Phytoc ompounds and COVID-19: Two years of knowledge

1 | INTRODUCTION

On 31 December 2019, the World Health Organization (WHO) formally reported the occurrence of ‘viral pneumonia’ in Wuhan, China. Since then, the disease, later identified as COVID-19 has affected millions of individuals worldwide. As of 9 January, over 304 million confirmed cases and over 5.4 million deaths have been reported globally (WHO, weekly epidemiological update). The present virtual issue represents an update of a previous online issue (https://onlinelibrary.wiley.com/doi/toc/10.1002/1099-1573.Plant-Compounds-for-COVID19).

Traditional medicine is believed to be an opportunity in the fight against COVID-19. Data from traditional medicine may serve as a rich database for the management of cardiovascular sign and symptoms (Mohammadi Pour, Farzaei, Soleiman Dehkordi, Bishayee, & Asgary, 2021). Also, a network pharmacology analysis was used to explore the active ingredients, targets, and potential mechanisms of Yinqiao powder in COVID-19 (Lin et al., 2021). Also, another study showed that Xiyanping injection (a Chinese herbal medicine used in the clinic to treat respiratory infection and pneumonia) was safe and effective in improving the recovery of patients with mild to moderate COVID-19 (X. Y. Zhang et al., 2021).

Traditional Indian Medical (TIM) practices include Ayurveda, Siddha and Unani. A systematic review of TIM identified some potentially-important herbs such as Ocimum tenuiflorum, Tinospora cordifolia, Achyranthes bidentata, Cinnamomum cassia, Cydonia oblonga, Embelin ribes, Justicia adhatoda, Monordica charantia, Withania somnifera, Zingiber officinale and Kabusura kudineer (R. S. Singh, Singh, et al., 2021). The antiviral properties of Andrographis paniculata were reviewed in a different report (Jadhav & Karuppayil, 2021).

Brazil has been a global epicentre for COVID-19. A review of secondary metabolites related to Brazilian herbal medicines followed by in silico evaluations indicated 19 potential anti-SARS-CoV-2 compounds, mainly triterpenes and phenolic compounds. The indicated compounds showed a high affinity with proteins considered as the main molecular targets against SARS-CoV-2 (Amparo et al., 2021).

Traditional Persian medicine (TPM) has recommended potential functional foods candidates to manage COVID-19. A clinical study demonstrated that Persian medicine herbal formulations (capsules and decoction) plus routine care significantly decreased duration of hospitalization, accelerated clinical improvement and decreased symptoms in the treatment group compared with standard-care group (Karimi et al., 2021).

A virtual screening among phytochemicals contained in plants used in traditional medical systems identified several compounds (e.g., ginkgolide, mezerein, tubocurarine, gidnicin, glycobismine A, sciodopitysin, giddin, glycobismine A and sciodopitysin) as potential inhibitors of SARS-CoV-2 main protease (Sisakht, Mahmoodzadeh, & Darabian, 2021). Also, Garcinia kola and garcinoic acid suppress SARS-CoV-2 spike glycoprotein S1-induced hyper-inflammation in human peripheral blood mononuclear cells through inhibition of NF-κB activation (Olajide et al., 2021).

Finally, other review articles highlighted traditional herbs or phytochemicals for the management of cardiovascular sign and symptoms (Mohammadi Pour, Farzaei, Soleiman Dehkordi, Bishayee, & Asgary, 2021) or to overcome stress, anxiety and improve mental progression in COVID-19 patients (Jiang et al., 2021). Also, a network pharmacology analysis was used to explore the active ingredients, targets, and potential mechanisms of Yinqiao powder in COVID-19 (Lin et al., 2021). Also, another study showed that Xiyanping injection (a Chinese herbal medicine used in the clinic to treat respiratory infection and pneumonia) was safe and effective in improving the recovery of patients with mild to moderate COVID-19 (X. Y. Zhang et al., 2021).

2 | TRADITIONAL MEDICINE

Traditional medicine is believed to be an opportunity in the fight against COVID-19. Data from traditional medicine may serve as a rich database and as a guiding principle for researchers involved in COVID-19 research (Adhikari et al., 2021; Ali et al., 2021; M. N. Islam et al., 2021; Jadhav & Karuppayil, 2021; Jalali, Babagian, Akbrialiabad, Foroughinia, & Zarshenas, 2021; Merarchi, Dudha, Antar, & Bala, 2020; Shah et al., 2021; N. A. Singh, Kumar, Jyoti, & Kumar, 2021; Tan et al., 2020).

Concerning Traditional Chinese Medicine (TCM), a systematic review concluded that TCM combined with conventional Western medicine was a potential treatment option for increasing clinical effective rate, improving the clinical symptoms, and preventing disease progress in COVID-19 patients (Jiang et al., 2021). Also, a network pharmacology analysis was used to explore the active ingredients, targets, and potential mechanisms of Yinqiao powder in COVID-19 (Lin et al., 2021). Also, another study showed that Xiyanping injection (a Chinese herbal medicine used in the clinic to treat respiratory infection and pneumonia) was safe and effective in improving the recovery of patients with mild to moderate COVID-19 (X. Y. Zhang et al., 2021).

Finally, other review articles highlighted traditional herbs or phytochemicals for the management of cardiovascular sign and symptoms (Mohammadi Pour, Farzaei, Soleiman Dehkordi, Bishayee, & Asgary, 2021) or to overcome stress, anxiety and improve mental
health associated with COVID-19 (Shahrajabian, Sun, Soleymani, & Cheng, 2021).

3 | POLYPHENOLS

Emerging data suggest polyphenols as potential immunomodulatory and/or antiviral agents against COVID-19. The present virtual issue contains review addressing the potential of flavonoids, curcumin, resveratrol and silibinin in attenuating lung injury and cytokine storm associated with the disease (Derosa et al., 2021; Di Petrillo, Orrù, Fais, & Fantini, 2021; El-Missiry, Fekri, Kesar, & Othman, 2021; Gour, Manhas, Bag, Gorain, & Nandi, 2021; Khezri, Saeedi, Mohammadamin, & Zakaryaei, 2021; Palit, Mukhopadhyay, & Chattopadhyay, 2021; Pawar & Pal, 2020; Santana et al., 2021). Studies on specific polyphenols showed that (a) kaempferol inhibited the SARS-CoV-2 main protease (3CLpro) (Khan et al., 2021), (b) oroxylin suppressed the entrance of the SARS-CoV-2-spiked pseudotyped virus into ACE2 cells (Gao et al., 2021), (c) resveratrol inhibited the replication of SARS-CoV-2 in cultured Vero cells (M. Yang et al., 2021) and (d) silibinin interacted with SARS-CoV-2 main target proteins (e.g., spike protein RBD and Mpro residues) (Speciale et al., 2021). Clinical investigations showed the efficacy of nano-curcumin formulations in the management of mild to moderate hospitalized patients, being curcumin able to accelerate the recovery of the acute inflammatory phase (Hassaniazad et al., 2021; Sabermoghadam et al., 2021). Finally, a letter to the Editor discussed the interaction of fatty acids and resveratrol with angiotensin-converting enzyme 2 as well as immune system in COVID-19 (Hoang, 2020).

4 | CANNABINOID-RELATED MOLECULES

Specific reports are available for cannabidiol, a non-euphoric phytocannabinoid, and palmitoylethanolamide, a naturally occurring molecule related to the endocannabinoid anandamide. Pesce et al. (2020) analysed the antiinflammatory and immunomodulatory properties of palmitoylethanolamide in infectious and respiratory diseases and how these could translate to COVID-19 care. A different paper reported that cannabidiol inhibited SARS-CoV-2 spike (S) protein-induced enterotoxicity and inflammation through a PPARδ-dependent TLR4/NLRP3/Caspase-1 signalling suppression in intestinal cells (Corpetti et al., 2021).

5 | ALKALOIDS

Many alkaloids possess antiviral effects and, accordingly, they have been proposed as candidate for COVID-19. Pseudoephedrine was found to antagonize wild and mutated SARS-CoV-2 viruses by blocking virus invasion (Yu et al., 2021). A placebo-controlled study showed that a syrup containing propolis and Hyoscyamus niger L. extract ameliorated the signs and symptoms of COVID-19 (Kosari et al., 2021). Finally, Chelidonia majus, a plant of the Papaveraceae family containing isoquinoline alkaloids, was believed to be a promising approach for the treatment of COVID-19, based on a 20-case series (Gardin & Braga, 2021).

Overall, it appears that the field regarding the potential use of plant-derived compounds in COVID-19 is advancing and thus far supplying the scientific community with its resources. The virtual issue is freely available at https://onlinelibrary.wiley.com/doi/10.1002/ISSN1099-1573.Phytocompounds-and-covid-19.

CONFLICT OF INTEREST

The Author declare no conflict of interest.

Ester Pagano
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy

Correspondence
Ester Pagano, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy. Email: ester.pagano@unina.it

ORCID
Ester Pagano https://orcid.org/0000-0003-2872-1734

REFERENCES

Adhikari, B., Marasini, B. P., Rayamajhee, B., Bhattacharai, B. R., Lamichhane, G., Khadayat, K., ... Parajuli, N. (2021). Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytotherapy Research: PTR, 35(3), 1298–1312. https://doi.org/10.1002/ptr.6893

Ahmad, A., Rehman, M. U., Ahmad, P., & Alkharfy, K. M. (2020). Covid-19 and thymoquinone: Connecting the dots. Phytotherapy Research: PTR, 34(11), 2786–2789. https://doi.org/10.1002/ptr.7693

Ali, S. I., Sheikh, W. M., Rather, M. A., Venkatesalu, V., Muzamil Bashir, S., & Nabi, S. U. (2021). Medicinal plants: Treasure for antiviral drug discovery. Phytotherapy Research: PTR, 35(7), 3447–3483. https://doi.org/10.1002/ptr.7039

Amparo, T. R., Seibert, J. B., Almeida, T. C., Costa, F., Silveira, B. M., da Silva, G. N., ... de Souza, G. (2021). In silico approach of secondary metabolites from Brazilian herbal medicines to search for potential drugs against SARS-CoV-2. Phytotherapy Research: PTR, 35(8), 4297–4308. https://doi.org/10.1002/ptr.7097

Antonelli, M., Donelli, D., Maggini, V., & Firenzuoli, F. (2020). Phytotherapeutic compounds against coronaviruses: Possible streams for future research. Phytotherapy Research: PTR, 34(7), 1469–1470. https://doi.org/10.1002/ptr.6712

Bahrami, M., Kamalinejad, M., Latifi, S. A., Seif, F., & Dadmehr, M. (2020). Cytokine storm in COVID-19 and parthenolide: Preclinical evidence. Phytotherapy Research: PTR, 34(10), 2429–2430. https://doi.org/10.1002/ptr.6776

Boozari, M., & Hosseinzadeh, H. (2021). Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytotherapy Research: PTR, 35(2), 864–876. https://doi.org/10.1002/ptr.6873
EDITORIAL

Brendler, T., Al-Harasi, A., Bauer, R., Gafner, S., Hardy, M. L., Heinrich, M., ... Williamson, E. M. (2021). Botanical drugs and supplements affecting the immune response in the time of COVID-19: Implications for research and clinical practice. Phytotherapy Research: PTR, 35(6), 3013–3031. https://doi.org/10.1002/ptr.7008

Chrzanoski, J., Chrzanoska, A., & Graboni, W. (2021). Glycyrrhizin: An old weapon against a novel coronavirus. Phytotherapy Research: PTR, 35(2), 629–636. https://doi.org/10.1002/ptr.6852

Coretti, C., Del Re, A., Seguela, L., Palencia, I., Rugro, S., De Conno, B., ... Esposito, G. (2021). Cannabidiol inhibits SARS-CoV-2 spike (S) protein-induced cytototoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line. Phytotherapy Research: PTR, 35(12), 6893–6903. https://doi.org/10.1002/ptr.7302

Cui, Y., Xin, H., Tao, Y., Mei, L., & Wang, Z. (2021). Arencaria kansuensis attenuates pulmonary fibrosis in mice via the activation of Nrf2 pathway and the inhibition of NF-kB/TGF-beta1/Smad2/3 pathway. Phytotherapy Research: PTR, 35(2), 974–986. https://doi.org/10.1002/ptr.6857

Dave, G. S., Rakholiya, K. D., Kaneria, M. J., Galadvia, B. P., Vyas, S. R., Kanbi, V. H., & Patel, M. P. (2020). High affinity interaction of Solanum tuberosum and Brassica juncea residue smoke water compounds with proteins involved in coronavirus infection. Phytotherapy Research: PTR, 34(12), 3400–3410. https://doi.org/10.1002/ptr.6796

Derosa, G., Maffioli, P., D’Angelo, A., & Di Pio, R. (2021). A role for quercetin in coronavirus disease 2019 (COVID-19). Phytotherapy Research: PTR, 35(3), 1230–1236. https://doi.org/10.1002/ptr.6887

Di Petillo, A., Ornì, G., Fais, A., & Fantini, M. C. (2021). Quercetin and its derivatives as antiviral potentials: A comprehensive review. Phytotherapy Research: PTR. Advance online publication. https://doi.org/10.1002/ptr.7309

El-Missiry, M. A., Feki, A., Kesar, L. A., & Othman, A. I. (2021). Polyphenols are potential nutritional adjuvants for targeting COVID-19. Phytotherapy Research: PTR, 35(6), 2879–2889. https://doi.org/10.1002/ptr.6992

Fakhri, S., Nouri, Z., Moradi, S. Z., & Farzai, M. H. (2020). Astaxanthin, a natural product, celastrol, for COVID-19? Phytotherapy Research: PTR, 34(11), 6417–6427. https://doi.org/10.1002/ptr.7294

Hoang, T. (2020). An approach of fatty acids and resveratrol in the prevention of COVID-19 severity. Phytotherapy Research: PTR. Advance online publication. https://doi.org/10.1002/ptr.6956

Islam, M. N., Hossain, K. S., Sarker, P. P., Ferdous, J., Hannan, M. A., Rahman, M. M., ... Uddin, M. J. (2021). Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytotherapy Research: PTR, 35(3), 1329–1344. https://doi.org/10.1002/ptr.6895

Islam, M. T., Sarkar, C., El-Kersh, D. M., Jamaddar, S., & Shilpi, J. A., & Mubarak, M. S. (2020). Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research: PTR, 34(10), 2471–2492. https://doi.org/10.1002/ptr.7000

Jadhav, A. K., & Karuppayil, S. M. (2021). Andrographis paniculata (Burm. F) Wall ex Nees: Antiviral properties. Phytotherapy Research: PTR, 35(10), 5365–5373. https://doi.org/10.1002/ptr.7145

Jalali, A., Babaghiari, F., Akbrilialbabad, H., Foroughinia, F., & Zarshenas, M. M. (2021). A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytotherapy Research: PTR, 35(4), 1925–1938. https://doi.org/10.1002/ptr.6936

Jiang, F., Xu, N., Zhou, Y., Song, J., Liu, J., Zhu, H., ... Li, R. (2021). Contribution of traditional Chinese medicine combined with conventional western medicine treatment for the novel coronavirus disease (COVID-19), current evidence with systematic review and meta-analysis. Phytotherapy Research: PTR, 35(11), 5992–6009. https://doi.org/10.1002/ptr.7209

Karimi, M., Zarei, A., Soleymani, S., Jamalighadamsiahkali, S., Asadi, A., Shati, M., ... Zargaran, A. (2021). Efficacy of Persian medicine herbal formulations (capsules and decoction) compared to standard care in patients with COVID-19, a multicenter open-labeled, randomized, controlled clinical trial. Phytotherapy Research: PTR, 35(11), 6295–6309. https://doi.org/10.1002/ptr.7277

Khan, A., Heng, W., Wang, Y., Qiu, J., Wei, X., Peng, S., ... Wei, D. Q. (2021). In silico and in vitro evaluation of curcumin as an inhibitor of the SARS-CoV-2 main protease (3CLpro). Phytotherapy Research: PTR, 35(6), 2841–2845. https://doi.org/10.1002/ptr.6998

Khezri, K., Saeedi, M., Mohammadmami, H., & Zakaryaie, A. S. (2021). A comprehensive review of the therapeutic potential of curcumin nanofomulations. Phytotherapy Research: PTR, 35(10), 5527–5563. https://doi.org/10.1002/ptr.7190

Kim, K. H., Park, Y. J., Jung, H. J., Lee, S. J., Lee, S., Yun, B. S., ... Rho, M. C. (2020). Rugosic acid A, derived from Rosa rugosa Thunb., is a novel inhibitory agent for NF-kB and IL-6/STAT3 axis in acute lung injury model. Phytotherapy Research: PTR, 34(12), 3200–3210. https://doi.org/10.1002/ptr.6767

Kosari, M., Nourreddini, M., Khameneh, S. P., Najafi, A., Ghaderi, A., Sehat, M., & Banafshe, H. R. (2021). The effect of propolis plus Hyoscymus niger L. methanolic extract on clinical symptoms in patients with COVID-19. Phytotherapy Research: PTR, 35(9), 1344–1350. https://doi.org/10.1002/ptr.7300

Lin, H., Wang, X., Liu, M., Huang, M., Shen, Z., Feng, J., ... Ye, X. (2021). Exploring the treatment of COVID-19 with Yinqiao powder based on network pharmacology. Phytotherapy Research: PTR. Advance online publication. https://doi.org/10.1002/ptr.7012
Sangtani, R., Ghosh, A., Jha, H. C., Parmar, H. S., & Bala, K. (2020). Potential of algal metabolites for the development of broad-spectrum antiviral therapeutics: Possible implications in COVID-19 therapy. *Phytotherapy Research: PTR*. Advance online publication. https://doi.org/10.1002/ptr.6948

Santana, F., Thevenard, F., Gomez, K. S., Taguchi, L., Cámera, N., Stihano, R. S., ... Lago, J. (2021). New perspectives on natural flavonoids on COVID-19-induced lung injuries. *Phytotherapy Research: PTR*. 33(9), 4988–5006. https://doi.org/10.1002/ptr.7131

Shah, M. A., Rasul, A., Yousaf, R., Haris, M., Faheem, H. I., Hamid, A., ... Batía, G. E. (2021). Combination of natural antivirals and potent immune invigorators: A natural remedy to combat COVID-19. *Phytotherapy Research: PTR*. 35(12), 6530–6551. https://doi.org/10.1002/ptr.7228

Shahrajib, M. H., Sun, W., Soleymani, A., & Cheng, Q. (2021). Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. *Phytotherapy Research: PTR*. 35(3), 1237–1247. https://doi.org/10.1002/ptr.6888

Singh, N. A., Kumar, P., Jyoti, & Kumar, N. (2021). Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. *Phytotherapy Research: PTR*. Advance online publication. https://doi.org/10.1002/ptr.7019

Singh, R. S., Singh, A., Kaur, H., Batra, G., Sarma, P., Kaur, H., ... Medhi, B. (2021). Promising traditional Indian medicinal plants for the management of novel Coronavirus disease: A systematic review. *Phytotherapy Research: PTR*. 35(8), 4456–4484. https://doi.org/10.1002/ptr.7150

Sisakht, M., Mahmoodzadeh, A., & Darabian, M. (2021). Plant-derived chemicals as potential inhibitors of SARS-CoV-2 main protease (6LU7), a virtual screening study. *Phytotherapy Research: PTR*. 35(6), 3262–3274. https://doi.org/10.1002/ptr.7041

Speciale, A., Muscarà, C., Molonia, S. M., Cimino, F., Saija, A., & Giorfè, S. V. (2021). Sibillini as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. *Phytotherapy Research: PTR*. 35(8), 4616–4625. https://doi.org/10.1002/ptr.7107

Tan, L., Song, X., Ren, Y., Wang, M., Guo, C., Guo, D., ... Deng, Y. (2020). Anti-inflammatory effects of cordycepin: A review. *Phytotherapy Research: PTR*. Advance online publication. https://doi.org/10.1002/ptr.6890

Thota, S. M., Balan, V., & Sivaramakrishnan, V. (2020). Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. *Phytotherapy Research: PTR*. 34(12), 3148–3167. https://doi.org/10.1002/ptr.6794

Tutunchi, H., Naeini, F., OstadrAhimi, A., & Hosseinzadeh-Attar, M. J. (2020). Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. *Phytotherapy Research: PTR*. 34(12), 3137–3147. https://doi.org/10.1002/ptr.6781

Upadhyay, S., Tripathi, P. K., Singh, M., Raghavendhar, S., Bhardwaj, M., & Patel, A. K. (2020). Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. *Phytotherapy Research: PTR*. 34(12), 3411–3419. https://doi.org/10.1002/ptr.6802

Yang, F., Zhang, Y., Tariq, A., Jiang, X., Ahmed, Z., Zhihao, Z., ... Bussmann, R. W. (2020). Food as medicine: A possible preventive measure against coronavirus disease (COVID-19). *Phytotherapy Research: PTR*. 34(12), 3124–3136. https://doi.org/10.1002/ptr.6770

Yang, M., Wei, J., Huang, T., Lei, L., Shen, C., Lai, J., ... Liu, Y. (2021). Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. *Phytotherapy Research: PTR*. 35(3), 1127–1129. https://doi.org/10.1002/ptr.6916

Yu, S., Chen, Y., Xiang, Y., Lin, H., Wang, M., Ye, W., ... Zhang, J. (2021). Pseudoephedrine and its derivatives antagonize wild and mutated severe acute respiratory syndrome-CoV-2 viruses through blocking virus invasion and anti-inflammatory effect. *Phytotherapy Research: PTR*. 35(10), 5847–5860. https://doi.org/10.1002/ptr.7245

Zahedipour, F., Hosseini, S. A., Sathyapalan, T., Majeed, M., Jamalahlmad, T., Al-Rasadi, K., ... Sayehbakh, A. (2020). Potential effects of curcumin in the treatment of COVID-19 infection. *Phytotherapy Research: PTR*. 34(11), 2911–2920. https://doi.org/10.1002/ptr.6738
Zaman, W., Saqib, S., Ullah, F., Ayaz, A., & Ye, J. (2020). COVID-19: Phylogenetic approaches may help in finding resources for natural cure. *Phytotherapy Research: PTR, 34*(11), 2783–2785. https://doi.org/10.1002/ptr.6787

Zhang, Q., Gan, C., Liu, H., Wang, L., Li, Y., Tan, Z., ... Ye, T. (2020). Cryptotanshinone reverses the epithelial-mesenchymal transformation process and attenuates bleomycin-induced pulmonary fibrosis. *Phytotherapy Research: PTR, 34*(10), 2685–2696. https://doi.org/10.1002/ptr.6699

Zhang, X. Y., Lv, L., Zhou, Y. L., Xie, L. D., Xu, Q., Zou, X. F., ... Ye, X. Q. (2021). Efficacy and safety of Xyanyping injection in the treatment of COVID-19: A multicenter, prospective, open-label and randomized controlled trial. *Phytotherapy Research: PTR, 35*(8), 4401–4410. https://doi.org/10.1002/ptr.7141