Ethno –Botanical Documentation of some Sacred Groves of Murshidabad district, West Bengal, India

Biplab Bandyopadhyay¹, Malay Mandal², Ankush Pal³, Santi Ranjan Dey⁴ and Mitu De⁵*

¹Assistant Professor, Dept. of Botany, Krishnanath College, Berhampore, Murshidabad, India
²Contractual Whole Time Teacher, Department of Botany, Berhampore Girls' College, Murshidabad, India
³Assistant Professor, Dept of Botany, Berhampore Girls' College, Berhampore, Murshidabad, India
⁴Assistant Professor, Dept. of Zoology, Rammohan College, Kolkata, India
⁵Associate Professor, Dept. of Botany, Gurudas College, Narkeldanga, Kolkata, India

*Correspondence E-mail : mitude@rediffmail.com

Abstract

Spread over an area of 5,324 km², Murshidabad district of West Bengal, India, lies between latitude 23°43'30'' N & 24°50'20'' N and longitude 87°49'17'' E & 88°46'00''E. Within this district there are about 153 “Sacred Groves” which are small forest patches harboring many trees, bushes, shrubs, herbs, insects, amphibians, reptiles, birds and mammals. Sacred groves provide the inextricable link between present society to the past in terms of biodiversity, culture, religious and ethnic heritage. Sacred Groves are the ideal centre for biodiversity conservation preserving the local flora and fauna. In this present investigation documentation of the ethno medicinal plants from 12 (twelve) major sacred groves of Murshidabad, many of which are more than 100 years old have been carried out. 30 (Thirty) medicinal plants found in these sacred groves were commonly used by the traditional healers. These sacred groves which are repositories of great biodiversity are now faced with grave threats. The impact of modernization and education and growing disbelief in the traditional value systems among the local communities has impacted the preservation of the sacred groves. The traditional knowledge needs to be documented before the sacred groves or the traditional practices are obliterated.

Keywords: Sacred groves, Documentation, biodiversity, ethno-medicinal, conservation,

Introduction

Sacred groves constitute pristine vegetation, and are particularly rich in trees and associate groups of organisms, like epiphytes, amphibia, reptiles, birds, butterflies etc. (Khan et al, 2008). Hughes and Chandran in 1998 defined sacred groves as ‘segments of landscape containing trees and other forms of life and geographical features, that are delimited and protected by human societies believing that preserving such a patch of vegetation in a relatively undisturbed state is necessary for expressing one’s relation to the divine or to nature’ (Hughes and Chandran, 1998). Sacred groves are a group of trees or a patch of vegetation protected by the local people through religious and cultural practices evolved to minimized destruction (Isreal et al. 1997).

It has already been seen that the traditional beliefs and taboos have played a vital role in
maintaining these islands of biodiversity. Wherever the sacred groves existed, the indigenous traditional societies, which have a spiritual relationship with their physical environment, sustain them (Khan et al, 2008). Gadgil and Vartak (1975) observed that in many parts of India, sacred groves represent surviving examples of climax vegetation and are disappearing under the influence of modernization. Sacred groves, protected over centuries are often located in regions rich in biodiversity (Bhagwat and Rutte, 2006). Sacred groves provide the inextricable link between present society to the past in terms of biodiversity, culture, religious and ethnic heritage. Plant wealth and self conservation potential of sacred groves are impressive enough for them to be acknowledged as “mini biosphere reserves” (Gadgil and Vartak 1975).

Ethno-medicinal plant documentation

Documentation of traditional knowledge of ethno medicinal use of plants has been considered as a high priority to support the discoveries of drugs benefiting mankind (Patra et al, 2017). The people of the tribal areas are the repository of accumulated experience and knowledge about traditional uses of medicinal plants (Pushpangadan, 2002). The knowledge of these indigenous drugs has come through verbally since generation to generation and played an important role in conservation and sustainable use of biodiversity (Savithramma et al 2013). Results of a comparative study have also shown that sacred groves shelter high diversity of medicinal plants and have more vigorous regeneration of trees than formal forest reserves (Baraiah et al., 2003). A major part of the developing countries still uses traditional folk medicine from plant resources (Mistry, 2015). Phytotherapy promotes proper utilization and also to conserve these plant resources for further future use (Patra et al, 2017).

The sacred groves also help in maintaining the desirable health of ecosystem, reduce habitat destruction, conserve the viable population of pollinators and predators, serve as the potential source of propagules that are required for colonization of wastelands and fallows, conserve the indigenous flora and fauna and preserve the cultural and ethical practices developed through indigenous knowledge of generations (Godbole et al. 1998, Godbole and Sarmaik 2004, Tiwari et al. 1998a, b). Sacred groves are of great ecological significance and have the potential to provide a variety of ecosystem services (Mourato and Smith 2002). Despite being recognized by the traditional communities and cultures for its valuable contribution to livelihood, groves are often subjected to negligence (especially the smaller ones) in terms of ecosystem services which require urgent attention from conservationists as well as decision makers (De, 2017).

Many of the sacred groves are a part of religious beliefs. Many of them house cemeteries or temples. The biodiversity within the sacred grove is conserved as it is associated with religious. It is quite common to see shrines, temples, graveyards in areas designated as sacred groves. Conservation of biodiversity in Sacred Groves is a consequence of the sacred physical space of the sacred grove, which is communally shared as commons, and used to observe important social ceremonies in indigenous societies. Several cultural festivals are performed in the sacred grove, which also provide a meeting place on various occasions including social gatherings, marriage, after-death rituals, etc. (Deb and Malhotra 1997).

The sacred groves which are repositories of great biodiversity are now faced with grave threats. The impact of modernization and education and growing disbelief in the traditional value systems among the local communities has impacted the preservation of the sacred groves. Pressures of growing urbanization and industrialization, the need for roads and housing and other infrastructure has eaten into the area of the groves (Amirthalingam, 2016). The traditional knowledge needs to be documented before the sacred groves or the traditional practices are obliterated. In this present investigation documentation of the ethno medicinal plants from 12 major sacred groves of Murshidabad district of West Bengal, India, has been carried out. 37 medicinal plants found in these sacred groves were commonly used by the traditional healers.
Study area:

Spread over an area of 5,324 km², Murshidabad district of West Bengal, India, lies between latitude 23°43'30" N & 24°50'20" N and longitude 87°49'17" E & 88°46'00"E with Headquater at Berhampore. In shape, the district resembles an isosceles triangle with its apex pointing to the North-West. The river Ganga separates it from Bangladesh. The Bhagirathi river divides it into two parts. To the west lies the Rarh, a high, undulating continuation of the Chota Nagpur plateau. The eastern portion, the Bagri, is a fertile, low-lying alluvial tract, part of the Ganges Delta. The district is drained by the Bhagirathi and Jalangi rivers and their tributaries. Bhagirathi is a branch of the Ganges, and flows southwards from Farakka barrage where it originates from the Ganges.

Materials and Methods

12 (Twelve) sacred groves of Murshidabad district were selected for this investigation. During field visits the plants that were found in the sacred grove were listed. Table 1 is the list of sacred groves selected for the study. The ethno-botanical data was obtained from the traditional healers and local communities residing near the sacred groves.

Table 1. List of sacred groves and their approximate age selected for the study

Sl. No.	Name of the Sacred Grove	Approximate Age of the Sacred Grove (in years)
1	Baro Bigha Kaborsthan	100+
2	Jinarapara Gorosthan	100+
3	Khosbag Graveyard Sacred Grove	200+
4	Kiriteswari Temple	Time immemorial
5	Residency Cemetery of Babulbona (European Cemetery)	200+
6	Ramnagarghat Radhagobinda Mondir.	20
7	Elahiganj Cemetery	150
8	Talbagan Kaborsthan	100
9	Takib Shah Pirtala	200
10	Pataleswar Shiv Mondir	250+
11	Protestant Church Girja More	300+
12	Domdoma kali Mondir	40+
Result:
Most of the sacred groves in this study are associated with religious beliefs. The sacred groves have graveyards or temples within them. Due to these religious structures it is a taboo to destroy any plant material within the sacred grove. It has been observed that a large number of medicinal plants commonly found within the sacred groves are used as local traditional medicines. 30 (Thirty) medicinal plants found in these sacred groves were commonly used by the traditional healers following both Kabiraji (Ayurveda) and Unani system of medicine. The lists of plants enumerated are given in the alphabetical order along with their family, local names and indigenous medicinal use in Table 2.
Table 2. List of medicinal plants used by local communities

Sl. No	Plant’s Scientific Name	Local Name	Family	Indigenous Medicinal Use
1	Aegle marmelos (L.) Correa,	Bael	Rutaceae	Leaves chewed and swallowed every morning help to reduced sugar of diabetes patient. Fruits fleshy part is dried, powdered and used for diarrhea.
2	Andrographis paniculata (Burm. F.) Wall. Ex Nees	Kalmegh	Acanthaceae	For treatment of worm, cough & cold leaf is pounded and made a paste. The leaf paste soup used.
3	Argemone mexicana L.	Sialkata	Papaveraceae	Its oil is used for itches and other skin diseases.
4	Asparagus racemosus Wildt	Shatamuli	Liliaceae	Root’s juice is used with honey as a demulcent in bilious dyspepsia or in diarrhea.
5	Barleria racemosa L.	Kantajanti	Acanthaceae	Dried bark is used as powder to the children to treat whooping cough.
6	Cajanus cajan (L.) Huth	Arhar	Papilionaceae	Leaf juice is given at early morning to treat jaundice.
7	Catharanthus roseus (L.) G. Don.	Nayantara	Apocynaceae	Leaf extract is used in the treatment of diabetes and hypertension.
8	Centella asiatica (L.) Urb.	Thankuni	Apiaceae	Fresh leaves used to control chronic dysentery and blood stool.
9	Clerodendrum viscosum Vent.	Ghetu	Verbenaceae	Young leaf paste soup is given in empty stomach for treatment intestinal worm.
10	Cissus quadrangularis L.	Harjora	Vitaceae	Whole plant eaten as vegetable to reduce constipation problem. Stem paste warmed with “Ghee” is applied on the fractured bones.
11	Costus speciosus (Konig) Smith.	Jangli Ada	Costaceae	Fresh rhizome with pinch of salt and ginger is given to cure indigestion and flatulence.
12	Cyanodon dactylon (Linn.) Pers.	Dubghas	Poaceae	Infusion of root is used stop bleeding from the piles. Fresh juice effectively controls the nasal bleeding, when applied as nasal drops.
13	Cyperus rotundus Linn.	Mutha Ghas	Cyperaceae	Essential oil is extracted from the tuber, which is said to stimulate the secretion of of milk, in lactating mothers. The acetone and ethanol extracts of tubers were found to possess antibacterial activity.
14	Eclipta alba Hassak L.	Kesut	Asteraceae	Plants used externally in scorpion stings, is used for the treatment of hepatitis, toothache and cirrhosis.
15	Enydra fluctuens Lour.	Helencha / Hinche	Compositae	Leaves used as vegetables for blood purifier and weakness.
16	Euphorbia hirta L.	Baradudhi	Euphorbiaceae	Its root is given to stop vomiting. Juice of plants used in dysentery and colic.
17	Gloriosa superba L.	Ulatchandl	Liliaceae	Tuber is pungent, bitter, heating, anthelmintic, laxative, abortifacient, and useful in ulcers, leprosy, piles, inflammations and abdominal pains
18	Jatropha curcas L.	Bharandah	Euphorbiaceae	Latex gives relief during toothache
19	Kalanchoe pinnata (Lam.) Pers.	Patharkuchi	Crassulaceae	Leaf juice is given in diarrhoea, cholera etc. They are slightly toasted before they are applied to wounds, cuts, ulcers,
No.	Scientific Name	Common Name	Family	Uses
-----	----------------------------------	---------------	----------------	---
20	Leucas cephalotes (Roth.) Spreng.	Dandakolos	Lamiaceae	Whole plant extraction used as stimulant.
21	Mimosa pudica L.	Lajjabati	Mimosaceae	Root decoction also used for leucorrhea.
22	Moringa oleifera Lam	Sajina Leaf	Moringaceae	Boiled in water and taken as a hot drink for blood pressure and diabetes.
23	Ocimum americanum L.	Ban Tulsi	Lamiaceae	Decoction of leaves used to stop bleeding, to cutaneous disease, gastric disorder of children, hepatic affections.
24	Ocimum sanctum L.	Tulsi	Lamiaceae	Used to treat common cold, asthma, bronchitis, fever. Leaf is used.
25	Paederia scandens (Lour.) Merrill	Gadal / Gandavajal	Rubiaceae	Leaves used as vegetables soup for stomach problems, indigestion.
26	Phyllanthus fraternus Webster	Bhui amla	Euphorbiaceae	Whole plant is used as antipyretic, antiseptic, astrigent, diuretic.
27	Piper betle L.	Paan pata	Piperaceae	The leaf juice is applied as eye drop in painful eyes due to conjunctivitis and juice is given to cure indigestion.
28	Rauvolfia serpentina Benth.	Sarpagandha	Apocynaceae	Roots used to reduce blood pressure.
29	Solanum xanthocurpum Schrad & Wendl.	Kantikari	Solanaceae	Whole plant is used as medicine with other expectorant as Bronchodilator. Fruits boiled in ghee are given for cough & toothache.
30	Terminalia arjuna (Roxb.ex DC.) Wt. & Arn.	Arjuna	Combretaceae	Stem bark infusion is given in the morning in an empty stomach to cure gastrointestinal troubles and heart problems.

Discussion:

Different parts of medicinal plants have been used as medicine by the local traditional health healers in Murshidabad (Mistry, 2015). The state West Bengal shows rich diversity in medicinal plants in which the rural Murshidabad district is an important source of traditional medicinal plants. Till date, the local medicine men and herbalists use these plants for medicinal purposes but the compensation and dose of the plant parts are different even the application time and dose vary from site to site. Perhaps, the deviation is due to large geographical variations with the variations of factors and traditional knowledge (TK) of different ethnic people over the globe (Das and Ghosh, 2017). The impact of modernization and education and growing disbelief in the traditional value systems among the local communities has impacted the preservation of the sacred groves. The traditional knowledge needs to be documented before the sacred groves or the traditional practices are obliterated.

Understanding the biocultural relationships through which cultural values shape tropical forest diversity is now increasingly recognized as important for the conservation of both biodiversity and (tangible and intangible) cultural heritage (Gavin et al. 2015). Although the importance of sacred groves in community life is usually felt through religious-cultural practices their utility in life-sustaining services cannot be overlooked. The groves are also sources of important ecosystem services for local communities, including provisioning (e.g. water, medicinal plants or ornamental resources) and regulating (e.g. pollination or water purification) services (Harsha et al. 2002).

The pan-Indian distribution of sacred groves is a subject of great interest to biologists, social scientists, anthropologists and policy makers because groves represent a variety of ecosystems, social and ethnic identities, management regimes, legal tenures, and cultural traditions (Ray et al. 2014). More research is needed to assess the potential of the sacred grove for ecosystem services and
their importance in livelihood maintenance (De, 2017).

Information on changes in the herb and shrub layer of any forest ecosystem or natural ecosystem may be useful to assess present-day issues of management relating to sustainability and biodiversity in forestry and nature conservation (Adnan and Holscher, 2011). Phytosociological evaluation of the medicinal plant species is very important aspect in the field of forestry as well as in other scientific studies like conservation, management and bioprospecting of phytoresources. Documentation of indigenous knowledge through ethno-botanical studies is an important for the conservation and utilization of biological resources present within the sacred groves. The scientific study of these traditional medicines along with their proper identification and documentation is essential along with inventory preparations. Systematic conservation of the ethnomedicinal plants used in traditional healing procedures, along with the traditional knowledge is need of the hour, before it is lost forever.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this work.

Acknowledgement

The authors are thankful to the local people of Murshidabad district for their valuable cooperation. The authors would also like to express their thanks to the Principal, Krishnath College, Berhampore and Principal, Berhampore Girls’ College, Berhampore, Murshidabad for providing laboratory facilities to conduct this study. This work has been carried out with the financial assistance of a Research Project of the West Bengal Biodiversity Board (WBBB) to the first author.

References

Amirthalingam, M. (2016). Sacred Groves of India: An Overview. *Int. J. Curr. Res. Biosci. Plant Biol.* 3 (4), pp. 64-74.

Bandyopadhyay, Biplab and De, Mitu. 2018. Sustainable use of some indigenous medicinal plants from the sacred groves by Santhals of Murshidabad, West Bengal. In, Dynamics in Biology (Life Science for Next Generation) (ISBN 978-93-87072-44-2) Edited by Dr. Ashim Chakravorty published by Akinik Publications, New Delhi, 84-88 pp.

Baraiah, K. T., Vasudewa, R., Bhagwat, S. A., & Kushadappa, C. G. (2003). Do Informal Managed Sacred Groves Have Higher Richness and Regeneration of Medicinal Plants than State—Managed Research Forests? *Current Science*, 84, pp. 804-808.

Bhagwat, S. A. and Rutte, C. (2006). Sacred groves: Potential for biodiversity management. *Frontiers in Ecology and the Environment*, 4, pp.519-524.

Das, D and Ghosh, P., (2017). Some Important Medicinal Plants Used Widely in Southwest Bengal, India. *International Journal of Engineering Science Invention*: 2319 – 6726, 6(6), pp.28-50.

De, Mitu. (2017). Ecosystem Services from Sacred Groves: an Overview. *Harvest-Online Journal. Spl. Environmental Issue*, Vol 1. pp. 14-20.

Deb, Debal and K C Malhotra (1997). “Interface between biodiversity and tribal cultural heritage: a preliminary study.” *Journal of Human Ecology* (New Delhi) 8: 157-163.

Gadgil, M. and Vartak, V.D. (1976). Sacred groves of Western Ghats of India. *Ecological Botany* 30, pp. 152-160.

Gavin, M. C., J. McCarter, A. Mead, F. Berkés, J. R. Stepp, D. Peterson, and R. Tang. (2015). Defining biocultural approaches to conservation. *Trends in Ecology & Evolution*, 30(3), pp.140-145.

Godbole, A. and Sarnaik, J. (2004). Tradition of Sacred Groves and Communities Contribution in Their Conservation. *Applied Environmental Research Foundation*, Pune. 60 pages.

Godbole, A. , Wate, A., Prabhu, S. and Sarnaik, J. (1998). Role of sacred grove in biodiversity conservation with local people’s participation: A case study from Ratnagiri district, Maharashtra. Pages 233-246, In: Ramakrishnan, P.S., Saxena, K.G. and Chandrashekara, U.M. (Editors) Conserving the Sacred for Biodiversity Management. UNESCO and Oxford-IBH Publishing, New Delhi.

Harsha VH, Hebbar SS, Hegde GR, Shripathi V. (2002). Ethnomedical knowledge of plants used by Kunabi Tribe of Karnataka in India. *Fitoterapia*. 73(4), pp.281–287

Hughes, J D, and Chandran, M D S (1998) Sacred groves around the earth: an overview, In: Ramakrishnan, P S, Saxena, K G, and Chandrashekara, U M (eds.) Conserving the Sacred for Bio-diversity Management, Oxford and IBH Publishing Co., New Delhi, pp. 69-86.
Israel E, Vijai C, Narasimhan D (1997). Sacred groves: Traditional ecological heritage. International Journal of Ecology and Environmental Sciences, 23, pp. 463-470.

Khan, M. L., Khumbongmayum, ashalata Devi and Tripathi, R. S. (2008). The Sacred Groves and Their Significance in Conserving Biodiversity: An Overview. International Journal of Ecology and Environmental Sciences 34 (3), pp. 277-291.

Mistry, J. (2015). Traditional medicinal plants used by local people of Murshidabad district, West Bengal, India. World Journal of Pharmacy and Pharmaceutical Sciences, 4(9), pp.1225-1234.

Mourato S, and Smith, J. (2002). Can carbon trading reduce deforestation by slash-and burn farmers? Evidence from the Peruvian Amazon. In: D Pearce, C Pearce, C Palmer (Eds.): Valuing the Environment in Developing Countries - Case Studies. Cheltenham, UK: Edward Elgar Publishing Ltd., pp. 358-376.

Patra A, Mondal A.K. and Banerjee D. (2017). Traditional phytotherapeutic uses in Purba Medinipur, West Bengal, India. Int J Pharm Sci Res.; 8(9): 3904-10.

Pushpangadan P. (2002). Biodiversity and Emerging Benefit Sharing Arrangement Challenges and Opportunities for India. Proc. Indian natn Sci. Acad.; 3, pp. 297-314.

Ray, Rajasri, Chandran, M. D. S. and Ramachandra, T.V. (2014). Biodiversity and ecological assessments of Indian sacred groves. Journal of Forestry Research. 25 (1), pp 21-28.

Savithramma N, Linga Rao, Yugandhar M, Suvarnalatha P and Devi P. (2013). Ethnomedicinal Studies of Tumburu Theertham: A sacred grove of Tirumala hills, Andhra Pradesh, India. J. Ethnobi. Traditinal Med; 120, pp. 547-556.

Tiwari, B.K., Barik, S.K. and Tripathi, R.S. (1998a) Sacred groves of Meghalaya. Pages 253-262, In: Ramakrishnan, P.S., Saxena, K.G. and Chandrashekara, U.M. (Editors) Conserving the Sacred, for Biodiversity Management. UNESCO and Oxford-IBH Publishing, New Delhi.

Tiwari, B.K., Barik, S.K. and Tripathi, R.S. (1998b). Biodiversity value, status and strategies for conservation of sacred groves of Meghalaya, India. Ecosystem Health 4(1), pp.20-32