Agroforestry farming system as peatland restoration efforts in Central Kalimantan, Indonesia

A Jaya1,2,*, Sosilawaty1,2, E U Antang1,2, A A Djaya1 and H Gunawan3

1Faculty of Agriculture, Palangka Raya University, Jl. Yos Soedarso Palangka Raya, Indonesia
2Centre for International Co-operation in Management of Tropical Peatlands, Palangka Raya, Indonesia
3Peatland Restoration Agency, Jakarta

*) shared first author

Abstract. Peatland degradation is caused by various factors, such as excessive drainage and frequent fires. The Government of Indonesia established the Peatland Restoration Agency in 2016 to accelerate peatland restoration and peat's hydrological function. This study analyses agroforestry in priority areas for peat restoration. The results showed that farmers applied agroforestry cultivated land by combining jelutong (*Dyera costulata*) with many types of commercial plants at a spacing of 3 m x 6 m. Growth of Jelutong showed good performance with an average growth of 1.42 ± 0.49 cm yr\(^{-1}\) diameter and a height of 91.33 ± 36.77 cm yr\(^{-1}\). The crops cultivated with jelutong included luffa (*Luffa acutangula*), bitter gourd (*Momordica charantia*), leek (*Allium ampeloprasum*), and chilli (*Capsicum annuum*). The average income per planting period ranging from IDR 850,000 up to IDR 19,250,000 for a 1000 m\(^2\) planting area. The best income and cost ratio (R/C) is bitter gourd farming with a value of 7, eggplant, luffa, and waxy corn with a value of 3, while the smallest is leek with a value of 2. Some farmers can develop their agriculture in the form of planting areas or agricultural varieties. The formation of agricultural capital has now begun with monthly contribution obligations at regular monthly meetings.

1. **Introduction**

Peatlands, which cover one-third of global wetlands [1], are important ecosystems for biodiversity conservation, climate regulation, and human well-being [2]. Peatlands are characterized by the accumulation of organic matter from dead and decaying plant debris under water-saturated conditions. The world's total peatland area of around 400 Mha or 3% total land [3] and as much as 31-46 Mha or about 10-12% of the world's total peat, is located in tropical areas [4][5]. More than half (24.8 Mha) of the global area of tropical peatlands are in Southeast Asia (56%), mostly in Indonesia and Malaysia. Due to the considerable thickness (average > 5 m) of peatlands in these two countries, they contain 77% of the total carbon storage of tropical peat [6].

In general, peatlands in Indonesia have been utilized. Poor peatland management can lead to land degradation and forest and land fires. In Southeast Asia, land-use conversion of around 10 million ha of peatlands results in annual emissions of 132-159 Mt C year\(^{-1}\) from peat oxidation and increased incidence of peat fires, which not only add to the burden of GHG emissions but also threaten human health and livelihoods [7][8]. Besides, loss of peat through oxidation and fire results in land subsidence and an increased risk of flooding [9][10][11] on drained peat. Subsidence may occur due to the...
combination of consolidation and decomposition [10][12][13]. However, tropical peat, especially in Indonesia, has experienced a lot of degradation by mismanagement of peatlands and forest and land fires. Humans still cause almost every dry season, forest fires, and the mainland in the environment and the peatlands’ inept management. The Peatland Restoration Agency established by the Government has the task of carrying out peat restoration through the 3R approach (re-wetting, replanting, and revitalization of livelihood), and since 2017 it has carried out many restoration activities. Successful restoration pays attention to ecological aspects and the surrounding community’s welfare with interest in peatlands.

It is often less attractive for vegetation restoration activities because it has a long period and has not provided economic benefits for the community. Agroforestry is an alternative that can be proposed for peatland restoration activities. Agroforestry is an ecological system-based natural resource management by integrating trees with other crops to provide social and economic benefits and environmental benefits. Agroforestry improves soil quality, agricultural production, and sustainable forestry, which is closely related to income. Agroforestry productivity is higher than monoculture and is evenly distributed throughout the year and provides benefits because one crop’s failure can be covered by another [14]. Losses due to market price fluctuations can be overcome compared to monoculture, as well as balance and stability and equality of farmer income is guaranteed, and agroforestry income provides a proportion of 33-59% and income from agroforestry plays a role in reducing poverty and increasing income distribution [15]. The development of agroforestry in forest stands in West Java shows that for an area of 0.25 ha, it generates IDR 4.3-17.1 million [16]. Research in Sumber Agung Village, Bandar Lampung shows an average agroforestry contribution of IDR 10,660,989/family/month and when compared with the Bandar Lampung minimum wage standard [17]. In South Sulawesi, agroforestry's economic contribution in farmers’ yards is between 43.27 - 49.06% of total farmer income, which contributes to farmer income and environmental sustainability and biodiversity [18]. In Tanzania, agricultural production and net income are greater in farm households that apply agroforestry and contribute significantly to increased yields and income and reduce household poverty levels [19]. Cutler et al. [20] explained that the implementation of agroforestry in Mamuju, West Sulawesi provides an excellent economical rate of return (ERR), namely 10 - 28.7% with an income level of between IDR 7,000,000 - 12,500,000 ha\(^{-1}\). The main component of agroforestry, Jelutong rawa (Dyera polyphylla (Miq.) Steenis) is a type of peat swamp plant, in the regions of Sumatra and Kalimantan. Based on its original growing location, this plant grows on inundated land. Jelutong rawa is a tree plant recommended in peat restoration efforts and is suitable for development as a commodity in an agroforestry system [21]. The wood is processed into blocks/boards, plywood, and wood pulp; besides being taken the sap is either in the form of blocks/sheets that can be used as an insulator for electrical cables, tires, and gum, and in the form of resin which can be used as cosmetics, varnishes, and essential oils [22]. The development of Jelutong with an agroforestry system has a better economic viability value than monoculture. A study showed that Jelutong and rubber tree agroforestry systems have NVP of 69,799,388, BCR of 8.68, and IRR of 29% [21]; and another revealed NVP of 9,247,417, BCR of 5.35, and IRR of 24.1% [23].

This study examines the growth rate of Jelutong, perceptions, and analysis of farming carried out on agroforestry cropping patterns as part of the restoration pattern of tropical peatlands.

2. Methods

The research was carried out on peatlands in Kalampangan Village, Palangka Raya, Indonesia, in a location that was cultivated for the first time (owned by farmer 1, namely Pak Parni) and in a fairly developed agroforestry area (owned by farmer 2, namely Pak Taman), as shown in Figure 1. After clearance, the land is first processed using a hand tractor, and then wood waste is cleared. Furthermore, the planting of a specific peat tree species, namely Jelutong, is carried out in combination with dragon fruit and vegetables. Jelutong cultivation is carried out at a distance of 6 m x 3 m. The complete planting is presented in Figure 2a. For Jelutong cultivation, the basic fertilizer is given in the form of chicken manure as much as 1.7 kg per planting hole of 50 cm deep, and let stand for 15 days. If it doesn't rain, then watering is performed. Observations at the new agroforestry location were carried out on Jelutong plant growth, including stem diameter, number of leaves, and plant height. For vegetables, cultivation was carried out by farmers who choose the type of plant according to the farmer’s wishes. The recording
is carried out on the intercropping cultivation technique, including the input used and the farming business analysis. For developed agroforestry locations (Pak Taman's location, farmer 2), the existing plants' (7-8 years old) stem diameter measurements and analysis of the agroforestry pattern farming were carried out.

![Figure 1. Research location](image)

Vegetable farming data was collected by observing, observing, and interviewing farmers. The data collected includes farming costs incurred from planting to harvest, data on agricultural production, and commodity prices. While the method of farming analysis used is:

- **Income Analysis.** Farming income was analyzed based on vegetable farming's income and costs by calculating the difference between revenue and production costs [24].

 \[
 I = TR - TC \tag{1}
 \]

 \[
 I = \text{Income} \\
 TR = \text{Total Revenue} \\
 TC = \text{Total Cost}
 \]

 \[
 TR = Q \times PQ \tag{2}
 \]

 \[
 Q = \text{Production} \\
 PQ = \text{Price}
 \]

- **R / C Ratio Analysis.** The feasibility of farming is analyzed based on the ratio of revenue to cost [24].

 \[
 \frac{R}{C}\text{ Ratio} = \frac{TR}{TC} \tag{3}
 \]

 \[
 R = \text{Revenue} \\
 C = \text{Cost} \\
 TR = \text{Total Revenue} \\
 TC = \text{Total Cost}
 \]

 If value: \(\frac{R}{C} > 1 \), then the farming is profitable. If \(\frac{R}{C} < 1 \), then farming is not profitable or losing. If \(\frac{R}{C} = 1 \), then the farming is at the break-even point. That is, the total cost is equal to the total revenue.
3. Results and discussion

3.1. Jelutong growth

Jelutong, which is cultivated in this agroforestry area, was planted in December 2017 (Farmer 1). Stem diameter, plant height to the last branch, height to the tip of the shoot, and the number of leaves were measured in plants aged 3, 5, 8, 12, and 24 months (Figure 2). All measured growth indicators for Jelutong show fairly good growth. Jelutong plants showed good physical growth, i.e., after the age of 2 years, they have an average plant height of 2 m. Jelutong growth showed good performance with an average growth rate of $1.42 \pm 0.49 \text{ cm year}^{-1}$ for tree diameter with a polynomial growth pattern ($R^2 = 0.98$) [25], and $91.33 \pm 36.77 \text{ cm year}^{-1}$ for tree height with an exponential growth pattern ($R^2 = 0.92$). The increase in Jelutong leaves number during the study period to one year was 4.4 ± 2.8. Horticultural crops show fairly good physical growth, although cultivation on new land requires more production inputs (especially lime and manure) compared to land that has been repeatedly used for horticultural cultivation. The application of lime and fertilizer to horticultural plants provides benefits to jelutong plants, i.e., jelutong plants do not need additional fertilization. Fertilization of Jelutong plants is carried out at the time of initial planting at a dosage of 1-1.5 kg of manure/tree. At Farmer 1, Jelutong trees were not given any more fertilizers other than basic fertilizer in manure and only utilized the fertilizers applied on the horticultural row. However, it is possible for the current age that the Jelutong roots have not reached the horticultural row's location.

![Figure 2](image-url)

Figure 2. Stem diameter, height to the top stem, height to top leaf, and number of leaves of Jelutong trees planted in agroforestry

In agroforestry locations with Jelutong trees planted for 7-8 years (Farmer 2, Pak Taman), the average diameter of Jelutong trees was 14.85 ± 3.39, the maximum diameter was 21.02 cm, and the minimum diameter was 7.13 cm. Farmer 2 used the fallen leaves as fertilizer. The roots have reached the annual crop cultivation area, but the input for seasonal crops is also low.
3.2. Agroforestry model

On Farmer 1's land, Jelutong was planted at a distance of 6 m x 3 m, and between the Jelutong rows, horticultural crops such as leeks, mustard greens, bitter gourd, purple eggplant, luffa, and chilies were planted. In the Jelutong plant pathway, between the Jelutong trees, it is planned to plant dragon fruit with a spacing of 3 m. The first planting of dragon fruit was not successful considering the limited manpower for dragon tree maintenance, which must be done intensively. Since July 2020, it is planned to increase vanilla cultivation using the Jelutong tree's shade. Currently, Vanilla nurseries are being carried out (Figure 3c). In choosing this combination plant, it is possible because vanilla is a plant that requires shade. Besides, this plant's yield is quite promising because the average income of vanilla farmers is IDR 12,805,425 per ha per year [26]. Because it is an efficient crop, vanilla does not use much nutrients from peatlands. Vanilla only produces when the plants are between 2.5-3.5 years old [27]. Therefore, to provide short-term income, annual crop cultivation is carried out. Generally, in the Kalampangan Village Central Kalimantan peat area, these crops are chilies, water spinach, spinach, and leeks, which is the main crop source of income for peatland farmers [28]. The cropping pattern on Farmer 2's land is 7-8 years old Jelutong trees with a spacing of 6 m x 3 m, with a variety of intercropping including maize, cassava, chilies, and red ginger (Figure 3b).

Figure 3. Agroforestry pattern and vanilla nursery

Vegetable commodities cultivated by farmers are bitter gourd, purple eggplant, luffa, chilies, cassava, corn, and green onions. All commodities show good growth performance, produce well, and the yield can be marketed. The average planting area was 1,376 m², with the largest area of 4,050 m² for cassava plants and the narrowest of 200 m² for luffa and purple eggplant. Plant age varies between 2-12 months, with the youngest being corn and the highest being cassava. Meanwhile, the harvest age ranges from 2 months to 8 months after planting. The harvested crops are cassava, leeks, and corn; other crops can be harvested repeatedly for up to 2 months after the first harvest. Good plant maintenance, including pest control and intensive fertilization, will extend the life of the crop. The market price also influences the farmers' decision to extend the harvest period. When the selling price is low, the farmers tend not to extend the harvest period because they will experience maintenance costs losses.

Table 1. Analysis of vegetable farming in an agroforestry area of 1000 m² for one planting season

Description	Unit	Bitter gourd	Eggplant	Luffa	Chilli	Cassava	Waxy corn	Leek
Production	kg	488	2.625	4.746	250	1,814	169	1,267
Price	IDR/kg	6.000	6.000	6.000	20.000	4.000	8.000	20.000
Total Cost	IDR	471.667	5,175.000	9,225.000	990.000	-	502.222	3,151.333
Income	IDR	2,925.000	15,750.000	28,475.000	5,000.000	7,257.284	1,352.222	25,333.333
Revenue	IDR	2,453.333	10,575.000	19,250.000	4,010.000	7,257.284	850.000	12,182.000
R/C		7	3	3	5	-	3	2

The highest vegetable productivity was in luffa (47.46 tons ha⁻¹), followed by purple eggplant (26.25 tons ha⁻¹) and cassava (18.14 tons ha⁻¹), while the lowest production was waxy corn with a productivity of 1.69 tons ha⁻¹. Leek plants have a productivity of 12.67 tons per ha, followed by bitter gourd 4.88 tons ha⁻¹ and chilies 2.5 tons ha⁻¹. Nationally, bitter gourd production can reach 30-50.2 tons ha⁻¹ [29], while the luffa is 8-12 tons ha⁻¹ [30]. Meanwhile, waxy corn gives little yield because the cobs produced
are relatively smaller than other maize types, and the production is low. According to previous research [31], waxy corn in Indonesia is commonly a local variety with low yield potential (less than 2 tons/ha)\(^1\), small cobs with a 10-11 mm diameter, and is very sensitive to downy mildew.

The results of the income analysis show that the highest level of income at one planting season is the luffa plant with a value of IDR 19,250,000, and the lowest income was on waxy corn with a value of IDR 850,000, with a monthly income of between IDR 425,000, 6,415,000. With such variations in income per month, farmers need to make cropping patterns with various types in one growing season to provide maximum income. The R/C ratio analysis shows a value above 1, which means that vegetable farming between Jelutong stands provides an advantage. The largest R/C value is at Bitter gourd plants showed an R/C ratio of 7, purple eggplant, luffa, and waxy corn with an R/C ratio of 3, the lowest was leek with a value of 2. An exception was cassava plants because they were planted just like that, did not require any cost for fertilizers and pesticide, and the planting material (cuttings) did not have to be bought. Farming analysis with vegetable cropping patterns on peatlands showed R/C ratio of bitter gourd and luffa plants with cucumber-bitter-gourd-long bean cropping patterns, and cropping patterns of cucumber-luffa-long beans showed R/C ratios of 1.28 and 1.27, respectively [32]. The high R/C ratio in this research's agroforestry system is because labor costs from within the family and watering costs are not considered. Besides, intensive maintenance may cause a longer harvest period and more yield.

4. Conclusion

Jelutong planted together with horticultural crops in the agroforestry system shows good growth. The application of fertilizer to horticultural crops provides benefits for the growth of Jelutong plants. Horticultural crops can grow well by providing several production inputs, such as lime, manure, and chemical fertilizers. Horticultural crops planted together with Jelutong provide a good income, which is an average of Rp. 425,000 - Rp. 6,415,000 per month on a land area of 1,000 m\(^2\), with an R/C rate > 1. The farmers can carry out restoration efforts by revegetating agroforestry farming systems by planting several types of horticultural crops in one season to get a variety of income.

References

[1] Parish F, Sirin A, Charman D, Joosten H, Minaeva T and Silvius M (eds) 2008 Assessment on peat-lands, biodiversity and climate change. Kuala Lumpur, Global Environment Centre and Wageningen, Wetlands International. 179 pp
[2] Erwin K L 2009 Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17:71–84
[3] Maltby E and Proctor M C F 1996 Peatlands: their nature and role in the biosphere. International Peat Society Finland
[4] Immirzi C P, Maltby E and Clymo R S 1992 The global status of peatlands and their role in carbon cycling, Report No. 11, Wetlands Research Group, Friends of the Earth, London, 145 p
[5] Rieley J O, Ahmad-Shah A A and Brady M A 1996 The extent and nature of tropical peat swamps, In Tropical Lowland Peatlands of Southeast Asia. Proceedings of a Workshop on Integrated Planning and Management of Tropical Lowland Peatlands, Cinarua, Indonesia, 3-8 July 1992, Maltby, E., Immirzi, C.P., Safford, R.J. (eds.), IUCN, Gland, Switzerland, x + 294 p
[6] Page S E, Rieley J O and Banks C J 2011 Global and regional importance of the tropical peatland carbon pool. Global Change Biol., 17:798–818.
[7] Marlier M E, DeFries R S, Voulgarakis A, Kinney P L, Randerson J T, Shindell D T, Chen Y and Faluvegi G 2013 El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change 3: 131-136, doi:10.1038/nclimate1658
[8] Miettinen J, Shi C and Liew S C 2017 Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires. Environmental Management 60:747–757
[9] Hooijer A, Page S E, Jauhiainen J, Lee W A, Lu X X, Idris A and Anshari G 2012 Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071. doi: 10.5194/bg-
9-1053-2012.

[10] Evans C D, Williamsonsona J M, Karacibulu F, Irawan D, Suaridiwierianto Y, Fikky H M, Laurén A and Page S E 2019 Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. *Geoderma* **338:**410-421

[11] Evers S, Yule C M, Padfield R, O’Reilly P and Varkkey H 2016 Keep wetlands wet: the myth of sustainable development of tropical peatlands – implications for policies and management. *Global Change Biology* **23**(2):534-549

[12] Wösten J H M, Ismail A B, van Wijk A L M 1997 Peat subsidence and its practical implications: a case study in Malaysia. *Geoderma* **78:**25–36. doi: 10.1016/S0016-7061(97)00013-X.

[13] Hooijjer A, Page S E, Canadell J G, Silvius M, Kwadijk J, Wösten H and Jauhiainen J 2010 Current and future CO₂ emissions from drained peatlands in Southeast Asia. *Biogeosciences* **7:**1505–1514. doi: 10.5194/bg-7-1505-2010

[14] Yuwariah Y A S 2016 *The Potential of Agroforestry to Increase Income, National Independence and Environmental Improvement (Indonesian).* Prosiding Seminar Nasional Agroforestry 2015: Inovasi Agroforestry Mendukung Kemandirian Bangsa. Balai Penelitian dan Pengembangan Teknologi Agroforestry. Bandung

[15] Khususiyah N and Suyanto 2016 Contribution of Agroforestry in Increasing Income and Equitable Income of Community Forest Management in Sesaot Lombok (Indonesian). Prosiding Seminar Nasional Agroforestry 2015: Inovasi Agroforestry Mendukung Kemandirian Bangsa. Balai Penelitian dan Pengembangan Teknologi Agroforestry. Bandung

[16] Suharti S 2011 Various Forestry Business (AUK) Commodity Development Study to increase community income around forests (Indonesian). Seminar Nasional Reformasi Pertanian Terintegrasi Menuju Kedaulatan Pangan

[17] Kholifah U N, Wulandari C, Santoso T and Kaskoyo H 2017 Contribution of Agroforestry to Farmers’ Income in Sumber Agung Village, Kemiling District, Bandar Lampung (Indonesian). *Jurnal Sylva Lestari* **5**(3):39-47

[18] Paembonan S A, Millang S, Dassir M and Ridwan M. 2018 Species Variation in Home Garden Agroforestry System in South Sulawesi, Indonesia and Its Contribution to Farmers’ Income. https://iopscience.iop.org/article/10.1088/1755-1315/157/1/012004/pdf

[19] Namwata B M L, Masanyiwa Z S and Miziral O B 2012 Productivity of The Agroforestry System and Its Contribution to Household Income Among Farmer in Lushoto District, Tanzania. *International Journal of Physical and Social Sciences* **2**(7):369-392

[20] Cutler D, Elchinger M, Hill G, Katz J and Barnett J 2014 *Community Agroforestry in Mamuju: A Green Prosperity Model Project.* National Renewable Energy Laboratory. Denver

[21] Harun M K 2016 *Jelutong Rawa Based Agroforestry: A Social, Economic and Environmental Solution for Peatland Management (Indonesian).* Forda Press. Bogor

[22] Harun M K 2011 Analysis of jelutong development with an agroforestry system to restore degraded peatlands in Central Kalimantan Province (Indonesian). Sekolah Pascasarjana. Institut Pertanian Bogor. Bogor. Master Thesis.

[23] Tata M H L, Bastoni, Sofiyuddin M, Mulyoutami E, Perdana A and Janudianto 2015 *Jelutong Rawa: Cultivation Techniques and Its Economic Prospects (Indonesian).* ICRAF. Bogor

[24] Budiningsih K and Effendi R 2013 Financial Feasibility Analysis of Jelutong Plantation Forest (*Dyera polyphylla*) in Central Kalimantan. *Jurnal Penelitian Hutan Tanaman.* **10**(1):17-23

[25] Burkhart H E 2003 *Suggestion for choosing an appropriate level for modelling forest stand.* In Amaro A, Reed D, Soares P, editors. Modelling Forest System. CABI Publishing

[26] Soekartawi 2010 *Farming Analysis (Indonesian).* Penebar Swadaya. Jakarta

[27] Hadi S S 2007 Analysis of the financial feasibility of vanilla (*Vanilla spp.*) Farming in Gondang Village, Nawangan Pacitan District (Indonesian). Undergraduate thesis, Universitas Brawijaya

[28] Setiadi A R 2010 *Guide to Vanilla Agribusiness (Indonesian).* Lily Publisher dan Penerbit ANDI, Yogyakarta.

[29] Antang E U, Adi Jaya, Supriatni L, and Birawa C 2018 *Analysis of Community Farming Development in Peatland Restoration Efforts based on Agroecotourism in Misik Village,*
Central Kalimantan (Indonesian). Seminar Nasional Pembangunan Pertanian Indonesia dalam Memperkuat Lumbung Pangan Fundamental Ekonomi dan Daya Saing Global. Yogyakarta 16-17 November 2018

[30] Rukmana R 1997 Cultivation of Bitter gourd (Indonesian). Penerbit Kanisius, Yogyakarta

[31] Pusat Penelitian dan Pengembangan Hortikultura 2019 Cultivation of Squash (Indonesian) https://hortikultura.litbang.pertanian.go.id

[32] Putra W E, Ishak A and Rokhani 2018 Analysis of Vegetable Cultivation Patterns on Peatlands (Case in Panca Mukti Village, Pondok Kelapa District, Bengkulu Tengah Regency) (Indonesian). Seminar Nasional Program Studi Agribisnis Fakultas Pertanian Universitas Jember 03 November 2018: Pembangunan Pertanian dan Peran Pendidikan Tinggi Agribisnis: Peluang dan Tantangan di Era Industri 4.0. file:///C:/Users/User/Downloads/10652-457-23245-1-10-20190505%20(1).pdf