Association of Inflammation-Related Gene Polymorphisms With Susceptibility and Radiotherapy Sensitivity in Head and Neck Squamous Cell Carcinoma Patients in Northeast China

Ying Li*, Li Zhu†, Hongmin Yao, Ye Zhang, Xiangyu Kong, Liping Chen, Yingqiu Song, Anna Mu and Xia Li*

Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, and Key Laboratory of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province, Shenyang, China

Background: Inflammation-related gene polymorphisms are some of the most important determinants for cancer susceptibility, clinical phenotype diversity, and the response to radiotherapy and chemotherapy. However, the relationship between these polymorphisms and head and neck squamous cell carcinoma (HNSCC) remains unclear. The aim of this study was to investigate the role of inflammation-related gene polymorphisms in the developmental risk and radiotherapy sensitivity of HNSCC.

Methods: The Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) genotyping system was used to genotype 612 individuals from a Chinese population for 28 inflammation-related gene polymorphisms.

Results: The protein kinase B (AKT1) rs1130233 TT, dominance model (CT+TT vs. CC), recessive model (TT vs. CT+CC), and rs2494732 CC genotypes were associated with reduced risk of HNSCC (P=0.014; P=0.041; P=0.043). The polymeric immunoglobulin receptor (PIGR) rs291097 GA, dominance model (GA+AA vs. GG), and rs291102 dominance model (GA+AA vs. GG) were associated with increased risk of HNSCC (P=0.025; P=0.025; P=0.040). The interleukin-4 receptor-α (IL-4RA) rs1801275 AA genotype was significantly correlated with increased radiotherapy sensitivity of HNSCC patients (P=0.030). In addition, age ≤ 60 years, non-smoker status, and normal levels of squamous cell carcinoma antigen (SCC) were found to be associated with increased radiotherapy sensitivity of HNSCC patients (P=0.033; P=0.033; P=0.030).

Conclusion: The AKT1 rs1130233, AKT1 rs2494732, PIGR rs291097, and PIGR rs291102 polymorphisms were significantly related to the risk of HNSCC. The IL-4RA rs1801275 polymorphism, age ≤ 60 years, non-smoker status, and normal levels of SCC were significantly associated with increased radiotherapy sensitivity of HNSCC.

Keywords: inflammation-related gene, SNP, HNSCC, risk, radiotherapy sensitivity
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is a general term for a set of different tumors located in the lips, oral cavity, pharynx (nasopharynx, oropharynx and hypopharynx), as well as the larynx, salivary glands, and thyroid glands (1). HNSCC is sixth in the world in overall incidence, and is also a major cancer type that leads to death (1). The initiation and development of HNSCC is a multistep process influenced by various genetic and environmental factors. Tobacco and alcohol consumption are the most classical risk factors associated with its development. At least 75% of HNSCC cases are attributable to the combination of both tobacco and alcohol use (2). However, the role of genetic factors in head and neck squamous cell carcinogenesis is largely unknown.

Single nucleotide polymorphisms (SNPs) are a class of genetic factors that have been implicated in HNSCC susceptibility and determine inter-individual variations in HNSCC risk. Genetic polymorphisms can weaken intrinsic protective mechanisms and increase the damage caused by environmental carcinogens (3). Carriers of susceptible genotypes are at a greater risk of developing cancer than those with resistant genotypes under similar conditions (3). Therefore, genetic factors may play a crucial role in HNSCC risk and clinical outcome.

Inflammation is an important cellular process that can be activated in response to tissue damage, infections, and other cellular stress factors (4). There is a relationship between inflammation and the development of many cancers where tumorigenesis was initiated at the site of inflammation (4, 5). Interleukin-1 (IL-1) is a pleiotropic cytokine involved in the initiation of immune and inflammatory responses. The IL-1 gene family has been reported to play a crucial role in the pathogenesis of various cancers (6–9). The interleukin-1 receptor antagonist (IL-1RN) polymorphism is associated with cervical cancer (10). Additionally, there is a pro-inflammatory cytokine haplotype (IL-6 CC, IL-10 GG, TNF-α AA) that is associated with adverse prognosis that may act through an inflammatory-mediated mechanism (11). Furthermore, protein kinase B (AKT1) is an important downstream effector of the gene of phosphate and tension homology deleted on chromosome ten/phosphoinositide 3-kinase/protein kinase B (PTEN/PI3K/AKT) signal transduction pathway. Aberrant expression and genetic variation of the AKT1 gene are suggested to be involved in several types of human cancers, including oral squamous cell carcinoma (OSCC) (12). The AKT1 rs130214 and rs3803300 polymorphisms were related to OSCC susceptibility in a Chinese Han population (12). The polymeric immunoglobulin receptor (PIGR) 1739C>T is a missense mutation that results in an alanine residue being changed to valine near an endoproteolytic cleavage site. This variant can alter the efficiency of PIGR to release the Epstein–Barr virus immunoglobulin A (IgA-EBV) complex and consequently increase the susceptibility of populations in endemic areas to develop NPC (13). PIGR 8880C>T is also related to NPC susceptibility (14). Additionally, the cyclooxygenase-2 (COX-2) gene (PTGS2) rs5275 variant contributes to NPC risk in a Chinese population (15).

Chronic inflammation promotes genetic and epigenetic aberrations that result in various pathogeneses. These changes may be useful biomarkers in liquid biopsies for early detection and prevention of various cancers (16). To achieve our aim, analysis of candidate genes in a Chinese population was performed to study 28 SNPs in inflammation-related genes that could possibly be associated with the risk of developing HNSCC.

MATERIALS AND METHODS

Research Design and Study Population

The study design was approved by the Human Ethics Committee of Liaoning Cancer Hospital (Shenyang, China). Each individual provided written informed consent during an epidemiological investigation. Patients were from Liaoning Cancer Hospital and received surgical resection or needle biopsy diagnosis/treatment between 2018 and 2019. The control participants were recruited from health check center in Liaoning Province hospital between 2018 and 2019. The HNSCC patient group and the control group were matched at a 1:2 ratio. All diagnoses of HNSCC patients were based on histopathological examinations. Information regarding smoking habits, alcohol consumption, and family history in cases were acquired by a “face-to-face” questionnaire survey. We collected fasting venous blood from each one and stored the samples at −20°C as serum and clotted cells.

To further evaluate the relationship of polymorphisms with clinicopathological parameters of HNSCC, histology or clinical data were assessed according to World Health Organization criteria. Additionally, tumor-node-metastasis (TNM) staging was performed according to the 8th edition of the International Union Against Cancer (UICC)/American Joint Committee on Cancer (AJCC) (2017) criteria (17).

SNP Selection

A compilation of genes involved in the inflammatory response was conducted on the basis of a published panel of inflammation-associated genes (6, 9, 13–15, 18–44) and the NCBI-Gene website analysis (https://www.ncbi.nlm.nih.gov/gene/). In this study, we selected 16 genes and 28 SNPs for analysis. They are as follows: AKT1 rs130233 and rs2494732; complement C3d receptor 2 (CR2) rs3813946; IL10 rs1800871, rs1800872, and rs1800896; IL1A rs17561; IL1B rs1143627, rs16944, and rs1143634; IL2 rs215h9521; IL4 rs2243250 and rs2227284; IL4RA rs1801275; IL6 rs1800796; PIGR rs291097 and rs291102; tumor necrosis factor (TNF) rs1799964, rs1800629, rs361525, rs1800630 and rs1799724; TNFRSF1A rs419570; TNFSF7 rs7299857; COX-2 rs5275 and rs20417; B-cell lymphoma-2 (BCL2) rs2279115.

SNP Genotyping

Genomic DNA was extracted from peripheral blood samples obtained from the study participants using the phenol-chloroform method according to a standard procedure (45). The Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) genotyping system was used to genotype 28 inflammation-related gene polymorphisms. MALDI-TOF is a medium-to-high-throughput technology platform that takes both sensitivity and specificity into account and used mass spectrometry
for direct detection (46). Amplification and extension primers were designed by BGI. The charged analytes were detected and measured using time of flight analyzers. During MALDI-TOF analysis, the m/z ratio of an ion was measured by determining the time required for the ion to travel the length of the flight tube (47, 48). Primers sequences are listed in Supplementary Table 1.

Radiosensitivity Analysis

Radiosensitivity analysis was done according to the new response evaluation criteria for solid tumors: Revised response evaluation criteria in solid tumors (RECIST) guideline (version 1.1) (49). Patients who were sensitive to radiation therapy were categorized as either complete response (CR) or partial response (PR). Patients who were not sensitive to radiation therapy were categorized as either progressive disease (PD) or stable disease (SD). Radiosensitivity was assessed one month after radiotherapy, and the results were compared with the MRI image before radiotherapy. The criteria for classification are as follows:

- **CR:** patients had a disappearance of all target lesions and any pathological lymph nodes (whether target or non-target) were required to have a short axis reduction to <10 mm.
- **PR:** patients were required to have at least a 30% decrease in the sum of the diameters of target lesions, using the baseline sum diameters as a reference.
- **PD:** patients were required to have at least a 20% increase in the sum of the diameters of target lesions, using the smallest sum of the study as a reference. In addition to the relative increase of 20%, the sum was also required to demonstrate an absolute increase of at least 5 mm. Patients that had an appearance of one or more new lesions were also categorized as PD.
- **SD:** patients were required to have neither a sufficient level of shrinkage to qualify for PR nor a sufficient amount of increase to qualify for PD. The smallest sum diameters were used as references.

Statistical Analysis

Statistical analysis was performed using SPSS (version 22.0). Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the relationships between both SNPs and disease risk were calculated by multivariable logistic regression, with adjustments for gender and age. If stratified by sex, then the age was adjusted; if stratified by age, then the sex was adjusted. Chi-squared tests were used to assess the correlation between different genotypes and the clinicopathological parameters and radiosensitivity of HNSCC patients.

RESULTS

Baseline Patient Characteristics

To analyze the risk of HNSCC, the study subjects included 211 patients with HNSCC and 401 age- and sex-matched control subjects. The comparisons of baseline characteristics between cases and controls are shown in Table 1. There was a significant difference in both age and sex distribution between the HNSCC group and the control group. The overall mean age and mean age of menarche differed significantly between cases and controls (both P<0.001). In cases, the mean menopausal age was 58.00 years and only a small proportion of cases had a family history of cancer (15.2%). In cases with invasion depth, 55.2% and 44.8% of cases were in T1-2 and T3-4, respectively. Tumor stages I-II (23.7%) and III-IV (76.3%) accounted for the majority of HNSCC cases, whereas 69.6% of cases had positive lymph nodes and 5.9% of cases had metastasis (Table 1).

Association of 28 Inflammation-Associated Gene SNPs With HNSCC Risk

Multivariable logistic regression was used to investigate the association of 28 inflammation-associated gene SNPs with HNSCC risk. The results indicated that the AKT1 rs1130233 TT genotype, dominance model (CT+TT vs. CC), recessive model (TT vs. CT+CC), or the AKT1 rs2494732 CC genotype had reduced risk of HNSCC (P<0.05), whereas those with the PIGR rs291097 GA genotype, dominance model (GA+ AA vs. GG), or PIGR rs291102 dominance model (GA+ AA vs. GG) had an increased risk of HNSCC (P<0.05). However, we found no significant differences with the other 24 SNPs in HNSCC risk progression (Table 2).

Stratified Analysis of the Association of 28 Inflammation-Associated Gene SNPs With HNSCC Risk

In stratified analyses, we found that the IL-1RN rs419598 TT genotype and dominance model (CT+TT vs. CC) conferred a 0.12-fold and 0.16-fold reduction in HNSCC progression, respectively, in individuals older than age 60. However, in those age 60 or younger, the AKT1 rs1130233 TT genotype and dominance model (CT+TT vs. CC), IL-21R rs2189521 CT genotype and dominance model (CT+ CC vs. TT), and BCL2 rs2279115 recessive model (TT vs. GT+GG) conferred a 0.48-fold, 0.57-fold, 0.61-fold, 0.60-fold, and 0.49-fold reduction in HNSCC progression, respectively. In addition, in men, the AKT1 rs1130233 TT genotype and dominance model (CT+TT vs. CC) and the BCL2 rs2279115 TT genotype and recessive model (TT vs. GT+GG) conferred a 0.37-fold, 0.43-fold, 0.37-fold, and 0.41-fold reduction in HNSCC progression, respectively. In women, the IL-21R rs2189521 CT genotype and dominance model (CT+TT vs. TT) conferred a 0.39-fold and 0.43-fold reduction in HNSCC progression, respectively. However, the PIGR rs291097 GA genotype and dominance model (GA+ AA vs. GG) and the TNF rs1800630 AA genotype conferred a 3.43-fold, 3.43-fold, and 9.42-fold increase in HNSCC progression, respectively. All these stratified analysis results are shown in Table 3.
Association of 28 Inflammation-Associated Gene SNPs With Radiotherapy Sensitivity of HNSCC Patients

We further analyzed the correlation between 28 SNPs and radiotherapy sensitivity of HNSCC individuals. We found that, compared with those with other genotypes, HNSCC patients carrying the IL-4RA rs1801275 AA wild-type genotype (40.9%) were more sensitive to radiotherapy (Table 4). There were no significant differences observed in the correlation analysis between the other 27 SNPs and radiotherapy sensitivity in HNSCC patients.

Association of Clinicopathological Parameters With Radiotherapy Sensitivity of HNSCC Patients

We further analyzed the potential correlations between clinicopathological parameters and radiotherapy sensitivity in HNSCC patients. We found that age ≤ 60 years, non-smoker status, and normal levels of SCC were associated with increased radiotherapy sensitivity of HNSCC patients (P=0.033; P=0.033; P=0.030, respectively) (Table 5). There were no significant differences observed in the correlation analysis between other clinicopathological parameters and radiotherapy sensitivity in HNSCC patients.

Characteristics	Cases	Controls	P value
Sample size	211	401	<0.001
Age			
Mean±SD	56.83±0.75	36.25±0.63	
Range	14-90	17-73	
Gender			<0.001
Female	49(23.2%)	175(43.6%)	
Male	162(76.8%)	226(56.4%)	
T stage			
1-2	96(55.2%)		
3-4	78(44.8%)		
N stage			
Negative	55(30.4%)		
Positive	126(69.6%)		
M stage			
Negative	177(94.1%)		
Positive	11(5.9%)		
Clinical stage			
I-II	44(23.7%)		
III-IV	142(76.3%)		
Smoking			
No	102(48.5%)		
Yes	109(51.7%)		
Drinking			
No	106(50.2%)		
Yes	105(49.8%)		
Family history of cancer			
No	179(84.8%)		
Yes	32(15.2%)		
SCC			
Normal	80(79.2%)		
Increased	21(20.8%)		
CEA			
Normal	60(93.8%)		
Increased	4(6.2%)		
CYFRA			
Normal	18(48.5%)		
Increased	17(51.5%)		
EBV			
Negative	30(83.3%)		
Positive	6(16.7%)		
Blood type			
A	40(33.6%)		
B	32(26.9%)		
AB	14(11.8%)		
O	33(27.7%)		

There was a significant difference in both age and sex distribution between the HNSCC group and the control group (both P<0.001). The case group is significantly older than the control group. Men are significantly more than women, especially in the case group.
TABLE 2 | Association of 28 inflammation-associated gene SNPs with HNSCC risk.

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
AKT1	rs1130233	N=208	N=400	0.020		
	CC	58(27.9%)	77(19.3%)	/	1(Ref)	
	CT	98(47.1%)	198(47.3%)	0.149	0.65(0.36,1.17)	
	TT	52(25.0%)	134(33.5%)	0.041	0.57(0.33,0.96)	
	CT+TT vs. CC	/	/	0.046	0.60(0.36,0.99)	
	TT vs. CT+CC	/	/	0.043	0.38(0.15,0.97)	
AKT1	rs2494732	N=209	N=395	0.678		
	TT	188(6%)	27(6.8%)	/	1(Ref)	
	CT	97(35.4%)	158(40.0%)	0.220	0.56(0.22,1.41)	
	CC	94(34.5%)	210(53.2%)	0.095	0.70(0.51,1.04)	
	CT+CC vs. TT	/	/	0.014	0.45(0.24,0.85)	
	CC vs. CT+TT	/	/	0.014	0.45(0.24,0.85)	
CR2	rs3813946	N=209	N=396	0.309		
	TT	154(73.7%)	313(79.0%)	/	1(Ref)	
	CT	97(47.6%)	158(40.0%)	0.146	0.57(0.33,0.96)	
	CC	94(45.0%)	210(53.2%)	0.014	0.45(0.24,0.85)	
	CT+CC vs. TT	/	/	0.014	0.45(0.24,0.85)	
	CC vs. CT+TT	/	/	0.014	0.45(0.24,0.85)	
IL10	rs1800871	N=208	N=400	0.861		
	AA	90(43.3%)	164(41.0%)	/	1(Ref)	
	GA	98(47.1%)	197(49.3%)	0.395	0.82(0.51,1.31)	
	GG	20(9.6%)	39(9.8%)	0.572	1.27(0.55,2.91)	
	GA+GG vs. AA	/	/	0.390	1.40(0.65,3.04)	
	GG vs. GA+AA	/	/	0.390	1.40(0.65,3.04)	
IL10	rs1800872	N=209	N=400	0.297		
	TT	90(45.3%)	164(41.0%)	/	1(Ref)	
	GT	98(47.1%)	197(49.3%)	0.395	0.82(0.51,1.31)	
	GG	20(9.6%)	39(9.8%)	0.572	1.27(0.55,2.91)	
	GT+GG vs. TT	/	/	0.390	1.40(0.65,3.04)	
	GG vs. GT+TT	/	/	0.390	1.40(0.65,3.04)	
IL10	rs1800896	N=209	N=400	0.587		
	TT	174(83.3%)	322(80.5%)	/	1(Ref)	
	CT	33(15.8%)	69(17.3%)	0.754	1.10(0.60,2.01)	
	CC	2(1.0%)	4(1.0%)	0.869	1.21(0.13,11.72)	
	CA+AA vs. CC	/	/	0.738	1.11(0.61,1.99)	
	AA vs. CA+CC	/	/	0.882	1.19(0.12,11.72)	
IL1A	rs17561	N=208	N=400	0.833		
	CC	166(79.8%)	327(81.8%)	/	1(Ref)	
	CA	40(19.2%)	69(17.3%)	0.754	1.10(0.60,2.01)	
	AA	2(1.0%)	4(1.0%)	0.869	1.21(0.13,11.72)	
	CA+AA vs. CC	/	/	0.738	1.11(0.61,1.99)	
	AA vs. CA+CC	/	/	0.882	1.19(0.12,11.72)	
IL1B	rs1143627	N=208	N=394	0.588		
	AA	51(24.5%)	111(28.2%)	/	1(Ref)	
	AG	107(51.4%)	188(47.7%)	0.949	0.98(0.58,1.67)	
	GG	50(24.0%)	95(24.1%)	0.403	0.76(0.40,1.45)	
	AG+GG vs. AA	/	/	0.388	0.79(0.46,1.35)	
	GG vs. AG+AA	/	/	0.388	0.79(0.46,1.35)	
IL1B	rs16944	N=209	N=397	0.710		
	GG	52(24.9%)	111(28.0%)	/	1(Ref)	
	GA	106(50.7%)	191(48.1%)	0.881	0.96(0.56,1.63)	
	AA	51(24.4%)	95(23.9%)	0.469	0.79(0.42,1.50)	
	GA+AA vs. GG	/	/	0.686	0.90(0.54,1.51)	
	AA vs. GA+GG	/	/	0.493	0.83(0.48,1.42)	
IL1B	rs1143634	N=209	N=400	0.761		
	GG	199(95.2%)	381(95.3%)	/	1(Ref)	
	GA	10(4.8%)	18(4.5%)	0.861	1.10(0.38,3.17)	
	AA	9(0.0%)	10(0.3%)	0.864	1.10(0.38,3.16)	
	AA+GA vs. GG	/	/	0.864	1.10(0.38,3.16)	
	AA vs. GA+GG	/	/	0.864	1.10(0.38,3.16)	
IL1RN	rs141598	N=143	N=393	0.292		
	TT	128(89.5%)	336(85.5%)	/	1(Ref)	
	CT	13(9.1%)	54(13.7%)	0.122	0.52(0.22,1.19)	

(Continued)
Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
CC	2(1.4%)	3(0.8%)	0.713	1.49(0.18,12.33)		
CT+CC vs. TT	/	/	/	/	1(Ref)	
CC vs.CT+TT	/	/	0.666	1.57(0.20,12.39)		
IL21R	rs2189521	N=208	N=395	0.050	/	/
TT	131(63.0%)	208(52.7%)	/	/	1(Ref)	
CT	67(32.2%)	160(40.5%)	0.280	0.77(0.47,1.24)		
CC	10(4.8%)	27(8.8%)	0.613	0.78(0.30,2.05)		
CT+CC vs. TT	/	/	0.267	0.77(0.48,1.22)		
CC vs.CT+TT	/	/	0.778	0.87(0.32,2.34)		
IL4	rs2243250	N=209	N=395	0.427	/	/
CC	194(94.3%)	13(3.3%)	0.652	0.76(0.23,2.54)		
CT	67(32.2%)	160(40.5%)	0.280	0.77(0.48,1.22)		
CC	10(4.8%)	27(8.8%)	0.613	0.78(0.30,2.05)		
IL4	rs2227284	N=209	N=395	0.344	/	/
TT	144(88.9%)	294(74.4%)	/	/	1(Ref)	
GT	60(29.7%)	94(23.8%)	0.409	1.24(0.74,2.09)		
GG	5(2.4%)	7(1.8%)	0.336	2.54(0.38,16.88)		
GT+GG vs.TT	/	/	0.317	1.30(0.78,2.16)		
GG vs.GT+CC	/	/	0.251	0.76(0.48,1.21)		
IL4RA	rs1801275	N=207	N=400	0.116	/	/
AA	152(73.4%)	272(88.0%)	/	/	1(Ref)	
GA	53(25.6%)	114(28.5%)	0.995	1.00(0.60,1.67)		
GG	2(1.0%)	14(3.5%)	0.200	0.31(0.05,1.85)		
GA+GG vs. AA	/	/	0.756	0.92(0.56,1.52)		
GG vs. GA+AA	/	/	0.200	0.31(0.05,1.87)		
IL6	rs1800796	N=209	N=395	0.942	/	/
GG	26(12.4%)	47(11.9%)	0.852	1.08(0.49,2.38)		
CG	87(41.6%)	170(43.0%)	0.487	1.32(0.61,2.84)		
CC	966(45.9%)	178(45.1%)	0.040	1.86(0.13,2.56)		
CG+CC vs.CG	/	/	0.648	1.19(0.57,2.50)		
CC vs.CG+CC	/	/	0.386	1.23(0.77,1.94)		
PIQIR	rs291097	N=209	N=400	0.125	/	/
GG	188(80.0%)	372(93.0%)	/	/	1(Ref)	
GA	21(10.0%)	28(7.0%)	0.025	2.49(1.28,4.87)		
AA	0(0%)	0(0.0%)	NA	NA	NA	
GA+AA vs. GG	/	/	0.025	2.49(1.28,4.87)		
AA vs.GA+GG	/	/	NA	NA	NA	
PIQIR	rs291102	N=208	N=396	0.794	/	/
GG	165(79.3%)	323(81.6%)	/	/	1(Ref)	
GA	41(19.7%)	70(17.7%)	0.054	1.82(0.99,3.35)		
AA	2(1.0%)	3(0.8%)	0.291	3.76(0.32,43.88)		
GA+AA vs. GG	/	/	0.040	1.86(0.13,2.56)		
AA vs.GA+GG	/	/	0.349	3.17(0.28,35.45)		
TNF	rs1799964	N=209	N=395	0.732	/	/
TT	124(59.3%)	246(62.9%)	/	/	1(Ref)	
CT	74(35.4%)	132(33.4%)	0.388	1.24(0.76,2.01)		
CC	11(5.3%)	17(4.3%)	0.280	2.03(0.56,7.29)		
CT+CC vs. TT	/	/	0.290	1.29(0.81,2.05)		
CC vs.CT+CC	/	/	0.346	1.79(0.53,5.99)		
TNF	rs1800629	N=209	N=396	0.725	/	/
GG	0(0%)	347(87.6%)	/	/	1(Ref)	
GA	208(99.5%)	47(11.9%)	NA	NA	NA	
AA	10(5.5%)	2(0.5%)	NA	NA	NA	
GA+AA vs. GG	/	/	NA	NA	NA	
AA vs.GA+GG	/	/	0.470	0.36(0.02,5.74)		
TNFRSF1A	rs4149570	N=205	N=395	0.370	/	/
CC	43(21.0%)	101(25.6%)	/	/	1(Ref)	
CA	102(49.8%)	194(49.1%)	0.439	1.27(0.69,2.34)		
AA	60(29.3%)	100(25.3%)	0.305	1.39(0.74,2.61)		
CA+AA vs. CC	/	/	0.326	1.33(0.75,2.34)		
AA vs.CA+CC	/	/	0.451	1.22(0.73,2.03)		

(Continued)
IL-6 rs1800796 heterozygous genotype and the absence of distant metastases were significantly related, whereas the mutant and recessive model were significantly related to lymph node metastasis. The IL-6 rs1800796 mutant were related to no family history of cancer and the recessive model were significantly related to stage III-IV disease. The TNFRSF1A rs414570 dominant model and recessive model were significantly related to the absence of distant metastases. The TNF rs361525 wild-type genotype was significantly related to stage III-IV disease and the COX-2 rs20417 wild-type genotype was significantly related to lymph node metastasis. The other SNPs showed no significant correlations with clinicopathological parameters. The results of association of significant inflammation-associated gene SNPs with clinicopathological parameters of HNSCC patients are shown in Table 6, and all results are shown in Supplementary Table 2.

DISCUSSION

In this study, we report for the first time an association of 28 polymorphisms with HNSCC risk and radiotherapy sensitivity in a population of individuals from the Liaoning Province of China. We found that carriers of the AKT1 rs1130233 TT genotype, dominance model (CT+TT vs. CC), recessive model (TT vs. CT+CC), or the AKT1 rs2494732 CC genotype had reduced risk of HNSCC (P=0.014, P=0.046, P=0.043), whereas those with the PIGR rs291097 GA genotype, dominance model (GA+ AA vs. GG), or PIGR rs291102 dominance model (GA+ AA vs. GG) had an increased risk of HNSCC (P=0.025, P=0.025, P=0.040).
TABLE 3 | Stratified analysis of the association of 28 inflammation-associated gene SNPs with HNSCC risk.

Genotype	SNP	Cases	Controls	P value	OR (95%CI)
		N=84	N=17		
AKT1	rs1130233			0.332	
	CC	21(25.0%)	2(11.8%)		
	CT	41(48.8%)	8(47.1%)	0.640	0.64(0.12,3.52)
	TT	22(26.2%)	7(41.2%)	0.290	0.29(0.05,1.57)
	CT+TT vs. CC	/	/	0.320	0.44(0.09,2.10)
	TT vs. CT+CC	/	/	0.450	0.45(0.15,1.38)
AKT1	rs2494732			0.460	
	TT	7(8.2%)	0(0%)		
	CT	39(45.9%)	9(52.9%)	NA	3.55×10^-5
	CC	39(45.9%)	8(47.1%)	NA	2.74×10^-5
	CT+CC vs. TT	/	/	0.851	0.90(0.31,2.60)
	TT vs. CT+CC	/	/		
CR2	rs3813948			0.684	
	TT	62(72.9%)	14(82.4%)		
	CT	22(25.9%)	3(17.6%)	0.442	1.70(0.44,6.57)
	CC	1(1.2%)	0(0%)		
	CT+CC vs. TT	/	/	0.411	1.76(0.46,6.79)
	CC vs. CT+TT	/	/		
IL10	rs1800871			0.186	
	AA	37(44.6%)	5(29.4%)	/	
	GA	40(48.2%)	12(70.6%)	0.176	0.45(1.14,1.43)
	GG	6(7.2%)	0(0%)		
	GA+GG vs. AA	/	/	0.258	0.52(0.17,1.62)
	GG vs. GA+AA	/	/		
IL10	rs1800872			0.186	
	TT	37(44.6%)	5(29.4%)	/	
	CT	40(48.2%)	12(70.6%)	0.176	0.45(1.14,1.43)
	CC	6(7.2%)	0(0%)		
	GT+GG vs. TT	/	/	0.258	0.52(0.17,1.62)
	GG vs. GT+TT	/	/		
IL10	rs1800896			0.806	
	TT	72(85.7%)	14(82.4%)	/	
	CT	11(13.1%)	3(17.6%)	0.648	0.72(0.17,2.96)
	CC	1(1.2%)	0(0%)		
	CT+CC vs. TT	/	/	0.719	0.77(0.19,3.15)
	CC vs. CT+TT	/	/		
IL1A	rs17561	N=84	N=17	0.764	
	CC	63(75.0%)	14(82.4%)	/	
	CA	20(25.0%)	3(17.6%)	0.733	1.27(0.32,6.02)
	AA	1(1.2%)	0(0%)		
	CA+AA vs. CC	/	/	0.631	1.40(0.36,5.44)
	AA vs. CA+CC	/	/		
IL1B	rs1143627			0.979	
	AA	19(22.4%)	4(23.5%)	/	
	AG	44(51.8%)	9(52.9%)	0.896	0.92(0.24,3.46)
	GG	22(26.9%)	4(23.5%)	1.000	1.00(0.21,4.79)
	AG+GG vs. AA	/	/	0.962	0.97(0.28,3.40)
	GG vs. AG+AA	/	/	1.09(0.32,3.75)	
IL1B	rs16944	N=84	N=17	0.974	
	GG	19(22.6%)	4(23.5%)	/	
	GA	43(51.2%)	9(52.9%)	0.960	0.97(0.26,3.62)
	AA	22(26.2%)	4(23.5%)	0.965	1.05(0.22,5.00)
	GA+AA vs. GG	/	/	0.988	1.01(0.29,3.51)
	AA vs. GA+GG	/	/	1.11(0.32,3.80)	
IL1B	rs1143834			0.610	
	GG	80(95.2%)	16(94.1%)	/	
	GA	4(4.8%)	1(5.9%)	0.927	0.90(0.09,8.89)
	AA	0(0%)	0(0%)		
	GA+AA vs. GG	/	/	0.927	0.90(0.09,8.89)
	AA vs. GA+GG	/	/		
IL1RN	rs419598	N=63	N=16	0.007	
	TT	59(93.7%)	11(68.8%)	/	

(Continued)
Genotype	SNP Cases	Controls	P value	OR (95% CI)
CT	3(4.8%)	5(31.3%)	0.013	0.12(0.02,0.64)
CC	1(1.6%)	0(0%)	NA	NA
CT+CC vs. TT	/	/	0.022	0.16(0.03,0.77)
CC vs.CT+TT	/	/	NA	NA
IL21R	rs2189521	N=85 N=17	0.404	
TT	52(61.2%)	13(76.5%)	/	1(Ref)
CT	29(34.1%)	4(23.5%)	0.288	1.95(0.57,6.66)
CC	4(4.7%)	0(0%)	NA	NA
CT+CC vs. TT	/	/	0.203	2.21(0.66,7.50)
CC vs.CT+TT	/	/	NA	NA
IL4	rs2243250	N=85 N=17	0.446	
CC	4(4.7%)	0(0%)	/	1(Ref)
CT	29(34.1%)	8(47.1%)	NA	NA
TT	52(61.2%)	9(52.9%)	NA	NA
CT+TT vs. CC	/	/	NA	NA
TT vs.CT+CC	/	/	0.530	1.40(0.49,4.05)
IL4RA	rs1801275	N=83 N=17	0.901	
AA	63(75.9%)	13(76.5%)	/	1(Ref)
GA	19(22.9%)	4(23.5%)	0.832	0.87(0.25,3.07)
GG	1(1.2%)	0(0%)	NA	NA
GA+GG vs. AA	/	/	0.895	0.91(0.26,3.20)
GG vs. GA+AA	/	/	NA	NA
IL6	rs1800796	N=85 N=17	0.809	
GG	17(20.0%)	4(23.5%)	/	1(Ref)
CG	32(37.6%)	5(29.4%)	0.261	2.57(0.50,13.38)
CC	36(42.4%)	8(47.1%)	0.894	1.10(0.29,4.19)
GG+CC vs. GG	/	/	0.571	1.45(0.40,5.18)
CC vs.GG+GG	/	/	0.634	0.77(0.27,2.24)
PI3R7	rs291097	N=84 N=17	0.321	
GG	78(92.9%)	17(100%)	/	1(Ref)
GA	6(7.1%)	0(0.0%)	NA	NA
AA	0(0%)	0(0.0%)	NA	NA
GA+AA vs. GG	/	/	NA	NA
AA vs.GA+AA	/	/	NA	NA
PI3R7	rs291102	N=85 N=17	0.383	
GG	69(81.2%)	15(88.2%)	/	1(Ref)
GA	16(18.8%)	2(11.8%)	0.630	1.48(0.30,7.34)
AA	0(0%)	0(0.0%)	NA	NA
GA+AA vs. GG	/	/	0.630	1.48(0.30,7.34)
AA vs.GA+AA	/	/	NA	NA
TNSF	rs1799984	N=85 N=17	0.996	
TT	51(60.0%)	10(58.8%)	/	1(Ref)
CT	29(34.1%)	5(35.3%)	0.934	1.05(0.34,3.27)
CC	5(5.9%)	1(5.9%)	0.925	0.89(0.09,9.22)
GG+CC vs. TT	/	/	0.899	1.07(0.36,3.18)
CC vs.GG+GG	/	/	0.931	0.91(0.10,8.49)
TNSF	rs1800629	N=85 N=17	0.833	
GG	0(0%)	0(0.0%)	/	1(Ref)
GA	84(98.8%)	17(100%)	NA	NA
AA	1(1.2%)	0(0.0%)	NA	NA
GA+AA vs. GG	/	/	NA	NA
AA vs.GA+AA	/	/	NA	NA
TNSF	rs1419570	N=82 N=17	0.513	
CC	21(25.6%)	6(35.3%)	/	1(Ref)
CA	36(43.9%)	8(47.1%)	0.569	1.42(0.42,4.81)
AA	25(30.5%)	3(17.6%)	0.258	2.40(0.53,10.90)
CA+AA vs. CC	/	/	0.360	1.70(0.55,5.27)

(Continued)
Genotype	SNP	Cases	Controls	P value	OR (95%CI)	
TNFSF7	rs7259857	N=85	N=17	0.330	1.95(0.51,7.48)	
	TT	63(74.1%)	15(88.2%)	/	1 (Ref)	
	CT	22(25.9%)	2(11.8%)	0.253	2.49(0.52,11.90)	
	CC	0(0%)	0(0%)	NA	NA	
	CT+CC vs. TT	/	/	0.253	2.49(0.52,11.90)	
	CC vs. CT+TT	/	/	NA	NA	
TNF	rs361525	N=85	N=17	0.267		
	GG	77(90.6%)	14(82.4%)	/	1 (Ref)	
	GA	8(9.4%)	3(17.6%)	0.452	0.57(0.13,2.49)	
	AA	0(0%)	0(0%)	NA	NA	
	QA+AA vs. GG	/	/	0.452	0.57(0.13,2.49)	
	AA vs. QA+GG	/	/	NA	NA	
TNF	rs1800630	N=85	N=17	0.731		
	CC	57(67.1%)	12(70.6%)	/	1 (Ref)	
	CA	25(29.4%)	5(29.4%)	0.829	1.14(0.36,3.64)	
	AA	3(3.5%)	0(0%)	NA	NA	
	CA+AA vs. CC	/	/	0.706	1.25(0.39,3.96)	
	AA vs. CA+CC	/	/	NA	NA	
TNF	rs1799724	N=82	N=17	0.806		
	CC	62(75.6%)	13(76.5%)	/	1 (Ref)	
	CT	18(22.0%)	4(23.5%)	0.970	0.98(0.28,3.44)	
	TT	2(2.4%)	0(0%)	NA	NA	
	CT+TT vs. CC	/	/	0.872	1.11(0.32,3.86)	
	TT vs. CT+CC	/	/	NA	NA	
COX-2	rs5275	N=85	N=16	0.210		
	AA	61(71.8%)	8(50.0%)	/	1 (Ref)	
	GA	22(25.9%)	7(43.8%)	0.096	0.37(1.12,1.19)	
	GG	2(2.4%)	6(36.4%)	0.135	0.13(0.01,1.88)	
	GA+GG vs. AA	/	/	0.066	0.35(0.11,1.07)	
	GG vs. GA+AA	/	/	0.285	0.25(0.02,3.13)	
COX-2	rs20417	N=85	N=17	0.557		
	CC	76(89.4%)	14(82.4%)	/	1 (Ref)	
	CG	8(9.4%)	3(17.6%)	0.217	0.39(0.09,1.74)	
	GG	1(1.2%)	0(0%)	NA	NA	
	CG+GG vs. CC	/	/	0.269	0.43(0.10,1.91)	
	GG vs. CG+CC	/	/	NA	NA	
BCL2	rs2279115	N=85	N=17	0.355		
	GG	38(44.7%)	5(29.4%)	/	1 (Ref)	
	GT	34(40.0%)	10(58.8%)	0.149	0.41(0.12,1.38)	
	TT	13(15.3%)	2(11.8%)	0.851	0.84(0.14,4.96)	
	GT+TT vs. GG	/	/	0.228	0.50(0.16,1.55)	
	TT vs. GT+GG	/	/	0.703	1.37(0.27,6.80)	
Ages<60	AKT1	rs1130233	N=124	N=383	0.031	
	CC	37(29.8%)	75(19.6%)	/	1 (Ref)	
	CT	57(46.0%)	181(47.3%)	0.007	0.64(0.29,1.05)	
	TT	30(24.2%)	127(33.2%)	0.014	0.48(0.27,0.86)	
	CT+TT vs. CC	/	/	0.021	0.57(0.36,0.92)	
	TT vs. CT+CC	/	/	0.080	0.66(0.41,1.05)	
AKT1	rs2494732	N=124	N=378	0.212		
	TT	11(8.9%)	27(7.1%)	/	1 (Ref)	
	CT	58(46.8%)	149(39.4%)	0.765	0.89(0.41,1.93)	
	CC	55(44.4%)	202(53.4%)	0.191	0.59(0.27,1.30)	
	CT+CC vs. TT	/	/	0.379	0.71(0.34,1.51)	
	CC vs. CT+TT	/	/	0.085	0.69(0.08,4.05)	
CR2	rs3813946	N=124	N=379	0.497		
	TT	92(74.2%)	290(78.9%)	/	1 (Ref)	
	CT	31(25.0%)	76(21.1%)	0.333	1.27(0.78,2.07)	
	CC	1(0.8%)	4(1.1%)	0.749	0.70(0.08,6.40)	
	CT+CC vs. TT	/	/	0.382	1.24(0.77,2.00)	
	CC vs. CT+TT	/	/	0.694	0.64(0.07,5.90)	
IL10	rs1800871	N=125	N=383	0.913		

(Continued)
TABLE 3 | Continued

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
AA	53(42.4%)	159(41.5%)	/	/	1(Ref)	
GA	58(46.4%)	185(48.3%)	0.801	0.95(0.61,1.46)		
GG	14(11.2%)	39(10.2%)	0.996	1.00(0.50,2.00)		
GA+GG vs. AA	/	/	0.825	0.95(0.63,1.45)		
GG vs. GA+AA	/	/	0.943	1.02(0.53,1.98)		

IL10

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
AA	rs1800872 TT	N=125	N=383	0.913		
GA	58(46.4%)	185(48.3%)	0.801	0.95(0.61,1.46)		
GG	14(11.2%)	39(10.2%)	0.996	1.00(0.50,2.00)		
GA+GG vs. TT	/	/	0.825	0.95(0.63,1.45)		
GG vs. GA+TT	/	/	0.943	1.02(0.53,1.98)		

IL1A

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
AA	rs17561 CC	N=124	N=383	0.932		
GA	63(51.2%)	179(47.5%)	0.550	0.93(0.53,1.62)		
GG	28(22.8%)	91(24.1%)	0.950	1.02(0.57,1.83)		
GG vs. GA+CC	/	/	0.91(0.53,1.56)			

IL1B

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
AA	rs1143627 CT	N=125	N=380	0.049		
GA	63(51.2%)	179(47.5%)	0.550	0.93(0.53,1.62)		
GG	28(22.8%)	91(24.1%)	0.950	1.02(0.57,1.83)		
GG vs. GA+AA	/	/	0.913	1.06(0.40,2.77)		

IL1RN

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
AA	rs419598 CC	N=80	N=377	0.919		
GA	63(50.4%)	182(47.9%)	0.678	1.11(0.68,1.82)		
GG	29(23.2%)	91(23.9%)	0.953	1.02(0.57,1.81)		
GG vs. GA+CC	/	/	0.91(0.53,1.56)			

IL21R

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
AA	rs2189521 TT	N=123	N=378	0.049		
GA	54(43.4%)	159(41.5%)	0.801	0.95(0.61,1.46)		
GG	14(11.2%)	39(10.2%)	0.996	1.00(0.50,2.00)		
GA+GG vs. TT	/	/	0.825	0.95(0.63,1.45)		
GG vs. GA+AA	/	/	0.943	1.02(0.53,1.98)		

IL4

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
AA	rs2243250 CC	N=124	N=378	0.371		
GA	54(43.4%)	159(41.5%)	0.801	0.95(0.61,1.46)		
GG	14(11.2%)	39(10.2%)	0.996	1.00(0.50,2.00)		
GA+GG vs. TT	/	/	0.825	0.95(0.63,1.45)		
GG vs. GA+AA	/	/	0.943	1.02(0.53,1.98)		

(Continued)
TABLE 3
(Continued)

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
GT+GG vs. TT	/	/	/	0.231	1.32(0.84,2.07)	
TT vs. GG	/	/	/	/	/	/
IL4RA	rs1801275	N=124	N=383	0.239		
AA	89(71.8%)	259(67.6%)	/	/	/	1.32(0.84,2.07)
GA	34(27.4%)	110(28.7%)	0.870	0.96(0.61,1.53)		
GG	1(0.8%)	14(3.7%)	0.165	0.23(0.03,1.82)		
GA+GG vs. AA	/	/	/	0.597	0.88(0.56,1.40)	
GG vs. GA+AA	/	/	/	0.170	0.24(0.03,1.85)	
IL6	rs1800798	N=124	N=383	0.411		
GG	/	/	/	/	/	/
GA	97(7.3%)	43(11.4%)	/	/	/	/
GG	55(44.4%)	165(45.0%)	0.444	1.37(0.61,3.07)		
CC	60(46.4%)	170(45.0%)	0.281	1.54(0.70,3.38)		
CC vs. GG	/	/	/	0.338	1.45(0.68,3.11)	
PIGR	rs291097	N=125	N=383	0.077		
GG	96(78.0%)	308(81.3%)	/	/	/	/
GA	25(20.3%)	88(23.1%)	0.378	1.27(0.75,2.14)		
AA	21(16.8%)	31(8.1%)	NA	NA	NA	NA
GA vs. AA+GG	/	/	/	0.284	1.32(0.79,2.21)	
AA vs. GA+GG	/	/	/	NA	NA	NA
TNF	rs1799984	N=124	N=383	0.775		
TT	73(58.9%)	236(62.4%)	/	/	/	/
GC	46(36.3%)	162(43.7%)	0.537	1.15(0.74,1.78)		
CC	6(4.8%)	16(4.2%)	0.666	1.25(0.46,3.38)		
CT+CC vs. TT	/	/	/	0.493	1.16(0.76,1.77)	
CC vs. CT+TT	/	/	/	0.740	1.18(0.44,3.15)	
PIGR	rs291102	N=123	N=379	0.591		
GG	110(88.0%)	365(92.7%)	/	/	/	/
GA	15(12.0%)	28(7.3%)	0.108	1.74(0.86,3.44)		
AA	20(16.1%)	30(8.0%)	NA	NA	NA	NA
GA+AA vs. GG	/	/	/	0.108	1.74(0.86,3.44)	
AA vs. GA+GG	/	/	/	NA	NA	NA
TNF	rs1800629	N=124	N=379	0.567		
GG	124(100%)	377(99.5%)	/	/	/	/
GA	0(0%)	0(0%)	/	/	/	/
AA	0(0%)	0(0%)	/	/	/	/
GA vs. AA+GG	/	/	/	NA	NA	NA
AA vs. GA+GG	/	/	/	NA	NA	NA
TNFRSF1A	rs4149570	N=123	N=378	0.256		
CC	22(17.9%)	95(25.1%)	/	/	/	/
CA	66(53.7%)	186(49.2%)	0.204	1.43(0.82,2.50)		
AA	35(28.5%)	97(25.7%)	0.157	1.55(0.85,2.84)		
CA vs. AA+GG	/	/	/	0.142	1.48(0.88,2.50)	
AA vs. CA+CC	/	/	/	0.468	1.19(0.75,1.89)	
TNFSF7	rs7259857	N=124	N=379	0.379		
TT	103(83.1%)	307(81.0%)	/	/	/	/
CT	18(14.5%)	88(27.7%)	0.347	0.76(0.43,1.35)		
CC	3(2.4%)	4(1.1%)	NA	NA	NA	NA
CT+CC vs. TT	/	/	/	0.539	0.84(0.49,1.54)	
CC vs. CT+TT	/	/	/	NA	NA	NA
TNF	rs361525	N=124	N=379	0.506		
GG	144(91.9%)	350(92.3%)	/	/	/	/
GA	10(8.1%)	29(7.7%)	0.957	0.98(0.46,2.10)		
AA	0(0%)	0(0%)	/	/	/	/
GA vs. AA+GG	/	/	/	0.957	0.98(0.46,2.10)	
AA vs. GA+GG	/	/	/	/	/	/
TNF	rs1800630	N=122	N=378	0.978		
CC	8(68.9%)	262(89.3%)	/	/	/	/
CA	34(27.9%)	105(27.8%)	0.824	1.16(0.66,1.69)		
AA	43(3.3%)	11(2.9%)	0.796	1.17(0.35,3.90)		
CA vs. AA+GG	/	/	/	0.797	1.06(0.68,1.66)	
AA vs. CA+CC	/	/	/	0.327	2.06(0.49,8.75)	
TNF	rs1799724	N=123	N=381	0.915		
TABLE 3
Continued

Genotype	SNP	Cases	Controls	P value	OR (95%CI)
CC		91(74.0%)	280(75.9%)	/	1(Ref)
CT	3024.4%	86(22.6%)	0.737	1.09(0.67,1.77)	
TT	2(1.6%)	6(1.5%)	0.930	0.93(0.18,4.79)	
CT+TT vs. CC	/	/	0.764	1.08(0.67,1.73)	
CT+TT vs. CC	/	/	0.908	0.91(1.18,4.67)	
COX-2	rs5275	N=124	N=380	0.418	
AA	78(65.9%)	262(88.9%)	/	1(Ref)	
GA	43(34.7%)	108(28.4%)	0.310	1.26(0.81,1.96)	
GG	3(2.4%)	10(2.6%)	0.978	0.98(0.26,3.75)	
GA+GG vs. AA	/	/	0.343	1.23(0.80,1.90)	
GG vs. GA+AA	/	/	0.893	0.91(0.24,3.45)	
COX-2	rs20417	N=123	N=376	0.826	
CC	112(91.1%)	344(91.5%)	/	1(Ref)	
GG	118(9.9%)	31(8.2%)	0.968	0.99(0.47,2.05)	
GG vs. GA+AA	/	/	0.929	0.97(0.47,2.01)	
BCL2	rs2279115	N=124	N=378	0.276	
GG	58(46.8%)	161(42.6%)	/	1(Ref)	
GG vs. GA+AA	/	/	0.462	0.86(0.57,1.30)	
Male	AKT1	rs1130233	N=160	N=225	0.028
CC	48(30.0%)	42(18.7%)	/	1(Ref)	
TT	71(44.4%)	106(48.4%)	0.088	0.49(0.21,1.11)	
CT+TT vs. CC	/	/	0.014	0.37(0.17,0.82)	
TT vs.CT+CC	/	/	0.005	0.29(0.06,1.23)	
CR2	rs3813946	N=161	N=222	0.226	
TT	115(71.4%)	175(78.8%)	/	1(Ref)	
CT	44(27.3%)	44(19.8%)	0.249	0.44(0.11,1.79)	
CC	76(47.2%)	116(52.3%)	0.143	0.37(0.10,1.40)	
CC vs.CT+TT	/	/	0.175	0.40(0.11,1.50)	
IL10	rs1800871	N=160	N=225	0.876	
AA	68(42.5%)	92(40.9%)	/	1(Ref)	
GA	76(47.5%)	107(47.6%)	0.561	0.83(0.45,1.54)	
GG	16(10.0%)	26(11.6%)	0.481	1.49(0.49,4.48)	
GG vs. GA+AA	/	/	0.741	0.90(0.50,1.65)	
IL10	rs1800872	N=160	N=225	0.876	
AA	68(42.5%)	92(40.9%)	/	1(Ref)	
GA	76(47.5%)	107(47.6%)	0.561	0.83(0.45,1.54)	
GG	16(10.0%)	26(11.6%)	0.481	1.49(0.49,4.48)	
GG vs. GA+AA	/	/	0.741	0.90(0.50,1.65)	
IL10	rs1800896	N=161	N=225	0.070	
TT	134(83.2%)	175(77.8%)	/	1(Ref)	
CT	25(15.5%)	50(22.2%)	0.227	0.60(0.30,1.33)	
CC	2(1.2%)	0(0%)	NA	NA	
CC vs.CT+TT	/	/	0.305	0.68(0.32,1.42)	
IL1A	rs17561	N=160	N=225	0.237	
CC	130(81.3%)	179(79.6%)	/	1(Ref)	
CA	30(18.8%)	42(18.7%)	0.860	0.93(0.42,2.09)	

(Continued)
TABLE 3 | Continued

Genotype	SNP	Cases	Controls	P value	OR (95%CI)
AA	0(0%)	41(1.8%)	NA	NA	
CA+AA vs. CC	/	/	0.692	0.85(0.39,1.88)	
AA vs.CA+CC	/	/	NA	NA	
IL1B	rs1143627	N=160	N=220	0.281	
AA	35(21.9%)	63(28.6%)	/	1(Ref)	
AG	86(53.8%)	103(46.8%)	0.280	1.47(0.73,2.96)	
GG	39(24.4%)	54(24.5%)	0.807	1.10(0.46,2.75)	
AG+GG vs. AA	/	/	0.360	1.36(0.70,2.65)	
GG vs. AG+AA	/	/	0.789	0.91(0.44,1.86)	
IL1B	rs16944	N=161	N=223	0.475	
GG	37(23.0%)	63(28.3%)	/	1(Ref)	
GA	84(52.2%)	105(47.1%)	0.345	1.40(0.70,2.79)	
AA	40(24.8%)	55(24.7%)	0.724	1.17(0.48,2.96)	
GA+AA vs. GG	/	/	0.360	1.36(0.70,2.65)	
GG vs. GA+AA	/	/	0.789	0.91(0.44,1.86)	
IL1B	rs1143634	N=161	N=225	0.388	
GG	155(96.3%)	214(96.1%)	/	1(Ref)	
GA	63(7.4%)	11(4.9%)	0.979	0.98(0.23,4.11)	
AA	0(0.0%)	0(0.0%)	NA	NA	
GA+AA vs. GG	/	/	0.979	0.98(0.23,4.11)	
AA vs.GA+GG	/	/	NA	NA	
IL1RN	rs419598	N=169	N=220	0.972	
TT	98(89.9%)	196(89.1%)	/	1(Ref)	
CT	10(9.2%)	22(10.0%)	0.878	0.92(0.29,2.87)	
CC	7(6.1%)	17(7.8%)	0.703	0.87(0.22,2.79)	
CT+CC vs. TT	/	/	0.748	1.11(0.60,2.03)	
CC vs.CT+TT	/	/	0.638	0.74(0.21,2.60)	
IL21R	rs2189521	N=160	N=222	0.364	
TT	98(61.3%)	123(55.5%)	/	1(Ref)	
CT	55(34.4%)	83(37.4%)	0.631	1.17(0.62,2.21)	
CC	7(4.4%)	17(7.6%)	0.770	0.77(0.13,4.42)	
CT+CC vs. TT	/	/	0.550	0.83(0.45,1.53)	
CC vs.CT+TT	/	/	0.748	1.11(0.60,2.03)	
IL4	rs2243250	N=161	N=222	0.736	
CC	65(39.9%)	65(29.3%)	/	1(Ref)	
CT	59(36.6%)	74(33.3%)	0.855	0.86(0.17,4.35)	
TT	96(59.6%)	141(63.5%)	0.740	0.72(0.10,5.13)	
CT+TT vs. CC	/	/	0.770	0.77(0.13,4.42)	
TT vs.CT+CC	/	/	0.550	0.83(0.45,1.53)	
IL4	rs2227284	N=161	N=222	0.715	
TT	110(68.3%)	154(69.4%)	/	1(Ref)	
GT	47(29.2%)	65(29.3%)	0.988	1.00(0.52,1.91)	
GG	4(2.5%)	3(1.4%)	0.372	3.91(0.24,78.06)	
GT+GG vs. TT	/	/	0.872	1.05(0.55,2.01)	
GG vs.GT+TT	/	/	0.366	3.36(0.24,46.79)	
IL4RA	rs1801275	N=159	N=225	0.609	
AA	114(71.7%)	162(72.0%)	/	1(Ref)	
GA	43(27.0%)	57(25.3%)	0.745	1.17(1.13,1.20)	
GG	2(1.3%)	6(2.7%)	0.638	0.59(0.06,5.44)	
GA+GG vs. AA	/	/	0.831	1.07(0.56,2.07)	
GG vs. GA+AA	/	/	0.605	0.54(0.05,5.50)	
IL6	rs1800796	N=161	N=222	0.566	
GG	21(13.0%)	22(9.9%)	/	1(Ref)	
CG	68(42.2%)	94(42.4%)	0.665	1.26(0.44,3.63)	
CC	72(44.7%)	108(48.6%)	0.856	1.10(0.39,3.08)	
CG+CC vs.GG	/	/	0.740	1.18(0.44,3.20)	
CC vs.CG+GG	/	/	0.804	0.93(0.31,1.68)	
PI3KR	rs291097	N=161	N=225	0.331	
GG	146(90.7%)	208(92.4%)	/	1(Ref)	
GA	15(9.3%)	17(7.6%)	0.245	1.89(0.65,5.49)	
AA	0(0.0%)	0(0.0%)	NA	NA	
GA+AA vs. GG	/	/	0.245	1.89(0.65,5.49)	
AA vs.GA+GG	/	/	NA	NA	

(Continued)
Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
PIQRI	rs291102	N=160	N=222	0.613	/	1(Ref)
GG	127(79.4%)	185(83.3%)	/	0.304	1.5(0.69,3.31)	
GA	32(20.0%)	36(16.2%)	/	0.889	1.3(0.02,74.43)	
AA	/	/	/	/	/	
GA+AA vs. GG	/	/	/	/	/	
AA vs. GA+GG	/	/	/	/	/	
TNF	rs1799984	N=161	N=221	0.904	/	1(Ref)
TT	101(62.7%)	135(61.1%)	/	0.939	1.1(0.86,1.31)	
CT	52(32.3%)	76(34.4%)	/	0.728	1.3(0.22,8.52)	
CC	8(5.0%)	10(4.5%)	/	/	/	
CT+CC vs. TT	/	/	/	/	/	
CC vs. CT+TT	/	/	/	/	/	
TNF	rs1800629	N=161	N=221	0.413	/	1(Ref)
GG	101(62.7%)	135(61.1%)	/	0.693	1.1(0.96,4.81)	
GA	0(0%)	0(0%)	/	0.300	1.6(0.65,4.01)	
AA	80(37.3%)	88(38.9%)	/	0.090	1.9(0.9,4.1)	
AA vs. GA+GG	/	/	/	/	/	
TNFRSF1A	rs4149570	N=158	N=225	0.422	/	1(Ref)
CC	31(19.6%)	57(25.3%)	/	1.05(0.82,2.47)		
CA	84(53.2%)	110(49.0%)	/	0.905	1.1(0.96,4.81)	
AA	43(27.2%)	58(26.0%)	/	0.300	1.6(0.28,10.95)	
CA+AA vs. CC	/	/	/	/	/	
CC vs. CA+CC	/	/	/	/	/	
TNFSF7	rs7259857	N=161	N=222	0.832	/	1(Ref)
TT	126(78.3%)	179(80.6%)	/	0.939	1.1(0.86,1.31)	
CT	30(20.5%)	41(18.5%)	/	0.728	1.3(0.22,8.52)	
CC	2(1.2%)	4(1.8%)	/	/	/	
CT+CC vs. TT	/	/	/	/	/	
CC vs. CT+TT	/	/	/	/	/	
TNF	rs361525	N=161	N=222	0.406	/	1(Ref)
GG	146(90.7%)	204(91.9%)	/	0.939	1.1(0.86,1.31)	
GA	15(9.3%)	18(8.1%)	/	0.300	1.6(0.28,10.95)	
AA	0(0%)	0(0%)	/	0.300	1.6(0.28,10.95)	
AA vs. GA+GG	/	/	/	/	/	
TNF	rs1800630	N=159	N=222	0.708	/	1(Ref)
CC	115(72.3%)	153(88.9%)	/	0.728	3.0(0.9,9.42)	
CA	40(25.2%)	61(27.5%)	/	0.728	3.0(0.9,9.42)	
AA	4(2.5%)	8(3.6%)	/	0.300	1.6(0.28,10.95)	
AA vs. CA+CC	/	/	/	/	/	
TNF	rs1799724	N=160	N=223	0.997	/	1(Ref)
CC	120(75.0%)	167(74.9%)	/	0.939	1.1(0.86,1.31)	
CT	37(23.1%)	52(23.3%)	/	0.728	1.3(0.28,5.86)	
TT	2(1.2%)	4(1.8%)	/	0.300	1.6(0.28,10.95)	
TT vs. CT+CC	/	/	/	/	/	
COX-2	rs5275	N=161	N=222	0.965	/	1(Ref)
AA	105(65.2%)	144(64.9%)	/	0.939	1.1(0.86,1.31)	
GA	51(31.7%)	72(32.4%)	/	0.939	1.1(0.86,1.31)	
GG	5(3.1%)	6(2.7%)	/	0.939	1.1(0.86,1.31)	
GG+GA vs. AA	/	/	/	/	/	
GG vs. GA+AA	/	/	/	/	/	
COX-2	rs20417	N=160	N=219	0.503	/	1(Ref)
CC	142(88.8%)	196(89.5%)	/	0.939	1.1(0.86,1.31)	
CG	17(10.6%)	23(10.5%)	/	0.939	1.1(0.86,1.31)	
GG	10(6.8%)	0(0%)	/	0.939	1.1(0.86,1.31)	
GG vs. GC+GG	/	/	/	/	/	
GG vs. GC+GG	/	/	/	/	/	
BCL2	rs2279115	N=161	N=222	0.036	/	1(Ref)
GG	75(46.6%)	93(41.9%)	/	0.939	1.1(0.86,1.31)	
GT	65(40.2%)	82(36.9%)	/	0.939	1.1(0.86,1.31)	
Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
----------	-----	-------	----------	---------	---------	------------
TT		18(11.2%)	47(21.2%)	0.044	0.37(0.14,0.97)	
GT+TT vs.GG		/	/	/	/	/
TT vs.GT+GG		/	/	0.044	0.41(0.17,0.98)	
Female AKT1						
rs1130233	N=48	N=175	0.299			
TT		5(10.4%)	14(8.1%)	/	1(Ref)	
CT		25(52.1%)	65(37.6%)	0.716	0.79(0.22,2.81)	
CC		18(37.5%)	94(54.3%)	0.183	0.40(0.10,1.54)	
CT+CC vs. TT		/	/	0.370	0.57(0.16,1.96)	
TT vs.CT+CC		/	/	0.098	0.54(0.26,1.12)	
CR2						
rs3813948	N=48	N=174	0.848			
TT		39(81.3%)	138(79.3%)	/	1(Ref)	
CT		9(18.8%)	35(20.1%)	0.914	1.03(0.27,4.03)	
CC		0(0%)	10(6.1%)	NA	NA	
CT+CC vs. TT		/	/	0.504	0.73(0.28,1.86)	
CC vs.CT+TT		/	/	NA	NA	
IL10						
rs1800871	N=48	N=175	0.790			
AA		22(45.8%)	72(41.1%)	/	1(Ref)	
GA		22(45.8%)	90(51.4%)	0.472	0.76(0.36,1.61)	
GG		4(8.3%)	13(7.4%)	0.963	1.03(0.27,4.03)	
GA+GG vs. AA		/	/	0.525	0.79(0.38,1.64)	
GG vs. GA+AA		/	/	0.786	1.19(0.33,4.28)	
IL10						
rs1800872	N=48	N=175	0.790			
TT		22(45.8%)	72(41.1%)	/	1(Ref)	
GT		22(45.8%)	90(51.4%)	0.472	0.76(0.36,1.61)	
GG		4(8.3%)	13(7.4%)	0.963	1.03(0.27,4.03)	
GT+GG vs. TT		/	/	0.525	0.79(0.38,1.64)	
GG vs.GT+TT		/	/	0.783	1.19(0.33,4.28)	
IL10						
rs1800896	N=48	N=175	0.855			
TT		40(83.3%)	147(84.0%)	/	1(Ref)	
CT		6(12.7%)	27(15.4%)	0.583	1.31(0.50,3.47)	
CC		0(0%)	10(6.1%)	NA	NA	
CT+CC vs. TT		/	/	0.688	1.24(0.47,3.24)	
CC vs.CT+TT		/	/	NA	NA	
IL1A						
rs17561	N=48	N=175	0.015			
CC		36(75.0%)	148(84.6%)	/	1(Ref)	
CA		10(20.8%)	27(15.4%)	0.440	1.44(0.57,3.61)	
AA		2(4.2%)	0(0%)	NA	NA	
CA+AA vs. CC		/	/	0.264	1.66(0.68,4.02)	
AA vs.CA+CC		/	/	NA	NA	
IL1B						
rs1143627	N=48	N=174	0.725			
AA		16(33.3%)	48(28.6%)	/	1(Ref)	
AG		21(43.8%)	85(48.9%)	0.126	0.52(0.22,2.12)	
GG		11(22.9%)	41(23.6%)	0.112	0.44(0.16,1.21)	
AG+GG vs. AA		/	/	0.060	0.46(0.20,1.03)	
GG vs. AG+AA		/	/	0.322	0.64(0.27,1.54)	
IL1B						
rs16944	N=48	N=174	0.870			
GG		15(31.3%)	48(27.6%)	/	1(Ref)	
GA		22(45.8%)	86(49.4%)	0.157	0.54(0.23,1.27)	
AA		11(22.9%)	40(23.0%)	0.148	0.47(0.17,1.31)	
GA+AA vs. GG		/	/	0.079	0.48(0.21,1.09)	
AA vs.GA+GG		/	/	0.359	0.66(0.28,1.59)	
IL1B						
rs1143634	N=48	N=175	0.414			
GG		44(91.7%)	167(95.4%)	/	1(Ref)	
GA		4(8.3%)	7(4.0%)	0.545	1.61(0.34,7.62)	
AA		0(0.0%)	10(6.1%)	NA	NA	
GA+AA vs. GG		/	/	0.563	1.57(0.34,7.32)	

(Continued)
Genotype	SNP	Cases	Controls	P value	P value	OR (95% CI)
IL1RN						
AA vs. GA+GG		N=34	N=173	0.183	NA	NA
TT		30(88.2%)	140(80.9%)	\(/ \)	1(Ref)	
CT		3(8.8%)	32(18.5%)	0.060	0.25(0.06,1.06)	
CC		1(2.9%)	10(6.2%)	0.787	1.56(0.06,59.87)	
CT+CC vs. TT		/	/	0.085	0.32(0.09,1.16)	
CC vs. CT+TT		/	/	0.863	2.01(0.09,46.98)	
IL21R						
rs2189621		N=48	N=173	0.044		
TT		33(68.8%)	85(49.1%)	\(/ \)	1(Ref)	
CT		12(25.0%)	77(44.5%)	0.022	0.39(0.17,0.87)	
CC		3(6.3%)	11(6.4%)	0.760	0.79(0.17,3.59)	
CT+CC vs. TT		/	/	0.030	0.43(0.20,0.92)	
CC vs. CT+TT		/	/	0.663	1.15(0.24,5.56)	
IL4						
rs2442320		N=48	N=173	0.517		
TT		34(70.8%)	140(80.9%)	\(/ \)	1(Ref)	
CT		17(35.4%)	53(30.8%)	0.609	0.63(0.11,3.73)	
CC		20(41.7%)	114(65.9%)	0.360	0.43(0.07,2.65)	
CT+TT vs. CC		/	/	0.432	0.50(0.09,2.85)	
TT vs. CT+CC		/	/	0.281	0.66(0.32,1.40)	
IL4						
rs2227284		N=48	N=173	0.272		
TT		34(70.8%)	140(80.9%)	\(/ \)	1(Ref)	
CT		13(27.1%)	29(16.8%)	0.113	2.03(0.85,4.85)	
CC		2(4.2%)	11(6.4%)	0.996	1.69(0.12,23.95)	
CT+TT vs. CC		/	/	0.111	2.00(0.85,4.67)	
TT vs. CT+CC		/	/	0.798	1.40(0.11,18.01)	
IL4RA						
rs1801275		N=48	N=175	0.066		
AA		38(79.2%)	110(62.9%)	\(/ \)	1(Ref)	
GA		10(20.8%)	57(32.6%)	0.450	0.72(0.31,1.68)	
GG		0(0%)	8(4.6%)	NA	NA	
GA+GG vs. AA		/	/	0.265	0.62(0.27,1.43)	
GG vs. GA+AA		/	/	NA	NA	
IL6						
rs1800796		N=48	N=173	0.469		
GG		5(10.4%)	25(14.5%)	\(/ \)	1(Ref)	
CG		19(39.6%)	78(45.1%)	0.996	1.00(0.29,3.40)	
CC		24(50.0%)	70(40.5%)	0.330	1.85(0.54,6.37)	
CC+CC vs. GG		/	/	0.813	1.35(0.42,4.33)	
CC vs. CC+GG		/	/	0.102	1.86(0.89,3.90)	
PIGR						
rs291097		N=48	N=175	0.131		
GG		42(87.5%)	164(93.7%)	\(/ \)	1(Ref)	
GA		6(12.5%)	11(6.3%)	0.042	3.43(1.05,11.23)	
AA		0(0.0%)	0(0.0%)	NA	NA	
GA+AA vs. GG		/	/	0.042	3.43(1.05,11.23)	
AA vs. GA+AA		/	/	NA	NA	
PIGR						
rs291102		N=48	N=174	0.880		
GG		36(79.2%)	138(79.3%)	\(/ \)	1(Ref)	
GA		9(18.8%)	34(19.5%)	0.123	2.15(0.81,5.67)	
AA		1(2.1%)	2(1.1%)	0.253	5.18(0.31,87.06)	
GA+AA vs. GG		/	/	0.094	2.20(0.87,5.63)	
AA vs. GA+AA		/	/	0.302	4.27(0.27,67.58)	
TNF						
rs1799984		N=48	N=174	0.137		
TT		23(47.9%)	111(63.8%)	\(/ \)	1(Ref)	
CT		22(45.8%)	56(32.2%)	0.261	1.55(0.72,3.33)	
CC		3(6.3%)	7(4.0%)	0.215	3.00(0.53,17.02)	
CT+CC vs. TT		/	/	0.175	1.66(0.80,3.45)	
CC vs. CT+TT		/	/	0.296	2.43(0.46,12.89)	
TNF						
rs1800629		N=48	N=174	0.035		
GG		23(47.9%)	111(63.8%)	\(/ \)	1(Ref)	
GA		0(0%)	0(0%)	NA	NA	
AA		25(52.1%)	83(46.2%)	0.362	NA	
AA vs. GA+GG		/	/	NA	NA	
AA vs. GA+GG		/	/	NA	NA	
TNFRSF1A						
rs4149570		N=47	N=170	0.253		
CC		12(25.5%)	44(25.9%)	\(/ \)	1(Ref)	

(Continued)
GA genotype, dominance model (GA+ AA vs. GG), and PIGR rs291102 dominance model (GA+ AA vs. GG) showed increased risk of HNSCC (P<0.05). In addition, we found that the IL-1RN rs419598, IL-21R rs2189521, and BCL2 rs2279115 genotypes were associated with reduced HNSCC risk, while the TNF rs1800630 genotype was associated with increased HNSCC risk. These findings provide experimental evidence to support these genes or SNPs as potential biomarkers of specific types of HNSCC.

It is estimated that infectious diseases and chronic inflammation account for approximately 25% of cancer-

Genotype	SNP	Cases	Controls	P value	P value	OR (95%CI)
CA		18(38.3%)	84(49.4%)	0.344	0.63(0.24,1.63)	
AA		17(36.2%)	42(24.7%)	0.556	1.32(0.53,3.31)	
AA vs.CA+CC		/	/	0.163	1.74(0.80,3.80)	
TNFSF7	rs7259857	N=48	N=174	0.840		
TT		40(83.3%)	143(82.2%)	/	1(Ref)	
CT		7(14.6%)	29(16.7%)	0.832	0.89(0.31,2.54)	
CC		1(2.1%)	2(1.1%)	0.578	2.07(0.16,27.08)	
CT+CC vs. TT		/	/	0.999	0.98(0.36,2.63)	
CC vs.CT+TT		/	/	0.578	2.06(0.16,26.36)	
TNF	rs361525	N=48	N=174	0.478		
GG		45(93.8%)	160(92.0%)	/	1(Ref)	
GA		3(6.3%)	4(8.0%)	0.227	0.41(10.1,1.74)	
AA		0(0%)	0(0%)	NA	NA	
AA vs.GA+GG		/	/	0.227	0.41(10.1,1.74)	
TNF	rs1800630	N=48	N=173	0.056		
CC		26(54.2%)	121(69.9%)	/	1(Ref)	
CA		19(39.6%)	49(28.3%)	0.141	1.81(0.82,3.97)	
AA		3(6.3%)	3(1.7%)	0.036	9.42(1.16,76.25)	
AA vs.CA+CC		/	/	0.036	9.42(1.16,76.25)	
TNF	rs1799724	N=45	N=175	0.781		
CC		33(73.3%)	135(77.1%)	/	1(Ref)	
CT		11(24.4%)	38(21.7%)	0.872	0.93(0.39,2.25)	
TT		1(2.2%)	2(1.1%)	0.971	2.58(0.14,48.43)	
TT vs.CT+CC		/	/	0.971	2.58(0.14,48.43)	
COX-2	rs5275	N=48	N=174	0.431		
AA		34(70.8%)	126(72.4%)	/	1(Ref)	
GA		14(29.2%)	43(24.7%)	0.643	1.22(0.54,2.72)	
GG		0(0%)	5(2.9%)	NA	NA	
GG vs. GA+AA		/	/	0.745	1.14(0.51,2.53)	
COX-2	rs20417	N=48	N=174	0.739		
CC		46(95.8%)	162(93.1%)	/	1(Ref)	
CG		2(4.2%)	11(6.9%)	0.912	1.10(0.20,6.24)	
GG		0(0%)	10(5.9%)	NA	NA	
GG vs.CG+CC		/	/	0.932	1.08(0.19,6.05)	
BCL2	rs2279115	N=48	N=173	0.263		
GG		21(43.8%)	73(42.2%)	/	1(Ref)	
GT		20(41.7%)	87(50.3%)	0.899	1.05(0.49,2.25)	
GT vs.GG		7(14.6%)	13(7.5%)	0.354	1.89(0.49,7.26)	
GT+GG vs.TT		/	/	0.816	1.21(0.58,2.52)	
GT+TT vs.GG		/	/	0.314	1.83(0.56,5.98)	
TABLE 4 | Association of 28 inflammation-associated gene SNPs with radiotherapy sensitivity of HNSCC patients.

Genotype	Non-sensitivity	Sensitivity	P value
AKT1			
rs1130233	N=17	N=28	0.363
CC	7(15.6%)	7(15.6%)	
CT	5(11.1%)	14(31.1%)	
TT	5(11.1%)	7(15.6%)	
AKT1			
rs2494732	N=17	N=28	0.560
TT	2(4.4%)	16(36.6%)	
CT	8(17.8%)	9(20.0%)	
CC	7(15.6%)	3(6.7%)	
CR2			
rs3813946	N=17	N=28	0.645
TT	13(28.9%)	23(51.1%)	
CT	4(8.9%)	5(11.1%)	
CC	0(0%)	0(0%)	
IL10			
rs1800871	N=16	N=28	0.809
AA	9(20.5%)	14(31.8%)	
GA	6(13.6%)	13(29.5%)	
GG	10(23.3%)	12(26.3%)	
IL10			
rs1800872	N=16	N=28	0.809
TT	9(20.5%)	14(31.8%)	
CT	6(13.6%)	13(29.5%)	
CC	10(23.3%)	12(26.3%)	
IL10			
rs1800896	N=17	N=28	0.814
TT	15(33.3%)	24(53.3%)	
CT	1(2.2%)	3(6.7%)	
CC	1(2.2%)	1(2.2%)	
IL1A			
rs17561	N=17	N=28	0.342
CC	11(24.4%)	21(46.7%)	
CA	6(13.3%)	0(0%)	
AA	0(0%)	0(0%)	
IL1B			
rs1143627	N=17	N=28	0.115
AA	1(2.2%)	9(20.0%)	
AG	11(24.4%)	14(31.1%)	
GG	5(11.1%)	5(11.1%)	
IL1B			
rs16944	N=17	N=28	0.274
GG	2(4.4%)	9(20.0%)	
GA	10(22.2%)	14(31.1%)	
AA	5(11.1%)	5(11.1%)	
IL1B			
rs1143634	N=17	N=28	0.316
GG	15(33.3%)	27(60.0%)	
GA	2(4.4%)	1(2.2%)	
AA	0(0%)	0(0%)	
IL1RN			
rs419598	N=14	N=24	0.731
TT	13(34.2%)	21(55.3%)	
CT	1(2.6%)	2(5.3%)	
CC	0(0%)	0(0%)	
IL21R			
rs2189521	N=17	N=28	0.506
TT	11(24.4%)	18(40.0%)	
CT	6(13.3%)	8(17.8%)	
CC	0(0%)	0(0%)	
IL4			
rs2243250	N=17	N=28	0.108
CC	2(4.4%)	1(2.2%)	
CT	10(22.2%)	10(22.2%)	
TT	5(11.1%)	17(37.8%)	
IL4			
rs2227284	N=17	N=28	0.057
TT	6(13.3%)	20(44.4%)	
GT	10(22.2%)	7(15.6%)	
GG	10(22.2%)	10(22.2%)	
IL4RA			
rs1801275	N=16	N=28	0.030
AA	15(34.1%)	18(40.9%)	
GA	1(2.3%)	10(22.7%)	
GG	0(0%)	0(0%)	
IL6			
rs1800796	N=17	N=28	0.814
GG	2(4.4%)	5(11.1%)	
CG	7(15.6%)	12(26.7%)	

(Continued)
causing factors (16). Inflammation may act at multiple stages of disease development to disrupt tissue homeostasis, induce aberrant proliferative responses, modulate the tumor microenvironment, and compromise immune surveillance (50–52). Inflammatory cells and related signaling molecules can also be used by tumors to facilitate progression and metastasis by generating a favorable microenvironment, as well as promoting genetic instability and angiogenesis (53). Inflammatory physiological changes, such as oxidative stress, exert downstream genotoxic effects (54). When sustained over extended periods, these changes promote the emergence of cancer-initiating mutations (55). Genetic variations in inflammation-related genes potentially complement prediction of HNSCC risk. Genetic polymorphisms are a common genetic variant. The most common polymorphic form is a base difference, termed a single nucleotide polymorphism (3).

TABLE 4 | Continued

Genotype	Non-sensitivity	Sensitivity	P value
PIGR			
rs291097	CC 8(17.8%)	11(24.4%)	0.462
	GG 13(28.9%)	23(51.1%)	
	GA 4(8.9%)	5(11.1%)	
	AA 0(0%)	0(0%)	
rs291102	CC 12(26.7%)	20(44.4%)	0.606
	GG 5(11.1%)	8(17.8%)	
	AA 0(0%)	0(0%)	
TNF			
rs179964	CC 7(15.6%)	16(35.6%)	0.571
	TT 8(17.8%)	10(22.2%)	
	CT 2(4.4%)	2(4.4%)	
rs1800629	CC 17(37.8%)	28(62.2%)	NA
	GG 0(0%)	0(0%)	
	GA 4(8.9%)	8(17.8%)	
rs149570	CC 2(4.7%)	8(18.6%)	0.347
	CA 13(30.2%)	6(14.0%)	
	AA 0(0%)	0(0%)	
rs7259857	CC 15(33.3%)	23(51.1%)	0.462
	CT 2(4.4%)	5(11.1%)	
rs361525	CC 14(31.1%)	25(55.6%)	0.407
	GA 3(6.7%)	3(6.7%)	
	AA 0(0%)	0(0%)	
rs1800630	CC 10(22.2%)	19(42.2%)	0.761
	CA 6(13.3%)	7(15.6%)	
	AA 1(2.2%)	2(4.4%)	
rs1799724	CC 15(33.3%)	21(46.7%)	0.498
	CT 1(2.2%)	5(11.1%)	
	TT 1(2.2%)	2(4.4%)	
COX-2	AA 13(28.9%)	20(44.4%)	0.496
	GA 4(8.9%)	8(17.8%)	
	GG 0(0%)	0(0%)	
rs20417	CC 16(35.6%)	28(62.2%)	0.378
	CG 1(2.2%)	0(0%)	
	GG 0(0%)	0(0%)	
rs2279115	CC 8(17.8%)	19(42.2%)	0.333
	GT 7(15.6%)	6(13.3%)	
	TT 2(4.4%)	3(6.7%)	

Compared with those with other genotypes, HNSCC patients carrying the IL-4RA rs1801275 AA wild-type genotype (40.9%) were more sensitive to radiotherapy (P=0.030).

AKT, the v-AKT murine thymoma viral oncogene homolog, maps to human chromosome 1q432.32 and encodes a 56-kDa protein, comprising 480 amino acids (56). AKT is an important effector of the PI3K/AKT/MTOR signaling pathway, and genetic mutations or abnormal protein expression can alter a variety of cellular processes including migration, proliferation, growth, and...
TABLE 5 | Association of clinicopathological parameters with radiotherapy sensitivity of HNSCC patients.

Characteristics	Non-sensitivity	Sensitivity	P value
Age			0.033
Age>60	6	19	
Age=60	11	9	
Gender			0.277
Female	4	11	
Male	13	17	
T stage			0.440
1-2	8	12	
3-4	6	15	
N stage			0.646
Negative	1	1	
Positive	14	27	
M stage			0.265
Negative	15	25	
Positive	0	3	
Clinical stage			0.552
I–II	2	6	
III–IV	14	26	
Smoking			0.033
No	6	19	
Yes	11	9	
Drinking			0.384
No	10	20	
Yes	7	8	
Family history of cancer			0.869
No	13	22	
Yes	4	6	
SCC			0.030
Normal	9	17	
Increased	5	1	
CEA			0.474
Normal	8	10	
Increased	1	0	
CYFRA			0.197
Normal	1	3	
Increased	4	2	
EBV			0.900
Negative	3	11	
Positive	0	1	
Blood type			0.900
A	3	6	
B	3	3	
AB	1	1	
O	2	2	

We found that age ≤ 60 years, non-smoker status, and normal levels of SCC were associated with increased radiotherapy sensitivity of HNSCC patients (P=0.033; P=0.033; P=0.033, respectively).

PIGR is a member of the immunoglobulin superfamily and transports immunoglobulin A (IgA) onto mucosal surfaces (61). PIGR has been described as a putative cancer biomarker in a few studies on various cancers, the majority of which indicate an association between low PIGR expression and more aggressive disease (61). Individuals carrying the PIGR rs291097 T allele have a higher risk of NPC in Guangdong Province, China (14). The PIGR rs291102 genotype is a missense mutation changing alanine to valine near an endoproteolytic cleavage site. This variant could alter the efficiency of PIGR to release the IgA-EBV complex and consequently increase the susceptibility of populations in endemic areas to develop NPC (13). Chen et al. reported that the risk of HNSCC may be associated with SNPs in the BCL2 promoter region (43). Some scholars consider that TNF-α SNPs (rs1800629, rs1799724, rs1800630, and rs1799964) may individually or, more likely, jointly affect individual susceptibility to HPV16-associated OSCC, particularly squamous cell carcinoma of the oropharynx (SCCOI) in never smokers (38). Our results are similar to the abovementioned findings, which suggests that inflammatory-related gene SNPs are closely related to the risk of HNSCC in different populations and different cases.

Following stratified analyses, we found that the IL-1RN rs419598 TT genotype and dominance model (CT+ CC vs. TT) were associated with reduced HNSCC risk in individuals older than 60 years of age. However, in those age 60 and younger, the AKT1 rs1130233 TT genotype and dominance model (CT+ TT vs. CC), the IL-21R rs2189521 CT genotype and dominance model (CT+ CC vs. TT), and the BCL2 rs2279115 recessive model (TT vs. GT+GG) were associated with reduced HNSCC risk. In addition, in men, the AKT1 rs1130233 TT genotype and dominance model (CT+ TT vs. CC) and the BCL2 rs2279115 TT genotype and recessive model (TT vs. GT+GG) were associated with reduced HNSCC risk. In women, however, the IL-21R rs2189521 CT genotype and dominance model (CT+ CC vs. TT) were associated with reduced HNSCC risk. Additionally, the PIGR rs291097 GA genotype and dominance model (GA+ AA vs. GG) and the TNF rs1800630 AA genotype were associated with increased HNSCC risk in women. These genes are all inflammatory-related genes, and these results suggest that inflammatory-related gene SNPs are closely related to the risk of HNSCC.

From our research data, the correlation between various genotypes and the risk of HNSCC may be related to the differences in the distribution of different clinicopathological parameters. We also compared the genotype distribution of these polymorphisms in HNSCC patients with different clinicopathological parameters. We found that the heterozygous and dominant models of the AKT1 rs1130233 polymorphism were significantly related to non-distant metastasis. This phenomenon may indicate that the carrier of AKT1 rs1130233 dominance model has a low risk of cancer and is not prone to distant metastasis, which may indicate they have a long survival time. The IL-1RN rs419598 wild-type genotype was significantly related to stage III-IV disease, the PIGR rs291102 wild-type genotype was significantly related to normal levels of CYFRA, and the BCL2 rs2279115 wild-type genotype was significantly related to lymph node metastasis.
Table 6: Association of significant inflammation-associated gene SNPs with clinicopathological parameters of HNSCC patients.

Characteristics	AKT1 rs1130233					AKT1 rs2494732					PIGR rs201057					PIGR rs201102					
	Wild	Heterozygous	P	Mutation	P	P_{dominance}	P_{recessive}	Wild	Heterozygous	P	Mutation	P	P_{dominance}	P_{recessive}	Wild	Heterozygous	P	Mutation	P	P_{dominance}	P_{recessive}
Age	0.675	0.661	0.643	0.805	0.669	0.682	0.740	0.724	0.617	NA	0.117	NA	0.732	0.258	0.604	0.242					
Age (≤ 60)	0.111	0.852	0.273	0.195	0.833	0.268	0.272	0.041	0.53	8	0.094	88	0.686	0.426	0.689	0.133					
Age (>60)	0.410	0.601	0.585	0.811	0.497	0.478	0.506	0.518	0.89	13	0.085	7	0.862	0.708	0.282	0.620					
T stage	0.004	0.327	0.055	0.821	0.399	0.692	0.609	0.200	74	11	0.478	4	0.973	0.498	0.956	0.407					
N stage	0.046	0.104	0.061	0.737	0.919	0.145	0.197	0.171	167	22	0.342	146	0.671	0.784	0.703	0.777					
Clinical stage	0.005	0.825	0.126	0.510	0.707	0.170	0.438	0.001	51	5	0.439	43	0.074	0.056	0.795	0.550					
Li-Fi	0.846	0.288	0.311	0.283	0.649	0.960	0.809	0.815	130	20	0.618	121	0.317	0.136	0.215	0.149					
Smoking	0.081	0.600	0.033	0.559	0.221	0.434	0.458	0.651	112	16	0.497	88	0.119	0.166	0.077	0.188					
Drinking	0.797	0.191	0.759	1.000	0.079	0.918	0.856	0.461	107	11	0.486	98	0.068	0.028	0.701	0.513					
Family history of cancer																					
SCC	0.069	0.731	0.819	0.737	0.465	0.466	0.448	0.861	32	6	0.073	23	0.128	0.643	0.156	0.605					
Yes	0.515	0.964	0.597	0.417	0.310	0.580	0.599	0.836	58	10	0.607	14	0.062	0.052	0.595	0.668					
CEA	0.029	0.728	0.449	0.833	0.298	0.380	0.230	0.524	51	5	0.092	5	0.041	NA	0.041	NA					
Yes	0.067	0.601	0.033	0.598	0.064	0.882	0.629	1.000	10	1	0.745	7	0.000	0.000	0.000	0.000					
CYFRA	0.039	0.400	0.877	0.183	0.814	0.862	0.629	1.000	7	1	0.605	25	0.000	0.000	0.000	0.000					
Yes	0.020	0.024	0.397	0.944	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024					
Blood type	A	0.034	0.612	0.267	0.844	0.654	0.416	0.549	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160					
B	0.019	0.947	0.153	0.847	0.153	0.153	0.153	0.153	0.153	0.153	0.153	0.153	0.153	0.153	0.153	0.153					
AB	0.053	0.602	0.398	0.702	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398					
G	0.012	0.397	0.603	0.397	0.603	0.603	0.603	0.603	0.603	0.603	0.603	0.603	0.603	0.603	0.603	0.603					

Among the SNPs related to the risk of HNSCC, the heterozygous and dominant model of AKT1 rs1130233 were significantly related to lymph node metastasis and non-distant metastasis (P=0.034, P=0.049). The recessive model of AKT1 rs2494732 was significantly related to male sex, stage III-IV disease, and normal carcinoembryonic antigen (CEA) levels (P=0.041, P=0.031, P=0.036). The IL-1RN rs419598 wild-type genotype was significantly related to stage III-IV disease, the PIGR rs291102 wild-type genotype and dominance model were significantly related to normal levels of cytokeratin fragment 19 (CYFRA) (P=0.041).
These results suggest that individuals with the IL-1RN rs419598, or BCL2 rs2279115 polymorphisms showed a significant reduction in HNSCC risk progression, whereas those with the PIGR rs291102 dominance model had increased HNSCC risk. In addition, we found that different genotypes of some SNPs are significantly correlated with different clinicopathological parameters, such as IL-1B rs11343627, IL-4 rs2243250, and IL-4 rs2227284, IL-6 rs1800796, TNFRSF1A rs414570, TNF rs361525, COX-2 rs20417, whereas other SNPs showed no significant correlations with clinicopathological parameters in our data.

Recently, studies on the relationships between genetic polymorphisms and radiotherapy sensitivity have been reported. For example, gene polymorphisms of Wnt/beta-catenin may be novel prognostic factors for NPC patients treated with RT (62). The authors observed that the catenin beta 1 gene (CTNNB1) rs1880481 and rs3864004 polymorphisms, as well as the glycogen synthase kinase 3 beta gene (GSK3beta) rs3755557 polymorphism, were significantly associated with a poorer efficacy of RT in NPC patients (63). However, the relationship between SNPs in inflammation-related genes and the risk of HNSCC has not been reported. In this study, we found that HNSCC patients carrying the IL-4RA rs1801275 AA wild-type genotype were more sensitive to radiotherapy compared with other patients. We also analyzed the relationships between clinicopathological parameters and radiotherapy sensitivity. Age ≤ 60 years, non-smoker status, and normal levels of SCC were found to be associated with increased radiotherapy sensitivity of HNSCC patients. We expect that these results may help guide radiotherapy and concurrent radiotherapy and chemotherapy treatment plans. However, this was only a correlation study, and the support of basic science experiments is necessary.

In our study, the 28 inflammation-related gene polymorphisms we screened were previously reported in various cancers, and several SNPs have been reported in HNSCC (6, 13, 31, 34–36, 39, 42, 64, 65). Drobin et al reported the correlation and possible mechanism of VEGFA rs699947 with breast cancer and HNSCC radiotherapy sensitivity. The authors proposed that this SNP may affect protein expression, which would impact biological processes such as blood vessel growth, inflammatory cell infiltration, the immune response, DNA repair, oxidative stress and hypoxia (66). These changes may underlie the differences in correlation and sensitivity among patients. TNF-α is a cytokine that is secreted during the inflammatory process accompanying RTH and during cancer development. An SNP in the TNF-α promoter region can potentially affect the function or expression of this cytokine and thus modulate the risk of occurrence and intensity of OM and shortening of overall survival (30). To explore these possibilities, further studies are required using a larger sample size and additional in vitro and in vivo experimental analyses.

The present study has some limitations. First, the sample size was relatively small, especially for the HNSCC case group. Our results need further confirmation in larger populations. Second, only HNSCC risk was analyzed in this study. Analysis of prognostic parameters, such as overall survival and progression-free survival, is also warranted. Last, functional experiments are required to elucidate the underlying disease mechanism responsible for our observations.

In summary, we found that the AKT1 rs1130233 TT and dominance model (CT+TT vs. CC) genotypes, as well as the rs2494732 CC genotype, were associated with reduced risk of HNSCC. The PIGR rs291097 GA and dominance model (GA+AA vs. GG) genotypes, as well as the rs291102 dominance model (GA+AA vs. GG), were associated with increased risk of HNSCC. We also found that the IL-4RA rs1801275 AA genotype was significantly correlated with increased radiotherapy sensitivity of HNSCC patients. In addition, age ≤ 60 years, non-smoker status, and normal levels of SCC were found to be associated with increased radiotherapy sensitivity of HNSCC patients. We expect that future data from a larger population sample will support our results and be used to guide the comprehensive treatment and prognosis of HNSCC patients. Further investigation is needed to elucidate the molecular mechanisms governing our findings.

DATA AVAILABILITY STATEMENT

The data that support the findings of our study have been deposited into CNGB Sequence Archive (CNSA) of China National GeneBank DataBase (CNGBdb) with accession number CNP0001819.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Human Ethics Committee of Liaoning Cancer Hospital. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

YL and XL designed the study. HY was responsible for case screening, XK, LC, YS, and AM treated HNSCC patients. YZ was mainly for clinical information collection. YL and LZ processed, analysed data, and wrote the paper. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the Doctoral Science and Technology Research Startup Fund Project of Liaoning Province of China (2019BS-275), the Science and Technology Fund Project of Liaoning Province of China (20180550318), and Key Labotary of Tumor Radiosensitization and Normal Tissue Radioprotection of Liaoning Province (2018225102).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.651632/full#supplementary-material
56. Zhang X, Chen X, Zhai Y, Cai Y, Cao P, Zhang H, et al. Combined Effects of Genetic Variants of the PTEN, AKT1, MDM2 and P53 Genes on the Risk of Nasopharyngeal Carcinoma. PLoS One (2014) 9:e92135. doi: 10.1371/journal.pone.0092135

57. Pu X, Hildebrandt MA, Lu C, Roth JA, Stewart DJ, Zhao Y, et al. Inflammation-Related Genetic Variations and Survival in Patients With Advanced non-Small Cell Lung Cancer Receiving First-Line Chemotherapy. Clin Pharmacol Ther (2014) 96:360–9. doi: 10.1002/cpt.2014.89

58. Jin L, Sturgis EM, Zhang Y, Huang Z, Song X, Li C, et al. Association of Tumor Necrosis Factor Alpha-Promoter Variants With Risk of HPV-Associated Oral Squamous Cell Carcinoma. Mol Cancer (2013) 12:820. doi: 10.1186/1476-4598-12-80

59. Fan Q, He JF, Wang QR, He JF, Wang QR, Cai HB, Sun XG, Zhou XX, et al. Functional Promoter Polymorphism at the TP53-Binding or Responsive Promoter Regions of High-Incidence Region of North China. World J Gastroenterol (2005) 11:858–62. doi: 10.3748/wjg.v11.i6.858

60. Xu Q, Yuan Y, Sun LP, Gong YH, Xu Y, Xu XY, et al. Risk of Gastric Cancer is Associated With the MUC1 568 a/G Polymorphism. Int J Oncol (2009) 35:1313–20. doi: 10.3892/ijo.2009.00449

61. Bonaparte E, Pesenti C, Fontana L, Falcone R, Paganini I, Marzorati A, et al. Molecular Profiling of Lung Cancer Specimens and Liquid Biopsies Using MALDI-TOF Mass Spectrometry. Diagn Pathol (2018) 13:4. doi: 10.1186/s13288-017-0683-7

62. Yang XD, Zhao SF, Zhang Q, Li W, Wang YX, Hong XW, et al. Gelsolin Rs1078305 and Rs10818524 Polymorphisms Were Associated With Risk of Oral Squamous Cell Carcinoma in a Chinese Han Population. Biomarkers (2016) 21:267–71. doi: 10.3109/1354750X.2015.1134664

63. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF Mass Spectrometry: an Emerging Technology for Microbial Identification and Diagnosis. Front Microbiol (2015) 6:791. doi: 10.3389/fmicb.2015.00791

64. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur J Cancer (2009) 45:228–47. doi: 10.1016/j.ejca.2008.10.026

65. Hanahan D, Weinberg RA. Hallmarks of Cancer: the Next Generation. Cell (2011) 144:646–74. doi: 10.1016/j.cell.2011.02.013

66. Elina V, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-Induced Cancer: Crosstalk Between Tumours, Immune Cells and Microorganisms. Nat Rev Cancer (2013) 13:759–71. doi: 10.1038/nrc3611

67. Jinushi M, Yin and Yang of Tumor Inflammation: How Innate Immune Suppressors Shape the Tumor Microenvironments. Int J Cancer (2014) 135:1277–85. doi: 10.1002/ijc.28626

68. Coussens LM, Werb Z. Inflammation and Cancer. Nature (2002) 420:860–7. doi: 10.1038/nature01322

69. Atsumi T, Singh R, Sabharwal L, Bando H, Meng J, Arima Y, et al. Inflammation Amplifier, a New Paradigm in Cancer Biology. Cancer Res (2014) 74:8–14. doi: 10.1158/0008-5472.CAN-13-2322

70. Buja MF, He QJ, Johnson LG, Onstad L, Levine DM, Thrift AP, et al. Germline Variation in Inflammation-Related Pathways and Risk of Barrett’s Oesophagus and Oesophageal Adenocarcinoma. Gut (2017) 66:1739–47. doi: 10.1136/gutjnl-2016-311622

71. Kim MJ, Kang HG, Lee SY, Jeon HS, Lee WK, Park JY, et al. AKT1 Polymorphisms and Survival of Early Stage non-Small Cell Lung Cancer. J Surg Oncol (2012) 105:167–74. doi: 10.1002/jso.22071

72. De Marco C, Rinaldo N, Bruni P, Malzoni C, Zullo F, Fabiani F, et al. Multiple Genetic Alterations Within the PI3K Pathway are Responsible for AKT Activation in Patients With Ovarian Carcinoma. PLoS One (2013) 8:e55362. doi: 10.1371/journal.pone.0055362

73. Li Q, Yang J, Yu Q, Wu H, Liu B, Xiong H, et al. Associations Between Single-Nucleotide Polymorphisms in the PI3K-PTEN-AKT-Mtor Pathway and Increased Risk of Brain Metastasis in Patients With non-Small Cell Lung Cancer. Clin Cancer Res (2013) 19:2652–60. doi: 10.1158/1078-0432.CCR-13-1093

74. Avan A, Avan A, Le Large TY, Mambrini A, Funel N, Maffout M, et al. AKT1 and SELL Polymorphisms Predict the Risk of Developing Cachexia in Pancreatic Cancer Patients. PLoS One (2014) 9:e108057. doi: 10.1371/journal.pone.0108057

75. Wang X, Lin Y, Lan DF, Wu Y, Ouyang X, Wang X, et al. A GG Allele of 3′-Side AKT1 SNP is Associated With Decreased AKT1 Activation and Better Prognosis of Gastric Cancer. J Cancer Res Clin Oncol (2014) 140:539–41. doi: 10.1007/s00432-014-1663-x

76. Pitrusti R, Gaber A, Hedner C, Nodin B, Uhlen M, Eberhard J, et al. Expression and Prognostic Significance of the Polymeric Immunoglobulin Receptor in Esophageal and Gastric Adenocarcinoma. J Transl Med (2014) 12:83. doi: 10.1186/1476-5767-12-83

77. Ban S, Konomi C, Iwakawa M, Yamada S, Ohno T, Tsuji H, et al. Radiosensitivity of Peripheral Blood Lymphocytes Obtained From Patients With Cancers of the Breast, Head and Neck or Cervix as Determined With a Micronucleus Assay. J Radiat Res (2004) 45:535–41. doi: 10.1269/jrr.45.535

78. Yu J, Huang Y, Liu L, Wang J, Yin J, Huang L, et al. Genetic Polymorphisms of Wnt/Beta-Catenin Pathway Genes Are Associated With the Efficacy and Toxicities of Radiotherapy in Patients With Nasopharyngeal Carcinoma. Oncotarget (2016) 7:92528–37. doi: 10.18632/oncotarget.12754

79. Caetano MS, Zhang H, Cumpian AM, Gong L, Unver N, Ostrin EL, et al. IL6 Blockade Reprograms the Lung Tumor Microenvironment to Limit the Development and Progression of K-Ras-Mutant Lung Cancer. Cancer Res (2016) 76:3189–99. doi: 10.1158/0008-5472.CAN-15-2840

80. Pasvenskaite A, Vilkeviciute A, Lutkeviciene R, Gedvilaite G, Liutkevicius V, Uloza V. Associations of IL6 Rs1800795, BLK Rs13277113, TIMP3 Rs9621332, IL1RL1 Rs1049733 and IL1RAP Rs6424606 Single Gene Polymorphisms With Laryngeal Squamous Cell Carcinoma.Gene (2020) 74:144700. doi: 10.1016/j.gene.2020.144700

81. Drobni K, Marczyk M, Halle M, Danielsson D, Papiez A, Sangsuanw T, et al. Molecular Profiling for Predictors of Radiosensitivity in Patients With Breast or Head-and-Neck Cancers. Cancers (Basel) (2020) 12(3):753–71. doi: 10.3390/cancers12030753

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Li, Zhu, Yao, Zhang, Kong, Chen, Song, Mu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.