Vorticity, kinetic energy, and suppressed gravitational-wave production in strong first-order phase transitions

Cutting, Daniel, Hindmarsh, Mark and Weir, David J (2020) Vorticity, kinetic energy, and suppressed gravitational-wave production in strong first-order phase transitions. Physical Review Letters, 125 (2). a021302 1-6. ISSN 0031-9007

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/92933/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Vorticity, kinetic energy, and suppressed gravitational wave production in strong first-order phase transitions

Daniel Cutting,1,2 Mark Hindmarsh,1,2 and David J. Weir2,3†

1 Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, U.K.
2 Department of Physics and Helsinki Institute of Physics, PL 64, FI-00014 University of Helsinki, Finland
3 School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K.

(Dated: August 4, 2020)

We have performed the first 3-dimensional simulations of strong first-order thermal phase transitions in the early Universe. For deflagrations, we find that the rotational component of the fluid velocity increases as the transition strength is increased. For detonations, however, the rotational velocity component remains constant and small. We also find that the efficiency with which kinetic energy is transferred to the fluid falls below theoretical expectations as we increase the transition strength. The probable origin of the kinetic energy deficit is the formation of reheated droplets of the metastable phase during the collision, slowing the bubble walls. The rate of increase in the gravitational wave energy density for deflagrations in strong transitions is suppressed compared to that predicted in earlier work. This is largely accounted for by the reduction in kinetic energy. Current modelling therefore substantially overestimates the gravitational wave signal for strong transitions with deflagrations, in the most extreme case by a factor of 103. Detonations are less affected.

The Laser Interferometer Space Antenna (LISA), scheduled for launch in 2034, will open the mHz band of the emerging field of gravitational wave astronomy [1]. One of the most exciting goals of LISA is to probe the early universe by searching for gravitational wave signals from a first-order phase transition.

While the Standard Model is a cross-over [2,3], there are many extensions with first-order phase transitions. These range from adding a scalar singlet [4–8] or doublet [9,11], to models with spontaneously broken conformal symmetry [12–18]. There are also models with phase transitions in hidden sectors [19–25]. Non-perturbative methods are sometimes necessary to establish the order of the phase transition [26–28].

An important parameter of a first-order phase transition is the trace anomaly difference, which quantifies the energy available for conversion to shear stress, and hence the power of the gravitational wave signal. If the trace anomaly difference is comparable to the radiation energy density of the universe, we call the transition ‘strong’. We denote the ratio of the trace anomaly to the thermal energy α, in which case a strong transition has $\alpha \sim 1$. We call $\alpha \gg 1$ ‘very strong’; our results do not access this region.

Substantial progress has been made in understanding gravitational wave production from first-order transitions with weak ($\alpha \sim 10^{-2}$) to intermediate ($\alpha \sim 10^{-1}$) strength using numerical simulations [29,32], as well as modelling [33,34]. While the fluid motion is well-described as a linear superposition of sound waves after a weak transition [29], rotational modes and turbulence are expected in stronger transitions [30,37], which could substantially affect the gravitational wave signal [38,43].

At the same time, investigation of the underlying particle physics models indicates that intermediate to strong transitions are common in conservative extensions of the Standard Model [44,45], and very strong transitions are possible in models of composite Higgs and nearly conformal potentials [12–18]. It is also clear that LISA will be most likely to observe transitions where nonlinear effects like shocks and turbulence become important [32]. Recent work tackling the non-linear regime includes gravitational wave production from magnetohydrodynamic turbulence [16] and studies of shock collisions using a mixture of 1-dimensional simulations and modelling [47].

In this paper, we present results from the first numerical simulations of strong first-order phase transitions. We measure the fraction of the fluid kinetic energy in rotational modes, as traced by the mean-square velocity. As we increase the strength of the transition, this proportion grows substantially for deflagrations, up to 65% of the mean square velocity found in rotational motion. The rotational proportion is far less for detonations, remaining roughly constant for all transition strengths.

As the transition strength α is increased, the efficiency of fluid kinetic energy production decreases below expectation. For deflagrations, this is associated with reduced wall speeds for expanding bubbles and reheating of the region in front of the walls, reducing the pressure difference [37,38,49]. The kinetic energy loss leads to a suppression in the gravitational wave power, by a factor which can be as small as $O(10^{-3})$. This means that current models substantially overestimate gravitational wave production from strong transitions with deflagrations. Detonations are less affected.

We model the phase transition with a real scalar field ϕ, coupled to a perfect fluid. We assume that there is no extra physics generating a magnetic field either before or during the phase transition. The model follows that used in previous work [31,32,50], differing by a change in the effective potential and therefore the equation of state. Our previous work used the high-temperature expansion
of the one-loop thermal effective potential, and we found
that in stronger transitions, the total energy could drop
below the scalar potential energy, which is unphysical.
In this scenario, our algorithm would compute the tem-
perature to be imaginary, causing a crash. Indeed, the
high-temperature expansion is known to fail well below
T_c; for example, the speed of sound diverges and then
becomes imaginary. To fix this we have introduced a
simpler bag model equation of state, described below.
The new equation of state changes only how the rele-
vant thermodynamic parameters α and v_w are realised
in terms of the parameters of the potential and field-fluid
coupling term. The flows around the expanding bubbles,
and hence the gravitational wave spectrum, depend on
the underlying theory only through α and the wall speed
v_w, with the overall frequency scale set by the redshifted
mean bubble separation.

Our coupled field-fluid system has energy-momentum
tensor

$$T^{\mu\nu} = \partial^\mu \phi \partial^\nu \phi - \frac{1}{2} g^{\mu\nu} (\partial \phi)^2 + (\epsilon + p) U^{\mu} U^{\nu} + g^{\mu\nu} p \tag{1}$$

where $U = \gamma (1, v)$, with fluid 3-velocity v and associated
Lorentz factor γ. The internal energy ϵ and pressure p
are

$$\epsilon = 3a(\phi) T^4 + V_0(\phi), \quad p = a(\phi) T^4 - V_0(\phi), \tag{2}$$

and the enthalpy is $w = \epsilon + p$.

The zero-temperature effective potential is

$$V_0(\phi) = \frac{1}{2} M^2 \phi^2 - \frac{1}{3} \mu \phi^3 + \frac{1}{4} \lambda \phi^4 - V_c, \tag{3}$$

where V_c is chosen such that $V_0(\phi_b) = 0$, and ϕ_b is the
value of ϕ in the broken phase at $T = 0$. We denote the
potential energy difference between the vacua by $\Delta V_0 =
V_0(0) - V_0(\phi_b)$.

We write the thermal effective potential of our bag model as

$$V(\phi, T) = V_0(\phi) - T^4 \left(a(\phi) - a_0 \right), \tag{4}$$

where $a(\phi)$ models the change in degrees of freedom
during the transition. We take

$$a(\phi) = a_0 - \frac{\Delta V_0}{T_0^2} \left[3 \left(\frac{\phi}{\phi_b} \right)^2 - 2 \left(\frac{\phi}{\phi_b} \right)^3 \right], \tag{5}$$

where $a_0 = (\pi^2/90) g_*$ with g_* the effective number of
relativistic degrees of freedom in the symmetric phase.
Both $\phi = 0$ and $\phi = \phi_b$ are stationary points of
the function for all T. For our choice of $a(\phi)$ the minima
of V become degenerate at $T = T_c$, as required.

The energy-momentum tensor can be decomposed into
field and fluid parts, coupled through a friction term,

$$\partial_\mu T_{\phi}^{\mu\nu} = - \partial_\mu T_{i}^{\mu\nu} = \eta U^{\nu} \partial_\mu \phi \partial^\nu \phi. \tag{6}$$

Ref. [32] used a field- and temperature-dependent friction
parameter $\eta = \tilde{\eta} \phi^2 / T$. Although this models high
temperature physics more accurately [51], strong transitions
can reach small temperatures and again the high-
temperature approximation fails. With small tempera-
tures we also find numerical instabilities and so revert to
using a constant η.

The phase transition strength is parametrised by the trace
anomaly difference

$$\Delta \theta(T) = \frac{1}{4} \frac{d}{dT} \Delta V - \Delta V, \tag{7}$$

where $\Delta V = V(0, T) - V(\phi_b, T)$. The strength parameter is then

$$\alpha = \Delta \theta(T_n) / \epsilon_1(T_n). \tag{8}$$

where T_n is the nucleation temperature and $\epsilon_1 = 3w/4$
the radiation energy density.

We assume that the duration of the phase transition is much less
than the Hubble time H_n^{-1}, and neglect the effect of expansion. This is comparable to the statement
that $H_n R_* \ll 1$, where R_* is the mean bubble separation.
In this regime the contribution of bubble collisions to the
gravitational wave signal is negligible. To neglect expansion
the final simulation time t_{fin} must also be much smaller
than H_n^{-1}. For all our simulations $t_{\text{fin}} \leq 10 R_*$. The mean gravitational wave energy density is

$$\rho_{\text{gw}} = \frac{1}{32\pi G} \frac{1}{\mathcal{V}} \int_\mathcal{V} \int d^3 x \, h_{ij}^{TT} h_{ij}^{TT}, \tag{9}$$

where \mathcal{V} is the simulation volume, h_{ij}^{TT} is the transverse
traceless metric perturbation and the line indicates averages
over a characteristic period of the gravitational
waves. We find h_{ij}^{TT} in Fourier space by a standard tech-
nique [29 31 32], sourced only by the fluid, the dominant contribution when $\alpha \lesssim 1$ and $H_n R_* \ll 1$ [29 31 32].

We express the gravitational wave energy density in
terms of the parameter $\Omega_{\text{gw}} = \rho_{\text{gw}} / \rho_c$, with ρ_c the critical
energy density. Our assumptions on α and $H_n R_*$
ensure that $\Omega_{\text{gw}} \ll 1$ at all times. They also ensure that the
gravitational backreaction is negligible compared to the
pressure forces, as the wavelength of the density perturbations ~ R_* is much less than the Jeans length
~ $c_s / H_n \sqrt{\delta}$, where δ is the energy density contrast averaged over the wavelength being considered [1]. We leave a deeper analysis of gravitational backreaction in the case $H_n R_* \sim c_s / \sqrt{\delta}$ to a later study.

\footnote{For the parameter space we consider, we determined that the variation of the energy density is at most a factor of twenty in the asymptotic fluid profile that develops around an expanding bubble; δ will be less than this due to averaging over a given wavelength.}
We perform a series of three-dimensional simulations of the field-fluid system. The simulation code is the same as used in Ref. [32] except for the above changes.

We scan over α for three subsonic deflagrations with asymptotic wall speeds $v_w = \{0.24, 0.44, 0.56\}$, and two detonations with $v_w = \{0.82, 0.92\}$. The asymptotic wall speeds, and their fluid profiles, are found with a spherically symmetric version of the code [31, 32, 53, 54], run with the same parameters until $t = 10000 T_c^{-1}$. As we increase α, the maximum velocity of the asymptotic fluid profile v_p increases. For each v_w, there is a maximum v_p, and hence a maximum strength α_{max} above which solutions either do not exist (subsonic deflagrations), or change into hybrids. We do not consider hybrids here.

The values of η needed for these wall speeds are given in the supplemental material. By comparison, the Standard Model estimate is $\eta \simeq 3 \phi_0^3 / T_c$ [31, 55, 56].

All simulations have the number of bubbles $N_b = 8$, lattice spacing $\delta x = 1.0 T_c^{-1}$, timestep $\delta t = 0.2 T_c^{-1}$, and $L^3 = 960^3$ lattice sites, giving a mean bubble separation $R_s = L \delta x / N_b^{1/3} = 480 T_c^{-1}$. All bubbles are nucleated simultaneously with a gaussian profile at the same locations at the start of each simulation. The initial profile of the bubbles is insinificant as they approach the same asymptotic profile.

We fix $g_s = 106.75$, $M^2 = 0.0427 T_c^2$, $\mu = 0.168 T_c$ and $\lambda = 0.0732$, in turn fixing $\phi_0 = 2.0 T_c$. This sets the relative change in degrees of freedom $\partial (\phi_0) - \alpha_0 / \alpha_0 = 5.9 \times 10^{-3}$. To change the transition strength we vary T_n.

We output slices of the temperature T, fluid speed v and vorticity magnitude $|\nabla \times v|$. Movies created from these slices are available at [32]. Selected stills are included in the supplemental material.

We measure the RMS fluid 3-velocity U, and its rotational and irrotational parts $U_\|$, and U_\perp. We also track the enthalpy-weighted RMS four-velocity $U_\|_f$ defined as

$$U_\|_f^2 = \frac{1}{\overline{\rho v}} \int d^3 x \, w_\perp^2 v^2,$$

where $\overline{\rho v}$ the mean enthalpy density. This gives an indication of the magnitude of the shear stress, the source of gravitational waves.

A similar quantity U_ϕ can be constructed to track the progress of the phase transition

$$U_\phi^2 = \frac{1}{\overline{\rho v}} \int d^3 x \, \partial_i \phi \partial_i \phi,$$

proportional to the total area of the phase boundary. We call the time when U_ϕ reaches its maximum the peak collision time, t_{pc}. Note that $t_{pc} \propto R_s / v_w$. To see how these global quantities evolve during a detonation and a deflagration see Fig. 6 in the supplemental material.

To check the dependence of our key observables on lattice spacing, we perform simulations with the same physical volume and various lattice spacings $\delta x T_c = \{2.0, 1.5, 1.0, 0.75, 0.5\}$ for $v_w = 0.24$ and $v_w = 0.92$ and $\alpha = 0.5$. We find that $\tau_{\parallel, max}^2 / U_{\|, max}^2$, and Ω_{gw} converge with lattice spacing. We perform a quadratic fit with δx for each quantity, finding that $U_{\|, max}$ and Ω_{gw} differ from the continuum limit by $O(1\%)$. The quantity that is most sensitive to the grid is $\tau_{\parallel, max}^2$ which we underestimate from the continuum limit by $\sim 25\%$. We also test convergence of key observables with timestep, finding in all cases that convergence is better for δt than for δx. It is important to check how close the colliding bubbles are to their asymptotic profile. We find that spherically symmetric bubbles with diameter R_c have at worst $\overline{U}_\|/R_c$ within 20% of the asymptotic $\overline{U}_\|$. In the supplemental material we show our convergence test results and the deviation from asymptotic $\overline{U}_\|$ for all v_w and α considered here.

From our simulations we see that a rotational component of velocity is generated during the bubble collision phase. In order to gauge the relative amount of kinetic energy in the rotational component of velocity, we consider the ratio of the maxima of mean square 3-velocities $\tau_{\parallel, max}^2 / \tau_{\perp, max}^2$. We plot this in Fig. 4. As we increase α for the deflagrations, we see that the proportion of the velocity found in rotational modes increases dramatically, whereas for detonations it stays constant. The deflagrations with smaller wall velocities have a larger proportion of the velocity in rotational modes. For $v_w = 0.24$, $\alpha = 0.34$ the ratio $\tau_{\parallel, max}^2 / \tau_{\perp, max}^2 = 0.65$, and if we naively extrapolate the trend in the last few points up to α_{max} this increases to 0.95.

Fig. 7 of the supplemental material shows that the vorticity is generated inside the bubbles, not outside where the fluid shells first interact.

To better understand transfer of energy from the scalar field to the fluid, we plot how U_ϕ and $U_\|_f$ change as we
increase α for detonations with $v_w = 0.92$ and deflagrations with $v_w = 0.44$ (Fig. 2). When U_ϕ reaches its maximum, the volumes in each phase are approximately equal. As the phase boundary sweeps out the remaining regions of metastable phase, U_ϕ relaxes to zero. It is striking that for deflagrations the relaxation takes longer as we increase α, whereas for detonations the shape of U_ϕ remains unchanged. The phase boundaries in a deflagration must therefore move more slowly in the later stages, as the transition strength increases.

The reason for the slowing is that the metastable phase is reheated by the fluid shells in front of the bubble walls [37, 48, 49]. Towards the end of the transition the remaining metastable phase forms into hot droplets (see Fig. 7 in the supplemental material). The higher pressure inside the droplets opposes their collapse.

For detonations, where the fluid shell develops behind the bubble wall, shrinking regions of the metastable phase are not reheated (see Fig. 8 in the supplemental material).

Fig. 2 also shows that U_f increases with α, as one expects from the increasing scalar potential energy. However, the maximum is below that expected from a single bubble, which is a good estimate of U_f at low α [31, 52].

To obtain the single-bubble estimate, simulations of expanding spherical bubbles are performed, and the expected enthalpy-weighted RMS velocity $U_{f,\text{exp}}$ is that of the fluid shell when the wall reaches a diameter of R_s. We then take the ratio with the maximum of U_f in each simulation, shown in Fig. 3. Note that due to finite volume effects U_f oscillates in our simulations, giving an $O(10\%)$ uncertainty to this estimate.

For all wall speeds, the ratio of $U_{f,\text{max}}$ to $U_{f,\text{exp}}$ decreases as we increase the transition strength. However, for deflagrations the decrease in the kinetic efficiency is more dramatic, and more rapid for slower walls: in the slowest deflagration ($v_w = 0.24$), $U_{f,\text{max}}/U_{f,\text{exp}}$ reaches 0.3. The decrease is approximately linear; a naive linear extrapolation to the maximum possible strength is indicated by open circles. The loss of kinetic energy is probably a result of the slowing discussed above, limiting the transfer of energy.

The deficit in kinetic energy can be expected to reduce the gravitational wave signal. In current modeling [52, 59], the expected gravitational wave density parameter from a flow with $U_{f,\text{exp}}$ at time $t \ll H_n^{-1}$ is

$$\Omega_{gw,\exp} = \frac{3}{4} \Omega_{gw} \left(\frac{\Omega_{gw}}{t} \right)^2 U_{f,\text{exp}}^4 (H_n t / R_s),$$

where Ω_{gw} has been shown to be a constant of $O(10^{-2})$ in weak and intermediate transitions. Here, we take $\Omega_{gw} = 10^{-2}$. In Fig. 4 we plot the ratio of Ω_{gw}/t to $\Omega_{gw,\exp}/t$, where Ω_{gw}/t is averaged over the final $\Delta t = 2R_s$ of the simulation. In the most extreme case, $v_w = 0.24$ and $\alpha = 0.34$, the ratio is 2×10^{-3}. This is even less than the kinetic energy suppression suggests, a factor of $(U_{f,\text{max}}/U_{f,\text{exp}})^4 \approx 8 \times 10^{-3}$.

A table of simulation parameters and measured quantities can be found in the supplemental material.

We have performed the first 3-dimensional simulations of strong first-order phase transitions, with the strength parameter α up to an order of magnitude larger than those previously studied [32].

A rotational component of velocity $\mathbf{\pi}_\perp$ is generated during the collision phase. For deflagrations, the ratio $\mathbf{\pi}_\perp^2 / \mathbf{\pi}_\text{max}^2$ grows rapidly with α, reaching 0.65 for $v_w = 0.24$. For detonations, the ratio is $O(10^{-2})$—showing no consistent trend with α.

For stronger phase transitions a smaller proportion of the scalar potential energy is transferred into fluid kinetic
energy than is expected from the behaviour of isolated bubbles. For deflagrations, we suppose that the deficit is due to reheating of the metastable phase slowing the bubble walls during the collision phase. The deficit can be substantial, with \(\frac{U_{\text{f,\text{max}}}}{U_{\text{f,exp}}} \) falling to \(\sim 0.3 \) for \(v_w = 0.24 \) in our simulations, and could fall as low as 0.1 using a naive linear extrapolation to the maximum possible strength at that wall speed.

The gravitational wave intensity is lower than expected, by a factor of order \(10^{-3} \) for the strongest deflagration with the lowest wall speed. This can mostly be accounted for by the kinetic energy deficit. Detonations do not suffer such a dramatic suppression, with the smallest suppression factor about 0.2 for \(v_w = 0.92 \).

Our results have important consequences for gravitational waves from phase transitions. They indicate that the current model \cite{12} overestimates the gravitational wave power spectrum for strong transitions, by a factor of a few for detonations, and by an order of magnitude or more for deflagrations. We estimate that to obtain a signal to noise ratio of 10 \(U_{\text{f}} \) must be at least 0.07. Therefore the kinetic energy suppression we observe will probably render transitions with \(v_w = 0.24 \) unobservable except for within a very small region of parameter space. Faster walls suffer less suppression, though the observable parameter space is still reduced.

We plan larger simulations to characterise more precisely the suppression, and its effect on observability.

The authors would like to thank Chiara Caprini, Kari Rummukainen, and Danièle Steer for helpful discussions.

\footnote{We use PTPlot v1.01, \url{http://www.ptplot.com/ptplot/60}, to compute and plot signal to noise ratio (SNR) curves from first-order phase transitions for LISA. We choose \(y_s = 106.75 \) and an optimistic \(T_{\oplus} = 100 \text{ GeV} \). The resulting plot shows that an SNR of 10 requires \(U_{\text{f}} \) of at least 0.07 for all \(H_0 R_s \).}

Our simulations made use of the resources of the Finnish Centre for Scientific Computing CSC. DC (ORCID ID 0000-0002-7395-7802) is supported by an STFC Studentship. MH (ORCID ID 0000-0002-9307-437X) acknowledges support from the Science and Technology Facilities Council, grant no. ST/P000819/1. DJW (ORCID ID 0000-0001-6986-0517) is supported by a Science and Technology Facilities Council Ernest Rutherford Fellowship, grant no. ST/R003904/1, by the Research Funds of the University of Helsinki, and by the Academy of Finland, grant no. 286769.
