Collective regulation by non-coding RNA

J. M. Deutsch*
Department of Physics, University of California, Santa Cruz CA 95064

We study genetic networks that produce many species of non-coding RNA molecules that are present at a moderate density, as typically exists in the cell. The associations of the many species of these RNA are modeled physically, taking into account the equilibrium constants between bound and unbound states. By including the pair-wise binding of the many RNA species, the network becomes highly interconnected and shows different properties than the usual type of genetic network. It shows much more robustness to mutation, and also rapid evolutionary adaptation in an environment that oscillates in time. This provides a possible explanation for the weak evolutionary constraints seen in much of the non-coding RNA that has been studied.

* josh@ucsc.edu
I. INTRODUCTION

Recently there has been a great deal of interest in the function of non-coding RNA molecules (ncRNAs) that were previously thought to be mostly nonfunctional [1–4]. Most mammalian genomic transcripts do not directly code for proteins and only approximately 5% of the bases can be confidently identified as being under evolutionary constraint. Many functional elements appear to have little constraint and several hypotheses have been advanced to explain this [1], but no clear explanation has emerged.

Here we examine the physical constraints on ncRNA based on their high density and the general level of binding between molecules. This leads to the possibility of regulation due to collections of many different sequences of RNA. Each species by itself has only a small effect on function, but taken together as a group, this pool of molecules can “collectively regulate” a network of genes. By having a large pool of species bind to each other and mRNA with different affinities, the unbound RNA will decrease by an amount that depends on the concentrations of all of the other types of RNA, not just a few species. We will demonstrate that this kind of regulation is far more robust against mutations than the standard means for regulating gene expression which involve far fewer interactions. Moreover networks of this type evolving under environments that are oscillatory in time will evolve to a state where the ncRNA binding interactions encode a memory of its past. As a result, when put in a previous environment, the population of networks will quickly adapt to it. This provides an explanation for functional elements that individually appear to have little evolutionary constraint.

II. IS NCRNA HIGHLY INTERACTIVE?

Discussion of hybridization of different RNA molecules is normally in a context where potential interaction between them is assumed to be possible. This presupposes that the concentration of such molecules is sufficient so that interaction between them will occur on a biologically relevant timescale. It is therefore worthwhile understanding (a) how long it takes for two ncRNA molecules to collide and (b) if two such arbitrary ncRNA molecules are likely to show significant hybridization.

The overwhelming majority of transcription taking place in human cells is not associated with protein coding genes, but produces long non-coding RNA. Estimates of total RNA concentration in cells range by an order of magnitude but are typically of order $10^3 ng/\mu l$, which for an RNA molecule of 100 nucleotides (nt) corresponds to an average separation of $l = 33 nm$. We can estimate the collision time scale for a molecule of Nnt to collide with another of the same approximate size. The diffusion coefficient of a 20nt single stranded RNA is approximately $5 \times 10^6 cm^2/s$ [5], and conservatively 100nt is 1/5 of this value, $D \approx 10^{-6} cm^2/s$. This means that that average time to a collision is $t \approx l^2/(2D)(l/R)$. The factor of l/R is the random walk collision probability to an object of average size R [6]. The value of R is approximately 20A [7], giving $t = 10^{-4}s$. Therefore we expect there to be many collisions between RNA molecules on the timescale of seconds, which is still less than the relevant timescale for transcription.

Now we ask what happens if two arbitrary ncRNA collide. Because of the need for specificity in many situations in biology, it would seem likely that such collisions would mostly be inert, with little binding between the molecules. However experimental evidence and theoretical analysis makes this situation far less clear. For example, it is evident from accurate modelling [8, 9] that even randomly sequenced RNA molecules are expected to show a large degree of internal secondary structure. It has been shown that [10, 11] that the free energy of structural RNA sequences is only modestly lower than in random sequences with the same nucleotide frequencies. The potentials that were used in this work, are predominantly attractive even for mismatched base pairing. By forming loops and hairpins, the potential can be further lowered, increasing the binding affinity.

Therefore, we must take seriously the possibility that there are many interactions between arbitrary ncRNA molecules. Clearly there will be a distribution of interaction strengths, were some are tightly hybridized, in the case of well matched sequences, whereas others will only hybridize weakly. Without a clear experimental reason why such interactions are not present for ncRNA, it behooves us to consider their effect. We will now explore the consequences of having many significant interactions between ncRNA.

III. COLLECTIVE INTERACTIONS MODIFY RNA LEVELS

NcRNA has been shown to effect the transcription of RNA by many mechanisms, and therefore a modification of the concentration of unbound ncRNA should affect transcription. We can consider a number of different species of RNA interacting with each other through partial hybridization. We will assume that these interactions are in fact weak, and that one RNA is capable of interacting with many other species, because the RNA are capable of weak binding to different sites along the same molecule.
Let us focus on one species, \(j \), with a total concentration of \(C_j \), some of which, \(\rho_j \), will be completely unbound to other RNAs. Assume there are a total of \(N \) species of all RNA’s. We model this as a set of chemical reactions of the form \(i + j \rightleftharpoons ij \). Writing the of bound pairs \(ij \), we have the equilibrium constant \([12] K_{i,j} = \rho_{ij}/\rho_i\rho_j \). Therefore the total amount of \(j \) bound to some other molecule is

\[
C_j - \rho_j = \sum_i \rho_{ij} = \sum_i K_{i,j} \rho_i \rho_j
\]

and rearranging this we obtain

\[
\rho_j = \frac{C_j}{1 + \sum_i \rho_i K_{i,j}}
\]

Although the model assumes only a collection of bound to unbound reactions, the final result is intuitively reasonable: the amount of unbound RNA decreases with the total amount of other RNA molecules interacting with it, weighted by the binding affinity for each species to the one of interest. We could of course use a more specific and realistic model of this equilibrium, but that would not be useful to the general points that we are making here.

IV. MODELLING GENETIC NETWORKS

The ultimate purpose of regulatory networks is to help in performing biological functions. There will be inputs to it, which ultimately represent external factors, for example, temperature or lactose concentration. Without losing any mathematical generality, these can also be considered to be protein concentrations acting on input nodes of the network. After being processed by the network, the outputs will be the levels of gene products that are biologically relevant, for example heat shock proteins or \(\beta \)-galactosidase. An example of such a network is shown in Fig. 1(a).

To fulfill a useful function, the outputs that are generated will depend on the combination of inputs presented to the network. We can quantify this input-output relation by quantizing the levels to two values, 0 and 1 and regard this as a general digital circuit. The circuit performs the task of mapping \(N_i \) input values, to \(N_o \) output values. For example it might map 1, 0, 1 \rightarrow 1, 0, and 0, 0, 1 \rightarrow 0, 1. The complete behavior of this quantized map is characterized by knowing how all \(2^{N_i} \) inputs map to outputs. The number of such distinct input-output relations grows very rapidly with \(N_i \) and \(N_o \).

To understand the possible role of collective ncRNA effects, we will employ evolutionary algorithms for two reasons. First, to try to understand the role of such collective effects in enhancing an organism’s ability to adapt, through mutation, to a changing environment. Second, we want to design a circuit that gives the correct outputs to the network’s inputs. We start in section IV A by designing networks without ncRNA. Then in section IV B, we show how the ncRNA can be modeled to modify the network architecture to include collective regulatory effects. The effects of the ncRNA on network behavior are then explored.

A. Network architecture without ncRNA

In order to be able to include the molecular interactions discussed above, we use models that are continuous in the concentrations of the constituent components.

We first consider a genetic network in the absence of ncRNA using a model of cis-regulation with two types of regulatory elements, enhancers and silencers. Each gene is regulated by a number of such elements. Together, these control the expression of a gene protein which in turn can act to further regulate other elements of this network.

For enhancement of a gene expression level, the binding of individual enhancer regulatory proteins at concentration \(c \), will change expression by a factor \(l_e(c) \). We assume that \(l_e \) is a nonlinear function of concentration, initially increasing slowly until some threshold and then rising sharply before leveling off. Similarly, a silencer will have the reverse effect, suppressing expression by a factor \(l_s(c) \). In certain cases, these functions have been measured in detail [13]. For \(l_e \) we choose a sigmoidal shape,

\[
l_e(c) = \frac{1}{1 + \exp(-A(e - c_0))}
\]

although many functions with the same asymptotic behavior are expected to behave similarly. Suppression of expression will appear to be the mirror image of this, \(l_s(c) = 1 - l_e(c) \). The final value of the expression level is assumed to
FIG. 1. (a) A cis-genetic network. Input protein concentrations act to regulate intermediate gene levels, which further regulate other genes. Regulatory elements (squares) act upstream of a gene (circle), and these can act to enhance or to silence a gene. After processing through intermediate genes, final output genes expression values can be produced in response to the network’s inputs. (b) The addition of ncRNA to the network. The inputs are on the left, and the outputs are still colored yellow. The DNA coding for the ncRNA is regulated by a combination of enhancement and suppression, similar to the genes in (a). The ncRNA interact with all genes through collective binding as described in section III.

be proportional to the product of all \(m \) such factors, each one of which is either an enhancer or silencer. Every gene has a regulatory module that determines the level of gene expression \(E \),

\[
E = \prod_{i=1}^{m} l_{\alpha_i}(c_i)
\]

(4)

where \(\alpha_i \) can be either an enhancer \(e \), or silencer \(s \), and \(c_i \) is concentration of the specific protein that binds to this element.

This network can be readily modelled numerically. The input levels are fixed, and the gene concentrations are calculated according to Eqs. 3 and 4. This process is iterated until steady state values are reached, or terminated if a limit cycle is detected, or convergence is not reached after a maximum number of iterations (normally set to 20). To prevent limit cycles, we use feed-forward architecture, where the output must feed into a gene to its right in Fig. 1(a).

B. Addition of ncRNA

Although the range of mechanisms and functions of ncRNA is large and still under much active investigation, it is already apparent that it can act in a manner similar to a regulatory gene. NcRNA transcription is known to be regulated by a variety of mechanisms including epigenetic modification and transcription factors [14–16]. ncRNA will
modify transcription of genes and can act as a silencer or an enhancer \cite{17}. Therefore when including the effects of ncRNA, the general architecture of the last section will still remain valid with the reinterpretation that some genes can now be ncRNA whose concentration will affect the expression of other genes. We will call such units “generalized genes”. This is in contrast to a “coding gene”, where the production of a protein, not only RNA, also occurs.

The fact that RNA can take part in regulation means that we should include such generalized genes in order to get a complete description of all of the architectures possible. We will focus on adding in extra elements that do what we termed “collective regulation”. We consider the expression of ncRNA on the right in Fig. 1(b). These ncRNAs play the role of the ensemble of molecules discussed in section III. They will modify the RNA concentrations produced by the generalized genes according to Eq. 2. The presence of this large collection of ncRNA will affect the output concentrations, still shown in yellow.

To quantify these effects, we will consider networks where all the generalized genes are influenced by the ncRNA. Doing this is the best way to illustrate the collective effects that are being proposed, but this simplification is not expected to alter the general phenomenon. Eq. 4 is modified by multiplying it by Eq. 2 that diminishes the expression of a generalized gene due to promiscuous binding with ncRNA.

Therefore the algorithm iterates the following procedure, keeping track of both the total current levels of expression, and the free levels that remains after suppression:

- **Collective suppression.** Given the current level of expression of the generalized genes, calculate how this is suppressed by Eq. 2.

- **Regulation of expression.** Consider each gene’s promoters. Use Eq. 4 to calculate the expression level of each generalized gene, equating the suppressed values calculated in the above step with the c_i’s until constant expression levels are reached, or a limit cycle is detected, as described above in section IV A.

The number of independent rate constants is determined by the physical restriction that $K_{i,j} = K_{j,i}$ and $K_{i,i} = 0$. With N_{nc} types of ncRNA present, and N_c coding genes (excluding inputs), this means there are $(N_{nc})(N_{nc} - 1)/2 + N_{nc}N_c$ couplings of non-coding to non-coding and non-coding to coding elements.

C. Evolutionary Algorithm

The goal for a network is to learn a specific rule, which maps all 2^{N_i} possible inputs to outputs. The network will start off making many errors but will evolve so as to minimize these. We will start with a population of networks N_p and for each one, measure the fraction of mistakes that are made. That is, for all 2^{N_i} inputs we compute the difference between how the network maps the inputs to the outputs, and the specific rule that we want it to achieve. The fitness used to decide how to replicate systems, is almost the same. The outputs of the simulation are analog, with concentrations varying continuously between 0 and 1. The magnitude of the difference between that analog output and the binary output of our goal, is used as a measure of the fitness. The reason that this measure is chosen rather than the number of mistakes, is that information is lost in doing this binning and we should select for networks that are closest to the binary goal.

We randomly mutate each network in the population, changing the connectivity and adding and reducing promoter elements. However we keep the number of generalized genes and ncRNA constant. The number of times a network is replicated or eliminated, depends on the degree to which the mutations decrease the mistakes it makes. This is done through an evolutionary replication algorithm that has been used frequently in many contexts \cite{18}.

FIG. 2. The hybridization of an RNA molecules to a choice of several others. The sequences have been designed so that the regions of complementarity, and therefore binding, occurs in non-overlapping regions. This means that the binding energies can be designed to be nearly independent of each other.
In addition to changing promoter properties, we change the values the binding free energies and hence rate constants, \(K_{i,j} \) for the ncRNA. We are making the assumption that it is possible to choose any set of binding energies that we please by adjusting the RNA sequences appropriately. That is, although the binding energies between any two molecules may affect other interaction strengths, it is always possible to find a set of RNA sequences with the desired binding strengths. The error in this approximation is hard to quantify, but for long RNA molecules it should become possible to find sequences that can hybridize independently, making it possible to choose binding strengths for each one independently. See Fig. 2.

In the following, we restrict the number of promoters, \(m_p \), associated with a gene to \(1 \leq m_p \leq 2 \) and set \(N_p \) to 16. If the number of inputs \(N_i = 3 \), and the number of outputs \(N_o = 2 \), a network can be evolved to correctly learn random rules. This can be accomplished with having \(N_c = 9 \) coding genes (excluding inputs), even in the absence of ncRNA, that is \(N_{nc} = 0 \). This was tried with 7 independent sets of rules and the system succeeded in learning correctly in all cases. This usually is accomplished depending on the random rule, in less than 40000 generations. If \(N_{nc} \) is nonzero, the network is also able to learn the correct rule. However there is no compelling argument why it would be evolutionary advantageous to include ncRNA in a static environment where a fixed rule is being learned. We will see later however, that collective interactions are more robust to mutations in the network. There is however a more clear reason why ncRNA should be useful in a changing environment.

D. Adaptation to changing environments

We can ask what happens if the environment of the organism fluctuates in time, so that the network must periodically re-adapt to changing conditions. The effects of adaptation on a species' fitness have been investigated in relation to host-parasite dynamics and in particular the “Red Queen Hypothesis” [19].

If environmental conditions change, for example, the increase in salinity of the environment, a network can eventually learn to adapt to this new condition. If the conditions then returns to their original state, the network needs to relearn the original set of rules. Organisms that can keep a memory of previous conditions will have an advantage over those with no memory. We can ask if ncRNA helps in re-adapting to previous conditions. Intuitively, because the \(K_{i,j} \)'s give a large number of adjustable parameters, there is a memory contained in these for previous adaptations. In other words, if we train the network to learn rule A, and then change to rule B, the network will still retain some information about rule A in its ncRNA interactions.

To investigate if adding in collective interactions helps in periodic adaptation, two separate rules were used. A random rule was generated, and then a mutation was made so that one of the mappings from one input, e.g. 1, 0, 1 \(\rightarrow \) 1, 0 was altered so that the output differed in one position, e.g. 1, 0, 1 \(\rightarrow \) 1, 1. The rule the network is learning is altered periodically every \(N_p \) generations.

It is not necessarily the case the we can provide the network with the knowledge of the condition. If the condition is, for example, the re-emergence of a predator, it is not obvious how this new condition could be given to the network as an input. Therefore we examine the case where this input is omitted. This means that this problem is no longer equivalent to learning a single but more complex rule. There are now two rules that are contradictory, and the network must evolve quickly to adapt to this periodic change.

Because the two rules are the same for all but one input, initially the population’s evolution should be similar to that with a fixed rule. As the system evolves and makes fewer mistakes, it will get into a regime where it will not be able to match both rules unless it adapts quickly enough.

Even after successful adaptation has taken place, mutations will always cause some individual networks to perform non-optimally. Therefore to obtain a measure for how well the population has adapted we consider their most fit specimens. That is, we consider the minimum number of mistakes made by individuals in the population. Because we are varying the environment between two states, we can see if adaptation has occurred by examining the number of mistakes right before switching. This tells us the fitness in one environment, but to get a measure of fitness for both environments, we consider the the average of this minimum in the current phase and in the last one, which we label \(M \). The network performs perfectly if \(M = 0 \). If it has adapted correctly to only one environment and not the other, then \(M = 1/2 \) instead. However perfect performance can be short lived, so the algorithm will continue to evolve to check if the population found is stable. It checks for stability by only terminating the process if for the last 16 changes in the rules \(M = 0 \).

The simulation was run with the same parameters as above but with 6 coding gene nodes and 6 ncRNA. The rules, as above, were switched every \(N_p = 1000 \) generations. The simulation either terminated due to the above criterion, or it reached a ceiling of \(8 \times 10^9 \) generations. This simulation was tested with 7 statistically independent sets of rules. At the end, the value of \(M \) averaged over these 7 systems was 0.07. In contrast when we perform the above runs with the same conditions but no ncRNA, this average was 0.57 meaning that the systems did not adapt well.

Fig. 3 shows the average number of mistakes made for the whole population learning two rules starting at 60,000
FIG. 3. The average number of mistakes made as a function of generation for a population of 16 gene networks which includes the effects of ncRNA collective regulation. Every 500 generations the environment switches requiring adaptation to different rules. As the system evolves, it the system makes fewer mistakes, but as the environment switches, the number of mistakes goes up. By the end of the run, the population of networks has evolved to quickly adapt to these changes.

FIG. 4. (a) The couplings $K_{i,j}$ between noncoding and coding RNA’s that are found after a system has evolved to quickly switch between different rules. (b) A histogram of the same data.
E. Robustness to changes

Taking the same system as was analyzed and shown in Figs. 3 and 4 we can examine what happens if we randomly delete some of the interactions, so that some of the $K_{i,j}$ are randomly set to zero. With such deletions, the network was tested to see if it still displays the last rule that it had been evolved to reproduce. Altogether there are $6 \times 6 + 6 \times (6 - 1)/2 = 51$ independent $K_{i,j}$. All seven statistically independent systems displayed a considerable degree of robustness. With 25 random deletions for each system, they all still reproduced their rule perfectly. In contrast, for 6 networks that successfully learned one rule, with 7 coding genes and no ncRNAs, a single deletion of a promoter had a significant effect. Only 1 of the 6 networks was still able to correctly reproduce the initial rule. Therefore the system with non-coding RNA can withstand a high degree of mutation compared to a more standard network.

F. Discussion

We have argued that the high concentration of ncRNA in the cell and the high affinity for binding, suggests that it is necessary to take these many interactions into account, rather than a subset of specific ones, as is normally done. If these many interactions are indeed present, then there is a need for a new way of looking at gene regulation. Instead of genes being regulated only by a few specific interactions, they are additionally regulated by a soup of interacting RNA molecules that collectively form a genetic network capable of performing biologically useful functions.

It should be noted however, that this model does not assume that all molecular species bind together at the same time. A given molecule has a probability of pair-wise binding and unbinding to many different species, so that regulation is achieved by affecting the average concentration of free RNA, and does not directly regulate individual molecules.

The model we employed greatly simplifies the extremely complex nature of genetic regulation. We are assuming that any two RNAs will hybridize quite weakly, and in this bound state, they are inert and not capable of performing any biological function, such as being transcribed into a protein. This certainly not true. For example, two long RNA chains can likely bind to a third one. This is not considered. However it is not hard to add in such interactions and it is not expected to qualitatively alter our conclusions. We used a simple model to obtain a concrete mathematical system that could be analyzed in detail. It is expected that a wide class of functional forms, for Eq. 2, will still give qualitatively similar results. In fact, if it is indeed true that such collective regulatory strategies are used, there are likely to be higher body interactions that would have evolved to increase its efficacy. This certainly deserves further study.

There is a lot of mathematical similarity between the ideas presented in here, and in many neural network models. The large number of inputs to a neuron has suggested that neural networks in the brain employ different design principles than in normal digital circuits [20–22]. In these neural network models, computation takes place collectively. For example, despite only one set of interactions between neurons, many patterns can be recalled from a single associative neural network [20, 21]. This is analogous to the ability of a genetic network with collective regulation to easily adapt to different rules. The idea here is that the large number of specific interactions that have evolved between RNA have recorded their evolutionary response to the many separate environmental conditions. This allows species to call up on these collective interactions to quickly adapt.

Also as with neural network models, it is always possible to implement the same function with more conventional approaches. This can be done at the expense of adding many more gates in the case of machine learning, or adding more genes, in the case of genetic networks. The point is that in both cases, there is another way of accomplishing the same task, which is considerably more natural and elegant.

The possibility of collective regulation also means that poorly conserved sequences in the genome do not imply that they have no useful function. As we have seen from the simulations, large changes can be made to the ncRNA involved with collective regulation, and it can still perform a useful biological function. Although the hypothesis presented here is speculative, it appears worthwhile to consider if it could be easily tested experimentally.

[1] The ENCODE Project Consortium, “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project”, Nature 447 799-816 (2007).
[2] P Kapranov, J Cheng, S Dike, et al. “RNA maps reveal new RNA classes and a possible function for pervasive transcription”. Science 316 14848 (2007).
[3] T. R. Mercer, M. E. Dinger and J. S. Mattick “Long non-coding RNAs: insights into functions” Nature Reviews Genetics 10, 155-159 (2009).
[4] The ENCODE Project Consortium, “An integrated encyclopedia of DNA elements in the human genome” Nature 489 57-74 (2012).

[5] I.-C. Yeh and G. Hummer, “Diffusion and Electrophoretic Mobility of Single-Stranded RNA from Molecular Dynamics Simulations” Biophys J. 86 681689 (2004).

[6] H. C. Berg “Random Walks in Biology” (Princeton University Press, Princeton, NJ, 1983).

[7] C. Hyeon, R.I. Dima, D. Thirumalai. “Size, shape, and flexibility of RNA structures.” J Chem Phys. 125 194905/(1-10) (2006).

[8] M. Zuker, P. Stiegler. “Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information” Nucleic Acids Res. 9 133-148 (1981).

[9] D.H. Mathews, J. Sabina, M. Zuker, D.H. Turner, “Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure” J. Mol. Biol. 288 911-940 (1999).

[10] C. Workman and A. Krogh, “No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution” Nucl. Acids Res. 27 4816-4822. (1999).

[11] P. Clote, F. Ferré, E. Kranakis, and D. Krizanc, “Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency.” RNA 11 578-591 (2005).

[12] Reif F “Fundamentals of statistical and thermal physics” McGraw-Hill (1965) Section 8.10.

[13] Y. Setty, A. E. Mayo, M. G. Surette, and U. Alon. “Detailed map of a cis-regulatory input function” Proc. Nat. Acad. (USA) 100 7702-7707 (2003).

[14] A. M. Khalil, M. Guttman, M. Huarte, M. Garbera, A. Rajd, D. R. Moralesa, K. Thomasa, A. Pressera, B. E. Bernstein, A. van Oudenaarden, D. A. Regeva, E. S. Landera and J. L. Rinn “Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression” Proc. Natl. Acad. (USA) 106 11667-72 (2008).

[15] J. Sheikh Mohamed, P. Michael Gaughwin, B. Lim, P. Robson and L. Lipovich, “Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells” RNA 16 324-337 (2010).

[16] M. Guttman, I. Amit, M. Garber, C. French, M. F. Lin, D. Feldser, M. Huarte, O. Zuk, B. W. Carey, J. P. Cassady, M. N. Cabili, R. Jaenisch, T. S. Mikkelsen, T. Jack, N. Hacohen, B. E. Bernstein, M. Kellis, A. Regev, J. L. Rinn, and E. S. Landers, “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals” Nature. Mar 12, 458 223227 (2009).

[17] U.A. Orom, T. Derrien, M. Beringer, K. Guevredy, A. Gardini, G. Bussotti, F. Lai, M. Zyttnicki, C. NotredameC, Q. Huang, R. Guigo, and R. Shiekhattar. “Long Noncoding RNAs with Enhancer-like Function in Human Cells” Cell 143 4658, (2010).

[18] T. Garel, and H. Orland, “Guided replication of random chain: a new monte carlo method.” J. Phys. A, 23 L621-6 (1990).

[19] L. Van Valen, “A New Evolutionary Law”. Evolutionary Theory 1 130 (1973).

[20] W.A. Little and G.L. Shaw, “A Statistical Theory of Short and Long Term Memory I” Behav. Bio., 14, 115-133 (1975).

[21] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proc. Nat. Acad. (USA), 79 25542558. (1982).

[22] J. Hertz, A. Krogh, and Palmer, R.G. “Introduction to the theory of neural computation.” Redwood City, CA: Addison-Wesley (1991).