Analytic Continuation of Quantum Monte Carlo Data by Stochastic Analytical Inference

Sebastian Fuchs
Institut für Theoretische Physik, Georg-August-Universität Göttingen,
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Mark Jarrell
Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Dated: December 28, 2009)

We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad-hoc assumptions introduced in similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum entropy calculation.

PACS numbers: Insert valid PACS here!

I. INTRODUCTION

Quantum Monte Carlo simulations are a powerful computational tool to calculate properties of interacting quantum manyparticle systems, such as spin models or strongly correlated electron systems. Of particular interest in those systems are dynamical correlation functions like single-particle spectra or susceptibilities respectively dynamical structure factors. However, QMC presently provides data only on the imaginary time axis, and the necessary analytic continuation of these data has proven to be difficult.

The standard tool to solve this problem is the Maximum Entropy Method (MEM) [1]. It uses arguments of Bayesian logic [2, 3] to obtain the most probable energy spectrum. In order to solve this optimization problem efficiently, the maximum entropy method approximates all occurring probability distributions to be of a Gaussian shape.

In the past efforts were made to provide an alternative to this approach [4, 5, 6]. It was proposed to perform a Monte Carlo average over a wide range of spectra instead of selecting a single spectrum. So far, the method lacked a rigorous rule to eliminate a regularization parameter inherent in the algorithm. Although this approach has been interpreted in terms of Bayesian inference [6], none of the authors have utilized Bayesian logic to eliminate the regularization parameter.

We show that this stochastic approach can also be understood in terms of Bayesian statistical inference. We derive a strict criterion to eliminate the free parameter, that is completely based on Bayesian logic. It uses Monte Carlo techniques to both calculate the average spectrum and to eliminate the regularization parameter. It treats all probabilities exactly and hereby avoids the approximations made in the maximum entropy method. We apply the algorithm to imaginary-frequency quantum Monte Carlo data and compare the resulting spectra with results from maximum entropy calculations.

II. THE PROBLEM OF ANALYTIC CONTINUATION

For a finite temperature T quantum Monte Carlo simulations can provide accurate estimates \bar{G}_n for either imaginary-time correlation function $G(\tau)$ at a finite set of N imaginary-time points τ_n or, alternatively, for imaginary-frequency correlation functions $G(\omega_n)$ at a finite set of N Matsubara frequencies ω_n. The frequencies are defined as $\omega_n = (2n+1)\pi/\beta$ for fermions and as $\omega_n = 2n\pi/\beta$ for bosons with $\beta = 1/k_B T$.

Because of the stochastical nature of Monte Carlo algorithms each of the \bar{G}_n possesses a known statistical error. Moreover, the data for the different time or frequency points are usually highly correlated. Therefore the input to the analytic continuation procedure consists of the Monte Carlo estimates \bar{G}_i and their covariance matrix

$$C_{nm} = \bar{G}_n\bar{G}_m - \bar{G}_n\bar{G}_m$$

In principle the spectral function $A(\omega) = -\frac{1}{\pi} \text{Im} G(\omega + i0^+)$ can be extracted from these data by inverting

$$\bar{G}_n = \int d\omega K_n(\omega) A(\omega)$$

with

$$K_n(\omega) = K(\tau_n, \omega) := \frac{e^{-\omega\tau}}{1 \pm e^{-\omega\beta}}$$
for time dependent data or
\[
K_n(\omega) = K(i\omega_n, \omega) := \pm \frac{1}{i\omega_n - \nu}
\] (4)
for frequency dependent data, where the upper sign holds for fermions and the lower one for bosons. The spectral function is normalized to
\[
N = \int d\omega A(\omega)
\] (5)
and is nonnegative for all \(\omega\). However, a direct inversion of Eq. 2 is an ill-posed problem and numerically impossible.

A least-square fit of \(A(\omega)\) to the data \(\bar{G}_n\) minimizes the \(\chi^2\)-estimate
\[
\chi^2[A] = \frac{1}{N} \sum_{n,m} \left(\bar{G}_n - G(\tau_n)\right)^* \sqrt{C_{nm}} (\bar{G}_m - G(\tau_m))
\] (6)
with respect to \(A(\omega)\). This approach leads to a multitude of different solutions and consequently cannot solve the problem either.

A. The Maximum Entropy Method

The maximum entropy method can be understood as an attempt to regularize the least-square fit described above. One defines the entropy
\[
S[A] = -\int d\omega A(\omega) \ln \frac{A(\omega)}{D(\omega)}
\] (7)
relative to a default model \(D(\omega)\). Any information, that is known about the spectrum beforehand, can be encoded in the default model. If \(D(\omega)\) is nonnegative and possesses the same norm \(N\) as the spectrum \(A(\omega)\), the entropy \(S\) will be nonpositiv and maximal for \(D(\omega)\). Instead of just minimizing \(\chi^2\) the MEM minimizes the quantity
\[
Q[A] = \chi^2[A] - \alpha S[A]
\] (8)
introducing a regularization parameter \(\alpha\). This optimization problem can be numerically solved for fixed \(\alpha\) to find the minimizing spectrum \(A_\alpha(\omega)\). In the limit of \(\alpha \rightarrow \infty\) the spectrum minimizing \(Q\) is the default model \(D(\omega)\). For \(\alpha \rightarrow 0\) the least-square fit is regained. Thus the parameter \(\alpha\) interpolates between the fit result and the default model.

In order to find a criterion to eliminate the parameter different approaches exist. The simplest rule is to take the spectrum where \(\chi^2 \sim 1\). This choice ensures that the differences between model and data are of the order of the error bars thereby avoiding overfitting. In order to derive more sophisticated methods the MEM needs to be reinterpreted by means of Bayesian statistical inference [2] [3].

1. Bayesian Statistical Inference

The MEM can be reformulated by defining subjective probabilities for the quantities involved in the analytic continuation problem. Let \(P[A]\) denote the prior probability of the spectrum \(A(\omega)\). \(P[A|G]\) denotes the posterior probability of \(A\) given the input data \(G\) and \(P[G|A]\) the likelihood function. Bayes’ Theorem [7] relates these probabilities to each other:
\[
P[A|G] = P[G|A] P[A] / P[G].
\] (9)
The probability \(P[G]\) is called the evidence and serves as normalization for the posterior probability \(P[A|G]\):
\[
P[G] = \int DAP[G|A] P[A].
\] (10)
One identifies
\[
P[\bar{G}|A] = \frac{1}{Z_1} \exp(-\chi^2[A])
\] (11)
and
\[
P[A] = \frac{1}{Z_2} \exp(\alpha S[A]).
\] (12)
The quantities
\[
Z_1 = \int DG e^{-\chi^2[A]}
\] (13)
and
\[
Z_2 = \int DA e^{\alpha S[A]}
\] (14)
normalize the respective probabilities. This way the posterior probability can be rewritten as
\[
P[A|\bar{G}] = \frac{e^{-Q[A]}}{Z_1Z_2 P[\bar{G}]}.
\] (15)
with
\[
P[\bar{G}] = \int DAE^{-Q[A]} \frac{Z_1Z_2}{Z_1Z_2} P[G].
\] (16)
Thus the minimization of \(Q\) can be reinterpreted as the maximization of the posterior probability \(P[A|\bar{G}] \sim e^{-Q}\). The MEM therefore determines the most probable spectrum \(A_\alpha\) given the input data \(G\).

2. Bayesian Inference and the Regularization Parameter \(\alpha\)

This alternative formulation of the problem provides the necessary tools to eliminate the free parameter \(\alpha\) [8] [9]. Eq. 9 can be rewritten including \(\alpha\):
\[
P[A, \alpha|\bar{G}] = P[\bar{G}|A, \alpha] P[A, \alpha] / P[\bar{G}].
\] (17)
If one applies Bayes’s theorem to factorize $P[A, \alpha]$ and integrates over A, the relation
\[P[\alpha|\bar{G}] = \frac{P[\alpha]}{Z_1Z_2} \int DA \frac{P[A|\bar{G}]P[A|\alpha]}{P[\bar{G}]} \]
(18)
for the posterior probability $P[\alpha|\bar{G}]$ can be found. Analogous to the argument given above, one identifies $P[\bar{G}|A, \alpha] \sim \exp(-\chi^2[A])$ and $P[A|\alpha] \sim \exp(\alpha S[A])$. The evidence
\[P[\bar{G}] = \int d\alpha \frac{P[\alpha]}{Z_1Z_2} \int DA e^{-Q[A]} \]
(19)
is an α-independent normalization constant. All quantities in this equation are known except $P[\alpha]$, the prior probability of α. It is either taken to be constant or to be the Jeffreys prior $\frac{1}{\alpha}[9][10][11]$. However, the choice of $P[\alpha]$ turns out to be of little influence on the resulting spectra.

By assuming all probabilities involved to be of a Gaussian form the numerical treatment of the equations [15] and [18] is possible. There are two alternatives:

1. One calculates α^* as the α that maximizes $P[\alpha|\bar{G}]$ and takes \hat{A}_α, as the final result for the spectral function [8][9].
2. One averages over all \hat{A}_α weighted by the posterior probability of α, i.e. the average spectrum
\[\langle A \rangle = \int d\alpha P[\alpha|\bar{G}]\hat{A}_\alpha \]
(20)
is taken as the final result [11].

It is not a priori clear, which of the two algorithms is favorable.

B. Stochastic Analytical Inference

Stochastic Analytical Inference is an alternative to the standard MEM which does not employ the explicit regularization of the fit by the entropy Eq. (7). Rather than maximizing $P[A|\bar{G}]$ an average over all possible spectra weighted by
\[w \sim \exp(-\chi^2/\alpha) \]
(21)
is performed. Beach refined this approach, by introducing the default model $D(\omega)$ of the MEM into the algorithm [5]. By mapping ω unto $x \in [0, 1]$ using
\[x = \phi(\omega) = \frac{1}{N} \int_{-\infty}^{\omega} d\omega' D(\omega') \]
(22)
a dimensionless field $n(x)$ can be defined:
\[n(x) = \frac{A(\phi^{-1}(x))}{D(\phi^{-1}(x))} \]
(23)
The field $n(x)$ is normalized to 1:
\[1 = \int_0^1 dx n(x) \]
(24)
By calculating the average field
\[\langle n(x) \rangle_{\alpha} = \frac{1}{Z} \int D'n(x) n(x) e^{-\chi^2[n(x)]/\alpha} \]
(25)
with
\[Z = \int D'n(x) e^{-\chi^2[n(x)]/\alpha} \]
(26)
The measure
\[D'n(x) = Dn(x) \Theta[n] \delta \left(\int_0^1 dx n(x) - 1 \right) \]
(27)
restricts the integration to fields $n(x)$ that satisfy the norm rule Eq. (24) and the positivity requirement. In Eq. (27)
\[\Theta[n] = \begin{cases} 1, & \text{if } \forall x : n(x) \geq 0 \\ 0, & \text{otherwise} \end{cases} \]
The average spectrum $\langle A \rangle_{\alpha}$ can be regained via
\[\langle A(\omega) \rangle_{\alpha} = D(\omega) \langle n(\phi(\omega)) \rangle_{\beta} \]
(28)
If χ^2 is interpreted as a Hamiltonian of a fictitious physical system, Eq. (25) possesses the structure of an canonical ensemble average at a temperature α. The laws of statistical mechanics then state, that the average spectral function $\langle A \rangle_{\alpha}$ minimizes the free energy
\[F = \langle \chi^2 \rangle_{\alpha} - \alpha S \]
(29)
This expression displays a similar structure as Eq. (8). Thus the averaging process implicitly generates an entropy S. However, this entropy does not have the explicit form of Eq. (7). In the limit $\alpha \to 0$ the averaging process minimizes χ^2. Whereas in the limit $\alpha \to \infty$ the average in Eq. (25) is completely unaffected by χ^2 and will $−$ constrained by Eq. (24) result in $\langle n(x) \rangle = 1$. In this case the resulting spectrum is the default model. The algorithm therefore exhibits the same limiting cases as the MEM. Additionally, Beach has shown that a mean field treatment of the fictitious physical system described by χ^2 is formally equivalent to the MEM [5].

The remaining open question, namely how to eliminate the parameter α, was addressed by all preceding authors differently.
1. Sandvik proposes to examine the plot of the average entropy against α and identifies the final α by a sharp drop in the entropy curve [4].

2. Beach examines a double-logarithmic plot of the average χ^2 and identifies the final α by a kink in the χ^2-curve [5].

3. Sylju˚ asen argues to take $\alpha = 2N_B/N$, where N_B is the number of Monte Carlo bins and N the number of input data points, as before [6].

All criteria are merely based on heuristic arguments. The simple rule to take $\chi^2 \sim 1$ is also applicable to this method and should be mentioned here.

1. Bayesian Statistical Inference

In the following we will use Bayesian inference to derive a new criterion to eliminate the regularization parameter α. In contrast to the MEM the Stochastic Analytic Continuation does not maximize the posterior probability $P[A|\bar{G}]$. Instead, it averages all possible fields n (omitting the argument x in the progress) weighted by $P[n|\bar{G}]$:

$$\langle n \rangle = \int Dn \, n \, P[n|\bar{G}] \ .$$

Bayes’s theorem can be applied to factorize $P[n|\bar{G}]$ analogous to Eq. (9):

$$P[n|\bar{G}] = P[\bar{G}|n] \, P[n] / P[\bar{G}] \ .$$

The Stochastic Analytic Continuation does not introduce an explicit entropy term. Following Ref. [6] only the positivity requirement and the norm rule Eq. (24) enter the prior probability

$$P[n] = \Theta (n(x)) \, \delta \left(\int_0^1 dx \, n(x) - 1 \right) \ .$$

The likelihood function is identified as

$$P[\bar{G}|n] = \frac{1}{Z'} e^{-\chi^2/\alpha} \ .$$

By evaluating a Gaussian integral the normalization Z' can be readily calculated to be

$$Z' = \int D\bar{G} \, e^{-\chi^2/\alpha} = (2\pi\alpha)^{N/2} \sqrt{\det C} \ .$$

Using

$$P[\bar{G}] = \int D'n \, e^{-\chi^2[n]/\alpha} / Z' = \frac{Z}{Z'}$$

the posterior probability results in

$$P[n|\bar{G}] = \Theta (n(x)) \, \delta \left(\int_0^1 dx \, n(x) - 1 \right) \frac{1}{Z} e^{-\chi^2[n]/\alpha} ,$$

as expected from the comparison of the equations (25) and (30).

2. Bayesian Inference and the Regularization Parameter α

Bayesian logic can also be utilized to calculate the posterior probability $P[\alpha|\bar{G}]$. Substituting n for A in Eq. (18) and identifying $P[n|\alpha] = P[n]$ with $P[n]$ from Eq. (32) and correspondingly $P[\bar{G}|n,\alpha] = P[\bar{G}|n]$ with $P[\bar{G}|n]$ from Eq. (33), one obtains

$$P[\alpha|\bar{G}] = P[\alpha] \int Dn \, P[\bar{G}|n,\alpha] \, P[n|\alpha] / P[\bar{G}] \ .$$

The evidence

$$P[\bar{G}] = \int d\alpha \, P[\alpha] e^{-\chi^2/\alpha} / Z'(\alpha)$$

is again an α-independent normalization constant. The combination of the equations (34) and (37) gives the final expression for the α-dependence of the posterior probability:

$$P[\alpha|\bar{G}] \sim P[\alpha] \alpha^{-N/2} \int Dn \, e^{-\chi^2[n]/\alpha} \ .$$

Analogous to the MEM one has two possibilities to treat the regularization parameter:

1. One calculates α^* as the α that maximizes $P[\alpha|\bar{G}]$ and takes $\langle n \rangle_{\alpha^*}$ as the final result.

2. One averages over all $\langle n \rangle_{\alpha}$ weighted by the posterior probability of α, i.e. the average field

$$\langle \langle n \rangle \rangle = \int d\alpha P[\alpha|\bar{G}] \langle n \rangle_{\alpha}$$

is taken as the final result.

III. MONTE CARLO EVALUATION

A. Configuration and Update Scheme

In order to calculate the quantities appearing in equations (25) and (39) a numerically treatable approximation for the field configuration $n(x)$ and the integration measure Dn has to be found. Our implementation closely follows Ref. [5]. The field configuration is represented by a
superposition of delta function walkers with residues r_n and coordinates x_n:

$$n(x) = \sum_n r_n \delta(x - x_n). \quad (41)$$

The Monte Carlo updates consist of randomly proposed shifts of the coordinates x_n and random redistributions of the residues r_n. Redistributions that are not only norm conserving but also conserve higher moments of the configuration [5], have proven to be effective as well.

The average Eq. (25) is evaluated by a standard Monte Carlo simulation using Metropolis weights. The regularization parameter α is treated as the temperature of the system. The simulation is performed for a wide range of different α-values. A parallel tempering [12, 13, 14] algorithm is necessary to ensure convergence for small α. In order to measure the average field configuration a histogram of the delta function walkers is recorded. Two by two clusters embedded in a mean field using the Dynamical Cluster Approximation [17, 18, 19]. Using a weak-coupling expansion in continuous imaginary time [20, 21] the single-particle Green function

$$G(i\omega_n) = -\int_0^\beta d\tau e^{i\omega_n\tau} \langle T c_i(\tau)c_i^\dagger \rangle \quad (45)$$

was calculated for a certain number of Matsubara frequencies $\omega_n = (2n + 1)\pi/\beta$. Here T is the imaginary-time ordering operator, $\langle \cdot \rangle$ denotes a thermal expectation value and $c_i(\tau) = e^{-H\tau}c_i e^{H\tau}$. The model was simulated for $U = W$, where $W = 8t$ denotes the bandwidth, and a fixed filling $\langle n_i \rangle = 0.9$ for several temperatures T. Within the weak coupling expansion it is possible to calculate the Green function directly in frequency space [21], so that no Fourier transformation or discretization of the imaginary time axis is necessary. In all simulations the number of measured matsubara frequencies was restricted to $n_{\text{max}} = 2U/\beta$, which has proven to be sufficient for all calculation. A further increase of the number of frequencies had no influence on the analytic continuation results.

IV. SIMULATION RESULTS

A. The model

We apply the algorithm to imaginary-time data from quantum Monte Carlo simulations. As test case we consider the two-dimensional single-band Hubbard model

$$H = -t \sum_{\langle i,j \rangle} c_i^\dagger c_j + U \sum_i n_i \Delta n_i \quad . \quad (44)$$

Here i and j are lattice site indices, the operators c_i^\dagger (c_i) create (destroy) an electron with spin $\sigma \in \{\uparrow, \downarrow\}$ at site i, $n_i = c_i^\dagger c_i$ is their corresponding number density, t is the hopping parameter between neighbouring sites (denoted by $\langle i,j \rangle$) and U implements the local Coulomb repulsion. The full lattice model was approximated by a two by two cluster embedded in a mean field. The model was simulated using the parallel tempering Monte Carlo simulation ($\beta = 14W^{-1}$). A Gaussian default model

$$D(\omega) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\omega^2/2\sigma} \quad (46)$$

with $\sigma = 1$ was used. The shape of the default model is clearly visible for large α. One can see how several different peaks and other structures appear for decreasing α. Since the α-dependence is so strong one definitely needs a criterion to eliminate the regularization parameter.
The density of states calculated by the Wang-Landau simulation and the probability distribution $P[\alpha|G]$ following Eq. \((39)\) is shown in Fig. 2. $P[\alpha|G]$ is plotted for the two most common choices for $P[\alpha]$, i.e. $P[\alpha] = \text{const.}$ and $P[\alpha] = 1/\alpha$. The density of states varies over at least 15 orders of magnitude (note the logarithmic scales). The probability distributions $P[\alpha|G]$ exhibit a well defined peak at $\alpha \sim 0.03$. Note that the two different choices for $P[\alpha]$ have only weak influence on the position of the peak. The two different probability distributions are used to calculate the final single particle spectrum. Following the discussion in section 4.B.2 Fig. 2 shows the average of all spectra of Fig 1 weighted by $P[\alpha|G]$ and the spectrum whose α maximizes $P[\alpha|G]$. The resulting spectra are nearly indistinguishable and show that neither the ambiguity in the treatment of the probability distribution nor the choice of $P[\alpha]$ have a significant influence on the resulting spectrum.

Let us compare our results from the stochastic analytical inference with those obtained with other methods to fix α. Fig. 3 shows that the point where $\chi^2 \sim 1$ corresponds to $\alpha \sim 0.1$ and that the χ^2-estimate exhibits a kink in the same α-region. The chosen $\alpha = 0.1$ is larger than $\hat{\alpha} \sim 0.03$. That indicates that the spectra determined with this criterion are stronger regularized than the spectra calculated by the probability distributions in Fig. 2. However, at least for the QMC data under consideration, the difference between the two spectra are only small. The spectrum for $\alpha = 2N\chi^2$ is also shown in Fig 3. For the present data set this corresponds to $\alpha \sim 140$ which is far more regularized than the spectra determined by all other methods. The entropy (Fig. 3.c) shows no significant features and gives no indication how to choose the α-parameter. A sharp drop in the entropy curve is not visible in the simulated area.

Finally, we compare the SAI with the standard MEM approach. Fig. 4 shows results of a Maximum Entropy calculation using Bryan’s algorithm [11] for the same QMC data as in the previous section. The qualitative behaviour is similar to the SAI simulation: The probability distribution $P[\alpha|G]$ shows a noticeable dependence on the prior probability $P[\alpha]$. However, the resulting spectra depend neither on $P[\alpha]$ nor on whether one averages over $P[\alpha|G]$ or whether one takes the maximum. The $\chi^2 \sim 1$ rule determines an α which is again larger than the one calculated by Bayesian inference. Accordingly the spectrum calculated by this criterion is more regularized, although here the difference is relatively small. Interestingly, in MEM the interesting values for α are about one or two orders of magnitude larger compared to those appearing in the SAI simulations. There seems to be no direct correspondence between the α-values of the two methods.

An extended comparison of SAI spectra with results
of maximum entropy calculations for several temperatures is collected in Fig. 5. All calculations are based on the Gaussian default model Eq (46). As already noted before, MEM tends to stronger regularize the spectra and consequently do the SAI spectra exhibit noticeably sharper features for all temperatures shown. Especially the pseudo-gap, that opens at beta = 34 W^{-1}, is captured nicely by SAI while the MEM cannot resolve it yet at that temperature.

One last, but nevertheless important, question concerns the dependence of the spectra on the default model. To this end we show in Fig. 6 again SAI and the MEM results for the spectrum at beta = 34 W^{-1}, this time however based on a different default model, namely a rectangular default model of width 3.6. The resulting spectra are very similar to the one obtained for the Gaussian default model presented in Fig. 5. Thus, even at low temperatures the resulting spectra are quite independent of the default model. More precisely, we could not detect a significant default model dependence at any temperature.

V. CONCLUSION

We have demonstrated that the stochastic analytic continuation method introduced by Sandvik and Beach can be interpreted in terms of Bayesian probability theory. We developed an algorithm that uses Monte Carlo techniques to both calculate the average spectrum and to eliminate the regularization parameter. It treats all probabilities exactly and hereby avoids the approximations made in the maximum entropy method.

Comparisons to different approaches to fix the regularization parameter alpha and standard MEM show that the SAI results in robust spectral functions which are less regularized and consequently show more pronounced features, in particular with decreasing temperature in the model calculations. As known from standard MEM, no significant dependence on the default model could be observed.

On apparent drawback of the method is the necessity to perform simulations for a broad range of values for alpha. Although this can be performed with parallel tempering techniques, the required computer resources are orders
FIG. 5: Spectra simulated by Stochastic Analytic Inference compared to Maximum Entropy Calculations. All calculations are based on a Gaussian default model.

FIG. 6: A Stochastic Analytic Inference result for $\beta = 34 W^{-1}$ based on a flat default model. The spectrum is very similar to the one shown in Fig. 2c. We conclude, that for the QMC data under consideration the calculated spectra are quite independent of the default model.

of magnitude larger than for standard MEM approaches. As the resulting spectra tend to be less regularized one has to ponder the gain in details in the structures against the dramatic increase in computer time.

ACKNOWLEDGEMENTS

Our implementation of all Monte Carlo algorithms is based on the libraries of the ALPS project [22]. ALPS (Applications and Libraries for Physics Simulations) is an open source effort providing libraries and simulation codes for strongly correlated quantum mechanical systems.

We acknowledge financial support by the Deutsche Forschungsgemeinschaft through SFB 602 and by the German Academic Exchange Service (DAAD).

[1] M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133 (1996).
[2] E. T. Jaynes, in Maximum-Entropy and Bayesian Meth-
ods in Applied Statistics, edited by J. H. Justice (Cambridge University Press, Cambridge, 1986), p. 1.

[3] S. F. Gull, in Maximum-Entropy and Bayesian Methods in Science and Engineering, edited by G. J. Erickson and C. R. Smith (Kluwer Academic Press, Dordrecht, 1988), vol. 1, p. 53.

[4] A. W. Sandvik, Phys. Rev. B 57, 10287 (1998).

[5] K. Beach (2004), cond-mat/0403055.

[6] O. F. Sylju˚ asen, Phys. Rev. B 78, 174429 (2008).

[7] A. Papoulis, Probability and Statistics (Prentice Hall, New York, 1990), p. 422.

[8] J. Skilling, in Maximum Entropy and Bayesian Methods, edited by J. Skilling (Kluwer Academic Press, Dordrecht, 1989), p. 45.

[9] J. Skilling, in Maximum Entropy and Bayesian Methods, edited by J. Skilling (Kluwer Academic Press, Dordrecht, 1989), p. 53.

[10] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. Rev. B 44, 6011 (1991).

[11] R. K. Bryan, Eur. Biophys. J. 18, 165 (1990).

[12] R. H. Swendsen and J. Wang, Phys. Rev. Lett. 57, 2607 (1986).

[13] A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-Vel’yaminov, J. Chem. Phys. 96, 1776 (1992).

[14] E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

[15] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

[16] F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).

[17] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and H. R. Krishnamurthy, Phys. Rev. B 58, R7475 (1998).

[18] M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy, Phys. Rev. B 61, 12739 (2000).

[19] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod. Phys. 77, 1027 (2005).

[20] A. N. Rubtsov and A. I. Lichtenstein, JETP Lett. 80, 61 (2004).

[21] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B 72, 035122 (2005).

[22] A. F. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürler, A. Honecker, et al., Journal of Magnetism and Magnetic Materials 310, 1187 (2007), http://alps.comp-phys.org.