Intravascular Frequency-Domain Optical Coherence Tomography Assessment of Atherosclerosis and Stent-Vessel Interactions in Human Carotid Arteries

M.R. Jones, G.F. Attizzani, C.A. Given II, W.H. Brooks, M.A. Costa and H.G. Bezerra

AJNR Am J Neuroradiol 2012, 33 (8) 1494-1501
doi: https://doi.org/10.3174/ajnr.A3016
http://www.ajnr.org/content/33/8/1494
Intravascular Frequency-Domain Optical Coherence Tomography Assessment of Atherosclerosis and Stent-Vessel Interactions in Human Carotid Arteries

BACKGROUND AND PURPOSE: Carotid artery-related stroke is largely an embolic disease that has been correlated with inflammation, plaque rupture, and thrombus formation in “vulnerable” atherosclerotic plaque. Nevertheless, current guidelines for carotid revascularization in asymptomatic patients rely on the calculation of stenosis for risk assessment, a parameter that has been viewed with increasing skepticism. Intravascular OCT is an imaging technique that offers high axial resolution (10 μm), allowing an unprecedented micron-level assessment of human carotid plaque morphology. This observational article reports the first successful use of the newest iteration of this technology, FDOCT without balloon occlusion to assess human carotid artery disease and carotid stent-vessel interaction in vivo.

MATERIALS AND METHODS: Four patients with asymptomatic carotid artery disease and ambiguous noninvasive and/or angiographic data underwent carotid FDOCT to assess risk and to formulate a treatment strategy.

RESULTS: Findings include the unexpected demonstration of TCFA, plaque rupture, thrombus, inflammation, and marked tissue prolapse through stent struts in patients without high-risk factors by conventional criteria, as well as low-risk features in a patient with a high-risk noninvasive study. The procedures were performed without safety issues or special accommodations for vessel occlusion.

CONCLUSIONS: The present study demonstrates the technical feasibility of FDOCT in cervical carotid arteries. As such, this technology holds the promise of not only clarifying ambiguous data in individual patients but of providing data that might call for a future paradigm shift in the assessment of asymptomatic carotid artery disease.

ABBREVIATIONS: CCA = common carotid artery; FDOCT = frequency-domain optical coherence tomography; NIH = neointimal hyperplasia; OCT = optical coherence tomography; TCFA = thin-cap fibroatheroma; TDOCT = time-domain optical coherence tomography
faster. The larger (approximately 10 mm) FOV in FDOCT images also allows examinations of larger vessels, such as the carotid arteries.\(^\text{10}\)

We report, for the first time, the successful use of FDOCT in vivo using a nonocclusive technique in the carotid arteries. OCT was used to clarify ambiguous noninvasive and angiographic carotid data in 3 cases with the resultant demonstration of interesting findings that suggest that markers for stroke risk heretofore only previously described by ex vivo histopathologic studies may be captured in vivo by means of OCT. In a fourth case, OCT ruled out features of plaque complexity previously suggested by a carotid duplex test.

Materials and Methods

Four patients undergoing diagnostic carotid angiography with standard 5F diagnostic catheters underwent ad hoc OCT assessment of ICA lesions. No patient came to the angiographic suite for a planned interventional procedure because it is our policy to perform diagnostic carotid and cerebral angiography on all patients before any recommendations for revascularization. Indications included the clarification of abnormal nonspecific carotid angiograms (patients A, C, and D) and the resolution of discordant angiographic-duplex findings (patient B). All patients were asymptomatic. Patient selection and immediate treatment was under the auspices of an interventional cardiologist with coronary OCT experience (M.R.J.), an interventional neuroradiologist (C.A.G.), and an endovascular-trained neurosurgeon (W.H.B.). All patients gave written informed consent for procedures performed.

Following angiography and before OCT interrogation, all patients underwent systemic anticoagulation with unfractionated heparin, achieving a target activated clotting time of >250 seconds. Three patients (A, C, and D) were studied with 7F Arrow-Flex Sheaths (Arrow International, Reading, Pennsylvania). Patient B was studied using a 6F Shuttle sheath (Cook, Bloomington, Indiana). Embolic protection (NAV-6 Filterwire; Abbott Vascular, Redwood City, California) was used in patients A and C only.

In each case, the delivered guidewires were used to advance a 2.7F C7 Dragonfly catheter (St Jude Medical, St Paul, Minnesota) across the lesion. Data were then acquired with a C7-XR OCT Intravascular Imaging System (St Jude Medical) and digitally stored. All OCT automated pullbacks covered 54 mm of vessel at 20 mm/s. During image acquisition, carotid blood flow was replaced by hand injections of contrast using a 30-mL syringe. Contrast was chosen in lieu of saline because of the efficiency of these high-viscosity agents in displacing signal-intensity-attenuating red blood cells during the data-acquisition period.\(^{16}\) The average contrast use was 20 mL per acquisition run. Contrast delivery was achieved in <3 seconds per acquisition.

2D images were reconstructed on-line and used to facilitate clinical decision-making in the catheterization laboratory. Additional off-line imaging analysis and 3D reconstructions were conducted by 2 experienced OCT analysts blinded to patient characteristics at the Imaging Core Lab, University Hospitals, Case Medical Center, Cleveland, Ohio (H.G.B. and G.F.A.) by using proprietary software (St Jude Medical). All cross-sectional images (every 0.2 mm) were analyzed after an initial screening for quality and exclusion of any image from analysis in which a portion of the vessel was out of view or in which residual blood impaired analysis. We defined “thrombus” as any mass protruding into the lumen, with an irregular surface and a sharp intensity gap between the mass and surrounding tissue.\(^{16}\) We also performed semiautomated calcium segmentation\(^{17}\) and fibrous cap quantification in 1 of the cases with a custom-built software by using Matlab (MathWorks, Natick, Massachusetts). Cap thickness was quantified with respect to the centroid of the lumen and rendered in a color code display, as follows: pink (cap thickness < 65 \(\mu\)m), green (65–149 \(\mu\)m), and blue (150–220 \(\mu\)m).\(^{18}\)

Results

Patient A

Patient A was a 64-year-old asymptomatic man with 80% angiographic stenosis of the left ICA by NASCET criteria. The patient was considered “high surgical risk” due to severe chronic obstructive airways disease and was enrolled in the Abbott-sponsored CHOICE carotid stent registry (http://www.strokecenter.org/trials/clinicalstudies/choice-carotid-stenting-for-high-surgical-risk-patients).

Following placement of a 10 × 40 mm open-cell RX Acculink carotid stent system (Abbott Vascular), deployed with a 6-mm Viatrac balloon (Abbott Vascular), a postdeployment angiogram demonstrated an unusual eccentric area of nonspecific “haziness” in the stented area (Fig 1). OCT was then performed with the demonstration of a large area of severe tissue prolapse without thrombus through the open cells in the Acculink stent (Fig 1B, -C). Prolapse was treated with the placement of a 10 × 30 mm closed-cell Xact carotid stent system (Abbott Vascular), with the resolution of prolapse by angiography (Fig 1D) and OCT (Fig 1E-, -F).

OCT also demonstrated a large TCFa with possible macrophage infiltration, plaque rupture, and white thrombus proximal to the stented segment (Fig 2). This segment was not obstructive and could not be detected by angiography. Hence, no additional intervention was performed.

Patient B

Patient B was a 70-year-old asymptomatic man with an abnormal right ICA duplex that demonstrated isoechoic and hyperechoic plaque with marked elevation of flow velocities (peak systolic = 419 cm/s; peak diastolic = 165 cm/s) predictive of high-degree ICA stenosis. The contralateral vessel was patent. Cerebral angiography revealed only a 60% right ICA stenosis by NASCET criteria (Fig 3A).

OCT was performed to help determine the severity and complexity of disease, given the discordant findings between noninvasive and invasive studies. OCT revealed a plaque with 55% diameter stenosis at the site of minimal luminal area in the ICA (OCT-derived NASCET criteria). The plaque had areas of calcium (Fig 3) with no signs of plaque instability, such as a large lipid core, thin fibrous cap, erosion, rupture, or thrombus. Intervention was deferred on the basis of such findings.

Patient C

Patient C was a 60-year-old man who underwent a left carotid endarterectomy in 1997 and carotid stent placement for carotid restenosis (VIVA Registry: Vivexx stent, C.R. Bard, Murray Hill, New Jersey) in 2006. Carotid angiography performed to evaluate an abnormal ICA duplex study revealed an unusual 60% (NASCET) in-stent restenosis with an area of marked hypolucence in all views (Fig 4A). OCT was undertaken to evaluate these abnormal angiographic findings in a patient
with a history of both surgical and in-stent restenosis in the target vessel. Findings included a clearly delineated restenotic area with 65% diameter stenosis (OCT-derived NASCET criteria) composed of 2 different patterns of neointimal hyperplasia: a homogeneous signal-intensity-rich area, and a heterogeneous region with predominantly poor signal-intensity tissue. Moreover, a large area with irregular contour composed of white thrombus (Fig 4D), a marker for clinical risk by pathologic studies, was revealed. Despite the patient’s asymptomatic status and with only 60% angiographic stenosis, intervention (stent placement with distal embolic protection) was performed (Fig 4E, -F).

Patient D

Patient D was a 79-year-old woman with asymptomatic right ICA stenosis of moderate severity by duplex examination (ICA peak systolic velocity = 301 cm/s; diastolic velocity = 55 cm/s; ICA/CCA ratio = 3.8). Diagnostic carotid angiography revealed an ulcerated 58% (NASCET) stenosis at the origin of the right ICA (Fig 5A). OCT was performed to assess the lesion, which had only marginal conventional criteria for revascularization. A large complex plaque with extensive calcification (Fig 5C, -D) and OCT-derived NASCET measurements of only 40% diameter stenosis was noted. Most important, images also demonstrated large regions of lipid with an extensive area of TCFA (Fig 5E, -F) and 2 sites of significant plaque ulceration (Fig 5G, -H). On the basis of these pathologic findings and the patient’s age, she was referred for carotid endarterectomy.

Discussion

Ischemic stroke is largely an embolic disease. Nonetheless, current standard-of-practice guidelines suggesting that carotid revascularization with endarterectomy or a stent procedure is beneficial in asymptomatic patients are largely based on North American and European trials. Both trials, limiting enrollment to patients with at least 60% angiographic stenosis, reported only modest benefit of an operation over medical management, with a 3-year absolute risk reduction of approximately 3% and no definite correlation between the degree of stenosis and outcomes.

Indeed, several investigators have reported data suggesting that risk of stroke is poorly defined by the degree of stenosis but strongly related to histopathologic findings in carotid...
plaques. Spangoli et al examined surgically removed plaques from patients without symptoms versus those with transient ischemic attack or cerebrovascular accident. They stressed that the presence and severity of clinical events was significantly correlated with thrombus and cap inflammation in ruptured plaques, after assessing endarterectomy specimens in a cohort with similar degrees of angiographic stenosis. Similarly, in another histopathologic evaluation, a higher percentage of macrophage-rich areas and number of T-cells per square millimeter in symptomatic-versus-asymptomatic patients with similar degrees of carotid narrowing was described.

Moreover, using multidetector CT angiography to examine symptomatic atherosclerotic plaques in patients with anterior circulation disease, Homburg et al found that culprit plaque ulcerations were equally distributed between patients with more than and less than 50% carotid stenosis. Further evidence that symptoms from carotid artery disease are correlated with plaque histopathology has been provided by a report that established correlation between plaque ulceration, intraluminal thrombus, symptoms, and cerebral microemboli as detected by transcranial Doppler in patients with similar degrees of angiographic stenosis. Redgrave et al, in the histopathologic study of 526 carotid endarterectomy specimens from recently symptomatic stenosis, found a high prevalence of cap rupture, large lipid core, and attenuated macrophage infiltration, highlighting the fact that these markers for plaque instability were similar to those previously described in unstable coronary artery plaques.

OCT is an emerging technology in the cardiac catheterization laboratory. Its accuracy in measurements of vascular dimensions, in the characterization of atherosclerotic plaques, and in the identification of thrombus and plaque inflammation has been well demonstrated; therefore, it enables imaging of structures that have a potential causative role in cerebrovascular ischemia (e.g., thrombus, TCFA with plaque rupture, and inflammation).

In this case series, we report the use of FDOCT to assist in the management of 4 asymptomatic patients in whom a proper course of action was not readily apparent after diagnostic studies that included conventional angiography. Patient A underwent OCT evaluation to clarify abnormal but nonspecific findings on a carotid angiogram following carotid stent placement, with resultant findings that included marked tissue prolapse through the stent struts and the presence of an otherwise undetectable ruptured TCFA. The 3500-patient CAPTURE (Carotid Acculink/Accunet Post-approval Trial to Uncover unanticipated or Rare Events) carotid stent registry, reporting a 30-day stroke rate of 4.8%, found that only 23% of strokes occurred intraprocedurally, raising the possibility that at least some of the ipsilateral postprocedural strokes following carotid artery stent placement might be related to issues surrounding tissue prolapse through stent cell struts. In patient A, OCT findings resulted in a decision to place a second (closed cell) stent in the target lesion to treat tissue prolapse. Moreover, another change in procedural strategy, specifically stent length, could have been considered to achieve...
full coverage of the segment containing the ruptured TCFA had OCT been performed before stent deployment in this case.

Intervention was, however, deferred in patient B, despite inexplicably high ICA velocities that could otherwise justify revascularization, on the basis of OCT documentation of ≈60% stenosis and the absence of any features thought to suggest plaque instability by pathologic criteria. Revascularization was recommended for patient D, after an OCT evaluation of “borderline” carotid duplex and angiographic data demonstrated findings that have been associated with higher risk in the pathology literature.31 Patient C, despite the presence of “low-risk” clinical (restenosis) and angiographic (60% stenosis) markers, was treated with carotid stent placement when an unanticipated large thrombus burden was detected by OCT. This case as well demonstrates the ability of OCT to differentiate normal- and abnormal-appearing tissue on the basis of signal intensity coupled with homogeneity and smoothness of tissue contour. Although these findings have not been previously described in the carotid arteries or validated by OCT, echolucent tissue, described as a “black hole” in intravascular sonography studies after intracoronary brachytherapy and drug-eluting stent implantation,32 is composed of acellular/hypocellular necrotic tissue, scattered in an extracellular matrix rich in proteoglycans but also containing T lymphocytes and foam cells.33 On the basis of known optical properties of different materials, tissue depicting poor signals on OCT images is likely composed of fibrin or organized thrombus,34 though highly organized proteoglycan could also provide similar images.35

Yoshimura et al36 initially described the use of carotid OCT with balloon occlusion to clarify an ambiguous carotid angiogram in 2010. More recently, the use of OCT to evaluate carotid artery stent placement was reported in 7 patients for whom the authors emphasized the necessity of proximal balloon occlusion (complicated by symptomatic cerebral ischemia in 1 patient) to obtain acceptable images.37 Furthermore, an early experience with OCT in carotid plaque characterization was reported in a brief communication that compared OCT with other imaging modalities.38 Most recently, a 30-patient cohort undergoing scheduled carotid artery stent placement was studied before and following stent placement with TDOCT.39 Again, all patients were imaged after proximal balloon occlusion. Conversely, our group acquired OCT images with hand injections of contrast without proximal balloon occlusion. FDOCT technology, with a much faster pull-

![OCT 3D reconstruction of the right ICA. A, Moderate stenosis in the ICA is also demonstrated in the OCT longitudinal view in B. C and D, 3D OCT reconstructions reveal the region of interest along with proximal and distal reference segments. The numbered white dashed lines correspond to the cross-sectional images in E. A normal distal reference vessel is depicted in 1. The minimal luminal area (2) reveals a calcified plaque (solid white arrows). Signs of plaque instability are absent. The proximal reference area (3) exhibits a patent lumen with the presence of calcium (solid white arrows).](image-url)
back speed (up to 25 mm/s) compared with TDOCT, enables adequate blood clearance, without the necessity of proximal balloon occlusion. Furthermore, its wider FOV (~10 mm) allows imaging of larger arteries. In our series, only 13% of all the cross-sections were not suitable for analysis because of blood clearance artifacts or inadequate FOV.

In contrast to these earlier studies, our group also reports the use of data obtained by preintervention FDOCT in clinical decision-making in patients with ambiguous angiographic or noninvasive data. No complications were reported in this case series.

The present cases, although not conclusive, provide important clinical insights. First, the feasibility of interrogating the carotid vasculature by using high-resolution FDOCT imaging without the need for complex technical adaptations for blood displacement or interruption of carotid flow is shown. Second, these cases are, to the best of our knowledge, the first use of FDOCT to assess plaque morphology and guide, albeit empirically, decision-making before planned intervention in human carotid arteries in vivo. Finally, this report also describes the use of “next-generation” analytical imaging software with automated detection and quantification of vascular disease that capitalizes on the 3D nature of FDOCT images.

Several points of caution should be noted in the interpretation and use of data presented in this case series. First, carotid artery instrumentation may carry a risk of embolization. While no signals of safety issues in excess of those associated with diagnostic carotid angiography have been reported to date in small series of carotid intravascular sonography and OCT patients, the risk versus benefit of this technique will remain uncertain until studies that are appropriately powered to assess safety and efficacy end points are available. Second, we assumed that OCT histopathologic correlations that have been extensively validated outside of the carotid circulation are also valid in the carotid circulation. Finally, limited tissue penetration, particularly in lipid-rich plaques, precludes the interpretation and quantification of underlying tissue layers.

In this case series, FDOCT revealed unexpected findings in virtually all patients including marked tissue prolapse through an open-cell carotid stent and the demonstration of ruptured TCFAs and thrombus in lesions defined as “low-risk” according to current clinical criteria. These unexpected findings suggest that further studies are needed to evaluate the role of FDOCT in the assessment of asymptomatic carotid artery disease.
Conclusions
The present study demonstrates the technical feasibility of FDOCT without balloon occlusion for the assessment of extracranial carotid artery disease. The unique features of this technology, which allow the rapid acquisition of images with unprecedented resolution, make FDOCT a promising tool to help clinicians understand and manage patients with asymptomatic carotid artery disease.

Disclosures: Michael R. Jones—RELATED: Consulting Fee or Honorarium: St. Jude Medical, UNRELATED: Payment for Lectures (including service on Speakers Bureau): St. Jude Medical Speakers’ Bureau, Curtis A. Given II—UNRELATED: Payment for Lectures (including service on Speakers Bureau): ev3, Comments: I am a proctor and on the Speakers Bureau for Onyx 18, 34, and HD500, Marco A. Costa—UNRELATED: Consultancy: St. Jude Medical, Grants/Grants Pending: St. Jude Medical, *Patents (planned, pending, or issued): a patent of University Hospitals for OCT Software, *OTHER RELATIONSHIPS: prior consultant/speaker honorarium fees by Boston Scientific, Cordis, Medtronic, Abbott Vascular, Hiram G. Bezerra—UNRELATED: Consultancy: St. Jude Medical, *Money paid to the institution.

References
1. Roger VL, Go AS, Lloyd-Jones DM, et al, on behalf of the American Heart Association Statistics Committee and Stroke Statistics. Heart disease and stroke statistics: 2011 update—a report from the American Heart Association. Circulation 2011;123:e2–e220. Epub 2011 Dec 15.
2. Redelbell PM, Warlow CP. Timing of TIs preceding stroke. Neurology 2005;64:817–20
3. Fine-Edelstein JS, Wolf PA, O’Leary DH, et al. Precursors of extracranial carotid atherosclerosis in the Framingham study. Neurology 1994;44:1046–50
4. Homburg RJ, Rozie S, van Gils M, et al. Association between carotid artery plaque ulceration and plaque composition evaluated with multidetector CT angiography. Stroke 2011;42:367–72
5. Langfeldt M, Gray-Weale AC, Lushby RI. The role of plaque morphology and diameter reduction in the development of new symptoms in asymptomatic carotid arteries. J Vasc Surg 1989;9:548–57
6. Gronholmdt ML, Nordestgaard BG, Schroeder TV, et al. Ultrasonic echolucency carotid plaques predict future strokes. Circulation 2001;104:88–73
7. Topkian R, King A, Kwon SU, et al. Ultrasonic plaque echolucency and emboli signals predict stroke in asymptomatic carotid stenosis. Neurology 2011;77:53–58. Epub 2011 Aug 17
8. Underhill HR, Yuan C, Yarnykh VL, et al. Predictors of surface disruption with
MR imaging in asymptomatic carotid artery stenosis. AJNR Am J Neuroradiol 2010;31:487–93
9. Irshad K, Milnor S, Velu R, et al. Virtual histology intravascular ultrasound in carotid interventions. J Endovasc Ther 2007;14:198–207
10. Bezerra HG, Costa MA, Guagliumi G, et al. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2009;2:1035–46
11. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol 2006;97:1172–75
12. Kume T, Okura H, Kawamoto T, et al. Assessment of the coronary calcification by optical coherence tomography. Eurointervention 2011;6:768–72
13. Kume T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angiography. J Am Coll Cardiol 2007;50:933–37. Epub 2007 Aug 20.
14. Kume T, Akasaka T, Kawamoto T, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J 2006;152:755.e1–4
15. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003;107:1133–19
16. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol 2006;97:1713–17
17. Wang Z, Kyono H, Bezerra HG, et al. Intracoronary optical coherence tomography imaging to evaluate carotid artery stents. AJNR Am J Neuroradiol 2011;32:1494–1501
18. Bezerra HG, Attizzani GF, Costa MA. Three-dimensional imaging of fibrous cap by frequency-domain optical coherence tomography. Catheter Cardiovasc Interv 2011 Sep 27. [Epub ahead of print]
19. Brott TG, Hobson RW, Howard G, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med 2010;363:11–23. Epub 2010 May 26
20. Endarterectomy for asymptomatic carotid artery stenosis: Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA 1995;273:1421–28
21. Halliday A, Mansfield A, Marro J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients with recent neurological symptoms: randomised controlled trial. Lancet 2004;363:1491–501
22. Spangoli LG, Mauriello A, Sangiorgi GC, et al. Extracranial athrombictically active carotid plaque as a risk factor for ischemic stroke. JAMA 2004;292:1845–52
23. Jander S, Sitter M, Schumann R, et al. Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 1998;29:1623–30
24. Homburg PJ, Roxie S, Van Gils MJ, et al. Atherosclerotic plaque ulceration in the symptomatic internal carotid artery is associated with nonacunar ischemic stroke. Stroke 2010;41:1151–56
25. Sitter M, Muller W, Siebler M, et al. Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis. Stroke 1995;26:1231–33
26. Bedgrave JN, Lovett JK, Gallager PJ, et al. Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: the Oxford plaque study. Circulation 2006;113:2320–28
27. Tahara S, Bezerra HG, Baimbs M, et al. In vitro validation of new Fourier-domain optical coherence tomography. Eurointervention 2011;6:875–82
28. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002;106:1640–45
29. MacNeill B, Jang IK, Bouma BE, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol 2004;44:972–79
30. Fairman R, Gray WH, Scioli AP, et al. The CAPTURE registry: analysis of strokes resulting from carotid artery stenting in the post approval setting—location, severity, and type. Ann Surg 2007;246:551–58
31. Finn A, Nakano M, Narula J, et al. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 2010;30:1282–92
32. Costa MA, Sabate M, Angiolillo DJ, et al. Intravascular ultrasound characterization of the “black hole” phenomenon after drug-eluting stent implantation. Am J Cardiol 2006;97:203–06
33. Kay IP, Lighhart JM, Virmani R, et al. The black hole: echoluent tissue observed following intracoronary radiation. Int J Cardiovasc Intervent 2003; 5:137–42
34. Templin G, Meyer M, Muller MF, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Heart J 2010;31:1792–801
35. Teramoto T, Fumiaki I, Otake H, et al. Intriguing peri-strut low-intensity area detected by optical coherence tomography after coronary stent deployment. Circ 2010;74:1257–59
36. Yoshimura S, Kawasaki M, Hatteri A, et al. Demonstration of intraluminal thrombus in the carotid artery by optical coherence tomography: technical case report. Neurosurgery 2010;67(3 suppl operative):onsE305, discussion onsE305.
37. Reimers B, Nikas D, Stabile E, et al. Preliminary experience with optical coherence tomography imaging to evaluate carotid artery stents. Eurointervention. 2011;6:98–105
38. Yoshimura S, Kawasaki M, Yamada K, et al. OCT of human carotid arterial plaques. JACC Cardiovasc Imaging 2011;4:432–36
39. Yoshimura S, Kawasaki M, Yamada K, et al. Visualization of internal carotid artery atherosclerotic plaques in symptomatic and asymptomatic patients: a comparison of optical coherence tomography and intravascular ultrasound. AJNR Am J Neuroradiol 2011;33:308–13
40. Dietrich EB, Margous MP, Reid DB, et al. The carotid artery plaque virtual histology evaluation (CAPITAL) study. J Endovasc Surg 2007;14:876–86