Supporting Information

“The Hepatitis B Virus oncoprotein HBx is not an ATPase”

Michelle Langton and Maria E. Pandelia*

Department of Biochemistry, Brandeis University, Waltham, MA 02453

AUTHOR EMAIL ADDRESS: mepandelia@brandeis.edu

ACKNOWLEDGEMENTS

Funding. This work has been supported by the National Institutes of Health (GM111978 and GM126303 to M.-E.P.).
Table S1. Primers used for the generation of the MBP-HBx variants

Mutation	Forward primer	Reverse Primer
G136A	CGTTCTGGGTGCTTGCCGTCAAAAAC	AACACCTTCAGACGAATTTC
K130A	CGTCTGGCAGTGTTCGTT	AATTTCCTCGCCCAGTTCC
K140A	GCCGTCATGCACCTGGGTGT	AGCCACCCAGAAACGAACA
C137A	CAGCAGTTCAATGCAATTTC	AGTTTGTGACGCGCGCCAC
H139A	GCTGCCGTGCAAAAACCTGG	CACCCAGAACGAACACCT
K130M	CGTCTGATGGTTCTGGGTC	AATTTCCTCGCCCAGTTCCC
V131I	TCGTCTGATGATCTTGCTGGGTG	ATTTCCCTCGCCCAGTTCC
Δ27	TAACTCGAGCACCACCACCA	AATTTCCTCGCCCAGTTCC
Table S2. NSitePred nucleotide binding prediction.

AA	#	ATP binding res.	ATP prob.	ADP binding res.	ADP prob.	AMP binding res.	AMP prob.	GTP binding res.	GTP prob.	GDP binding res.	GDP prob.
M	1	N	0.025	N	0.025	N	0.024	N	0.021	N	0.017
A	2	N	0.026	N	0.022	N	0.024	N	0.025	N	0.016
A	3	N	0.03	N	0.022	N	0.025	N	0.024	N	0.013
R	4	N	0.041	N	0.027	N	0.032	N	0.013	N	0.022
M	5	N	0.025	N	0.029	N	0.026	N	0.016	N	0.021
Y	6	N	0.028	N	0.039	N	0.04	N	0.023	N	0.02
C	7	N	0.024	N	0.031	N	0.029	N	0.015	N	0.022
Q	8	N	0.035	N	0.036	N	0.036	N	0.062	N	0.029
L	9	N	0.032	N	0.023	N	0.035	N	0.025	N	0.023
D	10	N	0.048	N	0.036	N	0.035	N	0.021	N	0.025
P	11	N	0.035	N	0.032	N	0.033	N	0.044	N	0.015
S	12	N	0.038	N	0.042	N	0.032	N	0.028	N	0.017
R	13	N	0.041	N	0.033	N	0.035	N	0.047	N	0.03
D	14	N	0.043	N	0.04	N	0.025	N	0.018	N	0.029
V	15	N	0.053	N	0.033	N	0.044	N	0.024	N	0.023
L	16	N	0.037	N	0.032	N	0.028	N	0.026	N	0.015
C	17	N	0.019	N	0.03	N	0.027	N	0.034	N	0.021
L	18	N	0.03	N	0.025	N	0.036	N	0.039	N	0.027
R	19	N	0.035	N	0.028	N	0.06	N	0.023	N	0.026
P	20	N	0.028	N	0.033	N	0.034	N	0.022	N	0.089
V	21	N	0.031	N	0.051	N	0.034	N	0.033	N	0.02
G	22	N	0.032	N	0.033	N	0.04	N	0.008	N	0.018
A	23	N	0.032	N	0.062	N	0.034	N	0.017	N	0.023
E	24	N	0.041	N	0.053	N	0.029	N	0.022	N	0.04
S	25	N	0.032	N	0.04	N	0.035	N	0.021	N	0.017
R	26	N	0.038	N	0.037	N	0.027	N	0.035	N	0.023
---	---	---	---	---	---	---	---	---	---	---	---
G	27	N	0.05	N	0.029	N	0.03	N	0.027	N	0.02
R	28	N	0.027	N	0.035	N	0.027	N	0.012	N	0.012
P	29	N	0.023	N	0.019	N	0.024	N	0.026	N	0.009
L	30	N	0.031	N	0.018	N	0.031	N	0.026	N	0.014
S	31	N	0.043	N	0.028	N	0.033	N	0.029	N	0.015
G	32	N	0.029	N	0.019	N	0.041	N	0.013	N	0.017
P	33	N	0.027	N	0.03	N	0.047	N	0.013	N	0.02
L	34	N	0.031	N	0.039	N	0.046	N	0.012	N	0.011
S	35	N	0.046	N	0.018	N	0.022	N	0.042	N	0.006
T	36	N	0.051	N	0.065	N	0.026	N	0.017	N	0.012
L	37	N	0.027	N	0.018	N	0.026	N	0.016	N	0.024
S	38	N	0.052	N	0.017	N	0.039	N	0.008	N	0.018
S	39	N	0.048	N	0.038	N	0.043	N	0.024	N	0.011
P	40	N	0.035	N	0.016	N	0.028	N	0.022	N	0.013
S	41	N	0.031	N	0.045	N	0.063	N	0.021	N	0.017
P	42	N	0.046	N	0.06	N	0.031	N	0.018	N	0.012
S	43	N	0.025	N	0.044	N	0.027	N	0.013	N	0.026
A	44	N	0.037	N	0.04	N	0.027	N	0.013	N	0.02
V	45	N	0.028	N	0.047	N	0.03	N	0.018	N	0.018
P	46	N	0.028	N	0.019	N	0.032	N	0.035	N	0.02
A	47	N	0.019	N	0.026	N	0.024	N	0.023	N	0.017
D	48	N	0.02	N	0.037	N	0.025	N	0.018	N	0.013
H	49	N	0.034	N	0.042	N	0.033	N	0.023	N	0.025
G	50	N	0.03	N	0.034	N	0.028	N	0.028	N	0.023
A	51	N	0.022	N	0.051	N	0.026	N	0.041	N	0.014
H	52	N	0.029	N	0.029	N	0.026	N	0.019	N	0.029
L	53	N	0.021	N	0.016	N	0.027	N	0.015	N	0.019
S	54	N	0.025	N	0.02	N	0.035	N	0.026	N	0.013
L	55	N	0.023	N	0.032	N	0.028	N	0.027	N	0.028
R	56	N	0.05	N	0.025	N	0.082	N	0.025	N	0.017
Column	Value	Column	Value	Column	Value	Column	Value				
--------	-------	--------	-------	--------	-------	--------	-------				
G	57	B	0.135	N	0.048	N	0.055				
L	58	N	0.066	N	0.06	N	0.055				
P	59	N	0.054	N	0.035	N	0.038				
V	60	N	0.06	N	0.031	N	0.044				
C	61	N	0.045	N	0.029	N	0.031				
A	62	N	0.04	N	0.016	N	0.035				
F	63	N	0.043	N	0.037	N	0.025				
S	64	N	0.041	N	0.035	N	0.041				
S	65	N	0.034	N	0.036	N	0.039				
A	66	N	0.087	N	0.048	N	0.06				
G	67	N	0.057	N	0.041	B	0.236				
P	68	N	0.028	N	0.031	N	0.044				
C	69	N	0.09	N	0.024	N	0.071				
A	70	N	0.037	N	0.027	N	0.034				
L	71	N	0.038	N	0.022	N	0.034				
R	72	N	0.04	N	0.031	N	0.041				
F	73	N	0.03	N	0.039	N	0.043				
T	74	N	0.025	N	0.02	N	0.052				
S	75	N	0.035	N	0.029	N	0.058				
A	76	N	0.067	N	0.038	N	0.05				
R	77	N	0.058	N	0.051	N	0.083				
C	78	N	0.08	N	0.04	N	0.037				
M	79	N	0.058	N	0.035	N	0.035				
E	80	N	0.044	N	0.017	N	0.03				
T	81	N	0.027	N	0.022	N	0.045				
T	82	N	0.024	N	0.035	N	0.023				
V	83	N	0.035	N	0.019	N	0.028				
N	84	N	0.028	N	0.022	N	0.054				
A	85	N	0.023	N	0.025	N	0.032				
H	86	N	0.022	N	0.036	N	0.031				
---	---	---	---	---	---	---	---				
Q	87	N	0.025	N	0.03	N	0.038	N	0.018	N	0.021
I	88	N	0.029	N	0.02	N	0.029	N	0.017	N	0.017
L	89	N	0.027	N	0.024	N	0.032	N	0.018	N	0.022
P	90	N	0.031	N	0.026	N	0.03	N	0.023	N	0.016
K	91	N	0.032	N	0.025	N	0.031	N	0.015	N	0.022
V	92	N	0.015	N	0.017	N	0.021	N	0.008	N	0.02
L	93	N	0.027	N	0.022	N	0.03	N	0.015	N	0.02
H	94	N	0.048	N	0.06	N	0.059	N	0.038	N	0.02
K	95	N	0.027	N	0.034	N	0.034	N	0.015	N	0.018
R	96	N	0.019	N	0.018	N	0.101	N	0.032	N	0.015
T	97	N	0.027	N	0.046	N	0.024	N	0.013	N	0.011
L	98	N	0.025	N	0.019	N	0.026	N	0.014	N	0.014
G	99	N	0.037	N	0.035	N	0.032	N	0.033	N	0.014
L	100	N	0.028	N	0.029	N	0.04	N	0.017	N	0.021
P	101	N	0.027	N	0.022	N	0.034	N	0.017	N	0.022
A	102	N	0.027	N	0.022	N	0.037	N	0.009	N	0.024
M	103	N	0.023	N	0.032	N	0.036	N	0.008	N	0.026
S	104	N	0.046	N	0.03	N	0.025	N	0.011	N	0.055
T	105	N	0.087	N	0.028	N	0.031	N	0.008	N	0.041
T	106	N	0.03	N	0.018	N	0.029	N	0.01	B	0.117
D	107	N	0.02	N	0.014	N	0.025	N	0.009	N	0.054
L	108	N	0.03	N	0.015	N	0.018	N	0.027	N	0.02
E	109	N	0.018	N	0.022	N	0.019	N	0.021	N	0.021
A	110	N	0.023	N	0.03	N	0.024	N	0.021	N	0.015
Y	111	N	0.025	N	0.043	N	0.029	N	0.01	N	0.023
F	112	N	0.066	N	0.034	N	0.022	N	0.013	N	0.022
K	113	N	0.017	N	0.025	N	0.022	N	0.023	N	0.022
D	114	N	0.03	N	0.038	N	0.03	N	0.027	N	0.021
C	115	N	0.039	N	0.035	N	0.028	N	0.011	N	0.021
V	116	N	0.043	N	0.032	N	0.034	N	0.026	N	0.021
---	---	---	---	---	---	---	---	---	---	---	---
F	117	N	0.038	N	0.051	N	0.029	N	0.023	N	0.022
K	118	N	0.032	N	0.038	N	0.033	N	0.029	N	0.022
D	119	N	0.037	N	0.032	N	0.03	N	0.019	N	0.016
W	120	N	0.033	N	0.037	N	0.03	N	0.024	N	0.022
E	121	N	0.032	N	0.018	N	0.036	N	0.024	N	0.022
E	122	N	0.031	N	0.023	N	0.03	N	0.02	N	0.02
L	123	N	0.035	N	0.029	N	0.031	N	0.032	N	0.02
G	124	N	0.034	N	0.043	N	0.027	N	0.024	N	0.018
E	125	N	0.028	N	0.031	N	0.024	N	0.021	N	0.019
E	126	N	0.032	N	0.022	N	0.023	N	0.022	N	0.018
I	127	N	0.018	N	0.021	N	0.033	N	0.018	N	0.018
R	128	N	0.051	N	0.099	N	0.029	N	0.019	N	0.021
L	129	N	0.031	N	0.025	N	0.032	N	0.02	N	0.019
K	130	N	0.025	N	0.038	N	0.03	N	0.021	N	0.02
V	131	N	0.019	N	0.031	N	0.031	N	0.016	N	0.018
F	132	N	0.031	N	0.062	N	0.035	N	0.023	N	0.021
V	133	N	0.024	N	0.03	N	0.027	N	0.016	N	0.028
L	134	N	0.054	N	0.033	N	0.036	N	0.012	N	0.022
G	135	B	0.283	N	0.041	N	0.059	N	0.024	N	0.028
G	136	B	0.394	N	0.03	B	0.151	N	0.026	N	0.033
C	137	B	0.179	N	0.035	N	0.046	N	0.05	N	0.031
R	138	N	0.073	N	0.026	N	0.036	N	0.031	N	0.033
H	139	N	0.097	N	0.048	N	0.031	N	0.023	N	0.062
K	140	N	0.048	N	0.052	N	0.03	N	0.029	N	0.029
L	141	N	0.033	N	0.031	N	0.026	N	0.034	N	0.02
V	142	N	0.032	N	0.034	N	0.028	N	0.037	N	0.015
C	143	N	0.018	N	0.028	N	0.045	N	0.029	N	0.026
A	144	N	0.026	N	0.013	N	0.033	N	0.024	N	0.023
P	145	N	0.054	N	0.072	N	0.042	N	0.043	N	0.021
A	146	N	0.036	N	0.042	N	0.033	N	0.033	N	0.018
Variant	Average Purity (% Fusion)										
--------------	---------------------------										
G136A	83.3										
K130A	76.7										
K130A/K140A	83.3										
K140A	77.7										
C137A	75.9										
H139A	79.5										
K130M	80.5										
K130M/V131I	80.9										
Δ27	85.2										

Table S3. Purity of MBP-HBx variants as estimated by using the mass spectrometry emPAI values.
Figure S1. Michaelis-Menten kinetics of purified GroEL. From this fit, K_M and k_{cat} values were determined to be $255 \pm 14 \, \mu\text{M}$ and $0.15 \pm 0.007 \, \text{s}^{-1}$ respectively. Error bars indicated standard error.
Figure S2. Western Blot and SDS-PAGE analysis of GST-HBx. Western blot was performed on a GST-HBx sample using His$_6$-antibody. Bands of approximate molecular weights of 60, 44 and 27 kDa efficiently bind the His-antibody (AbCam, ab49746) indicating that free GST in the sample is a result of proteolytic degradation of the GST-HBx fusion protein. This GST readily forms dimer species at a similar apparent molecular weight as GroEL (i.e. 60 kDa). Mass-spectrometric analysis indicate that the gel band at ~60 kDa is composed of this dimer as well as GroEL contaminant and perhaps minimal amounts of GST-HBx/HBx dimer.
Figure S3. Correlation between the amount of GroEL and activity. MBP-HBx and GST-HBx samples containing GroEL are represented in red and blue, respectively. DsbC-HBx and NusA-HBx samples lacking the chaperone are shown in green and black, respectively. Vertical error bars indicate standard error in activity (k_{cat}/K_M values), while horizontal error bars indicate the variability of copurifying GroEL between individual samples (represented as standard error).