Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias

Houria Daimi 1,*, Estefanía Lozano-Velasco 2,3, Amelia Aranega 2,3 and Diego Franco 2,3

Abstract: Na\textsubscript{v}1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Na\textsubscript{v}1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Na\textsubscript{v}1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Na\textsubscript{v}1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Na\textsubscript{v}1.5 and the cardiac channelopathies associated with defects in these pathways.

Keywords: cardiac sodium channel; gene regulation; cardiac arrhythmias

1. Introduction

The upstroke phase of the cardiac action potential (AP) is mainly coordinated by cardiac sodium channels, which are immediately activated and generate a fast Na+ inward current, through the membrane, after membrane depolarization [1]. In atrial and ventricular myocytes, the sodium current (I\textsubscript{Na}) is principally governed by cardiac voltage-gated sodium channel 1.5 (Na\textsubscript{v}1.5) with a tinny contribution of Na\textsubscript{v}1.8 [2]. The human Na\textsubscript{v}1.5 channel is composed of a pore-forming \(\alpha\)-subunit (227-kDa) and one or more auxiliary \(\beta\)-subunits (30-kDa) [3]. SCN5A gene with 80 kb length is located on chromosome 3p21 and consists of 28 exons which encode a protein of 2016 amino acid, the \(\alpha\)-subunit of Na\textsubscript{v}1.5 channel [4]. This protein contains four homologous sites (DI–DIV), each composed of six transmembrane segments organized into two functional modules. Segments from one to four (S1–S4) generate the voltage-sensing module (VS), and segments five and six (S5–S6) jointly with P-loop create the pore module (PM). Finally, we can find an \(\alpha\)-helical S4–S5 linker, whose function is to bind these two structures, the voltage-sensing and the pore modules. Moreover, there are intracellular linkers that are in charge of DI–DII, DII–DIII, and DIII–DIV binding, and more concretely, the DIII–DIV linker is the controller of pore closing, acting as a fast inactivation gate [5]. The VS and PM modules of the Na\textsubscript{v}1.5 constitute preferred therapeutic targets for the treatment of several cardiac sodium channelopathies. Particularly, flecainide, as well as other class IC antiarrhythmic drugs, bind to the central cavity of the pore and block sodium permeation directly [5]. The class IA antiarrhythmic drugs (e.g., procainamide) and the class IB antiarrhythmic drugs (e.g., lidocaine) might act on a smaller surface of the central cavity of the pore as well [5]. However, polyunsaturated fatty acids (PUFAs) and PUFA analogs have been shown to be antiarrhythmic by inhibiting
Na\textsubscript{v} 1.5 channel currents, probably through acting on the voltage-sensing S4 segments that control inactivation in these channels [6,7]. Since SCN5A is transcribed to mRNA until Na\textsubscript{v} 1.5 is assembled into the plasma membrane to exert its function, there are several steps with different proteins involved. SCN5A mRNA is translocated from the nucleus to the cytoplasm by the Nucleoporin 107 (Nup107) protein. It has been demonstrated that Nup107 is increased whenever a hypoxic and oxidative situation has a place in the heart tissue [8]. Once in the cytoplasm, SCN5A mRNA is translated to protein and assembled to β1–β4 subunits in the rough endoplasmic reticulum (ER), and subsequently, Na\textsubscript{v} 1.5 protein is exported to the Golgi by the nuclear import protein, RAN guanine nucleotide release factor (MOG1), and Protein Kinase A [9–11]. It has been previously reported that the defect of MOG1-Na\textsubscript{v} 1.5 interaction causes Brugada syndrome [9]. After protein glycosylation in Golgi, Na\textsubscript{v} 1.5 is ready for anchoring into the intercalated discs (ID) for the AP transmission between cardiomyocytes, being responsible for the electro-mechanical coupling through gap junctions, adherens junctions, and desmosomes [12,13]. Moreover, AP is conducted through the lateral membrane (LM) due to localized Na\textsubscript{v} 1.5 channels into T-tubules and in the focal adhesion complex or costameres that link adjacent myocytes in the myocardium through extracellular matrix interaction [12,13]. This process is characterized by the presence of specific proteins that control Na\textsubscript{v} 1.5 trafficking and anchoring [13].

At the beginning of cardiac AP, the cell membrane is depolarized, and Na\textsubscript{v} 1.5 channels are activated due to positively charged arginine or lysine residues in S4 segments. All four charged S4 segments change their position in the cell membrane with an outward movement, which leads to the opening of the channel pore, conducting to an inward Na+ current [14]. Few milliseconds later, the depolarization process generates “fast inactivation”, where the Na\textsubscript{v} 1.5 channel is closed and channel opening does not occur, due to an outward movement of S4 segments in domain III and IV, again. This dual role of the S4 segment is tightly integrated [15–20]. After a prolonged depolarization, P-loop and S5–S6 linker change their position with reference to the membrane, and Na\textsubscript{v} 1.5 channels enter in a “slow inactivation”, leading to the termination of the Na+ current flow [15,21]. At the end of its life cycle, Na\textsubscript{v} 1.5 is degraded by proteasome and autophagic degradation pathways [11].

2. Genomic Regulation of the Cardiac Sodium Channel

2.1. Genetic Code of SCN5A

Na\textsubscript{v} 1.5 channel expression and function may be impaired due to variations in the genomic sequence of SCN5A, including missense, nonsense, splice-altering, and frame shift truncation [22,23]. These variations cause different cardiac diseases because of a loss- or gain-of-function and occasionally both, generating overlapped phenotypes [24]. For example, Brugada Syndrome (BrS) [24–26], progressive cardiac conduction disease (Lev-Lenegre disease) [27,28], and sick sinus syndrome [29,30] are some diseases caused by loss-of-function mutations in SCN5A. However, long QT syndrome type 3 (LQTS3) [24,31] and multifocal ectopic Purkinje-related premature contractions (MEPPC) [32–34] are due to gain-of-function mutations in SCN5A. Finally, a combination of gain- and loss-of-function mutations are associated with atrial fibrillation (AF) [35,36] and dilated cardiomyopathy (DCM) [34,36–38]. Some of these channelopathies are widely described in Section 4 of this review. Additionally, several SCN5A missenses can generate dominant-negative variants affecting Na\textsubscript{v} 1.5 trafficking or gating at the cell surface [39–41]. A recent study demonstrated that most of SCN5A missense that generate loss-of-function variants exert a dominant-negative effect that confers a high burden of BrS [42]. Finally, post-translational modifications affecting Na\textsubscript{v} 1.5 have an impact on the use of antiarrhythmic drugs, making these data quite relevant for future drug design [43].
2.2. Regulation of SCN5A Transcription

2.2.1. Epigenetic Regulation of SCN5A

Regulation of SCN5A by Distinct Regulatory Elements and Histones

Gene transcriptional activation is not only modulated by transcription factors; in this process, the role of distinct regulatory elements (RE) is also important, as well as how these REs interact with chromatin, depending on DNA accessibility. Several authors have identified different roles of an enhancer cluster in the SCN5A-SCN10A locus, which modulate SCN5A gene expression [44–46]. RE-1 and RE-5 are located in an SCN10A and SCN5A intron, respectively, and RE-6, located downstream of SCN5A, contains genetic variants associated with PR intervals and QRS duration [44,45,47,48]. Moreover, Christoffels’ lab [49] has recently demonstrated that there are several downstream SCN5A REs acting as cardiac-specific “super enhancers”, concretely the intergenic region composed by RE6-9, which possess an extensive association with Histone H3 lysine (K) 27 acetylation (H3K27ac) [50]. RE6-9 has the ability to fine-tune Scn5a-Scn10a chromatin architecture modulating Scn5a expression. In addition, it has been identified that some single-nucleotide polymorphisms (SNPs) located in an enhancer region are able to regulate transcription factor binding and modulate gene expression. In particular, major alleles of rs6801957 and rs10428132 lead to SCN5A gene expression, while minor alleles cannot due to a loss of a T-box protein binding site [51,52]. Furthermore, an enrichment of H3K27ac and Histone H3 lysine (K) 4 trimethylation (H3K4me3) near of SCN5A promoter region in striated muscles regulates normal expression of Scn5a and improve the re-expression of SCN5A in denervated muscle [49,53,54]. Moreover, Lamin A/C (encoded by LMNA) is a component of the nuclear lamina, and its K219T mutation has been described to trigger a change in the distribution of the histone marks. Concretely, H3K9me and H3K27me, which are transcriptional repressive histone marks, and H3K4me3, which acts as transcriptional active histone mark, generate cardiac conduction defects through SCN5A inhibition and reduced I_{Na} density [55].

Regulation of SCN5A by Transcription Factors

During biosynthesis, SCN5A transcription is regulated by several transcription factors. Sometimes this transcription step can be enhanced or decreased, i.e., TBX5 has a binding site downstream of the SCN5A gene, and several authors have demonstrated that TBX5 knockout presents a decreased density of Na$_{v}$1.5 that leads to arrhythmias and eventually sudden cardiac death [56–58]. Additionally, GATA4 and GATA5 have their binding site in the SCN5A promoter and intron 1 region. These transcription factors activate the SCN5A gene in human left ventricles, whereas heterozygous mutants for GATA4$^+/_-$ show short PR intervals [59–61]. Moreover, MEF2C has its binding site in the SCN5A promoter region and enhances SCN5A transcription [62,63]. Finally, IRX3 gain-of-function upregulates SCN5A mRNA levels [64,65], whereas, on the contrary, FOXO1 and Snail negatively regulate SCN5A mRNA levels [66–70] (Figure 1).

2.2.2. Post-Transcriptional Regulation of SCN5A

Regulation of SCN5A by Alternative Splicing

After transcription, precursor mRNA copes with splicing and post-transcriptional modification to generate mature mRNA and finally translation into protein. Alternative splicing generate multiple functional (Na$_{v}$1.5a, Na$_{v}$1.5d, Na$_{v}$1.5e, and Na$_{v}$1.5c) and non-functional (Na$_{v}$1.5b, Na$_{v}$1.5f, and truncated) Na$_{v}$1.5 variants [11]. Na$_{v}$1.5a isoform is characterized by the deletion of exon 18. This isoform is only present in small rodents and, compared with full-length Na$_{v}$1.5, leads to altered electrophysiological kinetics properties. There is no evidence of Na$_{v}$1.5a expression in human cardiac cells [11,71]. Another alternative spliced variant of SCN5A generates Na$_{v}$1.5c isoform, which has been identified as the most abundant isoform in humans. Na$_{v}$1.5c is characterized by a 5′-trinucleotide deletion in exon 18, concretely a CAG—Glu (Q) in 1077 position, affected by the splicing machinery and generating a Na$_{v}$1.5 variant that contains 2015 polypeptides instead of 2016. It has been identified that the electrophysiological properties of Na$_{v}$1.5 and Na$_{v}$1.5c are
which is a minor spliceosome component, modulates Na\(_v\) properties of cardiomyocytes [81]. Post-transcriptional regulation mediated by ncRNAs. Alternative exon sequences, intronic or exonic modification to generate mature mRNA and finally translation into protein. Alternative splicing generates multiple functional (Na\(_v\) 1.5a, Na\(_v\) 1.5d, Na\(_v\) 1.5e, and Na\(_v\) 1.5c) and truncated isoforms derived from mRNA splicing, mechanism of the U6-type intron retention, and truncated isoforms generated by alternative splicing on exon 6. It can be found Na\(_v\) 1.5e with 5'- exon 6 in neonatal (exon 6a) or 3'- exon 6 (exon 6b) in any adult mammalian heart [4, 75]. Na\(_v\) 1.5e contains a K211 residue, instead of D211 residue in Na\(_v\) 1.5, being responsible for slower kinetics of the channel [76]. Na\(_v\) d1.5b is a non-functional Na\(_v\) 1.5 variant and is generated by the deletion of exon 17 and exon 18. Heterologous expression reveals that exon 17 encodes an essential Na\(_v\) 1.5 region that confers functionality to the channel [74, 77]. This splice variant is present in mouse hearts, but there is no evidence of this variant in other mammals' hearts [74]. On the other hand, deletion of exon 24 of Na\(_v\) 1.5 generates Na\(_v\) 1.5f variant; this isoform is highly detected in rat heart and human brain but not in the human heart [78, 79]. Electrophysiological experiments evidenced that Na\(_v\) 1.5f is a non-functional variant [71]. Finally, it has been identified three C-terminal truncated spliced variants, E28B, E28C, and E28D, that generate reduced protein levels and no functional Na\(^+\) currents in the normal fetal and adult human heart [80]. In another layer of complexity, in a very recent study, it has been evidenced that minor introns modulate gene families at a post-transcriptional level. Concretely, U6actac, which is a minor spliceosome component, modulates Na\(_v\) 1.5 and Ca\(_v\) 1.2 protein levels through the removal of minor introns in Scn5a and Cacna1c, regulating electrophysiological properties of cardiomyocytes [81].

Figure 1. SCN5A biosynthesis: chromosomal localization, gene transcriptional activation modulated by regulatory elements, transcription factors, histones, and SNPs. Functional, non-functional, and truncated isoforms derived from mRNA splicing, mechanism of the U6-type intron retention, and post-transcriptional regulation mediated by ncRNAs. Alternative exon sequences, intronic or exonic sequences outside the open reading frame (squared), and stop codons (asterisks) are indicated.
Regulation of SCN5A by Non-Coding RNAs

SCN5A mRNA degradation or translational repression can be mediated by microRNAs. It has been widely demonstrated that microRNAs exert their function controlling the development of several cardiac arrhythmogenic diseases; however, there is not much information about the SCN5A/Na\textsubscript{v}1.5 post-transcriptional control by microRNAs despite being an important modulator of cardiac arrhythmias [82–85]. A few years ago, data from our laboratory demonstrated that miR-98, miR-106, miR-200, and miR-219 directly regulated human SCN5A, while miR-125 and miR-153 regulate it indirectly, being evidenced that miR219 and miR200 modulate Scn5a expression in an opposite way in HL1 cardiomyocytes. Concretely, miR-200 decreases, while miR-219 increases Scn5a expression. Moreover, miR-219 is able to increase Na\textsubscript{v}1.5 protein levels leading to the subsequent rise in \(I_{Na} \) [86]. In another study, we elucidated a complex regulatory network where Pitx2 transcription factor and microRNAs are involved, being able to modulate ion channel expression in atrial fibrillation [87–89]. Additionally, Zhao et al. [90] demonstrated that miR-192-5p exerts its function, reducing Na\textsubscript{v}1.5 expression and \(I_{Na} \) density in humans. It has also been evidenced that SCN5A expression can be indirectly modulated through ERG1 mediated regulation by miR-143 [91]. Furthermore, a miR-24 binding site is generated in the coding sequence of SCN5A by the SNP rs1805126, decreasing SCN5A expression and \(I_{Na} \) density [92]. Finally, it has been evidenced that some SNPs can generate new miRNAs binding sites at the SCN5A 3′UTR region. Previous work in our lab demonstrated that rs4073797 and rs4073796 polymorphisms create a new miR-1270 binding site in SCN5A 3′UTR, which imbalance Scn5a expression. Moreover, rs107822C localized upstream of miR-219a precursor impairs miR-219a expression deregulating SCN5A/Na\textsubscript{v}1.5 levels [93]. Although \(I_{Na} \) is the most relevant during cardiac AP, the functional role of microRNAs controlling SCN5A expression is poorly described. Quite recently, a new class of RNAs has emerged, i.e., long non-coding RNAs (lncRNAs), which are long RNA molecules with >200 nt length and scarce protein-coding properties, but being able to modulate several biological processes and thus participating in pathogenesis [94,95]. It has been demonstrated that some lncRNAs modulate cardiac AP regulating the slow component of the delayed rectifier potassium current (\(I_{Ks} \)) or transient outward potassium current (\(I_{to} \)), concretely, lncRNA-Kcna2as and lncRNA-MALAT1, respectively [96,97], and more recently, it has been elucidated that lncDACH1 modulate Na\textsubscript{v}1.5 protein distribution through dystrophin binding which determines Na\textsubscript{v}1.5 membrane anchoring [98]. Studies about how cardiac AP can be modulated by lncRNA need to be further developed, as these molecular mechanisms could reveal a potential therapeutic work line.

3. Non-Genomic Regulation of the Cardiac Sodium Channel

Being an ion channel, Na\textsubscript{v}1.5 is first synthesized as a primary protein chain that is subsequently folded in order to acquire the pore-forming three-dimensional conformation [11]. This tertiary structure is then assembled with its beta subunits, most likely (\(\beta 1 \)), and trafficked through the Golgi apparatus to be targeted to the corresponding cell membrane compartments [99]. Along this whole process, Na\textsubscript{v}1.5 went through distinct non-genomic regulatory modifications and quality control steps conferring its unique conformational and functional identity as a voltage-gated sodium channel [11,100]. These steps are ensured by a growing set of regulatory proteins that have been demonstrated to covalently or non-covalently interact with Na\textsubscript{v}1.5 [101]. In addition to the interacting proteins, Na\textsubscript{v}1.5 function has been demonstrated to be influenced by wider intracellular (oxidative stress, metabolic stress, electrolyte homeostasis, etc.) and extracellular (pH, temperature, hormones, etc.) factors. All these factors are discussed subsequently in this review.
3.1. Regulation of \(\text{Na}_v1.5 \) Biosynthesis and Post-Translational Modifications

3.1.1. Regulation of \(\text{Na}_v1.5 \) Translation and ER Retention

The translation of \(\text{Na}_v1.5 \) starts in the cytosol and then pursue into the endoplasmic reticulum (ER). Anchoring the ribosome with the elongating \(\text{Na}_v1.5 \) polypeptide chain to the ER occurs when a signal peptide is recognized by the signal recognition particle (SRP) that targets the active ribosome to the rough endoplasmic reticulum (ER) membrane. Unlike cytosolic proteins, which have their signal peptide generally within the amino terminal, ion channels contain numerous signal sequences that are not restricted to the amino terminal [102]. Although the signal sequences of some ion channels such as Kv1.3 and CFTR have been already mapped to the second transmembrane spanning domain, almost 200 amino acids downstream from the NH\(_2\) terminal [102], that of \(\text{Na}_v1.5 \) are not yet identified. Once anchored, the ribosome translates the elongating polypeptide chain into the ER lumen [103]. As a transmembrane protein, the nascent \(\text{Na}_v1.5 \) is soon pushed to the ER membrane, where it is anchored and retained [103]. The ER retention is thought to occur when specific ER retention motifs embedded in the elongating \(\text{Na}_v1.5 \) polypeptide (most likely in the DI-DII linker of the sodium channel [104]) binds a cytosolic signal recognition particle (endoplasmic reticulum recognition particle, ERRP), that then directs the \(\text{Na}_v1.5 \)-ERRP complex to receptors within the ER membrane [105–107]. The complex \(\text{Na}_v1.5 \)-ERRP is then trapped within the ER, ensuring that the newly formed channel does not leave the ER membrane before finishing the folding and assembly steps [102]. At this level, several regulatory proteins and residues are reported to bind to this complex and facilitate the folding and maturation of the nascent protein [11,102,105–110] (Figure 2).

The correct folding of the newly synthesized \(\text{Na}_v1.5 \) channels is commonly thought to be a condition for their forward trafficking to the cell membrane and their proper gating function. This notion has been tested by the exploration of \(\text{Na}_v1.5 \) trafficking-deficient mutants such as R282H, A124D, and V1378M that, due to folding defects, they failed to exit the ER and thus to reach the cell membrane [111,112]. Although the importance of this step in the life cycle of any ion channel, very scarce information is currently available about the mechanism of \(\text{Na}_v1.5 \) folding and its regulation. Nonetheless, it is currently established that one of the prerequisites for proper \(\text{Na}_v1.5 \) folding is core-glycosylation, as will be discussed later in this review [113]. In addition, molecular chaperone proteins such as protein disulfide isomerases (PDI), ER oxidoreductases (ERO), 70 kDa heat shock proteins (Hsp70), 90 kDa heat shock proteins (Hsp90), as well as calnexin and calreticulin, have been demonstrated to regulate the folding of the nascent proteins and the ER-associated degradation of the misfolded proteins [114–118]. However, their implication in the \(\text{Na}_v1.5 \) folding process has not been specifically studied yet. Interestingly, \(\text{Na}_v1.5 \) H558R polymorphism has been shown to have a corrective effect on the misfolded R282H mutant by restoring its trafficking to the cell membrane and thus limiting the misfolding of the mutant through a physical interaction [111,119].

Some antiarrhythmic drugs such as mexiletine, quinidine, and flecainide proved their efficiency rescuing the trafficking of some misfolded \(\text{Na}_v1.5 \) variants, thus playing the role of pharmacological chaperones [112,120]. In addition, curcumin, a major constituent of turmeric known to block the ER calcium pump, has also been reported as effective in rescuing the \(I_{\text{Na}} \) current of L325R misfolded \(\text{Na}_v1.5 \) channels [40]. Low temperature has also been demonstrated to trigger the rescue of misfolded \(\text{Na}_v1.5 \) mutants [120], probably through slowing the folding process, which prevents protein misfolding and aggregation [121].
Figure 2. Biosynthesis and degradation pathways of Na\textsubscript{v}1.5. Only one of the possible scenarios where Na\textsubscript{v}1.5 assembles with one or more \(\beta\)-subunits early at the ER is depicted here. Furthermore, one possible scenario where ERAD-dependent degradation exclusively affects \(\alpha\) subunit rather than \(\alpha\)-\(\beta\) assembly is shown here since no information is currently available about the detailed process. ERRP—endoplasmic reticulum retention protein; \(\beta\)—beta subunit; PKA—protein kinase A; MOG1—RAN guanine nucleotide release factor; COPII—coat protein complex II; ERAD—ER-associated degradation; Cx43—connexin 43; PKP2—plakophilin 2; DSG—desmoglein; DSC—desmocollin; EB1—end-binding 1; Cav3—caveolin 3; PTMs—post-translational modifications.

3.1.2. Co-Translational and Post-Translational Regulation of Na\textsubscript{v}1.5

N-Linked Glycosylation of Nascent Na\textsubscript{v}1.5

One of the earliest modifications that the Na\textsubscript{v}1.5 undergoes co-translationally once inserted into the ER is the N-glycosylation [99,113]. This quality control step has been first evidenced in the rat heart by Cohen and Levitt, who have found that glycosylation increases Na\textsubscript{v}1.5 mass by only 5\%, compared to 25–30\% increases observed in other voltage-gated sodium channel isoforms [122]. Glycosylation initiates in the ER and terminates in the Golgi [113,123]. In the ER, glycosylation initiates when glycan (Glc3Man9GlcNAc2) is dissociated from a lipid derivative by oligosaccharyl transferase (OST) and bind to the amide nitrogen of asparagine (N) localized in the extracellular side of the nascent Na\textsubscript{v}1.5
protein [100,124]. Although no validated ‘‘map’’ of the N-glycosylation sites has been published yet for Na\(_v\)1.5, 13 potential external N-glycosylation sites have been identified in human Na\(_v\)1.5 [125], and at least 14 putative N-linked glycosylation sites have been reported in the rat cardiac sodium channel [122]. The N-glycosylation of the newly formed cardiac sodium channel has been reported to be a prerequisite for proper Na\(_v\)1.5 folding and subsequent surface expression as well as an assembly with its \(\beta\) subunits [99,113,126]. According to Arakel et al., Na\(_v\)1.5 maturation strongly depends on the presence of the auxiliary \(\beta_1\) that binds to the pore-forming \(\alpha\) subunit and promotes its glycosylation and its trafficking to the cell membrane [127].

In this context, N-glycosylated Na\(_v\)1.5 is thought to undergo subsequent serial deglucosylation steps and extreme quality controls involving the ER-resident chaperones, which will ensure that only correctly folded and fully glycosylated channels can be trafficked [113,123,128]. Interestingly, Mercier et al. found that early N-glycosylated Na\(_v\)1.5 channels generated in the ER could reach the cell membrane through an unconventional trafficking pathway bypassing the Golgi stacks while functional channels are trafficked through the conventional pathway that is Golgi-dependent [113]. In addition, ER-resident chaperones such as Calnexin and Calreticulin have been reported to play a crucial role in controlling ion channels folding and efficient export to the Golgi [129–131]. However, there is no evidence of physical interaction of Calnexin and Na\(_v\)1.5 despite their proven co-localization in the ER [132,133]. While properly folded Na\(_v\)1.5 are trafficked forward to the cis-Golgi where they will be fully matured, misfolded Na\(_v\)1.5 are retained in the ER to be later degraded, most likely through the activation of the unfolded protein response (UPR) pathway and/or ER-associated degradation (ERAD) pathway that is linked to the cytoplasmic ubiquitin-proteasome pathway [134–136].

Phosphorylation and Dephosphorylation of Na\(_v\)1.5

In addition to N-linked glycosylation, Na\(_v\)1.5 undergoes phosphorylation as a post-translational modification [137]. Thirty years ago, Shubert et al. brought the first evidence of Na\(_v\)1.5 phosphorylation by protein kinase A (PKA) through the activation of the \(\beta\)-adrenergic system by isoproterenol, which led to an increased level of cAMP, which in turn reduced Na\(^+\) current (\(I_{Na}\)) [138]. These findings were further confirmed by a subsequent study by Frohnwieser and his co-worker, who showed that combined cytosolic injection of cAMP and a PKA activator increased \(I_{Na}\) suggesting a modulatory effect of PKA on human Na\(_v\)1.5 [139]. The same study demonstrated that this modulatory effect of PKA is conferred by the DI–DII intracellular linker of Na\(_v\)1.5. In this regard, it has been reported that the rat Na\(_v\)1.5 protein sequence harbors two distinct sites for PKA phosphorylation that were mapped to serine positions S526 (S525 in human) and S529 (S528 in human) [100,140–142]. These sites are localized in the cytosolic loop interconnecting DI and DII of Na\(_v\)1.5, where the three putative RXR-type (R479KR481, R533RR535, and R659QR661) ER retention motifs have been localized too [104,137,143]. Zhou et al. have previously demonstrated that PKA activation promotes trafficking of channels to the plasma membrane [143]. In the same context, Scott et al. have shown that a PKA-PKC mediated phosphorylation of NMDA receptor masks its ER retention motifs leading thus to its release from the ER and exportation to the cell membrane [144]. Taken together, these findings suggest a similar mechanism where the phosphorylation of Na\(_v\)1.5 at S525 and S528 by PKA leads to changes in the Na\(_v\)1.5 conformation that masks the ER retention signals and eases the trafficking of the channel to the cell membrane [142,145]. This is consistent with the idea that proper folding of Na\(_v\)1.5 unmask its ER retention motifs and facilitates its forward trafficking to the Golgi apparatus [106].

In an antagonistic way to PKA, Na\(_v\)1.5 is downregulated by protein kinase C (PKC)-mediated phosphorylation which leads to a reduced channel density at the cell surface and \(I_{Na}\) decay [146]. Although ten different PKC isoforms have been identified in human ventricular myocytes and in different animal species [147], isoform-specific activation/inhibition studies suggested \(\varepsilon\)PKC isoform as the key player in the PKC-mediated regulation of
Na$_{\text{v}}$1.5 and I_{Na} [148,149]. Nonetheless, PKCδ-mediated Na$_{\text{v}}$1.5/I_{Na} downregulation either directly through phosphorylation at S1503 or indirectly through elevated mitoROS production has been reported [150]. In addition, a minor role of αPKC reducing I_{Na} through angiotensin II has also been described [151]. As a direct mechanism, the PKC (particularly εPKC) effect on Na$_{\text{v}}$1.5 and I_{Na} has been partially attributed to the phosphorylation of a conserved serine S1503 of the DIII-DIV cytosolic linker of Na$_{\text{v}}$1.5 [152,153]. However, intracellular metabolic changes have been described as a mediator of PKC activation and PKC-mediated phosphorylation of Na$_{\text{v}}$1.5. In this regard, high intracellular levels of NADH have been described as triggers of PKC, thus leading to overproduction of mitochondrial reactive oxygen species (mitoROS) and I_{Na} decay [154–156]. This effect has been demonstrated to be mediated by glycerol 3-phosphate dehydrogenase 1 (GPD1L) [157] and could be reversed by NAD$^+$-mediated PKA activation [154,158–160]. Interestingly, Fouda et al. have demonstrated that PKA and PKC phosphorylation pathways could be activated by Cannabidiol and Estradiol and that this activation could rescue the high glucose-induced changes in Na$_{\text{v}}$1.5 properties [161,162].

Importantly, not far from the PKA phosphorylation sites in Na$_{\text{v}}$1.5 DI–DII linker, there is a Ca$^{2+}$/Calmodulin-dependent Protein Kinase II (CaMKII) phosphorylation site as well, which was mapped to S516 [163]. This CaMKII phosphorylation site is not the only one in Na$_{\text{v}}$1.5 since Ashpole et al. have identified four extra potential sites; all of them are localized in DI–DII linker, suggesting linker I as a hotspot for Na$_{\text{v}}$1.5 phosphorylation [163]. However, a recent study by Herren et al. identified 23 sites along Na$_{\text{v}}$1.5 intracellular regions that could be phosphorylated by CaMKII in human Na$_{\text{v}}$1.5 [164]. More recently, Burel et al. identified two further CaMKII phosphorylation sites localized in the C-terminal region of Na$_{\text{v}}$1.5 [165]. Several studies have shown that Na$_{\text{v}}$1.5 is regulated by CaMKII and that activation of this kinase increases the so-called pathogenic late cardiac sodium current I_{NaL} [166]. Interestingly, El Refaey et al. demonstrated that I_{NaL} could also be regulated by B56α, the key regulatory subunit of the PP (protein phosphatase) 2A holoenzyme [167]. This phosphatase is targeted by ankyrin-G to the Na$_{\text{v}}$1.5-CaMKII-βIV spectrin axis at the ID where it is thought to dephosphorylate Na$_{\text{v}}$1.5 at S571 in the DI–DII linker via B56α balancing, thus the CaMKII-dependent phosphorylation of the cardiac sodium channel. According to a study by Deschênes et al., inhibition of CaMKII slowed Na$_{\text{v}}$1.5 channel current decay, produced a depolarizing shift in fast inactivation, and slowed entry into inactivated states [168].

Na$_{\text{v}}$1.5 is also phosphorylated by Tyrosine kinases. In this regard, phosphorylation of Na$_{\text{v}}$1.5 by the Src family Tyrosine kinase Fyn has been first reported by Ahern and co-workers, who have demonstrated that this kinase acts by increasing the rates of recovery from fast-inactivated states, thus impairing the steady-state inactivation of Na$_{\text{v}}$1.5 [169]. Fyn kinase acts most likely on Tyr1495 of Na$_{\text{v}}$1.5 not far from the Ile-Phe-Met (IFM) motif of DIII–DIV linker that is known to modulate the rapid inactivation process of the channel [5]. In the heart, Fyn tyrosine kinases are reported to co-localize with Na$_{\text{v}}$1.5 channels at adherens junctions, where they modulate electrical coupling and propagation of action potential [170,171]. Iqbal et al. found that the major Na$_{\text{v}}$1.5 splice variants Q1077 and delQ1077 are differentially phosphorylated by Fyn kinase, which results in coordinated steady-state rapid inactivation kinetics for smooth electrical activity of the heart [172]. The same researchers suggested a multistep mechanism by which Fyn kinases bind and modulate Na$_{\text{v}}$1.5. This mechanism starts by the association of Fyn kinase to proline-rich regions in the DI–DII linker and C-terminal region of Na$_{\text{v}}$1.5, which activates the phosphorylation of neighboring tyrosine residues in the N-terminal region (Y68, Y87, and Y112), DIII–DIV linker (Y1494, Y1495), and C-terminal region (Y1811, Y1889) [169,172,173]. Particularly, Y1494 and Y1495 of the DIII–IV linker have been demonstrated to play an essential role in the anchoring of Ca$^{2+}$/Calmodulin to the Na$_{\text{v}}$1.5 inactivation gate, and thus Fyn-mediated phosphorylation of the two Tyrosine residues has been suggested to reduce or abolish calmodulin binding and to impair the interaction of the side chain with the inactivation gate receptor [174].
Additionally, Na\textsubscript{v}1.5 has been reported to be dephosphorylated by the protein tyrosine phosphatase 1 (PTPH1), which interacts with the Na\textsubscript{v}1.5 PDZ domain binding site at the C-terminal region [101]. PTPH1-mediated dephosphorylation of Na\textsubscript{v}1.5 modulates its gating by shifting the steady-state inactivation towards hyperpolarized potentials [175].

Arginine Methylation

Beltran-Alvarez and co-workers evidenced for the first time that Na\textsubscript{v}1.5 is post-translationally modified by arginine methylation at three residues (R513, R526, and R680) within the Na\textsubscript{v}1.5 DI–DII linker [176]. This modification is catalyzed by arginine methyltransferases (PRMT) PRMT-3 and PMRT-5 and leads to an increased expression of Na\textsubscript{v}1.5 in cell surface [177]. Studying the PTMs of Na\textsubscript{v}1.5 in end-stage heart failure patients, the same team demonstrated that methylation of R526 is the major quality control step of any Na\textsubscript{v}1.5 arginine or lysine residue [178].

N-Terminal and Lysine Acetylation

Another PTM during the Na\textsubscript{v}1.5 life cycle is the acetylation process. Two types of acetylation have been reported so far: reversible and irreversible. The first type is mediated by histone acetyltransferases (HATs) which exert N-terminal acetylation of a Na\textsubscript{v}1.5 lysine residue leading to enhanced trafficking of Na\textsubscript{v}1.5 and therefore to an increased I_{Na} current [179], whereas the second type of acetylation is mediated by N-terminal acetyltransferases (NATs), where a Na\textsubscript{v}1.5 alanine residue is acetylated and has been reported as a Na\textsubscript{v}1.5 degradation signal [177]. Interestingly, native Na\textsubscript{v}1.5 channels purified from end-stage heart failure patients were reported to lack the initiation of methionine and be acetylated at the resulting initial alanine residue [178]. Recently, Vikram et al. showed that Na\textsubscript{v}1.5 undergoes reversible lysine acetylation. For instance, sirtuin 1 deacetylase (Sirt1), an NAD$^+$-dependent lysine deacetylase, has been demonstrated to regulate Na\textsubscript{v}1.5 channels by deacetylating lysine residue 1479 (K1479) in the DIII–DIV linker, which promotes Na\textsubscript{v}1.5 cell surface expression and increases I_{Na} [180]. Interestingly, the murine model of cardiac Sirt1 deficiency presents fatal cardiac conduction defects as a result of K1479 hyperacetylation, which decreases Na\textsubscript{v}1.5 cell surface expression and reduces I_{Na}. These arrhythmogenic substrates are similar to those characterizing human Na\textsubscript{v}1.5 loss-of-function cardiac arrhythmias suggesting that Na\textsubscript{v}1.5 Sirt1-mediated deacetylation is crucial for the proper function of the cardiac sodium channel. It is noteworthy that the authors of this study raised an interesting point regarding the role of the functional interaction and interplay between different PTMs fine-tune regulating the Na\textsubscript{v}1.5 channel expression and function. In this regard, it has been suggested that Na\textsubscript{v}1.5 is regulated by Sirt1-mediated interaction between lysine acetylation and the ubiquitination in one hand and NAD$^+$-dependent interplay between PKC-mediated phosphorylation and Sirt1-mediated deacetylation in another hand [180].

SUMOylation

Although more than 25 years have passed since the discovery of SUMOylation, a post-translational modification conjugating a small ubiquitin-like modifier (SUMO) molecule to a lysine residue in the substrate protein [181], very scarce information are currently available about the regulation of Na\textsubscript{v}1.5 by SUMOylation. For instance, only one study, that of Plant et al., has reported that one of the mechanisms underlying I_{NaL} elevation in response to acute cardiac hypoxia is the quick SUMOylation of Na\textsubscript{v}1.5 channels at the cell surface [182]. Particularly, SUMOylation of K442 residue has been reported to contribute to the pathological increasing of I_{NaL} and action potential prolongation through activation of Na\textsubscript{v}1.5 channels when they should normally be inactivated.

S-Nitrosylation

S-nitrosylation, a PTM consisting of the covalent binding of a nitrogen monoxide (NO) moiety to the thiol side chain of cysteine in the target protein, has recently gained
progressive attention as a crucial quality control step that is required for the proper function of a given protein [183]. In the cardiomyocytes, NO is produced by neuronal nitric oxide synthase (nNOS) [184]. nNOS mediated S-nitrosylation of Na\textsubscript{v}1.5 has been demonstrated to maintain \(I_{NaL}\) [185]. Interestingly, nNOS has been shown to interact with Na\textsubscript{v}1.5 via its regulating protein \(\alpha\)-syntrophin, which acts as a scaffolding protein bringing together Na\textsubscript{v}1.5 with nNOS and plasma membrane Ca-ATPase (PMCA4b) (an inhibitor of nNOS activity) [186]. Therefore, LQTS-associated \(\alpha\)-syntrophin mutation has been demonstrated to break the SNTA1- PMCA4b association neutralizing, thus the nNOS inhibition and increasing Na\textsubscript{v}1.5 S-nitrosylation, which in turn increase \(I_{NaL}\) currents [186]. A similar effect has been observed with a decreased caveolin 3(Cav3) expression, which has been shown to enhance S-nitrosylation of Na\textsubscript{v}1.5 through increasing the nNOS activity, which increased \(I_{NaL}\) in cardiomyocytes [187]. However, a very recent study by Wang and co-workers suggested an indirect mechanism by which S-nitrosylation modulates the cardiac sodium channel expression and function. For instance, NO has been demonstrated to down-regulate SCN5A expression and Na\textsubscript{v}1.5 function through S-nitrosylation of regulatory transcription factor FOXO1 [188]. These findings increase our current understanding of the role of redox and free radicals in the regulation of Na\textsubscript{v}1.5 function (see [100] for further review).

Lipoxidation

Lipoxidation refers to the establishment of covalent adducts between reactive products of lipid peroxidation and macromolecules such as proteins, phospholipids, and DNA [189]. Recently, lipoxidation gained interest as a post-translational modification of the cardiac sodium channel that gives further evidence on the regulation of Na\textsubscript{v}1.5 by oxidative stress [190]. Nonetheless, little information is currently available about the mechanism of Na\textsubscript{v}1.5 regulation by lipoxidation. In this respect, in vitro data by Nakajima and co-worker provided the first evidence that Na\textsubscript{v}1.5 is post-translationally modified by lipoxidation during oxidant injury and that sodium channel dysfunction evoked by lipid peroxidation could be prevented by scavenging Isoketals (IsoKs), which are the most reactive products of lipoxidation [191].

Methionine Oxidation

A previous study by Quiñonez et al. demonstrated that skeletal Na\textsubscript{v}1.4 fast inactivation could be impaired by oxidizing at least two methionine residues in the channel [192]. These findings have been supported in cardiac Na\textsubscript{v}1.5 as well, where oxidative modification of the methionine within the IFM motif has been shown to lead to a drastic loss of Na\textsubscript{v}1.5 inactivation [193]. Interestingly, Na\textsubscript{v}1.5 channels and \(I_{Na}\) currents have been reported to be indirectly modulated by CaMKII, the activation of which depends on the oxidation of its own methionine residues [194].

Palmitoylation

Palmitoylation (also called S-acylation) is the PTM of protein cysteines with saturated fatty acids that modify protein hydrophobicity and thereby influence their function [195]. Palmitoylation has been reported to regulate ion channel’s function, most likely through controlling their trafficking and cell membrane expression [99,196]. An early study by Schmidt et al. showed that Na\textsubscript{v}1.5 is subject to palmitoylation [99]. However, palmitoylation has been demonstrated to slightly influence cell surface expression of Na\textsubscript{v}1.5 and rather significantly impact channel availability by regulating the voltage dependence of steady-state inactivation in both HEK293 cells and cardiomyocytes [197]. Additionally, cysteine residues predicted to be palmitoylated in Na\textsubscript{v}1.5 are mapped to the DII–DIII linker of the channel by prediction algorithms [197].

3.1.3. Regulation of the ER-to-Golgi Trafficking

Well folded and assembled proteins are supposed to cross the ER-Golgi space in vesicle budding guided by cytoskeletal proteins [198]. Studying the subcellular distribution
of the cardiac sodium channel Na\textsubscript{v}1.5 in HEK293 Cells and canine cardiac myocytes, Zimmer et al. noticed an accumulation of the intracellular channels within the ER and a lower channel density in the Golgi apparatus. Thereby, they proposed that ER plays the role of an intracellular reservoir where sodium channels are transiently stored [199].

As discussed previously, stimulation of PKA likely results in the activation of the ER-to-Golgi trafficking, which in turn leads to a rapid increase of the channel density in the cell membrane [104]. However, the whole mechanisms underlying the ER exit of Na\textsubscript{v}1.5 to the Golgi is not yet fully deciphered, and current advances in this topic show that not only the PKA-mediated phosphorylation of the Na\textsubscript{v}1.5 ER retention sites is what facilitates its ER-Golgi exportation. That is, several proteins and enzymes have been reported to bind to Na\textsubscript{v}1.5 once retained to the ER and enhance its release. In this context, Wu et al. have identified the Ran-guanine nucleotide release factor (RANGRF or MOG1) as a cofactor of Na\textsubscript{v}1.5, which by binding to its intracellular loop DII–DIII facilitates its cell surface expression [200]. Using the DII–DIII linker of Na\textsubscript{v}1.5, in yeast two-hybrid analyses, the team demonstrated that MOG1 is crucial for the optimal expression of Na\textsubscript{v}1.5 and promotes its ER export and intracellular trafficking to the plasma membrane [200]. These findings are consistent with Chakrabarti et al. study, which showed that silencing of MOG1 expression by small interfering RNAs caused retention of Na\textsubscript{v}1.5 in the ER, reduced Na\textsubscript{v}1.5 plasma membrane expression, and disrupted the Na\textsubscript{v}1.5 targeting to the cell surface, in particular, to the caveolin-enriched microdomains (caveolae) [201]. A subsequent mutational study performed by Yu et al. further revealed that mutations in the amino acids E83, D148, R150, and S151 of MOG1 disrupt its interaction with Na\textsubscript{v}1.5 and significantly reduce the cardiac sodium channel trafficking to the cell surface, suggesting that these amino acids are important for the MOG1-Na\textsubscript{v}1.5 binding and interaction [9]. The same team found that MOG1-mediated trafficking and function of Na\textsubscript{v}1.5 requires the interaction of MOG1 with two small GTPases SAR1A and SAR1B and that the knockdown of both enzymes abolishes the function of MOG1 [202]. Furthermore, it has been demonstrated that activation of SAR1 leads to the recruitment and internalization of Na\textsubscript{v}1.5 cargo into the coated transition vesicle COPII-coated vesicles that will ensure its ER-to-Golgi trafficking [202]. The Na\textsubscript{v}1.5 ER export is also controlled by Dynamitin as demonstrated by Chatin et al., who have proved, using a yeast two-hybrid system, that Dynamitin (C-terminal domain), interacted with the Na\textsubscript{v}1.5 DI–DII linker between amino acids 417 and 444 and that this interaction is crucial for the Na\textsubscript{v}1.5 cell-surface density probably through controlling the ER-to-Golgi trafficking [203].

3.1.4. Regulation of Na\textsubscript{v}1.5 Maturation and Golgi Export

Once in the Golgi, N-glycosylated Na\textsubscript{v}1.5 undergoes additional mannose trimming and terminal glycosylation where acetyl-glucosamine, oligosaccharides, and finally sialic acid residues are sequentially added as the protein crosses the distinct Golgi cisternae. It has been demonstrated that glycosylation regulates voltage-gated sodium channels (including Na\textsubscript{v}1.5) gating, inactivation, and recovery process during cardiac AP by interfering with the electric field near the gating sensors [204–208]. Hence, it has been suggested that extracellular sialic acid residues, which are negatively charged at physiological pH, modulate the sensitivity of the Na\textsubscript{v}1.5 voltage sensor domains to the transmembrane electrical potential fluctuation [209]. Particularly, sialic acid residues localized to DI S5-S6 have been demonstrated to regulate the sialic acid-dependent gating of Na\textsubscript{v}1.5 [125].

Mature Na\textsubscript{v}1.5 (fully glycosylated) are exported from the Golgi apparatus, which acts as a major secretory sorting hub that targets newly synthesized proteins to their final subcellular destinations [210]. Although the current knowledge on the exact mechanisms regulating the Na\textsubscript{v}1.5 export from the Golgi and trafficking to the cell membrane is still limited, a recent study by Ponce-Balbuena and co-workers reported that Na\textsubscript{v}1.5 Golgi export is driven by a trafficking signal localized in its terminal COOH region. This signal corresponds to a binding site of the adaptor protein complex 1 (AP1) mapped to Na\textsubscript{v}1.5’s Y1810 residue. AP1-marked Na\textsubscript{v}1.5 will be then incorporated into clathrin-coated vesicles that
will migrate to the cell membrane where the channel will be anchored [211]. The same team showed that the Na\(_v\)1.5 cross the Golgi-cell membrane space by a common anterograde trafficking pathway as Kir2.1. These findings support previous studies demonstrating that both ion channels form a channelosome that shares common trafficking, targeting, anchoring, recycling, and degradation pathways [212,213].

3.1.5. Regulation of the Na\(_v\)1.5 Targeting to the Cell Membrane

Over the last few years, it became widely accepted that not all the Na\(_v\)1.5 proteins synthesized in one cardiomyocyte undergo the same regulatory steps till reaching their final localization in the cell membrane [214]. After years of debate and controversial studies about the subcellular distribution of the cardiac sodium channel, the new cellular imaging techniques excluded the idea of an exclusive expression of Na\(_v\)1.5 at the ID [171,215] and gave way to a more conceivable model that suggests a multi-pool aggregation of Na\(_v\)1.5 along with the cellular membrane compartments including the LM and the T-tubules [216–218]. Being in one membrane domain or the other put the Na\(_v\)1.5 in distinct microenvironments composed of different interacting proteins that regulate its gating function and biophysical properties. Above all these interacting proteins, beta subunits are without doubt the ones that most gained interest in this field over the last few decades as their presence and function are dependent on the presence of the pore-forming \(\alpha\)-subunit (Figures 2 and 3).

Regulation of Na\(_v\)1.5 by \(\beta\)-Subunits

The \(\beta\) subunit family consists of four different proteins \(\beta1\text{-}4\) encoded by four genes, SCN1B–SCN4B, respectively, with \(\beta1\) alternatively spliced into two isoforms, \(\beta1A\) and \(\beta1B\) [219]. As mentioned earlier in this review, the \(\beta\)-subunits, most likely \(\beta1\)-subunits, assemble with Na\(_v\)1.5 at the endoplasmic reticulum and influence its maturation and trafficking to the plasma membrane [127,220]. Alpha-beta subunits assembly is either covalent (\(\beta2\) or \(\beta4\)) or non-covalent (\(\beta1\) or \(\beta3\)) [221]. Particularly, \(\beta4\)-Na\(_v\)1.5 covalent association is ensured by an extracellular cysteine–cysteine single disulfide bond [222,223], while \(\beta2\) does not form a disulfide linkage at this position with Na\(_v\)1.5 as recently specified [5], whereas \(\beta1\) and \(\beta3\) non-covalently interact with Na\(_v\)1.5 through the channels DIV and DIII voltage gating domain respectively [224].

Despite the structural similarities between \(\beta2/\beta4\) on one hand and \(\beta1/\beta3\) on the other hand, their expression differs from one cellular sub-domain to another. Inside the cardiomyocyte, \(\beta3\) are expressed at the T-tubules and \(\beta4\) at the ID, while \(\beta1\) and \(\beta2\) are found at both locations [215,225,226]. Zimmer et al. have suggested that, unlike \(\beta2, \beta1\) associates to Na\(_v\)1.5 early at the ER, and both \(\alpha\) and \(\beta1\) subunits are trafficked together to their final destination at the cell membrane [227]. Subsequent studies revealed that \(\beta1\)-subunits enhance the \(\alpha\)-subunits dimerization and promote the dominant-negative effect of trafficking defective mutants [228]. \(\beta2\) has been reported to promote surface localization of Na\(_v\)1.5 [229]. Importantly, \(\beta3\) subunits have been demonstrated to bind to Na\(_v\)1.5 in multiple sites and promote the formation of \(\alpha\) subunit oligomers, including trimers [230]. However, \(\beta4\) has been reported as a modulator of Na\(_v\)1.5 kinetic and gating properties by increasing \(I_{Na}\) [231]. Taken together, these findings are consistent with the idea that the distinct sodium channel \(\beta\) subunits provide support for the pore-forming subunit, facilitate the trafficking of the mature channel to the different membrane domains, and modulate the gating function of Na\(_v\)1.5 by increasing the \(I_{Na}\) [232–236]. More details regarding the regulation of Na\(_v\)1.5 by \(\beta\) subunits in the context of sodium channelopathies are discussed in Section 4 of this review.
The Na\textsubscript{v}1.5 and the Intercalated Disc Interactome

As suggested by the Delmar research team, several evidence point to the fact that the ID is not a hub of proteins playing independent functions within the cardiomyocyte, but rather a network of molecules interacting together in order to fulfill a specific function (AP propagation, cell-to-cell coupling, cardiac excitability, etc.) that cannot be accomplished...
if this “interactome” is impaired [237]. As a component of the ID proteins, Na$_v$1.5 has been demonstrated to be in the heart of this interactome by physically and functionally associating to several proteins belonging to this macromolecular complex.

In this context, it is currently well known that Na$_v$1.5 targeted to the ID are “tagged” with synapse-associated protein 97 (SAP97), a scaffolding MAGUK ((membrane-associated guanylate kinase) protein that is abundantly expressed in human and rat ventricular myocardium [238]. SAP97 has been introduced as the determinant of the Na$_v$1.5 ID pool as it plays an important role in targeting Na$_v$1.5 along with Kir2.1 to this cell membrane domain [238,239]. Both channels were structurally evidenced to co-assemble to SAP97 by their C-terminal domains [238,240]. For Na$_v$1.5, it is assumed that the last three amino-acids (serine–isoleucine–valine or SIV motif) of the C-terminal region form a PDZ (postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1) domain binding motif) that interacts with the syntrophin–dystrophin complex at the cardiomyocyte LM and PDZ domains of SAP97 at the ID [218]. In the absence of the PDZ-domain-binding motif of Na$_v$1.5 or SAP97, Na$_v$1.5 expression at the cell surface decreased, thus leading to a reduction in the cardiac I_{Na} in vitro [241]. However, a subsequent study by the same team demonstrated that in vivo ablation of SAP97 did not change Na$_v$1.5 localization and function, but it did decrease the cardiac potassium currents [242]. The authors of these studies justified this discrepancy by the fact that SAP97 silencing in vitro is induced in adult cardiomyocytes while in vivo, it is a constitutive ablation present early in development, which may impact protein expression and interactions.

In addition, the Na$_v$1.5-SAP97-Kir2.1 complex has been demonstrated to reach the ID through the microtubule highway [133,238,239,243]. Although the exact mechanism by which Na$_v$1.5 is targeted to the ID is not yet fully discovered, part of it is already elucidated. A few years ago, Agullo-Pascual et al. proved for the first time that the microtubule plus-end tracking protein “end-binding 1” (EB1) is captured to the IDs by connexin 43 (cx43), which facilitates the cargo delivery, including Na$_v$1.5 [244]. These findings are consistent with Marchal and co-workers’ recent study in which they have further proved that EB1 modulates Na$_v$1.5 trafficking to the IDs and that loss of EB1 function leads to reduced I_{Na} and conduction slowing [245]. Moreover, EB1 has been previously demonstrated to bind directly to CLASP2 (cytoplasmic linker associated protein 2) and form a complex at the microtubule plus-end, promoting thus microtubule polymerization and stabilization [246]. Interestingly, inhibiting the GSK3β (glycogen synthase kinase 3β)-mediated phosphorylation of CLASP2 enhanced the EB1–CLASP2 interaction, which in turn led to an increased Na$_v$1.5 delivery at the ID of cardiomyocytes and an increased I_{Na} [245]. Furthermore, Rhett et al. have shown that in addition to its known localization at the gap junction where it interacts with zonula occludens-1 (ZO-1) [247,248], Cx43 also co-localizes with ZO-1 in the zone surrounding the gap junction, conventionally termed as perinexus and that Cx43 but not ZO-1 interact with Na$_v$1.5 at this zone in physiological conditions [249]. In vivo and in vitro assays show that Na$_v$1.5 expression and function are reduced as a result of Cx43 expression/function decrease, thus giving more evidence that Cx43 is required for a proper Na$_v$1.5 function at the ID [250].

Importantly, Na$_v$1.5 and Cx43 interaction at the perinexus is thought to be mediated by scaffolding proteins SAP97 and Ankyrin G (AnkG) as their interaction has been reported [241,251]. In the cardiovascular system, ankyrins are critical components of ion channels and transporter signaling complexes, and their dysfunction has been linked with abnormal ion channel and transporter membrane organization and fatal human arrhythmias [252]. Although both ankyrin-B (AnkB, encoded by ANK2) and ankyrin-G (ANK3) have been found to be expressed in the myocardium, only ankyrin-G has been shown to interact with Na$_v$1.5 [253]. Specifically, AnkG is necessary for normal expression of Na$_v$1.5 and acts as a coordinating signaling center, functionally coupling Na$_v$1.5 gating with upstream kinase and phosphatase enzymes and downstream cytoskeletal proteins [110,254]. AnkG is primarily expressed at the ID membrane and T tubules, where it co-localizes with
Na\textsubscript{v}1.5 [142]. In vitro, it has been demonstrated that AnkG binds to Na\textsubscript{v}1.5 and that AnkG downregulation impaired the subcellular localization of Na\textsubscript{v}1.5 and reduced the \(I_{Na}\) current amplitude [255,256]. In vivo, Makara and his collaborators have demonstrated that AnkG plays an indispensable role in directing Na\textsubscript{v}1.5 and its regulatory protein CaMKII to the ID [254,257]. Mutational studies have further confirmed that disrupting the binding of AnkG to Na\textsubscript{v}1.5 impairs AnkG dependent targeting of the Na+ channel to the ID leading thus to a reduction in \(I_{Na}\) density and cardiac arrhythmias [253,254,258]. A recent study performed by Yang et al. has demonstrated that AnkG, but not AnkB, are expressed at the IDs and that masking Na\textsubscript{v}1.5 binding sites in AnkG using competitive peptides caused a decrease in sodium channel current (\(I_{Na}\)) and targeting defects of the Na+ channels to the ID, but not to LM [213]. However, a more recent study by Cavus and collaborators specified that only canonical AnkG isoforms have this regulatory effect on Na\textsubscript{v}1.5 and that noncanonical (giant) AnkG isoforms mediated electrical dysfunction is independent of Na\textsubscript{v}1.5 [259].

Furthermore, AnkG is thought to mediate the interaction between Cx43 and PKP2, thus connecting desmosomal proteins with the molecular complex that captures the microtubule plus-end at the ID, thus allowing for delivery of Na\textsubscript{v}1.5 [244,256,260]. This is consistent with the fact that loss of desmosomal integrity impacts cardiac conduction and leads to cardiac arrhythmias [260–262]. Accordingly, loss of Plakophilin-2 (PKP2), a crucial component of the cardiac desmosome, has been demonstrated to decrease \(I_{Na}\) in cardiac myocytes [263]. Similarly, loss of PKP2 expression in HL1 cells and in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a patient with PKP2 deficiency reduced \(I_{Na}\) amplitude [261,264]. Likewise, Rizzo et al. have demonstrated that desmoglein-2 (Dsg2), another desmosome protein, physically interacts with Na\textsubscript{v}1.5 at the ID of mouse cardiomyocytes in vivo [265]. They showed that mice models over-expressing a desmoglein-2 mutation present a wider intercellular space at the level of the ID, longer ventricular activation time, lower conduction velocity, lower upstroke velocity, and lower \(I_{Na}\) amplitude compared to wild type. Although no evidence of direct interaction between Desmoplakin (DSP) and Na\textsubscript{v}1.5 has been reported, RNAi-based Desmoplakin silencing in vitro resulted in a reduction in Na\textsubscript{v}1.5 expression at the ID of cardiomyocytes, an abnormal sub-cellular distribution of Cx43 and Na\textsubscript{v}1.5, \(I_{Na}\) decay, and slowed conduction velocity suggesting that DSP regulates Na\textsubscript{v}1.5 [266].

Similarly, AnkG is established as an adaptor protein that organizes, transports, and anchors Na\textsubscript{v}1.5 to the actin/spectrin cytoskeleton [267–269]. In fact, the AnkyrinG-Na\textsubscript{v}1.5 complex is believed to connect with the actin/\(\alpha\)-spectrin cytoskeleton through CaMKII-\(\beta_{IV}\)-spectrin interaction where the latter acts as a CaMKII-anchoring protein and thereby orchestrating the whole macromolecular complex; however, no evidence of direct interaction between Na\textsubscript{v}1.5 and \(\beta_{IV}\)-spectrin has been found yet [255]. On the other hand, \(\beta_{IV}\)-spectrin is assumed to control the CaMKII-dependent regulation of Na\textsubscript{v}1.5 at the ID, and loss of \(\beta_{IV}\)-spectrin/CaMKII interaction precludes CaMKII-dependent phosphorylation of Na\textsubscript{v}1.5 at Serine 571 in the DI–DII linker and abolishes the stress-induced activation of the pathogenic \(I_{Na-L}\) [270,271].

Remme’s team [272] has recently demonstrated that ID Na\textsubscript{v}1.5 physically interacts with coxsackie and adenovirus receptor (CAR), a single-pass transmembrane cell adhesion molecule (CAM) [273]. Furthermore, they have demonstrated that CAR haploinsufficiency decreased \(I_{Na}\) amplitude at the ID, which in turn reduced sodium channel availability at this cell membrane compartment. Na\textsubscript{v}1.5–CAR interaction is only beginning to be understood, and thus, mechanisms underlying this interaction are still to be studied.

Our current understanding regarding the Na\textsubscript{v}1.5 auto-regulation is still limited. Over the last decades, several controversial studies emerged regarding the sodium channel \(\alpha-\alpha\)-subunits interaction and dimerization. However, Clatot and co-workers settled this controversy by demonstrating for the first time that trafficking-defective Na\textsubscript{v}1.5 exerts a dominant-negative effect on non-defective ones through \(\alpha-\alpha\)-subunits physical interaction at their N-terminal regions, precluding thus their cell surface expression [274]. Building
on these findings, the team further evidenced that cardiac sodium channel α-subunits assemble as dimers with coupled gating and that this dimerization is mediated through an interaction site found within the DI-II linker of Na\textsubscript{v}1.5, between amino acids 493 and 517 [275]. Curiously, earlier studies have shown that 14-3-3 protein, a member of highly conserved cytosolic acidic proteins, physically interacts with the DI-II linker of Na\textsubscript{v}1.5 (between amino acid 417 and 467) at the ID and that this interaction facilitates the dimerization of cardiac sodium channels [276]. Strikingly, Clatot et al. identified a second 14-3-3 protein-Na\textsubscript{v}1.5 interaction site between amino acid 517–555 and demonstrated that co-operative gating behavior but not dimerization of α-subunits is dependent on 14-3-3-Na\textsubscript{v}1.5 interaction [275].

Na\textsubscript{v}1.5 and the Lateral Membrane’s Interactome

Na\textsubscript{v}1.5 targeting to the LM has been demonstrated to be mediated by the syntrophin-dystrophin complex [3,241]; however, a sub-pool of Na\textsubscript{v}1.5 at the LM, which is independent of syntrophin, has been recently characterized as well [277]. Dystrophin is known to indirectly mediate Na\textsubscript{v}1.5 expression at the LM through binding to Syntrophin adapter protein which physically associates to the PDZ domain-binding motif at the C-terminal region of Na\textsubscript{v}1.5 [3,241,278–280]. Interestingly, Matamoros et al. demonstrated that α1-syntrophin also interacts with the N-terminal region of Na\textsubscript{v}1.5 through an “internal” PDZ-like binding domain localized at this region which acts as “chaperone-like” domain that increases Na\textsubscript{v}1.5 density at the LM and I\textsubscript{Na} [281]. The same mechanism has been validated for Kir2.1 and Kir2.2 that were demonstrated to reciprocally interact with Na\textsubscript{v}1.5 channels and modulate each other’s trafficking and expression [281,282].

Interestingly, Na\textsubscript{v}1.5 has been demonstrated to interact with CASK (calcium/calmodulin-dependent serine kinase), a member of the MAGUK protein family [283]. In several ways, CASK is considered an unconventional Na\textsubscript{v}1.5 regulator since it is the only MAGUK protein that is lateral membrane-specific and also the only Na\textsubscript{v}1.5 interacting protein that exerts a repressive effect on the functional expression of Na\textsubscript{v}1.5, most likely by preventing its early trafficking to the LM. In this regard, CASK has been demonstrated to decrease I\textsubscript{Na} when the former is over-expressed and to increase I\textsubscript{Na} when CASK is inhibited in vivo and in vitro [283].

In addition, Na\textsubscript{v}1.5 has been evidenced to interact with members of the Z-line scaffolding protein complex, such as α-actinin-2 and telethonin. While α-actinin-2 is currently known to physically interact with Na\textsubscript{v}1.5 through the channel DIII–DIV linker [284], the telethonin interaction site on Na\textsubscript{v}1.5 has not yet been identified [101]. α-actinin-2 is thought to positively regulate Na\textsubscript{v}1.5 by increasing its cell surface expression, most likely through promoting its anchoring to the contact zones between T-tubules and Z-lines and connecting the channel to the actin cytoskeleton network [284]. However, scarce information is available regarding the mechanism of Na\textsubscript{v}1.5 regulation by telethonin, although physical interaction between TCAP and Na\textsubscript{v}1.5 was evidenced by co-immunoprecipitation methods and mutations in the telethonin coding gene (TCAP) has been found to alter the channel-gating properties of Na\textsubscript{v}1.5 in patients with abnormal gut motility and Brugada syndrome [285,286].

Moreover, the role of fibroblast growth factor homologous factors (FHFs), a subset of the fibroblast growth factor (FGF) family [287], has been well elucidated modulating the neuron voltage-gated sodium channels [288]. However, their role in controlling cardiac sodium channel function is still poorly understood and subject to debate. In this respect, fibroblast growth factor homologous factor 1B (FHF1B), also known as FGF12B, has been reported to regulate the biophysical properties and kinetics of Na\textsubscript{v}1.5 through its physical interaction (amino acids 1773–1832) with the Na\textsubscript{v}1.5 C terminal region [289]. Both in vitro data show that FHF1B interacts with Na\textsubscript{v}1.5, and this interaction results in hyperpolarizing shift in steady-state inactivation of this channel [289]. However, the opposite effect has also been reported where a depolarizing shift in the V1/2 of steady-state inactivation has been attributed to the FHF1B-Na\textsubscript{v}1.5 interaction [290]. Furthermore, FGF13 (FHF2),
which is the major FHFs in adult mouse hearts, has been identified as a Na\(_{\text{v}}\)1.5 interacting protein [290]. In the cardiomyocyte, FHF2 co-localizes with distinct Na\(_{\text{v}}\)1.5 pools, i.e., the LM and ID suggesting an important role for FHF2 modulating Na\(_{\text{v}}\)1.5 cell surface expression and function [291]. Like FGF12B, FGF13 physically binds to Na\(_{\text{v}}\)1.5 through the channel’s C terminus region. In vivo, FGF13 knockdown altered Na\(_{\text{v}}\)1.5 function resulting in a decreased \(I_{\text{Na}}\) current density, reduced Na\(_{\text{v}}\)1.5 channel availability, slowed Na\(_{\text{v}}\)1.5, and reduced \(I_{\text{Na}}\) current recovery from inactivation [290]. This effect of FGF13 is isoform-specific [292]. FHFs have also been implicated in voltage-gated sodium channel trafficking control. In this context, FGF14 has been reported as a modulator of Na\(_{\text{v}}\)1.5 current densities in neurons and in the heart by impairing their biophysical properties or by controlling channel trafficking and cell surface expression in vitro [293].

Furthermore, calmodulin (CaM), a ubiquitous Ca\(^{2+}\)-sensing protein, has been reported to interact with Na\(_{\text{v}}\)1.5 N- and C-terminal regions [294–297] and the DIII–IV linker [174,295]. This interaction has been demonstrated to enhance slow inactivation and modulate Na\(_{\text{v}}\)1.5 gating [296], while disruption of CaM binding to Na\(_{\text{v}}\)1.5 decreases channel activity and enhances the propensity for persistent Na\(^{+}\) current, all resulting from a switch in the Na\(_{\text{v}}\) inactivation mechanism [297]. Na\(_{\text{v}}\)1.5–CaM interaction has been further studied in a mutational context related to cardiac sodium channelopathies (See Section 4).

Finally, dipeptidyl peptidase-like protein-10 (DPP10), previously reported as a modulator of Kv4.3-current kinetics [298], has recently emerged as a new regulator of Na\(_{\text{v}}\)1.5 [299]. In vivo, DPP10 has been reported to modulate Na\(_{\text{v}}\)1.5 current kinetics as well by altering voltage dependence of Na\(^{+}\) current and upstroke velocity of the action potential [299].

The Caveolar Na\(_{\text{v}}\)1.5

Cardiac sodium channels have also been localized to cardiomyocyte caveolae, which are specialized subsarcolemmal membrane compartments enriched in lipids and play a crucial role in vesicular trafficking and protein targeting to the cell surface [300,301]. Caveolar Na\(_{\text{v}}\)1.5 is exposed to a very rich macromolecular complex encompassing fatty acids, ion channels (pacemaker channels, potassium channels, calcium channels, etc.), and signaling complexes (G-protein-coupled receptors, protein kinases, etc.). This microenvironment has been reported to regulate Na\(_{\text{v}}\)1.5 function and membrane expression in a multilayers fashion [301].

The first layer is related to the biochemical properties of caveolae itself as a specialized lipid raft rich in fatty acids. In this regard, previous reports demonstrated that Na\(_{\text{v}}\)1.5 is blocked by polyunsaturated fatty acids (PUFAs), suggesting that interaction of Na\(_{\text{v}}\)1.5 with the caveolar lipids that also include PUFAs might have the same effect [302,303]. Nonetheless, the mechanism by which caveolar lipid rafts regulate Na\(_{\text{v}}\)1.5 is not yet fully understood.

The second layer of caveolar Na\(_{\text{v}}\)1.5 regulation is mediated by caveolins which are the major proteins of caveolae [301]. This mechanism was first reported by the Shibata group, which demonstrated that in addition to the indirect \(\beta\)-adrenergic regulation of Na\(_{\text{v}}\)1.5, which is PKA-dependent, stimulation of the \(\beta\)-adrenergic pathway in the presence of a \(\beta\)-adrenergic receptor, activates G-protein (G\(\alpha\)) cascade, which in turn leads to a rapid increase of \(I_{\text{Na}}\) [300]. A subsequent study by the same group suggested that caveolar Na\(_{\text{v}}\)1.5 channels are stored at caveolae invaginations and that PKA-independent G\(\alpha\)-dependant stimulation of the \(\beta\)-adrenergic pathway leads to the opening of caveolae, the exposition of Na\(_{\text{v}}\)1.5 channels to the extracellular environment, which in turn increase \(I_{\text{Na}}\) [304]. This mechanism has been completely neutralized by anti-caveolin 3 antibodies dialyzed into the myocytes suggesting that caveolar Na\(_{\text{v}}\)1.5 function is dependent on the G\(\alpha\)-Caveolin 3 (Cav3) interaction [304]. Although Na\(_{\text{v}}\)1.5 has been confirmed to interact with caveolin 3 in rodent and human cardiomyocytes [300,305], it is not yet clear if this interaction is direct or indirect. Several reports suggested that Cav3 modulates Na\(_{\text{v}}\)1.5 function indirectly through inhibiting the nNOS, which is a part of the Na\(_{\text{v}}\)1.5-SNTA1-PMCA4b macromolecular complex [305,306]. As mentioned earlier in this review, a decay in Cav3 expression has
been demonstrated to activate S-nitrosylation of Naᵥ1.5 through increasing the local NO production, which increased $I_{Na,L}$ in cardiomyocytes [187].

3.1.6. Regulation of Naᵥ1.5 Degradation

Maintaining the balance between protein synthesis and degradation is crucial for the fine-tune regulation of Naᵥ1.5 levels [307]. In fact, it is currently well established that internalization and degradation of Naᵥ1.5 are regulated either by ubiquitination, covalent attachment of ubiquitin moieties [308], or autophagy [309]. The first mechanism is mediated by the interaction of C-terminus PY motifs of Naᵥ1.5 with the fourth tryptophan-rich domain (WW) of E3 ubiquitin ligase NEDD4-2, which leads to the labeling of Naᵥ1.5 by ubiquitin residues that will be later recognized by the degradation machine [100,310,311]. Interestingly, yeast two-hybrid data demonstrated that the interaction between Naᵥ1.5/αβ-Cristallin from one hand and αβ-Cristallin/Nedd4-2 from another hand reduced internalization of cell surface Naᵥ1.5 and ubiquitination of Naᵥ1.5 [312]. Similarly, serum and glucocorticoid inducible kinase (SGK) has been reported to regulate Naᵥ1.5 degradation by phosphorylating and inhibiting Nedd4-2 [313], whereas UBC9, a SUMO-conjugating enzyme, has been shown to promote Naᵥ1.5 ubiquitination [314]. A very recent study by Liu et al. demonstrated that Naᵥ1.5 ubiquitination would be downregulated by the association of FAT10, a small ubiquitin-like modifier, to the C-terminal lysine residues of Naᵥ1.5, thus decreasing the binding of Naᵥ1.5 to the Nedd4-2 and preventing its degradation [315]. Nedd4-2 has been reported as a direct target of AMP-activated protein kinase (AMPK) in epithelial cells [316]. However, a recent report by Liu X et al. attributed a Nedd4-2 independent Naᵥ1.5 degradation mechanism to AMPK [309]. AMPK, through phosphorylating Naᵥ1.5 T101 residue, facilitates the association of the channel to the autophagic adapter protein and microtubule-associated protein 1 light chain 3 (LC3) and exposes the complex to the autophagic degradation machinery [309].

3.1.7. Effect of Gonadal Hormones on Naᵥ1.5 Expression and Function

The male predominance of some sodium channelopathies such as Brugada syndrome has been extensively studied over the last few years, thus questioning a possible link between sex hormones and Naᵥ1.5 [317,318]. However, comparing the expression levels of Naᵥ1.5 between normal male and female human hearts showed no difference [319]. In addition, concentration-related block of Naᵥ1.5 by estradiol showed that estradiol could not reduce the current of Naᵥ1.5 [320], although a slight reduction in $I_{Na,L}$ currents has been observed at a high concentration of estradiol in vitro [321]. Yang et al. have recently studied the expression levels and function of Naᵥ1.5 in HEK293 cells co-expressing SCN5A (wild-type or BrS mutants R878C and R104W) and sex hormone receptors. They thereby showed that sex hormones have no effects on the expression level of SCN5A (either WT or mutant) and $I_{Na,L}$ currents [322]. Similarly, gonadal hormones testosterone and estrogen showed no effect on fast I_{Na} in a canine model [323]. However, a recent study by Hu et al. demonstrated that estrogen through its rapid signal receptor GPER ameliorated the damaging effects of stress in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) model mimicking β-adrenergic overstimulation [324]. Taken together, these findings demonstrate that our current knowledge on the regulation of Naᵥ1.5 by sex hormones is still limited and that further studies in this regard are necessary.

3.1.8. Effect of Temperature and pH on Naᵥ1.5 Expression and Function

Febrile states and acidosis are two environmental factors that have been extensively studied as non-genomic modulators of Naᵥ1.5 function in health and disease. It is currently well known that Naᵥ1.5 kinetic is temperature and pH-sensitive [325]. In this context, mild hypothermia has been described as an antiarrhythmic factor that maintains myocardial conduction during prolonged ischemia by sustaining Naᵥ1.5 and Cx43 function [326], whereas hyperthermia has been described as a proarrhythmic factor, especially in combination with SCN5A mutations as is the case in Brugada syndrome [327–330]. Two mechanisms...
have been suggested so far for the temperature-dependent regulation of Na\textsubscript{v}1.5. The first one is a direct mechanism by which temperature accelerates the inactivation of only the wild-type Na\textsubscript{v}1.5 channels in heterozygous patients, which results in the misbalance between depolarization and repolarization currents and thus may lead to fever-induced arrhythmias \cite{40,331}. The second mechanism is indirect by which temperature modulates the function of Na\textsubscript{v}1.5 interacting proteins, which in turn modulate Na\textsubscript{v}1.5 function as is the case of FGF13 \cite{332}.

Similarly, fluctuation of the extracellular pH has been demonstrated to influence the Na\textsubscript{v}1.5 function. For instance, acidic extracellular pH has been shown to modify wild-type Na\textsubscript{v}1.5 kinetics by destabilizing both the fast inactivated and the slow inactivated states of Na\textsubscript{v}1.5 \cite{333}. In addition, it has been reported that extracellular protons disrupt charge immobilization which leads to the destabilization of the Na\textsubscript{v}1.5 fast-inactivation through direct interaction with outer ring carboxylates of the Na\textsubscript{v}1.5 DIII or DIV \cite{334}. Particularly, His-880 and Cys-373 were identified as the key mediator of Na\textsubscript{v}1.5 sensitivity to pH fluctuation, where Cys-373 is responsible for isoform-specific proton modulation of use-dependent inactivation of Na\textsubscript{v}1.5 \cite{335}.

4. Cardiac Sodium Channelopathies

SCN5A dysfunction has been extensively reported in distinct cardiac channelopathies such as long QT syndrome, Brugada syndrome, atrial fibrillation, ventricular fibrillation, sick sinus syndrome, and sudden infant death syndrome, as well as in complex electrophysiological disorders that combine several of the previously mentioned channelopathies. In the next paragraphs, we provide an updated view of the mutational, genomic, and non-genomic contribution to SCN5A dysfunction on each of these channelopathies (Table 1).

4.1. Long QT Syndrome

Seminal studies by Wang et al. \cite{336} determined a causative link between SCN5A mutations and long QT syndrome (LQT3). These authors also determined the biophysical and functional characteristics of the novel identified mutations that displayed non-inactivating \(I_{Na}\) amounting to a few percent of the peak inward \(I_{Na}\), as well as impairment on voltage dependence and rate of inactivation and the rate of recovery from inactivation \cite{337}. Since these early studies, more than 80 different mutations have been identified in SCN5A associated with LQT, accounting for 5–10% of the cases (see for recent reviews \cite{14,338–341}). Functional analyses of several of the identified LQT SCN5A variants displayed gain-of-function either by increasing the late phase of the \(I_{Na}\) or increasing the window current or both conditions simultaneously, yet our current understanding of the functional roles of most SCN5A mutations described remains elusive.

In addition to mutations on SCN5A associated with long QT syndrome, several SCN5A/Na\textsubscript{v}1.5 interacting proteins have also been associated in this context. Mutations in the sodium channel ancillary protein SCN1B are associated with LQT, leading to increased \(I_{NaL}\) \cite{342}, while mutations in SCN4B have also been identified \cite{231}, yet its plausible implication in LQT is still disputed \cite{343}. Besides these ancillary subunits, a large number of proteins have been reported to interact with SCN5A/Na\textsubscript{v}1.5, as recently reviewed by Abriel Hugues \cite{101} and detailed in the previous subchapters of this manuscript. In this context, mutations in syntrophin (SNTA1) and caveolin (Cav3) are associated with long QT and disrupt sodium channel function, increasing the \(I_{Na}\) \cite{186,187,344–347}. On the other hand, mutations in BAG3, ankyrin B (ANKB), and \(\alpha\)-actinin (ACTN1) leads to LQT, but it remains unclear how such mutations affect the \(I_{Na}\) \cite{294,348,349}, while calmodulin (CaM) and telethonin (TCAP) have been implicated in SCN5A/Na\textsubscript{v}1.5 interaction and function \cite{163,285} yet to date no mutations have been reported in the context of LQT syndrome.

The genomic contribution to long QT syndrome in transcriptional regulators of SCN5A expression is still incipient since only variants on TBX5 have been reported but not in any of the other transcriptional modulators. Variants affecting transcriptional regulators influencing SCN5A expression have been recently linked to long QT syndrome. In particular,
Markunas et al. [350] described a TBX5 variant that co-segregated with prolonged QT interval in a family with otherwise genotype-negative LQTS and demonstrated that such variant impaired the transactivation capacity of this transcription factor. Nieto-Marín et al. [351] reported two additional TBX5 variants that co-segregated with LQT and BrS patients and electrophysiologically impaired I_{Na} currents in vitro.

Several SCN5A mutations leading to splice donor variants have been associated with LQT [339,352–357]; however, to date, the functional relationship between the distinct SCN5A isoforms and this syndrome remains to be elucidated. While our current understanding of distinct non-coding RNAs in cardiovascular pathology is increasingly emerging, no data are available regarding the functional contribution of microRNAs and/or lncRNAs to long QT syndrome physiopathology. Similarly, the contribution of post-transcriptional SCN5A/Na$_v$1.5 regulation by phosphorylation, glycosylation, acetylation, and/or methylation to QT syndrome has not been reported, and the contribution of ubiquitination is currently controversial [358,359]. Importantly, acetylation in KCNH2, i.e., another ion channel that, if mutated, contributes to long QT syndrome, has been reported [360], opening the possibility that SCN5A/Na$_v$1.5 post-transcriptional regulation also contributes to LQT.

4.2. Brugada Syndrome

SCN5A mutations were associated for the first time to the right bundle branch and ST-elevation syndrome, i.e., Brugada syndrome by Chen et al. [25]. These authors identified a two-nucleotide insertion after the first four nucleotides of the splice donor sequence in intron 7, leading to impaired SCN5A splicing. They also identified a deletion of a single nucleotide in the SCN5A gene that resulted in the elimination of two transmembrane domains and the C-terminal portion of the cardiac sodium channel. Since then, an increasing number of SCN5A mutations have been reported to be associated with Brugada syndrome. To date, more than a hundred mutations have been reported in BrS. Functional analyses of several of these SCN5A reported mutations to demonstrate in most cases, a loss-of-function is achieved, either by decreased Na$_v$1.5 expression in the sarcolemma, because the channels are non-functional or because there is an impaired gating off the channel that results in decreased I_{Na} current. However, only a relatively limited number of SCN5A mutations associated with BrS have been fully electrophysiologically characterized.

Importantly, single point mutations have also been associated with both long QT and BrS phenotypes [26,361], and several of these have been electrophysiologically characterized [24,362–365], yet the precise molecular mechanism of their dual action remains enigmatic.

As previously reported in the context of LQT, in addition to mutations on SCN5A, several SCN5A/Na$_v$1.5 interacting proteins have also been associated with Brugada syndrome. Mutations in the sodium channel ancillary proteins SCN1B [232,356,359,366–370], SCN2B [229], and SCN3B [356] are associated with Brugada syndrome, leading in several cases to decrease I_{Na} current [366] and/or cellular trafficking defects [229,356]. Besides the role of the sodium channel ancillary subunits, additional SCN5A/Na$_v$1.5 interacting proteins have been reported in BrS. Mutations in Plakophilin (PKP2) [260,371] MOG1 [9,201,372–375], FGF13 [376], syntrophin (SNTA1) [377], NEDD4 [378,379], Tmem168 [379] and telethonin [285,286] are identified in BrS patients and their implication to sodium channel function has been reported. Distinct Na$_v$1.5 interacting protein mutants lead to I_{Na} deficit [261,286,375,377] while others influence Na$_v$ trafficking and thus subcellular localization [201,379].

On the other hand, mutations in desmoglein and SAP97 have been described in BrS patients [380,381], but their influence on SCN5A/Na$_v$1.5 remains to be elucidated, while calmodulin, CamKII, and GPDIL modulation of SCN5A/Na$_v$1.5 is well-established [157,163,382,383], but to date, no mutation in these genes have been reported in the context of Brugada syndrome.

At the transcriptional level, Nieto-Marín [351] identified TBX5 variants associated with BrS and LQT, as previously mentioned. Furthermore, additional evidence of the tran-
scriptional modulation of SCN5A expression in Brugada syndrome, including GATA4 [384] and IRX3 [385] variants, have been reported. Transcriptional contributions by mutations in the SCN5A promoter are also linked to Brugada syndrome [384], causing decreased SCN5A/Na\(_v\)1.5 and \(I_{Na}\), thus loss-of-function. Importantly, they have also been associated with distinct arrhythmogenic diseases [24,386]. More recently, [387] reported that a common SCN5A polymorphism, i.e., H558R, modulates the SCN5A promoter methylation and thus the clinical phenotype of Brugada syndrome patients. However, it remains unclear which are the molecular mechanisms underlying such association.

The importance of non-coding RNAs in the context of Brugada syndrome has been recently explored using an integrative omics approach [388]. These authors identified several microRNAs that are distinctly upregulated in BrS, such as miR-92a-3p and miR-320b, or down-regulated such as miR-425-5p and established their plausible links as molecular determinants of Brugada syndrome, yet functional evidence is missing. More recently, Matsumura et al. [93] described SCN5A coding variants that lack genotype-phenotype concordance, and additionally, SCN5A 3’UTR variants were identified that impaired microRNA binding sites but similarly failed to properly segregate with BrS phenotype [93], suggesting that a combination of multiple genetic factors, rather than a single variant is the cause of BrS onset [93]. Thus, to date, the plausible role of ncRNAs in BrS remains almost unexplored.

Our current understanding of the mechanistic links between SCN5A/Na\(_v\)1.5 post-transcriptional modifications and the onset of Brugada syndrome is scarce. Aiba et al. [389] described that R526H and S528A SCN5A mutations, identified in a BrS family, impaired Na\(_v\)1.5 phosphorylation, leading to reduced peak current densities, yet steady-state activation, inactivation, and recovery for inactivation were not modified. Besides this study, no additional links for glycosylation, acetylation, and/or methylation have been reported in the context of BrS.

4.3. Atrial Fibrillation

Atrial fibrillation has also been associated with mutations in SCN5A. Ellinor et al. reported missense mutation in a 45-year-old male proband and his affected father among a series of 57 probands with a familial history of isolated or ‘lone’ atrial fibrillation [384]. More recently, Darbar et al. [390] identified eight heterozygous variants in ten probands that were not found in age-, sex-, and ethnicity-matched controls. In addition, rare nonsynonymous coding region variants previously reported were also demonstrating that in their study, nearly 6% of AF probands carried heterozygous mutations or rare SCN5A variants. Thus, the causal contribution of SCN5A to familial AF is limited.

Curiously, an extensive array of SCN5A mutations have been associated with atrial fibrillation and other electrophysiological disorders such as BrS [391], cardiac conduction defects [392], LQT [393], and even a spectrum of atrial flutter, conduction diseases, and BrS [394].

Mutations in all sodium channel ancillary subunits have been reported in atrial fibrillation patients [395–398], while only mutations in Mog1 [375,399], ankyrin [400,401], alpha-actinin [402], and caveolin [403] have been associated with atrial fibrillation among those other SCN5A/Na\(_v\)1.5 interacting proteins. Curiously, no evidence of their functional impact on SCN5A/Na\(_v\)1.5 function is reported to date.

4.4. Ventricular Fibrillation

Mutations in SCN5A have been associated with ventricular fibrillation [404–406] and idiopathic ventricular fibrillation [407–409]. However, a large array of SCN5A mutations linked to ventricular fibrillation are reported in the context of additional cardiac impairments, such as Brugada syndrome [410–413], atrial fibrillation [414], acute myocardial infarction [415–417], sudden cardiac death [418,419], or Graves’ disease [420]. Surprisingly, while abundant information is available about the genetic determinants of ventricular
fibrillation, scarce information is available about the molecular mechanisms leading to ventricular fibrillation.

Genetic screening of sodium channel ancillary subunits has revealed only mutation in SCN3B associated with ventricular fibrillation [421]. Although no direct evidence of mutations in desmosomal proteins such as desmoglein or plakoglobin has been reported in ventricular fibrillation, there is compiling evidence that such mutations in the context of arrhythmogenic right ventricular cardiomyopathy (ARVD) predispose to an early onset of ventricular fibrillation [422–425]. In addition to those SCN5A/Na_v,1.5 interacting proteins, mutations in calmodulin [426,427] and alpha-actinin [428] have also been reported in ventricular fibrillation patients, yet their plausible implications deregulating SCN5A/Na_v,1.5 is not reported to date.

Within the currently described transcriptional regulators of SCN5A expression, only mutations in IRX3 have been associated with ventricular fibrillation [65]. Interestingly, those IRX3 mutations impaired SCN5A expression in in vitro experimental assays, yet the causal contribution to ventricular fibrillation remains unclear. On the other hand, no evidence has been reported so far on SCN5A/Na_v,1.5 post-transcriptional modifications in the context of ventricular fibrillation.

4.5. Sick Sinus Syndrome

Ample evidence has been reported on SCN5A mutations leading to sick sinus syndrome [29,429–436] alone or in combination with other electrophysiological disorders such as atrial fibrillation [437] and Brugada syndrome with conduction diseases [30]. However, no mutations in sodium channels ancillary subunits or SCN5A/Na_v,1.5 interacting proteins have been reported. Similarly, no link between SCN5A transcriptional and post-transcriptional regulators and sick sinus syndrome is reported to date.

4.6. Sudden Infant Death Syndrome

Mutations in SCN5A are also causative of sudden infant death syndrome [438–444] as well as in channel ancillary subunits [445–448]. It is assumed that, as in the case of Brugada syndrome, an SCN5A/Na_v,1.5 loss-of-function underlies sudden infant death. In this context, Tan et al. [446] described SCN3B and SCN8B mutations that decreased peak I_{Na} current but increased I_{NaL}, whereas Neubauer et al. [412] and Denti et al. [447] identified a novel SCN1B mutations that decreased I_{Na} density, providing thus plausible electrophysiological mechanisms underlying sudden infant death syndrome. Importantly SCN5A mutations in SIDS have also been identified in conjunction with other electrophysiological disorders, such as Brugada syndrome [356].

In addition to those mutations, several SCN5A/Na_v,1.5 interacting proteins have also been associated with sudden infant cardiac syndromes, such as calmodulin [383,449], syntrophin [186,346,450], and caveolin [187,451]. Cheng et al. reported that syntrophin mutation leads to increased peak I_{Na} current and overlap between activation and inactivation curves increasing thus the window current [186]. Similar findings on the increased peak I_{Na} current were also reported by Wu et al. [346] and Cheng et al. [450], a phenotype that was rescued by another calmodulin variant identified in SIDS. Caveolin mutations seem to distinctly contribute to sodium regulation, either by suppressing the I_{NaL} by inhibiting nNOS-dependent S-nitrosylation of SCN5A [187] or by the persistence of the I_{NaL} [451].

On the other hand, no association between SCN5A transcriptional and post-transcriptional modulators and sudden infant death syndrome has been reported to date.

4.7. Other Channelopathies

SCN5A mutations also play a pivotal role in complex electrophysiological disorders that present a combination of alterations, particularly on conduction disorders associated with sick sinus syndrome, atrial fibrillation and ventricular tachycardia [435]; LQT and BrS [452]; atrial fibrillation, BrS, and sudden cardiac death [394]; BrS [453]; BrS and AF [454]; or atrial arrhythmias [392]. Similarly, increasing evidence is also reported in cases of sudden
cardiac death, alone [455] or in combination with LQT and dilated cardiomyopathy [452], ventricular fibrillation and BrS [456], or atrial fibrillation [433]. Our current understanding of the molecular mechanisms providing such diversity of phenotypic manifestations is still limited. It is important nonetheless to highlight that mutations in \(\text{SCN5A} \) interacting proteins [9,201,401] and/or transcriptional regulators [457] have also been recently reported to be associated with these complex electrophysiological disorders.

Table 1. Summary of the Na\(_{\text{v}1.5}\)-interacting protein-coding genes involved in cardiac sodium channelopathies.

Altered Gene/Alteration	Effect on \(I_{\text{Na}} \) Current	Mode of Action	References
Long QT syndrome			
\(\text{SCN5A} \)	Increased \(I_{\text{NaL}} \), increased window current	NA	[14,336,338–341]
\(\text{SCN1B} \)	Increased \(I_{\text{NaL}} \)	Ancillary subunit	[342]
\(\text{SCN4B} \)	Undetermined	Ancillary subunit	[231,343]
\(\text{SNTA1} \)	Increased \(I_{\text{NaL}} \)	Activation of nNOS–SCN5A macromolecular complex	[186,187,344–347]
\(\text{Car3} \)	Increased \(I_{\text{NaL}} \)	nNOS-dependent S-nitrosylation of SCN5A	[187]
\(\text{BAG3} \)	Undetermined	Undetermined	[348]
\(\text{ANKB} \)	Undetermined	Undetermined	[258]
\(\text{ACTN1} \)	Undetermined	Undetermined	[349]
\(\text{TBX5} \)	Increased \(I_{\text{NaL}} \)	Transactivation impairment	[350,351]
Brugada syndrome			
\(\text{SCN5A} \)	Decreased \(I_{\text{Na}} \)	NA	[24–26,361–365]
\(\text{SCN1B} \)	Decreased \(I_{\text{Na}} \)	Ancillary subunit; cellular trafficking defects	[232,356,359,366–370]
\(\text{SCN2B} \)	Decreased \(I_{\text{Na}} \)	Ancillary subunit; cellular trafficking defects	[229]
\(\text{SCN3B} \)	Decreased \(I_{\text{Na}} \)	Ancillary subunit; cellular trafficking defects	[356]
\(\text{PKP2} \)	Decreased \(I_{\text{Na}} \)	\(I_{\text{Na}} \) deficit	[260,371]
\(\text{MOG1} \)	Decreased \(I_{\text{Na}} \)	\(I_{\text{Na}} \) deficit; subcellular trafficking	[9,201,372–375]
\(\text{FGF13} \)	Decreased \(I_{\text{Na}} \)	Enhanced \(\text{Na}_{\text{v}1.5} \) inactivation	[376]
\(\text{SNTA1} \)	Decreased \(I_{\text{Na}} \)	Defective \(\text{Na}_{\text{v}1.5} \) protein interaction	[377]
\(\text{TMEM168} \)	Decreased \(I_{\text{Na}} \)	Reduced \(\text{Na}_{\text{v}1.5} \) expression	[378,379]
\(\text{TCAP} \)	Decreased \(I_{\text{Na}} \)	Defective \(\text{Na}_{\text{v}1.5} \) protein interaction	[285,286]
\(\text{SAP97} \)	Undetermined	Undetermined	[380,381]
\(\text{TBX5} \)	Undetermined	Transactivation impairment	[351]
\(\text{GATA4} \)	Undetermined	Undetermined	[384]
\(\text{IRX3} \)	Undetermined	Undetermined	[385]
\(\text{SCN5A promotor methylations} \)	Undetermined	Decreased \(\text{SCN5A promotor methylations} \)	[387]
\(\text{SCN5A promoter mutations} \)	Undetermined	Transactivation impairment	[384]
\(\text{Na}_{\text{v}1.5} \) phosphorylation	Reduced peak \(I_{\text{Na}} \) density	Impaired PKA stimulation	[389]
Atrial fibrillation			
\(\text{SCN5A} \)	Undetermined	NA	[384,390]
\(\text{SCN1B} \)	Reduced \(I_{\text{Na}} \)	Ancillary subunit; altered channel gating	[395]
\(\text{SCN2B} \)	Reduced \(I_{\text{Na}} \)	Ancillary subunit; altered channel gating	[395]
\(\text{SCN3B} \)	Undetermined	Ancillary subunit	[398]
\(\text{SCN4B} \)	Undetermined	Ancillary subunit	[396,397]
\(\text{MOG1} \)	Reduced \(I_{\text{Na}} \)	Undetermined	[375,399]
\(\text{ANK} \)	Undetermined	Undetermined	[400,401]
\(\text{ACTN1} \)	Undetermined	Undetermined	[402]
\(\text{Car3} \)	Undetermined	Undetermined	[403]
Table 1. Cont.

Altered Gene/Alteration	Effect on I_{Na} Current	Mode of Action	References
SCN5A	Reduced I_{Na}	NA	[404–406]
SCN3B	Reduced peak I_{Na}	Ancillary subunit; impaired trafficking	[421]
CaM	Undetermined	Undetermined	[426,427]
ACTN1	Undetermined	Undetermined	[428]
IRX3	Undetermined	Impaired transactivation	[65]
Sick sinus syndrome			
SCN5A	Reduced I_{Na}	NA	[29,429–436]
SCN1B	Increased $I_{Na,L}$	Impaired Na$_v$1.5 inactivation	[438–444]
SCN3B	Decreased I_{Na} density	Ancillary subunit	[447]
SCN4B	Increased $I_{Na,L}$	Ancillary subunit	[446]
CaM	Decreased I_{Na}	Undetermined	[383,449]
SNTA1	Increased peak I_{Na} and window current	Undetermined	[186,346,450]
Cave3	Suppression of $I_{Na,L}$	Inhibiting nNOS-dependent S-nitrosylation of Na$_v$1.5	[187,451]

5. Conclusions and Perspectives

Understanding the complex cellular and molecular mechanisms by which the cardiac sodium channel is formed is essential for dissecting and eventually repairing the culprits of an important array of cardiac arrhythmogenic defects with a large impact on society, such as sudden death. In this review, we have provided current state-of-the-art information of the molecular events that emanate with the transcription and transcriptional regulation of the SCN5A gene, the post-transcriptional modifications that the SCN5A transcript undergoes leading to the configuration of a large array of distinct alternative spliced variants and being subjected to several types of epigenetic modulations along the way. Subsequently, distinct interacting proteins accompany the nascent Na$_v$1.5 protein along with different subcellular organelles until it reaches its final membrane destination, accumulating a large number of diverse post-translational modifications, which eventually allows to carry out a fundamental electrophysiological role on the configuration of the cardiac action potential. Importantly, defects on a large number of these pathways have a tremendous impact on Na$_v$1.5 functionality and are thus intimately linked to cardiac arrhythmias. While the advancement of the knowledge of the cardiac sodium channel biology and electrophysiology has greatly increased over the last two decades, understanding of the functional contribution of multiple SCN5A mutations as well as mutations in SCN5A/Na$_v$1.5 interacting proteins is still incipient. In this context, it is particularly challenging to deeply understand the molecular mechanisms driving the association of single mutations with distinct impaired electrophysiological entities, such as Brugada and LQT syndrome, or in cases of even more complex phenotypical manifestations, such as sick sinus syndrome, atrial fibrillation, and ventricular tachycardia. In the coming years, insights into distinct molecular mechanisms involved in SCN5A/Na$_v$1.5 formation and maturation will be more deeply explored, providing us with an increased understanding of the molecular and cellular routes that, if impaired, lead to distinct cardiac electrophysiological pathophysiologies, particularly on our currently poorly explored such as ventricular fibrillation, sick sinus syndrome, and sudden infant cardiac death. We also envision that the impact of non-coding biology into the modulation of SCN5A/Na$_v$1.5 will progressively emerge, providing novel therapeutic tools to repair or at least modulate the pathological consequences of severe arrhythmogenic defects such as long QT, Brugada syndrome, and/or atrial fibrillation.
Author Contributions: All authors contributed equally to the writing, review and editing of this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

- AP: Action potential
- VS: Voltage-sensing module
- PM: Pore module
- PUFA: Polyunsaturated fatty acids
- ER: Endoplasmic reticulum
- RE: Regulatory elements
- UPR: Unfolded protein response
- ERAD: ER-associated degradation pathway
- PTMs: Post-translational modifications
- ID: Intercalated discs
- LM: Lateral membrane
- I_{ks}: Slow component of the delayed rectifier potassium current
- I_{to}: Transient outward potassium current

References

1. Catterall, W.A.; Maier, S. Voltage-Gated Sodium Channels and Electrical Excitability of the Heart. In Cardiac Electrophysiology: From Cell to Bedside, 7th ed.; WB Saunders: Philadelphia, PA, USA, 2015; pp. 1–11. [CrossRef]
2. Fozzard, H.A.; Hanck, D.A. Structure and function of voltage-dependent sodium channels: Comparison of brain II and cardiac isoforms. Physiol. Rev. 1996, 76, 887–926. [CrossRef]
3. Gavillet, B.; Rougier, J.S.; Domenighetti, A.A.; Behar, R.; Boixel, C.; Ruchat, P.; Lehr, H.A.; Pedrazzini, T.; Abriel, H. Cardiac sodium channel Na,1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ. Res. 2006, 99, 407–414. [CrossRef]
4. Gellens, M.E.; George, A.L.; Chen, L.; Chahine, M.; Horn, R.; Barchi, R.L.; Kallen, R.G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc. Natl. Acad. Sci. USA 1992, 89, 554–558. [CrossRef]
5. Jiang, D.; Shi, H.; Tonggu, L.; Gamal El-Din, T.M.; Lenaeus, M.J.; Zhao, Y.; Yoshioka, C.; Zheng, N.; Catterall, W.A. Structure of the Cardiac Sodium Channel. Cell 2020, 180, 122–134.e10. [CrossRef]
6. Bohannon, B.M.; de la Cruz, A.; Wu, X.; Jowais, J.J.; Perez, M.E.; Dykxhoorn, D.M.; Liin, S.I.; Larsson, H.P. Erratum: Correction: Polyunsaturated fatty acid analogues differentially affect cardiac NaV, CaV, and KV channels through unique mechanisms. eLife 2020, 9, e60141. [CrossRef]
7. Kang, J.X.; Leaf, A. Evidence that free polyunsaturated fatty acids modify Na\(^+\) channels by directly binding to the channel proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 3542–3546. [CrossRef] [PubMed]
8. Guan, Y.; Gao, X.; Tang, Q.; Huang, L.; Gao, S.; Yu, S.; Huang, J.; Li, J.; Zhou, D.; Zhang, Y.; et al. Nucleoporin 107 facilitates the nuclear export of Sen5α mRNA to regulate cardiac bioelectricity. J. Cell. Mol. Med. 2019, 23, 1448–1457. [CrossRef] [PubMed]
9. Yu, G.; Liu, Y.; Qin, J.; Wang, Z.; Hu, Y.; Wang, F.; Li, Y.; Chakrabarti, S.; Chen, Q.; Wang, Q.K. Mechanistic insights into the interaction of the MOG1 protein with the cardiac sodium channel Na,1.5 clarify the molecular basis of Brugada syndrome. J. Biol. Chem. 2018, 293, 18207–18217. [CrossRef]
10. Kurokawa, K.; Nakano, A. The ER exit sites are specialized ER zones for the transport of cargo proteins from the ER to the Golgi apparatus. J. Biochem. 2019, 165, 109–114. [CrossRef] [PubMed]
11. Dong, C.; Wang, Y.; Ma, A.; Wang, T. Life Cycle of the Cardiac Voltage-Gated Sodium Channel Na,1.5. Front. Physiol. 2020, 11, 609733. [CrossRef]
12. Clark, K.A.; McElhinney, A.S.; Beckerle, M.C.; Gregorio, C.C. Striated muscle cytoarchitecture: An intricate web of form and function. Annu. Rev. Cell Dev. Biol. 2002, 18, 637–706. [CrossRef] [PubMed]
13. Balse, E.; Eichel, C. The Cardiac Sodium Channel and Its Protein Partners. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2017; pp. 251–263. [CrossRef]
14. Song, W.; Shou, W. Cardiac sodium channel Na,1.5 mutations and cardiac arrhythmia. Pediatr. Cardiol. 2012, 33, 943–949. [CrossRef] [PubMed]
39. Clatot, J.; Zheng, Y.; Girardeau, A.; Liu, H.; Laurita, K.R.; Marionneau, C.; Deschênes, I. Mutant voltage-gated Na⁺ channels can exert a dominant negative effect through coupled gating. Am. J. Physiol.—Heart Circ. Physiol. 2018, 315, H1250–H1257. [CrossRef] [PubMed]

40. Keller, D.J.; Kucera, J.P.; Benammar, N. Brugada syndrome and fever: Genetic and molecular characterization of patients carrying SCN5A mutations. Cardiov. Res. 2005, 67, 510–519. [CrossRef]

41. Doisne, N.; Grauso, M.; Mougenot, N.; Clergue, M.; Souil, C.; Coulombe, A.; Guicheney, P.; Neyroud, N. In vivo Dominant-Negative Effect of an SCN5A Brugada Syndrome Variant. Front. Physiol. 2021, 12, 1–13. [CrossRef] [PubMed]

42. Neill, M.J.O.; Muhammad, A.; Li, B.; Wada, Y.; Hall, L.; Solus, J.F.; Short, L.; Roden, D.M.; Glazer, A.M. Dominant negative effects of SCN5A nonsense variants. bioRxiv 2021. [CrossRef]

43. Galleano, I.; Harms, H.; Choudhury, K.; Khoo, K.; Delemotte, L.; Pless, S.A. Functional cross-talk between phosphorylation and disease-causing mutations in the cardiac sodium channel Na1.5. Proc. Natl. Acad. Sci. USA 2021, 118, e2025320118. [CrossRef]

44. Van der Harst, P.; van Setten, J.; Verweij, N.; Vogler, G.; Franke, L.; Maurano, M.T.; Wang, X.; Mateo Leach, I.; Eijgelsheim, M.; Postma, A.V.; Bezzina, C.R.; Christoffels, V.M. Genetics of congenital heart disease: The contribution of the noncoding regulatory SCN5A locus. Nat. Commun. 2019, 10, 4943. [CrossRef]

45. Van Den Boogaard, M.; Smemo, S.; Burnicka-Turek, O.; Arnolds, D.E.; Van De Werken, H.J.G.; Klous, P.; McKean, D.; Muehlischlegel, J.D.; Moosmann, J.; Toka, O.; et al. A common genetic variant within SCN10A modulates cardiac SCN5A expression. J. Clin. Investig. 2014, 124, 1844–1852. [CrossRef]

46. Van Den Boogaard, M.; Barnett, P.; Vincent, M.; Van Den Boogaard, M.; Wong, L.Y.E.; Tessadori, F.; Bakker, M.L. Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J. Clin. Investig. 2012, 122, 2519–2530. [CrossRef]

47. Verweij, N.; Leach, I.M.; Van Den Boogaard, M.; Van Veldhuisen, D.J.; Christoffels, V.M.; Hillege, H.L.; Van Gilst, W.H.; Barnett, P.; De Boer, R.A.; Van Der Harst, P. Genetic Determinants of P Wave Duration and PR Segment. Circ. Cardiovasc. Genet. 2014, 7, 479–481. [CrossRef]

48. van Setten, J.; Brody, J.A.; Jamshidi, Y.; Swenson, B.R.; Butler, A.M.; Campbell, H.; Del Greco, F.M.; Evans, D.S.; Gibson, Q.; Gudbjartsson, D.F.; et al. PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity. Nat. Commun. 2018, 9, 1–11. [CrossRef]

49. Man, J.C.; Mohan, R.A.; van den Boogaard, M.; Hilvering, C.R.; Jenkins, C.; Wakker, V.; Bianchi, V.; de Laat, W.; Barnett, P.; Boukens, B.J.; et al. An enhancer cluster controls gene activity and topology of the SCN5A-SCN10A locus in vivo. Nat. Commun. 2019, 10, 4943. [CrossRef]

50. Lister, R.; Pelizzola, M.; Dongen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; et al. Human DNA methylation at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [CrossRef] [PubMed]

51. Postma, A.V.; Bezzina, C.R.; Christoffels, V.M. Genetics of congenital heart disease: The contribution of the noncoding regulatory genome. J. Hum. Genet. 2016, 61, 13–19. [CrossRef] [PubMed]

52. Bezzina, C.R.; Barc, J.; Mizusawa, Y.; Remme, C.A.; Gourraud, J.B.; Simonet, F.; Verkerk, A.O.; Schwartz, P.J.; Crotti, L.; Dagrady, F.; et al. Common variants at SCN5A and SCN10A are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 2013, 45, 1045–1049. [CrossRef] [PubMed]

53. Gilisbach, R.; Preissl, S.; Grüning, B.A.; Schnick, T.; Burger, L.; Benes, V.; Würich, A.; Bönisch, U.; Günther, S.; Backofen, R.; et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 2014, 5, 5288. [CrossRef]

54. Carreras, D.; Martinez-Moreno, R.; Pinsach-Abuin, M.L.; Santeña, M.M.; Gomà, P.; Brugada, R.; Scornik, F.S.; Pérez, G.J.; Pagans, S. Epigenetic changes governing Scn5a expression in denervated skeletal muscle. Int. J. Mol. Sci. 2021, 22, 2755. [CrossRef]

55. Salvanari, N.; Crasto, S.; Miragoli, M.; Bertero, A.; Paulis, M.; Kunderfranco, P.; Serio, S.; Forni, A.; Lucarelli, C.; Dal Ferro, M.; et al. The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. Nat. Commun. 2019, 10, 1–16. [CrossRef]

56. Arnolds, D.E.; Liu, F.; Fahrenbach, J.P.; Kim, G.H.; Schiller, K.J.; Smemo, S.; McNally, E.M.; Nobrega, M.A.; Patel, V.V.; Moskowitz, I.P. TBX5 drives Scn5a expression to regulate cardiac conduction system function. J. Clin. Investig. 2012, 122, 2509–2518. [CrossRef]

57. Moskowitz, I.P.G.; Pizard, A.; Patel, V.V.; Bruneau, B.G.; Kim, J.B.; Kupershmidt, S.; Roden, D.; Berul, C.I.; Seidman, C.E.; Seidman, J.G. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 2004, 131, 4107–4116. [CrossRef] [PubMed]

58. Steimle, J.D.; Moskowitz, I.P. TBX5: A Key Regulator of Heart Development. Curr. Top. Dev. Biol. 2017, 122, 195–221. [CrossRef] [PubMed]

59. Brewer, A.; Pizzey, J. GATA factors in vertebrate heart development and disease. Expert Rev. Mol. Med. 2006, 8, 1–20. [CrossRef]

60. Garg, V.; Kathiriya, I.S.; Barnes, R.; Schluterman, M.K.; King, I.N.; Butler, C.A.; Rothrock, C.R.; Eapen, R.S.; Hirayama-Yamada, K.; Joo, K.; et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003, 424, 443–447. [CrossRef]

61. Tarradas, A.; Pinsach-Abuin, M.; Mackintosh, C.; Llora-Battle, O.; Perez-Serra, A.; Battle, M.; Pérez-Villa, F.; Zimmer, T.; Garcia-Bassets, I; Brugada, R.; et al. Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart. J. Mol. Cell. Cardiol. 2017, 102, 74–82. [CrossRef]
62. Zhou, A.; Shi, G.; Kang, G.J.; Xie, A.; Liu, H.; Jiang, N.; Liu, M.; Jeong, E.M.; Dudley, S.C. RNA binding protein, HuR, regulates SCNSA5A expression through stabilizing MEF2C transcription factor mRNA. *J. Am. Heart Assoc.* 2018, 7, 1–12. [CrossRef] [PubMed]

63. Zhou, A.; Xie, A.; Kim, T.; Liu, H.; Shi, G.; Kang, G.; Jiang, N.; Liu, M.; Jeong, E.; Choi, B.; et al. HuR-mediated SCNSA5A mRNA stability reduces arrhythmic risk in heart failure. *Heart Rhythm* 2018, 15, 1072–1080. [CrossRef]

64. Gaborit, N.; Sakuma, R.; Wylde, J.N.; Kim, K.H.; Zhang, S.S.; Hui, C.C.; Bruneau, B.G. Cooperative and antagonistic roles for Irf3 and Irf5 in cardiac morphogenesis and postnatal physiology. *Development* 2012, 139, 4007–4019. [CrossRef]

65. Koizumi, A.; Sasano, T.; Kimura, W.; Miyamoto, Y.; Aiba, T.; Ishikawa, T.; Nomami, A.; Fukamizu, S.; Sakurada, H.; Takahashi, Y.; et al. Genetic defects in a His-Purkinje system transcription factor, IRX3, cause lethal cardiac arrhythmias. *Eur. Heart J.* 2016, 37, 1469–1475. [CrossRef]

66. Cai, B.; Wang, N.; Mao, W.; You, T.; Lu, Y.; Li, X.; Ye, B.; Li, F.; Xu, H. Deletion of FoxO1 leads to shortening of QRS by increasing cardiac Na+ channel activity through enhanced expression of both cardiac Na1.5 and β3 subunit. *J. Mol. Cell. Cardiol.* 2014, 74, 297–306. [CrossRef] [PubMed]

67. Mao, W.; You, T.; Ye, B.; Li, X.; Dong, H.H.; Hill, J.A.; Li, F.; Xu, H. Reactive oxygen species suppress cardiac Na1.5 expression through FoxO1. *PLoS ONE* 2012, 7, e32738. [CrossRef]

68. Attack, T.C.; Stroud, D.M.; Watanabe, H.; Yang, T.; Hall, L.; Susan, B.; Lowe, J.S.; Leake, B.; Magnuson, M.A.; Yang, P.; et al. Informatic and Functional Approaches to Identifying a Regulatory Region for the Cardiac Sodium Channel. *Circ. Res.* 2012, 109, 38–46. [CrossRef]

69. Hesse, M.; Kondo, C.S.; Clark, R.B.; San, L.; Allen, F.L.; Geary-Joo, C.T.M.; Kunnathu, S.; Severson, D.L.; Nygren, A.; Giles, W.R.; et al. Dilated cardiomyopathy is associated with reduced expression of the cardiac sodium channel Scn5a. *Cardiovasc. Res.* 2007, 75, 498–509. [CrossRef] [PubMed]

70. Nieto, M.A. The snail superfamily of zinc-finger transcription factors. *Nat. Rev. Mol. Cell Biol.* 2002, 3, 155–166. [CrossRef] [PubMed]

71. Schroeter, A.; Walzik, S.; Blechschmidt, S.; Haufe, V.; Benndorf, K.; Zimmer, T. Structure and function of splice variants of the cardiac voltage-gated sodium channel Na1.5. *J. Mol. Cell. Cardiol.* 2010, 49, 16–24. [CrossRef] [PubMed]

72. Makielski, J.C.; Ye, B.; Valdivia, C.R.; Fagel, M.D.; Pu, J.; Tester, D.J.; Ackerman, M.J. A Ubiquitous Splice Variant and a Common Polymorphism Affect Heterologous Expression of Recombinant Human SCNSA5A Heart Sodium Channels. *Circ. Res.* 2003, 93, 821–828. [CrossRef]

73. Camacho, J.A.; Hensellek, S.; Rougier, J.S.; Blechschmidt, S.; Abriel, H.; Benndorf, K.; Zimmer, T. Modulation of Na1.5 channel function by an alternatively spliced sequence in the DII/DIII linker region. *J. Biol. Chem.* 2006, 281, 9498–9506. [CrossRef] [PubMed]

74. Blechschmidt, S.; Haufe, V.; Benndorf, K.; Zimmer, T. Voltage-gated Na+ channel transcript patterns in the mammalian heart are species-dependent. *Prog. Biophys. Mol. Biol.* 2008, 98, 309–318. [CrossRef]

75. Chioni, A.M.; Fraser, S.P.; Pani, F.; Foran, P.; Wilkin, G.P.; Diss, J.K.J.; Djamgoz, M.B.A. A novel polyclonal antibody specific for the Na1.5 voltage-gated Na+ channel “neonatal” splice form. *J. Neurosci. Methods* 2005, 147, 88–98. [CrossRef]

76. Onkal, R.; Mattis, J.H.; Fraser, S.P.; Diss, J.K.J.; Shao, D.; Okuse, K.; Djamgoz, M.B.A. Alternative splicing of Na1.5: An electrophysiological comparison of “neonatal” and “adult” isoforms and critical involvement of a lysine residue. *J. Cell. Physiol.* 2008, 216, 716–726. [CrossRef]

77. Zimmer, T.; Bollensdorff, C.; Haufe, V.; Birch-Hirschfeld, E.; Benndorf, K. Mouse heart Na+ channels: Primary structure and function of two isoforms and alternatively spliced variants. *Am. J. Physiol.—Heart Circ. Physiol.* 2002, 282, 1007–1017. [CrossRef]

78. Wang, J.; Ou, S.W.; Wang, Y.J.; Zong, Z.H.; Lin, L.; Kameyama, M.; Kameyama, A. New variants of Na1.5/SCNSA5A encode Na+ channels in the brain. *J. Neurogenet.* 2008, 22, 57–75. [CrossRef] [PubMed]

79. Wang, J.; Ou, S.W.; Wang, Y.J.; Kameyama, M.; Kameyama, A.; Zong, Z.H. Analysis of four novel variants of Na1.5/SCNSA5A cloned from the brain. *Neurosci. Res.* 2009, 64, 339–347. [CrossRef] [PubMed]

80. Shang, L.L.; Pfahln, A.E.; Sanyal, S.; Jiao, Z.; Allen, J.; Banach, K.; Fahrenbach, J.; Weiss, D.; Taylor, W.R.; Zafari, A.M.; et al. Human Heart Failure Is Associated With Abnormal C-Terminal Splicing Variants in the Cardiac Sodium Channel. *Physiology* 2007, 101, 1146–1154. [CrossRef]

81. Montañéz-Agudo, P.; Casini, S.; Aufiero, S.; Erranzt, A.C.; van der Made, I.; Pinto, Y.M.; Remme, C.A.; Cremers, E.E. Inhibition of minor intron splicing reduces Na+ and Ca2+ channel expression and function in cardiomyocytes. *J. Cell Sci.* 2021, 135, 259191. [CrossRef]

82. Wang, Z.; Luo, X.; Lu, Y.; Yang, B. miRNAs at the heart of the matter. *J. Mol. Med.* 2008, 86, 771–783. [CrossRef] [PubMed]

83. Yang, B.; Lu, Y.; Yang, Z. Control of cardiac excitability by microRNAs. *Cardiovasc. Res.* 2008, 79, 571–580. [CrossRef]

84. Remme, C.A.; Bezzina, C.R. Sodium channel (Dys)function and cardiac arrhythmias. *Cardiovasc. Ther.* 2010, 28, 287–294. [CrossRef] [PubMed]

85. Boštjančič, E.; Zidar, N.; Štajer, D.; Glavac, D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. *Cardiology* 2010, 115, 163–169. [CrossRef]

86. Daimi, H.; Lozano-Velasco, E.; Haj Khelil, A.; Chibani, J.B.E.; Barana, A.; Amorós, I.; González De La Fuente, M.; Caballero, R.; Aranega, A.; Franco, D. Regulation of SCN5A by microRNAs: MiR-219 modulates SCN5A transcript expression and the effects of flecainide intoxication in mice. *Heart Rhythm* 2015, 12, 1333–1342. [CrossRef] [PubMed]
87. Lozano-Velasco, E.; Hernández-Torres, F.; Daimi, H.; Serra, S.A.S.A.; Herreraiz, A.; Hove-Madsen, L.; Aráñez, A.; Franco, D. Pitx2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling. Cardiovasc. Res. 2016, 109, 55–66. [CrossRef]

88. Lozano-Velasco, E.; Wangensteen, R.; Quesada, A.; García-Padilla, C.; Osorio, J.A.; Ruiz-Torres, M.D.; Aranega, A.; Franco, D. Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling. PLoS ONE 2017, 12, e0188473. [CrossRef] [PubMed]

89. Chinchilla, A.; Daimi, H.; Lozano-Velasco, E.; Dominguez, J.N.; Caballero, R.; Delpo, E.; Tamargo, J.; Cinca, J.; Hove-madsen, L.; Aranega, A.E.; et al. PITX2 Insufficiency Leads to Atrial Electrical and Structural Remodeling Linked to Arrhythmogenesis. Circ. Cardiovasc. Genet. 2011, 4, 269–279. [CrossRef]

90. Zhao, Y.; Huang, Y.; Li, W.; Wang, Z.; Zhan, S.; Zhou, M.; Yao, Y.; Zeng, Z.; Hou, Y.; Chen, Q.; et al. Post-transcriptional regulation of cardiac sodium channel gene SCN5A expression and function by miR-192-3p. Biochim. Biophys. Acta—Mol. Basis Dis. 2015, 1852, 2024–2034. [CrossRef]

91. Li, J.; Xu, C.; Liu, Y.; Li, Y.; Du, S.; Zhang, R.; Sun, Y.; Zhang, R.; Wang, Y.; Xue, H.; et al. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGFR axis. Basic Res. Cardiol. 2020, 115, 1–17. [CrossRef]

92. Zhang, X.; Yoon, J.Y.; Morley, M.; McLendon, J.M.; Mapuskar, K.A.; Gutmann, R.; Mehdi, H.; Bloom, H.L.; Dudley, S.C.; Ellenor, P.T.; et al. A common variant alters SCN5A-miR-24 interaction and associates with heart failure mortality. J. Clin. Investig. 2018, 128, 1154–1163. [CrossRef]

93. Daimi, H.; Khelil, A.H.; Neji, A.; Ben Hamda, K.; Maaoui, S.; Aranega, A.; Chibani, J.B.; Franco, D. Role of non-coding sequences in Brugada syndrome onset: What’s behind the scenes? Biomed. J. 2019, 42, 252–260. [CrossRef] [PubMed]

94. Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [CrossRef] [PubMed]

95. Bär, C.; Chatterjee, S.; Thum, T. Long Noncoding RNAs in Cardiovascular Pathology, Diagnosis, and Therapy. Circulation 2016, 134, 1484–1499. [CrossRef]

96. Long, Q.Q.; Wang, H.; Gao, W.; Fan, Y.; Li, Y.F.; Ma, Y.; Yang, Y.; Shi, H.J.; Chen, B.R.; Meng, H.Y.; et al. Long noncoding RNA Kcnna2 antisense RNA contributes to ventricular arrhythmias via silencing Kcnna2 in rats with congestive heart failure. J. Am. Heart Assoc. 2017, 6, e005965. [CrossRef]

97. Zhu, P.; Yang, M.; Ren, H.; Shen, G.; Chen, J.; Zhang, J.; Liu, J.; Sun, C. Long noncoding RNA MALAT1 downregulates cardiac transient outward potassium current by regulating miR-200c/HMGB1 pathway. J. Cell. Biochem. 2018, 119, 10239–10249. [CrossRef] [PubMed]

98. Pan, Z. Binding of LncRNA-DACH1 to dystrophin impairs the membrane trafficking of Na+ channel protein and increases ventricular arrhythmia susceptibility. Preprint 2021, 1–17. [CrossRef]

99. Schmidt, J.W.; Catterall, W.A. Palmitylation, sulfation, and glycosylation of the alpha subunit of the sodium channel. Role of protein kinase A-mediated potentiation of cardiac sodium current. Circ. Res. 2004, 91, 540–546. [CrossRef] [PubMed]

100. Marionneau, C.; Abriel, H. Regulation of the cardiac Na+ channel Na1.5 by post-translational modifications in channel assembly. J. Biol. Chem. 1987, 262, 13713–13723. [CrossRef]

101. Delisle, B.P.; Anson, B.D.; Rajamani, S.; January, C.T. Biology of Cardiac Arrhythmias Ion Channel Protein Trafficking. Circ. Res. 2004, 94, 1418–1428. [CrossRef]

102. Jan, C.H.; Williams, C.C.; Weissman, J.S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 2014, 346, 716. [CrossRef]

103. Zhou, J.; Shin, H.G.; Yi, J.; Shen, W.; Williams, C.P.; Murray, K.T. Phosphorylation and putative ER retention signals are required for protein kinase A-mediated potentiation of cardiac sodium current. Circ. Res. 2002, 91, 540–546. [CrossRef] [PubMed]

104. Abriel, H. Roles and regulation of the cardiac sodium channel Na1.5: Recent insights from experimental studies. Cardiovasc. Res. 2007, 76, 381–389. [CrossRef]

105. Arendshorst, I. A novel strategy using cardiac mRNA antisense to rescues trafficking-deficient SCN5A Mutations. J. Clin. Investig. 2011, 5, 35–40. [CrossRef]

106. Moreau, A.; Keller, D.I.; Huang, H.; Fressart, V.; Schmied, C.; Timour, Q.; Chahine, M. Mexiletine differentially restores the trafficking defects caused by two Brugada syndrome mutations. Front. Pharmacol. 2012, 3, 1–8. [CrossRef]
113. Mercier, A.; Clément, R.; Harnois, T.; Bourmeyster, N.; Bois, P.; Chatelier, A. Na, 1.5 channels can reach the plasma membrane through distinct N-glycosylation states. *Bioclin. Biophys. Acta—Gen. Subj.* 2015, 1850, 1215–1223. [CrossRef] [PubMed]

114. Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. *Nature* 2011, 475, 324–332. [CrossRef] [PubMed]

115. Young, J.C. The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels. *DMM Dis. Models Mech.* 2014, 7, 319–329. [CrossRef] [PubMed]

116. Li, K.; Jiang, Q.; Bai, X.; Yang, Y.F.; Ruan, M.Y.; Cai, S.Q. Tetrameric Assembly of K+ Channels Requires ER-Located Chaperone Proteins. *Mol. Cell* 2017, 65, 52–65. [CrossRef]

117. Tarone, G.; Brancaccio, M. Keep your heart in shape: Molecular chaperone networks for treating heart disease. *Cardiovasc. Res.* 2014, 102, 346–361. [CrossRef]

118. Iqbal, S.M.; Lemmens-Gruber, R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. *Acta Physiol.* 2019, 225, 1–18. [CrossRef]

119. Poelzing, S.; Forleo, C.; Samodell, M.; Dudash, L.; Sorrentino, S.; Anaclerio, M.; Troccoli, R.; Iacoviello, M.; Romito, R.; Guida, P.; et al. SCN5A polymorphism restores trafficking of a Brugada syndrome mutation on a separate gene. *Circulation* 2006, 114, 368–376. [CrossRef] [PubMed]

120. Valdivia, C.R.; Tester, D.J.; Rok, B.A.; Porter, C.-B.J.; Munger, T.M.; Jahangir, A.; Makielski, J.C.; Ackerman, M.J. A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. *Cardiovasc. Res.* 2004, 62, 53–62. [CrossRef]

121. Ulloa-Aguirre, A.; Janovick, J.A.; Brothers, S.P.; Con, P.M. Pharmacologic rescue of conformationally-defective proteins: Implications for the treatment of human disease. *Traffic* 2004, 5, 821–837. [CrossRef]

122. Bennett, E.S. Isoform-specific effects of sialic acid on voltage-dependent Na+ channel gating: Functional sialic acids are localized to the S5–S6 loop of domain I. *J. Physiol.* 2002, 538, 675–690. [CrossRef] [PubMed]

123. Stocker, P.J.; Bennett, E.S. Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium. *J. Gen. Physiol.* 2006, 127, 253–265. [CrossRef] [PubMed]

124. Arakel, E.C.; Brandenburg, S.; Uchida, K.; Zhang, H.; Lin, Y.W.; Kohl, T.; Schrul, B.; Sulkin, M.S.; Efimov, I.R.; Nichols, C.G.; et al. Tuning the electrical properties of the heart by differential trafficking of KATP ion channel complexes. *J. Cell Sci.* 2014, 127, 2106–2119. [CrossRef]

125. Roth, J.; Zubers, C.; Park, S.; Jang, I.; Lee, Y.; Kysela, K.G.; Le Fourn, V.; Santimaria, R.; Guhl, B.; Cho, J.W. Protein N-glycosylation, protein folding and protein quality control. *Mol. Cells* 2010, 30, 497–506. [CrossRef]

126. Xiao, X.; Chen, C.; Yu, T.M.; Ou, J.; Rui, M.; Zhai, Y.; He, Y.; Xue, L.; Ho, M.S. Molecular chaperone calnexin regulates the function of Drosophila sodium channel paralytic. *Front. Mol. Neurosci.* 2017, 10, 57. [CrossRef]

127. Khanna, R.; Lee, E.J.; Papazian, D.M. Transient calnexin interaction confers long-term stability on folded K+ channel protein in rat heart using subtype-specific antibodies. *Circ. Res.* 1993, 73, 735–742. [CrossRef]

128. Caramelo, J.J.; Parodi, A.J. A sweet code for glycoprotein folding. *FEBS Lett.* 2015, 589, 3379–3387. [CrossRef] [PubMed]

129. Vergez, M. *Trafficking of Cardiac Ion Channels*; MDPI AG: Basel, Switzerland, 2021; ISBN 9783039434725.

130. Bennett, E.S. Isoform-specific effects of sialic acid on voltage-dependent Na+ channel gating: Functional sialic acids are localized to the S5–S6 loop of domain I. *J. Physiol.* 2002, 538, 675–690. [CrossRef] [PubMed]

131. Proft, J.; Rzhepetsky, Y.; Lazniewska, J.; Zhang, F.X.; Cain, S.M.; Snutch, T.P.; Zamponi, G.W.; Weiss, N. The Cacna1h mutation of Drosophila sodium channel paralytic. *Mol. Cell Proteins.* 2017, 52–65. [CrossRef]

132. Zumhagen, S.; Veldkamp, M.W.; Stallmeyer, B.; Baartscheer, A.; Eckardt, L.; Paul, M.; Remme, C.A.; Bhuiyan, Z.A.; Bezzina, C.R.; Schulze-Bahr, E. A Heterozygous Deletion Mutation in the Cardiac Sodium Channel Gene SCN5A Polymorphism rescues trafficking of a Brugada syndrome mutation on a separate gene. *Circulation* 2004, 62, 53–62. [CrossRef] [PubMed]

133. Casini, S.; Tan, H.L.; Demirayak, I.; Remme, C.A.; Amin, A.S.; Scicluna, B.P.; Chatyan, H.; Ruijter, J.M.; Bezzina, C.R.; Van Ginneken, A.C.G.; et al. Tuning the electrical properties of the heart by differential trafficking of KATP ion channel complexes. *J. Cell Sci.* 2014, 127, 2106–2119. [CrossRef]

134. Abriel, H.; Sottas, V. Unexpected α-α interactions with nav1.5 genetic variants in brugada syndrome. *Circ. Cardiovasc. Genet.* 2014, 7, 97–99. [CrossRef]

135. Gao, G.; Xie, A.; Zhang, J.; Herman, A.M.; Jeong, E.M.; Gu, L.; Liu, M.; Yang, K.C.; Kamp, T.J.; Dudley, S.C. Unfolded protein response regulates cardiac sodium current in systolic human heart failure. *Circ. Arrhythmia Electrophysiol.* 2013, 6, 1018–1024. [CrossRef] [PubMed]

136. Ren, J.; Bi, Y.; Sowers, J.R.; Hetz, C.; Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. *Nat. Rev. Cardiol.* 2021, 18, 499–521. [CrossRef] [PubMed]

137. Iqbal, S.M.; Lemmens-Gruber, R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. *Acta Physiol.* 2019, 225, 1–18. [CrossRef]

138. Schubert, B.; Vandongen, A.M.J.; Kirsh, G.E.; Brown, A.M. Inhibition of cardiac Na+ currents by isoproterenol. *Am. J. Physiol.—Heart Circ. Physiol.* 1990, 258. [CrossRef]

139. Frohnwieser, B.; Chen, L.Q.; Schreiber, W.; Kallen, R.G. Modulation of the human cardiac sodium channel α-subunit by cAMP-dependent protein kinase and the responsible sequence domain. *J. Physiol.* 1997, 498, 309–318. [CrossRef]
140. Scott, D.B.; Blanpied, T.A.; Ehlers, M.D. Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. *Neuropharmacology* 2003, 45, 755–767. [CrossRef]

141. Ferreira, J.C.B.; Mochly-Rosen, D.; Boutjdir, M. Regulation of cardiac excitability by protein kinase C isozymes. *Front. Biosci.—Sch.* 2012, 4, 532–546. [CrossRef]

142. Liu, M.; Sanyal, S.; Gao, G.; Gurung, I.S.; Zhu, X.; Gacconet, G.; Kerchner, L.J.; Shang, L.L.; Huang, C.L.H.; Grace, A.; et al. Cardiac Na⁺ current regulation by pyridine nucleotides. *Circ. Res.* 1997, 80, 370–376. [CrossRef]

143. Mathieu, S.; El Khoury, N.; Rivard, K.; Gelinas, R.; Goyette, P.; Paradis, P.; Nemer, M.; Fiset, C. Reduction in Na⁺ current by angiotensin II is mediated by PKCα in mouse and human-induced pluripotent stem cell-derived cardiomyocytes. *Heart Rhythm* 2016, 13, 1346–1354. [CrossRef] [PubMed]

144. Scott, D.B.; Blanpied, T.A.; Ehlers, M.D. Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. *Neuropharmacology* 2003, 45, 755–767. [CrossRef] [PubMed]

145. Murphy, B.J.; Rogers, J.; Perdichizzi, A.P.; Colvin, A.A.; Catterall, W.A. cAMP-dependent phosphorylation of two sites in the α subunit of the cardiac sodium channel. *J. Biol. Chem.* 1996, 271, 28837–28843. [CrossRef]

146. Hu, Y.F.; Wu, C.H.; Lai, T.C.; Chang, Y.C.; Hwang, M.J.; Chang, T.Y.; Weng, C.H.; Chang, P.M.H.; Chen, C.H.; Mochly-Rosen, D.; et al. Altered by Disease-linked Mutation. *J. Biol. Chem.* 2012, 287, 19856–19869. [CrossRef] [PubMed]

147. Shin, H.G.; Murray, K.T. Conventional protein kinase C isoforms and cross-activation of protein kinase A regulate cardiac Na⁺ current. *FEBS Lett.* 2001, 495, 154–158. [CrossRef]

148. Xiao, G.Q.; Qu, Y.; Sun, Z.Q.; Mochly-Rosen, D.; Boutjdir, M. Evidence for functional role of εPKC isoform in the regulation of cardiac Na⁺ channels. *Am. J. Physiol.—Cell Physiol.* 2001, 281, C1477–C1486. [CrossRef]

149. Fouda, M.A.; Ruben, P.C. Protein kinases mediate anti-inflammatory effects of cannabidiol and estradiol against high glucose in cardiac sodium channels. *Front. Pharmacol.* 2020, 11, 21. [CrossRef] [PubMed]

150. Liu, M.; Shi, G.; Yang, K.C.; Gu, L.; Kanthasamy, A.G.; Anantharam, V.; Dudley, S.C., Jr. The role of protein kinase C in the downregulation of cardiac sodium channel expression in Xenopus oocytes. *Circ. Res.* 2000, 87, 33–38. [CrossRef] [PubMed]

151. Strickland, M.; Yacoubi-Loueslati, B.; Bouhaouala-Zahar, B.; Pender, S.L.F.; Larbi, A. Relationships between ion channels, mitochondrial functions and inflammation in human aging. *Front. Physiol.* 2021, 12, 1–22. [CrossRef] [PubMed]

152. Qu, Y.; Rogers, J.C.; Tanada, T.; Scheuer, T.; Catterall, W.A. Modulation of cardiac Na⁺ channels expressed in a mammalian cell line and in ventricular myocytes by protein kinase C. *Proc. Natl. Acad. Sci. USA* 1994, 91, 3289–3293. [CrossRef] [PubMed]

153. Liu, M.; Liu, H.; Dudley, S.C. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. *Circ. Res.* 2020, 127, 2923–2946. [CrossRef]

154. Liu, M.; Gao, G.; Gurung, I.S.; Zhu, X.; Gacconet, G.; Kerchner, L.J.; Shang, L.L.; Huang, C.L.H.; Grace, A.; et al. Cardiac Na⁺ Current regulation by pyridine nucleotides. *Circ. Res.* 2009, 105, 737–745. [CrossRef] [PubMed]

155. Mathieu, S.; El Khoury, N.; Rivard, K.; Gelinas, R.; Goyette, P.; Paradis, P.; Nemer, M.; Fiset, C. Reduction in Na⁺ current by angiotensin II is mediated by PKCα in mouse and human-induced pluripotent stem cell-derived cardiomyocytes. *Heart Rhythm* 2016, 13, 1346–1354. [CrossRef] [PubMed]

156. Hu, Y.F.; Wu, C.H.; Lai, T.C.; Chang, Y.C.; Hwang, M.J.; Chang, T.Y.; Weng, C.H.; Chang, P.M.H.; Chen, C.H.; Mochly-Rosen, D.; et al. ALDH2 deficiency induces atrial fibrillation through dysregulated cardiac sodium channel and mitochondrial bioenergetics: A multi-omics analysis. *Biochim. Biophys. Acta—Mol. Basis Dis.* 2021, 1867, 166088. [CrossRef] [PubMed]

157. Li, M.; Liu, H.; Dudley, S.C. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. *Circ. Res.* 2010, 107, 967–974. [CrossRef] [PubMed]

158. Liu, M.; Sanyal, S.; Gao, G.; Gurung, I.S.; Zhu, X.; Gacconet, G.; Kerchner, L.J.; Shang, L.L.; Huang, C.L.H.; Grace, A.; et al. Cardiac Na⁺ Current regulation by pyridine nucleotides. *Circ. Res.* 2009, 105, 737–745. [CrossRef] [PubMed]

159. Liu, M.; Gao, G.; Gurung, I.S.; Zhu, X.; Gacconet, G.; Kerchner, L.J.; Shang, L.L.; Huang, C.L.H.; Grace, A.; et al. Cardiac Na⁺ Current regulation by pyridine nucleotides. *Circ. Res.* 2009, 105, 737–745. [CrossRef] [PubMed]

160. Liu, M.; Liu, H.; Dudley, S.C. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. *Circ. Res.* 2010, 107, 967–974. [CrossRef] [PubMed]

161. Fouda, M.A.; Ghovanloo, M.R.; Ruben, P.C. Cannabidiol protects against high glucose-induced oxidative stress and cytotoxicity in cardiac voltage-gated sodium channels. *Br. J. Pharmacol.* 2020, 177, 2932–2946. [CrossRef]

162. Fouda, M.A.; Ruben, P.C. Protein kinases mediate anti-inflammatory effects of cannabidiol and estradiol against high glucose in cardiac sodium channels. *Front. Pharmacol.* 2020, 11, 2–17. [CrossRef]

163. Ashpole, N.M.; Herren, A.W.; Ginsburg, K.S.; Brogan, J.D.; Johnson, D.E.; Cummins, T.R.; Bers, D.M.; Hudmon, A. Ca²⁺/calmodulin-dependent protein kinase II (CaMikit) regulates cardiac sodium channel Na⁺/1.5 gating by multiple phosphorylation sites. *J. Biol. Chem.* 2012, 287, 19856–19869. [CrossRef] [PubMed]
215. Maier, S.K.G.; Westenbroek, R.E.; McCormick, K.A.; Curtis, R.; Scheuer, T.; Catterall, W.A. Distinct subcellular localization of
206. Rosnoblet, C.; Peanne, R.; Legrand, D.; Foulquier, F. Glycosylation disorders of membrane trafficking.
214. Shy, D.; Gillet, L.; Abriel, H. Targeting the sodium channel Na
213. Yang, H.-Q.; Perez-Hernandez, M.; Sanchez-Alonso, J.; Shevchuk, A.; Gorelik, J.; Rothenberg, E.; Delmar, F.; Coetzee, W.A.
212. Willis, B.C.; Ponce-Balbuena, D.; Jalife, J. Protein assemblies of sodium and inward rectifier potassium channels control cardiac
excitability and arrhythmogenesis. Am. J. Physiol.—Heart Circ. Physiol. 2015, 308, H1463–H1473. [CrossRef]
211. Ponce-Balbuena, D.; Guerrero-Serna, G.; Valdivia, C.R.; Caballero, R.; Diez-Guerra, F.J.; Jiménez-Vázquez, E.N.; Ramírez, R.J.;
Monteiro Da Rocha, A.; Herron, T.J.; Campbell, K.F.; et al. Cardiac Kir2.1 and Na1.5 Channels Traffic Together to the Sarcolemma to Control Excitability. Circ. Res. 2018, 122, 1501–1516. [CrossRef]
210. Willis, B.C.; Ponce-Balbuena, D.; Jalife, J. Protein assemblies of sodium and inward rectifier potassium channels control cardiac
excitability and arrhythmogenesis. Am. J. Physiol.—Heart Circ. Physiol. 2015, 308, H1463–H1473. [CrossRef]
209. Ednie, A.R.; Bennett, E.S. Modulation of voltage-gated ion channels by sialylation. Compr. Physiol. 2012, 2, 1269–1301. [CrossRef]
208. Ufret-Vincenty, C.A.; Baro, D.J.; Lederer, W.J.; Rockman, H.A.; Quiñones, L.E.; Santana, L.F. Role of Sodium Channel Deglycosylation
in theGenesis of Cardiac Arrhythmias in Heart Failure. J. Biol. Chem. 2001, 276, 28197–28203. [CrossRef]
207. Bennett, E.; Urcan, M.S.; Tinkle, S.S.; Koszowski, A.G.; Levinson, S.R. Contribution of sialic acid to the voltage dependence of sodium
carrier gating: A possible electrostatic mechanism. J. Gen. Physiol. 1997, 109, 327–343. [CrossRef]
206. Ednie, A.R.; Horton, K.K.; Wu, J.; Bennett, E.S. Expression of the sialyltransferase, ST3Gal4, impacts cardiac voltage-gated sodium
channel activity, refractory period and ventricular conduction. J. Mol. Cell. Cardiol. 2013, 59, 117–127. [CrossRef] [PubMed]
205. Baroni, D.; Picco, C.; Moran, O. A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the
voltage-dependent sodium channel. Hum. Mutat. 2018, 39, 1402–1415. [CrossRef] [PubMed]
204. Rosnolet, C.; Peanne, R.; Legrand, D.; Foulquier, F. Glycosylation disorders of membrane trafficking. Glycoconj. J. 2013, 30, 23–31.
[CrossRef] [PubMed]
203. Chatin, B.; Colombier, P.; Gamblin, A.L.; Allouis, M.; Le Bouffant, F. Dynamin affects cell-surface expression of voltage-gated sodium
channel Na1.5. Biochim. J. 2014, 463, 339–349. [CrossRef]
202. Bennett, E.; Urcan, M.S.; Tinkle, S.S.; Koszowski, A.G.; Levinson, S.R. Contribution of sialic acid to the voltage dependence of sodium
channel gating: A possible electrostatic mechanism. J. Gen. Physiol. 1997, 109, 327–343. [CrossRef]
201. Chakrabarti, S.; Wu, L.; Yong, S.L.; Fan, C.; Ni, Y.; Yoo, S.; Zhang, T.; Zhang, X.; Obejero-Paz, C.A.; Rho, H.J.; Ke, T.; et al. Identification
of a new co-factor, MOG1, required for the full function of cardiac sodium channel Na1.5. J. Biol. Chem. 2008, 283, 6968–6978. [CrossRef]
200. Wang, Z.; Yang, H.-Q.; Perez-Hernandez, M.; Sanchez-Alonso, J.; Shevchuk, A.; Gorelik, J.; Rothenberg, E.; Delmar, F.; Coetzee, W.A.
209. Ednie, A.R.; Bennett, E.S. Modulation of voltage-gated ion channels by sialylation. Compr. Physiol. 2012, 2, 1269–1301. [CrossRef]
208. Ufret-Vincenty, C.A.; Baro, D.J.; Lederer, W.J.; Rockman, H.A.; Quiñones, L.E.; Santana, L.F. Role of Sodium Channel Deglycosylation
in theGenesis of Cardiac Arrhythmias in Heart Failure. J. Biol. Chem. 2001, 276, 28197–28203. [CrossRef]
207. Bennett, E.; Urcan, M.S.; Tinkle, S.S.; Koszowski, A.G.; Levinson, S.R. Contribution of sialic acid to the voltage dependence of sodium
channel gating: A possible electrostatic mechanism. J. Gen. Physiol. 1997, 109, 327–343. [CrossRef]
206. Ednie, A.R.; Horton, K.K.; Wu, J.; Bennett, E.S. Expression of the sialyltransferase, ST3Gal4, impacts cardiac voltage-gated sodium
channel activity, refractory period and ventricular conduction. J. Mol. Cell. Cardiol. 2013, 59, 117–127. [CrossRef] [PubMed]
205. Baroni, D.; Picco, C.; Moran, O. A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the
voltage-dependent sodium channel. Hum. Mutat. 2018, 39, 1402–1415. [CrossRef] [PubMed]
204. Rosnolet, C.; Peanne, R.; Legrand, D.; Foulquier, F. Glycosylation disorders of membrane trafficking. Glycoconj. J. 2013, 30, 23–31.
[CrossRef] [PubMed]
203. Chatin, B.; Colombier, P.; Gamblin, A.L.; Allouis, M.; Le Bouffant, F. Dynamin affects cell-surface expression of voltage-gated sodium
channel Na1.5. Biochim. J. 2014, 463, 339–349. [CrossRef]
202. Bennett, E.; Urcan, M.S.; Tinkle, S.S.; Koszowski, A.G.; Levinson, S.R. Contribution of sialic acid to the voltage dependence of sodium
channel gating: A possible electrostatic mechanism. J. Gen. Physiol. 1997, 109, 327–343. [CrossRef]
201. Chakrabarti, S.; Wu, L.; Yong, S.L.; Fan, C.; Ni, Y.; Yoo, S.; Zhang, T.; Zhang, X.; Obejero-Paz, C.A.; Rho, H.J.; Ke, T.; et al. Identification
of a new co-factor, MOG1, required for the full function of cardiac sodium channel Na1.5. J. Biol. Chem. 2008, 283, 6968–6978. [CrossRef]
200. Wang, Z.; Yang, H.-Q.; Perez-Hernandez, M.; Sanchez-Alonso, J.; Shevchuk, A.; Gorelik, J.; Rothenberg, E.; Delmar, F.; Coetzee, W.A.
1. Cohen, S.A. Immunocytochemical localization of h1 sodium channel in adult rat heart atria and ventricle: Presence in terminal intercalated disks. *Circulation* 1996, 94, 3083–3086. [CrossRef] [PubMed]

2. Shy, D.; Gillet, L.; Abriel, H. Cardiac sodium channel Na+,1.5 distribution in myocytes via interacting proteins: The multiple pool model. *Biochim. Biophys. Acta— Mol. Cell Res.* 2013, 1833, 886–894. [CrossRef]

3. Peeters, U.; Scornik, F.; Riuoru, H.; Pérez, G.; Komurcu-Bayrak, E.; Van Malderen, S.; Pappaert, G.; Tarradas, A.; Pagans, S.; Daneels, D.; et al. Contribution of cardiac sodium channel β-subunit variants to brugada syndrome. *Circ. J.* 2015, 79, 2118–2129. [CrossRef]

4. Salvage, S.C.; Rees, J.S.; McStea, A.; Hirsch, M.; Wang, L.; Tynan, C.J.; Reed, M.W.; Irions, J.R.; Butler, R.; Thompson, A.J.; et al. Supramolecular clustering of the cardiac sodium channel Na+,1.5 in HEK293F cells, with and without the auxiliary β3-subunit. *FASEB J.* 2020, 34, 3537–3553. [CrossRef]

5. Catterall, W.A. Voltage-gated sodium channels at 60Å structure, function and pathophysiology. *J. Physiol.* 2012, 590, 2577–2589. [CrossRef]

6. Chen, C.; Calhoun, J.D.; Zhang, Y.; Lopez-Santiago, L.; Zhou, N.; Davis, T.H.; Salzer, J.L.; Isom, L.L. Identification of the cysteine residue responsible for disulfide linkage of Na+ channel alpha and beta2. *J. Biol. Chem.* 2012, 287, 39061–39069. [CrossRef]

7. Yu, F.H.; Westenbroek, R.E.; Silos-santiago, I.; Mccormick, K.A.; Lawson, D.; Ge, P.; Ferriera, H.; Lilly, J.; Distefano, P.S.; Catterall, W.A.; et al. Sodium Channel β4, a New Disulfide-Linked Auxiliary Subunit with Similarity to β2. *J. Neurosci.* 2003, 23, 7577–7585. [CrossRef] [PubMed]

8. Zhu, W.; Voelker, T.L.; Varga, Z.; Schubert, A.R.; Nerbonne, J.M.; Silva, J.R. Mechanisms of noncovalent β-subunit regulation of Na+ channel gating. *J. Gen. Physiol.* 2007, 134, 189–831. [CrossRef] [PubMed]

9. Malhotra, J.D.; Kazen-Gillespie, K.; Hortsch, M.; Isom, L.L. Sodium channel β subunits mediate homophilic cell adhesion and recruit ankryrin to points of cell-cell contact. *J. Biol. Chem.* 2000, 275, 11383–11388. [CrossRef] [PubMed]

10. Dominguez, J.N.; Navarro, F.; Franco, D.; Thompson, R.P.; Aránega, A.E. Temporal and spatial expression pattern of h1 sodium channel subunit during heart development. *Cardiovasc. Res.* 2004, 65, 842–850. [CrossRef]

11. Zimmer, T.; Biskup, C.; Bollensdorff, C.; Benndorf, K. The β1 Subunit but not the β2 Subunit Colocalizes with the Human Heart Na+ Channel (hNN) already within the Endoplasmic Reticulum. *J. Membr. Biol.* 2002, 186, 13–21. [CrossRef]

12. Mercier, A.; Clement, R.; Harnois, T.; Bourmeyster, N.; Faivre, J.F.; Findlay, I.; Chahine, M.; Bois, P.; Chatelier, A. The β1-Subunit of Na+,1.5 Cardiac Sodium Channel Is Required for a Dominant Negative Effect through α-α Interaction. *PLoS ONE* 2012, 7, e86900.

13. Dulsat, G.; Palomeras, S.; Cortada, E.; Riuoru, H.; Brugada, R.; Vergès, M. Trafficking and localisation to the plasma membrane of Na v 1.5 promoted by the β2 subunit is defective due to a β2 mutation associated with Brugada syndrome. *Bioll. Cell* 2017, 109, 273–291. [CrossRef] [PubMed]

14. Namadurai, S.; Balasuriya, D.; Rajappa, R.; Wiemhöfer, M.; Stott, K.; Klingauf, J.; Edwordson, J.M.; Chirgadze, D.Y.; Jackson, A.P. Crystal structure and molecular imaging of the Nav channelβ3 subunit indicates a trimeric assembly. *J. Biol. Chem.* 2014, 289, 10797–10811. [CrossRef] [PubMed]

15. Medeiros-Domingo, A.; Kaku, T.; Tester, D.J.; Iturralde-Torres, P.; Itty, A.; Ye, B.; Valdivia, C.; Ueda, K.; Canizales-Quinteros, S.; Tusié-Luna, M.T.; et al. SCN4B-Encoded Sodium Channel β4 Subunit in Congenital Long-QT Syndrome. *Circulation* 2007, 116, 134–142. [CrossRef] [PubMed]

16. Watanabe, H.; Koopmann, T.T.; Le Scouarnec, S.; Yang, T.; Ingram, C.R.; Schott, J.-J.; Demolombe, S.; Probst, V.; Anselme, F.; Escande, D.; et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. *J. Clin. Invest.* 2008, 118, 2260–2268. [CrossRef]

17. Wilde, A.A.M.; Brugada, R. Phenotypic manifestations of mutations in the genes encoding subunits of the cardiac sodium channel. *Circ. Res.* 2011, 108, 884–897. [CrossRef] [PubMed]

18. O’Malley, H.A.; Isom, L.L. Sodium channel β subunits: Emerging targets in channelopathies. *Annu. Rev. Physiol.* 2015, 77, 481–504. [CrossRef] [PubMed]

19. Qu, Y.; Curtis, R.; Lawson, D.; Gilbride, K.; Ge, P.; DiStefano, P.S.; Silos-Santiago, I.; Catterall, W.A.; Scheuer, T. Differential Modulation of Sodium Channel Gating and Persistent Sodium Currents by the β1, β2, and β3 Subunits. *Mol. Cell. Neurosci.* 2001, 18, 570–580. [CrossRef] [PubMed]

20. Morgan, K.; Stevens, E.B.; Shah, B.; Cox, P.J.; Dixon, A.K.; Lee, K.; Pinnock, R.D.; Hughes, J.; Richardson, P.J.; Mizuguchi, K.; et al. β3: An additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. *Proc. Natl. Acad. Sci. USA* 2000, 97, 2308–2313. [CrossRef]

21. Delmar, M. Connexin43 regulates sodium current; Ankynrin-G modulates gap junctions: The intercalated disc exchanger. *Cardiovasc. Res.* 2012, 93, 220–222. [CrossRef]

22. Abriel, H.; Rougier, J.S.; Jalife, J. Ion Channel Macromolecular Complexes in Cardiomyocytes: Roles in Sudden Cardiac Death. *Circ. Res.* 2015, 116, 1971–1988. [CrossRef]

23. Godreau, D.; Vranckx, R.; Maguy, A.; Goyenvalle, C.; Hatem, S.N. Different Isoforms of Synapse-associated Protein, SAP97, Are Expressed in the Heart and Have Distinct Effects on the Voltage-gated K+ Channel Kv1.5. *J. Biol. Chem.* 2003, 278, 47046–47052. [CrossRef]

24. Milstein, M.L.; Musa, H.; Balbuena, D.P.; Anumonwo, J.M.B.; Auerbach, D.S.; Furspan, P.B.; Hou, L.; Hu, B.; Schumacher, S.M.; Vaidyanathan, R.; et al. Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia. *Proc. Natl. Acad. Sci. USA* 2012, 109, E2134–E2143. [CrossRef] [PubMed]
241. Petiptrez, S.; Zmoos, A.F.; Ogrodnik, J.; Balse, E.; Raad, N.; El-Hau, S.; Albesa, M.; Bititth, P.; Luther, S.; Lehnhart, S.E.; et al. SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Na\textsubscript{v}1.5 in cardiomyocytes. *Circ. Res.* **2011**, *108*, 294–304. [CrossRef] [PubMed]

242. Gillet, L.; Rougier, J.S.; Shy, D.; Sonntag, S.; Mougenot, N.; Essers, M.; Shmerling, D.; Balse, E.; Hatem, S.N.; Abriel, H. Cardiac-specific ablation of synapse-associated protein SAP97 in mice decreases potassium currents but not sodium current. *Heart Rhythm* **2015**, *12*, 181–192. [CrossRef] [PubMed]

243. Mohler, P.J. Editorial: Sodium channel traffic on the cardiac microtubule highway. *Cardiovasc. Res.* **2010**, *85*, 645–646. [CrossRef] [PubMed]

244. Agullo-Pascual, E.; Lin, X.; Zhang, M.; Agullo-Pascual, E.; Pfenniger, A.; Chkourko Gusky, H.; Novelli, V.; Kim, C.; Tirasawadischai, T.; et al. Targeting the Microtubule EB1-CLASP2 Complex Modulates Na\textsubscript{v}1.5 at Intercalated Discs. *Circ. Res.* **2021**, *129*, 349–365. [CrossRef] [PubMed]

245. Marchal, G.A.; Jouni, M.; Chiang, D.Y.; Pérez-Hernández, M.; Podliesna, S.; Yu, N.; Casini, S.; Potet, F.; Veerman, C.C.; Klerk, M.; et al. Interactions Between Ankyrin-G, Plakophilin-2, and Connexin43 at the Cardiac Intercalated Disc. *Circ Res.* **2014**, *104*, 371–381. [CrossRef] [PubMed]

246. Rhett, J.M.; Ongstad, E.L.; Jourdan, J.; Gourdie, R.G. Cx43 Associates with Na\textsubscript{v}1.5 at Intercalated Discs. *Circ. Res.* **2005**, *106*, 141–153. [CrossRef]

247. Desplantez, T. Cardiac Cx43, Cx40 and Cx45 co-assembling: Involvement of connexins epitopes in formation of hemichannels and Gap junction channels. *BMC Cell Biol.* **2017**, *18*, 1–13. [CrossRef]

248. Hunter, A.W.; Barker, R.J.; Zhu, C.; Gourdie, R.G. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing junction accretion. *Mol. Biol. Cell.* **2015**, *26*, 5866–5898. [CrossRef]

249. Cavus, O.; Williams, J.; Musa, H.; El-Refaey, M.; Gratz, D.; Shaheen, R.; Schwieterman, N.A.; Koenig, S.; Antwi-Boasiako, S.; et al. Remodeling of the cardiac sodium channel, Connexin43 and Plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. *Heart Rhythm* **2013**, *10*, 412–419. [CrossRef] [PubMed]

250. Petitprez, S.; Zmoos, A.F.; Ogrodnik, J.; Balse, E.; Raad, N.; El-Hau, S.; Albesa, M.; Bititth, P.; Luther, S.; Lehnhart, S.E.; et al. Ankyrin-G Coordinates Intercalated Disc Signaling Platform to Regulate Cardiac Excitability In Vivo. *J. Clin. Investig.* **2010**, *120*, 412–422. [CrossRef] [PubMed]

251. Makara, M.A.; Curran, J.; Little, S.C.; Musa, H.; Polina, I.; Smith, S.A.; Wright, P.J.; Unudurthi, S.D.; Snyder, J.; Bennett, V.; et al. Ankyrin-G Coordinates Intercalated Disc Signaling Platform to Regulate Cardiac Excitability In Vivo. *Circ. Res.* **2014**, *115*, 929–938. [CrossRef] [PubMed]

252. Noorman, M.; Hakim, S.; Kessler, E.; Groeneweg, J.; Cox, M.G.P.; Asimaki, A.; van Rijen, H.V.M.; van Stuijvenberg, L.; Chkourko, H.; van der Heyden, M.A.G.; et al. Novel Mechanistic Roles for Ankyrin-G in Cardiac Remodeling and Heart Failure. *JACC Basic Transl. Sci.* **2018**, *3*, 675–689. [CrossRef] [PubMed]

253. Panasonic, O.; Williams, J.; Musa, H.; el Refaey, M.; Gratz, D.; Shaheen, R.; Schwieterman, N.A.; Koenig, S.; Antwi-Boasiako, S.; Young, L.J.; et al. Giant ankyrin-G regulates cardiac function. *J. Biol. Chem.* **2021**, *296*, 1–13. [CrossRef]

254. Sato, P.Y.; Coombs, W.; Lin, X.; Nakra, O.; Green, K.J.; Isom, L.L.; Taffet, S.M.; Delmar, M. Interactions Between Ankyrin-G, Plakophilin-2, and Connexin43 at the Cardiac Intercalated Disc. *Circ. Res.* **2011**, *109*, 193–201. [CrossRef]

255. Mło歵er, P.J. Editorial: Sodium channel traffic on the cardiac microtubule highway. *Cardiovasc. Res.* **2010**, *85*, 645–646. [CrossRef] [PubMed]

256. Agullo-Pascual, E.; Lin, X.; Zhang, M.; Agullo-Pascual, E.; Pfenniger, A.; Chkourko Gusky, H.; Novelli, V.; Kim, C.; Tirasawadischai, T.; Judge, D.P.; et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada Syndrome phenotype. *Circulation* **2014**, *129*, 1092–1103. [CrossRef]

257. Makara, M.A.; Curran, J.; Rubbers, E.R.; Murphy, N.P.; Little, S.C.; Musa, H.; Smith, S.A.; Unudurthi, S.D.; Rajaram, M.V.S.; Janssen, P.M.L.; et al. Novel Mechanistic Roles for Ankyrin-G in Cardiac Remodeling and Heart Failure. *JACC Basic Transl. Sci.* **2018**, *3*, 675–689. [CrossRef] [PubMed]

258. Agullo-Pascual, E.; Lin, X.; Zhang, M.; Agullo-Pascual, E.; Pfenniger, A.; Chkourko Gusky, H.; Novelli, V.; Kim, C.; Tirasawadischai, T.; Judge, D.P.; et al. Missense Mutations in Plakophilin-2 Can Cause Brugada Syndrome by Decreasing Sodium Current and Na\textsubscript{v}1.5 Membrane Localization. *Heart Rhythm* **2013**, *10*, 1743. [CrossRef]

259. Sato, P.Y.; Musa, H.; Coombs, W.; Guerrero-Serna, G.; Patiño, G.A.; Taffet, S.M.; Isom, L.L.; Delmar, M. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured heart myocytes. *Circ. Res.* **2009**, *105*, 523–526. [CrossRef]
264. Kim, C.; Wong, J.; Wen, J.; Wang, S.; Wang, C.; Spiering, S.; Kan, N.G.; Forcades, S.; Puri, P.L.; Leone, T.C.; et al. Studying arrhythmic right ventricular dysplasia with patient-specific iPSCs. Nature 2023, 494, 105–110. [CrossRef]

265. Rizzo, S.; Lodder, E.M.; Verkerk, A.O.; Wolswinkel, R.; Beekman, L.; Pilichou, K.; Basso, C.; Remme, C.A.; Thiene, G.; Bezzina, C.R. Intercalated disc abnormalities, reduced Na⁺ current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc. Res. 2012, 95, 409–418. [CrossRef]

266. Zhang, Q.; Deng, C.; Rao, F.; Modi, R.M.; Zhu, J.; Liu, X.; Mai, L.; Tan, H.; Yu, X.; Lin, Q.; et al. Silencing of desmoplakin decreases connexin43/Nαv1.5 expression and sodium current in HL-1 cardiomyocytes. Mol. Med. Rep. 2013, 8, 780–786. [CrossRef]

267. Cunha, S.R.; Mohler, P.J. Ankyrin protein networks in membrane formation and stabilization. J. Cell. Mol. Med. 2009, 13, 4364–4376. [CrossRef] [PubMed]

268. Nassal, D.; Yu, J.; Min, D.; Lane, C.; Shaheen, R.; Gratz, D.; Hund, T.J. Regulation of cardiac conduction and arrhythmias by ankyrin/spectrin-based macromolecular complexes. J. Cardiovasc. Dev. Dis. 2021, 8, 48. [CrossRef] [PubMed]

269. Bennett, V.; Chen, L. Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr. Opin. Cell Biol. 2001, 13, 61–67. [CrossRef]

270. Glynn, P.; Musa, H.; Wu, X.; Unudurthi, S.D.; Little, S.; Qian, L.; Wright, P.J.; Radwanski, P.B.; Gyorke, S.; Mohler, P.J.; et al. Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function in Vivo. Circulation 2015, 132, 567–577. [CrossRef]

271. Greer-Short, A.; Musa, H.; Alzina, K.M.; Ni, L.; Word, T.A.; Reynolds, J.O.; Gratz, D.; Lane, C.; El-Refaey, M.; Unudurthi, S.; et al. Calmodulin kinase II regulates atrial myocyte late sodium current, calcium handling, and atrial arrhythmia. Heart Rhythm 2020, 17, 503–511. [CrossRef]

272. Marsman, R.F.; Bezzina, C.R.; Freiberg, F.; Verkerk, A.O.; Adriaens, M.E.; Podliesna, S.; Chen, C.; Purfürst, B.; Spallek, B.; Koopmann, T.T.; et al. Coxackie and adenovirus receptor (CAR) is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia. J. Am. Coll. Cardiol. 2015, 63, 549–559. [CrossRef] [PubMed]

273. Noutsias, M.; Fechner, H.; De Jonge, H.; Wang, X.; Dekkers, D.; Houtsomuller, A.B.; Pauschinger, M.; Bergelson, J.; Warraich, R.; Yacoub, M.; et al. Human Coxackie-Adenovirus Receptor Is Colocalized With Integrins αvβ3 and αvβ5 on the Cardiomyocyte Sarcolemma and Upregulated in Dilated Cardiomyopathy Implications for Cardiotropic Viral Infections. Heart 2001, 104, 275–280. [CrossRef]

274. Clatot, J.; Ziyyadeh-Iseleem, A.; Maugenre, S.; Denjoy, I.; Liu, H.; Jain, A.; Shinlapawittayatorn, K.; Marionneau, C.; Ficker, E.; Deschamps, I.; et al. Dominant-negative effect of SCN5A N-terminal mutations through the interaction of Na⁺,1.5 alpha subunits. Circ. Res. 2012, 96, 53–56. [CrossRef]

275. Clatot, J.; Hoshi, M.; Wan, X.; Liu, H.; Jain, A.; Shinlapawittayatorn, K.; Marionneau, C.; Ficker, E.; Ha, T.; Deschamps, I. Voltage-gated sodium channels assemble and gate as dimers. Nat. Commun. 2017, 8, 2077. [CrossRef]

276. Allouis, M.; Le Bouffant, F.; Wilders, R.; Péroz, D.; Schott, J.J.; Noireaud, J.; Le Marec, H.; Mérot, J.; Escande, D.; Baró, I. 14-3-3 is a regulator of the cardiac voltage-gated sodium channel Na⁺,1.5. Circ. Res. 2006, 98, 1538–1546. [CrossRef]

277. Rougier, J.S.; Essers, M.C.; Gillet, L.; Guichard, S.; Sonntag, S.; Shmerling, D.; Abriel, H. A Distinct Pool of Na⁺,1.5 Channels at the Lateral Membrane of Murine Ventricular Cardiomyocytes. Front. Physiol. 2019, 10, 1–20. [CrossRef]

278. Gee, S.H.; Madhavan, R.; Levinson, S.R.; Caldwell, J.H.; Sealock, R.; Froehner, S.C. Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J. Neurosci. 1998, 18, 128–137. [CrossRef]

279. Ou, Y.; Strege, P.; Miller, S.M.; Makielksi, J.; Ackerman, M.; Gibbons, S.J.; Farrugia, G. Syntrophin γ2 regulates SCN5A gating by a PDZ domain-mediated interaction. J. Biol. Chem. 2003, 278, 1915–1923. [CrossRef] [PubMed]

280. Schultz, J.; Hoffmann, U.; Krause, G.; Ashurst, J.; Macias, M.J.; Schmieder, P.; Schneider-Mergener, J.; Oschkinat, H. Specific interactions between the syntrophin PDZ domain and voltage gated sodium channels. Nat. Struct. Biol. 1998, 5, 19–24. [CrossRef] [PubMed]

281. Matamoros, M.; Perez-Hernandez, M.; Guerrero-Serna, G.; Amoros, I.; Barana, A.; Nunez, M.; Ponce-Balbuena, D.; Sacristan, S.; Gomez, R.; Tamargo, J.; et al. Na⁺,1.5 N-terminal domain binding to alpha1 syntrophin increases membrane density of human Kir2.1.2 and Na⁺,1.5. Cardiovasc. Res. 2016, 110, 279–290. [CrossRef] [PubMed]

282. Pérez-hernández, M.; Caballero, R.; Delpon, E.; Pérez-hernández, M.; Matamoros, M.; Alfayate, S.; Nieto-marín, P.; Utrilla, R.G.; Tinaquero, D.; De Andrés, R.; et al. channels can trap cardiac Kir2.1/2.2 channels. Circ. Res. 2016, 119, 544–556. [CrossRef] [PubMed]

283. Eichel, C.A.; Beuriot, A.; Chevalier, M.Y.E.; Rougier, J.S.; Loualt, F.; Dilanian, G.; Amour, J.; Coulombe, A.; Abriel, H.; Hatem, S.N.; et al. Lateral Membrane-Specific MAGUK CASK Down-Regulates Na⁺,1.5 Channel in Cardiac Myocytes. Circ. Res. 2016, 119, 544–556. [CrossRef] [PubMed]

284. Ziane, R.; Huang, H.; Moghadaszadeh, B.; Beggs, A.H.; Levesque, G.; Chahine, M. Cell membrane expression of cardiac sodium channel Na⁺,1.5 is modulated by α-actinin-2 interaction. Biochemistry 2010, 49, 166–178. [CrossRef] [PubMed]

285. Mazzone, A.; Strege, P.R.; Tester, D.J.; Bernard, C.E.; Faulkner, G.; De Giorgio, R.; Makielksi, J.C.; Stanghellini, V.; Gibbons, S.J.; Ackerman, M.J.; et al. A Mutation in Telethonin Alters Na⁺,1.5 Function. J. Biol. Chem. 2008, 283, 16537–16544. [CrossRef]

286. Türker, I.; Makiyama, T.; Ueyama, T.; Shimizu, A.; Yamakawa, M.; Chen, P.S.; Vatta, M.; Horie, M.; Ai, T. Telethonin Variants Found in Brugada Syndrome, J-Wave Pattern ECG, and ARVC Reduce Peak Na⁺,1.5 Currents in HEK-293 Cells. PACE—Pacing Clin. Electrophysiol. 2020, 43, 838–846. [CrossRef]
Goldfarb, M. Fibroblast growth factor homologous factors evolution, structure, and function. *Cytokine Growth Factor Rev.* 2005, 16, 215–220. [CrossRef]

Rush, A.M.; Wittmack, E.K.; Tyrrell, L.; Black, J.A.; Dib-hajj, S.D.; Waxman, S.G. Differential modulation of sodium channel Na\(_v\),1.6 by two members of the fibroblast growth factor homologous factor 2 subfamily. *Eur. J. Neurosci.* 2006, 23, 2551–2562. [CrossRef]

Liu, C.; Dib-Hajj, S.D.; Renganathan, M.; Cummins, T.R.; Waxman, S.G. Modulation of the cardiac sodium channel Na\(_v\),1.5 by fibroblast growth factor homologous factor 1B. *J. Biol. Chem.* 2003, 278, 1029–1036. [CrossRef]

Wang, C.; Hennessy, J.A.; Kirkton, R.D.; Wang, C.; Graham, V.; Puranam, R.S.; Rosenberg, P.B.; Bursac, N.; Pitt, G.S. Fibroblast Growth Factor Homologous Factor 13 Regulates Na\(^+\) Channels and Conduction Velocity in Murine Hearts. *Circ. Res.* 2011, 109, 775–782. [CrossRef] [PubMed]

Wang, C.; Wang, C.; Hoch, E.G.; Pitt, G.S. Identification of Novel Interaction Sites that Determine Specificity between Fibroblast Growth Factor Homologous Factors and Voltage-gated Sodium Channels. *J. Biol. Chem.* 2011, 286, 24253–24263. [CrossRef]

Yang, J.; Wang, Z.; Sinden, D.S.; Wang, X.; Shan, B.; Yu, X.; Zhang, H.; Pitt, G.S.; Wang, C. FGF13 modulates the gating properties of the cardiac sodium channel Na\(_v\),1.5 in an isoform-specific manner. *Channels* 2016, 10, 410–420. [CrossRef]

Lou, J.Y.; Laezza, F.; Gerber, B.R.; Xiao, M.; Yamada, K.A.; Hartmann, H.; Craig, A.M.; Nerbonne, J.M.; Ornitz, D.M. Fibroblast growth factor 14 is an intracellular modulator of voltage-gated sodium channels. *J. Physiol.* 2005, 569, 179–193. [CrossRef] [PubMed]

Mohler, P.J.; Splawski, I.; Napolitano, C.; Bottelli, G.; Sharpe, L.; Timothy, K.; Priori, S.G.; Keating, M.T.; Bennett, V. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. *Proc. Natl. Acad. Sci. USA* 2004, 101, 9137–9142. [CrossRef]

Wang, C.; Chung, B.C.; Yan, H.; Wang, H.G.; Lee, S.Y.; Pitt, G.S. Structural analyses of Ca\(^++\)/Calmodulin interaction with Na\(_v\) channel C-terminus reveal mechanisms of calcium-dependent regulation. *Nat. Commun.* 2014, 5, 4896. [CrossRef]

Urbauer, J.L. Direct Sodium Channel Regulation by Calmodulin. *Structure* 2018, 26, 677–678. [CrossRef] [PubMed]

Kang, P.W.; Chakouri, N.; Diaz, J.; Tomasselli, G.F.; Yue, D.T.; Ben-Johny, M. Elementary mechanisms of calmodulin regulation of Na\(_v\),1.5 producing divergent arrhythmogenic phenotypes. *Proc. Natl. Acad. Sci. USA* 2021, 118, e2020851118. [CrossRef] [PubMed]

Turnow, K.; Metzner, K.; Cotella, D.; Morales, M.J.; Schaefer, M.; Christ, T.; Ravens, U.; Wettwer, E.; Kämmerer, S. Interaction of DPP10a with Kv4.3 channel complex results in a sustained current component of human transient outward current Ito. *Basic Res. Cardiol.* 2015, 110, 5. [CrossRef]

Belau, F.; Metzner, K.; Christ, T.; Ravens, U.; Schafer, M.; Künzel, S.; Li, W.; Wettwer, E.; Dobrev, D.; El-Armouche, A.; et al. DPP10 is a new regulator of Na\(_v\),1.5 channels in human heart. *Int. J. Cardiol.* 2019, 284, 68–73. [CrossRef]

Yarbrough, T.L.; Lu, T.; Lee, H.-C.; Shibata, E.F. Localization of Cardiac Sodium Channels in Caveolin-Rich Membrane Domains. *Circ. Res.* 2002, 90, 443–449. [CrossRef]

Balijepalli, R.C.; Kamp, T.J. Caveolae, Ion Channels and Cardiac Arrhythmias. *Prog. Biophys. Mol. Biol.* 2008, 98, 149–160. [CrossRef] [PubMed]

Xiao, Y.F.; Kang, J.X.; Morgan, J.P.; Leaf, A. Blocking effects of polyunsaturated fatty acids on Na\(^+\) channels of neonatal rat ventricular myocytes. *Proc. Natl. Acad. Sci. USA* 1995, 92, 11000–11004. [CrossRef] [PubMed]

Kang, J.X.; Xiao, Y.F.; Leaf, A. Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. *Proc. Natl. Acad. Sci. USA* 1995, 92, 3997–4001. [CrossRef]

Shibata, E.F.; Brown, T.L.Y.; Washburn, Z.W.; Bai, J.; Revak, T.J.; Butters, C.A. Autonomic Regulation of Voltage-Gated Cardiac Ion Channels. *J. Cardiovasc. Electrophysiol.* 2006, 17, 34–42. [CrossRef]

Vatta, M.; Ackerman, M.J.; Ye, B.; Makielski, J.C.; Ughanze, E.E.; Taylor, E.W.; Tester, D.J.; Balijepalli, R.C.; Foell, J.D.; Li, Z.; et al. Mutant Caveolin-3 Induces Persistent Late Sodium Current and Is Associated With Long-QT Syndrome. *Circulation* 2006, 114, 2104–2112. [CrossRef]

Vaidyanathan, R.; Reilly, L.; Eckhardt, L.L. Caveolin-3 Microdomain: Arrhythmia Implications for Potassium Inward Rectifier and Cardiac Sodium Channel. *Front. Physiol.* 2018, 9, 1–8. [CrossRef] [PubMed]

Ehrlich, J.R. Taking ion channel degradation to heart. *Cardiovasc. Res.* 2007, 74, 6–7. [CrossRef]

Abriel, H.; Staub, O. Ubiquitination of ion channels. *Physiology* 2005, 20, 398–407. [CrossRef] [PubMed]

Liu, X.; Chen, Z.; Han, Z.; Liu, Y.; Wu, X.; Peng, Y.; Di, W.; Lan, R.; Sun, B.; Xu, B.; et al. AMPK-mediated degradation of Na\(_v\),1.5 through autophagy. *FASEB J.* 2019, 33, 5366–5376. [CrossRef] [PubMed]

van Bemmelen, M.X.; Rougié, J.S.; Gavillet, B.; Apothéloz, F.; Daidié, D.; Tateda, Y.; Rivolta, I.; Thomas, M.A.; Kass, R.S.; Staub, O.; et al. Cardiac voltage-gated sodium channel Na\(_v\),1.5 is regulated by Nedd4-2 mediated ubiquitination. *Circ. Res.* 2004, 95, 284–291. [CrossRef]

Rougié, J.S.; Van Bemmelen, M.X.; Bruce, M.C.; Jespersen, T.; Gavillet, B.; Apothéloz, F.; Cordonier, S.; Staub, O.; Rotin, D.; Abriel, H. Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins. *Am. J. Physiol.—Cell Physiol.* 2005, 288, 692–701. [CrossRef]

Huang, Y.; Wang, Z.; Liu, Y.; Xiong, H.; Zhao, Y.; Wu, L.; Yuan, C.; Wang, L.; Hou, Y.; Yu, G.; et al. αβ-crystallins interacts with Na\(_v\),1.5 and regulates ubiquitination and internalization of cell surface Na\(_v\),1.5. *J. Biol. Chem.* 2016, 291, 11030–11041. [CrossRef]

Boehmer, C.; Wilhelm, V.; Palmada, M.; Wallisch, S.; Henke, G.; Brinkmeier, H.; Cohen, P.; Pieske, B.; Lang, F. Serum and glucocorticoid inducible kinases in the regulation of the cardiac sodium channel SCN5A. *Cardiovasc. Res.* 2003, 57, 1079–1084. [CrossRef]
314. Tang, B.; Hu, Y.; Wang, Z.; Cheng, C.; Wang, P.; Liang, L.; Xiong, H.; Luo, C.; Xu, C.; Chen, Q.; et al. UBC9 regulates cardiac sodium channel Na⁺,1.5 ubiquitination, degradation and sodium current density. J. Mol. Cell Cardiol. 2019, 129, 79–91. [CrossRef] [PubMed]

315. Liu, X.; Ge, J.; Chen, C.; Shen, Y.; Xie, J.; Zhu, X.; Liu, M.; Hu, J.; Chen, L.; Guo, L.; et al. FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2_Na⁺,1.5 complex formation. Cell Death Dis. 2021, 12, 1–12.

316. Bhalla, V.; Oyster, N.M.; Fitch, A.C.; Wijnjaarden, M.A.; Neumann, D.; Schlatter, U.; Pearce, D.; Hallows, K.R. AMP-activated kinase inhibits the epithelial Na⁺ channel through functional regulation of the ubiquitin ligase Nedd4-2. J. Biol. Chem. 2006, 281, 26159–26169. [CrossRef] [PubMed]

317. Tadros, R.; Ton, A.T.; Fiset, C.; Nattel, S. Sex differences in cardiac electrophysiology and clinical arrhythmias: Epidemiology, therapeutics, and mechanisms. Can. J. Cardiol. 2014, 30, 783–792. [CrossRef]

318. Costa, S.; Saguner, A.M.; Gasperetti, A.; Akdis, D.; Brunckhorst, C.; Duru, F. The Link Between Sex Hormones and Susceptibility to Cardiac Arrhythmias: From Molecular Basis to Clinical Implications. Front. Cardiovasc. Med. 2021, 8, 85. [CrossRef]

319. Gaborit, N.; Varro, A.; Le Bouter, S.; Szuts, V.; Escande, D.; Nattel, S.; Demolombe, S. Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts. J. Mol. Cell. Cardiol. 2010, 49, 639–646. [CrossRef]

320. Furukawa, T.; Kurokawa, J. Regulation of cardiac ion channels via non-genomic action of sex steroid hormones: Implication for the gender difference in cardiac arrhythmias. Pharmacol. Ther. 2007, 115, 106–115. [CrossRef]

321. Clemens Moller, R.N. Effects of estradiol on cardiac ion channel currents. Circ. Res. 1995, 76, 101–107. [CrossRef]

322. Yang, G.; Liu, J.; Wang, Y.; Du, Y.; Ma, A.; Wang, T. Lack of influence of sex hormones on Brugada syndrome-associated mutant Na⁺,1.5 cardiac sodium channel. J. Electrocardiol. 2019, 52, 82–87. [CrossRef] [PubMed]

323. Petö, K.; Miko, I.; Ba, T.; To, I.B. Effects of sex hormones on ECG parameters and expression of cardiac ion channels in dogs. Acta Physiol. 2006, 188, 163–171. [CrossRef]

324. Hu, X.; Fu, L.; Zhao, M.; Wang, D.; Zhang, H.; Gong, Z.; Ma, T.; Zhang, Y.; Machuki, J.; Pan, X.; et al. Sex hormones ameliorated sodium channel dysfunction induced by β-adrenergic overstimulation: The role of estrogen and G protein-coupled estrogen receptor. Anesth. Analg. 2020, 1–12. [CrossRef]

325. Mangold, K.E.; Brumback, B.D.; Angustararux, P.; Voelker, T.L.; Zhu, W.; Kang, P.W.; Moreno, J.D.; Silva, J.R. Mechanisms and models of cardiac sodium channel inactivation. Channels 2017, 11, 517–533. [CrossRef] [PubMed]

326. Nassal, M.M.J.; Wan, X.; Dale, Z.; Deschênes, I.; Wilson, L.D.; Piktel, J.S. Mild hyperthermia preserves myocardial conduction during ischemia by maintaining gap junction intracellular communication and Na⁺ channel function. Am. J. Physiol. Heart Circ. Physiol. 2021, 321, 86–895. [CrossRef]

327. Porres, J.M.; Brugada, J.; Urbistondo, V.; Garcia, F.; Reviejo, K.; Marco, P. Fever unmasking the Brugada syndrome. Pacing Clin. Electrophysiol. 2002, 25, 1646–1648. [CrossRef] [PubMed]

328. Abdelsayed, M.; Peters, C.H.; Ruben, P.C. Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants. J. Physiol. 2015, 593, 4201–4223. [CrossRef]

329. Dumaine, R.; Towbin, J.A.; Brugada, P.; Vatta, M.; Nesterenko, D.V.; Nesterenko, V.V.; Brugada, J.; Brugada, R.; Antzelevitch, C. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ. Res. 1999, 85, 803–809. [CrossRef]

330. Peters, C.H.; Abdelsayed, M.; Ruben, P.C. Triggers for arrhythmogenesis in the Brugada and long QT syndromes. Prog. Biophys. Mol. Biol. 2016, 120, 77–88. [CrossRef]

331. Kazutaka Gima and Yoram Rudy Ionic current basis of electrocardiographic waveforms: A model study. Circ. Res. 2007, 90, 889–896.

332. Park, D.S.; Shekhar, A.; Marra, C.; Lin, X.; Vasquez, C.; Solinas, S.; Kelley, K.; Morley, G.; Goldfarb, M.; Fishman, G.I. Fh2 gene deletion causes temperature-sensitive cardiac conduction failure. Nat. Commun. 2016, 7, 1–10. [CrossRef]

333. Jones, D.K.; Peters, C.H.; Tolhurst, S.A.; Claydon, T.W.; Ruben, P.C. Extracellular proton modulation of the cardiac voltage-gated sodium channel, Nav1.5. Biophys. J. 2011, 101, 2147–2156. [CrossRef]

334. Jones, D.K.; Claydon, T.W.; Ruben, P.C. Extracellular protons inhibit charge immobilization in the cardiac voltage-gated sodium channel. Biophys. J. 2013, 105, 101–107. [CrossRef]

335. Jones, D.K.; Peters, C.H.; Allard, C.R.; Claydon, T.W.; Ruben, P.C. Proton Sensors in the Pore Domain of the Cardiac Voltage-gated Sodium Channel. J. Biol. Chem. 2013, 288, 4782–4791. [CrossRef] [PubMed]

336. Wang, Q.; Shen, J.; Li, Z.; Timothy, K.; Vincent, G.M.; Priori, S.G.; Schwartz, P.J.; Keating, M.T. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum. Mol. Genet. 1995, 4, 1603–1607. [CrossRef]

337. Wang, D.W.; Yazawa, K.; George, A.L.; Bennett, P.B. Characterization of human cardiac Na⁺ channel mutations in the congenital long QT syndrome. Proc. Natl. Acad. Sci. USA 1996, 93, 13200–13205. [CrossRef] [PubMed]

338. Wilde, A.A.M.; Amin, A.S. Clinical Spectrum of SCN5A Mutations. JACC Clin. Electrophysiol. 2018, 4, 569–579. [CrossRef]

339. Tester, D.J.; Ackerman, M.J. Genetics of Long QT Syndrome. Methodist Debakey Cardiovasc. J. 2014, 10, 29. [CrossRef] [PubMed]

340. Pérez-Riera, A.R.; Barbosa-Barradas, R.; Daminello Raimundo, R.; da Costa de Rezende Barbosa, M.P.; Esposito Sorpreso, I.C.; de Abreu, L.C. The congenital long QT syndrome Type 3: An update. Indian Pacing Electrophysiol. J. 2018, 18, 25–35. [CrossRef]

341. Remme, C.A. Cardiac sodium channelopathy associated with SCN5A mutations: Electrophysiological, molecular and genetic aspects. J. Physiol. 2013, 591, 4099–4116. [CrossRef]
364. Zhang, J.; Chen, Y.; Yang, J.; Xu, B.; Wen, Y.; Xiang, G.; Wei, G.; Zhu, C.; Xing, Y.; Li, Y. Electrophysiological and trafficking defects of the SCN5A T353I mutation in Brugada syndrome are rescued by alpha-allocryptopine. *Eur. J. Pharmacol.* 2015, 746, 333–343. [CrossRef] [PubMed]

365. Ortiz-Bonnin, B.; Rinné, S.; Moss, R.; Streit, A.K.; Scharf, M.; Richter, K.; Stöber, A.; Pfeuffer, A.; Seemann, G.; Kääb, S.; et al. Electrophysiological characterization of a large set of novel variants in the SCN5A-gene: Identification of novel LQTS3 and BrS mutations. *Pflügers Arch.—Eur. J. Physiol.* 2016, 468, 1375–1387. [CrossRef]

366. El-Battrawy, I.; Müller, J.; Zhao, Z.; Cyganek, L.; Zhong, R.; Zhang, F.; Kleinsorge, M.; Lan, H.; Li, X.; Xu, Q.; et al. Studying Brugada Syndrome With an SCN1B Variants in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. *Front. Cell Dev. Biol.* 2019, 7, 261. [CrossRef] [PubMed]

367. Gray, B.; Hasdemirci, M.; Ingles, J.; Alba, T.; Makita, N.; Probst, V.; Wilde, A.A.M.; Newbury-Ecob, R.; Sheppard, M.N.; Semsarian, C.; et al. Lack of genotype-phenotype correlation in Brugada Syndrome and Sudden Arrhythmic Death Syndrome families with reported pathogenic SCN5A variants. *Heart Rhythm* 2018, 15, 1051–1057. [CrossRef]

368. Ricci, M.T.; Menegon, S.; Vatrano, S.; Mandrile, G.; Cerrato, N.; Carvalho, P.; De Marchi, M.; Gaita, F.; Giustetto, C.; Giachino, D.F. SCN1B gene variants in Brugada Syndrome: A study of 145 SCN5A-negative patients. *Sci. Rep.* 2015, 4, 6470. [CrossRef]

369. Ogawa, R.; Kishi, R.; Takagi, A.; Sakaue, I.; Takahashi, H.; Matsumoto, N.; Masuhara, K.; Nakazawa, K.; Kobayashi, S.; Miyake, F.; et al. A novel microsatellite polymorphism of sodium channel beta1-subunit gene (SCN1B) may underlie abnormal cardiac excitation manifested by coved-type ST-elevation compatible with Brugada syndrome in Japanese. *Int. J. Clin. Pharmacol. Ther.* 2010, 48, 109–119. [CrossRef]

370. Olesen, M.S.; Holst, A.G.; Svendsen, J.H.; Haunsoe, S.; Tfelt-Hansen, J. SCN1B R214Q found in 3 patients: 1 with Brugada syndrome and 2 with lone atrial fibrillation. *Heart Rhythm* 2012, 9, 770–773. [CrossRef]

371. Peters, S. Arrhythmogenic cardiomyopathy and provocable Brugada ECG in a patient caused by missense mutation in plakophilin-2. *Int. J. Cardiol.* 2014, 173, 317–318. [CrossRef]

372. Forkmann, M.; Tomala, J.; Huo, Y.; Mayer, J.; Christoph, M.; Wunderlich, C.; Salmas, J.; Gaspar, T.; Piorkowski, C. Epicardial Ventricular Tachycardia Ablation in a Patient With Brugada ECG Pattern and Mutation of PKP2 and DSP Genes. *Circ. Arrhythmia Electrophysiol.* 2015, 8, 505–507. [CrossRef]

373. Kattygnarath, D.; Maugrenne, S.; Neyroud, N.; Balse, E.; Ichai, C.; Denjoy, I.; Dilanian, G.; Martins, R.P.; Fressart, V.; Berthet, M.; et al. MOG1. *Circ. Cardiovasc. Genet.* 2011, 4, 261–268. [CrossRef] [PubMed]

374. Zhou, J.; Wang, L.; Zuo, M.; Wang, X.; Ahmed, A.S.I.; Chen, Q.; Wang, Q.K. Cardiac sodium channel regulator MOG1 regulates cardiac morphogenesis and rhythm. *Sci. Rep.* 2016, 6, 21538. [CrossRef]

375. Olesen, M.S.; Jensen, N.F.; Holst, A.G.; Nielsen, J.B.; Tfelt-Hansen, J.; Jespersen, T.; Sajadieh, A.; Haunsoe, S.; Lund, J.T.; Calloe, K.; et al. A Novel Nonsense Variant in Na^v1.5 Cofactor MOG1 Eliminates Its Sodium Current Increasing Effect and May Increase the Risk of Arrhythmias. *Can. J. Cardiol.* 2011, 27, 523.e17–523.e23. [CrossRef] [PubMed]

376. Park, D.S.; Shekhar, A.; Santucci, J.; Redel-Traub, G.; Dolinas, S.; Mintz, S.; Lin, X.; Chang, E.W.; Narke, D.; Xia, Y.; et al. Ionic Mechanisms of Impulse Propagation Failure in the FH2-Deficient Heart. *Circ. Res.* 2020, 127, 1536–1548. [CrossRef] [PubMed]

377. Schmidt, C.; Wiedmann, F.; El-Battrawy, I.; Fritz, M.; Ratte, A.; Beller, C.J.; Lang, S.; Rudic, B.; Schimpf, R.; Akin, I.; et al. Reduced Na⁺ Current in Native Cardiomyocytes of a Brugada Syndrome Patient Associated With β-2-Syntrophin Mutation. *Circ. Genom. Precis. Med.* 2018, 11, e002263. [CrossRef]

378. Shimizu, A.; Zankov, D.P.; Sato, A.; Komeno, M.; Toyoda, F.; Yamazaki, S.; Makita, T.; Noda, T.; Ikawa, M.; Asano, Y.; et al. Identification of transmembrane protein 168 mutation in familial Brugada syndrome. *FASEB J.* 2020, 34, 6399–6417. [CrossRef] [PubMed]

379. Shimizu, A.; Zankov, D.P.; Sato, A.; Komeno, M.; Toyoda, F.; Yamazaki, S.; Makita, T.; Noda, T.; Ikawa, M.; Asano, Y.; et al. Identification of transmembrane protein 168 mutation in familial Brugada syndrome. *FASEB J.* 2020, 34, 6399–6417. [CrossRef] [PubMed]

380. Nguyen, L.K.C.; Shimizu, A.; Soh, J.E.C.; Komeno, M.; Sato, A.; Ogita, H. Transmembrane protein 168 mutation reduces cardiomyocyte cell surface expression of Na_{1.5} through αβ-crystallin intracellular dynamics. *J. Biochem.* 2021, 170, mvb066. [CrossRef]

381. Di Resta, C.; Pietrelli, A.; Sala, S.; Delia Bella, P.; De Bellis, G.; Ferrari, M.; Bordoni, R.; Benedetti, S. High-throughput genetic characterization of a cohort of Brugada syndrome patients. *Hum. Mol. Genet.* 2015, 24, 5828–5835. [CrossRef]

382. Musa, H.; Marco, C.A.; Herron, T.J.; Makra, M.A.; Tester, D.J.; O’Connell, R.P.; Rosinski, B.; Guerrero-Serna, G.; Milstein, M.L.; Monteiro da Rocha, A.; et al. Abnormal myocardial expression of SAP97 is associated with arrhythmogenic risk. *Am. J. Physiol. Circ. Physiol.* 2020, 318, H1357–H1370. [CrossRef]

383. Wang, Z.; Vermij, S.H.; Sottas, V.; Shrestak, A.; Ross-Kaschitsch, D.; Zaklyazminskaya, E.V.; Hudmon, A.; Pitt, G.S.; Rougier, J.S.; Abriel, H. Calmodulin binds to the N-terminal domain of the cardiac sodium channel Na_{1.5}. *Channels* 2020, 14, 268–286. [CrossRef]

384. Jiménez-Jáimez, J.; Palomino Doza, J.; Ortega, Á.; Macías-Ruiz, R.; Perin, F.; Rodriguez-Vázquez del Rey, M.M.; Ortiz-Genga, M.; Monserrat, I.; Barrales-Villa, R.; Blanca, E.; et al. Calmodulin 2 Mutation N98S Is Associated with Unexplained Cardiac Arrest in Infants Due to Low Clinical Penetrance Electrical Disorders. *PloS ONE* 2016, 11, e0153851. [CrossRef] [PubMed]

385. Yagihara, N.; Watanabe, H.; Barnett, P.; Dubosq-Bidot, L.; Thomas, A.C.; Yang, P.; Ohno, S.; Hasegawa, K.; Kuwano, R.; Chatel, S.; et al. Variants in the SCN5A Promoter Associated with Various Arrhythmia Phenotypes. *J. Am. Heart Assoc.* 2016, 5, 1–10. [CrossRef]

386. Kimura, Y.; Aiba, T.; Sasano, T.; Furukawa, T.; Kusano, K.; Shimizu, W. IRX3 variant as a modifier of Brugada syndrome with frequent ventricular fibrillation. *Heart Case Rep.* 2016, 2, 465–468. [CrossRef]
386. Yang, P.; Koopmann, T.T.; Pfeuer, A.; Jalilzadeh, S.; Schulze-Bahr, E.; Kääb, S.; Wilde, A.A.; Roden, D.M.; Bezzina, C.R. Polymorphisms in the cardiac sodium channel promoter displaying variant in vitro expression activity. *Eur. J. Hum. Genet.* 2008, 16, 350–357. [CrossRef]

387. Matsumura, H.; Nakano, Y.; Ochi, H.; Onohara, Y.; Sairaku, A.; Tokuyama, T.; Tomomori, S.; Motoda, C.; Amioka, M.; Hironobe, N.; et al. H558R, a common SCN5A polymorphism, modifies the clinical phenotype of Brugada syndrome by modulating DNA methylation of SCN5A promoters. *J. Biol. Med.* 2017, 24, 91. [CrossRef]

388. Scumaci, D.; Oliva, A.; Concolino, A.; Curcio, A.; Fiumara, C.V.; Tammé, L.; Campuzano, O.; Pascali, V.L.; Coll, M.; Iglesias, A.; et al. Integration of “Omics” Strategies for Biomarkers Discovery and for the Elucidation of Molecular Mechanisms Underlying Brugada Syndrome. *Proteom.—Clin. Appl.* 2018, 12, 1800065. [CrossRef]

389. Aiba, T.; Farinelli, F.; Kostecki, G.; Hesketh, G.G.; Edwards, D.; Biswas, S.; Tung, L.; Tomaselli, G.F. A Mutation Causing Brugada Syndrome Identifies a Mechanism for Altered Autonomic and Oxidant Regulation of Cardiac Sodium Currents. *Circ. Cardiovasc. Genet.* 2014, 7, 249–256. [CrossRef]

390. Darbar, D.; Kannankeril, P.J.; Donahue, B.S.; Kucera, G.; Stubblefield, T.; Haines, J.L.; George, A.L.J.; Roden, D.M. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. *Circulation* 2008, 117, 1927–1935. [CrossRef]

391. Takehara, N.; Makita, N.; Kawabe, J.; Sato, N.; Kawamura, Y.; Kitabatake, A.; Kikuchi, K. A cardiac sodium channel mutation identified in Brugada syndrome associated with atrial standstill. *J. Intern. Med.* 2004, 255, 137–142. [CrossRef]

392. Lairinen-Forsblom, P.J.; Makynen, P.; Makynen, H.; Yli-Mayry, S.; Virtanen, V.; Kontula, K.; Aalto-Setala, K. SCN5A Mutation Associated with Cardiac Conduction Defect and Atrial Arrhythmias. *J. Cardiovasc. Electrophysiol.* 2006, 17, 480–485. [CrossRef]

393. Li, R.-G.; Wang, Q.; Xu, Y.-J.; Zhang, M.; Qu, X.-K.; Liu, X.; Fang, W.-Y.; Yang, Y.-Q. Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation. *Ann. Hum. Genet.* 2013, 77, 285–290. [CrossRef]

394. Li, R.-G.; Wang, Q.; Xu, Y.-J.; Zhang, M.; Hu, P.; Wu, L.; Chen, Z.; Tang, J.; Yang, Y.-Q. A novel SCN4B polymorphism, modifies the clinical phenotype of Brugada syndrome by modulating DNA methylation of SCN5A promoters. *J. Biol. Med.* 2018, 25, 137–142. [CrossRef]

395. Husser, D.; Ueberham, L.; Hindricks, G.; Büttner, P.; Ingram, C.; Weeke, P.; Shoemaker, M.B.; Adams, V.; Arya, A.; Sommer, P.; et al. Functional dominant-negative mutation of sodium channel subunit gene SCN3B associated with atrial fibrillation in a Chinese GeneID population. *Biochem. Biophys. Res. Commun.* 2010, 398, 98–104. [CrossRef] [PubMed]

396. Watanabe, H.; Darbar, D.; Kaiser, D.W.; Jiramongkolchai, K.; Chopra, S.; Kannankeril, P.; Roden, D.M. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. *Circ. Arrhythmia Electrophysiol.* 2009, 2, 268–275. [CrossRef] [PubMed]

397. Xiong, H.; Yang, Q.; Chen, Y.; Liu, Y.; Wang, P.; Zhao, Y.; Li, S.; Huang, Y.; et al. Significant association of rare variant p.Gly8Ser in cardiac sodium channel β4-subunit SCN4B with atrial fibrillation. *Ann. N. Y. Acad. Sci.* 2019, 1462, 239–248. [CrossRef] [PubMed]

398. Li, R.-G.; Wang, Q.; Xu, Y.-J.; Zhang, M.; Hu, P.; Wu, L.; Chen, Z.; Tang, J.; Yang, Y.-Q. Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation. *Int. J. Mol. Med.* 2013, 32, 144–150. [CrossRef]

399. Wang, P.; Yang, Q.; Wu, X.; Yang, Y.; Shi, L.; Wang, C.; Wu, G.; Xia, Y.; Yang, B.; Zhang, R.; et al. Functional dominant-negative mutation of sodium channel subunit gene SCN3B associated with atrial fibrillation in a Chinese GeneID population. *Biochem. Biophys. Res. Commun.* 2018, 495, 159–164. [CrossRef] [PubMed]

400. Watanabe, H.; Darbar, D.; Kaiser, D.W.; Jiramongkolchai, K.; Chopra, S.; Donahue, B.S.; Kannankeril, P.J.; Roden, D.M. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. *Circ. Arrhythmia Electrophysiol.* 2009, 2, 268–275. [CrossRef] [PubMed]

401. Watanabe, H.; Darbar, D.; Kaiser, D.W.; Jiramongkolchai, K.; Chopra, S.; Donahue, B.S.; Kannankeril, P.J.; Roden, D.M. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. *Circ. Arrhythmia Electrophysiol.* 2009, 2, 268–275. [CrossRef] [PubMed]

402. Watanabe, H.; Darbar, D.; Kaiser, D.W.; Jiramongkolchai, K.; Chopra, S.; Donahue, B.S.; Kannankeril, P.; Roden, D.M. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. *Circ. Arrhythmia Electrophysiol.* 2009, 2, 268–275. [CrossRef] [PubMed]

403. Watanabe, H.; Darbar, D.; Kaiser, D.W.; Jiramongkolchai, K.; Chopra, S.; Donahue, B.S.; Kannankeril, P.J.; Roden, D.M. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. *Circ. Arrhythmia Electrophysiol.* 2009, 2, 268–275. [CrossRef] [PubMed]

404. Watanabe, H.; Nogami, A.; Ohkubo, K.; Kawata, H.; Hayashi, Y.; Ishikawa, T.; Makiyama, T.; Nagoa, S.; Yagihara, N.; Takehara, N.; et al. Integration of “Omics” Strategies for Biomarkers Discovery and for the Elucidation of Molecular Mechanisms Underlying Brugada Syndrome. *Proteom.—Clin. Appl.* 2018, 12, 1800065. [CrossRef]

405. Watanabe, H.; Ohkubo, K.; Kawata, H.; Hayashi, Y.; Ishikawa, T.; Makiyama, T.; Nagoa, S.; Yagihara, N.; Takehara, N.; et al. Integration of “Omics” Strategies for Biomarkers Discovery and for the Elucidation of Molecular Mechanisms Underlying Brugada Syndrome. *Proteom.—Clin. Appl.* 2018, 12, 1800065. [CrossRef]

406. Reithmann, C.; Beckmann, B.-M.; Kääb, S. Purkinje-related ventricular fibrillation associated with a homozygous H558R polymorphism in the sodium channel SCN5A gene. *Europace* 2016, 18, 896. [CrossRef] [PubMed]

407. Vilin, Y.; Fujimoto, E.; Ruben, P. A novel mechanism associated with idiopathic ventricular fibrillation (IVF) mutations R1232W and T1620M in human cardiac sodium channels. *Pflügers Arch.* 2001, 442, 204–211. [CrossRef] [PubMed]
Akai, J.; Makita, N.; Sakurada, H.; Shirai, N.; Ueda, K.; Kitabatake, A.; Nakazawa, K.; Kimura, A.; Hiraoka, M. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. *FEBS Lett.* **2000**, *479*, 29–34. [CrossRef]

Wan, X.; Chen, S.; Sadeghpour, A.; Wang, Q.; Kirsch, G.E. Accelerated inactivation in a mutant Na⁺ channel associated with idiopathic ventricular fibrillation. *Am. J. Physiol.—Heart Circ. Physiol.* **2001**, *280*, 354–360. [CrossRef] [PubMed]

Raharjo, S.B.; Maulana, R.; Maghfirah, I.; Alzahr, F.; Putrinaria, A.D.; Hanafy, D.A.; Yuniadi, Y. SCN 5A gene mutations and the risk of ventricular fibrillation and syncpe in Brugada syndrome patients: A meta-analysis. *J. Arrhythmia* **2018**, *34*, 473–477. [CrossRef]

Nishii, N.; Ogawa, M.; Morita, H.; Nakamura, K.; Banba, K.; Miura, D.; Kumagai, N.; Matsunaga, A.; Kawamura, H.; Urakawa, S.; et al. SCN5A Mutation Is Associated With Early and Frequent Recurrence of Ventricular Fibrillation in Patients With Brugada Syndrome. *Circ. J.* **2010**, *74*, 2572–2578. [CrossRef] [PubMed]

KELLER, D.; HUANG, H.; ZHAO, J.; FRANK, R.; SUAREZ, V.; DELACRETAZ, E.; BRINK, M.; OSSWALD, S.; SCHWICK, N.; CHAHINE, M. A novel SCN5A mutation, F1343S, identified in a patient with Brugada syndrome and fever-induced ventricular fibrillation. *Cardiovasc. Res.* **2006**, *70*, 521–529. [CrossRef]

Kawamura, M.; Ozawa, T.; Yao, T.; Ashihara, T.; Sugimoto, Y.; Yagi, T.; Itoh, H.; Ito, M.; Makiyama, T.; Horie, M. Dynamic Change in ST-Segment and Spontaneous Occurrence of Ventricular Fibrillation in Brugada Syndrome With a Novel Nonsense Mutation in the SCN5A Gene During Long-Term Follow-up. *Circ. J.* **2009**, *73*, 584–588. [CrossRef]

Lieve, K.V.; Verkerk, A.O.; Podliesna, S.; van der Werf, C.; Tanck, M.W.; Hofman, N.; van Bergen, P.F.; Beekman, L.; Bezzina, C.R.; Wilde, A.A.M.; et al. Gain-of-function mutation in SCN5A causes ventricular arrhythmias and early onset atrial fibrillation. *Int. J. Cardiol.* **2017**, *236*, 187–193. [CrossRef] [PubMed]

Boehringer, T.; Bugert, P.; Borggrefe, M.; Elmas, E. SCN5A mutations and polymorphisms in patients with ventricular fibrillation during acute myocardial infarction. *Mol. Med. Rep.* **2014**, *10*, 2039–2044. [CrossRef]

Wang, F.; Liu, Y.; Liao, H.; Xue, Y.; Zhan, X.; Fang, X.; Liang, Y.; Wei, W.; Rao, F.; Zhang, Q.; et al. Genetic Variants on SCN5A, KCNQ1, and KCNH2 in Patients with Ventricular Arrhythmias during Acute Myocardial Infarction in a Chinese Population. *Cardiology* **2020**, *145*, 38–45. [CrossRef]

Hu, D.; Viskin, S.; Oliva, A.; Carrier, T.; Cordeiro, J.M.; Barajas-Martinez, H.; Wu, Y.; Burashnikov, E.; Sicouri, S.; Brugada, R.; et al. Novel mutation in the SCN5A gene associated with arrhythmic storm development during acute myocardial infarction. *Heart Rhythm* **2007**, *4*, 1072–1080. [CrossRef] [PubMed]

Ter Bekke, R.M.A.; Isaacs, A.; Barysenka, A.; Hoos, M.B.; Jongbloed, J.D.H.; Hoontje, J.C.A.; Patelski, A.S.M.; Helderman-van den Enden, A.T.J.M.; van den Wijngaard, A.; Stoll, M.; et al. Heritability in a SCN5A -mutation founder population with increased female susceptibility to non-nocturnal ventricular tachyarrhythmia and sudden cardiac death. *Heart Rhythm* **2017**, *14*, 1873–1881. [CrossRef]

Son, M.K.; Ki, C.-S.; Park, S.-J.; Huh, J.; Kim, J.S.; On, Y.K. Genetic Mutation in Korean Patients of Sudden Cardiac Arrest as a Surrogating Marker of Idiopathic Ventricular Arrhythmia. *J. Korean Med. Sci.* **2013**, *28*, 1021. [CrossRef] [PubMed]

Stawiarski, K.; Clarke, J.-R.D.; Pollack, A.; Winslow, R.; Majumdar, S. Ventricular fibrillation in Graves disease reveals a rare SCN5A mutation with W1191X variant associated with Brugada syndrome. *Heart Case Rep.* **2021**, *7*, 95–99. [CrossRef]

Valdivia, C.R.; Medeiros-Domingo, A.; Ye, B.; Shen, W.K.; Algiers, T.J.; Ackerman, M.J.; Makielski, J.C. Loss-of-function mutation of the SCN3B-encoded sodium channel 3 subunit associated with a case of idiopathic ventricular fibrillation. *Cardiovasc. Res.* **2010**, *86*, 392–400. [CrossRef]

Lassam, G.; Oaks, J.B. A Rare Desmoglein-2 Gene Mutation in Arrhythmogenic Right Ventricular Cardiomyopathy Inciting Incessant Ventricular Fibrillation. *Cureus* **2018**, *10*, e3388. [CrossRef]

Rigato, I.; Bauce, B.; Rampazzo, A.; Zorzi, A.; Pilichou, K.; Mazzotti, E.; Migliore, F.; Marra, M.P.; Lorenzon, A.; De Bortoli, M.; et al. Compound and Digenic Heterozygosity Predicts Lifetime Arrhythmic Outcome and Sudden Cardiac Death in Desmosomal Gene-Related Arrhythmogenic Right Ventricular Cardiomyopathy. *Circ. Cardiovasc. Genet.* **2013**, *6*, 533–542. [CrossRef]

Bhonsale, A.; Groeneweg, J.A.; James, C.A.; Dooijes, D.; Tichnell, C.; Jungbloed, J.D.H.; Murray, I.; being the first author. Stoll, M.; et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. *Eur. Heart J.* **2015**, *36*, 847–855. [CrossRef] [PubMed]

Cox, M.G.P.J.; van der Zwaag, P.A.; van der Werf, C.; van der Smagt, J.J.; Noorman, M.; Bluijrn, Z.A.; Wiesfeld, A.C.P.; Volders, P.G.A.; van Langen, I.M.; Atsma, D.E.; et al. Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. *Circulation* **2011**, *123*, 2690–2700. [CrossRef] [PubMed]

Marsman, R.F.; Barc, J.; Beekman, L.; Alders, M.; Dooijes, D.; van den Wijngaard, A.; Ratbi, I.; Jefriani, A.; Bluijrn, Z.A.; Wilde, A.A.M.; et al. A Mutation in CALM1 Encoding Calmodulin in Familial Idiopathic Ventricular Fibrillation in Childhood and Adolescence. *J. Am. Coll. Cardiol.* **2013**, *63*, 259–266. [CrossRef]

Nomikos, M.; Thanassoulas, A.; Beck, K.; Vassilakopoulou, V.; Hu, H.; Calver, B.L.; Theodoridou, M.; Kashir, J.; Blayney, L.; Livaniou, E.; et al. Altered RyR2 regulation by the calmodulin P90L mutation associated with idiopathic ventricular fibrillation and early sudden cardiac death. *FEBS Lett.* **2014**, *588*, 2898–2902. [CrossRef]

Bagnall, R.D.; Molloy, L.K.; Kelman, J.M.; Sensmart, C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. *BMC Med. Genet.* **2014**, *15*, 99. [CrossRef]
429. Butters, T.D.; Aslanidi, O.V.; Inada, S.; Boyett, M.R.; Hancox, J.C.; Lei, M.; Zhang, H. Mechanistic Links Between Na+ Channel (SCN5A) Mutations and Impaired Cardiac Pacemaking in Sick Sinus Syndrome. *Circ. Res.* **2010**, *107*, 126–137. [CrossRef]

430. GUI, J.; WANG, T.; TRUMP, D.; ZIMMER, T.; LEI, M. Mutation-Specific Effects of Polymorphism H558R in SCN5A-Related Sick Sinus Syndrome. *J. Cardiovasc. Electrophysiol.* **2010**, *21*, 564–573. [CrossRef] [PubMed]

431. Abe, K.; Machida, T.; Sumitomo, N.; Yamamoto, H.; Ohkubo, K.; Watanabe, I.; Makiyama, T.; Fukae, S.; Kohno, M.; Harrell, D.T.; et al. Sodium Channelopathy Underlying Familial Sick Sinus Syndrome With Early Onset and Predominantly Male Characteristics. *Arrhythmia Electrophysiol.* **2014**, *7*, 511–517. [CrossRef]

432. Nakajima, S.; Makiyama, T.; Hanazawa, K.; Kaitani, K.; Amano, M.; Hayama, Y.; Onishi, N.; Tamaki, Y.; Miyake, M.; Tamura, T.; et al. A Novel SCN5A Mutation Demonstrating a Variety of Clinical Phenotypes in Familial Sick Sinus Syndrome. *Intern. Med.* **2013**, *52*, 1805–1808. [CrossRef] [PubMed]

433. Tan, B.; Iturraldetorres, P.; Medeiros-domingo, A.; Nava, S.; Tester, D.; Valdivia, C.; Tusieluna, T.; Ackerman, M.; Makielski, J. A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia. *Cardiovasc. Res.* **2007**, *76*, 409–417. [CrossRef]

434. Kodama, T.; Serio, A.; Disertori, M.; Bronzetti, G.; Diegoli, M.; Narula, N.; Grasso, M.; Mazzola, S.; Arbustini, E. Autosomal recessive paediatric sick sinus syndrome associated with novel compound mutations in SCN5A. *Int. J. Cardiol.* **2013**, *167*, 3078–3080. [CrossRef] [PubMed]

435. Holst, A.G.; Liang, B.; Jespersen, T.; Bundgaard, H.; Haunso, S.; Svendsen, J.H.; Tfelt-Hansen, J. Sick Sinus Syndrome, Progressive Cardiac Conduction Disease, Atrial Flutter and Ventricular Tachycardia Caused by a Novel SCN5A Mutation. *Cardiology* **2010**, *115*, 311–316. [CrossRef] [PubMed]

436. Alkorashy, M.; Al-Ghamdi, B.; Tulbah, S.; Al-Numair, N.S.; Alhadeq, F.; Takroni, S.A.; Al-Hassnan, Z.N. A novel homozygous SCN5A variant detected in sick sinus syndrome. *Pacing Clin. Electrophysiol.* **2021**, *44*, 380–384. [CrossRef] [PubMed]

437. Ziyadeh-Iselem, A.; Clatot, J.; Duchatelet, S.; Gandjakhch, E.; Denjoy, I.; Hidden-Lucet, F.; Hatem, S.; Deschênes, I.; Coulombe, A.; Neyroud, N.; et al. A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. *Heart Rhythm* **2014**, *11*, 1015–1023. [CrossRef] [PubMed]

438. Ackerman, M.J. Postmortem Molecular Analysis of SCN5A Defects in Sudden Infant Death Syndrome. *JAMA* **2001**, *286*, 2264. [CrossRef]

439. Wang, D.W.; Desai, R.R.; Crotti, L.; Arnestad, M.; Insolia, R.; Pedrazzini, M.; Ferrandi, C.; Vege, A.; Rognum, T.; Schwartz, M.V.; et al. Novel Calmodulin Mutations Associated With Congenital Arrhythmia Susceptibility. *Heart Case Rep.* **2015**, *2*, 286–292. [CrossRef]

440. Turillazzi, E.; La Rocca, G.; Anzalone, R.; Corrao, S.; Neri, M.; Pomara, C.; Riezzo, I.; Karch, S.B.; Fineschi, V. Heterozygous SCN5A mutation combined with a postnatal SCN5A mutation causes atrial flutter and severe heart block. *Int. J. Cardiol.* **2014**, *175*, 1–5. [CrossRef] [PubMed]

441. Cronk, L.B.; Ye, B.; Kaku, T.; Tester, D.J.; Vatta, M.; Makielski, J.C.; Ackerman, M.J. Novel mechanism for sudden infant death syndrome: Persistent late sodium current secondary to mutations in caveolin-3. *Heart Rhythm* **2007**, *4*, 161–166. [CrossRef]
452. Veltmann, C.; Barajas-Martinez, H.; Wolpert, C.; Borggreve, M.; Schimpf, R.; Pfeiffer, R.; Cáceres, G.; Burashnikov, E.; Antzelevitch, C.; Hu, D. Further Insights in the Most Common SCN5A Mutation Causing Overlapping Phenotype of Long QT Syndrome, Brugada Syndrome, and Conduction Defect. *J. Am. Heart Assoc.* 2016, 5, 1–15. [CrossRef] [PubMed]

453. Kyndt, F.; Probst, V.; Potet, F.; Demolombe, S.; Chevallier, J.C.; Baro, I.; Moisan, J.P.; Boisseau, P.; Schott, J.J.; Escande, D.; et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. *Circulation* 2001, 104, 3081–3086. [CrossRef]

454. Hothi, S.S.; Ara, F.; Timperley, J. p.Y1449C SCN5A Mutation Associated with Overlap Disorder Comprising Conduction Disease, Brugada Syndrome, and Atrial Flutter. *J. Cardiovasc. Electrophysiol.* 2015, 26, 93–97. [CrossRef]

455. Chen, S. SNP S1103Y in the cardiac sodium channel gene SCN5A is associated with cardiac arrhythmias and sudden death in a white family. *J. Med. Genet.* 2002, 39, 913–915. [CrossRef] [PubMed]

456. Marquez, M.F.; Cruz-Robles, D.; Inés-Real, S.; Gallardo, G.J.; Gonzalez-Hermosillo, A.; Cárdenas, M.; Vargas-Alarcón, G. A novel SCN5A deletion mutation in a child with ventricular tachycardia, recurrent aborted sudden death, and Brugada electrocardiographic pattern. *Arch. Cardiol. Mex.* 2007, 77, 284–287. [PubMed]

457. Patel, C.; Silcock, L.; McMullan, D.; Brueton, L.; Cox, H. TBX5 intragenic duplication: A family with an atypical Holt–Oram syndrome phenotype. *Eur. J. Hum. Genet.* 2012, 20, 863–869. [CrossRef]