Improved prescription of taohechengqi-tang alleviates D-galactosamine acute liver failure in rats

Yang Zhang, Jian-Xing Luo, Xiao-Yu Hu, Fang Yang, Sen Zhong, Wu Lin

AIM: To investigate the hepatoprotective effect of improved prescription of Taohechengqi-tang (IPTT) against acute liver failure (ALF) in rats.

METHODS: Seventy specific pathogen free male Wistar rats were randomly divided into four groups: control group (normal rats, n = 10), ALF group (ALF model, n = 20), Stronger Neo-Minophagen C (SNMC) group (ALF model + SNMC, n = 20), and IPTT group (ALF model + IPTT, n = 20). The ALF model group was administered an intraperitoneal injection of D-galactosamine (1.4 g/kg), and the control group received normal saline intraperitoneally. The SNMC and IPTT groups were treated with SMMC (15.6 mg/kg) or IPTT (28.6 g/kg) by gavage at 24 h intervals, and the ALF and control groups were treated with normal saline. At 36 h after injection, serum alanine aminotransferase, aspartate aminotransferase, total bilirubin, albumin, and cholinesterase and prothrombin...
Acute liver failure (ALF) is a life-threatening condition. It is accompanied by an intense inflammatory response, resulting in massive hepatocyte necrosis and fatal multiorgan failure[1]. Hospital mortality from ALF was as high as 83% in 1973-1978, dropping to 38% in 2004-2008[2]. The only treatment option shown to improve radically the outcome of LF is emergency liver transplantation (LT)[3]. Nevertheless, due to a lack of donated livers, nontransplanted mortality in ALF was >20% with a waiting time of up to 6 wk[4]. In addition, the complex pathophysiological mechanisms of LT need further study.

According to traditional Chinese medicine (TCM), the syndrome of heat toxin stagnation is a major pattern of LF[5]. The incidence of the pattern was reported to be 58.6% in an epidemiological investigation from China[6]. Taohenchengqi-tang (TT) is a well-known traditional Chinese herbal formulation, documented in Shang Han Za Bing Lun (a book of TCM on febrile and miscellaneous diseases in the Han Dynasty, AD 200-210). Based on TCR theory, TT is a classic formulation for clearing heat and resolving stasis and is used for treating not only diabetes mellitus[7] but also liver diseases. A recent study indicated that TT protected against chemically induced liver injury, at least partially through an antioxidant-like mechanism[8].

In our prospective cohort study, high doses of herbs for clearing heat and resolving stasis had a significant protective effect against LF[9]. However, the curative mechanism is still unclear. The present study was performed to investigate the effect of improved prescription of Taohenchengqi-tang (IPTT) in ALF rats and its underlying mechanisms.

MATERIALS AND METHODS

Chemicals
D-galactosamine (D-GaIN) was obtained from Hongbang Medical Technology Co. Ltd. (Shanghai, China). Stronger Neo-Minophagen C (SNMC) was purchased from Minophagen Pharmaceutical Co. Ltd. (Tokyo, Japan) and prepared at a concentration of 1.56 mg/mL with distilled water.

Preparation of IPTT
IPTT consists of seven types of TCM ingredients (herbal plants and animal-based materials) (Table 1). All TCMs were purchased from Sichuan Chinese Herbs Co. Ltd. (Chengdu, China) and validated by Prof. Zhu-Yun Yan (Chengdu University of Traditional Chinese Medicine, China). All indicators of the above-mentioned TCMs were in line with the standards of the Chinese Pharmacopoeia (2010). Voucher specimens were deposited at the Affiliated Hospital of Chengdu University of Traditional Chinese Medicine (Chengdu, China).
Table 1 Herbal prescription of improved prescription of Taohechengqi-tang

Chinese name	Latin name	Origin	Amount in preparation (g)
Chi-shao	Radix paeoniae rubra	Sichuan	
Taor-ren	Semen persicae	Hubei	
Hong-hua	Flos carthami	Sichuan	
Shui-zhi	Hirudo	Sichuan	
Quan-xie	Scorpio	Henan	
Mung-xiao	Natrii sulfas	Sichuan	
Da-huang	Radix et rhizoma rhei palmati	Sichuan	

China).

The extraction process of IPTT was as follows: *Radix paeoniae rubra* 100 g, *Semen persicae* 50 g, *Flos carthami* 50 g, *Hirudo* 15 g, *Scorpio* 10 g, *Natrii sulfas* 10 g, and *Radix et rhizoma rhei palmati* 30 g were added in 1.5 volumes of water, soaked for 30 min, and decocted three times for 20, 25, and 30 min, respectively. The decoction was mixed and concentrated to 2.86 g/mL (1 mL extract contained 2.86 g herbal mixture).

Animals and treatments

Male specific pathogen free Wistar rats weighing 150 ± 20 g were obtained from Shanghai Experimental Animal Co. Ltd. (Shanghai, China) and housed in the laboratory animal center at our university. Seventy Sprague-Dawley rats were randomly divided into four groups: control group (*n* = 10 rats), model group (*n* = 20), SNMC group (*n* = 20), and IPTT group (*n* = 20). For the SNMC group, rats were treated with SNMC 15.6 mg/kg daily by gavage. For the IPTT group, rats were treated with IPTT 28.6 g/kg per day by gavage. The dosages used in rats were calculated from the formula: \(\text{Dose}_\text{rat} = \text{Dose}_\text{human} \times \left(\frac{\text{body weight}_\text{human}}{\text{body weight}_\text{rat}}\right) \times \frac{2}{3}\). The translational coefficient 0.625 was used in this formula. The dose used in humans was converted to that used in rats through the translational coefficient. For the control and model groups, rats were treated with saline 10 mL/kg per day by gavage. All rats were treated by gavage for 3 d before induction of ALF, once daily, for a total of 5 d.

For the preparation of rats with D-GalN-induced ALF, rats were administered an intraperitoneal injection of D-GalN (1.4 g/kg). The control group was given intraperitoneally the same dose of saline. Thirty-six hours later, all rats were sacrificed. Blood samples (6 mL) were collected via the femoral artery, centrifuged at 3000 rpm for 10 min, and the sera were kept at -70 °C for detection of biochemical parameters. The livers were rapidly removed, and tissues were removed from the left lobes, fixed in 10% neutral formalin, and retained for further analyses, including hematoxylin and eosin (HE) staining, fluorescence quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and proliferating cell nuclear antigen (PCNA) immunohistochemistry assay.

Biochemistry

Serum biochemical parameters closely associated with liver function, including mainly alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), albumin (ALB), cholinesterase (CHE), and prothrombin time (PT), were determined according to the manufacturers’ instructions.

Histopathological scores

Liver tissues obtained from each rat were fixed, embedded in paraffin, and cut into 3-5 mm sections. HE staining was used to evaluate the degree of hepatocyte necrosis. Microscopic injuries were graded according to a semiquantitative scoring system on a scale of 0 to 4 (0 = no discernable necrosis, 1 = bridging necrosis, 2 = confluent necrosis, 3 = submassive necrosis, and 4 = massive necrosis). In order to minimize bias, each slide was read by three pathologists in a blinded manner and observed three times.

Fluorescence qRT-PCR

mRNA expression of high mobility group box 1 (HMGB1), toll-like receptor (TLR) 4, nuclear factor kappa B (NF-κB) and caspase-3 were analyzed via qRT-PCR and the 2^{-ΔΔCT} method. In accordance with the manufacturer's protocol (Invitrogen, Carlsbad, CA, United States), total RNAs were extracted from pulverized liver tissues with TRIzol reagent, then reverse-transcribed into cDNA by the ABI Step-One Plus Real Time PCR System (Applied Biosystems, Foster City, CA, United States). For HMGB1, the 5’ primer sequence was 5’ TGTTCTGAGTACCCGCAAAA3’, and the 3’ primer sequence was 5’TTTCGCTGCACTAGGTTTTC3’. For TLR4, the 5’ primer sequence was 5’ CCAGGAAGGCTTCCACAAGA3’, and the 3’ primer sequence was 5’AATTTCGACCTGCTGCCTCAG3’. For NF-κB, the 5’ primer sequence was 5’ GCACAGGGCTCTTTTCTCAA3’, and the 3’ primer sequence was 5’CGTGTTCCTCATCCGGTG3’. For caspase-3, the 5’ primer sequence was 5’ ACCGATGTCGATGCAGCTAA3’, and the 3’ primer sequence was 5’TTTCGCTGCACTAGGTTTTC3’. For PCNA, the 5’ primer sequence was 5’ATGAGGCCCTCTTTCACAGTTTA3’, and the 3’ primer sequence was 5’ATGAGGCCCTCTTTCACAGTTTA3’.

PCNA immunohistochemistry

PCNA staining of the formalin-fixed and paraffin-embedded liver tissues was performed with an immunohistochemistry kit purchased from Boster Bioengineering Co. Ltd. (Wuhan, China). The number of PCNA-positive cells was counted in five random fields at 40 × magnification for each section. An average of the percentage of PCNA-positive cells was taken over these fields. Sections were examined...
SNMC groups, especially the IPTT group. Histopathological scores

The histopathological results are shown in Table 2 and Figure 1. Light microscopy revealed no liver necrosis in the control group, but massive hepatocyte necrosis was observed in rats treated with D-GalN. Compared to the model group, necrosis was markedly reduced in the IPTT and SNMC groups, and IPTT had a more significant impact.

mRNA expression

mRNA expression was observed as shown in Table 3. Compared to the model group, mRNA expression of HMGB1, TLR4, NF-κB, and caspase-3 were markedly reduced in the control, IPTT, and SNMC groups. Moreover, IPTT was found to have a more significant impact than SNMC.

PCNA immunohistochemistry

Table 3 and Figure 2 show that the mean PCNA-expression was significantly increased in the model group compared to the control group. IPTT and SNMC significantly reduced PCNA expression compared to the model group.

Table 2 Biochemistry and histopathology

Group	n	ALT (U/L)	AST (U/L)	TBIL (μmol/L)	ALB (g/L)	CHE (U/L)	PT (s)	Histopathological scores
Control	10	35.15 ± 6.01	151.61 ± 20.87	1.55 ± 0.43	35.25 ± 4.19	557.40 ± 43.23	13.60 ± 1.73	0
Model	20	441.10 ± 60.36	887.80 ± 128.47	38.04 ± 6.84	23.67 ± 3.21	343.92 ± 68.93	31.80 ± 5.02	3.69 ± 0.38
SNMC	20	267.18 ± 41.45	380.49 ± 55.38	24.37 ± 4.03	26.65 ± 4.50	378.50 ± 83.53	29.93 ± 3.83	2.78 ± 0.31
IPTT	20	127.45 ± 25.33	264.04 ± 63.42	19.37 ± 3.26	30.22 ± 4.30	488.61 ± 76.41	23.78 ± 4.34	2.06 ± 0.40

*p < 0.05 vs control group; **p < 0.05 vs group; and ***p < 0.05 vs SNMC group. Control group: Negative control group; Model group: Injected with D-GalN; SNMC group: Injected with D-GalN and treated with SNMC; IPTT group: Injected with D-GalN and treated with modified Taohechengqi-tang.

RESULTS

Biochemical profile in serum

The serum parameters are summarized in Table 2. D-GalN significantly increased serum ALT, AST, TBIL, and PT, while it decreased serum ALB and CHE. The effects were significantly reversed in the IPTT and SNMC groups, especially the IPTT group.

Histopathological scores

The histopathological results are shown in Table 2 and Figure 1. Light microscopy revealed no liver necrosis in the control group, but massive hepatocyte necrosis was observed in rats treated with D-GalN. Compared to the model group, necrosis was markedly reduced in the IPTT and SNMC groups, and IPTT had a more significant impact.

mRNA expression

mRNA expression was observed as shown in Table 3. Compared to the model group, mRNA expression of HMGB1, TLR4, NF-κB, and caspase-3 were markedly reduced in the control, IPTT, and SNMC groups. Moreover, IPTT was found to have a more significant impact than SNMC.

PCNA immunohistochemistry

Table 3 and Figure 2 show that the mean PCNA-expression was significantly increased in the model group compared to the control group. IPTT and SNMC significantly reduced PCNA expression compared to the model group.
positive rates were significantly higher in the model, IPTT, and SNMC groups than in the control group. The PCNA-positive rate in the IPTT group was highest among the three groups.

DISCUSSION

In our study, IPTT not only remarkably improved the biochemical and coagulation profiles in serum, but it also reduced histopathological scores in ALF induced by D-GalN.

Inflammation plays a central role in the development of ALF. The net loss of hepatocytes mainly contributes to overwhelming injury with subsequent cell death rather than a lack of regeneration[13,14]. Similar to severe acute pancreatitis and sepsis, ALF initially starts with a systemic inflammatory response syndrome (SIRS phase) and is followed by a compensatory anti-inflammatory response syndrome[15,16]. There is an imbalance in both the pro- and anti-inflammatory systems, leading to immune-inflammatory dysregulation[17]. The SIRS in ALF, whether or not precipitated by infection, is characterized by prolonged hypercytokinemia, which is associated with the systemic complications (e.g., encephalopathy, infection, and renal failure) and poor outcome[18-20].

Overactivation of the TLR4/NF-κB pathway is correlated with these pathological events in ALF. TLR4 is a member of the TLR family recognizing pathogen-associated molecular patterns[21]. One of its ligands is bacterial lipopolysaccharide (LPS)[22]. Once TLR4 recognizes LPS or LPS-CD14 complex, macrophages and dendritic cells are activated to present antigen to helper T cells. Furthermore, upregulated TLR4 signaling activates NF-κB via a MyD88-dependent pathway and/or MyD88-independent pathway. NF-κB is a downstream intracellular molecule of different receptors and induces the release of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6[23-25]. TNF-α, the core of the cytokine network, still plays an important role in the development of hepatocyte apoptosis. The binding of TNF-α to the TNF receptor 1 triggers the apoptotic cascade mediated by proapoptotic Bcl-2 family

Table 3 mRNA expression and proliferating cell nuclear antigen immunohistochemistry

Group	n	HMGB1	TLR4	NF-κB	Caspase-3	PCNA (%)
Control	10	0.01 ± 0.01	0.04 ± 0.02	0.49 ± 0.25	1.36 ± 0.26	7.48 ± 0.90
Model	20	0.25 ± 0.04	0.41 ± 0.22	2.68 ± 1.35	3.41 ± 0.85	17.55 ± 2.40
SNMC	20	0.11 ± 0.04	0.22 ± 0.08	1.78 ± 0.64	2.57 ± 1.04	25.57 ± 2.94
IPTT	20	0.06 ± 0.03	0.07 ± 0.02	0.74 ± 0.41	1.61 ± 0.45	36.34 ± 4.91

aP < 0.05 vs control group; bP < 0.05 vs model group; and cP < 0.05 vs SNMC group. HMGB: High mobility group box; TLR: Toll-like receptor; NF: Nuclear factor; PCNA: Proliferating cell nuclear antigen; Control group: Negative control group; Model group: Injected with D-GalN; SNMC group: Injected with D-GalN and treated with SNMC.
proteins26,27.

HMGB1 is a nuclear protein with cytokine-type functions that is passively released during necrosis or actively secreted during immune cell activation28. There are many receptors, including the receptor for advanced glycation endproducts, TLR2, TLR4, and TLR929, to which HMGB1 can bind. TLR4 is the critical receptor mediating the inflammatory activity of HMGB130,31. Once the HMGB1/TLR4/NF-κB pathway is activated, overexpression of TNF-α induces hepatocyte necrosis and activates the TNF-α-mediated extrinsic apoptotic pathway32. Our results support the anti-inflammatory and antiapoptotic effects of IPTT, as the liver expression of HMGB1, TLR4, NF-κB, and caspase-3 was significantly reduced in ALF rats. Moreover, IPTT improved hepatocyte regeneration.

Acute liver injury may recover via the process of hepaticocyte regeneration once the injury is discontinued. After massive liver injury, the capacity of hepatocyte proliferation was not lost, only severely suppressed33. In a recent study, HMGB1 was reported to impair hepatocyte regeneration after acetaminophen overdose, and blockade of HMGB1 enhanced liver recovery34,35. Our results showed that severe liver damage limited hepatocyte regeneration. However, the hepatoprotective effect of IPTT might contribute to liver regeneration. Furthermore, IPTT may be sensitive to the stimulation of growth factors, such as HGF and transforming growth factor (TGF) α, and progress into the cell cycle for replication36.

IPTT has been used for a long time in the Affiliated Hospital of Chengdu University of Traditional Chinese Medicine37 and is composed of seven different types of TC\textregistered. Among them, Radix paeoniae rubra was effective in attenuating hepatocyte apoptosis, and this effect was partly mediated through the activation of the mitochondrial pathway and subsequent regulation of expression of particular proapoptotic genes38. Semen persicae protected against cisplatin-induced hepatotoxicity by reducing cisplatin-induced oxidative stress39. Flos carthami protected the liver from long-term alcohol injury, which was related to enhanced antioxidant capacity and inhibition of TGF-β1 expression40. Radix et rhizoma rhei palmate promoted bioavailability and liver protective effects and prevented and treated hepatic encephalopathy in rats with thioacetamide-induced ALF40,41. IPTT combined these Chinese herbal medicines following the principle of clearing heat and resolving stasis. Our data suggested that IPTT protected against ALF through its anti-inflammatory, antiapoptotic, and regeneration promoting effects. It provided evidence for clinical application of Chinese herbs for clearing heat and resolving stasis.

In conclusion, IPTT attenuates inflammatory reaction of ALF in rats via inhibition of HMGB1 production, which may contribute to recovery of limited liver regeneration.

ACKNOWLEDGMENTS
The authors would like to thank the members of the Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, and the Animal Care and Scientific Committee of Chengdu University of Traditional Chinese Medicine for their technical support.

COMMENTS

Background
Acute liver failure (ALF) is a severe clinical syndrome with high mortality. In previous studies, Chinese herbal medicine has been shown to improve the outcome of LF. Nevertheless, pharmacological research of Chinese medicine is still lacking.

Research frontiers
A systemic inflammatory response syndrome in ALF is characterized by prolonged hypercytokinemia, which is associated with the systemic complications and poor outcome. The high mobility group box (HMGB1)/Toll-like receptor 4/nuclear factor-κB pathway has been the recent research focus in inflammation.

Innovations and breakthroughs
The present study demonstrates that improved prescription of Taohechengqi-tang (IPTT) attenuated the inflammatory reaction of ALF. One of the mechanisms is likely related to inhibition of HMGB1 production, which contributes to recovery of liver regeneration.

Applications
The data from this study provide a rational basis for IPTT for treatment of LF in clinical practice. It also provides evidence for clinical application of Chinese herbs for clearing heat and resolving stasis.

Terminology
ALF is a clinical syndrome in which abrupt onset, manifesting as jaundice and coagulopathy, is complicated within 2 wk by grade II + encephalopathy in a patient with undiagnosed chronic liver disease.

Peer-review
The experiments appear to be well conducted and the conclusions drawn are justified. The manuscript has novelty and significance.

REFERENCES

1 Organization Committee of 13th Asia-Pacific Congress of Clinical Microbiology and Infection. 13th Asia-Pacific Congress of Clinical Microbiology and Infection Consensus Guidelines for diagnosis and treatment of liver failure. *Hepatobiliary Pancreat Dis Int* 2013; 12: 346-354 [PMID: 23924491 DOI: 10.1016/S1499-3872(13)60055-7]

2 Bernal W, Hyyrylainen A, Gera A, Audimoolam VK, McPhail MJ, Auzinger G, Rela M, Heaton N, O’Grady JG, Wendon J, Williams R. Lessons from look-back in acute liver failure? A single centre experience of 3300 patients. *J Hepatol* 2013; 59: 74-80 [PMID: 23439263 DOI: 10.1016/j.jhep.2013.02.010]

3 Ostapowicz G, Fontana RJ, Schiädt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. *Ann Intern Med* 2002; 137: 947-954 [PMID: 12484709 DOI: 10.7326/0003-4819-137-12-200212170-00007]
cellular carcinoma development in liver cirrhosis. *Mol Pathol* 1998; 51: 96-101 [PMID: 9713593 DOI: 10.1136/mp.51.2.96]

34 Yang R, Zhang S, Cotoia A, Oksala N, Zhu S, Tenhunen J. High mobility group B1 impairs hepatocyte regeneration in acetaminophen hepatotoxicity. *BMC Gastroenterol* 2012; 12: 45 [PMID: 22569100 DOI: 10.1186/1471-230X-12-45]

35 Cataldegirmen G, Zeng S, Feirt N, Ippagunta N, Dun H, Qu W, Lu Y, Rong LL, Hofmann MA, Kislinger T, Pachyddai SI, Jenkins DG, Weinberg A, Lefkowitch J, Rogiers X, Yan SF, Schmidt AM, Emond JC. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-alpha and NF-kappab. *J Exp Med* 2005; 201: 473-484 [PMID: 15699076 DOI: 10.1084/jem.20040934]

36 Jia C. Advances in the regulation of liver regeneration. *Expert Rev Gastroenterol Hepatol* 2011; 5: 105-121 [PMID: 21309676 DOI: 10.1586/egh.10.87]

37 Jiang ZQ, Yan XJ, Bi L, Chen JP, Zhou Q, Chen WP. Mechanism for hepato-protective action of Liangxue Huayu Recipe (LHR): blockade of mitochondrial cytochrome c release and caspase activation. *J Ethnopharmacol* 2013; 148: 851-860 [PMID: 23711831 DOI: 10.1016/j.jep.2013.05.024]

38 Lee CK, Park KK, Hwang JK, Lee SK, Chung WY. The pericarp extract of Prunus persica attenuates chemotherapy-induced acute nephrotoxicity and hepatotoxicity in mice. *J Med Food* 2008; 11: 302-306 [PMID: 18598173 DOI: 10.1089/jmf.2007.545]

39 He Y, Liu Q, Li Y, Yang X, Wang W, Li T, Zhang W, Cui Y, Wang C, Lin R. Protective effects of hydroxysafflor yellow A (HSYA) on alcohol-induced liver injury in rats. *J Physiol Biochem* 2015; 71: 69-78 [PMID: 25626885 DOI: 10.1007/s13105-015-0382-3]

40 Yang CH, Ting WJ, Shen CY, Hsu HH, Lin YM, Kuo CH, Tsai FJ, Tsai CH, Tsai Y, Huang CY. Anti-apoptotic effect of San Huang Shel Shin Tang cyclodextrin complex (SHSSTc) on CCl4-induced hepatotoxicity in rats. *Environ Toxicol* 2014; Epub ahead of print [PMID: 25447754 DOI: 10.1002/tox.22078]

41 Zhang Q, Cheng H, Wang C, Zhang C, Wang J. [Preventive and therapeutic effects of extract from Rheum palmatum on hepatic encephalopathy in rats with acute liver failure]. *Zhong Yao Cai* 2002; 25: 573-575 [PMID: 12599696]

- Reviewer: Kuan YH
- Editor: Ma YJ
- E-Editor: Ma S
