Introduction

Moringa is a small genus from the family of Moringaceae, consisting of 13 species from subtropical to tropical regions and ranging in size from small herbs to large trees. The Moringa trees are important food commodities as almost all plant parts such as fruits, flowers, leaves, and immature pods can be consumed as highly nutritive vegetables.1 Moringa peregrine (Forssk.) Fiori, which is commonly known as horseradish tree, has economical and medicinal importance. The pharmacological actions were attributed to the presence of phenolic compounds in its leaf extract. It was revealed that the leaves of M. peregrina are rich sources of vitamins, minerals, proteins, and phenolic compounds. It acts as a good source of natural antioxidants and also plays an important role in preventing and progression of many diseases.2 M. peregrina can be grown on arid and semi-arid areas with high temperatures and low water availability where cultivation of other agricultural crops is difficult due to drought stress.3

Drought stress is one of the most serious abiotic stresses that limit plant growth. Numerous changes have been observed in plants as a result of water stress such as changes in mineral nutrients balance, bioactive compounds, and antioxidant activity. These changes depend on species,
genotypes, severity, duration, and time course of drought stress. Nowadays, the cultivation of medicinal plants is done in a drought stress condition to influence the secondary metabolites content such as phenols.

Phenolic compounds as the largest groups of phytochemicals are present in foods. Flavonoids and other phenolic compounds are potent antioxidants and anticarcinogenic agents. Polyphenols exist in many plants and are especially abundant in the Moringa tree, whose dried leaves are used as antioxidant. Drought can also lead to pigment degradation, thus causing irreversible water-deficit damage to the photosynthetic apparatus. One of the indicators of the stress tolerance capacity of plants is chlorophyll stability index. In addition, it has been demonstrated that antioxidants affect the chlorophyll content of plants as well.

The tolerance of plants to environmental stresses such as water deficit can be fortified by micronutrient fertilizers. Zinc (Zn) is an essential micronutrient required for metabolic activity, water balance, and stomatal regulation in plants. It adjusts various enzymatic functions and is required for biochemical reactions resulting in chlorophyll formation. Currently, the use of nano-materials such as zinc oxide nanoparticles (ZnO-NPs) has been expanded.

It has been demonstrated that the use of micronutrient fertilizers in the form of NPs is an appropriate procedure to release required nutrients gradually and in a controlled way, which is essential to mitigate the problems of fertilizer pollutions. Due to high surface-to-volume ratio, highly active surface, unique size and shape, and physical, chemical, biological, and catalytic properties, NPs can modulate chemical and biological activities of cells. It has been reported that ZnO-NPs can produce better results than the conventional ZnO. Additionally, ZnO-NPs possess excellent electrical properties.

However, to the best of our knowledge, there is little or no reliable information about the physiological effects of foliar application of ZnO-NPs on mineral and biochemical content of medicinal plants under well-watered as well as drought stress conditions. Therefore, this study was carried out to evaluate the changes of mineral nutrients, chlorophylls as well as phenolic compounds, and antioxidant activity of different M. peregrina populations under well-watered and drought stress conditions in response to foliar application of ZnO-NPs.

Materials and Methods

Plant Materials and Growth Conditions

The experiment was conducted in a greenhouse at the Faculty of Agriculture, University of Sistan and Baluchestan, Zahedan, Iran (latitude of 29°27′34″ N, longitude of 60°51′10″ E, 1385 m altitude, mean annual temperature of 18.3°C and rainfall of 72 mm), during the 2014 growing season. Ten populations of M. peregrina seeds were collected from different regions of Sistan and Baluchestan province, Southeast of Iran. The seeds were cleaned to remove damaged seeds, stones, leaves, wood, dust, and any other unknown materials. Cleaned seeds were stored in black plastic bags and labeled. The locations of all samples have been shown in Table 1. The regions where the populations were located are typically characterized by an arid and semi-arid climate.

Seeds were surface-sterilized with 0.5% (v/v) sodium hypochlorite and treated with benomyl solution for 30 minutes at 24°C and then washed three times with sterilized deionized water. Twenty seeds were placed in each 9-cm Petri dish on two sheets of filter paper moistened. The seeds were kept in a germination chamber under a photoperiod of 12 hours at 25°C. After germination, the seedlings were kept in a growth chamber for 14 days at 25°C, 70% relative humidity with a 12-hour photoperiod and watered daily. Later, the young plants were sown in plastic pots (30 cm height and 20 cm diameter) filled with steam-sterilized soil containing washed sand (3:1:1, v/v/v), clay horizon (red earth), and organic horizon soil (black soil). They were fully randomized, kept in a greenhouse and watered daily. Young plants, 40 days after germination, were exposed to drought stress and ZnO-NPs treatment.

Treatments

The field capacity (FC) of the medium in the pot was measured prior to each treatment. Three pots were saturated with water, covered with plastic to avoid

Population Number	Positions	Location of Collected	Latitude	Longitude
1	Nikshahr	Konardan	29°16′60″ N	21°79′56″ E
2	Nikshahr	Keshik	29°11′34″ N	23°27′94″ E
3	Nikshahr	Shegim	29°29′04″ N	21°8′17″ E
4	Nikshahr	Desk	29°17′75″ N	21°9′20″ E
5	Nikshahr	Nasfuran	29°18′55″ N	78°40′95″ E
6	Fanuj	Girls Seven	29°19′72″ N	75°26′06″ E
7	Fanuj	Tange Fanuj Entrance	29°38′89″ N	76°27′30″ E
8	Fanuj	Tange Fanuj	29°35′68″ N	76°29′73″ E
9	Fanuj	Madohi village	29°29′45″ N	76°26′47″ E
10	Fanuj	Dahan village	29°15′45″ N	75°39′26″ E
evaporation and allowed to drain for 24 hours. The moisture content was determined after soil sampling from each pot. Average moisture content was calculated according to Kramer and Boyer.13 The performance of drought stress was evaluated at 40 days after germination. All the pots were maintained at 100% FC (well-watered) and 50% FC (drought stress) during the period of treatment. At 7 days after drought stress, plants were sprayed with the different concentration of ZnO-NPs [0 (as control), 0.05, and 0.1%]. The second foliar application of ZnO-NPs was carried out one week later. Plants were sprayed until the leaves were completely wet and the solution ran off the leaves. The ZnO-NPs was purchased from Iranian Nanomaterials Pioneers Company, Iran. Plants were harvested at 30 days after ZnO-NPs spraying and were further processed for proximate analysis.

Sodium and Potassium Content
Before the measurement of Na+ and K+, leaf samples were exactly washed by tap water and then rinsed with deionized water to remove all surface remnants. Fruit flesh samples, after air-drying, were taken from the equatorial section of each fruit quarter, oven-dried at 70°C for 48 hours and milled to pass through a 40-mesh sieve. A portion of fine powder weighing 2 g was dry washed in a furnace at 550°C for 4 hours and then the ash was dissolved in 10 mL of 2 M hydrochloric acid (HCl). Through a Whatman No. 40 filter paper, the digested samples were filtered and used for the analysis of Na+ and K+. Na+ and K+ content was determined by flame photometric (Biotech Engineering Management Co., Ltd., Leicester, UK) method as already described.14

Chlorophyll Assay
The content of chlorophyll a (Chl-a), chlorophyll b (Chl-b), and total chlorophyll (T-Chl) was determined by UV-visible spectrophotometry (PG Instrument Ltd., Leicester, UK) as described by Rajalakshmi and Banu.15 Briefly, 10 mL of acetone 80% was added to 0.1 g of homogenized freeze-dried herbage samples. The samples were centrifuged at 6000 g for 10 minutes. The supernatant was filtered through a Whatman No.1 filter paper and the absorbances were read at 645 and 663 nm using UV-visible spectrophotometer. The amounts of Chl-a, Chl-b and T-Chl were calculated according to the following formulas:

\[\text{Chl-a} = (19.3 \times A_{663} - 3.6 \times A_{645}) \times V / 100 \text{W} \]
\[\text{Chl-b} = (19.3 \times A_{663} - 3.6 \times A_{645}) \times V / 100 \text{W} \]
\[\text{T-Chl} = \text{Chl-a} + \text{Chl-b} \]

Where \(A_{663} \) and \(A_{645} \) are the absorbances at 645 and 663 nm, “V” is sample volume in absorbance, and “W” is the fresh weight (FW) of sample in grams.

Total Phenol Content
The total phenolic content (TPC) was determined using Folin-Ciocalteu method with minor modifications.16 TPC extraction was carried out by 10 mL acidic methanol added to 1 g of the leaf powder with the mixture and then filtered through ordinary filter paper. Afterwards, 500 µL of this extract was diluted with 5 mL of Folin-Ciocalteu reagent (1:10 g mL\(^{-1}\)), and then 4 mL of Na\(_2\)CO\(_3\) (1 M) was added to the mixture. This reaction solution was shaken in a shaker and kept in dark for 15 minutes. The absorbance of samples was taken at 765 nm using UV/Visible spectrophotometer (model PG Instrument +80, Leicester, UK). Gallic acid was used as standard to obtain calibration curve. Data were expressed as milligram gallic acid equivalent (mg GAE) per 1 g of fruit FW.

Antioxidant Activity
The antioxidant activity was evaluated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging method with some modifications.16 The absorbance of the samples was measured at 515 nm and the antioxidant activity was expressed as the percentage of the decline of the absorbance, relative to the control, corresponding to the percentage of DPPH that was scavenged. The percentage of DPPH, which was scavenged (%DPPHsc), was calculated using:

\[\%\text{DPPHsc} = \left(\frac{A_{\text{samp}} - A_{\text{cont}}}{A_{\text{cont}}} \right) \times 100 \]

Where \(A_{\text{cont}} \) is the absorbance of the control, and \(A_{\text{samp}} \) is the absorbance of the sample.

Statistical Analysis
The experiments were carried out according to a 3-factor linear model based on a completely randomized design with three replications. Data were statistically analyzed using analysis of variance (ANOVA) by SAS software (version 9.1 2002-2003, SAS Institute, Cary, NC, USA). Before analysis of variance, data were tested for normality and homoscedasticity using the Shapiro-Wilk test. Least significant difference (LSD) test at \(P \leq 0.01 \) probability level was considered as the statistical significance level.

Results
Minerals Content
The results showed that drought stress reduced Na+ and K+ content in all \(M. \) peregrina populations (Table 2). The highest Na and K contents were found at 50% FC in population number 7 (0.89 and 13.69 mg g\(^{-1}\) DW, respectively). Under well-watered conditions, untreated plants (controls) had higher Na content, whereas under drought conditions, ZnO-NPs treatment slightly enhanced Na content compared with control (Figure 1). However, it was revealed that the interaction effects of drought stress and ZnO-NPs treatment on the K content of \(M. \) peregrina populations were not significant (\(P \leq 0.01 \)) according to the LSD test (Figure 2).

Chlorophylls Content
Table 2. Changes of Some Biochemical Traits of Ten Moringa peregrina Populations under Well-Watered (100% FC) and Drought Stress (50% FC) Conditions

| Populations | Na (mg g\(^{-1}\) DW) 100% FC | Na (mg g\(^{-1}\) DW) 50% FC | K (mg g\(^{-1}\) DW) 100% FC | Chl-a (mg g\(^{-1}\) FW) 100% FC | Chl-a (mg g\(^{-1}\) FW) 50% FC | Chl-b (mg g\(^{-1}\) FW) 100% FC | Chl-b (mg g\(^{-1}\) FW) 50% FC | T-Chl (mg g\(^{-1}\) FW) 100% FC | T-Chl (mg g\(^{-1}\) FW) 50% FC | TPC (mg GAE g\(^{-1}\) FW) 100% FC | TPC (mg GAE g\(^{-1}\) FW) 50% FC | Antioxidant activity (%DPPHsc) 100% FC | Antioxidant activity (%DPPHsc) 50% FC |
|-------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 1 | 0.75±0.02* | 0.76±0.05 | 8.27±0.2 | 2.10±0.01* | 1.63±0.01 | 1.96±0.02* | 1.58±0.11 | 4.06±0.12* | 3.21±0.01 | 34.5±1.02* | 44.7±2.65 | 34.3±1.05* | 52.9±2.01 |
| 2 | 0.63±0.05* | 0.52±0.01 | 9.77±0.3* | 0.66±0.02* | 0.35±0.02 | 1.15±0.01* | 0.52±0.01 | 1.81±0.12* | 0.87±0.01 | 41.6±2.03* | 59.4±1.13 | 50.0±2.11** | 79.7±2.31 |
| 3 | 0.72±0.11* | 0.57±0.13 | 9.84±1.1* | 2.18±0.01* | 1.55±0.01 | 1.43±0.03* | 0.82±0.02 | 3.61±0.21* | 2.37±0.25 | 24.4±1.05* | 35.5±1.06 | 54.6±1.13* | 68.6±1.62 |
| 4 | 0.70±0.06* | 0.72±0.14 | 8.79±1.2* | 2.05±0.01* | 1.55±0.11 | 1.23±0.11* | 0.53±0.03 | 3.28±0.11* | 2.08±0.31 | 31.9±1.25* | 42.5±1.04 | 57.2±1.23* | 87.5±1.56 |
| 5 | 0.77±0.12* | 0.53±0.01 | 8.97±0.2* | 2.09±0.02* | 1.28±0.02 | 1.08±0.02* | 0.45±0.05 | 3.17±0.08** | 1.73±0.05 | 43.6±1.05* | 54.0±2.03 | 45.4±0.06* | 59.3±1.24 |
| 6 | 0.50±0.01* | 0.70±0.01 | 8.25±0.3* | 1.02±0.23 | 1.79±0.03** | 0.32±0.00 | 0.66±0.07 | 2.89±0.21** | 0.92±0.01 | 40.8±2.12* | 52.5±1.01 | 50.6±1.25* | 71.2±2.06 |
| 7 | 0.58±0.03* | 0.89±0.16 | 9.22±0.2* | 13.69±1.3 | 1.67±0.11** | 0.47±0.01 | 0.90±0.11 | 3.16±0.12* | 1.37±0.03 | 29.3±0.65** | 32.8±0.91 | 43.1±1.41* | 59.0±0.95 |
| 8 | 0.70±0.12* | 0.57±0.02 | 10.22±1.3* | 8.59±0.14 | 0.52±0.01** | 0.30±0.01 | 0.91±0.01 | 1.43±0.11* | 0.79±0.04 | 32.0±1.02** | 51.8±1.23 | 56.3±2.11** | 95.8±2.48 |
| 9 | 0.67±0.03* | 0.60±0.03 | 10.35±1.2* | 12.04±1.1 | 0.85±0.02* | 0.41±0.01 | 0.96±0.02 | 1.81±0.07* | 0.85±0.03 | 35.1±1.23* | 48.4±1.13 | 51.0±0.99** | 67.7±1.76 |
| 10 | 0.53±0.10* | 0.53±0.05 | 9.95±0.5* | 7.67±0.21 | 0.87±0.02** | 0.51±0.01 | 0.97±0.01 | 1.84±0.03* | 0.91±0.02 | 33.2±1.06 | 53.7±2.21 | 46.6±1.05* | 59.1±0.85 |

For each column, means followed with the same letters are not significantly different at P<0.01 according to the LSD test. FC: Field capacity. DW: Dry weight. FW: Fresh weight. mg GAE: milligram gallic acid equivalent, DPPHsc: 2, 2-diphenyl-1-picyrylhydrazyl which was scavenged.

* Significant difference at P<0.05, ** Significant difference at P<0.01, Ns: No significant difference.
Foroutan et al

Chlorophylls content significantly differed in various M. peregrina populations, and population number 1 had the highest T-Chl content (4.06 mg g\(^{-1}\) FW) under well-watered condition. In addition, drought stress significantly reduced chlorophyll content, as compared with others. The population number 1 had the highest T-Chl content (3.21 mg g\(^{-1}\) FW) in drought stress condition (Table 2). Our results showed that foliar spray of ZnO-NPs not only prevented chlorophylls degradation but also significantly enhanced Chl-a, Chl-b as well as T-Chl content in both drought-stressed and unstressed plants. The 0.10% ZnO-NPs concentration was most effective in enhancing chlorophylls content (Figure 3).

Total Phenol Content
In well-watered plants, TPC varied from 24.4 to 43.6 mg GAE g\(^{-1}\) FW depending on M. peregrina populations. Furthermore, TPC significantly increased in response to drought stress (Table 2). Under both well-watered and drought conditions, foliar application of ZnO-NPs significantly increased TPC (Figure 4). The highest TPC was obtained in stressed plants that were treated with 0.05% ZnO-NPs (81.37 mg GAE g\(^{-1}\) FW).

Antioxidant Activity
In well-watered conditions, population number 4 and 8 had the highest antioxidant activity (57.2 and 56.8 % DPPHsc, respectively). The antioxidant activity of M. peregrina populations significantly increased under drought stress, and the highest antioxidant activity was observed in population number 8 and 4 (95.8 and 87.5 % DPPHsc, respectively). Similar pattern was found in both drought-stressed and unstressed plants in response...
to foliar application of ZnO-NPs (Figure 5). ZnO-NPs treatment significantly enhanced the antioxidant activity of *M. peregrina* populations as compared with untreated ones. The antioxidant activity significantly increased at 0.05% ZnO-NPs and then reduced at 0.10% ZnO-NPs, while it was still higher compared to control plants. The highest antioxidant activity (82.1% DPPHsc) of *M. peregrina* was obtained under drought stress conditions in plants treated with 0.05% ZnO-NPs.

Discussion

The present study has revealed that ZnO-NPs spray can increase the tolerance of *M. peregrina* plant to drought stress by enhancing some secondary metabolites and antioxidant potential. Drought stress affects the minerals uptake by plant roots through influencing root growth and nutrient mobility in soil. Under drought stress, water availability is reduced, followed generally by reduction in total nutrient uptake and the concentrations of minerals in crops. The most important effect of drought stress is observed on the transport of nutrients to the root which affects root growth and extension. The content of nutrient elements is balanced by nutrient uptake and unloading mechanisms as well as transpiration flow. It has been revealed that drought stress significantly reduced Na and enhanced K uptake and ion uptake efficiency in different chickpea genotypes.

According to our results, drought stress reduced Na⁺ and K⁺ content in all *M. peregrina* populations. However, under drought conditions, ZnO-NPs treatment increased Na⁺ content. Change in nutrients balance in response to Zn-NPs spray is in agreement with the findings of Soliman et al. who reported that foliar application of Zn-NPs significantly affects mineral nutrients content of *M. peregrina*. Zn seems to affect the capacity for water and nutrients uptake as well as transport in plants under different abiotic stresses. Our results revealed that Zn-NPs spray enhanced Na content in drought stress conditions, which was in agreement with the findings of Martinez et al., who reported that plant tolerances to water deficit is due to a common mechanism of Na uptake for osmotic adjustment.

Our results showed that foliar spray of ZnO-NPs not only prevented chlorophyll degradation but also significantly enhanced Chl-a, Chl-b as well as T-Chl content in both drought-stressed and unstressed plants. Photosynthetic pigments control the energy balance through chlorophylls and therefore, they involve in the adaptation and survival of plants in drought. Inhibition of chlorophyll biosynthesis, activation of chlorophyllase and/or destruction of chloroplast structure lowered the pigment content under abiotic stress conditions. In addition, Mejri et al. reported that drought stress prevented from chloroplast activity and led to the breakdown of chlorophyll as well as changes in chlorophyll a to b ratio. It has been reported that the decrease in chlorophyll under drought stress is generally the consequence of chloroplast damages resulting from reactive oxygen species (ROS). Another reason for the decline in chlorophyll is the application of a glutamate precursor for the biosynthesis of proline.

Enhancing chlorophylls content by ZnO-NPs treatment are in agreement with the results obtained by Fathi et al. and Kheirizadeh Arough et al. who mentioned that ZnO-NPs treated plants showed higher amount of total chlorophyll content than the control. Moreover, Sharma et al. reported that Zn treatment increased the growth of cabbage and improved the chlorophyll content and photosynthetic activity in the leaves. Zarrouk et al. showed a positive correlation between Zn concentrations and leaf chlorophyll content in plants. It has been demonstrated that ZnO NPs induced the expression of chlorophyll synthesis genes.

Based on the present study, TPC increased in response to drought stress. However, foliar application of ZnO-NPs increased TPC under both well-watered and drought conditions. The increase in TPC under drought stress condition is due to the soluble carbohydrates accumulation.
in plant cells because transportation of soluble sugars is reduced under water deficit.34 Phenolic compounds are biosynthesized through various mechanisms such as malonic acid and shikimic acid pathways. Simple carbohydrate precursors are converted into aromatic amino acids through shikimic acid pathway.35 It has been reported that the increase of phenolic compounds is highly correlated with the balance between carbohydrate sources and sinks.32,34 Moreover, the TPC enhancement under drought stress is greatly related to the production and distribution of various antioxidants in the plant and the intensity and duration of stress.36 Similarly, we found that there was a significant positive correlation between TPC and antioxidant activity ($r = 0.93$). The increase of TPC by foliar application of ZnO-NPs is in agreement with findings of Oroumi et al16 who mentioned that the phenolic compounds contents in seedlings of Glycyrrhiza glabra L. significantly increased in response to 10 μM ZnO-NPs. They suggested that it might be due to the ability of ZnO-NPs to affect metabolic activity.

In the present study, the antioxidant activity of \textit{M. peregrina} populations remarkably increased under drought stress. Drought stress, at the cellular level, induces the accumulation of ROS such as superoxide radicals, hydrogen peroxide, and hydroxyl radicals. The excess ROS are detrimental because they damage membranes, proteins, chlorophylls and nucleic acids. To reduce this oxidative damage, plants enhance their antioxidant defense systems including enzymatic and non-enzymatic scavenging mechanisms.21 The antioxidant activity has a crucial role in maintaining the balance between the production and scavenging of free radicals, therefore, the number of antioxidants should be high to compensate and tolerate stress condition.32

Our results indicated that ZnO-NPs treatment enhanced the antioxidant activity of \textit{M. peregrina} populations as compared with untreated ones. It was revealed that the application of Zn under abiotic stress enhanced removing reactive oxygen species by increasing antioxidant enzymes activities. Zn ions bind to ligands containing sulfur, nitrogen, and to a lesser extent oxygen, and preferentially bind to the membrane proteins.28 Our results are in agreement with the findings of Tavallali et al37 who reported that Zn is able to facilitate the biosynthesis of antioxidant enzymes and enhance antioxidant activity in the leaves of pistachio under abiotic stress conditions. The balance between the generation and removal of free radicals determines the survival of the system. Therefore, Zn may have a role in modulating free radicals and their related damaging effects by enhancing the antioxidant activity of plants.38

The antioxidant property of ZnO-NPs could be resulted from the transfer of electron density located at oxygen to the odd electron located at nitrogen atom in DPPH.39 This characteristic is dependent on the structural configuration of oxygen atom, and it determines the thermal stability of nanoparticle.40 In addition, the antioxidant efficacy of ZnO-NPs against DPPH is likely due to the electrostatic attraction between positively charged NPs (ZnO = Zn2+ + O-) of plant extracts and negatively charged bioactive compounds (COO-, O2-).41 Binding of ZnO-NPs to phytochemicals synergistically increase their bioactivity.42

\textbf{Conclusion}

ZnO-NPs treatment effectively protected \textit{M. peregrina} populations from drought stress by inhibiting the chlorophylls degradation and enhancing TCP and antioxidant activity. Hence, foliar application of ZnO-NPs is recommended for the growth of different \textit{M. peregrina} populations under drought stress conditions.

\textbf{Competing Interests}

The authors declare that they have no competing financial, professional, or personal interests that might have influenced the performance or presentation of the study described in this manuscript.

\textbf{Ethical Approval}

Not applicable.

\textbf{Acknowledgment}

The authors would like to thank the Science and Research Branch, Islamic Azad University, Tehran, Iran, and University of Zabol, Zabol, Iran, for funding this research.

\textbf{References}

1. Alaklabi A. Genetic diversity of \textit{Moringa peregrina} species in Saudi Arabia with ITS sequences. Saudi J Biol Sci. 2015;22(2):186-190. doi:10.1016/j.sjbs.2014.09.015

2. Al-Owaisi M, Al-Hadiwi N, Khan SA. GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of \textit{Moringa peregrina} (Forsk.) Fiori leaves. Asian Pac J Trop Biomed. 2014;4(12):964-970. doi:10.12980/APJTB.4.201414B295

3. Salahelddeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA. An evaluation of \textit{Moringa peregrina} seeds as a source for bio-fuel. Ind Crops Prod. 2014;61:49-61. doi:10.1016/j.indcrop.2014.06.027

4. Imadi SR, Gul A, Dikilitas M, Karakas S, Sharma I, Ahmad P. Water stress: types, causes, and impact on plant growth and development. In: Ahmad P, ed. Water Stress and Crop Plants. Chichester, UK: John Wiley & Sons, Ltd; 2016:343-355. doi: 10.1002/9781119054450.ch21.

5. Wu X, Yuan J, Luo A, Chen Y, Fan Y. Drought stress and re-watering increase secondary metabolites and enzyme activity in dendroobium moniliforme. Ind Crops Prod. 2016;94:385-393. doi:10.1016/j.indcrop.2016.08.041

6. Kohell MA, Hussein MA, Othman SM, El-Haddad A. Anti-inflammatory and antioxidant activities of \textit{Moringa peregrina} Seeds. Free Radicals and Antioxidants. 2011;1(2):49-61. doi:10.5530/ax.2011.2.10

7. Terzi R, Kadioğlu A. Drought stress tolerance and the
antioxidant enzyme system in Cienanthe setosa. Acta Biol Crac Ser Bot. 2006;48(2):89-96.

8. Lanfer-Marquez UM, Barros RMC, Sinnecker P. Antioxidant activity of chlorophylls and their derivatives. Food Res Int. 2005;38(8-9):885-891. doi:10.1016/j.foodres.2005.02.012

9. Kisan B, Shruthi H, Shanaragouda H, Revanappa SB, Pramod NK. Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Actrotechnology. 2015;5(1):135. doi:10.4172/2168-9881.1000135

10. Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr. 2016;2(3):134-141. doi:10.1016/j.aninut.2016.06.003

11. Laware SL, Raskar S. Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Appl Sci. 2014;3(7):874-881.

12. Perumal V, Hashim U, Gopinath SCB, et al. A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods. Biosens Bioelectron. 2016;78:14-22. doi:10.1016/j.bios.2015.10.083

13. Kramer PJ, Boyer JS. Water relations of plants and soils. San Diego, CA, USA: Academic Press; 1995:495.

14. Walinga I, van Vark W, Houba VJG, van der lee JJ. Soil and plant analysis: a series of syllabi. Wageningen Agricultural University; 1989.

15. Rajalakshmi K, Banu N. Extraction and estimation of chlorophyll from medicinal plants. Int J Sci Res. 2015;4(11):209-212.

16. McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001;73(1):73-84. doi:10.1016/S0308-8146(00)00288-0

17. Gunes A, Cicek N, Inal A, et al. Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre- and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ. 2006;52(8):368-376. doi:10.17221/3454-PSE

18. Bista DR, Heckathorn SA, Jayawardena DM, Mishra S, Boldt JK. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and tolerant grasses. Plants (Basel). 2018;7(2). doi:10.3390/plants7020028

19. Talebi R, Ensafi MH, Baghebani N, Karami E, Mohammadi K. Physiological responses of chickpea (Cicer arietinum) genotypes to drought stress. Environ Exp Biol. 2013;11:9-15.

20. Solomon AS, El-feky SA, Darwish E. Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For. 2015;7(2):36-47. doi:10.5897/JHFF2014.0379

21. Hafeez B, Khanif YM, Saleem M. Role of zinc in plant nutrition-a review. Am J Exp Agric. 2013;3(2):374-391. doi:10.9734/AJEA/2013/2746

22. Martinez JP, Ledent JE, Bajii M, Kinet JM, Lutts S. Effect of water stress on growth, Na+ and K+ accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. Plant Growth Regul. 2003;41(1):63-73. doi:10.1023/A:1027359613325

23. Yuan XK, Yang ZQ, Li YX, Liu Q, Han W. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica. 2016;54(1):28-39. doi:10.1007/s11099-015-0122-5

24. Mejri M, Siddique KHM, Saif T, Abdelly C, Hessini K. Comparative effect of drought duration on growth, photosynthesis, water relations, and solute accumulation in wild and cultivated barley species. J Plant Nutr Soil Sci. 2016;179(3):327-335. doi:10.1002/jpln.201500547

25. Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci. 2010;4(8):580-585.

26. Navari-Izzo F, Quartacci MF, Izzo R. Water stress induced changes in protein and free amino acids in field-grown maize and sunflower. Plant Physiol Biochem. 1990;28(4):531-537.

27. Fathi A, Zahedi M, Torabian S. Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. J Plant Nutr. 2017;40(19):2745-2755. doi:10.1080/01904167.2017.1381731

28. Kheirizadeh Arouagh Y, Seyed Sharifi R, Sedghi M, Barmiki M. Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticate under salinity condition. Not Bot Hortoplot Cluj Napoca. 2016;44(1):116-124. doi:10.15835/nbaha44110224

29. Sharma PN, Kumar N, Bisht SS. Effect of zinc deficiency on chlorophyll content, photosynthesis and water relations of cauliflower plants. Photosynthetica. 1994;30(3):353-359.

30. Zarrouk O, Gogorcena Y, Gómez-Aparisi J, Betrán JA, Moreno MA. Influence of almond × peach hybrids rootstocks on flower and leaf mineral concentration, yield and vigour of two peach cultivars. Sci Hortic. 2005;106(4):502-514. doi:10.1016/j.scienta.2005.04.011

31. Wang X, Yang X, Chen S, et al. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci. 2015;6:1243. doi:10.3389/ fpls.2015.01243

32. Gharibi S, Sayed-Tabatabaei BE, Saiedi G, Goli SAH. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl Biochem Biotechnol. 2016;178(4):796-809. doi:10.1007/s12010-015-1909-3

33. Ghosh S, Chisti Y, Banerjee UC. Production of shikimic acid. Biotechnol Adv. 2012;30(6):1425-1431. doi:10.1016/j.biotechadv.2012.03.001

34. Kozlowski TT. Carbohydrate sources and sinks in woody plants. Bot Rev. 1992;58(2):107-222. doi:10.1007/BF02858600

35. Ramachandra Reddy A, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161(11):1189-1202. doi:10.1016/j.jplph.2004.01.013

36. Oloumi H, Soltaninejad R, Baghizadeh A. The comparative effects of nano and bulk size particles of CuO and ZnO on glycyrhrizin and phenolic compounds contents in Glycyrrhiza glabra L. seedlings. Indian J Plant Physiol. 2015;20(2):157-161. doi:10.1007/s40502-015-0143-x
antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turk J Agric For. 2010;34(4):349-359. doi:10.3906/tar-0905-10

38. Zago MP, Oteiza PI. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radic Biol Med. 2001;31(2):266-274. doi:10.1016/s0891-5849(01)00583-4

39. Jacob V, Rajiv P. In vitro analysis: the antimicrobial and antioxidant activity of zinc oxide nanoparticles from curcuma longa. Asian J Pharm Clin Res. 2019;12(1):200-204. doi:10.22159/ajpcr.2019.v12i1.28808

40. Stan M, Popa A, Toloman D, Silipas TD, Vodnar DC. Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metall Sin-Engl. 2016;29(3):228-236. doi:10.1007/s40195-016-0380-7

41. Senthilkumar N, NandhaKumar E, Priya P, Soni D, Vimalan M, Potheher IV. Synthesis, anti-bacterial, anti-arthritic, anti-oxidant and in-vitro cytotoxicity activities of ZnO nanoparticles using leaf extract of Tectona grandis (L.). New J Chem. 2017;41(18):10347-56. doi:10.1039/C7NJ02664A

42. Kumar B, Smita K, Cumbal L, Debut A. Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg Chem Appl. 2014;2014:523869. doi:10.1155/2014/523869