RESEARCH ARTICLE

Open Access

Oxidative stress in skin fibroblasts cultures from patients with Parkinson’s disease

Pilar del Hoyo1, Alberto García-Redondo1, Fernando de Bustos2, José Antonio Molina3, Youssef Sayed4, Hortensia Alonso-Navarro4,5, Luis Caballero2, Joaquín Arenas1, José AG Agúndez6, Félix Javier Jiménez-Jiménez4,7*

Abstract

Background: In the substantia nigra of Parkinson’s disease (PD) patients, increased lipid peroxidation, decreased activities of the mitochondrial complex I of the respiratory chain, catalase and glutathione-peroxidase, and decreased levels of reduced glutathione have been reported. These observations suggest that oxidative stress and mitochondrial dysfunction play a role in the neurodegeneration in PD. We assessed enzymatic activities of respiratory chain and other enzymes involved in oxidative processes in skin fibroblasts cultures of patients with PD.

Methods: We studied respiratory chain enzyme activities, activities of total, Cu/Zn- and Mn-superoxide-dismutase, glutathione-peroxidase and catalase, and coenzyme Q10 levels in skin fibroblasts cultures from 20 Parkinson’s disease (PD) patients and 19 age- and sex- matched healthy controls.

Results: When compared with controls, PD patients showed significantly lower specific activities for complex V (both corrected by citrate synthase activity and protein concentrations). Oxidized, reduced and total coenzyme Q10 levels (both corrected by citrate synthase and protein concentrations), and activities of total, Cu/Zn- and Mn-superoxide-dismutase, glutathione-peroxidase and catalase, did not differ significantly between PD-patients and control groups. Values for enzyme activities in the PD group did not correlate with age at onset, duration, scores of the Unified Parkinson’s Disease Rating scales and Hoehn-Yahr staging.

Conclusions: The main result of this study was the decreased activity of complex V in PD patients. This complex synthesizes ATP from ADP using an electrochemical gradient generated by complexes I-IV. These results suggest decreased energetic metabolism in fibroblasts of patients with PD.

Background

The pathogenesis of the neuronal degeneration of neurons in the pars compacta of the substantia nigra in patients with Parkinson’s disease (PD) is unknown. The discovery that the 1-methyl-4-phenyl-pyridinium ion (MPP+), the metabolite of the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) did inhibit complex I [1-3] led some investigators to examine the mitochondrial function in idiopathic PD.

The mitochondrial respiratory chain consists of five enzymatic complexes located within the inner mitochondrial membrane. Four enzymes (complexes I-IV) transport electrons from NADH or succinate to oxygen, and these complexes pump protons out of the mitochondria to form an electrochemical gradient. Complex V (ATP synthase) uses that electrochemical gradient to synthesize ATP from ADP.

Many studies have shown decreased complex I activity in the substantia nigra of PD patients (reviewed in reference [4]). More recently, Parker et al. [5] found decreased complex I activity in frontal cortex as well. However, the results of studies measuring mitochondrial complexes in peripheral tissues have been controversial (reviewed in reference [4]). The activity of mitochondrial complexes has been measured in the following tissues:

• Skeletal muscle (most studies performed with isolated mitochondria). There have been reported normal activities of mitochondrial respiratory chain complexes I-IV [6-10], or decreased activities of complexes I [11-16], II [11-14] or IV [15-17].
• Platelets (most studies performed with isolated mitochondria). There have been reported normal activities [6,18-20], or decreased activities of complex I [21-26], complex II+III [25] or complex IV [24].
• Lymphocytes. Studies with homogenates showed decreased activities of complex II [23] or complexes I and IV [27], while studies with isolated mitochondria showed normal activities [28], or decreased activity of complexes I and I+III [29], and complex IV [29].
• Leukocytes. Muftuoglu et al. [30] reported decreased complexes I and IV activities in leukocytes from patients with idiopathic PD, and decreased complex I activity, with normality of complex IV, in patients with parkin mutations.
• Spermatozoa. Our group showed similar mitochondrial respiratory chain enzymes activities corrected by citrate synthase (CS), in the spermatozoa from untreated PD patients [31].

A study on mitochondrial function of skin fibroblasts from PD showed a deficiency in complexes I and IV [32,33] that was partially restored with coenzyme Q10 treatment [33]. Piccoli et al. [34] examined mitochondrial respiratory function of a patient affected by early-onset parkinsonism carrying the homozygous W437X nonsense mutation in the PINK1 gene, and found decreased complex IV activity and some depression of the ATPase activity. In a recent study, Ferrer et al. [35] have shown decreased levels of ATP synthase in the substantia nigra and increased levels in the frontal cortex of patients with PD.

The study of mitochondrial function in PD might be important because, together with the classical description of oxidative stress and mitochondrial dysfunction in the brains of patients with this disease, the identification of specific gene mutations that cause PD has reinforced their relevance. Proteins associated with familial PD, such as PTEN-induced putative kinase 1 (PINK1), DJ-1, alpha-synuclein, leucine-rich repeat kinase 2 (LRRK2) and, possibly, parkin, are either mitochondrial proteins or are associated with mitochondria, and have a role on oxidative stress [36].

Some authors described decreased activities of the antioxidant enzymes glutathione-peroxidase (GPx) [37,38], total superoxide-dismutase (SOD) [39], Mn-SOD [40], Cu,Zn-SOD [41], and catalase [37], in the substantia nigra of PD patients; while Mn-SOD activity in the cortex of PD patients has been found increased [35,42]. GPx activity has been studied in serum or plasma, erythrocytes, and neutrophils; total SOD, Cu, Zn-SOD and/or Mn-SOD levels or activities in serum or plasma, cerebrospinal fluid, erythrocytes, neutrophils, platelets, and lymphocytes; and catalase activity in erythrocytes from PD patients. The results of these studies (reviewed in reference [4]) are controversial. Piccoli et al. [34], in their patient with the homozygous W437X nonsense mutation in the PINK1 gene described normal levels of total glutathione, reduced glutathione and glutathione peroxidase activity, normal Cu/Zn-SOD activity and a small decrease of the mitochondrial Mn-SOD in fibroblasts. To our knowledge activity of catalase has not been studied previously in fibroblasts.

Coenzyme Q10 (CoQ10) is the electron acceptor for mitochondrial complexes I and II and a powerful antioxidant [43]. Shults et al. [44] reported a correlation between mitochondrial CoQ10 levels and activities of complexes I and II/III. Gotz et al. [45] reported a decreased [reduced CoQ10/oxidized CoQ10] ratio (redox ratio) in untreated PD patients, that was further decreased by levodopa treatment and partially restored with selegine. Serum or plasma CoQ10 levels have been described decreased, normal or increased in some studies (reviewed in reference [4]). To our knowledge, CoQ10 levels in fibroblasts of PD patients have not been measured previously.

The aim of this study was to assess the enzymatic activities of respiratory chain enzymes and other enzymes involved in oxidative processes, such as GPx, SOD, catalase and coenzyme Q10 in skin fibroblast cultures from patients with PD. The study was carried out in skin fibroblasts because the specimens were easily accessible and should be free of influence from medication, environmental hazards and other possible factors contributing to oxidative stress.

Methods
Patients and controls
Twenty patients diagnosed with PD and 19 healthy age- and sex-matched controls were enrolled in this study, after informed consent. The study was approved by the Ethics Committees of the University Hospitals “Doce de Octubre” and “Principe de Asturias”, and was conducted according to the declaration of Helsinki. Two patients received no treatment, while the other 18 were treated with antiparkinsonian drugs alone or in combination including levodopa (16 cases), dopamine agonists (14 cases), selegiline or rasagiline (8 cases), anticholinergics (3 cases), and amantadine (1 case).

The control group was composed by 19 patients evaluated in the neurology departments of the same hospitals because of tension type headache, dizziness, dorsolumbar or cervical pain, etc. The clinical data of PD patient and control groups are summarized in table 1.

The following exclusion criteria were applied both to patients and controls: A) Ethanol intake higher than 80 g/day in the last 6 months. B) Previous history of
Skin fibroblast cultures

Human skin fibroblasts were obtained from the dorsal region of the upper arm of each PD patient or control. Fibroblasts from the biopsy specimens were cultured in Dulbecco’s modified Eagle’s medium containing penicillin (100 UI/mL), streptomycin (100 mg/dl), L-glutamine (4 mM) and supplemented with heat-inactivated fetal calf serum at 37°C in a humidified atmosphere of 95% air and 5% CO₂. Cells were grown to confluence, harvested by trypsinization at 37°C, washed with culture medium and resuspended with phosphate buffer 20 mM, and then sonicated to obtain the cell homogenate. Care was taken not to use cultures with a passage number greater than 12.

Respiratory chain enzymes assay

Respiratory chain enzymes and citrate synthase activity were measured in a DU-68 spectrophotometer (Beckman, applying 35-150 μg of total protein per 1 ml test volume in every complex enzyme assay. Incubation temperatures were 30°C for NADH coenzyme Q oxidoreductase (complex I), rotenone-sensitive NADH cytochrome c reductase (complexes I and III), succinate cytochrome c reductase (complexes II and III), succinate dehydrogenase (complex II) and citrate synthase (CS), and 38°C for cytochrome c oxidase (complex IV). The activities of complexes II, I and III, II and III, IV, and CS were determined as reported elsewhere [27]. Complex I was measured by following the oxidation of NADH at 340 nm in 100 mM Tris-HCl pH 7.4, 500 mM sucrose, 2 mM EDTA, 5 mM KCN, 100 μM NADH, and 50 μM DB (2,3-dimethyl-5-decyl-6-methyl-benzoquinone) [46]. The reaction was inhibited by 90% when 2 μM rotenone was present. Complex V was determined by measuring 2.5 mM ATP extinction in a mean with 50 mM Hepes-Mg buffer at pH 8.0, 0.2 mM NADH, and phosphoenol-pyruvate 2.5 mM, and then adding 5 μl of pyruvate-kinase (10 mg/ml) and 10 μl of lactate-dehydrogenase (5 mg/ml) in presence of 10 μl of antimycin A (0.2 mg/ml in 50% ethanol). The oligomycin sensitive fraction was measured by adding 10 μl of oligomycin (0.2 mg/ml in 50% ethanol).To correct for mitochondrial volume, all respiratory chain enzyme activities were normalized to the activity of CS. Protein were measured by the method of Lowry et al. [47]. Specific activities were expressed as nmol × min⁻¹ x mg protein⁻¹, and referred to the specific activities of CS to correct for mitochondrial volume. All chemicals were from Boehringer Mannheim (Boehringer Mannheim, Germany) and Sigma Chemicals (St. Louis, MO). The measures were performed three times for every sample on three different passages (most of them between passage 5 and passage 10). The standard deviation of every measure is specified in table 2. The range of linearity was defined in all our determinations in a wide range of

Table 1 Clinical data of Parkinson’s disease (PD) and control patients groups

VARIABLE	PARKINSON’S DISEASE (n = 20)	CONTROLS (n = 19)	p values
MEAN (SD) AGE (years)	59.2(15.6)	59.16 (10.7)	n.s
SEX (F/M)	8/12	13/7	
MEAN (SD) AGE AT ONSET OF PD (years)	51.1(10.2)		
MEAN (SD) DURATION OF PD (years)	8.1(4.2)		

Table 2 Mean (SD) respiratory chain enzymes activities (expressed as nmol/min/mg protein) in skin fibroblast cultures of patients with Parkinson’s disease (PD) and controls (CS = citrate synthase)

VARIABLE	PARKINSON’S DISEASE (n = 20)	CONTROLS (n = 19)	p values
COMPLEX I/CS	34.56 (17.10)	26.13 (9.49)	n.s
COMPLEX II/CS	19.02 (3.22)	17.10 (2.77)	n.s
SDH/CS	14.45 (2.83)	12.71 (3.35)	n.s
COMPLEX III/CS	26.80 (7.97)	26.75 (5.86)	n.s
COMPLEX IV/CS	65.70 (10.83)	62.01 (9.61)	n.s
COMPLEX V/CS	41.57 (16.70)	52.52 (23.56)	0.021
COMPLEX I + III/CS	380.70 (88.90)	337.91 (58.85)	n.s
COMPLEX II + III/CS	16.67 (5.03)	12.27 (3.33)	n.s
CS/protein	77.39 (28.59)	74.27 (20.08)	n.s
COMPLEX I/protein	26.70 (11.13)	22.48 (9.96)	n.s
COMPLEX II/ protein	13.73 (3.79)	13.22 (3.70)	n.s
SDH/protein	10.07 (2.85)	10.17 (3.70)	n.s
COMPLEX III/ protein	20.82 (9.20)	20.10 (7.51)	n.s
COMPLEX IV/ protein	44.49 (10.53)	44.49 (11.42)	n.s
COMPLEX V/ protein	29.95 (14.70)	42.21 (18.80)	0.017
COMPLEX I + III/ protein	253.76 (79.91)	247.25 (51.31)	n.s
COMPLEX II + III/ protein	98.9 (3.11)	9.48 (4.59)	n.s
protein concentration. So we decided to use the homogenates in order to have a total protein concentration of 35-150 micrograms per milliliter of final test volume. This range was inside the linearity to all the activities of the OXPHOS complexes.

Glutathione-peroxidase, catalase and superoxide-dismutase isoenzymes determination

Glutathione peroxidase specific activity was determined according to the method described by Flohé and Günzler [48] based on NADPH oxidation followed at 340 nm at 37°C.

Catalase activity was determined according to the method described by Aeby [49] based on H2O2 decomposition followed at 240 nm at room temperature. Catalase specific activity was determined by calculating the rate constant of a first order reaction.

Total and Mn-SOD activities were determined according to the method described by Spitz and Oberley [50] based on nitroblue tetrazolium reduction by superoxide radicals followed at 560 nm at room temperature. The Mn-SOD was distinguished from cyanide-sensitive Cu/Zn-SOD by the addition of 5 mM NaCN. Cu/Zn-SOD activity was calculated by subtracting the cyanide-resistant SOD activity form the total SOD activity. One unit of SOD activity is defined as the amount of enzyme that inhibits the reaction rate by 50%.

All enzymatic activities were expressed as values normalized to total cellular protein. The measurements were performed three times for every sample.

Coenzyme Q10 determinations

Oxidized, reduced and total coenzyme Q10 levels were determined by high performance liquid chromatography with electrochemical detection. The method used was that of Langedijk et al. [51] with some modifications. The stationary phase was a reverse phase column (HR-80 RP-C18, 80 × 4.6 mm, ESA Inc). The mobile phase was prepared by dissolving 7 g of NaClO4.H2O in 1000 ml of methanol/propanol/HClO4 70%, 700:8:200:0.2 (vol/vol), and the flow rate was set at 0.8 ml/min. The programmed conditions for the electrochemical detector and the post-column valve were the same. The system was entirely controlled by a computer (Kromasystem 2000, Kontron Instruments). Injections were made in a 50 μl injection valve (Model 7161, Rheodyne, Cotaty, USA) with a 100 μl syringe from Hamilton (Bonaduz, Switzerland). The calibration method used ubiquinone as external standard. The within-run coefficients of variation for CoQ10 and CoQH2 were, respectively, 5 and 3.2%, and the day to day precisions were 9.2 and 6.3%. CoQ10 recovery ranged between 88 and 93%. The measurements of CoQ10 were expressed in nmol/g of protein. The measures were performed three times for every sample.

Statistical analysis

Results were expressed as mean ± SD. Statistical analysis was done by the SPSS statistical package (15.0 version). For continuous variables the Kolmogorov-Smirnoff test was used to analyze normality in the distribution. Then, the Student’s two-sample t-test was used for variables that followed a normal distribution and the Mann-Whitney test was used for the rest of variables. The results of each table were corrected for multiple comparisons by the use of Bonferroni’s correction. Correlation analyses were performed by using Pearson’s correlation coefficient.

Results

The results are summarized in tables 2 and 3. When compared with controls, PD patients showed significantly lower specific activities for complex V (both corrected by citrate synthase activity and protein concentrations, table 2, figure 1). Oxidized, reduced and total coenzyme Q10 levels (both corrected by citrate synthase and protein concentrations), and activities of total, Cu/Zn- and Mn-superoxide-dismutase, glutathione-peroxidase and catalase, did not differ significantly between PD-patients and control groups (table 3). Values for enzyme activities in the PD group did not correlate with age at onset, duration, scores of the Unified Parkinson’s Disease Rating scales and Hoehn-Yahr staging.

Table 3 Mean (SD) superoxide-dismutase (SOD), glutathione-peroxidase (GPx), and catalase activities (expressed as units/mg protein); and concentrations of coenzyme Q10 (expressed in nmol/g protein) in skin fibroblast cultures of patients with Parkinson’s disease (PD) and controls (CS = citrate synthase).

VARIABLE	PARKINSON’S DISEASE (n = 20)	CONTROLS (n = 19)	p values
REDUCED CoQ10/CS	0.41 (0.16)	0.34 (0.11)	n.s.
OXIDIZED CoQ10/CS	0.75 (0.26)	0.63 (0.23)	n.s.
TOTAL CoQ10/CS	1.16 (0.33)	0.97 (0.25)	n.s.
REDUCED CoQ10/protein	24.50 (7.38)	24.50 (7.38)	n.s.
OXIDIZED CoQ10/protein	56.49 (25.20)	47.31 (23.50)	n.s.
TOTAL CoQ10/protein	86.27 (29.07)	71.86 (26.38)	n.s.
OXIDIZED Q10/Reduced Q10 MnSOD/protein	0.60 (0.27)	0.62 (0.27)	n.s.
CuZnSOD/protein	14.20 (8.84)	11.76 (7.88)	n.s.
TOTAL SOD/protein	26.00 (8.38)	20.72 (11.52)	n.s.
GPx/protein	13.03 (4.96)	14.45 (6.47)	n.s.
CATALASE/protein	9.71 (5.20)	7.26 (2.05)	n.s.
Discussion

The results of the present study showed that in PD patients there was a decreased activity of mitochondrial respiratory chain complex V, corrected by CS activity, in skin fibroblast cultures. The results on complexes I and IV in this study did not differ significantly between PD skin fibroblast cultures. The results on complexes I and respiratory chain complex V, corrected by CS activity, in patients there was a decreased activity of mitochondrial enzymes, specially in a subgroup of PD patients compared with controls, using skin fibroblast cultures as well. This deficiency was partially restored with coenzyme Q10 treatment [33].

The discrepancies between the results on complex I and IV of the present study and those of Winkler-Stuck et al. [32,33], who found a deficiency in complexes I and IV activities, specially in a subgroup of PD patients compared with controls, using skin fibroblast cultures as well. This deficiency was partially restored with coenzyme Q10 treatment [33].

The main result of the present study in skin fibroblasts suggests a possible contribution of the deficiency of complex V activity, but not of other enzymes related with oxidative stress, to the pathogenesis of PD. This result is in agreement with that reported by Ferrer et al [35] in the PD substantia nigra, which was interpreted by the authors as related with neuronal loss. Complex V is involved in the synthesis of ATP from ADP, and is very important in the energetic metabolism of the cells. The result of the present study suggests decreased energetic metabolism in fibroblasts of patients with PD.

Conclusions

The main result of the present study in skin fibroblasts cultures suggests a possible contribution of the deficiency of complex V activity, but not of other enzymes related with oxidative stress, to the pathogenesis of PD. This result is in agreement with that reported by Ferrer et al [35] in the PD substantia nigra, which was interpreted by the authors as related with neuronal loss. Complex V is involved in the synthesis of ATP from ADP, and is very important in the energetic metabolism of the cells. The result of the present study suggests decreased energetic metabolism in fibroblasts of patients with PD.

Acknowledgements

This work was supported in part by the grant of the Fondo de Investigaciones Sanitarias 99/0518 and Neuro-Magister S.L.U.

Author details

1Departamento de Bioquímica - Investigación, Hospital Universitario Doce de Octubre, Madrid, Spain. 2Servicio de Bioquímica, Hospital Nuestra Señora del Prado, Talavera de la Reina, Toledo, Spain. 3Servicio de Neumología, Hospital Universitario Doce de Octubre, Madrid, Spain. 4Departamento de Medicina-Neurología. Hospital. “Príncipe de Asturias”, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain. 5Sección de Neurología, Hospital La Mancha-Centro, Alcázar de San Juan, Ciudad Real, Spain. 6Departamento de Farmacología y Psiquiatría, Universidad de Extremadura, Badajoz, Spain. 7Sección de Neurología, Hospital del Sureste, Arganda del Rey, Madrid, Spain.

Authors’ contributions

(all authors read and approved the final manuscript)

• PDI participated in the conception and design of the study, in the obtention of fibroblast cultures, biochemical analysis, drafting and critical revision of the manuscript, and supervision.
AGR participated in the conception and design of the study, in the obtention of fibroblast cultures, biochemical analysis, drafting and critical revision of the manuscript, and supervision.

FOB participated in the conception and design of the study, in the obtention of fibroblast cultures, biochemical analysis, drafting and critical revision of the manuscript, and supervision.

JAM participated in the conception and design of the study, in the recruitment and clinical evaluation of patients and controls, drafting and critical revision of the manuscript, obtaining funding, and supervision.

YS participated in the conception and design of the study, in the recruitment and clinical evaluation of patients and controls, drafting and critical revision of the manuscript.

HAN participated in the conception and design of the study, in the recruitment and clinical evaluation of patients and controls, drafting and critical revision of the manuscript.

LC participated in the conception and design of the study, drafting and critical revision of the manuscript, and supervision.

JA participated in the conception and design of the study, drafting and critical revision of the manuscript, and supervision.

HJA participated in the conception and design of the study, drafting and critical revision of the manuscript, and supervision.

JA participated in the conception and design of the study, drafting and critical revision of the manuscript, and supervision.

HJA participated in the conception and design of the study, drafting and critical revision of the manuscript, and supervision.

Competing interests
The authors declare that they have no competing interests.

Received: 30 March 2010 Accepted: 19 October 2010
Published: 19 October 2010

References
1. Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sciences 1985, 36:2503-2508.

2. Vyas I, Heikkila RE, Nicklas WJ. Studies on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: inhibition of NAD-linked substrate oxidation by its metabolite, 1-methyl-4-phenylpyridinium. Journal of Neurochemistry 1986, 46:1501-1507.

3. Mizuno Y, Saitoh T, Sone N. Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity by 1-methyl-4-phenylpyridinium ion. Biochemical and Biophysical Research Communications 1987, 143:294-299.

4. Alonso-Navarro H, Jiménez-Jiménez FJ, Pilo de la Fuente B, Plaza-Nieto JF. Mecanismos patogénicos de la enfermedad de Parkinson. In Tratado de Neurología. Ed. Sánchez-Campos. Barcelona: Viguera Ediciones SL, 2008:425-485.

5. Parker WD Jr, Parks JK, Swanlow HJ. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Research 2008, 1189:215-218.

6. Mann V, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 1992, 115:333-342.

7. Anderson JJ, Dardone M, Davis TL, Baronti F, Chase TN, Dagani F. No evidence for altered mitochondrial function in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry 1993, 56:477-480.

8. Di Donato S, Zeviani M, Giovannini P, Savarese N, Tondi O, Muzuno Y, Horai S. Is Parkinson’s disease a mitochondrial disease? Journal of the Neurological Sciences 1992, 107:29-33.

9. Shoffner JM, Watts RL, Juncos JL, Torroni A, Wallace DC. Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Annals of Neurology 1992, 32:226-227.

10. Cardellach F, Marti MJ, Fernández-Sola J, Martín C, Hoek B, Tolosa E, Urbano-Márquez A. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson’s disease. Neurology 1993, 43:2258-2262.

11. Bindoff LA, Berch-Machin M, Cardilage NE, Parker WD Jr, Turnbull DM. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. Journal of the Neurological Sciences 1991, 104:203-208.

12.Bindoff LA, Birch-Machin M, Cartilage NE, Parker WD Jr, Turnbull DM. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. Journal of the Neurological Sciences 1991, 104:203-208.

13. Nakagawa-Hattori T, Yoshino H, Kondo T, Muzuno Y, Horai S. Is Parkinson’s disease a mitochondrial disease? Journal of the Neurological Sciences 1992, 107:29-33.

14. Bird D, Carrol MT, Cooper JM, Mansden CD, Schapira AH: Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Annals of Neurology 1992, 32:782-788.

15. Bravi D, Anderson JJ, Dagani F, Davis TL, Ferrari R, Gillespie M, Chase TN. Effect of aging and dopaminergic therapy on mitochondrial respiratory function in Parkinson’s disease. Movement Disorders 1992, 7:228-231.

16. Blake CI, Spitz E, Leehey M, Hoffer BJ, Boyson SJ. Platelet mitochondrial respiratory chain function in Parkinson’s disease. Movement Disorders 1997, 12:3-8.

17. Hanagasi HA, Ayribas D, Baysal K, Emre M. Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson’s disease. International Journal of Neuroscience 2005, 115:479-493.

18. Parker WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Annals of Neurology 1989, 26:719-723.

19. Krige D, Carol MT, Cooper JM, Mansden CD, Schapira AH: Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Annals of Neurology 1992, 32:782-788.

20. Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Annals of Neurology 1993, 37:714-722.

21. Varghese M, Pandey M, Samanta A, Gangopadhyay PK, Mohanakumar KP. Reduced NADH coenzyme Q dehydrogenase activity in platelets of Parkinson’s disease, but not Parkinson plus patients, from an Indian population. Journal of the Neurological Sciences 2009, 279:39-42.

22. Barrosio N, Campos Y, Huertas R, Esteban J, Molina JA, Alonso A, Gutierrez-Rivas E, Arenas J. Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clinical Chemistry 1993, 39:667-669.

23. Martin MA, Molina JA, Jiménez-Jiménez FJ, Benito-León J, Ortí-Pareja M, Campos Y, Arenas J, Grupo Centro de Trastornos del Movimiento. Respiratory chain enzyme activities in isolated mitochondria of lymphocytes from untreated Parkinson’s disease patients. Neurology 1994, 43:1643-1646.

24. Shinde S, Fasupathy K: Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from patients with Parkinson’s disease: preliminary study. Neurology India 2006, 54:390-393.

25. Mulugu M, Elbito B, Dalmazik G, Ercan A, Kulaekus G, Ochs H, Dalkara T, Ozer N. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Movement Disorders 2004, 19:544-548.

26. Molina JA, Ruiz-Pérez E, Jiménez-Jiménez FJ, López-Pérez MJ, Alvarez E, Berbel A, Ortí-Pareja M, Zundo M, Tallón-Barranco A, de Bustos F, Arenas J. Respiratory chain enzyme activity in spermatozoa from untreated Parkinson’s disease patients. Journal of Neural Transmission 1999, 106:919-924.
32. Wiedemann FR, Winkler K, Lins H, Wallesch CW, Kunz WS. Detection of respiratory chain defects in cultivated skin fibroblasts and skeletal muscle of patients with Parkinson's disease. Annals of the New York Academy of Sciences 1999, 893:426-429.
33. Winkler-Stück K, Wiedemann FR, Wallesch CW, Kunz WS. Effect of coenzyme Q10 on the mitochondrial function of skin fibroblasts from Parkinson patients. Journal of the Neurological Sciences 2004, 220:41-48.
34. Piccoli C, Sardanelli A, Scrima R, Ripoli M, Quartar G, D'Aprile A, Bellomo F, Scacco S, De Michele G, Filla A, Iuso A, Boffoli D, Captantio N, Papa S. Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PARK1 mutation. Neurochemical Research 2008, 33:2565-2574.
35. Ferrer I, Pérez E, Dalfó E, Barrachina M. Abnormal levels of prohibitin and ATP synthase in the substantia nigra and frontal cortex in Parkinson's disease. Neuroscience Letters 2007, 415:205-209.
36. Schapira AHV. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurology 2008, 7:97-109.
37. Ambani LM, Van Woert MH, Murphy S. Brain peroxidase and catalase in Parkinson disease. Archives of Neurology 1975, 32:114-118.
38. Kish SJ, Monte C, Hornykiewicz O. Glutathione peroxidase activity in Parkinson's disease. Neuroscience Letters 1985, 58:343-346.
39. Marttila RJ, Lorentz H, Rinne UK. Oxygen toxicity protecting enzymes in Parkinson's disease: increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. Journal of the Neurological Sciences 1988, 86:321-331.
40. Saggu H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsden CD. A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. Journal of Neurochemistry 1989, 53:692-697.
41. Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L. Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson disease. Journal of Biological Chemistry 2005, 280:11648-11655.
42. Radunovic A, Porto WG, Zeman S, Leigh PN. Increased mitochondrial superoxide dismutase activity in Parkinson's disease but not amyotrophic lateral sclerosis motor cortex. Neuroscience Letters 1997, 239:109-108.
43. Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Annals of Neurology 1995, 42:261-264.
44. Shults CQ, Haas RH, Passov D, Beal MF. Coenzyme Q10 levels correlate with the activities of complexes I and II/III mitochondrial from parkinsonian and nonparkinsonian patients. Annals of Neurology 1997, 42:261-264.
45. Gotz ME, Gerstner A, Harth R, Derr A, Janetzky B, Kuhn W, Reiderer P, Gerlach M. Altered redox state of platelet coenzyme Q10 in Parkinson's disease. Journal of Neural Transmission 2000, 107:41-48.
46. Zheng X, Shoffner JM, Voljavec AS, Wallace DC. Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies. Biochimica Biophysica Acta 1990, 1021:1-10.
47. Lowry OH, Rosebrough NJ, Farr AL, Randall RS. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 1951, 193:265-271.
48. Flohé L, Günzler W. Assays of glutathione peroxidase. Methods in Enzymology 1984, 105:114-121.
49. Aebi H. Catalase in vitro. Methods in Enzymology 1984, 105:121-126.
50. Spitz DR, Oberley LW. An assay for superoxide dismutase activity in mammalian tissue homogenates. Analytical Biochemistry 1989, 179:8-18.
51. Langedijk J, Ubikink JB, Vermaak WJH. Measurement of the ratio between the reduced and oxidized forms of coenzyme Q10 in human plasma as a possible marker of oxidative stress. Journal of Lipid Research 1996, 37:67-75.