Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Background: The COVID-19 pandemic required a rapid response and need for real-world data in cancer patients. The nationwide, real-time coordinated UKCOMP reporting network provided an immediate solution.

Methods: The ability to set up an interdisciplinary multi-organisational team quickly, covering expert knowledge from clinical, legal, statistical, and computer science was essential. The technical infra-structure allows clinician-led anonymised data entry and rapid dissemination of results with a clinical (RedCap) database as core. However, the development of a national cancer reporting network was crucial for the viability of the project. From its inception in March 2020 the reporting network was established via 4 iterative phases.

Results: Within the first 4 weeks, >50 centres were involved with coverage throughout the UK. Expansion has continued with >70 centres within 6 weeks reporting over 1200 COVID positive cancer patients. This was achieved through a 4-phase approach: phase 1 - Outline: This involved project protocol development where key data and timelines were confirmed by a small project team followed by whole-team sign-off. phase 2 - Engagement: This involved identification and engagement of existing groups to establish an initial network. Professional body endorsement led to increased recognition and utilisation of their membership networks. Finally regional leads were identified, phase 3 - Invitation: The third phase involved the distribution of a formal invite letter via identified networks. Project specific email and standard mailing lists were created to enhance network identity and communication. phase 4 - Consolidation: Early development of an interactive project website and focus on communication via social media with varied content consolidated interest and led to further expansion.

Conclusions: Real-time reporting of real-world data can be achieved with clearly defined project phases, standardised documentation and an iterative recruitment process. The COVID-19 pandemics necessitated a rapid response, proving that similar development of a national cancer reporting network was crucial for the viability of the project. From its inception in March 2020 the reporting network was established via 4 iterative phases.

Legal entity responsible for the study: University College London Hospital.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1767

Table: 1704P Univariate analysis of key variables associated with COVID-19 mortality

Variable	Alive (53)	Dead (41)	p-value
Systemic anti-cancer therapy	13 / 24.5%	12 / 28.3%	0.81
Age (years)	66 (17)	78 (11)	< 0.01
C-reactive protein (mg/L)	60.4 (87)	183.7 (215.3)	< 0.01
Hypertension*	16 / 30%	21 / 51%	0.04
Cardiovascular disease*	8 / 15%	10 / 24%	0.25
Lymphocytes (10^9/L)	0.85 (0.68)	0.66 (0.57)	0.07
Creatinine (μmol/L)	79 (30)	83.5 (64.7)	0.44
Haemoglobin (g/L)	121 (18)	116 (29)	0.23
Leukocytes (10^9/L)	7.15 (4.03)	9.35 (7.46)	0.23
Neutrophils (10^9/L)	5.53 (3.88)	7.52 (5.91)	0.14

*p shown as n / %, % shown as median (IQR)

Conclusions: C19 infection poses a substantial risk to cancer patients and our data suggests that SACT is an independent risk factor for mortality in C19 infection. These findings call for a nuanced approach to C19 risk, focusing on established risk factors such as age and co-morbidities to guide treatment decisions.

Legal entity responsible for the study: University College London Hospital.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1768

1705P SARS-CoV-2 infection among cancer patients receiving antitumor treatment in Italy: A nationwide observational study (CIPOMO ONCO COVID-19)

M.E. Negri1, C. Tondini1, A. Pastorino1, M. Caccese1, A. Carriolo1, A. Bertolino2, G. Buzzatti1, S. Cineri1, A. Comandone1, F. Grossi1, M. Franchini1, O. Caffo1, A. Garrone1, A. Mambrini1, F. Leone1, C. Cinieri7, A. Comandone8, F. Grossi9, M. Franchini10, O. Caffo11, L. Bas1, C. Aschele12

1Medical Oncology, Ospedali Riuniti di Bergamo, Bergamo, Italy; 2Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 4Medical Oncology, Ospedale Santa Maria delle Croci, Ravenna, Italy; 5Medical Oncology, AOVV Ospedale di Soncino, Sondrio, Italy; 6Medical Oncology, IRCCS Policlinico San Martino, Genoa, Italy; 7Medical Oncology Division & Breast Unit, Senatore Antonio Oggioni Hospital, ASL Brindisi, Brindisi, Italy; 8Ospedale San Giovanni Bosco, Oncologia Medica, Turin, Italy; 9Medical Oncology unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 10Medical Oncology, Ospedale Castelli – Azienda Sanitaria Verbania-Cusio-Ossola, Verbano, Italy; 11Medical Oncology, Ospedale Santa Chiara, Trento, Italy; 12Medical Oncology, Ospedale La Sapienza, Rome, Italy; 13Medical Oncology, U.O. Oncologia Medica, Azienda Ospedaliera di Padova, Padua, Italy; 14Medical Oncology, Ospedale San Raffaele, Milan, Italy; 15Medical Oncology, Universita degli Studi di Milano, Milan, Italy; 16Medical Oncology, Ospedale Maggiore Policlinico, Milan, Italy; 17Medical Oncology, Ospedale Sacco, University of Milan, Milan, Italy; 18Medical Oncology, Ospedale Sacco, University of Milan, Milan, Italy; 19Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 20Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 21Medical Oncology, Ospedale Santa Maria delle Croci, Ravenna, Italy; 22Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 23Medical Oncology, Ospedale Santa Maria delle Croci, Ravenna, Italy; 24Medical Oncology, Ospedale Santa Maria delle Croci, Ravenna, Italy; 25Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 26Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 27Medical Oncology, Ospedale Santa Maria delle Croci, Ravenna, Italy; 28Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 29Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 30Medical Oncology, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy

Background: Cancer patients are more susceptible to infections and potentially at higher risk to develop COVID-19. Tumor type and antitumor treatment may also affect both the susceptibility to and the severity of SARS-CoV-2.

Methods: To analyze the distribution of patients who developed COVID-19 during active antineoplastic therapy and the related clinical course by tumor type, stage and class of antitumor treatment (chemo, immun, biologic, others), the authors performed a registry prospective, observational study was proposed to the Hospital Medical Oncologic Units of the National Health Service in Italy (168 centers of the Collegio Italiano dei Primari Oncologi Medici Ospedalieri –CIPOMO). Data were collected on de-mographics, tumor characteristics, treatment setting, type of ongoing antitumor therapy and COVID-19 clinical course (phenotype, hospitalization, therapy, duration and outcome). Eligibility required a positive COVID-19 molecular test before May 4th, 2020 and at least 1 course of antitumor therapy delivered after January 15th.

Results: At the present analysis data are available for 116 of 168 centers (7 declined, 28 pending, 17 data awaited). 64 of 116 centers (55%) had COVID-19 positive cases (cases /center: median 3, range 1-40). At these 64 centers, 283 positive cases (males (n = 2). 16 patients received SACT with palliative intent. Patients on SACT had a greater incidence of metastatic disease (48.0% vs 10.6%, p < 0.001) and were younger (median age 62.5 vs 73.0, p = 0.01). They were also more likely to have renal impairment (p = 0.02), lymphopenia (p = 0.01) and anaemia (p = 0.04) compared to those not on SACT. The univariate analysis showed age and co-morbidities were associated with mortality (Table). Adjusting for age, ethnicity, co-morbidities and the presence of metastatic cancer, SACT was an independent risk factor for C19 mortality (HR 2.46, 1.09 – 5.5, p = 0.03). Age, South Asian ethnicity, hypertension and cerebrovascular disease were also independent risk factors for C19 mortality.

https://doi.org/10.1016/j.annonc.2020.08.1768
implementing oncology virtual clinics (VC) in response to COVID-19 pandemic: A transformation driven by a crisis

N. Almutairi, A. Alolayan, M. Alzhairni, A. Algarni, A. Alhadab, A. Hejazi, N. Abdelhaffaf, G.E. Gmait, S. Alshehri, M. Alharbi, F. Alhemoudi, A.R. Jazieh

Oncology Dept., King Abdulaziz Medical City-Riyadh, Riyadh, Saudi Arabia

Background: In response to COVID-19 pandemic, we launched VC to minimize hospital visits, decrease exposures to infection and ensure continuity of care to all cancer patients. Our project aimed to assess the value of VC in management of oncology patients and the level of patient and staff satisfaction with it.

Methods: On March 18, 2020, we introduced VC to all specialties at the Oncology Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia. Medical records were reviewed by the oncologists to identify patients who can be evaluated through VC, those who need to come personally, and those whose appointment can be deferred. Scheduled patients in VC were contacted through locally developed application (BIADTY) or by phone call. Performing laboratory testing near home and shipping those who need to come personally, and those whose appointment can be deferred. Out of 149 patients surveyed, their process (91%), communication tools (77%), and general satisfaction (93%). 93% of physicians, 74 (83%) completed the survey with overall satisfaction with booking ping (79%) and satisfaction with whole experience (92%). Out of 89 involved

Results: A total of 29 clinic sessions/week were established for different oncology services. Out of 1319 scheduled patients, 1152 (87%) answered the call (90% via phone, 5% via application and 5% used both). Of the 149 patients surveyed, their overall satisfaction (Score 3 out of 5) with punctuality was (92%), physician interaction (90%), duration of visit (90%), medication requesting (91%), medication shipping (97%) and satisfaction with whole experience (92%). Out of 89 involved physicians, 74 (83%) completed the survey with overall satisfaction with booking process (91%), communication tools (77%), and general satisfaction (93%). 93% of physicians believed that patients were satisfied with the experience and 81% expected to continue VC beyond the pandemic. Survey of 44 support staff (nurses, coordinators, and pharmacists) revealed similar results.

Conclusions: The transition to VC was well accepted by both patients and clinicians. Optimizing the video communication tool and the process of performing pre-visit laboratory and radiology tests closer to patients home and shipping medications are essential for the enhancement of the VC function.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: N. Almutairi: Research grant/Funding (self): MSD. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1770

CureCancer digital tool in the routine clinical oncology practice facilitates PROs, communicating with HCPs, treatment adherence and “distancing interventions” during COVID-19 and reduces costs: A feasibility and satisfaction study

D. Galiti, S. Agelaki1, A. Karampeazis2, H. Linardou2, N. Tsoukalas2, E. Arvanitou2, E. Georgopoulou1, C. Vallias1, K. Syrigos1, S. Igouros1, S. Kokkali-Zervas1, E. Stamatianni1, A. Bouits1, A.N. Christopoulou1, L. Kontovinis1, A. Mala1, G. Rigas1, Z. Saridakis-Zoras1, O. Nicolou-Galitis1, I. Boukovinas1

1CureCancer, CureCancer, Holargos, Greece; 2Hellenic Society of Medical Oncology, Athens, Greece

Background: CureCancer is a patient-centered/patient-driven digital tool integrated in the routine oncology practice. Patients self-create their medical profile, record their symptoms and communicate them to health care professionals (HCPs). We aimed to assess the tool’s feasibility and patients’ satisfaction.

Methods: 14 Centers participated, starting from 02.2020. COVID-19 epidemic period was included. Patients signed consent to upload their data, report their symptoms and complete 2 questionnaires. Results following the completion of the 1st questionnaire are reported.

Results: 78 patients were enrolled and 68 (87%) uploaded their data to date; 60 of 68 (88%), 30 males and 30 females, median age 53 years, completed the 1st questionnaire. Thirty-seven (61.6%) were University graduates. Cancer types included breast cancer (21.6%), Head/Neck cancer, pancreatic cancer and other cancers. Ten patients reported “other”, 4 reported multiple cancers, 28 had metastatic disease and 45 active treatment. Registration on the platform was reported as “very to very much” easy by 52 (86.6%) and 50 (83.3%) patients, respectively. File uploading was “very to very much” easy for 33 (55%) patients; 49 (81.6%) preferred the digital way and 30 (83.3%) will introduce it to others. Patients highlighted that CureCancer improved communication with HCPs, increased their sense of safety, facilitated treatment adherence and interventions at distance, particularly when outside the Cancer Center and during the COVID-19 pandemic, reduced the number of visits, time and out-of-pocket expenses. Benefits liked best were easy data access, improved communication and sense of safety.

Conclusions: CureCancer use was feasible, increased communication with HCPs, patients’ sense of safety, treatment adherence and medical interventions at distancing, reduced visits and saved time and money. Continuing integration of CureCancer to embed PROs in routine cancer care is expected to improve treatment outcomes within or outside the Cancer Center and in pandemics and to reduce costs.

Legal entity responsible for the study: Hellenic Society of Medical Oncology.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1771

Online survey on SARS-COV-2 infections in cancer patients during a nationwide lockdown in France

N. Hajjaji1, S. Lakhdar2, E. Kaczmarek3, C. Bellier4, S. Bécourt3, A. Broyelle5, E.I. Girard6, S. Giscard2, E. Lartigau3

1Medical Oncology, Centre Oscar Lambret, Lille, France; 2Breast Cancer Unit, Centre Oscar Lambret, Lille, France; 3Direction, Centre Oscar Lambret, Lille, France

Background: The COVID 19 pandemic outbreak caused 143427 cases and more than 28000 deaths in France. To contain this highly contagious and potentially deadly disease, the French government decided an unprecedented nationwide lockdown. We investigated in a large cohort of cancer patients from Hauts-de-France, the third French region most stricken by COVID-19, the frequency of symptoms, how cancer navigated the health care system during these very difficult circumstances, and their feelings.

Methods: We made a flash survey among 6900 patients treated at our cancer center within March 2019 and March 2020. Respondents were asked by email to fill in a short web-based survey sent on April 30 and closed on May 14.

Results: We received reports from 2224 cancer patients. Mean age was 63 years, 72% were women, only 9% were smokers, 26% had hypertension, 9% diabetes, and 5% asthma. The most represented cancers were breast (45%), gynecologic cancers (12%), digestive (8%), and head and neck cancer (6%). Most patients were in follow up, 13% were receiving chemotherapy. The majority did not develop symptoms associated with COVID during the COVID wave; one third experienced symptoms. The main symptoms reported were headache (38%), myalgia and arthralgia (31%), cough (25%), digestive signs (20%), intense fatigue (19%), or fever (13%). Among patients with symptoms, 58% did not seek medical advice during the COVID wave and 95% of them were not tested. For those receiving chemotherapy, 80% had their treatment as planned. Among patients with a planned surgery, 30% of them were delayed. 32% of the patients reported anxiety, 35% felt unsecure and 16% reported an increased consumption of antistress medication, tobacco or alcohol. We also discuss the pattern of symptoms and feelings according to the cancer type and the treatment received.

Conclusions: This study showed that most of our cancer patients were probably not infected during the COVID wave, which highlights the need to maintain barrier measures to protect them and perform validated tests. An appropriate supportive care is also necessary to manage patients’ distress due to COVID 19 in many of them.

Legal entity responsible for the study: Centre Oscar Lambret.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1772