Estimation of Low Nutrients in Tomato Crops Through the Analysis of Leaf Images Using Machine Learning

Hiram Ponce1 Claudio Cevallos1 Ricardo Espinosa2 Sebastián Gutiérrez2

1Universidad Panamericana. Facultad de Ingeniería.
Augusto Rodin 498, Ciudad de México, 03920, México

2Universidad Panamericana. Facultad de Ingeniería.
Josemaría Escrivá de Balaguer 101, Aguascalientes, 20290, México

email: hpounce@up.edu.mx, 0161568@up.edu.mx, respinosa@up.edu.mx, jsgutierrez@up.edu.mx

March 31, 2021

Abstract

Tomato crops are considered the most important agricultural products worldwide. However, the quality of tomatoes depends mainly on the nutrient levels. Visual inspection is made by farmers to anticipate the nutrient deficiency of the plants. Recently, precision agriculture has explored opportunities to automate nutrient level monitoring. Previous work has demonstrated that a convolutional neural network (CNN) is able to estimate low nutrients in tomato plants using images of their leaves. However, the performance of the CNN was not adequate. Thus, this work proposes a novel CNN-based classifier, namely CNN+AHN, for estimating low nutrients in tomato crops using an image of the tomato leaves. The CNN+AHN incorporates a set of convolutional layers as the feature extraction part, and a supervised learning method called artificial hydrocarbon network (AHN) as the dense layer. Different combinations of the architecture of CNN+AHN were examined. Experimental results showed that our best CNN+AHN classifier is able to estimate low nutrients in tomato plants with an accuracy of 95.57\% and F1-score of 95.75\%, outperforming the literature.

Keywords: Agriculture; image processing; deep learning; computer vision; color analysis

1. Introduction

Nowadays, one of the most important food sources is the agricultural production field and more than 30\% of the human food consumption is lost in some phases of the supply chain. There are multiple open problems in agricultural production in some of the phases involved in the supply chain process and plants care processes. One of the most relevant affectations in agricultural production is the problem derived from poor plant care with 40\% of affection, being reactive to pests and diseases of the plants \cite{1}. Based on data from Food and Agriculture Organization (FAO) an estimated 1.3 billion tons of food is lost or wasted every year in the world \cite{2}. Moreover, the waste existing during the production phase reaches 28\% of the total evaluated \cite{2}. On the other hand, food waste in Latin America is considered to be 127 million tons per year which means 9.8\% of world waste \cite{2}. Thus, having efficient agricultural practices allows obtaining an optimum use of the crop, a reduction of environmental pollution, and reduction of waste \cite{3}. At present, these practices allow the farmer to supply the necessary amount of nutrients to the plants, at
1 INTRODUCTION

the time they need them. Specifically, the tomato represents one of the most important economic and agricultural products in the world [4]. Due to the production standards that this fruit has achieved over the years, it has allowed the demand to have increased considerably nationally and internationally due to its quality, performance, and profitability. In Mexico, tomato crops have increased by 50% over the years. Thus, in 2010, more than 54 thousand hectares for its cultivation were destined. In 2014, based on data obtained by the Mexican Agrifood and Fisheries Information Service (SAGARPA, from Spanish), tomato crops took second place while chili cultivation continued taking first place in crops in Mexico [4]. Moreover, Mexico is considered the main tomato supplier worldwide with a market share of 25.11% of all world exports [5].

Tomato is a perennial plant that grows as an annual crop belonging to the **Solanaceae** family which includes different crops such as chili peppers, potatoes and eggplant, among others [6, 7, 8, 9]. Tomato harvesting can be carried out throughout the year. However, it is important to consider that extreme low-and-high temperatures can damage the plant [10].

One of the difficulties with the tomato crops is nutrient deficiency due to its impact on the quality of the plant and the fruits. Nitrogen, phosphorus and potassium are known as primary nutrients vital for many plants including tomatoes. Multiple research works [11, 12] have reported symptoms in the leaves of tomato crops where those nutrients are deficient (see Figure 1 as reference). For example, large leaves of the plant change from green to yellow and the small ones turn pale when there is a lack of nitrogen. Leaf veins of the plant turn purple color in absence of phosphorus, and lacking of potassium turns the edges of leaves yellow [13].

Tomato, over decades, has become one of the most used crops as commercial and homegrown crops due to that this product is used in a large number and variety of international dishes and can be consumed in different presentations, which allows its high acceptance by users and is one of the sources of vitamins and minerals present in their diet [14]. As a result, searching for technological and innovative solutions to enhance the best practices in these kinds of crops has increased. For example, precision agriculture and robotics have been implemented [15], as well as sensor-based and vision-based monitoring [16, 17, 18, 19, 20]. In a previous work [13], we designed a simple convolutional neural network (CNN) that was able to predict the nutrient deficiency in tomato crops using an image of their leaves. After different experiments, results shown that this CNN model performed with an accuracy of 86.59% [13].

In this work, we propose a novel CNN-based model, namely CNN+AHN, for estimating low nutrients in tomato crops using an image of the tomato leaves, as part of a vision-based monitoring system (as shown in Figure 2). The architecture of this CNN+AHN model comprises a set of convolutional layers, as feature extraction, and an artificial hydrocarbon network (AHN) model as the dense layer. Roughly speaking, AHN is a supervised learning method [21] that models data using carbon networks as inspiration that promotes modular organization of data, structural stability of data-packages, and inheritance of packaging information [22].

![Figure 1: Examples of images in our dataset. It shows different views of the tomato leaves. For instance, yellow leaves represent deficit of nitrogen, purple veins in leaves are related to deficit in phosphorus, and deficit of potassium are those leaves with yellow edges.](image-url)
2 RELATED WORK

pare our CNN+AHN with three models: our CNN model developed in [13], the single CNN model, and a CNN+AHN with an intermediate feature reduction layer. The results show that our best CNN+AHN model is able to estimate low nutrients in tomato plants with an accuracy of 95.57%.

The main contribution of this work consists of developing a new classification model, i.e. CNN+AHN, for monitoring nutrients deficiencies in tomato crops based on images of their leaves. To the best of our knowledge, this is the first time that a combined CNN-and-AHN architecture is developed.

The remainder of the paper is organized as follows. Section 2 presents the related work of relevant technologies used in agriculture, giving some examples. Section 3 presents our methodology for building and evaluating the CNN+AHN model. Section 4 presents the results of our CNN+AHN model. Lastly, Section 5 highlights the conclusion of this work.

2 Related Work

One of the major improvements over the years in agricultural technology has been the robotics field. Robotics have been adopted in multiple countries and regions and have become more popular. In Japan, for example, Noguchi and Barawid [23] presented the usage of mobile robots in the form of tractors to perform the necessary tasks within the rice, soybean, and wheat crop. These tasks as sowing of seeds, cultivation of plants, fertilization, and monitoring of the crops, and harvest of the final product. The project was designed to cover large farmland, focusing on user safety with the use of multiple inexpensive sensors and having a system for locating and searching for better trajectories.

Different investigations have been carried out to protect crops from climate change and pollution factors. In [16], Hemming et al. presented a room equipped with different robots, sensors and specialized areas in each type of cultivated plant. This room can control temperature, humidity and pressure, allowing it to adapt to any type of plant. However, this has not been fully automated, requiring human intervention to perform certain tasks such as supervision of the tasks performed by the robots or detection of the color of the fruits to be harvested.

To achieve high quality in the cultivated food and crop safety for the user and the final product the use of robotics in agriculture has been successfully applied, projects based on GAP (Good Agricultural Practices) have been carried out with the help of measurement tools, performance sensors and analysis software seeking to implement a controlled harvest [15].

The use of vision-based applications in agricultural problems have incremented over the years, for example, to calculate the necessary amount of treatment to achieve specific exterior maturation of freshly harvested oranges for final consumption, a project based on image processing was carried out to detect their coloration [24]. To effect the evaluation it was necessary to have an Android device and the use of its camera. The calculation obtained from the detected image shows the amount of treatment necessary based on the established color indices. Furthermore, vision-based systems have been used for color detection and analysis of the tomato during its growth [17, 18, 19, 20], and thus finding the ideal date to harvest and sell the product. Also, this type of technology has been used during the phase of accommodation and distribution of the product, where the tomato can be classified as defective or non-defective, and mature or immature for its separation.

Hence, based on the detection of the color of the fruit, it is possible to determine the ripeness of the fruit at different stages of the supply chain, being the principal ones during the growth and the harvest of the plant. There are different works based on the color of the fruit peel to be evaluated. For example, in [25] the authors analyzed the coloring of papaya for its final harvest. With this, it is sought to obtain better products for sale and final consumption without having to use physical and chemical processes to obtain the required maturation.

As described before, the previous projects have the advantage of using accessible technologies for a better quality of the final product, however, it only focuses on the analysis of a single fruit (e.g., tomato or papaya) and its harvest time, not on the rest of the plant and its complete life cycle.

Deep learning methods in vision-based problems have been used to analyze the characteristics of the leaves of different plants and thus to detect diseases
3 MATERIALS AND METHODS

or pests. In [26], it is presented a system capable of detecting the lack or excess of nutrients in plants. It is important to work with plant pests and diseases to save on resources such as pesticides, however, it is important to focus on plant nutrients and deficiency thereof to obtain healthy plants and quality products. For example, the authors in [27] present a one-dimensional fully convolutional network (1D-FCN) to quantitatively analyze the nicotine composition of tobacco leaves using NIR spectroscopy data via the cloud. A similar work [28] using the residual network (ResNet) is proposed for classifying regions of tobacco cultivations.

In this work, we take advantage of deep learning to analyze the leaves of the tomato crops for detecting nutrients deficiency. Another successfully vision-based application of deep learning is [13] where with a simple convolutional neural network (CNN) predicting the nutrient deficiency in tomato crops using an image of their leaves, the results show that this CNN-based work achieved 86.59% of accuracy metric using the same dataset used in this work [13].

The current work is based on our previous research [13] in which we shown that a simple non-optimized CNN model is able to perform an accuracy of 86.59%. For that, we collected and released a public dataset of tomato leaves with their nutrient levels. Then, we performed four different experiments using the original dataset, a set of enhanced images from the dataset, the original images augmented with others from the Internet, and the enhancement of the original plus the augmented images. In contrast, the current work assumes that a CNN model is able to perform the classification task of low nutrients detection. Then, we improves the architecture of the CNN via Bayesian optimization and the inclusion of the AHN model at the dense layer. We outperformed our previous work as shown in Section 4.

3.1 Fundamentals

First, we describe in general the machine learning methods –CNN and AHN– implemented in this work.

3.1.1 Convolutional Neural Networks (CNN)

These networks have three factors involved in their learning process: sparse interaction, parameter sharing, and quasi-variant representation [29, 30]. CNN is a multi-layered neural network that consist of two different types of layers: convolution layers (c-layers) and sub-sampling layers (s-layers). C-layers and s-layers are connected alternately and form the feature extraction part of the network. The input data pass through convolutions using trainable filters. After that, a pooling layer is implemented to reshape the features in a one-dimensional array that is input into a fully connected network used for classification. Typically, the fully connected network works similarly to a standard multi-layered perceptron with a softmax layer at the output [29, 30].

3.1.2 Artificial Hydrocarbon Networks

AHN is a supervised learning method [21] that models data using carbon networks as inspiration. It loosely simulates the chemical rules involved in hydrocarbon molecules to find a way for representing the structure and behavior of data [31]. Its key feature can be described as the ability to package data in units of so-called molecules. Then, packages are organized and optimized through heuristic mechanisms based on chemical assumptions that are encoded in the training algorithm [22].

A molecule consists of a kernel function with a set of weights, like in (1), where \(x \in \mathbb{R}^n \) is the feature vector of the input data, \(H_i \) is a set of weights namely the hydrogen values, \(\sigma \) is a vector of weights namely the carbon value, and \(k \leq 4 \) is the maximum number of hydrogen values associated to one molecule. Jointly, those weights are
known as molecular parameters, and they resemble to the hydrogen and carbon atoms of a hydrocarbon molecule in nature.

$$\varphi(x, k) = \sum_{r=1}^{n} \sigma_r \sum_{i=1}^{k \leq 4} H_{ir} x'_r$$ \hspace{1cm} (1)

Molecules are arranged in groups so-called compounds. Those are structures that represent non-linearities among molecules. They are associated with a functional behavior as in (2), where \(m \) is the number of molecules in the compound and \(\Sigma_j \) is a partition of the input \(x \) such that \(\Sigma_j = \{ x | \arg \min_j (x - \mu_j) = j \} \), and \(\mu_j \in \mathbb{R}^n \) is the center of the \(j \)th molecule [22]. In fact, \(\Sigma_{j_1} \cap \Sigma_{j_2} = \emptyset \) if \(j_1 \neq j_2 \). The compound behavior written in (2) is known as linear chain of \(m \) molecules since it is similar to organic chains in chemical nature [31].

$$\psi(x) = \begin{cases} \varphi_1(x, 3) & x \in \Sigma_1 \\ \varphi_2(x, 2) & x \in \Sigma_2 \\ \ldots & \ldots \\ \varphi_{m-1}(x, 2) & x \in \Sigma_{m-1} \\ \varphi_m(x, 3) & x \in \Sigma_m \end{cases}$$ \hspace{1cm} (2)

Compounds can interact among them in definite ratios \(\alpha_t \), namely stoichiometric coefficients or simply weights, forming a mixture \(S(x) \). It is represented in (3); where, \(c \) is the number of compounds in the mixture and \(\alpha_t \) is the weighted factor of the \(t \)-th compound. The latter can be calculated using the least squares estimates (LSE) method [31].

$$S(x) = \sum_{t=1}^{c} \alpha_t \psi_t(x)$$ \hspace{1cm} (3)

Literature has reported different training algorithms for AHN. They differ in terms of how to approach the learning process of the molecular parameters and the centers of molecules. In this work, we adopted the stochastic parallel extreme (SPATEH) training algorithm, and further details can be consulted in [22].

3.2 Vision-Based Monitoring System

The CNN+AHN is immersed in a vision-based monitoring system. The system comprises three main steps. The first one is taking a photograph of a tomato plant (Section 3.2.1). The second is to pre-process the image for resizing and contrast enhancement (Section 3.2.2). And the third is to use the CNN+AHN model to classify the type of low nutrient detected in the plant (Section 3.3). The overall system is depicted in Figure 2.

3.2.1 Nutrients Level in Tomato Plants Dataset

In this work, we use a previous dataset that we obtained from this monitoring system [13]. The dataset was collected for 10 weeks, from tomato plants harvested in separate pots (one per primary nutrient) located at the backyard of a house in Mexico City, Mexico. The backyard consisted on a direct sunlight place with temperatures ranging from 22 to 28°C. Three plants were grown in the pots and were added with the primary nutrients—nitrogen, phosphorus, potassium—once per week. The level of nutrients was measured using Rapitest chemical nutrient testers soil kits. In the end, 596 images of 3024 \times 4032 px size were stored in the dataset: 213 of lacking nitrogen (nitrogen), 168 lacking potassium (potassium), 94 lacking phosphorus (phosphorus), and 121 with normal level of nutrients (normal). Examples of images in the dataset are shown in Figure 1.

3.2.2 Image Pre-processing

In our previous work [13], we proved that contrast enhancement and image resizing improve the performance of the machine learning classifier. In the current work, we adopted the same pre-processing for the images to be consistent with the comparative process.

First, we apply contrast enhancement to the original images emphasizing the color of the leaves using the gamma transformation to the RGB channels [32], as shown in (4), where \(r \) is the input gray level (red, green, or blue intensity values) to the gamma transformation, \(L \) is the maximum intensity value in the channel, \(s \) is the resulting output gray level, and \([a, b]\) is the input range of gray levels to enhance. For all images in the experimentation, the \(\gamma \) value was set to 1 and we used the following input range of gray levels to contrast enhancement: \([0.2 \ast (L - 1), 0.6 \ast (L - 1)]\) for the red channel, \([0.3 \ast (L - 1), 0.7 \ast (L - 1)]\) for the green channel,
3 MATERIALS AND METHODS

Figure 2: Schematic of the vision-based monitoring system for detecting low nutrients in tomato plants.

and $[0, (L - 1)]$ for the blue channel.

$$s(r) = \begin{cases} 0 & ; r < a \\ (L - 1) \left(\frac{r-a}{b-a} \right)^\gamma & ; a \leq r \leq b \\ (L - 1) & ; r > b \end{cases}$$ (4)

Then, we reduce the original images (3024 x 4032 px) to 28 x 28 px size to reduce the computing task in the CNN+AHN model.

3.3 Development of the CNN+AHN Model

The proposed CNN+AHN model consists of a set of convolutional layers that act as the feature extractor, and an AHN as the dense layer (Figure 3). To design this architecture, first, we train and optimize a simple CNN model using a dataset of tomato leaves images with low nutrients labels. Then, we use the feature extraction layers of the CNN as the first part of our model, and we place an AHN in sequence. Later, we train the AHN for the classification task, to finally obtain the proposed CNN+AHN model.

3.3.1 CNN Model Backbone

We propose a CNN as a backbone that receives as input a 28 x 28 px size of an RGB color image. The image inputs into a sequence of three convolutional layers with 8, 16, and 32 filters of 3 x 3 size. Each of these layers follows with a rectified linear unit (ReLU)-based layer and a max-pooling layer that reduces the spatial size of the maps. Lastly, there is a fully connected layer with a softmax layer of 4 units. The output of the CNN is a class label of the low nutrient estimated in the image. The possible classes are: nitrogen, phosphorus, potassium and normal. It is worth noting that this CNN architecture was obtained using a Bayesian optimization method [33] that searched in the following hyper-parameters: the number of convolutional layers (from 1 to 5), the initial learning rate (from 0.001 to 0.01), and the regularization term (from 1×10^{-10} to 1×10^{-2}). The number of filters and the filter sizes of the convolutional layers were fixed.

We used the stochastic gradient descent with momentum (SDGM) algorithm for training, and the optimized hyper-parameters: 3 convolutional layers, 0.005044 as initial learning rate, and regulation term of 1.6792×10^{-10}.

3.3.2 AHN as Dense Layer

In order to develop the CNN+AHN model, after training the CNN, we isolate the first three convolutional layers with their respective ReLU-based and max-pooling layers. Then, we place an AHN in sequence. We use Bayesian optimization to determine the suitable number of molecules (from 1 to 20) in the AHN model, as the only hyper-parameter. The output of the AHN is, then, connected to a softmax layer to perform the classification task. Figure 3 shows the architecture of the proposed CNN+AHN model.

To train the AHN dense layer, we input the images into the CNN and we get the output of the last max-pooling layer. These outputs were used as inputs to the AHN and the same class labels were used as targets. We used the SPE-AHN algorithm to train the AHN with 4 molecules.

3.3.3 Feature Reduction Layer

Literature reports that large number of features in data might reduce the predictability power of the
4 RESULTS AND DISCUSSION

Figure 3: Architecture of the proposed CNN+AHN model. It receives an input RGB image of the tomato leaves with 28 × 28 px resolution. Then, this image goes through the three convolutional-based layers and the AHN dense layer. Lastly, the estimated class is output using a softmax layer.

To minimize the impact of large number of features from the last convolutional layer, we propose to implement a feature reduction layer in the CNN+AHN before the AHN. To do so, we use principal components analysis (PCA) [34] to reduce the number of features. This reduction layer takes the convolutional features as input, then principal components are computed, and lastly a subset of the k first components are selected that explain a given degree, i.e. threshold p, of data variance. For this work, we select a threshold of $p = 97\%$ of explained variance. Lastly, those k components are the inputs of the AHN layer.

3.4 Evaluation

We evaluate the performance of the CNN+AHN classifier with widely used metrics in machine learning [35]: accuracy (5), precision (6), sensitivity (7), specificity (8), and F1-score (9); where TP refers to true positives, TN to true negatives, FP to false positives and FN to false negatives.

$$\text{accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$ \hspace{1cm} (5)

$$\text{precision} = \frac{TP}{TN + FP}$$ \hspace{1cm} (6)

$$\text{sensitivity} = \frac{TP}{TP + FP}$$ \hspace{1cm} (7)

$$\text{specificity} = \frac{TN}{TN + FP}$$ \hspace{1cm} (8)

$$F1 - \text{score} = 2 \times \frac{\text{precision} \times \text{sensitivity}}{\text{precision} + \text{sensitivity}}$$ \hspace{1cm} (9)

From our previous work [13], we determined that the training of models is better with an augmentation of the dataset. In this regard, the current work adopts the same augmentation procedure that consists of 84 images retrieved from the Internet. Those were collected manually by inspection and the level of nutrients were tagged using the information in the description of the web sources. The augmented images were also pre-processed in the same way as the original images.

All the experiments were implemented in Matlab using the Deep Learning Toolbox, and a personal computer Dell with processor Intel Core i7-8850H at 2.6 GHz, six CPU cores, and 16GB in RAM.

4 Results and Discussion

We compare the performance of the CNN+AHN classifier with the CNN model reported in our previous work [13]. Also, we made different configurations to validate the effectiveness of the proposal, to say: the single CNN model (backbone), the CNN+AHN, and the CNN+AHN with a PCA-layer.

For the experiments, we conduct a 5-fold cross-validation approach for each of the models. In Table 1, we report the mean and standard deviation of each model with respect to the performance metrics.

Table 1 shows that the baseline CNN model reported in [13] performs with an accuracy of 86.59 ± 2.34%. It is far from the new results found in this work. For instance, the CNN backbone classifier performs with an accuracy of 93.83 ± 1.72% and the proposed CNN+AHN gets an accuracy of 95.33 ± 0.17% and 95.36 ± 0.23% when no having and having PCA-layer, respectively. This gives an insight that the combined CNN+AHN improves the performance of the single CNN model in all the
4 RESULTS AND DISCUSSION

Table 1: Performance evaluation of the CNN+AHN and the different configurations. Bold numbers represent the best performance in the metric. The representation of numbers is: mean (standard deviation).

Model	Accuracy (%)	F1-score (%)	Precision (%)	Sensitivity (%)	Specificity (%)
baseline CNN [13]	86.59 (2.34)	81.36 (1.87)	81.22 (1.54)	81.94 (2.08)	93.05 (1.07)
single CNN (backbone)	93.83 (1.72)	93.72 (1.64)	93.56 (1.64)	93.92 (1.68)	97.80 (0.65)
CNN+AHN	95.33 (0.17)	95.23 (0.20)	95.43 (0.21)	95.18 (0.26)	98.34 (0.07)
CNN+AHN & PCA-layer	95.36 (0.23)	95.39 (0.22)	95.48 (0.35)	95.39 (0.19)	98.35 (0.08)

Figure 4: Confusion matrix of the best CNN+AHN with PCA-layer classifier (accuracy: 95.57%, F1-score: 95.75%, precision: 95.94%, sensitivity: 95.61%, specificity: 98.40%).

4.1 Discussion

The experimental results show that the proposed CNN+AHN with PCA layer is the best model in terms of all performance metrics evaluated in this work. As noticed, the single optimized CNN classifier found in this work is better than the previous baseline CNN. Also, the optimized CNN classifier is able to transfer the feature extraction layers into the CNN+AHN in which the response is slightly better in all the metrics (mean and standard deviation). However, the CNN+AHN with PCA-layer does not represent a major improvement. A reasoning to choose CNN+AHN with PCA-layer as the best model, in contrast with the CNN+AHN without the PCA-layer, is that the feature reduction impacts positively in the number of learning parameters that has the AHN. In this regard, the AHN associated to the one without the PCA-layer has 28,224 learning parameters while the AHN with PCA-layer only has 5,634, that is a significant reduction.

The advantages of our method are that the CNN+AHN classifier significantly improves the vision-based monitoring system for anticipating the insufficiency of primary nutrients in tomato crops using only images from leaves. Also, it is validated that the CNN+AHN works with different images with no restrictions on how to take the photograph (angle or distance). Some weaknesses of the proposed CNN+AHN are that the dataset is very limited, so a large dataset is required for robust validation. Also, the CNN+AHN was not evaluated for different intensity light. Also, the resizing pre-processing might delete interesting features that were not taken into account in this research. Finally, the CNN+AHN was validated in tomato leave images, thus no other crops are considered so far.

To this end, and to the best of our knowledge, this is the first time that the combination of CNN
5 Conclusions

This work proposed a CNN+AHN classifier to estimate low nutrients –nitrogen, phosphorus or potassium– in tomato plants using an image of their leaves. The method consisted of a hybrid model divided into two parts. The first comprises a set of convolutional layers that act as the feature extraction process. Then, a PCA-layer was used to reduce the number of features that enters to the final layer comprised of an AHN with a softmax function. We optimized the CNN backbone and the AHN separately.

Based on the comparative results, against the baseline CNN from previous work and different architecture configurations of the CNN+AHN, we validated that the CNN+AHN with PCA-layer performs the best in terms of accuracy, F1-score, precision, sensitivity and specificity. Also, the incorporation of the PCA-layer allows us to propose a lighter version (in terms of the learning parameters) of the CNN+AHN.

Currently, we manually photograph the tomato leaves. For future work, we could adopt the drone approach [36] to automatically and systematically photograph the tomato leaves based on the planned paths to extend our research to massive farming lands.

References

[1] Infoagro, “El control de plagas reduce el desperdicio de alimentos,” April 2018.
[2] Organización de las Naciones Unidas para la Alimentación y la Agricultura, “Pérdidas y desperdicios de alimentos en américa latina y el caribe,” April 2018.
[3] Infoagro, “Buenas prácticas en el uso de fertilizantes,” April 2018.
[4] Conoce Hidropónía, “Importancia del cultivado de jitomate en MEXICO,” April 2018.
[5] SAGARPA, “Planeación Agrícola Nacional,” June 2018.
[6] E. Heuvelink, Tomatoes. Netherlands: CABI, 2005.
[7] Infoagro, “El cultivo del tomate (1ª parte),” May 2018.
[8] Infojardin, “Tomate, tomatera, jitomate,” May 2018.
[9] J. B. Jones, Tomato Plant Culture: In the Field, Greenhouse, and Home Garden, Second Edition. Florida: CRC Press, 2007.
[10] Organización de las Naciones Unidas para la Alimentación y la Agricultura, “El Cultivo de Tomate con Buenas Prácticas Agrícolas en la Agricultura Urbana y Periurbana,” April 2018.
[11] Agrologica, “Deficiencias y excesos nutricionales en tomate: síntomas y corrección,” March 2018.
[12] Chanahá, Jaime Andrés Larrea, Efecto de la Fertilización Química y Orgánica en el Tomate de Árbol. Quito: INIAP Archivo Historico, 2003.
[13] C. Cevallos, H. Ponce, E. Moya-Albor, and J. Brieva, “Vision-based analysis on leaves of tomato crops for classifying nutrient deficiency using convolutional neural networks,” in 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, IEEE, 2020.
[14] D. Blancard, *Tomato Diseases: Identification, Biology and Control*. Versailles Cedex: Elsevier, 2009.

[15] J. De Baerdemaeker, “Precision agriculture technology and robotics for good agricultural practices,” *IFAC Proceedings Volumes*, vol. 44, 2016.

[16] E. v. Hemming, J. and Henten, C. Bac, and Y. Edan, “Robotics in protected cultivation,” *IFAC Proceedings Volumes*, vol. 46, 2016.

[17] P. Wan, A. Toudeshki, H. Tan, and R. Ehsani, “A methodology for fresh tomato maturity detection using computer vision,” *Computers and Electronics in Agriculture*, vol. 146, 2018.

[18] N. El-Bendary, E. E. Hariri, A. E. Hassanien, and A. Badr, “Using machine learning techniques for evaluating tomato ripeness,” *Expert Systems with Applications*, vol. 42, 2014.

[19] Megha.P.Arakeri and Lakshmana, “Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry,” *Procedia Computer Science*, vol. 79, 2016.

[20] N. Goel and P. Sehgal, “Fuzzy classification of pre-harvest tomatoes for ripeness estimation – an approach based on automatic rule learning using decision tree,” *Applied Soft Computing*, vol. 36, 2015.

[21] H. Ponce and P. Ponce, “Artificial organic networks,” in *Electronics, Robotics and Automotive Mechanics Conference (CERMA)*, pp. 29–34, IEEE, 2011.

[22] H. Ponce, P. V. de Campos Souza, A. J. Guimarães, and G. González-Mora, “Stochastic parallel extreme artificial hydrocarbon networks: An implementation for fast and robust supervised machine learning in high-dimensional data,” *Engineering Applications of Artificial Intelligence*, vol. 89, p. 103427, 2020.

[23] N. Noguchi and O. Barawid, “Robot farming system using multiple robot tractors in japan agriculture,” *IFAC Proceedings Volume*, vol. 44, 2016.

[24] S. Cubero, F. Albert, J. M. Prats-Moltabán, D. G. Fernández-Pacheco, J. Blasco, and N. Aleixos, “Application for the estimation of the standard citrus colour index (eci) using image processing in mobile devices,” *Biosystems Engineering*, vol. 167, 2017.

[25] L. F. Santos, S. Barbon, N. Valous, and D. Fernandez, “Predicting the ripening of papaya fruit with digital imaging and random,” *Computers and Electronics in Agriculture*, vol. 145, 2018.

[26] K. P. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” *Computers and Electronics in Agriculture*, vol. 145, 2018.

[27] D. Jiang, G. Hu, G. Qi, and N. Mazur, “A fully convolutional neural network-based regression approach for effective chemical composition analysis using near-infrared spectroscopy in cloud,” *Journal of Artificial Intelligence and Technology*, vol. 1, pp. 74–82, 2021.

[28] D. Jiang, G. Qi, G. Hu, N. Mazur, Z. Zhu, and D. Wang, “A residual neural network based method for the classification of tobacco cultivation regions using near-infrared spectroscopy sensors,” *Infrared Physics & Technology*, vol. 111, p. 103494, 2020.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” *Nature*, vol. 521, no. 7553, pp. 436–444, 2015.

[30] J. Hu, Y. Kuang, B. Liao, L. Cao, S. Dong, and P. Li, “A Multichannel 2D Convolutional Neural Network Model for Task-Evoked fMRI Data Classification,” *Computational Intelligence and Neuroscience*, vol. 2019, no. i, 2019.

[31] H. Ponce, P. Ponce, and A. Molina, *Artificial Organic Networks: Artificial Intelligence Based on Carbon Networks*. vol. 521 of Studies in Computational Intelligence. Springer, 2014.

[32] R. C. Gonzalez and R. E. Woods, *Digital Image Processing (3rd Edition)*. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.
REFERENCES

[33] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,” in *Advances in neural information processing systems*, pp. 2951–2959, 2012.

[34] I. Jolliffe, “Principal components as a small number of interpretable variables: some examples,” *Principal Component Analysis*, pp. 63–77, 2002.

[35] Y. Liu, Y. Zhou, S. Wen, and C. Tang, “A strategy on selecting performance metrics for classifier evaluation,” *International Journal of Mobile Computing and Multimedia Communications (IJMCMC)*, vol. 6, no. 4, pp. 20–35, 2014.

[36] M. De La Rosa and Y. Chen, “A machine learning platform for multirotor activity training and recognition,” in *2019 IEEE 14th International Symposium on Autonomous Decentralized System (ISADS)*, pp. 1–8, IEEE, 2019.