An Improved Voltage Clamp Circuit Suitable for Accurate Measurement of the Conduction Loss of Power Electronic Devices

Qiuping Yu, Zhibin Zhao *, Peng Sun, Bin Zhao and Yumeng Cai

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; yuqiuping@ncepu.edu.cn (Q.Y.); sunpeng@ncepu.edu.cn (P.S.); binzhao@ncepu.edu.cn (B.Z.); caiyumeng@ncepu.edu.cn (Y.C.)

* Correspondence: zhibinzhao@ncepu.edu.cn

Abstract: Power electronic devices are essential components of high-capacity industrial converters. Accurate assessment of their power loss, including switching loss and conduction loss, is essential to improving electrothermal stability. To accurately calculate the conduction loss, a drain–source voltage clamp circuit is required to measure the on-state voltage. In this paper, the conventional drain–source voltage clamp circuit based on a transistor is comprehensively investigated by theoretical analysis, simulations, and experiments. It is demonstrated that the anti-parallel diodes and the gate-shunt capacitance of the conventional drain–source voltage clamp circuit have adverse impacts on the accuracy and security of the conduction loss measurement. Based on the above analysis, an improved drain–source voltage clamp circuit, derived from the conventional drain–source voltage clamp circuit, is proposed to solve the above problems. The operational advantages, physical structure, and design guidelines of the improved circuit are fully presented. In addition, to evaluate the influence of component parameters on circuit performance, this article comprehensively extracts three electrical quantities as judgment indicators. Based on the working mechanism of the improved circuit and the indicators mentioned above, general mathematical analysis and derivation are carried out to give guidelines for component selection. Finally, extensive experiments and detailed analyses are presented to validate the effectiveness of the proposed drain–source voltage clamp circuit. Compared with the conventional drain–source voltage clamp circuit, the improved drain–source voltage clamp circuit has higher measurement accuracy and working security when measuring conduction loss, and the proposed component selection method is verified to be reasonable and effective for better utilizing the clamp circuit.

Keywords: power electronic devices; drain–source voltage clamp circuit; power loss; conduction loss; on-state voltage

1. Introduction

High-voltage, large-capacity power electronic conversion equipment dramatically improves the transmission capacity of the flexible AC/DC grid as well as the electric traction control ability [1]. As the voltage withstand ability and switching frequency of power semiconductor devices continue to increase, and the volume continues to decrease, power electronic converters have higher efficiency and power density [2–4]. However, converters face reliability challenges. The overheating failure of the internal power electronic devices is one of the main reasons for damage to the converter [5–7], and most heat comes from the power loss of power semiconductor devices. Imprecise power loss measurement will lead to the wrong design of the thermal management system (TMS), which will affect the reliability and cause premature failure of the equipment [8,9]. Accurately obtaining the power loss of the device is a crucial prerequisite for determining the thermal solution, which will affect the efficiency, cost, and power density of the entire system.
Common methods for obtaining power loss are calorimetry [10,11], building a physical model [12,13], establishing a loss look-up table or fitting power loss as a function [14,15], and directly integrating the product of the square of the on-state current root mean square and the on-state resistance [16]. However, the above methods often introduce significant errors due to model or measurement problems.

At present, an accurate way to calculate power loss, including switching loss and conduction loss, is to measure the on-state drain–source voltage ($v_{ds_{on}}$) across the device and the current (i_d) flowing through the device and then integrate their product. However, when calculating the conduction loss, it is difficult to measure the on-state voltage accurately. It is directly related to the operating characteristics of the power semiconductor device that frequently converts between the on state and the off state. The off-state drain–source voltage ($v_{ds_{off}}$) can reach hundreds or thousands of volts, while the on-state voltage $v_{ds_{on}}$ is only a few volts [17], making it challenging to select a suitable oscilloscope range. An excessive range will lead to a significant error in the on-state voltage measurement, and more seriously, the measurement result may be negative due to the influence of noise. If the oscilloscope range is set too small, the “oscilloscope saturation” phenomenon will be seen [18].

The drain–source voltage clamp circuit (DVCC) is frequently used to measure the on-state voltage $v_{ds_{on}}$ by clamping the off-state voltage of the device under test (DUT) to a lower value. In existing research, six types of DVCCs have been proposed for the measurement of $v_{ds_{on}}$. The DVCC proposed in [19,20] clamps the off-state voltage of the DUT by using the high-voltage breakdown characteristics of the Zener diode. It is simple to implement. However, its measurement error due to the leakage current of the Zener diode and its measurement delay due to the resistance–capacitance (RC) loop limit its further application. Gelagaev [18] analyzed the DVCC based on a current mirror in detail, and this circuit solved the problem of measurement delay. However, it has been shown that since the output currents on both sides of the current mirror cannot be entirely consistent, the current flowing through the diodes on both sides may be different, which may cause measurement errors. Furthermore, in [21], a DVCC based on one diode is described. The forward voltage of its diode is affected by temperature and current, leading to cumbersome corrections for $v_{ds_{on}}$. This problem was resolved in [22,23]. The DVCC proposed in [22,23] introduced two diodes and a proportional amplifier circuit to improve measurement accuracy. However, due to the difference in the physical positions and forward current of the two diodes, it is difficult to ensure that the voltage drop of the two diodes is equal, which may lead to inaccurate results. Yu et al. [24] presented an innovative design for the DVCC with improved real-time measurement accuracy. Guacci et al. described a DVCC in [25], which can accurately correct the voltage offset caused by the diode voltage drop and has a higher measurement accuracy. Both of these circuits in [24,25] introduce operational amplifiers, which increases the complexity of the course. A DVCC integrated with a half-bridge circuit was employed in [26] for device evaluation in the hard-switching test and the soft-switching conditions. However, this DVCC ignores the influence of diode leakage current on the on-state voltage measurement, and there may be measurement errors. The DVCC based on the transistor is analyzed in [27]. It avoids most of the problems mentioned earlier. However, the gate–source spike voltage due to the instantaneous high current of the transistor gate resistance may damage the DVCC itself. Additionally, the purpose of designing this circuit is to measure on-state resistance $R_{ds_{on}}$, and it is not suitable for conduction loss measurement.

In summary, these existing DVCCs, in terms of measurement accuracy, work complexity, and design aim, cannot be used for conduction loss ($P_{loss_{on}}$) measurement of power semiconductor devices. Therefore, this paper concerns the drawbacks of the conventional DVCC based on the transistor (hereinafter referred to as “conventional DVCC”) and proposes an improved DVCC (hereinafter referred to as “improved DVCC”) architecture suitable for the $P_{loss_{on}}$ measurement. The new circuit is derived from the conventional DVCC. The remainder of this paper is organized as follows. In Section 2, the circuit struc-
ture, work principle, and drawbacks of the conventional DVCC are analyzed in detail. Then, the schematic and the advantages of the improved DVCC are presented. Furthermore, the influence of the components’ parameters on the circuit performance of the improved DVCC is analyzed in Section 3. Here, component selection guidelines are also given. In Section 4, the measurement accuracy and work security improvement of the improved DVCC are verified through simulated and experimental comparisons with the conventional DVCC. Simultaneously, the effectiveness of the selection theory is also investigated and proven. Finally, Section 5 concludes this paper.

2. Design of the Improved DVCC

Compared with the existing DVCCs, which are mainly applied to the on-state resistance measurement of the DUT, more problems need to be considered when designing a DVCC suitable for conduction loss measurement. After the DUT is turned on, it will go through two typical states, enter the oscillation state (on-oscillation state), and gradually reach steady state (on-steady state). The measurement results of these existing DVCCs can well reflect the on-state voltage $v_{ds_{on,ste}}$ when the DUT is in the on-steady state. However, when measuring the conduction loss, in addition to the above-mentioned on-steady state voltage, the DVCC must be able to accurately measure the on-state voltage $v_{ds_{on,osc}}$ when the DUT is in the on-oscillation state. Any error at any stage will cause errors in the calculation of the device conduction loss.

In addition, many common problems need to be avoided in both on-state resistance and conduction loss measurement. First of all, the DVCCs cannot have measurement delays. Once the voltage data lag or lead the current data, errors will occur in the loss integral calculation. Secondly, power electronic devices, such as diodes, metal-oxide-semiconductor field-effect transistors (MOSFET), etc., are often introduced into DVCCs to realize the voltage clamping function. Due to the faster switching speed and higher operating voltage of the DUT, it is easy to make these auxiliary devices out of safe working conditions. Therefore, when designing a DVCC, it is necessary to focus on the security of these auxiliary devices.

2.1. The Structure and Working Principle of the Conventional DVCC

The schematic diagram of the conventional DVCC is shown in Figure 1. The auxiliary device MOSFET (M) is used to withstand the high off-state voltage of the DUT, thereby limiting the potential of the voltage measurement point A. The DC voltage supply V_{cc} and the gate resistor R_2 are located at the gate of M, and together with the resistor R_3, they control the turn-on and turn-off of M. The D and S terminals of the circuit are connected to the drain and source of the DUT, respectively, while the A and B terminals are used to measure output voltage (v_{out}).

![Figure 1. The schematic diagram of the conventional DVCC.](image-url)

When the DUT is in the off-state, D_3 is broken down, causing the current flowing through R_3 to increase sharply. At this time, the source potential of M rises, and the gate-source voltage $v_{gs,M}$ decreases. When $v_{gs,M}$ is less than the threshold voltage $V_{th,M}$ of M, M is turned off and shares most of the off-state voltage, limiting v_{out} to a small voltage.
value. When the DUT is turned on, the source potential of M decreases, causing the $v_{gs,M}$ to become higher than $V_{th,M}$, bringing the M into conduction. As a result, v_{out} is equal to $v_{ds, on}$.

2.2. Drawbacks of the Conventional DVCC

In view of the fact that the purpose of the conventional DVCC is to measure the on-state resistance, when it is applied to conduction loss measurement, there are some severe problems, which are further discussed in the following subsections.

2.2.1. Low Measurement Accuracy

To reduce the voltage negative overshoot between A and B when the DUT is turned on, the conventional DVCC connects the diodes D_1 and D_2 in reverse parallel between the measurement points A and B and utilizes their unidirectional conductivity characteristics to eliminate the voltage overshoot.

Assume that the forward voltage drops of diodes are V_{D1} and V_{D2}, respectively. During the on-oscillation state, if $v_{ds, on, osc}$ is greater than $-(V_{D1} + V_{D2})$, D_1 and D_2 are reversely cut off. Therefore, $v_{out} = v_{ds, on, osc}$. Once $v_{ds, on, osc}$ is less than $-(V_{D1} + V_{D2})$, D_1 and D_2 will immediately switch to the forward conduction state, and the output voltage will remain unchanged at $-(V_{D1} + V_{D2})$, resulting in $v_{out} \neq v_{ds, on}$. The two diodes limit the negative voltage overshoot and do not affect the on-state resistance measurement. However, when measuring the conduction loss, the loss during oscillation cannot be ignored [28]. The conventional DVCC cannot measure $v_{ds, on, osc}$ accurately nor can it accurately measure the conduction loss.

2.2.2. Low Working Security

To reduce the current flowing through the DC voltage supply (V_{cc}) and ensure the safety of V_{cc}, the conventional DVCC shown in Figure 1 has a capacitor C_0 connected in parallel to the gate of M [22]. However, the existence of C_0 seriously affects the work security of auxiliary device M. When the DUT is turned off, the drain–source voltage v_{ds} and the current on R_3 increases sharply, which will cause an instantaneous negative overshoot $V_{gs,M(max)}$ at the gate–source of M. If $V_{gs,M(max)}$ exceeds the gate–source voltage withstand limit of M ($V_{gs,limit}$), M will be burned. If negative overshoot $V_{gs,M(max)}$ occurs at time t_0, the gate–source voltage $v_{gs,M}$ of M will be a negative value in the time interval $[t_0 - \Delta t, t_0 + \Delta t]$. According to Figure 1, it can be known from KVL that during this period, $v_{gs,M}$ can be written as in Equation (1), and $V_{gs,M(max)} = v_{gs,M(t_0)}$:

$$v_{gs,M} = V_{cc} + i_2 R_2 - V_{D3} - i_3 R_3,$$

where V_{D3} is the breakdown voltage of Zener diode D_3; i_2 and i_3 are the current flowing through R_2 and R_3, respectively.

Adding C_0 to the gate of M will reduce $i_2(t_0)$, which can protect V_{cc}. However, since $V_{gs,M(max)}$ is negative, the decrease in $i_2(t_0)$ will cause the absolute value of $V_{gs,M(max)}$ to increase significantly, which will endanger the safety of the MOSFET. In contrast, the impulse current withstand capability of the widely used DC voltage supply can reach several amperes or tens of amperes. Even without C_0, $i_2(t_0)$ is not enough to cause harm to V_{cc}. Therefore, the benefit of C_0 is far less than the harm it causes.

2.3. Proposal of the Improved DVCC

The schematic of the improved DVCC for conduction loss measurement is described in Figure 2. By conducting two changes in the structure of the conventional DVCC, the problems existing in the conventional DVCC are solved.
Firstly, to accurately measure $v_{ds, on, osc}$ of the DUT, the improved DVCC removes anti-parallel diodes (i.e., D_1 and D_2 in Figure 1) from the output voltage measurement point. Under this arrangement, the on-state voltage of the two stages, on-steady state and on-oscillation state, both have high measurement accuracy. Furthermore, the calculation error of conduction loss is limited to a small value.

In addition, considering the harmfulness of C_0 to the core device M, another improvement is to remove the gate-shunt capacitance (i.e., C_0 in Figure 1). This measure dramatically improves the operating environment of M. In addition, there is no need to worry about the safety of V_{cc}. For typical DC sources, their impulse current tolerance often reaches several amps or tens of amps, while the maximum current flowing through V_{cc} is usually hundreds of milliamps. Therefore, the work safety of V_{cc} will not be threatened.

3. Component Selection

In Section 2, the pros of the improved DVCC and the cons of conventional DVCC were highlighted. In this section, the influence of component parameters on the performance of the improved DVCC is analyzed in detail. Furthermore, guidelines for component selection are given to utilize the improved circuit better.

3.1. Evaluation Indicators

Theoretically, there are three conditions that the circuit must meet to perform the functions of clamping and measuring normally, as listed below.

1. Ensure the security of core MOSFET (M);
2. M should be in the proper working state when the DUT is in the on-state;
3. M should be in the proper working state when the DUT is in the off-state.

Considering the above three restrictions, this article comprehensively extracts three electrical quantities as the judgment indicators of the circuit performance to guide component selection:

1. Gate-source voltage negative overshoot ($V_{gs,M(max)}$) of M, which is denoted as $E1_1$. As indicated in Section 2, it is necessary to avoid $V_{gs,M(max)}$ exceeding the gate-source tolerance of core M. Therefore, the low $E1_1$ value is of greater significance for improving the security of M.
2. Gate-source voltage of M ($v_{gs,M(on)}$) when the DUT is in the on-state, which is denoted as $E1_2$. If the DUT is in the on-state, M should also be in the on-state to satisfy $v_{out} = v_{ds, on}$. Therefore, the second evaluation indicator should meet $E1_2 > V_{th,M}$.
3. Gate-source voltage of M ($v_{gs,M(off)}$) when the DUT is in the off-state, which is denoted as $E1_3$. When the DUT is in the off-state, the working state of M should also be consistent with the DUT to withstand high off-voltage and reduce the potential of the measurement point A. Under this condition, $E1_3$ should be less than $V_{th,M}$, so that M can be turned off reliably [29].
3.2. Selection of MOSFET

Since the parameters of M are closely related to the safe operation of the entire circuit, criteria for selecting the subject are proposed based on the working principle of the improved DVCC.

As stated before, with the transitions of DUT from the on-state to the off-state, M also changes its state rapidly so as to prevent the continuous increase of the source current of M and prevent E_{I1} from being too large. Similarly, when the DUT changes from the off-state to the on-state, M needs to be turned on immediately to avoid measurement delay. Therefore, it is recommended that the switching speed of M be consistent with or faster than DUT, which is the first criterion for the selection of M.

In addition, since the improved DVCC utilizes the high blocking voltage characteristic of M to exercise the clamping function, during the off-state of the DUT, the drain–source withstand voltage of M is almost the same as that of the DUT. To increase the operational reliability of M, it is advised that the blocking voltage level of M is consistent with or higher than the DUT, which is considered the second criterion.

3.3. Selection of DC Voltage Supply V_{cc} and Zener Diode Breakdown Voltage V_{D3}

3.3.1. Selection Principle of V_{D3}

Since Zener diode D_3 is in the gate−source loop of M, E_{I1} is one of the vital evaluation indicators for selecting V_{D3}. The influence of V_{D3} on the work security of M is analyzed in this subsection.

According to Figure 2, the gate−source negative overshoot of M can be expressed as follows:

$$E_{I1} = V_{cc} + I_2R_2 - V_{D3} - I_3R_3, \quad (2)$$

where I_2 and I_3 are the currents flowing through R_2 and R_3 at time t_0, respectively.

According to Equation (2), V_{D3} increases, and the absolute value of E_{I1} increases accordingly. Based on the interpretation content of the first evaluation indicator, for high security of M, V_{D3} should be as small as possible.

3.3.2. Voltage Constraint for Effective Work

The DC voltage supply V_{cc} and the Zener diode D_3 jointly control the turn-on and turn-off of M to make it follow the steps of the state change of DUT. Therefore, it can be seen that the values of $v_{gs,M(on)}$ and $v_{gs,M(off)}$ are closely related to V_{cc} and V_{D3}. Based on the supplementary content when the second and third evaluation indicators are proposed, it can be estimated that V_{cc} and V_{D3} have a mutually restrictive relationship. In this paper, this specific constraint is called the “voltage constraint for effective work (VCEW)” and is further discussed in the subsequent sections.

When the DUT is in the on-state, EI_2 can be expressed as in the equation below:

$$EI_2 = V_{cc} + i_{2_{on}}R_2 - v_{ds_{on}}, \quad (3)$$

where $i_{2_{on}}$ is the current flowing through the resistor R_2 when the DUT is in the on-state.

Since M is also in the on-state, $i_{2_{on}}$ can be obtained as follows:

$$i_{2_{on}} = i_{g_{-M}} \approx 0, \quad (4)$$

where $i_{g_{-M}}$ is the gate current of M.

Therefore, Equation (3) can be simplified to

$$EI_2 = V_{cc} - v_{ds_{on}}. \quad (5)$$

If the working condition of the DUT is known, the maximum on-state voltage $V_{on_{-max}}$ of the DUT is determined. At this time, the size of EI_2 depends on the value of the DC supply V_{cc}.
voltage supply \((V_{cc})\). To ensure that \(M\) is in the on-state, it should meet the following condition:

\[
V_{cc} > V_{on_max} + V_{th_M}.
\]

(6)

When the DUT is in the off-state, \(EI_3\) can be described as follows:

\[
EI_3 = V_{cc} + i_{2_off}R_2 - V_{D3'} - i_{3_off}R_3,
\]

(7)

where \(i_{2_off}\) and \(i_{3_off}\) are the currents flowing through \(R_2\) and \(R_3\), respectively, when the DUT is in the off-state; \(V_{D3'}\) is the voltage across the Zener diode \(D_3\).

Since \(M\) is in the off-state, \(i_{2_off}\) and \(i_{3_off}\) can be obtained as follows:

\[
i_{3_off} = i_{\text{leak}_M} \approx 0,
\]

(8)

\[
i_{2_off} = i_{g_M} \approx 0,
\]

(9)

where \(i_{\text{leak}_M}\) is the leakage current of \(M\).

Equation (7) is further simplified to

\[
EI_3 = V_{cc} - V_{D3'}.
\]

(10)

When the DUT is in the off-state, \(D_3\) has two possible scenarios [30]. If the leakage current of \(D_3\) is more significant than \(M\), \(D_3\) is in the reverse cut-off state, and \(V_{D3'}\) meets the condition:

\[
V_{D3'} \leq V_{D3}.
\]

(11)

In this scenario, a voltage equilibrium will be established: as \(V_{cc}\) changes, \(V_{D3'}\) changes accordingly, so that \(EI_3\) is always maintained at a voltage less than \(V_{th_M}\). According to Equation (11), when selecting \(V_{cc}\), its value should satisfy the following condition:

\[
V_{cc} - V_{D3} < V_{th_M}.
\]

(12)

In another scenario, if the leakage current of \(D_3\) is less than \(M\), \(D_3\) is in the breakdown state and \(V_{D3'} = V_{D3}\). Obviously, in this circumstance, \(V_{cc}\) is selected based on the below equation:

\[
EI_3 = V_{cc} - V_{D3} < V_{th_M}.
\]

(13)

Considering Equations (6), (12), and (13) and adding in a margin of error, Equation (14) is written to reveal the mechanism of VCEW.

\[
\begin{cases}
V_{cc} > V_{on_max} + V_{th_M} \\
V_{cc} - V_{D3} < 0
\end{cases}
\]

(14)

3.4. Selection of Gate Resistance \(R_2\) and Source Resistance \(R_3\)

3.4.1. Selection Principle of \(R_2\) and \(R_3\)

\(R_2\) and \(R_3\) are located in different branches of the gate—source loop of \(M\), so that they have the opposite effect on \(EI_1\) \((V_{gs_M(max)})\). Therefore, by choosing appropriate \(R_2\) and \(R_3\) values, the gate—source voltage negative overshoot \((V_{gs_M(max)})\) of \(M\) can be suppressed as much as possible.

At \(t_0\), when the \(V_{gs_M(max)}\) occurs, \(M\) has been completely turned off, and the improved DVCC can be equivalent to the course shown in Figure 3 [29].
Cg
Cd Cs
R2
R3
D3
Vcc
D
S
I2 I3
Id_M
Figure 3. Equivalent circuit of the improved DVCC.

According to Figure 3, the first evaluation indicator can be expressed as

\[
EI_1 = V_{cc} - V_{D3} + \frac{a(b - jc)}{b^2 + c^2} I_{d,M}
\]

(15)

where \(I_{d,M}\) is the drain current of M.

According to [29], at this time, \(C_g \ll C_s\). The coefficient of the third term in Equation (15) is abbreviated as \(e + if\). Then, the real and imaginary parts of \(EI_1\) can be written as in Equations (17) and (18), respectively;

\[
Re(EI_1) = |e|I_{d,M} + |V_{cc} - V_{D3}|
\]

(17)

\[
Im(EI_1) = j|f|I_{d,M}|
\]

(18)

\[
|e| = \left| \frac{(R_2C_g - R_3C_s)(C_g + C_s)}{(C_g + C_s)^2 + (wC_g R_2 + wC_s C_g R_3)^2} \right|
\]

(19)

\[
|f| = \left| \frac{(R_2C_g - R_3C_s)(wC_g R_2 + wC_s C_g R_3)}{(C_g + C_s)^2 + (wC_g R_2 + wC_s C_g R_3)^2} \right|
\]

(20)

Since the parasitic capacitance of MOSFET is pF level \((10^{-12})\), and the oscillation frequency of drain current is generally MHz level \((10^6\sim10^8)\). Therefore, \((C_g + C_s) >> (wC_g R_2 + wC_s C_g R_3)\). Based on this, Equations (21) and (22) can be derived;

\[
|e| \gg |f|
\]

(21)

\[
|EI_1| \approx |e| \approx \left| \frac{(R_2C_g - R_3C_s)(C_g + C_s)}{(C_g + C_s)^2} \right| = \frac{R_3C_s - R_2C_g}{C_g + C_s}.
\]

(22)

According to Equation (22), \(|EI_1|\) is positively correlated with \(R_3\) and negatively correlated with \(R_2\). Therefore, the selection guide for these two resistors is to increase \(R_2\) and decrease \(R_3\) as much as possible. It is worth noting that this increase or decrease is not unlimited, which is described in more detail in the following subsection.

3.4.2. Measurement Error Constraint

During the on-oscillation state, with \(R_3\) decreasing, the measurement accuracy of the on-state voltage \(v_{ds,\text{on,osc}}\) gradually decreases. To make the relative error of the \(v_{ds,\text{on,osc}}\) measurement less than \(\varepsilon\%\), \(R_3\) cannot be too small. This paper refers to this constraint relationship as the “measurement error constraint” (MEC).
During the on-oscillation state, v_{ds, on_osc} can be described as follows:

$$v_{ds, on_osc} = v_{ds, M} + v_{out},$$

(23)

where $v_{ds, M}$ is the drain–source voltage of M.

During this process, v_{ds, on_osc} gradually shifts from the on-oscillation state to the on-steady state in the form of a second-order oscillation. According to the structure of the improved DVCC, D_3 is connected in reverse between A and B. Therefore, when $v_{ds, on_osc} > 0$, D_3 is in the reverse cut-off state, and v_{out} can be expressed as follows:

$$v_{out} = v_{ds, on_osc} \times \frac{R_{D3, off} + R_3}{R_{D3, off} + R_3 + R_{ds, M}},$$

(24)

where $R_{D3, off}$ is the equivalent resistance of D_3 when it is in the reverse cut-off state; $R_{ds, M}$ is the equivalent resistance of M.

Since M has been fully turned on at this stage, $R_{ds, M}$ has the same value as the on-state resistance of M. In addition, considering that D_3 can be regarded as an open circuit at this time, the relationship between v_{out} and v_{ds, on_osc} can be expressed as follows:

$$v_{out} \approx v_{ds, on_osc}.$$

(25)

However, when $v_{ds, on_osc} < 0$, D_3 is in the forward conduction state, and v_{out} can be expressed as follows:

$$v_{out} = v_{ds, on_osc} \times \frac{R_{D3, on} + R_3}{R_{D3, on} + R_3 + R_{ds, M}},$$

(26)

where $R_{D3, on}$ is the equivalent resistance of D_3 when it is in the forward conduction state.

In this case, it is essential that the resistance of R_3 not be too small, so that the measurement accuracy is not compromised due to the partial voltage of $R_{ds, M}$. Therefore, restricted by MEC, R_3 needs to meet the following condition:

$$v_{ds, on_osc} \times \left(1 - \frac{R_{D3, on} + R_3}{R_{D3, on} + R_3 + R_{ds, M}}\right) < v_{ds, on_osc} \times r\%.$$

(27)

Furthermore, Equation (27) is simplified to

$$R_3 > R_{ds, M} \times \left(\frac{1 - r\%}{r\%}\right) - R_{D3, on},$$

(28)

where $r\%$ is generally around 5%.

3.4.3. Switching Speed Constraint

R_2 is located at the gate of M. Therefore, when R_2 increases, the gate charging and discharging speed of the gate driver are slowed down accordingly [29]. In an attempt to ensure that the switching speed of M is not slower than that of the DUT, R_2 cannot be too large. This paper calls this constraint relationship the “switching speed constraint” (SSC).

In order to obtain the limit of R_2, the influence of R_2 on the rising speed of $v_{gs, M}$ is simplified as the influence of R_3 on the charging time constant when M is turned on. According to Equations (5) and (10), when M is turned on, the amount of change in $v_{gs, M}$ is $(V_{cc} - v_{ds, on}) - (V_{cc} - V_{D3'})$.

Therefore, restricted by SSC, R_2 needs to meet the following condition:

$$\frac{(V_{cc} - v_{ds, on}) - (V_{cc} - V_{D3'})}{A} < \frac{V_{g, max} - V_{th, DUT}}{B},$$

(29)
\[
\begin{align*}
A &= \frac{1}{R_2 g_{s,M}} \\
B &= \frac{1}{R_2 c_{g,s,DUT}}
\end{align*}
\] (30)

where \(V_{g,\text{max}}\) is the gate–source voltage stability value of the DUT; \(R_2\) and \(V_{\text{th,DUT}}\) are the gate drive resistance and the threshold voltage of the DUT, respectively; and \(c_{g,s,M}\) and \(c_{g,s,DUT}\) are the gate–source parasitic capacitances of M and DUT, respectively.

Considering that \(V_{D3'} \leq V_{D3}\), Equation (30) can be further simplified to

\[
R_2 < \frac{R_2 c_{g,s,DUT} (V_{g,\text{max}} - V_{\text{th,DUT}})}{c_{g,s,M} ((V_{cc} - V_{ds,\text{on}}) - (V_{cc} - V_D3'))}. \tag{31}
\]

4. Simulation and Experimental Verification

This paper set up a test platform integrating conventional DVCC and improved DVCC, as shown in Figure 4, to evaluate the measurement accuracy and work safety of the improved DVCC and the correctness of the selection theory. The primary circuit of the test platform is a double pulse test circuit (DPTC), including a DUT, freewheeling diode \(D_0\), bus capacitor \(C_{\text{bus}}\), digital signal processing (DSP), and drive module \(V_g\). DSP is used to transmit drive signals to control the turn-on and turn-off of the DUT.

The voltage clamp circuit comprises a MOSFET (M), DC source \(V_{cc}\), gate resistance \(R_2\), source resistance \(R_3\), and Zener diode \(D_3\). In order to facilitate the comparison between the improved DVCC and conventional DVCC, the connectors for the gate-shunt capacitor \(C_0\) and the anti-parallel diodes \(D_1\) and \(D_2\) are reserved.

![Test platform](image)

Figure 4. Test platform. (a) Test platform overview; (b) DVCC section; (c) gate driver.

The specific experimental conditions are listed in Table 1. Both the DUT and the auxiliary device M are the 1200 V/31.6 A SiC MOSFET produced by CREE, while the freewheeling diode \(D_0\) is the SiC Schottky diode of the unified manufacturer.

Parameters	Value
\(V_{DC}\)	400 V/500 V
\(C_{\text{bus}}\)	200 \(\mu\)F
\(L_{\text{load}}\)	0.7 mH
\(V_g\)	+20 V/−5 V
According to the experimental platform shown in Figure 4, the corresponding equivalent simulation circuit is extracted, as shown in Figure 5. Inside the dotted frame on the right is the DVCC, while the double pulse circuit is in the dotted frame on the left, and its circuit components are shown in Table 2. The simulation models of DUT, M, and D₀ are all from the semiconductor company that produces the device, and the parasitic parameters are extracted by finite element simulation software.

Table 2. Circuit parameter index.

Symbol	Parameters
L_{g1}	Parasitic inductance of the gate of the DUT
L_{d1}	Parasitic inductance of the drain of the DUT
L_{s1}	Parasitic inductance of the source of the DUT
R_{d1}	Parasitic resistance of the drain of the DUT
R_{s1}	Parasitic resistance of the source of the DUT
R_g	Gate drive resistance of the DUT
D₀	Freewheeling diode
V_{DC}	Bus voltage

Figure 5. Equivalent simulation circuit.

4.1. Conduction Loss Measurement Accuracy

4.1.1. Quantitative Simulation Analysis

Since the oscilloscope cannot measure the accurate value of the on-state voltage \(v_{ds, on}\), it is hard to quantitatively analyze the relative error between the output voltage \(v_{out}\) and \(v_{ds, on}\) through experiments. Therefore, this work uses the simulation circuit shown in Figure 5 to compare the on-state voltage and conduction loss measurement accuracy between the conventional DVCC and the improved DVCC. Under the working condition that \(V_{DC}\) is set to 500 V, the simulation results are shown in Figure 6.
In Figure 6, v_{ds} is the voltage waveform measured directly at the drain and source of the DUT. When the DUT is in the on state, $v_{ds} = v_{ds\text{ on}}$. As shown in Figure 6c, the conventional DVCC cannot measure a voltage less than -1.7 V, while the improved DVCC solves this problem (see Figure 6d). Table 3 selects three measurement points, which are located at the moments when the first, second, and third negative peaks of the drain–source voltage of the DUT occur, to compare the v_{ds} (actual value) and the output voltage v_{out}. As shown in Table 3, during the on-oscillation state, the max voltage measurement relative error of the conventional DVCC can reach up to 78.8%, while the error value of the improved DVCC is reduced to less than 17.6%. The comparison results of v_{ds} and v_{out} during the on-steady state are shown in Table 4, which shows that the relative errors of the on-steady state voltage measured by the conventional DVCC and the improved DVCC are both within 1%. Furthermore, the conduction loss measurement errors of the conventional DVCC and the improved DVCC, as shown in Table 5, are 6.42% and
0.78%, respectively, which proves the high accuracy of the conduction loss measurement of the improved circuit.

Table 3. Comparison of \(v_{ds}\) and \(v_{out}\) during the on-oscillation state.

Time	Circuit	\(v_{ds}/V\)	\(v_{out}/V\)	Relative Error
\(T_1\)	Conventional	-6.9	-1.7	75.4%
	Improved	-14.3	-15.3	7.0%
\(T_2\)	Conventional	-8.0	-1.7	78.8%
	Improved	-10.3	-8.5	17.5%
\(T_3\)	Conventional	-5.6	-1.7	77.0%
	Improved	-7.4	-6.1	17.6%

Table 4. Comparison of \(v_{ds}\) and \(v_{out}\) during the on-steady state.

Time	Circuit	\(v_{ds}/V\)	\(v_{out}/V\)	Relative Error
\(T_4\)	Conventional	1.710399	1.717680	0.43%
	Improved	1.715286	1.724388	0.53%
\(T_5\)	Conventional	1.753108	1.752805	0.02%
	Improved	1.752987	1.752228	0.04%
\(T_6\)	Conventional	1.800825	1.800813	0.0007%
	Improved	1.800945	1.800930	0.0009%

Table 5. Comparison of conduction loss measurement.

Circuit	Measure Directly/\(\mu J\)	Measure by DVCC/\(\mu J\)	Relative Error
Conventional	35.733	38.027	6.42%
Improved	37.010	36.721	0.78%

To more powerfully illustrate the reduction of conduction loss and on-state voltage measurement error, simulations under different voltages are supplemented. During the test, the \(V_{DC}\) is set to 400 V and 600 V, respectively, and the measurement results are shown in Figure 7.
The relative error between \(v_{ds} \) (actual value) and \(v_{out} \) during the on-oscillation state is shown in Figure 7. Compared with the conventional DVCC, the measurement relative error of the improved DVCC is significantly reduced. When \(V_{DC} \) is 400 V and 600 V, the maximum relative errors are reduced from 78.31% and 77.33% to 19.02% and 21.84%, respectively. Furthermore, by comparing the conduction loss value measured by the conventional DVCC and the improved DVCC, it can be known that when the \(V_{DC} \) is 400 V and 600 V, the relative errors are reduced from 6.60% and 6.85% to 1.07% and 1.65%, respectively, which is shown in Table 6.

Table 6. Comparison of conduction loss measurement under different voltages.

Voltage	Circuit	Measure Directly/\(\mu \)J	Measure by DVCC/\(\mu \)J	Relative Error
400 V	Conventional	22.40	23.87	6.60%
	Improved	23.32	23.07	1.07%
600 V	Conventional	52.92	56.55	6.85%
	Improved	54.52	53.62	1.65%

4.1.2. Qualitative Experimental Verification

The comparative experiment of the on-oscillation state voltage measurement is carried out in this section. Under the same working condition, the conventional DVCC and improved DVCC are used to measure the on-state voltage of the DUT, respectively. The voltage negative overshoot measured by the two circuits is compared, and the result is shown in Figure 8.

![Figure 8. \(v_{out} \) waveform comparison during the on-oscillation state.](image)

It can be seen from Figure 8 that compared to the improved DVCC, the drain–source voltage negative overshoot measured by the conventional DVCC is significantly reduced. Under the test voltage conditions of 500 V, the measurement result of the voltage negative overshoot is reduced by 11.3 V, which is consistent with the theoretical analysis in Section 2.2.1 and the simulation verification in Section 4.2.1.

4.2. Working Security of Auxiliary Device MOSFET

4.2.1. Comparison of Work Security of M in Conventional DVCC and Improved DVCC

The experiments are carried out utilizing the test platform shown in Figure 4, with the primary circuit (DPTC) operating conditions unchanged. Due to the presence of the gate-shunt capacitance, the gate–source voltage negative overshoot of M may exceed its tolerance limit. Therefore, the \(V_{DC} \) is set to 400 V to ensure the safety of M. The current waveform flowing through \(V_{cc} \) and the gate–source voltage waveform of M are shown in Figure 9.
The improved DVCC reduces the absolute value of $V_{gs,M(max)}$ from 14.12 to 0.78 V but increases the max current flowing through V_{cc} from 0.43 to 0.71 A. As seen, the increase in current can be ignored because it is still far less than the impulse tolerance of the DC voltage supply. However, according to the datasheet, the gate–source withstand voltage limit $V_{gs,limit}$ of M is only $−10$ V. Therefore, the reduction of $V_{gs,M(max)}$ from $−14.12$ to $−0.78$ V makes M out of unsafe conditions, which significantly improves the work security of M.

4.2.2. Work Security of M and V_{cc} at Higher Voltages

To study the working safety of V_{cc} and M in the improved DVCC under higher voltages (500 V, 600 V, 700 V, 800 V), related experiments are carried out. The circuit components are selected based on the selection theory proposed in this article to ensure the safety of the experiments. Since the target maximum experimental voltage is 800 V, V_{DD} is set to 7.5 V, V_{cc} is set to 7 V, R_2 is selected to 50 Ω, and R_3 is selected to 5 Ω for the experiment. The results are shown in Figure 10.

As shown in Figure 10, at higher voltages, the gate–source voltage negative overshoot of M (E_{I1}) is always within the maximum rating of the gate–source voltage of M. In addition,
at the moment of turning off, the maximum current flowing through the DC source \((V_{cc})\) is about 0.8 A, which is much smaller than the impulse current tolerance of the DC source. Therefore, the improved circuit proposed in this article can still work effectively and safely under high-voltage conditions.

4.3. Selection Method of \(V_{cc}\) and \(V_{D3}\)

According to the working principle of the double pulse circuit and the device parameters of the DUT, when the off-state voltage of the DUT is 800 V, the maximum on-state voltage \(V_{on_max}\) can reach 3.2 V. Based on the selection mechanism and detailed analyses in Section 3, set \(V_{cc}\) to 7 V and \(V_{D3}\) to 7.5 V for the experiment. The results are depicted in Figure 11.

![Figure 11](image)

Figure 11. The gate-source voltage waveform of M under different voltages \((V_{cc} = 7 V, V_{D3} = 7.5 V)\).

As shown in Figure 11, under different voltages, when the DUT is in the on state, it always meets \(E_{I2} > V_{th_M}\), ensuring that M is normally turned on. When the DUT is in the off state, it satisfies \(E_{I3} < V_{th_M}\), so that M is also in the off state. The experimental results prove the rationality of the selection method of \(V_{cc}\) and \(V_{D3}\).

4.4. Selection Method of \(R_2\) and \(R_3\)

According to Equations (28) and (31), \(R_3 > 1.52 \Omega\) and \(R_2 < 55 \Omega\) while meeting SSC and MEC. Using the controlled variable method, when \(V_{cc}, V_{D3}\), and \(R_3\) are determined, set \(R_2\) to 5 \(\Omega\), 10 \(\Omega\), 20 \(\Omega\), and 30 \(\Omega\) for the experiments. Figure 12a demonstrates the measured \(E_{I1}\) in the case of different \(R_2\). Moreover, when \(R_2\) is determined, set the resistance of \(R_3\) to 5 \(\Omega\), 10 \(\Omega\), 20 \(\Omega\), and 30 \(\Omega\) for the experiments. The variation of \(E_{I1}\) with \(R_3\) is shown in Figure 12b.
As described in Figure 12, E_{I1} decreases with the increase in R_2, and it increases with the increase in R_3. The experimental results effectively verify the correctness of the theoretical analysis indicated in Section 3. When choosing R_2, the resistance should be as large as possible while meeting SSC. In contrast, when choosing R_3, the resistance should be as small as possible while completing MEC.

4.5. Error Analysis

The size of the error in on-state voltage and conduction loss measurement, using the improved DVCC, is further analyzed to highlight the accuracy over different working conditions. Based on the circuit shown in Figure 5, the on-state voltage of the DUT is measured by the improved DVCC under the V_{DC} of 300 V, 400 V, 500 V, 600 V, 700 V, and 800 V. Subsequently, utilizing the measured on-state voltage, the conduction loss is calculated. Furthermore, the measurement results of improved DVCC are compared with the actual value to get the relative error, which is shown in Figure 13.
It can be seen from Figure 13 that when using the improved DVCC to measure the conduction loss of the DUT, the relative error between the measurement result and the actual value remains below 1.7%. In addition, at the moment of turning on, the measurement relative error of the first negative peak is kept within 25%. Moreover, in the on-steady state, the maximum relative error of the on-steady state voltage measurement is within 2.75%. The above data effectively prove the high measurement accuracy of the improved DVCC.

5. Conclusions

An improved DVCC topology for measuring the conduction loss of power semiconductor devices is proposed and fully characterized in this article. The proposed DVCC, in comparison with the existing designs (conventional DVCC) through simulation and experimentation, shows better accuracy and higher security. During the on-oscillation state, the maximum relative error of the on-state voltage measurement decreased from 78.8% to 17.6%, and the on-state voltage measurement accuracy is greatly improved. Furthermore, the relative error of the total conduction loss measurement of the two on-state stages is reduced from 6.42% to 0.78%, which is one of the critical contributions of the proposed approach. Another key advantage of the improved DVCC is that it improves the working security of M, which is embodied in the reduction of the gate–source voltage negative overshoot of the auxiliary device MOSFET from -14.12 to 0.78 V. In addition, the influence of component parameters on the circuit performance of the improved DVCC is discussed, and three electrical quantities are extracted as the judgment indicators for the component selection, including the gate–source voltage negative overshoot ($V_{g_s,M(\text{max})}$) of M, the gate–source voltage $V_{g_s,M(\text{on})}$ of M when the DUT is in the on state, and the gate–source voltage $V_{g_s,M(\text{off})}$ of M when the DUT is in the off state. Finally, the component selection criteria are given and validated by experimental results. First, the switching speed and blocking voltage level of M should be consistent with or better than the DUT. Second, in the case of meeting VCEW, the breakdown voltage of the Zener diode (D_3) should be selected to be a small value. Third, under the conditions of fulfilling MEC and SSC, the selection guide for these two resistors is to increase R_2 and decrease R_3 as much as possible.

Author Contributions: Conceptualization, Q.Y., Z.Z., P.S., and B.Z.; methodology, Q.Y.; software, Q.Y. and Z.Z.; validation, Q.Y., P.S., and Z.Z.; formal analysis, Q.Y. and Y.C.; investigation, Q.Y.; resources, Q.Y.; data curation, B.Z.; writing—original draft preparation, Q.Y., Z.Z., and P.S.; writing—review and editing, Q.Y.; visualization, Z.Z.; supervision, B.Z.; project administration, Q.Y., and P.S.; funding acquisition, Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by State Grid science and technology projects (Electrical characterization and screening method of press-pack IGBT chip (grant no. 5455GB1900007)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used for the manuscript are available for researchers on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, Z.M.; Shi, B.C.; Zhu, Y.C. Control Technologies for Power Electronic Hybrid Systems in High-voltage High-power Applications: A Review. High Volt. Eng. 2019, 45, 2017–2027.
2. Lagier, T.; Ladoux, P.; Dworakowski, P. Potential of silicon carbide MOSFETs in the DC/DC converters for future HVDC offshore wind farms. High Volt. 2017, 2, 233–243. [CrossRef]
3. Gareau, J.; Hou, R.; Emadi, A. Review of Loss Distribution, Analysis, and Measurement Techniques for GaN HEMTs. IEEE Trans. Power Electron. 2020, 35, 7405–7418. [CrossRef]
4. Fuentes, C.D.; Müller, M.; Bernet, S.; Kouro, S. SiC-MOSFET or Si-IGBT: Comparison of Design and Key Characteristics of a 690 V Grid-Tied Industrial Two-Level Voltage Source Converter. Energies 2021, 14, 3054. [CrossRef]
5. Cai, Y.M.; Zhao, Z.B.; Liang, S.; Sun, P.; Yang, F. Influence of Parasitic Parameters of Commutation Path on Switching Characteristics of Silicon Carbide MOSFET. High Volt. Eng. 2021, 47, 603–614.
6. Sun, P.; Zhao, Z.; Cai, Y.; Ke, J.; Cui, X.; Ji, B. Analytical model for predicting the junction temperature of chips considering the internal electrothermal coupling inside SiC metal-oxide-semiconductor field-effect transistor modules. *IET Power Electron.* 2020, 13, 436–444.

7. Chen, M.; Hu, A.; Tang, Y.; Wang, B. Modeling Analysis of IGBT Thermal Model High Voltage Engineering. *High Volt. Eng.* 2011, 37, 453–459.

8. Lei, W.J.; Liu, J.J.; Lv, G.T.; Lv, C.L.; Cao, R. Review of Reliability Comprehensive Analysis and Evaluation Methods for Key Components and System of Large Capacity Power Electronic Equipment. *High Volt. Eng.* 2020, 46, 3353–3361.

9. Ladoux, P.; Blaquiere, J.M.; Alvarez, S.; Carroll, E.; Streit, P. Test bench for the characterisation of experimental low voltage IGBTs. In Proceedings of the 35th Annual IEEE Power Electronics Specialists Conference (PESC’04), Aachen, Germany, 20–25 June 2004.

10. Anurag, A.; Achariya, S.; Bhatnacharya, S. An Accurate Calorimetric Loss Measurement Method for SiC MOSFETs. *IEEE J. Emerg. Sel. Top. Power Electron.* 2020, 8, 1644–1656. [CrossRef]

11. Li, H.; Li, X.; Zhang, Z.; Wang, J.; Liu, L.; Bala, S. A Simple Calorimetric Technique for High-Efficiency GaN Inverter Transistor Loss Measurement. In Proceedings of the 5th IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017.

12. Johannsson, D.; Nawaz, M. Assessment of PSpice Model for Commercial SiC MOSFET Power Modules. In Proceedings of the 3rd IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2–4 November 2015.

13. Hsin-Ju, C.; Kusic, G.L.; Reed, G.F. Comparative PSCAD and Matlab/Simulink simulation models of power losses for SiC MOSFET and Si IGBT devices. In Proceedings of the 2012 IEEE Power and Energy Conference at Illinois, Champaign, IL, USA, 24–25 February 2012.

14. Prasad, J.S.S.; Prasad, K.N.V.; Narayanan, G. Device Loss and Thermal Characteristics of High Power PWM Converters. In Proceedings of the 8th IEEE India International Conference on Power Electronics (ICPE), Jaipur, India, 13–15 December 2018.

15. Lim, H.; Hwang, J.; Kwon, S.; Baek, H.; Uhm, J.; Lee, G. A Study on Real Time IGBT Junction Temperature Estimation Using the NTC and Calculation of Power Losses in the Automotive Inverter System. *Sensors* 2021, 21, 2454. [CrossRef]

16. Ahmed, M.H.; Wang, M.; Hassan, M.A.S.; Ullah, I. Power Loss Model and Efficiency Analysis of Three-Phase Inverter Based on SiC MOSFETs for PV Applications. *IEEE Access* 2019, 7, 75768–75781. [CrossRef]

17. Zhang, L.; Yuan, X.; Wu, X.; Shi, C.; Zhang, J.; Zhang, Y. Performance Evaluation of High-Power SiC MOSFET Modules in Comparison to Si IGBT Modules. *IEEE Trans. Power Electron.* 2019, 34, 1181–1196. [CrossRef]

18. Gelagaev, R.; Jacqmaer, P.; Driesen, J. A Fast Voltage Clamp Circuit for the Accurate Measurement of the Dynamic ON-Resistance of Power Transistors. *IEEE Trans. Ind. Electron.* 2015, 62, 1241–1250. [CrossRef]

19. Carsten, B. Clipping preamplifier provides accurate measurement of transistor conduction voltages. In Proceedings of the 31st International Power Conversion Conference Exhibition, Long Beach, CA, USA, 9–15 September 1996.

20. Pokryvailo, A.; Carp, C. Accurate Measurement of on-State Losses of Power Semiconductors. In Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, Las Vegas, NV, USA, 27–31 May 2008.

21. Ren, L.; Shen, Q.; Gong, C. A Voltage Clamp Circuit for the Real-Time Measurement of the On-State Voltage of Power Transistors. In Proceedings of the 8th Annual IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016.

22. Ghimire, P.; de Vega, A.R.; Bezckowski, S.; Munk-Nielsen, S.; Rannested, B.; Thogersen, P.B. An online V-ce measurement and temperature estimation method for high power IGBT module in normal PWM operation. In Proceedings of the International Power Electronics Conference (IPEC-ECCASIA), Hiroshima, Japan, 18–21 May 2014.

23. Bezckowski, S.; Ghimire, P.; de Vega, A.R.; Munk-Nielsen, S.; Rannested, B.; Thogersen, P. Online V-ce measurement method for wear-out monitoring of high power IGBT modules. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013.

24. Yu, B.; Wang, L.; Ahmed, D. Drain-Source Voltage Clamp Circuit for Online Accurate ON-State Resistance Measurement of SiC MOSFETs in DC Solid-State Power Controller. *IEEE J. Emerg. Sel. Top. Power Electron.* 2020, 8, 331–342. [CrossRef]

25. Guacci, M.; Bortis, D.; Kolar, J.W. On-state voltage measurement of fast switching power semiconductors. *CSS Trans. Power Electron.* Appl. 2018, 3, 163–176. [CrossRef]

26. Li, R.; Wu, X.; Yang, S.; Sheng, K. Dynamic on-State Resistance Test and Evaluation of GaN Power Devices Under Hard- and Soft-Switching Conditions by Double and Multiple Pulses. *IEEE Trans. Power Electron.* 2019, 34, 1044–1053. [CrossRef]

27. Lu, B.; Palacios, T.; Risbud, D.; Bahl, S.; Anderson, D.I. Extraction of Dynamic On-Resistance in GaN Transistors: Under Soft- and Hard-Switching Conditions. In Proceedings of the 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Waikoloa, HI, USA, 16–19 October 2011.

28. Wang, J.; Chung, H.S.-H.; Li, R.T.-H. Characterization and Experimental Assessment of the Effects of Parasitic Elements on the MOSFET Switching Performance. *IEEE Trans. Power Electron.* 2013, 28, 573–590. [CrossRef]

29. Ke, J.J.; Zhao, Z.B.; Xie, Z.K.; Xu, P.; Cui, X. Analytical Switching Transient Model for Silicon Carbide MOSFET under the Influence of Parasitic Parameters. *Trans. China Electrotech. Soc.* 2018, 33, 1762–1774.

30. Gelagaev, R.; Jacqmaer, P.; Everts, J.; Driesen, J. A Novel Voltage Clamp Circuit for the Measurement of Transistor Dynamic On-Resistance. In Proceedings of the 29th Annual IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, Austria, 13–16 May 2012.