Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

Linghua Liu1*, Wenqi Peng1, Leixiang Wu1 and Laisheng Liu1

1 China Institute of Water Resources and Hydropower Research, Beijing, China

* linghualiu@126.com

Abstract. Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Danjiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

1. Introduction
China has been suffering from severe water scarcity problems, especially in northern China. Water availability per capita in China is about 2068 m3, and 904 m3 in north China. In order to alleviate the water shortage problems faced in North China, three south to north water transfer projects were proposed. One of the most important projects is the middle route of south to north water transfer project delivering water from the Danjiangkou reservoir to Beijing and Tianjin [1]. The total length of the main channel is 1277km, and annually about 44.8 billion m3 water was transferred [2]. the middle water diversion project commenced transferring water in December 2014. From then on, the water quality of Danjiangkou Reservoir has attracted considerable public attention.

To evaluate water quality of source water, different water quality assessment methods has been widely studied and used all over the world. Single factor assessment methods were widely used in rivers, reservoirs, and lakes in China. Single factor assessment method is simple and convenient and can be used directly to compare the water quality parameter values with standards. Therefore it is easy to understand the water quality status with single factor assessment method. However, the single factor assessment method is very strict in some cases. For example, if water quality of all parameters in a drinking water source can meet the standard of drinking water source except faecal coliform, the water body will be evaluated as unfit for drinking purposes using single factor assessment method. However, the water can meet the drinking water quality standard after disinfection treatment in water treatment plant [3].

Water quality index is one of the best water quality evaluation methods [4-5]. Horton [6] first proposed water quality index in 1965, since then, various water quality indices for water quality evaluation have been proposed worldwide [7-13].
However, there is still no universally accepted water quality assessment indices. Most water quality indices in literature or in use in some countries rely on normalizing water quality concentration of parameters with water quality standards and interpreting water ‘good’ versus ‘bad’ concentrations [14].

Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI) compares water quality monitoring results with a benchmark instead of normalizing the measured values with standards, where the benchmark may be a water quality standard or site specific background concentration [15–18]. Many researchers have successfully evaluated water quality with CCMEWQI [19–21].

The objective of this research is to (i) apply the widely used CCMEWQI to evaluate water quality of Danjiangkou Reservoir and 16 major tributaries, using 22 water quality parameters measured on a monthly basis for 16 months; (ii) to identify the main parameters influencing the water quality of Danjiangkou Reservoir and 16 major tributaries.

2. Methodology

2.1. Study area description
Geographical location of Danjiangkou Reservoir is 32°36′ to 33°48′N and 110°59′ to 110°49′E situated in the center of China. It started to impound water in 1967, became functional in 1968 and finished in 1973 with total storage capacity of 17.45 billion m³ and surface area of 400 km² at water level of 157m. The reservoir catchment area is 92,500 km².

From 2005 to 2010, to meet the needs of the South to North Water Diversion Project, the height of Danjiangkou Dam was increased from 162m to 176.6m, and the water level was increased from 157m to 170m Therefore, the Danjiangkou Reservoir is very large with a storage capacity of 29.05 billion m³, and a water area of 1022.75 km².

The Danjiangkou Reservoir dam is located at 0.8km downstream the junction of Danjiang River and Hanjiang River. So the Danjiangkou Reservoir can be subdivided into Han Reservoir and Dan Reservoir. The gate for the water diversion canal is located at Taocha. There are approximately 200 tributaries in the Danjiangkou Reservoir catchment, of which 16 main tributaries make up 90% of the whole drainage area. These 16 tributaries include Hanjiang River, Danjiang River, Qihe River, Laoguan River, Taohe River, Duhe River, Langhe River, Shending River, Sihe River, Guanshan River, Jianhe River, Jianghe River, Quyuan River, Jiangjun River, Tianhe River, Taogou River. Qihe River, Taohe River and Laoguan River are tributaries of Danjiang River. Duhe River, Langhe River, Shending River, Sihe River, Guanshan River, Jianhe River, Jianghe River, Quyuan River, Jiangjun River, Tianhe River and Taogou River are tributaries of Hanjiang River.

The Danjiangkou Reservoir lies within the northern subtropical zone, and the region exhibits a subtropical monsoon climate. The annual mean air temperature is 15-16 °C, frost free period is 230-250d and the annual precipitation is 800-1000 mm, 70%-80% of the annual precipitation falls in May to October.

2.2. Water quality monitoring
25 different sampling sites in Danjiangkou Reservoir and 16 main tributaries were selected. Six of these water quality monitoring sites, Hejiawan, Bashang (near the dam), Bashangzhong, Taizishan, Jiangbei Bridge, Taocha (the gate for the water diversion canal), were used to measure the water quality in the reservoir. Four of these water quality monitoring sites, Baihe, Liejinba, Yangwei, and Chengjiapo, were used to measure the water quality in Hanjiang River. 11 water quality monitoring sites located near the mouths of 11 main tributaries of Hanjiang River including Quyuan River, Tianhe River, Duhe River, Jiangjun River, Taogou River, Jianghe River, Sihe River, Guanshan River, Jianhe River, Langhe River, Shending River, were used to measure the water quality in 11 main tributaries of Hanjiang River. The water quality monitoring site Zijingguan was used to measure the water quality of Danjiang River. 3 water quality monitoring sites located near the mouths of 3 main...
tributaries of Danjiang River, Qihe River, Taogou River, Laoguan River, were used to measure the water quality in tributaries of Danjiang River.

The map of water quality monitoring sites distribution is shown in Figure 1. Water samples were collected in the middle of each month throughout 16 months from July 2013 to October 2014.

Stainless steel water sampler was used to sample water from the sampling location. The sampler was washed with detergent, tap water, 10% hydrochloric acid and tap water, sampling water in turn before use. 22 water quality parameters were analysed on the basis of “Standard Methods for the Examination of Water and Wastewater”. Samples for analysing bacteriological parameters were collected in glass bottles cleaned with tap water, detergent, diluted HNO₃, distilled water two times and disinfected at 105°C. Samples for analysing physical and chemical parameters were stored in polyethylene bottles. Before sampling, sample bottles were rinsed with sampling water and stored at 4°C to transferred to the laboratory for analysis. Temperature, pH and dissolved oxygen were analysed on site by using thermometer, HACH pH and DO meter respectively. While the other parameters were analysed in the laboratory.

![Figure 1. Water Quality Sampling Sites of Danjiangkou Reservoir and its tributaries](image)

2.3. Water quality standard
To evaluate water quality of Danjiangkou Reservoir and its tributaries, the Water quality standard of the class III in the National Environmental Quality Standards for Surface Waters in China (GB3838-2002) was used. The water quality standard of class III in GB3838-2002 was used for water quality assessment of drinking water source.

2.4. Calculation of Water Quality Index
CCMEWQI is calculated with the following equation [14–15].

\[
WQI = 100 - \frac{F_1 + F_2 + F_3}{1.732}
\]

Where: \(F_1 \) - the percentage of parameters that do not meet water quality standards

\[
F_1 = \frac{\text{Number of failed parameters}}{\text{Total number of parameters}} \times 100
\]

\(F_2 \) - the percentage of individual tests that do not meet water quality standards

\[
F_2 = \frac{\text{Number of failed tests}}{\text{Total number of tests}} \times 100
\]

\(F_3 \) - the excursion to which the failed test exceed the standard. \(F_3 \) is calculated in the following three steps.

1) Excursion calculation of: Excursion is the times of parameter value exceeding the standard. When the parameter concentration must not exceed the standard:

\[
\text{Excursion}_1 = \frac{\text{Failed parameter value}_1}{\text{Standard}_1} - 1
\]

When the parameter concentration must not less than the standard:

\[
\text{excursion}_1 = \frac{\text{Standard}_1}{\text{Failed parameter value}_1} - 1
\]

2) Calculation of the normalized sum of excursions (nse):
3) F_3 is calculated with an equation that scales the normalized sum of the excursions from standards (nse) to yield a value between 0 and 100.

$$F_3 = \frac{nse}{0.01 \cdot nse + 0.01}$$ \hspace{1cm} (7)

The above equation produces a value of WQI between 0 and 100 and the water quality is ranked into five categories as shown in Table 1.

Categories	WQI value
Excellent	95–100
Good	80–94
Fair	60–79
Marginal	45–59
Poor	0–44

3. Results and Discussion

3.1. Descriptive Statistics of 22 Water Quality Parameters

400 samples were taken and 22 parameters were analysed. Among the 22 parameters analysed, 13, 5 and 4 parameters were found having very low concentration lower than method detection limit in the sampling sites in Danjiang Reservoir, Hanjiang River and its tributaries, Danjiang River and its tributaries, respectively. Statistic results for the parameters which include minimum, maximum, average and standard deviation for monitoring site in the Reservoir area, Danjiang River and its tributaries, Hanjiang River and its tributaries, are shown in Table 1, Table 2, and Table 3 respectively. Data less than the method detection limit was counted as the 1/2 method detection limit for statistical calculation.

The pH value of all samples measured varied from 7.12 to 8.7 indicating that the water is slightly alkaline. The maximum and average values of pH did not exceed the limit of Class III in GB3838-2002.

The minimum DO concentration in Danjiangkou reservoir was 5.81mg/L higher than the standard of 5mg/L, which indicates that all DO values in water samples from Danjiangkou Reservoir could meet the Class III water quality standard for drinking purposes. The minimum DO concentration in water samples from tributaries of Danjiang River and Hanjiang River was 1.7 and 0.6mg/L respectively, indicating that Do values sometimes couldn’t meet the Class III water quality standard for drinking purposes. The maximum and mean values of DO for the reservoir and rivers were arranged in the following order: Reservoir > Hanjiang River and its tributaries > Danjiang River and its tributaries.

The maximum and average values of all parameters except pH, DO, fluoride, copper for the reservoir and rivers were arranged in the following order: Reservoir < Hanjiang River and its tributaries < Danjiang River and its tributaries. All these phenomena indicate that the pollution status of Hanjiang River and its tributaries is the most serious, and water quality in the reservoir area is the best.

Table 4 shows the statistical results of all tests. 400 samples were taken and 8800 tests were conducted. 96 samples and 2112 tests were used to represent water quality in reservoir area, 64 samples and 1408 tests were used to represent water quality in Hanjiang River, 176 samples and 3872 tests were used to represent water quality in tributaries of Hanjiang River, 16 samples and 352 tests were used to represent water quality in Danjiang River, 64 samples and 1408 tests were used to represent water quality in tributaries of Danjiang River. The failed tests mean the results of the tests cannot meet the standard of Class III in National Environmental Quality Standards for Surface Waters (GB3838-2002). Among 8800 tests conducted, 372 tests failed. Water quality in the reservoir area was the best, among 2112 tests with samples from 6 water quality monitoring sites in reservoir, no failed test existed. Among 1408 tests conducted with samples from 4 water quality monitoring sites in
Hanjiang River, namely, Baihe, Liejinba, Yangwei and Chengjiapo, 10 tests were failed. The failed parameter was fecal coliform. Among 3872 tests conducted with samples from water quality monitoring sites in 11 tributaries of Hanjiang River, 345 tests were failed. The water quality in Shending River, Sihe River, Jianghe River, Tianhe River and Jianhe River was poor. The water quality of Laoguan River was also poor based the amount of failed tests.

There were 9 parameters exceeding the water quality standard of Class III in *National Environmental Quality Standards for Surface Waters* (GB3838-2002), including fecal coliform, COD$_{cr}$, COD$_{Mn}$, BOD$_{5}$, NH$_{3}$-N, TP, DO, anionic surfactant and petroleum. Figure 2 illustrates the percentage of parameters that exceeded water quality standards. This figure shows which parameters exceeded the standard (F1) and the percentage (%) of each parameter to the total number parameters exceeding water quality standards.

The four most frequently failed parameters were fecal coliform bacteria, TP, ammonia nitrogen, COD$_{Mn}$ with failed frequency of 30%, 14%, 14%, and 14%, respectively (Figure 2). The four parameters accounted for 72% of the exceedances in Hanjiang River, Danjiang River and their tributaries implying that they were the most common parameters exceeding standards and having the most influence on the water quality index.

Figure 3 shows the frequency of failed tests in different locations. Shending River, Sihe River, Jianghe River, Tianhe River and Jianhe River were the five most seriously polluted rivers with failed frequency of 33.24%, 23.30%, 16.48%, 5.68% and 5.68%, respectively. These five rivers are tributaries of Hanjiang River.

Among the 372 failed tests, 91.4% were in samples from tributaries of Hanjiang River (Figure 4), 4.84% were in samples from the tributaries of Danjiang River, 2.69%, and 1.08% were in samples form Hanjiang River and Danjiang River, respectively. Which indicates that water quality status from good to bad is arranged in the following order: Reservoir > Danjiang River > Hanjiang River > tributaries of Danjiang River > tributaries of Hanjiang River.

Table 1. Statistic Data of Water Quality in the Danjiangkou Reservoir Area (unit: mg/L, except pH and fecal coliform).

No.	Parameter	Min.	Max.	Average	Std. Deviation
1	pH	7.56	8.52	8.12	0.22
2	DO	5.81	12.71	9.40	1.90
3	COD$_{Mn}$	1.6	2.9	2.0	0.30
4	BOD$_{5}$	1.0	2.2	1.5	0.29
5	NH$_{3}$-N	0.063	0.349	0.136	0.07
6	TP	0.01	0.02	0.016	0.005
7	F-	0.2	0.28	0.25	0.019
8	Petroleum	<0.01	0.04	0.009	0.008
9	Fecal Coliform (CFU/L)	<20	240	33	46

Table 2. Statistic Data of Water Quality in Danjiang River and its Tributaries (unit: mg/L, except pH and fecal coliform).

No.	Parameter	Min.	Max.	Average	Std. Deviation	
1	pH	7.6	8.3	8.0	0.18	
2	DO	1.7	12.5	8.81	2.87	
3	COD$_{Mn}$	0.9	6.5	2.10	1.1	
4	COD$_{Cr}$	<10	35	16.37	6.58	
No.	Parameter	Min.	Max.	Average	Std. Deviation	
-----	-------------------------	------	--------	---------	----------------	----------------
1	pH	7.12	8.7	7.89	0.37	
2	DO	0.6	12.4	8.36	2.4	
3	COD_{Mo}	0.6	19.3	3.1	1.95	
4	COD_C	<10	96	22.6	12.05	
5	BOD₅	<0.5	44.9	2.8	3.6	
6	NH₃-N	0.025	16.1	1.12	1.85	
7	TP	<0.01	1.2	0.08	0.14	
8	F⁻	0.047	0.643	0.201	0.080	
9	Cu	<0.005	0.025	0.012	0.009	
10	Zn	<0.005	0.111	0.023	0.023	
11	As	0.0007	0.0051	0.0017	0.0007	
12	Hg	<0.00001	0.00017	0.00001	0.000027	
13	Pb	<0.005	0.014	0.0095	0.0064	
14	CN⁻	<0.004	0.02	0.0067	0.0037	
15	Volatile Phenol	<0.0003	0.0306	0.002	0.0033	
16	Anionic Surfactant	<0.05	1.4	0.11	0.10	
17	Petroleum	0.01	1.22	0.115	0.232	
18	Fecal Coliform(CFU /L)	<20	2400000	99610	221255	

Table 3. Statistic Data of Water Quality in Hanjiang River and its Tributaries (unit:mg/L, except pH and fecal coliform).
Table 4. Statistics Data of All Tests.

Location	Sample site	Samples /tests	Failed tests(%)	Failed parameters
Reservoir area				
Bahshang	16/352	0	none	
Taocha	16/352	0	none	
Taizishan	16/352	0	none	
Hejiawan	16/352	0	none	
Bashangzhong	16/352	0	none	
Jiangbei Bridge	16/352	0	none	
Hanjiang River				
Liejinba	16/352	0	none	
Baihe	16/352	1.70%	FC	
Chenjiapo	16/352	0.57%	FC	
Yangwei	16/352	0.57%	FC	
Quyuwan River	16/352	2.84%	FC	
Jianjune River	16/352	1.42%	FC	
Taogou River	16/352	0.57%	FC	
Langhe River	16/352	1.14%	FC, COD Cr	
Guanshan River	16/352	1.99%	FC, COD Cr, TP	
Duhe River	16/352	2.56%	FC, COD Cr, NH3-N	
Jianhe River	16/352	5.68%	FC, COD Cr, BOD5, COD Mn, NH3-N, TP	
Tianhe River	16/352	6.82%	FC, COD Cr, BOD5, COD Mn, NH3-N, TP	
Sihe River	16/352	23.30%	FC, COD Cr, BOD5, COD Mn, NH3-N, TP, DO	
Jianghe River	16/352	16.48%	FC, COD Cr, BOD5, COD Mn, NH3-N, TP, DO, AS	
Shending River	16/352	33.24%	FC, COD Cr, COD Mn, BOD5, NH3-N, TP, DO, AS, Petroleum	
Danjiang River				
Zijingguan	16/352	1.14%	FC, COD Mn, NH3-N, TP	
Qihe River	16/352	0	none	
Taohe River	16/352	0	none	
Laoguan River	16/352	5.11%	FC, COD Cr, COD Mn, BOD5, NH3-N, DO	
Total		400/8800	4.23%	

*FC-Fecal Coliform, AS- Anionic Surfactant
Applying the CCMEWQI equation on water quality analysis, Water quality indexes of all monitoring sites in Danjiangkou Reservoir were ranked 100, indicating water quality of the Reservoir was excellent and was protected with absence of threat. Water quality can meet the standard of drinking water source.

Water quality indexes at 4 monitoring sites in Hanjiang River, Chenjiapo, Yangwei, Baihe and Liejingba, were ranked 97.83, 97.85, 97.71 and 100 respectively. Water quality could satisfy the goal for drinking water sources.

Water quality indexes for 11 tributaries of Hanjiang River are shown in Table 5. Water quality indexes of Taogou River and Langhe River were between 95 and 100, indicating the water quality was excellent. Water quality indexes of Guanshan River, Quyuan River and Duhe River were between 80 and 94, indicating the water quality was good. Water quality indexes of Sihe River, Tianhe River, Jianhe River and Jiangjun River were between 60 and 79, water quality is fair. Water quality index of Jianghe River is 58, water quality is marginal. Water quality index of Shending River is 43.66, Water quality is poor.

No.	Sampling sites	WQI	Water Quality
1	Taogou River	97.83	Excellent water
2	Langhe River	95.68	Excellent water
3	Guanshan River	93.47	Good water
4	Quyuan River	91.49	Good water
5	Duhe River	90.6	Good water
6	Jiangjun River	77.88	Fair water
7	Jianhe River	75.06	Fair water
8	Tianhe River	64.00	Fair water
9	Sihe River	60.05	Fair water
10	Jianghe River	58.00	Marginal water
11	Shending River	43.66	Poor water

Water quality indexes of Danjiang River and its tributaries are shown in Table 6. Water quality index of Laoguan River was ranked 89.73, water quality was good. Water quality indexes of other sampling sites were higher than 94, water quality was excellent.
Table 6. Water Quality Index on Different Sampling Sites of Danjiang River and its Tributaries.

Site No.	Sampling sites	WQI	Water Quality
1	Zijingguan	95.43	Excellent water
2	Qihe River	100	Excellent water
3	Taohe River	100	Excellent water
4	Laoguan River	89.73	Good water

The percentage of each WQI category of 25 sampling sites is shown in Figure 5. Water quality of 60% of the sampling sites was categorized as excellent water.

Figure 4. Percentage of total failed tests versus locations

Figure 5. WQI Classification of 25 Sampling Sites

4. Conclusion

Water quality indexes of Danjiangkou Reservoir and its tributaries were calculated by using 22 water quality parameters from 25 sampling sites to evaluate the suitability as drinking water source. The following conclusions can be drawn on the basis of descriptive analysis and water quality index calculation.

1) Water quality indexes of Danjiangkou Reservoir were 100 which indicates water quality in the reservoir area was excellent and the water source was protected with a virtual absence of threat; the water source conditions were very close to natural levels.

2) Water quality indexes of the two major tributaries of Danjiangkou Reservoir, Hanjiang River and Danjiang River, were in the range from 95.43 to 100, indicating water quality of Hanjiang River and Danjiang River is excellent. Only a few tests of water quality monitoring are failed. The failed variables were fecal coliform bacteria, COD$_{Mn}$, NH$_3$-N, TP.

3) Water quality indexes of 11 tributaries of Hanjiang River were in the range from 43.66-97.83. Water quality of 11 tributaries from good to bad is in the following order: Taogou River > Langhe River > Guanshan River > Qinghun River > Duhe River > Jiangu River > Tianhe River > Sihe River > Jianghe River > Sheding River. The seriously polluted tributary rivers were Sheding River, Jianghe River, Sihe River, Tianhe River, Jiangu River and Jiangu River. The failed variables were fecal coliform bacteria, COD$_{cr}$, COD$_{Mn}$, BOD$_5$, NH$_3$-N, TP, DO, anionic surfactant, petroleum.

4) Fecal coliform bacteria, TP, ammonia nitrogen, COD$_{Mn}$ were the most common parameters to fail and having the most influence on the Water Quality Index.

Acknowledgments

This project was supported by International Science and Technology Cooperation Program of China (2015DFG71210) and major science and technology program for water pollution control and treatment (2013ZX07104004)
References
[1] Liu C M and Zhang H. Z., “South-to-north Water Transfer Schemes for China,” 2002 Water Resources Development 18 453.
[2] Yang Y, Lei Y, Zhang Q Z, “Quantity versus quality in China’s South-to-North Water Diversion Project: a system dynamics analysis” 2015 Water 7 2142.
[3] Yin H L and Xu Z X, “Discussion on China’s Single- factor Water Quality Assessment Method” 2008 Water Purification Technology 27 1 (in Chinese)
[4] Simoes F, Moreira A B, Bisinoti M C, Gimeneaz S and Santos M, “Water quality index and dissolved oxygen deficit simple indicators of watersheds pollution” 2007 Ecological Indicators, 34 315.
[5] Liou S M, Lo S L and Hu C Y, “Application of two stages fuzzy set theory to river quality evaluation in Taiwan” 2003 Water Research, 37 1406.
[6] Horton R K, “An index number system for rating water quality” 1965 Journal of Water Pollution Control Federation, 37 300.
[7] House M A and Newsome D H, “Water quality indices for the management of surface water quality” 1989 Water Science and Technology, 21 1137.
[8] Brown R M, Mccelland N I, Deininger R A, Tozer R G, “A water quality index – do we dare” 1970 Water Sewage Works, 117 339.
[9] Cude C, “Oregon water quality index: A tool for evaluating water quality management effectiveness” 2001 Journal of the American Water Resources Association 37 125.
[10] Sargaonkar A, Deshpande V, “Development of an overall index of pollution for surface water based on a general classification scheme in Indian context,” 2003 Environmental Monitoring and Assessment 89 43.
[11] Liou S M, Lo S L, Wang S H, “A generalized water quality index for Taiwan” 2004 Environmental Monitoring and Assessment 96 35.
[12] Kim A G and Cardone C R, “Scatterscore: a reconnaissance method to evaluate changes in water quality” 2005 Environmental Monitoring and Assessment 111 277.
[13] Tsegaye T, Sheppard D, Islam K R, Johnson A, Tadesse W, Atalay A, Marzen L. “Development of chemical index as a measure of in-stream water quality in response to land use and land cover changes” 2006 Water, Air and Soil Pollution 174 161.
[14] UNEP/GEMS, Global drinking water index development and sensitivity analysis report., vailable online: http://www.un.org/waterforlifedecade/pdf/global_drinking_water_quality_index.pdf, 2007.
[15] Canadian Council of Ministers of the Environment(CCME). Canadian environmental sustainability indicators, freshwater quality indicator: data sources and methods. Available online: http://www.statcan.ca/bsolc/english/bsolc?catno=16-256-XIE#formatdisp, 2005.
[16] Khan F, Husain T and Lumb A, “Water quality evaluation and trend analysis in selected watersheds of the Atlantic region of Canada,” 2003 Environmental Monitoring and Assessment, 88 221.
[17] Khan A A, Tobin A, Paterson R, Khan H and Warren R, “Application of CCME procedures for deriving site-specific water quality guidelines for the CCME water quality index” 2005 Water Quality Research Journal of Canada, 40 448.
[18] Lumb A, Halliwell D, and Sharma T, “Application of CCME water quality index to monitor water quality: A case of the Mackenzie River Basin Canada” 2006 Environmental Monitoring and Assessment 113 411.
[19] Alexakis D, Tsihrintzis V A, Tsakiris G, and Gikas G D, “Suitability of water quality indices for application in lakes in the Mediterranean” 2016 Water Resources Management, 30 1621.
[20] Gyamfi C, Boakye R, Awuah E and Anyemedu F, “Application of the CCMEWQI model in assessing the water quality of the Aboabo River, Kumasi-Ghana” 2016 Journal of sustainable Development 6 1.
[21] Sharma D and Kansal A, “Water quality analysis of River Yamuna using water quality index in the national capital territory India (2000-2009)” 2011 Applied water science, Vol.1, 2011 pp.147-157.