STAR CONFIGURATIONS IN \mathbb{P}^n

A. V. GERAMITA, B. HARBOURRE & J. MIGLIORE

Abstract. Star configurations are certain unions of linear subspaces of projective space. They have appeared in several different contexts: the study of extremal Hilbert functions for fat point schemes in the plane; the study of secant varieties of some classical algebraic varieties; the study of the resurgence of projective schemes. In this paper we study some algebraic properties of the ideals defining star configurations, including getting partial results about Hilbert functions, generators and minimal free resolutions of the ideals and their symbolic powers. We also show that their symbolic powers define arithmetically Cohen-Macaulay subschemes and we obtain results about the primary decompositions of the powers of the ideals. As an application, we compute the resurgence for the ideal of the codimension $n-1$ star configuration in \mathbb{P}^n in the monomial case (i.e., when the number of hyperplanes is $n+1$).

1. INTRODUCTION

A star configuration of codimension c in \mathbb{P}^n is a certain union of linear subspaces V_1, \ldots, V_I each of codimension c. These have arisen as objects of study in numerous research projects lately, including [2 3 5 7 10 13 21], but these references make use of only a partial understanding of the properties of star configurations. Thus it is of interest to understand them better.

Here we study powers and symbolic powers of ideals of star configurations in \mathbb{P}^n (over an algebraically closed field of arbitrary characteristic). Since the subspaces V_i are distinct with none containing any of the others, and each is a complete intersection, the mth symbolic power of the ideal I of the star configuration is $I^{(m)} = I(V_1)^m \cap \cdots \cap I(V_i)^m$.

Combinatorially equivalent collections of linear spaces can have very different algebraic properties, as Example 2.5 shows by exhibiting two collections of lines in \mathbb{P}^3 with the same intersection posets but where one gives an arithmetically Cohen-Macaulay (ACM) subscheme and the other not. The situation with star configurations (defined below in terms of their intersection posets) is very different. We will show in Proposition 2.9 that every star configuration is ACM, with so-called generic Hilbert function (meaning that the h-vector coincides with the dimension of the appropriate coordinate ring until a prescribed degree and is then zero). We also note that this property does not characterize star configurations, since (at least in codimension two) there exist unmixed configurations of linear varieties with the same Hilbert functions as star configurations, which are themselves not even ACM (see Remark 2.10).

We then show that every symbolic power of the ideal of a star configuration of any codimension defines an ACM subscheme (see Theorem 3.1). This contrasts with what we will see in Example 2.5. We also pose a conjecture for the primary decompositions of powers of ideals of star configurations and in some cases verify the conjecture (see Conjecture 4.1 and Theorem 4.8). As an application
we use Theorem \[4.13\] to determine the resurgence \(\rho(I)\) of the ideal \(I\) of a positive dimensional star configuration (see Theorem \[4.11\]). The only other exact determination of the resurgence of a positive dimensional subscheme which is not a cone over a 0-dimensional subscheme and for which the resurgence is bigger than 1 is that of \[11\], using a different method.

2. Preliminaries

We let \(R = k[x_0, \ldots, x_n]\) where \(k\) is an arbitrary infinite field, and where we regard \(R\) as a graded ring with the usual grading (where each variable has degree 1 and nonzero elements of \(k\) have degree 0).

Definition 2.1. Let \(H = \{H_1, \ldots, H_s\}\) be a collection of \(s \geq 1\) distinct hyperplanes in \(\mathbb{P}^n\) corresponding to linear forms \(L_1, \ldots, L_s\). We assume that the hyperplanes meet properly, by which we mean that the intersection of any \(j\) of these hyperplanes is either empty or has codimension \(j\). For any \(1 \leq c \leq \min(s, n)\), let \(V_c(H, \mathbb{P}^n)\) be the union of the codimension \(c\) linear varieties defined by all the intersections of these hyperplanes, taken \(c\) at a time:

\[
V_c(H, \mathbb{P}^n) = \bigcup_{1 \leq i_1 < \cdots < i_c \leq s} H_{i_1} \cap \cdots \cap H_{i_c}.
\]

(When \(\mathbb{P}^n\) or \(H\) is clear from the context, we may write \(V_c\) or \(V_c(\mathbb{P}^n)\) or \(V_c(H)\) in place of \(V_c(H, \mathbb{P}^n)\).) We call \(V_c\) the codimension \(c\) skeleton associated to \(H\) or sometimes simply a codimension \(c\) star configuration. We denote by \(V_c(\ell)\) the subscheme of \(\mathbb{P}^n\) defined by the ideal

\[
I_{V_c}^{(\ell)} = \bigcap_{1 \leq i_1 < \cdots < i_c \leq n} (L_{i_1}, \ldots, L_{i_c})^\ell.
\]

Note that \(I_{V_c}^{(\ell)}\) is the \(\ell\)-th symbolic power of \(I_{V_c}\).

Remark 2.2. We are most interested in the case of star configurations in \(\mathbb{P}^n\) for which \(s \geq n + 1\). When \(1 \leq s \leq n\), the star is either a linear subvariety of projective space or a projective cone over a star in \(\mathbb{P}^{s-1}\). But for some proofs it is convenient to allow \(s < n + 1\).

We now recall the following definition.

Definition 2.3. Let \(Z \subseteq \mathbb{P}^n\) be a closed subscheme whose defining sheaf of ideals is \(I_Z\). If \(H^i(\mathbb{P}^n, I_Z(d)) = 0\) for all \(d \in \mathbb{Z}\) and all \(0 < i < \dim \mathbb{Z}\), we say the scheme \(Z\) is arithmetically Cohen-Macaulay or ACM. Note that this is equivalent to saying that the graded ring \(R/I_Z\) is a Cohen-Macaulay ring \[17\] Lemma 1.2.3].

Definition 2.4. For a scheme \(V\) of codimension \(c\) in \(\mathbb{P}^n\) (not necessarily ACM), the \(h\)-vector of \(V\) (or, more precisely, of \(R/I_V\)) is the \((n-c+1)\)-st difference of the Hilbert function of \(R/I_V\).

Example 2.5. Here we exhibit two subschemes of \(\mathbb{P}^3\) consisting of linear subspaces with the same intersection poset, the same degree and arithmetic genus (and hence the same Hilbert polynomial), one being arithmetically Cohen-Macaulay (ACM) and the other not. In both of these cases, CoCoA \[5\] shows that the symbolic squares of the ideals define subschemes which fail to be ACM. This shows that the ACM property for the reduced curve does not imply it for symbolic powers.

Let \(Q\) be the nonsingular quadric surface in \(\mathbb{P}^3\). Recall that \(Q\) is isomorphic to \(\mathbb{P}^1 \times \mathbb{P}^1\) and hence has two rulings. Choose any four distinct lines \(V_1, V_2, V_3, V_4\) from one of the rulings and any four distinct lines \(H_1, H_2, H_3, H_4\) from the other. Let \(p_i\) be the point where \(H_i\) and \(V_1\) meet, \(i = 1, 2,\) and let \(q\) be a point on \(H_2\) not on any of the other lines.

Consider the line \(L\) in \(\mathbb{P}^3\) through \(p_1\) and \(q\). Note that \(Q\) does not contain \(L\). We now have three subcases: \(C_1\), consisting of the reduced union of \(V_1, \ldots, V_4, H_1, H_2\); \(C_2\), consisting of the reduced union of \(L, V_2, V_3, V_4, H_1, H_2\); and \(C_3\), consisting of the reduced union of \(V_1, V_2, V_3, V_4, H_1, H_2, H_3, H_4\). Note for any \(i\) and \(j\) that \(V_i \cup H_j\) is a hyperplane section of \(Q\). Thus \(C_3\) is the complete intersection
of Q with four planes, these four being the planes determined by the pairs of intersecting lines $(V_1, H_1), (V_2, H_2), (V_3, H_3), (V_4, H_4)$.

Note that C_3 is the union of C_1 with the disjoint union $H_3 \cup H_4$. Since, as it is easy to see, ACM subschemes are connected, we see that $H_3 \cup H_4$ is not ACM. Moreover, linked schemes are either both ACM or neither ACM \cite{17}. Since C_1 is linked with $H_3 \cup H_4$, we see that C_1 is not ACM.

Let X be the union of V_2, V_3, V_4, H_1, H_2, so that $X \cup L = C_2$. We see that X is directly linked, by the complete intersection of Q and three planes, to H_3 and thus X is ACM. Also, since L meets Q in the two points $p_1, q \in X \subset Q$, the ideal $I_X + I_L$ defines the reduced scheme $\{p_1\} \cup \{q\}$. The latter is a complete intersection of type $(1,1,2)$, and $Q \notin I_L$ (where by abuse of notation, Q also represents the quadratic form defining the quadric surface), so in fact $I_X + I_L$ is saturated. Then from the exact sequence

$$0 \to I_{C_2} \to I_X \oplus I_L \to I_X + I_L \to 0,$$

sheafifying and taking cohomology it follows immediately that the first cohomology of I_{C_2} is zero in all twists, so C_2 is ACM. Notice that both C_1 and C_2 consist of 6 lines and thus have the same degree, and since the intersection poset of both curves is the same, then both have the same arithmetic genus and hence the same Hilbert polynomial. Checking computationally using CoCoA, we verified that the symbolic square of the ideal of neither curve is ACM.

Recall from \cite{16} the following result.

Proposition 2.6. Let I_C be a saturated ideal defining a codimension c subscheme $C \subseteq \mathbb{P}^n$. Let $I_S \subseteq I_C$ be an ideal which defines an ACM subscheme S of codimension $c - 1$. Let F be a form of degree d which is not a zerodivisor on R/I_S. Consider the ideal $I' = F \cdot I_C + I_S$ and let C' be the subscheme it defines. Then I' is saturated, hence equal to $I_{C'}$, and there is an exact sequence

$$0 \to I_S(-d) \to I_C(-d) \oplus I_S \to I_{C'} \to 0.$$

In particular, since S is an ACM subscheme of codimension one less than C, we see that C' is an ACM subscheme if and only if C is. Also,

$$\deg C' = \deg C + (\deg F) \cdot (\deg S).$$

Furthermore, as sets on S, we have $C' = C \cup H_F$, where H_F is the hypersurface section cut out on S by F. The Hilbert function $h_{C'}$ of $R/I_{C'}$ is $h_{C'}(t) = h_S(t) - h_S(t - d) + h_C(t - d)$.

Remark 2.7. Under rather mild assumptions, the subscheme C' obtained in Proposition 2.6 can be linked in two steps to C via Gorenstein ideals, and it was in this context that it was introduced in \cite{16}. We will not use this fact below, but it is worth noting that in the literature this construction is often referred to as Basic Double G-Linkage.

As an application we use Proposition 2.6 to obtain the following result. For this we make a definition.

Definition 2.8. Let I be a nonzero homogeneous ideal in the ring R. We define $\alpha(I)$ to be the least degree among degrees of nonzero elements of I.

We recover the fact of \cite{13} Lemma 2.4.2] that the initial degree $\alpha(I_{V_c})$ of I_{V_c} (i.e., the degree of a non-zero homogeneous element of least degree) is $s - c + 1$. We also note that in the case where the hyperplanes are defined by the $s = n + 1$ coordinate variables, V_c was known to be ACM (see \cite{13} Example 2.2(b)]).

Proposition 2.9. Let $\mathcal{H} = \{H_1, \ldots, H_s\}$ be a collection of distinct hyperplanes in \mathbb{P}^n meeting properly, and let $V_c = V_c(\mathcal{H})$. Then we have the following facts.

1. V_c is ACM.
(2) The h-vector of V_c, which has $s - c + 1$ entries, is
\[
\left(\begin{array}{c}
1, \binom{c + 1}{2}, \ldots, \binom{s - 1}{c - 1} \\
\end{array} \right).
\]
Note that the last binomial coefficient occurs in degree $s - c$, and can also be written
\[
\binom{c - 1 + (s - c)}{s - c}.
\]
(3) $\deg V_c = \binom{s}{c}$.

(4) The initial degree of I_{V_c} is $\alpha(I_{V_c}) = s - c + 1$, and all of its minimal generators occur in this degree and are monomials in the linear forms L_i defining the hyperplanes H_i.

Proof. Notice that (3) is trivial, and we include it only for completeness. We proceed by induction on c and on $s \geq c$. For any c, note that if $s = c$ then V_c is a complete intersection of linear forms, and parts (1) to (4) are trivial. If $c = 1$ and s is arbitrary, V_1 is the union of s hyperplanes, and all four assertions are immediate. Now assume that the assertion is true for codimension $c - 1$ and for up to $s - 1$ hyperplanes. Let $\mathcal{H}' = \{H_1, \ldots, H_{s-1}\}$ and let $\mathcal{H} = \mathcal{H}' \cup \{H_s\}$. By induction, $V_{c-1}(\mathcal{H}')$ and
\[
V_c(\mathcal{H}')
\]
are both ACM. We now apply Proposition 2.6 to $S = V_{c-1}(\mathcal{H}')$, $C = V_c(\mathcal{H}')$, and $F = L_s$, the defining polynomial of H_s. Since $V_c(\mathcal{H}) = V_c(\mathcal{H}') \cup H_{L_s}$, where H_{L_s} is the hyperplane section of V_{c-1} cut out by H_s, we immediately have (1). Since we have $I_{V_c(\mathcal{H})} = L_s \cdot I_{V_c(\mathcal{H}')}$, and by induction minimal sets of generators of $I_{V_c(\mathcal{H}')}$ and $I_{V_{c-1}(\mathcal{H}')}$, and all four of its minimal generators occur in the L_i of degree $s - c$ and $s - c + 1$, respectively, we see $I_{V_c(\mathcal{H})}$ is also generated by monomials in the L_i, and that the generators all have degree $s - c + 1$, which proves (4).

It remains to prove (2). We use the Hilbert function part of Proposition 2.6 still with $S = V_{c-1}(\mathcal{H}')$, $C = V_c(\mathcal{H}')$, and $F = L_s$. The h-vector of $V_c(\mathcal{H}')$ is the $(n - c + 1)$-th difference of $h_{V_c}(\mathcal{H}')$, while the h-vector of $V_{c-1}(\mathcal{H}')$ is the $(n - c + 2)$-th difference of $h_{V_{c-1}(\mathcal{H}')}$.

Notice that $d = 1$ in this case (in the statement of Proposition 2.6), so the portion of the formula coming from $h_s(t) - h_s(t - d)$ amounts to a first difference. The h-vector of $V_c(\mathcal{H}')$ is
\[
\left(1, c, \binom{c + 1}{2}, \ldots, \binom{s - 3}{c - 1}, \binom{s - 2}{c - 1}\right),
\]
where the last entry is in degree $s - c - 1$, and the h-vector of $V_{c-1}(\mathcal{H}')$ is
\[
\left(1, c - 1, \binom{c}{c - 2}, \ldots, \binom{s - 3}{c - 2}, \binom{s - 2}{c - 2}\right),
\]
where the last entry is in degree $s - c$. Thus the h-vector of V_c is computed by
\[
\left(\begin{array}{cccc}
1, & c - 1, & \binom{c}{c - 2}, & \ldots, \binom{s - 3}{c - 2}, \binom{s - 2}{c - 2} \\
1, & c, & \binom{c + 1}{c - 1}, & \ldots, \binom{s - 3}{c - 1}, \binom{s - 2}{c - 1}
\end{array}\right)
\]
from which the desired h-vector of $V_c(\mathcal{H})$ follows.

\[\square\]

Remark 2.10. (a) The h-vector given in Proposition 2.9 (2) is sometimes called a generic h-vector, on account of its being the h-vector of a generic finite set of points. Note that the ACM property automatically implies that V_c is a so-called scheme of maximal rank, i.e. that the natural restriction map $H^0(\mathcal{O}_{P^n}(d)) \rightarrow H^0(\mathcal{O}_{V_c}(d))$ has maximal rank for all d. However, even for a scheme of the right degree, having maximal rank does not imply that R/I_{V_c} has generic h-vector. For example, when $s = 4$ and $c = 2$, V_2 has h-vector $(1, 2, 3)$, hence degree 6. However, a general set of six skew lines in P^3 has maximal rank [12] but has h-vector $(1, 2, 3, 4, 0, -4)$.

(b) Notwithstanding the comment in (a), there do exist linear configurations that are not ACM but nevertheless have generic h-vectors. This is an easy consequence of the construction given in [19], starting with a minimal curve consisting of two skew lines. Indeed, here we sketch the argument that for every codimension two generic h-vector $(1, 2, 3, \ldots)$ of degree
at least 6, there is a non-ACM configuration of codimension two linear varieties with the given generic h-vector. We begin with curves in \mathbb{P}^3 and proceed inductively, repeatedly applying Proposition 2.6. Start with a curve C_0 consisting of two skew lines in \mathbb{P}^3. Its h-vector is $(1, 2, -1)$. Let S_1 be a union of four planes, such that S_1 contains C_0. Note that I_{S_1} is generated by a form of degree 4 that is the product of four linear forms. Let F_1 be a general linear form. Then $F_1 \cdot I_{C_0} + I_{S_1}$ is the saturated ideal of a union of six lines, C_1, with h-vector $(1, 2, 3)$. For $i \geq 2$ (but not $i = 1$) we obtain C_i inductively from C_{i-1} by taking S_i to be a union of $i + 2$ planes containing C_{i-1}, and F_i in each case to be a general linear form (choosing a new F_i each time), and setting $I_{C_i} = F_i \cdot I_{C_{i-1}} + I_{S_i}$. Then C_i has h-vector $(1, 2, 3, \ldots, i + 2)$. We then pass to the codimension two case by taking cones.

Remark 2.11. By Proposition 2.9 (1) and (2), the artinian reduction of the homogeneous coordinate ring of V_c is $k[y_1, \ldots, y_c]/m^{s-c+1}$, where $m = (y_1, \ldots, y_c)$. Since m^{s-c+1} is generated by the maximal (i.e., $r \times r$ for $r = s - c + 1$) minors of the $r \times s$ matrix

\[
\begin{pmatrix}
 y_1 & y_2 & \cdots & y_c & 0 & \cdots & 0 \\
 0 & y_1 & y_2 & \cdots & y_c & 0 & \cdots \\
 \vdots \\
 0 & \cdots & 0 & y_1 & y_2 & y_3 & \cdots & y_c
\end{pmatrix}
\]

and has codimension $(s-c+1-r+1)(s-r+1) = c$, the graded Betti numbers of the homogeneous coordinate ring of V_c are those given by the Eagon-Northcott resolution of the maximal minors of a generic matrix of size $r \times s$ \cite{14}. Note however, that it is well-known that powers of m all have linear resolution, consequently the calculation of the graded Betti numbers of the powers is straightforward. In particular, denoting by $E^{s,c}_i$ the minimal free resolution of $I_{V_c(H)}$, we have

\[
\text{rk } E^{s,c}_i = \begin{pmatrix} s \\ s-c+i \end{pmatrix} \cdot \begin{pmatrix} s-c+i-1 \\ i-1 \end{pmatrix}.
\]

We will need the next result for the proof of Theorem 3.2.

Lemma 2.12. For each c, we have $I_{V_{c-1}(H)} \subset I_{V_c(H)}^{(2)}$.

Proof. We have to show the inclusion $I_{V_c(H)}^{(2)} \subset V_{c-1}(H)$ of schemes. Since both sides are unmixed, it is enough to do this locally. That is, we show that every component of $V_c(H)^{(2)}$ lies in $V_{c-1}(H)$. To do this, it is enough to look only at the components of V_{c-1} that contain the component of $V_c(H)$ in question. Now, V_{c-1} is a union of codimension $c-1$ linear spaces and V_c is its singular locus. In particular, each component of V_c is the intersection of c of the hyperplanes H_i, so there pass c components of V_{c-1} through each component of V_c (take away one H_i at a time). It thus is enough to set $H = \{H_1, \ldots, H_c\}$ and prove it in this case. Now $I_{V_c(H)} = \langle L_1, \ldots, L_c \rangle$ and $I_{V_c(H)}^{(2)} = I_{V_c(H)}^2$.

On the other hand, let $H' = \{H_1, \ldots, H_{c-1}\}$ and consider the codimension $c-1$ complete intersection $I_{V_{c-1}(H')} = \langle L_1, \ldots, L_{c-1} \rangle$. Thanks to Proposition 2.6, we have

\[
I_{V_{c-1}(H')} = L_c \cdot I_{V_{c-1}(H')} + I_{V_{c-2}(H')}.
\]

We can thus use induction on c (the low values are easy to check), and assume that $I_{V_{c-2}(H')}^2$ is generated by degree two products of L_1, \ldots, L_{c-1}, and since $I_{V_{c-1}(H')}^{(2)}$ is just the complete intersection of the linear forms L_1, \ldots, L_{c-1}, we have that $I_{V_{c-1}(H')}^2$ is generated by degree two products of L_1, \ldots, L_c. This implies the asserted inclusion and completes the proof.

3. Symbolic powers of ideals of star configurations

Given the ideal I of a reduced ACM subscheme consisting of a union of linear spaces of projective space, it’s natural to ask whether the symbolic powers of I also define ACM subschemes. They clearly do if the linear subspaces are points, but otherwise it is not always the case, as Example
sequence. In particular, for any property and the assumption about the codimension guarantee that saturated subschemes are ACM. Let \(L \) be the linear subvariety defined by \(x_0 = x_1 = \cdots = x_n = 0 \). Then \(\Lambda \cap V_c \) is a codimension \(c \) star in \(\Lambda \cong \mathbb{P}^{s-1} \), and \(V_c \) is a projective cone over \(\Lambda \cap V_c \). In addition to the canonical surjection \(k[\mathbb{P}^n] \to k[\Lambda] \), we have a non-canonical inclusion \(k[\Lambda] = k[x_1, \ldots, x_s] \subseteq k[x_0, \ldots, x_n] = k[\mathbb{P}^n] \), with respect to which we have \(I_{V_c}^{(m)} = I_{\Lambda \cap V_c}^{(m)} k[\mathbb{P}^n] \) since primary decompositions extend [1] Exercise 4.7(iv). Thus \(k[\mathbb{P}^n]/I_{V_c}^{(m)} \) is a polynomial ring over \(k[\Lambda]/I_{\Lambda \cap V_c}^{(m)} \), so the result for \(V_c \subset \mathbb{P}^n \) follows if and only if it follows for \(\Lambda \cap V_c \subset \Lambda \). Thus we may assume that \(s \geq n+1 \).

Now fix the codimension, \(c \), so \(V_c \) is the union of \(\binom{c}{s} \) linear varieties. First assume that \(s = n+1 \), so without loss of generality we may assume that \(L_i = x_i \) for each \(i \) (modulo \(s \), so \(L_s = x_0 \)).

We claim that \(I_{V_c} \) is the Stanley-Reisner ideal of a simplicial complex, \(\Delta \), of dimension \(n-c \) that is the complete simplicial complex of dimension \(n-c \) on \(n+1 \) vertices. To construct this simplicial complex, take for the \(n+1 \) vertices the \(n+1 \) coordinate points in \(\mathbb{P}^n \). For convenience of notation, we will label these points by \(p_0, \ldots, p_n \), and without loss of generality we will assume that the vertex labelled \(p_i \) is the common intersection point of the hyperplanes defined by \(x_0, \ldots, \hat{x}_i, \ldots, x_n \).

The component of \(V_c \) cut out by the hyperplanes \(x_{i_1} = 0, \ldots, x_{i_c} = 0 \) has dimension \(n-c \). The vertices that it does not contain are precisely \(x_{i_1}, \ldots, x_{i_c} \); that is, this component corresponds to the face of \(\Delta \) which is the linear span of the vertices with the complementary labels. There are \(n+1-c \) such vertices, so \(\Delta \) has dimension \(n-c \). By construction, it is the complete simplicial complex of dimension \(n-c \) on these vertices. Thus by construction, the Stanley-Reisner ideal corresponding to this simplicial complex is the ideal of \(V_c \). This completes the proof of our claim.

Recall that a simplicial complex \(\Delta \) is said to be pure if all of its facets have the same dimension. It is said to be a matroid if, for every subset \(W \) of the vertices (in our case \(\{p_0, \ldots, p_n\} \)), the restriction \(\Delta_W = \{ F \in \Delta \mid F \subset W \} \) is a pure simplicial complex. In our setting, simplicial complex \(\Delta \) is clearly a matroid, since the restriction is again complete.

If \(c = n \), the result clearly follows since any zero-dimensional scheme is ACM. Thus we may assume that \(c < n \), i.e. that our star configuration has dimension at least one. We now recall a key fact from [20] and [22]:

\[\text{Let } \Delta \text{ be a simplicial complex and let } I_\Delta \text{ be its Stanley-Reisner ideal. Then } I_\Delta^{(\ell)} \text{ is Cohen-Macaulay for every } \ell \geq 1 \text{ if and only if } \Delta \text{ is a matroid.} \]

It follows from these results that \(I_{V_c}^{(\ell)} \) is Cohen-Macaulay for every \(\ell \), i.e. that the corresponding schemes are ACM.

Now assume that \(s > n+1 \). We still have \(\mathcal{H} = \{H_1, \ldots, H_s\} \), hyperplanes in \(\mathbb{P}^n \) where \(H_i \) is the vanishing locus of a linear form \(L_i \). Without loss of generality we may assume that \(L_s = x_0, L_1 = x_1, \ldots, L_n = x_n \). We still denote by \(V_c \) the codimension \(c \) star configuration in \(\mathbb{P}^n \) defined by \(\mathcal{H} \). Let \(N = s-1 \) and consider the star configuration \(W_c \subset \mathbb{P}^N \) defined as in our first case above, with the variables \(x_0, \ldots, x_N \).

Consider the linear forms \(M_{n+1} = x_{n+1} - L_{n+1}, \ldots, M_N = x_N - L_N \). It is clear that for an ACM subscheme \(V \) of \(\mathbb{P}^N \) meeting each of the corresponding hyperplanes, successively, in codimension 1, the saturated ideal of \(I_V \) is obtained by replacing \(x_i \) by \(L_i \), for all \(i = n+1, \ldots, N \), since the ACM property and the assumption about the codimension guarantee that \(M_{n+1}, \ldots, M_N \) are a regular sequence. In particular, for any \(i \geq n+1 \), \(x_i \) is replaced by \(L_i \). Thus the star configuration \(W_c \)
and the schemes $W_c^{(t)}$ defined by its symbolic powers in \mathbb{P}^N yield V_c and the schemes $V_c^{(t)}$ as the result of a sequence of hyperplane sections. Since the codimension is preserved, these hyperplane sections are all proper. Since we have shown that $W_c^{(t)}$ are all ACM, the claimed result follows from the fact that the ACM property is preserved under proper hyperplane sections (see for instance [17]). From what we have done, the claim about the ideals is also immediate. It is also clear that $\alpha(I_{W_c^{(t)}}) = \alpha(I_{V_c^{(t)}})$; we will use this in Corollary 4.6.

Theorem 3.1 makes no assertion about the Hilbert function or the minimal free resolution (apart from its length) of the symbolic powers of the ideal of a star configuration. In Theorem 3.2, only in the case of the symbolic square, we give a different proof of the fact that we obtain an ACM scheme, which allows us to describe the h-vector (equivalently, the Hilbert function) and the graded Betti numbers. For the proof of the theorem, we will give an explicit construction of the symbolic square of V_c for any c, in a way that makes it clear that it is ACM. Rather than squaring I_{V_c}, throwing away higher codimensional primary components, and trying to verify that the result is ACM, we take a more direct approach. We construct an ideal for which it is easy to see that it is ACM, we take a more direct approach. We construct an ideal for which it is easy to see that it is ACM, and then we show that this ideal is actually the symbolic square.

We will use Proposition 2.6 with $C = V_c$ and $S = V_{c-1}$. We will construct an ideal $I_{C'}$ with a special choice of F, so this gives right away that C' is an ACM subscheme, since C is. Furthermore, we can get the minimal free resolution of $I_{C'}$ from that of I_C and I_S by studying a suitable mapping cone. We will then see that C' is precisely the symbolic square of C in this case.

Theorem 3.2. Let $\mathcal{H} = \{H_1, \ldots, H_s\}$ and let $V_i := V_i(\mathcal{H})$ for all i. Then

1. The h-vector of $V_c^{(2)}$ is as follows

$$\Delta^{n-c+1}h_{R/I_{V_c^{(2)}}}(t) = \left\{ \begin{array}{ll}
\binom{t+c-1}{c-1} & \text{if } t \leq s - c \\
\binom{s}{c-1} & \text{if } s - c + 1 \leq t \leq 2s - 2c + 1 \\
0 & \text{if } t > 2s - 2c + 1
\end{array} \right.$$

2. The minimal free resolution of $I_{V_c}^{(2)}$ has the form

$$0 \to \mathbb{F}_c \to \cdots \to \mathbb{F}_1 \to \mathbb{F}_c^{(2)} \to 0$$

where

$$\mathbb{F}_i = \mathbb{E}_i^{s,c}(-1 + c - s) \oplus \mathbb{E}_i^{s,c-1}(-1 + c - s) \oplus \mathbb{E}_i^{s,c-1}$$

using the notation of Remark 2.11. In particular,

$$\mathbb{F}_i = R(-2s + 2c - 1 - i)^{M_i} \oplus R(-s + c - 1 - i)^{N_i}$$

where

$$M_i = \left\{ \begin{array}{ll}
\binom{s}{s-c+1} & \text{if } i = 1; \\
\binom{s}{s-c+i} \cdot \binom{s-c+i-1}{i-1} + \binom{s}{s-c+i} \cdot \binom{s-c+i-1}{i-2} & \text{if } 2 \leq i \leq c
\end{array} \right.$$

and

$$N_i = \left\{ \begin{array}{ll}
\binom{s}{s-c+1+i} \cdot \binom{s-c+i}{i-1} & \text{if } 1 \leq i \leq c - 1; \\
0 & \text{if } i = c.
\end{array} \right.$$

Proof. By Lemma 2.6 (4) applied to V_{c-1}, $I_{V_{c-1}}$ is entirely generated in degree $s - c + 2$, while I_{V_c} is entirely generated in degree $s - c + 1$. Let $F \in I_{V_c}$ be a general element of degree $s - c + 1$. Then F does not vanish on any component of V_{c-1}, i.e. it is a non-zerodivisor on $R/I_{V_{c-1}}$.

As mentioned above, \(V_{c-1} \) is a union of codimension \(c - 1 \) linear spaces and \(V_c \) is its singular locus. In particular, each component of \(V_c \) is the intersection of \(c \) of the hyperplanes \(H_i \), so there pass \(c \) components of \(V_{c-1} \) through each component of \(V_c \) (take away one \(H_i \) at a time). Since \(F \in I_{V_c} \) and \(F \) does not vanish on any component of \(V_{c-1} \), the subscheme of \(V_{c-1} \) cut out by \(F \) thus has multiplicity at least \(c \) locally along each component of \(V_c \). This accounts for a subscheme of degree at least \(c \cdot \binom{s}{c} \). On the other hand, a quick calculation shows

\[
(deg F) \cdot (deg V_{c-1}) = (s - c + 1) \cdot \binom{s}{c} = c \cdot \binom{s}{c}.
\]

We conclude that \(F \) cuts out a subscheme supported on \(V_c \subset V_{c-1} \) with multiplicity exactly \(c \) along each component of \(V_c \). Consequently, thanks to Proposition [2.6] the subscheme defined by the ideal \(F \cdot I_{V_c} + I_{V_{c-1}} \) is supported on \(V_c \) and has degree \(c + 1 \) along each component.

This is the same degree and support as the scheme defined by the symbolic square of \(I_{V_c} \), and both \(I_{V_c}^{(2)} \) and \(F \cdot I_{V_c} + I_{V_{c-1}} \) are unmixed (in particular, saturated). To show equality, then, we just have to show one inclusion. We will show

\[
(3.3) \quad F \cdot I_{V_c} + I_{V_{c-1}} \subseteq I_{V_c}^{(2)}.
\]

First, any element of \(F \cdot I_{V_c} \) is an element of \(I_{V_c}^{(2)} \) since \(F \in I_{V_c} \). Furthermore, by Lemma [2.12] we have \(I_{V_{c-1}} \subseteq I_{V_c}^{(2)} \), so the inclusion follows, and the ideals are equal. We thus have a new proof that \(V_c^{(2)} \) is ACM.

Now we can write the Hilbert function, a minimal generating set and minimal free resolution using Proposition [2.6]. Indeed, observe that the claimed \(h \)-vector is actually

\[
\Delta^{n-c+1} h_R/I_{V_c}^{(2)}(t) = \begin{cases}
\Delta^{n-c+1} h_R/I_{V_{c-1}}(t) = \binom{t+c-1}{c-1} & \text{if } t \leq s - c \\
\Delta^{n-c+1} h_R/I_{V_{c-1}}(s - c + 1) = \binom{s}{c} & \text{if } s - c + 1 \leq t \leq 2s - 2c + 1 \\
0 & \text{if } t > 2s - 2c + 1
\end{cases}
\]

The first two lines are immediate since [3.3] shows that \(I_{V_{c-1}} \) and \(I_{V_c}^{(2)} \) agree through degree \((s - c + 1) + (s - c) = 2s - 2c + 1 \) (since Proposition [2.9] gives the initial degree of \(I_{V_c} \) as \(s - c + 1 \)). The third line comes from the fact that

\[
\Delta h^{n-c+1} R/I_{V_c}^{(2)}(t) = [h^{n-c+1} R/I_{V_{c-1}}(t) - h^{n-c+1} R/I_{V_{c-1}}(t - (s - c + 1))] + h^{n-c+1} R/I_{V_c}(t - (s - c + 1)).
\]

Now, thanks to Proposition [2.9] the third term is zero in degree \((s - c + 1) + (s - c + 1) = 2s - 2c + 2 \). As for the first and second terms, they agree in degrees \((s - c + 1) + (s - c + 1) \), so their difference is zero in this range.

It remains to find the minimal free resolution of \(I_{V_c}^{(2)} \). From Proposition [2.6] and the above calculations, we have the short exact sequence

\[
0 \to I_{V_{c-1}}(-1 + c - s) \to I_{V_c}(-1 + c - s) \oplus I_{V_{c-1}} \to I_{V_c}^{(2)} \to 0.
\]

The minimal free resolutions of \(I_{V_{c-1}} \) and of \(I_{V_c} \) are described in Remark [2.11] and in particular the equation [2.11]. A mapping cone then gives a free resolution of \(I_{V_c}^{(2)} \), and since the resolutions of \(I_{V_{c-1}} \) and of \(I_{V_c} \) are linear, it is immediate that there is no splitting, so this is in fact a minimal free resolution.

\[\square\]

Example 3.4. Let \(n = 4, s = 7 \) and \(c = 3 \). The \(h \)-vectors of \(R/I_{V_2} \) and \(R/I_{V_3} \) are

\[
(1, 2, 3, 4, 5, 6) \quad \text{and} \quad (1, 3, 6, 10, 15),
\]
respectively. Let \(F \in (I_{V_3})_5 \). The \(h \)-vector of \(R/(F, I_{V_2}) \) is
\[
(1, 3, 6, 10, 15, 20, 18, 15, 11, 6)
\]
so using Proposition 2.6 and Proposition 3.2 we can compute the \(h \)-vector of \(R/I_{V_3}^{(2)} \) as follows:
\[
\begin{array}{cccccccccc}
1 & 3 & 6 & 10 & 15 & 20 & 18 & 15 & 11 & 6 \\
1 & 3 & 6 & 10 & 21 & 21 & 21 & 21 & 21
\end{array}
\]
Let us now compute the minimal free resolution of \(I_{V_3}^{(2)} \). As before, \(I_{V_3}^{(2)} = F \cdot I_{V_3} + I_{V_2} \) and we have a short exact sequence
\[
0 \to I_{V_2}(-5) \to I_{V_3}(-5) \oplus I_{V_2} \to I_{V_3}^{(2)} \to 0.
\]
Now, because the artinian reduction of \(R/I_{V_2} \) and of \(R/I_{V_3} \) have generic Hilbert function, we know the graded Betti numbers. Hence we have a diagram
\[
\begin{array}{ccc}
0 & \to & I_{V_2}(-5) \\
\downarrow & & \downarrow \\
R(-12)^{15} & \oplus & 0 \\
\downarrow & & \downarrow \\
R(-12)^6 & \oplus & R(-7)^6 \\
\downarrow & & \downarrow \\
R(-11)^7 & \oplus & R(-6)^7 \\
\downarrow & & \downarrow \\
0 & \to & I_{V_3}(-5) \oplus I_{V_2} \to I_{V_3}^{(2)} \to 0
\end{array}
\]
There is no possible splitting, so the minimal free resolution of \(I_{V_3}^{(2)} \) is
\[
0 \to R(-12)^{21} \oplus R(-7)^6 \oplus R(-6)^7 \to I_{V_3}^{(2)} \to 0.
\]
We now will consider the case of codimension 2. In preparation for stating our results, we define some matrices. Consider a set \(\mathcal{H} \) of \(s > n \) hyperplanes \(H_i \subset \mathbb{P}^n \) meeting properly, so \(V_2(\mathcal{H}, \mathbb{P}^n) \) is the union of the \(\binom{s}{2} \) codimension 2 linear spaces of the form \(H_i \cap H_j \) for \(i \neq j \). Let \(h_i \) be the linear form defining \(H_i \). Let \(P = h_1 \cdots h_s \), and let \(P_i = P/h_i \). Let \(A_{m,n} \) be the \(m \times n \) 0-matrix and \(\delta(d_1, \ldots, d_r) \) the \(r \times r \) diagonal matrix with diagonal entries \(d_i \). Furthermore, consider the \(1 \times s \) matrix \(B \), the \(s \times s \) matrices \(C \) and \(E \) and the \(s \times (s-1) \) matrix \(D \), defined as follows:
\[
B = (-P_1 - P_2 - P_3 \cdots - P_s),
\]
\[
C = \delta(h_1, \ldots, h_s),
\]
\[
D = \begin{pmatrix}
-h_1 & 0 & 0 & \cdots & 0 & 0 \\
0 & -h_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & -h_3 & \cdots & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & 0 & \cdots & h_{s-1} & -h_{s-1} \\
0 & 0 & 0 & \cdots & 0 & h_s
\end{pmatrix}, \text{ and}
\]
\[
E = -\delta(P_1, \ldots, P_s).
\]
Finally,
Let $m = 2r$ is even, let Δ_m be the $(sr + 1) \times sr$ matrix

$$
\Delta_m = \begin{pmatrix}
B & A_{1,s} & A_{1,s} & \cdots & A_{1,s} & A_{1,s} \\
C & E & A_{2,s} & \cdots & A_{2,s} & A_{2,s} \\
& C & E & A_{3,s} & \cdots & A_{3,s} \\
& & C & E & \cdots & A_{4,s} \\
& & & C & \cdots & A_{s,s} \\
& & & & C & \cdots \\
& & & & & C
\end{pmatrix}
$$

when $m = 2r + 1$ is odd, let Δ_m be the $s(r + 1) \times s(r + 1) - 1$ matrix:

$$
\begin{pmatrix}
D & E & A_{s,s} & A_{s,s} & \cdots & A_{s,s} & A_{s,s} \\
& C & E & A_{s,s} & \cdots & A_{s,s} & A_{s,s} \\
& & C & E & \cdots & A_{s,s} & A_{s,s} \\
& & & C & \cdots & A_{s,s} & A_{s,s} \\
& & & & C & \cdots & A_{s,s} \\
& & & & & C & \cdots
\end{pmatrix}
$$

Lemma 3.5. The maximal minors of Δ_m are $\{P^r\}, \{P^rP_i^1\}_{i=1}^s, \{P^rP_i^2\}_{i=1}^s, \ldots, \{P^rP_i^s\}_{i=1}^s$ if m is even and $\{P^rP_i^s\}_{i=1}^s, \{P^rP_i^3\}_{i=1}^s, \ldots, \{P^rP_i^s\}_{i=1}^s$ if m is odd.

Proof. The matrix Δ_m is close to being upper triangular, so the maximal minors are easy to compute with in some cases a few row and column swaps. We leave the details to the reader. \qed

Theorem 3.6. Let H be a set of $s > n$ hyperplanes $H_i \subset \mathbb{P}^n$ meeting properly, where h_i is the linear form defining H_i. Let $I = I_{V_2(H, \mathbb{P}^n)}$, the ideal of the codimension 2 skeleton $V_2(H, \mathbb{P}^n)$. The Hilbert-Burch matrix for $I^{(m)}$ is Δ_m and the generators for $I^{(m)}$ are as given in Lemma 3.5.

Proof. Let J be the ideal generated by the elements listed in Lemma 3.5. It is easy to see that they have no common divisor and the zero-locus is $V_2(H, \mathbb{P}^n)$. Thus by the Hilbert-Burch Theorem, J defines an ACM subscheme and the primary decomposition of J consists of ideals primary for the ideals of the components of $V_2(H, \mathbb{P}^n)$. The prime ideals corresponding to irreducible components of $V_2(H, \mathbb{P}^n)$ are precisely the ideals of the form (h_i, h_j), $i \neq j$. If one localizes by inverting all h_l with $l \notin \{i, j\}$, it is easy to check by an explicit examination of the generators given in Lemma 3.5 that the localization J' of the ideal J equals the localization of $(h_i, h_j)^{m}$. Thus J and $I^{(m)}$ have the same primary decompositions, so $J = I^{(m)}$, which concludes the proof. \qed

In the case of the codimension 2 skeleton, we now give yet another proof that the symbolic powers are Cohen-Macaulay, with an eye, again, to proving more than can be concluded from Theorem 3.1. In fact, we will show that ideals which are “almost” symbolic powers are also Cohen-Macaulay.

Corollary 3.7. Let H be a set of $s > n$ hyperplanes $H_i \subset \mathbb{P}^n$ meeting properly, where h_i is a linear form defining H_i. Let $I = I_{V_2(H, \mathbb{P}^n)}$, the ideal of the codimension 2 skeleton $V_2(H, \mathbb{P}^n)$. For $1 \leq k \leq s$ and $\ell \geq 1$ arbitrary, the schemes W_k defined by the saturated ideals

$$
I_{W_k} = \bigcap_{1 \leq i < j \leq k} (L_i, L_j)^{\ell+2} \cap \bigcap_{1 \leq i \leq k < j \leq s} (L_i, L_j)^{\ell+1} \cap \bigcap_{k < i < j \leq s} (L_i, L_j)^{\ell}
$$

are all ACM.

Proof. This will be a byproduct of a new proof of the Cohen-Macaulayness of the symbolic powers. This proof is inspired by a construction used in [18]. That paper studied tetrahedral curves, i.e. subschemes of \mathbb{P}^3 defined by the intersection of powers of the ideals of the six components of V_2. The specialization of the current theorem to $V_2 \subset \mathbb{P}^3$ was proved in that paper as a special case.
To prove that this ideal is equal to $V_2^{(1)}$. The idea of our proof, which worked also in [18], is that we can apply an inductive argument, passing from $I_{V_2}^{(t)}$ to $I_{V_2}^{(t+2)}$ by a sequence of applications of Proposition 2.6, thus ensuring that each resulting scheme along the way is ACM. In particular, $V_2^{(t+2)}$ is ACM, and we have our result.

Recall that we have hyperplanes H_1, \ldots, H_s defined by linear forms L_1, \ldots, L_s. We begin with the ideal $I_{V_2}^{(t)}$. Clearly we have $I_{V_2}^{(t+1)} : L_i = I_{V_2}^{(t+1)}$ by sequentially applying Proposition 2.6. What we have shown so far is that the scheme defined by this new ideal is also ACM, thanks to the construction of Proposition 2.6. We now show that we can construct a sequence of ACM schemes $V_2^{(t)} \subset W_1 \subset W_2 \subset \cdots \subset W_s = V_2^{(t+2)}$ by sequentially applying Proposition 2.6. What we have shown so far is that the scheme W_1 defined by the ideal

$$L_1 \cdot I_{V_2}^{(t)} + (L_2^{t+1} \cdots L_s^{t+1}) = \bigcap_{2 \leq j \leq s} (L_1, L_j)^{t+1} \cap \bigcap_{2 \leq i < j \leq s} (L_i, L_j)^{t}.$$

To see this, note first that both ideals are automatically saturated and unmixed (the first comes from Proposition 2.6 and the second is an intersection of saturated, unmixed ideals of the same height). Hence as before, we check that they define schemes of the same degree and that there is an inclusion of one into the other. The first ideal defines a scheme of degree

$$[\text{deg}(V_2^{(t)})] + \text{deg}(L_1) \cdot [\text{deg}(L_2^{t+1} \cdots L_s^{t+1})] = \left[\binom{s}{2} \cdot \left(\frac{\ell + 1}{2}\right)\right] + (1) \cdot [(s-1)(\ell+1)]$$

thanks to Proposition 2.6. The ideal on the right defines a scheme of degree

$$(s-1) \cdot \left(\frac{\ell + 2}{2}\right) + \left[\left(\frac{s}{2}\right) - (s-1)\right] \cdot \left(\frac{\ell + 1}{2}\right).$$

We leave it to the reader to verify that these degrees are equal. Since the inclusion \subseteq is clear, the claim is established. Note that by induction we may assume that $V_2^{(t)}$ is ACM, so the scheme defined by this new ideal is also ACM, thanks to the construction of Proposition 2.6.

We now turn to the inductive step. Suppose we have constructed the ACM scheme W_k defined by the saturated ideal

$$I_{W_k} = \left(\bigcap_{1 \leq i < j \leq k} (L_i, L_j)^{t+2}\right) \cap \left(\bigcap_{1 \leq i < k < j \leq s} (L_i, L_j)^{t+1}\right) \cap \left(\bigcap_{k < i < j \leq s} (L_i, L_j)^{t}\right)$$

and that this ideal contains the element $L_1^{t+2} \cdots L_k^{t+2} L_{k+2}^{t+1} \cdots L_s^{t+1}$. Notice that

$$\text{deg } W_k = \binom{k}{2} \left(\frac{\ell + 3}{2}\right) + (k) (s-k) \left(\frac{\ell + 2}{2}\right) + (s-k) \left(\frac{\ell + 1}{2}\right).$$

We produce the ACM scheme W_{k+1} via the ideal

$$L_{k+1} \cdot I_{W_k} + (L_1^{t+2} \cdots L_k^{t+2} L_{k+2}^{t+1} \cdots L_s^{t+1}).$$

Notice that thanks to Proposition 2.6 its degree is

$$\text{deg } W_k + (k)(\ell + 2) + (s-k-1)(\ell + 1).$$

To prove that this ideal is equal to

$$I_{W_{k+1}} = \bigcap_{1 \leq i < j \leq k+1} (L_i, L_j)^{t+2} \cap \bigcap_{1 \leq i < k+1 < j \leq s} (L_i, L_j)^{t+1} \cap \bigcap_{k+1 \leq i < j \leq s} (L_i, L_j)^{t}.$$
is an elementary computation along exactly the same lines as above (although showing that the degrees are equal is very tedious). It is not hard to check that this ideal contains the element \(L_{k+2} \cdots L_{s+1} \). Thus the inductive step works, and after \(s \) steps we obtain \(W_s = V^{(\ell+2)} \).

We remark that in the case \(n = 3, s = 4 \) (the tetrahedral curve case), the study of when the ideals defined by

\[
(x_1, x_2)^{\alpha_1} \cap (x_1, x_3)^{\alpha_2} \cap (x_1, x_4)^{\alpha_3} \cap (x_2, x_3)^{\alpha_4} \cap (x_2, x_4)^{\alpha_5} \cap (x_3, x_4)^{\alpha_6}
\]
define ACM subschemes of \(\mathbb{P}^3 \) was begun in \cite{IS} and completed in \cite{S}. Corollary \cite{S7} gives a partial extension to the codimension two case in \(\mathbb{P}^n \).

4. PRIMARY DECOMPOSITIONS OF POWERS OF IDEALS OF STAR CONFIGURATIONS AND APPLICATIONS

In this section we consider an important special case: star configurations defined by monomial ideals. Such a star configuration arises from the set of \(s = N + 1 \) coordinate hyperplanes in \(\mathbb{P}^N \). As motivation, we note that given any codimension \(c \) star configuration \(V_c(\mathcal{H}, \mathbb{P}^n) \) defined by a set \(\mathcal{H} = \{H_1, \ldots, H_s\} \) of \(s > n \) hyperplanes in \(\mathbb{P}^n \), we have \(V_c(\mathcal{H}, \mathbb{P}^n) = V_c(\mathcal{H}', \mathbb{P}^n) \cap L \) for an appropriate \(n \)-dimensional linear subspace \(L \subset \mathbb{P}^N \), where \(N + 1 = s \) and \(\mathcal{H}' = \{H'_0, \ldots, H'_N\} \) are the coordinate hyperplanes for \(\mathbb{P}^N \). (In particular, define \(\phi : k[\mathbb{P}^N] \to k[\mathbb{P}^n] \) by \(\phi : x_i \mapsto L_{s+1} \) for \(0 \leq i \leq N \), where \(x_i \) is the \(i \)th coordinate variable and \(L_i \) is the linear form which defines \(H_i \). Then \(L \) is defined by the kernel of \(\phi \).) In fact, by Theorem \cite{S} we also have \(\phi(I_c^{(m)}(V_c(\mathcal{H}', \mathbb{P}^n))) = I_c^{(m)}(V_c(\mathcal{H}, \mathbb{P}^n)) \) for all \(m \geq 1 \).

We now make a conjecture on the primary decomposition of \(I_c^{(l)}(V_c(\mathcal{H}, \mathbb{P}^n)) \), which we will verify in the monomial case (i.e., for \(I_c^{(l)}(V_c(\mathcal{H}', \mathbb{P}^n)) \); see Theorem \cite{IS}).

Conjecture 4.1. Let \(s > n \) and let \(\mathcal{H} = \{H_1, \ldots, H_s\} \) be hyperplanes \(H_i \subset \mathbb{P}^n \) meeting properly, defined by linear forms \(L_i \). Let \(M \) be the irrelevant ideal in \(k[\mathbb{P}^N] \) and \(M' \) the irrelevant ideal in \(k[\mathbb{P}^n] \), where \(N + 1 = s \) with \(k[\mathbb{P}^N] = k[x_0, \ldots, x_N] \) so \(M' = (x_0, \ldots, x_N) \), and let \(\mathcal{H}' \) be the \(N + 1 \) coordinate hyperplanes in \(\mathbb{P}^N \). Define \(\phi : k[\mathbb{P}^N] \to k[\mathbb{P}^n] \) by \(\phi : x_i \mapsto L_{s+1} \). Then

\[
I_c^{(l)}(V_c(\mathcal{H}, \mathbb{P}^n)) = \phi(I_c^{(l)}(V_c(\mathcal{H}', \mathbb{P}^n)))
\]

\[
= \phi(I_c^{(l)}(V_c(\mathcal{H}', \mathbb{P}^n)) \cap I_{c+1}(V_c(\mathcal{H}', \mathbb{P}^n))) \cap \cdots \cap I_{c+(n-1)}(V_c(\mathcal{H}', \mathbb{P}^n))) \cap M^{(N-c+2l)}
\]

\[
= \phi(I_c^{(l)}(V_c(\mathcal{H}', \mathbb{P}^n)) \cap \cdots \cap I_{c+(n-1)}(V_c(\mathcal{H}', \mathbb{P}^n)) \cap \phi(I_c^{(N-c+1l)}(\mathcal{H}', \mathbb{P}^n)) \cap \phi((M')^{(N-c+2l)}))
\]

\[
= I_c^{(l)}(V_c(\mathcal{H}, \mathbb{P}^n)) \cap I_{c+1}(V_c(\mathcal{H}, \mathbb{P}^n)) \cap \cdots \cap I_{c+(n-1)}(V_c(\mathcal{H}, \mathbb{P}^n)) \cap M^{(N-c+2l)}.
\]

Remark 4.2. Conjecture \cite{IS} is somewhat complicated so some comments may be helpful. The point is to give primary decompositions of \(I_c^{(l)}(V_c(\mathcal{H}, \mathbb{P}^n)) \) in terms of intersections of symbolic powers. Of course, the symbolic powers are not primary, but they are by definition intersections of primary ideals; for example, \(I_c^{(l)}(V_c(\mathcal{H}, \mathbb{P}^n)) \) is the intersection of the \(l \)th powers of the ideals defining the various
linear components of \(V_c(H, \mathbb{P}^n) \). What is true is:

\[
I_{V_c(H, \mathbb{P}^n)}^l = \phi(I_{V_c(H', \mathbb{P}^n)}^l) = \phi(I_{V_c(H', \mathbb{P}^n)}^{l})
\]

\[
= \phi(I_{V_c(H', \mathbb{P}^n)}^{l}) \cap I_{V_{c+1}(H', \mathbb{P}^n)}^{(2l)} \cap \cdots \cap I_{V_{N-1}(H', \mathbb{P}^n)}^{(2l)} \cap (M')^{(N-2l+1)}
\]

\[
\subseteq \phi(I_{V_c(H', \mathbb{P}^n)}^{l}) \cap \phi(I_{V_{c+1}(H', \mathbb{P}^n)}^{(2l)}) \cap \cdots \cap \phi(I_{V_{N-1}(H', \mathbb{P}^n)}^{(2l)}) \cap \phi((M')^{(N-2l+1)})
\]

\[
= I_{V_c(H', \mathbb{P}^n)}^{l} \cap \cdots \cap I_{V_{c+1}(H', \mathbb{P}^n)}^{(2l)} \cap \phi(I_{V_{N-1}(H', \mathbb{P}^n)}^{(2l)}) \cap \phi((M')^{(N-2l+1)})
\]

\[
\subseteq I_{V_c(H', \mathbb{P}^n)}^{l} \cap I_{V_{c+1}(H', \mathbb{P}^n)}^{(2l)} \cap \cdots \cap I_{V_{N-1}(H', \mathbb{P}^n)}^{(2l)} \cap M^{(N-2l+1)}.
\]

The first equality follows from Proposition 2.9(4), the second since \(\phi \) is a homomorphism and the third by Theorem 4.3 below. The third line (i.e., the first inclusion) holds since the image of an intersection is always contained in the intersection of the images (for any mapping), and the fourth line holds since \(\phi(I_{V_{i+1}(H', \mathbb{P}^n)}^{(n+l)}) = I_{V_{i+1}(H', \mathbb{P}^n)}^{(n+l)} \) for each \(i \) by Theorem 3.1. The fifth line holds since \(\phi(M') = M \) and since some of the terms in the intersection have been deleted. Thus the conjecture is that the two inclusions are equalities.

The conjecture that the first inclusion is an equality says that \(\phi \) commutes with the intersections. Having equality would give a primary decomposition of \(I_{V_c(H, \mathbb{P}^n)}^l \). Note that the tail end of this conjectured primary decomposition, namely

\[
\phi(I_{V_{c+1}(H', \mathbb{P}^n)}^{(2l)}) \cap \cdots \cap \phi(I_{V_{N-1}(H', \mathbb{P}^n)}^{(2l)}) \cap \phi((M')^{(N-2l+1)})
\]

is primary for the irrelevant ideal, \(M \). The last line of the conjecture simply asserts that this irrelevant component, which is not itself in general a pure power of \(M \), can nonetheless be replaced by a pure power of \(M \).

Finally, note that the primary decompositions proposed here need not be irredundant. For example, when \(l = 1 \), the last line of (4.3) is contained in (hence equal to) \(I_{V_c(H, \mathbb{P}^n)}^{l} \), hence Conjecture 4.1 holds for \(l = 1 \), but obviously the primary decomposition it gives is not minimal.

Remark 4.4. Here we note some cases where Conjecture 4.1 is known to hold. Conjecture 4.1 holds when \(l = 1 \), as noted at the end of Remark 4.2. It is easy to see that Conjecture 4.1 holds when \(c = 1 \), since \(I_{V_c(H, \mathbb{P}^n)} \) is principal and \(V_c(H, \mathbb{P}^n) \) is a complete intersection. Conjecture 4.1 holds when \(c = n \), since \(I_{V_c(H, \mathbb{P}^n)}^{l} = (I_{V_c(H, \mathbb{P}^n)}^{l})_t \) for \(t \geq \alpha(I_{V_c(H, \mathbb{P}^n)}^{l}) = l(s - c + 1) \) by Lemma 2.3.3(c), Lemma 2.4.2, and hence \(I_{V_c(H, \mathbb{P}^n)}^{l} = I_{V_c(H, \mathbb{P}^n)}^{l} \cap M^{(N-2l+1)} \). And Conjecture 4.1 holds when \(n = N = s - 1 \), by Theorem 4.8.

So now we begin a study of monomial star configurations \(V_c^{(l)}(H', \mathbb{P}^N) \), where \(H' \) consists of the \(N + 1 \) coordinate hyperplanes. Consider \(k[\mathbb{P}^N] = k[x_0, \ldots, x_N] \). Let \(p_0, \ldots, p_N \) be the coordinate vertices, where \(I_{p_i} = \langle \{x_j : j \neq i\} \rangle \). More generally, let \(\Lambda = \langle p_{i_1}, \ldots, p_{i_r} \rangle \) be the linear subspace spanned by the given points \(p_{i_j} \); then

\[
\Lambda = \langle \{x_j : j \notin \{i_1, \ldots, i_r\}\} \rangle.
\]

Given any monomial \(\mu = x_0^{m_0} \cdots x_N^{m_N} \), we can define its \(\Lambda \)-degree as \(\deg_{\Lambda}(\mu) = \sum_{j \notin \{i_1, \ldots, i_r\}} m_j = \deg(\mu) - \sum_{j \in \{i_1, \ldots, i_r\}} m_j \). Note that \(\deg_{\Lambda}(\mu) \) is just the order of vanishing of \(\mu \) on \(\Lambda \) (i.e., the largest power of \(I_{\Lambda} \) containing \(\mu \)). Let \(V_c = V_c(H', \mathbb{P}^N) \) and let \(I = I_c \) be its ideal. It now follows from the definition of symbolic power that \(I^{(l)} \) is generated by all monomials \(\mu \) such that \(\deg_{\Lambda}(\mu) \geq l \) for all irreducible components \(\Lambda \) of \(V_c \).

In the next result we determine \(\alpha(I^{(l)}) \). This is a special case extension of the result \(\alpha(I) = N - c + 2 \) given in Proposition 2.9(4). We will use this extension in Corollary 4.6 to extend the determination of \(\alpha \) given in Proposition 2.9(4) to symbolic powers in general.
Proposition 4.5. Let I be the ideal of $V_c = V_c(H', \mathbb{P}^N)$ where H' consists of the $N+1$ coordinate hyperplanes, and let $l \geq 1$. Define q and r by writing $l = qc + r$ for $1 \leq r \leq c$. Then $\alpha(I(l)) = (q+1)(N+1) - c + r$.

Proof. Let $\mu = (x_0 \cdots x_N)^q x_0 \cdots x_{N-c+r}$. Every component Λ of V_c is the span of exactly $N-c+1$ of the coordinate vertices p_i. Thus $\deg(\Lambda(x_0 \cdots x_N)) = N+1 - (N-c+1) = c$ and $\deg(\Lambda(x_0 \cdots x_{N-c+r})) = (N-c+r+1) - (N-c+1) = r$, so $\deg(\mu) = qc + r = l$. Thus $\mu \in I(l)$, so $\alpha(I(l)) \leq \deg(\mu) = (q+1)(N+1) - c + r$.

To show that $\alpha(I(l)) = (q+1)(N+1) - c + r$, it is enough to show for each monomial of degree $(q+1)(N+1) - c + r - 1$ that there is a component Λ of V_c on which the monomial has order of vanishing less than l. So let $\mu = x_0^{m_0} \cdots x_N^{m_N}$ be any monomial such that $\deg(\mu) = (q+1)(N+1) - c + r - 1 = q(N+1) + (N-c+r)$. For some permutation i_0, \ldots, i_N of the indices $0, \ldots, N$ we have $m_{i_0} \geq m_{i_1} \geq \cdots \geq m_{i_N}$. Let $\Lambda = \langle p_{i_0}, \ldots, p_{i_{N-c}} \rangle$. The order of vanishing of μ on Λ is

$$\deg(\mu) = m_{i_{N-c+1}} + \cdots + m_{i_N} = \deg(\mu) - (m_{i_0} + \cdots + m_{i_{N-c}}).$$

This is largest when $m_{i_0} + \cdots + m_{i_{N-c}}$ is least. We can replace μ with $\mu' = x_0^{m_0'} \cdots x_N^{m_N'}$ of the same degree such that still $m_{i_0} \geq m_{i_1} \geq \cdots \geq m_{i_N}$ but such that the exponents are as close to constant as possible (i.e., such that $m_{i_0}' - m_{i_N}' \leq 0$). Doing this increases the smaller exponents at the expense of the larger exponents, so we have $\deg(\mu') \leq \deg(\mu)$. Since $\deg(\mu') = q(N+1) + (N-c+r)$ we see that $m_{i_j} = q + 1$ for $j = 0, \ldots, N-c+r-1$, while $m_{i_j} = q$ for $j = N-c+r, \ldots, N$. Thus $\deg(\mu) \leq \deg(\mu') = (m_{i_0} + \cdots + m_{i_{N-c}}) = q(N+1) + (N-c+r) - (N-c+1)(q+1) = qc + r - 1 < l$.

More generally we have:

Corollary 4.6. Let $V_c(\mathbb{P}^n)$ be the codimension c skeleton for a star configuration on $s > n$ hyperplanes in \mathbb{P}^n and let I be its ideal. Define q and r by writing $l = qc + r$ for $1 \leq r \leq c$. Then $\alpha(I(l)) = (q+1)s - c + r$.

Proof. This follows from Theorem 3.1 (see also the last sentence of the proof of Theorem 3.1) and Proposition 4.5.

Proposition 4.7. Let I be the ideal of $V_c = V_c(H', \mathbb{P}^N)$ where H' consists of the $N+1$ coordinate hyperplanes, and let $l \geq 1$. Then $I(l)$ is generated in degree at most $l(N-c+2)$; more precisely, in any minimal set of homogeneous generators of $I(l)$, the degree $\omega(I(l))$ of a generator of maximum degree is $\omega(I(l)) = l(N-c+2) = \alpha(I(l))$.

Proof. First we note that $\alpha(I(l)) = la(I) = l(N-c+2)$. The ideal $I(l)$ is generated by all monomials $\mu = x_0^{m_0} \cdots x_N^{m_N}$ such that the c smallest exponents sum to l. The maximum degree of such a monomial which is not divisible by another such monomial is $l(N-c+2)$; take for example $\mu = (x_{c-1} \cdots x_N)^l$, and note μ is not divisible by any other monomial in this generating set.

We now prove Conjecture 4.1 in the monomial case.

Theorem 4.8. Let I be the ideal of $V_c = V_c(H', \mathbb{P}^N)$ where H' consists of the $N+1$ coordinate hyperplanes and M' is the irrelevant ideal, and let $l \geq 1$. Then

$$I^l = I_{V_c}^{(l)} \cap I_{V_{c+1}}^{(2l)} \cap \cdots \cap I_{V_N}^{(N(c-1)+1)} \cap (M')^{(N-c+2)}.$$

Proof. It is enough to show both the forward containment $I^l \subseteq I_{V_c}^{(l)} \cap I_{V_{c+1}}^{(2l)} \cap \cdots \cap I_{V_N}^{(N(c-1)+1)} \cap (M')^{(N-c+2)}$ and the reverse containment $I^l \supseteq I_{V_c}^{(l)} \cap I_{V_{c+1}}^{(2l)} \cap \cdots \cap I_{V_N}^{(N(c-1)+1)} \cap (M')^{(N-c+2)}$. Moreover, if we show the forward containment for $l = 1$, then we clearly have equality for $l = 1$, so it follows for $l > 1$ that

$$I^l = (I_{V_c} \cap \cdots \cap I_{V_N}^{(N-c+1)}) \cap (M')^{N-c+2}. $$

i.e., the forward containment for \(l = 1 \) implies the reverse containment for \(l = 1 \) and it implies the forward containments for all \(l > 1 \).

So now we verify the forward containment for \(l = 1 \). As noted in the proof of Proposition 3.7, \(I \) is generated by all monomials \(\mu = x_0^{m_0} \cdots x_N^{m_N} \) such that the \(c \) smallest exponents sum to \(l = 1 \). We also know that \(I \) is generated by monomials of degree \(N - c + 2 \). Thus exactly \(c - 1 \) of the exponents \(m_i \) must be 0, so the other \(N - c + 2 \) must be equal to 1. I.e., \(I \) is generated by the square-free monomials of degree \(N - c + 2 \), so each \(\mu \) is of the form \(\mu = x_{i_0} \cdots x_{i_{N-c+1}} \) for some indices \(0 \leq i_0 < \cdots < i_{N-c+1} \leq N \). Thus it is enough to show for every square-free monomial \(\mu \) of degree \(N - c + 2 \) that \(\mu \in I_{V_{c+1}}^{(l+1)} \) for \(i = 0, \ldots, N - c + 1 \) and that \(\mu \in (M')^{N-c+2} \).

Clearly we have \(\mu \in (M')^{N-c+2} \), so consider \(\mu \in I_{V_{c+1}}^{(l+1)} \). We must check that deg\(_\Lambda\)(\(\mu \)) \(\geq i + 1 \) for each component \(\Lambda \) of \(V_{c+1} \). But \(\Lambda \) is spanned by exactly \(N - c - i + 1 \) coordinate vertices, hence deg\(_\Lambda\)(\(\mu \)) \(\geq \deg(\mu) - (N - c - i + 1) = i + 1 \), as needed.

We will show that \(\mu \in I^l \). For simplicity we demonstrate the argument only in case \(m_0 \geq m_1 \geq \cdots \geq m_N; \) up to a permutation of the indices, the general argument is the same. Our proof will be by induction on \(l \), the case \(l = 1 \) having been established above.

If \(m_{N-c+1} \geq l \), then \(x_0 \cdots x_{N-c+1} \) divides \(\mu \), but \(x_0 \cdots x_{N-c+1} \in I \), so \(\mu \in I^l \). Now assume \(m_{N-c+1} < l \). In any case we have \(m_{N-c+1} > 0 \), since if \(m_{N-c+1} = 0 \), then \(\mu \) is not divisible by any square-free monomial of degree \(N - c + 2 \) and hence \(\mu \not\in I \), but by assumption (**), \(\mu \in I^{(l)} \subseteq I^l \).

In particular, \(\mu \) is divisible by \(x_0 \cdots x_{N-c+1} \); let \(\mu' = \mu/(x_0 \cdots x_{N-c+1}) \). If we check that

\[
\mu' \in I_{V_{c+1}}^{(l-1)} \cap I_{V_{c+1}}^{(2(l-1))} \cap \cdots \cap I_{V_{c+1}}^{((N-c+1)(l-1))} \cap (M')^{(N-c+2)(l-1)};
\]

then \(\mu' \in I^{l-1} \) by induction, so \(\mu = \mu' x_0 \cdots x_{N-c+1} \in I^l \), as claimed. We will use the following function. Given distinct elements \(j_1, \ldots, j_r \in \{0, \ldots, N\} \) and \(0 \leq t \leq N \), let \(\nu_{j_1, \ldots, j_r}(t) = |\{0, \ldots, t\} \cap \{j_1, \ldots, j_r\}|. \) Thus, for example, \(\nu_j(t) \) is 1 if \(0 \leq j \leq t \leq N \) and \(\nu_j(t) \) is 0 if \(0 \leq t < j \leq N \).

We first check that \(\mu' \in (M')^{(N-c+2)(l-1)} \). Since \(\mu \in (M')^{(N-c+2)l} \), we have deg\(_\mu\) \(\geq (N-c+2)l \), so deg\(_{\mu'}\) \(\geq (N-c+2)l - (N-c+2) = (N-c+2)(l-1) \), hence \(\mu' \in (M')^{(N-c+2)(l-1)} \).

Now we check that \(\mu' \in I_{V_{c+1}}^{((N-c+1)(l-1))} \). It suffices to check that deg\(_{(p_i)}\)(\(\mu' \)) \(\geq (N-c+1)(l-1) \) for each \(i \), where \(p_0, \ldots, p_N \) are the coordinate vertices. For all \(i \) we have

\[
\deg_{(p_i)}(\mu') = \deg_{(p_i)}(\mu) - (N-c+2 - \nu_i(N-c+1)).
\]

If \(i \leq N-c+1 \), then \(\nu_i(N-c+1) = 1 \) so using \(\deg_{(p_i)}(\mu) \geq (N-c+1)l \) (which we have since \(\mu \in I_{V_{c+1}}^{((N-c+1)l)} \)) we obtain

\[
\deg_{(p_i)}(\mu) - (N-c+2 - \nu_i(N-c+1)) \geq (N-c+1)l - (N-c+1) = (N-c+1)(l-1).
\]

If \(i > N-c+1 \), then \(\nu_i(N-c+1) = 0 \) and

\[
\deg_{(p_i)}(\mu') = \deg_{(p_i)}(\mu) - (N-c+2 - \nu_i(N-c+1))
= \deg(\mu) - m_i - (N-c+2)
\geq (N-c+2)l - m_i - (N-c+2)
\geq (N-c+2)l - (l-1) - (N-c+2)
= (N-c+1)(l-1),
\]

where the fourth line uses the assumption that \(m_{N-c+1} \leq l \).
Now we check that \(\mu' \in I_{V_{N-1}}^{((N-c)(l-1))} \). Let \(p_{i_1} \) and \(p_{i_2} \) be arbitrary distinct coordinate vertices, and assume \(i_1 < i_2 \). It suffices to check that \(\deg_{(p_{i_1}, p_{i_2})}(\mu') \geq (N-c)(l-1) \). For all \(i \) we have

\[
\deg_{(p_{i_1}, p_{i_2})}(\mu') = \deg_{(p_{i_1}, p_{i_2})}(\mu) - (N-c+2 - \nu_{i_1, i_2}(N-c+1)).
\]

If \(i_2 \leq N-c+1 \), then \(\nu_{i_1, i_2}(N-c+1) = 2 \) so using \(\deg_{(p_{i_1}, p_{i_2})}(\mu) \geq (N-c)l \) we have

\[
\deg_{(p_{i_1}, p_{i_2})}(\mu) - (N-c+2 - \nu_{i_1, i_2}(N-c+1)) \geq (N-c)l - (N-c) = (N-c)(l-1).
\]

If \(i_1 \leq N-c+1 < i_2 \), then \(\nu_{i_1, i_2}(N-c+1) = 1 \) so using \(\deg_{(p_{i_1}, p_{i_2})}(\mu) = \deg_{(p_{i_1})}(\mu) - m_{i_2} \geq (N-c+1)l - m_{i_2} \geq (N-c+1)l - (l-1) \) gives

\[
\deg_{(p_{i_1}, p_{i_2})}(\mu) - (N-c+2 - \nu_{i_1, i_2}(N-c+1)) \geq (N-c+1)l - (l-1) - (N-c+1) = (N-c)(l-1).
\]

Now we must check that \(\mu' \in I_{V_{N-2}}^{((N-c-1)(l-1))} \), and then \(\mu' \in I_{V_{N-3}}^{((N-c-2)(l-1))} \), etc., but the argument follows the same pattern of checking cases depending on how many of the indices of \(\{p_{i_1}, \ldots, p_{i_s}\} \) are less than or equal to \(N-c+1 \), and each case is verified in the same way as indicated above. \(\square \)

We can partially extend this to the non-monomial case. Given a homogeneous ideal \(J \) in a polynomial ring, we denote the saturation of \(J \) by \(\text{sat}(J) \), meaning the intersection of the primary components of \(J \) excluding the component primary to the irrelevant ideal (if there is one).

Corollary 4.9. Let \(I \subset k[\mathbb{P}^n] = R \) be the ideal of \(V_c = V_c(\mathcal{H}, \mathbb{P}^n) \) where \(\mathcal{H} \) consists of \(s > n \) hyperplanes \(H_1, \ldots, H_s \) meeting properly where \(M \) is the irrelevant ideal, and let \(l \geq 1 \). Then

\[
\text{sat}(I^l) = I_{V_c}^l \cap I_{V_{c+1}}^{(2l)} \cap \cdots \cap I_{V_n}^{((n-c+1)l)}.
\]

Proof. Since \(I^l \subseteq I_{V_c}^l \cap I_{V_{c+1}}^{(2l)} \cap \cdots \cap I_{V_n}^{((n-c+1)l)} \) by Remark 1.2 but the latter is saturated, we at least have \(\text{sat}(I^l) \subseteq I_{V_c}^l \cap I_{V_{c+1}}^{(2l)} \cap \cdots \cap I_{V_n}^{((n-c+1)l)} \). Since \(I^l \) is homogeneous, the associated primes and their primary components are homogeneous also [23, Theorem 9, p. 153]. Thus to show equality it suffices to show equality after localizing for every prime ideal of the form \(I_p \) for \(p \in V_c \). But after such a localization, every hyperplane \(H_i \) not passing through \(p \) becomes a unit and hence \(I^lR_p \) is generated by monomials in the linear forms \(L_j \) for all \(H_j \) passing through \(p \). Say that these \(H_j \) are \(H_{j_0}, \ldots, H_{j_r} \) and pick any other \(r > n \) of the hyperplanes \(H_i \) to obtain \(H_{j_0}, \ldots, H_{j_n} \). After a change of coordinates we may assume \(H_{j_i} = x_i \) for \(i = 0, \ldots, n \). Let \(\mathcal{H}' = \{x_0, \ldots, x_n\} \), let \(V'_i = V_i(\mathcal{H}', \mathbb{P}^n) \) for all \(i \) and let \(J = I_{V'_2} \). Clearly \(p \in V' \subseteq V_c \) and \(I^l R_p = J^l R_p \). We know the primary decomposition of \(J^l \) and hence of \(J^l R_p \) from Theorem 4.8 i.e., we have

\[
I^l R_p = J^l R_p = \left(I_{V_c}^l \cap I_{V_{c+1}}^{(2l)} \cap \cdots \cap I_{V_n}^{((n-c+1)l)} \right) R_p,
\]

Since this holds for all \(p \in V_c \), we have

\[
\text{sat}(I^l) = I_{V_c}^l \cap I_{V_{c+1}}^{(2l)} \cap \cdots \cap I_{V_n}^{((n-c+1)l)}.
\]

as claimed. \(\square \)
As an application we apply our results to compute the resurgence for certain subschemes. We first recall the definition of the resurgence \(\mathcal{R} \). The point of the resurgence is to provide an asymptotic measure of how far symbolic powers deviate from ordinary powers of the same ideal. This is not interesting in the case of an ideal \(I \) if \(I = (0) \) or \(I = (1) \), so we do not define the resurgence in those cases.

Definition 4.10. Let \((0) \neq I \subset k[\mathbb{P}^n] \) be a homogeneous ideal. The resurgence of \(I \), denoted \(\rho(I) \), is

\[
\rho(I) = \sup \left\{ \frac{m}{r} : I^{(m)} \not\subseteq I^r \right\},
\]

with equality in case \(c = N \). Thus when \(s = N + 1 \) we have \(\frac{c(N - c + 2)}{N + 1} \leq \rho(I_{V_c(\mathcal{H}, \mathbb{P}^N)}) \) with \(\rho(I_{V_N(\mathcal{H}, \mathbb{P}^N)}) = 2N/(N + 1) \) when \(c = N \). We will show equality also holds when \(c = N - 1 \), giving \(\rho(I_{V_N(\mathcal{H}, \mathbb{P}^N)}) = 3(N - 1)/(N + 1) \). The only exact determinations up to now for subschemes which are not complete intersections nor are 0-dimensional nor are cones over such and for which the resurgence is bigger than 1 are for certain smooth unions of lines in projective space \(\mathbb{P}^1 \).

Theorem 4.11. Let \(N \geq 3 \) and let \(I \subset k[\mathbb{P}^N] \) be the ideal of \(V_{N-1} = V_{N-1}(\mathcal{H}', \mathbb{P}^N) \) where \(\mathcal{H}' \) consists of the \(N + 1 \) coordinate hyperplanes, which we denote as \(H_1, \ldots, H_{N+1} \). Then

\[
\rho(I) = \frac{3(N - 1)}{N + 1}.
\]

Moreover, given \(m, r \geq 1 \), we have \(I^{(m)} \not\subseteq I^r \) if and only if

\[
\frac{m}{r} < \left(3 - \frac{2N - 4}{(N - 1)r} \right) \frac{N - 1}{N + 1}.
\]

Proof. Assume \(k[\mathbb{P}^N] = k[x_0, \ldots, x_N] \). Let \(M \) be the irrelevant ideal and let \(J = I_{V_N} \). By Theorem 4.8

\[
I^r = I_{V_{N-1}}^{(r)} \cap I_{V_N}^{(2r)} \cap M^{3r} = I^{(r)} \cap J^{(2r)} \cap M^{3r}.
\]

Thus \(I^{(m)} \) fails to be contained in \(I^r \) if and only if either

\[
I^{(m)} \not\subseteq I^{(r)}, \quad I^{(m)} \not\subseteq J^{(2r)} \quad \text{or} \quad I^{(m)} \not\subseteq M^{3r},
\]

so

\[
\rho(I) = \max \left\{ \sup \{m/r : I^{(m)} \not\subseteq I^{(r)}\}, \sup \{m/r : I^{(m)} \not\subseteq J^{(2r)}\}, \sup \{m/r : I^{(m)} \not\subseteq M^{3r}\} \right\}.
\]

Since \(I^{(m)} \not\subseteq I^{(r)} \) if and only if \(m < r \), we have \(\sup \{m/r : I^{(m)} \not\subseteq I^{(r)}\} \leq 1 \).

Next, \(I^{(m)} \not\subseteq J^{(2r)} \) if and only if there is a monomial \(x_0^{m_0} \cdots x_N^{m_N} \) in \(I^{(m)} \) but not in \(J^{(2r)} \).

After a permutation of the indices if need be, this condition is equivalent to there being exponents \(m_0 \geq \cdots \geq m_N \) such that \(m_2 + \cdots + m_N \geq m \) but \(m_1 + \cdots + m_N < 2r \). Let \(q = \lfloor m/(N - 1) \rfloor \)
and \(r = m - (N - 1)q \) so \(m = (N - 1)q + r \) and \(0 \leq r < N - 1 \). Let \(m'_0 = m'_1 = m'_2 \), and if \(r = 0 \), let \(m'_2 = \cdots = m'_N = q \), while if \(r > 0 \), let \(m'_2 = \cdots = m'_{r+1} = q + 1 \), and \(m'_{r+2} = \cdots = m'_N = q \). Note that \(m_2 \geq \left\lceil (m_2 + \cdots + m_N)/(N - 1) \right\rceil \geq \lceil m/(N - 1) \rceil \) so \(m_2 \geq m'_2 \), hence \(m_1 \geq m_2 \geq m'_2 = m'_1 \). Then \(m'_0 \geq \cdots \geq m'_N \) with \(m'_0 = m'_2 = (N - 1)q + r = m \) and \(m'_1 + \cdots + m'_N = m'_1 + m'_2 + \cdots + m'_N = m'_1 + m \leq m_1 + m_2 + \cdots + m_N < 2r \). Thus \(\mu' = x_0^{m'_0} \cdots x_N^{m'_N} \in I^{(m)} \setminus J^{(2r)} \), and we have \(m'_0 - m'_N \leq 1 \); in particular, each \(m'_i \) is either \(\lceil m/(N - 1) \rceil \) or \(\lfloor m/(N - 1) \rfloor \) (and necessarily \(m'_2 = \lceil m/(N - 1) \rceil \) and \(m'_N = \lfloor m/(N - 1) \rfloor \)). The condition that \(m'_1 + \cdots + m'_N < 2r \) can now be stated as \(m + \lceil m/(N - 1) \rceil < 2r - 1 \); i.e., \(I^{(m)} \not\subset J^{(2r)} \) if and only if

\[
\frac{m}{r} \leq (N - 1) \frac{2 - \frac{1}{r}}{N}.
\]

Thus \(\sup \{m/r : I^{(m)} \not\subset J^{(2r)} \} \leq 2(N - 1)/N \).

Finally, \(I^{(m)} \not\subset M^{3r} \) if and only if \(\alpha(I^{(m)}) < 3r \). By Proposition 2.5 \(\alpha(I^{(m)}) = (q + 1)(N + 1) - (N - 1) + r \), where \(m = q(N - 1) + r \) for \(1 \leq r \leq N - 1 \). Note that

\[
(q + 1)(N + 1) - (N - 1) + r = m + 2q + 2 = m + 2(m - r)/(N - 1) + 2 = m + 2 + 2\left\lceil \frac{m - 1}{N - 1} \right\rceil.
\]

Thus \(m + 2 + 2\left\lceil \frac{m - 1}{N - 1} \right\rceil = \alpha(I^{(m)}) < 3r \) holds if and only if \(m + 2 + 2\frac{m - 1}{N - 1} < 3r \), which simplifies to

\[
\frac{m}{r} < \left(3 - \frac{2N - 4}{(N - 1)r} \right) \frac{N - 1}{N + 1}.
\]

The supremum of the right hand side over all values of \(r \geq 1 \) is \(3\frac{N - 1}{N + 1} \). Since \(3\frac{N - 1}{N + 1} \) is greater than either 1 or \(2(N - 1)/N \), we see that \(\rho(I) \leq 3\frac{N - 1}{N + 1} \). To show that we actually have equality, let \(m = 3(N - 1)^2t \) and let \(r = (N^2 - 1)t + N - 1 \). Then \(m + 2 + 2\frac{m - 1}{N - 1} < 3r \) holds (it simplifies to \(3(N - 8)N + 7 > 0 \), and

\[
\frac{m}{r} = \frac{3(N - 1)^2t}{(N^2 - 1)t + N - 1} = \frac{3(N - 1)}{N + 1 + \frac{1}{t}}
\]

has supremum \(3(N - 1)/(N + 1) \), taken over all \(t \geq 1 \).

We now have

\[
\rho(I) = \max \left(\frac{3(N - 1)}{N + 1} , \frac{2(N - 1)}{N} , 1 \right) = \frac{3(N - 1)}{N + 1}.
\]

We close by proving that \(I^{(m)} \not\subset I^r \) if and only if

\[
\frac{m}{r} < \left(3 - \frac{2N - 4}{(N - 1)r} \right) \frac{N - 1}{N + 1}.
\]

From our work above we have \(I^{(m)} \not\subset I^r \) if and only if either

\[
\frac{m}{r} < 1 \quad \text{or} \quad \frac{m}{r} \leq (2 - \frac{1}{r}) \frac{N - 1}{r} \quad \text{or} \quad \frac{m}{r} < \left(3 - \frac{2N - 4}{(N - 1)r} \right) \frac{N - 1}{N + 1}.
\]

But \(1 \leq (2 - \frac{1}{r}) \frac{N - 1}{N} < \left(3 - \frac{2N - 4}{(N - 1)r} \right) \frac{N - 1}{N + 1} \) for \(r \geq 2 \), so the three inequalities are subsumed by the last one when \(r \geq 2 \), while when \(r = 1 \) it is enough to note that \(\left(3 - \frac{2N - 4}{(N - 1)r} \right) \frac{N - 1}{N + 1} = 1. \)

One of the things our results suggest is that the nice properties of star configurations generally may derive from the nice behavior coming from stars configurations whose ideals are monomial ideals. As we have seen, a codimension \(c \) star \(V_c(\mathbb{P}^n) \) coming from \(s \) hyperplanes in \(\mathbb{P}^n \) is, as a point set, the intersection with an appropriate linear space \(L \subset \mathbb{P}^N \) of dimension \(n \) of the codimension \(c \) star \(V_c(\mathbb{P}^N) \) coming from the \(N + 1 \) coordinate hyperplanes in \(\mathbb{P}^N \), where \(N + 1 = s \). Thus it is reasonable to ask the following question.
Question 4.12. If \mathcal{H} is a set of $s > n$ hyperplanes in \mathbb{P}^s meeting properly and \mathcal{H}' is the set of coordinate hyperplanes in \mathbb{P}^N for $N = s - 1$, is it true that $\rho(I_{V_c(\mathcal{H}, \mathbb{P}^s)}) = \rho(I_{V_c(\mathcal{H}', \mathbb{P}^N)})$?

We do not know the answer, but we at least have $\rho(I_{V_c(\mathcal{H}, \mathbb{P}^s)}) \leq \rho(I_{V_c(\mathcal{H}', \mathbb{P}^N)})$. (This is because if $(I_{V_c(\mathcal{H}, \mathbb{P}^s)})^{(m)} \subseteq (I_{V_c(\mathcal{H}', \mathbb{P}^N)})^r$, then $(I_{V_c(\mathcal{H}', \mathbb{P}^N)})^{(m)} \subseteq (I_{V_c(\mathcal{H}', \mathbb{P}^N)})^r$, since by Theorem 3.1 and its proof we have $(I_{V_c(\mathcal{H}, \mathbb{P}^s)})^{(m)} = (I_{V_c(\mathcal{H}', \mathbb{P}^N)})^{(m)} + J$ and $(I_{V_c(\mathcal{H}', \mathbb{P}^N)})^r = (I_{V_c(\mathcal{H}', \mathbb{P}^N)})^r + J$, where J is an ideal generated by linear forms, and these forms being the ones defining the linear space whose intersection with $V_c(\mathcal{H}', \mathbb{P}^N)$ gives $V_c(\mathcal{H}, \mathbb{P}^s)$. In addition, Theorem 4.11 shows that Question 4.12 is true when $c = n = N - 1$ and $s = n + 2$: using $\rho(I_{V_n(\mathbb{P}^s)}) = n(s - n + 1)/s$ \[3\], we have $\rho(I_{V_n(\mathbb{P}^s)}) = n(s - n + 1)/s = 3(N - 1)/(N + 1) = \rho(I_{V_{N-1}(\mathbb{P}^N)})$.

References

[1] M. F. Atiyah and I. G. MacDonald, *Introduction to Commutative Algebra*, Addison-Wesley, Reading MA, (1969).

[2] T. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. Knutsen, W. Syzdek, and T. Szemberg, *A primer on Seshadri constants*, to appear in the AMS Contemporary Mathematics series volume “Interactions of Classical and Numerical Algebraic Geometry,” Proceedings of a conference in honor of A. J. Sommese, held at Notre Dame, May 22–24 2008. (arXiv:0810.0723)

[3] C. Bocci and B. Harbourne, *Comparing Powers and Symbolic Powers of Ideals*, J. Algebraic Geometry, 19 (2010), 399–417.

[4] C. Bocci and B. Harbourne, *The resurgence of ideals of points and the containment problem*, Proc. Amer. Math. Soc., Volume 138, Number 4, April 2010, 1175–1190.

[5] E. Carlini, L. Chiantini and A. V. Geramita, *Complete intersections on general hypersurfaces*, Michigan Math. J. Volume 57 (2008), 121–136.

[6] CoCoATeam, *CoCoA: a system for doing Computations in Commutative Algebra*, Available at http://cocoa.dima.unige.it

[7] S. Cooper, B. Harbourne and Z. Teitler, *Combinatorial bounds on Hilbert functions of fat points in projective space*, J. Pure Appl. Algebra, Volume 215, Issue 9, September 2011, 2165–2179.

[8] A. Denkert and M. Janssen. In preparation, 2011.

[9] C. Francisco, *Toric varieties via graphs and Alexander duality*, J. Pure Appl. Algebra 212 (2008), 364–375.

[10] A.V. Geramita, J. Migliore and L. Sabourin, *On the first infinitesimal neighborhood of a linear configuration of points in P^3*, J. Algebra 298 (2006), 563–611.

[11] E. Guardo, B. Harbourne and A. Van Tuyl, *Symbolic powers versus regular powers of ideals of general points in $P^r \times P^s$*, preprint (2011), 25 pp. (arXiv:1107.3900)

[12] R. Hartshorne, A. Hirschowitz, *Droites en position générale dans l’espace projectif*, in “Algebraic Geometry, Proc. La Rábida, 1981,” LNM 961 (1982), Springer-Verlag, 169–189.

[13] J. Herzog and T. Hibi, *Cohen–Macaulay polymatroidal ideals*, European J. Combin. 27 (2006), 513–517.

[14] M. Hochster and John A. Eagon, *Cohen-Macaulay Rings, Invariant Theory, and the Generic Perfection of Determinantal Loci*, Amer. Journal of Mathematics, Vol. 93, No. 4 (Oct., 1971), pp. 1020–1058.

[15] M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147 (2002), 349–369.

[16] J. Kleppe, J. Migliore, R.M. Miró-Roig, U. Nagel and C. Peterson, *Gorenstein Liaison, Complete Intersection Liaison Invariants and Unobstructedness*, Memoirs of the Amer. Math. Soc. Vol. 154, 2001; 116 pp. Softcover, ISBN 0-8218-2738-3.

[17] J. Migliore, “Introduction to Liaison Theory and Deficiency Modules,” Birkhäuser, Progress in Mathematics 165, 1998.

[18] J. Migliore and U. Nagel, *Tetrahedral curves*, Int. Math. Res. Notices 15 (2005), 899-939.

[19] J. Migliore and U. Nagel, *Numerical Macaulification*, preprint 2012, available at http://arxiv.org/abs/1202.2275

[20] N.C. Minh and N.V. Trung, *Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals*, Adv. Math. 226 (2011), 1285–1306.

[21] D. Testa, A. Várilly-Alvarado and M. Velasco, *Big rational surfaces*, Math. Ann. 351 (2011) 95–107.

[22] M. Varbaro, *Symbolic powers and matroids*, Proc. Amer. Math. Soc. 139 (2011), 2357–2366.

[23] O. Zariski and P. Samuel, *Commutative algebra. Vol. II*. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960.
A. V. Geramita, Department of Mathematics, Queen’s University, Kingston, Ontario, and, Dipartimento di Matematica, Università di Genova, Genova, Italia
E-mail address: anthony.geramita@gmail.com

Brian Harbourne, Department of Mathematics, University of Nebraska, Lincoln, NE
E-mail address: bharbour@math.unl.edu

Juan Migliore, Department of Mathematics, University of Notre Dame, South Bend, IN
E-mail address: migliore.1@nd.edu