INTRODUCTION

It is well documented that the dimensionality of the material plays a crucial role in determining its fundamental properties in addition to the composition and arrangement of atoms. One of the most researched two-dimensional (2D) material is graphene, which exhibits exotic condensed-matter phenomena that are absent in bulk graphite (Castro Neto et al., 2009). Research in graphene and the developed methodology of preparing ultrathin layers have led to the exploration of other 2D materials (Wang et al., 2012). In particular, single layers of transition metal dichalcogenides (TMDs) with lamellar structures similar to that of graphite have drawn significant attention because some of them are semiconductors with sizable band gaps and are naturally abundant (Wang et al., 2012). TMDs form as MX_2, where M is a transition metal (Mo, W, Hf, etc.) and X is a chalcogen (S, Se, and Te). Recent reports have explored the crystal structures, synthesis, and electronic properties of TMDs using both experimental and theoretical techniques (Chhowalla et al., 2013). These studies suggest that the absence of dangling bonds (Jena, 2013) and the wide range of band gaps (from 3.5 eV to <1 eV) (Gong et al., 2013) make TMDs relevant in practical devices, such as field effect transistors (Radisavljevic et al., 2011; Ilatikhameneh et al., 2015) and photo-sensors (Yin et al., 2012; Perea-Lopez et al., 2013).

TMDs exhibit diverse properties that depend on their composition and can behave as semiconductors (e.g., MoS_2, WS_2), semimetals (e.g., WTe_2, TiSe_2), true metals (e.g., NbS_2, VSe_2), and superconductors (e.g., NbSe_2, TaS_2) (Wilson & Yoffe, 1969). TMDs have layered structures with an X-M-X atomic stacking sequence in each layer. There exist three main structures in TMDs: 2H, 1T, and distorted 1T (Td, also known as 1T’). The properties of TMDs strongly depend on the crystalline structure and the number and stacking sequence of layers in their crystals and thin films (Wang et al., 2012; Perea-Lopez et al., 2013). There is an evident lack of direct atom-by-atom visualization, limiting insight on these highly exciting material systems. Herein, we present our recent studies on the characterization of 2D layered materials by means of aberration corrected scanning transmission electron microscopy (STEM), in particular via high angle annular dark field (HAADF) imaging. We have identified the atomic arrangements and defects in 2H stacked TMDs, 1T stacked TMDs, distorted 1T stacked TMDs, and vertically integrated heterojunctions of 2D TMDs crystals.

Key Words: Aberration correction, Scanning transmission electron microscopy, Two-dimension, Transition metal dichalcogenides
al., 2012). For example, bulk MoS$_2$ has an indirect band gap of 1.29 eV. The indirect band gap shifts up by more than 0.6 eV by decreasing the number of layers. A monolayer MoS$_2$ eventually becomes a direct band gap semiconductor (Mak et al., 2010). Different from materials grown via traditional hetero-epitaxy, 2D materials can achieve hetero-epitaxy by van der Waals (vdW) force between layers without consideration of the lattice mismatch. Although electrical studies, magnetic studies, mechanical studies, and/or any combination thereof of 2D materials as new material systems have been conducted, there is a lack of direct atom-by-atom visualizations, limiting our understanding of these highly exciting material systems. Herein, we present our recent studies on the characterization of 2D layered materials by means of aberration corrected scanning transmission electron microscopy (STEM), in particular via high angle annular dark field (HAADF) imaging.

2H STRUCTURAL TMDs

Typical TMDs MX$_2$ materials with 2H structure are MoS$_2$, MoSe$_2$, and WSe$_2$. When the M atoms are coordinated by a trigonal prism of X atoms, the structure is defined as the 2H phase (Wilson & Yoffe, 1969). There are two X-M-X layers in each unit cell of the 2H structure. Group VIb TMDs that adopt the 2H structure, such as MoS$_2$ and WS$_2$, are usually semiconductors with band gaps between 1 to 2 eV (Wang et al., 2012; Gong et al., 2013). Firstly, we are able to identify the atomic nature of the single layer 2H TMDs in plane-view by HAADF-STEM imaging technique. A good example is shown in Fig. 1A, a HAADF-STEM image of the plane view of monolayer 2H-MoS$_2$ (Oviedo et al., 2015). Contrast in a HAADF-STEM image is approximately proportional to Z^2, where Z is the atomic number (Hartel et al., 1996). This provides a way to identify different atomic species by Z-contrast imaging. Using HAADF, molybdenum and sulfur atomic columns are distinguishable from one another (Fig. 1A). The HAADF image reveals that the molybdenum and sulfur atoms are arranged in a hexagonal configuration with Mo-S and Mo-Mo separations of ~0.19 and ~0.33 nm, respectively, coinciding with the structure of 2H-MoS$_2$ (Fig. 1B). Fig. 1B and C show the schematic model of 2H-MX$_2$ in [0001] and [1120], respectively. It is worth noting that a Mo atom substitutes an S atom at the edge of the monolayer flake, indicated by the red arrow in Fig. 1A. Z-contrast imaging combined with energy dispersive X-ray spectroscopy (EDS) was used to investigate the distribution of doped manganese in a MoS$_2$ monolayer (Zhang et al., 2015). Compared to Mo, the Mn atoms are expected to have ~50% intensity in HAADF. It is revealed that Mo is ~2% substituted by Mn atoms and Mn is not segregated to domain boundaries.

Cross section structures of 2H-MoS$_2$ grown via chemical vapor deposition (CVD) on graphene and SiC was also investigated by high resolution TEM and HAADF. It is found that the MoS$_2$ layer appears to be “blind” to thickness variations in the underlying graphene when there are no defects in the top layer of the graphene. However, when the top graphene layer is interrupted, the MoS$_2$ will also be discontinuous. Apparently, in the case where additional layers of graphene are formed in a manner as to maintain a flat surface, the graphene appears to shield the 2H-MoS$_2$ from the influence of the SiC surface. On the other hand, when defective graphene is present, multilayered MoS$_2$ is almost always present (Lin et al., 2014).

![Fig. 1.](image) (A) High angle annular dark field-scanning transmission electron microscopy image of the plane view of monolayer 2H-MoS$_2$. Mo atom substitutes an S atom at the edge of the monolayer, as indicated by the red arrow. (B, C) Schematic model of 2H-MX$_2$ in [0001] and [1120], respectively. a, b, and c indicate the unit cell axis.
1T STRUCTURAL TMDs

Typical TMDs MX₂ materials with 1T structure are SnS₂, SnSe₂, HfS₂, and HfSe₂. When one X layer is shifted such that the metal becomes octahedrally coordinated, the structure is referred to as the 1T phase (Wilson & Yoffe, 1969). In this case, there is only one X-M-X layer in the unit cell. 1T structure TMDs cover a broad spectrum of electrical properties; insulators such as HfS₂, semiconductors such as HfSe₂, and metals such as TiS₂ (Wilson & Yoffe, 1969). The atomic nature of single layer 1T TMDs was also investigated by HAADF-STEM in plane-view. Fig. 2A shows a HAADF-STEM image of the plane view of 1T-HfSe₂. The atomic columns of hafnium and selenium are easily distinguishable from one another. 1T-MX₂ has different features compared with 2H-MX₂, which shows X hexagonal pattern with an M center (Fig. 2A and B). Fig. 2B and C show a schematic model of 1T-MX₂ in [001] and [110], respectively. In the cross sectional view along the same projection direction, [110] in 1T (Fig. 2C) and [1120] in 2H (Fig. 1C) structures show different features, which can be used to identify the phase in side view imaging. 1T-HfSe₂ is predicted to have a large electron affinity and a small band gap, which can be used as the drain in vertically stacked, “broken-gap” band alignment tunnel field-effect transistors (Yue et al., 2015). HfSe₂ was grown by molecular beam epitaxy (MBE) on different substrates, such as highly.

![Image of HAADF-STEM image of 1T-HfSe₂](image)

Fig. 2. (A) High angle annular dark field-scanning transmission electron microscopy image of the plane view of 1T-HfSe₂. (B, C) Schematic model of 1T-MX₂ in [001] and [110], respectively. a, b, and c indicated the unit cell axis.

![Image of schematic models of Td-MX₂](image)

Fig. 3. Schematic model of Td-MX₂ in [001] (A) and [010] (B), respectively. a, b, and c indicated the unit cell axis. (C) Cross-sectional high angle annular dark field-scanning transmission electron microscopy image of the Td-WTe₂ in [010] zone axis orientation. Arrows indicate the vertical shift of Mo atoms along the c axis. Scale bar=0.5 nm.
ordered pyrolytic graphite (HOPG), MoS$_2$, Al$_2$O$_3$, and SiO$_2$/Si. On HOPG and MoS$_2$, multilayered crystalline HfSe$_2$ was grown without misfit dislocations. However, on Al$_2$O$_3$ and SiO$_2$/Si, the grown multilayered HfSe$_2$ is of poor quality. It is found that the top layer of MBE grown 1T-HfSe$_2$ is easily oxidized upon exposure to air. A Si capping layer can be used to minimize surface oxidation, which is confirmed by electron energy loss spectroscopy (EELS) analysis (Yue et al., 2015).

DISTORTED 1T STRUCTURAL TMDs

Most TMDs exist in the 2H or 1T structures at ambient conditions. However, there exists another structure called distorted 1T structure. WTe$_2$ and β-MoTe$_2$ adopts the distorted 1T structure with semi-metallic conduction (Dawson & Bullett, 1987). Unlike the 1T and 2H structures, Td-MX$_2$ contain non-coplanar atomic layers of both M and X (Fig. 3B). This puckering of layers is caused by an additional structural distortion: M metallic chains are formed within the X chalcogen layers along the b axis of the orthorhombic unit cell (Fig. 3A). We have successfully imaged the Td-WTe$_2$ from three major crystalline orientations ([100], [010], and [001]) and determined the atomic species and their positions in this crystal. The vertical shift of W and Te atoms along the c axis can be easily viewed in the [010] orientation (Fig. 3C). Both W and Te atoms form zigzag-like planes. Combined with first principal calculation, the characteristic atomic and electronic properties of the material were investigated. Results showed the band structure characteristics of Td WTe$_2$ to be semi-metallic.

VERTICAL 2D VAN DER WAALS TMDs HETEROJUNCTIONS

Vertical integration of 2D materials by vdW is predicted to lead to novel electronic and optical properties not found in the individual constituent layers. The interface and defects of various heterojunctions of TMDs, such as CVD grown MoS$_2$ on graphene/SiC (Lin et al., 2014) and MBE grown HfSe$_2$ on MoS$_2$, and HOPG (Yue et al., 2015), have been investigated by HAADF-STEM at the atomic scale. Here, we present the STEM study of another more complicated vertical heterojunction with 2 types of TMDs and graphene: MoS$_2$, WSe$_2$, and graphene. The n-type TMDs (MoS$_2$) act as barrier layers that electronically confine the p-type TMD (WSe$_2$), leading to resonant tunneling transport of carriers. MoS$_2$/WSe$_2$/graphene vertical junction begins with the synthesis of epitaxial graphene from SiC followed by vapor transport or MOCVD of WSe$_2$ and vapor transport of MoS$_2$ (Lin et al., 2015).

Fig. 4 shows HAADF and annular bright field (ABF) images of the four-layer MoS$_2$/bi-layer WSe$_2$, tri-layer graphene, and the SiC substrate. Using HAADF, the MoS$_2$ and WSe$_2$ layers are clearly distinguishable (Fig. 4A). The bi-layer WSe$_2$ has the brightest contrast and the four-layer MoS$_2$ has the second brightest contrast. However, as this sample is composed of both heavy and light elements (carbon), the carbon’s relatively lacking contrast makes it difficult to reveal graphene’s layer structure. The recently developed ABF imaging technique enables simultaneous visualization of light and heavy elements (Okunishi et al., 2009). Fig. 4B shows the ABF image from the same area with HAADF. The contrast of ABF is reversed compared with HAADF. MoS$_2$ and WSe$_2$ layers appeared as dark lines and three graphene layers are clearly visible on top of the SiC substrate. Thus, the MoS$_2$/WSe$_2$/graphene layer structure can be obviously revealed by HAADF and ABF imaging. STEM imaging combined with EDS and EELS line scans verified the heterojunction is not a manifestation of the alloying of the constituent TMDs, but indeed are unique layers with pristine interfaces with atomic precision. It is also noted that defects and edge states in the base 2D layer lead to low energy nucleation sites, and therefore multilayer growth.

![Fig. 4. High angle annular dark field (HAADF) (A) and annular bright field (ABF) (B) imaging of MoS$_2$/WSe$_2$/graphene two-dimensional heterojunction on SiC substrate.](image-url)
of a top layer is highly probable at these regions (Lin et al., 2015). These results demonstrate the feasibility and significant potential of fabricating 2D material based heterojunctions with tunable band alignments for a variety of nanoelectronic and optoelectronic applications.

CONCLUSIONS

TMDs as re-discovered materials have rapidly moved to the forefront of "next generation" materials with many applications. We reviewed our recent studies on the characterization of 2D layered materials by means of aberration corrected STEM, in particular via HAADF imaging combined with EDS and EELS analysis. The location and nature of individual atoms, defects, and vertical heterojunctions of the 2D TMDs materials with 2H, 1T, and Td structures have been discussed. With the advantages of aberration corrected STEM, direct atom-by-atom visualization is expanding our understanding of these highly exciting material systems and field of research.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.