Entanglement negativity in extended systems: a field theoretical approach

Pasquale Calabrese1, John Cardy2,3 and Erik Tonni4

1 Dipartimento di Fisica dell’Università di Pisa and INFN, Pisa, Italy
2 Oxford University, Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK
3 All Souls College, Oxford, UK
4 SISSA and INFN, via Bonomea 265, I-34136 Trieste, Italy
E-mail: calabres@df.unipi.it, j.cardy1@physics.ox.ac.uk and erik.tonni@sissa.it

Received 24 October 2012
Accepted 9 December 2012
Published 1 February 2013

Abstract. We report on a systematic approach for the calculation of the negativity in the ground state of a one-dimensional quantum field theory. The partial transpose $\rho_A^{T_2}$ of the reduced density matrix of a subsystem $A = A_1 \cup A_2$ is explicitly constructed as an imaginary-time path integral and from this the replicated traces $\text{Tr}(\rho_A^{T_2})^n$ are obtained. The logarithmic negativity $\mathcal{E} = \log \|\rho_A^{T_2}\|$ is then the continuation to $n \to 1$ of the traces of the even powers. For pure states, this procedure reproduces the known results. We then apply this method to conformally invariant field theories (CFTs) in several different physical situations for infinite and finite systems and without or with boundaries. In particular, in the case of two adjacent intervals of lengths ℓ_1, ℓ_2 in an infinite system, we derive the result $\mathcal{E} \sim (c/4) \ln(\ell_1 \ell_2/\ell_1 + \ell_2)$, where c is the central charge. For the more complicated case of two disjoint intervals, we show that the negativity depends only on the harmonic ratio of the four end points and so is manifestly scale invariant. We explicitly calculate the scale invariant functions for the replicated traces in the case of the CFT for the free compactified boson, but we have not so far been able to obtain the $n \to 1$ continuation for the negativity even in the limit of large compactification radius. We have checked all our findings against exact numerical results for the harmonic chain which is described by a non-compactified free boson.

Keywords: conformal field theory (theory), spin chains, ladders and planes (theory), entanglement in extended quantum systems (theory)

ArXiv ePrint: 1210.5359
Entanglement negativity in extended systems

Contents

1. Introduction 3
 1.1. Setup and notations 5

2. A replica approach for the negativity 5
 2.1. Replicas and entanglement entropy 5
 2.2. Replicas and negativity 6
 2.3. Integer powers of the partial transpose and the negativity of a pure state 7

3. Negativity and quantum field theory 8
 3.1. The reduced density matrix and the entanglement entropy in QFT 8
 3.2. The partial transposition and the negativity in QFT 10
 3.3. The case of two adjacent intervals 11
 3.4. The case of a single interval 11

4. Negativity and conformal invariance: general results 12
 4.1. A single interval 13
 4.2. Two adjacent intervals 13
 4.3. Finite systems 14

5. Negativity for two disjoint intervals in a CFT 15
 5.1. The limit of two very close intervals: $y \to 1$ 16
 5.2. The limit of two very far intervals: $y \to 0$ 17
 5.3. The function $F_n(x)$ for $0 < x < 1$ 17
 5.4. The function $G_n(y)$ and the negativity for a non-compactified boson 18
 5.4.1. The analytic continuation in the limit of close intervals 20
 5.5. The function $G_n(y)$ and the negativity for the compactified boson 22
 5.5.1. Invariance of $F_n(x, \bar{x})$ for $x \leftrightarrow 1 - x$ and for $\eta \leftrightarrow 1/\eta$ 27
 5.5.2. The special case $n = 2$ for the compactified boson 28

6. Systems with boundaries 29

7. The harmonic chain 31
 7.1. Diagonalization and correlation functions of the harmonic chain with periodic boundary conditions 31
 7.2. Diagonalization and correlation functions of the harmonic chain with Dirichlet boundary condition 33
 7.3. The reduced density matrix and its partial transpose 33
 7.4. The negativity for one interval 35
 7.5. The negativity for two adjacent intervals in periodic chains 37
 7.6. The negativity for two disjoint intervals in the periodic chain 39
 7.7. Tripartite chains with Dirichlet boundary in the origin 42

8. Some scaling considerations for massive theories 42

doi:10.1088/1742-5468/2013/02/P02008
1. Introduction

The study of the entanglement content of many-body quantum systems has allowed in recent years a deeper understanding of these systems, in particular in connection with criticality and topological order (see [1] for reviews). In the case when a system is in its ground state (or any given pure state) the entanglement between two complementary parts is measured by the entanglement entropies defined as follows. Let ρ be the density matrix of a system, which we take to be in a pure quantum state $|\Psi\rangle$, so that $\rho = |\Psi\rangle\langle\Psi|$. Let the Hilbert space be written as a direct product $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. The reduced density matrix of A is $\rho_A = \text{Tr}_B \rho$. The entanglement entropy is the corresponding von Neumann entropy

$$S_A = -\text{Tr} \rho_A \ln \rho_A,$$

and analogously for S_B. When ρ corresponds to a pure quantum state $S_A = S_B$. Other standard measures of bipartite entanglement in pure states are the Rényi entropies

$$S_A^{(n)} = \frac{1}{1-n} \ln \text{Tr} \rho_A^n,$$

which also satisfy $S_A^{(n)} = S_B^{(n)}$ whenever ρ corresponds to a pure quantum state. From these definitions $S_A = \lim_{n \to 1} S_A^{(n)}$. All $S_A^{(n)}$ for any n and for pure states are entanglement monotones [2], i.e. are quantities which do not increase under LOCC (local operation and classical communication), which is a key property of any quantity to be a good measure of entanglement. The knowledge of the Rényi entropies for any n determines also the full spectrum of the reduced density matrix [3].

For a mixed state the entanglement entropies are no longer good measures of entanglement since they mix quantum and classical correlations (e.g. in an high temperature mixed state, S_A gives an extensive result for the thermal entropy that has nothing to do with entanglement). This is also evident from the fact that S_A is no longer equal to S_B. A quantity that is easily constructed from $S_A^{(n)}$ and $S_B^{(n)}$ is the (Rényi) mutual information, defined as

$$I_{AB}^{(n)} = S_A^{(n)} + S_B^{(n)} - S_{A\cup B}^{(n)},$$

which by definition is symmetric in A and B. However, $I_{AB}^{(n)}$ does not have all the correct properties to be an entanglement measure and indeed it is not an entanglement monotone for any n (for example, it has been shown that for most of separable mixed states it is non-zero [4]).

This has also importance for a system in a pure state, but if one is interested into the entanglement between two non-complementary parts A_1 and A_2. Indeed, generically the union $A_1 \cup A_2$ is in a mixed state with density matrix $\rho_{A_1 \cup A_2} = \text{Tr}_B \rho$, with B the complement of $A_1 \cup A_2$. As a matter of fact, the converse is also true: any mixed state
Entanglement negativity in extended systems

can be obtained by tracing out some degrees of freedom from a properly defined larger system, a procedure called purification (see e.g. [5]).

A proper definition of the bipartite entanglement for a general mixed state (or equivalently the tripartite entanglement in a pure state) has been long a problem because most of the proposed measures rely on algorithms rather than explicit expressions and are therefore hard to evaluate analytically (see e.g. [1, 4, 6, 7]). However a computable measurement of entanglement, called negativity, has been introduced in a seminal work by Vidal and Werner [8]. They also showed how the negativity provides bounds on a few operationally well-defined measures of entanglement (such as distillable entanglement or teleportation fidelity). The precise meaning of the negativity in quantum information has indeed been established in [8], but the main reason for its success is a practical one: the negativity is obtained from any mixed state by computing a partial transposition and then diagonalizing a matrix, while we still do not know generically how to compute any other mixed-state entanglement measures.

Following [8], the negativity is defined as follows. Let us consider a density matrix \(\rho \) corresponding to a given mixed or pure state acting on a Hilbert space \(\mathcal{H} \). Let us consider the bipartition \(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \) and let us denote by \(|e_i^{(1)}\rangle \) and \(|e_j^{(2)}\rangle \) two arbitrary bases in the Hilbert spaces of each part. The partial transpose (e.g. with respect to the second space) of \(\rho \) is defined as

\[
\langle e_i^{(1)} e_j^{(2)}| \rho^T_2 | e_k^{(1)} e_l^{(2)}\rangle = \langle e_i^{(1)} e_l^{(2)}| \rho | e_k^{(1)} e_j^{(2)}\rangle,
\]

and then the logarithmic negativity as

\[
\mathcal{E} \equiv \ln \|\rho^T_2\| = \ln \text{Tr}|\rho^T_2|,
\]

where the trace norm \(\|\rho^T_2\| \) is the sum of the absolute values of the eigenvalues \(\lambda_i \) of \(\rho^T_2 \).

In [8], another measure, termed simply negativity, has also been introduced, given by

\[
\mathcal{N} \equiv \frac{\|\rho^T_2\| - 1}{2},
\]

which is trivially related to \(\mathcal{E} \) as \(\mathcal{N} = (e^\mathcal{E} - 1)/2 \). However, \(\mathcal{E} \) is additive, while \(\mathcal{N} \) is not, and for this reason we will concentrate in the following on \(\mathcal{E} \), from which \(\mathcal{N} \) can be trivially derived. When the two parts are two microscopic degrees of freedom (e.g. spins), the negativity is equivalent to other commonly used entanglement estimators such as the concurrence [1, 9]. However, the definition of the negativity is more appealing because it is independent of basis and so calculable by quantum field theory (QFT), which naturally unveils universal features, in particular close to a quantum critical point. For 1D critical theories, which at low energy are also Lorentz invariant, the powerful tools of conformal field theory (CFT) can be applied.

The fact that the negativity is computable made it a remarkable tool to study the tripartite entanglement content of many-body quantum systems both in their ground state [10]–[15] or out of equilibrium [16, 17]. Some studies for the bipartite entanglement at finite temperature have been presented as well [18]–[20]. However, just recently in a short communication [21] we carried out a more systematic and generic approach to negativity based on QFT (and, in particular, CFT). In the following we give detailed derivations of all the results announced in [21] and report some other new findings.
1.1. Setup and notations

In this manuscript we consider only the entanglement, measured by the negativity, in the ground state of one-dimensional systems (1D), although some derivations have a more general validity. We focus on the tripartitions depicted in figure 1, i.e. the entire system is divided into three parts \(A_1, A_2 \) and \(B \) and we consider the entanglement between \(A_1 \) and \(A_2 \), whose union is generically denoted with \(A \). As usual, the reduced density matrix of \(A \) is \(\rho_A = \text{Tr}_B \rho \). In order to lighten the notation, we will denote as \(\rho_1 \) and \(\rho_2 \) as the reduced density matrices corresponding to \(A_1 \) and \(A_2 \) respectively, i.e.

\[
\rho_1 \equiv \rho_{A_1} = \text{Tr}_{A_2} (\rho_A) = \text{Tr}_{B \cup A_2} (\rho),
\]

\[
\rho_2 \equiv \rho_{A_2} = \text{Tr}_{A_1} (\rho_A) = \text{Tr}_{B \cup A_1} (\rho).
\]

Also the partial transpose with respect to the degrees of freedom of \(A_1 \) and \(A_2 \) will simply be denoted with the superscripts \(T_1 \) and \(T_2 \) respectively, i.e.

\[
\rho_A^{T_2} \equiv \rho_{A_2}^{T_2}, \quad \text{and} \quad \rho_A^{T_1} \equiv \rho_{A_1}^{T_1}.
\]

2. A replica approach for the negativity

2.1. Replicas and entanglement entropy

One of the most successful approaches to calculate the entanglement entropy for a bipartite system is based on the replica trick [22], which proceeds as follows. One first calculates the traces of integer powers of the reduced density matrix

\[
\text{Tr} \rho_2^n = \sum_i \zeta_i^n,
\]

where \(\zeta_i \) are the eigenvalues of the reduced density matrix \(\rho_2 \). Then, if one is able to analytically continue this expression to general complex \(n \), the entanglement entropy is
given by
\[S_{A_2} = -\lim_{n \to 1} \frac{\partial}{\partial n} \ln \text{Tr} \rho_2^n = \lim_{n \to 1} \frac{1}{1 - n} \ln \text{Tr} \rho_2^n. \] (11)

It has been shown [22, 23] that, for integer \(n \), \(\text{Tr} \rho_2^n \) is a partition function on a complicated Riemann surface (or equivalently the correlation function of specific twist fields, as we shall review later) that is analytically achievable in a quantum field theory. The analytical properties of \(\text{Tr} \rho_2^n \) in the complex plane of replicas are also discussed in [24, 25].

2.2. Replicas and negativity

A natural way to use a replica trick to compute the negativity would be to relate it to the traces of integer powers of \(\rho^{T_2} \). The trace norm of \(\rho^{T_2} \) can be written in terms of its eigenvalues \(\lambda_i \) as
\[
\text{Tr}(\rho^{T_2}) = \sum_i |\lambda_i| = \sum_{\lambda_i > 0} |\lambda_i| + \sum_{\lambda_i < 0} |\lambda_i| = 1 + 2 \sum_{\lambda_i < 0} |\lambda_i|, \] (12)

where in the last equality we used the normalization \(\sum \lambda_i = 1 \). This expression makes evident that the negativity measures ‘how much’ the eigenvalues of the partial transpose of the density matrix are negative, a property which is the reason for the name negativity.

The traces \(\text{Tr}(\rho^{T_2})^n \) of integer powers of \(\rho^{T_2} \) have a difference dependence on \(|\lambda_i| \) depending on the parity of \(n \). In the following we will always indicate an even \(n = 2m \) as \(n_e \) and an odd one \(n = 2m + 1 \) with \(n_o \). It is understood that \(n_e \) and \(n_o \) refer always to the same thing, it is just the functional dependence of the traces which is different. In fact, for \(n \) even and odd, the traces of integer powers of \(\rho^{T_2} \) are
\[
\text{Tr}(\rho^{T_2})^{n_e} = \sum_{\lambda_i > 0} \lambda_i^{n_e} = \sum_{\lambda_i > 0} |\lambda_i|^{n_e} + \sum_{\lambda_i < 0} |\lambda_i|^{n_e}, \] (13)
\[
\text{Tr}(\rho^{T_2})^{n_o} = \sum_{\lambda_i > 0} \lambda_i^{n_o} = \sum_{\lambda_i > 0} |\lambda_i|^{n_o} - \sum_{\lambda_i < 0} |\lambda_i|^{n_o}. \] (14)

If now we just set \(n_e = 1 \) in equation (13) we formally obtain \(\text{Tr}(\rho^{T_2}) \), in which we are interested. Oppositely, setting \(n_o = 1 \) in equation (14) gives the normalization \(\text{Tr}\rho^{T_2} = 1 \). This means that the analytic continuations from even and odd \(n \) are different and the trace norm in which we are interested is obtained by considering the analytic continuation of the even sequence at \(n_e \to 1 \), i.e.
\[
\mathcal{E} = \lim_{n_e \to 1} \ln \text{Tr}(\rho^{T_2})^{n_e}. \] (15)

We should also mention that as \((\rho^{T_2})^T = \rho^{T_1} \), it trivially holds that \(\text{Tr}(\rho^{T_2})^n = \text{Tr}(\rho^{T_1})^n \) for any \(n \), even non-integer.

At first, this approach can seem rather unnatural because what we are doing is basically proposing to calculate a quantity for even numbers and at the end set this even number to 1, which is instead odd. However, similar replica calculations have already been successfully applied to other different physical problems [26, 27], showing the reasonableness of the approach.

doi:10.1088/1742-5468/2013/02/P02008
2.3. Integer powers of the partial transpose and the negativity of a pure state

As a first example and check of the replica trick, we consider the case of a bipartition of the Hilbert spaces $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ of a pure state $|\Psi\rangle$ with $\rho = |\Psi\rangle\langle\Psi|$, for which the negativity is known [8]. The Schmidt decomposition, in terms of two bases $|\epsilon_k^{(1)}\rangle$ and $|\epsilon_k^{(2)}\rangle$ in the Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 respectively, gives

$$|\Psi\rangle = \sum_j c_j |\epsilon_j^{(1)}\rangle |\epsilon_j^{(2)}\rangle$$

(16)

where the coefficient c_j can be chosen such that $c_j \in [0,1]$. We also have

$$\rho = \sum_{j,k} c_j c_k |\epsilon_j^{(1)}\rangle \langle\epsilon_k^{(1)}| |\epsilon_j^{(2)}\rangle \langle\epsilon_k^{(2)}|,$$

(17)

$$\rho_2 = \text{Tr}_1(\rho) = \sum_j c_j^2 |\epsilon_j^{(2)}\rangle \langle\epsilon_j^{(2)}|,$$

where ρ_2 is the reduced density matrix on \mathcal{H}_2.

The partial transpose of the density matrix is then

$$\rho^{T_2} = \sum_{j,k} c_j c_k |\epsilon_j^{(1)}\rangle \langle\epsilon_k^{(1)}| |\epsilon_j^{(2)}\rangle \langle\epsilon_k^{(2)}|,$$

(18)

whose nth power reads

$$(\rho^{T_2})^n = \sum_{j_1,\ldots,j_n,k_1,\ldots,k_n} c_{j_1} c_{k_1} c_{j_2} c_{k_2} \cdots c_{j_n} c_{k_n}$$

$$\times |\epsilon_{k_1}^{(1)}\rangle \langle\epsilon_{j_1}^{(1)}| |\epsilon_{k_2}^{(1)}\rangle \langle\epsilon_{j_2}^{(1)}| |\epsilon_{j_1}^{(2)}\rangle \langle\epsilon_{k_2}^{(2)}| \cdots |\epsilon_{k_n}^{(1)}\rangle \langle\epsilon_{j_n}^{(1)}| |\epsilon_{j_2}^{(2)}\rangle \langle\epsilon_{k_2}^{(2)}| \cdots |\epsilon_{j_1}^{(2)}\rangle \langle\epsilon_{k_1}^{(2)}|$$

(19)

The sequence of deltas gives a result which depends on the parity of n

$$(\rho^{T_2})^n = \begin{cases} \sum_{j_1,k_1} c_{j_1}^{2n_\text{e}} c_{k_1}^{n_\text{o}} |\epsilon_{k_1}^{(1)}\rangle \langle\epsilon_{j_1}^{(1)}| |\epsilon_{j_1}^{(2)}\rangle \langle\epsilon_{k_1}^{(2)}|, & n = n_\text{o} \text{ odd}, \\
\sum_{j_1,k_1} c_{j_1}^{n_\text{o}} c_{k_1}^{2n_\text{e}} |\epsilon_{k_1}^{(1)}\rangle \langle\epsilon_{j_1}^{(1)}| |\epsilon_{j_1}^{(2)}\rangle \langle\epsilon_{k_1}^{(2)}|, & n = n_\text{e} \text{ even}, \end{cases}$$

(20)

from which

$$\text{Tr}(\rho^{T_2})^n = \begin{cases} \sum_r c_r^{2n_\text{o}} = \text{Tr} \rho_2^{2n_\text{o}}, & n = n_\text{o} \text{ odd}, \\
\left[\sum_r c_r^{n_\text{e}}\right]^2 = (\text{Tr} \rho_2^{n_\text{e}/2})^2, & n = n_\text{e} \text{ even}. \end{cases}$$

(21)

Notice in particular that

$$\text{Tr}(\rho^{T_2})^2 = \text{Tr}(\rho^{T_2}) = 1.$$

(22)

Taking the limit $n_\text{e} \to 1$, we recover the result [8] that, for a pure state, the logarithmic negativity is the Rényi entropy of order 1/2 (cf equation (2) with $n = 1/2$).
Figure 2. Top: the reduced density matrix ρ_A of two disjoint intervals. Middle: partial transpose with respect to the second interval $\rho_A^{T_2}$. Bottom: reversed partial transpose $\rho_A^{C_2} = C\rho_A^{T_2}C$, where C reverses the order of the row and column indices.

$$E = S_{A_2}^{(1/2)} = 2 \ln \text{Tr} \rho_2^{1/2}. \quad (23)$$

Taking instead the limit $n_o \to 1$, we recover the normalization $\text{Tr}(\rho^{T_2}) = \text{Tr} \rho_2 = 1$.

3. Negativity and quantum field theory

In this section we show how to compute for a generic tripartition of a 1D quantum field theory the integer traces of the partial transpose of the reduced density matrix and from these, via the replica trick, the logarithmic negativity. For concreteness we will only consider the tripartition of a 1D system depicted in figure 1 with A composed of two parts $A = A_1 \cup A_2 = [u_1, v_1] \cup [u_2, v_2]$ and B the remainder, but most of the following ideas apply to more general cases (e.g. A_1 and A_2 each made of several disjoint intervals). In order to introduce the general formalism for the negativity, we first review in the next subsection the path integral approach to the entanglement entropy [22, 23] and the use of the twist fields [22, 24].

3.1. The reduced density matrix and the entanglement entropy in QFT

The density matrix ρ in a thermal state at temperature $T = 1/\beta$ may be written as a path integral in the imaginary-time interval $(0, \beta)$

$$\rho(\{\phi_x\}|\{\phi'_x\}) = Z^{-1} \int [d\phi(y, \tau)] \prod_x \delta(\phi(y, 0) - \phi'_x) \prod_x \delta(\phi(y, \beta) - \phi_x) e^{-S_E}, \quad (24)$$

where $Z = \text{Tr} e^{-H/T}$ is the partition function and S_E is the Euclidean action. Here the rows and columns of the density matrix are labeled by the values of the fields $\{\phi_x\}$ at $\tau = 0, \beta$. The normalization factor Z ensures $\text{Tr} \rho = 1$, and is found by setting $\{\phi_x\} = \{\phi'_x\}$ and integrating over these variables. In the path integral, this has the effect of sewing together the two edges to form a cylinder of circumference β.

Now let us consider the subsystem A in figure 1 composed of two parts $A = A_1 \cup A_2 = [u_1, v_1] \cup [u_2, v_2]$. The reduced density matrix ρ_A is obtained from (24) by sewing together only those points x which are not in A. This has the effect of leaving two open cuts, one for each interval (u_j, v_j), along the line $\tau = 0$. In the limit of zero temperature, i.e. for the ground state of the QFT, the cylinder becomes a plane, as in figure 2 (top) where the two open cuts correspond to the rows and columns of ρ_A and the orientation of the arrows gives the ordering of the row/column indices, e.g. increasing along the directions of the arrows.
Entanglement negativity in extended systems

Figure 3. The path integral representation of $\text{Tr}\rho^n_A$ gives a n-sheeted Riemann surface \mathcal{R}_n depicted here for $n = 3$ and $A = [u_1, v_1] \cup [u_2, v_2]$.

We may then compute $\text{Tr}\rho^n_A$, for any positive integer n, by making n copies of the above, labeled by an integer j with $1 \leq j \leq n$, and sewing them together cyclically along the cuts so that $\phi_j(x, \tau = 0^-) = \phi_{j+1}(x, \tau = 0^+)$ and $\phi_n(x, \tau = 0^-) = \phi_1(x, \tau = 0^+)$ for all $x \in A$. This defines the n-sheeted Riemann surface \mathcal{R}_n depicted for $n = 3$ in figure 3. Denoting with $Z_{\mathcal{R}_n}$ the partition function on this surface we have

$$
\text{Tr}\rho^n_A = \frac{Z_{\mathcal{R}_n}}{Z^n}.
$$

(25)

This expression gives the Rényi entropies in equation (2) for integer n and through the analytic continuation the entanglement entropy in equation (1).

As a consequence of its locality, the partition function can be expressed as an object calculated on the complex plane \mathbb{C}, where the structure of the Riemann surface is implemented through appropriate boundary conditions around the points with non-zero curvature, i.e. the partition function in a theory defined on the complex plane $z = x + i\tau$ should be written in terms of certain ‘fields’ at $z = v_j$ and u_j. The partition function (here $\mathcal{L}[\phi](z, \bar{z})$ is the Lagrangian density)

$$
Z_{\mathcal{R}_n} = \int [d\phi]_{\mathcal{R}_n} \exp \left[-\int_{\mathcal{R}_n} dz \, d\bar{z} \, \mathcal{L}[\phi](z, \bar{z}) \right],
$$

(26)

essentially defines these fields. Following [24], it is useful to move the topology of the world sheet (i.e. the space where the coordinates x, τ lie) \mathcal{R}_n to the target space (i.e. the space where the fields lie). To this aim, let us consider a model formed by n independent copies of the original model. The partition function (26) can be rewritten as the path integral on the complex plane

$$
Z_{\mathcal{R}_n} = \int_{C_{u_i, v_j}} [d\phi_1 \cdots d\phi_n]_{\mathbb{C}} \exp \left[-\int_{\mathbb{C}} dz \, d\bar{z} \left(\mathcal{L}[\phi_1](z, \bar{z}) + \cdots + \mathcal{L}[\phi_n](z, \bar{z}) \right) \right],
$$

(27)

where with $\int_{C_{u_i, v_j}}$ we indicated the restricted path integral with conditions

$$
C_{u_i, v_j} : \quad \phi_i(x, 0^+) = \phi_{i+1}(x, 0^-), \quad x \in [u_1, v_1] \cup [u_2, v_2], \quad i = 1, \ldots, n,
$$

(28)

where $n + i \equiv i$. The Lagrangian density of the multi-copy model is

$$
\mathcal{L}^{(n)}[\phi_1, \ldots, \phi_n](x, \tau) = \mathcal{L}[\phi_1](x, \tau) + \cdots + \mathcal{L}[\phi_n](x, \tau),
$$

(29)
so that the energy density is the sum of the energy densities of the n individual copies. Hence the expression (27) indeed defines local fields at $(u_j, 0)$ and $(v_j, 0)$ in the multi-copy model [24].

The local fields defined in (27) are examples of twist fields. Twist fields exist in a QFT whenever there is a global internal symmetry σ, i.e. \(\int dx \, d\tau \, \mathcal{L}[\sigma \phi](x, \tau) = \int dx \, d\tau \, \mathcal{L}[\phi](x, \tau) \). The twist fields defined by (27), called branch-point twist fields [24], are associated with the two opposite cyclic permutation symmetries $i \mapsto i + 1$ and $i + 1 \mapsto i$. We can denote them simply by T_n and \overline{T}_n

$$T_n \equiv T_\sigma, \quad \sigma : i \mapsto i + 1 \mod n,$$

$$\overline{T}_n \equiv T_{\sigma^{-1}}, \quad \sigma^{-1} : i + 1 \mapsto i \mod n. \quad (30)$$

\overline{T}_n can be identified with T_{-n} and $T_n^* = \overline{T}_n = 1$. Thus, for the n-sheeted Riemann surface along the set A made of the two disjoint intervals $[u_1, v_1] \cup [u_2, v_2]$, we have

$$\text{Tr} \rho_A^n = \langle T_n(u_1) \overline{T}_n(v_1) T_n(u_2) \overline{T}_n(v_2) \rangle. \quad (32)$$

In the following the subscript \mathbb{C} will be understood in the expectation values, if not differently stated.

3.2. The partial transposition and the negativity in QFT

The partial transposition of the reduced density matrix ρ_A with respect to the second interval A_2 corresponds to the exchange of row and column indices in A_2. In the path integral representation, this is equivalent to interchanging the upper and lower edges of the second cut in ρ_A, as depicted in the middle of figure 2. If we join n copies of $\rho_A^{T_2}$ cyclically, we have an n-sheeted Riemann surface where row and column indices are reversed compared to those of a correlation function of four twist fields, as should be clear from the middle of figure 2. This problem can, however, be solved very easily by reversing the order of the column and row indices in A_2, as in the bottom of figure 2, to obtain the reversed partial transpose $\rho_A^{C_2}$. This is related to the partial transpose as $\rho_A^{C_2} = C \rho_A^{T_2} C$, where C reverses the order of indices either on the lower or on the upper cut and satisfies $C^2 = 1$. Clearly $\text{Tr}(\rho_A^{T_2})^n = \text{Tr}(\rho_A^{C_2})^n$ and so $\text{Tr}(\rho_A^{T_2})^n$ is the partition function on the n-sheeted surface obtained by joining cyclically n of the above $\rho_A^{C_2}$ as in figure 4. In this case, the order of the row and column indices is the right one to identify this partition function with the four-point function of the twist fields

$$\text{Tr}(\rho_A^{T_2})^n = \text{Tr}(\rho_A^{C_2})^n = \langle T_n(u_1) \overline{T}_n(v_1) T_n(u_2) \overline{T}_n(v_2) \rangle, \quad (33)$$

i.e. the partial transposition has the net effect of exchanging two twist operators compared to equation (32). We notice that we could easily have worked out $\text{Tr}(\rho_A^{T_2})^n$ without introducing the reverse partial transpose. However, this is a very useful technical concept because it allows one to identify $\text{Tr}(\rho_A^{T_2})^n$ with the correlation function of already known and studied twist fields, without the need of introducing new fields.

For $n = 2$, $T_2 = \overline{T}_2$ and so

$$\text{Tr} \rho_A^2 = \text{Tr}(\rho_A^{T_2})^2, \quad (34)$$

which also straightforwardly follows from the properties of the trace and so it is true for any matrix ρ replacing ρ_A above.
To replace $\rho_A^{T_2}$ with $\rho_A^{C_2}$ it has been fundamental to consider integer cyclical traces. The operator C enters in quantities like $\text{Tr}(\rho_A^{T_2} \rho_A^{T_2})$, which is in fact the partition function on a non-orientable surface with the topology of a Klein bottle. This can also be computed using CFT methods [28].

3.3. The case of two adjacent intervals

Equation (33) is of general validity, but it has interesting simple and general consequences when specialized to the case of two adjacent intervals. This can be obtained by letting $v_1 \rightarrow u_2$ so that

$$\text{Tr}(\rho_A^{T_2})^n = \langle T^n(u_1) T^n(u_2) T^n(v_2) \rangle.$$ (35)

For arbitrary n, this expression cannot be evaluated in general, but two cases are easily worked out.

For $n = 2$, we have $T_2^2 = 1$ and so

$$\text{Tr}(\rho_A^{T_2})^2 = \langle T_2(u_1) T_2(v_2) \rangle = \text{Tr} \rho_{A_1 \cup A_2}.$$

This relation has been derived here from QFT methods and it would be interesting to know its general validity.

For $n = 3$, we have $T_3^3 = T_3$ and so

$$\text{Tr}(\rho_A^{T_2})^3 = \langle T_3(u_1) T_3(u_2) T_3(v_2) \rangle.$$ (37)

3.4. The case of a single interval

We now specialize to a pure state by letting $B \rightarrow \emptyset$, for which $\text{Tr}(\rho_A^{T_2})^n$ can be worked out in full generality considering $u_2 \rightarrow v_1$ and $v_2 \rightarrow u_1$

$$\text{Tr}(\rho_A^{T_2})^n = \langle T^n(u_2) T^n(v_2) \rangle.$$ (38)

This expression depends on the parity of n because T^n connects the jth sheet with the $(j + 2)$th one. For $n = n_o$ even, the n_o-sheeted Riemann surface decouples into two independent $(n_o/2)$-sheeted surfaces characterized by the parity of the sheets. Conversely for $n = n_e$ odd, the surface remains a n_o-sheeted Riemann surface (a part from a shuffling of the sheets). This is pictorially shown in figure 5. Thus we have

$$\text{Tr}(\rho_A^{T_2})^{n_e} = \langle (T_{n_e/2}(u_2) T_{n_e/2}(v_2)) \rangle^2 = (\text{Tr} \rho_{A_2}^{n_e/2})^2,$$

$$\text{Tr}(\rho_A^{T_2})^{n_o} = \langle T_{n_o}(u_2) T_{n_o}(v_2) \rangle = \text{Tr} \rho_{A_2}^{n_o},$$ (39)
Figure 5. Cut of the Riemann surface defined by \(\langle T^2_n(u_2)T^2_n(v_2) \rangle \). Left: a typical example for \(n \) even (\(n = 4 \) in the figure) showing how the surface decouples into two independent parts, each with half of the sheets. Right: a typical example for \(n \) odd (\(n = 5 \) in the figure) showing that the net effect is just a reshuffling of the sheet numeration going from \((1, 2, 3, 4, 5)\) to \((1, 3, 5, 2, 4)\).

which are the results for pure states in equation (21), recovered here purely from QFT and showing in a first simple example the effect of the parity of \(n \) on the Riemann surfaces.

4. Negativity and conformal invariance: general results

In this section we explicitly calculate the negativity for those situations in CFT where \(\text{Tr}(\rho_A^{T^2})^n \) can be fixed by global conformal invariance and so does not depend on the operator content of the theory, but only on the central charge.

Before embarking in the full negativity calculation, we should recall that \(\text{Tr}\rho_A^n \), for the case of a single interval \(A = [u_1, v_1] \), has been obtained by uniformizing the \(n \)-sheeted Riemann surface to the complex plane [22]. This shows that the twist fields transform like primary operators of dimension [22]

\[
\Delta_{T_n} = \Delta_{T^n} = \frac{c}{12} \left(n - \frac{1}{n} \right),
\]

where \(c \) is the central charge. This implies (\(\ell = |u_1 - v_1| \)) [29, 30, 22]

\[
\text{Tr}\rho_A^n = c_n \left(\frac{\ell}{a} \right)^{-c/6(n-1/n)} \Rightarrow S_A = \frac{c}{3} \ln \frac{\ell}{a} + c_1',
\]

where \(a \) is a UV cutoff (e.g. the lattice spacing) and \(c_n \) a non-universal constant, with \(c_1 = 1 \). After the normalization of the two-point function of twist fields on the plane is fixed by the constants \(c_n \), the normalizations of two-point functions in an arbitrary geometry and all other multi-point correlation functions of the twist fields are fixed and
universal. Furthermore, although non-universal, the constants c_n satisfy some universal relations (see e.g. [31]).

4.1. A single interval

Even for conformal invariant theories it is useful to specialize first to the very simple case of a reduced density matrix corresponding to a pure system, which is obtained by letting $B \to 0$. Thus, when A_2 is embedded in an infinite system, from equations (39) and (41) we have (setting $\ell = u_2 - v_2$)

$$\text{Tr}(\rho_A^{T_n})^{n_e} = \langle \langle T_{n_e/2}(u_2) T_{n_e/2}(v_2) \rangle^n_e \rangle = (\text{Tr} \rho_A^{n_e/2})^2 = c_{n_e/2}^2 \left(\frac{\ell}{a} \right)^{-c/3(n_e/2-2/n_e)},$$

(42)

and

$$\text{Tr}(\rho_A^{T_n})^{n_o} = \langle \langle T_{n_o}(u_2) T_{n_o}(v_2) \rangle^n_o \rangle = \text{Tr} \rho_A^{n_o} = c_{n_o} \left(\frac{\ell}{a} \right)^{-c/6(n_o-1/n_o)}.$$

(43)

In spite of the simplicity of the above calculation, it shows one important point of the CFT analysis: for $n = n_e$ even, $T_n^{T_n}$ and $\overline{T}_n^{T_n}$ have dimensions

$$\Delta T_n^{T_n} = \Delta T_n^{\overline{T}_n} = \frac{c}{6} \left(\frac{n_e}{2} - \frac{2}{n_e} \right),$$

(44)

while for $n = n_o$ odd, $T_n^{T_n}$ and $\overline{T}_n^{T_n}$ have dimensions

$$\Delta T_n^{T_n} = \Delta T_n^{\overline{T}_n} = \frac{c}{12} \left(n_o - \frac{1}{n_o} \right),$$

(45)

the same as T_{n_o}. Thus, performing the analytic continuation from the even branch, we finally have

$$\| \rho_A^{1/2} \| = \lim_{n_e \to 1} \text{Tr}(\rho_A^{T_n})^{n_e} = c_{1/2}^2 \left(\frac{\ell}{a} \right)^{c/2} \Rightarrow E = \frac{c}{2} \ln \frac{\ell}{a} + 2 \ln c_{1/2},$$

(46)

which, again, just tells us that for pure states the logarithmic negativity equals the Rényi entropy of order 1/2. Continuing instead to $n_o \to 1$ from the odd branch we obtain the normalization $\text{Tr} \rho_A^{T_n^{T_n}} = 1$.

Notice that, although the various constants c_{n_o,n_e} are non-universal, they are the same as those appearing in the entanglement entropies.

4.2. Two adjacent intervals

Let us now consider the non-trivial configuration in which two intervals A_1 and A_2 of length ℓ_1 and ℓ_2 share a common boundary (let us say at the origin), as graphically depicted in figure 1. This can be obtained by letting $v_1 \to u_2 = 0$ in equation (33), and it is then described by the 3-point function (we set $u_1 = -\ell_1$ and $v_2 = \ell_2$)

$$\text{Tr}(\rho_A^{T_n})^{n} = \langle T_n(-\ell_1) T_n^{2}(0) T_n(\ell_2) \rangle,$$

(47)

whose form is determined by conformal symmetry [63]

$$\langle T_n(-\ell_1) T_n^{2}(0) T_n(\ell_2) \rangle = c_n^2 \left(\frac{\ell_1 \ell_2}{\ell_1 + \ell_2} \right)^{\Delta T_n^{T_n}/2} (\ell_1 + \ell_2)^{2 \Delta T_n^{T_n} - \Delta T_n^{T_n}},$$

(48)

doi:10.1088/1742-5468/2013/02/P02008
which has been normalized in such a way that the structure constant $C_{T_2T_2T_2}$ is universal (with all the lengths ℓ_j measured in units of the UV cutoff a) and can be determined by considering the proper limit of the four-point function, as will be done in section 5.1.

For $n = n_e$ even, using the dimensions of the twist operators calculated above, we find

$$\text{Tr}(\rho_A^{T_2})^{n_e} \propto (\ell_1\ell_2)^{-c/6(n_e/2-2/n_e)}(\ell_1 + \ell_2)^{-c/6(n_e/2+1/n_e)},$$

which in the limit $n_e \to 1$ gives

$$\|\rho_A^{T_2}\| \propto \left(\frac{\ell_1\ell_2}{\ell_1 + \ell_2}\right)^{c/4} \Rightarrow \mathcal{E} = \frac{c}{4} \ln \frac{\ell_1\ell_2}{\ell_1 + \ell_2} + \text{cnst.}$$

(50)

For $n = n_o$ odd

$$\text{Tr}(\rho_A^{T_2})^{n_o} \propto (\ell_1\ell_2(\ell_1 + \ell_2))^{-c/12(n_o-1/n_o)},$$

which for $n_o \to 1$ again gives $\text{Tr}\rho_A^{T_2} = 1$, as it should.

Notice that for $n = 2$, equation (49) is

$$\text{Tr}(\rho_A^{T_2})^2 = c_2^2C_{T_2T_2T_2}(\ell_1 + \ell_2)^{-c/4},$$

(52)

which equals $\text{Tr}\rho_A^{T_2T_2}$, as predicted by equation (36), if $C_{T_2T_2T_2} = c_2^{-1}$.

4.3. Finite systems

All the previous results may be generalized to the case of a finite system of length L with periodic boundary conditions by using a conformal mapping from the cylinder to the plane. The net effect of the mapping is to replace each length ℓ_i with the chord length $(L/\pi)\sin(\pi\ell_i/L)$ in all above formulas.

Thus for the case of a pure state in a finite system the generalization of equations (42) and (43) are

$$\text{Tr}(\rho_A^{T_2})^{n_e} = c_{n_e/2}(\frac{L}{\pi a} \sin \frac{\pi L}{L})^{-c/3(n_e/2-2/n_e)},$$

(53)

$$\text{Tr}(\rho_A^{T_2})^{n_o} = c_{n_o}(\frac{L}{\pi a} \sin \frac{\pi L}{L})^{-c/6(n_o-1/n_o)},$$

(54)

$$\mathcal{E} = \frac{c}{2} \ln \left(\frac{L}{\pi a} \sin \frac{\pi L}{L}\right) + 2 \ln c_{1/2}.$$

(55)

For the case of two adjacent intervals the finite system generalizations of equations (49) and (51) are

$$\text{Tr}(\rho_A^{T_2})^{n_e} \propto \left[\frac{L^2}{\pi^2} \sin \left(\frac{\pi\ell_1}{L}\right) \sin \left(\frac{\pi\ell_2}{L}\right)\right]^{-c/6(n_e/2-2/n_e)} \left[\frac{L}{\pi} \sin \left(\frac{\pi(\ell_1 + \ell_2)}{L}\right)\right]^{-c/12(n_o-1/n_o)},$$

(56)

$$\text{Tr}(\rho_A^{T_2})^{n_o} \propto \left[\frac{L^3}{\pi^3} \sin \left(\frac{\pi\ell_1}{L}\right) \sin \left(\frac{\pi\ell_2}{L}\right) \sin \left(\frac{\pi(\ell_1 + \ell_2)}{L}\right)\right],$$

leading to the logarithmic negativity

$$\mathcal{E} = \frac{c}{4} \ln \left[\frac{L \sin(\pi\ell_1/L) \sin(\pi\ell_2/L)}{\pi \sin(\pi(\ell_1 + \ell_2)/L)}\right] + \text{cnst.}$$

(57)
5. Negativity for two disjoint intervals in a CFT

For the more difficult situation of two disjoint intervals reported in figure 1, the entanglement entropies depend on the full operator content of the CFT, thus also making the calculation of the negativity much more complicated.

Global conformal invariance fixes the form of the four-point correlation of twist fields

$$\langle T_n(z_1)\overline{T}_n(z_2)T_n(z_3)\overline{T}_n(z_4)\rangle = c_n^2 \left| \frac{z_{31}z_{42}}{z_{31}z_{43}z_{41}z_{32}} \right|^{c/6(n-1/n)} F_n(x, \bar{x}),$$ \hspace{1cm} (58)

with x the four-point ratio

$$x = \frac{z_{21}z_{43}}{z_{31}z_{42}},$$ \hspace{1cm} (59)

and $z_{ij} = z_i - z_j$. Notice that $z_{31}z_{42}/(z_{21}z_{43}z_{41}z_{32}) = 1/(z_{21}z_{43}(1-x))$. This is normalized in such a way that $F_n(0,0) = 1$ (for $x \to 0$, the four-point function is the product of the two two-point functions normalized with c_n). The function $F_n(x, \bar{x})$ depends explicitly on the full operator content of the theory and must be calculated case by case. Notice that with $F_1(x, \bar{x}) = 1$ as a consequence of $\text{Tr} \rho_A = 1$.

Now, according to equation (32), $\text{Tr} \rho_A^n$ corresponds in equation (58) to the choice

$$z_1 = u_1, \quad z_2 = v_1, \quad z_3 = u_2, \quad z_4 = v_2,$$ \hspace{1cm} (60)

and so

$$\text{Tr} \rho_A^n = c_n^2 \left(\frac{(u_2 - u_1)(v_2 - v_1)}{(v_1 - u_1)(v_2 - u_2)(v_2 - u_1)(u_2 - v_1)} \right)^{c/6(n-1/n)} F_n(x),$$ \hspace{1cm} (61)

where, since for real u_j and v_j the ratio x is real, we dropped the dependence on $\bar{x} = x$. Explicitly, in this case x is

$$x = \frac{(v_1 - u_1)(v_2 - u_2)}{(u_2 - u_1)(v_2 - v_1)},$$ \hspace{1cm} (62)

which for the order $u_1 < v_1 < u_2 < v_2$ satisfies $0 < x < 1$.

Even $\text{Tr}(\rho_A^n)^2$ is a four-point function of twist fields according to equation (33), but it corresponds in equation (58) to the choice

$$z_1 = u_1, \quad z_2 = v_1, \quad z_3 = v_2, \quad z_4 = u_2,$$ \hspace{1cm} (63)

i.e. to the exchange $z_3 \leftrightarrow z_4$ compared to $\text{Tr} \rho_A^n$. Thus we can write

$$\text{Tr}(\rho_A^n)^2 = c_n^2 \left(\frac{(v_2 - u_1)(u_2 - v_1)}{(v_1 - u_1)(v_2 - v_2)(v_2 - u_1)(u_2 - v_1)} \right)^{c/6(n-1/n)} F_n(x),$$ \hspace{1cm} (64)

where $x = (v_1 - u_1)(v_2 - v_2)/[(v_2 - u_1)(u_2 - v_1)]$ is again real and now satisfies $-\infty < x < 0$. This can be rewritten in terms of an ordered four-point ratio

$$y = \frac{(v_1 - u_1)(v_2 - u_2)}{(u_2 - u_1)(v_2 - v_1)} = \frac{x}{x - 1},$$ \hspace{1cm} (65)

with $0 < y < 1$, as

$$\text{Tr}(\rho_A^n)^2 = c_n^2 \left(\frac{(u_2 - u_1)(v_2 - v_1)}{(v_1 - u_1)(v_2 - u_2)(v_2 - u_1)(u_2 - v_1)} \right)^{c/6(n-1/n)} G_n(y).$$ \hspace{1cm} (66)

doi:10.1088/1742-5468/2013/02/P02008
Equating equations (64) and (66), we can relate the two scaling functions $F_n(x)$ and $G_n(y)$ as

$$G_n(y) = (1 - y)^{c/3(n-1/n)} F_n \left(\frac{y}{y-1} \right).$$

(67)

Notice that this relation does not depend on the parity of n and so, in order to have a non-trivial replica limit $n_e \rightarrow 1$ for the logarithmic negativity

$$\mathcal{E}(y) = \lim_{n_e \rightarrow 1} \ln G_{n_e}(y) = \lim_{n_e \rightarrow 1} \ln \left[F_{n_e} \left(\frac{y}{y-1} \right) \right],$$

(68)

some parity effect should appear in the n dependence of the function $F_n(x)$ for $x < 0$.

The first fundamental consequence of equation (68) is that, for conformal invariant systems, the negativity is a scale invariant quantity (i.e. a function only of y) because all the dimensional prefactors cancel in the replica limit. This has been argued already in the literature on the basis of numerical data [11, 12], but never proved.

It is useful to consider the ratio

$$R_n(y) \equiv \frac{\text{Tr}(\rho A^2)^n}{\text{Tr}(\rho_A)^n} = \frac{G_n(y)}{F_n(y)} = (1 - y)^{c/3(n-1/n)} \frac{F_n(y/(y-1))}{F_n(y)},$$

(69)

in which all the prefactors cancel. As $\lim_{n \rightarrow 1} \text{Tr}(\rho_A)^n = 1$ and $F_1(y) = 1$ for $0 < y < 1$, we have that the negativity can be obtained just by considering the replica limit of this ratio

$$\mathcal{E}(y) = \ln \lim_{n_e \rightarrow 1} R_{n_e}(y).$$

(70)

The function $F_n(x)$ which gives the negativity has been calculated for general integral n only for the free compactified boson [34] and for the critical Ising model [35]. Some other partial results are also known [36]–[52]. However, the calculations in [34, 35] provide the function $F_n(x)$ only for $0 < x < 1$ and it is a non-trivial technical problem to extend it to the domain $x < 0$ in which we are now interested. Before embarking in these calculations, we discuss some simple and important physical consequences of equation (66)–(68) which are highlighted by considering the limits $y \rightarrow 1$ and $y \rightarrow 0$, i.e. close and far intervals respectively.

5.1. The limit of two very close intervals: $y \rightarrow 1$

If $u_2 \rightarrow v_1$ then $y \rightarrow 1^-$ and we should recover the previous result for adjacent intervals. Let us denote with $\epsilon = u_2 - v_1$ and $\ell_j = v_j - u_j$ so that equation (66) becomes

$$\text{Tr}(\rho A^2)^n \simeq c_n^2 \left(\frac{1}{(\ell_1 + \ell_2)\epsilon} \right)^{c/6(n-1/n)} G_n(y), \quad \text{with} \quad y = 1 - \frac{\ell_1 + \ell_2}{\ell_1 \ell_2} \epsilon + O(\epsilon^2).$$

(71)

This reduces to the result for adjacent intervals in equation (48) only if

$$G_n(y) \simeq g_n (1 - y)^{\alpha_n},$$

(72)

with α_n equal to ΔT_n^2, the dimension of T_n^2, i.e.

$$\alpha_n = \begin{cases} \frac{c}{6} \left(\frac{n_e}{2} - \frac{2}{n_e} \right), & \text{if } n = n_e \text{ even}, \\ \frac{c}{12} \left(\frac{n_o}{2} - \frac{1}{n_o} \right), & \text{if } n = n_o \text{ odd}. \end{cases}$$

(73)
We stress that this power-law behavior for y close to 1 is valid apart from possible multiplicative logarithmic corrections, whose precise form should be obtained on a case by case basis.

In the replica limit $n_e \to 1$, we then have $\lim_{n_e \to 1} \alpha_{n_e} = -c/4$, i.e. the negativity diverges approaching $y = 1$ in the universal way
\[\mathcal{E}(y) = -\frac{c}{4} \ln(1 - y). \] (74)
Clearly for any discrete system with a finite number of degrees of freedom in the two intervals, the negativity will remain finite in the limit of adjacent intervals, i.e. the limit of zero lattice spacing $a \to 0$ and $y \to 1$ do not commute (as it is well known when deriving a three-point function from the limit of the four-point one [63]). As should be clear from the calculation above, this corresponds to setting $\epsilon = a$ (no distance can be smaller than the lattice spacing) and no true divergence arises in a finite discrete system. For $n_o \to 1$, we instead have $\lim_{n_o \to 1} \alpha_{n_o} = 0$, as it should be to obtain the normalization $\operatorname{Tr} \rho_T^2 \mathcal{A} = 1$.

Furthermore, the knowledge of the function $G_n(y)$ allows one to calculate the universal structure constant $C_{\mathcal{T}_n \mathcal{T}_2 \mathcal{T}}$ equating equations (72) and (48), and we obtain (setting $\epsilon = a$)
\[C_{\mathcal{T}_n \mathcal{T}_2 \mathcal{T}} = g_n. \] (75)

5.2. The limit of two very far intervals: $y \to 0$

The limit of far intervals $y \to 0$ can be worked out from the small x expansion of $F_n(x)$ carried out in full generality in [35]. This follows from a generalization of operator product expansion (termed short length expansion in [35]), which for the case of the entanglement entropies of two intervals gives
\[\operatorname{Tr} \rho_A^n = \frac{c^2}{(\ell_1 \ell_2)^{c/6(n-1)/n}} \sum_{\{k_j\}} \left(\frac{\ell_1 \ell_2}{n^2 \epsilon^2} \right) s_{\{k_j\}}(n), \] (76)
where the sum is over all the sets of possible operators $\{\phi_{k_j}\}$ of the CFT with conformal dimensions $(\Delta_{k_j}, \overline{\Delta}_{k_j})$. $s_{\{k_j\}}(n)$ are calculable coefficients depending on the correlation functions of these operators
\[s_{\{k_j\}}(n) \propto \left\langle \prod_{j=1}^{n} \phi_{k_j}(e^{2\pi i j/n}) \right\rangle_C. \] (77)
All these coefficients $s_{\{k_j\}}(n)$, in the limit $n \to 1$ (independently of the parity of n) become one-point functions which always vanish in the complex plane. This implies the very strong consequence that the logarithmic negativity $\mathcal{E}(y)$ vanishes as $y \to 0$ faster than any power.

5.3. The function $F_n(x)$ for $0 < x < 1$

In order to calculate $\operatorname{Tr}(\rho_A^2)^n$ we first need to report some known results about the function $F_n(x)$, which has been calculated for the free compactified boson and for the Ising model. In the following we will discuss only the case of the boson.

For a boson compactified on a circle of radius R (a Luttinger liquid field theory), the universal scaling function $F_n(x)$ for generic integral $n \geq 1$ and for $0 < x < 1$ can be
written as \[[34] \]

\[F_n(x) = \frac{\Theta(0|\eta \Gamma) \Theta(0|\Gamma/\eta)}{\Theta(0|\Gamma)^2}, \]

(78)

where \(\Gamma \) is an \((n - 1) \times (n - 1)\) matrix with elements

\[\Gamma_{rs} = \frac{2}{n} \sum_{k=1}^{n-1} \sin \left(\frac{\pi k}{n} \right) \beta_{k/n} \cos \left[2\pi \frac{k}{n} (r - s) \right], \]

(79)

and

\[\beta_y = F_y(1 - x) \quad \text{and} \quad F_y(x) \equiv 2 F_1(y, 1 - y; 1; x), \]

(80)

\(\eta \) is a universal critical exponent proportional to the square of the compactification radius \(R \), while \(\Theta \) is the Riemann–Siegel theta function

\[\Theta(0|\Gamma) \equiv \sum_{m \in \mathbb{Z}^{n-1}} \exp[i \pi m \cdot \Gamma \cdot m]. \]

(81)

This generalizes the result for \(n = 2 \) in \[[36] \]. We mention that, although the moments of the reduced density matrix have been obtained for all integer \(n \), the analytic continuation to complex \(n \) is still beyond our knowledge, and so is the Von Neumann entanglement entropy.

It is also worth reporting the first terms in the short length expansion (76) in the case of a compactified free boson \[[35] \]

\[F_n(x) = \frac{\eta(n)}{\eta n} \left[\prod_{k=1}^{n-1} F_{k/n}(x) F_{k/n}(1 - x) \right]^{1/2}. \]

(84)

Despite the relative (compared to equation (78)) simplicity of this form, many physical ingredients for the calculation of the negativity are already present here.
From equation (67) we can write $G_n(y)$ as

$$G_n^{\eta=\infty}(y) = (1-y)((n-1)/3)^{\eta(n-1)/2} \left[\prod_{k=1}^{n-1} \text{Re}(F_k(y)/(y-1)) \right]^{1/2},$$

and the ratio with $F_n(y)$

$$R_n^{\eta=\infty}(y) = (1-y)((n-1)/3)^{1/2} \left[\prod_{k=1}^{n-1} F_k(y) \left(F_k(1-y) \right) \right]^{1/2},$$

in which the η dependence drops out. The arguments of the hypergeometric functions in the denominator are not in the interval $[0,1]$ and they should be handled with care to select the proper analytic continuation valid for $x \in [0,1]$. This can be achieved by using that for $x \in (0,1)$ and $k/n \neq 1/2$, it holds that (see e.g. [53] vol. I, section 2.9, equations (34) and (3))

$$F_{k/n} \left(\frac{1}{1-x} \right) = \frac{\Gamma(1-2k/n)}{\Gamma(1-k/n)} e^{-i\pi k/n} (1-x)^{k/n} F_1 \left(\frac{k}{n}, \frac{k}{n}; \frac{2k}{n}; 1-x \right) + (k \rightarrow n-k),

F_{k/n} \left(\frac{x}{x-1} \right) = (1-x)^{k/n} F_1 (k/n, k/n; 1; x).$$

We stress that these expressions are symmetric under $k \leftrightarrow n-k$. Instead for $k/n = 1/2$, since we have

$$F_{1/2}(z) = \frac{2}{\pi} K(z),$$

where $K(z)$ is the complete elliptic integral of the first kind, we can use the simpler relations

$$F_{1/2} \left(\frac{1}{1-x} \right) = \frac{2}{\pi} \sqrt{1-x} [K(1-x) - iK(x)],

F_{1/2} \left(\frac{x}{x-1} \right) = \frac{2}{\pi} \sqrt{1-x} K(x),

\text{Re} \left[F_{1/2} \left(\frac{x}{x-1} \right) F_{1/2} \left(\frac{1}{1-x} \right) \right] = \left(\frac{2}{\pi} \right)^2 (1-x) K(x) K(1-x).$$

From equation (91) it is clear that the ratio $R_2^{\eta=\infty}(y)$ equals 1 identically, as it should according to equation (34).

For $n > 2$, the ratio (86) displays a key mathematical difference between odd and even n. Indeed, each term in the product in both numerator and denominator is invariant under $k \leftrightarrow n-k$ (even if this is not evident from the formulas). Thus, for odd n the products in the numerator and in the denominator are both squares of the products for k up to $(n-1)/2$. For even n this is not true because of the presence of the term $k/n = 1/2$. Nevertheless a simplification occurs between the terms $k/n = 1/2$ in the numerator and in the denominator:

$$\frac{F_{1/2}(y) F_{1/2}(1-y)}{\text{Re} \left[F_{1/2}(y/(y-1)) F_{1/2}(1/(1-y)) \right]} = \frac{1}{1-y},$$

doi:10.1088/1742-5468/2013/02/P02008
which is equivalent to \(R_2(y) = 1 \). Thus we have

\[
R_n^{\eta = \infty}(y) = \begin{cases}
(1 - y)^{1/3(n-1/n)} \prod_{k=1}^{n-1/2} \frac{F_{k/n}(y) F_{k/n}(1 - y)}{\prod_{k=1}^{n-1/2} \text{Re}[F_{k/n}(y/(y - 1)) F_{k/n}(1/(1 - y))]}, & \text{odd } n, \\
(1 - y)^{1/3(n-(1/n))-(1/2)} \prod_{k=1}^{(n/2)-1} \frac{F_{k/n}(y) F_{k/n}(1 - y)}{\prod_{k=1}^{(n/2)-1} \text{Re}[F_{k/n}(y/(y - 1)) F_{k/n}(1/(1 - y))]}, & \text{even } n.
\end{cases}
\]

(93)

Despite the relative simplicity of this formula for \(R_n^{\eta = \infty}(y) \), we did not manage to work out the full analytic continuation to \(n_e \to 1 \). However, it is extremely instructive to look at the limit \(y \to 1 \) when we can perform the analytic continuation explicitly and understand how the ‘mode’ \(k/n = 1/2 \) is responsible of the main qualitative differences between \(n_e \) even and \(n_o \) odd.

5.4.1. The analytic continuation in the limit of close intervals. In order to calculate the analytic continuation to obtain the negativity for \(y \to 1^- \), instead of considering the ratio \(R_n^{\eta = \infty}(y) \), it is easier to study the function \(G_n(y) \) in equation (85), which we rewrite as

\[
G_n(y) = \eta^{(n-1)/2} (1 - y)^{1/3(n-1/n)} D_n(y)^{-1},
\]

(94)

with

\[
D_n(y) = \left[\prod_{k=1}^{n-1} \text{Re} \left[F_{k/n} \left(\frac{y}{y - 1} \right) F_{k/n} \left(\frac{1}{1 - y} \right) \right] \right]^{1/2}.
\]

(95)

Each term in the product is invariant for \(n \leftrightarrow n - k \), thus we can rewrite it as

\[
D_{n_o}(y) = \left[\prod_{k=1}^{(n_o-1)/2} \text{Re} \left[F_{k/n_o} \left(\frac{y}{y - 1} \right) F_{k/n_o} \left(\frac{1}{1 - y} \right) \right] \right],
\]

\[
D_{n_e}(y) = \frac{2}{\pi} (1 - y)^{1/2} \sqrt{K(y)K(1 - y)} \left[\prod_{k=1}^{n_e/2 - 1} \text{Re} \left[F_{k/n_e} \left(\frac{y}{y - 1} \right) F_{k/n_e} \left(\frac{1}{1 - y} \right) \right] \right],
\]

(96)

(97)

where for \(n = n_e \) even we isolated the term \(k/n = 1/2 \) using equation (91).

In order to calculate the asymptotic behavior as \(y \to 1^- \), we rewrite each factor in the two products above as

\[
\text{Re} \left[F_{k/n} \left(\frac{y}{y - 1} \right) F_{k/n} \left(\frac{1}{1 - y} \right) \right] = (1 - y)^{k/n} 2 F_1 \left(\frac{k}{n}; k/n; 1; y \right) \left(\frac{\Gamma(1 - 2k/n)}{\Gamma(1 - k/n) \Gamma(2k/n)} \right) (1 - y)^{k/n} \times 2 F_1 \left(\frac{k}{n}; \frac{2k}{n}; 1 - y \right) - (k \leftrightarrow n - k) \cos(\pi k/n).
\]

(98)

Then, for the asymptotic behavior of \(D_n(y) \) close to \(y = 1 \) we need

\[
\lim_{x \to 1^-} 2 F_1 \left(\frac{k}{n}; k/n; 1; x \right) = \frac{\pi}{\sin(2\pi k/n) \Gamma(1 - k/n)^2 \Gamma(2k/n)}, \quad \frac{k}{n} < \frac{1}{2},
\]

(99)

\[
\lim_{x \to 1^-} K(x) = -\frac{1}{2} \ln(1 - x) + 2 \ln 2 + o(1),
\]

(100)

doi:10.1088/1742-5468/2013/02/P02008
For \((1 - y) \ll 1\), in equation (98) the term \((1 - y)^{k/n}\) dominates compared to \((1 - y)^{1-k/n}\) (we recall \(k/n < 1/2\)), which can be neglected.

Thus for odd \(n\), the expansion of (96) as \(y \to 1\) is

\[
D_{n_o}(y) = \left(1 - y\right)^{n_o/4} \prod_{k=1}^{(n_o-1)/2} \frac{\pi \Gamma(1 - 2k/n_o) \Gamma(1 - k/n_o)^4 \Gamma(2k/n_o)}{2 \sin(\pi k/n_o) \Gamma(1 - k/n_o)^4 \Gamma(2k/n_o)} + \cdots,
\]

where we used equation (98) and \(\prod_{k=1}^{(n-1)/2} x^{2k/n} = x^{(n-1)/n}\). After some algebra, we have \(\lim_{n_o \to 1} D_{n_o}(y) = 1\), as it should. Plugging the value of \(D_{n_o}(y)\) into equation (94), we recover the general expansion for \(y\) close to 1 in equations (72) and (73).

For even \(n\), using again equation (98) and \(\prod_{k=1}^{n/2-1} x^{2k/n} = x^{n/4-1/2}\), we have

\[
D_{n_e}(y) = \left(1 - y\right)^{n_e/4} \sqrt{K(y)} P_n + \cdots,
\]

where we defined the constant

\[
P_n = \sqrt{\frac{\pi}{2}} \prod_{k=1}^{n/2-1} \frac{\pi \Gamma(1 - 2k/n) \Gamma(1 - k/n)^4 \Gamma(2k/n)}{2 \sin(\pi k/n) \Gamma(1 - k/n)^4 \Gamma(2k/n)},
\]

and we left \(K(y)\) instead of considering its expansion in equation (100), for simplicity in the notations. Plugging \(D_{n_e}(y)\) in equation (94), we recover the general expansion for \(y\) close to 1 of \(G_{n_e}(y) \propto (1 - y)^{c/6(n_e/2-2/n_e)}\) up to a logarithmic correction.

For \(n_o \to 1\), we then have

\[
D_1(y) = \left(1 - y\right)^{1/4} \sqrt{K(y)} P_1 + o(1),
\]

which gives the desired expansion of the logarithmic negativity for \(y \to 1^-\)

\[
\mathcal{E}(y) = -\ln D_1(y) = -\frac{1}{4} \ln(1 - y) - \frac{1}{2} \ln K(y) - \ln P_1 + o(1)
\]

\[= -\frac{1}{4} \ln(1 - y) - \frac{1}{2} \ln(-\frac{1}{2} \ln(1 - y)) - \ln P_1 + o(1).\]

(Notice a typo in the published version of [21], where we wrote the expansion of \(e^{\mathcal{E}(y)}\) instead of \(\mathcal{E}(y)\)). Apart from a subleading double-logarithmic correction, this agrees with the general expansion given in equation (74) for the negativity of two intervals when they get closer. Here we can also calculate analytically the constant \(P_1\).

From the definition of \(P_n\) we have

\[
\sqrt{\frac{\pi}{2}} P_n \equiv \prod_{k=1}^{n/2-1} \frac{\pi \Gamma(1 - 2k/n) \Gamma(1 - k/n)^4 \Gamma(2k/n)}{2 \sin(\pi k/n) \Gamma(1 - k/n)^4 \Gamma(2k/n)} = \prod_{k=1}^{n/2-1} \frac{\pi}{2 \sin(\pi k/n) \Gamma(1 - k/n)^4 \Gamma(2k/n)}
\]

\[\equiv \prod_{k=1}^{n/2-1} \Gamma(1 - 2k/n) \Gamma(2k/n) \equiv 1 \text{ because in the product the same terms appear in opposite order in the numerator and in the denominator. Part of the remaining product is trivial and, indeed, we have}
\]

\[
\sqrt{\frac{2}{\pi}} \prod_{k=1}^{n/2-1} \frac{\pi}{2 \sin(\pi k/n)} = \left(\frac{\pi}{2}\right)^{(n-3)/2} \frac{1}{n^{1/2}} \frac{n-1}{2n}.
\]

\[\text{doi:10.1088/1742-5468/2013/02/P02008}\]
The second part is instead more complicated. Let us consider the product

\[p_n = \prod_{k=1}^{n/2-1} \Gamma(1 - k/n) \Rightarrow \ln p_n = \sum_{k=1}^{n/2-1} \ln \Gamma(1 - k/n). \]

(109)

Now we can employ the following integral representation of the logarithm of the \(\Gamma \) function

\[\ln \Gamma(z) = \int_0^\infty \frac{dt}{t} \left(\frac{e^{-t(z-1)}}{1 - e^{-t}} + z - 1 \right), \]

(110)

to rewrite

\[\ln p_n = \sum_{k=1}^{n/2-1} \int_0^\infty \frac{dt}{t} \left(\frac{e^{-k/n} - 1 - k}{1 - e^{-t} - n} \right), \]

(111)

which, inverting the order of sum and integral, can be easily summed up as

\[\ln p_n = \int_0^\infty \frac{dt}{t} \left[\frac{1}{1 - e^{-t}} \left(\frac{e^{t/2} - 1 - n}{2 \pi n} \right) - \frac{n - 2}{8} \right], \]

(112)

whose analytic continuation at \(n = 1 \) is

\[p_1 = \exp \left(\int_0^\infty \frac{dt}{t} \left[\frac{1}{1 - e^{-t}} \left(\frac{e^{t/2} - 1 - 1/2}{e^{t/2} - 1 - 1/2} + 1 \right) \right] \right) = A^{3/2} \frac{2^{7/6} e^{1/2}}{\pi^{1/4}}, \]

(113)

where \(A = \exp(1/(12 - \zeta'(1)) = 1.2824 \ldots \) is Glaisher’s constant, related to the Riemann zeta function \(\zeta(z) \). Putting together equations (107), (108) and (113) we finally have

\[P_1 = 2 \frac{2^{-7/6} e^{1/2}}{A^6} = 0.832056 \ldots \]

(114)

5.5. The function \(G_n(y) \) and the negativity for the compactified boson

As discussed in [34], for a free complex boson whose real and imaginary parts are compactified on a circle of radius \(R \) when encircling a branch point, we have the additional freedom of winding around the circle in the target space, i.e. \(\phi_j(e^{2\pi i} x, e^{-2\pi i} \bar{x}) = \phi_{j-1}(z, \bar{z}) + 2\pi R(m_{j,1} + im_{j,2}), \) where \(m_{j,1}, m_{j,2} \in \mathbb{Z} \), if the branch point is in the origin. The integer numbers \(m_{i,l} \) can be organized into vectors such as \(\mathbf{m}_1 = (m_{1,1}, m_{2,1} \cdots m_{n,1}) \) or even into \(2n \)-dimensional ones \(\mathbf{m} = (m_{1,1}, m_{1,2} \cdots m_{n,1}, m_{1,2}, m_{2,2} \cdots m_{n,2}) \). In all this section we will denote vectors with bold symbols to be easily distinguished from scalars.

The function \(\mathcal{F}_n(x, \bar{x}) \) appearing in equation (58) for a real scalar field is the square root of the same quantity for a complex field because the latter is the sum of two independent real scalar fields. Then, following [34] and using some results in [54, 55], we have that the square of \(\mathcal{F}_n(x, \bar{x}) \) for a real scalar field and for any four-point ratio \(x, \bar{x} \in \mathbb{C} \) is given by

\[[\mathcal{F}_n(x, \bar{x})]^2 = \prod_{k=1}^{n} \frac{F_{k/n}(x)F_{k/n}(1 - \bar{x}) + F_{k/n}(\bar{x})F_{k/n}(1 - x)}{\sum_{\mathbf{m}^{(1)}, \mathbf{m}^{(2)}} \prod_{k=1}^{n} e^{-S_{k/n}^{(1)}},} \]

(115)

doi:10.1088/1742-5468/2013/02/P02008
where the sum runs over the possible integer components of $\mathbf{m}^{(1)}, \mathbf{m}^{(2)} \in (\mathbb{Z} + i\mathbb{Z})^n = \mathbb{Z}^{2n}$ and where the constant does not depend on x and will be fixed later on. The dependence on the compactification radius is encoded in the ‘classical action’ $S_{k/n}^{cl}$, first calculated in [54]:

$$S_{k/n}^{cl} = \frac{2g\pi \sin(\pi k/n)}{n} \left[\frac{|\tau_{k/n}|^2}{\beta_{k/n}} |\xi_1|^2 + \frac{\alpha_{k/n}}{\beta_{k/n}} (\xi_1 \bar{\xi}_2 \bar{\gamma} + \bar{\xi}_1 \xi_2 \gamma) + \frac{|\xi_2|^2}{\beta_{k/n}} \right], \quad (116)$$

where g is the Lagrangian coupling $L[\phi] = g|\nabla \phi|^2/(4\pi)$ and $\gamma \equiv -ie^{-i\pi k/n}$ and ξ_p ($p = 1, 2$) are

$$\xi_p = 2\pi R \sum_{l=1}^n (\theta_{k/n})^l (m_{l,1}^{(p)} + i m_{l,2}^{(p)}), \quad \theta_{k/n} = e^{2\pi ik/n}. \quad (117)$$

The dependence on the harmonic ratio x in equation (59) is instead encoded in the quantity $\tau_{k/n}$, also derived in [54]:

$$\tau_{k/n} = i \frac{F_{k/n}(1-x)}{F_{k/n}(x)} \equiv \alpha_{k/n} + i\beta_{k/n}, \quad (118)$$

$\alpha_{k/n}$ and $\beta_{k/n}$ being the real and the imaginary part of $\tau_{k/n}$ respectively. Before embarking on the main calculation, we stress that the crucial difference compared to the case of real α, being the real and the imaginary part of $\tau_{k/n}$ respectively. Before embarking

The products involving ξ_p in equation (116) can be written as

$$\frac{\xi_p \bar{\xi}_q}{(2\pi R)^2} = \sum_{r,s=1}^n (\bar{C}_{k/n})_{rs} [m_{r,1}^{(p)} m_{s,1}^{(q)} + m_{r,2}^{(p)} m_{s,2}^{(q)}] - (\bar{S}_{k/n})_{rs} [m_{r,2}^{(p)} m_{s,1}^{(q)} - m_{r,1}^{(p)} m_{s,2}^{(q)}]$$

$$+ i \left[(\bar{S}_{k/n})_{rs} [m_{r,1}^{(p)} m_{s,1}^{(q)} + m_{r,2}^{(p)} m_{s,2}^{(q)}] + (\bar{C}_{k/n})_{rs} [m_{r,2}^{(p)} m_{s,1}^{(q)} - m_{r,1}^{(p)} m_{s,2}^{(q)}] \right], \quad (119)$$

where we introduced the $n \times n$ real matrices $\bar{C}_{k/n}$ and $\bar{S}_{k/n}$ whose elements are

$$(\bar{C}_{k/n})_{rs} \equiv \cos \left(2\pi \frac{k}{n} (r-s) \right), \quad (\bar{S}_{k/n})_{rs} \equiv \sin \left(2\pi \frac{k}{n} (r-s) \right), \quad (120)$$

with $r, s = 1, \ldots, n$. Notice that $\bar{C}_{k/n}$ is symmetric and $\bar{S}_{k/n}$ is antisymmetric. Plugging (119) into (116) and summing over k, as required in (115), we obtain

$$\sum_{k=1}^n S_{k/n}^{cl} = \frac{8gR^2 n^3}{n} \sin \left(\frac{\pi}{n} \right) \left\{ \frac{|\tau_{k/n}|^2}{\beta_{k/n}} (\bar{C}_{k/n})_{rs} \left(m_{r,1}^{(1)} m_{s,1}^{(1)} + m_{r,2}^{(1)} m_{s,2}^{(1)} \right) \right.\right.$$

$$- 2\frac{\alpha_{k/n}}{\beta_{k/n}} \cos \left(\frac{\pi}{n} \right) (\bar{S}_{k/n})_{rs} \left(m_{r,1}^{(1)} m_{s,1}^{(2)} + m_{r,2}^{(1)} m_{s,2}^{(2)} \right)$$

$$+ \sin \left(\frac{\pi}{n} \right) (\bar{C}_{k/n})_{rs} \left(m_{r,1}^{(1)} m_{s,1}^{(2)} + m_{r,2}^{(1)} m_{s,2}^{(2)} \right)$$

$$\left. + \frac{1}{\beta_{k/n}} (\bar{C}_{k/n})_{rs} \left(m_{r,1}^{(2)} m_{s,1}^{(2)} + m_{r,2}^{(2)} m_{s,2}^{(2)} \right) \right\}, \quad (121)$$

doi:10.1088/1742-5468/2013/02/P02008
where many terms of $S_{k/n}^1$ vanish in the sum over k because they are odd under $k \leftrightarrow n-k$. Introducing the 2n vectors of integers $\tilde{m}_1 \equiv (m_1^{(1)}, m_1^{(2)})$ and $\tilde{m}_2 \equiv (m_2^{(1)}, m_2^{(2)})$, made respectively by the real and the imaginary parts of $m^{(1)}$ and $m^{(2)}$, it is possible to rewrite equation (121) as

$$- \sum_{k=1}^{n} S_{k/n}^1 = i \pi \eta (\tilde{m}_1 \cdot \tilde{G} \cdot \tilde{m}_1 + \tilde{m}_2 \cdot \tilde{G} \cdot \tilde{m}_2), \quad \tilde{m}_1, \tilde{m}_2 \in \mathbb{Z}^{2n},$$

(122)

where $\eta \propto R^2$. The matrix \tilde{G} is symmetric, purely imaginary, and it can be written in terms of $n \times n$ block matrices as

$$\tilde{G} = 2i \begin{pmatrix} \tilde{A} & \tilde{W} \\ \tilde{W}^t & \tilde{B} \end{pmatrix},$$

(123)

with

$$\tilde{A} = \frac{1}{n} \sum_{k=1}^{n} \frac{\tau_{k/n}}{\beta_{k/n}} \sin(\pi k/n) \tilde{C}_{k/n} = \sum_{k=1}^{n} \frac{|\tau_{k/n}|^2}{\beta_{k/n}} \sin(\pi k/n) \tilde{E}_{k/n},$$

(124)

$$\tilde{B} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\beta_{k/n}} \sin(\pi k/n) \tilde{C}_{k/n} = \sum_{k=1}^{n} \frac{1}{\beta_{k/n}} \sin(\pi k/n) \tilde{E}_{k/n},$$

(125)

$$\tilde{W} = -\frac{1}{n} \sum_{k=1}^{n} \frac{\alpha_{k/n}}{\beta_{k/n}} \sin(\pi k/n) \left[\sin(\pi k/n) \tilde{C}_{k/n} + \cos(\pi k/n) \tilde{S}_{k/n} \right]$$

$$= -\sum_{k=1}^{n} \frac{\alpha_{k/n}}{\beta_{k/n}} \sin(\pi k/n) \left[\sin(\pi k/n) - i \cos(\pi k/n) \right] \tilde{E}_{k/n},$$

(126)

where we introduced the complex matrices $\tilde{E}_{k/n}$ for $k = 1, \ldots, n$ whose elements are

$$(\tilde{E}_{k/n})_{rs} \equiv e^{2\pi i(k/n)(r-s)}/n.$$ (127)

These are Hermitian matrices satisfying $\tilde{E}_{pq/n} \tilde{E}_{q/n} = \delta_{pq} \tilde{E}_{p/n}$, therefore they are projectors, a property which guarantees that \tilde{A}, \tilde{B} and \tilde{W} commute. Since \tilde{A} and \tilde{B} are symmetric, \tilde{G} is symmetric by construction. The eigenvalues of \tilde{A}, \tilde{B} and \tilde{W} are respectively

$$a_k = \frac{|\tau_{k/n}|^2}{\beta_{k/n}} \sin\left(\frac{\pi k}{n}\right), \quad b_k = \frac{1}{\beta_{k/n}} \sin\left(\frac{\pi k}{n}\right), \quad w_k = \frac{\alpha_{k/n}}{\beta_{k/n}} \sin\left(\frac{\pi k}{n}\right) e^{i\pi k/n},$$

(128)

where $k = 1, \ldots, n$. Most of these eigenvalues are degenerate because of the symmetry $k \leftrightarrow n-k$. Since \tilde{A}, \tilde{B} and \tilde{W} commute, the characteristic polynomial of \tilde{G} is

$$P(\lambda) = \det \left[(\tilde{A} - \lambda I_n)(\tilde{B} - \lambda I_n) - \tilde{W} \cdot \tilde{W}^t \right]$$

$$= \det \left(\sum_{k=1}^{n} \left[(a_k - \lambda)(b_k - \lambda) - |w_k|^2 \right] \tilde{E}_{k/n} \right)$$

$$= \prod_{k=1}^{n} \left[(a_k - \lambda)(b_k - \lambda) - |w_k|^2 \right],$$

(129)

doi:10.1088/1742-5468/2013/02/P02008
which is obtained from the fact that the matrices $\tilde{E}_{k/n}$ are projectors. Then the eigenvalues of \tilde{G} are

$$
\lambda_k^\pm = \frac{1}{2} \left(a_k + b_k \pm \sqrt{(a_k - b_k)^2 + 4|w_k|^2} \right)
$$

(130)

$$
= \frac{\sin(\pi k/n)}{2\beta_k/n} \left(|\tau_k/n|^2 + 1 \pm \sqrt{(|\tau_k/n|^2 + 1)^2 - 4\beta_k^2/n} \right).
$$

(131)

They are all real and strictly positive for $k \in \{1, \ldots, n-1\}$, while $\lambda_n^\pm = 0$. We also have $\lambda_k^\pm = \lambda_{n-k}^\pm$ for the invariance $k \leftrightarrow n-k$ of (128). Thus, 0 is always a doubly degenerate eigenvalue. As for the degeneracy of the remaining positive eigenvalues, if $n-1$ is even then they are all doubly degenerate as well; instead if $n-1$ is odd then they are all doubly degenerate except for $\lambda_{n/2}^\pm$, which are nondegenerate.

From the common eigenvectors of \tilde{A}, \tilde{B} and \tilde{W}, we can construct the $2n \times 2n$ matrix \tilde{U} diagonalizing \tilde{G}

$$
\tilde{G} = \tilde{U} \cdot \begin{pmatrix}
\lambda_1^+
& \cdots & \lambda_{n-1}^+
& 0 \\
\cdots & \ddots & \cdots & \cdots \\
0 & \cdots & \lambda_1^- & \lambda_{n-1}^-
\end{pmatrix} \cdot \tilde{U}^{-1}.
$$

(132)

Since \tilde{G} has zero eigenvalues, the sum over the vectors $\mathbf{m}^{(j)}$ in equation (115) is divergent. Thus, as done in [34], we introduce a regularized \tilde{G}_ϵ by replacing the two zeros on the diagonal of the diagonal matrix in (132) with a small cutoff $\epsilon > 0$. This allows us to write the regularized sum in (115) in terms of a Riemann–Siegel theta function

$$
\sum_{\tilde{m}_1, \tilde{m}_2 \in \mathbb{Z}^{2n}} \exp \left[i \pi \eta \left(\tilde{m}_1^\dagger \cdot \tilde{\mathbf{G}}_\epsilon \cdot \tilde{m}_1 + \tilde{m}_2^\dagger \cdot \tilde{\mathbf{G}}_\epsilon \cdot \tilde{m}_2 \right) \right] = \Theta(0|\eta \tilde{G}_\epsilon)^2,
$$

(133)

where the regularized \tilde{G}_ϵ can be written as

$$
\tilde{G}_\epsilon = \tilde{G} + \frac{\epsilon}{n} \begin{pmatrix}
I_n & 0_n \\
0_n & I_n
\end{pmatrix},
$$

(134)

where I_n and 0_n are $n \times n$ matrices with all equal elements given by 1 and 0 respectively. Now we can isolate the divergent factor by observing that the limit

$$
\lim_{\epsilon \to 0} [\epsilon n \Theta(0|\eta \tilde{G}_\epsilon)] = \Theta(0|\eta G),
$$

(135)

gives a finite result. Since the divergent part is independent of x, it can be adsorbed into a normalization constant. The $2(n-1) \times 2(n-1)$ symmetric matrix G introduced in the
Entanglement negativity in extended systems

\[rhs \text{ of } (135) \text{ is } \]

\[G \equiv 2i \begin{pmatrix} A & W \\ W^t & B \end{pmatrix}, \tag{136} \]

where

\[A = \frac{1}{n} \sum_{k=1}^{n-1} \frac{|\tilde{\tau}_{k/n}|^2}{\beta_{k/n}} \sin(\pi k/n) C_{k/n} = \sum_{k=1}^{n-1} \frac{|\tau_{k/n}|^2}{\beta_{k/n}} \sin(\pi k/n) E_{k/n}, \tag{137} \]

\[B = \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{\beta_{k/n}} \sin(\pi k/n) C_{k/n} = \sum_{k=1}^{n-1} \frac{1}{\beta_{k/n}} \sin(\pi k/n) E_{k/n}, \tag{138} \]

\[W = -\frac{1}{n} \sum_{k=1}^{n-1} \frac{\alpha_{k/n}}{\beta_{k/n}} \sin(\pi k/n) [\sin(\pi k/n)C_{k/n} + \cos(\pi k/n)S_{k/n}] \]

\[= -\sum_{k=1}^{n-1} \frac{\alpha_{k/n}}{\beta_{k/n}} \sin(\pi k/n) [\sin(\pi k/n) - i \cos(\pi k/n)]E_{k/n}. \tag{139} \]

These matrices are obtained from the corresponding tilded ones given in equation (124)–(126) by removing the last column and the last row, namely

\[(C_{k/n})_{rs} \equiv (\tilde{C}_{k/n})_{rs}, \quad (S_{k/n})_{rs} \equiv (\tilde{S}_{k/n})_{rs}, \quad (E_{k/n})_{rs} \equiv (\tilde{E}_{k/n})_{rs}, \tag{140} \]

with \(r, s = 1, \ldots, n - 1 \). Absorbing the divergent part into the normalization constant, we can finally write (115) as

\[[\mathcal{F}_n(x, \bar{x})]^2 = \text{const} \frac{\Theta(0|\eta G)^2}{\prod_{k=1}^{n-1} |F_{k/n}(x)\bar{F}_{k/n}(1-\bar{x}) + \bar{F}_{k/n}(x)F_{k/n}(1-x)|}. \tag{141} \]

As first check, for real \(x \) we have \(\alpha_{k/n} = 0 \) for every \(k \) and therefore the off diagonal blocks \(W \) in \(G \) are zero. In this case the Riemann theta function \(\Theta(0|\eta G) \) factorizes into a product of two Riemann theta functions and (141) reproduces the result of [34], as it should.

As for the normalization constant in (141), since it is independent of \(x \), it is given by the one computed [34], namely \((2\eta)^{n-1}\). Thus, for the real compactified free boson, we find that

\[\mathcal{F}_n(x, \bar{x}) = \frac{\eta^{(n-1)/2}\Theta(0|\eta G)}{\sqrt{\prod_{k=1}^{n-1} \text{Re}(F_{k/n}(x)\bar{F}_{k/n}(1-\bar{x})) \prod_{k=1}^{n-1} |F_{k/n}(x)|^2 \text{Im}(\tau_{k/n}(x))}} = \frac{\eta^{(n-1)/2}\Theta(0|\eta G)}{\prod_{k=1}^{n-1} |F_{k/n}(x)| \sqrt{\text{Im}(\tau_{k/n}(x))}}, \tag{142} \]

where we used that \(\text{Re}(F_{k/n}(x)\bar{F}_{k/n}(1-\bar{x})) = |F_{k/n}(x)|^2 \text{Im}(\tau_{k/n}(x)) \). In the limit of non-compactified boson \(\eta \to \infty \) the Riemann–Siegel theta function does not contribute because \(\Theta(0|\eta G) \to 1 \), recovering the results for the non-compactified boson. Notice also that for \(\eta = 1 \), while for \(x \) real and \(x \in [0, 1] \) we have \(\mathcal{F}_n(x, \bar{x}) = 1 \) [34], this is not true for general complex \(x \) and, in particular, for \(x \) real and negative.

doi:10.1088/1742-5468/2013/02/P02008
From equations (67) and (142) we can write $G_n(y)$ for $0 < y < 1$ as

$$G_n(y) = (1 - y)^{(n-1)/3} \frac{\eta^{(n-1)/2}}{\prod_{k=1}^{n-1} \text{Re}(F_{k/n}(y/(y-1))F_{k/n}(1/(1-y)))}^{1/2} \Theta(0|\eta G(y/(y-1))).$$

(143)

Unfortunately, we are not able to compute the analytic continuation of $G_n(y)$ to $n_e \to 1$, which gives the logarithmic negativity for the free compactified boson. This reflects a similar problem for the standard Rényi entropies, which are also known only for integer $n > 2$.

5.5.1. Invariance of $F_n(x, \bar{x})$ for $x \leftrightarrow 1 - x$ and for $\eta \leftrightarrow 1/\eta$. For real x, it turned out that $F_n(x)$ was invariant under $x \leftrightarrow 1 - x$. In order to show this invariance also for complex x, we focus on equation (141), in which the denominator is clearly invariant. As for its numerator $\Theta(0|\eta G)$, it is also invariant because when $x \leftrightarrow 1 - x$ we have

$$\tau_{k/n} \to \frac{1}{\tau_{k/n}} \iff \alpha_{k/n} \to -\frac{\alpha_{k/n}}{|\tau_{k/n}|^2}, \quad \beta_{k/n} \to \frac{\beta_{k/n}}{|\tau_{k/n}|^2},$$

(144)

leading to

$$A \to B, \quad W \to -W.$$

(145)

This change does not modify the sum defining $\Theta(0|\eta G)$. Indeed, it can be reabsorbed by a redefinition of the sign of the first half (or, equivalently, of the second half) of the vector of integers over which we are summing.

The function $F_n(x, \bar{x})$ in (142) is also invariant under $\eta \leftrightarrow 1/\eta$. Indeed, by employing the Poisson summation formula, we can rewrite (142) in a form where this invariance is manifest, namely

$$F_n(x, \bar{x}) = \frac{\Theta(0|T)}{\prod_{k=1}^{n-1} |F_{k/n}(x)|},$$

(146)

where the $2(n-1) \times 2(n-1)$ symmetric matrix T is

$$T = \begin{pmatrix} i\eta I & R \\ R & iI/\eta \end{pmatrix},$$

(147)

and the $(n-1) \times (n-1)$ symmetric matrices I and R are

$$I = \frac{2}{n} \sum_{k=1}^{n-1} \beta_{k/n} \sin(\pi k/n) C_{k/n} = 2 \sum_{k=1}^{n-1} \beta_{k/n} \sin(\pi k/n) E_{k/n},$$

$$R = \frac{2}{n} \sum_{k=1}^{n-1} \alpha_{k/n} \sin(\pi k/n) C_{k/n} = 2 \sum_{k=1}^{n-1} \alpha_{k/n} \sin(\pi k/n) E_{k/n}.$$

(148)

Writing the quadratic form in the exponent of the generic term of the sum defining $\Theta(0|T)$, it is straightforward to see that (146) is invariant under $\eta \leftrightarrow 1/\eta$. The matrices (148) and
\[(149)\) are respectively the imaginary and the real part of the matrix

\[\tau = \mathcal{R} + i\mathcal{I} = \frac{2}{n} \sum_{k=1}^{n-1} \tau_k/n \sin(\pi k/n) C_k/n = \frac{2}{n} \sum_{k=1}^{n-1} \tau_k/n \sin(\pi k/n) E_k/n.\]

(150)

We can write \(\Theta(0|T)\) in (146) also as

\[\Theta(0|T) = \sum_{\mathbf{p}, \tilde{\mathbf{p}}} \exp[i\pi(\mathbf{p} \cdot \tau \cdot \mathbf{p} - \tilde{\mathbf{p}} \cdot \tilde{\tau} \cdot \tilde{\mathbf{p}})]\]

(151)

where

\[(\mathbf{p}, \tilde{\mathbf{p}}) = \left(\frac{n}{\sqrt{2}\eta} + \frac{m\sqrt{2}\eta}{2}, \frac{n}{\sqrt{2}\eta} - \frac{m\sqrt{2}\eta}{2}\right), \quad n, m \in \mathbb{Z}^{n-1}.\]

(152)

Comparing with the results in the literature [56], from (151) we conclude that \(\tau\) is the period matrix of the genus \(g = n - 1\) Riemann surface we are dealing with. For \(x \in (0, 1)\) we have that \(\alpha_k/n = 0\) and therefore all the elements of the matrix \(\mathcal{R}\) vanish identically. In this case \(\Theta(0|T) = \Theta(0|i\eta\mathcal{I})\Theta(0|i\mathcal{I}/\eta)\) and the \(\eta \leftrightarrow 1/\eta\) invariant expression found in [34] is recovered.

5.5.2. The special case \(n = 2\) for the compactified boson. It is instructive to analyze the details of the case \(n = 2\) with complex \(x\). Now the Riemann surface is a torus and the period matrix reduces to a number: its modulus \(\tau_1/2(x)\). First we recall that

\[F_{1/2}(x) = \frac{2}{\pi} K(x) = \theta_3(\tau_{1/2})^2,\]

(153)

where \(K(x)\) is the complete elliptic integral of the first kind and

\[\tau_{1/2}(x) = \frac{i}{2} \frac{K(1-x)}{K(x)}, \quad x(\tau_{1/2}) = \left(\frac{\theta_2(\tau_{1/2})}{\theta_3(\tau_{1/2})}\right)^4.\]

(154)

For \(n = 2\) we have that \(\mathcal{T}_2 = \overline{\mathcal{T}_2}\). From equations (58), (146) and (153) we find that the four-point function of the twist fields \(\mathcal{T}_2\) for the compactified real boson reads

\[(\mathcal{T}_2(z_1)\mathcal{T}_2(z_2)\mathcal{T}_2(z_3)\mathcal{T}_2(z_4)) = \left| \frac{z_{31}z_{42}}{z_{31}z_{41}z_{32}z_{43}} \right|^{1/4} \frac{\Theta(0|T)}{\theta_3(\tau_{1/2})^2} \right|^{1/12} \frac{\Theta(0|T)}{\theta_3(\tau_{1/2})^2},\]

(155)

where \(T\) is the \(2 \times 2\) matrix given by (147) for \(n = 2\), namely

\[T = \begin{pmatrix} i\eta\beta_{1/2} & \alpha_{1/2} \\ \alpha_{1/2} & i\beta_{1/2}/\eta \end{pmatrix}.\]

(156)

From (154) and the identity \(\theta_4^4 = \theta_5^4 - \theta_3^4\) one can find that

\[x(1-x) = \left(\frac{\theta_2(\tau_{1/2})}{\theta_3(\tau_{1/2})}\right)^4.\]

(157)

doi:10.1088/1742-5468/2013/02/P02008
The transformation properties of the Jacobi theta functions lead also to the following identities (here $\tau = \tau_{1/2}$)

$$
\begin{align*}
\frac{x(-1/\tau)}{\tau - 1} &= 1 - x(\tau), \\
\frac{x(-\tau)}{\tau - 1} &= \frac{1}{x(\tau)}, \\
\frac{x(\tau + 1)}{\tau - 1} &= \frac{x(\tau)}{x(\tau)}. \\
\end{align*}
$$

Plugging (157) into (155), we find

$$
\langle T_2(z_1)T_2(z_2)T_2(z_3)T_2(z_4)\rangle = \frac{1}{\zeta_{21}z_{32}z_{42}z_{43}} \frac{\eta(0|\tau)}{\eta(\tau_{1/2})^2} \Theta(0|\tau_{1/2}) \Theta(\tau_{1/2}) \Theta(\tau_{1/2}) \theta_2(\tau_{1/2}) \theta_3(\tau_{1/2}) \theta_4(\tau_{1/2})^{2/3},
$$

(159)

where in the last step we used the identity $2\eta^3 = \theta_2 \theta_3 \theta_4$ and $\eta(z)$ is the Dedekind eta function, which should not be confused with the compactification parameter. Now we observe that $Z_2(\tau_{1/2}) \equiv \Theta(0|T)/|\eta(\tau_{1/2})|^2$ is the partition function of the compactified boson on the torus (see e.g. equation (10.62) of [63] with $R_{\text{here}} = R_2^2/2$).

Let us consider the exchanges $z_1 \leftrightarrow z_3$, $z_2 \leftrightarrow z_3$ and $z_3 \leftrightarrow z_4$ separately. From (59) it is easy to see that they correspond to the following involutions: $x \leftrightarrow 1 - x$, $x \leftrightarrow 1/x$ and $x \leftrightarrow x/(x - 1)$, respectively. From (158), one notices that they are also associated with some $SL(2, \mathbb{Z})$ transformations of $\tau_{1/2}$. Since the prefactor containing the z_{ij}s in (159) is invariant under the three exchanges above and the partition function $Z_2(\tau_{1/2})$ is $SL(2, \mathbb{Z})$ invariant [63], we conclude that the four-point function (159) is invariant under $z_1 \leftrightarrow z_3$, $z_2 \leftrightarrow z_3$ and $z_3 \leftrightarrow z_4$ separately. This allows us to find that the ratio defined in (69) for the compactified boson is given by

$$
R_2(y) = 1
$$

identically for $0 < y < 1$. However, we stress that, ultimately, this is just the fact that $T_2 = \tilde{T}_2$.

6. Systems with boundaries

Let us consider a 1D system on the semi-infinite line, say $[0, \infty)$ and a bipartition $A_2 = [0, \ell]$ and A_1 the reminder. We then have

$$
\begin{align*}
\text{Tr}(\rho_A^{T_2})_{nw} &= \langle T_{2n}^2(\ell) \rangle = c_{n/2}^2 \left(\frac{2\ell}{a} \right)^{-c/6(n_{\text{w}}/2 - 2/n_{\text{w}})}, \\
\text{Tr}(\rho_A^{T_2})_{nw} &= \langle T_{n_0}^2(\ell) \rangle = c_{n_0} \left(\frac{2\ell}{a} \right)^{-c/12(n_{\text{w}} - 1/n_{\text{w}})}, \\
\mathcal{E} &= \frac{c}{4} \ln \left(\frac{2\ell}{a} + 2 \ln \tilde{c}_{1/2} \right).
\end{align*}
$$

(161)

The non-universal constants \tilde{c}_n are not the same as those appearing in the case of the infinite system c_n, but are related to them via the Affleck–Ludwig boundary entropy [32] as discussed in [22, 33].

Like for a periodic system, in the case of a finite system of length L with the same boundary conditions on both ends, the negativity can be obtained by a simple-logarithmic mapping which results in the net replacement $\ell \to (L/\pi) \sin(\pi\ell/L)$ and we get

$$
\mathcal{E} = \frac{c}{4} \ln \left(\frac{2L}{\pi a} \sin \left(\frac{\pi \ell}{L} \right) \right) + 2 \ln \tilde{c}_{1/2}.
$$

(162)

doi:10.1088/1742-5468/2013/02/P02008
The case of two adjacent finite intervals (or even one interval not adjacent to a boundary) is a two-point function in the half-plane, which has the same complexity as a four-point function in the full plane and then depends on the full operator content and not only on the central charge, as for the case of two disjoint intervals on the full line. However, some results can be achieved in a quite general way.

Let us first consider the case of two adjacent intervals, the first one starting from the boundary, i.e. \(A_1 = [0, \ell_1] \) and \(A_2 = [\ell_1 + \ell_2, \infty) \) is the remainder. We place the spatial coordinate along the imaginary direction in the complex plane, while the imaginary time is on the real direction, i.e. \(z = \tau + ix \), thus the system lies on the upper half-plane (UHP). The traces of integer powers of the partial transpose reduced density matrix, correspond to the UHP two-point function

\[
\text{Tr}(\rho_A^{T_2})^n = \langle T_n^2(z_1) T_n(z_2) \rangle_{\text{UHP}}, \quad \text{with } z_1 = i\ell_1, \ z_2 = i(\ell_1 + \ell_2).
\]

(163)

The general form of such two-point function can be obtained by the images method and is [67]

\[
\langle T_n^2(z_1) T_n(z_2) \rangle_{\text{UHP}} \propto \frac{\mathcal{F}_n^b(y)}{|z_{11}^2|^{\Delta_{T}} |z_{22}^2|^{\Delta_{T}}}, \quad y = \frac{z_{12}z_{12}}{z_{12}z_{12}},
\]

(164)

where \(z_i = \bar{z}_i \), \(z_{ij} = z_i - z_j \), \(y \) is the four-point ratio built with the two points and their images, and \(\mathcal{F}_n^b(y) \) is a scale invariant function of \(y \). Calculating this function is complicated, but there are some general conclusions which can be drawn without making any calculation. Indeed, let us assume \(\ell_1 = \ell_2 = \ell \). In this case \(y = 1/9 \) is constant, independent of \(\ell \), as the physical intuition suggests. Then we have

\[
\langle T_n^2(i\ell) T_n(i2\ell) \rangle_{\text{UHP}} \propto \frac{1}{\ell^{\Delta_{T}}},
\]

(165)

Using the values of \(\Delta_{T} \) in equations (44) and (45), we have

\[
\text{Tr}(\rho_A^{T_2})^n \propto \begin{cases} \ell^{-c/6(n-1/n)} & n \text{ odd}, \\ \ell^{-c/12(n-1/n)-c/6(n/2-2/n)} & n \text{ even}. \end{cases}
\]

(166)

In particular, the \(n \) dependence for \(n = n_e \) even is quite peculiar, being different from others found before. In the limit \(n_e \to 1 \), we obtain

\[
\mathcal{E} = \frac{c}{4} \ln \ell + \text{const},
\]

(167)

which however is similar to what found in other circumstances. We stress that in the case of a finite system of length \(L \), the result above applies if and only if one scales \(L \) with \(\ell \) in such a way to keep fixed the four-point ratio \(y \). In all other circumstances, one should use the full formula with the unknown function \(\mathcal{F}_n^b(y) \).

As a last example we mention the case of \(A_2 \) being a single interval detached from the boundary and \(A_1 \) the remaining part of the half-line. In such a case, \(\rho_A \) corresponds to a pure system and so the general result \(\mathcal{E} = S_A^{(1/2)} \) in equation (23) applies and the results for the Rényi entropies discussed in [34, 68] apply straightforwardly.
7. The harmonic chain

In this section we present accurate numerical checks of our CFT predictions for the
harmonic chain with periodic and Dirichlet boundary conditions. The Hamiltonian of
the harmonic chain with \(N \) lattice sites and with nearest neighbor interaction (but the
procedure is easily generalized to arbitrary interactions) is

\[
H = \sum_{n=0}^{N-1} \left[\frac{1}{2M} p_n^2 + \frac{M \omega^2}{2} q_n^2 + \frac{K}{2} (q_{n+1} - q_n)^2 \right],
\]

(168)

where periodic boundary conditions correspond to \(q_N = q_0 \) (and \(p_N = p_0 \)) while Dirichlet
boundary conditions to \(q_0 = q_N = p_0 = p_N = 0 \) (these are sometimes called fixed wall
conditions). The variables \(p_n \) and \(q_n \) satisfy standard commutation relations
\[
[q_n, q_m] = [p_n, p_m] = 0 \quad \text{and} \quad [q_n, p_m] = i \delta_{nm}.
\]

The chain is defined by the three parameters \(\omega, K, M \), however not all of them are
essential. Indeed, we can use a canonical transformation

\[
(q_n, p_n) \to ((MK)^{1/4} q_n, p_n/(MK)^{1/4}),
\]

(169)

to eliminate one of the three parameters. Introducing \(a = \sqrt{M/K} \) then we can rewrite
the Hamiltonian as

\[
H = \sum_{n=0}^{N-1} \left[\frac{1}{2a} p_n^2 + \frac{a \omega^2}{2} q_n^2 + \frac{1}{2a} (q_{n+1} - q_n)^2 \right].
\]

(170)

In this form, it is evident that the Hamiltonian is the lattice discretization of a free boson
(Klein Gordon field) with lattice spacing \(a \) and mass \(\omega \). Indeed in the limit \(a \to 0, N \to \infty \),
with \(Na = L \), we can replace

\[
q_n \to \phi(x), \quad \frac{p_n}{a} \to \pi(x) = \dot{\phi}(x), \quad \text{with} \quad x = na,
\]

(171)

(satisfying \([\phi(x), \pi(x')] = i \delta(x-x') \) with \(\delta_{nn'} \to a \delta(x-x') \)) and the Hamiltonian above
reduces to the two-dimensional Euclidean action

\[
S = \frac{1}{2} \int_0^L dx \int d\tau \left[(\partial_\tau \phi)^2 + \omega^2 \phi^2 \right].
\]

(172)

For \(\omega = 0 \) the theory is critical and conformal with central charge the \(c = 1 \). The boson
field \(\phi(x) \) is not compactified and so the theory corresponds to the limit \(\eta \to \infty \) in the
previous CFT description.

7.1. Diagonalization and correlation functions of the harmonic chain with periodic
boundary conditions

For periodic boundary conditions, the Hamiltonian (168) can be diagonalized by exploiting
the translational invariance and introducing the Fourier transforms of the canonical
variables, namely

\[
q_r = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \tilde{q}_k e^{2\pi ikr/N}, \quad \tilde{q}_k = \frac{1}{\sqrt{N}} \sum_{s=0}^{N-1} q_s e^{-2\pi isk/N},
\]

(173)
Entanglement negativity in extended systems

(and similarly for p_r) for $r = 1, \ldots, N$. The Hamiltonian (168) then becomes

$$H = \sum_{k=0}^{N-1} \left(\frac{1}{2M} \hat{p}_k \hat{p}_{N-k} + \frac{M \omega_k^2}{2} \hat{q}_k \hat{q}_{N-k} \right),$$

(174)

where

$$\omega_k \equiv \sqrt{\omega^2 + \frac{4K}{M} \sin \left(\frac{\pi k}{N} \right)} \geq \omega, \quad k = 0, \ldots, N - 1.$$

(175)

Notice that $\omega_{-k} = \omega_{N-k} = \omega_k$. As usual, we identify \hat{p}_{N-k} with \hat{p}_{-k} and \hat{q}_{N-k} with \hat{q}_{-k}. The minimum values assumed by the dispersion relation values ω_k is $\omega_0 = \omega$. From the canonical commutation relation $[q_r, p_s] = i \delta_{rs}$, one finds that \hat{q}_k and \hat{p}_{N-k} are canonically conjugate (i.e. $[\hat{q}_k, \hat{p}_{-k}] = i \delta_{kk'}$). Now one defines the annihilation and creation operators as

$$a_k \equiv \sqrt{\frac{M \omega_k}{2}} \left(\hat{q}_k + \frac{i}{M \omega_k} \hat{p}_k \right), \quad a_k^\dagger \equiv \sqrt{\frac{M \omega_k}{2}} \left(\hat{q}_{-k} - \frac{i}{M \omega_k} \hat{p}_{-k} \right),$$

(176)

which satisfy the algebra $[a_k, a_{k'}] = [a_k^\dagger, a_{k'}^\dagger] = 0$ and $[a_k, a_{k'}^\dagger] = i \delta_{kk'}$. Then the Hamiltonian (174) becomes

$$H = \sum_{k=0}^{N-1} \omega_k \left(a_k^\dagger a_k + \frac{1}{2} \right).$$

(177)

The ground state of the harmonic chain is then the vacuum $|0\rangle$ of the a_k, satisfying $a_k |0\rangle = 0$ for any k.

The two-point functions $\langle q_r q_s \rangle$ and $\langle p_r p_s \rangle$ in the vacuum are worked out writing (\hat{q}_k, \hat{p}_k) in terms of the operators a_k and a_k^\dagger, finding

$$\langle 0 | q_r q_s | 0 \rangle = \frac{1}{2N} \sum_{k=0}^{N-1} \frac{1}{M \omega_k} \cos \left[\frac{2\pi k (r-s)}{N} \right],$$

$$\langle 0 | p_r p_s | 0 \rangle = \frac{1}{2N} \sum_{k=0}^{N-1} M \omega_k \cos \left[\frac{2\pi k (r-s)}{N} \right].$$

(178)

These correlation functions can be organized in correlation matrices Q and P whose elements are the correlation functions, i.e.

$$Q_{rs} \equiv \langle 0 | q_r q_s | 0 \rangle, \quad P_{rs} \equiv \langle 0 | p_r p_s | 0 \rangle,$$

(179)

satisfying $Q \cdot P = \mathbb{I}_N / 4$, where \mathbb{I}_N is the $N \times N$ identity matrix. We also have $\langle 0 | q_r p_s | 0 \rangle = i \delta_{rs} / 2$.

It is very important for what follows to stress that $\langle 0 | q_r q_s | 0 \rangle$ is not well defined when $\omega = 0$ because $\omega_0 = 0$. This is the well-known problem arising from the zero mode, i.e. a constant translational invariant field configuration. For $\omega > 0$ we can isolate the term in equation (178) which diverges as $\omega \to 0$

$$\langle 0 | q_r q_s | 0 \rangle = \frac{1}{2N M \omega} + \frac{1}{2N} \sum_{k=1}^{N-1} \frac{1}{M \omega_k} \cos \left[\frac{2\pi k (r-s)}{N} \right],$$

(180)

doi:10.1088/1742-5468/2013/02/P02008
and the remaining sum is finite also in the limit \(\omega \to 0 \). For \(\omega = 0 \), the zero mode leads to divergent expressions, thus we work at finite but small \(\omega \) such that \(\omega L \ll 1 \).

7.2. Diagonalization and correlation functions of the harmonic chain with Dirichlet boundary condition

For the Dirichlet boundary conditions, the diagonalization cannot be performed by Fourier transform because of the breaking of translational invariance. However, we can simply use the Fourier sine transform, defining as in [62]

\[
\tilde{q}_k = \sqrt{\frac{2}{N}} \sum_{r=1}^{N-1} q_r \sin \left(\frac{\pi kr}{N} \right), \quad q_r = \sqrt{\frac{2}{N}} \sum_{k=1}^{N-1} \tilde{q}_k \sin \left(\frac{\pi kr}{N} \right),
\]

and similarly for \(p_r \) with \(r = 1, \ldots, N - 1 \). In this basis the Hamiltonian is diagonal

\[
H = \sum_{k=1}^{N-1} \left(\frac{1}{2M} \tilde{p}_k^2 + \frac{M\tilde{\omega}_k^2}{2} \tilde{q}_k^2 \right),
\]

where the dispersion relation reads

\[
\tilde{\omega}_k \equiv \sqrt{\omega^2 + \frac{4K}{M} \sin^2 \left(\frac{\pi k}{2N} \right)} > \omega, \quad k = 1, \ldots, N - 1.
\]

The key difference with respect to the periodic case is that \(\tilde{\omega}_k > \omega \geq 0 \) for \(k = 1, \ldots, N - 1 \). Thus, in this model all the quantities are well defined even for \(\omega = 0 \). In terms of the creation and the annihilation operators, the Hamiltonian takes the form (177) but with \(\tilde{\omega}_k \) replacing \(\omega_k \).

The correlators in the ground state of the Hamiltonian are

\[
\langle 0 | q_r q_s | 0 \rangle = \frac{1}{N} \sum_{k=1}^{N-1} \frac{1}{M\tilde{\omega}_k} \sin \left(\frac{\pi kr}{N} \right) \sin \left(\frac{\pi ks}{N} \right) = Q_{rs},
\]

\[
\langle 0 | p_r p_s | 0 \rangle = \frac{1}{N} \sum_{k=1}^{N-1} M\tilde{\omega}_k \sin \left(\frac{\pi kr}{N} \right) \sin \left(\frac{\pi ks}{N} \right) = P_{rs},
\]

where \(r, s = 1, \ldots, N \).

For these Dirichlet boundary conditions we can write down exact closed formulas for \(\omega = 0 \) and in the thermodynamic limit \(N \to \infty \), when the correlators (184) become

\[
\langle 0 | q_r q_s | 0 \rangle = \frac{1}{2\pi \sqrt{MK}} \left(\psi(1/2 + r + s) - \psi(1/2 + r - s) \right),
\]

\[
\langle 0 | p_r p_s | 0 \rangle = \frac{2\sqrt{MK}}{\pi} \left(\frac{1}{4(r + s)^2 - 1} - \frac{1}{4(r - s)^2 - 1} \right),
\]

where \(\psi(z) \) is the digamma function.

7.3. The reduced density matrix and its partial transpose

The construction of the reduced density matrix \(\rho_A \) for the ground state of the harmonic chain has been detailed in a several papers with slightly different theoretical
approaches [57, 10], [58]–[61]. Following [58, 61], we can easily relate ρ_A to the correlation matrices $Q_{rs} = \langle q_rq_s \rangle$ and $P_{rs} = \langle p_r p_s \rangle$ (derived above for periodic and Dirichlet boundary conditions) restricted to the part A of the system both if the subsystem is connected or formed by an arbitrary number of pieces. Indeed, since the ground state is Gaussian in normal coordinates (provided that no normal frequency vanishes) the reduced density matrix for an arbitrary subsystem A can be written in the Gaussian form [58, 61]

$$\rho_A \propto \exp \left(- \sum_{j \in A} \epsilon_j b_j^\dagger b_j \right) ,$$

(186)

where b_j^\dagger and b_j are bosonic creation and annihilation operators related to the original operator in the subsystem by a canonical transformation. At this point it is straightforward to fix the value of the ϵ_j by imposing that the correlation functions of the q and p in A calculated with ρ_A equal the ground-state ones (e.g. the one calculated above for periodic and Dirichlet boundary conditions). Denoting with P_A and Q_A the restriction of the matrices P and Q to the subsystem A and with μ_j^2 ($j = 1 \ldots \ell$, with ℓ the number of sites in A, not necessarily connected) the eigenvalues of the matrix $P_A \cdot Q_A$, i.e.

$$\text{Spectrum}(Q_A \cdot P_A) = \{ \mu_1^2, \ldots, \mu_\ell^2 \} ,$$

(187)

one finds $\mu_j = 1/2 \coth \epsilon_j/2$ [58]. (Alternatively one could work with the $2\ell \times 2\ell$ matrix formed by two-point functions of position and momentum operators, called reduced covariance matrix. Its reduction to a diagonal form is related to the problem of finding the symplectic spectrum of a symmetric and positive definite matrix [10, 59].)

From the eigenvalues μ_j, using the explicit form of ρ_A above, we obtain the Rényi entropies

$$\text{Tr} \rho_A^n = \prod_{j=1}^\ell \left[(\mu_j + \frac{1}{2})^n - (\mu_j - \frac{1}{2})^n \right]^{-1} ,$$

(188)

and the entanglement entropy as

$$S_A = \sum_{j=1}^\ell \left[(\mu_j + \frac{1}{2}) \ln (\mu_j + \frac{1}{2}) - (\mu_j - \frac{1}{2}) \ln (\mu_j - \frac{1}{2}) \right] .$$

(189)

The partial transpose of the reduced density matrix has been constructed in [10], where it has been shown that the partial transposition with respect to the subsystem A_2 has the net effect of changing the sign of the momenta corresponding to the subsystem A_2, leaving the partial transpose reduced density matrix $\rho_A^{T_2}$ a Gaussian matrix of the form (186). This means that we can simply replace the matrix P_A with a matrix in which all the momenta in A_2 have been changed sign, i.e.

$$P_A^{T_2} = R_{A_2} \cdot P_A \cdot R_{A_2} ,$$

(190)

where R_{A_2} is the $\ell \times \ell$ diagonal matrix having -1 in correspondence of the sites belonging to A_2 and $+1$ otherwise, i.e. $(R_{A_2})_{rs} = \delta_{rs}(-1)^{s \in A_2}$. Notice that $P_A^{T_1} = P_A^{T_2}$ because $R_{A_1} = -R_{A_2}$. Then the eigenvalues ν_j of the product $Q_A \cdot P_A^{T_2}$ determine the full spectrum
of $\rho^{T_2}_A$. Denoting
\[
\text{Spectrum}(Q_A \cdot P^{T_2}_A) = \{ \nu_1^2, \ldots, \nu_\ell^2 \},
\]
we have
\[
\text{Tr}(\rho^{T_2}_A)^n = \prod_{j=1}^\ell \left[(\nu_j + \frac{1}{2})^n - (\nu_j - \frac{1}{2})^n \right]^{-1},
\]
and the trace norm
\[
\|\rho^{T_2}_A\| = \prod_{j=1}^\ell \left| \nu_j + \frac{1}{2} - \nu_j - \frac{1}{2} \right|^{-1} = \prod_{j=1}^\ell \max \left[1, \frac{1}{2\nu_j} \right].
\]
From this quantity we easily get the negativity \mathcal{N} and the logarithmic negativity \mathcal{E}. Notice that only $\nu_j < 1/2$ contribute to (193).

Let us then summarize the practical procedure to find the negativity and $\text{Tr}(\rho^{T_2}_A)^n$ for an arbitrary tripartition $A_1 \cup A_2 \cup B$ in the ground state of an harmonic chain:

- From the correlation matrices Q and P (which for periodic and Dirichlet boundary conditions are given in equations (178) and (184) respectively), construct the reduced correlation matrices Q_A and P_A by erasing the rows and columns corresponding to the part B of the system.
- Change the signs of the momenta in the part A_2 to construct the matrix $P^{T_2}_A$ as in equation (190).
- Calculate the eigenvalues ν_j^2 of the product $Q_A \cdot P^{T_2}_A$.
- Use equation (192) to calculate $\text{Tr}(\rho^{T_2}_A)^n$ and equation (193) to obtain the negativity from ν_j.

In the semi-analytic calculations presented in the following we will always work in units $M = K = a = 1$ and so the total length is $L = N a = N$.

7.4. The negativity for one interval

We consider here the case when A_1 is a block of ℓ consecutive sites and A_2 the remainder, i.e. $B \rightarrow \emptyset$, as shown in the bottom of figure 1. In this case, the negativity and the traces $\text{Tr}(\rho^{T_2})^n$ coincide with the Rényi entropies for any pure state (cf equation (21)), as proved in section 2.3. It is however important to report these results for two reasons. Firstly, knowing a priori the final result of the calculation provides a non-trivial check of the numerical procedure which indeed differs substantially when calculating $\text{Tr}(\rho^{T_2})^n$ and $\text{Tr}\rho^{n}_A$, since for latter there is no need either of a partial transposition, or of the correlation matrices in the part A_1 (that involves basically the same procedure for one and two intervals). Secondly, these controlled calculations also give an idea of the corrections to the scaling to the asymptotic CFT formulas.

In the case of periodic boundary conditions, we cannot work directly with $\omega = 0$, because of the zero mode. Thus, we consider several values of ω, imposing the further constraint $\omega L \ll 1$ to ensure that all the data for any $1 < \ell < L$ are in the conformal regime. The data for $\text{Tr}(\rho^{T_2})^n$ in the periodic harmonic chain are reported in figure 6 for $n = 3$–6. The agreement with the conformal predictions in equation (54) is excellent.
Entanglement negativity in extended systems

Figure 6. Entanglement in a periodic chain of total length $L = 100$. We consider the bipartition between an interval of length ℓ and the remainder. Here $z = \ell/L$. Left: $\text{Tr}(\rho^{T^2})^n$ for $n = 3-6$ as function of $\sin(\pi z)$. The straight lines are the CFT predictions where the only free parameter is the overall amplitude c_n (cf equations (53) and (54)). Right: the logarithmic negativity \mathcal{E} versus the CFT prediction (55). The three curves correspond to different values of ω and show the influence of the zero mode. Indeed they are parallel (in log-linear scale) and the zero mode affects only the non-universal additive constant.

Visible deviations for small ℓ are the corrections to the scaling to the entanglement Rényi entropy discussed in [64–66] of the unusual form ℓ^{-2/n_R}, where n_R is the index of the corresponding Rényi entropy (i.e. $n_R = n$ for n odd and $n_R = n/2$ for n even).

In figure 6 we report also the logarithmic negativity as function of the chord length, finding a perfect agreement with the conformal prediction (55). We report the data for three different values of ω, all satisfying $\omega L \ll 1$ and so in the conformal regime. It is evident that in logarithmic-linear scale the three curves are parallel, confirming that the zero mode only affects the value of the non-universal additive constant and not the leading logarithmic behavior of \mathcal{E} with the subsystem sizes.

We then perform the same analysis for a finite system of total length L with Dirichlet boundary conditions considering the interval A_1 starting from the boundary up to ℓ and A_2 the remaining $L - \ell$ sites. In this case, as discussed above, there is no zero mode and we can work directly at $\omega = 0$. The data for $\text{Tr}(\rho^{T^2})^n$ are reported in figure 7 for several values of n, all for $L = 200$. It is evident that increasing ℓ the data approach the CFT predictions in equation (161), but in this case the corrections to the scaling are much larger than in the periodic case. This does not come unexpected, indeed in [64, 65, 68] it has been shown that in the presence of the boundaries the corrections to the asymptotic results are of the form ℓ^{-1/n_R} (where again n_R is the index of the corresponding Rényi entropy), i.e. they have an exponent which is half of the corresponding one for periodic systems. On the right of figure 7 we report the logarithmic negativity as function of the chord length $L \sin(\pi \ell/L)$ for $L = 25, 50, 100, 200$. All the data at different L collapse on
Figure 7. Entanglement in a critical ($\omega = 0$) harmonic chain with Dirichlet boundary conditions of total length L. We consider the bipartition between the interval $A_1 = [0, \ell]$ and the remainder $A_2 = [\ell, L]$. Here $z = \ell/L$. Left: $\text{Tr}(\rho_{T_2}^n)$ for $n = 3, 4, 5, 6$ and for $L = 200$ as function of $\sin(\pi z)$. The straight lines are the CFT predictions, where the only free parameter is the overall amplitude \tilde{c}_n (cf equation (161)). Right: the logarithmic negativity E for $L = 25, 50, 100, 200$. The four sets of data collapse on the same curve when plotted against the chord length, as they should.

the same curve, which for large enough chord length is perfectly described by the CFT prediction (162). The corrections to the scaling are smaller than the ones for $n \geq 2$, in agreement with the general analysis of the Rényi entropies [64, 65, 68].

Finally, we checked that all the results reported in this subsection satisfy the relations in equation (21) between $\text{Tr}(\rho_{T_2}^n)$ (and E) and the Rényi entropies in the same state.

7.5. The negativity for two adjacent intervals in periodic chains

We now consider the case of two adjacent intervals in a periodic system of total length L. For simplicity we consider the two intervals to have equal length ℓ, thus all the results depend on the single parameter $z \equiv \ell/L \in [0, 1/2]$. In terms of z, the CFT predictions in equation (56) can be rewritten as (we fix $c = 1$)

$$\text{Tr}(\rho_{A}^{T_2})^n \propto \left\{ \begin{array}{ll}
\sin^2(\pi z) & \sin(2\pi z) \cr
\sin(\pi z) & \sin(2\pi z) \end{array} \right\}^{-n_o/2 + 1/n_o/6},$$

and the proportionality constants depend on L in a known manner. For the logarithmic negativity from equation (57), we have

$$E = \frac{1}{4} \ln \frac{\sin^2(\pi z)}{\sin(2\pi z)} + \text{cnst} = \frac{1}{4} \ln[\tan(\pi z)] + \text{cnst},$$

where again the additive constant depends on L in a known manner. These predictions are checked against the numerical data in figure 8, where the only free parameters in each curve is fixed by a fit. The agreement is clearly excellent.

doi:10.1088/1742-5468/2013/02/P02008
Figure 8. A typical example of the entanglement of two adjacent intervals of the same length ℓ in a periodic chain of length L. The legend refers to both plots and we fix $\omega = 10^{-6}$. Left: $\text{Tr}(\rho^T_A)^3$ as function of $z = \ell/L$. The data are consistent with the conformal prediction (full lines with only one multiplicative free parameter). Right: logarithmic negativity E for the same chains as on the left. Again the data are perfectly consistent with the CFT predictions (full lines with only one additive free parameter).

However, one can do even better checks of the theory by constructing ratios in which all the dependence on non-universal parameters (such as those coming from the zero mode) and also the dependence on L cancel. A straightforward idea would be to divide $\text{Tr}(\rho^T_A)^n$ for the value it assumes at a given fixed ℓ, e.g. $\ell = L/4$, i.e. by considering the logarithm of the ratio

$$r_n(z) = \ln \frac{\text{Tr}(\rho^T_A)^{z=L/4}}{\text{Tr}(\rho^T_A)^{z=L/4}},$$

(196)

whose parameter-free CFT predictions for n even and odd are

$$r_{n_e} = \frac{1}{6} \left(\frac{2}{n_e} - \frac{n_e}{2} \right) \ln(2\sin^2(\pi z)) - \frac{1}{6} \left(\frac{n_e}{2} + \frac{1}{n_e} \right) \ln(\sin(2\pi z)),$$

(197)

$$r_{n_o} = \frac{1}{12} \left(\frac{1}{n_o} - n_o \right) \ln(2\sin^2(\pi z) \sin(2\pi z)).$$

(198)

These ratios are shown in figure 9 for $n = 3$ and 4. The agreement of the numerical data and the CFT prediction is excellent. Some very small deviations are visible for z close to 0 and 1/2, but we checked that they go to zero on increasing L in a controllable way.

For the logarithmic negativity, we can analogously define the subtracted quantity

$$\epsilon(z) = E(\ell, L) - E(L/4, L) = \frac{1}{4} \ln[\tan(\pi z)],$$

(199)

and again the rhs is a parameter-free CFT prediction. In figure 9 (left panel), this prediction is compared with the numerical data and the agreement is extremely good since no deviations are visible even close to the boundaries.
Figure 9. Entanglement for two adjacent intervals of equal length $\ell < L/2$ in a periodic chain of length L. Left: the ratio $r_n(z)$ in equation (196) as function of $z = \ell / L$ compared with the parameter-free CFT prediction. Right: subtracted negativity $\epsilon(z)$ in equation (199), again compared with the parameter-free CFT prediction.

7.6. The negativity for two disjoint intervals in the periodic chain

To conclude our analysis of the periodic chain we consider now the most difficult situation of two disjoint intervals, for which the negativity has been already considered numerically [12]. Here we start by considering the traces $\text{Tr}(\rho_A^n)$, which, in the conformal regime $\omega L \ll 1$, should be described by equation (66) with $G_n(y)$ given in (84). The direct numerical data, which we do not present here, agree well with the CFT predictions where the overall constant is fixed by a fit and explicitly depends on the values of ω and L, since the data are influenced by the zero mode. However, while this is a further confirmation of the predictive power of CFT, it gives little information on the true entanglement (which is only obtained in the limit $n_e \to 1$). Indeed the function $G_n(y)$ turns out to be very close to a constant (in proper units equals 1) and the direct data mainly probe the prefactor to $G_n(y)$ in equation (66), whose logarithm vanishes in the replica limit $n_e \to 1$, and so does not give any contribution to the negativity.

As already stated in section 5, a practical way to get rid of the prefactor is to consider the ratio $R_n(y)$ in equation (69), where also the non-universal parts due to the zero mode cancel and we are left with a universal function of y. The CFT prediction for this ratio $R^{n=\infty}_n(y)$ in equation (86) is compared to the numerical data in figure 10. As L increases, the data approach the CFT result. The differences with the asymptotic formula are due to the presence of unusual corrections to the scaling [64, 65] whose leading part is of the form $L^{-2/n}$. A quantitative finite size scaling analysis is reported in figure 11 for $n = 3, 4$, showing that the difference

$$d_n(y) \equiv R_n(y) - R^{n=\infty}_n(y),$$

(200)
Figure 10. For a periodic chain of length L, we report the ratio $R_n(y)$ defined in equation (69) as function of y for several L and for $n = 3, 4$. The continuous lines are the parameter-free CFT predictions to which the data converges for $L \to \infty$.

Figure 11. Finite size scaling analysis for $d_n(y)$ in equation (200) for $n = 3$ (left) and $n = 4$ (right). We report from figure 10 several values of y (increasing in the direction of the arrow, but we do not give the actual value to simplify the reading of the plot). The data are compatible with a leading correction to the scaling of the form $L^{-2/n}$.

for several values of y is of the expected form $L^{-2/n}$. As well known (even analytically) for other simpler cases [64, 66] for larger n, the subleading corrections to the scaling, of the form $L^{-2p/n}$ with p integer, cannot be neglected and a proper analysis requires the introduction of some fitting parameters.

Finally we turn to the study of the negativity \mathcal{E} reported in figure 12, showing that all data collapse on a single curve, without sizable corrections. Unfortunately we do not have the analytic continuation of $R_{n=\infty}(y)$ to $n_e \to 1$ as a function of y. However we can study the two interesting regimes of far and close intervals corresponding to $y \to 0$ and $y \to 1^-$ respectively. For small y, the data, being very close to zero, are consistent with the prediction that they vanish faster than any power. In [12], on the basis of the numerical data, the form $e^{-a/\sqrt{y}}$ has been proposed. This proposal is shown in logarithmic scale in the inset of figure 12 together with a simple exponential $e^{-b/y}$. The two possible scenarios are very difficult to distinguish apart on the basis of the numerical calculations involving
Entanglement negativity in extended systems

Figure 12. The negativity $E(y)$ is a universal scale invariant function with an essential singularity at $y = 0$. We report the data for $L = 50, 100, 150, 200, 250, 300$ but, since they are hardly distinguishable, we do not give a legend box. The solid line is the expansion close to $y \sim 1$ in equation (202), which very surprisingly describes well the data down to $y \sim 0.3$. The inset shows the same plot on a logarithmic scale, showing that for small y the two possibilities $E \sim e^{-a/y}$ and $E \sim e^{-b/\sqrt{y}}$ are too close to be distinguished apart.

exponentially small numbers, and the ambiguity can be resolved only by analytically continuing $R_{n=\infty}^{\eta}(y)$.

For $y \to 1$, the general prediction from CFT (74) for $c = 1$ is

$$E(y) = -\frac{1}{4} \ln(1 - y) + \cdots,$$

(201)

however, we have shown in equation (106) that for the model at hand, subleading double-logarithmic corrections are present

$$E(y) = -\frac{1}{4} \ln(1 - y) - \frac{1}{2} \ln K(y) - \ln P_1 + o(1),$$

(202)

where $K(y)$ is the elliptic integral of the first kind and $P_1 = 0.832056 \ldots$ is given in equation (114). Written in this form, the expansion contains also some of the subleading corrections (in $1 - y$) and it is expected to describe the data better. Indeed in figure 12, this prediction is almost indistinguishable from the data all the way from $y \sim 1$ (where it is an exact result) down to $y \sim 0.3$. We should mention that the subleading logarithmic correction may be responsible for the exponent $1/3$ found in [12] as compared with our analytic result $1/4$.

Finally, we would like to mention that, in a long enough chain, when each interval contains a finite number of lattice points, the negativity must vanish exactly for sufficiently large separations. Indeed the reduced density matrix ρ_A has all strictly positive eigenvalues and in the limit when the intervals are far apart ρ_A factorizes and each factor is a finite matrix with positive eigenvalues which become independent of the separation. Thus, when we take the partial transpose, the change in the density matrix, and therefore in the eigenvalues, can be made arbitrarily small since $\langle p_i p_j \rangle$ (which is the correlator that changes sign, cf equation (190)) decreases like $|i - j|^{-2}$. Thus the partial transpose changes the elements of ρ_A, but by an amount which is arbitrarily small so the eigenvalues do not change sign. Indeed this is consistent with the well-known result [1, 9] that the entanglement of two far away sites is exactly zero.
Figure 13. $\text{Tr}(\rho_A^{T_2})^n$ (left) and logarithmic negativity (right) for a semi-infinite critical ($\omega = 0$) harmonic chain with Dirichlet boundary conditions in the origin. We report the results for two adjacent intervals of equal length l, with the first one starting from the origin. The data are perfectly described by the asymptotic CFT predictions reported as solid lines.

7.7. Tripartite chains with Dirichlet boundary in the origin

Now we consider the non-trivial case of a tripartite chain on a system with boundaries discussed in section 6, which is the semi-infinite line, with $A_1 = [0, \ell]$, $A_2 = [\ell, 2\ell]$ and B the remainder. In this case, the results for $\text{Tr}(\rho_A^{T_2})^n$ are given in equation (166), which we report also here:

$$\text{Tr}(\rho_A^{T_2})^n = \begin{cases}
\ell^{-c/6(n-1/n)} & n \text{ odd,} \\
\ell^{-c/12(n-1/n)-c/6(n/2-2/n)} & n \text{ even.}
\end{cases} \quad (203)$$

The most interesting feature is the peculiar behavior for n even, which can be explicitly checked by considering the semi-infinite harmonic chain with $\omega = 0$. The results for the numerical evaluation of $\text{Tr}(\rho_A^{T_2})^n$ are reported in figure 13 (left), showing the perfect agreement of both even and odd $n = 3–6$ where only the global amplitude has been fixed with a fit. The right panel of the same figure shows the corresponding logarithmic negativity, which turns out to be described by the CFT prediction $\mathcal{E} = 1/4 \ln \ell + \text{const.}$

8. Some scaling considerations for massive theories

It is well known that for a gapped one-dimensional model, on increasing ℓ the entanglement (Rényi) entropy saturates to a finite value [30]. The calculation of this saturation value is generically complicated because it depends on microscopical details of the model and so it is calculable only for few simple integrable cases (see e.g. [22, 69, 70]). However, some general results can be worked out when a system is close to a conformal quantum critical point, and in the scaling limit where the lattice spacing $a \to 0$ and with the correlation length fixed and large. Under these hypotheses and when all the lengths of the various subsystems (and so the total one for a finite system) are much larger than ξ, which is

doi:10.1088/1742-5468/2013/02/P02008
itself large, the Rényi entropies are \[S_A^{(n)} = A \frac{c}{12} \left(1 + \frac{1}{n} \right) \log \frac{\xi}{a} + O(\xi^0), \] (204)

where \(A \) is the number of boundary points between \(A \) and its complement and \(c \) is the central charge of the conformal field theory for \(\xi^{-1} = 0 \). Clearly, when the interval lengths are of the order of \(\xi \), a complicated and universal (within the scaling limit) crossover takes place, which has been worked out only in very few QFT [22, 24, 71, 72].

The same difficulties for the entanglement entropy, with also some additional problems, make prohibitive the calculations of the negativity and \(\text{Tr}(\rho_A^{T_2})^n \) for a general gapped model. However, in the scaling limit and when the correlation length is itself large, but smaller than all the subsystems lengths, scaling considerations lead to very general results. For example in the case of a bipartition of a pure state in a finite interval of length \(\ell \gg \xi \) and the remainder, the scaling suggests to replace \(\ell \) with \(\xi \) in equations (42) and (43) for \(\text{Tr}(\rho_A^{T_2})^n \), and so the negativity is

\[E = \frac{c}{2} \ln \xi + O(\xi^0). \] (205)

This is clearly true because it is the general relation (21) between negativity and Rényi entropy. A direct check of this is the general result for a bisected harmonic chain (i.e. \(A_2 \) formed by \(N/2 \) consecutive sites and \(A_1 \) the remainder) with periodic boundary conditions and nearest neighbor interaction. In this case, an interesting exact formula has been found for the logarithmic negativity [10]

\[E = \frac{1}{4} \ln \left(1 + \frac{4K}{M\omega^2} \right), \] (206)

which, remarkably, is independent of the size of the chain \(N \). In the limit \(\xi^{-1} \propto \omega \ll 1 \) gives \(E = (\ln \xi)/2 \), in agreement with the general scaling.

A more interesting example can be obtained by considering the case of two adjacent intervals. Again, scaling suggests to substitute in equation (50) for the conformal case \(\ell_{1,2} \) with \(\xi \) giving

\[E = \frac{c}{4} \ln \xi + O(\xi^0). \] (207)

This scaling in \(\xi \) is checked in figure 14 (left) for the harmonic chain for two adjacent intervals of the same length \(\ell \). This shows an excellent agreement for \(1 \ll \xi \ll \ell \), while for larger \(\xi \), the crossover to the CFT prediction (50) takes place.

On the same lines as above, the negativity for other tripartitions can be deduced by means of simple scaling arguments.

9. Conclusions

We introduced a general field theoretical formalism to calculate the negativity and the logarithmic negativity, as an extension of our previous short communication [21]. This novel approach is based on a replica calculation of the traces of even integers \(n_e \) powers of the partial transpose of the reduced density matrix and analytically continuing this to
\(n_e \to 1 \), i.e. the logarithmic negativity is

\[
E = \lim_{n_e \to 1} \ln \text{Tr}(\rho_A^{T_2})^{n_e}.
\]

Several physical situations have been explicitly worked out for a conformally invariant theory:

- The case in which \(A_1 \) is an interval and \(A_2 \) the remainder of an infinite, semi-infinite or finite (both periodic and with boundaries) system.
- The case in which \(A_1 \) and \(A_2 \) are two adjacent intervals of length \(\ell_1 \) and \(\ell_2 \) respectively. For an infinite system the negativity is

\[
E = \frac{c}{4} \ln \frac{\ell_1 \ell_2}{\ell_1 + \ell_2} + \text{cnst}.
\]

This is simply generalized to a finite periodic system.

- For the case in which \(A_1 \) and \(A_2 \) are two disjoint intervals (always of length \(\ell_1 \) and \(\ell_2 \)), the negativity turns out to depend on the full operator content of the theory and it is a scale invariant function (i.e. a function of the harmonic ratio of the four points defining the two intervals). We calculated the traces of integer powers of the partial transposed reduced density matrix for a free bosonic theory, both compactified (i.e. the Luttinger liquid field theory) and in the limit of infinite compactification radius. However, the \(n \) dependence of these formulas is too complicated and we managed to calculate the analytic continuation only in some physical relevant limits (far and close intervals).

All the CFT results have been accurately checked for a chain of harmonic oscillators, finding perfect agreement. We also proposed a few scaling relations valid in the scaling regime when a theory is close to a conformal quantum critical point, and the correlation length (inverse gap or mass) is finite but large.
We are currently working out the generalization of the CFT approach to finite temperature field theories, which is not as straightforward as it could naively appear. Finally, we mention that it is of extreme interest to check numerically all our CFT predictions in more complicated lattice models, such as spin chains and itinerant fermions described by the Luttinger liquid field theory, for which we worked out explicit predictions for $\text{Tr}(\rho_A^n)$ even in the case of disjoint intervals.

Acknowledgments

ET thanks Marcus Cramer for discussions. This work was supported by the ERC under Starting Grant 279391 EDEQS (PC). This work has been partly done when all the authors were guests of the Galileo Galilei Institute in Florence and Institut Henri Poincaré in Paris. ET thanks the Dipartimento di Fisica dell’Università di Pisa for the warm hospitality during the last part of this work.

References

[1] Amico L, Fazio R, Osterloh A and Vedral V, *Entanglement in many-body systems*, 2008 Rev. Mod. Phys. 80 517
Eisert J, Cramer M and Plenio M B, *Area laws for the entanglement entropy—a review*, 2010 Rev. Mod. Phys. 82 277
Eisert J, Cramer M and Plenio M B, 2009 J. Phys. A: Math. Gen. 42 500301
[2] Vidal G, *Entanglement monotones*, 2000 J. Mod. Opt. 47 355
[3] Calabrese P and Lefèvre A, *Entanglement spectrum in one-dimensional systems*, 2008 Phys. Rev. A 78 032329
[4] Plenio M B and Virmani S, *An introduction to entanglement measures*, 2007 Quantum. Inform. Comput. 7 1
[5] Verstraete F, García-Ripoll J J and Cirac J I, *Matrix product density operators: simulation of finite-T and dissipative systems*, 2004 Phys. Rev. Lett. 93 207204
Zwolak M and Vidal G, *Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm*, 2004 Phys. Rev. Lett. 93 207205
[6] Eisert J and Plenio M B, *A comparison of entanglement measures*, 1999 J. Mod. Opt. 46 145
[7] Peres A, *Separability criterion for density matrices*, 1996 Phys. Rev. Lett. 77 1413
Horodecki M, Horodecki P and Horodecki R, *Mixed state entanglement and distillation: is there a ‘bound’ entanglement in nature?*, 1998 Phys. Rev. Lett. 80 5239
Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M, *On the volume of the set of mixed entangled states*, 1998 Phys. Rev. A 58 883
Duan L M, Giedke G, Cirac J I and Zoller P, *Inseparability criterion for continuous variables systems*, 2000 Phys. Rev. Lett. 84 2722
Simon R, *Peres-Horodecki separability criterion for continuous variables systems*, 2000 Phys. Rev. Lett. 84 2726
[8] Vidal G and Werner R F, *A computable measure of entanglement*, 2002 Phys. Rev. A 65 032314
[9] Osterloh A, Amico L, Falci G and Fazio R, *Scaling properties of the entanglement at a quantum phase transition*, 2002 Nature 416 608
[10] Audenaert K, Eisert J, Plenio M B and Werner R F, *Entanglement properties of the harmonic chain*, 2002 Phys. Rev. A 66 042327
[11] Wichterich H, Molina-Vilaplana J and Bose S, *Scale invariant entanglement at quantum phase transitions*, 2009 Phys. Rev. A 80 010304
[12] Marcovitch S, Retzker A, Plenio M B and Reznik B, *Critical and noncritical long range entanglement in the Klein–Gordon field*, 2009 Phys. Rev. A 80 012325
[13] Wichterich H, Vidal J and Bose S, *Universality of the negativity in the Lipkin–Meshkov–Glick model*, 2010 Phys. Rev. A 81 032311
[14] Bayat A, Sodano P and Bose S, *Negativity as the entanglement measure to probe the Kondo regime in the spin-chain Kondo Model*, 2010 Phys. Rev. B 81 064429
Entanglement negativity in extended systems

Casini H and Huerta M, Remarks on the entanglement entropy for disconnected regions, 2009 J. High Energy Phys. JHEP03(2009)048

Casini H and Huerta M, Reduced density matrix and internal dynamics for multicomponent regions, 2009 Class. Quantum Grav. 26 185005

Casini H, Entropy inequalities from reflection positivity, 2010 J. Stat. Mech. P08019

Facchi P, Florio G, Invernizzi C and Pascazio S, Entanglement of two blocks of spins in the critical Ising model, 2008 Phys. Rev. A 78 052302

Klich I and Levitov L, Quantum noise as an entanglement meter, 2009 Phys. Rev. Lett. 102 100502

Alba V, Tagliacozzo L and Calabrese P, Entanglement entropy of two disjoint blocks in critical Ising models, 2010 Phys. Rev. B 81 060411

Alba V, Tagliacozzo L and Calabrese P, Entanglement entropy of two disjoint intervals in c = 1 theories, 2011 J. Stat. Mech. P06012

Fagotti M and Calabrese P, Entanglement entropy of two disjoint blocks in XY chains, 2010 J. Stat. Mech. P04016

Calabrese P, Entanglement entropy in conformal field theory: new results for disconnected regions, 2010 J. Stat. Mech. P09013

Igli F and Peschel I, On reduced density matrices for disjoint subsystems, 2010 Eur. Phys. Lett. 89 40001

Headrick M, Entanglement Renyi entropies in holographic theories, 2010 Phys. Rev. D 82 126010

Fagotti M, Entanglement negativity in holographic theories, 2010 Phys. Rev. D 82 126010

Rajabpour M A and Gliozzi F, New insights into the entanglement of disjoint blocks, 2012 J. Stat. Mech. P02016

Swingle B, Renyi entropy, mutual information, and fluctuation properties of Fermi liquids, 2012 Phys. Rev. B 86 045109

Calabrese P, Mintchev M and Vicari E, Exact relations between particle fluctuations and entanglement in Fermi gases, 2012 Eur. Phys. Lett. 98 20003

Holographic derivation of entanglement negativity in extended systems, 2009 J. Phys. A: Math. Gen. 42 504008

Tonni E, Holographic entanglement entropy: near horizon geometry and disconnected regions, 2011 J. High Energy Phys. JHEP05(2011)004

Headrick M, Lawrence A and Roberts M M, Bose–Fermi duality and entanglement entropies, 2012 arXiv:1209.2428

Dixon L J, Friedan D, Martinec E J and Shenker S H, The Conformal Field Theory of Orbifolds, 1987 Nucl. Phys. B 282 13

Zamolodchikov Al B, Conformal scalar field on the hyperelliptic curve and critical Ashkin–Teller multipoint correlation functions, 1987 Nucl. Phys. B 285 481

Dijkgraaf R, Verlinde E P and Verlinde H L, C = 1 conformal field theories on Riemann surfaces, 1988 Commun. Math. Phys. 115 649

Peschel I and Chung M-C, Density matrices for a chain of oscillators, 1999 J. Phys. A: Math. Gen. 32 8419

Peschel I and Eisler V, Exact results for the entanglement across defects in critical chains, 2012 J. Phys. A: Math. Gen. 45 155301

Peschel I, Calculation of reduced density matrices from correlation functions, 2003 J. Phys. A: Math. Gen. 36 L205

Botero A and Reznik B, Spatial structures and localization of vacuum entanglement in the linear harmonic chain, 2004 Phys. Rev. A 70 052329

Plenio M B, Eisert J, Dreisig J and Cramer M, Entropy, entanglement, and area: analytical results for harmonic lattice systems, 2005 Phys. Rev. Lett. 94 060503

Cramer M, Eisert J, Plenio M B and Dreisig J, An entanglement-area law for general bosonic harmonic lattice systems, 2006 Phys. Rev. A 73 012309

doi:10.1088/1742-5468/2013/02/P02008
Entanglement negativity in extended systems

[61] Peschel I and Eisler V, Reduced density matrices and entanglement entropy in free lattice models, 2009 J. Phys. A: Math. Gen. 42 504003
[62] Lievens S, Stoilova N I and Van der Jeugt J, Harmonic oscillator chains as Wigner Quantum Systems: periodic and fixed wall boundary conditions in gl(1 − n) solutions, 2008 J. Math. Phys. 49 073502
[63] Di Francesco P, Mathieu P and Senechal D, 1997 Conformal Field Theory (New York: Springer)
[64] Calabrese P, Campostrini M, Essler F and Nienhuis B, Parity effects in the scaling of block entanglement in gapless spin chains, 2010 Phys. Rev. Lett. 104 095701
[65] Cardy J and Calabrese P, Unusual corrections to scaling in entanglement entropy, 2010 J. Stat. Mech. P04023
[66] Calabrese P and Essler F H L, Universal corrections to scaling for block entanglement in spin-1/2 XX chains, 2010 J. Stat. Mech. P08029
[67] Cardy J L, Conformal invariance and surface critical behaviour, 1984 Nucl. Phys. B 240 514
[68] Fagotti M and Calabrese P, Universal parity effects in the entanglement entropy of XX chains with open boundary conditions, 2011 J. Stat. Mech. P01017
[69] Its A R, Jin B-Q and Korepin V E, Entanglement in XY spin chain, 2005 J. Phys. A: Math. Gen. 38 2975
Franchini F, Its A R and Korepin V E, Renyi entropy of the XY spin chain, 2008 J. Phys. A: Math. Gen. 41 025302
[70] Peschel I, On the entanglement entropy for a XY spin chain, 2004 J. Stat. Mech. P12005
Weston R, The entanglement entropy of soluble lattice models, 2006 J. Stat. Mech. L03002
Calabrese P, Cardy J and Peschel I, Corrections to scaling for block entanglement in massive spin-chains, 2010 J. Stat. Mech. P09003
Ercolani E, Evangelisti S and Ravanini F, Exact entanglement entropy of the XYZ model and its sine–Gordon limit, 2010 Phys. Lett. A 374 2101
[71] Casini H and Huerta M, Entanglement entropy in free quantum field theory, 2009 J. Phys. A: Math. Gen. 42 504007
Casini H and Huerta M, Analytic results on the geometric entropy for free fields, 2008 J. Stat. Mech. P01012
Casini H and Huerta M, Entanglement and alpha entropies for a massive scalar field in two dimensions, 2005 J. Stat. Mech. P12012
[72] Castro-Alvaredo O A and Doyon B, Bipartite entanglement entropy in massive 1+1-dimensional quantum field theories, 2009 J. Phys. A: Math. Gen. 42 504006
Castro-Alvaredo O A and Doyon B, Bipartite entanglement entropy in massive QFT with a boundary: the Ising model, 2009 J. Stat. Phys. 134 105
Doyon B, Bipartite entanglement entropy in massive two-dimensional quantum field theory, 2009 Phys. Rev. Lett. 102 031602
Castro-Alvaredo O A and Doyon B, Bipartite entanglement entropy in integrable models with backscattering, 2008 J. Phys. A: Math. Gen. 41 275203