6-Gingerol and Shogaol; A Comprehensive Strategy Against Various Maladies

Muhammad Hanif Mughal*
Homeopathic Clinic, Pakistan

Abstract
Ginger is the oldest medical herb due to its therapeutic and prophylactic activities. These properties are associated with the presence of the gingerol and shogaol. The literature pertaining to current review article has been mainly emphasized on the therapeutic potential of ginger along with active bio-ingredients against cancer insurgence, diabetic & oxidative stress complications, obesity and cardiovascular discrepancies. It prevents from cancer insurgence through restraining the cancer stages such as initial, promotion and progression. Particularly, it also suppresses the lipid per-oxidation, nitric oxide synthetase activity, epidermal growth factor (EGF) receptor, protein kinase c, enzyme activity, survival signaling (NIK, IKK, and AKT), NF-κB activity, and cell cycle regulation. The current review article discusses the role of gingerol bioactive component against different type of cancers and its allied health perspectives.

Keywords: Ginger; Gingerol; Anticancer; Antidiabetic; Cardiovascular Role

Introduction
Ginger (Zingiber officinale Roscoe) has been used as delicacy, medicine, and in variety of food from many years [1]. It is traditional oriental herbal medicine and promotes numerous health endorsing effects due to the presence of bioactive compounds. It is also used to enhance the flavor of the vegetables during cooking [2]. Ginger is a promising source of bioactive moieties i.e. gingerols, shogaols, parasols, and zingerone and used to curtail various diseases including cancer, oxidative stress, diabetes, obesity, overweight, microbial contamination and aging etc. [3]. Regarding photochemistry of oils of ginger, they include volatiles and non-volatiles as sesquiterpene, monoterpenoid and gingerols, shogaols, parasols, and zingerone, respectively. A group of researchers Schweiggert et al. [4] & Hu et al.[5] quantified the oleoresin and its major components have been recognized as [6]-, [8]-, and [10]-shogaols and [4]-, [6]-, [8]-, [10]-, and [12]-gingerols by high performance liquid chromatography mass spectrometry [4,5]. Baliga et al. [6] also reported the biological and pharmacological activities of ginger bioactive compounds such as gingerols and shogaols have varying alkyl side chain lengths [6]. During thermal treatment, gingerols are labile due to the presence of b-hydroxy keto moiety and further dehydrated to shogaols. Both compounds have an unbranched alkyl chain of six carbon atoms and similar in structure [7].

Antioxidant status
The ethanolic extracts of gingerol were more effective than aqueous extracts and showed higher free radical scavenging activities and chelating abilities. It also inhibited the production of superoxide in human promyelocytic leukemia (HL-60) cells due to the presence of hydroxyl group in its structure [8]. [6]-Gingerol also suppressed peroxynitrite-induced oxidative single-strand DNA breaks and protein nitrosylation. The antioxidant potential of gingerol is affected by multiple factors such as concentration, localization, and mobility [9]. The previous findings of Masuda et al. [10] reported that gingerol also suppressed the phospholipid peroxidation induced by the FeCl3-ascorbate system and also exhibited the inhibitory effect on xanthine oxidase system which are linked with the production of ROS. Likewise, gingerol (0.5-10µM) also inhibited the formation of thromboxane B2 and prostaglandin D3 and arachidonic acid induced platelet aggregation in dose dependent manner [11]. Similarly, Shobana & Naidu
Obesity is associated with high accumulation of fat in the body and an imbalance between energy intake and expenditure. It is also characterized by altered lipid metabolic processes, including lipogenesis and lipolysis. There are many anti-obesity drugs which have adverse effects on the body along with reducing body weight. Ginger is a prominent source of bioactive compounds including volatile oil and non-volatile pungent compounds i.e. gingerols, shogaols and zingerones [18]. Gingerol also significantly lowers the body weight due to its hypophagic property in the high-fat diet-induced adiposity. It also shows anti-obesity action via inhibiting intestinal absorption of dietary fat and prevents from the cardiovascular diseases [19].

Anti-cancer role

6-gingerol suppresses the transformation, hyper-proliferation, and inflammatory processes which are linked with the development of carcinogenesis, angiogenesis and metastasis. It is also inducing apoptosis in the prostate cancer cell line LnCaP via enhancing the expression of p53 and Bax and lowering the expression of Bcl-2. 6-Gingerol inhibited invasion and metastasis through multiple molecular mechanisms in hepatocellular carcinoma [20, 21]. Cyclin D1 is a protooncogene and associated with cell proliferation via activation β-catenin signaling. Nonsteroidal anti-inflammatory drugs (NSAID) are used to activate the gene1 (NAG1) that promote the proapoptotic and antitumorigenic properties. By performing anticancer activity, gingerol show apoptotic effect in cancer cells through stimulating and inducing apoptosis, up regulating Bax and G1 cell cycle arrest, and down regulating cyclin D1. Leukotrienes induce the forcefully inflammatory response to develop cancer [22]. 6-Gingerol directly binds with LTA4H and inhibits LTA4H enzyme activity in HCT116 and HT29 cells [23]. Similarly, Lee et al. [24] observed significant reduction in growth of HCT-116 cells treated with different concentrations of 6-gingerol (0, 50, 100, 150, and 200mM). The 150- and 200-mM concentrations of 6-gingerol lowered the cell growth rate by 22% and 28%, respectively in HT-29 cells, HCT-116, Caco-2 cells, and LoVo, respectively.

Gingerol supplementation suppressed colon carcinogenesis by reducing lipid peroxidation and significantly enhancing the enzymatic and non-enzymatic anti-oxidant levels [25]. 6-gingerol also suppressed the gastric lesions induced by HCl and ethanol in rats. In experimental animals, it also inhibits the proliferation of mouse skin carcinogenesis and exhibits inhibitory effect on tumor initiation and promotion owing to its presence of pungent vanillyl ketones [8]. The earlier investigations of Park et al. [26] explicated that 6-gingerol also suppressed the TPA skin tumor proliferated activity and inhibited the epidermal ornithine decarboxylase activity. A study conducted by Surh et al. [8], they investigated that 6-gingerol attenuated the skin papillomaogenesis induced by 7,12-dimethylbenz [a]anthracene (DMBA). It has multiple mechanisms for the prevention of cancer via inhibiting the tumor-promoter-stimulated inflammation, suppressing the activation of epidermal ornithine decarboxylase, and inhibiting TNF-alpha production [27]. In mouse skin tumorogenesis model, ethanolic extract of bioactive compound gingerol exhibited anti-tumor activity in animals by substantially lowering tumor body burdens as compared to control rats. The mouse skin was treated with gingerol extract and significantly inhibited the TPA that cause reduction in
hyperplasia (44%) and epidermal edema (56%) [27]. In another study done by Kim et al. [28], they determined that [6]-gingerol treatment suppressed the TPA-induced COX-2 expression along with inhibited NF-κB DNA binding activity [28]. Moreover, it also lowered the incidence and the multiplicity of tumors initiated by DMBA and promoted by TPA. It also suppressed H₂O₂ production, myeloperoxidase activity and inhibited the TPA-induced ear edema in the dorsal skin of mice [29]. Likewise, Murakami et al. [30] evaluated the anti-tumor role of gingerol in mouse skin via conventional 2-stage carcinogenesis model. It prevented from the tumor initiation and promotion through inducing apoptosis, metabolizing enzymes and attenuating pro-inflammatory signaling pathways. One study conducted by Shuida et al. [25], administration of gingerol (21M) for 24h markedly inhibited the average number of tumors by 80% and skin tumor incidence by 60%.

It shows inhibitory effect on tumor proliferation and promotion owing to its pungent vanillyl ketones [8, 25]. It also suppressed the TPA skin tumor promotion and epidermal ornithine decarboxylase activity in ICR mice [2]. Gingerol exerts anticancer mechanism against skin papilloma genesis in female ICR which is induced by 7,12-dimethylbenz[a]anthracene (DMBA) through inhibition of the tumor-promoter-stimulated inflammation, suppression of TNF-alpha production, and inhibition of activation of epidermal ornithine decarboxylase. Likewise, ethanolic extracts of gingerol inhibits the TPA mediated induction of ornithine decarboxylase and its mRNA expression in SENCAR mouse skin. It also lowers the tumor body burdens compared with non-ginger treated controls. Gingerol significantly inhibits the TPA caused epidermal edema (56%) and hyperplasia (44%). Similarly, in UBV-induced skin cancer, gingerol also protects from the production of ultra violet B (UVB)-induced ROS and COX-2 expression [27]. In mouse skin cancer cells, gingerol performs the cytotoxic effect by lowering the multiplicity of azoxymethane-induced intestinal carcinogenesis and reduces the incidence of DMBA-initiated papilloma formation. It also momentously suppressed the tumor promoter-induced inflammation [26]. Gingerol (10 µM) has cytotoxic effect on breast cancer cells through inhibiting metastasis by decreasing the activities and expressions of MMP-2 and MMP-9 [24].

In one study conducted by Rahman et al. [31] investigated the anti cancer role of gingerol extract against human breast carcinoma cell lines MCF-7 and highly invasive MDA-MB-231 cancer cells. They determined that ginger extract (25.7µg/ml) showed the higher anticancer activity on MCF-7 cancer cells and MDA-MB-231. Likewise, Hong et al. [32] reported that concentrations (75 and 100 µM) of 6-shogaol or pterostilbene have modulatory effects on aggressive breast cancer cells MDA-MB-231 cells. They lowered the migration of the MDA-MB-231 cells up to 22 and 41%, respectively. They also lowered the activities of MMP-2 and MMP-9 expressions. In PMA-treated HepG2 and PMA-un-treated Hep3B cells, gingerol has anti-invasive activity via regulating MMP-9 and TIMP-1, and 6-shogaol could further regulate uPA activity [20]. Yagihashi et al. [33] also determined the antiinvasive activity of 6-Gingerol by suppressing the ROS-potential in AH109A cells. It also neutralizes the formation of free radicals such as superoxide, peroxyl, peroxynitrite and further suppresses the formation of peroxy nitrite-mediated tyrosine nitration and production of nitric oxide [34]. It also reduces the generation of iNOS in LPS-stimulated J774.1 cell [35].

In BXPC-3 cells (mutant p53 protein) and HPAC cells (wild type p53), gingerol suppresses the cell growth, disrupts the cell cycle progression, and induces apoptosis. It also lowers the Cyclin A and Cdkks expressions i.e. Cdk2, Cdk4, & Cdk6 whilst cyclin A and Cdk 6 expressions were lowered in HPAC. The blocking of Cyclin-Cdk complexes formation significantly lowered the Cyclin or Cdk expressions that further reduced phospho-Rb level. On other side, in BXPC-3 cells, the levels of Cyclin D1 enhanced due to the drug-induced cell cycle arrestp53 and gene encoding a transcription factor. It also suppresses the cell proliferation in cells through cell cycle arrest and/or inducing apoptosis [36].

It induces apoptosis via up regulating NAG-1 and G1cell cycle arrest through down regulating cyclin D1. Gingerol significantly inhibits the growth of Helicobacter pylori Cag A+ strains that are responsible for gastric premalignant and malignant lesions. It also suppresses the pulmonary metastasis in mice bearing B16F10 melanoma cells by activating CD8+ T cells [37]. By performing anti-tumoral activity, it also causes the induction of ROS that triggers the activation of p53 and the cell cycle arrest and apoptosis [38].

Anti-diabetic Role

Type 2 diabetes are significantly increasing worldwide and associated with insulin resistance and pancreatic b-cell failure. During hyperglycemia, endogenous non enzymatic reactions produce the advanced glycation end products (AGEs) and enhance the concentration of pancreatic b-cell. Gingerol provides protection to pancreatic b-cells from free radicals-induced stress as well also has effect on blood sugar level, glucose intolerance and gene expression of hepatic enzymes. [6]-Gingerol stimulated the phosphorylation of AMPK to total AMPK, and p-AMPK/AMPK from 30 min after treatment and further lowered the production of free radicals of RIN-5F cells [39].

It also suppressed the production of IL-1β, TNF-α, and IL-12 from LPS-stimulated macrophages [40]. Gingerol also inhibits the MAPK and PI3K/Ak phosphorylation and NF-κB and STAT3 translocation [41]. Likewise, it also acts as anti-hyperglycemic by improving the insulin signaling pathway. It stimulated the glucose uptake that lowered the expressions of AMPK, acetyl-CoA carboxylase (ACC), and phosphorylation in L6 myotubes rats [42]. In diabetes, oxidative stress enhances the production of free radicals whereas gingerol stops the effects of ROS and lowers the lipid level in type 2 diabetes models (db/db mice). Gingerol enhanced the anti-oxidant enzyme activities and decreased hydrogen peroxide concentration in db/db mice. It also lowers the hepatic and renal MDA levels db/ db mice. In diabetic animals, gingerol has potential to enhance the insulin sensitivity and to decrease hyperlipidemia [43].

Cardio preventive Role

[6]-gingerol enhanced the viability of doxorubicin-injured cardiomyocytes. It also has more profound protective effects than

Signicances Bioeng Biosci
single agent drug. The drug lowered the SOD activity, enhanced ROS generation, increased MDA formation, triggered the intrinsic mitochondria-dependent apoptotic pathway, and induced release of LDH in cardiomyocytes. Gingerol exerts cardioprotective effect against doxorubicin-induced cardiotoxicity through activating the PI3K/Akt signaling pathway [44].

6-gingerol significantly ameliorated the doxorubicin-induced elevation in the cardiac enzymes. The stimulation of oxidative stress by doxorubicin was evidenced by the significant decrease in the serum soluble receptor for advanced glycation end product allowing unopposed serum advanced glycation end product availability. Moreover, doxorubicin activated nuclear factor kappa B (NF-κB) which was induced by an increase in its immunohistochemical staining in the nucleus. In addition, doxorubicin-induced cardiotoxicity was accompanied by elevation of cardiac caspase-3. Notably, pretreatment with 6-gingerol significantly ameliorated the changes in sRAGE, NF-κB and cardiac caspase-3. Cardiac enzymes showed significant positive correlation with NF-κB and caspase-3 but negative with serum sRAGE, suggesting their role in doxorubicin-induced cardiac injury [45]. The previous findings of Antipenko et al. [46] determined that the concentration of gingerol (50 micro) enhanced the Vmax (Ca) of Ca2+-uptake and Ca2+-ATPase activity as well also increased the Km (Ca) in phosphorylated vesicles.

Conclusion
Ginger is used traditionally in worldwide for its health endorsing properties such as reducing cardiovascular disease, cancer, diabetes, allergic response, aging and cancer. It exhibits the beneficial effects due to the presence of gingerol and shogaol. They target multiple pathways, inclusive of the cell cycle, apoptotic cell death and angiogenic pathway, which confer their anti-carcinogenic activities. These polyphenols prevent from the gastric cancer, lung cancer, bone cancer, pulmonary cancer, uterine cancer, esophageal cancer, colon cancer, liver cancer and breast cancer. The current review article summarized that gingerol consumption was associated with a statistically significant 9% decreased risk of gastric cancer and reduced the risk against colorectal and gastric cancers. The active form of gingerol can be stabilized into biocompatible materials such as alginate beads and layered double hydroxides. This review encompasses the multiple health effects of gingerol with references to health perspectives.

References
1. Poltronieri J, Becceneri AB, Fuzer AM, Filho JCC, et al. (2014) 6-gingerol as a cancer chemopreventive agent: a review of its activity on different steps of the metastatic process. Mini-Rev Med Chem 14(4): 313-321.
2. Park EJ, Pizzuto JM (2002) Botanicals in cancer chemoprevention. Cancer Metast Rev 21(3-4): 231-255.
3. Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 15(6): 4324-4333.
4. Schwiegert U, Hofmann S, Reichel M, Schieber A, Carle R (2008) Enzyme-assisted liquefaction of ginger rhizomes (zingiber officinale roscoe) for the production of spray-dried and paste-like ginger condiments. J Food Eng 84(1): 28-38.
5. Hu J, Guo Z, Glasius M, Kristensen K, et al. (2011) Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: an efficient and sustainable approach. J Chromatogr A 1218(34): 5765-5773.
6. Baliga MS, Haniadka R, Pereira MM, D’Souza J et al. (2011) Update on the chemo preventive effects of ginger and its phytochemicals. Crit Rev Food Sci Nutr 51(6): 499-523.
7. Jalad SD, Lantz RC, Chen GJ, Bates RB, Timmermann BN (2005) Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry 66(13): 1614-1635.
8. Sury VJ, Park KK, Chun KS, Lee LJ, et al. (1999) Anti-tumor-promoting activities of selected pungent phenolic substances present in ginger. J Environ Pathol Toxicol Oncol 18(2): 131-139.
9. Niki E, Noguchi N (2004) Dynamics of antioxidant action of vitamin E. Accounts Chem Res 37(1): 45-51.
10. Masuda Y, Kikuzaki H, Hisamoto M, Nakatani N (2004) Antioxidant properties of gingerol related compounds from ginger. Biofactors 21(1): 293-296.
11. Guh JH, Ko FN, Jong TT, Teng CM (1995) Antiplatelet effect of gingerol isolated from Zingiber officinale. J Pharm Pharmacol 47(4): 329-332.
12. Shobana S, Naidu KA (2000) Antioxidant activity of selected Indian spices. Prostaglandins Leukotrienes and Essential Fatty Acids 62(2): 107-110.
13. Eid BG, Mosli H, Hasan A, El Bassossy HM (2017) Ginger ingredients alleviate diabetic prostatic complications: effect on oxidative stress and fibrosis. Evid Based Complement Alternat Med: 6090269.
14. Joshi D, Srivastav SK, Belemkar S, Dixit VA (2017) Zingiber officinale and 6-gingerol alleviate liver and kidney dysfunctions and oxidative stress induced by mercuric chloride in male rats: A protective approach. Biomed Pharmacother 91: 645-655.
15. Abolaji A, Ojo M, Aloabi TT, Arowoogun MD, et al. (2017) Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact 270: 15-23.
16. Salihu M, Ajayi BO, Adedara IA, Farombi EO (2016) 6-Gingerol-Rich Fraction from Zingiber officinale prevents hepatotoxicity and oxidative damage in kidney and liver of rats exposed to carbendazim. J Diet Suppl 13(4): 453-448.
17. Hegazy AM, Mosade MM, Elshafey SH, Bayomy NA (2016) 6-gingerol ameliorates gentamicin induced renal cortex oxidative stress and apoptosis in adult male albino rats. Tissue Cell 48(3): 208-216.
18. Taspell LC, Hampell I, Cobić C (2006) Health benefits of herbs and spices. Med J Austria 185: 4-24.
19. John H, Beattie F, Margaret JG (2011) Ginger phytochemicals mitigate the obesogenic effects of a high-fat diet in mice: A proteomic and biomarker network analysis. Mol Nutr Food Res 55: S203-S213.
20. Weng CJ, Chou CP, Ho CT, Yen GC (2012) Molecular mechanism inhibiting human hepatocarcinomatous cell invasion by 6-shogaol and 6-gingerol. Mol Nutr Food Res 56(6): 1304-1314.
21. Nigam N, George J, Srivastava S, Roy P, Bhui K, et al. (2010) Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B[a]P-induced mouse skin tumorigenesis. Cancer Chemother Pharmacol 65(2): 687-696.
22. Gunning WT, Kramer PM, Steele VE, Pereira MA (2002) Chemoprevention by lipoxigenase and leukotriene pathway inhibitors of vinyl carbamate-induced lung tumors in mice. Cancer Res 62(13): 4199-4201.
23. Ghosh AK (2011) International journal of pharma and bio sciences (Gingerol might be a sword to defeat colon cancer)?

Significances Bioeng Biosci Copyright © Muhammad Hanif Mughal
24. Lee HS, Seo EY, Kang NE, Kim WK (2008) [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J Nutr Biochem 19(5): 313-319.

25. Shukla Y, Singh M (2007) Cancer preventive properties of ginger: a brief review. Food Chem Toxicol 45(5): 683-690.

26. Park KY, Chun KS, Lee JM, Lee SS (1998) Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase and skin tumor promotion in ICR mice. Cancer Lett 129(2): 139-144.

27. Katiyar SK, Agarwal R, Mukhtar H (1996) Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res 56(5): 1023-1030.

28. Kim SO, Chun KS, Kundu JK, Surh YJ (2004) Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kB and p38 MAPK in mouse skin. Bio factors 21(1-4): 27-31.

29. Chung WY, Jung YJ, Surh YJ, Lee SS, Park KK (2001) Antioxidative and antitumor promoting effects of [6]-paradol and its homologs. Mutat Res 496(1-2): 199-206.

30. Murakami A, Tanaka T, Lee JY, Surh YJ, et al. (2004) Zerumbone, a sesquiterpene in subtropical ginger, suppresses skin tumor initiation and promotion stages in ICR mice. Int J Cancer 110(4): 481-490.

31. Weng CJ, Chou CP, Ho CT, Yen GC (2012) Molecular mechanism inhibiting human hepatic carcinoma cell invasion by 6-shogaol and 6-gingerol. Molecular Nutrition & Food Research 56: 1304-1314.

32. Chakraborty D, Mukherjee A, Sildar S, Paul A, et al. (2012) [6]-Gingerol isolated from ginger attenuates sodium arsenate induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxically Lett 210(1): 34-43.

33. Chen YL, Zhuang XD, Xu ZW, Lu LH, et al. (2013) Hienamine Combined with [6]-Gingerol Suppresses Doxorubicin-Triggered Oxidative Stress and Apoptosis in Cardiomyocytes via Upregulation of PI3K/Akt Pathway. Evid Based Complement Alternat Med: 970490.

34. El Bakly WM, Louka ML, El Halawany AM, Schaalan MF (2012) 6-gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation. Cancer Chemother Pharmacol 70(6): 833-841.

35. Antipenko AY, Spielman AL, Kirchberger MA (1999) Interactions of 6-gingerol and elliptic acid with the cardiac sarcolemmal reticulum Ca2+-ATPase. J Pharmacol Exp Ther 290(1): 227-234.