Article I. Design of Patch Antenna for Identification of Mal Practicing in Examination

D.S.Bhargava#1, T.V.Padmavathy*1, K.G.Sujanth Narayan², Sadagopal V³
#1Assistant Professor, *1Professor, R.M.K. Engineering College
²Research Assistant, SASTRA Deemed University, ³Principal Engineer, Microchip Technology (India) Pvt Ltd

tvp.ece@rmkec.ac.in

Abstract. Malpractice is one of the serious issues faced in examination hall. The candidates will be examined thoroughly in the entrance itself. If they are found with possessing the electronic devices, the PGD (Paper Gadget Detector) will detect it. LCD (Liquid Crystal Display) displays the values and an alarm system will be used to give a warning to them. The proposed system is to search the candidates who are carrying the hidden written paper to the exam hall. The searching of hidden written paper can be obtained from Rectangular Microstrip Patch Antenna (RMPA). Here RMPA acts as a sensor which is used to detect the hidden material. This sensor can detect the target based on the permittivity value of each material. The sensors used in this study can be adjusted according to the values of blank paper and also to identify something written in the paper with different densities. The designed antenna has been simulated using Advanced Design System (ADS). The designed antenna (single element and 4 elements) has been compared in terms of various parameters like Gain, Efficiency, Directivity and Radiation Pattern etc.

Keywords: Paper Gadget Detector, Liquid Crystal Display, Rectangular Microstrip Patch Antenna

1. Introduction
Malpractice in examination is an act of cheating, i.e illegal action by students, violating the norms of examination to get through the exams. This affects the society in various facets like discouraging the hard work of other students, results in poor performances in jobs which affects the productivity, may involve in bribery and corruption etc., Even though there are some structural methods and arrangements been done to prevent examination malpractices, at times it is difficult to find out the people involved in it. Here we propose a RMPA design to find out the hidden papers or materials so that malpractices can be avoided to a greater extent.

2. Literature Survey
Syed An Nazmus Saqueb et al., (in 2018) proposed a rail-based Synthetic Aperture Radar (SAR) imaging system. Using a motorized linear stage, slanted object is scanned across the transmitter field of view and reflection is measured in frequency domain in two waveguide bands (220-325 GHz and 500-750 GHz). [8]. Jonathan T.Richard et al., (in 2017) used Synthetic Aperture Radar (SAR) that uses either moving platform or target to reconstruct images with higher spatial resolution. SARs operate at conventional microwave frequencies because of the high powers and sufficient bandwidth available to reconstruct large scenes over long distances more than 1km with resolution below 10 m. [4]. Joseph Landon Garry et al., (in 2015) proposed Practical Implementation of Stripmap Doppler
Imaging techniques which can generate 2D images. This method seems to be compatible in spectrally congested environments but the measurements can suffer from aliasing. [5]. A. Kannegulla et al., (in 2014) demonstrated coded-aperture imaging using the Hadamard coding. In this method the coded-aperture approach limits FOV. In spite of shortcomings, researchers for large scale applications suggest that large horizontal FOV can be achieved by combining multiple coded-apertures into a single hexagonal device. [1]. David Shrekenhamer et al., (in 2013) used Single pixel terahertz (THz) imaging technique which can work at non visible wavelengths. [2]. Gregory L. Charvat et al., (in 2008) designed a X-Band Rail SAR Imaging System which has high sensitivity in comparison with single-sideband radio receivers. [3]. R. Schneider et al., (in 2003) proposed and presented a high resolution vehicle based instrumentation radar for automobile application which performs on-line acquisition and real-time visualisation of radar images. This system has high computation efficiency, but limits data acquisition speed and also requires antenna pairs which make it suitable for stationery and slow moving targets. [7].

3. Proposed System
In the proposed system we use Microstrip patch antennas (low profile antenna mounted on flat rectangular sheet) are preferred over other antennas in today’s modern wireless communication systems for their compatibility to be fit in Mobile, Aircraft, Satellites, Radars and many more applications owing to its very small size. In designing the microstrip patch antenna, selection of dielectric substrate materials and thickness are the main parameters in terms of size and compactness. Apart from compactness RMP antenna proves to be worth in terms of bandwidth, directivity and gain. Three parameters required for design are resonant frequency, dielectric constant and height of the dielectric substrate material. An inset fed of a rectangular patch antenna is designed to match the patch with a 50Ω microstrip transmission line. [6] The antenna with design dimensions is presented below in figure 1.

![Antenna Design Dimensions](image)

Figure 1. Antenna Design Dimensions

4. Simulation Results of RMP Antenna
The RMP Antenna Design is shown in Figure 2 and Simulation outputs are presented in this section in Figures 3 to 11 respectively.
The above figure 3 shows the current distribution of RMP antenna has maximum value at centre while current is zero at the edges.

The above figure 4 presents the S-Parameters (S11 return loss value of -18dB) of RMP antenna.
Figure 5. Gain

Figure 6. Efficiency

Figure 7. Directivity
Figure 8. Electric Far Field

Figure 9. Polarization

Figure 8 illustrates the Electric Far Field and Figures 9 and 10 presents Polarization output and Radiation Pattern respectively.
6

5. **Simulation Results of 4 RMP Antenna Elements**
The 4 element RMP Antenna Design is shown in figure 12 and Simulation outputs are presented in this section in Figures 13 to 25 respectively.

![Antenna Parameters](image)

Figure 11. Antenna Parameters Summary

Parameter	Value
Frequency (GHz)	3.50202
Input power (Watts)	0.00245835
Radiated power (Watts)	0.00127667
Directivity (dBi)	6.66405
Gain (dBi)	3.81841
Radiation efficiency (%)	51.9321
Maximum intensity (Watts/Steradian)	0.000471276
Effective angle (Steradians)	2.70897
Angle of U Max (theta, phi)	0 270
E(\theta) max (mag, phase)	0.595881 -7.45764
E(\phi) max (mag, phase)	0.00373044 29.3552
E(x) max (mag, phase)	0.00373044 29.3552
E(y) max (mag, phase)	0.595881 172.542
E(z) max (mag, phase)	0 180

Figure 10. Radiation Pattern
The above figure 13 shows the current distribution of 4 RMP antennas.

The above figure 14 presents the S-Parameters of 4 RMP antennas. (S1,1 - 19.80dB, S2,2 - 19.92dB, S3,3 - 19.57dB, S4,4 - 19.12dB)
Figure 15. Gain of 4 Elements

Figure 16. Efficiency of 4 Elements

Figure 17. Directivity of 4 Elements
Figure 18. Electric Far Field of 4 Elements

Figure 19. Polarization of 4 Elements

Figure 18 illustrates the Electric Far Field of 4 elements and figures 19 and 24 presents Polarization output and Radiation Pattern of 4 elements respectively.
Figure 20. Mutual Coupling between Antenna 1 and other antennas

Figure 21. Mutual Coupling between Antenna 2 and other antennas

Figure 22. Mutual Coupling between Antenna 3 and other antennas
Figure 23. Mutual Coupling between Antenna 4 and other antennas

The Figures 20 through 23 illustrates the Mutual coupling between 4 antennas.

Figure 24. Radiation Pattern of 4 Elements
The simulated results show that Gain of single element RMP antenna is 3.81 dBi (presented in Figures 5 and 11 respectively) and Gain of 4 elements is 7.0 dBi (presented in Figures 15 and 25 respectively). Similarly Efficiency of single element RMP antenna is 51% (presented in Figures 6 and 11 respectively) and Efficiency of 4 elements is 65.2% (presented in Figures 16 and 25 respectively). Further Directivity (to measure the degree to which the radiation is emitted in a single direction) of single element RMP antenna is 6.66 dBi (presented in Figures 7 and 11 respectively) and Directivity of 4 elements is 8.89 dBi (presented in Figures 17 and 25 respectively). Mutual coupling describes the energy absorbed by one antenna’s receiver when another adjacent antenna is operating. The RMPA design with 4 elements provides mutual coupling parameters as shown in the above graphs specified. The coupling values between the antennas lie well below -10dB for all its adjacent antenna elements thereby exhibiting no interference issues by the same or the nearing antenna element. This is in turn helps antennas to work with high directive beams at the finest point to be located. Further, beamforming techniques and beam switching characteristics deployed to the antenna help in achieving precise beam points to focus on the highly required spot figuring the position of the ink identification on the paper material.

6. Conclusion and Future Scope
Initially single RMP antenna has been designed for a frequency of 3.5 GHz and the results such as Gain, Efficiency and Directivity are 3.81 dBi, 51% and 6.66 dBi respectively. To further enhance the performance of antenna, the design has been extended to 4 elements and the results such as Gain, Efficiency and Directivity are 7.0 dBi, 65.2% and 8.89 dBi respectively. This antenna can be used in the system to find hidden papers using Vector Network Analyzer. The result is determined by the rise or fall of wave found in receiver of antenna. Implementation using Antenna is Cost Efficient.
7. References

[1] Kannegulla A, Jiang Z, Rahman S M and Shams M I B 2014 Coded-Aperture Imaging Using Photo-Induced Reconfigurable Aperture Arrays for Mapping Terahertz Beams IEEE transactions on the science and technology vol 4

[2] David Shrekenhamer, Claire M Watts and Willie J. Padilla 2013 Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator Optics express vol 21 No 10

[3] Gregory L Charvat, Leo C Kempell and Chris Coleman 2008 A Low-Power High-Sensitivity X-Band Rail SAR Imaging System

[4] Jonathan T Richard and Henry O. Everitt 2017 Millimeter Wave and Terahertz Synthetic Aperture Radar for Locating Metallic Scatterers Embedded in Scattering Media IEEE transactions on terahertz science and technology vol 7 No 6

[5] Joseph Landon Garry Graeme Edward Smith and Christopher John Baker 2015 Practical Implementation of Strip Map Doppler Imaging IET Radar Sonar Navigation vol 9

[6] Osama W Ata Mohammad Salamin and Khaleel Abusabha 2020 Double U-Slot rectangular patch antenna for multiband applications Computers & Electrical Engineering vol 84

[7] Schneider R and Wenger J 2003 High resolution radar for automobile applications Advances in Radio Science

[8] Syed An Nazmus Saqueb, Joseph Lgarry Graem E.Simth, Niru K Nahar and kabilay Setal 2018 THZ imaging using rail- based synthetic aperture radar for the detection of concealed objects USNC-URSI radio science meeting (joint with AP - s symposium)

D S. Bhargava, working as Assistant Professor in Electronics and Communication Engineering department of R.M.K. Engineering College, has 6 years of teaching experience. He received his Bachelor’s degree from J.N.N Institute of Engineering in Electronics and Communication Engineering in the year 2012 and Master’s degree in VLSI Design from R.M.K. Engineering College in the year 2014. His area of interests includes Cognitive radio networks and VLSI Design technology. He has published 11 research papers in International and National Journals & presented 4 research papers in National and International conferences in the area of VLSI Design, Networking and Cognitive radio networks. He is a professional member of ISSE, ACM, ISTE, and IAENG.

T. V. Padmavathy Professor, Department of ECE in R.M.K. Engineering College, has 25 years of teaching and research experience in the in the fields of Wireless sensor networks, Under Water Acoustic Sensor Networks and Antenna Design. She has graduated from Institution of Engineers (India), in Electronics and Communication Engineering. She has obtained her Master degree in Control and Instrumentation from College of Engineering, Guindy, Anna University, Chennai and Ph.D. degree from Anna University, Chennai. She has published more than 50 research papers in International and National Journals and conferences in the area of Mobile Ad hoc Networks, Wireless sensor networks, Under Water Acoustic Sensor Networks and Antenna design and she has four Patents in Wireless Sensor Networks. Her current area of research includes security and architecture issues of Mobile ad hoc networks, Wireless sensor networks and Millimeter Wave Antenna design for Wireless Communications. She is a technical paper reviewer for African Journal of Engineering Research and Journal of Engineering and Technology Management. She is recognized as Fellowship member by The Institution of Engineers (India) also she is a member of various professional bodies such as Institute of Electrical and Electronics Engineers (IEEE), Life member of Institution of Electronics and Telecommunication Engineers (IETE), International Association of Engineers (IAENG), ACM, ISSE and Life member of Indian Society for Technical Education ISTE.
K. G. Sujanth Narayan born in Tamilnadu, India. He received his B.E., degree in Electronics and Communication Engineering from R.M.K. Engineering College, Kavaraipettai, Tamilnadu in the year 2017 and M.Tech, in Communication Systems from SASTRA Deemed University, Thanjavur, Tamil Nadu in the year 2019 respectively. Currently, he is a Research Assistant, pursuing his Ph.D. in the area of Antennas and RF System from School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, Tamil Nadu. He is a member of IEEE. His research areas include Antennas, Electromagnetics, RF System Design, EMI/EMC and Vehicular-Communication.

Sadagopal V working as Principal Engineer in Applications RF (RF Design and Testing) at Microchip Technology (India) Pvt Ltd. He also served as Project Lead and has 12 years of experience in RF System & Antenna Design and Testing equipments like Vector Network Analyzer, Signal Generator, Spectrum Analyzer and Noise Figure Meter. Also has good experience in wireless standards like Wi-Fi, Bluetooth, ZigBee, LoRa and GSM. He has Sound conceptual knowledge in ADS and HFSS for EM simulation and Expertise in Schematics capture and PCB Design.