Optimization of Machining Parameters for AISI 316L And 317L Austenitic Stainless Steels using Eco-Cut Wire-EDM Technique

M.V.N. Srujan Manohar, Y. Seetha Rama Rao, Ch. Sree Ram

Abstract-Austenitic stainless steel is one of the most suitable engineering material based on their superior resistance to corrosion and compatibility at high temperatures and high vacuum. However, the machinability of austenitic stainless steel is not very promising owing to lower thermal conductivity, higher degree of ductility and work hardenability. For meeting these challenges, unconventional machining procedures were evolved and can make any impenetrable design/profile on any work substance by acceptable controlling of various machining procedures. The main importance of this paper is to show the impact of machining parameters on Eco-cut Wire Electric Discharge Machining (WEDM) for disparate austenitic stainless steels (AISI 316L & 317L). Initially both the metals are machined on WEDM. Machining parameters like pulse on time(P_{on}), pulse off time(P_{off}), voltage(V) and wire tension(WT) are observed for both 316L and 317L stainless steel materials. A Box-Behnken Design (BBD) of response surface methodology (RSM) has been used for experimental work. The reaction of procedure is estimated by ANOVA analysis and response optimizer is used for optimum level checking. A series of trial runs were carried out on both the machined specimens for identifying better material removal rate(MRR), cutting speed(CS) and surface roughness(Ra).

Keywords - Cutting Speed(CS), Material Removal Rate(MRR), Surface Roughness(Ra), pulse on time(P_{on}), pulse off time(P_{off}), voltage(V), wire tension(WT), Response Surface Methodology(RSM) and ANOVA.

I. INTRODUCTION

Modern advances in aerospace and nuclear engineering industries is partly reflects to the use of impenetrable-to-machine materials like alloys, nimonics, carbides, stainless steel etc. Many of these substances found various applications in the industrial fields by exploiting their elevated strength-to-weight relationship, hardness and heat-resisting qualities. Conventional machining processes instead of present technological improvement it is impenetrable to machine these substances from the perspective of low-cost production. Un-conventional machining procedures are necessary to control these hard substances. Electrical discharge machining(EDM) is the most favored non-traditional material removal procedures and enhances basic principles of machining in manufacturing industries like aerospace, automotive, nuclear, medical and die-mould production.

II. FUNDAMENTAL WORKING OF WEDM PROCEDURE

WEDM is a procedure of material removal of electrical conductive materials by thermo-electric source of energy. The material removal is by commanded erosion between a series/run of repetitive flash/twinkles in between electrodes, i.e. work piece and tool. In WEDM, the erosion apparatus has been explained as liquefying and/or evaporation of surface material by heat fabricated in the plasma channel. A flash is fabricated in between wire electrode and work piece through deionized water and erodes work piece to fabricate complex 2D and 3D object profiles.

III. MATERIAL AND EXPERIMENTAL WORK

Austenitic stainless steels (AISI 316L & 317L) are pre-owned in this work [4],[5] and the specifications of Wire EDM Machine is shown in Table I and levels of input limitations is shown in Table II.
Optimization of Machining Parameters for AISI 316L And 317L Austenitic Stainless Steels using Eco-Cut Wire-EDM Technique

The dimensions of the work piece for the work is taken as, Plates of 100x150x5mm thick respectively, and these plates were machined by Wire EDM shown in Fig. 1.

MRR = (0.345) (10) / 449 = 0.038 mm²/min

MITUTOYO SURFTEST SJ 201P surface roughness tester is pre-owned to measure the surface roughness value (Ra).

Table-III: Experimental Plan & Responses of 316L

Table-IV: Experimental Plan and Responses of 317L

IV. EXPERIMENTAL DESIGN AND ANALYSIS

WEDM of eco-cut has been pre-owned to machine Austenitic Stainless Steels AISI 316L and 317L with P₁₀, P₁₄₆, V and WT as input limitations. Varying the above limitations a cut of 10mm length are fabricated on the work piece of two disparate materials. The aim of the present work is to optimize the WEDM procedure parameters for better performance [6],[7]. In this work the showing measures are material removal rate (MRR), surface roughness (Ra) and cutting speed (CS).

The level of input limitations is fixed based on the trial runs displayed in the work table, response surface methodology-Box Behnken Design method has been used for experimentation (Table III and Table IV). The measured and calculated responses are given in the work table after conducting the experiments. ANOVA [8],[9],[10] has been used to know the significant parameter and their contribution.

The trial run defines as in the following steps:
1. Selecting the machining limitations and levels of these limitations.
2. Conducting the trial runs at all feasible level of the combinations.

MRR was calculated using the following equation,

MRR calculation: MRR = [WLT]/Tₘ

T – THICKNESS OF WORK PIECE (mm),
L – LENGTH OF CUT (mm),
W – WIDTH OF CUT OR WIDTH (mm),
Tₘ – MACHINING TIME (min)
V. RESULTS AND DISCUSSION

ANOVA has been applied on the exploratory outcomes for MRR, CS, Ra for both steels 316L and 317L are given Table V, Table VI, Table VII, Table VIII, Table IX and Table X respectively. By using surface optimizer, optimum level has been observed and measured as shown from Fig. 2 to Fig. 7.

Table-V: Outcomes of ANOVA for MRR 316L

Source	SS	MS	F-Value	P-Value	% Contribution		
Model	1	44	24	10	0.065	3.12	2.16
A	1	46	24	10	0.068	3.31	2.18
B	1	45	20	10	0.047	2.84	2.17
C	1	45	20	10	0.039	2.44	1.63
A*B	1	45	24	10	0.057	3.89	1.95
A*C	1	44	22	9	0.062	3.15	2.19
B*C	1	46	22	9	0.069	3.25	2.3

...and so on...

Fig. 2. Surface plot of MRR 316L vs. A and B

MRR for 316L = -72.25 + 1.0589 A + 0.4286 B + 0.1345 C + 0.2084 D - 0.004416 A^2 - 0.004388 B^2 + 0.000005 C^2 - 0.001933 D^2 - 0.000286 A*B - 0.001544 A*C - 0.000750 A*D + 0.0007648 B*C - 0.002178 B*D + 0.000596 C*D

Table-VI: Outcomes of ANOVA for CS 316L

Source	SS	MS	F-Value	P-Value	% Contribution	
Model	14	0.0093	0.00066	443.53	0.00099	99.785
A	1	0.000499	0.000499	3330.45	0.00056	54.655
B	1	0.00005	0.0005	1004.32	0.00065	16.129
C	1	0.00019	0.00019	127.72	0.00105	2.0430
D	1	0.00000	0.00000	1.39	0.00010	0.254
A^2	1	0.00004	0.00004	694.20	0.00065	11.182
B^2	1	0.00003	0.00003	685.15	0.00065	11.075
C^2	1	0.00000	0.00000	0.02	0.00001	0.000
D^2	1	0.00002	0.00002	132.94	0.00065	2.1505
A*B	1	0.00000	0.00000	2.18	0.00010	0.16
A*C	1	0.000038	0.000038	254.45	0.00065	4.0860
A*D	1	0.00002	0.00002	15.01	0.00065	0.2150
B*C	1	0.000019	0.000019	62.38	0.00065	0.9677
D*B	1	0.000019	0.000019	126.62	0.00065	2.0430
C*D	1	0.000006	0.000006	37.96	0.00065	0.6451
Error	12	0.000002	0.000002	0.2150	0.00065	0.000
Total	26					100

Fig. 3. Surface plot of CS 316L vs. A and B

CS for 316L = 500 + 1.11 A - 21.26 B - 7.73 C +2.32 D - 0.0112 A*A + 0.2208 B*B + 0.0392 C*C + 0.1998 D*D + 0.0145 A*B + 0.0663 A*C + 0.0790 A*D -0.0375 B*C + 0.0475 B*D + 0.0213 C*D

Table-VII: Outcomes of ANOVA for Ra 316L

Source	SS	MS	F-Value	P-Value	% Contribution	
Model	14	0.3181	0.0227	16.09	0.0000	94.94017

...and so on...
Optimization of Machining Parameters for AISI 316L And 317L Austenitic Stainless Steels using Eco-Cut Wire-EDM Technique

Source	DF	SS	MS	F-Value	P-Value	% Contribution	
Model	14	4.42615	0.31615	58.64	0.000	98.55929	
A	1	3.55	0.0569	3.55069	658.57	0.000	79.06499
B	1	0.04	0.843	0.04843	8.98	0.011	1.078415
C	1	0.07	1.468987	0.00121	0.22	0.644	0.026944
D	1	0.00	3.50	0.00350	0.65	0.436	0.077936
A^2	1	0.17	5.87	0.17587	32.62	0.000	3.916185
B^2	1	0.19	5.77	0.19577	36.31	0.000	4.359308
C^2	1	0.44	986	0.44986	83.44	0.000	10.01726
D^2	1	0.34	797	0.34797	64.54	0.000	7.748422
A*B	1	0.06	597	0.06597	12.24	0.004	1.468987
A*C	1	0.19	890	0.18890	20.20	0.001	2.424931
A*D	1	0.00	422	0.00422	0.78	0.393	0.093969
B*C	1	0.00	563	0.000563	1.04	0.327	0.125366
D*B	1	0.00	560	0.00360	0.67	0.430	0.080163
C*D	1	0.00	599	0.00599	1.11	0.313	0.133382

Table-VIII: Outcomes of ANOVA for MRR 317L

Fig. 4. Surface plot of Ra 316L vs. A and B

Ra for 316L = 730 - 11.03 A - 2.11 B - 1.99 C - 7.42 D + 0.0410 A^2 - 0.0210 B^2 - 0.00261 C^2 - 0.0384 D^2 + 0.0271 A*B - 0.00500 A*C + 0.0683 A*D + 0.04865 B*C - 0.0150 B*D + 0.05375 C*D

Table-IX: Outcomes of ANOVA for CS 317L

Fig. 5. Surface plot of MRR 317L vs. A and B

MRR for 317L = -7.11 + 1.709 A - 0.883 B - 0.4149 C - 0.239 D - 0.00744 A^2 A + 0.01274 B^2 B + 0.001969 C^2 C + 0.00663 D^2 D - 0.00228 A*B + 0.003162 A*C + 0.00078 A*D - 0.000500 B*C + 0.00075 B*D - 0.000662 C*D

Model 14 4.42 615 0.31615 58.64 0.000 98.55929
A 1 3.55 0.069 3.55069 658.57 0.000 79.06499
B 1 0.04 0.843 0.04843 8.98 0.011 1.078415
C 1 0.07 1.468987 0.00121 0.22 0.644 0.026944
D 1 0.00 3.50 0.00350 0.65 0.436 0.077936
A^2 1 0.17 5.87 0.17587 32.62 0.000 3.916185
B^2 1 0.19 5.77 0.19577 36.31 0.000 4.359308
C^2 1 0.44 986 0.44986 83.44 0.000 10.01726
D^2 1 0.34 797 0.34797 64.54 0.000 7.748422
A*B 1 0.06 597 0.06597 12.24 0.004 1.468987
A*C 1 0.19 890 0.18890 20.20 0.001 2.424931
A*D 1 0.00 422 0.00422 0.78 0.393 0.093969
B*C 1 0.00 563 0.000563 1.04 0.327 0.125366
D*B 1 0.00 560 0.00360 0.67 0.430 0.080163
C*D 1 0.00 599 0.00599 1.11 0.313 0.133382
ACE methodology is considered as input squares of 0.0300 B*D + 0.1284 A*B + 0.0825 A*C + 0.0325 A*D + 0.0188 B*C + 0.0025 B*D - 0.0193 C*D

Fig. 6. Surface plot of CS 317L vs. A and B
CS for 317L = 3629 - 48.41 A - 32.40 B - 13.17 C - 9.72 D + 0.1816 A*A + 0.1916 B*B + 0.07261 C*C + 0.2554 D*D + 0.1284 A*B + 0.0825 A*C + 0.0325 A*D + 0.0188 B*C + 0.0025 B*D - 0.0193 C*D

Table-X: Outcomes of ANOVA for Ra 317L

Source	DF	SS	MS	F-Value	P-Value	% Contribution
Model	14	0.6602	0.04715	8.98	0.00	91.2873
A	1	0.0587	0.05870	11.1	0.00	13.17268
B	1	0.0013	0.00138	0.26	0.61	32.40694
C	1	0.1371	0.13717	26.1	0.00	9.72058
D	1	0.0048	0.00484	0.92	0.35	6.37024
A²	1	0.0777	0.07774	14.8	0.00	10.74943
B²	1	0.1544	0.15443	29.4	0.00	23.85407
C²	1	0.0338	0.03381	6.44	0.02	6.18024
D²	1	0.0289	0.02899	5.52	0.03	7.20398
A*B	1	0.0142	0.01429	2.72	0.12	1.97619
A*C	1	0.0462	0.04622	8.80	0.01	6.391554
A*D	1	0.0081	0.00810	1.54	0.23	1.19991
B*C	1	0.0005	0.00055	0.11	0.75	0.00057
D*B	1	0.0000	0.00002	0.00	0.94	0.0003457
C*D	1	0.0012	0.00126	0.24	0.63	0.174221
Error	12	0.0630	0.0525	8.71	0.28	100
Total	26					100

Ra for 317L = -693 + 23.03 A - 22.19 B - 7.18 C - 6.27 D - 0.1207 A*A + 0.1702 B*B+ 0.01991 C*C + 0.0737 D*D + 0.0598 A*B + 0.0537 A*C + 0.0450 A*D+ 0.0059 B*C - 0.0025 B*D - 0.0089 C*D

VI. CONCLUSIONS

Response surface methodology (RSM) process has been used in the present work to optimize the WEDM performance measures [material removal rate-MRR, cutting speed-CS and surface roughness-Ra]. Pulse on time(P_on), Pulse off time(P_off), Voltage(V) and Wire tension(WT) have been considered as input limitations. The reaction of procedure limitations have been identified by registering ANOVA analysis for MRR, CS and Ra.

For MRR, it is seen from ANOVA outcomes that,
1. For 316L, P_on, P_off, V, squares of P_on, P_off WT, interaction of P_on & V, P_off & V, P_off & WT, V & WT are more influencing than other model terms.
2. For 317L, squares of P_on, P_off, interaction of V & WT are more influencing than other model terms.

For CS it was develop from ANOVA outcomes that,
1. For 316L, squares of P_off are more influencing than other model terms.
2. For 317L, squares of P_off interaction of V & WT are more influencing than other model terms.

For Ra it was develop from ANOVA outcomes that,
1. For 316L, V, interaction of P_off & V, V & WT are more influencing than other model terms.
2. For 317L, V & squares of P_off are more influencing than other model terms.

REFERENCES
1. F. Klocke, L. Hensgen, A. Klink, Ehle and Schwedt, “Structure and composition of the white layer In the Wire-EDM process,” Procedia CIRP, vol. 42, 2016, pp. 673 – 678.
2. S. Tilekar, S. S. Das and P. K. Patowari, “Process Parameter Optimization of Wire Edm On Aluminum And Mild Steel By Using Taguchi Method,” Procedia Mater Sci, vol. 5, 2014, pp. 2577 – 2584.
Optimization of Machining Parameters for AISI 316L And 317L Austenitic Stainless Steels using Eco-Cut Wire-EDM Technique

3. M. Durairaj, D. Sudharsun and N. Swamy Nathan, “Analysis of Process Limitations in Wire EDM with Stainless Steel using Single Objective Taguchi Method and Multi Objective Grey Relational Grade,” *Procedia Engg*, vol. 64, 2013, pp. 868 – 877.

4. W. G. Bae, Kim, K. Y. Song, Jeong, Chong and Chu, “Engineering Stainless Steel Surface via Wire Electrical Discharge Machining for Controlling the Wet ability,” *Surface and Coatings Technol*, vol. 275, 2015, pp. 316–323.

5. Y. Kaya and N. Kahraman, “An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel,” *Mater and Des*, vol. 52, 2013, pp. 367–372.

6. P. Raju, M. M. M. Sarcar and B. Satyanarayana, “Optimization of wire electric discharge machining limitations for surface roughness on 316l stainless steel using factorial experiment,” *Procedia Mater Sci*, vol. 5, 2014, pp. 1670-1676.

7. S. Sarkar, M. Sekh, S. Mitra, B. Bhattacharyya, “Modeling and optimization of wire electrical discharge machining of TiAl in trim cutting operation,” *J of Mater Process Technol*, vol. 205, 2008, pp. 376–387.

8. C. Bhaskar Reddy, V. Diwakar Reddy and C. Eswara Reddy, “Experimental Investigations on Mrr And Surface Roughness of En 19 & Ss 420 Steels In Wicedum Using Taguchi,” *Int J Engg Sci Technol*, vol. 4, 2012, pp. 4603-4614.

9. Ching An Huang, Chwen Lin Shih, Kung Cheng Li and Yau-Zen Chang, “The surface alloying behavior of martensitic stainless steel cut with wire electrical discharge machine,” *App Surface Sci*, vol. 252, 2006, pp. 2915–2926.

10. C. A. Huang, F.Y. Hsu and S. J. Yao, “Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM),” *Mater Sci Engg*, vol. 371, 2004, pp. 119–126.

AUTHORS PROFILE

M.V.N. Srujan Manohar, is currently pursuing Ph.D. Full Time in the Department of Mechanical Engineering, Pondicherry Engineering College, Puducherry, India. He has five years of teaching experience. Research Interests: Materials Technology Email id: srujansujith8990@gmail.com

Dr. Y. Seetha Rama Rao, is currently working as a Associate Professor in the Department of Mechanical Engineering, GVPCOE(A), Visakhapatnam, India. He has completed his Ph.D. from JNTU University, Kakinada, Andhra Pradesh. He has more than 15 years of teaching experience. Research Interests: Machine Dynamics Email id: yseetharamarao24@gvpce.ac.in

Ch. Sreeram, has completed his Post graduation degree in the field of CAD/CAM from the Department of Mechanical Engineering, GVPCOE(A), Visakhapatnam, India. Research Interests: Production Engineering Email id: powermanu555@gmail.com