This paper describes the very efficient and highly enantioselective ring opening of terminal epoxides with alkyl and aryl sulfonic acid. The dinuclear chiral (salen) Co complexes bearing Lewis acids of Al, Ga and In catalyze the reaction enantioselectively in the presence of tetrabutylammonium chloride using tert-butyl methyl ether as a solvent. The variation of the anion of the tetrabutyl ammonium salt has significant impact on the reactivity and selectivity of the asymmetric ring opening of phenyl glycidyl ether with p-toluenesulfonic acid. The order of reactivity and selectivity was found to be Cl- > I- > Br- > OH-. Strong synergistic effects of the different Lewis acid centers of Co-Al, Co-Ga and Co-In complexes were observed in the catalytic process. The dinuclear chiral salen catalyst containing AlCl₃ was found to be most active and highly enantioselective (91% ee).

Keywords: enantioselective catalysis, chiral heterometallic salen catalyst, terminal epoxides, sulfonic acids

1. Introduction

Chiral (salen) Co complexes catalyzed kinetic resolutions of terminal epoxides with various nucleophiles, have been established as a suitable approach in the synthesis of enantioselectively-enriched valuable epoxides and corresponding products[1-8]. It was reported recently that the heterometallic chiral salen complexes could be used as a multifunctional catalyst for the asymmetric ring opening reactions of epoxides [9-14]. Recently, heterometallic chiral salen complexes bearing Lewis acids of group 13 metals were reported to catalyze the ring opening of terminal epoxides with carboxylic acids[11]. As a part of ongoing studies, this paper reports the highly enantioselective kinetic resolution of terminal epoxides using various organic sulfonic acids as a nucleophile. However, the application of organic sulfonic acid for the enantioselective kinetic resolution of terminal epoxides in the presence of chiral Co salen catalysts has not been tried until now. We have used bimetallic catalysts successfully in the asymmetric ring opening reaction of terminal epoxides using various nucleophiles such as water, alcohols, and carboxylic acid. The desired monomer and dimer (salen) Co-MX₃ complexes were synthesized using a procedure reported elsewhere[10,12,13]. In this work, the enantioselective catalytic activities
of those catalysts were investigated for the synthesis of highly enantio-merically enriched arenesulfonic acid 2-hydroxy esters via kinetic reso-lution of terminal epoxides with various sulfonic acids such as meth-anesulfonic acid, 10-camporsulfonic acid, 4-nitrobenzenesulfonic acid. Additionally the differences of catalytic activity depending on the structure of chiral salen complex were also compared in that reaction. Bimetallic catalysts showed remarkably enhanced reactivity and may be employed to reduce the loadings com-pared to its monomeric analogues without suffering from solubility problem and their deactivation. These catalysts would be capable for the synthesis of (S)-atenolol chiral drug via asymmetric ring opening reaction using organic sulfonic acid as a nucleophile.

2. Experimental

2.1. Catalyst Synthesis

The monomer and dimer type complexes of (salen) Co-AlCl3/ GaCl3/InCl3 were synthesized and characterized according to an earlier report[10,12,13], and the brief procedure for the synthesis of those complexes is shown in Scheme 1. Subsequently the following procedure was adopted for the synthesis of 1a-2c. For 1a, an oven dried 50 ml flask equipped with a stir bar was charged with p-toluenesulfonic acid (0.4666 g, 2.71 mmol, 1.0 equiv.) and stirred in THF (10 mL) in an open atmosphere and room temperature for 30 min. The resulting solution was concentrated under reduced pressure (yield = 99% as a dark brown solid powder). The oxidation sate of CoII was checked by ESCA. For the synthesis of 1b-2b, a similar procedure was adopted by taking 1 : 1 or 2 : 1 equivalent of p-toluenesulfonic acid and corresponding Co-AlCl3/Co-GaCl3/Co-InCl3 monomer and dimer, respectively. In the case of catalyst B, the precatalyst (R,R)-(+-)N,N’-bis (3,5-di-tert-butylsalicylidene)-1,2-cyclohexane diamino cobalt (II) was activated by mixing a 1.0 equivalent of p-toluenesulfonic acid (based on Co unit) in THF and stirred for 1 h.

2.2. Asymmetric catalytic reaction using chiral Co(III) salen complex

In a representative reaction of phenyl glycidyl ether (PGE) and p-toluenesulfonic acid (entry 14 in Table 1), an oven dried 25 mL flask equipped with a stir bar was charged with (R,R)-2a (0.7559 g, 0.5 mmol, 5 mol%) and (±)-phenyl glycidyl ether (PGE) (1.5017 g, 0.5 mol) and stirred in the open atmosphere. The resulting mixture was dissolved in 5 mL of tert-buty methyl ether as the solvent at ambient temperature. p-Toluenesulfonic acid (0.861 g, 5.0 mmol, 0.5 equiv.) was added after complete dissolution of the catalyst and PGE. Finally, tetra butyl ammonium chloride (TBACl, 0.4169 g, 1.5 mmol, 0.3 equiv.) was mixed into the reaction mixture. The resulting solution was heated under reflux for up to 1 hour and stirred for a further 1 hour at room temperature. The conversions of epoxides were monitored by Gas Chromatography (GC; Hewlett-Packard 5890 Series II), and enantiomeric excess% (ee%) values of the ring opened product were determined by capillary GC equipped with FID detectors using a chiral column (CHIRALDEX (gamma-cyclodextrin trifluoroacetyl (G-TA) and alpha-cyclodextrin trifluoroacetyl (A-TA), Astec Co.), 20 m × 0.25 mm I.D.) and by HPLC using a Chiralcel® OD-H column (Regis Co., 24 cm × 0.46 cm I.D., diluent; hexane/i-propylalcohol = 95 : 5 (vol%), flow rate; 5 mL/min, UV detector; 254 nm). The purification of the products were performed by flash column chromatography and recrystallized three times by CH2Cl2/n-heptane to afford almost colorless crystals. The products were confirmed by FT-IR, 1H-NMR and 13C-NMR spectroscopy, and found to be similar to the reported value [17,18]. In the case of epoxy butane (entry 1, 4, 7, 17, 20 in Table 1), the reaction was performed at ambient temperature.

2.3. Characterization of catalysts and analysis

All 1H nuclear magnetic resonance (NMR), 13C-NMR data were re-corded using a 400 MHz FT-NMR spectrophotometer (VARIAN UNITYNOVA 400) at ambient temperatures. Optical rotation measurements were conducted using a Jasco DIP 370 digital polarimeter. The UV spectra were recorded on UV-Vis spectrophotometer (Optizen 2120 UV) interfaced with PC using Optizen view 3.1 software for data analysis. Vibrational Circular Dichroism (VCD) and Fourier transform infrared (FT-IR) spectroscopy were performed on a Chiralir TM-ABB Bomem Inc. using Bomem GRAMS-32 software. The solvents were used after distillation. TBME was used as obtained from Aldrich. All reagents were purchased from Aldrich, Fluka, TCI, and Lancaster.

3. Results and Discussion

A series of chiral (salen) Co complexes (Scheme 1) were screened to identify the most enantioselective and reactive catalyst for the asymmetric ring opening (ARO) of PGE with p-toluenesulfonic acid. Figure 1 shows that the dimeric catalyst 2a-2c are more reactive and enantio-selective than their monomeric analogue. The catalyst 2a in the present study was found to be most effective and highly enantioselective (91%
The catalytic activity and selectivity of the enantioselective ring opening of PGE with p-toluenesulfonic acid. The catalyst amount was 5 mol% for 2a-2c and 10 mol% for 1a-1c.

For the choice of additive, such as quaternary ammonium salts, to enhance the reaction rate and enantioselectivity, the tetra butyl ammonium chloride was found to be quite useful for the enantioselective ring opening of PGE with p-toluenesulfonic acid.

The variation of the anion of the tetrabutylammonium salt has significant impact on the reactivity and selectivity of the ARO of PGE. The order of reactivity and selectivity was found to be Cl− > I− > Br− > OH− (Figure 2).

Surprisingly, in the absence of tetrabutylammonium salts but with the other conditions kept constant, the reaction afforded low enantioselectivity (67.7% ee vs. 99.0% ee) and low yield (32% vs. 47%). It was clearly found that the organic solvent played a crucial role on the reactivity and selectivity of the enantioselective ring opening of PGE with p-toluenesulfonic acid. Interestingly, the use of a non-polar solvent such as tert-butyl methyl ether (TBME) increases the reactivity and enantioselectivity dramatically (Figure 3). Other solvents, such as 1,4-dioxane, acetonitrile, methylene chloride, and tetrahydrofuran, showed less reactivity and enantioselectivity, as can be seen in the result of Figure 3.

Table 1 shows the catalytic activity of catalyst 2a for the ring opening reaction of the representative racemic terminal epoxides. In a representative example of ARO of PGE with p-toluenesulfonic acid, the catalytic activity and enantioselectivity of 1a-2c were observed and are listed in Table 1. The order of reactivity and enantioselectivity was 2a > 2b > 2c, whereas it was 1a > 1b > 1c for the monomeric complex. The optimized reaction conditions for various terminal epoxides with methanesulfonic acid, 10-camporsulfonic acid, p-toluenesulfonic acid and 4-nitrobenzenesulfonic acid were listed in Table 1. A change in the counter ion of 1a-1c from tosylate to camphor sulfonate did not result in any improvement in the reactivity and enantioselectivity on this reaction. The catalyst 1a and 2a prepared from hydrated AlCl3 and Al(NO3)3·9H2O displayed similar reactivity to anhydrous AlCl3. Table 1 shows that PGE (entry 3, 14, 19 and 22) is more reactive and enantioselective than epoxy butane (entry 1, 4, 7, 17 and 20) and epichlorohydrin (entry 2, 5, 8, 18 and 21). The p-toluenesulfonic acid showed considerable nucleophilicity than those evaluated in Table 1. This might be because the p-position CH3 electron releasing group increases the electron density on the oxygen and increases the nucleophilicity. All entries afforded high regiosomer arylsulfonyloxy secondary alcohols except for epoxy butane (entry 1, 4, 7, 17 and 20). In the case of epoxy butane with methanesulfonic acid and arenesulfonic acid at room temperature it afforded the corresponding sulfonoxy secondary alcohols, and under reflux conditions, it provided a 1 : 1 mixture of the regiosomeric primary and secondary sulfonoxy alcohol with low ee% (< 50%).

The effects of the catalyst amount on the activity and enantioselectivity of PGE with p-toluenesulfonic acid is given in Figure 4. The data show that the reaction obeys the cooperatives bimetallic mechanism. The central metal atom Co activates and controls the orientation of epoxide, activating stereoselectively only one enantiomer, but Al, Ga and In appear to bind and control the orientation of arenesulfonic acid by enabling the enantioselective ring opening of epoxides with nucleophiles (Scheme 2). The proposed mechanism may follow according to the recently published enantioselective ring opening of terminal epoxides with carboxylic acid catalyzed by heterometallic chiral (salen) Co complex[11]. The intermolecular mechanism for the mono- and dimeric complex may follow an earlier report[15].
Table 1. Asymmetric Ring Opening of Terminal Epoxides with Sulfonic Acids Catalyzed by Heterometallic Chiral (Salen) Co Complex

Entry	(R) in Epoxide	Sulfonic Acid (R)	Cat. Type	Catalyst Amount	Time (h)	Product Ee% (Yield)
1	C2H5	CH3	2a	5.0	2.0	60.2 (41)
2	C2H5Cl	CH3	2a	5.0	2.0	53.7 (37)
3	PhOCH2	CH3	2a	5.0	2.0	94.6 (45)
4	C2H5	O	2a	5.0	6.0	60.3 (16)
5	C2H5Cl	O	2a	5.0	6.0	54.7 (24)
6	PhOCH2	O	2a	5.0	6.0	88.1 (43)
7	C2H5	O	2a	5.0	3.0	61.5 (42)
8	C2H5Cl	O	2a	5.0	6.0	55.8 (39)
9	PhOCH2	O	A	10.0	2.0	47.3 (17)
10	PhOCH2	O	B	10.0	2.0	63.5 (26)
11	PhOCH2	O	1a	10.0	2.0	75.3 (32)
12	PhOCH2	O	1b	10.0	2.0	67.5 (40)
13	PhOCH2	O	1c	10.0	4.0	61.8 (43)
14	PhOCH2	O	2a	5.0	2.0	99.3 (49)
15	PhOCH2	O	2b	5.0	5.0	93.5 (46)
16	PhOCH2	O	2c	5.0	3.0	91.2 (40)
17	C2H5	O	2a	5.0	3.5	67.5 (41)
18	C2H5Cl	O	2a	5.0	4.0	69.3 (40)
19	PhOCH2	O	2a	5.0	6.0	99.5 (43)
20	C2H5	O	2a	5.0	5.0	53.2 (39)
21	C2H5Cl	O	2a	5.0	3.0	65.6 (42)
22	PhOCH2	O	2a	5.0	2.0	93.1 (45)

*a In mol% loading on a per [Co] basis w.r.t. racemic epoxides. *b The products obtained were characterized by 1H, 13C and elemental analyses. *c Isolated yield is based on racemic epoxides (theoretical maximum = 50%). *d Ee% was determined by chiral GC or chiral HPLC.

Figure 4. Effects of the varying amount of catalyst on the asymmetric ring opening of PGE with p-toluenesulfonic acid catalyst 2a keeping other reaction condition identical with Table 1.

Scheme 2. Proposed mechanism for a cooperative catalysis during the reaction.
Scheme 3 shows the practical utility of the present study for the synthesis of optically pure (S)-atenolol. Racemic atenolol is one of the top five best-selling drugs in the world today for the treatment of hypertension, angina and post-myocardial infarction, but the (S)-isomer has been found to avoid the occasional side effects of a lower heart rate encountered with racemate[16]. The use of these catalysts for the synthesis of (S)-atenolol chiral drug via Scheme 3 remains an important goal for the further study.

4. Conclusions

The enantioselective catalysis of reactions between nucleophiles and electrophiles is of synthetic interest because such processes can provide practical access to valuable chiral materials. Because the reactions of epoxides with nucleophiles containing oxygen are rather difficult, the ring opening of epoxides with oxygen-containing nucleophiles is quite challenging. The challenge was overcome and the good results are obtained in this work through successful use of organic sulfonic acid as a nucleophile to open terminal epoxide rings. The dinuclear chiral (salen) Co complexes bearing Lewis acids of Al, Ga and In catalyze the reaction enantioselectively in the presence of tetrabutylammonium chloride using tert-butyl methyl ether as a solvent. Strong synergistic effects of the different Lewis acid centers of Co-Al, Co-Ga and Co-In complex were found in the catalytic ring opening reactions. The dinuclear chiral salen catalyst containing AlCl3 was found to be most active and highly enantioselective. However, the new application of these catalysts in the enantioselective ring opening of epoxides using various organic sulfonic acids would open the unique routes for a synthesis of valuable block compounds for the production of chiral drugs.

References

1. L. E. Martinez, J. L. Leighton, D. H. Carsten, and E. N. Jacobsen, Highly enantioselective ring opening of epoxides catalyzed by (salen)Cr(III) complexes, J. Am. Chem. Soc., 117, 5897-5898 (1995).
2. M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen, Asymmetric catalysis with water: Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis, Science, 277, 936-938 (1997).
3. E. N. Jacobsen, F. Kakiuchi, R. G. Konsler, J. F. Larrow, and M. Tokunaga, Enantioselective catalytic ring opening of epoxides with carboxylic acids, Tetrahedron Lett., 38, 773-776 (1997).
4. M. Wu and E. N. Jacobsen, Asymmetric ring opening of meso epoxides with thiols: Enantioselective enrichment using a bifunctional nucleophile, J. Org. Chem., 63, 5252-5254 (1998).
5. J. M. Ready and E. N. Jacobsen, Asymmetric catalytic synthesis of r-aryloxy alcohols: Kinetic resolution of terminal epoxides via highly enantioselective ring-opening with phenols, J. Am. Chem. Soc., 121, 6086-6087 (1999).
6. F. Larrow and E. N. Jacobsen, Asymmetric processes catalyzed by chiral (Salen) metal complexes, Top. Organomet. Chem., 6, 123-152 (2004).
7. G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre, and L. Sambri, Asymmetric catalytic synthesis of enantiopure N-protected 1,2-amino alcohols, Org. Lett., 6, 3973-3975 (2004).
8. G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre, and L. Sambri, Asymmetric aminolysis of aromatic epoxides: A facile catalytic enantioselective synthesis of anti-β-amino alcohols, Org. Lett., 6, 2173-2176 (2004).
9. C. K. Shin, S. J. Kim, and G.-J. Kim, New chiral cobalt salen complexes containing Lewis acid BF3: A highly reactive and enantioselective catalyst for the hydrolytic kinetic resolution of epoxides, Tetrahedron Lett., 45, 7429-7433 (2004).
10. S. S. Thakur, W. Li, S. J. Kim, and G.-J. Kim, Highly reactive and enantioselective kinetic resolution of terminal epoxides with H2O and HCl catalyzed by new chiral (salen) Co complex linked with Al, Tetrahedron Lett., 46, 2263-2266 (2005).
11. W. Li, S. S. Thakur, S.-W. Chen, C. K. Shin, R. B. Kawkhekar, and G.-J. Kim, Synthesis of optically active 2-hydroxy monoesters via-kinetic resolution and asymmetric cyclization catalyzed by heterometallic chiral (salen) Co complex, Tetrahedron Lett., 47, 3453-3457 (2006).
12. S. S. Thakur, W. Li, C.-K. Shin, and G.-J. Kim, Asymmetric ring opening of terminal epoxides via kinetic resolution catalyzed by new bimetallic chiral (salen) Co complexes, Chirality, 18, 37-43 (2006).
13. S. S. Thakur, S.-W. Chen, W. Li, C.-K. Shin, S. J. Kim, Y. M. Koo, and G.-J. Kim, A new dinuclear chiral salen complexes for asymmetric ring opening and closing reactions: Synthesis of valuable chiral intermediates, J. Orgnomet. Chem., 691, 1862-1872 (2006).
14. S.-W. Chen, S. S. Thakur, W. Li, C.-K. Shin, R. B. Kawkhekar, and G.-J. Kim, Efficient catalytic synthesis of optically pure 1,2-azido alcohols through enantioselective epoxide ring opening with HN3, J. Mol. Catal. A, 259, 116-120 (2006).
15. L. P. C. Nielson, C. P. Stevenson, D. G. Backmond, and E. N. Jacobsen, Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides, J. Am. Chem. Soc., 126, 1360-1362 (2004).
16. S. D. Bose and A. V. Narasah, An efficient asymmetric synthesis of (S)-atenolol: using hydrolytic kinetic resolution, Bioorg. Med. Chem., 13, 627-630 (2005).
17. K. Ogawa, S. Ohta, and M. Okamoto, Reaction of terminal oxiranes with aminesulfonic acid, Synthesis, 3, 281-284 (1987).
18. J. M. Klunder, T. Onami, and K. B. Sharpless, Arenesulfonate derivatives of homochiral glycidol: Versatile chiral building blocks for organic synthesis, J. Org. Chem., 54, 1295-1304 (1989).