Modelling the reliability of the implementation of the schedule building work

V O Evseev¹, V G Borkovskaya² and R Barkhi³

¹,²Plekhanov Russian University of Economics, Stremyannyi Pereulok, 36, Moscow, 115093, Russian Federation
³Virginia Polytechnic Institute and State University, Pamplin Hall, Suite 3007, Blacksburg, VA 24061, USA

E-mail: manrus@mail.ru, Reza@vt.edu

Abstract. The main issue of the study is the analysis of the impact of the level of information security of the construction process and the impact of the level of professional competence of personnel on the reliability characteristics of the planned terms of construction work. The aim of the study was to construct a simulation model and conduct simulation cycles/experiments in order to obtain the probabilistic characteristics of the output parameters, which are the possible terms of construction and the probability of implementation of these terms. Also, the aim of the study was to determine the permissible level of professional competence of personnel and the permissible level of non-availability of primary information necessary for construction work.

Results. Methods of computational mathematics in the Excel software environment built a simulation model of the construction process, which includes the sequential execution of several stages of construction work, taking into account the level of information uncertainty and probabilistic level of competence of personnel. Numerous graphical information of the change of construction terms under the influence of probabilistic factors is given. Conclusions: the Model has shown the possibility of controlling the probability vector of the construction process, and the ability to bring its output probability characteristics to acceptable deviations from the planned value.

1. Introduction

Any construction process is a complex system and is located in the following coordinate system: normative components and stochastic/probabilistic components. This coordinate system includes both the control loop of construction processes and the competence of the personnel. [1-5]

The contour of the control system of construction processes consists of a complex set of tasks of accounting, analysis, forecasting, decision-making, control of execution of decisions, control of efficiency/effectiveness of control decisions, selection of corrective control actions [6-10]. Of course, everyone understands that the information may be incomplete, inaccurate and unreliable, the methods of analysis may not be systematic, and when planning, it is impossible to take into account all the risks associated with the elements of the construction process. All this suggests that the control system circuit contains elements of uncertainty, and therefore all management decisions made in the construction sector are classified as “decisions in the field of risk and with a certain level of risk”. [11-15]
Through acquired knowledge and gained practical experience, sets of professional competencies of personnel are formed, which are characterized by certain quantitative and qualitative indicators. The competencies of the staff are also in the normative and stochastic/probabilistic coordinate system, since qualification and practical characteristics of the personnel always have a discrepancy with a plus or minus sign, also the competence of construction divisions are a function of quantitative and qualitative characteristics from the totality of employees in these units (staffing and turnover, illness and absenteeism, downtime resulting from lack of proper experience, combining professions, motivation, emotional state, constructive or destructive attitude to work, among others) [16-19].

By definition, if the parameters of the system elements include probabilistic characteristics, then the output function of the whole system also has probabilistic characteristics. It is possible to find probabilistic characteristics (expectation, variance, distribution law) of output parameters of a complex system (construction process) only by the method of simulation modeling, which is widely used not only in construction [3-7], but also in other spheres of life [11-15].

2. Materials and Methods
The simulation model utilizes an algorithm that allows to obtain probabilistic characteristics of the output parameters. This is achieved by:
1) the presence in the simulation model of sensors/generators of random numbers with certain laws of distribution: uniform, normal, Weibull, exponential, among others;
2) a certain number of runs/simulations of the functioning of the constructed model of the system under study, which allows to create an array of statistical data;
3) as a result of N number of simulations we get N number of output values, which are statistics of final results and which are processed by methods of mathematical statistics.

Table 1. Characteristics of types of construction works.

	Types of construction works	Work 1	Work 1	Work 1	Work 1
2	Duration (T)	T1	T2	T3	T4
3	Level of information uncertainty (IN=0-1)	IN 1	IN 2	IN 3	IN 4
4	The competence of the staff (CP= 0-1)	CP 1	CP 2	CP 3	CP 4

The model used a sensor/generator of uniform random numbers, the number of simulation runs was equal to thirty iterations. The input parameters of the model are:
1) Four types of work, each of which was characterized by: a) its duration; b) the level of information uncertainty; C) the level of competence of the personnel performing this work;
2) the analytical relationship between the level of information uncertainty and the timing of the increase in construction;
3) the analytical relationship between the level of competence of personnel and the duration of construction;
4) the sensor is a uniform random number;
5) the number of simulation runs of the construction process model.

3. Results and Discussions
The output parameters of the model are:
1) indicators of the histogram of possible construction periods at different values of the level of information uncertainty and staff competence (Fig.1; Fig.2).
2) schedules of deviation of actual terms of construction from planned terms of construction at various values of level of information uncertainty and competence of the personnel (Fig.3; Fig.4).
3) the obtained analytical dependence of possible construction terms on the levels of information uncertainty (x) and staff competence (y) (x/y) (Fig.5).
4) Probabilistic characteristics of construction terms depending on levels of information uncertainty (x) and competence of personnel (y) (x/y) (Fig.6).
5) indicators of expectation and standard deviation, both by type of work and construction in general.

![Figure 1. Histogram of possible construction dates.](image1)
(level of information uncertainty =0.55 and staff competence = 0.65)

![Figure 2. Histogram of possible construction dates.](image2)
(level of information uncertainty = 0.2 and competence of staff = 0.8)

As can be seen from Figure 1, the level of uncertainty =0.55 and the competence of personnel = 0.65: probability of completion for the 51 period equal to 0.1 (P=0.1); the probability of completion for 39 periods equal to 0.37 (P=0.37); the probability of completion for a planned 19 periods = 0.0 (P=0.0).
Figure 2 shows the output at the level of information uncertainty = 0.2 and staff competence = 0.8; the probability of completion of construction for 23 periods is 0.73 ($P = 0.73$); the probability of completion for the planned 19 periods is 0.17 ($P = 0.17$), which is clearly not enough.

![Figure 2](image.png)

Figure 2. The output at the level of information uncertainty = 0.2 and staff competence = 0.8.

Figure 3 and Figure 4 show graphs of the construction process implementation with different input values of information uncertainty and personnel competence. When you change the input values, the graphs automatically (as well as histograms) change their configuration, which allows you to immediately visualize the results of modeling.

![Figure 3](image.png)

Figure 3. Normative / planned and actual construction schedule. (when information uncertainty = 0.55 and the competence of personnel = 0.65)

![Figure 4](image.png)

Figure 4. Normative / planned and actual construction schedule. (with information uncertainty = 0.2 and staff competence = 0.8)
Figure 5. Possible construction time depending on the levels of information uncertainty \((x)\) and staff competence \((y)\) \((x/y)\).

Figure 6. Probabilistic characteristics of construction terms depending on levels of information uncertainty \((x)\) and competence of personnel \((y)\) \((x/y)\).

Figure 5 shows the analytical relationship between the levels of information uncertainty and competence of personnel-on the one hand, and the possible timing of construction - on the other hand. As can be seen from Figure 5, the increase in uncertainty and decrease in competence leads to an increase in the interval of permissible deviations of construction terms.
Figure 6 shows the probability of completion of construction in a certain period of time, obtained as a result of modeling, with certain values of the level of information uncertainty and personnel competence. So, the term of completion of construction for 22 periods, corresponds to the probability of \(P = 0.77 \), and the probability to meet the planned deadlines is equal to \(P = 0.23 \). Under other conditions of information uncertainty and competence of personnel, there is the greatest probability \((P=0.37) \) of completion of construction is 39 periods, instead of 19 planned periods.

A simulation model of the construction process was built, the main characteristics of which are presented in Table 1. The result is estimated by the indicator of the effectiveness of the decisions taken: the deviation of the actual terms of construction from the planned terms.

4. Conclusion

Based on the experiments carried out on the simulation model of the construction process [20-23] and processing of the results obtained, the following conclusions can be drawn:

1. The concepts of “information uncertainty” and “level of professional competence” used in the proposed model are integral indicators, i.e. the proposed simulation model is built on the concept of deduction (i.e., “General to particular”), which allows to further complicate it by including new conceptual categories in the simulation model.

2. The dynamics of deviations in the terms of the construction process increases faster than the dynamics of changes in the level of information uncertainty and the level of competence (see Fig.5), this suggests that the lack of competencies leads to an accelerated loss of manageability of the construction process.

3. Simulation allows you to quickly and fairly inexpensively obtain statistically significant information on all elements of the construction process, after statistical processing of which, you can make significant management decisions to stabilize the construction process.

References

[1] Evseev V. Business games in the formation of economic competencies. *Training manual. M. University textbook*, 2011.

[2] Passmore D L, Chae C, Borkovskaya V, Baker R, and Yim J 2019 Severity of U.S. construction worker injuries, 2015-2017 *E3S Web of Conferences*, 97, 06038. doi:10.1051/e3sconf/20199706038

[3] Borkovskaya V G and Passmore D L Behavioral engineering model to identify risks of losses in the construction industry. *Smart Innovation, Systems and Technologies*, 243–250. 2019 doi:10.1007/978-3-030-15577-3_24

[4] Borkovskaya V G and Passmore D L 2018 Application of failure mode and effects analysis in ecology in Russia. *MATEC Web of Conferences* 193, 05027. doi:10.1051/matecconf/201819305026

[5] Borkovskaya V G Complex models of active control systems at the modern developing enterprises. *Advanced Materials Research*. V. 945-949. Chapter 22: Manufacturing Management and Engineering Management. 2014. P. 3012-3015. DOI: 10.4028/www.scientific.net/AMR.945-949.3012

[6] Borkovskaya V G The concept of innovation for sustainable development in the construction business and education. *Applied Mechanics and Materials*. V.475-476. Chapter 15: Engineering Management. 2013. P. 1703-1706. DOI: 10.4028/www.scientific.net/AMM.475-476.1703

[7] Borkovskaya V.G. Complex models of active control systems at the modern developing enterprises. *Advanced Materials Research*. V. 945-949. Chapter 22: Manufacturing Management and Engineering Management. 2014. P.3012-3015. DOI: 10.4028/www.scientific.net/AMR.945-949.3012

[8] Borkovskaya V G Environmental and economic model life cycle of buildings based on the concept of Green Building. *Applied Mechanics and Materials* 467. Materials Science and
Mechanical Engineering. Chapter 2: Building Materials and Construction Technologies. P. 287-290. 2013. DOI: 10.4028/www.scientific.net/AMM.467.287

[9] Osipov V S, Skryl T V The strategic directions of the modern Russian economic development. International Business Management. 2016. T. 10. No. 6. P. 710-717

[10] Skryl T V, Osipov V S, Evseev V O. The Interaction Model of Business and State as a Factor in Human Resource Management. Second International Conference on Economic and Business Management. FEBM2017. 2017. P. 862-868

[11] Evseev V O, Skryl T V. Simulation of the voting process at polling station.

[12] Osipov V S, Skryl T, Evseev V O. Advances in Social Sciences, Education and Human Research. V. 215. 3rd International Conferences on Modern Management, Education Technology, and Social Science. MMETSS 2018. P. 202-205

[13] Evseev V O, Osipov V S, Skryl T V. An analysis of economic issues of territories of priority Development. Research Journal of Applied Sciences. 2016. T. 11. No. 9. P. 833-842

[14] Evseev V O. Human resources in the system of socio-economic equations: studies. Benefit 2nd ed. M. high school textbook, INFRA-M. 2017. - 379 p.

[15] Evseev V, Barkhi R, Pleshivtsev A, Scrynnik A. Modeling the Influence of Weather and Climatic Conditions on the Safety Characteristics of the Construction Process. 2019 E3S Web of Conferences, 97. 02053

[16] Burkov V N, Burkova I V, Barkhi R, Berlinov M. Qualitative Risk Assessments in Project Management in Construction Industry. Journal MATEC Web of Conferences, V. 251, 06027 2018. DOI: https://doi.org/10.1051/matecconf/201825106027

[17] Borkovskaya V G. Post bifurcations of the concept of the sustainable development in construction business and education. Advanced Materials Research. V. 860-863. Chapter 26: Engineering Education. P. 3009-3012. 2013. DOI: 10.4028/www.scientific.net/AMR.860-863.3009

[18] Borkovskaya V G, Degaev E, Burkova I Environmental economic model of risk management and costs in the framework of the quality management system. MATEC Web of Conf., 193 2018 05027. DOI: https://doi.org/10.1051/matecconf/201819305027.

[19] Kas'yanov V, Danilchenko V, Amelin V, Tolmacheva V. Environmental risk management. Forecasting and modeling of emergency risk management situations. MATEC Web of Conferences V. 251 2018. DOI: https://doi.org/10.1051/matecconf/201825106030

[20] Pleshivtsev A, Korol O, Barkhi R. Risks on Optimization of Life Cycle of Technology of Installation of Transformed Low-rise Buildings from Sandwich Panels. MATEC Web of Conferences V. 251 2018. DOI: https://doi.org/10.1051/matecconf/201825106024

[21] Passmore D, Chae C, Kustikova Y, Baker R, Yim J. An exploration of text mining of narrative reports of injury incidents to assess risk. MATEC Web of Conferences Volume 251 2018. DOI: https://doi.org/10.1051/matecconf/201825106020

[22] Bolshakov N, Badenko V, Celani A. Integration of territorial analysis methods in site selection on the example of Saint Petersburg. IOP Conference Series: Materials Science and Engineering 365, No. 2, 2018. 022052

[23] Bolshakov N S, Badenko V L, Celani A. Site -selection on the basis of territorial analysis methods. Magazine of Civil Engineering, 81(5). 2018. 15–24