Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by In Situ Transmission Electron Microscopy

Mark J. Meijerink, Krijn P. de Jong* and Jovana Zečević*

Inorganic Chemistry and Catalysis, Debye Institute of Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands

Email: K.P.deJong@uu.nl

Table of Contents

1. Supporting Figures
1) Figure S1. N$_2$ physisorption isotherms and X-ray diffraction patterns of the P25 TiO$_2$ support and the Au/TiO$_2$ catalyst with a unimodal particle size distribution.

2) Figure S2. Schematic overview of the liquid cell used in this work for liquid phase transmission electron microscopy.

3) Figure S3. In situ and ex situ results of the evolution of the particle size distribution of the Au/TiO$_2$ sample with a unimodal particle size distribution in H$_2$O without solutes added, along with representative STEM images.

4) Figure S4. STEM images of the two catalysts before, halfway and after the control experiment of 1 hour continuous scanning in vacuum.

5) Figure S5. STEM images of the P25 TiO$_2$ support without Au before, halfway and after a control experiment of 1 hour continuous scanning in situ in H$_2$O without and with 10 mmol/L NaCl respectively.
6) Figure S6. STEM images of the Au/TiO$_2$ sample with an unimodal particle size distribution before, halfway and after an in situ experiment, comparing 10 mmol/L and 100 mmol/L NaCl dissolved in H$_2$O.

7) Figure S7. Several consecutive frames of an individual particle disappearing during an in situ experiment with the unimodal PSD Au/TiO$_2$ sample in a 10 mmol/L NaCl in H$_2$O solution.

8) Figure S8. Images of in situ heating LP-TEM experiments with the unimodal PSD Au/TiO$_2$ sample in a 10 mmol/L NaCl in H$_2$O solution.

9) Figure S9. Ex situ experiments comparing the evolution of the particle size distributions for the unimodal PSD Au/TiO$_2$ sample over time in 10 mmol/L NaCl dissolved in H$_2$O in contact with air and in contact with pure N$_2$, along with representative STEM images.
10) Figure S10. STEM images of an individual particle of the Au/TiO$_2$ sample with an unimodal particle size distribution not changing in size, before, halfway and after an in situ experiment, in 10 mmol/L NaCl dissolved in H$_2$O.

11) Figure S11. In situ and ex situ results of the evolution of the particle size distribution of the Au/TiO$_2$ sample with a bimodal particle size distribution in H$_2$O without solutes added, along with representative STEM images.

12) Figure S12. Diameter evolution over time of two of the large ~20 nm gold particles during in situ study of bimodal Au/TiO$_2$ in a solution of 10 mmol/L NaCl in H$_2$O.

13) Figure S13. Low magnification STEM images of the area around the scanned region before and after an in situ experiment of the Au/TiO$_2$ sample with an unimodal particle size distribution in 10 mmol/L NaCl dissolved in H$_2$O. In addition, an inset displays the evolution of an area just outside the scanned region.

II. Supporting Table
1) Supporting Table 1. Calculations of equilibrium concentrations of the [AuCl₄]⁻ complex in water for various conditions encountered in this work.

III. Supporting Movie Descriptions

Movie M1 (M1_unimodal_Au_TiO₂_H₂O): The unimodal sample being scanned for 1 hour in H₂O, with only a limited number of particles disappearing and most other particles hardly growing. During the movie, some very dark spots appear, seem to grow to quite large proportions (typically >25 nm) and then disappear quickly. These are likely partially the result of some form of TiO₂ charging from the electron beam and partially from overlapping TiO₂ crystals, but not Au particles since they also appear in the pristine TiO₂ in H₂O and are very rare if NaCl is present in solution. Furthermore, the gold particles are somewhat mobile, moving small distances, more so than in NaCl (see Movie M2). This also suggests that charging of the support might take place when the conductivity of the liquid is insufficient to dissipate the charging, weakening the Au-TiO₂ interactions.

Movie M2 (M2_unimodal_Au_TiO₂_NaCl): The unimodal sample being scanned for 1 hour in 10 mmol/L NaCl in H₂O. As can be seen, more particles disappear (and most do
so rapidly) than in movie M1, while many others grow significantly. The only large dark spots observed are the result of overlapping crystals and Au particles are far less mobile. This movie also illustrates the limited influence of Au size on their sintering, with one of the larger particles disappearing during the experiment.

Movie M3 (M3_bimodal_Au_TiO2_H2O): The bimodal sample being scanned for 1 hour in H$_2$O. Again, large dark spots appearing, growing and disappearing quickly and higher Au particle mobility can be observed, likely for the same reason as discussed above (see description of movie M1). But again, only few Au particles disappear and the other particles show very limited growth.

Movie M4 (M4_bimodal_Au_TiO2_NaCl): The bimodal sample being scanned for 1 hour in 10 mmol/L NaCl in H$_2$O. As with the unimodal sample in movie M2, a significant portion of the particles disappears, but this time growth of the other particles is far more limited. Furthermore, one of the ~20 nm Au particles in the field of view disappears as well. There seem to be a few small dark spots that appear and disappear quickly in this
movie as well (upper left and lower right), which seem to behave the same as the dark spots in the H$_2$O samples and are unlikely to be particles.
Figure S1. Nitrogen physisorption isotherms and X-ray diffraction patterns of P25 TiO$_2$ (a and c respectively) and the Au/TiO$_2$ catalyst with an unimodal particle size distribution (b and d respectively). For the nitrogen physisorption, a significantly finer powder was used for the Au/TiO$_2$ sample, resulting in the higher adsorption at high P/P_0. The BET surface area was very similar for the two samples (45 m2/g).
Figure S2. Schematic overview of a liquid cell for liquid phase transmission electron microscopy.
Figure S3. In situ and ex situ (a and b respectively) comparison of the evolution of the particle size distributions for the Au/TiO$_2$ sample with unimodal particle size distribution in water. A representative scanning transmission electron microscopy image in Bright Field (BF) (a) or High Angle Annular Dark Field (HAADF) (b) mode is shown for three different times, corresponding to the particle size distributions displayed in the graph to the right of the images. For the in situ experiments, each image is taken at the same position. The scale bar in each image corresponds to 50 nm.
Figure S4. HAADF images before, halfway and after the control experiment of 60 minutes of continuous electron beam scanning in vacuum for the unimodal PSD Au/TiO$_2$ catalyst (a) and the bimodal PSD Au/TiO$_2$ catalyst (b). The scale bar in each image corresponds to 50 nm. The samples remained unchanged throughout the scanning.
Figure S5. STEM images before, halfway and after the control experiment of 60 minutes of continuous electron beam scanning of the P25 TiO$_2$ support in H$_2$O (a) and 10 mmol/L NaCl dissolved in H$_2$O (b). The scale bar in each image corresponds to 100 nm. Apart from some minor rotation of the TiO$_2$ particles, the support structure remained unchanged.
Figure S6. STEM images before, halfway and after sintering of the unimodal PSD Au/TiO$_2$ catalyst for 60 minutes in 10 mmol/L NaCl dissolved in H$_2$O (a) and 100 mmol/L NaCl dissolved in H$_2$O (b). The scale bar in each image corresponds to 50 nm.
Figure S7. Consecutive STEM images of an individual particle disappearing during an in situ experiment with the unimodal PSD Au/TiO$_2$ sample in a 10 mmol/L NaCl in H$_2$O solution. The scale bar in each image corresponds to 50 nm.
Figure S8. STEM images of 2 different areas during the heating LP-TEM experiment acquired after every 5 minutes of heating of the unimodal PSD Au/TiO$_2$ sample in a 10 mmol/L NaCl in H$_2$O solution. (a) The first area followed during the heating LP-TEM experiment. Magnified: an example of smaller particles growing more than the particle that was initially the largest in that area. The scale bar in each image corresponds to 50
nm. (b) The second area followed during the heating LP-TEM experiment, with the arrow showing the initially largest particle disappearing after the first 5 minutes. The scale bar corresponds to 100 nm in both images.

Figure S9. Ex situ experiments comparing the evolution of the particle size distributions for the Au/TiO$_2$ sample with an unimodal PSD over time in 10 mmol/L NaCl dissolved in H$_2$O in contact with air (a) or pure N$_2$ (b) over a period of 8 hours. A representative scanning transmission electron microscopy image is shown for three different times,
corresponding to the particle size distributions displayed in the graph to the right of the images. The scale bar in each image corresponds to 50 nm.
Figure S10. STEM images before, halfway and after of an individual particle in the center not changing in size during an in situ experiment with the unimodal PSD Au/TiO$_2$ sample in a 10 mmol/L NaCl in H$_2$O solution. The scale bar in each image corresponds to 50 nm.
Figure S11. In situ and ex situ (a and b respectively) comparison of the evolution of the particle size distributions for the Au/TiO$_2$ sample with bimodal particle size distribution in water. A representative scanning transmission electron microscopy image in Bright Field (BF) (a) or High Angle Annular Dark Field (HAADF) (b) mode is shown for three different times, corresponding to the particle size distributions displayed in the graph to the right of the images. For the in situ experiments, each image is taken at the same position. The scale bar in each image corresponds to 50 nm.
Figure S12. Diameter evolution over time of two large gold particles during in situ study of bimodal Au/TiO$_2$ in a solution of 10 mmol/L NaCl in H$_2$O.
Figure S13. Overview STEM images before and after sintering of the unimodal PSD Au/TiO$_2$ catalyst for 60 minutes in 10 mmol/L NaCl dissolved in H$_2$O, with the inset an area just outside of the irradiated area (the square in the middle of the image after one hour), showing the disappearance and change of a few of the gold particles. The
irradiated area is the area inside the square visible in the center of the image after one hour. The scale bars in the top two images correspond to 200 nm and the scale bars in the bottom two images correspond to 50 nm.

Table S1. Calculations of equilibrium concentrations of the \([\text{AuCl}_4^-]\) complex in water for various concentrations/pressures at 25 °C.

pH	Concentration Cl- (mol/L)	\(\text{O}_2\) partial pressure (bar)	Resulting equilibrium concentration [AuCl\textsubscript{4}-] (mol/L)	
Bulk Au	7	0.01	0.2	9.9E-19
Nanoparticles*	7	0.01	0.2	1.4E-08
Bulk Au	4	0.01	0.2	9.9E-10
Nanoparticles	4	0.01	0.2	1.4E+01**
Bulk Au	7	0.01	0.001	1.9E-20
Nanoparticles	7	0.01	0.001	2.6E-10
Bulk Au	7	0.001	0.2	9.9E-23
7	0.01	0.2	9.9E-19	
Nanoparticles	7	0.1	0.2	9.9E-15
--------------	---	-----	-----	--------
	7	0.001	0.2	1.4E-12
	7	0.01	0.2	1.4E-08
	7	0.1	0.2	1.4E-04

*Considered to have a reduction potential shift of -200 mV

**Not considering solubility limits of the complex