Approximate transitivity of the ergodic action of the group of finite permutations of \(\mathbb{N}\) on \(\{0, 1\}^\mathbb{N}\)

B. MITCHELL BAKER†, THIERRY GIORDANO‡ and RADU B. MUNTEANU§¶
† Mathematics Department, U.S. Naval Academy, Chauvenet Hall, 572C Holloway Road, Annapolis, MD 21402-5002, USA
(e-mail: bmb@usna.edu)
‡ Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N 6N5
(e-mail: giordano@uottawa.ca)
§ Department of Mathematics, University of Bucharest, 14 Academiei Street, 010014, Bucharest, Romania
¶ Simion Stoilow Institute of Mathematics of the Romanian Academy, 21 Calea Grivitei Street, 010702, Bucharest, Romania
(e-mail: radu-bogdan.munteanu@g.unibuc.ro)

(Received 19 June 2017 and accepted in revised form 9 January 2018)

Abstract. In this paper we show that the natural action of the symmetric group acting on the product space \(\{0, 1\}^\mathbb{N}\) endowed with a Bernoulli measure is approximately transitive. We also extend the result to a larger class of probability measures.

1. Introduction
In 1985, Connes and Woods introduced in [CW1] the notion of an approximately transitive (AT) action, a new ergodic property, to characterize, among approximately finite-dimensional (AFD) von Neumann algebras, the Araki–Woods (or ITPFI) factors. Equivalently, using Krieger’s result from [K] (see [HO] or [S] for a detailed description), their result says that a countable, ergodic, non-singular equivalence relation on a Lebesgue space is orbit equivalent to the ergodic equivalence relation induced by a product odometer if and only if its associated flow is AT. In 1989, for a locally compact group \(G\), Connes and Woods [CW2] proved that the asymptotic boundary of a group invariant, time-dependent Markov random walk on \(G\) is an approximately transitive, amenable \(G\)-space. The converse statement was proved in two steps. First, that any amenable \(G\)-action can be realized as the asymptotic boundary of a generalized or matrix-valued random walk on \(G\) was proved in [EG1] in the discrete case and in [AEG] for \(G\) locally compact.
Then the characterization of an AT, amenable (ergodic) G-space as the asymptotic boundary of a random walk was given in [EG2]; a different proof, for G discrete, was given in [GH].

In [CW1] Connes and Woods proved that any funny rank-one (a generalization of rank-one) transformation is AT and that any AT transformation has zero entropy. Apart from some recent results [AL, DQ], there are not many known ‘concrete’ examples of AT group actions.

Let $S_\infty = \bigcup_{k \geq 1} S_k$ be the group of finite permutations of $\mathbb{N} = \{1, 2, 3, \ldots\}$ and let (X, \mathcal{B}, ν) be the product space $\prod_{k \geq 1} \{0, 1\}$ endowed with the product σ-algebra and the product probability measure $\nu = \bigotimes_{k \geq 1} \nu_k$.

In this paper we concentrate our attention on the following well-known action of S_∞ on the product space (X, \mathcal{B}, ν) that associates to each permutation $\sigma \in S_\infty$ a non-singular automorphism of (X, ν) (also denoted σ and) defined by

$$\sigma(x_1, x_2, x_3, \ldots) = (x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, \ldots) \quad \text{for} \quad x = (x_k)_{k \geq 1} \in X. \quad (1)$$

Before stating the main result of this paper, let us recall the definition of approximate transitivity.

Definition 1. [CW1] An action σ of a Borel group G on a Lebesgue measure space (X, ν) is approximately transitive if, given $n < \infty$, functions $f_1, f_2, \ldots, f_n \in L^1(X, \nu)$ and $\varepsilon > 0$, there exist a function $f \in L^1(X, \nu)$, elements $g_1, \ldots, g_m \in G$ for some $m < \infty$, and $\lambda_{j,k} \geq 0$, for $k = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$, such that

$$\left\| f_j - \sum_{k=1}^m \lambda_{j,k} \beta_{g_k}(f) \right\| \leq \varepsilon, \quad j = 1, \ldots, n,$$

where $\| \cdot \|$ represents the L^1 norm and $\beta_{g_k}(f)(x) = f \circ \alpha_{g_k}^{-1}(x)((d\mu \circ g_k^{-1})/d\mu)(x)$.

Recall that Bernoulli measures on $X = \prod_{k \geq 1} \{0, 1\}$ are the product measures $\nu_\lambda = \bigotimes_{k \geq 1} \nu_{\lambda,k}$, with $\nu_{\lambda,k}(0) = 1/(1 + \lambda)$ and $\nu_{\lambda,k}(1) = \lambda/(1 + \lambda)$, where $0 < \lambda \leq 1$.

Our main result, proved in §3, is the following theorem.

Theorem 1. For $0 < \lambda \leq 1$, the natural action of S_∞ on (X, ν_λ) is approximately transitive.

In §4 we generalize our main result to a larger class of product probability measures and show that the corresponding associated flow of S_∞ is AT.

2. **Preliminaries**

Throughout this section, (X, ν) will denote the Lebesgue space $X = \prod_{k \geq 1} \{0, 1\}$ and ν the product measure $\nu = \bigotimes_{k \geq 1} \nu_k$, with $\nu_k(0) = 1/(1 + \lambda_k)$ and $\nu_k(1) = \lambda_k/(1 + \lambda_k)$, $0 < \lambda_k \leq 1$. In this section we prove some technical results we will need in §3.

Lemma 2.1. Let (X, ν) be as above. For $0 \leq r \leq n$, let $A(n, r) = \{x \in X : \# \{1 \leq k \leq n : x_k = 1\} = r\}$ denote the union of cylinder sets on n symbols with exactly r 1s. Then

$$\nu(A(n, r)) < \left(\frac{\pi}{\sum_{k=1}^n \lambda_k}\right)^{1/2}, \quad 0 \leq r \leq n.$$
Proof. Let
\[P_n(t) = \prod_{k=1}^{n} \left(\frac{1}{1 + \lambda_k} + \frac{\lambda_k}{1 + \lambda_k} e^{it} \right). \]

Then it is easy to check that
\[v(A(n, r)) = \frac{1}{2\pi} \int_{0}^{2\pi} P_n(t)e^{-irt} \, dt. \]

As \(0 < \lambda_k \leq 1\), we have
\[v(A(n, r)) \leq \frac{1}{2\pi} \int_{0}^{2\pi} |P_n(t)| \, dt \]
\[= \frac{1}{2\pi} \int_{0}^{2\pi} \prod_{k=1}^{n} \left(1 - \frac{2\lambda_k}{1 + \lambda_k} \right) \left(1 - \cos t \right)^{1/2} \, dt \]
\[\leq \frac{1}{2\pi} \int_{0}^{2\pi} \left\{ \prod_{k=1}^{n} \left(1 - \frac{(1 - \cos t) \lambda_k}{2} \right) \right\}^{1/2} \, dt. \]

Now note that \(\sqrt{1 - x} \leq 1 - x/2\) and \(\log(1 - x) \leq -x\) for \(0 < x < 1\), and so
\[v(A(n, r)) \leq \frac{1}{\pi} \int_{0}^{\pi} \exp \left(\frac{(\cos t - 1)}{4} \sum_{k=1}^{n} \lambda_k \right) \, dt \]
\[= \frac{1}{\pi} \int_{0}^{\pi} \exp \left(\frac{(\cos t - 1)}{4} \sum_{k=1}^{n} \lambda_k \right) \, dt \]
as \(\cos t - 1\) is symmetric about \(t = \pi\). Since \(-t^2/\pi^2 \geq \cos t - 1\) for \(0 \leq t \leq \pi\), we have
\[v(A(n, r)) \leq \frac{1}{\pi} \int_{0}^{\pi} e^{-\left(\sum_{k=1}^{n} \lambda_k\right)t^2/4\pi^2} \, dt \]
\[< \frac{1}{\pi} \int_{0}^{\infty} e^{-\left(\sum_{k=1}^{n} \lambda_k\right)t^2/4\pi^2} \, dt \]
\[= \left(\frac{\pi}{\sum_{k=1}^{n} \lambda_k} \right)^{1/2}. \]

\[\square \]

Lemma 2.2. Let \((X, \nu)\) be as above and \(p\) be a fixed positive integer. Then, for \(n \geq p\),
\[\sum_{r=p}^{n} |v(A(n, r)) - v(A(n, r - p))| < 2p \left(\frac{\pi}{\sum_{k=1}^{n} \lambda_k} \right)^{1/2}. \]

Proof. Let
\[P_n(t) = \prod_{k=1}^{n} \left(\frac{1}{1 + \lambda_k} + \frac{\lambda_k}{1 + \lambda_k} e^{ikt} \right) = \sum_{k=0}^{n} \alpha_k e^{ikt} \]
with \(\alpha_k = v(A(n, k))\). Then, for \(p \leq n\),
\[\| (1 - e^{ipt}) P_n \|_1 = |\alpha_0| + |\alpha_1| + \cdots + |\alpha_{p-1}| \]
\[+ \sum_{r=p}^{n} |\alpha_r - \alpha_{r-p}| + |\alpha_{n-p+1}| + \cdots + |\alpha_n|, \]
where $\| \cdot \|_1$ denotes the Fourier 1-norm, that is, the sum of the absolute values of the Fourier coefficients. Thus

$$\sum_{r=p}^{n} |\nu(A(n, r)) - \nu(A(n, r-p))| = \sum_{r=p}^{n} |\alpha_r - \alpha_{r-p}|$$

\[\leq \left\| (1 - e^{it}) P_n \right\|_1 = \left\| \sum_{m=0}^{p-1} e^{imt} (1 - e^{it}) P_n \right\|_1 \]

\[\leq \sum_{m=0}^{p-1} \left\| e^{imt} (1 - e^{it}) P_n \right\|_1 = p \left(1 - e^{it}\right) P_n \left\|_1.\right]

Now, by [B, Lemma 3.18 and Proposition 3.19], we have

$$\left\| (1 - e^{it}) P_n \right\|_1 = 2 \max_{0 \leq r \leq n} \alpha_r = 2 \max_{0 \leq r \leq n} \nu(A(n, r)),$$

and by the above lemma, we conclude that

$$\sum_{r=p}^{n} |\nu(A(n, r)) - \nu(A(n, r-p))| < 2p \left(\frac{\pi}{\sum_{k=1}^{n} \lambda_k}\right)^{1/2}.$$

The lemma is proved. □

Remark 2.1. Lemmas 2.1 and 2.2 are certainly well known to probabilists.

For $\lambda \in (0, 1]$ and the measure $\nu_{\lambda} = \otimes \nu_{\lambda, k}$ (with $\nu_{\lambda, k}(0) = 1/(1 + \lambda)$, $\nu_{\lambda, k}(1) = \lambda/(1 + \lambda)$), we have

$$\nu_{\lambda}(A(n, r)) = \binom{n}{r} \frac{\lambda^r}{(1 + \lambda)^n}.$$

Hence, from Lemmas 2.1 and 2.2 we have the following corollary.

Corollary 2.1. Let p be a positive integer and $\lambda \in (0, 1]$. Then:

1. \[
\binom{p}{r} \frac{\lambda^r}{(1 + \lambda)^p} \leq \left(\frac{\pi(1 + \lambda)}{p\lambda}\right)^{1/2} \] for every $0 \leq r \leq p$;

2. \[
\sum_{r=n}^{p} \left| \binom{p}{r} \frac{\lambda^r}{(1 + \lambda)^p} - \binom{p}{r-n} \frac{\lambda^{r-n}}{(1 + \lambda)^p} \right| \leq 2n \left(\frac{\pi(1 + \lambda)}{p\lambda}\right)^{1/2} \] for every $0 < n \leq p$.

3. Main result

Let $0 < \lambda \leq 1$ and $\nu_{\lambda} = \otimes_{k \geq 1} \nu_{\lambda, k}$ be a Bernoulli measure on $X = \prod_{k=1}^{\infty} \{0, 1\}$. Recall (see, for example, [AP] or [SV]) that the natural action of S_∞ on (X, ν_{λ}) is then ergodic and measure preserving. Moreover, any S_∞-invariant, ergodic probability measure on X is a Bernoulli measure. In this section, we prove the theorem stated in the introduction.
Theorem 3.1. The natural action of S_{∞} on (X, v_λ) is approximately transitive.

Let us introduce notation we will need below. For $n \geq 1$, let $X^n = \prod_{i=1}^{n} \{0, 1\}$. For $x = (x_1, x_2, \ldots, x_n) \in X^n$, let

$$C(x) = \{y \in X : y_i = x_i, i = 1, 2, \ldots, n\}$$

denote the (elementary) cylinder set of length n whose first n symbols are given by x. Let

$$S_n^+ = \left\{ \sum_{x \in X^n} \alpha_x \chi_{C(x)} : \alpha_x \in \mathbb{R}_+ \right\}.$$

Note that for $m \geq n$, every cylinder set of length n decomposes into a disjoint union of cylinders of length m, and so $S_n^+ \subseteq S_m^+$.

The proof of Theorem 3.1 will follow from the following two technical lemmas. The first is well known and we omit its proof.

Lemma 3.1. Let $f \in L^1_+(X, \nu)$ be a non-negative real-valued function. Then, for every $\varepsilon > 0$, there exist $n \geq 1$ and $g \in S_n^+$ such that $\|f - g\| \leq \varepsilon$.

Lemma 3.2. For each $n \geq 1$ and $0 < \varepsilon \leq 1$, there exist a positive integer p, a function $f \in S_p^+$, a finite subset $S \subset S_{\infty}$ and non-negative constants $a_{x, \sigma}$, for $x \in X^n$ and $\sigma \in S$, such that, for all $x \in X^n$,

$$\left\| \chi_{C(x)} - \sum_{\sigma \in S} a_{x, \sigma} \chi_{S}(f) \right\| \leq \varepsilon \|\chi_{C(x)}\|.$$

Proof. For $x = (x_1, \ldots, x_n) \in X^n$, define $\#(x)$ to be the number of 1s in the n-tuple. Let $0 < \varepsilon \leq 1$ be given and choose a positive integer p such that

$$p \geq \max \left\{2n, \frac{\pi(1 + \lambda)}{\lambda} \cdot \frac{18n^2}{\varepsilon^2} \right\}.$$

For $i \in \{0, 1\}$, to simplify the notation, we will write u_i for a string of l 1s. For $n \leq j \leq p - n$, let $C(p, j)$ denote the cylinder set $C(1, 0_{p-j})$ and define $f \in S_p^+$ by

$$f = \sum_{j=n}^{p-n} \frac{(p-n)}{(p-n)!} \chi_{C(p, j)}.$$

For each $x \in X^{k_n}$, let $x^{-1}(0)$ denote the set $\{j \in \{1, 2, \ldots, k_n\} : x_j = 0\}$ and consider the permutation σ_x given by

$$\sigma_x = \prod_{j \in x^{-1}(0)} (j, p-n+j)$$

where (a, b) denotes the transposition between a and b.

By construction, for $n \leq j \leq p-n$, we have

$$\sigma_x(C(p, j)) = C(x, 1_{j-n}, 0_{p-n-j}, \bar{x})$$

where if $x = (x_1, x_2, \ldots, x_n)$, then $\bar{x} = (1-x_1, 1-x_2, \ldots, 1-x_n)$ (the subtraction is computed modulo 2).
Recall that, for $0 \leq j \leq p$, $A(p, j)$ denotes the union of all cylinders on p symbols with exactly j 1s. If

$$S_{n, p} = \{ \tau \in S_\infty : \tau(i) = i, 1 \leq i \leq n \text{ or } i \geq p + 1 \},$$

then from (2) we get, for $n \leq j \leq p - n$,

$$\bigcup_{\tau \in S_{n, p}} \tau \sigma_x(C(p, j)) = C(x) \cap A(p, j).$$

Moreover, the stabilizer in $S_{n, p}$ of $(x, 1_{j-n}, 0_{p-n-j}, \bar{x})$ is isomorphic to the product of the symmetric groups S_{j-k} and $S_{p-n-j+k}$, where $k = \#(x)$. Then

$$\sum_{\tau \in S_{n, p}} \chi_{\tau \sigma_x(C(p, j))} = (j-k)!(p-n-j+k)! \chi_{C(x) \cap A(p, j)} = \frac{(p-n)!}{(j-k)!} \chi_{C(x) \cap A(p, j)}.$$

By definition (1) of f, we then have

$$\sum_{\tau \in S_{n, p}} \beta_{\tau \sigma_x}(f) = \sum_{j=n}^{p-n} \frac{(p-n)}{(j-k)} \chi_{C(x) \cap A(p, j)}. \quad (3)$$

Note that, for $k \leq j \leq p - (n - k)$,

$$\| \chi_{C(x) \cap A(p, j)} \| = \| \chi_{C(x)} \| \frac{(p-n) j-k}{(1 + \lambda)^{p-n}}. \quad (4)$$

Let $B(p, n) = \bigcup_{j=n}^{p-n} A(p, j)$. By Corollary 2.1, we have

$$v_\lambda(B(p, n)^c \cap C(x)) = v_\lambda \left(\bigcup_{j=k}^{n-1} (C(x) \cap A(p, j)) \right) + v_\lambda \left(\bigcup_{j=n+1}^{p-n-k} (C(x) \cap A(p, j)) \right)$$

$$= \left[\sum_{j=k}^{n-1} \binom{p-n}{j} \frac{\lambda^{j-k}}{(1 + \lambda)^{p-n}} + \sum_{j=n+1}^{p-n-k} \binom{p-n-k}{j} \frac{\lambda^{j-k}}{(1 + \lambda)^{p-n}} \right] \| \chi_{C(x)} \|$$

$$\leq n \left(\frac{(1 + \lambda)}{(p-n) \lambda} \right)^{1/2} \| \chi_{C(x)} \|. \quad (5)$$

From (3), (4), Corollary 2.1 and as $k \leq n$,

$$\| \chi_{C(x) \cap B(n, p)} - \lambda^k \sum_{\tau \in S_{n, p}} \beta_{\tau \sigma_x}(f) \| \leq \| \sum_{j=n}^{p-n} \left(1 - \lambda^k \frac{(p-n)}{(j-k)} \right) \chi_{C(x) \cap A(n, j)} \|$$

$$\leq \| \chi_{C(x)} \| \sum_{j=n}^{p-n} \left| \frac{(p-n)}{j-k} \frac{\lambda^{j-k}}{(1 + \lambda)^{p-n}} - \frac{(p-n)}{j} \frac{\lambda^j}{(1 + \lambda)^{p-n}} \right|$$

$$\leq \| \chi_{C(x)} \| \sum_{j=k}^{p-n} \left| \frac{(p-n)}{j-k} \frac{\lambda^{j-k}}{(1 + \lambda)^{p-n}} - \frac{(p-n)}{j} \frac{\lambda^j}{(1 + \lambda)^{p-n}} \right|$$

$$\leq 2k \| \chi_{C(x)} \| \left(\frac{(1 + \lambda)}{(p-n) \lambda} \right)^{1/2} \leq 2n \| \chi_{C(x)} \| \left(\frac{(1 + \lambda)}{(p-n) \lambda} \right)^{1/2}.$$
By (5) and the choice of p, we get
\[
\|\chi_{C(x)} - \lambda^k \sum_{\tau \in S_{n,p}} \beta_{\tau \sigma_x} (f)\| \\
\leq \|\chi_{C(x) \cap B(n, p)^c}\| + \|\chi_{C(x) \cap B(n, p)} - \lambda^k \sum_{\tau \in S_{n,p}} \beta_{\tau \sigma_x} (f)\| \\
\leq \varepsilon \|\chi_{C(x)}\|.
\]

The proof of the lemma is completed by letting S be the (disjoint) union of $S_{n, p} \sigma_x$, $x \in X^n$ and
\[
a_{x, \sigma} = \begin{cases}
\lambda^{\#(x)} & \text{if } \sigma \in S_{n, p} \sigma_x, \\
0 & \text{if not.}
\end{cases}
\]

Proof of Theorem 3.1. Consider an arbitrary finite collection f_1, f_2, \ldots, f_m of functions from $L^1_+(X, \nu)$ and $\varepsilon > 0$. Choose $\eta > 0$ such that $(1 + \|f_j\|) \cdot \eta \leq \varepsilon$ for all j. By Lemma 3.1, there exist $n \geq 1$ and non-negative coefficients $\lambda_{j,x}$ such that
\[
\|f_j\| = \sum_{x \in X^n} \lambda_{j,x} \|\chi_{C(x)}\| \quad \text{and} \quad \|f_j - \sum_{x \in X^n} \lambda_{j,x} \chi_{C(x)}\| \leq \eta, \quad j = 1, 2, \ldots, m.
\]

By Lemma 3.2 there exist $f \in L^1_+(X, \nu)$, a finite set S of elements of S_∞ and reals $a_{x, \sigma} \geq 0$, $x \in X^n$, $\sigma \in S$, which satisfy
\[
\|\chi_{C(x)} - \sum_{\sigma \in S} a_{x, \sigma} \beta_{\sigma} (f)\| \leq \eta \|\chi_{C(x)}\| \quad \text{for all } x \in X^n.
\]

Then, for $j = 1, 2, \ldots, n$, we obtain
\[
\|f_j - \sum_{x \in X^n} \sum_{\sigma \in S} \lambda_{j,x} a_{x, \sigma} \beta_{\sigma} (f)\| \\
\leq \|f_j - \sum_{x \in X^n} \lambda_{j,x} \chi_{C(x)}\| + \sum_{x \in X^n} \lambda_{j,x} \|\chi_{C(x)} - \sum_{\sigma \in S} a_{x, \sigma} \beta_{\sigma} (f)\| \\
\leq \eta \cdot \left(1 + \sum_{x \in X^n} \lambda_{j,x} \|\chi_{C(x)}\|\right) = \eta (1 + \|f_j\|) \leq \varepsilon.
\]

Hence the action of S_∞ on (X, ν) is AT. \[\square\]

4. **Generalizations**

In this section we generalize Theorem 3.1 for a larger class of probability measures on $X = \prod_{k \geq 1} \{0, 1\}$, and show that the associated flow of S_∞ is AT for this class of measures. Let $(L_n)_{n \geq 1}$ be a sequence of positive integers and $(\lambda_n)_{n \geq 1}$ be a sequence of real numbers in $(0, 1]$. Then $\nu = \nu(L_n, \lambda_n)$ will denote the product measure on $X = \prod_{k \geq 1} \{0, 1\} = \prod_{n \geq 1} \prod_{1}^{L_n} \{0, 1\}$, given by
\[
\nu(L_n, \lambda_n) = \bigotimes_{n \geq 1} \nu_{\lambda_n}^{\otimes L_n}.
\]
where \(v_{\lambda_n}(0) = 1/(1 + \lambda_n) \) and \(v_{\lambda_n}(1) = \lambda_n/(1 + \lambda_n) \). In this section we will assume that
\[
\sup\{L_n\lambda_n : n \geq 1\} = \infty. \tag{6}
\]

Recall (see [SV] or [AP]) that \(\nu(L_n, \lambda_n) \) is an \(S_{\infty} \)-ergodic, non-atomic measure on \(X \) if and only if \(\sum_{n \geq 1} L_n\lambda_n = \infty \).

The following lemma and its proof are a generalization of Lemma 3.2. We will use the following notation. Set \(k_0 = 0 \) and, for \(n \geq 1 \),
\[
k_n = \sum_{k=1}^{n} L_k.
\]
Recalling that, for \(n \geq 1 \),
\[
X^n = \prod_{k=1}^{n} \{0, 1\},
\]
we set for \(x \in X^n \) and \(z \in X^{L_i} \), we set for \(n \geq 1 \):
\[
C(x) = \{y \in X : y_j = x_j \text{ for } 1 \leq j \leq k_n\},
\]
\[
C(z(L_i)) = \{y \in X : y_{k_{i-1}+i} = z_i \text{ for } 1 \leq i \leq L_i\}
\]
and, for \(m > n \),
\[
C(x, z(L_m)) = C(x) \cap C(z(L_m)).
\]

Lemma 4.1. Let \((X, \nu)\) be as above. Then, for each \(n \geq 1 \) and \(\varepsilon > 0 \), there exist a function \(f \in L^1_+(X, \nu) \), a finite subset \(S \subset S_{\infty} \) and non-negative constants \(a_{x, \sigma} \), for \(x \in X^n \) and \(\sigma \in S \), such that
\[
\left\| \chi_{C(x)} - \sum_{\sigma \in S} a_{x, \sigma} \beta_{\sigma}(f) \right\| \leq \varepsilon \left\| \chi_{C(x)} \right\|
\]
for all \(x \in X^n \).

Proof. Let \(n \geq 1 \) and \(0 < \varepsilon < 1 \). By (6), we can choose an integer \(m \geq 1 \) such that
\[
3k_n \left(\frac{\pi(1 + \lambda_m)}{L_{m}\lambda_m} \right)^{1/2} \leq \varepsilon. \tag{7}
\]

Notice that \(k_n < L_m \). For \(0 \leq j \leq L_m - k_n \) and \(\tilde{z}_j = (1_j, 0_{L_m-j}) \in X^{L_m} \), set
\[
C(n, m, j) = C(1_{k_n}) \cap C(\tilde{z}_j(L_m))
\]
and
\[
C(n, m) = \bigcup_{j=0}^{L_m-k_n} C(n, m, j).
\]

We then define the function \(f \in L^1_+(X, \nu) \) by
\[
f = \sum_{j=0}^{L_m-k_n} \frac{L_m}{L_m!} \chi_{C(n, m, j)}, \tag{8}
\]
whose support is \(C(n, m) \). For an arbitrary \(x \in X^n \), let \(x^{-1}(0) \) denote the set \(\{j \in [1, 2, \ldots, k_n] : x_j = 0\} \) and consider the permutation \(\sigma_x \) given by
\[
\sigma_x = \prod_{j \in x^{-1}(0)} (j, k_m - k_n + j)
\]
where \((a, b)\) denotes the transposition between \(a \) and \(b \). For all \(0 \leq j \leq L_m - k_n \), set
\[
z_j = (1_j, 0_{L_m-k_n-j}, \tilde{x}),
\]
where \(\bar{x} = (1 - x_1, 1 - x_2, \ldots, 1 - x_{k_n}) \in X^{k_n} \) (the subtraction is computed modulo 2). Then, by construction,

\[
\sigma_x(C(n, m, j)) = C(x, z_j(L_m))
\]

and, for every \(y \in C(x, z_j(L_m)) \),

\[
\frac{dv \circ \sigma_x^{-1}(y)}{dv} = \prod_{k \geq 1} \frac{v_k(\sigma_x^{-1}(y)_k)}{v_k(y_k)}
\]

\[
= \prod_{j \in x^{-1}(0)} \frac{v_j(y_{km-kn+j})}{v_j(y_j)} \frac{v_{km-kn+j}(y_j)}{v_{km-kn+j}(y_{km-kn+j})}
\]

\[
= \prod_{j \in x^{-1}(0)} \frac{v_j(1)}{v_j(0)} \frac{v_{km-kn+j}(0)}{v_{km-kn+j}(1)} = \prod_{j \in x^{-1}(0)} v_j(1) \lambda_m^{-1}
\]

and therefore is constant on \(\sigma_x(C(n, m)) \); let \(D_x \) be this constant. By definition of \(f \), we have

\[
\beta_{\sigma_x}(f) = \sum_{j=0}^{L_m-k_n \frac{L_m}{L_m+1}} \chi_{C(x, z_j(L_m))} D_x.
\]

Let \(S(L_m) \) be the subgroup of \(S_\infty \) of permutations \(\sigma \) such that \(\sigma(i) = i \), for \(i \notin \{k_{m-1} + 1, \ldots, k_m\} \). For \(0 \leq l \leq L_m \), set

\[
A(x, m, l) = C(x) \bigcap \{ y \in X : \text{card}\{i : k_{m-1} + 1 \leq i \leq k_m, y_i = 1\} = l \}.
\]

Then it is easy to observe that, for \(0 \leq j \leq L_m - k_n \)

\[
\bigcup_{\tau \in S(L_m)} \tau(C(x, z_j(L_m))) = A(x, m, k_n - k + j),
\]

where \(k = \sum_{i=1}^{k_n} x_i = \text{card}\{i : 1 \leq i \leq k_n, x_i = 1\} \). As the stabilizer in \(S(L_m) \) of \(z_j \) is isomorphic to \(S_{j+k_n-k} \times S_{L_m-k_n-j+k} \), we have, for \(0 \leq j \leq L_m - k_n \),

\[
\sum_{\tau \in S(L_m)} \chi_{\tau(C(x, z_j(L_m)))} = (k_n - k + j)!(L_m - k_n - j + k)! \chi_{A(x, m, k_n-k+j)}
\]

\[
= \frac{L_m!}{(k_n-k+j)!} \chi_{A(x, m, k_n-k+j)}.
\]

Any \(\tau \in S(L_m) \) being \(v \)-measure preserving, we get

\[
\sum_{\tau \in S(L_m)} \beta_{\tau \sigma_x}(f) = \sum_{j=0}^{L_m-k_n} D_x \frac{L_m}{(k_n-k+j)} \chi_{A(x, m, k_n-k+j)}.
\]

Note that, for \(0 \leq j \leq L_m \),

\[
\| \chi_{A(x, m, j)} \| = \| \chi_{C(x)} \| \left(\frac{L_m}{j} \right) \frac{\lambda_m^j}{(1 + \lambda_m) L_m}.
\]
Let $B(x, m) = \bigcup_{j=k_n^0 - k}^{L_m^0} A(x, m, j) = \bigcup_{j=0}^{L_m^0-k} A(x, m, k_n - k + j)$. From (11) and (12), we easily get

$$\|\chi C(x) \cap B(x, m) - \frac{\lambda_m^k}{D_x} \sum_{\tau \in S(L_m)} \beta_{\tau \sigma_x}(f)\| \leq \sum_{j=0}^{L_m^0-k} \left| \frac{\lambda_m^{k_n-k+j}}{(L_m^0+k_n-j)(1+\lambda_m)_{L_m^0} - (k_n^0+j)(1+\lambda_m)_{L_m^0}} \right| \|\chi C(x)\|.$$

Then, by Corollary 2.1,

$$\|\chi C(x) \cap B(x, m) - \frac{\lambda_m^k}{D_x} \sum_{\tau \in S(L_m)} \beta_{\tau \sigma_x}(f)\| \leq 2k_n \left(\frac{\pi(1+\lambda_m)}{L_m^0 \lambda_m^0} \right)^{1/2} \|\chi C(x)\|. \quad (13)$$

and

$$\|\chi C(x) \cap B(x, m)^c\| = \sum_{j=0}^{k_n^0-k-1} \|\chi A(x, m, j)\| + \sum_{j=L_m^0-k+1}^{L_m^0} \|\chi A(x, m, j)\| \leq k_n \left(\frac{\pi(1+\lambda_m)}{L_m^0 \lambda_m^0} \right)^{1/2} \|\chi C(x)\|. \quad (14)$$

Therefore, by (7), (13) and (14), we get

$$\left\|\chi C(x) - \frac{\lambda_m^k}{D_x} \sum_{\tau \in S(L_m)} \beta_{\tau \sigma_x}(f)\right\| \leq 3k_n \left(\frac{\pi(1+\lambda_m)}{L_m^0 \lambda_m^0} \right)^{1/2} \|\chi C(x)\| \leq \varepsilon\|\chi C(x)\|. \quad \square$$

We let S be the (disjoint) union of $S(L_m)\sigma_x$, $x \in X^\sigma$ and we define

$$a_{x, \sigma} = \begin{cases} \frac{\lambda_m^k}{D_x} & \text{if } \sigma = \tau \sigma_x, \tau \in S(L_m), \\ 0 & \text{otherwise}. \end{cases}$$

By Lemmas 4.1 and 3.1, we then get the following theorem.

THEOREM 4.1. Let $\nu = \nu(L_n, \lambda_n)$ be a product probability measure on X satisfying

$$\sup\{L_n \lambda_n : n \geq 1\} = \infty.$$

Then the natural action of S_∞ on (X, ν) is AT.

Remark 4.1. Keeping the notation of Lemma 4.1 and its proof, note that, for any $\sigma \in S \subset S_\infty$, the Radon-Nikodym derivative $d\nu \circ \sigma^{-1}/d\nu$ is constant on $\sigma(C(n, m))$, where $C(n, m)$ is the support of f. Indeed, S is the disjoint union of $S(L_m)\sigma_x$, for $x \in X^\sigma$. Moreover, any $\tau \in S(m)$ is ν-measure preserving and

$$\frac{d\nu \circ \sigma^{-1}_x}{d\nu}(y) = D_x = \prod_{j \in x^{-1}(0)} \frac{\nu_j(1)}{\nu_j(0)} \lambda_m^{-1} \quad \text{for } y \in \sigma_x(C(n, m)).$$
Recall that the associated flow of a non-singular action of a countable discrete group G on a Lebesgue space (X, ν) is the Mackey range of the Radon–Nikodym cocycle of the G-action on (X, ν). More precisely, on $(X \times \mathbb{R}, \nu \otimes e^u du)$, let us denote by γ the action of G and by ρ the action of \mathbb{R}, given by

$$\gamma_g(x, t) = \left(gx, t - \log \frac{d\mu \circ g}{d\mu}(x) \right)$$

and

$$\rho_s(x, t) = (x, t + s).$$

As ρ commutes with the G-action γ, it induces an \mathbb{R}-action on the ergodic decomposition of the (infinite measure preserving) action γ, which is the associated flow of the action of G on (X, ν). Let

$$\tilde{\gamma}_{g, s}(x, t) = \left(gx, t + s - \log \frac{d\mu \circ g}{d\mu}(x) \right)$$

be the skew product action $\tilde{\gamma}$ of $G \times \mathbb{R}$ on $(X \times \mathbb{R}, \nu \otimes \mu)$, where $d\mu = e^u du$.

As by [CW1, Remark 2.4], any factor action of an AT action is AT, to prove that the associated flow of a G-action on (X, ν) is AT it is sufficient to show that the above skew product action $\tilde{\gamma}$ is AT.

We introduce in Definition 4.2 a strong version of AT, which we denote by $\tilde{\gamma}T$, and show in Proposition 3.5 that if a non-singular G-action is $\tilde{\gamma}T$, its associated skew product $(G \times \mathbb{R})$-action is AT.

Definition 4.2. Let (X, ν, G) be a non-singular action of a countable discrete group G on a Lebesgue space (X, ν). Then the action is $\tilde{\gamma}T$ if, given $n < \infty$, functions $f_1, f_2, \ldots, f_n \in L^1_+(X, \nu)$ and $\varepsilon > 0$, there exist a function $f \in L^1_+(X, \nu)$, elements $g_1, \ldots, g_m \in G, s_1, \ldots, s_m > 0$ for some $m < \infty$, and $\lambda_{j,k} \geq 0$, for $k = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$, such that

$$\left\| f_j - \sum_{k=1}^m \lambda_{j,k} g_k(f) \right\| \leq \varepsilon,$$

and

$$\frac{dv \circ g_k^{-1}}{dv}(x) = s_k, \quad \nu\text{-almost every } x \in g_k(Supp(f)), \quad k = 1, \ldots, m,$$

where $Supp(f)$ denotes the support of f.

Proposition 4.1. Let (X, ν, G) be a non-singular $\tilde{\gamma}T$ action of a countable group G on a Lebesgue space (X, ν). Let μ denote the measure on \mathbb{R} given by $d\mu = e^u du$. Then the skew product action $\tilde{\gamma}$ of $G \times \mathbb{R}$ on $(X \times \mathbb{R}, \nu \times \mu)$ is AT.

Proof. Let $0 < \varepsilon < 1$ and consider n non-negative functions $\tilde{f}_j \in L^1_+(X \times \mathbb{R}, \nu \otimes \mu), j = 1, 2, \ldots, n$. By standard approximation arguments, we can assume that $\tilde{f}_j = f_j \otimes f_j$, where $f_j \in L^1_+(X, \nu)$ and $f_j' \in L^1_+(\mathbb{R}, \mu)$. By assumption, there exist $f \in L^1_+(X, \nu), g_1, \ldots, g_m \in G, s_1, \ldots, s_m \in \mathbb{R}^e_+$ for some $m < \infty$, and $\lambda_{j,k} \in \mathbb{R}_+$, for $k = 1, \ldots, m$ and $j = 1, \ldots, n$, such that

$$\left\| f_j - \sum_{k=1}^m \lambda_{j,k} g_k(f) \right\| \leq \varepsilon \| f_j \|,$$

and

$$\frac{dv \circ g_k^{-1}}{dv}(x) = s_k, \quad \nu\text{-almost every } x \in g_k(Supp(f)), \quad k = 1, \ldots, m.$$
Note first that
\[\nu(2892) = s_k, \quad \nu\text{-almost every } x \in g_k(\text{Supp}(f)), \quad k = 1, \ldots, m. \]
As the action \(\rho \) by translation on \((\mathbb{R}, \mu) \) is transitive and therefore AT, there exist \(f' \in L_+^1(\mathbb{R}, \mu) \), \(t_1, \ldots, t_p \in \mathbb{R} \) for some \(p < \infty \) and \(\lambda_{j,l}' \geq 0, \quad l = 1, \ldots, p, \quad j = 1, \ldots, n \), such that
\[\left\| f_j' - \sum_{l=1}^p \lambda_{j,l}' \rho_l(f') \right\| \leq \epsilon \| f_j' \|, \]
where
\[\rho_s(f'(t)) = f'(t-s) \frac{d\mu \circ \rho^{-s}}{d\mu}(t) = e^{-s} f'(t-s), \quad t \in \mathbb{R}. \]
Note first that
\[\left\| f_j \otimes f_j' - \sum_{k=1}^m \lambda_{j,k} \beta_{g_k}(f) \otimes f_j' \right\| \leq \epsilon \| f_j \| \| f'_j \| = \epsilon \| f_j \otimes f_j' \| \]
and that
\[\left\| \sum_{k=1}^m \lambda_{j,k} \beta_{g_k}(f) \otimes f_j' - \sum_{k=1}^m \sum_{j=1}^n \lambda_{j,k} \lambda_{j,l}' \beta_{g_k}(f) \otimes \rho_l(f') \right\| \]
\[\leq 2 \epsilon \| f_j \| \| f_j' \| = 2 \epsilon \| f_j \otimes f_j' \|. \]
By definition of the \((G \times \mathbb{R})\)-action \(\tilde{\gamma} \) and as for \(1 \leq k \leq m \), \((d\nu \circ g_k^{-1})/d\nu)(x) = s_k \) for \(\nu\text{-almost every } x \) with \(g_k^{-1} x \in \text{Supp}(f) \),
\[\tilde{\gamma}_{g_k,t} \to \log s_k (f \otimes f')(x, t) = f(g_k^{-1} x) f' \left(t - \log \frac{d\nu \circ g_k^{-1}}{d\nu}(x) - t_l + \log s_k \right) e^{-t_l + \log s_k} \]
\[= \beta_{g_k}(f)(x) \rho_l(f')(t) \quad \text{for } (\nu \otimes \mu)\text{-almost every } (x, t) \in X \times \mathbb{R}. \]
Hence,
\[\left\| f_j \otimes f_j' - \sum_{k=1}^m \sum_{j=1}^n \lambda_{j,k} \lambda_{j,l}' \tilde{\gamma}_{g_k,t_l + \log s_k} (f \otimes f') \right\| \leq 3 \epsilon \| f_j \| \| f_j' \| = 3 \epsilon \| f_j \otimes f_j' \| \]
and therefore the skew action \(\tilde{\gamma} \) is AT.

By Lemma 4.1 and Remark 4.1 if \(\nu_n = \nu(L_n, \lambda_n) \) is a product probability measure on \(X = \prod_{k \geq 1} [0, 1] \) satisfying (6), then the natural action of \(S_\infty \) on \((X, \nu)\) is \(\tilde{\text{AT}} \).

By [CW1, Remark 2.4] and Proposition 4.1 we then get the following theorem.

Theorem 4.3. Let \(\nu = \nu(L_n, \lambda_n) \) be a product probability measure on \(X = \prod_{k \geq 1} [0, 1] \) such that
\[\sup \{ L_n \lambda_n : n \geq 1 \} = \infty. \]
Then the associated flow of the natural action of \(S_\infty \) on \((X, \nu)\) is \(\tilde{\text{AT}} \).

The previous results can be generalized as follows.
Proposition 4.2. Let \(\nu = \bigotimes_{k \geq 1} \nu_k \) be a product probability measure on \(X = \prod_{k \geq 1} [0, 1] \). We assume that there exist real numbers \(\lambda_n \in (0, 1] \), \(n \geq 1 \), and mutually disjoint sets of positive integers \(J_n, n \geq 1 \), of cardinality \(L_n \) such that \(\nu_k = \nu_{\lambda_n} \), for \(k \in J_n \) and such that at least one of the \(J_n \) is infinite or

\[
\sup \{ L_n \lambda_n : n \geq 1 \} = \infty
\]

if all \(J_n \) are finite. Then the natural action of \(S_\infty \) on \((X, \nu)\) is \(\overline{AT} \), and the corresponding skew product action and the associated flow are \(AT \).

Using Kakutani’s theorem on equivalence of infinite product measures (see, for example, [HS, Theorem 22.36]) we get the following corollary.

Corollary 4.1. Let \(\nu = \bigotimes_{k \geq 1} \nu_{\lambda_k} \) be a product probability measure on \(X = \prod_{k \geq 1} [0, 1] \). If the sequence \((\lambda_k)_{k \geq 1} \) has a non-zero limit point \(\lambda \), then the action of \(S_\infty \) on \((X, \nu)\), the skew product action \(\tilde{\nu} \) of \(S_\infty \times \mathbb{R} \) on \((X \times \mathbb{R}, \nu \otimes e^u du)\), and the associated flow are \(AT \).

Remark 4.2. In general, it is not known whether, for any product probability measure \(\nu \) on \(X = \prod_{k \geq 1} [0, 1] \), the natural action of \(S_\infty \) on \((X, \nu)\) or its associated flow is \(AT \).

5. Examples
If \(\nu \) is a Bernoulli measure on \(X \), then \((X, \nu, S_\infty)\) is a system of type \(\text{II}_1 \). We have shown in §3 that such a system is \(AT \).

In the first part of this section we apply Theorem 4.3 and Proposition 4.2 to give examples of product measures on \(X \) with respect to which the action of \(S_\infty \) is \(AT \) and of type \(\text{III}_0 \). We show that they are of type \(\text{III}_0 \) by using the invariant \(T \) of the ergodic systems \((X, \nu, S_\infty)\).

In the last example, we consider a product measure \(\nu \) on \(X = \prod_{k \geq 0} [0, 1] \) which does not satisfy the assumption of Proposition 4.2, but such that the associated flow of the ergodic system \((X, \nu, S_\infty)\) is \(AT \).

Recall that an ergodic and non-singular action of a countable group \(G \) on a Lebesgue space \((Y, \nu)\) is of type \(\text{III} \) if there is no \(G \)-invariant measure equivalent to \(\nu \). Moreover, the ergodic \(G \)-space \((Y, \nu)\) is of type \(\text{III}_{\lambda} \), \(0 \leq \lambda \leq 1 \), if its associated flow is the periodic flow on the interval \([0, -\log \lambda]\) for \(0 < \lambda < 1 \), is the trivial flow on a singleton for \(\lambda = 1 \), and is non-transitive for \(\lambda = 0 \) (see, for example, [HO, Theorem 19]). Notice that the type of an ergodic measurable dynamical system depends only on its orbit equivalence class. The \(L^\infty \)-point spectrum of the flow is the invariant \(T \) of the ergodic system and is equal to Connes invariant \(T \) of the associated von Neumann factor.

Recall also that the ratio set \(r(Y, \nu, G) \) is the set of all \(\lambda \geq 0 \) such that, for all \(\varepsilon > 0 \) and all \(A \subset X \) of positive measure, there exist a measurable subset \(B \subset A \) of positive measure and \(\sigma \in S_\infty \), such that \(\sigma (B) \subset A \) and

\[
\left| \frac{d\nu \circ \sigma}{d\nu} (x) - \lambda \right| < \varepsilon \quad \text{for all } x \in B.
\]

The ratio set is Connes invariant \(S \) of the associated von Neumann algebra, and, by [T, Theorem 9.6], \(\lambda \) belongs to the kernel of the associated flow if and only if
\(e^k \in r(Y, v, G) \cap \mathbb{R}_+^{+} \). Therefore the ergodic system \((Y, v, G)\) is of type \(III_1\) if and only if its ratio set \(r(Y, v, G)\) is equal to \(\mathbb{R}_+\).

Example 5.1. For \(0 < \lambda < 1\), let \(\lambda_n = \lambda^{2^n}\), for \(n \geq 0\), and \((L_n)_{n \geq 0}\) be a sequence of positive integers such that

\[
\sup\{L_n \lambda_n : n \geq 0\} = \infty.
\]

Let \(\nu = \nu(L_n, \lambda_n)\) be the corresponding product measure on \(X = \prod_{k \geq 0}\{0, 1\}\), as in §4. If \(R\) denotes the tail equivalence relation on \((X, \nu)\), then the equivalence \(S\) induced by the action of \(S_{\infty}\) is a subequivalence of \(R\).

By Theorem 4.3, the system \((X, \nu, S_{\infty})\) is AT and is of type III by [SV, Theorem 1.2] (or [BP, Theorem 4.3]).

Then, by [C, Theorem 1.3.7], we have

\[
T(X, \nu, R) \supseteq \left\{ \frac{2k\pi}{2^n \log \lambda}, n \geq 0, k \in \mathbb{Z} \right\},
\]

which implies that \((X, \mu, R)\) is of type \(III_0\). As the associated flow of \((X, \nu, R)\) is a factor of the flow associated to \((X, \nu, S_{\infty})\), then \((X, \nu, S_{\infty})\) is also of type \(III_0\).

Example 5.2. Let \(0 < \lambda < 1\) be fixed and let \((k_n)_{n \geq 0}\) be an increasing sequence of positive integers with \(k_0 = 0\) such that

\[
\sum_{n \geq 1} (k_n - k_{n-1}) \lambda^{2^n} = \infty.
\]

Let \(X = \prod_{k \geq 0}\{0, 1\}\) and \(\nu = \bigotimes_{k \geq 0} \nu_k\) be the probability measure defined by

\[
v_{2k} (0) = \frac{1}{1 + \lambda}, \quad v_{2k} (1) = \frac{\lambda}{1 + \lambda}, \quad k \geq 0,
\]

and

\[
v_{2k+1} (0) = \frac{1}{1 + \lambda^{2^n+1}}, \quad v_{2k+1} (1) = \frac{\lambda^{2^n+1}}{1 + \lambda^{2^n+1}}, \quad k_n - 1 \leq k < k_n, n \geq 1.
\]

The dynamical system \((X, \nu, S_{\infty})\) is AT by Proposition 4.2. Since \(\sum_{n \geq 0} (k_n - k_{n-1}) \lambda^{2^n} = \infty\), it follows from [SV, Theorem 1.2] or [GM] that \((X, \nu, S_{\infty})\) is of type III.

Following [GM], we have

\[
T(X, \nu, S_{\infty}) \supseteq \left\{ \frac{2k\pi}{2^n \log \lambda}, n \geq 0, k \in \mathbb{Z} \right\}.
\]

Then \((X, \nu, S_{\infty})\) is a system of type \(III_0\).

This example shows that there exist product probability measures \(\bigotimes_{k \geq 1} \nu_k\) on \(X\) such that the corresponding sequence \((\lambda_k)_{k \geq 1}\) has a non-zero limit point and such that \((X, \nu, S_{\infty})\) is AT and of type \(III_0\).

Example 5.3. On the product space \(X = \prod_{k \geq 1}\{0, 1\}\) consider the product probability measure \(\nu = \bigotimes_{k \geq 1} \nu_k\), where \(\lambda_k = 1/k\) for \(k \geq 1\). By [SV, Theorem 1.2], the system \((X, \nu, S_{\infty})\) is of type III.

For any \(k, n \in \mathbb{N}\), if \(C_{k,n}\) denotes the cylinder set \(\{x \in X : x_n = 1, x_{kn+k} = 0\}\), and \(\sigma_{k,n}\) is the transposition \((n, kn + k)\), then \(((dv \circ \sigma_{k,n})/dv)|_{C_{k,n}} = 1/k \cdot n/(1 + n)\). Hence, we
easily get that
\[\frac{1}{k} \in r(X, \nu, S_\infty) \quad \text{for all } k \geq 1. \tag{15} \]

As \((X, \nu, S_\infty)\) is of type III and \(r(X, \nu, S_\infty) \cap \mathbb{R}_+^*\) is a closed subgroup of \(\mathbb{R}_+\), we have \(r(X, \nu, S_\infty) = \mathbb{R}_+\), which shows that the dynamical system \((X, \nu, S_\infty)\) is of type III_1. Its associated flow, being trivial, is AT, but we do not know if the dynamical system \((X, \nu, S_\infty)\) is AT.

Acknowledgements. T. Giordano was partially supported by NSERC Discovery Grant. R. B. Munteanu was supported by grants of the Romanian Ministry of Education, CNCS–UEFISCDI, project no. PN-II-RU-PD-2012-3-0533 and project no. PN-II-RU-TE-2014-4-0669.

REFERENCES

[AL] E. H. El Abdalaoui and M. Lemanczyk. Approximately transitive dynamical systems and simple spectrum. Arch. Math. 97 (2011), 187–197.

[AEG] S. Adams, G. A. Elliott and T. Giordano. Amenable actions of groups. Trans. Amer. Math. Soc. 344(2) (1994), 803–822.

[AP] D. Aldous and J. Pitman. On the zero-one law for exchangeable events. Ann. Probab. 7(1) (1979), 704–723.

[B] B. M. Baker. Free states of the gauge invariant canonical anticommutation relations. Trans. Amer. Math. Soc. 237 (1978), 35–61.

[BP] B. M. Baker and R. T. Powers. Product states on the gauge invariant and rotationally invariant CAR algebras. J. Operator Theory 10 (1983), 365–393.

[C] A. Connes. Une classification des facteurs de type III. Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 133–252.

[CW1] A. Connes and E. J. Woods. Approximately transitive flows and ITPFI factors. Ergod. Th. & Dynam. Sys. 5 (1985), 203–236.

[CW2] A. Connes and E. J. Woods. Hyperfinite von Neumann algebras and Poisson boundaries of time dependent random walks. Pacific J. Math. 137 (1989), 225–243.

[DQ] A. H. Dooley and A. Quas. Approximate transitivity for zero-entropy systems. Ergod. Th. & Dynam. Sys. 25 (2005), 443–453.

[EG1] G. A. Elliott and T. Giordano. Amenable actions of discrete groups. Ergod. Th. & Dynam. Sys. 13 (1993), 289–318.

[EG2] G. A. Elliott and T. Giordano. Every approximately transitive amenable action of a locally compact group is a Poisson boundary. C. R. Acad. Sci. Canada 21 (1999), 9–15.

[GH] T. Giordano and D. Handelman. Matrix-valued random walks and variations on property AT. Munster J. Math. 1 (2008), 15–72.

[GM] T. Giordano and R. B. Munteanu. Von Neumann algebras arising as fixed point algebras under xerox type actions. J. Operator Theory 72 (2014), 343–369.

[HO] T. Hamachi and M. Osikawa. Ergodic groups of automorphisms and Krieger’s theorem. Sem. Math. Sci. Keio University 3 (1981), 1–113.

[HS] E. Hewitt and K. Stromberg. Real and Abstract Analysis. Springer, New York, 1965.

[K] W. Krieger. On ergodic flows and isomorphisms of factors. Math. Ann. 223 (1976), 19–70.

[S] C. E. Sutherland. Notes on Orbit Equivalence: Krieger’s Theorem (Lecture Notes Series, 23). Mathematical Institute, University of Oslo, Oslo, 1976.

[SV] S. Stratila and D. V. Voiculescu. On a class of KMS states for the unitary group \(U(\infty)\). Math. Ann. 235 (1978), 87–110.

[T] M. Takesaki. Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math. 131 (1973), 249–310.