IDEALS IN SOME RINGS OF NEVANLINNA–SMIRNOV TYPE

ROMEO MEŠTROVIĆ

Abstract. Let $N^p (1 < p < \infty)$ denote the algebra of holomorphic functions in the open unit disk, introduced by I. I. Privalov with the notation A_q in [8]. Since N^p becomes a ring of Nevanlinna–Smirnov type in the sense of Mortini [7], the results from [7] can be applied to the ideal structure of the ring N^p. In particular, we observe that N^p has the Corona Property. Finally, we prove the N^p-analogue of the Theorem 6 in [7], which gives sufficient conditions for an ideal in N^p, generated by a finite number of inner functions, to be equal to the whole algebra N^p.

1. Introduction and Preliminaries

Let D denote the open unit disk in the complex plane and let T denote the boundary of D. Let $L^p(T) (0 < p \leq \infty)$ be the familiar Lebesgue spaces on T. The Nevanlinna class N is the set of all functions f holomorphic on D such that

$$\sup_{0 < r < 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} < \infty,$$

where $\log^+ |x| = \max(\log |x|, 0)$.

The Smirnov class N^+ consists of those functions $f \in N$ for which

$$\lim_{r \to 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} = \int_0^{2\pi} \log^+ |f^*(e^{i\theta})| \frac{d\theta}{2\pi} < \infty,$$

where f^* is the boundary function of f on T, i.e.,

$$f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$$

1991 Mathematics Subject Classification. Primary 30H05, 46J15. Secondary 46J20.

Key words and phrases. Rings of Nevanlinna–Smirnov type, Classes N^p, Trace of an ideal, Corona Property, Interpolating Blaschke product.
is the radial limit of \(f \) which exists for almost every \(e^{i\theta} \).

Recall that the Hardy space \(H^p \) (\(0 < p \leq \infty \)) consists of all functions \(f \) holomorphic in \(D \), which satisfy

\[
\sup_{0 < r < 1} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^p \frac{d\theta}{2\pi} < \infty.
\]

If \(0 < p < \infty \), and which are bounded when \(p = \infty \);

\[
\sup_{z \in D} |f(z)| < \infty.
\]

Following R. Mortini [7], a ring \(R \) satisfying \(H^\infty \subset R \subset N \) is said to be of Nevanlinna–Smirnov type if every function \(f \in R \) can be written in the form \(g/h \), where \(g \) and \(h \) belong to \(H^\infty \) and \(h \) is invertible element in \(R \). This is true of \(N \) itself and the Smirnov class \(N^+ \); hence the name (see [1, Chapter 2]). Further, Mortini noted that by a result of M. Stoll [10], the space \(F^+ \), the containing Fréchet envelope for \(N^+ \), consists of those functions \(f \) holomorphic in \(D \) satisfying

\[
\limsup_{r \to 1} (1 - r) \log M(r, f) = 0
\]

with \(M(r, f) = \max_{|z| = r} |f(z)| \) (see Yanagihara [11]).

Namely, Stoll [10] proved that \(F^+ \cap N = \{ f/S_\mu : f \in N^+, S_\mu \text{ is a singular inner function with } \mu \text{ a nonnegative continuous singular measure} \} \).

The class \(N^p \) (\(1 < p < \infty \)) consists of all holomorphic functions \(f \) on \(D \) for which

\[
\sup_{0 < r < 1} \int_0^{2\pi} \left(\log^+ |f(re^{i\theta})| \right)^p \frac{d\theta}{2\pi} < \infty.
\]

These classes were introduced in the first edition of Privalov’s book [8, p. 93], where \(N^p \) is denoted as \(A_q \). It is known [6] that

\[
N^q \subset N^p \quad (q > p), \quad \bigcup_{p > 0} H^p \subset \bigcap_{p > 1} N^p, \quad \text{and} \quad \bigcup_{p > 1} N^p \subset N^+,
\]

where the above containment relations are proper.

Theorem A ([8, p. 98]). A function \(f \in N^p \setminus \{0\} \) has a unique factorization of the form

\[
f(z) = B(z)S(z)F(z)
\]

where \(B(z) \) is the Blaschke product with respect to zeros \(\{z_k\} \subset D \) of \(f(z) \), \(S(z) \) is a singular inner function, \(F(z) \) is an outer function in
N^p, i.e.,

\[B(z) = z^m \prod_{k=1}^{\infty} \frac{|z_k|}{z_k} \frac{z_k - z}{1 - \overline{z_k} z} \]

with $\sum_{k=1}^{\infty} (1 - |z_k|) < \infty$, m a nonnegative integer,

\[S(z) = \exp \left(- \int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) \right) \]

with positive singular measure $d\mu$, and

\[F(z) = \lambda \exp \left(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |f^*(e^{it})| \, dt \right) , \]

where $|\lambda| = 1$, $\log |f^*|$ and $(\log^+ |f^*|)^p$ belong to $L^1(T)$.

Conversely, every such product $B(z)S(z)F(z)$ belongs to N^p.

Remark. If we exclude only the condition $(\log^+ |f^*|)^p \in L^1(T)$ from Theorem A, we obtain the well known canonical factorization theorem for the class N^+ (see [1, p. 26] or [8, p. 89]). Recall that a function of the form $\varphi(z) = B(z)S(z)$ is called an inner function, while the above function $F(z)$ for which $\log |f^*| \in L^p(T)$ is called an outer function.

By Theorem A, it is easy to show (see [2], where N^p is denoted as N^+_0) that a function f is in N^p if and only if it can be expressed as the ratio g/h, where g and h are in H^∞, and h is an outer function with $\log |h^*| \in L^p(T)$. Clearly, such function h is an invertible element of N^p, and hence we have the following result.

Theorem B. $N^p (1 < p < \infty)$ is a ring of Nevanlinna–Smirnov type.

In Section 2, the ideal structure of subrings N^p of N is described as consequences of the results in [7, Sections 1 and 3] given for an arbitrary ring of Nevanlinna–Smirnov type. In the next section, we note that the algebra N^p has the Corona Property. Finally, we prove two theorems which generalize the results from [7, Satz 5 and Satz 6] obtained for the classes H^1 and N^+.

2. Ideals in N^p

In this Section, as an application of Theorems A and B and the results of Mortini in [7], we obtain some facts about the ideal structure of the algebra N^p. We say that an ideal I in H^∞ is the trace of an
ideal J in N^p if $I = J \cap H^\infty$. The following result is an immediate consequence of Theorems A, B and [7, Satz 1, Satz 2].

Theorem 1. An ideal I in H^∞ is the trace of an ideal J in N^p if and only if the following condition is satisfied: If $f \in I$, F is an outer function with $\log |F^*| \in L^p(T)$, and if $fF \in H^\infty$, then $fF \in I$. In this case, J is a unique ideal in N^p with $I = J \cap H^\infty$, and there holds $J = IN^p$.

Further, by the above theorem, it follows immediately the following theorem.

Theorem 2. Suppose that I is an ideal in H^∞ such that $f \in I$ implies that the inner factor of f also belongs to I. Then I is the trace of an ideal J, in N^p and there holds $J = IN^p$.

Remark. It remains an open question is it true the converse of Theorem 2. While this is true for the Nevanlinna class and the Smirnov class [7, Korrolar 1 and Korrolar 2, resp.], here the corresponding problem is complicated by the fact that there exist outer functions which are not invertible in N^p. For example, the converse of Theorem 2 holds if we suppose in addition that I is a closed subset of N^p. Namely, by Theorem 2 of [6] and the condition from Theorem 1, it follows that whenever f is in I, then necessarily the inner factor of f is also in I.

Recall that an ideal P in a ring R is prime if whenever $fg \in P$, $f, g \in R$, then either f or g is in P. Using the characterization of the invertible elements in N^p, by [7, Satz 3], we obtain the following.

Theorem 3. A prime ideal P in H^∞ is the trace of some prime ideal Q in N^p if and only if P contains no outer functions F for which $\log |F^*| \in L^p(T)$. When this is the case, Q is a unique prime ideal in N^p with this property, and there holds $Q = PN^p$.

Remark. By [6, Theorem 3], every prime ideal of N^p which is not dense in N^p is equal to the set of functions in N^p vanishing at a specific point of D. The analogous result for the class N^+ is proved in [9, Theorem 1].

An ideal J in the ring R, $H^\infty \subset R \subset N$, is called finitely generated if there exist elements $f_1, \ldots, f_n \in R$ such that

$$J = (f_1, \ldots, f_n) = \left\{ \sum_{i=1}^n g_i f_i : g_i \in R \right\}.$$
If \(n \) can be chosen to be one, then \(J \) is a principal ideal. A ring \(R \) is said to be coherent if the intersection of two finitely generated ideals is finitely generated. Using the result in [5] that \(H^\infty \) is a coherent ring, it is shown in [7, Satz 7] that this is true of all rings of Nevanlinna–Smirnov type. In particular, we have the following

Theorem 4. \(N^p \) is a coherent ring for all \(p > 1 \).

3. The Corona Property

We say that a commutative ring \(R \) with unit of holomorphic functions on \(D \) has the **Corona Property** if the ideal generated by \(f_1, \ldots, f_n \in R \) is equal to \(R \) if and only if there is an invertible element \(f \) of \(R \) such that

\[
|f(z)| \leq \sum_{i=1}^{n} |f_i(z)| \quad (z \in D).
\]

This definition is motivated by the famous Corona Theorem of Carleson (for example see [3, p. 324], or [1, p. 202]), which states that the algebra \(H^\infty \) of all bounded holomorphic functions on \(D \) has the Corona Property. Mortini noted [7, Satz 4] that by a result of Wolff [3, p. 329], it is easy to show that every ring of Nevanlinna–Smirnov type has the Corona Property. Hence, we have the following theorem.

Theorem 5. The algebra \(N^p \) has the Corona Property.

Remark. It is proved in [4, Theorem 7] that there exists a subalgebra of \(N \) containing \(N^+ \) without the Corona Property.

A sequence \(\{z_k\} \subset D \) is called an **interpolating sequence** (for \(H^\infty \)) if for every bounded sequence \(\{\omega_k\} \) of complex numbers there exists a function \(f \) in \(H^\infty \) such that \(f(z_k) = \omega_k \) for every \(k \). An **interpolating Blaschke product** is a Blaschke product whose (simple) zeros form an interpolating sequence.

The following two theorems generalize Theorems 5 and 6 in [7], respectively. We follow [7] for the proofs of theorems below.

Theorem 6. Let \(0 < q < \infty \) and let \(I = (f_1, \ldots, f_n) \) be a finitely generated ideal in \(H^\infty \). Assume that the ideal \(I \) contains a zero-free holomorphic function \(F \) on \(D \) such that \(\log F \in H^q \). Then

\[
\sum_{k=1}^{\infty} (1 - |z_k|^2) \left| \log (|f_1(z_k)| + \cdots + |f_n(z_k)|) \right|^q < \infty.
\]
Proof. Let \(g_1, \ldots, g_n \) be functions in \(H^\infty \) such that \(F = \sum_{k=1}^n f_k g_k \). Then there exists a positive constant \(C_1 \) such that

\[
|F(z)| \leq C_1 \sum_{k=1}^n |f_k(z)| \quad \text{for all} \quad z \in D.
\]

Put \(S(z) = \sum_{k=1}^n |f_k(z)| \), and suppose that \(S(z) \leq C_2 \) for all \(z \in D \), with a positive constant \(C_2 \). Using the fact that \(\sum_{k=1}^\infty (1 - |z_k|) = C_3 < \infty \), applying the inequality \((a + b)^q \leq C_4 (a^q + b^q)\) with \(C_4 = 2^{\max(q,1) - 1} \), \(a, b \geq 0 \), and the main interpolation theorem for the class \(H^q \) [1, p. 149], we obtain

\[
\sum_{k=1}^\infty (1 - |z_k|^2) \left| \log S(z_k) \right|^q
\]

\[
= \sum_{k=1}^\infty (1 - |z_k|^2) \left(\log^+ S(z_k) + \log^+ \frac{1}{S(z_k)} \right)^q
\]

\[
\leq \sum_{k=1}^\infty (1 - |z_k|^2) C_4 \left(\left(\log^+ S(z_k) \right)^q + \left(\log^+ \frac{1}{S(z_k)} \right)^q \right)
\]

\[
\leq C_4 (C_2)^q \sum_{k=1}^\infty (1 - |z_k|^2) + C_4 \sum_{k=1}^\infty (1 - |z_k|^2) \left(\log^+ \frac{C_1}{|F(z_k)|} \right)^q
\]

\[
\leq 2C_3 C_4 (C_2)^q + C_4 \sum_{k=1}^\infty (1 - |z_k|^2) \left| \log \frac{F(z_k)}{C_1} \right|^q < \infty.
\]

This gives the desired result. \(\Box \)

Theorem 7. Assume that \(I \) is an ideal in \(N^p \) generated by inner functions \(\varphi_1, \ldots, \varphi_n \), and suppose that \(I \) contains an interpolating Blaschke product \(B \) with zeros \(\{z_k\} \) such that

\[
\sum_{k=1}^\infty (1 - |z_k|^2) \left| \log (|\varphi_1(z_k)| + \cdots + |\varphi_n(z_k)|) \right|^p < \infty.
\]

Then \(I = N^p \).

Proof. Put \(c_k = \sum_{i=1}^n |\varphi_i(z_k)|^2 \) for all \(k \). Using the inequalities

\[
\left(\sum_{i=1}^n |\varphi_i(z_k)| \right)^2 \leq c_k \leq \left(\sum_{i=1}^n |\varphi_i(z_k)| \right)^2.
\]
it is routine to estimate that
\[|\log c_k| \leq 2 \left| \log \left(\sum_{i=1}^{n} |\varphi_i(z_k)| \right) \right| + \log n, \]
whence by the inequality \((a + b)^p \leq 2^{p-1}(a^p + b^p), \ a, b \geq 0\), using the assumption of the theorem, we have
\[
\sum_{k=1}^{\infty} (1 - |z_k|^2) |\log c_k|^p \\
\leq 2^{p-1} \sum_{k=1}^{\infty} (1 - |z_k|^2) \left| \log \left| \sum_{i=1}^{n} |\varphi_i(z_k)| \right| \right|^p \\
+ 2^{p-1} \log^p n \sum_{k=1}^{\infty} (1 - |z_k|^2) < \infty.
\]
Hence, by the theorem of Shapiro and Shields [1, p. 149, Theorem 9.1], there exists a function \(g \in H^p\) with \(g(z_k) = \log c_k\) for every \(k\). It is easy to verify that the function \(F = \exp g\) is invertible in \(N^p\), and there holds \(F(z_k) = c_k\).

The rest of the proof is the same as that of [7, Satz 6]. To complete the proof, we write this part.

Since \(\{z_k\}\) is an interpolating sequence, by [1, p. 149], we know that there exist functions \(f_i \in H^\infty\) \((i = 1, \ldots, n)\) such that for every \(i = 1, \ldots, n\) there holds
\[
f_i(z_k) = \overline{\varphi_i(z_k)} \quad (k = 1, 2, \ldots)
\]
Observe that the function \(F - \sum_{i=1}^{n} f_i \varphi_i\) is in \(N^p\), and that there holds
\[
F(z_k) - \sum_{i=1}^{n} f_i(z_k) \varphi_i(z_k) = c_k - \sum_{i=1}^{n} |\varphi_i(z_k)|^2 = 0 \quad (k = 1, 2, \ldots)
\]
Hence, by Theorem A, there exists a function \(h \in N^p\) such that
\[
F - \sum_{i=1}^{n} f_i \varphi_i = Bh.
\]
This shows that \(F\) belongs to the ideal \((\varphi_1, \ldots, \varphi_n, B) = I\). Since \(F\) is an invertible element in \(N^p\), it follows that
\[
I = (\varphi_1, \ldots, \varphi_n) = N^p.
\]
This completes the proof of the theorem. \(\square\)
References

[1] P. L. Duren, *Theory of H^p spaces*, Academic Press, New York, 1970.
[2] C. M. Eoff, *A representation of N_+^* as a union of weighted Hardy spaces*, Complex Variables Theory Appl. 23 (1993), 189–199.
[3] J. B. Garnett, *Bounded analytic functions*, Academic Press, New York, 1981.
[4] R. Martin, *On the ideal structure of the Nevanlinna class*, Proc. Amer. Math. Soc. 114 (1992), 135–143.
[5] W. S. McVoy and L. A. Rubel, *Coherence of some rings of functions*, J. Funct. Anal. 21 (1976), 76–87.
[6] N. Mochizuki, *Algebras of holomorphic functions between H^p and N_**, Proc. Amer. Math. Soc. 105 (1989), 898–902.
[7] R. Mortini, *Zur Idealstruktur von Unterringen der Nevanlinna-klasse N_**, Sém. Math. Luxembourg 1 (1989), 81–91.
[8] I. I. Privalov, *Boundary properties of analytic functions*, Moscow University Press, Moscow, 1941 (Russian).
[9] J. W. Roberts and M. Stoll, *Prime and principal ideals in the algebra N^+*, Arch. Math. (Basel) 27 (1976), 387–393; Correction, ibid. 30 (1978), 672.
[10] M. Stoll, *A characterization of $F^+ \cap N_*$*, Proc. Amer. Math. Soc. 57 (1976), 97–98.
[11] N. Yanagihara, *The containing Fréchet space for the class N^+*, Duke Math. J. 40 (1973), 93–103.

University of Montenegro, Maritime Faculty,
85330 Kotor, Montenegro