Light scattering in inhomogeneous Tomonaga-Luttinger liquids

E. Orignac
Laboratoire de Physique de l’École Normale Supérieure de Lyon, CNRS-UMR5672, 69364 Lyon Cedex 7, France

R. Citro
Dipartimento di Fisica "E. R. Caianiello" and Spin-CNR, Università degli Studi di Salerno, Salerno, Italy

S. De Palo
IOM-CNR and Dipartimento di Fisica Teorica, Università Trieste, Trieste, Italy

M.-L. Chiofalo
INFN and Dpt. of Mathematics, University of Pisa, Pisa, Italy

We derive the dynamical structure factor for an inhomogeneous Tomonaga-Luttinger liquid as can be formed in a confined strongly interacting one-dimensional gas. In view of current experimental progress in the field, we provide a simple analytic expression for the light-scattering cross section, requiring only the knowledge of the density dependence of the ground-state energy as they can be extracted e.g. from exact or Quantum Monte Carlo techniques, and a Thomas-Fermi description. We apply the result to the case of one-dimensional quantum bosonic gases with dipolar interaction in a harmonic trap, using an energy functional deduced from Quantum Monte Carlo computations. We find an universal scaling behavior peculiar of the Tomonaga-Luttinger liquid, a signature that can be eventually probed by Bragg spectroscopy in experimental realizations of such systems.

I. INTRODUCTION

It is well known theoretically that systems of reduced dimensionality, especially in one dimension, present simultaneously enhanced quantum fluctuations and stronger interaction effects that can lead to exotic ground states \[\text{[1, 2].} \] From the experimental point of view, there are many prototypical one-dimensional systems, that range from organic \[\text{[2, 4]} \] or inorganic \[\text{[5, 6]} \] conductors, and antiferromagnetic (AF) spin chain \[\text{[7, 8]} \] or ladder \[\text{[9, 10]} \] materials, to nanoscale systems such as of quantum wires \[\text{[11, 12]} \], carbon nanotubes \[\text{[13, 16]} \] or self organized Au atomic wires on Ge(001) semiconductor surfaces \[\text{[17]} \]. More recently, advances in atom trapping technology has permitted the realization of both fermionic and bosonic one-dimensional systems with unprecedented control \[\text{[18–21]} \].

In physical systems several prominent features of TLL have been observed after measuring the spectral function \[\text{[3, 6]} \], the structure factor \[\text{[8]} \] or the conductivity \[\text{[13]} \], and more recently the first quantitative check of TLL physics has appeared for the spin-1/2 ladder material bis(piperidinium) tetrabromocuprate(II) \[(C_5 \text{H}_{12} \text{N})_2 \text{CuBr}_4 \] (abbreviated BPCB in the following), in an applied magnetic field \[\text{[10]} \]. However, despite this recent achievement, in many of the physical systems mentioned above, little control can be exerted on the values of \(u \) and \(K \) and thus the Luttinger exponent \(K \) is taken as an adjustable parameter \[\text{[9, 13]} \]. This fact prompts for the search of more than one signature of Tomonaga-Luttinger liquid physics for a single system.

In the case of systems with strong confinement (e.g. confined quantum gases), excitation properties can be most easily accessed by light spectroscopy techniques, as proposed in the early days of atomic Bose-Einstein Condensation \[\text{[24, 25]} \]. For example, the spectral function has recently been measured in trapped Fermi gases by radiofrequency spectroscopy \[\text{[26]} \] and the dynamical structure factor has been studied successfully by optical Bragg spectroscopy in free and trapped Bose-Einstein condensates \[\text{[27–31]} \] as well as trapped Fermi gases \[\text{[32]} \]. Bragg spectroscopy can be based on energy transfer to the system at fixed momenta \[\text{[33–35]} \] or can permit the study of the full momentum composition of excitations by a coherent momentum transfer mapping \[\text{[36]} \]. For these reasons, Bragg spectroscopy can be especially useful to investigate the properties of the many phases realizable in these systems such as Mott insulator, Tonks-Girardeau gas of dipolar atoms \[\text{[47, 48]} \], opens up wide perspectives in the comprehension of controlled quantum systems with tunable short and long range interactions under progressively reduced dimensionality.
As we have more extensively reviewed in Ref. [49], among many possible realizations, quantum dipolar gases in 1D confinement are quite peculiar TLL systems. Here in fact, one single parameter drives the crossover from weak to strong interaction regimes, where however the weakest regime is a Tonks-Girardeau state, the strongest being a Density Dipolar Wave state characterized by quasi-ordering. Based on the above motivations, we derive an analytic expression for light-scattering intensity in the case of a weakly inhomogeneous TLL. This expression is valid within a Thomas-Fermi description, where the system can be considered locally homogeneous. The expression requires the knowledge of the density dependence of the ground-state energy of the homogeneous system, as can be obtained by e.g. approximate calculations, exact Bethe-Ansatz technique or Quantum Monte Carlo (QMC) simulations. The paper is organized as follows. After reviewing in Sec. II the calculation of the dynamic structure factor and the inelastic light-scattering cross section of homogeneous Tomonaga-Luttinger Liquids, we derive in Sec. III the general expression for the inhomogeneous system within the Thomas-Fermi approach, in terms of the eigenvalues and eigenfunctions of the hydrodynamic TLL. We then specialize in Sec. IV to the case of one-dimensional quantum bosonic gases with dipolar interaction in a harmonic trap, using our previous QMC findings [39]. Here the results are explicitly discussed in the various regime while the single parameter built-up from density and interaction strength is tuned.

II. LIGHT-SCATTERING CROSS SECTION IN HOMOGENEOUS TOMONAGA-LUTTINGER LIQUIDS

The dynamic structure factor \(S(q, \omega) \) is central in the description of interacting many-body systems. \(S(q, \omega) \) is related to the Fourier transform of the imaginary density-density correlation function with the fluctuation-dissipation theorem. It is therefore accessible by means of inelastic scattering, where density fluctuations are induced in the system and their subsequent relaxation is measured revealing the system characteristics. While inelastic neutron scattering has been the tool to probe the condensate nature of superfluid helium and the roton spectrum [50], inelastic light scattering has been proposed and widely used in dilute quantum degenerate gases. Within linear response theory the scattering cross section \(\sigma \) of light at frequency \(\omega \) and angle \(\Omega \) incident on a Bose atomic sample is:

\[
\frac{d^2\sigma}{d\Omega d\omega} \propto \frac{1}{\pi n}(n_B(\omega) + 1)\text{Im}\chi(q, \omega) = S(q, \omega),
\]

where \(n_B(\omega) \) is the Bose distribution function, \(n = N/V \) and \(\chi(q, \omega) \) is the Fourier transform of the density-density correlation function

\[
\chi(r, t) = -i\theta(t)\langle [n(r, t), n(0, 0)] \rangle.
\]

Earlier experimental studies [28] have shown that condensate properties of atomic cold gases could be studied by means of Bragg scattering yielding large energy resolution and sensitivity. The system is illuminated by two laser beams of momenta \(k_1 \) and \(k_2 \) and frequencies \(\omega_1, \omega_2 \) of difference \(\omega \) that creates a periodic field whose intensity is proportional to \(\cos[(k_1 - k_2) \cdot r - \omega t] \). The external potential couples to the density \(n(q) \) of the system where \(q = k_1 - k_2 \). After using the golden rule, the response of the system to this perturbation is the dynamical structure factor [51]. Light scattering experiments then directly measure \(S(q, \omega) \).

This quantity is then a benchmark against the theoretical descriptions of the systems. For an homogeneous Tomonaga-Luttinger liquid occurring in interacting one-dimensional system the dynamic structure factor can be readily obtained [23]. In the following, we briefly sketch the derivation. For a system of interacting spinless particles, either bosons or fermions, the low-energy physics is that of a Tomonaga-Luttinger liquid whose Hamiltonian is

\[
H = \int \frac{dx}{2\pi} \left[uK(\pi\Pi)^2 + \frac{u}{K}(\partial_x \phi)^2 \right],
\]

with \(u \) the velocity of the excitations and \(K \) the Tomonaga-Luttinger exponent. The density operator \(n(x) \) is expressed in terms of bosonic operators \(\phi \):

\[
n(x) = n_0 - \frac{1}{\pi} \partial_x \phi + \sum_m A_m \cos(2m(\phi(x) - \pi n_0 x)),
\]

with \(m \) an integer and \(n_0 \) the equilibrium density.

If the wavelength of the incoming light is much larger than the average interparticle distance, we can neglect the contribution of the oscillatory terms in Eq. (1). Using translational invariance, the expression for the density-density response function becomes:

\[
\chi(x - x', t) = i \frac{\theta(t)}{\pi^2} \langle [\partial_x \phi(x, t), \partial_x \phi(x', 0)] \rangle.
\]

Knowing that the time-ordered correlation function \(\langle T_\tau[\phi(x, \tau) - \phi(0, 0)]^2 \rangle = KF_1(x, \tau) \) with \(F_1(x, \tau) = \log[(x^2 + (u|\tau| + a)^2)/a^2]/2 \), the imaginary part of the response function [43] can be obtained [23] as

\[
\text{Im}\chi(q, \omega) = \frac{\sigma^2}{2\omega} uK [\delta(\omega + u|q|) - \delta(\omega - u|q|)],
\]

giving the scattered intensity at zero temperature:

\[
\frac{d^2\sigma}{d\Omega d\omega} \propto S(q, \omega) = \text{sign}(\omega)\text{Im}\chi(q, \omega)
\]

\[
= \frac{K|q|}{2} [\delta(\omega + u|q|) + \delta(\omega - u|q|)].
\]

Expression (7) embodies the symmetry with respect to inversion of the velocity \(u \) as required by Galilean invariance, and evidences the dependence of the light-scattering signal from the ratio \(q/\omega \).
III. LIGHT-SCATTERING CROSS SECTION IN INHOMOGENEOUS TOMONAGA-LUTTINGER LIQUIDS

A. Hydrodynamic approach

The presence of an external potential \(V(x) \) confining the cold atomic cloud induces density inhomogeneity, and the external light perturbation probing the density-density correlation function introduces time-dependent processes. The treatment of the problem is easier under conditions of weak inhomogeneity and slow processes as they can be met in experiments, where external potentials vary on length and time scales longer than the characteristic system quantities, and local equilibrium hydrodynamic behavior sets in. Under these conditions, the gas can be still described by a hydrodynamic Tomonaga-Luttinger Liquid Hamiltonian \[40, 52, 56 \]

\[
H_{\text{TLL}} = \int_{-R}^{R} dx \left[u(x)K(x)\pi^2 \Pi(x)^2 + \frac{u(x)}{K(x)}(\partial_x \phi(x))^2 \right].
\]

Here, the boundary conditions imposed are \(\phi(-R) = 0 \) and \(\phi(R) = -\pi N \), with \(N \) the number of particles in the system. The parameters \(u(x) \) and \(K(x) \) now depend on position. In analogy with the homogeneous case, where \(u \) and \(K \) are related by the expressions \(u/K = (\hbar \pi)^{-1} \partial \mu/\partial n \) and by Galilean invariance \(uK = \pi \hbar n/m \), one sets:

\[
u(x)K(x) = \frac{\hbar}{m} n_0(x) \tag{9}
\]

\[
u(x) = \frac{1}{\hbar \pi} \left(\frac{\partial \mu(n)}{\partial n} \right)_{n=n_0} \tag{10}
\]

Once an estimate of the equilibrium density \(n_0(x) \) and of the chemical potential \(\mu(n) \) are known, this phenomenological approach allows the determination of \(u(x) \) and \(K(x) \).

The response function \(\chi(x, x', t) = \theta(t) \sum_n \frac{1}{\pi \omega_n} \frac{d\phi_n}{dx} \frac{d\phi_n}{dx'} \sin(\omega_n t) \) \tag{14}

The density-density response function thus can be expressed as:

\[
\chi(q, z) = \frac{\hbar}{2 \omega_n} \left(\frac{1}{z + \omega_n} - \frac{1}{z - \omega_n} \right), \tag{15}
\]

where \(\text{Im}(z) > 0 \). Finally, taking the limit \(z \to \omega + i \delta \) we obtain:

\[
\text{Im} \chi(q, \omega + i \delta) = \frac{\hbar^2}{2 \omega_n} \sum_n |\phi_n(q)|^2 \delta(\omega - \omega_n)
\]

Eq. (16) maintains the structure of its homogeneous counterpart \([3] \).

The density-density response function can be determined whenever the density dependence of the ground state energy per unit length \(e(n) \) or of the chemical potential \(\mu(n) = (\partial \mu/\partial n)|_{n=n_0} \) is known. An especially simple situation is realized when \(e(n) \propto n^{\gamma+2} \). That type of dependence of energy on density corresponds to several limiting cases of 1D TLL systems. For example, in the Lieb-Liniger gas \([57, 58] \), there are two well understood limits. At low density or strong repulsion, the gas behaves as a hard-core boson gas \([53] \) with \(\gamma = 1 \), while at high density or weak repulsion, the Bogoliubov approximation applies and gives energy density proportional to \(n^2 \), so that \(\gamma = 0 \). The study of the crossover between these two limits requires the Bethe-Ansatz computation of the ground state energy density \([57] \). A similar situation occurs in the case of dipolar gases. For low densities, the energy per unit length \(e(n) \) has the \(\gamma = 1 \) behavior typical of hard core bosons, while for high density it has the \(\gamma = 2 \) behavior of a crystal of classical dipoles, and a Dipolar-Density-Wave manifests \([40] \). As density increases, the system crosses over from the low density hardcore boson gas to the high density Dipolar-Density-Wave.

In the model with \(e(n) = gn^{\gamma+2} \) and in the case of harmonic trapping potential \(V(x) = m\Omega_0^2 x^2/2 \), the eigenvalues \(\omega_n \) of \(14 \) can be found exactly, and the functions \(\phi_n \) are expressible in terms of Gegenbauer polynomials \([56, 60] \) as:

\[
\varphi_n(x) = A_n \left(1 - \frac{x^2}{R^2} \right)^{\frac{\alpha+1}{2}} C_n^{(\alpha+1)} \left(\frac{x}{R} \right), \tag{17}
\]

\[
\omega_n^2 = \frac{\alpha^2}{R^2} (n + 1)(n + 2\alpha + 1). \tag{18}
\]
Here, u_0 and K_0 are the Tomonaga-Luttinger parameters corresponding to the density at the trap center,

$$A_n = \sqrt{\frac{u_0 K_0}{R} \frac{n(n+\alpha+1)}{\pi \Gamma(n+2\alpha+2)^2} 2^{\alpha+1/2} \Gamma(1+\alpha)}, \quad (19)$$

and $\alpha = (\gamma+1)^{-1} - 1/2$. In particular, in the case of hard-core Bose gas when $\gamma = 1$, $\alpha = 0$ and the Gegenbauer polynomials reduce to Chebyshev polynomials. In order to calculate the scattered light intensity, we need the Fourier transform of the φ_n's. Using Eq. (7.321) of Ref. 62 we obtain:

$$|\tilde{\varphi}_n(q)|^2 = 2u_0 K_0 R(n+\alpha+1) \frac{\Gamma(n+2\alpha+2)}{\Gamma(n+1)} \times \frac{J_{n+\alpha+1}^2(qR)}{(qR)^{2\alpha+2}}, \quad (20)$$

where the J_m are the Bessel functions of the first kind. Thus:

$$\text{Im} \chi(q, \omega + i0_+) = \frac{u_0 K_0}{R \omega} \sum_n (n+\alpha+1) \frac{\Gamma(n+2\alpha+2)}{\Gamma(n+1)} \times \frac{J_{n+\alpha+1}^2(qR)}{(qR)^{2\alpha+2}} [\delta(\omega - \omega_n) + \delta(\omega + \omega_n)] \quad (21)$$

Eq. (21) shows the main features of the scattered light intensity. This is a set of discrete peaks, whose weight is a function of qR, and whose spacing reduces with increasing the trap size $R \to \infty$.

B. Approach via Density-Functional Theory with Local Density Approximation

In the present section we derive an approximate expression for the dynamical structure factor of an inhomogeneous 1D TLL, reverting to the Density Functional Theory (DFT) accompanied by a Local Density Approximation (LDA). We sketch in the following the main concepts and derivation. Through the Hohenberg and Kohn theorem, DFT establishes that the ground state energy of a system subjected to an external potential $V(x)$ is a functional $E_g[n(x)] = E[n(x)] + \int_{-\infty}^{\infty} n(x) V(x) dx$ of the density $n(x)$, where $E[n(x)]$ embodies the kinetic and exchange-correlation parts. The equilibrium density profile is determined by the variational condition

$$\frac{\delta E_g[n(x)]}{\delta n(x)} = \mu, \quad (22)$$

stating that equilibrium corresponds to a minimum of the energy against changes in the particle density, while the total number of particles is fixed through the (density-dependent) chemical potential μ. Eq. (22) reminds the Thomas-Fermi equilibrium condition in non-interacting systems, and in fact the Density Functional sets a one-to-one correspondence between the ground state energies of an interacting system and of its non-interacting analogue. Whenever an analytic expression of $\mu(n)$ is available, inversion of the equation of state allows the determination of the equilibrium density $n_0(x)$.

While Eq. (22) is exact, the actual determination of the functional $E[n(x)]$ needs approximations. Under the conditions of shallow confinement, we can safely use the Local Density Approximation. Here, the functional $E[n(x)]$ is replaced by

$$E^{LDA}[n(x)] = \int e^{\text{hom}}[n(x)] n(x) dx, \quad (23)$$

where $e^{\text{hom}}(n)$ is the energy per particle of the homogeneous system with density n.

Differentiating $E^{LDA}[n(x)] = E_g[n(x)] + \int dx (V(x) - \lambda n(x))$ with respect to $n(x)$, λ being a Lagrange multiplier fixing the total number of particles, one obtains the condition for the local chemical potential

$$\mu[n(x)] = V(R) - V(x), \quad (24)$$

where the local chemical potential is defined by the functional derivative:

$$\mu(n) = \frac{\delta E}{\delta n} = \left(\frac{\partial (ne^{\text{hom}}(n))}{\partial n} \right)_{n=n_0(x)}. \quad (25)$$

If an analytic expression of $\mu(n)$ is given, Eq. (25) would allow to find $n(x)$ by inverting the relation Eq. (24). The energy $e^{\text{hom}}(n)$ can be obtained after perturbation theory, or by exact calculations such as Bethe-Ansatz, or else by computational Quantum Monte Carlo methods.

We now turn to the problem of determining the dynamical structure factor of the inhomogeneous system. To this aim, we follow the reasoning in 45-63 and imagine to slice it into small segments of length Δx, where the density $n_0(x)$ can be considered uniform, and thus sum together all the contributions (7) of the different segments. The dynamical structure factor of the inhomogeneous system would then be approximated by:

$$S(q, \omega) = \int \frac{dx}{2R} S_{\text{hom}}(q, \omega, n_0(x)). \quad (26)$$

$S_{\text{hom}}(q, \omega, n)$ is given by Eq. (7), where now the Tomonaga-Luttinger parameters $u = u(n)$ and $K = K(n)$ depend on density.

With the help of (7), we obtain:

$$S(q, \omega) = \left| \frac{q}{4R} \right| \int_{-R}^{R} dx K(n_0(x)) \left[\delta(\omega - u(n_0(x)))|q| + \delta(\omega + u(n_0(x)))|q| \right] \quad (27)$$

Introducing $x^*(\omega/|q|)$, such that $\omega = u(n(x^*))|q|$ we can rewrite:

$$S(q, \omega) = \frac{K(n_0(x^*))}{2R} \left| \frac{dn_0}{dn} \right|_{n=n_0(x^*)} \left| \frac{dn_0}{dx} \right|_{x=x^*} \quad (28)$$
Since the compressibility is a positive quantity, the chemical potential is an increasing function of the density. Moreover for a trapping potential that is an increasing function of position, from Eq. (21) the density is seen to decrease with position. Thus, when the velocity is an increasing function of density, the solution \(x^* \) turns out to be unique.

The quantity \(\frac{dn_o}{dx} \) can be obtained by differentiating the relation (24) with respect to \(x \), i.e.:

\[
\left(\frac{d^2 e}{dn^2} \right)_{n=n_o(x)} \frac{dn_0}{dx} + \frac{dV}{dx} = 0.
\]

We can therefore write:

\[
S(q, \omega) = \frac{K(n_0(x^*))}{2R} \left| \frac{d\epsilon}{dn} \right|_{n=n_0(x^*)}^n \frac{dn_0}{dx} \bigg|_{x=x^*}.
\]

We now use the relation \(u^2(n) = \frac{n}{m} \frac{d^2x}{dn} \) obtained from (29) and rewrite (30) as:

\[
S(q, \omega) = \frac{\pi \hbar}{R} \left| \frac{d\epsilon}{dn} \right|_{x=x^*} \frac{n_0(x^*)}{1 + n_0(x^*)} \frac{dn_0}{dx} \bigg|_{x=x^*},
\]

with the notations \(\epsilon'(x) = \frac{d\epsilon}{dx} \), \(\epsilon''(n) = \frac{d^2\epsilon}{dn^2} \), and \(\epsilon'''(n) = \frac{d^3\epsilon}{dn^3} \).

Formula (31) represents the main result of this paper. It gives an analytical expression for the light scattering cross-section of an inhomogeneous TLL once the ground state energy as a function of the density is known, e.g. by an exact analytical (Bethe-Ansatz) or via numerical simulations (QMC). Remarkably, Eq. (31) predicts that \(S(q, \omega) \) is only a function of \(\omega/|q| \). In fact, this is the specific signature of Tomonaga-Luttinger-Liquid behavior in shallow trapped 1D Bose systems, as it can be measured by Bragg spectroscopy.

In order to illustrate the relevant features and make the connection with Eq. (21) obtained via the hydrodynamic approach of Sec. III A, we now treat the case of harmonic trapping. In this case \(dV/dx = m\Omega_0^2 x \), and using Eq. (24) we have \(m\Omega_0^2 |x^*| = \sqrt{2m\Omega_0^2(\epsilon(n_0(0)) - \epsilon'(\rho^*))} \), where we have set \(\rho^* = n_0(x^*) \) and \(u(\rho^*) = \omega/|q| \). Eq. (31) thus simplifies into:

\[
S(q, \omega) = \frac{\pi \hbar \rho^*}{R \sqrt{2m\Omega_0^2(\epsilon(n_0(0)) - \epsilon'(\rho^*))}} \left| 1 + \rho^* \frac{\epsilon'''(\rho^*)}{\epsilon'(\rho^*)} \right|.
\]

We now check the consistency of the result (31) with (21), by explicitly calculating (32) for the model \(\epsilon(n) \propto n^{\gamma+2} \). Eq. (32) then reads:

\[
S(q, \omega) = \frac{\pi \hbar}{(\gamma + 1)m\Omega_0^2 R^2} \left(\frac{m\Omega_0^2 R^2}{2g(\gamma + 2)} \right)^{1/2} \sqrt{\frac{\omega}{\omega_{0q}}} \left(\frac{\omega}{\omega_{0q}} \right)^{1/2}.
\]

where we have defined \(u_0 = u(n_0(0)) \) as the velocity of excitations in a uniform system having a density equal to that at the trap center. We first notice that the dynamical structure factor in (33) makes explicit the characteristic already embodied in the structure of Eq. (32), namely that \(S(q, \omega) \) depends on wavevector and frequency solely through their ratio \(\omega/|q| \). Second, the formula (33) with \(\gamma = 1 \) agrees with the result of Ref. [43], in the limiting \(q^2/2R \rightarrow q^2/2 \) case. Finally, in App. A we show by inspection that the LDA approximation (33) is fully recovered from expression (21).

Fig. 1 displays the 3D plot of \(S(q, \omega) \) resulting from the use of (33) in the \((\omega, q)\) plane, while varying the densities at the trap center. \(S(q, \omega) \) is a set of discrete peaks whose position varies linearly with \(\omega/|q| \) and such linear behavior is independent on the interaction strength.

Before proceeding to apply Eq. (32) to a dipolar 1D Bose gas, we step on commenting the found correspondence between hydrodynamic and DFT-LDA approaches on a more general footing. It is well known for normal Fermi systems [64] with extension to Bose superfluids [59] that the treatment of dynamical processes in interacting inhomogeneous systems do require the development the Current-Density Functional Theory, where invariance conditions render the energy to be a functional of the current besides density. It was demonstrated that the analogue of LDA leads in this case to Navier-Stokes equations (Landau-Khalatnikov two-fluid equations for superfluids), where viscosities, densities and currents (normal and superfluid) have a microscopic expression in terms of Kubo relations and low-frequency response functions as they can be calculated in the homogeneous system at the local densities and currents. Such a general view is reflected by the present result. In the Tomonaga-Luttinger-Liquid free harmonic Hamiltonian, where the interactions are effectively embodied in \(u \) and \(K \), the Navier-Stokes equations become indeed the simple hydrodynamic relations of Sec. III A. On the other hand, in the DFT and LDA approach of Sec. III B the treatment explicitly uses the two mappings: from interacting to non-interacting system (DFT) and from inhomogeneous to homogeneous (LDA).
IV. 1D BOSE GASES COUPLED VIA DIPOLAR INTERACTIONS

In this Section we specialize to the case of a 1D dipolar gas in a harmonic trapping potential. We first recall the main results known for the homogeneous system, and then apply Eq. (32) to determine the scattered light intensity. The system is characterized by the strength of the interactions C_{dd}, resulting from either magnetic $C_{dd} = \mu_0 \mu^2$ or electric $C_{dd} = d^2 / e_0$ dipoles, where μ_0 and d are the magnetic and electric dipole moments and μ_0 and e_0 are the vacuum permittivities. An effective Bohr radius can be defined from C_{dd} as $\bar{r} = MC_{dd} / (2\pi \hbar^2)$ and the Hamiltonian in effective Rydberg units $Ry^* = \hbar^2 / (2M\bar{r}^2)$ is

$$H = (nr_0)^2 \left[-\sum_i \frac{\partial^2}{\partial x_i^2} + (nr_0) \sum_{i<j} \frac{1}{|x_i - x_j|^3} \right] , \quad (34)$$

where lengths are expressed in $1/n$ units. The physics of the model is entirely specified by the dimensionless coupling parameter nr_0, so that in the high-density limit the system becomes strongly correlated and a quasi-ordered state occurs, where the potential energy dominates.

The ground-state energy $e(n)$ of this model was determined by means of Reptation QMC method in Ref. [49]. In the low $nr_0 \to 0$ limit it reproduces the Tonks-Girardeau (TG) state energy per particle of a free spinless Fermi gas, whose energy per particle is $e_{TG}(n) = \pi^2 (nr_0)^2 / 3$ Ry*. In the large $nr_0 \to \infty$ limit of high-density dipoles, it reproduces the Dipolar Density Wave (DDW) state where $e_{DDW}(n) = \zeta(3)(nr_0)^3$ Ry* and $\zeta(3) = 1.20205$. The QMC thermodynamic energy per particle in Rydberg units can be represented as an analytical function of nr_0:

$$e_{p}(nr_0) = \frac{\zeta(3)(nr_0)^4 + a(nr_0)^c + b(nr_0)^f + c(nr_0)^{(2+g)}}{1 + nr_0} \quad (35)$$

The fitting coefficients, yielding a reduced $\chi^2 \approx 5$, are: $a = 3.1(1)$, $b = 3.2(2)$, $c = 4.3(4)$, $d = 1.7(1)$, $e = 3.503(4)$, $f = 3.05(5)$, and $g = 0.34(4)$.

The Bragg intensity is thus easily obtained by Eq. (32) once the value of ρ^* is determined. In Fig. 2 we report the scaling behavior of $S(q, \omega) / \omega / (u_0 q)$ for different densities at the trap center n_0. Larger $n_0 r_0$ indicate stronger coupling interactions, crossing over from TG to DDW states. The linear behavior in the low ω/q regime is striking, the slope continuously increasing with decreasing $u(0)$ and thus n_0. In the TG limit, the tail of $S(q, \omega)$ is insensitive to changes of the density at the center of the trap, and in fact the curves with $n_0 r_0 = 0.01$ and 0.1 do coincide. The comparison with the TG gas ($\gamma = 1$ and $n_0 r_0 = 0.01$) and the DDW case ($\gamma = 2$ and $n_0 r_0 = 10^3$) is better seen in Fig. 3, where $S(q, \omega) / \sqrt{\omega / (u_0 q)}$ is plotted as a function of $\omega / (u_0 q)$. One can notice that a crossover takes place in the intermediate densities regime. Viewed in the log-log scale, the plot evidences how a measure of the $S(q, \omega)$ tail towards small ω/q, would provide a way to determine the interaction regime. A peculiarity of the TLL behavior is the power-law trend when $\omega/(u_0 q) = 1$ is approached. A detailed study of the power-law non-analyticity for a trapped Bose gas can be found in [49].

![FIG. 2: (Color online). 1D dipolar Bose gas confined in an harmonic trap, with $\epsilon(n)$ as determined by QMC simulations. $S(q, \omega)$ (arbitrary units) vs. $\omega / (u_0 q)$ for different densities n_0 at the trap center. The values of $n_0 r_0$ running from 0.01 to 1000 are indicated in the legend.](image1)

![FIG. 3: The same as Fig. 2 but in a log-log scale. The comparison with the Tonks-Girardeau limit gas ($\gamma = 1$) and the dense dipole limit corresponding to a Dipolar Density Wave ($\gamma = 2$) is shown in evident manner.](image2)
V. CONCLUSIONS

We have derived the dynamical structure factor for an inhomogeneous Tomonaga-Luttinger liquid as it can occur in a confined strongly interacting one-dimensional gas. In view of current experimental progress in the field, we have provided an easy-to-use and simple analytical expression for the light-scattering cross section, Eq. (31), valid within a Local Density Approximation.

The analytical expression (31) predicts that \(S(q, \omega) \) is only a function of \(\omega/|q| \) and is the central result of this work. In fact, this is the specific signature of Tomonaga-Luttinger Liquid behavior in shallow trapped 1D Bose systems, along with a power-law behavior when \(\omega/(u_0 q) \) is approached, as it can be measured by Bragg spectroscopy.

Expression (31) is validated by the independent derivation (21) by means of a hydrodynamic approach, which is reported in detail in App. A. The connection between the two approaches is a second result of this work, and is a consequence of the more general Current-Density Functional Theory (64, 65) applied to the conditions of the present work.

We thus remark that expression (31) can be in principle applied to the many 1D systems cited in the introductory material, once the trapping potential is known together with the ground state energy as a function of the density, e.g. by means of perturbative, exact, or computational methods applied to the homogeneous system. Extension of the present method to include additional local perturbations coupling to the density, could be used to investigate the propagation of local density fluctuations.

Finally, we have applied our findings to the case of one-dimensional quantum bosonic gases with dipolar interactions, using the harmonic profile typical of experiments in this field, accompanied by our previous QMC data for the energy per particle. We find an universal scaling behavior peculiar of the Tomonaga-Luttinger liquid (40), a signature that can be eventually probed by Bragg spectroscopy in ongoing experimental realizations of such systems (40).

Appendix A: Justification of the LDA formula

In order to justify the approximate formulas, it is more convenient to work with the integrated intensity:

\[
I(q, \Omega) = \int_0^\Omega S(q, \omega) d\omega,
\]

since the delta functions in the sum (21) contribute as step functions in \(I(q, \Omega) \) giving more regular expressions. Using the approximation (33), we expect:

\[
I(q, \Omega) \propto \frac{\pi \hbar u_0 |q|}{2 m \Omega^2 \Omega^2} 2^{\alpha + 1} \left(\frac{\Omega}{u_0 q} \right)^{2(\alpha + 1)} \left[_2F_1 \left[\alpha + 1, \frac{1}{2}; \alpha + 2; \left(\frac{\Omega}{u_0 q} \right)^2 \right] \right]
\]

where \(_2F_1 \) is the Gauss hypergeometric function. Using the expression (21), we obtain instead the exact expression:

\[
I(q, \Omega) \propto \sum_{n=0}^{N} \frac{2(n + \alpha + 1) \Gamma(n + 2\alpha + 2)}{n!} \frac{J^2_{\alpha+1}(qR)}{\sqrt{(n+1)(n+2\alpha+1)}},
\]

where \(N \) is such that \(\omega_N = \Omega \). In order to check the consistency between (A2) and (A3) we can work on the sums in (A3). We expect that the sum is dominated by the terms having \(n \gg 1 \). Using Eq. (9.3.2) in Ref. [61], we expect that for \(qR < n \), \(J^2_{\alpha+1}(qR) \) is an exponentially small quantity with \(n \). For \(qR > n \) however, Eq. (9.3.3) in Ref. [61] suggests that:

\[
J^2_{\alpha+1}(qR) \approx \frac{\pi(n + \alpha + 1) \tan \beta}{\pi \cos^2((n + \alpha + 1)(\tan \beta - \beta) - \pi/4)},
\]

where \(\cos \beta = qR/(n + \alpha + 1) \). Elementary trigonometry gives the approximation:

\[
J^2_{\alpha+1}(qR) \approx \frac{(n + \alpha + 1)}{\pi \sqrt{(qR)^2 - (n + \alpha + 1)^2}} \times \left\{ 1 + \sin \left[2 \sqrt{(qR)^2 - (n + \alpha + 1)^2} - (n + \alpha + 1) \arccos \left(\frac{n + \alpha + 1}{qR} \right) \right] \right\}
\]

Dropping the term oscillating with \(n \) in (A5), we use as approximation:

\[
J^2_{\alpha+1}(qR) \approx \frac{\theta(qR - n - \alpha - 1)}{\pi \sqrt{(qR)^2 - (n + \alpha + 1)^2}},
\]

We can also approximate:

\[
\frac{\Gamma(n + 2\alpha + 2)}{\Gamma(n + 1)} \approx n^{2\alpha + 1}
\]

So that the sum in Eq. (A3) can be approximated by:

\[
\frac{2}{\pi} \sum_{n<\min(N,qR)} \frac{n^{2\alpha + 1}}{\sqrt{(qR)^2 - (n + \alpha + 1)^2}} \approx \int_{0}^{\min(N,qR)} \frac{du u^{2\alpha + 1}}{\sqrt{(qR)^2 - u^2}}
\]

Finally, by approximating the sum (A9) by an integral, we find:

\[
\sum_{n<\min(N,qR)} \frac{n^{2\alpha + 1}}{\sqrt{(qR)^2 - (n + \alpha + 1)^2}} \approx \int_{0}^{\min(N,qR)} \frac{du u^{2\alpha + 1}}{\sqrt{(qR)^2 - u^2}}
\]
Using Eq. (6.6.1) in [61], we have (for \(qR < N \)):

\[
\int_{0}^{\min(N,qR)} \frac{du}{u^{2\alpha+1}} = \frac{1}{2} (qR)^{2\alpha+1} B((\Omega/qR_{0})^2, \alpha + 1, 1/2), \tag{A11}
\]

where \(B(a,b) \) are the incomplete Beta functions. With Eq. (6.8) of [61] we can check that Eq. (A2) agrees with the obtained approximate expression [A11].

Acknowledgments

MLC would like to thank Debbie Jin for illuminating discussions on the experiments [46] and their potential follow-up.

[1] C. M. Varma, Z. Nussinov, and W. van Saarloos, Phys. Rep. 361, 267 (2002).
[2] H. J. Schulz, in Mesoscopic Quantum Physics, Les Houches LXI, edited by E. Akkermans, G. Montambaux, J. L. Pichard, and J. Zinn-Justin (Elsevier, Amsterdam, 1995), p. 533.
[3] C. Bourbonnais and D. Jérôme, in Advances in Synthetic Metals, Twenty years of Progress in Science and Technology, edited by P. Bernier, S. Lefrant, and G. Bidan (Elsevier, New York, 1999), p. 206, preprint cond-mat/9903101.
[4] C. Bourbonnais and D. Jerome, in Physics of Organic Superconductors and Conductors, edited by A. G. Lebed (Springer, 2008), vol. 110 of Springer Series in Materials Science, p. 357, arXiv:0904.0617.
[5] T. Mizokawa, K. Nakada, C. Kim, Z.-X. Shen, T. Yoshida, A. Fujimori, S. Horii, Y. Yamada, H. Ikuta, and U. Mizutani, Phys. Rev. B 65, 193101 (2002).
[6] F. Wang, S.-K. Mo, J. W. Allen, H.-D. Kim, J. He, R. Jin, D. Mandrus, A. Sekiyama, M. Tsunekawa, and S. Suga, Phys. Rev. B 74, 113107 (2006).
[7] P. R. Hammar, M. B. Stone, D. H. Reich, C. Broholm, P. J. Gibson, M. M. Turnbull, C. P. Landee, and M. Oshikawa, Phys. Rev. B 59, 1008 (1999), arXiv:cond-mat/9809068.
[8] B. Lake, D. A. Tennant, C. D. Frost, and S. E. Nagler, Nat. Mater. 4, 329 (2005), arXiv:cond-mat/05031069.
[9] E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999).
[10] M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatic, B. Chiari, O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, et al., Phys. Rev. Lett. 101, 137207 (2008), arXiv:0804.2639.
[11] O. M. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Science 295, 825 (2002).
[12] M. Hilké, D. C. Tsui, M. Grayson, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 87, 186806 (2001), arXiv:cond-mat/0104553.
[13] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature (London) 397, 598 (1999).
[14] H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, et al., Nature (London) 426, 540 (2003).
[15] B. Gao, A. Konnik, R. Egger, D. C. Glattli, and A. Bachtold, Phys. Rev. Lett. 92, 216804 (2004), arXiv:cond-mat/0311645.
[16] J. Lee, S. Eggert, H. Kim, S.-J. Kahng, H. Shinozara, and Y. Kuk, Phys. Rev. Lett. 93, 166403 (2004), arXiv:cond-mat/0412001.
[17] C. Blumenstein, J. Schafer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, and R. Claessen, Nat. Phys. 7, 776 (2011), URL http://dx.doi.org/10.1038/nphys2051.
[18] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Polling, I. Cirac, G. Shlyapnikov, T. Hansch, and I. Bloch, Nature (London) 429, 277 (2004).
[19] T. Kinoshita, T. Wenger, and D. Weiss, Science 305, 5687 (2004).
[20] Y. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller, Nature (London) 467, 567 (2010), 0912.0092.
[21] M. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol (2011), cond-mat/1101.5337.
[22] J. Voit, Rep. Prog. Phys. 58, 977 (1995).
[23] T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004).
[24] J. Javanainen, Phys. Rev. Lett. 75, 1927 (1995), URL http://link.aps.org/doi/10.1103/PhysRevLett.75.1927.
[25] R. Graham and D. Walls, Phys. Rev. Lett. 76, 1774 (1996), URL http://link.aps.org/doi/10.1103/PhysRevLett.76.1774.
[26] J. T. Stewart, J. Gaebler, and D. S. Jin, Nature 454, 744 (1999).
[27] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys. Rev. Lett. 82, 871 (1999).
[28] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 82, 4569 (1999).
[29] D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 83, 2876 (1999).
[30] R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson, Rev. Mod. Phys. 77, 187 (2005).
[31] S. B. Papp, J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman, D. S. Jin, and E. A. Cornell, Phys. Rev. Lett. 101, 135001 (2008).
[32] G. Veeravalli, E. Kuhnle, P. Dyke, and C. J. Vale, Phys. Rev. Lett. 101, 250403 (2008).
[33] X. Du, S. Wan, E. Yesilada, C. Ryu, D. J. Heinzen, Z. Liang, and B. Wu, New Journal of Physics 12, 083025 (2010), 0704.2623.
[34] N. Fabbri, D. Clément, L. Fallani, C. Fort, M. Modugno, K. M. R. van der Stam, and M. Inguscio, Phys. Rev. A 79, 043623 (2009).
[35] D. Clément, N. Fabbri, L. Fallani, C. Fort, and M. Inguscio, Phys. Rev. Lett. 102, 155301 (2009).
[36] P. T. Ernst, S. Götze, J. S. Krauser, K. Pyka, D.-S. Lühmann, D. Pfannkuche, and K. Sengstock, Nature Physics 6, 56 (2010).
[37] C. Menotti, M. Krämer, L. Pitaevskii, and S. Stringari, Phys. Rev. A 67, 053609 (2003).
[38] R. Roth and K. Burnett, J. Phys. B 37, 3893 (2004).
[39] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 89, 220407 (2002).
[40] D. van Oosten, D. B. M. Dickerscheid, B. Farid, P. van der Straten, and H. T. C. Stoof, Phys. Rev. A 71, 021601 (2005).
[41] A. M. Rey, P. B. Blakie, G. Pupillo, C. J. Williams, and C. W. Clark, Phys. Rev. A 72, 023407 (2005).
[42] G. Pupillo, A. M. Rey, and G. G. Batrouni, Phys. Rev. A 74, 013601 (2006).
[43] L. Mathey, I. Danshita, and C. W. Clark, Phys. Rev. A 79, 011602 (2009).
[44] I. Titvinidze, M. Snoek, and W. Hofstetter, Phys. Rev. Lett. 100, 100401 (2008).
[45] V. N. Golovach, A. Minguzzi, and L. I. Glazman, Phys. Rev. A 80, 043611 (2009), URL http://link.aps.org/doi/10.1103/PhysRevA.80.043611
[46] A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P. Covey, M. Foss-Feig, A. M. Rey, D. S. Jin, and J. Ye, Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice (2011), arXiv:1110.4420.
[47] T. Lahaye, T. Koch, B. Fröhlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi, and T. Pfau, Nature (London) 448, 672 (2007).
[48] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 107, 190401 (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.190401
[49] R. Citro, S. De Palo, E. Orignac, P. Pedri, and M.-L. Chiofalo, New J. Phys. 10, 045011 (2008).
[50] P. E. Sokol, Can. J. Phys. 65, 1393 (1987), URL http://www.nrcresearchpress.com/doi/abs/10.1139/p87-219
[51] A. Brunello, F. Dalfovo, L. Pitaevskii, S. Stringari, and F. Zambelli, Phys. Rev. A 64, 063614 (2001).
[52] D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995).
[53] I. Safi and H. J. Schulz, Phys. Rev. B 52, R17040 (1995).
[54] R. Fazio, F. W. J. Hekking, and D. E. Khmelnitskii, Phys. Rev. Lett. 80, 5611 (1998).
[55] D. S. Petrov, J. Walraven, and G. V. Shlyapnikov, Phys. Rev. Lett. 85, 3745 (2000).
[56] D. Petrov, D. Gangardt, and G. Shlyapnikov, J. de Phys. IV 116, 3 (2004).
[57] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[58] E. H. Lieb, Phys. Rev. 130, 1616 (1963).
[59] M. Girardeau, J. Math. Phys. 1, 516 (1960).
[60] C. Menotti and S. Stringari, Phys. Rev. A 66, 043610 (2002), URL http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0206627
[61] M. Abramowitz and I. Stegun, Handbook of mathematical functions (Dover, New York, 1972).
[62] A. Gradshteyn and R. Ryzhik, Tables of integrals series and products (Academic Press, New-York, 1980).
[63] P. Vignolo, A. Minguzzi, and M. P. Tosi, Phys. Rev. A 64, 023421 (2001), arXiv:cond-mat/0102340.
[64] G. Vignale, C. A. Ullrich, and S. Conti, Physical Review Letters 79, 4878 (1997), arXiv:cond-mat/9706306.
[65] M. L. Chiofalo, A. Minguzzi, and M. P. Tosi, Physica B 254, 188 (1998), arXiv:cond-mat/9807064.