Reactions of PtX+ (X = F, Cl, Br, I) with methane have been investigated at the density functional theory (DFT) level. These reactions take place more easily along the low-spin potential energy surface. For HX (X = F, Cl, Br, I) elimination, the formal oxidation state of the metal ion appears to be conserved, and the importance of this reaction channel decreases in going as the sequence: X = F, Cl, Br, I. A reversed trend is observed in the loss of H2 for X = F, Cl, Br, while it is not favorable for PtI+ in the loss of either HI or H2. For HX eliminations, the transfer form of H is from proton to atom, last to hydride, and the mechanisms are from PCET to HAT, last to HT for the sequence of X = F, Cl, Br, I. One reason is mainly due to the electronegativity of halogens. Otherwise, the mechanisms of HX eliminations also can be explained by the analysis of Frontier Molecular Orbitals. While for the loss of H2, the transfer of H is in the form of hydride for all the X ligands. Noncovalent interactions analysis also can be explained the reaction mechanisms.

KEYWORDS
PtX+, activation of methane, reaction mechanism, ligand effect, noncovalent interactions

1 Introduction

Catalysts that can convert methane directly into higher-value-added commodities have long been sought, but breaking the thermodynamically strong, kinetically inert C-H bonds in a controlled way under mild conditions remains a central challenge (Geng et al., 2017). Reactivity studies of transition-metal ions in the gas phase, and, in particular, aspects related to the ongoing challenge of selective activation of inert C-H and C-C bonds, have been studied intensely over the past decades (Howell and Burkinshaw, 1983; Dubois, 1989; Eller and Schwarz, 1991; Balcells et al., 2010; Dobereine and Crabtree, 2010; Roithova and Schröder, 2010; Jana et al., 2011). In recent years, how ligation affects the electronic structure at the transition-metal center has been systematically investigated (Howell and Burkinshaw, 1983; Dubois, 1989; Schlangen et al., 2007; Schlangen et al., 2007; Schlangen and Schwarz, 2008; Dede et al., 2009; Li et al., 2016a; Sun et al., 2016; Zhou et al., 2016; Zhou et al., 2017a; Zhou et al., 2017b; Zhou et al., 2017c; Schwarz et al., 2017; Schwarz et al., 2017; Yue et al., 2017). The ligand can change the electronic structure of the metal center through a shift in the electronic state, or provide a more efficient reaction center, so the addition of a single ligand to a metal center has been widely used to
prepare reactants for C-H bonds activation (Chen et al., 1997; Rodgers et al., 2000; Li et al., 2009).

Irikura and Beauchamp (Irikura and Beauchamp, 1989; Irikura and Beauchamp, 1991a; Irikura and Beauchamp, 1991b) discovered that Pt⁺ as a 5d transition metal dehydrogenates methane to yield the corresponding carbene complexes Pt(CH₂)⁺. Bare Pt⁺ also has been found to catalyze the reaction of methane with molecular oxygen in the gas phase to produce methanol, formaldehyde and other oxidation products (Wesendrup et al., 1994). Subsequently, a series of activation studies around transition metal Pt⁺ were carried out (Achatz et al., 2000; Wheeler et al., 2016). Recently, it has been reported that Pt⁺ is able to selectively activate one C-H bond in methane, which represents the first example of methane activation by atomic anions (Liu et al., 2019).

Open-shell ligands X form a covalent bond with the metal cation and thereby increase the formal oxidation state, for example, X = F, Cl, Br, I, OH, NH, O (Schlagen et al., 2007; Dede et al., 2009), which often increases reactivity. For example, bare Cr⁺ is one of the least reactive transition metal cations, whereas CrCl⁺ is significantly more reactive (Mandich et al., 1986). Clearly, this example demonstrates that an appropriately chosen ligand can enhance the selectivity of a reagent at the expense of reactivity (Schlagen et al., 2007). Similarly, the naked cations M⁺ (M = Fe, Co, Ni, Ru, Rh, Pd) do not bring about thermal C-H bond activation of methane (Halée et al., 1982; Tolbert and Beauchamp, 1986; Tolbert et al., 1986; Schultz et al., 1988; Musaev et al., 1993; Musaev and Morokuma, 1994; Westerberg and Blomberg, 1998), but the corresponding MH⁺ cations (Schilling et al., 1986; Elkind and Armentrout, 1987; Schilling et al., 1987; Schilling et al., 1987; Ohanessian et al., 1990; Zhang and Bowers, 2004; Li et al., 2009; Wang and Andrews, 2009) give rise to efficient H/CH₃ ligand switches.

It is not surprising that the nature of the ligand X controls the outcome of a given ion-molecule reaction, as, for example, demonstrated in a systematic investigation of FeX⁺ cations with acetone (Schröder et al., 1993). The number of ligands also affects the reaction activity. With respect to the activation of methane (Mazurek et al., 1998). Schlangen et al. have reported the studies on ligand and substrate effects in gas-phase reactions of NiX⁺/RH couples (X = F, Cl, Br, I; R = CH₃, C₂H₅, n-C₃H₇, n-C₄H₉) (Schlagen et al., 2007). The results indicate that Ni⁺ is the only Ni⁺ halide complex that brings about thermal activation of methane to eliminate HF, whereas the nickel-halide cations NiCl⁺, NiBr⁺, and NiI⁺ react only with large alkanes. In the elimination of HX (X = F, Cl, Br, I), the formal oxidation state of the metal ion appears to be conserved, and the importance of this reaction channel decreased in going from NiI⁺ to Ni⁺. A reversed trend is observed in the losses of H₂, which dominate the gas-phase ion chemistry of NiI⁺/RH couples. Schröder and Schwarz (2005) reported the reactions of methane with PtX⁺ (X = H, Cl, Br and CHO) using mass spectrometry and found that these species are able to activate methane.

2 Computational and technical details

Full optimization of geometries for all stationary points involved in methane dehydrogenation by PtX⁺ (X = F, Cl, Br, I) has been calculated using the density functional theory (DFT) method on the hybrid of Becke’s three-parameter exchange functional and the Lee, Yang, and Parr correlation functional (B3LYP) (Becke, 1988; Lee et al., 1988; Becke, 1993). Becke hybrid with correlation functional Perdew (B3P86) (Perdew, 1986a; Perdew, 1986b; Michael et al., 2008) and M06-2X (Zhao and Truhlar, 2008; Zhao and Truhlar, 2008) were performed to confirm that the optimized transition states correctly connect the relevant reactants and products. Energies were corrected for (unscaled) zero-point vibrational energy corrections and were given relative to the separated reactant on each side of the potential energy surface (PES).

The geometries were optimized using density functional theory with B3P86, B3LYP, and M06-2X functional. The comparisons show that the results obtained by the three
methods are very similar in terms of geometric optimization, energy, and potential energy surfaces. The data are shown in Table 1 and the Supporting Information. Among them, B3LYP shows a more systematic process in a high-spin state and is also more resource-efficient. Otherwise, we also calculated the single point energy of the reaction at the CCSD(T)/aug-cc-pVTZ (PP) level. The trend of the single point energy is similar to the previous potential energy surface except for the energy of \(^1\text{Pt} (\text{CH}_3)++\text{HF} \) in the last step, which is inconsistent with the experimental results (Schröder and Schwarz, 2005). So, all the data used are obtained based on the B3LYP method.

3 Results and discussions

In this section, we discuss the reactivity of the PtX\(^+\) (X = F, Cl, Br, I) in the activation process of CH\(_4\) and present a brief discussion of the most abundant or interesting processes for the PtX\(^+\)/CH\(_4\) systems. Both low- and high-spin states have been considered. The potential energy surfaces of the reaction PtX\(^+\) + CH\(_4\) in the low- and high-spin states are summarized in Figure 1 and Figure 4, and the energetics (in kcal/mol) of the intermediates and transition states, relative to the ground state PtX\(^+\) plus CH\(_4\) have been summarized in Table 2. Geometries of
formation of a methane complex \(\text{PtF}^+\text{(CH}_4\text{)}^+ \). Based on Figure 1, the relative energy of 7.48 kcal/mol. The reaction starts with the spin-conserving dehydrogenation of \(\text{CH}_4 \) along the ground state route or would be a two-state reaction scenario (TSR) (Roithova et al., 2010).

For the sake of simplicity, each species is labeled with its spin multiplicity as a superscript preceding the formula.

3.1 PtF\(^+\) + \text{CH}_4

For PtF\(^+\), the ground electronic state has been found to be a triplet, and the singlet electronic excitation state of \(^1\text{PtF}^+\) has a relative energy of 7.48 kcal/mol. The reaction starts with the formation of a methane complex \(\text{PtF}^+\text{(CH}_4\text{)}^+ \). Based on Figure 1, the spin-conserving dehydrogenation of \(\text{CH}_4 \) along the ground state route \(^3\text{PtF}^+\) + \(\text{CH}_4 \) → \(^3\text{PtF}^+(\text{CH}_2)\text{H}^+\) + \(\text{H}_2 \) is endothermic by 2.89 kcal/mol and cannot occur for the high efficiency of the reaction. So, the reaction would obtain HF through the ground route or would be a two-state reaction scenario (TSR) (Roithova et al., 2010).

In the triplet state, the relative energy of the complex \(^3\text{PtF}^+(\text{CH}_4)\) is –36.92 kcal/mol and is found to have a \(\eta \) coordination, the \(\theta_{\text{C-Pt-F}} = 179.89^\circ \), which indicates that the carbon atom attacks to Pt along the Pt-F axis. Then, Pt inserts into one of the C-H bonds of methane, resulting in a hydridomethyl complex \(^1\text{PtHF}^+\text{(CH}_3\text{)}^+\), which has an energy of –23.01 kcal/mol. TS1 is the transition state of the oxidative addition of the first C-H bond on the reaction path. On the \(^3\text{TS1}\), the activated C-H bond is almost broken with the C-H bond length of 1.775 Å and the Pt-H bond is nearly formed with the Pt-H bond length of 1.565 Å, indicating that \(^3\text{TS1}\) is a typical three-centered late transition state, which is 14.02 kcal/mol above the encounter complex \(^3\text{PtF}^+(\text{CH}_2)\text{H}^+\) but only 0.11 kcal/mol above the \(^3\text{PtF}^+(\text{CH}_2)\text{H}^+\).

The low-spin \(^1\text{PtF}^+\) with methane tends to form \(^1\text{PtHF}^+(\text{CH}_3)^+\) intermediate directly. No activation transition state has been found on the singlet surface. The results indicate that the first C-H bond is activated spontaneously on the singlet surface. Energetically, the \(^1\text{PtHF}^+(\text{CH}_3)^+\) is 25.53 kcal/mol lower than that of the triplet \(^3\text{PtHF}^+(\text{CH}_3)^+\). A curve crossing is required from the triplet state to the singlet state via an MECP. As shown in Figure 1, due to the higher energies of the triplet-singlet state in the process of the expulsions of HF, and the processes in the triplet-singlet state being similar to the singlet-singlet paths, later, the triplet surface is not considered in the expulsion of HF.

In the following pages of this section, we will first discuss the process of the expulsions of HX, namely, HF. On the singlet surface, the next step is a reductive elimination step to form an HF molecule complex; that is, the H and F rearrange to form the \(^1\text{Pt}\text{H}_2\text{F}^+(\text{CH}_2)^+\) via a MECP.

Species	\(X = \text{F} \)	\(X = \text{Cl} \)	\(X = \text{Br} \)	\(X = \text{I} \)
\(\text{PtX}^- \) Singlet	7.48	16.40	23.90	22.34
Triplet	0.00	0.00	0.00	0.00
\(\text{PtX}^+ (\text{CH}_4)^+ \) Singlet	-36.92	-30.57	-26.39	-23.15
Triplet	-22.90	-18.07	-13.60	-11.62
\(\text{PHX} (\text{CH}_4)^+ \) Singlet	-48.54	-41.73	-35.59	-30.93
Triplet	-23.01	-18.43	-14.02	-12.21
\(\text{Pt} (\text{CH}_2)X \text{H}_2 \) Singlet	-63.91	-41.05	-31.71	-22.80
Triplet	-60.40	-27.47	-15.00	-4.92
\(\text{Pt} (\text{CH}_2)X^+ \text{HX} \) Singlet	-47.61	-10.45	-15.00	-9.11
Triplet	-45.93	-8.77	8.81	11.28
\(\text{Pt} (\text{CH}_3)X \text{H}_2 \) Singlet	-42.28	-26.52	-17.20	-8.94
Triplet	2.83	8.85	13.15	12.57
\(\text{PTX} (\text{CH}_2)X \text{H}_2 \) Singlet	-42.43	-26.61	-15.00	-9.11
Triplet	1.81	8.57	12.76	11.28
\(\text{TS1} \text{H}_2 \) Singlet	-39.28	-23.51	-14.42	-6.04
Triplet	3.24	11.88	16.47	16.25
\(\text{TS2} \text{H}_2 \) Singlet	-28.17	-10.02	-22.80	-16.25
Triplet	-2.10	-2.10	10.29	11.15

For the elimination of \(\text{H}_2 \), a migration of hydrogen from \(\text{CH}_3 \) to Pt, leading to \(^1\text{PtH}_2\text{F}^+(\text{CH}_2)^+\) with an energy barrier of 6.26 kcal/mol. The transition state \(^1\text{TS2} \text{H}^+\) (it represents the transition state in the process of the elimination of \(\text{H}_2 \)) is a
three-centered late transition state. Then, the two hydrogens rearrange easily to form the \(^1{\text{PtF}(\text{CH}_2)}(\text{H}_2)^+ \). Afterward, the molecule \(\text{H}_2 \) is eliminated. The calculated dissociation energy of \(\text{H}_2 \) to \(^1{\text{PtF}(\text{CH}_2)}^+ \) is 27.38 kcal/mol.

Generally, the energy barrier controls the reaction rate in a channel. Comparing the above two reaction channels, the energy barrier of \(\text{H}_2 \) elimination is 14.11 kcal/mol lower than that of the HF expulsions. However, in the subsequent steps, the calculated ligand dissociation energy of \(\text{H}_2 \) to \(^1{\text{PtF}(\text{CH}_2)}^+ \) is much higher than any energies of the complexes in the path to produce HF. Namely, the favorable path for the reaction of \(\text{PtF}^+ + \text{CH}_4 \) is the channel of the elimination of HF.

For the overall process, the energetically most favorable route involves a two-state reactivity scenario. The favorable route is the elimination of HF via the route \(^1{\text{PtF}^+} + \text{CH}_4 \rightarrow ^1{\text{PtF}(\text{CH}_4)}^+ \rightarrow \text{MECP} \rightarrow ^1{\text{PtHF}(\text{CH}_2)}^+ \rightarrow ^1{\text{TS2}} \rightarrow ^1{\text{Pt}}(\text{CH}_3)(\text{HF})^+ \rightarrow ^1{\text{Pt}}(\text{CH}_3)^++ \text{HF} \).

3.2 PtX\(^+\) (X = Cl, Br, I) + CH\(_4\)

As to the CH\(_4\) activation on PtX\(^+\) (X = Cl, Br, I), the mechanisms are very similar to those on PtF\(^+\), as discussed earlier. Indeed, the critical geometrical parameters in the intermediates and transition state are all very similar to the corresponding structures in the case of PtF\(^+\), as can be seen clearly by comparing the figures in the Supporting Information. Therefore, we shall not discuss their geometries in further detail but show some differences and their characteristics.

For PtX\(^+\) (X = Cl, Br, I) with CH\(_4\), as calculated by the results, the ground low-lying state is all the triplet state. The excitation energies to the excited singlet state are 16.40, 23.90, and 22.34 kcal/mol, respectively, for PtX\(^+\) (X = Cl, Br, I). The low-spin \(^1{\text{PtX}^+} \) with methane tends to form a \(^1{\text{PtHX}(\text{CH}_2)}^+ \) intermediate directly. No activation transition state has been found on the singlet surface. The results are similar to the PtF\(^+\)-CH\(_4\) system and indicate that C-H is activated spontaneously on the singlet surface. Energetically, the \(^1{\text{PtX}(\text{CH}_2)}^+ \) is lower than the triplet \(^3{\text{PtXH}(\text{CH}_2)}^+ \). Since the triplet state is the ground state of PtX\(^+\), the methane activation starting from the ground state again requires an intersystem crossing as described in the case of PtF\(^+\) via a minimum energy crossing point, as shown in Figures 2–4.

Different from PtF\(^+\), as for the other three PtX\(^+\) (X = Cl, Br, I), on the singlet surface, the next step is the rearrangement of hydrogen and halogen to obtain HX, which has an activation energy of 12.11, 11.89, and 15.39 kcal/mol, respectively, for PtX\(^+\) (X = Cl, Br, I). This activation energy is 3.10, 6.50, and 6.60 kcal/mol lower than that in the path of the elimination of H\(_2\).

For PtCl\(^+\), HCl can be eliminated in an exothermic reaction by 10.45 kcal/mol. Due to the path of the expulsions of H\(_2\) always being high-lying compared with the process of elimination of HCl, it is an unfavorable path. Namely, the favorable path of PtCl\(^+\)/CH\(_4\) is the process of HCl elimination. This result is in good agreement with the experimental results as reported by Schröder and Schwarz (2005). They reported the branching ratio of HCl is 100%. For PtBr\(^+\)/CH\(_4\), the favorable path is the process of the elimination of HBr, but the calculated ligand dissociation energy of HBr to \(^1{\text{Pt}}(\text{CH}_3)(\text{HBr})^+ \) is 38.83 kcal/mol, different from PtF\(^+\), the energy difference between the two processes of the products are only 7.86 kcal/mol, which is lower than others. The activation energy to obtain \(^1{\text{Pt}}(\text{CH}_3)(\text{HBr})^+ \) is 6.50 kcal/mol lower than to obtain \(^1{\text{PtH}_2\text{Br}(\text{CH}_2)}^+ \). Due to the lower activation energy, the favorable path of the reaction of PtBr\(^+\)/CH\(_4\) probably is the elimination of HBr, but also has some ratio of H\(_2\) in the products, as mentioned in the earlier discussions. As reported by Schröder and Schwarz (2005), the branching ratio of HBr:H\(_2\) is 85:15. As for PtI\(^+\), although the
energies in the potential energy surfaces before the loss of HI are lower than that of H2, the elimination of HI needs much more energy than H2, and it is endothermic at 43.98 kcal/mol, which is not favorable to occur. In the process of the loss of H2, there is a barrier height of 21.99 kcal/mol on the singlet state to form the intermediate $^1\text{PtH}_2\text{I(CH}_2\text{)}^+$. After overcoming a small barrier of 3.07 kcal/mol, the complex $^1\text{PtI(CH}_2\text{)(H}_2\text{)}^+$ is formed. The low-spin species $^1\text{PtI(CH}_2\text{)}^+$ has an association energy of 11.53 kcal/mol. This reaction is endothermic of 3.97 kcal/mol, which is also not favorable thermodynamically.

In summary, in the elimination of HX (X = F, Cl, Br, I), the formal oxidation state of the metal ion appears to be conserved, and the importance of this reaction channel decreases in going as the sequence: X = F, Cl, Br, I. A reversed trend is observed in the loss of small closed-shell molecule H2 for X = F, Cl, Br, while it is not favorable for PtI+ in the loss of either HI or H2. The reason for the reactivity along with the abovementioned trends can be explained by the electronegative character of X; on the other hand, by the corresponding reaction enthalpies, which are mostly related to the formation of HX, that is to say, the halogens are heavier the bond-dissociation energies are much lower (Dede et al., 2009). The results can also be seen by the Natural Bond Orbital (NBO) populations and Natural population analysis (NPA) charge, as shown in the Supporting Information, and the results of part of the key structures are shown in Table 3. The
electron negativity of the halogens decreases gradually from F to I, and the donor properties increase gradually from F to I, so F forms a strongly polarized covalent bond to Pt, and F increases the formal oxidation of Pt.

3.3 Mechanism discussions

Reaction mechanisms of these reactions are elucidated by detailed NPA charge and the Frontier Molecular Orbitals (HOMO and LUMO) of the key structures in the rate controlling step. In the elimination of HF, as shown in Table 3, the F atom carries a significant negative charge, serving as a good proton acceptor, in which the electron is accepted by the metal center, thus, the NPA charge decreases in Pt. This process can be classified as a conventional proton-coupled electron transfer (PCET (Li et al., 2016b)) mechanism. For HCl and HBr eliminations, the charges of all atoms did not change during hydrogen transforms, and the mechanism can be judged as hydrogen atom transfer (HAT (Dietl et al., 2012)), while for I ligand, the NPA charge of I atom increases and that of H atom decreases, and it can be determined that the process is hydride transfer (HT (Li et al., 2016c)) mechanism.

The mechanisms of HX eliminations also can be explained by the analysis of Frontier Molecular Orbitals, which are shown in Figure 5. In the HOMO orbital, the $\sigma(d_{x^2-y^2})$ of Pt and $\sigma(p_y)$ of X occupied the main contribution in Pt-X molecular orbital. The coefficient of Pt ($\sigma(d_{x^2-y^2})$) becomes smaller and X ($\sigma(p_y)$) increases in the sequence of F < Cl < Br < I. From 1PHX (CH$_3$)$_2$ to 1TS2, the increase of electron density (ϕ^2) on Pt is consistent with the decrease of NPA charge. The decrease of electron density on X also corresponds to the increase of NPA charge. It also can be seen from the LUMO orbital graph of C ($\sigma(p_y)$)-Pt ($\sigma(d_{xy})$)-X ($\sigma(p_x)$) that the ϕ^2 of Pt increase and the ϕ^2 of C and X decrease.

In the course of the formation of H$_2$, the positive charge of H diminishes, indicating that it may be an HT mechanism. Corresponding to this, electron density has been transferred from methane to hydrogen, as shown in the HOMO orbital graph in Figure 5. As the transferred electron density takes the same route as that of the concurrently transferred hydrogen atom, it can be described as a hydride transfer mechanism. For different halogens, the change of charges is the same, that is to say, in terms of rate controlling step, different halogen ligands have no significant effect on the process of elimination of H$_2$.

In sum, in the eliminations of HX, the mechanisms are different. The transfer form of H is from proton to atom, last
to hydride. The reason is mainly due to the electronegativity of halogens, while for the loss of H₂, the transfer of H is in the form of hydride for all the X ligands.

3.4 Analysis of interaction between complexes

To further investigate the mechanisms, the interactions between the complexes in the reactions were also discussed. The MEP diagrams of singlet and triplet PtX⁺ on the 0.001 a. u. isodensity surface are displayed in Figure 6. Since the complexes have positive charge, the overall electrostatic potential is in the red region. There is a deep red region (σ-hole) along the Pt-F axis around the Pt⁺, which correspond to the site where carbon atoms attack PtX⁺. It is consistent with the previously optimized structure. In addition, the σ-hole strength decreases in the order PtF⁺ > PtCl⁺ > PtBr⁺ > Pt⁺ owing to the different electron-withdrawing ability among the halogen.

TABLE 4 Electron density (\(\rho\), a.u.), Laplacian (\(\nabla^2 \rho\), a.u.), energy density (H, a.u.), intermolecular distance (R, Å), and charge transfer (CT, e⁻) at the XPt-CH₄ (X = F, Cl, Br, I) complexes.

Complexes	\(\rho\)	\(\nabla^2 \rho\)	H	R	CT
FPt-CH₄	0.0690	0.2009	-0.0143	2.305	0.2101
ClPt-CH₄	0.0727	0.1943	-0.0163	2.284	0.2111
BrPt-CH₄	0.0685	0.1886	-0.0140	2.315	0.1927
IPt-CH₄	0.0671	0.1888	-0.0133	2.327	0.1764

Figure 5
HOMO/LUMO orbital graphs in part of the structures of rate controlling step in the reaction of PtX⁺ (X = F, Cl, Br, I) + CH₄ in the singlet state.

Figure 6
Molecular electrostatic potential (MEP) maps on the 0.001 a. u. isodensity surface of the monomers.
In the AIM theory, electron density at the bond critical point (BCP) is one of the indicators of interaction strength. The electron density, Laplacian, and total energy density at the XPt-CH4 (X = F, Cl, Br, I) complexes are listed in Table 4. The values of the density at the BCP lie in the range around 0.07 a.u., Laplacian is positive and energy density is negative in the methane complexes, which indicates that there exhibits a property of a partially covalent interaction. The charge transfer from CH4 to PtX decreases in the order PtF+ > PtCl+ > PtBr+ > PtI+, which is consistent with the energy barrier of the reaction in the potential energy surface. Through the analysis of the charge transfer and the interaction energy of methane complexes, which indicates that there exhibits a partially covalent interaction. The charge transfer between these two atoms has a stronger tendency (Kraka and Cremer, 1990; Alkorta et al., 1998). As shown in Table 5, for all the complexes before dissociating the H2 or HX molecule, Laplacian is positive and energy density is negative, indicating that there exists a partially covalent interaction between H2 or HX molecule and Pt atom. For the same complex, the values of ρ, ∇²ρ, and energy density are obviously stronger in the singlet state than those in the triplet state, indicating a stronger interaction between the Pt and the H2 or HX molecule in the singlet state, and more energy is required to expel H2 or HX, which is consistent with the energy barrier of the reaction in the potential energy surfaces. Through the analysis of the interaction between atoms in the transition metal–ligand complex, the reaction path can be better explained.

From Table 5, one also can see that for the complexes before H2 was removed, the values of charge transfer (CT) are between 0.17 e and 0.21 e, and the differences between PtXCH2-H2 (X = F, Cl, Br, I) are small. However, for the complexes before HX was expelled, the values of charge transfer increased from PtCH3-HF to PtCH3-HI, which was generally consistent with the interaction energy. Namely, the complexes before the expulsions of HX had larger interaction energy than the others.

3.5 Comparisons with the reactions of NiX+ (X = F, Cl, Br, I) + CH4

The reactions of NiX+ (X = F, Cl, Br, I) and methane have been investigated at the B3LYP level of theory by Schlangen et al. (Schlangen et al., 2007; Schlangen and Schwarz, 2008). They reported that NiF+ is the only nickel-halide complex capable of activating methane for NiX+ (X = F, Cl, Br, I). The driving force of the reaction NiF+ with methane is provided by the exceptionally high stability of HF (Schlangen et al., 2007). In the present study, we found that the PtX+ (X = F, Cl, Br) can bring about thermal activation of methane to lose HX decreasing in going as the sequence X = F, Cl, Br, and to loss H2 increasing in the reverse sequence.

The reactions of NiF+ and their third-row congeners PtX+ with methane have many features in common; whereas, fundamental differences exist with regard to the details of the potential energy surfaces and, thus, to actual reaction mechanisms. As reported by Schlangen and Schwarz (2008), for the NiF+ and methane systems studied, the energetically most favored variant corresponds to an σ-complex-assisted metathesis (σ-CAM). First, the reactions start with the formation of the encounter complex NiF(CH4)+, and then, the molecule HF is directly eliminated via a multicenter transition state to obtain the product complex, Ni(CH3)H(FH)+. However, in the PtX+/CH4 systems, oxidative addition/reductive elimination (OA/RE) is operative. After the formation of the complex PtX(CH3)+, the next step is the cleaving of the C-H bond (oxidative addition),
resulting in the insertion product PtHX (CH₃)⁺, and then a reductive elimination step to form an HX molecule complex is obtained, that is, the H and X rearrange to form an HX molecule electrostatically bound to Pt to obtain the Pt(CH₃)(HX)⁺.

Another difference in the reaction mechanisms is the potential energy surfaces. In the NiF⁺/CH₄ system, the exothermic ligand exchange proceeds adiabatically only on the one potential energy surface, whereas the reaction of PtX⁺/CH₄ needs a curve crossing, that is to say, it is a two-state reactivity. Otherwise, the NiF⁺/CH₄ system proceeds on the high-spin ground triplet state, while the reaction of PtX⁺ with methane takes place more easily along the low-spin potential energy surface. As for the reasons for the differences, Schlangen and Schwarz (2008) have reported that the strongly electron-withdrawing F substituent reduces the electron density at the Ni-center and, thus, decreases the repulsive interaction; therefore, the reaction can proceed on the high-spin ground state. Based on this point, we calculated the Mullikan charges of the M-atom (M = Ni, Pt) in the systems MX⁺/CH₄. The results indicate that the Mullikan charges of the Ni-atom in the NiF⁺/CH₄ system increase 0.198, while the Pt-atom in the reaction PtF⁺/CH₄ increases only 0.082.

4 Conclusion

The gas-phase ion-molecule reactions of PtX⁺ cations (X = F, Cl, Br, I) with methane have been investigated theoretically at the DFT (B3LYP) level, considering both the low- and high-spin potential energy surfaces. All reactions fall into two major categories: 1) reactions involving Pt-X bond cleavage to expulse HX and 2) bond activation of CH₄ without obvious occurrence of Pt-X bond cleavage to loss H₂. In the elimination of HX (X = F, Cl, Br, I), this reaction channel decreases in going as the sequence: X = F, Cl, Br, I. A reversed trend is observed in the losses of small closed-shell molecule H₂ for X = F, Cl, Br, I, while it is not favorable for PtCl⁺ in the loss of either HI or H₂. The reason for the reactivity along with the abovementioned trends can be explained by the electronegative character of X.

In the eliminations of HX, the transfer form of H is from proton to atom, last to hydride, and the mechanisms are from PECT to HAT, last to HT for the sequence of X = F, Cl, Br, I. One reason is mainly due to the electronegativity of halogens. Otherwise, the mechanisms of HX eliminations also can be explained by the analysis of Frontier Molecular Orbitals, while for the loss of H₂, the transfer of H is in the form of hydride for all the X ligands.

The charge transfer from CH₄ to PtX⁺ decreases in the order PtF⁺ > PtCl⁺ > PtBr⁺ > PtI⁺, which is consistent with the σ-hole strength of PtX⁺. For the same complex, the values of ρ, ∇ρ, and energy density are obviously stronger in the singlet state than those in the triplet state, indicating a stronger interaction between the Pt and the H₂ or HX molecule in the singlet state, and more energy is required to expel H₂ or HX, which is consistent with the energy barrier of the reaction in the potential energy surfaces. The differences in charge transfer between PtXCH₂-H₂ (X = F, Cl, Br, I) for the complexes before H₂ is removed are small. However, for the complexes before HX is expelled, the values of charge transfer increase from PtCH₃-HF to PtCH₃-HI, namely, the complexes before the expulsions of HI have larger interaction energy than the others. Through the analysis of the interaction between atoms in the transition metal ligand complex, the reaction path can be better explained.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

Author contributions

JZ and LQ: structure optimization and data collection; JC and QL: data analysis; WL and SL: data analysis and manuscript writing and revision. All authors read and approved the submitted version.

Acknowledgments

The authors thank the National Natural Science Foundation of China (Grant No. 21803052) and the Natural science foundation of Shandong province, China (Grant No. ZR2018LB017). The grants are gratefully acknowledged.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2022.1027465/full#supplementary-material
thermal bond activation in the gas-phase reactions NiX+/CH4 and the role of formal oxidation states in the nickel-mediated thermal activation of methane. 10.3389/fchem.2022.1027465

Schilling, J. B., Goddard, W. A., III, and Beauchamp, J. L. (1986). Theoretical studies of transition-metal hydrides. J. Bond energies for MH+ with M= Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. J. Am. Chem. Soc. 108, 582–584. doi:10.1021/ja00284a004

Schilling, J. B., Goddard, W. A., III, and Beauchamp, J. L. (1987). Theoretical studies of transition-metal hydrides. 2. CaH+ through CaH2+. J. Phys. Chem. 91, 5616–5623. doi:10.1021/j100306a024

Zhao et al.

Schilling, J. B., Goddard, W. A., III, and Beauchamp, J. L. (1987). Theoretical studies of transition-metal hydrides. 3. SrH+ through CaH2+. J. Am. Chem. Soc. 109, 5565–5573. doi:10.1021/ja00253a001

Slachter, R. H., Elkind, J. L., and Armentrout, P. B. (1988). Electronic effects in C-H and C-C bond activation. State-specific reactions of Fe (D, F) with methane, ethane, and propane. J. Am. Chem. Soc. 110, 411–423. doi:10.1021/ja00210a017

Schwarz, H., Navarrete, P. G., Li, J. L., Schlangen, M., Sun, X. Y., Weiske, T., et al. (2017). Unexpected mechanistic variants in the thermal gas-phase activation of methane. Organometallics 36, 8–17. doi:10.1021/acs.organomet.6b00372

Schwarz, H., Shaik, S., and Li, J. L. (2017). Electronic effects on room-temperature, gas-phase C-H Bond activations by cluster oxides and metal carbides: The methane challenge. J. Am. Chem. Soc. 139, 17201–17212. doi:10.1021/jacs.7b18139

Sun, Y. X., Zhou, S. D., Schlangen, M., and Schwarz, H. (2016). Efficient room-temperature methane activation by the closed-shell, metal-free cluster [O6SiOH]-: A novel mechanistic variant. Chem. Eur. J. 22, 14257–14265. doi:10.1002/chem.201601981

Tolbert, M. A., and Beauchamp, J. L. (1986). Homolytic and heterolytic bond dissociation energies of the second row group 8, 9, and 10 diatomic transition-metal hydrides: Correlation with electronic structure. J. Phys. Chem. 90, 5015–5022. doi:10.1021/j100412a029

Tolbert, M. A., Mandich, M. L., Halle, L. F., and Beauchamp, J. L. (1986). Activation of alkanes by ruthenium, rhodium, and palladium ions in the gas phase: Striking differences in reactivity of first- and second-row metal ions. J. Am. Chem. Soc. 108, 5675–5683. doi:10.1021/ja00279a003

Vargas, A., Krivokapic, I., Hauser, A., and Lawon Daku, L. M. (2013). Towards accurate estimates of the spin-state energetics of spin-crossover complexes within density functional theory: A comparative case study of cobalt(II) complexes. Phys. Chem. Chem. Phys. 15, 3752–3763. doi:10.1039/c3cp44336a

Wang, X. F., and Andrews, L. (2009). Infrared spectra and theoretical calculations for Fe, Ru, and Os metal hydrides and dihydrogen complexes. J. Phys. Chem. A 113, 551–563. doi:10.1021/jp808645b

Wesendrup, R., Schroder, D., and Schwarz, H. (1994). Catalytic Pt2+-mediated oxidation of methane by molecular oxygen in the gas phase. Angew. Chem. Int. Ed. Engl. 33, 1174–1176. doi:10.1002/anie.199411741

Westerberg, J., and Blomberg, M. R. A. (1998). Methane activation by naked Rh+ atoms. A theoretical study. J. Phys. Chem. A 102, 7303–7307. doi:10.1021/jp9812491p

Wheeler, O. W., Michelle, S., Gao, A., Bakker, J. M., and Armentrout, P. B. (2016). Activation of C-H bonds in Pt+ + x CH4 reactions, where x= 1-4: Identification of the platinum dimethyl cation. J. Phys. Chem. A 120, 6216–6227. doi:10.1021/acs.jpca.6b05361

Ye, S., and Neese, F. (2010). Accurate modeling of spin-state energetics in spin-crossover systems with modern density functional theory. Inorg. Chem. 49, 772–774. doi:10.1021/ic902365a

Yue, L., Li, J. L., Zhou, S. D., Sun, X. Y., Schlangen, M., Shaik, S., et al. (2017). Control of product distribution and mechanism by ligation and electric field in the thermal activation of methane. Angew. Chem. Int. Ed. 56, 10219–10223. doi:10.1002/anie.201703485

Zhang, Q., and Bowers, M. T. (2004). Activation of methane by MH+ (M= Fe, Co, and Ni): A combined mass spectrometric and DFT study. J. Phys. Chem. A 108, 9755–9761. doi:10.1021/jp041794t

Zhao, Y., and Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167. doi:10.1021/ar070111a

Zhao, Y., and Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241. doi:10.1007/s00214-007-0310-x

Zhou, S. D., Firouzbakht, M., Schlangen, M., Kaupp, M., and Schwarz, H. (2017a). On the electronic origin of remarkable ligand effects on the reactivities of [NiL] complexes (L = C6H5, C6H4H2N, CN) towards methane. Chem. Eur. J. 23, 14430–14433. doi:10.1002/chem.201703767

Zhou, S. D., Li, J. L., Firouzbakht, M., Schlangen, M., and Schwarz, H. (2017b). Sequential gas-phase activation of carbon dioxide and methane by [Re(CO)2]+: The crossover systems with modern density functional theory. J. Am. Chem. Soc. 139, 6169–6176. doi:10.1021/jacs.7b01255

Zhou, S. D., Li, J. L., Schlangen, M., and Schwarz, H. (2016). Thermal dehydrogenation of methane by [ReN]+. Angew. Chem. Int. Ed. 55, 14863–14866. doi:10.1002/anie.201607960

Zhou, S. D., Schlangen, M., and Schwarz, H. (2017c). Spin-Selective, Competitive hydrogen-atom transfer versus CH2O-generation from the CH4/[ReO4]– couple at ambient conditions. Chem. Eur. J. 23, 17469–17472. doi:10.1002/chem.201704892