Construction waste as a disperse system

N V Bakaeva ¹, M Y Klimenko², A A Zamorov²

¹Southwest State University, 305040, Kursk, 50 Let Oktyabrya Street, 94, Russia
² Platov South-Russian State Polytechnic University (NPI), 346428, Novocherkassk, Prosveschenia Street, 132, Russia

E-mail: ¹ natbak@mail.ru, ² klimdaver@bk.ru

Abstract. The authors studied and classified some parameters of construction waste properties, construction waste energy parameters and their stability in the building technical state recovery system by means of the application of basic tenets of the theory of disperse systems. Key parameters determining the properties of a dispersion medium and dispersed phase were formed; such groups as geometric, physical and mechanical, chemical, hydrophysical, thermophysical, optical, aerodynamic (for construction waste) and space-planning, structural, technical state, climate (for the building technical state recovery system) were distinguished. Construction waste stability is considered as a resulting criterion, characterizing its behavior in the environment and making it possible to manage waste in order to decrease their stability and, eventually, providing ecological safety of construction projects.

1. Introduction

The increase of man-induced load on the environment negatively impacts the safety area of human life and activities. The existing scale of construction waste generation and accumulation poses topical social issues of the decrease of its release into the environment by means of waste recycling [1-8]. To decrease the environmental pollution it is necessary to define construction waste properties and their classification, energy parameters and stability in the system of building technical state recovery.

2. Problems of construction waste release into the environment

From 2010 to 2014, 74.1 mln.t. of construction waste was generated in the Russian Federation; only 48.3 mln.t was recycled and neutralized [9]. There is a downward dynamics in the formation of a dilapidated housing stock which needs major repairs (reconstruction). In 1990 the area of such housing was 3.3 mln.m², and in 2015 it increased to 19.62 mln.m² [10].

The presented above figures and the modern state of the process of construction speak for the existence of problems of ecological safety of construction projects, connected with the low level of the use of construction waste generated during major and minor repair and reconstruction of buildings.

3. Results

Analyzing design and estimate documentation passed the State Expert Review for major and minor repair and building reconstruction performed on the basis of laws and regulations of the Russian Federation, it can be concluded that the concept of construction waste utilization typically includes the algorithm for a waste disposal (storage) method for the purpose of their further transportation to solid waste landfills and disposal sites which is shown in Table 1.
Most researches now propose consideration of any polluting substance as a disperse system [1]. This approach implements the theory of disperse systems based on the classical framework of colloid and physical chemistry. Basic classification features of disperse systems for construction waste are presented in Table 2.

Table 1. Method for reduction of negative effects of construction waste according to design and estimate documents of the Russian Federation

Construction waste	Waste generation site	Ways of construction waste utilization	Ways of construction waste disposal
Concrete scrap	Wall and partition brickwork	Stored on hard stand	–
	Cement brickwork		
Crushed bricks	Cement-sand mortar, cement-sand mortar screed,	Stored on hard stand	Solid waste landfill
	wall and partition brickwork		
Wood waste	Finishing work		Solid waste landfill, fuel resource
Plaster scrap	Foundation block, foamed concrete block partitions		Solid waste landfill
	Preparation of foundation		
Quartz sand	trenches for roadway paving and grounds	Stored on hard stand	Solid waste landfill
Cement mortar, cement waste	Demolition works	Stored on hard stand	Solid waste landfill
Crushed stones, demolition waste and chips	Demolition works	Stored on hard stand	Solid waste landfill
Ceramics waste	Construction work	Stored on hard stand	Solid waste landfill
Asphalt concrete waste	Construction work	Stored on hard stand	Solid waste landfill
Bitumen waste	Perimeter walks	–	Solid waste landfill
Polymeric pipe waste	Welding		Solid waste landfill
Ferrous scrap	Water supply and sewage system assembly	Stored on hard stand	To a licensed ferrous metals recycling plant
Welding electrode waste	Demolition works		To a licensed ferrous metals recycling plant

Based on the data of previous research in accordance with the theory of disperse systems, construction waste is a polydisperse system comprising some solid dispersed phases (separate fractions of construction waste) and gaseous dispersion medium (airspaces between construction waste fractions) [11,12,13].

Table 2. Construction waste according to classification features of disperse systems

Classification feature of a disperse system	Characteristics of construction waste according to the feature
Fraction, mm	0.016-1000
Dispersion degree	Coarse, polydisperse
Type of dispersion medium and dispersed phase interaction	lyophobic
Type of dispersed phase particles interaction	Freely dispersed
Type of dispersion medium particles interaction	Freely dispersed
Aggregate state of a dispersed phase and dispersion medium	Solid/gaseous
Processes determining properties and state of construction waste cannot be studied separately. Commonality of the nature of these processes highlights the strong interrelation between them. This mutual influence depends on the number of factors: dispersed phase (d.ph.) and dispersion medium (d.m.) properties of construction waste, environmental characteristics. Having analyzed the processes taking place in a disperse system, construction waste was classified into groups whose key parameters are presented in Table 3.

Table 3. Key parameters determining construction waste dispersed phase and dispersion medium properties

Parameter group	Parameter determining dispersed phase properties	Parameter determining dispersion medium properties
Geometric	Thickness, height, length and area of construction waste debris; fraction size, cross section area, d.ph. volume, etc.	D.m. volume
Physical and mechanical	Mass, density, strength, hardness, elasticity, plasticity, d.ph. mass, etc.	Density, d.m. (gas) molecular mass, etc. d.m. aggressivity, chemical composition, etc.
Chemical	Resistance to chemical and corrosion attack, d.ph. solubility, adhesion, crystallization, etc.	d.m. humidity
Hydrophysical	Dispersed phase humidity, hydrosopy, capillary suction, water absorption, etc. Thermo conductivity, specific heat capacity, fire resistance, refractoriness, temperature expansion, thermal storage, dispersed phase particles temperature, etc.	d.m. particles temperature, thermal conductivity, etc.
Thermophysical	Dispersed phase light transmission, transparency, absorption coefficient, etc.	d.m. light transmission
Optical	Density, air inertness and viscosity, material roughness, dispersed phase sedimentation rate, etc.	d.m. dynamic (kinematic) viscosity, etc.

As a result of examination of the parameters determining dispersed phase and dispersion medium properties, a part of parameters determining construction waste properties can be in general terms presented as a functional relationship of the groups of parameters of phase elements of construction waste:

\[
P_{\text{cw}} = f_i((P_{\text{d.ph.}}, P_{\text{d.s.}})) = f_i(G_{\text{d.ph.}}, FM_{\text{d.ph.}}, Ch_{\text{d.ph.}}, Hy_{\text{d.ph.}}, Th_{\text{d.ph.}}, O_{\text{d.ph.}}, Ae_{\text{d.ph.}}),\]

\[
f_{j:2}(G_{\text{d.s.}}, FM_{\text{d.s.}}, Ch_{\text{d.s.}}, Hy_{\text{d.s.}}, Th_{\text{d.s.}}, O_{\text{d.s.}}, Ae_{\text{d.s.}}),
\] (1)

where \(P_{\text{cw}}\), \(P_{\text{d.ph.}}\), \(P_{\text{d.s.}}\) are the group of parameters determining construction waste properties, its dispersed phases and dispersion media in the system of building technical state recovery.

Analyzing the processes taking place in building structures during recovery works the following dispersed phase and dispersion medium parameters presented in Table 4 can be distinguished.

Hence, while determining key properties of a dispersion medium and dispersed phase, phase element parameters, revealing characteristics of the building technical state recovery system (BTSRS) were found in terms of the theory of disperse systems and are expressed by the formula:

\[
P_{\text{brw}} = f_i((P_{\text{d.ph.}}, P_{\text{d.s.}})) = f_i(GS_{\text{d.ph.}}, VP_{\text{d.ph.}}, Kd_{\text{d.ph.}}, TS_{\text{d.ph.}}, KP_{\text{d.ph.}}),\]

\[
f_{j:2}(GS_{\text{d.s.}}, VP_{\text{d.s.}}, Kd_{\text{d.s.}}, TS_{\text{d.s.}}, KP_{\text{d.s.}}),
\] (2)

where \(P_{\text{brw}}\), \(P_{\text{d.ph.}}\), \(P_{\text{d.s.}}\) are the parameters determining medium parameters, its dispersed phases and dispersion media in the system of building technical state recovery.

Such generalization of parameters makes it possible to add into each group of dispersed phase and dispersion medium parameters new characteristics in the process of the development of theoretical fundamentals of ecological safety of construction, and carry out targeted, consistent assessment of all
the sides of the dynamics of formation, accumulation, distribution and destruction of construction
waste.

According to the works of a number of scholars, stability is the resulting characteristics
determining the behavior and existence of a pollutant (construction waste) as a disperse system, i.e. its
“viability” parameter [14-20]. The more stable the system is, the slower its parameters change, and
vice versa.

Table 4 Key parameters for construction waste determining dispersed phase and dispersion
medium properties

Parameter group	Parameter determining dispersed phase properties	Parameter determining dispersion medium properties
Geometric	Element thickness, height, width, length and area; cross-section area, dispersed phase volume, etc.	
Spatial-planning	Shape in the plan, length, width and height of the building, distance between separate dispersed phase volumes, etc.	
Structural	Building frame diagram; enclosure; partition type; coating and flooring; door and window filling; roofing system; dispersed phase type, etc.	
Technical state	Dispersed phase damage, reliability, durability (time between total building renovation, time before emergency state), etc.	
Climate	Mean air temperature, wind and snow region, specified frost depth, etc.	Mean temperature of d.m. particles

Acquisition, distribution and expenditure of energy of construction waste are quantified by energy
parameters (W_{cw}) of the dispersed phase ($W_{d.ph.}$) and dispersion medium ($W_{d.s.}$) of construction waste, which assumes the possibility for redistribution its separate kinds, reflecting specific features of construction waste being. With a certain content of total free energy (energy of activation), construction waste shows some specific features of its behavior, which eventually impacts its stability: $W_{cw} \sim U_{cw}$. This implies that construction waste stability (U_{cw}) is the resulting characteristics determining the ability of construction waste to resist external effects, which occurs while changing construction waste energy (W_{cw}), which in its turn depends on the parameters of construction waste properties (PP_{cw}), formed by the system of building technical state recovery (PP_{brs}).

4. Conclusion

Based on the research findings the following conclusion can be made:

1. Basic types of construction waste generated during buildings and facilities reconstruction were
 defined.
2. Classification properties and relevant construction waste characteristics in terms of their
 recycling were specified.
3. Based on the results of the analysis of the processes taking place in construction waste, groups
 of their properties parameters were proposed (formulae 1, 2).
4. Parameters defining construction waste state as a dispersed phase and dispersion medium were
 described.
5. Factors determining the stability of construction waste and building technical state recovery
 systems as disperse systems were found.

Hence, considering construction waste in terms of the theory of stability of disperse systems, it is
possible to find out that main solutions for the issue of the reduction of waste release to the
environment are its destruction as a disperse system by means of complete loss of stability. Based on
the conducted research, some parameters of construction waste properties were described, which makes it possible to control its behavior and, eventually, reduce environment pollution.

5. Conclusion
According to housing statistical data about dwelling total area and wear, buildings should be dismantling when carrying out repair and recovery works. They are included into existed 450 million tons of damaged structures. It also should be done according to practical application of recycled construction wastes use. On the other hand, in case of inactivity, building wastes will negatively influence ecological safety of construction as ecological safety component of the Russian Federation.

This developed technique implementation for major overhaul and current repairs of buildings in the Russian Federation is necessary as one of possible ways for technologies development and also for biosphere progressive harmonic development.

References

[1] Geoffrey Hamer 2003 Solid waste treatment and disposal: effects on public health and environmental safety (article) (Biotechnology Advances, Volume 22, Issues 1) pp 71–79
[2] Rajeev Pratap Singh, Pooja Singh, Ademir S.F. Araujo, M. Hakimi Ibrahim, Othman Sulaiman 2011 Management of urban solid waste: Vermicomposting a sustainable option (article) (Resources, Conservation and Recycling, Volume 55, Issue 7) pp 719–729
[3] Forbes R. McDougall, Peter R. White, Marina Franke, Peter Hindle 2008 Integrated Solid Waste Management: A Life Cycle Inventory (text)
[4] Alexis M. Troschinetz, James R. Mihelcic 2009 Sustainable recycling of municipal solid waste in developing countries (article) (Waste Management, Volume 29, Issue 2) pp 915–923. 5
[5] Adamyan R.G 2013 Analiz ekologicheskikh osobennostey tehnologii zahoroneniya tverdyih othodov potrebeniya v usloviah Armenii (III Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Sovremennaya shkola Rossi, 27 sentyabrya - 01 oktyabrya 2010) pp 423-427
[6] Bespalov V. I., Paramonova O.N 2012 Klassifikatsionno-metodicheskie osnovyi borby s zagryazneniem okruzhayuscheh sredy tverdyim otchem othodami potrebeniya. Sbornik nauchnyh trudov SWorl. Materialy mezhgounadnoy nauchno-prakticheskoy konferentsii «Nauchnyie issledovaniya i ih prakticheske primenenie. Sovremennoe sostoyanie i puti razvityia 2012» Vypusk 3. Tom 9 (Odessa: Kuprienko) p 89
[7] Bakaeva N.V 2010 K postanovke zadachi upravleniya sistemami zhizneobespecheniya goroda na osnove kontsepsii biosfernoy sovmestnosti (N.V. Bakaeva Sb. mat. VII Krymskoy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Geometricheskoye i kompyuternoye modelirovanie: energosberezhenie, ekologiya, dizayn» Simferopol. Natsionalnaya akademii prirodoohranogo i kurortnogo stroitelstva, 27 sentyabrya - 01 oktyabrya 2010) pp 423-427
[8] Klimenko M.Yu., Kasharina T.P 2014 Zagryaznenie territoriy gorodskoy zastroyki valovymi vybrosem v atmosferu i othodami pri stroitelstve (Ekologiya urbanizirovannyih territoriy №4) pp 68-70
[9] 2015 Rossyiskiy statisticheskii ezhegodnik (Stat.sb. Rosstat.: M., Rosstat) p 727
[10] 2016 Zhilishchnoe hozaystvo v Rossii (Stat. sb. Rosstat. - Zh72 M) p 63
[11] Bespalov V. I., Paramonova O. N 2012 Fizicheskaya model protsesssa zagryazneniya okruzhayuscheh sredy tverdyimi othodami potrebeniya (Inzhenerniy vestnik Dona №4 (chast 1)) URL: ivdon.ru/magazine/archive/n4p1y2012/11
[12] Paramonova O. N 2013 Rasstotrenie tverdyih othodov potrebeniya kak dispersnoy sistemyi (Inzhenerniy vestnik Dona №3) URL: ivdon.ru/magazine/archive/n3y2013/1933/
[13] Bespalov V. I 1997 Fiziko-ehnergeticheskaya koncepciya opisaniya processov i proektirovaniya inzhenerniy kompleksov zashchity vozduhnoy sredy. Rostov-na-Donu: RGASM) pp 65-70
[14] Il’ichev V.A 2013 Biosfernaya sovmestimost’ – princip, pozvolyayushchij postroit’ paradigmu zhizni v garmonii s planetoj Zemlya (Biosfernaya sovmestimost’: chelovek, region, tehnologii) №1 pp 4-5
[15] Eliseeva T.P 2013 Sovremennye problemy razvitiya social’no-ekonomicheskikh i ehkologicheskikh sistem (Monografiya, pod obshej red. Eliseevoj T.P.: SHAHTY, ISOiP (filial) DGTU) p 291
[16] Magomadova H.A 2012 Problemy social’no-ehkologo-ekonomicheskoy ehffektivnosti vzaimodejstviya obschestva i prirody (Inzhenernyj vestnik Dona, №1) URL: http://www.ivdon.ru/magazine/archive/n1y2012/666
[17] Goponov V. L., SHEvchenko I.S 2006 Sbor i utilizaciya tverdyh othodov potrebleniya v Rostove-na-Donu (Pravovye voprosy ohrany okruzhayushchej sredy: ehkspress-informaciya) №3 pp 14-19
[18] Vajsman YA. I., Korotaev V. N., Slyusar N. N 2012 Upravlenie othodami. Sbor, transportirovanie, pressovanie, sortirovka tverdyh byтовykh othodov (Perm’: Perm’. nac. issled. politekhn. un-ta) p 236
[19] Klimenko M.YU 2016 Metodika snizheniya zagryazneniya okruzhayushchej sredy sistemy vosstanovleniya tekhnicheskogo sostoyaniya zdaniy gorodskoj zastrojki (Inzhenernyj vestnik Dona, №4) URL: ivdon.ru/ru/magazine/archive/n4y2016/3793
[20] White R.R 2002 Building the ecological city (Cambridge: Woodhead Publishing Limited) p 239