BOUNDEDLY FINITE CONJUGACY CLASSES OF TENSORS

RAIMUNDO BASTOS AND CARMINE MONETTA

Abstract. Let \(n \) be a positive integer and let \(G \) be a group. We denote by \(\nu(G) \) a certain extension of the non-abelian tensor square \(G \otimes G \) by \(G \times G \). Set \(T_0(G) = \{ g \otimes h \mid g, h \in G \} \). We prove that if the size of the conjugacy class \(|x^{\nu(G)}| \leq n \) for every \(x \in T_0(G) \), then the second derived subgroup \(\nu(G)^{''} \) is finite with \(n \)-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.

1. Introduction

The non-abelian tensor square \(G \otimes G \) of a group \(G \) as introduced by R. Brown and J. L. Loday [6, 7] is defined to be the group generated by all symbols \(g \otimes h, g, h \in G \), subject to the relations

\[
 g g_1 \otimes h = (g^{g_1} \otimes h^{g_1})(g_1 \otimes h) \quad \text{and} \quad g \otimes h h_1 = (g \otimes h_1)(g^{h_1} \otimes h^{h_1})
\]

for all \(g, g_1, h, h_1 \in G \). In the same paper, R. Brown and J.-L. Loday presented a topological significance for the non-abelian tensor square of groups (cf. [7, Section 3]).

The study of the non-abelian tensor square of groups from a group theoretic point of view was initiated by R. Brown, D. L. Johnson and E. F. Robertson [5]. For a deeper discussion of the non-abelian tensor square and related constructions we refer the reader to [10, 11] (see also [4]).

We observe that the defining relations of the tensor square can be viewed as abstractions of commutator relations; thus in [16] the following construction is considered. Let \(G \) be a group and \(\varphi : G \to G^\varphi \) an isomorphism \((G^\varphi \) is an isomorphic copy of \(G \), where \(g \mapsto g^\varphi \), for all \(g \in G \). Define the group \(\nu(G) \) to be

\[
 \nu(G) := \langle G \cup G^\varphi \mid [g_1, g_2^\varphi]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^{g_3}] = [g_1, g_2^{g_3}]^{g_3^{g_3}}, \ g_i \in G \rangle.
\]

2010 Mathematics Subject Classification. 20E34, 20J06.

Key words and phrases. Structure theorems; Finiteness conditions; Non-abelian tensor square of groups; BFC-groups.
The motivation for studying $\nu(G)$ is the commutator connection: indeed, the map $\Phi : G \otimes G \to [G, G^\varphi]$, defined by $g \otimes h \mapsto [g, h^\varphi]$, for all $g, h \in G$, is an isomorphism (Rocco, [16, Proposition 2.6]). Therefore, from now on we identify the non-abelian tensor square $G \otimes G$ with the subgroup $[G, G^\varphi]$ of $\nu(G)$. An element $\alpha \in \nu(G)$ is called a tensor if $\alpha = [a, b^\varphi]$ for suitable $a, b \in G$. We write $T\otimes(G)$ to denote the set of all tensors (in $\nu(G)$). In particular, $[G, G^\varphi] = \langle [g, h^\varphi] \mid g, h \in G \rangle$ and $T\otimes(G)$ is a commutator closed subset of the group $\nu(G)$. Recall that a subset X of a group is commutator closed if $[x, y] \in X$ for any $x, y \in X$.

It is well-known that the set of all tensors $T\otimes(G)$ affects the structure of the non-abelian tensor square $G \otimes G$, and of related constructions (see [1, 2, 3, 4]). For instance, in [1] and in [2], it was proved that if the set $T\otimes(G)$ is finite (resp. has exactly n elements), then the non-abelian tensor square $[G, G^\varphi]$ is finite (resp. finite with n-bounded order). Here and throughout the article we use the expression \{a, b, \ldots\}-bounded to mean that a quantity is bounded by a certain number depending only on the parameters a, b, \ldots.

In the present paper we consider non-abelian tensor square of groups (and related construction) in which tensors have a bounded number of conjugates. Recall that a group G is a BFC-group if every conjugacy class of G contains at most n elements, for a positive integer n. I. Schur [15, 10.1.4] has shown that if G is a central-by-finite group, then the derived subgroup G' is finite, and thus G is a BFC-group. Later B. H. Neumann [12, Theorem 3.1] improved Schur’s theorem in a certain way, proving that the group G is a BFC-group if and only if the derived subgroup G' is finite, and this occurs if and only if G contains only finitely many commutators. Subsequently, J. Wiegold proved a quantitative version of Neumann’s result: if G contains exactly m commutators, then the order of the derived subgroup G' is finite with m-bounded order [19, Theorem 4.7], and the best known bound was obtained in [9] (see also [13] and [18]). Recently, G. Dierings and P. Shumyatsky proved that if $|x^G| \leq n$ for every commutator x in G, then the second derived subgroup G'' is finite with n-bounded order (cf. [8]). Recall that $x^G = \{x^g \mid g \in G\}$ denote the conjugacy class of x in G.

In this direction, we obtained the following result.

Theorem A. Let n be a positive integer and G a group. Suppose that the size of the conjugacy class $|x^\nu(G)| \leq n$ for every $x \in T\otimes(G)$. Then the second derived subgroup $\nu(G)''$ is finite with n-bounded order.
Furthermore, we also examine the structure of G in terms of some finiteness properties of the set of tensors $T_{\otimes}(G)$, obtaining a sufficient condition for a group G to be a BFC-group.

Corollary B. Let n be a positive integer. Let G be a group in which the derived subgroup G' is finitely generated. Assume that the size of the conjugacy class $|x^{\nu(G)}| \leq n$ for every $x \in T_{\otimes}(G)$. Then G is a BFC-group.

Finally, we show, by means of two counterexamples, that Corollary B is no longer true neither if we discard the hypothesis about G' to be finitely generated (see Example 3.7 below) nor if we consider bounded conjugacy classes of commutators instead of tensors (see Example 3.8 below).

The paper is organized as follows. In the next section we collect some preliminary results about the non-abelian tensor square, while Section 3 contains the proofs of our main results.

2. The group $\nu(G)$

It is well known that the finiteness of the non-abelian tensor square $[G, G^\varphi]$, does not imply that G is a finite group. For instance, the Prüfer group C_{p^∞} is an example of an infinite group such that the non-abelian tensor square $[C_{p^\infty}, (C_{p^\infty})^\varphi]$ is trivial (and so, finite). This is the case for all torsion, divisible abelian groups. A useful result, due to Parvizi and Niroomand [14], provides a sufficient condition for a group to be finite.

Lemma 2.1. Let G be a finitely generated group. Suppose that the non-abelian tensor square $[G, G^\varphi]$ is finite. Then G is finite.

Given a group G there exists an epimorphism

$$\rho : \nu(G) \to G,$$

given by $g \mapsto g$, $h^\varphi \mapsto h$. In the notation of [17], Section 2], let $\Theta(G)$ denote the kernel of ρ. The following lemma collects some results related to the subgroup $\Theta(G)$ which can be found in [17] Section 2].

Lemma 2.2.

(a) The quotient group $\nu(G)/\Theta(G)$ is isomorphic to G;

(b) The subgroup $\Theta(G)$ centralizes $[G, G^\varphi]$.

If x and y are group-elements, we denote by $x^y = y^{-1}xy$ the conjugate of x by y, while the commutator of x and y is the element $[x, y] = x^{-1}x^y$. The next lemma is a crucial observation, that we will use several times in our proofs.
Lemma 2.3. Let $\alpha, \beta \in \nu(G)$. Then there exists an element $\theta \in \Theta(G)$ such that
\[[\alpha, \beta] = [a, b^\varphi]\theta, \]
where $a = \rho(\alpha)$ and $b = \rho(\beta)$.

Proof. Note that $\rho([\alpha, \beta]) = [a, b] = \rho([a, b^\varphi])$.
Since $\Theta(G)$ is the kernel of ρ, it follows that there exists an element $\theta \in \Theta(G)$ such that
\[[\alpha, \beta] = [a, b^\varphi]\theta, \]
as well. The proof is complete. \[\square\]

The following basic properties are consequences of the defining relations of $\nu(G)$ and commutator rules (see [16, Section 2] for more details).

Lemma 2.4. The following relations hold in $\nu(G)$, for all $g, h, x, y \in G$.

(a) $[g, h^\varphi][x,y^\varphi] = [g, h^\varphi][x,y]$;
(b) $[g, h^\varphi, x^\varphi] = [g, h, x^\varphi] = [g^\varphi, h, x^\varphi] = [g^\varphi, h^\varphi, x] = [g^\varphi, h, x]$;
(c) $[[g, h^\varphi], [x, y^\varphi]] = [[g, h], [x, y]^\varphi]$.
(d) If $\alpha \in \nu(G)$, then $[x, y^\varphi]^{\rho(\alpha)} = [x, y^\varphi]^{\rho(\alpha)^\varphi}$

Given an element $\alpha \in [G, G^\varphi]$, we define $l_\varphi(\alpha)$ to be the smallest positive integer such that α may be written as a product of $l_\varphi(\alpha)$ tensors. We call $l_\varphi(\alpha)$ the length of α with respect to $T_\varphi(G)$. The following result is an immediate consequence of [8, Lemma 2.1].

Lemma 2.5. Let $H = [G, G^\varphi]$ and C a subgroup of finite index m in H. Then for every $b \in H$, the coset Cb contains an element h such that $l_\varphi(h) \leq m - 1$.

3. Proofs

We will now fix some notation and hypothesis.

Hypothesis 3.1. Let G be a group and $H = [G, G^\varphi]$. Suppose that $C_{\nu(G)}(x)$ has finite index at most n in $\nu(G)$ for each $x \in T_\varphi(G)$. Let m be the maximum of indices of $C_H(x)$ in H, where $x \in T_\varphi(G)$. Then consider $a \in T_\varphi(G)$ such that $C_H(a)$ has index precisely m in H. By Lemma 2.4 we can choose $b_1, \ldots, b_m \in H$ such that $l_\varphi(b_i) \leq m - 1$ and $a^H = \{a^{b_i}; i = 1, \ldots, m\}$. Finally set $U = C_{\nu(G)}(\langle b_1, \ldots, b_m \rangle)$.

Remark 3.2. Notice that the subgroup U has finite n-bounded index in $\nu(G)$ because $l_\otimes(b_i) \leq m - 1$ and $C_{\nu(G)}(x)$ has index at most n in $\nu(G)$ for every $x \in T_\otimes(G)$. Moreover, from Lemma 2.5 (b) it follows that the subgroup $\Theta(G)$ is contained in U.

Lemma 3.3. Assume Hypothesis 3.1. Then the subgroup $[H, x]$ has finite m-bounded order for any $x \in T_\otimes(G)$.

Proof. Choose $x \in T_\otimes(G)$. Since $C_H(x)$ has index at most m in H, by Lemma 2.5 there exist $y_1, \ldots, y_m \in H$ such that $l_\otimes(y_i) \leq m - 1$ and $[H, x]$ is generated by the commutators $[y_i, x]$ (in H). For each $i = 1, \ldots, m$ write $y_i = y_{i1} \cdots y_{i(m−1)}$, where $y_{ij} \in T_\otimes(G)$. Since $T_\otimes(G)$ is a commutator closed subset of H, standard commutator identities show that $[y_i, x]$ can be written as a product of conjugates in H of the tensors $[y_{ij}, x]$ (Lemma 2.4). Set $\{h_1, \ldots, h_s\} = \{x^y, y_{ij}^H | i = 1, \ldots, m, j = 1, \ldots, m−1\}$. Since $C_H(h)$ has finite index at most m in H for each $h \in T_\otimes(G)$, it follows that s is m-bounded. Let $T = \langle h_1, \ldots, h_s \rangle$. It is clear that $[H, x] \leq T'$ and so it is sufficient to show that T' has finite m-bounded order. Observe that $C_H(h_i)$ has finite index at most m in H for each $i = 1, \ldots, s$. It follows that the center $Z(T)$ has index at most m^s in T. Thus, Schur’s theorem [15, 10.1.4] shows that T' has finite m-bounded order, as required. \hfill \square

The next lemma is somewhat analogous to [19, Lemma 4.5].

Lemma 3.4. Assume Hypothesis 3.1. If $u \in U$ and $ua \in T_\otimes(G)$, then $[H, u] \leq [H, a]$.

Proof. For every $i = 1, \ldots, m$ $(ua)^{b_i} = ua^{b_i}$. Thus the elements ua^{b_i} form the conjugacy class $(ua)^H$ because $|(ua)^H| \leq m$. Therefore, whenever we consider an element $h \in H$ there exists $i \in \{1, \ldots, m\}$ such that $(ua)^h = ua^{b_i}$ and so $u^{h}a^{h} = ua^{b_i}$. Hence,

$$[u, h] = a^{b_i}a^{-b_i} = [b_i, a^{-1}]a^{-1}, h] \in [H, a].$$

The lemma follows. \hfill \square

Proposition 3.5. Assume Hypothesis 3.1 and write $a = [d, e^r]$ for suitable $d, e \in G$. Then there exists a subgroup $U_1 \leq U$ with the following properties.

1. The index of U_1 in $\nu(G)$ is n-bounded;
2. $[H, U_1^1] \leq [H, a]^{d^{-1}}$;
3. $[H, [U_1, d]] \leq [H, a]$.\hfill \square

Proof. Set

$$U_1 = U \cap U^{d^{-1}} \cap U^{d^{-1}e^{-1}}.$$
Since the index of U in $\nu(G)$ is n-bounded, we conclude that the index of U_1 in $\nu(G)$ is n-bounded as well.

Now, for every $h_1, h_2 \in U_1$ we have

$$[\rho(h_1)d, e^\varphi \rho(h_2)^{\varphi}] = [\rho(h_1), \rho(h_2)^{\varphi}]^d[d, \rho(h_2)^{\varphi}][\rho(h_1), e^\varphi]^{dh_2}[d, e^\varphi]^{h_2}$$

and so

$$[\rho(h_1)d, e^\varphi \rho(h_2)^{\varphi}]^{h_2^{-1}} = [\rho(h_1), \rho(h_2)^{\varphi}]^{dh_2^{-1}}[d, \rho(h_2)^{\varphi}]^{h_2^{-1}}[\rho(h_1), e^\varphi]^d[d, e^\varphi].$$

Set $u = [\rho(h_1), \rho(h_2)^{\varphi}]^{dh_2^{-1}}[d, \rho(h_2)^{\varphi}]^{h_2^{-1}}[\rho(h_1), e^\varphi]^d$. Thus, on the left hand side of the above equation we have a tensor, while the right hand side coincides with ua. Now we show that $u \in U$.

By Lemma 2.2, there exist elements $\alpha, \beta, \gamma \in \Theta(G)$ such that

(i) $[\rho(h_1), \rho(h_2)^{\varphi}] = [h_1, h_2]\alpha$;

(ii) $[d, \rho(h_2)^{\varphi}] = [d, h_2]\beta$;

(iii) $[\rho(h_1), e^\varphi] = [h_1, e]\gamma$.

From (i) we have $[\rho(h_1), \rho(h_2)^{\varphi}]^{dh_2^{-1}} = ([h_1, h_2]\alpha)^{dh_2^{-1}} \in U_1^{dh_2^{-1}} \Theta(G) \leq U$. Point (ii) implies that $[d, \rho(h_2)^{\varphi}]^{h_2^{-1}} = ([d, h_2]\beta)^{h_2^{-1}} \in U$. Finally, (iii) shows that $[\rho(h_1), e^\varphi]^d = ([h_1, e]\gamma)^d \in U U_1^d \Theta(G) \leq U$. Hence $u \in U$.

By Lemma 3.1 $[H, u] \leq [H, a]$. Since $\Theta(G)$ centralizes H, it follows that

$$[H, [h_1, h_2]]^{dh_2^{-1}}[d, h_2]^{h_2^{-1}}[h_1, e]^d \leq [H, a],$$

for any choice of $h_1, h_2 \in U_1$. In particular, taking $h_1 = 1$ we have $[H, d, h_2]^{h_2^{-1}} \leq [H, a]$, while taking $h_2 = 1$ it follows that $[H, h_1, e]^d \leq [H, a]$. Hence we can conclude that $[H, h_1, h_2]^{dh_2^{-1}} \leq [H, a]$. Since $[H, a]$ is normal in H, we have $[H, h_1, h_2] \leq [H, a]^{d^{-1}}$ and so $[H, U_1^d] \leq [H, a]^{d^{-1}}$, which proves that U_1 has property 2.

Finally, consider again the inclusion $[H, [d, h_2]^{h_2^{-1}}] \leq [H, a]$. Since $[H, a]$ is normal in H, it follows that $[H, [U_1, d]] \leq [H, a]$. Therefore U_1 has property 3. as well, and we are done.

The following result is an immediate consequence of [S] Theorem 1.1.

Proposition 3.6. Let n be a positive integer and G a group. Suppose that the size of the conjugacy class $|x^{\nu(G)}|$ is n for every $x \in T_0(G)$. Then the second derived subgroup G'' is finite with n-bounded order.

Proof. Let $w = [a, b]$ be a commutator of G. Since $\rho : \nu(G) \to G$ is an epimorphism, we deduce that the commutator w has at most as many conjugate in G as the tensor $[a, b^\varphi]$ has in $\nu(G)$. Consequently, every commutator of G has n-boundedly finite conjugacy class in G. Therefore [S] Theorem 1.1 shows that $|G''|$ is finite and n-bounded. □
Proof of Theorem A. Denote the non-abelian tensor square $[G, G^\varphi]$ by H. Let m be the maximum of indices of $C_H(x)$ in H, where $x \in T_\otimes(G)$. Then consider $a \in T_\otimes(G)$ such that $C_H(a)$ has index precisely m in H. By Lemma 2.5 we can choose $b_1, \ldots, b_m \in H$ such that $l_\otimes(b_i) \leq m - 1$ and $a^H = \{a^{b_i}; i = 1, \ldots, m\}$. Set $U = C_{\nu(G)}(\langle b_1, \ldots, b_m \rangle)$. Note that the index of U in $\nu(G)$ is n-bounded. Applying Proposition 3.5 we find a subgroup U_1, of n-bounded index, such that $[H, U'_1] \leq \langle [H, a]^{\nu(G)} \rangle$. Since the index of U_1 in $\nu(G)$ is n-bounded, so $H/H \cap U_1$ is. Therefore, we can find n-boundedly many tensors $t_1, \ldots, t_s \in T_\otimes(G)$ such that $H = \langle t_1, \ldots, t_s, H \cap U_1 \rangle$. Let T be the normal closure in $\nu(G)$ of the product of the subgroups $[H, a]$ and $[H, t_i]$ for $i = 1, \ldots, s$. By Lemma 3.3 each of these subgroups has n-bounded order. Moreover, they have at most n conjugates. Thus, T is a product of n-boundedly many finite subgroups, normalizing each other and having n-bounded order. We conclude that T has finite n-bounded order. Therefore it is sufficient to show that the second derived group of the quotient group $\nu(G)/T$ has finite n-bounded order.

Notice that the derived subgroup of HU_1 is contained in $Z(H)$ modulo T. Indeed, HU_1 is generated by t_1, \ldots, t_s and U_1. Thus $[H, t_i] \leq T$ and $[H, U'_i] \leq \langle [H, a]^{\nu(G)} \rangle \leq T$, that is, $t_1, \ldots, t_s \in Z(H)$ and $U_1 \leq Z(H)$. So we pass to the quotient $\nu(G)/T$ and to avoid complicated notation the images of $\nu(G)$, H and $T_\otimes(G)$ will be denoted by the same symbols.

Let \mathcal{F} denote the family of subgroups $S \leq \nu(G)$ with the following properties.

1. $H \leq S$;
2. $S' \leq Z(H)$;
3. S has finite index in $\nu(G)$.

First of all observe that \mathcal{F} is not empty because HU_1 belongs to \mathcal{F}. Then let $F \in \mathcal{F}$ of minimal possible index j in $\nu(G)$. Thus j is n-bounded because the index of U_1 in $\nu(G)$ is n-bounded. Now, we argue by induction on j. If $j = 1$, then $F = \nu(G)$ and $\nu(G)' \leq Z(H)$. So $\nu(G)'' = 1$ and we have nothing to prove. Thus, assume that $j \geq 2$.

Let $a_0 \in T_\otimes(G)$ such that $C_H(a_0)$ has maximal possible index in H and write $a_0 = [d, e^\varphi]$ for suitable $d, e \in G$. Firstly assume that both d and e^φ belong to F. Then $a_0 \in F' \leq Z(H)$, and we conclude that H is abelian, that is $H' = 1$. Moreover, by Proposition 3.6 it follows that G'' is finite on n-bounded order. Therefore Theorem 3.3 implies that $\nu(G)'' = [G', (G')^\varphi]G''(G''')^\varphi$ is finite.
Thus, we may assume that at least one among \(d \) and \(e^\varphi \) does not belong to \(F \), say \(d \). By Proposition 3.5 it follows that there exists a subgroup \(V \) of \(n \)-bounded index in \(\nu(G) \) such that \([H, V, d] \leq [H, a_0] \). Without loss of generality we may assume that \(V \leq F \), otherwise we can replace \(V \) by \(V \cap F \). Let \(L = F \langle d \rangle \). Note that \(L' = F' \langle F, d \rangle \). Let 1 = \(g_1, \ldots, g_t \) be a full system of representatives of the right cosets of \(V \) in \(F \). Then standard commutator identities show that \([V, d]\) is generated by \([V, g_1], \ldots, [V, g_t]g_1, \ldots, [V, g_t]g_t\) and \([g_1, d], \ldots, [g_t, d]\). Denote by \(R \) the normal closure in \(\nu(G) \) of the product of the subgroups \([H, a_0]g_i\) and \([H, [g_i, d]]\) for \(i = 1, \ldots, t \). For every \(i = 1, \ldots, t \), Lemma 2.3 implies that \([g_i, d]\) is a tensor modulo \(\Theta(G) \). Hence, applying Lemma 3.3, \([H, a_0]g_i\) and \([H, [g_i, d]]\) have finite \(n \)-bounded order. Moreover, the hypothesis implies that each of them has at most \(n \) conjugates. Thus, \(R \) is the product of \(n \)-boundedly many finite subgroups, normalizing each other and having \(n \)-bounded orders. We conclude that \(R \) has finite \(n \)-bounded order. Since \(F' \leq Z(H) \), \([H, L'] = [H, [F, d]] \leq R \). This means that \(L' \leq Z(H) \) modulo \(R \). Moreover, since \(d \not\in F \), the index of \(L \) in \(\nu(G) \) is strictly smaller than \(j \). Therefore, by induction on \(j \), the second derived group of \(\nu(G)/R \) is finite with \(n \)-bounded order. Taking into account that also \(R \) is finite with \(n \)-bounded order, we deduce that \(\nu(G)'' \) is finite with \(n \)-bounded order. The proof is now complete. \(\square \)

For the reader’s convenience we restate Corollary B.

Corollary B. Let \(n \) be a positive integer. Let \(G \) be a group in which the derived subgroup \(G' \) is finitely generated. Assume that the size of the conjugacy class \(|x^{\nu(G)}| \) ≤ \(n \) for every \(x \in T_\Theta(G) \). Then \(G \) is a BFC-group.

Proof. By Neumann’s result [12, Theorem 3.1], it is sufficient to prove that the derived subgroup \(G'' \) is finite.

By Theorem A, the second derived subgroup \(\nu(G)'' \) is finite. Since \(\nu(G)'' = [G', (G')^\varphi](G'')(G'')^\varphi \), it follows that the non-abelian tensor square \([G', (G')^\varphi]\) is finite. By Lemma 2.1 the derived subgroup \(G' \) is finite. The proof is complete. \(\square \)

3.1. **Examples.** The next example shows that Corollary B no longer holds if we get rid of the hypothesis of \(G' \) to be finitely generated.

Example 3.7. Let \(p \) be a prime. We define the semi-direct product \(G = A \rtimes C_2 \), where \(C_2 = \langle d \mid d^2 = 1 \rangle \), \(A = C_p^\infty \) is the Prüfer group and

\[
a^d = a^{-1},
\]
for every $a \in A$. Then the group G is not a BFC-group, whose commutator subgroup G' is not finitely generated, such that $|x^{\nu(G)}| \leq 4$ for every $x \in T_\varnothing(G)$.

Since $G' = A$ is a Prüfer group, it follows that G' is not finitely generated, and G is not a BFC-group by Neumann’s result [12, Theorem 3.1]. Now, for all $g, h \in A$, as C_2 is generated by d, we have
\[(g, d^i)^h = [g, (dh)^i] = [g, (h^2)^i][g, d^i]h^2 = [g, d^i]h^2; \]
\[[d, g^j]^h = [d^h, g^j] = [dh^2, g^j] = [d, g^j][h^2, g^j] = [d, g^j]h^2; \]
\[[g, d^i]^d = [g^{-1}, d^i] \quad \text{and} \quad [d, g^j]^d = [d, (g^{-1})^j]. \]

In particular, $[g, d^i]^h = [g, d^i]$ and $[d, g^j]^h = [d, g^j]$, for all $g, h \in A$. If $\alpha, \beta \in G$, there exist $a, b \in A$ and $i, j \in \{0, 1\}$ such that $\alpha = ad^i$ and $\beta = bd^j$. Therefore,
\[
[\alpha, \beta] = [ad^i, (bd^j)^\varphi] = \left(\left[\alpha, (bd^j)^\varphi\right][a, b^\varphi]^{d^ij}\right)[d^i, b^\varphi]^{d^ij}
\]
\[
= \left(\left[a, (d^i)^\varphi\right][d^i, b^\varphi]^{d^ij}\right)[d, d^\varphi]^{ij}
\]
\[
= \left(\left[a, (d^i)^\varphi\right][d^i, (b^\varphi)^2]^{z}\right]z,
\]
where $z = [d, d^\varphi]^{ij} \in Z(\nu(G))$ and $\varepsilon_k \in \{1, -1\}$, $k = 1, 2$. Moreover, for every $w \in \nu(G)$ there exist $\gamma \in G$, $c \in A$ and $l \in \{0, 1\}$ such that $\rho(w) = \gamma = cd^l$. Now, by Lemma 2.4 (d), $[\alpha, \beta^2] = [\alpha, \beta^2]^{\rho(w)}$ and $[\alpha, \beta^2]^{\rho(w)} = \left(\left[a, (d^i)^\varphi\right][d^i, (b^\varphi)^2]^{z}\right]z^{d^l}$.

It follows that, the conjugacy class
\[
[\alpha, \beta]^{\nu(G)} \subseteq \{[a, \varepsilon^1, (d^i)^\varphi][d^i, (b^\varphi)^2]z \mid \varepsilon_i \in \{-1, 1\}\},
\]
and $|[\alpha, \beta]^{\nu(G)}| \leq 4$, for any $\alpha, \beta \in G$.

Finally, notice that in Corollary B we cannot replace the hypothesis $|x^{\nu(G)}| \leq n$ for every $x \in T_\varnothing(G)$ by $|x| \leq n$ for every x commutator of G'', as the following example shows.

Example 3.8. Let $A = \langle a \rangle$ be an infinite cyclic group and let $C_2 = \langle d \mid d^2 = 1 \rangle$ be a cyclic group of order 2. Then consider the semi-direct product $G = A \rtimes C_2$ where $a^d = a^{-1}$ (infinite dihedral group). Then for every commutator x of G we have $|x^G| \leq 2$. However, the derived subgroup G' is an infinite subgroup of A, so G is not a BFC-group.

4. Acknowledgment

The authors wish to thank professor Pavel Shumyatsky for interesting discussions. The work of the first author was partially supported
by FAPDF/Brazil, while the second author was supported by the “National Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA - INdAM). Moreover, this study was carried out during the second author’s visit to the University of Brasilia. He wishes to thank the Department of Mathematics for the excellent hospitality.

References

[1] R. Bastos, I. N. Nakaoka and N. R. Rocco, Finiteness conditions for the nonabelian tensor product of groups, Monatsh. Math. 187 (2018) pp. 603–615.
[2] R. Bastos, I. N. Nakaoka and N. R. Rocco, The order of the non-abelian tensor product of groups, preprint available at arXiv:1812.04747 [math.GR].
[3] R. Bastos and N. R. Rocco, The non-abelian tensor square of residually finite groups, Monatsh. Math., 183 (2017) pp. 61–69.
[4] R. Bastos, N. R. Rocco and E. R. Vieira, Finiteness of homotopy groups related to the non-abelian tensor product, Annali di Matematica (2019), DOI: 10.1007/s10231-019-00855-8.
[5] R. Brown, D. L. Johnson and E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra, 111 (1987) pp. 177–202.
[6] R. Brown and J. L. Loday, Excision homotopique en basse dimension, C. R. Acad. Sci. Paris Sr. I, 298 (1984) pp. 353–356.
[7] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology, 26 (1987) pp. 311–335.
[8] G. Dierings and P. Shumyatsky, Groups with boundedly finite conjugacy classes of commutators, Q. J. Math., 69 (2018) pp. 1047–1051.
[9] R. M. Guralnick and A. Maroti, Average dimension of fixed point spaces with applications, J. Algebra, 226 (2011) pp. 298–308.
[10] L.-C. Kappe, Nonabelian tensor products of groups: the commutator connection, Proc. Groups St. Andrews 1997 at Bath, London Math. Soc. Lecture Notes, 261 (1999) pp. 447–454.
[11] I. N. Nakaoka and N. R. Rocco, A survey of non-abelian tensor products of groups and related constructions, Bol. Soc. Paran. Mat., 30 (2012) pp. 77–89.
[12] B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc. 29 (1954) pp. 236–248.
[13] P. M. Neumann and M. R. Vaughan-Lee, An essay on BFC groups, Proc. Lond. Math. Soc. 35 (1977) pp. 213–237.
[14] M. Parvizi and P. Niroomand, On the structure of groups whose exterior or tensor square is a p-group, J. Algebra, 352 (2012) pp. 347–353.
[15] D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer-Verlag, New York, 1996.
[16] N. R. Rocco, On a construction related to the non-abelian tensor square of a group, Bol. Soc. Brasil Mat., 22 (1991) pp. 63–79.
[17] N. R. Rocco, A presentation for a crossed embedding of finite solvable groups, Comm. Algebra 22 (1994) pp. 1975–1998.
[18] D. Segal and A. Shalev, On groups with bounded conjugacy classes, Quart. J. Math. Oxford 50 (1999) pp. 505–516.
[19] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 238 (1957) pp. 389–401.
Raimundo Bastos, Departamento de Matemática, Universidade de Brasília, Brasília-DF, 70910-900 Brazil
E-mail address: bastos@mat.unb.br

Carmine Monetta, Dipartimento di Matematica, Università di Salerno, Via Giovanni Paolo II, 132 - 84084 - Fisciano (SA), Italy
E-mail address: cmonetta@unisa.it