Aspects of Predicative Algebraic Set Theory II: Realizability

Benno van den Berg & Ieke Moerdijk

June 20, 2008

Dedicated to Jean-Yves Girard on the occasion of his 60th birthday

1 Introduction

This paper is the second in a series on the relation between algebraic set theory [19] and predicative formal systems. The purpose of the present paper is to show how realizability models of constructive set theories fit into the framework of algebraic set theory. It can be read independently from the first part [5]; however, we recommend that readers of this paper read the introduction to [5], where the general methods and goals of algebraic set theory are explained in more detail.

To motivate our methods, let us recall the construction of Hyland’s effective topos \(\mathcal{E}ff \) [17]. The objects of this category are pairs \((X, =)\), where \(=\) is a subset of \(\mathbb{N} \times X \times X\) satisfying certain conditions. If we write \(n \models x = y\) in case the triple \((n, x, y)\) belongs to this subset, then these conditions can be formulated by requiring the existence of natural numbers \(s\) and \(t\) such that

\[
\begin{align*}
s \models x &= x' \to x = x \\
t \models x &= x' \land x' = x'' \to x = x''.
\end{align*}
\]

These conditions have to be read in the way usual in realizability [34]. So the first says that for any natural number \(n\) satisfying \(n \models x = x'\), the expression \(s(n)\) should be defined and be such that \(s(n) \models x' = x\). \(^1\) And the second stipulates that for any pair of natural numbers \(n\) and \(m\) with \(n \models x = x'\) and \(m \models x' = x''\), the expression \(t((n, m))\) is defined and is such that \(t((n, m)) \models x = x''\).

\(^1\)For any two natural numbers \(n, m\), the Kleene application of \(n\) to \(m\) will be written \(n(m)\), even when it is undefined. When it is defined, this will be indicated by \(n(m) \downarrow\). We also assume that some recursive pairing operation has been fixed, with the associated projections being recursive. The pairing of two natural numbers \(n\) and \(m\) will be denoted by \((n, m)\). Every natural number \(n\) will code a pair, with its first and second projection denoted by \(n_0\) and \(n_1\), respectively.
The arrows \([F]\) between two such objects \((X, =)\) and \((Y, =)\) are equivalence classes of subsets \(F\) of \(\mathbb{N} \times X \times Y\) satisfying certain conditions. Writing \(n \models Fxy\) for \((n, x, y) \in F\), one requires the existence of realizers for statements of the form

\[
\begin{align*}
Fxy & \land x = x' \land y = y' \rightarrow Fx'y' \\
Fxy & \rightarrow x = x \land y = y \\
Fxy \land Fx'y' & \rightarrow y = y' \\
x = x & \rightarrow \exists y Fxy.
\end{align*}
\]

Two such subsets \(F\) and \(G\) represent the same arrow \([F] = [G]\) iff they are extensionally equal in the sense that

\[Fxy \leftrightarrow Gxy\]

is realized.

As shown by Hyland, the logical properties of this topos \(\mathcal{E}ff\) are quite remarkable. Its first-order arithmetic coincides with the realizability interpretation of Kleene (1945). The interpretation of the higher types in \(\mathcal{E}ff\) is given by \(\text{HEO}\), the hereditary effective operations. Its higher-order arithmetic is captured by realizability in the manner of Kreisel and Troelstra [33], so as to validate the uniformity principle:

\[
\forall X \in \mathcal{P}\mathbb{N} \exists n \in \mathbb{N} \phi(X, n) \rightarrow \exists n \in \mathbb{N} \forall X \in \mathcal{P}\mathbb{N} \phi(X, n).
\]

The topos \(\mathcal{E}ff\) is one in an entire family of realizability toposes defined over arbitrary partial combinatory algebras (or more general structures modeling computation). The relation between these toposes has been not been completely clarified, although much interesting work has already been done in this direction [29, 17, 22, 8, 15, 14] (for an overview, see [28]). The construction of the topos \(\mathcal{E}ff\) and its variants can be internalised in an arbitrary topos (we will always assume our toposes to have a natural numbers object). This means in particular that one can construct toposes by iterating (alternating) constructions of sheaf and realizability toposes to obtain interesting models for higher-order intuitionistic arithmetic \(\text{HHA}\). An example of this phenomenon is the modified realizability topos, which occurs as a closed subtopos of a realizability topos constructed inside a presheaf topos [27].

The purpose of this series of papers is to show that these results are not only valid for toposes as models of \(\text{HHA}\), but also for certain types of categories equipped with a class of small maps suitable for constructing models of constructive set theories like \(\text{IZF}\) and \(\text{CZF}\). In the first paper of this series [5], we have axiomatised this type of categories, and refer to them as “predicative categories with small maps”. For the convenience of the reader their precise definition is recalled in Appendix B, while the axioms of the set theories \(\text{IZF}\) and \(\text{CZF}\) are reviewed in Appendix A.

A basic result from [5] is the following:
Theorem 1.1 Every predicative category with small maps \((E, S)\) contains a model \((V, \epsilon)\) of a weak set theory (to be precise, CZF without Subset collection). Moreover,

(i) \((V, \epsilon)\) is a model of IZF, whenever the class \(S\) satisfies the axioms (M) and (PS).

(ii) \((V, \epsilon)\) is a model of CZF, whenever the class \(S\) satisfies (F).\(^2\)

To show that realizability models fit into this picture, we prove that predicative categories with small maps are closed under internal realizability, in the same way that toposes are. More precisely, relative to a given predicative category with small maps \((E, S)\), we construct a “predicative realizability category” \((\text{Eff}_E, S_E)\). The main result of this paper will then be:

Theorem 1.2 If \((E, S)\) is a predicative category with small maps, then so is \((\text{Eff}_E, S_E)\). Moreover, if \((E, S)\) satisfies one of the axioms (M), (F) or (PS), then so does \((\text{Eff}_E, S_E)\).

We show this for the pca \(\mathbb{N}\) together with Kleene application, but we expect that this result can be proved in the same way when \(\mathbb{N}\) is replaced by an arbitrary small pca \(A\) in \(E\). The proof of the theorem above is technically rather involved, in particular in the case of the additional properties needed to ensure that the model of set theory satisfies the precise axioms of IZF and CZF. However, once this work is out of the way, one can apply the construction to many different predicative categories with small maps, and show that familiar realizability models of set theory (and some unfamiliar ones) appear in this way.

One of the most basic examples is that where \(E\) is the classical category of sets, and \(S\) is the class of maps between sets whose fibers are all bounded in size by some inaccessible cardinal. The construction underlying Theorem 1.2 then produces Hyland’s effective topos \(\text{Eff}\), together with the class of small maps defined in [19], which in [21] was shown to lead to the Friedman-McCarty model of IZF [12, 24] (we will reprove this in Section 5).

An important point we wish to emphasise is that one can prove all the model’s salient properties without constructing it explicitly, using its universal properties instead. We explain this point in more detail. A predicative category with small maps consists of a category \(E\) and a class of maps \(S\) in it, the intuition being that the objects and morphisms of \(E\) are classes and class morphisms, and the morphisms in \(S\) are those that have small (i.e., set-sized) fibres. For such predicative categories with small maps, one can prove that the small subobjects functor is representable. This means that there is a power class object \(P_s(X)\) which classifies the small subobjects of \(X\), in the sense that maps \(B -\rightarrow P_s(X)\)

\(^2\)The precise formulations of the axioms (M), (PS) and (F) can be found in Appendix B as well.
correspond bijectively to jointly monic diagrams

\[B \xleftarrow{U} X \]

with \(U \rightarrow B \) small. Under this correspondence, the identity \(\text{id}: \mathcal{P}_s(X) \rightarrow \mathcal{P}_s(X) \) corresponds to a membership relation

\[\in_X \xrightarrow{\text{Int}} X \times \mathcal{P}_s X. \]

The model of set theory \(V \) that every predicative category with small maps contains (Theorem 1.1) is constructed as the initial algebra for the \(\mathcal{P}_s \)-functor. Set-theoretic membership is interpreted by a subobject \(\epsilon \subseteq V \times V \), which one obtains as follows. By Lambek’s Lemma, the structure map for this initial algebra \(V \) is an isomorphism. We denote it by \(\text{Int} \), and its inverse by \(\text{Ext} \):

\[\mathcal{P}_s V \xleftarrow{\text{Int}} V. \]

The membership relation

\[\epsilon \xrightarrow{\text{Int}} V \times V \]

is the result of pulling back the usual “external” membership relation

\[\in_V \xrightarrow{\text{Ext}} V \times \mathcal{P}_s(V) \]

along \(\text{id} \times \text{Ext} \).

Theorem 1.1 partly owes its applicability to the fact that the theory of the internal model \((V, \epsilon)\) of \(\text{IZF} \) or \(\text{CZF} \) corresponds precisely to what is true in the categorical logic of \(\mathcal{E} \) for the object \(V \) and its external membership relation \(\epsilon \). This, in turn, corresponds to a large extent to what is true in the categorical logic of \(\mathcal{E} \) for the higher arithmetic types. Indeed, by the isomorphism \(\text{Ext}: V \rightarrow \mathcal{P}_s(V) \) and its inverse \(\text{Int} \), any generalised element \(a: X \rightarrow V \) corresponds to a subobject

\[\text{Ext}(a) \xrightarrow{\text{Int}} X \times V \]

with \(\text{Ext}(a) \rightarrow X \) small, and for two such elements \(a \) and \(b \), one has that

(i) \(a \in b \) iff \(a \) factors through \(\text{Ext}(b) \).

(ii) \(a \subseteq b \) iff the subobject \(\text{Ext}(a) \) of \(X \times V \) is contained in \(\text{Ext}(b) \).

(iii) \(\text{Ext}(\omega) \cong \mathbb{N} \), the natural numbers object of \(\mathcal{E} \).

(iv) \(\text{Ext}(a^b) \cong \text{Ext}(a)^{\text{Ext}(b)} \).

(v) \(\text{Ext}(\mathcal{P}a) \cong \mathcal{P}_s(\text{Ext}(a)) \).
(Properties (i) and (ii) hold by definition; for (iii)-(v), see the proof of Proposition 7.2 in [5].) Thus, for example, the sentence “the set of all functions from \(\omega \) to \(\omega \) is subcountable” is true in \((V, \epsilon)\) iff the corresponding statement is true for the natural numbers object \(\mathbb{N} \) in the category \(\mathcal{E} \).

For this reason the realizability model in the effective topos inherits various principles from the ambient category and one immediately concludes:

Corollary 1.3 [12, 24] There is a model of \(\text{IZF} \) in which the following principles hold: the Axiom of Countable Choice (AC), the Axiom of Relativised Dependent Choice (RDC), the Presentation Axiom (PA), Markov’s Principle (MP), Church’s Thesis (CT), the Uniformity Principle (UP), Unzerlegbarkeit (UZ), Independence of Premisses for Sets and Numbers (IP), \((\text{IP}_\omega)\).

A precise formulation of these principles can be found in Appendix A. For verifying the validity of some of these principles one apparently needs the same principles in the metatheory; this applies to the Presentation Axiom and the Independence of Premisses principles.

Of course, in [12, 24] Corollary 1.3 has been proved directly by syntactic methods; however, it is a basic example which illustrates the general theme, and on which there are many variations. For example, our proof of Theorem 1.2 is elementary (in the proof-theoretic sense), hence can be used to prove relative consistency results. If we take for \(\mathcal{E} \) the syntactic category of definable classes in the theory \(\text{CZF} \), we can deduce:

Corollary 1.4 [30] If \(\text{CZF} \) is consistent, then so is \(\text{CZF} \) combined with the conjunction of the following axioms: the Axiom of Countable Choice (AC), the Axiom of Relativised Dependent Choice (RDC), Markov’s Principle (MP), Church’s Thesis (CT), the Uniformity Principle (UP) and Unzerlegbarkeit (UZ).

(We also recover the same result for \(\text{IZF} \) within our framework.) Again, we obtain the validity of the Presentation Axiom and the Independence of Premisses principles in the model, if we assume these in the metatheory.

Another possibility is to mix Theorem 1.2 with the similar construction for sheaves [7]. We expect this to show that models of set theory (IZF or CZF) also exist for various other notions of realizability, such as modified realizability in the sense of [27, 9] or Kleene-Vesley’s function realizability [20]. We will discuss this in some more detail in Section 5 below.

Inside Hyland’s effective topos, or more generally, in categories of the form \(\text{Eff}_\mathcal{E} \) (cf. Theorem 1.2), other classes of small maps exist, which are not obtained from an earlier class of small maps in \(\mathcal{E} \) by Theorem 1.2, but nonetheless satisfy the conditions sufficient to apply our theorem from [5] yielding models of set theory (cf. Theorem 1.1 above). Following the work of the first author in [4], we will present in some detail one particular case of this phenomenon, based on the
notion of modest set [16, 18]. Already in [19] a class T inside the effective topos was considered, consisting of those maps which have subcountable fibres (in some suitable sense). This class does not satisfy the axioms from [19] necessary to provide a model for IZF. However, it was shown in [4] that this class T does satisfy a set of axioms sufficient to provide a model of the predicative set theory CZF.

Theorem 1.5 [19, 4] The effective topos Eff and its class of subcountable morphisms T form a predicative category with small maps. Moreover, T satisfies the axioms (M) and (F).

We will show that the corresponding model of set theory (Theorem 1.1) fits into the general framework of this series of papers, and investigate some of its logical properties, as well as its relation to some earlier models of Friedman, Streicher and Lubarsky [13, 32, 23]. In particular, we prove:

Corollary 1.6 CZF is consistent with the conjunction of the following axioms:
- Full separation, the subcountability of all sets, as well as (AC), (RDC), (PA), (MP), (CT), (UP), (UZ), (IP) and (IP_ω).

(The proof should be formalisable in ZF extended with the axiom of relativised dependent choice (RDC).)

We conclude this introduction by outlining the contents of the rest of this paper. As already mentioned, we review some basic definitions in the appendices: in Appendix A we list the set theoretic axioms and define the theories IZF and CZF, while in Appendix B we review the definition of a predicative category with small maps and of a class of display maps, and we recall several properties a class of small or display maps may enjoy. With these definitions at hand, we describe in Section 2 of this paper the category of assemblies in a fixed ambient predicative category with small maps $(\mathcal{E}, \mathcal{S})$. In Sections 2 and 3 we prove that this category of assemblies has the structure of a category with display maps and that it satisfies some additional properties. This enables us to apply a result from [5], to conclude that the exact completion of this category of assemblies is a predicative category with small maps (cf. Corollary 3.5). In Section 4, we prove that this exact completion inherits additional properties from the ambient category, from which we conclude that it contains a “realizability” model of IZF resp. CZF. This then concludes our general construction, relative to the ambient pair $(\mathcal{E}, \mathcal{S})$, of realizability models for IZF and CZF, and completes the proof of our main Theorem 1.2. These Sections 2–4 form the technical core of this paper: in fact, when compared to the impredicative, topos-theoretic context, the main difficulty in our context was to identify a suitable class of maps in the category of assemblies, modest enough to be formalisable within a predicative category with small maps, and strong enough to be able to verify that its exact completion inherits the axioms for small maps from the ambient category $(\mathcal{E}, \mathcal{S})$. This verification is noticeably difficult, and different form the
impredicative context; cf. for example the proofs that the existence of W-types and the Fullness axiom (a categorical counterpart of the Subset collection axiom of CZF) are inherited. The rest of the paper is concerned with the analysis of some special cases and some variations on the construction. In particular, in Section 5 we show that if the ambient category is the classical category of Sets, the realizability model for IZF resulting from our general construction coincides with the one introduced by McCarty [24]. Similar investigations for the model of CZF and for models related to various other notions of realizability are discussed briefly. In the final Section 6 we describe a realizability model of CZF in which all sets are subcountable, and indicate how it fits into our framework.

Acknowledgements: We would like to thank Thomas Streicher and Jaap van Oosten for comments on an earlier version of this paper, and for making [28] available to us. We also thank the referees for valuable comments.

2 The category of assemblies

Recall that our main aim (Theorem 1.2) is to construct for a predicative category with small maps \((E, S)\) the realizability category \((Eff_E, S_E)\), and show it is again a predicative category with small maps. For this and other purposes, the description of \(Eff\) as an exact (ex/reg) completion of a category of assemblies [11], rather than Hyland’s original description, is useful. A similar remark applies to the effective topos \(Eff[A]\) defined by an arbitrary small pca \(A\). In [5] we showed that the class of predicative categories with small maps is closed under exact completion. More precisely, we formulated a weaker version of the axioms (a “category with display maps”; the notion is also recapitulated in Appendix B), and showed that if \((F, T)\) is a pair satisfying the weaker axioms, then in the exact completion \(\hat{F}\) of \(F\), there is a natural class of arrows \(T\), depending on \(T\), such that the pair \((\hat{F}, T)\) is a predicative category with small maps (for a precise explanation, see the beginning of Section 3). Therefore our strategy in this section will be to construct a category of assemblies relative to the pair \((E, S)\) and show it is a category with display maps (strictly speaking, we only need to assume that \((E, S)\) is itself a category with display maps for this). Its exact completion will then be considered in the next section.

In this section, \((E, S)\) is assumed to be a predicative category with small maps. In particular, \(E\) is assumed to have a small natural numbers object.

We recall our recursion-theoretic conventions. For any two natural numbers \(n, m\), we denote the Kleene application of \(n\) to \(m\) by \(n(m)\), also when it is undefined: to express that it is defined, we will sometimes write \(n(m) \downarrow\). We also assume that some recursive pairing operation has been fixed, with the associated projections being recursive. The pairing of two natural numbers \(n\) and \(m\) will be denoted by \(\langle n, m \rangle\). Every natural number \(n\) will code a pair, with its first and second projection denoted by \(n_0\) and \(n_1\), respectively. Note that
all these notions are available in the internal logic of \mathcal{E}, as it contains Heyting Arithmetic \mathbf{HA}.

Definition 2.1 An assembly (over \mathcal{E}) is a pair (A, α) consisting of an object A in \mathcal{E} together with a relation $\alpha \subseteq \mathbb{N} \times A$, which is surjective; i.e., the following sentence is valid in the internal logic of \mathcal{E}:

$$\forall a \in A \exists n \in \mathbb{N} (n, a) \in \alpha.$$

The natural numbers n such that $(n, a) \in \alpha$ are called the realizers of a, and we will frequently write $n \in \alpha(a)$ instead of $(n, a) \in \alpha$.

A morphism $f: B \rightarrow A$ in \mathcal{E} is a morphism of assemblies $(B, \beta) \rightarrow (A, \alpha)$ if the statement

"There is a natural number r such that for all $b \in B$ and $n \in \beta(b)$, the expression $r(n)$ is defined and $r(n) \in \alpha(fb)$."

is valid in the internal logic of \mathcal{E}. A number r witnessing the above statement is said to track (or realize) the morphism f. The resulting category will be denoted by $\mathcal{A}sm_{\mathcal{E}}$, or simply $\mathcal{A}sm$.

We investigate the structure of the category $\mathcal{A}sm_{\mathcal{E}}$.

$\mathcal{A}sm_{\mathcal{E}}$ has finite limits. The terminal object is $(1, \eta)$, where $1 = \{\ast\}$ is a one-point set and $n \in \eta(\ast)$ for every n. The pullback (P, π) of f and g as in

\[(P, \pi) \rightarrow (B, \beta) \quad \text{and} \quad (C, \gamma) \rightarrow (A, \alpha) \]

can be obtained by putting $P = B \times_A C$ and

$n \in \pi(b, c) \iff n_0 \in \beta(b)$ and $n_1 \in \gamma(c)$.

Covers in $\mathcal{A}sm_{\mathcal{E}}$. A morphism $f: (B, \beta) \rightarrow (A, \alpha)$ is a cover if, and only if, the statement

"There is a natural number s such that for all $a \in A$ and $n \in \alpha(a)$ there exists a $b \in B$ with $f(b) = a$ and such that the expression $s(n)$ is defined and $s(n) \in \beta(b)$."

holds in the internal logic of \mathcal{E}. From this it follows that covers are stable under pullback in $\mathcal{A}sm$.

8
\textit{Asm}_{\mathcal{E}} \textit{has images.} A morphism \(f: (B, \beta) \rightarrow (A, \alpha) \) is monic in \(\text{Asm} \) if, and only if, the underlying morphism \(f: B \rightarrow A \) is monic in \(\mathcal{E} \). (This means that if \((R, \rho)\) is a subobject of \((A, \alpha)\), then \(R\) is also a subobject of \(A\).) Hence the image \((I, \iota)\) of a map \(f: (B, \beta) \rightarrow (A, \alpha) \) as in

\begin{equation*}
\begin{tikzcd}
(B, \beta) & (A, \alpha) \\
(I, \iota) \arrow[swap]{ur}{c} \arrow{ru}{m}
\end{tikzcd}
\end{equation*}

can be obtained by letting \(I \subseteq A \) be the image of \(f \) in \(\mathcal{E} \), and

\[n \in \iota(a) \iff (\exists b \in B) f(b) = a \text{ and } n \in \beta(b). \]

One could also write: \(\iota(a) = \bigcup_{b \in f^{-1}(a)} \beta(b) \).

We conclude that \(\text{Asm} \) is a regular category.

\(\text{Asm}_{\mathcal{E}} \text{ is Heyting.} \) For any diagram of the form

\begin{equation*}
\begin{tikzcd}
(S, \sigma) \arrow{d} \\
(B, \beta) \arrow{r}{f} & (A, \alpha)
\end{tikzcd}
\end{equation*}

we need to compute \((R, \rho) = \forall_f (S, \sigma)\). We first put \(R_0 = \forall_f S \subseteq A \), and let \(\rho \subseteq \mathbb{N} \times R_0 \) be defined by

\[n \in \rho(a) \iff n_0 \in \alpha(a) \text{ and } \forall b \in f^{-1}(a), m \in \beta(b) \left(n_1(m) \downarrow \text{ and } n_1(m) \in \sigma(b) \right). \]

If we now put

\[R = \{ a \in R_0 : \exists n \ n \in \rho(a) \} \]

and restrict \(\rho \) accordingly, the subobject \((R, \rho)\) will be the result of universally quantifying \((S, \sigma)\) along \(f \).

\(\text{Asm}_{\mathcal{E}} \text{ is positive.} \) The sum \((A, \alpha) + (B, \beta)\) is simply \((S, \sigma)\) with \(S = A + B \) and

\[n \in \sigma(s) \iff n \in \alpha(s) \text{ if } s \in A, \text{ and } n \in \beta(s) \text{ if } s \in B. \]

We have proved:

\textbf{Proposition 2.2} The category \(\text{Asm}_{\mathcal{E}} \) of assemblies relative to \(\mathcal{E} \) is a positive Heyting category.

The next step is to define the display maps in the category of assemblies. The idea is that a displayed assembly is an object \((B, \beta)\) in which both \(B \) and
the subobject \(\beta \subseteq \mathbb{N} \times B \) are small. When one tries to define a family of such displayed objects indexed by an assembly \((A, \alpha)\) in which neither \(A\) nor \(\alpha\) needs to be small, one arrives at the concept of a standard display map. To formulate it, we need a piece of notation.

Definition 2.3 Let \((B, \beta)\) and \((A, \alpha)\) be assemblies and \(f: B \to A\) be an arbitrary map in \(E\). We construct a new assembly \((B, \beta[f])\) by putting

\[
n \in \beta[f](b) \iff n_0 \in \beta(b) \text{ and } n_1 \in \alpha(fb).
\]

Remark 2.4 Note that we obtain a morphism of assemblies of the form \((B, \beta[f]) \to (A, \alpha)\), which, by abuse of notation, we will also denote by \(f\). Moreover, if \(f\) was already a morphism of assemblies it can now be decomposed as

\[
(B, \beta) \xrightarrow{\cong} (B, \beta[f]) \xrightarrow{f} (A, \alpha).
\]

Definition 2.5 A morphism of assemblies of the form \((B, \beta[f]) \to (A, \alpha)\) will be called a **standard display map**, if both \(f\) and the mono \(\beta \subseteq \mathbb{N} \times B\) are small in \(E\) (since \(\mathbb{N}\) is assumed to be small, the latter is equivalent to \(\beta \to B\) being small, or \(\beta(b)\) being a small subobject of \(\mathbb{N}\) for every \(b \in B\)). A **display map** is a morphism of the form

\[
W \xrightarrow{\cong} V \xrightarrow{f} U,
\]

where \(f\) is a standard display map. We will write \(\mathcal{D}_E\) for the class of display maps in \(\mathcal{A}sm_E\).

Lemma 2.6 1. Let \(f:(B, \beta[f]) \to (A, \alpha)\) be a standard display map, and \(g:(C, \gamma) \to (A, \alpha)\) be an arbitrary morphism of assemblies. Then there is a pullback square

\[
\begin{array}{ccc}
(P, \pi[k]) & \xrightarrow{h} & (B, \beta[f]) \\
\downarrow k & & \downarrow f \\
(C, \gamma) & \xrightarrow{g} & (A, \alpha)
\end{array}
\]

in which \(k\) is again a standard display map.

2. The composite of two standard display maps is a display map.

Proof. (1) We set \(P = B \times_A C\) (as usual), and

\[
n \in \pi(b, c) \iff n \in \beta(b),
\]

turning \(k\) into a standard display map. Moreover, this implies

\[
n \in \pi[k](b, c) \iff n_0 \in \beta(b) \text{ and } n_1 \in \gamma(c),
\]

10
which is precisely the usual definition of a pullback in the category of assemblies.

(2) Let \((C, \gamma)\), \((B, \beta)\) and \((A, \alpha)\) be assemblies in which \(\gamma \subseteq \mathbb{N} \times C\) and \(\beta \subseteq \mathbb{N} \times B\) are small monos, and \(g: C \to B\) and \(f: B \to A\) be display maps in \(\mathcal{E}\). These data determine a composable pair of standard display maps \(f: (B, \beta[f]) \to (A, \alpha)\) and \(g: (C, \gamma[g]) \to (B, \beta[f])\), in which

\[
\begin{align*}
 n \in \gamma[g](c) & \iff n_0 \in \gamma(c) \text{ and } n_1 \in \beta[f](gc) \\
 & \iff n_0 \in \gamma(c) \text{ and } (n_1)_0 \in \beta(gc) \text{ and } (n_1)_1 \in \gamma(fgc).
\end{align*}
\]

So its composite can be written as

\[
(C, \gamma[g]) \xrightarrow{\cong} (C, \delta[fg]) \xrightarrow{fg} (A, \alpha),
\]

where we have defined \(\delta \subseteq \mathbb{N} \times C\) by

\[
 n \in \delta(c) \iff n_0 \in \gamma(c) \text{ and } n_1 \in \beta(gc).
\]

\[\square\]

Corollary 2.7 Display maps are stable under pullback and closed under composition.

Proof. Stability of display maps under pullback follows immediately from item 1 in Lemma 2.6. To show that they are also closed under composition, it suffices to show (in view of Lemma 2.6 again) that a morphism \(f\) which can be written as a composite

\[
W \xrightarrow{h} V \xrightarrow{g} U,
\]

where \(h\) is a standard display map and \(g\) is an isomorphism, is a display map. Observe that it follows from the Lemma 2.6 that in this case there exists a pullback square

\[
\begin{array}{ccc}
 Q & \xrightarrow{p} & W \\
 q \downarrow & & \downarrow h \\
 U & \xrightarrow{g^{-1}} & V
\end{array}
\]

in which \(q\) is a standard display map. Therefore \(f = qp^{-1}\) is a display map. \[\square\]

We will use the proof that the display maps in assemblies satisfy collection to illustrate a technique that does not really save an enormous amount of labour in this particular case, but will be very useful in more complicated situations.
Definition 2.8 An assembly \((A, \alpha)\) will be called \textit{partitioned}, if
\[n \in \alpha(a), m \in \alpha(a) \Rightarrow n = m. \]
In a partitioned assembly \((A, \alpha)\) realizers for elements of \(A\) are unique, and we can view \(\alpha\) as a map \(A \to N\).

Lemma 2.9 1. Every assembly is covered by a partitioned assembly. Hence every morphism between assemblies is covered by a morphism between partitioned assemblies.

2. A morphism \(f : (B, \beta) \to (A, \alpha)\) between partitioned assemblies is display iff \(f\) is small in \(E\).

3. Every display map between assemblies is covered by a display map between partitioned assemblies.

The definitions of the notions of a covering square and the covering relation between maps from [5] are recalled in Appendix B.

Proof. (1) If \((A, \alpha)\) is an assembly, then the subset \(\alpha \subseteq N \times A\) can be considered as a partitioned assembly \((\alpha, \delta_\alpha)\), where \(n \in \delta_\alpha(m, a)\) iff \(n = m\). This partitioned assembly covers \((A, \alpha)\).

(2) By definition every display map between partitioned assemblies has an underlying map which is small. Conversely, if \((B, \beta)\) is a partitioned assembly, the set \(\beta(b)\) is a singleton, and therefore small. So the decomposition
\[(B, \beta) \xrightarrow{=} (B, \beta[f]) \xrightarrow{f} (A, \alpha). \]
shows that \(f\) is a display map, if the underlying morphism is small.

(3) If \(f : (B, \beta[f]) \to (A, \alpha)\) is a standard display map between assemblies, then
\[(\beta[f], \delta_{\beta[f]}) \xrightarrow{f} (B, \beta[f]) \]
\[f \]
\[(\alpha, \delta_\alpha) \xrightarrow{f} (A, \alpha) \]
is a covering square with a display map between partitioned assemblies on the left. \(\square\)

Lemma 2.10 The class of display maps in the category \(A_{sm}E\) of assemblies satisfies the collection axiom \((A7)\).
Proof. In view of Lemma 2.9, the general case follows by considering a display map $f: (B, \beta) \rightarrow (A, \alpha)$ between partitioned assemblies and a cover $q: (E, \eta) \rightarrow (B, \beta)$. The fact that q is a cover means that there exists a natural number t such that

“For all $b \in B$, the expression $t(\beta b)$ is defined, and there exists an $e \in E$ with $q(e) = b$ and $t(\beta b) \in \eta(e)$.” \hfill (1)

We will collect all those natural numbers in an object $T = \{ t : t $ is a natural number satisfying (1) $\}$, which can be turned into a partitioned assembly by putting $\theta(t) = t$. Since q is a cover it follows that T is an inhabited set, and that for the object $E' = \{ (e, b, t) : q(e) = b, t(\beta b) \downarrow, t(\beta b) \in \eta(e) \}$, the projection $p: E' \rightarrow B \times T$ is a cover. So we can apply collection in \mathcal{E} to obtain a covering square

$$
\begin{array}{ccc}
D & \xrightarrow{b} & E' \\
\downarrow g & & \downarrow p \\
C & \xrightarrow{k} & B \times T,
\end{array}
$$

where g is a small map. It is easy to see that from this diagram in \mathcal{E}, we obtain two covering squares in the category of assemblies

$$
\begin{array}{ccc}
(D, \delta) & \xrightarrow{ph} & (B \times T, \beta \times \tau) \\
\downarrow g & & \downarrow f \times T \\
(C, \gamma) & \xrightarrow{k} & (A \times T, \alpha \times \tau),
\end{array}
$$

where we have set $\gamma(c) = (\alpha \times \tau)(kc)$ and $\delta(d) = (\beta \times \tau)(phd)$.

Since g is a display map between partitioned assemblies, we only need to verify that the map $(D, \delta) \rightarrow (B, \beta)$ along the top of the above diagram factors as

$$
(D, \delta) \xrightarrow{l} (E, \eta) \xrightarrow{q} (B, \beta).
$$

We set $l = \pi_1 h$, because we can show that this morphism is tracked, as follows. If $h(d) = (e, t, b)$ for some $d \in D$, then the realizer of d consists of the element t, together with the realizer βb of b. By definition of E', the expression $t(\beta b)$ is defined and a realizer for $e = (\pi_1 h)(d) = l(d)$. \hfill \square
Proposition 2.11 The class of display maps in the category $A sm_{E}$ of assemblies as defined above satisfies the axioms (A1), (A3-5), (A7-9), and (A10) for a class of display maps, as well as (NE) and (NS).

Proof. Recall that the axioms are listed in Appendix B.

(A1, 5) were proved in Corollary 2.7, and (A7) was proved in Lemma 2.10.

(A3, 4) The maps $0 \rightarrow 1, 1 \rightarrow 1$ and $1 + 1 \rightarrow 1$ can be represented as standard display maps. The same is true for the sum of two standard display maps.

(A8) We start with a diagram of the form

\[
\begin{array}{ccc}
(S, \sigma[i]) & \xrightarrow{i} & (B, \beta[f]) \\
\downarrow & & \downarrow f \\
(A, \alpha) & \xrightarrow{f} & (A, \alpha),
\end{array}
\]

in which both maps are standard display maps (this is sufficient to establish the general case). In general, $(R, \rho) = \forall f(S, \sigma)$ is computed as follows: first we put $R_0 = \forall f S \subseteq A$, and let $\rho \subseteq \mathbb{N} \times R_0$ be defined by

\[
n \in \rho(a) \iff n_0 \in \alpha(a) \quad \text{and} \quad \forall b \in f^{-1}(a), m \in \beta[f](b) \left(n_1(m) \downarrow \text{ and } n_1(m) \in \sigma[b] \right).\]

Furthermore, we set $R = \{ a \in R_0 : \exists n \in \rho(a) \}$ and denote the inclusion $R \subseteq A$ by j. Restricting ρ to R, the subobject (R, ρ) is the result of universally quantifying (S, σ) along f. Since we are assuming that both i and f are display maps, the same object can be described slightly differently.

We define $\tau \subseteq \mathbb{N} \times R_0$ by

\[
n \in \tau(a) \iff \forall b \in f^{-1}(a), m \in \beta(b) \left(n(m) \downarrow \text{ and } n(m) \in \sigma(b) \right).\]

Note that we have a bounded formula on the right (using that both f and \mathbb{N} are small). Now one can show that

\[
R = \{ a \in R_0 : (\exists n \in \mathbb{N}) \left[n \in \tau(a) \right] \},
\]

and since the formula is bounded, it follows that j is a display map. Furthermore, one can prove that the identity is an isomorphism of assemblies

\[
(R, \rho) \cong (R, \tau[j]),
\]

from which it follows that $(R, \rho) \rightarrow (A, \alpha)$ is a display map.
(A9) The product of an assembly \((X, \chi)\) with itself can be computed by taking \(X \times (X, \chi)\), where

\[n \in (\chi \times \chi)(x, y) \Leftrightarrow n_0 \in \chi(x) \text{ and } n_1 \in \chi(y). \]

This means that by writing \(\Delta : X \to X \times X\) for the diagonal map in \(E\), the diagonal map in assemblies can be decomposed as follows

\[(X, \chi) \overset{\sim}{\to} (X, \mu[\Delta]) \overset{\Delta}{\to} (X, \chi) \times (X, \chi), \]

where \(\mu \subseteq N \times X\) is the relation defined by

\[n \in \mu(x) \Leftrightarrow \text{Always}. \]

(A10) We need to show that in case \(f = me\) and \(f\) is display, \(m\) a mono and \(e\) a cover, also \(m\) will be display. Without loss of generality, we may assume that \(f\) is a standard display map \(f : (B, \beta[\mu]) \to (A, \alpha).\) From Proposition 2.2, we know that we can compute its image \((I, \iota)\) by putting \(I = \text{Im}(f)\) and

\[n \in \iota(a) \Leftrightarrow \exists b \in f^{-1}(a) n \in \beta(b). \]

As the formula on the right is bounded, the map \(m : (I, \iota) \to (A, \alpha)\) can be decomposed as an isomorphism followed by a standard display map:

\[(I, \iota) \overset{\sim}{\to} (I, \iota[m]) \overset{m}{\to} (A, \alpha). \]

(NE) and (NS) The natural numbers object in assemblies is the pair consisting of \(N\) together with the diagonal \(\Delta \subseteq N \times N.\)

3 The predicative realizability category

We will define the predicative realizability category \((\text{Eff}_E, \text{SE})\) as the exact completion of \((\text{Asm}_E, \text{DE}).\) But in this connection the phrase exact completion has to be understood slightly differently from what is customary in the literature. To explain the difference, let us recall from [10] the construction of the (ordinary) exact completion \(\text{Fex/reg}\) of a positive Heyting category \(F.\)

Objects of \(\text{Fex/reg}\) are the equivalence relations in \(F,\) which we will denote by \(X/R\) when \(R \subseteq X \times X\) is an equivalence relation. Morphisms from \(X/R\) to \(Y/S\) are functional relations, i.e., subobjects \(F \subseteq X \times Y\) satisfying the following statements in the internal logic of \(F:\)

\[\exists y \, F(x, y), \]
\[xRx' \wedge ySy' \wedge F(x, y) \to F(x', y'), \]
\[F(x, y) \wedge F(x, y') \to ySy'. \]
There is a functor \(y : F \to F_{\text{ex/reg}} \) sending an object \(X \) to \(X/\Delta X \), where \(\Delta X \) is the diagonal \(X \to X \times X \). This functor is a full embedding preserving the structure of a positive Heyting category. When \(T \) is a class of display maps in \(F \), one can identify the following class of maps in \(F_{\text{ex/reg}} \):

\[
g \in \overline{T} \iff g \text{ is covered by a morphism of the form } yf \text{ with } f \in T.
\]

In this paper, when we speak of the exact completion of a pair \((F, T)\), we will mean the pair \((\overline{F}, \overline{T})\) consisting of the full subcategory \(\overline{F} \) of \(F_{\text{ex/reg}} \) whose objects are those equivalence relations \(i : R \to X \times X \) for which \(i \) belongs to \(\overline{T} \), together with \(\overline{T} \). In [5] we proved the following result for such exact completions:

Theorem 3.1 [5] If \((F, T)\) is a category with a representable class of display maps satisfying \((\text{II}E), (\text{WE})\) and \((\text{NS})\), then its exact completion \((\overline{F}, \overline{T})\) is a predicative category with small maps.

In the rest of the section, we let \((\mathcal{E}, \mathcal{S})\) be a predicative category with small maps. For such a category we have constructed and studied the pair \((\text{Asm}_\mathcal{E}, \mathcal{D}_\mathcal{E})\) consisting of the category of assemblies and its display maps. We now define \((\mathcal{E}_{\text{ff}} \mathcal{E}, \mathcal{S}_\mathcal{E})\) as the exact completion of \((\text{Asm}_\mathcal{E}, \mathcal{D}_\mathcal{E})\) and prove our main theorem (Theorem 1.2) as an application of Theorem 3.1. Much of the work has already been done in Section 2. In fact, Proposition 2.11 shows that the only thing that remains to be shown are the representability and the validity of axioms \((\text{II}E)\) and \((\text{WE})\) for the display maps in assemblies (see Appendix B).

Proposition 3.2 The class of display maps in the category \(\text{Asm}_\mathcal{E} \) of assemblies is representable.

Proof. Let \(\pi : E \to U \) be the representation for the small maps in \(\mathcal{E} \). We define two partitioned assemblies \((T, \tau)\) and \((D, \delta)\) by

\[
T = \{(u \in U, p : E_u \to N)\},
\tau(u, p) = 0,
D = \{(u \in U, p : E_u \to N, e \in E_u)\},
\delta(u, p, e) = pe.
\]

Clearly, the projection \(\rho : (D, \delta) \to (T, \tau) \) is a display map, which we will now show is a representation.

Assume \(f : (B, \beta) \to (A, \alpha) \) is a display map between partitioned assemblies (in view of Lemma 2.9 it is sufficient to consider this case). Since \(f \) is also a display map in \(\mathcal{E} \) we find a diagram of the form

\[
\begin{array}{ccc}
B & \xleftarrow{l} & N & \xrightarrow{k} & E \\
\downarrow{f} & & \downarrow{s} & & \downarrow{\pi} \\
A & \xleftarrow{h} & M & \xrightarrow{g} & U,
\end{array}
\]
where the left-hand square is covering and the right-hand one a pullback. This induces a similar picture

\[
\begin{array}{ccc}
(B, \beta) & \xleftarrow{f} & (N, \nu) \\
\downarrow & & \downarrow \\
(A, \alpha) & \xrightarrow{h} & (M, \mu)
\end{array}
\xrightarrow{k'} \quad
\begin{array}{ccc}
(D, \delta) & \xrightarrow{\rho} & (T, \tau) \\
\uparrow & & \uparrow \\
(N, \nu) & \xrightarrow{s} & (D, \delta)
\end{array}
\]

\[
\begin{array}{l}
g'(m) = (gm, \beta l k^{-1}: E_{gm} \rightarrow \mathbb{N}), \\
\mu(m) = \alpha h(m), \text{ so } h \text{ is tracked and a cover,} \\
k'(n) = (g's(n), kn), \\
\nu(n) = \langle \mu sn, \delta k'n \rangle, \text{ so the right-hand square is a pullback.}
\end{array}
\]

Here \(g' \) is well defined, because \(N \) is a pullback and therefore the map \(k \) induces for every \(m \in M \) an isomorphism

\[
N_m \xrightarrow{k} E_{gm}.
\]

It remains to prove that \(l \) is tracked, and that the left-hand square is a quasi-pullback. For this, one unwinds the definition of \(\nu \):

\[
\nu(n) = \langle \mu sn, \delta k'n \rangle
\]

\[
= \langle \mu sn, \delta (g's(n), kn) \rangle
\]

\[
= \langle \mu sn, \delta (g's(n), \beta l k^{-1}, kn) \rangle
\]

\[
= \langle \mu sn, \beta l^{-1} kn \rangle
\]

\[
= \langle \mu sn, \beta ln \rangle.
\]

From this description of \(\nu \), we see that \(l \) is indeed tracked (by the projection on the second coordinate). To see that the square is a quasi-pullback, one uses first of all that it is a quasi-pullback in \(E \), and secondly that the realizers for an element in \(N \) are the same as those of its image in the pullback \((M \times_A B, \mu \times \beta) \) along the canonical map to this object. \(\square \)

Proposition 3.3 The display maps in the category \(\text{Asm}_E \) of assemblies are exponentiable, i.e., satisfy the axiom (IIE). Moreover, if (IIS) holds in \(E \), then it holds for the display maps in \(\text{Asm}_E \) as well.

Proof. Let \(f: (B, \beta[f]) \rightarrow (A, \alpha) \) be a standard display map and \(g: (C, \gamma) \rightarrow (A, \alpha) \) an arbitrary map with the same codomain. It suffices to prove that the exponential \(g^f \) exists in the slice over \((A, \alpha) \).
Since \(f \) is small, one can form the exponential \(g^f \) in \(\mathcal{E}/A \), whose typical elements are pairs \((a \in A, \phi : B_a \to C_a) \). If we set

\[
n \in \eta(a, \phi) \iff n_0 \in \alpha(a) \text{ and } (\forall b \in B_a, m \in \beta(b))[n_1(m) \downarrow \text{ and } n_1(m) \in \gamma(\phi b)],
\]

\[
E = \{(a, \phi) \in f^g : (\exists n \in \mathbb{N})[n \in \eta(a, \phi)]\},
\]

the assembly \((E, \eta) \) with the obvious projection \(p \) to \((A, \alpha) \) is the exponential \(g^f \) in assemblies. This shows validity of (IIE) for the display maps in assemblies.

If \(g : (C, \gamma(g)) \to (A, \alpha) \) is another standard display map, the exponential can also be constructed by putting

\[
n \in \hat{\eta}(a, \phi) \iff (\forall b \in B_a, m \in \beta(b))[n(m) \downarrow \text{ and } n(m) \in \hat{\gamma}(\phi b)],
\]

\[
\hat{E} = \{(a, \phi) \in f^g : (\exists n \in \mathbb{N})[n \in \hat{\eta}(a, \phi)]\}.
\]

It is not hard to see that \(\hat{E} = E \), and the identity induces an isomorphism of assemblies \((\hat{E}, \hat{\eta}[p]) = (E, \eta) \). This shows the stability of (IIS).

Proposition 3.4 The display maps in the category \(\text{Asm}_\mathcal{E} \) of assemblies satisfy the axiom (WE). Moreover, if (WS) holds in \(\mathcal{E} \), then it holds for the display maps in \(\text{Asm}_\mathcal{E} \) as well.

Proof. Let \(f : (B, \beta[f]) \to (A, \alpha) \) be a standard display map. Since (WE) holds in \(\mathcal{E} \), we can form \(W_f \) in \(\mathcal{E} \). On it, we wish to define the relation \(\delta \subseteq \mathbb{N} \times W_f \) given by

\[
n \in \delta(\sup_a(t)) \iff n_0 \in \alpha(a) \text{ and } (\forall b \in f^{-1}(a), m \in \beta(b))[n_1(m) \downarrow \text{ and } n_1(m) \in \delta(tb)]
\]

(we will sometimes call the elements \(n \in \delta(w) \) the *decorations* of the tree \(w \in W \)). It is not so obvious that we can, but for that purpose we introduce the notion of an *attempt*. An attempt is an element \(\sigma \) of \(P_s(\mathbb{N} \times W_f) \) such that

\[
(n, \sup_a(t)) \in \sigma \Rightarrow n_0 \in \alpha(a) \text{ and } (\forall b \in f^{-1}(a), m \in \beta(b))[n_1(m) \downarrow \text{ and } (n_1(m), tb) \in \sigma].
\]

If we now put

\[
n \in \delta(w) \iff \text{there exists an attempt \(\sigma \) with } (n, w) \in \sigma,
\]

the relation \(\delta \) will have the desired property. (Proof: the left-to-right direction in (2) is trivial, the other is more involved. Given that the right-hand side holds, we know that for every pair \(b \in f^{-1}(a), m \in \beta(b) \) we have an attempt witnessing that \(n_1(m) \in \delta(tb) \). By the collection axiom, one can find these attempts within a certain set of attempts \(S \). Now \(\bigcup S \cup \{(n, \sup_a(t))\} \) is an attempt witnessing that \(n \in \delta(\sup_a(t)) \).)
The W-type in the category of assemblies is now given by \((W, \delta)\) where

\[W = \{ w \in W_f : (\exists n \in \mathbb{N}) \, [n \in \delta(w)] \}. \]

This shows the validity of \((\text{WE})\) for the display maps.

If \(A\) is small and \((\text{WS})\) holds in \(\mathcal{E}\), then \(W_f\) is small. Moreover, if \(\alpha \subseteq \mathbb{N} \times A\) is small, one can use the initiality of \(W_f\) to define a map \(d: W_f \to \mathcal{P}_0 \mathbb{N}\) by

\[
d(\sup_a(t)) = \{ n \in \mathbb{N} : n_0 \in \alpha(a) \text{ and } (\forall b \in f^{-1}(a), m \in \beta(b)) \, [n_1(m) \downarrow \text{ and } n_1(m) \in d(tb)] \}. \]

Clearly, \(n \in \delta(w)\) iff \(n \in d(w)\), so \(\delta\) is a small subobject of \(\mathbb{N} \times W_f\). This shows that \((W, \delta)\) is displayed, and the stability of \((\text{WS})\) is proved.

To summarise, we have proved the first half of Theorem 1.2, which we phrase explicitly as:

Corollary 3.5 If \((\mathcal{E}, \mathcal{S})\) is a predicative category with small maps, then so is \((\mathcal{E}f\mathcal{E}, \mathcal{S}_\mathcal{E})\).

4 Additional axioms

To complete the proof of Theorem 1.2, it remains to show the stability of the additional axioms \((\text{M})\), \((\text{PS})\) and \((\text{F})\). That is what we will do in this (rather technical) section. We assume again that \((\mathcal{E}, \mathcal{S})\) is a predicative category with small maps.

Proposition 4.1 Assume the class of small maps in \(\mathcal{E}\) satisfies \((\text{M})\). Then \((\text{M})\) is valid for the display maps in the category \(\text{Asm}_{\mathcal{E}}\) of assemblies and for the small maps in the predicative realizability category \(\mathcal{E}f\mathcal{E}\) as well.

Proof. Let \(f: (B, \beta) \to (A, \alpha)\) be a monomorphism in the category of assemblies. Then the underlying map \(f\) in \(\mathcal{E}\) is a monomorphism as well. Therefore it is small, as is the inclusion \(\beta \subseteq \mathbb{N} \times B\). So the morphism \(f\), which factors as

\[
(B, \beta) \xrightarrow{\cong} (B, \beta[f]) \xrightarrow{\cong} (A, \alpha),
\]

is a display map of assemblies.

Stability of the axiom \((\text{M})\) under exact completion [5, Proposition 6.4] shows it holds in \(\mathcal{E}f\mathcal{E}\) as well. \(\square\)
Proposition 4.2 Assume the class of small maps in \mathcal{E} satisfies (F). Then (F) is valid for the display maps in the category \mathcal{Asm}_E of assemblies and for the small maps in the predicative realizability category \mathcal{Eff}_E as well.

Proof. It is sufficient to show the validity of (F) in the category of assemblies, for we showed the stability of this axiom under exact completion in [5, Proposition 6.25]. So we need to find a generic mvs in the category of assemblies for any pair of display maps $g: (B, \beta) \rightarrow (A, \alpha)$ and $f: (A, \alpha) \rightarrow (X, \chi)$. In view of Lemma 6.23 from [5] and Lemma 2.9 above, we may without loss of generality assume that g and f are display maps between partitioned assemblies.

We apply (F) in \mathcal{E} to obtain a diagram of the form

\[
\begin{array}{ccccccccc}
P & \rightarrow & Y \times_X B & \rightarrow & B \\
\downarrow & & \downarrow & \downarrow \\
\bar{Y} \times_X A & \rightarrow & A & \rightarrow & \bar{Y} \\
\downarrow & & \downarrow & \downarrow \\
Y & \rightarrow & X' & \rightarrow & X,
\end{array}
\]

where P is a generic displayed mvs for g. This allows us to obtain a similar diagram of partitioned assemblies

\[
\begin{array}{ccccccccc}
(\bar{P}, \bar{\pi}) & \rightarrow & (\bar{Y} \times_X B, \bar{\nu} \times \beta) & \rightarrow & (B, \beta) \\
\downarrow & & \downarrow & \downarrow \\
(\bar{Y} \times_X A, \bar{\nu} \times \alpha) & \rightarrow & (A, \alpha) & \rightarrow & (\bar{Y}, \bar{\nu}) \\
\downarrow & & \downarrow & \downarrow \\
(\bar{Y}, \bar{\nu}) & \rightarrow & (X', \chi') & \rightarrow & (X, \chi),
\end{array}
\]

where we have set

\[
\begin{align*}
\chi'(x') & = \chi(qx') \text{ for } x' \in X', \\
\bar{Y} & = \{(y, n) \in Y \times \mathbb{N}: n \text{ realizes the statement that } P_y \rightarrow A_{qsy} \text{ is a cover} \}
\end{align*}
\]

\[
\bar{\nu}(y, n) = \langle \chi qsy, n \rangle \text{ for } (y, n) \in \bar{Y},
\]

\[
\bar{P} = \bar{Y} \times_Y P
\]

\[
\bar{\pi}(y, n, b) = \langle \bar{\nu}(y, n), \beta(b) \rangle \text{ for } (y, n, b) \in \bar{P}.
\]

One can easily verify that:
1. \(q \) is tracked and a cover.

2. \(s \) is tracked and displayed, since \(\tilde{Y} \) is defined using a bounded formula.

3. The inclusion \((\tilde{P}, \tilde{\pi}) \subseteq (\tilde{Y} \times X B, \tilde{\nu} \times \beta) \) is tracked.

4. It follows from the definition of \(\tilde{Y} \) that the map \((\tilde{P}, \tilde{\pi}) \rightarrow (\tilde{Y} \times X A, \tilde{\nu} \times \alpha) \) is a cover.

We will now prove that \((\tilde{P}, \tilde{\pi}) \) is the generic \textit{mvs} for \(g \) in assemblies.

Let \(R \) be an \textit{mvs} of \(g \) over \(Z \), as in:

\[
\begin{array}{c}
(R, \rho) \\
\downarrow \quad \downarrow
\end{array}
\]

\[
\begin{array}{c}
(Z \times X B, \zeta \times \beta) \\
(Z \times X A, \zeta \times \alpha) \\
(Z, \zeta) \\
(Z, \tilde{\zeta})
\end{array} \rightarrow \begin{array}{c}
(B, \beta) \\
(A, \alpha) \\
(X', \chi') \\
(X, \chi)
\end{array}
\]

Since every object is covered by a partitioned assembly (see Lemma 2.9), we may assume (without loss of generality) that \((Z, \zeta)\) is a partitioned assembly.

Now we obtain a commuting square

\[
\begin{array}{c}
\tilde{R}, \tilde{\rho}) \\
\downarrow \quad \downarrow
\end{array}
\]

\[
\begin{array}{c}
(Z, \tilde{\zeta}) \\
(Z, \zeta)
\end{array} \rightarrow \begin{array}{c}
(R, \rho) \\
(Z, \zeta)
\end{array}
\]

in which we have defined

\[
\tilde{Z} = \{ (z, m, n) \in Z \times \mathbb{N}^2 : m \text{ tracks } i \text{ and } n \text{ realizes the statement that } R_z \rightarrow A_{qtz} \text{ is a cover} \}
\]

\[
= \{ (z, m, n) : (\forall (z, b) \in R, k \in \rho(z, b)) [m(k) = (\zeta \times \beta)(z, b)] \\
\text{ and } (\forall a \in A_{qt})[(\exists b \in B_a)(z, b) \in R \text{ and } n(\alpha(a)) \in \rho(z, b)] \}
\]

\[
\tilde{\zeta}(z, m, n) = \langle \zeta(z, m, n) \rangle \text{ for } (z, m, n) \in \tilde{Z}
\]

\[
\tilde{R} = \{ (z, m, n, b) \in \tilde{Z} \times B : (z, b) \in R \text{ and } n(\alpha(gb)) \in \rho(z, b) \}
\]

\[
\tilde{\rho}(z, m, n, b) = \langle \tilde{\zeta}(z, m, n), \beta(b) \rangle \text{ for } (z, m, n, b) \in \tilde{R}
\]

It is easy to see that all the arrows in this diagram are tracked, and the projection \((\tilde{Z}, \tilde{\zeta}) \rightarrow (Z, \zeta)\) is a cover. It is also easy to see that \((\tilde{R}, \tilde{\rho})\) is still an \textit{mvs} of \(g \) in assemblies. Note also that \((\tilde{R}, \tilde{\rho})\) and \((\tilde{Z}, \tilde{\zeta})\) are partitioned assemblies.
Since the forgetful functor to E preserves mvs in general, and displayed ones between partitioned assemblies in particular, \tilde{R} is also a displayed mvs of g in E. Therefore there is a diagram of the form

\[
\begin{array}{c}
\tilde{R} \leftarrow l^* P \rightarrow P \\
\downarrow \quad \downarrow \quad \downarrow \\
\tilde{Z} \times_k T \rightarrow Y
\end{array}
\]

in E with $tdk = sl$. We turn T into a partitioned assembly by putting $\tau(t) = \tilde{\zeta}(kt)$ for all $t \in T$.

Claim: the map $l: T \rightarrow Y$ factors through $\tilde{Y} \rightarrow Y$ via a map $\tilde{l}: T \rightarrow \tilde{Y}$ which can be tracked. Proof: if $k(t) = (z, m, n)$ and $l(t) = y$ for some $t \in T$, we set

$\tilde{l}(t) = (y, (m \circ n)_1),$

where $m \circ n$ is the code of the partial recursive function obtained by composing the functions coded by m with n. We first have to show that this is well defined, i.e., $\tilde{l}(t) \in \tilde{Y}$. Since P is an mvs in E, we can find for any $a \in A_{qsy}$ an element $b \in B_a$ with $(y, b) \in P$. If we take such a b, it follows from $P_y = P_{lt} \subseteq \tilde{R}_{kt}$, that $(z, m, n, b) \in \tilde{R}$, and therefore $n(\alpha(a)) \in \rho(z, b)$. Moreover, it follows from the fact that $(z, m, n) \in \tilde{Z}$, that $(m \circ n)_1(\alpha(a)) = \beta(b)$. This shows that $\tilde{l}(t) \in \tilde{Y}$. That l is tracked is now easy to see.

As a result, we obtain a diagram of the form

\[
\begin{array}{c}
(\tilde{R}, \tilde{\rho}) \leftarrow \tilde{l}^*(\tilde{P}, \tilde{\pi}) \rightarrow (\tilde{P}, \tilde{\pi}) \\
\downarrow \quad \downarrow \quad \downarrow \\
(\tilde{Z}, \tilde{\zeta}) \times_k (T, \tau) \rightarrow (\tilde{Y}, \tilde{v}).
\end{array}
\]

Given the definitions of $\tilde{\rho}$ and $\tilde{\pi}$, one sees that $\tilde{l}^*(\tilde{P}, \tilde{\pi}) \rightarrow (\tilde{R}, \tilde{\rho})$ is tracked. This completes the proof. □

We are not able to show that the axiom (PS) concerning power types is inherited by the assemblies. But the crucial point is that it will be inherited by its exact completion, as we will now show.

Proposition 4.3 Assume the class of small maps in E satisfies (PS). Then (PS) is valid in the realizability category $\mathcal{E}ff_E$ as well.

Proof. For the purpose of this proof, we introduce the notion of a weak power class object. Recall that the power class object is defined as:
Definition 4.4 By a D-indexed family of subobjects of C, we mean a subobject $R \subseteq C \times D$. A D-indexed family of subobjects $R \subseteq C \times D$ will be called S-displayed (or simply displayed), whenever the composite

$$R \subseteq C \times D \rightarrow D$$

belongs to S. If it exists, a power class object \mathcal{P}_sX is the classifying object for the displayed families of subobjects of X. This means that it comes equipped with a displayed \mathcal{P}_sX-indexed family of subobjects of X, denoted by $\in_X \subseteq X \times \mathcal{P}_sX$ (or simply \in, whenever X is understood), with the property that for any displayed Y-indexed family of subobjects of X, $R \subseteq X \times Y$ say, there exists a unique map $\rho: Y \rightarrow \mathcal{P}_sX$ such that the square

$$
\begin{array}{ccc}
R & \subseteq & \in_X \\
\downarrow & & \downarrow \\
X \times Y & \rightarrow & X \times \mathcal{P}_sX
\end{array}
$$

is a pullback.

If a classifying map ρ as in the above diagram exists, but is not unique, we call the power class object weak. We will denote a weak power class object of X by \mathcal{P}_wX. We will show that the categories of assemblies has weak power class objects, which are moreover “small” (i.e., the unique map to the terminal object is a display map). This will be sufficient for proving the stability of (PS), as we will show in Lemma 4.5 below that real power objects in the exact completion are constructed from the weak ones by taking a quotient.

Let (X, χ) be an assembly. We define an assembly (P, π) by

$$
P = \{ (\alpha \in \mathcal{P}_sX, \phi: \alpha \longrightarrow \mathcal{P}_sN) : (\forall x \in \alpha)(\exists n \in N) [n \in \phi(x)] \text{ and } (\exists n \in N)(\forall x \in \alpha, m \in \phi(x)) [n(m) \in \chi(x)] \},$$

$$\pi(\alpha, \phi) = \{ n \in N : (\forall x \in \alpha, m \in \phi(x)) [n(m) \in \chi(x)] \}.$$

We claim that this assembly together with the membership relation $(E, \eta) \subseteq (X, \chi) \times (P, \pi)$ defined by

$$
E = \{ (x \in X, \alpha \in \mathcal{P}_sX, \phi: \alpha \longrightarrow \mathcal{P}_sN) : (\alpha, \phi) \in P \text{ and } x \in \alpha \},
$$

$$\eta(x, \alpha, \phi) = \{ n \in N : n_0 \in \phi(x) \text{ and } n_1 \in \pi(\alpha, \phi) \}$$

is a weak power object in assemblies.

For let (S, σ) be a (standardly) displayed (Y, v)-indexed family of subobjects of (X, χ). This means that the underlying morphism $f: S \rightarrow Y$ is small, and $\sigma = \sigma[f]$ for a small relation $\sigma \subseteq N \times S$. Since f is small, we obtain a pullback
diagram of the form
\[
\begin{array}{c}
S \\
\downarrow \\
X \times Y \\
\downarrow \\
X \times \mathcal{P}_s X
\end{array}
\] in \(\mathcal{E} \). We use this to build a similar diagram in the category of assemblies:
\[
\begin{array}{c}
(S, \sigma) \\
\downarrow \\
(X, \chi) \times (Y, \nu) \\
\downarrow \\
(X, \chi) \times (P, \pi),
\end{array}
\]
where we have set
\[
\overline{s}(y) = (sy, \lambda x \in sy. \sigma(x, y)).
\]
One quickly verifies that with \(\overline{s} \) being defined in this way, the square is actually a pullback. This shows that \((P, \pi)\) is indeed a weak power object.

If \((X, \chi)\) is a displayed assembly, so both \(X\) and \(\chi \subseteq \mathbb{N} \times X\) are small, and \((PS)\) holds in \(\mathcal{E} \), then \(P\) and \(\pi \) are defined by bounded separation from small objects in \(\mathcal{E} \). Therefore \((P, \pi)\) is a displayed object. In the exact completion, the power class object is constructed from this by taking a quotient (see Lemma 4.5 below), and is therefore small.

To complete the proof of the proposition above, we need to show the following lemma, which is a variation on a result in [5].

Lemma 4.5 Let \(y : (F, T) \to (\overline{F}, \overline{T}) \) be the exact completion of a category with display maps. When \(\mathcal{P}_s^w X \) is a weak power object for a \(T \)-small object \(X \) in \(F \), then the power class object in \(\overline{F} \) exists; in fact, it can be obtained by quotienting \(y \mathcal{P}_s^w X \) by extensional equality.

Proof. We will drop occurrences of \(y \) in the proof.

On \(\mathcal{P}_s^w X \) one can define the equivalence relation
\[
\alpha \sim \beta \iff (\forall x \in X)[x \in \alpha \leftrightarrow x \in \beta].
\]
As \(X \) is assumed to be \(\overline{T} \)-small, the mono \(\sim \subseteq \mathcal{P}_s^w X \times \mathcal{P}_s^w X \) is small, and therefore this equivalence relation has a quotient. We will write this quotient as \(\mathcal{P}_s X \) and prove that it is the power class object of \(X \) in \(\overline{F} \). The membership relation between \(X \) and \(\mathcal{P}_s X \) is given by
\[
x \in [\alpha] \iff x \in \alpha,
\]
24
which is clearly well defined. In particular,

\[
\begin{array}{c}
\in_X \\
\downarrow \\
X \times \mathcal{P}^w X \\
\downarrow \\
X \times \mathcal{P}_s X
\end{array}
\]

is a pullback.

Let \(U \subseteq X \times I \rightarrow I \) be a \(\mathcal{T} \)-displayed \(I \)-indexed family of subobjects of \(X \). We need to show that there is a unique map \(\rho: I \rightarrow \mathcal{P}_s X \) such that \((\text{id} \times \rho)^* \in_X = U \).

Since \(U \rightarrow I \in \mathcal{T} \), there is a map \(V \rightarrow J \in \mathcal{T} \) such that the outer rectangle in

\[
\begin{array}{c}
V \\
\downarrow \\
X \times J \\
\downarrow \\
J
\end{array} \rightarrow
\begin{array}{c}
U \\
\downarrow \\
X \times I \\
\downarrow \\
I
\end{array}
\]

is a covering square. Now also \(f: V \rightarrow X \times J \in \mathcal{T} \), and by replacing \(f \) by its image if necessary and using the axiom \((A10)\), we may assume that the top square (and hence the entire diagram) is a pullback and \(f \) is monic.

So there is a map \(\sigma: J \rightarrow \mathcal{P}^w X \) in \(\mathcal{E} \) with \((\text{id} \times \sigma)^* \in_X = U \), by the “universal” property of \(\mathcal{P}^w X \) in \(\mathcal{E} \). As

\[
pj = pj' \Rightarrow V_j = V_j' \subseteq X \Rightarrow \sigma(j) \sim \sigma(j')
\]

for all \(j, j' \in J \), the map \(q\sigma \) coequalises the kernel pair of \(p \). Therefore there is a map \(\rho: I \rightarrow \mathcal{P}_s X \) such that \(pp = q\sigma \):

\[
\begin{array}{c}
V \\
\downarrow \\
X \times J \\
\downarrow \\
J
\end{array} \rightarrow
\begin{array}{c}
U \\
\downarrow \\
X \times I \\
\downarrow \\
I
\end{array} \rightarrow
\begin{array}{c}
\in_X \\
\downarrow \\
\mathcal{P}_s X
\end{array}
\]

The desired equality \((\text{id} \times \rho)^* \in_X = U \) now follows. The uniqueness of this map follows from the definition of \(\sim \). \(\square \)

The proof of this proposition completes the proof of our main result, Theorem 1.2.
5 Realizability models for set theory

Theorem 1.1 and Theorem 1.2 together imply that for any predicative category with small maps \((\mathcal{E}, \mathcal{S})\), the category \((\mathcal{E}ff, \mathcal{S}_E)\) will contain a model of set theory. As already mentioned in the introduction, many known constructions of realizability models of intuitionistic (or constructive) set theory can be viewed as special cases of this method. In addition, our result also shows that these constructions can be performed inside weak metatheories such as CZF, or inside other sheaf or realizability models.

To illustrate this, we will work out one specific example, the realizability model for IZF described in McCarty [24] (we will comment on other examples in the remark closing this section). To this end, let us start with the category \(\text{Sets}\) and fix an inaccessible cardinal \(\kappa > \omega\). The cardinal \(\kappa\) can be used to define a class of small maps \(\mathcal{S}\) in \(\text{Sets}\) by declaring a morphism to be small, when all its fibres have cardinality less than \(\kappa\) (these will be called the \(\kappa\)-small maps).

Because the axiom \((M)\) then holds both in \(\mathcal{E}\) and the category of assemblies, the exact completion \(\mathcal{A}_{sm}\) of the assemblies is really the ordinary exact completion, i.e., the effective topos \(\mathcal{E}ff\). This means we have defined a class of small maps in the effective topos. We will now verify that this is the same class of small maps as defined in [19].

Lemma 5.1 The following two classes of small maps in the effective topos coincide:

(i) Those covered by a map \(f\) between partitioned assemblies for which the underlying map in \(\mathcal{E}\) is \(\kappa\)-small (as in [19]).

(ii) Those covered by a display map \(f\) between assemblies (as above).

Proof. Immediate from Lemma 2.9, and the fact that the covering relation is transitive. \(\square\)

By Theorem 1.1 we obtain:

Corollary 5.2 [19, 21] The effective topos contains a model \(V\) of IZF.

We investigate this model further in the following proposition, thus proving Corollary 1.3.

Proposition 5.3 In \(V\) the following principles hold: \((\text{AC}), (\text{RDC}), (\text{PA}), (\text{MP}), (\text{CT})\). Moreover, \(V\) is uniform, and hence also \((\text{UP}), (\text{UZ}), (\text{IP})\) and \((\text{IP}_\omega)\) hold.

Proof. The Axioms of Countable and Relativised Dependent Choice hold in \(V\), because they hold in the effective topos (recall the remarks on the relation
between truth in \(V \) and truth in the surrounding category from the introduction; in particular, that \(\text{Int}(\mathbb{N}) \cong \omega \). The same applies to Markov’s Principle and Church’s Thesis (for Church’s Thesis it is also essential that the model \(V \) and the effective topos agree on the meaning of the \(T \)- and \(U \)-predicates).

The Presentation Axiom holds, because (internally in \(\mathcal{E}\text{ff} \)) every small object is covered by a small partitioned assembly (see Lemma 5.1 above), and the partitioned assemblies are internally projective in \(\mathcal{E}\text{ff} \) (using the axiom of choice; a more refined argument would just use the Presentation axiom in the metatheory).

The Uniformity Principle, Unzerlegbarkeit and the Independence of Premisses principles are immediate consequences of the fact that \(V \) is uniform (of course, Unzerlegbarkeit follows immediately the Uniformity Principle; note that for showing that the principles of \((\text{IP})\) and \((\text{IP}_\omega)\) hold, we use the same principles in the metatheory).

To show that \(V \) is uniform, we recall from [5] that the initial \(\mathcal{P}_\kappa \)-algebra is constructed as a quotient of the W-type associated to a representation. In Proposition 3.2, we have seen that the representation \(\rho \) can be chosen to be a morphism between (partitioned) assemblies \((D, \delta) \rightarrow (T, \tau)\), where \(T \) is uniform (every element in \(T \) is realized by 0). As the inclusion of \(Asm \) in \(\mathcal{E}\text{ff} \) preserves W-types, the associated W-type might just as well be computed in the category of assemblies. Therefore it is constructed as in Proposition 3.4: for building the W-type associated to a map \(f: (B, \beta) \rightarrow (A, \alpha) \), one first builds \(W(f) \) in \(\text{Sets} \), and defines (by transfinite induction) the realizers of an element \(\sup_\alpha(t) \) to be those natural numbers \(n \) coding a pair \(\langle n_0, n_1 \rangle \) such that (i) \(n_0 \in \alpha(a) \) and (ii) for all \(b \in f^{-1}(a) \) and \(m \in \beta(b) \), the expression \(n_1(m) \) is defined and a realizer of \(tb \). Using this description, one sees that a solution of the recursion equation \(f = \langle 0, \lambda n.f \rangle \) realizes every tree. Hence \(W(\rho) \), and its quotient \(V \), are uniform in \(\mathcal{E}\text{ff} \).

We will now show that \(V \) is in fact McCarty’s model for \(\text{IZF} \), as was already proved in [21]. For this, we will follow a strategy different from the one in [21]: we will simply “unwind” the existence proof for \(V \) to obtain a concrete description. First, we compute \(W = W(\rho) \) in assemblies (see the proof of Proposition 5.3 above). Its underlying set consists of well-founded trees, with every edge labelled by a natural number. Moreover, at every node the set of edges into that node should have cardinality less than \(\kappa \). One could also describe it as the initial algebra of the functor \(X \mapsto \mathcal{P}_\kappa(\mathbb{N} \times X) \), where \(\mathcal{P}_\kappa(Y) \) is the set of all subsets of \(Y \) with cardinality less than \(\kappa \):

\[
\begin{array}{c}
\mathcal{P}_\kappa(\mathbb{N} \times W) \xleftarrow{1} E \xrightarrow{W} \end{array}
\]

Again, the realizers of a well-founded tree \(w \in W \) are defined inductively: \(n \) is a realizer of \(w \), if for every pair \((m, v) \in E(w)\), the expression \(n(m) \) is defined.
and a realizer of \(v \).

The next step is dividing out, internally in \(\mathcal{E}ff \), by bisimulation:

\[
w \sim w' \iff (\forall (m, v) \in E(w)) (\exists (m', v') \in E(w')) [v \sim v']
\]

and vice versa.

The internal validity of this statement should be translated in terms of realizers. To make the expression more succinct one could introduce the “abbreviation”:

\[
n \vDash w' \in w \iff (\exists (m, v) \in E(w)) [n_0 = m \text{ and } n_1 \vDash w' \sim v].
\]

so that it becomes:

\[
n \vDash w \sim w' \iff (\forall (m, v) \in E(w)) [n_0 = m \downarrow \text{ and } n_0 (m) \vDash v \in w']
\]

and

\[
(\forall (m', v') \in E(w')) [n_1 (m') \downarrow \text{ and } n_1 (m') \vDash v' \in w].
\]

By appealing to the Recursion Theorem, one can check that we have defined an equivalence relation on \(W(\rho) \) in the effective topos (although this is guaranteed by the proof of the existence theorem for \(V \)). The quotient will be the set-theoretic model \(V \). So, its underlying set is \(W \) and its equality is given by the formula for \(\sim \). Of course, when one unwinds the definition of the internal membership \(\epsilon \subseteq V \times V \), one obtains precisely the formula above.

Corollary 5.4 The following clauses recursively define what it means that a certain statement is realized by a natural number \(n \) in the model \(V \):

\[
n \vDash w' \in w \iff (\exists (m, v) \in E(w)) [n_0 = m \text{ and } n_1 \vDash w' = v].
\]

\[
n \vDash w = w' \iff (\forall (m, v) \in E(w)) [n_0 (m) \downarrow \text{ and } n_0 (m) \vDash v \in w']
\]

and

\[
(\forall (m', v') \in E(w')) [n_1 (m') \downarrow \text{ and } n_1 (m') \vDash v' \in w].
\]

\[
n \vDash \phi \land \psi \iff n_0 \vDash \phi \text{ and } n_1 \vDash \psi.
\]

\[
n \vDash \phi \lor \psi \iff n = (0, m) \text{ and } m \vDash \phi, \text{ or } n = (1, m) \text{ and } m \vDash \psi.
\]

\[
n \vDash \phi \rightarrow \psi \iff \text{For all } m \vDash \phi, \text{ we have } n \cdot m \downarrow \text{ and } n \cdot m \vDash \psi.
\]

\[
n \vDash \neg \phi \iff \text{There is no } m \text{ such that } m \vDash \phi.
\]

\[
n \vDash \exists x \phi(x) \iff n \vDash \phi(a) \text{ for some } a \in V.
\]

\[
n \vDash \forall x \phi(x) \iff n \vDash \phi(a) \text{ for all } a \in V.
\]

Proof. The internal logic of \(\mathcal{E}ff \) is realizability, so the statements for the logical connectives follow immediately. For the quantifiers one uses the uniformity of \(V \). \(\square \)

We conclude that the model \(V \) is isomorphic to that of McCarty [24], based on earlier work by Friedman [12].
Remark 5.5 There are many variations and extensions of the construction just given, some of which we already alluded to in the introduction. First of all, instead of working with an inaccessible cardinal κ, we can also work with the category of classes in Gödel-Bernays set theory, and call a map small if its fibres are sets. (The slight disadvantage of this approach is that one cannot directly refer to the effective topos, but has to build up a version of that for classes first.)

More generally, one can of course start with any predicative category with a class of small maps (\mathcal{E}, S). If (\mathcal{E}, S) satisfies condition (F), then so will its realizability extension, and by Theorem 1.1, this will produce models of CZF rather than IZF. For example, if (\mathcal{E}, S) is the syntactic category with small maps associated to the the theory CZF (see [5]), the resulting realizability category $(\mathcal{E}[\mathcal{E}], S_{\mathcal{E}})$ will host a realizability model of CZF. The validity of the principles (AC), (RDC), (MP), (CT), (UP), (UZ) in the model can be established in a similar manner as in Proposition 5.3 (since these arguments can be formalised in CZF) and we obtain Corollary 1.4 as a consequence. In fact, we expect an analysis like the comparison to McCarty’s model given in [21] or above to show that this model is equivalent to Rathjen’s syntactic version of a realizability model for CZF [30].

An alternative (or additional) idea would be to replace number realizability by realizability for an arbitrary small partial combinatory algebra A internal to \mathcal{E}. We are confident that no new complications would arise when developing our account in this more general case. And very basic examples would arise in this way, already in the “trivial” case where \mathcal{E} is the topos of sheaves on the Sierpinski space, in which case an internal pca A can be identified with a suitable map between pca’s. The well-known Kleene-Vesley realizability [20] is in fact a special case of this construction. More generally, one could start with a predicative category with small maps (\mathcal{E}, S) and intertwine the construction of Theorem 1.2 with a similar result for sheaves, announced in [7] and discussed in detail in Part III of this series [6]:

Theorem 5.6 [7] Let (\mathcal{E}, S) be a predicative category with small maps satisfying (IIS), and C a small site with a basis in \mathcal{E}. Then the category of sheaves $\text{Sh}_\mathcal{E}[C]$ carries a natural class of maps $S_{\text{Sh}_\mathcal{E}[C]}$, such that the pair $(\text{Sh}_\mathcal{E}[C], S_{\text{Sh}_\mathcal{E}[C]})$ is again a predicative category with small maps satisfying (IIS). Moreover, this latter pair satisfies (M), (F) or (PS), respectively, whenever the pair (\mathcal{E}, S) does.

Thus, if C is a small site in \mathcal{E}, and A a sheaf of pca’s on C, one probably obtains a predicative category with small maps $(\mathcal{E}', S') = (\mathcal{E}_{\text{Sh}_\mathcal{E}[C]}[A], S_{\text{Sh}_\mathcal{E}[C][A]})$, as in the case of Kleene-Vesley realizability [9].

Any open (resp. closed) subtopos defined by a small site in (\mathcal{E}', S') would now define another such pair (\mathcal{E}'', S''), and hence a model of IZF or CZF if the conditions of Theorem 1.1 are met by the original pair (\mathcal{E}, S). One might refer to its semantics as “relative realizability” (resp. “modified relative realizability”). It has been shown by [9] that relative realizability [3, 31] and modified realiz-
ability [27] are special cases of this, where $\text{Sh}_\mathcal{C}$ is again sheaves on Sierpinski space (see also [28]).

6 A model of CZF in which all sets are subcountable

In this section we will show that CZF is consistent with the principle saying that all sets are subcountable (this was first shown by Streicher in [32]; the account that now follows is based on the work of the first author in [4]). For this purpose, we consider again the effective topos \mathcal{E}ff relative to the classical metatheory Sets. We will show it carries another class of small maps.

Lemma 6.1 The following are equivalent for a morphism $f: B \rightarrow A$ in \mathcal{E}ff.

1. In the internal logic of \mathcal{E}ff it is true that all fibres of f are quotients of subobjects of \mathbb{N} (i.e., subcountable).
2. In the internal logic of \mathcal{E}ff it is true that all fibres of f are quotients of $\neg\neg$-closed subobjects of \mathbb{N}.
3. The morphism f fits into a diagram of the following shape

\[
\begin{array}{ccc}
X \times \mathbb{N} & \xymatrix{ & Y \ar[dl]_g \ar[r] & B \ar[d]^f} \\
X \ar[r] & A, & \end{array}
\]

where the square is covering and Y is a $\neg\neg$-closed subobject of $X \times \mathbb{N}$.

Proof. Items 2 and 3 express the same thing, once in the internal logic and once in diagrammatic language. That 2 implies 1 is trivial.

$1 \Rightarrow 2$: This is an application of the internal validity in \mathcal{E}ff of Shanin’s Principle [26, Proposition 1.7]: every subobject of \mathbb{N} is covered by a $\neg\neg$-closed one. For let Y be a subobject of $X \times \mathbb{N}$ in \mathcal{E}ff/\mathcal{E}. Since every object in the effective topos is covered by an assembly, we may just as well assume that X is an assembly (X, χ). The subobject $Y \subseteq X \times \mathbb{N}$ can be identified with a function $Y: X \times \mathbb{N} \rightarrow \mathcal{P}\mathbb{N}$ for which there exists a natural number r with the property that for every $m \in Y(x, n)$, the value $r(m)$ is defined and codes a pair (k_0, k_1) with $k_0 \in \chi(x)$ and $k_1 = n$. One can then form the assembly (P, π) with

\[
\begin{align*}
P &= \{ (x, n) \in X \times \mathbb{N}: n \text{ codes a pair } (n_0, n_1) \text{ with } n_1 \in Y(x, n_0) \}, \\
\pi(x, n) &= \{ (k_0, k_1): k_0 \in \chi(x) \text{ and } k_1 = n \}.
\end{align*}
\]
which is actually a \(\neg\neg\)-closed subobject of \(X \times N\). \(P\) covers \(Y\), clearly. Moreover, the diagram

\[
\begin{array}{ccc}
P & \rightarrow & Z \\
P & \searrow & \\
X \times N & \rightarrow & X \times N
\end{array}
\]

commutes. \(\Box\)

Let \(T\) be the class of maps having any of the equivalent properties in this lemma.

Remark 6.2 The morphisms belonging to \(T\) were called “quasi-modest” in [19] and “discrete” in [18]. In the latter the authors prove another characterisation of \(T\) due to Freyd: the morphisms belonging to \(T\) are those fibrewise orthogonal to the subobject classifier \(\Omega\) in \(Eff\) (Theorem 6.8 in loc.cit.).

Proposition 6.3 [19, Proposition 5.4] The class \(T\) is a representable class of small maps in \(Eff\) satisfying (M) and (NS).

Proof. To show that \(T\) is a class of small maps, it is convenient to regard \(T\) as \(D^{\text{cov}}\) (the class of maps covered by elements of \(D\)), where \(D\) consists of those maps \(g: Y \rightarrow X\) for which \(Y\) is a \(\neg\neg\)-closed subobject of \(X \times N\). It is clear that \(D\) satisfies axioms (A1, A3-5) for a class of display maps, and (NS) as well (for (A5), one uses that there is an isomorphism \(N \times N \cong N\) in \(Eff\)). It also satisfies axiom (A7), because all maps \(g: Y \rightarrow X\) in \(D\) are choice maps, i.e., internally projective as elements of \(Eff/X\). The reason is that in \(Eff\) the partitioned assemblies are projective, and every object is covered by a partitioned assembly. So if \(X'\) is some partitioned assembly covering \(X\), then also \(X' \times N\) is a partitioned assembly, since \(N\) is a partitioned assembly and partitioned assemblies are closed under products. Moreover, \(Y \times X'\) as a \(\neg\neg\)-closed subobject of \(X' \times N\) is also a partitioned assembly. From this it follows that \(g\) is internally projective. A representation \(\pi\) for \(D\) is obtained via the pullback

\[
\begin{array}{ccc}
\epsilon_N & \rightarrow & \epsilon_N \\
\pi & \downarrow & \\
P_{\neg\neg}(N) & \rightarrow & P(N)
\end{array}
\]

Furthermore, it is obvious that all monomorphisms belong to \(T\), since all the fibres of a monic map are subsingletons, hence subcountable (internally in \(Eff\)).
Now it follows that T is a representable class of small maps satisfying (M) and (NS) (along the lines of Proposition 2.14 in [5]).

Proposition 6.4 [4] The class T satisfies (WS) and (F).

Proof. (Sketch.) We first observe that for any two morphisms $f:Y \to X$ and $g:Z \to X$ belonging to D, the exponential $(f^g)_X \to X$ belongs to T. Without loss of generality we may assume X is a (partitioned) assembly. If $Y \subseteq X \times N$ and $Z \subseteq X \times N$ are $\sim\sim$-closed subobjects, then every function $h:Y_x \to Z_x$ over some fixed $x \in X$ is determined uniquely by its realizer, and so all fibres of $(f^g)_X \to X$ are subcountable.

To show the validity of (F), it suffices to show the existence of a generic T-displayed mvs s for maps $g:B \to A$ in D, with $f:A \to X$ also in D (in view of Lemmas 2.15 and 6.23 from [5]). Because f is a choice map, one can take the object of all sections of g over X, which is subcountable by the preceding remark.

The argument for the validity of (WS) is similar. We use again that every composable pair of maps $g:B \to A$ and $f:A \to X$ belonging to T fit into covering squares of the form

$\begin{CD}
B' @>>> B \\
@VV{g'}V @VV{g}V \\
A' @>>> A \\
@VV{f'}V @VV{f}V \\
X' @>>> X,
\end{CD}$

with g' and f' belonging to D. We may also assume that X' is a (partitioned) assembly. The W-type associated to g' in Eff/X' is subcountable, because every element of $W(g')_{X'}$ in the slice over some fixed $x \in X'$ is uniquely determined by its realizer. The W-type associated to $p^* g$ in the slice over X' is then a subquotient of $W(g')_{X'}$ (see the proof of Proposition 6.16 in [5]), and therefore also subcountable. Finally, the W-type associated to g in the slice over X is also subcountable, by descent for T. \qed

Theorem 6.5 The effective topos contains a model U of CZF and Full Separation, refuting the power set axiom. In fact, the statement that all sets are subcountable is valid in the model.

Proof. One obtains a model of CZF and Full separation by considering the initial algebra U for the power class functor associated to T, which we will
denote by \mathcal{P}_t.
\[\mathcal{P}_t U \xrightarrow{\text{Int}} U \xrightarrow{\text{Ext}} \]

As we explained in the introduction, the statement that all sets are subcountable follows from the fact that, in the internal logic of the effective topos, all fibres of maps belonging to T are subcountable. But the principle that all sets are subcountable immediately implies the non-existence of \mathcal{P}_ω, using Cantor’s Diagonal Argument. And neither does \mathcal{P}_1 when $1 = \{\emptyset\}$ is a set consisting of only one element. For if it would, so would $(\mathcal{P}1)^\omega$, by Subset Collection. But it is not hard to see that $(\mathcal{P}1)^\omega$ can be reworked into the powerset of ω. □

Proposition 6.6 The choice principles (CC), (RDC), (PA) are valid in the model U. Moreover, as an object of the effective topos, U is uniform, and therefore the principles (UP), (UZ), (IP) and (IP$_\omega$) hold in U as well.

Proof. The proof is very similar to that of Proposition 5.3.

The Axioms of Countable and Relativised Dependent Choice U inherits from the effective topos Eff. To see that in U every set is the surjective image of a projective set, notice that every set is the surjective image of a $\neg\neg$-closed subset of ω, and these are internally projective in Eff.

To show that U is uniform it will suffice to point out that the representation can be chosen to be of a morphism of assemblies with uniform codomain. Then the argument will proceed as in Proposition 5.3. In the present case, the representation π can be chosen to be of the form
\[\begin{align*}
\in_N & \xrightarrow{\pi} \in_N \\
\mathcal{P}_{\neg\neg}(N) & \xrightarrow{} \mathcal{P}(N).
\end{align*} \]

So therefore π is a morphism between assemblies, where $\mathcal{P}_{\neg\neg}(N) = \nabla \mathcal{P} \mathbb{N}$, i.e. the set of all subsets A of the natural numbers, with A being realized by 0, say, and $\in_N = \{(n, A) : n \in A\}$, with (n, A) being realized by n. So π is indeed of the desired form, and U will be uniform. Therefore it validates the principles (UP), (UZ), (IP) and (IP$_\omega$). □

Remark 6.7 It follows from results in [25] that the Regular Extension Axiom from [2] also holds in U. For in [25], the authors prove that the validity of the Regular Extension Axiom in U follows from the axioms (WS) and (AMC) for T. (AMC) is the Axiom of Multiple Choice (see [25]), which holds here
because every \(f \in T \) fits into a covering square

\[
\begin{array}{ccc}
Y & \rightarrow & B \\
\downarrow^{g} & & \downarrow^{f} \\
X & \rightarrow & A,
\end{array}
\]

where \(g: Y \rightarrow X \) is a small choice map, hence a small collection map over \(X \).

The model \(U \) has appeared in different forms in the literature, its first appearance being in Friedman’s paper [13]. We discuss several of its incarnations.

We have seen above that for any strongly inaccessible cardinal \(\kappa > \omega \), the effective topos carries another class of small maps \(S \). For this class of small maps, the initial \(\mathcal{P}_t \)-algebra \(V \) is precisely McCarty’s realizability model for \(\text{IZF} \). It is not hard to see that \(T \subseteq S \), and therefore there exists a pointwise monic natural transformation \(\mathcal{P}_t \Rightarrow \mathcal{P}_s \). This implies that our present model \(U \) embeds into McCarty’s model.

\[
\begin{array}{ccc}
\mathcal{P}_t U & \rightarrow & \mathcal{P}_t V \\
\downarrow^{\text{Int}} & & \downarrow^{\text{Int}} \\
U & \rightarrow & V
\end{array}
\]

Actually, \(U \) consists of those \(x \in V \) that \(V \) believes to be hereditarily subcountable (intuitively speaking, because \(V \) and \(\text{Eff} \) agree on the meaning of the word “subcountable”, see the introduction). To see this, write

\[
A = \{ x \in V : V \models x \text{ is hereditarily subcountable} \}.
\]

\(A \) is a \(\mathcal{P}_t \)-subalgebra of \(V \), and it will be isomorphic to \(U \), once one proves that is initial. It is obviously a fixed point, so it suffices to show that it has no proper \(\mathcal{P}_t \)-subalgebras (see [5, Theorem 7.3]). So let \(B \subseteq A \) be a \(\mathcal{P}_t \)-subalgebra of \(A \), and define

\[
W = \{ x \in V : x \in A \Rightarrow x \in B \}.
\]

It is not hard to see that this is a \(\mathcal{P}_s \)-subalgebra of \(V \), so \(W = V \) and \(A = B \).

This also shows that principles like Church’s Thesis (\(\text{CT} \)) and Markov’s Principle (\(\text{MP} \)) are valid in \(U \), since they are valid in McCarty’s model \(V \).

One could also unravel the construction of the initial algebra for the power class functor from [5] to obtain an explicit description, as we did in Section 5. Combining the explicit description of a representation \(\pi \) in Proposition 6.6 with the observation that its associated \(W \)-type can be computed as in assemblies,
one obtains the following description of $W = W_\pi$ in Eff. The underlying set consists of well-founded trees where the edges are labelled by natural numbers, in such a way that the edges into a fixed node are labelled by distinct natural numbers. So a typical element is of the form $\sup_A(t)$, where A is a subset of \mathbb{N} and t is a function $A \rightarrow W$. An alternative would be to regard W as the initial algebra for the functor $X \mapsto [\mathbb{N} \rightarrow X]$, where $[\mathbb{N} \rightarrow X]$ is the set of partial functions from \mathbb{N} to X. The decorations (realizers) of an element $w \in W$ are defined inductively: n is a realizer of $\sup_A(t)$, if for every $a \in A$, the expression $n(a)$ is defined and a realizer of $t(a)$.

We need to quotient W, internally in Eff, by bisimulation:

$$\sup_A(t) \sim \sup_{A'}(t') \iff (\forall a \in A)(\exists a' \in A') [ta \sim t'a'] \text{ and vice versa.}$$

To translate this in terms of realizers, we again use an “abbreviation”:

$$n \vdash x \epsilon \sup_A(t) \iff n_0 \in A \text{ and } n_1 \vdash x \sim t(n_0).$$

Then the equivalence relation $\sim \subseteq W \times W$ is defined by:

$$n \vdash \sup_A(t) \sim \sup_{A'}(t') \iff (\forall a \in A)[n_0(a) \downarrow \text{ and } n_0(a) \vdash ta \epsilon \sup_{A'}(t')] \text{ and } (\forall a' \in A') [n_1(a') \downarrow \text{ and } n_1(a') \vdash t'a' \epsilon \sup_A(t)].$$

The quotient in Eff is precisely U, which is therefore the pair consisting of the underlying set of W together with \sim as equality. One can verify that the internal membership is again given by the “abbreviation” above.

Corollary 6.8 The following clauses recursively define what it means that a certain statement is realized by a natural number n in the model U:

$$n \vdash x \epsilon \sup_A(t) \iff n_0 \in A \text{ and } n_1 \vdash x = t(n_0).$$

$$n \vdash \sup_A(t) = \sup_{A'}(t') \iff (\forall a \in A)[n_0(a) \downarrow \text{ and } n_0(a) \vdash ta \epsilon \sup_{A'}(t')] \text{ and } (\forall a' \in A') [n_1(a') \downarrow \text{ and } n_1(a') \vdash t'a' \epsilon \sup_A(t)].$$

$$n \vdash \phi \land \psi \iff n_0 \vdash \phi \text{ and } n_1 \vdash \psi.$$

$$n \vdash \phi \lor \psi \iff n = (0, m) \text{ and } m \vdash \phi, \text{ or } n = (1, m) \text{ and } m \vdash \psi.$$

$$n \vdash \phi \rightarrow \psi \iff \text{For all } m \vdash \phi, \text{ one has } n \cdot m \downarrow \text{ and } n \cdot m \vdash \psi.$$

$$n \vdash \neg \phi \iff \text{There is no } m \text{ such that } m \vdash \phi.$$

$$n \vdash \exists x \phi(x) \iff n \vdash \phi(a) \text{ for some } a \in U.$$

$$n \vdash \forall x \phi(x) \iff n \vdash \phi(a) \text{ for all } a \in U.$$

From this it follows that the model is the elementary equivalent to the one used for proof-theoretic purposes by Lubarsky in [23].
Remark 6.9 In an unpublished note [32], Streicher builds a model of CZF based on an earlier work on realizability models for the Calculus of Constructions. In our terms, his work can be understood as follows. He starts with the morphism τ in the category \textit{Asm} of assemblies, whose codomain is the set of all modest sets, with a modest set realized by any natural number, and a fibre of this map over a modest set being precisely that modest set (note that this map again has uniform codomain). He proceeds to build the W-type associated to τ, takes it as a universe of sets, while interpreting equality as bisimulation. One cannot literally quotient by bisimulation, for which one could pass to the effective topos.

When considering τ as a morphism in the effective topos, it is not hard to see that it is in fact another representation for the class of subcountable morphisms T: for all fibres of the representation π also occur as fibres of τ, and all fibres of τ are quotients of fibres of π. Therefore the model is again the initial P_T-algebra for the class of subcountable morphisms T in the effective topos.

A Set-theoretic axioms

Set theory is a first-order theory with one non-logical binary relation symbol ϵ. Since we are concerned with constructive set theories in this paper, the underlying logic will be intuitionistic.

As is customary also in classical set theories like ZF, we will use the abbreviations $\exists x \epsilon a \ldots$ for $\exists x \,(x \epsilon a \land \ldots)$, and $\forall x \epsilon a \ldots$ for $\forall x \,(x \epsilon a \rightarrow \ldots)$. Recall that a formula is called bounded, when all the quantifiers it contains are of one of these two forms.

A.1 Axioms of IZF

The axioms of IZF are:

Extensionality: $\forall x \,(x \epsilon a \leftrightarrow x \epsilon b) \rightarrow a = b$.

Empty set: $\exists x \forall y \neg y \epsilon x$.

Pairing: $\exists x \forall y \,(y \epsilon x \leftrightarrow y = a \lor y = b)$.

Union: $\exists x \forall y \,(y \epsilon x \leftrightarrow \exists z \epsilon a \,y \epsilon z)$.

Set induction: $\forall x \,(\forall y \epsilon x \,\phi(y) \rightarrow \phi(x)) \rightarrow \forall x \,\phi(x)$.

Infinity: $\exists a \,(\exists x \,x \epsilon a) \land (\forall x a \exists y \,x \epsilon y \epsilon a)$.

Full separation: $\exists x \forall y \,(y \epsilon x \leftrightarrow y \epsilon a \land \phi(y))$, for any formula ϕ in which a does not occur.
Power set: $\exists x \forall y \ (y \in x \leftrightarrow y \subseteq a)$, where $y \subseteq a$ abbreviates $\forall z \ (z \in y \rightarrow z \in a)$.

Strong collection: $\forall x \in a \ \exists y \phi(x, y) \rightarrow \exists b \ B(x \in a, y \in b) \phi$.

In the last axiom, the expression $B(x \in a, y \in b) \phi$ has been used as an abbreviation for $\forall x \in a \ \exists y \in b \phi$.

A.2 Axioms of CZF

The set theory CZF, introduced by Aczel in [1], is obtained by replacing Full separation by Bounded separation and the Power set axiom by Subset collection:

Bounded separation: $\exists x \forall y \ (y \in x \leftrightarrow y \in a \land \phi(y))$, for any bounded formula ϕ in which a does not occur.

Subset collection: $\exists c \forall z \ (\forall x \in a \ \exists y \phi(x, y, z) \rightarrow \exists d \in c \ B(x \in a, y \in d) \phi(x, y, z))$.

A.3 Constructivist principles

In this paper we will meet the following constructivist principles associated to recursive mathematics and realizability. In writing these down, we have freely used the symbol ω for the set of natural numbers, as it is definable in both CZF and IZF. We also used 0 for zero and s for the successor operation.

Axiom of Countable Choice (CC)

$\forall i \in \omega \ \exists x \psi(i, x) \rightarrow \exists a, f : \omega \rightarrow a \ \forall i \in \omega \psi(i, f(i))$.

Axiom of Relativised Dependent Choice (RDC)

$\phi(x_0) \land \ \forall x \ (\phi(x) \rightarrow \exists y \ (\psi(x, y) \land \phi(y))) \rightarrow \\
\exists a \exists f : \omega \rightarrow a \ (f(0) = x_0 \land \forall i \in \omega \phi(f(i), f(s(i))))$.

Presentation Axiom (PA) Every set is the surjective image of a projective set (where a set a is projective, if every surjection $b \rightarrow a$ has a section).

Markov’s Principle (MP)

$\forall n \in \omega \ [\phi(n) \lor \neg \phi(n)] \rightarrow \ [\neg \exists n \in \omega \phi(n) \rightarrow \exists n \in \omega \phi(n)]$.

37
Church’s Thesis (CT)

∀n∈ω ∃m∈ω φ(n, m) → 3e∈ω ∀n∈ω 3m, p∈ω [T(e, n, p) ∧ U(p, m) ∧ φ(n, m)]

for every formula φ(u, v), where T and U are the set-theoretic predicates which numeralwise represent, respectively, Kleene’s T and result-extraction predicate U.

Uniformity Principle (UP)

∀x ∃y∈ω φ(x, y) → ∃y∈ω ∀x φ(x, y).

Unzerlegbarkeit (UZ)

∀x (φ(x) ∨ ¬φ(x)) → ∀x φ ∨ ∀x ¬φ.

Independence of Premisses for Sets (IP)

(¬θ → ∃x ψ) → ∃x (¬θ → ψ),

where θ is assumed to be closed.

Independence of Premisses for Numbers (IPω)

(¬θ → ∃n∈ω ψ) → ∃n∈ω (¬θ → ψ),

where θ is assumed to be closed.

B Predicative categories with small maps

In the present paper, the ambient category E is always assumed to be a positive Heyting category. That means that E is

(i) cartesian, i.e., it has finite limits.

(ii) regular, i.e., morphisms factor in a stable fashion as a cover followed by a monomorphism.

(iii) positive, i.e., it has finite sums, which are disjoint and stable.

(iv) Heyting, i.e., for any morphism f:Y→X the induced pullback functor f*:Sub(X)→Sub(Y) has a right adjoint ∀f.

Definition B.1 A diagram in E of the form

\[
\begin{array}{ccc}
D & \rightarrow & C \\
\downarrow f & & \downarrow s \\
B & \rightarrow & A \\
\end{array}
\]
is called a quasi-pullback, when the canonical map $D \rightarrow B \times_A C$ is a cover. If p is also a cover, the diagram will be called a covering square. When f and g fit into a covering square as shown, we say that f covers g, or that g is covered by f.

A class of maps in \mathcal{E} satisfying the following axioms (A1-9) will be called a class of small maps:

(A1) (Pullback stability) In any pullback square

\[
\begin{array}{ccc}
D & \rightarrow & B \\
\downarrow^g & & \downarrow^f \\
C & \rightarrow & A \\
\end{array}
\]

where $f \in \mathcal{S}$, also $g \in \mathcal{S}$.

(A2) (Descent) If in a pullback square as above p is a cover and $g \in \mathcal{S}$, then also $f \in \mathcal{S}$.

(A3) (Sums) Whenever $X \rightarrow Y$ and $X' \rightarrow Y'$ belong to \mathcal{S}, so does $X + X' \rightarrow Y + Y'$.

(A4) (Finiteness) The maps $0 \rightarrow 1, 1 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S}.

(A5) (Composition) \mathcal{S} is closed under composition.

(A6) (Quotients) In a commuting triangle

\[
\begin{array}{ccc}
Z & \rightarrow & Y \\
\downarrow^f & & \downarrow^g \\
X & \rightarrow & Y \\
\end{array}
\]

if f is a cover and h belongs to \mathcal{S}, then so does g.

(A7) (Collection) Any two arrows $p: Y \rightarrow X$ and $f: X \rightarrow A$ where p is a cover and f belongs to \mathcal{S} fit into a covering square

\[
\begin{array}{ccc}
Z & \rightarrow & Y & \rightarrow & X \\
\downarrow^g & & \downarrow^p & & \downarrow^f \\
B & \rightarrow & A & \rightarrow & A \\
\end{array}
\]

where g belongs to \mathcal{S}.
(A8) (Heyting) For any morphism \(f: Y \rightarrow X\) belonging to \(\mathcal{S}\), the right adjoint \(\forall f: \text{Sub}(Y) \rightarrow \text{Sub}(X)\) sends small monos to small monos.

(A9) (Diagonals) All diagonals \(\Delta_X: X \rightarrow X \times X\) belong to \(\mathcal{S}\).

In case \(\mathcal{S}\) satisfies all these axioms, the pair \((\mathcal{E}, \mathcal{S})\) will be called a category with small maps. Axioms (A4,5,8,9) express that the subcategories \(\mathcal{S}_X\) of \(\mathcal{E}/X\) whose objects and arrows are both given by arrows belonging to the class \(\mathcal{S}\), are full subcategories of \(\mathcal{E}/X\) which are closed under all the operations of a positive Heyting category. Moreover, these categories together should form a stack on \(\mathcal{E}\) with respect to the finite cover topology according to the Axioms (A1-3). Finally, the class \(\mathcal{S}\) should satisfy the Quotient axiom (A6) (saying that if a composition

\[
C \rightarrow B \rightarrow A
\]

belongs to \(\mathcal{S}\), so does \(B \rightarrow A\), and the Collection Axiom (A7). This axiom states that, conversely, if \(B \rightarrow A\) belongs to \(\mathcal{S}\) and

\[
C \rightarrow B
\]

is a cover (regular epimorphism), then locally in \(A\) this cover has a small refinement.

The following weakening of a class of small maps will play a rôle as well: a class of maps satisfying the axioms (A1), (A3-5), (A7-9), and

(A10) (Images) If in a commuting triangle

\[
\begin{array}{ccc}
Z & \xrightarrow{e} & Y \\
\downarrow{f} & & \downarrow{m} \\
X & \xrightarrow{=} & X
\end{array}
\]

\(e\) is a cover, \(m\) is monic, and \(f\) belongs to \(\mathcal{S}\), then \(m\) also belongs to \(\mathcal{S}\).

will be a called a class of display maps.

Whenever a class of small maps (resp. a class of display maps) \(\mathcal{S}\) has been fixed, an object \(X\) will be called small (resp. displayed), whenever the unique map from \(X\) to the terminal object is small (resp. a display map).

In this paper, we will see the following additional axioms for a class of small (or display) maps \(\mathcal{S}\).

(M) All monomorphisms belong to \(\mathcal{S}\).
(PE) For any object X the power class object P_sX exists.

(PS) Moreover, for any map $f:Y\to X\in S$, the power class object $P_s^X(f)\to X$ in \mathcal{E}/X belongs to S.

(IIE) All morphisms $f\in S$ are exponentiable.

(IIS) For any map $f:Y\to X\in S$, a functor

$$\Pi_f: \mathcal{E}/Y\to \mathcal{E}/X$$

right adjoint to pullback exists and preserves morphisms in S.

(WE) For all $f:X\to Y\in S$, the W-type W_f associated to f exists.

(WS) Moreover, if Y is small, also W_f is small.

(NE) \mathcal{E} has a natural numbers object \mathbb{N}.

(NS) Moreover, $\mathbb{N}\to 1\in S$.

(F) For any $\phi:B\to A\in S$ over some X with $A\to X\in S$, there is a cover

$$q:X'\to X$$

and a map $g:Y\to X'$ belonging to S, together with a displayed mvs P of ϕ over Y, with the following “generic” property: if $z:Z\to X'$ is any map and Q any displayed mvs of ϕ over Z, then there is a map $k:U\to Y$ and a cover $l:U\to Z$ with $yk=zl$, such that $k^*P\leq l^*Q$ as (displayed) mvs of ϕ over U.

A detailed explanation of these axioms can be found in [5]. Here we just recall the notion of a multi-valued section (mvs) from [5], which is used in the formulation of (F). A multi-valued section (mvs) for a map $\phi:B\to A$, over some object X, is a subobject $P\subseteq B$ such that the composite $P\to A$ is a cover. We write

$$mvs_X(\phi)$$

for the set of all mvs of a map ϕ over X. This set obviously inherits the structure of a partial order from $\text{Sub}(B)$, in such a way that any morphism $f:Y\to X$ induces an order-preserving map

$$mvs_X(\phi)\to mvs_Y(f^*\phi),$$

obtained by pulling back along f. We will call a mvs $P\subseteq B$ of $\phi:B\to A$ displayed, when the composite $P\to A$ belongs to S. In case ϕ belongs to S, this is equivalent to saying that P is a bounded subobject of B.

A category with small maps (\mathcal{E}, S) will be called a predicative category with small maps, if S satisfies the axioms (IIE), (WE), (NS) and in addition:
(Representability) The class \mathcal{S} is representable, in the sense that there is a small map $\pi: E \to U$ (a representation) of which any other small map $f: Y \to X$ is locally (in X) a quotient of a pullback. More explicitly: any $f: Y \to X \in \mathcal{S}$ fits into a diagram of the form

$$
\begin{array}{c}
\begin{array}{ccc}
Y & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
X & \xrightarrow{\pi} & E
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{ccc}
A & \xleftarrow{g} & U
\end{array}
\end{array}
$$

where the left-hand square is covering and the right-hand square is a pullback.

(Exactness) For any equivalence relation

$$R \to X \times X$$

given by a small mono, a stable quotient X/R exists in \mathcal{E}.

References

[1] P. Aczel. The type theoretic interpretation of constructive set theory. In *Logic Colloquium 77 (Proc. Conf., Wroclaw, 1977)*, volume 96 of *Stud. Logic Foundations Math.*, pages 55–66. North-Holland, Amsterdam, 1978.

[2] P. Aczel and M. Rathjen. Notes on constructive set theory. Technical Report No. 40, Institut Mittag-Leffler, 2000/2001.

[3] S. Awodey, L. Birkedal, and D.S. Scott. Local realizability toposes and a modal logic for computability. *Math. Structures Comput. Sci.*, 12(3):319–334, 2002.

[4] B. van den Berg. *Predicative topos theory and models for constructive set theory*. PhD thesis, University of Utrecht, 2006. Available from the author’s homepage.

[5] B. van den Berg and I. Moerdijk. Aspects of predicative algebraic set theory I: exact completion. Accepted for publication in *Ann. Pure Appl. Logic*, arXiv:0710.3077, 2008.

[6] B. van den Berg and I. Moerdijk. Aspects of predicative algebraic set theory III: sheaf models. In preparation, 2008.

[7] B. van den Berg and I. Moerdijk. A unified approach to algebraic set theory. To be published in the proceedings of the Logic Colloquium 2006, arXiv:0710.3066, 2008.
[8] L. Birkedal. *Developing theories of types and computability via realizability*, volume 34 of *Electronic Notes in Theoretical Computer Science*. Elsevier, Amsterdam, 2000. Available at http://www.elsevier.nl/locate/entcs/volume34.html.

[9] L. Birkedal and J. van Oosten. Relative and modified relative realizability. *Ann. Pure Appl. Logic*, 118(1-2):115–132, 2002.

[10] A. Carboni. Some free constructions in realizability and proof theory. *J. Pure Appl. Algebra*, 103:117–148, 1995.

[11] A. Carboni, P.J. Freyd, and A. Scedrov. A categorical approach to realizability and polymorphic types. In *Mathematical foundations of programming language semantics (New Orleans, LA, 1987)*, volume 298 of *Lecture Notes in Comput. Sci.*, pages 23–42. Springer, Berlin, 1988.

[12] H.M. Friedman. Some applications of Kleene’s methods for intuitionistic systems. In *Cambridge Summer School in Mathematical Logic (Cambridge, 1971)*, volume 337 of *Lecture Notes in Math.*, pages 113–170. Springer, Berlin, 1973.

[13] H.M. Friedman. Set theoretic foundations for constructive analysis. *Ann. of Math. (2)*, 105(1):1–28, 1977.

[14] P. J. W. Hofstra. All realizability is relative. *Math. Proc. Cambridge Philos. Soc.*, 141(2):239–264, 2006.

[15] P.J.W. Hofstra and J. van Oosten. Ordered partial combinatory algebras. *Math. Proc. Cambridge Philos. Soc.*, 134(3):445–463, 2003.

[16] J. M. E. Hyland. A small complete category. *Ann. Pure Appl. Logic*, 40(2):135–165, 1988.

[17] J.M.E. Hyland. The effective topos. In *The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981)*, volume 110 of *Stud. Logic Foundations Math.*, pages 165–216. North-Holland, Amsterdam, 1982.

[18] J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The discrete objects in the effective topos. *Proc. London Math. Soc. (3)*, 60(1):1–36, 1990.

[19] A. Joyal and I. Moerdijk. *Algebraic set theory*, volume 220 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1995.

[20] S.C. Kleene and R.E. Vesley. *The foundations of intuitionistic mathematics, especially in relation to recursive functions*. North–Holland, Amsterdam, 1965.

[21] C. Kouwenhoven-Gentil and J. van Oosten. Algebraic set theory and the effective topos. *J. Symbolic Logic*, 70(3):879–890, 2005.
[22] J. Longley. Realizability Toposes and Language Semantics. PhD thesis, Edinburgh University, 1995.

[23] R.S. Lubarsky. CZF and Second Order Arithmetic. *Ann. Pure Appl. Logic*, 141(1-2):29–34, 2006.

[24] D.C. McCarty. Realizability and recursive mathematics. PhD thesis, Oxford University, 1984.

[25] I. Moerdijk and E. Palmgren. Type theories, toposes and constructive set theory: predicative aspects of AST. *Ann. Pure Appl. Logic*, 114(1-3):155–201, 2002.

[26] J. van Oosten. Axiomatizing higher-order Kleene realizability. *Ann. Pure Appl. Logic*, 70(1):87–111, 1994.

[27] J. van Oosten. The modified realizability topos. *J. Pure Appl. Algebra*, 116(1-3):273–289, 1997.

[28] J. van Oosten. Realizability – An Introduction to its Categorical Side, volume 152 of Studies in Logic. Elsevier, Amsterdam, 2008.

[29] A.M. Pitts. The Theory of Triposes. PhD thesis, University of Cambridge, 1981.

[30] M. Rathjen. Realizability for constructive Zermelo-Fraenkel set theory. In Logic Colloquium ’03, volume 24 of Lect. Notes Log., pages 282–314. Assoc. Symbol. Logic, La Jolla, CA, 2006.

[31] T. Streicher. A topos for computable analysis. Unpublished note available from the author’s homepage, 1997.

[32] T. Streicher. Realizability models for CZF+ ¬ Pow. Unpublished note available from the author’s homepage, March 2005.

[33] A. S. Troelstra. Notes on intuitionistic second order arithmetic. In Cambridge Summer School in Mathematical Logic (Cambridge, 1971), volume 337 of Lecture Notes in Math., pages 171–205. Springer, Berlin, 1973.

[34] A. S. Troelstra. Realizability. In Handbook of proof theory, volume 137 of Stud. Logic Found. Math., pages 407–473. North-Holland, Amsterdam, 1998.