Adsorption of heavy metals by exhausted coffee grounds as a potential treatment method for waste waters

H. Djati Utomo* and K. A. Hunter
Chemistry Department, University of Otago, P.O. Box 56, Dunedin, New Zealand
(Received 4 April 2006; Accepted 12 May 2006; Published 19 May 2006)

The adsorption of the heavy metal ions Cu$^{2+}$, Zn$^{2+}$, Cd$^{2+}$ and Pb$^{2+}$ from aqueous solution by used coffee grounds has been investigated as a potential low-cost treatment method for heavy metal-containing waste waters that is based on a readily available natural by-product. The results show that metal ion adsorption is efficient over a fairly wide pH range and adsorbed metals are reversibly leached from the exhausted coffee by dilute acid without significant loss of the adsorptive capacity for subsequent re-use. [DOI: 10.1380/ejssnt.2006.504]

Keywords: coffee; adsorption; heavy metals; waste water treatment

I. INTRODUCTION

The re-use of natural waste materials that arise through various industrial processes for additional purposes, rather than simple disposal, makes both environmental and commercial sense [1]. Thus there has been a recent focus on agricultural and food industry wastes such as tea, coffee grounds and rice hull [2] as alternatives to synthetic ion-exchange resins or activated carbon for treating metal-containing waste streams. Tannin-containing materials such as exhausted coffee contain metal-binding polyhydroxy polyphenol functional groups [1] and are available in large quantities from the manufacture of instant coffee [3]. While there have been several studies of metal ion adsorption by tea and coffee [4, 5] the detailed chemistry causing their affinity for different metal ions is not yet well-known.

Here we report the use of exhausted coffee grounds as an adsorbent for the heavy metal ions Cu$^{2+}$, Zn$^{2+}$, Cd$^{2+}$ and Pb$^{2+}$ from aqueous solution. We present results describing adsorption isotherms for the metal ions, and the effects of adsorbent concentration, pH and metal ion concentration. In addition, we present results for the use of the adsorbent in a flow-through column.

II. METHODS

Commercial ground coffee (Blue Mountain variety) was sieved through an ASTM 18 stainless steel sieve (1 mm mesh size). It was then repeatedly leached with excess 0.01 M NaOH solution (30 g coffee in 800 mL solution) at $\sim 60^\circ$C for 10-30 min with decanting and replacement of the NaOH until the yellow colour of the solution was no longer observed (4-6 solution changes). After this the coffee grounds were suspended in 0.01M HNO$_3$ and poured through a filter funnel containing a Whatman 114 filter and then washed repeatedly with deionized water (Millipore Milli-Q system) until a pH close to 6.0 was achieved. Finally the grounds were oven dried at 100$^\circ$C for 2 h, cooled to room temperature and sealed with parafilm. Earlier experiments [6] employed coffee leached with deionized water only, and our subsequent work showed that this adsorbent continued to release soluble coffee material on subsequent exposure to aqueous solution. This complicates adsorption by competing for the metal cations. However, the alkali-leached material released very little coloured material.

Batch experiments measuring adsorption of Cu$^{2+}$, Zn$^{2+}$, Cd$^{2+}$ and Pb$^{2+}$ were conducted by adding known concentrations of each metal ion to a suspension of coffee adsorbent in water and equilibrating overnight at room temperature with occasional shaking. Typical conditions were 3 g L$^{-1}$ of coffee grounds and 200 μM of metal ion. The pH of the suspension was then adjusted to the required value by addition of dilute NaOH or HNO$_3$ as required. pH buffers were avoided since these could compete as ligands for the metal cations. After equilibration, the suspensions were filtered through a Whatman 114 filter, the filtrate was analyzed for metal ions by atomic absorption spectrometry and the amount adsorbed calculated by difference. The effects of pH and the concentrations of adsorbent and metal ion were studied.

Column adsorption experiments were also conducted in which solutions of metal ion concentration were pumped through a column containing 0.5 g of exhausted coffee adsorbent using a peristaltic pump, with aliquots of the effluent collected for metal ion analysis. The efficiency of recycling was investigated by repeated leaching of metal ions from the column using 0.1 M HCl and then re-adsorption of the same metal ions.

III. RESULTS AND DISCUSSION

All of the metal ions exhibited a strong affinity for exhausted coffee grounds as an adsorbent. Figure 1 shows how the percentage of metal ion adsorbed at pH ~ 5 increases with the concentration of coffee adsorbent, reaching a plateau (75-90% adsorbed) at ~ 20 g coffee L$^{-1}$.

The adsorption equilibria were investigated using pH 5.0 solutions containing 3.0 g L$^{-1}$ of coffee grounds and metal ion concentrations in the range 20-200 μM. The results were then fitted to a Langmuir isotherm [7] as follows:

$$\frac{1}{X} = \frac{1}{bX_m c_e} + \frac{1}{X_m} \quad (1)$$

where X is the amount of metal ion adsorbed per g of adsorbent, X_m is the maximum amount of metal ion that...
FIG. 1: Percentage of metal ion adsorbed from 200 mL solutions containing 10 mg·L\(^{-1}\) of Cu(II) or Pb(II) or 1.0 mg·L\(^{-1}\) of Cd(II) or Zn(II) at pH 5.0 as a function of the mass of coffee adsorbent.

FIG. 2: Langmuir plot of Eq. (1) for adsorption of Zn(II) at pH 5.0 on coffee adsorbent by 3 g·L\(^{-1}\) of coffee adsorbent. The least-square regression line and equation are shown.

can be adsorbed per g of adsorbent, \(c_e\), is the final equilibrium concentration of the metal ion in solution (M) and \(b\) is effectively the equilibrium constant for adsorption.

Figure 2 shows the Langmuir adsorption plot for Zn\(^{2+}\) adsorption. Linear least-squares regression was used to calculate \(b\) and \(X_m\) from the best-fit line. Table I presents the resultant values for all of the metal ions studied.

Figure 3 shows the pH dependence of metal ion adsorption at fixed concentrations of metal ions and coffee adsorbent. The extent of adsorption was largely independent of pH over a wide pH range, but was significantly reduced at very low (pH < 4) and to a lesser extent at high pH (pH > 10). Good adsorption efficiency is observed at intermediate pH values likely to be encountered with many waste waters.

Figure 4 shows the percentage of metal ion adsorbed at pH 5.0 from a suspension containing 10 g·L\(^{-1}\) of coffee as a function of the metal ion concentrations. In each case, the fraction adsorbed was fairly constant at metal ion concentrations below about 10 mg·L\(^{-1}\) but at levels above 100 mg·L\(^{-1}\) the adsorptive capacity of the coffee

Metal Ion	\(r^2\)	\(X_m\) (mmol·g\(^{-1}\))	\(b\) (L·mmol\(^{-1}\))
Pb\(^{2+}\)	0.9911	0.2388	1.229
Cd\(^{2+}\)	0.9951	0.1032	2.414
Zn\(^{2+}\)	0.9967	0.0575	4.356
Cu\(^{2+}\)	0.9670	0.0306	6.291

TABLE I: Langmuir adsorption parameters for the 4 metal ions for 3 g·L\(^{-1}\) coffee grounds at pH 5.0. The least-squares regression line and regression coefficient \(r^2\) for the Langmuir plot (Fig. 2) are also shown.

Metal	\(X_m\) (mmol·g\(^{-1}\))	\(C_{max}\) (mg·L\(^{-1}\))
Pb	0.2388	494.8
Cd	0.1032	115.6
Zn	0.0575	37.6
Cu	0.0306	19.4

TABLE II: Maximum adsorbed concentration of each metal \(X_m\) (from Table I) and the corresponding maximum solution concentration for 10 g·L\(^{-1}\) of coffee.
TABLE III: Percentages of Cd(II) and Zn(II) adsorbed (1.0 mg·L⁻¹, pH 4.0) and then eluted in 0.1 M HCl during 4 repeated adsorption-elution cycles on a column containing 0.5 g of coffee adsorbent.

	Cd		Zn	
	Adsorbed	Eluted	Adsorbed	Eluted
1	91.3	83.1	91.0	82.7
2	98.9	99.5	97.7	100.0
3	100.0	98.4	100.9	100.3
4	100.0	98.4	100.9	99.7

FIG. 5: Percentage of Cu(II) adsorbed by a column containing 0.5 g coffee adsorbent at pH 5.0 and flow rate 3.3 mL·min⁻¹ as a function of the volume of 10 mg·L⁻¹ Cu(II) solution passed through the column.

IV. CONCLUSION

Our preliminary results indicate that exhausted coffee grounds offer considerable promise as a low-cost natural medium for waste water treatment. The adsorption is efficient over a fairly wide pH range and adsorbed metals are reversibly leached from the exhausted coffee by dilute acid without significant loss of the adsorptive capacity for subsequent re-use.

Acknowledgments

The authors are grateful to the University of Otago for financial support.

[1] S. E. Bailey, T. J. Olin, and R. Bricka, A review of potentially low-cost sorbents for heavy metals, Water Res. 33, 2469-2479 (1999).
[2] K. S. Low, C. K. Lee, S. Y. Wong, Metal sorption enhancement of rice hull through chemical modification, Env. Tech. 21, 1239-1244 (2000).
[3] P. Hawken, in Specialty Coffee Association of America Conference, San Francisco, 2000.
[4] Y. Orhan and H. Buyukgungor, The removal of heavy metals by using agricultural wastes, Water Sci. Technol. 28, 247-255 (1993).
[5] W. T. Tan, Copper (II) adsorption by waste tea leaves and coffee powder, Pertanika 8, 223-230 (1985).
[6] H. Djati Utomo and K. A. Hunter, Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents, Env. Tech. 27, 25-32 (2006).
[7] G. Macchi, D. Marani, and G. Tiravanthi, Uptake of mercury by exhausted coffee grounds, Env. Tech. Lett. 7, 431-444 (1986).

http://www.sssj.org/ejssnt (J-Stage: http://ejssnt.jstage.jst.go.jp)