Histochemistry as a unique approach for investigating normal and osteoarthritic cartilage

G. Musumeci,1 P. Castrogiovanni,1 V. Mazzone,2 M. A. Szychlinska,1 S. Castorina,1 C. Loreto1

1Department of Bio-Medical Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania
2Department G.F. Ingrassia, Anatomy, School of Medicine, University of Catania, Italy

Cartilage

Hyaline cartilage is a flexible connective tissue, found in many areas of human and other vertebrate bodies, that covers the opposing osseous ends of every diarthrodial human joint, and in the growth plate of the metaphysis. To protect the underlying bone, articular cartilage allows a continuous and almost frictionless movement of the bony skeleton over years. In the knees, one of the protection mechanisms against cartilage wear comes from the presence of the two menisci.

Cartilage tissue is composed of specialized cells called chondroblasts and chondrocytes, and has unique viscoelastic and compressive properties provided by the extracellular matrix. The latter is mainly composed of collagen type II and abundant ground substance, rich in proteoglycan aggrecans and elastin fibers. Type II collagen is responsible for the tensile strength of the cartilage, while aggrecan provides the osmotic resistance for cartilage to withstand compressive loads.

According to the amount of these components, cartilage is classified into three types: elastic cartilage, fibrocartilage and hyaline cartilage. Histologically, elastic cartilage resembles hyaline cartilage, with a dense network of finely branched elastic fibers. Fibrous cartilage, unlike other types of cartilage, contains mainly type I collagen. It may be found in the intra-articular lips, disks, menisci, and intervertebral discs, and it serves as transitional tissue between dense connective tissue (tendon) and hyaline cartilage.

The chondrocytes in the hyaline cartilage are located in lacunae within the matrix (forming chondrons together with the pericellular matrix) and represent only 5% to 10% of the total cartilage volume, but they are crucial to the maintenance of a stable extra cellular matrix. Nutrients and cellular repair components are transported to the chondrocytes by diffusion from the synovial fluid, helped by the pumping action generated by different joint movement of the articular cartilage.

Thanks to histochemistry and microscopy, it is possible to highlight the characteristic organization of articular cartilage that shows a heterogeneous distribution of cell and matrix components through its width. Four zones are evident in it (Figure 1): superficial zone, intermediate (or middle zone), radial zone (or deep zone) and calcified cartilage (or calcified zone).

There is a superficial zone, where chondrocytes produce and lay mainly collagen type II in a parallel direction to the surface of the tissue; a middle zone characterized by randomly oriented collagen fibers; a deep zone, located at the cartilage-bone interface where the collagen fibers are aligned perpendicular to the surface; and the calcified zone. The superficial zone contains the highest proportion of collagen, which results in the high tensile modulus of the tissue and indicates that the main function is to resist the shear stress at the joint surface. The middle zone contains more proteoglycans, which exhibit repulsive negative charges that are neutralized by positive ions, leading to swelling pressures and its highly stable hydrated structure. These proteoglycans are responsible for the hyaline cartilage’s distinctive compression-resistance properties, due to the increasing drag forces between the fluid and the matrix, that maintain the fluid within the tissue as the cartilage is compressed. As a consequence, hyaline cartilage of the joint becomes stiffer as the rate of loading increases. Due to its intrinsic organization, hyaline cartilage presents a high compressive modulus; consistently, biomaterials designed with nonlinear, inhomogeneous, and viscoelastic properties that imitate the behavior of native hyaline cartilage are most likely to succeed in the functional repair of cartilage defects.
Only small defects associated with minimal loss of matrix components can be regenerated by hyaline cartilage. Without any neural, lymphatic or vascular supply, cartilage resists heavy mechanical load over years without degenerative changes.5,6 Due to its unique properties, cartilage shows little or no intrinsic capacity for an effective healing response. More extensive defects exceed the repair capacity and consequently the damage becomes permanent.

Osteoarthritis

Osteoarthritis (OA) is one of the most relevant diseases of high social and economical importance in the field of orthopedics, and it is worldwide the joint disease with the highest prevalence.28-31 It also influences disability in middle-age and older populations, especially in developing countries. In advanced stages, the patients suffer from severe pain and restriction of mobility.28-31 The consequence in many cases is an inability to work and often the substitution of the diseased joint with an artificial implant (arthroplasty) becomes inevitable.

Typical features of OA are the degeneration or progressive loss of the structure and functionality of articular cartilage. The precise mechanism of cartilage degradation in OA is still unclear, but a complex interplay of genetic, environmental, metabolic and biochemical factors is proposed. As cartilage tissue itself has only very limited capacities of self-renewing, the development of this disorder is chronic and progressive.28-31 Generally, OA is diagnosed in more advanced stages, when clinical and radiographic (X-rays, MRI, Arthroscopic surgery) signs become evident (Figures 2 and 3). At this point the options for therapeutic intervention without surgery are limited. It is, therefore, crucial to elucidate the physiopathology in the course of OA and especially in early stages, to develop new diagnostic and therapeutic strategies.

Numerous studies on human osteoarthritic tissue and in animal models have addressed various aspects of OA progression to get a better understanding of the pathophysiology of this disease. OA is classically defined as a progressive degenerative rather than an inflammatory disease, and it is characterized by deterioration of joints, including loss of articular cartilage and subchondral bone, as well as osteophyte formation which lead to chronic pain and functional restrictions in the affected joints (Figure 4).28-31 Different factors can be involved in the development of OA: mostly traumatic events are causative, but there are other factors like genetic predisposition, defective position of joints, ageing and malnutrition, which all lead to similar alterations in the joint cartilage. The primary
symptoms associated with OA include: pain (mild, moderate, or severe), stiffness, limited range of motion of the joint, localized swelling. It is known that OA is the result of mechanical and biological processes that modify cartilage homeostasis. Under physiological conditions, chondrocytes maintain equilibrium between the synthesis and degradation of extra cellular matrix components, thus regulating the structural and functional integrity of cartilage.

Articular cartilage homeostasis is the result of an intricate interplay between anabolic and catabolic, anti- and pro-inflammatory, anti- and pro-apoptotic activities. Chondrocytes represent the versatile regulators of this cartilage equilibrium. As a reaction to cartilage loss the newly formed tissue is mostly fibrous (major expression of type I collagen and too small amounts of aggrecan), and the mechanical capacities are significantly reduced compared to healthy hyaline cartilage. So, therapeutic intervention is needed to improve the quality of the regenerate cartilage. It is of crucial importance to know about the features and underlying molecular mechanisms of cartilage destruction in OA in order to develop and improve diagnostic and therapeutic approaches. A major problem in OA research is that the disease is mostly not diagnosed until the progressed and pronounced alterations in the joint lead to pain and to radiographically detectable changes. Cartilage tissue from early stage OA is not easily available since the disease is usually not clinically apparent. For this reason a number of animal models of OA have been developed to examine the early features of cartilage degeneration.

Today, tissue engineering is a widely studied alternative to avoid knee replacement surgery in OA.

Microscopy and histochemical techniques obviously represent an especially suitable approach to investigate in situ the heterogeneous distribution of cell and matrix components through the cartilage width.

Histological evaluation and characterization of cartilage tissue under normal and pathological condition is normally done with light microscopy. Descriptive histology and histomorphometry are two main types of histological study. Depending on the particular situation, either method or both may be used. Descriptive histology is used to provide a general evaluation of the tissue of interest, including the morphology, structure, and arrangement of cells, matrix, implant, or tissue-implant interface. Scoring

Histological and histochemical techniques for studying articular cartilage

Figure 3. Arthroscopic image of the healthy hyaline cartilage from knee joint.

Figure 4. Articular knee cartilage from donors. Hematoxylin and Eosin staining. A) Normal articular knee cartilage; cells in the superficial zone are small and flat; cells in the middle and deep zone are arranged in columns; the tidemark is intact. B, C) Articular knee cartilage at early OA stage; moderate OA cartilage, the structure of the collagen network is damaged, which leads to reduced thickness of the cartilage; the tidemark is almost intact. D) Articular knee cartilage at advanced OA stage, due to aging; severe OA cartilage, cells are arranged in clusters especially around fissures or disappear completely as the disease progresses; the organization of cartilage is completely disordered and replaced by fibrocartilaginous, scar-like tissue with fibroblast like cells.
systems are often designed in order to semi-
quantitatively control the components of interest. An ex-
ample of this is the estimation of OA in cartilage tissue.30,31 advanced OA is scored as 3, moderate as 2, mild as 1, and no OA as 0. The data are analysed using nonparametric analyses of vari-
ance. Example of other similar scoring system can be found in the literature for evaluation of fracture healing, articular cartilage repair, and biocompatibility of implants in soft tissue.3 Many staining methods are available. The clas-
sic hematoxylin and eosin staining remains the basic and most commonly used procedure, and can be used for both decalcified and undecalci-
fied specimens.28,29,30, The Goldner’s trichrome stain-
ing and the von Kossa staining allow dif-
f erentiation of osteoid from mineralized bone matrix, although von Kossa staining provides little additional information. Other common stainings for bone sections are used. Giemsa, toluidine blue (often used for ground sections), methylene blue/basic fuchsin and Masson’s trichrome are suitable to evaluate the presence of acidophilic bone tissue; Alizarin-S staining is used to identify types I, II, III collagen, glycoproteins, laminin, tenasin, and fibronectin in plastic- or paraffin-embedded specimens. Common macro-
molecules such as cartilage matrix protein, types I, II and III collagen, and proteoglycans have also been successfully localized in carti-
lage specimens. Other cartilage and fibrocarti-
lage biochemical markers for which immuno-
histochemical staining methods have been developed include types V, VI, X and XI collagen chondroitin sulphate, keratin sulphate, stromelysin, tumor necrosis factor-α (Tnf-α), TNF receptors, fibronectin, AQPs, RUNX, ST2, ILs, MMPs, apoptosis markers, β-defensins, lubricin and many others.22-18,21,28,31,33,34,40-48.

Concluding remarks

In conclusion, we can assert that thanks to routine staining procedure and more special-
ized histochemistry, it is possible to obtain spec-
cific informations on both physiological and pathological articular cartilage. Furthermore, specific immunohistochemical techniques are now suitable. As already said, OA is often diag-
nosed in advanced stages, and with this narra-
tive review, we wished to underline how crucial is to know more and more about the phys-
opathology in the course and especially in early stages of OA to develop new diagnostic and ther-
apeutic strategies.

References

1. Gigante A, Manzotti S, Bevilacqua C, Orciani M, Di Primio R, Mattioli-Belmonte M. Adult meenchymal stem cells for bone and cartilage engineering: effect of scaffold materials. Eur J Histoch 2008;52:169-74.
2. Nanci A, Wazen R, Nishio C, Zalaz SF. Immunocytochemistry of matrix proteins in calcified tissues: functional biochemi-
istry on section. Eur J Histoch 2008; 52:201-14.
3. Shibata S, Sakamoto Y, Baba O, Qin C, Murakami G, Cho BH. An immunohisto-
chemical study of matrix proteins in the craniofacial cartilage in midterm human fetuses. Eur J Histoch 2013;57:e39.
4. Narducci P, Bortol R, Bareggi R, Nicolin V. Chlthrin-dependent endocytosis of mem-
brane-bound RANKL in differentiated osteoclasts. Eur J Histoch 2010;54:e6.
5. Musumeci G, Loreto C, Castorina S, Imbesi R, Leonardi R, Castrogiovanni P. Current Concepts in the Treatment of Cartilage Damage. A Review. Ital J Anat Embryol 2013;118:189-203.
6. Musumeci G, Loreto C, Castorina S, Imbesi R, Leonardi R, Castrogiovanni P. New per-
spectives in the treatment of cartilage damage. Poly(ethylene glycol) diacrylate (PEGDA) scaffold. A review. Ital J Anat Embryol 2013;118:204-10.
7. Pichler K, Musumeci G, Viegut I, Martinelli E, Sadoghi P, Loreto C, Weinberg AM. Towards a better understanding of bone bridge formation in the growth plate – an immunohistochemical approach. Connect Tissue Res 2013;54:408-15.
8. Musumeci G, Castrogiovanni P, Loreto C, Castorina S, Pichler K, Weinberg AM. Post-
traumatic caspase-3 expression in the adja-
cent areas of growth plate injury site. A morphological study. Int J Mol Sci 2013; 14:15767-84.
9. Pichler K, Kraus T, Martinelli E, Sadoghi P, Musumeci G, Uggowitzer PJ, Weinberg AM. Cellular reactions to biodegradable magne-
sium alloys on human growth plate chon-
drocytes and osteoblasts. Int Orthop 2014; 38:881-9.
10. Bradaschhia-Correa V, Barrence FAC, Ferreira LB, Massa LF, Arana-Chavez VE. Effect of alendronate on endochondral ossi-
fication in mandibular condyles of growing rats. Eur J Histoch 2012;56:e24.
11. Shibata S, Fukuoka H, Sato R, Abe T, Suzuki Y. An in situ hybridization study of the insulin-like growth factor system in devel-
oping condylar cartilage of the fetal mouse mandible. Eur J Histoch 2012;56:e23.
12. Musumeci G, Carnazza ML, Leonardi R, Loreto C. Expression of β-defensin-4 in “an in vivo and ex vivo model” of human osteoarthritic knee meniscus. Knee Surg Sports Traumatol Arthrosc 2012;20:216-22.
13. Musumeci G, Loreto C, Carnazza ML, Cardile V, Leonardi R. Acute injury affects lubricin expression in knee menisci. An immunohistochemical study. Ann Anat 2013;195:151-8.
14. Musumeci G, Leonardi R, Carnazza ML, Cardile V, Pichler K, Weinberg AM, Loreto C. Aquaporin 1 (AQPI) expression in exper-
imentally induced osteoarthritic knee menisci: an in vivo and in vitro study. Tissue Cell 2013;45:145-52.
15. Lehmann M, Martin F, Mannigel K, Kalschmied K, Sack U, Anderer U. Three-
dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in
vitrupoated human articular chondrocytes. Eur J Histochem 2013;57:e31.

16. de Moraes LOC, Lodi FR, Gomes TS, Oshima CTF, Marques SR, Lancellotti CLP, Rodriguez-Vázquez JP, Mérida-Velasco JR, Alonso LG. Immuno histochemical expression of types I and III collagen antibodies in the temporomandibular joint disc of human fetuses. Eur J Histochem 2011;55:e24.

17. Kiga N, Tojo I, Matsumoto T, Hiraishi Y, Shinohara Y, Makino S, Fujita S. Expression of lumican and fibromodulin following interleukin-1 beta stimulation of disc cells of the human temporomandibular joint. Eur J Histochem 2011;55:e11.

18. Loreto C, Almeida LE, Migliore MR, Caltabiano M, Leonardii R. TRAIL, DR5 and caspase 3-dependent apoptosis in vessels of diseased human temporomandibular joint disc. An immunohistochemical study. Eur J Histochem 2010;54:e40.

19. Matsumoto T, Inayama M, Tojo I, Kiga N, Fujita S. Expression of hyaluronan synthase 3 in deformed human temporomandibular joint discs: in vivo and in vitro studies. Eur J Histochem 2010;54:e50.

20. Loreto C, Musumeci G, Castorina A, Martinez G. Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodeling, vimentin-positive cells and cell death. Ann Anat 2011;193:156-62.

21. Loreto C, Leonardii R, Musumeci G, Pannone G, Castorina S. An ex vivo study on immunohistochemical localization of MMP-7 and MMP-9 in temporomandibular joint discs with internal derangement. Eur J Histochem 2013;57:e12.

22. Kiga N, Tojo I, Matsumoto T, Hiraishi Y, Shinohara Y, Fujita S. Expression of lumican related to CD34 and VEGF in the articular disc of the human temporomandibular joint. Eur J Histochem 2010;54:e34.

23. Johnstone B, Alini M, Cucchiari M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ. Tissue engineering for articular cartilage repair. J Biomech 2004;37:447-2.

24. Park S, Hung CT, Ateshian GA. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage 2004;12:65-73.

25. Guilak F, Butler DL, Goldstein SA. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res 2001;391:295-305.

26. Musumeci G, Loreto C, Carnazza ML, Martinez G. Characterization of apoptosis in articular cartilage derived from the knee joints of patients with osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2011;19:307-13.

27. Musumeci G, Carnazza ML, Loreto C, Leonardi R, Loreto C. β-defensin-4 (HBD-4) is expressed in chondrocytes derived from normal and osteoarthritic cartilage encapsulated in PEGDA scaffold. Acta Histochem 2012;114:805-12.

28. Musumeci G, Loreto C, Carnazza ML, Coppolino F, Cardile V, Leonardi R. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol) diacrylate (PEGDA) scaffold. Eur J Histochem 2011;55:e31.

29. Musumeci G, Loreto C, Carnazza ML, Strehin I, Eliseeff J. OA cartilage derived chondrocytes encapsulated in poly(ethylene glycol) diacrylate (PEGDA) for the evaluation of cartilage restoration and apoptosis in an in vitro model. Histol Histopathol 2011;26:1265-78.

30. Merashly M, Uthman I. Management of knee osteoarthritis: an evidence-based review of treatment options. J Med Liban 2012;60:237-42.

31. Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S, Carnazza ML, et al. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner Metab 2013;3:274-84.

32. Pichler K, Loreto C, Leonardi R, Reuber T. Osteoarthritic cartilage encapsulated in PEGDA scaffold. Acta Histochem 2012;55:e11.

33. Martini D, Trirè A, Zizzari VL, Zara S, La Scala W. Apoptosis in displaced temporomandibular joint disc: an immunohistochemical study. Histol Histopathol. 2013;28:1185-96.

34. Pichler K, Loreto C, Reuber T, Weinberg AM, Musumeci G. In rat with glucocorticoid-induced osteoporosis, RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training). Histol Histopathol. 2013;28:1185-96.

35. Teti G, Salvatore V, Ruggeri A, Manzoli L, Oshima CT, Marques SR, Lancellotti CLP, Rodriguez-Vázquez JP, Muzio L. A histochemical and colorimetric assay. Eur J Histochem 2013;57:e32.

36. Musumeci G, Trovato FM, Pichler K, Weinberg AM, Loreto C, Castrogiovanni P. Extra-virgin olive diet and mild physical activity prevent cartilage degeneration in an osteoarthritic model. An “in vivo” and “in vitro” study on lubricin expression. Journal of Nutritional Biochemistry 2013;24:2064-75.

37. Loreto C, Lo Castro E, Musumeci G, Loreto F, Rapisarda G, Rezzani R, Castorina S, Leonardi R, Rusu MC. Aquaporin 1 expression in human temporomandibular disc. Acta Histochem 2012;114:744-8.

38. Loreto C, Galanti C, Almeida LE, Leonardi R, Pannone G, Musumeci G, et al. Expression and localization of aquaporin-1 in temporomandibular joint disc with internal derangement. J Oral Pathol Med 2012;41:642-47.

39. Leonardi R, Musumeci G, Sicurezza E, Loreto C. Lubricin in human temporomandibular joint disc: an immunohistochemical study. Arch Oral Biol 2012;57:614-19.

40. Leonardi R, Almeida LE, Loreto C. Lubricin immunohistochemical expression in human temporomandibular joint disc with internal derangement. J Oral Pathol Med 2011;40:587-92.

41. Loreto C, Almeida LE, Trevilatto P, Leonardi R. Apoptosis in displaced temporomandibular joint disc with and without reduction: An immunohistochemical study. J Oral Pathol Med 2011;40:103-10.

42. Leonardii R, Almeida LE, Trevilatto PC, Loreto C. Occurrence and regional distribution of TRAIL and DR5 on temporomandibular joint discs: comparison of disc re plantation with and without reduction. J Oral Pathol Med 2010;3:244-51.

43. Leonardii R, Muzzio L, Muzzio R, Barbato E, Caltabiano M, Lo Muzio L. A histochemical and colorimetric assay. Eur J Histochem 2013;57:e23.

44. Orsini G, Ruggeri A, Mazzoni A, Nato F, Leonardi R, Almeida LE, Loreto C. Lubricin immunohistochemical expression in human temporomandibular joint disc with internal derangement. J Oral Pathol Med 2011;40:587-92.

45. Leonardi R, Musumeci G, Sicurezza E, Lecce R, Muzzio L. Lubricin expression in human temporomandibular joint disc: an immunohistochemical study. Acta Histochem 2011;113:619-25.

46. Leonardi R, Almeida LE, Trevilatto P, Leonardi R. In rat with glucocorticoid-induced osteoporosis, RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training). Histol Histopathol. 2013;28:1185-96.

47. Leonardi R, Almeida LE, Trevilatto PC, Loreto C. Occurrence and regional distribution of TRAIL and DR5 on temporomandibular joint discs: comparison of disc re plantation with and without reduction. J Oral Pathol Med 2010;3:244-51.

48. Leonardi R, Muzzio L, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochemical and colorimetric assay. Eur J Histochem 2011;57:e32.

49. Leonardi R, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochemical and colorimetric assay. Eur J Histochem 2011;57:e32.