Supplementary Information for
Species divergence in gut-restricted bacteria of social bees

Yiyuan Li a, Sean P. Leonard a, J. Elijah Powell a, Nancy A. Moran a

a Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA

* Corresponding author: Yiyuan Li

Email: lyy0005@gmail.com

This PDF file includes:

- Supplementary Materials and Methods
- Figures S1 to S10
- Tables S1 to S3
- SI References
Supplementary Materials and Methods

Data collection. We downloaded all available Gilliamella and Snodgrassella genomes from NCBI. Low quality genome sequences were removed prior to analysis (Table S1). CheckM version 1.1.3 (1) was used to estimate completeness and contamination of the genomes based on 182 Proteobacteria specific single copy markers. Genomes were removed from downstream analyses if more than 10 markers were missing or if more than 10 markers had multiple copies.

Gene annotation. To annotate the gene structure and functions in a uniform way, we re-annotated all the genomes with Prodigal (2) implemented in anvi’o version 7 (3). We assigned genes as pseudogenes if the annotated coding sequences were short or with internal stop codons. We performed functional annotation using three databases, Clusters of Orthologous Genes (COGs) (4), Kyoto Encyclopedia of Genes and Genomes (KEGG) (5), and evolutionary genealogy of genes: non-supervised orthologous groups (eggNOG) (6). First, we assigned genes to COGs using anvi-run-ncbi-cogs (NCBI COG 2020 release). Then we performed KEGG annotations using both GhostKOALA version 2.2 (database updated on May 15, 2019) (7) and “anvi-run-kegg-kofams” in anvi’o. To retrieve any annotations that were missed by the first two methods, we ran eggnog-mapper version 2.1.2 (8) on the amino acid sequences of genes.

We also annotated certain gene groups of interest using specific annotation methods. We classified CAZyme genes using dbCan2 version 2.0.11 (9). To achieve accurate CAZyme annotations, we only used the annotations with supports from HMMER (10), DIAMOND (11), and Hotpep (12) with default e-values. For genes related to type VI secretion systems, we assign orthologous groups to functions based on the annotations from previous studies (13, 14). We annotated CRISPR spacers using CRISPRCasFinder version 2.0.3 (15). Identical CRISPR spacers between genomes were identified using BLASTN version 2.6.0+ (16) with e-value = 1e-5.

Orthologous group assignment, phylogenetic reconstruction and pangenome analysis. To investigate the core and accessory genomes, we performed ortholog assignment on Gilliamella and Snodgrassella, respectively, using anvi’o version 7. We used DIAMOND (11) and MCL (17), implemented in the anvi’o command “anvi-pan-genome”, on the amino acid sequences of the annotated genes. As the genomes belong to closely related species from the same genus, we assigned orthologous groups with increased sensitivity by setting the MCL inflation value to 10. We defined core gene families as single-copy gene families that existed in at least 80% of the species (i.e., 94 of the 117 Gilliamella genomes or 46 of the 57 Snodgrassella genomes).

To understand strain relationships, core genes were used to construct the phylogenies of Gilliamella and of Snodgrassella. All the selected single-copy orthologous groups were aligned using a codon-based approach with MAFFT version 7.407 (18) and in-house Perl scripts (https://github.com/lyy005/codon_alignment, last accessed Nov 16, 2020). Aligned nucleotide sequences of the orthologous genes were concatenated together. IQ-TREE version 2.0.6 (19) was used to find the best-fit model (20) and construct the phylogenetic trees using ultrafast bootstrap with 1,000 replicates (21).

To root the Gilliamella phylogenetic tree, we incorporated seven Orbaceae bacterial genomes available on NCBI RefSeq as outgroups, including four Frischella genomes, two Orbus genomes and one Schmidthempelia genome (Table S1). For the Snodgrassella phylogeny, we included one Neisseria meningitidis genome and one Kingella denitrificans genome as outgroups (Table S1). ggtree version 2.4.1 (22) was used to visualize the resulting trees.

To explore the gene content across Gilliamella and Snodgrassella strains, we performed principal components analysis on all the orthologous groups using pcomp in R version 4.0.3 (23). We also used “distance” function with “jaccard” distance in the R package phentropy version 0.5.0 (24) for calculating the distance based on gene presence and absence. We used R packages ape version 5.4.1 (25), vegan version 2.5.7 (26), and FigTree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/), last access July 19, 2021 for tree visualization.
Population delineation based on gene flow. To delineate populations in *Gilliamella* and *Snodgrassella*, we used PopCOGenT (27) to estimate the amount of recombination among strains. PopCOGenT measures homologous recombination by calculating the length distribution of identical sequences among all the pairwise whole genome alignments. Recombination is detected if the observed length distribution deviates from the null distribution where identical sequences in the genome were only affected by mutations. Genomes with less than 0.0355% divergence were collapsed into one group due to insufficient mutations to identify homologous recombination. Cytoscape version 3.8.2 (28) was used to visualize the gene flow networks.

We applied several approaches to validate the observed population boundaries. First, *Gilliamella* pop1 and pop6 showed low minimum gANI (gANI < 95% in Fig. 3). The lowest gANI within pop1 was between N-G2 and P83G (gANI = 92.6%). These two genomes were clustered together in the same main population cluster due to the gene flow between W8131 and M1-2G (gANI = 93.1%, length bias = 11.9 with 95% confidence interval from 10.6 to 13.3). The lowest gANI in pop6 was between Lep-s21 and Imp1-1 (gANI = 85.9%). These two genomes were clustered in the same main population cluster due to the gene flow between Choc5-1 and GillExp13 (gANI = 89.6%); Choc5-1 and Gris1-4 (gANI = 90.1%). To validate the finding of recombination among these relatively divergent genomes, we explored the long identical regions among these genomes. The lowest near-identical genomic regions between W8131 and M1-2G correspond to F-type H+-transporting ATPase subunits *atpAHFEB* (2,849 bp), translation elongation factor EF-Ts and 30S ribosomal protein S2 (1,193 bp). After removing the two scaffolds where the two identical regions reside, PopCOGenT did not detect sufficient recombination between W8131 and M1-2G, indicating that these identical regions were responsible for the detected recombination. Similarly, Choc5-1 and GillExp13 share a 7,200 bp near-identical region including genes related to histidine metabolism and amidohydrolase; Choc5-1 and Gris1-4 share a 5,736 bp identical region. These findings support that long identical regions lead to increased gene flow detected by PopCOGenT (27) and reflect real recombination even when gANI is as low as 86%.

Secondly, as genomes of pop2 branched among genomes of pop1 in the core gene phylogeny (Fig. 1), we investigated whether the recombination detected is due to artefacts. Based on length biases, the two genomes in pop2 (M6-3G and ESL0172) share high length bias (83.7 with 95% confidence interval from 71.2 to 102.0), whereas the second highest length bias between genomes in pop2 and pop1 (M6-3G and N-G2) is only 8.9 with 95% confidence interval from 8.1 to 10.0. In addition, the two genomes in pop2 were isolated, sequenced, and assembled independently from two different research groups at the University of Texas at Austin (29) and the University of Lausanne (30), so the observed recombination cannot reflect artefacts during sequencing or genome assembly.

We then confirmed the population delineation between pop1 and pop2 by investigating gene-specific sweeps in the core genome separating pop1 and pop2 using PopCOGenT (27). Gene-specific sweeps in the core genome were identified as low divergence alleles shared exclusively among members of each population, indicating population-specific adaptation. As pop2 only contains two genomes, we included two distant genomes ESL0177 and ESL0182 belonging to *Am. Gapis* clade as outgroups. We found extensive gene-specific sweeps separating pop1 and pop2 (Table S2). The same near-identical regions identified previously between W8131 and M1-2G, including F-type H+-transporting ATPase subunits *atpFEB*, translation elongation factor Ts and 30S ribosomal protein S2, were also identified as sweep regions in pop1. We built phylogenetic trees based on the near-identical regions containing atpFEB and its flanking regions. Resulting trees supported population specific-sweeps in the identical regions but not in the flanking regions (Fig. S11). Among the 131 genes undergoing sweeps, 15, 13, and 11 genes are related to coenzyme transport and metabolism, amino acid transport and metabolism, cell wall/membrane/envelope biogenesis, respectively. These sweeps likely reflect population-specific adaptation to ecological niche (Table S2).

Thirdly, we searched for gene-specific sweeps in flexible genomes of *Gilliamella* pop2 using PopCOGenT and found several important functional genes enriched in pop2. For example, genes...
related to antibacterial peptide secretion (cvaA and cvaB), fructose PTS system (fruA, fruAb, fruB), pectin degradation (kdgM, kdgR, and PL22), and peptide/nickel transport system substrate-binding proteins (ABC.PE.S, ABC.PE.P, and ddpF) are enriched in pop2 but not found in pop1 (Table S3).

To assess whether vertical descent substitutions could affect population delineation, we simulated genomes with the same divergence but without homologous recombination. We first built the phylogenetic tree based on the divergence estimated by PopCOGenT and BIONJ (31). Seq-Gen version 1.3.4 (32) with GTR model was used to simulate molecular sequences along the phylogenetic trees based on the genome length, nucleotide composition and average nucleotide diversity of Gilliamella wkB1 strain and Snodgrassella wkB2 strain.

Functional gene enrichment in different lineages. To investigate the variation of functional genes among different lineages, we used “anvi-get-enriched-functions-per-pan-group” command in anvi’o. A generalized linear model with the logit linkage function (3) was used to compute an enrichment score and p-value for each KEGG annotation and orthologous group. We summarized and visualized data using R version 4.0.3 (23), RStudio version 1.3.1093 (33) and Tidyverse version 1.3.1 (34). As similar genes were discovered by anvi’o KEGG enrichment analysis and PopCOGenT gene-specific sweeps in the flexible genome as described above (Table S2), we performed anvi’o KEGG enrichment analysis for each population of Gilliamella and Snodgrassella (Tables S4 and S5).

To explore essential genes and genes that facilitate host colonization identified from a previous transposon mutagenesis screen data of the Snodgrassella wkB2 strain (35), we associated the genes from the previous study to orthologous groups based on sequence similarity. Specifically, we downloaded the nucleotide sequences from all the essential and colonization-related genes. We then searched the essential and colonization-related gene sequences in the wkB2 genes annotated by anvi’o based on BLASTN version 2.6.0+ (16) with 100% identity and at least 88 bp alignment. Finally, we classified the orthologous groups that contained the wkB2 genes as essential or beneficial for colonization.

Urea transporters and urease gene phylogeny and synteny analysis. To understand the origins of the urea transporters and urease genes in Gilliamella, we searched the amino acid sequences of each gene in Gilliamella strain M6-3G to NCBI non-redundant protein database using NCBI BLASTP with default parameters (blast.ncbi.nlm.nih.gov, last accessed June 18, 2021). We built a phylogenetic tree for each gene based on the top 100 hits downloaded from NCBI.

Localization of Gilliamella populations. We confirmed the location of G. apis and G. apicola populations along with Snodgrassella using engineered strains expressing three different fluorescent proteins.

Bacterial culture. All cloning was performed using Escherichia coli strain DH5α, cultured in LB media and supplemented with Kanamycin (50 µg/mL) when appropriate. E. coli strain MFDpir was grown in LB media supplemented with 0.3 mM dianamopimelic acid (DAP) when appropriate. Bee gut bacteria used in this work (Table S6), were cultured as previously described (36). Briefly, frozen stocks were streaked onto Columbia blood agar and incubated at 35°C in an enriched 5% CO2 atmosphere. Plates were incubated for 48 hours or until visible colonies formed. To maintain plasmids in bee gut bacteria, agar plates were supplemented with Kanamycin (25 µg/mL).

Construction of plasmids. We designed three new plasmids for this work, and each expresses a different fluorescent protein from an identical promoter and on an identical plasmid backbone (Table S7). Plasmids were derived from plasmid pBTK402, a broad-host-range plasmid previously shown to replicate in multiple species of bee gut bacteria (37). This original plasmid is intended for use with a hierarchical Golden Gate assembly scheme as a “Type 8” origin part, and encodes Kanamycin resistance and a rfp reporter expressed at a low level. We replaced the
promoter and visible reporter via Hi-Fi Assembly (NEB #E2621S) to build the plasmids used in this work, resulting in three new plasmids: pSL1, pSL1-GFP, and pSL1-E2C. Each encodes a distinct reporter that can be differentiated by eye and by confocal fluorescence microscopy. These plasmids retain the original “Type 8” part overhangs of pBTK402, so they can still be used in the hierarchical assembly scheme for construction of broad-host-range plasmids.

Construction of fluorescent bee gut bacteria. We transformed plasmids pSL1, pSL1-GFP, and pSL1-E2C into *E. coli* strain MFDpir, which we then used to conjugate these plasmids into bee gut bacteria as previously described (37). Briefly, overnight cultures of donor and recipient bacteria were mixed in approximately equal ratios by optical density and then incubated overnight on a non-selective agar plate supplemented with DAP. The next day, we resuspended these mixtures in phosphate-buffered saline (PBS) and then plated dilutions of the conjugation mixture on selective media with Kanamycin (25 µg/mL) and without DAP. We passed visibly fluorescent colonies again on selective media to ensure stable transformation. We then made frozen stocks of these transconjugants and revived them for inoculation experiments.

Honey bee husbandry and inoculation experiments. Bees for inoculation experiments were sourced from three beehives owned by the Moran laboratory located on uncultivated pasture near Driftwood, TX and from beehives on a rooftop at the University of Texas, Austin. To obtain bees, we removed a brood frame from each hive and transported them to the laboratory. These frames were kept in an incubator at controlled temperature and humidity, and bees were allowed to emerge overnight. We collected these bees and randomly assigned to treatment groups that each received a different inoculum. Cohorts of twenty bees were briefly chilled and then exposed en masse to suspensions of bacterial inoculum mixed with a filter-sterilized 1:1 sucrose:water solution as described previously (38). Bees were then transferred to cup cages and given sterilized pollen and ad libitum access to sterilized sugar-water supplemented with Kanamycin (50 µg/mL), to ensure the plasmids were maintained in bacteria.

Visualization of fluorescent bee gut bacteria. After seven days, we immobilized bees with CO₂, placed them on ice, and then dissected out whole guts. We placed these guts on individual Ibidi µ-Dish 35 mm microscope dishes (CAT# 81156) and added 1 µL of PBS to prevent gut tissue from drying out. We imaged whole guts using a Zeiss 710 Laser Scanning Confocal Microscope with a 20× objective. All images were taken in “Lambda” mode in Zeiss software, which records a full spectral profile for each pixel. Using linear unmixing, each pixel was then assigned to a fluorescent marker (GFP, RCP, or E2-Crimson) or as background based on reference spectra captured using pure cultures of bacteria or uncolonized bees.

Colonization experiment. To measure the distribution of *G. apis* and *G. apicola* in bees with a conventional gut microbiome, we inoculated bees with gut homogenate from foragers. Bees were collected from brood frames from a single hive from beehives on a rooftop at University of Texas, Austin on August 9, 2021. Bees were allowed to emerge overnight and allocated into four cup cages (around 20 bees per cup cage) and fed sterile sucrose syrup and pollen. To inoculate bees with a conventional microbiome, bees were exposed to the gut homogenate from 12 foragers from outdoor hives. After seven days, 24 bees in total were collected and processed in the same way as the bees inoculated with engineered bacteria described above.

Estimating Gilliamella abundance along the gut using qPCR. To quantify the abundance of *G. apis* and *G. apicola* along the gut, we extracted DNA and performed qPCR on the pylorus and ileum by cutting in the middle of the ileum on 11 guts inoculated with *G. apis* and *G. apicola* and 24 guts with a conventional microbiome. We homogenized the pylorus and ileum parts with pestles and extracted DNA using the Qiagen DNEasy blood and tissue kit. We measured the abundance of *G. apis* by estimating the copy number of the *ureC* gene with primers designed in this study: *ureC* 282F (5'-AGCTATTGGTAAGCGGGAA-3') and *ureC* 345R (5'-TTCGCCGCAATAATTTAGTG-3'), yielding a product of 85bp. To control for the abundance of *Gilliamella* between the pylorus and ileum regions, we also measured the copy number of the 16S rRNA gene for *Gilliamella*: Gamma1-459-qF (5'-GTATCTAATAGGTGCATCAATT-3') and
These 16S primers amplify both *G. apis* and *G. apicola*. We performed qPCR using BioRad iTaq SYBR Green master mix on an Eppendorf Realplex Mastercycler and estimated the absolute copy number of *ureC* and 16S rRNA genes using standards ranging from 10^2 to 10^8 copies. To prepare standards, we amplified gene target regions, integrated them into a pGEM-T plasmid vector and extracted plasmids using the Monarch plasmid miniprep kit. We determined copy number based on the mass of extracted standards as determined by the Qubit HS dsDNA kit. The qPCR program we used included: 95 °C for 3 min, (95 °C for 5 s, 65 °C for 15 s, 68 °C for 20 s) \times 5 cycles, and (95 °C for 5 s, 55 °C for 15 s, 68 °C for 20 s) \times 35 cycles. We performed reactions in triplicate and used the average as the copy number.

To control for the abundance of *Gilliamella* between pylorus and ileum, we normalized the *ureC* copy number by dividing it by the *Gilliamella* 16S rRNA gene copy number. For the colonization experiment, we only included bees with successful *G. apis* or *G. apicola* colonization in the analysis. We identified the bee guts as successful colonization if the guts have a *ureC* gene copy number $\geq 1,000$ for ileum and have a 16S rRNA gene copy number $\geq 1,000$ for pylorus and ileum. We then performed Wilcoxon signed-rank test between pylorus and ileum samples using `wilcox.test` function in R.
Fig. S1. Gene-content trees of (A) *Gilliamella* and (B) *Snodgrassella* strains based on gene presence-absence. Red branches indicate strains from *Apis*. Blue branches represent strains from *Bombus*. Branches of outgroups are in black.
Fig. S2. Pairwise gANI among (A) Gillamella and (B) Snodgrassella strains. Blue indicates the gANI is >= 89% and red indicates the gANI is < 89%. Species are ordered based on the placement on the phylogenetic trees in Fig. 1. Populations and clades are colored as in Fig. 3.
Fig. S3. Number of sugar metabolism-related genes in *Gilliamella*. Species are ordered based on the placement on the phylogenetic trees in Fig. 1. Populations and clades are colored as in Fig. 3. Gene names in red indicate transporters. Gene names in bold indicate significant enrichment in Am_Gapis or Am_Gapicola.
Fig. S4. Distribution of urea transporters, urease genes, nitrite transporter and reductase genes in *Gilliameila*. Species are ordered based on the placement on the phylogenetic trees in Fig. 1. Populations and clades are colored as in Fig. 3. Gene names in bold indicate significant enrichment in Am_Gapis or Am_Gapiocola.
Fig. S5. Phylogenies of urea transporters and urease genes of *Gilliamella*, *Snodgrassella*, *Bartonella*, and other related proteins found on NCBI NR database. Branches in red indicate *Gilliamella* genes. Branches in blue indicate *Snodgrassella* and *Bartonella*-derived genes.
Fig. S6. Distribution of genes related to antagonism in (A) *Gilliamella* and (B) *Snodgrassella*. Species are ordered based on the placement on the phylogenetic trees in Fig. 1. Populations and clades are colored as in Fig. 3.
Fig. S7. CRISPR-Cas elements in *Gilliamella* populations. The CRISPR spacer network indicates the similarities of CRISPR spacers between genomes. The thickness of edges indicates the number of shared CRISPR spacers between genomes. Species are ordered based on the placement on the phylogenetic trees in Fig. 1. Populations and clades are colored as in Fig. 3.
Fig. S8. Number of (A) ureC gene copies, (B) 16S rRNA gene copies, and (C) normalized number of ureC copies based on 16S rRNA gene copies. Black lines connect pylorus and ileum from the same bee. (D) Ratio of normalized ureC copies between pylorus and ileum for 11 bees inoculated with engineered bacteria. Samples with ratio above 1 (red dotted line) have higher abundance of *G. apis* in pylorus than in ileum.
Fig. S9. Number of (A) _ureC_ gene copies, (B) 16S rRNA gene copies, and (C) normalized number of _ureC_ copies based on 16S rRNA gene copies between pylorus and ileum for 15 age-controlled bees with a conventional gut microbiome. Black lines connect pylorus and ileum from the same bee. Normalized ratios for pylorus to ileum are shown in Fig. 6F.
Fig. S10. Gene flow among simulated (A) Gilliamella and (B) Snodgrassella genomes. Genomes were simulated based on the genome-wide sequence divergence of Gilliamella and Snodgrassella genomes but without recombination. Simulated genomes are colored as in Fig. 3. No signal of gene flow was found among simulated genomes.
Fig. S11. Maximum likelihood trees of (A) gene-specific sweep region in pop1 (42,361-44,101 bp of W8131 genome scaffold 15), and its (B) left and (C) right flanking regions (30,209-42,360 bp and 44,102-66,064 of W8131 genome scaffold 15).
Table S1. Quality control of *Gilliamella* and *Snodgrassella* genomes using CheckM based on 182 Proteobacteria markers.

Genome IDs	NCBI accession number	Copy number of the 182 markers	Notes				
Gilliamella_A-1-24_Amellifera	ASM214151v1	0 181 1 0 0 0					
Gilliamella_A-12-12_Amellifera	ASM214167v1	0 181 1 0 0 0					
Gilliamella_A-2-24_Amellifera	ASM214156v1	0 181 1 0 0 0					
Gilliamella_A-4-12_Amellifera	ASM214186v1	0 181 1 0 0 0					
Gilliamella_A-7-12_Amellifera	ASM214165v1	0 181 1 0 0 0					
Gilliamella_A-7-24_Amellifera	ASM214166v1	0 181 1 0 0 0					
Gilliamella_A-8-12_Amellifera	ASM214171v1	0 181 1 0 0 0					
Gilliamella_A-9-12_Amellifera	ASM214174v1	0 181 1 0 0 0					
Gilliamella_ATSA1_Amellifera	ASM214203v1	0 181 1 0 0 0					
Gilliamella_ATSA2_Amellifera	ASM214205v1	0 181 1 0 0 0					
Gilliamella_ATSA3_Amellifera	ASM214206v1	0 181 1 0 0 0					
Gilliamella_ATSA4_Amellifera	ASM214213v1	0 181 1 0 0 0					
Gilliamella_A7_Amellifera	ASM214201v1	0 181 1 0 0 0					
Gilliamella_A8_Amellifera	ASM214155v1	0 181 1 0 0 0					
Gilliamella_A9_Amellifera	ASM214173v1	0 181 1 0 0 0					
Gilliamella_AM1_Amellifera	ASM214182v1	0 181 1 0 0 0					
Gilliamella_AM4_Amellifera	ASM214190v1	0 181 1 0 0 0					
Gilliamella_AM6_Amellifera	ASM214157v1	0 181 1 0 0 0					
Gilliamella_App2-1_Bappositus	ASM169025v1	0 182 0 0 0 0					
Gilliamella_App4-10_Bappositus	ASM169049v1	0 182 0 0 0 0					
Gilliamella_App6-5_Bappositus	ASM169052v1	1 180 1 0 0 0					
Gilliamella_Aw-17_Amellifera	ASM214159v1	0 181 1 0 0 0					
Gilliamella_AW11_Amellifera	ASM214181v1	1	180	1	0	0	0
----------------------------	-------------	-----	-----	---	---	---	---
Gilliamella_AW13_Amellifera	ASM214175v1	0	181	1	0	0	0
Gilliamella_B02_Amellifera	sag_g1_b02_noCtrl	69	108	3	1	1	0
Gilliamella_Bif1-4_Bbifarius	ASM169053v1	0	181	1	0	0	0
Gilliamella_Bim1-2_Bbimaculatus	ASM169083v1	0	182	0	0	0	0
Gilliamella_Bim3-2_Bbimaculatus	ASM169057v1	0	151	3	0	0	0
Gilliamella_Choc3-5_Bimpatiens	ASM169058v1	1	181	0	0	0	0
Gilliamella_Choc4-2_Bimpatiens	ASM169035v1	1	181	0	0	0	0
Gilliamella_Choc5-1_Bimpatiens	ASM169059v1	0	182	0	0	0	0
Gilliamella_Choc6-1_Bimpatiens	ASM169038v1	1	181	0	0	0	0
Gilliamella_DSM104097_Amellifera	ASM320145v1	0	181	1	0	0	0
Gilliamella_ESL0169_Amellifera	ASM320287v1	1	180	1	0	0	0
Gilliamella_ESL0172_Amellifera	ASM320277v1	0	181	1	0	0	0
Gilliamella_ESL0177_Amellifera	ASM320291v1	1	180	1	0	0	0
Gilliamella_ESL0178_Amellifera	ASM320281v1	0	181	1	0	0	0
Gilliamella_ESL0182_Amellifera	ASM320265v1	1	180	1	0	0	0
Gilliamella_ESL0232_Bterrestris	ASM1334688v1	0	182	0	0	0	0
Gilliamella_ESL0250_Bpascuorum	ASM1334504v1	0	182	0	0	0	0
Gilliamella_ESL0254_Bpascuorum	ASM1334498v1	0	182	0	0	0	0
Gilliamella_ESL0405_Acerana	ASM1946920v1	0	182	0	0	0	0
Gilliamella_ESL0441_Acerana	ASM1946918v1	0	182	0	0	0	0
Gilliamella_ESL0443_Acerana	ASM1946916v1	1	181	0	0	0	0
Gilliamella_Fer1-1_Bfervidus	ASM169082v1	1	181	0	0	0	0
Gilliamella_Fer2-1_Bfervidus	ASM169030v1	30	136	1	6	0	0
Gilliamella_Fer4-1_Bfervidus	ASM169051v1	1	181	0	0	0	0
Gilliamella_GillExp13_Bimpatiens	ASM169081v1	0	182	0	0	0	0

Removed as it was from single-cell sequencing

Contaminated, many CheckM genes have two copies

Low quality sequences identified by NCBI
Gilliamella_Gris1-4_Bgriseocollis	ASM169033v1	0	182	0	0	0	0
Gilliamella_Gris3-2_Bgriseocollis	ASM169034v1	0	182	0	0	0	0
Gilliamella_HK2_Bpensylvanicus	ASM169026v1	1	181	0	0	0	0
Gilliamella_HK7_Bpensylvanicus	ASM169079v1	1	181	0	0	0	0
Gilliamella_I20_Amellifera	sag_g1_i20_noCtrl	46	132	4	0	0	0
Gilliamella_Imp1-1_Bimpatiens	ASM169041v1	0	182	0	0	0	0
Gilliamella_Imp1-6_Bimpatiens	ASM169042v1	30	152	0	0	0	0
Gilliamella_Lep-s21_Blepidus	ASM979589v1	0	181	0	1	0	0
Gilliamella_Lep-s35_Blepidus	ASM979584v1	0	181	0	1	0	0
Gilliamella_Lep-s5_Blepidus	ASM979590v1	0	181	1	0	0	0
Gilliamella_LMG28358_Blapidarius	IMG-taxon_2617270738_annotated_assembly	0	182	0	0	0	0
Gilliamella_LMG28359_Bpascuorum	IMG-taxon_2617270739_annotated_assembly	0	182	0	0	0	0
Gilliamella_LMG29879_Bterrestris	LMG29879	0	182	0	0	0	0
Gilliamella_LMG29880_Bpascuorum	LMG29880	1	181	0	0	0	0
Gilliamella_M1-2G_Amellifera	ASM169077v1	0	181	1	0	0	0
Gilliamella_M6-3G_Amellifera	ASM172387v1	0	178	4	0	0	0
Gilliamella_N-12-12_Amellifera	ASM208882v1	0	181	1	0	0	0
Gilliamella_N-15-12_Amellifera	ASM208890v1	0	181	1	0	0	0
Gilliamella_N-22_Amellifera	ASM214228v1	0	180	2	0	0	0
Gilliamella_N-28_Amellifera	ASM214234v1	0	180	2	0	0	0
Gilliamella_N-9-4_Amellifera	ASM208889v1	0	181	1	0	0	0
Gilliamella_N-G1_Amellifera	ASM214218v1	0	180	2	0	0	0
Gilliamella_N-G2_Amellifera	ASM214221v1	0	181	1	0	0	0
Gilliamella_N-G3_Amellifera	ASM214222v1	0	180	2	0	0	0
Gilliamella_N-G4_Amellifera	ASM214225v1	0	180	2	0	0	0
Strain Name	Accession	Ochre	Cyan	Blue	Red	Green
Gilliamella_N-G5_Amellifera	ASM214226v1	0	181	1	0	0
Gilliamella_N-W3_Amellifera	ASM214227v1	0	181	1	0	0
Gilliamella_N10_Amellifera	ASM214178v1	0	181	1	0	0
Gilliamella_N2_Amellifera	ASM214185v1	0	181	1	0	0
Gilliamella_N4_Amellifera	ASM214163v1	0	181	1	0	0
Gilliamella_N6_Amellifera	ASM214188v1	0	181	1	0	0
Gilliamella_Nev3-1_Bnevadensis	ASM169043v1	1	181	0	0	0
Gilliamella_Nev5-1_Bnevadensis	ASM169089v1	1	181	0	0	0
Gilliamella_Nev6-6_Bnevadensis	ASM169060v1	1	180	1	0	0
Gilliamella_NO1_Amellifera	ASM214215v1	0	180	2	0	0
Gilliamella_NO10_Amellifera	ASM208884v1	0	180	2	0	0
Gilliamella_NO12_Amellifera	ASM214208v1	0	180	2	0	0
Gilliamella_NO13_Amellifera	ASM214197v1	0	179	3	0	0
Gilliamella_NO14_Amellifera	ASM214211v1	0	180	2	0	0
Gilliamella_NO15_Amellifera	ASM214193v1	0	180	2	0	0
Gilliamella_NO16_Amellifera	ASM214198v1	0	180	2	0	0
Gilliamella_NO17_Amellifera	ASM214215v1	0	180	2	0	0
Gilliamella_NO3_Amellifera	ASM214216v1	0	180	2	0	0
Gilliamella_NO4_Amellifera	ASM214216v1	0	180	2	0	0
Gilliamella_NO5_Amellifera	ASM208885v1	0	181	1	0	0
Gilliamella_NO6_Amellifera	ASM208879v1	0	181	1	0	0
Gilliamella_NO8_Amellifera	ASM208881v1	0	181	1	0	0
Gilliamella_Occ3-1_Boccidentalis	ASM169065v1	0	182	0	0	0
Gilliamella_Occ4-3_Boccidentalis	ASM169067v1	0	182	0	0	0
Gilliamella_P17_Amellifera	sag_g1_p17_noCtrl	70	109	2	1	0
Gilliamella_P46G_Amellifera	ASM172600v1	0	24	9	6	3
Gilliamella_P54G_Amellifera	ASM169073v1	0	181	1	0	0

Removed as it was from single-cell sequencing
Removed due to large genome size
Gene Name	Accession	Start	End	Is ORF	ORF Length	
Gilliamella_P62G_Amellifera	ASM169075v1	0	181	1	0	
Gilliamella_P83G_Amellifera	ASM169017v1	0	181	1	0	
Gilliamella_Pas-s25_Bpascuorum	ASM979588v1	0	182	0	0	
Gilliamella_Pas-s27_Bpascuorum	ASM979586v1	0	182	0	0	
Gilliamella_Pas-s95_Bpascuorum	ASM979579v1	0	182	0	0	
Gilliamella_Pra-s52_Bpratorum	ASM979580v1	0	182	0	0	
Gilliamella_Pra-s54_Bpratorum	ASM979578v1	0	182	0	0	
Gilliamella_Pra-s60_Bpratorum	ASM979575v1	0	182	0	0	
Gilliamella_Pra-s65_Bpratorum	ASM979574v1	0	182	0	0	
Gilliamella_W8127_Amellifera	ASM755914v1	0	181	1	0	
Gilliamella_W8131_Amellifera	ASM755916v1	0	181	1	0	
Gilliamella_WF3-4_Bpensylvanicus	ASM169027v1	1	181	0	0	
Gilliamella_wkB1_Amellifera	ASM599988v1	0	181	1	0	
Gilliamella_wkB108_Adorsata	ASM169019v1	0	182	0	0	
Gilliamella_wkB11_Bbimaculatus	GilApiwkB11v1.0	1	181	0	0	
Gilliamella_wkB112_Adorsata	ASM169068v1	0	182	0	0	
Gilliamella_wkB171_Aandreniformis	ASM169375v1	0	182	0	0	
Gilliamella_wkB178_Adorsata	ASM169070v1	0	182	0	0	
Gilliamella_wkB18_Bvagans	ASM169087v1	1	181	0	0	
Gilliamella_wkB195_Acerana	ASM169044v1	1	181	0	0	
Gilliamella_wkB292_Acerana	ASM169023v1	0	180	2	0	
Gilliamella_wkB30_Bvagans	GilApiwkB30v1.0	0	182	0	0	
Gilliamella_wkB308_Acerana	ASM169018v1	0	182	0	0	
Gilliamella_wkB7_Amellifera	ASM169343v1	0	181	1	0	
Gilliamella_wkB72_Acerana	ASM169374v1	1	181	0	0	
Snodgrassella_A-1-12_Amellifera	ASM208873v1	0	181	1	0	
Snodgrassella_A-10-12_Amellifera	ASM208840v1	0	181	1	0	
Strain Name	Assembly	Contigs	GC%	N50	L50	Removed due to large genome size
----------------------------------	----------	---------	-----	-----	-----	----------------------------------
Snodgrassella_A11-12_Amellifera	ASM208869v1	0	181	1	0	0
Snodgrassella_A2-12_Amellifera	ASM208858v1	0	181	1	0	0
Snodgrassella_A5-24_Amellifera	ASM208846v1	0	181	1	0	0
Snodgrassella_A-9-24_Amellifera	ASM208851v1	0	181	1	0	0
Snodgrassella_A11_Amellifera	ASM208901v1	0	181	1	0	0
Snodgrassella_A12_Amellifera	ASM208867v1	0	181	1	0	0
Snodgrassella_A2_Amellifera	ASM208839v1	0	181	1	0	0
Snodgrassella_A3_Amellifera	ASM208845v1	0	181	1	0	0
Snodgrassella_A5_Amellifera	ASM208847v1	0	181	1	0	0
Snodgrassella_App2-2_Bappositus	ASM277731v1	0	182	0	0	0
Snodgrassella_App4-8_Bappositus	ASM277742v1	0	182	0	0	0
Snodgrassella_App6-4_Bappositus	ASM277746v1	0	182	0	0	0
Snodgrassella_Aw-18_Amellifera	ASM208841v1	0	181	1	0	0
Snodgrassella_Aw-20_Amellifera	ASM201941v1	0	181	1	0	0
Snodgrassella_E1_Amellifera	ASM240664v1	3	178	1	0	0
Snodgrassella_ESL0196_Amellifera	ASM320288v1	0	181	1	0	0
Snodgrassella_ESL0253_Bpascuorum	ASM1334496v1	0	180	2	0	0
Snodgrassella_ESL0304_Amellifera	ASM1334499v1	0	181	1	0	0
Snodgrassella_ESL0323_Amellifera	ASM1334686v1	0	181	1	0	0
Snodgrassella_ESL0324_Amellifera	ASM1334495v1	0	181	1	0	0
Snodgrassella_Fer1-2_Bfervidus	ASM277741v1	0	180	2	0	0
Snodgrassella_Fer2-2_Bfervidus	ASM277748v1	0	179	3	0	0
Snodgrassella_Fer4-2_Bfervidus	ASM277749v1	0	170	0	9	3
Snodgrassella_Gris1-3_Bgriotlepis	ASM277752v1	0	177	5	0	0
Snodgrassella_Gris1-6_Bgriotlepis	ASM277761v1	0	180	2	0	0
Snodgrassella_Gris2-3-4_Bgriotlepis	ASM277733v1	0	180	2	0	0
Snodgrassella_Gris3-4_Bgriotlepis	ASM277759v1	0	180	2	0	0
Name	Accession	Total	BUSCOs	Contaminated	Notes	
--	-------------	-------	--------	--------------	--	
Snodgrassella_HK3_Bpensylvanicus	ASM277770v1	0	180	2		
Snodgrassella_HK9x_Bpensylvanicus	ASM277779v1	0	179	3		
Snodgrassella_j21_Amellifera	sag_j21_noCtrl	16	163	3	Removed as it was from single-cell sequencing	
Snodgrassella_MS1-3_Amellifera	ASM277792v1	0	181	1		
Snodgrassella_N-23_Amellifera	ASM208865v1	0	181	1		
Snodgrassella_N-S1_Amellifera	ASM208875v1	0	181	1		
Snodgrassella_N-S2_Amellifera	ASM208859v1	0	181	1		
Snodgrassella_N-S3_Amellifera	ASM208863v1	0	181	1		
Snodgrassella_N-S4_Amellifera	ASM208866v1	0	181	1		
Snodgrassella_N-S5_Amellifera	ASM208876v1	0	181	1		
Snodgrassella_N-W4_Amellifera	ASM208852v1	0	181	1		
Snodgrassella_N-W7_Amellifera	ASM208855v1	0	181	1		
Snodgrassella_N9_Amellifera	ASM208857v1	0	181	1		
Snodgrassella_Nev3CBA3_Bnevadensis	ASM277757v1	0	175	7		
Snodgrassella_Nev4-2_Bnevadensis	ASM277782v1	12	167	3		
Snodgrassella_O02_Amellifera	sag_o02_noCtrl	50	120	2	Removed as it was from single-cell sequencing	
Snodgrassella_O11_Amellifera	sag_o11_noCtrl	80	100	2	Removed as it was from single-cell sequencing	
Snodgrassella_Occ4-2_Boccidentalis	ASM277763v1	0	180	2		
Snodgrassella_P14_Amellifera	sag_p14_noCtrl	109	73	0	Removed as it was from single-cell sequencing	
Snodgrassella_PEB0171_Amellifera	ASM277786v1	0	180	2		
Snodgrassella_PEB0178_Amellifera	ASM277787v1	0	179	3		
Snodgrassella_Pens2-2-5_Bpensylvanicus	ASM277732v1	0	180	2		
Snodgrassella_Ruf1-X_Brufocinctus	ASM277767v1	0	168	2	Contaminated, many BUSCOs/CheckM genes have two copies	
Snodgrassella_Snod2-1-5_Bimpatiens	ASM277734v1	0	180	2		
Snodgrassella_WF3-3_Bpensylvanicus	ASM277774v1	0	180	2		
Snodgrassella_wkB12_Bsp	SnoalwkB12v1.0	0	180	2		
Name	Accession	Support	tColor	tAmino	sColor	sAmino
-------------------------------	-------------	---------	--------	--------	--------	--------
Snodgrassella_wkB2_Amellifera	ASM60000v1	181	1	0	0	0
Snodgrassella_wkB237_Aandreniformis	ASM277777v1	182	0	0	0	0
Snodgrassella_wkB273_Aflorea	ASM277765v1	182	0	0	0	0
Snodgrassella_wkB29_Bsp	SnaolvkB29v1.0	180	2	0	0	0
Snodgrassella_wkB298_Acerana	ASM277785v1	181	1	0	0	0
Snodgrassella_wkB332_Amellifera	ASM277769v1	181	1	0	0	0
Snodgrassella_wkB339_Amellifera	ASM277781v1	181	1	0	0	0
Snodgrassella_wkB9_Amellifera	ASM277773v1	179	3	0	0	0
Frischella_Ac13_Acerana	GCF_014489845.1	181	0	0	0	0
Frischella_DSM104328_Amellifera	GCF_003182045.1	180	1	0	0	0
Frischella_ESL0167_Amellifera	GCF_003202705.1	180	1	0	0	0
Frischella_PEB0191_Amellifera	GCF_000807275.1	180	1	0	0	0
Orbus_hercynius_Sscrofa	GCF_003634275.1	182	0	0	0	0
Orbus_IPMB12_Zatratus	GCF_011745665.1	182	0	0	0	0
Schmidhempelia_bombi_Bimpatiens	GCF_000471645.3	180	1	0	0	0
Kingella_denitrificans	GCF_000190695.1	175	0	0	0	0
Neisseria_meningitidis	GCF_000008805.1	180	1	0	0	0
Table S2. Gene-specific sweeps in core genome of Gilliamella pop1. Location of sweep regions and gene IDs were based on Gilliamella pop1 W8131 genome.

Scaffold ID	Start of the sweep region	End of the sweep region	W8131 gene ID	Orthologous group ID	KEGG ID	KEGG functions	COG	COG category
9	671,088	669,070	689	GC_00000743		pta; protease III [EC:3.4.24.55]	COG1396	Transcription
9	671,088	669,070	690	GC_00000320	K01407	yggT; YggT family protein	COG1025	Posttranslational modification, protein turnover, chaperones
9	653,576	652,846	671	GC_00000696	K02221	K09160; uncharacterized protein	COG0762	Posttranslational modification, protein turnover, chaperones
9	653,576	652,846	672	GC_00000700	K09160	yggS, PROSC; PLP dependent protein	COG2983	General function prediction only
9	652,179	651,005	669	GC_00000748	K02669	PilT; twitching motility protein PilT	COG2805	Cell motility/Extracellular structures
9	652,179	651,005	670	GC_00000219	K06997	TC.MATE, SLC47A, norM, mdk, dinF; multidrug resistance protein, MATE family nikE, cntF; nickel transport system nikD, cntD; nickel transport system	COG0325	Coenzyme transport and metabolism
9	166,126	166,963	230	GC_00001566	K03327	bglF, bglP; beta-glucoside PTS system EIICBA component	COG0534	Defense mechanisms
9	166,126	166,963	231	GC_00001587	K10824	ATP-binding protein [EC:7.2.2.11]	COG1123	Posttranslational modification, protein turnover, chaperones
9	167,290	167,841	232	GC_00001588	K15587	ATP-binding protein [EC:7.2.2.11]	COG0444	Amino acid transport and metabolism/Inorganic ion transport and metabolism
9	602,017	601,351	629	GC_00000619	K02757	bglF, bglP; beta-glucoside PTS system EIICBA component	COG1263	Carbohydrate transport and metabolism
Gene ID	Start (bp)	End (bp)	Length (bp)	Description	COG ID	Functional Category		
-----------	------------	----------	-------------	---	----------	--		
9 600,586	599,979	628	GC_00001273	K03489 yydK; GntR family transcriptional regulator, transcriptional regulator of bgfA dppB; 4-hydroxy-tetrahydrodipicolinate reductase [EC:1.17.1.8] tdaA; 4-hydroxytetrahydrodipicolinate reductase [EC:1.17.1.8] tdaA; 4-hydroxy-tetrahydrodipicolinate reductase [EC:1.17.1.8] tdaA; 4-hydroxy-tetrahydrodipicolinate reductase [EC:1.17.1.8] tdaA	COG2188	Transcription		
9 503,725	502,803	544	GC_00000731	K00215 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG0289	Amino acid transport and metabolism		
9 503,725	502,803	545	GC_00000575	K11991 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG0590	Translation, ribosomal structure and biogenesis		
9 503,725	502,803	546	GC_00000499	K00760 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG0634	Nucleotide transport and metabolism		
9 332,993	333,750	376	GC_00001268	K03758 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG0531	Amino acid transport and metabolism		
9 332,993	333,750	377	GC_00000977	K15460 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG4123	Translation, ribosomal structure and biogenesis		
9 445,401	444,617	481	GC_00001121	K06915 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG0433	Replication, recombination and repair		
9 323,933	321,816	366	GC_00000995	K02492 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG0373	Coenzyme transport and metabolism		
9 323,933	321,816	367	GC_00001233	K02494 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG3017	Cell wall/membrane/envelope biogenesis		
9 323,933	321,816	368	GC_00000911	K00919 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG1947	Lipid transport and metabolism		
9 621,042	621,547	643	GC_00000803	K07053 tRNA(adenine34) deaminase [EC:3.5.4.33] hprT, hpt, HPRT1; hypoxanthine phosphoribosyltransferase [EC:2.4.2.8] arcD, lysl, lysP; arginine-ornithine antiporter / lysine permease yliC, trmX; tRNA1Val (adenosine37-N6)-methyltransferase [EC:2.1.1.223] K06915; uncharacterized protein hemA; glutamyl-tRNA reductase [EC:1.2.1.70]	COG0613	Nucleotide transport and metabolism		
Gene	Start	End	Length	Description	COG	Function		
------	-------	-----	--------	-------------	-----	----------		
GC_00001107	696,242	697,671	711	mscM, bspA; mechanosensitive channel xapB, MFS transporter, NHS family, xanthosine permease	K22051	Cell wall/membrane/envelope biogenesis		
GC_00000019	701,791	702,956	715	xapB; MFS transporter, NHS family, xanthosine permease	K11537	Carbohydrate transport and metabolism		
GC_00001224	746,349	747,931	754	tyR; transcriptional regulator of aroF, aroG, tyrA and aromatic amino acid transport nagZ, beta-N-acetylhexosaminidase [EC:3.2.1.52]	K03721	Transcription	Amino acid transport and metabolism	
GC_00000287	597,384	596,584	851	lauroyltransferase/acyltransferase [EC:2.3.1.241 2.3.1.-]	K02517	Lipid transport and metabolism		
GC_00000935	48,148	49,658	852	OmpR family, sensor histidine kinase BasS [EC:2.7.13.3]	K07643	Signal transduction mechanisms		
GC_00001426	48,148	49,658	851	OmpR family, response regulator BasR	K07771	Signal transduction mechanisms	Transcription	
GC_00002406	55,396	57,063	859	pdxA2; 4-phospho-D-threonate 3-dehydrogenase / 4-phospho-D-erythronate 3-dehydrogenase [EC:1.1.1.408 1.1.1.409]	K22024	Coenzyme transport and metabolism		
Accession	Start	End	Length	Description				
-----------	-------	-----	--------	-------------				
GC_00002412	55,396	57,063	860	COG1349	Transcription\|Carbohydrate transport and metabolism			
GC_00001236	57,548	58,310	862	COG4953	Cell wall/membrane/envelope biogenesis			
GC_00001178	61,438	62,035	862	COG2373	General function prediction only			
GC_00001146	129,034	132,825	921	COG0295	Nucleotide transport and metabolism			
GC_00001479	129,034	132,825	923	COG0737	Nucleotide transport and metabolism	Defense mechanisms		
GC_00001277	128,767	128,965	920	COG1882	Energy production and conversion			
GC_00000318	321,684	322,939	1088	COG0661	Coenzyme transport and metabolism	Signal transduction mechanisms		
GC_00000513	321,684	322,939	1089	COG2226	Coenzyme transport and metabolism			
ID	Gene1	Gene2	Description					
-----	-------------	-------------	--					
12	GC_00001014	GC_00001021	benzoquinol methylase [EC:2.1.1.163 2.1.1.201] ispA; farnesyl diphosphate					
			synthase [EC:2.5.1.1 2.5.1.10] ddxs; 1-deoxy-D-xyulose-5-phosphate synthase [EC:2.2.1.7] rmuC; DNA recombination protein					
			rmuC: 23S rRNA (uracil1939-CS)-methyltransferase [EC:2.1.1.190] znuA; zinc					
			transport system substrate-binding protein mepM; murein DD-endopeptidase [EC:3.4.24.-] DARS2, aspS; asparyl-tRNA synthetase [EC:6.1.1.12] nubB, ntpA; dihydroneopterin triphosphate diphosphatase [EC:3.6.1.67]					
ATP-binding protein

clpX, CLPX; ATP-dependent Clp protease ATP-binding subunit ClpX

lon; ATP-dependent Lon protease [EC:3.4.21.53]

mukB; chromosome partition protein MukB

hemB, ALAD; porphobilinogen synthase [EC:4.2.1.24]

RP-S21, MRPS21, rpsU; small subunit ribosomal protein S21

mraY; phospho-N-acetylmuramoyl-pentapeptide-transferase [EC:2.7.8.13]

murD; UDP-N-acetylmuramoyl-alanine–D-glutamate ligase [EC:6.3.2.9]

ftsW, spoVE; cell division protein FtsW

murG; UDP-N-acetylgulcosamine-N-acetylmuramyl-pentapeptide pyrophosphoryl-undecaprenol N-acetylgulcosamine transferase [EC:2.4.1.227]

biosynthesis, transport and catabolism

Posttranslational modification, protein turnover, chaperones

Posttranslational modification, protein turnover, chaperones

Cell cycle control, cell division, chromosome partitioning

Coenzyme transport and metabolism

Translation, ribosomal structure and biogenesis

Cell wall/membrane/envelope biogenesis

Cell wall/membrane/envelope biogenesis

Cell cycle control, cell division, chromosome partitioning

Cell wall/membrane/envelope biogenesis
Rank	Start	End	Genomic Position	Accession	Description	COG	Domain	
14	323,903	325,293	1646	GC_00001176	TerC; tellurite resistance protein	K05794	COG0861	Inorganic ion transport and metabolism
14	323,903	325,293	1647	GC_00000278	dacB; serine-type D-Ala-D-Ala carboxypeptidase/endopeptidase (penicillin-binding protein 4)	K07259	COG2027	Cell wall/membrane/envelope biogenesis
14	456,001	457,017	1769	GC_00000988	exodeoxyribonuclease V alpha subunit	K03581	COG0507	Replication, recombination and repair
15	110	1,859	1,859	GC_00001281	recD; exodeoxyribonuclease V alpha subunit [EC:3.1.11.5]	K06181	COG1187	Translation, ribosomal structure and biogenesis
15	110	1,859	1,859	GC_00000242	ftsY; fused signal recognition particle receptor	K03110	COG0552	Intracellular trafficking, secretion, and vesicular transport
15	110	1,859	1,859	GC_00000406	ftsE; cell division transport system ATP-binding protein	K09812	COG2884	Cell cycle control, cell division, chromosome partitioning
15	2,523	3,152	3,152	GC_00001022	ftsX; cell division transport system permease protein	K09811	COG2177	Cell cycle control, cell division, chromosome partitioning
15	3,353	4,283	4,283	GC_00000436	rpoH; RNA polymerase sigma-32 factor	K03089	COG0568	Transcription
15	7,012	7,664	7,664	GC_00001125	npdA; NAD-dependent deacetylase [EC:2.3.1.286]	K12410	COG0846	Posttranslational modification, protein turnover, chaperones
15	7,012	7,664	7,664	GC_00001388	mtgA; monofunctional glycosyltransferase [EC:2.4.1.129]	K03814	COG0744	Cell wall/membrane/envelope biogenesis
15	49,264	49,789	1836	GC_00001090	bioY; biotin transport system substrate-specific component	K03523	COG1268	Coenzyme transport and metabolism
Gene ID	Transcript ID	Description	COG ID	Categories				
------------	---------------	--	--------	---				
K02109	GC_00000555	ATPF0B, atpF; F-type H+-transporting ATPase subunit b	COG0711	Energy production and conversion				
K02110	GC_00000341	ATPF0C, atpE; F-type H+-transporting ATPase subunit c	COG0636	Energy production and conversion				
K02108	GC_00000427	ATPF0A, atpB; F-type H+-transporting ATPase subunit a	COG0356	Energy production and conversion				
K03431	GC_00000272	phosphoglucoisomerase mutase [EC:5.4.2.1]	COG1109	Carbohydrate transport and metabolism				
K00868	GC_0001315	pdxK, pdxY; pyridoxine kinase [EC:2.7.1.35]	COG2240	Coenzyme transport and metabolism				
K15539	GC_0002356	rodZ; cytoskeleton protein RodZ gcpE, ispG; (E)-4-hydroxy-3-methylbut-2-enyl-						
		diphosphate synthase [EC:1.17.7.1 1.17.7.3]	COG1426	Cell cycle control, cell division, chromosome partitioning				
K03526	GC_0000465	recC; recombination associated protein RecC rdpC	COG0821	Lipid transport and metabolism				
K03554	GC_0000045	recA, recB, recC; RecA family protein	COG2974	Replication, recombination and repair				
K07274	GC_00001154	mipA, ompV; MipA family protein	COG3713	Cell wall/membrane/envelope biogenesis				
K07250	GC_00001106	gabT; 4-aminobutyrate aminotransferase / (S)-3-amino-2-methylpropionate						
		transaminase / S-5-aminovalerate transaminase [EC:2.6.1.19						
		2.6.1.22 2.6.1.48]	COG0160	Amino acid transport and metabolism				
ORG	START	STOP	YEAR	GenBank	K	Description		
-----	-------	------	------	---------	---	-------------		
15	204,600	205,321	1991	GC_00001157	K03928	yvaK; carboxylesterase [EC:3.1.1.1]		
15	204,600	205,321	1991	GC_00001157	K03928	mtnX; 2-hydroxy-3-keto-5-methylthiopentyl-1-phosphate phosphatase [EC:3.1.3.87]		
15	214,698	215,477	1997	GC_00000196	K01626	E2.5.1.54, aroF, aroG, aroH; 3-deoxy-7-phosphoheptulonate synthase [EC:2.5.1.54]		
15	215,737	216,993	1998	GC_00000596	K01735	aroD; 3-dehydroquinate synthase [EC:4.2.3.4]		
15	215,737	216,993	1999	GC_00001042	K01950	E6.3.5.1, NADSYN1, QNS1, nadE; NAD+ synthase (glutamine-hydrolysing) [EC:6.3.5.1]		
15	229,491	230,577	2011	GC_00001275	K08289	purT; phosphoribosylglycinamid FORMYLTRANSFERASE 2 [EC:2.1.2.2]		
15	229,491	230,577	2012	GC_00001572	K04087	hflC; modulator of FtsH protease HflC		
15	230,628	231,693	2013	GC_00001510	K04088	hflK; modulator of FtsH protease HflK		
16	225	772	2020	GC_00001404	K04088	flgE; flagellar hook protein FlgE		
16	3,155	4,276	2022	GC_00000542	K04087	hflC; modulator of FtsH protease HflC		
16	3,155	4,276	2023	GC_00000773	K04088	hflK; modulator of FtsH protease HflK		
16	55,470	56,254	2074	GC_00000498	K02390	figE; flagellar hook protein FigE		

Secondary metabolites biosynthesis, transport and catabolism

Amino acid transport and metabolism

Coenzyme transport and metabolism

Energy production and conversion

General function prediction only

Posttranslational modification, protein turnover, chaperones

Cell motility
Accession	Start	End	Description
GC_00000558	55,470	56,254	flgD; flagellar basal-body rod modification protein FlgD
GC_00001387	168,195	169,316	INV, sacA; beta-fructofuranosidase [EC:3.2.1.26]
GC_00000821	176,227	179,316	tsf, TSFM; elongation factor Ts
GC_00000184	176,227	179,316	RP-S2, MRPS2, rpsB; small subunit ribosomal protein S2
GC_00000179	176,227	179,316	phnA; protein PhnA
GC_00000177	179,547	180,246	dnr; CRP/FNR family transcriptional regulator, dissimilatory nitrate respiration regulator pbuG, azgA, ghxP, ghxQ, adeQ; adenine/guanine/hypoxanthine permease
GC_00000067	190,786	191,207	dnaX; DNA polymerase III subunit gamma/tau [EC:2.7.7.7]
GC_00000068	157,543	157,962	licT, bglG; beta-glucoside operon
GC_00001103	32,752	33,490	dnaX; DNA polymerase III subunit gamma/tau [EC:2.7.7.7]

Gene Ontology:
- **Cell motility**
- **Transcription**
- **Carbohydrate transport and metabolism**
- **Translation, ribosomal structure and biogenesis**
- **General function prediction only**
- **Signal transduction mechanisms**
- **Replication, recombination and repair**
- **Nucleotide transport and metabolism**
- **Replication, recombination and repair**
- **Transcription**
transcriptional antiterminator

Amino acid transport and metabolism|Coenzyme transport and metabolism|Translation, ribosomal structure and biogenesis|Secondary metabolites biosynthesis, transport and catabolism

K01920

gshB; glutathione synthase [EC:6.3.2.3]

COG0189

rsmE; 16S rRNA (uracil1498-N3)-methyltransferase [EC:2.1.1.193]

por, nilU; pyruvateferredoxin/flavodoxin oxidoreductase [EC:1.2.7.1 1.2.7.-]

COG1385

Translation, ribosomal structure and biogenesis

K09761

Energy production and conversion

COG0674

Cell wall/membrane/envelope biogenesis

K03737

Carbohydrate transport and metabolism

COG0149

Cell cycle control, cell division, chromosome partitioning

K13695

Mobilome: prophages, transposons

COG0791

COG0149

COG03074

COG1396

COG0482

COG2915
Gene ID	Start	End	Description	GO SL	Function
GC_00000090	44,222	43,379	Amino acid transport and metabolism	COG1296	
GC_00000759	72,391	73,126	Amino acid transport and metabolism	COG1448	
GC_00000143	85,482	86,193	Lipid transport and metabolism	COG2937	
GC_00000571	91,471	92,474	Energy production and conversion	COG0437	
GC_00001116	93,051	93,409	Energy production and conversion	COG2864	
GC_00000010	93,617	94,635	General function prediction only (ABC transporter)	COG2984	
GC_00000010	94,748	94,924	General function prediction only (ABC transporter)	COG2984	
GC_00000797	95,471	96,256	General function prediction only (ABC transporter)	COG4120	
Table S3. Flexible genes enriched in *Gilliamella* pop2. Most genes were detected by both PopCOGenT and anvi’o enrichment analysis. Genes not detected by anvi’o are due to missing KEGG annotation or the presence of other genes with the same KEGG function in the genome.

Anvi’o orthologous group ID	M6-3G genome scaffold ID	Start position of the gene on the scaffold	End position of the gene on the scaffold	Detected by PopCoGenT gene-specific sweeps in flexible genome	Detected by anvi’o KEGG enrichment analysis	KEGG IDs	KEGG functions
GC_00009082	11	74,795	75,826	x		K00847	E2.7.1.4, scrK; fructokinase [EC:2.7.1.4]
GC_00002301	11	77,099	77,965	x			
GC_00005323	11	79,090	79,854	x			
GC_00005287	11	81,036	81,491	x	x	K02768	fruB; fructose PTS system EIIA component [EC:2.7.1.202]
GC_00005164	11	81,539	81,850	x	x	K02769	fruAb; fructose PTS system EIIB component [EC:2.7.1.202]
GC_00005267	11	81,871	82,965	x		K02770	fruA; fructose PTS system EIIBC or EIIC component [EC:2.7.1.202]
GC_00005306	11	83,064	83,606	x	x	K09988	lyxA; D-lyxose ketol-isomerase [EC:5.3.1.15]
GC_00002192	11	166,073	167,641	x		K22110	kdgM, kdgN, nanC, ompL; oligogalacturonate-specific porin family protein
GC_00002162	11	173,008	173,683	x			
GC_00002143	11	175,110	175,910	x		K00046	idnO; gluconate 5-dehydrogenase [EC:1.1.1.69]
GC_00002179	11	176,006	176,326	x			
GC_00002180	11	176,444	177,238	x	x	K19333	kdgR; IclR family transcriptional regulator, KDG regulon repressor
GC_00004921	13	677	1,882	x	x	K12661	LRA3, rhmD; L-rhamnate dehydratase [EC:4.2.1.90]
GC_00005249	13	1,911	2,669	x			
GC_00007220	23	43,742	44,170	x			
GC_00006791	23	44,559	45,759	x			
GC_00007038	23	45,090	45,209	x			
GC_00007208	23	45,421	46,080	x			
Accession	Chromosome	Start Position	End Position	Type	Description		
--------------	------------	----------------	--------------	------	---		
GC_00002150	23	53,381	54,310	x	xuuR; GntR family transcription regulator, xu operon transcriptional repressor		
GC_00005616	23	149,195	149,950	x	K13637		
GC_00002826	23	246,963	248,558	x			
GC_00004448	23	300,515	301,261	x			
GC_00001547	23	319,784	321,130	x			
GC_00007987	24	16,247	16,498	x			
GC_00005682	24	17,324	18,448	x			
GC_00007496	24	50,303	51,961	x			
GC_00003440	24	83,494	84,030	x			
GC_00001365	24	268,223	269,200	x	K18446 yglF; triphosphatase [EC:3.6.1.25]		
GC_00007493	24	269,467	271,986	x			
GC_00005682	24	354,872	355,438	x			
GC_00002610	25	20,460	21,986	x			
GC_00002658	25	22,466	22,750	x			
GC_00003421	28	5,426	5,749	x	K09771 TC.SMR3; small multidrug resistance family-3 protein		
GC_00006207	28	49,203	49,958	x	K12981 waaZ, rfaZ; KDO transferase III [EC:2.4.99.-]		
GC_00003240	28	102,931	103,875	x			
GC_00003302	28	106,638	106,904	x	K06940; uncharacterized protein		
GC_00002608	28	110,834	112,069	x	K06016 pydC; beta-ureidopropionase / N-carbamoyl-L-amino-acid hydrolase [EC:3.5.1.6 3.5.1.87] ptsG, glcA, glcB; glucose PTS system EIICBA or EIICB component [EC:2.7.1.199] rpe, RPE; ribulose-phosphate 3-epimerase [EC:5.1.3.1]		
GC_00004981	31	12,909	14,498	x	K20118 rpiB; ribose 5-phosphate isomerase B [EC:5.3.1.6] rpiR, alsR; RpiR family transcriptional regulator, repressor of rpiB and als operon metY; O-acetylimoserine (thiol)-lyase [EC:2.5.1.49]		
GC_00004912	31	14,731	15,384	x	K01783		
GC_00004400	31	15,377	15,829	x	K01808		
GC_00004198	31	16,001	16,894	x	K23238		
GC_00002090	32	68,306	69,583	x	K01740		
GC_00003023	32	114,730	117,270	x			
Gene ID	Strand Length	Start End	Strand	Proteins			
------------	---------------	-----------	--------	--			
GC_00003085	32	117,386	118,996	x K02471 bacA; vitamin B12/bleomycin/antimicrobial peptide transport system ATP-binding/permease protein			
GC_00003300	32	119,044	121,800	x x K07263 pqqL; zinc protease [EC:3.4.24.-]			
GC_00006084	35	15,052	15,366	x			
GC_00005614	35	20,758	20,922	x			
GC_00004608	35	104,516	105,439	x x K02842 FZD9_10, CD349_50; frizzled 9/10			
GC_000002800	49	33,116	33,886	x x K06897 7,8-dihydropterin-6-yl-methyl-4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate synthase [EC:2.5.1.105]			
GC_00002407	49	57,532	72,414	x			
GC_00002707	52	154,231	155,175	x K09805 K09805; uncharacterized protein			
GC_00003609	55	20,898	22,493	x x K02035 ABC.PE.S; peptide/nickel transport system substrate-binding protein			
GC_00003591	55	22,508	23,485	x x K02033 ABC.PE.P; peptide/nickel transport system permease protein			
GC_00003608	55	24,315	25,955	x x K02032 ddpF; peptide/nickel transport system ATP-binding protein			
GC_00003606	55	25,968	26,819	x			
GC_00000009	7	50,171	50,422	x			
GC_00006509	7	50,163	50,422	x x K14731 mihB, chnC; epsilon-lactone hydrolase [EC:3.1.1.83]			
GC_00001766	7	132,055	132,450	x			
GC_00002364	7	147,357	147,605	x			
GC_00002416	7	148,002	149,294	x x K13408 raxA; membrane fusion protein			
GC_00002367	7	149,287	151,398	x x K13409 raxB, cvaB; ATP-binding cassette, subfamily B, bacterial RaxB			
NA	7	253,092	253,277	x Not annotated			
GC_00007053	7	336,121	336,276	x			
Accession	Start	End	Description	EC Number			
------------	-------	-------	---	--------------------			
GC_00005362	72	39,108	2-dehydro-3-deoxy-L-rhamnose aldolase	EC:4.1.2.53			
GC_00004921	72	41,380	L-rhamnose dehydratase	EC:4.2.1.90			
GC_00005854	85	6,741	alpha-mannosidase	EC:3.2.1.24			
GC_00006404	85	10,995	L-asparaginase	EC:3.5.1.1			
Table S4. Genes related to metabolic pathways, inter-bacterial antagonistic interactions and CRISPR-Cas systems significantly enriched in Gilliamella populations.

Clades	Am_Gapis	Am_Gapicola	Bm				
Urease genes and urea transporters: ureABCDEFG, urtABCDE (K01428, K01429, K01430, K03187, K03188, K03189, K03190, K11959, K11960, K11961, K11962, K11963)	x						
Nickel transport system permease protein: nikBCDE (K10824, K15585, K15587, K15586)	x	x					
Xylose metabolism: xylAB (K01805, K00854)	x	x					
Nickel transport system permease protein: pseuGK (K16328, K16329)							
N-acetylgalactosamine PTS system and N-acetylglucosamine-6-phosphate deacetylase: agaAEFSVW (K02744, K02745, K02746 K02747, K02079, K02082)	x	x					
fructose PTS system: fruAb, fruB (K02768, K02769)							
Peptide/nickel transport system permease protein, ABC.PE.S, ABC.PE.P1, ABC.PE.P (K02033, K02034, K02035)							
Extracellular pectin degradation: GH28, GH32, GH38 (GC_00002366, GC_00002401, GC_00002404)							
Xylose and arabinose metabolism: xylE, araABCE (K08138, K01804, K00853, K02099, K02100)							
Maltose-6'-phosphate glucosidase: glvAC (K01232, K027500)							
Dipeptide transport system: ddpABCEF (K12368, K12369, K12370, K12371, K12372)							
Type I secretion system protein: cvaAB (K13408, K13409)							
Tight adherence export apparatus: cpaACEF, tadBCDFG, flp (K02278, K02280, K02282, K02283, K12510, K12511, K12512, K12514, K12515, K02651)							
Type VI secretion systems - T6SS-1 (GC_00001745, GC_00001774, GC_00001777, GC_00001795, GC_00001797, GC_00001812, GC_00001824, GC_00001831, GC_00001836, GC_00001841, GC_00001847, GC_00001850, GC_00001851)	x	x	x	x	x	x	
Capsular polysaccharide transporters: kpsCMET (K07266, K09688, K09689, K10107)	x	x	x				
CRISPR-Cas system - Subtype I-F factors: cys1234 (K19127, K19128, K19129, K19130)	x	x	x	x	x	x	
CRISPR-Cas system - Universal Cas proteins, Subtype I-E factors: cas2, casACDE (K09951, K19123, K19124, K19125, K19126)	x	x	x	x	x	x	x
Table S5. Genes related to metabolic pathways and inter-bacterial antagonistic interactions significantly enriched in Snodgrassella populations.

Clades	Ap. mellifera derived	Bombus derived - Broad-host range	Bombus derived	Bombus derived - Host-specific	Other Apis species derived			
Populations	1	2	3	4	5	6	7	8
Urea transporter: utp (K08717)	x	x	x			x	x	
Urease genes: ureABCDEFGJ (K01430, K01429, K01428, K03190, K03187, K03188, K03189, K03192)	x	x	x			x	x	
Arginine degradation genes: arcAC (K01478, K00926)								
Two component system - NtrC family, short-chain fatty acids transporter: atoCES (K07710, K07714, K02106)	x		x			x	x	
Biosynthesis of siderophore group nonribosomal peptides: entACE (K02361, K02363, K00216)	x	x	x			x	x	
fhaB; filamentous hemagglutinin (K15125)	x							
Type VI secretion systems - T6SS-1 (GC_00001925, GC_00001927, GC_00001924, GC_00001919, GC_00001918, GC_00001906, GC_00001916, GC_00001902, GC_00001903, GC_00001922, GC_00001904, GC_00001911, GC_00001880)	x	x	x			x	x	
Type VI secretion systems - T6SS-2 (GC_00001996, GC_00002021, GC_00001998, GC_00002009)						x	x	
Type VI secretion systems - T6SS-3 (GC_00002008, GC_00002011, GC_00001989, GC_00002012, GC_00002028)						x	x	
Table S6. Bacterial strains used in this study.

Species and strain	Source / Description	ID	References
E. coli MFDpir	Ferrieres et al. 2010	N/A	(40)
E. coli DH5α	Thermo-Fisher	CAT# 11319-019	
Snodgrassella alvi wkB2	Kwong et al. 2013	ATCC: BAA-2449	(36)
Gilliamella apicola wkB7	Kwong et al. 2014	N/A	(41)
Gilliamella apis M6-3G		N/A	(29)
Name	Use	Source	
----------	--	------------	
pBTK402	Type 8 origin of replication and origin of transfer plasmid, rsf1010 broad-host-range origin. Encodes Kanamycin resistance (aphA-1).	(37)	
pSL1	Derived from pBTK402. Constitutively expresses red chromoprotein E1010 gene from CP25 promoter.	This work	
pSL1-GFP	Derived from pSL1. Replaced RCP to constitutively express GFP from CP25 promoter.	This work	
pSL1-E2C	Derived from pSL1. Replaced RCP to constitutively express E2-Crimson from CP25 promoter.	This work	
SI References

1. D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, G. W. Tyson, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res.* 25, 1043–1055 (2015).

2. D. Hyatt, *et al.*, Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* 11, 119 (2010).

3. A. M. Eren, *et al.*, Anvi’o: an advanced analysis and visualization platform for ‘omics data. *PeerJ* 3, e1319 (2015).

4. M. Y. Galperin, *et al.*, COG database update: focus on microbial diversity, model organisms, and widespread pathogens. *Nucleic Acids Res.* 49, D274–D281 (2021).

5. M. Kanehisa, M. Furumichi, Y. Sato, M. Ishiguro-Watanabe, M. Tanabe, KEGG: integrating viruses and cellular organisms. *Nucleic Acids Res.* 49, D309–D314 (2019).

6. J. Huerta-Cepas, *et al.*, eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.* 47, D309–D314 (2019).

7. M. Kanehisa, Y. Sato, K. Morishima, BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. *J. Mol. Biol.* 428, 726–731 (2016).

8. J. Huerta-Cepas, *et al.*, Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. *Mol. Biol. Evol.* 34, 2115–2122 (2017).

9. H. Zhang, *et al.*, dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. *Nucleic Acids Res.* 46, W95–W101 (2018).

10. R. D. Finn, J. Clements, S. R. Eddy, HMMER web server: interactive sequence similarity searching. *Nucleic Acids Res.* 39, W29–W37 (2011).

11. B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using DIAMOND. *Nat. Methods* 12, 59–60 (2015).

12. P. K. Busk, B. Pilgaard, M. J. Lezyk, A. S. Meyer, L. Lange, Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function. *BMC Bioinformatics* 18, 214 (2017).

13. M. I. Steele, W. K. Kwong, M. Whiteley, N. A. Moran, Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. *mBio* 8 (2017).

14. M. I. Steele, N. A. Moran, Evolution of interbacterial antagonism in bee gut microbiota reflects host and symbiont diversification. *mSystems* 6, e00632-21, /mSystems/6/3/mSys.00632-21.atom (2021).

15. D. Couvin, *et al.*, CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. *Nucleic Acids Res.* 46, W246–W251 (2018).
16. C. Camacho, et al., BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421 (2009).

17. S. van Dongen, C. Abreu-Goodger, “Using MCL to extract clusters from networks” in *Bacterial Molecular Networks: Methods and Protocols*, Methods in Molecular Biology., J. van Helden, A. Toussaint, D. Thieffry, Eds. (Springer, 2012), pp. 281–295.

18. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780 (2013).

19. B. Q. Minh, et al., IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* 37, 1530–1534 (2020).

20. S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, L. S. Jermiin, ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589 (2017).

21. D. T. Hoang, O. Chernomor, A. von Haeseler, B. Q. Minh, L. S. Vinh, UFBoot2: improving the ultrafast bootstrap approximation. *Mol. Biol. Evol.* 35, 518–522 (2018).

22. G. Yu, D. Smith, H. Zhu, Y. Guan, T. T.-Y. Lam, ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods. Ecol. Evol.* 8, 28–36 (2017).

23. R Core Team, *R: a language and environment for statistical computing* (R Foundation for Statistical Computing, 2016).

24. H.-G. Drost, Philentropy: information theory and distance quantification with R. *Journal of Open Source Software* 3, 765 (2018).

25. E. Paradis, K. Schliep, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* 35, 526–528 (2019).

26. J. Oksanen, et al., vegan: community ecology package (2020).

27. P. Arevalo, D. VanInsberghe, J. Elsherbini, J. Gore, M. F. Polz, A reverse ecology approach based on a biological definition of microbial populations. *Cell* 178, 820-834.e14 (2019).

28. P. Shannon, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* 13, 2498–2504 (2003).

29. H. Zheng, et al., Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. *mBio* 7, e01326-16 (2016).

30. K. M. Ellegaard, P. Engel, New reference genome sequences for 17 bacterial strains of the honey bee gut microbiota. *Microbiol. Resour. Announc.* 7, e00834-18 (2018).

31. O. Gascuel, BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. *Mol. Biol. Evol.* 14, 685–695 (1997).

32. A. Rambaut, N. C. Grass, Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. *Bioinformatics* 13, 235–238 (1997).

33. RStudio Team, *RStudio: integrated development environment for R* (RStudio, PBC, 2020).
34. H. Wickham, et al., Welcome to the Tidyverse. *Journal of Open Source Software* 4, 1686 (2019).

35. J. E. Powell, S. P. Leonard, W. K. Kwong, P. Engel, N. A. Moran, Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. *Proc. Natl. Acad. Sci. U.S.A.* 113, 13887–13892 (2016).

36. W. K. Kwong, N. A. Moran, Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. *Int. J. Syst. Evol. Microbiol.* 63, 2008–2018 (2013).

37. S. P. Leonard, et al., Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. *ACS Synth. Biol.* 7, 1279–1290 (2018).

38. S. P. Leonard, et al., Engineered symbionts activate honey bee immunity and limit pathogens. *Science* 367, 573–576 (2020).

39. V. G. Martinson, J. Moy, N. A. Moran, Establishment of characteristic gut bacteria during development of the honeybee worker. *Appl. Environ. Microbiol.* 78, 2830–2840 (2012).

40. L. Ferrières, et al., Silent mischief: bacteriophage Mu insertions contaminate products of *Escherichia coli* random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. *J. Bacteriol.* 192, 6418–6427 (2010).

41. W. K. Kwong, P. Engel, H. Koch, N. A. Moran, Genomics and host specialization of honey bee and bumble bee gut symbionts. *Proc. Natl. Acad. Sci. U.S.A.* 111, 11509–11514 (2014).