Impact of Tree Litter Identity, Litter Diversity and Habitat Quality on Litter Decomposition Rates in Tropical Moist Evergreen Forest.

Seyoum Getaneh Aydagnehum (seyoumgetaneh.aydagnehum@kuleuven.be)
KU Leuven: Katholieke Universiteit Leuven
https://orcid.org/0000-0002-0594-4380

Olivier Honnay
KU Leuven: Katholieke Universiteit Leuven

Ellen Desie
KU Leuven: Katholieke Universiteit Leuven

Kenny Helsen
KU Leuven: Katholieke Universiteit Leuven

Lisa Couck
KU Leuven: Katholieke Universiteit Leuven

Simon Shibru
Arba Minch University

Bart Muys
KU Leuven: Katholieke Universiteit Leuven

Research

Keywords: Antagonistic effect, Forest type, Functional diversity, Litterbag, Litter mixture, Litter quality, Non_additive effect, Tea bag index

Posted Date: November 23rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1081492/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Attempts to restore degraded highlands by tree planting are common in East Africa. However, up till now, little attention has been given to effects of tree species choice on litter decomposition and nutrient recycling.

Method: In this study, three indigenous and two exotic tree species were selected for a litter decomposition study. The objective was to identify optimal tree species combinations and tree diversity levels for the restoration of degraded land via enhanced litter turnover. Litterbags were installed in June 2019 into potential restoration sites (disturbed natural forest and forest plantation) and compared to intact natural forest. The tested tree leaf litters included five monospecific litters, ten mixtures of three species and one mixture of five species. Standard green and rooibos tea were used for comparison. A total of 1033 litters were retrieved for weight loss analysis after one, three, six, and twelve months of incubation.

Results: The finding indicates a significant effect of both litter quality and litter diversity on litter decomposition. The nitrogen-fixing native tree Millettia ferruginea showed a comparable decomposition rate as the fast decomposing green tea. The exotic conifer Cupressus lusitanica and the native recalcitrant Syzygium guineense have even a lower decomposition rate than the slowly decomposing rooibos tea. A significant correlation was observed between litter mass loss and initial leaf litter chemical composition. Moreover, we found positive non-additive effects for litter mixtures including nutrient-rich and negative non-additive effects for litter mixtures including poor leaf litters respectively.

Conclusion: These findings suggest that both litter quality and litter diversity play an important role in decomposition processes and therefore in the restoration of degraded tropical moist evergreen forest.

1 | Introduction

Although restoring degraded tropical forest land has received some attention in the past (Lamb, 1998; Holl et al., 2000; Lamb et al., 2005), much additional restoration work is needed to achieve the global protection area target (Mappin et al., 2019). So, efforts are still underway to restore tropical forests on human-disturbed lands across the globe (Fagan et al., 2020). In East Africa, Ethiopia has taken an ambitious commitment to restore 22 million ha of degraded land (Kassa, 2018). However, the success of secondary forest development will largely depend on soil fertility (Uriarte et al., 2015).

Tropical forest soils often function with a limited budget of essential nutrients, with the sustainable availability of these scarce resources largely depending on the efficiency of the nutrient recycling process. Undisturbed tropical forest soils can show nutrient recycling rates up to 2 to 5 times faster than grassland soils (Ochoa-Hueso et al., 2019). In tropical forests, plant leaf litter is the major source of nutrients (Xue et al., 2019), supplying more than 70% of the tropical forest nutrient demand (Chapin et al., 2011). This shows both the efficiency and degree of dependency of tropical forest ecosystems on litter decomposition in order to sustain their exceptional biodiversity (Vitousek, 1984; Powers et al., 2009; Krishna and Mohan, 2017). In that regard, litter decomposition is a crucial process to rebuild soil organic matter on degraded tropical forest land and to ensure sustainable availability of nutrients for the recovering secondary forest (Cleveland et al., 2006; Tang et al., 2010). Despite its importance, there is still a limited knowledge on the factors affecting the litter decomposition process in tropical forest ecosystems (Giweta, 2020).

Specifically for the tropical forests of Ethiopia, the majority of previous research on nutrient cycling focused on monospecific litter decomposition (e.g. Demessie et al., 2012; Birhane et al., 2019; Bekele et al., 2020; Negash and Stay, 2021), which may not be sufficient to understand the in situ decomposition patterns of these forests.
(Hättenschwiler et al., 2011; Jacob et al., 2010). Indeed, high diversity of litter types has been shown to enhance litter decomposition rate via positive diversity effects, e.g. by promoting fungal diversity (Mori et al., 2020; Song et al., 2010). Furthermore, overall litter quality and diversity, climatic variation, decomposer community (Desie et al., 2020; He et al., 2019; Song et al., 2019; Pei et al., 2017; Zhang et al., 2008), and the type of ecosystem where the litter is deposited (Ochoa-Hueso et al., 2019; Lu et al., 2017; Mayer, 2008) may have a strong effect on litter decomposition rates. Thus, it is crucial to understand which tree species, and in which composition, can stimulate the nutrient cycling in the Ethiopia Afromontane forest ecosystem, where there is currently active replacement going on of native tree species with exotics for economic purposes. Restoring the forest with species having contrasting leaf litter combinations might help to enhance the decomposition rate of the recently introduced exotic trees through induced functional traits that change antagonistic mechanisms into synergistic. In other words, competitors could become a facilitator of resource acquisition that increases leaf litter quality (Helsen et al., 2018, 2020). Finally, studies that have compared both native and exotic tree leaf litter mixtures with the standardized tea litters (Djukic et al., 2021) in both natural and strongly disturbed forest ecosystems are rare (Cizungu et al., 2014; Peh et al., 2012)

In this study, we compared litter decomposition rates of native tree litter (Croton macrostachyus, Millettia ferruginea, Syzygium guineense), exotic tree litter (Eucalyptus globulus, Cupressus lusitanica) and the standard litter types of the ‘tea bag index’ (Keuskamp et al., 2013) during a one-year incubation period in the Afromontane moist evergreen forests of the Gerese district of SW- Ethiopia. The objectives were fourfold: (1) to measure the impact of species identity on litter decomposition rate, (2) to evaluate the effect of litter diversity on litter decomposition rate, (3) to examine the impact of local habitat quality on litter decomposition rate, and (4) to compare the litter decomposition rates of the indigenous and exotic trees with the standard green and rooibos tea. We hypothesize that (a) litter identity, litter diversity, and habitat quality play a significant role in litter decomposition rate and that (b) litter decomposition can be enhanced by restoring the degraded land with native rather than with exotic tree species.

2 | Methods

2.1 | Study area

The study area is located in the SW of Ethiopia, close to the city of Arba Minch and the town of Gerese. It is geographically located in the range of 37.30 - 37.33° E and 5.92° - 5.95° N at an elevation between 2100 and 2525m above sea level. The area is characterized by year-round rainfall, estimated at 1700mm per year by Friis et al. (2010). Heavy rainfall starts in March and extends up to May. The average monthly minimum and maximum temperature during the cold and warm months are 11°C and 24°C, respectively (EMA, 2018).

The forest in our study area is categorized as Afromontane moist evergreen forest (Friis et al., 2010) and covers an area of 363ha. The forest consists of three different forest habitat types, intact natural forest, disturbed natural forest, and plantation forest. The natural forest is characterized by a closed canopy dominated by old-growth trees and an abundance of smaller sized understory plants. The dominant tree species include Syzygium guineense, Macaranga capensis, Ocotea kenyensis and Ilex mitis. In the disturbed forest, native trees are scattered and mixed with planted exotic Eucalyptus globulus, Cupressus lusitanica and Grevillea robusta trees. This forest is characterized by large canopy gaps and the forest floor is partly covered by pioneer weeds and grasses. The local foresters use the gaps for exotic tree plantation as a restoration measure. As a result, the species composition in the degraded forest changed from natural to semi-natural. The plantation forest resulted from an attempt to protect the natural forest from human disturbance by an exotic tree plantation buffer (Eshetu, 2014; Eshetu and Högberg, 2000). This mature plantation is 46 years old and is mainly composed of Eucalyptus globulus. As it also serves as a source of wood for the local
2.2 | Litter collection and decomposition assessment

Undamaged senescent leaves were collected between February and April 2019 from three indigenous (Croton macrostachyus, Millettia ferruginea and Syzygium guineense) and two exotic (Cupressus lusitanica and Eucalyptus globulus) tree species. The senescent leaves were picked by hand from accessible branches of multiple mother trees of each species that were randomly distributed across the three forest types. Both ecological and socio-economical criteria were used for the species selection. S. guineense is a dominant keystone species in the Gerese highland forest. Both C. macrostachyus and M. ferruginea have been used by local people as a source of medicine, fodder, fish poisoning, timber, and soil fertility. The other two exotic trees are both present in the study area, where they were mainly planted for their economic value. Standard Lipton green (EAN: 87 22700 05552 5) and rooibos teas (EAN: 87 22700 18843 8) were used for decomposition rate comparison with the selected indigenous and exotic tree leaf litters, following the standard ‘tea bag index’ of Keuskamp et al. (2013).

All litter samples were transported to the Arba Minch University botany lab (hereafter AMU) in tagged plastic bags and were dried at 70°C for a minimum of 48 hours. The dried litter was subsequently ground and sieved with a 2 mm and 500 µm mesh size sieve. The 2mm sieve was put on top of the 500µm sieve. Litter that passed the 2mm sieve but was trapped by the 500 µm sieve was used. For each individual leaf litter (3 indigenous and 2 exotic tree species), 2g ground leaf litter was transferred into empty nylon mesh tea bags and sealed with a plastic sealer. In addition, 2g mixture litters of two diversity levels were prepared from the 5 selected species (all ten possible 3-species combinations and the single 5-species combination). In the litter mixtures, all involved species contributed with an equal amount of litter. Together with the Lipton green and rooibos teas, this resulted in a total of 1080 litterbags from the 18 different litter types. Before installation, all litterbags were labeled with aluminum metal sheets indicating litter types, incubation period, and forest type. In each of the three forest types we subsequently selected five random 3m × 3m plots where we installed four litterbags per litter type on June 12 2019, at 30cm intervals. Initial P, K, Ca, Mg, Na, Fe, Cu, Zn and Mn content of the grounded litter of each study species were quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy. Laboratory procedure details are available in Appendix 1.

One litterbag of each litter type was then retrieved after respectively one, three, six, and twelve months. Of the 1080 litterbags, only 1033 were successfully recovered. The other 47 litterbags were damaged by earthworms, termites or root penetration. All retrieved litterbags were transported to AMU for further processing. Adhering soil was manually removed from the litterbags with a test tube brush. The cleaned litterbags were dried for 48 hours at 70°C. After drying, the litterbags were opened and their content was transferred to an aluminum foil cap for weight loss analysis with a 0.01g precision electronic balance.

2.4 | Environmental data collection

In each plot, soil samples were taken from three points at 30 cm depth from the surface, which were merged into a composite sample for further analysis at AMU. The soil samples were air-dried at room temperature for a week and ground with mortar and pestle to pass through a 2.5 mm sieve. Ten grams of the sieved soil sample was used to prepare a 1:2.5 soil/water suspension to measure soil pH and electric conductivity using an HACH HQ40d digital multi-meter. The remaining soil macro- (i.e., P, K, Ca, Na, Mg) and micronutrient (i.e., Cu, Fe, Mn, Zn) analyses were carried out at KU Leuven, Belgium using an ICP-OES (Appendix 1). Other environmental parameters like soil temperature and moisture were measured once per month using a digital soil thermometer and TDR 150 soil moisture meter, respectively. Since soil moisture content was uniform across the three forest types during the study period, it was not used in the final analyses. Location, elevation and aspect were collected for each plot using a Garmin handheld GPS 64S.
2.5 | Data analysis

We first performed a principal component analysis (PCA) on all measured soil variables for all plots, to visualize potential differences in the soil chemical composition of the three forest types. Moreover, we estimated ‘litter quality’ of each litter mixture, prior to the decomposition experiment, as the percentage of evergreen leaves in the mixture (Table 1), since evergreen species are theoretically expected to have lower litter quality than deciduous species (Silva et al., 2015). Thus ‘litter quality’ acts as a predictor variable with five levels (0%, 1/3 = 33%, 2/5 = 40%, 2/3 = 67%, 100%). For example, a litter mixture that contains litter from one evergreen and two deciduous tree species received a ‘litter quality’ of 33%.

Species	Litter type	Deciduousness	P	K	Ca	Mg	Na	Fe	Mn	Zn	Cu
Croton macrostachyus	Native	deciduous	71.2	212.1	383.3	155.8	2.1	8.8	31.0	0.4	0.12
Cupressus lusitanica	Exotic	evergreen	14.2	45.9	316.0	25.7	1.2	9.6	1.6	0.2	0.05
Eucalyptus globulus	Exotic	evergreen	5.2	45.7	209.9	20.5	17.4	1.2	8.1	0.1	0.07
Millettia ferruginea	Native	deciduous	43.8	260.8	136.8	52.8	2.8	2.3	3.5	0.5	0.13
Syzygium guineense	Native	evergreen	12.6	45.6	136.5	59.7	1.7	2.8	10.8	0.2	0.11

Before statistical analysis, the remaining litter mass was log-transformed for all litter types (Appendix 2), to satisfy model assumptions. We constructed an initial linear mixed model (LMM) for the log-transformed remaining litter mass of only the monospecic litter types (response) as a function of forest type (plantation, degraded and natural), litter type (7 monospecic litter types), observational period (after 1, 3, 6 and 12 months), and the interactions between litter type and forest type, and between litter type and observational period. Tukey multiple mean comparisons were also carried out among the seven litter types and the three forest types. A second LMM modelled the log-transformed remaining litter mass of all 17 litter types as a function of forest type, observation period, litter quality and litter diversity, including all first-order interaction terms.

Since four litter mass measurements were taken from the same plot during the one-year incubation period, plot ID was included as a random factor in both LMMs. Both LMMs were performed with the lme function from the lme4 R package (Bates et al., 2015). Multicollinearity among the explanatory variables was assessed by computing variance inflation factors, using the vif function from the lme4 R package. Stepwise model structure optimization was employed to select the best-fitted model following the procedure of Zuur et al. (2009).

Next, we performed a general linear model, with log-transformed remaining litter mass of all litter types after one year (thus only including the last time point) as a response and species richness (number of tree species in the litter), litter quality, forest type and all first-order interactions as predictors.
In order to evaluate the effect of litter mixture on decomposition rate, the relative individual performance (RIP) of the three indigenous and two exotic tree leaf litters were calculated following the procedure recommended by Barantal et al. (2011) and Lin and Zeng (2018).

\[
\text{RIP} = \frac{\text{Mixture} - \text{Single}}{\text{Single}} \times 100 \quad [1]
\]

Where Mixture represents the mean mass loss of each mixture litter and Single the mean mass loss of unmixed, monospecific litters.

One sample Student t-tests to mean zero were carried out to reveal the significance of potential non-additive effects of each monospecific litter, where zero represents the additive effect in which both synergistic and antagonistic nonadditive effect cancel each other out.

The net diversity effect (NDE) was calculated by subtracting the expected value (Exp.) from the observed litter mixture value (Obs.) (Rubio-Ríos et al., 2021) to measure how much litter mass is lost or remaining due to the presence or absence of nutrient-rich indigenous tree leaf litter in the mixture. The mean mass loss observed and the expected value was obtained from the average value of the mass loss of each litter mixture and the individual monospecific litters included in the mixture, respectively.

\[
\text{NDE} = \text{Obs.} - \text{Exp.} \quad [2]
\]

3 | Results

3.1 Description of forest and litter types

The three forest types differed in their soil chemical composition (Fig. 2). Especially the natural forest showed larger variation and higher nutrient concentrations compared to both plantation and disturbed forest (Fig. 2).

The initial leaf litter nutrient composition varied strongly among the five selected tree species (Table 1). Litter mass loss after one year incubation revealed significant correlation with the initial leaf litter concentration of macronutrients P (r = 0.55, p = 0.035), K (r = 0.86, p < 0.001) and Na (r = 0.61, p = 0.016), and micronutrients Cu (r = 0.67, p = 0.007) and Zn (r = 0.65, p = 0.008).

3.2 | Monospecific litter decomposition

Decomposition of the 402 retrieved monospecific litter bags varied considerably, both within and across the four observational periods and 7 litter types. The litter mass remaining during the first observational period ranged from 84.2 to 49.4% (Fig. 3A, Table S1). Litter type (species) had a significant effect on the remaining mass over time (Table 2). Among the selected five tree species, *M. ferruginea* demonstrates the fastest mass loss (Fig. 3A, Table S1). Compared to the standard green and rooibos teas, only *M. ferruginea* had a fast decomposition comparable to green tea (Fig. 3A, Table S1). Both *C. lusitanica* and *S. guineense* had slower decomposition than the slowly decomposing rooibos tea, whereas the decomposition rates of *C. maycrostachyus* and *E. globulus* were intermediate between the above two groups (Fig. 3A). The linear mixed model further showed that monospecific litter decomposition was not different across the three forest types (Table 2).
Table 2
F-statistics and associated P-values of the linear mixed model testing the impact of litter type, forest type, observational period and their interactions on remaining litter mass across 7 monospecific litter types. NumDF = numerator degree of freedom, denDF = denominator degree of freedom.

	numDF	denDF	F-value	p-value
Intercept	1	359	357959	< 0.001
Litter type	6	359	1270	< 0.001
Observational period	1	359	2999	< 0.001
Forest type	2	13	1	0.244
Litter type: Observational period	6	359	29	0.001
Litter type: Forest types	12	359	5	0.001
Forest types: Observational period	2	359	0.6	0.533

3.3 | Effects of species richness and litter quality on decomposition

When including the 631 retrieval litter bags containing the species mixtures (11 additional litter types) to the linear mixed model, the overall remaining litter mass still decreased significantly with time, but at a varying pace for litter types of different litter quality (significant interaction). Decomposition was furthermore faster in the disturbed forest compared to the two other forest types (Table 3).

Table 3
F statistics and an associated P-value of the linear mixed model testing the impact of litter quality (proportion of evergreen tree leaf litter in mixture), forest type, observational period and their interactions on remaining litter mass. NumDF = numerator degree of freedom, denDF = denominator degree of freedom.

	numDF	denDF	F-value	p-value
Intercept	1	1008	28226	< 0.001
Litter quality	1	1008	972	< 0.001
Forest type	2	13	4	0.035
Observational period	1	1008	1349	< 0.001
Litter quality:Forest type	2	1008	0.4	0.653
Litter quality:Observational period	1	1008	10	0.002
Forest type:Observational period	2	1008	0.4	0.714

Low quality litters (e.g. *S. guineense* and *C. lusitanica*) that were mixed with both the two high quality litter species *C. macrostachyus* and *M. ferruginea* showed higher decomposition rates than the same species mixed with only one high quality litter species, except for the litter mixture of *M. ferruginea*, *E. globulus* and *C. lusitanica* (Fig. S1). Lower decomposition rates were revealed for litter mixtures that contained low quality litters (e.g., *S. guineense*, *C. lusitanica* and *E. globulus*) (Fig. S1).
A linear mixed model on decomposition of all litter types based on only the results after 1 year showed a clear positive litter diversity effect on decomposition. As the number of species in the litter mixture increased from one to five, the remaining litter mass significantly decreased (Fig. 4A). While the three forest types showed differences in litter decomposition in the model including all observational periods, decomposition was no longer significantly affected by forest type when considering only the last observational period (1 year) (Table 4 and Fig. 4C).

Litter mass remaining after one year incubation as a function of litter identity, species richness (SR) and forest type.
Df

Litter quality
Species richness
Forest type
Litter quality: Species richness
Litter quality: Forest type
Species richness: Forest type

3.3 | Relative individual performance (RIP)

The RIP was different across the five study species (Fig. 5). A significantly negative RIP was observed for *M. ferruginea* (*t*₂₇ = 12.5, *p* < 0.001), indicating that this species has a higher decomposition rate as monospecific litter than in mixtures, and thus relatively high litter quality (Fig. 5). *C. macrostachyus* and *E. globulus* litter showed both synergistic and antagonistic effects across the different litter mixtures that seemingly canceled each other out, resulting in RIP values of zero (*t*₂₇ = -0.5, *p* = 0.623 and *t*₂₇ = -1.1, *p* = 0.298, respectively) (Fig. 5). *S. guineense* and *C. lusitanica* litter showed a higher decomposition rate in mixtures than alone, resulting in positive RIP values, thus indicating relatively low litter quality (*t*₂₇ = -13.0, *p* < 0.001 and *t*₂₇ = -9.3, *p* < 0.001, respectively) (Fig. 5).

3.4 | Net diversity effect (NDE)

All litter mixtures except CDE (*S. guineense*, *E. globulus* and *C. lusitanica*) showed a positive net diversity effect (Fig. 6). The highest net diversity effect was observed for those litter mixtures that combine both high and low-quality leaf litter (e.g. BCD and BCE in Fig. 6). The lowest net diversity effect was observed for those litter mixtures that incorporate only poor-quality litter (CDE in Fig. 6). All other leaf litters that were combined intermediate-quality groups demonstrated moderate, but always positive net diversity effects (Fig. 6).

4 | Discussion

4.1 | Soil and leaf litter nutrient concentration

The natural forest was richer in soil macro and micronutrient content compared to the plantation and the disturbed forest. This may be related to the diverse native plant community, which provides nutrient-rich leaf litters and/or is adapted to recycle nutrients more efficiently (Meier et al., 2005). Other studies also showed that leaf litterfall from diverse old-aged natural forest trees are an important source of soil nutrients (Meier et al., 2005; Gessner et al., 2010).
Indeed, in our research, the initial leaf litter nutrient composition strongly varied among the five selected trees species with native tree species having the highest litter quality.

Soil nutrient content largely corresponding with forest type was found to be a significant factor influencing decomposition during the early incubation period. This abiotic factor is probably important in relation to the short-term nutrient leaching processes in early-stage decomposition. Litter species identity was nevertheless the dominant factor affecting litter decomposition across all observational periods. Thus, solubility (leaching) and digestibility (microbial consumption) of leaf litter depend on both environmental (to a larger extent) and initial leaf litter cation concentration (Yue et al., 2016, 2021).

4.2 Species identity

Species identity had a significant impact on the decomposition rate across all observational periods. Although *S. guineense* was expected to show a higher percentage of litter mass loss in the natural forest where it is a dominant species (Ayres et al., 2009; Kavvadias et al., 2001; Li et al., 2020; Lu et al., 2017), our results indicated the contrary, this species was shown a lower percentage of litter mass loss (11.7%) than the slowly decomposing rooibos tea (24.4%) and the recently introduced exotic tree *C. lusitanica* (17.6%). There are two likely explanations for the observed decomposition differences among the five litter types. First, the initial leaf litter chemical composition, and second, the leaf litter physical structure. Especially macronutrients such as K, Na, P and the micronutrients Cu and Zn showed a significant correlation with litter mass loss. Many studies reported that initial leaf litter chemistry had a significant impact on individual leaf litter decomposition (Ayres et al., 2009; Cuchietti et al., 2014; He et al., 2019; Song et al., 2019; Desie et al., 2020). However, decomposition rate is also known to be strongly influenced by leaf litter lignin and phenolic compounds that determine the physical defense structures of the leaves (Zhang et al., 2008; Talbot and Treseder, 2012; Rahman et al., 2013; Cuchietti et al., 2014). These recalcitrant compounds are usually more abundant in evergreen leaves, resulting in the lower overall litter quality of evergreen versus deciduous trees (He et al., 2019).

4.3 Litter diversity

Species richness had a positive effect on the decomposition rate: mass loss increased as the number of species in the litter mixture increased. This may be related to resource partitioning along multiple niche axis for the microbial decomposer communities (Bracken, 2020). As reported by Chapman and Newman (2010) microbial diversity increases proportionally with increasing leaf litter diversity. Especially mycorrhizal fungi and actinomycetes have a positive relationship with litter diversity (Pei et al., 2017). These mycorrhizal fungi are especially important during late-phase decomposition, when they can facilitate the active transportation of inorganic ions from nutrient-rich to nutrient-poor litter (Pei et al., 2017). A meta-analysis conducted by Mori et al., (2020) confirmed that diversifying litter from mono to mixed-species can enhance the litter decomposition rate by 34.7% in the forest biome. Additionally, such diversity effects can be attributed to leaf litter chemical heterogeneity that attracts different types of decomposers to the litter mixture.

4.4 Litter composition

Among the eleven-litter mixtures, only one litter mixture CDE (S. guineense, E. globulus, C. lusitanica) showed an antagonistic litter mixture effect. This may be related to the high-lignin concentration of the leaves of three functionally homogenous evergreen trees (Augusto et al., 2015). According to Cuchietti et al. (2014) litter mixture with high-lignin is often demonstrated an antagonistic effect. On the other hand, the highest litter mixture decomposition rate was observed for the litter mixture ABD (73 ± 5) and ABE (68 ± 5) that have 67% deciduous tree (A & B) and 33% evergreen tree (D &E) leaves. It is thought that legume species like *M. ferruginea* (B) play a vital role to enhance ecosystem function (Wei et al., 2019; Li et al., 2015; Zhang et al., 2014) by amplifying microbial abundance, growth,
and colonization on the component leaf litters in the litter mixture (Wei et al., 2019; Song et al., 2010; Milcu et al., 2008). Indeed, the top quality litter *M. ferruginea* introduced a significant synergistic non-additive effect while the two evergreen tree leaf litters (*S. guineense* and *C. lusitanica*) introduced a significant non-additive antagonistic effect in the litter mixture. The intermediate quality litters (*C. macrostachyus* and *E. globulus*) also introduced additive effects, however, these species introduce both synergistic and antagonistic effects that cancel each other so their RIP was not statistically significant. This indicates that all species involved in the litter mixture do not have equal performance to the nutrient turnover process. However, prior studies relate the non-additive litter mixture effect with leaf litter chemical heterogeneity (Cuchietti et al., 2014), species identity (Chen et al., 2013) and change of decomposer community (Chapman and Koch, 2007). The water media also enhance microbial activity (Gogo et al., 2021) but it is difficult to determine which factor affects microbial community (Cleveland et al., 2014). Evidence shows that substrate quality, environmental factors and decomposition stage play a crucial role in microbial community development (Chapman et al., 2013; Bani et al., 2018). Thus, the non-additive effect that we observe in this study is mainly determined by litter quality and associated change of decomposer community following the physical and chemical change of litter during the decomposition process (Sauvadet et al., 2019). In that regard, the number of nutrient-rich litters involved in the litter mixture has a considerable impact on the overall decomposition rate of the mixture. For example, litter mixtures that have two nutrient-rich species (*C. macrostachyus* (A) and *M. ferruginea* (B)), in the litter mixture ABD, demonstrate a higher decomposition rate than the litter mixture that have only one nutrient-rich leaf litters ADE. This predominant role of leaf litter trait in the litter mixture decomposition rate was also reported by Kou et al. (2020). However, determining an optimal number of nutrient-rich deciduous and nutrient-poor evergreen tree leaf litters in the litter mixture might need further research. It is also important to consider the proportion of functional groups. Given that the two deciduous litters (A & B) decomposed faster than the other three evergreen litter (C, D, E). This finding concords with the finding of Wang et al. (2020) which states that “mixing broad-leaved with coniferous species has the potential to promote nutrient recycling and ecosystem productivity”. Zhang et al. (2020) also reported that adding 30%-40% broadleaf litter proportion in the conifers plantation accelerated the decomposition rate by increasing fungal diversity. This indicates that the ecosystem needs to be diverse both in species and functions (Grossman et al., 2020; Laird-Hopkins et al., 2017; Scherer-Lorenzen, 2008). Species diversity alone might not be a guaranty for stable nutrient availability and/or sustainable ecosystem productivity.

Overall our results indicate that both species richness and functional diversity accelerate decomposition rate, which could be explained by increasing fungal biomass or fungal diversity (López-Rojo et al., 2020; Zhang et al., 2020). However, the negative complementarity effect that we observe in functionally homogenous evergreen tree stand CDE suggests the importance of functional diversity over species richness. On the other hand, recent work gives more emphasis to leaf chemical and physical traits, for both positive and negative complementarity effects than species and functional diversity (López-Rojo et al., 2021). Thus, further research is needed to differentiate the degree of importance among the three diversity levels (species, functional, and trait diversity).

4.5 | Habitat quality

The replacement of natural forests with Eucalyptus plantations is known to inhibit litter decomposition (Ferreira and Guérold, 2017; Ferreira et al., 2016; Kavvadias et al., 2001). But in this study, both natural (disturbed and undisturbed) and plantation forests have comparable decomposition rates. Thus, we found no statistical evidence to support our third hypothesis that predicted habitat quality effects on litter decomposition rate - at least in the later decomposition stage. This may be explained by the combined effect of high nutrient leaching with the high amount of rainfall during the study period and/or the recently reemerging native trees and shrubs species under the canopy of plantation forest might neutralize the impact of pure monoculture plantation forest (Chen et al., 2019; De Long et al., 2016; Pandey et al., 2007). As reported by Mayer (2008), the impact of forest type might not be easily detected in a forest ecosystem.
that has a common historical background like the disturbed and undisturbed natural forests of the Gerese highland area, or the plantation forest which acts as a buffer zone for the natural forest. Thus, it is difficult to generalize here since we do not have scientific-based evidence about the history of the study area (Cowan and Anderson, 2019).

On the other hand, a strong significant interaction effect between litter types and forest types was observed. This indicates the presence of home-field advantage for the indigenous nutrient-rich leaf litters (Lin et al., 2020). Thus, combining the nutrient-rich indigenous tree leaf litter with both exotic and indigenous nutrient-poor litter enhances the litter decomposition rate. This supports our hypothesis that rehabilitating degraded forest land with native tree species enhances litter decomposition rates.

5 | Conclusion And Recommendation

Three indigenous and two exotic tree leaf litters were incubated for one year in three different forest habitat types to investigate litter decomposition rates in comparison with green and rooibos tea references. The results indicate that both indigenous and exotic tree leaf litters strongly vary in litter quality. This variation plays a significant role in both monospecific litter and litter mixture decomposition rates. The indigenous rich litter tree species *M. ferruginea* contributes considerably to the decomposition rate of nutrient-poor litter species. Both tree leaf litter types and litter mixture diversity showed a significant impact on litter decomposition rate. Habitat variation was expected to be a significant factor in litter decomposition rate but in our study, plantation forest and degraded natural forest habitats did not show a difference in litter decomposition rate, which differed significantly from the natural forest for all monoculture litters. and in the later decomposition stage, for all mixture litters. Rather, the number of rich litters in a mixture was found to be a good predictor for litter decomposition rate. Besides, the proportion of nutrient-poor litters also had a significant negative impact on the litter decomposition rate. In general, native nutrient-rich tree leaf litters play a significant role in enhancing soil organic matter and rehabilitating degraded forest land. However, special attention needs to be given to functional diversity. The presence of multiple species that play a similar role (e.g. functionally redundant litter mixture CDE) inhibits nutrient turnover and complementary effect. Thus, functional diversity is strongly recommended while applying the commonly used tree plantation approach to restore degraded forest land. Still, further research is needed to determine the optimal proportion of different functional groups.

Declarations

ACKNOWLEDGMENTS

The first author wants to give especial thanks for the local people, especially the Gerese district forest department officers Desta, Babuke, Amare, Teshome and Tomass together with all the forest guards. The author also acknowledge the contribution of AMU_IUC drivers and the Biology Department staff Dr. Shetie, Habtamu, Gemechu and Beyen for their assistance and providing all necessary support in the field as well as during the laboratory work.

Authors contribution

Seyoum Getaneh: Developed the research design and carried out field and laboratory work, data collection and analysis. Develop the first draft of the manuscript and incorporate comments from the advisor and coauthors.

Conceptualization: Bart Muys, Seyoum Getaneh,

Method: Bart Muys, Seyoum Getaneh, Kenny Helsen
Writing original draft: Seyoum Getaneh

Review and editing: Bart Muys, Olivier Honnay, Kenny Helsen, Ellen Desie, Lisa Couck

Provide advice during field and laboratory work: Kenny Helsen, Simon Shibru

Funding

This research was financially and logistically supported by the AMU-IUC program of the Belgium Government through the Flemish interuniversity council (VLIR-UOS).

Availability of data and materials

The data generated and used for analysis during this study are included in the manuscript.

Ethical approval and consents to participants

Not applicable

Consents to publication

Not applicable

Competing interests

The authors declared no competing of interests.

Authors details

1 Division Forest, Landscape and Nature, KU Leuven, Celestijnenlaan 200E-2411, BE-3001 Leuven Belgium.

2 Department of Biology, KU Leuven, Kasteelpark Arenberg 31-2435, BE-3001 Leuven, Belgium.

3 Division Forest, Landscape and Nature, KU Leuven, Celestijnenlaan 200E-2411, BE-3001 Leuven Belgium.

4 Division Forest, Landscape and Nature, KU Leuven, Celestijnenlaan 200E-2411, BE-3001 Leuven Belgium.

5 Department of Biology, College of Natural Sciences, Arba Minch University, P. O. Box 21, Arba Minch, Ethiopia.

References

1. Augusto, L., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., and Ranger, J. (2015). Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews of the Cambridge Philosophical Society 90, 444–466.

2. Ayres, E., Steltzer, H., Simmons, B.L., Simpson, R.T., Steinweg, J.M., Wallenstein, M.D., Mellor, N., Parton, W.J., Moore, J.C., and Wall, D.H. (2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry 41, 606–610.

3. Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., and Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology 126, 75–84.
4. Barantal, S., Roy, J., Fromin, N., Schimann, H., and Hättenschwiler, S. (2011). Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest. Oecologia 167, 241–252.

5. Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48.

6. Bekele, W., Gebreyes, L., and Wogi, L. (2020). Foliage litter decomposition of agroforestry shrub species in Dellemenna District of Bale Zone, Southeast Ethiopia.

7. Birhane, E., Desalegn, T., Kebede, F., Giday, K., Teferi, H., Kiros, and Hadgu, K. (2019). East African Agricultural and Forestry Journal In situ leaf litter production, decomposition and nutrient release of dry Afromontane trees In situ leaf litter production, decomposition and nutrient release of dry Afromontane trees.

8. Bracken, M.E.S. (2020). Complementarity in spatial subsidies of carbon associated with resource partitioning along multiple niche axes. Oecologia 193, 425–436.

9. Chapin, F.S., Matson, P.A., and Vitousek, P.M. (2011). Principles of terrestrial ecosystem ecology (New York: Springer).

10. Chapman, S.K., and Koch, G.W. (2007). What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil 299, 153–162.

11. Chapman, S.K., and Newman, G.S. (2010). Biodiversity at the plant–soil interface: microbial abundance and community structure respond to litter mixing. Oecologia 162, 763–769.

12. Chapman, S.K., Newman, G.S., Hart, S.C., Schweitzer, J.A., and Koch, G.W. (2013). Leaf Litter Mixtures Alter Microbial Community Development: Mechanisms for Non-Additive Effects in Litter Decomposition. PLOS ONE 8, e62671.

13. Chen, B.-M., Peng, S.-L., D’Antonio, C.M., Li, D.-J., and Ren, W.-T. (2013). Non-Additive Effects on Decomposition from Mixing Litter of the Invasive Mikania micrantha H.B.K. with Native Plants. PLoS One 8.

14. Chen, Y., Zhang, Y., Cao, J., Fu, S., Hu, S., Wu, J., Zhao, J., and Liu, Z. (2019). Stand age and species traits alter the effects of understory removal on litter decomposition and nutrient dynamics in subtropical Eucalyptus plantations. Global Ecology and Conservation 20, e00693.

15. Cizungu, L., Staelens, J., Huygens, D., Walangululu, J., Muhindo, D., Van Cleemput, O., and Boeckx, P. (2014). Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation. Forest Ecology and Management 326, 109–116.

16. Cleveland, C.C., Reed, S.C., and Townsend, A.R. (2006). Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87, 492–503.

17. Cleveland, C.C., Reed, S.C., Keller, A.B., Nemergut, D.R., O’Neill, S.P., Ostertag, R., and Vitousek, P.M. (2014). Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174, 283–294.

18. Cowan, O.S., and Anderson, P.M.L. (2019). Litter decomposition variation across a degradation gradient and two seasons in a critically endangered vegetation type within the Fynbos biome, South Africa. South African Journal of Botany 121, 200–209.

19. Cuchietti, A., Marcotti, E., Gurvich, D.E., Cingolani, A.M., and Pérez Harguindeguy, N. (2014). Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. Applied Soil Ecology : A Section of Agriculture, Ecosystems & Environment 82, 44–51.

20. De Long, J.R., Dorrepaal, E., Kardol, P., Nilsson, M.-C., Teuber, L.M., and Wardle, D.A. (2016). Understory plant functional groups and litter species identity are stronger drivers of litter decomposition than warming along a
boreal forest post-fire successional gradient. Soil Biology and Biochemistry 98, 159–170.

21. Demessie, A., Singh, B., Lal, R., and Strand, L. (2012). Leaf litter fall and litter decomposition under Eucalyptus and coniferous plantations in Gambo District, southern Ethiopia. Acta Agriculturae Scandinavica Section B-Soil and Plant Science - ACTA AGR SCAND SECT B-SOIL PL. 62, 1–10.

22. Desie, E., Vancampenhout, K., Nyssen, B., van den Berg, L., Weijters, M., van Duinen, G.-J., den Ouden, J., Van Meerbeek, K., and Muys, B. (2020). Litter quality and the law of the most limiting: Opportunities for restoring nutrient cycles in acidified forest soils. Science of The Total Environment 699, 134383.

23. Djukic, I., Guerra, C.A., Maestre, F.T., Hagedorn, F., Oggioni, A., Bergami, C., Magagna, B., Kwon, T., Shibata, H., Eisenhauer, N., et al. (2021). The TeaComposition Initiative: Unleashing the power of international collaboration to understand litter decomposition. SOIL ORGANISMS 93, 73–78.

24. Eshetu, A. (2014). Forest resource management systems in Ethiopia: Historical perspective. International Journal of Biodiversity and Conservation 6, 121–131.

25. Eshetu, Z., and Högberg, P. (2000). Reconstruction of Forest Site History in Ethiopian Highlands Based on 13C Natural Abundance of Soils. Ambi 29, 83–90.

26. Fagan, M.E., Reid, J.L., Holland, M.B., Drew, J.G., and Zahawi, R.A. (2020). How feasible are global forest restoration commitments? Conservation Letters 13, e12700.

27. Ferreira, V., and Guérold, F. (2017). Leaf litter decomposition as a bioassessment tool of acidification effects in streams: Evidence from a field study and meta-analysis. Ecological Indicators 79, 382–390.

28. Ferreira, V., Koricheva, J., Pozo, J., and Graça, M.A.S. (2016). A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. Forest Ecology and Management 364, 27–38.

29. Friis, I., Sebsebe Demissew, and Breugel, P. van (2010). Atlas of the potential vegetation of Ethiopia (Copenhagen: Det Kongelige Danske Videnskabernes Selskab).

30. Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H., and Hättenschwiler, S. (2010). Diversity meets decomposition. Trends in Ecology & Evolution 25, 372–380.

31. Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. Journal of Ecology and Environment 44, 11.

32. Gogo, S., Leroy, F., Zocatelli, R., Jacotot, A., and Laggoun-Défarge, F. (2021). Determinism of nonadditive litter mixture effect on decomposition: Role of the moisture content of litters. Ecology and Evolution 11, 9530–9542.

33. Grossman, J.J., Cavender-Bares, J., and Hobbie, S.E. (2020). Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecol Monogr 90.

34. Hättenschwiler, S., Coq, S., Barantal, S., and Handa, I.T. (2011). Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytologist 189, 950–965.

35. He, M., Zhao, R., Tian, Q., Huang, L., Wang, X., and Liu, F. (2019). Predominant effects of litter chemistry on lignin degradation in the early stage of leaf litter decomposition. Plant Soil 442, 453–469.

36. Helsen, K., Smith, S.W., Brunet, J., Cousins, S.A.O., De Frenne, P., Kimberley, A., Kolb, A., Lenoir, J., Ma, S., Michaelis, J., et al. (2018). Impact of an invasive alien plant on litter decomposition along a latitudinal gradient. Ecosphere 9, e02097.

37. Helsen, K., Van Cleemput, E., Bassi, L., Somers, B., and Honnay, O. (2020). Optical traits perform equally well as directly-measured functional traits in explaining the impact of an invasive plant on litter decomposition. Journal of Ecology 108, 2000–2011.

38. Holl, K.D., Loik, M.E., Lin, E.H.V., and Samuels, I.A. (2000). Tropical Montane Forest Restoration in Costa Rica: establishment. Restoration Ecology 8, 339–349.
39. Jacob, M., Viedenz, K., Polle, A., and Thomas, F. (2010). Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164, 1083–1094.

40. Kassa, H. (2018). Reshaping the terrain. Landscape Restoration in Ethiopia. Global landscapes forum factsheet, CIFOR Bogor Indonesia.

41. Kavvadias, V.A., Alifragis, D., Tsiontsis, A., Brofas, G., and Stamatelos, G. (2001). Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management 144, 113–127.

42. Keuskamp, J.A., Dingemans, B.J.J., Lehtinen, T., Sameel, J.M., and Hefting, M.M. (2013). Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution 4, 1070–1075.

43. Krishna, M.P., and Mohan, M. (2017). Litter decomposition in forest ecosystems: a review. Energ. Ecol. Environ. 2, 236–249.

44. Laird-Hopkins, B., Bréchet, L., Trujillo, B., and Sayer, E. (2017). Tree functional diversity affects litter decomposition and arthropod community composition in a tropical forest. Biotropica.

45. Lamb, D. (1998). Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. Restoration Ecology 6, 271–279.

46. Lamb, D., Erskine, P.D., and Parrotta, J.A. (2005). Restoration of Degraded Tropical Forest Landscapes. Science 310, 1628–1632.

47. Li, Q., Song, Y., Li, G., Yu, P., Wang, P., and Zhou, D. (2015). Grass-legume mixtures impact soil N, species recruitment, and productivity in temperate steppe grassland. Plant and Soil 394, 271–285.

48. Li, Y., Veen, G.F. (Ciska), Hol, W.H.G., Vandenbrande, S., Hannula, S.E., ten Hooven, F.C., Li, Q., Liang, W., and Bezemer, T.M. (2020). ‘Home’ and ‘away’ litter decomposition depends on the size fractions of the soil biotic community. Soil Biology and Biochemistry 144, 107783.

49. Lin, G., and Zeng, D.-H. (2018). Functional identity rather than functional diversity or species richness controls litter mixture decomposition in a subtropical forest. Plant Soil 428, 179–193.

50. Lin, D., Dou, P., Yang, G., Qian, S., Wang, H., Zhao, L., Yang, Y., Mi, X., Ma, K., and Fanin, N. (2020). Home-field advantage of litter decomposition differs between leaves and fine roots. New Phytologist 227.

51. López-Rojo, N., Pérez, J., Basaguren, A., Pozo, J., Rubio-Ríos, J., Casas, J.J., and Boyero, L. (2020). Effects of two measures of riparian plant biodiversity on litter decomposition and associated processes in stream microcosms. Scientific Reports 10.

52. López-Rojo, N., Pérez, J., Pozo, J., Basaguren, A., Apodaka-Etxebarria, U., Correa-Araneda, F., and Boyero, L. (2021). Shifts in Key Leaf Litter Traits Can Predict Effects of Plant Diversity Loss on Decomposition in Streams. Ecosystems 24, 185–196.

53. Lu, W., Liu, N., Zhang, Y., Zhou, J., Guo, Y., and Yang, X. (2017). Impact of vegetation community on litter decomposition: Evidence from a reciprocal transplant study with 13C labeled plant litter. Soil Biology and Biochemistry 112, 248–257.

54. Mappin, B., Chauvenet, A.L.M., Adams, V.M., Marco, M.D., Beyer, H.L., Venter, O., Halpern, B.S., Possingham, H.P., and Watson, J.E.M. (2019). Restoration priorities to achieve the global protected area target. Conservation Letters 12, e12646.

55. Mayer, P.M. (2008). Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient. Acta Oecologica 33, 222–230.
56. Meier, I.C., Leuschner, C., and Hertel, D. (2005). Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient. Plant Ecology 177, 99–112.

57. Milcu, A., Partsch, S., Scherer, C., Weisser, W.W., and Scheu, S. (2008). Earthworms and Legumes Control Litter Decomposition in a Plant Diversity Gradient. Ecology 89, 1872–1882.

58. Mori, A.S., Cornelissen, J.H.C., Fuji, S., Okada, K.-I., and Isbell, F. (2020). A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nat Commun 11, 4547.

59. Negash, M., and Starr, M. (2021). Litter decomposition of six tree species on indigenous agroforestry farms in south-eastern Ethiopia in relation to litterfall carbon inputs and modelled soil respiration. Agroforest Syst.

60. Ochoa-Hueso, R., Delgado-Baquerizo, M., An King, P.T., Benham, M., Arca, V., and Power, S.A. (2019). Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biology and Biochemistry 129, 144–152.

61. Pandey, R.R., Sharma, G., Tripathi, S.K., and Singh, A.K. (2007). Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecology and Management 240, 96–104.

62. Peh, K.S.-H., Sonké, B., Taedoung, H., Séné, O., Lloyd, J., and Lewis, S.L. (2012). Investigating diversity dependence of tropical forest litter decomposition: experiments and observations from Central Africa. Journal of Vegetation Science 23, 223–235.

63. Pei, Z., Leppert, K.N., Eichenberg, D., Bruelheide, H., Niklaus, P.A., Buscot, F., and Gutknecht, J.L.M. (2017). Leaf litter diversity alters microbial activity, microbial abundances, and nutrient cycling in a subtropical forest ecosystem. Biogeochemistry 134, 163–181.

64. Powers, J.S., Montgomery, R.A., Adair, E.C., Brearley, F.Q., DeWalt, S.J., Castanho, C.T., Chave, J., Deinert, E., Ganzhorn, J.U., Gilbert, M.E., et al. (2009). Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology 97, 801–811.

65. Rahman, M., Tsukamoto, J., Motiur, Yoneyama, Kamal, A., and MM (2013). Lignin and its effects on litter decomposition in forest ecosystem. Chemistry and Ecology 29.

66. Rubio-Ríos, J., Pérez, J., Salinas, M.J., Fenoy, E., López-Rojo, N., Boyero, L., and Casas, J.J. (2021). Key plant species and detritivores drive diversity effects on instream leaf litter decomposition more than functional diversity: A microcosm study. The Science of the Total Environment 798, 149266–149266.

67. Sauvadet, M., Fanin, N., Chauvat, M., and Bertrand, I. (2019). Can the comparison of above- and below-ground litter decomposition improve our understanding of bacterial and fungal successions? Soil Biology & Biochemistry 132, 24–27.

68. Scherer-Lorenzen, M. (2008). Functional diversity affects decomposition processes in experimental grasslands. Functional Ecology 22, 547–555.

69. Silva, J.O., Espirito-Santo, M.M., and Morais, H.C. (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic and Applied Ecology 76, 210–219.

70. Song, F., Fan, X., and Song, R. (2010). Review of mixed forest litter decomposition researches. Acta Ecologica Sinica 30, 221–225.

71. Song, M.-H., Chen, J., Xu, X.-L., Yu, F.-H., Jiang, J., Zheng, L.-L., and Cornelissen, J.H.C. (2019). Decreased community litter decomposition associated with nitrogen-induced convergence in leaf traits in an alpine meadow. Soil and Tillage Research 194, 104332.
72. Talbot, J.M., and Treseder, K.K. (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology (Durham) 93, 345–354.

73. Tang, J.-W., Cao, M., Zhang, J.-H., and Li, M.-H. (2010). Litterfall production, decomposition and nutrient use efficiency varies with tropical forest types in Xishuangbanna, SW China: a 10-year study. Plant and Soil 335, 271–288.

74. Uriarte, M., Turner, B.L., Thompson, J., and Zimmerman, J.K. (2015). Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach. Ecological Applications 25, 2022–2034.

75. Vitousek, P.M. (1984). Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests. Ecology 65, 285–298.

76. Wang, C., Wei, M., Wang, S., Wu, B., and Du, D. (2020). Cadmium influences the litter decomposition of Solidago canadensis L. and soil N-fixing bacterial communities. Chemosphere 246, 125717.

77. Wei, X., Reich, P.B., and Hobbie, S.E. (2019). Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO2. Global Change Biology 25, 2396–2409.

78. Xue, F., Zhao, M., Wang, Y., Kang, M., Xing, K., Wang, G., Shi, J., Chen, C., and Jiang, Y. (2019). Base cation concentrations in forest litter and topsoil have different responses to climate and tree species along elevational gradients. J. Mt. Sci. 16, 30–42.

79. Yue, K., Yang, W., Peng, C., Peng, Y., Zhang, C., Huang, C., Tan, Y., and Wu, F. (2016). Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. The Science of the Total Environment 566–567, 279–287.

80. Yue, K., Ni, X., Fornara, D.A., Peng, Y., Liao, S., Tan, S., Wang, D., Wu, F., and Yang, Y. (2021). Dynamics of Calcium, Magnesium, and Manganese During Litter Decomposition in Alpine Forest Aquatic and Terrestrial Ecosystems. Ecosystems (New York) 24, 516–529.

81. Zhang, C., Li, S., Zhang, L., Xin, X., and Liu, X. (2014). Litter mixing significantly affects decomposition in the Hulun Buir meadow steppe of Inner Mongolia, China†. Journal of Plant Ecology 7, 56–67.

82. Zhang, D., Hui, D., Luo, Y., and Zhou, G. (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1, 85–93.

83. Zhang, Y., Li, X., Zhang, D., Qin, Y., Zhou, Y., Song, S., and Zhang, J. (2020). Characteristics of fungal community structure during the decomposition of mixed foliage litter from Pinus massoniana and broadleaved tree species in southwestern China. Journal of Plant Ecology 13, 574–588.

84. Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., and Smith, G.M. (2009). Mixed effects models and extensions in ecology with R (Springer Science & Business Media).

Figures
Maps of the study area in the Afromontane moist evergreen fragmented forest of Gerese district SW Ethiopia, visualizing the three forest types (degraded, plantation and natural) and the location of our plots.
Figure 2

Soil properties of the three forest types in the Gerese highland Afromontane moist evergreen forest SW Ethiopia. Where Temp= Average monthly temperature.
Mass remaining (%) per litter type (A) and per species richness level (B) over time. Mean and standard deviations are indicated per time interval (after 1, 3, 6 and 12 months, respectively)

![Figure 4](image)

Figure 4

Predicted mass remaining (mean and SE) after 1 year of incubation as a function of species richness (A), litter quality (B) and forest type (C) based on the linear mixed model accounting for site. The shade interval in B indicates the standard error interval.

![Figure 5](image)

Figure 5
Relative individual performance (RIP) of the leaf litter of three indigenous (C. macrostachyus, M. ferruginea, and S. guineense) and two exotic trees (C. lusitanica and E. globulus) in the Gerese forest. A RIP of zero represent an additive effect, positive and negative values represent nonadditive antagonistic and synergetic effect, respectively. Where a is significant and b is not significant at alpha = 0.05

Figure 6

Net diversity effect (NDE) of the eleven litter mixtures after one year incubation in moist Afromontane forest SW Ethiopia. Were Millettia ferruginea = B, Croton macrostachyus = A, Eucalyptus globulus = D, Cupressus lusitanica = E

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Appendix1Litterlaboratoryanalysisprocedure.docx