A GENERALIZATION OF TOTAL GRAPHS OF MODULES

Ahmad Abbasi and Leila Hamidian Jahromi

Received: 15 September 2016; Revised: 15 June 2017

Communicated by Sarah Glaz

Abstract. Let R be a commutative ring, and let $M \neq 0$ be an R-module with a non-zero proper submodule N, where $N^* = N - \{0\}$. Let $\Gamma_{N^*}(M)$ denote the (undirected) simple graph with vertices $\{x \in M - N \mid x + x' \in N^* \text{ for some } x \neq x' \in M - N\}$, where distinct vertices x and y are adjacent if and only if $x + y \in N^*$. We determine some graph theoretic properties of $\Gamma_{N^*}(M)$ and investigate the independence number and chromatic number.

Mathematics Subject Classification (2010): 13C99, 05C69

Keywords: Commutative ring, total graph, independence number

1. Introduction

Throughout, all rings are commutative with non-zero identity and all modules are unitary. Let R be a ring, $M \neq 0$ an R-module, and N a non-zero proper submodule of M. The total graph of a commutative ring R, denoted by $T(\Gamma(R))$, was introduced by Anderson and Badawi in [3], as the graph with all elements of R as vertices, and two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$, where $Z(R)$ denotes the set of zero-divisors of R. The concept of total graphs is a great concept that is usually used in commutative algebra to obtain many interesting graphs in this field. In [1] and [2], A. Abbasi and S. Habibi, gave a generalization of the total graph. They studied in [2] the total graph $T(\Gamma_N(M))$ of a module M over a commutative ring with respect to a proper submodule N. It is an undirected graph with the vertex set M, where two distinct vertices m and n are adjacent if and only if $m + n \in M(N)$, where $M(N) = \{m \in M \mid rm \in N \text{ for some } r \in R - (N : M)\}$. It is easy to see that $M(N)$ is closed under multiplication by scalars. However, $M(N)$ may not be an additive subgroup of M. Here we introduce a generalization of total graphs, denoted by $\Gamma_{N^*}(M)$, as the (undirected) simple graph with vertices $\{x \in M - N \mid x + x' \in N^* \text{ for some } x \neq x' \in M - N\}$, where distinct vertices x and y are adjacent if and only if $x + y \in N^* = N - \{0\}$.

Let G be a simple graph. If there is a path from any vertex to any other vertex of graph G, then G is said to be connected, and G is said to be totally disconnected.

This work has been supported by the University of Guilan.
if there is no path connecting any pair of vertices. For vertices x_1 and x_2 of G, we define $d(x_1, x_2)$ to be the length of a shortest path between x_1 and x_2 ($d(x, x) = 0$ and $d(x_1, x_2) = \infty$ if there is no such path). The diameter of G is $\text{diam}(G) = \sup\{d(x_1, x_2) \mid x_1 \text{ and } x_2 \text{ are vertices of } G\}$. The girth of G, denoted by $\text{gr}(G)$, is the length of its shortest cycle; $\text{gr}(G) = \infty$ if G contains no cycles, in this case, G is called an acyclic graph. A complete graph is one which every two vertices are adjacent. A complete graph with n vertices is denoted by K^n. A bipartite graph G is a graph whose vertex set $V(G)$ can be partitioned into disjoint subsets U_1 and U_2 in such a way that each edge of G has one end vertex in U_1 and the other in U_2. In particular, if E consists of all possible such edges, then G is called a complete bipartite graph and is denoted by $K^{m,n}$ when $|U_1| = m$ and $|U_2| = n$. For a vertex v of G, $\text{deg}(v)$ denotes the degree of v and we set $\delta(G) := \min\{\text{deg}(v) : v \text{ is a vertex of } G\}$. A graph G is called k-regular if every vertex has degree k. A subgraph of G is the graph formed by a subset of the vertices and edges of G. Two subgraphs G_1 and G_2 of G are said to be disjoint if G_1 and G_2 have no common vertices and no vertex of G_1 (resp., G_2) is adjacent (in G) to any vertex not in G_1 (resp., G_2). The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph $G_1 \cup G_2$ whose vertex set is $V_1 \cup V_2$ and whose edge set is $E_1 \cup E_2$. A complete subgraph of G is called a clique. The clique number, $\omega(G)$, is the greatest integer $n \geq 1$ such that K^n is a subgraph of G, and $\omega(G) = \infty$ if $K^n \subseteq G$ for all $n \geq 1$. A matching in a graph G is a set of edges such that no two have a vertex in common. A spanning matching of a graph is said to be a perfect matching. A star graph S_k is the complete bipartite graph $K^{1,k}$. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. A walk is an alternating sequence of vertices and edges which are incident, that begins and ends with a vertex. A tour is a closed walk that traverses each edge at least once. An Eulerian tour in an undirected graph is a tour that traverses each edge exactly once. If such a tour exists, the graph is called Eulerian. A connected component (or just component) of an undirected graph is a maximal connected induced subgraph. An independent set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. The vertex independence number of G, often called the independence number, is the cardinality of a largest independent vertex set, i.e., the maximum size among all independent vertex sets of G. The independence number is denoted by $\alpha(G)$. A vertex cover of G is a set of vertices such that each edge of G is incident to at least one vertex of the set. The vertex cover number is the minimum size
among all vertex covers in the graph, denoted by $\beta(G)$. A coloring of a graph is a proper (vertex) coloring with colors such that no two vertices sharing the same edge have the same color. A coloring using k colors is called a (proper) k-coloring. The smallest number of colors needed to color the vertices of G is called its chromatic number and is denoted by $\chi(G)$.

The main objective of this paper is to study some properties of the graph $\Gamma_{N^*}(M)$. We also investigate the independence number and chromatic number of the graph $\Gamma_{N^*}(M)$.

2. Properties of $\Gamma_{N^*}(M)$

In this section, we investigate some properties of $\Gamma_{N^*}(M)$. Throughout, N is a non-zero proper submodule of a non-zero R-module M, where R is commutative ring.

Definition 2.1. Let R be a commutative ring, M be an R-module, N be a submodule of M, and let $N^* = N - \{0\}$. We define an undirected simple graph $\Gamma_{N^*}(M)$ with vertices $\{x \in M - N | x + x' \in N^* \text{ for some } x \neq x' \in M - N\}$, where distinct vertices x and y are adjacent if and only if $x + y \in N^*$.

Remark 2.2. (1) $x \in V(\Gamma_{N^*}(M))$ if and only if $N(x) \neq \emptyset$, where $N(x) = \{x' \in V(\Gamma_{N^*}(M)) | x' \neq x, x + x' \in N^*\}$. So, there is no isolated vertex in $\Gamma_{N^*}(M)$. In particular, $\Gamma_{N^*}(M)$ is not totally disconnected.

(2) Let $x, y \in V(\Gamma_{N^*}(M))$ be adjacent with $x - y \in N^*$, then $x + y - x + y \in N$ and $x + y + x - y \in N$; so $2x, 2y \in N$.

(3) Let $x, y \in V(\Gamma_{N^*}(M))$ with $x \neq y$ and $N(x) \cap N(y) \neq \emptyset$. Then $x - y \in N^*$.

(4) $\Gamma_{N^*}(M)$ is a perfect matching if and only if for all $x, y \in V(\Gamma_{N^*}(M))$ with $x \neq y$, one has $N(x) \cap N(y) = \emptyset$ or $|N(x)| = |N(y)| = 1$.

Example 2.3. Let $M = \mathbb{Z}_{12}$ and $N = \{0, 4, 8\}$. Then $\Gamma_{N^*}(M)$ has the following form:

$$
\begin{array}{cccccc}
1 & \bullet & \cdots & \bullet & 3 \\
5 & \bullet & \cdots & \bullet & 7 \\
9 & \bullet & \cdots & \bullet & 11 \\
\end{array}
$$

Figure 1.

Theorem 2.4. If $x, y \in V(\Gamma_{N^*}(M))$ are distinct vertices connected by a path of length 3 with $x + y \neq 0$, then x, y are adjacent.
Proof. Let x, m_1, m_2, y be distinct vertices of $\Gamma_N(M)$ with a path $x \rightarrow m_1 \rightarrow m_2 \rightarrow y$. Since $x + m_1, m_1 + m_2$ and $m_2 + y \in N^*$, we have $x + y = (x + m_1) + (y + m_2) - (m_1 + m_2) \in N$. This yields $x + y \in N^*$, since $x + y \neq 0$; so x and y are adjacent. \square

Corollary 2.5. Let $e = xx'$ and $f = yy'$ be edges of $\Gamma_N(M)$, where the sum of each end point of e and each end point of f does not equal zero. If two end points of e and f are adjacent, then so are the other two.

Proof. Without loss of generality, we may assume that x' and y are adjacent; so there is a path $x \rightarrow x' \rightarrow y \rightarrow y'$ in $\Gamma_N(M)$. Therefore, x and y' are adjacent, by Theorem 2.4. \square

Remark 2.6. In Corollary 2.5, the condition “does not equal zero” is necessary. For instance, in Example 2.3, set $x = 5, y = 9, x' = 3, y' = 11$. Then x and y' are adjacent, but x' and y are not.

Theorem 2.7. If $x, y \in V(\Gamma_N(M))$ are distinct vertices connected by a path of length 4, then there exists a path of length 2 between them. In particular, there is $t \in V(\Gamma_N(M))$ with $t \in N(x) \cap N(y)$.

Proof. Let x, m_1, m_2, m_3, y be distinct vertices of $\Gamma_N(M)$ with a path $x \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow y$. If $x + m_3 \neq 0$ or $m_1 + y \neq 0$, then x and m_3, or y and m_1, are adjacent by Theorem 2.4, as we desired. So let $x = -m_3$ and $y = -m_1$. Then we have a path $x(= -m_3) \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow y(= -m_1)$. Thus, $x(= -m_3) \rightarrow (-m_2) \rightarrow y(= -m_1)$ is a path of length 2. \square

Theorem 2.8. Let $\Gamma_N(M)$ be connected. If $t_1 - t_2 \in N^*$ for all adjacent vertices t_1 and t_2 of $\Gamma_N(M)$, then $\text{diam}(\Gamma_N(M)) \in \{1, 2\}$.

Proof. For every path of length 3 such as $x \rightarrow m_1 \rightarrow m_2 \rightarrow y$ in $\Gamma_N(M)$, if $x + y \neq 0$, then x and y are adjacent by Theorem 2.4 and $\text{diam}(\Gamma_N(M)) \leq 2$. Let $x = -y$. Then there is a path $x(= -y) \rightarrow m_1 \rightarrow m_2 \rightarrow y$. Our hypothesis yields $x \rightarrow m_2$, and we are done. \square

Theorem 2.9. $\text{diam}(\Gamma_N(M)) \in \{1, 2, 3, \infty\}$. In particular, if $\Gamma_N(M)$ is connected, then $\text{diam}(\Gamma_N(M)) \leq 3$.

Proof. By Theorem 2.7, we can reduce every path of length greater than 3 to a path of length at most 3. \square
Example 2.10. Let $M = \mathbb{Z}_8$ and $N = \{0, 2, 4, 6\}$. Then $\Gamma_{N^*}(M)$ has the following form:

![Figure 2.](image)

Theorem 2.11. Let $\Gamma_{N^*}(M)$ be connected. Then it is complete if and only if $2t = 0$ for every $t \in V(\Gamma_{N^*}(M))$.

Proof. Suppose that $\Gamma_{N^*}(M)$ is complete and $2t \neq 0$ for some $t \in V(\Gamma_{N^*}(M))$. Then $-t$ is a vertex and $0 = t + (-t) \in N^*$, which is a contradiction. Suppose $2t = 0$ for all vertices t. Then $\text{diam}(\Gamma_{N^*}(M)) \leq 3$ by Theorem 2.9. Let $x \rightarrow t \rightarrow y$ be a path in $\Gamma_{N^*}(M)$. Then by part (3) of Remark 2.2, $x + y \in N^*$ (since by assumption $2y = 0$ implies that $y = -y$). Let $d(x, y) = 3$. So there is a path $x \rightarrow t_1 \rightarrow t_2 \rightarrow y$ in $\Gamma_{N^*}(M)$. If $x + y = 0$, then $x = -y = y$ (since $2y = 0$); this contradicts our assumption, so $x + y \neq 0$. Hence, x and y are adjacent by Theorem 2.4. So, $\Gamma_{N^*}(M)$ is complete.

Theorem 2.12. If $2x \neq 0$ for every $x \in V(\Gamma_{N^*}(M))$, then $\text{gr}(\Gamma_{N^*}(M)) \in \{3, 4, 6, \infty\}$.

Proof. (1) It is clear that $\Gamma_{N^*}(M)$ has more than two vertices. For all $x \in V(\Gamma_{N^*}(M))$, let $|N(x)| = 1$. Then $\text{gr}(\Gamma_{N^*}(M)) = \infty$, since in this case $\Gamma_{N^*}(M)$ is just a perfect matching.

(2) Suppose there is $t \in V(\Gamma_{N^*}(M))$ such that $|N(t)| \geq 2$.

(1') If for all vertices t with $|N(t)| \geq 2$, we have $|N(x)| = 1$ for every $x \in N(t)$, then there are not any cycles in $\Gamma_{N^*}(M)$.

(2') Suppose there exists $y \in N(t)$ such that $|N(y)| \geq 2$ and this condition is satisfied just for y. There is an $x \in N(t)$ such that $|N(x)| = 1$, since $|N(t)| \geq 2$. If $x \neq -y$, then by part 3 of Remark 2.2, one has $(-y) \rightarrow t \rightarrow y$ and if $x = -y$, then $(-y) \rightarrow t \rightarrow y \rightarrow m$ for some $m \in N(y)$. This implies that $(-m) \rightarrow (-y) \rightarrow t \rightarrow y \rightarrow m$, which contradicts $|N(x)| = 1$. So, we should have at least two vertices $x, y \in N(t)$ such that $|N(x)|, |N(y)| \geq 2$. If x and y are adjacent, then $x \rightarrow t \rightarrow y \rightarrow x$ and $\text{gr}(\Gamma_{N^*}(M)) = 3$. We assume that x and y are not adjacent for every $x, y \in N(t)$.

(a) Let $|N(x) \cap N(y)| = 1$. If $2t \in N^*$, then $x + t, y + t \in N^*$; so $x + y + 2t \in N$. This yields $x + y \in N$ and so $x + y = 0$ (since x and y are not adjacent). Therefore, $x = -y$ and there exists a path $(-y) \rightarrow t \rightarrow y \rightarrow (-t)$. This implies that $-y$ and
−t are adjacent. So, −t ∈ N(x) ∩ N(y) where contradicts our assumption, since |N(x) ∩ N(y)| = 1.

Now, assume that 2t /∈ N* and |N(t)| = 2. There is a path (−y) ---- x ---- t ---- y ---- (−x) in ΓN−(M) by part 3 of Remark 2.2; so (−t) ---- (−y) ---- x ---- t ---- y ---- (−x) and −t and −x are adjacent. Hence gr(ΓN−(M)) ≤ 6. If |N(t)| ≥ 3, there is a path m ---- t ---- y ---- (−x) for some vertex m /∈ x. Since m − x /∈ 0, one has gr(ΓN−(M)) ≤ 4, by Theorem 2.4. If −x, t are adjacent then there is a path (−x) ---- t ---- y ---- (−x) and gr(ΓN−(M)) = 3.

(b) Let |N(x) ∩ N(y)| ≥ 2. There is a path m ---- x ---- t ---- y ---- m. Hence ΓN−(M) contains a 4-cycle and gr(ΓN−(M)) ≤ 4.

□

Corollary 2.13. ΓN−(M) is an acyclic graph if and only if it is a disjoint union of some star components.

Proof. Suppose that graph ΓN−(M) is an acyclic graph. If ΓN−(M) has a non-star component, then there exists at least one path of length 3 as x ---- t1 ---- t2 ---- y in ΓN−(M). We assumed that ΓN−(M) is an acyclic graph, so x + y = 0, by Theorem 2.4. Hence, we have a path (−t2) ---- x ---- t1 ---- t2 ---- y. Theorem 2.7 yields there is a cycle in ΓN−(M), which contradicts our assumption. Hence all paths are of lengths 1 or 2. This implies that all components are in the form of stars. □

Theorem 2.14. The following statements hold for the clique number of ΓN−(M).

1. ω(ΓN−(M)) = 2 if N(x) ∩ N(y) = ∅ for every distinct x, y ∈ V (∆N−(M)).
2. If there exist adjacent vertices x and y in ΓN−(M) such that N(x) ∩ N(y) ≠ ∅, then ω(ΓN−(M)) ≥ 3.
3. If 2t = 0 for all t ∈ V (∆N−(M)) and there are adjacent vertices x and y in ΓN−(M) such that x' + y' ≠ 0 for some x' ∈ N(x) and y' ∈ N(y), then ω(ΓN−(M)) ≥ 4.

Proof. (1) It is clear, since ΓN−(M) is a perfect matching.

(2) It is clear, since there is a triangular cycle.

(3) There is a path x' ---- x ---- y ---- y' in ΓN−(M). In view of Theorem 2.4, x' and y' are adjacent. So, x', y and x, y' are adjacent by part 3 of Remark 2.2. Hence ω(ΓN−(M)) ≥ 4. □

Definition 2.15. (See [5, Definition 2.9]) Let m ∈ M − N. We call the subset m + N* a column of ΓN−(M). If 2m ∈ N* for every m ∈ M − N, then we call m + N* a connected column of ΓN−(M).

Theorem 2.16. Suppose ΓN−(M) contains at least one connected column and |N*| ≥ 4 with 2m ≠ 0 for every m ∈ N*. Then gr(ΓN−(M)) = 3.
Proof. Let $x + N^*$ be a connected column in $\Gamma_{N^*}(M)$. Then $2x \in N^*$. Let $n \neq 2x, -2x$ in such a way that $n \in N^*$. Then $x \xrightarrow{N^*} (x + n) \xrightarrow{N^*} (x - n) \xrightarrow{N^*} x$ is a cycle of length 3 in $\Gamma_{N^*}(M)$. \hfill \square

Recall that a vertex x of a connected graph G is called a cut-point of G if there are vertices u, w of G such that x lies on every path from u to w (with $x \neq u, x \neq w$). Equivalently, for a connected graph G, x is called a cut-point of G if $G - \{x\}$ is not connected.

Theorem 2.17. Let $\Gamma_{N^*}(M)$ be connected with $2x \neq 0$ for all $x \in V(\Gamma_{N^*}(M))$. Then $\Gamma_{N^*}(M)$ has no cut-points.

Proof. Assume the vertex x of $\Gamma_{N^*}(M)$ is a cut-point. Then there exist vertices u, w of $\Gamma_{N^*}(M)$ such that x lies on every path from u to w (therefore, $x \neq u, w$).

By Theorem 2.9, the shortest path from u to w is of length 2 or 3.

Case 1. Suppose $u \xrightarrow{N^*} x \xrightarrow{N^*} w$ is a path of shortest length from u to w. There is a path $(-w) \xrightarrow{N^*} u \xrightarrow{N^*} x \xrightarrow{N^*} (-w)$ in $\Gamma_{N^*}(M)$. So there exists a path $u \xrightarrow{N^*} (-w) \xrightarrow{N^*} (-x) \xrightarrow{N^*} (-u) \xrightarrow{N^*} w$ by part 3 of Remark 2.2, which contradicts our assumption.

Case 2. Suppose (without loss of generality) that $u \xrightarrow{N^*} x \xrightarrow{N^*} y \xrightarrow{N^*} w$ is a path of shortest length from u to w in $\Gamma_{N^*}(M)$. Therefore, $N(u) \cap N(w) = \emptyset$. Since u and w are not adjacent, by Theorem 2.4, we have $u + w = 0$ and $(-y) \xrightarrow{N^*} u(= -w) \xrightarrow{N^*} x \xrightarrow{N^*} y \xrightarrow{N^*} w$. So, there exists a path $u \xrightarrow{N^*} (-y) \xrightarrow{N^*} (-x) \xrightarrow{N^*} w$, which contradicts our assumption. \hfill \square

Remark 2.18. Suppose there is a path as $u \xrightarrow{N^*} t \xrightarrow{N^*} w$ in $\Gamma_{N^*}(M)$ such that $|N(u)| = |N(w)| = 1$. Then $\Gamma_{N^*}(M)$ has a cut-point.

Theorem 2.19. The degree of every vertex x of $\Gamma_{N^*}(M)$ is either $|N^*|$ or $|N^*| - 1$. In particular, if $2m \in N^*$ for every vertex m of $\Gamma_{N^*}(M)$, then $\Gamma_{N^*}(M)$ is a $|N^*| - 1$-regular graph.

Proof. Let $x \in V(\Gamma_{N^*}(M))$. If x is adjacent to y, then $x + y = a \in N^*$ and hence, $y = x - a$ for some $a \in N^*$. There are two cases:

Case 1. Suppose that $2x \in N^*$. Then x is adjacent to $a - x$ for every $a \in N^* - \{2x\}$. Thus the degree of x is $|N^*| - 1$. In particular, if $2m \in N^*$ for every $m \in V(\Gamma_{N^*}(M))$, then $\Gamma_{N^*}(M)$ is a $|N^*| - 1$-regular graph.

Case 2. Suppose that $2x \notin N^*$. Then x is adjacent to $a - x$ for all $a \in N^*$. Thus the degree of x is $|N^*|$. \hfill \square
In general, it is not easy to determine when the graph $\Gamma_{N^*} (M)$ is Eulerian or Hamiltonian. Here we consider $M = \mathbb{Z}_n$, for some positive integer n, and investigate being Eulerian or Hamiltonian (or both) for $\Gamma_{N^*} (M)$.

Lemma 2.20. The followings hold.

1. [4, Theorem 3.4] If G is a simple graph with $\nu \geq 3$ and $\delta \geq \nu/2$, where $\nu = |V(G)|$, then G is Hamiltonian.
2. [4, Theorem 1.4] A connected graph G is Eulerian if and only if it contains no vertices of odd degree.

Example 2.21. Let $M = \mathbb{Z}_n$ and $N = 2\mathbb{Z}_n$ with $n \geq 8$. Considering Theorem 2.19, $\Gamma_{N^*} (M)$ is $|N^*| - 1$-regular; so $\delta = |N^*| - 1 = |N| - 2 \geq N/2$, where $|N| = n/2 \geq 4$. Hence by Lemma 2.20, $\Gamma_{N^*} (M)$ is Hamiltonian.

Remark 2.22. If $\Gamma_{N^*} (M)$ is connected, $2x \notin N^*$ for every $x \in V(\Gamma_{N^*} (M))$, and if $|N^*|$ is an even integer, then $\Gamma_{N^*} (M)$ is Eulerian.

Remark 2.23. Let $M = \mathbb{Z}_n$ and $N = k\mathbb{Z}_n$ (so, $N = d\mathbb{Z}_n$ for $d = (k, n)$), and let $\Gamma_{N^*} (M)$ be connected.

1. If n is an odd integer, then $|N^*|$ is even. Let $2x \in N^*$ for some $x \in V(\Gamma_{N^*} (M))$. Then $2x = td$ for some $t \in \mathbb{Z}$. Hence $x \in N$ is not a vertex. So $2x \notin N^*$ for every $x \in V(\Gamma_{N^*} (M))$. Hence, by Lemma 2.20 and Theorem 2.19, $\Gamma_{N^*} (M)$ is Eulerian.

2. Assume that n and k are even integers; then d is an even integer. By Theorem 2.19, the degree of every vertex x is $|N^*|$ or $|N^*| - 1$.

(i) Let $n = 2l$ for some $l \in \mathbb{N}$. If $d > 2$, then there exists at least one vertex x such that $2x \notin N^*$. So, the degree of the vertex x is $|N^*|$. Note that $|N^*|$ is an odd integer. Hence by Lemma 2.20, $\Gamma_{N^*} (M)$ is not Eulerian. If $d = 2$, then by Theorem 2.19, $\Gamma_{N^*} (M)$ is a $|N^*| - 1$-regular graph, so it is Eulerian.

(ii) Let $n = 2m$ for some $l, m \in \mathbb{N}$ such that $(2, m) = 1$. Since $d = 2m' \in N^*$ for some $m' \in V(\Gamma_{N^*} (M))$, the degree of vertex m' is $|N^*| - 1$. Note that $n = td$ for some $t \in \mathbb{Z}$. If t is an odd integer, then $|N^*|$ is even. So the degree of m' is odd and $\Gamma_{N^*} (M)$ is not Eulerian. If t is an even integer, then $|N^*|$ is odd. We have two cases.

(i') If $d > 2$, there exists at least one vertex l such that $2l \notin N^*$. Therefore, by Theorem 2.19, $\deg (l) = |N^*|$, hence $\Gamma_{N^*} (M)$ is not Eulerian.

(ii') If $d = 2$, by Theorem 2.19, $\Gamma_{N^*} (M)$ is a $|N^*| - 1$-regular graph and so it is Eulerian.
(3) Let n be an even integer and k be an odd integer. Since $|N^*|$ is an odd integer and by part (1), $2x \notin N^*$ for every $x \in V(\Gamma_N(M))$, $\Gamma_N(M)$ is not Eulerian.

3. Independence number and chromatic number of $\Gamma_N(M)$

One of the interesting computing problems in graph theory is determining the independence number of a graph. Here we obtain the independence number of $\Gamma_N(M)$ with some special conditions. It is well-known that $\alpha(K^n) = 1$.

Lemma 3.1. [4, Theorem 1.7]

(1) A set is independent if and only if its complement is a vertex cover.

(2) The sum of the size of the largest independent set $\alpha(G)$ and the size of a minimum vertex cover $\beta(G)$ is equal to the number of vertices in the graph.

Theorem 3.2. Let $\Gamma_N(M)$ be connected and let $\nu = |V(G)|$.

(1) If $\text{diam}(\Gamma_N(M)) = 3$ and $d(m, m) = 3$ for every $m \in V(\Gamma_N(M))$, then $\alpha(\Gamma_N(M)) = \beta(\Gamma_N(M)) = \nu/2$.

(2) If $\text{diam}(\Gamma_N(M)) = 2$ and $2m \neq 0$ for every $m \in V(\Gamma_N(M))$, then $\alpha(\Gamma_N(M)) = 2$ and $\beta(\Gamma_N(M)) = \nu - 2$.

Proof. (1) Choose $x \in V(\Gamma_N(M))$. Put $A_x = \{-y \in V(\Gamma_N(M)) \mid y \text{ is adjacent to } x\}$, $A'_x = \{y \in V(\Gamma_N(M)) \mid y \neq -x \text{ and } y \text{ is not adjacent to } x\}$ and $P_x = A_x \cup A'_x$. For every $n \in V(\Gamma_N(M)) - \{x, -x\}$, $n \in P_x$ or $-n \in P_x$. Claim: P_x is an independent set in $\Gamma_N(M)$.

By way of contradiction, suppose there exist $n_1, n_2 \in P_x$ that they are adjacent. Since $n_1, n_2 \in P_x$, so n_1, n_2 are not adjacent to x. We claim that for every vertex t other than x and $-x$, t is adjacent to either $-x$ or x (but not both of them, otherwise, $x \rightarrow t \rightarrow (-x)$, this yields $d(x, -x) = 2$). Hence, n_1, n_2 are not adjacent to x, which implies that n_1, n_2 are adjacent to $-x$.

Suppose there exists $t(\neq x, -x) \in V(\Gamma_N(M))$ such that t is not adjacent to x and $-x$. Since $d(x, -x) = 3$, there exists a path $x \rightarrow m_1 \rightarrow m_2 \rightarrow (-x)$ in $\Gamma_N(M)$. It is clear that $d(t, x) = d(t, -x) = 2$; otherwise, t is adjacent to x or $-x$. So, there exists $l \in V(\Gamma_N(M))$ such that $t \rightarrow l \rightarrow x$. There is a path $t \rightarrow l \rightarrow x \rightarrow m_1 \rightarrow m_2 \rightarrow (-x)$ such that t is adjacent to m_1 (since m_1 and x are adjacent and $d(t, -x) = 2$, so $t \neq -m_1$). Hence $t \rightarrow m_1 \rightarrow m_2 \rightarrow (-x)$ implies that t and $-x$ are adjacent (since $t \neq x$) which is a contradiction. (Therefore, for every vertex t, all other vertices except $-t$ are adjacent to t or $-t$.) Since n_1, n_2 are not adjacent to x, so n_1, n_2 are adjacent to $-x$ and $n_1 \rightarrow (-x) \rightarrow n_2 \rightarrow (-n_1)$ which by assumption n_1 and n_2 are adjacent. So, $d(n_1, -n_1) = 2$, a contradiction. This shows that P_x is independent. On the other hand, for every $x \neq y \in V(\Gamma_N(M))$, one has
$|P_x| = |P_y|$. We have to show that P_x is the largest independent set in $\Gamma_{N^*}(M)$. Suppose there exists an independent set U in $\Gamma_{N^*}(M)$ such that $|U| > |P_x| = |\nu|/2$, where $\nu = |V(G)|$. So, there exists $g \in V(\Gamma_{N^*}(M))$ such that $g, -g \in U$. This implies that U is not independent. Hence P_x is the largest independent set in $\Gamma_{N^*}(M)$ and $\alpha(\Gamma_{N^*}(M)) = \beta(\Gamma_{N^*}(M)) = \nu/2$ by Lemma 3.1.

(2) Let $\Gamma_{N^*}(M)$ be connected with $\text{diam}(\Gamma_{N^*}(M)) = 2$ and let $2m \neq 0$ for every $m \in V(\Gamma_{N^*}(M))$. Put $G_x = \{x, -x\}$ for some $x \in V(\Gamma_{N^*}(M))$. We show that G_x is the largest independent set in $\Gamma_{N^*}(M)$.

Claim: Every vertex x is adjacent to every other vertex except $-x$.

By way of contradiction, assume that there is $m \in V(\Gamma_{N^*}(M))$ such that $d(m, x) = 2$ for some $x(\neq m) \in V(\Gamma_{N^*}(M))$. So there is a path $m \rightarrow t \rightarrow x$ in $\Gamma_{N^*}(M)$ for some $t \in V(\Gamma_{N^*}(M))$; therefore, $(-x) \rightarrow m \rightarrow t \rightarrow x$ such that x and $-m$ are adjacent. Moreover, $d(x, -x) = 2$. Hence, there is a path $x \rightarrow l \rightarrow (-x)$ in $\Gamma_{N^*}(M)$ for some $l \in V(\Gamma_{N^*}(M))$. Now, the path $(-m) \rightarrow x \rightarrow l \rightarrow (-x)$ implies that $-m$ is adjacent to $-x$ by Theorem 2.4. So m is adjacent to x, a contradiction. Therefore, G_x is the largest independent set in $\Gamma_{N^*}(M)$. In this case $\alpha(\Gamma_{N^*}(M)) = 2$ and $\beta(\Gamma_{N^*}(M)) = \nu - 2$ where $\nu = |V(G)|$ by Lemma 3.1. □

One of the important aims in graph theory is determining the chromatic number of a given graph. Here we investigate the chromatic number of $\Gamma_{N^*}(M)$ in some special cases. It is well-known that $\chi(K^n) = n$ and $\chi(G) \geq \omega(G)$.

Remark 3.3. For all distinct $x, y \in V(\Gamma_{N^*}(M))$, if $N(x) \cap N(y) = \emptyset$, then it is obvious that $\Gamma_{N^*}(M)$ is a perfect matching and $\chi(\Gamma_{N^*}(M)) = 2$.

Theorem 3.4. Let $\Gamma_{N^*}(M)$ be connected and non-complete. If there exist two adjacent vertices x and y of $\Gamma_{N^*}(M)$ with $N(x) \cap N(y) \neq \emptyset$ or for every two non-adjacent vertices x and y of $\Gamma_{N^*}(M)$, $N(x) \cap N(y) \neq \emptyset$, then $\chi(\Gamma_{N^*}(M)) \geq 3$.

Proof. Since $\Gamma_{N^*}(M)$ is not complete, there exist non-adjacent vertices x and y in $\Gamma_{N^*}(M)$. By assumption, $N(x) \cap N(y) \neq \emptyset$; so $(-y) \rightarrow x \rightarrow t \rightarrow y$ and $l \rightarrow (-y) \rightarrow x \rightarrow t \rightarrow y \rightarrow l$ for some $l \in N(y) \cap N(-y)$. Thus $\chi(\Gamma_{N^*}(M)) \geq 3$. (It should be noted that if $y = -y$, then $\chi(\Gamma_{N^*}(M)) \geq 3$.) □

Theorem 3.5.

1. Let $\Gamma_{N^*}(M)$ be connected with $\text{diam}(\Gamma_{N^*}(M)) = 3$ and $d(m, -m) = 3$ for every $m \in V(\Gamma_{N^*}(M))$. Then $\chi(\Gamma_{N^*}(M)) = 3$.

2. Let $\Gamma_{N^*}(M)$ be connected with $\text{diam}(\Gamma_{N^*}(M)) = 2$ and let $2m \neq 0$ for every $m \in V(\Gamma_{N^*}(M))$. Then $\chi(\Gamma_{N^*}(M)) = \nu/2$, where $\nu = |V(G)|$.

Proof. (1) Let $x \in V(\Gamma_{N^*}(M))$. Considering our hypothesis and by the proof of part 1 of Theorem 3.2, for every vertex t other than x and $-x$, t is adjacent to
either $-x$ or x (but not to both of them, otherwise, $x \rightarrow t \rightarrow (-x)$, this implies that $d(x, -x) = 2$). If t is adjacent to x, then t is not adjacent to $-x$; so $t \in P_{-x}$, otherwise, $t \in P_x$. Hence $P_x \cup P_{-x} = V(\Gamma_{N^*}(M))$. Now we assign color a to elements of P_x and color b to elements of P_{-x}. Therefore, $\chi(\Gamma_{N^*}(M)) = 2$.

(2) Let $l_1 \in V(\Gamma_{N^*}(M))$. Here, by the proof of part 2 of Theorem 3.2, every vertex m is adjacent to all other vertices except $-m$. At first we assign color 1 to l_1 and $-l_1$. Choose $l_i(\neq l_1, -l_1) \in V(\Gamma_{N^*}(M))$ where $i > 1$. Since l_i is adjacent to l_1 and $-l_1$ and all of other vertices except $-l_i$, we assign color i to l_i and $-l_i$. Continuing in this manner for remaining vertices of $\Gamma_{N^*}(M)$, one has $\chi(\Gamma_{N^*}(M)) = \nu/2$.

\textbf{Acknowledgment.} The authors would like to thank the referee for the valuable suggestions and comments.

\textbf{References}

[1] A. Abbasi and S. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc., 49(1) (2012), 85-98.

[2] A. Abbasi and S. Habibi, The total graph of a module over a commutative ring with respect to proper submodules, J. Algebra Appl., 11(3) (2012), 1250048 (13 pp).

[3] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320(7) (2008), 2706-2719.

[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.

[5] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425-4443.

\textbf{Ahmad Abbasi} (Corresponding Author)

Department of Pure Mathematics

Faculty of Mathematical Sciences

University of Guilan

Rasht, Iran

e-mail: aabbasi@guilan.ac.ir

\textbf{Leila Hamidian Jahromi}

Department of Pure Mathematics

Faculty of Mathematical Sciences

University of Guilan, University Campus 2

Rasht, Iran

e-mail: acz459@yahoo.com