The Earliest Fleshy Cone of *Ephedra* from the Early Cretaceous Yixian Formation of Northeast China

Yong Yang, Qi Wang*

State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China

Abstract

Bracts of female cones of extant gymnosperm *Ephedra* (Joint fir) are either colorful and fleshy (section *Alatae*), or dry-winged and membranous (section *Alatae*), or dry and coriaceous (section *Asarca*), which have played a crucial role in long-distance seed dispersal that is responsible for a wide distribution of the genus in semiarid and arid areas of Eurasia, North Africa, North America, and South America. Recent molecular systematic studies on *Ephedra* have suggested that the fleshy bracts in character evolution may be plesiomorphic relative to the dry, membranous and coriaceous bracts. However, little is known about when the fleshy bracts of *Ephedra* have made their debut in the geological past. Herein, we describe a novel, fleshy bract-bearing female cone macrofossil from the Early Cretaceous (ca. 120—125 Ma) Yixian Formation in Liaoning, northeastern China. This cone bears three ellipsoid seeds subtended by only one whorl of fleshy bracts. Each seed has a thin outer envelope and an inner integument that extends upward and passes through the opening of the outer envelope, forming a thin and straight micropylar tube. Such a syndrome shows the closest similarity to an extant triovulate species *Ephedra intermedia* in the section *Ephedra*, but the latter bears a whorl of terminal fertile bracts and more than one whorl of inferior fertile bracts, and a thick outer envelope. Hence, we establish a new fossil species *Ephedra carnosa*. Our discovery provides the first direct macrofossil evidence for the previous molecular systematic studies of *Ephedra*, implying that the origin of fleshy bracts in *Ephedra* should not have been later than that of the membranous and coriaceous bracts by at least the Early Cretaceous.

Introduction

The gymnospermous genus *Ephedra* L. (Joint fir) contains about 50 living species, native to semiarid and arid areas of Asia, Europe, North Africa, North America, and South America ([1–7]; Fig. 1). This genus has three types of female cones upon which a once widely accepted sectional classification is based [8], i.e., Sect. *Alatae* Stapf bears free, dry, winged, and membranous bracts (Fig. 2A), Sect. *Asarca* Stapf has free, dry, but coriaceous bracts (Fig. 2B), while Sect. *Ephedra* possesses thickened, colorful, and fleshy bracts (Fig. 2C). Recent molecular phylogenetic studies have suggested that the three morphological sections are not natural and none of them is monophyletic, but the earliest diverged branch within the genus comprises species with fleshy cones from the Mediterranean region [9–12]. Meanwhile, Sect. *Alatae* and Sect. *Asarca* are nested within Sect. *Ephedra*, implying that the fleshy cone is plesiomorphic in *Ephedra*. However, when the first fleshy cone occurred in the fossil record remains unknown. *Ephedra* macrofossils (especially female cones) will provide an historical perspective for the early evolution, taxonomy, and biogeography of the genus.

Early *Ephedra* might have transformed bracts of female cones into fleshyness and vivid color to assist seed dispersal [13–15], resulting in a wide intercontinental distribution of the genus. However, little is known about when such characteristic fleshy cones occurred in *Ephedra*. According to molecular clock data, modern *Ephedra* was estimated to have a minimum age 8—32 Ma (i.e., an Oligocene origin) [11,16]. However, it lags behind the first occurrence of Early Cretaceous meso- and macrofossils bearing clear morphology that can be reliably circumscribed within *Ephedra*, e.g., *E. archaehydnopodspitnum* Yang et al. [17], *E. portugallica* Rydin et al., *E. desseriensis* Rydin et al. [18], and *E. hongtaoi* Wang et Zheng [19]. Therefore, pruning of early stem groups and extinctions of ancient lineages may have played an important role in the early evolution of *Ephedra* [11,12,20]. It is expected that the putatively plesiomorphic character bearing fleshy cones in *Ephedra* would have made their debut earlier than Oligocene.

In recent decades, numerous *Ephedra* and *Ephedra*-like meso- and macrofossils have been reported from the Early Cretaceous of South Europe, Northeast China, Mongolia, North America, and South America [17–19,21–23]. Seed mesofossils with *in situ* pollen were reported from the Early Cretaceous of South Europe (Portugal) and North America [18,24]. Macrofossils of reproductive shoots or female cones were found in the Early Cretaceous of South America [25,26], and Mongolia [27,28] and adjacent Northeast China [17,19,21–23,29,30]. Early Cretaceous strata of Northeast China contain a number of well-preserved ephedroid macrofossils that may shed light on the early evolution of *Ephedra*. They show high reproductive diversity but similar vegetative morphology, e.g., dichasial branching pattern (sometimes branches being clustered due to highly shortened internodes), long and
linear leaves usually with two parallel veins, and internodes with longitudinal fine striations, which can be divided into three groups. The first group bears female cones with multiple whorls of fertile bracts, e.g., Liaoxia Cao et Wu (= Ephedrites Goppert et Berendt) [21,31]; the second group bears female cones with only one whorl of fertile bracts, e.g., Ephedra longistia and E. archaecalyxalba [17,19] and several species ascribed to Gurvenella Krassilov (= Chaoyangia Duan) bearing trichotomous complex surrounding female cones [27,32,33]; the third group is Siphonospermum Rydin et Friis which has female cones without supporting bracts [22]. So far, all the previous studies have not provided any fossil evidence for the origin of fleshy female cones of Ephedra.

In this paper, we aim to describe a new, freshy cone-bearing fossil species, Ephedra carnosa Yang et Wang sp. nov., from the Early Cretaceous of Liaoning Province, Northeast China. Our discovery provides the first direct macrofossil evidence for the previous molecular systematics of Ephedra, implying that the origin of fleshy bracts in Sect. Ephedra should not have been later than that of the membranous and coriaceous bracts in Sect. Alatae and Sect. Asarca by at least the Early Cretaceous.

Materials and Methods

The macrofossils used in this study were collected from the Yixian Formation at Huangbanjigou Village of Shangyuan Town, Beipiao City, Liaoning Province, Northeast China [Fig. 3]. The Yixian Formation is widely distributed in West Liaoning [33], and its geological age is the early Aptian—earliest late Aptian of the Early Cretaceous, which can be correlated by radiometric dating to about 120—125 Ma [34–39]. Previously, this formation has

Figure 1. Distribution of extant Ephedra (green regions) after [5] (red dot showing the present fossil locality).
doi:10.1371/journal.pone.0053652.g001

Figure 2. Representative female cones of three sections in Ephedra. A. A membranous female cone of E. californica Watson in Sect. Alatae Stapf. B. A coriaceous female cone of E. strobilacea Bunge in Sect. Asarca Stapf. C. A fleshy female cone of E. intermedia Schrenk et Mey. in Sect. Ephedra.
doi:10.1371/journal.pone.0053652.g002
yielded a plethora of extraordinarily well-preserved freshwater and terrestrial fossils, especially including early angiosperms (e.g., *Archaefructus liaoningensis* Sun et al.), feathered theropod dinosaurs, early seed-eating birds, and primitive mammals [35–37,39–41].

The macrofossils are preserved as impressions lacking cuticle and include a part and a counterpart from a gathering slab of finely laminated light grey to yellowish siltstone. Figures 1, 3 presented here were redrawn from the base maps, respectively [5,40]. Voucher specimens (WH Lipsky 4181 and L Benson 15280) of *Ephedra californica* Watson and *E. strobilacea* Bunge were examined at the China National Herbarium (PE), including two female cones used in Figure 2A–B. The female cone of *Ephedra intermedia* Schrenk et Mey, presented in Figure 2C was photographed by the senior author at Mt Renshoushan of Gansu Province, Northwest China. Macrofossils were photographed with digital cameras (Nikon D700 and Panasonic DMC-FZ30) and graphed by the senior author at Mt Renshoushan of Gansu Province, Northwest China. Macrofossils were photographed with digital cameras (Nikon D700 and Panasonic DMC-FZ30) and under a microscope (Nikon Eclipse E600). Comparisons were made in Table 1 with some coeval, similar *Ephedra* and ephedroid meso- and macrofossils. All figures were arranged by Adobe Photoshop 6.0 and CorelDraw 10.0 programs. Terminology on meso- and macrofossils. All figures were arranged by Adobe Photoshop and CorelDraw programs. Terminology on meso- and macrofossils. All figures were arranged by Adobe Photoshop 6.0 and CorelDraw 10.0 programs. Terminology on meso- and macrofossils. All figures were arranged by Adobe Photoshop 6.0 and CorelDraw 10.0 programs. Terminology on meso- and macrofossils. All figures were arranged by Adobe Photoshop 6.0 and CorelDraw 10.0 programs.

Nomenclature

The electronic version of this article in Portable Document Format (PDF) in a work with an ISSN or ISBN will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic publication of a PLOS ONE article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies. The online version of this work is archived and available from the following digital repositories: PubMed Central, LOCKSS, BioOne.

Results

The three extant gymnospermous genera, *Ephedra* L., *Gnetum* L., and *Welwitschia* Hooker, have been widely treated as a natural taxon, either a class Gnetopsida or an order Gnetales, with their own monogenic families [3,6,7,45,46]. Therefore, our new fossil species of *Ephedra* is classified as follows:

- Gnetopsida Eichler ex Kirpotenko, 1884
- Gnetales Luerss., 1879
- Ephedraceae Dumort., 1829
- *Ephedra* L., 1753
- *Ephedra carnosa* Yang et Wang, sp. nov. (Fig. 4)

Description

Triovulate cones have but only one whorl of bracts. Each bract is apparently thickened and spreading and subtends a seed. The female cone bears two veins sub-parallel in the middle-upper part and divergent toward the basal part. Seeds are ellipsoid. The outer envelope is thin. The inner integument is fused with the nucellus, but only its apical part extends upward and passes through the outer envelope opening, forming a slim and straight micropylar tube.

Diagnosis

Triovulate cones have but only one whorl of bracts [Fig. 4A–D, H–I]. A remnant receptacle is preserved at the bottom of the cone. The receptacle is 1.3 mm long and 1.3 mm wide at the base, and thickened acropetally up to 2.4 mm wide. The bracts are apparently thickened, spreading, triangular, and tapered [Fig. 4C–D, F–G], ca. 5—6 mm long and 3 mm wide at the base while 2 mm wide at the apex. The bract margin is not clearly defined. Each bract has two veins sub-parallel in the middle-upper part and divergent toward the basal part [Fig. 4F–G]. The interval between the two veins is wider at the base (up to 620 μm) and becomes narrower (ca. 207 μm) in the middle part, and then the two veins are parallel (ca. 130 μm) to each other towards the apex. Each bract subtends a seed. Seeds are ellipsoid, flat at the ventral side and arched at the dorsal side, about 1.5 mm wide and 2.6—3 mm long. The outer envelope is thin. The inner integument appears to be fused with the nucellus, but only its apical part extends upward and passes through the opening of the outer envelope to form a micropylar tube [Fig. 4E]. The micropylar tube is slim and straight, the exposed part is approximately 1.3 mm long.

Etymology

The specific epithet is derived from Latin “*carnosus*”, denoting the apparently thickened (thereby fleshy) bracts of female cones.

Holotype

(Designated here)— PE 20120319A, B (part and counterpart), deposited at the China National Herbarium (PE), Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China.

Paratype

PE 2012071006, deposited at the China National Herbarium (PE), Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China.
Locality
Huangbanjigu Village of Shangyuan Town, Beipiao City, Liaoning Province, Northeast China.

Stratigraphic horizon and age
Yixian Formation, the early Aptian—earliest late Aptian of the Early Cretaceous.

Comparisons
The new fossil species Ephedra carnosa Yang et Wang is noticeably different from any other known extant and fossil species in Ephedra and other ephedroids [Table 1].

Remarks
Bracts of female cones of Ephedra are modified foliar organs in nature. In living Ephedra, cone bracts have three states according to their mature morphology, e.g., fleshy bracts, dry and coriaceous bracts, and dry and membranous bracts (see Introduction, Fig. 2A–C). The thickness of median portion of cone bracts between the two parallel vascular bundles varies in the three sections of Ephedra, Sect. Ephedra (1.2—1.3 mm in E. intermedia), Sect. Asarca (ca. 80 μm in E. californica), and Sect. Alatae (ca. 40 μm in E. torreyana) [unpublished personal observations]. This demonstrates that the fleshy cone bracts are markedly thicker than dry (either coriaceous or membranous) bracts in Ephedra. Similarly, the triovulate cones of our new macrofossil species Ephedra carnosa bear apparently thickened bracts without clearly defined margins, which are far more likely to be compared with those fleshy bracts in living Ephedra. In addition, two veins in each bract are sub-parallel in the middle-upper part (ca. 136—207 μm apart) but, apparently divergent toward the basal part (up to 620 μm apart), implying that the bract would be most possibly swollen in life. Hence, the cone bracts of macrofossils Ephedra carnosa presented here are ripe and fleshy.

The triovulate cones appear to have abscised from the reproductive shoots as a mature disseminule (or diaspore). Almost intact micropylar tubes in fossils imply that the cones have not been transported far from the parent plants before fossilization. On the basis of its trimerous nature, three seeds of each cone must be subtended by three verticillate bracts, which are 120 degrees apart from each other. Two bracts are visible, so the third bract might have run into the embedding rock after the cone fell into soft sediments, fossilized and then opened along the cutting plane. Building on the above morphological description and taphonomic inference, we present here a schematic reconstruction of the triovulate cone and its seed [Fig. 5].

There is an associated axis in the specimens besides the female cone described above. The axis is straight, 1.3 cm long and 0.4 mm wide, with fine longitudinal striations (Fig. 4A–B). These features imply that the axis is likely to be the vegetative twigs of a same parent plant (or population) as the female cone. Due to lacking organic connection and other useful epidermal evidence between them, we do not include the axis into the description of this new species.

Discussion
Characteristic thin outer envelope
The outer envelope of the new macrofossil species Ephedra carnosa seems very thin and vulnerable, so it is easy to be transformed after compression. Also, the integument extended into a micropylar tube enclosed in the outer envelope is visible. In contrast, modern Ephedra with fleshy bracts usually bears a thicker and harder outer envelope and a very thin integument with only 1—2-cell thick [44,45]. In addition, Sect. Alatae usually bears thin outer envelope and integument while Sect. Asarca and Sect. Ephedra usually bear a thickened outer envelope. As a result, our new fossil species is quite unique in that it bears fleshy bracts and a very thin outer envelope.

The outer envelope of modern Ephedra has three types of ornamentations, including smooth surface (e.g., E. intermedia, E. disticha L., E. aphylla Forssk., and E. tesselata Fisch. et Mey.), papillate type (e.g., E. major Host, and E. funerea Coville et Morton), and transverse lamellar sculpture (e.g., E. thyridiosperma Pachomova, E. trifusa Torr. [6,47,48]). The smooth and/or striated surfaces are very common in both fossil and extant species while the other two types are only restricted to a few species. The transverse lamellar

Table 1. Key to extant and fossil species in Ephedra and other ephedroids.

1. Female cones lacking supporting bracts	———Siphonospermum [22]
2. Female cones bearing supporting bracts	———2
3. Female cones surrounded by furcated appendages	———Gurvanella [27]
4. Cone bracts spine-like and lanceolate	———Beipiao [33,54]
5. Female cones having only a pair/whorl of terminal, fertile bracts and 1—multiple pair/whorls of inferior sterile bracts	extant Ephedra [44]
6. Female cones having only a pair of inferior sterile bracts, and seed surface bearing transverse ridges	———E. archaeoerythidosperma [17]
7. Breviovulate, and micropylar tube less than 0.8 mm	———E. hongtaoi [19]
8. Triovulate, and micropylar tube longer than 1 mm	———E. carnosa [this paper]

doi:10.1371/journal.pone.0053652.t001
sculpture can also be found in fossil species from the Early Cretaceous [17, 49–51] and might have multiple origins [52]. Our new fossil species *Ephedra carnosa* bears the outer envelope with the smooth type of seed surface. Surface sculpture of the outer envelope may be variable in the developmental sequence. In both *E. equisetina* Bunge and *E. rhytidosperma*, the outer envelope is generally smooth at the early stages of development while specialized surface ornamentations only occur in the late stages of development [6]. In modern *Ephedra*, fleshiness is correlated with maturity of female cones. As a result, we infer that our new fossil species has ripe reproductive units with smooth outer envelope. Such a thin outer envelope may have some physiological functions, e.g., regulating water loss.

Two alternative hypotheses may be used to explain the thin outer envelope of this new fossil *Ephedra*. One is that this new species represents the stem lineage of *Ephedra* and it is the
beginning of fleshy cones in response to animal (probably reptiles and birds) dispersal, and subsequent thickened outer envelope would have been evolved into the modern forms; the other hypothesis is that the fossil species could not adapt to animal dispersal and become extinct because of its thin envelope. Hence it is an evolutionary blind alley of Ephedra.

Ecological implications for the fleshy bracts

Three kinds of agents are known for the dispersal of Ephedra. The dry-winged, membranous bracts type of mature female cones is dispersed by wind while the coriaceous bract type is distributed by seed-catching rodents, and the fleshy bract type is dispersed by frugivorous birds [14,15]. During Jurassic and Cretaceous, vertebrate-mediated (e.g., early mammals and early birds) seed dispersal interactions may have been important drivers of seed cone evolution in such conifers as Podocarpaceae Endl. and Taxaceae S. F. Grey, resulting in shifts of female cones from the lax open cones typical of Paleozoic and Triassic conifers to the more compact and reduced seed cones that are associated with fleshiness [53]. Remarkably, a seed-eating bird fossil has been discovered from the Yixian Formation of western Liaoning [39,41]. Probably this is also the case in Ephedra, so fleshiness as an effective vertebrate-mediated seed dispersal mechanism may have accounted for the wide distribution of ephedroid plants in southern Europe, northeastern Asia, eastern North America, and South America during the Early Cretaceous.

Acknowledgments

We greatly thank the academic editor Dr. Lee Newsom, the Pennsylvania State University, Dr. Jason Hilton, University of Birmingham, and an anonymous reviewer for their invaluable suggestions; D. Z. Fu, Institute of Botany, CAS for his helpful discussions; H. Wang, Beipiao City for his help in fossil collecting; Y. B. Sun, Institute of Botany, CAS for his excellent line-drawing; S. Shen, Institute of Botany, CAS for her logistics help; J. Y. Guo, the Claremont Colleges, C. H. Xiong, Peking University, and G. L. Shi, Nanjing Institute of Geology and Palaeontology, CAS for providing useful literature.

Author Contributions

Conceived and designed the experiments: YY QW. Performed the experiments: YY QW. Analyzed the data: YY QW. Contributed reagents/materials/analysis tools: YY QW. Wrote the paper: YY QW.

References

1. Gifford EM, Foster AS (1989). Comparative morphology of vascular plants, third edition. New York: WH Freeman. 620p.
2. Stevenson DW (1993) Ephedraceae. In: Flora of North America Editorial Committee, editors. Flora of North America North of Mexico, vol. 2. New York: Oxford University Press. pp. 428–434.
3. Price RA (1996) Systematics of Gnetales: a review of morphological and molecular evidence. Int J Plant Sci 157: 840–849.
4. Fu LG, Yu YF, Harald R (1999) Ephedraceae. In: Wu ZY, Raven PH, editors. Flora of China, volume 4. Beijing: Science Press & St. Louis: Missouri Botanical Garden. pp. 97–101.
5. Caveney S, Charlet DA, Freitag H, Mair-Stolte M, Starratt AN (2001) New observations on the secondary chemistry of world Ephedra (Ephedraceae). Am J Bot 88: 1199–1208.
6. Yang Y (2002) Systematics and evolution of Ephedra L. (Ephedraceae) from China. Unpublished Ph. D dissertation. Beijing: Institute of Botany, Chinese Academy of Sciences. 231p.
7. Anderson JM, Anderson HM, Cleal CJ (2007) Brief history of the gymnosperms: classification, biodiversity, phytochemistry and ecology. Strelitzia 20: Pretoria: South African National Biodiversity Institute. 280p.
8. Stafleu (1889) Die Arten der Gattung Ephedra. Denkschr Kaiserl Akad Wiss, Wien Math-Naturwiss Kl 56: 1–112.
9. Ickert-Bond SM, Wojciechowski MF (2004) Phylogenetic relationships in Ephedra (Gnetales): evidence from nuclear and chloroplast DNA sequence data. Syst Bot 29: 834–849.
10. Huang JL, Giannasi DE, Price RA (2005) Phylogenetic relationships in Ephedra (Ephedraceae) inferred from chloroplast and nuclear DNA sequences. Mol Phylogen Evol 35: 48–59.
11. Ickert-Bond SM, Rydin C, Renner SS (2009) A fossil-calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Musce dispersal into South America. J Syst Evol 47: 444–456.
12. Rydin C, Kowall P (2009) Evolutionary relationships in Ephedra (Gnetales), with implications for seed plant phylogeny. Int J Plant Sci 170: 1031–1043.
19. Wang X, Zheng SL (2010) Whole fossil plants of
21. Rydin C, Wu SQ, Friis EM (2006) Ephedrites
22. Guo SX, Wu XW (2000)
24. Rydin C, Pedersen KR, Crane PR, Friis EM (2004) On the evolutionary history of
25. Cladera G, Fueyo GMD, de Seoane LV, Archangelsky S (2007)
27. Krassilov VA (1982) Early Cretaceous flora of Mongolia. Palaeontogr Abt B
28. Krassilov VA (2009) Diversity of Mesozoic gnophytes and their associated plants from western Liaoning Province, NE China. Sci China (Ser D) 41: 14–20.
33. Sun G, Zheng SL, Döcher DL, Wang YD, Mei SW (2001) Early angiosperms and their associated plants from western Liaoning, China. Shanghai: Shanghai Scientific and Technological Education Publishing House. 227p.
34. Swisher CCIII, Wang Y, Wang X, Xu X, Wang Y (1999) Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature 400: 58–61.
35. Barrett PM (2000) Evolutionary consequences of dating the Yixian Formation. Trends Ecol Evol 15: 99–103.
36. Zhou ZH, Barrett PM, Hancox J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421: 817–818.
37. Swisher CCIII, Wang X, Zhou Z, Wang Y, Jin F, et al. (2002) Further support for a Cretaceous age for the feathered dinosaur beds of Liaoning, China: new U–Pb Ar/Ar dating of the Yixian and Tsengkeng formations. Chin Sci Bull 47: 135–138.
38. Gradstein FM, Ogg JG, Smith AG, Bloeker W, Lourens RJ (2004) A new Geological Time Scale, with special reference to Precambrian and Neogene. Episodes 27: 83–100.
39. Zhou ZH (2006) Evolutionary radiation of the Jehol Biota: chronological and ecological perspectives. Geol J 41: 377–393.
40. Sun G, Döcher DL, Zheng SL, Zhou ZK (1998) In search of the first flower: a Jurassic angiosperm, archaefructus, from Northeast China. Science 282: 1692–1695.
41. Zhou ZH, Zhang FC (2002) A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418: 465–469.
42. Yang Y (2001) Ontogeny and metamorphic patterns of female reproductive organs of Ephedra sinica Stapf (Ephedraceae). Acta Bot Sin 43: 1011–1017.
43. Yang Y (2004) Ontogeny of triovulate cones of Ephedra intermedia and origin of the outer envelope of ovules of Ephedraceae. Am J Bot 91: 361–368.
44. Rydin C, Khodabandeh A, Endress PK (2010) The female reproductive unit of Ephedra (Gnetales): comparative morphology and evolutionary perspectives. Bot J Linn Soc 163: 387–430.
45. Pearson HHW (1929). Gnetales. Cambridge: Cambridge University Press. 191p.
46. Kubitzki K (1990) Gnetaceae. In: Kramer KU, Green PS, editors. The families and genera of vascular plants, volume 1. Periplocoidea and gymnosperms. Berlin: Springer-Verlag. pp. 378–391.
47. Yang Y (2005) A new species of Ephedra L. (Ephedraceae) from Sichuan, China with a note on its systematic significance. Bot Bull Acad Sin 46: 363–366.
48. Yang Y (2011) Cuticular diversity of the seed outer envelope in Ephedra (Ephedraceae), with a discussion on its systematic significance. J Trop Subtrop Bot 19: 1–15.
49. Krassilov VA (1986) New floral structure from the Lower Cretaceous of Lake Baikal area. Rev Palaeobot Palynol 47: 9–16.
50. Friis EM, Crane PR, Pedersen KR, Bengtson S, Donoghue PCJ, et al. (2007) Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 450: 549–553.
51. Friis EM, Pedersen KR, Crane PR (2009) Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales–Erdtmanitheales–Gnetales group. Am J Bot 96: 252–283.
52. Ickert-Bond SM, Rydin C (2011) Micromorphology of the seed envelope of Ephedra L. (Gnetales) and its relevance for the timing of evolutionary events. Int J Plant Sci 172: 36–48.
53. Leslie A (2011) Shifting functional roles and the evolution of conifer pollen-producing and seed-producing cones. Palaeobiology 37: 587–602.
54. Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge: Cambridge University Press. 565p.