THE FUNCTIONAL AGROBIODIVERSITY IN THE DOURO DEMARCATED REGION VITICULTURE: UTOPIA OR REALITY? ARTHROPODS AS A CASE-STUDY – A REVIEW

A AGROBIODIVERSIDADE FUNCIONAL NA VITICULTURA DA REGIÃO DEMARCADA DO DOURO: UTOPIA OU REALIDADE? OS ARTRÓPODES COMO CASO DE ESTUDO – REVISÃO

Fátima Gonçalves1*, Cristina Carlos1,2, António Crespi1, Claire Villeman3, Valeria Trivellone4, Marta Goula5, Roberto Canovai6, Vera Zina7, Luís Crespo5, Lara Pinheiro8, Andrea Lucchi6, Bruno Bagnoli9, Irene Oliveira1,10, Rui Pinto11, Laura Torres1

1 Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal.
2ADVID - Associação para o Desenvolvimento da Viticultura Duriense. Edifício Centro de Excelência da Vinha e do Vinho - Régia Douro Park. 5000-033 Vila Real, Portugal.
3Muséum National d’Histoire Naturelle, UMR7205, CP50 Entomologie, 45 rue Buffon, 75005 Paris, France.
4Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America.
5Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain.
6Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
7Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
8Department of Investigation of Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
9Department for Inovation in Biological, Agro-food and Forest Systems, University of Tuscia, via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy.
10Centro de Matemática Computacional e Estocástica (CEMAT-IST-UL), Universidade de Lisboa, 1049-001 Lisboa, Portugal.
11Centro de Química, Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal.

*corresponding author: Tel: +351 259350920, email: mariafg@utad.pt

(Received 07.08.2019. Accepted 30.10.2019)

SUMMARY

Aiming to reduce the losses of biodiversity and the degradation of associated ecosystem services, the United Nations established the 2011-2020 period as the UN Decade on Biodiversity. During this period, the countries involved compromised on implementing the Strategic Plan for Biodiversity, including the Aichi Biodiversity Targets. The argument is that biological diversity underpins the functioning of ecosystems and the provision of services essential to human well-being, further contributing to economic development and the achievement of the Millennium Development Goals. The purpose of this review is to present results of research and academic works carried out over several years in the Douro Demarcated Region in the field of functional agrobiodiversity, understood as the part of ecosystem biodiversity that provides ecosystem services, which support sustainable agricultural production and can also bring benefits to the regional and global environment and to society as a whole. Such studies specifically aimed to contribute knowledge about the diversity of arthropods in the vineyard ecosystem and about practices that can increase their abundance, diversity and services provided. In this context, a general characterization of the arthropod community identified in the vineyard ecosystem is conducted, complemented by information on the role played, by the taxonomic groups identified. The importance of increasing arthropod populations, the vegetation of vineyard slopes, and the existence of shrubs, forests and hedgerows next to the vineyards is discussed. The fundamental role of soil management practices is also referred, namely that of ground cover and the application of compost from winery wastes in the abundance and diversity of these organisms populations. Finally, bearing in mind the importance of the use of this information by vine growers, the measures taken for its dissemination are also presented.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
RESUMO

Com o objetivo de reduzir a perda de biodiversidade e a degradação dos serviços ecosistêmicos associados, as Nações Unidas estabeleceram o período 2011-2020 como a Década da Biodiversidade. Durante este período, os países envolvidos promoveram-se a implementar o Plano Estratégico para a Biodiversidade, incluindo as Metas de Biodiversidade de Aichi. O argumento é de que a diversidade biológica sustenta o funcionamento dos ecosistemas e a provisão de serviços essenciais ao bem-estar humano, contribuindo ainda para o desenvolvimento económico e a concretização dos Objetivos de Desenvolvimento do Milénio. A presente revisão tem por objetivo apresentar resultados obtidos no decurso de projetos de investigação e trabalhos académicos, desenvolvidos ao longo de vários anos na Região Demarcada do Douro, no domínio da agrobiodiversidade funcional, entendida como a parte da biodiversidade dos ecosistemas que facilita serviços essenciais à produção agrícola sustentável e que também pode proporcionar benefícios ambientais à escala regional e global e à sociedade em geral. Com estas atividades pretendeu-se, mais especificamente, obter conhecimento sobre a diversidade de artrópodes existentes no ecosistema vitivinícola e sobre práticas capazes de incrementarem a sua abundância, diversidade e serviços facultados. No contexto referido, procede-se a uma caracterização da comunidade de artrópodes identificadas no ecosistema vitivinícola, complementada com informação sobre o papel desempenhado pelos diferentes grupos taxonómicos identificados. Discute-se a importância, no incremento das populações de artrópodes, da vegetação dos taludes da vinha, e da existência de matos, florestas e sebes na sua proximidade. Também se refere o papel fundamental desempenhado, na abundância e diversidade das populações destes organismos, das práticas de condução do solo, designadamente do enrelvamento e da aplicação de compostados provenientes dos resíduos da adega. Finalmente, e tendo em atenção a importância do uso desta informação pelos viticultores, apresentam-se as iniciativas que têm sido usadas na sua divulgação.

Key words: biodiversity, vineyard, ecological infrastructures, ground cover.
Palavras-chave: biodiversidade, vinha, infraestruturas ecológicas, cobertura do solo.

INTRODUCTION

In 1992, at the first Earth Summit, held in Rio de Janeiro (Brazil), most of the represented nations recognized that ecosystems were being destroyed and biodiversity was being lost at an alarming rate (Cardinale et al., 2012). After almost two decades, based on the understanding that biological diversity underpins the functioning of ecosystems and the provision of services essential to human well-being, the United Nations established the period of 2011-2020 as the UN Decade on Biodiversity, under the slogan “Living in Harmony with Nature”, with the aim of reducing the losses of biodiversity and the degradation of associated ecosystem services as well as their impact on humanity (Secretariat of the Convention on Biological Diversity, 2014). During this period, the countries involved compromised on implementing the Strategic Plan for Biodiversity, including the Aichi Biodiversity Targets. The Strategic Plan for Biodiversity addresses five main strategic goals, namely: 1) address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society; 2) reduce the direct pressures on biodiversity and promote sustainable use; 3) improve the status of biodiversity by safeguarding ecosystems, species and genetic diversity; 4) enhance the benefits to all from biodiversity and ecosystem services; 5) enhance implementation through participatory planning, knowledge management and capacity building (Secretariat of the Convention on Biological Diversity, 2014). The main objective was to break the loss of biodiversity so that by 2020, ecosystems would be resilient and would continue to provide essential services, thus safeguarding the planet’s biodiversity and contributing to human well-being and the eradication of poverty (Secretariat of the Convention on Biological Diversity, 2014).

Functional agrobiodiversity is defined as ‘those elements of biodiversity on the scale of agricultural fields or landscapes, which provide ecosystem services that support sustainable agricultural production and can also deliver benefits to the regional and global environment and the public at large’ (ELN-FAB, 2012). Examples of these ecosystem services are: the provision of food, fibre and water, the regulation of diseases, floods and climate, pollination, the degradation of organic matter and nutrient cycling, the suppression of pests, and services associated with recreation or education (Millennium Ecosystem Assessment, 2005).

Invertebrates, including arthropods, are part of the functional agrobiodiversity and provide numerous ecosystem services, including pollination, biological control of pests, soil aeration and waste decomposition (reviewed by Saunders, 2018).

The acknowledgement of biodiversity as an important element of agricultural production and the identification of elements which deliver significant ecosystem services will help predict how changes in the environment and management practices will impact the multiple ecosystem services provided by agroecosystems (reviewed by Wood et al., 2015). Additionally, it will increase crop productivity in a sustainable manner, with a lower dependence on external inputs (ELN-FAB, 2012; Sandhu et al., 2015).

It is known that landscape management and farming practices can contribute to the conservation and enhancement of biodiversity (of plants, animals, fungi, etc.) as well as of the ecosystem services.
Examples of these farming practices are the maintenance of non-crop vegetation such as field margins, forests, hedgerows and other non-crop elements, the use of conservation tillage and crop diversification (ELN-FAB, 2012). Other practices such as the use of organic fertilizers (manures) and the retention of crop residues also promote biodiversity in general and soils’ health in particular (Lehman et al., 2015).

As far as arthropods are concerned, it is known that their abundance and diversity depends on the large-scale structure and composition of landscapes, normally constituted of a mosaic of crop and non-crop elements (Gardiner et al., 2009a,b). Also, the biological control of pests, an important ecosystem service provided by arthropods, is reduced in simplified agricultural landscapes (Rusch et al., 2016). Moreover, the vegetation cover in inter-rows improves biodiversity by benefitting the activity and providing habitat for many different species in the soil and above ground.

In the Douro Demarcated Region (DDR), located in Northern Portugal, vineyards occupy 43,500 ha (about 17.6% of the total area of the region) (IVDP, 2018). The DDR landscape also includes important areas of natural or semi-natural habitats, including structures nowadays designated as “mortórios”, which are old terraces built prior to the 1860s, before the devastation of the Douro vineyards by the phylloxera, and which were later abandoned (Andresen et al., 2004). These areas are extremely important from a biological diversity standpoint (Andresen et al., 2004), as they provide a natural habitat for many plant and animal species.

In 2001, the “Alto Douro Vinhateiro” (ADV) (one part of the DDR with about 24,600 ha) was included in the list of UNESCO World Heritage Sites as an evolving and living cultural landscape. Currently, its authenticity prevails, and sustainable solutions are being implemented according to the condition of scarce resources – water and fertile soil – and steep slopes (Andresen and Rebelo, 2013).

Since 2010, various studies have been conducted in the DDR within research projects and academic works, in order to evaluate the impact of elements from landscape and farming practices on the conservation and enhancement of biodiversity and associated ecosystem services. The aims of this review are to synthesize the main results obtained and also, provide a framework for functional agrobiodiversity management in vineyards that can be used and improved by farmers, technicians, and stakeholders.

GENERAL CHARACTERIZATION OF THE ARTHROPODS ASSEMBLAGE IDENTIFIED AND THE ECOSYSTEM SERVICES PROVIDED

On the whole, eight classes of arthropods have been reported in the Douro Demarcated Region: Arachnida, Chilopoda, Diplopoda, Entognatha, Insecta, Malacostraca, Pauropoda, and Symphyla. Some of the identified species are Iberian endemism, specifically Castianeira badia (Figure 1A), Eratigena bucculenta, E. feminea, E. montigena, Nemesis athiis, Oecobius machadoi, Tegenaria ramblae, Zodarion alacre, and Z. duriense, from Araneae; Cataglyphis hispanica, C. iberica, and Aphaenogaster iberica (Figure 1B) from Formicidae (Gonçalves et al., 2017; Carlos et al., 2019); Gluvia dorsalis from Solifugae (Figure 1C) and Sciobia lusitanica from Gryllidae (Figure 1D) (Gonçalves et al., 2018a).

In the soil-surface, the arthropod assemblages which stood out for their abundance were the omnivores (Formicidae) and detritivores (mainly Collembola and Oribatid mites), followed by predators (mainly Araneae, Carabidae and Staphylinidae) and phytophagous (mainly Formicidae, Curculionidae and Gryllidae) (Gonçalves et al., 2017; Carlos et al., 2019). Standing out among the soil-living arthropods were the detritivores (Collembola and Oribatid mites) and predators (Mesostigmatid and Prostigmatid
Among the Formicidae, *Aphaenogaster gibbosa*, *A. iberica*, *Messor barbarus*, *Pheidole pallidula* (from Myrmicinae), *Cataglyphis hispanica*, *C. iberica*, *Plagiolepis pygmaea* (from Formicinae), and *Tapinoma nigerrimum* (from Dolichoderinae) were the most abundant species found in the soil-surface (Gonçalves et al., 2017; Carlos et al., 2019). The Formicidae family has an important role in ecosystems through their diverse ecological functions, mainly as biological regulators and ecosystem engineers (Ward, 2006). Through their activity, they modify the physical, chemical and microbiological properties of the soil (Dostál et al., 2005; Jouquet et al., 2006). Although most species are omnivorous and generalists (Cerdá and Dejean, 2011), others present different eating behaviours: some are generalist predators, others are phytophagous or detritivores by cutting up leaves into smaller components, and thus accelerating the decomposition process; others feed on honeydew, pollen and extrafloral nectar (reviewed by Gonçalves et al., 2017).

Some ants are involved in mutualistic relationships with hemipterans (e.g. mealybugs, scale insects, aphids). In this way, they obtain carbohydrate-rich honeydew from hemipterans and in turn, provide them protection from enemies and sometimes transport them (reviewed by Mgocheki and Addison, 2009). A total of 10 species of ants were found to be associated with the vine mealybug, *Planococcus ficus*, the most abundant being *Crematogaster auberti*, *Iberofornica subrufa* and *P. pygmaea* (Gonçalves et al., 2014a).

Collembola are common in soil, leaf litter and other decaying organic matter, playing an important role in nutrient cycling and maintaining soil microstructure. Furthermore, they are alternative prey for generalist predators, in particular small spiders, thus enabling the increment of predator densities and so enhancing pest biological control (reviewed by Gonçalves et al., 2018a).

Oribatid mites are the world's most numerous arthropods living in soil; they are important soil decomposers by feeding on a variety of leaf litter material, including bacteria and yeast, algae, fungi and rotting wood (reviewed by Gonçalves et al., 2018b). Mesostigmatid and prostigmatid mites are predators, eating small invertebrates, bacteria, and fungi; some prostigmatids can live on other animals as parasites (reviewed by Gonçalves et al., 2018b). In Prostigmata, it is also frequent to find mites from Anystidae (Figure 2A) and Erythraeidae, respectively predating or parasitizing nymphs of Cicadellidae (Carlos, unpublished data).

In arthropod assemblages from vegetation, the most abundant were the phytophagous (mainly Cicadellidae, Lygaeidae and Chrysomelidae), as well as parasitoids (mainly Chalcidoidea, Braconidae and Ichneumonidae) and predators (mainly Coccinellidae, Araneae and Carabidae) (Carlos, 2017).

Some insects are involved in mutualistic relationships with hemipterans (e.g. mealybugs, scale insects, aphids). In this way, they obtain carbohydrate-rich honeydew from hemipterans and in turn, provide them protection from enemies and sometimes transport them (reviewed by Mgocheki and Addison, 2009). A total of 10 species of ants were found to be associated with the vine mealybug, *Planococcus ficus*, the most abundant being *Crematogaster auberti*, *Iberofornica subrufa* and *P. pygmaea* (Gonçalves et al., 2014a).

Collembola are common in soil, leaf litter and other decaying organic matter, playing an important role in nutrient cycling and maintaining soil microstructure. Furthermore, they are alternative prey for generalist predators, in particular small spiders, thus enabling the increment of predator densities and so enhancing pest biological control (reviewed by Gonçalves et al., 2018a).

Oribatid mites are the world's most numerous arthropods living in soil; they are important soil decomposers by feeding on a variety of leaf litter material, including bacteria and yeast, algae, fungi and rotting wood (reviewed by Gonçalves et al., 2018b). Mesostigmatid and prostigmatid mites are predators, eating small invertebrates, bacteria, and fungi; some prostigmatids can live on other animals as parasites (reviewed by Gonçalves et al., 2018b). In Prostigmata, it is also frequent to find mites from Anystidae (Figure 2A) and Erythraeidae, respectively predating or parasitizing nymphs of Cicadellidae (Carlos, unpublished data).

![Figure 2](image-url) Predatory arthropods collected in the Douro Demarcated Region: Anystidae preying an *Empoasca vitis* nymph (A); *Nigma sp.* (Araneae: Dictynidae) preying adults of *Lobesia botrana* (B); larvae of *Scymnus sp.* (Coccinellidae) feeding on eggs and nymphs of *Planococcus ficus* (C); larva of *Chrysoperla carnea* sl. (Chrysopidae) preying a larva of *L. botrana* (D). Authorship: C. Carlos/ ADVID (a, b, d); F. Gonçalves/ UTAD (c)

Empoasca vitis (the green leafhopper) and *Neoulitthus fenestratus* in Cicadellidae were very abundant species in vineyards. The green leafhopper is a polyphagous species which feeds on the phloem of plants; due to this feeding activity, leaf margins can become reddish or yellowish and then desiccate. Leaf symptoms are associated with physiological damage, which can lead to economic damage (i.e., yield losses and sugar content reduction of berries) when the infestation is high (reviewed by Tacoli et al., 2017). *Hyalesthes obsoletus* (Cixiidae), a vector of phytoplasma diseases “Bois noir disease” (Carlos, 2017) and *Philaenus spumarius* (Cercopidae) considered the main vector of the bacterium *Xylella fastidiosa*, were also recorded.

The Lepidopteran *Lobesia botrana* (European grapevine moth) was also very frequently observed, both in visual inspection of grape clusters or in traps.
This species is among the most economically important vineyard pests; damages are mainly caused by larval feeding on grape clusters, which renders them susceptible to *Botrytis cinerea*, leading to the development of primary and secondary rots at harvest (Ioriatti et al., 2011). During the harvest, other moths were sporadically observed infesting grape clusters, namely *Ephesia unicolorrella* woodiella and *Cadra figulifera* (Carlos et al., 2013a).

Regarding Araneae from vegetation, the families that stood out were Dictynidae (e.g. *Nigma* sp. and *Dictyna cf. civica*), Salticidae (e.g. *Icius subinermis*, *Salticus scenicus* and *Evarcha* sp.), Thomisidae (e.g. *Synema* sp. and *Xysticus* sp.), Oxyopidae (e.g. *Oxyopes* sp.), and Araneidae (e.g. *Mangora acalypha*) (Carlos, 2017). In the soil-surface, the most frequent were Araneae from the families Zodariidae (e.g. *Zodarion styliferum*, *Z. alacre*, and *Z. duriensis*), Gnaphosidae (e.g. *Calilepis concolor*, *Zeolotes fulvipilosus*, and *Hapaldrassus dalmatensis*), Lycosidae (e.g. *Alopecosa albofasciata*, *Arctosa personata*, and *Pardosa praxima*), Thomisidae (e.g. *Ozyptila pauxilla* and *Xysticus bufio*), and Agelenidae (e.g. *Eratigena bacculenta* and *E. feminea*) (Gonçalves et al., 2017; Carlos et al., 2019). The members of the Araneae are important predators that feed primarily on insects (Wise, 1993). Although it is assumed that they are generalists feeding on a wide variety of prey types (Cardoso et al., 2011), some species are specialized in hunting a singular prey group (Pekár et al., 2012). For instance, spiders from Zodariidae feed exclusively on ants. Positive correlations between the abundance of ants and the abundance of ant-eating spiders were found (Gonçalves et al., 2017). Spider webs with cadavers of adult and immature cicadellids were commonly found, mainly *E. vitis*, and adults of *L. botrana* (Figure 2B). Also, immatures of the cicadellid *Scaphoideus titanus* (Gonçalves et al., 2014b) and adults of *L. botrana* (Carlos, unpublished data) were reported to be predated by *Dictyna* genera spiders.

In Carabidae, *Dromius meridionalis*, *Notiophilus* sp. and *Bembidion* sp. were frequently found in vegetation, while *Calathus fuscipes*, *Nebria brevicollis*, *Brachinus* sp. and *Microlestes* sp. were found in the ground. The majority of Carabids are generalist predators and potentially important natural enemies of pests; and because they react sensitively to human changes in habitat quality, they are considered important bioindicators (Kromp 1999).

Among Staphylinidae, *Quedius semiobscurus* and *Medon* sp. were frequently found in vegetation, while *Ocypus olens*, *Anotylus inustus*, and *Atheta coriaria* were found in the ground (Gonçalves, unpublished data). The majority of staphylinids are generalist predators; moreover, they are considered important bioindicators of the environmental status and particularly of human influence on ecosystems, namely of changes in management practices (Bohac, 1999).

In Coccinellidae, *Scyamus* sp. and *Rhyzobius* sp. were the most abundant genera observed (Carlos, 2017), although the seven-spot ladybird, *Coccinella septempunctata*, was often observed too. According to Daane et al. (2012), *Scyamus* sp. (Figure 2C) may be one of the most abundant mealybug predators in vineyards. Their larvae are mealybug mimics, exhibiting wax-like filaments similar to those of mealybugs, which allow them to forage without being noticed by defensive ants (reviewed by Daane et al., 2012).

Other predators were frequently captured in traps or observed by visual inspections. These include, among others, species from the families Miridae (e.g. *Malacocoris chlorizans* and *Deraeocoris* sp.), Anthocoridae (e.g. *Anthocoris nemoralis* and *Orius* sp.), Nabidae (e.g. *Himacerus* sp.) (Goula et al., 2016; Carlos, 2017), Syrphidae (e.g. *Sphaerophoria scripta* and *Eupeodes corollae*) (Gonçalves et al., 2015a), and Chrysopidae (*Chrysoperla carnea* s.l.). Larvae of *C. carnea* s.l. were frequently found predaing larvae of *L. botrana* (Figure 2D) (Carlos, unpublished data). Also, larvae of the Cecidomyiidae, *Dicrodiplosis* sp. were commonly observed in mealybug colonies feeding primarily on eggs and small nymphs (Gonçalves, unpublished data).

In the soil, the most important role of predators would consist of controlling the arthropods that spend part of their life span on the ground, such as *Noctua* sp., the vine weevil, *Otiorhynchus sulcatus*, and the overwintering pupae of *L. botrana*, or also those which use plants from ground cover as hosts, such as *Tetranychus urticae*, *Scaphoideus titanus* and *Philaelus spumarius*, which can be phytophagous or vectors of important vineyard diseases (reviewed by Gonçalves et al., 2018a). Nevertheless, some soil predators can climb up the crop canopy to search for their prey (Kendall, 2003). For instance, in Californian vineyards, certain spider species were found to move between the ground cover and the canopy, showing that spiders may link the food webs of the ground cover to the vineyard canopy (reviewed by Hoffmann et al., 2017). In apple orchards, ground spiders are mainly involved in the predation of emergent nymphs of codling moth during spring, while carabid beetles are involved in the predation of pupae during autumn (reviewed by Thiéry et al., 2018). These results could be extrapolated to
vineyards, and by their abundance and diversity, those predators may be considered key predators in the natural control of L. botrana (reviewed by Thiéry et al., 2018).

Several families of parasitoids were captured in traps or observed by visual inspection, namely Aphelinidae, Braconidae, Chalcididae, Encyrtidae, Eulophidae, Ichneumonidae, Mymaridae, Platygasteridae, and Pteromalidae (Carlos, 2017). These families include species which are important for the natural control of pests like L. botrana, E. vitis, and P. ficus. Thus, Elachertus sp. (Eulophidae) (Figure 3A and B), Campoplex capitator (Ichneumonidae), Brachymera tibialis (Chalcididae), and Dibrachys cavus (Pteromalidae) were found to be important parasitoids of L. botrana (Carlos et al., 2013c; Carlos, 2017). On the other hand, egg parasitoids from the Mymaridae family (Figure 3C), in particular Anagrus atomus, are considered the most important natural enemies of E. vitis (Pavan and Picotti, 2009). Moreover, Anagyrus sp. nr. pseudococci (Encyrtidae) (Figure 3D) were frequently found parasitizing P. ficus (Sharma et al., 2018), and the females of this species, which are attracted to the sex pheromone of P. ficus (Franco et al. 2008), were observed in pheromone sticky traps used to monitor P. ficus males (Gonçalves et al., 2014c).

Figure 3. Arthropods parasitoids collected in the Douro Demarcated Region: Elachertus sp. (Eulophidae) parasitizing a larva of Lobesia botrana (A); adult of Elachertus sp. (B); adult of Mymaridae, an important parasitoid of Empoasca vitis (C); adult of Anagyrus sp. nr. pseudococci (Encyrtidae), an important parasitoid of Planococcus ficus (D). Authorship: F. Gonçalves/ UTAD

Artrípodes parasitóides observados na Região Demarcada do Douro: Elachertus sp. (Eulophidae) a parasitar uma lagarta de Lobesia botrana (A); adulto de Elachertus sp. (B); adulto de Mymaridae, um importante parasitóide de Empoasca vitis (C); adulto de Anagyrus sp. nr. pseudococci (Encyrtidae), um importante parasitóide de Planococcus ficus (D). Autoria: F. Gonçalves/ UTAD

HABITAT CONSERVATION AND MANIPULATION

The conservation and manipulation of habitats and the use of alternative farming practices can contribute to biodiversity conservation and enhancement. However, biodiversity by itself does not automatically translate into ecosystem services. For these services to be optimized, it is necessary to understand which biodiversity elements drive such ecosystem services (ELN-FAB, 2012). Based on this knowledge, the benefits to the ecosystem can be generated through a rational design of management strategies. These strategies may consist of maintaining or promoting the development of non-crop vegetation, such as field margins, forests, hedgerows, and other non-crop elements, or they may also imply adopting less invasive cultural practices (ELN-FAB, 2012).

Agricultural intensification through landscape simplification has negative effects on the provision of ecosystem services in agricultural landscapes such as Conservation Biological Control (CBC) (Rusch et al., 2016), which is an important service delivered by arthropods. CBC is a pest control strategy based on the manipulation of wild populations of natural enemies in order to enhance their impact on pests, and it involves diversifying agroecosystems so as to provide populations with habitat and food sources (Böller et al., 2004). Definitively, preserving and restoring semi-natural habitats emerges as a fundamental first step to maintain and enhance pest control services provided by natural enemies (Rusch et al., 2016). Thus, non-crop vegetation may provide habitat and overwintering sites, shelter, nectar, alternative prey/hosts, and pollen (SNAP) for predatory arthropods and parasitoids, which in turn can enhance CBC, thereby potentially reducing the need for pesticide use (Power, 2010). Moreover, perennial vegetation such as forests can regulate the capture, infiltration, retention and flow of water across the landscape (Power, 2010). In addition, it generally assures biodiversity conservation in agricultural areas (Wezel et al., 2014).

Furthermore, in the DDR, also a tourist landscape, with a part of the area declared as a World Heritage Site, the maintenance of these areas and the preservation of plant species with ornamental, landscape and conservative interest, is of special concern. This is the case of endemic species, which display a strong dependence on climatic conditions as a consequence of their limited distribution, and which due to these circumstances, are more subject to extinction. The endemic plant species which stand out in the DDR are: Quercus × coutinhoi among trees,
Cistus ladanifer subsp. ladanifer, Cytisus striatus, C. multiflorus, Erica umbellata, Lavandula stoechas, L. pedunculata (Figure 4A), Lonicera periclymenum subsp. Hispanica, and Halimium lasianthum subsp. alyssoides among shrubs, Dianthus lusitanus (Figure 4B) and Ortega hispanica, Origanum virens, Thymus mastichina, Spergularia purpurea, Linaria aeruginea (Figure 4C) and Erysimum linifolium (Figure 4D) among herbaceous vegetation. A list of species with agronomic, touristic and ethnobotanical interest is detailed in Carlos et al. (2013b).

The impact of vineyards adjacent vegetation on arthropods

Vineyards adjacent vegetation in the DDR consists essentially of shrubland (mainly composed of C. albidus, C. ladanifer subsp. ladanifer, C. salvifolius, C. multiflorus, Erica arborea, E. umbellata, Genista anglica, G. triacanthos, Halimium lasianthum, Juniperus oxycedrus, L. pedunculata, L. stoechas, Pistacia terebinthus, Rubus ulmifolius, Ulex minor, and Xanthia gutata), woodlands (mainly composed of Arbutus unedo, Pinus pinaster, Quercus × coccifera, Q. faginea, Q. pyrenaica, and Q. rotundifolia), and groves (olive trees - Olea europaea - and almonds trees - Prunus dulcis) (Carlos, 2017; Gonçalves et al., 2017).

The plantation of shrubs in unproductive areas, like those between plots (Figure 5A) or along roadsides (Figure 5B), should be considered. Such plants do not interfere with the crop and provide necessary resources for natural enemies during the periods when the flowers of the crop or ground cover are not present, thus enabling to maintenance of high populations of those arthropods (Rodriguez-Saona et al., 2012). For this propose, there might be an interest in the plantation of Viburnum tinus, C. albidus, C. ladanifer, C. salvifolius, L. stoechas, Lonicera spp., and T. mastichina, which are plant species adapted to the DDR edaphic and climatic conditions.

The strawberry tree, A. unedo, is also considered an important species in the DDR vineyards from a CBC point of view; it was found to host several groups of insects known to include important natural enemies of vineyards pests, as among which: Coccinellidae, Syrphidae, Chrysopidae, Ichneumonoidea, Chalcidoidea, and Heteroptera; this is probably due to the presence of abundant honeydew excreted by the aphid Wahlgreniella arbuti, from which those individuals can obtain additional food to supplement their diet (Gonzalez et al., 2015). A. unedo also hosts the two-tailed Pasha, Charaxes jasius (Gonzalez et al., 2015), a beautiful butterfly confined to the Mediterranean region which although not currently threatened, has been predicted by models to be very badly affected by future climate change (Swaay et al., 2010).

The Gryllidae S. husitanica is an endemic species of the Iberian Peninsula (Figure 1D) that is sensitive to changes in its habitat. It occurs in association with C. ladanifer, Lavandula spp. and E. arborea, with the first two species being very common in the farm where this specimen was observed (Gonçalves et al., 2018a).
Results from the DDR showed that the abundance of both soil-surface predators and omnivores was higher in adjacent vegetation than in vineyards, while that of detritivores was higher inside the vineyards (Carlos et al., 2019). In addition, it was found that during spring, the abundance of predators in vineyards decreased with the increasing distance from adjacent vegetation, pointing to the importance of these habitats as refuge and hibernation sites, from where predators colonize the vineyards (Gonçalves et al., 2018a). The abundance of detritivores (mainly Collembola) was relatively low in soils from adjacent vegetation and near the vineyard borders, probably due to the higher abundance of generalist predators in these places, which may also feed on them (Carlos et al., 2019). Concerning aerial arthropods, although a high abundance and richness of several beneficial groups (i.e. Coccinellidae, Araneae, and Hymenoptera parasitoids) was found in adjacent vegetation, the positive impact of these habitats on nearby vineyards was only found for Coccinellidae (Carlos, 2017).

SOIL MANAGEMENT PRACTICES

Soil management practices such as no or reduced tillage and non-use of herbicides can provide agricultural benefits while minimizing the negative effects of agriculture on soil biota. Moreover, conserving the soil biological potential can enhance or maintain soil organic matter content and therefore, contribute to long-term soil preservation (reviewed by Bender et al., 2016). Such conservation practices are often most successful in combination with other measures such as cover crops, mulches (reviewed by Bender et al., 2016), and soil amendment applications.

The impact of ground cover on arthropods

The ground cover of horizontal alleys and embankments of vine terraces is advisable, since it was found to have numerous benefits, such as: (a) increasing water infiltration; (b) protecting the soil surface from the impact of raindrops, (c) facilitating the formation and stabilization of soil aggregates; (d) reducing soil erosion by enhancing the soil organic matter and microbiological function (revision of Prosdocimi et al., 2016); e) incrementing both animal and plant biodiversity; and f) promoting the activity of natural enemies and the consequent biological control of pests.

Ground cover manipulation can benefit the communities of pests’ natural enemies and promote biological control by providing these communities with food in the form of floral resources. This was shown by the increment of parasitoids longevity and fecundity and the consequent increase in parasitism rates observed in tortricids (reviewed by Thiéry et al., 2018).

When opting for a ground cover, preference should be given to a spontaneous colonization by the local flora (Figure 6A) (Böller et al., 2004), which is adapted to the local environment, may require little or no maintenance, and is admissible to better benefit the native arthropods and pest suppression (reviewed by Daane et al., 2018). Plant species that naturally occur on the ground cover of the DDR vineyards predominantly include: Andryala integrifolia, Bromus spp., Coleostephus myconis, Convolvulus arvensis, Cynodon dactylon, Echium plantagineum, Lolium rigidum, Medicago spp., Ornithopus spp., Silene gallica, Solanum spp., Sonchus spp., Trifolium spp. and Vulpia spp.. A list of plant species valuable for fostering vineyard pests’ natural enemies was documented by Carlos et al. (2013b). In the case of sown ground cover with plants of different species and families (Figure 6B), different flowering periods and root systems should be evaluated so that full benefit can be taken of this management practice (Garcia et al., 2018).

Figure 6. Examples of natural (A) and sown ground covers with a mixture of Fabaceae and Poaceae species (B), and ground cover mowed in alternated rows (C). Authorship: F. Gonçalves/ UTAD

Exemplos de coberto vegetal natural (A) e semeado com espécies de Fabaceae e Poaceae (B); e coberto vegetal cortado, em linhas alternadas (C). Autoria: F. Gonçalves/ UTAD

Ideally, ground cover should be mowed after flowering (when pollen and nectar are provided) (Figure 7) and seed production so as to enable self-seeding. In the DDR conditions (precipitation during the growing season April-September is between 189 and 326 mm, depending on the location) (Jones and Alves, 2012), ground cover generally dries from late May onwards. In rainy years, the ground cover could be mowed in mid-spring and in alternate rows, if possible, so that continuous habitat availability is provided to natural enemies as they move between rows (Figure 6C). After mowing, the cut vegetation should be left on the soil surface to act as mulching,
namely because in addition to a number of other benefits, mulching was shown to enhance the abundance and/or diversity of several groups of vineyard pests’ natural enemies without increasing the abundance of the pests (Thomson and Hoffmann, 2007; Bruggisser et al., 2010).

In the DDR, the vegetation present in the horizontal alleys and embankments of the terraces was found to have particularly benefitted Araneae (in the predators) and Hymenoptera parasitoids (Carlos, 2017). The abundance and richness of predators in the soil (mainly Araneae and Carabidae) was positively correlated with the percentage of ground cover and the richness of plants (Gonçalves et al., 2018a).

On the other hand, in a study aimed at comparing the effect of two types of ground cover (natural vegetation and sown vegetation) and soil tillage on both soil-surface and soil-living arthropods, it was found that the abundance of soil-surface predators was higher in both soils with ground cover than in the tillage soil; moreover, the abundance and richness of soil-living arthropods was also higher in both soils with ground cover (Nunes et al., 2015; Gonçalves et al., in press). Such results show that using soil tillage in vineyards, even when superficial, may be unfavourable to soil arthropods.

Soil amendments application

Vineyard management is considered one of the land-uses most prone to causing very low soil organic matter content, which impoverishes the soil agronomic potential (López-Piñero et al., 2013) by negatively affecting its quality and functioning. Organic amendments offer many opportunities for improving soil properties, both directly through their intrinsic properties, and indirectly, by modifying the soil physical, biological and chemical properties (Larney and Angers, 2012). The use of composts from winery wastes as soil amendments in vineyards, namely from winery sludge and grape stalks, is of great interest due to the acknowledgement of their high agronomic value and because in this way, they can be reintroduced into the production system, thereby closing the residual material cycle (Bertran et al., 2004).

The applications of biochar to soil vineyards to improve soil properties and plant performance have also received increasing attention. Thus, adding biochar to the soil apparently improves the soil water holding capacity, water infiltration, soil water availability, nutrient retention, hydraulic conductivity, soil aeration (reviewed by Schmidt et al., 2014), the stabilization of soil organic matter, and soil carbon sequestration (Nair et al., 2017). Other effects of biochar could be an increase in microbial activity, shifts in microbial diversity, an increase in electrical conductivity and immobilization of contaminants (such as heavy metals) or pesticides (reviewed by Schmidt et al., 2014).

Biochar plus compost mixtures are becoming popular, especially when biochar is mixed with biomass before composting, and this combination seems to be a promising source of amendment and an interesting alternative to inorganic fertilizers (Nair et al., 2017). It seems that during composting, oxygen-containing functional groups are produced, which leads to an increase in nutrient retention (reviewed by Nair et al., 2017), the microbial colonization is stimulated, and possible noxious pyrogenic substances are degraded (reviewed by Schmidt et al., 2014).

A field trial has been carried out in the DDR since 2016 in order to evaluate the effect on the abundance and richness of soil-surface arthropods of three soil amendments (1- compost of winery wastes (sludge mixed with grape stalks) (Figure 8A); 2 – compost-biochar (mixed after the composting process); and 3 - biochar alone (Figure 8B)) in comparison to an unamended treatment. Results have shown that the abundance of predators, particularly of Carabidae plus Staphylinidae and Opiliones, was higher in compost and biochar-compost treatments than in
either the unamended treatment or the biochar alone treatment (Gonçalves et al., 2018c).

In order to achieve the abovementioned objectives, several technical documents were drawn up which were and disseminated to end users, namely wine growers (e.g. Carlos et al., 2013b; Gonçalves et al., 2013a,c; 2018b), along with a photography exhibition (Agrofood3.0, 2015) and short documentaries (Agrofood3.0, 2014a, b; ADVID, 2014; Santos, 2014). A web application was also developed to provide detailed and updated information about arthropods associated with the DDR vineyards (Reis, 2018; Reis et al., 2018). The application is available at www.artropodesvinha.utad.pt, and has useful information to train wine growers and technicians to recognize and monitor pests and natural enemies’ populations.

ACKNOWLEDGEMENTS

FG, AC, IO and LT were supported by the INTERACT project –“Integrated Research in Environment, Agro-Chain and Technology”, n. NORTE 01-0145-FEDER-000017, in its research line entitled VitalityWINE, co-financed by the European Regional Development Fund (ERDF) through NORTE 2020 (North Regional Operational Program 2014/2020); FG, CC, AC, IO and LT were supported by National Funds of the FCT-Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2019; IO was supported by FCT under the project UID/MULTI/04621/2019; CC was supported by ADVID - Associação para o Desenvolvimento da Viticultura Duriense The authors thank Real Companhia Velha, Sogevinus, Sogrape, and Quinta do Vallado wine companies for providing their vineyards for the conduction of the field work and for their technical support.

REFERENCES

Advid, 2014. Ecovitis. Available at: https://www.youtube.com/watch?v=bP3AJFwZte4 (accessed on 01.08.2019).

Agrofood3.0, 2014a. Ecovitis. Noticia Flash. Available at: https://www.youtube.com/watch?v=5p0K1eCyBA (accessed on 01.08.2019).

Agrofood3.0, 2014b. Confusão sexual/ Noticia Flash. Available at: https://www.youtube.com/watch?v=uhIg1Gx-gpW&t=18s (accessed on 01.08.2019).

Agrofood3.0, 2015. Noticia Flash / Exposição Ecovitis / UTAD. Available at: https://www.youtube.com/watch?v=6DEyoQRD7NI (accessed on 01.08.2019).

Andresen T., De Aguiar F.B., Curado M.J., 2004. The Alto Douro Wine Region greenway. Landsc. Urban Plan., 68, 289-303.
Andresen T., Rebelo J., 2013. Assessment of the State of Conservation of the Property Alto Douro Wine Region – Evolutive and Living Cultural Landscape – Assessment Report. Porto: CDDRN/EMD, CIBIO UP-UTAD.

Bender S.F., Wagg C., van der Heijden M.G.A., 2016. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol., 31, 440-452.

Bertran E., Sort X., Soliva M., Trullàs I., 2004. Composting winery waste: sludges and grape stalks. Bioreavour. Technol., 95, 203-208.

Bohac J., 1999. Staphylinid beetles as bioindicators. Agric. Ecosyst. Environ., 74, 357-372.

Böller E.F., Häni F., Hans-Michael P. (Eds), 2004. Ecological infrastructures: Ideabook on functional biodiversity at the farm level. Temperate zones of Europe. 212 p. Swiss Centre for Agricultural Extension and Rural Development, Switzerland.

Bruggisser O.T., Schmidt-Enlting M.H., Bacher S., 2010. Effects of vineyard management on biodiversity at three trophic levels. Biol. Conserv., 143, 1521-1528.

Cardinale B.J., Duffy J.E., Gonzalez A., Hooper D.U., Perrings C., Venail P., Narwanai A., Mace G.M., Tilman D., Wardle D.A., Kinzig A.P., Daily G.C., Loreau M., Grace J.B., Llangardieu A., Srivastava D.S., Naem S., 2012. Biodiversity loss and its impact on humanity. Nature, 486, 56-59.

Cardoso P., Pekár S., Jocqué R., Coddington J.A., 2011. Global patterns of guild composition and functional diversity of spiders. PLoS ONE, 6, e21710.

Carlos C.C.R., 2017. Towards a sustainable control of arthropod pests in Douro Demarcated Region vineyards with emphasis on the grape berry moth, Lobesia botrana (Denis & Schiffmiller). 164 p, PhD Thesis. Universidade de Trás-os-Montes e Alto Douro.

Carlos C., Gonçalves F., Sousa S., Crespi A., Torres L., 2013b. Infra-estruturas ecologistas. Guia de instalação de comunidades vegetais. 6pp. Vila Real.

Carlos C., Gonçalves F., Sousa S., Salvação J., Sharma L., Soares R., Manso J., Nóbrega M., Lopes A., Soares S., Aranha J., Villemant C., Marques G., Torres L., 2013c. Environmentally safe strategies to control the European Grapevine Moth, Lobesia botrana (Den. & Schiff.) in the Douro Demarcated Region. Cienc. Tec. Vitiviniv., 28 (II), 1006-1011.

Carlos C., Gonçalves F., Crespo L., Zina V., Oliveira I., Crespi A., Torres L., 2019. How does habitat diversity affect ground-dwelling arthropods assemblages in Douro Demarcated Region terraced vineyards? J. Insect Conserv., 23, 555-564

Carlos C., Gonçalves F., Sousa S., Val M.C., Teixeira B., Melanda C., Silva L., Garcia-Cabral I., Torres L., 2013a. Ephemisia anticolorella woodella e Cadra figulilella: duas novas “traças-da-uva” presentes nas vinhas do Douro. Actas do 9º Simpósio de Viticultura do Alentejo, Évora, 15-17 de Maio, 159-166.

Cerdá X., Dejean A., 2011. Predation by ants on arthropods and other animals. Predation in the Hymenoptera. In: An Evolutionary Perspective. 39-78. Polidori C. (Ed.), Transworld Research Network, Kerala, India.

Convention on Biological Diversity, 1992. Available at: https://www.cbd.int/ (accessed on 25.10.2019).

Daane K.M., Almeida R.P.P., Bell V.A., Walker J.T.S., Bottom M., Fallahzadeh M., Mani M., Miano J.L., Sforza R., Walton V.M., Zaviezo T., 2012. Biology and Management of Mealybugs in Vineyards. In: Arthropod Management in Vineyards, 271-307, Bostanian N., Vincent C., Isaacs R. (eds), Springer, Dordrecht.

Daane K.M., Hogg B.N., Wilson H., Yokota G.Y., 2018. Native grass ground covers provide multiple ecosystem services in California vineyards. J. Appl. Ecol., 55, 2473-2483.

Dostál P., Březnová M., Kozlíčková V., Herben T., Koval P., 2005. Ant induced soil modification and its effect on plant below-ground biomass. Pedobiologia, 49, 127-137.

ELN-FAB, 2012. Functional agrobiodiversity: Nature serving Europe’s farmers. 60 p. Tilburg, the Netherlands: ECNC-European Centre for Nature Conservation.

Franco J.C., Silva E.B., Cortegano E., Campos L., Branco M., Zada A., Mendel Z., 2008. Kainormonal response of the parasitoid Anagrus spec. nov. near pseudococci to the sex pheromone of vine mealybug. Entomol. Exp. Appl., 126, 122-130.

Garcia L, Celette F, Gary C, Ripoche A, Valdés-Gómez H, Metay A. 2018. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ., 251, 158-170.

Gardiner M.M., Fiedler A.K., Costamagna A.C., Landis D.A., 2009a. Integrating conservation biological control into IPM systems. In: Integrated pest management: concepts, tactics, strategies and case studies. 151-162. Radcliffe E.B., Hutchison W.D., Cancelendo R. (ed.), Cambridge University Press, Cambridge, UK.

Gardiner M.M., Landis D.A., Gratton C., DiFonzo C.D., O’Neal M., Chacon J.M., Wayo M.T., Schmidt N.P., Mueller E.E., Heimpel G.E., 2009b. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. EcoL. Appl., 19, 143-154.

Gonçalves F., Carlos C., Aranha J., Torres L., 2018a. Does habitat heterogeneity affects soil-surface active arthropods diversity in vineyards? Agric. For. Entomol., 20, 366-379.

Gonçalves F., Carlos C., Pinto R., Torres L., 2018b. O solo das vinhas da Região Demarcada do Douro está vivo! 56p. Universidade de Trás-os-Montes e Alto Douro.

Gonçalves F., Carlos C., Sousa S., Nóbrega M., Franco J.C., Manso J., Pinto A., Torres L., 2014c. The use of pheromone traps to monitoring the vine mealybug, Planococcus ficus and its main parasitoid, Anagrus sp. nr. pseudococci in Douro Wine Region. IOBC-WPRS Bull., 105, 103-111.

Gonçalves F., Carlos C., Teixeira B., Sousa S., Torres L., 2014b. Contribuição para o estudo da biocoeologia da cigarrinha-da-flavescência-dourada, Scaphoideus titanus Ball, na Região Demarcada do Douro. Livro de atas do 10º Encontro Nacional de Proteção Integrada, Instituto Politécnico de Beja, Beja, 2 e 3 de Maio, 103-110.

Gonçalves F., Carlos C., Torres L., 2013c. Inimigos naturais das pragas da vinha: insetos e aracnídeos. Quem são e onde estão? 81p. Associação para o Desenvolvimento da Viticultura Duriense.

Gonçalves F., Carlos C., Torres L. (Coord.), 2013a. Fauna em vinhas da Região Demarcada do Douro. 57p. Associação para o Desenvolvimento da Viticultura Duriense.

Gonçalves F., Nunes C., Carlos C., Lópeh A., Oliveira I., Crespi A., Teixeirah B., Pinto R., Costa C.A., Torres L., Do soil management practices affect the activity density, diversity, and stability of soil arthropods in vineyards?, Agric. Ecosyst. Environ. (in press).

Gonçalves F., Pinheiro L., Carlos C., Sousa S., Santos S., Torres L., 2015a. Biodiversity of hoverflies (Diptera: Syrphidae) and seasonal variation in vineyards of Douro Wine Region, Portugal. Pure, IPM innovation in Europe. Poznan, Poland, 14th - 16th January 2015, 50.

112
Gonçalves F., Pinto R., Oliveira I., Crespi A., Coutinho J., Torres L., 2018c. Biochar, compost and biochar-compost as soil amendments to a vineyard soil: effects on soil surface arthropods. II Simpósio Internacional de Águas, Solos e Geotecnologias/ III Jornadas INTERACT. Vila Real, 17 - 18 May 2018, 80.

Gonçalves F., Zina V., Carlos C., Crespo L., Oliveira I., Torres L., 2017. Ants (Hymenoptera: Formicidae) and spiders (Araneae) co-occurring in the ground of vineyards from Douro Demarcated Region. Sociobiology, 64, 404-416.

Gonçalves F., Zina V., Carlos C., Sousa S., Nóbrega M., Franco J.C., Torres L., 2014a. Formigas associadas à cochonilha-aldogão, em vinhas da Região Demarcada do Douro. 1º Simpósio SCAP e 7º Congresso SPF - Novos Desafios na Protecção das Plantas. Lisboa, 20 e 21 de Novembro, 89.

González D., Gonçalves F., Carlos C., Torres L., 2015. O medronheiro, Arbutus unedo L., na maximização dos serviços facultados pela vinha da Região Demarcada do Douro. 50p. Vila Real.

Goulã M., Gonçalves F., Carlos C., Torres L., 2016. Heteroptera from vineyards and adjacent vegetation in Douro Demarcated Region (Portugal). XVII Congresso Iberico de Entomologia, Lisboa, 5-8 Setembro 2016. Available at: http://www.advid.pt/imagen/comunicacoes/14736903666147.pdf (accessed on 01.08.2019).

Hoffmann C., Kockertling J., Biancu S., Gramm T., Michl G., Entling M.H., 2017. Can flowering green cover crops promote biological control in German vineyards? Insects, 8, 121.

Ioriatti C., Anfora G., Tassin M., de Cristofaro A., Witzgall P., Luchi A., 2011. Chemical Ecology and Management of Lobesia botrana Lepidoptera: Tortricidae. J. Econ. Entomol., 1044, 1125-1137.

IVDP, 2018. Área de vinha e sua evolução. Estatística geral. Available at: https://www.ivdp.pt/ (accessed on 10.05.2019).

Jones G.V., Alves F., 2012. Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. Int. J. Global Warming, 4, 383-406.

Joquet P., Dauber J., Lagerlöf J., Lavelle P., Lepage M., 2006. Can flowering greenecover crops promote soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl. Soil Ecol, 32, 153-164.

Kendall D.A., 2003. Soil tillage and epigeal predatory insects. In: Soil tillage in soil agroecosystems. 297 – 342. El Titi, A. (Ed), CRC Press.

Landis D.A., Wratten S.D., Gurr G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol., 45, 175-201.

Kromp B., 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ., 74, 187-228.

Larney F.J., Angers D.A., 2012. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci., 92, 19-38.

Lehman R.M., Acosta-Martinez V., Buyer J.S., Cambardella C.A., Collins H.P., Ducey T.F., Halverson J.J., Jin V.L., Johnson J.M.F., Kremer R.J., Lundgren J.G., Manter D.K., Maul J.E., Smith J.L., Stott D.E., 2015. Soil biology for resilient, healthy soil. J. Soil Water Conserv., 70, 12A-18A.

López-Piñeiro A., Muñoz A., Zamora E., Ramirez M., 2013. Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil Till. Res., 126, 119-126.

Lucchi A., Benelli G., 2018. Towards pesticide-free farming? Sharing needs and knowledge promotes Integrated Pest Management. Environ. Sci. Pollut. Res. Available at: http://doi.org/10.1007/s11356-018-1919-0. (accessed on 10.05.2019).

Mgocheki N., Addison P., 2009. Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol. Control, 49, 180-185.

Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC.

Nair V.D., Nair P.K.R., Dani B., Freitas A.M., Chatterjee N., Pinheiro F.M., 2017. Biochar in the Agroecosystem–Climate-Change–Sustainability Nexus. Front. Plant Sci., 8, 2051.

Nunes C., Teixeira B., Carlos C., Gonçalves F., Martins M., Crespi A., Sousa S., Torres L., Costa C.A., 2015. Biodiversidade do solo em vinhas com e sem enrelvamento. Rev. Ciênc. Agrar., 38, 248-257.

Pavan F., Picotti P., 2009. Influence of grapevine cultivars on the leafhopper Empoasca vitis and its egg parasitoids. BioControl, 54, 55-63.

Pekár S., Coddington J.A., Blackledge T.A., 2012. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution, 66, 776-806.

Power A.G. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B, 365, 2959-2971.

Prosdocimi M., Cerda A., Tarolli P., 2016b. Biochar, compost and biochar-compost as soil amendments to a vineyard soil: effects on soil surface arthropods. PeerJ, 3, e762.

Rusch A., Chaplin-Kramer R., Gardiner M.M., Hawo V., Holland J., Landis D., Thies C., Tscharntke T., Weisser W.W., Winqvist C., Rusch A., Chaplin-Kramer R., Gardiner M.M., Hawo V., Holland J., Landis D., Thies C., Tscharntke T., Weisser W.W., Winqvist C., Woltz M., Bon настоящее время, 2016. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ., 221, 198-204.

Sandhu H., Wratten S., Costanza R., Pretty J., Porter J.R., Reganold J., 2015. Significance and value of non-traded ecosystem services on farmland. PeerJ, 3, e762.

Saunders M.E., 2018. Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agric. For. Entomol., 20, 298-300.
Secretariat of the Convention on Biological Diversity, 2014. Available at: Global Biodiversity Outlook 4. www.cbd.int/GBO4 (accessed on 25.10.2019).

Sharma L., Gonçalves F., Oliveira I., Torres L., Marques G., 2018. Insect-associated fungi from naturally mycosed vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biocontrol Sci. Technol., 28, 122-141.

Schmidt H-P., Kammann C., Niggli C., Evangelou M.W.H., Mackie K.A., Abiven S., 2014. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosyst. Environ., 191, 117-123.

Tacoli F., Pavan F., Cargnus E., Tilatti E., Pozzebon A., Zandigiacomo P., 2017. Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards. J. Econ. Entomol., 110, 1164-1178.

Thiéry D., Louâpre P., Muneret L., Rusch A., Sentenac G, Vogelweth F, Illis C, Moreau J., 2018. Biological protection against grape berry moths. A review. Agron Sustain Dev., 38, 15. Available at: https://doi.org/10.1007/s13593-018-0493-7 (accessed on 10.05.2019).

Thomson L.J., Hoffmann A.A., 2007. Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agric. For. Entomol. 9, 173-179.

Van Swaay C., Cuttelod A., Collins S., Maes D., López Munguira M., Šašić M., Settele J., Verovnik R., Verstraal, T., Warren M., Wiemers M., Wynhof I., 2010. European Red List of Butterflies. Luxembourg: Publications Office of the European Union.

Ward, P.S. (2006). Ants. Current Biology, 16, R152-R154.

Wezel A., Casagrande M., Celette F., Vian J-F., Ferrer A., Peigné J., 2014. Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev., 34, 1-20.

Wise, D. (1993). Spiders in ecological webs. 328p. Cambridge University Press, Cambridge.

Wood S.A., Karp D.S., DeClerck F., Kremen C., Naeem S., Palm C.A., 2015. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol., 30, 531-539.