DISCRETIZATION OF SPRINGER FIBRES

G. Lusztig

1. Let \tilde{G} be an almost simple simply connected algebraic group over \mathbb{C}, let G be the adjoint group of \tilde{G} and let \mathfrak{g} be the Lie algebra of \tilde{G}. Let B be the variety of Borel subalgebras of \mathfrak{g}. Let $e \in \mathfrak{g}$ be a nilpotent element and let $\zeta : SL_2(\mathbb{C}) \to \tilde{G}$ be a homomorphism of algebraic groups whose differential carries \[
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\] to e. Let $B_e = \{b \in B; e \in b\}$. This variety (known as a Springer fibre) plays a very important role in representation theory. Following [L1] we note that $\lambda : b \mapsto Ad(\zeta(\begin{pmatrix}
\lambda & 0 \\
0 & \lambda^{-1}
\end{pmatrix}))b$ is a well defined \mathbb{C}^\times-action on B_e. Let N_e be the sum of all Betti numbers of B_e. (Recall that the Betti numbers of B_e in odd degrees are zero.) Let $K_{C^\times}(B_e)$ be the K-theory of C^\times-equivariant coherent sheaves on B_e; this is regarded as a module over $\mathbb{Z}[v, v^{-1}]$ (the representation ring of C^\times) in the usual way. Here v is an indeterminate representing the identity homomorphism $C^\times \to C^\times$. The $\mathbb{Z}[v, v^{-1}]$-module $K_{C^\times}(B_e)$ is free of finite rank N_e. (This is proved in [L5, 1.14(i), 1.19], based on results in [DLP].) In [L5, 5.15] the author has introduced a certain finite set B_e^\pm (which we now denote by B_e^\pm) of the set of nonzero elements in $K_{C^\times}(B_e)$. (The definition of B_e^\pm is somewhat analogous to the definition of canonical bases in the theory of quantum groups.) We have $-B_e^\pm = B_e^- \to$ and we denote by B_e the set of orbits of multiplication by $\{1, -1\}$ on B_e^\pm. The set B_e is a discretization (or discrete analogue) of B_e: according to [L5, 5.16], we have conjecturally:

(a) B_e^\pm is a signed basis of the $\mathbb{Z}[v, v^{-1}]$-module $K_{C^\times}(B_e)$; hence $\text{card}(B_e) = N_e$.

Recently, Bezrukavnikov and Mirkovic [BM] have shown that (a) holds.

Let \bar{F} be the centralizer in \tilde{G} of the image of ζ (a reductive group). Let F be the image of \bar{F} in G. The set B_e^\pm carries a natural action of \bar{F} which factors through an action of the finite group $\bar{F} := F/F^0$ (for an algebraic group G we denote by G^0 the identity component of G). For $b \in B_e$ let $\bar{F}_b \subset \bar{F}$ be the stabilizer of b for the \bar{F}-action on B_e.

The set B_e appears in representation theory in at least two ways. It indexes the simple objects in a certain block of unrestricted representations of the analogue of...
g over \mathbf{F}_p, for a large prime p (this has been conjectured in [L4, §14] and proved in [BM]).

A second application of the set \mathcal{B}_e is as follows. Let W' be the affine Weyl group corresponding to the dual of G; let W be the (extended) affine Weyl group corresponding to the dual of G. We have $W' \subset W$. Let $u = \exp(e) \in \tilde{G}$ and let c be the two-sided cell of W associated to the \tilde{G}-conjugacy class of u in [L3, 4.8]. By [L5, 17.1], the \tilde{F}-set \mathcal{B}_e should be the set Y appearing in the conjecture [L3, 10.5] which provides

(b) a bijection between c and the set of indecomposable \tilde{F}-equivariant vector bundles on $Y \times Y$ up to isomorphism.

In the case where $G = \text{PGL}_n(\mathbb{C})$, $n \geq 2$, (b) has been established in [Xi]; for general G a weak form of (b) has been established in [BFO].

Note that the definition of the \tilde{F}-set \mathcal{B}_e is not amenable to computation. In this paper we will give a definition of an \tilde{F}-set Y' which is conjecturally isomorphic to \mathcal{B}_e, and which is amenable to computation. Substituting Y by Y' in the conjecture [L3, 10.5] makes that conjecture more concrete.

2. Assume now that H is an \mathbf{F}_2-vector space with a fixed ordered basis $\{\xi_1, \xi_2, \ldots, \xi_d\}$ where $d \geq 0$. We define a set \mathcal{F}_H of \mathbf{F}_2-subspaces of H by induction on d as follows. When $d = 0$ we have $\mathcal{F}_H = \{0\}$. Assume now that $d \geq 1$. For any $j \in [1, d]$ let H_j be the subspace of H with basis $\{\xi_1, \xi_2, \ldots, \xi_{j-1}, \xi_{j+1}, \ldots, \xi_d\}$. Then \mathcal{F}_H is defined. For any $j \in [2, d]$ let H_j' be the subspace of H with basis $\{\xi_1, \xi_2, \ldots, \xi_{j-2}, \xi_{j-1} + \xi_j, \xi_{j+1}, \ldots, \xi_d\}$. Then \mathcal{F}_H' is defined. Let \mathcal{F}_H be the set of subspaces of H of the form $L + F \xi_j$ where $L \in \mathcal{F}_{H_j}$, $j \in [1, d]$, or of the form L' where $L' \in \mathcal{F}_{H_j'}$, $j \in [2, d]$. This completes the inductive definition of \mathcal{F}_H. For example, if $d \leq 2$, \mathcal{F}_H consists of all \mathbf{F}_2-subspaces of H. If $d = 3$, \mathcal{F}_H consists of all \mathbf{F}_2-subspaces of H except for the subspace $\mathbf{F}_2(\xi_1 + \xi_3)$ and the subspace $\mathbf{F}_2(\xi_1 + \xi_2) + \mathbf{F}_2(\xi_2 + \xi_3)$.

We can find a finite parabolic subgroup W'' of W' and a two-sided cell c'' of W'' such that $c'' \subset c$ (see [L3, 4.8(d)]); moreover, by [L8, 1.5(b2)], we can assume that the finite group $G_{c''}$ associated to c'' in [L2, 3.5] coincides with \tilde{F}. Let \mathcal{F}_c be the set of subgroups of $\tilde{F} = G_{c''}$ attached in [L2, 3.8] to the various left cells of W'' contained in c'' (or rather one such subgroup in each $\tilde{F} = G_{c''}$-conjugacy class).

For any $n \geq 1$ we denote by S_n the symmetric group in n letters $1, 2, \ldots, n$. For $n' \geq 1$ such that $n' < n$ we view $S_{n'}$ as the subgroup of S_n of permutations which keep $n'+1, n'+2, \ldots, n$ fixed.

The group \tilde{F} is known to be either S_n with $n \in \{3, 4, 5\}$ or an \mathbf{F}_2-vector space. If $\tilde{F} = S_3$ (with G not of type G_2) then \mathcal{F}_e consists of the subgroups $\{1\}, S_2, S_3$ of S_3.

If $\tilde{F} = S_3$ (with G of type G_2) then \mathcal{F}_e consists of the subgroups S_2, S_3 of S_3.

If $\tilde{F} = S_4$ then \mathcal{F}_e consists of the subgroups $S_2, S_3, S_4, S_2 \times S_2, D_8$ of S_4. Here $S_2 \times S_2$ is viewed as the subgroup of S_4 of permutations which permute 1,2 and
permute 3, 4; D_8 is viewed as the subgroup of S_4 of permutations which commute with the permutation $1 \mapsto 4 \mapsto 1, 2 \mapsto 3 \mapsto 2$.

If $\tilde{F} = S_5$ then \mathcal{F}_e consists of the subgroups $S_2, S_3, S_4, S_5, S_2 \times S_2, S_2 \times S_3, D_8$ of S_5. Here the subgroups $S_2, S_3, S_4, S_2 \times S_2, D_8$ of S_5 are viewed as subgroups of S_5 via the imbedding $S_4 \subset S_5$; $S_2 \times S_3$ is viewed as the subgroup of S_5 of permutations which permute 1, 2 and permute 3, 4, 5.

If \tilde{F} is an \mathbb{F}_2-vector space H of dimension d then H (in the description \mathcal{G}_e) has a canonical ordered \mathbb{F}_2-basis and we have $\mathcal{F}_e = \mathcal{F}_H$ except in the case where $d = 1$, G is of type E_7 or E_8 and the Springer representation of the Weyl group associated to e has dimension 512 or 4096, in which case $\mathcal{F}_e = \{\{1\}\}$.

It is likely that:

(a) a subgroup of \tilde{F} is the stabilizer in \tilde{F} of some point in \mathcal{B}_ϵ if and only if it is conjugate to a subgroup in \mathcal{F}_e.

3. Let H be a finite group. Let $M(H)$ be the set of all pairs (s, ρ) where $s \in H$ and ρ is an irreducible representation over \mathbb{C} (up to isomorphism) of the centralizer $Z_H(s)$ of s in H; the pairs (s, ρ) are taken modulo H-conjugacy. For any subgroup H' of H and any $s \in H$ we set $(H/H')^s = \{hH' \in H/H'; shH' = hH'\}$. Now $Z_H(s)$ acts on $(H/H')^s$ by left multiplication. This induces a $Z_H(s)$-module structure on the vector space of \mathbb{C}-valued functions on $(H/H')^s$. For any irreducible representation ρ of $Z_H(s)$ we denote by $f_{H'}(s, \rho)$ the multiplicity of ρ in this $Z_H(s)$-module. Thus H' gives rise to a function $f_{H'} : M(H) \to \mathbb{C}$ with values in \mathbb{N}. Note that $f_{H'} \neq 0$; for example, for any $s \in H$ we have $f_{H'}(s, 1) > 0$.

4. We choose a Borel subgroup B of \tilde{F}^0 and a maximal torus T of B. Let $\tilde{F}' = \{g \in \tilde{F} ; gBg^{-1} = B, gTg^{-1} = T\}$. Then $\tilde{F}'^0 = T$ and the obvious map $\tilde{F}'/\tilde{F}'^0 \to \tilde{F}/\tilde{F}^0$ is an isomorphism. Let $\mathcal{B}_e^T = \{b \in \mathcal{B}_e ; \text{Ad}(t)b = b \text{ for all } t \in T\}$. Note that \tilde{F}' acts on \mathcal{B}_e^T by $g : b \mapsto \text{Ad}(g)b$. This action is trivial on T hence it induces an action of $\tilde{F}'/T = \tilde{F}/\tilde{F}^0$ on \mathcal{B}_e^T. This last action must be trivial on the kernel of the obvious surjective map $\tilde{F}/\tilde{F}^0 \to \tilde{F}$ hence it induces an action of \tilde{F} on \mathcal{B}_e^T. Let $s \in \tilde{F}$. Let $\mathcal{B}_e^{T,s}$ be the fixed point set of the action of s on \mathcal{B}_e^T. Note that $Z_{\tilde{F}}(s)$ acts on $\mathcal{B}_e^{T,s}$ as the restriction of the \tilde{F}-action on \mathcal{B}_e^T. Hence for any i there is an induced action of $Z_{\tilde{F}}(s)$ on $H^i(\mathcal{B}_e^{T,s}, \mathbb{C})$. We define a function $\phi : M(\tilde{F}) \to \mathbb{C}$ by

\[\phi(s, \rho) = \sum_i (-1)^i \text{(multiplicity of } \rho \text{ in } Z_{\tilde{F}}(s) \text{-module } H^i(\mathcal{B}_e^{T,s}, \mathbb{C})). \]

We now state the following.

Definition/Conjecture. There are uniquely defined natural numbers $n_{H'}$ (for $H' \in \mathcal{F}_e$ so that $H' \subset \tilde{F}$) such that $\phi = \sum_{H' \in \mathcal{F}_e} n_{H'} f_{H'}$ as functions $M(\tilde{F}) \to \mathbb{C}$. We define a \tilde{F}-set Y' as the disjoint union $\bigsqcup_{H' \in \mathcal{F}_e} Y'_H$, where Y'_H consists on $n_{H'}$ copies of the transitive \tilde{F}-set with isotropy group H'. The \tilde{F}-set Y' is isomorphic to the \tilde{F}-set \mathcal{B}_e.

One can easily check that the functions $f_{H'}$ (for $H' \in \mathcal{F}_e$ so that $H' \subset \tilde{F}$) are linearly independent so that $n_{H'}$ above are unique if they exist.
We note also that the function ϕ is in principle computable by making use of the known algorithms to compute Green functions and the explicit knowledge of the Springer correspondence. It follows that the coefficients $n_{H'}$ are computable.

5. Let J_c be the C-vector space with basis $\{t_z; z \in c\}$. We regard J_c as an associative C-algebra with 1 and with structure constants in N as in [L3, 1.3]. We now reformulate the conjecture in [L3, 10.5]. (Note that the F-set Y' can be regarded as a F'-set via the obvious map $\tilde{F} \to \tilde{F}$.)

Conjecture. There exists a bijection

$$\Pi : c \sim \{ \text{set of irreducible } F'-\text{vector bundles on } Y' \times Y' (\text{up to isomorphism}) \}$$

with the following properties:

(a) The C-linear map $J_c \to C \otimes K_{\tilde{F}}(Y' \times Y')$, $t_z \mapsto \Pi(z)$ is an algebra isomorphism preserving the unit element.

(b) For $z \in c$, $\Pi(z^{-1})$ is the inverse image under $(y'_1, y'_2) \mapsto (y'_2, y'_1)$ of the dual of the vector bundle $\Pi(z)$.

(c) Under Π, the simple $C \otimes K_{\tilde{F}}(Y' \times Y')$-module $E_{s, \rho}$ (see [L3, 10.3]) corresponds to the simple J_c-module $E(u, s, \rho)$ in [L3, 4.9].

Here $K_{\tilde{F}}(Y' \times Y')$ denotes the K-theory of \tilde{F}-equivariant complex vector bundles on $Y' \times Y'$ with the ring structure given by convolution, see [L3, 10.2].

6. For any $m \in Z$ let

$$g_m = \{ x \in g; \text{Ad}(\zeta \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda^{-1} \end{array} \right))x = \lambda^m x \ \forall \lambda \in C^* \}.$$

Then $p := \sum_{m \in \mathbb{N}} g_m$ is the Lie algebra of a parabolic subgroup P of \tilde{G} such that $F \subset P$. Let M be the (finite) set of orbits of P on B (for the conjugation action). For any $\omega \in M$ let $B_{e, \omega} = B_e \cap \omega$. Let $M_e = \{ \omega \in M; B_{e, \omega} \neq 0 \}$. By [DLP, 3.4(d), 3.7(a), 2.2(i)], for $\omega \in M_e$, the variety $B_{e, \omega}$ is a vector bundle over a smooth projective variety. Moreover, F acts on $B_{e, \omega}$ by conjugation and this induces an action of F on the set of connected components of $B_{e, \omega}$ which by [DLP, 2.2(iii)] is transitive. Let E_e be the set of subvarieties X of B_e such that X is a connected component of $B_{e, \omega}$ for some $\omega \in M_e$. Note that each $X \in E_e$ is smooth (in fact a vector bundle over a smooth projective variety). Moreover, F acts naturally on E_e and the set of orbits is in bijection with M_e. For $X \in E_e$ let $F_X \subset F$ be the stabilizer of X in this action.

We now describe a conjectural partition

(a) $B_e = \bigsqcup_{X \in E_e} B_{e, X}$.

Let $KC^+(B_e)$ be the subgroup of $KC^+(B_e)$ generated by $\cup_{n \in \mathbb{Z}_{>0}} v^n B_\pm$.

For $\omega \in M_e$ and $X \in E_e$ such that $X \subset \omega$, let \tilde{X} be the union of all X' where X' runs though the elements of E_e such that $X' \subset \omega'$ where $\omega' \in M_e$ is contained in the closure of ω in B and $\omega' \neq \omega$. Note that \tilde{X} is a closed subvariety of B_e.

stable under the \mathbb{C}^*-action. The inclusion $j_X : \hat{X} \to B_e$ induces a homomorphism $j_X^* : K_{\mathbb{C}^*}(\hat{X}) \to K_{\mathbb{C}^*}(B_e)$. Let $\xi \in B^\pm$. It is likely that there is a unique $X \in \mathcal{E}_e$ of minimum dimension such that

(b) $\xi \in j_X^*(K_{\mathbb{C}^*}(\hat{X})) + K_{\mathbb{C}^*}(B_e)^{>0}$.

(This at least holds in the examples considered in [L6], [L7].) Assuming (b) we see that $\xi \mapsto X$ defines a map $\alpha : B_e \to \mathcal{E}_e$.

Let $\mathcal{B}_e, X = \alpha^{-1}(X)$. This defines the partition (a). From the definitions we see that α is compatible with the \bar{F}-actions on B_e, \mathcal{E}_e. Hence for $b \in B_e$ we have

(c) $\bar{F}_b \subset \bar{F}_{\alpha(b)}$.

Assume for example that G is of type E_8 and e is such that $\bar{F} = S_5$. In this case the subgroups $\{\bar{F}_X ; X \in \mathcal{E}_e\}$ of \bar{F} are exactly the conjugates of the subgroups in F_e (a result of [DLP]); we expect that in this case (c) is an equality.

Assume now that G is of type E_8 and e is of type $E_8(b_6)$ (notation as in [Ca, p.407]). In this case we have $\bar{F} = S_3$ and $\bar{F}_{\alpha(b)}$ is one of the subgroups S_2, S_3 or a cyclic group of order 3 of S_3 (this can be deduced from [DLP, 4.1]); if $\bar{F}_{\alpha(b)}$ is cyclic of order 3, we expect to have $\bar{F}_b = \{1\}$ so that (c) is not an equality.

References

[BFO] R.Bezrukavnikov, M.Finkelberg, V.Ostrik, *On tensor categories attached to cells in affine Weyl groups*, Israel J. Math (2009), 170-207.

[BM] R.Bezrukavnikov, I.Mirkovic, *Representations of semisimple Lie algebras in prime characteristic and noncommutative Springer resolutions*, Ann. Math. 178 (2013), 835-919.

[Ca] R.Carter, *Finite groups of Lie type, conjugacy classes and complex characters*, John Wiley and sons, 1985.

[DLP] C.De Concini, G.Lusztig, C.Procesi, *Homology of the zero set of a nilpotent vector field on a flag manifold*, J.Amer. Math. Soc. 1 (1988), 15-34.

[L1] G.Lusztig, *Some examples of square integrable representations of semisimple p-adic groups*, Trans. Amer. Math. Soc. 227 (1983), 623-653.

[L2] G.Lusztig, *Leading coefficients of character values of Hecke algebras*, Proc. Symp. Pure Math. 47(2) (1987), Amer. Math. Soc., 235-262.

[L3] G.Lusztig, *Cells in affine Weyl groups IV*, J. Fac. Sci. Tokyo U. (IA) 36 (1989), 297-328.

[L4] G.Lusztig, *Bases in equivariant K-theory*, Represent.Th. 2 (1998), 298-369.

[L5] G.Lusztig, *Bases in equivariant K-theory II*, Represent.Th. 3 (1999), 281-353.

[L6] G.Lusztig, *Subregular nilpotent elements and bases in K-theory*, Canad. J.Math. 51 (1999), 1194-1225.

[L7] G.Lusztig, *Notes on affine Hecke algebras*, Iwahori-Hecke algebras and their representation theory, ed. M.W.Baldoni et al., LNM 1804, Springer Verlag, 2002, pp. 71-103.

[L8] G.Lusztig, *Unipotent classes and special Weyl group representations*, J. Alg. 321 (2009), 3418-3449.

[Xi] N.Xi, *The based ring of two-sided cells of affine Weyl groups of type A_{n-1}*, Mem. Amer. Math. Soc., 2002.

Department of Mathematics, M.I.T., Cambridge, MA 02139