Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter

Rifqatul Mukarramah a,1,*, Dedy Atmajaya a,2; Lutfi Budi Ilmawan a,3
* Universitas Muslim Indonesia, Jl. Urip Sumoharjo KM 5, Makassar dan 90231, Indonesia
1 rifqatulmukarramah@gmail.com; 2 dedy.atmajaya@umi.ac.id; 3 lutfibudi.ilmawan@umi.ac.id

Article history: Received April 30, 2021; Revised July 04, 2021; Accepted July 04, 2021; Available online August 07, 2021

Abstract
Sentiment analysis is a technique to extract information of one’s perception, called sentiment, on an issue or event. This study employs sentiment analysis to classify society’s response on covid-19 virus posted at twitter into 4 polars, namely happy, sad, angry, and scared. Classification technique used is support vector machine (SVM) method which compares the classification performance figure of 2 linear kernel functions, linear and polynomial. There were 400 tweet data used where each sentiment class consists of 100 data. Using the testing method of k-fold cross validation, the result shows the accuracy value of linear kernel function is 0.28 for unigram feature and 0.36 for trigram feature. These figures are lower compared to accuracy value of kernel polynomial with 0.34 and 0.48 for unigram and trigram feature respectively. On the other hand, testing method of confusion matrix suggests the highest performance is obtained by using kernel polynomial with accuracy value of 0.51, precision of 0.43, recall of 0.45, and f-measure of 0.51.

Keywords: SVM Algorithm; Covid-19; Kernel Linear; Kernel Polynomial; Sentiment Analysis

Introduction
Global society was shocked by the emergence of corona virus, named Corona Virus Disease 2019 (Covid-19), that infects human respiratory system and can easily be transmitted between people [1][2][3]. The first case was found at Wuhan, China at the end of December 2019 and started spreading to other countries including Indonesia. The first case in Indonesia was announced on 2nd March, 2020 [4][5]. The rapid spread and intensive increase in the number of infected patients lead people to feel restless, anxious, and scared of this outbreak. This triggers people to express all feelings and opinions on social media, especially Twitter. Twitter is a micro-blogging system technology that allows users to easily upload activities, feelings, and experiences, called tweets, to the internet, anywhere, anytime, and in real time [6].

Based on the problems above, it is necessary to analyze public opinion on Twitter about Covid-19 with the classification of happy, sad, angry, and scared. Sentiment analysis or also known as opinion mining is a process of understanding, extracting and processing textual data automatically to obtain sentiment information contained in a sentence whether it has a positive or negative opinion [7]. Several previous studies on data classification that compared several methods [8][9][10][11][12] showed that the Support Vector Machine method offered better performance than other classification methods in their respective case studies. Therefore, this study applied the Support Vector Machine (SVM) method with Linear Kernel and Polynomial Kernel in the classification process. Support Vector Machine (SVM) is a method that classifies linear and non-linear data sets by converting the original training data to a higher dimension so that these dimensions look for the decision limits needed to separate classes and their records from others [13].

The results of this study will provide an overview of people's perceptions of Covid-19, whether they tend to be happy, sad, angry, or scared. This study also compares the performance results of the SVM method with the Linear Kernel and Polynomial Kernel.

Method
The initial stage of this research is to carry out a data crawling process to get tweets that discuss Covid-19 on Twitter. The data that has been obtained will go through a labeling process where each tweet will be labeled according to the polarity of the sentiment being experienced. The next stage is pre-processing, feature extraction and
Mukarramah, et. al. (Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter)
Results and Discussion
This section discusses the classification and testing results of the tweet classification model that has been built. After the process of crawling Twitter data and labeling them according to the sentiment experienced, the next stage is pre-processing.

A. Pre-Processing
The initial stage step is cleansing which is to remove URLs, mentions, usernames, RTs, hashtags, numbers, punctuation marks, and emoticons as shown in Table 1.

Tweet	Label
Mengikuti arus dunia yang menyedihkan Corona anjing	Angry
Orang orang sedang phobia virus Corona flu dan demam efek kehujanan kemarin aja di jauhin terus suruh periksa kedokter	Scared

The next step is case folding which is to uniform all letters into lowercase as given in Table 2.

Tweet	Label
mengikuti arus dunia yang menyedihkan corona anjing	Angry
orang orang sedang phobia virus corona flu dan demam efek kehujanan kemarin aja di jauhin terus suruh periksa kedokter	Scared

Next, tokenizing cut each word in a sentence as shown in Table 3.

Tweet	Label
'mengikuti', 'arus', 'dunia', 'yang', 'menyedihkan', 'corona', 'anjing'	Angry
'orang', 'orang', 'sedang', 'phobia', 'virus', 'corona', 'flu', 'dan', 'demam', 'efek', 'kehujanan', 'kemarin', 'aja', 'di', 'jauhin', 'terus', 'suruh', 'periksa', 'kedokter'	Scared

Stemming is the next step which is to change word in the sentence to the basic form as shown in Table 4.

Tweet	Label
'ikut', 'arus', 'dunia', 'yang', 'sedih', 'corona', 'anjing'	Marah
'orang', 'orang', 'sedang', 'phobia', 'virus', 'corona', 'flu', 'dan', 'demam', 'efek', 'hujan', 'kemarin', 'aja', 'di', 'jauhin', 'suruh', 'periksa', 'dokter'	Takut

The final step is stopword which is to remove words that have no meaning as shown in Table 5.

Tweet	Label
arus dunia sedih corona anjing	Marah
orang orang phobia virus corona flu demam efek hujan kemarin jauhin suruh periksa dokter	Takut

B. Feature Extraction
This study applies n-gram with word extraction on tweet data with n=1, called unigram, and n=3, called trigram. The feature extraction results can be seen in Table 6.

Unigram	Trigram	Label
- arus	- arus dunia sedih	Angry
- dunia	- dunia sedih corona	
- sedih	- sedih corona anjing	
- corona	-	
- anjing	-	
- orang	- orang phobia virus	Scared
- phobia	- phobia virus corona	

Mukarramah, et. al. (Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter)
C. TF-IDF

The extracted data is still in the form of qualitative data so that it needs to be reprocessed into quantitative data using the TF-IDF calculation. Below are three documents to show the results of the TF-IDF calculation. The results of the calculation of tweet data using TF-IDF can be seen in Table 7.

Term	TF	IDF	TF-IDF
Korona	0.142857	1.393043	0.199006
Rasa	0.142857	5.892852	0.841836
Rebah	0.142857	6.298317	0.899760
Selasa	0.142857	6.991465	0.998781
Senin	0.142857	6.991465	0.9987871

D. Classification Process

After passing through the labelling, pre-processing, feature extraction, and TF-IDF, the next stage is to carry out classification process using the SVM model. In order to determine the prediction results of the classification model used suit the label or not, tweet data obtained from the testing data set is given. The data can be seen in Table 8.

Tweet	Label
alhamdulillah, negative corona positif cantik..	Happy
pensi sekolahku gagal tahun ini garagara corona	Sad
kenapa sih masih banyak orang yang gasuka pakai masker, gak takut kena corona yah	Angry
orang-orang takut ibunya kena korona jadi pada nggak berani bantuin	Afraid

The prediction results can be seen in Table 9.

Tweet	Kernel	Prediksi
alhamdulillah, negative corona positif cantik..	Linear	Afraid
pensi sekolahku gagal tahun ini garagara corona	Polynomial	Afraid
kenapa sih masih banyak orang yang gasuka pakai masker, gak takut kena corona yah	Linear	Sad
orang-orang takut ibunya kena korona jadi pada nggak berani bantuin	Polynomial	Afraid

Table 9 shows the prediction results from the classification model using the unigram feature providing some results which are not suitable. Using a linear kernel, it was found that only the second tweet is predicted to be correct. Meanwhile, by using a polynomial kernel, all tweets are predicted to be wrong.
Table 10 shows the prediction results from the classification model using the trigram feature, some results were found not suitable. There were no tweets predicted to be correct in the result of linear kernel. Meanwhile, using a kernel polynomial, the first and second tweets are predicted to be correct, the third and fourth tweets are predicted incorrect.

E. Testing

The tweet classification test was carried out by measuring the accuracy, precision, recall, and f-measure values from the Support Vector Machine calculation with 2 kernel functions, namely linear and polynomial, and using unigram and trigram feature extraction. The data used for the classification model testing process was obtained from Indonesian-language tweets raising the topic of Covid-19 with a total of 400 tweets divided into 4 classes, namely 100 tweets with happy labels, 100 tweets with sad labels, 100 tweets with angry labels, and 100 tweets with scared labels. The testing of the performance of the classification model employs the k-fold cross validation and confusion matrix methods.

The cross-validation test uses a value of k=4. In each iteration, one of the folds will be selected as testing data and the remaining will become training data. Each data can only be used as testing data once. The process of calculating the accuracy of the data testing will continue to repeat until all iterations are complete.

Table 11 shows the results of the evaluation process of the classification model using 4-fold cross validation. In the first iteration, the highest accuracy is obtained using a polynomial kernel with trigram feature extraction. Similarly, the highest accuracy at the second, third and fourth iterations were obtained by using a polynomial kernel and trigram feature extraction, with 0.437, 0.450, and 0.512 respectively.

The confusion matrix test is used to visualize the performance of the classification algorithm which is used by comparing the actual value with the predicted value. The parameters that will be measured in this test are the values of accuracy, precision, recall, and f-measure.

Table 10. Prediction Results of Trigram Feature

Tweet	Kernel	Prediction
alhamdulillah, negative corona positif cantik.	Linear	Afraid
pensi sekolahku gagal tahun ini garagara corona	Polynomial	Happy
kenapa sih masih banyak orang yang gasuka pakai masker, gak takut kena corona yah	Linear	Happy
orang-orang takut ibunya kena korona jadi pada nggak berani bantu	Polynomial	Sad

Table 11. Accuracy Test Results with 4-Fold Cross Validation

Iteration	Linear Unigram	Linear Trigram	Polynomial Unigram	Polynomial Trigram
1	0.337	0.437	0.425	0.512
2	0.275	0.300	0.337	0.437
3	0.275	0.287	0.312	0.450
4	0.237	0.425	0.287	0.512
Avg	0.280	0.360	0.340	0.480

Mukarramah, et. al. (Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter)
Figures 2.a, 2.b, 2.c and 2.d show the output of the testing process using linear and polynomial kernel functions with unigram and trigram feature extraction. The best performance in both linear and polynomial kernel were obtained by using the trigram feature with an accuracy value of 0.55 and 0.50 respectively.

Table 12 shows a comparison of the results of the Support Vector Machine performance using linear and polynomial kernels obtained by calculating the average value of each performance obtained for each kernel and feature used. Classification calculations using polynomial kernels and trigram features produce better test scores overall than using linear kernels with unigram or trigram features.

Performance	Linear	Polynomial		
	Unigram	Trigram	Unigram	Trigram
Accuracy	0.337	0.437	0.425	0.512
Precision	0.275	0.300	0.337	0.437
Recall	0.275	0.287	0.312	0.450
F-Measure	0.237	0.425	0.287	0.512

The comparison of performance results of support vector machine using linear and polynomial kernel can also be seen in the following Chart.

Figure 3 portraits that polynomial kernel with trigram features resulted in better overall performance values with accuracy of 0.512, precision of 0.437, recall of 0.45, and f-measurement of 0.512, compared to the use of linear kernel with unigram features that provided accuracy of 0.337, precision of 0.275, recall of 0.275, and f-measurement of 0.237 and the trigram features with accuracy, precision, recall, and f-measurement of 0.437, 0.3, 0.287, and 0.425 respectively.

Conclusion
Based on the results and discussion, it is concluded that the best performance of the support vector machine method is obtained by using the polynomial kernel function with an accuracy value of 0.512, precision of 0.437, recall of 0.45, and f-measurement of 0.512. Therefore, the most appropriate kernel function and feature extraction to be applied in this study is a polynomial kernel with trigram features.
References

[1] W. A. F. Dewi, “Dampak COVID-19 terhadap Implementasi Pembelajaran Daring di Sekolah Dasar,” Edukatif J. Ilmu Pendidik., vol. 2, no. 1, pp. 55–61, 2020.
[2] D. Telaumbanua, “Urgensi Pembentukan Aturan Terkait Pencegahan Covid-19 di Indonesia,” QALAMUNA J. Pendidikan, So. dan Agama, vol. 12, no. 01, pp. 59–70, 2020.
[3] M. Siahaan, “Dampak Pandemi Covid-19 Terhadap Dunia Pendidikan,” J. Kaji. Ilm., vol. 1, no. 1, pp. 73–80, 2020.

Mukarramah, et. al. (Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter)