Constructing gene network for type 1 narcolepsy based on genome-wide association study and differential gene expression analysis (STROBE)

Hui Ouyang, MDa, Shiying Wang, BSb, Qiwen Zheng, MDc, Jun Zhang, PhDa,*

Abstract
Although many genes that affect narcolepsy risk have been identified, the interactions among these genes are still unclear. Moreover, there is a lack of research on the construction of the genetic network of narcolepsy. To screen candidate genes related to the onset of narcolepsy type 1, the function and distribution of important genes related to narcolepsy type 1 were studied and a gene network was constructed to study the pathogenesis of narcolepsy type 1.

A case-control study (observational study) of 1075 Chinese narcoleptic patients and 1997 controls was conducted. The gene-sequencing data was analyzed using genome-wide association analysis. The candidate genes related to narcolepsy were identified by differential gene expression analysis and literature research. Then, the 28 candidate genes were input into the KEGG database and 32 pathway data related to candidate genes were obtained. A gene network, with the pathways as links and the genes as nodes, was constructed. According to our results, TNF, MHC II, NFATC2, and CXCL8 were the top genes in the gene network.

TNF, MHC II, NFATC2, and CXCL8 are closely related to narcolepsy type I and require further study. By analyzing the pathways of disease-related genes and the network of gene interaction, we can provide an outline for the study of specific mechanisms of and treatments for narcolepsy.

Abbreviations: EDS = excessive daytime sleepiness, eQTL = expression Quantitative Trait Loci, FDR = false discovery rate, GEO = gene expression omnibus, GIf = genomic inflation factor, GWAS = Genome-wide association study, HORT = hypocretin, HWE = Hardy-Weinberg equilibrium, KEGG = Kyoto Encyclopedia of Genes and Genomes, MAF = Minor Allele Frequency, MHC II = major histocompatibility complex II, PCA = principle component analysis, Q-Q plot = quantile-quantile plot, REM = rapid eyes movement, SNP = single nucleotide polymorphism, TCR = T cell receptor alpha.

Keywords: gene, gene network, neurodegeneration, pathway, single nucleotide polymorphism

1. Introduction

1.1. The epidemiology and pathogenesis of narcolepsy
Narcolepsy is a life-long neurological disorder characterized by excessive daytime sleepiness (EDS), cataplexy, sleep paralysis, hallucinations, and disrupted nocturnal sleep. Epidemiological data show that the global incidence of narcolepsy is 0.03%. Narcolepsy displays a strong genetic predisposition: the incidence of narcolepsy among first-degree relatives of narcolepsy patients is 1% to 2%, 10 to 40 times that of the normal population, and 25% to 31% of identical twins are co-infected.

Several studies have found that the cerebrospinal fluid hypothalamic secretion, which plays an important role in promoting awakening, is lower in narcolepsy patients. Autopsy results have shown that 90% to 95% of hypothalamic-secretin-producing neurons were lost in some patients with narcolepsy, but the mechanism of neuron loss is still unclear. Recently, the genetic risk of narcolepsy is evaluated based on the carriage of HLA-DQβ1*06:02, an important but imperfect predictor of narcolepsy, since 10% to 40% of individuals in the unaffected population carry it as well. The correlation between influenza A (H1N1) epidemics and increased incidence of narcolepsy suggest that influenza-virus-induced autoimmunity is the possible route of pathogenesis for narcolepsy. However, no specific autoantibodies or T cells have been found to cross-react with hypocretin neurons, hence, the mechanisms of disease occurrence and development still need further study.

1.2. The Genes associated with narcolepsy
Gene-related studies of narcolepsy mainly use genome-wide association analysis and other pathological analyses. Genome-
wide association study (GWAS) is a method to identify disease or trait-related loci through genetic variation, mainly single nucleotide polymorphism (SNP), using the linkage disequilibrium principle. Many genes have been identified as narcolepsy risk factors in international SNP-based GWASs of narcolepsy type 1 across different ethnic groups. A Japanese team found that the CPT1B gene (carnitine palmitoyltransferase I) and the CHKB gene (choline kinase B), both involved in REM (rapid eye movement) regulation, are associated with narcolepsy type I. Subsequent genome-wide association analysis revealed that narcolepsy is highly associated with the TCR alpha (T cell receptor alpha chain) loci, which has been repeated in subsequent studies. The TCR alpha locus produces a unique protein in T lymphocytes and plays an important role in identifying antigens bound to HLA. A GWAS study in a Chinese population showed that PR2Y11, PPN, TRB, IL10RB, and ZN365 may predict susceptibility to narcolepsy. Among them, P2RY11 is highly expressed in cytotoxic T lymphocytes and plays a role in regulating cell migration, cytokine release, and apoptosis. Potential susceptibility genes identified by genome-wide association analysis include CTSH, TNFSF4, CCR1, CCR3, CLOCK, TEAD4, UBXN2B, EIF3C, and TNF alpha. In addition, studies combining GWAS with gene pathway information suggest that the genes CACNA1C, NFATC2, POLE, FAM3D, and SCP2 may be associated with narcolepsy.

Mutant gene research found that MOC1 and DNMT1 are associated with narcolepsy. DNMT1 is expressed in immune cells and plays a role in the differentiation of CD4+ T cells into regulatory T cells. Pathological studies have compared the concentration of molecules in cerebrospinal fluid and blood. In addition to the level of hypocretin (HCRT) mentioned above, the concentrations of BDNF, GFAP, TNF alpha, and CXCL8 were also significantly different. Differential gene expression studies have found that IGBP3 is associated with narcolepsy. However, although so many genetic risk factors for narcolepsy have been identified, the interactions among these genes are still unclear. Moreover, there is a lack of research on the construction of the genetic network of narcolepsy.

2. Materials and methods

2.1. Ethical approval

The research protocols were approved by the Institutional Review Board Panels on Medical Human Subjects at the Peking University People’s Hospital. The control group consisted of 1997 staff members and students from several universities.

2.1.1. Genome-wide association study

2.1.1.1. Study population. The study was conducted on 1,075 patients with narcolepsy type 1. The patients were recruited from the sleep laboratory at Peking University People’s Hospital. The narcolepsy patients were diagnosed according to the ICSD-3 diagnostic criteria. Cases were all Chinese, and most of them were of Han descent (95%). Clinical data included the presence or absence of cataplexy, sleepiness, sleep paralysis, hypnogogic hallucination, and disturbed nocturnal sleep. Trained interviewers used structured questionnaires to collect information on demographic variables, medical history, and medications. Informed consent (in accordance with governing institutions) was obtained from all subjects.

2.1.1.2. Quality control of the sample and data filtering. Quality control was conducted according to information from the 1075 narcolepsy patients. We excluded patients with narcolepsy type 2 and patients that were suspected to have errors in their input information. In total, 992 patients passed quality control and continued to the next phase of the study.

2.1.1.3. Genotyping and quality control. DNA samples were genotyped on the Affymetrix Axiom CHB array. Genotypes were called using the Affymetrix Genotyping Console. Imputation of 1000 Genomes project SNPS from this array using IMPUTE2 and the Phase I v2, cosmopolitan (integrated) reference panel, build 37, Individuals with call rate <99%, MAF (Minor Allele Frequency) <1%, HWE (Hardy-Weinberg equilibrium), P value <.001, or related were removed, leaving 903 cases and 1997 controls.

2.1.1.4. Population stratification analysis. Principal component analysis of the SNPs within linkage equilibrium (r2 < 0.25) was conducted using the PLINK software. Before obtaining the first 20 principal components, people in the cohort who did not cluster with their specified ancestral group (±6SD from the cluster mean on the first 2 principal components) were excluded. To further eliminate the possible impact of population stratification on the results of the association analysis, illness was used as a binary dependent variable to carry out logistic regression and find the principal components with significant differences between the disease group and the control group according to the methods described in the study by Price et al. In subsequent association studies, these principal components were included in the regression analysis as covariates to eliminate them, in order to eliminate the impact of population stratification.

2.1.1.5. Statistical analysis. We conducted the GWAS using the case-control study. Logistic regression was performed using PLINK software. Presence of narcolepsy was the dependent variable. Covariates included the sex of the individual and the first 3 principal components of the principal component analysis. The independent variable was the genotype of the SNP locus. In this study, the error false discovery rate method was used, hence the genome-wide significant P value threshold is \(P = 4.2 \times 10^{-5} \). Genome-wide association studies were performed using regression models using the R software. A Manhattan map and quantile-quantile plot were drawn, and the genomic inflation factor (GIF) was found. For the region containing multiple positive loci, a conditional regression analysis was conducted using the locus with the lowest P value to determine the number of loci associated with disease in the region. A map of the region showing genes and degrees of recombination was drawn using the LocusZoom.

2.1.2. Expression analysis of differential genes

2.1.2.1. Data source. The data were downloaded from the gene expression omnibus (GEO), and the gene expression data were collected from the genome-wide gene expression profile of the human narcolepsy project. The project used chips to collect gene expression data from the circulating lymphocyte mononuclear cells of 10 white narcolepsy patients matched by age and sex and 10 white, healthy controls.

2.1.2.2. Data processing and Statistical Analysis. The background correction, standardization, and logarithmic transforma-
tion of gene expression data were completed according to the original research of Akintomide et al.\[34\] The gene expression data from the circulating lymphocyte monocytes in the case group and control group were analyzed by ANOVA, and significant differences in gene expression between the 2 groups were compared with the threshold set at $P < .01$. The R software was used to cluster the samples and the significant difference genes, and the thermal map was drawn.

2.1.3. Construction of gene network

2.1.3.1. KEGG database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was established in 1995 by Kanehisa Laboratory of the Bioinformatics Center of Kyoto University, Japan.\[35\] The database provides basic information on genes, DNA sequence, chromosome location sequence, chromosome location, and more, as well as biological pathways.

2.1.3.2. Candidate genes. Candidates for gene network construction in this study come from 3 aspects:

1. Genes related to narcolepsy from literature review, which were partly obtained by genome-wide association analysis and partly from case studies;
2. Potential susceptibility genes identified by the genome-wide association analysis conducted in this study;
3. The first 20 genes with the lowest P value identified by the case-control differential gene expression study using public databases.

2.1.3.3. Pathway information arrangement. The KEGG database was used to retrieve candidate pathway information, analyze the gene pathway information, screen the pathway information for common pathways between genes, and eliminate the unrelated pathways.

2.1.3.4. Construction of the gene network. Pathways in accordance with biological logic were kept, and pathways with approximate functions were eliminated. Then, a gene network with pathways as links and genes as nodes was established.

Table 1

The basic and clinical information.	Male 616 (68.2%)	Female 287 (31.8%)
Ethnicity	Han 860 (95.2%)	Other ethnicities 5 (5.8%)
Native place	Northern 767 (87.2%)	Southern 116 (12.8%)
Age of onset	10.3 (7.52)	
The age of cataplexy	12.5 (8.78)	
Average sleep latency (min)	3.22 (2.19)	
REM sleep latency (min)	2.19 (1.66)	
Apnea and hypopnea index	2.48 (5.45)	

Figure 1. Manhattan plot of the results from the genome-wide association study.
Table 2
Significant SNPs after FDR correction.

CHR	SNP	Position	Locus	Allele	MAF	\(P \) value	OR	95%CI
1	rs7524853	116716281	T	0.497226	2.26E-05	0.768	0.6797–0.8677	
2	rs6723800	8544487	A	0.441279	3.61E-05	1.297	1.1470–1.4680	
2	rs6761161	180158510	A	0.062674	3.17E-05	1.658	1.3070–2.1050	
2	rs34071003	242773145	T	0.478624	3.78E-05	0.7782	0.6907–0.8768	
2	rs11925912	98354506	A	0.224419	6.10E-06	1.387	1.2040–1.5980	
3	rs58475214	98354662	G	0.225705	4.57E-06	1.393	1.2090–1.6060	
3	rs1439010	152546596	G	0.2807	4.03E-05	1.33	1.1610–1.5240	
4	rs6331842	6481781	C	0.258333	4.14E-05	1.33	1.1610–1.5240	
4	rs6628493	16165024	G	0.398432	1.47E-05	0.7535	0.6630–0.8564	
4	rs3908007	161659385	A	0.390739	3.54E-06	0.7397	0.6511–0.8475	
4	rs3846248	161662411	A	0.377342	6.93E-06	0.7457	0.6561–0.8475	
4	rs2581761	176641467	G	0.378819	2.80E-05	0.764	0.6736–0.8665	
4	rs624335	176643742	T	0.380196	1.76E-05	0.7584	0.6865–0.8605	
4	rs2715388	179408291	T	0.098472	3.57E-05	0.6303	0.5064–0.7845	
5	rs10462313	8223012	T	0.344576	2.97E-05	1.311	1.1540–1.4880	
5	rs10942340	83233019	G	0.412153	9.01E-05	1.322	1.1690–1.4960	
8	rs7615866	27369334	A	0.45248	3.34E-05	1.291	1.1440–1.4560	
8	rs10957264	63095899	T	0.390066	2.59E-05	0.7622	0.6716–0.8650	
10	rs10995245	64391375	A	0.306424	1.87E-05	1.329	1.1670–1.5140	
11	rs72933139	78795830	A	0.279673	3.51E-05	0.7513	0.6561–0.8603	
11	rs17137691	78803340	A	0.434866	3.57E-05	0.7725	0.6835–0.8731	
11	rs78882041	102390343	A	0.164873	1.36E-05	0.6593	0.5568–0.7807	
13	rs922831	40825362	A	0.302366	6.55E-06	1.346	1.1830–1.5310	
19	rs1561570	10218030	C	0.290752	1.61E-05	0.7466	0.6537–0.8526	

Figure 2. Quantile-Quantile plot.
3. Results

3.1. Genome-wide association analysis

3.1.1. The sample and clinical data. After a series of strict quality control measures were taken, 903 narcolepsy patients were included in the study. Table 1 shows their basic and clinical information.

3.1.2. The results of the principle component analysis. To avoid the impact of population stratification on the results, principle component analysis (PCA) was performed using genotype data from 237,955 SNP loci. Most of the cases were concentrated in the same region as the control group, showing that the genetic background of the case group matched that of the control group. Some sample points deviate from the group, indicating that some population stratification existed. Fifteen sample points that exceed the average + 6 SD (+0.114) were excluded. These 15 sample points belong to the control group. Therefore, 903 cases and 1982 controls were included in the final correlation analysis.

3.1.3. Manhattan Diagram and Q-Q. In the case-control study, the genotype of SNP loci in non-HLA segments of autosomal chromosomes was correlated with the incidence of disease. Figure 1 is a Manhattan chart showing the overall results of genome-wide association analysis. The genetic variants of 7 SNPs exceeded the threshold for genome-wide significance in this GWAS after Bonferroni correction, and the genetic variants of more SNPs reached the significant threshold after false discovery rate (FDR) correction. The locus with lead SNPs within the TRA gene were among the top signals.

Figure 2 shows the quantile-quantile plot (Q-Q plot) based on the P value of each SNP locus in the association analysis. The Q-Q plot is mainly used to show whether the observed values are significantly different from the predicted values. If the SNP loci are not related to disease, the P value obtained by analysis should accord with normal distribution, so the theoretical P value can be calculated. In the Q-Q plot, since most of the loci are not related to disease, the actual P value obtained is basically consistent with the theoretical P value, so most of the points in the plot are near
the 45° diagonal line. Only a few of the data points are significantly related to the disease, so the actual P value obtained is larger than the theoretical P value. In addition, the genomic inflation factor (GIF) can be calculated according to the P value of the correlation analysis. If the l value is too large, the population stratiﬁcation value is too large in the experimental sample, which has a great impact on the experimental results. In genome-wide association analysis, it is generally believed that when 1 < l < 1.05, the population structure is relatively small and within acceptable range. In this study, the genome dilator l value was 1.024. The Q-Q plot and l value showed that mixed factors such as population stratiﬁcation were well controlled in the association analysis.

The plot displays 903 individuals and 1982 controls. Single-nucleotide polymorphisms in black are in linkage disequilibrium with the index single-nucleotide polymorphisms and have a P value of less than .001. The abcissa represents the SNP loci on chromosome 1–22 in this study, and the longitudinal coordinate is –log 10(p). P is the P value of each SNP locus obtained from the correlation analysis. Larger values for –log 10(p) indicate a greater correlation between the SNP locus and the disease. The red line in the graph indicates the signiﬁcant P value threshold of 1 × 10−7 after Bonferroni correction, and the blue line indicates the signiﬁcant P value threshold of 4.2 × 10−5 after FDR correction.

After FDR correction and excluding the signiﬁcant TRA locus on chromosome 14, the information for the remaining 25 SNP loci is shown in Table 2. Some loci are located in non-coding regions. Due to the difﬁculty of determining which genes are associated with these loci according to the number of existing loci, this was not analyzed in the follow-up study. Located within the gene, the functions PPP2R2C, GPM6A, EPHX2, NKAIN3, ZNF365, TENM4, and PR2Y11 are related to narcolepsy. As

Table 3
The information of the selected gene.

Gene symbol	P.value	logFC	Gene title	Location
BRD8	.00127	−0.2624537	bromodomain containing 8	5q31
COPA	.00372	0.44129652	coatomer protein complex subunit alpha	1q23.2
TPP1	.00399	0.46648331	Trippeptidyl peptidase 1	11p15
IQCE	.004444	0.32950234	IQ motif containing E	7p22.3
ZNF652	.00479	0.4739675	Zinc ﬁnger protein 652	17q21.32
CD44	.006611	0.5359138	CD44 molecule (Indian blood group)	11p13
UTRN	.007086	0.35946283	utrophin	6q24
BPTF	.009146	0.50219388	bromodomain PHD ﬁnger transcription factor	17q24.3
WNK1	.00925	0.52634564	WNK lysine deﬁcient protein kinase 1	12p13.3
CHRNA7	.00935	−0.2205102	Cholinergic receptor nicotinic alpha 7 subunit	9q32
PTBP3	.00956	0.50601588	polyproline tract binding protein 3	9q32
GCHFR	.01088	−0.28114824	GTP cyclohydrolase 1 feedback regulator	15q15
ISG15	.01104	−0.03426395	ISG15 ubiquitin-like modiﬁer	1p36.33
ZBTB6	.011122	0.28264334	Zinc ﬁnger and BTB domain containing t	9p33.2
PCMI	.01151	0.38942700	Pericentriolar material 1	8p22-p21.3
MXD4	.01168	−0.19732429	MAX dimerization protein 4	4p16.3
ARL6IP4	.0117	−0.2092921	ADP ribosylation factor like GTPase 6 interacting protein 4	12q24.31
MZT2A	.01191	−0.41661053	Mitotic spindle organizing protein 2A	2p11.1
MARK4	.01217	0.201174318	Microtubule afﬁnity regulating kinase 4	19q13.3
SERTA03	.013	−0.27053666	SERTA domain containing 3	19q13.2

Log2 (FC): log2 (Fold Change), the logarithm based on two is used to express the expression of gene change.

Table 4
Summary of genes and sources.

Source of gene	Gene	Symbol	P.value	logFC	Gene title	Location
GWAS	TRA	PPP2R2C			EPHX2	
	NKAIN3	ZNF652			TENM4	
	BRD8	COPA			TPP1	
	ZNF652	CD44			UTRN	
	WNK1	CHRNA7			PTBP3	
	ISG15	MZT2A			MARK4	
Literature review	DNMT	HLA-DQB1			TNF	
	HCRT	TEAD4			BDFN	
	IGFBP3	CPT1B			L1OR8	
	UBXN2B	HLA-DQA2			CACNA1C	
	CCR3	NFATC2			CCR1	
	PAFAN	HCRTR2			HCRTR1	
	CTSH	TNFSF4			TRB	
	GFAP	CLOCK			EIF3G	

Log2 (FC): log2 (Fold Change), the logarithm based on two is used to express the expression of gene change.
these genes are potentially associated with narcolepsy, they will be incorporated into subsequent network construction.

3.2. Differential gene expression analysis

There were 168 genes in the differential gene expression analysis ($P < .01$). Thermal maps were drawn using these expression quantities (Fig. 3). The differences in gene expression between the control group and the case group are not noticeable in the figure. The most significant top 20 genes were selected for subsequent gene network construction. The selected gene information is shown in Table 3.

3.3. Construction of gene network

3.3.1. Pathway information collection

The candidates for gene network construction in this study come from 3 aspects:

1. Thirty two genes related to narcolepsy were sorted out in the literature review stage;
2. Eight potential susceptible genes were identified by genome-wide association analysis in this study;
3. Differential gene expression was carried out using a public database.

The top 20 most prominent genes were selected. A total of 60 genes were identified and included in the subsequent analysis, which is summarized in Table 4.

4. Discussion

4.1. Analysis of GWAS results

In this study, a GWAS was conducted on 2885 case-control samples. The healthy controls were university staff and students, which may not reflect the normal control population. In order to avoid the potential impact of population stratification on the...
results, a principle component analysis was used to verify that the genetic background of the case group matched that of the control group. There may be some false positive loci in the results. In subsequent studies, it would be beneficial to use other datasets or carry out experimental analysis to test the loci, so as to increase the reliability of the results. Some SNPs located in non-gene-coding regions were also found in GWAS research. It is difficult to identify the functions of these regulatory genes. In the follow-up study, we may consider using eQTL (expression Quantitative Trait Loci) analysis, introducing gene expression data from different tissues, and establishing the relationship between gene expression and SNP loci in order to learn which genes are regulated by the SNPs of the non-gene-coding regions found in this study.

4.2. Biological significance of the gene network map

The gene network map is based on MHC II (major histocompatibility complex II) and TNF genes. The pathways involved include immune-related viral infections, antigen-presentation-related viral infections, antigen-presentation-related T cell signaling pathways, lectin receptor cytokine interaction, and a series of other pathways. Pathway types include dopamine synapses, cholinergic synapses, and ligand-receptor interactions with neurotransmitters associated with the nervous system. Existing evidence shows that narcolepsy type I may be caused by an autoimmune response in which hypothalamic secretin neurons are attacked. However, no antibodies or T cells corresponding to this process have been found, and the presence of the blood-brain barrier prevents antibodies from easily contacting the brain, so the specifics of pathogenesis are not clear. In this study, the genes associated with narcolepsy type I were linked by gene pathways, and the gene network map was drawn accordingly. Linkage between the nervous and immune systems was highlighted, which brought to light potential pathogenesis pathways for narcolepsy and provided a reference for studying its mechanisms and treatment methods.

4.3. Limitations

This study encountered several limitations. Only gene expression data from European patients were included, since the genetic
variation underlying narcolepsy may differ across different ethnicities. Future studies with Asian narcoleptic patients will be possible when the necessary data are available. Another limitation of the study was that the healthy controls were university staff and students, rather than a completely random sample. In order to avoid bias, principal component analysis was carried out in this study. The results showed that the genetic background of the case group and the control group matched. Additionally, there may be some false positive loci in the results. In the follow-up study, different datasets may be used or experimental analysis to test the loci may be carried out, so as to increase the reliability of the results.

Acknowledgments
We thank Dr Fang Han, Prof. Yiqun Wu and Prof. Dafang Chen for their valuable contributions.

Author contributions
Study design: Jun Zhang, Hui Ouyang and Jun Zhang. Data analysis and interpretation: Shiyi Wang and Qiwen Zheng. Paper writing: Hui Ouyang. All authors approved the final version of the paper.

References
[1] Dauvilliers Y, Arnulf I, Mignot E. Narcolepsy with cataplexy. Lancet 2007;369:499–511.
[2] Longstreth WT Jr, Koepell TD, Ton TG, et al. The epidemiology of narcolepsy. Sleep 2007;30:13–26.
[3] Nishino S, Okura M, Mignot E. Narcolepsy: genetic predisposition and neuropharmacological mechanisms. Review article. Sleep Med Rev 2000;4:57–99.
[4] Mignot E. Genetic and familial aspects of narcolepsy. Neurology 1998;50(Suppl 1):S16–22.
[5] Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000;6:991–7.
[6] Nishino S, Kiyoshi H, Okura M, et al. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000;355:39–40.
[7] Mignot E, Lin L, Rogers W, et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet 2001;68:686–99.
[8] Han F, Lin L, Schormair B, et al. HLA DQB106:02 negative narcolepsy with hypocretin/orexin deficiency. Sleep 2014;37:1601–8. doi:10.5665/sleep.4066.
[9] Yamasaki M, Miyagawa T, Tosey H, et al. Evaluation of polygenic risks for narcolepsy and essential hypsomnia. J Hum Genet 2016;61:873–8.
[10] Ahmed SS, Schur PH, MacDonald NE, et al. Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants. J Autoimmun 2014;50:1–1.
[11] Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993;14:426–30.
[12] Miyagawa T, Kawashima M, Ishida N, et al. Variant between CPT1B and CHK2 associated with susceptibility to narcolepsy. Nat Genet 2008;40:1324–8.
[13] Hallmayer J, Faraco J, Lin L, et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 2009;41:708–11.
[14] Hor H, Kutikal Z, Dauvilliers Y, et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet 2010;42:786–9.
[15] Han F, Faraco J, Dong XS, et al. Genome-wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet 2013;9:e1003880.
[16] Junger WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 2011;11:201–12.
[17] Faraco J, Lin L, Kornum BR, et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet 2013;9:e1003270.
[18] Toyoda H, Miyagawa T, Knize A, et al. A polymorphism in CCR1/CCR3 is associated with narcolepsy. Brain Behav Immun 2015;49:148–55.
[19] Moreira F, Pedrazzoli M, Dos Santos Coelho FM, et al. Clock gene polymorphisms and narcolepsy in positive and negative HLA-DQB106:02 patients. Brain Res Mol Brain Res 2005;140:15–4.
[20] Luca G, Haba-Rubio J, Dauvilliers Y, et al. Clinical, polysonomographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. J Sleep Res 2013;22:482–95. doi:10.1111/j.1365-2869.2013.01275.x.
[21] Holm A, Lin L, Faraco J, et al. EBE3G is associated with narcolepsy across ethnicities. Eur J Hum Genet 2012;20:1573–80.
[22] Shimada M, Miyagawa T, Kawashima M, et al. An approach based on a genome-wide association study reveals candidate loci for narcolepsy. Hum Genet 2010;128:433–41.
[23] Hor H, Barresagli L, Kutikal Z, et al. A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am J Hum Genet 2011;89:474–9.
[24] Winkelmann J, Lin L, Schormair B, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 2012;21:2205–10. doi:10.1093/hmg/dds035.
[25] Klein AB, Jennum P, Knudsen S, et al. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy. Neurosci Lett 2013;544:31–5.
[26] Feneberg E, Steinacker P, Lehnert S, et al. Elevated glial fibrillary acidic protein levels in the cerebrospinal fluid of patients with narcolepsy. Sleep Med 2013;14:692–4.
[27] Tanaka S, Honda M, Toyoda H, et al. Increased plasma IL-6, IL-8, TNF-alpha, and G-CSF in Japanese narcolepsy. Hum Immunol 2014;75:940–4.
[28] Honda M, Eriksson KS, Zhang S, et al. IGFBP3 colocalizes with and regulates hypocretin (orexin). PLoS One 2009;4:e10425.
[29] Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009;5:e1000529.
[30] Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis provides stratification correction for stratiﬁcation in genome-wide association studies. Nat Genet 2006;38:904–9.
[31] Benjamini YHY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. R Stat Soc Ser 1995; 289–300.
[32] Yang J, Weedon MN, Purcell S, et al. Genomic inﬂation factors under polygenic inheritance. Eur J Hum Genet 2011;19:807–12.
[33] Prum RJ, Welch RP, Sanna S, et al. Locus Zoom: regional visualization of genome-wide association scan results. Bioinformatics 2010;26:2336–7.
[34] Bernardini C, Lattanza W, Bosco P, et al. Genome-wide gene expression proﬁling of human narcolepsy. Gene Expr 2012;15:171–81.
[35] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30.