Nonparametric Bayes inference on conditional independence

BY T. KUNIHAMA AND D. B. DUNSON

Department of Statistical Science, Duke University, Durham, North Carolina 27708-0251, U.S.A.

tsuyoshi.kunihama@duke.edu dunson@duke.edu

SUMMARY

In many application areas, a primary focus is on assessing evidence in the data refuting the assumption of independence of Y and X conditionally on Z, with Y response variables, X predictors of interest, and Z covariates. Ideally, one would have methods available that avoid parametric assumptions, allow Y, X, Z to be random variables on arbitrary spaces with arbitrary dimension, and accommodate rapid consideration of different candidate predictors. As a formal decision-theoretic approach has clear disadvantages in this context, we instead rely on an encompassing nonparametric Bayes model for the joint distribution of Y, X and Z, with conditional mutual information used as a summary of the strength of conditional dependence. The implementation relies on a single Markov chain Monte Carlo run under the encompassing model, with conditional mutual informations for candidate models calculated as a byproduct. We provide asymptotic theory supporting the approach, and apply the method to variable selection. The methods are illustrated through simulations and criminology applications.

Some key words: Criminology data; Dirichlet process; Graphical model; Mutual information; Variable selection.

1. INTRODUCTION

One of the canonical problems in statistics is to assess whether or not Y is conditionally independent of X given Z, expressed as $Y \perp X \mid Z$. In general, $Y \in \mathcal{Y}$ is a response, $X \in \mathcal{X}$ are predictors of interest, $Z \in \mathcal{Z}$ are adjustment variables or covariates, and the variables can be multivariate and have a variety of measurement scales and domains. There is a rich literature on testing of conditional independence in parametric models; often this corresponds to testing whether a vector of regression coefficients for the X variables are equal to zero. However, much less consideration has been given to this problem from a nonparametric perspective, particularly from a model-based Bayesian perspective.

In the frequentist literature, various nonparametric methods of testing conditional independence have been proposed, relying on different expressions of conditional independence with characteristic functions (Su & White, 2007), probability density functions (Su & White, 2008; Pérez-Cruz, 2008), distribution functions (Seth & Príncipe, 2010; Györfi & Walk, 2012), copula densities (Bouezmarni et al., 2012) and kernel methods (Fukumizu et al., 2008). Seth & Príncipe (2012a) develop an asymmetric measure of conditional independence based on cumulative distribution functions. Also, Song (2009) constructs a test using Rosenblatt-transforms of random variables. However, these approaches do not work well in the case where the dimension of data is not small and the performance can be heavily affected by the choice of free parameters (Seth & Príncipe, 2012b).
A rich variety of Bayesian nonparametric models have been proposed for joint and conditional distributions, ranging from Dirichlet process mixtures (Lo, 1984; West et al., 1994; Escobar & West, 1995; Müller et al., 1996) to kernel stick-breaking processes (Dunson & Park, 2008; An et al., 2008). However, such models do not allow testing of conditional independence relationships. A Bayesian decision-theoretic approach to the problem would (i) define a list of possible conditional independence relationships \textit{a priori}, (ii) specify a nonparametric Bayes model for each relationship, (iii) calculate marginal likelihoods, and (iv) choose the relationship having minimal expected loss. However, a number of major practical problems arise. It is in general not straightforward to define a nonparametric Bayes model, which has full support on the space of distributions satisfying a particular conditional independence relationship, making (ii) problematic. Even if one could define appropriate models, (iii) is an issue due to the intractability of accurately approximating marginal likelihoods in infinite-dimensional Bayesian models. Also, even if (ii)-(iii) could be achieved, the behavior of marginal likelihoods in infinite-dimensional models is poorly understood, and misleading results are possible as mentioned in a 2012 Ohio State University PhD thesis by L. Pingbo.

There is a small literature on Bayesian nonparametric methods for variable selection (Chung & Dunson, 2009; Ma, 2013; Reich et al., 2012), attempting to follow the above strategy in specialized settings. However, there has been essentially no theoretic justification for these methods, and the practical implementation is limited to low-dimensional settings. In this article, we propose a substantially different approach. In particular, instead of attempting to select between different \textit{exact} conditional independence relationships, we define an encompassing Bayesian nonparametric model, which is sufficiently flexible to approximate any relationship. We then use conditional mutual information as a scalar summary of the strength of departure from a particular conditional independence relationship. We estimate the conditional mutual information relying on a functional of the encompassing model and the empirical measure. The proposed framework is useful for rapid screening of variables that add significantly to prediction, and can be implemented easily leveraging on Markov chain Monte Carlo algorithms for the encompassing model. Based on empirical process theory, we show that the proposed method consistently selects conditionally dependent predictors under appropriate conditions.

2. INFERENCE ON CONDITIONAL INDEPENDENCE

2.1. Conditional mutual information

Let Y, X and Z be univariate or multivariate random variables where each element can have any type of scale and domain. We also let $f(y, x, z)$ denote the joint density of Y, X and Z with respect to a product measure ξ. The marginal densities we use below are denoted by $f(y, z)$, $f(x, z)$ and $f(z)$. Suppose the primary interest is in assessing if Y and X are conditionally independent given Z. Relying on the joint density, $Y \perp X \mid Z$ can be equivalently expressed as

$$f(y, x, z)f(z) = f(y, z)f(x, z),$$

for all (y, x, z) in the support of f.

In information theory, conditional mutual information measures the strength of functional relationship between Y and X given Z (Wyner, 1978; Joe, 1989; MacKay, 2003; Cover & Thomas, 2006),

$$\zeta = \int f(y, x, z) \log \frac{f(y, x, z)f(z)}{f(y, z)f(x, z)} d\xi.$$
Letting $KL(p, q) = \int p \log(p/q)$ denote the Kullback-Leibler divergence, $\zeta = KL\{f(y, x, z), f(y, z)f(x, z)/f(z)\}$, which is always non-negative. In general, $\zeta = 0$ if and only if $Y \perp X \mid Z$, while large values of ζ indicate substantial violations of conditional independence with an approximate functional relationship between Y and X given Z.

2.2. Empirical Bayes estimation of conditional mutual information

Let P_0 denote a true data-generating probability having density $f_0 \in L_\xi$, with L_ξ the set of all probability densities with respect to a measure ξ. Let Π denote a prior probability on L_ξ with $\Pi(F) = 1$ for $F \subset L_\xi$. Data D_n consist of independently identically distributed observations (y_i, x_i, z_i) from P_0 with $i = 1, \ldots, n$. Let ζ_0 be the conditional mutual information induced by the true data-generating distribution,

$$\zeta_0 = \int \log \frac{f_0(y, x, z)f_0(z)}{f_0(y, z)f_0(x, z)} dP_0 = \int \frac{f_0(y, x, z)f_0(z)}{f_0(y, z)f_0(x, z)} d\xi.$$

As noted above, $Y \perp X \mid Z$ if and only if $\zeta_0 = 0$. To estimate ζ_0, we rely on an encompassing nonparametric Bayes model for the joint density f_0. First, we define a function $\zeta(\cdot, \cdot)$ of a joint density $f \in L_\xi$ and a probability measure P on $X \times Y \times Z$ as

$$\zeta(f, P) = \int \log \frac{f(y, x, z)f(z)}{f(y, z)f(x, z)} dP.$$

Using this function, ζ_0 can be expressed as $\zeta(f_0, P_0)$. Intuitively, if f and P are close to f_0 and P_0 in some sense, $\zeta(f, P)$ can approximate ζ_0 well. In general, a probability measure P having a density leads to a computationally intractable $\zeta(f, P)$ because of the difficulty in evaluating its integral. Therefore, we utilize the empirical measure as an estimate of P_0,

$$P_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{(y_i, x_i, z_i)},$$

where $\delta_{(y,x,z)}$ is the Dirac measure concentrated at (y, x, z). The empirical measure P_n is a consistent estimate of P_0 in that $P_n(A) \to P_0(A)$ almost surely for any A by the strong law of large numbers. Then, we let

$$\zeta(f, P_n) = \int \log \frac{f(y, x, z)f(z)}{f(y, z)f(x, z)} dP_n = \frac{1}{n} \sum_{i=1}^{n} \log \frac{f(y_i, x_i, z_i)f(z_i)}{f(y_i, z_i)f(x_i, z_i)}, \quad f \in F,$$

where $\zeta(f, P_n) \in \mathbb{R}$ and, for any fixed $f \in F$, $\zeta(f, P_n) \to \zeta(f, P_0)$ almost surely P_0^∞ by the law of large numbers. By using the empirical measure P_n for P_0 while defining a nonparametric Bayes encompassing prior for the joint density f, we define an empirical Bayes approach that induces a posterior on ζ accounting for uncertainty. In finite samples this posterior assigns non-zero probability to $\zeta < 0$, which results because P_n does not exactly correspond to the measure induced from the density f.

Plugging in the empirical measure P_n, expression (2) for the conditional mutual information depends on the unknown joint density f and corresponding marginals. Updating prior $f \sim \Pi$ with data $(y_i, x_i, z_i), i = 1, \ldots, n$, we obtain a posterior quantifying our current state of knowledge about the density f. We can obtain samples from this posterior by running Markov chain Monte Carlo for the encompassing model ignoring any conditional independence structure. Then, to marginalize f out of expression (2) and obtain an empirical Bayes estimate of ζ_0, we simply use Monte Carlo integration. In particular, for each draw from the posterior, we compute and
save $\zeta(f, P_n)$. The resulting draws of ζ are from the induced empirical Bayes posterior of the conditional mutual information; we use this posterior as the basis for our inferences.

Under our asymptotic theory below, as n increases the posterior of $\zeta(f, P_n)$ will be increasingly concentrated around the true conditional mutual information ζ_0. Therefore, if ζ_0 is not close to zero, zero should locate in the left tail of the distribution of $\zeta(f, P_n)$. We consider the posterior probability of $\zeta(f, P_n)$ being positive as a weight of evidence of violations of conditional independence. The posterior probability can be estimated by $(1/R) \sum_{r=1}^{R} 1\{\zeta(f^{(r)}, P_n) > 0\}$ where R is the number of Markov chain Monte Carlo iterations after the burn-in period, $1\{\cdot\}$ is an indicator function and $f^{(r)}$ is the joint density under the encompassing model at the rth iteration.

2.3. Theoretic support

The next theorem provides sufficient conditions under which the posterior of $\zeta(f, P_n)$ concentrates on arbitrarily small neighborhoods of ζ_0 as the sample size increases.

Theorem 1. Suppose for any $\epsilon > 0$,

$$\Pi [KL\{f_0(y, x, z), f(y, x, z)\} < \epsilon] > 0 \quad (3)$$

and the following classes of functions

$$\left\{\log \frac{f_0(y, x, z)}{f(y, x, z)}, f \in \mathcal{F}\right\}, \left\{\log \frac{f_0(y, z)}{f(y, z)}, f \in \mathcal{F}\right\}, \left\{\log \frac{f_0(x, z)}{f(x, z)}, f \in \mathcal{F}\right\}, \left\{\log \frac{f_0(z)}{f(z)}, f \in \mathcal{F}\right\},$$

are P_0-Glivenko-Cantelli. Then, for any $\epsilon' > 0$

$$\Pi \{\mid \zeta(f, P_n) - \zeta_0\mid < \epsilon' \mid D_n\} \to 1, \text{ almost surely } P_0^\infty.$$

The proof is in the Appendix. The condition (3) means the true data-generating density is in the Kullback-Leibler support of the prior. Such support conditions are standard for Bayesian nonparametric models, and are routinely employed in theorems of posterior asymptotics (Ghosal et al., 1999; Ghosh & Ramamoorthi, 2003; Tokdar, 2006). Wu & Ghosal (2008) discuss the Kullback-Leibler property for various types of kernels in Dirichlet process mixture models. As for the Glivenko-Cantelli class, theoretical properties of the class have been studied in empirical process theory (van der Vaart & Wellner, 1996; Kosorok, 2008). It is a wide class of functions such that the law of large numbers holds uniformly over the space.

2.4. Variable selection

Suppose we have a univariate response $Y \in \mathcal{Y}$ and vector of predictors $X = (X_1, \ldots, X_p)^T$. Conditional mutual information provides a measure of how much information a particular predictor X_j adds when included in a model already containing the predictors in $X_{-j} = (X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_p)^T$. We can potentially use our method for predictive variable selection, conducting a search for the smallest subset of variables $\gamma \subset \{1, \ldots, p\}$ such that there is no evidence of departure from $Y \perp X_{-\gamma} \mid X_{\gamma}$, with $X_{\gamma} = \{X_j: j \in \gamma\}$ and $X_{-\gamma} = \{X_j: j \notin \gamma\}$. However, instead of identifying parsimonious models for predicting Y, we focus here on selecting predictors that add significantly to models containing all other predictors. This reduces the search from 2^p to p, while still producing results of inferential interest. The computational savings come at the potential expense of excluding a set of important predictors containing redundant information about Y.

Let $\zeta_{0,j}$ be the true conditional mutual information for $Y \perp X_j \mid X_{-j}$. Let $\zeta_j(f, P_n)$ denote the value of $\zeta(f, P_n)$ in expression (2) with x the jth predictor and z the other predictors. Posterior computation proceeds as in subsection 2.2. We use the posterior probability of $\zeta_j(f, P_n) > 0$
as evidence of violating $Y \perp X_j \mid X_{-j}$ for $j = 1, \ldots, p$, selecting predictors having large probabilities. This method is justified by the next theorem, which indicates zero should be in the left tail of the posterior distribution of $\zeta_j(f, P_n)$ under conditional dependence.

We show posterior consistency of $\zeta_j(f, P_n)$ to $\zeta_{0,j}$ under appropriate conditions. Theorem 2 modifies Theorem 1 to the case of measuring dependence between each predictor and the response, adjusting for all other predictors as covariates. The difference from Theorem 1 is the Glivenko-Cantelli class condition depends on j. Also, Theorem 2 states the posterior of $\zeta_j(f, P_n)$ will concentrate on $\zeta_{0,j}$ uniformly over j as the sample size increases, allowing us to avoid multiple separate pairwise comparisons. The proof is similar to that of Theorem 1 and given in the Supplementary Material.

THEOREM 2. Suppose for any $\epsilon > 0$,

$$
\Pi \{ KL\{f_0(y, x), f(y, x)\} < \epsilon \} > 0
$$

and the following classes of functions

$$
\left\{ \log \frac{f_0(y, x)}{f(y, x)}, f \in \mathcal{F} \right\}, \left\{ \log \frac{f_0(x)}{f(x)}, f \in \mathcal{F} \right\}, \left\{ \log \frac{f_0(y, x-j)}{f(y, x-j)}, f \in \mathcal{F} \right\}, \left\{ \log \frac{f_0(x-j)}{f(x-j)}, f \in \mathcal{F} \right\},
$$

are P_0-Glivenko-Cantelli with $j = 1, \ldots, p$. Then, for any $\epsilon' > 0$

$$
\Pi \left\{ \max_{1 \leq j \leq p} |\zeta_j(f, P_n) - \zeta_{0,j}| < \epsilon' \mid D_n \right\} \rightarrow 1, \text{ almost surely } P_0^\infty.
$$

We illustrate a simple but non-trivial encompassing model which satisfies the sufficient conditions. Let $y \in \mathbb{R}$, $x \in \mathbb{R}^p$ and ϕ_σ be the univariate normal density with mean 0 and standard deviation σ. Then, we consider location mixtures of normals in which the kernel is the product of a regression density for the response and independent normal densities for the predictors,

$$
f(y, x) = \int \phi_\sigma(y - \tilde{x}^T \beta) \prod_{j=1}^p \phi_{\tau_j}(x_j - \mu_j)Q(d\beta, d\mu),
$$

where $\tilde{x} = (1, x^T)^T$, $\beta = (\beta_0, \ldots, \beta_p)^T$, $\tau = (\tau_1, \ldots, \tau_p)^T$ and $\mu = (\mu_1, \ldots, \mu_p)^T$. Dirichlet process mixture models of this type have been widely studied (West et al., 1994; Escobar & West, 1995; Müller et al., 1996; Hannah et al., 2011). We assume the mixing measure Q can be expressed as

$$
Q = \sum_{h=1}^\infty \pi_h \delta_{(\beta_h, \mu_h)}, \quad \pi_h \geq 0, \quad \sum_{h=1}^\infty \pi_h = 1, \quad (\beta_h, \mu_h) \sim G,
$$

where $\beta_h = (\beta_{0,h}, \ldots, \beta_{p,h})^T$, $\mu_h = (\mu_{1,h}, \ldots, \mu_{p,h})^T$ and G is a distribution on $\mathbb{R}^{p+1} \times \mathbb{R}^p$. This class of functions (5) and (6) includes Dirichlet process mixtures with $\pi_h = V_h \prod_{l<h}(1 - V_l)$, $V_h \sim \text{Be}(1, \alpha_0)$ for $h = 1, \ldots, \infty$ (Sethuraman, 1994). The prior distribution for the joint densities is induced through $\Pi = \Pi^Q \times \Pi^{(\sigma, \tau)}$ where Π^Q and $\Pi^{(\sigma, \tau)}$ are the prior distributions for Q and (σ, τ). Under some conditions on f_0 and Π, the next lemma illustrates the encompassing model (5) and (6) assures consistency.

LEMMA 1. Suppose the true density can be expressed in the form $f_0(y, x) = \int \phi_\sigma(y - \tilde{x}^T \beta) \prod_{j=1}^p \phi_{\tau_j}(x_j - \mu_j)Q_0(d\beta, d\mu)$. If G has compact support, $\Pi^{(\sigma, \tau)}$ has compact support excluding zero, Q_0 belongs to the support of Π^Q and (σ_0, τ_0) are in the support of $\Pi^{(\sigma, \tau)}$, then $\Pi \{ \max_{1 \leq j \leq p} |\zeta_j(f, P_n) - \zeta_{0,j}| < \epsilon' \mid D_n \} \rightarrow 1$ almost surely P_0^∞.

The proof relies on Theorem 3 in Ghosal et al. (1999) and is in the Supplementary Material. As Remark 1 in Ghosal et al. (1999) mentions, the result can be extended to a wider class of location-scale mixture of normals. The condition of compact support is sufficient but not necessary.

3. Simulation study

In this section, we assess performance of the proposed method compared to frequentist non-parametric alternatives. As competitors, we employ a method based on cumulative distribution functions with Cramér-von-Mises type statistics from an unpublished 1996 technical report by O. Linton and P. Gozalo, the kernel measure method based on normalized cross-covariance operators on reproducing kernel Hilbert spaces (Fukumizu et al., 2008) and the asymmetric quadratic measure (Seth & Príncipe, 2012a). Matlab code for these methods is available at http://www.sohanseth.com/Home/codes and we use the default settings recommended in Seth & Príncipe (2012a) with a Gaussian kernel for Fukumizu et al. (2008) and a Laplacian function for the asymmetric quadratic measure. Also, for these methods, we reject the hypothesis \(Y \perp X_j \mid X_{-j} \) if \(B^{-1} \sum_{b=1}^{B} 1(d_b^* > d) < 0.1 \) where \(d \) and \(d_b^* \) are the estimated conditional dependences using the observation and the \(b \)th randomly rearranged observation which mimics the case of conditional independence (Diks & DeGoede, 2001) with \(b = 1, \ldots, B \) and \(B = 100 \). In addition, we apply the lasso function in Matlab using 5-fold cross validation for penalty coefficient selection and other default settings. We evaluate performance based on the following measures: type 1 error (false positive/(false positive+true negative)), type 2 error (false negative/(true positive+false negative)), positive predictive value (true positive/positive), negative predictive value (true negative/negative) and accuracy ((true positive+true negative)/(true positive+true negative)).

As an encompassing model, we employ the following Dirichlet process location-scale mixture,

\[
\begin{align*}
 f(y, x) &= \int \phi_\sigma(y - \tilde{x}^T \beta) \prod_{j=1}^{p} \phi_{\tau_j}(x_j - \mu_j) Q(d\beta, d\mu, d\sigma, d\tau), \\
 &= \sum_{h=1}^{H} \pi_h \phi_{\sigma_h}(y - \tilde{x}^T \beta_h) \prod_{j=1}^{p} \phi_{\tau_{j,h}}(x_j - \mu_{j,h}),
\end{align*}
\]

where \(\pi_h = V_h \prod_{j<h}(1 - V_j) \), \(V_h \sim \text{Be}(1, \alpha_0) \) for \(h = 1, \ldots, H - 1 \) with \(V_H = 1 \), \(\beta = (\beta_0, \ldots, \beta_p)^T \), \(\tilde{x} = (1, x^T)^T, \mu = (\mu_1, \ldots, \mu_p)^T \) and \(\tau = (\tau_1, \ldots, \tau_p)^T \). As discussed in subsection 2.4, if the base measure of the Dirichlet process has compact support, we obtain consistent estimators of the conditional mutual information for each predictor. Compact support is a simplifying assumption for the theory, which can be relaxed, and we avoid this restriction in the computation letting \(\sigma^2 \sim \text{Inverse-Gamma}(1.5, 0.5), \mu_{j,h} \sim N(0, 1), \tau_{j,h}^2 \sim \text{Inverse-Gamma}(1.5, 0.5) \) and \(\alpha_0 \sim \text{Ga}(0.25, 0.25) \). To allow a sparse regression structure, we use a point mass mixture prior: \(\beta_j \sim p_0 \delta_0 + (1 - p_0) N(0, \lambda_j^2), \lambda_j^2 \sim \text{Inverse-Gamma}(0.5, 0.5) \) for \(j = 1, \ldots, p \). By integrating out \(\lambda_j^2 \), this prior corresponds to a mixture of a degenerate distribution concentrated at zero and a Cauchy distribution. The prior for exclusion probability \(p_0 \) assumes 5% of regression coefficients out of \(H(p + 1) \) components are non-zero but allows substantial uncertainty since the prior sample size is set to be \(4.75 + 0.25 = 5 \).

Also, we set \(H = 20 \). Before posterior computation, we normalize data to have mean zero and standard deviation one. We draw 10,000 samples after the initial 5,000 samples are discarded as a burn-in period and every 10th sample is saved. Rates of convergence and mixing were adequate. Illustrative examples of sample paths and autocorrelations of \(c_j(f, P_n) \) are included in the Sup-
We conclude there is substantial evidence of violations of $Y \perp X_j \mid X_{-j}$ if $\Pi\{\zeta_j(f, P_n) > 0 \mid D_n\} > 0.95$ with $j = 1, \ldots, p$.

We consider three different data-generating functions from which we simulate 100 data sets with $n = 100$ and $p = 10$. First, we generate data from a linear regression model with strong dependence among predictors.

Case 1:

$$y_i = -x_{i,1} + x_{i,4} - x_{i,7} + \varepsilon_i, \quad \varepsilon_i \sim N(0, 1),$$

$$x_i = (x_{i,1}, \ldots, x_{i,10}) \sim N(0, \Sigma_x),$$

$$\Sigma_x = \{\sigma_{j,j'}\}, \quad \sigma_{j,j'} = \text{cov}(x_{i,j}, x_{i,j'}) = 0.7|j-j'|,$$

where $\{y_i\}$ are independent over i. The left panel in Figure 1 and last column in Table 1 show the receiver operating characteristic curves and area under the curve averaged over 100 data sets in Case 1. For the proposed method, we obtain the curve by shifting the threshold a in $\Pi\{\zeta_j(f, P_n) > a \mid D_n\} > 0.95$. For the lasso, we shift the threshold for absolute values of regression coefficients. We set the thresholds as $2.5k\%$ quantile points of all estimated measures of conditional dependence over 100 data sets for each method with $k = 0, \ldots, 40$. Although the area under the curve for the proposed method is slightly smaller than that for the lasso and the asymmetric quadratic measure, it is large and close to one. The top of Table 1 reports averaged measures of the test performance over 100 data sets in Case 1. For the lasso, its high type 1 error and low positive predictive value indicate it incorrectly rejects many hypotheses. Though the data are generated from the linear model, the strong dependence among predictors can cause poor performance. On the other hand, high type 2 errors and low negative predictive values in the Cramér-von-Mises type statistic and asymmetric quadratic measure imply that they often fail to detect dependent relations. The normalized cross-covariance operator also faces the same problem of missing dependent predictors but the performance is much better. The proposed method works quite well, reporting small type 1 and 2 errors and high positive and negative predictive values. Compared to the normalized cross-covariance operator, there is not a big difference in measures with false positives but the proposed method less often produces false negatives since the new approach shows a lower type 2 error and a higher negative predictive value.

Next, we generate data from a model in which the strong dependence among predictors remains but the relation between the response and predictors is non-linear.

Case 2:

$$y_i = -x_{i,1} + \exp(x_{i,4}) - x_{i,7}^2 + \varepsilon_i, \quad \varepsilon_i \sim N(0, 1),$$

$$x_i = (x_{i,1}, \ldots, x_{i,10}) \sim N(0, \Sigma_x),$$

$$\Sigma_x = \{\sigma_{j,j'}\}, \quad \sigma_{j,j'} = \text{cov}(x_{i,j}, x_{i,j'}) = 0.7|j-j'|.$$

The receiver operating characteristic curves and area under the curve in Case 2 are in the middle of Figure 1 and Table 1. Though the competitors’ curves are away from the random guess line $y = x$, the proposed method shows largest area under the curve. The middle of Table 1 summarizes the test performance measures. The proposed method reports small type 1 and 2 errors and high positive and negative predictive values and accuracy. From the high type 1 error and small positive predictive value, the lasso tends to wrongly pick up conditionally independent predictors. The high type 2 error and small negative predictive value indicate the Cramér-von-Mises type statistic and asymmetric quadratic measure have difficulty in finding dependent structures. The normalized cross-covariance operator performs better than the Cramér-von-Mises type statistic and asymmetric quadratic measure but still reports a high type 2 error and a low negative predictive value compared to the proposed method.
We also simulate data from a different non-linear model where the dependence comes from division of the sample into subgroups and non-linear regressions.

\[
\begin{align*}
\text{Case 3: } y_i &= \begin{cases}
0.8x_{i,1}^2 - x_{i,4} + \varepsilon_i, & \varepsilon_i \sim N(0, 0.7^2), \\
-x_{i,1} + 1.2 \exp(x_{i,7}) + \varepsilon_i, & \varepsilon_i \sim N(0, 1),
\end{cases} \quad \text{if } s_i = 0, \\
&s_i \sim \text{Bernoulli}(0.5), \quad x_{i,j} \sim N(\mu_{j,s_i}, \sigma_{j,s_i}^2), \quad j = 1, \ldots, 10,
\end{align*}
\]

The right plot in Figure 1 and last column in Table 1 correspond to the receiver operating characteristic curves and area under the curve in Case 3. The Cramér-von-Mises type statistic works poorly with the curve close to the random guess line. The area under the curve by the proposed method is smaller than that for the asymmetric quadratic measure but the curve is still far away from the \(y = x \) line. The bottom in Table 1 reports measures of the test performance. The lasso is likely to reject correct hypotheses and the Cramér-von-Mises type statistic produces the worst results in all measures except the type 1 error. The proposed method, the normalized cross-covariance operator and asymmetric quadratic measure show small type 1 errors and high positive predictive values, indicating they less likely produce false positives. As for the false negatives, the differences in the type 2 errors and negative predictive values between the proposed method and the normalized cross-covariance operator are small with the asymmetric quadratic measure slightly worse. Also, the proposed method leads to the highest accuracy among them. Overall these simulation results are promising that the proposed method has relatively good performance.

In addition, the proposed method can be applied for detecting marginal associations between two random variables by utilizing mutual information instead of conditional mutual information, that is, \(\zeta(f, P_n) = \int f(y, x) / \{f(y)f(x)\} dP_n \). We compared the proposed approach with Heller et al. (2013) using the data \(\{(y_i, x_i), i = 1, \ldots, n\} \) from Case 1, 2 and 3 with an additional error, \(y_i^* = y_i + \varepsilon_i^*, \varepsilon_i^* \sim N(0, \sigma_i^2) \). For the competitor, we use R package HHG with default settings using 1,000 random permutations and 0.05 significance level. We observe the proposed method has better performance in detecting associations between \(y_i^* \) and \(x_i \) across \(\sigma^* \) values. We also find similar small type 1 error rates for the two methods in null settings. The results are shown in the Supplementary Material.

4. Application to criminology data

In this section, we apply the proposed method to communities and crime data from the University of California Irvine machine learning repository. Details of the data are in the Supplementary Material. The data set is culled from 1990 United States census, 1995 United States Federal Bureau of Investigation uniform crime report and 1990 United States law enforcement management and administrative statistics survey. Data include various types of crime and demographic information for \(n = 2,215 \) communities in the United States. We use 10 count variables as responses: numbers of murders, rapes, robberies, assaults, burglaries, larcenies, auto thefts, arsons, violent crimes (sum of murders, rapes, robberies and assaults) and non-violent crimes (sum of burglaries, larcenies, auto thefts and arsons). As predictors, we select \(p = 68 \) variables, such as per capita income and population density, which indicate demographic characteristics of the communities. The list is in the Supplementary Material. The data set consists of count, percentage and positive continuous variables. We observe the count variables have right-skewed distributions and the
Table 1. Averages of type 1 and 2 errors, positive and negative predictive values, accuracy and area under the curve in Case 1 (top), Case 2 (middle) and Case 3 (bottom)

Case	Type 1	Type 2	PPV	NPV	ACC	AUC
Prop	2.2	12.6	95.5	95.6	94.6	98.4
LASSO	49.7	0.0	50.6	100.0	65.2	99.9
CM	0.2	80.3	97.1	74.6	75.7	80.6
NCCO	0.1	24.3	99.6	91.3	92.6	92.8
AQM	0.0	67.6	100.0	77.9	79.7	98.6

Case	Type 1	Type 2	PPV	NPV	ACC	AUC
Prop	4.0	12.0	92.8	95.5	93.6	98.9
LASSO	32.0	20.0	58.5	89.1	71.6	84.8
CM	1.7	90.6	71.9	71.7	71.6	64.3
NCCO	0.2	37.0	99.4	87.4	88.7	87.8
AQM	0.0	76.0	100.0	75.9	77.2	97.3

Case	Type 1	Type 2	PPV	NPV	ACC	AUC
Prop	2.8	27.0	94.3	90.4	89.9	89.6
LASSO	27.2	27.6	64.7	88.8	72.6	78.4
CM	15.5	78.0	43.2	72.1	65.7	47.6
NCCO	3.5	27.0	94.0	90.2	89.4	82.4
AQM	0.2	41.3	99.4	85.5	87.4	94.7

Proposed, proposed method; CM, Cramér-von-Mises type statistic; NCCO, normalized cross-covariance operator; AQM, asymmetric quadratic measure; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy; AUC, area under the curve.

Fig. 1. Receiver operating characteristic curves and area under the curve curves in Case 1 (left), Case 2 (middle) and Case 3 (right). y axis represents the true positive rate and x axis the false positive rate. Blue crosses, pink diamonds, red square, green circles and purple triangles indicate the averages of the true and false positive rates over 100 data sets for the proposed method, lasso, Cramér-von-Mises type statistic, normalized cross-covariance operator and asymmetric quadratic measure.
percentage variables can inflate at 0% and 100%. Also, the data set includes missing values in the response.

To incorporate mixed-scale measurements, we develop a joint model which relies on the rounded kernel method of Canale & Dunson (2011). Let \(y^* \in \mathbb{R} \) and \(x^* = (x^*_1, \ldots, x^*_p)^T \in \mathbb{R}^p \) be latent continuous variables for the response \(y \) and predictors \(x = (x_1, \ldots, x_p)^T \). We induce a flexible nonparametric model on \(y \) and \(x \) through a Dirichlet process mixture of normals for the latent variables. If \(x_j \) is a count variable, it can be expressed as \(x_j = l \) if \(a_l < x_j^* \leq a_{l+1} \) with \(l = 0, 1, 2, \ldots \) where \(-\infty = a_0 < a_1 < a_2 < \cdots \) with \(a_l = \log(l) \) for \(l \geq 1 \). This expression corresponds to \(x_j = \lfloor \exp(x_j^*) \rfloor \) where \(\lfloor x \rfloor \) denotes the maximum integer smaller than \(x \). Since the log function shrinks large values, a distribution with positive skewness can be efficiently approximated by mixtures of normals with the log cut-points. Percentage variables with inflation at 0 and 100% can be induced by

\[
x_j = \begin{cases}
0 & \text{if } x_j^* \leq 0, \\
x_j^* & \text{if } 0 < x_j^* < 100, \\
100 & \text{if } 100 \leq x_j^*.
\end{cases}
\]

As for a positive continuous variable, we apply the log transformation to the original data and treat it as a continuous variable with \(x_j = x_j^* \). For the latent variables, we utilize the Dirichlet process mixture of normals (7) and (8) except we use the observed predictors for the regression on \(y^* \). Then, we obtain the following joint model of \(y \) and \(x \) by integrating out the latent variables.

\[
f(y, x) = \sum_{h=1}^{H} \pi_h f(y \mid x, \theta_h) \prod_{j=1}^{p} f(x_j \mid \theta_h),
\]

where \(\pi_h = V_h \prod_{l<h}(1 - V_l) \), \(V_h \sim \text{Be}(1, \alpha_0) \) for \(h = 1, \ldots, H - 1 \) with \(V_H = 1 \), \(\theta \) is a parameter set in the model and

\[
f(y \mid x, \theta) = \int_{a_y}^{a_y+1} \phi_\sigma(y^* - \tilde{x}^T \beta)dy^* = \Phi(a_{y+1} \mid \tilde{x}^T \beta, \sigma) - \Phi(a_y \mid \tilde{x}^T \beta, \sigma),
\]

and

\[
f(x_j \mid \theta) = \begin{cases}
\text{count: } & \Phi(a_{x_j+1} \mid \mu_j, \tau_j) - \Phi(a_{x_j} \mid \mu_j, \tau_j), \\
\text{percentage: } & 1(0 < x_j < 100)\phi_\sigma(x_j - \mu_j), \\
\text{continuous: } & \phi_\tau(x_j - \mu_j),
\end{cases}
\]

where \(1(\cdot) \) is an indicator function and \(\Phi(\cdot \mid a, b) \) is the cumulative density function of normal with mean \(a \) and standard deviation \(b \). We constructed priors relying on empirical information, \(\sigma^2 \sim \text{Inverse-Gamma}(1.5, s_{y_0}^2/2) \) where \(s_{y_0}^2 \) is the sample variance of \(\log(y_i + 0.5) \) since \(y_i = 0 \) for certain subjects. Also, we use \(\mu_j \sim \mathcal{N}(\bar{\mu}_j, s_{\mu_j}^2) \) and \(\tau_j^2 \sim \text{Inverse-Gamma}(1.5, s_{\tau_j}^2/2) \) where \(\bar{\mu}_j \) and \(s_{\mu_j}^2 \) are the sample mean and variance of \(\log(x_{i,j} + 0.5) \) for a count and of \(x_{i,j} \) for a percentage and a continuous variable. The priors for \(\alpha_0 \) and \(\beta \) are the same as in Section 3. We standardize the predictors in (10) so that each variable has mean zero and standard deviation one. Assuming missing at random, we impute missing values at each Markov chain Monte Carlo iteration from the conditional distributions given observed data. The details of the Markov chain Monte Carlo algorithm are in the Supplementary Material. We apply the proposed method with \(H = 20 \) separately to each response. We draw 80,000 samples from the posterior after the initial 5,000 samples are discarded as a burn-in period and every 20th sample is saved. We observe
that the sample paths were stable and the sample autocorrelations dropped smoothly; hence we concluded the chains converged. The sample paths and autocorrelations of $\zeta_j(f, P_n)$ with several j for each response are in the Supplementary Material. In the computation of $\zeta_j(f, P_n)$, we need to evaluate $f(y_i, x_{i,-j})$ but it is not straightforward to integrate x_j out from the joint density (9). Hence, we apply a Monte Carlo approximation based on 500 random samples from $f(x_{i,j} | \theta_h)$ for each h.

Figure 2 shows 90% credible intervals of $\zeta_j(f, P_n)$ for all j and Table 2 reports the top 10 selected predictors in descending order of the posterior mean of conditional mutual information for murders. Full lists of the selected predictors for all responses are in the Supplementary Material. Certain predictors are selected for many different crime-related response variables. For all crimes, land area and population density show the first and second largest conditional dependence adjusting for other factors. Also, their posterior means of the conditional mutual information are much larger than those of other predictors especially in burglaries, larcenies, auto thefts and non-violent crimes. In addition, population in urban areas is selected 8 times, population, the percentage of kids with two parents and the percentage of persons in dense housing are picked up 7 times, and the percentage of Caucasian, the percentage of households with investment and rent income, the percentage of housing occupied and the percentage of families with two parents are conditionally dependent with 6 types of crimes. On the other hand, 12 predictors such as the percentage of housing units with less than 3 bedrooms and the percentage of moms of kids under 18 in labor force are not selected for any crimes.

Also, we can find similarities in the top 10 selected predictors among all crimes. We observe that certain types of variables obtain high ranks for many responses. For example, all crimes except larcenies and auto thefts share at least one of population in the community and population in urban areas in their lists. In addition, the percentage of families with parents and the percentage of kids with parents show relatively strong conditional dependence with all crimes other than
murders, auto thefts and arsons. The posterior means of conditional mutual information of race variables are large for murders, robberies, assaults and violent crimes. Also, the top 10 lists of rapes, burglaries, arsons and non-violent crimes include more than one predictor related to divorce.

We also apply the competitors discussed in Section 3 to the crime data using the same default settings. For the missing values, we impute them by the mean of observed values. The lists of the selected predictors are in the Supplementary Material. The Cramér-von-Mises type statistic seems to work poorly in that it selects all predictors for all crimes. The predictors selected by the lasso are overlapping with those by the proposed method, such as population and the percentage of housing occupied, but the land areas and population density are often missed. The normalized cross-covariance operator shows little difference over crimes. It basically selects the same sets of predictors for all crimes but the land area and population density are not included. The asymmetric quadratic measure shares some predictors such as race with the proposed method but fails to pick up the top 2 variables as well. The inability of the other methods to detect these important predictors is likely due to their non-linear and non-monotonic relationship with the crime responses.

j	Mean	90% CI	Predictor
66	0.2587	[0.2157, 0.2936]	land area in square miles
67	0.1188	[0.0905, 0.1454]	population density in persons per square mile
4	0.0507	[0.0302, 0.0678]	% of population that is caucasian
9	0.0250	[0.0043, 0.0636]	# of people living in areas classified as urban
1	0.0250	[0.0015, 0.0469]	population for community
3	0.0192	[0.0058, 0.0374]	% of population that is african american
57	0.0177	[0.00007, 0.0463]	rental housing: lower quartile rent
13	0.0075	[0.00004, 0.0149]	% of households with investment / rent income in 1989
6	0.0067	[0.0021, 0.0125]	% of population that is of hispanic heritage
64	0.0039	[0.00005, 0.0067]	% of people born in the same state as currently living

To, j-th predictor; Mean, posterior mean; 90% CI corresponds to a 90% credible interval.

ACKNOWLEDGEMENT

This work was supported by Nakajima Foundation and grants from the National Institute of Environmental Health Sciences of the United States National Institutes of Health. The computational results are mainly generated using Ox (Doornik, 2007) and Matlab.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of Theorem 2 and Lemma 1, details of the data set, the Markov chain Monte Carlo algorithm and additional estimation results in Section 3 and 4.
For $\epsilon > 0$, we define $E = \{ f : KL \{ f_0(y, x, z), f(y, x, z) \} < \epsilon \}$. Then, there exists N such that for $n > N$ and $f \in E$,

\[
|\zeta(f, P_n) - \zeta_0| \leq \sup_{f \in E} \left| \int \log \frac{f(y, x, z)}{f_0(y, x, z)} dP_n - \int \log \frac{f_0(y, x, z)}{f_0(y, x, z)} dP_0 \right| + \sup_{f \in E} \left| \int \log \frac{f_0(y, z)}{f(y, z)} dP_n - \int \log \frac{f_0(y, z)}{f(y, z)} dP_0 \right| + \int \log \frac{f_0(y, x, z)}{f(x, z)} dP_0 + \int \log \frac{f_0(y, z)}{f(z)} dP_0 \leq 9\epsilon, \quad \text{almost surely.}
\]

Each term in (A1)-(A2) can be bounded by ϵ almost surely from the definition of P_0-Glivenko-Cantelli classes. The first term in (A3) goes to zero by the strong law of large numbers. The other terms in (A3) and the terms in (A4) are bounded by 2ϵ almost surely respectively. This comes from the non-negativity of the Kullback-Leibler divergence, for example,

\[
\int \log \frac{f_0(y, z)}{f(y, z)} dP_0 \leq \int \log \frac{f_0(y, z)}{f(y, z)} dP_0 + \int \log \frac{f_0(x | y, z)}{f(x | y, z)} dP_0 = \int \log \frac{f_0(y, x, z)}{f(y, x, z)} dP_0 < \epsilon.
\]

Hence, by setting $\epsilon' = 9\epsilon$, $E \subset \{ f : |\zeta(f, P_n) - \zeta_0| < \epsilon' \}$. The argument by A. Norets in the Supplementary Material shows if $\{ \log \{ f_0(y, x, z) / f(y, x, z) \} : f \in F \}$ is P_0-Glivenko-Cantelli and the Kullback-Leibler support condition (3) is satisfied, then the posterior converges to the true data-generating function in the Kullback-Leibler distance. Therefore, $\Pi \{ [\zeta(f, P_n) - \zeta_0] < \epsilon' | D_n \} \geq \Pi(E | D_n) \rightarrow 1$ almost surely P_0.

REFERENCES

An, Q., Wang, C., Shterev, I., Wang, E., Carin, L. & Dunson, D. B. (2008). Hierarchical kernel stick-breaking process for multi-task image analysis. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland.

Bouezmarni, T., Rombouts, J. V. K. & Taamouti, A. (2012). Nonparametric copula-based test for conditional independence with applications to Granger causality. Journal of Business & Economic Statistics 30, 275–287.

Canale, A. & Dunson, D. B. (2011). Bayesian kernel mixtures for counts. Journal of the American Statistical Association 106, 1528–1539.

Chung, Y. & Dunson, D. B. (2009). Nonparametric Bayes conditional distribution modeling with variable selection. Journal of the American Statistical Association 104, 1646–1660.

Cover, T. M. & Thomas, J. A. (2006). Elements of Information Theory. New York: John Wiley & Sons.

Diks, C. & DeGoeje, J. (2001). A general nonparametric bootstrap test for Granger causality , 391–403In: Broer, Krauskopf, Veger (Eds.), Global Analysis of Dynamical Systems, Chapter 16.

Dornik, J. A. (2007). Object-Oriented Matrix Programming Using Ox. London: Timberlake Consultants Press.

Dunson, D. B. & Park, J. H. (2008). Kernel stick-breaking processes. Biometrika 95, 307–323.

Escobar, M. D. & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90, 577–588.

Fukumizu, K., Gretton, A., Sun, X. & Schölkopp, B. (2008). Kernel measures of conditional dependence. In Advances in Neural Information Processing Systems 21.

Ghosal, S., Ghosh, J. K. & Ramamoorthi, R. V. (1999). Posterior consistency of Dirichlet mixtures in density estimation. Annals of Statistics 27, 143–158.
14

T. KUNIHAMA AND D. B. DUNSON

GHOSH, J. K. & RAMAMOOORTHI, R. V. (2003). Bayesian Nonparametrics. Springer.

GYÖRFI, L. & WALK, H. (2012). Strongly consistent nonparametric tests of conditional independence. Statistics & Probability Letters 82, 1145–1150.

HANNAH, L. A., BLEI, D. M. & POWELL, W. B. (2011). Dirichlet process mixtures of generalized linear models. Journal of Machine Learning Research 12, 1923–1953.

HELLER, R., HELLER, Y. & GORFINE, M. (2013). A consistent multivariate test of association based on ranks of distances. Biometrika 100, 503–510.

JOE, H. (1989). Relative Entropy Measures of Multivariate Dependence. Journal of the American Statistical Association 84, 157–164.

KOSOROK, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer.

LO, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. density estimates. Annals of Statistics 12, 351–357.

MA, L. (2013). Adaptive testing of conditional association through recursive mixture modeling. Journal of the American Statistical Association 108, 1493–1505.

MACKAY, D. J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press.

MÜLLER, P., ERKANLI, A. & WEST, M. (1996). Bayesian curve fitting using multivariate normal mixtures. Biometrika 83, 67–79.

PÉREZ-CRUZ, F. (2008). Estimation of information theoretic measures for continuous random variables. In Advances in Neural Information Processing Systems 21.

REICH, B. J., KALENDRA, E., STORLIE, C. B., BONDELL, H. D. & FUENTES, M. (2012). Variable selection for high dimensional Bayesian density estimation: application to human exposure simulation. Journal of the Royal Statistical Society Series C 61, 47–66.

SETH, S. & PRÍNCIPE, J. C. (2010). A conditional distribution function based approach to design nonparametric tests of independence and conditional independence. In IEEE International Conference on Acoustics, Speech and Signal Processing.

SETH, S. & PRÍNCIPE, J. C. (2012a). Assessing Granger non-causality using nonparametric measure of conditional independence. IEEE Transactions on Neural Networks and Learning Systems 23, 47–59.

SETH, S. & PRÍNCIPE, J. C. (2012b). Conditional association. Neural Computation 24, 1882–1905.

SETHURAMAN, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica 4, 639–650.

SONG, K. (2009). Testing conditional independence via Rosenblatt transforms. Annals of Statistics 37, 4011–4045.

SU, L. & WHITE, H. (2007). A consistent characteristic function-based test for conditional independence. Journal of Econometrics 141, 807–834.

SU, L. & WHITE, H. (2008). A nonparametric Hellinger metric test for conditional independence. Econometric Theory 24, 829–864.

TOKDAR, S. T. (2006). Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression. Sankhyā 67, 90–110.

VAN DER VAART, A. & WELLNER, J. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer.

WEST, M., MÜLLER, P. & ESCOBAR, M. D. (1994). Hierarchical priors and mixture models, with application in regression and density estimation. In Aspects of uncertainty: A Tribute to DV Lindley, P. R. Freeman & A. F. M. Smith, eds. Wiley, pp. 363–386.

WU, Y. & GHOSAL, S. (2008). Kullback Leibler property of kernel mixture priors in bayesian density estimation. Electronic Journal of Statistics 2, 298–331.

WYNER, A. D. (1978). A definition of conditional mutual information for arbitrary ensembles. Information and Control 38, 51–59.

[Received August 2014]
Supplementary material for Nonparametric Bayes inference on conditional independence

BY T. KUNIHAMA AND D. B. DUNSON
Department of Statistical Science, Duke University, Durham, NC 27708-0251, USA
tsyoshi.kunihama@duke.edu dunson@duke.edu

1. POSTERIOR CONSISTENCY FOR \(P_0 \)-GLIVENKO-CANTELLI CLASS

Argument (A. Norets) Suppose \(\{\log(f_0/f), f \in F\} \) is a \(P_0 \)-Glivenko-Cantelli class of functions and for any \(\epsilon > 0 \),

\[
\Pi \{ KL(f_0, f) < \epsilon \} > 0.
\]

Then, for any \(\epsilon' > 0 \) and \(E = \{ f : KL(f_0, f) < \epsilon' \} \),

\[
\Pi(E^c | D_n) \to 0, \quad \text{almost surely} \quad P_0^\infty.
\]

Proof. This proof is from a 2012 unpublished technical paper of A. Norets. The posterior can be expressed as

\[
\Pi(E^c | D_n) = \frac{\int_{E^c} \prod_{i=1}^n f(x_i)/f_0(x_i) d\Pi(f)}{\int_{F} \prod_{i=1}^n f(x_i)/f_0(x_i) d\Pi(f)} = \frac{\exp(n \epsilon/2) \int_{E^c} \exp \left[\sum_{i=1}^n \log \left(f(x_i)/f_0(x_i) \right) \right] d\Pi(f)}{\exp(n \epsilon/2) \int_{F} \exp \left[\sum_{i=1}^n \log \left(f(x_i)/f_0(x_i) \right) \right] d\Pi(f)}.
\]

The numerator can be expressed as

\[
\int_{KL(f_0,f) \geq \epsilon} \exp \left[n \left\{ \frac{\epsilon}{2} - KL(f_0,f) + KL(f_0,f) - \frac{1}{n} \sum_{i=1}^n \log \left(f_0(x_i)/f(x_i) \right) \right\} \right] d\Pi(f),
\]

\[
\leq \exp \left[-n \left\{ \frac{\epsilon}{2} - \sup_{f \in F} \frac{1}{n} \sum_{i=1}^n \log \left(f_0(x_i)/f(x_i) \right) - \int \log \left(f_0(x)/f(x) \right) dP_0 \right\} \right] \to 0
\]

almost surely \(P_0^\infty \) because \(\{\log(f_0/f), f \in F\} \) is a \(P_0 \)-Glivenko-Cantelli class. Also, the denominator can be bounded below by

\[
\int_{KL(f_0,f) < \epsilon/4} \exp \left[n \left\{ \frac{\epsilon}{2} - KL(f_0,f) + KL(f_0,f) - \frac{1}{n} \sum_{i=1}^n \log \left(f_0(x_i)/f(x_i) \right) \right\} \right] d\Pi(f),
\]

\[
\geq \Pi\{KL(f_0,f) < \epsilon/4\} \exp \left[n \left\{ \frac{\epsilon}{4} - \sup_{f \in F} \frac{1}{n} \sum_{i=1}^n \log \left(f_0(x_i)/f(x_i) \right) - \int \log \left(f_0(x)/f(x) \right) dP_0 \right\} \right] \to \infty
\]

from the assumption that \(\Pi \) satisfies the KL support condition and \(\{\log(f_0/f), f \in F\} \) is a \(P_0 \)-Glivenko-Cantelli class. Therefore, \(\Pi(E^c | D_n) \to 0 \) almost surely \(P_0^\infty \). \(\Box \)
2. Proof of Theorem 2

For \(\epsilon > 0 \), we define \(E = \{ f : KL\{ f_0(y, x), f(y, x)\} < \epsilon \} \). Then, there exists \(N \) such that for \(n > N \) and \(f \in E \),

\[
\max_{1 \leq j \leq p} |\zeta_j(f, P_n) - \zeta_0| = \max_{1 \leq j \leq p} \left| \int \log \frac{f(y, x)f(x-j)}{f(y, x-j)f(x)} dP_n - \int \log \frac{f_0(y, x)f_0(x-j)}{f_0(y, x-j)f_0(x)} dP_0 \right|,
\]

\[
\leq \sup_{f \in \mathcal{F}} \left| \int \log \frac{f_0(y, x)}{f(y, x)} dP_n - \int \log \frac{f_0(y, x)}{f(y, x)} dP_0 \right| \tag{2}
\]

\[
+ \max_{1 \leq j \leq p} \sup_{f \in \mathcal{F}} \left| \int \log \frac{f_0(y, x-j)}{f(y, x-j)} dP_n - \int \log \frac{f_0(y, x-j)}{f(y, x-j)} dP_0 \right| \tag{3}
\]

\[
+ \sup_{f \in \mathcal{F}} \left| \int \log \frac{f_0(x)}{f(x)} dP_n - \int \log \frac{f_0(x)}{f(x)} dP_0 \right| \tag{4}
\]

\[
+ \max_{1 \leq j \leq p} \sup_{f \in \mathcal{F}} \left| \int \log \frac{f_0(x-j)}{f(x-j)} dP_n - \int \log \frac{f_0(x-j)}{f(x-j)} dP_0 \right| \tag{5}
\]

\[
+ \max_{1 \leq j \leq p} \left| \int \log \frac{f_0(y, x) f_0(x-j)}{f_0(y, x-j) f_0(x)} dP_n - \int \log \frac{f_0(y, x) f_0(x-j)}{f_0(y, x-j) f_0(x)} dP_0 \right| \tag{6}
\]

\[
+ \int \log \frac{f_0(y, x)}{f(y, x)} dP_0 + \max_{1 \leq j \leq p} \int \log \frac{f_0(y, x-j)}{f(y, x-j)} dP_0 \tag{7}
\]

\[
+ \int \log \frac{f_0(x)}{f(x)} dP_0 + \max_{1 \leq j \leq p} \int \log \frac{f_0(x-j)}{f(x-j)} dP_0 \tag{8}
\]

\[
\leq 9\epsilon, \text{ almost surely.}
\]

(2)-(5) are less than \(\epsilon \) almost surely from the definition of \(P_0 \)-Glivenko-Cantelli classes. (6) converges to zero by the strong law of large numbers. Each term in (7) and (8) are bounded by \(KL\{ f_0(y, x), f(y, x) \} \), which is less than \(\epsilon \) almost surely. Therefore, \(E \subset \{ f : \max_{1 \leq j \leq p} |\zeta_j(f, P_n) - \zeta_0| < \epsilon' \} \) where \(\epsilon' = 9\epsilon \) and \(\Pi\{ \max_{1 \leq j \leq p} |\zeta_j(f, P_n) - \zeta_0| < \epsilon' \mid D_n \} \geq \Pi(E \mid D_n) \rightarrow 1 \) almost surely \(P_0^\infty \) from the posterior consistency of the joint densities in Kullback-Leibler divergence from the argument by A. Norets.

3. Proof of Lemma 1

Without loss of generality, we assume \(p = 2 \) and \(\beta_0 = 0 \). We first show that the Kullback-Leibler support condition holds for the encompassing model. Since \(Q_0 \) and \(G \) have compact support, we suppose \(Q_0(A) = 1 \) and \(Q(B) = 1 \) for \(Q \) in the support of \(\Pi^Q \) where \(A = \{ (\beta, \mu) : -k \leq \beta_1, \beta_2, \mu_1, \mu_2 \leq k \} \) and \(B = \{ (\beta, \mu) : -k' \leq \beta_1, \beta_2, \mu_1, \mu_2 \leq k' \} \). We can check \(f_0 \) has moments of all orders. Hence, for any \(\eta > 0 \), there exists \(a \) such that \(\int_{|y| > a} g(y, x) f_0(y, x) dy dx < \eta, \int_{|x_1| > a} g(y, x) f_0(y, x) dy dx < \eta \) and \(\int_{|x_2| > a} g(y, x) f_0(y, x) dy dx < \eta \) where \(g(y, x) = 1 + |x_1| + |x_2| + x_1^2 + x_2^2 + |y||x_1| + |y||x_2| \).
The Kullback-Leibler divergence between f_0 and f can be expressed as
\begin{equation}
\int f_0 \log \frac{f_0}{f} = \int f_0(y, x) \log \frac{\phi_{\sigma_0}(y - x^T \beta)\phi_{\tau_{0,1}}(x_1 - \mu_1)\phi_{\tau_{0,2}}(x_2 - \mu_2)dQ_0(\beta, \mu)}{\phi_\sigma(y - x^T \beta)\phi_{\tau_1}(x_1 - \mu_1)\phi_{\tau_2}(x_2 - \mu_2)dQ_0(\beta, \mu)}dydx
\end{equation}
\begin{equation}
+ \int f_0(y, x) \log \frac{\phi_{\sigma}(y - x^T \beta)\phi_{\tau_1}(x_1 - \mu_1)\phi_{\tau_2}(x_2 - \mu_2)dQ(\beta, \mu)}{\phi_\sigma(y - x^T \beta)\phi_{\tau_1}(x_1 - \mu_1)\phi_{\tau_2}(x_2 - \mu_2)dQ(\beta, \mu)}dydx.
\end{equation}

With respect to the integral (10), we divide the support R^3 into $C = \{(y, x) \in R^3 : -a \leq y, x_1, x_2 \leq a\}$ and its complement C^C. For the complementary, we consider the subspace \{(y, x) \in R^3 : y < -a, -a \leq x_1, x_2 \leq a\} for example.

\begin{equation}
\int_{-\infty}^{-a} \int_{-a}^{a} f_0(y, x) \log \frac{\phi_{\sigma}(y - x^T \beta)\phi_{\tau_1}(x_1 - \mu_1)\phi_{\tau_2}(x_2 - \mu_2)dQ(\beta, \mu)}{\phi_\sigma(y - x^T \beta)\phi_{\tau_1}(x_1 - \mu_1)\phi_{\tau_2}(x_2 - \mu_2)dQ(\beta, \mu)}dydx,
\end{equation}
\begin{equation}
\int_{-\infty}^{-a} \int_{-a}^{a} f_0(y, x) \log \frac{\sup_{(\beta, \mu) \in A} \phi_{\sigma}(y - x^T \beta)\phi_{\tau_1}(x_1 - \mu_1)\phi_{\tau_2}(x_2 - \mu_2)dQ(\beta, \mu)}{\inf_{(\beta, \mu) \in B} \phi_{\sigma}(y - x^T \beta)\phi_{\tau_1}(x_1 - \mu_1)\phi_{\tau_2}(x_2 - \mu_2)dQ(\beta, \mu)}dydx,
\end{equation}
\begin{equation}
\leq \int_{-\infty}^{-a} \int_{-a}^{a} \frac{1}{2\sigma^2} \{(k^2 + k'^2)(x_1^2 + x_2^2) + 2(k + k')(|x_1| + |x_2|)|y| + 2(k^2 + k'^2)|x_1||x_2|\}
\times f_0(y, x)dydx
\end{equation}
\begin{equation}
+ \int_{-\infty}^{-a} \int_{-a}^{a} \left(\frac{k + k'}{\tau_1^2} + \frac{k + k'}{\tau_2^2} + \frac{k^2 + k'^2}{2\tau_1^2} + \frac{k^2 + k'^2}{2\tau_2^2}\right) f_0(y, x)dydx
\end{equation}
\begin{equation}
\leq \left(\frac{k + k'}{\sigma^2} + \frac{3(k^2 + k'^2)}{2\sigma^2} + \frac{k + k'}{\tau_1^2} + \frac{k + k'}{\tau_2^2} + \frac{k^2 + k'^2}{2\tau_1^2} + \frac{k^2 + k'^2}{2\tau_2^2}\right) \eta.
\end{equation}

For other regions in C^C where one of y, x_1 and x_2 is larger than a or smaller than $-a$, the corresponding integral can be bounded by (11). Following the proof of Theorem 3 in Ghosal et al. (1999), there exists a set E with $P^2(E) > 0$ and for $Q \in E$, the integral over C is less than $3\eta/(1 - 3\eta)$ where $0 < \eta < 1/3$. Therefore, for $Q \in E$, the integral (10) is less than
\begin{equation}
6 \left(\frac{k + k'}{\sigma^2} + \frac{3(k^2 + k'^2)}{2\sigma^2} + \frac{k + k'}{\tau_1^2} + \frac{k + k'}{\tau_2^2} + \frac{k^2 + k'^2}{2\tau_1^2} + \frac{k^2 + k'^2}{2\tau_2^2}\right) \eta + \frac{3\eta}{1 - 3\eta}.
\end{equation}

Also, we can show the right term in (9) converges to 0 as $\sigma \to \sigma_0$, $\tau_j \to \tau_{0,j}$ with $j = 1, 2$ by the dominated convergence theorem with the inequality
\begin{equation}
\int \phi_{\sigma_0}(y - x^T \beta)\phi_{\tau_{0,1}}(x_1 - \mu_1)\phi_{\tau_{0,2}}(x_2 - \mu_2)dQ_0(\beta, \mu),
\end{equation}
\begin{equation}
\leq \sup_{(\beta, \mu) \in A} \phi_\sigma(y - x^T \beta)\phi_{\tau_1}(x_1 - \mu_1)\phi_{\tau_2}(x_2 - \mu_2)dQ(\beta, \mu).
\end{equation}

For any $\epsilon > 0$, we can choose η, $\tilde{\eta}$ and a small neighborhood of σ_0 and τ_0 such that both the integrals in (9) and (10) are less than $\epsilon/2$ respectively. Then, the Kullback-Leibler support condition is satisfied.

Next, we check the Glivenko-Cantelli conditions. For simplicity, we show only $[\log\{f_0(x_1)/f(x_1)\}, f \in F]$ is P_0-Glivenko-Cantelli but we can similarly prove that other classes of functions also satisfy the condition. According to Theorem 3 in van der Vaart & Wellner (2000), if two classes of functions F_0 and F_1 are P_0-Glivenko-Cantelli, then $g(F_0, F_1)$ is
also P_0-Glivenko-Cantelli with g a continuous function provided that it has an integrable envelope function. We set $\mathcal{F}_0 = \{f_0(x_1)\}, \mathcal{F}_1 = \{f(x_1), f \in \mathcal{F}\}$ and g is a log ratio function. It is clear \mathcal{F}_0 is P_0-Glivenko-Cantelli. Then, we show \mathcal{F}_1 is P_0-Glivenko-Cantelli by proving \mathcal{F}_1 satisfies the sufficient condition, $N_\epsilon(\epsilon, \mathcal{F}_1, L_1(P_0)) < \infty$ for any $\epsilon > 0$ where $N_\epsilon(\epsilon, \mathcal{F}_1, L_1(P_0))$ is the minimum number of ϵ-brackets with which \mathcal{F}_1 can be covered in $L_1(P_0)$ distance.

We first construct bracket functions. Let $[\underline{x}, \overline{x}]$ be the support of τ_1. Because the support of (μ_1, τ_1) is compact, for any $\epsilon > 0$ we can take $h > 0$ such that $f(x_1) = \int \phi_{\tau_1}(x_1 - \mu_1) dQ(\mu_1) < \epsilon$ for $|x_1| > h$ and any $\tau_1 \in [\underline{x}, \overline{x}]$. Also, we can show that $|f'(x_1)| < K$ for $x_1 \in [-h, h]$ with some constant K. Then, we take $0 < \epsilon' < \epsilon/(K + 1)$ and divide the interval $[-h, h]$ into sub-intervals $\{I_i, i = 1, \ldots, G\}$ of equal length less than ϵ' with $|x_1| \leq \epsilon'$. Letting $m \in \{1, \ldots, J\}$ and $m = (m_1, \ldots, m_G)$, we define $u_m = \sum_{i=1}^G u_{im_i} + \epsilon_1 [-h, h]$ and $l_m = \sum_{i=1}^G l_{im_i}$. Then, it is straightforward to check $l_m < u_m$ and $\|u_m - l_m\|_{L_1(P_0)} \leq \|u_m - l_m\| < \epsilon$. Because $|f'(x_1)| < K$ and $\epsilon/\epsilon' > K + 1$, for any $f \in \mathcal{F}_1$ there exists m_i such that $l_{im_i} \leq f \leq u_{im_i}$ on the interval I_i and further we can find some m such that $l_m \leq f \leq u_m$ on \mathcal{R}. Since $m \in \{1, \ldots, J\}^G$, the set $\{l_m, u_m\}$ consists of a finite number of functions. Therefore, $N_\epsilon(\epsilon, \mathcal{F}_1, L_1(P_0)) < \infty$.

With respect to the envelop function,

$$\left| \log \frac{f_0(x_1)}{f(x_1)} \right| \leq \log \max \left(\tau_{0,1}^{-1}, \tau_{0,1}\right) + \left(\tau_{0,1}^{-2} + \tau_{0,1}\right) x_1^2 + 2(\tau_{0,1}^{-2} k^2 + \tau_{0,1}^{-2} k^2) x_1^2 \equiv B(x_1).$$

It is easy to check $\int B(x_1) dP_0 < \infty$. As a result, $\{\log \{f_0(x_1)/f(x_1)\}, f \in \mathcal{F}\}$ is P_0-Glivenko-Cantelli.

4. Supplemental materials for simulation study

4.1. Convergence check

Fig. 1. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 1, \ldots, 5$ for Case 1.
The 4. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 6, \ldots, 10$ for Case 2.

The 3. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 1, \ldots, 5$ for Case 2.
Fig. 5. Sample paths (top) and autocorrelations (bottom) of $\xi_j(f, P_n)$ with $j = 1, \ldots, 5$ for Case 3.

Fig. 6. Sample paths (top) and autocorrelations (bottom) of $\xi_j(f, P_n)$ with $j = 6, \ldots, 10$ for Case 3.
4.2. Detecting marginal relationships

To assess type I error rates, we applied two examples of null distributions in Heller et al. (2013) with \(n = 100 \). The first one is named four independent clouds for which we generated two univariate variables \(y_i \) and \(x_i \) identically and independently from \(0.5 \mathcal{N}(-1, 0.2) + 0.5 \mathcal{N}(1, 0.2) \) for \(i = 1, \ldots, n \). As a competitor, we use R package implementation of the Heller et al. (2013) method with default settings using 1,000 random permutations and 0.05 significance level. Also, we use the same Markov chain Monte Carlo settings as in the simulation study for our proposed method. The type 1 error rates of the proposed method and the competitors over 100 data sets are 0.05 and 0.04 respectively. In the second example, all variables are identically and independently distributed from \(\mathcal{N}(0, 1) \) with a univariate \(y_i \) and \(x_i = (x_{i,1}, \ldots, x_{i,p})^T \) with \(p = 10 \). The type 1 error rates are 0.00 and 0.02 for the proposed method and the competitor.

With respect to power, we first generate \(y_i \) and \(x_i = (x_{i,1}, \ldots, x_{i,p})^T \) in each of Case 1, 2 and 3 and put an additional error, \(y_i^* = y_i + \varepsilon_i^* \) where \(\{ \varepsilon_i^* \} \) are independent and identically distributed from \(\mathcal{N}(0, \sigma^2) \). Then, we checked the performance of detecting dependence between \(y_i^* \) and \(x_i \) with \(\sigma^2 = 0, 1, 2, 3, 4, 5 \). Figure 7 reports the power estimated from 100 data sets in each case. Although Case 3 shows little difference between the two methods, the proposed method outperforms Heller et al. (2013) with relatively large difference in Case 1 and 2.

Fig. 7. Comparison of power by the proposed method (red) and Heller et al. (2013) (blue) in Case 1 (left), Case 2 (middle) and Case 3 (right). y-axis indicates the power over 100 simulations and x-axis shows the standard deviation of the additional error term.

5. Supplemental materials for application to criminology data

5.1. Data in the criminology application

The whole data set can be downloaded from the University of California Irvine machine learning repository website. Further information is given in [1] United States Department of Commerce, Bureau of the Census, census of population and housing 1990 United States: summary tape file 1a and 3a, [2] United States Department of Commerce, Bureau of the Census Producer, Washington, DC and Inter-university consortium for political and social research, Ann Arbor, Michigan in 1992, [3] United States Department of Justice, Bureau of Justice Statistics, law enforcement management and administrative statistics, [4] United States Department of Justice, Federal Bureau of Investigation, crime in the United States in 1995.
As for the predictors, Table 1 and Table 2 give the whole list.

Table 1. List of 1st to 34th predictors

No.	Predictor	Scale
1	population for community	count
2	mean people per household	continuous
3	% of population that is african american	percent
4	% of population that is caucasian	percent
5	% of population that is of asian heritage	percent
6	% of population that is of hispanic heritage	percent
7	% of population that is 16-24 in age	percent
8	% of population that is 65 and over in age	percent
9	# of people living in areas classified as urban	count
10	median household income	continuous
11	% of households with wage or salary income in 1989	percent
12	% of households with farm or self employment income in 1989	percent
13	% of households with investment / rent income in 1989	percent
14	% of households with social security income in 1989	percent
15	% of households with public assistance income in 1989	percent
16	% of households with retirement income in 1989	percent
17	median family income	continuous
18	per capita income	continuous
19	# of people under the poverty level	count
20	% of people 25 and over with less than a 9th grade education	percent
21	% of people 25 and over that are not high school graduates	percent
22	% of people 25 and over with a bachelors degree or higher education	percent
23	% of people 16 and over, in the labor force, and unemployed	percent
24	% of people 16 and over who are employed	percent
25	% of people 16 and over who are employed in manufacturing	percent
26	% of people 16 and over who are employed in professional services	percent
27	% of males who are divorced	percent
28	% of males who have never married	percent
29	% of females who are divorced	percent
30	% of population who are divorced	percent
31	mean number of people per family	continuous
32	% of families (with kids) that are headed by two parents	percent
33	% of kids in family housing with two parents	percent
34	% of kids 4 and under in two parent households	percent

5-2. *Markov chain Monte Carlo Algorithm*

Relying on the blocked Gibbs sampler by Ishwaran & James (2001), we develop an efficient posterior computation method for the Dirichlet process mixture model in Section 4. Let \(s = (s_1, \ldots, s_n)' \) be the latent cluster index variables. Then, we propose the following Markov chain Monte Carlo algorithm:

Step 1. Update \(V_h \) for \(h = 1, \ldots, H - 1 \) from

\[
Be \left(1 + n_h, \alpha_0 + \sum_{l>h} n_l \right),
\]

where \(n_h = \sum_{i=1}^n 1(s_i = h) \).
Table 2. List of 35th to 68th predictors

No.	Predictor	Scale
35	% of kids age 12-17 in two parent households	percent
36	% of moms of kids 6 and under in labor force	percent
37	% of moms of kids under 18 in labor force	percent
38	# of kids born to never married	count
39	total number of people known to be foreign born	count
40	% of immigrants who immigrated within last 5 years	percent
41	% of population who have immigrated within the last 5 years	percent
42	% of people who speak only English	percent
43	% of people who do not speak English well	percent
44	% of family households that are large (6 or more)	percent
45	% of all occupied households that are large (6 or more people)	percent
46	% of people in owner occupied households	percent
47	% of persons in dense housing (more than 1 person per room)	percent
48	% of housing units with less than 3 bedrooms	percent
49	# of vacant households	count
50	% of housing occupied	percent
51	% of households owner occupied	percent
52	% of vacant housing that is boarded up	percent
53	% of vacant housing that has been vacant more than 6 months	percent
54	owner occupied housing: lower quartile value	continuous
55	owner occupied housing: median value	continuous
56	owner occupied housing: upper quartile value	continuous
57	rental housing: lower quartile rent	continuous
58	rental housing: median rent	continuous
59	rental housing: upper quartile rent	continuous
60	median gross rent	continuous
61	median gross rent as % of household income	percent
62	# of people in homeless shelters	count
63	# of homeless people counted in the street	count
64	% of people born in the same state as currently living	percent
65	% of people living in the same city as in 1985 (5 years before)	percent
66	land area in square miles	continuous
67	population density in persons per square mile	continuous
68	% of people using public transit for commuting	percent

Step 2. Using the prior Gamma(a_α, b_α), update α_0 from

$$\Gamma \left\{ a_\alpha + H - 1, b_\alpha - \sum_{h=1}^{H-1} \log(1 - V_h) \right\}.$$

Step 3. Update s_i for $i = 1, \ldots, n$ from

$$\text{pr}(s_i = h \mid \cdots) = \frac{\pi_h f(y_i \mid x_i, \theta_h) \prod_{j=1}^p f(x_{i,j} \mid \theta_h)}{\sum_{l=1}^H \pi_l f(y_i \mid x_i, \theta_l) \prod_{j=1}^p f(x_{i,j} \mid \theta_l)}.$$

Step 4. Update $\mu_{j,h}$ for $j = 1, \ldots, p$ and $h = 1, \ldots, H$ from $N(\bar{\mu}_{j,h}, \bar{\tau}_{j,h}^2)$ where

$$\bar{\mu}_{j,h} = \bar{x}_{j,h} \left(\frac{\sum_{i:s_i=h} x_{i,j}}{n_{j,h}} + \frac{\bar{\mu}_j}{s_j^2} \right), \quad \bar{\tau}_{j,h}^2 = \left(\frac{n_{j,h}}{\bar{\tau}_{j,h}^2} + \frac{1}{s_j^2} \right)^{-1}, \quad n_{j,h} = \sum_{i=1}^n 1(s_i = h).$$
Step 5. Update $\tau^2_{j,h}$ for $j = 1, \ldots, p$ and $h = 1, \ldots, H$ from
\[
\text{IG} \left\{ \frac{n_h + 3}{2}, \sum_{i:s_i=h} (x_{i,j} - \mu_{j,h})^2 + s_j^2 \right\}.
\]

Step 6. Update σ^2_h for $h = 1, \ldots, H$ from
\[
\text{IG} \left\{ \frac{n_h + 3}{2}, \sum_{i:s_i=h} (y_i - \bar{x}_{i,j}^T \beta_h)^2 + s_y^2 \right\}.
\]

Step 7. Update $\beta_{j,h}$ for $j = 0, \ldots, p$ and $h = 1, \ldots, H$ from
\[
\pi(\beta_{j,h} \mid \cdots) = \hat{p}_{j,h} \delta_0(\beta_{j,h}) + (1 - \hat{p}_{j,h}) N(\beta_{j,h} \mid \mu_{j,h}, \sigma_{j,h}^2),
\]
where
\[
\mu_{j,h} = \sigma_{j,h}^2 \left\{ \sum_{i:s_i=h} x_{i,j} (y_i - \bar{x}_{i,j}^T \beta_{j,h}) \right\}, \quad \sigma_{j,h}^2 = \left(\sum_{i:s_i=h} \frac{x_{i,j}^2}{\sigma^2_h} + \frac{1}{\lambda^2_{j,h}} \right)^{-1},
\]
\[
\hat{p}_{j,h} = \left\{ 1 + \frac{1 - p_{0j}}{p_{0j}} \frac{N(0 \mid 0, \lambda^2_{j,h})}{N(0 \mid \mu_{j,h}, \sigma_{j,h}^2)} \right\}^{-1}.
\]

Step 8. Update $\lambda^2_{j,h}$ for $j = 1, \ldots, p$ and $h = 1, \ldots, H$ from
\[
\text{IG} \left\{ \frac{1(\beta_{j,h} \neq 0) + 1}{2}, \frac{\beta_{j,h}^2 + 1}{2} \right\}.
\]

Step 9. Update p_0 from
\[
\text{Be} \left\{ 4.75 + \sum_{j,h} 1(\beta_{j,h} = 0), 0.25 + \sum_{j,h} 1(\beta_{j,h} \neq 0) \right\}.
\]

Step 10. Impute missing values y^mis_i in the response.
1. Generate $y^*_i \sim N(\bar{x}_i^T \beta_{s_1}, \sigma_{s_1}^2)$.
2. Set $y^\text{mis}_i = l$ if $a_l < y^*_i \leq a_{l+1}$.

Step 11. Update latent variables y^*_i and $x^*_{i,j}$ for count and percentage variables.
(a) For the response variable, $y^*_i \sim TN(x_i^T \beta_{s_1}, \sigma_{s_1}^2, a_{y_l}, a_{y_{l+1}})$.
(b) For the count predictor, $x^*_{i,j} \sim TN(\mu_{s_1, s_1}, \tau^2_{s_1, s_1}, a_{x_l}, a_{x_{l+1}})$.
(c) For the percentage predictor, $x^*_{i,j} \sim TN(\mu_{s_1, s_1}, \tau^2_{s_1, s_1}, -\infty, 0)$ if $x_{i,j} = 0$
and $x^*_{i,j} \sim TN(\mu_{s_1, s_1}, \tau^2_{s_1, s_1}, 100, \infty)$ if $x_{i,j} = 100$,

where $TN(a, b, c, d)$ denotes a truncated normal with the location a, scale b, lower bound c
and upper bound d.

Step 12. Compute and save $\zeta_j(f, P_n)$ for $j = 1, \ldots, p$.
Fig. 8: Sample paths (top) and autocorrelations (bottom) of $\xi_j(f, P_n)$ with $j = 10, 20, 30, 40, 50, 60$ for murders.

Fig. 9: Sample paths (top) and autocorrelations (bottom) of $\xi_j(f, P_n)$ with $j = 10, 20, 30, 40, 50, 60$ for rapes.

5.3 Convergence check
Fig. 12. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 10, 20, 30, 40, 50, 60$ for burglaries.
Fig. 13. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 10, 20, 30, 40, 50, 60$ for larcenies.

Fig. 14. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 10, 20, 30, 40, 50, 60$ for auto thefts.

Fig. 15. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 10, 20, 30, 40, 50, 60$ for arsons.
Fig. 16. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 10, 20, 30, 40, 50, 60$ for non violent crimes.

Fig. 17. Sample paths (top) and autocorrelations (bottom) of $\zeta_j(f, P_n)$ with $j = 10, 20, 30, 40, 50, 60$ for non violent crimes.
5.4. Additional estimation results

Tables 3-12 show lists of the selected predictors by the proposed method for murders, rapes, robberies, assaults, burglaries, larcenies, auto thefts, arsons, violent crimes and non-violent crimes, respectively. The predictors are listed in descending order of the posterior mean of the conditional mutual information. Also, 90% credible intervals of the conditional mutual information are reported in Figure 18-26 for all crime variables except murders.

Tables 13 and 14 report lists of the selected predictors by the competitors. Results for murders, rapes, robberies, assaults, burglaries and larcenies are in Table 13 and those for auto thefts, arsons, violent crimes and non-violent crimes are in Table 14.

5.5. Discussion of alternative approach

One possible approach of measuring conditional independence may be to estimate conditional mutual information based on the empirical measure and the kernel density estimation of the joint density instead of the nonparametric Bayes encompassing model. However, Joe (1989) and Seth & Príncipe (2012) point out high sensitivity of the estimation result depending on the choice of the kernel and its band-width. Especially in a case with not a small p, it may not straightforward to choose them appropriately. Therefore, the key is to develop a kernel method which produces a stable estimation result.

Table 3. List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with murders as the response

j	Mean	90%CI	Predictor
66	0.2587	[0.2157, 0.2936]	land area in square miles
67	0.1188	[0.0905, 0.1454]	population density in persons per square mile
4	0.0507	[0.0302, 0.0678]	% of population that is caucasian
9	0.0250	[0.0043, 0.0636]	# of people living in areas classified as urban
1	0.0250	[0.0015, 0.0469]	population for community
3	0.0192	[0.0058, 0.0374]	% of population that is african american
57	0.0177	[0.0007, 0.0463]	rental housing: lower quartile rent
13	0.0075	[0.0004, 0.0149]	% of households with investment / rent income in 1989
6	0.0067	[0.0021, 0.0125]	% of population that is of hispanic heritage
64	0.0039	[0.0005, 0.0067]	% of people born in the same state as currently living
49	0.0030	[0.0003, 0.0089]	# of vacant households
42	0.0027	[0.0001, 0.0092]	% of people who speak only English
27	0.0019	[0.0001, 0.0055]	% of males who are divorced
52	0.0018	[0.0002, 0.0051]	% of vacant housing that is boarded up

j, j-th predictor; Mean, posterior mean; 90% CI refers to a 90% credible interval.
Table 4. List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with rapes as the response

j	Mean	90% CI	Predictor
66	0.4168	[0.3929, 0.4428]	land area in square miles
67	0.1964	[0.1727, 0.2217]	population density in persons per square mile
1	0.0680	[0.0523, 0.0865]	population for community
9	0.0359	[0.0086, 0.0608]	\# of people living in areas classified as urban
30	0.0189	[0.0013, 0.0379]	% of population who are divorced
32	0.0178	[0.0009, 0.0398]	% of families (with kids) that are headed by two parents
33	0.0174	[0.0006, 0.0389]	% of kids in family housing with two parents
29	0.0156	[0.0005, 0.0330]	% of females who are divorced
27	0.0123	[0.0009, 0.0265]	% of males who are divorced
39	0.0051	[0.0004, 0.0118]	total number of people known to be foreign born
5	0.0046	[0.0002, 0.0092]	% of population that is of asian heritage
35	0.0031	[0.001, 0.0125]	% of kids age 12-17 in two parent households
7	0.0027	[0.0008, 0.0056]	% of population that is 16-24 in age
50	0.0023	[0.0002, 0.0053]	% of housing occupied
12	0.0022	[0.0001, 0.0059]	% of households with farm or self employment income in 1989
19	0.0021	[0.0003, 0.0062]	\# of people under the poverty level
38	0.0017	[0.0001, 0.0065]	\# of kids born to never married
18	0.0015	[0.00008, 0.0050]	per capita income
28	0.0014	[0.0002, 0.0036]	% of males who have never married
63	0.0011	[0.0002, 0.0020]	\# of homeless people counted in the street

\(j \), \(j \)-th predictor; Mean, posterior mean; 90%CI refers to a 90% credible interval.

Table 5. List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with robberies as the response

j	Mean	90% CI	Predictor
66	0.6074	[0.5551, 0.6554]	land area in square miles
67	0.5080	[0.4548, 0.5605]	population density in persons per square mile
33	0.0859	[0.0545, 0.1203]	% of kids in family housing with two parents
4	0.0652	[0.0353, 0.0953]	% of population that is caucasian
3	0.0530	[0.0211, 0.0865]	% of population that is african american
9	0.0469	[0.0078, 0.0926]	\# of people living in areas classified as urban
1	0.0388	[0.0268, 0.0623]	population for community
47	0.0277	[0.0084, 0.0493]	% of persons in dense housing (more than 1 person per room)
30	0.0159	[0.0007, 0.0348]	% of population who are divorced
18	0.0139	[0.0009, 0.0326]	per capita income
32	0.0122	[0.0006, 0.0340]	% of families (with kids) that are headed by two parents
29	0.0107	[0.0002, 0.0258]	% of females who are divorced
6	0.0106	[0.0006, 0.0237]	% of population that is of hispanic heritage
64	0.0094	[0.0045, 0.0146]	% of people born in the same state as currently living
42	0.0090	[0.0002, 0.0217]	% of people who speak only English
22	0.0079	[0.0001, 0.0198]	% of people 25 and over with a bachelors degree or higher education
46	0.0071	[0.0006, 0.0183]	% of people in owner occupied households
56	0.0064	[0.0001, 0.0182]	owner occupied housing: upper quartile value
25	0.0062	[0.0002, 0.0125]	% of people 16 and over who are employed in manufacturing
68	0.0055	[0.0015, 0.0099]	% of people using public transit for commuting
34	0.0054	[0.0004, 0.0183]	% of kids 4 and under in two parent households
51	0.0050	[0.0006, 0.0142]	% of households owner occupied
19	0.0030	[0.0003, 0.0072]	\# of people under the poverty level
38	0.0029	[0.0005, 0.0077]	\# of kids born to never married
49	0.0021	[0.0001, 0.0056]	\# of vacant households

\(j \), \(j \)-th predictor; Mean, posterior mean; 90%CI refers to a 90% credible interval.
Table 6. List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with assaults as the response

j	Mean	90%CI	Predictor
66	0.3380	[0.2897, 0.3914]	land area in square miles
67	0.1760	[0.1318, 0.2267]	population density in persons per square mile
9	0.0760	[0.0451, 0.0996]	# of people living in areas classified as urban
1	0.0413	[0.0186, 0.0641]	population for community
33	0.0350	[0.0114, 0.0571]	% of kids in family housing with two parents
13	0.0348	[0.0234, 0.0478]	% of households with investment / rent income in 1989
32	0.0176	[0.0010, 0.0403]	% of families (with kids) that are headed by two parents
47	0.0171	[0.0057, 0.0283]	% of persons in dense housing (more than 1 person per room)
4	0.0168	[0.0046, 0.0284]	% of population that is caucasian
3	0.0070	[0.0004, 0.0174]	% of population that is african american
43	0.0050	[0.0013, 0.0102]	% of people who do not speak English well
45	0.0027	[0.0003, 0.0074]	% of all occupied households that are large (6 or more people)
50	0.0025	[0.0007, 0.0046]	% of housing occupied
34	0.0024	[0.0001, 0.0075]	% of kids 4 and under in two parent households
44	0.0023	[0.0003, 0.0064]	% of family households that are large (6 or more)
23	0.0014	[0.0001, 0.0041]	% of people 16 and over, in the labor force, and unemployed

j, j-th predictor; Mean, posterior mean; 90%CI refers to a 90% credible interval.

Table 7. List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with burglaries as the response

j	Mean	90%CI	Predictor
66	0.9177	[0.8717, 0.9492]	land area in square miles
67	0.7075	[0.6639, 0.7464]	population density in persons per square mile
33	0.0508	[0.0241, 0.0796]	% of kids in family housing with two parents
47	0.0281	[0.0146, 0.0444]	% of persons in dense housing (more than 1 person per room)
29	0.0173	[0.0100, 0.0276]	% of females who are divorced
50	0.0152	[0.0071, 0.0236]	% of housing occupied
13	0.0135	[0.0008, 0.0303]	% of households with investment / rent income in 1989
6	0.0097	[0.00007, 0.0166]	% of population that is of hispanic heritage
30	0.0083	[0.0001, 0.0224]	% of population who are divorced
9	0.0078	[0.0004, 0.0258]	# of people living in areas classified as urban
4	0.0070	[0.0007, 0.0163]	% of population that is caucasian
68	0.0057	[0.0004, 0.0126]	% of people using public transit for commuting
65	0.0048	[0.0001, 0.0116]	% of people living in the same city as in 1985 (5 years before)
49	0.0046	[0.0005, 0.0125]	# of vacant households
7	0.0031	[0.0002, 0.0066]	% of population that is 16-24 in age
19	0.0028	[0.0001, 0.0110]	# of people under the poverty level
61	0.0024	[0.00008, 0.0069]	median gross rent as % of household income
36	0.0008	[0.00001, 0.0025]	% of moms of kids 6 and under in labor force

j, j-th predictor; Mean, posterior mean; 90%CI refers to a 90% credible interval.
Table 8. List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with larcenies as the response

j	Mean	90%CI	Predictor
66	0.9425	[0.9149, 0.9682]	land area in square miles
67	0.8035	[0.7707, 0.8359]	population density in persons per square mile
32	0.0305	[0.0003, 0.0505]	% of families (with kids) that are headed by two parents
2	0.0233	[0.0126, 0.0397]	mean people per household
22	0.0219	[0.0001, 0.0436]	% of people 25 and over with a bachelors degree or higher education
35	0.0165	[0.0085, 0.0383]	% of kids age 12-17 in two parent households
65	0.0163	[0.0008, 0.0321]	% of population that is 65 and over in age
1	0.0158	[0.0002, 0.0520]	% of all occupied households that are large (6 or more people)
33	0.0153	[0.0002, 0.0422]	% of kids in family housing with two parents
7	0.0106	[0.0002, 0.0180]	% of population that is 16-24 in age
68	0.0105	[0.0062, 0.0154]	% of people using public transit for commuting
25	0.0084	[0.0056, 0.0111]	% of people 16 and over who are employed in manufacturing
47	0.0070	[0.0001, 0.0178]	% of persons in dense housing (more than 1 person per room)
23	0.0054	[0.0004, 0.0103]	% of people 16 and over, in the labor force, and unemployed
4	0.0054	[0.0003, 0.0163]	% of people who speak only English
42	0.0053	[0.0005, 0.0123]	% of people born in the same state as currently living
7	0.0053	[0.0001, 0.0077]	% of population that is of asian heritage
14	0.0022	[0.0003, 0.0056]	% of households with social security income in 1989

j, j-th predictor; Mean, posterior mean; 90%CI refers to a 90% credible interval.

Table 9. List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with auto thefts as the response

j	Mean	90%CI	Predictor
66	0.7650	[0.7310, 0.8011]	land area in square miles
67	0.6471	[0.6098, 0.6847]	population density in persons per square mile
47	0.0298	[0.0164, 0.0437]	% of persons in dense housing (more than 1 person per room)
30	0.0245	[0.0008, 0.0541]	% of population who are divorced
18	0.0229	[0.0001, 0.0626]	per capita income
13	0.0211	[0.0054, 0.0405]	% of households with investment / rent income in 1989
46	0.0197	[0.0001, 0.0899]	% of people in owner occupied households
60	0.0138	[0.0054, 0.0342]	median gross rent
53	0.0119	[0.0050, 0.0178]	% of vacant housing that has been vacant more than 6 months
4	0.0095	[0.0004, 0.0214]	% of population that is caucasian
42	0.0087	[0.0014, 0.0190]	% of people who speak only English
12	0.0081	[0.0045, 0.0120]	% of households with farm or self employment income in 1989
2	0.0081	[0.0004, 0.0234]	mean people per household
68	0.0075	[0.0022, 0.0138]	% of people using public transit for commuting
40	0.0071	[0.0032, 0.0144]	% of immigrants who immigrated within last 5 years
43	0.0041	[0.00005, 0.0123]	% of people who do not speak English well
58	0.0034	[0.0007, 0.0106]	rental housing: median rent
59	0.0030	[0.0005, 0.0138]	rental housing: upper quartile rent
57	0.0022	[0.0005, 0.0057]	rental housing: lower quartile rent
50	0.0021	[0.0002, 0.0047]	% of housing occupied

j, j-th predictor; Mean, posterior mean; 90%CI refers to a 90% credible interval.
Table 10. *List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with arsons as the response*

\(j \)	Mean	90\% CI	Predictor
66	0.3030	[0.2517, 0.3593]	land area in square miles
67	0.1619	[0.1226, 0.2084]	population density in persons per square mile
1	0.0394	[0.0131, 0.0689]	population for community
9	0.0152	[0.0010, 0.0471]	# of people living in areas classified as urban
19	0.0131	[0.0005, 0.0323]	# of people under the poverty level
27	0.0119	[0.0022, 0.0229]	% of males who are divorced
13	0.0085	[0.0004, 0.0168]	% of households with investment / rent income in 1989
29	0.0078	[0.0001, 0.0212]	% of females who are divorced
41	0.0039	[0.0013, 0.0071]	% of population who have immigrated within the last 5 years
15	0.0031	[0.0004, 0.0065]	% of households with public assistance income in 1989

\(j \), \(j \)-th predictor; Mean, posterior mean; 90\% CI refers to a 90\% credible interval.

Table 11. *List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with violent crimes as the response*

\(j \)	Mean	90\% CI	Predictor
66	0.5254	[0.4868, 0.5763]	land area in square miles
67	0.3515	[0.3106, 0.4052]	population density in persons per square mile
9	0.1004	[0.0589, 0.1498]	# of people living in areas classified as urban
33	0.0751	[0.0412, 0.1058]	% of kids in family housing with two parents
47	0.0272	[0.0140, 0.0417]	% of persons in dense housing (more than 1 person per room)
32	0.0242	[0.0012, 0.0581]	% of families (with kids) that are headed by two parents
13	0.0242	[0.0094, 0.0451]	% of households with investment / rent income in 1989
4	0.0163	[0.0029, 0.0329]	% of population that is caucasian
1	0.0153	[0.0003, 0.0394]	population for community
3	0.0137	[0.0014, 0.0278]	% of population that is african american
15	0.0080	[0.0002, 0.0165]	% of households with public assistance income in 1989
6	0.0080	[0.0004, 0.0195]	% of population that is of hispanic heritage
43	0.0053	[0.0013, 0.0125]	% of people who do not speak English well
68	0.0036	[0.0004, 0.0072]	% of people using public transit for commuting
49	0.0031	[0.0001, 0.0101]	# of vacant households
50	0.0031	[0.0007, 0.0067]	% of housing occupied
62	0.0027	[0.0002, 0.0068]	# of people in homeless shelters
38	0.0025	[0.0007, 0.0103]	# of kids born to never married
45	0.0024	[0.0004, 0.0072]	% of all occupied households that are large (6 or more people)
44	0.0023	[0.0005, 0.0068]	% of family households that are large (6 or more)
31	0.0020	[0.0009, 0.0077]	mean number of people per family
41	0.0018	[0.0009, 0.0051]	% of population who have immigrated within the last 5 years
5	0.0017	[0.0008, 0.0042]	% of population that is of asian heritage
23	0.0013	[0.0008, 0.0038]	% of people 16 and over, in the labor force, and unemployed

\(j \), \(j \)-th predictor; Mean, posterior mean; 90\% CI refers to a 90\% credible interval.
Table 12. List of the selected predictors by the proposed method in descending order of the posterior means of conditional mutual information with non-violent crimes as the response

j	Mean	90% CI	Predictor
66	0.9859	[0.9500, 1.0189]	land area in square miles
67	0.8282	[0.7870, 0.8700]	population density in persons per square mile
32	0.0300	[0.0082, 0.0518]	% of families (with kids) that are headed by two parents
28	0.0217	[0.0011, 0.0475]	% of males who have never married
33	0.0217	[0.0015, 0.0484]	% of kids in family housing with two parents
9	0.0200	[0.0017, 0.0518]	# of people living in areas classified as urban
30	0.0183	[0.0006, 0.0399]	% of population who are divorced
27	0.0182	[0.0001, 0.0443]	% of males who are divorced
47	0.0181	[0.0043, 0.0353]	% of persons in dense housing (more than 1 person per room)
1	0.0174	[0.0001, 0.0426]	population for community
29	0.0086	[0.0003, 0.0223]	% of females who are divorced
64	0.0072	[0.0007, 0.0155]	% of people born in the same state as currently living
50	0.0039	[0.0010, 0.0075]	% of housing occupied
52	0.0023	[0.0001, 0.0058]	% of vacant housing that is boarded up

j, j-th predictor; Mean, posterior mean; 90% CI refers to a 90% credible interval.
Fig. 18. 90% credible intervals of the estimated conditional mutual information with rapes as the response for each of the 68 demographic predictors adjusting for the other predictors.

Fig. 19. 90% credible intervals of the estimated conditional mutual information with robberies as the response for each of the 68 demographic predictors adjusting for the other predictors.
Fig. 20. 90% credible intervals of the estimated conditional mutual information with assaults as the response for each of the 68 demographic predictors adjusting for the other predictors.

Fig. 21. 90% credible intervals of the estimated conditional mutual information with burglaries as the response for each of the 68 demographic predictors adjusting for the other predictors.
Fig. 22. 90% credible intervals of the estimated conditional mutual information with larcenies as the response for each of the 68 demographic predictors adjusting for the other predictors.

Fig. 23. 90% credible intervals of the estimated conditional mutual information with auto thefts as the response for each of the 68 demographic predictors adjusting for the other predictors.
Fig. 24. 90% credible intervals of the estimated conditional mutual information with arsons as the response for each of the 68 demographic predictors adjusting for the other predictors.

Fig. 25. 90% credible intervals of the estimated conditional mutual information with violent crimes as the response for each of the 68 demographic predictors adjusting for the other predictors.
Fig. 26. 90% credible intervals of the estimated conditional mutual information with non-violent crimes as the response for each of the 68 demographic predictors adjusting for the other predictors.
Table 13. List of the selected predictors for murders, rapes, robberies, assaults, burglaries and larcenies by the competitors

Method	Variable numbers of the selected predictors
Murder:	
LASSO	19, 38, 39, 49
CM	all variables
NCCO	1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 61, 64, 65, 67, 68
AQM	3, 4, 13, 38, 49, 53, 64
Rape:	
LASSO	1, 3, 9, 16, 27, 28, 32, 35, 38, 49, 50, 52, 54, 66, 67
CM	all variables
NCCO	1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 61, 64, 65, 68
AQM	3, 4, 13, 38, 49, 53, 64
Robbery:	
LASSO	2, 4, 15, 25, 28, 31, 38, 39, 41, 44, 49, 50, 52, 62, 63
CM	all variables
NCCO	1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 61, 64, 65, 68
AQM	3, 4, 13, 32, 33, 34, 35, 36, 38, 39, 46, 51, 53, 64
Assault:	
LASSO	1, 38, 39
CM	all variables
NCCO	1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 61, 64, 65, 68
AQM	3, 4, 13, 22, 26, 38, 49
Burglary:	
LASSO	1, 3, 4, 9, 16, 19, 25, 27, 33, 43, 49, 50, 52, 53, 64, 66, 67
CM	all variables
NCCO	1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 61, 64, 65, 68
AQM	4, 13, 19, 22, 38, 49
Larceny:	
LASSO	1, 6, 9, 16, 19, 22, 25, 27, 28, 30, 49, 50, 53, 60, 66, 67
CM	all variables
NCCO	1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 61, 64, 65, 68
AQM	19, 36, 37, 40, 46, 51, 53, 64, 65

CM, Cramér-von-Mises type statistic; NCCO, normalized cross-covariance operator; AQM, asymmetric quadratic measure.

REFERENCES

GHOSAL, S., GHOSH, J. K. & RAMAMOORTHI, R. V. (1999). Posterior consistency of Dirichlet mixtures in density estimation. *Annals of Statistics* **27**, 143–158.

HELLER, R., HELLER, Y. & Gorfine, M. (2013). A consistent multivariate test of association based on ranks of distances. *Biometrika* **100**, 503–510.
Table 14. *List of the selected predictors for auto thefts, arsons, violent crimes and non-violent crimes by the competitors*

Method	Variable numbers of the selected predictors
Auto Theft:	
LASSO	1, 9, 19, 39
CM	all variables
NCCO	1,3,4,5,6,7,8,9,11,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,51,52,61,64,65,68
AQM	3, 4, 13, 22, 26, 38, 39, 48, 51, 53
Arson:	
LASSO	1, 19, 39
CM	all variables
NCCO	1,3,4,5,6,7,8,9,11,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,61,64,65,68
AQM	53
Violent Crime:	
LASSO	3, 5, 9, 25, 27, 32, 35, 39, 41, 42, 52, 62, 63, 66, 67
CM	all variables
NCCO	1,3,4,5,6,7,8,9,11,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,51,52,61,64,65,68
AQM	3, 4, 13, 22, 26, 36, 38, 53, 64
Non-Violent Crime:	
LASSO	1, 9, 19, 30, 49, 66
CM	all variables
NCCO	1,3,4,5,6,7,8,9,11,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35,36,37,38,39,42,43,44,45,46,47,48,49,51,52,53,61,64,65,68
AQM	19, 36, 51, 53

CM, Cramér-von-Mises type statistic; NCCO, normalized cross-covariance operator; AQM, asymmetric quadratic measure.

Ishwaran, H. & James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. *Journal of the American Statistical Association* 96, 161–173.

Joe, H. (1989). Relative Entropy Measures of Multivariate Dependence. *Journal of the American Statistical Association* 84, 157–164.

Seth, S. & Príncipe, J. C. (2012). Conditional association. *Neural Computation* 24, 1882–1905.

van der Vaart, A. & Wellner, J. (2000). Preservation theorems for Glivenko-Cantelli and uniform Glivenko-Cantelli classes 47, 115–133. In: High Dimensional Probability II, Progress in Probability.

[Received August 2014]
