INTRODUCTION

Members in the genus *Metagonimus* Katsurada, 1912 (Digena: Heterophyidae) are comprised more than 7 nominal species, i.e., *M. yokogawai* Katsurada, 1912, *M. takahashii* Suzuki, 1930, *M. minutus* Katsuta, 1932, *M. katsuradai* Izumi, 1935, *M. otsurui* Saito and Shimizu, 1968, *M. miyatai* Saito et al., 1997 and *M. hakubensis* Shimazu, 1999. Among 7 *Metagonimus* species, 3 ones, i.e., *M. yokogawai*, *M. takahashii*, and *M. miyatai*, are known to distribute in the Republic of Korea ([1,2]). Human infection by these species of fluke, metagonimiasis, is an important endemic disease together with clonorchiasis in Korea [1-3]. Infections by *M. yokogawai* are chiefly prevalent in the riverside areas of eastern and southern coast of Korean peninsula [3-7]. Human cases by *M. takahashii* were first reported in inhabitants of Eumseong-gun (gun=county), Chungcheongbuk-do (do=Province), along the upper reaches of the Namhan-gang [6]. Endemic areas of *M. miyatai* were confirmed among peoples residing around lakes and along the rivers and/or streams in inland of Korea [9-11]. These *Metagonimus* species give rise to severe gastrointestinal troubles and chronic diarrhea in heavily infected cases [1,2,12].

As the infection sources of metagonimiasis, lots of fish species have been reported in Korea [13]. The sweet smelt (*Plecoglossus altivelis*), the sea rundace (*Tribolodon hakonensis*) and the Japanese seabass (*Lateolabrax japonicus*), are known to be the second intermediate hosts of *M. yokogawai* [13-16]. The crucian carp (*Carassius auratus*), common carp (*Cyprinus carpio*), sea rundace, and Japanese seabass are reported as the second intermediate hosts of *M. takahashii* [13,16,17].

Infection Status with *Metagonimus* spp. Metacercariae in Fishes from Seomjin-gang and Tamjin-gang in Republic of Korea

Woon-Mok Sohn1,*, Byoung-Kuk Na1, Shin-Hyeong Cho2, Jung-Won Ju2, Cheon-Hyeon Kim3, Ki-Bok Yoon4

1Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; 2Division of Vectors and Parasitic Diseases, Centers for Disease Control and Prevention, Osong 28159, Korea; 3Division of Microorganism, Jeolabuk-do Institute of Health and Environment, Imsil 55928, Korea; 4Division of Microbiology, Jeollanam-do Institute of Health and Environment, Muan 58568, Korea

Abstract: To grasp the infection status of *Metagonimus* spp. metacercariae (MsMc), the freshwater fishes were surveyed from Seomjin-gang (river) and Tamjin-gang in the Republic of Korea. Total 1,604 fishes from 7 local sites of Seomjin-gang and 1,649 fishes from 2 sites of Tamjin-gang were examined for 6 years (2012-2017) by the artificial digestion method. MsMc were detected in fishes from 7 sites, i.e., Osucheon in Imsil-gun (36.3% fish in 6 spp.), Seomjin-gang in Sunchang-gun (49.8% in 18 spp.), Songdaechean in Namwon-si (64.5% in 8 spp.), Seomjin-gang in Gokseong-gun (72.4% in 14 spp.) and in Gurye-gun (78.8% in 17 spp.), Hoengcheon (75.9% in 11 spp.) and Nampancheon (58.9% in 7 spp.) in Hadong-gun. Their average densities were 4.2, 86.8, 39.9, 43.1, 246.5, 173.6 and 67.5 per fish infected respectively. Prevalence with MsMc in rasborinid fish from Seomjin-gang was 89.2% and their intensity was 73.6 per fish infected. Endemities of MsMc in rasborinid fish from Seomjin-gang were significantly higher in fishes from the lower reaches (prevalence: 98.7%; density: 137) rather than in fishes from the middle (93.5%; 38) and upper (72.4%; 13) reaches. MsMc were also detected in 56.1% and 66.4% fishes from 2 surveyed areas, i.e., the middle reaches in Jangheung-gun and the lower reaches in Gangjin-gun, of Tamjin-gang, and their densities were 147 and 121 per fish infected. In susceptible fishes from Tamjin-gang, the prevalence was 84.1% and density was 227 per fish infected. By the present study, it was confirmed that MsMc is highly prevalent in the fishes from Seomjin-gang and Tamjin-gang in Korea.

Key words: *Metagonimus* spp., metacercaria, Seomjin-gang, Tamjin-gang

INTRODUCTION

Members in the genus *Metagonimus* Katsurada, 1912 (Digena: Heterophyidae) are comprised more than 7 nominal species, i.e., *M. yokogawai* Katsurada, 1912, *M. takahashii* Suzuki, 1930, *M. minutus* Katsuta, 1932, *M. katsuradai* Izumi, 1935, *M. otsurui* Saito and Shimizu, 1968, *M. miyatai* Saito et al., 1997 and *M. hakubensis* Shimazu, 1999. Among 7 *Metagonimus* species, 3 ones, i.e., *M. yokogawai*, *M. takahashii*, and *M. miyatai*, are known to distribute in the Republic of Korea ([1,2]). Human infection by these species of fluke, metagonimiasis, is an important endemic disease together with clonorchiasis in Korea [1-3]. Infections by *M. yokogawai* are chiefly prevalent in the riverside areas of eastern and southern coast of Korean peninsula [3-7]. Human cases by *M. takahashii* were first reported in inhabitants of Eumseong-gun (gun=county), Chungcheongnam-do (do=Province), along the upper reaches of the Namhan-gang [6]. Endemic areas of *M. miyatai* were confirmed among peoples residing around lakes and along the rivers and/or streams in inland of Korea [9-11]. These *Metagonimus* species give rise to severe gastrointestinal troubles and chronic diarrhea in heavily infected cases [1,2,12].

As the infection sources of metagonimiasis, lots of fish species have been reported in Korea [13]. The sweet smelt (*Plecoglossus altivelis*), the sea rundace (*Tribolodon hakonensis*) and the Japanese seabass (*Lateolabrax japonicus*), are known to be the second intermediate hosts of *M. yokogawai* [13-16]. The crucian carp (*Carassius auratus*), common carp (*Cyprinus carpio*), sea rundace, and Japanese seabass are reported as the second intermediate hosts of *M. takahashii* [13,16,17]. As the second
intermediate hosts of *M. miyutai*, many species of fish, including the sea rondeal, pale chub, (*Zacco platypus*) and dark chub (*Z. temminckii*), are listed in Korea [13,16,18].

On the other hand, many Korean workers have been investigated the infection status with zoonotic trematodes (ZT), i.e., *C. sinensis*, *Metagonimus* spp. including *M. yokogawai*, *Centrocestus armatus* and *Echinostoma* spp., metacercariae in fishes from various endemic areas to estimate the endemicities of these trematode infections [1,13]. In case of *Metagonimus* spp., most of studies were performed on the infection status of *M. yokogawai* in sweet smelts from the specific regions [19-25]. Only few studies were performed on the infection status of *ZT* metacercariae in freshwater fish from the water systems of Hantan-gang and Imjin-gang located in relatively northern regions of Korea. Sohn et al. [27] investigated the infection status of *ZT* metacercariae in freshwater fish from the upper reaches of Seomjin-gang and Tamjin-gang. However, the infection status with MsMc in fish from Seomjin-gang and Tamjin-gang has not been widely and systematically examined yet, although these 2 riverside areas has been known as the endemic areas of heterophyid flukes including *M. yokogawai* [3,4,30-32]. Therefore, we performed the present study to know the infection status with MsMc in fishes from 2 rivers, Seomjin-gang and Tamjin-gang, located in the southern parts of Korea.

MATERIALS AND METHODS

Collection sites of fish

We collected total 1,604 freshwater fishes in 7 local sites of Seomjin-gang, i.e., Osucheon ("cheon" means stream) (Latitude: 35.528473; Longitude: 127.328177) in Insil-gun, Seomjin-gang (35.409674; 127.219528) in Sunchang-gun, Songdaecheon (35.352539; 127.189819) in Namwon-si, Jeollabuk-do, Seomjin-gang (35.212588; 127.371886) in Gokseong-gun, Seomjin-gang (35.200735; 127.491839) in Gurye-gun, Jeollanam-do, Hoengcheon (35.107203; 127.807894) and Nam-sancheon (35.095020; 127.798093) in Hadong-gun, Gyeng-sangnam-do, for 5 years (2012-2016) (Fig. in [28]). We also collected total 1,132 fishes (22 species) in the middle reaches of Tamjin-gang in Jangheung-gun (Latitude: 34.425719; Longitude: 126.543227) for 4 years (2012-2016) and total 517 fishes (17 species) in the lower reaches of Tamjin-gang in Gangjin-gun (Latitude: 34.830531; Longitude: 126.485115), Jeollanam-do, Korea in 2014 and 2017.

Fishes examined in the upper reaches of Seomjin-gang

Total 236 freshwater fish (11 species) from Osucheon in Insil-gun, Jeollabuk-do were examined in 2012 and 2013. Fish species (No. of fish) examined were *Squalidus japonicus coreanus* (20), *Microphysogobio jeoni* (6), *Pseudogobio esocinus* (5), *Carassius auratus* (3), and *Hemibarbus longirostris* (11) including 6 ones with MsMc in Table 1. Total 310 freshwater fish (29 species) from Seomjin-gang in Sunchang-gun, Jeollabuk-do were examined in 2014 and 2015. Fish species (No. of fish) examined were *Coreoperca herzi* (19), *Acheilognathus koreensis* (12), *Odontobutis platycephala* (9), *Coreleuciscus splendidus* (4), *Acheilognathus yamatsutae* (3), *Abbottina springeri* (3), *Cobitis tetralini-

Table 1. Infection status of Metagonimus spp. metacercariae in freshwater fish from the upper reaches of Seomjin-gang (River)

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of MsMc detected	
Osucheon in Insil-gun				
Zacco platypus	80	48 (60.0)	1-32	4.2
Hemibarbus labeo	56	1 (1.8)	-	1.0
Squalidus chankaensis	35	8 (22.9)	1-10	3.3
Opsanichthys uncirostris	21	13 (61.9)	1-25	5.1
Acanthorhodeus gracilis	6	1 (16.7)	-	3.0
Rhodeus ocellatus	3	2 (66.7)	2-4	3.0
Subtotal	201	73 (36.3)	1-32	4.2

Seomjin-gang in Sunchang-gun				
Pungtungia herzi	56	13 (23.2)	1-9	1.9
Zacco platypus	51	45 (88.2)	1-200	25.8
Pseudogobio esocinus	32	13 (40.6)	1-60	6.9
Zacco koreanus	15	11 (73.3)	1-36	7.9
Opsanichthys uncirostris	14	14 (100)	1-45	9.9
Carassius auratus	14	1 (7.1)	-	5.0
Sarcochilichthys vanegatus	12	4 (33.3)	1-6	2.8
Squalidus japonicus coreanus	11	3 (27.3)	-	1.0
Acheilognathus rhombeus	10	3 (30.0)	1-4	2.3
Siniperca scherzeri	10	1 (10.0)	-	2.0
Squalidus gracilis majmae	6	1 (16.7)	-	1.0
Acanthorhodeus gracilis	6	5 (83.3)	7-40	16.2
Granhoplogen striatus	5	4 (80.0)	5-14	7.5
Hemibarbus longirostris	5	4 (80.0)	2-14	8.0
Hemibarbus labeo	4	1 (25.0)	-	2.0
Plecostomus altivelis	3	3 (100)	282-6,750	3,146
Cyprinus carpio	2	1 (50.0)	-	1.0
Hemiculter leuciscus	1	1 (100)	-	1.0
Subtotal	257	128 (49.8)	1-6,750	86.8

Total | 458 | 201 (43.9) | 1-6,750 | 56.8 |
eata (2), Acheilognathus lanceolatus (1), Acanthorhodes macropterus (1), Cobitis lutheri (1), and Misgurnus anguillicaudatus (1) including 18 ones with MsMc in Table 1.

Fishes examined in the middle reaches of Seomjingang

Total 196 freshwater fish (14 species) from Songdaecheon in Namwon-si, Jeollabuk-do were examined in 2012 and 2013. Fish species (No. of fish) examined were C. herzi (6), Pseudorasbora parva (2), A. springeri (2), P. esocinus (1), Ilsookimia longicorpus (1), and Lepomis macrochirus (1) including 8 ones with MsMc in Table 2. Total 289 freshwater fish (15 species) from Seomjingang

Table 2. Infection status of Metagonimus spp. metacercariae in freshwater fish from the middle reaches of Seomjingang (River)

Locality and fish sp.	No. of fish examined	No. (% of fish infected)	No. of MsMc detected	Range	Average
Songdaecheon in Namwon-si					
Zacco koreanus	57	56 (98.3)	2-334	60.5	
Pungtungia herzi	47	10 (21.3)	1-4	2.0	
Zacco platypus	46	45 (97.8)	1-175	28.4	
Rhyynochopris oxycephalus	21	1 (4.8)	-	1.0	
Microphysogobio koreensis	5	1 (20.0)	-	4.0	
Carassius auratus	3	1 (33.3)	-	1.0	
Gnathopogon strigatus	2	2 (100)	1-8	4.5	
Squalidus gracilis majumae	2	2 (100)	-	1.0	
Subtotal	183	118 (64.5)	1-334	39.9	
Seomjin-gang in Gokseong-gun					
Zacco koreanus	52	41 (78.9)	1-124	18.0	
Zacco platypus	43	43 (100)	1-130	23.4	
Coreoleuciscus splendidus	37	15 (40.5)	1-6	1.9	
Sarcocelichthys variogatus	31	21 (67.7)	1-15	3.8	
Squalidus japonicus coreanus	27	22 (81.5)	1-10	2.7	
Pungtungia herzi	22	13 (59.1)	1-5	2.3	
Hemibarbus longirostris	20	19 (95.5)	1-33	12.0	
Microphysogobio koreensis	16	8 (50.0)	1-4	2.4	
Pseudogobio esocinus	16	13 (81.3)	1-65	12.9	
Coreoperca herzi	11	2 (18.2)	2-5	3.5	
Acheilognathus majusculus	5	4 (80.0)	3-9	5.0	
Plectoglossus altivales	2	2 (100)	1,370-4,380	2,875	
Hemibarbus labo	2	2 (100)	2-9	5.5	
Opsarichthys amurenensis	2	2 (100)	11-762	386.5	
Subtotal	286	207 (72.4)	1-4,380	43.1	
Total	469	325 (69.3)	1-4,380	41.9	

in Gokseong-gun, Jeollanam-do were examined in 2015 and 2016. Fish species (No. of fish) examined were Lepomis macrochirus (1) including 14 ones with MsMc in Table 2.

Fishes examined in the lower reaches of Seomjingang

Total 183 freshwater fish (21 species) from Seomjingang in Gurye-gun, Jeollanam-do were examined in 2014. Fish species (No. of fish) examined were C. herzi (5), O. platycephala (4), A. lanceolatus (3), and S. scherzeri (1) including 17 ones with MsMc in Table 3. Total 156 freshwater fish (13 species) from Hoengcheon in Hadong-gun, Gyeongsangnam-do were examined in 2014 and 2016. Fish species (No. of fish) examined were C. auratus (16), A. koreensis (7), A. gracilis (2), C. splendidus (1), and O. platycephala (1) including 7 ones with MsMc in Table 3.

Fishes examined in Tamjin-gang

In the middle reaches in Jangheung-gun, total 1,132 fishes in 22 species were examined for 4 years (2014-2017). Fish species (No. of fish) examined were Micropterus salmoides (8), A. koreensis (7), and Cyprinus carpio (2) including 19 ones with MsMc in Table 5. In the lower reaches in Gangjin-gun, a total of 517 fishes in 17 species were examined in 2014 and 2017. Fish species (No. of fish) examined were A. lanceolatus (22), C. herzi (3), and Mugil cephalus (1) including 14 ones with MsMc in Table 5.

Examination methods

All collected fishes with ice were transferred to the laboratory of the Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, Korea. After the identification of fish species, they were individually ground with a mortar or grinder. Each ground fish meat was mixed with artificial gastric juice and the mixture was incubated at 36˚C for 2 hr. The digested material was filtered with 1×1 mm of mesh, and washed with 0.85% saline until the supernatant is clear. The sediment was carefully examined under a stereomicroscope. The metacercariae of Metagonimus spp. (MsMc) were separately collected by the general feature [13], and they were counted to get hold of infection rates (%) and densities (No. of MsMc per fish infected) by fish species.
RESULTS

Infection status with MsMc in the upper reaches of Seomjin-gang

The metacercariae of Metagonimus spp. (MsMc) were detected in 201 (43.9%) out of 458 fishes in 20 species from the upper reaches of Seomjin-gang, i.e., Osucheon in Imsil-gun and Seomjin-gang in Sunchang-gun, Jeollabuk-do, and their average density was 56.8 per fish infected. The infection status by the fish species and surveyed areas was detailedly shown in Table 1.

Infection status with MsMc in the middle reaches of Seomjin-gang

MsMc were detected in 325 (69.3%) out of 469 fishes in 18 species from the middle reaches of Seomjin-gang, i.e., Songdacheon in Namwon-si, Jeollabuk-do and Seomjin-gang in Gokseong-gun, Jeollanam-do, and their average density was 41.9 per fish infected. The infection status by the fish species and surveyed areas was detailedly revealed in Table 2.

Infection status with MsMc in the lower reaches of Seomjin-gang

MsMc were detected in 363 (69.4%) out of 523 fishes in 21 species from the lower reaches of Seomjin-gang, i.e., Seomjin-gang in Gurye-gun, Hoengcheon and Namsancheon in Hadong-gun, Gyeongsangnam-do, and their average density was 41.9 per fish infected. The infection status by the fish species and surveyed areas was detailedly revealed in Table 2.

Table 3. Infection status of Metagonimus spp. metacercariae in freshwater fish from the lower reaches of Seomjin-gang (River)

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of MsMc detected
			Range Average
Seomjin-gang in Gurye-gun			
Zacco platypus	24	24 (100)	1-520 126.3
Pungtungia herzi	21	14 (66.7)	1-8 2.6
Squalidus japonicus coreanus	15	12 (80.0)	1-10 3.7
Zacco koreanus	14	11 (78.6)	3-290 64.0
Sarcocheilichthys nigripinis	14	13 (92.9)	1-52 13.6
Opsariichthys uncirostris	13	13 (100)	52-495 143.8
Acheilognathus rhombesus	11	10 (90.9)	17-150 54.0
Coreoperca herzi	10	4 (40.0)	1-3 1.8
Hemibarbus labeo	10	3 (30.0)	- 1.0
Squalidus gracilis majinae	8	5 (62.5)	1-2 1.4
Pseudogobio esocinus	7	7 (100)	6-62 28.1
Micropterygobio koreanus	6	6 (100)	2-22 6.2
Acanthorhodeus gracilis	5	4 (80.0)	10-58 37.5
Abbottina rivularis	5	1 (20.0)	- 2.0
Pseudogobio esocinus	3	3 (100)	6,280-10,750 8,727
Subtotal	170	134 (78.8)	1-10,750 246.5
Hoengcheon in Hadong-gun			
Zacco platypus	27	27 (100)	2-1,510 115.3
Acheilognathus coreanae	20	1 (5.0)	- 1.0
Pungtungia herzi	16	7 (43.8)	1-3 2.1
Coreoperca herzi	11	5 (45.5)	1-2 1.4
Zacco korensa	10	10 (100)	6-480 156.5
Hemibarbus longirostris	8	8 (100)	2-145 63.0
Pseudogobio esocinus	7	6 (85.7)	4-16 8.5
Abbottina springeri	7	4 (57.1)	3-358 97.8
Coreoleuciscus splendicus	4	3 (75.0)	- 1.0
Squalidus gracilis majinae	1	1 (100)	- 1.0
Subtotal	146	107 (73.3)	1-5,860 173.6
Namsancheon in Hadong-gun			
Zacco koreanus	57	57 (100)	1-2,860 104.3
Pseudogobio esocinus	52	4 (8.7)	1-2 1.3
Zacco platypus	42	41 (100)	3-101 27.4
Pungtungia herzi	35	7 (20.0)	1-7 2.3
Hemibarbus longirostris	35	14 (7.1)	- 1.0
Zacco temminckii	14	11 (100)	2-580 104.5
Squalidus gracilis majinae	3	3 (33.3)	- 1.0
Subtotal	207	122 (58.9)	1-2,860 67.5
Total	523	363 (69.4)	1-10,750 165

Table 4. Infection status of Metagonimus spp. metacercariae in rasborinid fish from Seomjin-gang (River)

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of MsMc detected
			Range Average
Upper reaches			
Zacco platypus	131	93 (71.0)	1-200 14.6
Zacco koreanus	15	11 (73.3)	1-36 7.9
Opsariichthys uncirostris	35	27 (77.1)	1-45 7.6
Subtotal	181	131 (72.4)	1-200 12.6
Middle reaches			
Zacco platypus	89	88 (98.9)	1-175 26.0
Zacco koreanus	109	97 (90.9)	1-334 42.5
Opsariichthys amurensis	2	2 (100)	11-762 386.5
Subtotal	200	187 (93.5)	1-762 38.4
Lower reaches			
Zacco platypus	92	92 (100)	2-1,510 79.0
Zacco koreanus	106	103 (97.2)	1-5,860 190.0
Opsariichthys amurensis	21	21 (100)	2-580 129.2
Subtotal	232	229 (98.7)	1-5,860 137.2
Total	613	547 (89.2)	1-5,860 73.6
density was 165 per fish infected. The infection status by the fish species and surveyed areas was detailedly shown in Table 3.

Infection status with MsMc in rasborinid fish from Seomjin-gang

MsMc were detected in 547 (89.2%) out of total 613 rasborinid fishes from Seomjin-gang, and their average density was 73.6 per fish infected. The infection status by the rasborinid fish species and surveyed reaches of river was detailedly revealed in Table 4.

Infection status with MsMc in fishes from Tamjin-gang

MsMc were detected in 626 (56.1%) out of 1,115 fishes in positive fish species from the middle reaches in Jangheung-gun and their average density was 147 per fish infected. MsMc were found in 326 (66.4%) out of 491 fishes in positive fish species from the lower reaches in Gangjin-gun and their average density was 121 per fish infected. The infection status by the fish species and surveyed areas was detailedly revealed in Table 5.

Infection status with MsMc in the susceptible fish species from Tamjin-gang

MsMc were detected in 556 (84.1%) out of total 661 susceptible fishes from Tamjin-gang, and their average density was 227 per fish infected. The infection status by the fish species and surveyed areas was detailedly revealed in Table 6.

DISCUSSION

By the present study, it was confirmed that MsMc are more or less prevalent in fishes from Seomjin-gang and Tamjin-gang. The positive rates with MsMc were very similar, 55.4% and 59.3%, in fishes from 2 rivers, but average metacercarial densities were 96 and 138 per fish infected, higher in fishes from Tamjin-gang. We couldn’t compare the endemicity of

Table 5. Infection status of *Metagonimus* spp. metacercariae in fishes from Tamjin-gang (River) in Jeollanam-do, Korea

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of MsMc detected	Range	Average
Middle reaches in Jangheung-gun					
Zacco temmincki	152	143 (94.1)	1-2,460	65.2	
Pungtungia herzi	152	51 (33.6)	1-20	2.4	
Zacco platypus	138	110 (79.7)	1-140	16.3	
Carassius auratus	116	63 (54.3)	1-924	126.6	
Pseudogobio esocinus	86	70 (81.4)	1-86	12.0	
Coreoperca kawamebari	84	31 (36.9)	1-61	13.9	
Hemibarbus longirostris	77	49 (63.6)	1-45	7.3	
Sarcocheilichthys	54	17 (31.5)	1-7	2.0	
variatus					
Plecoglossus altivelis	52	51 (98.1)	1-5,320	1,339	
Acheilognathus lanceolatus	52	1 (1.9)	-	2.0	
Odontobutis platycephala	48	7 (14.6)	1-8	3.1	
Sarcocheilichthys	29	6 (13.3)	1-32	8.3	
nigripinnis					
Acheilognathus yamatsutae	23	2 (8.7)	4-5	4.5	
Coreoperca herzi	16	3 (18.8)	-	1.0	
Acanthorhodeus gracilis	11	10 (90.9)	1-55	31.9	
Acheilognathus rhombeus	10	6 (60.0)	1-1,400	417.7	
Siniperca scherzi	6	1 (16.7)	-	1.0	
Hemiculter eigenmanni	6	2 (33.3)	-	4.0	
Squalius gracilis majiiae	3	3 (100)	1-5	2.7	
Subtotal	1,155	626 (56.1)	1-5,320	147	
Lower reaches in Gangjin-gun					
Zacco platypus	75	70 (93.3)	1-58	8.1	
Pungtungia herzi	70	23 (32.9)	1-8	2.4	
Carassius auratus	62	54 (87.1)	1-780	38.1	
Pseudogobio esocinus	51	41 (80.4)	1-20	5.4	
Plecoglossus altivelis	40	40 (100)	26-4,280	841	
Sarcocheilichthys	33	14 (42.4)	1-17	3.2	
nigripinnis					
Acanthorhodeus macropterus	28	12 (42.9)	1-10	3.2	
Zacco temmincki	26	25 (96.2)	1-875	110.3	
Odontobutis platycephala	26	5 (19.2)	1-6	2.8	
Coreoperca kawamebari	25	9 (36.0)	1-5	1.9	
Hemibarbus longirostris	24	19 (79.2)	1-15	4.9	
Sarcocheilichthys	20	3 (15.0)	2-4	3.0	
variatus					
Acheilognathus rhombeus	9	9 (100)	2-67	25.8	
Lateolabrax japonicus	2	2 (100)	1-4	2.5	
Subtotal	491	326 (66.4)	1-4,280	121	
Total	1,606	952 (59.3)	1-5,320	138	

Table 6. Infection status of *Metagonimus* spp. metacercariae in susceptible fishes from Tamjin-gang (River) in Jeollanam-do, Korea

Locality and fish sp.	No. of fish examined	No. (%) of fish infected	No. of MsMc detected	Range	Average
Tamjin-gang in Jangheung-gun					
Zacco platypus	138	110 (79.7)	1-140	16.3	
Zacco temmincki	152	143 (94.1)	1-2,460	65.2	
Carassius auratus	116	63 (54.3)	1-924	126.6	
Plecoglossus altivelis	52	51 (98.1)	1-5,320	1,339	
Subtotal	458	367 (80.1)	1-5,320	238	
Tamjin-gang in Gangjin-gun					
Zacco platypus	75	70 (93.3)	1-58	8.1	
Zacco temmincki	26	25 (96.2)	1-875	110.3	
Carassius auratus	62	54 (87.1)	1-924	126.6	
Plecoglossus altivelis	40	40 (100)	26-4,280	841	
Subtotal	203	189 (93.1)	1-4,280	205	
Total	661	556 (84.1)	1-5,320	227	
MsMc in the most susceptible fish species, sweet smelt (*P. altivelis*), so the number of fish examined (8 from Seomjin-gang and 92 from Tamjin-gang) was too much different in 2 rivers. However, their prevalences were 100% and 98.9% and densities were 5,171 and 1,120 per fish infected in sweet smelts from Seomjin-gang and Tamjin-gang each. In another MsMc susceptible fish group, rasborinid fish such as *Zacco* spp. and *O. uncirostris amurensis*, the prevalences were very similar, 89.2% and 89.0%, in 2 rivers, but average metacercarial densities were 74 and 42 per fish infected, more or less higher in Seomjin-gang (Table 7). On the other hand, in the rasborinid fish from Seomjin-gang, the prevalences were 72.4% (the upper reaches), 93.5% (the middle reaches), and 98.7% (the lower reaches), and metacercarial densities were 12.6, 38.4, and 137.2 per fish infected respectively. These findings suggested that the endemicity with MsMc is more higher in fish from the lower reaches than in fish from the upper and middle reaches of Seomjin-gang. In the susceptible fish species, i.e., *Zacco* spp., *C. auratus* and *P. altivelis*, from Tamjin-gang, the prevalence was 84.1% (80.1% in the middle reaches and 93.1% in the lower reaches) and MsMc density was 227 (238 in the middle reaches and 205 in the lower reaches) per fish infected. Therefore, the endemicity with MsMc is similar in fish from 2 surveyed sites of Tamjin-gang.

With regard to the infection status of MsMc in sweet smelts, *P. altivelis*, from Seomjin-gang and Tamjin-gang, at least 4 studies were available [4,21,22,25]. In 1977, Chai et al. [4] reported 100% prevalence and 15,688 MsMc per fish in 20 sweet smelts from a water reservoir nearby Tamjin-gang in Jangheung-gun. Seo et al. [22] detected av. 14,887 MsMc in all 16 sweet smelts from Tamjin-gang in Gangjin-gun. In 1985, Song et al. [21] reported 92.3% prevalence and 636 MsMc per fish in 12 sweet smelts from Tamjin-gang in Gangjin-gun. Cho et al. [25] detected av. 1,037 and 1,511 MsMc per fish in 16 sweet smelts from Tamjin-gang in Gangjin-gun and in 20 ones from Seomjin-gang in Gurye-gun, Jeollanam-do. Song et al. [21] also reported 2,724 and 2,412 MsMc per fish in each 5 sweet smelts from Seomjin-gang in Gokseong-gun and Gurye-gun, Jeollanam-do. In this study, all 8 sweet smelts from Seomjin-gang were infected with av. 5,171 MsMc, and 91 (98.9%) sweet smelts from Tamjin-gang were infected with 1,120 MsMc per fish infected. From the above findings of present and previous studies, we can suppose that the sweet smelts naturally produced in 2 rivers are highly infected with MsMc and the riverside areas are to be the highly endemic regions of metagonimiasis.

The rasborinid fish, i.e., *Z. platypus*, *Z. koreanus*, *Z. temminckii* and *O. uncirostris amurensis*, are known as the susceptible fish hosts of MsMc in both regions without and/or with sweet smelts in Korea. These fish species are also known as the second intermediate hosts of *M. miyatai* [9,18]. One of them, *Z. platypus*, is the most dominant species in the water systems of Korea. And then the rasborinid fish, especially *Zacco* spp., are highly recommended as the index fish of MsMc to evaluate the endemicity of metagonimiasis. In the present study, total 1,004 (30.9%) rasborinids were examined, and 895 (89.1%) ones (547 in Seomjin-gang: 89.2% and 348 in Tamjin-gang: 89.0%) were to be infected with MsMc. Their density was 61.1 per fish infected (73.6 in Seomjin-gang and 41.5 in Tamjin-gang) (Table 7). In the water systems of Gangwon-do, the prevalences with MsMc were 23.5-100% (85.2% in average) in rasborinids and their densities were 3.4-108 (29.7 in average) in 10 surveyed areas [26]. Sohn et al. [27] reported 73.9% and 72.1% MsMc prevalences in the rasborinid fish from the water systems of Hantan-gang and Imjin-gang. They also reported av. 43.1 and 18.6 MsMc densities in the rasborinid fish from 2 surveyed areas [27]. From the aforementioned findings, we can suppose that the endemicities with MsMc in

Table 7. Comparison of the infection status with *Metagonimus* spp. metacercariae in fishes from Seomjin-gang and Tamjin-gang

Items	Infection status of MsMc in fishes from	Seomjin-gang	Tamjin-gang	Total
No. (%) of fish examined		1,604 (49.3)	1,649 (50.7)	3,253 (100)
Overall positive rate (%)		889/1,604 (55.4)	952/1,649 (57.7)	1,841/3,253 (56.6)
Total metacercarial density		95.5	138.1	117.5
No. (%) of rasborinids examined		613 (38.2)	391 (23.7)	1,004 (30.9)
No. (%) of rasborinids infected		547 (89.2)	348 (89.0)	895 (89.1)
MsMc density in rasborinids		73.6	41.5	611.1

Positive rate: No. of fish infected/No. of fish examined × 100; metacercarial density: mean No. of MsMc per fish infected. No. of rasborinid fish/Total No. of fish examined × 100.
fishes from Seomjin-gang and Tamjin-gang are more higher than those from the water systems of Gangwon-do, Hantan-gang and Imjin-gang. Among fishes from Seomjin-gang, some rasborinid fishes, i.e., Z. koreanus and Z. temminckii from Hoengcheon and Nam-sancheon in Hadong-gun, O. uncirostris amarenis from Seomjin-gang in Gurye-gun and Z. platypus from Seomjin-gang in Gurye-gun and Hoengcheon in Hadong-gun, were revealed 100% prevalences and more than 100 MsMc densities. In fishes from Tamjin-gang, crusian carp, C. auratus, from Jangheung-gun and dark chub, Z. temminckii, from Gangjin-gun were highly and heavily infected with MsMc. Among fishes from the water systems of Gangwon-do, 90.0% sea rundace, T. hakonensis, from Namdaecheon in Yangyang-gun and 97.4% dark chub, Z. temminckii, from Joyang-gang in Jeongseon-gun were infected with 449 and 130 MsMc per fish infected [26]. Sohn et al. [27] reported 92.3% and 100% prevalences and 132 and 102 MsMc densities in 26 P. esocinus and 22 Z. platypus from Hantan-gang in Cheorwon-gun, Gangwon-do. These findings on the high infection status with MsMc will be helpful to perform a study on the experimental metagonimiasis to be needed massive MsMc.

More than 7 valid species have been reported in the genus Metagonimus flukes in the literatures. All of them mainly distributed in Asian countries such as Japan, Korea, China and Taiwan [2]. At least 3 human infecting species, i.e., M. yokogawai, M. tabahashii and M. miyatai, are known to exist commonly in Japan and Korea [1, 2]. They are morphologically differentiated in adult stage by the locations of uterus and vitellaria, and the size of eggs, but not in metacercarial stages in the fish intermediate hosts. The cercariae of Metagonimus spp. naturally shed from freshwater snails, Semisulcospira corveana and S. libertina, which are known as the first intermediate hosts in Korea, and they penetrate into the second intermediate hosts. As the second intermediate hosts of Metagonimus spp., numerous species of fish have been reported in Korea. However, some fish species are known as hosts of specific Metagonimus species, i.e., P. altivelis, T. hakonensis and L. japonicus for M. yokogawai [13-16]; C. auratus, C. carpio, T. hakonensis and L. japonicus for M. tabahashii [13, 16, 17]; Z. platypus and Z. temminckii for M. miyatai [13, 18]. Does each species of Metagonimus spp. cercariae have the host-specificity? How does each species of cercariae encyst in the favorable fish hosts only in even highly endemic environment like Seomjin-gang and Tamjin-gang? Studies on the host-specificity of each Metagonimus sp. in fish hosts should be clarified in the near future through the morphological analysis of adult worms recovered from experimental animals, which are infected with MsMc from some susceptible species of fish, i.e., sweet smelt, sea rundace, crusian carp, pale chub and dark chub from a same endemic area.

Conclusively, by the present study, it was confirmed that MsMc are more prevalent in fishes from Seomjin-gang and Tamjin-gang than from any other rivers in Korea. Peoples residing in riverside areas of the 2 rivers should pay attention to the raw consumption of the susceptible fish hosts like chubs, Zacco spp., and crusian carp, C. auratus as well as sweet smelt, P. altivelis.

ACKNOWLEDGMENTS

This study was supported by an anti-communicable diseases control program, 2014E5400200 (Investigation of fish-borne parasites and acquisition of their biological resources in the southern regions of Korea) of National Institute of Health (NIH), Korea Centers for Disease Control and Prevention (KCDCP). We thank Jung-A Kim and Hee-Joo Kim (Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, Korea), for their help in the examination of fish.

CONFLICT OF INTEREST

The authors have no conflicts of interest concerning the work reported in this paper.

REFERENCES

1. Chai JY, Lee SH. Food-borne intestinal trematode infections in the Republic of Korea. Parasitol Int 2002; 51: 129-154.
2. Chai JY. Metagonimus. In Xiao L, Ryan U, Feng Y eds, Biology of Foodborne Parasites. Food Microbiology Series. Boca Raton, USA. CRC Press. pp 427-443.
3. Seo BS, Lee SH, Cho SY, Chai JY, Hong ST, Han IS, Sohn JS, Cho BH, Ahn SR, Lee SK, Chung SC, Kang KS, Shim HS, Hwang IS. An epidemiologic study on clonorchiasis and metagonimiasis in riverside areas in Korea. Korean J Parasitol 1981; 19: 137-150.
4. Chai JY, Cho SY, Seo BS. Study on Metagonimus yokogawai (Katamura, 1912) in Korea: IV. An epidemiological investigation along Tamjin River basin, South Cholla Do, Korea. Korean J Parasitol 1977; 15: 115-120.
5. Soh CF, Ahn YK. Epidemiological study on Metagonimus yokogawai infection along Boseong River in Jeonnam Nam Do, Korea. Korean J Parasitol 1978; 16: 1-13 (in Korean).
6. Ahn YK, Chung PR, Lee KT, Soh CT. Epidemiological survey on Metagonimus yokogawai infection in the eastern coast area of Kangwon province, Korea. Korean J Parasitol 1987; 25: 59-68 (in Korean).

7. Chai JY, Han ET, Park YK, Guk SM, Kim JL, Lee SH. High endemicity of Metagonimus yokogawai infection among residents of Samchok-shi, Kangwon-do. Korean J Parasitol 2000; 38: 33-36.

8. Chai JY, Huh S, Yu JR, Kook J, Jung KC, Park EC, Sohn WM, Hong ST, Lee SH. An epidemiological study of metagonimiasis along the upper reaches of the Namhan River. Korean J Parasitol 1993; 31: 99-108.

9. Kim CH, Kim NM, Lee CH, Park JS. Studies on the Metagonimus fluke in the Daechon river and the upper stream of Geum river, Korea. Korean J Parasitol 1987; 25: 69-82 (in Korean).

10. Park MS, Kim SW, Yang YS, Park CH, Lee WT, Kim CJ, Lee EM, Lee SL, Huh S. Intestinal parasite infections in the inhabitants along the Hantan River, Chorwon-gun. Korean J Parasitol 1993; 31: 375-378.

11. Ahn YK, Ryang YS. Epidemiological studies on Metagonimus infection along the Hongcheon river, Kangwon Province. Korean Parasitol 1988; 26: 207-213 (in Korean).

12. Kino H, Suzuki T, Oishi H, Suzuki S, Yamagiwa S, Ishiguro M. Geographical distribution of Metagonimus yokogawai and M. miyatai in Shizuoka Prefecture, Japan, and their site preferences in the sweetfish, Plecoglossus altivelis, and hamsters. Parasitol Int 2006; 55: 201-206.

13. Sohn WM. Fish-borne zoonotic trematode metacercariae in the Republic of Korea. Korean J Parasitol 2009; 47 (Suppl): 103-113.

14. Chun SK. A study on Metagonimus yokogawai from Plecoglossus altivelis in the Miryang River. Bull Pusan Fish Coll 1960a; 3: 24-32 (in Korean).

15. Ahn YK, Lateolabrax japonicus, a role of the second intermediate host of Metagonimus yokogawa. New Med J 1983; 26: 135-139.

16. Chai JY, Sohn WM, Kim MH, Hong ST, Lee SH. 1991. Three morphological types of the genus Metagonimus encysted in the dace, Tribolodon laticaudata, caught from the Sunnim River. Korean J Parasitol 1991; 29: 217-227.

17. Kim DG, Kim TS, Cho SH, Song HJ, Sohn WM. Heterophyid metacercarial infections in brackish water fishes from Jinju-man (Bay), Kyongsangnam-do, Korea. Korean J Parasitol 2006; 44: 7-13.

18. Saito S, Chai JY, Kim KH, Lee SH, Rim HJ. Metagonimus miyatai sp. nov. (Digenea: Heterophyidae), a new intestinal trematode transmitted by freshwater fishes in Japan and Korea. Korean J Parasitol 1997; 35: 223-232.

19. Hwang JT, Choi DW. Metacercarial density of Metagonimus yokogawai in Plecoglossus altivelis in Kyungpook Province, Korea. Korean J Parasitol 1977; 15: 30-35.

20. Suh JW, Choi DW. Demonstration of Metagonimus yokogawai metacercariae from Plecoglossus altivelis in river Ahuseong, Kyungpook Province, Korea. Korean J Parasitol 1979; 17: 45-50.