Supporting Information for "Magnetotail Ion Structuring by Kinetic Ballooning-Interchange Instability"

Evgeny V. Panov1,2, San Lu3, Philip L. Pritchett4

1Space Research Institute, Austrian Academy of Sciences, Graz, Austria
2Institute of Physics, University of Graz, Austria
3University of Science and Technology of China, Hefei, China
4Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

Contents of this file
1. Figures S1-S6.
2. PIC Simulation Setup.

Additional Supporting Information (Files uploaded separately)
1. Caption for Movie S1.

Introduction

PIC Simulation Setup

The present investigation employs a 3-D PIC simulation model that retains the full dynamics for both electrons and ions. The initial magnetic field configuration is similar to those considered previously in [Pritchett and Coroniti, 2010, 2013] and is described by the vector potential $A_0(x,z)$ given by

$$A_0(x,z) = B_0 L \ln \{ \cosh [F(x)(z/L)] / F(x) \},$$

where $F(x)$ is a slowly varying but otherwise arbitrary function. For a nonconstant $F(x)$, there is a finite B_z field, which at the center of the current sheet has the form

$$B_{0z}(x,0) = -B_0 LF'(x)/F(x).$$

The specific configuration used in the present study is illustrated in Figure S6. Figure S6a shows the 2-D (x,z) magnetic field configuration, and Figure S6b shows the initial equatorial magnetic field profile $B_{0z}(x,0)$. The BICI modes will be excited in the region of the tailward gradient in B_z ($20 < x/\rho_{i0} < 28$), which corresponds to a region of decreasing entropy as x increases tailward [Schindler and Birn, 2004; Pritchett and Coroniti, 2013]. Here, ρ_{i0} is the ion gyroradius in the asymptotic lobe B_0 field.

Previous PIC simulations of BICI generation [Pritchett and Coroniti, 2010, 2013; Pritchett et al., 2014] have considered a charge neutral, generalized Harris configuration in which the ion and electron cross-tail drifts are given by $V_{di} = -2cT_i/eB_0L$ and $V_{de} = 2cT_e/eB_0L$, where e is the magnitude of the fundamental electric charge and L is the half-width of the current sheet. In the present study, we consider a charged current sheet in which the electrons carry all of the cross-tail current with a net drift of $V_{de}^{ch} = 2c(T_i + T_e)/eB_0L$. Since the ions now carry no current, an electric field $E_{0z}(x,z)$ must be present in order to balance the nonuniform ion pressure,

$$E_{0z}(x,z) = -(2T_i/eL)F(x) \tanh[F(x)(z/L)].$$

The (ion) density distribution is given by

$$n(x,z) = n_0 F^2(x) \text{sech}^2[F(x)(z/L)] + n_p,$$
where \(n_0 \) is the characteristic equatorial density at \(x/\rho_0 = 16 \) and \(n_0 = 0.08 n_0 \) is a constant background density. The density distribution for the current-carrying electrons is similar to that for the ions but with a larger characteristic density \(n_e \) given by \((n_e - n_0)/n_e = [T_i/(T_e + T_r)](V_{ch}/c)^2 \).

The simulation has a grid \(N_x \times N_y \times N_z = 512 \times 1024 \times 256 \) distributed over the ranges \(0 \leq x/\rho_0 \leq 32.0, 0 \leq y/\rho_0 \leq 64, -8 \leq z/\rho_0 \leq 8 \), so that \(\rho_0 = 16 \Delta \), where \(\Delta \) is the grid spacing. The ion to electron mass ratio is \(m_i/m_e = 64 \), all particle temperatures are equal to \(m_i V_A^2/4 \) (here \(V_A = (B_0^2/4\pi n_0 m_i)^{1/2} \) is a representative Alfvén speed), the electron plasma frequency/gyrofrequency ratio is \(\sqrt{2} \), and the electron Debye length is \(\Delta \). The total number of particles in the simulation is 5.8 billion.

The simulation employs “closed” boundary conditions at the \(x \) boundaries [Pritchett and Coroniti, 1998]. No magnetic flux is allowed to cross these boundaries, corresponding to the condition \(\delta E_x = 0 \), and particles that cross these boundaries are reinserted back into the system in the opposite half \(z \) plane with \(v_x = -v_x \) and \(v_z = v_z \) [Pritchett et al., 1991]. In addition, the perturbed field \(\delta E_x \) is assumed to vanish at these boundaries. At the \(z \) boundaries, conducting conditions are assumed, and particles striking such a boundary are reintroduced in the opposite half \(z \) plane with \(v_x = -v_x \) and \(v_z = v_z \). This symmetric condition on the particle reflection is valid in the absence of a guide magnetic field. Periodicity in the \(y \) direction is assumed for both the particles and fields. The coordinate system used in the simulations has \(x \) increasing tailward (away from the Earth), \(y \) directed dawnward, and \(z \) directed northward. In the simulation figures, the coordinates are expressed in units of \(\rho_0 \).

Caption for Movie S1.

Results from 3D PIC simulation of BICI development in the electron (charged) current sheet as seen in \(B_X \) (a), \(B_Y \) (b) and \(B_Z \) (c) magnetic field components, ion density (d), kinetic ion energy density (e), \(T_{XX} \) (f) and \(T_{XY} \) (g) ion temperature components, \(P_{XY} \) ion pressure tensor component (h), off-plane ion vorticity component \(\omega_{ij} \) (i), and in-plane ion divergence \(\partial V_x/\partial x + \partial V_y/\partial y \) (j) between \(\Omega_{ot}=161 \) and \(\Omega_{ot}=280 \). The contours of \(B_Z \) magnetic field component are overplotted as black curves. The star glyphs at \((x/\rho_0,y/\rho_0,z/\rho_0)=(10.5,23.0,-1.5) \) (magenta), at \((x/\rho_0,y/\rho_0,z/\rho_0)=(12.5,22.0,-1.5) \) (blue) and at \((x/\rho_0,y/\rho_0,z/\rho_0)=(13.5,20.5,-1.5) \) (cyan) denote the location of three virtual spacecraft also discussed in Figure 3 of the manuscript.

References

Pritchett, P. L., and F. V. Coroniti (1998), Interchange instabilities and localized high-speed flows in the convectively-driven near-Earth plasma sheet, in Substorms-4, edited by S. Kokubun and Y. Kamide, p. 443, Kluwer Acad. Publ., Dordrecht.

Pritchett, P. L., and F. V. Coroniti (2010), A kinetic ballooning/interchange instability in the magnetotail, J. Geophys. Res., 115, A06301, doi:10.1029/2009JA014752.

Pritchett, P. L., and F. V. Coroniti (2013), Structure and consequences of the kinetic ballooning/interchange instability in the magnetotail, J. Geophys. Res., 118, 146–159, doi: 10.1029/2012JA018143.

Pritchett, P. L., F. V. Coroniti, R. Pellat, and H. Karimabadi (1991), Collisionless reconnection in two-dimensional magnetotail equilibria, J. Geophys. Res., 96, 11, doi: 10.1029/91JA01094.

Pritchett, P. L., F. V. Coroniti, and Y. Nishimura (2014), The kinetic ballooning/interchange instability as a source of dipolarization fronts and auroral streamers, J. Geophys. Res., 119, 4723–4739, doi:10.1002/2014JA019890.

Schindler, K., and J. Birn (2004), MHD stability of magnetotail equilibria including a background pressure, J. Geophys. Res., 109, A10208, doi:10.1029/2004JA010537.
Figure S1. Time History of Events and Macroscale Interactions during Substorms probe P3 observations on 19 May 2010 between 12:09:30 and 12:15 UT. From top to bottom are shown: joint SST (full mode) and ESA (burst mode) ion differential flux spectra, azimuthal (PHI; 0 degrees corresponds to the Earthward direction) angle of ion motion, spacecraft potential (a high-resolution proxy to electron density), parallel component of the ion temperature (red), GSM V_X ion velocity component, DSL E_Z (red), E_Y (green) and E_X (blue) electric field components 3s-long-sliding-window averaged, GSM B_Z (red), B_Y (green) and B_X (blue) magnetic field components.
Figure S2. Time History of Events and Macroscale Interactions during Substorms probe P5 observations on 19 May 2010 between 12:09:30 and 12:15 UT. From top to bottom are shown: joint SST (full mode) and ESA (burst mode) ion differential flux spectra, azimuthal (PHI; 0 degrees corresponds to the Earthward direction) angle of ion motion, spacecraft potential (a high-resolution proxy to electron density), parallel component of the ion temperature (red), GSM V_X ion velocity component, DSL E_Z (red), E_Y (green) and E_X (blue) electric field components 3s-long-sliding-window averaged, GSM B_Z (red), B_Y (green) and B_X (blue) magnetic field components.
Figure S3. (left) Results from 3D PIC simulation of BICI development in the electron (charged) current sheet between \(\Omega_{i0}t = 160 \) and \(\Omega_{i0}t = 250 \) as seen in (from top to bottom) three magnetic field components and in the total magnetic field \((B_x, B_y, B_z)\), X and Y ion velocity components \(V_{ix} \) and \(V_{iy} \), ion density \(N_i \), average ion temperature \(T_i \), nondiagonal ion temperature and ion pressure tensor elements \(T_{ixy} \) and \(P_{ixy} \). In the simulation, the X axis is directed antisunward and the Y axis is dawnward, which is opposite to the GSM X and Y axes. The three curves correspond to the location of three virtual spacecraft at \((x/\rho_{i0},y/\rho_{i0},z/\rho_{i0}) = (10.5, 23.0, 1.5)\) (magenta), at \((x/\rho_{i0},y/\rho_{i0},z/\rho_{i0}) = (12.5, 22.0, 1.5)\) (blue) and at \((x/\rho_{i0},y/\rho_{i0},z/\rho_{i0}) = (13.5, 20.5, 1.5)\) (cyan), i.e. at the same X and Y positions as in the left column of Figure 3 of the manuscript, but in the opposite Z-location. (right) xy configurations of three virtual spacecraft (top) and three THEMIS probes at 12:12UT (bottom).
Figure S4. PIC simulated E_y (a), E_z (b) electric field components. The results are plotted in x, y plane cut at $z/\rho_0 = -1.5$ at time $\Omega i \Omega = 210$.

Figure S5. From top to bottom are shown Time History of Events and Macroscale Interactions during Substorms probe P4 observations on 19 May 2010 between 12:10:00 and 12:20 UT: joint SST (full mode) and ESA (burst mode) ion differential flux spectra, azimuthal (PHI; 0 degrees corresponds to the Earthward direction) angle of ion velocity, parallel (red) and perpendicular (blue and green) components of the ion temperature, three GSM components of the ion velocity \(V_i\), three diagonal GSM components of the ion pressure tensor \(P_{xx}\) (blue), \(P_{yy}\) (green) and \(P_{zz}\) (red), spacecraft potential (a high-resolution proxy to electron density), and three GSM components of the magnetic field.
Figure S6. Specific initial PIC simulation configuration used in the present study: 2-D (x,z) magnetic field configuration (a), and initial equatorial magnetic field profile $B_{0z}(x,0)$ (b).