$b \to ss\bar{d}$ in a Vector Quark Model*

CAI Hai-Ying1 and ZHANG Da-Xin1

Institute of Theoretical Physics, School of Physics, Peking University, Beijing 100871, China

(Received March 15, 2005)

Abstract The rare decay $b \to ss\bar{d}$ is studied in a vector quark model by adding the contributions from exotic vector-like quarks. We find that the contribution from box diagrams amounts to 10^{-3} in the branching ratio, while the Z-mediated tree level contribution is negligible.

PACS numbers: 12.15.Mm, 13.90.+i, 14.40.Lb, 14.40.Nd

Key words: rare decay, vector-like quarks

1 Introduction

The flavor changing neutral current (FCNC) processes in B physics provide important windows to expose potential signals induced by new physics up to a scale around TeV. In the standard model (SM), the FCNC processes are induced at loop levels and are further suppressed by the Glashow–Maiani–Illiopoulous (GIM) mechanism. It is possible for the contribution from the new physics, either at tree level or at loop level, to be competitive to its corresponding SM backgrounds. We could find out possible new physics through searching for the deviations from the SM predictions. It is not surprising that various FCNC processes are extensively studied in many of the extended models beyond the SM. Suppressed strongly in the SM as a second order weak process with strong GIM cancellations, the rare decay $b \to ss\bar{d}$ needs to be considered as an important process, which provides possible virtual signals of new physics. Many new physics models with different flavor structures have shown the potential of enhancing significantly the branch ration of $b \to ss\bar{d}$. The corresponding exclusive decays (e.g. $B^+ \to K^-\pi^+$) have also been studied experimentally by different groups, which provides further constraints on the new physics models.

In this letter, we investigate $b \to ss\bar{d}$ in a Vector Quark Model (VQM). With the inclusion of exotic heavy quarks with different quantum numbers under the SM gauge groups, it could be possible that the CKM matrix elements in the VQM are different and that the GIM cancellations in the first three generations are violated by these extra heavy quarks. Demanding all existing phenomenological constraints satisfied, we find that the branch ration of $b \to ss\bar{d}$ in a VQM could amount to 10^{-3}, several orders larger than its SM prediction, which is below 10^{-12}.[1]

2 Brief Review of Vector Quark Model

The VQMs are the SM extensions by adding into exotic quarks with non-standard SU(2)\textsubscript{L} × U(1)\textsubscript{Y} assignments. The models could naturally emerge from some extensions of SM such as E_6 grand unified theory. Although these exotic quarks are heavy, they do not necessarily decouple in the low energy phenomenology. At low energy they exhibit their effects through mixing with the ordinary quarks of the first three generations.

Here we focus on a simple model with one extra $Q = 2/3$ up-type vector-like quark and one extra $Q = -1/3$ down-type vector-like quark, where both of their left-hand and right-hand components translate as singlets under the SM gauge group. The ordinary and the vector-like quarks of the same electrical charges mix into the mass eigenstates, which are denoted as

\[
(u_{L,R})_\alpha = \begin{bmatrix} u_{L,R} \\ c_{L,R} \\ t_{L,R} \\ T_{L,R} \end{bmatrix}_\alpha, \quad (d_{L,R})_\alpha = \begin{bmatrix} d_{L,R} \\ s_{L,R} \\ b_{L,R} \\ B_{L,R} \end{bmatrix}_\alpha, \quad (\alpha = 1, 2, 3, 4).
\]

They are related to the ordinary quarks in the weak eigenstates $u_{L,R}^0$ and $d_{L,R}^0$ by

\[
(U_{L,R}^0)_{i\alpha} = (U_{L,R})_{i\alpha} (u_{L,R})_\alpha, \quad (d_{L,R}^0)_{i\alpha} = (U_{L,R}^d)_{i\alpha} (d_{L,R})_\alpha, \quad (i = 1, 2, 3),
\]

*The project supported in part by National Natural Science Foundation of China under Grant Nos. 90103014 and 10205001, and the Ministry of Education of China

1E-mail: hycai@gms.phy.pku.edu.cn

1E-mail: dxzhang@mail.phy.pku.edu.cn
The neutral current interactions are modified to

\[\mathcal{L}_W = \frac{g}{2\sqrt{2}} \bar{u}_{L\alpha} \gamma^\mu V_{\alpha\beta} d_{L\beta} W^\mu_R + h.c., \]

(3)

and

\[\mathcal{L}_{G\pm} = \frac{g}{\sqrt{2}} \bar{u}_{\alpha} V_{\alpha\beta} \left[m_{u\alpha} P_L - m_{d\beta} P_R \right] \gamma^\mu \partial_\mu S + h.c. \]

(4)

in the \(R_\xi \) gauge, where

\[V_{\alpha\beta} = (U_L^\dagger \alpha\beta (U_L^d)_{\alpha\beta}, \quad (i = 1, 2, 3; \alpha, \beta = 1, 2, 3, 4) \]

(5)

is called the extended CKM matrix, which is no longer unitary,

\[(V^\dagger V)_{\alpha\beta} = \delta_{\alpha\beta} - (U_L^d)_{\alpha4} (U_L^d)^{4\beta}, \]

(6)

\[(VV^\dagger)_{\alpha\beta} = \delta_{\alpha\beta} - (U_L^d)_{\alpha4} (U_L^d)^{4\beta}. \]

The neutral current interactions are modified to

\[\mathcal{L}_Z = \frac{g}{2C_W} \bar{u}_{L\alpha} \gamma^\mu X_{\alpha\beta}^u \gamma^\nu \partial_\nu X_{\alpha\beta}^d \frac{d_{L\beta} d_{L\beta}}{\sqrt{2}}, \]

(7)

where

\[\begin{align*}
(X_u^u)_{\alpha\beta} &\equiv (U_L^u)_{\alpha4} (U_L^u)^{4\beta}, \\
(X_d^d)_{\alpha\beta} &\equiv (U_L^d)_{\alpha4} (U_L^d)^{4\beta}.
\end{align*} \]

(8)

The neutral interactions mediated by the goldstone boson \(G^0 \) are proportional to the quark masses. We will not display these small effects, as for the process discussed here is concerned. It is clear from Eqs. (6) \~ (8) that \(Z \)-mediated FCNC interactions are induced at tree level in the VQM. In Eq. (7) the electromagnetic currents \(J_{\text{EM}}^\mu \) are the same as in the SM for the ordinary quarks. (See Ref. [4] for details.)

3 \(b \rightarrow ss\bar{d} \)

In the SM, the main contribution to the process \(b \rightarrow ss\bar{d} \) is from the box diagrams with \(W \) and the up-quarks in the loops.\[^1\] Due to the GIM mechanism, the amplitude is suppressed either by a small factor \(V_{ts}^* V_{tb} V_{ts} V_{td} \), where \(V_{ij} \)'s stand for the (unitary) CKM matrix elements in the SM, or by a small power factor \(m_c^2/m_u^2 \). The resulting branching ratio is smaller than \(10^{-12} \).

In the VQM, \(b \rightarrow ss\bar{d} \) can be induced by two mechanisms. One is the \(Z \)-mediated tree diagram. The other is the box diagrams with \(W^\pm, G^\pm \) boson and the \(u, c, t, T \) quarks inside the loops. The \(Z \)-penguin diagrams are taken as higher-order corrections to the tree diagram and their effects do not need to be considered. We have

\[\Gamma_{\text{VQM}}(b \rightarrow ss\bar{d}) = \frac{m_b^5}{48(2\pi)^3} \left[\frac{G_F}{\sqrt{2}} X_{sb} X_{ds} + \frac{G_F}{2\pi^2} m_w^2 \sum_{\alpha=c,t,T} 4X_{sb} \lambda_{\alpha}^a B_0(x_\alpha) \right] + \sum_{\alpha=c,t,T} 4X_{ds} \lambda_{\alpha}^a B_0(x_\alpha) + \sum_{\alpha=c,t,T} \lambda_{\alpha}^a \lambda_{\beta}^d S_0(x_\alpha, x_\beta) \right]^2. \]

(9)

We have denoted

\[\lambda_{\alpha}^a = V_{\alpha d}^* V_{\alpha d}, \quad x_\alpha = \frac{m_\alpha^2}{m_w^2}. \]

(10)

On the right-hand side of Eq. (9), the term outside the bracket represents the tree diagram contribution. In the bracket, the first term originates from the box diagram with two \(u \)-quarks in the loop; the second term is from the box diagram with \(u \)-quark connected to the \(s \) and \(b \) legs and \(c, t, T \) quarks connected to the \(d \) and \(s \) legs, while the third term comes from the box diagram with \(u \)-quark connected to the \(d \) and \(s \) legs and \(c, t, T \) quarks connected to the \(s \) and \(b \) legs. The last term is from the box diagrams without \(u \)-quark in the loop. The Inami–Lim functions are\[^5\]

\[\begin{align*}
F(x_\alpha, x_\beta) &= \frac{4 - 7x_\alpha x_\beta}{4(1 - x_\alpha)(1 - x_\beta)} + \frac{4 - 8x_\alpha + x_\alpha x_\beta^2}{4(1 - x_\alpha)^2(x_\alpha - x_\beta)} x_\alpha \ln x_\alpha + \frac{4 - 8x_\alpha + x_\alpha x_\beta^2}{4(1 - x_\alpha)^2(x_\beta - x_\alpha)} x_\beta \ln x_\beta, \\
S_0(x_\alpha) &= F(x_\alpha, x_\alpha) - 2F(0, x_\alpha) + F(0, 0), \\
S_0(x_\alpha, x_\beta) &= F(x_\alpha, x_\beta) - F(0, x_\alpha) - F(0, x_\beta) + F(0, 0), \\
4B_0(x_\alpha) &= F(0, x_\alpha) - F(0, 0).
\end{align*} \]

(11) – (14)

4 Numerical Analysis

The VQM model is mostly constrained by \(\Delta M_K, \Delta M_{B_s}, \text{ and } Br(B \rightarrow X_s \gamma) \). In the VQM, they can be expressed as

\[\Delta M_{K, B_s}^{\text{VQM}} = \frac{G_F}{3\sqrt{2}} m_K(B_K F_K^2) \left[\eta^K_2 X_{ds}^2 + \frac{G_F}{\sqrt{2} \pi^2} m_w^2 \right] \eta^K_2 X_{ds}^2 + \sum_{\alpha=c,t,T} 8X_{ds} \lambda_{ds}^a \lambda_{\alpha}^a S_0(x_\alpha, x_\beta) \right]. \]

(15)
\[\Delta M_{B_d}^{VQM} = \frac{G_F}{\sqrt{2} \pi} m_{B_d} F_{B_d}^2 \left| \eta_\mu^1 X_{\mu d}^2 + \frac{G_F}{\sqrt{2} \pi} m_{W}^2 \left| \eta_\mu^2 X_{\mu d}^2 + \sum_{\alpha=t,T} 8 X_{\alpha d}^2 \lambda_\alpha \eta_\alpha^2 B_\alpha(x) \right| + \sum_{\alpha,\beta=t,T} \lambda_\alpha \lambda_\beta \eta_\alpha^2 \eta_\beta^2 S_\alpha(x,\alpha) \right| . \]

(16)

| \begin{array}{c|ccc}
 \text{Table 1} & \text{The maximum branch ratio of } b \to ssd \text{ vs. } m_T. \\
 \hline
 m_T (\text{GeV}) & 400 & 600 & 800 \\
 \hline
 \Delta M_K & 5.736 \times 10^{-15} & 6.606 \times 10^{-15} & 6.967 \times 10^{-15} \\
 \Delta M_{B_d} & 3.145 \times 10^{-13} & 3.244 \times 10^{-13} & 3.231 \times 10^{-13} \\
 B \to X_{s\gamma} & 3.683 \times 10^{-4} & 3.638 \times 10^{-4} & 3.689 \times 10^{-4} \\
 b \to ssd & 3.321 \times 10^{-10} & 6.909 \times 10^{-10} & 1.039 \times 10^{-9} \\
 \hline
\end{array} |

As for the rare decay \(B \to X_{s\gamma} \), it has been discussed in Ref. [6]. In the above equations, \(\eta \)'s are the QCD factors. Here we take the values as \(\eta_\mu^1 = 0.60, \eta_\mu^2 = 1.38, \eta_{\ell_d} = 0.57, \eta_{\ell_T} = 0.47, \eta_{\ell_T} = 0.58, \eta_\mu^2 = 0.57, \eta_\mu^2 = \eta_\mu^2 = \eta_\mu^2 = 0.55 \) [7,8]. Other parameters are \(m_K = 498 \text{ MeV}, F_K = 160 \text{ MeV}, B_K = 0.86, m_{B_d} = 5.279 \text{ GeV}, F_{B_d} \sqrt{B_{B_d}} = 200 \text{ MeV} \) [9].

It could be seen from Eq. (9) that \(\Gamma_{VQM} \) is parametrized by \(X_{sb}, X_{ds}, \lambda_{ds}^{c,T}, \) and \(\lambda_{sb}^{c,T} \). For simplicity, we take all the parameters as real in the numerical calculation. These parameters are not independent and can be related by the extended CKM matrix.

Numerical analysis is made in the following way. We take \(V_{us} = 0.215, V_{cd} = 0.215, V_{ub} = 2 \times 10^{-3}, V_{cb} = 3.8 \times 10^{-2} \); while other CKM elements are scanned in the regions of \(0.9721 < |V_{ud}| < 0.9756, 0.966 < |V_{cs}| < 0.976, 0 < |V_{td}| < 0.09, 0 < |V_{ts}| < 0.12, 0.58 < |V_{tb}| < 0.99 \), which are allowed by Ref. [9]. Regarding Eq. (6), we require

\[|V_{ud}^2 + V_{ud}^2 + V_{td}^2 + V_{td}^2| < 1.0, \]
\[|V_{us}^2 + V_{cs}^2 + V_{ts}^2 + V_{ts}^2| < 1.0, \]
\[|V_{ub}^2 + V_{db}^2 + V_{tb}^2| < 1.0, \]

and these conditions can be used to find out proper ranges for \(V_{T_d}, V_{T_s} \) and \(V_{T_b} \). \(X_{sb} \) and \(X_{ds} \) are functions of the CKM matrix elements, which are demanded to obey the constraints of \(|X_{sb}| < 0.0011 \) and \(|X_{ds}| < 0.0001 \) [4]. Experimental constraints on \(0 < \Delta M_K^{VQM} < 2 \times 3.491 \times 10^{-15}, |\Delta M_{B_d}^{VQM} - 3.2 \times 10^{-13}| < 0.092 \times 10^{-13}, |\text{Br}(B \to X_{s\gamma}) - 3.15 \times 10^{-4}| < 0.54 \times 10^{-4} \) are also demanded. Phenomenologically allowed parameter space is thus determined and branch ratio of \(b \to ssd \) is calculated.

We find that the contribution from the tree diagram amounts to only \(10^{-15} \) in the branching ratio, which is even negligible compared to SM background. The effects of the box diagrams are the main contributions and the diagram with two T quarks dominates. In Table 1, we give the branching ratio of \(b \to ssd \) along with \(\Delta M_{B_d} \) by taking \(X_{sb} = 0.0011 \). We also plot the allowed branching ratio of \(b \to ssd \) as the function of \(m_T \) in Fig. 1.

In conclusion, we have calculated the rare decay \(b \to ssd \) in the VQM and find its branching ratio could amount to \(10^{-9} \), about three orders of magnitude larger than its corresponding SM value.

References

[1] K. Huitu, C.D. Lü, P. Singer, and D.X. Zhang, Phys. Rev. Lett. 81 (1998) 4313.
[2] K. Huitu, C.D. Lü, P. Singer, and D.X. Zhang, Phys. Lett. B 445 (1999) 394; S. Fajfer and P. Singer, Phys. Rev. D 65 (2002) 017301; Z.J. Xiao, W.J. Li, L.B. Guo, and G.R. Lu, Eur. Phys. J. C 18 (2002) 249; E.J. Chun and J.S. Lee, hep-ph/0307108; X.H. Wu and D.X. Zhang, Phys. Lett. B 587 (2004) 95.
[3] G. Abbiendi, et al., [OPAL Collaboration], Phys. Lett. B 476 (2000) 233 [arXiv:hep-ex/0002008]; J. Damet, P. Eerola, A. Manara, and S.E. Nooij, Eur. Phys. J. C 3 (2001) 7 [arXiv:hep-ex/0012057]; A. Garmash, et al., [Belle Collaboration], Phys. Rev. D 65 (2002) 092005 [arXiv:hep-ex/0201007]; A. Garmash, et al., [Belle Collaboration], arXiv:hep-ex/0307082.
[4] P. Langacker and D. London, Phys. Rev. D 38 (1988) 886; Y. Nir and D. Silverman, Phys. Rev. D 42 (1990) 1477; E. Nardi, E. Roulet, and D. Tommasini, Nucl. Phys. B 386 (1992) 239; D. Silverman, Phys. Rev. D 45 (1992) 1800; L. Lavoura and J.P. Silva, Phys. Rev. D 47 (1993) 1117; G.C. Branco, T. Morozumi, P.A. Parada, and M.N.
Rebelo, Phys. Rev. D 48 (1993) 1167; V. Barger, M.S. Berger, and R.J.N. Phillips, Phys. Rev. D 52 (1995); M. Gromau and D. London, Phys. Rev. D 55 (1997); F. del Aguila, J.A. Aguilar-Saavedra, and G.C. Branco, Nucl. Phys. B 510 (1998) 39; F. del Aguila, J.A. Aguilar-Saavedra, and R. Miquel, Phys. Rev. Lett. 82 (1999) 1628; C.H.V. Chang, D. Chang, and W.Y. Keung, Phys. Rev. D 61 (2000) 053007; P.H. Frampton, P.Q. Hung, and M. Sher, Phys. Rep. 330 (2000) 263, and reference therein; G. Barenboim, F.J. Botella, and O. Vives, Nucl. Phys. B 613 (2001) 285.

[5] T. Inami and C.S. Lim, Prog. Theor. Phys. 65 (1981) 297 [Erratum-ibid. 65 (1981) 1772]; G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125.

[6] M. Aoki, E. Asakawa, M. Nagashima, N. Oshimo, and A. Sugamoto, Phys. Lett. B 487 (2000) 321.

[7] S. Herrlich and U. Nierste, Nucl. Phys. B 476 (1996) 27.

[8] J.A. Aguilar-Saavedra, Phys. Rev. D 67 (2003) 035003, [Erratum, ibid. 69 (2004) 099901].

[9] Particle Data Group, K. Hagiwara, et al., Phys. Rev. D 66 (2002) 010001.