Purpose: The study aimed to evaluate the effect of planting time and genotypes on seed yield, quality parameters, and economics in safflower. The research was conducted in a split-plot design, with main plots consisting of three sowing dates (D1: 1-10-2015, D2: 15-10-2015, D3: 31-10-2015) and subplots comprising three genotypes (G1-A1, G2-NARI-6, G3-NARI-57). The experiment was carried out at the Agricultural Research Station, Annigeri, University of Agricultural Sciences, Dharwad during the rabi season of 2015-16, under rainfed conditions.

Results: The highest seed yield (946 kg ha⁻¹) was observed in the first sowing date, significantly higher than the third sowing date (783 kg ha⁻¹). Among the genotypes, Annigeri-1 recorded the highest yield (1033 kg ha⁻¹), significantly higher than the other two genotypes (NARI-6: 799 kg ha⁻¹ and NARI-57: 825 kg ha⁻¹). There was no significant difference in oil content and oil yield among different sowing dates. However, among the genotypes, NARI-6 recorded the highest oil content (34.41%) compared to Annigeri-1 (28.83%).

Keywords: Oil content, Annigeri-1, Safflower, Economics

Introduction: Safflower growth and productivity are influenced by many factors such as genotype, environment, and agronomic practices. It is mainly grown in semi-arid regions for use as vegetable and industrial oil. Safflower is a crop species well adapted to dry and salty land conditions, as it is a strongly tap-rooted annual plant resistant to saline conditions, drought stress, and can reach deep-lying water (1, 13). Low production costs and low water and nutrient need appeal to farmers as an alternative to other crops.

However, safflower yields are generally lower than the yield of other oilseed crops (4, 5, 10). The importance of safflower as oilseed crop has increased in recent years, especially with...
the increasing interest in the production of biofuels. Safflower, in general, performs better when it succeeds a short duration legumes like mungbean, blackgram and groundnut (during kharif) than cereal crops like sorghum and maize due to favourable moisture regimes and residual fertility.

Hence, it offers an excellent opportunity for doubling the existing level of cropping intensity and there by steps up returns from rainfed, farming in many conventional monos cropped areas. Growing of groundnut during kharif and safflower during rabi season in sequence in areas where the rainfall is fairly well distributed from June to October found advantageous under suitable nutrient management practices. Safflower oil preferred for its higher poly unsaturated acid (78% linoleic acid) which reduces blood cholesterol level (3).

Currently, sufficient data on safflower production management is lacking. Therefore, the key objectives of the present study were to determine the effect of planting time and genotypes to optimize seed yield and quality parameters for the production of the safflower.

Materials and Methods

A field experiment was conducted at Agriculture Research Station, Annigeri (15° 8’ N, 75° 7” E and 624.8m amsl), University of Agricultural Sciences, Dharwad as part of All-India Coordinated Research Project on Safflower during rabi seasons of 2015-16 under rainfed condition.

The soil is clayey in texture (Vertisol) with pH of 7.95, bulk density of 1.27 dS/m and available N:P:K of 224, 21 and 342 kg per ha. The experiment included two factors; three varieties and three sowing periods laid out in split-plot design with three replications. First sowing was done on 1st October 2015, but second and third sowing were taken up at 15 days interval after first and second sowing, respectively (7, 8).

Results and Discussion

100 seed weight (g)

Among the date of sowing, significantly higher 100 seed weight (4.56 g) recorded is 1st October, 2015 sowing as compared to other two date of sowing, with respect to genotypes, significantly higher 100 seed weight (5.29 g) recorded in 1st October, 2015 sowing as compared to other two date of sowing (2). Interaction between DAS and genotypes did not any significant difference (Table 1).

Seed yield (kg/ha)

Among the date of sowings, however, the crop sown during first fortnight of October (1-15 Oct.) recorded significantly higher seed yield (937 kg/ha) as compared with latter sowing dates. Among the safflower cultivars, significantly the highest seed yield was recorded with A-1 (1033 kg/ha) as compared with the yield of NARI-6 and NARI-57. The newly released genotypes (NARI-6 and NARI-57) did not perform as well as age old and locally very popular cultivar (A-1) under dryland ecosystem of northern Karnataka. Although interactions between planting date and genotypes were non-significant early sowing (1-15 of October) with A-1 variety recorded higher seed yield of 1127 kg/ha, than other combinations. Further, late sowing not only exposed the crop to warmer temperature, especially during second year all through the growing period until maturity but also exhausted residual soil moisture much faster for the crop to experience soil moisture, thus affected seed yield. Irrespective of initial stored soil moisture and rains during post-rainy season, early sowing (1-1, Oct.) has
been found to be optimum to realize higher yields and among the three varieties tested the good old A-1 variety seems to be more adapted to extremes of northern dry zone and performed much better than NARI-6 and NARI-57 (11, 12, 15).

Quality parameters

Oil content (%)

Among the genotypes NARI-6 recorded significantly higher oil content (34.41%) as compared to A_1. But it was on par NARI-57. However, oil content did not show any significant differences with respect to date of sowing. Interaction between DAS and genotypes also did not significant difference (6, 14).

Table 1 Influence of planting time and genotypes on seed yield and quality parameters

Treatments	100 seed wt	Seed yield (kg/ha)	Oil content (%)	Oil yield (kg/ha)
Main plots: Genotypes				
D_1: 1-10-2015	4.56	946	32.37	302
D_2: 15-10-2015	4.04	928	32.36	299
D_3: 31-10-2015	4.21	783	32.85	254
SEm+	0.10	38	0.47	12
CD (P=0.05)	0.34	131	NS	NS
Sub Plots: Date of sowing				
G_1-A_1	5.29	1033	28.83	297
G_2-NARI-6	3.82	799	34.41	275
G_3-NARI-57	3.69	825	34.35	281
SEm+	0.14	29	0.80	11
CD (P=0.05)	0.41	87	2.38	NS
Interaction				
D_1G_1	5.87	1127	27.81	313
D_1G_2	3.99	895	34.68	310
D_1G_3	3.81	818	34.62	282
D_2G_1	4.65	1019	29.65	302
D_2G_2	3.82	793	35.46	282
D_2G_3	3.65	972	31.98	313
D_3G_1	5.36	955	29.04	278
D_3G_2	3.65	710	33.09	235
D_3G_3	3.61	684	36.44	249
SEm+	0.22	56	1.23	20
CD (P=0.05)	NS	NS	NS	NS
Table 2 Influence of planting time and genotypes on economics

Treatments	Gross return (Rs/ha)	Net return (Rs/ha)	B:C ratio
Main plots: Genotypes			
D₁: 1-10-2015	28936	12436	1.75
D₂: 15-10-2015	22383	5883	1.36
D₃: 31-10-2015	23088	6588	1.40
SEm+			
CD (P=0.05)			
Sub Plots: Date of sowing			
G₁-A₁	26502	10002	1.61
G₂-NARI-6	25983	9483	1.57
G₃-NARI-57	21922	5422	1.33
SEm+			
CD (P=0.05)			
Interaction			
D₁G₁	31543	15043	1.91
D₁G₂	25062	8562	1.52
D₁G₃	22901	6401	1.39
D₂G₁	28518	12018	1.73
D₂G₂	22210	5710	1.35
D₂G₃	27222	10722	1.65
D₃G₁	26747	10247	1.62
D₃G₂	19876	3376	1.20
D₃G₃	19142	2642	1.16
SEm+			
CD (P=0.05)			

Economics

With respect to date of sowing, highest gross return (28936 Rs./ha), net return (12436 Rs./ha) and B:C ratio (1.75) recorded in 1st October, 2015 as compared to other two date of sowing (Table 2). Among the genotypes A₁ genotype recorded highest gross return (26502 Rs./ha), net return (10002 Rs./ha) and B:C ratio (1.61) as compared to other two genotypes. Interaction between date of sowing and genotypes recorded highest gross return (31543 Rs./ha), net return (15043 Rs./ha) and B:C ratio (1.91) as compared to other combinations.

References

1. Ali, E. A. and Mahmoud, A. M., (2012). Effect of combination between organic and mineral fertilization on productivity of some safflower genotypes. *World J. Agril. Sci.*, 8 (2) :134-140.
2. Bahman, R., Ebadi, A., Akbar, V and Seyed, H. M. 2013. The effects of nitrogen fertilizer on nutrient uptake, physiological traits and yield components of safflower (*Carthamus tinctorius* L.). *Intl. J. Agron. Plant. Prod.* 4 (3) : 355-364.
3. Belgin, C.G., Bilal and K. Mustafa, 2007, Oil content and fatty acid composition
of some safflower varieties sown in spring and winter. *Inter. J. Nat. and Eng. Sci.*, 1 (3): 11-15.

4. Biradar, S. A., (2008), In-situ green manuring of intercropped legumes on the performance of maize/chickpea/safflower cropping system under rainfed condition. Ph. D. Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India).

5. Dordas, C. A. and Sioulas, C., (2008), Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed condition. *Indust. Crops Prod.*, 27 : 75-85.

6. Golzarfar, M., Shirani Rad, A. M. and Delkhosh, B., (2011). Nitrogen and phosphorus rates effect on yield and oil content of safflower in two growing season. *Intl. J. Sci. Adv. Technol.*, 1 (7): 60-64.

7. Gomez, K. A. and Gomez, A. A. 1983. Statistical procedure for Agricultural Research. John Wiley and Sons, New Delhi, p. 680.

8. Jackson, M. L., 1967, Soil Chemical Analysis, Prentice Hall of India Pvt. Ltd., New Delhi, India.

9. Mohamed, S. J., Jellings, A. J. and Fuller, M. P., (2012). Effect of nitrogen on safflower physiology and productivity. *African Crop Sci. J.*, 20 (4): 225-237. Rev., 2: 1106-1116.

10. Mundel, H. H., Morrison, R. J., Blachshaw, R. E and Roth, B. 2004. Safflower production on the Canadian prairies: Revisited in 2004. *Agri. Can. Res. Station. Lethbridge /Alberta T1J4B1, 11, 19, 23.

11. Ozel, A., Demirbilek, T. and Gur, M. T., (2004). Copur effects of different sowing date and intrarow spacing on yield and some agronomic traits of safflower (*Carthamus tinctorius* L.) under Harran Plain’s arid conditions. *Turkish J. Agric. Forestry*, 28 : 413-419.

12. Vishwanath, H., Pujari, B. T., Prakash, S. S., Ramesh babu And Deshmanya, J. B. 2006. Growth attributes, dry matter production and its partitioning and nutrient uptake studies in spainless safflower (*Carthamus tinctorious* L.) var NARI-6 as influenced by nitrogen and sulphur levels. *Karnataka J. Agric. Sci.* 19(4): 913-917.

13. Weiss, E. A., (2000), Safflower: Oilseed Crops, 93-129, Blackwell Sci. Ltd., Victoria, Australia, pp. 606.

14. Yogesh, T. C., (2013). Effect of In-situ green manuring of legumes, NP levels and organic manures on growth, yield and quality of safflower. Ph. D. Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India).

15. Zareie S., Golkar, P. and Mohammadi, N. G., (2011). Effect of nitrogen and iron fertilizers on seed yield and yield components of safflower genotypes. *African J. Agric. Res.*, 6 (16): 3924-3929.

How to cite this article:

Somanagouda, G., T. T. Bhandiwaddar and Manjula Maralappanavar. 2020. Effect of Planting Time and Genotypes on Seed Yield, Quality Parameters and Economics on Safflower. *Int.J.Curr.Microbiol.App.Sci.* 9(04): 812-816. doi: https://doi.org/10.20546/ijcmas.2020.904.097