Nitrogen oxide in protostellar envelopes and shocks: the ASAI survey

C. Codella1*, S. Viti2, B. Lefloch3, J. Holdship2, R. Bachiller4, E. Bianchi1,5, C. Ceccarelli3, C. Favre1, I. Jiménez-Serra6, L. Podio1, M. Tafalla4

1INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, Firenze, 50125, Italy
2Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
3Univ Grenoble Alpes, CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
4IGN, Observatorio Astronómico Nacional, Calle Alfonso XII, 28004 Madrid, Spain
5Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Italy
6School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London, E1 4NS

Accepted date. Received date; in original form date

\textbf{ABSTRACT}

The high-sensitivity of the IRAM 30-m ASAI unbiased spectral survey in the mm-window allows us to detect NO emission towards both the Class I object SVS13-A and the protostellar outflow shock L1157-B1. We detect the hyperfine components of the $^2\Pi_{1/2}$ $J = 3/2 \rightarrow 1/2$ (at 151 GHz) and the $^2\Pi_{3/2}$ $J = 5/2 \rightarrow 3/2$ (250 GHz) spectral pattern. The two objects show different NO profiles: (i) SVS13-A emits through narrow (1.5 km s-1) lines at the systemic velocity, while (ii) L1157-B1 shows broad (~ 5 km s-1) blue-shifted emission. For SVS13-A the analysis leads to $T_{\text{ex}} \gtrsim 4$ K, $N(\text{NO}) \lesssim 3 \times 10^{15}$ cm-2, and indicates the association of NO with the protostellar envelope. In L1157-B1, NO is tracing the extended outflow cavity: $T_{\text{ex}} \approx 4$–5 K, and $N(\text{NO}) = 5.5 \pm 1.5 \times 10^{15}$ cm-2. Using C18O, C17O, C16O, and C17O ASAI observations we derive an NO fractional abundance less than ~ 10-7 for the SVS13-A envelope, in agreement with previous measurements towards extended PDRs and prestellar objects. Conversely, a definite $X(\text{NO})$ enhancement is measured towards L1157-B1, ~ 6 \times 10-6, showing that the NO production increases in shocks. The public code UCLCHEM was used to interpret the NO observations, confirming that the abundance observed in SVS13-A can be attained in an envelope with a gas density of 10^5 cm-3 and a kinetic temperature of 40 K. The NO abundance in L1157-B1 is reproduced with pre-shock densities of 10^5 cm-3 subjected to a ~ 45 km s-1 shock.

\textbf{Key words:} Stars: formation – ISM: molecules – ISM: abundances – ISM: jets and outflows

\section{INTRODUCTION}

The molecule of NO, Nitrogen Oxide, was first detected towards SgrB2 (Liszt & Turner 1978) and the molecular cloud OMC1 (Blake et al. 1986). Although it has now been detected in a variety of objects, ranging from dark clouds, to hot cores, photon-dominated regions and nuclei of starburst galaxies (e.g. Gerin et al. 1992, 1993; Halfen et al. 2001; Nummelin et al. 2000; Martin et al. 2003), it is seldom observed, possibly due to its complex hyperfine structure. Nevertheless, NO may be an important chemical tracer of the nitrogen chemistry cycle (e.g. Hily-Blant et al. 2010) as well as of the oxygen budget (Chen et al. 2014).

Although the chemistry of nitrogen-bearing species has been modelled in several environments (e.g. Flower et al. 2006; Hily-Blant et al. 2010; Awad et al. 2016), the total nitrogen abundance in the gas phase is still uncertain, especially in dense cores, as well as in the gas surrounding protostars. This is because much of the nitrogen is in the form of N and/or N\textsubscript{2}, both not directly observable. Generally NH, NH\textsubscript{2} and NH\textsubscript{3} are used as probes of the total nitrogen reservoir in dense star forming gas. However the abundance of these three species is highly dependent on how much nitrogen depletes on the surface of the grains and on the level of hydrogenation. In fact in some environments NO seems to be one of the most abundant N-bearing species: for example, Velilla Prieto et al. (2015) finds that in circumstellar oxygen-rich envelopes NO is as high as 10-6 and one of the most abundant N-bearing species.

NO is key to form N\textsubscript{2}, a molecule required to then form more complex nitrogen-bearing species (Hily-Blant et al. 2010) and harbours a simpler chemistry than other N-bearing species such as NH.
NH$_2$ and NH$_3$. The most direct way to form NO is via neutral-neutral reactions between N and OH and, hence, its abundance mainly depends on the amount of available nitrogen in the gas. Finally in environments dominated by low velocity shocks (~ 20 km s$^{-1}$) NO seems to also be a direct probe of the molecular oxygen abundance. Indeed, low velocity shock models indicate that the behaviour of NO is similar to that of O$_2$ in that they are abundant (and deficient) at similar times (Chen et al. 2014). Since O$_2$ is not readily observable with ground-based telescopes, NO may prove to be a good proxy for the molecular form of oxygen.

In this paper we present NO detections towards two objects: the SVS13-A Class I system and the outflow spot L1157-B1. Both environments are warm, but they significantly differ from their chemical composition and past history. These two regions are described in detail in Section 2. In Section 3 we describe the observations. In Section 4 we report the results of our excitation analysis. In Section 5 we derive the observed fractional abundances of NO and we model the chemistry of NO to find the origin of its emission in both objects. We briefly present our conclusions in Section 6.

2 THE SAMPLE

2.1 The Class I SVS13-A object

SVS13-A is a $\simeq 32.5 \, L_\odot$ (Tobin et al. 2016) young star located in a Young Stellar Objects (YSOs) cluster in the Perseus NGC1333 cloud ($d = 235$ pc; Hirota et al. 2008). The region has been extensively investigated in the past (see e.g. Chini et al. 1997; Bachiller et al. 1998; Looney et al. 2000; Chen et al. 2009; Tobin et al. 2016, and references therein). Figure 1 reports recent 1.4mm continuum interferometric observations of SVS13 (De Simone et al. 2017) showing SVS13-A as well as the SVS13-B protostar, which lies out of the region sampled with the present IRAM 30-m observations (see Sect. 3). SVS13-A is associated (i) with a chemically rich hot-corino (Codella et al. 2016; De Simone et al. 2017; Lefèvre et al. 2017), (ii) with an extended outflow (> 0.07 pc; Lefloch et al. 1998, Codella et al. 1999) as well as (iii) with the well-known chain of Herbig-Haro (HH) objects 7-11 (Reipurth et al. 1993). In addition, SVS13-A has a low $L_{\text{submm}}/L_{\text{bol}}$ ratio ($\sim 0.8\%$) and a high bolometric temperature ($T_{\text{bol}} \sim 188 \, K$, Tobin et al. 2016). Although still deeply embedded in a large scale molecular envelope (Lefloch et al. 1998), SVS13-A is considered a more evolved system, already entered in the Class I evolutionary stage (e.g. Chen et al. 2009). Finally, we note that VLA observations (e.g. Anglada et al. 2000; Tobin et al. 2016, and references therein) showed that SVS13-A, once observed at sub-arcsec angular scale, reveals in turn two components (VLA4A and VLA4B) separated by 300 mas, being the hot-corino associated only with VLA4B (Lefèvre et al. 2017).

2.2 The L1157-B1 protostellar shock

The L1157-mm Class 0 protostar, located at 250 pc from Earth (Looney et al. 2007) with a $L_{\text{bol}} \simeq 3 \, L_\odot$ (Tobin et al. 2010), drives a chemically rich outflow (e.g. Bachiller et al. 2001), associated with molecular clumpy cavities (Gueth et al. 1996; 1998), that are created by episodic events in a precessing jet (Podio et al. 2015). The brightest shock front is called B1 and is associated with the southern blueshifted outflow lobe (see Fig. 2). The B1 structure has been studied in detail using both single dishes and interferometers, revealing a clumpy bow-like structure, built by several jet-cavity impacts in the last ~ 1000 years, where the abundance of several molecules are enhanced due to a combination of sputtering and warm gas-phase chemistry (e.g. Tafalla & Bachiller 1995; Codella et al. 2009; Benedettini et al. 2013; Busquet et al. 2014; Codella et al. 2015, Lefloch et al. 2017, and references therein).

3 OBSERVATIONS

The observations of NO were carried out during several runs between 2012 and 2014 with the IRAM 30-m telescope near Pico Veleta (Spain) as part of the Astrochemical Surveys At IRAM (ASAI) Large Program. Both SVS13-A and L1157-B1 have been observed at 3 mm (80–116 GHz), 2 mm (129–173 GHz), and 1.3 mm (200–276 GHz) using the broad-band EMIR receivers.

The observations were acquired towards the following coordinates: SVS13-A: $\alpha_{\text{J2000}} = 03^h 29^m 03.3^s$, $\delta_{\text{J2000}} = +31^\circ 16' 03'\prime\prime$; L1157-B1: $\alpha_{\text{J2000}} = 20^h 39^m 10.2^s$, $\delta_{\text{J2000}} = +68^\circ 01' 10.5''$, in wobbler switching mode, with a throw of $180''$.

The present study is based on the NO spectra of the $2\Pi_{1/2}$ $J = 3/2 \rightarrow 1/2$ (at ~ 150.2 GHz) and $2\Pi_{1/2}$ $J = 5/2 \rightarrow 2/2$ (at ~ 250.8 GHz) transitions (see Table 1). The forward (F_{eff}) and beam efficiencies (B_{eff}) are: 0.93 and 0.72 at 150 GHz, and 0.90 and 0.53 at 251 GHz. We also report emission associated with the 13CO(2–1) (219560.350 MHz), 17O(2–1) (224714.190 MHz), 13C18O(2–1) (209419.172 MHz), 13C17O(2–1) (214573.873 MHz), and CS(5–4) (244935.560 MHz) transitions detected towards SVS13-A.

All the frequency values have been extracted from the Cologne Database for Molecular Spectroscopy (CDMS; Müller et al. 2005) molecular database. The pointing was checked by observing nearby planets or continuum sources and was found to be accurate to within $2''$–$3''$. The telescope HPBWs are $16''$ at 150.2 GHz and $10''$ at 250.8 GHz. The data reduction was performed using the GILDAS–CLASS package. Calibration uncertainties are estimated to be $\simeq 20\%$. Note that the lines observed at 2 mm towards SVS13-A and the outflow spot L1157-B1 have been observed at sub-arcsec angular scale, revealing a clumpy bow-like structure, built by several jet-cavity impacts in the last ~ 1000 years, where the abundance of several molecules are enhanced due to a combination of sputtering and warm gas-phase chemistry (e.g. Tafalla & Bachiller 1995; Codella et al. 2009; Benedettini et al. 2013; Busquet et al. 2014; Codella et al. 2015, Lefloch et al. 2017, and references therein).
SVS13-A (see Sect. 4) are affected by emission at OFF position observed in wobbler mode. Line intensities have been converted from antenna temperature to main beam temperature (TMB) for the NO transitions detected at 2mm and 1mm towards B1 (see text). The star marks the position of the L1157-mm protostar.

4 RESULTS

The NO emission due to $^2\Pi_{1/2} J = 3/2 \rightarrow 1/2$ and $^2\Pi_{1/2} J = 5/2 \rightarrow 3/2$ transitions has been detected towards both the SVS13-A and L1157-B1 sources. In particular, Table 1 reports all the hyperfine components detected above 5σ. Figures 3, 4, 5, and 6 reports the observed spectra, that are discussed below for both sources.

We used the GILDAS CLASS tool to fit separately the NO $^2\Pi_{1/2}$ J = 3/2 → 1/2 and $^2\Pi_{1/2}$ J = 5/2 → 3/2 spectra, obtaining the best fit of the hyperfine components providing four parameters (see Codella et al. 2012): (i) the LSR velocity, (ii) the linewidth (FWHM), (iii) the sum of the opacity at the central velocities of all the hyperfine components $p_1 = \sum \tau_i$, and (iv) the product $p_2 = p_1 \times [J(T_{ex}) - J(T_{bg}) - J(T_c)]$, where $J(T) = \frac{h\nu/k}{\Delta v_{FWHM}}$ and T_c is the temperature of the continuum emission, which can be neglected for both sources here analysed (see below). Hence:

$$T_{ex} = \frac{h\nu}{k} \left[\ln \left(1 + \frac{h\nu p_1}{k p_2} \right) \right]^{-1}.$$

The derived T_{ex} depends also on the assumed source extent to reproduce the observed T_{mb} and will be discussed separately for each source.

4.1 SVS13-A

Figure 3 shows in black the emission lines due to the NO $^2\Pi_{1/2}$ J = 5/2 → 3/2 hyperfine components observed at $\simeq 250$ GHz (Table 1). The HPBW of 10′′ ensures no contamination due to the SVS13-B protostar (see Fig. 1). The red line shows the fit obtained with the CLASS tool; the lines are well peaked at the systemic velocity of +8.6 km s$^{-1}$ (Chen et al. 2009), the FWHM is quite narrow (1.5 ± 0.1 km s$^{-1}$), and the emission looks optically thin. Note that the F = 5/2 → 3/2 and 3/2 → 1/2 (→ +) transitions of the $^2\Pi_{1/2}$ J = 5/2 → 3/2 pattern are blended at the present observed resolution, as clearly shown in Fig. 3.

Which is the size of the region emitting in NO? Instructive information comes from the linewidth, which is indeed narrower than that tracing the inner 100 AU of the protostellar environment, i.e. the hot-corino, which is 4–5 km s$^{-1}$ accordingly to recent single-dish and interferometric observations of SVS13-A (López-Sepulcre et al. 2015; Codella et al. 2016; De Simone et al. 2017). On the other hand, the NO linewidth (1.5 km s$^{-1}$) is in perfect agreement with that of CS(5–4), a tracer of the molecular envelope (see Table 3 and Fig. 7). Indeed, Lefloch et al. (1998) mapped the SVS13-A region in CS(5–4) using the IRAM 30-m antenna revealing an envelope with size of $\simeq 39^\prime \times 17^\prime$ ($\simeq 0.04 \times 0.02$ pc). The temperature has been estimated from continuum to be around 40 K (Lefloch et al. 1998; Chen et al. 2009). In addition, also the C13O and C15O lines here detected in the context of ASAI (Table 3 and Fig. 7) also show similar FWHM. All these findings support the association of the NO $^2\Pi_{1/2}$ J = 5/2 → 3/2 emission with the molecular envelope surrounding the SVS13-A protostar. Consequently, we

Table 1. List of NO transitions detecteda towards SVS13-A and L1157-B1 (see Table 2).

Transition	Frequency (GHz)	I_b (J = 3/2 − 1/2, $E_u = 19$ K)	I_b (J = 3/2 − 5/2, $E_u = 7$ K)		
$^2\Pi_{1/2}$					
$F_u \rightarrow F_i$	$p_u \rightarrow p_i$	Source	Source		
$5/2 \rightarrow 3/2$	$\pm \pm$	250436.85	99.7	Y	Y
$5/2 \rightarrow 5/2$	$\pm \pm$	250440.66	63.1	Y	Y
$3/2 \rightarrow 1/2$	$\pm \pm$	250448.53	37.4	Y	Y
$5/2 \rightarrow 5/2$	$\rightarrow \pm$	250708.25	12.0	N	Y
$7/2 \rightarrow 5/2$	$\rightarrow \pm$	250796.44	100.0	Y	Y
$5/2 \rightarrow 3/2$	$\rightarrow \pm$	250815.59	63.3	Y	Y
$3/2 \rightarrow 1/2$	$\rightarrow \pm$	250816.95	37.6	Y	Y

a The detected lines have a S/N ratio ≥ 5 and are not contaminated by the emission from other lines (see text). b From the Cologne Database for Molecular Spectroscopy (CDMS, http://www.astro.uni-koeln.de/cdms/). c I_b is the expected intensity.
applied no filling factor correction since the envelope size is larger than 17′′. We then derive the excitation temperature T_{ex} by considering the opacity less than 0.2. The continuum emission, roughly estimated from the high quality baselines obtained by the Wobbler mode observations (~ 80 mK in T_{MB} scale), can be neglected. We obtain low $T_{\text{ex}} \geq 4$ K, clearly indicating that the LTE conditions are not fully satisfied and that the density of the observed envelope has to be less than the critical densities of the observed NO lines, which are, according to the collisional rates with H$_2$ derived by Lique et al. (2009), $\sim 10^7$ cm$^{-3}$ in the 10–50 K range (see http://home.strw.leidenuniv.nl/~moldat/datafiles/no.dat). In addition, it has to be noted that the low-excitation ($E_a < 20$ K) does not make the observed NO lines the best candidates to probe high kinetic temperatures. The total column density of NO is then estimated to be N(NO) $\lesssim 3 \times 10^{15}$ cm$^{-2}$.

Interestingly enough, Figure 8 (bottom and middle panels) shows that if we inspect the best Gaussian fit of the NO $^2\Pi_{1/2}$ $J = 5/2 - 3/2$ emission with a HPBW of 16′′. Only the hyperfine component $F_{\text{ull}} = 5/2 - 3/2$, $p_{\text{ull}} = + +$, and $−−$ is detected. Both profiles are characterised by a weak emission centered at the systemic velocity of $+8.6$ km s$^{-1}$, and are severely contaminated by a deep absorption due to emission in the OFF position, observed in wobbler mode with a throw of 180′′ (see Sect. 3). The absorption is present in the 150 GHz spectrum, taken with a HPBW of 16′′, and not at 251 GHz, where the beam is definitely smaller, i.e. 10′′. However, considered that the 150 GHz and 251 GHz observations have not been observed simultaneously, different locations of the OFF position around the ON source could have played a role.

Finally, in addition to the NO emission at ~ 250 GHz, Fig.4 reports the spectral signature of the NO $^2\Pi_{1/2}$ $J = 3/2 - 1/2$ spectral pattern observed towards SVS13-A with a HPBW of 40′′. Only the hyperfine component $F_{\text{ull}} = 5/2 - 3/2$, $p_{\text{ull}} = + +$, and $−−$ is detected. Both profiles are characterised by a weak emission centered at the systemic velocity of $+8.6$ km s$^{-1}$, and are severely contaminated by a deep absorption due to emission in the OFF position, observed in wobbler mode with a throw of 180′′ (see Sect. 3). The absorption is present in the 150 GHz spectrum, taken with a HPBW of 16′′, and not at 251 GHz, where the beam is definitely smaller, i.e. 10′′. However, considered that the 150 GHz and 251 GHz observations have not been observed simultaneously, different locations of the OFF position around the ON source could have played a role.

To derive the excitation temperature T_{ex}, the contribution due to continuum can be neglected, given that no continuum emission has been so far detected towards L1157-B1 (e.g Codella et al. 2015, and references therein). Once taken into account the opacities derived from the Gaussian fit (opacity less than 0.6) we consistently derive for both the NO spectral patterns observed at ~ 150 GHz and ~ 250 GHz an excitation temperature $T_{\text{ex}} \approx 5$ K. Also in this case, the low T_{ex} values suggest that the gas is not fully in LTE conditions. As reported before the critical densities of the observed NO lines at 250 GHz are $\sim 10^5$ cm$^{-3}$ (Lique et al. 2009). On the other hand, the critical densities of the transitions at 150 GHz are, in the 10–50 K range, $\sim 10^4$ cm$^{-3}$. These values are similar to the minimum density derived by Gómez-Ruiz et al. (2015) from CS for the extended old (~ 2000 yr) cavity (5×10^4 cm$^{-3}$). Con-
Figure 3. Upper panel: Emission due to the NO $^2\Pi_{1/2} J = 5/2 - 3/2$ spectral pattern (black histogram; see Table 1; in T_{MB} scale after correction for beam dilution, see text) observed towards SVS13-A with the IRAM 30-m antenna. The red line shows the best fit obtained with the GILDAS-Class package using the simultaneous fit of all the hyperfine components (see Table 2). For sake of clarity, the hyperfine components are not indicated in the upper panel are labelled in the zoom-in in the lower panels. The spectrum is centred at the frequency of the hyperfine component $F_{\text{ul}} = 7/2 - 5/2; p_{\text{ul}} = + \rightarrow -$ (250436.85 MHz). The vertical dashed line indicates the ambient LSR velocity (+8.6 km s$^{-1}$, Chen et al. 2009). Bottom-right panel: Zoom in of the Upper panel. Dotted lines indicate the hyperfine components falling in that portion of the spectrum. Note that the $F_{\text{ul}} = 3/2 - 1/2; p_{\text{ul}} = - \rightarrow +$ line is blended with the brighter $F_{\text{ul}} = 5/2 - 1/2; p_{\text{ul}} = - \rightarrow +$ one. The analysis of the residual is shown in Fig. 8. Bottom-left panel: Zoom in of the Upper panel, after having centred the spectrum at the frequency of the hyperfine component $F_{\text{ul}} = 7/2 - 5/2; p_{\text{ul}} = + \rightarrow -$ (250796.44 MHz). The $F_{\text{ul}} = 3/2 - 1/2; p_{\text{ul}} = + \rightarrow -$ line is blended with the $13\,^{16}\text{CH}_3\text{CHO}-E$, a well known tracer of hot-corinos (as that around SVS 13-A). For the legibility of the figure, given the complexity of this portion of the spectrum, the residual is not reported.

Table 3. List of CO and CS transitions and line properties (in T_{MB} scale) detected towards SVS13-A and used in the present analysis.

Transition	ν^a (MHz)	E_{ul} (K)	$HPBW^c$ (″)	Dv (km s$^{-1}$)	rms (mK)	T_{peak}^b (mK)	V_{peak}^b (km s$^{-1}$)	$FWHM^b$ (km s$^{-1}$)	I_{int}^b (mK km s$^{-1}$)
$^{13}\text{C}^{18}\text{O}(2\rightarrow 1)$	209419.172	15	12	0.56	9	129±13	+8.4±0.1	1.5±0.2	78±1
$^{13}\text{C}^{17}\text{O}(2\rightarrow 1)$	214573.873	15	12	0.55	10	18±3	+8.2±0.4	1.7±0.9	32±15
C$^{18}\text{O}(2\rightarrow 1)$	219560.350	16	11	0.53	53	5370±150	+8.6±0.1	1.6±0.1	8873±74
C$^{17}\text{O}(2\rightarrow 1)$	224714.190	16	11	0.52	18	1068±69	+8.2±0.1	2.0±0.1	2315±28
CS(5\rightarrow4)	244935.560	35	10	0.49	20	386±71	+8.3±0.1	1.4±0.1	592±26

a From the Cologne Database for Molecular Spectroscopy (CDMS; http://www.astro.uni-koeln.de/cdms/). Müller et al. 2001, 2005) molecular database.

b The errors are the Gaussian fit uncertainties (1σ) and are in units of the last digit.

c The errors are the Gaussian fit uncertainties (1σ) and are in units of the last digit.
considered the measure of T_ex and the corresponding error, the total NO column density is $N(\text{NO}) = 5.5 \pm 1.5 \times 10^{15}$ cm$^{-2}$.

5 DISCUSSION

5.1 Abundances

To estimate the NO abundance (X_{NO}) in the SVS13-A envelope, we evaluated the H$_2$ column density using the emission from the $J = 2\rightarrow1$ transition of several CO isotopologues (Table 3): C18O, C17O, and 13C18O, expected to be optically thin. We also detect 13C17O($2\rightarrow1$) emission with a Signal-to-Noise (S/N) ratio ~ 3–4. All these lines have been observed with the same HPBW ($10''$–$12''$) and show FWHMs consistent with that of the NO profiles (Table 3), indicating that the rare CO isotopologues are reasonably tracing the same material, i.e. the molecular envelope. Adopting Local Thermodynamic Equilibrium (LTE) conditions, optically thin emission, and assuming a kinetic temperature of 40 K (Lefloch et al. 1998), 16O[16C]=560, 16O[17C]=5, 12C[13C]=77, and 12CO]/[H$_2$]$ = 10^{-4}$ (Wilson & Rood 1994), we derive $N(\text{CO}) = 3 \times 10^{18}$ cm$^{-2}$. Consequently, X_{NO} towards SVS13-A is $\lesssim 3 \times 10^{-7}$. Interestingly, if we use the tentative NO detection towards the SVS13-A low-velocity outflow and the C17O emission at the same velocities (see Fig. 8) we obtain an NO abundance of 0.1–5 $\times 10^{-7}$, i.e., a value equal or slightly higher than that in the SVS13-A envelope.

For the L1157-B1 analysis, we can use the source-averaged column density N(CO) = 1×10^{17} cm$^{-2}$, found for both the B1 and B2 cavities by Lefloch et al. (2012). We can thus derive the NO abundance towards a shocked region: $X(\text{NO}) = 4 \times 10^{-7}$. To our knowledge, there are few measurements of the NO abundances in low-mass star forming regions. Yıldız et al. (2013) reported $X(\text{NO}) = 2 \times 10^{-8}$ towards the NGC1333-IRAS4A star forming region, suggesting NO is tracing an extended PDR region outside the protostellar core. Similar abundances (1×10^{-8}) have been reported for starless cores such as e.g. L1544 (Akymaz et al. 2007). The high abundance derived for L1157-B1 as well as that tentatively derived for the SVS13-A outflow (few 10^{-7}) supports a large increase of the NO production, either due to direct release from dust mantles and/or by warm gas-phase chemistry. In the following, we make use of the public code UCLCHEM (Holdship et al. 2017) to investigate the origin of the NO emission in each object. The code is fully described in Holdship et al. (2017) and references therein. Briefly, the code computes the fractional abundances of gas and solid species as a function of time. Beside the standard chemical gas phase reactions, freeze out, non thermal (due to UV radiation and cosmic rays), thermal desorption and a basic network of surface reactions are all included.

5.2 Chemical modelling of SVS13-A

In the previous section we established that NO is almost certainly arising from the molecular envelope surrounding the SVS13-A protostar. In order to simulate the envelope, we run UCLCHEM in two Phases: in Phase 1 we start from a purely atomic gas at low density ($n_\text{H} = 10^2$ cm$^{-3}$), and allow the gas to collapse in free-fall until a gas density of 10^4 is reached (the gas density estimated in Section 4.1). The time it takes to reach this density is of course the free-fall timescale, which is $\sim 5 \times 10^6$ years. This Phase is then either stopped, or allowed to continue for a further 5 million years (assuming a typical lifetime for the parent molecular cloud of ~ 10 Myr, Mouschovias et al. 2006). We adopt the solar initial elemental abundances reported by Asplund et al. (2009), (see Table 4).

Table 4. List of initial elemental fractional abundances (with respect to the total number of hydrogen nuclei) for Phase I of UCLCHEM, taken from Asplund et al. (2009)

Species	Injected (H)
He	0.085
O	4.898×10^{-4}
C	2.692×10^{-4}
N	6.761×10^{-5}
S	1.318×10^{-5}
Mg	3.981×10^{-6}
Si	3.236×10^{-5}
Cl	3.162×10^{-7}
P	2.57×10^{-9}
F	3.6×10^{-8}

Phase 2, which starts at a density determined by the final step of Phase 1, then follows the chemical evolution as a function of time at constant density but at a temperature of 40 K, as assumed in the previous sections and also in agreement with Lefloch et al. (1998). In Fig. 9 we show our results for Phase 2, following a Phase 1 of 10 Myr, for an envelope at 10^4 cm$^{-3}$: NO steadily decreases with time and its abundance always remains below 10^{-8} for times $> 2 \times 10^4$ years, in agreement with the derived 10^{-7} upper limit. NO here forms via the neutral-neutral reaction of N + OH, and its behaviour indeed follows closely that of OH which steadily decreases to form CO. We conclude that the observed NO can indeed be explained by the presence of an envelope with a likely gas density of $\sim 10^3$ cm$^{-3}$.

Since we encompass the hot corino as well as the envelope of
Figure 5. Upper panel: Emission due to the NO $^2\Pi_{1/2} \rightarrow 3/2$ spectral pattern (black histogram; see Table 1; in T_{MB} scale observed towards L1157-B1 with the IRAM 30-m antenna. The red line shows the best fit obtained with the GILDAS–Class package using the simultaneous fit of all the hyperfine components (see Table 2). For sake of clarity, the hyperfine components which are not indicated in the upper panel are labelled in the zoom-in in the lower panels. The spectrum is centred at the frequency of the hyperfine component $F_{\text{ul}} = 7/2 \rightarrow 5/2; p_{\text{ul}} = + \rightarrow -$ (250436.85 MHz). The vertical dashed line indicates the ambient LSR velocity (+2.6 km s$^{-1}$, Bachiller et al. 2001).

Bottom-right panel: Zoom in of the Upper panel. Dotted lines indicate the hyperfine components falling in that portion of the spectrum. Note that the $F_{\text{ul}} = 3/2 \rightarrow 1/2; p_{\text{ul}} = - \rightarrow +$ line is blended with the brighter $F_{\text{ul}} = 5/2 \rightarrow 1/2; p_{\text{ul}} = - \rightarrow -$ one. The purple filled histogram shows the residual after Gaussian fit (red) of the NO emission (black). Bottom-left panel: Zoom in of the Upper panel, after having centred the spectrum at the frequency of the hyperfine component $F_{\text{ul}} = 7/2 \rightarrow 5/2; p_{\text{ul}} = + \rightarrow -$ (250796.44 MHz).

This protostar within our beam, it is important to verify whether a contribution from the hot corino should have been present. In order to model the hot corino we run UCLCHEM again in two phases; like before, in Phase 1 we start from a purely atomic gas at low density, and allow the gas to collapse in free-fall until a gas density of either 10^7 cm$^{-3}$ or 10^8 cm$^{-3}$ is reached. In Phase 2 the dense gas is 'placed' at a distance of ~ 10 AU from the star and we allow the temperature to increase up to a value of 80–100 K. The increase in temperature with time is set up in a similar manner to the 1 M\odot model by Awad et al. (2010), but with the assumption that the final mass of the star is 0.75 M\odot, as determined from the 1.4 mm dust continuum observations of Chen et al. (2009). As the temperature increases, the mantles sublime in various temperature bands (see Collings et al. 2004). Phase 2 follows the gas and mantle chemical evolution with time up to 10^7 years, a reasonable age of a protostar entering the Class I stage. In order to exclude a contribution from the hot corino, the NO fractional abundance with respect to the total number of hydrogen nuclei ought to be less than 3×10^{-7}. This is in fact the case up to $>9 \times 10^4$ yr. While we do not have such as accurate age for the Class I protostar, it is likely that its age does not exceed this value. In addition, note that beams of $10''$–$16''$, as those used to observe the present NO emission imply severe beam dilution for an emitting size of $1''$ (typical of hot-corinos such as the SVS13-A one; see De Simone et al. 17; Lefèvre et al. 2017). In particular, the filling factor is equal to 4×10^{-3} ($16''$) and 10^{-2} ($10''$).

In conclusion, the present dataset confirm that high-sensitivity observations allow one to reveal molecules (such as NO), whose emission can challenge the models so far used for protostellar systems. Indeed high-angular interferometric observations of NO emission are clearly needed to provide a comprehensive picture of the SVS13-A system.
5.3 Chemical modelling of L1157-B1

UCLCHEM has been used to model the molecular emission from this object, as well as other shocked spots in low mass outflow, in several studies (Viti et al. 2011; Holdship et al. 2016; Gómez-Ruiz et al. 2016; Holdship et al. 2017). For L1157-B1 the best fit models have so far indicated a shock velocity ranging from 20 to 40 km s\(^{-1}\) and a pre-shock density of at least \(10^{4}\) cm\(^{-3}\).

For this work, we used the grid of models already ran in Holdship et al. (2017). In summary the grid covers preshock densities conservatively ranging from \(10^3\) to \(10^5\) cm\(^{-3}\), and shock velocities from 10 to 65 km s\(^{-1}\) (see their Table 2). In fact, based on previous work, we shall exclude from our discussion all models with a pre-shock density of \(10^3\) cm\(^{-3}\); this is further justified by our excitation analysis in the previous section which implies a gas density of at least \(10^4\) cm\(^{-3}\) (we note that even a pre-shock density of \(10^2\) cm\(^{-3}\) implies a post-shock density of \(\sim 4 \times 10^3\) cm\(^{-3}\), still lower than the density inferred from our excitation analysis of \(10^5\) cm\(^{-3}\)). We then find that the models which achieve a high enough abundance of NO to match the observations are: (i) either those with a pre-shock density of \(10^5\) and \(10^6\) cm\(^{-3}\) with, respectively, 45 and 40 km s\(^{-1}\) shock velocities, or (ii) models with a pre-shock density of \(10^4\) cm\(^{-3}\) but with a shock velocity of at least 60 km s\(^{-1}\). These two sets of models have in common the maximum temperature the gas attains during the passage of the shock. While we can not completely exclude a preshock density of \(10^4\) cm\(^{-3}\), we note that such a low pre-shock density requires a very fast shock, which is inconsistent with previous findings. Moreover the observed abundance for this model is reached for an age larger than 1000 years. A pre-shock density of \(10^5\) cm\(^{-3}\) with a velocity of 45 km s\(^{-1}\) (see Fig. 10), on the other hand, leads to an abundances of \(\sim 10^{-6}\) after a few hundred years, consistent with the dynamical time-scales derived by Podio et al. (2015). The increase in NO abundance at \(\sim 150\) years is due to the reaction of nitrogen with OH: the latter is enhanced with time due to the reaction of free oxygen with H\(_2\). At later times, NO is more efficiently destroyed by the reaction with free nitrogen, which becomes more abundant when NH\(_3\) starts decreasing (Viti et al. 2011). We note that the NO abundance is main-
tained through the dissipation length (see Fig. 10) but that, unlike the low velocity shock model presented in Chen et al. (2014), NO does not trace O2. Clearly there must be a parameter space that one must explore when performing shock modelling where NO may be a good tracer of molecular oxygen. This model would also be consistent with the best matching models we found for the NH3, H2O (Viti et al. 2011), H2S (Holdship et al. 2016) and phosphorous-bearing species (Lefloch et al. 2016).

6 CONCLUSIONS

The high-sensitivity of the IRAM 30-m ASAI unbiased spectral survey in the mm-window allows us to detect towards the Class I object SVS13-A and the protostellar outflow shock L1157-B1 a large number of NO emission lines, namely the hyperfine components of the 21Π2/1 → 1/2 (at 151 GHz) and 21Π1/2 → 3/2 (at 250 GHz) spectral pattern. The main results of the analysis can be summarised as follows:

(i) Towards the SVS13-A system, narrow (1.5 km s\(^{-1}\)) optically thin (\(\tau \ll 0.2\)) lines peaking at the systemic velocity of +8.6 km s\(^{-1}\) have been detected. These findings, also supported by new CS(5–4), C18O, 13C18O, C17O, and 13C17O lines suggest the association of NO with the molecular envelope with size of 18" (4700 AU) surrounding the SVS13-A protostar. The inferred excitation temperature \(T_{\text{ex}}\) is \(\gtrsim 4\) K and the total column density \(N(\text{NO}) \lesssim 3 \times 10^{15}\) cm\(^{-2}\).

(ii) We observed NO emission towards L1157-B1: the lines are broad (FWHM \(\simeq 5\) km s\(^{-1}\)) and blue-shifted by about 2 km s\(^{-1}\), thus revealing for the first time NO towards a shocked region driven by a low-mass protostar. The line profiles confirm that NO is associated with the extended (around 20") cavity opened by the passage of the jet. We derive \(T_{\text{ex}} \simeq 5\) K and \(N(\text{NO}) = 4 - 7 \times 10^{15}\) cm\(^{-2}\).

(iii) We derive a low NO fractional abundance of \(\lesssim 3 \times 10^{-7}\) for the SVS13-A envelope, while a definite \(X(\text{NO})\) increase is observed towards the L1157-B1 shock: \(4 - 7 \times 10^{-6}\). To our knowledge, only few measurements of NO abundances towards low-mass protostellar regions have been so far reported, both around \(10^{-8}\) (extended PDR region around IRAS4A, Yıldız et al. 2013, and starless cores, Akylmaz et al. 2007). The present measurements towards L1157-B1 support a huge increase of the NO production in shocks.

(iv) The public code UCLCHEM has been used to interpret the present NO observations. We confirm that the abundance observed...
in SVS13-A can be attained by an envelope with a gas density of 10^5 cm$^{-3}$ and a kinetic temperature of 40 K. The NO abundance in L1157-B1 can be matched by a gas with a pre-shock density of 10^5 cm$^{-3}$ and a shock gas kinetic temperature of 80 K (Tafalla & Bachiller 1995).

ACKNOWLEDGEMENTS

The authors are grateful to the IRAM staff for its help in the calibration of the 30-m data. We also thank the anonymous referee for instructive comments and suggestions. The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement N. 283393 (RadioNet3). This work was partly supported by the Italian Ministero dell’Istruzione, Università e Ricerca through the grant Progetti Premiali 2012 – iALMA which is also founding the EB PhD project. This work was supported by the CNRS program “Physique et Chimie du Milieu Interstellaire” (PCMI) and by a grant from LabEx Osug@2020 (Investissements d’avenir - ANR10LABX56). CF aknowledges support from the Italian Ministry of Education, Universities and Research, project SIR (RBSI14ZRHR). JH is funded by an STFC support from the Italian Ministry of Education, Universities and Research, project ST/L004801. BL and CCe acknowledge the financial support from the French Space Agency CNES, and MT and RB from Spanish MINECO (through project AYA2016-79006-P).

REFERENCES

Akyilmaz, M., Flower, D.R., Hily-Blant, P., Pineau des Forêts, G., & Wakelam, C.M. 2007, A&A 462, 221
Anglada, G., Rodríguez, L.F., Torrelles, J.M. 2000, ApJ 542, L123
Asplund, M., Grevesse, N., Sauval, A. J., Scott, P. 2009, ARA&A, 47, 481
Awad, Z., Viti, S., Williams, D.A. 2016, ApJ 826, 207
Awad, Z., Viti, S., Collings, M. P., Williams, D. A., 2010, MNRAS 407, 2511
Bachiller, R., Guilloteau, S., Gueth, F., et al. 1998, A&A 339, L49
Bachiller, R., Peréz Gutiérrez, M., Kumar, M.S.N., & Tafalla M. 2001, A&A 372, 899
Blake, G.A., Masson, C.R., Phillips, T.G., & Sutton, E.C., 1986, ApJS 60, 357
Benedettini, M., Viti, S., Codella, C., et al. 2013, MNRAS 436, 179
Busquet, G., Lefloch, B., Benedettini, M., et al. 2014, A&A 561, 120
Chen, X., Launhardt, R. & Henning, Th. 2009, ApJ 691, 1729
Chen, J.-H., Goldsmith, P. F., Viti, S., Snell, R., et al. 2014, ApJ 793, 111
Chini, R., Reipurth, B., Sievers, A., et al. 1997, A&A 325, 542
Codella, C., Bachiller, R., & Reipurth, B. 1999, A&A 343, 585
Codella, C., Lefloch, B., Ceccarelli, C., et al. 2010, A&A 518, L112
Codella, C., Ceccarelli, C., Bontinelli, S., et al. 2012, ApJ 744, 164
Codella, C., Fontani, F., Ceccarelli, C., et al. 2015, MNRAS 449, L11
Codella, C., Ceccarelli, C., Bianchi, E., et al. 2016, MNRAS 462, L75
Collings, M.P., Anderson, M.A., Chen, R., et al. 2004, MNRAS 354, 1133
De Simone, M., Codella, C., Testi, L. et al. 2017, A&A 599, 121
Flower, D.R., Pineau des Forêts, G., Wakelam, C.M. 2006, A&A 456, 215
Gerin, M., Viala, Y., Pauzat, F., & Ellinger, Y. 1992, A&A 266, 463
Gerin, M., Viala, Y., & Casoli, F. 1993, A&A 268, 212
Gómez-Ruiz, A.I., Codella, C., Lefloch, B., et al. 2015, MNRAS 446, 3346
Gueth, F., Guilloteau, S., & Bachiller, R. 1996, A&A 307, 891
Gueth, F., Guilloteau S., & Bachiller R. 1998, A&A 333, 287
Hallen, D.T.; Apponi, A.J.; Ziurys, L.M., 2001, ApJ, 561, 244
Hily-Blant, P., Wakelam, C.M., Pineau des Forêts, G., & Flower, D. 2010, A&A 513, 41
Hirotta, T., Bushimata, T., Choi, Y.K., et al. 2008, PASJ 60, 37
Holdship, J., Viti, S., Jiménez-Serra, I., & Priestley, F., 2017, ApJ, submitted
Lique F., van der Tak F.F.S., Klos J., Balthuis J., & Alexander M. 2009, A&A 493, 557
Lizis, H.S., & Turner B.E. 1978, ApJ, 224, 73
Lefèvre C., Cabrit S., Maury A., et al. 2017, A&A 640, L1
Lefloch, B., Castets, A., Cernicharo, J., et al. 1998, A&A, 334, 269
Lefloch, B., Vastel, C., Viti, S., et al. 2016, MNRAS 462, 3937
Lefloch, B., Ceccarelli, C., Codella, C., et al. 2017, MNRAS 469, L73
Looney, L.W., Mundy, L.G., & Welch, W.J. 2000, ApJ 529, 477
Looney, L.W.; Tobin, J.J.; & Kwon, W. 2007, ApJ 2007, 670, L131
López-Sepulcre, A., Jaber, A.A., Mendoza, E., et al. 2015, MNRAS 449, 2438
Martín, S., Mauersberger, R., Martín-Pintado, J., García-Burillo, S., & Henkel, C. 2003, A&A 411, 465
Mouschovias T. C., Tassis K., Kunz M. W., 2006, ApJ, 646, 1043
Müller, H.S.P., Schlöder, F., Stutzki, J., et al. 2005, Journal of Molecular Structure, 742, 215
Müller, H.S.P., Thorwirth, S., Roth, D.A., et al. 2001, A&A 370, L49
Nummelin, A., Bergman, P., Hjalmarson, Å., et al. 2000, ApJS 128, 213
Podio, L., Codella, C., Gueth, F. et al. 2015, A&A 581, 85
Santangelo G., Codella C., Cabrit S., et al. 2015, A&A 584, A126
Tafalla, M., & Bachiller, R. 1995, ApJ 443, L37
Tobin, J.J., Hartmann, L., Looney, L.W., Chiang, H.-F. 2010, ApJ 712, 1010
Tobin, J.J., Looney, L.W., Li, Z.-Y., et al. 2016, ApJ 818, 73
Vellilla Prieto, L., Sánchez Contreras, C., Cernicharo, J., et al. 2015, A&A 575, 84
Viti, S., Collings, M.P., Dever, J.W., McCoustra, M.R.S., Williams, D.A., 2004, MNRAS, 354, 1141
Viti, S., Jiménez-Serra, I., Yates, J.A., et al. 2011, ApJ, 740, 3
Wilson, T.L., & Rood, R. 1994, ARA&A 32, 191
Yıldız, U.A., Acharyya, K., Goldsmith, P.F., et al. 2013, A&A 558, A58

This paper has been typeset from a TEX/EPiX file prepared by the author.