The risk factors of rupture and abortion of tubal pregnancy—a retrospective study based on 2280 tubal pregnancy cases

Panpan Tang
The Third Affiliated Hospital of Sun Yet-sun University

Xiaomao Li
The Third Affiliated Hospital of Sun Yet-sun University

Wenwei Li
The Third Affiliated Hospital of Sun Yet-sun University

Yu Zhang
The Third Affiliated Hospital of Sun Yet-sun University

Yuebo Yang (✉ yueboyang001@163.com)
The Third Affiliated Hospital of Sun Yet-sun University

Research

Keywords: ruptured group, aborted group, amenorrhea, abdominal pain, vaginal bleeding, syncope, shock, adnexal mass, adnexal tenderness, cervical lifting pain

Posted Date: August 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-798877/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objective: The morbidity of ectopic pregnancy is about 1%~2%, and it accounts for about 10% of maternal death. Tubal rupture and tubal abortion can both lead to massive hemorrhage, but their risk factors are lack of study. Through studying the ectopic cases at the third affiliated hospital of Sun Yat-Sen University, the study aims to analyze the risk factors of tubal rupture and tubal abortion.

Methods: To collect the ectopic pregnancy cases undergoing surgeries from the year 2011 to the year 2019 retrospectively, divide them into ruptured group, aborted group, and unruptured and unaborted group. T-test, Mann–Whitney–Wilcoxon test and Pearson’s chi-square, and Fisher’s exact test were applied for univariate analysis. Multivariate logistic regression analysis was used to identify the risk factors of tubal rupture and tubal abortion (variables with a \(P \) value < 0.1 by univariate analysis were entered into the multivariate analysis).

Results: Abdominal pain (OR: 3.101, 95%CI: 1.812–5.306, \(P < 0.001 \)), cervical lifting pain (OR: 2.942, 95%CI: 2.046–4.231, \(P < 0.001 \)), the mass diameter ≥ 4cm (OR: 2.874, 95%CI: 2.095–3.941, \(P < 0.001 \)), HCG ≥ 5000U/L (OR: 2.588, 95%CI: 1.900–3.526, \(P < 0.001 \)), adnexal tenderness (OR: 1.893, 95%CI: 1.296–2.764, \(P = 0.001 \)), age ≥ 35 (OR: 1.781, 95%CI: 1.232–2.573, \(P = 0.002 \)), aspirating blood during culdocentesis (OR: 1.497, 95%CI: 1.081–2.074, \(P = 0.015 \)) are the risk factors of tubal rupture, while vaginal bleeding (OR: 0.271, 95%CI: 0.196–0.375, \(P < 0.001 \)) is the protective factor of tubal rupture. HCG < 2000U/L (OR: 3.554, 95%CI: 2.401–5.260, \(P < 0.001 \)) and mass diameter ≥ 4cm (OR: 2.732, 95%CI: 1.900–3.929, \(P < 0.001 \)) are the risk factors of tubal abortion.

Conclusions: When facing an ectopic pregnancy patient considering pelvic bleeding happens, if HCG ≥ 5000U/L, it’s more likely to be tubal rupture, if HCG < 2000U/L, it’s more likely to be tubal abortion.

1. Introduction

Ectopic pregnancy happens when fertilized ovum implants outside the endometrium of uterine cavity, which is a life-threatening disease and is an important cause of pregnancy-related mortality [1]. Tubal pregnancy is the most common type of ectopic pregnancy.

Tubal rupture happens because of the infiltration of trophoblastic tissue into the tubal wall. The fallopian tube is not intact. Tubal abortion is characterized by the extrusion of pregnancy tissue implanted in the fallopian tube entering into the peritoneal cavity through the fimbriae of uterine tube. It can be either complete or incomplete [2] and the fallopian tube is intact. The rupture and abortion of tubal pregnancy can both lead to severe bleeding, even hemorrhagic shock and death.

The rupture and abortion of tubal pregnancy can show similar clinical manifestations and signs, including amenorrhea, abdominal pain, vaginal bleeding, syncope, shock, adnexal mass, adnexal tenderness, cervical lifting pain, hysterauxesis and aspirating blood during culdocentesis. But the
treatment strategy can be different. Tubal abortion allows for conservative treatment [2] while tubal rupture always needs surgery.

It is well-investigated that higher HCG is associated with a higher possibility of tubal rupture [3][4], but there are still different opinions about the risk factors of tubal rupture, and few studies are about the risk factors of tubal abortion. I undertook this study to investigate the risk factors of tubal rupture and tubal abortion.

2. Materials And Methods

From 2001 to 2019, 3915 ectopic pregnancy patients visited the third affiliated hospital of Sun Yat-Sen University. Among them, 3316 cases were considered tubal pregnancy. 2700 cases of tubal pregnancy underwent surgeries. The operation notes of tubal pregnancy cases undergoing surgeries were reviewed to divide cases into ruptured group, aborted group and unruptured and unaborted group. The criterion of ruptured group is the rupture of fallopian tube could be seen during surgery, while the criterion of aborted group is gestational sac could be found in the abdomen or could be seen at fimbria. 396 cases were considered as tubal rupture, 472 cases were considered as tubal abortion, while 1832 cases were considered as tubal pregnancy without rupture or abortion.

Detailed information about age, gestational age, gestational history, pelvic disease history, pelvic surgery history, assisted reproductive history, birth control history, clinical manifestations, signs, HCG, progesterone and diameter of mass were obtained from medical records. Cases with information loss were excluded. At last, 285 cases were included in the ruptured group, 414 cases were included in the aborted group, 1581 cases were included in the unruptured and unaborted group.

T-test and Mann–Whitney–Wilcoxon test were applied for independent samples, Pearson's chi-square and Fisher's exact test were applied for comparison of groups where appropriate. Multivariate logistic regression analysis was used to identify the risk factors of tubal rupture and tubal abortion (variables with a P value < 0.1 by univariate analysis were entered into the multivariate analysis). A P value < 0.05 was considered significant. Statistical analysis was performed with SPSS 25 statistical software.

3. Results

3.1 Risk factors of tubal rupture
Table 1
The comparison of characteristics of ruptured group and unruptured and unaborted group in univariate analysis

	Ruptured group (n = 285)	Unruptured and unaborted group (n = 1581)	P
Age (y)			
< 20	4(1.40%)	24(15.18%)	0.571
20–29	110(38.60%)	781(49.40%)	< 0.001
30–39	146(51.23%)	695(43.96%)	0.014
≥ 40	25(8.77%)	81(5.12%)	0.013
Mean ± SD	31.02 ± 5.86	29.85 ± 5.32	0.001
Gestational age (weeks)			
< 6	84(29.47%)	448(28.34%)	0.372
6–8	135(47.37%)	858(54.27%)	< 0.001
≥ 8	66(23.16%)	275(17.40%)	0.014
Mean ± SD	6.38 ± 2.05	6.30 ± 1.59	0.480
Gestation history			
Childbearing history	183(64.21%)	875(55.34%)	0.003
Abortion history	156(54.74%)	893(56.48%)	0.314
Ectopic pregnancy history	35(12.28%)	258(16.32%)	0.048
Pelvic disease history	8(2.81%)	65(4.11%)	0.192
Pelvic surgery history	114(40.00%)	602(38.08%)	0.291
Assisted reproductive history	3(1.05%)	35(2.21%)	0.145
Birth control history	34(11.93%)	131(8.29%)	0.033
Intrauterine contraceptive device	17(5.96%)	69(4.36%)	0.151
Oral contraceptive	8(2.81%)	50(3.16%)	0.463
Ligation operation	9(3.16%)	12(0.76%)	0.003
Clinical manifestations			
Amenorrhea	268(94.04%)	1531(96.84%)	0.020
	Ruptured group (n = 285)	Unruptured and unaborted group (n = 1581)	\(P \)
--------------------------	--------------------------	--	--------
Abdominal pain	267 (93.68%)	1003 (63.44%)	< 0.001
Vaginal bleeding	162 (56.84%)	1312 (82.99%)	< 0.001
Syncope	2 (0.70%)	0 (0.00%)	0.023
Shock	7 (2.46%)	1 (0.06%)	< 0.001
Signs			
Adnexal mass	100 (35.09%)	525 (33.21%)	0.290
Adnexal tenderness	230 (80.70%)	755 (47.75%)	< 0.001
Cervical lifting pain	219 (76.84%)	533 (33.71%)	< 0.001
Hysterauxesis	14 (4.91%)	92 (5.82%)	0.328
Aspirating blood during culdocentesis	153 (53.68%)	368 (23.28%)	< 0.001
HCG (U/L)			
HCG < 2000	61 (21.40%)	701 (44.34%)	< 0.001
2000 \(\leq \) HCG < 5000	74 (25.96%)	358 (22.64%)	0.126
HCG \(\geq \) 5000	150 (52.63%)	522 (33.02%)	< 0.001
Progesterone (nmol/L)			
\(P < 15 \)	98 (34.39%)	545 (34.47%)	0.518
\(15 \leq P < 60 \)	169 (59.30%)	881 (55.72%)	0.146
\(P \geq 60 \)	18 (6.32%)	155 (9.80%)	0.035
Diameter of mass (cm)			
\(D < 2 \)	17 (5.96%)	360 (22.77%)	< 0.001
\(2 \leq D < 4 \)	78 (27.37%)	740 (46.81%)	< 0.001
\(D \geq 4 \)	190 (66.67%)	481 (30.42%)	< 0.001
The \(P \) value of age, childbearing history, ectopic pregnancy history, ligation operation, HCG and mass diameter is less than 0.1, and the \(P \) value of all clinical manifestations and signs except adnexal mass and hysterauxesis is less than 0.1. Because there is only small quantity of cases with ligation operation, syncope and shock, they were not brought into the multivariate logistic regression analysis.

From former studies, age \(\geq 35 \) and \(\text{HCG} \geq 5000 \text{U/L} \) are always seen as the risk factors of tubal rupture, while the mass diameter of ruptured group is mostly \(\geq 4 \text{cm} \). Age, HCG and mass diameter were transferred into ranked data to be brought into multivariate logistic regression analysis.

Table 2

Characteristics	\(P \)	OR	95\% CI
Age \(\geq 35 \)	0.002	1.781	1.232–2.573
Childbearing history	0.784	1.047	0.755–1.451
Ectopic pregnancy history	0.776	0.776	0.497–1.211
Amenorrhea	0.887	1.052	0.523–2.117
Abdominal pain	< 0.001	3.101	1.812–5.306
Vaginal bleeding	< 0.001	0.271	0.196–0.375
Adnexal tenderness	0.001	1.893	1.296–2.764
Cervical lifting pain	< 0.001	2.942	2.046–4.231
Aspirating blood during culdocentesis	0.015	1.497	1.081–2.074
\(\text{HCG} \geq 5000 \text{U/L} \)	< 0.001	2.588	1.900–3.526
Diameter of mass \(\geq 4 \text{cm} \)	< 0.001	2.874	2.095–3.941

From Table 2, age \(\geq 35 \), abdominal pain, adnexal tenderness, cervical lifting pain, aspirating blood during culdocentesis, \(\text{HCG} \geq 5000 \text{U/L} \), mass diameter \(\geq 4 \text{cm} \) are the risk factors of rupture, the rank of risk degree is abdominal pain, cervical lifting pain, mass diameter \(\geq 4 \text{cm} \), \(\text{HCG} \geq 5000 \text{U/L} \), adnexal tenderness, age \(\geq 35 \), aspirating blood during culdocentesis. Vaginal bleeding is the protective factor of rupture.

To include the risk factors of tubal rupture into the construction of nomogram. The C-index of nomogram is 0.835. The predictive ability of tubal rupture is good.

3.2 Risk factors of tubal abortion
Table 3
The comparison of characteristics of aborted group and unruptured and unaborted group in univariate analysis

	Aborted group (n = 414)	Unruptured and unaborted group (n = 1581)	P
Age (y)			
< 20	11 (2.66%)	24 (15.18%)	0.091
20-29	226 (54.59%)	781 (49.40%)	0.034
30-39	154 (37.20%)	695 (43.96%)	0.008
≥ 40	23 (5.56%)	81 (5.12%)	0.402
Mean ± SD	29.14 ± 5.64	29.85 ± 5.32	0.019
Gestational age (weeks)			
< 6	142 (34.30%)	448 (28.34%)	0.011
6-8	206 (49.76%)	858 (54.27%)	0.057
≥ 8	66 (15.94%)	275 (17.40%)	0.268
Mean ± SD	6.10 ± 1.60	6.30 ± 1.59	0.023
Gestation history			
Childbearing history	226 (54.59%)	875 (55.34%)	0.413
Abortion history	230 (55.56%)	893 (56.48%)	0.388
Ectopic pregnancy history	50 (12.08%)	258 (16.32%)	0.018
Pelvic disease history			
Pelvic disease history	8 (1.93%)	65 (4.11%)	0.020
Pelvic surgery history	137 (33.09%)	602 (38.08%)	0.324
Assisted reproductive history			
Assisted reproductive history	1 (0.24%)	35 (2.21%)	0.002
Birth control history			
Birth control history	47 (11.35%)	131 (8.29%)	0.034
Intrauterine contraceptive device	25 (6.04%)	69 (4.36%)	0.099
Oral contraceptive	14 (3.38%)	50 (3.16%)	0.461
Ligation operation	8 (1.93%)	12 (0.76%)	0.039
Clinical manifestations			
Amenorrhea	396 (95.65%)	1531 (96.84%)	0.151
Abdominal pain	351 (84.78%)	1003 (63.44%)	< 0.001
	Aborted group(n = 414)	Unruptured and un aborted group(n = 1581)	
--------------------------------	------------------------	--	---
Vaginal bleeding	340(82.13%)	1312(82.99%)	0.364
Syncope	2(0.48%)	0(0.00%)	0.043
Shock	1(0.24%)	1(0.06%)	0.372
Signs			
Adnexal mass	142(34.30%)	525(33.21%)	0.358
Adnexal tenderness	285(68.84%)	755(47.75%)	<0.001
Cervical lifting pain	241(58.21%)	533(33.71%)	<0.001
Hysterauxesis	13(3.14%)	92(5.82%)	0.016
Aspirating blood during culdocentesis	187(45.17%)	368(23.28%)	<0.001
HCG(U/L)			
HCG < 2000	231(55.80%)	701(44.34%)	<0.001
2000 ≤ HCG < 5000	97(23.43%)	358(22.64%)	0.390
HCG ≥ 5000	86(20.77%)	522(33.02%)	<0.001
Progesterone(nmol/L)			
P < 15	164(39.61%)	545(34.47%)	0.030
15 ≤ P < 60	234(56.52%)	881(55.72%)	0.407
P ≥ 60	16(3.86%)	155(9.80%)	<0.001
Diameter of mass(cm)			
D < 2	35(8.45%)	360(22.77%)	<0.001
2 ≤ D < 4	137(33.09%)	740(46.81%)	<0.001
D ≥ 4	242(58.45%)	481(30.42%)	<0.001

The P value of age, gestational age, ectopic pregnancy history, pelvic disease history, assisted reproductive history, intrauterine contraceptive device, ligation operation, abdominal pain, syncope,
adnexal tenderness, cervical lifting pain, hysterauxesis, aspirating blood during culdocentesis, HCG, progesterone and mass diameter is less than 0.1, and the \(P \) value of all clinical manifestations and signs except adnexal mass and hysterauxesis is less than 0.1. Because there is small quantity of the cases with assisted reproductive history, ligation operation and syncope, they will not be brought into the multivariate logistic regression analysis.

Former studies always focus on the influence of age \(\geq 35 \) to ectopic pregnancy, age is transferred to ranked data. In addition, HCG, progesterone and mass diameter are transferred into ranked data to be brought into multivariate logistic regression analysis.

	\(P \)	OR	95% CI
Age \(\geq 35 \)	0.956	1.013	0.646–1.588
Gestational age < 6 weeks	0.595	0.904	0.622–1.313
Ectopic pregnancy history	0.435	0.800	0.458–1.399
Pelvic disease history	0.993	0.000	0.000
Intrauterine contraceptive device	0.952	0.978	0.469–2.041
Abdominal pain	0.223	1.325	0.843–2.084
Adnexal tenderness	0.137	1.356	0.908–2.026
Cervical lifting pain	0.102	1.397	0.936–2.085
Hysterauxesis	0.211	0.512	0.179–1.462
Aspirating blood during culdocentesis	0.633	1.100	0.744–1.626
HCG < 2000U/L	< 0.001	3.554	2.401–5.260
Progesterone < 15nmol/L	0.990	0.000	0.000
Diameter of mass \(\geq 4 \) cm	< 0.001	2.732	1.900–3.929

From Table 4, the risk factors of tubal abortion are HCG < 2000U/L and mass diameter \(\geq 4 \) cm.

To include the risk factors of tubal abortion into the construction of nomogram. The C-index of nomogram is 0.660. The predictive ability of tubal abortion is limited.

The amount of pelvic blood volume is also recorded as below.
Table 5
The comparison of pelvic blood volume of ruptured group, aborted group and unruptured and unaborted group

pelvic blood volume(ml)	ruptured group(n = 414)	aborted group(n = 285)	unruptured and unaborted group(n = 1581)	P
0–500	88(30.88%)	297(71.74%)	1470(92.98%)	< 0.001
500–1000	67(23.51%)	74(17.87%)	90(5.69%)	< 0.001
1000–2000	87(30.53%)	28(6.76%)	17(1.08%)	< 0.001
≥ 2000	43(15.09%)	15(3.62%)	4(0.25%)	< 0.001

The tubal rupture patients are most likely to happen massive hemorrhage among three groups. Tubal abortion patients may also happen massive hemorrhage, but the possibility is lower than tubal rupture patients. Patients without abortion or rupture have a small possibility of massive hemorrhage.

4. Discussion

Tubal rupture happens because of the infiltration of the trophoblastic tissue into the tubal wall. The fallopian tube is not intact. It is common at the isthmus of fallopian tube. Tubal abortion is characterized by the extrusion of an ectopic product of conception implanted in the fallopian tube entering into the peritoneal cavity through the abdominal ostium. It is common at the ampulla of fallopian tube. It can be either complete or incomplete [2] and the fallopian tube is intact. The villus of complete tubal abortion patients may grow at abdomen, leading to abdominal pregnancy. The rupture and abortion of tubal pregnancy can both lead to severe bleeding, even hemorrhagic shock and death.

According to former studies, the rupture rate of tubal pregnancy is about 28.75%–65%. According to the study of Nina A. Bickell [5], the rupture rate is 32%. According to Michael Sindos [6], the rupture rate is 65%. From the study of Pasquale Berlingieri [7], the rupture rate is 29.5%. The study of abortion rate is rare. According to Lijuan Li [13], among 181 tubal pregnancy patients, tubal abortion happens in 57 cases, the abortion rate is about 31.49%. The rupture rate is 17.48% and the abortion rate is 14.67% in my hospital, which is obviously lower than the data of former studies. It might be related to the rise of health awareness in China and the more active management and guardianship of ectopic pregnancy. When women get pregnant, they will go to hospital for an ultrasound test, which leads to the rise of the early detection rate of ectopic pregnancy. Ectopic pregnancy can be treated before rupture or abortion.

There are controversial opinions of the risk factors of tubal rupture. According to Pasquale [7], the patients with age > 35 and isthmus pregnancy have higher rupture risks than others. With the detailed
analysis of symptoms from the study of Cyrille Huchon [8], vomiting during pain, diffuse abdominal pain, acute pain for longer than 30 minutes, and flashing pain are the risk factors of tubal rupture. According to B. Pınar Cilesiz Goksedef [9], higher HCG level and higher gestational age seem to be significant risk factors for rupture of an ectopic pregnancy. The mean gestational age of ruptured ectopic pregnancy is 7.8 weeks; the mean HCG is 8735.3U/L. While the mean gestational age of ruptured ectopic pregnancy is 6.4 weeks; the mean HCG is 4506U/L. Logistic regression analysis revealed that weeks of amenorrhoea > 8 weeks (OR: 46.46; 95% CI: 14.20–152.05) and HCG level > 5000 IU/ml (OR: 4.40; 95% CI: 1.69–11.46) were the significant risk factors for tubal rupture. Michael [6] conducted a study about past history, the patients with ectopic pregnancy history and childbearing history have a higher risk to rupture. According to the study of Gregory Latchaw [4], HCG ≥ 5000U/L and ectopic pregnancy history are the risk factors of rupture.

After analyzed the risk factors from case history, clinical manifestations, signs and tests, abdominal pain(OR:3.101, 95%CI:1.812–5.306, P< 0.001), cervical lifting pain(OR:2.942, 95%CI:2.046–4.231, P< 0.001), mass diameter ≥ 4cm(OR:2.874, 95%CI: 2.095–3.941, P< 0.001), HCG ≥ 5000U/L(OR:2.588, 95%CI:1.900-3.526, P< 0.001), adnexal tenderness(OR:1.893, 95%CI:1.296–2.764, P= 0.001), age ≥ 35(OR:1.781, 95%CI:1.232–2.573, P= 0.002), aspirating blood during culdocentesis (OR:1.497, 95%CI:1.081–2.074, P= 0.015) are the risk factors of tubal rupture, while vaginal bleeding(OR:0.271, 95%CI:0.196–0.375, P< 0.001) is the protective factor of tubal rupture. Patients with these risk factors should be treated more actively.

HCG and mass diameter are the criterion of surgery or conservative treatment. According to the ACOG guide [10], the indication of conservative treatment is HCG < 5000 and mass diameter < 4cm. According to my study, the risk of rupture of patients with HCG ≥ 5000U/L is 2.588 times than the patients with HCG < 5000U/L (95%CI:1.900-3.526, P< 0.001). The risk of rupture of the patients with mass diameter ≥ 4cm is 2.874 times than the patients with mass diameter < 4cm (95%CI:1.900-3.526, P< 0.001). The data supports that the indication of conservative treatment is HCG < 5000 and mass diameter < 4cm.

A few scholars put forward the opinion that age ≥ 35 is the risk factor of tubal rupture, and they all agree that it should be further studied [7]. It may be related to the higher health awareness of young patients. They are more willing to go to hospital when amenorrhea, abdominal pain and vaginal bleeding happens, which leads to the higher early detective rate of ectopic pregnancy, to reduce the rupture rate.

There are few studies about the risk factors of tubal abortion, most of which are case reports. For aborted ectopic pregnancy patients, they may show the manifestation of low HCG and the decrease of HCG during the course of disease [5]. According to Lijuan Li [13], tubal rupture patients’ possibility of massive hemorrhage is higher than tubal abortion patients and much higher than ectopic pregnancy patients without rupture or abortion. In addition, the HCG of patients without rupture or abortion is higher than tubal abortion patients and lower than tubal rupture patients.

According to my study, HCG < 2000U/L (OR:3.554, 95%CI:2.401–5.260, P< 0.001) and mass diameter ≥ 4cm (OR:2.732, 95%CI:1.900-3.929, P< 0.001) are the risk factors of tubal abortion. The patients with
tubal abortion can also be treated by expectant treatment. The indication of expectant treatment is: the condition of patient is stable without abdominal pain or with slight abdominal pain, without obvious intra-abdominal hemorrhage; HCG < 1000–2000U/L; mass diameter < 30mm without fetal heartbeat [11]. As the risk factors of tubal abortion are HCG < 2000U/L and mass diameter ≥ 4cm, and as the HCG of tubal abortion patients can reduce to normal spontaneously, I proposed that although mass diameter ≥ 4cm is not the indication of expectant treatment, for patients with HCG < 2000U/L and mass diameter ≥ 4cm, after their informed consent, they could be treated by expectant treatment and HCG should be tested constantly.

The patients of tubal rupture and tubal abortion have similar clinical manifestations and signs, for example, abdominal pain, adnexal tenderness, cervical lifting pain, aspirating blood during culdocentesis. Tubal rupture patients are more likely to happen massive hemorrhage. The pelvic blood volume of 30.53% tubal rupture patients is 1000 ~ 2000ml, the pelvic blood volume of 15.09% tubal rupture patients is more than 2000ml. While the possibility of massive hemorrhage of tubal abortion patients is much lower than tubal rupture patients. For tubal abortion patients with slight intra-abdominal hemorrhage, it is possible that they may be treated by expectant treatment [12]. But tubal rupture patients always need to be treated by surgery. It is important to differentiate tubal rupture and tubal abortion for a better treatment strategy. According to my study, the point of differentiating tubal rupture and tubal abortion is the HCG. The mean HCG of tubal abortion patients and tubal rupture patients is 4412.98U/L and 11441.85U/L, the mean HCG of patients without abortion or rupture is 6812.26U/L. The HCG of each group is statistically different. It may be related to the difference of villus activity. Higher HCG means higher villus activity, which leads to a higher possibility of rupture. While the embryo death always happens in tubal abortion patients, which leads to the loss of villus activity and the decease of HCG synthesis and secretion [13].

Combined with the results that HCG ≥ 5000U/L is the risk factor of tubal rupture and HCG < 2000U/L is the risk factor of tubal abortion, when facing an ectopic pregnancy patient with intra-abdominal hemorrhage, if HCG ≥ 5000U/L, it is more likely to be tubal rupture. If HCG < 2000U/L, it is more likely to be tubal abortion, we should observe her clinical manifestation and test HCG frequently.

5. Conclusions

Abdominal pain(OR:3.101, 95%CI:1.812–5.306, P<0.001), cervical lifting pain(OR:2.942, 95%CI:2.046–4.231, P<0.001), mass diameter ≥ 4cm(OR:2.874, 95%CI:2.095–3.941, P<0.001), HCG ≥ 5000U/L(OR:2.588, 95%CI:1.900-3.526, P<0.001), adnexal tenderness(OR:1.893, 95%CI:1.296–2.764, P=0.001), age ≥ 35(OR:1.781, 95%CI:1.232–2.573, P=0.002), aspirating blood during culdocentesis(OR:1.497, 95%CI:1.081–2.074, P=0.015) are the risk factors of tubal rupture, while vaginal bleeding(OR:0.271, 95%CI:0.196–0.375, P<0.001) is the protective factor of tubal rupture. HCG < 2000U/L (OR:3.554, 95%CI:2.401–5.260, P<0.001) and the diameter of mass ≥ 4cm (OR:2.732, 95%CI:1.900-3.929, P<0.001) are the risk factors of tubal abortion. When facing an ectopic pregnancy patient considering pelvic bleeding happens, if HCG ≥ 5000U/L, it's more likely to be tubal rupture, if HCG < 2000U/L, it's more likely to be tubal abortion.
Declarations

Ethics approval and consent to participate
The approval was waived.

Consent for publication
Not applicable.

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
Not applicable.

Authors' contributions
Panpan tang analyzed data and wrote the manuscript. Xiaomao Li and Wenwei Li were responsible for modifying and editing the manuscript. Yunhui Li and Yu Zhang collected data. Yuebo Yang conducting the research, provided case resources for the research and edited the manuscript. All authors read and approved the final manuscript.

Acknowledgements
Not applicable.

References
[1] Lisonkova Sarka, Tan Justin, Wen Qi et al. Temporal trends in severe morbidity and mortality associated with ectopic pregnancy requiring hospitalisation in Washington State, USA: a population-based study. [J]. BMJ Open, 2019, 9: e024353.

[2] Chirculescu Bogdan, Chirculescu Raluca, Ionescu Mioara et al. Complete Tubal Abortion: A Rare Form of Ectopic Pregnancy. [J]. Chirurgia (Bucur), 2017, 112: 68-71.

[3] Goksedef B Pınar Cilesiz, Kef Seyfettin, Akca Aysu et al. Risk factors for rupture in tubal ectopic pregnancy: definition of the clinical findings. [J]. Eur J Obstet Gynecol Reprod Biol, 2011, 154: 96-9.
[4] Latchaw Gregory, Takacs Peter, Gaitan Lucia et al. Risk factors associated with the rupture of tubal ectopic pregnancy. [J]. Gynecol. Obstet. Invest., 2005, 60: 177-80.

[5] Bickell Nina A, Bodian Carol, Anderson Rebecca M et al. Time and the risk of ruptured tubal pregnancy. [J]. Obstet Gynecol, 2004, 104: 789-94.

[6] Sindos Michael, Togia Athanasia, Sergentanis Theodoros N et al. Ruptured ectopic pregnancy: risk factors for a life-threatening condition. [J]. Arch. Gynecol. Obstet., 2009, 279: 621-3.

[7] Berlingieri Pasquale, Bogdanskiene Grazina, Grudzinskas Jurgis, Rupture of tubal pregnancy in the Vilnius population. [J]. Eur. J. Obstet. Gynecol. Reprod. Biol., 2007, 131: 85-88.

[8] Huchon Cyrille, Panel Pierre, Kayem Gilles et al. Is a standardized questionnaire useful for tubal rupture screening in patients with ectopic pregnancy? [J]. Acad Emerg Med, 2012, 19: 24-30.

[9] Goksedef B Pınar Cilesiz, Kef Seyfettin, Akca Aysu et al. Risk factors for rupture in tubal ectopic pregnancy: definition of the clinical findings. [J]. Eur J Obstet Gynecol Reprod Biol, 2011, 154: 96-9.

[10] Committee on Practice Bulletins—Gynecology, ACOG Practice Bulletin No. 191: Tubal Ectopic Pregnancy. [J]. Obstet Gynecol, 2018, 131: e65-e77.

[11] Wang Yudong, Lu Qi, et al. The Chinese specialist consensus of the diagnosis and treatment of tubal pregnancy [J]. Chinese Journal of Practical Gynecology and Obstetrics, 2019, 35(07): 780-787.

[12] Zhang Yu, Yang Yuebo, Li Xiaomao. Ectopic Pregnancy and Gynecological Emergencies [M]. Military Science Publishing House, 201044

[13] Li Lijuan, Guan Yongmei. The comparison of tubal abortion, tubal rupture, and tubal pregnancy without abortion and rupture [J]. Journal of Harbin Medical University, 1994(02): 114-116.

Figures
Figure 1

Nomogram of risk factors for tubal rupture. Annotation: For variables, 1="Yes", 0="No". ABDC=Aspirating blood during culdocentesis.
Figure 2

Nomogram of risk factors for tubal abortion Annotation: For variables, 1="Yes", 0="No".