OPERATORS, MARTINGALES, AND MEASURES ON PROJECTIVE LIMIT SPACES

DORIN ERVIN DUTKAY AND PALLE E.T. JORGENSEN

Dedicated to the memory of Shizuo Kakutani.

Abstract. Let X be a compact Hausdorff space. We study finite-to-one mappings $r: X \to X$, onto X, and measures on the corresponding projective limit space $X_\infty(r)$. We show that the invariant measures on $X_\infty(r)$ correspond in a one-to-one fashion to measures on X which satisfy two identities. Moreover, we identify those special measures on $X_\infty(r)$ which are associated via our correspondence with a function V on X, a Ruelle transfer operator R_V, and an equilibrium measure μ_V on X.

CONTENTS

1. Introduction \hfill 1
2. Projective limits \hfill 3
 2.1. Definitions \hfill 3
 2.2. Special solutions to the problem (2.15)–(2.16) \hfill 5
3. Induction of measures on $X_\infty(r)$ from measures on X \hfill 6
 3.1. Martingales \hfill 6
 3.2. From μ on X to $\hat{\mu}$ on $X_\infty(r)$ \hfill 7
 3.3. The main theorem \hfill 8
4. Proof of theorem 3.3 \hfill 8
5. A fixed-point problem \hfill 9
6. Transformations of measures \hfill 11
7. Extreme points \hfill 16
References \hfill 19

1. INTRODUCTION

This paper is motivated by our desire to apply wavelet methods to some nonlinear problems in symbolic and complex dynamics. Recent research by many authors (see, e.g., [AST04, ALTW04, BJMP04]) on iterated function systems with affine scaling has suggested that the scope of the multiresolution method is wider than the more traditional wavelet context.

Let r be an endomorphism in a compact metric space X (for example the Julia set of a given rational map $w = r(z)$), and suppose r is onto X and finite-to-one. Form a projective space $P = P(X, r)$ such that r induces an automorphism $a = a(r)$ of $P(X, r)$. Let V be a Borel function on X (naturally extended to a function on P).

2000 Mathematics Subject Classification. 42C40, 42A16, 42A65, 43A65, 46G15, 47D07, 60G18.
Key words and phrases. Measures, projective limits, transfer operator, martingale, fixed point.
Generalizing the more traditional approach to scaling functions, we give in theorem 5.1 a complete classification of measures on \(P(X, r) \) which are quasi-invariant under \(a(r) \) and have Radon-Nikodym derivative equal to \(V \). Our analysis of the quasi-invariant measures is based on certain Hilbert spaces of martingales (theorem 3.3) and on a transfer operator (section 2.2) studied first by David Ruelle. In theorem 7.3 we give a characterization of the extreme points in the set of \(V \)-quasi-invariant probability measures.

A basic tool in stochastic processes (from probability theory) involves a construction on a “large” projective space \(X_\infty \), based on some marginal measure on some coordinate space \(X \). In this paper, we consider a special case of this: Our projective limit space \(X_\infty \) will be constructed from a finite branching process.

Our starting point is a finite-to-one mapping \(r: X \to X \). We will assume that \(r \) is onto, but not invertible. Hence, each point \(x \) in \(X \) is finitely covered, and we get a corresponding random walk down the iterated branches of powers of \(r \), i.e.,

\[
r^n := r \circ r \circ \cdots \circ r, \quad \text{composition of } r \text{ with itself } n \text{ times.}
\]

We prescribe probabilities via a fixed function \(V: X \to [0, \infty) \).

In [DuJo04], we showed that this setup arises naturally in connection with the analysis of wavelets, measures on Julia sets for iterations of rational mappings,

\[
r(z) = \frac{p_1(z)}{p_2(z)} \quad \text{where } p_1 \text{ and } p_2 \text{ are polynomials without common factors,}
\]

and \(X \) is the corresponding Julia set;

and for subshift dynamical systems.

Let \(A \) be a \(k \times k \) matrix with entries in \(\{0, 1\} \). Suppose every column in \(A \) contains an entry 1.

Set

\[
X(A) := \left\{ (\xi_i)_{i \in \mathbb{N}} \in \prod_{i=1}^{\infty} \{1, \ldots, k\} \mid A(\xi_i, \xi_{i+1}) = 1 \right\}
\]

and

\[
r_A(\xi_1, \xi_2, \ldots) = (\xi_2, \xi_3, \ldots) \quad \text{for } \xi \in X(A).
\]

Then \(r_A \) is a subshift, and the pair \((X(A), r_A) \) satisfies our conditions.

It is known [Rue89] that, for each \(A \), as described, the corresponding system \(r_A: X(A) \to X(A) \) has a unique strongly \(r_A \)-invariant probability measure, \(\rho_A \), i.e., a probability measure on \(X(A) \) such that

\[
\int_{X(A)} f \, d\rho_A = \int_{X(A)} \frac{1}{\#r_A^{-1}(x)} \sum_{r_A(y) = x} f(y) \, d\rho_A(x),
\]

for all bounded measurable functions \(f \) on \(X(A) \).

In this paper we analyze the connection between measures on \(X \) and the induced measures on \(X_\infty \), and we characterize those measures \(X_\infty \) which are quasi-invariant
with respect to the invertible mapping \hat{r}

$$
\begin{array}{c}
X_{\infty} \\
\hat{r} \\
\downarrow \\
X \\
\hat{r}^{-1} \\
\downarrow \\
X_{\infty}
\end{array}
$$

where

$$
X_{\infty} := \{ \hat{x} = (x_0, x_1, \ldots) \in \prod_{n_0} X \mid r(x_{n+1}) = x_n, n \in \mathbb{N}_0 \},
$$

$\hat{r}(\hat{x}) = (r(x_0), x_0, x_1, \ldots)$

and

$\hat{r}^{-1}(\hat{x}) = (x_1, x_2, \ldots)$.

We need a specific interplay between spaces (X, r), $r: X \to X$ a non-invertible endomorphism, and induced spaces (X_{∞}, \hat{r}) where \hat{r} is an automorphism. This issue, and variants of it, arise in a number of areas of mathematics; first in probability theory, going back to [Kol]; and also more recently in a number of wavelet problems, see for example [BCMO], [BM], [BrJo02], [DutJo], [DutJo11], [Gun99], [Jor01], and [Jor04]. In these applications, the problem is to carry along some isometric operator defined on a Hilbert space of functions on X, to the space X_{∞} (see proposition 2.2 below). In the language of operator theory, we wish to make a covariant unitary dilation from X to X_{∞}. This means that we need to induce measures μ on X to measures $\hat{\mu}$ on X_{∞} in such a way that a prescribed covariance is preserved.

In our extension of measures from X to X_{∞}, we must keep track of the transfer from one step to the next, and there is an operator which accomplishes this, Ruelle’s transfer operator (see (2.18) below). In its original form it was introduced in [Rue89], but since that, it has found a variety of applications, see e.g., [Bal00]. For use of the Ruelle operator in wavelet theory, we refer to [Jor01] and [Dut].

In our construction, the Hilbert spaces of functions on X_{∞} will be realized as a Hilbert space of martingales. This is consistent with our treatment of wavelet resolutions as martingales. This was first suggested in [Gun99] in connection with wavelet analysis.

To make our paper self-contained, we have recalled Doob’s martingale convergence theorem in section 3, in the form in which we need it, but we refer the reader to the books [Doob3] and [Neveu] for background on martingale theory.

2. Projective limits

2.1. Definitions. Let X be a compact Hausdorff space, and let $r: X \to X$ be a finite-to-one mapping:

$$(2.1) \quad 1 \leq \#r^{-1}(x) < \infty$$

where $r^{-1}(x) = \{ y \in X \mid r(y) = x \}$. More generally, set

$$(2.2) \quad r^{-1}(E) = \{ y \in X \mid r(y) \in E \}, \quad \text{if } E \subset X.$$
By the projective limit $X_\infty(r)$, we mean

\[(2.3) \quad X_\infty(r) = \left\{ \hat{x} = (x_0, x_1, \ldots) \in \prod_{n \in \mathbb{N}_0} X \mid r(x_{n+1}) = x_n, n \in \mathbb{N}_0 \right\}. \]

We have the representation

\[(2.4) \quad X \xleftarrow{r} X \xleftarrow{r} X \xleftarrow{r} \cdots \xleftarrow{r} X_\infty(r) \]

We will further assume that r is not invertible, i.e., that $\#r^{-1}(x)$ is not the constant function one.

It is well known that, if r is continuous, then pull-backs of open sets in X define a topology on $X_\infty(r)$ making $X_\infty(r)$ compact.

The restriction to $X_\infty(r)$ of the coordinate projections $(x_0, x_1, \ldots) \mapsto x_n$ will be denoted by θ_n, and we have

\[(2.5) \quad r \circ \theta_{n+1} = \theta_n \quad (n \in \mathbb{N}_0). \]

One advantage of passing from X to $X_\infty(r)$ is that r induces an invertible mapping $\hat{r} : X_\infty(r) \to X_\infty(r)$, defined by

\[(2.6) \quad \hat{r}(\hat{x}) = \hat{r}(x_0, x_1, x_2, \ldots) = (r(x_0), x_0, x_1, x_2, \ldots). \]

One checks that

\[(2.7) \quad \hat{r}^{-1}(\hat{x}) = (x_1, x_2, \ldots), \]

i.e., that

\[(2.8) \quad \hat{r} \circ \hat{r}^{-1} = \hat{r}^{-1} \circ \hat{r} = \text{id}_{X_\infty(r)}, \]

and

\[(2.9) \quad r \circ \theta_n = \theta_n \circ \hat{r} = \theta_{n-1}. \]

Moreover, both \hat{r} and \hat{r}^{-1} are continuous if r is.

If \mathcal{B} is a sigma-algebra of subsets in X (typically we will take \mathcal{B} to be the Borel subsets in X), then there are sigma-algebras

\[(2.10) \quad \mathcal{B}_n := \theta_n^{-1}(\mathcal{B}) = \{ \theta_n^{-1}(E) \mid E \in \mathcal{B} \} \]

and

\[(2.11) \quad \mathcal{B}_\infty = \bigcup_{n \in \mathbb{N}_0} \mathcal{B}_n. \]

These \mathcal{B}_n's are sigma-algebras of subsets of $X_\infty(r)$.

Using (2.6), we get

\[(2.12) \quad \theta_n^{-1} = \theta_{n+1}^{-1} \circ r^{-1}. \]

If r is measurable, then $r^{-1}(\mathcal{B}) \subset \mathcal{B}$, and we conclude that

\[(2.13) \quad \mathcal{B}_n \subset \mathcal{B}_{n+1}. \]

Then both of the mappings \hat{r} and \hat{r}^{-1} are measurable on $X_\infty(r)$ with respect to the sigma-algebra \mathcal{B}_∞.

In an earlier paper [DuJo04], we studied measures $\hat{\mu}$ on $(X_\infty(r), \mathcal{B}_\infty)$ and functions

\[(2.14) \quad V : X \to [0, \infty) \]
such that

\[(2.15) \quad \hat{\mu} \circ \hat{r} \ll \hat{\mu} \quad \text{(quasi-invariance)},\]

and

\[(2.16) \quad \frac{d\hat{\mu} \circ \hat{r}}{d\hat{\mu}} = V \circ \theta_0.\]

Notice that when \(V\) is given, the measure \(\hat{\mu}\) depends on \(V\). We say that \(\hat{\mu}\) is \(V\)-quasi-invariant.

In [DuJo04] we studied (2.16) under rather restrictive assumptions. Our present study continues the analysis of (2.16), and we give a structure theorem for the solutions \((V, \hat{\mu})\).

2.2. Special solutions to the problem (2.15)–(2.16). In [DuJo04], we studied the following restrictive setup: we assumed that \(X\) carries a probability measure \(\mu\) which is strongly \(r\)-invariant. By this we mean that

\[(2.17) \quad \int_X f \, d\mu = \sum_{y \in X, r(y) = x} f(y) \, d\mu(x) \quad (f \in L^\infty(X)).\]

If, for example \(X = \mathbb{R}/\mathbb{Z}\), and \(r(x) = 2x \mod 1\), then the Haar measure on \(\mathbb{R}/\mathbb{Z}\) = Lebesgue measure on \([0, 1)\), is the unique strongly \(r\)-invariant measure on \(X\).

Suppose \(V\) in (2.14) is bounded and measurable. Then define \(R = R_V\), the Ruelle operator, by

\[(2.18) \quad R_V f(x) = \sum_{r(y) = x} V(y) f(y) \quad (f \in L^1(X, \mu)).\]

Theorem 2.1. ([DuJo04]) Let \(r : X \to X\) and \(X_\infty(r)\) be as described in section 2.1 and suppose that \(X\) has a strongly \(r\)-invariant measure \(\mu\). Let \(V\) be a non-negative, measurable function on \(X\), and let \(R_V\) be the corresponding Ruelle operator.

(i) There is a unique measure \(\hat{\mu}\) on \(X_\infty(r)\) such that

(a) \(\hat{\mu} \circ \theta_0^{-1} \ll \mu\) \quad \text{(set \(h = \frac{d(\hat{\mu} \circ \theta_0^{-1})}{d\mu}\))},

(b) \(\int_X f \, d\hat{\mu} \circ \theta_0^{-1} = \int_X R_V^n(fh) \, d\mu \quad (n \in \mathbb{N}_0)\).

(ii) The measure \(\hat{\mu}\) on \(X_\infty(r)\) satisfies

\[(2.19) \quad \frac{d(\hat{\mu} \circ \hat{r})}{d\hat{\mu}} = V \circ \theta_0\]

and

\[(2.20) \quad R_V h = h.\]

In this paper we turn around the problem, and take (2.19) as the fundamental axiom. We will not assume the existence of a strongly \(r\)-invariant measure \(\mu\).

Proposition 2.2. Let \(r : X \to X\) be as described above, and let \(\hat{r} : X_\infty(r) \to X_\infty(r)\) be the corresponding automorphism. Let \(m : X \to \mathbb{C}\) be a bounded measurable function on \(X\). Then the operator

\[(2.21) \quad \hat{S}_m f := (m \circ \theta_0) f \circ \hat{r}\]
defines an isometry in the Hilbert space $L^2(X_\infty(r), \hat{\mu})$ if and only if
\begin{equation}
\hat{\mu} \circ \hat{r} \ll \hat{\mu}
\end{equation}
and
\begin{equation}
\frac{d(\hat{\mu} \circ \hat{r})}{d\hat{\mu}} = |m \circ \theta_0|^2.
\end{equation}

Proof. The isometric property for (2.21) may be stated in the form.
\begin{equation}
\int_{X_\infty(r)} |m \circ \theta_0|^2 |f \circ \hat{r}|^2 d\hat{\mu} = \int_{X_\infty(r)} |f|^2 d\hat{\mu}, \text{ for all } f \in L^2(X_\infty(r), \hat{\mu}).
\end{equation}
Setting $V := |m|^2$, and $g := |f \circ \hat{r}|^2$, (2.22) reads
\begin{equation}
\int_{X_\infty(r)} V \circ \theta_0 g d\hat{\mu} = \int_{X_\infty(r)} g d\hat{\mu}.
\end{equation}
But this amounts precisely to the two assertions (2.22) and (2.23). In other words, the V-quasi-invariance property for $V = |m|^2$ is equivalent to S_m defining an L^2-isometry. □

3. Induction of measures on $X_\infty(r)$ from measures on X

3.1. Martingales. If $\hat{\mu}$ is a measure defined on the sigma-algebra \mathcal{B}_∞ on $X_\infty(r)$, then there is an associated sequence of measures (μ_n) on X defined as follows:
\begin{equation}
\mu_n := \hat{\mu} \circ \theta_n^{-1} \quad (n \in \mathbb{N}_0),
\end{equation}
or more precisely
\begin{equation}
\mu_n(E) = \hat{\mu}(\theta_n^{-1}(E)) \quad (E \in \mathcal{B}),
\end{equation}
where
\begin{equation}
\theta_n^{-1}(E) = \{ \hat{x} \in X_\infty(r) \mid \theta_n(\hat{x}) \in E \}.
\end{equation}
Our measures will be assumed positive and finite, unless specified otherwise.

We now introduce the Hilbert spaces:
\begin{equation}
\hat{H}(\hat{\mu}) := L^2(X_\infty(r), \hat{\mu})
\end{equation}
and
\begin{equation}
H_n(\hat{\mu}) := \{ \xi \circ \theta_n \mid \xi \in L^2(X, \mu_n) \},
\end{equation}
the orthogonal projections
\begin{equation}
P_n : \hat{H}(\hat{\mu}) \to H_n(\hat{\mu})
\end{equation}
and
\begin{equation}
E_n : \hat{H}(\hat{\mu}) \to L^2(X, \mu_n),
\end{equation}
setting
\begin{equation}
P_n(f) := E_n(f) \circ \theta_n \quad (n \in \mathbb{N}_0);
\end{equation}
then
\begin{equation}
\int_{X_\infty(r)} \xi \circ \theta_n f d\hat{\mu} = \int_X \xi E_n(f) d\mu_n, \text{ for all } n \in \mathbb{N}_0, \xi \in L^2(X, \mu_n).
\end{equation}

Lemma 3.1. Let $\hat{\mu}$ be a measure on $(X_\infty(r), \mathcal{B}_\infty)$ and let $\hat{H}(\hat{\mu})$ be the corresponding Hilbert space from (3.4).
Then there is an isometric isomorphism
\[J : \hat{H}(\hat{\mu}) \to \lim_n L^2(X, \mu_n) \]
where the inductive limit in (3.10) is defined by the isometric embeddings
\[\xi \mapsto \xi \circ r : L^2(X, \mu_n) \to L^2(X, \mu_{n+1}). \]

The isomorphism \(J \) in (3.10) is
\[Jf = (E_n f)_{n \in \mathbb{N}_0} \quad (f \in \hat{H}(\hat{\mu})). \]

(ii) The Hilbert norm is given by
\[\|f\|_{\hat{H}(\hat{\mu})}^2 = \lim_{n \to \infty} \|E_n(f)\|_{L^2(X, \mu_n)}^2; \]
and
(iii) For every sequence \(\xi_n \in L^2(X, \mu_n) \) such that \(P_n(\xi_{n+1} \circ \theta_{n+1}) = \xi_n \circ \theta_n, \)
and
\[\sup_n \|\xi_n\|_{L^2(X, \mu_n)} < \infty, \]
there is a unique \(f \in L^2(X_\infty(r), \hat{\mu}) \) such that
\[P_nf = \xi_n \circ \theta_n \text{ for all } n \in \mathbb{N}_0. \]
Moreover,
\[f = \lim_{n \to \infty} \xi_n \circ \theta_n, \text{ pointwise } \hat{\mu}-a.e., \text{ and in } \hat{H}(\hat{\mu}). \]

Proof. The proof depends on Doob’s martingale convergence theorem, see [DuJo04], [Neveu], and [Doob3]. □

3.2. From \(\mu \) on \(X \) to \(\hat{\mu} \) on \(X_\infty(r) \).

Lemma 3.2. Let \((\mu_n)_{n \in \mathbb{N}_0} \) be a sequence of measures on \((X, \mathcal{B}) \). Then there is a measure \(\hat{\mu} \) on \((X_\infty(r), \mathcal{B}_\infty) \) such that
\[\hat{\mu} \circ \theta_n^{-1} = \mu_n \quad (n \in \mathbb{N}_0) \]
if and only if
\[\mu_{n+1} \circ r^{-1} = \mu_n \quad (n \in \mathbb{N}_0). \]

Proof. We first recall the definition, the measure \(\mu_{n+1} \circ r^{-1} \) in (3.17). On a Borel subset \(E \), it is
\[\mu_{n+1} \circ r^{-1}(E) := \mu_{n+1}(r^{-1}(E)). \]
It is well known (see [Rud87]) that (3.18) defines a measure.

Suppose \(\hat{\mu} \) exists such that (3.10) holds. Let \(\xi \) be a bounded \(\mathcal{B} \)-measurable function on \(X \). Then
\[\int_X \xi \circ r d\mu_{n+1} = \int_{X_\infty(r)} \xi \circ r \circ \theta_{n+1} d\hat{\mu} = \int_{X_\infty(r)} \xi \circ \theta_n d\hat{\mu} = \int_X \xi d\mu_n, \]
which proves the identity (3.18).

Conversely, suppose \((\mu_n)_{n \in \mathbb{N}_0} \) satisfies (3.17). Note that the \(\mathcal{B}_n \)-measurable functions are of the form \(f \circ \theta_n \) with \(f \) \(\mathcal{B} \)-measurable. The \(\mathcal{B}_n \)-measurable functions are also \(\mathcal{B}_{n+1} \)-measurable and this inclusion is given by
\[f \circ \theta_n = (f \circ r) \circ \theta_{n+1}. \]
The relations (2.11) and (2.13) imply that the union of the algebras of bounded \(B_n \)-measurable functions is \(L^1(\mathring{\mu}) \)-dense in the algebra of bounded \(B_\infty \)-measurable functions on \(X_\infty(r) \).

Now set
\[
(3.20) \quad \mathring{\mu}(f \circ \theta_n) := \mu_n(f), \ f \ \text{assumed } B_n\text{-measurable and bounded}.
\]
To see that this is consistent, use (3.19) and (3.17) to check that
\[
\mathring{\mu}(f \circ r \circ \theta_{n+1}) = \mu_{n+1}(f \circ r) = \mu_n(f) = \mathring{\mu}(f \circ \theta_n).
\]
The existence and uniqueness of \(\mathring{\mu} \) follows from Kolmogorov's theorem, see [DuJo04] and [Kol]. \(\square \)

3.3. The main theorem. In this section we will study the problem (2.16) via our correspondence \(\mathring{\mu} \leftrightarrow (\mu_n)_{n \in \mathbb{N}_0} \) from lemma 3.2.

The questions are two: (1) Which measures \(\mu_0 \) on \(X \) admit “extensions” \(\mathring{\mu} \) to measures on \(X_\infty(r) \) which satisfy (2.16)?

(2) Understand the measures \(\mu_0 \) which admit solutions \(\mathring{\mu} \) to (2.16).

Our first theorem answers the question (1).

Theorem 3.3. Let \((\mu_n)_{n \in \mathbb{N}_0} \) be a sequence of measures as in lemma 3.1, i.e., satisfying \(\mu_{n+1} \circ r^{-1} = \mu_n \), and let \(V : X \to [0, \infty) \) be \(B \)-measurable. Then the “extended” measure \(\mathring{\mu} \) satisfies
\[
(3.21) \quad \frac{d(\mathring{\mu} \circ \mathring{r})}{d\mathring{\mu}} = V \circ \theta_0 \text{ a.e. on } \left(X_\infty(r), B_\infty \right)
\]
if and only if
\[
(3.22) \quad d\mu_0 = (V d\mu_0) \circ r^{-1}, \text{ and } d\mu_{n+1} = (V \circ r^n) d\mu_n \quad (n \in \mathbb{N}_0),
\]
or equivalently
\[
(3.23) \quad \int_X f d\mu_0 = \int_X f \circ r V d\mu_0, \text{ and } \int_X f d\mu_{n+1} = \int_X f V \circ r^n d\mu_n \quad (n \in \mathbb{N}_0)
\]
for all bounded \(B \)-measurable functions \(f \) on \(X \).

4. Proof of theorem 3.3

Let \((\mu_n)_{n \in \mathbb{N}_0} \) be a sequence of measures that satisfy
\[
(4.1) \quad \mu_{n+1} \circ r^{-1} = \mu_n,
\]
and let \(\mathring{\mu} \) be the corresponding measure on \(X_\infty(r) \). Suppose first that \(\mathring{\mu} \) satisfies (3.21) for some \(B \)-measurable function \(V : X \to [0, \infty) \); in other words we have the identity
\[
(4.2) \quad \int_{X_\infty(r)} f \circ r^{-1} d\mathring{\mu} = \int_{X_\infty(r)} f V \circ \theta_0 d\mathring{\mu}.
\]
for all bounded \(B_\infty \)-measurable functions \(f \) on \(X_\infty(r) \).

Now specializing (4.2) to \(f = \xi \circ \theta_n \) with \(\xi \) some bounded \(B \)-measurable function on \(X \), we get
\[
\int_{X_\infty(r)} \xi \circ \theta_{n+1} d\mathring{\mu} = \int_{X_\infty(r)} \xi \circ \theta_n V \circ \theta_0 d\mathring{\mu}
\]
\[
= \int_{X_\infty(r)} \xi \circ \theta_n V \circ r^n \circ \theta_n d\mathring{\mu} = \int_X \xi V \circ r^n d\mu_n,
\]
and therefore
(4.3) \[d\mu_{n+1} = (V \circ r^n) \, d\mu_n \]
by (3.21).

We take a closer look at the case \(n = 0 \). Substitute \(f = \xi \circ \theta_0 \) into (4.2). We get
\[
\int_{X_\infty(r)} f \circ \theta_0 \, d\hat{\mu} = \int_{X_\infty(r)} \xi \circ \theta_0 \circ \hat{r} \circ \theta_0 \, d\hat{\mu} = \int_{X_\infty(r)} \xi \circ r \circ \theta_0 \, d\hat{\mu} = \int_{X_\infty(r)} \xi \circ r \, d\hat{\mu}_0
\]
and therefore \(d\hat{\mu}_0 = \hat{r}^{-1} \circ (V \, d\mu_0) \) which is (3.22).

Conversely, suppose \((\mu_n)_{n \in \mathbb{N}_0} \) satisfies (4.1) and (3.22). Lemma 3.2 yields the existence of a \(\hat{\mu} \) on \((X_\infty(r), \mathcal{B}_\infty) \) such that
(4.4) \[\mu_n = \hat{\mu} \circ \theta_0^{-1} \]
We claim that \(\hat{\mu} \) is \(V \)-quasi-invariant, i.e., that (3.21) holds. This amounts to the identity
(4.5) \[\int_{X_\infty(r)} f \circ \hat{r}^{-1} \, d\hat{\mu} = \int_{X_\infty(r)} f \circ \theta_0 \, d\hat{\mu} \]
By lemma 3.1 this is equivalent to

\[d\mu_{n+1} = V \circ r^n \, d\mu_n. \]

To see this, substitute \(f = \xi \circ \theta_n \) into (4.5) for \(\xi \) a bounded \(\mathcal{B} \)-measurable function on \(X \), and \(n \in \mathbb{N}_0 \). But this holds by (3.22), and (3.21) follows.

5. A FIXED-POINT PROBLEM

In theorem 3.3 we saw that our condition (2.16), \(V \)-quasi-invariance, on measures \(\hat{\mu} \) on \((X_\infty(r), \mathcal{B}_\infty) \) entails a fixed-point property (5.1) for the corresponding measure \(\mu_0 := \hat{\mu} \circ \theta_0^{-1} \). In this section, we turn the problem around. We show that this fixed-point property characterizes the measures \(\hat{\mu} \) satisfying the quasi-invariance, i.e., satisfying (2.16).

If the function \(V : X \to [0, \infty) \) is given, we define
\[V^{(n)}(x) := V(x)V(r(x)) \cdots V(r^{n-1}(x)), \]
and set \(d\mu_n := V^{(n)}(x) \, d\mu_0 \). Our result states that the corresponding measure \(\hat{\mu} \) on \(X_\infty(r) \) is \(V \)-quasi-invariant if and only if
(5.1) \[d\mu_0 = (V \, d\mu_0) \circ r^{-1}. \]

Theorem 5.1. Let \(V : X \to [0, \infty) \) be \(\mathcal{B} \)-measurable, and let \(\mu_0 \) be a measure on \(X \) satisfying the following fixed-point property
(5.2) \[d\mu_0 = (V \, d\mu_0) \circ r^{-1}. \]
Then there exists a unique measure \(\hat{\mu} \) on \(X_\infty(r) \) such that
(5.3) \[\frac{d(\hat{\mu} \circ \hat{r})}{d\hat{\mu}} = V \circ \theta_0 \]
and
\[\hat{\mu} \circ \theta_0^{-1} = \mu_0. \]
Proof. Let \(\mu_0 \) be a measure satisfying the fixed-point property (5.2), and set
\[
d\mu_{n+1} := (V \circ r^n) \, d\mu_n.
\]
This defines a sequence \(\mu_0, \mu_1, \mu_2, \ldots \) of measures on \(X \). To establish the existence of the measure \(\hat{\mu} \) on \(X_\infty(r) \), we appeal to lemma 3.2. We claim that (5.17) holds, or equivalently that
\[
\int_X f \circ r \, d\mu_{n+1} = \int_X f \, d\mu_n
\]
for all bounded \(\mathcal{B} \)-measurable functions \(f \) on \(X \), and for all \(n \in \mathbb{N}_0 \).

Substitution of (5.4) into (5.5) yields
\[
\int_X f \circ r \, d\mu_{n+1} = \int_X f \circ V \circ r^n \, d\mu_n,
\]
and we will prove (5.5) by induction:

First
\[
\int_X f \circ r \, d\mu_1 = \int_X f \circ V \, d\mu_0 = \int_X f \circ (V \, d\mu_0) \circ r^{-1} = \int_X f \, d\mu_0,
\]
where we used (5.2) in the last step. So (5.5) holds for \(n = 0 \).

Assume that (5.5) holds for \(\mu_m \) and \(m < n \). Then
\[
\int_X f \circ r \, d\mu_{n+1} = \int_X f \circ V \circ r^n \circ r^{-1} \, d\mu_n = \int_X f \circ V \circ r^{n-1} \, d\mu_{n-1} = \int_X f \, d\mu_n,
\]
where we used the definition (5.4) in the last step. The induction is completed.

This proves (5.17). An application of lemma 3.2 yields the existence of a unique measure \(\hat{\mu} \) on \((X_\infty(r), \mathcal{B}_\infty)\) such that
\[
\hat{\mu} \circ \theta_n^{-1} = \mu_n \quad (n \in \mathbb{N}_0).
\]
Since the sequence \((\mu_n)_{n \in \mathbb{N}_0} \) satisfies the pair of conditions (5.22) by construction, we conclude from theorem 3.3 that \(\hat{\mu} \) must satisfy (5.3), i.e., \(\hat{\mu} \) is \(V \)-quasi-invariant as claimed. \(\square \)

The proof of theorem 5.1 yields also the following lemma

Lemma 5.2. Let \(V : X \to [0, \infty) \) be a bounded \(\mathcal{B} \)-measurable function, and let \(\mu_0 \) be a measure on \((X, \mathcal{B})\). Suppose
\[
d\mu_0 = (V \, d\mu_0) \circ r^{-1}.
\]
Set
\[
d\mu_n := V^{(n)} \, d\mu_0 \quad \text{for } n \in \mathbb{N}.
\]
then
\[
\mu_{n+1} \circ r^{-1} = \mu_n,
\]
and
\[
\mu_n(X) = \int_X V^{(n)} \, d\mu_0 = \mu_0(X), \quad \text{for all } n \in \mathbb{N}.
\]
where \(f \in C(X) \) is a measure on \((X, \mathcal{B}), \mu(X) = a\).

Note that \(M_a(X) \) is equipped with the weak*-topology coming from the duality

\[
(f, \mu) \mapsto \int_X f \, d\mu =: \mu(f)
\]

where \(f \in C(X) \). The neighborhoods are generated by the sets \(N_{\mu_0}(f_1, \ldots, f_k, \epsilon) \) where \(\epsilon \in \mathbb{R}_+ \), \(f_1, \ldots, f_k \in C(X) \) and

\[
N_{\mu_0}(f_1, \ldots, f_k, \epsilon) = \{ \mu \in M(X) \mid |\mu(f_i) - \mu_0(f_i)| < \epsilon, i = 1, \ldots, k \}
\]

It is known [Rud87] that each \(M_a(X) \) is weak*-compact, i.e., \(M_a(X) \) is a compact convex set in the topology determined by the neighborhoods \(N_{\mu_0}(f_1, \ldots, f_k, \epsilon) \).

Let \(V : X \to [0, \infty) \) be bounded and \(\mathcal{B} \)-measurable, and define

\[
T_V(\mu) := (V \, d\mu) \circ r^{-1} \quad (\mu \in M(X)).
\]

Lemma 6.1. Let \(V \) be as above, and assume \(V \) is also continuous. Then \(T_V : M(X) \to M(X) \) is continuous.

Proof. Let \(\mu \in M(X) \), \(k \in \mathbb{Z}_+ \) and \(f_i \in C(X) \), \(i = 1, \ldots, k \). Then

\[
\langle T_V(\mu) \mid f_i \rangle = \langle \mu \mid V f_i \circ r \rangle.
\]

Setting \(g_k := V f_i \circ r \), we see that

\[
T_V(N_{\mu_0}(g_1, \ldots, g_k, \epsilon)) \subset N_{T_V(\mu_0)}(f_1, \ldots, f_k, \epsilon)
\]

and the conclusion follows if \(V \) is assumed continuous. \(\square \)

Definition 6.2. Let \(V : X \to [0, \infty) \) be bounded and \(\mathcal{B} \)-measurable. We use the notation

\[
M^V(X) := \{ \mu \in M(X) \mid d\mu = (V \, d\mu) \circ r^{-1} \}.
\]

For measures \(\hat{\mu} \) on \((X_\infty(r), \mathcal{B}_\infty)\) we introduce

\[
M^V_{qi}(X_\infty(r)) := \left\{ \hat{\mu} \in M(X_\infty(r)) \mid \hat{\mu} \circ \hat{r} \ll \hat{\mu} \text{ and } \frac{d(\hat{\mu} \circ \hat{r})}{d\hat{\mu}} = V \circ \theta_0 \right\}.
\]

The results of the previous section may be summarized as follows:
Theorem 6.3. Let V be as in definition 8.2. For measures μ on $X_\infty(r)$ and $n \in \mathbb{N}_0$, define
\[C_n(\mu) := \mu \circ \theta_n^{-1}. \]
then C_0 is a bijective affine isomorphism of $M^V_{\#}(X_\infty(r))$ onto $M^V(X)$ that preserves the total measure, i.e., $C_0(\mu)(X) = \mu(X_\infty(r))$ for all $\mu \in M^V_{\#}(X_\infty(r))$.

Proof. We showed in theorem 8.3 that C_0 maps $M^V_{\#}(X_\infty(r))$ onto $M^V(X)$. The inverse mapping
\[C_0^{-1}: M^V(X) \rightarrow M^V_{\#}(X_\infty(r)) \]
may be realized using theorem 5.1 and lemma 5.2. \qed

Remark 6.4. The intuitive idea behind C_0^{-1}: $M^V(X) \rightarrow M^V_{\#}(X_\infty(r))$ is as follows:

Let $C_0^{-1}(\mu_0) = \hat{\mu}$. Then $\hat{\mu}$ is a measure on $X_\infty(r)$, and we view points \hat{x} in $X_\infty(r)$ as infinite paths. Recall, if $\hat{x} = (x_0, x_1, \ldots) \in X_\infty(r)$ then $r(x_{n+1}) = x_n$. So in a random walk we choose $x_{n+1} \in r^{-1}(x_n)$, and the function V assigns the probabilities in each step. At step n, there are $|r^{-1}(x_n)|$ choices.

The assertion in the theorem is that the measure $\hat{\mu}$ is completely determined by the prescribed measure μ_0 at the starting point x_0 of the path, and by the function V.

The two measures $\hat{\mu}$ and μ_0 are normalized so that
\[\mu_0(X) = \hat{\mu}(X_\infty(r)). \]

In a special case, we give an explicit formula for $C_0^{-1}(\mu_0)$, [DuJo04, Proposition 8.2]

Theorem 6.5. Let $V: X \rightarrow [0, \infty]$ be continuous. Assume that there exist some measure ν on (X, \mathcal{B}) and two numbers $0 < a < b$ such that
\[a \leq \nu(X) \leq b, \text{ and } a \leq \int_X V^{(n)} \, d\nu \leq b \text{ for all } n \in \mathbb{N}. \]

Then there exists a measure μ_0 on (X, \mathcal{B}) that satisfies
\[d\mu_0 = (V \, d\mu_0) \circ r^{-1}, \]
and there exists a V-quasi-invariant measure $\hat{\mu}$ on $(X_\infty(r), \mathcal{B}_\infty)$.

Proof. Condition 6.1 guarantees that the set
\[M^V_{ab}(X) := \left\{ \mu \in M(X) \mid a \leq \mu(X) \leq b \text{ and } a \leq \int_X V^{(n)} \, d\mu \leq b, \text{ for all } n \in \mathbb{N} \right\} \]
is non-empty. Moreover, by the Banach-Alaoglu theorem [Rud87], this set is compact in the weak*-topology. It is clear also that the set is convex.

We claim that the operator T_V maps $M^V_{ab}(X)$ into itself. Indeed, if $\mu \in M^V_{ab}(X)$, then
\[T_V(\mu)(X) = \int_X V \, 1 \circ r \, d\mu \in [a, b] \]
and, using $V \, V^{(n)} \circ r = V^{(n+1)}$,
\[T_V(\mu)(V^{(n)}) = \int_X V \, V^{(n)} \circ r \, d\mu = \int_X V^{(n+1)} \, d\mu \in [a, b]. \]

Lemma 6.1 shows that T_V is continuous so we can apply the Markov-Kakutani fixed-point theorem (see [Rud91]) to conclude that there exists a $\mu_0 \in M^V_{ab}$ such
that $T_V(\mu_0) = \mu_0$. The V-quasi-invariant measure $\hat{\mu}$ can be obtained from μ_0 using theorem 5.1. □

Remark 6.6. We now connect the above discussion with section 2.2. Let (X, \mathfrak{B}) and $r: X \to X$ be as described above. Suppose in addition that (X, \mathfrak{B}) carries a strongly r-invariant probability measure, ρ, see (2.17) for the definition.

Set

$$M(\rho, X) := \{\mu \in M(X) | \mu \ll \rho\}.$$

Let $V: X \to [0, \infty)$ be a bounded measurable function. Then T_V leaves $M(\rho, X)$ invariant; and μ_0 in $M(\rho, X)$ satisfies

$$T_V(\mu_0) = \mu_0$$

if and only if there is an $h \in L^1(X, \rho)$ such that $d\mu_0 = h d\rho$ and $R_V h = h$.

Proof. Let $\mu \in M(\rho, X)$, and write $d\mu = f d\rho$, $f \in L^1(X, \rho)$. Let ξ be a bounded measurable function on X. Then

$$T_V(\mu)(\xi) = \int_X \xi \circ r V f d\rho = \int_X \xi(x) \frac{1}{\#r^{-1}(x)} \sum_{r(y) = x} V(y)f(y) d\rho(x)$$

$$= \int_X \xi(x)(R_V f)(x) d\rho(x).$$

Stated differently,

$$T_V(f d\rho) = R_V(f) d\rho.$$

Hence $T_V(f d\rho) = f d\rho$ if and only if $R_V f = f$ as claimed. □

Before stating and proving our next result we need a lemma.

Lemma 6.7. Let (X, \mathfrak{B}), $r: X \to X$, and $V: X \to [0, \infty)$ be as above. Suppose (X, \mathfrak{B}) carries a strongly r-invariant probability measure ρ. Then

$$(6.2) \quad \int_X V^{(n)} f d\rho = \int_X R^n_V f d\rho$$

for all bounded measurable functions f and $n \in \mathbb{N}$.

Proof. We prove (6.2) by induction, starting with $n = 1$. Indeed, for $f \in L^\infty(X)$,

$$\int_X V f d\rho = \int_X \frac{1}{\#r^{-1}(x)} \sum_{r(y) = x} V(y)f(y) d\rho(x) = \int_X R_V f d\rho$$

where we used the definition (2.17) of strong r-invariance.

Suppose (6.2) holds up to n. Then

$$\int_X V^{(n+1)} f d\rho = \int_X (V^{(n)} \circ r) V f d\rho = \int_X V^{(n)}(x) \frac{1}{\#r^{-1}(x)} \sum_{r(y) = x} V(y)f(y) d\rho(x)$$

$$= \int_X V^{(n)} R_V f d\rho = \int_X R^n_V f d\rho = \int_X R^{n+1}_V f d\rho,$$

where we used the induction hypothesis in the last step.

This completes the proof of the lemma. □
Theorem 6.8. Let \((X, \mathcal{B})\), and \(r: X \to X\), be as described above. Suppose \(V: X \to [0, \infty)\) is measurable,

\[
\frac{1}{\# r^{-1}(x)} \sum_{r(y) = x} V(y) \leq 1,
\]

and that some probability measure \(\nu_V\) on \(X\) satisfies

\[\nu_V \circ R_V = \nu_V.\]

Assume also that \((X, \mathcal{B})\) carries a strongly \(r\)-invariant probability measure \(\rho\), such that

\[\rho(\{x \in X \mid V(x) > 0\}) > 0.\]

Then

(i) \(T^n_V \, d\rho = R^n_V \, 1 \, d\rho\), for \(n \in \mathbb{N}\), where \(1\) denotes the constant function one.

(ii) [Monotonicity] \(\cdots \leq R^{n+1}_V(1) \leq R^n_V(1) \leq \cdots \leq 1\), pointwise on \(X\).

(iii) The limit \(\lim_{n \to \infty} R^n_V(1) = h_V\) exists, \(R_Vh_V = h_V\), and

\[\rho(\{x \in X \mid h_V(x) > 0\}) > 0;\]

(iv) The measure \(d\mu_0^{(V)} = h_V \, d\rho\) is a solution to the fixed-point problem

\[T_V(\mu) = \mu\]

(v) \(T_V(\mu) = \mu\).

(vi) \(\mu_0^{(V)}(f) = \int_X R^n_V(fh_V) \, d\rho\) for all bounded measurable functions \(f\) on \(X\), and all \(n \in \mathbb{N}\).

Finally,

(vii) The measure \(\hat{\mu}^{(V)}\) on \(X_{\infty}(r)\) satisfying \(\hat{\mu}^{(V)} \circ \theta_n^{-1} = \mu_n^{(V)}\) has total mass

\[\hat{\mu}^{(V)}(X_{\infty}(r)) = \rho(\hat{h}_V) = \int_X h_V(x) \, d\rho(x).\]

Proof. Part (i) follows from remark 6.6.

(ii) It is clear that

\[R_V(1) = \frac{1}{\# r^{-1}(x)} \sum_{r(y) = x} V(y) \leq 1, \text{ for } x \in X.\]

Starting the induction, suppose

\[R^n_V(1) \leq R^{n-1}_V(1).\]

Then

\[R^{n+1}_V(1) = \frac{1}{\# r^{-1}(x)} \sum_{r(y) = x} V(y) R^n_V(1)(y) \leq \frac{1}{\# r^{-1}(x)} \sum_{r(y) = x} V(y) R^{n-1}_V(1)(y) = R^n_V(1)(x).\]

An induction now proves (ii).

It follows that the limit \(h_V\) in (iii) exists, and that

\[R_V(h_V) = h_V.\]
Using (6.3), we get that
\[\nu_V(R_n^V(1)) = \nu_V(1) = 1, \text{ for all } n \in \mathbb{N},\]
and therefore
\[\nu_V(h_V) = \int_X h_V \, d\nu_V = 1.\]
The conclusion (6.5) follows from [Jor04, Chapter 3].

The assertion in (iv) is that \(\mu_0^{(V)} := h_V \, d\rho\) is a fixed point, i.e., that
\[T_V(h_V \, d\rho) = h_V \, d\rho.\]
This follows in turn from remark 6.6. Hence, the measures
\[d\mu_n^{(V)} = V^{(n)}h_V \, d\rho\]
extend to a unique measure \(\hat{\mu}^{(V)}\) on \(X^{\infty}(r)\) and, by theorem 6.3,
\[\hat{\mu}^{(V)} \in M^V_{\infty}(X^{\infty}(r)).\]
Moreover, using now lemma 6.7, we get
\[\hat{\mu}^{(V)}(X^{\infty}(r)) = \int_{X^{\infty}(r)} 1 \circ \theta_0 \, d\hat{\mu}^{(V)} = \int_X 1 \, d\mu_0 = \int_X h_V \, d\rho.\]
which yields the desired conclusion (vi) and (vii).
Indeed
\[\hat{\mu}^{(V)}(X^{\infty}(r)) = \int_{X^{\infty}(r)} 1 \circ \theta_0 \, d\hat{\mu}^{(V)} = \int_X 1 \, d\mu_0 = \int_X h_V \, d\rho.\]
Comparing with (6.1) in theorem 6.3, notice that
\[\int_X h_V \, d\rho = \lim_{n \to \infty} \int_X R_n^V(1) \, d\rho = \lim_{n \to \infty} \rho(V^{(n)}).\]

The conclusions of theorem 6.8 hold in the following more general form.

Corollary 6.9. Let \(V, W : X \to [0, \infty)\) be measurable, and suppose the assumptions (i) and (ii) are satisfied:

(i) \(\frac{1}{\# p^{-1}(x)} \sum_{y \in x} V(y)W(y) \leq 1, \ x \in X.\)

(ii) There exists a non-negative function \(h_W\) on \(X\), and a measure \(\rho_W\) such that \(\rho_W R_W = \rho_W, R_W h_W = h_W\) and \(\rho_W(h_W) = 1.\)

Then
\[(6.7) \quad T^n_V(f \, d\rho_W) = (R^n_{V W}f) \, d\rho_W,\]
and the limit
\[\lim_{n \to \infty} R^n_{V W}(1) = h\]
exists, and satisfies
\[(6.8) \quad T_V(h \, d\rho_W) = h \, d\rho_W.\]
Proof. We first show (6.7) for $n = 1$. Let f and ξ be bounded, measurable functions on X. Then

$$T_V(f \, d\rho)(\xi) = \int_X \xi \circ r V f \, d\rho = \int_X R_W(\xi \circ r V f) \, d\rho$$

$$= \int_X \xi \, R_V(\rho) \, d\rho = \int_X \xi \, R_V(\rho) \, d\rho.$$

Hence (6.7) holds for $n = 1$, and the general case follows by iteration.

The argument from the proof of the theorem shows that

$$\cdots \leq R_{V,W}^{n+1}(1) \leq R_{V,W}^n(1) \leq \cdots \leq R_{V,W}(1) \leq 1,$$

so the limit

$$h := \lim_{n \to \infty} R_{V,W}^n(1)$$

exists, and satisfies (6.8) by the same argument. □

Remark 6.10. Stated in Ruelle’s thermodynamical formalism [Rue89], the data ρ_W (measure) and h_W (eigenfunction) in part (ii) of corollary 6.9 represent an equilibrium distribution where W is related to a potential function. Under mild conditions on (X, r) and W, it is known that solutions (ρ_W, h_W) exist, and we say that $\lambda_W = 1$ is the Perron-Frobenius eigenvalue of the Ruelle operator R_W. In that case

$$1 = \sup \{|\lambda| \mid \lambda \in \text{spectrum}(R_W)\}.$$

The reader is referred to [Rue89], [Bal00], [NuLu99] and [BrJo02] for further details regarding the spectral theory of R_W.

Notice further that the conclusion of Ruelle’s Perron-Frobenius theorem is a generalization of the classical Perron-Frobenius theorem for matrices with non-negative entries.

7. Extreme Points

Theorem 6.3 shows that the map $\hat{\mu} \mapsto \mu_0 := \hat{\mu} \circ \theta_0^{-1}$ establishes a bijective affine correspondence between the following two sets:

$$M_{\mu_0,1}(X_{\infty}(r)) := \{\hat{\mu} \in M(X_{\infty}(r)) \mid \hat{\mu}(X_{\infty}(r)) = 1, \hat{\mu} \text{ is } V\text{-quasi-invariant}\}$$

and

$$M_{1,V}(X) := \{\mu_0 \in M(X) \mid \mu_0(X) = 1, T_V(\mu_0) = \mu_0\}.$$

It is easy to see that both these sets are convex, and an application of the Banach-Alaoglu theorem [Rud91] shows that they are compact in the weak*-topology. Then, using the Krein-Milman theorem [Rud91], we conclude that each of these sets is the convex weak*-closure of their extreme points. Moreover, since the correspondence is affine it preserves the extreme points.

This section is devoted to an analysis of the extreme points. Before we state and prove our main result on extreme points we need to define the concepts of conditional expectation E_{μ_0}, and relative ergodicity.

Proposition 7.1. Let $(X, \mathcal{B}), r$ and V be as above. Let μ_0 be a measure in $M_{1,V}(X)$. Then for each bounded measurable function g on X there exists a bounded $r^{-1}(\mathcal{B})$-measurable function $E_{\mu_0}(Vg)$ such that

$$(7.1) \quad \int_X Vg \circ r \, d\mu_0 = \int_X E_{\mu_0}(Vg) \circ r \, d\mu_0.$$
for all bounded \mathcal{B}-measurable functions f on X. Moreover, this is unique up to $\mu_0 \circ r^{-1}$-measure zero.

Proof. The positive linear functional

$$
\Lambda_g: f \circ r \mapsto \int_X V g f \circ r \, d\mu_0
$$

defines a measure on $(X, r^{-1}(\mathcal{B}))$ which is absolutely continuous with respect to μ_0. Indeed, if $\mu_0(E) = 0$ then

$$
0 = \int_X \chi_E \, d\mu_0 = \int_X V \chi_E \circ r \, d\mu_0
$$

so

$$
\int_X V g \chi_E \circ r \, d\mu_0.
$$

Therefore, by the Radon-Nikodym theorem, there exists some $r^{-1}(\mathcal{B})$-measurable function $E_{\mu_0}(Vf)$ such that (7.1) holds. Since

$$
|E_{\mu_0}(Vg)| \leq \|Vg\|_\infty \int_X |f \circ r| \, d\mu_0
$$

it follows that $E_{\mu_0}(Vg)\leq\|Vg\|_\infty$ holds $\mu_0 \circ r^{-1}$ a.e.

The uniqueness is also clear from the definition (7.1). \square

Definition 7.2. A measure $\mu_0 \in M_{qi,1}(X)$ is called relatively ergodic with respect to (r, V) if the only non-negative, bounded \mathcal{B}-measurable functions f on X satisfying

$$
E_{\mu_0}(Vf) = E_{\mu_0}(V) f \circ r, \text{ pointwise } \mu_0 \circ r^{-1}-\text{a.e.},
$$

are the functions which are constant μ_0-a.e.

Theorem 7.3. Let $V: X \to [0, \infty)$ be bounded and measurable. Let $\hat{\mu} \in M_{qi,1}(X_{\infty}(r))$, and $\mu_0 := \hat{\mu} \circ \theta_0^{-1} \in M_{1}^V(X)$. The following affirmations are equivalent:

(i) $\hat{\mu}$ is an extreme point of $M_{qi,1}^V(X_{\infty}(r))$;

(ii) $V \circ \theta_0 \, d\hat{\mu}$ is ergodic with respect to \hat{r};

(iii) μ_0 is an extreme point of $M_{1}^V(X)$;

(iv) μ_0 is relatively ergodic with respect to (r, V).

Proof. The arguments in the beginning of this section (mainly theorem 6.3) show that (i) and (iii) are equivalent.

We now prove (i)⇒(ii). Suppose $\hat{\mu}$ is not ergodic. Then there exists two measurable subset A and B of $X_{\infty}(r)$ such that

- $\int_A V \circ \theta_0 \, d\hat{\mu} > 0$ and $\int_B V \circ \theta_0 \, d\hat{\mu} > 0$ (note that then $\hat{\mu}(A) > 0$ and $\hat{\mu}(B) > 0$),
- $A \cup B = X_{\infty}(r)$, and
- A and B are \hat{r}-invariant.

Define then the measures

$$
\hat{\mu}_A(E) = \frac{\hat{\mu}(A \cap E)}{\hat{\mu}(A)}, \quad \hat{\mu}_B(E) = \frac{\hat{\mu}(B \cap E)}{\hat{\mu}(B)}
$$

for all $E \in \mathcal{B}$.

Note that

$$
\hat{\mu} = \hat{\mu}(A)\mu_a + \hat{\mu}(B)\mu_B.
$$
We prove next that μ_A, μ_B are in $M^V_{q_1,1}(X_\infty(r))$. Clearly they have total mass equal to 1, so we only have to prove the V-quasi-invariance. For f bounded, measurable function on $X_\infty(r)$, we have:

$$\int_{X_\infty(r)} f \circ \hat{\tau}^{-1} \, d\mu_A = \frac{1}{\hat{\mu}(A)} \int_{X_\infty(r)} f \circ \hat{\tau}^{-1} \chi_A \, d\hat{\mu}$$

$$= \frac{1}{\hat{\mu}(A)} \int_{X_\infty(r)} f \circ \hat{\tau}^{-1} \chi_A \circ \hat{\tau}^{-1} \, d\hat{\mu} \quad (\hat{\tau}(A) = A)$$

$$= \frac{1}{\hat{\mu}(A)} \int_{X_\infty(r)} V \circ \theta_0 f \chi_A \, d\hat{\mu}$$

$$= \int_{X_\infty(r)} V \circ \theta_0 f \, d\mu_A.$$

Hence μ_A is V-quasi-invariant. The same argument works for μ_B. Therefore μ_A and μ_B are both in $M^V_{q_1,1}(X_\infty(r))$. Now, equation (7.2) contradicts the fact that $\hat{\mu}$ is extreme.

(ii) \Rightarrow (i): Suppose there are some measures $\mu_1, \mu_2 \in M^V_{q_1,1}(X_\infty(r))$ and some $\lambda \in [0, 1]$ such that

$$\hat{\mu} = \lambda \mu_1 + (1 - \lambda)\mu_2. \quad (7.3)$$

Then μ_1 and μ_2 are absolutely continuous with respect to $\hat{\mu}$. Therefore there exist f_1 and f_2 in $L^1(X_\infty(r), \hat{\mu})$ such that

$$d\mu_1 = f_1 \, d\hat{\mu}, \quad d\mu_2 = f_2 \, d\hat{\mu}.$$

Since μ_1 and $\hat{\mu}$ are V-quasi-invariant, we have, for all bounded measurable functions f on $X_\infty(r)$,

$$\int_{X_\infty(r)} f \, f_1 \circ \hat{\tau} V \circ \theta_0 \, d\hat{\mu} = \int_{X_\infty(r)} f \circ \hat{\tau}^{-1} f_1 \, d\hat{\mu}$$

$$= \int_{X_\infty(r)} f \circ \hat{\tau}^{-1} \, d\mu_1$$

$$= \int_{X_\infty(r)} V \circ \theta_0 f \, d\mu_1$$

$$= \int_{X_\infty(r)} V \circ \theta_0 f_1 \, d\hat{\mu}.$$

Therefore $f_1 = f_1 \circ \hat{\tau}$ pointwise $V \circ \theta_0 \, d\hat{\mu}$-almost everywhere. The hypothesis implies then that f_1 is constant $V \circ \theta_0 \, d\hat{\mu}$-a.e. The same argument shows that f_2 is constant $V \circ \theta_0 \, d\hat{\mu}$-a.e.

Since $\hat{\mu}$ and μ_1 are V-quasi-invariant we have also that

$$1 = \int_{X_\infty(r)} 1 \circ \hat{\tau}^{-1} \, d\mu_1 = \int_{X_\infty(r)} V \, d\mu_1 = \int_{X_\infty(r)} V \, f_1 \, d\hat{\mu}.$$

It follows that $f_1 = 1$, pointwise $V \circ \theta_0 \, d\hat{\mu}$-a.e. Same is true for f_2. Then

$$\int_{X_\infty(r)} f \, d\mu_1 = \int_{X_\infty(r)} V \circ \theta_0 f \circ \hat{\tau} \, d\mu_1 = \int_{X_\infty(r)} V \circ \theta_0 f \circ \hat{\tau} f_1 \, d\hat{\mu}$$

$$= \int_{X_\infty(r)} V \, f \circ \hat{\tau} \, d\hat{\mu} = \int_{X_\infty(r)} f \, d\hat{\mu}.$$

Hence $\mu_1 = \hat{\mu} = \mu_2$ and $\hat{\mu}$ is extreme.
(iii)⇒(iv): Suppose μ_0 is not relatively ergodic. Then there exists a bounded measurable function $f_1 \geq 0$ on X such that $E_{\mu_0}(Vf_1) = E_{\mu_0}(V)f_1 \circ r$, pointwise $\mu_0 \circ r^{-1}$-a.e., and f_1 is not constant μ_0-a.e. We may assume that $\int_X f_1 \, d\mu_0 = 1$.

Define the measure $d\mu_1 := f_1 \, d\mu_0$. We check that μ_1 is in $M^V_1(X)$.

$$
\int_X f \, d\mu_1 = \int_X f \, f_1 \, d\mu_0 = \int_X V \, f \circ r \, f_1 \circ r \, d\mu_0 = \int_X E_{\mu_0}(V) \, f \circ r \, d\mu_0 = \int_X E_{\mu_0}(Vf_1) \, f \circ r \, d\mu_0.
$$

Now choose some $0 < \lambda < 1$ such that $\lambda f_1 \leq 1$ and define

$$
f_2 := \frac{1 - \lambda f_1}{1 - \lambda}, \quad d\mu_2 = f_2 \, d\mu_0.
$$

Then $E_{\mu_0}(Vf_2) = E_{\mu_0}(V)f_2 \circ r$, and the same calculation as before shows that $T_V(\mu_2) = \mu_2$. Note also that $\mu_2(X) = 1$. Since $\mu_0 = \lambda \mu_1 + (1 - \lambda)\mu_2$ and f_1 is not constant, we have that $\mu_1 \neq \mu_0$. It follows that μ_0 is not an extreme point, thus contradicting the hypothesis and proving (iv).

(iv)⇒(iii): Suppose

$$
\mu_0 = \lambda \mu_1 + (1 - \lambda)\mu_2
$$

for some $\mu_1, \mu_2 \in M^V_1(X)$, $\lambda \in [0, 1]$. Then μ_1 and μ_2 are absolutely continuous with respect to μ_0. Let f_1, f_2 the corresponding Radon-Nikodym derivatives. The relation (7.4) implies that

$$
1 = \lambda f_1 + (1 - \lambda)f_2, \quad \mu_0\text{-a.e.}
$$

In particular f_1 and f_2 are bounded.

We know that μ and μ_1 have the fixed-point property. Then for all bounded measurable functions f on X,

$$
\int_X E_{\mu_0}(V) \, f \circ r \, d\mu_0 = \int_X V \, f \circ r \, f_1 \circ r \, d\mu_0 = \int_X f \, f_1 \, d\mu_0 = \int_X f \, d\mu_1
$$

$$
= \int_X V \, f \circ r \, d\mu_1 = \int_X V \, f \circ r \, f_1 \, d\mu_0 = \int_X E_{\mu_0}(Vf_1) \, f \circ r \, d\mu_0.
$$

Therefore $E_{\mu_0}(Vf_1) \circ r = E_{\mu_0}(Vf_1)$, $\mu_0 \circ r^{-1}$-a.e.

The hypothesis implies that f_1 is constant μ_0-a.e. Since $\mu_1(X) = \mu_0(X) = 1$, it follows that $f_1 = 1$ and $\mu_1 = \mu_0$, and therefore μ_0 is extreme.

Acknowledgements. This work was supported at the University of Iowa by a grant from the National Science Foundation (NSF-USA) under a Focused Research Program, DMS-0139473 (FRG).

References

[ALTW04] A. Aldroubi, D. Larson, W.-S. Tang, E. Weber, Geometric aspects of frame representations of abelian groups, Trans. Amer. Math. Soc. 356 (2004), 4767–4786.

[AST04] A. Aldroubi, Q. Sun, W.-S. Tang, Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces, Constr. Approx. 20 (2004), 173–189.

[BCMO] L.W. Baggett, A. Carey, W. Moran, P. Ohring, General existence theorems for orthonormal wavelets, an abstract approach, Publ. Res. Inst. Math. Sci. 31 (1995), 95–111.
[BJMP04] L.W. Baggett, P.E.T. Jorgensen, K.D. Merrill, J.A. Packer, An analogue of Bratteli-Jorgensen loop group actions for GMRA's, in *Wavelets, Frames and Operator Theory* (College Park, 2003), eds. C. Heil et al., Contemp. Math., vol. 345, American Mathematical Society, 2004, pp. 11–25.

[BM] L.W. Baggett, K.D. Merrill, Abstract harmonic analysis and wavelets in \mathbb{R}^n, in *The Functional and Harmonic Analysis of Wavelets and Frames* (San Antonio, 1999), eds. L.W. Baggett and D.R. Larson, Contemp. Math., vol. 247, American Mathematical Society, 1999, pp. 17–27.

[Bal00] V. Baladi, *Positive Transfer Operators and Decay of Correlations*, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific, River Edge, NJ, Singapore, 2000.

[BrJo02] O. Bratteli, P.E.T. Jorgensen, *Wavelets through a Looking Glass: The World of the Spectrum*, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, 2002.

[Doob3] J.L. Doob, *Classical Potential Theory and Its Probabilistic Counterpart*, Grundlehren der Mathematischen Wissenschaften, vol. 262, Springer-Verlag, 1984.

[Dut] D.E. Dutkay, The wavelet Galerkin operator, *J. Operator Theory* 51 (2004), 49–70.

[DutJo] D.E. Dutkay, P.E.T. Jorgensen, Wavelets on fractals, to appear in Rev. Mat. Iberoamericana.

[DuJo04] D.E. Dutkay, P.E.T. Jorgensen, *Martingales, endomorphisms, and covariant systems of operators in Hilbert space*, preprint 2004, arxiv math.CA/0407330.

[Gun99] R.F. Gundy, Two remarks concerning wavelets: Cohen’s criterion for low-pass filters and Meyer’s theorem on linear independence, in *The Functional and Harmonic Analysis of Wavelets and Frames* (San Antonio, 1999), eds. L.W. Baggett and D.R. Larson, Contemp. Math., vol. 247, American Mathematical Society, 1999, pp. 249–258.

[Jor01] P.E.T. Jorgensen, Ruelle operators: Functions which are harmonic with respect to a transfer operator, *Mem. Amer. Math. Soc.* 152(720) (2001).

[Jor04] P.E.T. Jorgensen, Analysis and Probability, preprint 2004.

[Kol] A.N. Kolmogoroff, *Grundbegriffe der Wahrscheinlichkeitsrechnung* (German), Springer-Verlag, 1977 (reprint of the 1933 original); *Foundations of the Theory of Probability* (English), Chelsea, 1950.

[Neveu] J. Neveu, *Discrete-Parameter Martingales*, North-Holland, 1975.

[NuLu99] R.D. Nussbaum, S.M. Verduyn Lunel, Generalizations of the Perron-Frobenius theorem for nonlinear maps, *Mem. Amer. Math. Soc.* 138(659), 1999.

[Rud87] W. Rudin, *Real and Complex Analysis*, third edition, McGraw-Hill, 1987.

[Rud91] W. Rudin, *Functional Analysis*, second edition, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991.

[Rue89] D. Ruelle, The thermodynamic formalism for expanding maps, *Comm. Math. Phys.* 125 (1989), 239–262.

Department of Mathematics, The University of Iowa, 14 MacLean Hall, Iowa City, IA 52242-1419, U.S.A.,

E-mail address: Dorin Ervin Dutkay: ddutkay@math.uiowa.edu

E-mail address: Palle E.T. Jorgensen: jorgen@math.uiowa.edu