On a generalization of sandwich type theorems

MIROSŁAW ADAMEK

Abstract. We introduce affine and convex functions with a control function and present some sandwich type theorems for them. Also, Hyers–Ulam stability type results for affine and convex functions with a control function are given.

Mathematics Subject Classification. Primary 46C15; Secondary 26B25, 39B62.

Keywords. Convex functions with a control function, Sandwich theorems, Affine functions with a control function, Hyers–Ulam stability.

1. Introduction

Let $I \subset \mathbb{R}$ be an open interval. In paper [3] the authors proved that two functions $f, g : I \to \mathbb{R}$ can be separated by a convex function if and only if

$$f(tx + (1-t)y) \leq tg(x) + (1-t)g(y), \quad x, y \in I, \; t \in [0,1].$$

A counterpart of this result for strongly convex functions, i.e. functions satisfying the inequality

$$h(tx + (1-t)y) \leq th(x) + (1-t)h(y) - ct(1-t)|x-y|^2, \; x, y \in I, \; t \in [0,1],$$

where c is a fixed positive number, is presented in [7] and it appears that the necessary and sufficient condition for the separation of two functions $f, g : I \to \mathbb{R}$ by strongly convex function is the following

$$f(tx + (1-t)y) \leq tg(x) + (1-t)g(y) - ct(1-t)F(x-y), \; x, y \in I, \; t \in [0,1].$$

In [1] the author introduced a concept of strong convexity in a more general case, i.e. functions satisfying the inequality

$$h(tx + (1-t)y) \leq th(x) + (1-t)h(y) - t(1-t)F(x-y), \; x, y \in I, \; t \in [0,1],$$
where F is a fixed positive function are considered, and called them F-strongly convex. It is a natural question in the context of the aforementioned separation results and F-strong convexity, whether the inequality
\[
f(tx + (1-t)y) \leq tg(x) + (1-t)g(y) - t(1-t)F(x - y), \quad x, y \in I, \ t \in [0,1],
\]
guaranties the separation of the functions f and g by an F-strongly convex function. In general, the answer to this question is that it does not guarantee such a separation. It can be verified that for constant functions $f \equiv 0$, $g \equiv 1$ and $F \equiv 1$ the above inequality holds true, but we cannot separate them by a 1-strongly convex function, because a 1-strongly convex function does not exist.

The aim of this paper is to present a condition under which a separation result holds true and to show it in a more general case than F-strong convexity.

2. Main result

We start with the following two definitions.

Definition 1. Let $G : [0,1] \times I^2 \to \mathbb{R}$ be a given function. A function $f : I \to \mathbb{R}$ we will call a convex function with a control function G if
\[
f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) + G(t, x, y)
\]
for all $t \in [0,1]$ and $x, y \in I$.

Definition 2. Let $G : [0,1] \times I^2 \to \mathbb{R}$ be a given function. A function $f : I \to \mathbb{R}$ we will call an affine function with a control function G if
\[
f(tx + (1-t)y) = tf(x) + (1-t)f(y) + G(t, x, y)
\]
for all $t \in [0,1]$ and $x, y \in I$.

Of course, if we take a function $G(t, x, y) = -ct(1-t)|x - y|^2$ we will obtain a well known strong convexity case, and if we take a function $G(t, x, y) = -t(1-t)F(x - y)$ then we will get F-strong convexity. It appears, that between convex functions and strongly convex functions we have some connections (see \cite{2,6,9,12–14}). In particular, under some assumptions, a function f is strongly convex if and only if the function $f - | \cdot |^2$ is convex and also a function f is F-strongly convex if and only if the function $f - F$ is convex (see \cite{1}). Now we present an obvious counterpart of these results.

Observation. Assume that a function $\phi : I \to \mathbb{R}$ is an affine function with a control function G. Then a function $f : I \to \mathbb{R}$ is a convex function with a control function G (affine function with a control function G, resp.) if and only if the function $f - \phi$ is a convex function (affine function, resp.) on I.
At this moment we will focus our attention on affine functions with a control function G and we will try to describe a structure of the family
\[
\mathcal{F} := \{ \phi : I \to \mathbb{R} \mid \phi \text{ is affine with a control function } G \}.
\]

Lemma 1. Let $x_1, x_2 \in I$, $x_1 \neq x_2$ and $\mathcal{F} \neq \emptyset$. If $\phi, \mu \in \mathcal{F}$ and $\phi(x_1) = \mu(x_1)$ and $\phi(x_2) = \mu(x_2)$, then $\phi = \mu$.

Proof. Functions $\phi, \mu \in \mathcal{F}$ satisfy the following equalities
\[
\begin{align*}
\phi(tx + (1 - t)y) &= t\phi(x) + (1 - t)\phi(y) + G(t, x, y), \\
\mu(tx + (1 - t)y) &= t\mu(x) + (1 - t)\mu(y) + G(t, x, y),
\end{align*}
\]
for all $x, y \in I$ and $t \in [0, 1]$. Subtracting these equations side by side we get
\[
(\phi - \mu)(tx + (1 - t)y) = t(\phi - \mu)(x) + (1 - t)(\phi - \mu)(y).
\]
Thus $\phi - \mu$ is an affine function such that $(\phi - \mu)(x_1) = 0 = (\phi - \mu)(x_2)$ and in consequence $\phi = \mu$. The proof is finished. \qed

Taking into consideration the definitions of affine functions with a control function G and affine functions, we have the next lemma.

Lemma 2. $\phi \in \mathcal{F}$ if and only if $\phi + a \in \mathcal{F}$ and a is an affine function on I.

And finally Theorem 1 gives a full description of the family \mathcal{F}.

Theorem 1. If $\mathcal{F} \neq \emptyset$ and $\phi_0 \in \mathcal{F}$ then $\phi \in \mathcal{F}$ if and only if $\phi = \phi_0 + a$ and a is an affine function on I.

Proof. If $\phi = \phi_0 + a$ then from Lemma 2 also $\phi \in \mathcal{F}$. Assume now that $\phi \in \mathcal{F}$. Let’s fix different points $x_1, x_2 \in I$ and adjust an affine function a such that the function $\mu = \phi_0 + a$ satisfies the conditions
\[
\mu(x_1) = \phi(x_1) \text{ and } \mu(x_2) = \phi(x_2).
\]
In view of Lemma 1 and Lemma 2 we get that $\phi = \phi_0 + a$. The proof ends. \qed

From the above theorem we immediately have the following corollary.

Corollary 1. If the family $\mathcal{F} \neq \emptyset$ and $\phi_0 \in \mathcal{F}$, then
\[
\mathcal{F} = \{ \phi : I \to \mathbb{R} \mid \phi(x) = \phi_0(x) + ax + b \text{ and } a, b \in \mathbb{R} \}.
\]

Now we go back to sandwich problems. The next theorem is a counterpart of the classical Baron–Matkowski–Nikodem result [3] and of the Merentes–Nikodem result [7].

Theorem 2. Let $G : [0, 1] \times I^2 \to \mathbb{R}$ be a given function and $\mathcal{F} \neq \emptyset$. Then functions $f, g : I \to \mathbb{R}$ satisfy the inequality
\[
f(tx + (1 - t)y) \leq tg(x) + (1 - t)g(y) + G(t, x, y),
\]
for all $t \in [0, 1]$ and $x, y \in I$ if and only if there exists a function $h : I \to \mathbb{R}$ convex with a control function G such that $f \leq h \leq g$ on I.
Proof. The "only if" part is evident. To prove the "if" assume that functions f, g satisfy the inequality

$$f(tx + (1-t)y) \leq tg(x) + (1-t)g(y) + G(t, x, y)$$

and ϕ is a member of the family \mathcal{F}, i.e.

$$\phi(tx + (1-t)y) = t\phi(x) + (1-t)\phi(y) + G(t, x, y),$$

for all $t \in [0,1]$ and $x, y \in I$. Subtracting from the inequality this equation side by side we get

$$(f - \phi)(tx + (1-t)y) \leq t(g - \phi)(x) + (1-t)(g - \phi)(y),$$

for all $t \in [0,1]$ and $x, y \in I$. It means that the functions $f - \phi$ and $g - \phi$ satisfy the sufficient conditions of the Baron–Matkowski–Nikodem theorem [3]. Thus, there exists a convex function $h^* : I \to \mathbb{R}$ such that

$$(f - \phi)(x) \leq h^*(x) \leq (g - \phi)(x), \quad x \in I.$$

It means that the function $h := h^* + \phi$ is between f and g and from the aforementioned observation it is convex with a control function G. The proof is complete. \hfill \Box

Taking a function $g := f + \epsilon$, where ϵ is a fixed positive number, and substituting a function h by a function $h + \frac{\epsilon}{2}$ in the sandwich theorem above we get the following Hyers–Ulam type stability result for convex functions with a control function G (the classical Hyers–Ulam theorem we can find in [5]).

Corollary 2. Assume that $\mathcal{F} \neq \emptyset$ and a function $f : I \to \mathbb{R}$ is approximately convex with a control function G i.e.

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) + G(t, x, y) + \epsilon,$$

for all $t \in [0,1]$, $x, y \in I$ and ϵ is a fixed positive number. Then there exists a function $h : I \to \mathbb{R}$ convex with a control function G such that

$$|f(x) - h(x)| \leq \frac{\epsilon}{2}, \quad x \in I.$$

Remark. Taking a control function $G(t, x, y) = -ct(1-t)^2$ it is easy to check that the function $\phi_0(x) = cx^2$ belongs to the family \mathcal{F}. Thus we get the results presented in [7].

Applying techniques and arguments as in proof of Theorem 1 but, instead of the Baron–Matkowski–Nikodem result, using the Nikodem–Wąsowicz result [11] we will obtain the following.

Theorem 3. Let $G : [0,1] \times I^2 \to \mathbb{R}$ be a given function and $\mathcal{F} \neq \emptyset$. Then functions $f, g : I \to \mathbb{R}$ satisfy the system of inequalities

$$\begin{cases} f(tx + (1-t)y) \leq tg(x) + (1-t)g(y) + G(t, x, y) \\ g(tx + (1-t)y) \geq tf(x) + (1-t)f(y) + G(t, x, y) \end{cases}$$
for all $t \in [0,1]$ and $x, y \in I$ if and only if there exists a function $h : I \to \mathbb{R}$ affine with a control function G such that $f \leq h \leq g$ on I.

Corollary 3. Assume that $\mathcal{F} \neq \emptyset$ and a function $f : I \to \mathbb{R}$ is approximately affine with a control function G i.e.

$$|f(tx + (1-t)y) - tf(x) - (1-t)f(y) - G(t,x,y)| < \epsilon,$$

for all $t \in [0,1]$, $x, y \in I$ and ϵ is a fixed positive number. Then there exists a function $h : I \to \mathbb{R}$ affine with a control function G such that

$$|f(x) - h(x)| \leq \frac{\epsilon}{2}, \quad x \in I.$$

In [7,8] the authors showed a connection between strong convexity and general convexity in the Beckenbach sense. In the concept of general convexity, Beckenbach replaced straight lines (in fact affine functions) by some functions from a two-parameter family. Recall that a family of functions defined on I is a two-parameter family if for any two points $(x_1, x_2), (y_1, y_2) \in \mathbb{R}$, such that $x_1 \neq y_1$, there exists exactly one function from this family going through the points $(x_1, x_2), (y_1, y_2)$ (for more details see [4]). Of course, if the family \mathcal{F} is nonempty, then \mathcal{F} is a two-parameter family and we have the following.

Theorem 4. Let $G : [0,1] \times I^2 \to \mathbb{R}$ be a given function and $\mathcal{F} \neq \emptyset$. Then

(1) A function $f : I \to \mathbb{R}$ is convex with a control function G if and only if

$$f(tx + (1-t)y) \leq \phi_{(x,f(x)),(y,f(y))}(tx + (1-t)y), \quad x, y \in I, t \in (0,1),$$

where $\phi_{(x,f(x)),(y,f(y))}$ is the unique function from the family \mathcal{F}, going through the points $(x, f(x)), (y, f(y))$.

(2) A function $f : I \to \mathbb{R}$ is affine with a control function G if and only if

$$f(tx + (1-t)y) = \phi_{(x,f(x)),(y,f(y))}(tx + (1-t)y), \quad x, y \in I, t \in (0,1),$$

where $\phi_{(x,f(x)),(y,f(y))}$ is the unique function from the family \mathcal{F}, going through the points $(x, f(x)), (y, f(y))$ and in fact $\phi_{(x,f(x)),(y,f(y))} = f$.

Proof. Fix different points $x, y \in I$ and the unique member $\phi_{(x,f(x)),(y,f(y))} \in \mathcal{F}$. Assume that f is convex with a control function G and observe the following:

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) + G(t,x,y)$$

$$= t\phi_{(x,f(x)),(y,f(y))}(x) + (1-t)\phi_{(x,f(x)),(y,f(y))}(y) + G(t,x,y)$$

$$= \phi_{(x,f(x)),(y,f(y))}(tx + (1-t)y).$$

Thus, f satisfies the inequality from point (1). Now assume that the inequality from point (1) holds true. And we have the following:

$$f(tx + (1-t)y) \leq \phi_{(x,f(x)),(y,f(y))}(tx + (1-t)y)$$

$$= tf(x) + (1-t)f(y) + G(t,x,y)$$

$$= tf(x) + (1-t)f(y) + G(t,x,y),$$
which shows that \(f \) is convex with a control function \(G \). Replacing in the above calculation inequalities by equalities we get a proof of point (2).

Notice that Nikodem and Páles in [10] obtained a sandwich type theorem for general convexity in the Beckenbach sense. We do not assume the continuity of the functions from the family \(\mathcal{F} \). Thus, we cannot obtain the presented results from the results presented in [10].

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Adamek, M.: On a problem connected with strongly convex functions. Math. Inequal. Appl. 19(4), 1287–1293 (2016)
[2] Aleman, A.: On some generalizations of convex sets and convex functions. Anal. Numér. Théor. Approx. 14(1), 17–48 (1985)
[3] Baron, K., Matkowski, J., Nikodem, K.: A sandwich with convexity. Math. Pannonica 5, 139–144 (1994)
[4] Beckenbach, E.F.: Generalized convex functions. Bull. Am. Math. Soc. 43, 363–371 (1937)
[5] Hyers, D., Ulam, S.M.: Approximately convex functions. Proc. Am. Math. Soc. 3, 821–828 (1952)
[6] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)
[7] Merentes, N., Nikodem, K.: Remarks on strongly convex functions. Aequat. Math. 80, 193–199 (2010)
[8] Merentes, N., Nikodem, K.: Strong convexity and separation theorems. Aequat. Math. 90, 47–55 (2016)
[9] Nikodem, K., Páles, Zs.: Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 5(1), 83–87 (2011)
[10] Nikodem, K., Páles, Zs.: Generalized convexity and separation theorems. J. Convex Anal. 14(2), 239–247 (2007)
[11] Nikodem, K., Wąsowicz, Sz.: A sandwich theorem and Hyers–Ulam stability of affine functions. Aequat. Math. 49, 160–164 (1995)
[12] Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72–75 (1966)
[13] Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)
[14] Vial, J.-P.: Strong convexity of sets and functions. J. Math. Econ. 9, 187–205 (1982)
