Supporting Information

Dibismuthanes in Catalysis: From Synthesis and Characterization to Redox Behavior towards Oxidative Cleavage of 1,2-Diols

Marc Magre, Jennifer Kuziola, Nils Nöthling and Josep Cornella*

Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany

cornella@kofo.mpg.de
Table of Contents

1. General considerations S3
2. Synthesis of Ligands 3 and 4 S4
3. Synthesis of Dibismuthanes 5-8 S6
 3.1. Synthesis of Dibismuthane 5 S6
 3.2. Synthesis of Dibismuthane 6 S8
 3.3. Synthesis of Dibismuthane 7 S10
 3.4. Synthesis of Dibismuthane 8 S12
4. Synthesis of Pentavalent Dibismuth Compounds 9-12 S14
5. Low temperature and VT NMR analysis S19
 5.1. Compound 10 S19
 5.2. Compound 11 S21
6. Stoichiometric experiments of 9-12 for the oxidative cleavage of 1,2-diphenylethane-1,2-diol (13) S23
7. Kinetic experiments of 5-8 for Bi-catalyzed oxidative cleavage of 1,2-diphenylethane-1,2-diol (13) S24
8. Scope of Bi-catalyzed oxidative cleavage of 1,2-diols S26
9. References S29
10. NMR spectra S30
11. X-ray single crystal analysis S44
1. General considerations

Experimental methods

Unless otherwise stated, all manipulations were performed using standard Schlenk techniques under dry argon in flame-dried glassware. Anhydrous n-pentane, THF, Et₂O and toluene were distilled from appropriate drying agents and were transferred under argon.

Flash chromatography: Merck silica gel 60 (40-63 µm). Preparative TLC plates: PLC Silica gel 60 F₂₅₄, 1 mm, 20x20 cm (Sigma-Aldrich). ESI-MS: ESQ 3000 (Bruker). High-resolution mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan). NMR spectra were recorded using 300 MHz Bruker Avance III, 400 MHz Bruker Avance III HD and 500 MHz Bruker Avance III NMR spectrometers. ¹H NMR spectra (300.13 MHz, 400.2 MHz, 500.1 Hz) were referenced to the residual protons of the deuterated solvent, and are reported to tetramethylsilane (δ TMS = 0 ppm), chloroform-d (δTMS= 7.26 ppm) or acetonitrile-d₃ (δTMS= 1.94ppm). ¹³C{¹H} NMR spectra (75.47 MHz, 101 MHz, 125 MHz) were referenced internally to the D-coupled ¹³C resonances of the NMR solvent and are reported to tetramethylsilane (δTMS= 0 ppm) and chloroform-d (δTMS= 77.16ppm). Chemical shifts (δ) are given in ppm, relative to deuterated solvent residual peak, and coupling constants (J) provided in Hz. C, H, Bi, Cl elemental analyses were performed by the Microanalytical Laboratory Kolbe.
2. Synthesis of Ligands 3 and 4

2.1 Synthesis of 4,6-dibromo-10,11-dihydrodibenzo[b,f]oxepine (3)

To a flame dried Schlenk-flask charged with a stir bar was added 10,11-dihydrodibenzo[b,f]oxepine\(^{[1,2]}\) (3.1) (585 mg, 2.98 mmol, 1.0 equiv.), anhydrous Et\(_2\)O (28 mL), anhydrous TMEDA (1.3 mL, 8.6 mmol, 2.9 equiv.) and dropwise a solution of 1.4 M s-BuLi (6.2 mL, 8.64 mmol, 2.9 equiv.) at −78 °C. The mixture was warmed to 23 °C and left to stir for 18 h. The solution was cooled to −78 °C, followed by a slow addition of Br\(_2\) (0.50 mL, 9.83 mmol, 3.3 equiv.) in pentane (6.5 mL) and allowed to stir for another 18 h at 23 °C. After completion, a saturated aqueous solution of Na\(_2\)S\(_2\)O\(_3\) was added, followed by Et\(_2\)O and the layers were separated. The aqueous layer was washed with Et\(_2\)O (3 × 20 mL) and the combined organics were washed with Na\(_2\)S\(_2\)O\(_3\), dried over MgSO\(_4\), filtered and concentrated under reduced pressure. Purification via flash chromatography (SiO\(_2\), 100% hexane) yielded 4,6-dibromo-10,11-dihydrodibenzo[b,f]oxepine (3) as a white solid (510 mg, 48% yield).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 7.47 (dd, \(J = 7.9, 1.7\) Hz, 2H), 7.05 (dd, \(J = 7.6, 1.7\) Hz, 2H), 6.89 (t, \(J = 7.7\) Hz, 2H), 3.14 (s, 4H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): δ 152.7, 133.5, 132.0, 129.4, 124.7, 115.1, 32.1.

HRMS (ESI): calc’d for C\(_{14}\)H\(_{10}\)O\(_1\)Br\(_2\) [M]\(^+\) 351.909315; found 351.909350.
2.2 Synthesis of 2,2'-oxybis(iodobenzene) (4)

To a flame dried Schlenk-flask charged with a stir bar was added diphenylether (4.1) (1 g, 5.8 mmol, 1 equiv.), anhydrous THF (12 mL) and the solution was cooled to –78 °C. Then, anhydrous TMEDA (1.93 mL, 12.9 mmol, 2.2 equiv.) and a solution of 2.6 M n-BuLi (4.97 mL, 12.9 mmol, 2.9 equiv.) were added dropwise. The mixture was warmed to 23 °C and left to stir for 18 h. The solution was cooled to –78 °C, followed by a slow addition of I₂ (3.4 g, 13.5 mmol, 2.3 equiv.) and allowed to stir for another 18 h at 23 °C. After completion, a saturated aqueous solution of Na₂S₂O₃ was added, followed by Et₂O and the layers were separated. The aqueous layer was washed with Et₂O (3 × 10 mL) and the combined organics were washed with Na₂S₂O₃, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification via flash chromatography (SiO₂, 100% hexane) yielded 2,2'-oxybis(iodobenzene) (4) as a white solid (1.047 g, 56% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.88 (dd, J = 7.9, 1.6 Hz, 2H), 7.28 (ddd, J = 8.2, 7.3, 1.5 Hz, 2H), 6.89 (td, J = 7.6, 1.4 Hz, 2H), 6.78 (dd, J = 8.2, 1.4 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 156.0, 140.1, 129.6, 125.5, 118.7, 88.4.

HRMS (ESI): calc’d for C₁₂H₈O₁I₂Na₁ [M+Na]⁺ 444.855679; found 444.856070.
3. Synthesis of Dibismuthanes 5-8

3.1 Synthesis of 4,6-bis(diphenylbismuthanyl)dibenzo[\textit{b,d}]furan (5)

4,6-dibromodibenzofuran[3] (1) (150 mg, 0.46 mmol) was placed in a flame-dried Schlenk-flask under Ar atmosphere and dissolved in 6.5 mL of anhydrous THF. The solution was cooled to \(-78\) °C and a solution of 2.6 M \textit{n}-BuLi in hexane (0.35 mL, 0.92 mmol, 2.0 equiv.) was added dropwise. The mixture was warmed to 23 °C and left to stir for 45 min. Then, the mixture was cooled again to \(-78\) °C and a solution of \(\text{ZnCl}_2\) in anhydrous THF was added (0.92 mmol, 4.5 mL, 2.0 equiv.). The mixture was warmed to 23 °C and left to stir for 45 min. After this, \(\text{Ph}_2\text{BiOTs}\)[4] (491.8 mg, 0.92 mmol, 2.0 equiv.) was added in one portion at \(-10\) °C, followed by the addition of additional 3 mL of anhydrous THF and the reaction was left to stir for 1.5 h at this temperature. The solution was quenched with a saturated aqueous solution of \(\text{NaHCO}_3\) and diluted with \(\text{Et}_2\text{O}\), whereupon it was extracted twice with \(\text{Et}_2\text{O}\) (2 \(\times\) 8 mL). The combined organic phases were dried over \(\text{MgSO}_4\), filtered and concentrated under reduced pressure (not to dryness!).\textsuperscript{[\textit{a}]}

The crude reaction mixture was then purified by flash chromatography (SiO\textsubscript{2}, 20:1 hexane:EtOAc). The obtained solid was washed further with cold pentane (2 \(\times\) 5 mL) to yield the desired complex 5 as an off-white solid (173 mg, 42\% yield).

\textbf{1H NMR} (300 MHz, CDCl\textsubscript{3}): \(\delta 7.94\) (dd, \(J = 7.6, 1.3\) Hz, 2H [H\textsubscript{4}]), 7.77 (dt, \(J = 5.9, 1.6\) Hz, 8H [H\textsubscript{8,12}]), 7.68 (dd, \(J = 7.2, 1.2\) Hz, 2H, [H\textsubscript{2}]), 7.32 (m, \(J = 8.0, 3.4\) Hz, 14H [H\textsubscript{3,9,10,11}]).

\textbf{13C NMR} (75 MHz, CDCl\textsubscript{3}): \(\delta 170.7\) [C\textsubscript{q}], 160.0 [C\textsubscript{q}], 137.9 [C\textsubscript{8}], 136.0 [C\textsubscript{2}], 130.5 [C\textsubscript{9}], 127.8 [C\textsubscript{1}], 125.5 [C\textsubscript{3}], 123.6 [C\textsubscript{1}], 120.7 [C\textsubscript{4}].[b]

\textbf{HRMS (ESI)}: calc’d for \(\text{C}_{36}\text{H}_{27}\text{O}_{1}\text{Bi}_2\) [M+H]+ 893.166410; found 893.166160.

\textbf{EA}: \(\text{C}_{36}\text{H}_{27}\text{O}_{1}\text{Bi}_2\cdot\text{H}_2\text{O}\), calc’d C 47.49, H 3.10, Bi 45.90 %, exp. C 47.66, H 3.05, Bi 46.05 %.
X-ray quality crystals were obtained from slow evaporation of a solution of complex 5 in CH$_2$Cl$_2$:hexane (1:5) at 23 °C.

[a]Note: To avoid dismutation, which results in lower yields, it is advised to not to reach dryness.

[b]Note: One quartenary carbon signal was not observed in the 13C NMR spectra. To avoid a misassignment, the observable quaternary carbons were assigned as Cq.
3.2 Synthesis of (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylbismuthane) (6)

4,5-dibromo-9,9-dimethyl-9H-xanthene[5] (2) (555 mg, 1.5 mmol) was placed in a flame-dried Schlenk-flask under Ar atmosphere and dissolved in 25 mL of anhydrous THF. The solution was cooled to −78 °C and a solution of 2.6 M \textit{n}-BuLi in hexane (0.28 mL, 3 mmol, 2.0 equiv.) was added dropwise. The mixture was warmed to 23 °C and left to stir for 45 min. After this time, the mixture was cooled again to −78 °C and a solution of ZnCl\textsubscript{2} in anhydrous THF was added (3.0 mmol, 15 mL, 2.0 equiv.). The mixture was warmed to 23 °C and left to stir for 45 min. Then, Ph\textsubscript{2}BiOTs[4] (1.6 g, 3.0 mmol, 2.0 equiv.) was added in one portion at −10 °C, followed by the addition of additional 5 mL of anhydrous THF and the reaction was left to stir for 1.5 h at this temperature. The solution was quenched with a saturated aqueous solution of NaHCO\textsubscript{3} and diluted with Et\textsubscript{2}O, whereupon it was extracted twice with Et\textsubscript{2}O (2 × 25 mL). The combined organic phases were dried over MgSO\textsubscript{4}, filtered and concentrated under reduced pressure (not to dryness)! The obtained solid was washed further with cold pentane (2 × 5 mL) to yield the desired complex 6 as an off-white solid (750 mg, 53% yield).

\textbf{1H NMR} (300 MHz, CDCl\textsubscript{3}): δ 7.66 (dd, \textit{J} = 7.7, 1.6 Hz, 8H [H\textsubscript{10,14}]), 7.47 (dd, \textit{J} = 7.2, 1.5 Hz, 2H [H\textsubscript{6}]), 7.42 (dd, \textit{J} = 7.7, 1.5 Hz, 2H [H\textsubscript{4}]), 7.37 – 7.26 (m, 12H [H\textsubscript{11,12,13}]), 7.05 (dd, \textit{J} = 7.7, 7.2 Hz, 2H [H\textsubscript{5}]), 1.67 (s, 6H [H\textsubscript{1}]).

\textbf{13C NMR} (75 MHz, CDCl\textsubscript{3}): δ 155.5 [C\textsubscript{q}], 152.6 [C\textsubscript{q}], 137.8 [C\textsubscript{10}], 136.7 [C\textsubscript{6}], 130.4 [C\textsubscript{11}], 130.0 [C\textsubscript{3}], 127.6 [C\textsubscript{12}], 126.6 [C\textsubscript{5}], 126.3 [C\textsubscript{4}], 35.2 [C\textsubscript{2}], 32.5 [C\textsubscript{1}].[b]

\textbf{HRMS (ESI)}: calc. for C\textsubscript{39}H\textsubscript{33}Bi\textsubscript{2}O\textsubscript{1} [M+H]+ 935.2133; found 935.2131.

\textbf{EA}: C\textsubscript{39}H\textsubscript{32}Bi\textsubscript{2}O·0.5H\textsubscript{2}O, calc’d C 49.64, H 3.53, Bi 44.29 %; exp. C 49.76, H 3.51, Bi 44.44 %.
X-ray quality crystals were obtained from a phase transfer diffusion (5:1) of pentane into a concentrated solution of complex 6 in CH$_2$Cl$_2$ at +5 °C.

[a] Note: To avoid dismutation, which results in lower yields, it is advised to not to reach dryness.[4]

[b] Note: One quartenary carbon signal was not observed in the 13C NMR spectra. To avoid a misassignment, the observable quaternary carbons were assigned as Cq.
3.3 Synthesis of 4,6-bis(diphenylbismuthanyl)-10,11-dihydridibenzo[b,f]oxepine (7)

4,6-dibromo-10,11-dihydridibenzo-oxepine (3) (200 mg, 0.56 mmol) was placed in a flame-dried Schlenk-flask under Ar atmosphere and dissolved in 9 mL of anhydrous THF. The solution was cooled to −78 °C and a solution of 2.6 M n-BuLi in hexane (0.43 mL, 1.1 mmol, 2.0 equiv.) was added dropwise. The mixture was stirred at 23 °C for 45 min. After this time, the mixture was cooled again to −78 °C and a solution of ZnCl₂ in anhydrous THF was added (1.1 mmol, 6 mL, 2 equiv.). The mixture was warmed to 23 °C and left to stir for 45 min. Then, Ph₂BiOTs[4] (603.7 mg, 1.1 mmol, 2.0 equiv.) was added in one portion at −10 °C, followed by the addition of additional 4 mL of anhydrous THF and the reaction was left to stir for 1.5 h at this temperature. The reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ and diluted with Et₂O, whereupon it was extracted twice with Et₂O (2 × 8 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated under reduced pressure (not to dryness!)[a]. The crude reaction mixture was then purified by flash chromatography (SiO₂, 20:1 hexane:EtOAc). The obtained solid was washed further with cold pentane (2 × 5 mL) to yield the desired complex 7 as an off-white solid (234 mg, 45% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.64 – 7.59 (m, 8H [H₉,₁₃]), 7.53 (dd, J = 7.2, 1.7 Hz, 2H [H₅]), 7.36 – 7.26 (m, 12H [H₁₀,₁₁,₁₂]), 7.08 (dd, J = 7.4, 1.7 Hz, 2H [H₃]), 6.92 (t, J = 7.3 Hz, 2H [H₄]), 3.13 (s, 4H [H₁]).

¹³C NMR (75 MHz, CDCl₃): δ 158.9 [C₉], 157.3 [C₈], 138.2 [C₉], 137.7 [C₅], 132.0 [C₂], 131.4 [C₃], 130.8 [C₁₀], 128.0 [C₁₁], 126.9 [C₄], 34.5 [C₁].[b]

HRMS (ESI): calc’d for C₃₈H₃₀Bi₂O₁Na₁ [M+Na]⁺ 943.17965; found 943.179980.

EA: C₃₈H₃₀Bi₂O·0.5H₂O, calc’d C 49.10, H 3.36, Bi 44.96 %; exp. C 49.30, H 3.27, Bi 45.12 %.
X-ray quality crystals were obtained from slow evaporation of a solution of complex 7 in CH$_2$Cl$_2$:hexane (1:5) at 23°C.

[a] Note: To avoid dismutation, which results in lower yields, it is advised to not to reach dryness.[4]

[b] Note: One quartenary carbon signal was not observed in the 13C NMR spectra. To avoid a misassignment, the observable quaternary carbons were assigned as Cq.
3.4 Synthesis of (oxybis(2,1-phenylene))bis(diphenylbismuthane) (8)

A flame-dried Schlenk-flask was charged with activated magnesium turnings (41.4 mg, 1.7 mmol, 4.0 equiv.) and anhydrous THF (0.5 mL) under Ar atmosphere, followed by addition of 1,2-dibromoethane (38.6 μL, 1.05 equiv.) and 10 mg (0.0237 mmol) of 2,2'-oxybis(iodobenzene) (4). This mixture was gently heated with a heat gun (70 °C) and a solution of the remaining 2,2'-oxybis(iodobenzene) (4) (170 mg, 0.4028 mmol) in anhydrous THF (6.2 mL) was slowly added. The mixture was placed in an oil bath and heated at 70 °C for 3 h. Then, the solution was cooled to room temperature, additional 15 mL of anhydrous THF were added and the mixture was cooled to −10 °C. Finally, Ph₂BiOTs[4] (455.8 mg, 0.85 mmol, 2 equiv.) was added in one portion and the solution was left to stir for 1.5 h at −10 °C. The mixture was quenched with a saturated aqueous solution of NaHCO₃ and diluted with Et₂O, whereupon it was extracted twice with Et₂O (2 × 10 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated under reduced pressure (not to dryness!). The crude reaction mixture was then purified by flash chromatography (SiO₂, 20:1 hexane:EtOAc). The obtained solid was washed further with cold pentane (2 × 5 mL) to yield the desired complex 8 as an off-white solid (104 mg, 33% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.68 – 7.61 (m, 10H, [H₅,8,12]), 7.38 – 7.28 (m, 12H, [H₉,10,11]), 7.23 (ddd, J = 8.1, 7.2, 1.7 Hz, 2H [H₃]), 7.04 (td, J = 7.3, 1.1 Hz, 2H (H₄)), 6.93 (dd, J = 8.1, 1.1 Hz, 2H (H₂)).

¹³C NMR (101 MHz, CDCl₃): δ 159.6 [C₄], 155.4 [C₁], 138.9 [C₅], 137.9 [C₈], 130.4 [C₉], 129.6 [C₃], 127.6 [C₁₀], 126.5 [C₄], 117.4 [C₂].[b]

HRMS (ESI): calc’d for C₃₆H₂₈O₁Bi₂Na₁ [M+Na]⁺ 917.16400; found 917.164080.

EA: C₃₆H₂₈Bi₂O, calc’d C 48.34, H 3.16, Bi 46.72 %; exp. C 48.24, H 3.35, Bi 46.61 %.

X-ray quality crystals were obtained a phase transfer diffusion (5:1) of pentane into a concentrated solution of complex 8 in Et₂O at 23 °C.
[a] Note: To avoid dismutation, which results in lower yields, it is advised to not to reach dryness.[4]

[b] Note: One quartenary carbon signal was not observed in the 13C NMR spectra. To avoid a misassignment, the observable quaternary carbons were assigned as Cq.
4. Synthesis of Pentavalent Dibismuth Compounds 9-12

General Synthesis

In a flame-dried Schlenk-flask under Ar atmosphere, the corresponding dibismuthane (1.0 equiv.) was dissolved in anhydrous CH₂Cl₂ (6 mL) and SO₂Cl₂ (3.5 equiv.) was added. After 5 min, the solvent was evaporated. The crude was washed with Et₂O (2 × 10 mL), affording the corresponding pentavalent dibismuth 9-12 as yellow solids.

4,6-bis(dichlorodiphenyl-\(\lambda^5\)-bismuthanyl)dibenzo[\(b,d\)]furan (9)

Yield: 201 mg (96%).

\(^1\)H NMR (400 MHz, CDCl₃): δ 8.50 – 8.45 (m, 8H [H₈,1₂]), 8.15 (dd, \(J = 7.6, 1.1 \text{ Hz}, 2\)H [H₄]), 8.07 (dd, \(J = 7.9, 1.1 \text{ Hz}, 2\)H [H₂]), 7.66 – 7.60 (m, 8H [H₉,1₁]), 7.56 (t, \(J = 7.7 \text{ Hz}, 2\)H [H₃]), 7.53 – 7.47 (m, 4H [H₁₀]).

\(^{13}\)C NMR (101 MHz, CDCl₃): δ 154.9 [C₆], 154.6 [C₉], 141.9 [C₇], 134.3 [C₈], 132.4 [C₂], 131.9 [C₉], 131.6 [C₁₀], 126.9 [C₁], 125.8 [C₃], 124.0 [C₄].

HRMS (ESI): calc’d for C₃₆H₂₆Bi₂Cl₄O₁Na₁ [M+Na]⁺ 1055.02376; found 1055.02316.
EA: $\text{C}_{36}\text{H}_{26}\text{Bi}_2\text{Cl}_4\text{O}_1\cdot\text{H}_2\text{O}$, calc’d C 41.09, H 2.68, Bi 39.72, Cl 13.47%; exp. C 40.89, H 2.47, Bi 39.39, Cl 13.34 %.

X-ray quality crystals were obtained by vapour diffusion of a solution of complex 9 in CH$_2$Cl$_2$:pentane (1:5).

[b]Note: To avoid a misassignment, the observable quaternary carbons were assigned as Cq.
(9,9-dimethyl-9H-xanthene-4,5-diyl)bis(dichlorodiphenyl-\(\lambda^5\)-bismuthane) (10)

Yield: 194 mg (94%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.15 (d, \(J = 7.7\) Hz, 8H \([H_{10,14}]\)), 7.94 (d, \(J = 8.0\) Hz, 2H \([H_6]\)), 7.59 (d, \(J = 7.6\) Hz, 2H \([H_4]\)), 7.40 (dd, \(J = 11.7, 7.1\) Hz, 12H \([H_{11,12,13}]\)), 7.27 (t, \(J = 7.3\) Hz, 2H \([H_5]\)), 1.75 (s, 6H \([H_1]\)).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 159.3 \([C_q]\), 150.1 \([C_q]\), 134.8 \([C_3]\), 134.0 \([C_{10}]\), 132.5 \([C_6]\), 131.4 \([C_{11}]\), 130.7 \([C_{12}]\), 128.1 \([C_4]\), 126.2 \([C_5]\), 36.9\([C_2]\), 30.8\([C_1]^{[b]}\).

HRMS (ESI): calc’d for C\(_{39}\)H\(_{32}\)Bi\(_2\)Cl\(_3\)O\(_1\) [M-Cl]\(^+\) 1039.1121; found 1039.1117.

EA: C\(_{39}\)H\(_{32}\)Bi\(_2\)Cl\(_4\)O\(_1\), calc’d C 43.52, H 3.00, Bi 38.83, Cl 13.17 %; exp. C 43.35, H 3.05, Bi 38.54, Cl 13.02 %.

X-ray quality crystals were obtained from slow evaporation of a solution of complex 10 in CH\(_2\)Cl\(_2\):hexane (1:5).

\(^{[b]}\)Note: One quartenary carbon signal was not observed in the \(^{13}\)C NMR spectra. To avoid a misassignment, the observable quartenary carbons were assigned as C\(_q\).
4,6-bis(dichlorodiphenyl-λ^5-bismuthanyl)-10,11-dihydrodibenzo[b,f]oxepine (11)

Yield: 210 mg (97%).

1H NMR (400 MHz, CDCl$_3$): δ 8.23 – 8.18 (m, 8H, [H$_{9,13}$]), 7.98 (dd, $J = 7.8, 1.6$ Hz, 2H [H$_5$]), 7.57 – 7.51 (m, 8H [H$_{10,12}$]), 7.48 – 7.43 (m, 4H [H$_{11}$]), 7.28 – 7.25 (m, 2H [H$_3$]), 7.22 – 7.17 (m, 2H [H$_4$]), 3.48 – 3.05 (m, 4H [H$_1$]).

13C NMR (101 MHz, CDCl$_3$): δ 155.4 [C$_q$], 153.1 [C$_q$], 152.8 [C$_q$], 136.0 [C$_2$], 134.1 [C$_9$], 133.7 [C$_3$], 132.0 [C$_{10}$], 131.9 [C$_5$], 131.2 [C$_{11}$], 124.6 [C$_4$], 36.8 [C$_1$].$^{[b]}$

HRMS (ESI): calc’d for C$_{38}$H$_{30}$Bi$_2$Cl$_4$O$_1$Na$_1$ [M+Na]$^+$ 1083.05506; found 1083.056120.

EA: C$_{38}$H$_{30}$Bi$_2$Cl$_4$O$_1$, calc’d C 42.94, H 2.83, Bi 39.31, Cl 13.36 %; exp. C 42.96, H 2.85, Bi 39.34, Cl 13.35%.

X-ray quality crystals were obtained from liquid transfer diffusion of a mixture of C$_6$D$_6$:pentane (1:1) at 23 °C.

$^{[b]}$Note: To avoid a misassignment, the observable quaternary carbons were assigned as C$_q$.

S17
Oxybis(2,1-phenylene))bis(dichlorodiphenyl-κ₅-bismuthane) (12)

Yield: 195 mg (93%).

¹H NMR (400 MHz, CDCl₃): δ 8.51 – 8.45 (m, 8H [H₈,₁₂]), 7.85 (dd, J = 7.9, 1.5 Hz, 2H [H₅]), 7.64 – 7.58 (m, 10H [H₃,₉,₁₁]), 7.49 – 7.44 (m, 4H [H₁₀]), 7.44 – 7.40 (m, 2H [H₂]), 7.37 – 7.32 (m, 2H [H₄]).

¹³C NMR (101 MHz, CDCl₃): δ 155.9 [C₉], 154.1 [C₉], 153.6 [C₈], 134.4 [C₈], 132.84 [C₈], 132.2 [C₉+C₅], 131.5 [C₁₀], 127.4 [C₄], 123.2 [C₃].

HRMS (ESI): calc’d for C₃₆H₂₈Cl₃Bi₂O₁ [M-Cl]+ 999.08079; found 999.07967.

EA: C₃₆H₂₈Bi₂Cl₄O₁·H₂O, calc’d C 41.01, H 2.87, Bi 39.64, Cl 13.45 %; exp. C 40.90, H 3.03, Bi 39.53, Cl 13.41 %

X-ray quality crystals were obtained from slow evaporation of a solution of complex 12 in CH₂Cl₂:hexane (1:5).

[b]Note: To avoid a misassignment, the observable quaternary carbons were assigned as Cq.
5. Low temperature and VT NMR analysis

5.1. Pentavalent Bi–(V) 10

1H NMR of 10 (400 MHz in CD$_2$Cl$_2$) at 23 °C

1H NMR of 10 (400 MHz in CD$_2$Cl$_2$) at -90 °C
VT 1H NMR of 10 (500 MHz in CD$_2$Cl$_2$) from 23 °C (bottom) to -90 °C (top)

Zoom area: 10.00 – 6.50 ppm
5.2. Pentavalent Bi–(V) 11

1H NMR of 11 (500 MHz in CD$_2$Cl$_2$) at 23 °C

1H NMR of 11 (500 MHz in CD$_2$Cl$_2$) at -90 °C
VT 1H NMR of 11 (500 MHz in CD$_2$Cl$_2$) from 23 °C (bottom) to -90 °C (top)

Zoom area: 10.00 – 6.50 ppm
6. Stoichiometric experiments of 9-12 for the oxidative cleavage of 1,2-diphenylethane-1,2-diol (13)

![Chemical structure of 13](image)

Bi (1 or 0.5 equiv.)
NBS (1.2 equiv.), K$_2$CO$_3$ (5 equiv.)
CD$_3$CN, 23 °C, 30 min

![Chemical structure of 14](image)

Entry	Bismuth (V) reagent	Yield (%)b
1	Ph$_3$BiCl$_2$ (1 equiv.)	90
2	9 (0.5 equiv.)	90
3	10 (0.5 equiv.)	89
4	11 (0.5 equiv.)	93
5	12 (0.5 equiv.)	92

a Reaction conditions: 13 (0.12 mmol), Bi-(V) reagent (1 or 0.5 equiv.) NBS (1.2 equiv.), K$_2$CO$_3$ (5 equiv.) in 1.2 mL of CD$_3$CN [0.1 M] at 23 °C for 30 min. b Yields were determined by 1H NMR using mesitylene as internal standard.
7. Kinetic experiments of 5-8 and BiPh₃ for Bi-catalyzed oxidative cleavage of 1,2-diphenylethane-1,2-diol (13)
Barton´s proposed mechanism

Barton and co-workers proposed a mechanism for the Bi-catalyzed oxidative cleavage of 1,2-diols based on NMR spectroscopy and experimental evidences. In the first step, the glycol reacts with NBS to form a hypobromite species, which acts as an oxidant of BiPh₃ to form a pentavalent Bi-alcoxy intermediate. The last step is a base-induced reductive elimination with cleavage of the C-C bond to the carbonyl derivatives and regenerating triphenylbismuth.

Barton's proposed mechanism (NBS-BiPh₃-K₂CO₃ system)
8. Scope of Bi-catalyzed oxidative cleavage of 1,2-diols

General procedure for Bi-catalyzed the oxidative cleavage of 1,2-diols

In a culture tube the corresponding 1,2-diol (0.12 mmol), K$_2$CO$_3$ (83 mg, 5.0 equiv.), dibismuthane 8 (2.1 mg, 2 mol%) and mesitylene (16.7 μL, 1.0 equiv.) were dissolved in 0.6 mL CD$_3$CN and stirred for 2 min. After that, a solution of NBS (25.6 mg, 1.2 equiv.) in 0.6 mL of CD$_3$CN was added dropwise and the reaction was left at 23 °C for the desired time (see Table 2 in the manuscript). An aliquot was taken and 1H NMR was recorded to determine the NMR yield. The sample was returned to the reaction crude and solvent was evaporated. The reaction crude was purified via flash chromatography (SiO$_2$, 8:2 pentane:Et$_2$O) to afford the corresponding carbonyl compounds.

Benzaldehyde (14) (Table 2, entry 1)

Yield: 22.5 mg (88%). Colorless oil.

1H NMR (300 MHz, CDCl$_3$): δ 10.03 (s, 1H), 7.91 – 7.86 (m, 2H), 7.68 – 7.60 (m, 1H), 7.57 – 7.50 (m, 2H).

13C NMR (75 MHz, CDCl$_3$): δ 192.3, 136.4, 134.4, 129.7, 129.0.

Spectroscopic data are in agreement with the reported values in the literature.$^{[7]}$
Benzophenone (16) (Table 2, entry 2)

Yield: 29.7 mg (68%). White solid.

1H NMR (300 MHz, CDCl$_3$): δ 7.84 – 7.78 (m, 4H), 7.59 (ddt, J = 8.4, 6.6, 1.4 Hz, 2H), 7.52 – 7.45 (m, 4H).

13C NMR (75 MHz, CDCl$_3$): δ 196.69, 137.59, 132.36, 130.02, 128.24.

Spectroscopic data are in agreement with the reported values in the literature.8

Nonanal (18) (Table 2, entry 3)

Yield: 11.3 mg (66%). Colorless oil.

1H NMR (300 MHz, CDCl$_3$): δ 9.76 (t, J = 1.9 Hz, 1H), 2.41 (td, J = 7.4, 1.9 Hz, 2H), 1.63 (dd, J = 9.4, 5.3 Hz, 2H), 1.36 – 1.21 (m, 10H), 0.92 – 0.84 (m, 3H).

13C NMR (75 MHz, CDCl$_3$): δ 202.91, 43.90, 31.77, 29.29, 29.16, 29.07, 22.64, 22.61, 22.08, 14.05.

Spectroscopic data are in agreement with the reported values in the literature.9
Benzaldehyde (14) (Table 2, entry 4)

\[
\text{14}
\]

Yield: 11.3 mg (66%). Colorless oil.

2-((1S,3S)-3-acetyl-2,2-dimethylcyclobutyl)acetaldehyde (21) (Table 2, entry 5)

\[
\text{21}
\]

Yield: 19 mg (94%). Yellowish oil.

\(^1\)H NMR (300 MHz, CDCl\(_3\)):\(\delta 9.74\) (t, \(J = 1.5\) Hz, 1H), 2.92 (dd, \(J = 9.9, 7.8\) Hz, 1H), 2.51 – 2.36 (m, 3H), 2.04 (s, 3H), 2.01 – 1.92 (m, 2H), 1.34 (s, 3H), 0.84 (s, 3H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)):\(\delta 207.31, 201.33, 54.34, 45.11, 43.26, 35.78, 30.34, 30.13, 22.82, 17.63.\)

\([\alpha]_D^{20}\) (CH\(_2\)Cl\(_2\)): +61° (Lit. +40°).\([^{10}\])

Spectroscopic data are in agreement with the reported values in the literature.\([^{11}\])
9. References

[1] H. Yueh, A. Voevodin and A. B. Beeler, J. Flow Chem. 2015, 5, 155–159.
[2] B. A. Hess, A. S. Bailey, B. Bartusek and V. Boekelheide, J. Am. Chem. Soc. 1969, 91, 1665–1672.
[3] A. R. Davalos, E. Sylvester and S. T. Diver, Organometallics 2019, 38, 2338–2346.
[4] T. Louis-Goff, A. L. Rheingold and J. Hyvl, Organometallics 2020, 39, 778–782.
[5] A. Buhling, P. C. J. Kamer and P. W. N. M. van Leeuwen, Organometallics 1997, 16, 3027–3037.
[6] D. H. R. Barton, J.-P. Finet, W. B. Motherwell and C. Pichon, Tetrahedron 1986, 42, 5627–5636.
[7] E. Prathibha, R. Rangasamy, A. Sridhar and K. Lakshmi, ChemistrySelect 2020, 5, 988–993.
[8] Z. Shen, Z. Zhao, Y.-L. Ren, W. Liu, X. Tian, X. Zheng and B. Zhao, ChemistrySelect 2020, 5, 14288–14291.
[9] S. Wertz and A. Studer, Adv. Synth. Catal. 2011, 353, 69–72.
[10] H. E. Eschinazi, J. Am. Chem. Soc. 1959, 81, 2905–2906.
[11] A. V. Iosub, S. Moravcik, C.-J. Wallentin and J. Bergman, Org. Lett. 2019, 21, 7804–7808.
10. NMR spectra

1H NMR (300 MHz, CDCl$_3$) of 3

13C NMR (75 MHz, CDCl$_3$) of 3
1H NMR (300 MHz, CDCl$_3$) of 4

13C NMR (75 MHz, CDCl$_3$) of
1H NMR (300 MHz, CDCl$_3$) of 5

13C NMR (75 MHz, CDCl$_3$) of 5
1H NMR (300 MHz, CDCl$_3$) of 6

13C NMR (75 MHz, CDCl$_3$) of 6
^{1}H NMR (300 MHz, CDCl$_3$) of 7

^{13}C NMR (75 MHz, CDCl$_3$) of 7
1H NMR (400 MHz, CDCl$_3$) of 8

13C NMR (101 MHz, CDCl$_3$) of 8
1H NMR (400 MHz, CDCl$_3$) of 9

13C NMR (101 MHz, CDCl$_3$) of 9
1H NMR (300 MHz, CDCl$_3$) of 10

13C NMR (75 MHz, CDCl$_3$) of 10
1H NMR (400 MHz, CDCl$_3$) of 11

13C NMR (101 MHz, CDCl$_3$) of 11
S39

1H NMR (400 MHz, CDCl₃) of 12

![1H NMR spectrum of 12](image)

13C NMR (101 MHz, CDCl₃) of 12

![13C NMR spectrum of 12](image)
1H NMR (300 MHz, CDCl$_3$) of 14

13C NMR (75 MHz, CDCl$_3$) of 14
1H NMR (300 MHz, CDCl$_3$) of 16

13C NMR (75 MHz, CDCl$_3$) of 16
1H NMR (300 MHz, CDCl$_3$) of 18

13C NMR (75 MHz, CDCl$_3$) of 18
1H NMR (300 MHz, CDCl$_3$) of 21

13C NMR (75 MHz, CDCl$_3$) of 21
11. Xray single crystal analysis

Single crystal structure analysis of 5 (13712)

Figure 1. The molecular structure of complex 5. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis of complex 5: C₃₆H₂₆Bi₂O₄, $M_r = 892.53$ g mol⁻¹, colourless plate, crystal size 0.16 x 0.05 x 0.02 mm³, orthorhombic, $P2_12_12_1$ [19], $a = 6.1284(3)$ Å, $b = 13.2853(8)$ Å, $c = 34.731(3)$ Å, $V = 2827.7(3)$ Å³, $T = 100(2)$ K, $Z = 4$, $D_{calc} = 2.096$ g·cm⁻³, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 12.457$ mm⁻¹, Gaussian absorption correction ($T_{min} = 0.17161$, $T_{max} = 0.77837$), Bruker AXS Enraf-Nonius KappaCCD diffractometer with a FR591 rotating Mo-anode X-ray source, 2.802 < θ < 30.508°, 38138 measured reflections, 8618 independent reflections, 7693 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0522$. The structure was solved by SHELXS and refined by full-matrix least-squares (SHELXL) against F^2 to $R_1 = 0.0287$ [$I > 2\sigma(I)$], $wR_2 = 0.0604$, 352 parameters. Absolute structure parameter Flack (x) = -0.044(6)
Figure 2. Crystal faces and unit cell determination of complex 5.

INTENSITY STATISTICS FOR DATASET

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.60	174	182	95.6	5.57	131.10	41.53	0.0417	0.0194
2.60 - 1.73	420	420	100.0	6.09	106.45	41.07	0.0370	0.0200
1.73 - 1.37	587	587	100.0	6.00	68.90	34.90	0.0386	0.0220
1.37 - 1.19	584	584	100.0	5.73	51.66	31.40	0.0430	0.0249
1.19 - 1.08	610	610	100.0	5.29	42.94	26.93	0.0453	0.0286
1.08 - 1.00	599	599	100.0	4.91	35.62	22.89	0.0499	0.0332
1.00 - 0.95	502	502	100.0	4.69	29.04	20.79	0.0540	0.0382
0.95 - 0.90	604	604	100.0	4.41	28.21	19.38	0.0561	0.0419
0.90 - 0.86	587	587	100.0	4.14	19.86	15.36	0.0672	0.0529
0.86 - 0.83	553	553	100.0	4.08	20.22	15.00	0.0737	0.0550
0.83 - 0.80	595	595	100.0	3.82	15.55	12.04	0.0853	0.0690
0.80 - 0.77	672	672	100.0	3.65	15.49	11.15	0.0899	0.0736
0.77 - 0.75	564	564	100.0	3.56	12.98	9.92	0.1066	0.0866
0.75 - 0.73	589	589	100.0	3.37	12.18	8.91	0.1102	0.0960
0.73 - 0.71	671	673	99.7	3.21	10.65	7.79	0.1377	0.1149
0.71 - 0.69	715	718	99.6	3.09	9.17	6.50	0.1570	0.1393
0.69 - 0.68	398	400	99.5	3.02	8.15	5.77	0.1671	0.1620
0.68 - 0.66	901	905	99.6	2.96	7.78	5.24	0.1880	0.1790
0.66 - 0.65	489	494	99.0	2.84	6.96	4.47	0.2065	0.2190
0.65 - 0.64	516	522	98.9	2.70	5.69	3.45	0.2487	0.2950
0.64 - 0.63	262	276	94.9	2.55	5.92	3.29	0.2413	0.3034
0.73 - 0.63	3952	3988	99.1	2.95	8.06	5.50	0.1763	0.1757
Inf - 0.63	11592	11636	99.6	4.02	26.44	15.54	0.0575	0.0498

A resolution cut off (SHEL 99 0.7) was applied to suppress poorly measured intensities at higher diffraction angles. Complete .cif-data of the compound are available under the CCDC number CCDC-2063973.
Table 1. Crystal data and structure refinement.

Property	Value
Identification code	13712
Empirical formula	$\text{C}_{36}\text{H}_{26}\text{Bi}_2\text{O}$
Color	colourless
Formula weight	892.53 g · mol$^{-1}$
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	ORTHORHOMBIC
Space group	$P2_12_12_1$ (No. 19)
Unit cell dimensions	$a = 6.1284(3)$ Å, $\alpha = 90^\circ$.
	$b = 13.2853(8)$ Å, $\beta = 90^\circ$.
	$c = 34.731(3)$ Å, $\gamma = 90^\circ$.
Volume	2827.7(3) Å3
Z	4
Density (calculated)	2.096 Mg · m$^{-3}$
Absorption coefficient	12.457 mm$^{-1}$
F(000)	1664 e
Crystal size	0.16 x 0.05 x 0.02 mm3
θ range for data collection	2.802 to 30.508°.
Index ranges	$-8 \leq h \leq 8, -18 \leq k \leq 18, -45 \leq l \leq 49$
Reflections collected	38138
Independent reflections	8618 [R$_{int}$ = 0.0522]
Reflections with I>2σ(I)	7693
Completeness to $\theta = 25.242^\circ$	99.8 %
Absorption correction	Gaussian
Max. and min. transmission	0.78 and 0.17
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	8618 / 0 / 352
Goodness-of-fit on F2	1.069
Final R indices [I>2σ(I)]	$R_1 = 0.0287$, $wR^2 = 0.0571$
R indices (all data)	$R_1 = 0.0374$, $wR^2 = 0.0604$
Absolute structure parameter	$-0.044(6)$
Largest diff. peak and hole	1.2 and -1.9 e · Å$^{-3}$
Table 2. Bond lengths [Å] and angles [°].

	Bond Lengths [Å]		Bond Angles [°]
Bi(1)-C(2)	2.262(7)	Bi(1)-C(13)	2.244(6)
Bi(1)-C(19)	2.253(7)	Bi(1)-C(11)	2.252(7)
Bi(2)-C(25)	2.243(7)	Bi(2)-C(31)	2.248(7)
O(1)-C(1)	1.397(8)	O(1)-C(12)	1.387(8)
C(1)-C(2)	1.374(9)	C(1)-C(6)	1.392(10)
C(2)-C(3)	1.387(10)	C(3)-C(4)	1.403(10)
C(4)-C(5)	1.397(10)	C(5)-C(6)	1.394(10)
C(6)-C(7)	1.456(9)	C(7)-C(8)	1.403(9)
C(7)-C(12)	1.392(9)	C(8)-C(9)	1.392(10)
C(9)-C(10)	1.385(10)	C(10)-C(11)	1.410(9)
C(11)-C(12)	1.383(9)	C(13)-C(14)	1.397(9)
C(13)-C(18)	1.389(9)	C(14)-C(15)	1.393(10)
C(15)-C(16)	1.397(10)	C(16)-C(17)	1.391(10)
C(17)-C(18)	1.381(10)	C(19)-C(20)	1.392(9)
C(19)-C(24)	1.396(11)	C(20)-C(21)	1.392(9)
C(21)-C(22)	1.365(10)	C(22)-C(23)	1.383(12)
C(23)-C(24)	1.393(12)	C(25)-C(26)	1.400(9)
C(25)-C(30)	1.378(9)	C(26)-C(27)	1.379(10)
C(27)-C(28)	1.369(12)	C(28)-C(29)	1.384(11)
C(29)-C(30)	1.405(10)	C(31)-C(32)	1.391(10)
C(31)-C(36)	1.393(9)	C(32)-C(33)	1.397(10)
C(33)-C(34)	1.382(9)	C(34)-C(35)	1.393(9)
C(35)-C(36)	1.394(10)		
		C(13)-Bi(1)-C(2)	93.7(2)
		C(19)-Bi(1)-C(2)	96.3(3)
		C(25)-Bi(2)-C(31)	96.4(2)
		C(12)-O(1)-C(1)	105.4(5)
		C(2)-C(1)-C(6)	125.6(6)
		C(1)-C(2)-Bi(1)	121.0(5)
		C(3)-C(2)-Bi(1)	123.6(5)
		C(5)-C(4)-C(3)	121.3(6)
		C(1)-C(6)-C(5)	118.1(7)
		C(5)-C(6)-C(7)	135.9(7)
		C(13)-Bi(1)-C(19)	93.8(2)
		C(25)-Bi(2)-C(11)	95.8(2)
		C(31)-Bi(2)-C(11)	94.0(2)
		C(2)-C(1)-C(1)	123.2(6)
		C(6)-C(1)-O(1)	111.2(6)
		C(1)-C(2)-C(3)	115.4(7)
		C(2)-C(3)-C(4)	121.4(7)
		C(6)-C(5)-C(4)	118.1(7)
		C(1)-C(6)-C(7)	106.0(6)
		C(8)-C(7)-C(6)	135.8(7)
Bond	Angle (°)	Bond	Angle (°)
-----------------------------	-----------------	-----------------------------	-----------------
C(12)-C(7)-C(6)	105.7(6)	C(12)-C(7)-C(8)	118.4(6)
C(9)-C(8)-C(7)	117.5(7)	C(10)-C(9)-C(8)	122.3(7)
C(9)-C(10)-C(11)	121.6(7)	C(10)-C(11)-Bi(2)	127.9(5)
C(12)-C(11)-Bi(2)	117.6(5)	C(12)-C(11)-C(10)	114.4(7)
O(1)-C(12)-C(7)	111.7(6)	C(11)-C(12)-O(1)	122.6(6)
C(11)-C(12)-C(7)	125.7(6)	C(14)-C(13)-Bi(1)	122.5(5)
C(18)-C(13)-Bi(1)	118.8(5)	C(18)-C(13)-C(14)	118.7(6)
C(15)-C(14)-C(13)	120.5(6)	C(14)-C(15)-C(16)	119.8(7)
C(17)-C(16)-C(15)	119.8(7)	C(18)-C(17)-C(16)	119.9(7)
C(17)-C(18)-C(13)	121.3(7)	C(20)-C(19)-Bi(1)	124.0(5)
C(20)-C(19)-C(24)	118.0(7)	C(24)-C(19)-Bi(1)	117.1(5)
C(19)-C(20)-C(21)	120.8(7)	C(22)-C(21)-C(20)	120.6(7)
C(21)-C(22)-C(23)	119.8(7)	C(22)-C(23)-C(24)	120.1(8)
C(23)-C(24)-C(19)	120.7(7)	C(26)-C(25)-Bi(2)	116.6(5)
C(30)-C(25)-Bi(2)	124.2(5)	C(30)-C(25)-C(26)	119.0(7)
C(27)-C(26)-C(25)	120.4(7)	C(28)-C(27)-C(26)	120.4(7)
C(27)-C(28)-C(29)	120.4(7)	C(28)-C(29)-C(30)	119.5(7)
C(25)-C(30)-C(29)	120.3(7)	C(32)-C(31)-Bi(2)	118.4(5)
C(32)-C(31)-C(36)	119.2(6)	C(36)-C(31)-Bi(2)	122.3(5)
C(31)-C(32)-C(33)	120.2(6)	C(34)-C(33)-C(32)	120.7(7)
C(33)-C(34)-C(35)	119.1(6)	C(34)-C(35)-C(36)	120.5(6)
C(31)-C(36)-C(35)	120.2(7)		
Single crystal structure analysis of 6 (13015)

Figure 3. The molecular structure of complex 6. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis of complex 6: C_{39}H_{32}Bi_{2}O, \(M_r = 934.60 \) g mol\(^{-1}\), colourless prism, crystal size 0.035 x 0.031 x 0.021 mm\(^3\), orthorhombic, \(F_{dd2} \) [43], \(a = 37.8761(11) \) Å, \(b = 51.1850(17) \) Å, \(c = 6.6097(2) \) Å, \(V = 12814.1(7) \) Å\(^3\), \(T = 100(2) \) K, \(Z = 16 \), \(D_{calc} = 1.938 \) g·cm\(^{-3}\), \(\lambda = 0.71073 \) Å, \(\mu(Mo-K\alpha) = 11.000 \) mm\(^{-1}\), Gaussian absorption correction (\(T_{min} = 0.72004 \), \(T_{max} = 0.85446 \)), Bruker-AXS Mach3 diffractometer with APEX-II detector and \(\mu S \) microfocus Mo-anode X-ray source, 1.338 < \(\theta \) < 32.028°, 112958 measured reflections, 11150 independent reflections, 9565 reflections with \(I > 2\sigma(I) \), \(R_{int} = 0.0665 \). The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against \(F^2 \) to \(R_1 = 0.0288 \) \([I > 2\sigma(I)] \), \(wR_2 = 0.0410 \), 381 parameters. Absolute structure parameter Flack (x) = -0.013(4)
Figure 4. Crystal faces and unit cell determination of complex 6.

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.66	200	201	99.5	16.96	95.19	68.76	0.0220	0.0116
2.66 - 1.75	463	463	100.0	18.49	70.61	65.58	0.0274	0.0125
1.75 - 1.38	671	671	100.0	18.31	45.20	52.21	0.0388	0.0156
1.38 - 1.20	695	695	100.0	18.26	37.69	45.16	0.0481	0.0180
1.20 - 1.09	645	645	100.0	16.62	27.11	34.02	0.0651	0.0239
1.09 - 1.01	703	703	100.0	12.42	25.28	25.97	0.0736	0.0309
1.01 - 0.95	656	656	100.0	10.20	25.28	25.97	0.0885	0.0399
0.95 - 0.90	714	714	100.0	8.84	17.50	16.32	0.1038	0.0517
0.90 - 0.86	682	682	100.0	7.95	14.48	13.41	0.1218	0.0650
0.86 - 0.83	592	592	100.0	7.70	12.60	11.82	0.1369	0.0759
0.83 - 0.80	703	703	100.0	7.15	12.03	10.28	0.1521	0.0841
0.80 - 0.78	541	541	100.0	7.03	10.33	8.97	0.1652	0.0981
0.78 - 0.75	897	897	100.0	6.82	9.33	8.03	0.1877	0.1123
0.75 - 0.73	664	664	100.0	6.61	7.82	6.62	0.2204	0.1371
0.73 - 0.71	783	784	99.9	6.26	7.07	5.81	0.2493	0.1573
0.71 - 0.70	438	438	100.0	6.16	6.44	5.20	0.2553	0.1765
0.70 - 0.68	875	876	99.9	6.04	5.64	4.60	0.2969	0.2071
0.68 - 0.67	476	479	99.4	5.84	5.22	4.11	0.3323	0.2332
0.67 - 0.66	484	492	98.4	5.71	4.70	3.69	0.3623	0.2616
0.66 - 0.64	1164	1194	97.5	4.90	3.96	2.87	0.3944	0.3500
0.64 - 0.63	144	145	31.6	0.57	2.74	1.14	0.4023	1.0221
0.73 - 0.63	4364	4719	92.5	5.22	5.28	4.15	0.3079	0.2421
Inf - 0.63	13190	13546	97.4	9.10	18.07	17.77	0.0694	0.0565

Complete .cif-data of the compound are available under the CCDC number **CCDC-2063975**.
Table 3. Crystal data and structure refinement.

Property	Value		
Identification code	13015		
Empirical formula	C_{39}H_{32}Bi_{2}O		
Color	colourless		
Formula weight	934.60 g · mol\(^{-1}\)		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	ORTHORHOMBIC		
Space group	Fdd2, (No. 43)		
Unit cell dimensions			
a	37.8761(11) Å		
\(\alpha\)	90°		
b	51.1850(17) Å		
\(\beta\)	90°		
c	6.6097(2) Å		
\(\gamma\)	90°		
Volume	12814.1(7) Å\(^3\)		
Z	16		
Density (calculated)	1.938 Mg · m\(^{-3}\)		
Absorption coefficient	11.000 mm\(^{-1}\)		
F(000)	7040 e		
Crystal size	0.035 x 0.031 x 0.021 mm\(^3\)		
\(\theta\) range for data collection	1.338 to 32.028°.		
Index ranges	-56 \leq h \leq 56, -76 \leq k \leq 76, -9 \leq l \leq 9		
Reflections collected	112958		
Independent reflections	11150 \([R_{int} = 0.0665 \])		
Reflections with I>2\(\sigma\)(I)	9565		
Completeness to \(\theta = 25.242°\)	100.0 %		
Absorption correction	Gaussian		
Max. and min. transmission	0.85 and 0.72		
Refinement method	Full-matrix least-squares on F\(^2\)		
Data / restraints / parameters	11150 / 1 / 381		
Goodness-of-fit on F\(^2\)	1.046		
Final R indices [I>2\(\sigma\)(I)]	\(R_i = 0.0288 \) \quad \text{w}R^2 = 0.0415		
R indices (all data)	\(R_i = 0.0410 \) \quad \text{w}R^2 = 0.0437		
Absolute structure parameter	-0.013(4)		
Largest diff. peak and hole	0.9 and -1.3 e · Å\(^{-3}\)		
Bond	Length [Å]	Bond	Length [Å]
-----------------------	------------	-----------------------	------------
Bi(1)-C(2)	2.268(6)	Bi(1)-C(16)	2.246(5)
Bi(1)-C(22)	2.262(5)	Bi(2)-C(12)	2.255(5)
Bi(2)-C(28)	2.242(5)	Bi(2)-C(34)	2.252(5)
O(1)-C(1)	1.387(6)	O(1)-C(13)	1.391(6)
C(1)-C(2)	1.399(7)	C(1)-C(6)	1.400(7)
C(2)-C(3)	1.369(8)	C(3)-C(4)	1.391(8)
C(4)-C(5)	1.391(8)	C(5)-C(6)	1.396(8)
C(6)-C(7)	1.522(7)	C(7)-C(8)	1.523(7)
C(7)-C(14)	1.541(8)	C(7)-C(15)	1.530(8)
C(8)-C(9)	1.403(7)	C(8)-C(13)	1.390(7)
C(9)-C(10)	1.392(8)	C(10)-C(11)	1.389(8)
C(11)-C(12)	1.400(7)	C(12)-C(13)	1.394(7)
C(16)-C(17)	1.383(8)	C(16)-C(21)	1.392(7)
C(17)-C(18)	1.399(8)	C(18)-C(19)	1.375(7)
C(19)-C(20)	1.392(8)	C(20)-C(21)	1.391(7)
C(22)-C(23)	1.394(8)	C(22)-C(27)	1.395(7)
C(23)-C(24)	1.379(8)	C(24)-C(25)	1.394(8)
C(25)-C(26)	1.381(8)	C(26)-C(27)	1.391(8)
C(28)-C(29)	1.399(8)	C(28)-C(33)	1.400(7)
C(29)-C(30)	1.383(8)	C(30)-C(31)	1.395(8)
C(31)-C(32)	1.382(8)	C(32)-C(33)	1.388(7)
C(34)-C(35)	1.396(7)	C(34)-C(39)	1.392(8)
C(35)-C(36)	1.387(8)	C(36)-C(37)	1.387(9)
C(37)-C(38)	1.388(8)	C(38)-C(39)	1.370(8)
C(16)-Bi(1)-C(2)	96.16(19)	C(16)-Bi(1)-C(22)	93.82(18)
C(22)-Bi(1)-C(2)	93.60(19)	C(28)-Bi(2)-C(12)	90.36(19)
C(28)-Bi(2)-C(34)	93.06(19)	C(34)-Bi(2)-C(12)	94.8(2)
C(1)-O(1)-C(13)	116.5(4)	O(1)-C(1)-C(2)	116.8(5)
O(1)-C(1)-C(6)	120.4(5)	C(2)-C(1)-C(6)	122.8(5)
C(1)-C(2)-Bi(1)	119.9(4)	C(3)-C(2)-Bi(1)	121.5(4)
C(3)-C(2)-C(1)	118.6(5)	C(2)-C(3)-C(4)	120.5(5)
C(3)-C(4)-C(5)	120.3(5)	C(4)-C(5)-C(6)	120.9(5)
C(1)-C(6)-C(7)	119.7(5)	C(5)-C(6)-C(1)	116.9(5)
Bond	Distance (Å)	Bond	Distance (Å)
--------------	--------------	--------------	--------------
C(5)-C(6)-C(7)	123.4(5)	C(6)-C(7)-C(8)	107.4(4)
C(6)-C(7)-C(14)	108.0(4)	C(6)-C(7)-C(15)	112.0(5)
C(8)-C(7)-C(14)	108.0(5)	C(8)-C(7)-C(15)	112.0(5)
C(15)-C(7)-C(14)	109.2(4)	C(9)-C(8)-C(7)	123.3(5)
C(13)-C(8)-C(7)	119.7(5)	C(13)-C(8)-C(9)	116.9(5)
C(10)-C(9)-C(8)	121.3(5)	C(11)-C(10)-C(9)	119.5(5)
C(10)-C(11)-C(12)	121.6(5)	C(11)-C(12)-Bi(2)	123.2(4)
C(13)-C(12)-Bi(2)	120.0(4)	C(13)-C(12)-C(11)	116.7(5)
O(1)-C(13)-C(12)	115.2(4)	C(8)-C(13)-O(1)	120.7(4)
C(8)-C(13)-C(12)	124.1(5)	C(17)-C(16)-Bi(1)	117.7(4)
C(17)-C(16)-C(21)	119.0(5)	C(21)-C(16)-Bi(1)	123.0(4)
C(16)-C(17)-C(18)	121.1(5)	C(19)-C(18)-C(17)	119.7(6)
C(18)-C(19)-C(20)	119.8(5)	C(21)-C(20)-C(19)	120.4(5)
C(20)-C(21)-C(16)	120.1(5)	C(23)-C(22)-Bi(1)	119.6(4)
C(23)-C(22)-C(27)	118.3(5)	C(27)-C(22)-Bi(1)	121.9(4)
C(24)-C(23)-C(22)	121.6(6)	C(23)-C(24)-C(25)	119.7(6)
C(26)-C(25)-C(24)	119.4(5)	C(25)-C(26)-C(27)	120.8(5)
C(26)-C(27)-C(22)	120.2(5)	C(29)-C(28)-Bi(2)	119.0(4)
C(29)-C(28)-C(33)	118.0(5)	C(33)-C(28)-Bi(2)	122.9(4)
C(30)-C(29)-C(28)	121.3(5)	C(29)-C(30)-C(31)	119.7(5)
C(32)-C(31)-C(30)	119.8(5)	C(31)-C(32)-C(33)	120.4(5)
C(32)-C(33)-C(28)	120.7(5)	C(35)-C(34)-Bi(2)	118.7(4)
C(39)-C(34)-Bi(2)	122.9(4)	C(39)-C(34)-C(35)	118.4(5)
C(36)-C(35)-C(34)	120.9(6)	C(35)-C(36)-C(37)	120.1(5)
C(36)-C(37)-C(38)	118.7(5)	C(39)-C(38)-C(37)	121.5(6)
C(38)-C(39)-C(34)	120.4(5)		
Single crystal structure analysis of 7 (13364)

Figure 5. The molecular structure of complex 7. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis of complex 7: C_{38}H_{30}Bi_{12}O, $M_r = 920.58$ g mol$^{-1}$, colourless prism, crystal size 0.07 x 0.05 x 0.04 mm3, triclinic, $P-1$ [2], $a = 10.6951(17)$ Å, $b = 10.8286(12)$ Å, $c = 13.7009(8)$ Å, $\alpha = 83.462(6)$ °, $\beta = 88.592(9)$ °, $\gamma = 79.178(12)$ °, $V = 1548.4(3)$ Å3, $T = 100(2)$ K, $Z = 2$, $D_{calc} = 1.975$ g·cm$^{-3}$, $\lambda = 0.71073$ Å, μ(Mo-Kα) = 11.378 mm$^{-1}$, Gaussian absorption correction ($T_{min} = 0.47746$, $T_{max} = 0.68309$), Bruker AXS Enraf-Nonius KappaCCD diffractometer with a FR591 rotating Mo-anode X-ray source, $2.768 < \theta < 33.080$°, 47337 measured reflections, 11728 independent reflections, 8776 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0502$. The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against F^2 to $R_I = 0.0314 [I > 2\sigma(I)]$, $wR_2 = 0.0553$, 370 parameters.
Figure 6. Crystal faces and unit cell determination of complex 7.

INTENSITY STATISTICS FOR DATASET

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.60	176	184	95.7	8.72	140.68	63.91	0.0360	0.0124
2.60 - 1.75	419	419	100.0	6.29	102.07	46.48	0.0312	0.0163
1.75 - 1.40	584	584	100.0	5.68	73.63	38.69	0.0337	0.0190
1.40 - 1.22	597	597	100.0	5.35	51.08	31.55	0.0365	0.0224
1.22 - 1.11	591	591	100.0	5.04	43.27	27.54	0.0371	0.0252
1.11 - 1.03	595	595	100.0	4.85	36.74	24.02	0.0396	0.0288
1.03 - 0.97	564	564	100.0	4.55	29.10	20.28	0.0455	0.0338
0.97 - 0.92	628	628	100.0	4.44	26.32	18.54	0.0491	0.0380
0.92 - 0.88	599	599	100.0	4.23	23.14	16.89	0.0563	0.0436
0.88 - 0.84	710	710	100.0	3.94	18.12	13.57	0.0673	0.0534
0.84 - 0.82	412	412	100.0	3.81	17.62	12.66	0.0667	0.0575
0.82 - 0.79	707	707	100.0	3.72	13.90	10.81	0.0828	0.0697
0.79 - 0.77	504	504	100.0	3.48	13.18	9.90	0.0883	0.0779
0.77 - 0.75	590	590	100.0	3.42	11.46	8.66	0.1088	0.0905
0.75 - 0.73	663	663	100.0	3.26	11.17	7.89	0.1150	0.0996
0.73 - 0.71	717	717	100.0	3.10	9.60	6.91	0.1343	0.1220
0.71 - 0.70	403	403	100.0	3.08	9.82	6.74	0.1283	0.1272
0.70 - 0.68	834	834	100.0	2.94	7.09	4.87	0.1727	0.1846
0.68 - 0.67	483	483	100.0	2.84	6.68	4.24	0.2018	0.2225
0.67 - 0.66	488	488	100.0	2.78	6.32	3.84	0.2072	0.2548
0.66 - 0.65	464	482	96.3	2.60	5.41	3.03	0.2528	0.3300
0.75 - 0.65	4052	4070	99.6	2.96	8.14	5.50	0.1557	0.1669
Inf - 0.65	11728	11754	99.8	4.03	26.57	16.27	0.0489	0.0449

Complete .cif-data of the compound are available under the CCDC number **CCDC-2063978**.
Table 5. Crystal data and structure refinement.

Property	Value
Identification code	13364
Empirical formula	C_{38}H_{30}Bi_{2}O
Color	colourless
Formula weight	920.58 g·mol⁻¹
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	TRICLINIC
Space group	P-1, (No. 2)
Unit cell dimensions	a = 10.6951(17) Å \(\alpha = 83.462(6)° \)
	b = 10.8286(12) Å \(\beta = 88.592(9)° \)
	c = 13.7009(8) Å \(\gamma = 79.178(12)° \)
Volume	1548.4(3) Å⁻³
Z	2
Density (calculated)	1.975 Mg·m⁻³
Absorption coefficient	11.378 mm⁻¹
F(000)	864 e
Crystal size	0.07 x 0.05 x 0.04 mm³
\(\theta \) range for data collection	2.768 to 33.080°
Index ranges	\(-16 \leq h \leq 16, \ -16 \leq k \leq 16, \ -21 \leq l \leq 21\)
Reflections collected	47337
Independent reflections	11728 [\(R_{int} = 0.0502 \)]
Reflections with \(I > 2 \sigma(I) \)	8776
Completeness to \(\theta = 25.242° \)	99.9 %
Absorption correction	Gaussian
Max. and min. transmission	0.68309 and 0.47746
Refinement method	Full-matrix least-squares on \(F^2 \)
Data / restraints / parameters	11728 / 0 / 370
Goodness-of-fit on \(F^2 \)	1.011
Final R indices [\(I > 2 \sigma(I) \)]	\(R_I = 0.0314 \) \(wR^2 = 0.0553 \)
R indices (all data)	\(R_I = 0.0555 \) \(wR^2 = 0.0613 \)
Extinction coefficient	n/a
Largest diff. peak and hole	1.339 and -1.781 e·Å⁻³
Table 6. Bond lengths [Å] and angles [°].

Bond	Length [Å]	Bond	Length [Å]
Bi(2)-C(27)	2.259(4)	Bi(2)-C(33)	2.262(3)
Bi(2)-C(11)	2.252(3)	Bi(1)-C(21)	2.247(4)
Bi(1)-C(1)	2.251(3)	Bi(1)-C(15)	2.255(3)
O(1)-C(10)	1.413(4)	O(1)-C(6)	1.415(4)
C(21)-C(26)	1.393(5)	C(21)-C(22)	1.397(5)
C(27)-C(28)	1.394(5)	C(27)-C(32)	1.386(5)
C(10)-C(9)	1.405(5)	C(10)-C(11)	1.404(5)
C(30)-H(30)	0.9500	C(30)-C(29)	1.388(6)
C(30)-C(31)	1.378(6)	C(1)-C(6)	1.390(5)
C(1)-C(2)	1.403(5)	C(33)-C(34)	1.390(5)
C(33)-C(38)	1.400(5)	C(12)-H(12)	0.9500
C(12)-C(11)	1.387(5)	C(12)-C(13)	1.397(5)
C(34)-H(34)	0.9500	C(34)-C(35)	1.393(5)
C(9)-C(8)	1.523(5)	C(9)-C(14)	1.394(5)
C(28)-H(28)	0.9500	C(28)-C(29)	1.395(6)
C(13)-H(13)	0.9500	C(13)-C(14)	1.373(5)
C(26)-H(26)	0.9500	C(26)-C(25)	1.387(6)
C(6)-C(5)	1.393(5)	C(2)-H(2)	0.9500
C(2)-C(3)	1.383(5)	C(22)-H(22)	0.9500
C(22)-C(23)	1.387(6)	C(29)-H(29)	0.9500
C(15)-C(20)	1.396(5)	C(15)-C(16)	1.388(5)
C(7)-H(7A)	0.9900	C(7)-H(7B)	0.9900
C(7)-C(8)	1.529(6)	C(7)-C(5)	1.496(5)
C(31)-H(31)	0.9500	C(31)-C(32)	1.384(5)
C(20)-H(20)	0.9500	C(20)-C(19)	1.396(5)
C(19)-H(19)	0.9500	C(19)-C(18)	1.379(6)
C(32)-H(32)	0.9500	C(16)-H(16)	0.9500
C(16)-C(17)	1.392(5)	C(38)-H(38)	0.9500
C(38)-C(37)	1.385(5)	C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900	C(5)-C(4)	1.395(5)
C(35)-H(35)	0.9500	C(35)-C(36)	1.386(5)
C(14)-H(14)	0.9500	C(25)-H(25)	0.9500
C(25)-C(24)	1.392(6)	C(36)-H(36)	0.9500
C(36)-C(37)	1.381(6)	C(17)-H(17)	0.9500
Bond	Distance	Bond	Distance
-----------------------------	--------------	-----------------------------	--------------
C(17)-C(18)	1.396(6)	C(23)-H(23)	0.9500
C(23)-C(24)	1.383(7)	C(37)-H(37)	0.9500
C(18)-H(18)	0.9500	C(3)-H(3)	0.9500
C(3)-C(4)	1.389(5)	C(24)-H(24)	0.9500
C(4)-H(4)	0.9500		
C(27)-Bi(2)-C(33)	94.34(12)	C(11)-Bi(2)-C(27)	92.72(12)
C(11)-Bi(2)-C(33)	93.21(12)	C(21)-Bi(1)-C(1)	97.62(12)
C(21)-Bi(1)-C(15)	94.52(13)	C(1)-Bi(1)-C(15)	92.32(12)
C(10)-O(1)-C(6)	118.8(3)	C(26)-C(21)-Bi(1)	122.8(3)
C(26)-C(21)-C(22)	118.9(4)	C(22)-C(21)-Bi(1)	118.4(3)
C(28)-C(27)-Bi(2)	118.8(3)	C(32)-C(27)-Bi(2)	123.0(3)
C(32)-C(27)-C(28)	118.2(3)	C(9)-C(10)-O(1)	125.0(3)
C(11)-C(10)-O(1)	114.0(3)	C(11)-C(10)-C(9)	121.0(3)
C(29)-C(30)-H(30)	120.2	C(31)-C(30)-H(30)	120.2
C(31)-C(30)-C(29)	119.6(4)	C(6)-C(1)-Bi(1)	121.3(2)
C(6)-C(1)-C(2)	117.6(3)	C(2)-C(1)-Bi(1)	120.5(2)
C(34)-C(33)-Bi(2)	122.9(2)	C(34)-C(33)-C(38)	118.2(3)
C(38)-C(33)-Bi(2)	118.7(3)	C(11)-C(12)-H(12)	119.8
C(11)-C(12)-C(13)	120.4(3)	C(13)-C(12)-H(12)	119.8
C(33)-C(34)-H(34)	119.6	C(33)-C(34)-C(35)	120.9(3)
C(35)-C(34)-H(34)	119.6	C(10)-C(9)-C(8)	126.3(3)
C(14)-C(9)-C(10)	117.1(3)	C(14)-C(9)-C(8)	116.4(3)
C(10)-C(11)-Bi(2)	118.8(2)	C(12)-C(11)-Bi(2)	121.8(3)
C(12)-C(11)-C(10)	119.3(3)	C(27)-C(28)-H(28)	119.5
C(27)-C(28)-C(29)	121.0(4)	C(29)-C(28)-H(28)	119.5
C(12)-C(13)-H(13)	120.4	C(14)-C(13)-C(12)	119.1(3)
C(14)-C(13)-H(13)	120.4	C(21)-C(26)-H(26)	119.8
C(25)-C(26)-C(21)	120.4(4)	C(25)-C(26)-H(26)	119.8
C(1)-C(6)-O(1)	118.6(3)	C(1)-C(6)-C(5)	122.6(3)
C(5)-C(6)-O(1)	118.7(3)	C(1)-C(2)-H(2)	119.6
C(3)-C(2)-C(1)	120.7(3)	C(3)-C(2)-H(2)	119.6
C(21)-C(22)-H(22)	119.7	C(23)-C(22)-C(21)	120.6(4)
C(23)-C(22)-H(22)	119.7	C(30)-C(29)-C(28)	119.6(4)
C(30)-C(29)-H(29)	120.2	C(28)-C(29)-H(29)	120.2
C(20)-C(15)-Bi(1)	118.5(3)	C(16)-C(15)-Bi(1)	122.3(3)
Bond	Distance (Å)	Bond	Distance (Å)
-----------------------------	--------------	-----------------------------	--------------
C(16)-C(15)-C(20)	119.2(3)	H(7A)-C(7)-H(7B)	108.3
C(8)-C(7)-H(7A)	109.9	C(8)-C(7)-H(7B)	109.9
C(5)-C(7)-H(7A)	109.9	C(5)-C(7)-H(7B)	109.9
C(5)-C(7)-C(8)	108.8(3)	C(30)-C(31)-H(31)	119.7
C(30)-C(31)-C(32)	120.5(4)	C(32)-C(31)-H(31)	119.7
C(15)-C(20)-H(20)	119.9	C(15)-C(20)-C(19)	120.3(4)
C(19)-C(20)-H(20)	119.9	C(20)-C(19)-H(19)	119.8
C(18)-C(19)-C(20)	120.4(4)	C(18)-C(19)-H(19)	119.8
C(27)-C(32)-H(32)	119.5	C(31)-C(32)-C(27)	121.0(4)
C(31)-C(32)-H(32)	119.5	C(15)-C(16)-H(16)	119.8
C(15)-C(16)-C(17)	120.3(4)	C(17)-C(16)-H(16)	119.8
C(33)-C(38)-H(38)	119.5	C(37)-C(38)-C(33)	120.9(3)
C(37)-C(38)-H(38)	119.5	C(9)-C(8)-C(7)	115.0(3)
C(9)-C(8)-H(8A)	108.5	C(9)-C(8)-H(8B)	108.5
C(7)-C(8)-H(8A)	108.5	C(7)-C(8)-H(8B)	108.5
H(8A)-C(8)-H(8B)	107.5	C(6)-C(5)-C(7)	119.5(3)
C(6)-C(5)-C(4)	118.1(3)	C(4)-C(5)-C(7)	122.1(3)
C(34)-C(35)-H(35)	120.0	C(36)-C(35)-C(34)	120.1(4)
C(36)-C(35)-H(35)	120.0	C(9)-C(14)-H(14)	118.6
C(13)-C(14)-C(9)	122.7(3)	C(13)-C(14)-H(14)	118.6
C(26)-C(25)-H(25)	119.8	C(26)-C(25)-C(24)	120.3(4)
C(24)-C(25)-H(25)	119.8	C(35)-C(36)-H(36)	120.1
C(37)-C(36)-C(35)	119.7(3)	C(37)-C(36)-H(36)	120.1
C(16)-C(17)-H(17)	119.9	C(16)-C(17)-C(18)	120.3(4)
C(18)-C(17)-H(17)	119.9	C(22)-C(23)-H(23)	119.9
C(24)-C(23)-C(22)	120.2(4)	C(24)-C(23)-H(23)	119.9
C(38)-C(37)-H(37)	119.9	C(36)-C(37)-C(38)	120.2(3)
C(36)-C(37)-H(37)	119.9	C(19)-C(18)-C(17)	119.5(4)
C(19)-C(18)-H(18)	120.2	C(17)-C(18)-H(18)	120.2
C(2)-C(3)-H(3)	119.8	C(2)-C(3)-C(4)	120.4(3)
C(4)-C(3)-H(3)	119.8	C(25)-C(24)-H(24)	120.2
C(23)-C(24)-C(25)	119.6(4)	C(23)-C(24)-H(24)	120.2
C(5)-C(4)-H(4)	119.8	C(3)-C(4)-C(5)	120.4(3)
C(3)-C(4)-H(4)	119.8		
Single crystal structure analysis of 8 (13443)

Figure 7. The molecular structure of complex 8. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis of complex 8: C\textsubscript{36}H\textsubscript{28}Bi\textsubscript{2}O, \(M_r = 894.54 \) g mol\(^{-1}\), colourless needle, crystal size 0.056 x 0.041 x 0.020 mm\(^3\), monoclinic, \(P2_1/c \) [14], \(a = 11.0777(7) \) Å, \(b = 17.8599(11) \) Å, \(c = 15.0585(9) \) Å, \(\beta = 92.997(2) ^\circ \), \(V = 2975.2(3) \) Å\(^3\), \(T = 100(2) \) K, \(Z = 4 \), \(D_{calc} = 1.997 \) g·cm\(^{-3}\), \(\lambda = 0.71073 \) Å, \(\mu(Mo-K_{\alpha}) = 11.840 \) mm\(^{-1}\), Gaussian absorption correction (\(T_{\text{min}} = 0.60899, T_{\text{max}} = 0.85677 \)), Bruker-AXS Mach3 diffractometer with APEX-II detector and \(\mu \)S microfocus Mo-anode X-ray source, 1.770 < \(\theta < 34.337 \) °, 116047 measured reflections, 12473 independent reflections, 10883 reflections with \(I > 2\sigma(I) \), \(R_{int} = 0.0363 \). The structure was solved by \textit{SHELXT} and refined by full-matrix least-squares (\textit{SHELXL}) against \(F^2 \) to \(R_l = 0.0187 \) [\(I > 2\sigma(I) \)], \(wR_2 = 0.0330 \), 352 parameters.
Figure 8. Crystal faces and unit cell determination of complex 8.

Resolution	#Data	#Theory	%Complete	Redundancy Mean	I Mean	I/s	Rmerge	Rsigma
Inf - 2.62	193	193	100.0	16.66	105.31	100.95	0.0218	0.0077
2.62 - 1.73	465	465	100.0	18.07	77.19	95.92	0.0213	0.0078
1.73 - 1.36	659	659	100.0	18.21	56.68	85.70	0.0239	0.0084
1.36 - 1.19	637	637	100.0	17.89	40.21	73.92	0.0290	0.0095
1.19 - 1.08	644	644	100.0	16.19	34.66	63.67	0.0328	0.0110
1.08 - 1.00	659	659	100.0	12.04	30.16	50.59	0.0367	0.0144
1.00 - 0.94	643	643	100.0	9.96	24.96	41.52	0.0403	0.0173
0.94 - 0.89	700	700	100.0	8.42	22.48	34.84	0.0441	0.0206
0.89 - 0.85	654	654	100.0	7.81	18.60	29.75	0.0501	0.0243
0.85 - 0.82	606	606	100.0	7.49	18.04	27.34	0.0527	0.0262
0.82 - 0.79	676	676	100.0	7.22	14.37	23.26	0.0635	0.0317
0.79 - 0.77	526	526	100.0	6.93	14.23	21.71	0.0608	0.0330
0.77 - 0.74	882	882	100.0	6.73	13.25	19.76	0.0695	0.0367
0.74 - 0.72	680	680	100.0	6.25	12.03	17.70	0.0789	0.0427
0.72 - 0.71	354	354	100.0	6.39	12.06	17.95	0.0819	0.0426
0.71 - 0.69	773	773	100.0	6.05	9.64	14.48	0.0936	0.0526
0.69 - 0.67	914	914	100.0	5.83	9.13	13.50	0.1011	0.0579
0.67 - 0.66	488	488	100.0	5.68	8.11	11.88	0.1123	0.0651
0.66 - 0.65	509	509	100.0	5.49	7.47	11.07	0.1194	0.0728
0.65 - 0.64	555	555	100.0	5.38	8.04	11.27	0.1236	0.0705
0.64 - 0.63	601	601	100.0	5.13	7.03	9.96	0.1317	0.0819
0.73 - 0.63	4559	4559	100.0	5.74	8.91	13.13	0.1027	0.0599
Inf - 0.63	12818	12818	100.0	9.20	22.61	34.27	0.0359	0.0217

Complete .cif-data of the compound are available under the CCDC number **CCDC-2063976**.
Table 7. Crystal data and structure refinement.

Property	Value
Identification code	13443
Empirical formula	C$_{36}$H$_{28}$Bi$_2$O
Color	colourless
Formula weight	894.54 g · mol$^{-1}$
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	MONOCLINIC
Space group	$P2_1/c$, (No. 14)
Unit cell dimensions	$a = 11.0777(7)$ Å, $\alpha = 90^\circ$, $b = 17.8599(11)$ Å, $\beta = 92.997(2)^\circ$, $c = 15.0585(9)$ Å, $\gamma = 90^\circ$.
Volume	2975.2(3) Å3
Z	4
Density (calculated)	1.997 Mg · m$^{-3}$
Absorption coefficient	11.840 mm$^{-1}$
F(000)	1672 e
Crystal size	0.056 x 0.041 x 0.020 mm3
θ range for data collection	1.770 to 34.337°.
Index ranges	$-17 \leq h \leq 17$, $-28 \leq k \leq 28$, $-23 \leq l \leq 23$
Reflections collected	116047
Independent reflections	12473 [R_{int} = 0.0363]
Reflections with I>2σ(I)	10883
Completeness to $\theta = 25.242^\circ$	100.0 %
Absorption correction	Gaussian
Max. and min. transmission	0.86 and 0.61
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	12473 / 0 / 352
Goodness-of-fit on F^2	1.038
Final R indices [I>2σ(I)]	$R_1 = 0.0187$, $wR^2 = 0.0330$
R indices (all data)	$R_1 = 0.0262$, $wR^2 = 0.0344$
Largest diff. peak and hole	1.9 and -1.2 e · Å$^{-3}$
Table 8. Bond lengths [Å] and angles [°].

Bond	Length	Bond	Length
Bi(1)-C(1)	2.2624(17)	Bi(1)-C(13)	2.2494(19)
Bi(1)-C(19)	2.2605(18)	Bi(2)-C(7)	2.2426(18)
Bi(2)-C(25)	2.2491(18)	Bi(2)-C(31)	2.2525(19)
O(1)-C(2)	1.400(2)	O(1)-C(8)	1.397(2)
C(1)-C(2)	1.384(3)	C(1)-C(6)	1.399(2)
C(2)-C(3)	1.394(3)	C(3)-C(4)	1.393(3)
C(4)-C(5)	1.388(3)	C(5)-C(6)	1.391(3)
C(7)-C(8)	1.389(3)	C(7)-C(12)	1.400(3)
C(8)-C(9)	1.392(3)	C(9)-C(10)	1.390(3)
C(10)-C(11)	1.387(3)	C(11)-C(12)	1.388(3)
C(13)-C(14)	1.397(3)	C(13)-C(18)	1.394(2)
C(14)-C(15)	1.395(3)	C(15)-C(16)	1.391(3)
C(16)-C(17)	1.386(3)	C(17)-C(18)	1.390(3)
C(19)-C(20)	1.392(3)	C(19)-C(24)	1.390(3)
C(20)-C(21)	1.393(3)	C(21)-C(22)	1.387(3)
C(22)-C(23)	1.385(3)	C(23)-C(24)	1.395(3)
C(25)-C(26)	1.390(3)	C(25)-C(30)	1.395(3)
C(26)-C(27)	1.395(3)	C(27)-C(28)	1.386(3)
C(28)-C(29)	1.380(3)	C(29)-C(30)	1.385(3)
C(31)-C(32)	1.395(3)	C(31)-C(36)	1.395(3)
C(32)-C(33)	1.395(3)	C(33)-C(34)	1.388(3)
C(34)-C(35)	1.384(4)	C(35)-C(36)	1.394(3)
C(13)-Bi(1)-C(1)	97.61(6)	C(13)-Bi(1)-C(19)	92.20(7)
C(19)-Bi(1)-C(1)	92.13(6)	C(7)-Bi(2)-C(25)	94.66(7)
C(7)-Bi(2)-C(31)	97.14(7)	C(25)-Bi(2)-C(31)	91.50(7)
C(8)-O(1)-C(2)	118.78(14)	C(2)-C(1)-Bi(1)	118.57(12)
C(2)-C(1)-C(6)	117.86(16)	C(6)-C(1)-Bi(1)	122.94(13)
C(1)-C(2)-O(1)	117.03(16)	C(1)-C(2)-C(3)	122.08(17)
C(3)-C(2)-O(1)	120.75(16)	C(4)-C(3)-C(2)	118.99(18)
C(5)-C(4)-C(3)	120.12(18)	C(4)-C(5)-C(6)	119.83(18)
C(5)-C(6)-C(1)	121.13(18)	C(8)-C(7)-Bi(2)	117.52(13)
C(8)-C(7)-C(12)	118.09(17)	C(12)-C(7)-Bi(2)	124.06(13)
C(7)-C(8)-O(1)	116.54(16)	C(9)-C(8)-O(1)	121.33(17)
Bond	Angle [°] (measured)		
--------------	---------------------		
C(9)-C(8)-C(7)	122.10(17)		
C(11)-C(10)-C(9)	120.53(19)		
C(11)-C(12)-C(7)	120.59(18)		
C(18)-C(13)-Bi(1)	116.99(14)		
C(15)-C(14)-C(13)	120.28(17)		
C(17)-C(16)-C(15)	119.39(19)		
C(17)-C(18)-C(13)	120.66(18)		
C(24)-C(19)-Bi(1)	118.65(14)		
C(19)-C(20)-C(21)	120.44(17)		
C(23)-C(22)-C(21)	119.47(18)		
C(19)-C(24)-C(23)	120.57(19)		
C(26)-C(25)-C(30)	118.84(18)		
C(25)-C(26)-C(27)	120.39(19)		
C(29)-C(28)-C(27)	120.43(19)		
C(29)-C(30)-C(25)	120.9(2)		
C(32)-C(31)-C(36)	118.90(18)		
C(31)-C(32)-C(33)	120.53(19)		
C(35)-C(34)-C(33)	120.2(2)		
C(35)-C(36)-C(31)	120.6(2)		
C(8)-C(9)-C(10)	118.84(19)		
C(10)-C(11)-C(12)	119.85(18)		
C(14)-C(13)-Bi(1)	124.02(13)		
C(18)-C(13)-C(14)	118.83(18)		
C(16)-C(15)-C(14)	120.39(19)		
C(16)-C(17)-C(18)	120.45(18)		
C(20)-C(19)-Bi(1)	122.43(13)		
C(24)-C(19)-C(20)	118.92(17)		
C(22)-C(21)-C(20)	120.38(18)		
C(22)-C(23)-C(24)	120.22(18)		
C(26)-C(25)-Bi(2)	123.91(14)		
C(30)-C(25)-Bi(2)	117.20(14)		
C(30)-C(26)-C(27)	119.7(2)		
C(28)-C(27)-C(26)	119.6(2)		
C(32)-C(31)-Bi(2)	123.08(14)		
C(36)-C(31)-Bi(2)	117.84(14)		
C(34)-C(33)-C(32)	119.8(2)		
C(34)-C(35)-C(36)	119.9(2)		
Single crystal structure analysis of 9 (13680)

Figure 9. The molecular structure of complex 9. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis of complex 9: C_{36}H_{26}Bi_{2}Cl_{4}O, M_r = 1034.33 g mol\(^{-1}\), colourless plate, crystal size 0.062 x 0.035 x 0.011 mm\(^3\), triclinic, P-1 [2], a = 9.0281(4) Å, b = 12.1880(5) Å, c = 15.1195(6) Å, α = 101.289(2) °, β = 90.246(2) °, γ = 95.156(2) ° V = 1624.47(12) Å\(^3\), T = 100(2) K, Z = 2, D_{calc} = 2.115 g·cm\(^{-3}\), λ = 0.71073 Å, μ(Mo-Kα) = 11.176 mm\(^{-1}\), Gaussian absorption correction (T_{min} = 0.62769, T_{max} = 0.89794), Bruker-AXS Mach3 diffractometer with APEX-II detector and μS microfocus Mo-anode X-ray source, 1.374 < θ < 35.077 °, 65647 measured reflections, 14207 independent reflections, 11437 reflections with I > 2σ(I), R_{int} = 0.0403. The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against F\(^2\) to R_f = 0.0262 [I > 2σ(I)], wR_2 = 0.0566, 388 parameters.
Figure 10. Crystal faces and unit cell determination of complex 9.

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.62	193	193	100.0	16.66	105.31	100.95	0.0218	0.0077
2.62 - 1.73	465	465	100.0	18.07	77.19	95.92	0.0213	0.0078
1.73 - 1.36	659	659	100.0	18.21	56.68	85.70	0.0239	0.0084
1.36 - 1.19	637	637	100.0	17.89	40.21	73.92	0.0290	0.0095
1.19 - 1.08	644	644	100.0	16.19	34.66	63.67	0.0328	0.0110
1.08 - 1.00	659	659	100.0	12.04	30.16	50.59	0.0367	0.0144
1.00 - 0.94	643	643	100.0	9.96	24.96	41.52	0.0403	0.0173
0.94 - 0.89	700	700	100.0	8.42	22.48	34.84	0.0441	0.0206
0.89 - 0.85	654	654	100.0	7.81	18.60	29.75	0.0501	0.0243
0.85 - 0.82	606	606	100.0	7.49	18.04	27.34	0.0527	0.0262
0.82 - 0.79	676	676	100.0	7.22	14.37	23.26	0.0635	0.0317
0.79 - 0.77	526	526	100.0	6.93	14.23	21.71	0.0608	0.0330
0.77 - 0.74	882	882	100.0	6.73	13.25	19.76	0.0695	0.0367
0.74 - 0.72	680	680	100.0	6.25	12.03	17.70	0.0789	0.0427
0.72 - 0.71	354	354	100.0	6.39	12.06	17.95	0.0819	0.0426
0.71 - 0.69	773	773	100.0	6.05	9.64	14.48	0.0936	0.0526
0.69 - 0.67	914	914	100.0	5.83	9.13	13.50	0.1011	0.0579
0.67 - 0.66	488	488	100.0	5.68	8.11	11.88	0.1123	0.0651
0.66 - 0.65	509	509	100.0	5.49	7.47	11.07	0.1194	0.0728
0.65 - 0.64	555	555	100.0	5.38	8.04	11.27	0.1236	0.0705
0.64 - 0.63	601	601	100.0	5.13	7.03	9.96	0.1317	0.0819
0.73 - 0.63	4559	4559	100.0	5.74	8.91	13.13	0.1027	0.0599
Inf - 0.63	12818	12818	100.0	9.20	22.61	34.27	0.0359	0.0217

Complete .cif-data of the compound are available under the CCDC number **CCDC-2063977**.
Table 9. Crystal data and structure refinement.

Identification code	13680
Empirical formula	C$_{36}$H$_{26}$Bi$_2$Cl$_4$O
Color	colourless
Formula weight	1034.33 g · mol$^{-1}$
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	TRICLINIC
Space group	P-1, (No. 2)
Unit cell dimensions	$a = 9.0281(4)$ Å, $a = 101.289(2)^\circ$.
	$b = 12.1880(5)$ Å, $\beta = 90.246(2)^\circ$.
	$c = 15.1195(6)$ Å, $\gamma = 95.156(2)^\circ$.
Volume	1624.47(12) Å3
Z	2
Density (calculated)	2.115 Mg · m$^{-3}$
Absorption coefficient	11.176 mm$^{-1}$
F(000)	968 e
Crystal size	0.062 x 0.035 x 0.011 mm3
θ range for data collection	1.374 to 35.077°.
Index ranges	-14 $\leq h \leq$ 14, -19 $\leq k \leq$ 19, -24 $\leq l \leq$ 24
Reflections collected	65647
Independent reflections	14207 [R$\text{int} = 0.0403$]
Reflections with I>2σ(I)	11437
Completeness to $\theta = 25.242^\circ$	100.0 %
Absorption correction	Gaussian
Max. and min. transmission	0.90 and 0.63
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	14207 / 0 / 388
Goodness-of-fit on F2	1.046
Final R indices [I>2σ(I)]	R$_{I}$ = 0.0262, wR2 = 0.0527
R indices (all data)	R$_{I}$ = 0.0408, wR2 = 0.0566
Largest diff. peak and hole	2.0 and -1.4 e · Å$^{-3}$
Table 10. Bond lengths [Å] and angles [°].

Bond	Length/Angle
Bi(1)-Cl(1)	2.5816(6)
Bi(1)-C(2)	2.184(2)
Bi(1)-C(19)	2.213(2)
Bi(1)-Cl(4)	2.5769(6)
Bi(1)-C(25)	2.197(3)
O(1)-C(1)	1.381(3)
C(1)-C(2)	1.375(3)
C(2)-C(3)	1.395(4)
C(4)-C(5)	1.375(4)
C(6)-C(7)	1.441(4)
C(7)-C(12)	1.396(3)
C(9)-C(10)	1.393(4)
C(11)-C(12)	1.379(4)
C(13)-C(18)	1.383(4)
C(15)-C(16)	1.376(4)
C(17)-C(18)	1.392(4)
C(19)-C(24)	1.380(4)
C(21)-C(22)	1.364(4)
C(23)-C(24)	1.387(4)
C(25)-C(30)	1.393(4)
C(27)-C(28)	1.371(5)
C(29)-C(30)	1.383(4)
C(31)-C(36)	1.383(3)
C(33)-C(34)	1.372(4)
C(35)-C(36)	1.390(4)
Cl(1)-Bi(1)-Cl(2)	177.46(2)
C(2)-Bi(1)-C(13)	130.24(9)
C(13)-Bi(1)-Cl(1)	89.26(7)
C(19)-Bi(1)-Cl(1)	116.51(8)
Cl(3)-Bi(2)-Cl(4)	92.41(7)
C(11)-Bi(2)-Cl(4)	112.86(9)
C(11)-Bi(2)-C(31)	93.52(7)
Single crystal structure analysis of 10 (13220)

Figure 11. The molecular structure of complex 10. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis of complex 10: C_{39.50} H_{33} Bi_2 Cl_5 O, M_r = 1118.87 g mol\(^{-1}\), colourless prism, crystal size 0.052 x 0.026 x 0.021 mm\(^3\), monoclinic, \(P2_1/c\) [14], \(a = 12.3959(6)\) \(\text{Å}\), \(b = 13.9993(6)\) \(\text{Å}\), \(c = 21.7582(10)\) \(\text{Å}\), \(\beta = 100.772(2)\) °, \(V = 3709.3(3)\) \(\text{Å}^3\), \(T = 100(2)\) K, \(Z = 4\), \(D_{\text{calc}} = 2.004\) g·cm\(^{-3}\), \(\lambda = 0.71073\) Å, \(\mu(\text{Mo-K\(\alpha\)}) = 9.867\) mm\(^{-1}\), Gaussian absorption correction \((T_{\text{min}} = 0.67911, T_{\text{max}} = 0.83591)\), Bruker-AXS Mach3 diffractometer with APEX-II detector and \(\mu\)S microfocus Mo-anode X-ray source, \(1.672 < \theta < 27.499\) °, 144619 measured reflections, 8521 independent reflections, 7847 reflections with \(I > 2\sigma(I)\), \(R_{\text{int}} = 0.0334\). The structure was solved by \textit{SHELXT} and refined by full-matrix least-squares (\textit{SHELXL}) against \(F^2\) to \(R_I = 0.0160\) \([I > 2\sigma(I)]\), \(wR_2 = 0.0323\), 492 parameters.
The structure contains a rotational disorder of 60:40 and 60:40 at phenyl ligands of Bi1. Disordered atoms have been partially refined isotropically. Additionally a solute molecule (DCM) is disordered about a crystallographic special position (inversion center) with 50:50 occupancy and the bond situation has been described using FREE instruction. The high residual electron density (highest peak: 2.45 at 0.66 Å from Bi1 and deepest hole: -3.00 at 0.72 Å from Bi1) could possibly be caused by anharmonic displacement of the Bi atom.

Complete .cif-data of the compound are available under the CCDC number CCDC-2063980.
Table 11. Crystal data and structure refinement.

Description	Value
Identification code	13220
Empirical formula	C_{39.50}H_{33}Bi_{2}Cl_{5}O
Color	colourless
Formula weight	1118.87 g · mol^{-1}
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	MONOCLINIC
Space group	P2_1/c, (No. 14)
Unit cell dimensions	a = 12.3959(6) Å
	α = 90°
	b = 13.9993(6) Å
	β = 100.772(2)°
	c = 21.7582(10) Å
	γ = 90°
Volume	3709.3(3) Å³
Z	4
Density (calculated)	2.004 Mg · m⁻³
Absorption coefficient	9.867 mm⁻¹
F(000)	2116 e
Crystal size	0.052 x 0.026 x 0.021 mm³
θ range for data collection	1.672 to 27.499°
Index ranges	-16 ≤ h ≤ 16, -18 ≤ k ≤ 18, -28 ≤ l ≤ 28
Reflections collected	144619
Independent reflections	8521 [R_{int} = 0.0334]
Reflections with I>2σ(I)	7847
Completeness to θ = 25.242°	100.0 %
Absorption correction	Gaussian
Max. and min. transmission	0.84 and 0.68
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	8521 / 0 / 492
Goodness-of-fit on F²	1.043
Final R indices [I>2σ(I)]	R₁ = 0.0160, wR² = 0.0323
R indices (all data)	R₁ = 0.0196, wR² = 0.0339
Largest diff. peak and hole	2.5 and -3.0 e · Å⁻³
Table 12. Bond lengths [Å] and angles [°].

Bond	Length	Bond	Length
Bi(1)-Cl(3)	2.5828(7)	Bi(1)-Cl(4)	2.5825(7)
Bi(1)-C(12)	2.190(2)	Bi(1)-C(28)	2.214(3)
Bi(1)-C(34A)	2.189(5)	Bi(1)-C(34B)	2.258(10)
Bi(2)-Cl(1)	2.5977(6)	Bi(2)-Cl(2)	2.5702(7)
Bi(2)-C(2)	2.212(3)	Bi(2)-C(16)	2.223(2)
Bi(2)-C(22)	2.212(2)	O(1)-C(1)	1.391(3)
O(1)-C(13)	1.391(3)	C(1)-C(2)	1.388(4)
C(1)-C(6)	1.402(4)	C(2)-C(3)	1.394(3)
C(3)-C(4)	1.381(4)	C(4)-C(5)	1.386(4)
C(5)-C(6)	1.392(4)	C(6)-C(7)	1.521(4)
C(7)-C(8)	1.527(4)	C(7)-C(14)	1.541(4)
C(7)-C(15)	1.397(4)	O(1)-C(9)	1.389(4)
C(10)-C(11)	1.386(4)	C(9)-C(10)	1.388(4)
C(12)-C(13)	1.384(4)	C(11)-C(12)	1.388(4)
C(16)-C(21)	1.381(4)	C(15)-C(16)	1.380(4)
C(18)-C(19)	1.384(4)	C(17)-C(18)	1.391(4)
C(20)-C(21)	1.393(4)	C(19)-C(20)	1.385(4)
C(22)-C(27)	1.391(4)	C(22)-C(23)	1.379(4)
C(24)-C(25)	1.381(5)	C(23)-C(24)	1.394(4)
C(26)-C(27)	1.395(4)	C(25)-C(26)	1.377(5)
C(28)-C(29B)	1.391(14)	C(28)-C(33)	1.379(4)
(29A)-C(30A)	1.377(11)	C(29B)-C(30B)	1.402(17)
C(30A)-C(31)	1.367(8)	C(30B)-C(31)	1.472(11)
C(31)-C(32)	1.365(4)	C(32)-C(33)	1.384(4)
C(34A)-C(35A)	1.377(8)	C(34A)-C(39A)	1.389(7)
C(34B)-C(35B)	1.364(13)	C(34B)-C(39B)	1.375(13)
C(35A)-C(36A)	1.391(6)	C(35B)-C(36B)	1.439(15)
C(36A)-C(37A)	1.398(8)	C(36B)-C(37B)	1.367(14)
C(37A)-C(38A)	1.376(8)	C(37B)-C(38B)	1.353(15)
C(38A)-C(39A)	1.398(7)	C(38B)-C(39B)	1.386(13)
Cl(5A)-C(99)	1.155(8)	Cl(5A)-C(99)	1.769(7)
Cl(5B)-C(99)*	2.256(7)	Cl(5B)-C(99)	1.750(8)
C(99)-H(99A)	0.92(8)	C(99)-H(99B)	0.96(9)
Bond / Angle	Value (°)		
--------------	----------		
Cl(4)-Bi(1)-Cl(3)	172.07(2)		
C(12)-Bi(1)-Cl(4)	85.19(7)		
C(12)-Bi(1)-C(34B)	129.8(3)		
C(28)-Bi(1)-Cl(4)	93.43(7)		
C(34A)-Bi(1)-Cl(3)	90.43(15)		
C(34A)-Bi(1)-C(12)	137.74(16)		
C(34B)-Bi(1)-Cl(3)	100.0(2)		
Cl(2)-Bi(2)-Cl(1)	176.01(2)		
C(2)-Bi(2)-C(22)	89.03(7)		
C(2)-Bi(2)-C(22)	102.11(9)		
C(16)-Bi(2)-Cl(2)	92.14(7)		
C(22)-Bi(2)-Cl(2)	92.19(7)		
C(13)-O(1)-C(1)	113.94(19)		
C(2)-C(1)-O(1)	120.3(2)		
C(1)-C(2)-Bi(2)	128.98(18)		
C(3)-C(2)-Bi(2)	110.27(18)		
C(3)-C(4)-C(5)	119.8(2)		
C(1)-C(6)-C(7)	117.7(2)		
C(5)-C(6)-C(7)	123.4(2)		
C(6)-C(7)-C(14)	109.1(2)		
C(8)-C(7)-C(14)	109.1(2)		
C(15)-C(7)-C(14)	108.7(2)		
C(9)-C(8)-C(13)	118.4(2)		
C(10)-C(9)-C(8)	121.5(2)		
C(10)-C(11)-C(12)	119.1(3)		
C(13)-C(12)-Bi(1)	124.27(19)		
C(13)-C(12)-Bi(1)	121.2(19)		
C(12)-C(13)-C(8)	120.6(2)		
C(12)-C(13)-C(8)	119.8(2)		
C(17)-C(16)-C(21)	123.2(2)		
C(16)-C(17)-C(18)	117.4(3)		
C(18)-C(19)-C(20)	120.4(3)		
C(16)-C(21)-C(20)	118.2(3)		
C(23)-C(22)-C(27)	121.2(2)		
C(22)-C(23)-C(24)	119.2(3)		
C(26)-C(25)-C(24)	120.6(3)		
Bond	Distance (Å)	Bond	Distance (Å)
-----------------------------	--------------	-----------------------------	--------------
C(22)-C(27)-C(26)	118.9(3)	C(29A)-C(28)-Bi(1)	121.5(4)
C(29B)-C(28)-Bi(1)	114.9(6)	C(33)-C(28)-Bi(1)	119.6(2)
C(33)-C(28)-C(29A)	117.8(4)	C(33)-C(28)-C(29B)	123.8(6)
C(28)-C(29A)-H(29A)	119.2	C(30A)-C(29A)-C(28)	121.6(7)
C(28)-C(29B)-C(30B)	113.4(10)	C(31)-C(30A)-C(29A)	118.2(6)
C(29B)-C(30B)-C(31)	122.6(9)	C(32)-C(31)-C(30A)	120.1(4)
C(32)-C(31)-C(30B)	115.6(5)	C(31)-C(32)-C(33)	120.4(3)
C(28)-C(33)-C(32)	119.5(3)	C(35A)-C(34A)-Bi(1)	117.6(4)
C(35A)-C(34A)-C(39A)	122.4(4)	C(39A)-C(34A)-Bi(1)	119.0(4)
C(35B)-C(34B)-Bi(1)	111.0(7)	C(35B)-C(34B)-C(39B)	124.9(9)
C(39B)-C(34B)-Bi(1)	123.1(7)	C(34A)-C(35A)-C(36A)	118.4(5)
C(34B)-C(35B)-C(36B)	117.3(10)	C(35A)-C(36A)-C(37A)	120.1(5)
C(37B)-C(36B)-C(35B)	117.3(10)	C(38A)-C(37A)-C(36A)	120.6(5)
C(38B)-C(37B)-C(36B)	123.1(11)	C(37A)-C(38A)-C(39A)	119.9(5)
C(37B)-C(38B)-C(39B)	121.1(10)	C(34A)-C(39A)-C(38A)	118.6(5)
C(34B)-C(39B)-C(38B)	116.2(10)	C(99)-Cl(5A)-C(99)*	78.0(5)
C(99)-Cl(5B)-C(99)*	54.9(4)	Cl(5A)-C(99)-Cl(5A)*	102.0(5)
Cl(5B)-C(99)-Cl(5A)*	112.6(4)	Cl(5B)-C(99)-H(99A)	109(5)
Cl(5B)-C(99)-H(99B)	111(5)	H(99A)-C(99)-H(99B)	110(7)

Symmetry transformations used to generate equivalent atoms: * -x+2,-y+2,-z+1
Single crystal structure analysis of 11 (13708)

Figure 13. The molecular structure of complex 11. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis of complex 11: C_{44}H_{36}Bi_{2}Cl_{4}O, \(M_r = 1140.49 \) g mol\(^{-1}\), yellow prism, crystal size 0.15 x 0.13 x 0.07 mm\(^3\), triclinic, \(P-1 \) [2], \(a = 12.0198(3) \) Å, \(b = 12.1771(7) \) Å, \(c = 15.7796(11) \) Å, \(\alpha = 96.190(5) \) °, \(\beta = 103.900(4) \) °, \(\gamma = 114.199(3) \) °, \(V = 1988.7(2) \) Å\(^3\), \(T = 100(2) \) K, \(Z = 2 \), \(D_{calc} = 1.905 \) g·cm\(^{-3}\), \(\lambda = 0.71073 \) Å, \(\mu(Mo-K\alpha) = 9.139 \) mm\(^{-1}\), Gaussian absorption correction (\(T_{min} = 0.30255 \), \(T_{max} = 0.59321 \)), Bruker AXS Enraf-Nonius KappaCCD diffractometer with a FR591 rotating Mo-anode X-ray source, \(2.716 < \theta < 30.508 \) °, 75349 measured reflections, 12134 independent reflections, 10803 reflections with \(I > 2\sigma(I) \), \(R_{int} = 0.0444 \). The structure was solved by \textit{SHELXS} and refined by full-matrix least-squares (\textit{SHELXL}) against \(F^2 \) to \(R_f = 0.0210 \) [\(I > 2\sigma(I) \)], \(wR_2 = 0.0436 \), 460 parameters.
Figure 14. Crystal faces and unit cell determination of complex 11.

INTENSITY STATISTICS FOR DATASET

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.32	326	335	97.3	132.92	52.70	0.0448	0.0163	
2.32 - 1.56	763	763	100.0	95.60	47.40	0.0342	0.0166	
1.56 - 1.24	1082	1082	100.0	62.64	39.99	0.0341	0.0181	
1.24 - 1.08	1130	1130	100.0	47.51	36.25	0.0368	0.0201	
1.08 - 0.98	1126	1126	100.0	36.41	30.62	0.0417	0.0228	
0.98 - 0.91	1098	1098	100.0	28.86	27.10	0.0457	0.0263	
0.91 - 0.86	1011	1011	100.0	24.12	23.50	0.0506	0.0300	
0.86 - 0.81	1279	1279	100.0	20.66	20.40	0.0557	0.0344	
0.81 - 0.78	947	947	100.0	18.15	18.56	0.0619	0.0389	
0.78 - 0.75	1091	1091	100.0	15.08	15.78	0.0735	0.0454	
0.75 - 0.72	1289	1289	100.0	14.01	14.83	0.0794	0.0509	
0.72 - 0.70	992	992	100.0	11.26	12.27	0.0925	0.0623	
0.70 - 0.68	1115	1115	100.0	10.57	11.32	0.1002	0.0688	
0.68 - 0.66	1225	1225	100.0	9.44	9.44	0.1237	0.0863	
0.66 - 0.64	1423	1423	100.0	8.63	8.63	0.1461	0.1079	
0.64 - 0.62	729	729	100.0	7.55	7.95	0.1461	0.1176	
0.62 - 0.60	842	842	100.0	7.00	6.68	0.1665	0.1369	
0.60 - 0.59	1796	1796	100.0	5.60	4.96	0.2054	0.1933	
0.59 - 0.58	1020	1020	100.0	4.73	3.67	0.2448	0.2715	
0.58 - 0.57	1426	1474	96.7	4.54	3.11	0.2664	0.3321	
0.57 - 0.55	8461	8509	99.4	6.39	6.03	0.1755	0.1652	
0.55 - 0.54	21718	21767	99.7	22.57	17.57	0.0540	0.0416	

A resolution cut off (SHEL 99 0.7) was applied to suppress poorly measured intensities at higher diffraction angles.

Complete .cif-data of the compound are available under the CCDC number **CCDC-2063974**.
Table 13. Crystal data and structure refinement.

Property	Value
Identification code	13708
Empirical formula	C₄₄H₃₆Bi₂Cl₄O
Color	yellow
Formula weight	1140.49 g · mol⁻¹
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	TRICLINIC
Space group	P-1, (No. 2)
Unit cell dimensions	a = 12.0198(3) Å, α = 96.190(5)°
	b = 12.1771(7) Å, β = 103.900(4)°
	c = 15.7796(11) Å, γ = 114.199(3)°
Volume	1988.7(2) Å³
Z	2
Density (calculated)	1.905 Mg · m⁻³
Absorption coefficient	9.139 mm⁻¹
F(000)	1084 e
Crystal size	0.15 x 0.13 x 0.07 mm³
θ range for data collection	2.716 to 30.508°
Index ranges	-17 ≤ h ≤ 17, -17 ≤ k ≤ 17, -22 ≤ l ≤ 22
Reflections collected	75349
Independent reflections	12134 [R₁ = 0.0444]
Reflections with I > 2σ(I)	10803
Completeness to θ = 25.242°	99.9 %
Absorption correction	Gaussian
Max. and min. transmission	0.59 and 0.30
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	12134 / 0 / 460
Goodness-of-fit on F²	1.072
Final R indices [I > 2σ(I)]	R₁ = 0.0210, wR² = 0.0436
R indices (all data)	R₁ = 0.0270, wR² = 0.0457
Largest diff. peak and hole	1.0 and -1.8 e · Å⁻³
Table 14. Bond lengths [Å] and angles [°].

Bond Lengths/Molecular Angles	Value 1	Value 2	
Bi(1)-Cl(1)	2.5972(6)	Bi(1)-Cl(2)	2.5962(6)
Bi(1)-C(2)	2.192(2)	Bi(1)-C(15)	2.200(2)
Bi(1)-Cl(3)	2.5881(7)	Bi(2)-Cl(3)	2.5881(7)
Bi(2)-C(13)	2.218(3)	Bi(2)-C(13)	2.218(3)
Bi(2)-C(15)	2.200(2)	Bi(2)-C(33)	2.206(3)
C(1)-C(2)	1.386(3)	C(1)-C(6)	1.400(3)
C(2)-C(3)	1.386(3)	C(10)-C(14)	1.379(3)
C(3)-C(4)	1.392(4)	C(5)-C(6)	1.391(4)
C(4)-C(5)	1.380(4)	C(7)-C(8)	1.537(5)
C(6)-C(7)	1.502(4)	C(9)-C(10)	1.397(4)
C(8)-C(9)	1.499(4)	C(11)-C(12)	1.376(4)
C(11)-C(12)	1.383(4)	C(12)-C(13)	1.387(4)
C(12)-C(13)	1.387(3)	C(15)-C(16)	1.388(3)
C(13)-C(14)	1.392(3)	C(16)-C(17)	1.392(4)
C(14)-C(15)	1.386(3)	C(18)-C(19)	1.384(4)
C(15)-C(16)	1.386(3)	C(19)-C(20)	1.376(4)
C(16)-C(17)	1.386(3)	C(21)-C(22)	1.376(4)
C(17)-C(18)	1.388(4)	C(22)-C(23)	1.391(4)
C(18)-C(19)	1.388(4)	C(23)-C(24)	1.373(5)
C(19)-C(20)	1.389(4)	C(24)-C(25)	1.373(5)
C(20)-C(21)	1.373(4)	C(25)-C(26)	1.377(5)
C(21)-C(22)	1.373(4)	C(26)-C(27)	1.395(4)
C(22)-C(23)	1.373(4)	C(27)-C(28)	1.377(5)
C(23)-C(24)	1.375(5)	C(28)-C(29)	1.395(4)
C(24)-C(25)	1.375(5)	C(29)-C(30)	1.376(7)
C(25)-C(30)	1.391(5)	C(30)-C(31)	1.372(4)
C(30)-C(31)	1.391(5)	C(33)-C(34)	1.372(4)
C(31)-C(32)	1.389(4)	(34)-C(35)	1.387(5)
C(32)-C(33)	1.389(4)	C(36)-C(37)	1.382(5)
C(33)-C(36)	1.384(5)	C(37)-C(38)	1.381(5)
C(34)-C(35)	1.394(4)	C(51)-C(52)	1.371(5)
C(35)-C(51)*	1.364(5)	C(52)-C(53)	1.371(5)
C(51)-C(53)	1.372(5)	C(61)-C(62)**	1.388(5)
C(52)-C(61)**	1.377(5)	C(62)-C(63)	1.377(5)

Cl(2)-Bi(1)-Cl(1) 170.725(19) C(2)-Bi(1)-Cl(1) 88.91(7)
C(2)-Bi(1)-Cl(2) 85.48(7) C(2)-Bi(1)-C(15) 119.38(9)
C(2)-Bi(1)-C(21) 127.71(9) C(15)-Bi(1)-Cl(1) 88.26(6)
C(15)-Bi(1)-Cl(2) 88.06(6) C(15)-Bi(1)-C(21) 112.80(9)

S79
Bond	Distance (Å)
C(21)-Bi(1)-Cl(1)	96.08(7)
Cl(4)-Bi(2)-Cl(3)	175.59(2)
C(13)-Bi(2)-Cl(4)	89.29(7)
C(27)-Bi(2)-Cl(4)	91.67(9)
C(33)-Bi(2)-Cl(3)	87.62(7)
C(33)-Bi(2)-C(13)	110.94(10)
C(14)-O(1)-C(1)	127.87(19)
O(1)-C(1)-C(6)	126.8(2)
C(1)-C(2)-Bi(1)	116.30(17)
C(3)-C(2)-C(1)	122.6(2)
C(5)-C(4)-C(3)	119.4(2)
C(1)-C(6)-C(7)	121.7(2)
C(5)-C(6)-C(7)	120.5(2)
C(9)-C(8)-C(7)	109.6(2)
C(10)-C(9)-C(14)	117.3(2)
C(11)-C(10)-C(9)	122.8(3)
C(11)-C(12)-C(13)	118.9(3)
C(12)-C(13)-C(14)	121.7(2)
O(1)-C(14)-C(9)	125.4(2)
C(13)-C(14)-C(9)	119.3(2)
C(20)-C(15)-Bi(1)	116.02(17)
C(15)-C(16)-C(17)	118.0(3)
C(19)-C(18)-C(17)	120.4(3)
C(15)-C(20)-C(19)	118.6(2)
C(26)-C(21)-Bi(1)	119.80(18)
C(21)-C(22)-C(23)	118.7(3)
C(25)-C(24)-C(23)	119.9(3)
C(21)-C(26)-C(25)	118.1(3)
C(28)-C(27)-C(32)	123.0(3)
C(27)-C(28)-C(29)	118.0(3)
C(31)-C(30)-C(29)	120.2(3)
C(27)-C(32)-C(31)	117.7(4)
C(34)-C(33)-C(38)	121.3(3)
C(33)-C(34)-C(35)	119.5(3)
C(37)-C(36)-C(35)	120.4(3)
C(33)-C(38)-C(37)	118.9(3)

Bond	Distance (Å)		
C(21)-Bi(1)-Cl(2)	93.19(7)		
C(13)-Bi(2)-Cl(3)	91.39(7)		
C(27)-Bi(2)-Cl(3)	90.69(9)		
C(27)-Bi(2)-C(13)	138.46(10)		
C(33)-Bi(2)-Cl(4)	88.07(7)		
C(33)-Bi(2)-C(27)	110.60(11)		
O(1)-C(1)-C(2)	113.8(2)		
C(2)-C(1)-C(6)	119.4(2)		
C(3)-C(2)-Bi(1)	119.50(19)		
C(2)-C(3)-C(4)	117.8(2)		
C(4)-C(5)-C(6)	123.1(3)		
C(5)-C(6)-C(1)	117.1(3)		
C(6)-C(7)-C(8)	110.1(2)		
C(10)-C(9)-C(8)	120.7(2)		
C(14)-C(9)-C(8)	121.4(2)		
C(10)-C(11)-C(12)	119.3(3)		
C(12)-C(13)-Bi(2)	114.97(19)		
C(14)-C(13)-Bi(2)	121.05(19)		
O(1)-C(14)-C(13)	115.2(2)		
C(16)-C(15)-Bi(1)	121.55(19)		
C(20)-C(15)-C(16)	122.4(2)		
C(18)-C(17)-C(16)	120.5(3)		
C(18)-C(19)-C(20)	120.2(3)		
C(22)-C(21)-Bi(1)	118.0(2)		
C(26)-C(21)-C(22)	122.1(3)		
C(24)-C(23)-C(22)	120.3(3)		
C(24)-C(25)-C(26)	120.9(3)		
C(28)-C(27)-Bi(2)	120.7(2)		
C(32)-C(27)-Bi(2)	116.1(3)		
C(30)-C(29)-C(28)	120.3(4)		
C(30)-C(31)-C(32)	120.8(4)		
C(34)-C(33)-Bi(2)	117.5(2)		
C(38)-C(33)-Bi(2)	121.1(2)		
C(36)-C(35)-C(34)	120.0(3)		
C(36)-C(37)-C(38)	119.9(3)		
C(53)-C(51)-C(52)	120.1(3)		
Bond	Angle (°)	Bond	Angle (°)
-----------------------	------------	-----------------------	------------
C(53)-C(52)-C(51)	119.7(3)	C(51)^*-C(53)-C(52)	120.2(3)
C(62)-C(61)-C(63)**	120.0(4)	C(61)-C(62)-C(63)	120.4(3)
C(62)-C(63)-C(61)**	119.6(4)		

Symmetry transformations used to generate equivalent atoms:
* -x,-y+1,-z+1 ** -x,-y+2,-z
Single crystal structure analysis of 12 (13386)

Figure 15. The molecular structure of complex 12. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis of complex 12: C$_{36}$H$_{28}$Bi$_2$Cl$_4$O, $M_r = 1036.34$ g mol$^{-1}$, colourless prism, crystal size $0.046 \times 0.024 \times 0.022$ mm3, monoclinic, $P2_1/n$ [14], $a = 8.4334(5)$ Å, $b = 25.9105(15)$ Å, $c = 15.5944(9)$ Å, $\beta = 91.060(2)$°, $V = 3407.0(3)$ Å3, $T = 100(2)$ K, $Z = 4$, $D_{calc} = 2.020$ g·cm$^{-3}$, $\lambda = 0.71073$ Å, μ($Mo-K\alpha$)= 10.658 mm$^{-1}$, Gaussian absorption correction ($T_{min} = 0.67881$, $T_{max} = 0.85075$), Bruker-AXS Mach3 diffractometer with APEX-II detector and \(\mu\)S microfocus Mo-anode X-ray source, $1.524 < \theta < 30.508$°, 151031 measured reflections, 10382 independent reflections, 9085 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0595$. The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against F^2 to $R_I = 0.0253$ [$I > 2\sigma(I)$], $wR_2 = 0.0521$, 388 parameters.
Figure 16. Crystal faces and unit cell determination of complex 12.

INTENSITY STATISTICS FOR DATASET

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.45	267	267	100.0	20.20	103.09	56.90	0.0462	0.0144
2.45 - 1.62	616	616	100.0	23.06	72.24	58.09	0.0399	0.0137
1.62 - 1.11	895	895	100.0	23.17	46.06	51.39	0.0389	0.0146
1.11 - 1.01	877	877	100.0	17.24	26.65	32.97	0.0588	0.0210
1.01 - 0.93	981	981	100.0	14.04	22.64	27.09	0.0690	0.0262
0.93 - 0.88	830	830	100.0	12.06	17.49	21.36	0.0862	0.0333
0.88 - 0.83	1012	1012	100.0	11.32	16.19	18.62	0.0963	0.0377
0.83 - 0.80	755	755	100.0	10.72	13.84	16.33	0.1110	0.0444
0.80 - 0.77	834	834	100.0	10.42	13.17	15.62	0.1263	0.0490
0.77 - 0.74	1021	1021	100.0	9.80	10.77	12.97	0.1454	0.0598
0.74 - 0.72	768	768	100.0	9.54	10.42	12.18	0.1553	0.0646
0.72 - 0.70	832	832	100.0	9.15	8.45	8.98	0.1810	0.0805
0.70 - 0.68	985	985	100.0	8.90	7.63	8.96	0.2039	0.0909
0.68 - 0.66	1071	1071	100.0	8.51	7.31	8.15	0.2203	0.1012
0.66 - 0.65	563	563	100.0	8.32	5.96	6.93	0.2573	0.1267
0.65 - 0.63	1322	1322	100.0	7.90	5.42	6.03	0.2729	0.1441
0.63 - 0.62	725	725	100.0	7.75	5.22	5.68	0.2990	0.1563
0.62 - 0.61	750	750	100.0	7.42	4.74	5.04	0.3239	0.1810
0.61 - 0.60	781	781	100.0	7.17	4.39	4.47	0.3471	0.2085
0.60 - 0.59	834	1025	81.4	3.23	3.14	2.26	0.4051	0.4727
0.59 - 0.59	6537	6728	97.2	7.23	5.43	5.83	0.2715	0.1631
Inf	17643	17834	98.9	11.55	17.54	18.61	0.0711	0.0426

A resolution cut off (SHEL 99 0.7) was applied to suppress poorly measured intensities at higher diffraction angles. The high residual electron density (highest peak: 3.13 at 0.78 Å from Bi1 and deepest hole: -1.09 at 1.28 Å from Bi1) could possibly be caused by anharmonic displacement of the Bi atom.

Complete .cif-data of the compound are available under the CCDC number CCDC-2063979.
Identification code	13386
Empirical formula	C_{36}H_{28}Bi_{2}Cl_{4}O
Color	colourless
Formula weight	1036.34 g·mol^{-1}
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 2_1/n, (No. 14)
Unit cell dimensions	a = 8.4334(5) Å, α= 90°.
	b = 25.9105(15) Å, β= 91.060(2)°.
	c = 15.5944(9) Å, γ = 90°.
Volume	3407.0(3) Å^3
Z	4
Density (calculated)	2.020 Mg·m^3
Absorption coefficient	10.658 mm^{-1}
F(000)	1944 e
Crystal size	0.046 x 0.024 x 0.022 mm^3
θ range for data collection	1.524 to 30.508°.
Index ranges	-12 ≤ h ≤ 12, -37 ≤ k ≤ 37, -22 ≤ l ≤ 22
Reflections collected	151031
Independent reflections	10382 [R_{int} = 0.0595]
Reflections with I>2σ(I)	9085
Completeness to θ = 25.242°	100.0 %
Absorption correction	Gaussian
Max. and min. transmission	0.85075 and 0.67881
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	10382 / 0 / 388
Goodness-of-fit on F^2	1.089
Final R indices [I>2σ(I)]	R_1 = 0.0253, wR^2 = 0.0521
R indices (all data)	R_1 = 0.0327, wR^2 = 0.0542
Extinction coefficient	n/a
Largest diff. peak and hole	3.134 and -1.090 e·Å^{-3}
Table 16. Bond lengths [Å] and angles [°].

Bond	Length [Å]	Bond	Length [Å]
Bi(1)-Cl(2)	2.5892(8)	Bi(1)-Cl(1)	2.5862(8)
Bi(1)-C(13)	2.199(3)	Bi(1)-C(1)	2.184(3)
Bi(1)-C(19)	2.204(3)	Bi(2)-Cl(4)	2.6191(8)
Bi(2)-Cl(3)	2.5677(8)	Bi(2)-C(7)	2.189(3)
Bi(2)-C(31)	2.214(3)	Bi(2)-C(25)	2.205(3)
O(1)-C(2)	1.399(4)	O(1)-C(8)	1.396(4)
C(33)-H(33)	0.9500	C(33)-C(32)	1.391(5)
C(33)-C(34)	1.380(5)	C(7)-C(8)	1.385(4)
C(7)-C(12)	1.388(5)	C(4)-H(4)	0.9500
C(4)-C(3)	1.386(5)	C(4)-C(5)	1.383(5)
C(13)-C(18)	1.385(4)	C(13)-C(14)	1.380(4)
C(2)-C(1)	1.377(4)	C(2)-C(3)	1.392(4)
C(1)-C(6)	1.389(4)	C(3)-H(3)	0.9500
C(19)-C(24)	1.392(4)	C(19)-C(20)	1.382(5)
C(5)-H(5)	0.9500	C(5)-C(6)	1.382(5)
C(17)-H(17)	0.9500	C(17)-C(18)	1.390(5)
C(17)-C(16)	1.377(5)	C(8)-C(9)	1.384(5)
C(24)-H(24)	0.9500	C(24)-C(23)	1.393(5)
C(15)-H(15)	0.9500	C(15)-C(16)	1.386(5)
C(15)-C(14)	1.394(5)	C(32)-H(32)	0.9500
C(32)-C(31)	1.380(5)	C(34)-H(34)	0.9500
C(34)-C(35)	1.379(5)	C(31)-C(36)	1.387(4)
C(18)-H(18)	0.9500	C(36)-H(36)	0.9500
C(36)-C(35)	1.396(5)	C(16)-H(16)	0.9500
C(25)-C(30)	1.375(5)	C(25)-C(26)	1.385(5)
C(9)-H(9)	0.9500	C(9)-C(10)	1.383(5)
C(14)-H(14)	0.9500	C(35)-H(35)	0.9500
C(23)-H(23)	0.9500	C(23)-C(22)	1.384(6)
C(6)-H(6)	0.9500	C(30)-H(30)	0.9500
C(30)-C(29)	1.404(5)	C(11)-H(11)	0.9500
C(11)-C(12)	1.382(6)	C(11)-C(10)	1.381(6)
C(12)-H(12)	0.9500	C(10)-H(10)	0.9500
C(28)-H(28)	0.9500	C(28)-C(29)	1.366(6)
C(28)-C(27)	1.375(6)	C(20)-H(20)	0.9500
Bond	Distance	Bond	Distance
-----------------------	----------	-----------------------	----------
C(20)-C(21)	1.392(5)	C(29)-H(29)	0.9500
C(22)-H(22)	0.9500	C(22)-C(21)	1.384(6)
C(26)-H(26)	0.9500	C(26)-C(27)	1.390(6)
C(21)-H(21)	0.9500	C(27)-H(27)	0.9500
Cl(1)-Bi(1)-Cl(2)	175.42(3)	C(13)-Bi(1)-Cl(2)	88.59(8)
C(13)-Bi(1)-Cl(1)	92.04(8)	C(13)-Bi(1)-C(19)	120.09(12)
C(1)-Bi(1)-Cl(2)	90.01(8)	C(1)-Bi(1)-C(19)	86.12(8)
C(1)-Bi(1)-C(13)	130.36(11)	C(1)-Bi(1)-C(19)	109.56(12)
C(19)-Bi(1)-Cl(2)	91.13(9)	C(19)-Bi(1)-Cl(1)	92.47(9)
Cl(3)-Bi(2)-Cl(4)	176.06(3)	C(7)-Bi(2)-Cl(4)	83.75(9)
Cl(7)-Bi(2)-Cl(3)	93.06(9)	C(7)-Bi(2)-C(31)	114.23(12)
Cl(7)-Bi(2)-C(25)	128.79(12)	C(7)-Bi(2)-C(31)	91.96(9)
C(31)-Bi(2)-Cl(3)	91.45(8)	C(25)-Bi(2)-Cl(4)	90.22(9)
C(25)-Bi(2)-Cl(3)	89.99(9)	C(25)-Bi(2)-C(31)	116.77(12)
C(8)-O(1)-C(2)	115.0(2)	C(32)-C(33)-H(33)	119.9
C(34)-C(33)-H(33)	119.9	C(34)-C(33)-C(32)	120.3(3)
C(8)-C(7)-Bi(2)	120.0(2)	C(8)-C(7)-C(12)	120.5(3)
C(12)-C(7)-Bi(2)	119.2(2)	C(3)-C(4)-H(4)	119.4
C(5)-C(4)-H(4)	119.4	C(5)-C(4)-C(3)	121.1(3)
C(18)-C(13)-Bi(1)	117.5(2)	C(14)-C(13)-Bi(1)	119.6(2)
C(14)-C(13)-C(18)	122.9(3)	C(1)-C(2)-O(1)	118.7(3)
C(1)-C(2)-C(3)	120.1(3)	C(3)-C(2)-O(1)	121.1(3)
C(2)-C(1)-Bi(1)	121.2(2)	C(2)-C(1)-C(6)	121.2(3)
C(6)-C(1)-Bi(1)	117.6(2)	C(4)-C(3)-C(2)	118.6(3)
C(4)-C(3)-H(3)	120.7	C(2)-C(3)-H(3)	120.7
C(24)-C(19)-Bi(1)	119.3(2)	C(20)-C(19)-Bi(1)	118.5(2)
C(20)-C(19)-C(24)	122.2(3)	C(4)-C(5)-H(5)	119.9
C(6)-C(5)-C(4)	120.2(3)	C(6)-C(5)-H(5)	119.9
C(18)-C(17)-H(17)	119.8	C(16)-C(17)-H(17)	119.8
C(16)-C(17)-C(18)	120.4(3)	C(7)-C(8)-O(1)	118.7(3)
C(9)-C(8)-O(1)	121.2(3)	C(9)-C(8)-C(7)	120.1(3)
C(19)-C(24)-H(24)	121.0	C(19)-C(24)-C(23)	118.0(3)
C(23)-C(24)-H(24)	121.0	C(16)-C(15)-H(15)	119.7
C(16)-C(15)-C(14)	120.6(3)	C(14)-C(15)-H(15)	119.7
C(33)-C(32)-H(32)	120.4	C(31)-C(32)-C(33)	119.1(3)
