ON PRIMARY DECOMPOSITION OF MODULES

NAZERAN IDREES¹, AFSHAN SADIQ², AND ASIFA TASSADDIQ³

Abstract. Primary decomposition is a very important tool of commutative algebra and geometry. In this paper we generalized some of the existing algorithms of primary decomposition developed by Eisenbud et al. (cf. [EHV]) for free modules and also filled some gaps by providing proofs of important Theorems (2.10, 2.13, 2.14) appeared in [EHV]. All these algorithms are programmed and implemented in SINGULAR.

1. Introduction

Primary decomposition is a very well known and active area of research in computational algebra. Most of the algorithms for primary decomposition depend on Gröbner basis. The idea of Gianni, Trager and Zacharias (cf. [GTZ]) depend on reducing the ideal to zero dimensional case and applying linear coordinate change, and these techniques are generalised by E. W. Rutman (cf. [R]) for modules. The algorithm of Shimoyama and Yokoyama (cf. [SY]) introduces the concepts of pseudo primary decomposition and separating sets and these methods are further enhanced by Noro (cf. [N]) and are generalised for modules by Idrees (cf. [I]). Many further developments are made in these main existing algorithms. Modular and parallelization techniques for these algorithms are discussed and implemented in SINGULAR by N. Idrees, G. Pfister and S. Steidel (cf. [IPS]). The idea of primary decomposition of Eisenbud, Huneke and Vasoncellos (cf. [EHV]) employs the methods of equidimensional decomposition of ideals and homological methods which are here generalised for modules partially and provided proofs of important theorems, these algorithms are implemented in SINGULAR (cf. DGPS). We will assume that all modules are finitely generated.

Definition 1.1. Let $N \subset M$ be submodules of $R^s = \mathbb{Q}[X]^s$. We say that N is a primary submodule of M if for $r \in R, v \in M$ and $rv \in N \Rightarrow v \in N$ or $r \in \sqrt{\text{Ann}(M/N)}$. In this case $\text{Ann}(M/N)$ is a primary ideal of R, and we say that N is $\sqrt{\text{Ann}(M/N)}$-primary in M.

Remark 1.2. Let $N \subset M$ be R-modules. If P is a maximal ideal of R then N is P-primary in $M \Rightarrow \text{Ann}(M/N)$ is a P-primary ideal in R.

Definition 1.3. A submodule N of an R-module $M \subset R^s$ has a primary decomposition if $N = \cap_{i=1}^r Q_i$ with each Q_i a P_i-primary submodule of M for some prime ideal P_i of R. Q_i is called the primary component of N belonging to P_i and each P_i is an associated prime of N. If Q_i does not contain $\cap_{j \neq i} Q_j$ and the P_i are all distinct then the decomposition is said to be reduced. As intersection of a finite number of P-primary submodules of M is also P-primary, so we can always have a reduced primary decomposition from a given primary decomposition. If P_i is a minimal prime ideal among the set of all associated primes of N, then P_i is called isolated prime associated to N; otherwise P_i is embedded. The set of all minimal associated primes of N is called $\text{minAss}(N)$ and the set of all associated primes is called $\text{Ass}(N)$.

Date: September 3, 2014.

Key words and phrases. Gröbner bases, primary decomposition, localization.
Definition 1.4. The equidimensional hull of 0 in a module M is defined to be the submodule N which contains all elements whose annihilators have dimension strictly less than the dimension of M. In other words N is the intersection of all primary components of 0 in M having maximal dimension. We define the equidimensional hull of a submodule M' ⊂ M to be the preimage in M of the equidimensional hull of 0 in M/M'.

We write hull(N, M) for the equidimensional hull, or simply by hullN, when there is no danger of confusion.

2. Proofs and Algorithms

Theorem 2.1. Let M be a module over regular domain S, and set I_c = Ann Ext_S^c(M, S):

1. I_c has codimension greater than or equal to c and M/(0 :_M I_c) has no associated primes of codimension c. In particular a prime ideal of codimension c is associated to M if and only if P contains the annihilator of Ext_S^c(M, S).

2. The equidimensional hull of 0 in M is the kernel of the natural map

$$\pi : M \to \text{Ext}_S^c(\text{Ext}_S^c(M, S), S)$$

where c is the codimension of M.

This theorem can be used to find the equidimensional hull of a module and also to remove the components of dimension less than any given number.

We give algorithms to remove component of low dimension and to find equidimensional hull of given module M.

Algorithm 2.2. RemComp(M)

Input: Given a module M over S = K[x_1, x_2, ..., x_n], and an integer c (normally taken ≥ dim M).

Output: A submodule N_c consisting of the intersection of the primary components of M of dimension greater than or equal to c.

1. b := dim S;
2. N := 0;
3. while b > c do
 4. compute Ext^b(M, S);
 5. if codim Ext^b(M, S) = b then
 6. I_b := Ann(Ext^b(M, S));
 7. N := (N :_M I_b);
 8. decrement b;
 9. (Optional: m := M/N);
 10. return N;

Algorithm 2.3. EquidimHull(M)

Input: Given a finitely generated module M over S = K[x_1, x_2, ..., x_n].

Output: The equidimensional kernel N ⊂ M.

1. c := codim M;
2. compute N := ker(M → Ext_S^c(Ext_S^c(M, S), S)), the kernel of the canonical map;
3. return N;

In practice the canonical map is computed by forming the comparison map between the dual of a free resolution of M and a free resolution of Ext^c_M(S/I, S). An alternative would be to construct a polynomial subring T of S such that dim T = dim N and over which N is finitely generated.
(a Noether normalization for $S/\text{Ann}(N)$ will do) and then take the kernel of the natural map of N into its double dual over T. The following algorithm will be very useful for the purposes of localization:

Algorithm 2.4. AssPrimCodim(M)

Input: Given a finitely generated module M over $S = K[x_1, x_2, \ldots, x_n]$ and an integer c.

Output: Find an ideal whose associated primes are exactly the associated primes of M having codimension c.

$I_c := \text{Ann Ext}^c_S(M, S);
\text{if } (\text{codim } I_c > c) \text{ then } I = S;
\text{else } I := \text{EquidimHull}(I_c);
\text{return } I;$

Lemma 2.5. If J is an ideal in noetherian ring R and M is a finitely generated R-module, then

1. $(0 :_M J^\infty)$ is the intersection of primary components of 0 in M whose associated primes do not contain J.
2. $\text{minAss } M \cap \text{Supp } JM \subset \text{Ass}(0 :_M J) \subset \text{Ass}(M) \cap \text{Supp } JM$ where $\text{minAss } M$ is the set of minimal associated primes of M. Further given a primary decomposition of 0 in M, there is a primary decomposition of $(0 :_M J)$ for which each primary component contains the corresponding primary component of 0.
3. In particular if I is a radical ideal then $(I : J)$ is radical and

$$(I : J) = \bigcap P_j$$

where P_j ranges over all primes containing I but not containing J.

Here is an algorithm for finding the intersection of associated primes of module M having a given dimension c.

Algorithm 2.6. InterAssPrim(M)

Input: A module M and an integer c.

Output: A set H which is intersection of all associated primes of M having dimension c.

$I_c := \text{Ann Ext}^c_S(M, S);
\text{if } \text{codim } I_c = c \text{ then } H := \text{radical of eqidimensional hull of } I_c;
\text{else } H := S;
\text{return } H;$

Definition 2.7. Let S be an affine ring and $J \subset S$ be an ideal, and $A \subset B$ be a finitely generated S modules. The localization of A at the ideal J is, denoted by A_J, is defined as $A_J = \{b \in B \mid \text{dim}(J + (A : b)) < \text{dim } J\}$. If J is a prime ideal then we can write as $A_J = \{b \in B \mid (A : b) \subseteq J\}$. If J is a prime ideal , A_J is the preimage of the usual localization $A_j \subset B_j$ under the canonical map $B \rightarrow B_J$.

Of course the localization at J is the same as the localization at the equidimensional hull of J.

The following proposition is helpful in actual computation of localization of a module at an ideal.
Proposition 2.8. Let $J \subset S$ be an ideal in a noetherian ring, let $A \subset B$ be S-modules, and let I'_c be the intersection of all the associated primes of B/A having codimension exactly c. If we set

$$K := \bigcap_c (I'_c, (I'_c)_J)$$

then,

$$A_{[J]} = (A : K^\infty).$$

Proof. By Lemma 2.5 (2) the ideal $K_c := (I'_c, (I'_c)_J)$ is the intersection of those associated primes of B/A having codimension c and not contained in a prime containing J and having the same dimension as J. By Lemma 2.8 (3) $(A : K^\infty)$ is the result of removing all corresponding primary components from A, and is equal to $A_{[J]}$. □

Algorithm 2.9. Local(A, J)

Input: A module $A \subseteq B$ and an ideal J.

Output: A module $A_J = \{b \in B \mid (A : b) \subseteq J\}$, localization of A at J.

for each $c = \text{codim } B/A, \ldots, n$ do

compute I'_c = intesection of all associated primes of B/A having codimension c;

$I''_c := I'_c(J)$;

$I'''_c := (I'_c : I''_c)$;

$K := \bigcap_c I'''_c$;

return $A_{[J]} := (A : K^\infty)$

Theorem 2.10. Let $M = Q_1 \cap Q_2 \cap \ldots Q_m$ be an irredundant primary decomposition, $P_i = \sqrt{Q_i}$. Let $P \in \{P_1, P_2, \ldots, P_m\}$ and Q be a P-primary module such that $M \subseteq Q$. Then Q is a primary component for M, i.e. there exists i such that $Q = Q_1 \cap \ldots Q_i \cap Q \cap Q_{i+1} \ldots Q_m$ if and only if $Q \cap (M_{[P]} : P^\infty) = M_{[P]}$.

Proof. Assume $Q = Q_i$ for some i. Then $P = P_i$.

Claim. If P is not embedded then $M_{[P]} = Q$ and $M_{[P]} : P^\infty = R$.

Obviously $M_P \subseteq Q$. Let $x \in Q$ then

$$M : x = (Q_1 : x) \cap \ldots (Q_{i-1} : x) \cap (Q : x) \cap (Q_{i+1} : x) \cap \ldots (Q_m : x).$$

If $(M : x) \subseteq P = P_i$, this implies that $(Q_j : x) \subseteq P_i$ for some $j \neq i$. This implies that $P_j \subseteq P_i$ which is a contradiction to the assumption that $P = P_i$ is not embedded. This implies $I : x \subseteq P$ and therefore $x \in M_{[P]}$. This implies $M_{[P]} = Q$. Now $P^m \subseteq Q$ for some m. This implies that $M_{[P]} : P^\infty = R$ and proves the claim.

Claim. If $P_j \not\subseteq P$ then $M_{[P]} : P^\infty \subseteq M_{[P]} \subseteq Q_j$.

Let $x \in M_{[P]} : P^\infty$ i.e. $xq \in M_{[P]}$ for all $q \in P^m$ for all m. There exists $x \notin P, \xi \in Q_j$ such that $xq \notin P_j$, this implies $x \in M_{P_j}$ and proves the claim. Now let $x \in Q \cap (I_{[P]} : P^\infty)$ then

$$M : x = (Q_1 : x) \cap (Q_2 : x) \cap \ldots (Q_{i-1} : x) \cap (Q_{i+1} : x) \ldots$$

But $x \in M_{[P]} : P^\infty \subseteq Q_j$ for all $P_j \not\subseteq P$. This implies $x = \bigcap_{P_j \not\subseteq P} Q_j : x$. If $M : x \subset P$ then $Q_j : x \subset P$ for some j with $P_j \not\subseteq P$. But this is not possible. This implies $M : x \subseteq P$, i.e. $x \in M_{[P]}$. Therefore $Q \cap (M_{[P]} : P^\infty) \subseteq M_{[P]}$. The other inclusion is obvious. We proved one direction of theorem.
To prove the other direction assume $P = P_i$ and $Q \cap (M_{[P]} : P^\infty) = M_{[P]}$.
Therefore $Q \cap (M_{[P]} : P^\infty) = Q_i \cap (M_{[P]} : P^\infty)$. Let

$$N = Q_1 \cap \ldots \cap Q_{i-1} \cap Q_i \cap Q_{i+1} \cap \ldots \cap Q_m.$$

We have to prove that $M = N \cap Q$, i.e. $N \cap Q = N \cap Q_i$.
Claim $N = M_{[P]} : P^\infty) \cap (\cap P \subseteq P Q_i)$.
Let $x \in N$, choose m such that $P^m \subseteq Q_i$, then $x^P \subseteq M \subseteq M_{[P]}$. This proves that $N \subseteq M_{[P]} : P^\infty$. On the other hand we proved already that $M_{[P]} : P^\infty) \subseteq (\cap P \subseteq P Q_i)$. This implies that $M_{[P]} : P^\infty) \cap (\cap P \subseteq P Q_i) \subseteq N$ but $N \subseteq M_{[P]} : P^\infty)$ implies $N = M_{[P]} : P^\infty) \cap (\cap P \subseteq P Q_i)$ and proves the claim. As $Q \cap (M_{[P]} : P^\infty) = Q_i \cap (M_{[P]} : P^\infty)$ so we obtain $N \cap Q = N \cap Q_i$. □

Example 2.11. Let $I = \langle x^2, xy \rangle \subseteq \mathbb{Q}[x, y]$ be an ideal, then $P = \langle x \rangle$, $I_{[P]} = I$, $I_{[P]} : P^\infty = \langle x \rangle$, $Q = \langle x^2, y \rangle$ and $Q_1 = \langle x^2, xy, y^2 \rangle$.

Now we are ready to give an Algorithm for finding a primary component for a given associated prime.

Algorithm 2.12. PrimComp(A,P)
Input: A module $A \subseteq B$ and a prime ideal P.
Output: A primary component Q of A with associated prime P.

\begin{align*}
T & := PB; \\
\text{compute } A_{[P]} & := \text{LOCAL}(A, P); \\
\text{compute } A_{[P]} & := P^\infty; \\
\text{compute } \text{EQUIDIMHULL}(A + T); \\
\text{if } A_{[P]} & = P^\infty \subseteq A_{[P]} \text{ then} \\
Q & := \text{EQUIDIMHULL}(A + T); \\
\text{else} & \\
T & := PT; \\
\text{return } Q;
\end{align*}

Theorem 2.13. Let Q be a submodule of $R[x]^g$ and I be an ideal in R then the natural map

$$Q_{[P]} : P^\infty \cap Q \to R/Q,$$

where P is minimal associated prime of I, is a monomorphism if and only if Q is P-primary.

Proof. Suppose Q is P primary. First we will show that $M_{[P]} : P^\infty \cap Q \subseteq M_{[P]}$. Note that $M_{[P]} = \{ b \in R^S | \dim(P + M : b) < \dim P \} = \{ b \in R^S | M : b \not\in P \} \subseteq P$ because if $\xi \in M : b$ i.e. $\xi b \in M$ and $\xi \not\in P$ implies $b \in P$. So $M_{[P]} = \{ b \in P | M : b \not\in P \} \subseteq Q$.
Choose $\xi \notin P$ but $b \xi \in M$ which implies $b \in Q$. To prove that $M_{[P]} : P^\infty \cap Q = M_{[P]}$, it is enough to prove that for any $p \in P$, $M_{[P]} : p \cap Q = M_{[P]}$.
Let $f \in M_{[P]} : P^\infty \cap Q$. There exists ξ such that $p, f, \xi \in M, \xi \notin P, f \in Q, p \in P$. To show $f \in M_{[P]}$ we have to show that $M : f \not\notin P$.

$$M = Q_1 \cap Q_2 \cap \ldots \cap Q_s \text{ so } M : f = (Q_1 : f) \cap (Q_2 : f) \cap \ldots \cap (Q_s : f).$$

Assume $M : f \not\subseteq P$, which implies there exists i such that $Q_i \subseteq Q_i : f \subseteq P$. This implies $P_i \subseteq P$, which is contrary to the fact that P is minimal.

Conversely, we suppose that $M_{[P]} : P^\infty \cap M_{[P]} \to R[x]^g/Q$ is injective and \overline{Q} is P-primary module containing M, i.e $\overline{Q} = M_{[P]} = \{ b | M : b \not\in P \} \subseteq Q$ (we know \overline{Q} is P-primary and P is associated prime of M and M is equidimensional). $M = Q_1 \cap Q_2 \cap \ldots \cap Q_s$, this implies that $N \subseteq \overline{Q} \subseteq Q$, which in turn implies that $M = \overline{Q} \cap Q_2 \cap \ldots \cap Q_s$, so $Q = \overline{Q}$. □
Theorem 2.14. Let \(N \subseteq R[x]^s \) be a module, \(P \in \text{Ass}(M) \). Then \(N + P^m R^S \) is a \(P \)-primary component of \(N \) for some \(m \).

Proof. Let \(N = Q_1 \cap Q_2 \cap \ldots \cap Q_s \) be a module, \(P \in \text{Ass}(M) \). Choose \(m \) such that \(P^m \in Q \). Now \(N + P^m R^S \subseteq \cap_{P \subseteq \sqrt{Q_j}} Q_j \), so \(f \) is of the form \(f = f_1 + f_2 \), this implies \(f \in Q \) for any \(j \), \(f \in \sqrt{Q_j} \), so \(f \in \cap_{P \subseteq \sqrt{Q_j}} Q_j \). (as equi(\(\cap_{P \subseteq \sqrt{Q_j}} Q_j \)) = \(Q \)) so equi\((N + P^m) = Q \). □

Here is the Algorithm to find the primary decomposition of a given module.

Algorithm 2.15. PRIMDECOMEHV(M)

Input: A module \(M \subseteq R[x]^n \), and \(x = x_1, x_2, \ldots, x_n \).

Output: A list \((Q_i, P_i)\), where \(Q_i \) is primary component of \(A \), with associated prime \(P_i \).

\[
N := \text{EquidimHull}(M); \\
\text{compute } B := \{P_1, \ldots, P_r\}, \text{ the set of minimal associated primes of } \text{Ann}(N); \\
\text{for } i = 1, \ldots, r \text{ do} \\
\text{compute } Q_i = \text{PrimComp}(N, P_i); \\
\text{if } M \text{ has embedded primes then} \\
\text{while } (f > \text{codim}(M)) \text{ do} \\
H := \text{Ext}_R^f(M); \\
I_f := \text{Ann}(H) \\
c := \text{codim}(I_f); \\
\text{if } (c = f) \text{ then} \\
K := \text{minAss}(\text{EQUIDIMMAXEHV}(I_f)); \\
\text{compute for each prime ideal } P_i \text{ in } K; \\
Q_i = \text{PrimComp}(M, P_i); \\
f = f - 1; \\
\text{return } (P_i, Q_i); \\
\]

In programming, we computed associated primes using the method of (cf. [GTZ]) instead of eisenbud et al. It would be interesting to compare the results with computation of associated primes using other techniques.

3. Procedures

proc primEHV(module M)
"USAGE: primEHV(id); id= ideal/module,
RETURN: a list K of primary ideals and their associated primes:
\(K[1][1] \) the i-th primary component of \(M \),
\(K[1][2] \) the i-th prime component of \(M \).
EXAMPLE: example primEHV; shows an example"

{ list Z,L,K,W;
 module H;
 ideal If;
 int i,e,n,c;
 n=nvars(basering);
e=dim(std(M));
int f=n;
module M1=canonMap(M)[1];
module N1=freemodule(nrows(M));
module N=N1;
L=minAssGTZ(Ann(M1));
int l = size(L);
for(i=1; i<=l; i++)
{
 K[i] = list();
 K[i][2] = std(L[i]);
 K[i][1] = com(M1,N1,std(L[i]),L);
}
for(i=1;i<=size(K);i++)
{
 N=intersect(N,K[i][1]);
}
if(reduce(N,Ann(M1))!=0) //if M has embedded primes then
{
 while(f>n-e)
 {
 H=ExtR(f,M);
 If=quotient(H,freemodule(nrows(H))); //If is ann(H)
 c=n-dim(std(If));
 if(c==f)
 {
 Z=minAssGTZ(equiMaxEHV(If));
 for(i=1; i<=size(Z); i++)
 {
 W[i] = list();
 W[i][2] = std(Z[i]);
 W[i][1] = com(M,N1,std(Z[i]),Z);
 N=intersect(N,W[i][1]);
 }
 K=K+W;
 }
 f--;
 }
 return(K);
}
example
{
 "EXAMPLE:"; echo = 2;
 ring s=0,(x,y,z),dp;
 ideal i=x2y,xz2,y2z;
 primEHV(i);
 ring T = 0,(x,y,z),dp;
 module M=[xy,0,yz],[0,xz,z2];
ON PRIMARY DECOMPOSITION OF MODULES

primEHV(M);
}

proc canonMap(list l)
"USAGE: canonMap(id); id= ideal/module,
RETURN: a list L, the kernel in two different representations and
@* the cokernel of the canonical map
@* M ---> Ext__c R(Ext___R(M,R),R) given by presentations
@* Here M is the R-module (R=basering) given by the
@* presentation defined by id, i.e. M=R/id resp. M=R^n/id
@* c is the codimension of M
@* L[1] is the preimage of the kernel in R resp. R^n
@* L[2] is a presentation of the kernel
@* L[3] is a presentation of the cokernel
EXAMPLE: example canonMap; shows an example"
{
 module M=hash[1];
 int c=nvars(basering)-dim(std(M));
 if(c==0)
 {
 module K=syz(transpose(M));
 module Ke=syz(transpose(K));
 module Co=modulo(syz(transpose(syz(K))),transpose(K));
 }
 else
 {
 int i;
 resolution F=mres(M,c+1);
 module K=syz(transpose(F[c+1]));
 K=simplify(reduce(K,std(transpose(F[c]))),2);
 module A=modulo(K,transpose(F[c]));
 resolution G=nres(A,c+1);
 for(i=1;i<=c;i++)
 {
 K=lift(transpose(F[c-i+1]),K*G[i]);
 }
 module Ke=modulo(transpose(K),transpose(G[c]));
 module Co=modulo(syz(transpose(G[c+1])),transpose(K)+transpose(G[c]));
 }
 return(list(Ke,Co));
}
example
{ "EXAMPLE:"; echo = 2;
 ring s=0,(x,y),dp;
 ideal i = x,y;
 canonMap(i);
 ring R = 0,(x,y,z,w),dp;
ideal I1 = x, y;
ideal I2 = z, w;
ideal I = intersect(I1, I2);
canonMap(I);
module M = syz(I);
canonMap(M);
ring S = 0, (x, y, z, t), wp(3, 4, 5, 1);
ideal I = x - t^3, y - t^4, z - t^5;
ideal J = eliminate(I, t);
ring T = 0, (x, y, z), wp(3, 4, 5);
ideal p = imap(S, J);
ideal p2 = p^2;
canonMap(p2);

proc com(module A, module B, ideal P, list L)
"USAGE: com(id1, id2, P, L); id1 = ideal/module, id2 = ideal/module, P prime ideal in the list L of prime ideals
RETURN: returns a primary component of the module A defined by id1 associated to prime ideal P defined by id2
EXAMPLE: example com; shows an example
"
{
 module T = P*B;
 module Q;
 module AP = groebner(locm(A, B, P, L));
 { //...and compute the saturation of the localization w.r.t. P.
 module AP2 = sat(AP, P)[1];
 //As long as we have not found a primary component...
 int isPrimaryComponent = 0;
 while(isPrimaryComponent != 1)
 { //...compute the equidimensional part Q of A+P^u...
 Q = canonMap(A+T)[1]; //and check if it is a primary component for P.
 if(isSub(intersect(AP2, Q), AP) == 1)
 { isPrimaryComponent = 1;
 }
 else
 { T = P*T;
 }
 }
 return(Q);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y),dp;
module N=x*gen(1)+ y*gen(2),
x*gen(1)-x2*gen(2);
list L=minAssGTZ(Ann(N));
ideal P=x;
module A=freemodule(nrows(N));
com(N,A,P,L);
}

proc locm(module A,module B,ideal J,list L)
"USAGE: locm(id1,id2,id,list); id1= ideal/module, id2=ideal/module,id=prime ideal in a list L.
RETURN: The localization of a module A denoted by id1 at the prime ideal J denoted by A
having codimension e, where A is subset of B,are modules over freemodule S.
EXAMPLE: example canonMap; shows an example"
{
 ideal h=quotient(A,B);
 int n=nvars(basering);
 list LL=L;
 ideal I,G,P,Q; //assume J is in L
 int i,c;
 list H;
 while(size(L)>0)
 {
 I=L[1];
 L=delete(L,1);
 c=dim(std(I));
 i=1;
 while(i<=size(L))
 {
 if(dim(std(L[i]))==c)
 {
 I=intersect(I,L[i]);
 L=delete(L,i);
 i--;
 }
 i++;
 }
 H[size(H)+1]=I;
 }
 ideal K=ideal(1);
 for(i=1; i<=size(H);i++)
 {

G=localize(H[i],J,LL);
P=quotient(H[i],G);
K=intersect(K,P);
}
return(sat(A,K)[1]);
}

example
{
"EXAMPLE:"; echo = 2;
ring r=0,(x,y),dp;
module M=[x2,xy2],[xy,y2];
module A=freemodule(nrows(M));
list L=minAssGTZ(Ann(M));
ideal J=L[2]=y-1;
locm(M,A,J,L);
}
proc isSub(module I,module J)
"USAGE: isSub(mod1,mod2); mod1= ideal/module,
@* mod2=ideal/module
RETURN: 1 if I is a submodule of J else 0.
"
{
int s = size(I);
for(int i=1; i<=s; i++)
{
if(reduce(I[i],std(J))!=0)
{
return(0);
}
}
return(1);
}

References

[DGP] Decker, W.; Greuel, G.-M.; Pfister, G.: Primary Decomposition: Algorithms and Comparisons. In: Algorithmic Algebra and Number Theory, Springer, 187–220 (1998).

[DGPS] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: SINGULAR 3-1-6 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2013).

[EHV] Eisenbud, D.; Huneke, C.; Vasconcelos, W.: Direct Methods for Primary Decomposition. Inventiones Mathematicae 110, 207–235 (1992).

[GP] Greuel, G.-M.; Pfister, G.: A SINGULAR Introduction to Commutative Algebra. Second edition, Springer (2007).

[GTZ] Gianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decomposition of Polynomial Ideals. Journal of Symbolic Computation 6, 149–167 (1988).

[I] Idrees, N.: Algorithms for primary decomposition of modules. Studia Scientiarum Mathematicarum Hungarica 48 (2), 227-246 (2011).

[IPS] Idrees, N.; Pfister, G.; Steidel, S.: An Algorithm for Primary Decomposition in Polynomial Rings over the Integers. Central European Journal of Mathematics Vol. 9, No. 4, (2010) 897-904

[R] E.W. Rutman: Gröbner bases and primary decomposition of modules. J. Symbolic Computation (1992)14, 483-503.
[SY] Shimoyama, T.; Yokoyama, K.: Localization and Primary Decomposition of Polynomial Ideals. Journal of Symbolic Computation 22, 247–277 (1996).

NAZERAN IDREESE, DEPARTMENT OF MATHEMATICS, GC UNIVERSITY, FAISALABAD, PAKISTAN
E-mail address: nazeranjauwad@gmail.com

AFSHAN SADIQ, DEPARTMENT OF MATHEMATICS, JAZAN UNIVERSITY, P.O. BOX 114, JAZAN, SAUDIA ARABIA.
E-mail address: afshansadiq6@gmail.com

ASIFA TASSADDIQ, DEPARTMENT OF MATHEMATICS, GC UNIVERSITY, FAISALABAD, PAKISTAN
E-mail address: asifashabbir@gmail.com