Design, Engineering, and Experimental Analysis of a Simulated Annealing Approach to the Post-Enrolment Course Timetabling Problem

Sara Ceschia, Luca Di Gaspero, Andrea Schaerf

DIEGM, University of Udine
via delle Scienze 208, I-33100, Udine, Italy

Abstract
The post-enrolment course timetabling (PE-CTT) is one of the most studied timetabling problems, for which many instances and results are available. In this work we design a metaheuristic approach based on Simulated Annealing to solve the PE-CTT. We consider all the different variants of the problem that have been proposed in the literature and we perform a comprehensive experimental analysis on all the public instances available. The outcome is that our solver, properly engineered and tuned, performs very well on all cases, providing the new best known results on many instances and state-of-the-art values for the others.

Key words:
Course Timetabling, Simulated Annealing, Metaheuristics

1. Introduction
Timetabling problems are widespread in many human activities and their solution is a hard optimisation task that can be profitably tackled by Operations Research methods. Educational timetabling is a sub-field of timetabling that considers the scheduling of meetings between teachers and students.

A large number of variants of educational timetabling problems have been proposed in the literature, which differ from each other based on the type of institution involved (university, school, or other), the type of meeting (course lectures, exams, seminars, . . .), and the constraints imposed.

The university course timetabling (CTT) problem is one of the most studied educational timetabling problems and consists in scheduling a sequence

Email address: {sara.ceschia,l.digaspero,schaerf}@uniud.it (Sara Ceschia, Luca Di Gaspero, Andrea Schaerf)

Preprint submitted to Elsevier

January 19, 2013
of events or lectures of university courses in a prefixed period of time (typically a week), satisfying a set of various constraints on rooms and students. Many formulations have been proposed for the CTT problem over the years. Indeed, it is impossible to write a single problem formulation that suits all cases since every institution has its own rules, features, costs, and fixations.

Nevertheless, two formulations have recently received more attention than others, mainly thanks to the two timetabling competitions, ITC 2002 and ITC 2007 (McCollum et al., 2010), which have used them as competition ground. These are the so-called curriculum-based course timetabling (CB-CTT) and post-enrolment course timetabling (PE-CTT). The main difference between the two formulations is that in the CB-CTT all constraints and objectives are related to the concept of curriculum, which is a set of courses that form the complete workload for a set of students. On the contrary, in PE-CTT this concept is absent and the constraints and objectives are based on the student enrolments to the courses.

In this work we focus on the PE-CTT problem and we design a single-step metaheuristic approach based on Simulated Annealing (SA), working on a composite neighbourhood composed of moves that reschedule one event or swap two events. The solver is able to deal with all the different variants of the PE-CTT problem proposed in the literature.

We experiment our solver on all the instances that have been made publicly available (up to our knowledge). The outcome of our experimental analysis is that our general solver, properly engineered and tuned, is able to outperform most of the solvers specifically designed and tuned for a single specific formulation and/or a specific set of instance.

2. Problem Definition

Over the years, different versions of the PE-CTT problem have been defined. We first illustrate (Section 2.1) the most general version, which is the one that has been used for ITC 2007 and is described by Lewis et al. (2007). The other versions are obtained from this one by removing some of the features, and they are described in Section 2.2 along with a presentation of the available instances.

2.1. General Definition of PE-CTT

In the PE-CTT problem it is given a set $E = \{1, \ldots, E\}$ of events, a set $T = \{1, \ldots, T\}$ of timeslots, and a set $R = \{1, \ldots, R\}$ of rooms. It is also defined a set of days $D = \{1, \ldots, D\}$, such that each timeslot belongs to one day and each day is composed by T/D timeslots.
It is also given a set of students S and an enrolment relation $M \subseteq \mathcal{E} \times S$, such that $(e, s) \in M$ if student s attends event e.

Furthermore, it is given a set of features F that may be available in rooms and are required by events. More precisely, we are given two relations $\Phi_R \subseteq \mathcal{R} \times F$ and $\Phi_E \subseteq \mathcal{E} \times F$ such that $(r, f) \in \Phi_R$ if room r has feature f and $(e, f) \in \Phi_E$ if event e requires feature f, respectively. Each room $r \in \mathcal{R}$ has a fixed capacity C_r, expressed in terms of seats for students.

In addition, it is defined a precedence relation $\Pi \subseteq \mathcal{E} \times \mathcal{E}$, such that if $(e_1, e_2) \in \Pi$, events e_1 and e_2 must be scheduled in timeslots t_1 and t_2 such that $t_1 < t_2$.

Finally, there is an availability relation $A \subseteq \mathcal{E} \times T$, stating that event e can be scheduled in timeslot t only if $(e, t) \in A$.

The (hard) constraints of the problem are the following ones:

H1. **Conflicts**: Events that share common students cannot be scheduled in the same timeslot.

H2. **Compatibility**: An event cannot be allocated in a room that is missing one of the features needed by the event, or in a room whose capacity is less than the number of students attending the event.

H3. **Occupancy**: No more than one event per room per timeslot is allowed.

H4. **Availability**: Timeslots must be assigned to events according to the availability relation A.

H5. **Precedences**: Timeslots must be assigned to events according to the precedence relation Π.

Since reaching feasibility could be non trivial for some instances, the definition given for ITC 2007 includes the distinction between valid and feasible timetables (see Lewis et al., 2007). In a valid timetable all hard constraints must be satisfied, but it is allowed to leave some events unscheduled (i.e., they have no timeslot assigned). A feasible timetable is a valid one in which all events are scheduled.

The prescription of the ITC 2007 rules require all solutions to be valid, but they do allow also infeasible solutions. In formal terms, this means that the problem consists in finding an assignment $\mathcal{E} \to T \times R \cup \{(t_\delta, r_\delta)\}$, where t_δ and r_δ are a dummy timeslot and a dummy room. The assignment of an event to these special entities identifies the unscheduled events. In addition, we introduce a new hard constraint type, that accounts for the unscheduled events, which can be violated to some extent:

H6. **Unscheduled Events**: Events cannot be unscheduled.
The (integer-valued) objective function is the sum of the following soft constraints. Each violation of any of the three kinds accounts as one point in the objective function.

S1. **Late Events**: A student should not attend an event in the last timeslot of a day. For each event in the last timeslot, we compute the sum of the number of students that have to attend it.

S2. **Consecutive Events**: A student should not attend more than two consecutive events in a day (i.e., the last timeslot of a day and the first one of the following day are not considered as consecutive). For each day and for each student, we compute the sum of the consecutive events subsequent to the second. For instance, if 3 students have to attend 4 consecutive events in a day, the penalty is $3 \cdot (4 - 2) = 6$.

S3. **Isolated Events**: A student should not attend only one single event in the whole day. For each day, we sum the number of students that have to attend isolated events.

In conclusion, the quality of the solution is evaluated with an evaluation function that is composed by two measures: the *distance to feasibility* $(H6)$ and the *objective function* $(S1 + S2 + S3)$. The distance to feasibility is computed as the sum of the numbers of students that require unscheduled events.

The evaluation function is hierarchical, in the sense that valid solutions with the lower distance to feasibility are better solution. If two valid solutions have the same distance to feasibility, then the solution with the minimum value of the objective function is preferred.

2.2. Problem Variants and Available Instances for PE-CTT

The problem formulation presented above is the one defined by Lewis et al. (2007) and used in the ITC 2007. Two other versions have been considered in the literature, which are obtained from the above one by removing some of the constraints.

In particular, the first one is the original formulation, proposed by the Metaheuristics Network (Rossi-Doria et al., 2003) and used for the ITC 2002. This formulation does not consider *Availability* and *Precedences*. In addition, since for the ITC 2002 instances the feasibility was easy to be obtained for all instances, the possibility to leave some events unscheduled was not taken into account.

The other formulation has been proposed by Lewis and Paechter (2005), and is a further simplification, as it does not include *Availability* and *Precedences* and it discards all soft constraints. Differently from the previous for-
mulation, however, it considers the possibility of having unscheduled events. The formulations considered are summarised in Table 1.

Four sets of instances are publicly available and have been used in the experimental analyses reported in the scientific literature so far. Table 2 lists for each set of instances the origin, the web site from which they can be downloaded, the formulation considered, the number of instances that compose the data set, and the year of publication.

All instances are artificial, as they are created by a random generator, based on realistic bounds for the problem features. For all of them, the set of timeslots is fixed to $T = 45$, split in 5 days $D = 5$ of 9 timeslots each, such that timeslots $\{1, \ldots, 9\}$ belong to day 1, timeslots $\{10, \ldots, 18\}$ belong to day 2, and so on.

Each instance is available in a single text-only file (for the sake of brevity, we do not report the format here). Two different file formats are used: one for the FULL formulation, which includes Availability and Precedences, and the other for the ORIGINAL and HARD-ONLY formulations, without them. In addition, the proposers have released a validator for both the ORIGINAL and the FULL formulations. We have used it for certifying the solution quality of all the results we have found in the experimental phase.

This means that for example the instances of Lewis and Paechter (2005) could be used also for the ORIGINAL formulation. However, we consider only the pairs Instance/Formulation that have been investigated in the past, so that we can compare with previous work.

Formulation	H1	H2	H3	H4	H5	H6	S1	S2	S3
FULL (ITC 2007)	✓	✓	✓	✓	✓	✓	✓	✓	✓
ORIGINAL (ITC 2002)	✓	✓	✓				✓	✓	✓
HARD-ONLY	✓	✓	✓					✓	✓

Table 1: PE-CTT formulations.

Instance Family	Formulation	# Instances	Year
ITC 2007	FULL	24	2007
Lewis & Paechter	HARD-ONLY	60	2005
	http://www.cs.qub.ac.uk/itc2007		
	http://www.soc.napier.ac.uk/~benp/centre/timetabling/harderinstances.htm		
ITC 2002	ORIGINAL	20	2002
Metaheuristics Network	ORIGINAL	12	2001
	http://www.idsia.ch/Files/ttcomp2002		
	http://iridia.ulb.ac.be/supp/IridiaSupp2002-001		

Table 2: Available instances for PE-CTT.
3. Related Work

In the last forty years, starting with Gotlieb (1963), many papers related to educational timetabling have been published and several applications have been developed and employed in practise. In addition, many research surveys have been published, going from de Werra (1985), to Schaerf (1999), to the most recent ones by Burke and Petrovic (2002) and Lewis (2008). We refer to them for an introduction to educational timetabling.

With specific regard to course timetabling, the most seminal works on course timetabling are those by Hertz (1991, 1992), who uses a Tabu Search approach to solve two different versions of the problem. More recently, Murray et al. (2007) tackle a very complex formulation of the problem and solve it by decomposition and constraint-based local search.

However, most of the recent work on course timetabling, besides the one on PE-CTT, has focused on the other “standard” formulation, namely CB-CTT. To this regard, Lü and Had (2009) solve the CB-CTT problem by Tabu Search on a large neighbourhood. Lach and Lübbecke (2011) and Burke et al. (2010) both use a IP approach and find several lower bounds along with a few optimal solutions. Hao and Benlic (2011) use a decomposition approach to improve on the lower bounds obtained with the model of Lach and Lübbecke (2011). Müller (2009) uses a multi-step local search approach to find good solutions of the problem. Finally, our research group (Bellio et al., 2011) has proposed a hybrid Tabu Search/Simulated Annealing approach for this problem.

The initial work on PE-CTT has been carried out inside the Metaheuristics Network by Rossi-Doria et al. (2003) who compare several metaheuristic techniques for the Original formulation on the set of instances specifically designed for their study. That work has been extended by Chiarandini et al. (2006) that apply the same techniques, suitably refined and tuned, to the instances defined for the ITC 2002.

The same formulation has been tackled by Kostuch (2005) using a multi-stage metaheuristic approach. Both Kostuch and Chiarandini et al. consider a search space composed by assignments of events to timeslots only, leaving the rooms unassigned. The room assignment is performed by a specialised sub-solver that applies a matching algorithm. Finally, the ITC 2002 instances have been tested also by Burke et al. (2003) and Di Gaspero and Schaerf (2006), who also used local search based techniques.

Moving the Full ITC 2007 formulation, Chiarandini et al. (2008) propose a solver, built on the previous work for ITC 2002 (Chiarandini et al., 2006), which consists of several heuristic modules in a two phase solution process (dealing with hard and soft constraints, respectively). The modules have
been assembled and tuned using the automated algorithm configuration procedure ParamILS (Hutter et al., 2009). Van den Broek and Hurken (2010) design a deterministic heuristic approach that builds a LP solution using column generation and then tries to improve it by solving ILP subproblems. Lewis (2010) employs a three stages strategy in which a constructive phase is followed by two separate phases of Simulated Annealing. The idea behind this method is to arrange constraints corresponding to different levels of importance in the different phases of the solution process. Müller (2009) applies a constraint-based framework incorporating a series of algorithms based on local search techniques, that operates over feasible (but not necessarily complete) solutions. Finally, Cambazard et al. (2010) proposes both a constraint-based technique and a multi-stage local search one. This latter method has been the winner of the PE-CTT track of the ITC 2007.

A few authors considered the HARD-ONLY formulation and the corresponding instances. The first works by Lewis and Paechter (2005, 2007) use an evolutionary algorithms to tackle the problem. Subsequently, Tuga et al. (2007) use a graph-based heuristic to construct a feasible solution of the relaxed problem (where constraint H2 is partially relaxed) and then apply a SA-approach relying on a Kempe chains neighbourhood. Finally, Liu et al. (2011) propose a clique-based heuristic that tries to identify cliques as the set of events that can be scheduled in the same timeslot.

4. Local Search for Post-Enrolment Course Timetabling

We describe our local search technique in six stages by highlighting the different components of our solution method. Namely these components are: preprocessing and constraint reformulation, search space, initial solution, neighbourhood relations, cost function, and the Simulated Annealing metaheuristic.

4.1. Preprocessing and constraint reformulation

By a careful analysis of the features and the constraints of the problem it is possible to identify some preliminary preprocessing and reformulation steps that can significantly improve the efficiency of the local search phase. This stage is composed by five steps. The first three steps have already been proposed and employed in previous works (see, e.g. Kostuch, 2005). Instead, the remaining two steps are our original ideas and they have a substantial impact on the search strategy of our solver.

1. Creation of auxiliary matrices: According to the features held by the rooms, the room capacities, and the features requested by the events,
we create a Boolean-valued event-room compatibility matrix Θ_R, which states whether a room is suitable for an event. The data about features and capacities can then be discarded and replaced completely by the Θ_R matrix.

Similarly, according to the student enrolment data we create a symmetric Boolean-valued event-event conflict matrix Θ_E, which accounts for the presence of common students between pair of events.

2. Propagation of precedences: Given the precedence relation Π, we perform a preliminary constraint propagation in order to restrict the availability for the events. For any pair of events e_1 and e_2 such that $(e_1, e_2) \in \Pi$, we mark as unavailable period T for e_1, and period 1 for e_2. Pursuing further this idea, we consider all chains of events (also longer than two) in the graph obtained by the transitive closure of the precedence relation. Based on this process (known as arc-consistency in the constraint programming community), we determine for each event e a minimum and a maximum assignable timeslot. The values outside this interval are considered unavailable for e, and thus removed from the availability relation \mathcal{A}.

3. Identification of 1-room events: Looking at the Θ_R matrix, it is possible to identify events that are compatible only with a single room. We call these events 1-room events. Obviously, two 1-room events that share the same compatible room r cannot be scheduled in the same timeslot. We thus update the Θ_E matrix adding these new conflicts.

4. Identification of all-room events: A further look at the Θ_R matrix allows us to identify also the events that are compatible with all the rooms. We call these events all-room events.

For this kind of events it is not necessary to assign a room during search, and the actual room can be assigned in a simple post-processing phase. Therefore, these events are always assigned to the dummy room r_δ. However, through the search it is still necessary to guarantee that the number of events assigned to each timeslot does not exceed the number of rooms R.

5. Sorting rooms by the number of compatible events: In this step, we count for each room the number of events that are compatible with it (all-room events are not considered in this phase). This value represents a sort of “attractiveness” of the room. We create a list of rooms sorted in ascending order of attractiveness.
This list will be used in the search in order to assign rooms in such a way to leave during search the most attractive rooms available for further events to be added.

4.2. Search Space

As already mentioned, the solution space is composed by all the assignments of timeslots and rooms to events extended with the pair composed by dummy timeslot and the dummy room: \(\mathcal{E} \rightarrow (\mathcal{T} \times \mathcal{R} \cup \{(t_\delta, r_\delta)\}) \).

The search space employed by our algorithm is the solution space itself, with some restrictions. First, only available timeslots and compatible rooms can be assigned to each event. In addition, assignments are included in the search space only if no pair of events are assigned to the same timeslot and room, and the total number of events assigned to a timeslot is less than or equal to the number of rooms. Summarising, all assignments in the search space do not violate the constraints Compatibility, Availability, and Occupancy.

On the other hand, Conflicts, Precedences, and Unscheduled can be violated, and thus they are included in the cost function.

Finally, in the search space all-room events are always assigned to the dummy room \(r_\delta \), and actual rooms will be assigned during the post-processing phase.

4.3. Initial Solution

For the construction of the initial solution, we propose two different methods. The first one, denoted by \(I_0 \), is a greedy procedure that assigns each event \(e \) to a random timeslot \(t \), which is available for \(e \) and is not already assigned to \(R \) events.

If a room \(r \) compatible with \(e \) is free in \(t \), the pair \((t, r)\) is assigned to \(e \), otherwise the event is assigned to \((t_\delta, r_\delta)\). Compatible rooms are visited in order of ascending attractiveness.

The second method, denoted by \(I_1 \), is based on the same idea but it tries to leave unscheduled as few events as possible. It proceeds in the same way, but when no room is available in \(t \) for \(e \), \(I_1 \) draws a new random timeslot. However, being a greedy procedure, it might happen in a given stage that there is no room compatible with \(e \) in any timeslot. In order to avoid an infinite loop in such a situation, we stop the procedure after a finite number of draws and assigns \(e \) to \((t_\delta, r_\delta)\). For example, for the ITC 2007 instances, the number of unscheduled events of a state generated with \(I_1 \) is most of the times 0, and occasionally it is 1 or 2. On the contrary, for \(I_0 \) up to 25% of the events might be left unscheduled in the most difficult instances.
4.4. **Neighbourhood relations**

Two different neighbourhood relations are considered in this work:

MoveEvent (ME): Move one event \(e \in E \) from its currently assigned timeslot to timeslot \(t \in T \cup \{ t_\delta \} \). The move \(ME(e, t) \) is admissible if \(t \) is available for \(e \) and there is a compatible free room \(r \) for \(e \) in \(t \). The pair \((t, r)\) is assigned to \(e \).

SwapEvents (SE): Swap the timeslots \(t_1, t_2 \in T \cup \{ t_\delta \} \) assigned to two events \(e_1, e_2 \in E \). The move \(SE(e_1, e_2) \) is admissible if \(t_1 \neq t_2 \) and \(t_1 \) (resp. \(t_2 \)) is available for \(e_2 \) (resp. \(e_1 \)) and there is a compatible free room \(r_1 \) (resp. \(r_2 \)) for \(e_2 \) (resp. \(e_1 \)) in \(t_1 \) (resp. \(t_2 \)). The pair \((t_2, r_2)\) is assigned to \(e_1 \) and the pair \((t_1, r_1)\) is assigned to \(e_2 \).

For both neighbourhoods, rooms are explored in ascending order of attractiveness. For events in timeslot \(t_\delta \) and for all-room events the only room considered compatible is \(r_\delta \).

For the neighbourhood \(ME \) we also consider a restricted version that we call \(ME^- \). The move \(ME^-(e, t) \) is admissible only if \(t \neq t_\delta \). Intuitively, \(ME^- \) excludes the moves that increase the number of unscheduled events in the current state.

4.5. **Cost Function**

The cost function that guides the search is a combination of the soft constraint penalty and the violation of hard constraints. In detail, **Compatibility**, **Occupancy**, and **Availability** are always satisfied in the search space, whereas **Conflicts**, **Precedences**, and **Unscheduled Events** can be violated, and therefore they are included in the cost function.

In case of violation of the **Unscheduled Events** constraint, the formulation prescribes to count the number of students that are enrolled in the event. Consequently, in order to have comparable values also for the other hard constraints components, in case of a violation of the **Conflicts** and **Precedences** constraints we count the minimum between the number of students of the two events involved. However, for the purpose of having at the end of the run only possible violations of the **Unscheduled Events** component (as required), in the last few iterations of the search the cost of **Conflicts** and **Precedences** is doubled. This proved experimentally to be sufficient to ensure that there are no violations of a type different from **Unscheduled Events**.

In conclusion, the cost function \(F \) is the composition of two terms: the distance to feasibility, multiplied by a suitable high weight \(W \), and the objective function \(f \).
Given that we make one single step and that the move acceptance is based on ΔF, the value of W is crucial for the performance of our solver. In fact, if W is too high the start temperature needs to be set to a very high value, which would result in a waste of time for the search. On the other hand, if W is too small it is possible that the solver follows trajectories that “prefer” infeasible solutions to feasible ones, if they have lower objective cost. In conclusion, W needs to be set experimentally, as discussed in Section 5.

4.6. Simulated Annealing

Many versions of SA have been proposed in the literature (see, e.g., Kirkpatrick et al., 1983; Eglese, 1990; Aarts and Lenstra, 1997; Hoos and Stützle, 2005). The version used here is the one with probabilistic acceptance and geometric cooling. In detail, at each iteration of the search process a random neighbour is selected. The move is performed either if it is an improving one or according to an exponential time-decreasing probability. If the cost of the move is $\Delta F > 0$, the move is accepted with probability $e^{-\Delta F/T}$, where T is a time-decreasing parameter called temperature. At each temperature level a number N of neighbours of the current solution is sampled and the new solution is accepted according to the above-mentioned probability distribution. The value of T is modified using a geometric schedule, i.e., $T_{t+1} = \beta \cdot T_t$, in which the parameter $\beta < 1$ is called the cooling rate. The search starts at temperature T_0 and stops when it reaches T_{min}.

Different settings of the parameters of SA would result in different running times. Instead, we want to compare them in a fair setting, giving to all of them the same amount of computational time. To this aim, we let the three parameters T_0, T_{min}, and β vary and we fix N in such a way to have exactly the same number of total iterations. Calling I the fixed total number of iterations, we compute N from the following formula.

$$N = I / \log_\beta \left(\frac{T_0}{T_{\text{min}}} \right)$$

In this way, the total running time is approximately the same, for all combinations of parameters.

We experiment with three solvers, that differ from each other based on the neighbourhood used and the initial solution procedure. The first solver we consider is SA using as neighbourhood the union of ME and SE, and as the initial state method I_0. We denote it as $SA(I_0, ME \oplus SE)$. Using a similar notation, the other two solvers are denoted by $SA(I_0, ME^- \oplus SE)$ and $SA(I_1, ME^- \oplus SE)$.

Intuitively, the first one explores freely the full search space, composed also by unscheduled events. The second one starts with a state with unscheduled events, but leads the search as much as possible in the direction
of feasible solutions. The third one focuses on the space in which all events are scheduled.

The total number of iterations is set to $I = 1.14 \cdot 10^8$, which corresponds approximately to the time granted for ITC 2007 and which results in a running time of about 300s on our PC, an Intel Core i7 @1.6 GHz PC (64 bit). We prefer to set the number of iterations, rather than using a real timeout because, as advocated by Johnson (2002), the use of the timeout makes the experiments less reproducible.

The software is written in C++ language, it uses the framework EasyLocal++ (Di Gaspero and Schaerf, 2003), and it is compiled using the GNU C/C++ compiler, v. 4.4.3, under Ubuntu Linux.

5. Experimental Analysis

For tuning the three solvers, we first select the parameters to be evaluated. To this regard, we decide to use T_0, β, and $\rho = T_0/T_{\text{min}}$, which turned out to provide a better selection of the configurations than using T_{min} directly. Given that we use two different types of moves, namely ME (or ME^{-}) and SE, we add an additional parameter, called sr (for swap rate) which is the probability of drawing a move of type SE. Finally, the parameter W needs to be set.

5.1. Preliminary Screening

In order to perform an effective tuning it is useful to have a screening based on preliminary experiments, that allows us to eliminate some of the five parameters and to focus on the most important ones.

Preliminary experiments show that β is not significant. This is not surprising, because in our setting N is a function of the other parameters, and therefore β only determines the entity of the single step in the temperature and not the actual slope of the cooling trajectory, which is determined by ρ. We therefore set β to the fixed value 0.9999.

Preliminary experiments show also that sr is not significant, as long as it is set within the range $[0.1, 0.5]$. Consequently, we fixed sr to the value 0.4, which provided marginally better results.

Regarding W, it turned out that the value $W = 1$ is big enough to ensure that the solver prefers feasible solutions to infeasible ones. Therefore this parameter is set to 1 for all experiments. This surprising finding is explained by the observation that a hard violations has a cost equal the number of students involved, whereas only a fraction of the students involved in the move contributes to the soft constraints.
5.2. Experimental Design and Tuning

For the remaining two parameters (T_0 and ρ), we have to select the configurations to be tested. Instead of using a classical full factorial design, which consists in a regular sampling of the range for each parameter and testing all combinations, we resort to the Nearly Orthogonal Latin Hypercubes (NOLH) proposed by Cioppa and Lucas (2007), that allow us to fill the space using much less configurations. To generate the actual configurations we use the NOLH spreadsheet made available by Sanchez (2005), using the design with 33 points, within the ranges $T_0 \in [1, 100]$ and $\rho \in [10, 1000]$.

For the comparison of the 33 configurations we resort to F-Race (Birattari, 2005), which is a sequential testing procedure that uses the Friedman two-way analysis of variance by ranks to decide upon the elimination of inferior candidates. At each stage, a new instance is selected, all remaining configurations run on it, and weaker configurations are discarded if enough statistical evidence has arisen against them. We use the canonical value 0.05 as significance level in the tests. The transformation of results in ranks prescribed in F-Race guarantees that in the statistical procedure the aggregation of results over the instances is not influenced by the differences in the scale of the cost function values that depends on the instance at hand.

Considering that each set of instances has different features and they refer to different problem formulations (see Table 2), we decide to tune separately the parameters for each instance family. A tuning process directed to a general and unique parameter setting is also possible and it leads to only slightly inferior results, proving that the algorithm is robust enough.

For each instance family and for each solver we firstly compare the 33 configurations resulting from the NOLH analysis, obtaining the best parameter configuration for each solver. Then, for each instance family, we compare the three solvers using their best configuration by means of the Wilcoxon rank-sum test.

Table 3 reports, for each family, the best solver, along with its best configuration. There are cases in which the difference between solvers or configurations is not statistically significant. In these situations, we consider as the best the one with minimum average rank.

In order to get close to the setting of the ITC 2007, for the Full formulation we use the instances 1-16 for tuning the parameters, and the instances 17-24 for validation. In fact, for the competition the last 8 instances (Hidden Instances) where not given to the participants, but used by the organisers for evaluating the solvers submitted.
5.3. Comparison with Best Known Results

We now compare the solvers emerged from the tuning phase (Table 3) with the best results in the literature. Table 4 summarises the solvers with which we compare. For each solver, we report the reference, the techniques used and the family of instances it solves. Notice that no solver previously presented in the literature has dealt with more than one family of instances.

5.3.1. ITC 2007 instances

We first consider the ITC 2007 instances. Table 5 reports the values obtained by our method in 30 runs for instances 1–16, along with a comparison with respect to the available results reported in the literature (in bold the best results). The presence of the dash symbol means that no feasible solution has been found.

The columns %Feas show the percentage of feasible solutions obtained. Notice that, for solver D, the paper in some cases reports only that this percentage is greater than 95%, instead of the precise value (it reports instead the average number of violations).

The average values are computed considering all the solutions obtained in the experiments, including the infeasible ones. Obviously, the value of the objective function for the infeasible solutions is not very meaningful. However, for our solver the number of infeasible solutions is very small, therefore the average of the value of the objective function is still the most meaningful index.

For instances 17–24, values are not reported in the cited papers (except for van den Broek and Hurkens [2010], therefore we compare our solver with the results extracted from the spreadsheet available from the ITC 2007 website. As mentioned above, our results on these instances are obtained with the best parameter configuration used for instances 1–16.

From the results it is possible to see that our method outperforms all other solvers on 9 out of 24 instances, it is second to Cambazard et al. on 11 instances, and second to Mayer et al. in the remaining 4.

This positive result is confirmed by applying the ranking method of ITC 2007. The first row of Table 6 shows the average of the ranks obtained by

Instance Family	Solver	I_{fb}	ρ	
ITC 2007	$SA(I_0, ME^+ \oplus SE)$	20.41	33.88	
Lewis & Paechter	Med	$SA(I_0, ME \oplus SE)$	31.62	257.63
Lewis & Paechter	Big	$SA(I_0, ME \oplus SE)$	36.30	295.12
ITC 2002	$SA(I_1, ME^- \oplus SE)$	3.89	31.62	
Metaheuristics Network	$SA(I_0, ME \oplus SE)$	3.89	31.62	

Table 3: Best settings of the SA equipped solvers.
Solver	Reference	Technique	Family of instances
A	Chiarandini et al. (2008)	Local Search + Matching	ITC 2007
B	Müller (2009)	Constructive + Local Search (HC, GD, SA)	ITC 2007
C1	Cambazard et al. (2010)	Local Search (SA)	ITC 2007
C2	Cambazard et al. (2010)	Local Search (SA)	ITC 2007
D	Lewis (2010)	Constructive + Iterated Heuristic + Local Search (SA)	ITC 2007
E	van den Broek and Hurkens (2010)	Column Generation + ILP	ITC 2007
F	Mayer et al. (2008)	Ant Colony Optimisation	ITC 2007, ITC 2002
G1	Lewis and Paechter (2007)	Genetic Algorithm	Lewis and Paechter
G2	Lewis and Paechter (2007)	Genetic Algorithm	Lewis and Paechter
G3	Lewis and Paechter (2007)	Genetic Algorithm	Lewis and Paechter
H	Tuga et al. (2007)	Constructive + Local Search (SA)	Lewis and Paechter
I	Liu et al. (2011)	Constructive	Lewis and Paechter
J	Burke et al. (2003)	Local Search (GD)	ITC 2002
K	Di Gaspero and Schaerf (2006)	Local Search	ITC 2002
L	Kostuch (2005)	Constructive + Local Search (SA)	ITC 2002
M	Chiarandini et al. (2006)	Constructive + Local Search (TS, SA)	ITC 2002
N	Socha et al. (2002)	Ant Colony Optimisation	Metaheuristics Network
O	Abdullah et al. (2007)	Memetic algorithm	Metaheuristics Network
P	McMullan (2007)	Constructive + Local Search (GD)	Metaheuristics Network
Q	Landa-Silva and Obid (2008)	Local Search (GD)	Metaheuristics Network
R	Turabieh et al. (2009)	Local Search (GD)	Metaheuristics Network

Table 4: Solvers compared in the experimental phase (HC: Hill Climbing, GD: Great Deluge, SA: Simulated Annealing, TS: Tabu Search.)
each finalist of the competition (available from the ITC 2007 website), from which it results that Cambazard et al. won the competition. Adding a-posteriori our solver to the final of the competition\(^1\), we obtain the ranks of the second row, from which we see that our solver would have won the competition.

5.3.2. Lewis and Paechter instances

Moving to the Lewis and Paechter instances, Tables 7a and 7b report the results for the 20 medium and the 20 big instances (we do not report here results on the 20 small ones because they are not challenging, given that we solve all of them to optimality in all runs).

Following Lewis and Paechter (2007), for these instances in Tables 7 we report the number of unscheduled events, rather than the total number of students attending them. However, the solver, similarly to Tuga et al. (2007), still uses the number of students as the distance to feasibility. This version of the cost function proved experimentally to be more effective.

Also for these instances we have been able to obtain new best results and to be relatively close to the best known results in all the other cases. It is worth mentioning that these instances have very different structure with respect to the other data sets, and in these cases it is not always possible to find a feasible solution. Indeed, the authors who considered these instances used \textit{ad hoc} techniques, which are rather different from those used by the authors who worked on the other instance families.

5.3.3. ITC 2002 instances

The results of the experiments on the ITC 2002 instances are reported in Table 8. Unfortunately, for all papers but the one by Mayer et al. only best results are available from the literature, therefore a fair comparison is not possible. Nevertheless, it is clear from the table that the results of Kostuch are the overall bests. Regarding the comparison with Mayer et al., our solver clearly outperforms their one in all 20 cases.

5.3.4. Metaheuristics Network instances

We finally move the the Metaheuristics Network instances, which have been tackled by yet different authors. For these instances, our solver greatly outperforms all the others on all the medium-size (m1–m5) and on the first large instance (l1), while it is only marginally inferior on the small ones. Instance l2 has not been tested recently in the literature (because of the use of an incomplete copy of the dataset).

\(^1\)Using the spreadsheet downloaded from the ITC 2007 website.
Inst.	A	B	C1	Avg	%Feas	Best	D	E	F	Us						
	Best	Best	Avg	%Feas	Best	Best	Avg	%Feas	Best	Avg	%Feas	Best				
	1	925	1330	830	100	358	547	100	15	1492	45	1294	1636	613	54	0
	2	1156	2154	924	100	11	403	100	356	589	95	388	644	556	59	0
	3	179	205	224	100	156	254	100	174	457	>95	278	355	680	100	110
	4	66	394	352	100	61	361	100	249	589	>95	368	644	556	100	53
	5	52	3	100	0	0	26	100	0	193	>95	22	525	92	100	13
	6	536	13	14	100	0	16	100	0	689	>95	369	640	212	95	0
	7	7	11	100	5	8	100	1	421	>95	74	0	1492	58	100	0
	8	0	0	100	0	0	206	100	0	421	>95	74	1294	58	100	0
	9	1480	1895	1649	100	1049	1167	100	29	2312	45	1294	1636	613	54	0
	10	1364	-	2003	98	773	1297	89	2	2262	2	2380	1677	4	100	0
	11	166	347	311	100	157	361	100	178	541	>95	344	615	774	99	143
	12	1	453	408	100	0	380	100	14	741	>95	486	528	538	86	0
	13	360	74	89	100	0	135	100	0	631	>95	365	485	360	94	5
	14	576	2	1	100	0	15	100	0	660	>95	222	739	41	100	0
	15	0	80	100	0	0	47	100	0	344	>95	266	330	29	100	0
	16	0	6	19	100	1	58	100	1	194	>95	99	260	101	100	0
	Avg	432.4	317.2	847.4		302.9		153.7								

(a) Public instances

Inst.	A	B	C1	Avg	%Feas	Best	D	E	F	Us						
	Best	Best	Avg	%Feas	Best	Best	Avg	%Feas	Best	Avg	%Feas	Best				
	17	9.8	5	106.2	100	72	4.9	100	0	35						
	18	339.9	3	314.3	100	70	14.1	100	0	503						
	19	2080.8	1869	2314.0	0		2027.0	20	1824	963						
	20	640.5	596	919.3	100	878	505	100	445	1229						
	21	876.3	602	336.8	100	40	27.1	100	0	670						
	22	1839.2	1364	1593.7	60	889	550.8	90	29	1956						
	23	1043.4	688	701.3	100	436	330	100	238	2368						
	24	963.4	822	518.0	100	372	124.2	100	21	945	129.2	100	30	105.3	100	0
	Avg	974.2	850.5	448.0		445.2										

(b) Hidden instances (results taken from the spreadsheet on the ITC 2007 website)

Table 5: Results on ITC 2007 instances for 30 runs.
6. Discussion, Conclusions, and Future Work

We have presented a Simulated Annealing approach for a classical well-studied timetabling problem, namely the PE-CTT problem. The comprehensive comparison with the literature shows that our solver is able to outperform most of the previous approaches to the problem. This result is obtained despite the fact that our solution is based on a relatively simple single-step algorithm, whereas most of the previous solvers use complex multi-step solution methods. In addition, the method proved to be quite robust w.r.t. the parameter values.

In our opinion, the key ingredients for these good results are the following. First of all, the preprocessing and constraint reformulation steps improve the efficacy of the local search. In particular, the identification of the all-room events allows us to leave more space for placing the other events. Secondly, the room assignment procedure based on attractiveness allows us to refrain from using the matching algorithm, which is computationally expensive. Finally, the use of a single-step procedure that takes into account the soft constraints from the very beginning allowed us to save computational time later on during the search.

Only for the ITC 2002 instances the results are inferior to the best ones reported in the literature. Unfortunately, the reliability of this comparison is limited since it is based only on the best results found by the other authors.

For the future, we plan to extend our work in various directions:

1. Investigate on the use of different versions of Simulated Annealing, for example using different cooling schemes and acceptance criteria.
2. Improve our use of the tuning tools, mainly NOLHs and RACE, with the twofold objective of making them more effective and to automatise part of the experimental process.
3. Apply the same technique in different contexts, such as CB-CTT and other timetabling problems, in order to have a confirmation of its applicability.
4. Analyse the relevant features of the problem instances, in the spirit of Kostuch and Socha (2004); Smith-Miles and Lopes (2011), with the aim of obtaining an adaptive tuning. The idea would be to set the

Atsuta et al.	CI	A	F	B	Us
24.43	13.90	28.34	29.52	31.31	
31.41	19.98	36.85	37.33	40.70	16.73

Table 6: Comparison using the ITC 2007 ranking system.
Table 7: Results on Lewis and Paechter instances of for 20 runs.

(a) Medium instances

Inst.	G1 Best	G2 Best	G3 Best	H Avg	I Best	Us Avg
M1	0	0	0	0.00	0	0.00
M2	0	0	0	0.00	0	0.00
M3	0	0	0	0.00	0	0.00
M4	0	0	0	0.00	0	0.00
M5	8	0	0	0.00	0	0.00
M6	15	0	0	0.00	0	0.00
M7	41	34	14	4.15	1	3.55
M8	21	9	0	0.00	0	0.00
M9	30	17	2	4.90	0	2.15
M10	0	0	0	0.00	0	0.00
M11	12	0	0	0.00	0	0.00
M12	0	0	0	0.00	0	0.00
M13	23	3	0	0.50	0	0.00
M14	0	0	0	0.00	0	0.05
M15	10	0	0	0.05	0	0.00
M16	50	30	1	5.15	1	0.30
M17	21	0	0	0.00	0	0.00
M18	15	0	0	6.05	0	0.00
M19	51	0	0	5.45	0	0.00
M20	15	0	3	10.60	2	0.65
Avg	1.84	0.33	0.19			

(b) Big instances

Inst.	G1 Best	G2 Best	G3 Best	H Avg	I Best	Us Avg
B1	0	0	0	0.00	0	0.00
B2	0	0	0	0.00	0	0.00
B3	0	0	0	0.00	0	0.00
B4	32	30	8	0.00	0	1.45
B5	31	24	30	1.10	0	0.00
B6	90	71	77	8.45	5	2.85
B7	150	145	150	58.30	47	29.25
B8	35	30	5	0.00	0	0.00
B9	26	36	18	3	0.05	0.00
B10	36	32	24	1.25	0	0.00
B11	43	37	22	0.35	0	0.00
B12	4	0	0	0.00	0	1.15
B13	25	10	0	0.00	0	1.15
B14	8	0	0	0.00	0	1.20
B15	120	98	0	0.00	0	3.50
B16	120	100	19	2.00	0	0.65
B17	260	243	163	89.90	76	2.05
B18	199	173	164	62.60	53	1.70
B19	262	253	232	127.00	109	53.20
B20	186	165	149	46.70	40	14.05
Avg	19.89	7.03	7.27			

(a) Medium instances

(b) Big instances
Table 8: Results on ITC 2002 instances for 20 runs.

Inst	J Best	K Best	L Best	M Best	F Avg	Best	Us Avg	Best
1	85	63	16	45	82	55	57.05	45
2	42	46	2	14	64	43	33.20	20
3	84	96	17	45	92	61	53.20	43
4	119	166	34	71	208	134	109.90	87
5	77	203	42	59	185	134	91.70	71
6	6	92	0	1	59	32	14.05	2
7	12	118	2	3	138	52	13.70	2
8	32	66	0	1	107	48	20.00	9
9	184	51	1	8	70	39	21.90	15
10	90	81	21	52	118	77	60.70	41
11	73	65	5	30	75	39	38.20	24
12	79	119	55	75	143	102	83.65	62
13	91	160	31	55	156	94	77.95	59
14	36	197	11	18	175	109	34.20	21
15	27	114	2	8	89	47	11.80	6
16	300	38	0	55	45	26	16.70	6
17	79	212	37	46	143	78	56.45	42
18	39	40	4	24	59	35	25.85	11
19	86	185	7	33	187	119	72.95	56
20	0	17	0	0	38	19	1.75	0

Avg 111.65 44.75

specific parameters based on the analysis of the specific instance, and the extraction of the values of specific features.

References

Aarts, E., Lenstra, J. K., 1997. Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester.

Abdullah, S., Burke, E. K., McCollum, B., 2007. A hybrid evolutionary approach to the university course timetabling problem. In: Burke, E., Trick, M. E. (Eds.), 2007 IEEE Congress on Evolutionary Computation. Vol. 3616. Springer-Verlag, pp. 1764–1768.

Bellio, R., Di Gaspero, L., Schaerf, A., 2011. Design and statistical analysis of a hybrid local search algorithm for course timetabling. Journal of Scheduling, 1–13.

URL http://dx.doi.org/10.1007/s10951-011-0224-2

Birattari, M., April 2005. The RACE package.

URL http://cran.r-project.org/web/packages/race/
Table 9: Results on instances of the Metaheuristics Network for 30 runs.

Burke, E., Bykov, Y., Newall, J., Petrović, S., 2003. A time-predefined approach to course timetabling. Yugoslav Journal of Operations Research 13 (2), 139–151.

Burke, E., Mareček, J., Parkes, A., Rudová, H., 2010. A supernodal formulation of vertex colouring with applications in course timetabling. Annals of Operations Research 179 (1), 105–130.

Burke, E. K., Petrovic, S., 2002. Recent research directions in automated timetabling. European Journal of Operational Research 140 (2), 266–280.

Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A., 2010. Local search and constraint programming for the post enrolment-based course timetabling problem. Annals of Operations Research, 1–25.

Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O., 2006. An effective hybrid approach for the university course timetabling problem. Journal of Scheduling 9 (5), 403–432.

Chiarandini, M., Fawcett, C., Hoos, H., 2008. A modular multiphase heuristic solver for post enrolment course timetabling. In: Burke, E., Gendreau, M. (Eds.), Proc. of the 7th Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT-2008). pp. 1–6.

Cioppa, T. M., Lucas, T. W., 2007. Efficient nearly orthogonal and space-filling latin hypercubes. Technometrics 49 (1), 45–55.
de Werra, D., 1985. An introduction to timetabling. European Journal of Operational Research 19, 151–162.

Di Gaspero, L., Schaerf, A., 2003. EASYLOCAL++: An object-oriented framework for flexible design of local search algorithms. Software—Practice and Experience 33 (8), 733–765.

Di Gaspero, L., Schaerf, A., 2006. Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modeling and Algorithms 5 (1), 65–89.

Eglese, R. W., 1990. Simulated annealing: a tool for operational research. European Journal of Operational Research 46, 271–281.

Gotlieb, C. C., 1963. The construction of class-teacher timetables. In: Popplewell, C. M. (Ed.), IFIP congress 62. North-Holland, pp. 73–77.

Hao, J.-K., Benlic, U., 2011. Lower bounds for the ITC-2007 curriculum-based course timetabling problem. European Journal of Operational Research.

URL http://dx.doi.org/10.1016/j.ejor.2011.02.019

Hertz, A., 1991. Tabu search for large scale timetabling problems. European Journal of Operational Research 54, 39–47.

Hertz, A., 1992. Finding a feasible course schedule using tabu search. Discrete Applied Mathematics 35 (3), 255–270.

Hoos, H. H., Stützle, T., 2005. Stochastic Local Search – Foundations and Applications. Morgan Kaufmann Publishers, San Francisco, CA (USA).

Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T., 2009. ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306.

Johnson, D. S., 2002. A theoretician’s guide to the experimental analysis of algorithms. In: Goldwasser, M. H., Johnson, D. S., McGeoch, C. C. (Eds.), Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges. American Mathematical Society, pp. 215–250.

URL http://www.research.att.com/~dsj/papers.html

Kirkpatrick, S., Gelatt, Jr, C. D., Vecchi, M. P., 1983. Optimization by simulated annealing. Science 220, 671–680.
Kostuch, P., 2005. The university course timetabling problem with a three-phase approach. In: Burke, E., Trick, M. (Eds.), Proc. of the 5th Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT-2004), selected papers. Vol. 3616 of Lecture Notes in Computer Science. Springer-Verlag, Berlin-Heidelberg, pp. 109–125.

Kostuch, P., Socha, K., 2004. Hardness prediction for the university course timetabling problem. In: Gottlieb, J., Raidl, G. R. (Eds.), Evolutionary Computation in Combinatorial Optimization. Vol. 3004 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 135–144.

Lach, G., Lübbecke, M., 2011. Curriculum based course timetabling: Optimal solutions to the udine benchmark instances. Annals of Operations Research, 1–18.
URL http://dx.doi.org/10.1007/s10479-010-0700-7

Landa-Silva, D., Obit, J. H., September 2008. Great deluge with non-linear decay rate for solving course timetabling problems. In: 2008 4th International IEEE Conference Intelligent Systems. pp. 8–18.

Lewis, R., 2008. A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum 30 (1), 167–190.

Lewis, R., 2010. A time-dependent metaheuristic algorithm for post enrolment-based course timetabling. Annals of Operations Research, 1–17.
URL http://dx.doi.org/10.1007/s10479-010-0696-z

Lewis, R., Paechter, B., 2005. Application of the grouping genetic algorithm to university course timetabling. In: Raidl, G., Gottlieb, J. (Eds.), Fifth International Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2005). No. 3448 in LNCS. Springer, pp. 144–153.

Lewis, R., Paechter, B., 2007. Finding feasible timetables using group-based operators. IEEE Transactions on Evolutionary Computation 11 (3), 397–413.

Lewis, R., Paechter, B., McCollum, B., 2007. Post enrolment based course timetabling: A description of the problem model used for track two of the second international timetabling competition. Tech. rep., Cardiff University, Wales, UK.

Liu, Y., Zhang, D., Chin, F., 2011. A clique-based algorithm for constructing feasible timetables. Optimization Methods and Software 26 (2), 281–294.
Lü, Z., Hao, J.-K., 2009. Adaptive tabu search for course timetabling. European Journal of Operational Research 200 (1), 235 – 244.

Mayer, A., Nothegger, C., Chwatal, A., Raidl, G., 2008. Solving the post enrolment course timetabling problem by ant colony optimization. In: Burke, E., Gendreau, M. (Eds.), Proc. of the 7th Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT-2008). pp. 1–13.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Di Gaspero, L., Qu, R., , Burke, E. K., 2010. Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing 22 (1), 120–130.

McMullan, P., 2007. An Extended Implementation of the Great Deluge Algorithm for Course Timetabling. Computational Science–ICCS 2007, 538 – 545.

Müller, T., 2009. ITC2007 solver description: a hybrid approach. Annals of Operations Research 172 (1), 429–446.

Murray, K. S., Müller, T., Rudová, H., 2007. Modeling and solution of a complex university course timetabling problem. In: Proc. of the 6th Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT-2006), selected papers. pp. 189–209.

Rossi-Doria, O., et al., 2003. A comparison of the performance of different metaheuristic on the timetabling problem. In: Burke, E., De Causmaecker, P. (Eds.), Proc. of the 4th Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT-2002), selected papers. Vol. 2740 of Lecture Notes in Computer Science. Springer-Verlag, Berlin-Heidelberg, pp. 329–351.

Sanchez, S. M., 2005. NOLH designs spreadsheet. Visited on April 6, 2011. URL http://diana.cs.nps.navy.mil/SeedLab/

Schaerf, A., 1999. A survey of automated timetabling. Artificial Intelligence Review 13 (2), 87–127.

Smith-Miles, K. A., Lopes, L., 2011. Generalising algorithm performance in instance space: A timetabling case study. In: Proceedings of Learning and Intelligent Optimization (LION 2011). pp. 1–15.
Socha, K., Knowles, J., Sampels, M., 2002. A MAX-MIN ant system for the university timetabling problem. In: Proc. of the 3rd International Workshop on Ant Algorithms (ANTS 2002). Vol. 2463 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, pp. 1–13.

Tuga, M., Berretta, R., Mendes, A., 2007. A hybrid simulated annealing with kempe chain neighborhood for the university timetabling problem. In: 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007). pp. 400 – 405.

Turabieh, H., Abdullah, S., McCollum, B., 2009. Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem. Lecture Notes In Artificial Intelligence; Vol. 5589, 497.

van den Broek, J. J. J., Hurkens, C. A. J., 2010. An IP-based heuristic for the post enrolment course timetabling problem of the ITC2007. Annals of Operations Research, 1–16.

URL http://dx.doi.org/10.1007/s10479-010-0708-z