GRADIENT ESTIMATES FOR POSITIVE SOLUTIONS
OF THE LAPLACIAN WITH DRIFT

BENITO J. GONZález AND EMILIO R. NEGRIN

(Communicated by Palle E. T. Jorgensen)

Abstract. Let M be a complete Riemannian manifold of dimension n without boundary and with Ricci curvature bounded below by $-K$, where $K \geq 0$. If b is a vector field such that $\|b\| \leq \gamma$ and $\nabla b \leq K_*$ on M, for some nonnegative constants γ and K_*, then we show that any positive $C^\infty(M)$ solution of the equation $\Delta u(x) + (b(x)\nabla u(x)) = 0$ satisfies the estimate

$$\frac{\|\nabla u\|^2}{u^2} \leq \frac{n(K + K_*)}{w} + \frac{\gamma^2}{w(1 - w)},$$

on M, for all $w \in (0, 1)$. In particular, for the case when $K = K_* = 0$, this estimate is advantageous for small values of $\|b\|$ and when $b \equiv 0$ it recovers the celebrated Liouville theorem of Yau (Comm. Pure Appl. Math. 28 (1975), 201–228).

1. Introduction

In this paper we investigate the behaviour of positive $C^\infty(M)$ solutions of the equation

$$\Delta u(x) + (b(x)\nabla u(x)) = 0 \tag{1.1}$$
on M, where M is an n-dimensional complete Riemannian manifold without boundary.

We require smoothness of the manifold, uniform bound on the norm of the vector field b as well as lower bounds on the tensor fields of the Ricci curvature and ∇b where

$$\nabla b(X, Y) = (\nabla_X b)Y, \quad \forall X, Y \in \mathfrak{X}(M), \tag{1.2}$$

where $\mathfrak{X}(M)$ denotes the Lie algebra of vectors fields on M and $\nabla_X b$ the associated (Levi-Civita) Riemannian covariant derivative of b with respect to X.

Our main result is a gradient estimate for positive $C^\infty(M)$ solutions of equation (1.1), namely,

$$\frac{\|\nabla u\|^2}{u^2} \leq \frac{n(K + K_*)}{w} + \frac{\gamma^2}{w(1 - w)} \tag{1.3},$$

Received by the editors May 27, 1997; part of the results of this paper have been presented to Equadiff 95, Lisbon, July 24–29, 1995.

1991 Mathematics Subject Classification. Primary 58G11.

Key words and phrases. Gradient estimate, Laplacian with drift, Bochner-Lichnerowicz-Weitzenböck formula, Liouville theorem.
on M, for any $w \in (0, 1)$, where the Ricci curvature is bounded below by $-K$, $\nabla b \leq K_*$ and $\|b\| \leq \gamma$ for some nonnegative constants K, K_* and γ.

For the particular case when $K = K_* = 0$ inequality (1.3) yields

\begin{equation}
\frac{\|\nabla u\|^2}{u^2} \leq 4\gamma^2.
\end{equation}

Note that this simple estimation is independent of the dimension of M and for the case when $b \equiv 0$ it recovers the Liouville theorem of Yau [10]. The proof of (1.3), and thus of (1.4), is essentially along the lines of Li and Yau [7] and Davies [3, Chap. 5].

This method, originated first in Yau [10] and Cheng and Yau [2], has been developed by several authors (cf. [3], [6], [7], [8], and [9], amongst others). More specifically, for the case when $b = \nabla \phi$, and $\phi \in C^\infty(M)$, a gradient estimate for any positive $C^\infty(M)$ solution of (1.1) has been obtained by Setti in [9].

In order to start, however, we need an extension of the Bochner-Lichnerowicz-Weitzenböck formula for the operator $L^b = \Delta + (b|\nabla|)$. This remarkable fact is proved as an independent lemma. It is known for drift vectors $b = \nabla \phi$ of gradient form; see e.g. the monograph of Deuschel and Stroock (cf. [4], §6.2).

2. Gradient estimates revisited

In the derivation of the main results, a central role will be played by the next formula.

Lemma 2.1 (Bochner-Lichnerowicz-Weitzenböck formula for L^b). Let M be a Riemannian manifold and assume that $f \in C^\infty(M)$. Then,

\begin{equation}
L^b(\|\nabla f\|^2) = 2\|\text{Hess}(f)\|_{\text{H.S.}}^2 + 2(\nabla f|\nabla (L^b f)) + 2(\text{Ric} - \nabla b)|\nabla f, \nabla f|,
\end{equation}

where $\|\text{Hess}(f)\|_{\text{H.S.}}$ denotes the Hilbert-Schmidt norm of $\text{Hess}(f)$ (cf. [4, p. 262]), Ric denotes the Ricci curvature and ∇b denotes the tensor field given by (1.2).

Proof. Applying the well-known Bochner-Lichnerowicz-Weitzenböck formula for the Laplacian, one obtains

\begin{equation}
L^b(\|\nabla f\|^2) = 2\|\text{Hess}(f)\|_{\text{H.S.}}^2 + 2(\nabla f|\nabla (\Delta f)) + 2\text{Ric}(\nabla f, \nabla f) + (b|\nabla(\|\nabla f\|^2)).
\end{equation}

So, in order to prove (2.1) first we establish that

\begin{equation}
\nabla b(\nabla f, \nabla f) = (\nabla((b|\nabla f))|\nabla f) - \frac{1}{2}(b|\nabla(\|\nabla f\|^2)).
\end{equation}

Now, one has

\[
\nabla b(\nabla f, \nabla f) = (\nabla_{\nabla f} b|\nabla f) = \nabla_{\nabla f}((b|\nabla f)) - (b|\nabla\nabla f|\nabla f)
\]

\[
= -(b|\nabla\nabla f|\nabla f) + \nabla f((b|\nabla f)) = -(b|\nabla\nabla f|\nabla f) + (\nabla((b|\nabla f))|\nabla f).
\]

Thus, all that remains is to show that

\begin{equation}
\nabla\nabla f|\nabla f = \frac{1}{2}\nabla(\|\nabla f\|^2).
\end{equation}

In order to check (2.3) let any $Z \in \mathfrak{X}(M)$; then

\[
(\nabla(\|\nabla f\|^2), Z) = Z(\|\nabla f\|^2) = Z((\nabla f|\nabla f))
\]

\[
= 2(\nabla Z|\nabla f|\nabla f) = 2((\nabla\nabla f Z + [Z, \nabla f])|\nabla f)
\]

\[
= 2(\nabla\nabla f Z|\nabla f) + 2([Z, \nabla f]|\nabla f)
\]
boundary. Let B on M (2.4) and so which agrees with the Bochner-Lichnerowicz-Weitzenböck formula derived in [4, p. 262] and [5, p. 32].

Theorem 2.1. Let (1.2) given by

$$
L(\nabla (\| \nabla f \|^2)) = 2 (\nabla_{X,Y} \nabla f) + 2 (\nabla (\| \nabla f \|^2) \nabla),
$$

and so

$$
(\nabla (\| \nabla f \|^2))Z = 2 (\nabla_{X,Y} f) \nabla f)Z, \quad \forall Z \in \mathfrak{X}(M),
$$

from which (2.3) follows.

Remark 2.1. For the case when $b = -\nabla U$, $U \in C^\infty(M)$, denoting $L^U = L^{-\nabla U}$ and taking into account that $\text{Hess}(U)(X,Y) = (\nabla_X (\nabla U))Y)$, for all $X,Y \in \mathfrak{X}(M)$ (cf. [4, p. 261]), formula (2.1) is written as

$$
L^U(\| \nabla f \|^2) = 2 \| \nabla f \|^2_{M^u} + 2 (\nabla f \nabla (L^U f)) + 2 (\text{Ric} + \text{Hess}(U))(\nabla f, \nabla f),
$$

which agrees with the Bochner-Lichnerowicz-Weitzenböck formula derived in [4, p. 262] and [5, p. 32].

Now, formula (2.1) enables us to prove the next local gradient estimate.

Theorem 2.1. Let M be a complete Riemannian manifold of dimension n without boundary. Let $B_p(2R)$ be a geodesic ball of radius $2R$ around $p \in M$ and denote by $-K(2R)$, with $K(2R) \geq 0$, a lower bound on $B_p(2R)$ of the Ricci curvature. Set b a vector field on M and denote by $\gamma(2R)$ and $K_*(2R)$ some nonnegative constants satisfying $\| b \| \leq \gamma(2R)$ and $\nabla b \leq K_*(2R)$ on $B_p(2R)$, where ∇b is the tensor field given by (1.2). If $u(x,t)$ is a positive C^∞ solution of the equation

$$
\Delta u(x,t) + (b(x)|\nabla u(x,t)) = \frac{\partial u(x,t)}{\partial t},
$$

on $M \times [0,\infty)$, then for any $\alpha > 1$ and any $w \in (0,1)$, the estimate

$$
\| \nabla u \|^2 (x,t) - \alpha \frac{u_t(x,t)}{u(x,t)}
\leq \frac{n\alpha^2}{2w} + \frac{n^2}{2w} \left\{ \frac{2\epsilon}{R^2} + \frac{(n-1)(1+R\sqrt{K})}{R^2} + \frac{\nu}{R^2} + \frac{K + K_*}{2(\alpha - 1)} \right\}
$$

holds on $B_p(R) \times (0,\infty)$, where $\epsilon > 0$ and $\nu > 0$ are some constants.

Proof. Observe that the function $f(x,t) = \log u(x,t)$ satisfies the equation

$$
L^f u + \| \nabla f \|^2 = f_t.
$$

Now, using formula (2.1), it follows that

$$
F(x,t) = t \{ \| \nabla f \|^2 (x,t) - \alpha f_t(x,t) \},
$$
satisfies the estimate
\[L^b F - F_t + 2(\nabla f \mid \nabla F) + t^{-1}F \]
\[= t \left[L^b (f) - \alpha L^b f - 2(\nabla f \mid \nabla f_t) + \alpha f_t \right. \]
\[+ 2(\nabla f \mid \nabla (\|f\|^2)) \left. - 2\alpha (\nabla f \mid \nabla f_t) \right] \]
\[\geq t \left[\frac{2(\Delta f)^2}{n} - 2(K + K_*) \|f\|^2 \right] \]
\[= t \left[\frac{2}{n} \|f\|^2 + (b \mid \nabla f) - f_t^2 - 2(K + K_*) \|\nabla f\|^2 \right] \]
on \(B_p(2R) \times (0, \infty) \), where we have used the inequalities \(\|\text{Hess} \ f\|_{\text{H.S.}} \geq (\Delta f)^2/n \)
and \((\text{Ric} - \nabla b) \geq -(K + K_*) \).

Let \(\psi \) be a \(C^\infty(\mathbb{R}) \) function such that
\[\psi(r) = \begin{cases} 1 & \text{if } r \in (-\infty, 1], \\ 0 & \text{if } r \in [2, \infty), \end{cases} \]
and \(0 \leq \psi(r) \leq 1, \ \forall r \in \mathbb{R} \).

Denote by \(\epsilon > 0 \) and \(\nu > 0 \) some constants with
\[0 \geq \psi^{-1/2}(r) \frac{d}{dr} \psi(r) \geq -\epsilon \]
and
\[\frac{d^2}{dr^2} \psi(r) \geq -\nu. \]

Now we set \(\phi(x) = \psi \left(\frac{d(p, x)}{R} \right) \), where \(d(p, x) \) is the distance between \(p \) and \(x \).

Using an argument of Calabi [1] (see also Cheng and Yau [2] and Setti [9]), we can assume without loss of generality that the function \(\phi \), with support in \(B_p(2R) \), is of class \(C^2 \).

Let \((a, s) \) be the point in \(B_p(2R) \times [0, t] \) at which \(\phi F \) takes its maximum value, and assume that this value is positive (otherwise the proof is trivial). Then at \((a, s) \) one has
\[\nabla(\phi F) = 0, \quad \Delta(\phi F) \leq 0, \quad F_t \geq 0. \]

Therefore at \((a, s) \) one has
\[\phi \Delta F + F \Delta \phi - 2F \|\nabla \phi\|^2 \phi^{-1} \leq 0. \]

This inequality together with the estimates
\[\|\nabla \phi\|^2 \leq \frac{c^2 \phi}{R^2}, \tag{2.6} \]
and
\[\Delta \phi \geq -\frac{(n-1)(1+R\sqrt{K})\epsilon^2}{R^2} - \frac{\nu}{R^2} \tag{2.7} \]
(cf. [1]) yields
\[\phi \Delta F \leq \left(\frac{2c^2}{R^2} + \frac{(n-1)(1+R\sqrt{K})\epsilon}{R^2} + \frac{\nu}{R^2} \right) F, \text{ at } (a, s). \tag{2.8} \]

Inequalities (2.6) and (2.7) at \((a, s) \) imply that
\[\phi \Delta F - (b \nabla \phi) F - \phi F_t - 2(\nabla f \nabla \phi) F + s^{-1} \phi F \]
(2.9) \[\geq \left\{ \frac{2}{n} [\| \nabla f \|^2 + (b | \nabla f) - f_t]^2 - 2(K + K_*) \| \nabla f \|^2 \right\} s \phi. \]

From (2.8) the left-hand side of (2.9) satisfies
\[\phi \Delta F - (b \, | \nabla \phi) F - \phi F_t - 2(\nabla f \, | \nabla \phi) F + s^{-1} \phi F \]
\[\leq \left(\frac{2 \epsilon^2}{R^2} + \frac{(n-1)(1 + R \sqrt{K}) \epsilon}{R^2} + \frac{\nu}{R^2} \right) F - (b \, | \nabla \phi) F - 2(\nabla f \, | \nabla \phi) F + s^{-1} \phi F. \]

Denoting \(\mu = \| \nabla f \|^2 (a, s) \), using (2.9) and the last inequality, we obtain
\[\left\{ \frac{2}{n} \left(\mu - \frac{\mu s - 1}{\alpha s} \right)^2 F^2 - \frac{4(\mu \phi)^{1/2} \gamma (\mu - \frac{\mu s - 1}{\alpha s})}{n} \right\} s \phi \geq 2(K + K_*) s \mu \phi F. \]

Multiplying this inequality by \(\phi F \) and since \(\phi \leq 1 \), we obtain
\[\frac{2(1 + (\alpha - 1) \mu s)^2(\phi F)^2}{\alpha^2 n} - 2 \left\{ \frac{2s^2 \mu^{1/2}(1 + (\alpha - 1) \mu s)}{\alpha n} + \frac{\epsilon s \mu^{1/2}}{R} \right\} (\phi F)^{3/2} \]
\[\geq \left\{ \frac{2 \epsilon^2}{R^2} + \frac{(n-1)(1 + R \sqrt{K}) \epsilon}{\epsilon} + \frac{\nu}{R^2} \right\} s + \frac{\gamma \epsilon s}{R} + 2(K + K_*) \mu s^2 \}
\[(\phi F) \leq 0. \]

On the other hand, for any \(w \in (0, 1) \) we have
\[-2 \left\{ \frac{2s^2 \mu^{1/2}(1 + (\alpha - 1) \mu s)}{\alpha n} + \frac{\epsilon s \mu^{1/2}}{R} \right\} (\phi F)^{3/2} \]
\[\geq -\frac{2(1 - w)(1 + (\alpha - 1) \mu s)^2(\phi F)^2}{\alpha^2 n} \]
\[\left(2(1 - w)(1 + (\alpha - 1) \mu s)^2 \right) \left[\frac{2s^2 \mu^{1/2}(1 + (\alpha - 1) \mu s)}{n} + \frac{\epsilon s \alpha \mu^{1/2}}{R} \right]^2 (\phi F). \]

From (2.11) inequality (2.10) becomes
\[A_1 \lambda^2 - 2A_2 \lambda \leq 0, \]
where
\[\lambda = \phi F, \quad A_1 = \frac{2w}{\alpha^2 n}(1 + (\alpha - 1) \mu s)^2, \]
and
\[2A_2 = \left(\frac{2 \epsilon^2}{R^2} + \frac{(n-1)(1 + R \sqrt{K}) \epsilon}{R^2} + \frac{\nu}{R^2} \right) s + \frac{\gamma \epsilon s}{R} + 2(K + K_*) \mu s^2 \]
\[+ \frac{n}{2(1 - w)(1 + (\alpha - 1) \mu s)^2} \left[\frac{2s^2 \mu^{1/2}(1 + (\alpha - 1) \mu s)}{n} + \frac{\epsilon s \alpha \mu^{1/2}}{R} \right]^2. \]
As in [3, Lemma 5.3.3], we use the estimate
\[
\frac{\mu s^2}{(1 + (\alpha - 1)\mu s)^2} \leq \frac{s}{4(\alpha - 1)},
\]
and so we obtain
\[
\frac{2A_2}{A_1} \leq \frac{n\alpha^2}{2w} + \frac{n\alpha^2 s}{2w} \left\{ \frac{2\gamma^2}{R^2} + \frac{(n - 1)(1 + R\sqrt{K})\epsilon}{R^2} + \frac{\nu}{R^2} \right\} + \frac{K + K_*}{2(\alpha - 1)} + \frac{\gamma\epsilon}{R} + \frac{n}{8(1 - w)(\alpha - 1)} \left(\frac{2\gamma}{n} + \frac{\epsilon\alpha}{R} \right)^2.
\]
(2.12)

Now, since \(\lambda \leq \frac{2A_2}{A_1} \), \(s \in [0, t] \) and using (2.12), estimate (2.5) holds.

From Theorem 2.1 one obtains the next global gradient estimate

Corollary 2.1. Let \(M \) be a complete Riemannian manifold of dimension \(n \) without boundary and assume that the Ricci curvature of \(M \) is bounded from below by \(-K \) with \(K \geq 0 \). Also we suppose that the vector field \(b \) satisfies \(||b|| \leq \gamma \) and that the tensor field \(\nabla b \), given by (1.2), is bounded from above by \(K_* \), for some nonnegative constants \(\gamma \) and \(K_* \). If \(u(x) \) is a positive \(C^\infty(M) \) solution of equation (1.1), then

\[
\|\nabla u\|^2 u^2 \leq n(K + K_*) + \frac{\alpha^2 \gamma^2}{4w(\alpha - 1)} + \frac{\alpha^2 \gamma^2}{4w(1 - w)(\alpha - 1)},
\]

on \(M \). Setting \(\alpha = 2 \) (which minimizes the right-hand side of (2.13)), the result holds.

Proof. Letting \(R \to \infty \) and \(t \to \infty \) in (2.5) one has

\[
\|\nabla u\|^2 u^2 \leq \frac{n\alpha^2(K + K_*)}{w} + \frac{\alpha^2 \gamma^2}{w(1 - w)},
\]

on \(M \). Setting \(\alpha = 2 \) (which minimizes the right-hand side of (2.13)), the result holds. \(\square \)

Remark 2.2. If \(u(x) \) is a positive \(C^\infty(M) \) solution of \(\Delta u(x) + (b(x)||\nabla u(x)|| \leq 0 \), and assuming that \(\text{Ric} \geq 0, \nabla b \leq 0 \) and \(||b|| \leq \gamma \), for some \(\gamma \geq 0 \), it follows from Corollary 2.1 above that

\[
\|\nabla u\|^2 u^2 \leq \frac{\gamma^2}{w(1 - w)},
\]

for any \(w \in (0, 1) \). Setting \(w = 1/2 \) (which minimizes the right-hand side of (2.14)) one obtains

\[
\|\nabla u\|^2 u^2 \leq 4\gamma^2.
\]

Remark 2.3. Let \(M = \mathbb{R} \) be the one-dimensional Euclidean space with its standard Riemannian metric. It is a complete Riemannian manifold without boundary and with Ricci curvature identically zero. In this setting consider the equation

\[
u''(x) + bu'(x) = 0,
\]

where \(b \) is a real constant. It is clear that \(u(x) = e^{-bx} \) is a positive \(C^\infty(\mathbb{R}) \) solution of (2.15), such that \(\frac{||\nabla u||^2}{u^2} = b^2 \). This case is contemplated by Corollary 2.1 with \(K = K_* = 0 \) and \(\gamma = |b| \), which establishes that \(\frac{||\nabla u||^2}{u^2} \leq 4b^2 \).
On the other hand, the equation
\begin{equation}
 u''(x) - (1 + e^x)u'(x) = 0
 \end{equation}
has the function \(u(x) = e^{e^x} \) as a positive \(C^\infty(\mathbb{R}) \) solution such that \(\|\nabla u\|^2 \) is unbounded. Note that the function \(b(x) = -(1 + e^x) \) satisfies \(b' \leq 0 \) and \(b \) is unbounded. Thus, we see that the assumption of the boundedness of \(\|b\| \) is needed for the kind of results obtained here.

References

[1] E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1957), 45–56. MR 19:1056\(e\)
[2] S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333–354. MR 52:6608
[3] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, UK, 1990. MR 92a:58255
[4] J.-D. Deuschel and D.W. Stroock, Large Deviations, Academic Press, Boston, 1989. MR 90h:60026
[5] J.-D. Deuschel and D.W. Stroock. Hypercontractivity and Spectral Gap of Symmetric Diffusions with Applications to the Stochastic Ising Models, J. Funct. Anal. 92 (1990), 30–48. MR 91j:58174
[6] J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal. 100 (1991), 233–256. MR 92k:58257
[7] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153–201. MR 87f:58156
[8] E.R. Negrin, Gradient estimates and a Liouville type theorem for the Schrödinger operator, J. Funct. Anal. 127 (1995), 198–203. MR 96a:58175
[9] A.G. Setti, Gaussian estimates for the heat kernel of the weighted Laplacian and fractal measures, Canad. J. Math. 44 (5) (1992), 1061–1078. MR 94f:58124
[10] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 55:4042

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 Canary Islands, Spain
E-mail address: bjoelz@ull.es
E-mail address: enegrin@ull.es