Large thermo-erosional tunnel for a river in northeast Greenland

Catherine L. Docherty a, b, *, David M. Hannah a, Tenna Riis c, Simon Rosenhøj Leth c, Alexander M. Milner a, d

a School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, United Kingdom
b Department of Atmospheric Environment and Aquatic Ecosystem, Institute of Mountain Science, Shinshu University, Japan
c Department of Bioscience, Aarhus University, Aarhus, Denmark
d Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA

Article history:
Received 20 February 2017
Received in revised form 12 August 2017
Available online xxx

Keywords:
Permafrost
Stream
Climate change
Snowmelt runoff
Arctic

1. Introduction

Thermo-erosional niches are river bank undercutting resulting from the combined action of thermal and mechanical erosion (Walker et al., 1987): running water infiltrates cavities in the frozen active layer, forming underground tunnels, from where fast water current and warmer water temperatures, relative to the frozen ground, simultaneously thaw and erode the permafrost (Walker and Arnborg, 1966; Perreault et al., 2016). Whilst water temperature has been identified as the principal factor influencing thermo-erosional niche development, ice, sand and silt content in the permafrost are also important considerations (Dupeyrat et al., 2011). Thermal erosion is most prevalent in the High Arctic landscape due to (1) higher river flows during summer peak snowmelt and (2) the presence of permafrost which strengthens the river banks but permits larger amounts of bank undercutting, and large slump blocks when the banks finally collapse (Scott, 1978). Whilst the most common type of thermo-erosional niche occurs along stream banks or coastal areas where the above sediment collapses eventually, they can also be created without the sediment above the niche collapsing, forming tunnels. However, due to their tendency to occur in these remote environments, large tunnel forming thermo-erosional niches have rarely been reported. Most reports of large-scale thermo-erosional niches have been from Alaska and Canada and have been formed through ice wedge thaw (eg. Fortier et al., 2007; Godin and Fortier, 2012; Veillete et al., 2015 Kanevskiy et al., 2016). Limited information is available from other areas of the Arctic. To increase our knowledge on this phenomenon and create a pan-Arctic record, here we report and describe a large thermo-erosional tunnel over a stream in northeast Greenland.

2. Methods and data

2.1. Site description

The snowmelt-fed stream Aucellaelv is in close proximity to the Zackenberg research station at 74° 28' N, 20° 34' W in the Northeast Greenland National Park (Fig. 1). The mean annual air temperature is −9.1 °C and the warmest month is July with a mean temperature of 5.8 °C. The mean precipitation is 261 mm and falls mainly as
snow (Hansen et al., 2008). The site was located on lower mountain slopes within a wide horizontal valley formed by glacial erosion approximately 10,000 years before present (Mernild et al., 2007; Bennike et al., 2008). Zackenberg is an area of continuous permafrost, with depth modelled to be 200–300 m deep and varying active layer thickness between 0.3 and 0.65 m (Christiansen et al., 2008). The region is composed of Cretaceous and Tertiary sandstones with loose sediment of weak compaction that is susceptible to erosion (Hasholt and Hagedorn, 2000) and is held together largely due to its frozen nature. Ice wedge polygons occur within
the area and signs of thermal erosion have been observed before in
the area along the banks of the larger Zackenberg River after an
extreme flood event (Christiansen et al., 2008), however this did
not result in tunnel formation.

The Aucellaelv channel has been characterised as having low
channel stability and as being highly mobile with stream channel
observed to shift course by 1 m after an extreme storm event
(personal observation). Suspended sediment concentration was
high (>1100 mg/L). The Aucellaelv floodplain consisted largely of
boulders, cobbles and silt; and there was limited vegetation in close
proximity to the stream. The streams in this region are frozen
typically to the stream bed between late September and early June,
when thawing coincides with peak summer snowmelt.

2.2. Observation and description of thermo-erosional niche

First observed on 14th July 2015, the entire stream had ‘dis-
appeared’ underground through a self-formed tunnel at approxi-
mately 1.5 m below the surface, leaving the above soil intact, and
travelled for approximately 70 m before re-emerging downstream
into the original stream channel. It is unknown how long the tunnel
had been in existence before this date. A large amount of slumping
was present at the entry point due to a loss of soil stability and
compaction (Fig. 2; Fig. 3), with slump blocks undergoing fluvial
erosion as they were unable to be transported downstream due to
the tunnel roof blocking passage. Less slump blocks were present at
the point of exit (Fig. 4) due to them being transported away in the
flow. Water temperature was 4 °C and water velocity was relatively
high (discharge 976 L/s, average velocity within reach 0.59 m/s).
Water samples were collected at the entry and exit of the tunnel,
filtered in the field using Whatmann GF/F filter papers and analysed
for major ions. Higher concentrations of all major ions were found
downstream, with Mg concentration increasing from 1.66 mg/L to
2.72 mg/L and Na increasing from 2.84 mg/L to 4.05 mg/L
(Table 1) due to the erosion of permafrost acting as a major source
of ions (Rasch et al., 2000). Approximately 800 m downstream of
the tunnel, dissolved solute concentration remained high and in
some cases, was slightly higher than directly below the thermo-
erosional tunnel exit (Table 1).

The tunnel was still present on 22 July, eight days after first
observation; however, bank-side slumping had increased around
the niche throughout that time. Due to the logistical difficulties of
fieldwork in northeast Greenland, it was not possible to conduct a
long-term study on the evolution of this process and consequently,
it is unknown how much longer the tunnel remained. Whilst
Aucellaelv had been classified as having a low stability channel, no
prior observation of such an event had been reported for Aucellaelv
or elsewhere in the Zackenberg region.

Whilst other documented thermo-erosional tunnels have
formed in a vertical direction due to meltwater runoff melting ice
wedges, leading to waterfall and sinkhole formation previous to
tunnel development (eg. Fortier et al., 2007; Godin and Fortier,
2012), the horizontal formation of this tunnel in the river bank
infers that the thermo-erosional tunnel reported in this paper was
not caused by ice wedge thaw. We propose that the relatively warm
stream temperature of 4 °C of Aucellaelv combined with high ve-
ocity of the meltwater thawed the frozen sediment in the river
channel and created the observed tunnel.

3. Discussion and conclusions

3.1. Potential implications and processes in a changing climate

Whilst these events are rarely observed, they may become more
frequent in the future. By the end of the 21st century air temper-
ture in northeast Greenland could increase by up to 18 °C on
current winter temperatures, with more modest increases on
summer temperatures (Stendel et al., 2008). Precipitation is pre-
dicted to increase by up to 60%, falling as snowfall during the winter
but more commonly as rainfall throughout the summer (Stendel
et al., 2008). The increase in nivation processes, permafrost
degradation and larger spring floods will play a large role in
reshaping local geomorphology, causing permafrost degradation to
increase. Ice wedges will become increasingly exposed to thermal
erosion as water temperatures warm and flow increases through
increased meltwater inputs. Thus, permafrost thaw can have a large

Please cite this article in press as: Docherty, C.L., et al., Large thermo-erosional tunnel for a river in northeast Greenland, Polar Science (2017),
http://dx.doi.org/10.1016/j.polar.2017.08.001
impact on the landscape (Kokelj and Jorgenson, 2013) and on stream ecosystems through changes to physicochemical habitat (Christiansen et al., 2008; Callaghan et al., 2011; Kokelj et al., 2013; Thienpont et al., 2013; Chin et al., 2016). Increased sediment and ionic load and changes to channel stability are known to cause declines in macroinvertebrate abundance and community structure with consequent effects on the food web in these fragile stream systems (Chin et al., 2016).

In Zackenberg, the formation of a thermo-erosional tunnel led to increased ionic load in stream water and low stream bank stability, modifying the stream ecosystem over a large area. The high dissolved solute concentration at a distance from the tunnel, which in some cases was higher than directly below the tunnel exit, was due to a combination of the time taken for in-stream process to release solutes from suspended sediment, and additional contributions from downstream bankside sediment erosion and dissolution. As it is unknown how long the tunnel remained, the persistence of the impact on stream hydrochemistry and channel stability are unknown. Permafrost research has received a large amount of attention in some parts of the Arctic (eg. Alaska, Canada), but in Greenland it has received little attention. Zackenberg is the most intensively studied region in high-Arctic Greenland (Christiansen et al., 2008), but even so, no thermo-erosional tunnel had been reported previously in the area or had been witnessed by the scientists that had spent numerous summers in the area. Typical models and simulations for predicting permafrost thaw are generally unable to predict localised thaw events that have potential to transform landscapes through erosion and hydrological processes, as they are unable to account for the large spatial variability in ground thermal regime that is typical in Arctic regions (Westermann et al., 2014). For this reason, reporting of localised thaw events is vital to advance our understanding of their impact on local geomorphology. This paper provides vital insights into Greenlandic permafrost dynamics allowing us to understand the influence of extreme degradation events on the local landscape and adding to the increasing body of literature on thermo-erosional niche development. Increased documentation of underground tunnel development around the Arctic is necessary to understand how widespread the phenomenon is, and to understand the variety of conditions that lead to its formation.

Acknowledgements

Catherine Docherty was funded by a Natural Environment Research Council (NERC) studentship (NE/L501712/1). Fieldwork to Zackenberg over three years was funded through the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 262693 (INTERACT) and by Carlsberg Foundation (2013-01-0258; Tenna Riis). Funders had no role in study design, analysis, interpretation or decision to publish. Fieldwork at Zackenberg in 2015 was conducted with the Greenland Ecosystem Monitoring (GEM) coordination group permit number C-15-4(12) and the Government of Greenland survey licence number G15-026 for sample collection. The authors thank Biobasis, Geobasis and Zackenberg logistics for all of their field assistance. The authors would like to thank Nils Roar Saethun and two anonymous reviewers for their suggestions and comments on the manuscript. Fig. 1 was produced by Chantal Jackson at the University of Birmingham.

Table 1
Major cations in stream water upstream and downstream of the tunnel. All cations measured in mg L⁻¹.

Site	Mg	Na	K	Ca	S	Si
Upstream	1.66	2.84	0.10	7.62	5.44	0.66
0 m downstream	2.72	4.05	0.16	10.54	8.67	0.84
800 m downstream	2.67	4.56	0.2	9.91	9.05	0.94

References

Bennike, O., Sørensen, M., Fredskild, B., Jacobsen, B.H., Böcher, J., Amsinck, S.L., Jeppesen, E., Andersen, C., Christiansen, H.H., Humlum, O., 2008. Late quaternary environmental and cultural changes in the wialastion forland region. Northeast Greenland. In: Advances in Ecological Research, High Arctic Ecosystem Dynamics in a Changing Climate, vol 40. Academic Press, pp. 45–79.

Callaghan, T.V., Johansson, M., Anisimov, O., Christiansen, H.H., Insannes, A., Romanovsky, V., Smith, S., 2011. Changing permafrost and its impacts (Chapter...
5). In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 5–1–5–62.

Chin, K.S., Lento, J., Culp, J.M., Lacelle, D., Kokelj, S.V., 2016. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates. Glob. Change Biol. 22 (8), 2715–2728.

Christiansen, H.H., Sigsgaard, C., Humlum, O., Rasch, M., Hansen, B., 2008. Permafrost and periglacial geomorphology at Zackenberg. In: Advances in Ecological Research, High-arctic Ecosystem Dynamics in a Changing Climate, vol 40, pp. 151–174.

Dupeyrat, L., Costard, F., Randriamanaoro, R., Gailhardis, E., Gautier, E., Fedorov, A., 2011. Effects of ice content on the thermal erosion of permafrost: implications for coastal and fluvial erosion. Permafr. Periglac. Process. 22, 179–187.

Fortier, D., Allard, M., Shur, Y., 2007. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago. Permafr. Periglac. Process. 18, 229–243.

Godin, E., Fortier, D., 2012. Geomorphology of a thermo-erosion gully, Bylot Island, Nunavut, Canada. Can. J. Earth Sci. 49, 979–986.

Hansen, B.U., Sigsgaard, C., Rasmussen, L., Cappelen, J., Hinkler, J., Mernild, S.H., Petersen, D., Tamstorf, M.P., Rasch, M., Hasholt, B., 2008. Present-day climate at Zackenberg. In: Advances in Ecological Research, High Arctic Ecosystem Dynamics in a Changing Climate, vol 40. Academic Press, pp. 111–147.

Hasholt, B., Hagedorn, B., 2000. Hydrology and geochemistry of river-bourne material in a high arctic drainage system, Zackenberg, Northeast Greenland, Arctic. Antarct. Alp. Res. 32, 84–94.

Kanevskiy, M., Shur, Y., Strauss, J., Jorgenson, T., Fortier, D., Stephani, E., Vasyliev, A., 2015. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370–384.

Kokelj, S.V., Jorgenson, M.T., 2013. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119.

Kokelj, S.V., Lacelle, D., Lantz, T.C., Tunnifløe, J., Malone, L., Clark, I.D., Chin, K.S., 2013. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf. 118, 681–692.

Mernild, S.H., Liston, G.E., Hasholt, B., 2007. Snow-distribution and melt modelling for glaciers in Zackenberg river drainage basin, north-eastern Greenland. Hydrol. Process. 21, 3249–3263.

Perreault, N., Lévesque, E., Fortier, D., Lamarque, L.J., 2016. Thermo-erosion gullies boost the transition from wet to mesic tundra vegetation. Biogeosciences 13, 1237–1253.

Rasch, M., Elberling, B., Kakobsen, B.H., Hasholt, B., 2000. High-resolution measurements of water discharge, sediment and solute transport in the river Zackenbergelven, Northeast Greenland. Arct. Antarct. Alp. Res. 32, 336–345.

Scott, K.M., 1978. Effects of Permafrost on Stream Channel Behaviour in Arctic Alaska, Geological Survey Professional Paper 1068. United States Government Printing Office, Washington.

Stendel, M., Christiansen, J.H., Petersen, D., 2008. Arctic climate and climate change with a focus on Greenland. In: Advances in Ecological Research, High-arctic Ecosystem Dynamics in a Changing Climate, vol 40, pp. 13–43.

Thienpont, J.R., Rühl, K.M., Pisaric, M.F.J., Kokelj, S.V., Kimpe, L.E., Blais, J.M., Smol, J.P., 2013. Biological responses to permafrost thaw slumping in Canadian Arctic lakes. Freshw. Biol. 58, 337–353.

Veillette, A., Fortier, D., Godin, E., 2015. Contrasting patterns of thermo-erosion gullies formed in syngenetic ice wedge polygonal terrains on Bylot Island, eastern Canadian Arctic: case studies from three different sedimentary environments. Geoquebec2015. http://dx.doi.org/10.13140/RG.2.1.2923.0803.

Walker, D.A., Cate, D., Brown, J., Racine, C., 1987. Disturbance and Recovery of Arctic Alaskan Tundra Terrain, a Review of Recent Investigations. US Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire.

Walker, H.J., Arnborg, L., 1966. Permafrost and Ice wedge effects on river bank erosion. In: Permafrost: International Conference, 11–15 November, Lafayette, Indiana, Washington D.C. National Research Council Publication no. 1287, pp. 164–171.

Westermann, S., Elberling, B., Højlund Pedersen, S., Stendel, M., Hansen, B.U., Liston, G.E., 2014. Future permafrost conditions along environmental gradients in Zackenberg, Greenland. Cryosphere Discuss. 8, 3907–3948.