Supplemental Online Content

Oronce CIA, Miake-Lye IM, Begashaw MM, Booth M, Shrank WH, Shekelle PG. Interventions to address food insecurity among adults in Canada and the US: a systematic review and meta-analysis. JAMA Health Forum. 2021;2(8):e212001. doi:10.1001/jamahealthforum.2021.2001

eTable 1. Cochrane Risk of Bias

eTable 2. Risk of Bias in Non-Randomized Studies of Intervention Tool

eTable 3. Before-After Risk of Bias

eTable 4. Health Care Utilization and Cost Outcomes

eAppendix 1. Search Strategy

eAppendix 2. Excluded Studies

eAppendix 3. Further Description of Methods and Results

This supplemental material has been provided by the authors to give readers additional information about their work.
Author, year	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other sources of bias	
Berkowitz, 2018 25	Low risk	Low risk	High risk	Low risk (Health Eating Index, hypoglycemia)	Low risk	Low risk		
				Low risk (HbA1c)				
Seligman, 2018 26	Low risk	Low risk	High risk	Low risk (HbA1c)	High risk	Low risk		
				High risk (Food security, depressive symptoms)				
Ferrer, 2019 27	Unknown risk	Low risk	High risk	High risk (HbA1c, BMI, Diet assessment)	High risk	Unknown		
Feuerstein-Simon, 2019 28	Low risk	Unknown	High risk	High risk (food insecurity, fruit and vegetable intake)	Low risk	High risk		
Martin, 2013 29	Low risk	Low risk	High risk	High risk (Food insecurity, fruit)	High risk	Unknown		
Study Reference	Status	Risk	Risk	Risk	Risk (Food Security)	Risk	Risk	Notes
-----------------	--------	------	------	------	----------------------	------	------	-------
Gubits, 2018³⁰	Unknown	Low risk	High risk	High risk (Food insecurity, housing stability measures, self-reported health, psychological distress)	High risk	Low risk	Bias arising from limited study arms among locations	
Eicher-Miller, 2009³¹	High risk	High risk	High risk	High risk (Food security)	Low risk	Unknown		
Lohse, 2015³²	Unknown	High risk	High risk	High risk (Food security)	High risk	Unknown	Data analyzed as a pre-post study	
cTable 2. ROBINS-I

Author, Year	Confounding bias	Selection bias	Bias in measurement classification of interventions	Bias due to deviations from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of the reported result
Berkowitz, 2019³³	Low	Low	Low	Low	Low	Low	Low
Gurvey, 2013⁴⁶	Moderate	Low	Low	Low	High	Low	Low
Chatterjee, 2018⁴⁹	Low	Low	Low	Low	High	High	Low
Frongillo, 2010⁴⁷	Low	Low	Low	Low	High	High	Low
Lee, 2011⁴⁸	Low	Low	Low	Low	High	High	Low
Mabli, 2017⁶³	Low	Low	Low	Low	High	High	Low
Andrade, 2019⁵⁰	Low	Low	Low	Low	High	High	Low
Brown, 2019⁵⁶	Low	Low	Low	Unknown	Low	High	Low
Himmelstein, 2019^{,57}	Low	Low	Low	Unknown	Low	High	Low
Ionescu-Ittu, 2015⁵⁸	Low	High	Low	Unknown	Low	High	Low
Li, 2016⁵⁹	Low	Low	Low	Unknown	Low	High	Low
Londhe, 2019⁶⁰	Low	Low	Low	Unknown	Low	High	Moderate
McIntyre, 2016⁶¹	Low	Low	Low	Unknown	Low	Low	Moderate
Schmidt, 2016⁶²	Low	Low	Moderate	Low	High	High	Low
Study	Risk of Bias	Sample Size	Expense of Treatment	Cost-effectiveness	Safety	Mortality	Adverse Events
--------------------------	--------------	-------------	----------------------	-------------------	--------	-----------	----------------
Sonik, 2019	Low	Low	Low	Low	High	Low	
Richardson, 2017	Low	Low	Low	Low	High	Low	
Roncarolo, 2016	Low	Low	Low	Low	High	High	
Phojanakong, 2020	Low	Moderate	Moderate	Low	High	High	Low
eTable 3. Before-After Risk of Bias

Study Reference	Risk	Questions Answered
Cheyne, 2020	High risk	No
Wright, 2015	High risk	Yes
Palar, 2017	High risk	No
Aiyer, 2019	High risk	No
Seligman, 2015	High risk	Yes
Wetherill, 2019	High risk	No
Khan, 2019	High risk	n/a
Wilkinson, 2019	High risk	Yes
Durward, 2019	High risk	No
Cueva, 2018	High risk	Unknown
Carney, 2012	High risk	Yes
Berkowitz, 2018	High risk	Yes
Feinberg, 2018	High risk	Unknown

7. Were the outcome measures prespecified, clearly defined, valid, reliable, and assessed consistently across all study participants?

9. Was the loss to follow-up after baseline 20% or less? Were those lost to follow-up accounted for in the analysis?
| Author, year | Study Design | Population | Intervention | Comparison | Utilization outcome |
|-------------|--------------|------------|--------------|------------|-------------------|
| Palar, 2017 | Before-After | Client of non-profit organization that provides food assistance | “Food=Medicine”, which was designed to provide meals and snack fulfilling 100% of daily caloric intake, tailored to patients with HIV or Diabetes | Pre-intervention | ED visits (at least 1 in prior 3 months)
Pre: 26.9%
Post: 17.3%
(p=0.15)
Hospitalizations (at least 1 in prior 3 months)
Pre: 15.7%
Post: 5.8%
(p=0.11) |
| Gurvey, 2013 | Before-After (control group only in post) | Clients of the program (chronic disease) for 3 months or more and members of a local Medicaid managed care organization | Metropolitan Area Neighborhood Nutrition Alliance of New Jersey, providing 3 nutritionally-balanced meals 3 times a day, 7 days | Comparison group matched for Charlson Comorbidity Index and 8 nutrition-related diagnosis codes | Mean monthly cost of all participants
Intervention: $28268
Comparison: $40906 |
| Intervention | Comparison | | |
|---|---|---|---|
| Costs of Patients with HIV | $16765 | $37287 | (p<0.001) |
| Mean monthly ER visits | Intervention: 0.6 | Comparison: 0.3 | (p<0.001) |
| Mean monthly ER costs | Intervention: $4893 | Comparison: $3700 | (p=not significant) |
| Mean monthly inpatient costs | | | |
| Berkowitz, 2019³³ | Retrospective matched cohort | Aged 18 and older | Medically-tailored meal, chosen by a registered dietician from 1 of 17 dietary tracks; meals delivered to home | Instrumental variable- matched comparison group | Incidence rate ratio for:
Inpatient admission
= 0.51 (95% CI 0.22-0.80) favoring intervention
Nursing facility admission = 0.28,
(95% CI 0.01-0.60) favoring intervention |

Intervention:
$132441
Comparison:
$219639
(p<0.001)
Mean monthly inpatient visits
Intervention: 0.2
Comparison: 0.4
(p<0.001)
Feinberg, 2018 45	Before-After	Adults 18 and older in Geisinger Health System Type 2 diabetes with HbA1C ≥ 8%	Grocery box intended to provide ten meals in one week	Pre-intervention	Mean annual costs
					Pre: $240,000
					Post: $48,000

Feinberg, 2018 45	Before-After	Adults 18 and older in Geisinger Health System Type 2 diabetes with HbA1C ≥ 8%	Grocery box intended to provide ten meals in one week	Pre-intervention	Mean annual costs
					Pre: $240,000
					Post: $48,000
eAppendix 1. Search Strategy

DATABASE SEARCHED & TIME PERIOD COVERED:

Academic Search Complete – From 2000 to January 23, 2020

SEARCH STRATEGY: 1923 results

(TI/AB/KW) “food insecurity” OR “food insecure” OR “food access”
AND
(TI/AB/KW) health
OR
(TI/AB/KW) “food supply”
AND
(TI/AB/KW) "vulnerable population" OR "vulnerable populations" OR "vulnerable group" OR "vulnerable groups"
Language: English

DATABASE SEARCHED & TIME PERIOD COVERED:

Cochrane Trials – From 2000 to January 23, 2020

SEARCH STRATEGY: 348 results

(TI/AB/KW) “food insecurity” OR “food insecure” OR “food access”
OR
(TI/AB/KW) “food supply” OR food supply[MESH]
AND
(TI/AB/KW) "vulnerable population" OR "vulnerable populations" OR "vulnerable group" OR "vulnerable groups" OR vulnerable population[MESH]
Language: English
DATABASE SEARCHED & TIME PERIOD COVERED:

PubMed – From 2000 to January 23, 2020 (new interface)

SEARCH STRATEGY: 4282 results

"food insecurity"[Title/Abstract] OR "food access"[Title/Abstract] OR "food insecure"[Title/Abstract]

OR

(food supply[MeSH Terms]) OR ("food supply"[Title/Abstract])) AND ((vulnerable population[MeSH Terms]) OR ("vulnerable population"[Title/Abstract] OR "vulnerable populations"[Title/Abstract] OR "vulnerable group"[Title/Abstract] OR "vulnerable groups"[Title/Abstract]))

Language: English

SIREN SEARCH, 12/10/19

DATABASE SEARCHED & TIME PERIOD COVERED:

SIREN – All entries to December 10, 2019, repeated on May 17, 2021 after reviewer suggestions

SEARCH STRATEGY: 36 results (up to 12/10/19), 66 results (up to 5/17/21)

“Food/Hunger” categorization (first search)
“Food/Hunger,” “Economic Security,” and “Health or Health Behavior” categorization (second search)

Language: English

Google search of gray literature after reviewer suggestions

SEARCH STRATEGY: 250 results

(first 50 results of search terms below “food insecurity interventions,” “evidence-based interventions for food insecurity,” “Language: English

© 2021 Oronce CIA, et al. JAMA Health Forum.
eAppendix 2. Citations for Excluded Studies

1. Abeykoon, A.H., R. Engler-Stringer, and N. Muhajarine, Health-related outcomes of new grocery store interventions: a systematic review. Public Health Nutr, 2017. 20(12): p. 2236-2248.

2. Allen, L., et al., Impact of the Social Cafe Meals program: a qualitative investigation. Aust J Prim Health, 2014. 20(1): p. 79-84.

3. An, R., et al., A systematic review of food pantry-based interventions in the USA. Public Health Nutr, 2019. 22(9): p. 1704-1716.

4. Association, A.H. Boston medical center makes healthy food part of patients' medical care. 2017; Available from: https://www.aha.org/news/headline/2017-10-12-bostonmedical-center-makes-healthy-food-part-patients-medical-care.

5. Bambra, C., et al., Tackling the wider social determinants of health and health inequalities: evidence from systematic reviews. Journal of epidemiology and community health, 2010. 64(4): p. 284-291.

6. Barnard, L.S., et al., Material need support interventions for diabetes prevention and control: a systematic review. Curr Diab Rep, 2015. 15(2): p. 574.

7. Bazerghi, C., F.H. McKay, and M. Dunn, The Role of Food Banks in Addressing Food Insecurity: A Systematic Review. J Community Health, 2016. 41(4): p. 732-40.

8. Berkowitz, S.A., et al., Medically tailored meal delivery for diabetes patients with food insecurity: a randomized clinical trial. Journal of general internal medicine, 2017. 32(2): p. S248-.

9. Berkowitz, S.A., et al., Addressing Unmet Basic Resource Needs as Part of Chronic Cardiometabolic Disease Management. JAMA Intern Med, 2017. 177(2): p. 244-252.

10. Berkowitz, S.A., et al., Health Center-Based Community-Supported Agriculture: An
11. Berkowitz, S.A., et al., Meal Delivery Programs Reduce The Use Of Costly Health Care In Dually Eligible Medicare And Medicaid Beneficiaries. Health Aff (Millwood), 2018. 37(4): p. 535-542.

12. Booth, S., et al., 'Sustainable' Rather Than 'Subsistence' Food Assistance Solutions to Food Insecurity: South Australian Recipients' Perspectives on Traditional and Social Enterprise Models. Int J Environ Res Public Health, 2018. 15(10).

13. Bruce, J.S., et al., Lunch at the library: examination of a community-based approach to addressing summer food insecurity. Public Health Nutr, 2017. 20(9): p. 1640-1649.

14. Buitron de la Vega, P., et al., Implementing an EHR-based Screening and Referral System to Address Social Determinants of Health in Primary Care. Med Care, 2019. 57 Suppl 6 Suppl 2: p. S133-s139.

15. Campbell, A.D., et al., Does Participation in Home-Delivered Meals Programs Improve Outcomes for Older Adults? Results of a Systematic Review. J Nutr Gerontol Geriatr, 2015. 34(2): p. 124-67.

16. Carrillo-Alvarez, E., et al., Food Reference Budgets as a Potential Policy Tool to Address Food Insecurity: Lessons Learned from a Pilot Study in 26 European Countries. Int J Environ Res Public Health, 2018. 16(1).

17. Clark, A., D. Walker, and A. Headings, Addressing Food Insecurity In Clinical Care: Lessons From The Mid-Ohio Farmacy Experience, in Health Affairs Blog. 2020: Health Affairs.

18. Cohen, D., Achieving food security in vulnerable populations. Bmj, 2005. 331(7519): p. 775-7.

19. Coleman, P., et al., Status report - FoodReach Toronto: lowering food costs for social

© 2021 Oronce CIA, et al. JAMA Health Forum.
agencies and community groups. Health Promot Chronic Dis Prev Can, 2018. 38(1): p. 23-28.

20. Coughlin, S.S., et al., Putting Action into Population Health Science: Primary Care Interventions to Address Social Determinants of Health. Journal of environment and health sciences, 2019. 5(2): p. 59-62.

21. Crawford, S. and L. Kalina, Building food security through health promotion: community kitchens. Journal of the Canadian Dietetic Association, 1997.

22. Cutts, D. and J. Cook, Screening for Food Insecurity: Short-Term Alleviation and Long-Term Prevention. Am J Public Health, 2017. 107(11): p. 1699-1700.

23. Dailey, A.B., et al., Healthy options: a community-based program to address food insecurity. J Prev Interv Community, 2015. 43(2): p. 83-94.

24. De Marchis, E.H., et al., Interventions Addressing Food Insecurity in Health Care Settings: A Systematic Review. Annals of family medicine, 2019. 17(5): p. 436-447.

25. de Pee, S., et al., The enabling effect of food assistance in improving adherence and/or treatment completion for antiretroviral therapy and tuberculosis treatment: a literature review. AIDS Behav, 2014. 18 Suppl 5: p. S531-41.

26. Deschner, M.A., Reducing food insecurity and improving health with a basic income guarantee. Cmaj, 2018. 190(26): p. E804.

27. Durão, S., et al., Assessing the completeness and comparability of outcomes in systematic reviews addressing food security: protocol for a methodological study. Systematic reviews, 2020. 9(1): p. 9-9.

28. Edge, S. and S.B. Meyer, Pursuing dignified food security through novel collaborative governance initiatives: Perceived benefits, tensions and lessons learned. Soc Sci Med, 2019. 232: p. 77-85.
29. Edwards, D.L., et al., Home-delivered meals benefit the diabetic elderly. J Am Diet Assoc, 1993. 93(5): p. 585-7.

30. Fineberg, A., et al., How Geisinger Treats Diabetes by Giving Away Free, Healthy Food. 2017, Harvard Business Review.

31. Fleischhacker, S., C.A. Parks, and A.L. Yaroch, Addressing food insecurity in the United States: the role of policy, systems changes, and environmental supports. Translational behavioral medicine, 2019. 9(5): p. 827-836.

32. Fleming, M.D., et al., Caring for "Super-utilizers": Neoliberal Social Assistance in the Safety-net. Med Anthropol Q, 2019. 33(2): p. 173-190.

33. Forbes, J.M., et al., "Prevention Produce": Integrating Medical Student Mentorship into a Fruit and Vegetable Prescription Program for At-Risk Patients. Perm J, 2019. 23.

34. Fowler, B.A. and J.N. Giger, The World Health Organization - Community Empowerment Model in Addressing Food Insecurity in Low-Income African-American Women: A Review of the Literature. J Natl Black Nurses Assoc, 2017. 28(1): p. 43-49.

35. Fraze, T., et al., Housing, Transportation, And Food: How ACOs Seek To Improve Population Health By Addressing Nonmedical Needs Of Patients. Health Aff (Millwood), 2016. 35(11): p. 2109-2115.

36. Fraze, T.K., et al., Prevalence of Screening for Food Insecurity, Housing Instability, Utility Needs, Transportation Needs, and Interpersonal Violence by US Physician Practices and Hospitals. JAMA network open, 2019. 2(9): p. e1911514-e1911514.

37. Freudenberg, N., Healthy-food procurement: using the public plate to reduce food insecurity and diet-related diseases. Lancet Diabetes Endocrinol, 2016. 4(5): p. 383-4.

38. Garcia, M.T., et al., The impact of urban gardens on adequate and healthy food: a
systematic review. Public Health Nutr, 2018. 21(2): p. 416-425.

39. Garcia-Silva, B., E. Handler, and J. Wolfe, A Public-Private Partnership to Mitigate Food Insecurity and Food Waste in Orange County, California. Am J Public Health, 2017. 107(1): p. 105.

40. Gittelsohn, J., et al., Lessons learned from small store programs to increase healthy food access. Am J Health Behav, 2014. 38(2): p. 307-15.

41. Gottlieb, L.M., H. Wing, and N.E. Adler, A Systematic Review of Interventions on Patients' Social and Economic Needs. Am J Prev Med, 2017. 53(5): p. 719-729.

42. Greder, K.A., S. Garasky, and S. Klein, Research to action: A campus-community partnership to address health issues of the food insecure. Journal of Extension, 2007. 45(6): p. 1.

43. Grenier, J. and N. Wynn, A Nurse-Led Intervention to Address Food Insecurity in Chicago. OJIN: The Online Journal of Issues in Nursing, 2018. 23(4).

44. Gualtieri, M.C., et al., Home Delivered Meals to Older Adults: A Critical Review of the Literature. Home Healthc Now, 2018. 36(3): p. 159-168.

45. Gucciardi, E., et al., Emerging practices supporting diabetes self-management among food insecure adults and families: A scoping review. PloS one, 2019. 14(11): p. e0223998-e0223998.

46. Harmsen, M., Health Systems Innovating to Address Food Insecurity: Analysis of Program Implementation, Evaluation, and the Future, in School of Nursing and Health Studies Georgetown University.

47. Health, B.M.o., Evidence Review: Food Security. 2013, Population and Public Health.

48. Hecht, A.A., et al., Manager Perspectives on Implementation of a Farmers' Market Incentive Program in Maryland. J Nutr Educ Behav, 2019.
49. Hood, C., A. Martinez-Donate, and A. Meinen, Promoting healthy food consumption: a review of state-level policies to improve access to fruits and vegetables. Wmj, 2012. 111(6): p. 283-8.

50. Iacovou, M., et al., Social health and nutrition impacts of community kitchens: a systematic review. Public Health Nutr, 2013. 16(3): p. 535-43.

51. Joshi, K., et al., Implementing a Produce Prescription Program for Hypertensive Patients in Safety Net Clinics. Health Promot Pract, 2019. 20(1): p. 94-104.

52. Kalimbira, A., Impact of Food Security Interventions and Nutrition Education on Child Dietary Diversity. 2015: Malawi Institute of Management.

53. Karpyn, A., et al., Policy solutions to the 'grocery gap'. Health Aff (Millwood), 2010. 29(3): p. 473-80.

54. Kersten, H., A. Beck, and M. Klein, Identifying and Addressing Childhood Food Insecurity in Healthcare and Community Settings. 2018: Springer International Publishing.

55. Khanna, S.K., Food Insecurity, ICT, and Food Culture Mismatch. Ecol Food Nutr, 2019. 58(1): p. 1-2.

56. Lindberg, R., et al., The impact of social enterprise on food insecurity - An Australian case study. Health Soc Care Community, 2019. 27(4): p. e355-e366.

57. Lindsay, S., et al., Monetary matched incentives to encourage the purchase of fresh fruits and vegetables at farmers markets in underserved communities. Prev Chronic Dis, 2013. 10: p. E188.

58. Loopstra, R., Interventions to address household food insecurity in high-income countries. Proc Nutr Soc, 2018. 77(3): p. 270-281.

59. Loopstra, R., N. Dachner, and V. Tarasuk, An exploration of the unprecedented decline
in the prevalence of household food insecurity in Newfoundland and Labrador, 2007–2012.

Canadian Public Policy, 2015. 41(3): p. 191-206.

60. Loopstra, R. and V. Tarasuk, Perspectives on community gardens, community kitchens and the Good Food Box program in a community-based sample of low-income families. Can J Public Health, 2013. 104(1): p. e55-9.

61. Lucan, S.C., Local Food Sources to Promote Community Nutrition and Health: Storefront Businesses, Farmers' Markets, and a Case for Mobile Food Vending. J Acad Nutr Diet, 2019. 119(1): p. 39-44.

62. Lundeen, E.A., et al., Clinical-Community Partnerships to Identify Patients With Food Insecurity and Address Food Needs. Prev Chronic Dis, 2017. 14: p. E113.

63. MacLellan, D.L., Contribution of home-delivered meals to the dietary intake of the elderly. Journal of Nutrition for the Elderly, 1997. 16(3): p. 17-32.

64. Madden, J.M., et al., Risk Factors Associated With Food Insecurity in the Medicare Population. JAMA internal medicine, 2019: p. e193900.

65. Marceaux, S., The impact of participation in Meals on Wheels and More (MOWAM) in Austin, TX, on dietary intake and health status. 2012.

66. Marcinkevage, J., Auvinen, A., & Nambuthiri, S., Washington State’s fruit and vegetable prescription program: Improving affordability of healthy foods for low-income patients. Preventing Chronic Disease, 2019. 16(7).

67. Marpadga, S., et al., Challenges and Successes with Food Resource Referrals for Food-Insecure Patients with Diabetes. Perm J, 2019. 23.

68. Martel, M.L., et al., Emergency Department Experience with Novel Electronic Medical Record Order for Referral to Food Resources. West J Emerg Med, 2018. 19(2): p. 232-237.
69. Martin, K., et al., Changing the conversation about hunger: the process of developing Freshplace. Prog Community Health Partnersh, 2012. 6(4): p. 429-34.

70. Martin, K.S., Colantonio, A. G., Picho, K., & Boyle, K. E., Self-efficacy is associated with increased food security in novel food pantry program. SSM-Population Health, 2016. 2: p. 62-67.

71. McKay, F.H. and R. Lindberg, The important role of charity in the welfare system for those who are food insecure. Aust N Z J Public Health, 2019. 43(4): p. 310-312.

72. Miewald, C., D. Holben, and P. Hall, Role of a food box program in fruit and vegetable consumption and food security. Can J Diet Pract Res, 2012. 73(2): p. 59-65.

73. Milligan, K. and M. Stabile, Do child tax benefits affect the well-being of children? Evidence from Canadian child benefit expansions. American Economic Journal: Economic Policy, 2011. 3(3): p. 175-205.

74. Musicus, A.A., et al., Implementation of a Rooftop Farm Integrated With a Teaching Kitchen and Preventive Food Pantry in a Hospital Setting. Am J Public Health, 2019. 109(8): p. 1119-1121.

75. Mykerezi, E. and B. Mills, The impact of food stamp program participation on household food insecurity. American Journal of Agricultural Economics, 2010. 92(5): p. 1379-1391.

76. Nicholas, L.H., Can Food Stamps help to reduce Medicare spending on diabetes? Econ Hum Biol, 2011. 9(1): p. 1-13.

77. O'Dare Wilson, K., Community food environments and healthy food access among older adults: A review of the evidence for the Senior Farmers’ Market Nutrition Program (SFMNP). Soc Work Health Care, 2017. 56(4): p. 227-243.

78. O'Toole, T.P., et al., Tailoring Care to Vulnerable Populations by Incorporating Social
Determinants of Health: the Veterans Health Administration's "Homeless Patient Aligned Care Team" Program. Prev Chronic Dis, 2016. 13: p. E44.

79. Page-Reeves, J., et al., The Evolution of an Innovative Community-Engaged Health Navigator Program to Address Social Determinants of Health. Prog Community Health Partnersh, 2016. 10(4): p. 603-610.

80. Patil, S.P., K. Craven, and K. Kolasa, Food Insecurity: How You Can Help Your Patients. Am Fam Physician, 2018. 98(3): p. 143-145.

81. Poole, M.K., et al., From Nutrition to Public Policy: Improving Healthy Food Access by Enhancing Farm-to-Table Legislation in Louisiana. J Acad Nutr Diet, 2015. 115(6): p. 871-5.

82. Pruitt, Z., et al., Expenditure Reductions Associated with a Social Service Referral Program. Popul Health Manag, 2018. 21(6): p. 469-476.

83. Rabaut, L.J., Medically Tailored Meals as a Prescription for Treatment of Food-Insecure Type 2 Diabetics. Journal of patient-centered research and reviews, 2019. 6(2): p. 179-183.

84. Rediger, K. and D.R.B. Miles, Clinical-Community Partnerships to Reduce Food Insecurity Among High-Need, High-Cost Medicaid Patients. Ann Intern Med, 2018. 169(7): p. 490-491.

85. Regenstein, M., et al., Addressing Social Determinants Of Health Through Medical-Legal Partnerships. Health Aff (Millwood), 2018. 37(3): p. 378-385.

86. Rodrigues, A.M., et al., Home-Based Intervention Program to Reduce Food Insecurity in Elderly Populations Using a TV App: Study Protocol of the Randomized Controlled Trial Saude.Come Senior. JMIR Res Protoc, 2017. 6(3): p. e40.

87. Roncarolo, F., et al., Traditional and alternative community food security interventions in Montreal, Quebec: different practices, different people. J Community Health, 2015. 40(2): p.

© 2021 Oronce CIA, et al. JAMA Health Forum.
88. Roncarolo, F., et al., Food capacities and satisfaction in participants in food security community interventions in Montreal, Canada. Health Promot Int, 2016. 31(4): p. 879-887.

89. Rose, D.D., Interventions to reduce household food insecurity: a synthesis of current concepts and approaches for Latin America. Revista de Nutrição, 2008. 21: p. 159s-173s.

90. Sadler, R.C., J.A. Gilliland, and G. Arku, A food retail-based intervention on food security and consumption. Int J Environ Res Public Health, 2013. 10(8): p. 3325-46.

91. Sewald, C.A., E.S. Kuo, and H. Dansky, Boulder Food Rescue: An Innovative Approach to Reducing Food Waste and Increasing Food Security. Am J Prev Med, 2018. 54(5s2): p. S130-s132.

92. Sinnett, S., et al., The USDA Senior Farmers' Market Nutrition Program: inclusion of older adults participating in the home-delivered meals program in northeast Georgia. Journal of Nutrition Education and Behavior, 2009. 41(4): p. S1.

93. Smith, A.M., et al., Implementing an electronic system to screen and actively refer to community based agencies for food insecurity in primary care. Healthcare (Amsterdam, Netherlands), 2019: p. 100385-100385.

94. Smith, C., et al., Providing additional money to food-insecure households and its effect on food expenditure: a randomized controlled trial. Public Health Nutr, 2013. 16(8): p. 1507-15.

95. Smith, S., Malinak, D., Chang, J., Perez, M., Perez, S., Settlecowski, E., Rodriggs, T., Hsu, M., Abrew, A., Aedo, S., Implementation of a food insecurity screening and referral program in student-run free clinics in San Diego, California. Preventive medicine reports, 2017. 5: p. 134-139.

96. Smith, S., et al., Implementation of a food insecurity screening and referral program in
student-run free clinics in San Diego, California. Prev Med Rep, 2017. 5: p. 134-139.

97. Soba, F.N., Implementation of food insecurity screening in clinical setting. 2014.

98. Stenmark, S.H., et al., Lessons Learned from Implementation of the Food Insecurity Screening and Referral Program at Kaiser Permanente Colorado. Perm J, 2018. 22: p. 18-093.

99. Stluka, S., et al., Voices for food: methodologies for implementing a multi-state community-based intervention in rural, high poverty communities. BMC Public Health, 2018. 18(1): p. 1055.

100. Swavely, D., et al., Complexities of Addressing Food Insecurity in an Urban Population. Popul Health Manag, 2019. 22(4): p. 300-307.

101. Thomas, K.S., U. Akobundu, and D. Dosa, More Than A Meal? A Randomized Control Trial Comparing the Effects of Home-Delivered Meals Programs on Participants' Feelings of Loneliness. J Gerontol B Psychol Sci Soc Sci, 2016. 71(6): p. 1049-1058.

102. To, S., C. Coughenour, and J. Pharr, The Environmental Impact and Formation of Meals from the Pilot Year of a Las Vegas Convention Food Rescue Program. Int J Environ Res Public Health, 2019. 16(10).

103. Trapl, E.S., et al., Dietary Impact of Produce Prescriptions for Patients With Hypertension. Prev Chronic Dis, 2018. 15: p. E138.

104. van den Berg, A., et al., Design and evaluation of a coalition-led obesity initiative to promote healthy eating and physical activity in low-income, ethnically diverse communities: the Go! Austin/Vamos! Austin initiative. Arch Public Health, 2019. 77: p. 25.

105. Walden, O., et al., The provision of weekend home delivered meals by state and a pilot study indicating the need for weekend home delivered meals. J Nutr Elder, 1988. 8(1): p. 31-43.

106. Wetherill, M.S., K.C. White, and H.K. Seligman, Nutrition-Focused Food Banking in the
United States: A Qualitative Study of Healthy Food Distribution Initiatives. J Acad Nutr Diet, 2019.

107. Williams, I.F. and C.E. Smith, Home-delivered meals for the aged and handicapped. J Am Diet Assoc, 1959. 35(2): p. 146-9.

108. Yaroch, A. Addressing food insecurity across the United States: Innovative policy, system, and environment solutions for an age-old problem. in Auckland, New Zealand. 2020. International Society of Behavioral Nutrition and Physical Activity.

109. Yen, S.T., et al., Food Stamp Program participation and food insecurity: an instrumental variables approach. American Journal of Agricultural Economics, 2008. 90(1): p. 117-132.

110. York, B., et al., Farming for Life: Pilot assessment of the impact of medical prescriptions for vegetables on health and food security among Latino adults with type 2 diabetes. Nutrition and health, 2020: p. 260106019898995-260106019898995.

111. Zhu, H. and R. An, Impact of home-delivered meal programs on diet and nutrition among older adults: a review. Nutr Health, 2013. 22(2): p. 89-103.
eAppendix 3. Further Description of Methods and Results

Methods

Study Inclusion and Exclusion Criteria

We included all studies that evaluated a food insecurity intervention and included health outcomes or food insecurity as an outcome measured at the person-level. We defined a food insecurity intervention as a program or policy that either directly addresses food needs or improves the ability to obtain food. We also included studies if investigators explicitly stated that the intervention’s objective was to address participants’ food insecurity or if the study measured food insecurity as a study outcome. Therefore, an intervention could be included if it improved household financial resources, but was not designed to address food insecurity as its primary goal, and the study measured its association with food insecurity. We excluded studies on the Supplemental Nutrition Assistance Program (SNAP) and the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), which are established interventions with a voluminous literature. Because we were most interested in clinically oriented health outcomes, we excluded studies that only reported fruit and vegetable intake as the sole outcome. We rejected publications that employed community-level metrics as well as those that were descriptive narrative studies. As our focus was interventions applicable to the United States, we excluded studies conducted in low- and middle-income countries, in addition to those that took place in Western countries outside of the U.S. and Canada. Some studies in Canada were focused on indigenous populations unique to the country and we excluded these given limited generalizability. Finally, we also excluded studies focusing on children and adolescents, such as school lunch programs, as the focus of the sponsor was adults with food insecurity. While
pediatric food insecurity interventions may also have impact on adults since food insecurity is often measured at the household-level, we sought to focus on interventions that could be widely targeted to adults.

Analysis

As mentioned in the main body of the manuscript, we conducted a random-effects meta-analysis and pooled results of studies in the same intervention category. The random effects meta-analysis takes into account the between-study variation as well as the variation across studies. Prior to conducting the meta-analysis, we performed an exploratory meta-regression to assess the association of 3 variables on outcomes: study design, baseline degree of food insecurity, and intervention type. Bivariate meta-regressions were done controlling separately for each of the three variables. Studies grouped as “miscellaneous studies” were not pooled and were not included in the meta-regressions. Outliers were assessed and removed from all pooled results and meta-regressions. None of the variables examined had statistically significant evidence of a differential association.

Results

Food insecurity interventions included provision of food, monetary assistance, food desert interventions, and a miscellaneous category. The food provision interventions were further categorized as those delivering food to the program participant and those where participants went
to a secondary site to receive the intervention. We expand below on the results of studies evaluating the effectiveness of food provision interventions on reducing food insecurity.

Providing Food Delivered to Home

Medically tailored meals

Among the six studies that provided home delivered food, one was a small randomized trial of medically tailored meals, in which dieticians designed meals to address patients’ nutritional needs based on their medical conditions (e.g. diabetes or HIV). In this pilot randomized cross-over trial, 44 individuals were enrolled to receive either immediate home delivery of medically tailored meals for 12 weeks (through an organization called Community Servings) or delayed delivery and usual care before crossing over to the “on-meals” arm. This study found that 42% of those receiving meals were food insecure versus 62% of those who were not receiving home-delivered medically tailored meals, compared to the baseline food insecurity prevalence of 71-80%.

All Other Kinds of Foods Provided

There were 5 studies comprising home delivery of non-medically tailored food (Table 1). One provided food to families in motel shelters, but found no changes in food insecurity. Four other studies examined the same intervention—home delivered meals under the Older Americans Act Nutrition Program (OAANP) or “Meals on Wheels”. These included Before-After studies from multiple states and a nationally-representative cross-sectional study. The three Before-After studies found that home delivered meals were associated with reduced food insecurity. The cross-sectional study, which used a matched comparison group of Medicare beneficiaries, did not observe a difference in food insecurity.

© 2021 Oronce CIA, et al. *JAMA Health Forum.*
Providing Food at a Secondary Site

Ten studies examined interventions where food was provided at a secondary location and were differentiated by degree of tailoring towards the patients’ comorbidities—medically tailored meals, medically tailored or appropriate food boxes, or other (no further individualization, see Table 1).

Medically tailored Meals

One intervention provided medically tailored meals at a distribution site. Meals provided 100% of daily calorie needs to individuals living with HIV or diabetes. The evaluation used a Before-After without control design and found that those receiving medically tailored meals for a 6-month period experienced a statistically significant increase in food security from 10% to 54%.

Medically tailored groceries (i.e. “diabetic diet” groceries, not individually prescribed)

One RCT and 3 observational studies evaluated medically tailored grocery interventions (Table 1). These interventions targeted populations with common cardiometabolic conditions, including obesity, hypertension, and diabetes. The RCT was conducted across 3 states and included 568 diabetic individuals with an HbA1c of at least 7.5% randomized to control or a bundled intervention of diabetes self-management education, primary care referral, and diabetes-appropriate food boxes provided twice monthly. Food insecurity at the end of the 6-month trial was 60% in the intervention group versus 69% in the control, corresponding to a relative risk reduction of 15% in multivariate analysis (p=0.04). In a Before-After study evaluating a bundle of a diabetes-appropriate food box, patient education, and components of the Diabetes Prevention Program, the intervention was associated with a significant reduction in food insecurity from
44% to 29% (p<0.001) 37. Remaining Before-After studies included providing food boxes aligned with the Dietary Approaches to Stopping Hypertension (DASH) diet and food prescriptions for fruits, vegetables, and pre-approved items that the patient could select 36,39. The latter was associated with a statistically significant decrease in food insecurity from 100% food insecurity to 6% 36.

“Healthy eating” Groceries (i.e. more fruits and vegetables)

Two studies, both RCTs, examined food provision interventions that were not medically tailored but intended to encourage healthy food intake in general 28,29. One RCT evaluated a single site employer-based program of 60 participants 28. Participants received 8 community supported agriculture boxes over 4 months containing vegetables, fruit, eggs, and content to encourage use of the groceries, like recipes and food storage tips. The other RCT examined a multifaceted food provision program implemented in a high poverty area in Connecticut at a local food pantry 29. Participants selected their groceries, received support towards their individual goals of food security and self-sufficiency, and were connected with services to address unmet social needs. Only the first study had a statistically significant effect with an 89% reduction in the odds of food insecurity. The latter study showed a small reduction through 9 months, which was diminished and no longer statistically significant at 12 months (p=0.12).

All Other Kinds of Foods Provided

Three observational studies provided non-medically tailored food to older adults (Table 1). These included two studies that evaluated group meal programs under the OAANP 48,63. Two studies observed a reduction in food insecurity associated with food provision 40,48.