III．Clostridium difficile 感染症の現状

安藤 朗1) 馬場 重樹2)
滋賀医科大学医学部消化器内科1), 滋賀医科大学医学部附属病院栄養治療部2)

Clostridium difficile はグラム陽性偏性嫌気性菌で，抗菌薬治療などで腸内細菌叢が乱されると，異常増殖と毒素産生が起こり Clostridium difficile 感染症を発症する。2000 年頃以降，Clostridium difficile 感染症は欧米を中心に強毒型である NAP1/B1/027 株によるアウトブレイクが問題となった。欧米では fidaxomicin などの新規治療薬が使用可能となっており，2013 年には再発性 Clostridium difficile 感染症に対する糞便微生物叢移植の有用性が示され注目を浴びた。近年はさらにトキシン B に対するモノクローナル抗体やワクチン，トキシンに対する吸着療法などが開発されている。本稿では Clostridium difficile 感染症の疫学，病態，診断，治療，潰瘍性大腸炎とのかかわりなどについて概説する。

索引用語：Clostridioides difficile, 偽膜性腸炎，糞便微生物叢移植

はじめに

Clostridium difficile は，1935 年に Hall と OT'Toole らが初めて報告したグラム陽性の芽胞形成性偏性嫌気性細菌である。Clostridium difficile 感染症は欧米を中心に強毒型である NAP1/B1/027 株によるアウトブレイクが問題となった。欧米では fidaxomicin などの新規治療薬が使用可能となっており，2013 年には再発性 Clostridium difficile 感染症に対する糞便微生物叢移植の有用性が示され注目を浴びた。近年はさらにトキシン B に対するモノクローナル抗体やワクチン，トキシンに対する吸着療法などが開発されている。本稿では Clostridium difficile 感染症の疫学，病態，診断，治療，潰瘍性大腸炎とのかかわりなどについて概説する。

なお，近年，Clostridioides difficile に再分類された5)が，本稿では Clostridium difficile と記載する。

Clostridium difficile 感染症の疫学

この 19 世紀末発見の C. difficile 保菌率は 5～15％程度とされるが，小児，特に 1 歳未満の新生児や乳児では保菌率が高く，無症状であっても入院中患者の保菌率は 50％以上と報告されている6-9)。入院患者の抗菌薬投与に関連する下痢症は 3～29％に上るとされる10)。C. difficile は抗菌薬関連下痢症の 10～25％，抗菌薬関連大腸炎の 50～75%，抗菌薬関連偽膜性腸炎の 90～100%の原因菌とされる11,12)。また，C. difficile による偽膜性腸炎や C. difficile 関連疾患の死亡率は 6～30％であることが報告されている12-15)。

C. difficile は北米やヨーロッパを中心に増加傾向にあり，米国の 2011 年の統計では C. difficile 発症者 453,000人 453,000 人であり，CDI による死者は推定 29,300 人とされる16)。本邦における市中における C. difficile の発生率は 1.4/100,000 人年であると報告されている17)。これはアメリカやイギリス，スウェーデンでの報告が 7.7～
29.5/100,000人年であることを考えると低値であり、また重症度も高くないとされている26）。
また、CDI重症症例のアウトブレイクについても報告がなされている。カナダのケベックでは2004年に1,719件のCDIを確認した。そのほとんどがNAPI/B1/027株であった27）。アウトブレイクはアメリカやヨーロッパからも報告されている28-33）。日本では散発的にNAPI/B1/027株の報告はみられ24,25）、大規模アウトブレイクの報告はない。

腸内細菌叢の働きとCDI

ヒトの消化管には約1,000種、100兆個の細菌が存在し、腸内細菌の持つ総遺伝子数はヒトの持つ遺伝子の100倍以上にのぼる。腸内細菌叢は無秩序に存在しているのではなく、各々がテリトリーを保ちながら全体として集団を形成している。この集団のことを腸内細菌叢（叢=草むら）あるいは腸内フローラ（フローラ=お花畑）と呼ぶ26）。

腸内細菌叢は、腸内細菌叢の働きとCDI

ヒトの消化管に約1,000種の細菌が存在し、腸内細菌叢の働きを発揮している。CDIの病気の発症は、抗菌薬の使用後や病原性大腸菌の感染に関与している。

腸内細菌叢としての働き

腸内細菌叢は、ヒトの消化管に約1,000種の細菌が存在し、腸内細菌叢の働きを発揮している。CDIの病気の発症は、抗菌薬の使用後や病原性大腸菌の感染に関与している。
が低下すると報告された60)。近年のマウスを用いた研究によると抗菌薬の投与にて一次胆汁酸であるタウロコール酸の増加、マンニトールやソルビトールの増加、短鎖、中鎖、長鎖脂肪酸の低下、グリシン、プロリン、システィン、イソロイシンなどのアミノ酸の増加、分岐鎖アミノ酸の低下が報告され、これらはいずれも C. difficile の増加を促す環境となる61)。重症の CDI では Lachnospiraceae が減少していることが示されており62）。また、Lachnospiraceae の投与にてマウスの CDI を治療することが出来ると報告されている63)。さらに糞便微生物叢移植（fecal microbiota transplantation：FMT）にて病状が回復した患者の腸内細菌叢には Lachnospiraceae や酵酸産生菌の増加が認められている64)。胆汁構成は C. difficile の増殖に大きく影響を与える、特に一次胆汁酸であるタウロコール酸は C. difficile の芽胞の発芽を促進する。FMT 施行により二次胆汁酸が増加することが報告されている65, 66)。

Clostridium difficile 感染症の病態

① 定着から発症まで

健常人の腸内細菌叢に C. difficile 芽胞が混入しても、通常は外来菌として常在菌叢に排除され、CDI 発症は稀である60)。しかし、C. difficile 保菌者が抗菌薬を使用することで腸内細菌叢が揺乱され、CDI が発症する。また、院内感染などの場合は、抗菌薬使用中あるいは使用後など CDI 発症リスクが高い状態を背景として C. difficile 芽胞が外部から腸管内に入ることで発症することも想定される。抗菌薬治療から 1 週間以内に CDI を発症することが多いが、抗菌薬終了後 2 ヵ月はリスクが持続する。

原因となる抗菌薬は従来からリスクとされてきたグリンジマイシンだけでなくベニシリン系、セファロスポリン系、フルオロキノロン系などがリスクとなり得る。また、56 歳以上の高齢者は若年者と比較し 10 倍以上の CDI 発症リスクがあることが知られている65)。この他にもプロトンポンプ阻害剤、ICU での治療歴、経鼻胃管留置、手術歴、免疫低下、肥満などがリスクとなる67-69)。プロトンポンプ阻害薬の投与で腸内細菌叢の多様性と均一性が有意に低下することが報告されている70, 71)。わが国ではプロトンポンプ阻害薬より強力な胃酸分泌抑制作用を持つカリウムイオン競合型アシッドブロッカー（P-CAB）が使用可能である。われわれの検討では P-CAB はプロトンポンプ阻害剤と比較してより強く腸内細菌叢の構成に影響することが明らかとなった72)。具体的には両薬剤とも Bacteroidetes 属と Streptococcus 属の有意な増加（プロトンポンプ阻害薬 7 倍、P-CAB 20 倍）を誘導したが、さらに P-CAB は Actinomyces 属と Rothia 属の有意な増加と Blautia 属と Coprococcus 属の有意な減少を誘導した。制酸薬による胃酸バリアの破壊により口腔内常在菌の増加と異常増殖菌の減少がみられた。このような変化はいずれも CDI との関連が報告されている腸内細菌叢の変化である73)。C. difficile 芽胞は胃酸の低い pH 環境下でも生き残ることが出来るので、制酸薬と CDI 発症との関連を疑問視する意見もある74)。腸内環境の変化が CDI の発症リスクを上昇させていると考えられる。

② 発症から再発まで

CDI の発症には C. difficile の産生するトキシン A とトキシン B が関与する。C. difficile は毒素産生株と毒素非産生株があり、毒素非産生株は CDI を発症しない。毒素にはトキシン A、トキシン B と第 3 の毒素であるバイナリートキシンがある。通常はトキシン A、トキシン B の両方あるいはトキシン B のみが産生される。第 3 の毒素であるバイナリートキシンは、2000 年代初頭から欧米を中心にアウトブレイクが報告されている強毒株（NAP1/B1/027）が産生する毒素で A サブユニットと B サブユニットから構成され、ADP リボシル化作用および下痢惹起作用を持つ。この強毒株は毒素産生を抑制する遺伝子 tcdC の mutation があり、トキシン A の産生能が 16 倍、トキシン B の産生能が 23 倍に亢進している23)のため、CDI が重症化しやすい。なお、NAP1/B1/027 型の同定は専門的な研究施設でのみ可能である。

トキシン A は腸管毒素と呼ばれ腸管粘膜に結合し、粘膜の傷害、出血を伴う下痢、蛋白質や電解質の喪失を生じる。また、好中球の遊走因子ともとられる。一方、トキシン B は細胞毒素と呼ばれ脱細胞化された粘膜から組織内に侵入し細胞毒素を発揮する24)。トキシン A/B いずれも glycosyltransferase 活性を持ち、低分子量 GTP 結合蛋白質の一種である Rho 蛋白質を uridine diphosphate-glucose 依存的にグリコシル化することにより、細胞膜の機能を異常化する。
る。また、トキシン A/B は細胞上皮細胞のタイトジャンクションを傷害することにより、上皮細胞のバリア機能を低下させる。トキシン A/B により好中球の浸潤が見られ、IL-8、IL-6、IL-1β、ロイコトリエン B4、interferon-γ などの炎症性サイトカインやケモカインが産生され、過剰な細胞性免疫が誘導される。

CDI 患者では細菌叢の多様性が失われ、細菌叢の乱れ（dysbiosis）は回復するまで数ヶ月間を要し、治療後も CDI を再発する危険が高い。CDI の再発率は 20〜30%とされており、NAP1/B1/027 株では再発率が高いとされる。なお、CDI 再発には患者側の因子、菌側の因子、環境因子などがあるとされる。患者側のリスク因子として抗菌薬の継続投与などによる腸内細菌叢の撹乱、制酸薬（プロトンポンプ阻害剤などによる）の継続投与、免疫能低下、基礎疾患（重篤な併存疾患、腎不全、透析など）、CDI の再発歴、初回発症時の重症度（血清アルブミン低値、白血球数增多、CRP 高値など）があげられている。また、菌側の因子として菌株タイプ（NAP1/B1/027 株など）と芽胞の残存が、環境因子には入院期間やコホート隔離があり、十分な院内感染対策が必要であることを示している。

CDI の予防には抗菌薬の適正使用はいうまでもないが、接触伝播予防も重要となる。C. difficile は芽胞として長期間生存が可能であり、医療関連施設では特に手指などを介してヒトからヒトへ伝播される。傳播を防ぐために手袋やガウン、エプロンなどを装着することが重要となる。流水下手洗いで芽胞を洗い落とすことは重要だが、手袋の装着が推奨される。

Clostridium difficile 感染症の診断

CDI の診断は臨床所見と検査所見の組み合わせによって行われる。臨床所見として「24 時間以内に形状のない排便が 3 回以上あること」と検査所見として「CD トキシン陽性もしくは毒素産生性 CD が陽性である」または「大腸内視鏡検査または病理組織学的所見が偽膜性大腸炎を示す」が重要であり、臨床所見と検査所見の両方が観察されたことは重要である。治療は病状の重症度や菌の種類により適応される。

小腸内視鏡検査は C. difficile が産生する毒素 A と毒素 B により粘膜面が障害され、腸管粘膜表面にフィブリン、ムチン、障害された細胞が集積することにより形成される。CDI の内視鏡像として稀松らは①偽膜が全周性に均等に分布し、癒合や地図状の偽膜を認める偽膜性腸炎群と②粘膜の浮腫、発赤が主体で一部に点状の偽膜を認める軽症群、さらに③偽膜を欠き、浮腫、発赤、粗造な粘膜、血管透見消失などを認める非特異的腸炎群とに分類している。診断症例において偽膜を認めたものが 51.7%，非特異的腸炎であったものが 33.3%，15%がほぼ正常であり偽膜を形成するものは臨床症状が重篤なことが多いとしている。
24%、アフタは43%、赤色・浮腫は24%、正常10%であり、偽膜症例と比較するとアフタ症例は軽症であることを報告している。このため偽膜以外の所見に十分に注目して内視鏡検査を施行する必要がある。また、検査時には生検を行い、組織学的な評価も実施することが望ましい。

Clostridium difficile 感染症の治療

1. 重症度と治療法の選択について

CDIの初期治療は誘因と考えられる抗菌薬の使用を出来るだけ早急に中止する。また、標準治療薬はバンコマイシン（VCM）やメトロニダゾール（MNZ）であるが、重症度に応じて治療薬を選択する。本邦では未承認であるが、海外ではfidaxomicinも使用されている。海外のガイドラインを含めた重症度別の治療表1に示す。軽症・中等症では概してMNZが推奨されているが、重症症例ではVCMが治療の中心となる。また、重症症例で腸管運動が低下している症例であれば経口もしくは経鼻胃管からの投与に加えて灌腸での投与が推奨されている。

バルス療法はVCMを一定期間投与した後に休薬を繰り返す方法で、VCMの投与中に残存したC. difficileの芽胞が数日間のVCMの休薬により発芽したところをVCMの再投与により除菌するという理論に基づいている。この治療の有用性は1985年にTedescoらによって報告されている。

FidaxomicinはVCMと比較しCDIの再発率低減が期待できる薬剤である。本邦では製造販売承認申請中の段階にある（2018年6月現在）。この薬剤はRNAポリメラーゼ阻害作用を有するマクロサイクリック系抗菌薬で、C. difficileの芽胞形成、毒素産生を抑制する。抗菌スペクトラムが狭く、正常細菌叢に及ぼす影響が少ない、消化管からほとんど吸収されないなどの特徴を有する。

FidaxomicinはVCMと比較しCDIの再発率低減が期待できる薬剤である。本邦では製造販売承認申請中の段階にある（2018年6月現在）。この薬剤はRNAポリメラーゼ阻害作用を有するマクロサイクリック系抗菌薬で、C. difficileの芽胞形成、毒素産生を抑制する。抗菌スペクトラムが狭く、正常細菌叢に及ぼす影響が少ない、消化管からほとんど吸収されないなどの特徴を有する。

海外の報告では奏効率は88.2%とVCMの85.8%と同等であるが、再発率は15.4%とVCMの25.3%より低いことが示されている。

チゲサイクリンはオーストラリアのガイドラインにおいて重症CDIにおいてMNZ点滴＋VCM経口＋直腸投与で改善が得られない場合にthird lineとしてあげられている薬剤である。本薬剤はC. difficileに対して抗菌活性が高いために入く、MNZよりも糞便中に濃度で存在し、さらにC. difficileに対しモノマー型である。

図1 CDI診断における3ステップアルゴリズム法
GDH：グルタミン酸デヒドロゲナーゼ；CDI：Clostridium difficile infection.
表1 各ガイドラインにおける重症度別の治療（文献140を改変）

項目	軽症/中等症	重症	重症かつ複雑性
米国消化器病学会（2013）	WBC ≥15,000 or Alb < 3 g/dL or 腹部圧痛	発熱38.5℃、WBC ≥35,000、WBC ≤2,000、乳酸値 ≥2.2、ICU入室、低血圧、イレウス、腹部膨満、臓器不全など	
治療	●MNZ 1,500mg/日を10日間	●VCM 500mg/日を10日間	
SHEA/IDSA ガイドライン（2010）	WBC ≤15,000 CREの上昇が1.5倍未満	年齢 ≥60歳 体温 ≥38.5℃ Alb < 2.5 g/dL WBC > 15,000	左記に加えて下記ショックバイタルICU入室 イレウス・巨大結腸症など
治療	●MNZ 1,500mg/日を10日間	●VCM 500mg/日を10日間	●VCM 2,000mg/日（経口）+MNZ 1,500mg/日（静注）
ESCMID ガイドライン（2014）	重症の基準を満たさない年齢65歳以上ショックバイタル基礎疾患有免疫不全があるWBC ≥15,000 or Alb < 3 g/dL or CRE ≥1.3もしくは1.5倍に上昇ICU入室	イレウス・巨大結腸症など	
治療	●MNZ 1,500mg/日を10日間 ●VCM 500mg/日を10日間（再発リスクある場合） ●fidaxomicin 400mg/日を10日間	●VCM 500mg/日を10日間 ●VCM 2,000mg/日（経口）+MNZ 1,500mg/日（静注）	
JAID/JSC ガイドライン（2015）	重症度の記載なし		
治療	●MNZ 1,500mg/日を10日間 ●VCM 500mg/日を10日間	●MNZ 1,500mg/日を10日間点滴	

WBC: white blood cell count; Alb: albumin; ICU: intensive care unit; MNZ: metronidazole; VCM: vancomycin; FMT: fecal microbiota transplantation; CRE: creatinie

difficile によるトキシン A/B 毒素産生や芽胞形成を抑制する働きがある102)

近年, 再発性の CDI に対して有効性が確立された糞便微生物叢移植 (fecal microbiota transplantation: FMT) も記載がみられている。FMT に関しては米国やオーストラリアのガイドラインでは 3 回目の再燃時以降にその実施が推奨されている7,99) ただし, VCM 抵抗例での有効性も示されており, 病勢によっては早期に実施される場合もある103,104)。

2. 糞便微生物叢移植について
FMT は 4 世紀に中国で食中毒や下痢の治療に糞便が用いられたことに端を発するといわれているが, 広く認知されるようになったのは van Nood らが New England Journal of Medicine 誌に発表した再発性の CDI への劇的な効果105) に注目が集まってからである。CDI に対する FMT の有用性は多数の報告をもとにシステムティックレビューが報告されて106-109), 既に確立されている。しかしながら, 現時点でのランダム化比較試験は van Nood らによる標準治療である抗菌薬を対照とするものであり, 手技の標準化は十分ではないが, その報告においても 80〜90% 程度高い有効性が得られている104,107-109)。

FMT の方法には経鼻的に挿入したチューブで移植を行う方法と大腸内視鏡を用いて行う移植との大き

FMT の方法には経鼻的に挿入したチューブで移植を行う方法と大腸内視鏡を用いて行う移植との大き
の実施経験が報告されている。115,116）当院におけるFMT施行方法と、当院でFMTを施行した再発性CDIの1例を提示する（図2, 3）。

3. 外科的手術について
重症例や合併症を有するCDIに対して結腸亜全摘などの早期手術を考慮することがある。米国のガイドラインでは①昇圧剤を使用する低血圧、②敗血症と臓器不全の兆候、③意識の変容、④白血球数50,000/μL以上および乳酸5mmol/L以上、⑤5日間の内科的治療で改善しない、うち1項目が該当すれば外科手術を考慮すべきとされている7）。
近年のメタ解析ではショックや昇圧剤使用前の早期での外科的介入により死亡率の改善が示されている7）。また、術式も結腸部分切除よりも結腸全摘もしくは亜全摘が予後良好とされている117）。また、術前の予後良好因子として80歳以上、ショックバイタル、ステロイドの使用、透析、慢性閉塞性肺疾患の合併、白血球数50,000/μL以上、血小板数15万/μL以上、BUN40mg/dL以上などが有意な因子として報告されている118）。また、腸切除歴の既往がある場合はCDIが重症化しやすいとの報告がある119）。

4. 免疫療法などその他の治療法について
無症候性保菌者にはトキシンAに対する血清IgG抗体との相関が報告されているが、一方でCDI発症患者は抗体が低いもしくは検出できないことから、血清抗体が防御機構の1つとして考えられている87）。2017年11月22日に抗C. difficileトキシンBヒトモノクローナル抗体であるベズロトクスマブが薬価収載された。本薬剤はCDIの再発抑制を目的とした薬剤で単回点滴静注する。国際共同治験で開発され、再発性CDIに対しVCMやMNZなどの抗菌薬
と併用する形でベズロトクスマブが単回投与された群における12週後のCDI再発率は17.4%であり、プラセボ群の27.6%と比較し抑制効果がみられた120)。なお、本試験ではトキシンAに対するモノクロナル抗体も投与されているが、再発抑制効果が認められなかった120)。また、本試験の日本人集団におけるサブ解析においても有用性が確認されている（プラセボ群の再発率が46.2%であったのに対し、ベズロトクスマブ投与群では21.4%）121)。

トキシンA/Bをターゲット分子とした中和抗体を目的としたワクチンの開発も進めている。第一相、第二相の結果を基に122,123)、本邦でも第三相試験が施行されており、その結果が待たれる123)。

その他の薬物療法としてトレオヴァムによる吸着療法がある。Tolervamはスチレンスルホン酸高分子可溶性ポリマーでトキシンA/Bを吸着するが抗菌活性はない81)。CDIの再発率は4.5%であり、VCM（20.6%）、MNZ（23.0%）に比べ低率で、再発抑制効果が期待されている121)。

Clostridium difficile感染症の小腸病変

近年、C. difficileによる小腸病変に関する報告が稀ではあるが増加傾向にある132-135)。初期の報告ではC. difficileの小腸感染は致死率が高い（60〜80%）と報告されていた133,136)。が、術後の小腸内容物のC. difficileの検出率が比較的高いことが明らかとなっている135,177)。実際、Tsiourisらは大腸切除後の16%の患者でCDトキシンが検出されたと報告している135)。C. difficile小腸感染のリスク因子は一般的なCDIのリスク因子とは異なり、緊急手術、白人、高齢があげられている132)。

C. difficileの小腸感染に伴う症状として下痢や腹痛、白血球増多、ハイアウトプットストマ、難治性の回腸囊炎などが含まれる。診断は小腸内容物を検体としてC. difficile検査に供する。画像診断としてCTでは腹水貯留や小腸拡張（＞2.5cm）、壁肥厚（＞0.3cm）などがC. difficileの小腸感染を示唆する所見とする132)。内視鏡像として小腸にみられる偽膜、粘液付着などはC. difficileの小腸感染を疑う所見とする139)。ただし、小腸にみられる偽膜は稀な所見と考えられる139)。治療としてMNZやVCMが一般的に用いられるが、経鼻的チューブからのFMTの有用性が期待されている132)。

謝辞

御高閣いただきました愛知医科大学感染症科/感染制御部准教授の小泉祐介先生に深謝いたします。
利益相反：なし

文献

1) Hall IC, O'Toole E: Intestinal flora in newborn infants with a description of a new pathogenic anaerobe. Bacterium difficilis. Am J Dis Child 49: 390-402, 1935

2) George RH, Symonds JM, Dimock F, et al: Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J 1: 695, 1978

3) Larson HE, Price AB, Honour P, et al: Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet 1: 1063-1066, 1978

4) 田中孝正, 藤本卓司: 【クロストリジウム・ディフィシルと戦う最新戦略】クロストリジウム・ディフィシル感染症の最新疫学. 感染と抗菌薬 19: 227-231, 2016

5) Lawson PA, Citron DM, Tyrrell KL, et al: Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prevot 1938. Anaerobe 40: 95-99, 2016

6) Cohen SH, Gerding DN, Johnson S, et al: Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31: 431-455, 2010

7) Surawicz CM, Brandt LJ, Binion DG, et al: Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108: 478-498; quiz 99, 2013

8) McFarland LV, Mulligan ME, Kwok RY, et al: Nosocomial acquisition of Clostridium difficile infection. N Engl J Med 320: 204-210, 1989

9) Shim JK, Johnson S, Samore MH, et al: Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet 351: 633-636, 1998

10) McFarland LV: Diarrhea acquired in the hospital. Gastroenterol Clin North Am 22: 563-577, 1993

11) Bartlett JG: Clinical practice. Antibiotic-associated diarrhoea. N Engl J Med 346: 334-339, 2002

12) Olson MM, Shahnoltzer CJ, Lee JT Jr., et al: Ten years of prospective Clostridium difficile-associated disease surveillance and treatment at the Minneapolis VA Medical Center. 1982-1991. Infect Control Hosp Epidemiol 15: 371-381, 1994

13) Kyne L, Warny M, Qamar A, et al: Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357: 189-193, 2001

14) Moskowitz M, Ben Baruch E, Kline Z, et al: Clinical manifestations and outcome of Pseudomembranous colitis in an elderly population in Israel. Isr Med Assoc J 6: 201-204, 2004

15) Pepin J, Valiquette L, Alary ME, et al: Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 171: 466-472, 2004

16) Lessa FC, Mu Y, Bamberg WM, et al: Burden of Clostridium difficile infection in the United States. N Engl J Med 372: 825-834, 2015

17) Mori N, Aoki Y: Clinical characteristics and risk factors for community-acquired Clostridium difficile infection: A retrospective, case-control study in a tertiary care hospital in Japan. J Infect Chemother 21: 864-867, 2015

18) Wilcox MH, Mooney L, Bendall R, et al: A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother 62: 388-396, 2008

19) Loo VG, Poirier L, Miller MA, et al: A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353: 2442-2449, 2005

20) Elliott B, Chang BJ, Golledge CL, et al: Clostridium difficile-associated diarrhoea. Intern Med J 37: 561-568, 2007

21) Kuijper EJ, Coignard B, Tull P: Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12 Suppl 6: 2-18, 2006

22) McDonald LC, Killgore GE, Thompson A, et al: An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353: 2433-2441, 2005

23) Warny M, Pepin J, Fang A, et al: Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366: 1079-1084, 2005

24) Kato H, Ito Y, van den Berg RJ, et al: First isolation of Clostridium difficile 027 in Japan. Euro Surveill 12: E070111 3, 2007

25) Senoh M, Kato H, Fukuda T, et al: Predominance of PCR-ribotypes, 018 (smz) and 369 (trf) of Clostridium difficile in Japan: a potential relationship with other global circulating strains? J Med Microbiol 64: 1226-1236, 2015

26) 安藤 朗: 炎症性腸疾患の病態と腸内細菌の関わり. 日本内科学会雑誌 106: 466-471, 2017

27) Sartor RB: Microbial influences in inflammatory bowel diseases. Gastroenterology 134: 577-594, 2008

28) Nishida A, Inoue R, Inatomi O, et al: Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11: 1-10, 2018

29) Hooper LV, Gordon JI: Commensal host-bacterial relationships in the gut. Science 292: 1115-1118, 2001

30) Hooper LV, Midtvedt T, Gordon JI: How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22: 283-307, 2002

31) Wostmann BS: The germfree animal in nutritional studies. Annu Rev Nutr 1: 257-279, 1981

32) LeBlanc JG, Laino JE, del Valle MJ, et al: B-group vitamin production by lactic acid bacteria--current knowledge and potential applications. J Appl Microbiol 111: 1297-1309, 2011

33) Marchesi JR, Adams DH, Fava F, et al: The gut microbiota and host health: a new clinical frontier. Gut 65: 330-339, 2016
34) Pomare EW, Branch WJ, Cummings JH: Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. J Clin Invest 75: 1448–1454, 1985

35) Machiels K, Joossens M, Sabin J, et al: A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63: 1275–1283, 2014

36) Buffie CG, Pamer EG: Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13: 790–801, 2013

37) O’Hara AM, Shanahan F: The gut flora as a forgotten organ. EMBO Rep 7: 688–693, 2006

38) Sekirov I, Russell SL, Antunes LC, et al: Gut microbiota in health and disease. Physiol Rev 90: 859–904, 2010

39) Kamada N, Kim YG, Sham HP, et al: Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336: 1325–1329, 2012

40) Huang T, Zhang X, Pan J, et al: Purification and characterization of a Novel Cold Shock Protein-like Bacteriocin Synthesized by Bacillus thuringiensis. Sci Rep 6: 35560, 2016

41) Falk PG, Hooper LV, Midtvedt T, et al: Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62: 1157–1170, 1998

42) Round JL, Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9: 313–323, 2009

43) Mazmanian SK, Liu CH, Tzanabos AO, et al: An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107–118, 2005

44) Bouskra D, Brezillon C, Berard M, et al: Lymphoid tissue gene induction by commensals through NOD1 regulates intestinal homeostasis. Nature 456: 507–510, 2008

45) Ayabe T, Satchell DP, Pesendorfer P, et al: Activation of Paneth cell alpha-defensins in mouse small intestine. J Biol Chem 277: 5219–5228, 2002

46) Cash HL, Whitham CV, Behrendt CL, et al: Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313: 1126–1130, 2006

47) Hooper LV, Stappenbeck TS, Hong CV, et al: Angiogenins: a new class of microbialicidal proteins involved in innate immunity. Nat Immunol 4: 269–273, 2003

48) Putsep K, Axelsson LG, Boman A, et al: Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139: 485–498, 2009

49) Hapfelmeier S, Lawson MA, Slack E, et al: Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328: 1705–1709, 2010

50) Macpherson AJ, Harris NL: Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4: 478–485, 2004

51) Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al: The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31: 677–688, 2009

52) Ivanov II, Atarashi K, Manel N, et al: Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139: 485–498, 2009

53) Umesaki Y, Setoyma H, Matsumoto S, et al: Differences in the roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun 67: 3504–3511, 1999

54) Cebra JJ: Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69: 1046S–1051S, 1999

55) Shanahan F: The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 16: 915–931, 2002

56) Atarashi K, Tanoue T, Oshima K, et al: Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232–236, 2013

57) Atarashi K, Tanoue T, Ando M, et al: Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell 163: 367–380, 2015

58) Stockinger B, Omenetti S: The dichotomous nature of T helper 17 cells. Nat Rev Immunol 17: 535–544, 2017

59) Gustavsson A, Magnusson A, Blomberg B, et al: Endoscopic dilation is an efficacious and safe treatment of intestinal strictures in Crohn’s disease. Aliment Pharmacol Ther 36: 151–158, 2012

60) Dethlefsen L, Huse S, Sogin ML, et al: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6: e280, 2008

61) Theriot CM, Koenigsckeht MJ, Carlson PE Jr, et al: Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5: 3114, 2014

62) Reeves AE, Koenigsckeht MJ, Bergin IL, et al: Suppression of Clostridium difficile in the gastrointestinal tracts of germ-free mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun 80: 3786–3794, 2012

63) Lawley TD, Clare S, Walker AW, et al: Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8: e1002995, 2012

64) Shahinas D, Silverman M, Sittler T, et al: Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA gene deep sequencing. MBio 3, 2012

65) Weingarden AR, Hamilton MJ, Sadowsky MJ, et al: Resolution of severe Clostridium difficile infection following sequential fecal microbiota transplantation. J Clin Gastroenterol 47: 735–737, 2013

66) Khoruts A, Sadowsky MJ: Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 13: 508–516, 2016
67) Bishara J, Farah R, Mograbi J, et al: Obesity as a risk factor for Clostridium difficile infection. Clin Infect Dis 57: 489–493, 2013
68) Kwok CS, Arthur AK, Anibueze CI, et al: Risk of Clostridium difficile infection with acidic suppressing drugs and antibiotics: meta-analysis. Am J Gastroenterol 107: 1011–1019, 2012
69) Janarthanan S, Ditah I, Adler DG, et al: Clostridium difficile-associated diarrhea and proton pump inhibitor therapy: a meta-analysis. Am J Gastroenterol 107: 1001–1010, 2012
70) Kyne L, Vich Vila A, Bonder MJ, et al: Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67: 108–119, 2018
71) Imhann F, Vich Vila A, Bonder MJ, et al: Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67: 108–119, 2018
72) Jackson MA, Goodrich JK, Maxan ME, et al: Proton pump inhibitors alter the composition of the gut microbiota. Gut 65: 749–756, 2016
73) Otsuka T, Sugimoto M, Inoue R, et al: Influence of stool consistency on the risk of recurrent Clostridium difficile disease. Am J Gastroenterol 107: 1001–1010, 2012
74) Leffler DA, Lamont JT: Clostridium difficile Infection. N Engl J Med 373: 287–288, 2015
75) Voth DE, Ballard JD: Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18: 247–263, 2005
76) Voith DE, Ballard JD: Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18: 247–263, 2005
77) 神谷 茂: 議題の感染症: ディフィシル菌感染症の基礎と臨床. Modern Medical 56: 233–241, 2010
78) Hookman P, Barkin JS: Clostridium difficile associated infection, diarrhea and colitis. World J Gastroenterol 15: 1554–1580, 2009
79) Kelly CP, LaMont JT: Clostridium difficile–more difficult than ever. N Engl J Med 359: 1932–1940, 2008
80) McFarland LV, Elmer GW, Surawicz CM: Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am J Gastroenterol 97: 1769–1775, 2002
81) 中村 敦: 【クロストリジウム・ディフィシルと戦う新型戦略】クロストリジウム・ディフィシル感染症の最新治療指針. 再発性クロストリジウム・ディフィシル感染症. 感染と抗菌薬 19: 232–236, 2016
82) Crobach MJ, Dekkers OM, Wilcox MH, et al: European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect 15: 1053–1066, 2009
83) Islam J, Cheek E, Navani V, et al: Influence of cohorting patients with Clostridium difficile infection on risk of symptomatic recurrence. J Hosp Infect 85: 17–21, 2013
84) Johnson S, Gerding DN, Olson MM, et al: Prospective, controlled study of vinyl glove use to interrupt Clostridium difficile nosocomial transmission. Am J Med 88: 137–140, 1990
85) Shanbhag A, Willard KE, Holter JJ, et al: Comparison of the VIDAS Clostridium difficile toxin A immunosassay with C. difficile culture and cytotoxin and latex tests. J Clin Microbiol 30: 1837–1840, 1992
86) Walker RC, Ruane PJ, Rosenblatt JE, et al: Comparison of culture, cytotoxicity assays, and enzyme-linked immunosorbent assay for toxin A and B in the diagnosis of Clostridium difficile-related enteric disease. Diagn Microbiol Infect Dis 5: 61–69, 1986
87) Kyne L, Warne Y, Qamar A, et al: Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342: 390–397, 2000
88) Louie TJ, Peppe J, Watt CK, et al: Tolevamer, a novel nonantibiotic polymer, compared with vancomycin in the treatment of mild to moderately severe Clostridium difficile-associated diarrhea. Clin Infect Dis 43: 411–420, 2006
89) Musher DM, Logan N, Hamill RJ, et al: Nitazoxanide for the treatment of Clostridium difficile colitis. Clin Infect Dis 43: 421–427, 2006
90) 豊川真弘: 【クロストリジウム・ディフィシルと戦う新型戦略】クロストリジウム・ディフィシル感染症の迅速診断検査 トキシン遺伝子検査法の有用性と課題. 感染と抗菌薬 19: 232–236, 2016
91) McFarland RV, Surawicz CM: Epidemiology and pathogenesis of antibiotic-associated diarrhea. Clin Microbiol Rev 18: 247–263, 2005
92) 髙橋雅史: 抗菌剤投与による下痢症に関する研究. Clostridium difficile 腸炎の臨床的検討. Gastroenterological Endoscopy 53: 1991–2000, 2011
93) Kawada M, Annaka M, Kato H, et al: Evaluation of a simultaneous detection kit for the glutamate dehydrogenase antigen and toxin A/B in feces for diagnosis of Clostridium difficile infection. J Infect Chemother 17: 807–811, 2011
94) 福松孝彦: 抗菌剤投与による下痢症に関する研究. Clostridium difficile 腸炎の臨床的検討. 十全医学会雑誌 98: 674–685, 1989
95) 上田安希子, 豊川真弘, 西 功ほか: 病便中 Clostridium difficile Toxin A および Toxin B 同時検出試薬の有用性に関する比較検討. 日本臨床微生物学雑誌 21: 51–58, 2011
96) Debab SB, Bauer MP, Kuiper-Ej EJ: European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect 15: 1053–1066, 2009
97) 沖上 久: 抗菌剤投与による下痢症に関する研究 Clostridium difficile 腸炎の臨床的検討を中心に. 日本大腸肛門病会誌 71(10): 867–868, 1985
98) Louie TJ, Miller MA, Mullane KM, et al: Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364: 422-431, 2011
99) Trubiano JA, Cheng AC, Korman TM, et al: Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 46: 479-493, 2016
100) Hecht DW, Galang MA, Sambol SP, et al: In vitro activities of 15 antimicrobial agents against 110 toxigenic clostridium difficile clinical isolates collected from 1983 to 2004. Antimicrob Agents Chemother 51: 2716-2719, 2007
101) Nord CE, Søllerstrom E, Wahlund E: Effect of tigecycline on normal oropharyngeal and intestinal microbiota. Antimicrob Agents Chemother 50: 3375-3380, 2006
102) Aldape MJ, Heeney DD, Bryant AE, et al: Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile. J Antimicrob Chemother 70: 153-159, 2015
103) 阿曽沼邦央、黒木優一郎、猪 聡志ほか: 重症難治性クロストリジウム・ディフィシル感染症に対して便移植（fecal microbiota transplantation）が著効した 1 例. 日本消化器病学会雑誌 113: 55-62, 2016
104) Bagdasarian N, Rao K, Malani PN: Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA 313: 398-408, 2015
105) van Noo E, Vrieze A, Nieuwdorp M, et al: Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368: 407-415, 2013
106) Cammarota G, Ianiro G, Gasbarrini A: Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol 48: 693-702, 2014
107) Drekonja D, Reich J, Gezahggn S, et al: Fecal Microbiota Transplantation for Clostridium difficile Infection: A Systematic Review. Ann Intern Med 162: 630-638, 2015
108) Rossen NG, MacDonald JK, de Vries EM, et al: Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. World J Gastroenterol 21: 5359-5371, 2015
109) Kassam Z, Lee CH, Yuan Y, et al: Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108: 500-508, 2013
110) Hamilton MJ, Weingarden AR, Sadowsky MJ, et al: Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol 107: 761-767, 2012
111) Lee CH, Steiner T, Petrof EO, et al: Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA 315: 142-149, 2016
112) Youngster I, Russell GH, Pindar C, et al: Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312: 1772-1778, 2014
113) Ott SJ, Waetzig GH, Rehman A, et al: Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. Gastroenterology 152: 799-811 e7, 2017
114) Kelly CR, Ihnannah C, Fischer M, et al: Fecal microbiota transplantation for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 109: 1065-1071, 2014
115) Bamba S, Nishida A, Imaeda H, et al: Successful treatment by fecal microbiota transplantation for Japanese patients with refractory Clostridium difficile infection: A prospective case series. J Microbiol Immunol Infect. 2017; in press.
116) Nanki K, Mizuno S, Matsuoka K, et al: Fecal microbiota transplantation for recurrent Clostridium difficile infection in a patient with ulcerative colitis. Intest Res 16: 142-146, 2018
117) Ferrada P, Velopulos CG, Sultan S, et al: Timing and type of surgical treatment of Clostridium difficile-associated disease: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg 76: 1484-1493, 2014
118) Lee DY, Chung EL, Guend H, et al: Predictors of mortality after emergency colectomy for Clostridium difficile colitis: an analysis of ACS-NSQIP. Ann Surg 259: 148-156, 2014
119) Yong FA, Alvarado AM, Wang H, et al: Appendectomy: a risk factor for colectomy in patients with Clostridium difficile. Am J Surg 290: 532-535, 2015
120) Wilcox MH, Gerding DN, Poxtor IR, et al: Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N Engl J Med 376: 305-317, 2017
121) Mikamo H, Aoyama N, Sawata M, et al: The effect of bezlotoxumab for prevention of recurrent Clostridium difficile infection (CDI) in Japanese patients. J Infect Chemother 24: 123-129, 2018
122) Greenberg RN, Marbury TC, Foglia G, et al: Phase I dose finding studies of an adjuvanted Clostridium difficile toxoid vaccine. Vaccine 30: 2245-2249, 2012
123) 小泉祐介, 西山直哉, 浅井信博ほか: 『クロストリジウム・ディフィシルと戦う最新戦略』クロストリジウム・ディフィシル感染症を取り巻く注目の話題 クロストリジウム・ディフィシルのワクチン. 感染と抗菌薬 19: 264-270, 2016
124) Johnson S, Louie TJ, Gerding DN, et al: Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis 59: 345-354, 2014
125) 安藤 朗: 【免疫不全患者における感染症の現状と展望】炎症性腸疾患. 最新医学 71: 827-832, 2016
126) Rodemann JF, Dubberke ER, Reske KA, et al: Incidence of Clostridium difficile infection in inflammatory bowel disease. Clin Gastroenterol Hepatol 5: 339-344, 2007
127) Trifan A, Stanciu C, Stoica O, et al: Impact of Clostridium difficile infection on inflammatory bowel disease outcome: a review. World J Gastroenterol 20: 11736-11742, 2014
Current Status of *Clostridium Difficile* Infection

Akira Andoh\(^1\) and Shigeki Bamba\(^2\)

\(^1\)Division of Gastroenterology, Shiga University of Medical Science,
\(^2\)Division of Clinical Nutrition, Shiga University of Medical Science

Clostridium difficile is a Gram-positive, anaerobic, spore-forming bacillus that is spread indirectly via the fecal-oral route through spores. Disturbance of gut microbiota due to antibiotic therapy causes abnormal proliferation of *Clostridium difficile* and toxin production, leading to the development of *Clostridium difficile* infection. A new, hyper-virulent strain of *Clostridium difficile*, NAP1/B1/027, has been implicated in *Clostridium difficile* outbreaks associated with increased morbidity and mortality since the early 2000s. In 2013, van Nood et al. reported that in patients with recurrent *Clostridium difficile* infection, fecal microbiota transplantation resulted in better treatment outcomes compared with conventional antibiotic treatment, which has attracted increased attention. Recently, monoclonal antibodies against toxin B, vaccines and a polystyrene binder of *Clostridium difficile* toxins have been developed for the treatment of *Clostridium difficile* infection. In this article, we will outline the epidemiology, pathophysiology, diagnosis and treatment of *Clostridium difficile* infection, and also describe the relationships between ulcerative colitis and *Clostridium difficile* infection.

Key words: *Clostridioides difficile*, pseudomembranous colitis, fecal microbiota transplantation