Aquaporin-4 Antibodies Are Not Related to HTLV-1 Associated Myelopathy

Felipe von Glehn1,2*, Sven Jarius3, Augusto C. Penalva de Oliveira4,5, Carlos Otávio Brandão1,2, Alessandro S. Farias1, Alfredo Damasceno2, Jorge Casseb5, Adriel S. Moraes1, Ana Leda F. Longhini1, Klaus-Peter Wandinger6, Benito P. Damasceno2, Brigitte Wildemann3, Leonilda M. B. Santos1*

1 Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, Brazil, 2 Department of Neurology, University of Campinas, Campinas, Brazil, 3 Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany, 4 Neuroinfectious Disease Unit, Department of Internal Medicine, University of Campinas, Campinas, Brazil, 5 Department of Neurology, Emilio Ribas Institute of Infectious Diseases, Sao Paulo, Brazil, 6 Institute for Experimental Immunology, affiliated to Euroimmun, Luebeck, Germany

Abstract

Introduction: The seroprevalence of human T-cell leukemia virus type 1 (HTLV-1) is very high among Brazilians (~1:200). HTLV-1 associated myelopathy or tropical spastic paraparesis (HAM/TSP) is the most common neurological complication of HTLV-1 infection. HAM/TSP can present with an acute/subacute form of longitudinally extensive myelitis, which can be confused with lesions seen in aquaporin-4 antibody (AQP4-Ab) positive neuromyelitis optica spectrum disorders (NMOSD) on MRI. Moreover, clinical attacks in patients with NMOSD have been shown to be preceded by viral infections in around 30% of cases.

Objective: To evaluate the frequency of AQP4-Ab in patients with HAM/TSP. To evaluate the frequency of HTLV-1 infection in patients with NMOSD.

Patients and Methods: 23 Brazilian patients with HAM/TSP, 20 asymptomatic HTLV-1+ serostatus patients, and 34 with NMOSD were tested for AQP4-Ab using a standardized recombinant cell based assay. In addition, all patients were tested for HTLV-1 by ELISA and Western blotting.

Results: 20/34 NMOSD patients were positive for AQP4-Ab but none of the HAM/TSP patients and none of the asymptomatic HTLV-1 infected individuals. Conversely, all AQP4-Ab-positive NMOSD patients were negative for HTLV-1 antibodies. One patient with HAM/TSP developed optic neuritis in addition to subacute LETM; this patient was AQP4-Ab negative as well. Patients were found to be predominantly female and of African descent both in the NMOSD and in the HAM/TSP group; Osame scale and expanded disability status scale scores did not differ significantly between the two groups.

Conclusions: Our results argue both against a role of antibodies to AQP4 in the pathogenesis of HAM/TSP and against an association between HTLV-1 infection and the development of AQP4-Ab. Moreover, the absence of HTLV-1 in all patients with NMOSD suggests that HTLV-1 is not a common trigger of acute attacks in patients with AQP4-Ab positive NMOSD in populations with high HTLV-1 seroprevalence.

Introduction

Neuromyelitis optica (NMO) is an inflammatory disease of the central nervous system (CNS) of putative autoimmune aetiology, which is characterized by severe attacks of myelitis and optic neuritis (ON) [1,2]. In 60–80% of cases, NMO is associated with antibodies to aquaporin-4 (AQP4-Ab), the most abundant water channel in the CNS [3–4]. AQP4-Ab are also detectable in around 60% of patients with isolated longitudinally extensive transverse myelitis (LETM) [5] and in 5–25% of patients with recurrent, isolated ON [6–8], which are therefore considered forms frustes of NMO. NMO, LETM, and ON are often referred to as ‘NMO spectrum disorders’ (NMOSD) [9].

It is estimated that 15 to 20 million individuals are infected with the human T-cell leukemia virus type 1 (HTLV-1) worldwide [10].
HTLV-1 infection remains asymptomatic in the vast majority of cases, yet less than 5% of affected individuals will develop two major diseases: adult T-cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathy or tropical spastic paraesthesia (HAM/TSP) [11]. While HAM/TSP's pathogenesis is not fully understood, it is thought to be related to a high HTLV-1 provirus burden and an exaggerated proinflammatory cellular immune response, leading to a chronic extensive myelitis [12]. Some case reports have described an acute variant of HAM/TSP, characterized by longitudinally extensive transverse myelitis (LETM) on magnetic resonance imaging (MRI), a key feature of neuromyelitis optica (NMO), which may or may not be associated with ON [13–16].

There are few population-based epidemiological studies of NMO, but it seems that the disease is more prevalent in peoples of Asian, African-American or Hispanic background when compared with those of Northern European descent [17–19]. Accordingly, the proportion of NMO patients among all patients with CNS demyelinating disorders is high in Brazil [20]. At the same time, Brazil is among the countries with the highest prevalence of HTLV-1 infected individuals [12,21]. Moreover, both among patients with AQP4-Ab positive NMO and among patients with HAM/TSP an afrodescendant predilection was reported [12,22–24].

As testing for aquaporin-4 antibodies (AQP4-Ab) became available only few years ago, cases of AQP4-Ab positive LETM occurring in the context of HTLV-1 seropositivity might thus have been misdiagnosed as acute HAM/TSP in a subset of patients in the past. Furthermore, AQP4-Ab positive NMO was shown to be frequently preceded by viral or bacterial infections and HTLV-1 infection may act as a trigger of NMO in some cases [1–2].

This study aimed to determine the seroprevalence of antibodies to AQP4 in patients with HTLV-1 associated myelopathy (HAM/TSP) and that of HTLV-1 antibodies in patients with neuromyelitis optica spectrum disorders (NMOSD) and to compare the clinical characteristics of a HAM/TSP and NMOSD in Brazilian patients.

Patients and Methods

Patients

This is a cross-sectional study that included along with regular visits NMOSD patients who were followed-up at the neurological outpatient unit of the University of Campinas (UNICAMP) Hospital as well as HTLV-1 seropositive asymptomatic and HAM/TSP patients attending the outpatient clinic at the Emilio Ribas State Reference Institute of Infectious Diseases and at the UNICAMP Hospital, São Paulo, Brazil, during the period of January 2011 to January 2012.

At each appointment, demographic and clinical data were collected and the neurological statuses were evaluated by different scales, including the EDSS [25] and Osame scales [26]. We excluded from the study other causes of transverse myelitis, clinically and radiologically, such as spinal cord compression, infectious myelopathy, including parasitic etiology (e.g. Schistosoma mansoni, which is endemic in northeast Brazil) [27], spinal cord ischemia or bleeding, vitamin B12 and folate deficiency, among others. We also excluded patients co-infected with hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus types 1 and 2 (HIV-1/2) and HTLV type 2 in the HTLV-1 seropositive group. We decided to exclude these potentially confounding factors, because these viruses co-infection could interact and transactivate each other, thus altering the clinical presentation of the myelopathy. Moreover, HIV itself may cause vacuolar myelopathy, which shares some neurological traits with HAM/TSP and could turn it difficult to determine which virus was causing the clinical myelopathy [28].

Peripheral blood samples were collected from patients diagnosed with HAM/TSP as defined by World Health Organization (WHO) criteria [29], from asymptomatic individuals with positive HTLV-1 serostatus, from patients diagnosed with NMO spectrum disorders (NMOSD) [30], and from healthy controls (HC) (Table 1). NMO was diagnosed according to Wingerchuk's revised 2006 criteria without the need for positive AQP4-Ab testing. LETM was defined as acute myelitis with spinal cord lesions extending over three or more vertebral segments on magnetic resonance imaging; the median time between onset of transverse myelitis symptoms and spinal MRI in the LETM group was 7 days (range, 5–25 days). ON was defined as the occurrence of at least two episodes of clinical optic neuritis, with an interval of more than 30 days between them, and of no brain lesions outside the optic nerves.

Ethics Statement

UNICAMP and Emilio Ribas Institute of Infectious Diseases Ethics Committees for Research approved the study and all patients provided informed written consent. On the behalf of the minors/children participants involved in our study, we obtained informed written consent from one of their parents.

Methods

We tested all peripheral blood samples for AQP4-Ab in a standardized cell based immunofluorescence assay (Figure 1) employing recombinant human AQP4 (Euroimmun AG, Germany) [31] at the Neuroimmunology Laboratory of the University of Campinas and for HTLV-1 in a commercial enzyme immunosorbent assay (ELISA) kit (HTLV-I/II ELISA 4.0, MP Diagnostics, Germany). When a serum sample tested positive, it was confirmed by a Western blot (WB) assay (HTLV1blot 2.4, 2.5 MP Diagnostics, Germany) at the Laboratory of Retrovirology of Emilio Ribas Institute of Infectious Diseases. Data were analyzed using GraphPad Prism 5. Statistical significance of differences was determined by Chi-square or Fisher’s exact test for binominal outcomes and by ANOVAs without assuming Gaussian distribution (Kruskal-Wallis test) and subsequent Dunn’s multiple comparison tests. Differences were considered statically significant with p values <0.05.

Results

Detection of AQP4-Ab in Serum of Patients with NMOSD, HAM/TSP and Healthy Control

Serum AQP4-Ab were detected in 20 out of 34 (59%) patients in the NMOSD group, which included patients with NMO (positive in 14/17 cases) and patients with syndromes considered to confer a high risk for conversion to NMO (recurrent ON or LETM; positive in 6/17 cases) (see Table 1 for details), but in none of the patients previously diagnosed with HAM/TSP (n = 23), in none of the patients with positive HTLV-1 serostatus but no neurological symptoms at the time of presentation (n = 20), and in none of the HCs (n = 23) (p<0.0001; Chi-square test). Moreover, while all patients previously diagnosed with HAM/TSP were positive for HTLV-1 antibodies, as detected by ELISA and confirmed by WB assay, all patients with NMOSD were negative.

During the study, we excluded two asymptomatic patients that turned out to be infected with HTLV type 2 after WB test and three HAM/TSP patients that were co-infected with HCV and/or HIV1/2. All of them tested negative for serum AQP4-Ab.
Clinical Characteristics and Comparison of the Study Population

The demographic and baseline clinical characteristics of the study population are shown in Table 1. Most patients of the HAM/TSP group had progressive lower limb weakness and muscle spasticity, sensory disturbances, dorsal pain, neurogenic bladder, and bowel and sexual dysfunction. The patients with NMOSD usually presented severe attacks of ON, with poor recovery leading to low vision, with no or only light perception in one or both eyes, and/or myelitis with severe motor disability and deep sense and sphincters disturbance. Pain was also frequent, occurring in 8 out of 11 (73%) in the LETM group and in 12 out of 17 (71%) in the NMO group, and usually affected one or more areas of the chest, waist, legs, and back.

One patient developed an atypical form of HAM/TSP with relapsing subacute LETM and ON. HTLV-1 antibodies were detectable in serum and in the cerebrospinal fluid (CSF) of this patient by western blot analysis; by contrast, serum AQP4-Ab were negative. Moreover, in vitro culture of T-cells from this patient’s peripheral blood mononuclear cells (PBMC) revealed an elevated spontaneous proliferative response when compared with a healthy control. After cells were cultured for 48h and pulsed with thymidine during 18h, the proliferative response were determined by the mean incorporation of thymidine in DNA, and indicated as counts per minute (cpm). This spontaneous proliferation of PBMC in vitro is an immunopathologic characteristic of HTLV-1-infected individuals, driven by the HTLV-1-encoded TAX protein and indicate the exaggerated proinflammatory cellular immune response [12,32].

In the NMOSD group, no difference regarding gender was found between AQP4-Ab positive and negative patients (p = 0.23, Fisher’s exact test). 15 out 32 (47%) patients self-reported their ethnic origin as afrodescendant in the NMOSD group, 9 out of 17 (53%) in the HAM/TSP group, and 7 out 15 (47%) in the HTLV-1+ group.

Regarding the median degree of disability, as measured by Osame scale (p = 0.47) and EDSS (p = 0.52), there were no statistically significant differences between the three groups (Figure 2). An Osame scale score ≥ 4 (unilateral walking aid needed) was found in 80% of the HAM/TSP patients, in 47% of the NMO patients, and in 54% of the LETM patients. An EDSS score ≥ 6.5 (constant bilateral assistance needed to walk at least 20 meters without resting) had 60% of the HAM/TSP patients, 41% of the NMO patients, and 45% of the LETM patients.

Discussion

Our findings are relevant not only from a diagnostic but also from a pathophysiological point of view. HTLV-1 infection is highly prevalent among Brazilians, and patients with HAM/TSP can present with an acute/subacute form of longitudinally extensive myelitis, which can be confused with LETM lesions seen in NMOSD on MRI. Our results argue both against a role of antibodies to AQP4 in the pathogenesis of HAM/TSP and against an association between HTLV-1 infection and the development of AQP4-Ab. Moreover, the fact that antibodies to HTLV-1 were absent in all patients with NMOSD suggests that HTLV-1 is not a common trigger of acute attacks in patients with AQP4-Ab positive NMOSD, a disorder in which relapses are often preceded by infection, in populations with high HTLV-1 seroprevalence.

NMOSD and HAM/TSP are both highly prevalent in some global areas. In Japan and in Martinique, for example, NMOSD accounts for around 40% and 17.3% of cases of CNS demyelinating diseases, respectively, and these areas also feature a high prevalence of HTLV-
Figure 1. **Cell based assay.** Antibodies to aquaporin-4 (AQP4) as detected by binding of patient IgG to HEK293 cells transfected with human full length AQP4 (left column) but not to non-transfected control HEK293 cells (right column). **1A and B:** Positive AQP4-Ab test in a patient with NMO according to Wingerchuk’s 2006 criteria [29]. **2A and B:** Negative AQP4-Ab test in a patient with HAM/TSP as defined by World Health Organization criteria [28].

doi:10.1371/journal.pone.0039372.g001

Figure 2. **Disease duration and disability.** (A and B) Disability scores as measured by the Osame scale (p = 0.52, Kruskal Wallis Test) and by the EDSS scores (p = 0.35, Kruskal Wallis Test) did not differ significantly between patients with established NMO, non-HTLV-1-associated LETM, and HAM/TSP. (C) The fact that the median Osame and EDSS scores did not differ between LETM and the other groups despite shorter disease duration in the LETM group reflects the rapid accumulation of disability in NMOSD as described before (p<0.0001, Kruskal Wallis Test. Dunn’s multiple comparison test did not demonstrate significant difference between NMO vs. HAM/TSP groups) [1,2].

doi:10.1371/journal.pone.0039372.g002
References

1. Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG (1999) The clinical course of neuromyelitis optica (Devic's syndrome). Neurology 53: 1107–1114.

2. Jarius S, Frederikson J, Wildemann B, Kuempfel T, Ringelstein M, et al. (2010) Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients. J Neuroinflammation 7: 14.

3. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, et al. (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364: 2106–2112.

4. Jarius S, Wildemann B (2010) AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenic relevance. Nat Rev Neurol 6: 383–392.

5. Pittock SJ, Lennon VA, de Seze J, Vervenich P, Homburger HA, et al. (2008) Neuromyelitis optica and organ-specific autoimmunity. Arch Neurol 65: 73–83.

6. Matello M, Lennon VA, Jacob A, Pittock SJ, Lucchinetti CF, et al. (2008) NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology 70: 2197–2200.

7. Jarius S, Frederiksson J, Waters P, Paul F, Akman-Demir G, et al. (2010) Frequency and prognostic impact of antibodies to aquaporin-4 in patients with optic neuritis. J Neurol Sci 289: 158–162.

8. Petzold A, Pittock SJ, Lennon VA, Maguire C, Weinshenker BG, et al. (2010) Neuromyelitis optica-IgG (aquaporin-4) autoantibodies in immune mediated optic neuritis. J Neurol Neurosurg Psychiatry 81: 109–111.

9. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6: 805–815.

10. Matsuoka M, Jeang KT (2007) Human T-lymphotropic virus type 1 (HTLV-1) infection and cellular transformation. Nat Rev Cancer 7: 270–280.

11. Kaplan JE, Osame M, Kubota H, Igata A, Nishitani H, et al. (1990) The risk of HTLV-I infection among persons infected with HTLV-I. J Acquir Immune Defic Syndr 3: 1096–1101.

12. Verdonck K, Gonzalez E, Van Dooren S, Vandamme AM, Vanhan G, et al. (2007) Human T-lymphotropic virus type 1: recent knowledge about an ancient infection. Lancet Infectious Disease 7: 266–281.

13. Ohnido S, Boonman M, Merle H, Signate A, Smadja D, et al. (2010) Neuromyelitis optica associated with subacute human T-lymphotropic virus type 1 infection. J Clin Neurosci 17: 1449–1451.

14. Kasahata N, Shiota J, Miyazawa Y, Nakano I, Murayama S (2005) Acute human T-lymphotropic virus type 1-associated myelopathy: a clinicopathologic study. Arch Neurol 62: 873–876.

15. Koga M, Takahashi T, Kawai M, Negoro K, Kanda T (2009) Neuromyelitis optica with HTLV-1 infection: different from acute progressive HAM? Intern Med 48: 1157–1159.

16. Yoshida Y, Saiga T, Takahashi H, Hara A (1998) Optic neuritis and human T-lymphotropic virus type 1-associated myelopathy: a case report. Ophthalmologica 212: 73–76.

17. Wingerchuk DM (2009) Neuromyelitis optica: effect of gender. J Neurol Sci 286: 18–23.

18. Kira JI (2003) Multiple sclerosis in the Japanese population. Lancet Neurol 2: 117–127.

19. Cabre P, Heinzel O, Merle H, Buissen GG, Bera O, et al. (2001) MS and neuromyelitis optica in Martinique (French West Indies). Neurology 56: 507–514.

20. Lana-Peixoto MA, Lana Peixoto MI (1992) Is multiple sclerosis in Brazil and Asia alike? Arq Neuropsiquiatr 50: 419–425.

21. Galbão-Castro B, Loures L, Rodrigues LG, Gerino A, Ferreira Junior OG, et al. (1997) Distribution of human T-lymphotropic virus type 1 among blood donors: a nationwide Brazilian study. Transfusion 37: 242–243.

22. Kashima S, Acantara LG, Takayanagui OM, Gama CA, Castro BG, et al. (2008) Distribution of human T-cell lymphotropic virus type 1 (HTLV-1) subtypes in Brazil: genetic characterization of LTR and tax region. AIDS Res Hum Retroviruses 22: 953–959.

23. Papais-Alvarenga RM, Miranda-Santos CM, Puccioni-Sohler M, de Almeida AM, Oliveira S, et al. (2002) Optic neuromyelitis syndrome in Brazilian patients. J. Neuro Immun Psych 73: 429–435.

24. Adoni T, Lino AM, da Gama PD, Apóstolos-Pereira SL, Marchiori PE, et al. (2010) Recurrent neuromyelitis optica in Brazilian patients: clinical, immunological, and neuroimaging characteristics. Mult Scler 16: 81–86.

25. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33: 1444–1452.

26. Osame M, Usuki K, Izuno S, Iuchi N, Ammitani H, et al. (1986) HTLV-I-associated myelopathy, a new clinical entity. Lancet 1: 1031–1032.

27. Brito JC, da Nobrega PV (2003) Myelopathy: clinical considerations and etiological aspects. Arq Neuropsiquiatr 61: 19–23.

28. Casseb J, de Oliveira AC, Vergara MP, Montanheiro P, Bonasser F, et al. (2008) Recurrent neuromyelitis optica. J Neuro Immun Psych 73: 429–435.

29. Wingerchuk DM (2007) Diagnosis and treatment of neuromyelitis optica. J Clin Neurosci 14: 981–987.
32. Matsumoto M, Sugimoto M, Nakashima H, Imamura F, Kawano O, et al. (1990) Spontaneous T cell proliferation and release of soluble interleukin-2 receptors in patients with HTLV-I-associated myelopathy. Am J Trop Med Hyg 42: 365–373.

33. Murphy EL, Figueroa JP, Gibbs WN, Beathwaite A, Holding-Cobham M, et al. (1989) Sexual transmission of human T-lymphotropic virus type I (HTLV-I). Ann Intern Med 111: 555–560.

34. Haines JL, Bradford Y, Garcia ME, Reed AD, Neumeister E, et al. (2002) Multiple susceptibility loci for multiple sclerosis. Hum Mol Genet 11: 2251–2256.

35. Kanamori Y, Nakashima I, Takai Y, Nishiyama S, Kuroda H, et al. (2011) Pain in neuromyelitis optica and its effect on quality of life: a cross-sectional study. Neurology 77: 652–658.

36. Jarus S, Paul F, Franciotta D, Ruprecht K, Ringelstein M, et al. (2011) Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 306: 82–90.

37. Bergamaschi R, Toniatti S, Franciotta D, Candeloro E, Tavazzi E, et al. (2004) Oligoclonal bands in Devic’s neuromyelitis optica and multiple sclerosis: differences in repeated cerebrospinal fluid examinations. Mult Scler 10: 2–4.