Risk Categories in COVID-19 Based on Degrees of Inflammation: Data on More Than 17,000 Patients from the Spanish SEMI-COVID-19 Registry

Manuel Rubio-Rivas 1,*,†, Xavier Corbella 1,2,★, Francesc Formiga 1, Estela Menéndez Fernández 3, María Dolores Martín Escalante 4, Isolina Baños Fernández 5, Francisco Arnalich Fernández 6, Esther Del Corral-Beamonte 7, Antonio Lalucea 8, Alejandro Parra Virto 9, Emilia Roy Vallejo 10, José Loureiro-Amigo 11, Ana María Álvarez Suárez 12, Jesús Abadia-Otero 13, María Navarro De La Chica 14, Raquel Estévez González 15, Almudena Hernández Millán 16, María Areses Manrique 17, Julio César Blázquez Encinar 18, Amara González Noya 19, Ruth González Ferrer 20, María Pérez Aguilera 21, Ricardo Gil Sánchez 22, Jesús Millán Núñez-Cortés 9, José Manuel Casas-Rojo 23

and on behalf of the SEMI-COVID-19 Network ‡

1 Department of Internal Medicine, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, University of Barcelona, 08907 Barcelona, Spain; xcorbella@bellvitgehospital.cat (X.C.); fformiga@bellvitgehospital.cat (F.F.)
2 Hestia Chair in Integrated Health and Social Care, School of Medicine, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
3 Department of Internal Medicine, San Pedro Hospital, 26006 Logroño, Spain; estelamf92@gmail.com
4 Department of Internal Medicine, Hospital Costa del Sol, 29603 Marbella, Spain; mmartinescalante@gmail.com
5 Department of Internal Medicine, Hospital Puerta de Hierro Hospital, 28220 Majadahonda, Spain; isolinat@hotmail.com
6 Head of the Department of Internal Medicine, La Paz Hospital, 28046 Madrid, Spain; farnalich@salud.madrid.org
7 Department of Internal Medicine, Río Villanueva Hospital, 50007 Zaragoza, Spain; escorral@gmail.com
8 Department of Internal Medicine, 12 de Octubre University Hospital, 28041 Madrid, Spain; antonio.lalueza@salud.madrid.org
9 Department of Internal Medicine, Gregorio Marañón Hospital, 28009 Madrid, Spain; alejandro.parra@salud.madrid.org (A.P.V.); jesus.millan@salud.madrid.org (J.M.N.-C.)
10 Department of Internal Medicine, La Princesa University Hospital, 28006 Madrid, Spain; erovallejo@gmail.com
11 Department of Internal Medicine, Moisés Broggi Hospital, 08970 Sant Joan Despí, Spain; jose.loureiro.amigo@gmail.com
12 Department of Internal Medicine, Cabueñes Hospital, 33203 Gijón, Spain; anaas_93@hotmail.com
13 Department of Internal Medicine, Río Hortega University Hospital, 47014 Valladolid, Spain; jabadia@saludcastillayleon.es
14 Department of Internal Medicine, Nuestra Señora del Prado Hospital, 45600 Talavera de la Reina, Spain; maria.navachica@yahoo.com
15 Department of Internal Medicine, Virgen de la Salud Hospital-Toledo University Hospital, 45004 Toledo, Spain; raqueleg@gmail.com
16 Department of Internal Medicine, Son Llatzer Hospital, 07005 Mallorca, Spain; adelapen@hsll.es
17 Department of Internal Medicine, Santa Marina Hospital, 48004 Bilbao, Spain; MARIA.ARESES@osakidetza.eus
18 Department of Internal Medicine, Torrevieja University Hospital, 03186 Torrevieja, Spain; jchencinar@gmail.com
19 Department of Internal Medicine, Ourense University Hospital, 32005 Ourense, Spain; amara.gonzalez.noya@sergas.es
20 Department of Internal Medicine, Tajo University Hospital, 41007 Toledo, Spain; ruthgferre@gmail.com
21 Department of Internal Medicine, Juan Ramón Jiménez University Hospital, 21005 Huelva, Spain; maghalit@gmail.com
22 Department of Internal Medicine, La Fe Hospital, 46009 Valencia, Spain; rigilsan@gmail.com
23 Department of Internal Medicine, Infanta Cristina University Hospital, 28981 Parla, Spain; jm.casas@gmail.com

* Correspondence: mrubio@bellvitgehospital.cat
† M. Rubio-Rivas and X. Corbella contributed equally as co-first authors of the study.
‡ A complete list of the SEMI-COVID-19 Network members is provided in the Acknowledgments.
Abstract: (1) Background: The inflammation or cytokine storm that accompanies COVID-19 marks the prognosis. This study aimed to identify three risk categories based on inflammatory parameters on admission. (2) Methods: Retrospective cohort study of patients diagnosed with COVID-19, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish SEMI-COVID-19 Registry. The three categories of low, intermediate, and high risk were determined by taking into consideration the terciles of the total lymphocyte count and the values of C-reactive protein, lactate dehydrogenase, ferritin, and D-dimer taken at the time of admission. (3) Results: A total of 17,122 patients were included in the study. The high-risk group was older (57.9 vs. 64.2 vs. 70.4 years; \(p < 0.001 \)) and predominantly male (37.5% vs. 46.9% vs. 60.1%; \(p < 0.001 \)). They had a higher degree of dependence in daily tasks prior to admission (moderate-severe dependency in 10.8% vs. 14.1% vs. 17%; \(p < 0.001 \)), arterial hypertension (36.9% vs. 45.2% vs. 52.8%; \(p < 0.001 \)), dyslipidemia (28.4% vs. 37% vs. 40.6%; \(p < 0.001 \)), diabetes mellitus (11.9% vs. 17.1% vs. 20.5%; \(p < 0.001 \)), ischemic heart disease (3.7% vs. 6.5% vs. 8.4%; \(p < 0.001 \)), heart failure (3.4% vs. 5.2% vs. 7.6%; \(p < 0.001 \)), liver disease (1.1% vs. 3% vs. 3.9%; \(p = 0.002 \)), chronic renal failure (2.3% vs. 3.6% vs. 6.7%; \(p < 0.001 \)), cancer (6.5% vs. 7.2% vs. 11.1%; \(p < 0.001 \)), and chronic obstructive pulmonary disease (5.7% vs. 5.4% vs. 7.1%; \(p < 0.001 \)). They presented more frequently with fever, dyspnea, and vomiting. These patients more frequently required high flow nasal cannula (3.1% vs. 4.4% vs. 9.7%; \(p < 0.001 \)), non-invasive mechanical ventilation (0.9% vs. 3% vs. 6.3%; \(p < 0.001 \)), invasive mechanical ventilation (0.6% vs. 2.7% vs. 8.7%; \(p < 0.001 \)), and ICU admission (0.9% vs. 3.6% vs. 10.6%; \(p < 0.001 \)), and had a higher percentage of in-hospital mortality (2.3% vs. 6.2% vs. 23.9%; \(p < 0.001 \)). The three risk categories proved to be an independent risk factor in multivariate analyses. (4) Conclusion: The present study identifies three risk categories for the requirement of high flow nasal cannula, mechanical ventilation, ICU admission, and in-hospital mortality based on lymphopenia and inflammatory parameters.

Keywords: COVID-19; cytokine storm; prognosis; risk factors; mortality

1. Introduction

As of 6 February 2021, more than 105 million people have contracted SARS-CoV-2, and more than 2.3 million people have died from COVID-19. After 1 year of advances in the understanding of the disease, several risk factors have been recognized [1,2]. These include older age, male gender, certain comorbidities, and phenotypic clusters based on patient symptomatology [3–9]. Some analytical parameters have also been identified as poor prognostic factors and are related to the inflammatory state that patients present during the disease, the so-called cytokine storm, the most characteristic features of which are a decrease in the lymphocyte count and an increase in inflammatory parameters such as C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin, and D-dimer [10]. This accompanying inflammatory process marks the prognosis of COVID-19.

Our study aimed to identify three risk categories based on inflammatory parameters on admission.

2. Materials and Methods

2.1. Study Design, Patient Selection, and Data Collection

This is a retrospective cohort study with data on patients collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish SEMI-COVID-19 Registry. The characteristics of the patients included in this registry have been extensively described [11]. This is a multicenter, nationwide registry with over 150 hospitals registered so far. From 1 March to 31 July 2020, a total of 17,122 hospitalized patients diagnosed with COVID-19 on admission were included in the Registry. All included patients were diagnosed by polymerase chain reaction (PCR) test taken from a nasopharyngeal sample, sputum, or bronchoalveolar lavage. All patients’ symptoms were collected on admission. Likewise,
blood values were collected on the first day of hospital admission and prior to receiving any type of therapy. The collection of data from each patient in terms of laboratory data, treatments, and outcomes was verified by the principal investigator of each center through the review of clinical records. The patients included in the present study had not received corticosteroid or anti-inflammatory therapy prior to hospital admission. To assess functional status prior to admission, the Barthel index was used: independent or mild dependence, 100–91; moderate dependence, 90–61; and severe dependence, ≤60.

All participating centers in the register received confirmation from the relevant Ethics Committees, including Bellvitge University Hospital (PR 128/20).

2.2. Categories of Risk

The three categories of low, intermediate, and high risk were determined by taking into consideration the terciles of the total lymphocyte count, and the CRP, LDH, ferritin, and D-dimer values taken at the time of admission. The low-risk category was defined when all parameters were in the first tercile. The high-risk category was defined when any of the parameters were in the third tercile. The intermediate risk category was defined when the defining conditions of low or high risk were not met.

2.3. Outcomes Definition

The primary outcome of the study was in-hospital mortality. The secondary outcomes were the requirement of high flow nasal cannula (HFNC), non-invasive mechanical ventilation (NIMV), invasive mechanical ventilation (IMV), or intensive care unit (ICU) admission.

2.4. Statistical Analysis

Categorical variables were expressed as absolute numbers and percentages. Continuous variables are expressed as mean plus standard deviation (SD) in the case of parametric distribution, or median (IQR) in the case of non-parametric distribution. Differences among groups were assessed using the chi-square test for categorical variables and ANOVA or the Kruskal–Wallis test, as appropriate, for continuous variables; p-values <0.05 indicated statistical significance.

For the assessment of risk factors for each of the outcomes, binary logistic regression was performed, including the three risk categories in the model. In multivariate analyses, variables with a significance of <0.10 in the univariate analyses plus age and sex were included. Subsequently, the differences in mortality were shown graphically using Kaplan–Meier curves, with their log-rank test (event: death; censored data: hospital discharge). Missing data were treated with multiple imputation.

Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY, USA, IBM Corp.

3. Results

3.1. General Data and Symptoms

A total of 17,122 patients were included in the study. Table 1 shows the three categories of low, intermediate, and high risk and their cut-off points. Table 2 shows the overall data for the three risk categories. Of note, members of the high-risk group were older (57.9 years vs. 64.2 vs. 70.4; p < 0.001) and more predominantly male (37.5% vs. 46.9% vs. 60.1%; p < 0.001). They had a higher degree of dependency prior to admission and certain comorbidities were more prevalent (arterial hypertension, dyslipidemia, diabetes mellitus, ischemic heart disease, chronic heart failure, chronic liver disease, severe chronic renal failure, cancer, and chronic obstructive pulmonary disease). In contrast, asthma was less prevalent in this group of patients.
Table 1. Categories of risk.

	Low Risk	Intermediate Risk	High Risk	p-Value
Lymphocyte count × 10^6/L	>1150	760–1150	<760	<0.001
CRP (mg/L)	<31.8	31.8–101.5	>101.5	
LDH (U/L)	<271	271–394	>394	
Ferritin (mcg/L)	<572.9	572.9–1359.9	>1359.9	
D-dimer (ng/mL)	<539	539–1580	>1580	

CRP: C-reactive protein. LDH: lactate dehydrogenase. The colors in the table indicate the risk traffic light in 3 categories: low risk (green), intermediate risk (yellow), and high risk (red).

Table 2. General data for the three categories.

	Low Risk	Intermediate Risk	High Risk	p-Value
N	352	3018	13,752	<0.001
Age, median (IQR)	57.9 (43.7–71.3)	64.2 (51.7–76.5)	70.4 (57.8–80.3)	<0.001
Gender (males)	132 (37.5)	1416 (46.9)	8264 (60.1)	<0.001
Days from onset to admission, median (IQR)	6 (3–10)	7 (4–9)	6 (3–9)	0.005
Smoking behaviour				
Never smoker	254 (72.2)	2201 (72.9)	9485 (69)	<0.001
Former smoker	71 (20.2)	664 (22)	3582 (26)	
Current smoker	27 (7.7)	153 (5.1)	685 (5)	
Degree of dependency				
None or mild	314 (89.2)	2595 (86)	11,423 (83.1)	<0.001
Moderate	24 (6.8)	231 (7.7)	1329 (9.7)	
Severe	14 (4)	192 (6.4)	1000 (7.3)	
Arterial hypertension	130 (36.9)	1365 (45.2)	7260 (52.8)	<0.001
Dyslipidemia	100 (28.4)	1118 (37)	5584 (40.6)	<0.001
Diabetes mellitus	42 (11.9)	516 (17.1)	2822 (20.3)	<0.001
Ischaemic cardiopathy	13 (3.7)	196 (6.5)	1151 (8.4)	<0.001
Chronic heart failure	12 (3.4)	158 (5.2)	1045 (7.6)	<0.001
Chronic liver disease	4 (1.1)	91 (3)	537 (3.9)	0.002
Severe chronic renal failure	8 (2.3)	108 (3.6)	920 (6.7)	<0.001
Cancer	23 (6.5)	216 (7.2)	1521 (11.1)	<0.001
COPD	20 (5.7)	163 (5.4)	972 (7.1)	0.003
Asthma	40 (11.4)	279 (9.2)	895 (7.1)	<0.001
OSAS	16 (4.5)	188 (6.2)	839 (6.1)	0.455

IQR: interquartile range. COPD: chronic obstructive pulmonary disease. OSAS: obstructive sleep apnea syndrome. Severe chronic renal failure: Creatinin >300 mg/dL or dialysis.

Symptoms at the time of hospital admission are shown in Table 3. The high-risk group presented more frequently with fever (71.3% vs. 83% vs. 84.3%; p < 0.001), dyspnea (52.3% vs. 51.1% vs. 59.1%; p < 0.001), and vomiting (3.4% vs. 7.8% vs. 8%; p = 0.007).

Table 3. Symptoms and physical examination upon admission for the three categories.

	Low Risk	Intermediate Risk	High Risk	p-Value
Cough, n (%)	258 (73.3)	2269 (75.2)	9950 (72.4)	0.007
Arthralgia, n (%)	108 (30.7)	1027 (34)	4011 (29.2)	<0.001
Ageusia, n (%)	39 (11.1)	343 (11.4)	1070 (7.8)	<0.001
Anosmia, n (%)	43 (12.2)	303 (10)	926 (6.7)	<0.001
Sore throat, n (%)	50 (14.2)	344 (11.4)	1237 (9)	<0.001
Headache, n (%)	58 (16.5)	448 (14.8)	1499 (10.9)	<0.001
Fever, n (%)	251 (71.3)	2506 (83)	11,592 (84.3)	<0.001
Dyspnea, n (%)	184 (52.3)	1542 (51.1)	8121 (59.1)	<0.001
Diarrhea, n (%)	83 (23.6)	790 (26.2)	3224 (23.4)	0.006
Vomiting, n (%)	12 (3.4)	235 (7.8)	1097 (8)	0.007
Abdominal pain, n (%)	26 (7.4)	195 (6.5)	894 (6.5)	0.795
Heart rate >20 rpm, n (%)	85.5 (75–98)	85 (75–97)	88 (77–100)	<0.001
Respiratory rate >20 rpm, n (%)	45 (12.8)	579 (19.2)	4809 (35)	<0.001

IQR: interquartile range.
3.2. Lab Tests among Categories

The lab test results (on admission) for the three categories are shown in Table 4.

Table 4. Lab tests upon admission for the three categories.

	Low Risk	Intermediate Risk	High Risk	p-Value
Lymphocytes ×10⁶/L, median (IQR)	1605 (1340–2100)	1180 (960–1500)	860 (600–1200)	<0.001
CRP mg/L, median (IQR)	6.3 (2.2–14.9)	30 (10.7–57)	81.5 (28.2–151)	<0.001
LDH U/L, median (IQR)	203 (175–230)	261 (213–312)	360 (267–486.4)	<0.001
Ferritin mcg/L, median (IQR)	220.3 (103.5–371)	534 (259.2–891)	1144.7 (532–1834.5)	<0.001
D-dimer ng/mL, median (IQR)	286.5 (210.8–400)	490 (280–776.3)	1131 (510–4347.8)	<0.001

CRP: C-reactive protein. LDH: lactate dehydrogenase. IQR: interquartile range.

3.3. Outcomes

The outcomes by risk category are shown in Table 5. All outcomes were more prevalent in the high-risk group. Thus, these patients more frequently required HFNC (3.1% vs. 4.4% vs. 9.7%; p < 0.001), NIMV (0.9% vs. 3% vs. 6.3%; p < 0.001), IMV (0.6% vs. 2.7% vs. 8.7%; p < 0.001), or ICU admission (0.9% vs. 3.6% vs. 10.6%; p < 0.001), and had a higher percentage of in-hospital mortality (2.3% vs. 6.2% vs. 23.9%; p < 0.001).

Table 5. Outcomes for the three categories.

	Low Risk	Intermediate Risk	High Risk	p-Value
HFNC, n (%)	11 (3.1)	132 (4.4)	1319 (9.7)	<0.001
NIMV, n (%)	3 (0.9)	90 (3)	857 (6.3)	<0.001
IMV, n (%)	2 (0.6)	80 (2.7)	1195 (8.7)	<0.001
ICU admission, n (%)	3 (0.9)	109 (3.6)	1453 (10.6)	<0.001
In-hospital mortality, n (%)	8 (2.3)	186 (6.2)	3291 (23.9)	<0.001

HFNC: high Flow nasal cannula. NIMV: non-invasive mechanical ventilation. IMV: invasive mechanical ventilation. ICU: intensive care unit.

Figure 1 shows the survival curves for the three risk categories. Figure 2 shows the survival curves in high-risk patients depending on the number of high-risk criteria (lymphocytes, CRP, LDH, ferritin, or D-dimer) above the predetermined threshold. Table S1 shows the outcomes in high-risk patients depending on how many high-risk parameters each patient had.

Figure 1. Time to death for the three categories (Log rank 325.6 p < 0.001).
Figure 1. Time to death for the three categories (Log rank 325.6 \(p < 0.001 \)).

Figure 2. Time to death for high-risk patients according to the number of high-risk criteria.

3.4. Risk Factors for HFNC, NIMV, IMV, ICU Admission and In-Hospital Mortality

The multivariate binary logistic regression shown in Table 6, and in supplemental files, Tables S2–S5, identify the three risk categories as an independent risk factor for HFNC, NIMV, MIV, ICU admission, and in-hospital death. Taking the low-risk category as a reference, the attributed risk of in-hospital death was OR = 1.91 (0.9–4.05; \(p = 0.093 \)) for the intermediate risk category and 7.31 (3.49–15.28; \(p < 0.001 \)) for the high-risk category.

Table 6. Risk factors of in-hospital mortality.

Risk factor	Univariate Analysis	Multivariate Analysis		
	OR (95% CI)	\(p \)-Value	OR (95% CI)	\(p \)-Value
Age	1.08 (1.08–1.09)	<0.001	1.07 (1.07–1.08)	<0.001
Gender (female)	0.76 (0.70–0.82)	<0.001	0.67 (0.61–0.74)	<0.001
Smoking behaviour				
Never smoker	1 ref.		1 ref.	
Former smoker	1.57 (1.45–1.70)	<0.001	1.12 (1.00–1.24)	0.052
Current smoker	1.06 (0.89–1.26)	0.540	1.27 (1.03–1.58)	0.025
Degree of dependency				
None or mild	1 ref.		1 ref.	
Moderate	4.20 (3.77–4.69)	<0.001	1.60 (1.41–1.83)	<0.001
Severe	4.99 (4.42–5.63)	<0.001	2.01 (1.73–2.33)	<0.001
Arterial hypertension	2.77 (2.56–3.00)	<0.001	-	NS
Dyslipidemia	1.77 (1.64–1.91)	<0.001	-	NS
Diabetes mellitus	1.97 (1.81–2.15)	<0.001	1.21 (1.09–1.34)	<0.001
Ischaemic cardiopathy	2.41 (2.14–2.71)	<0.001	1.25 (1.08–1.44)	0.002
Chronic heart failure	3.32 (2.94–3.74)	<0.001	-	NS
Chronic liver disease	1.49 (1.24–1.78)	<0.001	1.32 (1.07–1.63)	0.011
Severe chronic renal failure	3.19 (2.80–3.62)	<0.001	1.50 (1.29–1.76)	<0.001
Cancer	2.04 (1.83–2.27)	<0.001	1.54 (1.35–1.75)	<0.001
COPD	2.53 (2.24–2.87)	<0.001	-	NS
Asthma	0.62 (0.52–0.73)	<0.001	-	NS
OSAS	1.36 (1.18–1.57)	<0.001	-	NS
Respiratory rate > 20 rpm	3.91 (3.62–4.22)	<0.001	3.21 (2.94–3.51)	<0.001
Three risk categories				
Low risk	1 ref.		1 ref.	
Intermediate risk	2.62 (1.38–5.78)	0.005	1.91 (0.90–4.05)	0.093
High risk	13.53 (6.7–27.30)	<0.001	7.31 (3.49–15.28)	<0.001

NS: Not significant. COPD: chronic obstructive pulmonary disease. OSAS: obstructive sleep apnea syndrome.
4. Discussion

The present study identifies three risk categories based on degrees of lymphopenia and inflammatory parameters present on hospital admission as part of the host-immune response and cytokine storm that accompanies severe COVID-19 [10]. Since the beginning of the pandemic, inflammation has been synonymous with clinical complications during admission and has ultimately increased the likelihood of death. This study not only confirms this observation, but also defines three clearly differentiated prognostic groups, both in terms of resource use (HFNC, NIMV, IMV) and in terms of ICU admission or in-hospital death. Furthermore, our study clearly and concisely describes the cut-off points that define each of these categories so that the research can inform clinical practice.

The high-risk category presents socio-demographic and comorbidity characteristics already recognized as poor prognostic factors [3–9]. There is no definitive answer to date as to why older patients, especially men and those with certain comorbidities, become more inflamed, but what is clear is that such patients’ inflammatory response is certainly greater. Nor is it surprising that these older men present more frequently with fever, dyspnea, and vomiting. Such symptoms may indicate phenotypic clusters C1 and C4, previously described by our group as poor prognostic factors [9].

Based on the figures for outcomes by category, the need to maintain hospital admission for patients in the low-risk category should be carefully considered. We believe that close outpatient follow-up would be more appropriate for such patients. Although results in all outcomes are worse for the intermediate-risk category with respect to the low-risk category, the most substantial changes occur in the high-risk category. We believe it is crucial to detect patients belonging to this category at the outset and take more intensive therapeutic management measures.

It is evident from the results obtained that it is not only important whether patients belong to the high-risk category or not, but also how many high-risk parameters are fulfilled. In this regard, it is still unclear whether one of the analyzed parameters is of greater importance than the others.

To date, guidelines, protocols, and trials are overly focused on oxygenation/ventilation status. Respiratory status is at the end of the slope of different causes, not only COVID-19 (obesity, previous pulmonary pathologies, hospital resources, etc). The cornerstone of any COVID-19 protocol should be inflammation. It precedes respiratory deterioration and has a remarkably high predictive power, given the results of the present study. Another factor to be considered in trials is assessing the effectiveness of anti-inflammatory/immunosuppressive drugs.

We believe that the usefulness of this risk stratification strategy is that it is not only prognostic in allowing us to identify those patients at greatest risk; this study can also serve as a generator of hypothesis to be confirmed in prospective studies on drug regimens [12,13]. Defining the target of patients likely to improve with such treatments has been the fundamental question for some time now, and we believe that these risk categories can help to define it. In fact, the next step in our research is to precisely explore this question. We believe that identification of these patients is a necessary step that will shed light on many uncertainties to date and will explain the discrepancies in the tocilizumab trials in COVID-19 in recent months [14–17].

In order to understand the risk factors for HFNC, NIMV, or IVM use, or ICU admission, it should be taken into account that some paradoxical “protective” factors in the logistic regression (degree of dependency in daily tasks, presence of severe comorbidities, etc.) are not such. This is because there is a limitation on the critical care therapeutic efforts in very old and highly dependent patients with severe comorbidities, in whom the more likely predicted outcome will result in mortality.

The present study has several strengths. Most notably, the large sample size from a consolidated national registry. In addition, the inclusion of first, second, and third level hospitals provides us with a broader picture of the pandemic in our territory.
As regards limitations, there is a notable predominance of Caucasian population in our registry and less representation of other ethnic groups, as reported previously [11]. In addition, we would have liked to include data referring to interleukin 6 as part of the panel of inflammatory parameters assessed, but, unfortunately, the high percentage of missing values in the registry did not allow us to do so. Finally, the registry allows us to identify patients with active cancer, but not if they were undergoing chemotherapy or active immunotherapy. Likewise, for the present study, we do not have data on body mass index or immunosuppressive treatments administered prior to admission.

5. Conclusions

The present study identifies three risk categories for HFNC, NIMV, or IMV use, ICU admission, and in-hospital mortality based on degrees of lymphopenia and inflammatory parameters that show severe COVID-19 patients on hospital admission. We believe their early identification and appropriate clinical management based on this risk stratification strategy may be crucial in improving the prognosis of COVID-19 patients requiring hospitalization.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/jcm10102214/s1, Table S1. Outcomes in high-risk patients according to the number of high-risk criteria; Table S2. Risk factors of the requirement of HFNC; Table S3. Risk factors of the requirement of NIMV; Table S4. Risk factors of the requirement of IMV; Table S5. Risk factors of ICU admission; Table S6. Matrix of correlations between prognostic factors.

Author Contributions: Conceptualization, M.R.-R.; methodology, M.R.-R.; software, M.R.-R.; validation, M.R.-R. and X.C.; formal analysis, M.R.-R.; investigation, M.R.-R. and X.C.; resources, J.M.N.-C. and J.M.C.-R.; data curation, M.R.-R., X.C., FF, E.M.F., M.D.M.E., I.B.F., F.A.F., E.D.C.-B., A.L., A.P.V., E.R.V., J.L.-A., A.M.A.S., J.A.-O., M.N.D.L.C., R.E.G., A.H.M., M.A.M., J.C.B.E., A.G.N., R.G.F., M.P.A., and R.G.S.; writing—original draft preparation, M.R.-R.; writing—review and editing, M.R.-R. and X.C.; visualization M.R.-R. and X.C.; supervision, M.R.-R. and X.C.; project administration, J.M.N.-C. and J.M.C.-R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of Bellvitge University Hospital (PR 128/20).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained from SEMI-COVID-19 registry and are available from the authors with the permission of SEMI-COVID-19 registry.

Acknowledgments: We gratefully acknowledge all the investigators who participated in the SEMI-COVID-19 Registry. We also thank the SEMI-COVID-19 Registry Coordinating Centre, S&H Medical Science Service, for their quality control data and logistic and administrative support. We also thank CERCA Programme/Generalitat de Catalunya for institutional support.

List of the SEMI-COVID-19 Network members
Coordinator of the SEMI-COVID-19 Registry: José Manuel Casas Rojo

SEMI-COVID-19 Scientific Committee Members:
José Manuel Casas Rojo, José Manuel Ramos Rincón, Carlos Lumbreras Bermejo, Jesús Millán Núñez-Cortés, Juan Miguel Antón Santos, Ricardo Gómez Huelgas.

Members of the SEMI-COVID-19 Group:
H. Univ. de Bellvitge. L’Hospitalet de Llobregat (Barcelona)
Xavier Corbella, Narcís Homs, Abelardo Montero, José María Mora-Luján, Manuel Rubio-Rivas.

H. U. 12 de Octubre. Madrid
Paloma Agudo de Blas, Coral Arévalo Cañas, Blanca Ayuso, José Bascuñana Morejón, Samara Campos Escudero, María Carnevali Frias, Santiago Cossio Tejido, Borja de Miguel Campo, Carmen Díaz Pedroche, Raquel Díaz Simon, Ana García Reyne, Lucia Jorge Huerta, Antonio Laluzea Blanco, Jaime Laureiro Gonzalo, Jaime Lora-Tamayo, Carlos Lumbreras Bermejo, Guillermo Maestro de la Calle, Barbara Otero Perpiñá, Diana Paredes Ruiz, Marcos Sánchez Fernández, Javier Tejada Montes.
H. U. Gregorio Marañón. Madrid
Laura Abarca Casas, Álvaro Alejandro de Oña, Rubén Alonso Beato, Lleure Alonso Gonzalo, Jaime Alonso Muñoz, Cristian Mario Amodeo Obiátes, Cristina ausín García, Marta Bacete Cobria, Jesús Baltasar Corral, María Barrientos Guerrero, Alejandro D. Bendale Estrada, María Calderón Moreno, Paula Carrascosa Fernández, Raquel Carrillo, Sabela Castañeda Pérez, Eva Cervilla Muñoz, Agustín Diego Chacón Moreno, María Carmen Cuenca Carvajal, Sergio de Santos, Andrés Enriquez Gómez, Eduardo Fernández Carracedo, María Mercedes Ferreiro-Mazón Jenaro, Francisco Galeano Valle, Alejandra García, Irene Garcia Fernandez-Bravo, Maria Eugenia García Leoni, María Gómez Antínez, Candela González San Narciso, Anthony Alexander Gurrján, Lorena Jiménez Ibáñez, Cristina Lavilla Olleros, Cristina Llamazares Mendoza, Sara Luis García, Víctor Mato Jimeno, Clara Millán Noales, Jesús Millán Núñez-Cortés, Sergio Moragón Ledesma, Antonio Muñoz Miguez, Cecilia Muñoz Delgado, Lucía Ordieres Ortega, Susana Pardo Sánchez, Alejandro Parra Virtou, María Teresa Pérez Sanz, Blanca Pinilla Llorente, Sandra Piqueras Ruiz, Guillermo Soría Fernández-Llamazares, María Toledano Macías, Neera Toledo Samaniego, Ana Torres do Rego, María Victoria Villalba García, Gracia Villarreal, María Zurita Etayo.

H. de Cabueñes. Gijón (Asturias)
Ana María Alvarez Suárez, Carlos Delgado Vergés, Rosa Fernandez-Madera Martínez, Eva Mª Fonseca Aizpuru, Alejandro Gómez Carrasco, Cristina Helguera Amezua, Juan Francisco López Caleya, María del Mar Martínez López, Aleida Martínez Zapico, Carmen Olabuenaga Iscar, María Luisa Taboada Martínez, Lara María Tamargo Chamorro.

H. U. La Paz. Madrid
Jorge Álvarez Troncoso, Francisco Arnaích Fernández, Francisco Blanco Quintana, Carmen Busca Arenzana, Sergio Carrasco Molina, Aranzazu Castellano Candía, Germán Daroca Bengoa, Alejandro de Gea Grela, Alicia de Lorenzo Hernández, Alejandro Díez Vidal, Carmen Fernández Capitán, María Francisca García Iglesias, Borja González Muñoz, Carmen Rosario Herrero Gil, Juan María Herrero Martínez, Víctor Hontañón, María Jesús Jara Hernández, Carlos Lahez, Cristina Marcelo Calvo, Juan Carlos Martín Gutiérrez, Monica Martínez Prieto, Elena Martínez Robles, Araceli Menéndez Saldaña, Alberto Moreno Fernández, Jose María Mostaza Prieto, Ana Nobilegas Mozo, Carlos Manuel Oñoro López, Esmeralda Palmier Peláez, Marina Palomar Pampyn, María Angustias Quesada Simón, Juan Carlos Ramos Ramos, Luis Ramos Ruperto, Aquilino Sánchez Purificación, Teresa Sancho Bueso, Raquel Sorrigueta Torre, Clara Itziar Soto Abanedes, Yeray Untoria Tabares, Marta Varas Mayoral, Julia Vásquez Manau.

H. Costa del Sol. Marbella (Málaga)
Victoria Augustin Bandera, Javier García Alegría, Nicolás Jiménez-García, Jairo Luque del Pino, María Dolores Martín Escalante, Francisco Navarro Romero, Victoria Núñez Rodriguez, Julián Olalla Sierra.

H. Royo Villanova. Zaragoza
Nicolás Alcalá Rivera, Anxela Crestelo Vieitez, Esther del Corral Baamonde, Jesús Díez Manglano, Isabel Fiteni Mera, María del Mar García Andreu, Martín Gericó Aseguelolaza, Claudia Josa Loorden, Raul Martínez Murgui, Marta Teresa Mata Sanz.

H. Clínico de Santiago de Compostela (A Coruña)
María del Carmen Beceiro Abad, María Aurora Freire Romero, Sonia Molinos Castro, Emilio Manuel Paez Guillan, María Pazo Núñez, Paula María Pesquera Fontan.

H. Clínico San Carlos. Madrid
Inés Armenteros Veguas, Javier Azaña Gómez, Julia Barrado Cuchillo, Irene Burruaze López, Noemi Cabello Clotet, Albert E. Calvo Elías, Elpidio Calvo Manuel, Carmen María Cano de Luque, Cynthia Chocron Benbunan, Laura Dans Vilas, Claudia Darta Hernández, Estez Emilia Dubon Peralta, Vicente Estrada Pérez, Santiago Fernandez-Castelao, Marcos Oliver Fragel Saavedra, José Luis García Klepzig, María del Rosario Iguraran Bermúdez, Esther Jaén Ferrer, Alejandro Macen Rodriguez, Alejandro Marcellés de Pedro, Rubén Ángel Martín Sánchez, Manuel Méndez Bailón, Sara Miguel Álvarez, María José Núñez Orantos, Carolina Olmos Mata, Eva Orviz García, David Oteo Mata, Cristina Oton Gonzalez, Juncal Perez-Somarriba, Pablo Pérez Mateos, María Esther Ramos Muñoz, Xabier Rivas Regaíra, Laura Mª Rodríguez Gallardo, Ifggo Sastagoitia Forrie, Alejandro Salinas Botrán, Miguel Suárez Robles, Maddalena Elena Urbano, Andrea Maria Vellisca Gonzalez, Miguel Villar Martínez.

H. Universitario Dr. Peset. Valencia
Juan Alberto Aguillera Ayllón, Arturo Artero, María del Mar Carmona Martín, María José Fabiá Valls, María de Mar Fernández García, Ana Belén Gómez Belda, Ian López Cruz, Manuel Madrazo López, Elisabeth Mateo Sanchis, Jaume Micó Gandia, Laura Piles Roger, Ádela Maria Pina Belmonte, Alba Viana García.

H. U. La Princesa. Madrid
Maria Aguillera García, Ester Alonso Monge, Jesús Álvarez Rodriguez, Claudia Alvarez Varela, Miquel Berniz Godía, Marta Bielga Molina, Marta Bustamante Vega, Jose Curbelo, Alicia de las Heras Moreno, Ignacio Dascalzo Godoy, Alexia Constanza Espinio Álvarez, Ignacio Fernández-Martín-Caro, Alejandra Franquet Lopez-Mosteiro, Gonzalo Galvez Marquez, María Jose García Blanco, Yaiza García del Álamo Hernández, Clara García-Rayo Encina, Noemi Gilabert González, Carolina
María Esther Guisado Espartero, Lorena Montero Rivas, María de la Sierra Navas Alcántara, Raimundo Tirado-Miranda.

C. H. U. de Ferrol (A Coruña)
Hortensia Álvarez Díaz, Tamara Dalama López, Estefanía Martul Pego, Carmen Mella Pérez, Ana Pazos Ferro, Sabela Sánchez Trigo, Dolores Suárez Sambade, María Trigas Ferrin, María del Carmen Vázquez Friel, Laura Vilarino Maneiro.

H. Marina Baixa. Villajoyosa (Alicante)
Javier Ena, José Enrique Gómez Segado.

H. del Tajo. Aranjuez (Madrid)
Ruth Gonzalez Ferrer, Virginia Gracia Lorenzo, Raquel Monsalvo Arroyo.

H. Dr. José Molina Orosa. Arrecife (Lanzarote)
Virginia Herrero García, Berta Román Bernal.

H. U. Virgen del Rocío. Sevilla
Maximo Bernabeu-Wittel, Santiago Rodríguez Suárez, María Nieto, Luis Giménez Miranda, Rosa María Gámez Mancera, Fátima Espinosa Torre, Carlos Hernandez Quiles, Concepción Conde Guzmán, Juan Delgado de la Cuesta, Jara Eloisa Ternero Vega, María del Carmen López Rios, Pablo Díaz Jiménez, Bosco Baron Franco, Carlos Jiménez de Juan, Sonia Gutiérrez Rivero, Julia Lanceros Tenllado, Verónica Alfaro Lara, Aurora González Estrada.

H. U. Marqués de Valdecilla. Santander
María Fernández-Ayalvo Novo, Javier Napol Lecumberri, Nuria Puente Ruiz, José Riancho, Isabel Sampedro García.

H. U. Virgen de las Nieves. Granada
Pablo Conde Baena, Joaquín Escobar Sevilla, Laura Gallo Padilla, Patricia Gómez Ronquillo, Pablo González Bustos, María Navio Botías, Jessica Ramírez Taboada, Mar Rivero Rodríguez.

H. General Defensa. Zaragoza
Anyuli Gracia Gutiérrez, Leticia Esther Royo Trallero.

H. G. U. de Castellón
Jorge Andrés Soler, Marián Bennasar Remolar, Alejandro Cardenal Álvarez, Daniela Díaz Carlotti, María José Esteve Gimen, Sergio Fabra Juana, Paula García López, María Teresa Guinot Soler, Daniela Palomo de la Sota, Guilem Pascual Castellanos, Ignacio Pérez Catalán, Celia Roig Martí, Paula Rubert Monzó, Javier Ruiz Padilla, Nuria Tornador Gaya, Jorge Usó Blasco.

H. de Palamós (Girona)
Ana Alberich Conesa, Mari Cruz Almendros Rivas, Miquel Hortos Alsina, José Marchena Romero, Anabel Martín-Ordo Diez-Canso.

C. A. U. de Salamanca
Gloria María Alonso Claudio, Víctor Barreales Rodríguez, Cristina Carbonell Muñoz, Adela Carpio Pérez, María Victoria Coral Orbes, Daniel Encinas Sánchez, Sandra Inés Revuelta, Miguel Marcos Martín, José Ignacio Martín González, José Ángel Martín Oterino, Leticia Moralejo Alonso, Sonia Peña Balbuena, María Luisa Pérez García, Ana Ramon Prados, Beatriz Rodriguez-Alonso, Ángela Romero Alegria, María Sanchez Ledesma, Rosa Juana Tejera Pérez.

H. Platón. Barcelona
Ana Suárez Lombrana.

H. Público de Monforte de Lemos (Lugo)
José López Castro, Manuel Lorenzo López Reboiro, Cristina Sardiña González.

H. Santa Bárbara. Soria
Marta León Téllez.

H. Parc Taulí. Sabadell (Barcelona)
Francisco Epelde, Isabel Torrente.

H. U. Lucus Augusti. Lugo
Raquel Gómez Méndez, Ana Rodríguez Álvarez.

H. Comarcal de Blanes (Girona)
Oriol Alonso Gisbert, Mercè Blázquez Llistosella, Pere Comas Casanova, Angels Garcia Flores, Anna Garcia Hinojo, Ana Inés Méndez Martínez, María del Carmen Nogales Nieves, Agnés Rivera Austriu, Alberto Zamora Cervantes.

H. de la Axarquía. Vélez-Málaga (Málaga)
Antonio López Ruiz.

H. do Salnes. Vilagarcía de Arousa (Pontevedra)
Vanesa Alende Castro, Ana María Baz Lomba, Ruth Brea Aparicio, Marta Fernández Morales, Jesús Manuel Fernández Villar, María Teresa López Monteagudo, Cristina Pérez García, Lorena Rodríguez Ferreira, Diana Sande Lllovo, María Begoña Valle Feijoo.
H. U. HM Montepríncipe
José F. Varona.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062.

2. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)—China, 2020. China CDC Weekly 2020, 2, 113–122. Available online: http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea88db1a851 (accessed on 12 March 2020).

3. Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581.

4. Du, R.-H.; Liang, L.-R.; Yang, C.-Q.; Wang, W.; Cao, T.-Z.; Li, M.; Guo, G.-Y.; Du, J.; Zheng, C.-L.; Zhu, Q.; et al. Predictors of Mortality for Patients with COVID-19 PneumoniaCaused by SARS-CoV-2: A Prospective Cohort Study. Eur. Respir. J. 2020, 55, 200055.

5. Rodilla, E.; López-Carmona, M.D.; Cortes, X.; Cobos-Palacios, L.; Canales, S.; Sáez, M.C.; Escudero, S.C.; Rubio-Rivas, M.; Manglano, J.D.; Castro, S.I.F.; et al. Impact of arterial stiffness on all-cause mortality in patients hospitalized with COVID-19 in Spain. Hypertension 2020, 77, 856–867. [CrossRef]

6. Pérez-Belmonte, L.M.; Torres-Peña, J.D.; López-Carmona, M.D.; Ayala-Gutiérrez, M.M.; Fuentes-Jiménez, F.; Huerta, L.J.; Muñoz, J.A.; Rubio-Rivas, M.; Madrazo, M.; García, M.G.; et al. Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: A nationwide cohort study. BMC Med. 2020, 18, 359.

7. Ramos-Rincon, J.-M.; Buonaiuto, V.; Ricci, M.; Martín-Carmona, J.; Paredes-Ruiz, D.; Calderón-Moreno, M.; Rubio-Rivas, M.; Beato-Pérez, J.-L.; Arnalich-Fernández, F.; Monge-Monge, D.; et al. Clinical Characteristics and Risk Factors for Mortality in Very Old Patients Hospitalized with COVID-19 in Spain. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2021, 76, e28–e37. [CrossRef]

8. Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with covid-19: Evidence from meta-analysis. Aging 2020, 12, 6049–6057.

9. Rubio-Rivas, M.; Corbella, X.; Mora-Luján, J.M.; Loureiro-Amigo, J.; Sampalo, A.L.; Bergua, C.Y.; Atiénzar, P.E.; García, L.F.D.; Ferrer, R.G.; Canteli, S.P.; et al. Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19. J. Clin. Med. 2020, 9, 3488.

10. Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [CrossRef]

11. Casas-Rojo, J.; Antón-Santos, J.; Millán-Nuñez-Cortés, J.; Lumbreras-Bermejo, C.; Ramos-Rincon, J.; Roy-Vallejo, E.; Artero-Mora, A.; Arnalich-Fernández, F.; García-Brufier, J.; Vargas-Nuñez, J.; et al. Clinical characteristics of patients hospitalized with COVID-19 in Spain: Results from the SEMI-COVID-19 Registry. Rev. Clin. Esp. 2020, 220, 480–494. [CrossRef]

12. Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustanowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. N. Engl. J. Med. 2020. [CrossRef]

13. Rubio-Rivas, M.; Ronda, M.; Padulles, A.; Mitjavila, F.; Riera-Mestre, A.; García-Forero, C.; Irriarte, A.; Mora, J.M.; Padulles, N.; Gonzalez, M.; et al. Beneficial effect of corticosteroids in preventing mortality in patients receiving tocilizumab to treat severe COVID-19 illness. Int. J. Infect. Dis. 2020, 101, 290–297.

14. Stone, J.H.; Frigault, M.J.; Serling-Boyd, N.J.; Fernandes, A.D.; Harvey, L.; Foulkes, A.S.; Horick, N.K.; Healy, B.C.; Shah, R.; Bensaci, A.M.; et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N. Engl. J. Med. 2020, 383, 2333–2344.

15. Salvarani, C.; Dolci, G.; Massari, M.; Franco Merlo, D.; Cavuto, S.; Savoldi, L.; Bruzzi, P.; Boni, F.; Braglia, L.; Turrà, C.; et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern. Med. 2021, 181, 24–31.

16. Hermine, O.; Mariette, X.; Tharaux, P.L.; Resche-Rigon, M.; Porcher, R.; Ravault, P. CORIMUNO-19 Collaborative Group. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern. Med. 2021, 181, 32–40.

17. Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30.