Semilobar Holoprosencephaly with Congenital Oropharyngeal Stenosis in a Term Neonate

Kenji Hishikawa, MD1 Hideshi Fujinaga, MD1 Chie Nagata, MD, PhD, MPH2 Masataka Higuchi, MD3 Yushi Ito, MD1

1 Division of Neonatology, National Center for Child Health and Development, Tokyo, Japan
2 Division of Education for Clinical Research, National Center for Child Health and Development, Tokyo, Japan
3 Division of Pulmonology, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan

Am J Perinatol Rep 2015;5:e109–e110.

Abstract

Background Holoprosencephaly (HPE) is often accompanied by a deficit in midline facial development; however, congenital oropharyngeal stenosis in neonates with HPE has not been reported before. We describe a case of a neonate with prenatally diagnosed semilobar HPE accompanied by congenital oropharyngeal stenosis.

Case Report The patient was born at 39 weeks of gestation and developed dyspnea shortly after. Laryngoscopic test revealed oropharyngeal stenosis. Nasal continuous positive airway pressure, high-flow nasal cannula, and nasopharyngeal airway did not resolve her dyspnea; tracheostomy was required.

Conclusion Neonates with HPE might be at higher risk of pharyngeal stenosis because of the functional and/or anatomical abnormalities. In the case of dyspnea in neonates with HPE, laryngoscopic evaluation should be considered.

Keywords ► holoprosencephaly ► oropharyngeal stenosis ► congenital pharyngeal stenosis

Holoprosencephaly (HPE) is a common developmental disorder that occurs in the human forebrain. The cause of HPE is thought to be due to a disturbance in the delicate balance of signals for the separation of the cerebral hemisphere.1 HPE is classified into the following four types according to the severity of the abnormality of cleavage of the cerebral hemispheres and deep nuclear structures: alobar, semilobar, lobar, and middle interhemispheric variant or syntelencephaly.2 Although HPE is often accompanied by a deficit in midline facial development, there has been no report on HPE with congenital oropharyngeal stenosis. Here, we report a case of HPE with congenital oropharyngeal stenosis, which resulted in respiratory distress.

Case Presentation

A 33-year-old pregnant woman (Gravida 1, Para 0) was referred to our hospital for fetal growth retardation and fetal ventriculomegaly at 30 weeks of gestation. She had no history of infections during pregnancy, medication, or any other chronic diseases. Her niece had a congenital abnormality, but the details were unclear. Prenatal sonographic findings revealed fetal growth retardation (∼2.0 standard deviation [SD]), enlargement of the anterior and posterior horns of the bilateral lateral ventricles, fused lateral ventricles and thalami, and hypotelorism (binocular distance, 37.8 mm, <−2.0 SD). No other congenital malformations were found. Prenatal diagnosis was semilobar HPE. Amniocentesis was performed and the chromosomal karyotype was normal (46,XX). The course of pregnancy was uneventful. At 39 weeks of gestation, she had spontaneous labor and vaginal delivery.

A female baby of weight 2,172 g (−2.2 SD) was born. The Apgar scores at 1 and 5 minutes were 7 and 9 points, respectively. Her respiratory status was stable at birth and hence resuscitation was not required. She was transferred to the neonatal intensive care unit (NICU) for further examination.

In the NICU, the newborn’s vital signs were within normal limits. Physical examinations showed microcephaly (head circumference, 29.7 cm; −2.6 SD), hypotelorism (magnetic

received

November 5, 2014

accepted after revision

February 12, 2015

published online

April 6, 2015

DOI http://dx.doi.org/10.1055/s-0035-1548725.

ISSN 2157-7005.

Copyright © 2015 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.
Tel: +1(212) 584-4662.

License terms

THIEME
resonance imaging [MRI] findings at 2 months: interocular distance, 10.1 mm, < −2.0 SD; binocular distance, 47.3 mm, < −2.0SD) and hypoplasia of nasal septum. Cleft lip, cleft palate, microstomia, and micrognathia were not found. Neurologically, she had normal tone and reflexes. Brain sonography and MRI findings were in line with her prenatal examinations. There were no abnormal findings in her blood tests, chest and abdominal X-rays, echocardiography, and abdominal sonography. We diagnosed semilobar HPE, which was consistent with her prenatal diagnosis.

On day 1 of life, the newborn developed dyspnea with stridor. Her breathing worsened gradually accompanied by retraction and nasal flaring. As her breathing became unstable, we performed a laryngoscopic examination on her oropharynx. Two possible etiologies/mechanisms that could have resulted in the patient’s oropharyngeal stenosis are functional pharyngeal stenosis caused by neurogenic factors associated with HPE, and anatomical pharyngeal stenosis caused by mandibulofacial dysostosis with hypotelorism and hypoplasia of nasal septum. Neonates with HPE might be at higher risk of pharyngeal stenosis because of functional and/or anatomical abnormalities. In the case of dyspnea with HPE, pharyngeal stenosis may not be evaluated sufficiently.

The effect of nCPAP, HFNC, and NPA on our patient was temporary. The air pressure of nCPAP and HFNC seemed to be insufficient to open the patient’s oropharynx. For the NPA, the tip was needed to be placed in the small space between the wall of her oropharynx just above the larynx and the epiglottis. It was challenging to keep the NPA at the suitable position because of the movements of the patient. As a result, erosion occurred in the wall of her oropharynx. Although Kawashiro et al recommended uvula splitting as an alternative treatment, we were unable to use this option because the newborn’s physique was too small to tolerate such a procedure. Instead, a tracheostomy was performed to resolve her problem.

In summary, we experienced a case of HPE with congenital oropharyngeal stenosis which resulted in respiratory distress. In the case of dyspnea with HPE, laryngoscopic test should be considered for the evaluation of pharyngeal stenosis.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgment
We thank Dr. Julian Tang of the Department of Education for Clinical Research, National Center for Child Health and Development, for proofreading and editing this article.

References
1 Kauvar EF, Muenke M. Holoprosencephaly: recommendations for diagnosis and management. Curr Opin Pediatr 2010;22(6):687–695
2 Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V. Holoprosencephaly. Orphanet J Rare Dis 2007;2:8
3 Kawashiro N, Koga K, Tsuchihashi N, Araki A. Choanal atresia and congenital pharyngeal stenosis. Acta Otolaryngol Suppl 1994;517:27–32