Dacryology Update

Lacrimal canaliculitis

Jill Zaveri, MD; Adam J. Cohen, MD

Abstract

Canaliculitis is an uncommon, often misdiagnosed diagnosis because canaliculitis can mimic many other common ocular conditions. Canaliculitis should be appropriately diagnosed and treated to avoid recurrent inflammation and possible obstruction of the upper portion of the lacrimal system. This review will serve as a concise resource to aid in diagnosis and provide updated management options.

Keywords: Canaliculitis, Canaliculiths, Canaliculotomy, Epiphora, Actinomyces israelii

Introduction

Canaliculitis is an inflammation of the lacrimal canaliculi caused by infection or as a complication of punctal plug insertion. It is often misdiagnosed leading to a delay in diagnosis. Thus, this diagnosis is the one that should be thought of as a potential etiology in various scenarios. We present a concise survey on clinical features, microbiological profile, workup, diagnosis, treatment outcome and recommendations for both primary and secondary canaliculitis.

Clinical features

Canaliculitis is generally a unilateral condition. Symptoms associated with primary and secondary canaliculitis include epiphora, conjunctivitis, eyelid mattering, a swollen, pouting punctum, or purulent discharge. Other findings include sulfur granules or canaliculiths extruded from the punctum via massage or discovered during canaliculotomy. Additional findings with cases of secondary canaliculitis include an inflammatory mass projecting from the punctum or intermittent blood-stained tears. Canaliculitis should be considered as a possible etiology with persistent or recurrent eyelid lesions, chalazia, or abscesses.

Diagnosis, pathology, and culture

Aside from clinical findings, isolation of the causative organism via culture or histology of concretions, punctal discharge, or tears should be attempted. Microbiologic studies include aerobic and anaerobic cultures. In recurrent cases with negative cultures, fungal and mycobacterial cultures may also be done. Actinomyces israelii is classically cited as the most common causative organism of canaliculitis.

Received 4 November 2013; accepted 4 November 2013; available online 13 November 2013.

© 2013 Saudi Ophthalmological Society, King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sjopt.2013.11.003
strepseudococcal11,21 and staphylococcal7,12,17 species as causative organisms. Branching filaments during Gram staining are characteristic of Actinomyces species, albeit culturing of Actinomyces is difficult. This difficulty may be secondary to Actinomyces’ anaerobic nature or the propensity for a polymicrobial etiology of canaliculitis.2,8,14,22 If present, recovered canalicular concretions are often analyzed via histopathology.5,13,17,18 Characteristics of Actinomyces on histopathology include sulfur granules demonstrating filamentous gram positive bacteria.5,18 Concretions which do not grow characteristic findings of Actinomyces or other organisms may simply be sterile necrotic tissue and debris.7

Imaging

High resolution ultrasound can demonstrate canalicular changes as well as canaliculariths. These findings in patients with suspicion for canaliculitis would solidify the diagnosis.23 Data to support the use of ultrasound as a diagnostic measure are minimal at this time.

Dacrocystoscopy has been described to be useful in cases of secondary canaliculitis with migrated punctal plugs. The position of the plug can greatly affect the amount of scarring, discharge, and area of occlusion. Knowledge of plug position would aid in surgical management of migrated punctal plugs and secondary canaliculitis.19 Currently, the use of imaging in canaliculitis is not common place.

Medical management

Various types of medical management have been used to treat canaliculitis. Warm compresses, local massage, and topical and systemic antibiotics are common therapies.9 Irrigation or syringing is also used.15,22 Generally speaking, medical management, namely antibiotics, may temporarily improve symptoms, however, recurrence or persistence of disease is common.2,8,12,21,24 Obstruction may block antibiotics from eradicating bacteria from its source especially when concretions and stones are present since they can be the nidus of infection.2,10

Recurrence with medical management is also common in secondary canaliculitis. In such cases, punctal plugs may require removal.3 Antibiotics shown to have symptomatic improvements from primary and secondary canaliculitis include systemic penicillin,7 topical neomycin, polymyxin, or bacitracin.7 Syringing via antibiotics such as cefazolin has also been noted to be successful.22 If possible pharmacological choice should be dictated by culture and isolation of causative organism.

Surgical management

Surgical management is generally considered a definitive treatment for canaliculitis.8–10,17,21 Curettage of stones after dilation of the punctum is a method that is generally effective in primary canaliculitis. Punctoplasty can be performed to allow passage of curette; however, one study concluded that dilation alone was sufficient to allow passage of curette.10 Topical antibiotic therapy with punctoplasty and canalicular curettage is considered the gold standard of treatment because punctal dilation with expression of drainage and canaliculariths alone often leads to persistence or recurrence of disease.7

Canaliculotomy while more invasive, allows more direct access to the canalculus. Canalicularity involves use of a local anesthetic and a horizontal incision through the posterior surface of the canalculus. Surrounding necrotic epithelium8 and stones are removed with curettage, sent for histopathologic and microbiologic studies, and the canalculus can be irrigated with antibiotic solution.13 The incision made can be left open or closed with or without stent placement depending on the patient.17 The majority of patients with primary canaliculitis treated with canalicularotomy report complete resolution.8,9,12 Complications of the surgery include scarring and dysfunction of the lacrimal pump,25 the need for intubation or stent placement, recurrent infection, or need for reoperation.11,13,26 Additionally strictures, obstruction, continued epiphora, and malfunctioning after canalicularotomy have been reported.17 In contrast to canalicular strictures, canalicular dilation may also develop.

Recent studies reviewed techniques, such as canaliculoplasty with intubation to avoid post-canalicularotomy sequelae. This technique successfully cures the disease process, avoids risk of scarring of the lacrimal system sometimes caused by punctotomy/canalicularotomy, and prevents stasis in the canalicular system that can lead to recurrence.25 Another successful technique involves punctum sparing canalicularotomy with monocalicular intubation in treating canaliculitis. The goal of this method is to offer an alternative that may avoid punctal trauma and scarring leading to more normal post-procedure canaliculicular anatomy.27

Treatment of secondary canaliculitis includes broad spectrum topical and oral antibiotics as well as removal of...
plug. The manufacturer of SmartPlug™ (Medennium, Inc., Irvine, CA, USA) also recommends irrigation of the nasolacrimal duct which has been shown to aid in resolution of secondary canaliculitis. Irrigation without removal of plug may lead to obstruction more distally in the nasolacrimal pathway with potential for more permanent obstruction. In one subset of punctal plug users, all patients who were diagnosed with canaliculitis required canaliculotomy and punctal plug extraction. Thus, if conservative management fails to lead to resolution, canaliculotomy with removal of plug can be performed similar to the procedure noted for primary canaliculitis. Dacryocystorhinostomy with intubation or placement of Jones tubes are more invasive options.

Prognosis

Many factors may affect long term resolution of primary canaliculitis including low index of suspicion which can delay appropriate diagnosis and management of canaliculitis. As with many conditions, management progresses from medical to surgical with the aim to achieve the resolution of the condition for the patient in the least invasive fashion possible. Conservative methods can initially be a successful albeit recurrence rates in the literature are noted as high as 33% with medical management alone versus recurrence of 16% in the surgical intervention group.

In secondary canaliculitis, conservative measures generally do not result in complete resolution. Thus, definitive therapy is canaliculotomy with plug removal. Patients who have punctal plugs placed should be made aware of this risk prior to placement.

Summary

Epiphora, chronic or recurrent unilateral conjunctivitis, pouting punctum, yellow discharge or canaliculiths are all presentations of canaliculitis. If discharge or concretions are present, microbiological or histopathological investigation should be conducted from expressed materials. The utility of various imaging is being further investigated. First line treatment is conservative medical therapy with more invasive therapy reserved for conservative treatment failure. Canaliculotomy is ultimately considered the definitive therapy for both primary and secondary canaliculitis.

Conflict of interest

The authors declared that there is no conflict of interest.

References

1. Baldursdottir E, Sigurdsson H, Jonasson L, et al. Actinomycotic canaliculitis: resolution following surgery and short topical antibiotic treatment. Acta Ophthalmol 2010;88(3):367–70.
2. Hussain I, Bonshek RE, Loudon K, et al. Canalaricular infection caused by Actinomyces. Eye (Lond) 1993;7(Pt 4):542–4.
3. Management of complications after insertion of the SmartPlug punctal plug: a study of 28 patients. Ophthalmology 2006;113(10):1859.
4. Mazow ML, McCall T, Prager TC. Lodged intracanalicular plugs as a cause of lacrimal obstruction. Ophthalm Plast Reconstr Surg 2007;23:138–42.
5. Scheepers M, Pearson A, Michaelides M. Bilateral canaliculitis following SmartPlug insertion for dry eye syndrome post LASIK surgery. Graefes Arch Clin Exp Ophthalmol 2007;245:895–7.
6. Fulmer NL, Neale JG, Bussard GM, et al. Lacrimal canaliculitis. Am J Emerg Med 1999;17:385–6.
7. Kaliki S, Ali MJ, Honavar SG, et al. Primary canaliculitis: clinical features, microbiological profile, and management outcome. Ophthal Plast Reconstr Surg 2012;28:355–60.
8. Briscoe D, Edelstein E, Zacharopoulos I, et al. Actinomyces canaliculitis: diagnosis of a masquerading disease. Graefes Arch Clin Exp Ophthalmol 2004;242:682–6.
9. Demant E, Hurwitz JJ. Canaliculitis: review of 12 cases. Can J Ophthalmol 1990;15:73–5.
10. Pavlack MA, Fruhe BR. Through curettage in the treatment of chronic canaliculitis. Arch Ophthalmol 1992;110:200–2.
11. Zaldivar RA, Bradley EA. Primary canaliculitis. Ophthalm Plast Reconstr Surg 2009;25:481–4.
12. Anand S, Hollingsworth K, Kumar V, et al. Canaliculitis: the incidence of long-term epiphora following canaliculotomy. Orbit 2004;23:19–26.
13. Lee MJ, Choung HK, Kim NJ, et al. One-snip punctoplasty and canalaricular curettage through the punctum: a minimally invasive surgical procedure for primary canaliculitis. Ophthalmology 2009;116(2009–2010):e2022.
14. Park A, Morgenstern KE, Kahwash SB, et al. Pediatric canaliculitis and stone formation. Ophthalm Plast Reconstr Surg 2004;20:243–6.
15. Fowler AM, Dutton JJ, Fowler WC, et al. Mycobacterium chelonae canaliculitis associated with SmartPlug use. Ophthalm Plast Reconstr Surg 2008;24:241–3.
16. Almalotis D, Nakos E, Siempsi T, et al. A para-canalaricular abscess resembling an inflamed chalazion. Case Rep Ophthalmal Med 2013;1–3.
17. Vecsei VP, Huber–Spitz V, Arocker–Mettinger E, Steinkogler FJ. Canaliculitis: difficulties in diagnosis, differential diagnosis and comparison between conservative and surgical treatment. Ophthalmologica 1994;208:314–7.
18. Sathananthan N, Sullivan TJ, Rose GE, et al. Intubation dacrocystography in patients with a clinical diagnosis of chronic canaliculitis ("streptothrix"). Br J Radiol 1993;66:389–93.
19. Takahashi Y, Iwaki M, Nakamura Y, et al. Dacryoendoscopic findings of intracanalicular punctal plug migration with or without canaliculitis. Ophthalm Plast Reconstr Surg 2013;29:128–30.
20. Sullivan TJ, Hakin KN, Sathananthan N, et al. Chronic canaliculitis. Aust NZ J Ophthalmol 1993;21:273–4.
21. Lin SC, Kao SC, Tsai CC, et al. Clinical characteristics and factors associated the outcome of lacrimal canaliculitis. Acta Ophthalmol 2011;89:759–63.
22. Mohan ER, Kabra S, Udhay P, et al. Intracanalicular antibiotics may obviate the need for surgical management of chronic suppurative canaliculitis. Indian J Ophthalmol 2008;56:338–40.
23. Tost F, Bruder R, Clemens S. Clinical diagnosis of chronic canaliculitis by 20-MHz ultrasound. Ophthalmologica 2000;214:455–6.
24. Hill 3rd RH, Norton SW, Bersoni TA. Prevalence of canaliculitis requiring removal of SmartPlugs. Ophthalm Plast Reconstr Surg 2009;25:437–9.
25. Yuksel D, Hazirolan D, Sungur G, et al. Actinomyces canaliculitis and its surgical treatment. Int Ophthalmal 2012;32:183–6.
26. Hwang SW, Khwarg SI, Kim JH, et al. Bicanalicular double silicone intubation in external dacryocystorhinostomy and canaliculoplasty for distal canalicular obstruction. Acta Ophthalmol 2009;87:438–42.
27. Mancini R, Mancini J, Mancini R. Punctum-sparring canaliculotomy for the treatment of canaliculitis. Ophthal Plast Reconstr Surg 2012;28:63–5.
28. Freedman JR, Markert MS, Cohen AJ. Primary and secondary lacrimal canaliculitis: a review of literature. Surv Ophthalmol 2011;56:336–47.