mwr Xer site-specific recombination is hypersensitive to DNA supercoiling

Sonia Trigueros1,2,*, Tung Tran2,3, Nohemy Sorto2, Jason Newmark2,3, Sean D. Colloms4, David J. Sherratt2 and Marcelo E. Tolmasky2,3

1Bionanotechnology IRC Department of Physics, 2Division of Molecular Genetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK, 3Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA and 4Division of Molecular Genetics, Faculty of Biomedical and Life Sciences, University of Glasgow, Bower Building, University Ave, Glasgow G12 8QQ, Scotland, UK

Received October 29, 2008; Revised February 24, 2009; Accepted March 11, 2009

ABSTRACT
The multiresistance plasmid pJHCMW1, first identified in a Klebsiella pneumoniae strain isolated from a neonate with meningitis, includes a Xer recombination site, mwr, with unique characteristics. Efficiency of resolution of mwr-containing plasmid dimers is strongly dependent on the osmotic pressure of the growth medium. An increase in supercoiling density of plasmid DNA was observed as the osmotic pressure of the growth culture decreased. Reporter plasmids containing directly repeated mwr, or the related cer sites were used to test if DNA topological changes were correlated with significant changes in efficiency of Xer recombination. Quantification of Holliday junctions showed that while recombination at cer was efficient at all levels of negative supercoiling, recombination at mwr became markedly less efficient as the level of supercoiling was reduced. These results support a model in which modifications at the level of supercoiling density caused by changes in the osmotic pressure of the culture medium affects resolution of mwr-containing plasmid dimers, a property that separates mwr from other Xer recombination target sites.

INTRODUCTION
Plasmid dimerization by homologous recombination or other processes reduces the number of plasmid molecules in the cell and leads to segregational instability (1,2). In several plasmids, stabilization occurs through Xer site-specific recombination (3). This process also resolves bacterial chromosome dimers allowing proper segregation at cell division and integrates bacteriophage genomes into the cell’s chromosome (4,5). Xer recombination is catalyzed by the heterotetrameric XerCD recombinase complex acting at specific target sites and proceeds by sequential exchange of two pairs of strands via a Holliday junction reaction intermediate (6). Plasmid target sites consist of the core recombination region that includes XerC- and XerD-binding sites separated by a 6–8 bp central region and an adjacent DNA stretch of about 180 bp, known as the accessory sequences (Figure 1A). This region interacts with accessory proteins to form a synaptic complex required for recombination and ensuring that the reaction is exclusively intramolecular (Figure 1A and B) (7–10). Plasmids ColE1 and pJHCMW1 carry highly homologous sites that require the accessory proteins ArgR and PepA (Figure 1A). Xer recombination at plasmid sites is initiated by XerC-catalyzed strand exchange of one pair of strands to form a Holliday junction. In the case of recombination at the sites cer (from plasmid ColE1) and mwr (from plasmid pJHCMW1), the Xer catalyzed process stops at Holliday junction and these intermediates are resolved by Xer-independent cellular processes (Figure 1B) (11–13).

The plasmid pJHCMW1 was first identified in a Klebsiella pneumoniae strain isolated from a neonate with meningitis during a nosocomial infection in the Children’s Hospital of Buenos Aires, Argentina (14,15). This plasmid includes mwr, a Xer recombination target site that has some unique characteristics (16,17). Resolution of dimers harboring this site is inefficient when the Escherichia coli host cells are cultured in standard L broth (containing 0.5% NaCl, osmolality 209 mmol/kg) (17). The low levels of mwr-mediated resolution proved insufficient to stabilize the plasmid (13). However, the levels of resolution are substantially

*To whom correspondence should be addressed. Tel: +44 1865 272269; Fax: +44 1865 272400; Email: s.trigueros1@physics.ox.ac.uk

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
increased in cells cultured in low-osmolarity media (L broth without NaCl added, osmolality 87 mmol/kg) (17). Dimer resolution assays using hybrid sites showed that the mwr core site, probably the central region, and the ArgR-binding site in the accessory sequences are directly involved in the dependence of recombination efficiency on osmolarity changes in the growth medium (17).

DNA supercoiling, a feature of almost all DNA molecules inside the cell, has a direct influence on DNA-associated processes in vivo (18). DNA isolated from E. coli cultured in L broth (0.5% NaCl) has a supercoiling density (σ) of approximately −0.06, indicating that the DNA is underwound (or negatively supercoiled) by ~6 turns for every 100 turns of the DNA helix (19,20). However, the degree of DNA supercoiling is sensitive to environmental stimuli. Local and temporary changes in supercoiling density of plasmids were observed with changes in the cell’s growth environment, such as transitions from aerobic to anaerobic growth (21), modification of the osmotic pressure of growth medium, or growth temperature shift (22–24).

Figure 1. Xer site-specific recombination for cer and mwr sites. (A) Schematic structure of cer and mwr Xer site-specific recombination sites. The sites contain a core recombination region that includes the XerC and XerD-binding sites (11 bp each) separated by a central region (6–8 bp), and a region known as accessory sequences (180 bp) that provide binding sites for ArgR (ARG box) and PepA. (B) Diagram showing the steps of Xer site-specific recombination process for cer and mwr sites. Proteins and features involved are indicated. For clarity, the proteins are shown only in the synaptic complex. Double lines represent core sequences and bold lines represent accessory sequences. It is still unknown if the functional subunit of PepA and ArgR are single or double hexamers. White arrows indicate the points of action of XerC. For clarity, the supercoiling of the molecules is not shown.
In this article, we show that modifications in the plasmid DNA supercoiling density that occur when the cells are cultured in media with different osmolarities correlates with the efficiency of Xer recombination at mwr. At high osmolarity, both the level of negative supercoiling and the recombination efficiency at mwr were low whereas at low osmolarity there was an increase in recombination efficiency together with an increase in negative supercoiling density. In an in vitro experiment, the amount of Holliday Junctions produced by Xer recombination at mwr decreased as the plasmid DNA supercoiling density was decreased. Thus, it seems likely that osmolarity affects the efficiency of recombination at mwr through its effect on DNA supercoiling. Conversely, efficiency of recombination at the highly related cer site was not significantly modified by changes in osmolarity of the growth medium or changes in supercoiling density of the dimer molecule.

MATERIALS AND METHODS

The E. coli strains and plasmids

The E. coli DS941 (AB1157 recF143 lacI lacZM15) (3) was used in dimer resolution assays. The E. coli DS981 (DS941 xerC2::aph) (25) was used to culture cells containing reporter plasmids and isolate dimers of pKS492 and pES. The E. coli JC8679 (a recBC sbcA hyperrecombinogenic strain) (2) was used to generate dimers. Plasmid pBR322 (26) was utilized to determine the effect of osmolarity of the growth medium on plasmid DNA supercoiling. Plasmid pKS492 is pUC18 containing a 280-bp HpaI-TaqI including the cer site (27) and plasmid pES is pUC18 containing an EcoRI-SacI fragment including the pHCMW1 mwr site (17). For supercoiling density analysis and in vitro recombination assays, the reporter plasmids pSDC115 and pSDC203, which include directly repeated copies of cer and mwr, respectively, were used (12,13).

Bacterial growth media and general DNA procedures

Bacteria were cultured in Lennox L broth [1% tryptone, 0.5% yeast extract, 0.5% NaCl (called ‘high osmolarity’ throughout the text)] or medium containing the same concentrations of tryptone and yeast extract with no NaCl added (called ‘low osmolarity’ throughout the text). In the case of solid medium, 2% agar was added. Transformations were carried out as described by Cohen et al. (28). Nucleotide sequencing was performed at the DNA sequencing facility, Department of Biochemistry, University of Oxford. Restriction endonuclease treatments were carried out as recommended by the suppliers. Plasmid DNA preparations and DNA gel extractions were performed with the QIAspin miniprep kit and QIAquick gel extraction kit, respectively (Qiagen).

Agarose gel electrophoresis

One-dimensional agarose gel electrophoresis was performed in 0.7% agarose gels in Tris–Borate–EDTA buffer for 7 h in 10 cm x 12 cm gels or 16–20 h in 20 cm x 20 cm gels at 2 V/cm. To determine supercoiling density, samples were run in the same conditions but in the presence of the intercalator chloroquine at concentration between 0.5–1 μg/ml in different gels. Two dimensional agarose gel electrophoresis was carried out in 0.6% agarose gel in 0.5 × Tris–Borate–EDTA buffer with the addition of 0.6 μg/ml (first dimension) and 3 μg/ml (second dimension) chloroquine. The first dimension (top to bottom) was run for 16 h at 3 V/cm, and the second dimension (left to right) was run for 6 h at 3.3 V/cm. Gels were stained with Ethidium Bromide or Syber Green and visualized and analyzed using Molecular Imager, Pharo FLx plus and Quantity One software (BioRad).

In vivo resolution assay

To prepare dimers, E. coli JC8679 was transformed with plasmid DNA, cultured and used to extract plasmid DNA, which was present as a collection of multimers. Plasmid DNA was electrophoresed in a 0.7% agarose gel and DNA of the correct size to be plasmid dimer was purified from the gels. The extracted DNA samples were used to transform E. coli DS981 and colonies harboring dimer were identified for purification of this form of the plasmid. Resolution of dimers was assayed by transformation of E. coli DS941, plating and plasmid DNA isolation and 0.7% agarose gel electrophoresis as described before (17).

Generation of DNA substrates for in vitro recombination with different supercoiling density

Negative supercoiled DNA obtained from cells grown at low osmolarity were incubated for 30 min at 37°C (50 mM Tris–HCl, 10 mM MgCl2, 100 mM NaCl 1 mM DTT at pH 7.5) in the presence of vaccinia virus type IB topoisomerase (vaccinia TopIB) (0.1 units/μl). Samples were taken at different times during the incubation, stopped by adding 2 mM EDTA, 0.1% SDS and deproteinized using Protease K. The DNA samples were further purified by extraction with phenol followed by ethanol precipitation. The DNA pellets were resuspended in H2O and analyzed by agarose gel electrophoresis.

In vitro recombination assays

XerC, XerD, PepA and ArgR, as well as in vitro recombination assays were purified as described previously (12). Briefly, the reactions contained pSDC203 or pSDC115 DNA, XerC, XerD, PepA and ArgR in a buffer containing 50 mM Tris–HCl, pH 8, 50 mM NaCl, 1.25 mM EDTA, 5 mM spermidine, 1 mM l-arginine, 10% (v/v) glycerol and 25 μg/ml bovine serum albumin. The final volume of reaction was 20 μl. The reactions were carried out for 1 h at 37°C and stopped by extraction with phenol followed by ethanol precipitation. The products were resuspended in H2O, treated with the indicated restriction endonuclease and analyzed by agarose gel electrophoresis.
RESULTS

Modifications in in vivo efficiency of dimer resolution and in plasmid DNA supercoiling with the osmolarity of the culture medium

Xer-mediated resolution of pES (carrying mwr) and pKS492 (carrying cer) plasmid dimers clearly responded differently to changes in osmolarity. The pKS492 dimers were efficiently resolved to monomers in cells grown in both ‘low’ and ‘high’ osmolarity medium. In contrast, pES dimers were resolved efficiently at low osmolarity but poorly at high osmolarity (Figure 2A). The level of resolution of pES at high osmolarity was not enough to confer stability by multimer resolution (13). We showed before that this is a general effect of the concentration of the osmolites in the medium and not a specific inhibition by sodium or chloride ions (17). Analysis of the level of resolution of pES dimers at different NaCl concentrations showed that the most drastic reduction in efficiency of resolution occurred as the NaCl concentration was raised from 0% to 0.5% (Figure 2B). Addition of higher concentrations of NaCl to the medium did not significantly increase the inhibitory effect (Figure 2B).

To determine how osmolarity affects plasmid supercoiling, pBR322-harboring cells were cultured in L broth containing different NaCl concentrations and the topological state of plasmid DNA was analyzed by chloroquine agarose gel electrophoresis. The level of negative supercoiling decreased as the NaCl concentration was raised from 0% to 1% but increased again as the NaCl concentration was raised further (Figure 3A). The increase in negative supercoiling at 1.5% and 2% NaCl relative to the supercoiling at 1% NaCl was confirmed by two-dimensional agarose gel electrophoresis (Figure 3B) (see also Supplementary Figure 1C). These processes could have an effect in the recombination reaction. Therefore, the in vivo dimer resolution experiments were carried out varying the NaCl concentration between 0% and 1% NaCl, conditions in which there were significant changes in plasmid DNA negative supercoiling density while the variations in bacterial cell duplication time were relatively small.

Generation of plasmid molecules with different degrees of supercoiling density

Since a reduction in the levels of negative supercoiling and Xer recombination at mwr are correlated with changes in the NaCl concentration of the growth medium, an attractive possibility is that the reduction in efficiency of recombination at mwr in high-osmolarity medium is caused by the reduction in the level of DNA supercoiling in these conditions. To test this hypothesis, we generated a collection of plasmid DNA molecules in vitro that mimic the effect we observed when cells are cultured at different concentration of NaCl between 0% and 0.5%. For this, highly negatively supercoiled pSDC203 and pSDC115 plasmid DNA extracted from cells cultured in low-osmolarity medium were incubated in the presence of vaccinia TopIB. Incubation of supercoiled molecules in the presence of vaccinia TopIB results in a reduction of negative supercoiling over time (29). Relaxation reactions were stopped at various time points (0, 15, 30, 60, 300 and 600s) and DNA samples were analyzed by one-dimensional agarose gel electrophoresis (Figure 4A). In the absence of chloroquine during the electrophoresis molecules that have lost different levels of negative supercoiling density and fully relaxed DNA run at the...
To resolve DNA molecules with intermediate conformations, the same samples were subjected to a two-dimensional agarose gel electrophoresis (selected samples are shown in Figure 4B), which can resolve from highly negative supercoiled to fully relaxed DNA molecules. The untreated sample shows bands with the electrophoresis mobility of highly negative supercoiled DNA. Incubation for 30 s results in a decrease of the number of molecules with high-supercoiling density and formation of intermediate conformations. After 300 s, the bands corresponding to highly supercoiled DNA are faint while those corresponding to more relaxed intermediates are brighter. A diagram indicating the nature of the different DNA bands is shown to the right of Figure 4B.

In vitro Xer site-specific recombination of plasmid DNA molecules with different degrees of supercoiling

To test the effect of DNA supercoiling on the efficiency of Xer recombination, samples containing plasmid DNA molecules at different levels of supercoiling were used as substrates for in vitro Xer site-specific recombination. Plasmids containing directly repeated cer or mwr sites yield unresolved Holliday junctions as product (11–13). These Holliday junctions can be observed as X-forms after digestion with a restriction enzyme that cleaves same position. To resolve DNA molecules with intermediate conformations, the same samples were subjected to a two-dimensional agarose gel electrophoresis (selected samples are shown in Figure 4B), which can resolve from highly negative supercoiled to fully relaxed DNA molecules. The untreated sample shows bands with the electrophoresis mobility of highly negative supercoiled DNA. Incubation for 30 s results in a decrease of the number of molecules with high-supercoiling density and formation of intermediate conformations. After 300 s, the bands corresponding to highly supercoiled DNA are faint while those corresponding to more relaxed intermediates are brighter. A diagram indicating the nature of the different DNA bands is shown to the right of Figure 4B.
once on either side of each recombination site (Figure 5A). The level of Holliday junction formation on plasmid pSDC203, which contains two directly repeated mwr sites, was strongly dependent on the level of negative supercoiling. Decreasing the level of negative supercoiling reduced the efficiency of the recombination reaction such that there was a large reduction in the level of recombination on pSDC203 that had been relaxed for 60 s, and no detectable recombination on DNA that had been relaxed for 300 or 600 s (Figure 5A and B). In contrast, the level of Holliday junction formation at cer was much less sensitive to the degree of negative supercoiling: pSDC115 relaxed for 300 s recombined nearly as efficiently as pSDC115 with native levels of supercoiling (Figure 5A and B). The only condition that resulted in a significant change in levels of recombination in the case of pSDC115 was when the plasmid DNA was fully relaxed (600 s incubation with topoisomerase) (Figure 5A and B). This result is in keeping with the observations by Colloms et al. (1996) (12) indicating that fully relaxed dimers are not substrates for Xer recombination.

DISCUSSION

Plasmid DNA supercoiling is very sensitive to the osmotic pressure of the culture medium (22,30,31). While the supercoiling state of the molecules when the cells are cultured in L broth containing the standard concentration of 0.5% NaCl has a s-value of –0.06 (19,20), an increase or decrease in the osmotic pressure caused by modifying the NaCl concentrations resulted in an increase in negative supercoiling density of plasmid DNA isolated from cells in exponential phase. The mechanisms by which modifications in osmotic pressure induce variations in

Figure 5. In vitro recombination at cer and mwr sites in plasmids with varying supercoiling densities. (A) Plasmid DNA samples with different degrees of supercoiling obtained by treatment with vaccinia TopIB for 0, 15, 30, 60, 300 and 600 s were incubated for 1 h at 37°C with or without addition of XerC, XerD, ArgR and PepA, digested with and XhoI and Ndel (pSDC203) or EcoRI and Sall (pSDC115) and subjected to 1% agarose gel electrophoresis. The diagrams on top of the gels describe the substrates and products of recombination and indicate the fragments corresponding to bands labeled 1, 2 and HJ. Bands 1 and 2 correspond to fragments generated after restriction enzyme treatment of unrecombined substrates; the bands labeled HJ correspond to the DNA molecule generated by restriction enzyme treatment of the Holliday junctions produced by recombination. (B) Quantification of the Holliday junction bands in the gels shown in (A). The quantification was done averaging the values of two gels from two independent experiments.
supercoiling density on DNA in vivo are largely unknown. Possible causes for these modifications are the variations in replication, transcription, and translation levels known to be affected by changes in the osmotic pressure of the environment (32,33).

The differences in efficiency of Xer recombination at mwr observed when the cells were cultured in medium with different osmotic pressures could be due to the resulting modifications in plasmid DNA supercoiling density. Since these changes in supercoiling density were identical in plasmids containing directly repeated copies of the highly related mwr (pSDC203) and cer (pSDC115) sites, comparison of the levels of in vitro recombination in reporter plasmids that differ only in the directly repeated sites permitted us to determine if Xer recombination at mwr presents a higher degree of dependence on the supercoiling state of the molecule when compared with a well known recombination site like cer. We generated pSDC203 and pSDC115 libraries with different average supercoiling densities and used them as substrates in in vitro recombination assays. Our results showed that plasmid molecules containing directly repeated cer sites recombined in vitro at nearly identical efficiency regardless of level of negative supercoiling. Only when all molecules were fully relaxed pSDC115 did not act as substrate for Xer recombination. In contrast, plasmid molecules containing directly repeated mwr sites were poorer substrates as the level of supercoiling was reduced. These results showed that in spite of being highly related, cer and mwr are significantly different in their dependence on supercoiling density. Since all tested plasmid Xer recombination targets showed no or negligible changes in efficiency at different osmolarities (17), the case of mwr is unique at the present time.

The accessory sequences of mwr include a less than ideal ARG-box and are partly responsible for the low-recombination levels observed when cells are cultured in standard L broth. Weak interaction of the ARG-box with ArgR may interfere with proper formation of the synaptic complex in high-osmolarity conditions (regular L broth). This defect may be compensated by increased levels of negative supercoiling at low osmotic pressure by a number of different mechanisms: (i) an increase in the efficiency of formation of the synaptic complex (by an increase in the rate of the forward reaction or a decrease in the rate of the backward reaction); (ii) an increase in the catalytic XerC-mediated reaction (Holliday junction formation); or (iii) an increase in the efficiency of resolution of the Holliday junction, possibly produced by modifications in the geometry of the Holliday junction brought about by changes in DNA supercoiling density (34) (Figure 1B). The results of the in vitro recombination experiment strongly suggest the increase in efficiency of recombination seen in vivo occurs at the level of formation of Holliday junction, and not at the level of Holliday junction resolution. On the other hand, these results do not permit us to decide between possibilities (i) and (ii) at this point. The increased recombination at mwr at low osmolarity and high-supercoiling density could be brought about by increased stability of the synaptic complex and/or increased efficiency in catalysis by XerC (Figure 1). Formation of the interwrapped synaptic complex necessary for recombination should be favored by increased negative supercoiling, making the former an attractive possibility.

It is of interest that two highly related recombination sites such as mwr and cer exhibit a very different behavior in response to environmental changes. Besides the contribution to the understanding of Xer site-specific recombination, this or related properties of target sites could be taken advantage of to manipulate and control recombination levels in recently developed technologies that involve site-specific recombination as tool. For example, the Cre/loxP recombination system has been used to genetically modify organisms for analysis of gene function in vivo (35). A recent example is the analysis of neuronal network architecture in which site-specific recombination was utilized to create a stochastic choice of expression between three or more fluorescent proteins (36).

SUPPLEMENTARY DATA
Supplementary Data is available at NAR Online.

ACKNOWLEDGEMENTS
We thank Viknesh Sivanathan for his valuable critical comments. We thank Rachel Baker for purifying XerC, XerD and PepA.

FUNDING
National Institutes of Health (Public Health Service grant 2R15AI047115 to M.E.T.; Wellcome Trust (to D.J.S. and S.T.; senior fellowship 57651 to S.D.C.); Bionanotechnology Interdisciplinary Research Collaboration (to John Ryan); LA Basin Minority Health and Health Disparities International Research Training Program (National Center on Minority Health and Health Disparities) (5T37MD001368 to T.T., N.S. and J.N.). Funding for open access charge: National Institutes of Health.

Conflict of interest statement. None declared.

REFERENCES
1. Summers, D.K., Beton, C.W. and Withers, H.L. (1993) Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol. Microbiol., 8, 1031–1038.
2. Summers, D.K. and Sherratt, D.J. (1984) Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell, 36, 1097–1103.
3. Summers, D.K. and Sherratt, D.J. (1988) Resolution of CoIE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site. EMBO J., 7, 851–858.
4. Sherratt, D.J., Soballe, B., Barre, F.X., Filipe, S., Lau, J., Massey, T. and Yates, J. (2004) Recombination and chromosome segregation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, 61–69.
5. Val, M.E., Bourier, M., Campos, J., Sherratt, D., Cornet, F., Mazel, D. and Barre, F.X. (2005) The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol. Cell, 19, 559–566.
6. McCulloch, R., Coggins, L.W., Colloms, S.D. and Sherratt, D.J. (1994) Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo. *EMBO J.*, 13, 1844–1855.

7. Alen, C., Sherratt, D.J. and Colloms, S.D. (1997) Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. *EMBO J.*, 16, 5188–5197.

8. Chen, S.H., Merican, A.F. and Sherratt, D.J. (1997) DNA binding of *Escherichia coli* arginine repressor mutants altered in oligomeric state. *Mol. Microbiol.*, 24, 1143–1156.

9. Rejins, M., Lu, Y., Leach, S. and Colloms, S.D. (2005) Mutagenesis of PepA suggests a new model for the Xer/cef synaptic complex. *Mol. Microbiol.*, 57, 927–941.

10. Guhathakurta, A., Viney, I. and Summers, D. (1996) Accessory proteins impose site selectivity during ColE1 dimer resolution. *Mol. Microbiol.*, 20, 613–620.

11. Arciszewska, L.K., Baker, R.A., Hallet, B. and Sherratt, D.J. (2000) Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution. *J. Mol. Biol.*, 299, 391–403.

12. Colloms, S.D., McCulloch, R., Grant, K., Neilson, L. and Sherratt, D.J. (1996) Xer-mediated site-specific recombination in vitro. *EMBO J.*, 15, 1172–1181.

13. Tolmasky, M.E., Colloms, S., Blakely, G. and Sherratt, D.J. (2000) Stability by mutimer resolution of pHCMW1 is due to the Tn1331 rolase and not to the *Escherichia coli* Xer system. *Microbiology*, 146 (Pt 3), 581–589.

14. Sarno, R., McGillivary, G., Sherratt, D.J., Actis, L.A. and Tolmasky, M.E. (2002) Complete nucleotide sequence of *Klebsiella pneumoniae* multiresistance plasmid pHCMW1. *Antimicrob. Agents Chemother.*, 46, 3422–3427.

15. Wolof, M., Tolmasky, M.E., Roberts, M.C. and Crosa, J.H. (1986) Plasmid-encoded amikacin resistance in multiresistant strains of *Klebsiella pneumoniae* isolated from neonates with meningitis. *Antimicrob. Agents Chemother.*, 29, 315–319.

16. Bui, D., Ramiscal, J., Trigueros, S., Newmark, J.S., Do, A., Sherratt, D.J. and Tolmasky, M.E. (2006) Differences in resolution of mwr-containing plasmid dimers mediated by the *Klebsiella pneumoniae* and *Escherichia coli* XerC recombinases: potential implications in dissemination of antibiotic resistance genes. *J. Bacteriol.*, 188, 2812–2820.

17. Pham, H., Dery, K.J., Sherratt, D.J. and Tolmasky, M.E. (2002) Osmoregulation of dimer resolution at the plasmid pHCMW1 mwr locus by *Escherichia coli* XerCD recombinase. *J. Bacteriol.*, 184, 1607–1616.

18. Bates, A. and Mazwell, A. (2005) *DNA Topology*, 2nd edn. Oxford University Press, Oxford, UK.

19. Bliska, J. and Cozzarelli, N. (1987) Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. *J. Mol. Biol.*, 194, 205–218.

20. Sinden, R., Carlson, J. and Pettijohn, P. (1980) Torsional tension in the DNA double helix measured with trimethylsoralen in living *Escherichia coli* cells: analogous measurements in insects and human cells. *Cell*, 21, 773–783.

21. Dorman, C.J., Barr, G.C., Bhriaian, N.N. and Higgins, C.F. (1988) DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. *J. Bacteriol.*, 170, 2816–2826.

22. Higgins, C.F., Dorman, C.J., Stirling, D.A., Waddell, L., Booth, I.R., May, G. and Bremer, E. (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in *S. typhimurium* and *E. coli*. *Cell*, 52, 569–584.

23. Balk, V.L. and Gralla, J.D. (1987) Changes in the linking number of supercoiled DNA accompany growth transitions in *Escherichia coli*. *J. Bacteriol.*, 169, 4499–4506.

24. Goldstein, E. and Drlica, K. (1984) Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. *Proc. Natl Acad. Sci. USA*, 81, 4046–4050.

25. Colloms, S., Sykora, P., Szatmari, G. and Sherratt, D.J. (1990) Recombination at ColE1 cer requires the *Escherichia coli* xerC gene product, a member of the lambda integrase family of site-specific recombinases. *J. Bacteriol.*, 172, 6973–6980.

26. Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Croa, J.H. and Falkow, S. (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. *Gene*, 2, 95–113.

27. Stirling, C., Szatmari, G., Stewart, G., Smith, M. and Sherratt, D.J. (1988) The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. *EMBO J.*, 7, 4389–4395.

28. Cohen, S., Chang, A. and Hsu, L. (1970) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of *Escherichia coli* by R-factor DNA. *Proc. Natl Acad. Sci. USA*, 69, 2110–2114.

29. Stivers, J.T., Harris, T.K. and Mildvan, A.S. (1997) Vaccinia DNA topoisomerase I: evidence supporting a free rotation mechanism for DNA supercoiling relaxation. *Biochemistry*, 36, 5212–5222.

30. Conter, A. (2003) Plasmid DNA supercoiling and survival in long-term cultures of *Escherichia coli* role of *NutC*? *J. Bacteriol.*, 185, 5324–5327.

31. Conter, A., Menchon, C. and Gutierrez, C. (1997) Role of DNA supercoiling and RpoS sigma factor in the osmotic and growth phase-dependent induction of the gene *osmE* of *Escherichia coli* K-12. *J. Mol. Biol.*, 273, 75–78.

32. Csonka, L.N. and Hanson, A.D. (1991) Prokaryotic osmoregulation: genetics and physiology. *Annu. Rev. Microbiol.*, 45, 569–606.

33. Figueroa, N. and Bossi, L. (1988) Transcription induces gyration of the DNA template in *Escherichia coli*. *Proc. Natl Acad. Sci. USA*, 85, 9416–9420.

34. Mikhailin, A.L., Lushnikov, A.Y. and Lyubchenko, Y.L. (2006) Effect of DNA supercoiling on the geometry of Holliday junctions. *Biochemistry*, 45, 12998–13006.

35. Sauer, B. (1998) Inducible gene targeting in mice using the Cre/lox system. *Methods*, 14, 381–392.