Triangular symmetry in cluster nuclei

R. Bijker and A.H. Santana-Valdés
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, 04510 Ciudad de México, México
E-mail: bijker@nucleares.unam.mx

Abstract. In this contribution, we present evidence for the occurrence of triangular symmetry in cluster nuclei. We discuss the structure of rotational bands for 3α and 3α + 1 configurations with triangular D_{3h} symmetry by exploiting the double group D'_{3h}, and study the application to 12C and 13C. The structure of rotational bands can be used as a fingerprint of the underlying geometric configuration of α particles.

1. Introduction
The study of cluster degrees of freedom in light nuclei, in particular nuclei with $A = 4k$ and $4k + x$ nucleons goes back to early work by Wheeler [1], and Hafstad and Teller [2], followed by later work by Brink [3, 4] and Robson [5, 6]. Recently, there has been a lot of renewed interest in the structure of α-cluster nuclei, especially for the nucleus 12C [7]. The measurement of new rotational excitations of the ground state [8, 9, 10] and of the Hoyle state [11, 12, 13, 14] has stimulated a large theoretical effort to understand the structure of 12C (for a review see e.g. Refs. [7, 15, 16]). In addition, there are measurements of many new states in 13C [17].

In this contribution, we present evidence for triangular symmetry in both even- and odd-cluster nuclei, 12C and 13C, respectively.

2. Triangular symmetry in 12C
The symmetry group of the equilateral triangle is the point group D_{3h}. The properties of D_{3h} and the double group D'_{3h} are well-known in molecular physics [18] and crystal physics [19]. Here we summarize the results relevant for applications to α-cluster nuclei in nuclear physics [20, 21, 22, 23].

For even-cluster nuclei the states can be labeled by $|\Omega, K, L\rangle$ where Ω labels the tensor (or bosonic) representations of the D_{3h} triangular symmetry, and K and L are integers representing the projection K of the angular momentum L on the symmetry axis

$$\begin{align*}
\Omega &= A'_1: & K^P &= 0^+, 3^-, 6^+, \ldots, \\
\Omega &= E': & K^P &= 1^-, 2^+, 4^+, 5^-, \ldots,
\end{align*}$$

(1)

The angular momentum content of each K band is given by $L = 0, 2, 4, \ldots$, for $K = 0$ and $L = K, K + 1, K + 2, \ldots$, for $K > 0$. The rotational structure depends on the D_{3h} point group symmetry of the equilateral triangle configuration and is summarized in Fig. 1.

The band with A'_1 symmetry is characterized by a rotational sequence involving both positive and negative parity states, $L^P = 0^+, 2^+, 3^-, 4^+, 5^-, \ldots$, all of which have been observed in the
Figure 1. Structure of rotational bands for a triangular configuration of α particles in even-cluster nuclei with A_1' (left) and E' symmetry (right). Each rotational band is labeled by K^P.

ground-state band of 12C. The so-called Hoyle band has the same structure, but so far only the positive parity states have been observed. There is some evidence for an excited band with E' symmetry. The rotational bands in 12C are shown in Fig. 2.

Figure 2. Rotational bands in 12C [10].
3. Triangular symmetry in 13C

For odd-cluster nuclei the states can be labeled by $|\Omega, K, J \rangle$ where Ω now labels the spinor (or fermionic) representations of the double group D'_{3h}, and K and J are half integers representing the projection K of the total angular momentum J on the symmetry axis $[24]$

$$\Omega = E_{1/2}^{(+)}: \quad K^P = \frac{1^+}{2}, \frac{5^-}{2}, \frac{7^-}{2}, \frac{11^+}{2}, \frac{13^+}{2}, \ldots,$$
$$\Omega = E_{1/2}^{(-)}: \quad K^P = \frac{1^-}{2}, \frac{5^+}{2}, \frac{7^+}{2}, \frac{11^-}{2}, \frac{13^-}{2}, \ldots,$$
$$\Omega = E_{3/2}^{(+)}: \quad K^P = \frac{3^+}{2}, \frac{9^+}{2}, \frac{15^+}{2}, \ldots.$$ \hspace{1cm} (2)

The angular momenta of each K band are given by $J = K, K + 1, K + 2, \ldots$. The angular momentum structure of each one of the representations of D'_{3h} is shown in Fig. 3.

$D'_{3h} : E_{1/2}^{(-)}$	$D'_{3h} : E_{1/2}^{(+)}$	$D'_{3h} : E_{3/2}^{(+)}$
$\frac{9^-}{2} - \frac{9^+}{2} - \frac{9^+}{2}$	$\frac{9^+}{2} - \frac{9^-}{2} - \frac{9^-}{2}$	$\frac{9^\pm}{2} - \frac{9^\pm}{2}$
$\frac{7^-}{2} - \frac{7^+}{2} - \frac{7^+}{2}$	$\frac{7^+}{2} - \frac{7^-}{2} - \frac{7^-}{2}$	$\frac{7^\pm}{2}$
$\frac{5^-}{2} - \frac{5^+}{2}$	$\frac{5^+}{2} - \frac{5^-}{2}$	$\frac{5^\pm}{2}$
$\frac{3^-}{2}$	$\frac{3^+}{2}$	$\frac{3^\pm}{2}$
$\frac{1^-}{2}$	$\frac{1^+}{2}$	$\frac{1^+}{2}$
$\frac{1^-}{2} - \frac{5^+}{2} - \frac{7^+}{2}$	$\frac{1^+}{2} - \frac{5^+}{2} - \frac{7^+}{2}$	$\frac{3^\pm}{2} + \frac{9^\pm}{2}$

Figure 3. Structure of rotational bands for a triangular configuration of α particles in odd-cluster nuclei with $E_{1/2}^{(-)}$, $E_{1/2}^{(+)}$ and $E_{3/2}^{(+)}$ symmetry. Each rotational band is labeled by K^P.

4. The cluster shell model

The structure of single-particle levels moving in the deformed field of the cluster potential has been studied recently in the context of the Cluster Shell Model (CSM) $[23, 25, 26]$. The CSM combines cluster and single-particle degrees of freedom, and is very similar in spirit as the Nilsson model $[27]$, but in the CSM the odd nucleon moves in the deformed field generated by the (collective) cluster degrees of freedom. For a cluster potential with triangular symmetry the single-particles levels of a neutron split according to the irreducible representations of the double group D'_{3h}, $\Omega = E_{1/2}^{(-)}$, $E_{1/2}^{(+)}$ and $E_{3/2}^{(+)}$, each of which is doubly degenerate. The resolution of single-particle levels into representations of D'_{3h} is shown in Table 1.

A study of the neutron levels for 12C shows that the first six neutrons occupy the intrinsic states with $\Omega = E_{1/2}^{(-)}$ (arising from the $1s_{1/2}$ orbit), $E_{3/2}$ and $E_{1/2}^{(-)}$ (from the $1p_{3/2}$ orbit), so that the extra neutron in 13C occupies the intrinsic state with $E_{1/2}^{(-)}$ (from the $1p_{1/2}$ orbit), followed by $E_{1/2}^{(+)}$, $E_{1/2}^{(-)}$ and $E_{3/2}$ associated with the orbits from the s-d shell $[23, 25, 28]$.

Table 1. Resolution of single-particle levels into irreducible representations of D_{3h}'. Each E level is doubly degenerate.

	$E_{1/2}^+$	$E_{1/2}^-$	$E_{3/2}$	$E_{1/2}^+$	$E_{1/2}^-$	$E_{3/2}$
$1s_{1/2}$	1	0	0	2$s_{1/2}$	1	0
$1p_{1/2}$	0	1	0	1$d_{3/2}$	1	0
$1p_{3/2}$	0	1	1	1$d_{5/2}$	1	1

The rotational energy spectra can be analyzed with

$$E_{\text{rot}}(\Omega, K, J) = \varepsilon_\Omega + A_\Omega \left[J(J+1) + b_\Omega K^2 + a_\Omega (-1)^{J+1/2}(J+1/2)\delta_{K,1/2} \right], \quad (3)$$

where ε_Ω is the intrinsic energy, $A_\Omega = \hbar^2/2I$ the inertial parameter, b_Ω a Coriolis term, and a_Ω the decoupling parameter. The latter term applies only to representations $\Omega = E_{1/2}^{(\pm)}$ and $K^P = 1/2^\pm$. Eq. (3) is the same energy formula as used by Nuhn in Ref. [29] in a description of the bandheads of 13C in the context of a two-center shell model description of the system 13C+16O \rightarrow 29Si. Nuhn used an axially symmetric potential, in contrast to a cluster potential with triangular D_{3h} symmetry in the CSM. As a consequence, in the CSM the $K^P = 1/2^-$ and $5/2^+$ bands belong to the same configuration $\Omega = E_{1/2}^-$ (see Eq. (2) and Fig. 3), whereas in the axially symmetric case they represent separate rotational bands.

![Figure 4. Left: Rotational bands in 13C [24]. Right: Comparison between calculated and experimental [30] longitudinal $E2$ form factors for the ground-state band of 13C, $F(q;1/2^+ \rightarrow 5/2^+)$ (black) and $F(q;1/2^+ \rightarrow 3/2^+)$ (red).](image)

Fig. 4 shows the rotational bands of 13C. The ground-state band has $K^P = 1/2^-$ and is assigned to the representation $\Omega = E_{1/2}^-$ of D_{3h}' (blue lines and filled circles) arising from the coupling of the ground-state band in 12C to the intrinsic state with $E_{1/2}^-$. According to Eq. (2), this representation contains also $K^P = 5/2^+$ and $7/2^+$ bands, both of which appear to have been observed. In the shell model, positive parity states are expected to occur at much higher energies since they come from the s-d shell. The first excited rotational band has $K^P = 1/2^+$.
which can be assigned to $\Omega = E^{(+)}_{1/2}$ (black line and filled squares) arising from the coupling of the ground-state band in 12C to the excited intrinsic state with $E^{(+)}_{1/2}$. In contrast to the ground-state band, this excited band has a large decoupling parameter. In addition, Fig. 4 shows evidence for the occurrence of a rotational band at an energy slightly higher than that of the Hoyle state in 12C which is interpreted as the coupling of the Hoyle band in 12C to the ground-state intrinsic state $E^{(-)}_{1/2}$ (red line and filled triangles).

Further evidence for the occurrence of D_{3h} symmetry in 13C is provided by electromagnetic transition rates and form factors. As an example, we show in Fig. 4 the longitudinal $E2$ form factors of the states $5/2^+_{1}$ and $3/2^+_{1}$ of the ground-state rotational band. The two form factors are predicted to have identical shapes

$$F(q; 1/2^- \rightarrow 5/2^-) = F(q; 1/2^- \rightarrow 3/2^-),$$

and identical $B(E2; \uparrow)$ values: 9.6 W.U. This is verified to a very good approximation.

Finally, in Fig. 5 we show the expected structure of the vibrational spectrum of 13C.

Figure 5. Expected vibrational spectrum of 13C for the coupling of a single-particle level with $E^{(-)}_{1/2}$ (left), $E^{(-)}_{1/2}$ (middle) and $E_{3/2}$ symmetry (right) to the ground-state band, the Hoyle band and the bending band in 12C (see Fig. 2).

5. Summary and conclusions

In this contribution, we presented a discussion of triangular symmetry in cluster nuclei and studied the application to the even- and odd-cluster nuclei, 12C and 13C. A combined analysis of the rotation-vibration spectra and electromagnetic transition rates and form factors provides strong evidence for the occurrence of triangular symmetry in these nuclei. A characteristic feature of the triangular symmetry is the appearance of rotational bands consisting of both positive and negative parity states. As a consequence of the symmetry the form factors to the first excited state with $J^P = 3/2^-$ and $5/2^-$ are predicted to have the same shape and $B(E2; \uparrow)$ values. In addition, the quadrupole and octupole transitions in 12C and 13C are strongly correlated [24]. The good agreement between theory and experiment supports the interpretation of the nucleus 13C as a system of three α-particles in a triangular configuration plus an additional neutron moving in the deformed field generated by the cluster (see Fig. 6).

Acknowledgments

This work was supported in part by grant IN109017 from DGAPA-UNAM, Mexico.
Figure 6. Molecular-like picture of 13C.

References

[1] Wheeler J A 1937 Phys. Rev. 52 1083
[2] Halstad L R and Teller E 1938 Phys. Rev. 54 681
[3] Brink D M 1965 Int. School of Physics Enrico Fermi, Course XXXVI 247
[4] Brink D M, Friedrich H, Weiguny A and Wong C W 1970 Phys. Lett. B 33 143 the ACM and
[5] Robson D 1978 Nucl. Phys. A 308 381
[6] Robson D 1982 Prog. Part. Nucl. Phys. 8 257
[7] Freer M and Fynbo H O U 2014 Prog. Part. Nucl. Phys. 78 1
[8] Freer M et al. 2007 Phys. Rev. C 76 034320
[9] Kirsebom O S et al. 2010 Phys. Rev. C 81 064313
[10] Marín-Lámbarri D J, Bijker R, Freer M, Gai M, Kokalova T, Parker D J and Wheldon C 2014 Phys. Rev. Lett. 113 012502
[11] Itoh M et al. 2011 Phys. Rev. C 84 054308
[12] Freer M et al. 2012 Phys. Rev. C 86 034320
[13] Zimmerman W R et al. 2013 Phys. Rev. Lett. 110 152502
[14] Freer M et al. 2011 Phys. Rev. C 83 034314
[15] Schuck P, Funaki Y, Horituchi H, Röpke G, Tohsaki A and Yamada T 2016 Phys. Scr. 91 123001
[16] Freer M, Horituchi H, Kanada-En’yo Y, Lee D and Meissner U G 2018 Rev. Mod. Phys. 90 035004
[17] Lombardo I, Dell’Aquila D, Spadaccini G, Verde G and Vigilante M 2018 Phys. Rev. C 97 034320
[18] Herzberg G 1991 Molecular Spectra and Molecular Structure. III: Electronic Spectra and Electronic Structure of Polyatomic Molecules (Krieger, Malabar, FL)
[19] Koster G F, Dimmock J O, Wheeler R G and Statz H 1963 Properties of the thirty-two point groups (MIT Press, Cambridge, MA)
[20] Bijker R and Iachello F 2000 Phys. Rev. C 61 067305
[21] Bijker R and Iachello F 2002 Ann. Phys. (N.Y.) 298 334
[22] Bijker R 2016 Phys. Scr. 91 073005
[23] Bijker R and Iachello F 2019 Prog. Part. Nucl. Phys. in press [arXiv:1903.04076]
[24] Bijker R and Iachello F 2019 Phys. Rev. Lett. 122 162501 [arXiv:1902.00451].
[25] Della Rocca V, Bijker R and Iachello F 2017 Nucl. Phys. A 966 158
[26] Della Rocca V and Iachello F 2017 Nucl. Phys. A 973 1
[27] Nilsson S G 1955 Kong Dan Vid Sel Mat Fys Med 29 (16) 1
[28] Bijker R and Santana-Valdés A H 2019 J. Phys. Conf. Ser. 1308 012005 [arXiv:1903.02068]
[29] Nuhn G, Scheid W and Park J Y 1987 Phys. Rev. C 35 2146
[30] Millener D J et al. 1989 Phys. Rev. C 39 14