Research

Eilís Keeble, Helen C Roberts, Christopher D Williams, James Van Oppen and Simon Paul Conroy

Outcomes of hospital admissions among frail older people: a 2-year cohort study

INTRODUCTION
Frailty is a distinctive health state related to ageing, characterised by impaired homeostasis and decreased physiological reserve across multiple body systems, and resulting in increased vulnerability to adverse outcomes from apparently minor stressor events.1,2 These individuals are at increased risk of ‘frailty crises’, which are a common cause of acute health service use. Several scoring systems have been developed to quantify frailty and stratify risk in individuals and populations. The UK General Medical Services (GMS) contract introduced new frailty requirements in 2017/2018 that require GP practices to use an appropriate tool (for example, Electronic Frailty Index) to identify potential frailty in their populations3,4 and offer clinical assessments to those at risk of moderate or severe frailty.

Despite the increasing range of community-based services geared towards admission avoidance in frail older people, there has been an inexorable rise in acute hospital admissions in this group.5 Facing significant pressures, hospital services are often configured to promote early discharge6,7 with the tacit assumption that long-term problems will be addressed later. However, there is growing concern about the safety and effectiveness of this approach in frail older people. The risk is that, in pursuit of early discharge, overall patient outcomes are not necessarily being improved, leading to a vicious cycle of readmission, functional decline, institutionalisation, and death.8

Better longer-term outcome data are needed if services are to reflect the needs of the growing population of older people with frailty. Previous studies have identified poor short-term outcomes in older people who are rapidly discharged from acute medical units, including high readmission rates,9,10 This article provides longer-term (2-year) follow-up data from two cohorts of older people: one discharged within 72 hours (referred to as the ‘inpatient cohort’) and another with longer hospital admissions (the ‘ambulatory cohort’).

METHOD
Settings
The ambulatory cohort was recruited in Nottingham and Leicester. Both hospitals serve a large, mixed urban and rural setting of approximately 1.1 million people with single, co-located emergency departments and acute medical services. The inpatient cohort was recruited in Southamptom; this is a broadly similar hospital setting but with a slightly increased age profile and less ethnic diversity.

Data sources
A clinical dataset for each cohort capturing frailty in hospitalised older people was linked...
How this fits in
Primary care services have an increasing role in caring for frail older people. This study shows poor outcomes for frail older people discharged from hospital, even after just a ‘short stay’ or ‘ambulatory care’ admission. This group is easily identifiable and may benefit from a more holistic assessment and tailored community support following discharge. This could define a ‘secondary prevention’ approach to admission avoidance (targeting those identified as frail who have already been admitted to hospital) to focus resource-intensive community support in a more impactful way to improve outcomes and prevent future inappropriate hospitalisation.

Full details of how the Fried and Rothman frailty measures were constructed for the acute inpatient data are available from the authors on request. Mobility and physical activity measures were adapted from data collected in the original study. Mobility was assessed by ability to walk independently according to the Barthel Activities of Daily Living Questionnaire, and physical activity was assessed by ability to transfer independently. The HFRS was also constructed for the two cohorts. This score is based on ICD-10 diagnoses coded in an individual’s hospital admissions over the previous 2 years (including the index admission). Its development and construction have been described in detail elsewhere. Individuals were classified as ‘frail’ if they had HFRS >5.

Outcome measures
Two-year survival time was calculated as the number of whole days between the admission date on recruitment and the date of death. Where date of death was missing, or was after the 2-year follow-up period, then full-study survival time (730 days) was recorded.

In contrast to many previous studies, bed-days were used as a measure of hospital use (rather than number of emergency admissions). This gives a better overall indication of time spent in hospital. Bed-days were calculated as the number of whole days between the admission and discharge dates. The day of admission was included to give those admitted and discharged on the same day a count of 1 day. Bed-days from all admissions within the 2-year period were summed to give a total figure for each individual. If the discharge for an admission occurred after the follow-up period, then only the days spent in hospital within the 2 years were included.

Statistical analysis
Cox’s proportional hazards regression models were used to quantify the relationship between frailty and survival...
The models were adjusted for age and sex in the ambulatory care cohort and just age for the inpatient cohort, as all participants were female. A sensitivity analysis was conducted with the female patients from the ambulatory cohort to establish the generalisability of the inpatient cohort results. Models were also adjusted for Charlson Comorbidity Index and number of past admissions, but as the results were similar in terms of effect size and statistical significance these data are not presented.

All analyses were conducted using SAS (version 9.4).

**RESULTS**

**Baseline characteristics**

As might be expected, the ambulatory cohort was younger, had lower previous hospital use, and lower Charlson Comorbidity Index and frailty measures than the inpatient cohort (Table 1). Dependent on the measure used, 23.2–40.2% of the ambulatory cohort and 48.4–80.0% of the inpatient cohort were identified as frail.

**Survival**

A smaller proportion of the inpatient cohort (57%) survived the 2-year follow-up period compared with the ambulatory cohort (78%). Dependent on the measure used, 32.2–36.8% of individuals classified as frail in the ambulatory cohort died during follow-up compared with 42.4–52.7% in the inpatient cohort (Table 2). Frail patients in the ambulatory cohort (classified by any scale) were around twice as likely to die within 2 years compared with the non-frail, even after adjustment for age and sex (hazard ratio [HR] Rockwood 2.3 [95% CI = 1.5 to 3.4], Fried 2.0 [95% CI = 1.3 to 3.0]). There was a lesser effect in the inpatient cohort with frailty classified by the Rockwood measure (HR 1.6 [95% CI = 1.0 to 2.6]).

**Hospital use**

Frail patients in the ambulatory cohort were more likely to have emergency department attendances (Rockwood, Rockwood, and HFRS) and emergency admissions (all), and less likely to have elective admissions (Rockwood, Rockwood, and HFRS) than the non-frail patients in the ambulatory cohort (Table 3). In the inpatient cohort there was little evidence of differing hospital use by frailty, with the exception of outpatient attendances where frail individuals had fewer on average. After adjustment, individuals classified as frail in the ambulatory cohort had between 1.5

---

### Table 1. Descriptive characteristics of ambulatory and acute inpatient cohorts included in analysis with differences tested using Kruskal–Wallis (means) or Pearson $\chi^2$ (percentages)

| Characteristic for difference | Ambulatory cohort | Inpatient cohort | P-value |
|------------------------------|-------------------|-----------------|---------|
| Location                     | Leicester and Nottingham | Southampton | – |
| Recruitment date range       | 21 Jan 2009–26 Nov 2010 | 29 Nov 2009–19 Jan 2012 | – |
| N                            | 674               | 246             | – |
| Female, %                    | 57.4              | 100.0           | <0.001 |
| Age, years (SD)              | 80.2 (6.7)        | 85.9 (4.7)      | <0.001 |
| Index admission length, days (SD) | 1.0 (0.7) | 20.5 (18.0) | <0.001 |
| Hospital admissions,$^a$ n (SD) | 3.5 (4.1) | 4.1 (7.0) | 0.040 |
| Charlson Comorbidity Index $^a$$^b$, % | 31.9 | 43.1 | 0.002 |

Frailty scale by measure (sample size), %

| Frailty scale by measure (sample size) | Ambulatory cohort | Inpatient cohort | P-value |
|---------------------------------------|-------------------|-----------------|---------|
| Fried (n = 494)                        | 23.7              | 80.0 (140)      | – |
| Rothman (n = 503)                      | 23.2              | 48.4 (192)      | – |
| Rockwood (n = 489)                     | 30.5              | –               | – |
| HFRS (n = 674)                         | 40.2              | 67.1 (246)      | – |

$^a$Figures are % for binary variables and means with standard deviation for continuous variables. $^b$Based on past 2 years and including present admission. $^c$Sample sizes vary as not all individuals had the data items needed to calculate the relevant frailty measure. HFRS = Hospital Frailty Risk Score. SD = standard deviation.

---

### Table 2. Two-year survival by frailty status in the two cohorts

| Frailty scale (sample size) | Mortality percentage, % (95% CI) | Hazard ratios (95% CI) |
|-----------------------------|----------------------------------|------------------------|
| Frail                       | Unadjusted                      | Adjusteda               |
| Non-frail                   |                                 |                        |
| Ambulatory cohort           |                                 |                        |
| Fried (n = 494)             | 14.9 (11.2 to 18.5)             | 2.0 (1.7 to 3.8)       | 2.0 (1.3 to 3.0) |
| Rothman (n = 503)           | 14.3 (10.7 to 17.8)             | 2.9 (2.0 to 4.4)       | 3.9 (1.6 to 7.7) |
| Rockwood (n = 489)          | 13.5 (9.9 to 17.2)              | 2.9 (1.7 to 3.9)       | 2.9 (1.5 to 3.4) |
| HFRS (n = 674)              | 14.4 (11.0 to 17.8)             | 2.9 (1.8 to 3.4)       | 2.9 (1.5 to 3.0) |
| Inpatient cohort            |                                 |                        |
| Fried (n = 140)             | 21.4 (15.2 to 37.4)             | 2.6 (1.1 to 6.1)       | 2.3 (1.0 to 5.4) |
| Rothman (n = 192)           | 31.3 (22.0 to 40.6)             | 2.8 (1.3 to 3.1)       | 1.6 (1.0 to 2.6) |
| HFRS (n = 246)              | 43.2 (32.1 to 54.2)             | 1.0 (0.7 to 1.6)       | 1.1 (0.7 to 1.6) |

$^a$Adjusted for age and sex; however, Southampton analysis adjusted for age only (female-only cohort). $^b$Statistically significant at 0.1% level (P < 0.001). $^c$Statistically significant at 5% level (P < 0.05). HFRS = Hospital Frailty Risk Score.
Table 3. Hospital use over 2-year follow-up period by frailty scale and cohort with differences tested using Kruskal–Wallis

| Frailty scale | Ambulatory cohort | | Inpatient cohort | |
|---------------|-------------------|----------------|----------------|----------------|
|               | Non-frail | Frail | P-value | Non-frail | Frail | P-value |
| Mean number of emergency department attendances per person (SD) | | | | | | |
| Fried | 1.7 (2.2) | 2.4 (3.0) | 0.060 | 3.5 (4.1) | 1.8 (2.1) | 0.070 |
| Rothman | 1.6 (2.2) | 2.4 (2.9) | 0.007 | 2.7 (3.2) | 1.7 (2.2) | 0.020 |
| Rockwood | 1.5 (2.0) | 2.5 (2.9) | <0.001 | – | – | – |
| HFRS | 1.3 (1.8) | 2.5 (2.8) | <0.001 | 2.0 (2.8) | 2.1 (2.5) | 0.390 |
| Mean number of non-elective admissions per person (SD) | | | | | | |
| Fried | 1.5 (2.1) | 2.2 (2.7) | 0.020 | 2.9 (2.7) | 1.9 (2.1) | 0.080 |
| Rothman | 1.5 (2.1) | 2.2 (2.6) | <0.001 | 2.5 (2.5) | 1.8 (2.0) | 0.080 |
| Rockwood | 1.3 (1.9) | 2.5 (2.6) | <0.001 | – | – | – |
| HFRS | 1.2 (1.4) | 2.4 (2.6) | <0.001 | 2.0 (2.3) | 2.2 (2.2) | 0.520 |
| Mean number of elective admissions per person (SD) | | | | | | |
| Fried | 1.0 (1.8) | 1.0 (2.0) | 0.500 | 1.5 (2.2) | 0.8 (1.4) | 0.200 |
| Rothman | 1.1 (1.9) | 0.8 (1.7) | 0.020 | 1.1 (1.8) | 0.7 (1.2) | 0.180 |
| Rockwood | 1.1 (2.0) | 0.8 (1.6) | 0.040 | – | – | – |
| HFRS | 1.1 (1.9) | 0.8 (1.7) | 0.020 | 0.8 (1.3) | 1.0 (1.4) | 0.220 |
| Mean number of outpatient appointments per person (SD) | | | | | | |
| Fried | 11.9 (10.6) | 12.4 (12.2) | 0.940 | 10.5 (8.2) | 5.7 (4.7) | 0.002 |
| Rothman | 12.2 (10.8) | 11.2 (11.9) | 0.110 | 8.3 (8.1) | 4.7 (4.2) | <0.001 |
| Rockwood | 11.7 (10.4) | 12.7 (12.5) | 0.970 | – | – | – |
| HFRS | 11.3 (10.1) | 12.4 (12.4) | 0.760 | 7.6 (8.6) | 6.0 (6.5) | 0.350 |

SD = standard deviation. P <0.05 statistically significant.

Table 4. Intensity of hospital use over 2 years measured in bed-days

| Frailty scale (sample size) | Mean bed-days per person (SD) | Rate ratios for rate of use over 2-year period (95% CI) |
|-----------------------------|-------------------------------|--------------------------------------------------|
| Ambulatory cohort           |                               |                                                  |
| Fried (n = 494)             | 17.5 (26.4)                   | 1.7 (1.3 to 2.1)                                |
| Rothman (n = 503)           | 17.1 (27.1)                   | 1.7 (1.4 to 2.2)                                |
| Rockwood (n = 489)          | 14.5 (22.7)                   | 2.2 (1.8 to 2.8)                                |
| HFRS (n = 674)              | 14.9 (22.9)                   | 2.0 (1.7 to 2.4)                                |

| Inpatient cohort            |                               |                                                  |
| Fried (n = 140)             | 64.3 (56.6)                   | 0.9 (0.6 to 1.2)                                |
| Rothman (n = 192)           | 57.2 (50.7)                   | 1.0 (0.8 to 1.3)                                |
| HFRS (n = 246)              | 53.1 (47.2)                   | 1.2 (1.0 to 1.5)                                |

*Adjusted for age and sex; however, Southampton analysis adjusted for age only (female-only cohort). Statistical significance at 0.1% level (P <0.001). Statistical significance at 5% level (P <0.05). CI = confidence interval. HFRS = Hospital Frailty Risk Score. SD = standard deviation.

DISCUSSION

Summary

Frailty is associated with increased 2-year mortality in patients discharged from hospital after both short ambulatory (<72 hours) and longer inpatient admissions. This analysis demonstrates that frail individuals are at high risk of poor outcomes after hospital discharge and suggests that current services do not adequately meet their needs.

Strengths and limitations

Whereas previous studies have used short follow-up periods or relied on self-reported outcomes,20–22 this study provides longer-term data (2-year follow-up) after hospital admission. The analyses presented here used ‘bed-days’ (rather than number of readmissions) to measure subsequent resource use. This is important as people with frailty typically have longer hospital admissions,23,24 and therefore the number of readmissions only provides a partial indicator of subsequent resource use.

The cohorts were recruited in different hospitals and regional- or hospital-level differences are possible. Caution is therefore needed in making inter-cohort comparisons. The clinical datasets were designed for different studies so available variables from which to calculate frailty scores differed. There were missing data in some variables required to calculate frailty scores, so some patients had to be excluded. Despite this, those included for each scale had similar characteristics such as age and sex, and frailty was identified in similar proportions. The applicability of the scales for the inpatient cohort emerged as an issue during the study: those classified by Fried were mainly identified as frail and the cohort spent a lot of time in hospital including during the index admission, which directly affects the number of diagnoses recorded for the HFRS. This means that there is little differentiation in outcomes between the frail and non-frail for these scales.

Institutionalisation is an important outcome for older people and, although there were data available at baseline for both cohorts, the numbers were too small to present. There were no long-term follow-up data on institutionalisation for either...
This work uses data provided by patients and collected by the NHS as part of their care and support. Read more on the website: https://www.nuffieldtrust.org.uk/about/corporate-policies#information-security-and-data. Hospital Episode Statistics data (year range 2006/2007–2013/2014) ©NHS Digital. Re-used with the permission of NHS Digital. All rights reserved. Office for National Statistics [ONS] data (year range 2008/2009–2013/2014) ©Office for National Statistics. Re-used with the permission of the Office for National Statistics. All rights reserved. Declaration: Those who carried out the original collection and analysis of the data bear no responsibility for their further analysis or interpretation.

Open Access
This article is Open Access: CC BY-NC 4.0 licence [http://creativecommons.org/licenses/by-nc/4.0/].

Discuss this article
Contribute and read comments about this article: bjgp.org/letters

Funding
This research was funded by the National Institute for Health Research [NIHR] HS&DR project 12/5003 (acute hospital care for frail older people). Helen C Roberts is supported by the NIHR CLAHRC Wessex and the NIHR Southampton Biomedical Research Centre. Christopher D Williams is funded by an NIHR Clinical Lectureship in Primary Care. James Van Oppen is funded by an NIHR Academic Clinical Fellowship. The funders had no role in data collection, analysis, interpretation, writing of the manuscript, or the decision to submit. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health.

Ethical approval
Ethical approval was provided by Essex NRES Committee [East of England], reference: 15/EE/024.

Provenance
Freely submitted; externally peer reviewed.

Competing interests
The authors have declared no competing interests.

Acknowledgements
This work uses data provided by patients and collected by the NHS as part of their care and support. Read more on the website: https://www.nuffieldtrust.org.uk/about/corporate-policies#information-security-and-data. Hospital Episode Statistics data (year range 2006/2007–2013/2014) ©NHS Digital. Re-used with the permission of NHS Digital. All rights reserved. Office for National Statistics [ONS] data (year range 2008/2009–2013/2014) ©Office for National Statistics. Re-used with the permission of the Office for National Statistics. All rights reserved. Declaration: Those who carried out the original collection and analysis of the data bear no responsibility for their further analysis or interpretation.

Open Access
This article is Open Access: CC BY-NC 4.0 licence [http://creativecommons.org/licenses/by-nc/4.0/].

Discuss this article
Contribute and read comments about this article: bjgp.org/letters

cohort over the study period. Overall, the inpatient cohort was a small sample and almost 50% of those identified as frail by any of the scales died in the 2-year follow-up. Accounting for survival time increased the differentiation in hospital use between frail and non-frail, particularly for the clinical frailty scales. As well as being a relatively small sample, the inpatient group was also all female, which limits the generalisability of the findings from this cohort. A sensitivity analysis was conducted using female patients in the ambulatory cohort, which showed that many of the main findings from the mixed cohort remained (further details available from the authors on request).

Recruitment took place some years ago, but it is unlikely that this invalidates the main findings or messages of this study, which should therefore be generalisable to current practice.

Comparison with existing literature
The data presented here demonstrate poor outcomes and subsequent increased resource use even after brief (<72 hours) hospital admissions. Direct comparisons with the few previous studies that have reported mortality outcomes are difficult, as most acute hospital-based studies only look at short-term mortality (30–90 days). However, the 2-year mortality rates of 32.2–52.7% with associated confidence limits presented have some overlap with other studies that report inpatient mortality rates of 11–33% for older people with Clinical Frailty Scale scores of 7–9 (severely frail).31–35 This study adds to a growing body of evidence relating to the value of frailty as a predictor of mortality risk across a range of populations and settings.23,37–32

Implications for research and practice
There are compelling reasons to avoid unnecessary hospitalisation in older people, including the risks of deconditioning and iatrogenic harm.6 However, the data presented in this study demonstrate poor outcomes even among frail older people discharged from hospital after brief (<72 hours) stays, suggesting that early discharge is not [on its own] sufficient to meet the needs of these patients. Indeed, there is a danger that the current focus on ‘admission avoidance’ places too much emphasis on relieving service pressures and risks constructing frail older people as burdensome and problematic. A more positive and person-centred definition of what services are trying to achieve is perhaps needed.

Most hospital admissions in frail older people relate to actual or impending ‘frailty crises’ [such as, sudden loss of mobility, delirium, or falls]. With respect to frailty crises, services can be divided into those which seek to prevent [such as, proactive care], offer increased support during [such as, intensive community support], or promote recovery following frailty crises [such as, community rehabilitation]. ‘Primary prevention’ of frailty crises is challenging because evolving frailty often goes unrecognised until a crisis occurs, making it difficult to target resource-intensive community services in an impactful way. By contrast, individuals who have had a frailty crisis are easily identifiable and, with increasing evidence of poor outcomes, are likely to benefit from services such as proactive care, enhanced community support, and advance care planning.31–35 This could define a ‘secondary prevention’ approach to frailty crises [targeting those identified as frail who have already been admitted to hospital or received intensive community support]. This would require a systematic and inter-organisational approach to identifying patients with frailty on hospital discharge and providing an individually tailored response. Although challenging, this is increasingly plausible with the greater [although still imperfect] interoperability of healthcare informatics and the development of accountable care organisations that are responsible for managing the whole patient journey. Examples of evidence-based interventions that might be used for secondary prevention include hospital at home,33 advance care planning,36 and comprehensive geriatric assessment (although there is a need for comprehensive geriatric assessment to be tailored to community settings).35

Further research is required to define and evaluate interventions that might be used as part of a ‘secondary prevention’ approach and to optimise the performance of frailty assessment tools that could be used to identify patients. Furthermore, implementation would require a joined-up approach across primary, community, and acute care services, so that assessments and interventions take place at the most appropriate stage of the patient journey.
REFERENCES

1. Looman WM, Fabbricotti IN, Blom JW, et al. The frail older person does not exist: development of frailty profiles with latent class analysis. BMC Geriatr 2018; 18(1): 84.

2. Clegg A, Young J, Iliffe S, et al. Frailty in elderly people. Lancet 2013; 381(9868): 752–762.

3. Clegg A, Bates C, Young J, et al. Development and validation of an electronic frailty index using routine primary care electronic health record data. Age Ageing 2013; 42(3): 353–360.

4. Lansbury LN, Roberts HC, Cift E, et al. Use of the electronic frailty index to identify vulnerable patients: a pilot study in primary care. Br J Gen Pract 2017; DOI: https://doi.org/10.3399/bjgp17X71089.

5. Roland M, Abel G. Reducing emergency admissions: are we on the right track? BMJ 2012; 345: e6017.

6. Percival F, Day N, Lambourne A, et al. An evaluation of consultant input into acute medical admissions management in England, Wales and Northern Ireland. London: Royal College of Physicians, 2010.

7. Scott I, Vaughan L, Bell D. Effectiveness of acute medical units in hospitals: a systematic review. Int J Qual Health Care 2009; 21(6): 397–407.

8. Krumholz HM. Post-hospital syndrome — an acquired, transient condition of generalized risk. N Engl J Med 2013; 368(2): 100–102.

9. Edmans J, Bradshaw L, Gladman JRF, et al. The Identification of Seniors at Risk (ISAR) score to predict clinical outcomes and health service costs in older people discharged from UK acute medical units. Age Ageing 2013; 42(6): 747–753.

10. Wou F, Gladman JRF, Bradshaw L, et al. The predictive properties of frailty-rating scales in the acute medical unit. Age Ageing 2013; 42(6): 776–781.

11. Gladman J, Hanwood R, Conroy S, et al. Medical crises in older people: cohort study of older people attending acute medical units, developmental work and randomised controlled trial of a specialist geriatric medical intervention for high-risk older people; cohort study of residents of care homes and interview study of health-care provision to residents of care homes. Programme Grants for Applied Research 2015; 3(4): DOI: 10.3310/pga30040.

12. Roberts HC, Pilgrim AL, Elia M, et al. Southampton Mealtime Assistance Study: design and methods. BMC Geriatr 2013; 13: 5.

13. Agusyo GA, Donneaux AF, Vaillant MT, et al. Agreement between 35 published frailty scores in the general population. Am J Epidemiol 2017; 186(4): 430–434.

14. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56(3): M146–M156.

15. Rothman MD, Leo-Summers L, Gill TM. Prognostic significance of potential frailty criteria. J Am Geriatr Soc 2008; 56(12): 2211–2216.

16. Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005; 173(5): 489–495.

17. Gilbert T, Neuberger J, Krandjler J, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. Lancet 2018; 391(10132): 1775–1782.

18. Wade DT, Collin C. The Barthel ADL Index: a standard measure of physical disability? Int Disabil Stud 1988; 10(2): 64–67.

19. Quan H, Li B, Couris CM, et al. Updating and validating the Charlson Comorbidity Index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Ann J Epidemiol 2011; 173(6): 676–682.

20. Avila-Funes JA, Helmer C, Arrieu H, et al. Frailty among community-dwelling elderly people in France: the three-city study. J Gerontol A Biol Sci Med Sci 2008; 63(10): 1089–1096.

21. Jung HW, Kim SW, Ahn S, et al. Prevalence and outcomes of frailty in Korean elderly population: comparisons of a multidimensional frailty index with two phenotype models. PLoS One 2014; 9(2): e87958.

22. Coelho T, Paul C, Gobboen RUJ, Fernandes L. Multidimensional frailty and pain in community dwelling elderly. Pain Med Malden Mass 2017; 18(4): 693–701.

23. Hubbard RE, Peel NM, Samanta M, et al. Frailty status at admission to hospital predicts multiple adverse outcomes. Age Ageing 2017; 46(5): 801–806.

24. Wallis SJ, Wall J, Biram RWS, Romero-Ortuno R. Association of the clinical frailty scale with hospital outcomes. QJM 2015; 108(12): 943–949.

25. Romero-Ortuno R, Wallis S, Biram R, Keelv V. Clinical frailty adds to acute illness severity in predicting mortality in hospitalized older adults: an observational study. Eur J Intern Med 2016; 35: 24–34.

26. Conroy S, Downing T. The ability of frailty to predict outcomes in older people attending an acute medical unit. Acute Med 2013; 12(2): 74–76.

27. Slow D, Matthews FE, Hanratty B. Frailty trajectories to identify end of life: a longitudinal population-based study. BMC Med 2018; 14(1): 171.

28. Mousa A, Sawa GM, Mihntski A, et al. Is frailty a stable predictor of mortality across time? Evidence from the Cognitive Function and Ageing Studies. Age Ageing 2018; 47(1): 721–727.

29. Cardona M, Lewis ET, Kirsseisen MR, et al. Predictive validity of the OnSTAL tool for short-term mortality in older people presenting at emergency departments: a prospective study. Eur Geriatr Med 2018; 9(6): 891–901.

30. Kodama A, Koyama A, Sugimoto M, et al. Association between preoperative frailty and mortality in patients with critical limb ischemia following infrainguinal bypass surgery — usefulness of the Barthei Index. Circ J 2017; 81(2): 267–274.

31. Dan M, Oven LH, Jackson TA, et al. Delirium, frailty, and mortality: interactions in a prospective study of hospitalized older people. J Gerontol A Biol Sci Med Sci 2018; 73(3): 415–418.

32. Nixon AC, Bampouras TM, Pendleton N, et al. Frailty and chronic kidney disease: current evidence and continuing uncertainties. Clin Kidney J 2018; 11(2): 236–245.

33. Shepperd S, Doh H, Broad J, et al. Early discharge hospital at home. Cochrane Database Syst Rev 2009; 1: CD000356.

34. Weathers E, O’Caisrm R, Connolly N, et al. Advance care planning: a systematic review of randomised controlled trials conducted with older adults. Maturitas 2016; 91: 101–109.

35. Ellis G, Gardner M, Tsachristas A, et al. Comprehensive geriatric assessment for older adults admitted to hospital. Cochrane Database Syst Rev 2017; 9: CD006211.