Importance of Aspergillus spp. isolation in Acute exacerbations of severe COPD: prevalence, factors and follow-up: the FUNGI-COPD study

Arturo Huerta†, Nestor Soler†, Mariano Esperatti1, Mónica Guerrero1, Rosario Menendez2, Alexandra Gimeno2, Rafael Zalacaín3, Nuria Mir4, Jose Maria Aguado5 and Antoni Torres1*

Abstract

Background: Acute exacerbations of COPD (AECOPD) are often associated with infectious agents, some of which may be non-usual, including Aspergillus spp. However, the importance of Aspergillus spp. in the clinical management of AECOPD still remains unclear.

Objectives: The aims of the study were to analyze the prevalence and risk factors associated with Aspergillus spp. isolation in AECOPD, and to investigate the associated clinical outcomes during a 1-year follow-up period.

Methods: Patients presenting with an AECOPD requiring hospitalization were prospectively included from four hospitals across Spain. Clinical, radiological and microbiological data were collected at admission and during the follow-up period (1, 6 and 12 months after discharge), and re-admissions and mortality data collected during the follow-up.

Results: A total of 240 patients with severe AECOPD were included. Valid sputum samples were obtained in 144 (58%) patients, and in this group, the prevalence of Aspergillus spp. isolation was 16.6% on admission and 14.1% at one-year follow-up. Multivariate logistic-regression showed that AECOPD in the previous year (OR 12.35; 95% CI, 1.9-29.1; p < 0.001), concurrent isolation of pathogenic bacteria (OR 3.64; 95% CI 1.65-9.45, p = 0.001) and concomitant isolation of Pseudomonas aeruginosa (OR 2.80; 95% IC, 1.81-11.42; p = 0.001) were the main risk factors for Aspergillus spp. isolation.

Conclusions: The main risk factors for Aspergillus spp. isolation were AECOPD in the previous year and concomitant isolation of Pseudomonas aeruginosa. However, although Aspergillus spp. is often isolated in sputum samples from patients with AECOPD, the pathogenic and clinical significance remains unclear.

Introduction

Exacerbations of chronic obstructive pulmonary disease (COPD) are frequent events in the natural history of the disease, increasing mortality especially when patients require hospitalization [1,2]. Acute exacerbations of COPD (AECOPD) are characterized clinically by worsening of dyspnoea, increased sputum production and/or changes in sputum purulence [3]. There is evidence suggesting that some infectious agents, typically respiratory viruses and bacteria, increase bronchial and systemic inflammation, which is commonly seen in AECOPD [4,5].

Overall, these microbial agents account for the etiology of 75% of AECOPD, particularly in Anthonisen Type I exacerbations [6]. However, the role of non-usual microorganisms such as Aspergillus spp. has not been well established. Previous published data investigating Aspergillus spp. in COPD are retrospective [7] or were conducted in a small series of patients [8]. However, Aspergillus spp. may be responsible for important clinical events from saprophytic colonization of the airways to rapidly invasive and life-threatening disseminated diseases, depending on the host immune status and the
presence of underlying lung disease [9]. Patients with severe COPD who often receive broad-spectrum antibiotics and corticosteroids are now acknowledged to be one of the main risk groups for pulmonary aspergillosis [10,11].

As little is known about the risk of pulmonary aspergillosis in severe COPD patients, some retrospective studies have analyzed the incidence of Aspergillus fumigatus isolation from lower respiratory tract samples in non-immunocompromised patients and shown that COPD patients are an important group which are affected by either colonization or proven aspergillosis [12].

In one of the largest studies investigating the prevalence of Aspergillus spp. from Aspergillus respiratory samples in a cohort of critically ill patients, positive cultures Aspergillus occurred in 36 out of a total of 1756 patients, and Aspergillus treatment with steroids (odds ratio (OR) = 4.5) and chronic obstructive pulmonary disease (OR = 2.9) were significantly associated with Aspergillus spp. isolation in their multivariate analysis [13]. However, it remains unclear why some COPD patients are colonized by Aspergillus spp. whereas others develop invasive pulmonary disease. Colonization may correspond to a temporary passage of Aspergillus spp. in the airways, long-term benign carriage, or a sign of preceding invasive disease [14-17]. However, the absence of prospective studies designed to determine the prevalence of Aspergillus spp. airway colonization Aspergillusin patients with AECOPD means that it has not been possible to define the influence of this organism as a causal agent of exacerbations.

Thus, the aim of this study was to analyze the prevalence, risk factors and clinical evolution associated with the respiratory isolation of Aspergillus spp. in a cohort of COPD patients requiring admission to the hospital with an AECOPD.

Methods
Study data and design
Data was prospectively collected from patients hospitalized due to a severe COPD exacerbation in four tertiary university teaching hospitals in Spain between January 2008 and December 2009. Ethics Approval Committee (CEIC 2008/4325) and all patients provided written informed consent.

Definitions
A complete definition of COPD, severe COPD exacerbation and pulmonary Aspergillus spp. infection.

Study protocol
Only COPD patients with GOLD confirmed by spirometry were included. Patients were evaluated for inclusion in the study within the first 24 hours after admission to the Emergency Department. Diagnosis of COPD exacerbation, decision to hospitalize, time of discharge and choice of pharmacological therapy were taken by the physician in charge. Patients with active tuberculosis, asthma, immunosuppression (innate or acquired) or any other clinical respiratory diseases were excluded. All patients discharged after an AECOPD were scheduled for follow-up visits at one, six and 12 months. Each patient was only included once in the analysis, despite the possibility of more than one re-admission during the follow-up period.

Data collection
Demographic variables, presence of any comorbid conditions (heart, renal, neurologic and liver disease, diabetes or cancer), smoking status, perceived dyspnea and use of pharmacotherapy (including COPD baseline treatment, antibiotics, and anti-pneumococcal and/or flu vaccination) were recorded on admission to hospital. Symptoms/signs of the AECOPD together with physiological and laboratory data were collected at onset. Other variables such as length of stay (LOS), frequency of patients in whom admission to the intensive care unit (ICU) was needed, or requirement of non-invasive mechanical ventilation (NIMV) were also recorded.

The number of AECOPD events in the year preceding hospitalization was assessed based on recorded data and a search of the database of all hospital contacts. Only exacerbations requiring emergency room visits or admissions were included.

Microbiological analysis
Spontaneous sputum samples were obtained on admission and in each follow-up visit where possible. Sputum was examined for leukocytes and epithelial cells by gram stain, and samples with a Murray-Washington classification criteria IV (10-25 epithelial cells and ≥25 leukocytes per field) or V (≤10 epithelial cells and ≥25 leukocytes per field) were considered representative of distal airways and subsequently processed for culture. Bacterial growth was assessed at 48 hours and fungal growth after 72 hours. The airway bacteria cultured were classified into potential pathogenic microorganisms (PPMs) and non-PPMs, as previously described [5]. Samples were processed by the reference clinical microbiology laboratories of the participating hospitals using standard procedures, including Sabouraud agar culture, for the isolation of fungal species. Cultures were incubated at 32°C-37°C for at least 7 days and the number of visible colonies recorded. After seven days, filamentous colonies were examined and Aspergillus spp. identified based on macroscopic and microscopic methods.
Statistical analysis

Data were analysed using SPSS version 17.0 for Windows (SPSS Inc., Chicago, IL, USA). Categorical variables are presented as absolute numbers and relative frequencies, while continuous variables are presented as the mean, standard deviation (SD) in parametric data, or median with the interquartile (IQR) range in non-parametric data. Categorical variables were compared using the \(\chi^2 \) test or Fisher’s exact test, as appropriate. For the comparison of continuous variables, the \(t \) test was used if normality was demonstrated; otherwise, the non-parametric Mann-Whitney U test was performed.

In order to determine the risk factors associated with the presence of *Aspergillus* spp. in the airways, we used both univariate and multivariate logistic regression model, where the dependent variable was the isolation of *Aspergillus* spp. in patients at admission, and independent variables were those associated with demographics and clinical factors. The association between follow-up visits was analyzed using the Wilcoxon test for quantitative variables and McNemar test for dichotomous discrete variables. We checked the assumptions of normality necessary to use parametric tests. All tests were two-tailed and significance was set at 5%. Bonferroni correction was used when needed.

Results

A total of 307 possible eligible patients presenting to the emergency department with a severe exacerbation of COPD were evaluated. Of these, 62 patients presented with one or more exclusion criteria (Figure 1). In the remaining 245 cases, an alternative diagnose was recorded at discharge in 5 patients (2%) and they were excluded from the analysis.

Figure 1 Flow diagram of patient inclusion.
Therefore, the study population included for analysis comprised of 240 patients.

Baseline and clinical characteristics

The cohort recruited consisted predominantly of men (217 [90%]; mean ± SD age 74.4 ± 8.8 years) and current smokers (172 [72.6%]). The patients had evidence of severe airway obstruction (mean FEV₁ of 44.0 ± 14.6% predicted). Previous history of COPD exacerbations was very common, with 64.2% of patients having had at least one severe exacerbation in the year preceding the index hospitalization (mean 2.88 ± 2.27, maximum 6 exacerbations), and among this group, 39% were re-admitted to the hospital.

Of all the patients included, 170 (70.8%) had previously received pharmacological treatment for their COPD with a fixed combination of long acting β₂ agonists (LABA) and inhaled corticosteroids (ICS): formoterol plus budesonide in 52 patients (30.6%) and fluticasone plus salmeterol in 118 patients (69.4%). 174 (72.5%) patients had received the influenza vaccine and 101 (42.1%) had received the pneumococcal vaccine.

Analysis of bacterial colonization in the previous year showed that 85 patients (35.4%) had microbiological evidence of bacterial colonization in the year prior to inclusion. The clinical characteristics of the overall population included patients by Aspergillus spp. isolation versus no Aspergillus spp. isolation.

The clinical, physiological and laboratory features of the AECOPD on admission and the subsequent outcomes of the patients are shown in Table 2.

Microbiological findings and prevalence of Aspergillus isolation

Sputum of sufficient quality for bacterial and fungal culture was obtained from 144 patients on admission. During the initial admission and the subsequent follow-up visits, a total of 198 sputum samples were collected. Non-PPMs were isolated in 112 (57%), whilst PPMs were isolated in 86 (43%).

Table 1 Characteristics of the study population on admission based on Aspergillus spp. isolation

	All patients (n = 240)	No Aspergillus spp. isolation (n = 120)	Aspergillus spp. isolation (n = 24)	p-value †
Age, years	74.4 ± 8.8	74.2 ± 10.1	73.1 ± 8.2	0.569
Gender, males	217 (90.4)	103 (85.8)	23 (95.8)	0.246
Past-smoker	175 (72.6)	87 (72.5)	18 (75.0)	0.608
Current smoker	65 (27.4)	33 (27.5)	6 (25.0)	0.779
FEV₁% predicted	2.6 (1-3)	47.3 ± 12.9	45.4 ± 14.7	0.196
FVC% predicted	44.0 ± 14.6	71.9 ± 14.4	68.8 ± 16.4	0.094
Charlson index	69.6 ± 19.6	2.1 (1.3-3.4)	2.7 (1.6-3.9)	0.060
GOLD stage II	12 (5.8)	8 (6.6)	-	-
GOLD stage III	92 (38.3)	46 (38.3)	8 (33.3)	0.436
GOLD stage IV	136 (56.1)	66 (55.5)	16 (66.6)	0.062
COPD exacerbation in the previous year				
≤ 2 exacerbations	82 (53.2)	65 (63.7)	7 (38.8)	0.150
>2 exacerbations	72 (46.7)	37 (36.3)	11 (61.1)	0.050
Admission for COPD in the previous year				0.079
Long Term Oxygen Therapy	72 (30.0)	36 (29.1)	9 (37.5)	0.067
Cardiovascular disease¹	131 (54.6)	61 (50.8)	12 (50.0)	0.475
Arterial hypertension²	112 (46.7)	52 (43.3)	19 (79.2)	0.002
Diabetes mellitus	65 (27.1)	31 (25.8)	9 (37.5)	0.206
Chronic renal disease	34 (14.2)	15 (12.5)	6 (25.0)	0.052
Inhaled corticosteroids	170 (70.8)	85 (70.8)	18 (75.0)	0.763
<500 mcg daily	106 (62.3)	54 (43.5)	12 (66.6)	0.096
>500 mcg daily	64 (37.6)	31 (36.5)	6 (33.3)	0.267
Oral corticosteroids	80 (33.3)	39 (32.5)	9 (37.5)	0.284

Data are presented as means ± SD, medians (Interquartile range) or absolute numbers (%), as appropriate. ¹Patients with cardiovascular disease other than arterial hypertension; ²Patients with arterial hypertension without any other cardiovascular condition. † P-value refers only to the comparison between non-aspergillus and Aspergillus isolated populations.
were found in 86 (43%). *Pseudomonas aeruginosa* was the most frequently isolated PPM (27%). The full distribution of PPMs is shown in Table 3. 28 (14%) out of the 198 sputum samples had *Aspergillus* spp. isolated from 24 COPD patients. Only four patients had *Aspergillus* spp. isolated in two different samples during the follow-up period.

Aspergillus fumigatus was isolated in 25 cases, *Aspergillus niger* in two, and *Aspergillus flavus* in one. The prevalence of *Aspergillus* spp. isolation in this cohort of COPD patients was 16.6% on admission and 14.1% at the end of the follow-up period.

Due to clinical concern that doubtful pulmonary infiltrates seen on chest X-ray at admission may represent possible invasive pulmonary aspergillosis (IPA), according to Bulpas’s criteria (16), a high resolution computed thoracic (HRCT) scan was performed in 18 of the 24 patients (75%) with *Aspergillus* isolation. No features of IPA were observed in any patient. Nevertheless, in five patients, their treating physicians decided to start antifungal treatment due to previous exposure to oral corticosteroids (voriconazole in three cases and itraconazole in two).

Risk factors for Aspergillus isolation

Previous bacterial colonization, the number of previous COPD exacerbations that required hospital visits (emergency room visit or admission) and the presence of arterial hypertension were significantly more frequent in patients with *Aspergillus* spp. isolation. Patients with *Aspergillus* spp. isolation in their sputum samples, had experienced more than two previous episodes of AECOPD compared to those patients without *Aspergillus* spp. isolation (61 versus 11, \(p = 0.05 \)).

Analysis of the microbiological data in the overall population prior to admission, showed a significant association between previous bacterial colonization and the isolation of *Aspergillus* spp. (42 versus 11, \(p = 0.002 \)). Similarly, there was a significant association between the

Table 2 Clinical characteristics of AECOPD at admission and outcomes

	All patients	No Aspergillus spp. isolation	Aspergillus spp. isolation	\(p \)-value †
Heart rate, beats/min	96.8 ± 16.1	94.7 ± 14.8	95.6 ± 13.4	0.624
Respiratory rate, breath/min	23.3 ± 8.9	22.4 ± 9.7	24.7 ± 7.6	0.286
Body temperature, °C	36.7 ± 0.9	36.4 ± 0.8	36.8 ± 0.9	0.574
Type of exacerbation				
Type I	110 (45.8)	56 (46.6)	10 (41.6)	0.340
Type II	59 (24.3)	30 (25.0)	5 (20.8)	0.127
Type III	81 (33.4)	34 (28.3)	9 (37.5)	0.193
Laboratory findings				
Leucocytes, x 10⁹/L	11.8 ± 6.3	11.2 ± 5.9	12.0 ± 4.3	0.391
C-reactive protein, mg/dL	3.2 (1.2-12.3)	2.9 (1.2-13.5)	3.4 (1.6-9-4)	0.192
pH	7.376 ± 0.064	7.401 ± 0.035	7.363 ± 0.078	0.286
PaO₂, mmHg	63.1 ± 22.7	64.6 ± 15.7	61.5 ± 17.9	0.141
PaCO₂, mmHg	47.8 ± 13.3	45.5 ± 12.8	49.4 ± 17.2	0.096
MV requirements on admission	9 (3.7)	8 (6.6)	1 (4.2)	0.297
Length of stay, days	96.6 ± 64	7.5 ± 5.0	11.8 ± 9.2	0.025
30-days follow-up				
Exacerbations, n	58 (24.1)	29 (24.1)	6 (25.0)	0.540
Hospital re-admissions	34 (14.1)	17 (14.2)	3 (12.5)	0.345
Death by any cause	11 (4.6)	6 (5.0)	1 (4.2)	0.478
12-month follow-up				
Exacerbations	131 (54.5)	72 (60.0)	12 (54.4)	0.299
Hospital re-admissions	93 (38.7)	52 (43.3)	7 (31.8)	0.087
ICU admissions	14 (5.8)	8 (6.6)	2 (9.0)	0.065
Death by any cause	27 (11.3)	13 (10.8)	3 (12.5)	0.373

Data are presented as means ± SD, medians (1st quartile; 3rd quartile) or numbers (%) as appropriate. †Data calculated from the number of valid samples. "Anthonisen exacerbation criteria [4]; MV, Mechanical ventilation. †p-value refers only to the comparison between non-aspergillus and Aspergillus isolated populations."
presence of PPMs in sputum samples collected during the study period and concurrent isolation of *Aspergillus* spp compared to those patients without PPMs but with *Aspergillus* spp. isolation (66 versus 20, p = 0.02). This difference was also significant in cases with previous isolation of *Pseudomonas aeruginosa* (14 versus 9, p = 0.04).

Table 4 summarizes the results of the multivariate analysis of risk factors potentially associated with *Aspergillus* spp. isolation. Significant variables associated independently with *Aspergillus* spp. isolation were arterial hypertension (OR 4.72; 95% confidential interval (CI), 1.56-14.39; p < 0.001), COPD exacerbation that required hospitalization in

Table 3 Cumulative identification and incidence of potential pathogenic microorganisms (PPM) cultured from COPD patients £
No Aspergillus spp. isolation
Sputum samples
Samples with PPM§ cultures
Haemophilus influenzae
Streptococcus pneumoniae
Staphylococcus aureus
Moraxella catarrhalis
Enterobacter spp.
Klebsiella pneumoniae
Escherichia coli
Serratia marcescens
Pseudomonas aeruginosa
Stenotrophomonas maltophilia
Aspergillus fumigatus
Aspergillus spp.*
Samples with non-PPM# cultures
Haemophilus parainfluenzae
Streptococcus viridans
Staphylococcus epidermidis
Corynebacterium spp.
Neisseria spp.
Mixed upper airways flora

£ All comparisons have been calculated in valid sputum samples obtained in each group. *Aspergillus* spp.: *Aspergillus niger* (2), *Aspergillus flavus* (1); §PPM, Pathogenic microorganisms; #non-PPM, Non-pathogenic microorganisms.

Table 4 Significant univariate and multivariate logistic regression analysis for the prediction of *Aspergillus* spp. risk factors
Univariate analysis
Univariate analysis
OR
Arterial hypertension
Cardiovascular disease
Diabetes mellitus
Chronic renal disease
COPD exacerbation in the previous year §
Previous bacterial colonization
Concurrent PPM isolation £
Concurrent *P. aeruginosa* isolation

§COPD exacerbation that required hospital management (emergency room visit or admission).

£PPM, Pathogenic microorganisms.
the last year (OR 12.35; 95% CI, 1.87-29.14; p < 0.001), concurrent PPMs isolation (OR 3.64; 95% CI, 1.65-9.45; p = 0.001), and concomitant isolation on the same sample of Pseudomonas aeruginosa (OR 2.80; 95% CI, 1.81-11.42; p = 0.001).

Short-term and long-term clinical outcomes
The short- and long-term clinical outcomes are shown in Table 2. Patients with Aspergillus spp. isolation had significantly higher LOS compared to those patients without Aspergillus spp. isolation (7.5 ± 5.0 days Aspergillus versus 11.8 ± 9.2 days Aspergillus, p = 0.02). No differences were found in the rate of exacerbations within the first month (24% versus 25%; p = 0.54) or during the follow-up (60% versus 54%; p = 0.34).

The overall mortality rate at 12 months was 11.3% (27 patients); 13 (10.8%) in the non-Aspergillus spp. group and three (12.5%) in the Aspergillus spp. group (p = 0.373).

Discussion
This is the first study to date to prospectively determine the prevalence of airway Aspergillus spp. and examine the associated risk factors for isolation, in a cohort of severe COPD patients requiring hospitalization for an AECOPD. We have shown that the prevalence of Aspergillus spp. isolation in this cohort was 16.6% on admission and 14.4% at the end of one-year follow-up. The independent risk factors associated with Aspergillus spp. colonization were an AECOPD in the previous year, and the concurrent isolation of PPMs, most frequently Pseudomonas aeruginosa. Notably, Aspergillus spp. isolation was not associated with more severe exacerbations or worse clinical outcomes after a one-year follow up.

We found 28 Aspergillus spp. isolates using a standard method for mycological investigations in spontaneous sputum samples. The prevalence rate of 14.4% in our COPD cohort after a one-year follow-up was surprisingly high. In fact, Aspergillus spp. was the most frequent microorganisms isolated, together with Pseudomonas aeruginosa. Importantly, we found significant differences in the bacterial pathogens isolated in the patients with and without Aspergillus spp. isolation, independent of COPD severity, suggesting an increase in the rate of co-infection in COPD patients who present with Aspergillus spp. isolation.

The prevalence of Aspergillus spp. isolation may have been higher if we had used bronchoscopic techniques and specific culture media. However, in real-life settings, clinicians often only have access to sputum samples. In a recent study, Phasley et al. [18] reported that the isolation of Aspergillus fumigatus in sputum culture was significantly higher using a research approach compared to the standard method for mycological investigations. Previous studies, which have not focused solely on Aspergillus spp., have found different prevalence rates of fungi isolation in respiratory samples from patients with cystic fibrosis, COPD and asthma [19-21]. Recently, a large, retrospective study conducted by Guinea et al. [7], analyzed the incidence of Aspergillus fumigatus isolation from lower respiratory tract samples in patients admitted for AECOPD in a tertiary hospital. The authors found 239 isolations of Aspergillus spp. (16.3 per 1000 admissions), but only 53 (22%) patients had probable IPA. However, unlike our prospective study, the fungal isolations were detected retrospectively by the microbiology laboratory.

There is no doubt that COPD patients are a population at risk for Aspergillus spp. colonization [12,14]. In a previous study of critically ill patients, Aspergillus spp. isolation from respiratory secretions was significantly associated with both an underlying diagnosis of COPD and treatment with corticosteroids [13]. These findings have been confirmed by other authors, and have strengthened the relationship between pulmonary infection with Aspergillus spp. and the use of intravenous corticosteroids in COPD patients admitted to the ICU for severe exacerbation [16]. In contrast, a study conducted by Afessa et al. [22] reported no isolation of Aspergillus spp. in the respiratory specimens from 250 COPD patients admitted to the ICU because of acute respiratory failure, although no report on corticosteroid therapy was performed.

The concurrent isolation of other pathogens, especially Pseudomonas aeruginosa was also associated with a higher risk of Aspergillus spp. isolation. Although the role of bacterial infection in COPD exacerbations remains controversial, Pseudomonas aeruginosa is usually isolated in patients with advanced COPD stages [23-25]. In addition, the incidence of Pseudomonas aeruginosa in sputum samples from patients hospitalized with COPD exacerbations is high, and its isolation could also be a marker of poor prognosis independently of other predictors [26].

Patients with previous severe exacerbations are more likely to receive a higher number of antibiotic therapy courses, and this could be the key factor in promoting further Aspergillus spp. isolation. In fact, in a recent publication, it was found that almost 73% of COPD patients in Spain presenting with a Type I Anthonisen exacerbation received antibiotics [27]. Prospective studies focusing on this specific population are much needed to determine whether Aspergillus spp. isolation is the cause or the consequence of more infectious exacerbations with concurrent isolation of Pseudomonas aeruginosa. Paradoxically to the data of Bafhade et al. [28], we found no association between the use of either inhaled (ICS) or oral (OCS) corticosteroids and an increased rate of Aspergillus spp.

Colonization of the distal airways by filamentous fungi, such as Aspergillus spp., can occur during the course of COPD, although the clinical relevance is unclear. To
date, it is unknown whether colonization by *Aspergillus* spp. contributes to the increased frequency and severity of exacerbations, or is a marker of more severe disease. In our study, except for a longer LOS, we found no significant differences in any of the other clinical outcomes when comparing patients with and without *Aspergillus* spp. isolation. Therefore, antifungal treatment may not be beneficial in these patients. Only five of our patients were treated with antifungals despite the fact that none of the CT scans performed showed radiological signs of pulmonary aspergillosis but only doubtful infiltrates on chest x-ray at admission. Importantly, we followed up patients for one year, and there was no significant difference in ICU-admissions and hospital readmissions between the non-*Aspergillus* and *Aspergillus* spp. isolation groups, again suggesting that *Aspergillus* spp. detection does not worsen clinical outcomes.

Several limitations of our study require attention. Firstly, we only used sputum samples for culture, and it can be argued that the value of these specimens is poor in identifying the etiologic agent of the exacerbation. Obtaining sputum samples is a real-life cost-effective tool, but may have limited value in distinguishing transitional *Aspergillus* spp. isolation from chronic colonization. However, in a previous bronchoscopic validation study published by our group, we found a high concordance between fungal pathogens in samples retrieved via protected specimen brush and sputum \((\kappa = 0.85, p < 0.002)\) [29]. Although there are new microbiological techniques for the rapid detection of *Aspergillus* spp. that provide results in less than 4 hours (compared to 3 or more days using conventional culture) [30], until they become widely available, conventional sputum culture remains a good diagnostic tool for *Aspergillus* spp. identification. Secondly, this study was performed in patients admitted with a severe AECOPD in Spain, and bacteria and fungi flora may differ in different countries. Thirdly, we did not routinely perform CT scans on admission to all patients with *Aspergillus* spp. isolation. However, none of the 18 patients who were evaluated by a CT scan showed any radiological signs of invasive or chronic pulmonary aspergillosis. Finally, we did not investigate plasma galactomannan antigen, and are unaware of the value of this pathogenic marker in severe COPD patients with *Aspergillus* spp. isolation. In a recent study of critically ill patients, bronchoalveolar lavage (BALF) galactomannan had a higher sensitivity in the early diagnosis of IPA but its value still remains unclear since the collection and processing of BALF samples for *Aspergillus* spp. has not yet been standardized [31]. In another study, the cut-off of value for Platelet galactomannan of 1 ng/ml was the best for diagnosing invasive aspergillosis, with both high sensitivity and specificity [32].

In summary, we found a high prevalence of *Aspergillus* spp. isolation in a cohort of COPD patients with severe AECOPD requiring hospitalization. Except for a longer LOS, we found no differences in the short-term or long-term outcomes. We detected clinical and microbiological risk factors for *Aspergillus* isolation. However, the infective role of these isolates seems to be minimal. Our findings may serve to propose future more comprehensive studies, with a biological basis that includes pulmonary and systemic markers of the immune and inflammatory response, in order to determine the role of this fungus in COPD exacerbations.

Ethics approval

Ethics approval was provided by the Research Committee from the Hospital Clinic de Barcelona (CEIC 2008/4325).

Competing interests

This work in original and all authors meet the criteria for authorship, including acceptance of responsibility for the scientific content of the manuscript. NM is actually employed by Pfizer Pharmaceuticals Spain but did not influence the interpretation of the data analysis.

Authors’ contributions

Study concept and design: NS, AT. Coordination of the acquisition of the data: AH, ME, AM, MG, RZ. Data analysis: NS, AH, NM. Data interpretation: NS, AT, NM, JMA. Writing the article: AH, NS, AT. Critical revision of the manuscript: AH, AT, RM, NS. All authors read and approved the final manuscript.

Acknowledgments

The authors would like to acknowledge Dr. Richa Singh for her outstanding work as a language editor.

Support statement

This study was funded by Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0028) an Initiative of The Institute de Salud Carlos III (ISCIII) and also sponsored by Pfizer clinical protocol A1501086.

Authors details

1. Department of Pneumology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, University of Barcelona (UB), CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0028), Villarruel 170, 08037 Barcelona, Spain. 2. Department of Pneumology, University Hospital La Fe, Valencia, Spain. 3. Medical Department Pfizer, Madrid, Spain. 4. Unit of Infectious Diseases, Hospital 12 de Octubre, University Complutense, Madrid, Spain.

Received: 15 September 2013 Accepted: 27 December 2013 Published: 11 February 2014

References

1. Arzueto A, Sethi S, Martínez FJ. Exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2007, 4(7):554–564.
2. Soler-Cataluna JJ, Martinez-Garcia MA, Roman SP, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005, 60(11):925–931. PMC ID:PMC1747235.
3. Anthonsen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Am Intern Med 1987, 106(2):196–204.
4. Seemungal T, Harper-Owen R, Bhownik A, Moric I, Sanderson G, Message S, MacCallum P, Meade TW, Jeffries DJ, Johnston SL, Wedzicha JA. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001, 164(9):1618–1623.
5. Rosell A, Momo S, Soler N, Torres F, Anglir J, Riese G, Zalacain R, Moreira J, Torres A: Microbiologic determinants of exacerbations in chronic obstructive pulmonary disease. Arch Intern Med 2005, 165(8):891–897.

6. Wedzicha JA, Seemungal TA: COPD exacerbations: defining their cause and prevention. Lancet 2007, 370(9589):786–796.

7. Guinea J, Torres-Narbona M, Gijon P, Munoz P, Pico F, Pelayo T, de Miguel J, Bouza E: Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome. Clin Microbiol Infect 2010, 16(7):870–877.

8. Soler N, Huerta A, Torres A: The importance of Aspergillus species infection in Chronic Obstructive Pulmonary Disease. Clin Pulm Med 2011, 18:161–168.

9. Latge JP: The pathobiology of Aspergillus fumigatus. Trends Microbiol 2001, 9(9):382–389.

10. Smith NL, Denning DW: Underlying conditions in chronic pulmonary aspergillosis including simple aspergilloma. Eur Respir J 2011, 37(4):865–872.

11. Bulpa P, Dive A, Sibille Y: Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease. Eur Respir J 2007, 30(4):782–800.

12. Barberan J, Alcazar B, Malmierca E, Garcia dL, Dorca J, Del CD, Villena V, Fernandez-Feibles M, Garcia-Perez FJ, Granizo JJ, Israel DA, Salama N, Arnold CN, Mos S, Ando T, Wirth HP, Tham KT, Camorlinga M, Blaser MJ, Falkow S, Peek RM Jr: Repeated Aspergillus isolation in respiratory samples from non-immunocompromised patients not selected based on clinical diagnoses: colonisation or infection? BMC Infect Dis 2012, 12:295.

13. Gamacho-Montero J, Amaya-Villar R, Ortiz-Leyba C, Leon C, Alvarez-Lerma F, Nolla-Salas J, Irunateguien JA, Barcenilla F: Isolation of Aspergillus spp. from the respiratory tract in critically ill patients: risk factors, clinical presentation and outcome. Crit Care 2005, 9(3):R91–R99. PMCID: PMC117587.

14. Ader F, Bienvenu AL, Rammaert B, Nseir S: Management of invasive aspergillosis in patients with COPD: rational use of voriconazole. Int J Chron Obstruct Pulmon Dis 2009, 4:279–287. PMCID:PMC2722867.

15. Rello J, Esandi ME, Mariscal D, Gallego M, Domingo C, Valles J: Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: report of eight cases and review. Clin Infect Dis 1998, 26(6):1473–1475.

16. Bulpa P, Dive AM, Garino MG, Delos MA, Gonzalez MR, Evrad PA, Giupczynski Y, Installe EJ: Chronic obstructive pulmonary disease patients with invasive pulmonary aspergillosis: benefits of intensive care? Intensive Care Med 2001, 27(1):59–67.

17. Bouza E, Guinea J, Pelayez T, Perez-Molina J, Alcala L, Munoz P: Workload due to Aspergillus fumigatus and significance of the organism in the microbiology laboratory of a general hospital. J Clin Microbiol 2005, 43(5):2075–2079. PMCID:PMC115378.

18. Pashley CH, Fairs A, Morley JP, Tailor S, Agbetile J, Bafadhel M, Brightling CE, Wardlaw AJ: Routine processing procedures for isolating filamentous fungi from respiratory sputum samples may underestimate fungal prevalence. Med Mycol 2012, 50(6):433–438. PMCID:PMC3399635.

19. Borman AM, Palmer MD, Delhaes L, Camere J, FavenneC L, Ranque S, Gangneux JP, Home R, Bouchara JP: Lack of standardization in the procedures for mycological examination of sputum samples from CF patients: a possible cause for variations in the prevalence of filamentous fungi. Med Mycol 2010, 48(Suppl 1):S88–S97.

20. Knutzen AP, Deming DW, Denning DW, Dixit A, Fairs A, Greenberger PA, Karuki B, Kita H, Kupur VP, Moss RB, Niven RM, Pashley CH, Slavin RS, Vijay HM, Wardlaw AJ: Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol 2012, 129(2):260–291.

21. Agbetile J, Fairs A, Desai D, Hargadon B, Bourne M, Mutalithana K, Edwards R, Morley JP, Montorello WR, Kulmami NS, Green RH, Pavorod ID, Brading P, Brightling CE, Wardlaw AJ, Pashley CH: Isolation of filamentous fungi from sputum in asthma is associated with reduced post-bronchodilator FEV1. Clin Exp Allergy 2012, 42(2):782–791. PMCID:PMC3509218.

22. Afessa B, Morales U, Scanlon PO, Peters SG: Prognostic factors, clinical course, and hospital outcome of patients with chronic obstructive pulmonary disease admitted to an intensive care unit for acute respiratory failure. Crit Care Med 2002, 30(7):1610–1615.

23. Miravitlles M, Espinosa C, Fernandez-Laso E, Martos JA, Maldonado JA, Gallego M: Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Study Group of Bacterial Infection in COPD. Chest 1999, 116(1):40–46.

24. Murphy TF, Brauer AL, Eschericher K, Lobbs P, Grove L, Cai X, Sethi S: Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008, 177(8):853–860.

25. Garcia-Vidal C, Almagro P, Romani V, Rodriguez-Carballeira M, Cuchi E, Canales L, Blasco D, Heredia JL, Garau J: Pseudomonas aeruginosa in patients hospitalised for COPD exacerbation: a prospective study. Eur Respir J 2009, 34(5):1072–1078.

26. Almagro P, Salvador M, Garcia-Vidal C, Rodriguez-Carballeira M, Cuchi E, Torres J, Heredia JL: Pseudomonas aeruginosa and mortality after hospital admission for chronic obstructive pulmonary disease. Respiration 2012, 84(1):36–43.

27. Miravitlles M, Garcia-Polo C, Domenech A, Villegas G, Conget F, de la Roza C: Clinical outcomes and cost analysis of exacerbations in chronic obstructive pulmonary disease. Lung 2013, 191(5):253–300.

28. Bafadhel M, McKenna S, Agbetile J, Fairs A, Desai D, Mistry V, Morley JP, Pancholi M, Pavord JD, Wardlaw AJ, Pashley CH, Brightling CE: Aspergillus fumigatus during stable state and exacerbations of COPD. Eur Respir J 2014, 43(1):64–71.

29. Soler N, Agusti A, Anglir J, Puig DB, Gijon P, Bouza E: Evaluation of MycosMASS Aspergillus for diagnosis of invasive pulmonary aspergillosis in patients without hematological cancer. PLoS One 2013, 8(4):e61545. PMCID:PMC3631214.

30. He H, Li Q, Chang S, Ding L, Sun B, Li F, Zhan Q: Prognostic value of serum galactomannan index in critically ill patients with chronic obstructive pulmonary disease at risk of invasive pulmonary aspergillosis. Chin Med J Engl 2014, 127(1):23–28.

31. Guinea J, Padilla C, Escrivanio P, Munoz P, Padilla B, Gijon P, Bouza E: Value of a single galactomannan determination (Platelia) for the diagnosis of invasive aspergillosis in non-hematological patients with clinical isolation of Aspergillus spp. Med Mycol 2008, 46(5):575–579.