The conversion of α-pinene to cis-pinane using a nickel catalyst supported on discarded fluid catalytic cracking catalyst with an ionic liquid layer

Shunyou Hu, Linlin Wang, Xiaopeng Chen, Xiaojie Wei, Zhangfa Tong, Lijiang Yin

a. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China. E-mail: wanglinlin1971@sina.com; Fax: +86-771-323-3718; Tel: +86-771-3272702

b. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Nanning 530004, P. R. China
Scheme S1 Schematic illustration of the set up for the hydrogenation of α-pinene.

Fig. S1 EDS mapping of the SCILL catalyst for Ni, N, F.

Fig. S2 FTIR spectra of ionic liquid and different ionic liquid loading of the catalyst.
Scheme S2 Ni/DF3C with various of ionic liquid loading.
Fig. S3 The effect of temperature (A) and H₂ pressure (B) on the catalytic performance.
Table S1. The effect of different kinds of ionic liquid coating on the catalytic performance.

Catalyst	Ionic liquid	MLs	Conversion (%)	Selectivity (%)
Ni/DF3C	Free	0	99.47	87.94
SCILL	[EMIM][BF₄]	~1	99.14	88.73
SCILL	[C₂OHmim][BF₄]	~1	99.06	98.26

Fig. S4 TGA of the used SCILL catalyst after 20 runs.