Exotic magnetic phases in an Ising-spin Kondo lattice model on a kagome lattice

Hiroaki Ishizuka1 and Yukitoshi Motome1

1Department of Applied Physics, University of Tokyo, Hongo, 7-3-1, Bunkyo, Tokyo 113-8656, Japan

(Dated: August 27, 2014)

Magnetic and electronic states of an Ising-spin Kondo lattice model on a kagome lattice are investigated by a Monte Carlo simulation. In addition to the conventional ferromagnetic and ferrimagnetic orders, we show that this model exhibits several thermally-induced phases, such as partially disordered, Kosterlitz-Thouless-like, and loop-liquid states. In the partially disordered state, we show that the magnetic transition is associated with the charge-gap formation. We find that the density of state shows characteristic peaks reflecting the underlying spin texture. In the loop-liquid state, we also find a peak in a different manner in the density of states as well as in the optical conductivity. This is a consequence of the formation of closed loops of the same spin sites in the loop-liquid state. Our results elucidates the peculiar cooperation between thermal fluctuations and the spin-charge interplay in this frustrated itinerant electron system.

PACS numbers: 75.30.Kz, 71.30.+h, 75.40.Mg, 71.10.Fd

I. INTRODUCTION

The studies on exotic magnetism in geometrically frustrated systems is a hot topic in condensed matter physics, powered by the discovery of many new candidate materials and the development of new theoretical techniques. A key feature of frustrated magnets is the suppression of conventional magnetic ordering. In these systems, competition between magnetic interactions due to underlying lattice geometry suppresses the formation of magnetic long-range order (LRO), often leaving the system disordered down to zero temperature. In classical spin systems, the disordered ground state is associated with macroscopic degeneracy comprised of spin states that satisfy a local constraint. Such degenerated ground states are extremely sensitive to perturbations, such as subdominant interactions and fluctuations, providing a fertile ground for exotic magnetism.

A fundamental, interesting example is found in Ising antiferromagnets on geometrically frustrated lattices. For example, previous studies on the triangular and kagome lattice\cite{10,11} Ising antiferromagnets have reported that Kosterlitz-Thouless (KT) phases are induced by further-neighbor interactions. Another prominent phenomenon caused by subdominant interactions is the partial lifting of the ground-state manifold, such as partially disordered (PD) states.\cite{12,13} The PD states are peculiar magnetic orders characterized by coexistence of magnetically-ordered and paramagnetic (PM) sites forming a periodic structure; an example on the kagome lattice is shown in Fig. 1(a). Due to the presence of the PM moments, the PD states retain the residual entropy. Hence, they are interpreted as a partial lifting of the degenerate ground-state manifold.

Another interesting example is in itinerant magnets on frustrated lattices.\cite{14,15,16,17} Some of them are described by the Kondo lattice model, in which itinerant electrons are coupled with localized moments via the local exchange interaction. In this system, the effective interactions between the localized moments are induced by the kinetic motion of itinerant electrons, known as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.\cite{18,19,20} Such effective interactions are, in general, long ranged with oscillating sign, potentially leading to competing interactions. Meanwhile, in the itinerant electron systems, magnetic LRO may be stabilized by the formation of energy

![Diagram](image-url)
gap in the electronic band structure. In the itinerant magnets, these effects may give rise to frustration and exotic magnetic states. Indeed, recent numerical studies on a triangular lattice model have reported a rich phase diagram. In the case of the model with Ising localized moments, PD and KT-like states were obtained along with several magnetically LRO states. On the other hand, a peculiar noncoplanar LRO with scalar chirality ordering was reported in the case of Heisenberg-type localized moments. We also note that a recent experiment on Ag$_2$CrO$_2$ reported possibility of a PD state.

In addition, it is also interesting to see how the exotic magnetism affects itinerant electrons. For instance, local correlations in the onsite potentials are known to induce delocalization of electrons, e.g., by a dimer correlation in one dimension and by formation of loops in three dimensions. Also, charge-gap formation by local correlations was reported in a kagome lattice model. In addition, it is also interesting to see how the exotic magnetism affects itinerant electrons. For instance, local correlations in the onsite potentials are known to induce delocalization of electrons, e.g., by a dimer correlation in one dimension and by formation of loops in three dimensions. Also, charge-gap formation by local correlations was reported in a kagome lattice model. In this paper, we consider a single-band Kondo lattice model on a kagome lattice with localized Ising spin moments. The Hamiltonian is given by

$$H = -t \sum_{\langle i,j \rangle, \sigma} (c^\dagger_{i\sigma} c_{j\sigma} + \text{H.c.}) - J \sum_i \sigma^z_i S_i. \quad (1)$$

Here, the first term represents hopping of itinerant electrons, where $c_{i\sigma}$ ($c^\dagger_{i\sigma}$) is the annihilation (creation) operator of an itinerant electron with spin $\sigma = \uparrow, \downarrow$ at ith site, and t is the transfer integral. The sum $\langle i, j \rangle$ is taken over NN sites on the kagome lattice. The second term is the onsite interaction between localized spins and itinerant electrons, where $\sigma^z_i = c^\dagger_{i\uparrow} c^\dagger_{i\downarrow} - c^\dagger_{i\downarrow} c_{i\uparrow}$ corresponds to the z-component of itinerant electron spin, and $S_i = \pm 1$ is the localized Ising moment at ith site; J is the coupling constant (the sign of J does not matter in the present model). Hereafter, we take $t = 1$ as the unit of energy, and the lattice constant $a = 1$ [see Fig. II(A)].

II. MODEL AND METHOD

In this section, we introduce the model and method we used. In Sec. II.A, the Hamiltonian is given for the Kondo lattice model we study in this paper. We present the Monte Carlo (MC) method briefly in Sec. II.B and the definitions of physical quantities in Sec. II.C. We describe the variational method for the ground state phase diagram in Sec. II.D.

A. Model

We consider a single-band Kondo lattice model on a kagome lattice with localized Ising spin moments. The Hamiltonian is given by

$$H = -t \sum_{\langle i,j \rangle, \sigma} (c^\dagger_{i\sigma} c_{j\sigma} + \text{H.c.}) - J \sum_i \sigma^z_i S_i. \quad (1)$$

Here, the first term represents hopping of itinerant electrons, where $c_{i\sigma}$ ($c^\dagger_{i\sigma}$) is the annihilation (creation) operator of an itinerant electron with spin $\sigma = \uparrow, \downarrow$ at ith site, and t is the transfer integral. The sum $\langle i, j \rangle$ is taken over NN sites on the kagome lattice. The second term is the onsite interaction between localized spins and itinerant electrons, where $\sigma^z_i = c^\dagger_{i\uparrow} c^\dagger_{i\downarrow} - c^\dagger_{i\downarrow} c_{i\uparrow}$ corresponds to the z-component of itinerant electron spin, and $S_i = \pm 1$ is the localized Ising moment at ith site; J is the coupling constant (the sign of J does not matter in the present model). Hereafter, we take $t = 1$ as the unit of energy, and the lattice constant $a = 1$ [see Fig. II(A)].

B. Monte Carlo method

To investigate thermodynamic properties of the model (1), we utilized a MC simulation which has been widely applied to similar models. Although there have already been numbers of papers which describe this method, here we briefly review the MC technique to make the paper self-contained.

The model we study in this paper, Eq. (1), belongs to the class of models in which fermions are coupled to classical fields. The partition function is given by

$$Z = \text{Tr}_f \text{Tr}_c \exp[-\beta (H - \mu \bar{N}_e)], \quad (2)$$

where Tr_f is the trace over classical degree of freedom (in the current case, Ising spin configurations), and Tr_c is the trace over itinerant fermions. Here, $\beta = 1/T$ is the inverse temperature (we set the Boltzmann constant $k_B = 1$), μ is the chemical potential, and \bar{N}_e is the total number operator for fermions.

The key feature of the Hamiltonian in Eq. (1) is that the Hamiltonian is block diagonal for different spin configurations $\{S_i\}$, i.e., the two traces in Eq. (2) are taken separately. Hence, one can calculate the partition function by estimating the trace Tr_c by a classical MC sampling over $\{S_i\}$ using the Markov-chain MC method. The MC weight for a given $\{S_i\}$ is calculated by taking the fermion trace Tr_c in the following form,

$$P_{\text{MC}}(\{S_i\}) = \exp[-S_{\text{eff}}(\{S_i\})], \quad (3)$$

where S_{eff} is the effective action calculated as

$$S_{\text{eff}}(\{S_i\}) = -\sum_{\nu} \log[1 + \exp(-\beta (E_\nu(\{S_i\}) - \mu))]. \quad (4)$$
Here, \(E_r(\{S_i\}) \) are the energy eigenvalues for the configuration \(\{S_i\} \), which are readily calculated by the exact diagonalization as it is a one-body problem in a static potential.

For the MC sampling, we utilized single-spin flip update with the standard METROPOLIS algorithm. On the other hand, to overcome the freezing of MC sampling in the LL state, we also implemented the loop-update method\(^{24,25} \) in our calculations. Also, some of the low-temperature data were calculated starting from a mixed initial spin configuration of low-temperature ordered and high-temperature disordered states.\(^{26} \)

The calculations were conducted up to the system size \(N = 3 \times N_s \) with \(N_s = 9 \times 9 \) under the periodic boundary conditions. Thermal averages of physical quantities were calculated for typically 15000-80000 MC steps after 5000-18000 steps for thermalization. The results are shown in the temperature range where the acceptance ratio is larger than \(\sim 1\% \). We divided the MC measurements into five bins and estimated the statistical errors by the standard deviations among the bins.

C. Physical quantities

In this section, we introduce the definitions of physical quantities we calculated in the MC simulation. The formation of a magnetic long-range order (LRO) is detected by the spin structure factor for the Ising spins, \(S(\mathbf{q}) = \frac{1}{N} \sum_\alpha \sum_{i,j \in \alpha} \langle S_i S_j \rangle \exp(i \mathbf{q} \cdot \mathbf{r}_{ij}) \), \(^{(5)} \)

where the bracket denotes the thermal average in the grand canonical ensemble, and \(\mathbf{r}_{ij} \) is the position vector from \(i \) to \(j \)th site. \(\alpha = 1, 2, 3 \) denotes the three sublattices [see Fig. 1(a)], and the sum of \(i \) and \(j \) is taken over all the sites belonging to the same sublattice.

In the following, we show that the model in Eq. \(^{(1)} \) exhibits a variety of phases with different magnetic orders. Among them, the \(\sqrt{3} \times \sqrt{3} \) ferrimagnetic (FR) order shown in Fig. 1(c) is signaled by coexisting peaks of \(S(\mathbf{q}) \) at \(\mathbf{q} = 0 \) and \(\mathbf{q} = \pm(2\pi/3, -2\pi/3) \). The Bragg peaks at \(\mathbf{q} = \pm(2\pi/3, -2\pi/3) \) also appear for the PD state in Fig. 1(a), but the peak at \(\mathbf{q} = 0 \) is absent in this phase. On the other hand, the simple FM and \(q = 0 \) FR [Fig. 1(d)] orders develop a peak only at \(\mathbf{q} = 0 \). These two phases are distinguished by the net magnetization \(m = \langle M^2 \rangle^{1/2} \), \(^{(6)} \)

where \(M = \frac{1}{N} \sum_i S_i \). \(^{(7)} \)

Here, \(m \) takes 1 and 1/3 for FM and \(q = 0 \) FR states, respectively. We also calculate the susceptibility of \(M \) by the fluctuation formula \(\chi = \frac{N}{T} \{ m^2 - \langle |M| \rangle^2 \} \). \(^{(8)} \)

In the KT-like state appearing in our model, in principle, no Bragg peaks develop as it is a quasi-LRO. However, in finite-size calculations, it is difficult to distinguish the quasi-LRO from true LRO solely by the structure factor, as the correlation length in the KT state is divergent and exceeds the system size. To discriminate the KT-like state, it is helpful to use the pseudospin defined for each three-site unit cell\(^{26} \)

\[
\tilde{S}_l = \begin{pmatrix}
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
S_i \\
S_j \\
S_k
\end{pmatrix},
\]

where \(l \) is the index for the three-site crystallographic unit cells, and \((i, j, k) \) denotes the three sites in the \(l \)th unit cell. Taking the summation for each magnetic sublattice, we define

\[
\tilde{M}_a = \frac{3}{N_s} \sum_{l \in a} \tilde{S}_l,
\]

where \(a = A, B, C \) denotes the magnetic sublattices shown in Fig. 1(a). The quantity \(\tilde{M}_a \) is useful in identifying local spin correlations.

In the MC simulation, we calculate

\[
M_{xy}^a = \langle \langle (\tilde{M}_a^x)^2 + (\tilde{M}_a^y)^2 \rangle^{1/2} \rangle,
\]

\[
M_z^a = \langle |\tilde{M}_a^z| \rangle,
\]

and the corresponding susceptibilities,

\[
\chi_{xy}^a = \frac{N}{T} \{ \langle (\tilde{M}_a^x)^2 + (\tilde{M}_a^y)^2 \rangle - \langle \tilde{M}_a^x \rangle^2 \},
\]

\[
\chi_z^a = \frac{N}{T} \{ \langle (\tilde{M}_a^z)^2 \rangle - \langle \tilde{M}_a^x \rangle^2 \},
\]

where \(\tilde{M}_a = \langle \tilde{M}_a^x, \tilde{M}_a^y, \tilde{M}_a^z \rangle \).

To distinguish the KT-like state from other LROs, especially from FR and PD, we use the azimuth parameter of \(\tilde{M}_a \) defined by\(^{13,25} \)

\[
\psi^a = \langle \tilde{M}_a \rangle^3 \cos 6\phi_{M^a},
\]

where \(\phi_{M^a} \) is the azimuth of \(\tilde{M}_a \) in the \(xy \) plane and \(M_a = \frac{3}{2} \langle \tilde{M}_a^z \rangle^2 \). The parameter \(\psi^a \) has a negative value and approaches \(\psi^a \to -\frac{27}{64} \) as \(T \to 0 \) for the perfect PD ordering, while it becomes positive and approaches \(\psi^a \to 1 \) for the perfect FR ordering; \(\psi^a = 0 \) for both PM and KT-like phases in the thermodynamic limit \(N \to \infty \). In previous studies for the models on a triangular lattice\(^{21,22} \) it was shown that a similar parameter to \(\psi^a \) shows much faster convergence to the value in the thermodynamic limit with increasing system sizes compared to other quantities, such as the structure factor. Hence, it is useful for distinguishing the PD from the KT-like state.

In all the states we discuss in the following, the quantities \(M_{xy}^a, M_z^a, \chi_{xy}^a, \chi_z^a, \) and \(\psi^a \) are essentially the same for all the sublattices, \(a = A, B, \) and \(C \). Hence, we will show the averages over the sublattices in the following results.

\(^{(3)} \) Here, \(m^2 = \langle S_i S_j \rangle \)

\(^{(5)} \) The bracket denotes the thermal average in the ground canonical ensemble, and \(\mathbf{r}_{ij} \) is the position vector from \(i \) to \(j \)th site. \(\alpha = 1, 2, 3 \) denotes the three sublattices [see Fig. 1(a)], and the sum of \(i \) and \(j \) is taken over all the sites belonging to the same sublattice.

\(^{(6)} \) The parameter \(m = \langle M^2 \rangle^{1/2} \)

\(^{(7)} \) Here, \(m \) takes 1 and 1/3 for FM and \(q = 0 \) FR states, respectively. We also calculate the susceptibility of \(M \) by the fluctuation formula \(\chi = \frac{N}{T} \{ m^2 - \langle |M| \rangle^2 \} \).

\(^{(8)} \) In the KT-like state appearing in our model, in principle, no Bragg peaks develop as it is a quasi-LRO. However, in finite-size calculations, it is difficult to distinguish the quasi-LRO from true LRO solely by the structure factor, as the correlation length in the KT state is divergent and exceeds the system size. To discriminate the KT-like state, it is helpful to use the pseudospin defined for each three-site unit cell.

\[^{26} \] The parameter \(\psi^a \) has a negative value and approaches \(\psi^a \to -\frac{27}{64} \) as \(T \to 0 \) for the perfect PD ordering, while it becomes positive and approaches \(\psi^a \to 1 \) for the perfect FR ordering; \(\psi^a = 0 \) for both PM and KT-like phases in the thermodynamic limit \(N \to \infty \). In previous studies for the models on a triangular lattice\(^{21,22} \) it was shown that a similar parameter to \(\psi^a \) shows much faster convergence to the value in the thermodynamic limit with increasing system sizes compared to other quantities, such as the structure factor. Hence, it is useful for distinguishing the PD from the KT-like state.

In all the states we discuss in the following, the quantities \(M_{xy}^a, M_z^a, \chi_{xy}^a, \chi_z^a, \) and \(\psi^a \) are essentially the same for all the sublattices, \(a = A, B, \) and \(C \). Hence, we will show the averages over the sublattices in the following results.
In addition, we measure local spin correlations in each triangle by

$$p_{\alpha'} = \begin{cases} 1 & \text{for two-up one-down} \\ -1 & \text{for one-up two-down} \\ 0 & \text{otherwise}, \end{cases}$$

(16)

where α' is the index for the three-site triangles (both the upward and downward triangles) in the kagome lattice. In the MC simulation, we calculate the probability P that the triangles are in two-up one-down (or one-up two-down) coherently, which is calculated as

$$P = \left\langle \left(\frac{1}{2N_s} \sum_{\alpha'} p_{\alpha'}\right)^2 \right\rangle^{1/2}. \tag{17}$$

As we will show in Sec. III E, this parameter is useful in distinguishing the LL state, which is characterized by development of local correlation. The susceptibility of P is also calculated using the fluctuation formula,

$$\chi_P = \frac{N_s}{T} \left\{ P^2 - \left\langle \left(\frac{1}{2N_s} \sum_{\alpha'} p_{\alpha'}\right)^2 \right\rangle \right\}. \tag{18}$$

In the MC simulation, we calculate the temperature dependence of these quantities at a fixed electron density in the grand canonical ensemble. The temperature dependence of chemical potential, $\mu(T)$, for a given electron density is determined by calculating the electron density

$$n = \frac{1}{N} \sum_{i\sigma} \langle c_{i\sigma}^\dagger c_{i\sigma}\rangle, \tag{19}$$

while tuning μ as a function of temperature. In the following MC results, the error for n is typically ~ 0.001.

We also calculate the optical conductivity of itinerant electrons in this model by the standard Kubo formula. In the present system, the expectation value of the electric current operator in the Kubo formula is also diagonal in terms of the Ising spin configurations, and hence, calculated as

$$\langle \psi_f^{p'}, \{ S_i \}| J_\mathbf{n} | \psi_f^{p'}, \{ S_i \}' \rangle = \delta_{\{ S_i \},\{ S_i \}'} \langle \psi_f^{p'}, \{ S_i \}| J_\mathbf{n} | \psi_f^{p'}, \{ S_i \}' \rangle,$$

(20)

where $J_\mathbf{n}$ is the current operator in the \mathbf{n} direction, \mathbf{n} is a normalized vector in xy plane, and $\delta_{\{ S_i \},\{ S_i \}'} = 1$ if $\{ S_i \} = \{ S_i \}'$, while otherwise 0. Here, $\langle \psi_f^{p'}, \{ S_i \}\rangle$ is the νth single-particle eigenstate with spin configuration $\{ S_i \}$. Using Eq. (20), the optical conductivity is calculated as

$$\sigma(\omega) = \langle \sigma^{\{S_i\}}(\omega) \rangle = \sum_{\{S_i\}} P(\{S_i\}) \sigma^{\{S_i\}}(\omega), \tag{21}$$

where $\sigma^{\{S_i\}}(\omega)$ is the optical conductivity for spin configuration $\{ S_i \}$, given in the form

$$\sigma^{\{S_i\}}(\omega) = -i \sum_{\alpha,\alpha'} \frac{f(\varepsilon_\alpha) - f(\varepsilon_{\alpha'})}{\varepsilon_\alpha - \varepsilon_{\alpha'}} \langle \alpha | J_\mathbf{n} | \alpha' \rangle \langle \alpha' | J_\mathbf{n} | \alpha \rangle \left(\frac{e^2}{\hbar} \right) \omega + \varepsilon_\alpha - \varepsilon_{\alpha'} + i\tau. \tag{22}$$

Here, the indices of energy and eigenstate are abbreviated for simplicity: $\varepsilon_\alpha = \varepsilon_\alpha(\{ S_i \})$ is the eigenenergy for αth one particle state $| \alpha \rangle = | \alpha, \{ S_i \} \rangle$. In the results shown below, we calculate the mean average for the conductivity measured along and perpendicular to x directions. The axes are defined as shown in Fig. I(a). Also, we set $e^2/h = 1$, where e is elementary charge, h is Planck’s constant and take $\tau = 0.01$. Hence, the optical conductivity is calculated by taking MC average of Eq. (22) over different spin configurations.

D. Variational calculation

In addition to the MC simulation, we also investigate the ground state using a variational calculation, which was used in the previous study of the triangular lattice model. The ground state phase diagram is obtained by comparing the ground state energy for different LRO spin configurations found in the MC simulation. The phase separated regions at $T = 0$ are also identified by the variational method from the jumps of n at the magnetic phase transitions while changing the chemical potential μ. See Ref. [32] for details.
III. MONTE CARLO RESULTS

A. Phase diagram

We first start from the phase diagram at $n = 2/3$ calculated by the MC simulation. Figure 2 shows the phase diagram at $n = 2/3$ with varying J. In the low-temperature region, the phase diagram is dominated by two different magnetic phases: PD and PFM states. In the PD state, the spins form a three-sublattice magnetic superstructure as shown in Fig. 1(a). Here, two out of the three spins in the crystallographic unit cell are antiferromagnetically ordered while the remaining site is still PM. In the neighboring unit cells, this magnetic unit is rotated by $2\pi/3$, forming a magnetic unit cell with nine sites [see Fig. 1(a)]. On the other hand, in the PFM state, the system exhibits a FM order whose ordered moment saturates at a smaller value than the full polarization as temperature is lowered. The properties of these phases are described in Secs. III B and III C for PD and PFM states, respectively.

In our results in Fig. 2 the two phases are separated by a small region of phase separation, that appears slightly above $J = 3$; the PD state is found for $J \lesssim 3.0$ and PFM state for $J \gtrsim 3.4$. In the range of $3.0 \lesssim J \lesssim 3.4$, the MC calculation for n becomes unstable as $T \to 0$: it is hard to tune the chemical potential μ to fix n at $2/3$. This is a signal of phase separation. The gray point in the phase diagram at $J = 3.2$ shows the temperature where the calculation of n becomes unstable for $\chi = 9 \times 9$.

While increasing temperature, the PFM state shows a second-order phase transition to the PM state. On the other hand, for the PD state, another phase appears between the PD and high-temperature PM phases. This phase does not show a clear indication of LRO, but shows characteristic behavior that resembles the KT phase. Hence, we call this phase the KT-like phase. The details are discussed in Sec. III B.

We next show the magnetic phase diagram while changing the electron density n. Figure 3 shows the MC result at $J = 6$. When $J = 6$, at all the values of $n < 8/9$ we calculated, the system exhibits a phase transition characterized by the development of a net magnetization m with no magnetic superlattice structure. When the electron density is sufficiently small, the ground state is the FM ordered state and m approaches 1 as $T \to 0$. However, with increasing n, the saturation value of m gradually decreases from 1, which is shown as the PFM in Fig. 3. With further increasing n, it approaches $m = 1/3$ around $n \sim 0.8$. For $0.8 \lesssim n < 8/9$, the system is in the loop-liquid (LL) state, in which all the triangles in the kagome lattice takes two-up one-down configurations, as shown in Fig. 1(b). In this phase, the up-spins form loops separated by down spins, and the loops are thermally fluctuating. The details for these features while varying n are shown in Secs. III C and III E.

In the vicinity of this LL state, as decreasing temperature or as further increasing n, the LL state exhibits phase transitions to ferrimagnetic LROs. In our MC simulation, we identify two different transitions; one is the transition to the state with $q = 0$ LRO of two-up one-down spin configurations [Fig. 1(d)], and the other to the state with $\sqrt{3} \times \sqrt{3}$ LRO [Fig. 1(c)]. The former is observed while decreasing temperature at $n = 0.83$, and the latter is found by increasing n to a commensurate filling $n = 8/9$. In the corresponding density regions, the two phases are obtained in the variational calculation for the ground state, as shown in the strip at the bottom of Fig. 3. The details on these phases are presented in Sec. III D.

These two LRO states can be viewed as the “solidification” of the emergent loops in the two extreme cases; the former is a periodic array of one-dimensional chains, while the latter the shortest six-site hexagons. Interestingly, the LL state extends in the density region between these two “crystal” phases. In the phase diagram, in principle, the phase boundary between the LL state and the two FR states are well defined by the formation of magnetic LROs. On the other hand, the transition between FM, PFM, and LL states is crossover. These situations are discussed in detail in Secs. III C and III E.
pronounced increase at temperature is decreased, with showing a structure at T_α. Indeed, these are phase transitions as discussed below; their critical temperatures are estimated as $T_{K\psi} = 0.057(3)$ and $T_{\psi}^{PD} = 0.030(2)$ by the finite-size analyses of χ_{xy} and the azimuth parameter ψ, respectively.

Let us first discuss the phase transition at a lower temperature $T_{K\psi}^{PD}$. In the low-temperature region, M_{xy}^a approaches $\sqrt{2}$ while $|M_z^a|$ is essentially zero in the thermodynamic limit, as shown in Fig. 4(a). In addition, the azimuth parameter ψ shows a sharp decrease below $T \lesssim 0.03$, from $\psi \to 0$ to ~ -0.4, as shown in Fig. 4(c). The nonzero ψ indicates a spontaneous breaking of sixfold rotational symmetry of M^α, and the negative value approaching $-27/64$ suggests that the system exhibits an instability toward PD. T_{ψ}^{PD}. In addition, we find that the spin structure factor exhibits the peaks corresponding to the $\sqrt{3} \times \sqrt{3}$ order as shown Fig. 5. From these results, we conclude that the system exhibits the PD state with period $\sqrt{3} \times \sqrt{3}$ below $T \lesssim 0.03$ [see Fig. 4(a)]. The critical temperature T_{ψ}^{PD} for PD ordering is determined

FIG. 4. (color online). MC results for the PD state at $n = 2/3$ and $J = 2$: (a) M_{xy}^a and $|M_z^a|$, (b) χ_{xy} and χ_{z}^a, and (c) ψ. The data are calculated for the system sizes $N_s = 6 \times 6, 6 \times 9$, and 9×9.

FIG. 5. (color online). MC results of the spin structure factor $S(q) / N_s$ divided by N_s at $J = 2, n = 2/3$, and $T = 0.004$. The data are calculated for the system size $N_s = 9^2$.

FIG. 6. (color online). System size dependence of ψ at $J = 2$ and $n = 2/3$. The solid lines indicate linear fittings of the data at each temperature.

B. Partially disordered phase

In this section, we present the MC results for the PD state in the phase diagram in Fig. 2. We discuss the magnetic properties in Sec. III B 1 and the electronic structure in Sec. III B 2.

1. Magnetic properties

Figure 4 shows the results of the MC calculation at $n = 2/3$ and $J = 2$. As shown in Fig. 4(a), M_{xy}^a monotonically increases as temperature is decreased, with showing a pronounced increase at $T \sim 0.06$. In addition, it exhibits a small shoulder at $T \sim 0.015$ before approaching the value at the lowest temperature. The two anomalies are more clearly observed in the corresponding susceptibility χ_{xy} plotted in Fig. 4(b); χ_{xy} shows a peak which grows as the system size increases at $T \sim 0.06$ and a hump structure at $T \sim 0.015$. These results imply the presence of two successive transitions. Indeed, these are phase transitions as discussed below; their critical temperatures are estimated as $T_{K\psi} = 0.057(3)$ and $T_{\psi}^{PD} = 0.030(2)$ by
by the size extrapolation of ψ^a shown in Fig. 1. We obtain the estimate $T_{c}^{PD} = 0.030(2)$ by the rotational temperature at which the size-extrapolated value of ψ^a deviates from zero beyond the error bars.

We note that χ^a shows a monotonic increase with decreasing temperature, as shown in Fig. 1(b). This is distinct behavior from the conventional antiferromagnetic ordering, which shows a monotonic decrease below T_c. This behavior is ascribed to the presence of PM spins, which is consistent with the PD state.

Next, we discuss the phase transition at a higher temperature T_{KT}. The transition is signaled by the divergent peak of χ^c_{xy} and corresponding rapid rise of M_{xy}^c. In the intermediate-temperature region $T_{PD}^c < T < T_{KT}$, however, M_{xy}^c exhibits a considerable finite-size effect. On the other hand, $|M_0^a|$ and ψ^a shows almost no change. Furthermore, ψ^a is extrapolated to zero within statistical errors in the limit of $N \to \infty$ (see Fig. 1). This indicates that the intermediate region shows no rotational symmetry breaking of M^c parameter space, indicating the absence of LRO. Similar behavior was observed in the KT phase with quasi-LRO in the Ising antiferromagnets on triangular and kagome lattices and in the Kondo lattice model on a triangular lattice. Hence, we conclude that the intermediate phase for $T_{PD}^c < T < T_{KT}$ is a KT-like phase. Thus, in the region $J \lesssim 3$, the system shows successive phase transitions from the high-temperature PM phase to the KT-like phase, and from the KT-like phase to the PD state.

One point to be noted is that another phase transition is anticipated from the PD state to the true ground state. Although we could not detect such a phase transition within the current MC simulation, it is unlikely that the PD state remains as the ground state since it retains finite residual entropy due to the paramagnetic moments. It is more likely that, in the lowest temperature, the degeneracy will be lifted by the long-range RKKY interactions induced by the spin-charge coupling driving a transition to an LRO state. If this is the case, the transition temperature is much lower than we could approach in the current MC simulation, indicating the energy scale of the relevant RKKY interaction is extremely small.

Let us further compare the present results with those for the model on a triangular lattice. In the kagome lattice case, the transition temperature to the PD state, $T_{PD}^c = 0.030(2)$, is roughly four times smaller than that in the triangular lattice case, $T_{PD}^c = 0.130(4)$. This is presumably because of the stronger frustration in the kagome lattice case. Namely, the antiferromagnetic order develops on the honeycomb network in the case of a PD state on the triangular lattice, whereas it appears on the disconnected hexagons in the kagome lattice case, as shown in Fig. 1(a); the former can be accommodated by NN interactions, but the latter needs further-neighbor interactions. Hence, the difference of T_{PD}^c may come from weak RKKY interactions for further neighbors. This appears to be consistent with the above scenario for the absence of LRO in the temperature range accessible by the MC simulation.

Another difference is the presence of KT-like phase in a wide temperature range above the PD phase. In contrast, in the triangular lattice case, the PD phase appears to show a direct transition to the high-temperature paramagnet. This might also be ascribed to the difference in the strength of frustration; a higher entropy due to the stronger frustration may contribute to the prevalence of the KT-like phase.

2. Electronic structure

In the previous studies on the PD state in the triangular lattice case, it was shown that the energy gap opens in the electronic density of states (DOS) with the formation of PD. Namely, a metal-insulator transition takes place at the phase transition. It was also argued that the energy gap formation may play a role in stabilizing the PD state.

To see whether such behavior also takes place in the current kagome case, we calculated the electronic DOS using the MC calculation. Figure 7 shows the MC results of the temperature dependence of the DOS at $J = 2$. The Fermi level at $n = 2/3$ is set to be $\varepsilon = 0$, and typical statistical errors are shown at $\varepsilon \sim -1.2$.

At $T = 0.1 > T_{c}^{PD}$, the DOS shows featureless structure with a nonzero DOS at the Fermi level. In contrast, the data at $T = 0.004 < T_{c}^{PD}$ shows a clear energy gap at the Fermi level, indicating that the PD state is an insulator. This behavior resembles that of the PD state in the triangular lattice model. Hence, it is likely that the
energy-gap formation contributes to the stabilization of the PD state also in the current kagome lattice case.

One difference from the triangular lattice case is that the KT-like state appears above the PD state. In the present calculation, the DOS at the Fermi level appears to decrease below \(T \sim T_{KT} = 0.057(3) \). As the KT-like state is an intermediate state with quasi-LRO, it is natural that the gap opens at \(T = T_{PG} \) where the true LRO sets in. Nevertheless, in our calculation, a precursor of the gap formation is observed in the KT-like phase. Because of the finite size effect, however, it is not clear at which temperature a full gap opens in the MC data.

Another notable feature of the DOS is the spikes at \(\varepsilon \in [0, 2] \); these spikes are likely to originate in the peculiar magnetic texture of the PD state. In the PD state, the six-site antiferromagnetic loops of ordered spins are separated from each other by the paramagnetic sites. Due to the presence of these six-site spin clusters, in a snapshot of the Ising spin configuration, the length of same spin chains are restricted to \(L = 1, 3, 5 \), and 6; \(L = 3 \) and 5 are open strings of same spin sites, \(L = 6 \) is a closed loop, and \(L = 1 \) is an isolated site. Hence, if \(J \) is sufficiently large and the electrons are confined into the strings and loops, they form a set of peaks in the DOS that corresponds to the confined states.

To confirm this scenario, we calculate the DOS for different \(J \) by assuming the PD state. The calculations were done by randomly generating the spin configurations in the PD state of \(N_s = 12 \times 12 \). The DOS was calculated by taking \(4 \times 4 \) superlattices of the \(N_s = 12 \times 12 \) unit cell, and averaging over 40 different spin patterns. Figure 8(a) shows the MC result of DOS calculated for different \(J \). The results show four peaks in the energy range of \(\varepsilon \in [0, 2] \) above the \(n = 2/3 \) energy gap. The \(J \) dependence of the peak energies are plotted in Fig. 8(b). The solid curves show fittings by \(\varepsilon = a + b/J + c/J^2 \), and the dotted lines indicate the eigenenergies of the confined states expected for the finite-length strings and loops at \(J \rightarrow \infty \). The result shows that the peak energies approach the eigenenergies of the confined states with increasing \(J \). Hence, the spikes in Fig. 8(a) are ascribed to nearly confined states in the peculiar spin textures appearing in the PD state on the kagome lattice. This behavior is contrasting to the case of the triangular lattice.\[\text{\textcopyright}21,22\]

C. Ferromagnetic phases

In the large \(J \) and small \(n \) region, the FM phase appears dominantly in the phase diagram. In this region, \(m \) approaches its saturated value 1 in the low-temperature limit, namely, the system exhibits a fully-polarized FM order. This phase is connected to the FM state in the small \(n \) and weak \(J \) limit stabilized by effective ferromagnetic RKKY interactions, and also to that in the large \(J \) limit stabilized by the ferromagnetic double-exchange interactions.\[\text{\textcopyright}20,29\]

FIG. 8. (color online). (a) The DOS calculated by simple average over randomly generated PD spin patterns for several values of \(J \). The chemical potential is set to \(-J \). (b) \(J \) dependence of the position of the peaks in (a). See the text for details. The typical error bars are shown at \(\varepsilon = -2.11 \).

FIG. 9. (color online). MC results for (a) \(m \) and \(\chi_m \), and (b) \(g_m \) at \(n = 0.52 \) and \(J = 6 \). The data are calculated for \(N_s = 5^2 \), \(6^2 \), \(7^2 \), and \(8^2 \).
The typical temperature dependence of \(m \) and \(\chi_m \) is shown at \(n = 0.52 \) and \(J = 6 \) in Fig. [4](a). The result shows a rapid increase in \(m \) with decreasing temperature. Correspondingly, \(\chi_m \) exhibits a peak whose height increases as the system size increases. These indicate a magnetic transition to the FM phase. The transition temperature is determined by the Binder parameter \(g_m \) shown in Fig. [4](b).

As the electron density increases, the saturation value of \(m \) decreases. Figure [10](a) shows MC results for \(m \) and \(\chi_m \) at \(n = 0.64 \) and \(J = 6 \). The overall behavior of \(m \) looks similar to that for \(n = 0.52 \) in Fig. [9](a). \(\chi_m \) also shows divergent behavior at the onset of the rapid increase in \(m \). \(T_c \) is estimated to be 0.088(6) by the Binder parameter shown in Fig. [4](b). However, for \(T < T_c \), \(m \) appears to saturate at \(\sim 0.8 \), not 1.0. The magnetization smaller than 1 suggests the possibility of magnetic superlattice structure, such as FR orders. However, \(\chi_m \) increases again at low temperature well below \(T_c \). This behavior is not expected for FR orders.

The absence of such long-period magnetic structure is also confirmed by the calculation of the spin structure factor \(S(q) \). Figure [11] shows the result of \(S(q)/N_s \) at \(T = 0.03 \) and \(N_s = 9^2 \) (Ref. 42). The result shows a Blagg peak only at \(q = 0 \), that corresponds to the net magnetic moment. There are no other peaks in \(S(q) \), indicating that the low-\(T \) phase is the FM state with a smaller saturation moment than \(m = 1 \). We call this state the PFM state.

For the current model with Ising localized spins, the PFM state is expected to become unstable in the low-temperature limit, as the reduction of \(m \) should be induced by thermal fluctuations. In the MC simulation, however, we could not find any indication of the instability at a lower temperature; our MC results merely show the freezing of sampling in the low temperature region. On the other hand, a variational calculation comparing the ground state energy for different magnetic ordered states suggests that the ground state for this parameter is the phase separation between the FM and \(q = 0 \) FR states, as indicated in the bottom strip of Fig. 5. From these facts, in the low-temperature region where our MC simulation cannot reach, the PFM state is most likely to be taken over by the phase separation between the FM and \(q = 0 \) FR states.

The behavior of \(m \), \(\chi_m \), and \(P \) with respect to \(n \) is shown in Fig. [12]. The Kondo coupling is fixed at \(J = 6 \) and temperature at \(T = 0.03 \). As shown in Figs. [3] and [10] at this temperature, the magnetization is almost saturated at the low-temperature value for each \(n \). For \(n \lesssim 0.56 \), \(m \) is almost fully saturated, indicating that the system exhibits the FM order. On the other hand, for \(0.56 \lesssim n \lesssim 0.8 \), the magnetization continuously de-
creases with increasing n, indicating that the system is in the PFM state. Also, in the PFM state, P increases continuously from 0 to 1.

In the region of $0.8 \lesssim n < 8/9$, however, the low-temperature value of m becomes almost independent of n, and saturates to a fractional value $m = 1/3$. At the same time, P saturates at 1. Hence, in this region, most of the triangles on the kagome lattice are in two-up one-down (or one-up two-down) spin configurations coherently. The system is in the LL state in this region; see Sec. III E. In addition, FR orders appear at $n \simeq 0.83$ and $n = 8/9$ as shown in Sec. III D.

An interesting observation here is that the change between the FM, PFM, and LL states is smooth and there is no sign of phase transition. Both m and P change continuously without showing any singularity, and the magnetic susceptibility χ_m shows only a broad hump, as shown in Fig. 12. This implies that the change from FM to LL is a crossover and not a phase transition. Such behavior is understood from the symmetry point of view. In the PFM and LL states, though m is nonzero (time-reversal symmetry is broken), the system still retains all the symmetries of the lattice; the situation is unchanged from the FM state.

D. Ferrimagnetic phases

In the high density region $n \gtrsim 0.8$, a phase transition to a FR ordered state is found both in the MC and variational calculations (see Fig. 3). Figure 13 shows the MC result of $S(q = 0)/N_s$ for $n = 0.83$ at $J = 6$. The result shows a rapid increase in $S(q = 0)/N_s$ to 1 for $N_s = 4^2$ and 6^2. On the other hand, the net magnetization approaches $m = 1/3$ at low temperature, as shown in Fig. 12. These results imply an instability toward the $q = 0$ FR ordered state shown in Fig. 1(d).

As shown in Fig. 13, the onset temperature decreases for larger N_s although the results show strong finite-size effects with different behavior for even and odd N_s. We could not observe the upturn of $S(q = 0)$ for larger sizes $N_s \geq 7^2$. Hence, numerically, we could not determine the critical temperature for the transition toward the $q = 0$ FR ordered state. However, as the instability is consistently seen in the result of variational calculation as shown in the bottom of Fig. 3, the ground state at $n \approx 0.83$ is likely to be the $q = 0$ FR state with the critical temperature $T_c^{(q=0)} \leq 0.028$.

On the other hand, at $n = 8/9$, the system shows phase transition to a different FR ordered state. Figure 13 shows MC results for $J = 6$ and $n = 8/9$. As shown in Fig. 13(a), both M_{xy}^q and $|M^q_z|$ show a rapid increase at $T \sim 0.05$. Correspondingly, the susceptibilities show a divergent increase with increasing N_s. The transition temperature is estimated to be around $T_c = 0.046(2)$ from the extrapolation of the peaks in χ^{a}_{xy}. The behavior indicates the phase transition to the $\sqrt{3} \times \sqrt{3}$ FR ordered state [see Fig. 13(c)]. These results are consistent with the variational phase diagram shown in the bottom of Fig. 3.

The $\sqrt{3} \times \sqrt{3}$ FR order is more clearly seen in the spin structure factor. Figure 14 shows the result of $S(q)/N_s$ at $T = 0.032$. The result shows three Bragg peaks: $q = 0$ corresponding to the net magnetization, and $q = (4\pi/3, 2\pi/3)$ and $(2\pi/3, 4\pi/3)$ to the three-sublattice magnetic superstructure.

Briefly summarizing the results, in the region below the LL state, the ground state of the system is likely to be the $q = 0$ FR state with the critical temperature being lower than $T = 0.028$. On the other hand, $\sqrt{3} \times \sqrt{3}$ FR
state appears at \(n = 8/9 \) for \(T < T_c = 0.046(2) \). In the ground state, the variational calculation indicates a phase separation between these two FR states, as shown in the bottom strip in Fig. 3.

E. Loop liquid state

In this section, we present the MC results for the LL state in the phase diagram in Fig. 3. We discuss the magnetic properties in Sec. III E 1. We also discuss the electronic structure and the optical conductivity in Secs. III E 2 and III E 3, respectively.

1. Magnetic properties

For \(0.8 \lesssim n < 8/9 \), an exotic state appears in the intermediate-temperature range, which we call the LL state as shown in the phase diagram in Fig. 3. Figure 16(a) shows the temperature dependences of \(m \) and \(\chi_m \) for \(n = 0.83 \) and \(J = 6 \). As shown in the figure, \(m \) rapidly increases at \(T \sim 0.05 \) with saturation to \(1/3 \). Accordingly, \(\chi_m \) shows a divergent peak as increasing the system size. At the same time, as shown in Fig. 16(b), \(P \) also increases rapidly to 1 and its susceptibility \(\chi_P \) exhibits a divergent peak, indicating that most of the triangles become two-up one-down (or one-up two-down) coherently below \(T \sim 0.05 \).

The Binder parameters for \(m \) and \(P \), \(g_m \) and \(g_P \), respectively, are shown in Fig. 16(c). Both show a crossing, indicating the transition is of second order. The critical temperatures determined from the two independent Binder analyses are in good accordance with each other; \(T_c = 0.051(4) \). However, this transition temperature is much higher than the transition to the \(q = 0 \) FR state discussed in Sec. III D which should be \(T_c^{(q=0)} < 0.028 \).

The results indicate that before entering the \(q = 0 \) FR state the system exhibits another phase transition with a fractional magnetic moment \(m \approx 1/3 \) at \(T_c \).

Figure 17 shows the MC result of \(S(q)/N_s \) at \(T = 0.03 \) and \(n = 0.84 \) calculated with \(N_s = 9^2 \) (Ref. 12). The result shows a small Bragg peak at \(q = 0 \), which corresponds to the fractional magnetic moment \(m \approx 1/3 \). However, there are no other Bragg peaks indicating the formation of magnetic superstructure; it only shows two small humps and a node along \(q = q_y \).

These results show that the intermediate state for \(T_c^{(q=0)} < T < T_c \) is a peculiar state, in which all the triangles in the kagome lattice follow two-up one-down constraint, but still fluctuating between different spin configurations that satisfy the constraint. The spin state can be viewed in terms of the emergent degrees of freedom, self-avoiding up-spin loops, as schematically shown in Fig. 1(b). In this state, the up-spin loops are thermally fluctuating with exhibiting no LRO, and the down spins are isolated from each other by the fluctuating up-spin loops. Hence, we call this intermediate state the LL state. In this loop picture, the two successive transitions at \(T_c \) and \(T_c^{(q=0)} \) correspond to the formation of...
loops and their crystallization, respectively.

2. Electronic structure

Next, we look into the electronic structure of itinerant electrons in the LL state. Figure 18 shows the DOS at \(n = 0.83 \) and \(J = 6 \) with varying temperature calculated by the MC simulation for the current model. The Fermi level is set at \(\varepsilon = 0 \). As shown in the figure, when the system enters into the LL state for \(T < T_c = 0.051(4) \), a sharp peak develops at the upper edge of the band at \(\varepsilon \approx 0.65 \). This peak is ascribed to the confined electronic state associated with the up-spin loops in the LL state, as discussed below.

In the LL state, a confinement of electrons in the up-spin loops takes place as the consequence of the quantum phase interference. This is explicitly seen by considering a wave function

\[
|\psi_{l_j}(\{S_i\})\rangle = \sum_{i \in l_j(\{S_i\})} (-1)^{|i-j|} |i\rangle.
\]

(23)

Here, \(l_j(\{S_i\}) \) indicates the up-spin loop in the spin configuration \(\{S_i\} \), \(j \) is a site included in the loop \(l_j \), \(|i\rangle \) is the electronic state localized at \(i \)th site, and \(|i-j| \) is the Manhattan distance between \(i \)th and \(j \)th sites. The sum is taken over all the sites in the loop \(l_j \). The state in Eq. (23) is an eigenstate of the Hamiltonian for the spin configuration \(\{S_i\} \), as

\[
H(\{S_i\}) |\psi_{l_j}(\{S_i\})\rangle = (2 - J - \mu) |\psi_{l_j}(\{S_i\})\rangle.
\]

(24)

For the results in Fig. 18 the chemical potential is around \(\mu \approx -4.65 = -J + 1.35 \). Hence, the development of the sharp peak in the DOS at \(\varepsilon \approx 0.65 \) is ascribed to the loop formation in the LL state.

3. Optical conductivity

In addition to the peak structure of the DOS, another characteristic feature appears in the transport phenomen-
ena due to the quantum confinement. Figure 19 shows the result of optical conductivity $\sigma(\omega)$. Here, to extract the effect of characteristic spin correlations in the LL state, we calculate $\sigma(\omega)$ by taking simple average over different spin patterns in the ideal LL manifold, i.e., all the triangles satisfy the two-up one-down local constraint. The calculations were done by using the Kubo formula in Eq. (22) for 24 different spin patterns. Figure 19(a) is the result of $\sigma(\omega)$ calculated at $n = 0.843$ for various J. All the results show a sharp peak at $\omega = \omega_p \sim 1.0-1.2$, which shifts to lower ω for larger J.

The characteristic peak comes from the transition process between two confined states in the six-site loops. In the limit of $J \to \infty$, electrons are confined in the up-spin loops or at isolated down-spin sites as discussed above; the contribution to $\sigma(\omega)$ comes only from the transition process between the electronic states in the same loop. Hence, sharp peaks appear in $\sigma(\omega)$ corresponding to the discrete energy levels in the finite-length loops. In the current kagome case, the most dominant loops are the shortest ones with the length of six sites. In the six-site loops, the energy difference between the unoccupied and occupied levels at this filling (the highest and second highest levels) is t. Hence, we expect a sharp peak at $\omega_p = 1$ in the limit of $J \to \infty$. For large but finite J, as the highest energy state is the state described by the wave function in Eq. (23), this state remains the same as that of $J = \infty$. On the other hand, for the second highest level, the hybridization to the localized state at down-spin sites shifts the eigenenergy to a lower energy. Hence, it is expected that the peak in $\sigma(\omega)$ shifts to a higher ω as decreasing J. This is confirmed by the fitting shown in Fig. 19(b).

Interestingly, the peak persists in the weak J region where the exchange splitting $2J$ is comparable or even smaller than the bare bandwidth $6t$. The above strong-J argument appears to be no longer valid. In a recent study on a metal-insulator transition caused by correlated potentials, a LL-type local correlation induces a metal-insulator transition at a considerably smaller potential than the bandwidth by confining the electrons in the loops. The persisting resonant peak in $\sigma(\omega)$ is likely to be the consequence of this confinement.

Emergence of the characteristic peak is also observed in the thermodynamic average obtained by the MC simulation. Figure 20 shows the MC result of $\sigma(\omega)$ while varying n at $T = 0.04$ and $J = 6$. With increasing n from the FM region, the peak at $\omega \sim 1$ shows sharp development for $n \gtrsim 0.8$. This shows that the resonant peak in the optical conductivity can be used as a sensitive signal to detect the LL state.

IV. DISCUSSIONS AND SUMMARY

To summarize, we mapped out the phase diagram of the Ising-spin Kondo lattice model on a kagome lattice, using a Monte Carlo simulation at finite temperature, as well as variational calculations for the ground state. We presented that this model shows the rich phase diagram with various magnetic states induced by thermal fluctuations: the partially disordered, Kosterlitz-Thouless-like, partially ferromagnetic, and loop-liquid states. We also discussed phase transitions and crossovers to the competing phases including the conventional magnetically ordered states, such as the ferromagnetic and ferrimagnetic states.

In addition, we studied the electronic structure and optical conductivity in the partially disordered and loop-liquid phases. In the partially disordered state, we showed that the electronic density of states exhibits characteristic spikes, which originate from the confined electronic states on the strings and loops of the same spin sites. This is related to the geometry of kagome lattice, and hence, the spikes are a characteristic feature of the kagome model that is absent in the triangular lattice case. We also showed that a charge gap opens in the electronic density of states in the partial disorder; this phase is an insulator. For the loop-liquid state, we found a sharp peak at the upper edge of the energy band in the density of states, which originates from the presence of closed loops in the thermally fluctuating spin configurations. Also, we showed that a related resonant peak appears in the optical conductivity. These results imply that the electronic states of itinerant electrons are strongly affected by the underlying spin textures in the loop-liquid state. We also note that the arguments presented in this paper are based on a simple real-space picture. Hence, though the electronic structure of the actual materials are often much more complicated than the model considered here, we believe similar behavior can be present in the materials with multi-orbital itinerant electrons. Hence, our results might provide useful experimental probes for the exotic thermally-induced phases.

Among the phases we found, the partially disordered
and loop liquid states can be viewed as a partial lifting of the degenerated ground state manifold, where the spins fluctuate only in a subspace of the manifold of kagome Ising antiferromagnet. In the frustrated magnets, subdominant interactions, e.g., further-neighbor interactions, tend to lift the ground state degeneracy, and often believed to drive magnetic long-range orders. In contrast, the results presented here are counter examples in which the “cooperation” between conflicting two factors, thermal fluctuations and degeneracy-lifting interactions, can give birth to rich phenomena by partially lifting the degenerated ground states.

ACKNOWLEDGMENTS

The authors thank N. Furukawa, L. D. C. Jaubert, T. Misawa, and K. Penc for fruitful discussions. This research was supported by KAKENHI (No. 24340076), the Strategic Programs for Innovative Research (SPIRE), MEXT, and the Computational Materials Science Initiative (CMSI), Japan. HI is supported by Grant-in-Aid for JSPS Fellows and JSPS Postdoctoral Fellowships for Research Abroad.

* Present Address: Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA.

For a recent review, see: Frustrated Spin Systems, edited by H. T. Diep (World Scientific Publishing, 2004).

For a recent review, see: Introduction to Frustrated Magnetism, edited by C. Lacroix, P. Mendels, and F. Mila (Springer-Verlag, 2011).

1. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).
2. G. H. Wannier, Phys. Rev. 79, 358 (1950).
3. R. M. F. Houtappel, Physica 16, 425 (1950).
4. H. Takayama, K. Matsumoto, H. Kawahara, and K. Wada, J. Phys. Soc. Jpn. 52, 2888 (1983).
5. S. Fujiki, K. Shutoh, and S. Katsura, J. Phys. Soc. Jpn. 53, 1371 (1984).
6. S. Fujiki, K. Shutoh, S. Inawashiro, Y. Abe, and S. Katsura, J. Phys. Soc. Jpn. 55, 3326 (1986).
7. T. Takagi and M. Mekata, J. Phys. Soc. Jpn. 62, 3943 (1993).
8. T. Takagi and M. Mekata, J. Phys. Soc. Jpn. 64, 4609 (1995).
9. M. Mekata, J. Phys. Soc. Jpn. 42, 76 (1977).
10. N. Todoroki and S. Miyashita, J. Phys. Soc. Jpn. 73, 412 (2004).
11. H. Yoshida, E. Takayama-Muromachi, and M. Isobe, J. Phys. Soc. Jpn. 80, 123703 (2011).
12. M. Matsuda, C. de la Cruz, H. Yoshida, M. Isobe, and R. S. Fishman, Phys. Rev. B 85, 144407 (2012).
13. H. Takatsu, S. Yonezawa, S. Fujimoto, and Y. Maeno, Phys. Rev. Lett 105, 137201 (2010).
14. H. Takatsu, G. Nenert, H. Kadowaki, H. Yoshizawa, M. Enderle, S. Yonezawa, Y. Maeno, J. Kim, N. Tsuji, M. Takata, Y. Zhao, M. Green, C. Broholm, Phys. Rev. B 89, 104408 (2014).
15. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
16. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
17. K. Yosida, Phys. Rev. 106, 893 (1957).
18. H. Ishizuka and Y. Motome, Phys. Rev. Lett. 108, 257205 (2012).
19. H. Ishizuka and Y. Motome, Phys. Rev. B 87, 155156 (2013).
20. I. Martin and C. D. Batista, Phys. Rev. Lett. 101, 156402 (2008).
21. Y. Akagi and Y. Motome, J. Phys. Soc. Jpn. 79, 083711 (2010).
22. S. Kumar and J. van den Brink, Phys. Rev. Lett. 105, 216405 (2010).
23. Y. Kato, I. Martin, and C. D. Batista, Phys. Rev. Lett. 105, 266405 (2010).
24. H. Ishizuka and Y. Motome, Phys. Rev. B 83, 125101 (2011).
25. H. Ishizuka and Y. Motome, Phys. Rev. B 87, 081105 (2013).
26. G.-W. Chern, A. Rahmani, I. Martin, and C. D. Batista, arXiv:1212.3617.
27. H. Ishizuka and Y. Motome, J. Korean Phys. Soc. 63, 579 (2013).
28. H. Ishizuka and Y. Motome, Phys. Rev. B 88, 081105 (2013).
29. S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).
30. A. Rahman and F. H. Stillinger, J. Chem. Phys. 57, 4009 (1972).
31. G. T. Barkema and M. E. J. Newman, Phys. Rev. E 57, 1155 (1998).
32. R. G. Melko, B. C. den Hertog, and M. J. P. Gingras, Phys. Rev. Lett. 87, 067203 (2001).
33. Y. Ozeki, K. Kasono, N. Ito, and S. Miyashita, Physica A 321, 271 (2003).
34. L. D. C. Jaubert, S. Piatecki, M. Haque, and R. Moessner, Phys. Rev. B 85, 054425 (2012).
35. C. Zener, Phys. Rev. 82, 403 (1951).
36. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
37. K. Binder, Z. Phys. B 43, 119 (1981).
38. The plot range of the spin structure factor was incorrect in Figs. 2(c)-2(e) in Ref. 32: the plots were for $0 \leq k_x \leq 4\pi/3$ and $0 \leq k_y \leq 4\pi/3$.

* Present Address: Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA.