Nitrous oxide (N\textsubscript{2}O) is a key atmospheric greenhouse gas that contributes to global warming and the destruction of stratospheric ozone (14, 46, 47). Agricultural land is a major source of N\textsubscript{2}O through the microbial transformation of nitrogen in the soil (13, 24, 58), and contributes significantly to the net increase in atmospheric N\textsubscript{2}O (46). Legume crops emit more N\textsubscript{2}O than non-legumes (10, 15, 32).

Yang and Cai (55) reported that the emission of N\textsubscript{2}O from a soybean field greatly increased in the late growth period. Soybean plants inoculated with nosZ-defective strains of *Bradyrhizobium japonicum* USDA110 (ΔnosZ, lacking N\textsubscript{2}O reductase) were grown in aseptic jars. After 30 days, shoot decapitation (D, to promote nodule degradation), soil addition (S, to supply soil microorganisms), or both (DS) were applied. N\textsubscript{2}O was emitted only with DS treatment. Thus, both soil microorganisms and nodule degradation are required for the emission of N\textsubscript{2}O from the soybean rhizosphere. The N\textsubscript{2}O flux peaked 15 days after DS treatment. Nitrate addition markedly enhanced N\textsubscript{2}O emission. A 15N tracer experiment indicated that N\textsubscript{2}O was derived from N fixed in the nodules. To evaluate the contribution of bradyrhizobia, N\textsubscript{2}O emission was compared between a nirK mutant (ΔnirKΔnosZ, lacking nitrite reductase) and ΔnosZ. The N\textsubscript{2}O flux from the ΔnirKΔnosZ rhizosphere was significantly lower than that from ΔnosZ, but was still 40% to 60% of that of ΔnosZ, suggesting that N\textsubscript{2}O emission is due to both *B. japonicum* and other soil microorganisms. Only nosZ-competent *B. japonicum* (nosZ\textsubscript{v} strain) could take up N\textsubscript{2}O. Therefore, during nodule degradation, both *B. japonicum* and other soil microorganisms release N\textsubscript{2}O from nodule via their denitrification processes (N\textsubscript{2}O source), whereas nosZ-competent *B. japonicum* exclusively takes up N\textsubscript{2}O (N\textsubscript{2}O sink). Net N\textsubscript{2}O flux from soybean rhizosphere is likely determined by the balance of N\textsubscript{2}O source and sink.

Key words: Nitrous oxide, *Bradyrhizobium japonicum*, Denitrification, nosZ gene, Soybean rhizosphere

A model system developed to produce N\textsubscript{2}O emissions from degrading soybean nodules in the laboratory to clarify the mechanism of N\textsubscript{2}O emission from soybean fields. Soybean plants inoculated with nosZ-defective strains of *Bradyrhizobium japonicum* USDA110 (ΔnosZ, lacking N\textsubscript{2}O reductase) were grown in aseptic jars. After 30 days, shoot decapitation (D, to promote nodule degradation), soil addition (S, to supply soil microorganisms), or both (DS) were applied. N\textsubscript{2}O was emitted only with DS treatment. Thus, both soil microorganisms and nodule degradation are required for the emission of N\textsubscript{2}O from the soybean rhizosphere. The N\textsubscript{2}O flux peaked 15 days after DS treatment. Nitrate addition markedly enhanced N\textsubscript{2}O emission. A 15N tracer experiment indicated that N\textsubscript{2}O was derived from N fixed in the nodules. To evaluate the contribution of bradyrhizobia, N\textsubscript{2}O emission was compared between a nirK mutant (ΔnirKΔnosZ, lacking nitrite reductase) and ΔnosZ. The N\textsubscript{2}O flux from the ΔnirKΔnosZ rhizosphere was significantly lower than that from ΔnosZ, but was still 40% to 60% of that of ΔnosZ, suggesting that N\textsubscript{2}O emission is due to both *B. japonicum* and other soil microorganisms. Only nosZ-competent *B. japonicum* (nosZ\textsubscript{v} strain) could take up N\textsubscript{2}O. Therefore, during nodule degradation, both *B. japonicum* and other soil microorganisms release N\textsubscript{2}O from nodule via their denitrification processes (N\textsubscript{2}O source), whereas nosZ-competent *B. japonicum* exclusively takes up N\textsubscript{2}O (N\textsubscript{2}O sink). Net N\textsubscript{2}O flux from soybean rhizosphere is likely determined by the balance of N\textsubscript{2}O source and sink.

Nitrous oxide (N\textsubscript{2}O) is a key atmospheric greenhouse gas that contributes to global warming and the destruction of stratospheric ozone (14, 46, 47). Agricultural land is a major source of N\textsubscript{2}O through the microbial transformation of nitrogen in the soil (13, 24, 58), and contributes significantly to the net increase in atmospheric N\textsubscript{2}O (46). Legume crops emit more N\textsubscript{2}O than non-legumes (10, 15, 32).

Yang and Cai (55) reported that the emission of N\textsubscript{2}O from a soybean field greatly increased in the late growth period, suggesting that senescence and the decomposition of roots and nodules contributed to emissions. Ciampitti et al. (7) also reported marked N\textsubscript{2}O emissions from a soybean field in the late growth period regardless of N fertilization. N\textsubscript{2}O emission from a field with nodulating soybeans was several times higher than that from a field with non-nodulating soybeans (27). N\textsubscript{2}O was emitted directly from degraded nodules of field-grown soybeans in the late growth period (20). Thus, soybean nodules emit N\textsubscript{2}O under field conditions, although the mechanism remains unresolved.

Microorganisms might be involved, as N\textsubscript{2}O can be generated by several microbial processes (4, 13). Using microbial community analysis, Inaba et al. (20) nominated potential N\textsubscript{2}O producers that increased in abundance in degraded nodules. Among them, *Bradyrhizobium japonicum* was one of the dominant microbes as endosymbionts of soybean nodules and rhizosphere soil bacteria (9, 29, 30, 33, 35, 39). It reduces nitrogen oxides during denitrification as

\[\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2, \]

where each step is catalyzed by specific reductases. These reductases are encoded, respectively, by *napA* (encoding periplasmic nitrate reductase), *nirK* (Cu-containing nitrite reductase), *norCB* (nitric oxide reductase), and *nosZ* (nitrous oxide reductase) (5). The aim of this study was to clarify the involvement of *B. japonicum* in the emission of N\textsubscript{2}O from the soybean rhizosphere. The N\textsubscript{2}O flux from denitrification mutants of *B. japonicum* was compared in the laboratory.

Materials and Methods

Bacterial strains, plasmids, and media

The bacterial strains and plasmids are listed in Table 1. *Bradyrhizobium japonicum* cells were grown at 30°C in HM salt medium (8) supplemented with 0.1% arabinose and 0.025% (w/v) yeast extract (Difco, Detroit, MI, USA). *Escherichia coli* cells used in transformation were grown at 37°C in Luria–Bertani medium (40). Antibiotics were added to the media at the following concentrations: for *B. japonicum*, 100 μg tetracycline (Tc) mL-1, 100 μg spectinomycin (Sp) mL-1, 100 μg streptomycin (Sm) mL-1, 100 μg kanamycin (Km) mL-1, and 100 μg polymyxin B (PolB) mL-1, for *E. coli*, 50 μg Tc mL-1, 50 μg Sp mL-1, 50 μg Sm mL-1, 50 μg Km mL-1, and 50 μg ampicillin mL-1.

Construction of B. japonicum mutants

Isolation of plasmids, DNA ligation, and transformation of *E. coli* were performed as described previously (40). DNA was prepared as described previously (43). A 5.6-kb BamHI/EcoRI fragment...
centrifuged at 5,555×g. The pellet was resuspended in 30 mL distilled water. The suspension was shaken for 10 min in centrifuge tubes and then washed twice with 30 mL distilled water to remove nitrate and nitrite. The washed material was then used for DNA extraction.

Preparation of soil suspension

Surface-sterilized soybean seeds (Glycine max cv. Enrei) were germinated in sterile vermiculite for 2 days at 25°C. The seedling was then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transferred to the pot. The pots were left in a dark chamber for 15 days except for N2O determination for 15 days except otherwise indicated.

N2O determination

N2O flux was determined with a gas chromatograph (GC-14BpsE; Shimadzu, Kyoto, Japan) equipped with a 63Ni electron capture detector and a thermal conductivity detector. The N2O flux was determined by the analysis of N2O in air sampled from the rhizosphere of the plants.

Table 1. Bacterial strains and plasmids used in this study

Strain or plasmid	Relevant characteristicsa	Source or reference
Strains		
Bradyrhizobium japonicum		
USDA110	Wild type, nosZ+	25
USDA110ΔnosZ	USDA110 derivative, nosZ::del/ins Tc cassette; Te+	18
USDA110ΔnapAΔnosZ	USDA110 derivative, napA::Ω cassette, nosZ::del/ins Tc cassette; Ssp’, Sm’, Te+	18
USDA110ΔnirK	USDA110 derivative, nirK::Ω cassette; Ssp’, Sm’	This study
USDA110ΔnirKΔnosZ	USDA110 derivative, nirK::Ω cassette, nosZ::del/ins Tc cassette; Ssp’, Sm’, Te+	This study
T9	Field isolate in Tokachi, Hokkaido, Japan, nosZ-	42
Escherichia coli		
DH5a	recA; cloning strain	Toyobo
Plasmids		
brp01958	pUC18 carrying nirK	25
pH43Ω	Plasmid carrying 2.1-kb Ω cassette; Ssp’, Sm’, Ap’	37
pK18mob	Cloning vector; pMB1ori Tc; Km’	44
pK18mob-nirK	pK18mob carrying 5.6-kb nirK fragment; Km’	This study
pK18mob-nirK::Ω	pK18mob carrying nirK::Ω cassette; Km’, Ssp’, Sm’	This study
pRK2013	ColE replicon carrying RK2 transfer genes; Km’	12
a Ap’, ampicillin resistant; Te’, tetracycline resistant; Km’, kanamycin resistant; Ssp’, streptomycin resistant.		

Preparation of soil suspension

Soil was collected from an experimental field at Tohoku University (Kashimadai, Miyagi, Japan). This gray lowland soil had pH[H2O] 5.6, pH[KCl] 4.2, total C 1.37%, total N 0.132%, and C/N 7.6. Fresh soil (10 g) was extracted twice with 30 mL distilled water to remove nitrate and nitrite. The suspension was shaken for 10 min in centrifuge tubes and then centrifuged at 5,555×g for 15 min (Himac CR20E; Hitachi, Tokyo, Japan). The pelleted was resuspended in 30 mL distilled water.

Inoculation and plant cultivation

Surface-sterilized soybean seeds (Glycine max cv. Enrei) were inoculated with USDA110ΔnosZ. The seedling was then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1). The seedlings were then transplanted into a Leonard jar pot (one plant per pot) (28, 53, 56), which contained sterile vermiculite and nitrogen-free nutrient solution (31, 34) (Fig. S1).

Fig. 1. Construction of a nirK insertion mutant of Bradyrhizobium japonicum USDA110. Cloned fragments in pK18mob derivatives are shown alongside the physical map of the nir gene cluster of Bradyrhizobium japonicum USDA110. See text for details.
detector and tandem columns packed with Porapak Q (80/100 mesh; 3.0 mm×1.0 m and 3.0 mm×2.0 m).

Model system for N$_2$O emission from degraded nodules

USDA110 (nosZ$^+$), USDA110ΔnosZ (nosZ$^-$), and T9 (nosZ$^-$) were used as inoculants. Thirty days after inoculation, treatments were applied (Fig. 2). Ten days later, nodules were collected from soybean roots, washed with sterilized water, and weighed. The nodules were introduced into a 19-mL airtight vial. Gas in the vial was sampled 1, 2, and 3 h after the vials were sealed to determine N$_2$O concentration. This was the “excised nodule method” (Fig. 2).

Long-term N$_2$O monitoring

T9 was used as inoculum. Thirty days after inoculation, the D or DS treatment was applied. The N$_2$O flux from the pot was intermittently monitored during 2 months. On each measurement day, the pot was sealed with a lid with a gas sampling port (Fig. 2). After 5 h, the gas was sampled to determine N$_2$O concentration. After the gas sampling, the pot was returned to the phytotron. This was the “sealed jar method” (Fig. 2).

15N$_2$ feeding and 15N determination

At 29 days after inoculation, a gas mixture (30% [v/v] 15N$_2$, 20% O$_2$, 50% Ar; SI Sciences, Tokyo, Japan) containing 32.2 atom% 15N$_2$ was supplied to the root zone of soybeans inoculated with USDA110ΔnosZ in seven pots for 8 h (Fig. 2 and S1). The nodules from three plants were separately collected and dried at 80°C for 3 days. The 15N concentrations of the powdered nodules were determined by mass spectrometer (EA 1110 DeltaPlus Advantage ConFlo III; Thermo Fisher Scientific, Bremen, Germany). The other four pots received the DS treatment. Fifteen days later, the gas phase was sampled by the sealed jar method (Fig. 2). The 15N concentrations were determined by gas chromatography/mass spectrometry (GC/MS-QP2010 Plus; Shimadzu) (21, 22).

N$_2$O emission from degraded nodules with denitrification mutants

USDA110, USDA110ΔnosZ, USDA110ΔnirKΔnosZ, and USDA110ΔnirKΔnosZ were used as inoculants. Thirty days after inoculation, D or DS treatment was applied (Fig. 2). Fifteen days later, the N$_2$O flux from the nodules was determined by the excised nodule method.

N$_2$O flux from soybean rhizosphere with denitrification mutants

USDA110 and its ΔnosZ, ΔnirK, and ΔnirKΔnosZ mutants were used as inoculants to evaluate the effect of the ΔnirK and nosZ genes on N$_2$O emission from the rhizosphere. The ΔnirK mutation was selected as a nitrate-to-N$_2$O denitrification mutation, because the ΔnirK mutant is not able to denitrify both nitrate and nitrite that exist in the rhizosphere (4). Thirty days after inoculation, DS treatment was applied. Fifteen days later, the N$_2$O flux from each pot was determined by the sealed jar method, 3 h after the pot was sealed. In addition, 50 mL of 5 mM KNO$_3$ solution was applied to each pot, the pots were immediately sealed, and the N$_2$O flux was determined as above.

Results

N$_2$O emission from degraded nodules

When B. japonicum USDA110 (nosZ$^+$) was used as the inoculum, N$_2$O was not emitted in any treatment (Fig. 3A). When USDA110ΔnosZ or T9 (each nosZ$^-$) was used, the DS treatment induced marked N$_2$O emission, whereas the D and S treatments alone did not induce N$_2$O emission (Fig. 3B and C). Indeed, the nodules in the DS treatment were clearly degraded (Fig. S2), similar to those of field-grown soybean in the late growth period (20). On the other hand, the nodules in the S treatment stayed intact, and those in the D treatment looked slightly degraded (Fig. S2). These results indicate that both soil microbes and nodule degradation are required for N$_2$O emission. In addition, N$_2$O was emitted only from DS-treated nodules with nosZ$^-$ strains, suggesting that the B. japonicum nosZ gene is critical in the emission of N$_2$O from degraded nodules.

Long-term monitoring of N$_2$O flux from the soybean rhizosphere

Substantial N$_2$O was emitted from the rhizosphere of soybeans inoculated with T9 (nosZ$^-$) in DS treatment, but none was emitted in D treatment throughout the experimental period (5–63 days) (Fig. 4). This result is similar to the results in the excised nodule method (Fig. 3B and C). As the N$_2$O flux in the DS treatment peaked 15 days after the treatment was applied and then gradually decreased (Fig. 4), we measured N$_2$O flux at 15 days in later experiments.
Origin of N$_2$O-N

The profile of N$_2$O flux (Fig. 4) suggests that the source of N$_2$O was limited. Thus, we examined whether N$_2$O is derived from N fixed in the nodules by using 15N-labeled dinitrogen. The supply of 15N$_2$ to the root zone of USDA110ΔnosZ plants just before DS treatment produced 15N concentration in N$_2$O emitted 15 days later of 1.32±0.42 atom% excess (mean ± SD), similar to the concentration of nodule N (1.13±0.08 atom% excess). This result clearly indicates that the N$_2$O-N emitted from the soybean rhizosphere was derived from N fixed symbiotically in the nodules.

N$_2$O emission from degraded nodules with denitrification mutants

N$_2$O emissions from the nodules formed with USDA110 and its mutants were determined by the excised nodule method to reveal the involvement of bradyrhizobial denitrification (Fig. 5). Nodules inoculated with ΔnosZ, ΔnapAΔnosZ, and ΔnirKΔnosZ emitted marked amounts of N$_2$O in DS treatment. Nodules inoculated with USDA110 emitted negligible N$_2$O even in DS treatment (Fig. 5A).

Because the nosZ gene is responsible for the reduction of N$_2$O to N$_2$ (18, 43), and no N$_2$O was emitted from nosZ+ nodules (Figs. 3A and 5A), N$_2$O reductase encoded by nosZ is likely a sink for N$_2$O in the soybean rhizosphere. In the absence of nosZ, N$_2$O emission from nodules inoculated with double mutants (ΔnapAΔnosZ and ΔnirKΔnosZ) was lower than that from nodules with ΔnosZ, although there was no significant difference (Fig. 5B, C, and D, t-test [P<0.05]).

N$_2$O flux from the soybean rhizosphere with denitrification mutants

When soybean plants were inoculated with USDA110 and ΔnirK, a small quantity of N$_2$O was released (1.9–2.6 nmol h$^{-1}$ per pot; Fig. 6A). When plants were inoculated with ΔnosZ and ΔnirKΔnosZ, N$_2$O emission was significantly higher (16.7 and 9.9 nmol h$^{-1}$ per pot, respectively). These results strongly suggest that the nosZ gene of B. japonicum is involved in the uptake of N$_2$O that is released from degraded nodules. In Fig. 6A, the relative contribution of the
denitrifying pathway of difference is due to the loss of nitrite reductase in the H_2 two distinct sources; denitrification up to N_2 substrate for N_2. Therefore, the N_2O flux from soybeans inoculated with USDA110 or its denitrification mutants ($\Delta nosZ$, $\Delta nirK$, $\Delta nirK\Delta nosZ$) in (A) the absence and (B) the presence of KNO$_3$. Bars indicate standard error with five biological replications. Differences in N_2O flux are shown as follows: CZ1 and CZ2, contribution of $nosZ$ in $B. japonicum$; CK1 (41%) and CK2 (60%), relative contribution of $nirK$ under a $\Delta nosZ$ mutant background; CS1 (59%) and CS2 (40%), relative contribution of other soil organisms. Bars labeled with the same letter within a graph are not significantly different (t-test, $P<0.05$).

$nosZ$ gene to N_2O flux is shown as “CZ1”. In the absence of $nosZ$, there was a significant difference in N_2O flux between $\Delta nosZ$ and $\Delta nirK\Delta nosZ$ (CK1 in Fig. 6A). This difference is due to the loss of nitrite reductase in the denitrifying pathway of $B. japonicum$. Therefore, the N_2O flux from soybeans inoculated with $\Delta nosZ$ could have had two distinct sources; denitrification up to N_2O by $B. japonicum$ (CK1 [41%] in Fig. 6A), and other soil microbes (CS1 [59%] in Fig. 6A).

KNO$_3$ was added to the rhizosphere to clarify whether N_2O is a precursor of N$_2$. When KNO$_3$ was supplied before N_2O determination, the N_2O flux from the pots with each inoculant was markedly enhanced, particularly from pots with $\Delta nosZ$ (78.1 nmol h$^{-1}$ pot$^{-1}$) and $\Delta nirK\Delta nosZ$ (31.3 nmol h$^{-1}$ per pot; Fig. 6B). This result confirms that N_2O was produced from NO$_3$- through microbial denitrification. KNO$_3$ application also enhanced the contribution of $B. japonicum$ to N_2O flux (60% [CK2, Fig. 6B] cf. 41% [CK1, Fig. 6A]). These results suggest that $B. japonicum$ prefers nitrate as a substrate for N_2O production.

Discussion

The term “rhizosphere” was first coined in 1904 by Lorenz Hiltner in Germany, who had a special interest in complicated N transformations around leguminous nodules with higher N contents in fields (16). In a sense, the present study advances such historical work on leguminous rhizospheres.

The results show that N_2O emission from degraded nodules in the soybean rhizosphere is due to $B. japonicum$ and other soil microbes. When plants were inoculated with $B. japonicum$ $nosZ$ strains and treated with shoot decapitation and soil addition (DS), N_2O was markedly produced (Figs. 3, 4, 5, and 6). On the other hand, when plants were inoculated with a $nosZ$ strain, almost no N_2O was emitted, even in DS treatment. These results suggest that N_2O emission from degrading nodules formed with $nosZ$ strains was due to denitrification by both $B. japonicum$ ($nosZ$) and other soil microbes (Fig. 7). It is likely that N_2O produced by soil microbes was offset by $nosZ$-competent $B. japonicum$ with its N_2O reductase. In other words, both $B. japonicum$ and other soil microorganisms release N_2O during nodule degradation (N_2O source), and $nosZ$-competent $B. japonicum$ ($nosZ$ strains) takes up N_2O (N_2O sink) (Fig. 7).

What are these other soil microorganisms that emit N_2O from degrading nodules? Prokaryotic denitrification, fungal denitrification, ammonium oxidation, and nitrate ammonification have been nominated as soil microbial sources of N_2O (1, 14, 26, 38, 49, 50, 57). Community analysis specific to degrading nodules that emit N_2O found many microorganisms that potentially produce N_2O (20), including denitrifying bacteria such as *Acidovorax* (19) and *Enterobacter* (2); *Bradyrhizobium* (25), *Salmonella* (48), *Xanthomonas* (52), and *Pseudomonas* (36), which have functional genes and/or activities for denitrification; and *Fusarium*, a denitrifying fungus (43). Since *Fusarium* species generally lacks N_2O reductase (51), it might be one of the key sources of N_2O from degrading nodules.

The decline in N_2O emission after the peak (Fig. 4) indicates that the source of N in the rhizosphere is limited. Indeed, the ^{15}N tracer experiment showed that nodule N is a major source of N_2O emission from the soybean rhizosphere. Thus, complicated N transformation in the soybean rhizosphere would involve ammonification, nitrification, and denitrification.
KNO₂ addition enhanced N₂O emission (Fig. 6), supporting the idea that NO₂⁻ is a precursor of N₂O. When NH₄Cl was preliminarily added to the rhizosphere, the addition did not change N₂O emission (Inaba et al., unpublished data), suggesting that it is unlikely to be due to nitrification. KNO₃ addition also enhanced the contribution of _B. japonicum_ to N₂O emission in relation to the other soil microorganisms (Fig. 6). Nitrate might be more available to _B. japonicum_, whereas other microorganisms might prefer other substrates. In fact, nitrite is a better substrate for denitrifying fungi to produce N₂O (45). New approaches are needed to understand soil N₂O-producing microorganisms and N transformation from fixed nitrogen in the rhizosphere (4).

In soybean fields, it is likely that soybean roots are infected with multiple strains that differ in denitrifying activity. _nosZ_ strains of _B. japonicum_ that produce N₂O as the denitrification end product often dominate in agricultural fields (3, 6, 11, 41, 42, 54). Both N₂- and N₂O-producing strains occurred in paddy-upland rotation fields (3). Similarly, both _nosZ+_- and _nosZ–_ strains of _B. japonicum_ were isolated from soybean fields (41, 42). Thus, it is easily conceivable that both N₂- and N₂O-producing strains of _B. japonicum_ coexist in soybean fields. Consequently, the flux of N₂O from soybean fields during the late growth period may be partly determined by biotic factors, namely the balance between N₂O emission due to soil microorganisms and _B. japonicum (nosZ–)_ and N₂O uptake by _B. japonicum (nosZ+)_. (Fig. 7).

The use of _nosZ+_- strains of _B. japonicum_ as inoculants has been expected to reduce N₂O emissions from soybean fields (42, 43). Indeed, _nosZ+_- strains produced no N₂O and were able to take up N₂O from degraded nodules (Fig. 7). Recently, N₂O reduction by _nosZ_-carrying inoculants was shown in a soil-filled pot planted with soybeans (17). Thus, _B. japonicum_ mutants with increased N₂O activity (23) might be more effective to reduce net N₂O flux from soybean rhizosphere.

Acknowledgements

This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (BRAIN), by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Development of Mitigation and Adaptation Techniques to Global Warming, and Genomics for Agricultural Innovation, PMI-0002), and by Grants-in-Aid for Scientific Research (A) 23248052 and for Challenging Exploratory Research 23658057 from the Ministry of Education, Science, Sports and Culture of Japan.

References

1. Amano, T., I. Yoshinaga, T. Yamagishi, C. Van Thooc, P. The Thu, S. Ueda, K. Kato, Y. Sako, and Y. Suwa. 2011. Contribution of anammox bacteria to benthic nitrogen cycling in a mangrove forest and shrimp ponds, Haiphong, Vietnam. Microbes Environ. 26:1–6.
2. Apostoli, P., M. Gelmi, L. Alessio, and A. Turano. 1996. Interferences of urinary tract infection in the measurement of urinary nitrous oxide. Occup. Environ. Med. 53:591–594.
3. Asakawa, S. 1993. Denitrifying ability of indigenous strains of _Bradyrhizobium japonicum_ isolated from fields under paddy-upland rotation. Biol. Fertil. Soils 15:196–200.
4. Baggs, E.M. 2011. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 3:321–327.
5. Bedmar, E.J., E.F. Robles, and M.J. Delgado. 2005. The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium _Bradyrhizobium japonicum_. Biochem. Soc. Trans. 33:141–144.
6. Breitenbeck, G.A., and J.M. Bremner. 1989. Ability of free-living cells of _Bradyrhizobium japonicum_ to denitrify in soils. Biol. Fertil. Soils 7:219–224.
7. Ciampitti, L.A., E.A. Ciarno, and M.E. Conti. 2008. Nitrous oxide emissions from soil during soybean (_Glycine max_ (L.) Merrill) crop phenological stages and stubbles decomposition period. Biol. Fertil. Soils 44:581–588.
8. Cole, M.A., and G.H. Elkansk. 1973. Transmissible resistance to penicillin G, neomycin, and chloramphenicol in _Rhizobium japonicum_. Antimicrob. Agents Chemother. 4:248–253.
9. Dau, T., M. Nomura, R. Hamaoguchi, et al. 2008. NAD-malic enzyme affects nitrogen-fixing activity of _Bradyrhizobium japonicum_ USDA110 bacteroids in soybean nodules. Microbes Environ. 23:215–220.
10. Duxbury, J.M., D.R. Bouldin, R.E. Terry, and R.L. Tate III. 1982. Emissions of nitrous oxide from soils. Nature 298:462–464.
11. Fernández, L.A., E.B. Perotti, M.A. Sagardoy, and M.A. Gómez. 2008. Denitrification activity of _Bradyrhizobium sp_. isolated from Argentine soybean cultivated soils. World J. Microbiol. Biotechnol. 24:2577–2585.
12. Figurski, D.H., and D.B. Henski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. U.S.A. 76:1648–1652.
13. Firestone, M.K., R.B. Firestone, and J.M. Tiedje. 1980. Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208:749–751.
14. Forster, P., V. Ramaswamy, P. Artaxo, et al. 2007. Changes in atmospheric constituents and in radiative forcing, p. 129–234. In Solomon DQ (ed.), _Climate Change 2007: The Physical Science Basis_. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
15. Ghosh, S., D. Majumdar, and M.C. Jain. 2002. Nitrous oxide emissions from _kharif_ and _rabi_ legumes grown on an alluvial soil. Biol. Fertil. Soils. 35:473–478.
16. Hartmann, A., M. Rothballer, and M. Schmid. 2008. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14.
17. Hénault, C., and C. Revellin. 2011. Inoculants ofleguminous crops for mitigating soil emissions of the greenhouse gas nitrous oxide. Plant Soil 346:289–296.
18. Hirayama, J., S. Eda, H. Mitsu, and K. Minamisawa. 2011. Nitrate-dependent N₂O emission from intact soybean nodules via denitrification by _Bradyrhizobium japonicum_ bacteroids. Appl. Environ. Microbiol. 77:8787–8790.
19. Hoshtino, T., T. Terahara, S. Tsuma, A. Hirata, and Y. Inamori. 2005. Molecular analysis of microbial population transition associated with the start of denitrification in a wastewater treatment process. J. Appl. Microbiol. 99:1165–1175.
20. Inaba, S., K. Tanabe, S. Eda, S. Ikeda, A. Higashitani, H. Mitsui, et al. 2011. Contribution of _Bradyrhizobium japonicum_ isolated from fields under paddy-upland rotation. Biol. Fertil. Soils 15:196–200.
21. Isobe, K., Y. Suwa, J. Ikutani, et al. 2011. Analytical techniques for quantifying _15N/14N_ of nitrate, nitrite, total dissolved nitrogen and ammonium in environmental samples using a gas chromatograph equipped with a quadrupole mass spectrometer. Microbes Environ. 26:46–53.
22. Isobe, K., K. Koba, S. Ueda, K. Senoo, S. Harayama, and Y. Suwa. 2011. A simple and rapid GC/MS method for the simultaneous determination of gaseous metabolites. J. Microbiol. Methods 84:46–51.
23. Itakura, M., K. Tabata, S. Eda, H. Mitsu, K. Murakami, J. Yasuda, and K. Minamisawa. 2008. Generation of _Bradyrhizobium japonicum_ mutants with increased N₂O reductase activity by selection after introduction of a mutated _dsoQ_ gene. Appl. Environ. Microbiol. 74:7258–7264.
24. Jumadi, O., Y. Hala, A. Muis, A. Ali, M. Palennari, K. Yagi, and K. Inubushi. 2008. Influences of chemical fertilizers and a nitrification inhibitor on greenhouse gas fluxes in a corn (_Zea mays_ L.) field in Indonesia. Microbes Environ. 23:29–34.
25. Kaneko, T., Y. Nakamura, S. Sato, et al. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9:189–197.

26. Katsuyma, C., N. Kondo, Y. Suwa, T. Yamagishi, M. Itoh, N. Ohte, H. Kimura, K. Nagaosa, and K. Kato. 2008. Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest. Microbes Environ. 23:337–345.

27. Kim, Y., N. Nakayama, T. Nakamura, M. Takahashi, S. Shimada, and J. Aritara. 2005. NO and N₂O emissions from fields in the different nodulated genotypes of soybean (in Japanese). Jpn. J. Crop Sci. 74:427–430.

28. Leonard, L.T. 1943. A simple assembly for use in the testing of cultures of rhizobia. J. Bacteriol. 45:523–525.

29. Lim, B.L. 2010. TonB-dependent receptors in nitrogen-fixing nodulating bacteria. Microbes Environ. 25:67–74.

30. Masuda, S., S. Eda, C. Sugawara, H. Mitsui and K. Minamisawa. 2010. The ccbI gene is required for thiosulfate-dependent autotrophic growth of Bradyrhizobium japonicum. Microbes Environ. 25:220–223.

31. Minamisawa, K., M. Itakura, M. Suzuki, K. Ichige, T. Isawa, K. Yuhashi, and H. Mitsui. 2002. Horizontal transfer of nodulation genes in soil and microcosms from Bradyrhizobium japonicum to B. elkanii. Microbes Environ. 17:82–90.

32. Mori, A., M. Hojito, H. Kondo, H. Matsuunami, and D. Scholefield. 2005. Effects of plant species on CH₄ and N₂O fluxes from a volcanic grassland soil in Nasu. Soil Sci. Plant Nutr. 51:19–27.

33. Okabe, S., M. Oshiki, Y. Kamagata, et al. 2010. A great leap forward in microbial ecology. Microbes Environ. 25:230–240.

34. Okazaki, S., M. Sugawara, and K. Minamisawa. 2004. Bradyrhizobium elkanii rtxC gene is required for expression of symbiotic phenotypes in the final step of rhizohormone biosynthesis. Appl. Environ. Microbiol. 70:535–541.

35. Okubo, T., S. Ikeda, A. Yamashita, K. Terasawa, and K. Minamisawa. 1992. Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest. Microbes Environ. 23:201–208.

36. Prentki, P., and H.M. Krisch. 1984. In vitro insertion mutagenesis with a selectable DNA fragment. Gene 29:303–313.

37. Ryder, N., T. Hashimoto, D. Ueno, K. Inoue, and T. Someya. 2011. Visualization and direct counting of individual denitrifying bacterial cells in soil by nirK-targeted direct in situ PCR. Microbes Environ. 26:74–80.

38. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

39. Saeki, Y., S. Ozumi, A. Yamamoto, Y. Umehara, M. Hayashi, and G.C. Sigua. 2010. Changes in population occupancy of bradyrhizobia under different temperature regimes. Microbes Environ. 25:309–312.

40. Sameshima-Saito, R., K. Chiba, and K. Minamisawa. 2006. Complete genome sequence of Bradyrhizobium japonicum reduces N₂O surrounding the soybean root system via nitrous oxide reductase. Appl. Environ. Microbiol. 72:2526–2532.

41. Schäfer, A., A. Tauch, W. Jäger, J. Kalinowski, G. Thierbach, and A. Pühler. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73.

42. Shoun, H., D.H. Kim, H. Uchiyama, and J. Sugiyama. 1992. Denitrification by fungi. FEMS Microbiol. Lett. 73:277–281.

43. Smith, K.A., P.J. Crutzen, A.R. Mosier, and W. Winigerter. 2010. The global nitrous oxide budget: A reassessment, p 63–84. In Smith KA (ed), Nitrous Oxide and Climate Change. Earthscan, London, UK.

44. Smith, P., and D. Martino. 2007. Chapter 8. Agriculture, p. 506–507. In B. Mets, O. Davidson, P. Bosch, R. Dave, and L. Meyer (ed.), Climate Change 2007 Mitigation, The Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY.

45. Takahashi, M., T. Yamada, M. Tanoo, H. Tsuji, and A. Hiroiashi. 2011. Pyrosequencing and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields. Microbes Environ. 26:30–35.

46. Takahashi, M., T. Yamada, M. Tanoo, H. Tsuji, and A. Hiroiashi. 2011. Pyrosequencing and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields. Microbes Environ. 26:30–35.

47. Takaya, N., and H. Shoun. 2000. Nitric oxide reduction, the last step of rhizohormone biosynthesis. Appl. Environ. Microbiol. 66:353–354.

48. Takaya, N., and H. Shoun. 2000. Nitric oxide reduction, the last step of rhizohormone biosynthesis. Appl. Environ. Microbiol. 66:353–354.

49. Tago, K., S. Ishii, T. Nishizawa, S. Otsuka, and K. Senoo. 2011. Phylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields. Microbes Environ. 26:30–35.

50. Tago, K., S. Ishii, T. Nishizawa, S. Otsuka, and K. Senoo. 2011. Phylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields. Microbes Environ. 26:30–35.

51. Takaya, N., and H. Shoun. 2000. Nitric oxide reduction, the last step of rhizohormone biosynthesis. Appl. Environ. Microbiol. 66:353–354.

52. Thieme, F., R. Koebnik, T. Bekel, et al. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187:7254–7266.

53. Trung, B.C., and S. Yoshida. 1983. Improvement of Leonard jar assembly for screening of effective Rhizobium. Soil Sci. Plant Nutr. 29:97–100.

54. van Berkum, P., and H.H. Kayser. 1985. Anaerobic growth and denitrification among different serogroups of soybean rhizobia. Appl. Environ. Microbiol. 49:772–777.

55. Yang, L., and Z. Cai. 2005. The effect of growing soybean (Glycine max. L.) on N₂O emission from soil. Soil Biol. Biochem. 37:1205–1209.

56. Ye, B., A. Saito, and K. Minamisawa. 2005. Effect of inoculation with anaerobic nitrogen-fixing consortium on salt tolerance of Mucor racemosus. Soil Sci. Plant Nutr. 51:243–248.

57. Yoshida, M., S. Ishii, S. Otsuka, and K. Senoo. 2010. nirK-harbouring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirS-harbouring bacteria. Microbes Environ. 25:45–48.

58. Zhaorigetu, M. Komatsuzaki, Y. Sato, and H. Ohta. 2008. Relationships between fungal biomass and nitrous oxide emission in upland rice soils under no tillage and cover cropping systems. Microbes Environ. 23:201–208.