MODULAR LATTICE FOR C_0-OPERATORS.

YUN-SU KIM.

Abstract. We study modularity of the lattice $\text{Lat}(T)$ of closed invariant subspaces for a C_0-operator T and find a condition such that $\text{Lat}(T)$ is a modular. Furthermore, we provide a quasiaffinity preserving modularity.

Introduction

A partially ordered set is said to be a lattice if any two elements M and N of it have a least upper bound or supremum denoted by $M \lor N$ and a greatest lower bound or infimum denoted by $M \land N$. For a Hilbert space H, $L(H)$ denotes the set of all bounded linear operators from H into H. For an operator T in $L(H)$, the set $\text{Lat}(T)$ of all closed invariant subspaces for T is a lattice. For $L, M,$ and N in $\text{Lat}(T)$ such that $N \subset L$, if following identity is satisfied:

$$L \cap (M \lor N) = (L \cap M) \lor N,$$

then $\text{Lat}(T)$ is called modular. We study $\text{Lat}(T)$ where T is a C_0-operator which were first studied in detail by B.Sz.-Nagy and C. Foias [4]. In this paper D denotes the open unit disk in the complex plane.

This paper is organized as follows. Section 1 contains preliminaries about operators of class C_0 and the Jordan model of C_0-operators.

For operators $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$, if $X \in \{A \in L(H) : AT_1 = T_2 A\}$, then we define a function $X_* : \text{Lat}(T_1) \to \text{Lat}(T_2)$ as following:

$$X_*(M) = (XM)^-.$$

In Theorem 2.14 we provide a quasiaffinity Y such that Y_* preserves modularity. Furthermore, in section 2, we provide a definition and prove some fundamental results of property (P) which was introduced by H. Bercovici [2].

In Theorem 3.5 we prove that if $T \in L(H)$ is an operator of class C_0 with property (P), then $\text{Lat}(T)$ is a modular lattice.

The author would like to express her gratitude to her thesis advisor, Professor Hari Bercovici.

Key words and phrases. Functional Calculus; Jordan Operator; Modular Lattice; Property (P); Quasiaffinity.
1. **C₀-Operators Relative to D**

1.1. **A Functional Calculus.** It is well-known that for every linear operator \(A \) on a finite dimensional vector space \(V \) over the field \(F \), there is a minimal polynomial for \(A \) which is the (unique) monic generator of the ideal of polynomials over \(F \) which annihilate \(A \). If the dimension of \(F \) is not finite, then generally there is no such a polynomial. However, to provide a function similar to a minimal polynomial, B. Sz.-Nagy and C. Foias focused on a contraction \(T \in L(H) \) which is called to be completely nonunitary, i.e. there is no invariant subspace \(M \) for \(T \) such that the restriction \(T|_M \) of \(T \) to the space \(M \) is a unitary operator.

Let \(H \) be a subspace of a Hilbert space \(K \) and \(P_H \) be the orthogonal projection from \(K \) onto \(H \). We recall that if \(A \in L(K) \), and \(T \in L(H) \), then \(A \) is said to be a dilation of \(T \) provided that for \(n = 1, 2, \ldots \),

\[
T^n = P_H A^n | H.
\]

If \(A \) is an isometry (unitary operator) then \(A \) will be called an isometric (unitary) dilation of \(T \). An isometric (unitary) dilation \(A \) of \(T \) is said to be minimal if no restriction of \(A \) to an invariant subspace is an isometric (unitary) dilation of \(T \). B. Sz.-Nagy proved the following interesting result:

Proposition 1.1. \([4]\) Every contraction has a unitary dilation.

Let \(T \in L(H) \) be a completely nonunitary contraction with minimal unitary dilation \(U \in L(K) \). For every polynomial \(p(z) = \sum_{j=0}^{n} a_j z^j \) we have

\[
p(T) = P_H p(U) | H,
\]

and so this formula suggests that the functional calculus \(p \to p(T) \) might be extended to more general functions \(p \). Since the mapping \(p \to p(T) \) is a homomorphism from the algebra of polynomials to the algebra of operators, we will extend it to a mapping which is also a homomorphism from an algebra to the algebra of operators. By Spectral Theorem, since \(U \in L(H) \) is a normal operator, there is a unique spectral measure \(E \) on the Borel subsets of the spectrum of \(U \) denoted as usual by \(\sigma(U) \) such that

\[
U = \int_{\sigma(U)} zdE(z).
\]

Since the spectral measure \(E \) of \(U \) is absolutely continuous with respect to Lebesgue measure on \(\partial D \), for \(g \in L^\infty(\sigma(U), E) \), \(g(U) \) can be defined as follows:

\[
g(U) = \int_{\sigma(U)} g(z)dE(z).
\]

It is clear that if \(g \) is a polynomial, then this definition agrees with the preceding one. Since the spectral measure of \(U \) is absolutely continuous with respect to Lebesgue measure on \(\partial D \), the expression \(g(U) \) makes sense for every \(g \in L^\infty = L^\infty(\partial D) \). We generalize formula \((1.2)\), and so for \(g \in L^\infty \), define \(g(T) \) by

\[
g(T) = P_H g(U) | H.
\]

While the mapping \(g \to g(T) \) is obviously linear, it is not generally multiplicative, i.e. it is not a homomorphism. Evidently it is convenient to find a subalgebra in \(L^\infty \) on which the functional calculus is multiplicative. Recall that \(H^\infty \) is the Banach
space of all (complex-valued) bounded analytic functions on the open unit disk D with supremum norm $\| \cdot \|$. It turns out that H^∞ is the unique maximal algebra making the map a homomorphism between algebras. We know that H^∞ can be regarded as a subalgebra of $L^\infty(\partial D)$ \[1\].

We note that the functional calculus with H^∞ functions can be defined in terms of independent of the minimal unitary dilation. Indeed, if $u(z) = \sum_{n=0}^{\infty} a_n z^n$ is in H^∞, then

\[u(T) = \lim_{r \to 1} u(rT) = \lim_{r \to 1} \sum_{n=0}^{\infty} a_n r^n T^n, \tag{1.6} \]

where the limit exists in the strong operator topology.

B. Sz.-Nagy and C. Foias introduced this important functional calculus for completely nonunitary contractions.

Proposition 1.2. Let $T \in L(H)$ be a completely nonunitary contraction. Then there is a unique algebra representation Φ_T from H^∞ into $L(H)$ such that:

(i) $\Phi_T(1) = I_H$, where $I_H \in L(H)$ is the identity operator;

(ii) $\Phi_T(g) = T$, if $g(z) = z$ for all $z \in D$;

(iii) Φ_T is continuous when H^∞ and $L(H)$ are given the weak*-topology.

(iv) Φ_T is contractive, i.e., $\|\Phi_T(u)\| \leq \|u\|$ for all $u \in H^\infty$.

We simply denote by $u(T)$ the operator $\Phi_T(u)$.

B. Sz.-Nagy and C. Foias \[4\] defined the class C_0 consisting of completely nonunitary contractions T on H such that the kernel of Φ_T is not trivial. If $T \in L(H)$ is an operator of class C_0, then

$$\ker \Phi_T = \{ u \in H^\infty : u(T) = 0 \}$$

is a weak*-closed ideal of H^∞, and hence there is an inner function generating ker Φ_T. The minimal function m_T of an operator of class C_0 is the generator of ker Φ_T, and it seems as a substitute for the minimal polynomial. Also, m_T is uniquely determined up to a constant scalar factor of absolute value one \[1\]. The theory of class C_0 relative to the open unit disk has been developed by B. Sz.-Nagy, C. Foias \[4\] and H. Bercovici \[1\].

1.2. Jordan Operator. We know that every $n \times n$ matrix over an algebraically closed field F is similar to a unique Jordan canonical form. To extend that theory to the C_0 operator $T \in L(H)$, B. Sz.-Nagy and C. Foias \[4\] introduced a weaker notion of equivalence. They defined a quasiaffine transform of T which is bounded operator T' defined on a Hilbert space H' such that there exists an injective operator $X \in L(H, H')$ with dense range in H' satisfying $T'X = XT$. We write $T \prec T'$ if T is a quasiaffine transform of T'. Instead of similarity, they introduced quasisimilarity of two operators, namely, T and T' are quasisimilar, denoted by $T \sim T'$, if $T \prec T'$ and $T' \prec T$.

Given an inner function $\theta \in H^\infty$, the Jordan block $S(\theta)$ is the operator acting on $H(\theta) = H^2 \ominus \theta H^2$, which means the orthogonal complement of θH^2 in the Hardy space H^2, as follows:

\[S(\theta) = P_{H(\theta)}^* S|H(\theta) \tag{1.7} \]
where \(S \in L(H^2) \) is the unilateral shift operator defined by
\[
(Sf)(z) = zf(z)
\]
and \(P_{H(\theta)} \in L(H^2) \) denotes the orthogonal projection of \(H^2 \) onto \(H(\theta) \).

Proposition 1.3. \([1]\)** For every inner function \(\theta \) in \(H^\infty \), the operator \(S(\theta) \) is of class \(C_0 \) and its minimal function is \(\theta \).

Let \(\theta \) and \(\theta' \) be two inner functions in \(H^\infty \). We say that \(\theta \) divides \(\theta' \) (or \(\theta \mid \theta' \)) if \(\theta' \) can be written as \(\theta' = \theta \phi \) for some \(\phi \in H^\infty \). It is clear that \(\phi \in H^\infty \) is also inner. We will use the notation \(\theta \equiv \theta' \) if \(\theta \mid \theta' \) and \(\theta' \mid \theta \).

Proposition 1.4. \([1]\)** Let \(T_1 \in L(H) \) and \(T_2 \in L(H) \) be two completely nonunitary contractions of class \(C_0 \). If \(T_1 \) and \(T_2 \) are quasisimilar, then \(m_{T_1} \equiv m_{T_2} \).

From Proposition 1.3 and Proposition 1.4, we can easily see that for every inner functions \(\theta_1 \) and \(\theta_2 \) in \(H^\infty \), if \(S(\theta_1) \) and \(S(\theta_2) \) are quasisimilar, then \(\theta_1 \equiv \theta_2 \).

Conversely,

Proposition 1.5. \([1]\)** Let \(\theta_1 \) and \(\theta_2 \) be inner functions in \(H^\infty \). If \(\theta_1 \equiv \theta_2 \), then \(S(\theta_1) \) and \(S(\theta_2) \) are quasisimilar.

Let \(\gamma \) be a cardinal number and
\[
\Theta = \left \{ \theta_\alpha \in H^\infty : \alpha < \gamma \right \}
\]
be a family of inner functions. Then \(\Theta \) is called a model function if \(\theta_\alpha \mid \theta_\beta \) whenever \(\text{card}(\beta) \leq \text{card}(\alpha) < \gamma \). The Jordan operator \(S(\Theta) \) determined by the model function \(\Theta \) is the \(C_0 \) operator defined as
\[
S(\Theta) = \bigoplus_{\alpha < \gamma'} S(\theta_\alpha)
\]
where \(\gamma' = \min \{ \beta : \theta_\beta \equiv 1 \} \).

We will call \(S(\Theta) \) the Jordan model of the operator \(T \) if
\[
S(\Theta) \sim T,
\]
and in the sequel \(\bigoplus_{i < \gamma'} S(\theta_i) \) always means a Jordan operator determined by a model function.

By using Jordan blocks, \(C_0 \)-operators relative to the open unit disk \(D \) can be classified \([1]\) Theorem 5.1):

Theorem 1.6. Any \(C_0 \)-operator \(T \) relative to the open unit disk \(D \) acting on a Hilbert space is quasisimilar to a unique Jordan operator.

Theorem 1.7. If \(\Theta \) and \(\Theta' \) are two model functions and \(S(\Theta) \prec S(\Theta') \), then \(\Theta \equiv \Theta' \) and hence \(S(\Theta) = S(\Theta') \).

From Theorem 1.6 and Theorem 1.7, we can conclude that \(\prec \) is an equivalence relation on the set of \(C_0 \)-operators.

2. Lattice of subspaces

2.1. Modular Lattice. Let \(H \) be a Hilbert space. If \(F_i (i \in I) \) is a subset of \(H \), then the closed linear span of \(\bigcup_i F_i \) will be denoted by \(\bigvee_i F_i \). The collection of all subspaces of a Hilbert space is a lattice. This means that the collection is partially ordered (by inclusion), and that any two elements \(M \) and \(N \) of it have a least
upper bound or supremum (namely the span $\mathbf{M} \vee \mathbf{N}$) and a greatest lower bound or infimum (namely the intersection $\mathbf{M} \cap \mathbf{N}$). A lattice is called *distributive* if
\begin{equation}
\mathbf{L} \cap (\mathbf{M} \vee \mathbf{N}) = (\mathbf{L} \cap \mathbf{M}) \vee (\mathbf{L} \cap \mathbf{N})
\end{equation}
for any element \mathbf{L}, \mathbf{M}, and \mathbf{N} in the lattice.

In the equation (2.1), if $\mathbf{N} \subseteq \mathbf{L}$, then $\mathbf{L} \cap \mathbf{N} = \mathbf{N}$, and so the identity becomes
\begin{equation}
\mathbf{L} \cap (\mathbf{M} \vee \mathbf{N}) = (\mathbf{L} \cap \mathbf{M}) \vee \mathbf{N}
\end{equation}
If the identity (2.2) is satisfied whenever $\mathbf{N} \subseteq \mathbf{L}$, then the lattice is called *modular*.

For an arbitrary operator $T \in L(H)$, $\text{Lat}(T)$ denotes the collection of all closed invariant subspaces for T. The following fact is well-known [3].

Proposition 2.1. The lattice of subspaces of a Hilbert space H is modular if and only if $\dim H$ is finite.

We will think about $\text{Lat}(T)$ for a C_0-operator T.

Definition 2.2. The *cyclic multiplicity* μ_T of an operator $T \in L(H)$ is the smallest cardinal of a subset $A \subseteq H$ with the property that $\bigvee_{n=0}^\infty T^n A = H$. The operator T is said to be *multiplicity-free* if $\mu_T = 1$.

Thus μ_T is the smallest number of cyclic subspaces for T that are needed to generate H, and T is multiplicity-free if and only if it has a cyclic vector.

2.2. **Property** (P). Let H be a Hilbert space and for an operator $T \in L(H)$, T^* denote the adjoint of T. It is well known that H is finite-dimensional if and only if every operator $X \in L(H)$, with the property $\ker(X) = \{0\}$, also satisfies $\ker(X^*) = \{0\}$. The following definition is a natural extension of finite dimensionality.

Definition 2.3. An operator $T \in L(H)$ is said to have property (P) if every operator $X \in \{T\}'$ with the property that $\ker(X) = \{0\}$ is a quasiaffinity, i.e., $\ker(X^*) = \ker(X) = \{0\}$.

From the fact that the commutant $\{0\}'$ of zero operator on H coincides with $L(H)$, we can see that H is finite-dimensional if and only if the zero operator on H has property (P).

Let T_1 and T_2 be operators in $L(H)$. Suppose that
\[X \in \{ A \in L(H) : AT_1 = T_2 A \}. \]
If M is in $\text{Lat}(T_1)$, then $(XM)^-$ is in $\text{Lat}(T_2)$. By using these facts, we define a function X_* from $\text{Lat}(T_1)$ to $\text{Lat}(T_2)$ as following :
\begin{equation}
X_*(M) = (XM)^-.
\end{equation}
The operator X is said to be a (T_1, T_2)-*lattice-isomorphism* if X_* is a bijection of $\text{Lat}(T_1)$ onto $\text{Lat}(T_2)$. We will use the name lattice-isomorphism instead of (T_1, T_2)-lattice-isomorphism if no confusion may arise.

If $X \in \{ A \in L(H) : AT_1 = T_2 A \}$, then $X^* T_2^* = T_1^* X^*$. Thus $(X^*)_*: \text{Lat}(T_2^*) \to \text{Lat}(T_1^*)$ is well-defined by
\[(X^*)_*(M') = (X^* M')^- \]

Proposition 2.4. [1] (Theorem 7.1.9) Suppose that $T \in L(H)$ is an operator of class C_0 with Jordan model $\bigoplus_{j=0}^\infty S(\theta_j)$. Then T has property (P) if and only if
\[\bigwedge_{j<\omega} \theta_j \equiv 1. \]
Thus, if T has property (P), then H is separable and T^* also has property (P).

Proposition 2.5. An operator T of class C_0 fails to have property (P) if and only if T is quasisimilar to $T|N$, where N is a proper invariant subspace for T.

Proposition 2.6. (Lemma 7.1.20) Assume that $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two operators, and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$. If the mapping X_* is onto $\text{Lat}(T_2)$ if and only if $(X^*)_*$ is one-to-one on $L(T_2^*)$.

Corollary 2.7. Assume that $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two operators, and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$. The mapping X_* is one-to-one on $\text{Lat}(T_1)$ if and only if $(X^*)_*$ is onto $\text{Lat}(T_1^*)$.

Proof. Since $XT_1 = T_2X$, $T_1^*X^* = X^*T_2^*$. By Proposition 2.8 $(X^*)_*$ is onto $\text{Lat}(T_1^*)$ if and only if $(X^{**})_* = X_*$ is one-to-one on $\text{Lat}(T_1)$. □

From Proposition 2.9 and Corollary 2.7, we obtain the following result.

Corollary 2.8. If $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two operators, and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$, then X is a lattice-isomorphism if and only if X^* is a lattice-isomorphism.

Proposition 2.9. (Proposition 7.1.21) Assume that $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two quasisimilar operators of class C_0, and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$ is an injection. If T_1 has property (P), then X is a lattice-isomorphism.

Recall that if T is an operator on a Hilbert space, then $\ker T = (\text{ran } T^*)^\perp$ and $\ker T^* = (\text{ran } T)^\perp$.

Corollary 2.10. Assume that $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two quasisimilar operators of class C_0, and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$ has dense range. If T_2 has property (P), then X is a lattice-isomorphism.

Proof. Since $XT_1 = T_2X$, $T_1^*X^* = X^*T_2^*$. Let $Y = X^*$ and so

$$YT_2^* = T_1^*Y.$$ \hspace{1cm} (2.4)

From the fact that $\ker Y = \ker(X^*) = (\text{ran } X)^\perp = \{0\}$, we conclude that Y is injective. Since T_2 has property (P), so does T_2^* by Proposition 2.4. By Proposition 2.9 and equation (2.4), $Y = X^*$ is a lattice-isomorphism. From Corollary 2.8 it is proven that X is a lattice-isomorphism. □

Corollary 2.11. Suppose that $T_i \in L(H_i)\{i = 1, 2\}$ is a C_0-operator and T_1 has property (P). If $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$ and X is an injection, then X is a lattice-isomorphism.

Proof. Define $Y : H_1 \to (XH_1)^-$ by

$$Yh = Xh$$ for any $h \in H_1$.

Since X is an injection, so is Y. Clearly, Y has dense range. Note that $(XH_1)^-$ is invariant for T_2. By definition of Y,

$$YT_1 = (T_2|(XH_1)^-)Y.$$ \hspace{1cm} (2.5)

It follows that $T_1 < (T_2|(XH_1)^-)Y$ and so $T_1 \sim (T_2|(XH_1)^-)$. By Proposition 2.10 it is proven.
Corollary 2.12. Suppose that $T_i \in L(H_i) (i = 1, 2)$ is a C_0-operator and T_2 has property (P). If $X \in \{ A \in L(H_1, H_2): AT_1 = T_2A \}$ and X has a dense range, then X is a lattice-isomorphism.

Proof. By assumption, $X^*T_2^* = T_1^*X^*$. Since T_2 has property (P), by Proposition 2.11 so does T_2^*.

Because X has dense range, $X^*: H_2 \to H_1$ is an injection. By Corollary 2.11, X^* is a lattice isomorphism. From Corollary 2.12, X is also a lattice isomorphism. □

2.3. Quasi-Affinity and Modular Lattice. For operators $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$, if $Y \in \{ B \in L(H_1, H_2): BT_1 = T_2B \}$, then we define a function $Y_* : \text{Lat}(T_1) \to \text{Lat}(T_2)$ the same way as equation (2.3). For any $N \in \text{Lat}(T_2)$, if $M = Y^{-1}(N)$, then $YT_1(M) = T_2Y(M) \subset T_2N \subset N$ and so $T_1(M) \subset M$. It follows that $M = Y^{-1}(N) \in \text{Lat}(T_1)$ for any $N \in \text{Lat}(T_2)$. If Y is invertible, that is, T_1 and T_2 are similar, and $\text{Lat}(T_1)$ is modular, then clearly, $\text{Lat}(T_2)$ is also modular. In this section, we consider when T_1 and T_2 are quasi-similar instead of similar, and find an assumption in Theorem 2.14 such that $\text{Lat}(T_2)$ is modular, whenever $\text{Lat}(T_1)$ is modular.

Proposition 2.13. Let $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$. Suppose that $Y \in \{ B \in L(H_1, H_2): BT_1 = T_2B \}$ and for any $N \in \text{Lat}(T_2)$, the condition $M = Y^{-1}(N)$ implies that $Y_*(M) = N$.

Then for any $M_i = Y^{-1}(N_i)$ with $N_i \in \text{Lat}(T_2)$ ($i = 1, 2$),

$Y_*(M_1 \cap M_2) = Y_*(M_1) \cap Y_*(M_2)$.

Proof. Assume that $N_i \in \text{Lat}(T_2)$ and $M_i = Y^{-1}(N_i)$ for $i = 1, 2$. Then by assumption, we obtain

(2.6) $Y_*(M_i) = N_i$.

Since $Y^{-1}(N_1 \cap N_2) = Y^{-1}(N_1) \cap Y^{-1}(N_2) = M_1 \cap M_2$, by assumption,

$Y_*(M_1 \cap M_2) = N_1 \cap N_2$

which proves that $Y_*(M_1 \cap M_2) = Y_*(M_1) \cap Y_*(M_2)$ by equation (2.6). □

Theorem 2.14. Let $T_1 \in L(H_1)$ be a quasiaffine transform of $T_2 \in L(H_2)$ and $Y \in \{ B \in L(H_1, H_2): BT_1 = T_2B \}$ be a quasiaffinity.

If $Y_* : \text{Lat}(T_1) \to \text{Lat}(T_2)$ is onto and $\text{Lat}(T_1)$ is modular, then $\text{Lat}(T_2)$ is also modular.

Proof. Suppose that $\text{Lat}(T_2)$ is not modular. Then there are invariant subspaces $N_i (i = 1, 2, 3)$ for T_2 such that

(2.7) $N_3 \subset N_1$,

and

$(N_1 \cap N_2) \vee N_3 \neq N_1 \cap (N_2 \vee N_3)$.

Let

(2.8) $M_i = Y^{-1}(N_i)$,

for $i = 1, 2, 3$. Since $YT_1 = T_2Y$, definition (2.5) of M_i implies that for $i = 1, 2, 3$,
YT_1(M_i) = T_2Y(M_i) \subset T_2N_i \subset N_i.

It follows that \(T_1M_i \subset Y^{-1}(N_i) = M_i \) for \(i = 1, 2, 3 \). Thus \(M_i \) is a closed invariant subspace for \(T_1 \). Condition (2.7) implies that

\[M_3 \subset M_1. \]

Since \(Y(M_i) \subset N_i \), for \(i = 1, 2, 3 \),

\[(2.9) \quad Y_*(M_i) = (Y(M_i))^\sim \subset N_i. \]

Since \(Y_* \) is onto, there is a function \(\phi : \text{Lat}(T_2) \to \text{Lat}(T_1) \) such that \(Y_* \circ \phi \) is the identity mapping on \(\text{Lat}(T_2) \). Hence for \(i = 1, 2, 3 \),

\[Y_*(\phi(N_i)) = Y(\phi(N_i))^\sim = N_i. \]

It follows that for \(i = 1, 2, 3 \),

\[(2.10) \quad \phi(N_i) \subset M_i. \]

Since \(Y_* \circ \phi \) is the identity mapping on \(\text{Lat}(T_2) \), (2.10) implies that for \(i = 1, 2, 3 \),

\[(2.11) \quad N_i = Y_*(\phi(N_i)) \subset Y_*(M_i). \]

By (2.9) and (2.11), we get

\[(2.12) \quad Y_*(M_i) = N_i, \]

for \(i = 1, 2, 3 \). Hence we can easily see that function \(Y \) satisfies the assumptions of Proposition 2.13.

Thus by Proposition 2.13 and equation (2.12),

\[(2.13) \quad Y_*[M_1 \cap (M_2 \lor M_3)] = Y_*(M_1) \cap Y_*(M_2 \lor M_3) = N_1 \cap (N_2 \lor N_3). \]

Since \(M_1 \cap M_2 = Y^{-1}(N_1) \cap Y^{-1}(N_2) = Y^{-1}(N_1 \cap N_2) \), by the same way as above, we obtain

\[(2.14) \quad Y_*(M_1 \cap M_2) = N_1 \cap N_2. \]

By equations (2.12) and (2.14), we obtain

\[(2.15) \quad Y_*[(M_1 \cap M_2) \lor M_3] = (N_1 \cap N_2) \lor N_3. \]

Since \((N_1 \cap N_2) \lor N_3 \neq N_1 \cap (N_2 \lor N_3) \), from equations (2.13) and (2.15), we can conclude that

\[(M_1 \cap M_2) \lor M_3 \neq M_1 \cap (M_2 \lor M_3). \]

Therefore \(\text{Lat}(T_1) \) is not modular.
Proposition 3.1. [1] Let θ be a nonconstant inner function in H^∞. Then every invariant subspace M of $S(\theta)$ has the form
\[\phi H^2 \oplus \theta H^2 \]
for some inner divisor ϕ of θ.

We can easily check that if $M_1 = \theta_1 H^2 \oplus \theta H^2$ and $M_2 = \theta_2 H^2 \oplus \theta H^2$ where θ_i ($i = 1, 2$) is an inner divisor of θ, then
\begin{equation}
M_1 \cap M_2 = (\theta_1 \lor \theta_2)H^2 \oplus \theta H^2 \tag{3.1}
\end{equation}
and
\begin{equation}
M_1 \lor M_2 = (\theta_1 \land \theta_2)H^2 \oplus \theta H^2 \tag{3.2}
\end{equation}
where $\theta_1 \land \theta_2$ and $\theta_1 \lor \theta_2$ denote the greatest common inner divisor and least common inner multiple of θ_1 and θ_2, respectively. Note that if $M_1 \subset M_2$, then
\begin{equation}
\theta_2 | \theta_1. \tag{3.3}
\end{equation}

Lemma 3.2. If θ is an inner function in H^∞, then $\text{Lat}(S(\theta))$ is distributive.

Proof. Let M_1, M_2, and M_3 be invariant subspaces for $S(\theta)$. Then by Proposition 3.1, there are nonconstant inner functions θ_1, θ_2, and θ_3 in H^∞ such that
\[M_i = \theta_i H^2 \oplus \theta H^2 \text{ for } i = 1, 2, 3. \]

From equations (3.1) and (3.2), we obtain that
\begin{equation}
M_1 \cap (M_2 \lor M_3) = (\theta_1 \lor (\theta_2 \land \theta_3))H^2 \oplus \theta H^2, \tag{3.4}
\end{equation}
and
\begin{equation}
(M_1 \cap M_2) \lor (M_1 \cap M_3) = ((\theta_1 \lor \theta_2) \land (\theta_1 \lor \theta_3))H^2 \oplus \theta H^2. \tag{3.5}
\end{equation}
Since $\theta_1 \lor (\theta_2 \land \theta_3) = (\theta_1 \lor \theta_2) \land (\theta_1 \lor \theta_3)$, by equations (3.4) and (3.5), this lemma is proven.

In this section, we will consider a sufficient condition for $\text{Lat}(T)$ of a C_0-operator T to be modular.

Proposition 3.3. [2] (Proposition 2.4.3) Let $T \in L(H)$ be a completely nonunitary contraction, and M be an invariant subspace for T. If
\begin{equation}
T = \begin{pmatrix} T_1 & X \\ 0 & T_2 \end{pmatrix} \tag{3.6}
\end{equation}
is the triangularization of T with respect to the decomposition $H = M \oplus (H \ominus M)$, then T is of class C_0 if and only if T_1 and T_2 are operators of class C_0.

Proposition 3.4. [3] (Corollary 7.1.17) Let $T \in L(H)$ is an operator of class C_0, M be an invariant subspace for T, and
\begin{equation}
T = \begin{pmatrix} T_1 & X \\ 0 & T_2 \end{pmatrix} \tag{3.7}
\end{equation}
be the triangularization of T with respect to the decomposition $H = M \oplus (H \ominus M)$. Then T has property (P) if and only if T_1 and T_2 have property (P).
Let H and K be Hilbert spaces and $H \oplus K$ denote the algebraic direct sum. Recall that $H \oplus K$ is also a Hilbert space with an inner product

\[(h_1, k_1), (h_2, k_2) = (h_1, h_2) + (k_1, k_2)\]

Theorem 3.5. Let $T \in L(H)$ be an operator of class C_0 with property (P). Then $\text{Lat}(T)$ is a modular lattice.

Proof. Suppose that T has property (P) and let $M_i (i = 1, 2, 3)$ be an invariant subspace for T such that $M_3 \subset M_1$. Then evidently,

\[
(M_1 \cap M_2) \vee M_3 \subset M_1 \cap (M_2 \lor M_3).
\]

Let $T_i = T|_{M_i} (i = 1, 2, 3)$. Define a linear transformation $X : M_2 \oplus M_3 \to M_2 \lor M_3$ by

\[
X(a_2 + a_3) = a_2 + a_3
\]

for $a_2 \in M_2$ and $a_3 \in M_3$.

Then for $a_2 + a_3 \in M_2 \oplus M_3$ with $\|a_2 + a_3\| \leq 1$, $\|X(a_2 + a_3)\| = \|a_2 + a_3\| \leq \|a_2\| + \|a_3\| \leq 2$. It follows that $\|X\| \leq 2$ and so X is bounded.

Since $M_2 \lor M_3$ is generated by $\{a_2 + a_3 : a_2 \in M_2$ and $a_3 \in M_3\}$, X has dense range. By definition of $T_i (i = 1, 2, 3)$,

\[
X(T_2 \oplus T_3)(a_2 + a_3) = Ta_2 + Ta_3
\]

and

\[
(T | M_2 \lor M_3)X(a_2 + a_3) = Ta_2 + Ta_3.
\]

Thus

\[
X(T_2 \oplus T_3) = (T | M_2 \lor M_3)X.
\]

By Proposition 3.3, $T_2 \oplus T_3$ and $T | M_2 \lor M_3$ are of class C_0 and since T has property (P), by Proposition 3.4, we conclude that $T | M_2 \lor M_3$ also has Property (P). By Corollary 2.12, X is a lattice-isomorphism.

Thus $X_* : \text{Lat}(T_2 \oplus T_3) \to \text{Lat}(T | M_2 \lor M_3)$ is onto. Let

\[
M = \{a_2 + a_3 \in M_2 \oplus M_3 : a_2 + a_3 \in M_1\}.
\]

Since $M = X^{-1}(M_1)$, M is a closed subspace of $M_2 \oplus M_3$. Evidently, M is invariant for $T_2 \oplus T_3$. From the equation (3.9), we conclude that

\[
M = (M_1 \cap M_2) \oplus M_3.
\]

Since $X^{-1}(M_1 \cap (M_2 \lor M_3)) = \{a_2 + a_3 \in M_2 \oplus M_3 : a_2 + a_3 \in M_1 \cap (M_2 \lor M_3)\} = \{a_2 + a_3 \in M_2 \oplus M_3 : a_2 + a_3 \in M_1\}$,

\[
X^{-1}(M_1 \cap (M_2 \lor M_3)) = M
\]

Since X is a lattice-isomorphism,

\[
X_* M = (XM)^{-} = M_1 \cap (M_2 \lor M_3).
\]

By equation (3.10) and definition of X,

\[
X_* M = (XM)^{-} \subset (M_1 \cap M_2) \lor M_3.
\]

From (3.11) and (3.12), we conclude that

\[
M_1 \cap (M_2 \lor M_3) \subset (M_1 \cap M_2) \lor M_3.
\]
Thus if T has property (P), then by (3.8) and (3.13), we obtain that

$$M_1 \cap (M_2 \lor M_3) = (M_1 \cap M_2) \lor M_3.$$
References

[1] H. Bercovici, Operator theory and arithmetic in H^∞, Amer. Math. Soc., Providence, Rhode island (1988).
[2] H. Bercovici, C0-Fredholm operators, II, Acta Sci. Math. (Szeged) 42(1980), 3-42.
[3] P.R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand Company, Princeton, N.Y., 1967
[4] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam(1970).

Department of Mathematics, Indiana University, Bloomington, Indiana, U.S.A.
E-mail address: kims@indiana.edu