A Strategy to enhance Eu\(^{3+}\) emission from LiYF\(_4\):Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites

Su Yeon Kim\(^1\), Yu-Ho Won\(^2\) & Ho Seong Jang\(^1\)

\(^1\)Center for Materials Architecturing, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea, \(^2\)Materials Research Center, SAIT, Samsung Electronics Co., 130, Samsung-ro, Youngtong-gu, Suwon-si, Gyeonggi-do 443-803, Republic of Korea.

LiYF\(_4\):Eu nanophosphors with a single tetragonal phase are synthesized, and various strategies to enhance the Eu\(^{3+}\) emission from the nanophosphors are investigated. The optimized Eu\(^{3+}\) concentration is 35 mol%, and the red emission peaks due to the \(5D_0 \rightarrow R_7F_J\) (J = 1 and 2) transitions of Eu\(^{3+}\) ions are further enhanced by energy transfer from a sensitizer pair of Ce\(^{3+}\) and Tb\(^{3+}\). The triple doping of Ce, Tb, and Eu into the LiYF\(_4\) host more effectively enhances the Eu\(^{3+}\) emission than the core/shell strategies of LiYF\(_4\):Eu(35%) / LiYF\(_4\):Ce(15%), Tb(15%) and LiYF\(_4\):Ce(15%), Tb(15%)/LiYF\(_4\):Eu(35%) architectures. Efficient energy transfer from Ce\(^{3+}\) to Eu\(^{3+}\) through Tb\(^{3+}\) results in three times higher Eu\(^{3+}\) emission intensity from LiYF\(_4\):Ce(15%), Tb(15%), Eu(1%) nanophosphors compared with LiYF\(_4\):Eu(35%), which contains the optimized Eu\(^{3+}\) concentration. Owing to the energy transfer of Ce\(^{3+}\) \(\rightarrow\) Tb\(^{3+}\) \(\rightarrow\) Tb\(^{3+}\) \(\rightarrow\) Eu\(^{3+}\), intense green and red emission peaks are observed from LiYF\(_4\):Ce(13%), Tb(14%), Eu(1-5%) (LiYF\(_4\):Ce, Tb, Eu) nanophosphors, and the intensity ratio of green to red emission is controlled by adjusting the Eu\(^{3+}\) concentration. With increasing Eu\(^{3+}\) concentration, the LiYF\(_4\):Ce, Tb, Eu nanophosphors exhibit multicolor emission from green to orange. In addition, the successful incorporation of LiYF\(_4\):Ce, Tb, Eu nanophosphors into polydimethylsiloxane (PDMS) facilitates the preparation of highly transparent nanophosphor-PDMS composites that present excellent multicolor tunability.

Lanthanide ion (Ln\(^{3+}\) ion)-doped inorganic crystals have attracted considerable interest due to their unique optical properties, such as high luminescence efficiency and photo- and chemical stability, which facilitated their commercialization in display and illumination devices\(^1\)-\(^2\). Among the various Ln\(^{3+}\) ions, Eu\(^{3+}\) and Tb\(^{3+}\) are known to show efficient luminescence and are widely used in such devices\(^3\). For example, Y\(_2\)O\(_3\):Eu\(^{3+}\), (Y,Gd)BO\(_3\):Eu\(^{3+}\), Y\(_2\)O\(_3\)S:Eu\(^{3+}\) have been used in fluorescent lamps (FLs), plasma display panels (PDPs), cathode ray tubes (CRTs), respectively\(^4\)-\(^6\). In the case of Tb\(^{3+}\) ions, LaPO\(_4\):Ce\(^{3+}\), Tb\(^{3+}\), Gd\(_2\)O\(_3\): Tb\(^{3+}\), and YBO\(_3\): Tb\(^{3+}\) have been used in FLs, scintillators, and PDPs, respectively\(^5\)-\(^8\). Thus, many studies have been published on Eu\(^{3+}\)- and Tb\(^{3+}\)-activated inorganic crystals, which are known as phosphors\(^9\)-\(^11\). In 1999, Meijerink and colleagues introduced efficient red-emitting LiGdF\(_4\):Eu\(^{3+}\) phosphors that demonstrated a quantum efficiency (QE) greater than 100% via the quantum cutting (QC) process\(^9\). Such QC phosphors can be applied to solar cells for the improvement of solar cell efficiency by converting ultraviolet (UV) light into visible light with increased photon numbers\(^9\)-\(^10\). However, for application in solar cells, nanometer-sized QC phosphors (i.e., QC nanophosphors) should be used to minimize incident light scattering because the QC phosphors are located in front of the Si solar cells\(^11\)-\(^12\). Recently, thanks to the development of synthetic methodology, well-defined nanophosphors of uniform size were successfully synthesized via thermal decomposition, hydrothermal, and co-precipitation methods, among others\(^13\)-\(^22\). However, to the best of our knowledge, there have been no reports on LiGdF\(_4\):Eu\(^{3+}\) nanophosphors. This may be partly attributed to the difficulty associated with the synthesis of single-tetragonal-phase LiGdF\(_4\) nanocrystals (NCS)\(^22\)-\(^23\). On the other hand, LiYF\(_4\), which has the same crystal structure as LiGdF\(_4\), can also be
considered as a host crystal for nanophosphors. Because of its inherently low lattice phonon energy, LiYF$_4$ has been used as a host crystal for upconversion phosphors. Similar to the cases of NaYF$_4$ and NaGdF$_4$ as host materials, LiYF$_4$ may be a good candidate for downshifting phosphors as well as a promising host lattice for upconversion. In this article, we report on the luminescence properties of LiYF$_4$:Eu colloidal nanophosphors. To the best of our knowledge, colloidal LiYF$_4$:Eu nanophosphors have not yet been reported although micrometer-sized (larger than 10 μm) LiYF$_4$:Eu particles have been reported. To enhance the emission intensity of LiYF$_4$:Eu and achieve multicolor emission, Tb$^{3+}$ was employed as a sensitizer. Multicolor emission coupled with size- and shape-independent luminescence under single wavelength excitation is beneficial for multicolor labeling and display device applications. Energy transfer from a sensitizer ion to the Eu$^{3+}$ ion is a favorable solution for achieving enhanced Eu$^{3+}$ emission and multicolor luminescence. To obtain efficient energy transfer from the Tb$^{3+}$ sensitizer to the Eu$^{3+}$ ion, we used various approaches. First, we synthesized nanophosphors with a core/shell architecture in which Eu$^{3+}$ and Tb$^{3+}$ ions were separately doped within the core and the shell. We also synthesized Eu$^{3+}$ and Tb$^{3+}$ co-doped single-LiYF$_4$ NCs. In addition, Ce$^{3+}$ ions were used as sensitizers for enhanced luminescence and single wavelength excitation because the 4f-5d electronic transition in a Ce$^{3+}$ ion is a spin- and parity-allowed transition and the Ce$^{3+}$ ion has a large absorption cross-section. That is, LiYF$_4$:Eu/LiYF$_4$:Ce$^{3+}$, Tb$^{3+}$ (LiYF$_4$:Ce, Tb), LiYF$_4$:Ce, Tb/ LiYF$_4$:Eu, and LiYF$_4$:Ce$^{3+}$, Tb$^{3+}$, Eu$^{3+}$ (LiYF$_4$:Ce, Tb, Eu) nanophosphors were synthesized, and their luminescence properties were investigated. Furthermore, multicolor emission from green to orange was successfully realized by varying the Tb$^{3+}$ and Eu$^{3+}$ concentrations, and the feasibility of their use in a transparent display application was examined through the fabrication of multicolor-emitting polymer composites.

Results

LiYF$_4$:Eu nanophosphors with various Eu$^{3+}$ concentrations were synthesized to achieve strong red luminescence. Figure 1 shows transmission electron microscopy (TEM) images of the LiYF$_4$:Eu nanophosphors. Until 35 mol% Eu$^{3+}$ doping, the LiYF$_4$:Eu nanophosphors showed uniform size and shape. However, when the concentration of Eu$^{3+}$ was greater than 40 mol%, uniform small particles were obtained. This morphological change was attributed to the crystal structure of the LiYF$_4$:Eu. Doping the Y$^{3+}$ sites with ions that are larger than the Y$^{3+}$ ion induces the large particle size due to the presence of less negatively charged F$^{-}$ ions at the (101) surface layer of the LiYF$_4$ crystals. However, too much Eu$^{3+}$ doping led to the
formation of orthorhombic YF$_3$ NCs. According to Du et al. and Ye et al., the orthorhombic phase, instead of the tetragonal phase, readily forms under large Eu$^{3+}$ fraction28,29. Due to different crystal structures, LiYF$_4$:Eu exhibited a tetragonal bipyramidal morphology, as shown in Figures 1g and h (see also scanning transmission electron microscopy (STEM) image of LiYF$_4$:Eu(35%) in Figure S2), and YF$_3$:Eu showed a rhombic plate shape, as shown in Figures 11 and j).

Figure 2 shows photoluminescence (PL) and photoluminescence excitation (PLE) spectra of LiYF$_4$:Eu nanophosphors. Sharp emission peaks can be observed in the red spectral region of the PL spectra. These peaks were attributed to the electronic transitions from the excited 3D_0 and 3D_0 levels to the 3F_i ($i = 0–6$) levels. As shown in Figure 2a, a strong emission peak at approximately 610–620 nm can be ascribed to the hypersensitive electric dipole transition of the 3D_0 → 3F_2 transition. The emission peak at approximately 590–600 nm is due to the magnetic dipole transition of 3D_0 → 3F_1, which is lower than that due to the 3D_1 → 3F_2 transition, indicating that Eu$^{3+}$ ions are located at the non-inversion symmetric sites30. As the Eu$^{3+}$ concentration was increased to 35 mol% in the LiYF$_4$ host crystals, the PL intensity increased as well. At higher Eu$^{3+}$ concentrations, the PL intensity decreased. In addition, when the Eu$^{3+}$ concentration was 45 mol%, the shape of the PL spectrum differed from that of the LiYF$_4$:Eu(35%) nanophosphors. In this case, a single orthorhombic structure was formed, and the PL intensity due to the 3D_0 → 3F_1 transition was higher than that due to the 3D_0 → 3F_2 transition.

The strongest PLE peak can be observed at 394 nm (Figure 2b). This peak was attributed to the 5D_0 → 7F_6 transition. Because the charge transfer band of Eu$^{3+}$–F$^-$ lies within the vacuum ultraviolet (VUV) region (approximately 150 nm)3, a broad PLE band due to charge transfer was not observed (Figure 2b). Upon considering the first spin allowed f–d transition, the 4f–5d transition band is also found to lie within the VUV region (approximately 143 nm). According to Dorenbos38, the f–d energy difference of Eu$^{3+}$ ions doped in LiYF$_4$, $\Delta(E_{Eu})$ can be expressed as:

$$E(Eu, LiF_4) = 49,340 \text{ cm}^{-1} - D(Ce, LiF_4) + \Delta E_{Eu,Ce}$$

where 49,340 cm$^{-1}$ is the energy of the first f–d transition of Ce$^{3+}$ as a free ion, $D(Ce, LiF_4)$ is the crystal field depression, which is defined as the lowering of this energy when the Ce$^{3+}$ ion is doped in LiYF$_4$, and $\Delta E_{Eu,Ce}$ is defined as the difference in the f–d energy of Eu$^{3+}$ relative to that of the first electric dipole allowed transition in Ce$^{3+}$.38. Taking $D(Ce, LiF_4) = 15,262 \text{ cm}^{-1}$ and $\Delta E_{Eu,Ce} = 35,900 \pm 380 \text{ cm}^{-1}$ for LiYF$_4$, the f–d transition band of Eu$^{3+}$ ions in the LiYF$_4$ host crystal is expected to reside at 69,978 ± 380 cm$^{-1}$ (approximately 143 nm)38. Thus, broad excitation bands due to either charge transfer or the 4f–5d transition were not observed in the UV spectral range, whereas sharp excitation peaks due to the f–f transition can be observed in Figure 2b. In this spectral range, concentration of the activator Eu$^{3+}$ ions was linearly related to the PL intensity, indicating that Eu$^{3+}$ emission results from the direct excitation-emission of Eu$^{3+}$ ions39.

As shown in Figures 1 and 2, the optimized Eu$^{3+}$ concentration in terms of the PL intensity was 35 mol%, and further increasing the Eu$^{3+}$ doping fraction induced a phase transformation from tetragonal LiYF$_4$ to the orthorhombic YF$_3$ phase. To further enhance the Eu$^{3+}$ emission in LiYF$_4$ NCs, other strategies besides increasing the Eu$^{3+}$ concentration are needed. Energy transfer from a sensitizer to the Eu$^{3+}$ ions can be a good pathway for enhancing Eu$^{3+}$ luminescence. Previously, Wang et al. reported that Ce$^{3+}$ ions can be a sensitizer for Eu$^{3+}$ emission35. However, as shown in Figure S3, when Ce$^{3+}$ and Eu$^{3+}$ were co-doped in LiYF$_4$ NCs, orthorhombic phase YF$_3$ impurities were formed at a low Eu$^{3+}$ concentration of 15 mol% compared with LiYF$_4$:Eu$^{3+}$ nanophosphors. In addition, the 3D_0 → 3F_2 emission was stronger under Eu$^{3+}$ direct excitation at 394 nm than under the Ce$^{3+}$ → Eu$^{3+}$ energy transfer condition excited at 300 nm (Figure S3f). These results indicate that the use of Ce$^{3+}$ sensitization alone is incapable of significantly enhancing Eu$^{3+}$ emission in the LiYF$_4$ NCs. Recently, we reported on the high efficiency of the Ce$^{3+}$ → Tb$^{3+}$ → Eu$^{3+}$ energy transfer pathway35. Thus, we adopted Ce$^{3+}$ and Tb$^{3+}$ ions as co-sensitizers and synthesized various structures of LiYF$_4$:Eu-based nanophosphors, as shown

Figure 2 | (a) PL spectra of LiYF$_4$:Eu(10–45%) nanophosphors under the excitation of 394 nm and (b) PLE spectrum of LiYF$_4$:Eu(35%) nanophosphors monitored at 616 nm [(i) 10%, (ii) 20%, (iii) 30%, (iv) 35%, (v) 40%, and (vi) 45%].

Figure 3 | Schematic illustrations showing various architectures for enhancement of Eu$^{3+}$ emission from LiYF$_4$:Eu-based nanophosphors (a) LiYF$_4$:Eu/LiYF$_4$:Ce, Tb core/shell, (b) LiYF$_4$:Ce, Tb/LiYF$_4$:Eu core/shell, and (c) LiYF$_4$:Ce, Tb, Eu nanophosphors.
in Figure 3. Then, we investigated the various nanophosphor architectures for strong Eu\(^{3+}\) emission. Figures 3a and b show schematic illustrations of LiYF\(_4\):Eu/LiYF\(_4\):Ce, Tb and LiYF\(_4\):Ce, Tb/LiYF\(_4\):Eu core/shell nanophosphors. Ghosh et al. reported enhanced Tb\(^{3+}\) emission via energy transfer from Ce\(^{3+}\) ions (sensitizer) in the NaYF\(_4\) core to Tb\(^{3+}\) ions in the NaYF\(_4\) shell\(^{40}\). On the other hand, Capobianco’s group reported enhanced Er\(^{3+}\) emission via the additional energy transfer from Yb\(^{3+}\) ions in the NaGdF\(_4\) shell to Er\(^{3+}\) ions in the NaGdF\(_4\) core\(^{41}\).

In these core/shell structured nanophosphors, optimized Eu\(^{3+}\) concentrations can be doped into LiYF\(_4\) NCs because Eu\(^{3+}\) ions are singly doped into either the LiYF\(_4\) core or the LiYF\(_4\) shell. Figure 3c shows a schematic illustration of Ce\(^{3+}\), Tb\(^{3+}\), and Eu\(^{3+}\) triply-doped LiYF\(_4\) nanocrystals. Next, the aforementioned three types of nanophosphors were synthesized, and their luminescence properties were investigated.

Figures 4a and b show TEM images of LiYF\(_4\):Eu(35%) core and LiYF\(_4\):Eu(35%)/LiYF\(_4\):Ce(15%), Tb(15%) core/shell nanophosphors.
The particle size increased after shell formation on the LiYF₄:Eu(35%) cores. Energy dispersive X-ray spectroscopy (EDS) analyses indicated that core/shell structured nanophosphors were successfully synthesized (Figures 4c and d). In the EDS spectrum of a single LiYF₄:Eu(35%)/LiYF₄:Ce(15%), Tb(15%) nanoparticle, Ce and Tb peaks as well as Eu peaks were observed, whereas only Eu peaks were observed in the EDS spectrum of a single LiYF₄:Eu(35%) core nanoparticle. Combining the XRD patterns (Figure S4) with EDS spectra (Figures 4 and S5) confirmed that the Eu peak was very weak at the central region of a single LiYF₄:Eu(35%)/LiYF₄:Ce(15%), Tb(15%) core/shell nanoparticle, whereas Eu peaks were not observed at either central or S8 shows EDS spectra obtained at different locations (center and shown in Figures 5c and d. A single tetragonal phase was observed in the LiYF₄:Eu(35%) core nanoparticle. Combining the XRD patterns of Eu3⁺ emission was via the 5D⁴ → 7F₁ transition of the Eu 3⁺ ions. As a result, it was found that the Eu3⁺ → Tb³⁺ → Eu³⁺ energy transfer is more effective for intense Eu³⁺ emission than Eu³⁺ direct excitation-emission because the PLE intensity due to the 4f → 6d band excitation of Ce³⁺ was higher than that due to the 5D⁴ → 7F₁ excitation of Eu³⁺. It should be noted that a fraction of the excited energy can be directly transferred from Ce³⁺ to Eu³⁺, as shown in Figure S3f. In addition to Eu³⁺ emission peaks, Tb³⁺ characteristic emission peaks were observed via the D₄ → F₇ (J = 6, 5, 4, and 3) through Ce³⁺ → Tb³⁺ energy transfer (Figure 4e).

The luminescence properties of the LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) core/shell nanophosphors were also investigated. Figures 5a and b show TEM images of LiYF₄:Ce(15%), Tb(15%) core nanophosphors and LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) core/shell nanophosphors. The particle size increased from 31.6 ± 1.0 nm × 32.7 ± 1.1 nm to 37.7 ± 1.4 nm × 39.3 ± 1.5 nm after LiYF₄:Eu shell formation on the LiYF₄:Ce, Tb core, and only LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) exhibited Eu peaks in the EDS spectra, as shown in Figures 5c and d. A single tetragonal phase was observed in both the LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) nanophosphors and LiYF₄:Ce(15%), Tb(15%) nanophosphors (Figure S7). Figure S8 shows EDS spectra obtained at different locations (center and edge) of individual LiYF₄:Ce(15%), Tb(15%) core and LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) core/shell nanoparticles. In the EDS spectra of core nanoparticles, peaks associated with Ce and Tb were observed, whereas Eu peaks were not observed at either central or edge regions of the core nanoparticles (Figures S8a and b). In the core/shell nanoparticles, the intensity of the Eu peak was strong, whereas the Ce and Tb peaks were very weak at the edge region. By contrast, the intensities of the Ce and Tb peaks were strong and that of the Eu peak was very weak at the central region of the LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) core/shell nanoparticle (Figures S8c and d). These TEM, XRD, and EDS results support that LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) nanophosphors were successfully synthesized with a single tetragonal structure. Figure 5e shows the PL spectra of LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) nanophosphors excited at 300 and 394 nm. Like the case of LiYF₄:Eu(35%)/LiYF₄:Ce(15%), Tb(15%) excited at 300 nm, Tb³⁺ characteristic emission peaks via Ce³⁺ → Tb³⁺ energy transfer were observed together with Eu³⁺ emission peaks under excitation with 300 nm UV light. However, the PL intensity due to the D₄ → F₇ transition of the Eu³⁺ ions was lower under excitation with 300 nm light compared with excitation with 394 nm light. This finding indicates that Eu³⁺ emission is more efficient for the direct excitation of Eu³⁺ than for the indirect Eu³⁺ excitation via energy transfer of Ce³⁺ → (Tb³⁺) → Eu³⁺ in the LiYF₄:Ce(15%), Tb(15%)/LiYF₄:Eu(35%) nanophosphors. As shown in Figure 2b, a weak PLE peak can be observed in the UV spectral region (approximately 300 nm), and thus some fraction of externally originating UV light can be absorbed by the LiYF₄:Eu shell before absorption by Ce³⁺ in the core. Therefore, external UV light was not fully absorbed by Ce³⁺ ions in the LiYF₄:Ce, Tb core, and less excited energy was transferred from Ce³⁺ to Eu³⁺ through Tb³⁺ compared with the case of LiYF₄:Eu(35%)/LiYF₄:Ce(15%), Tb(15%) core/shell nanophosphors.

In addition to core/shell structured nanophosphors, the luminescence properties of Ce³⁺, Tb³⁺, and Eu³⁺ triply-doped LiYF₄ NCs are shown in Figure 6. The LiYF₄:Ce, Tb, Eu nanophosphors can also be synthesized with a core/shell structure, and Figures 6a and b show TEM images of LiYF₄:Ce(15%), Tb(15%), Eu(1%) and LiYF₄:Ce(15%), Tb(15%), Eu(1%)/LiYF₄ nanophosphors. When the Eu³⁺ concentration was larger than 1%, a single tetragonal bipyramidal shape did not form; instead mixed morphologies of tetragonal bipyramids and rhombohedral plates were observed in TEM image (Figure S9a). Although the Eu³⁺ concentration of LiYF₄:Ce(15%), Tb(15%), Eu(1%) nanophosphors was significantly smaller than that of LiYF₄:Eu(35%), the LiYF₄:Ce(15%), Tb(15%), Eu(1%) nanophosphors showed much stronger Eu³⁺ emission intensities under excitation with 300 nm light, which excited the Ce³⁺ ions. As shown in Figure 6c, the Eu³⁺ emission intensity of the LiYF₄:Ce(15%), Tb(15%), Eu(1%) under excitation with 300 nm light was three times higher than that of LiYF₄:Eu(35%) under excitation with 394 nm light. This result means that the Ce³⁺ → Tb³⁺ → Eu³⁺ energy transfer is more efficient in the Ce³⁺, Tb³⁺, and Eu³⁺ triply-doped LiYF₄ nanophosphors. In conclusion, in the case of LiYF₄ host crystals, the Ce³⁺, Tb³⁺, and Eu³⁺ triply-doped system was the most efficient for obtaining strong Eu³⁺ emission compared with the core/shell structured nanophosphors shown in Figure 3. Furthermore, the emission intensity of the nanophosphor was further enhanced by growing a LiYF₄ shell on the LiYF₄:Ce(15%), Tb(15%), Eu(1%) core. After forming the LiYF₄ shell on the core, the particle size was slightly increased (Figure 6b), and EDS spectra obtained from individual particles confirmed the formation of a core/shell structure (Figure S10). Thanks to the formation of a LiYF₄ shell on the core, the PL intensity of the LiYF₄:Ce(15%), Tb(15%), Eu(1%)/LiYF₄ core/shell nanophosphors was 62% higher than that of the core nanophosphors. As a result, the Eu³⁺ emission intensity of the core/shell nanophosphors was 4.6 times greater than that of the LiYF₄:Eu(35%) nanophosphors (Figure 6c). In the Ce, Tb, and Eu triply-doped phosphor system, it was reported that Tb blocks the Ce-Eu charge transfer44-46. However, weak Ce²⁺-related peaks were observed with strong Ce³⁺-related peaks in the X-ray photoelectron spectroscopy (XPS) spectrum of LiYF₄:Ce(15%), Tb(15%), Eu(1%) (Figure S11). In particular, the specific peak at 917 eV, which is frequently taken as confirmation of the presence of Ce⁴⁺, was observed in the XPS spectrum44-46. Although Ce²⁺-related peaks were very weak and negligible, there might be probability of the existence of the electron transfer relation (Ce²⁺ + Eu³⁺ → Ce⁴⁺ + Eu²⁺).

Multicolor emission from the LiYF₄:Ce, Tb, Eu nanophosphors was realized by varying the ratio of the Tb³⁺ to Eu³⁺ emission intensities. The desired outcome was readily achieved by adjusting the Eu³⁺ concentrations. However, as shown in Figure S9, when the Eu³⁺ concentration was 2 mol%, an impurity YF₃ phase was synthesized. According to Du et al., light lanthanide ions in the Y³⁺ sites of LiYF₄ resists the formation of a single tetragonal phase47. Thus, to increase the Eu³⁺ quantities in the LiYF₄ host, the amounts of Ce³⁺ and Tb³⁺ were reduced. Figure S12 shows XRD patterns of LiYF₄:Ce(13%), Tb(14%), Eu(1-5%) (LiYF₄:Ce, Tb, Eu) nanophosphors. These XRD patterns confirmed that all of the synthesized nanophosphors had a single tetragonal phase. Figure 7 shows PL and PLE spectra, and the Commission Internationale de l’Eclairage (CIE) color coordinates of the LiYF₄:Ce, Tb, Eu nanophosphors with varying Eu³⁺ concentrations. As the Eu³⁺ concentration increased, the intensity ratio of the Tb³⁺ emission to the Eu³⁺ emission decreased (Figures 7a and S13). Although the Ce²⁺ and Tb³⁺ concentrations decreased
slightly compared with LiYF₄:Ce(15%), Tb(15%), Eu(1%), the Eu³⁺ emission remained strong under excitation with 300 nm light. The Eu³⁺ emission intensity of LiYF₄:Ce(13%), Tb(14%), Eu(3%) under excitation with 300 nm light was 3.1 times greater than that of LiYF₄:Eu(35%) under excitation with 394 nm light (Figure 7b). As shown in the PLE spectra of Figure 7c, strong broad bands were observed in the UV region due to the 4f → 5d transition of Ce³⁺ ions, indicating the energy transfer from Ce³⁺ to Eu³⁺. According to Zhang et al. and Blasse, Tb³⁺ acts as an energy transfer mediator, bridging the energy transfer from Ce³⁺ to Eu³⁺ and blocks the corresponding metal-metal charge transfer 42,43. When we compared the Eu³⁺ emission intensity of LiYF₄:Ce(13%), Tb(14%), Eu(1%) with that of LiYF₄:Ce(13%), Tb(15%), the LiYF₄:Ce(13%), Tb(15%)/LiYF₄:Eu(35%) nanophosphor, where EDS spectra were obtained for red squares, respectively.
This result confirms that the Ce\(^{3+} \rightarrow \) Tb\(^{3+} \rightarrow \) Eu\(^{3+}\) energy transfer is more efficient than Ce\(^{3+} \rightarrow \) Eu\(^{3+}\) energy transfer. The LiYF\(_4\):Ce(13\%), Tb(14%), Eu(1%) nanophosphors emitted yellow-green light due to the intense \(^5D_4 \rightarrow ^7F_5\) transition of Tb\(^{3+}\) and weak \(^5D_0 \rightarrow ^7F_2\) transition of Eu\(^{3+}\) under excitation at 300 nm. The ratio of the PL intensity in the green spectral region due to the \(^5D_4 \rightarrow ^7F_5\) transition of Tb\(^{3+}\) ions to that in the red spectral region due to the \(^5D_0 \rightarrow ^7F_2\) transition of Eu\(^{3+}\) ions decreased with increasing Eu\(^{3+}\) concentration (Figure S13). As a result, the emission color of the LiYF\(_4\):Ce, Tb, Eu nanophosphors gradually transitioned from green to orange as a function of the Eu\(^{3+}\) concentration. The CIE color coordinates (x, y) of the LiYF\(_4\):Ce, Tb, Eu nanophosphors shifted from (0.3484, 0.5799) to (0.4936, 0.4675), as shown in Figure 7d. The gradual luminescence color shift from green to orange was directly confirmed with imaging showing the luminescence of LiYF\(_4\):Ce, Tb, Eu solutions illuminated with a hand-held UV lamp (Figure 7d inset).

Discussion

In the PLE spectra of Figure 7c, the PLE band due to the 4f \(\rightarrow\) 5d transition of Ce\(^{3+}\) ions was strong, whereas the PLE peak of the \(^7D_2 \rightarrow ^5D_4\) transition of Tb\(^{3+}\) ions at 487 nm was very weak (almost negligible). The weak PLE peak at 487 nm can be attributed to the weak excitation of Tb\(^{3+}\) ions at this wavelength and/or inefficient energy transfer from the Tb\(^{3+}\) to Eu\(^{3+}\) ions. When the PLE spectra of LiYF\(_4\):Ce, Tb, Eu(1–5%) were monitored at 545 nm for Tb\(^{3+}\) emission, the PLE peaks were also very strong at 487 nm, which is the direct excitation wavelength of Tb\(^{3+}\) (Figure S15). This result indicates that the weak PLE peak at 487 nm in Figure 7c was attributed to the weak direct excitation of Tb\(^{3+}\) at this wavelength. Thus, to confirm the energy transfer from Tb\(^{3+}\) to Eu\(^{3+}\), the decay time for Tb\(^{3+}\) emission was examined, although the LiYF\(_4\):Ce, Tb, Eu showed much stronger Eu\(^{3+}\) emission than LiYF\(_4\):Ce, Eu. According to Dexter theory\(^{46}\), the probability of energy transfer via multipolar interaction can be expressed by the following equation

\[
P(R) \propto \frac{Q_A}{R^b \tau_D} \int f_D(E) f_A(E) dE
\]

where \(P\) is the energy transfer probability, \(\tau_D\) is the decay time of the donor emission, \(Q_A\) is the total absorption cross-section of the acceptor, \(R\) is the distance between the donor and the acceptor, and \(b\) and \(c\) are parameters that depend on the type of energy transfer. Figure 8a shows the decay profiles of LiYF\(_4\):Ce, Tb, Eu nanophosphors monitored at 545 nm for Tb\(^{3+}\) emission with varying Eu\(^{3+}\) concentrations. The decay time of the Tb\(^{3+}\) emission was observed to shorten with increasing Eu\(^{3+}\) concentration. According to equation (2), because the energy transfer probability \(P\) is inversely proportional to the decay time of \(\tau_D\), the shortened decay time of the Tb\(^{3+}\) emission confirms the presence of an energy transfer pathway from Tb\(^{3+}\) to Eu\(^{3+}\). To better understand the process of energy trans-
fer from Tb$^{3+}$ to Eu$^{3+}$, the energy transfer efficiency (η_{ET}) from the sensitizer Tb$^{3+}$ ions to the activator Eu$^{3+}$ ions was calculated by using the following equation:

$$\eta_{ET} = 1 - \frac{I_S}{I_{S0}}$$

(3)

where I_S and I_{S0} are the emission intensities of the Tb$^{3+}$ ions with and without Eu$^{3+}$ ions, respectively. Figure 8b shows the calculated energy transfer efficiencies of the Tb$^{3+}$ to Eu$^{3+}$ pathway. As the Eu$^{3+}$ concentration was increased from 1 to 5 mol%, the energy transfer efficiency correspondingly increased from 55.7 to 85.8%. A direct energy transfer from Ce$^{3+}$ to Eu$^{3+}$ was also confirmed by measuring the Ce$^{3+}$ decay time (Figure S16). First, the Ce$^{3+}$ decay of LiYF$_4$:Ce(15%) was compared with that of LiYF$_4$:Ce(15%), Eu(10%), which showed the strongest red emission from Eu$^{3+}$ in the LiYF$_4$:Ce, Eu system, as shown in Figure S3. The Ce$^{3+}$ decay time was shortened from 12.3 ns for LiYF$_4$:Ce(15%) to 0.6 ns for LiYF$_4$:Ce(15%), Eu(10%). This result indicates that energy was transferred from Ce$^{3+}$ to Eu$^{3+}$ even though the nanophosphors were not doped with Tb$^{3+}$. In addition, the Ce$^{3+}$ decay time of LiYF$_4$:Ce(15%), Tb(15%), Eu(1%) was shorter than that of LiYF$_4$:Ce(15%), Tb(15%) (Figure S16(b)). Upon comparing the decay profile of the green-emitting LiYF$_4$:Ce(13%), Tb(14%) with that of the orange-emitting LiYF$_4$:Ce(13%), Tb(14%), Eu(5%), the Ce$^{3+}$ decay time (0.4 ns) of the LiYF$_4$:Ce(13%), Tb(14%), Eu(5%) was found to be shorter than that (1.2 ns) of the LiYF$_4$:Ce(13%), Tb(14%), as shown in Figure S17. These results also support the pathway of Ce$^{3+}$ to Eu$^{3+}$ energy transfer. In summary, the energy transfer process in LiYF$_4$:Ce, Tb, Eu nanophosphors can be depicted as in Figure 8c. When the LiYF$_4$:Ce, Tb, Eu nanophosphors were excited with 300 nm UV light, the external UV light was absorbed by Ce$^{3+}$ and then transferred to Tb$^{3+}$, followed by the transfer of this excited energy from Tb$^{3+}$ to Eu$^{3+}$. Some of the excited energy was directly transferred from Ce$^{3+}$ to Eu$^{3+}$. By considering the efficiencies of the Ce$^{3+}$ to Eu$^{3+}$ and Ce$^{3+}$ to Tb$^{3+}$ to Eu$^{3+}$ energy transfer pathways, we conclude that Ce$^{3+}$ to Tb$^{3+}$ to Eu$^{3+}$ energy transfer is more efficient than Ce$^{3+}$ to Eu$^{3+}$ energy transfer, based on the PL spectra shown in Figure S14. The stronger Eu$^{3+}$ intensity of LiYF$_4$:Ce(13%), Tb(14%), Eu(1%) relative to that of LiYF$_4$:Ce(13%), Eu(1%) means that the Ce$^{3+}$ to Tb$^{3+}$ to Eu$^{3+}$ energy transfer pathway is more efficient than Ce$^{3+}$ to Eu$^{3+}$ energy transfer, which is consistent with previous reports. As a consequence, the emission peaks are observed in the green and red spectral regions with intensity ratios that vary as a function of the Eu$^{3+}$ concentration.

Nanophosphors with uniform size and shape can be dispersed in a polymer matrix. To investigate the feasibility of applying LiYF$_4$:Ce, Tb, Eu nanophosphors to transparent display devices, the nanopho-
sphors were incorporated into polydimethylsiloxane (PDMS) polymer. Figure 9 depicts photographs of the LiYF4:Ce, Tb, Eu nanophosphor-PDMS composites taken under ambient indoor light and UV illumination. As shown in Figures 9a, S18a, and S19a, the LiYF4:Ce, Tb, Eu nanophosphor-PDMS composites were highly transparent, and the background logos can clearly be seen. Transmittances of most nanophosphor-PDMS composites were higher than 75% in the visible spectral range (Figure S20). As we expected from the multicolor-emitting properties of the LiYF4:Ce, Tb, Eu nanophosphors, the LiYF4:Ce, Tb, Eu nanophosphor-PDMS composites also showed bright multicolor emission from green to orange, including yellow-green, greenish yellow, yellow, and orange yellow under illumination with a hand-held UV lamp (Figures 9b, S18b, and S19b). The emission of uniform visible light from the highly transparent nanophosphor-PDMS composites verifies that the LiYF4:Ce, Tb, Eu nanophosphors were uniformly incorporated into the PDMS polymer, and the resulting nanophosphor-PDMS polymer composites also showed bright multicolor emission from green to orange, indicating that the LiYF4:Ce, Tb, Eu nanophosphors have the potential for applications in transparent display devices.

Methods
Materials. LiOH·H2O (99.995%), YCl3·6H2O (99.99%), CeCl3·7H2O (99.999%), TbCl3·6H2O (99.9%), EuCl3·6H2O (99.99%), NH4F (99.99+%), oleic acid (OA, technical grade 90%), and 1-octadecene (ODE, technical grade 90%) were purchased from Aldrich and used without further purification. Sodium oleate (>97%) was obtained from TCI.

Synthesis of the LiYF4:Eu nanophosphors. First, the lanthanide oleates [Ln(oleate)3, Ln = Y and Eu] were prepared by adapting the synthesis reported by Hyeon and colleagues49. Then, 1 mmol of Ln(oleate)3 complexes was loaded into a three-necked flask containing a solvent mixture of 10.5 mL OA and 10.5 mL ODE. The mixture was heated to 150°C for 40 min. After the reaction mixture cooled to 50°C, a methanol (MeOH) solution (10 mL) containing LiOH·H2O (2.5 mmol) and NH4F (4 mmol) was added to the reaction flask and stirred for 40 min. After removing the MeOH, the solution was heated to 320°C for 90 min under an Ar atmosphere. The as-synthesized nanophosphors were washed several times with ethanol and then dispersed in chloroform.

Synthesis of the LiYF4:Eu/LiYF4:Ce, Tb and LiYF4:Ce, Tb/LiYF4:Eu core/shell nanophosphors. For the synthesis of LiYF4:Eu/LiYF4:Ce, Tb nanophosphors, 0.7 mmol of YCl3·6H2O, 0.15 mmol of CeCl3·7H2O, and 0.15 mmol of TbCl3·6H2O, 0.15 mmol of EuCl3·6H2O, 0.15 mmol of TbCl3·6H2O, and 1 mmol of OA were placed in a three-necked flask and degassed under Ar atmosphere. Then, 15 mL OA was added, and the solution was heated to 150°C for 40 min. After the reaction mixture cooled to 50°C, a methanol (MeOH) solution (10 mL) containing LiOH·H2O (2.5 mmol) and NH4F (4 mmol) was added to the reaction flask and stirred for 40 min. After removing the MeOH, the solution was heated to 320°C for 90 min under an Ar atmosphere. The as-synthesized nanophosphors were washed several times with ethanol and then dispersed in chloroform.
were loaded into a three-necked flask containing a solvent mixture of 10.5 mL OA and 10.5 mL ODE. The mixture was heated to 150°C for 40 min. After the solution was cooled to 80°C, 10 mL of LiYF4:Eu chlorofluor solution was injected into the reaction flask. Then, the chlorofluor solvent was removed, and the reaction mixture was cooled to 50°C. A MeOH solution (10 mL) containing LiOH·H2O (2.5 mmol) and NH4F (4 mmol) was added to the reaction flask and stirred for 40 min. After the MeOH was removed, the solution was heated to 300°C for 110 min under an Ar atmosphere. The as-synthesized nanophosphors were washed several times with ethanol and then dispersed in chloroform.

Preparation of the nanophosphor-PDMS composites. To prepare the multicolor-emitting LiYF4:Ce, Tb, Eu-PDMS composites, 0.4 mL of the LiYF4:Ce, Tb, Eu solution was thoroughly mixed with 10 mL of SLYGARD silicone elastomer 184 followed by the addition of a curing agent (1 mL). Finally, the nanophosphor-PDMS composites were aged overnight and then heat-treated at 80°C for 1 h.

Characterization. The crystal structures of the as-synthesized nanophosphors were determined using a Bruker D8 ADVANCE diffractometer with Cu Kα radiation (λ = 1.5406 Å) at 40 kV and 40 mA. The PLE and PL spectra and PL decay profiles of the nanophosphor solutions were obtained using a Hitachi F-7000 spectrophotometer. The size and morphology of the nanophosphors were investigated using a Tecnai G2 F20 (FEI Co.) operated at 200 kV. The EDS spectra were obtained using an EDAX EDS spectrometer PV9761.

1. Höppe, H. A. Recent Developments in the Field of Inorganic Phosphors. Angew. Chem. Int. Ed. 48, 3572–3582 (2009).
2. Feldmann, C. et al. Inorganic Luminescent Materials: 100 Years of Research and Application. Adv. Funct. Mater. 13, 511–516 (2003).
3. Blasse, G. & Grabmaier, B. C. Luminescent Materials. (Springer, Berlin, 1994).
4. van der Kolk, E. et al. Optimised co-activated willimite phosphors for application in plasma display panels. J. Lumin. 87–89, 1246–1249 (2000).
5. Yadav, R. S. et al. Development of plasma display panel phosphors at National Physical Laboratory, New Delhi. Indian J. Pure Appl. Phys. 47, 399–401 (2009).
6. Won, Y.-H. et al. Red-emitting LiLa2O2BO3:Sm3+, Eu3+ phosphor for near-ultraviolet light-emitting diodes-based solid-state lighting. J. Electrochem. Soc. 155, 1226–1229 (2008).
7. Weig, R. T. et al. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999).
8. Richards, B. S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. Cells 90, 2329–2337 (2006).
9. van der Ende, B. M. et al. Near-Infrared Quantum Cutting for Photovoltaics. Adv. Mater. 21, 3073–3077 (2009).
10. Rodriguez, V. D. et al. Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics. Sol. Energy Mater. Sol. Cells 94, 1612–1617 (2010).
11. Yi, G. S. & Chow, G. M. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence. Adv. Funct. Mater. 16, 2324–2329 (2006).
12. Mai, H.-X. et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).
13. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).
14. Na, H. et al. Rational morphology control of β-NaF2:Tb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping. Nanoscale 5, 4242–4251 (2013).
15. Jang, H. S. et al. Bright dual-mode green emission from selective set of dopant ions in β-Na(Y,Gd)F6:Yb,Er/β-NaGdF4:Ce, Tb core/shell nanocrystals. Opt. Express 20, 17107–17118 (2012).
16. Kim, S. Y. et al. Highly bright multicolor tunable ultrafast β-Na(Y,Gd)F6:Ce, Tb, Eu/β-NaF2:Yb,Er core/shell nanocrystals. Nanoscale 5, 9255–9263 (2013).
17. Gai, S. et al. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chem. Rev. 114, 2343–2389 (2014).
18. Du, Y. et al. In Vivo Multimodality Imaging and Cancer Therapy by Near-Infrared Light-Triggered trans-Platinum Pro-Conjugated Upconversion Nanoparticles. J. Am. Chem. Soc. 135, 18920–18929 (2013).
19. Dai, Y. et al. Up-Conversion Cell Imaging and pH-Induced Thermally Controlled Drug Release from NaF2:Tb/F3 (Core/Shell) Nanoparticles. ACS Nano 6, 3327–3338 (2012).
20. Li, C. & Lin, J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem. 20, 6831–6847 (2010).
21. Wang, Z. L. et al. A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3:Ce3+, Tb3+ and CeF3:Tb3+, LaF3 (Core/Shell) Nanoparticles. Chem. Mater. 18, 2030–2036 (2006).
22. Du, Y.-P. et al. Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluoroacetate precursors. Dalton Trans. 38, 8574–8581 (2009).
23. Na, H. et al. Facile synthesis of intense green light emitting LiGdF4:Yb,Er-based upconversion bipyridyl nanocrystals and their polymer composites. Nanoscale 6, 7461–7468 (2014).
24. Chen, G. et al. Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm. ACS Nano 5, 4981–4986 (2011).

Figure 9 Digital camera images of (a) LiYF4:Ce (13%), Tb (14%), Eu (0%)-PDMS bar (left) and disk (right) under room light (upper panel) and UV lamp illumination (lower panel) and (b) LiYF4:Ce (13%), Tb (14%), Eu (0.5%)-PDMS disks under UV lamp illumination: (i) 0%; ii) 1%; iii) 2%; iv) 3%; v) 4%; and vi) 5%. The logo in (a) was reprinted with permission from Korea Institute of Science and Technology (KIST).
25. Mahalingam, V. et al. Colloidal Tm\(^{3+}/\)Yb\(^{3+}\)-Doped LiYF\(_4\) Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation. Adv. Mater. 21, 4025–4028 (2009).

26. Wang, J. et al. Lanthanide-doped LiYF\(_4\) nanoparticles: Synthesis and multicolor upconversion tuning. C. R. Chim. 13, 731–736 (2010).

27. Boyer, J.-C. et al. Synthesis, characterization, and spectroscopy of NaGdF\(_4\) Ce\(^{3+}\), Tb\(^{3+}\)/NaYF\(_4\) core/shell nanoparticles. Chem. Mater. 19, 3358–3360 (2007).

28. Tu, D. T. et al. Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF\(_4\) Nanocrystals. Angew. Chem. Int. Ed. 50, 6306–6310 (2011).

29. Combes, C. M. et al. Optical and scintillation properties of Ce\(^{3+}\) doped LiYF\(_4\) and LiLuF\(_4\) crystals. J. Lumin. 71, 65–70 (1997).

30. Kiliaan, H. S. et al. Energy transfer phenomena in Li(Y, Gd)\(_2\)Ce, Tb. J. Lumin. 35, 155–161 (1986).

31. Zhang, X. et al. The synthesis and mechanism exploration of europium-doped LiYF\(_4\) micro-octahedron phosphors with multilevel interiors. Dalton Trans. 43, 5453–5461 (2014).

32. Wang, F. et al. Multicolor tuning of (Ln, P)-Doped YVO\(_4\) nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 47, 906–909 (2008).

33. Zhang, F. et al. Rare-Earth Upconverting Nanobarcodes for Multiplexed Biological Detection. Small 7, 1972–1976 (2011).

34. DiMaio, J. R. et al. Controlling energy transfer between multiple dopants within a single nanoparticle. Proc. Natl. Acad. Sci. U.S.A. 105, 1809–1813 (2008).

35. Wang, F. et al. Multicolour PEI/PbGdF\(_4\)Ce\(^{3+}\), Ln\(^{3+}\) nanocrystals by single-wavelength excitation. Nanotechnology 18, 025701 (2007).

36. Ye, X. et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nat. Chem. 5, 466–473 (2013).

37. Ptacek, P. et al. Crystal phase control of luminescing NaGdF\(_4\)Eu\(^{3+}\) nanocrystals. Adv. Funct. Mater. 17, 3843–3848 (2007).

38. Dorenbos, P. The 5d level positions of the trivalent lanthanides in inorganic compounds. J. Lumin. 91, 155–176 (2000).

39. Kang, J. H. et al. Correlation of photoluminescence of (Y, Ln)V\(_2\)O\(_5\)Eu\(^{3+}\) (Ln = Gd and La) phosphors with their crystal structures. Solid State Commun. 133, 651–656 (2005).

40. Ghosh, P. et al. Energy transfer study between Ce\(^{3+}\) and Tb\(^{3+}\) ions in doped and core-shell sodium yttrium fluoride nanocrystals. Nanoscale 2, 1196–1202 (2010).

41. Vetrone, F. et al. The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles. Adv. Funct. Mater. 19, 2924–2929 (2009).

42. Blasse, G. Energy Transfer from Ce\(^{3+}\) to Eu\(^{3+}\) in (Y,Gd)F\(_4\), Phys. Status Solidi A 75, K41–K43 (1983).

43. Zhang, X. et al. Tunable Luminescence and Ce\(^{3+}\) → Tb\(^{3+}\) → Eu\(^{3+}\) Energy Transfer of Broadband-Excited and Narrow Line Red Emitting Y\(_2\)SiO\(_5\)Ce\(^{3+}\), Tb\(^{3+}\), Eu\(^{3+}\) Phosphor. J. Phys. Chem. C 118, 7591–7598 (2014).

44. Rack, P. D. et al. Determination of the Ce\(^{3+}\) bonding in the C\(_{60}\)S\(_2\)Sn\(_2\)S\(_2\)Ce phosphor via x-ray photoelectron spectroscopy. J. Appl. Phys. 86, 2377–2384 (1999).

45. Deng, S. et al. Mn–Ce oxide as a high-capacity adsorbent for fluoride removal from water. J. Hazard. Mater. 186, 1360–1366 (2011).

46. Dexter, D. L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 21, 836–850 (1953).

47. Cao, C. et al. Hydrothermal synthesis and enhanced photoluminescence of Tb\(^{3+}\) in Ce\(^{3+}/\)Tb\(^{3+}\) doped KGDf\(_4\) nanocrystals. J. Mater. Chem. 21, 10342–10347 (2011).

48. Chai, R. et al. In Situ Preparation and Luminescent Properties of Ce\(_3\)F\(_5\) and Ce\(_2\)F\(_5\)/Tb\(^{3+}\) Nanoparticles and Transparent Ce\(_2\)F\(_5\)/Tb\(^{3+}\)/PMMA Nanocomposites in the Visible Spectral Range. J. Phys. Chem. C 113, 8070–8076 (2009).

49. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

Acknowledgments
This work was supported by the Dream project (2V03410) and Flagship project (2E24572) funded by the Korea Institute of Science and Technology (KIST), and the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (NRF-2013M3C1A3065040).

Author contributions
S.Y.K., Y.-H.W. and H.S.J. wrote the manuscript. H.S.J. designed the concept and the experiment method of the research. S.Y.K. carried out synthesis of materials, optical and structural characterization of the synthesized samples. Y.-H.W. analyzed experimental data. All authors reviewed manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports/

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kim, S.Y., Won, Y.-H. & Jang, H.S. A Strategy to enhance Eu\(^{3+}\) emission from LiYF\(_4\):Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites. Sci. Rep. 5, 7866; DOI:10.1038/srep07866 (2015).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/