and functional properties
identical to those of freshly isolated NK cells except that they
express late activation antigens and are more readily activated
(3-6, 14). These NK cells expressed several src-related tyrosine
kinases, including p53ki and p56ki, p56ki, p60ki, and p62ki,
as measured by kinase autophosphorylation in immunocom-
plex protein kinase assays (Fig. 1 A). Upon stimulation of
FcyRIII with the anti-FcyRIII mAb 3G8, we detected a rapid activation of at least one of the src-related kinases,
p56ki, as analyzed by in vitro kinase assay on p56ki immu-
no precipitates isolated from cells after receptor stimulation
(Fig. 1 B). Increased p56ki autophosphorylation and phos-
phorylation of the exogenous substrate enolase were detected
as early as 10 s after receptor stimulation. These results are
consistent with those we previously reported using CD3-

Figure 1. Expression and activation of p56ki in NK cells. (A) The
indicated src-related kinases were immunoprecipitated from postnuclear
supernatants of NK cells (10 × 106 cells/sample) lysed in 1% Triton
X-100, 1% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 10 mM Tris,
5 mM EDTA using protein A-Sepharose (for rabbit polyclonal antisera)
or protein A-Sepharose coated with anti-mouse Ig (anti-src mAb). The
products of in vitro kinase assays were analyzed in reducing SDS-
PAGE. (B) NK cells (5 × 106/ml RPMI 1640 containing 10% fetal bo-
vine serum) were incubated for the indicated times with anti-CD16 mAb
3G8 (5 μg/ml). After incubation and lysis in 1% NP-40, p56ki was
immunoprecipitated from the postnuclear supernatants. Kinase assay was performed
after addition of 1 μg enolase and the product of the kinase assay
was analyzed in reducing 7.5% SDS-PAGE. No increased phosphorylation of
p56ki or enolase was detected in p56ki immunoprecipitates from NK cells
stimulated with anti-CD56 mAB B159.5 used as control (data not shown).
Jurkat cells expressing transfected FcγRIIIα chain in association with endogenous ζ (5), and indicate that p56kk is functionally associated with FcγRIII in primary NK cells.

To determine how p56kk is stimulated upon FcγRIII crosslinking, we precipitated the receptor from digitonin lysates of NK cells and assayed tyrosine kinase activity in the immunoprecipitates. Tyrosine kinase activity was coprecipitated with FcγRIII and resulted in the phosphorylation of the ζ chain subunit. Phosphorylated ζ chain was preferentially observed within the FcγRIII immunoprecipitates when reprecipitated with anti-p56kk or anti-ζ antibodies (Fig. 2 A). These data clearly indicate that ζ is a substrate for p56kk-dependent tyrosine phosphorylation and strongly suggest that p56kk coprecipitates with FcγRIII.

To determine directly whether p56kk and FcγRIII are physically associated, anti-p56kk immunoblotting was performed on immunoprecipitates isolated from NK cells using FcγRIII ligands. NK cells were solubilized in 1% digitonin to preserve the association of FcγRIIIA subunits, p56kk was specifically detected in immunoprecipitates isolated with either antireceptor antibody (3G8) (Fig. 2 B, a) or the natural ligand immune complexes (heat-aggregated IgG) (Fig. 2 B, b). Aggregates lacking Fc did not yield p56kk complexes, and isotype-matched anti-CD56 antibodies yielded significantly lower amounts of them. Western blot analysis with an isotype-matched anti-CD56 antibodies yielded significantly lower amounts of them. Western blot analysis with an isotype-matched anti-CD56 antibodies yielded significantly lower amounts of them.

To directly assess which FcγRIII subunit is responsible for the association with p56kk, anti-p56kk immunoblotting experiments were performed on immunoprecipitates isolated with anti-ζ polyclonal antisera. NK cells were lysed in 2% NP-40 to reduce possible nonspecific precipitation of p56kk. Using a large number of NK cells and a sensitive detection system (ECL) a small fraction of total cellular p56kk was detected in the anti-ζ precipitates (Fig. 2 B, c; compare anti-p56kk precipitates with anti-ζ). In addition, a phosphoprotein with molecular weight similar to phospho-ζ (≈21 kD) was detected in the respective p56kk immunoprecipitates isolated from digitonin- and, to a lesser extent, NP-40-solubilized NK cells, as analyzed by in vitro kinase assays (data not shown).

To confirm that p56kk associates with ζ and to determine whether this association is direct or is, in part, mediated by additional proteins, experiments were performed using COS cells cotransfected with various src family-related kinase cDNA (mouse fyn, human yes, and human lck) and a cDNA encoding a chimeric protein composed of the extracellular region of FcγRIIIAα and the transmembrane and cytoplasmic regions of human ζ (III A/ζ). Transfected cells were lysed in Figure 2. Association of p56kk with FcγRIIIA in NK cells. (A) FcγRIIIA was precipitated from NK cells (10 x 10⁶ cells per precipitation) lysed in 1% digitonin, 150 mM NaCl, 20 mM Tris, pH 8, 1 mM PMSF, 10 μg/ml aprotinin, 10 μg/ml leupeptin using anti-CD16 mAb 3G8, and in vitro kinase assay was performed on the immunoprecipitate. Kinase products were eluted from the beads (1% NP-40, 1 h) and the indicated proteins were precipitated using specific antibodies or normal rabbit serum as control. Immunoprecipitates were analyzed in reducing 15% SDS-PAGE. (B) In a, postnuclear supernatants from NK cells (50 x 10⁶ per precipitation), lysed as in A, were precleared and precipitated with Ab (W) anti-CD16 mAb 3G8 or anti-CD56 mAb B159.5 coupled to goat anti-mouse Ig protein G-Sepharose. Goat anti-mouse Ig protein G-Sepharose was used as control (C). Immune complexes were washed and proteins analyzed in 7.5% reducing SDS-PAGE and Western blotting with Ab (W) using anti-p56kk and 125I-labeled goat anti-rabbit IgG. In b, postnuclear supernatants from NK cells (50 x 10⁶ cells per precipitation), lysed in digitonin buffer as in a, were precleared and precipitated with heat-aggregated IgG-Sepharose or F(ab')₂-Sepharose (control) for 6 h. Complexes were washed with lysis buffer and proteins analyzed on 7.5% reducing SDS-PAGE followed by Western blotting using anti-p56kk Ab, HRP-sheet anti-mouse Ig, and ECL. (None, lysate from ~10⁶ cell equivalents, no precipitation). In c, postnuclear supernatants from NK cells (35 x 10⁶ cells per precipitation), lysed in 2% NP-40, were precleared and incubated with rabbit anti-ζ, anti-p56kk, nonimmune serum) followed by protein A-Sepharose precipitation. Beads were washed with lysis buffer and analyzed in 7.5% reducing SDS-PAGE followed by Western blotting for p56kk as in b. The lower bands in c represent rabbit IgG used for precipitation.
Figure 3. Association of p56\(^{\kappa}\) with \(\gamma\) and \(\xi\) chains. 2 d after transfection with the cDNA indicated at the top, COS cells were solubilized in lysis buffer (3% NP-40, 50 mM Tris pH 8, 150 mM NaCl, 50 mM NaF, 10 mM molybdate, 0.2 mM Na vanadate, 1 \(\mu\)g/ml aprotinin, 10 \(\mu\)g/ml leupeptin, 2.5 \(\mu\)g/ml antipain, 0.1 mM PMSP). Cell lysates were precleared with Sepharose, incubated with the indicated Ab coupled-Sepharose for 2 h and washed with lysis buffer five times. Antibodies against \(\gamma\) and \(\xi\) chains (19) and control antibodies were purified by protein A-Sepharose and directly coupled to CNBr-activated Sepharose. Sepharose-bound complexes were eluted into sample buffer containing 2% SDS and 1% 2-ME, separated in reducing 8% SDS-PAGE, and transferred to Immobilon-P sheet or nitrocellulose membrane. Anti-fyn, -yes, and -p56\(^{\kappa}\) antibodies were used for detection in Western blotting, as indicated. Filters were developed using a goat anti-rabbit or a sheep anti-mouse Ig antibody conjugated to HRP and ECL (A) or \(^{125}\)I-labeled anti-p56\(^{\kappa}\) mAb (B).

3% NP-40, immunoprecipitates were collected using either anti-\(\xi\) antibody-coupled Sepharose or control antibody-Sepharose and subjected to immunoblotting with the respective anti-src-related kinase antibody. Coprecipitation of IIIA/\(\xi\) and p56\(^{\kappa}\), but not of fyn, yes (Fig. 3 A) or src (data not shown), was detected. Similar experiments in COS cells cotransfected with p56\(^{\kappa}\) and \(\gamma\) cDNAs revealed association of these two proteins, although to levels lower than those observed with \(\xi\) (Fig. 3 B).

Our results indicate that the src-related kinase p56\(^{\kappa}\) associates both functionally and physically with the Fc\(\gamma\)RIIIA complex on NK cells. This association appears to be mediated in part via the \(\xi\) chain. The results of \(\xi\)/p56\(^{\kappa}\) co-transfection experiments in COS cells prove that p56\(^{\kappa}\) and either \(\xi\) or \(\gamma\) subunits can associate via direct interaction. Although the molecular basis of the association remains to be determined, it is likely to depend, in part, on the antigen receptor homology 1 motifs (ARH1) of \(\gamma\)/, which are conserved sequences ([Asp or Glu]-X-[Asp or Glu]-Tyr-X-Leu-X[Tyr-X-[Leu or Ile]] found in many receptor signal transducing chains, including TCR, Fc\(\gamma\)RII, and CD4. Evidence to support the contention that these sequences mediate coupling of receptors to signalling pathways has been provided for the B cell antigen receptor chains Ig-\(\alpha\) (mb1) and Ig-\(\beta\) (B29), and human Fc\(\gamma\)RIIA (23, 24). Differential binding patterns of the ARH1 regions in these proteins for cytoplasmic effectors were observed, indicating that the presence of an ARH1 motif is insufficient for binding cytoplasmic effector molecules but that additional chain-specific residues determine binding specificity and a single motif can bind more than one effector molecule (26). Our preliminary data indicate that the p56\(^{\kappa}\)-\(\xi\) interaction depends on the presence of ARH1 motifs in \(\xi\), and deletion of one or more of them results in a proportionally decreased association (data not shown). This may also explain, in part, the detection of lower levels of p56\(^{\kappa}\) associated with \(\gamma\) chain (a single ARH1 motif) as compared to \(\xi\) (three ARH1 motifs). The p56\(^{\kappa}\) domain involved in this interaction has not been defined. It is likely to differ from that involved in the interaction between p56\(^{\kappa}\) and CD4, shown to depend on the NH\(_2\)-terminal sequence of this molecule (26-28), because no sequence homology is found between the ARH1 motif and CD4.

Functional interaction between p56\(^{\kappa}\) and the \(\xi\) subunit is supported by observations in T cells. Elegant studies using p56\(^{\kappa}\) deficient cell lines (which endogenously express fyn) strongly support a role for p56\(^{\kappa}\) in signal transduction via the TCR and in cell-mediated cytotoxic responses (29, 30). Cytotoxic functions are restored upon reexpression of p56\(^{\kappa}\) and, most interestingly in regard to NK cells, appear independent of CD4 or CD8 engagement (29, 30). Our co-transfection experiments in COS cells demonstrate a direct interaction of p56\(^{\kappa}\) and \(\xi\)/. However, additional proteins may be necessary to mediate optimal association or disassociation of these two molecules in primary cells and the situation in NK cells may be analogous to that observed in T cell lines. A 70-kD protein (ZAP-70) has been observed to associate with \(\xi\) in the Jurkat T cell line upon TCR/CD3 stimulation (31-33). Proteins of similar size are rapidly phosphorylated upon engagement of the B cell antigen receptor complex (p72\(^{\kappa}\)), the Fc\(\gamma\)RI complex (34, 35), and Fc\(\gamma\)RIII in NK cells (5, and our unpublished data). Although the role of these 70-72-kD proteins/kinases is unknown, they may function to stabilize the primary interaction of ARH1 containing subunits with src-related protein tyrosine kinases.
References

1. Ravetch, J.V., and J.-P. Kinet. 1991. Fc Receptors. Annu. Rev. Immunol. 9:457.
2. Ozloff, D.G., C. Ra, S.J. Frank, R.D. Klausner, and J.-P. Kinet. 1990. Family of disulphide-linked dimers containing the \( \gamma \) and \( \eta \) chains of the T-cell receptor and the \( \gamma \) chain of Fc receptors. Nature (Lond.). 347:189.
3. Anegón, I., M.C. Cuturi, G. Trinchieri, and B. Perussia. 1988. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphotoxin genes and expression of their products in human natural killer cells. J. Exp. Med. 167:452.
4. Cuturi, M.C., L. Anegón, F. Sherman, R. Loudon, S.C. Clark, B. Perussia, and G. Trinchieri. 1989. Production of hematopoietic colony-stimulating factors by human natural killer cells. J. Exp. Med. 169:569.
5. Azzoni, L., M. Kamoun, T.W. Salcedo, P. Kanakaraj, and B. Perussia. 1992. Stimulation of FcYRIIA results in phospholipase C-\( \gamma \) phosphorylation and p56 \( \kappa \kappa \) activation. J. Exp. Med. 176:1745.
6. Cassatella, M.A., L. Anegón, M.C. Cuturi, P. Griskey, G. Trinchieri, and B. Perussia. 1989. Fc\( \gamma \)R(CD16) interaction with ligand induces Ca\(^{2+} \) mobilization and phosphoinositide turnover in human natural killer cells. J. Exp. Med. 169:549.
7. Ting, A.T., L.M. Karnitz, R.A. Schoon, R.T. Abraham, and P.L. Leibson. 1992. Fcy receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-\( \gamma \) and PLC-\( \gamma \)2 in natural killer cells. J. Exp. Med. 176:1751.
8. O'Shea, J.J., D.W. McVicar, D.B. Kuhns, and J.R. Ortaldo. 1992. A role for protein tyrosine kinase activity in natural cytotoxicity as well as antibody-dependent cellular cytotoxicity. Effects of herbimycin A. J. Immunol. 148:2497.
9. Irving, B.A., and A. Weiss. 1991. The cytoplasmic domain of the T cell receptor \( \gamma \) chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 64:891.
10. Romeo, C., and B. Seed. 1991. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell. 64:1037.
11. Letourneau, F., and R.D. Klausner. 1991. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor \( \gamma \) family proteins. Proc. Natl. Acad. Sci. USA. 88:8905.
12. Eiseman, E., and J.B. Bolen. 1992. Signal transduction by the cytoplasmic domains of FceRI-\( \gamma \) and TCR-\( \gamma \) in rat basophilic leukemia cells. J. Biol. Chem. 267:21027.
13. Romeo, C., M. Amiot, and B. Seed. 1992. Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor \( \gamma \) chain. Cell. 68:889.
14. Perussia, B., C. Ramoni, I. Anegón, M.C. Cuturi, J. Faust, and G. Trinchieri. 1987. Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat. Immun. Cell Growth Regul. 6:171.
15. Cooke, M.P., and R.M. Perlmutter. 1989. Expression of a novel form of the \( \gamma \)\( \psi \) proto-oncogene in hematopoietic cells. New Biol. 1:66.
16. Sukegawa, J., K. Semba, Y. Yamanashi, M. Nishizawa, N. Miyajima, T. Yamamoto, and K. Toyoshima. 1987. Characterization of cDNA clones for the human c-\( \psi \) gene. Mol. Cell. Biol. 7:41.
17. Koga, Y., N. Caccia, B. Toyonaga, R. Spolski, Y. Yanagi, Y. Yoshikai, and T.W. Mak. 1982. A human T cell-specific CDNA clone (YT16) encodes a protein with extensive homology to a family of protein tyrosine kinases. Eur. J. Immunol. 16:1643.
18. Mishina, M., T. Kurosaki, T. Yamamoto, M. Notake, M. Masu, and S. Numa. 1982. DNA sequences required for transcription in vivo of the human corticotropin-B-1-lipotropin precursor gene. EMBO (Eur. Mol. Biol. Organ.) J. 1:1533.
19. Kurosaki, T., I. Gander, and J.V. Ravetch. 1991. A subunit common to an IgG Fc receptor and the T-cell receptor mediates assembly through different interactions. Proc. Natl. Acad. Sci. USA. 88:3837.
20. Sukegawa, J., T. Akatsuka, I. Sugawara, S. Mori, T. Yamamoto, and K. Toyoshima. 1989. Monoclonal antibodies to the amino-terminal sequence of the c-\( \psi \) gene product as specific probes of its expression. Oncogene. 5:611.
21. Mori, Y., Y. Koga, K. Nakamura, M. Ohtsu, G. Kimura, and K. Nomoto. 1991. Accumulation of p56 \( \kappa \kappa \) in HTLV-I transformed T cell lines detected by anti-\( \kappa \kappa \) monoclonal antibody, MOL 171. Jpn. J. Cancer Res. 82:909.
22. Samelson, L.E., A.F. Phillips, E.T. Luong, and R.D. Klausner. 1990. Association of the \( \gamma \)\( \psi \) protein-tyrosine kinase with the T-cell antigen receptor. Proc. Natl. Acad. Sci. USA. 87:4358.
23. Reth, M. 1989. Antigen receptor tail clue. Nature (Lond.). 338:383.
24. Wogenh A.-M.K., F. Letourneau, A. Hoeveler, T. Brocker, F. Luton, and B. Malissen. 1992. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell. 68:83.
25. Clar, M.R., K.S. Campbell, A. Kazlauskas, S.A. Johnson, M. Hertz, T.A. Potter, C. Pleiman, and J.C. Cambier. 1992. The B cell antigen receptor complex: association of Ig-\( \alpha \) and Ig-\( \beta \) with distinct cytoplasmic effectors. Science (Wash. DC). 258:123.
26. Shaw, A.S., K.E. Amrein, C. Hammond, D.F. Stern, B.M. Sefon, and J.K. Rose. 1989. The \( \kappa \kappa \) tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein.

We thank Sandra Rivera and Mari Kurosaki for expert technical assistance, and Lazlo Otvos for preparing the p56 \( \kappa \kappa \) peptide used to produce the anti-p56 \( \kappa \kappa \) antiserum.

This work was supported in part by National Institutes of Health grants CA-37155, CA-45284 (B. Perussia), and GM-39256 (J. V. Ravetch).

Address correspondence to Dr. Bice Perussia, Jefferson Cancer Institute, Thomas Jefferson University, Bluemie Life Sciences Building, Room 750, 233 South 10th Street, Philadelphia, PA 19107.

Received for publication 18 January 1993.
through its unique amino-terminal domain. *Cell.* 59:627.

27. Turner, J.M., M.H. Brodsky, B.A. Irving, S.D. Levin, R.M. Perlmutter, and D.R. Littman. 1990. Interaction of the unique N-terminal region of tyrosine kinase p56\(^{kk}\) with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. *Cell.* 60:755.

28. Shaw, A.S., J. Chalupny, J.A. Whitney, C. Hammond, K.E. Amrein, P. Kavathas, B.M. Seflon, and J.K. Rose. 1990. Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56\(^{kk}\) tyrosine protein kinase. *Mol. Cell. Biol.* 10:1853.

29. Straus, D.B., and A. Weiss. 1992. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. *Cell.* 70:585.

30. Karnitz, L., S.L. Sutor, T. Torigoe, J.C. Reed, M.P. Bell, D.J. McKean, P.J. Leibson, and R.T. Abraham. 1992. Effects of p56\(^{kk}\) deficiency on the growth and cytolytic effector function of an interleukin-2-dependent cytotoxic T-cell line. *Mol. Cell. Biol.* 12:4521.

31. Chan, A.C., M. Iwashima, C.W. Turck, and A. Weiss. 1992. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR \(\xi\) chain. *Cell.* 71:649.

32. Chan, A.C., B.A. Irving, J.D. Fraser, and A. Weiss. 1991. The \(\xi\) chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. *Proc. Natl. Acad. Sci. USA.* 88:9166.

33. Wang, L.L., A.-N.T. Kong, and L.E. Samelson. 1992. A tyrosine-phosphorylated 70-kDa protein binds a photoaffinity analogue of ATP and associates with both the \(\xi\) chain and CD3 components of the activated T cell antigen receptor. *J. Biol. Chem.* 267:11685.

34. Hutchcroft, J.E., R.L. Geahlen, G.G. Deanin, and J.M. Oliver. 1992. FceRI-mediated tyrosine phosphorylation and activation of the 72-kDa protein-tyrosine kinase, PTK72, in RBL-2H3 rat tumor mast cells. *Proc. Natl. Acad. Sci. USA.* 89:9107.

35. Hutchcroft, J.E., M.L. Harrison, and R. Geahlen. 1991. B lymphocyte activation is accompanied by phosphorylation of a 72-kDa protein-tyrosine kinase. *J. Biol. Chem.* 266:14846.