Statins and New-Onset Diabetes Mellitus: LDL Receptor May Provide a Key Link

Qi Yu¹,²,³, Ying Chen¹,⁴ and Cang-Bao Xu¹,²

¹ Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China, ² Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi’an, China, ³ Institute of Material Medical, School of Pharmacy, The Fourth Military Medical University, Xi’an, China, ⁴ Department of Information and Communication Engineering, Xi’an Jiaotong University, Xi’an, China

Numerous studies have noted that populations treated with statins have increased risk for new-onset diabetes mellitus; however, the underlying molecular mechanisms are not fully understood. Interestingly, familial hypercholesterolemia (FH) patients with mutations in the low-density lipoprotein receptor (LDLR) gene are protected against diabetes mellitus (DM), despite these patients being subjected to long-term statin therapy. Since the common pathway between FH and statin therapy is LDLR-mediated cellular cholesterol uptake, the arising question is whether the LDLR plays an important role in the diabetogenic effect of statins. Indeed, given that statins can regulate the LDLR expression in liver and peripheral tissue, there is a possible mechanism that the increased LDLR causes cellular cholesterol accumulation and dysfunction in pancreatic islets, explaining why statins fail to increase the risk of DM in FH patients. In this paper, with regard to recent literatures, we highlight the role of LDLR in the pathophysiology of cholesterol-induced pancreatic islets dysfunction, which may provide the key link between statins treatment and the increased risk of new-onset diabetes mellitus.

Keywords: type 2 diabetes mellitus, statin, low-density lipoprotein receptor, familial hypercholesterolemia, islet

INTRODUCTION

Statins are first-line drugs for treating hypercholesterolemia and used for primary and secondary CVD prevention. However, with the increasing clinical application of statins, accumulated evidence from clinical trials suggests that statins can increase the risk of new-onset DM, but the underlying pathological mechanism remains to be determined (Brault et al., 2014). Statins are 3-hydroxy-3-methyl-glutaryl coenzyme-A reductase (HMG-CoA reductase) inhibitors, which were first approved for clinical use by the FDA in 1987. In addition to inhibiting cellular cholesterol synthesis, statins also up-regulate the LDLR in the liver and peripheral tissues, resulting in increased blood LDL-C removal and reduced CVD risk (Beltowski et al., 2009). However, the following great mystery remains: why do statins reduce blood cholesterol but also cause T2DM? After all, hypercholesterolemia is also an important risk factor for T2DM.

Previous studies suggest that statins also act by inhibiting glucose transporter 4, isoprenoid, Coenzyme Q10, Dolichol Biosynthesis and other mechanisms to cause insulin resistance and
ASSOCIATION BETWEEN STAINS INTEAKE AND THE RISK OF NEW-ONSET T2DM

The association between statin treatment and the prevalence of T2DM has been examined extensively. This association was first reported by Ridker et al. (2008), with their data suggesting that rosuvastatin had a higher incidence of physician-reported DM. A meta-analysis with 91140 participants covering 13 statins showed that statin therapy was associated with a 9% increased risk for incident DM (Sattar et al., 2010). In the SPARCL trial, a population with statin treatment had an 11% higher risk of DM in contrast to their unaffected relatives or hyperlipidemic patients, even when these patients were subjected to intensive statin treatment (Besseling et al., 2015). Since most FH patients in these studies have heterozygous mutation in the LDLR gene, an interesting question arises as to whether LDLR-mediated cellular cholesterol metabolism is involved with the diabetogenic effect of statins (Preiss and Sattar, 2015; Besseling and Hutten, 2016).

Indeed, dysregulation of cellular cholesterol metabolism severely impairs the function of pancreatic β cells, as has been shown by in vitro and in vivo studies (Brunham et al., 2008). Moreover, in a mouse model lacking the LDLR, the pancreatic β cells are protected from accumulation of cholesterol and cholesterol-induced β cell dysfunction, whereas mice carrying more LDLR exhibit pancreatic islet abnormalities (Kruit et al., 2010; Mbiikay et al., 2010). Overall, these novel findings lead us to speculate that LDLR-mediated cellular cholesterol metabolism may associate with the diabetogenic effect of statins.

REGULATION OF LDLR EXPRESSION BY STATINS

As mentioned above, there are two ways of that statins reduce the blood cholesterol: by inhibited HMG-CoA reductase, statins can efficiently reduce formation of LDL-C in blood; additionally, statins also up-regulate LDLR receptor in liver and peripheral tissues, resulting in increased blood LDL-C removal (Beltowski et al., 2009). Of a pathway in the regulation of LDLR, statins can...
TABLE 1 | Summary of population studies investigating onset of DM in FH patients with statins treatment.

Author and Published year	Country	Study design	Population and the cause of FH	DM-related findings
Vohl et al., 1997	Canada	Case control study	102 patients without FH, 102 hFH patients; a defective allele at LDLR or LDLR mutation.	The prevalence of DM was significantly higher in the non-FH group than in the two FH groups ($P < 0.05$).
Skoumas et al., 2007	Greece	Cross-sectional study	A total 1306 subjects: 600 individuals with hFH, and 706 individuals with FCH; LDLR mutation or plasma levels of LDL cholesterol above the 95th percentile.	FCH had a significantly increased prevalence of DM (13 vs. 2%, $P < 0.001$) vs FH group, whereas total cholesterol, LDL-cholesterol, and apolipoprotein B levels were higher (all $P < 0.001$) in FCH subjects.
Skoumas et al., 2014	Greece	Ambispective cohort study	A total of 523 adult patients (314 hFH and 209 FCH patients); LDL-receptor mutation or plasma levels of LDL cholesterol above the 95th percentile.	14% of FCH and only 1% of hFH patients developed DM during follow up.
Kusters et al., 2014	Netherland	Retrospective cohort study	2144 children with hFH; LDLR mutation.	Statin treatment was not associated with an increased risk of new-onset DM in these patients.
Besseling et al., 2015	Netherland	Cross-sectional study	All individuals ($n = 63,320$) who underwent DNA testing for FH; 3475 were ApoB mutation carriers, 21,606 had the LDLR mutation, and 56 had PCSK9 mutation.	The prevalence of T2DM was 1.75% in FH patients ($P = 4.40/25 137$) vs 2.93% in unaffected relatives ($P < 0.001$). The adjusted prevalence of type 2 DM by APOB vs LDL receptor gene was 1.91% vs 1.33%.
Fuentes et al., 2015	Spain	Cross-sectional and prospective cohort study	2558 FH and 1265 unaffected relatives with a mean follow-up of 5.9 years; LDLR mutation.	Finally, in the adjusted Kaplan–Meier curve, there are no differences between FH group vs control group in the incidence of T2DM according the duration of treatment with statins.

hFH, heterozygous Familial Hypercholesterolemia; FCH, familial combined hyperlipidemia; LDLR, low density lipoprotein receptor; T2DM, type 2 diabetes mellitus; PCSK9, proprotein convertase subtilisin/kexin type 9; ApoB, apolipoprotein B.

cause up-regulation of sterol regulatory element-binding protein 2 (SREBP-2) in hepatocytes (Figure 1). SREBP-2 is known as a transcription factor, which efficiently stimulates transcription of LDLR and other sterol-regulated genes (Figure 1) (Brown and Goldstein, 1997). As a result of statin incubation, LDLR and its mRNA levels are raised in Hep G2, human and rat hepatocytes (Qin et al., 1992). In statin-treated dogs, they usually show increased hepatic LDLR as previously reported (Alberts et al., 1980). Nevertheless, LDLR expression in statins-treated animals also is not extremely high, because LDLR is subjected to negative feedback regulations as well (Figure 1). On the one hand, cellular cholesterol accumulation may lead to increased oxysterols, which are the natural ligands for liver X receptor (LXR). Activation of LXR can positively regulate transcription of inducible degrader of the LDLR (Idol, a ubiquitin ligase) to degrade the LDLR (Figure 1) (Hong et al., 2014). On the other hand, SREBP-2 also up-regulates PCSK9 in liver, which is a powerful enzyme to mediate the degradation of LDLR (Figure 1) (Raal et al., 2015). In contrast to liver, the regulation of LDLR in pancreatic islets has not been fully elucidated. If LDLR expression in pancreatic islets is subjected to similar regulations as shown in liver, there is an interesting question whether negative feedback regulation is affected in statins-treated patients with the pathological condition.

![FIGURE 1](image-url) | A schematic diagram representing the regulation of hepatic LDLR by statins. (1) Statins up-regulate LDLR via SREBP2. (2) SREBP2 also increases transcription of PCSK9 to degrade LDLR. (3) Cellular cholesterol accumulation may activate LXR, which up-regulates Idol to degrade LDLR.
LIPID-LOWERING THERAPY, LDLR AND DYSFUNCTION OF PANCREATIC ISLETS

Hyperlipidaemia increases the risk for both CVD and T2DM, suggesting that lipid-lowering drugs for treating CVD may also have protective effects on pancreatic islets and thus prevent the onset of T2DM. For instance, bezafibrate that is a fibrate drug used as a lipid-lowering agent to treat hyperlipidaemia, is also proven that can reduce the incidence and delay the onset of T2DM in high risk patients (Tenenbaum and Fisman, 2012). In addition, patients received ezetimibe and colesevelam for treating dyslipidaemia might also be shown to decrease the risk of the onset of T2DM (Athyros et al., 2014). In animal model, statins had some beneficial effects on pancreatic islets, e.g., atorvastatin preserved pancreatic β cell function in obese C57BL/6 J mice (Chen et al., 2014), and pitavastatin suppressed high fat diet (HFD)-induced the pathogenesis of pancreatic islets in rats (Mizukami et al., 2012). However, it is well known that statins lower LDL cholesterol, while they have negative effects on pancreatic islets. The molecular mechanisms behind this side effect involve with an increased LDLR-mediated uptake of LDL-C in islets via statins-induced up-regulation of the LDLR expression. Most likely, there is a potential mechanism that the pancreatic islets are impaired by abnormal cholesterol levels via the up-regulation of LDLR expression and subsequent increased LDLR-mediated uptake of LDL-C. Thus, LDLR mutation in patients with FH may prevent the onset of T2DM as well as the diabetic effect of statins. Indeed, numerous studies have revealed that the accumulation of cholesterol in the pancreatic islets leads to dysfunction of pancreatic β cell (Brunham et al., 2008; Fryirs et al., 2009). In vitro, the addition of LDL-C to rat islet β cells results in cell death in an LDLR-dependent manner (Roehrich et al., 2003), while the inhibitory effect of LDL on insulin secretion can be abolished by LDLR deficiency (Rutti et al., 2009). Furthermore, increased LDLR may allow more modified LDL-C entering islet β cells and finally causes cytotoxicity to these cells. In-vivo studies provide further evidences that the LDLR may play a key role in islet function (Sattar and Taskinen, 2012). Using the LDLR-deficient mouse, Kruit et al. (2010) have found that lack of LDLR protects pancreatic β cells from the accumulation of cholesterol and cholesterol-induced β cell dysfunction. Furthermore, PCSK9-null male mice with more LDLR in pancreatic islet β cells exhibit impaired glucose tolerance and pancreatic islet abnormalities (Mbkay et al., 2010). Similarly, variations in PCSK9 and HMGCR are associated with nearly identical protective effects on the risk of cardiovascular events but are also associated with very similar effects on the risk of DM (Ference et al., 2016). Not only the above two genes, LDL-C-lowering genetic variants in a number of genes are found that are associated with a higher risk of T2DM, which may further confirm the potential adverse effects of LDL-C-lowering therapy (Lotta et al., 2016). Combined with the FH studies, these results strongly support a model whereby LDLR-mediated uptake of LDL-C and cellular cholesterol accumulation is the pathological basis for the prevalence of T2DM and the diabetogenic effects of statins.

CONCLUSION

The common pathway in FH and statin-induced DM is LDLR-mediated uptake of LDL-C, and elucidation of this pathway may help us to understand the potential mechanism for the diabetogenic effects of statins. Moreover, this pathway closely associates with the pharmacological effect of statins but is independent of the type of statin. If this pathway is proven, we can not only utilize it to prevent the diabetogenic effects of statins but can also target this pathway to treat T2DM.

AUTHOR CONTRIBUTIONS

QY proposed this hypothesis and analyzed the literatures and wrote the manuscript. YC collected the literatures and revised the manuscript. CBX contributed to crucial revisions in the manuscript.

FUNDING

This study was supported by grants from the National Natural Science Foundation of China (No. 81400328 and 81470493) and China Postdoctoral Science Foundation (No. 2015M582800) and Special Financial Grant from China Postdoctoral Science Foundation (No. 2016T90972).

REFERENCES

Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., et al. (1980). Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutarly-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. U.S.A. 77, 3957–3961. doi: 10.1073/pnas.77.7.3957

Athyros, V. G., Katsiki, N., Karagiannis, A., and Mikhailidis, D. P. (2014). Statin potency, LDL receptors and new onset diabetes. Curr. Vasc. Pharmacol. 12, 739–740. doi: 10.2174/1570161112666140819110429

Axsom, K., Berger, J. S., and Schwartzbard, A. Z. (2013). Statins and diabetes: the good, the bad, and the unknown. Curr. Atheroscler. Rep. 15:299. doi: 10.1007/s11883-012-0299-z

Beltowski, J., Wojcicka, J., and Jamroz-Wisniewska, A. (2009). Adverse effects of statins - mechanisms and consequences. Curr Drug Saf. 4, 209–228. doi: 10.2174/157488609789006949

Besseling, J., and Hutten, B. A. (2016). Is there a link between diabetes and cholesterol metabolism? Expert Rev. Cardiovasc. Ther. 14, 259–261. doi: 10.1586/14779972.2016.1133292

Besseling, J., Kastelein, J. J., Defesche, J. C., Hutten, B. A., and Hovingh, G. K. (2015). Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 313, 1029–1036. doi: 10.1001/jama.2015.1206

Braut, M., Ray, J., Gomez, Y. H., Mantzoros, C. S., and Daskalopoulou, S. S. (2014). Statin treatment and new-onset diabetes: a review of proposed mechanisms. Metabolism 63, 735–745. doi: 10.1016/j.metabol.2014.02.014

Belowski, J., Wojcicka, G., and Jamroz-Wisniewska, A. (2009). Adverse effects of statins - mechanisms and consequences. Curr Drug Saf. 4, 209–228. doi: 10.2174/157488609789006949

Ference, B. A., and Hutten, B. A. (2016). Is there a link between diabetes and cholesterol metabolism? Expert Rev. Cardiovasc. Ther. 14, 259–261. doi: 10.1586/14779972.2016.1133292

Mizrak, N., and Taskinen, M. R. (2009). Evidence of the prevalence of diabetes is increased in FH. Curr. Atheroscler. Rep. 11:111. doi: 10.1007/s11883-012-0299-z

Yu et al. LDLR in Statins-Induced Diabetes

Frontiers in Pharmacology | www.frontiersin.org
June 2017 | Volume 8 | Article 372
4

Frontiers in Pharmacology | www.frontiersin.org
June 2017 | Volume 8 | Article 372
4
Brown, M. S., and Goldstein, J. L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340. doi: 10.1016/S0092-8674(00)80213-5

Brunham, L. R., Kruit, J. K., Verchere, C. B., and Hayden, M. R. (2008). Cholesterol in islet dysfunction and type 2 diabetes. J. Clin. Invest. 118, 403–408. doi: 10.1172/JCI33296

Carter, A. A., Gomes, T., Camacho, X., Juurlink, D. N., Shah, B. R., and Mamdani, M. M. (2013). Risk of incident diabetes among patients treated with statins: population based study. BMJ 346:f2610. doi: 10.1136/bmj.f2610

Chen, Z. Y., Liu, S. N., Li, C. N., Sun, S. J., Liu, Q., Lei, L., et al. (2014). Atorvastatin helps preserve pancreatic beta cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress. Lipids Health Dis. 13:98. doi: 10.1186/1476-511X-13-98

Culver, A. L., Ockene, I. S., Balasubramanian, R., Olendzki, B. C., Sepavich, D. M., Wactawski-Wende, J., et al. (2012). Statin use and risk of diabetes mellitus in postmenopausal women in the Women’s Health Initiative. Arch. Intern. Med. 172, 144–152. doi: 10.1001/archinternmed.2011.625

Ferrenc, B. A., Robinson, J. G., Brook, R. D., Catapano, A. L., Chapman, M. J., Neff, D. R., et al. (2016). Variation in PCSK9 and HMGCGR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153. doi: 10.1056/NEJMoa1604304

Fryirs, M., Barter, P. J., and Rye, K. A. (2009). Cholesterol metabolism and pancreatic beta-cell function. Curr. Opin. Lipidol. 20, 159–164. doi: 10.1097/ MOL.0b013e32832a1880

Furneaux, F., Alcala-Diaz, J. F., Watts, G. F., Alonso, R., Muniz, O., Diaz-Diaz, J. L., et al. (2015). Statins do not increase the risk of developing type 2 diabetes in familial hypercholesterolemia: the SAFEHEART study. Int. J. Cardiol. 201, 79–84. doi: 10.1016/j.ijcard.2015.07.107

Hennekens, C. H., Teng, B., and Pfeiffer, M. A. (2017). Statins and diabetes: current perspectives and implications for clinicians. Am. J. Med. 130, 504–506. doi: 10.1016/j.amjmed.2016.12.022

Hong, C., Marshall, S. M., McDaniel, A. L., Graham, M., Layne, J. D., Shih, L., et al. (2014). The LXR-Idol axis differentially regulates plasma LDL levels in primates and mice. J. Clin. Endocrinol. Metab. 100, 1016–1017. doi: 10.1016/j.cmet.2014.10.001

Kruit, J. K., Kremer, P. H., Dai, L., Tang, R., Ruddle, P., de Haan, W., et al. (2010). Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia 53, 1110–1119. doi: 10.1007/s00125-010-1691-2

Kusters, D. M., Avis, H. J., de Groot, E., Wijburg, F. A., Kastelein, J. J., Wiegman, A., Hong, C., Marshall, S. M., McDaniel, A. L., Graham, M., Layne, J. D., Cai, L., et al. (2008). Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207. doi: 10.1056/ NEJMoa076766

Roehrlich, M. E., Mooser, V., Lenain, V., Herz, J., Nimpf, J., Azhari, S., et al. (2003). Insulin-secreting beta-cell dysfunction induced by human lipoproteins. J. Biol. Chem. 278, 18368–18375. doi: 10.1074/jbc.M300122200

Rutti, S., Ehses, J. A., Sibler, R. A., Prazak, R., Rohrer, L., Georgopouloso, S., et al. (2009). Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 150, 4521–4530. doi: 10.1210/en.2009-0252

Sattar, N., Preiss, D., Mason, W. H., Welch, P., Buckley, B. M., de Craen, A. J., et al. (2010). Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735–742. doi: 10.1016/S0140-6736(09)61965-6

Sattar, N., and Taskinen, M. R. (2012). Statins are diabetogenic—myth or reality? Atheroscler. Suppl. 13, 1–10. doi: 10.1016/j.atherosclerosis.2012.06.001

Skoumas, I., Masoura, C., Pitsavos, C., Tousoulis, D., Papadimitriou, L., Azaanouridis, K., et al. (2007). Evidence that non-lipid cardiovascular risk factors are associated with high prevalence of coronary artery disease in patients with heterozygous familial hypercholesterolemia or familial combined hyperlipidemia. Int. J. Cardiol. 121, 178–183. doi: 10.1016/j.ijcard.2006.11.005

Skoumas, J., Liontou, C., Chrysohoou, C., Masoura, C., Azaanouridis, K., Pitsavos, C., et al. (2014). Statin therapy and risk of diabetes in patients with heterozygous familial hypercholesterolemia or familial combined hyperlipidemia. Atherosclerosis 237, 140–145. doi: 10.1016/j.atherosclerosis.2014.08.047

Tennenbaum, A., and Fisman, E. Z. (2012). Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc. Diabetol. 11:140. doi: 10.1186/1475-2840-11-140

Vohl, M. C., Gaudet, D., Moorjani, S., Tremblay, G., Perron, P., Gagne, C., et al. (2007). Evidence that non-lipid cardiovascular risk factor class mutations on coronary heart disease among French-Canadian patients with familial hypercholesterolemia impacts cardiovascular risk. Atheroscler. Suppl. 6, 1127, 57–66. doi: 10.1016/1567-1525(07)60201-6

Yu, Q., Su, X., and Liu, E. (2016). Could familial hypercholesterolemia oppose the diabetogenic effect of statin? Comments on a new SAFEHEART study. Int. J. Cardiol. 202, 954–955. doi: 10.1016/j.ijcard.2015.10.016

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.