INTRODUCTION

The conjunctiva is readily visible and partially exposed to sunlight; therefore, conjunctival tumors and related lesions are recognizable early in their course.[1]

Conjunctival tumors, based on their origin, are categorized into melanocytic and non-melanocytic types, both arising from epithelial and stromal components.[2] Conjunctival epithelial lesions vary from benign tumors such as papillomas, to malignant lesions such as squamous cell carcinoma (SCC).[3] Melanocytic and non-melanocytic tumors have been reported to comprise 53 and 47% of all excised conjunctival tumors, respectively.[2]

Ocular surface squamous neoplasia (OSSN) are composed of epithelial lesions such as dysplasia, carcinoma in situ and SCC which involve the conjunctiva.
and cornea. Main factors associated with conjunctival epithelial lesions include sunlight exposure, human papilloma virus (HPV) subtypes 6, 11, 16, 18, and human immunodeficiency (HIV) infection. Other factors associated with OSSN are old age, male sex and fair skin. According to Newton et al the incidence of ocular SCC increases 49% with every 10-degree decline in latitude. Higher exposure of male subjects to sunlight while working outdoors may explain the higher prevalence of OSSN in males.

Although, a previous study was conducted at Farabi Eye Hospital, a referral ophthalmology center in Iran, there is no information about the frequency of conjunctival lesions in other parts of Iran with different amounts of sun exposure. The current study was conducted to identify the prevalence of various types of conjunctival lesions at the pathology department of Khalili Hospital, Shiraz, Fars Province (a tertiary care referral center located in the south of Iran). It has a homogenous rural population composed of inhabitants (with a low immigration rate) with more intense and longer duration of sun exposure as compared to other parts the country.

METHODS

After obtaining permission from the Ethics Committee of the Pathology Department of Shiraz University of Medical Sciences, Iran, in a retrospective study, the histology slides and database of conjunctival specimens submitted to Khalili Hospital, Shiraz, Fars Province, Iran, between April 2009 and July 2013 were reviewed by three pathologists. The histologic diagnoses were categorized into three groups of benign, premalignant and malignant lesions according to the World Health Organization (WHO) classification of conjunctival tumors. The prevalence of various types of conjunctival lesions was calculated and associations between conjunctival lesions and demographic data were analyzed by SPSS version 17 (SPSS corporation, Chicago, IL, USA).

RESULTS

A total of 631 conjunctival specimens from 628 patients were analyzed. Patient age ranged from 2 to 88 (mean 45.7 ± 19.0) years and there was no sex predilection (50.7% of cases were female). Out of 631 specimens, 516 (81.8%) were categorized as benign, 68 (10.8%) as premalignant, and 47 (7.4%) as malignant lesions. Melanocytic lesions comprised (13.3%) of all excised lesions and included nevi, primary acquired melanosis (PAM) and malignant melanoma in 12.5%, 0.4% and 0.4% of cases, respectively. Data for the three types of conjunctival lesions are detailed in Table 1.

Table 1. Classification and frequency of conjunctival lesions

Lesions	Total frequency (%)	Percentage in groups	Mean age (year)
Benign	516 (81.8)		43.7
Pterygium	357 (56.6)	69.2	
Melanocytic	79 (12.5)	15.3	
Conjunctival cyst	21 (3)	4.1	
Pyogenic granuloma	10 (1.6)	1.9	
BLFH*	9 (1.4)	1.7	
Dermoid and dermolipoma	9 (1.4)	1.7	
Epithelial hyperplasia	8 (1.3)	1.6	
Squamous papilloma	6 (1)	1.2	
Hemangioma	5 (0.8)	1	
Fibroma	2 (0.3)	0.4	
Others	10 (1.7)	1.9	
Premalignant	68 (10.8)		53.9
CIN (I, II, III)*	64 (10.2)	94.1	
PAM†	3 (0.4)	4.4	
Actinic keratosis	1 (0.2)	1.5	
Malignant	47 (7.4)		56.0
SCC*	44 (7)	93.6	
Malignant melanoma	3 (0.4)	6.4	
Total	631 (100)	100	

*BLFH, benign lymphoid follicular hyperplasia; CIN, conjunctival intraepithelial neoplasia; PAM, primary acquired melanosis; SCC, squamous cell carcinoma

Pterygia were the most common benign lesions (69.2%) and were combined with cysts and nevi in 2.3% of cases. Melanocytic lesions such as nevi and lentigo were the second most common benign lesions (15.3%) followed by conjunctival cysts (4.1%). Conjunctival intraepithelial neoplasia (CIN) was the most common premalignant lesion (94.1%); these lesions had been diagnosed clinically as pterygia in 31.2% of cases. PAM and actinic keratosis were the second (4.4%) and third (1.5%) most frequent premalignant lesions respectively. SCC was the most common malignant lesion (93.6%), followed by malignant melanoma (6.4%).

Mean age of patients with benign, premalignant and malignant lesions was 43.7, 53.9 and 56.0 years, respectively. The age distribution of the patients with regard to the histological diagnosis is illustrated in Figure 1. No significant sex predilection was observed for benign (52.9% female cases) or malignant (51% female cases) conjunctival lesions, however premalignant lesions occurred twice as commonly in men (66.2% in males versus 33.8% in females). Although, benign lesions were most common in all age ranges, after the age of 60, a decline in the incidence of benign lesions and a significant increase in the prevalence of premalignant and malignant lesions was observed (P < 0.001).
DISCUSSION

This study showed that benign conjunctival lesions were the most common type of lesions across all age groups. Premalignant and malignant cases were the second and third leading lesions of the conjunctiva, and a significant increasing trend was observed in their prevalence with older age. The results of this study are comparable to previous reports with regard to the prevalence of conjunctival lesions and changes may occur on a pterygium, histological frequently with older age. Since dysplastic or malignant conjunctival lesions in all age groups in the current series, with premalignant and malignant lesions occurring more frequently with older age. Since dysplastic or malignant changes may occur on a pterygium, histological evaluation is necessary in any pterygium like lesion.

In summary, benign lesions were the most common conjunctival lesions in all age groups in the current series, and with premalignant and malignant lesions occurring more frequently with older age. Since dysplastic or malignant changes may occur on a pterygium, histological evaluation is necessary in any pterygium like lesion.

Financial Support and Sponsorship
Nil.

Conflicts of Interest
There are no conflicts of interest.

REFERENCES

1. Shields CL, Shields JA. Tumors of the conjunctiva and cornea. Surv Ophthalmol 2004;49:3-24.
2. Shields CL, Demirci H, Karatzas E, Shields JA. Clinical survey of 1643 melanocytic and nonmelanocytic conjunctival tumors. Ophthalmology 2004;111:1747-1754.
3. Alves LF, Fernandes BF, Burnier JV, Zoroquiain P, Eskenazi DT, Burnier MN Jr. Incidence of epithelial lesions of the conjunctiva in a review of 12,102 specimens in Canada (Quebec). Arq Bras Oftalmol 2011;74:21-3.
4. Grossniklaus HE, Green WR, Luckenbach M, Chan CC. Conjunctival lesions in adults. A clinical and histopathologic review. Cornea 1987;6:78-116.
5. Pe’er J. Ocular surface squamous neoplasia. Ophthalmol Clin North Am 2005;18:1-13, vii.
6. Lee GA, Hirst LW. Ocular surface squamous neoplasia. Surv Ophthalmol 1995;39:429-450.
7. Sun EC, Fears TR, Goedert JJ. Epidemiology of squamous cell conjunctival cancer. Cancer Epidemiol Biomarkers Prev 1997;6:73-77.
8. Newton R, Ferlay J, Reeves G, Beral V, Parkin DM. Effect of ambient solar ultraviolet radiation on incidence of squamous-cell carcinoma of the eye. Lancet 1996;347:1450-1451.
9. Lee GA, Hirst LW. Retrospective study of ocular surface squamous neoplasia. Aust N Z J Ophthalmol 1997;25:269-276.
10. Campbell RJ, Sobin LH, In Collaboration with Pathologists in 11 Countries. World Health Organization International Histological
11. Mondal SK, Nag DR, Bandyopadhyay R, Adhikari A, Mukhopadhyay S. Conjunctival biopsies and ophthalmic lesions: A histopathologic study in eastern India. *J Res Med Sci* 2012;17:1176-1179.

12. Elsas FJ, Green WR. Epibulbar tumors in childhood. *Am J Ophthalmol* 1975;79:1001-1007.

13. Hertle RW, Durso F, Metzler JP, Varsa EW. Epibulbar squamous cell carcinomas in brothers with Xeroderma pigmentosa. *J Pediatr Ophthalmol Strabismus* 1991;28:350-353.

14. Amoli FA, Heidari AB. Survey of 447 patients with conjunctival neoplastic lesions in Farabi Eye Hospital, Tehran, Iran. *Ophthalmic Epidemiol* 2006;13:275-279.

15. Pola EC, Masanganise R, Rusakaniko S. The trend of ocular surface squamous neoplasia among ocular surface tumour biopsies submitted for histology from Sekuru Kaguvi Eye Unit, Harare between 1996 and 2000. *Cen Afr J Med* 2003;49:1-4.

16. Oellers P, Karp CL, Sheth A, Kao AA, Abdelaziz A, Matthews JL, et al. Prevalence, treatment, and outcomes of coexistent ocular surface squamous neoplasia and pterygium. *Ophthalmology* 2013;120:445-450.

17. Hirst LW, Axelsen RA, Schwab I. Pterygium and associated ocular surface squamous neoplasia. *Arch Ophthalmol* 2009;127:31-32.