Survival of the AGC total knee arthroplasty is similar for arthrosis and rheumatoid arthritis

Finnish Arthroplasty Register report on 8 467 operations carried out between 1985 and 1999

Anna-Katriina Himanen¹,⁴, Eero Belt¹, Juha Nevalainen², Martti Hämäläinen³ and Matti U K Lehto⁴,⁵

¹Rheumatism Foundation Hospital, Heinola, ²National Agency for Medicines, Helsinki, ³Oulu University Hospital, Oulu, ⁴Coxa Hospital for Joint Replacement, Tampere, ⁵Tampere University Hospital, Research Unit, Tampere, Finland

Correspondence A-KH: anna-katriina.himanen@uta.fi
Submitted 02-04-20. Accepted 04-06-28

ABSTRACT We report the survival of AGC knee endoprosthesis from the Finnish Arthroplasty Register for 2 indications, osteoarthrosis (OA, 6 306 knees) and rheumatoid arthritis (RA, 2 161 knees) during 1985–1999. Survivorship analysis was performed with revision as an endpoint. We found similar survival rates. In the OA group, survival after 5 years was 97% and it was 94% after 10 years. In the RA group the corresponding figures were 97% and 96%, respectively. There was no significant difference in survival whether or not cement was used for fixation. The revision rates were higher in men and in younger patients.

This report is based on data collected from the Finnish Arthroplasty Register, which is maintained by the National Agency for Medicines. The number of total knee arthroplasties (TKA) in Finland has increased during 1980–1999 from 295 to 4 380 operations per year, from 6/100 000 inhabitants to 85/100 000 (Nevalainen et al. 2000). During the same period, the number of hospitals performing TKA has risen from 19 to 64.

We report the survival of the AGC endoprosthesis which is used for the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This was one of the commonest implants used in Finland during 1985–1999, which is when the data used in the current study were collected. We evaluated the effect of different demographic and clinical variables.

Patients and methods

From 1985 through 1999, 8 467 primary AGC (Anatomically Gratuated Component, Biomet, Warsaw, IN, USA) knee arthroplasties were performed on 7 209 patients. Of these, 1 102 patients died during the study. The operations took place in 54 hospitals. The median number of operations per unit was 43 (1–1269). We performed Kaplan-Meier survivorship analysis with an endpoint of revision defined as removal, exchange or addition of a prosthetic component. We used the proportional hazard model and Log-Rank test to test the survival curves, with a significance level of 0.05.

Prosthetic survival was studied separately in patients with OA and in patients with RA. In the OA group, the number of knees operated was 6 306, and the corresponding figure in the RA group was 2 161. The follow-up averaged 3.2 (0–14) years in OA and 5.2 (0–15) years in RA. The mean age was higher in the OA group than in the RA group: 69 years for males and 71 years for females, compared to 60 and 61 years in the RA group (Table 1). We also analyzed the effect of cement fixation, and when the operation was performed.
Results

In the OA group, survival after 5 years was 97%, and after 10 years of follow-up it was 94%. In the RA group, the corresponding figures were 97% and 96%, respectively (Figures 1 and 2). In both groups, men had a higher cumulative revision rate than women. In the OA group, survival was 94% for women after 10 years, as compared to 93% for men ($p = 0.01$). In the RA group, the 10-year survival rates were 96% and 93%, respectively ($p = 0.004$) (Tables 2 and 3).

83% of the patients were over 60 years of age ($n = 6984$). The 10-year survival rates were better among older patients ($p < 0.001$ for the OA group, $p = 0.007$ for the RA group). In patients with arthrosis, 10-year prosthetic survival was 95% for patients older than 60 years, and 85% for patients younger than this. In the RA group, the corresponding figures were 97% and 94%, respectively (Tables 2 and 3).

Discussion

In our study, and most other studies, comparing the long-term survival of the TKA in patients with RA and patients with OA, no significant differences between the groups have been found (Scuderi et al. 1989, Elke et al. 1995). Surprisingly, in their 12-
Table 2. Demographic and clinical variables, and prosthetic survival rates in osteoarthritis

Variable	n	5-year survival % (95% CI)	10-year survival % (95% CI)	P-value a
Sex				0.01
female	4871	97.7 (97.1–98.2)	94.4 (92.3–96.0)	
male	1435	96.1 (94.5–97.3)	92.9 (87.5–96.0)	
Age (years)				< 0.001
≤ 60	570	95.9 (93.3–97.5)	84.2 (72.6–91.2)	
> 60	5736	97.5 (97.0–98.0)	95.3 (93.7–96.5)	
Cement				0.4
used	1103	97.5 (96.8–98.0)	93.5 (87.6–96.6)	
not used	5203	97.6 (95.9–98.0)	93.6 (91.6–95.6)	
Year of operation				0.6
1985–1989	252	98.3 (95.6–99.4)	95.1 (91.0–97.4)	
1990–1994	1432	97.5 (96.5–98.2)	94.4 (91.9–96.2)	
1995–1999	4622	97.2 (96.4–97.9)	–	

a Log-Rank test for difference in survival curves between groups.

Table 3. Demographic and clinical variables, and prosthetic survival rates in rheumatoid arthritis

Variable	n	5-year survival % (95% CI)	10-year survival % (95% CI)	P-value a
Sex				0.004
female	1757	97.5 (96.5–98.2)	96.1 (94.7–97.1)	
male	404	94.0 (90.4–96.2)	92.6 (88.4–95.3)	
Age (years)				0.007
≤ 60	913	95.8 (94.1–97.0)	93.9 (91.7–95.6)	
> 60	1248	97.9 (96.7–98.6)	97.1 (95.6–98.1)	
Cement				0.5
used	827	97.0 (95.6–97.9)	96.6 (95.0–97.6)	
not used	1334	96.9 (95.4–97.9)	94.9 (92.9–96.4)	
Year of operation				0.7
1985–1989	446	97.4 (95.3–98.5)	96.0 (93.5–97.5)	
1990–1994	845	97.0 (95.6–98.0)	95.7 (93.8–97.0)	
1995–1999	870	96.7 (94.6–97.9)	–	

a Log-Rank test for difference in survival curves between groups.

Table 4. Proportional hazard model to determine the effect of variables on risk of loosening

Variable	Relative risk (95% CI)	P-value
Diagnosis (OA)	1.25 (0.87–1.80)	0.2
Sex (male)	1.66 (1.22–2.24)	0.001
Age (per year)	0.97 (0.96–0.99)	< 0.001
Cementing	0.89 (0.62–1.26)	0.5
Year of operation	1.00 (indicator)	0.4
1985–1989	1.28 (0.81–2.03)	
1990–1994	1.47 (0.86–2.52)	

year follow-up, Nafei et al. (1996) reported 87% survivorship in patients with RA as compared to 97% survivorship in patients with OA. On the other hand, Rand and Ilstrup (1991) documented better survival rates in patients with RA than in patients with OA (83% vs. 80%) in a 10-year follow-up.

We found no difference in the survival of TKAs whether or not cement was used. The outcome of cemented and cementless arthroplasties has been discussed in many studies.
chronic arthritis, and found cementless fixation to be better. Nielsen et al. (1992) studied cementless fixation of AGC TKAs in unselected cases of OA and RA. Their results favored the use of cementless fixation, but the authors emphasized the importance of good fit of the tibial component. Bassett (1998) reported excellent clinical results with cementless fixation in the treatment of osteoarthritic knees, and Nafei et al. (1996) observed a 92% overall survival rate for the cemented TKA at 12 years.

During the time period of 1980–1999, the 9-year-survival rate in the Finnish Arthroplasty Register was 93% for the 3 most used cemented knee prostheses in the OA group, and the 13-year-survival rate was 76% for the three most used uncemented endoprostheses. In RA, the 15-year-survival rate was 84% for the three most used cemented prostheses, and for the uncemented models the 14-year-survival rate was 82% (Nevalainen et al. 2000). Comparing AGC prostheses with the three models combined, AGC gave better survival rates. Although the AGC prostheses have an “old-fashioned” flat-on-flat design, the results can be considered to be good.

The most common indication for revision knee arthroplasty in 1999 in Finland was patellar complications (Nevalainen et al. 2000). Primary resurfacing can cause complications such as wear, patellar fractures and dislocation. Non-resurfacing, on the other hand, can lead to anterior knee pain, and finally to secondary resurfacing. Some studies have shown resurfacing to be better (Wood et al. 2002, Enis et al. 1990), but in some studies the outcome has been just the opposite (Bourne et al. 1995). The question of whether to resurface the patella or not in total knee arthroplasty is still unresolved. Elke R, Meier G, Warnke K, Morscher E. Outcome analysis of total knee replacements in patients with rheumatoid arthritis versus osteoarthritis. Arch Orthop Trauma Surgery 1995; 114: 330-5.

Our findings have similarities with the report from the Swedish Knee Arthroplasty Register of primary operations in patients with RA (1985–1995). Both in Finland and in Sweden, sex and age had an effect on prosthetic survival. Women and older patients (> 55 years) had better survival rates (Robertsson et al. 1997). The natural consequence of the ageing of the population is that the number of patients treated for OA is increasing with time (Knutson et al. 1994, Robertsson et al. 2000). No competing interests declared.

Bassett R W. Results of 1000 performance knees – cementless versus cemented fixation. J Arthroplasty 1998; 13 (4): 409-13.

Bourne R B, Rorabeck C H, Vaz M. Resurfacing versus not resurfacing the patella during total knee replacement. Clin Orthop 1995; (321): 156-61.

Enis J E, Gardner R, Robledo M A, Latta L, Smith R. Comparison of patellar resurfacing versus nonresurfacing in bilateral total knee arthroplasty. Clin Orthop 1990; (260): 38-42.

Kaplan E L, Meier M P. Nonparametric estimation from incomplete observation. J Am Stat Ass 1958; 53: 457.

Knutson K, Lewold S, Robertson O, Lidgren L. The Swedish knee arthroplasty register. A nation-wide study of 30,003 knees 1976-1992. Acta Orthop Scand 1994; 65 (4): 375-86.

Lybäck C O, Belt, E A, Hämäläinen, M M J, Kauppi M J, Savolainen H A, Lehto M U K. Survivorship of AGC knee replacement in juvenile chronic arthritis - 13-year follow-up of 77 knees. J Arthroplasty 2000; 15 (2): 166-70.

Nafei A, Kristensen O, Knudsen H M, Hvid I, Jensen J. Survivorship analysis of cemented total condylar knee arthroplasty - a long-term follow-up report on 348 cases. J Arthroplasty 1996; 11 (1): 7-10.

Nevalainen J, Hirvonen A, Pulkkinen P. The 1998-1999 implant yearbook on orthopaedic endoprostheses. Finnish Arthroplasty Register, Publications of the National Agency for Medicines 5/2000.

Nielsen P T, Hansen E B, Rechnagel K. Cementless total knee arthroplasty in unselected cases of osteoarthritis and rheumatoid arthritis - a 3-year follow-up study of 103 cases. J Arthroplasty 1992; 7 (2): 137-43.

Rand J A, Istrup D M. Survivorship analysis of total knee arthroplasty. J Bone Joint Surg (Am) 1991; 73: 397-409.

Robertsson O, Knutson K, Lewold S, Goodman S, Lidgren L. Knee arthroplasty in rheumatoid arthritis. A report from the Swedish Knee Arthroplasty Register on 4,381 primary operations 1985-1995. Acta Orthop Scand 1997; 68 (6): 545-53.

Robertsson O, Dunbar M J, Knutson K, Lidgren L. Past incidence and future demand for knee arthroplasty in Sweden. A report from the Swedish Knee Arthroplasty Register regarding the effect of past and future population changes on the number of arthroplasties performed. Acta Orthop Scand 2000; 71 (4): 376-80.

Scuderi G R, Insall J N, Windsor R E, Moran M C. Survivorship of cemented knee replacements. J Bone Joint Surg (Br) 1989; 71 (5): 796-803.

Wood D J, Smith A J, Collopy D, White B, Brankov B, Bulsara M K. Patellar resurfacing in total knee arthroplasty. A prospective, randomised trial. J Bone Joint Surg (Am) 2002; 84: 187-93.