Intrinsic structural instabilities of domain walls driven by gradient couplings: meandering antiferrodistortive-ferroelectric domain walls in BiFeO₃

Eugene A. Eliseev, Anna N. Morozovska, Christopher T. Nelson, and Sergei V. Kalinin*

1 Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krijianovskogo 3, 03142 Kyiv, Ukraine
2 Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, 03028 Kyiv, Ukraine
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 14-b Metrolohichna str. 03680 Kyiv, Ukraine
4 The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract

Using Landau-Ginzburg-Devonshire approach, we predict the intrinsic instability of the ferroelectric-ferroelastic domain walls in the multiferroic BiFeO₃ emerging from the interplay between the gradient terms of the antiferrodistortive and ferroelectric order parameters at the walls. These instabilities are the interface analogue of the structural instabilities in the vicinity of phase coexistence in the bulk; and so they do not steam from incomplete polarization screening in thin films or its spatial confinement, electrostrictive or flexoelectric coupling. The effect of BiFeO₃ material parameters on the 71°, 109°, and 180° walls is explored, and it is shown that the meandering instability appears at 109°, and 180° walls for small gradient energies, and the walls become straight and broaden for higher gradients. In contrast to the 180° and 109° domain walls, uncharged 71° walls are always straight, and their width increases with increasing the tilt gradient coefficient. The wall instability and associated intrinsic meandering provide a new insight into the behavior of morphotropid and relaxor materials, wall pinning, and mechanisms of interactions between order parameter fields and local microstructure.

* corresponding author, e-mail: sergei2@ornl.gov
I. INTRODUCTION

Multiferroics, defined as materials with more than one ferroic long-range order [1, 2, 3], are ideal systems for fundamental studies of couplings among the order parameters of different nature, e.g. ferroelectric (FE) polarization, structural antiferrodistortion (AFD), ferromagnetic (FM) and antiferromagnetic (AFM) order parameters [4, 5, 6, 7, 8, 9, 10, 11]. The AFD, FE, FM, and AFM degrees of freedom in multiferroics are interlinked via different types of biquadratic couplings leading to versatile phase diagrams and complex domain structures [4-11]. In many cases, the interaction of the domain structures with underpinning frozen disorder gives rise to highly mobile structures and materials with giant functional responses.

The biquadratic couplings between AFD and other long-range orders are universal for all multiferroics with rotational antiferrodistortive symmetry [12]. The most common is the Houchmandazeh-Laizerowicz-Salje coupling, that is the biquadratic coupling between the AFD order parameter and FE polarization [13, 14]. AFD-FE coupling can significantly influence the structure and local properties of domain walls in AFD multiferroics [15, 16]. Similarly, the biquadratic magnetoelectric coupling, that is the coupling between polarization and magnetization [4, 5], can influence phase diagrams, domain wall structure and morphology [17]. The bilinear flexoelectric coupling [18], that coupled the strain gradient with polarization and vice versa, can induce incommensurate spatially modulated phases in ferroics including antiferroelectric (AFE) and AFD ones [19, 20, 21, 22]. The flexo-antiferrodistortive coupling, inherent to all AFD systems, can lead to the formation of incommensurate, spatially-modulated AFD and AFE phases in multiferroics [23], which are indeed observed in e.g. Bi$_5$Sm$_{1-y}$FeO$_3$ [19], EuTiO$_3$ [24, 25]. There are also a wide variety of spatially modulated domain structures observed experimentally at the morphotropic boundaries in (multi)ferroics [26, 27, 28, 29, 30].

The vectorial nature of the AFD order parameter can strongly influence the phase stability, domain structure, polar, dielectric and magnetoelectric properties of (multi)ferroic thin films [31, 32, 33]. Sometimes phase diagrams of thin strained films are complicated by unusual low symmetry phases, which are absent in their bulk counterparts [34, 35, 36, 37]. Vortices and vertices composed by the closure of domain walls have been observed experimentally in nanoscale multiferroics [38, 39], especially in BFO [40, 41]. Fractal domain structures have been observed in multiferroic thin films [42] and near the surface of ferroelectric relaxors close to relaxor-ferroelectric transition [43].

Unusual polar structures with domain walls of labyrinthine shape (shortly "labyrinthine domain structure") have been observed near the surface of relaxors with so-called "ergodic phases" [44, 45] [46]. The labyrinthine domain structure was calculated theoretically in thin films of incommensurate and bi-layered ferroelectrics [47, 48], being similar to those observed in ultrathin magnetic films [49]. Spherical nanoparticles of uniaxial ferroelectrics CuInP$_2$S$_6$ and Sn$_2$P$_2$S$_6$ covered
by a layer of screening charge with finite screening length revealed the transformation from a regular stripe domain structure into a labyrinthine one when the polarization gradient energy decreases below the critical value [50, 51]. The transformation can be identified as a gradient-driven morphological transition, and appeared unrelated with flexoelectric or electrostrictive, or any other bilinear, or biquadratic coupling influence.

To the best of our knowledge the physical origin of complex morphology of domain structures and modulated phases in nanoscale ferroics is the imbalance between domain wall surface energy and electrostatic or magnetic (or possibly elastic) energy contributions. Specifically, a ferroelectric nanoparticle tends to minimize its electrostatic energy by creation of the complex or/and irregular features of domain structure near the free surfaces, but the structure cannot be too fine-scale due to the increasing energy of domain walls (see e.g. discussion in Refs.[50-51]). Much more complex situation, corresponding to the balance of labyrinthine domain structure in the bulk and vortices at the surface, are expected in multiaxial ferroelectrics with polarization rotation allowed, such as BaTiO$_3$, (Pb,Zr)TiO$_3$ and BiFeO$_3$, and the fundamental question about the instability threshold of regular domain structure in nanoscale multiaxial multiferroics remains open.

The gap in the knowledge motivates this work that reveals a meandering zig-zag like instability of AFD-FE domain walls in thin BFO films. This unexpected result, obtained by finite element modeling (FEM), is explained within Landau-Ginzburg-Devonshire (LGD) theory framework.

The original part of the paper is structured as follows. LGD free energy is given in section II.A. The problem statement including the film geometry, brief form of the coupled Euler-Lagrange equations with boundary conditions are described in section II.B. The impact of biquadratic coupling on the stability of homogeneous phases is analyzed in section II.C. Simulation details with the special attention to the measures taken to establish the physical origin of the complex domain morphologies are described in section III.A. The appearance of low symmetry phases limited by 180° or 109° zig-zag like meandering AFD-FE domains and their changes with increasing of the gradient energy are presented in section III.B and III.C, respectively. The gradient-driven broadening of AFD-FE 71° domain walls is discussed in section III.D. Section IV is a brief summary. Evident form of the free energy, boundary conditions and material parameters are given in Appendix A [52]. Supplementary figures are presented in Appendix B [52].

II. THEORETICAL FORMALISM

As a model system, we have chosen bismuth ferrite BiFeO$_3$ (BFO) solid solutions. Pristine and rare-earth doped BFO is the unique multiferroic [53, 54] with a strong FE polarization, AFD
oxygen octahedron rotation, FM and AFM long-range orders coexisting up to room and elevated temperatures. Specifically bulk BFO exhibits AFD long-range order at temperatures below 1200 K; it is FE with a large spontaneous polarization below 1100 K and AFM below Neel temperature $T_N \approx 650$ K [55]. Notably that the behavior of the AFD order parameter at the BFO domain walls determines their structure and energy [56]. Domain walls in BFO exhibit unusual electrophysical properties, such as conduction and magnetotransport enhancement [57, 58, 59, 60, 61, 62]. Recently, a complete phase diagram of BFO including the AFM, FE, and AFD phases was calculated within LGD theory [63].

The pronounced multiferroic properties and unusual domain structure evolution maintain in BFO thin films and heterostructures [64, 65, 66, 67, 68, 69, 70, 71, 72]. In particular, atomic mapping of structural distortions in 109° domains revealed that the coexistence of rhombohedral and orthorhombic phases in ultrathin BFO films can be driven by interfacial oxygen octahedral coupling [73, 74]. The role of the rotomagnetic coupling, that is the biquadratic coupling between the AFD and AFM (or FM) orders [75], has been studied in BFO fine grained ceramics [76].

A. Landau-Ginzburg-Devonshire free energy

Thermodynamic LGD potential G that describes AFD, FE and AFM properties of BFO is:

$$G = \int_V \left(\Delta G_{AFD} + \Delta G_{FE} + \Delta G_{AFM} + \Delta G_{BC} + \Delta G_{\sigma} \right) dv + \int_S \left(\Delta G_{AFD} + \Delta G_{FE} \right) dS .$$

The AFD energy ΔG_{AFD}, corresponding to $R3c$ phase, is a six-order expansion on the oxygen tilt Φ_i and its gradients,

$$\Delta G_{AFD} = b_i (T) \Phi_i^2 + b_{ij} \Phi_i \Phi_j + b_{ijk} \Phi_i \Phi_j \Phi_k + b_{ijkl} \Phi_i \Phi_j \Phi_k \Phi_l + v_{ijkl} \frac{\partial \Phi_i}{\partial x_k} \frac{\partial \Phi_j}{\partial x_l} .$$

Here Φ_i are components of the pseudo-vector determining the out-of-phase static rotations of the oxygen octahedral groups, and Einstein summation convention is employed. In accordance with the classical LGD theory, we assume that the coefficients b_i are temperature dependent in accordance with the Barrett law [77], $b_i = b_i T_{qT} \left(\coth \left(T_{qT} / T \right) - \coth \left(T_{qT} / T_{qT} \right) \right)$, where T_{qT} is the AFD transition temperature, T_{qT} is a Barrett temperature [78]. Other coefficients in Eqs.(2) are temperature independent.

FE energy ΔG_{FE} is a six-order expansion on the polarization vector P_i and its gradients,

$$\Delta G_{FE} = a_i (T) P_i^2 + a_{ij} P_i P_j + a_{ijkl} P_i P_j P_k + g_{ijkl} \frac{\partial P_i}{\partial x_k} \frac{\partial P_j}{\partial x_l} - P_i E_i - \frac{\varepsilon_0 \varepsilon_b}{2} E_i^2 .$$
The coefficients a_k are temperature dependent, $a_k^{(P)} = \alpha_T \left(T_{qP} \coth \left(\frac{T_{qP}}{T} \right) - T_C \right)$, where T_C is a Curie temperature, T_{qP} is the characteristic Barrett temperature related with some "vibrational modes" [77]. Other coefficients in Eqs.(3) are temperature independent. E_i are the components of internal electric field related with electrostatic potential φ in a standard way $E_i = -\partial \varphi_j / \partial x_j$. Universal dielectric constant is ε_0, ε_b is the dielectric permittivity of background [18, 79].

AFM energy ΔG_{AFM} is a fourth-order expansion in terms of the AFM order parameter vector L_i and its gradient, as follows from the fact that this phase transition in BFO is second order [63]. The details of ΔG_{AFM} is considered elsewhere [63].

The AFD-FE coupling energy ΔG_{BQC} is the biquadratic function of P_i and Φ_i:

$$\Delta G_{BQC} = \zeta_{ijkl} \Phi_i P_j P_k P_l .$$

(4)

The temperature-independent coefficients ζ_{ijkl} are the components of AFD-FE biquadratic coupling tensor.

The elastic, electrostriction, rotostriction and flexoelectric energy is

$$\Delta G = -s_{ijkl} \sigma_{ij} \sigma_{kl} - Q_{ijkl} \sigma_{ij} P_i P_j - R_{ijkl} \sigma_{ij} \Phi_i \Phi_j - \frac{F_{ijkl}}{2} \left(\sigma_{ij} \frac{\partial P_k}{\partial x_j} - P_k \frac{\partial \sigma_{ij}}{\partial x_j} \right).$$

(5)

Here s_{ijkl} are the components of elastic compliances tensor, Q_{ijkl} are the components of electrostriction tensor, R_{ijkl} are the components of rotostriction tensor, and F_{ijkl} are the components of flexoelectric tensor.

The surface energy has the form:

$$\int_S (\Delta G_{AFD} + \Delta G_{FE}) dS = \int_S \left(b_i^{(S)} \Phi_i^2 + a_i^{(S)} P_i^2 \right) dS$$

(6)

Surface energy coefficients $b_i^{(S)}$ and $a_i^{(S)}$ have different nature and control the broadening of ADF and FE domain walls at the surface, respectively.

B. Problem statement

Let us consider a BFO film of thickness h placed in a perfect electric contact with conducting bottom electrode that mechanically clamps the film. The top surface of the film is mechanically free and can be in an ideal electric contact with the top electrode, or electrically open, or covered with the surface screening charge. The charge density $\sigma(\varphi)$, appearing due to surface states [80], or electro-
chemically active ions [81, 82, 83, 84], depends on the electric potential \(\varphi \) [see Fig. 1(a)]. Figures 1(b)-(d) show three types of nominally uncharged 180°, 109° and 71° domain walls in BFO.

FIGURE. 1. (a) Considered system, consisting of electrically conducting bottom electrode, BFO film of thickness \(h \) with a domain structure, surface screening charge with density \(\sigma(\varphi) \) and ambient media (from bottom to the top). Three types of nominally uncharged 180° (b), 109° (c) and 71° (d) domain walls in BFO are shown in the bottom row.

Electrostatic potential inside the ferroelectric film satisfies the Poisson equation,
\[\varepsilon_0 \varepsilon_r \Delta \varphi - \text{div} \vec{P} = 0, \]
and Laplace equation is valid in the dielectric gap, i.e. \(\varepsilon_0 \varepsilon_r \Delta \varphi = 0 \) (\(\varepsilon_r \) is the dielectric permittivity of external media). Electric boundary conditions are zero electric potential at the bottom of the film contacting the conducting substrate, \(\varphi|_{x_3=0} = 0 \), and the potential continuity, \(\varphi|_{x_3=h-0} - \varphi|_{x_3=h+0} = 0 \), at the interface between the ferroelectric film and the ambient medium. Another boundary condition at interface \(x_3 = h \) is for the normal components of the electric
displacement, namely \(D_3|_{x_3=h+0} - D_3|_{x_3=h-0} = \sigma(\phi)|_{x_3=h} \) where \(D_3 = \varepsilon_0 \phi / \varepsilon X_3 \) in the film, \((0 < x_3 < h)\) and \(D_3 = -\varepsilon_0 \phi / \varepsilon X_3 \) in the dielectric gap \((h < x_3)\). Here, we consider the special case of the surface screening charge with the density given by expression, \(\sigma(\phi) = -\varepsilon_0 \phi / \Lambda \), where \(\Lambda \) is the effective screening length \([85, 86]\). Typically the value of \(\Lambda \) is smaller or even significantly smaller than 1 nm \([87, 88]\). The condition \(\Lambda \rightarrow 0 \) corresponds to the perfect electric contact between the top conducting electrode and the film \([89]\), and we consider the limit for comparison. The top electrode can be either biased \((\phi|_{x_3=h} = U)\) or grounded \((\phi|_{x_3=h} = 0)\), depending on the experimental situation corresponding to the SPM tip placed on the film surface.

Elastic problem formulation is based on the modified Hooke's law obtained using the thermodynamic relation \(u_j = -\frac{\delta G_{ELS}}{\delta \sigma_{ij}} \), where \(u_j \) are the components of elastic strain tensor. Mechanical equilibrium conditions are \(\frac{\partial \sigma_{ij}}{\partial x_j} = 0 \) \([90]\). Note that the film-substrate interface was considered as unstrained one (misfit strain is zero) corresponding to the elastically matched substrate.

The system of coupled Euler-Lagrange equations allowing for Khalatnikov relaxation of the oxygen tilt and polarization components, \(\Phi_i \) and \(P_j \), is:

\[
\frac{\delta G}{\delta P_i} = -\Gamma_P \frac{\partial P_i}{\partial t} \quad \text{and} \quad \frac{\delta G}{\delta \Phi_i} = -\Gamma_\Phi \frac{\partial \Phi_i}{\partial t} .
\]

These equations are supplemented by the boundary conditions of zero generalized fluxes at the film boundaries,

\[
b^{(s)} \Phi_i + v_{ijkl} \frac{\partial \Phi_j}{\partial x_k} n_i |_{S} = 0 , \quad a^{(s)} P_i + g_{ijkl} \frac{\partial P_j}{\partial x_k} n_i |_{S} = 0 \quad (i=1, 2, 3) .
\]

The so-called "natural boundary conditions" for the tilt, \(v_{ijkl} \frac{\partial \Phi_j}{\partial x_k} n_i |_{S} = 0 \), correspond to \(b^{(s)} = 0 \); and the natural boundary conditions for polarization, \(g_{ijkl} \frac{\partial P_j}{\partial x_k} n_i |_{S} = 0 \), corresponds to \(a^{(s)} = 0 \) in Eq.(7b). The natural conditions, which will be used hereinafter, correspond to the absence of surface energy \((6)\) \([91]\). The explicit form of the free energy \((1)-(6)\), Euler-Lagrange equations \((7a)\) with boundary conditions \((7b)\) are listed in Appendix A \([52]\).
C. The impact of biquadratic coupling on the stability of homogeneous R3c phase

Experimentally, bulk BFO should be in a rhombohedral R3c phase at temperatures below T_c. Since the biquadratic coupling and gradient energy coefficients in the free energy (1)-(5) are poorly known, one should be very careful with the choice of their numerical values in order to prevent the appearance of so-called nonphysical "extra" phases [63], which do not exist in reality and should be eliminated from the theoretical analysis of the domain structure configuration. Therefore, prior to study the effect of the gradient energy on domain structure, let us analyze whether any extra phase can be (meta)stable below T_c for a chosen free energy functional form (1)-(5) with parameters taken from Refs. [63, 76] and listed in Table I. For this purpose let us perform the following analytical and numerical calculations.

Without biquadratic coupling contribution, i.e. for $\Delta G_{BQC} = 0$, and neglecting the 6-th powers of the polarizations and tilts, and their gradients, the energies of oxygen tilts and polarization are decoupled, and, using the idea of Dzyaloshinsky substitution [92], one can introduce the new variables $\Phi^2 = \Phi_1^2 + \Phi_2^2 + \Phi_3^2$, $\Psi^2 = \Phi_3^2 - \Phi_1^2$ and $\Omega^2 = \frac{2\Phi_2^2 - \Phi_1^2 - \Phi_3^2}{\sqrt{6}}$, which diagonalize the AFD contribution to the free energy. Similar substitution for polarization components, $P^2 = \frac{P_1^2 + P_2^2 + P_3^2}{\sqrt{3}}$, $Q^2 = \frac{P_1^2 - P_2^2}{\sqrt{2}}$ and $R^2 = \frac{2P_1^2 - P_2^2 - P_3^2}{\sqrt{6}}$, diagonalizes the FE energy. Namely:

$$\Delta G_{AFD}^{2-4}[\Phi, \Psi, \Omega] = \sqrt{3}b_1\Phi^2 + (b_{11} + b_{12})\Phi^4 + \left(b_{11} - \frac{b_{12}}{2}\right)(\Psi^4 + \Omega^4),$$ \hfill (8a)

$$\Delta G_{FE}^{2-4}[P, Q, R] = \sqrt{3}a_1P^2 + (a_{11} + a_{12})P^4 + \left(a_{11} - \frac{a_{12}}{2}\right)(Q^4 + R^4).$$ \hfill (8b)

Expressions (8) have the four global equivalent minimums in the AFD-FE phase, which are stable at $b_1 < 0$, $b_{11} - \frac{b_{12}}{2} > 0$, $a_{1} < 0$, $a_{11} - \frac{a_{12}}{2} > 0$. The coordinates of the minimums in the six dimensional (6D) phase space are

$$\{\Phi, \Psi, \Omega, P, Q, R\} = \left\{\pm \sqrt{-\frac{\sqrt{3}b_1}{2(b_{11} + b_{12})}}, 0, 0, \pm \sqrt{-\frac{\sqrt{3}a_1}{2(a_{11} + a_{12})}}, 0, 0\right\}$$ \hfill (9)

Each of the minimums correspond to the conventional R3c phase of BFO, in which $\Phi_1^2 = \Phi_2^2 = \Phi_3^2 = -\frac{b_1}{2(b_{11} + b_{12})}$ and $P_1^2 = P_2^2 = P_3^2 = -\frac{a_{1}}{2(a_{11} + a_{12})}$.

8
Nonzero biquadratic coupling energy $\zeta_{ijkl}\Phi_i\Phi_j\Phi_k\Phi_l$ given by Eq.(4), as well as 6-th order powers Φ_i^6 and P_i^6 included in Eqs.(2)-(3), make the diagonalization (8) impossible. The minimums can be shifted, and, moreover, some of them can become metastable or even disappear due to the biquadratic coupling and 6-th order terms contribution. Specifically, in coordinates $\{\Phi, \Omega, P, Q, R\}$ the "isotropic" part of biquadratic energy ΔG_{BQC}^{11} can be identically rewritten as:

$$\Delta G_{BQC}^{11} = \zeta_{11}\left(\Phi_1^2 P_1^2 + \Phi_2^2 P_2^2 + \Phi_3^2 P_3^2\right) = \zeta_{11}\left(\Phi^2 P^2 + \Psi^2 Q^2 + \Omega^2 R^2\right)$$ \hspace{1cm} (10)

The oversimplified free energy (7)-(8) including the isotropic biquadratic coupling energy (10) has the form

$$\Delta G_{AFD-FE}^{2-4} = \begin{pmatrix} \sqrt{3b_1}\Phi^2 + (b_{11} + b_{12})\Phi^4 + \left(b_{11} - \frac{b_{12}}{2}\right)(\Psi^4 + \Omega^4) + \sqrt{3}a_1 P^2 + \\
(a_{11} + a_{12}) Q^4 + \left(a_{11} - \frac{a_{12}}{2}\right)(Q^4 + R^4) + \zeta_{11}\left(\Phi^2 P^2 + \Psi^2 Q^2 + \Omega^2 R^2\right) \end{pmatrix}$$ \hspace{1cm} (11)

The energy (11) has four energetically equivalent minimums with coordinates

$$\{\Phi, \Omega, P, Q, R\} = \left\{ \pm \left[\sqrt{3}\left[a_{11}\zeta_{11} - 2b_1(a_{11} + a_{12})\right]\right]^{1/2} / \left[4(a_{11} + a_{12}) - \zeta_{11}^2\right]^{1/4}, 0, 0 \pm \left[\sqrt{3}\left[b_1\zeta_{11} - 2a_1(b_{11} + b_{12})\right]\right]^{1/2} / \left[4(a_{11} + a_{12}) - \zeta_{11}^2\right]^{1/4}, 0, 0 \right\}$$ \hspace{1cm} (12)

These minimums correspond to R3c phase in a bulk AFD-FE multiferroic with isotropic biquadratic coupling. Unfortunately, we could not find any analytical expressions for the minimum coordinates if the anisotropic biquadratic coupling (4) is included in the free energy (1).

Calculations were performed for the 2-4-6 coupled free AFD-FE energy (1)-(5) with BFO parameters from Table I. Cross-sections of the free energy surface have been calculated without $[\zeta_{ijkl} = 0, \text{Fig.2(a)}]$ and with $[\zeta_{ijkl} \neq 0, \text{Fig.2(b)}]$ biquadratic coupling energy (4). The differences between Fig.2(a) and 2(b) are caused by isotropic terms $\zeta_{11}\left(\Phi_1^2 P_1^2 + \Phi_2^2 P_2^2 + \Phi_3^2 P_3^2\right)$ in Eq.(10) and anisotropic terms $\zeta_{44}\left(\Phi_1\Phi_2 P_1 P_2 + \Phi_2\Phi_3 P_2 P_3 + \Phi_1\Phi_3 P_1 P_3\right)$ in Eq.(4). Four equivalent deepest minimums with nonzero coordinates $\Phi_1 = \Phi_2 = \Phi_3 \neq 0$ and $P_1 = P_2 = P_3 \neq 0$, and zero coordinates $\Psi = \Omega = Q = R = 0$ are seen in Fig.2(a)-2(b) [see also Eq.(9)]. The minimums are separated by a local maximum at the coordinate origin and four saddle points. The case $\Phi_1^2 = \Phi_2^2 = \Phi_3^2$, $P_1^2 = P_2^2 = P_3^2$ and $\Psi = \Omega = Q = R = 0$ corresponds to the stable R3c phase.

The free energy dependence on polarization at fixed tilt components $\Phi = \Phi_1 = \Phi_2 = \Phi_3 = 22$ pm, and the dependence of the energy on the tilt at fixed polarization...
components $P_i = P_1 = P_2 = P_3 = 0.48 \text{ C/m}^2$ are shown in Figs.2(c) and 2(d), respectively. The influence of the coupling makes the minimums deeper, but does not shift or eliminate them [compare solid and dashed curves in Fig.2 (c) and 2(d)].

\[\xi_{ijkl} = 0 \]

\[\xi_{ijkl} \neq 0 \]

\[P_i = \text{const} \]

\[P_i = \Phi_i = \Phi_1 = \Phi_2 = \Phi_3 \]

\[P_i = P_1 = P_2 = P_3 \]

Contour maps were calculated at room temperature without (a) and with (b) biquadratic coupling contribution. The free energy dependence on Φ_i at fixed $P_i = 0.48 \text{ C/m}^2$ (c); and its dependence on P_i at fixed $\Phi_i = 22 \text{ pm}$ (d). Dashed and solid curves in plots (c, d) show the cases without ($\xi_{ijkl} = 0$) and with ($\xi_{ijkl} \neq 0$) biquadratic coupling contribution, respectively. Corresponding cross-sections are shown by dotted lines in plots (a) and (b). BFO parameters are listed in Table I, $T=300 \text{ K}$.

We checked numerically, that any other local (or global) minima corresponding to nonzero coordinates $\{P, \Phi, \Psi, \Omega, Q, R\}$ is absent for the BFO parameters listed in Table I. Hence among all homogeneous phases, only R3c phase is absolutely stable below T_C in a bulk BFO without polarization or tilt gradient energy. The result is expected and confirms the appropriate choice of the free energy form given by Eqs.(1)-(5) and numerical parameters in Table I. That is why we can...
conclude that any other metastable or stable phases or/and domain configurations, different from R3c, which will be revealed and analyzed in the next sections, cannot originate from the "extra" local minima of the free energy (1)-(5).

Table I. BFO parameters used in LGD calculations (taken from Refs. [63, 76])

Parameter	Designation	Numerical value for BFO
background permittivity	ε_b	7
dielectric stiffness	$\alpha_T (\times 10^5 \text{C}^{-2} \cdot \text{Jm/K})$	9
Curie temperature for P	T_C (K)	1300
Barrett temperature for P	T_{qP} (K)	800
4th order coefficients in the polarization expansion	$a_{ij} (\times 10^9 \text{C}^{-4} \cdot \text{m}^4 \cdot \text{J})$	$a_{11} = -13.5$, $a_{12} = 5$
6th order coefficients in the polarization expansion	$a_{ijk} (\times 10^{10} \text{C}^{-6} \cdot \text{m}^6 \cdot \text{J})$	$a_{111} = 11.2$, $a_{112} = -3$, $a_{123} = -6$
electrostriction	$Q_{ij} (\text{C}^{-2} \cdot \text{m}^4)$	$Q_{11} = 0.03$, $Q_{12} = -0.01$, $Q_{44} = 0.01$
rotostriction	$R_{ij} (\times 10^{18} \text{m}^{-2})$	$R_{11} = -1.32$, $R_{12} = -0.43$, $R_{44} = 8.45$
compliances	$s_{ij} (\times 10^{-12} \text{Pa}^{-1})$	$s_{11} = 8.3$, $s_{12} = -2.7$, $s_{44} = 9.25$
polarization gradient coefficients	$g_{ij} (\times 10^{-10} \text{C}^{-2} \cdot \text{m}^3 \cdot \text{J})$	$g_{11} = 5$, $g_{12} = -0.5$, $g_{44} = 0.5$
AFD-FE coupling	$\times 10^29 \text{C}^{-2} \cdot \text{m}^2 \cdot \text{J/K}$	$\xi_{11} = -0.5$, $\xi_{12} = 0.5$, $\xi_{44} = -2.6$
2nd order coefficients in the tilt expansion	$b_{ij} (\times 10^{26} \cdot \text{J/(m}^5\text{K}))$	4
Curie temperature for Φ	T_{Φ} (K)	1440
Barrett temperature for Φ	$T_{q\Phi}$ (K)	400
4th order coefficients in the tilt expansion	$b_{ij} (\times 10^{43} \cdot \text{J/(m}^7\text{)})$	$b_{11} = -24 + 4.5 \left(\coth(300/T) - \coth(3/14)\right)$
		$b_{12} = 45 - 4.5 \left(\coth(300/T) - \coth(1/4)\right)$
6th order coefficients in the tilt expansion	$b_{ijk} (\times 10^{70} \cdot \text{J/(m}^9\text{)})$	$b_{111} = 4.5 - 3.4 \left(\coth(400/T) - \coth(2/7)\right)$
		$b_{112} = 3.6 - 0.04 \left(\coth(10/T) - \coth(1/130)\right)$
		$b_{123} = 41 - 43.2 \left(\coth(1200/T) - \coth(12/11)\right)$
tilt gradient coefficients	$v_{ij} (\times 10^{11} \cdot \text{J/(m}^3\text{)})$	$v_{11} = 0.25$, $v_{44} = (0.25 - 25)$
polarization extrapolation length	$\lambda_{i}^{p} = g_{ij}^{(p)} / a_{ij}^{(s)}$ (nm)	Varied from zero to high h values > 100 nm
tilt extrapolation length	$\lambda_{i}^{\Phi} = v_{ij}^{(\Phi)} / b_{ij}^{(s)}$ (nm)	Varied from zero to high h values > 100 nm
effective screening length	Λ (nm)	Varied from zero to 0.1 nm. $\Lambda = 0$ in Figs.3 – 12.
The values of the flexoelectric tensor components F_{ijkl} are not listed in Table I due to their small impact on the studies phenomena. We vary them within typical range $0 \leq F_{ijkl} \leq 10^{11}$ m3/C.

III. SIMULATION RESULTS AND DISCUSSION

A. Simulation details

We used FEM to simulate the oxygen tilt and polarization distributions in thin free-standing BFO films covered by conducting electrodes. The film thickness h varied from 5 nm to 500 nm, and the typical picture of domain morphology was observed at $h>15$ nm; so we use the thicknesses (16 – 20) nm for illustration. BFO parameters used in the FEM calculations to generate figures are listed in Table I.

The values of $a^{(S)}$ and $b^{(S)}$ in the boundary conditions (7b) significantly affect on the "critical thickness" of the film [91]. The critical thickness is the thickness below which the size-induced phase transition to a parent (e.g. paraelectric) phase without long-range order occurs (see e.g. Refs.[91, 93]). As it follows from the analytical expressions derived in Refs.[47, 91] the critical thickness of FE (or AFD) transition decreases with $a^{(S)}$ (or $b^{(S)}$) increase. So that the application of the natural boundary conditions ($a^{(S)} = b^{(S)} = 0$) leads to the minimal critical thickness of the film (see e.g. [47, 91]).

To minimize the influence of the surface on obtained results, we put $a^{(S)} = b^{(S)} = 0$ in the boundary conditions (7b). For comparison we performed simulations for zero polarization and tilt components at the film surfaces, $P_1 |_{x_1=0,h} = 0$ and $\Phi |_{x_1=0,h} = 0$, which corresponds to the maximal influence of the surface. These conditions lead to the maximal critical thickness of the film [47, 91].

It appeared that curved walls arise as a result of the relaxation process of a random domain distribution, named "random seeding" (see Fig. 3). Also the random seeding can be superimposed on the ideal nominally uncharged 180°, 109° and 71° domain wall structure in R3c phase. Initial and final domain states are shown in Fig.4 and Fig.S2 in Appendix B [52].

From Figs.3, 4 and S2 the "curved", "meandering" and "zig-zag" like features appeared at the 180° and 109° AFD walls, but not at the 71° walls. Schematic images of the straight, curved, meandering and zig-zag like domain wall profiles are shown in Fig.S1 in Appendix B [52].

The energy density excess ΔG corresponding to the relaxation of the initial random domain distribution (RD), poly-domain distribution (PD) with straight 180°, 109° and 71° domain walls; and poly-domain distribution disturbed by a random seeding (PD + RD) have been compared. It
appeared that the energies are surprisingly close, namely $\Delta G = -19.926 \text{ J/m}^2$ for the curved domain walls obtained from the relaxation of RD (see Fig. 3), $\Delta G = -19.853 \text{ J/m}^2$ for the 180° domain walls obtained from the relaxation of PD+RD [see Fig. 4(a)-(d)], and $\Delta G = -19.865 \text{ J/m}^2$ for the 180° domain walls obtained from the relaxation of PD [see Fig. 4(e)-(f)]. The final distributions of the polarization and tilt shown in Figs. 3-4, which have high negative and approximately equal energies $\Delta G \approx -19.9 \text{ J/m}^2$, are long-living metastable states of the curved domain walls in BFO [94].

FIGURE 3. Initial random seeding and final distributions of the tilt (a, c) and polarization (b,d) calculated in a 16-nm BFO film. Gradient coefficient $\nu_{44} = 0.25 \times 10^{11} \text{ J/m}^3$, $T = 300 \text{ K}$, other parameters are listed in Table I.
From the analysis of the free energy relief presented in section II.C we cannot establish the origin of the curved, meandering and zig-zag like AFD-FE walls shown in Fig.3(c,d) and Fig.4(c,g). So, what is the physical origin of the meandering and zig-zag like 180° and 109° domain boundaries? Why the effect does not exist for at 71° domain walls? To establish the origin, we performed the following numerical experiments.

FIGURE 4. Initial and final distributions of the tilt (a, e) and polarization (b,d) calculated in a 16-nm BFO film. The 180° domains were imposed on random seeding. Gradient coefficient $\nu_4=0.25\times10^{11} \text{ J/m}^3$, $T=300 \text{ K}$, other parameters are listed in Table I.
(a) The unusual meandering AFD-FE domain structures exist and become insensitive to the screening length values at $\Lambda << 0.1$ nm. We observed the stable meandering domains in the limiting case $\Lambda \to 0$ corresponding to perfect screening and minimal depolarization electric field. Hence the origin of the meandering walls is not the incomplete screening of ferroelectric polarization by the imperfect electrodes or surface charge. At that the low symmetry domains limited by the meandering walls is quite possible.

(b) We explored whether the meandering walls originate from the spatial confinement of polarization components at the film surfaces. Namely we compared the changes of the AFD-FE domain morphology when the polarization extrapolation lengths $\lambda_i^p \equiv \frac{g_{13}^{(p)}}{d_i^{(S)}}$ vary from 0 (corresponding to zero polarization at the film surfaces, $P_i|_{x_1=0,h} = 0$) to infinity (corresponding to $d_i^{(S)} = 0$ and $\frac{\partial P_i}{\partial x_1}_{|_{x_1=0,h}} = 0$). For $\lambda_i^p = 0$ we see the appearance of FE domain wall broadening at the surface and its gradual decrease with λ_i^p increasing, as anticipated. However no significant changes of the meandering walls occur in the film with λ_i^p changing.

(c) We further compared the changes of the AFD-FE domain structure when the tilt extrapolation lengths $\lambda_i^\phi \equiv \frac{\nu_{13}^{(\phi)}}{b_i^{(S)}}$ vary from 0 (corresponding to zero polarization at the film surfaces, $\Phi_i|_{x_1=0,h} = 0$) to the infinity (corresponding to $b_i^{(S)} = 0$ and $\frac{\partial \Phi_i}{\partial x_3}_{|_{x_1=0,h}} = 0$). For $\lambda_i^\phi = 0$ we see the appearance of AFD domain wall broadening at the surface and its gradual decrease with λ_i^ϕ increasing. However, no significant changes of the domain morphology occur with λ_i^ϕ changing. Further we can assume that the spatial confinement delineates the appropriate boundary conditions for the oxygen tilt and polarization components at the film surfaces.

(d) We rotate the film surface cut to find the angle for which both AFD and FE walls are straight without inclusion of any other phases. We made sure that the angle does not exist. Also, we checked whether the meandering walls originate from the spatial confinement effect delineated by the appropriate boundary conditions for the oxygen tilt at the film surfaces. We increase the film thickness up to 500 nm and see that no significant changes in the morphology of meandering domains occur.

(e) Finally, we varied the components of the electrostrictive and flexoelectric couplings tensors in a typical range ($0 \leq |F_{ijkl}| \leq 10^{11}$ m3/C, $0 \leq |Q_{ijkl}| \leq 0.1$ m4/C2), and lead to the conclusion that the
appearance of observed effects do not stem from the couplings, because the meandering AFD walls weakly react on the changes of F_{ijkl} and Q_{ijkl} values.

(f) It appeared that the change of the tilt gradient coefficients v_{ijkl} significantly affects on the curvature and meandering of domain walls, including the monoclinic phase appearance at the curved walls. It is important to underline that the monoclinic phase can be stable in a ferroic with one vectorial long-range order parameter, e.g. in a "normal" ferroelectric with a polarization vector \mathbf{P}, if the higher-order powers of \mathbf{P} (from 8th to 12th) are included into the LGD free energy [95]. As a matter of fact, we consider two vectors, \mathbf{P} and Φ, as the long-range order parameters, using 2-4-6 LGD expansion for each of them in numerical modeling [see Eqs.(2)-(3) and Table I], and simplified 2-4 expansion in analytical calculations [see Eqs.(8)]. Hence the effective order of the nonlinearity in the coupled Euler-Lagrange equations for \mathbf{P} and Φ is 12 for numerical calculations and 8 for analytical calculations, making the appearance of monoclinic phases quite possible. Earlier we have found that the monoclinic phase can be stabilized without 8th powers of polarization, if the coupling between \mathbf{P} and Φ is included [34].

(e) The impact of the polarization gradient coefficients g_{ijkl} is much less pronounced, because the FE walls do not bend in order to remain uncharged. The charging of FE wall by the polarization bound charge will immediately lead to the appearance of strong depolarization electric field E_i^d ($\text{div}\mathbf{E}^d \sim -\text{div}\mathbf{P}$) that's energy excess $-E_i^d P_i/2$ is positive at the region of the curved wall and relatively high. Thus, the polarization sub-system behaves in such a way to prevent the charging.

From the analysis of (a)-(e) we concluded that the origin of meandering AFD-FE domain walls is the coupling between the tilts and polarization gradient coefficients. This conclusion is consistent with the results of Conti et al. [96] for multiferroics with symmetric free energy and two order parameters. Conti et al. used a simple phenomenological model and have shown that the maximum and minimum near the antiphase domain walls appear on the profile of one of the order parameters depending on the anisotropy gradient energy, in the mixed phase when both order parameters are nonzero. Despite the fact that we consider a much more complex system with six order parameters, the extremums observed near the domain walls are qualitatively similar to the ones predicted by Conti et al. Thus, the appearance of maxima and minima on the profiles of the order parameters near the domain walls can be associated with the features (such as anisotropy) of the gradient energy.

To quantify the statement, one can introduce the tilt correlation length $L_c^\phi \sim \sqrt{\nu}$ that is defined from the correlation function of the tilt vector fluctuations. The correlation length of polarization fluctuations $L_c^\rho \sim \sqrt{g}$ can be introduced in a conventional way (see e.g. Ref.[18]). Note,
that correlation lengths L_{C}^{ϕ} and L_{C}^{P} determine the width of the AFD and FE domain walls [18]. Since the correlation function depends both on the wave vector of fluctuations and their orientation in r-space, it is anisotropic. In other words, the correlation function of tilt (or polarization) fluctuation is the second rank tensor. Table II lists the analytical expressions and numerical values of correlation lengths for the tilt and polarization vector components. It is seen that L_{C}^{ϕ} varies significantly at the 180° domain wall for the different tilts (from 3.72 Å for Φ_1 to 0.78 Å Φ_3), and L_{C}^{P} varies from 6.20 Å for P_1 to 2.38 Å to P_3 components. The tilt and polarization changes at 109° domain wall behave as in the hypothetic "isotropic" ferroic, namely $L_{C}^{\phi} = 1.75$ Å for both tilt components and $L_{C}^{P} = 1.75$ Å for both polarizations. Contrary, only the components Φ_3 and P_3 vary across the 71° domain wall, at that $L_{C}^{\phi} = 1.75$ Å for Φ_3 and $L_{C}^{P} = 2.38$ Å for P_3.

Table II. AFD and FE order parameter correlation lengths L_{C}^{ϕ} and L_{C}^{P} in BFO

Order parameter	Type of the uncharged domain wall		
180°			
Φ_1	$L_{C}^{\phi} = \sqrt{\frac{v_{11} + v_{12} + 2v_{44}}{4b_1}} = 3.72$ Å	Non applicable, since $\Phi_1 \approx \text{const}$	
Φ_2	$L_{C}^{\phi} = \sqrt{\frac{v_{44}}{2b_1}} = 1.75$ Å	$L_{C}^{\phi} = \sqrt{\frac{v_{44}}{2b_1}} = 1.75$ Å	Non applicable, since $\Phi_2 \approx \text{const}$
Φ_3	$L_{C}^{\phi} = \sqrt{\frac{v_{11} - v_{12}}{4b_1}} = 0.78$ Å	$L_{C}^{\phi} = \sqrt{\frac{v_{44}}{2b_1}} = 1.75$ Å	$L_{C}^{\phi} = \sqrt{\frac{v_{44}}{2b_1}} = 1.75$ Å
P_1	$L_{C}^{P} = \sqrt{\frac{g_{11} + g_{12} + 2g_{44}}{4a_1}} = 6.20$ Å	Non applicable, since $P_1 \approx \text{const}$	Non applicable, since $P_1 \approx \text{const}$
P_2	$L_{C}^{P} = \sqrt{\frac{g_{44}}{4a_1}} = 2.38$ Å	$L_{C}^{P} = \sqrt{\frac{g_{44}}{4a_1}} = 2.38$ Å	Non applicable, since $P_2 \approx \text{const}$
P_3	$L_{C}^{P} = \sqrt{\frac{g_{11} - g_{12}}{4a_1}} = 4.87$ Å	$L_{C}^{P} = \sqrt{\frac{g_{44}}{4a_1}} = 2.38$ Å	$L_{C}^{P} = \sqrt{\frac{g_{44}}{4a_1}} = 2.38$ Å

B. Meandering 180-degree AFD-FE domain walls

Using FEM of the AFD and FE properties of strain-free thin BFO films, we further observe that the conventional 180° domains of bulk rhombohedral AFD-FE phase [see Fig.1(a)] are
separated by the zig-zag like meandering domain walls, which in fact contain thin AFD-FE domain regions of lower monoclinic symmetry and different parity [see Fig. 5].

![Diagram](image-url)

FIGURE 5. Distribution of the tilt Φ_i (a)-(c) and polarization P_i (d)-(f) components calculated for the case of 180°-domains in a 16-nm BFO film. Gradient coefficient $\nu_{44}=2.5 \times 10^{10}$ J/ m3, $T=300$ K, other parameters are listed in Table I.

The contrast of the monoclinic domains is determined by the magnitude of the tilt components Φ_i; and it is higher in the vicinity of the meandering walls in comparison with the contrast in the centre of the 180° domain [see dark-red and dark-blue regions near meandering boundaries in Fig. 5(a)-(c)]. Surprisingly, neither curvature nor enhanced contrast is inherent to the FE component of the 180°
domain boundaries [see straight incline domain boundaries with gradually changing color from red to blue in Fig. 5(d)-(f)]. Actually, the contrast enhancement in the meandering regions [marked by the ellipse in Fig. 5(b)] does not correspond to the bulk rhombohedral phase and represents itself the domains of lower monoclinic symmetry with $\Phi_1 \neq \Phi_2 \neq \Phi_3$ imposed on the 180° AFD-FE domains in the rhombohedral phase.

The influence of the tilt gradient coefficient v_{44} on the domain structure could be seen from Figs. 6-7. Meandering AFD domain walls broaden significantly and decrease their curvature with an increase of v_{44} by a factor of 10. In addition to significant broadening, a visible asymmetry of the wall profile appears with an increase of v_{44} by a factor of 100. As one could see from the figures, the maximal deviation of the tilt from bulk value is dependent on v_{44}, but polarization profiles are almost independent on this parameter. Thus, we conclude that the appearance of meandering walls and low symmetry phases is conditioned by the decrease of the tilts gradient energy. If v_{44} is sufficiently small, the energy increase associated with the AFD wall bending is less than the energy decrease associated with the terms proportional to $b_j \Phi_i^2 \Phi_j^2$.
FIGURE 6. Distribution of the tilt components Φ_2 (a, c, e) and Φ_3 (b, d, f) calculated for the case of 180°-domains in a thin BFO film. The gradient coefficient $\nu_{44}=2.5\times10^{10}$ J/m3 (a, b), 2.5×10^{11} J/m3 (c, d), and 2.5×10^{12} J/m3 (e, f). T=300 K, other parameters are listed in Table I.
FIGURE 7. Profiles of the tilt components Φ_i (a, b, c), and polarization P_2 (d) calculated for the case of 180°-domains in the middle of 16-nm BFO film ($x_3 = h/2$) at room temperature. The gradient coefficient $\nu_{44} = 0.25 \times 10^{11}$ J/m3 (black curves), 2.5×10^{11} J/m3 (blue curves) and 25×10^{11} J/m3 (red curves); $T=300$ K, other parameters are listed in Table I.

C. Meandering 109-degree AFD-FE domain walls

Rhombohedral 109° domains correspond to the case when two components of vectorial order parameter changes its sign when crossing the wall plane [see Fig. 1(b)]. These are the components Φ_2, Φ_3 and P_2, P_3, respectively for the 109° domains in BFO. These domains are separated by the AFD meandering domain walls, which in fact contain thin domains of lower symmetry [see Figs. 8(b,c)]. Enhanced contrast is also inherent to the FE component at the domain boundaries [see the boundaries with gradually changing color from red to blue in Figs. 8(a)-(c)]. Actually, the contrast enhancement in the meandering regions does not correspond to the bulk rhombohedral R3c phase.
There are the domains of lower symmetry with $\Phi_1 \neq \Phi_2 \neq \Phi_3$ and $P_1 \neq P_2 \neq P_3$ imposed on the twin boundaries in the rhombohedral phase.

FIGURE 8. Distribution of the AFD order parameter Φ_i (a)-(c) and polarization P_i (d)-(f) calculated for the case of 109°-domains in a thin BFO film. $T=300$ K, BFO parameters are listed in Table I.

Similarly to the case of the low symmetry phases appearing the vicinity of the meandering 180° AFD-FE domain walls (considered in section III.B) we made sure that the appearance of low symmetry domains at 109° domain walls does not stem from the spatial confinement or imperfect
screening of spontaneous polarization, electrostrictive or flexoelectric couplings, but rather from the interplay between the gradient of the oxygen tilt and polarization components at the domain walls. Indeed, the influence on the tilt gradient coefficient value is shown in Fig. 9. Distributions of order parameters in the central part of the film, corresponding to Fig. 9, are shown in Fig. 10.

FIGURE 9. Distributions of the tilt components Φ_2 (a)-(c) and Φ_3 (d)-(f) calculated for the case of 109°-domains in a thin BFO film. The gradient coefficient $\nu_{44}=0.25 \times 10^{11}$ J/m3 (a, e), 0.5×10^{11} J/m3 (b, f), 1×10^{11} J/m3 (c, g) and 2×10^{11} J/m3 (d, h). T=300 K, BFO parameters are listed in Table I.

One could see two tendencies with increase of ν_{44}. The first tendency is an obvious increase of domain wall width (proportionally to $\sqrt{\nu_{44}}$) and the second one is the decrease of the meandering walls density and curvature, which separate monoclinic regions. As one could see from Fig. 10, the
amplitude of the tilt deviation from the bulk value is independent on the gradient coefficient ν_{44}. However the low symmetry region occupies the central part of BFO film for the high values of ν_{44}. The regions are characterized by the different amplitudes of the tilt components near and far from the 109° domain walls.

FIGURE 10. Profiles of the tilt Φ_2 (a, b, c), and polarization P_2 (d) calculated for the case of 109°-domains in a 16-nm BFO film at room temperature. The gradient coefficient $\nu_{44}=0.25 \times 10^{11}$ J/m3 (black), 2.5×10^{11} J/m3 (blue) and 25×10^{11} J/m3 (red); $x_3 = h/2$; $T=300$ K, BFO parameters are listed in Table I.

D. 71-degree AFD-FE domain walls

Bulk 71° domains correspond to the case when only one component of the tilt and polarization changes its sign when crossing the wall plane [see Fig.1(c)]. It is Φ_2 and P_2 in the considered R3c phase of BFO. The results of calculations are presented in Figs. 11-12. AFD-FE 71° domain walls are almost straight except for the slight bending at the surface (see Fig. 11). The profiles of tilt and polarization components broaden with increase of the tilt gradient coefficient ν_{44} (compare black,
blue and red curves in Figs. 12). The tilt amplitude remains the same and polarization amplitude decreases with ν_{44} increase.

Slight bending of the FE domain wall at the surface is determined by internal electric field that has nonzero out-of-plane component near the surface (see Fig. S.3b). The in-plane component of the field is maximal at the domain walls far from the surface (see Fig. S.3a). The effect is caused by the variation of in-plane component of polarization P_1 perpendicular to the wall due to the coupling with other components of polarization and tilt (see Figs. 11d). However, at the surface the electric field should be perpendicular to it, hence the component E_1 tends to zero here (see Fig. S.3a) and the domain wall - surface junction acts as a source of a stray electric field, causing the wall bending and broadening in this region.
FIGURE 11. Distributions of the tilt Φ_i (a)-(c) and polarization P_i (d)-(f) components calculated for the case of 71°-domains in a 16-nm BFO film. Gradient coefficient $\nu_{44}=0.25 \times 10^{11} \text{ J/m}^3$, $T=300$ K, BFO parameters are listed in Table I. Initial distribution corresponds to 71° domains with [100] walls.

IV. CONCLUSIONS

Using LGD-approach we reveal zig-zag like meandering AFD-FE domain walls in BFO. These walls typically separate the regions with unusually low monoclinic symmetry. It appeared that the origin of the meandering AFD-FE is conditioned by the decrease of the tilts gradient energy.

Moreover, the origin of the meandering walls does not stem from incomplete polarization screening in thin BFO films, electrostrictive or flexoelectric coupling. The spatial confinement
delineates the appropriate boundary conditions for the oxygen tilt and polarization components at the film surfaces, but its existence is not critical for the meandering walls appearance and their zig-zag like instability. The values of the gradient energy coefficients for the oxygen tilt appeared critical to initiate the morphological changes of the 180° and 109° uncharged domain walls towards zig-zag meandering. Zig-zag instability appears for small gradient energies, while the walls become straight and broaden at higher gradients. Uncharged 71° walls are always straight and their width increases with increasing of the tilt gradient coefficient.

Hence we predicted previously unexplored type of the gradient-driven morphological phase transition taking place at the AFD-FE domain walls in multiferroics.

Acknowledgements
Authors are very grateful to Prof. Xiuliang Ma for stimulating discussions and very useful remarks. A.N.M. work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778070, and partially supported by the National Academy of Sciences of Ukraine (project No. 0117U002612, No. 0118U003375) and by the Program of Fundamental Research of the Department of Physics and Astronomy of the National Academy of Sciences of Ukraine (project No. 0117U000240). S.V.K. and C.T.N. was supported by the Center for Nanophase Materials Sciences, sponsored by the Division of User Facilities, Basic Energy Sciences, US Department of Energy.

Authors' contribution. E.A.E. wrote the codes, performed numerical calculations and prepared figures. A.N.M. generated research idea, stated the problem, derived analytical results and wrote the manuscript draft. E.A.E. and A.N.M. contributed equality to the results interpretation. C.T.N. and S.V.K. worked on the results discussion and manuscript improvement.

REFERENCES
[1] V. Wadhawan, Introduction to Ferroic Materials, CRC Press (2000).
[2] Jia-Mian, Hu, Long-Qing Chen, and Ce-Wen Nan. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Advanced materials 28 (1), 15 (2016).
[3] A. P. Pyatakov, Magnetoelectricity goes local: From bulk multiferroic crystals to ferroelectricity localized on magnetic topological textures. Physica B: Condensed Matter 542, 59-62 (2018).
[4] M. Fiebig, Revival of the magnetoelectric effect, Journal of Physics D: Applied Physics 38, R (2005).
[5] N. A. Spaldin and M. Fiebig, The renaissance of magnetoelectric multiferroics, Science 309, 391 (2005).
[6] J.M. Rondinelli and N.A. Spaldin, Structure and properties of functional oxide thin films: insights from electronic-structure calculations, Advanced materials 23, 3363 (2011).
[7] A. P. Pyatakov and A. K. Zvezdin, Magnetoelectric and multiferroic media, Physics-Uspekhi 55, 557 (2012).
[8] J. F. Scott, Data storage: Multiferroic memories, Nature materials 6, 256 (2007).
[9] M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, The evolution of multiferroics, Nature Reviews Materials 1, 16046 (2016)
[10] E.V. Balashova and A.K. Tagantsev, Polarization response of crystals with structural and ferroelectric instabilities, Phys. Rev. B 48, 9979 (1993).
[11] G. Catalan and James F. Scott, Physics and applications of bismuth ferrite, Adv. Mater. 21, 2463 (2009).
[12] V. Gopalan and D.B. Litvin, Rotation-reversal symmetries in crystals and handed structures, Nature Materials 10, 376 (2011).
[13] M. J. Haun, E. Furman, T. R. Halemane, and L. E. Cross, Thermodynamic theory of the lead zirconate-titanate solid solution system, part IV: Tilting of the oxygen octahedra, Ferroelectrics, 99, 55 (1989).
[14] B. Houchmanzadeh, L. Jajzerowicz, and E Salje, Order parameter coupling and chirality of domain walls, J. Phys.: Condens. Matter 3, 5163 (1991)
[15] A.K. Tagantsev, E. Courtens and L. Arzel, Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate, Phys. Rev. B 64, 224107 (2001).
[16] A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk, L.-Q. Chen, V. Gopalan. Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction. Phys. Rev. B 85, 094107 (2012).
[17] M. Darakchiev, G. Catalan, J. F. Scott. Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 224118 (2010).
[18] A.K. Tagantsev, L. E. Cross, and J. Fousek. Domains in ferroic crystals and thin films. New York: Springer, 2010. ISBN 978-1-4419-1416-3, e-ISBN 978-1-4419-1417-0, DOI 10.1007/978-1-4419-1417-0
[19] A. Y. Borisevich, E. A. Eliseev, A. N. Morozovska, C-J. Cheng, J-Y. Lin, Ying-Hao Chu, Daisuke Kan, Ichiro Takeuchi, V. Nagarajan, and Sergei V. Kalinin. Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nature communications 3, 775 (2012).
[20] A. K. Tagantsev, K. Vaideeswaran, S. B. Vakhrushev, A. V. Filimonov, R. G. Burkovsky, A. Shaganov, D. Andronikova, A. I. Rudskoy, A. Q. R. Baron, H. Uchiyama, D. Chernyshov, A. Bosak, Z. Ujma, K. Roleder, A. Majchrowski, J.-H. Ko & N. Setter. The origin of antiferroelectricity in PbZrO3. Nature communications 4, article number 2229 (2013).
[21] P. Henning, and E. KH Salje. Flexoelectricity, incommensurate phases and the Lifshitz point. J. Phys.: Condens. Matter 28, 075902 (2016).
[22] R. G. Burkovsky, A. K. Tagantsev, K. Vaideeswaran, N. Setter, S. B. Vakhrushev, A. V. Filimonov, A. Shaganov, D. Andronikova, A.I. Rudskoy, A.Q.R. Baron, and H. Uchiyama, Lattice dynamics and antiferroelectricity in PbZrO 3 tested by x-ray and Brillouin light scattering. Phys. Rev. B 90, 144301 (2014).
[23] E. A. Eliseev, S. V. Kalinin, Yijia Gu, M.D. Glinchuk, V. Khist, A. Borisevich, Venkatraman Gopalan, Long-Qing Chen, and A. N. Morozovska. Universal emergence of spatially-modulated structures induced by flexo-antiferrodistortive coupling in multiferroics. Phys.Rev. B 88, 224105 (2013)

[24] V. Goian, S. Kamba, O. Pacherova, J. Drahokoupil, L. Palatinus, M. Dusek, J. Rohlcek, M. Savinov, F. Laufek, W. Schranz, A. Fuith, M. Kachlik, K. Maca, A. Shkabko, L. Sagarna, A. Weidenkaff, and A. A. Belik. Antiferrodistortive phase transition in EuTiO3. Phys. Rev. B 86, 054112 (2012).

[25] Jong-Woo Kim, Paul Thompson, Simon Brown, Peter S. Normile, John A. Schlueter, Andrey Shkabko, Anke Weidenkaff, and Philip J. Ryan. Emergent superstructural dynamic order due to competing antiferroelectric and antiferrodistortive instabilities in bulk EuTiO3. Phys. Rev. Lett. 110, 027201 (2013)

[26] Ronald Maran, Shintaro Yasui, E.A. Eliseev, M.D. Glinchuk, A.N. Morozovska, Hiroshi Funakubo, Ichiro Takeuchi, Nagarajan Valanoor. Interface control of a morphotropic phase boundary in epitaxial samarium-modified bismuth ferrite superlattices. Phys.Rev. B 90, 245131 (2014)

[27] Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J. F. Li and D. Viehland, Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains. J. Appl. Phys. 94, 3629 (2003).

[28] Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J. F. Li and D. Viehland. Conformal miniaturization of domains with low domain-wall energy: Monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 91, 197601 (2003).

[29] Y.U. Wang, Three intrinsic relationships of lattice parameters between intermediate monoclinic M C and tetragonal phases in ferroelectric Pb [(Mg 1∕ 3 Nb 2∕ 3) 1− x Ti x] O 3 and Pb [(Zn 1∕ 3 Nb 2∕ 3) 1− x Ti x] O 3 near morphotropic phase boundaries. Phys. Rev. B 73, 014113 (2006).

[30] S. Kaufmann, U. K. Roßler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fahle. Adaptive modulations of martensites. Phys. Rev. Lett. 104, 145702 (2010).

[31] A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, L.-Q. Chen and V. Gopalan. Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field. Appl. Phys. Lett. 100, 142902 (2012).

[32] A.N. Morozovska, E.A. Eliseev, S.L. Bravina, A.Y. Borisevich, and S.V. Kalinin. Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO3 films. J. Appl. Phys. 112, 064111 (2012).

[33] N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phase transitions and strain-induced ferroelectricity in SrTiO 3 epitaxial thin films. Phys. Rev. B 61, R825 (2000).

[34] A. N. Morozovska, Y. Gu, V. V. Khist, M. D. Glinchuk, L.-Q. Chen, V. Gopalan, and E. A. Eliseev, Low-symmetry monoclinic ferroelectric phase stabilized by oxygen octahedra rotations in strained Eux Sr 1− x TiO 3 thin films. Phys. Rev. B 87, 134102 (2013).

[35] N.A. Pertsev, A.G. Zembilgotov, A. K. Tagantsev. Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Phys. Rev. Lett. 80, 1988 (1998).

[36] O. Diéguez, S. Tinte, A. Antons, C. Bungaro, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, Ab initio study of the phase diagram of epitaxial BaTiO3, Phys. Rev. B 69, 212101 (2004).
[37] Y.L. Li, L. Q. Chen. Temperature-strain phase diagram for Ba Ti O 3 thin films. Appl. Phys. Lett. 88, 072905 (2006).

[38] A. Gruverman, D. Wu, H-J Fan, I Vrejoiu, M Alexe, R J Harrison and J F Scott, Vortex ferroelectric domains, J. Phys.: Condens. Matter 20, 342201 (2008).

[39] A. K. Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson, C. M. Schlepütz, A. R. Damodaran, P. Shafer, E. Arenholz, L. R. Dedon, D. Chen, A. Vishwanath, A. M. Minor, L. Q. Chen, J. F. Scott, L. W. Martin, and R. Ramesh, Observation of polar vortices in oxide superlattices, Nature 530, 198 (2016).

[40] N. Balke, B. Winchester, Wei Ren, Ying Hao Chu, A. N. Morozovska, E. A. Eliseev, M. Huijben, R. K. Vasudevan, P. Maksumovich, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche, L.-Q. Chen, and S. V. Kalinin, Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3, Nat. Phys. 8, 81 (2012).

[41] B. Winchester, N. Balke, X. X. Cheng, A. N. Morozovska, S. Kalinin, and L. Q. Chen, Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films, Appl. Phys. Lett. 107, 052903 (2015).

[42] G. Catalan, H. Béa, S. Fusil, M. Bibes, Patrycia Paruch, A. Barthélémy, and J. F. Scott, Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3, Phys. Rev. Lett. 100, 027602 (2008).

[43] S. V. Kalinin, B. J. Rodriguez, J. D. Budai, S. Jesse, A. N. Morozovska, A. A. Bokov, and Z. G. Ye, Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors, Phys. Rev. B 81, 064107 (2010).

[44] V. V. Shvartsman, and A. L. Kholkin, Domain structure of (Pb (Mg1∕3Nb2∕3)O3)0.7(PbTiO3)0.3 studied by piezoresponse force microscopy, Phys. Rev. B 69, 014102 (2004).

[45] K. S. Wong, J. Y. Dai, X. Y. Zhao, and H. S. Luo, Time-and temperature-dependent domain evolutions in poled (111)-cut (Pb (Mg1∕3Nb2∕3)O3)0.7 (PbTiO3)0.3 single crystal, Appl. Physics Lett. 90, 162907 (2007).

[46] A. Kholkin, A. Morozovska, D. Kiselev, I. Bdikin, B. Rodriguez, P. Wu, A. Bokov, Z.-G. Ye, B. Dkhil, L.-Q. Chen, M. Kosec, and S. V. Kalinin. Surface Domain Structures and Mesoscopic Phase Transition in Relaxor Ferroelectrics. Adv. Func. Mat. 21 (11), 1977 (2011).

[47] A. N. Morozovska, E. A. Eliseev, J. Wang, G. S. Svechnikov, Yu. M. Vysochanskii, V. Gopalan, and L.-Q. Chen, Phase diagram and domain splitting in thin ferroelectric films with incommensurate phase, Phys. Rev. B 81, 195437 (2010).

[48] A. Artemev, B. Geddes, J. Slutsker, and A. Roytburd, Thermodynamic analysis and phase field modeling of domain structures in bilayer ferroelectric thin films, J. Appl. Phys. 103, 074104 (2008).

[49] A. Hubert, and R. Schafer, Magnetic domains: the analysis of magnetic microstructures, (Springer, Berlin 1998).

[50] E. A. Eliseev, Y. M. Fomichov, S. V. Kalinin, Y. M. Vysochanskii, P. Maksumovich and A. N. Morozovska. Labyrinthine domains in ferroelectric nanoparticles: Manifestation of a gradient-induced morphological phase transition. Phys.Rev. B 98, 054101 (2018).

[51] Anna N. Morozovska, Yevhen M. Fomichov, Petro Maksumovych, Yulian M. Vysochanskii, and Eugene A. Eliseev. Analytical description of domain morphology and phase diagrams of ferroelectric nanoparticles Acta Materialia 160, 109-120 (2018)
[52] See Supplementary Materials, URL will be provided by Publisher

[53] D.C. Arnold, K.S. Knight, G. Catalan, S.A.T. Redfern, James F. Scott, Philip Lightfoot, and Finlay D. Morrison, The β-to-γ Transition in BiFeO3: A Powder Neutron Diffraction Study, Advanced Functional Materials 20, 2116 (2010).

[54] R. Palai, R. S. Katiyar, Hans Schmid, Paul Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. A. Catalan, and J. F. Scott, β phase and γ− β metal-insulator transition in multiferroic BiFeO3, Phys. Rev. B 77, 014110 (2008).

[55] P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski. "Temperature dependence of the crystal and magnetic structures of BiFeO3." Journal of Physics C: Solid State Physics 13, no. 10, 1931 (1980).

[56] O. Dieguez, P. Aguado-Puente, J. Junquera, J. Iniguez. Domain walls in a perovskite oxide with two primary structural order parameters: First-principles study of BiFeO3. Phys. Rev. B 87, 024102 (2013).

[57] Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L.W. Martin, Y.-H. Chu, J. F. Scott, and R. Ramesh. "Magnetotransport at domain walls in BiFeO 3." Physical review letters 108, no. 6: 067203 (2012).

[58] G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott. "Domain wall nanoelectronics." Reviews of Modern Physics 84, no. 1: 119 (2012).

[59] Nina Balke, Benjamin Winchester, Wei Ren, Ying Hao Chu, Anna N. Morozovska, Eugene A. Eliseev, Mark Huijben, Rama K. Vasudevan, Petro Maksymovych, Jason Britson, Stephen Jesse, Igor Kornev, Ramamoorthy Ramesh, Laurent Bellaiche, Long Qing Chen, and Sergei V. Kalinin.. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nature Physics 8, 81–88 (2012).

[60] Anna N. Morozovska, Rama K. Vasudevan, Peter Maksymovych, Sergei V. Kalinin and Eugene A. Eliseev. Anisotropic conductivity of uncharged domain walls in BiFeO3. Phys. Rev. B. 86, 085315 (2012)

[61] R. K. Vasudevan, A. N. Morozovska, E. A. Eliseev, J. Britson, J.-C. Yang, Y.-H. Chu, P. Maksymovych, L. Q. Chen, V. Nagarajan, S. V. Kalinin. Domain wall geometry controls conduction in ferroelectrics. Nano Letters, 12 (11), pp 5524–5531 (2012)

[62] R. K. Vasudevan, W. Wu, J. R. Guest, A. P. Baddorf, A. N. Morozovska, E. A. Eliseev, N. Balke, V. Nagarajan, P. Maksymovych. Domain Wall Conduction and Polarization-Mediated Transport in Ferroelectrics. Adv. Funct. Mater., 23, 2592–2616 (2013)

[63] D.V. Karpinsky, E.A. Eliseev, Fei Xue, M.V. Silibin, A. Franz, M.D. Glinchuk, I.O. Troyanchuk, S.A. Gavrilov, Venkatraman Gopalan, Long-Qing Chen, and A.N. Morozovska, Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO3), npj Computational Materials 3, 20 (2017)

[64] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299, 1719 (2003).

[65] Y.-H. Chu, Qian Zhan, L. W. Martin, M. P. Cruz, Pei-Ling Yang, G.W. Pabst, F. Zavaliche, Seung-Yeul Yang, Jing-Xian Zhang, Long-Qing Chen, D. G. Schlom, I.-Nan Lin, Tai-Bor Wu, and Ramamoorthy Ramesh, Nanoscale domain control in multiferroic BiFeO3 thin films, Advanced Materials 18, 2307 (2006).
[66] Ying-Hao Chu, L.W. Martin, M.B. Holcomb, M. Gajek, Shu-Jen Han, Qing He, N. Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan, Pei-Ling Yang, A. Fraile-Rodriguez, A. Scholl, Shan X. Wang, and Ramamoorthy Ramesh, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nature materials 7, 478 (2008).

[67] P. Maksymovych, M. Huijben, Minghu Pan, S. Jesse, N. Balke, Ying-Hao Chu, Hye Jung Chang, A.Y. Borisevich, A.P. Baddorf, Guus Rijnders, D.H. A. Blank, Ramamoorthy Ramesh, and S.V. Kalinin, Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3, Phys. Rev. B, 85, 014119 (2012).

[68] C. Beekman, W. Siemons, M. Chi, N. Balke, J. Y. Howe, T. Z. Ward, P. Maksymovych, J. D. Budai, J. Z. Tischler, R. Xu, W. Liu, and H. M. Christen, Ferroelectric Self-Poling, Switching, and Monoclinic Domain Configuration in BiFeO3 Thin Films, Advanced Functional Materials 26, 5166 (2016).

[69] M. Trassin, G. De Luca, S. Manz, and M. Fiebig, Probing ferroelectric domain engineering in BiFeO3 thin films by second harmonic generation, Advanced Materials 27, 4871 (2015).

[70] W. Y. Wang, Y. L. Tang, Y. L. Zhu, Y. B. Xu, Y. Liu, Y. J. Wang, S. Jagadeesh, X. L. Ma, Atomic Level 1D Structural Modulations at the Negatively Charged Domain Walls in BiFeO3 Films, Advanced Materials Interfaces, 2 (9): 1500024 (2015)

[71] W. Y. Wang, Y. L. Zhu, Y. L. Tang, Y. B. Xu, Y. Liu, S. Li, S. R. Zhang, Y. J. Wang, X. L. Ma, Large Scale Arrays of Four-State Vortex Domains in BiFeO3 Thin Film, Applied Physics Letters, 109 (20): 202904 (2016).

[72] J. Nordlander, G. De Luca, N. Strkalj, M. Fiebig, and M. Trassin. Probing Ferroic States in Oxide Thin Films Using Optical Second Harmonic Generation. Applied Sciences 8, no. 4, 570 (2018).

[73] W. Y. Wang, Y. L. Zhu, Y. L. Tang, M. J. Han, Y. J. Wang, X. L. Ma, Atomic Mapping of Structural Distortions in 109 Degrees Domain Patterned BiFeO3 Thin Films, Journal of Materials Research, 32 (12): 2423-2430 (2017).

[74] M. J. Han, Y. J. Wang, D. S. Ma, Y. L. Zhu, Y. L. Tang, Y. Liu, N. B. Zhang, J. Y. Ma, X. L. Ma, Coexistence of Rhombohedral and Orthorhombic Phases in Ultrathin BiFeO3 Films Driven by Interfacial Oxygen Octahedral Coupling, Acta Materialia, 145: 220-226 (2018)

[75] E.A. Eliseev, M.D. Glinchuk, Venkatraman Gopalan, and A.N. Morozovska, Rotomagnetic couplings influence on the magnetic properties of antiferrodistortive antiferromagnets, J. Appl. Phys. 118, 144101 (2015)

[76] A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, O. M. Fesenko, V. V. Shvartsman, Venkatraman Gopalan, M. V. Silibin, D. V. Karpinsky. Rotomagnetic coupling in fine-grained multiferroic BiFeO3: theory and experiment. Phys. Rev. B 97, 134115 (2018)

[77] John H. Barrett, Dielectric constant in perovskite type crystals. Physical Review 86, 118 (1952).

[78] Yijia Gu, K. Rabe, E. Bousquet, Venkatraman Gopalan, and Long-Qing Chen. Phenomenological thermodynamic potential for CaTiO3 single crystals. Phys. Rev. B 85, 064117 (2012).

[79] A. K. Tagantsev and G. Gerra. Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100, 051607 (2006).
[80] J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717 (1947).
[81] M. J. Highland, T. T. Fister, D. D. Fong, P. H. Fuoss, Carol Thompson, J. A. Eastman, S. K. Streiffer, and G. B. Stephenson. Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure. Physical Review Letters, 107, no. 18, 187602 (2011).
[82] G. B. Stephenson, and M. J. Highland, Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation. Physical Review B, 84 (6), 064107 (2011).
[83] S. V. Kalinin, Yunseok Kim, D. Fong, and A. Morozovska, Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures, Reports on Progress in Physics 81, 036502 (2018).
[84] A. N. Morozovska, E. A. Eliseev, I. S. Vorotiahin, M. V. Silibin, S. V. Kalinin and N. V. Morozovsky. Control of polarization hysteresis temperature behavior by surface screening in thin ferroelectric films. Acta Materialia 160, 57-71 (2018).
[85] E. A. Eliseev, A. V. Semchenko, Y. M. Fomichev, M. D. Glinchuk, V. V. Sidsky, V. V. Kolos, Yu. M. Pleskachevsky, M. V. Silibin, N. V. Morozovsky, A. N. Morozovska. Surface and finite size effects impact on the phase diagrams, polar and dielectric properties of (Sr,Bi)Ta2O5 ferroelectric nanoparticles. J. Appl. Phys. 119 204104 (2016).
[86] E. A. Eliseev, I. S. Vorotiahin, Y. M. Fomichev, M. D. Glinchuk, S. V. Kalinin, Y. i A. Genenko, and A. N. Morozovska. Defect driven flexo-chemical coupling in thin ferroelectric films. Physical Review B, 97, 024102 (2018).
[87] A. K. Tagantsev, G. Gerra, and N. Setter, Short-range and long-range contributions to the size effect in metal-ferroelectric-metal heterostructures. Phys. Rev. B 77, 174111 (2008).
[88] J. Wang, A. K. Tagantsev, N. Setter. Size effect in ferroelectrics: Competition between geometrical and crystalline symmetries. Phys. Rev. B 83, 014104 (2011).
[89] Actually, the boundary condition \(D_{3} |_{k_{z}=h+0} - D_{3} |_{k_{z}=h-0} = \sigma(\varphi) \equiv -\frac{\varepsilon_{0} \varphi}{\Lambda} \bigg|_{k_{z}=h} \) can be transformed to the equivalent condition, \(D_{3} |_{k_{z}=h+0} - D_{3} |_{k_{z}=h-0} \Lambda = -\varepsilon_{0} \varphi \bigg|_{k_{z}=h} \). Therefore, the limit \(\Lambda \to 0 \) in the boundary condition \(D_{3} |_{k_{z}=h+0} - D_{3} |_{k_{z}=h-0} \Lambda = -\varepsilon_{0} \varphi \bigg|_{k_{z}=h} \) simply means that \(\varphi \bigg|_{k_{z}=h} \to 0 \) at \(\Lambda \to 0 \), that is equivalent to zero potential \(\varphi \bigg|_{k_{z}=h} = 0 \) at film contact with conducting electrode, and the screening takes place in the electrode. On the other hand the screening length is zero in an ideal conductor, and in this sense one can regard that "the screening charges take infinitesimal space at \(\Lambda = 0 \)".
[90] L. D. Landau and E. M. Lifshitz, Theory of Elasticity. Theoretical Physics, Vol. 7 (Butterworth-Heinemann, Oxford, 1976).
[91] Tilley D. R. Finite-size effects on phase transitions in ferroelectrics. Ferroelectric Thin Films, ed. C. Paz de Araujo, J. F. Scott and G. W. Taylor.-Amsterdam: Gordon and Breach, 1996.-P.11-45
[92] I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids 4, no. 4: 241-255 (1958).
[93] S.V. Kalinin, A.N. Morozovska, Long Qing Chen, Brian J. Rodriguez. Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).

[94] Since we used the variational method for the solution of equations of state, the stability of the solution is guaranteed by the calculation algorithm itself, and the numerical algorithm converges to the local energy minimum. However, we cannot guarantee that the numerical algorithm can find the absolute minimum in general case. Therefore, the solutions with approximately equal negative energies can be classified as long-living metastable states.

[95] D. Vanderbilt and M. H. Cohen. Monoclinic and triclinic phases in higher-order Devonshire theory Phys. Rev. B 63, 094108 (2001).

[96] S. Conti, S. Muller, A. Poliakovsky, and E. K. H. Salje, Coupling of order parameters, chirality, and interfacial structures in multiferroic materials, J. Phys.: Condens. Matter 23, 142203 (2011).
SUPPLEMENTARY MATERIALS

APPENDIX A

Evident form of the free energy in BFO

Explicit form of different contributions to the free energy are presented below for cubic m3m symmetry parent phase. AFD contribution is:

$$\Delta G_{AFD} = b_1 (\Phi_1^2 + \Phi_2^2 + \Phi_3^2) + b_{11} (\Phi_1^4 + \Phi_2^4 + \Phi_3^4) + b_{12} (\Phi_1^2 \Phi_2^2 + \Phi_1^2 \Phi_3^2 + \Phi_2^2 \Phi_3^2) +$$

$$+ v_{11} \left(\frac{\partial \Phi_1}{\partial x_1} \right)^2 + \left(\frac{\partial \Phi_2}{\partial x_2} \right)^2 + \left(\frac{\partial \Phi_3}{\partial x_3} \right)^2 \right) + v_{12} \left(\frac{\partial \Phi_1}{\partial x_1} \frac{\partial \Phi_2}{\partial x_2} + \frac{\partial \Phi_2}{\partial x_1} \frac{\partial \Phi_3}{\partial x_3} + \frac{\partial \Phi_3}{\partial x_1} \frac{\partial \Phi_1}{\partial x_3} \right) \right) \right) +$$

$$+ v_{44} \left(\frac{\partial \Phi_1}{\partial x_2} \frac{\partial \Phi_2}{\partial x_3} + \frac{\partial \Phi_1}{\partial x_2} \frac{\partial \Phi_3}{\partial x_3} + \frac{\partial \Phi_2}{\partial x_2} \frac{\partial \Phi_3}{\partial x_3} \right) \r...
\[
\Delta G_{\text{STR}} = -Q_{11}(\sigma_{11}P_1^2 + \sigma_{22}P_2^2 + \sigma_{33}P_3^2) \\
- Q_{12}((\sigma_{22} + \sigma_{33})P_2^2 + (\sigma_{11} + \sigma_{33})P_3^2 + (\sigma_{22} + \sigma_{11})P_1^2) \\
- Q_{44}(\sigma_{12}P_1 P_2 + \sigma_{13}P_1 P_3 + \sigma_{23}P_2 P_3) \\
- R_{11}(\sigma_{11} \Phi_1^2 + \sigma_{22} \Phi_2^2 + \sigma_{33} \Phi_3^2) - R_{12}((\sigma_{22} + \sigma_{33})\Phi_2^2 + (\sigma_{11} + \sigma_{33})\Phi_3^2 + (\sigma_{22} + \sigma_{11})\Phi_1^2) \\
- R_{44}(\sigma_{12} \Phi_1 \Phi_2 + \Phi_1 \Phi_3 + 23 \Phi_2 \Phi_3)
\]

(A.4)

Flexoelectric effect contribution is

\[
\Delta G_{\text{FL}} = -F_{11}\left(\sigma_{11} \frac{\partial P_1}{\partial x_1} + \sigma_{22} \frac{\partial P_2}{\partial x_2} + \sigma_{33} \frac{\partial P_3}{\partial x_3}\right) \\
- F_{12}\left((\sigma_{22} + \sigma_{33}) \frac{\partial P_2}{\partial x_1} + (\sigma_{11} + \sigma_{33}) \frac{\partial P_3}{\partial x_2} + (\sigma_{11} + \sigma_{22}) \frac{\partial P_1}{\partial x_3}\right) \\
- F_{44}\left(\sigma_{12} \left(\frac{\partial P_1}{\partial x_2} + \frac{\partial P_2}{\partial x_1}\right) + \sigma_{13} \left(\frac{\partial P_1}{\partial x_3} + \frac{\partial P_3}{\partial x_1}\right) + \sigma_{23} \left(\frac{\partial P_2}{\partial x_3} + \frac{\partial P_3}{\partial x_2}\right)\right)
\]

(A.5)

Elastic "self-energy" is

\[
\Delta G_{\sigma} = -\frac{s_{11}}{2}(\sigma_{11}^2 + \sigma_{22}^2 + \sigma_{33}^2) - s_{12}(\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{11}\sigma_{33}) - \frac{s_{44}}{2}(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{13}^2)
\]

(A.6)

Total free energy has the following form

\[
G = \int_\nu (\Delta G_{\text{AFD}} + \Delta G_{\text{FE}} + \Delta G_{\text{BQC}} + \Delta G_{\text{STR}} + \Delta G_{\text{FL}} + \Delta G_{\sigma}) d\nu + \int_S (\Delta G_{\text{AFD}} + \Delta G_{\text{FE}}) dS
\]

(A.7)

The Euler-Lagrange equations for polarization and tilt components, \(P_i \) and \(\Phi_i \), can be obtained by the minimization of the free energy (A.7) as follows

\[
- \Gamma_{\rho} \frac{\partial P_1}{\partial \tau} = 2P_1(a_1 - Q_{12}(\sigma_{22} + \sigma_{33}) - Q_{11} \sigma_{11}) - Q_{44}(\sigma_{12}P_2 + \sigma_{13}P_3) \\
+ (\zeta_{11}\Phi_1^2 + \zeta_{12}(\Phi_2^2 + \Phi_3^2))2P_1 + \zeta_{44}\Phi_1(\Phi_2P_2 + \Phi_3P_3) \\
+ 4a_{11}P_1^3 + 2a_{12}P_1^2P_2^2 + 2a_{12}P_1^2P_3^2 + 2a_{11}P_1P_2^2 + 2a_{11}P_1P_3^2 + 2a_{12}P_2^2P_3 + 2a_{11}P_2P_3^2 \\
- g_{11} \frac{\partial^2 P_1}{\partial x_1^2} - g_{44} \left(\frac{\partial^2 P_1}{\partial x_2^2} + \frac{\partial^2 P_1}{\partial x_3^2}\right) - (g'_{11} + g_{12}) \frac{\partial^2 P_2}{\partial x_2 \partial x_1} - (g'_{11} + g_{12}) \frac{\partial^2 P_3}{\partial x_3 \partial x_1} \\
+ F_{11} \frac{\partial \sigma_{11}}{\partial x_1} + F_{12} \left(\frac{\partial \sigma_{22}}{\partial x_1} + \frac{\partial \sigma_{33}}{\partial x_1}\right) + F_{44} \left(\frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3}\right) - E_1
\]

(A.8a)
\(- \Gamma_p \frac{\partial P_3}{\partial t} = 2P_3 (a_1 - Q_{12} (\sigma_{11} + \sigma_{33}) - Q_{11} \sigma_{22}) - Q_{44} (\sigma_{13} P_1 + \sigma_{23} P_2)
+ (\xi_{11} \Phi_1^2 + \xi_{12} (\Phi_1^2 + \Phi_3^2))2P_2 + \zeta_{44} \Phi_2 (\Phi_1 P_1 + \Phi_3 P_3) \)
\(+ 4a_{11} P_3^3 + 2a_{12} P_3 (P_2^2 + P_3^2) + 6a_{111} P_5^5 + 2a_{112} P_3 (P_1^4 + 2P_2^2 P_1^2 + P_3^4 + 2P_2^2 P_3^2) + 2a_{112} P_3 P_1^2 P_3^2 \)
\(- g_{11} \frac{\partial^2 P_3}{\partial x_1^2} - g_{44} \left(\frac{\partial^2 P_3}{\partial x_1^2} + \frac{\partial^2 P_3}{\partial x_3^2} \right) - (g_{11}^* + g_{12}) \frac{\partial^2 P_3}{\partial x_1 \partial x_2} - (g_{44} + g_{12}) \frac{\partial^2 P_3}{\partial x_3 \partial x_2} \)
\(+ F_{11} \frac{\partial \sigma_{22}}{\partial x_2} + F_{12} \left(\frac{\partial \sigma_{11}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_2} \right) + F_{44} \left(\frac{\partial \sigma_{12}}{\partial x_1} + \frac{\partial \sigma_{23}}{\partial x_3} \right) - E_2 \)
\(- \Gamma_p \frac{\partial P_3}{\partial t} = 2P_3 (a_1 - Q_{12} (\sigma_{11} + \sigma_{33}) - Q_{11} \sigma_{22}) - Q_{44} (\sigma_{13} P_1 + \sigma_{23} P_2) \)
\(+ (\xi_{11} \Phi_1^2 + \xi_{12} (\Phi_1^2 + \Phi_3^2))2P_2 + \zeta_{44} \Phi_2 (\Phi_1 P_1 + \Phi_3 P_3) \)
\(+ 4a_{11} P_3^3 + 2a_{12} P_3 (P_2^2 + P_3^2) + 6a_{111} P_5^5 + 2a_{112} P_3 (P_1^4 + 2P_2^2 P_1^2 + P_3^4 + 2P_2^2 P_3^2) + 2a_{112} P_3 P_1^2 P_3^2 \)
\(- g_{11} \frac{\partial^2 P_3}{\partial x_1^2} - g_{44} \left(\frac{\partial^2 P_3}{\partial x_1^2} + \frac{\partial^2 P_3}{\partial x_3^2} \right) - (g_{11}^* + g_{12}) \frac{\partial^2 P_3}{\partial x_1 \partial x_2} - (g_{44} + g_{12}) \frac{\partial^2 P_3}{\partial x_3 \partial x_2} \)
\(+ F_{11} \frac{\partial \sigma_{33}}{\partial x_3} + F_{12} \left(\frac{\partial \sigma_{11}}{\partial x_3} + \frac{\partial \sigma_{33}}{\partial x_3} \right) + F_{44} \left(\frac{\partial \sigma_{13}}{\partial x_1} + \frac{\partial \sigma_{33}}{\partial x_3} \right) - E_3 \)

\(\text{The general form of the boundary conditions is} \)
\begin{align*}
\left. b^{(S)} \Phi_j + v_{ijkl} \frac{\partial \Phi_l}{\partial x_i} n_j \right|_s &= 0, \\
\left. a^{(P)} P_j + \left(g_{ijkl} \frac{\partial P_k}{\partial x_j} - F_{kij} \sigma_{kl} \right) n_j \right|_s &= 0 \quad (i=1, 2, 3) \quad (A.10)
\end{align*}

For the normal \(n_j = \{0, 0, \pm 1\} \) to the surface \(x_3 = 0, h \) Eqs.(A.10) have the following explicit form

\begin{align*}
\left. b^{(S)} \Phi_1 \left(v_{44} \frac{\partial \Phi_1}{\partial x_3} + v_{44}' \frac{\partial \Phi_3}{\partial x_1} \right) \right|_{x_3 = 0, h} &= 0, \\
\left. b^{(S)} \Phi_2 \left(v_{14} \frac{\partial \Phi_1}{\partial x_3} + v_{14}' \frac{\partial \Phi_3}{\partial x_1} \right) \right|_{x_3 = 0, h} &= 0, \\
\left. b^{(S)} \Phi_3 \left(v_{14} \frac{\partial \Phi_3}{\partial x_1} + v_{12} \frac{\partial \Phi_5}{\partial x_2} + v_{12}' \frac{\partial \Phi_1}{\partial x_1} \right) \right|_{x_3 = 0, h} &= 0 \quad (A.11a)
\end{align*}

\begin{align*}
\left. a^{(S)} P_1 \left(g_{44} \frac{\partial P_1}{\partial x_3} + g_{44}' \frac{\partial P_3}{\partial x_1} - F_{44} \sigma_{13} \right) \right|_{x_3 = 0, h} &= 0, \\
\left. a^{(S)} P_2 \left(g_{44} \frac{\partial P_2}{\partial x_3} + g_{44}' \frac{\partial P_3}{\partial x_2} - F_{44} \sigma_{23} \right) \right|_{x_3 = 0, h} &= 0, \\
\left. a^{(S)} P_3 \left(g_{11} \frac{\partial P_1}{\partial x_3} + g_{12} \frac{\partial P_2}{\partial x_2} + g_{12}' \frac{\partial P_3}{\partial x_1} - F_{11} \sigma_{33} - F_{12} \left(\sigma_{11} + \sigma_{22} \right) \right) \right|_{x_3 = 0, h} &= 0 \quad (A.11b)
\end{align*}

Note that all derivatives \(\frac{\partial}{\partial x_2} \) are zero for the 2D-problem. Following Glinka and Marton semi-microscopic model, we suggested that

\begin{align*}
g_{44}' + g_{12} \equiv 0 \quad \text{and} \quad v_{44}' + v_{12} \equiv 0 \quad (A.12)
\end{align*}
FIGURE S1. Schematic images of the straight, not straight or "curved", "meandering" and "zig-zag" like domain wall profiles.

(a) 109° $\Delta G = -21.251 \text{ J/m}^2$

(b) 71° $\Delta G = -21.658 \text{ J/m}^2$
FIGURE S2. Initial and final distributions of the tilt (a, c) and polarization (b,d) in a 16-nm BFO film at room temperature for the 109° and 71° domains and random seeding. Gradient coefficient $\nu_4=0.25\times10^{11}$ J/ m³, $\Lambda=0$, other parameters are listed in Table I.

FIGURE S3. Distribution of the electric field components, E_1 (a) and E_3 (b) in a thin BFO film at room temperature for the case of 71° domains with [100] walls. Gradient coefficient $\nu_4=0.25\times10^{11}$ J/ m³, other parameters are listed in Table I.