Structure and Function of Angiotensin Converting Enzyme and Its Inhibitors

Yulan Zhao, and Chuanlian Xu

College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract: Angiotensin converting enzyme (ACE, EC 3.4.15.1) is a membrane-bound, zinc dependent dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the potent vasopressor octapeptide angiotensin II, by removing two C-terminal amino acids. ACE is well known as a key part of the renin angiotensin system that regulates blood pressure, and its inhibitors have potential for the treatment of hypertension. This paper reviewed the characteristics of ACE in aspects of its structure-function relationship, gene polymorphism and inhibitor development. In particular, the catalytic mechanisms of the two active sites of somatic ACE in the cleavage of angiotensin I and bradykinin are different. Therefore, it would likely provide a new way for exploiting novel ACE inhibitors with fewer side-effects by specifically-targeting the individual active sites of somatic ACE.

Keywords: angiotensin converting enzyme, structure and function, gene polymorphism, inhibitor
1 ACE 的结构与功能

1.1 ACE 的分子结构

ACE(somatic ACE, sACE), (1306 aa) 2 3 ACE(testic ACE, tACE), 1 732 739

ACE(149.723 kD) sACE N N-catalytic domain C-catalytic domain (1257–1276 aa)

(1–30 aa), N 1232 C ACE . N , C ACE (soluble ACE) sACE tACE .

 ACE 2 80.073 kD, N (1–31 aa), 68 1.3 [1,2] 3 83.989 kD, N 2 657 657

ACE 1.2 ACE 的 mRNA 选择性剪切

ACE 17 q23 , 21 kb, 26 25 ACE sACE tACE [3], N sACE

ACE 1 12–14 14–26[tACE] 12 13–26 (tACE) 12 13–26

ACE 628 bp, tACE . sACE [4], sACE

1.3 ACE 的组织分布

Harmer et al(2002) RT-PCR ACE 72

sACE . tACE . sACE tACE . ACE

1.4 ACE 的生物学功能

Zn2+, ACE I(angiotensin I, Ang I) Phe6-His5 I (Ang I) II (Ang II)

His-Leu[1] II 1, ACE

Na+, K+

ACE 2 P

Alzheimer

Kondoh et al(2005) tACE . ACE

GPI ACE

GPI ACE

2 ACE 的基因多态性与疾病

ACE ID/DD AS 3 16 287 bp Alu

I (I/D), ACE

ACE
Fig. 1 The role of ACE and its inhibitor in the renin-angiotensin system

ACE: angiotensin converting enzyme ACEI: angiotensin converting enzyme inhibitor

Fig. 2 Schematic drawing of human somatic ACE, testic ACE, ACE2, Drosophila AnCE, and Drosophila Acer

The sequence of tACE is identical to that of the C-domain of sACE, except for its first 36 residues. Human sACE and tACE-732 have the same carboxy-terminal transmembrane and cytosolic sequences, while tACE-732 and tACE-739 have the same amine-terminal and a distinct transmembrane and cytosolic sequences. None of the Drosophila AnCE and Acer has a membrane-anchoring sequence. The carboxyl end of ACE2 is homologous to collectin, a nonenzymatic protein associated with renal injury. N: amine-terminus; C: carboxy-terminus; SP: signal peptide; TM: transmembrane domain; HEMGH: the locations of the active-site zinc-binding motif; HEXXH: the locations of the active-site zinc-binding motif.
家族

ACE

ACE-like

M2家族

ACE

ACE-like

家族

ACE

ACE-like

ACE

ACE-like

ACE

ACE

ACE

ACE

家族

ACE

ACE
ACEI, ACE, Ang II, Ang I, RXPA380, sACE, Ac-D-K-P

ACEI, ACE, Ang II, Ang I, RXPA380, sACE, Ac-D-K-P

5 结语与展望

REFERENCES

[1] De Mello WC. Angiotensin converting enzyme and the arrhythmogenic action of angiotensin I: cardiac cell membrane as a site of angiotensin I conversion. Regulatory Peptides, 2004, 121: 83–88.

[2] Coates D. The angiotensin converting enzyme (ACE). International Journal of Biochemistry and Cell Biology, 2003, 35: 769–773.

[3] Hubert C, Houot AM, Corvol P, et al. Structure of the angiotensin I-converting enzyme gene: two alternate promoters correspond to evolutionary steps of a duplicated gene. Journal of Biological Chemistry, 1991, 266: 15377–15383.

[4] Thekkumkara TJ, Livingston WS, Kumar RC, et al. Use of alternative polyadenylation sites for tissue-specific transcription of two angiotensin-converting enzyme mRNAs. Nucleic Acids Research, 1992, 20(4): 683–687.

[5] Ehlers MRW, Fox EA, Strydom DJ, et al. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86: 774–7745.

[6] Kumar RS, Kusari J, RoyQII SN, et al. Structure of testicular angiotensin-converting enzyme. Journal of Biological Chemistry, 1989, 264(28): 16754–16758.

[7] Riordan JF. Angiotensin-I-converting enzyme and its relatives. Genome Biology, 2003, 4(8): 225.
[8] Hu JG, Igarashi A, Kamata M, Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer Amyloid β-Peptide (A β); retards A β aggregation, deposition, fibril formation; and inhibits cytotoxicity. Journal of Biological Chemistry, 2001, 276(51): 47863–47868.

[9] Kondoh G, Tojo H, Nakatani Y, et al. Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nature Medicine, 2005, 11: 160–166.

[10] Morshed M, Khan H, Akhteruzzaman S. Association between Angiotensin I-converting enzyme gene polymorphism and hypertension in selected individuals of the Bangladeshi population. Journal of Biochemistry and Molecular Biology, 2002, 35: 25–254.

[11] Agachan B, Isbir T, Yilmaz H, et al. Angiotensin converting enzyme I/D, Angiotensinogen T174M-M235T and angiotensin II type 1 receptor A1166C gene polymorphisms in Turkish hypertensive patients. Experimental and Molecular medicine, 2003, 35(6): 545–549.

[12] Ohira N, Matsumoto T, Tamaki S, et al. Angiotensin-converting enzyme insertion/deletion polymorphism modulates coronary release of tissue plasminogen activator in response to bradykinin. Hypertens Research, 2004, 27(1): 39–45.

[13] Iwai N, Tamaki S, Ohmichi N, et al. The 11 genotype of the angiotensin-converting enzyme gene delays the onset of acute coronary syndromes. Arterioscler Thromb Basic Biol, 1997, 17: 1730–1733.

[14] Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin - converting enzyme. Journal of Biological Chemistry, 2000, 275(43): 33238–33243.

[15] Guo XQ, Mit K, Okano K, et al. Isolation and expression of the ecdysteroid - inducible angiotensin-converting enzyme - related gene in wing discs of Bombyx mori. Insect Biochemistry and Molecular Biology, 2001, 31: 97–103.

[16] Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase(ACE2) converts angiotensin I to angiotensin1-9. Circulation research, 2000, 87: 1–9.

[17] Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homolog ACE2 and nephrilysin in angiotensin peptide metabolism. Biochem J, 2004, 383: 45–51.

[18] Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS corona-