A Generic Polynomial for the Alternating Group A_5

Gene Ward Smith

Abstract

The methods of classical invariant theory are used to construct generic polynomials for groups S_5 and A_5, along with explicit reductions to specializations of the generic polynomials defining any desired field extension with those groups.

1 The classical invariant theory of binary forms

The classical invariant theory of binary forms explores the invariants under the action of $\text{SL}_2(K)$ in a field K of characteristic 0, but we will extend that to consideration of characteristics other than 2, 3, or 5. Initially, however, it will do no harm to think of K as \mathbb{Q} or a field of rational functions $\mathbb{Q}(t_1, \ldots, t_m)$.

If a binary form of homogenous degree n in x and y has a nonzero coefficient for x^n, then by setting y to 1, we obtain a polynomial in x of degree n. Substituting x/y for x and multiplying by y^n gives the form back again. Hence the invariant theory of binary forms is also an invariant theory for polynomials in one variable.

Classical invariant theory actually explores a larger class of invariants, which include the covariants. A covariant of a binary form f is a polynomial of homogenous degree r (called the order) in x and y, with coefficients which are of degree s in the coefficients of f, which is invariant in a particular sense under $\text{SL}_2(K)$. The invariants themselves are then the covariants order 0.

If $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a matrix with determinant 1, and g a form, then $M(g)$ is the form obtained by substituting $x \mapsto ax + by$, $y \mapsto cx + dy$ for x and y. Let $C(f)$ be a function from forms of order n to forms of order r, whose coefficients are defined by means of homogenous polynomial functions of
degree s in the coefficients of f. Then $C(f)$ is a covariant of f if C and M
commute, so that $C(M(f)) = M(C(f))$.

Two important special cases of this are when $C(M(f)) = C(f)$ and when
$C(f) = f$. In the first case, $C(f)$ is a form of order 0, and is a true in-
variant, whose value whether computed from the original or the transformed
coefficients is the same. In the second case, $C(f)$ is the identity map, and
so $C(M(f)) = M(C(f)) = M(f)$; this expresses the fact that f itself is a
covariant of order n and degree 1.

The covariants form a finitely-generated bigraded algebra, whose genera-
tors may be found by the operation of transvection. In this era of computer
algebra, transvectants are easily computed via Cayley’s Ω-process. This pro-
cess proceeds by the following steps, starting from two forms f and g in the
variables x and y:

1. Substitute $x \mapsto x_1, y \mapsto y_1$ in f and $x \mapsto x_2, y \mapsto y_2$ in g.
2. Use the result to define a function $w(x_1, y_1, x_2, y_2) = f(x_1, y_1)g(x_2, y_2)$
in four variables.
3. Apply the differential operator $\Omega = \frac{\partial^2}{\partial x_1 \partial y_2} - \frac{\partial^2}{\partial x_2 \partial y_1}$ m times to w. This
means that m times in succession, perform the substitution

$$w \mapsto \frac{\partial^2 w}{\partial x_1 \partial y_2} - \frac{\partial^2 w}{\partial x_2 \partial y_1}.$$

4. Substitute $x_1 \mapsto x, x_2 \mapsto x, y_1 \mapsto y, y_2 \mapsto y$ in the result.
5. The end result of Cayley’s Ω-process is the m-th transvectant of f and
g, written $(f, g)^m$.

2 The quintic

The algebra of covariants of the binary quintic has 23 generators, but it is
not necessary for us to consider all of them. If $f = a_0 x^5 + a_1 x^4 y +
a_2 x^3 y^2 + a_3 x^2 y^3 + a_4 x y^4 + a_5 y^5$ with indeterminate coefficents, then the
Cayley Ω process staring from f will produce polynomials in x and y and
the indeterminates with integral numerical coefficients. We can divide out
the content (the GCD of all the numerical factors) and obtain a reduced
covariant with relatively prime integral coefficients. We obtain in this way
the following covariants:
The original form f of order 5 and degree 1

- $i = (f, f)^4/288$ of order 2 and degree 2
- $H = (f, f)^2/16$ of order 6 and degree 2
- $j = -(f, i)^2/12$ of order 3 and degree 3
- $A = (i, i)^2/32$ of order 0 and degree 4
- $k = (i, H)^2/12$ of order 4 and degree 4
- $\tau = (j, j)^2/16$ of order 2 and degree 6
- $B = (\tau, i)^2/8$ of order 0 and degree 8
- $\Delta = (A^2 - 4B)/125$ of order 0 and degree 8
- $C = (\tau, \tau)^2/6$ of order 0 and degree 12
- $M = (-9C + 2000A\Delta + 1008A^3)/25$ of order 0 and degree 12

These covariants, aside from a numerical factor, are the same as the ones with the same names in [2, Grace and Young]. However, the covariant of order and degree 4 is not there given a name, so here it is called k, to go along with i and j, of order and degree both 2 and both 3 respectively. The ring of invariants can be generated by $A, B,$ and C and an invariant of degree 18 which we don’t require; however it can equally well be given in terms of A, Δ and M, and this turns out to be more useful for our purpose. Particular note is drawn to the fact that Δ is the discriminant.

3 Generic polynomials

As we noted in the introduction, the form f in x and y with indeterminate coefficients a_0, \ldots, a_5 corresponds via $y \mapsto 1$ to a polynomial in x. In just the same way, the covariants of f may be converted to corresponding polynomials. If we do this, i becomes a polynomial of degree 2 in x, and k a polynomial of degree 4. We may then apply the Tschirnhausen transformation $z = k/i^2$ and obtain a polynomial of degree 5 in z which gives the same field extension of $\mathbb{Q}(a_0, \ldots, a_5)$. The coefficients of this polynomial are all homogenous of
degree 24 in a_0, \cdots, a_5, which means they could be invariants of degree 24. If that were to be the case, they would be expressible in terms of A, Δ and M, since an invariant of degree 18 can play no role. By direct computation we find that in fact, the polynomial satisfied by z does have invariants of degree 24 for coefficients, and is equal to the following polynomial.

$$(1) \quad 288M^2z^5 + (279890625\Delta^2A^2 + 262154475\Delta^4 - 3666000MA\Delta - 2041200MA^3 + 59541075A^6 + 87890625\Delta^3 + 14880M^2)z^4 + (3711849300\Delta^4 + 6170437500\Delta^2A^2 - 8342800MA\Delta - 23781600MA^3 + 538658100A^6 - 351562500\Delta^3 + 259520M^2)z^3 + (15376579650\Delta^4 + 22131843750\Delta^2A^2 - 372984000MA\Delta - 130420800MA^3 + 2685964050A^6 + 527343750\Delta^3 + 1583040M^2)z^2 + (9952607700\Delta A^4 + 15161437500\Delta^2A^2 - 243612000MA\Delta - 79322400MA^3 + 1619910900A^6 - 351562500\Delta^3 + 971040M^2)z - 42806000MA\Delta + 1743266475\Delta^3
$$

We can rewrite this in terms of a polynomial of degree two in M; if we do that we find that the M^2 term is $32(3z + 1)^2(z + 17)^3M^2$. This suggests replacing z with $(u - 1)/3$. We might also consider that if we divide the polynomial by A^6, we can replace a polynomial over three indeterminates with one over two: the absolute invariants ($[\Pi, Elliott]$) Δ/A^2 and M/A^3, where an invariant is called “absolute” if it is invariant under $GL_2(K)$. In place of these, we will use instead $\delta = 25\Delta/A^2$ and $q = A^3/(8M)$, with an eye to the simplicity of the resulting polynomial. Performing both of these substitutions, we obtain the following.

$$(2) \quad u^2(u + 50)^3 - 20(611\delta u^3 + 8505u^3 + 39270\delta u^2 + 263250u^2 + 4050000u + 4380000\delta u + 100000\delta)uq + 2(25 + 3\delta)(625\delta^2u^4 + 44550\delta u^4 + 793881u^4 + 18370800u^3 + 3175200u^3 - 1000\delta^2u^3 + 262440000u^2 + 600000\delta^2u^2 + 25336800u^2 - 160000\delta^2u + 129600000\delta u + 160000\delta^2)q^2$$

By a generic polynomial outside S with group G, where S is a finite set of primes and G a finite group, is meant a polynomial P in x with coefficients in $Q(t_1, \cdots, t_m)$ such that
1. The Galois group of the splitting field for \(P \) over \(\mathbb{Q}(t_1, \cdots, t_m) \) is \(G \).

2. For \(p \notin S \), if \(P \) is reduced modulo \(p \), the result is defined, separable and irreducible and the Galois group of the splitting field for \(P \) over \(\mathbb{F}_p(t_1, \cdots, t_m) \) is \(G \).

3. If \(K \) is a field of characteristic 0, and \(L/K \) is a Galois extension with group \(G \), then \(L \) is the splitting field of a polynomial obtained by specializing \((t_1, \cdots, t_m) \) to values \((\tau_1, \cdots, \tau_m)\) in \(K \).

4. If \(K \) is a field of finite characteristic \(p \notin S \), and \(L/K \) is a Galois extension with group \(G \), then \(L \) is the splitting field of a polynomial obtained by reducing \(P \) mod \(p \) and then specializing \((t_1, \cdots, t_m) \) to values \((\tau_1, \cdots, \tau_m)\) in \(K \).

Theorem 1. The two polynomials constructed above are generic for the group \(S_5 \) outside 2, 3, 5.

Proof. Let us first observe that by [4, Maeda], we may treat characteristic \(p \neq 2 \) uniformly with characteristic 0, and also that the separability of both polynomials is obvious.

So long as the characteristic is not 2, 3, or 5, the two polynomials above have non-zero discriminant and hence no repeated roots. Since these roots result from a Tschirnhausen transformation, the polynomials have the same Galois group over their base field as \(f \) does over \(a_0, \cdots, a_5 \), namely \(S_5 \). In the other direction, if we start with a polynomial of \(g \) degree five with coefficients in \(K \) whose roots define \(L/K \) with group \(G \), then so long as \(A \) and \(M \) are not zero, the polynomials (1) and (2) above result from a Tschirnhausen transformation of \(g \), and hence give the same extension.

If either \(A \) or \(M \) is zero for \(g \), we may first apply a preliminary Tschirnhausen transformation and obtain a polynomial \(\tilde{g} \) and obtain \(\tilde{A} \) and \(\tilde{M} \) which are not zero. An invariant of a polynomial \(g \) of order \(n \) which is of degree \(d \) is of weight \(w = nd/2 \) in the roots of \(g \), meaning it is a homogenous function of degree \(w \) in the roots. Hence \(A \) may be written as a homogenous polynomial of degree 10 and \(M \) of degree 30 in the roots of \(g \). Using resultants, we can eliminate all but one of the roots with respect to \(g \), and obtain a polynomial which must be nonzero for any root of a replacement polynomial \(\tilde{g} \) for \(g \). These roots which the roots of \(\tilde{g} \) must avoid will lie in \(L \), but there is no reason they should lie in a stem field given by a root of \(g \); however even if
this should be so there are only finitely many such roots and hence they are easily avoided. Therefore a suitable \(\tilde{g} \) may always be found, in which case its invariants can be used to reduce the extension \(L/K \) to one parametrized by (1) or (2).

By a theorem of [3, Kemper], any polynomial which is generic satisfies the seemingly stronger condition that it also parameterizes all Galois extensions with groups which are subgroups of \(G \). Hence the above polynomials also provide the extensions of group \(A_5 \), just as the polynomial \(f \) with indeterminate coefficients \(a_0, \ldots, a_5 \) will. But they also do something more, which is much more interesting.

Theorem 2. If we substitute \(\Delta \mapsto D^2 \) in the first polynomial, or \(\delta \mapsto d^2 \) in the second, we obtain a polynomial generic for the group \(A_5 \) over \(\mathbb{Q} \).

Proof. In both cases, the discriminants of the polynomials are squares, as the discriminant of polynomial (1) is a square times \(\Delta \), and of polynomial (2) a square times \(\delta \). Since the characteristic is not 2, this means that the Galois group cannot be \(S_5 \) and must be contained in \(A_5 \). Since we can reduce any \(A_5 \) extension to these forms, the Galois group must be exactly \(A_5 \). Moreover in characteristic 0, we may invoke Maple’s “galois” function, which can compute Galois groups of function field extensions, and compute the Galois group directly; in characteristic \(p \), the discriminant and the linear resolvent from the sum of two roots suffices. Put succinctly, the explicit procedure to reduce any \(A_5 \) extension outside of 2, 3, 5 to one of these polynomials plus the fact that the discriminant is a square shows they are generic.

4 Examples

Suppose our starting polynomial is \(x^5 - 2x^4 - 10x^3 + 23x^2 - 6x - 4 \), which has Galois group \(A_5 \). Computing invariants, we find that \(\delta = 25 \cdot 72352036/110578^2 = 25/169 = (5/13)^2 \), a square. Also, \(q = 110578^3/(8 \cdot 55159285100995067) = 9343841/3049494563 \). Substituting these values into polynomial (2), or \(d = 5/13 \) into the generic \(A_5 \) polynomial derived from it, we obtain

\(\)
This we can verify gives the same extension as a root of our original polynomial by factoring it over the extension field.

Now let us look instead at \(x^5 + 25x^4 - x - 1 \). This has Galois group \(S_5 \), but \(A = 0 \), and therefore \(\delta \) cannot be computed. However, the polynomial satisfied by the square of the roots, \(x^5 - 625x^4 - 2x^3 + 50x^2 + x - 1 \), has \(A = 1247920128 \), \(\Delta = -833155976134656 \) and \(M = 78714822656850046410962239488 \), so that \(\delta = -2554525/190992984 \) and \(q = 1396546810783488/452524020352953001 \). Once again, we may verify we have the same field by factoring over the extension given by a root.

For a final example, consider \(x^5 - 10cx^3 + 45c^2x - c^2 \), known as Brioschi normal form. This has absolute invariants \(\delta = 1/5 \) and \(q = 258192/(1728 - 1) \). In characteristic 11, we may write the polynomial as \(x^5 + cx^3 + c^2x - c^2 \), with absolute invariants \(\delta = d^2 = 9 \) and \(q = 5(c-1)/(2c+5) \). Since \(\delta = d^2 \) is a square, we may substitute \(d = 3 \) and \(q = 5(c-1)/(2c+5) \) into the generic \(A_5 \) polynomial, obtaining

\[
(3) \quad u^5 + 53018481246319976950/9299417089766560969u^4 + \\
118978291635920447500/9299417089766560969u^3 + \\
13164499241533125000/9299417089766560969u^2 + \\
71941446489050000000/9299417089766560969u + \\
15555687740000000000/9299417089766560969.
\]

We now may verify that both the original and generic parametrized polynomials have square discriminant, \(c^8(c-1)^2 \) and \(2^4(c-1)^4c^4(c^2 + c^2 - 5c - 1)^2 \) respectively, and that the sum of two distinct roots for either satisfies an irreducible polynomial of degree 10, so that both have \(A_5 \) as a Galois group. Again, as before, we can verify their equivalence as extensions of \(\mathbb{F}_{11}(c) \) by factoring.
5 Historical note

These polynomials and others like them were found by the author in 1987, immediately upon reading [4, Noether’s Problem for A_5] in preprint. It is presented now in the spirit of better late than never.

References

[1] “An Introduction to the Algebra of Quantics”, Elliott, Edwin Bailey, Oxford University Press, second edition 1913

[2] “The Algebra of Invariants”, Grace, John Hilton, and Young, Alfred, The Cambridge University Press, 1903

[3] “Generic Polynomials are Descent-Generic”, Kemper, Gregor, Manuscripta Math., 105 (2001), pp. 139 to 141

[4] “Noether’s Problem for A_5”, Maeda, Takashi, Journal of Algebra, 125 (1989), pp. 418 to 430