Study of Energy Storage Phenomena in a Flat Wall Containing a Kapok-Plaster Material in Frequential Dynamic Regime-Influence of Depth

Papa Touty Traore1# Imam Katim Toure1 Dame Diao1

1Physics Department, Cheikh Anta Diop University, Dakar, Senegal

#corresponding author

Type of Work: Peer Reviewed.
DOI: https://dx.doi.org/10.21013/jas.v17.n3.p1

Review history: Submitted: May 10, 2022; Revised: July 05, 2022; Accepted: August 06, 2022

How to cite this paper:

Traore, P.T. et al. (2022). Study of Energy Storage Phenomena in a Flat Wall Containing a Kapok-Plaster Material in Frequential Dynamic Regime-Influence of Depth. IRA-International Journal of Applied Sciences (ISSN 2455-4499). 17(3), 24-30. DOI: https://dx.doi.org/10.21013/jas.v17.n3.p1

© IRA Academico Research.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License subject to a proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by IRA Academico Research are the views and opinions of their respective authors and are not the views or opinions of IRA Academico Research. IRA Academico Research disclaims any harm or loss caused due to the published content to any party.

IRA Academico Research is an institutional publisher member of Publishers International Linking Association Inc. (PILA-CrossRef), USA. IRA Academico Research is an institutional signatory to the Budapest Open Access Initiative, Hungary advocating the open access of scientific and scholarly knowledge. IRA Academico Research is also a registered content provider under Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH).

This paper is peer-reviewed under IRA Academico Research’s Peer Review Program.

Papa Touty Traore ©/0000-0002-9209-3587
ABSTRACT

We propose in this article, the study of the phenomena of energy storage in a wall in frequency dynamic mode. The optimal heat exchange coefficient and the maximum pulsation were determined from the temperature and flux density curves respectively. An electric-thermal analogy made it possible to determine the phenomena of energy storage from Bode diagrams of thermal capacity and thermal inductance.

Keywords: Storage energy, kapok plaster- frequential dynamic regime

Introduction

Faced with the ecological and environmental [1] problems that arise today, the issue of energy management is more topical than ever. Most countries are now targeting the reduction of greenhouse gas emissions in the long term. This drastic reduction in the building's energy needs can only be achieved through efforts on insulation, thermal inertia and energy saving.

We will explain a study of energy storage phenomena in the dynamic frequency regime [2]. Profiles of temperature and heat flux density curves highlight the phenomena of energy storage through the kapok-plaster [3] material proposed as thermal insulation under the influence of depth.

From the Bode diagrams of thermal capacity [4] and thermal inductance, we will indicate to show the phenomena of thermal inertia by adopting a thermal-electrical analogy.

Mathematical model

1. **Diagram of the study device**

 The material is a flat wall whose thickness is of length L. It is subjected to external climatic stresses at the level of the two faces (front and rear). We consider that the heat transfer along the ox direction is perpendicular to the external stresses and the initial temperature of the material is non-zero.

 ![Diagram of the study device](image)

 Fig. 1: Flat kapok-based wall plaster subjected to external stresses

2. **Expression of temperature and heat flux density**

 The heat equation governing heat transfer in the wall (without a heat source or heat sink) is given by equation (1):

\[
\frac{\partial^2 T}{\partial x^2} - \frac{1}{\alpha} \cdot \frac{\partial T}{\partial t} = 0
\]

(1)

with \(\alpha = \frac{\lambda}{\rho \cdot C} \)

(2)
\(\alpha \) thermal diffusivity.
\(\lambda \) thermal conductivity (W.m\(^{-1}\)), \(\rho \) density (kg.m\(^{-3}\))

Boundaries conditions
\[
\lambda \frac{\partial T}{\partial x} = h_1 \left[T(0,t) - T_1 \right] \quad (3)
\]
\[
\lambda \frac{\partial T}{\partial x} = h_2 \left[T_2 - T(L,t) \right] \quad (4)
\]

Initial condition
\[T(x,t) = T_i \quad (5) \]

If we consider the variable \(\overline{T} = T(x,t) - T_i \) then the equations (3), (4) et (5) become
\[
\lambda \frac{\partial \overline{T}}{\partial x} = h_1 \left[\overline{T} + T_i - T_1 \right] \quad (6)
\]
\[
\lambda \frac{\partial \overline{T}}{\partial x} = h_2 \left[T_2 - (\overline{T} + T_i) \right] \quad (7)
\]
\[\overline{T}(x,0) = 0 \quad (8) \]

The solution to equation (1) taking into account the change of variable is:
\[
\overline{T}(x, h_i, h_2, \alpha, t) = \left[A_1 \sinh(\beta(\omega, \alpha).x) + A_2 \cosh(\beta(\omega, \alpha).x) \right] e^{i\omega t} \quad (9)
\]
\[T(x, h_i, h_2, \alpha, t) = \overline{T}(x, h_i, h_2, \alpha, t) + T_i \quad (10) \]
\[\beta(\omega, \alpha) = \sqrt{\frac{\alpha}{2\lambda}}(1 + i) \quad (11) \]

The expressions of the coefficients \(A_1 \) and \(A_2 \) are determined from the boundary conditions.[6,7]
\[A_1 = f(x, \omega, h_1, h_2, \alpha) \quad (12) \]
\[A_2 = f(x, \omega, h_1, h_2, \alpha) \quad (13) \]
Results and discussion

Fig 2 Evolution of the temperature according to the coefficient of exchange
Influence of the depth; $h_2 = 5 \text{ W}.m^{-2}.C^{-1}$, $\omega = 2 \times 10^3 \text{ rad/s}$

The temperature modulus is all the lower as the value of the exchange coefficient is low, this corresponds to weak heat exchanges between the external environment and the front face of the material. When the significant heat exchange coefficient $[5]$ becomes high, the temperature modulus increases meaning that the heat exchanges are between the external environment and the wall of the material. This phenomenon is due to the strong absorption of heat. Thus the material has thus stored a maximum of energy and reached its thermal equilibrium. The optimum heat exchange coefficient is the heat exchange coefficient corresponding to thermal equilibrium. These values are represented in the following table:

Table 1: Influence of depth on the optimum heat exchange coefficient

Material depth x (cm)	Optimum heat exchange coefficient h_{op} (W.m$^{-2}$.C$^{-1}$)
$x=0.1$	$h_{op} = 100$
$x=0.2$	$h_{op} = 100$
$x=0.3$	$h_{op} = 100$

For different depth values, the optimal heat exchange coefficient is the same everywhere because thermal equilibrium is reached at these points.
2. Evolution of the flux density through the material

The heat flux density is given by the following relationship:

\[
\phi(x, h1, h2, \alpha, t) = -\lambda \frac{dT}{dx} = -\lambda \beta (A_1 \cdot \cosh(\beta x) + A_2 \cdot \sinh(\beta x)) \quad (14)
\]

The flux density modulus is all the more important as the depth is shallow. For low values of the pulsation, the flux increases and reaches a maximum and then decreases. When the pulse becomes weak, the modulus of the flux density increases said because the heat exchanges are important between the external environment and the material wall. The flux density modulus decreases as the pulsation increases. The decrease in flux density is due to the considerable absorption of heat by the kapok-plaster material. The latter stores more heat at shallow depths. The maximum exciter pulse [6] of heat transfer is the exciter pulse corresponding to the maximum modulus of heat flux density. These values are represented in the following table:

Depth x (cm)	Maximum pulsation \(P_{\text{ulmax}}\) (rad/s)
x=0.1	2.81 \times 10^7
x=0.2	1.2 \times 10^{-7}
x=0.3	6.59 \times 10^{-8}

The maximum excitatory pulsation decreases with increasing depth.

\[
\phi = \int_{x}^{\Delta x} I dt \quad \text{and} \quad \Delta V \Delta T
\]

\[
C(x, \omega, h1, h2, t) = \frac{q}{\Delta V} = \frac{\int_{0}^{\Delta t} \phi(x, \omega, h1, h2, t) dt}{\Delta T(x, \omega, h1, h2, t)}
\]
This maximum value of the capacitance modulus translates the material storage phenomena. The higher the heat capacity, the greater the amount of heat the material can store. This, therefore, reflects the good quality of the thermal insulation that is the kapok-plaster. Because an insulator is all the more efficient when it can store large quantities of heat on very thin thicknesses [7]. This is what gives the material good thermal inertia.

\[I_\phi \quad \Delta V \quad \Delta T \]

\[L(x, \omega, h1, h2, t) = \frac{\Delta T(x, \omega, h1, h2, t)}{\frac{\partial^2 T(x, \omega, h1, h2, t)}{\partial t}} \]

Figure 4 Heat capacity as a function of the decimal logarithm of the pulsation; the influence of depth.

\[h1=100 \text{ W.m}^{-2}\text{.C}^{-1}, \quad h2=0.05 \text{ W.m}^{-2}\text{.C}^{-1} \]

The expression of the thermal inductance is determined from the electrical-thermal analogy:

2. Bode diagram of thermal inductance

Figure 5 Heat capacity as a function of the decimal logarithm of the pulse; the influence of depth x
The thermal capacity modulus is maximum and constant for the values of the exciter frequency [8] lower than 10^-3 rad/s then decreases according to the exciter frequency. This maximum value of the capacitance modulus translates the material storage phenomena. The higher the heat capacity, the greater the amount of heat the material can store. This, therefore, reflects the good quality of the thermal insulation,[9] that is kapok-plaster. Because an insulator is all the more efficient when it can store large quantities of heat on very thin thicknesses. This is what gives the material [10] good thermal inertia.

References

[1]. M. S. Ould Brahim et al. (2020). Study at Two Dimensions of Thermal Transfer through a Fibers Panel Subjected to Climatic Constraints in Dynamic Frequency Regulations Established. *Energy and Power Engineering*, 12, 135-142. https://doi.org/10.4236/eppe.2020.125010

[2]. M. Dieng et al. (2021). Effect of Density on the Thermal Impedance of the Kapok Material in Frequentional Dynamic Regime. *Journal of Scientific and Engineering Research*, 8(10):67-73.

[3]. S. Faye et al. (2018). Study of the thermal resistance transfer thermal of heat from a single wall through a Tow-plaster insulating material in transient dynamic regime: Influence coefficient of thermal exchange. *International Journal of Innovation and Applied Studies*, Vol. 22 No. 4, pp. 282-290.

[4]. B. Dione et al. (2021). Influence of Temperature and Magnetic Field on the Capacity and Power of a Silicon Solar Cell under Polychromatic Illumination in Static Conditions- *Journal of Scientific and Engineering Research*, 8(5):56-64.

[5]. P. T. TRAORE et al. (2021). Method for Determining the Optimum Insulation Thickness of the Plaster Tow Material: Influence of the Heat Exchange Coefficient in Transient Regime-*IRA-International Journal of Applied Sciences*, Vol.16, Issue 03 (Q.3 2021) Pg. no. 53-58. https://doi.org/10.21013/jas.v16.n3.p2

[6]. D. Diao et al. (2018). Evaluation of Thermal Phase Shift From The Curve Of Temperature Of A Kapok-Platter Material In Dynamic Frequential Regime. *ARPN Journal of Engineering and Applied Sciences*, Vol. 13, No. 24, pp. 9579-9583.

[7]. B. Mbengue et al. (2020). Influence Of Excitation Period On Thermal Transfer Of Tow-Plaster Thermal Insulation Plate Attached To Wall: Application To Cold Room. *International Journal of Advanced Research* (IJAR), Int. J. of Adv. Res. 8, pp.781-787. https://doi.org/10.21474/IJAR01/10841

[8]. S. K. Ben Thiam et al. (2020). One-Dimensional Study of Thermal Behavior of Typha Panel: Spectroscopy Characterization of Heat Exchange Coefficient on Front Face. *Journal of Sustainable Bioenergy Systems*, 2020, 10, 52-61. https://doi.org/10.4236/jsbs.2020.102005

[9]. I. Katim TOURE et al. (2016). Spectroscopic analysis of thermal behaviour of kapok-plaster material in dynamic frequency regime established. *IPASJ International Journal of Mechanical Engineering* (IJME), Volume 4, Issue 7, pp. 009-014.

[10]. P. T. Traore et al. (2016). Study by Numerical Method of Thermal Transfer Transient through a Tow-Plaster Insulating Material Undergoing Heating to the Front Face. *Int. J. Pure Appl. Sci. Technol.*, 33(1) - 37(2) (2016), pp. 11-17.