Integral Congruences

To each \(i, j \) belonging to some set of integers, attach the integer \(a_{ij} \). For the congruences

\[
x_j - x_i \equiv a_{ij} \mod (i, j)
\]
to be solvable, we must have

\[
a_{ij} + a_{jk} \equiv a_{ik} \mod (i, j, k)
\]
for all \(i, j, k \).

Theorem 1 This condition is sufficient.

We can generalize the question as follows. Let \(n \) be a positive integer and \((a(i_0, \ldots, i_n))_{i_0, \ldots, i_n \in I}\) a family of integers. For the congruences

\[
\sum_j (-1)^j x(i_0, \ldots, \hat{i_j}, \ldots, i_n) \equiv a(i_0, \ldots, i_n) \mod (i_0, \ldots, i_n)
\]
to be solvable, we must have

\[
\sum_j (-1)^j a(i_0, \ldots, \hat{i_j}, \ldots, i_{n+1}) \equiv 0 \mod (i_0, \ldots, i_{n+1})
\]
for all \(i_0, \ldots, i_{n+1} \in I \).

Theorem 2 This condition is sufficient.

To push the generalization further, let \(A \) be an abelian group, \((A_i)_{i \in I}\) a family of subgroups, \(n \) a positive integer and \((a(i_0, \ldots, i_n))_{i_0, \ldots, i_n \in I}\) a family of elements of \(A \). For the congruences

\[
\sum_j (-1)^j x(i_0, \ldots, \hat{i_j}, \ldots, i_n) \equiv a(i_0, \ldots, i_n) \mod A_{i_0} + \cdots + A_{i_n}
\]
to be solvable, we must have

\[
\sum_j (-1)^j a(i_0, \ldots, \hat{i_j}, \ldots, i_{n+1}) \equiv 0 \mod A_{i_0} + \cdots + A_{i_{n+1}}
\]
for all \(i_0, \ldots, i_{n+1} \in I \).

Theorem 3 This condition is not sufficient in general.
The above statement and its proof were suggested by Pierre Schapira and Terence Tao. Recall that a lattice is **distributive** if one of the two operations is distributive over the other, or, equivalently, if each operation is distributive over the other.

Theorem 4 If the indexing set I is finite and if the A_i generate a distributive lattice, then the above condition is sufficient.

The above statement and its proof were suggested by Anton Deimtar.

1 **Refinements**

Let A be an abelian group and $(A_i)_{i \in I}$ a family of subgroups. Form the cochain complex

$$C^n(I) := \prod_{i_0, \ldots, i_n \in I} \frac{A}{A_{i_0} + \cdots + A_{i_n}}, \quad d : C^{n-1}(I) \to C^n(I),$$

$$(df)(i_0, \ldots, i_n) \equiv \sum_j (-1)^j f(i_0, \ldots, \hat{i}_j, \ldots, i_n) \mod A_{i_0} + \cdots + A_{i_n}.$$

Let $(B_j)_{j \in J}$ be another family of subgroups. A map τ from J to I is a **refinement map** if

$$A_{\tau j} \subset B_j \quad \forall \ j \in J,$$

and J is a **refinement** of I if there is such a refinement map. A refinement map τ induces a cochain map, still denoted τ, from $C^n(I)$ to $C^n(J)$ defined by

$$(\tau f)(j_0, \ldots, j_n) \equiv f(\tau j_0, \ldots, \tau j_n) \mod B_{j_0} + \cdots + B_{j_n},$$

and thus a morphism τ^* from $H^n(I)$ to $H^n(J)$.

Let σ be another refinement map from J to I. We claim $\sigma^* = \tau^*$. Define the morphism h from $C^n(I)$ to $C^{n-1}(J)$ by

$$(hf)(j_0, \ldots, j_{n-1}) := \sum_k (-1)^k f(\tau j_0, \ldots, \tau j_k, \sigma j_k, \ldots, \sigma j_{n-1}) \mod B_{j_0} + \cdots + B_{j_{n-1}}.$$

We have
\[dh + hd = \sigma - \tau, \]

which implies the claim.

Let \((A_i)_{i \in I}\) be as above, put

\[J := \{ A_i \mid i \in I \}, \]

let \((B_j)_{j \in J}\) be the tautological family, let \(\pi\) be the natural surjection from \(I\) onto \(J\) and \(\iota\) a section of \(\pi\). Then \(\pi\) and \(\iota\) are refining maps, and \(C(I)\) and \(C(J)\) are homotopy equivalent.

2 Coefficient Systems

Recall the a **simplicial complex** is a set \(K\) equipped with a set of nonempty finite subsets, called **simplices** subject to the condition that a nonempty subset of a simplex is a simplex. A map between two simplicial complexes is **simplicial** if it maps simplices to simplices. For \(n \geq 0\) let \(\Delta_n\) be the set \(\{0, 1, \ldots, n\}\) equipped with the simplicial structure giving the status of simplex to all nonempty finite subsets, say that a a **singular** \(n\)-**simplex** of \(K\) is a simplicial map from \(\Delta_n\) to \(K\), and let \(S_n(K)\) be the set of singular \(n\)-simplices of \(K\). For \(n > 0\) and \(i \in \Delta_n\) let \(f_i\) be the increasing map from \(\Delta_{n-1}\) to \(\Delta_n\) missing the vertex \(i\).

Let \(C_n(K)\) be the free abelian group generated \(S_n(K)\) and consider the morphisms

\[\partial_n = \partial : C_n(K) \to C_{n-1}(K), \quad \partial s := \sum_i (-1)^i s f_i \quad \forall s \in K_n \]

for \(n > 0\), and

\[\varepsilon : C_0 \to \mathbb{Z}, \quad s \mapsto 1 \quad \forall s \in S_0(K). \]

Then \((C_*(K), \partial, \varepsilon)\) is an augmented chain complex.

Lemma 5 Let \(s\) be in \(S_n(K)\) and \(\Phi(s)\) the subgroup of \(C_*(K)\) generated by the singular simplices of the form \(sf\) with \(f : \Delta_k \to \Delta_n\). Then \(\Phi(s)\) is an acyclic augmented subcomplex of \(C_*(K)\).

Proof. It is clear that \(\Phi(s)\) is a subcomplex of \(C_*(K)\), and that

\[sf \mapsto (s0, sf0, \ldots, sf n) \]
is a homotopy from the identity of $\Phi(s)$ to 0. QED

Let \leq be an ordering on K and φ be the \mathbb{Z}-linear endomorphism of $C_*(K)$ defined by

$$\varphi s := s \text{ if } s \text{ is noninjective},$$

$$\varphi(s_0, \ldots, s_n) := s - (-1)^{\sigma}(s_\sigma 0, \ldots, s_\sigma n) \text{ if } s \text{ is injective, } \sigma \text{ is the permutation characterized by } s_\sigma 0 < \cdots < s_\sigma n, \text{ and } (-1)^{\sigma} \text{ is the signature of } \sigma.$$

Then φ is an endomorphism of the augmented complex $(C_*(K), \partial, \varepsilon)$.

Lemma 6 There is a homotopy h from φ to 0 such that hs is in $\Phi(s)$ for all $s \in S_n(K)$.

Proof. Put $C_n := C_n(K)$, let h_0 be the zero morphism from C_0 to C_1, and assume that we have morphisms $h_n : C_n \to C_{n+1}$ satisfying

$$\partial_{n+1} h_n = \varphi_n - h_{n-1} \partial_n$$

for $n < k$. We want to define $h_k : C_k \to C_{k+1}$ in such a way that we have

$$\partial_{k+1} h_k = \varphi_k - h_{k-1} \partial_k.$$

Observe

$$\partial_k (\varphi_k - h_{k-1} \partial_k) = \varphi_{k-1} \partial_k - \partial_k h_{k-1} \partial_k$$

$$= \varphi_{k-1} \partial_k - (\varphi_{k-1} - h_{k-2} \partial_{k-1}) \partial_k$$

$$= 0$$

and use the previous Lemma. QED

Let A be a ring (commutative with 1). Define the category K^Δ as follows. The objects of K^Δ are the singular simplices of K. The morphisms from $s \in S_n(K)$ to $t \in S_k(K)$ are the maps f from Δ_k to Δ_n such that $t = sf$, the composition being the obvious one. Say that a **coefficient system** over K is a functor from K^Δ to the category of A-modules.

If V is a coefficient system over K, then we denote by $V(s)$ the A-module attached to $s \in S_n(K)$ and by $V(s, f)$ the morphism from $V(s)$ to $V(sf)$ associated with the map f from Δ_k to Δ_n.

Denote by $c = (c(s))_{s \in S_n(K)} \in C^n(K, V)$ the vectors of the A-module
\[C^n(K, V) := \prod_{s \in S_n(K)} V(s). \]

and consider the morphisms

\[d_{n-1} = d : C^{n-1}(K, V) \to C^n(K, V), \quad (dc)(s) := \sum_i (-1)^i V(s, f_i) c(s) \]

for \(n > 0 \). Then \((C^*(K, V), d) \) is a cochain complex.

Assume \(V_{s\sigma} = V_s \) whenever \(s \) is injective and \(\sigma \) is a permutation. Say that the cochain \(c \) of \(C^n(K, V) \) is \textbf{alternating} if

(a) \(c(s) = 0 \) whenever \(s \) is noninjective,

(b) \(c(s\sigma) = -c(s) \) whenever \(s \) is injective and \(\sigma \) is an odd permutation.

The alternating cochains form a subcomplex \(C^\prime*(K, V) \) of \(C^*(K, V) \).

If \(\psi \) is a \(\mathbb{Z} \)-linear map from \(C_p(K) \) to \(C_q(K) \) of the form

\[\psi s = \sum_{f: \Delta_q \to \Delta_p} \lambda_{s,f} s f \]

with \(\lambda_{s,f} \in \mathbb{Z} \), if \(c \) is in \(C^q(K, V) \) and \(s \) in \(S_p(K) \), we put

\[(h'c)(s) := \sum_f \lambda_{s,f} V(s, f) c(s). \]

We clearly have

Proposition 7 In the above notation \(1 - \varphi' \) is a projector onto \(C^\prime*(K, V) \). Moreover if \(h \) is the homotopy of the previous Lemma, then \(h' \) is a homotopy from \(1 - \varphi' \) to the identity. In particular the inclusion of \(C^\prime*(K, V) \) into \(C^*(K, V) \) is a quasi-isomorphism.

3 Rings

By “ring” we mean “commutative ring with 1”. A **domain** is a nonzero ring which has no nontrivial zero divisors. An ideal of a ring is **prime** if the quotient is a domain.

Lemma 8 The inverse image of a prime ideal under a ring morphism is prime.
Proof. Left to the reader.

A subset \(S \) of a ring \(A \) is \textbf{multiplicative} if it contains 1 and is closed under multiplication. Let \(A \) be a ring, \(S \) a multiplicative subset and \(V \) an \(A \)-module. For \((v_1, s_1), (v_2, s_2) \in V \times S\) write \((v_1, s_1) \sim (v_2, s_2)\) if there is an \(s \in S \) such that \(s(s_1v_2 - s_2v_1) = 0 \). This is an equivalence relation. Let \(S^{-1}V \) be the quotient and denote the class of \((v, s)\) by \(v/s \), by \(v_s \) or by \(s^{-1}v \). For \((v_1, s_1), (v_2, s_2) \in V \times S, a \in A, v \in V\) put

\[
\frac{v_1}{s_1} + \frac{v_2}{s_2} = \frac{s_2v_1 + s_1v_2}{s_1s_2} , \quad \frac{a}{s_1} \frac{v}{s_2} = \frac{av}{s_1s_2} .
\]

These formulas equip respectively \(S^{-1}A \) and \(S^{-1}V \) with well defined structures of ring and \((S^{-1}A)\)-module. We say that \(S^{-1}A \) and \(S^{-1}V \) are respectively the \textbf{ring of fractions of} \(A \) \textbf{with denominators in} \(S \) and the \textbf{module of fractions of} \(V \) \textbf{with denominators in} \(S \). The map

\[i_V : V \to S^{-1}V, \quad v \mapsto \frac{v}{1}\]

is called the \textbf{canonical morphism}.

\textbf{Lemma 9} The canonical morphism \(i_A \) is a ring morphism and \(i_V \) is an \(A \)-module morphism whose kernel consists of those elements of \(V \) which have an annihilator in \(S \).

\textbf{Proof.} Left to the reader.

\textbf{Lemma 10 (Universal Property)} Any ring morphism \(A \to B \) mapping \(S \) into the multiplicative group \(B^\times \) factors uniquely through \(S^{-1}A \). Under the same assumption, if \(V \) is an \(A \)-module and \(W \) a \(B \)-module, then any \(A \)-module morphism \(V \to W \) factors uniquely through \(S^{-1}V \), the induced map \(S^{-1}V \to W \) being an \((S^{-1}A)\)-module morphism.

\textbf{Proof.} Left to the reader.

\textbf{Lemma 11} The \((S^{-1}A)\)-modules \(S^{-1}V \) and \(S^{-1}A \otimes_A V \) are canonically isomorphic.

\textbf{Proof.} Left to the reader.

Recall that an \(A \)-module \(F \) is \textbf{flat} if for all \(A \)-module monomorphism \(W \hookrightarrow V \) the obvious morphism \(F \otimes_A W \to F \otimes_A V \) is injective. The Lemma below, which follows from the previous one, will be freely used.
Lemma 12 The A-module $S^{-1}A$ is flat.

Let A be a ring, let S be a multiplicative subset, let i be the canonical morphism i_A, let \mathcal{J} be the set of all ideals of $S^{-1}A$ and \mathcal{I} the set of those ideals I of A such that the nonzero elements of A/I have no annihilators in S.

Lemma 13 We have

1. $S^{-1}I = (S^{-1}A)i(I)$ for all ideal I of A;
2. $S^{-1}i^{-1}(J) = J$ for all $J \in \mathcal{J}$;
3. if I is an ideal of A, the ideal $i^{-1}(S^{-1}I)$ of A is formed by those a in A whose image in A/I has an annihilator in S;
4. i^{-1} maps \mathcal{J} bijectively onto \mathcal{I} and the inverse bijection is given by S^{-1}:

$$\begin{array}{c}
\mathcal{I} \xrightarrow{S^{-1}i^{-1}} \mathcal{J}.
\end{array}$$

5. for $J \in \mathcal{J}$ and $I := i^{-1}(J)$, the canonical morphism from $S^{-1}A$ to $S^{-1}(A/I)$ is surjective, its kernel is J and $i_{A/I}$ is injective;
6. a prime ideal of A is in \mathcal{I} iff it is disjoint from S;
7. S^{-1} and i^{-1} induce inverse bijections between the set of prime ideals of A disjoint from S and the set of prime ideals of $S^{-1}A$.

Proof. Follows from the previous Lemmas. QED

Lemma 14 An ideal of A is prime iff its complement is multiplicative.

Proof. Left to the reader.

If $S \subset A$ is the complement of a prime ideal P and V an A-module, we put

$$A_P := S^{-1}A, \quad V_P := S^{-1}V.$$ \hfill (1)

Lemma 15 Let p be a prime number and (F_i) a family of finite abelian groups. Then the natural morphism

$$\left(\prod_i F_i \right)_{(p)} \rightarrow \prod_i (F_i)_{(p)}$$

is bijective.

Proof. We can assume either that each F_i is a p-group, or that each F_i is a p_i-group for some prime $p_i \neq p$. QED

7
4 The local case

Let \(p \) be a prime number. Part 7 of Lemma 13 implies that the ideals of \(\mathbb{Z}_p \) are precisely the powers of \(p \mathbb{Z}_p \). Let \(J_1, J_2, \ldots \) be a (possibly finite) decreasing sequence of ideals of \(\mathbb{Z}_p \), and form the cochain complex

\[
C^n := \prod_{i_0 < \cdots < i_n \in I} \mathbb{Z}_p / J_{i_0}, \quad d : C^{n-1} \to C^n,
\]

\[
(df)(i_0, \ldots, i_n) \equiv \sum_j (-1)^j f(i_0, \ldots, \hat{i}_j, \ldots, i_n) \bmod J_{i_0}.
\]

Proposition 16 We have \(H^n(C) = 0 \) for \(n > 0 \).

Proof. We denote by the same symbol an element of \(\mathbb{Z}_p \) and its class modulo \(J_i \). Let \(a \) be an \(n \)-cocycle of \(C \), and define the element \(x(i_1, \ldots, i_n) \) of \(\mathbb{Z}_p \) inductively on \(i_0 \) as follows. Put first

\[
x(1, i_2, \ldots, i_n) := 0.
\]

For \(i_1 > 1 \) set \(i_0 := i_1 - 1 \) and

\[
x(i_1, \ldots, i_n) := -\sum_{j=1}^{n} (-1)^j x(i_0, \ldots, \hat{i}_j, \ldots, i_n) + a(i_0, \ldots, i_n).
\]

Given \(1 < i_1 < \cdots < i_n \) prove

\[
x(i_1, \ldots, i_n) \equiv -\sum_{j=1}^{n} (-1)^j x(i_0, \ldots, \hat{i}_j, \ldots, i_n) + a(i_0, \ldots, i_n) \bmod J_{i_0}
\]

successively for \(i_0 = i_1 - 1, i_1 - 2, \ldots, 1 \). QED

5 Proof of the Theorems

Proof of Theorem 2 Let \(C \) be the cochain complex obtained by replacing \(A \) by \(\mathbb{Z} \) and \(A_i \) by \((i) \) in the definition of the cochain complex \(C(I) \) at the outset of Section 1. Let \(n \) be a positive integer. By Lemma 12 we have \(H^n(C) = H^n(C(p)) \). By Lemma 9 an abelian group \(A \) is trivial iff \(A_p = 0 \) for all \(p \). The triviality of \(H^n(C(p)) \) follows from Section 1, Proposition 7, Part 7 of Lemma 13, Lemma 15, and the above Proposition.
Proof of Theorem 3 Let V be a three dimensional vector space; let L_1, L_2, L_3, L_4 be four lines in general position; let C be the cochain complex denoted $C(I)$ in the beginning of Section 1. We claim $H^1(C) \neq 0$. By Proposition 7 we can replace the condition $i_0, \ldots, i_n \in I$ in the definition of C by the condition $i_0 < \cdots < i_n \in I$; in particular we get $C^n = 0$ for $n > 1$, and we claim that the coboundary d from

$$C^0 = \frac{V}{L_1} \oplus \frac{V}{L_2} \oplus \frac{V}{L_3} \oplus \frac{V}{L_4}$$

to

$$C^1 = \frac{V}{L_1 + L_2} \oplus \frac{V}{L_1 + L_3} \oplus \frac{V}{L_1 + L_4} \oplus \frac{V}{L_2 + L_3} \oplus \frac{V}{L_2 + L_4} \oplus \frac{V}{L_3 + L_4}$$

is not onto. But this follows from the fact that the kernel of d contains V.

Proof of Theorem 4 As a general notation, write $H^n((A_i), A)$ for the n-cohomology of the cochain complex defined at the beginning of Section 1. Theorem 4 results from Theorem 2 and the following fact, whose proof is left to the reader.

Lemma 17 In the notation of the beginning of Section 1 assume that the lattice generated by the A_i is distributive, let B be one of the A_i, and n a positive integer. Then

$$H^n((B \cap A_i), A) = 0 = H^n\left(\left(\frac{B + A_i}{B}\right), \frac{A}{B}\right) \Rightarrow H^n((A_i), A) = 0.$$