Introduction

Ephrin type-A receptor 2 (EphA2) overexpression has been correlated with a poor prognosis in most cancer types, including endometrial (1), colorectal (2), breast (3), ovarian (4), and Glioblastoma multiforme (GBM) (5, 6). Both the development and aggressiveness of these tumours are quite dependent on the modulation of angiogenesis, from which the nutrients needed for tumour cell growth are obtained. The involvement of EphA2 in promoting tumourigenesis has been focused on its roles in cell growth, survival, migration, and invasion (7). Recently, it was also found that EphA2 receptors are significantly involved in modulating tumour angiogenesis (8, 9) and that EphA2 is involved in blood vessel formation and remodeling during the vascular development of cancers (10). In addition, intensive studies from
the past few decades have indicated that GBM is one of the most angiogenic solid tumours (11). However, the underlying molecular pathways behind GBM angiogenesis and its aggressiveness remain unclear. Therefore this review discusses how the EphA2 receptor may play a role in GBM angiogenesis.

Signaling of EphA2 and Ephrin A1 in Tumours

The human EphA2 gene is located on chromosome 1, which encodes the 130kDa EphA2 protein with approximately 976 amino acids. It is known that 90% of its sequences are homologous to the EphA2 mouse (12). Despite its ability to interact with various types of ephrins, ranging from types 1 to 5 (13), the most common ligand interaction with the EphA2 receptor is Ephrin A1 (14). Different types of its interaction mode are shown in Figure 1.

Forward signaling is a signal transduction that originates from ephrin ligands and is directed toward Eph receptors. This is also called ephrin:EphA2 forward. Meanwhile, reverse signaling originates from Eph receptors and is directed toward ephrin ligands. This is also called EphA2:ephrin reverse. Due to their membrane localisation, these signals can also be simultaneously activated in both forward and reverse directions, which is known as ephrin-EphA2 bidirectional signaling.

![Parallel and anti-parallel signaling of an EphA2-ephrin interaction](image)

Figure 1. Parallel and anti-parallel signaling of an EphA2-ephrin interaction

In a situation where two or more Eph-ephrin interactions occur simultaneously, the signaling can be classified as either parallel or anti-parallel. Parallel signaling is induced when forward and reverse signaling occur simultaneously and in parallel to each other, while anti-parallel signaling is a simultaneously occurring forward signaling in which forward ephrin-EphA2 signals are conveyed toward the different directions of the Eph receptor.

The EphA2 receptors could be triggered and activated upon binding to the Ephrin A1 ligand. The membrane attachment of both EphA2 and Ephrin A1 provides various mode mechanisms of interactions that are unique from other receptor tyrosine kinases families. EphA2 and Ephrin A1 can function independently of each other through an interchange with other signaling systems (15). Primarily, interaction Eph receptors with cell-surface tethered-ephrin ligands can activate Eph receptor kinase-dependent signaling. Additionally, the ephrins can also convey signals, which can lead to bidirectional signaling. In this case, the Eph receptor can act as a ligand in the same way that the ligand can act as a receptor (16), and the ephrin cytoplasmic tail enables recruitment of further signaling effectors (17).

Stimulation of EphA2 causes powerful changes in a tumour cell’s behaviour. Interaction between EphA2 and Ephrin A1, along with other guidance molecules, will navigate developmental guidance that causes sheets of cell layers to become tumours. The contact of Ephrin A1 and the EphA2 receptor in neighboring cells conveys the signal forward, which will cause the cells to repel from each other. If the EphA2 receptor is neither activated nor called as reverse signaling, then the interaction with the ligand will cause either cell adhesion or repulsion (21). As a result, adhesion leads to tissue formation, and repulsion leads to boundary separation between tissues. This same mechanistic action is also being used for tumour formation and invasion.
Roles of EphA2 in GBM Angiogenesis

Angiogenesis, or the formation of new blood vessels, from the existing vasculature is one of the hallmarks of GBM, which is characterised as a highly vascularised solid tumour. Continuous recruitment of new blood vessels creates a favourable microenvironment in GBM, which allows the malignant transformation of a tumour. Several recent studies have clearly indicated involvement of EphA2 in GBM angiogenesis. Its high expression was found along the tumour vasculature of GBM, suggesting potential roles in neovascularisation (28). While the underlying mechanisms of EphA2 regulation in invasion and metastasis have been elucidated, the knowledge of its participation in the angiogenesis of GBM remains limited.

In general, EphA2 works via Ephrin A1’s signaling axis to regulate multiple events in the transformation of tumour malignancies. This includes the modulation of tumour-associated angiogenesis, which is important to the survival and maintenance of tumour growth. In ovarian cancer and mammary tumourigenesis, EphA2 overexpression has been associated with increased microvascular density, indicating that EphA2 has a role in promoting angiogenesis in the tumour microenvironment (17, 29). Moreover, high expression of EphA2 in the endothelial lining of tumour-associated vasculature in other tumour types has also been documented, including breast cancer and Kaposi’s sarcoma (8).

In GBM cell lines, recent evidence has shown that EphA2 regulates vascular endothelial growth factor receptor 2 (VEGFR-2) expression at both the gene and protein levels. Nevertheless, inhibition of EphA2 did not show any impairment of VEGF expression in the same study. It is therefore interesting to suggest that

Expression of EphA2 in GBM

In brain tumours, high expression of EphA2 is mostly detected in advanced grades of tumours, such as anaplastic astrocytoma and GBM (6). EphA2 is also highly expressed in various types of GBM cell lines, including U87-MG, DBTRG-05M, U251MG, BTCOE 4795, LN229, and T98G (23, 24), as well as in human glioma stem cells (GSC), including D456MG, 827, and 1228 cells. Because EphA2 is known to mediate various key cellular processes, deregulated expressions of its gene and protein in glioma cells enable the promotion of tumour aggressiveness, invasion, and metastasis (25). In the case of GBM, overexpression of EphA2 is linked to low survival rate and tumour recurrence. This appears to hold true when the expression of EphA2 is found in a gradient with a higher expression in the higher grades of gliomas. In a previous study, when compared to benign tumours, higher EphA2 expression was detected in malignant gliomas and significantly correlated to a poorer prognosis (6). It has also been suggested that EphA2 contributes to the malignant transformation of tumours (26).

In addition to being highly expressed in GBM tumour cells, EphA2 expression has also been correlated with the subpopulation of GSC regarding their propagating ability and pool size. It is known that the heterogeneity, molecular genetic make-up, and epigenetics of GBM populations make tumours resilient to current therapeutic strategies. The GSC subpopulation has particularly emerged as one of the key players in GBM recurrence. Specific roles of EphA2 via GSC mediation have shown an interesting relationship with the capacity of the cells to expand their pool size, which ultimately led to GBM recurrence in a previous study. Even though EphA2 receptors’ regulatory functions in GBM tumourigenesis remain limited, knowing that the ability to knock down GSC self-renewal and tumourigenic capabilities exists via modulation of EphA2 expression is intriguing (27).
EphA2 may regulate vessel sprouting during developmental angiogenesis independently via VEGFR-2 without affecting VEGF in GBM cells (24). VEGFR-2 is known as the earliest differentiation marker for endothelial cells in the process of vascularisation. Inhibition of VEGFR-2 alone inhibited vessel growth by almost 55%, whereas inhibition of EphA2 alone showed 30% inhibition. Interestingly, simultaneous inhibition of both EphA2 and VEGFR-2 resulted in 95% inhibition of micro vessel growth. These available data suggest that VEGFR-2 and EphA2 signaling pathways play non-redundant roles in angiogenesis (31).

From another perspective, it is intriguing to explore the correlation of EphA2 overexpression in GSC in relation to the GBM angiogenesis process. The GSC population can generally maintain an undifferentiated state, which supports their self-renewal and tumourigenicity. Interestingly, it has been demonstrated that GSCs in GBM tumours can transdifferentiate into endothelial-like cells, which leads to the sprouting of new blood vessels known as vasculogenic mimicry (VM). VM is often detected in high-grade gliomas and has been correlated with poor patients’ prognoses (32). Localised expression of EphA2 was found in VM-positive glioma in comparison to VM-negative glioma, which suggests an association of EphA2 with VM formation. In addition to EphA2, vascular endothelial cadherin (VE-cadherin), which is a transmembrane glycoprotein, is also highly expressed in the GSC subpopulation of GBM. Similar to what has been documented in GBM cell lines, mounting evidence has shown the indispensable roles of VEGFR-2 in the VM formation of GBM; notably, these are independent of VEGF. In such cellular actions, VEGFR-2 is shown to act in combination with Flk-1 signaling to deliver the signal for tubule formation (33).

Conclusion

GBM are typically aggressive, infiltrative, and resistant to conventional therapies, and poor survival rate is often correlated with tumour recurrence. The first lines of defense in a clinical setting include surgery, chemotherapy, and radiotherapy, which are rarely curative for GBM. Because GBM is one of the most vascularised solid tumours, one potential therapeutic strategy for GBM is targeting angiogenesis. Growing evidence has shown that combination therapy using anti-angiogenic drugs and/or radiotherapy and chemotherapy may be beneficial for treating recurrent GBM. Understanding the molecular pathways behind aberrant blood vessel recruitment in GBM provides an exciting set of potential targets for therapeutic intervention. Overexpression of EphA2 receptors provides a hint for further exploration of the underlying mechanisms behind GBM tumour-associated vasculature formation as well as their crosstalk with other molecules in the signaling pathways. The intricacies of recent studies have not only enhanced our understanding of EphA2 involvement in the pathogenesis and various cellular processes of GBM but also provided an avenue for realising the potential of EphA2 as a therapeutic target for treating malignancies. In addition to its high and localised expression in GBM, very low expression of the receptor is also found in a normal brain, making it an ideal molecular target for medical intervention.

Acknowledgements

None.

Ethics of Study

None.

Conflicts of Interest

None.

Funds

This study was supported by Fundamental Research Grant Scheme (FRGS), 203/PPSP/6171156 from Ministry of Higher Education (MOHE, Malaysia), *Skim Latihan Akademik Bumiputera* (SLAB), MOHE and *Tenaga Pengajar Muda Universiti Teknologi Mara* (UiTM) Scholarship.

Authors’ Contributions

Conception and design: WNAB, FA, AAMY, JMA, ZFO
Analysis and interpretation of the data: WNAB
Drafting of the article: WNAB
Critical revision of the article for important intellectual content: WNAB, FA, AAMY, JMA, ZFO
Correspondence

Dr Farizan Ahmad
BSc (Universiti Sains Malaysia), MSc (Universiti Sains Malaysia) and PhD (AI Virtanen Institute, University of Eastern Finland)
Department of Neurosciences,
School of Medical Sciences, Universiti Sains Malaysia
16150 Kubang Kerian
Kelantan, Malaysia.
Tel: +609 7676312
Fax: +609 7673833
E-mail: farizan@usm.my

References

1. Merritt WM, Kamat AA, Hwang J-Y, Bottsford-Miller J, Lu C, Lin YG, et al. Clinical and biological impact of EphA2 overexpression and angiogenesis in endometrial cancer. *Cancer Biol Ther.* 2014;10(12):1306–1314. https://doi.org/10.4161/cbt.10.12.13582

2. Kataoka H, Igarashi H, Kanamori M, Ihara M, Wang J-D, Wang Y-J, et al. Correlation of EPHA2 overexpression with high microvessel count in human primary colorectal cancer. *Cancer Sci.* 2004;95(2):136–141. https://doi.org/10.1111/j.1349-7006.2004.tb03194.x

3. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. *Cancer Res.* 2001;61(5):2301–2306. Retrieved from http://cancerres.aacrjournals.org/

4. Lin YG, Han LY, Kamat AA, Merritt WM, Landen CN, Deavers MT, et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. *Cancer.* 2007;109(2):332–340. https://doi.org/10.1002/cncr.22415

5. Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. *Neoplasia.* 2005;7(8):717–722. https://doi.org/10.1593/neo.050277

6. Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. *Mol Cancer Res: MCR.* 2005;3(10):541–551. https://doi.org/10.1158/1541-7786.mcr-05-0056

7. Sangwan V, Park M. Receptor tyrosine kinases: role in cancer progression. *Curr Oncol.* 2006;13(5):191–193. Retrieved from https://www.current-oncology.com/

8. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB. The Ephrin A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. *Oncogene.* 2000;19:6043–6052. https://doi.org/10.1038/sj.onc.1204004

9. Ronca R, Benkhell M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: regulators and clinical implications. *Med Res Rev.* 2017;37(6):1231–1274. https://doi.org/10.1002/med.21452

10. Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, et al. Soluble EphA receptors inhibit tumor angiogenesis and progression in vivo. *Oncogene.* 2002;21:7011–7026. https://doi.org/10.1038/sj.onc.1205679

11. Würdinger T, Tannous BA. Glioma angiogenesis: towards novel RNA therapeutics. *Cell Adh Migr.* 2009;3(2):230–235. Retrieved from https://www.tandfonline.com/

12. Himanen J, Nikolov D. Eph receptors and ephrins. *Int J of Biochem & Cell Bio.* 2003;35:130–134. https://doi.org/10.1016/S1357-2725(02)00096-1

13. Himanen JP, Nikolov DB. Eph signaling: a structural view. *Trends Neurosci.* 2003;26(1):46–51. https://doi.org/10.1016/S0166-2236(02)00005-X

14. Lema Tomé CM, Palma E, Ferluga S, Lowther WT, Hantgan R, Wykosky J, et al. Structural and functional characterization of monomeric Ephrin A1 binding site to EphA2 receptor. *The J Biol Chem.* 2012;287(17):14012–14022. https://doi.org/10.1074/jbc.m111.311670

15. Barquilla A, Pasquale EB. Eph receptors and ephrins: therapeutic opportunities. *Annu. Rev. Pharmacol. Toxicol.* 2015;55:465–487. https://doi.org/10.1146/annurev-pharmtox-011112-140226

16. Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. *Expert Opin Ther Targets.* 2011;15(1):31–51. https://doi.org/10.1517/1472222.2011.538682
17. Klein R. Eph/ephrin signaling in morphogenesis, neural development and plasticity. *Curr Opin Cell Biol*. 2004;16(5):580–589. https://doi.org/10.1016/j.ceb.2004.07.002

18. Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J. A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. *Oncogene*. 2005;24(4):785–786. https://doi.org/10.1038/sj.onc.1208937

19. Garber K. Of Ephs and ephrins: companies target guidance molecules in cancer. *J Natl Cancer Inst*. 2010;102(22):1692–1694. https://doi.org/10.1093/jnci/djq479

20. Kuipper S, Turner CJ, Adams RH. Regulation of angiogenesis by Eph–ephrin interactions. *Trends Cardiovasc Med*. 2007;17(5):145–151. https://doi.org/10.1016/j.tcm.2007.03.003

21. Kania A, Klein R. Mechanisms of ephrin–Eph signalling in development, physiology and disease. *Nat Rev Mol Cell Biol*. 2016;17:240–256. https://doi.org/10.1038/nrm.2015.16

22. Arvanitis D, Davy A. Eph/ephrin signaling: networks. *Genes Dev*. 2008;22(4):416–429. https://doi.org/10.1101/gad.1630408

23. Ferluga S, Tomé CML, Herpai DM, D’Agostino R, Debinski W. Simultaneous targeting of Eph receptors in glioblastoma. *Oncotarget*. 2016;7(37):59860–59876. https://doi.org/10.18632/oncotarget.10978

24. Baharuddin WNA. The effects of EphA2 inhibition on VEGF, VEGFR-1 and VEGFR-2 in human malignant glioma cells. Pulau Pinang, Malaysia: Universiti Sains Malaysia; 2018.

25. Miao H, Gale NW, Guo H, Qian J, Petty A, Kaspar J, et al. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through crosstalk with Akt and regulates stem properties. *Oncogene*. 2015;34(5):558–567. https://doi.org/10.1038/onc.2013.590

26. Day BW, Stringer BW, Wilson J, Jeffree RL, Jamieson PR, Ensbey KS, et al. Glioma surgical aspirate: a viable source of tumor tissue for experimental research. *Cancers*. 2013;5(2):357–371. https://doi.org/10.3390/cancers5040357

27. Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. *Cancer Cell*. 2012;22(6):765–780. https://doi.org/10.1016/j.ccr.2012.11.005

28. Wykosky J, Debinski W. The EphA2 receptor and Ephrin A1 ligand in solid tumours: function and therapeutic targeting. *Mol Cancer Res*. 2008;6(12):1795–1806. https://doi.org/10.1158/1541-7786.mcr-08-0244

29. Lin YG, Han LY, Kamat AA, Merritt WM, Landen CN, Deavers MT, et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. *Cancer*. 2007;109(2):332–340. https://doi.org/10.1002/cncr.22415

30. Hunter SG, Zhuang G, Brantley-Sieders D, Swat W, Cowan CW, Chen J. Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis. *Mol Cell Biol*. 2006;26(13):4830–4842. https://doi.org/10.1128/mcb.02215-05

31. Dobrzanski P, Hunter K, Jones-Bolin S, Chang H, Robinson C, Pritchard S, et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. *Cancer Res*. 2004;64(3):910–919. https://doi.org/10.1158/0008-5472.can-03-302

32. Thomas W, Farizan A, Agnieszka P, Haritha S, Seppo Y-H. The syngeneic BT4C rat malignant glioma is a valuable model to study myelomonocytic cells in tumours. *Cancer Growth Metastasis*. 2012;5:19–25. https://doi.org/10.4137/cgm.s9314

33. Mao J-M, Liu J, Guo G, Mao X-G, Li C-X. Glioblastoma vasculogenic mimicry: signaling pathways progression and potential anti-angiogenesis targets. *Biomark Res*. 2015;3:8. https://doi.org/10.1186/s40364-015-0034-3

Review Article | EphA2 in GBM angiogenesis

27. Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. *Cancer Cell*. 2012;22(6):765–780. https://doi.org/10.1016/j.ccr.2012.11.005

28. Wykosky J, Debinski W. The EphA2 receptor and Ephrin A1 ligand in solid tumours: function and therapeutic targeting. *Mol Cancer Res*. 2008;6(12):1795–1806. https://doi.org/10.1158/1541-7786.mcr-08-0244

29. Lin YG, Han LY, Kamat AA, Merritt WM, Landen CN, Deavers MT, et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. *Cancer*. 2007;109(2):332–340. https://doi.org/10.1002/cncr.22415

30. Hunter SG, Zhuang G, Brantley-Sieders D, Swat W, Cowan CW, Chen J. Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis. *Mol Cell Biol*. 2006;26(13):4830–4842. https://doi.org/10.1128/mcb.02215-05

31. Dobrzanski P, Hunter K, Jones-Bolin S, Chang H, Robinson C, Pritchard S, et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. *Cancer Res*. 2004;64(3):910–919. https://doi.org/10.1158/0008-5472.can-03-302