Calculation of residual technical resource and increase in reliability of electric machines

S M Kuznetsov 1, E V Volkova 2
1Novosibirsk State Technical University, 20, Karla Marks Av., Novosibirsk, 630073, Russia
2Irkutsk National Research Technical University, 83, Lermontov street, Irkutsk, 664074, Russia
E-mail: mbv5@mail.ru

Abstract. In this paper, we consider a probabilistic mathematical model for estimating the state of the traction motor of a trolleybus. The operation of electric motors in transport is inevitably associated with gradual wear and tear and the need for periodic repairs. For the effective construction of systems of preventive measures, control, testing, current and major repairs, the importance of the causes of the failure of electric motors is necessary.

1. Introduction
The operation of electric motors in transport is inevitably associated with gradual wear and tear and the need for periodic repairs. For the effective construction of systems of preventive measures, control, testing, current and major repairs, the importance of the causes of the failure of electric motors is necessary.

The growing share of electric motors that have exhausted their regulatory life of work contributes to the growth of failures. The need to predict the destruction of elements assessing the risk of exploitation in conditions of incomplete information about the quality and condition of the equipment is a constant factor [1].

In the process of operation of the trolleybus under the influence of external influences arising in the course of maintenance of traction, the electric motor (TEM) continuously deteriorates, its reliability decreases and the number of failures increases.

The required level of reliability of the TEM can be maintained only if it is systematically monitored and diagnosed for its technical condition and timely technical service (TS).

The reliability of mechanical and electrical equipment of vehicles was widespread in the automotive industry, aviation, railway transport, agricultural machinery. However, it follows from the patent information search that the reliability of the TEM of the trolleybus has been studied little and it is necessary to continue work in this direction.

At the same time, experience in operating trolleybuses shows that the costs of maintaining (restoring) reliability are 3 to 6 times higher than the costs of their creation. One of the significant factors affecting the technical condition of the trolleybus is the imperfection of the TS system currently in use.

For technical inspection and repair (maintenance and repair) of the trolleybus, up to 75% of all depot facilities are spent, and the costs for TS and R of the traction motor of the trolleybus are about 60% of the total cost of maintenance. Considering the fact that the actual rolling stock is worn out by
more than 70%, the problems of ensuring the reliability of the EE in the process of operation and determining the actual technical condition and its prediction are top priorities.

2. Formulation of the problem
There are known mathematical methods for modeling the state of objects: graphical (using probabilistic papers and nomograms) and analytical (the maximum likelihood method, the method of moments, quantiles, tabular, Boolean algebras, probabilistic-statistical, modeling by the Markov process) [3, 4]. Modeling by the Markov process is one of the fundamental methods, which has drawbacks - the rigid exponentially of the distribution laws of a random variable and the fact that the elements of the system can only be in two states (workable and inoperative). Here mathematical methods for modeling the state of objects are known: graphical (using probabilistic papers and nomograms) and analytical (the maximum likelihood method, the method of moments, quantiles, tabular, Boolean algebras, probabilistic-statistical, modeling by the Markov process) [3, 4]. Modeling by the Markov process is one of the fundamental methods, which has drawbacks - the rigid exponentiality of the distribution laws of a random variable and the fact that the elements of the system can only be in two states (workable and inoperative).

In the case of modeling the TEM state of a trolleybus, the most probable statistical method is the model of the technical state of the traction motor of a trolleybus [2, 12-15].

Determination of numerical characteristics of statistical series.
For each case of failure, electric rolling stock (ERS) runs were recorded since the last repair. The obtained data on the failures of the trolleybus engine are reduced to ordered statistical series. Such series for TEM faults are given in Tab. 1. The grouping step was taken \(\Delta L = 5 \cdot 10^5 \) km.

For all statistical series, the following numerical characteristics characterizing a sample of a random variable were determined.

3. Theory
1. Mathematical expectation of mileages:

\[
L_o = \frac{\sum_{i=1}^{k} L_i \cdot m_i}{\sum_{i=1}^{k} m_i},
\]

where \(L_i \) – mileage in \(i \)-th discharge, km; \(m_i \) number of failures in \(i \)-th discharge; \(k \) – number of discharges.

Denomination of the failed node	The mileage intervals of the mobile unit \(\Delta L \), thous. km			
Collector, armature of the TEM	3	5	2	1
Windings of the TEM	1	2	2	1
Brush assembly of the TEM	1	2	2	1
Insulation Resistance	1	2	2	1

2. Dispersion of the scattering of ranges:
\[
D = \sigma^2 = \frac{\sum_{i=1}^{k}(L_i - L_o)^2 \cdot m_i}{\sum_{i=1}^{k} m_i}.
\]

3. Mean square deviation of ranges or scattering:
\[
\sigma = \sqrt{D} = \sqrt{\frac{\sum_{i=1}^{k}(L_i - L_o)^2 \cdot m_i}{\sum_{i=1}^{k} m_i}}.
\]

4. The coefficient of variation:
\[
V = \frac{\sigma}{L_o}.
\]

Table 2. Results of calculations of numerical characteristics of the problems for the investigated elements of trolleybuses

Denomination of the failed node	Numerical characteristics			
Collector, armature of the TEM	\(L_o \)	\(D \)	\(\sigma \)	\(V \)
Windings of the TEM	31.875	221.484	14.882	0.467
Brush assembly of the TEM	22.354	92.332	9.601	0.429
Insulation Resistance	18.358	66.292	8.142	0.522
	19.813	80.335	8.963	0.471

For a justified solution of theoretical and practical problems of reliability, its current monitoring and forecasting for the TEM of a trolleybus, it is necessary to know the distribution laws of the initial random variables. However, an almost exact knowledge of these laws is possible only if there is sufficiently large statistical material on equipment failures \([10, 13-15]\).
Obtaining as a result of the experiment a statistical material about a random variable in the form of a sufficiently large number \(n \) of values of independent quantities \(x_i \) of the studied quantity \(X \), called a statistical sample or a statistical series of the volume \(n \), can determine the analytical form of the unknown probability density and the distribution function.

It is necessary to solve the problem of mathematical statistics \([7, 8, 15-17]\), which consists in smoothing (aligning) statistical data by choosing comparatively simple analytic functions \(\varphi(x) \) for estimation \(f(x) \):

\[
\varphi(x) \approx f(x).
\]

(5)

To assess the likelihood of this approximate probability equality, the criteria for the agreement of the hypotheses under test are taken with respect to the type of functions \(\varphi(x) \) and \(f(x) \).

Figure 2. Probability trouble proof operation \(P(L) \): brushes of TEM.

As the basic criterions, criterion \(\chi^2 \) of Pirson and the criterion of Kolmogorov were adopted \([9]\).

The criterion of consent of N.A. Kolmogorov is distinguished by simplicity and determined by the relation:

\[
\gamma_1 = P \left[\Delta = D \sqrt{n} \geq \lambda \right].
\]

(6)

The application of the Kolmogorov criterion is limited by the requirement of preliminary (a priori) knowledge of the parameters for \(F(x) \). Meanwhile, in practice the problem of statistical estimation of unknown parameters is most often posed.

This criterion \(\chi^2 \) of Pearson's consent is free from this shortcoming. As a measure of the discrepancy for this criterion, the value of:

\[
\Delta = \chi^2 = \sum_{i=1}^{n} \frac{(\Delta n_i^* - \Delta n_i)^2}{\Delta n_i},
\]

(7)

where \(\Delta n_i^* \) – the experimental number of realizations of the statistical series, grouping \(i \)-th interval; \(\Delta n_i \) – the theoretical (expected) number of realizations under the assumption that the unknown probability density is described by the chosen function \(f(x) \).

As a result of the implementation of the above interpolation methods using programs developed by the author and analysing the convergence of functions, a universal analytic function was chosen with the help of which it was possible to smooth out the experimental data and obtain the characteristics of failures \(W(L) \) and troubleproof operation \(P(L) \) for each type of electrical equipment of the trolleybus.

In detail, the method of selecting a smoothing function for one node is shown in Fig. 1. The universal analytic function has a form:
\[
\psi(L) = \frac{\xi_1 - \xi_2}{(L-L_0)} + \xi_2 \cdot e^{- \frac{L-L_0}{\Delta L}}.
\]

4. Experimental results
The results of calculations of the numerical characteristics of the ranges for the samples studied are presented in Table II, from which it is possible to determine an important characteristic of the failure of the electrical equipment of the trolleybus, when the maximum number of its failures will be observed.

The mathematical expectation of the run \(L_o \) characterizes the mileage of a unit of ERS when the number of equipment failures is maximized. Scattering \(\sigma \) and the coefficient of variation indicate a possible range from their expectation.

It was proposed to estimate the relative reliability characteristic of the traction motor as the main term of its reliability and to determine it through the indicator that characterizes the number of failures of the engine equipment per unit of run, that is, through the failure flow \(W'_o \).

For determination the relative characteristics of the reliability of the TEM trolleybus, the following numerical characteristics were determined characterizing the sampling of a random amount of equipment failures:

1. Mathematical expectation of failures:
\[
W_o = \frac{\sum_{i=1}^{k} L_i \cdot m_i}{\sum_{i=1}^{k} L_i},
\]

where \(L_i \) – mileage in \(i \)-th interval, km; \(m_i \) – number of failures in \(i \)-th interval; \(k \) – number of interval.

2. Dispersion failure scattering:
\[
D = \sigma^2 = \frac{\sum_{i=1}^{k} (m_i - W_o)^2 \cdot L_i}{\sum_{i=1}^{k} L_i}.
\]

Table 3. Results of calculation of the numerical fault characteristics for investigated selections of trolleybuses

Denomination of the failed node	Numerical characteristics	w_c	w'_o	D	\(\sigma \)	V
Collector, armature of the TEM		2.242	0.0344	1.656	1.287	0.574
Windings of the TEM		1.931	0.0292	1.321	1.149	0.595
Brush assembly of the TEM		1.626	0.0251	1.047	1.023	0.629
Insulation Resistance		1.626	0.0251	1.047	1.023	0.629

Table 4. Coefficients and numerical characteristics of smoothing functions of trolleybuses
Denomination of the failed node and Coefficient and numerical characteristics

Denomination of the failed node	Coefficient and numerical characteristics
Collector, anchor TEM	$\xi, \xi, L, \Delta L$
	$\pm \sigma$
	k
	χ^2
-0.05189, 1.07877, 36.7195, 11.78097	0.01983, 0.02601, 0.60945, 0.71925
	0.988
	0.0016
Windings of the TEM	$\pm \sigma$
	k
	χ^2
-0.21321, 1.32577, 20.8753, 13.5633	0.09377, 0.03989, 0.94237, 0.07574
	0.923
	0.0019
Brush assembly of the TEM	$\pm \sigma$
	k
	χ^2
-0.20721, 1.39359, 22.05213, 11.63301	0.04562, 0.08456, 0.83119, 0.09298
	0.991
	0.0011
Insulation Resistance	$\pm \sigma$
	k
	χ^2
-1099.6672, 0.6535002, -208.90467, 27.80998612	40.835642, 0.0711454, 4.3354815, 2.287988
	0.988
	0.0026

3. Mean square deviation of failures or scattering of failures:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{k} (m_i - W_{i\alpha})^2 \cdot L_{\alpha}}{\sum_{i=1}^{k} L_{\alpha}}}$$ \hspace{1cm} (11)

4. The coefficient of variation:

$$V = \frac{\sigma}{W_{i\alpha}}$$ \hspace{1cm} (12)

5. The discussion of the results

From Table III it is possible to determine the expected maximum number of failures of the trolleybus TEM equipment by the grouping interval. Knowing the magnitude of the run, it is not difficult to calculate the maximum number of failures per 1000 km of mileage $W_{i\alpha}$. The mathematical expectation of failures $W_{i\alpha}$ determines the maximum number of failures per 1000 km. Scattering σ and the coefficient of variation V indicate a possible spread of the failure parameter from their expectation.

6. Conclusions

As a result of the statistical analysis, the degree of damage to the elements of the electric motor is determined, which is an important parameter for assessing the reliability of the TEM of a trolleybus.

References

[1] Bykadorov A L, Zarutskaya T A and Muratova-Milekhina A S 2015 Increase of efficiency of short-circuits fault location in traction networks of alternating current on the basis of information technologies. Bulletin of transport of the Volga region 6(54) 15-19

[2] Filyushov Yu P, Zonov P V, Malozemov B V and Wilberger M E 2011 Energy efficient control of an alternating current machine. The Polzunovsky Herald. 2011 2 45-51

[3] Kuznetsov S M 2005 Traction network protection of SC current. (Novosibirsk: NSTU) p. 352

[4] Kuznetsov S M 2011 Setting of electronic security with simulation model corrected. Transport Science, Technology, Management. VINITY 12 30-34
[5] Kuznetsov S M, Demidenko I S, Yaroslavtsev M V and Krivova A O 2009 Mathematical model study of traction network dynamics of direct-current railway with train starting. In \textit{Scientific transport problems of Siberia and Far East. NSAWT} \textbf{2} 324-327

[6] Malozyomov B V, Vorfolomeyev G N and Schurov N I 2005 Reliability and diagnosing electrotechnical systems. In \textit{the collection: Proceedings - 9th Russian-Korean International Symposium on Science and Technology, KORUS-2005} 347-350

[7] Ivanov G Ja and Malozyomov B V 2005 Reliable power saving electric drive of wide application. In \textit{the collection: Proceedings - 9th Russian-Korean International Symposium on Science and Technology, KORUS-2005} 330-332

[8] Shchurov N I and Wilberger M E 2011 Spectral analysis of rectifier unit current for unbalance and non-sinusoidal supply voltage \textit{Transport: science, technology, management} \textbf{12} 41-43

[9] Mischenko T M 2011 The mathemtic stimulation of transient process in a.c. - system “electric-traction network - LOCOMOTIVE”. \textit{Transport: science, technology, management} \textbf{12} 105-109

[10] Anurov V I 2008 Modeling of transient processes in case of short circuit in the traction network and the presence of electric locomotives on the feeder zone. \textit{Electro. Electrical engineering, electric power industry, electrotechnical industry} \textbf{2} 16-18

[11] Ivashutenko A S, Martyushov N V, Vidayev I G, Kostikov K S 2014 Influence of technological factors on structure and properties of Alumina-Zirconia ceramics \textit{Advanced Materials Research} \textbf{1040} 845-849 DOI: 10.4028/www.scientific.net/AMR.1040.845

[12] Ivashutenko A S, Martyushov N V, Vidayev I G 2014 Magnetic pulse compaction of oxide powders of the (ZrO2 – y2O3)–Al2O3 system \textit{Advanced Materials Research} \textbf{1040} 819-823 DOI: 10.4028/www.scientific.net/AMR.1040.819

[13] Malarev V I, Kopteva A V, Nogtev R A 2018 Electric Drive Simulation for Drilling Machine Spinner. \textit{IOP Conference Series: Earth and Environmental Science} \textbf{194} Doi: 10.1088/1755-1315/194/5/052012

[14] Kopteva A V, Malarev V I 2018 \textit{Studying thermal dynamic processes in an isolated type borehole electrode heater for high-viscosity oil extraction}. IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 678-681 DOI: 10.1109/EIConRus.2018.8317185

[15] Pshchelko N S, Vodkaylo E G, Pastukhov A I 2017 \textit{Improvement of thin films adhesion by means of electric field}. \textit{Proceedings of the 2017 IEEE Russia Section Young Researchers, Electrical and Electronic Engineering Conference, EIConRus}, 7910771, pp. 1186-1188

[16] Makhovikov A B, Katuntsov E V, Kosarev O V, Tsvetkov P S 2019 Digital transformation in oil and gas extraction. Innovation-Based Development of the Mineral Resources Sector: Challenges and Prospects (ed. Litvinenko) - 11th conference of the Russian-German Raw Materials (ISBN: 978-0-367-07726-6), pp. 531-538

[17] Mikhaylov A V, Rodionov E A, Zvonarev I E 2019 Analysis of conditions for vertical cutting of peat \textit{Mining Informational and Analytical Bulletin} \textbf{1} 48-54 DOI: 10.25018/0236-1493-2019-01-0-48-5