Case Report

Necrotizing Granulomatous Pneumocystis Infection Presenting as a Solitary Pulmonary Nodule: A Case Report and Review of the Literature

Mansur Assaad, Mohamed Swalih, and Apurwa Karki

Department of Pulmonary and Critical Care Medicine, Guthrie Robert Packer Hospital, Sayre, PA, USA

Correspondence should be addressed to Mansur Assaad; mansurassaad@gmail.com

Received 27 February 2022; Accepted 16 July 2022; Published 28 July 2022

Academic Editor: Akif Turna

Copyright © 2022 Mansur Assaad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Pneumocystis jirovecii is an opportunistic fungus that is classically associated with pneumonia in immunocompromised patients, particularly those with human immunodeficiency virus and acquired immunodeficiency syndrome (HIV/AIDS) [1]. However, this infection is now more commonly seen in those with malignancy, particularly lymphoproliferative disorders [1]. Classic imaging findings with Pneumocystis jirovecii pneumonia (PJP) include bilateral ground-glass opacities with or without cyst formation. Up to 5% of patients with PJP may present with atypical imaging findings, specifically nodular opacities or masses thought to represent granulomatous inflammation [2]. Herein, we present an interesting case of granulomatous PJP presenting as a progressively enlarging solitary pulmonary nodule.

1. Introduction

Pneumocystis jirovecii is an opportunistic fungus that is classically associated with pneumonia in immunocompromised patients, especially those with human immunodeficiency virus and acquired immunodeficiency syndrome (HIV/AIDS) [1]. However, this infection is now more commonly seen in those with malignancy, particularly lymphoproliferative disorders [1]. Classic imaging findings with Pneumocystis jirovecii pneumonia (PJP) include bilateral ground-glass opacities with or without cyst formation [1]. Up to 5% of patients with PJP may present with atypical imaging findings, specifically nodular opacities or masses thought to represent granulomatous inflammation [2]. Herein, we present an interesting case of granulomatous PJP presenting as a progressively enlarging solitary pulmonary nodule.

2. Case Report

A 76-year-old man with a history of peripheral T-cell lymphoma treated with six cycles of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) was referred for abnormal imaging. Initial imaging showed enlarged mediastinal lymphadenopathy, particularly within the right paratracheal and subcarinal regions, as well as prominent mesenteric, retroperitoneal, and pelvic lymphadenopathy. A surveillance computed tomography (CT) of the chest, abdomen, and pelvis performed two months after therapy
showed dramatic improvement. However, a new 1.2 cm pulmonary nodule was seen in the superior-medial aspect of the right lower lobe just lateral to the distal bronchus intermedius (Figure 1). A subsequent positron emission tomography-CT (PET-CT) scan revealed this nodule to be hypermetabolic with a standardized uptake value (SUV) of 5.7, raising the suspicion for a possible primary pulmonary malignancy (Figure 2).

The patient underwent bronchoscopy with linear endobronchial ultrasound (EBUS). After passing the scope into the distal bronchus intermedius and rotating the probe to face the posterior wall, the pulmonary nodule was identified on ultrasound. A 22-gauge needle was used to obtain tissue. Cytology showed no evidence of malignant cells, and flow cytometry showed no discrete clonal B-cell or atypical T-cell population. No tissue was sent for culture. The patient underwent follow-up CT imaging two months later, which showed an enlargement of the nodule to 1.8 cm and two new 1 cm nodules in the peripheral basal right lower lobe. A repeat EBUS was performed, and the area of interest was identified (Figure 3). A 22-gauge needle was used to obtain tissue from the same site; this time, suction was used, and up to fifteen passes with the needle were taken with each aspiration. Rapid on-site evaluation (ROSE) did not confirm the presence of lymphocytes. Cytology was again nondiagnostic. No tissue was sent for culture.

The patient was referred to thoracic surgery. He underwent a right video-assisted thoracoscopic surgery (VATS) with successful resection of the dominant right hilar nodule and two smaller basilar nodules. Pathology from the dominant nodule revealed multiple necrotizing granulomas, some of which were surrounded by organizing pneumonia (Figure 4). Acid-fast bacilli stain was negative. Grocott methenamine silver (GMS) stain demonstrated clusters of organisms compatible with Pneumocystis in the center of these granulomas (Figure 5). On follow-up, the patient remained asymptomatic. He declined treatment with trimethoprim-sulfamethoxazole (TMP-SMX) and elected to pursue serial CT scans to monitor for recurrence. A repeat CT chest 6 months later showed no evidence of recurrence.

Figure 1: CT of the chest following treatment for peripheral T-cell lymphoma showing a new 1.2 cm nodule in the medial right lower lobe just posterolateral to the distal bronchus intermedius. The nodule appears solid with smooth and spiculated margins and surrounding subtle interstitial thickening. No other obvious abnormalities were noted on CT imaging.

Figure 2: PET-CT scan showing the hypermetabolic nodule with a SUV of 5.7, concerning for a possible primary pulmonary malignancy.
Figure 3: Bronchoscopy with EBUS showing an enlarged right hilar nodule.

Figure 4: Hematoxylin and eosin stain of surgical biopsy showing multiple necrotizing granulomas, some of which are surrounded by organizing pneumonia.

Figure 5: Gomori methenamine silver stain showing organisms compatible with Pneumocystis jirovecii.
Patient number	Dako et al. 2019	Lam et al. 2013	Patel et al. 2016	Kim et al. 2016	Kim et al. 2015	Paul 2018	Moualla and Saeed 2014	Dai et al. 2021
Age	49	49	61	47	69	68	37	59
Gender	Female	Female	Male	Male	Female	Male	Male	Male
Symptoms	Dyspnea, cough	Cough, weight	Dyspnea, cough	Cough	Asymptomatic	Asymptomatic	Dyspnea, fever	Cough
Primary diagnosis	Peripheral T-cell lymphoma	Active smoker	DLBCL	HIV	DLBCL	Rectal cancer	Kidney transplant	CLL
Radiology	Multiple nodules	SPN	SPN	Multiple nodules	SPN	SPN	Multiple nodules, mediastinal LAD	SPN
Diagnostic procedure	BAL	VATS	VATS	VATS	VATS	VATS	EBUS-TBNA	VATS
Antibiotic treatment	TMP-SMX	TMP-SMX	Atovaquone	TMP-SMX	TMP-SMX	None	TMP-SMX	Pentamidine

Data pulled from references 1–3, 5–9. BAL: bronchoalveolar lavage; SPN: solitary pulmonary nodule; DLBCL: diffuse large B-cell lymphoma; VATS: video-assisted thoracoscopic surgery; HIV: human immunodeficiency virus; LAD: lymphadenopathy; EBUS-TBNA: endobronchial ultrasound-transbronchial needle aspiration; CLL: chronic lymphocytic leukemia; TMP-SMX: trimethoprim-sulfamethoxazole.
3. Discussion

PJP classically presents with an image pattern of bilateral alveolar and interstitial infiltrates with a perihilar distribution and upper-lobe predominance [3, 4]. However, atypical radiographic findings, specifically an enlarging solitary pulmonary nodule, have been reported in a handful of cases. Furthermore, granulomatous inflammation is a rare pathologic finding with PJP and comprises 3-5% of the cases [3, 5]. Several host factors may play a role in the pathogenesis of granulomatous PJP infection, including active malignancy, long-term corticosteroid use, and the presence of immune reconstitution inflammatory syndrome, and, as in this patient, prior treatment of lymphoma with CHOP therapy [3].

Diagnosis can be challenging. Compared with classic PJP with alveolar infiltrates, organisms are rarely found in the alveolar lumen with granulomatous PJP, making the diagnostic yield from bronchoalveolar lavage (BAL) in these patients very poor [5, 6]. Furthermore, the presence of an enlarging solitary pulmonary nodule in a patient previously treated for a lymphoproliferative disorder likely requires more tissue acquisition to assess for recurrence of disease, development of a new primary malignancy, or, as in this case, development of an opportunistic infection. Bronchial brushings, needle aspiration, and transbronchial and image-guided biopsy are considered unfavorable for diagnosis [7]. Routine fungal cultures from EBUS-transbronchial needle aspirations (EBUS-TBNA) are generally considered unhelpful given low yield and high rate of contamination. However, there have been rare case reports of PJP diagnosed by EBUS-TBNA of mediastinal lymphadenopathy. Moualla and Saeed reported an immunosuppressed 37-year-old patient due to a prior kidney transplant who developed dyspnea and fever [8]. Imaging showed bilateral pulmonary nodules and mediastinal adenopathy, and EBUS-TBNA of a new solitary pulmonary nodule eventually led to a surgical resection, which revealed a diagnosis of nodular necrotizing granulomatous Pneumocystis jirovecii. The diagnostic yield from EBUS is not well established, and most cases require surgical biopsy for definitive diagnosis. Further data regarding the use of EBUS-TBNA in diagnosing granulomatous PJP is needed.

4. Conclusion

The differential diagnosis for a new solitary pulmonary nodule in an immunocompromised patient is broad. One must first rule out a recurrence of malignancy or new primary malignancy. The clinician must also be aware of atypical presentations of opportunistic infections. In our case, two nondiagnostic bronchoscopies with EBUS-TBNA eventually led to a surgical resection, which revealed a diagnosis of nodular necrotizing granulomatous Pneumocystis jirovecii. The diagnostic yield from EBUS is not well established, and most cases require surgical biopsy for definitive diagnosis. Further data regarding the use of EBUS-TBNA in diagnosing granulomatous PJP is needed.

Consent

The patient has provided verbal consent for the submission of this case report. All potentially identifiable data in the case presentation has been completely deidentified.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] F. Dako, B. Kakko, J. Nirag, and S. Simpson, “High-resolution CT, histopathologic, and clinical features of granulomatous Pneumocystis jiroveci pneumonia,” Radiology Case Reports, vol. 14, no. 6, pp. 746–749, 2019.
[2] J. Lam, M. M. Kelly, R. Leigh, and M. D. Parkins, “Granulomatous PJP presenting as a solitary lung nodule in an immune competent female,” Respiratory Medicine Case Reports, vol. 26, no. 11, pp. 4–6, 2014.
[3] K. B. Patel, J. B. Gleason, M. J. Diacovo, and N. Martinez-Galvez, “Pневмокystис pneumonía presenting as an enlarging solitary pulmonary nodule,” Case Reports in Infectious Diseases, vol. 2016, Article ID 1873237, 4 pages, 2016.
[4] L. Cerceser, A. Dallorto, A. Candoni et al., “Pneumocystis jiroveci pneumonia at chest high-resolution computed tomography (HRCT) in non-HIV immunocompromised patients:
spectrum of findings and mimickers,” *European Journal of Radiology*, vol. 116, pp. 116–127, 2019.

[5] H. S. Kim, K. E. Shin, and J. H. Lee, "Single nodular opacity of granulomatous Pneumocystis jirovecii pneumonia in an asymptomatic lymphoma patient,” *Korean Journal of Radiology*, vol. 16, no. 2, pp. 440–443, 2015.

[6] H. W. Kim, J. Y. Heo, Y. M. Lee, S. J. Kim, and H. W. Jeong, "Unmasking granulomatous Pneumocystis jirovecii pneumonia with nodular opacity in an HIV-infected patient after initiation of antiretroviral therapy,” *Yonsei Medical Journal*, vol. 57, no. 4, pp. 1042–1046, 2016.

[7] P. H. Hartel, "Granulomatous pulmonary Pneumocystis jirovecii in patients with solid and lymphoproliferative neoplasms: clinicopathologic characterization of 9 cases,” *Lungs and Breathing*, vol. 2, no. 2, 2018.

[8] M. Moualla and A. Saeed, "Endobronchial ultrasound with fine needle aspiration biopsy: a novel approach in diagnosing Pneumocystis jiroveci in mediastinal lymph node,” *Chest*, vol. 146, no. 4, p. 169A, 2014.

[9] S.-Y. Dai, C.-T. Chiang, P.-C. Chen, and Y.-Y. Chen, "Granulomatous Pneumocystis jirovecii mimics pulmonary metastasis in rectal cancer," *The Kaohsiung Journal of Medical Sciences*, vol. 37, no. 1, pp. 74-75, 2021.

[10] A. Abdullah, L. Winnicka, F. Nasir, and J. Molina, "Granulomatous Pneumocystis Jirovecii pneumonia presenting as an enlarging solitary lung nodule,” *Chest*, vol. 152, no. 4, p. A190, 2017.