An ALMA Survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS Field: Number Counts of Submillimeter Galaxies

Stuart M. Stach1, Ian Smail1, A. M. Swinbank1, J. M. Simpson2, J. E. Geach3, Fang Xia An1, Omar Almaini5, Vinodiran Arumugam6, A. W. Blain4, S. C. Chapman9, Chian-Chou Chen6, C. J. Conselice10, E. A. Cooke1, K. E. K. Coppin1, J. S. Dunlop1, Duncan Farrah1, B. Gullberg1, W. Hartley12, R. J. Ivison6,7, D. T. Malby7, M. J. Michalowski13, Douglas Scott14, Chris Simpson15, A. P. Thomson16, J. L. Wardlow1, E. A. Cooke1, C. J. Conselice10

1 Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham, DH1 3LE, UK; stuart.m.stach@durham.ac.uk
2 Academia Sinica Institute of Astronomy and Astrophysics, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
3 Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield AL10 9AB, UK
4 Purple Mountain Observatory, China Academy of Sciences, 2 West Beijing Road, Nanjing 210008, People’s Republic of China
5 School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
6 European Southern Observatory, Karl Schwarzschild Strasse 2, Garching, Germany
7 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
8 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
9 Department of Physics and Atmospheric Science, Dalhousie University Halifax, NS B3H 3J5, Canada
10 University of Nottingham, School of Physics and Astronomy, Nottingham, NG7 2RD, UK
11 Virginia Polytechnic Institute and State University Department of Physics, MC 0435, 910 Driftfield Drive, Blacksburg, VA 24061, USA
12 Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
13 Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, ul. Słoneczna 36, 60-266 Poznań, Poland
14 Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
15 Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720, USA
16 The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
17 Leiden Observatory, Leiden University, P.O. box 9513, NL-2300 RA Leiden, The Netherlands

Abstract

We report the first results of AS2UDS, an 870 μm continuum survey with the Atacama Large Millimeter/Submillimeter Array (ALMA) of a total area of ~50 arcmin2 comprising a complete sample of 716 submillimeter sources drawn from the SCUBA-2 Cosmology Legacy Survey (S2CLS) map of the UKIDSS/UDS field. The S2CLS parent sample covers a 0.96 degree2 field at 350 μJy beam−1. Our deep, high-resolution ALMA observations with σ5σ50 ~ 0.25 mJy and a 0″15–0″30 FWHM synthesized beam, provide precise locations for 695 submillimeter galaxies (SMGs) responsible for the submillimeter emission corresponding to 606 sources in the low-resolution, single-dish map. We measure the number counts of SMGs brighter than S850 > 4 mJy, free from the effects of blending and show that the normalization of the counts falls by 28% ± 2% in comparison with the SCUBA-2 published counts, but that the shape remains unchanged. We determine that 44+-10% of the brighter single-dish sources with S850 > 9 mJy consist of a blend of two or more ALMA-detectable SMGs brighter than S850 > 1 mJy (corresponding to a galaxy with a total-infrared luminosity of LIR > 1012 L☉), in comparison with 28% ± 2% for the single-dish sources at S850 > 5 mJy. Using the 46 single-dish submillimeter sources that contain two or more ALMA-detected SMGs with photometric redshifts, we show that there is a significant statistical excess of pairs of SMGs with similar redshifts (<1% probability of occurring by chance), suggesting that at least 30% of these blends arise from physically associated pairs of SMGs.

Key words: galaxies: high-redshift – galaxies: starburst

1. Introduction

It has been two decades since the Submillimeter Common User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT) enabled deep observations of high-redshift submillimeter sources which expanded the number of known high-redshift submillimeter luminous infrared sources up to hundreds (e.g., Smail et al. 1997; Barger et al. 1998; Hughes et al. 1998). These submillimeter galaxies (SMGs) constitute a population of the most intensely star-forming galaxies, with star formation rates (SFRs) in the 100–1000 M☉yr−1 (Blain et al. 2002; Magnelli et al. 2012; Casey et al. 2013; Swinbank et al. 2013) at typical redshifts z ~ 2–3 (Chapman et al. 2005; Wardlow et al. 2011; Simpson et al. 2014; Chen et al. 2016).

This level of star formation means that in a single starburst event, an SMG would need just a few hundred million years to form the stellar mass of a massive galaxy (M* > 1011 M☉). This has led to the suggestion that SMGs have many of the properties expected for the progenitors of the luminous massive elliptical and spheroid galaxies in the local universe (Lilly et al. 1999; Fu et al. 2013; Simpson et al. 2014) with speculation that they could represent a phase in a single evolutionary path linking SMGs to luminous quasi-stellar objects (QSOs) at z ~ 2 and massive, passive galaxies found at z ~ 1–2 (Cimatti et al. 2008; Coppin et al. 2008; Whitaker et al. 2012; Toft et al. 2014). Further evidence for this evolutionary path comes from clustering studies from single-dish detections, suggesting that they reside in halos of mass ~1014 M☉, consistent with that of z ~ 2 QSOs and with their subsequent evolution into local ellipticals (Farrah et al. 2006; Hickox et al. 2012; Wilkinson et al. 2016).

However, while SMGs may play a significant role in the stellar mass growth of massive galaxies, measuring their basic properties have been hampered by the coarse angular resolution of the
single-dish telescopes, with beams of \(\sim 15^\prime \FWMH \). One of the questions raised is whether the (coarse resolution) single-dish detections arises from a single SMG or are blends of multiple SMGs within the single-dish beam. To measure the blending and to accurately identify SMG counterparts at other wavelengths requires high-resolution interferometric studies, which were initially performed via radio counterpart identification (e.g., Barger et al. 2000; Chapman et al. 2003, 2005; Ivison et al. 2007), but have been more recently performed with submillimeter interferometers. Wang et al. (2010) use deep 850 \(\mu \text{m} \) integrations of two bright submillimeter sources in the GOODS-N field to suggest that both sources break into multiple components and suggested that around 30\% of 850 \(\mu \text{m} \) sources with flux densities (\(S_{850} \)) \(\geq 5 \) mJy could be composed of blends of more than one SMG. ALMA observations of much larger samples suggested that this rises to >90\% for \(S_{850} \approx 8 \) mJy sources selected in single-dish surveys (e.g., Simpson et al. 2015a). More recently, Hill et al. (2018) used the Submillimeter Array (SMA) to observe 75 of the brightest S2CLS sources (\(S_{850} \gtrsim 8 \) mJy) at 870 \(\mu \text{m} \) with a resolution of \(\sim 2^\prime.4 \). Combining their SMA data with archival observations, they determine a lower multiplicity rate of \(\sim 15\% \), which is consistent with previous work with the SMA (Chen et al. 2013). However, these SMA observations are limited by the sensitivity, with Hill et al. (2018) using maps with an average rms depth of \(\sim 1.5 \) mJy. This meant that multiples can only be identified in a bright, single-dish source if both components have near equal flux density, which is unlikely to be a frequent occurrence. Therefore, care needs to be taken when comparing such multiplicity studies, as they can use different criteria for the brightness ratio of detected sources.

To make definitive progress in understanding the properties of SMGs requires the improvements in sensitivity and resolution provided by the Atacama Large Millimeter/Submillimeter Array (ALMA). The first such study, comprising Cycle 0 observations of the 122 submillimeter sources detected in the LABOCA survey of the Extended Chandra Deep Field South (LESS: Weiβ et al. 2009) found that 30\% of LABOCA sources resolved into multiple components with \(S_{850} \gtrsim 1.5 \) mJy when observed at 1\(^\prime.5 \) resolution (Hodge et al. 2013; Karim et al. 2013). Following this result, in ALMA Cycle 1, 30 of the brightest submillimeter sources (median single-dish flux density of \(S_{850} \gtrsim 9 \) mJy) from the SCUBA-2 Cosmology Legacy Survey (S2CLS: Geach et al. 2017) map of the UKIDSS Ultra Deep Survey (UDS, Lawrence et al. 2007) field were observed with ALMA by Simpson et al. (2015a). This confirmed that the majority (61\(^\pm19\)\%) of bright, single-dish submillimeter sources are comprised of blends of multiple SMGs brighter than \(S_{850} \approx 1.5 \) mJy (Simpson et al. 2015a, 2015b). Each of these bright, single-dish sources consists of 2–4 SMGs, which themselves are ultraluminous infrared galaxies (ULIRGs; \(L_{IR} \gtrsim 10^{12}L_{\odot} \)), seen within a projected diameter of \(\sim 150 \) kpc. Simpson et al. (2015a) suggest that such a high overdensity of SMGs requires that the majority of such detections result from physical association, as opposed to chance projections along the line of sight.

Several studies have used spectroscopic observations of molecular gas emission to test the origin of blends of SMGs. For example, Zavala et al. (2015) used spectroscopic detections for the components in one blended submillimeter-bright lensed galaxy to show that it split into three distinct galaxies, each at significantly different redshifts. More recently, Wardlow et al. (2018) used ALMA observations to search for CO emission in the fields of six submillimeter sources, which include a total of 14 SMGs, to determine that \(\sim75\% \) of blends of multiple SMGs are not physically associated. Similarly, Hayward et al. (2018) report optical and near-infrared spectroscopy of a sample of seven single-dish sources, where three showed a blending of physically associated SMGs, while four contained at least one pair of components that was physically unassociated. This mix of physically associated and unassociated components in the blended single-dish submillimeter sources is consistent with semi-analytic modeling; for example, Cowley et al. (2015) have suggested that most blends of SMGs in single-dish sources arise from projections of unrelated galaxies seen along the line of sight.

The presence of multiple SMG counterparts to individual single-dish submillimeter sources indicates that the number counts derived from low-resolution single-dish surveys do not represent the true number counts of SMGs. Even a small change in the expected form of the counts of SMGs has a potentially significant impact on models that use them as a constraint on the evolution of high-redshift, dust-obscured starbursts (e.g., Cowley et al. 2015; Lacey et al. 2016).

In this paper, we present the first results of the recently completed ALMA survey of the full S2CLS UDS sample, which comprises 870 \(\mu \text{m} \) maps of the 716 > 4\(\sigma \) single-dish sources with observed \(S_{850} \gtrsim 3.4 \) mJy in this 0.96 degree\(^2 \) field. Our deep, high-resolution ALMA survey, with rms depths of \(\sigma_{850} \sim 0.25 \) mJy beam\(^{-1} \) at 0\(^\prime.15\)–0\(^\prime.30 \) resolution, provides the statistical sample necessary to study the SMG population in detail, and supplies the largest sample of ALMA-detected SMGs currently available. From this, we construct resolved 870 \(\mu \text{m} \) SMG number counts and investigate the multiplicity in single-dish surveys. In Section 2, we describe the sample selection, observations, data reduction, and source extraction. Section 3 covers our results and discussions and Section 4 gives our conclusions.

2. Observations and Data Reduction

2.1. Sample Selection

Our survey (the ALMA-SCUBA-2 Ultra Deep Survey field survey; hereafter AS2UDS) is based on a complete sample of 850 \(\mu \text{m} \) sources selected from the S2CLS map of the UDS field (Geach et al. 2017). The S2CLS UDS map covers an area of 0.96 degree\(^2 \), with noise levels below 1.3 mJy and a median depth of \(\sigma_{850} = 0.88 \) mJy beam\(^{-1} \) with 80\% of sources having \(\sigma_{850} = 0.86–1.02 \) mJy beam\(^{-1} \). Between Cycles 1, 3, and 4, we observed all 716 > 4\(\sigma \) sources from the SCUBA-2 map, giving an observed flux density limit of \(S_{850} \gtrsim 3.4 \) mJy, or a deboosted flux density of \(S_{850} \gtrsim 2.5 \) mJy (Geach et al. 2017). As a pilot project in ALMA Cycle 1 (Project ID: 2012.1.00090.S), 30 of the brightest sources from an early version of the SCUBA-2 map (data taken before 2013 February) were observed in Band 7 (Simpson et al. 2015a, 2015b, 2017). This early version of the map had a depth of \(\sigma_{850} \sim 2.0 \) mJy\(^{-1} \) and subsequent integration time scattered three of these sources below our final sample selection criteria, leaving 27 of these original single-dish detected sources in our final sample. In Cycles 3 and 4 (Project ID: 2015.1.01528.S and 2016.1.00434.S, respectively), we observed the remaining 689 single-dish sources in the final S2CLS catalog. To cross-calibrate the data, a fraction of these sources were observed twice in Cycles 3 and 4 or twice in Cycle 4.
2.2. Data Reduction and Source Detection

Full details of the data reduction and source detection will be presented in S.M. Stach et al. (2018, in preparation), but here we provide a brief overview. Our ALMA targets were observed in Band 7 (344 GHz $\sim 870 \mu$m), where the frequency closely matches the central frequency of the SCUBA-2 filter transmission and the FWHM of the ALMA primary beam at this frequency (17$''$3) comfortably covers the whole of the SCUBA-2 beam (14$''$7 FWHM). Cycle 1 observations were carried out on 2013 November 1, Cycle 3 between 2016 July 23 and August 11, and Cycle 4 between 2016 November 9 and 17 and 2017 May 6.

The phase center for each pointing was set to the SCUBA-2 positions from the S2CLS DR1 submillimeter source catalog (Geach et al. 2017), with observations taken with 7.5 GHz bandwidth centered at 344 GHz using a single continuum correlator setup with four basebands. Observations of 40 s were employed with the aim to yield 0$''$3 resolution maps with a depth of $\sigma_{870} = 0.25 \text{ mJy beam}^{-1}$. However, the Cycle 3 observations were taken in a more extended ALMA configuration, yielding a median synthesized beam of 0$''$19 FWHM.

Calibration and imaging were carried out with the COMMON ASTRONOMY SOFTWARE APPLICATION (CASA v4.6.0; McMullin et al. 2007). For source detection, we created “detection” maps by applying a 0$''$5 FWHM Gaussian taper in the uv-plane, to ensure sensitivity to extended flux from our SMGs that might fall below our detection threshold, as well as improving efficiency for selecting extended sources. This downweighting of the long baseline information results in final “detection” maps with a mean synthesized beam size of 0$''$73 \times 0$''$59 for Cycle 1, 0$''$56 \times 0$''$50 for Cycle 3 and 0$''$58 \times 0$''$55 for Cycle 4.

The CLEAN algorithm was used to create the continuum maps using multi-frequency synthesis mode with a natural weighting to maximize sensitivity. We initially created a dirty image from the combined spectral windows (SPWs) for each field and calculated the rms noise values. The fields were then initially cleaned to 3σ and then masking ellipses are placed on sources above 4σ and the sources are then cleaned to 1.5σ. The final cleaned, uv-tapered detection maps have mean depths of $\sigma_{870} = 0.25 \text{ mJy beam}^{-1}$ for Cycle 1, $\sigma_{870} = 0.34 \text{ mJy beam}^{-1}$ for Cycle 3 and $\sigma_{870} = 0.23 \text{ mJy beam}^{-1}$ in Cycle 4, the differences here largely being due to the varying resolutions of the observations in each ALMA cycle.

For source detection, SExtractor was initially used to find $>2\sigma$ peaks within the “detection” maps. Noise estimates were then calculated from the standard deviation in the integrated fluxes in 100 randomly placed 0$''$5 diameter apertures in each map. These were then used, along with the 0$''$5 diameter flux measured for each detection, to determine the signal-to-noise ratio (S/N) of the sources. As we used an aperture smaller than the beam size, the mean 0$''$5 aperture depths in the detection maps are approximately a factor of two deeper than the noise per beams quoted above (with the caveat of a corresponding aperture correction).

The choice of the size of the detection aperture and the S/N cut for the sample selection was made based on a trade-off between purity and depth of the catalog. The final catalog consists of the 695 sources that have a 0$''$5 aperture S/N ≥ 4.3 and fall within the primary beam of the ALMA maps. This threshold and aperture size was chosen to give us a 98% purity rate, P_f (2% contamination), calculated as follows:

$$P_f = \frac{N_p - N_n}{N_p},$$

where N_p is the number of positive sources detected above the chosen S/N limit (i.e., 695) and N_n is the number of sources detected above the same limit in the inverted detection maps (made by multiplying the detection maps by -1, Figure 1).

We confirm the behavior of the noise in our maps by comparing our number of “negative” sources from the inverted maps at our selected S/N threshold against that expected from a simple Gaussian distribution of independent synthesized beams (Dunlop et al. 2016). In AS2UDS, for our average restored beam size, there are roughly $\sim 450,000$ independent beams across the 716 ALMA pointings. For Gaussian statistics we would then expect ~ 8 “negative” sources at 4.3σ. However, as noted by Dunlop et al. (2016), based on Condon (1997), Condon et al. (1998), there are effectively twice as many statistically independent noise samples as one would expect from a naive Gaussian approach due to the non-independence of pixel values in synthesized imaging. This would result in an expected ~ 16 “negative” sources, or 2.3% \pm 0.5%, which is consistent with the number we detect.

For each of the detected sources, we then derived a 1$''$0 diameter aperture flux density from the primary beam corrected maps; these flux densities are aperture corrected and flux deboosted using the same methodology as Simpson et al. (2015a), as briefly described below.

2.3. Completeness and Flux Deboosting

To calculate the completeness and flux deboosting factors for our ALMA catalog, we inserted model sources into simulated ALMA maps and determined the properties of those that were recovered. We start with simulated noise maps, to make these as realistic as possible we used 10 residual maps output from CASA (i.e., an observed ALMA map where the source flux from any detected sources has been removed). The maps were

18 We detect the strongly lensed, $\sim 50 \text{ mJy}$, SMG “Orochi” (Ikarashi et al. 2011), but remove this from our analysis.
selected to match the distribution in observed σ_{870} for all 716 AS2UDS pointings. Model sources with flux densities drawn from a steeply declining power-law distribution with an index of -2, consistent with Karim et al. (2013) and Simpson et al. (2015a), and intrinsic FWHM sizes drawn uniformly from a range $0'' - 0''9$, were convolved with ALMA synthesized beams and inserted into 60,000 simulated noise maps. Then we applied our source detection algorithm and measured recovered fluxes as detailed above, with a successful recovery claimed for detections within the size of a synthesized beam, i.e., $0''6$, from the injected model source position.

The result of these simulations is that we estimate our catalog is 98% ± 1% complete for all our simulated sources at $\delta_{870} \geq 4$ mJy, with the incompleteness exclusively arising from the most extended simulated sources (intrinsic FWHM $> 0''6$). As found in Franco et al. (2018), our simulated maps show the intrinsic sizes of the submillimeter galaxies strongly effects the completeness fractions at low S/N. But, at our 4 mJy threshold, we are only missing a small number of the most extended galaxies. We note that our simulated sources had sizes which were uniformly distributed up to $0''9$, whereas previous studies suggest median submillimeter sizes of $\sim 0''3$ (Tacconi et al. 2006; Simpson et al. 2015b); therefore, the 98% ± 1% completeness is probably conservative.

We estimate the flux boosting, the effect of noise fluctuations in the overestimation of a source’s flux density, by calculating the ratio of the flux density for each recovered simulated source to the original input flux density. The fact that noise in the maps is approximately Gaussian, combined with the steep counts of faint sources, means that we find that fluxes are typically overestimated in the lower flux bins. However, again brighter than $S_{870} \geq 4$ mJy, the flux deboosting becomes a minor correction with a median correction factor of 0.98 ± 0.04 for the SMGs considered in this paper.

The complete catalog of SMGs from AS2UDS, with full descriptions of the source extraction, flux density measurements and flux deboosting will be presented in Stach et al. (2018, in preparation).

3. Analysis, Results, and Discussion

The AS2UDS catalog contains 695 SMGs (detected in 606 ALMA maps), with $S_{870} \geq 0.9$ mJy (4.3σ), across 716 ALMA fields centered on $>4\sigma$ single-dish submillimeter sources from S2CLS (Geach et al. 2017). The total area of the primary-beam coverage in our ALMA survey is equivalent to 47.3 arcmin2.

The AS2UDS SMG sample is roughly seven times larger than the previous largest sub/millimeter interferometric survey of single-dish submillimeter sources (ALESS; Hodge et al. 2013; Karim et al. 2013) and drawn from a field which is four times larger in terms of contiguous area. As was also found in ALESS, a fraction of our ALMA maps do not contain any detected SMGs (above 4.3σ significance); there are 108 of these “blank” maps (15% ± 2% of the survey). In addition, we have 79 maps (11% ± 1%) where the single-dish SCUBA-2 source breaks up into multiple SMGs at ALMA resolution. In Section 3.2, we show that the blank maps may, in part, be a result of similar “multiplicity” effects, as opposed to false positive detections in the original SCUBA-2 catalog.

With this nearly order-of-magnitude increase in the sample of SMGs, in this paper we present number counts of SMGs brighter than $S_{870} \sim 4$ mJy, above the original 4σ limit of the single-dish SCUBA-2 survey. We also utilize the available multi-wavelength data for the UKIDSS/UDS field to employ photometric redshifts for our SMGs to quantify what fraction of the SCUBA-2 sources corresponding to multiple ALMA SMGs are due to chance projections, rather than physical associations.

3.1. Flux Recovery

We start by determining the fraction of the original SCUBA-2 sources fluxes that are recovered in the sources we detect in the corresponding maps from ALMA. In the flux regime of interest in this paper, $S_{870} \geq 4$ mJy, we find that we recover a median fraction of 97.2% of the original SCUBA-2 flux from SMGs detected within the ALMA primary beam pointing of the corresponding SCUBA-2 parent source.

With respect to the “blank” maps, both the noise properties of the SCUBA-2 sources which resulted in “blank” maps and the noise properties of the ALMA observations of these maps are indistinguishable from those where ALMA detected an SMG. This suggests that these “blank” maps are not simply due to variations in the quality of the input catalog or follow-up observations. Similarly, it could be that many of the “blank” map sources are due to spurious false positives in the S2CLS parent sample. We test this by stacking Herschel/SPIRE maps at the locations of the 108 “blank” map sources, ranked in five bins of their SCUBA-2 flux. We recover emission in all the SPIRE bands (250, 350 and 500 μm) with flux densities between 7–20 mJy for all five flux bins. Even for the faintest 10% of SCUBA-2 sources with corresponding “blank” ALMA maps, we still recover SPIRE detections at 250 and 350 μm. Hence, we are confident that the majority of the “blank” maps are a result of genuine non-detections in ALMA and not false positive sources in the S2CLS map. However, these “blank” maps do typically correspond to fainter single-dish sources: the median flux of the “blank” maps is $S_{850} = 4.0 \pm 0.1$ mJy, compared with $S_{850} = 4.5 \pm 0.1$ mJy for the whole sample. Thus, it is possible that a strong increase in flux boosting in the original S2CLS catalog at $S/N \leq 4.5\sigma$ ($S_{870} \sim 3.6$–4.0 mJy) may play a part in explaining why ALMA detects no SMGs in these maps. To remove this concern, in our analysis, we only consider the number counts brighter than $S_{870} \geq 4$ mJy.

We conclude that with the sensitivities of our ALMA maps we can detect $S_{870} = 4$ mJy SMGs in even the shallowest AS2UDS maps across the entirety of the primary beam. In addition, based on our simulated ALMA maps described above, we have shown we have with reliable measured flux densities for the complete sample of 299 $S_{870} \geq 4$ mJy SMGs in the AS2UDS catalog presented here.

3.2. Number Counts

In Figure 2, we show the cumulative and differential number counts of the 299 870 μm selected SMGs from AS2UDS to a flux limit of $S_{870} = 4$ mJy. Both the cumulative and differential number counts are normalized by the area of the S2CLS UDS map from which the original targets were selected: 0.96 degree2. While the ALMA completeness factors are minimal for AS2UDS, the number counts do have to be adjusted for the incompleteness of the parent S2CLS survey. We correct our counts by factoring in the estimated incompleteness of the catalog of the S2CLS UDS map from Geach et al. (2017), who reported that the parent sample is effectively complete at ≥ 5 mJy, dropping to $\sim 88\%$ at ≥ 4.5 mJy and $\sim 83\%$ at ≥ 4 mJy.
As in Karim et al. (2013), the errors are calculated from both the Poissonian error and the individual flux uncertainties added in quadrature, where the flux uncertainty error is the standard deviation of the mean of the counts for each bin based on 1,000 resamples of the catalog, assigning random flux densities to each source within their individual error margins, Table 1. We also compare these counts with those from the published parent single-dish counts of the S2CLS UDS field (Geach et al. 2017), and the earlier ALESS survey (Karim et al. 2013). To convert the S2CLS 850 μm counts to a common S_{870}, we use a factor of $S_{870}/S_{850} = 0.95$, derived from a redshifted ($z = 2.5$), composite spectral energy distribution (SED) for SMGs from the ALESS survey (Swinbank et al. 2013), although we note that this correction is smaller than the estimated absolute calibration precision from S2CLS of 15% (Geach et al. 2017).

Compared to a single power-law fit, the number counts of SMGs show a steepening decline at brighter fluxes. As a result, the best fit to the differential number counts is with a double power-law function with the form

$$
\frac{dN}{dS} = \frac{N_0}{S_0} \left[\left(\frac{S}{S_0} \right)^\alpha + \left(\frac{S}{S_0} \right)^\beta \right]^{-1},
$$

where N_0 describes the normalization, S_0 the break flux density, and α and β the two power-law slopes. For our AS2UDS data, the best-fit parameters found are $N_0 = 1200^{+200}_{-300}$ deg$^{-2}$, $S_0 = 5.1 \pm 0.7$ mJy, $\alpha = 5.9^{+1.3}_{-0.8}$ and $\beta = 0.4 \pm 0.1$.

At $S_{870} \geq 4$ mJy, we derive a surface density of 390^{+80}_{-70} deg$^{-2}$, corresponding to one SMG per 5 arcmin2 or one source per 130 ALMA primary beams at this frequency. Figure 2 shows a systematic reduction in the surface density of SMGs compared with the single-dish estimate at all fluxes. This reduction from the SCUBA-2 counts to AS2UDS is statistically significant for sources fainter than $S_{870} = 8$ mJy, with a reduction of a factor of $28% \pm 2%$ at $S_{870} > 4$ mJy and $41% \pm 8%$ at $S_{870} > 7$ mJy. At the very bright end ($S_{870} > 12$ mJy), the number of SMGs is so low (just two in our

~ 1 deg2 field) that the reduction in the relative number counts is poorly constrained, $30% \pm 20%$. Our bright-end reduction does agree with that seen in Hill et al. (2018), where they found a $24% \pm 6%$ reduction between 11–15 mJy in their SMA follow-up counts compared with the original SCUBA-2 parent sample. This agreement is unsurprising as a large number of their sources are drawn from our ALMA survey of the UDS field. We also note that, as with our earlier pilot study of UDS in Simpson et al. (2015a), that we do not see an extreme drop-off of the counts above $S_{870} \sim 9$ mJy as was suggested from the smaller-area ALESS survey (Karim et al. 2013).

As we discuss below, the main factor that appears to be driving the the systematically lower counts of SMGs from interferometric studies, compared with the single-dish surveys, is that a fraction of the brighter single-dish sources break up into multiple fainter sources (with flux densities of $S_{870} \lesssim 1$–4 mJy)
in the interferometer maps and thus fall below the single-dish limit adopted for our counts. This effect has been termed “multiplicity” (Karim et al. 2013; Simpson et al. 2015a). An additional factor is the 12 ALMA “blank” maps of S2CLS sources brighter than $S_{870} \geq 4$ mJy, which also contribute to lowering the normalization of the number counts. These S2CLS sources have a mean S/N of 5.8 ± 0.8, and are therefore unlikely to be spurious SCUBA-2 detections and our Herschel/SPIRE stacking confirms this; instead, the most likely explanation for their ALMA non-detection is “extreme” multiplicity, where the single-dish source breaks up into several faint SMGs below the detection limit of our ALMA maps. For these brighter SCUBA-2 sources with “blank” ALMA maps this would require that the single-dish source breaks up into ≥4 sources to result in a non-detection.

3.3. Multiplicity

There are differing claims in the literature regarding the influence of multiplicity of SMGs on single-dish submillimeter surveys. This is a result of both the differing depths of the interferometric studies used to investigate this issue and the different definitions of “multiplicity” adopted in these works. Our survey has a relatively uniform sensitivity of $\sigma_{870} \sim 0.25$ mJy beam$^{-1}$, therefore we adopt a fixed S_{870} limit to identify multiple SMGs. We follow Simpson et al. (2015a) and define a multiple map as any field with more than one $S_{870} \geq 1$ mJy SMG within our ALMA Band 7 primary beam (i.e., within $\sim 9''$ of the original SCUBA-2 detection locations). At the redshift of SMGs, this corresponds to borderline U/LIRG systems, $L_{IR} \geq 10^{12} L_{\odot}$, which have SFRs of the order of $10^{3} M_{\odot}$ yr$^{-1}$ (Swinbank et al. 2013). We also believe this is a more physical choice than, for example, using the relative submillimeter brightness of the two sources to decide if they constitute a “multiple,” as the relative fluxes may have little relevance to their other physical properties (e.g., mass or redshift) that are essential to understand their significance.

In our full sample, we have maps with more than one $S_{870} \geq 1$ mJy SMG in 79 of the 716 observations (11% ± 1%). We note that at 1 mJy our ALMA observations are not complete, therefore this sets the multiplicity as a lower limit. The surface density of $S_{870} \sim 1$ mJy SMGs is ~ 1 arcmin$^{-2}$, as estimated from unbiased ALMA surveys (Aravena et al. 2016; Dunlop et al. 2016). Hence, we expect to find one $S_{870} \sim 1$ mJy SMG per ~ 19 ALMA primary beams or in ~ 5% of the maps, compared to the observed rate of ~ 11% (one per nine ALMA maps). We note, however, that the presence of a secondary source in these maps may act to increase the likelihood of the inclusion of that map into our sample by boosting the apparent SCUBA-2 flux into the S2CLS catalog. To address this potential bias, we estimate the multiplicity rate for the 179 brighter single-dish sources with deboosted SCUBA-2 flux densities of $S_{850} \geq 5$ mJy. The rate of multiples in these brighter SCUBA-2 sources is much higher 51/179 (28% ± 2%), suggesting that the presence of a detected secondary SMG in faint single-dish sources does not strongly influence the inclusion of that single-dish source into our parent catalog. Instead, the influence of multiplicity in faint single-dish sources is more likely to be seen through the presence of “blank” maps. Hence, we also place an upper limit on the multiplicity in our full survey by assuming that all of the blank fields are a result of the blending of multiple faint SMGs, giving 187/716 (26% ± 2%) multiples.

As implied above, the multiplicity appears to depend on the single-dish flux; as expected, as the inclusion of emission from other SMGs within the beam can only act to increase the apparent flux of the (blended) single-dish source. As described in Section 1, early observations suggested that roughly a third of $S_{850} > 5$ mJy single-dish sources could be blends of multiple SMGs, with this rate increasing to 90% for $S_{870} > 9$ mJy (e.g., Karim et al. 2013). As shown in Figure 3, for AS2UDS, we find a frequency of multiplicity (ignoring “blank” maps) of 28% ± 2% for $S_{870} > 5$ mJy rising to 44%–16% at $S_{850} > 9$ mJy.

In Figure 3, we also plot the fractional contribution of each secondary and tertiary ALMA SMG (ranked by flux density) to the total recovered ALMA flux density of all the SMGs for each field with multiple SMGs. The mean fraction of the total flux contributed by the secondary component is 34% ± 2% with no significant variation of this fraction as a function of the original deboosted SCUBA-2 source flux. The 64% ± 2% contribution from the primary components in maps with multiple SMGs is broadly consistent with the semi-analytic model of Cowley et al. (2015), which suggested that 70% of the flux density in blended sources would arise from the brightest component.

3.3.1. Physical Association of the Multiple SMGs

Based on our Cycle 1 pilot study, Simpson et al. (2015a) showed that the number density of secondary SMGs in the maps of their 30 bright SCUBA-2 sources was 80 ± 30 times that expected from blank-field number counts, suggesting that at least a fraction of these SMGs must be physically associated. Using our large sample, we now seek to test this further. The
most reliable route to test for physical association between SMGs in the same ALMA map would be to use spectroscopic redshifts for the SMGs. However, as the current spectroscopic coverage of SMGs in AS2UDS is sparse, we instead exploit photometric redshifts to undertake this test. We use the photometric redshift catalog constructed from the UKIDSS DR11 release (W. Hartley et al. 2018, in preparation), where a full description of the DR11 observations will be given in O. Almaini et al. (2018, in preparation). These photometric redshifts are derived from twelve photometric bands (U, B, V, R, I, z, J, H, K, [3.6], [4.5]) and applied to 296,007 K-band-detected sources using EAZY (Brammer et al. 2008); details of the methodology can be found in Simpson et al. (2013). The accuracy of these photometric redshifts is investigated in W. Hartley et al. (2018, in preparation) from comparison with the ~6,500 sources in the UKIDSS DR11 catalog that have spectroscopic redshifts, finding $|\Delta z_{\text{spec}} - \Delta z_{\text{phot}}|/(1 + z_{\text{spec}}) = 0.019 \pm 0.001$ with a median precision of ~9%. Around 85% of the ALMA maps fall in regions of the UDS with high-quality photometric redshifts and these are considered in the following analysis.

In Figure 4, we plot the distribution of the differences in photometric redshifts (Δz_{phot}) for pairs of SMGs in those single-dish maps with multiple ALMA-detected SMGs. We limit our analysis to SMGs that fall within the region with high-quality photometric redshifts and which have K-band detections within 0″6 radius from the ALMA positions (497 of the 695 SMGs) for both sources in the map. This yields 46 pairs of SMGs (92 SMGs in total) from the 164 SMGs in the 79 maps with multiple SMGs. We find that 52% of these pairs (24/46) have $\Delta z_{\text{phot}} < 0.25$. We note that 2″ diameter apertures were employed for the photometry in the DR11 catalog, therefore the Δz_{phot} was additionally calculated for only pairs that are separated by greater than 2″, thus removing the possibility of neighbors contaminating photometry and thus photometric redshifts. This still results in 53% of pairs having $\Delta z_{\text{phot}} < 0.25$.

To assess the significance of this result, we next quantify whether the 24 pairs of blended SMGs with $\Delta z_{\text{phot}} < 0.25$ is statistically in excess of expectations for 46 random SMG pairs. To do this, we determine the expected distribution of Δz_{phot} for pairs of SMGs randomly selected from the 497 SMGs with high-quality photometric redshifts across the full field, and plot this in Figure 4. To perform this test, we sample the random distribution of our unassociated SMGs 10,000 times, each time drawing 46 pairs, and test how frequently >52% of these are found to have $\Delta z_{\text{phot}} < 0.25$. This analysis shows that the median fraction of random pairs with $\Delta z_{\text{phot}} < 0.25$ is 20% ± 2% compared with the 52% for the actual pairs of SMGs. This strongly suggests that a significant fraction of the single-dish sources that resolve into multiple optically bright (e.g., those with photometric redshifts) SMGs are in fact physically associated galaxies on projected angular scales of ~10–100 kpc scales. If we assume that all pairs without photometric redshifts for both SMGs are physically unassociated, a conservative estimate, then comparing with the total number of ALMA fields with multiple SMGs, we can place a lower limit of at least 30% (24 pairs out of 79) on the fraction of all multiple SMG fields arising from closely associated galaxies. This is consistent with previous spectroscopic studies of SMG multiples e.g., ~40% of SMG pairs physically associated combining the estimates from Wardlow et al. (2018) and Hayward et al. (2018). Of course, to truly test this requires a spectroscopic redshift survey of a much large sample of these multiple SMG systems.

4. Conclusions

We have presented the first results from a large ALMA 870 μm continuum survey of 716 single-dish submillimeter sources drawn from the SCUBA-2 Cosmology Legacy Survey map of the UKIDSS UDS field. These sensitive, high-resolution ALMA observations provide the largest sample of interferometrically detected submillimeter galaxies constructed to date, with 695 SMGs above 4.3σ (corresponding to a false detection rate of 2%). This sample is seven times larger in terms number of SMGs and is drawn from a single-dish survey that has four times the area of the previous largest interferometric SMG survey. The main conclusions of this work are as follows:

1. We construct resolved 870 μm differential and cumulative number counts brighter than $S_{870} \geq 4$ mJy (a conservative choice based on the flux limit of the parent single-dish S2CLS survey), which show a similar shape to the published number counts from S2CLS, but with a systematically lower normalization at fixed flux density, by a factor of 1.28 ± 0.02. Much of this reduction in the SMG counts, is due to the influence of multiplicity, i.e., single-dish sources splitting into two or more SMGs detected by ALMA. We fit a double power-law function to our differential number counts to easily facilitate future comparison with observations in other fields and simulations.

2. In 11% ± 1% of our 716 ALMA maps, we detect more than one SMG with $S_{870} \geq 1$ mJy corresponding to a $L_{850} \geq 10^{12} L_{\odot}$ galaxy in a region with a projected diameter of ~100 kpc at $z = 2$. This multiplicity fraction varies from 26% ± 2% for all single-dish sources with
3. By comparing the photometric redshift differences between pairs of SMGs in ALMA maps with multiple components, we show that a significant fraction of these pairs are likely to be physically associated, with $\geq 30\%$ of all multiple SMG maps arising from physically associated galaxies.

S.M.S. acknowledges the support of STFC studentship (ST/N50404X/1). A.M.S. and I.S. acknowledge financial support from an STFC grant (ST/P000541/1). I.S., E.A.C., and B.G. also acknowledge support from the ERC Advanced Investigator program DUSTYGAL 321334, and a Royal Society/Wolfson Merit Award. J.E.G. acknowledges support from a Royal Society University Research Fellowship. J.L.W. acknowledges the support of an STFC grant supporting from an STFC grant #2015.1.01528.S, and A.M.S. and I.S. acknowledge support from the ERC Advanced Grant agreement 646, 1784.

References

Fang Xia An @ https://orcid.org/0000-0001-7943-0166
Omar Almaini @ https://orcid.org/0000-0001-9328-3991
A. W. Blain @ https://orcid.org/0000-0001-7489-5167
Chian-Chou Chen @ https://orcid.org/0000-0002-3805-0789
C. J. Conselice @ https://orcid.org/0000-0003-1949-7638
E. A. Cooke @ https://orcid.org/0000-0003-3843-8939
K. E. K. Coppin @ https://orcid.org/0000-0002-0729-2988
Duncan Farrah @ https://orcid.org/0000-0003-1748-2010
R. J. Ivison @ https://orcid.org/0000-0001-5118-1313
Douglas Scott @ https://orcid.org/0000-0002-6878-9840
J. L. Wardlow @ https://orcid.org/0000-0003-2376-8971
P. van der Werf @ https://orcid.org/0000-0001-5434-5942

ORCID iDs

Stuart M. Stach @ https://orcid.org/0000-0003-1122-6948
Ian Smail @ https://orcid.org/0000-0003-3037-257X
A. M. Swinbank @ https://orcid.org/0000-0003-1192-5837

Simpson, J. M., Swinbank, A., Smail, I., et al. 2014, ApJ, 788, 125
Smail, I., Ivison, R., Blain, A., et al. 2002, MNRAS, 336, 583

Simpson, J., Smail, I., Ivison, R., & Blain, A. 1997, ApJL, 490, L5
Dunlop, J., Ivison, R., & Smail, I. 2001, ApJ, 561, 568

Lawrence, A., Warren, S., Almaini, O., et al. 2007, MNRAS, 379, 1599
Lilly, S. J., Eales, S. A., Gear, W. K., et al. 1999, ApJ, 518, 641

Chapman, S. C., Blain, A., Smail, I., & Ivison, R. 2005, ApJ, 622, 772
Chapman, S. C., Blain, A., Ivison, R., & Smail, I. 2001, Nature, 409, 474
Blain, A. W., Smail, I., Ivison, R., Kneib, J.-P., & Frayer, D. T. 2002, PhD, 369, 111
Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503
Casey, C. M., Chen, C.-C., Coppi, P. G., & Cowley, W. I. 2015, MNRAS, 446, 1784
Hicks, R. C., Wardlow, J., Smail, I., et al. 2012, MNRAS, 421, 284
Hill, R., Chapman, S. C., Scott, D., et al. 2018, MNRAS, 477, 2042
Hodge, J., Karim, A., Smail, I., et al. 2013, ApJ, 768, 91
Hughes, D. H., Serjeant, S., Dunlop, J., et al. 1998, Nature, 394, 241
Ikariashi, S., Kohno, K., Aguirre, J., et al. 2011, MNRAS, 415, 3081
Ivison, R. J., Greve, T., Dunlop, J., et al. 2007, MNRAS, 380, 199
Karim, A., Swinbank, A., Hodge, J., et al. 2013, MNRAS, 432, 2
Lacey, C. G., Baugh, C. M., Frenk, C. S., et al. 2003, MNRAS, 349, 1704
Lawrence, A., Warren, S., Almaini, O., et al. 2007, MNRAS, 379, 1599
Lilly, S. J., Eales, S. A., Gear, W. K., et al. 1999, ApJ, 518, 641
Magnelli, B., Lutz, D., Santini, P., et al. 2012, A&A, 539, A155
McMillin, J., Waters, B., Schreiber, D., Young, W., & Golap, K. 2007, in ASP Conf. Ser. 376, Astronomical Data Analysis Software and Systems XVI, ed. R. A. Shaw et al. (San Francisco, CA: ASP), 127
Simpson, C., Westoby, P., Arumugam, V., et al. 2013, MNRAS, 433, 2647
Simpson, J., Smail, I., Swinbank, A., et al. 2015a, ApJ, 807, 128
Simpson, J., Smail, I., Swinbank, A., et al. 2015b, ApJ, 799, 81
Simpson, J., Smail, I., Swinbank, A., et al. 2017, ApJ, 839, 58
Simpson, J. M., Swinbank, A., Smail, I., et al. 2014, ApJ, 788, 125
Smail, I., Ivison, R., & Blain, A. 1997, ApJL, 490, L5
Swinbank, A., Simpson, J., Smail, I., et al. 2013, MNRAS, 438, 1267
Tacconi, L. J., Neri, R., Chapman, S., et al. 2006, ApJ, 640, 228
Torti, S., Stroliné, V., Magnelli, B., et al. 2014, ApJ, 782, 68
Wang, W.-H., Cowie, L. L., Barger, A. J., & Williams, J. P. 2010, ApJL, 726, L18
Wardlow, J., Smail, I., Coppin, K., et al. 2011, MNRAS, 415, 1479
Wardlow, J. L., Smail, I., Swinbank, A., et al. 2018, MNRAS, in press, (arXiv:1806.05193)
Weiß, A., Kovács, A., Coppin, K., et al. 2009, ApJ, 707, 1201
Whitaker, K. E., Kriek, M., Van Dokkum, P. G., et al. 2012, ApJ, 745, 179
Wilkinson, A., Almaini, O., Chen, C.-C., et al. 2016, MNRAS, 464, 1380
Zavala, J., Yun, M., Aretxaga, I., et al. 2015, MNRAS, 452, 1140

Stach et al.

© 2018 American Astronomical Society. All rights reserved. To view the captured reference information, please visit https://orcid.org/0000-0003-3843-8939.