On a Weighted Singular Integral Operator with Shifts and Slowly Oscillating Data

Alexei Yu. Karlovich, Yuri I. Karlovich and Amarino B. Lebre

Abstract. Let α, β be orientation-preserving diffeomorphism (shifts) of $\mathbb{R}_+ = (0, \infty)$ onto itself with the only fixed points 0 and ∞ and U_α, U_β be the isometric shift operators on $L^p(\mathbb{R}_+)$ given by $U_\alpha f = (\alpha')^{1/p}(f \circ \alpha)$, $U_\beta f = (\beta')^{1/p}(f \circ \beta)$, and $P^\pm_2 = (I \pm S_2)/2$ where

$$(S_2 f)(t) := \frac{1}{\pi i} \int_0^\infty \left(\frac{t}{\tau} \right)^{1/2 - 1/p} \frac{f(\tau)}{\tau - t} \, d\tau, \quad t \in \mathbb{R}_+,$$

is the weighted Cauchy singular integral operator. We prove that if α', β' and c, d are continuous on \mathbb{R}_+ and slowly oscillating at 0 and ∞, and

$$\limsup_{t \to s} |c(t)| < 1, \quad \limsup_{t \to s} |d(t)| < 1, \quad s \in \{0, \infty\},$$

then the operator $(I - cU_\alpha)P^+_2 + (I - dU_\beta)P^-_2$ is Fredholm on $L^p(\mathbb{R}_+)$ and its index is equal to zero. Moreover, its regularizers are described.

Mathematics Subject Classification (2010). Primary 45E05; Secondary 47A53, 47B35, 47G10, 47G30.

Keywords. Orientation-preserving shift, weighted Cauchy singular integral operator, slowly oscillating function, Fredholmness, index.

1. Introduction

Let $\mathcal{B}(X)$ be the Banach algebra of all bounded linear operators acting on a Banach space X, and let $\mathcal{K}(X)$ be the ideal of all compact operators in

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the projects PEst-OE/MAT/UI0297/2014 (Centro de Matemática e Aplicações) and PEst-OE/MAT/UI4032/2014 (Centro de Análise Funcional e Aplicações). The second author was also supported by the CONACYT Project No. 168104 (México) and by PROMEP (México) via “Proyecto de Redes”.

arXiv:1501.03744v1 [math.FA] 15 Jan 2015.
An operator \(A \in \mathcal{B}(X) \) is called Fredholm if its image is closed and the spaces \(\ker A \) and \(\ker A^* \) are finite-dimensional. In that case the number

\[
\text{Ind } A := \dim \ker A - \dim \ker A^*
\]

is referred to as the index of \(A \) (see, e.g., [2, Sections 1.11–1.12], [4, Chap. 4]).

For bounded linear operators \(A \) and \(B \), we will write \(A \simeq B \) if \(A - B \in \mathcal{K}(X) \).

Recall that an operator \(B_r \in \mathcal{B}(X) \) (resp. \(B_l \in \mathcal{B}(X) \)) is said to be a right (resp. left) regularizer for \(A \) if

\[
AB_r \simeq I \quad (\text{resp. } B_l A \simeq I).
\]

It is well known that the operator \(A \) is Fredholm on \(X \) if and only if it admits simultaneously a right and a left regularizer. Moreover, each right regularizer differs from each left regularizer by a compact operator (see, e.g., [4, Chap. 4, Section 7]). Therefore we may speak of a regularizer \(B = B_r = B_l \) of \(A \) and two different regularizers of \(A \) differ from each other by a compact operator.

A bounded continuous function \(f \) on \(\mathbb{R}_+ = (0, \infty) \) is called slowly oscillating (at 0 and \(\infty \)) if for each (equivalently, for some) \(\lambda \in (0, 1) \),

\[
\lim_{r \to s} \sup_{t, \tau \in [\lambda r, r]} |f(t) - f(\tau)| = 0, \quad s \in \{0, \infty\}.
\]

The set \(\mathcal{SO}(\mathbb{R}_+) \) of all slowly oscillating functions forms a \(C^* \)-algebra. This algebra properly contains \(C(\mathbb{R}_+) \), the \(C^* \)-algebra of all continuous functions on \(\mathbb{R}_+ := [0, +\infty] \). Suppose \(\alpha \) is an orientation-preserving diffeomorphism of \(\mathbb{R}_+ \) onto itself, which has only two fixed points 0 and \(\infty \). We say that \(\alpha \) is a slowly oscillating shift if \(\log \alpha' \) is bounded and \(\alpha' \in \mathcal{SO}(\mathbb{R}_+) \). The set of all slowly oscillating shifts is denoted by \(\mathcal{SOS}(\mathbb{R}_+) \).

Throughout the paper we suppose that \(1 < p < \infty \). It is easily seen that if \(\alpha \in \mathcal{SOS}(\mathbb{R}_+) \), then the shift operator \(W_\alpha \) defined by \(W_\alpha f = f \circ \alpha \) is bounded and invertible on all spaces \(L^p(\mathbb{R}_+) \) and its inverse is given by \(W_\alpha^{-1} = W_{\alpha^{-1}} \), where \(\alpha^{-1} \) is the inverse function to \(\alpha \). Along with \(W_\alpha \) we consider the weighted shift operator

\[
U_\alpha := (\alpha')^{1/p} W_\alpha
\]

being an isometric isomorphism of the Lebesgue space \(L^p(\mathbb{R}_+) \) onto itself. Let \(S \) be the Cauchy singular integral operator given by

\[
(Sf)(t) := \frac{1}{\pi i} \int_0^\infty \frac{f(\tau)}{\tau - t} \, d\tau, \quad t \in \mathbb{R}_+.
\]

where the integral is understood in the principal value sense. It is well known that \(S \) is bounded on \(L^p(\mathbb{R}_+) \) for every \(p \in (1, \infty) \). Let \(\mathcal{A} \) be the smallest closed subalgebra of \(\mathcal{B}(L^p(\mathbb{R}_+)) \) containing the identity operator \(I \) and the operator \(S \). It is known (see, e.g., [3], [5 Section 2.1.2], [18] Sections 4.2.2–4.2.3], and [19]) that \(\mathcal{A} \) is commutative and for every \(y \in (1, \infty) \) it contains...
the weighted singular integral operator
\[
(S_y f)(t) := \frac{1}{\pi i} \int_0^\infty \left(\frac{t}{\tau} \right)^{1/y-1/p} \frac{f(\tau)}{\tau - t} \, d\tau, \quad t \in \mathbb{R}_+,
\]
and the operator with fixed singularities
\[
(R_y f)(t) := \frac{1}{\pi i} \int_0^\infty \left(\frac{t}{\tau} \right)^{1/y-1/p} \frac{f(\tau)}{\tau + t} \, d\tau, \quad t \in \mathbb{R}_+,
\]
which are understood in the principal value sense. For \(y \in (1, \infty) \), put
\[
P_{\pm}^y := \frac{1}{2} \left(I \pm S_y \right).
\]
This paper is in some sense a continuation of our papers [7, 8, 9], where singular integral operators with shifts were studied under the mild assumptions that the coefficients belong to \(SO(\mathbb{R}_+) \) and the shifts belong to \(SOS(\mathbb{R}_+) \). In [7, 8] we found a Fredholm criterion for the singular integral operator
\[
N = (aI - bW_\alpha)P^+_p + (cI - dW_\alpha)P^-_p
\]
with coefficients \(a, b, c, d \in SO(\mathbb{R}_+) \) and a shift \(\alpha \in SOS(\mathbb{R}_+) \). However, a formula for the calculation of the index of the operator \(N \) is still missing. Further, in [9] we proved that the operators
\[
A_{ij} = U^i_\alpha P^+_p + U^j_\beta P^-_p, \quad i, j \in \mathbb{Z},
\]
with \(\alpha, \beta \in SOS(\mathbb{R}_+) \) are all Fredholm and their indices are equal to zero. This result was the first step in the calculation of the index of \(N \). Here we make the next step towards the calculation of the index of the operator \(N \).

For \(a \in SO(\mathbb{R}) \), we will write \(1 \gg a \) if
\[
\limsup_{t \to s} |a(t)| < 1, \quad s \in \{0, \infty\}.
\]

Theorem 1.1 (Main result). Let \(1 < p < \infty \) and \(\alpha, \beta \in SOS(\mathbb{R}_+) \). Suppose \(c, d \in SO(\mathbb{R}_+) \) are such that \(1 \gg c \) and \(1 \gg d \). Then the operator
\[
V := (I - cU_\alpha)P^+_p + (I - dU_\beta)P^-_p,
\]
is Fredholm on the space \(L^p(\mathbb{R}_+) \) and \(\text{Ind} V = 0 \).

The paper is organized as follows. In Section 2 we collect necessary facts about slowly oscillating functions and slowly oscillating shifts, as well as about the invertibility of binomial functional operators \(I - cU_\alpha \) with \(c \in SO(\mathbb{R}_+) \) and \(\alpha \in SOS(\mathbb{R}_+) \) under the assumption that \(1 \gg c \). Further we prove that the operators in the algebra \(A \) commute modulo compact operators with the operators in the algebra \(F\mathcal{O}_{\alpha, \beta} \) of functional operators with shifts and slowly oscillating data. Finally, we show that the ranges of two important continuous functions on \(\mathbb{R} \) do not contain the origin. In Section 3 we recall that the operators \(P^+_y \) and \(R_y \), belonging to the algebra \(A \) for every \(y \in (1, \infty) \), can be viewed as Mellin convolution operators and formulate two relations between \(P^+_y \), \(P^-_y \), and \(R_y \). Section 4 contains results
on the boundedness, compactness of semi-commutators, and the Fredholm-
ness of Mellin pseudodifferential operators with slowly oscillating symbols of limited smoothness (symbols in the algebra \(\tilde{E}(\mathbb{R}^+, V(\mathbb{R}))\)). Results of this section are reformulations/modifications of corresponding results on Fourier pseudodifferential operators obtained by the second author in [12] (see also [13, 14, 15]). Notice that those results are further generalizations of earlier results by Rabinovich (see [17, Chap. 4] and the references therein) obtained for Mellin pseudodifferential operators with \(C^\infty\) slowly oscillating symbols.

In [9, Lemma 4.4] we proved that the operator \(U_\gamma R_y\) with \(\gamma \in SOS(\mathbb{R}^+)\) and \(y \in (1, \infty)\) can be viewed as a Mellin pseudodifferential operator with a symbol in the algebra \(\tilde{E}(\mathbb{R}^+, V(\mathbb{R}))\). In Section 5 we generalize that result and prove that \((I - \nu U_\gamma) R_y\) and \((I - \nu U_\gamma)^{-1} R_y\) with \(y \in (1, \infty)\), \(\gamma \in SOS(\mathbb{R}^+)\), and \(\nu \in SO(\mathbb{R}^+)\) satisfying \(1 \gg \nu\), can be viewed as Mellin pseudodifferential operators with symbols in the algebra \(\tilde{E}(\mathbb{R}^+, V(\mathbb{R}))\). This is a key result in our analysis.

Section 6 is devoted to the proof of Theorem 1.1. Here we follow the idea, which was already used in a simpler situation of the operators \(A_{ij}\) in [9]. With the aid of results of Section 2 and Section 5, we will show that for every \(\mu \in [0, 1]\) and \(y \in (1, \infty)\), the operators

\[
[I - \mu c U_\alpha] P_y^+ + (I - \mu d U_\beta) P_y^- \cdot [(I - \mu c U_\alpha)^{-1} P_y^+ + (I - \mu d U_\beta)^{-1} P_y^-] \\
[I - \mu c U_\alpha)^{-1} P_y^+ + (I - \mu d U_\beta)^{-1} P_y^-] \cdot [(I - \mu c U_\alpha) P_y^+ + (I - \mu d U_\beta) P_y^-]
\]

are equal up to compact summands to the same operator similar to a Mellin pseudodifferential operator with a symbol in the algebra \(\tilde{E}(\mathbb{R}^+, V(\mathbb{R}))\). Moreover, the latter pseudodifferential operator is Fredholm whenever \(y = 2\) in view of results of Section 4. This will show that each operator

\[V_{\mu, 2} = (I - \mu c U_\alpha) P_2^+ + (I - \mu d U_\beta) P_2^-\]

is Fredholm on \(L^p(\mathbb{R}^+)\). Considering the homotopy \(\mu \mapsto V_{\mu, 2}\) for \(\mu \in [0, 1]\), we see that the operator \(V\) is homotopic to the identity operator. Therefore, the index of \(V\) is equal to zero. This will complete the proof of Theorem 1.1.

As a by-product of the proof of the main result, in Section 7 we describe all regularizers of a slightly more general operator

\[W = (I - c U_\alpha^{\varepsilon_1}) P_2^+ + (I - d U_\beta^{\varepsilon_2}) P_2^-\]

where \(\varepsilon_1, \varepsilon_2 \in \{-1, 1\}\) and show that

\[G_y W \simeq R_y\]

for every \(y \in (1, \infty)\), where \(G_y\) is an operator similar to a Mellin pseudodifferential operator with a symbol in \(\tilde{E}(\mathbb{R}^+, V(\mathbb{R}))\) with some additional properties. The latter relation for \(y = 2\) will play an important role in the proof of an index formula for the operator \(N\) in our forthcoming work [11].
2. Preliminaries

2.1. Fundamental Property of Slowly Oscillating Functions

For a unital commutative Banach algebra \(\mathfrak{A} \), let \(M(\mathfrak{A}) \) denote its maximal ideal space. Identifying the points \(t \in \mathbb{R}_+ \) with the evaluation functionals \(t(f) = f(t) \) for \(f \in C(\mathbb{R}_+) \), we get \(M(C(\mathbb{R}_+)) = \mathbb{R}_+ \). Consider the fibers

\[
M_s(SO(\mathbb{R}_+)) := \{ \xi \in M(SO(\mathbb{R}_+)) : \xi|_{C(\mathbb{R}_+)} = s \}
\]

of the maximal ideal space \(M(SO(\mathbb{R}_+)) \) over the points \(s \in \{0, \infty\} \). By [14, Proposition 2.1], the set

\[
\Delta := M_0(SO(\mathbb{R}_+)) \cup M_\infty(SO(\mathbb{R}_+))
\]

coincides with \((\text{clos}_{SO^*} \mathbb{R}_+) \setminus \mathbb{R}_+ \) where \(\text{clos}_{SO^*} \mathbb{R}_+ \) is the weak-star closure of \(\mathbb{R}_+ \) in the dual space of \(SO(\mathbb{R}_+) \). Then \(M(SO(\mathbb{R}_+)) = \Delta \cup \mathbb{R}_+ \). By [8, Lemma 2.2], the fibers \(M_s(SO(\mathbb{R}_+)) \) for \(s \in \{0, \infty\} \) are connected compact Hausdorff spaces. In what follows we write

\[
a(\xi) := \xi(a)
\]

for every \(a \in SO(\mathbb{R}_+) \) and every \(\xi \in \Delta \).

Lemma 2.1 ([14, Proposition 2.2]). Let \(\{a_k\}_{k=1}^\infty \) be a countable subset of \(SO(\mathbb{R}_+) \) and \(s \in \{0, \infty\} \). For each \(\xi \in M_s(SO(\mathbb{R}_+)) \) there exists a sequence \(\{t_n\}_{n \in \mathbb{N}} \subset \mathbb{R}_+ \) such that \(t_n \to s \) as \(n \to \infty \) and

\[
a_k(\xi) = \lim_{n \to \infty} a_k(t_n) \quad \text{for all} \quad k \in \mathbb{N}.
\]

(2.1)

Conversely, if \(\{t_n\}_{n \in \mathbb{N}} \subset \mathbb{R}_+ \) is a sequence such that \(t_n \to s \) as \(n \to \infty \), then there exists a functional \(\xi \in M_s(SO(\mathbb{R}_+)) \) such that (2.1) holds.

2.2. Slowly Oscillating Functions and Shifts

Repeating literally the proof of [6, Proposition 3.3], we obtain the following statement.

Lemma 2.2. Suppose \(\varphi \in C^1(\mathbb{R}_+) \) and put \(\psi(t) := t\varphi'(t) \) for \(t \in \mathbb{R}_+ \). If \(\varphi, \psi \in SO(\mathbb{R}_+) \), then

\[
\lim_{t \to s} \psi(t) = 0 \quad \text{for} \quad s \in \{0, \infty\}.
\]

Lemma 2.3 ([7, Lemma 2.2]). An orientation-preserving shift \(\alpha : \mathbb{R}_+ \to \mathbb{R}_+ \) belongs to \(SOS(\mathbb{R}_+) \) if and only if

\[
\alpha(t) = te^{\omega(t)}, \quad t \in \mathbb{R}_+,
\]

for some real-valued function \(\omega \in SO(\mathbb{R}_+) \cap C^1(\mathbb{R}_+) \) such that the function \(t \mapsto t\omega'(t) \) also belongs to \(SO(\mathbb{R}_+) \) and \(\inf_{t \in \mathbb{R}_+} (1 + t\omega'(t)) > 0 \).

Lemma 2.4 ([7, Lemma 2.3]). If \(c \in SO(\mathbb{R}_+) \) and \(\alpha \in SOS(\mathbb{R}_+) \), then \(c \circ \alpha \) belongs to \(SO(\mathbb{R}_+) \) and

\[
\lim_{t \to s} (c(t) - c[\alpha(t)]) = 0 \quad \text{for} \quad s \in \{0, \infty\}.
\]
Lemma 2.5 ([9] Corollary 2.5). If $\alpha, \beta \in \text{SOS}(\mathbb{R}_+)$, then $\alpha \circ \beta \in \text{SOS}(\mathbb{R}_+)$ for all $i, j \in \mathbb{Z}$.

Lemma 2.6. If $\alpha \in \text{SOS}(\mathbb{R}_+)$, then
\[
\omega(t) := \log[\alpha(t)/t], \quad \tilde{\omega}(t) := \log[\alpha(t)/t], \quad t \in \mathbb{R}_+,
\]
are slowly oscillating functions such that $\omega(\xi) = -\tilde{\omega}(\xi)$ for all $\xi \in \Delta$.

Proof. From Lemma 2.5 with $i = -1$ and $j = 0$ it follows that α_{-1} belongs to $\text{SOS}(\mathbb{R}_+)$. Then, by Lemma 2.5 ω, $\tilde{\omega} \in \text{SOS}(\mathbb{R}_+)$. It is easy to see that
\[
\tilde{\omega}(t) = \frac{\alpha_{-1}(t)}{t} = -\log \frac{t}{\alpha_{-1}(t)} = -\log \frac{T(t)}{\alpha_{-1}(t)} = -\omega(\alpha_{-1}(t))
\]
for all $t \in \mathbb{R}_+$. Hence, from Lemma 2.4 it follows that $\omega \circ \alpha_{-1} \in \text{SO}(\mathbb{R}_+)$ and
\[
\lim_{t \to s}(\omega(t) + \tilde{\omega}(t)) = \lim_{t \to s}(\omega(t) - \omega(\alpha_{-1}(t))) = 0, \quad s \in \{0, \infty\}. \quad (2.2)
\]
Fix $s \in \{0, \infty\}$ and $\xi \in M_s(\text{SO}(\mathbb{R}_+))$. By Lemma 2.1 there is a sequence $\{t_j\}_{j \in \mathbb{N}} \subseteq \mathbb{R}_+$ such that $t_j \to s$ and
\[
\omega(\xi) = \lim_{j \to \infty} \omega(t_j), \quad \tilde{\omega}(\xi) = \lim_{j \to \infty} \tilde{\omega}(t_j).
\]
From (2.2)–(2.3) we obtain
\[
\omega(\xi) = \lim_{j \to \infty} \omega(t_j) - \lim_{j \to \infty} (\omega(t_j) + \tilde{\omega}(t_j)) = -\lim_{j \to \infty} \tilde{\omega}(t_j) = -\tilde{\omega}(\xi),
\]
which completes the proof. \qed

2.3. Invertibility of Binomial Functional Operators

From [7] Theorem 1.1] we immediately get the following.

Lemma 2.7. Suppose $c \in \text{SO}(\mathbb{R}_+)$ and $\alpha \in \text{SOS}(\mathbb{R}_+)$. If $1 \gg c$, then the functional operator $I - cU_\alpha$ is invertible on the space $L^p(\mathbb{R}_+)$ and
\[
(I - cU_\alpha)^{-1} = \sum_{n=0}^\infty (cU_\alpha)^n.
\]

2.4. Compactness of Commutators of SIO’s and FO’s

Let \mathcal{B} be a Banach algebra and \mathcal{G} be a subset of \mathcal{B}. We denote by $\text{alg}_B \mathcal{G}$ the smallest closed subalgebra of \mathcal{B} containing \mathcal{G}. Then
\[
\mathcal{A} = \text{alg}_{\mathcal{B}(L^p(\mathbb{R}_+))}\{I, S\}
\]
is the algebra of singular integral operators (SIO’s). Fix $\alpha, \beta \in \text{SOS}(\mathbb{R}_+)$ and consider the Banach algebra of functional operators (FO’s) with shifts and slowly oscillating data defined by
\[
\text{FO}_{\alpha, \beta} := \text{alg}_{\mathcal{B}(L^p(\mathbb{R}_+))}\{U_{\alpha}, U_{\alpha}^{-1}, U_{\beta}, U_{\beta}^{-1}, aI : a \in \text{SO}(\mathbb{R}_+)\}.
\]

Lemma 2.8. Let $\alpha, \beta \in \text{SOS}(\mathbb{R}_+)$. If $A \in \text{FO}_{\alpha, \beta}$ and $B \in \mathcal{A}$, then
\[
AB - BA \in \mathcal{K}(L^p(\mathbb{R}_+)).
\]
2.5. Ranges of Two Continuous Functions on \mathbb{R}

Given $a \in \mathbb{C}$ and $r > 0$, let $D(a, r) := \{ z \in \mathbb{C} : |z - a| \leq r \}$. For $x \in \mathbb{R}$, put

$$p_2^+(x) := \frac{e^{2\pi x}}{e^{2\pi x} + 1}, \quad p_2^-(x) := \frac{1}{e^{2\pi x} + 1}. \quad (2.4)$$

Lemma 2.9. Let $\psi, \zeta \in \mathbb{R}$ and $v, w \in \mathbb{C}$. If

$$f(x) := (1 - ve^{i\psi x})p_2^+(x) + (1 - we^{i\zeta x})p_2^-(x), \quad (2.5)$$

then $f(\mathbb{R}) \subset D(1, r)$, where $r := \max(\{|v|, |w|\})$.

Proof. From (2.4) and (2.5) we see that for every $x \in \mathbb{R}$ the point $f(x)$ lies on the line segment connecting the points $1 - ve^{i\psi x}$ and $1 - we^{i\zeta x}$. In turn, these points lie on the concentric circles

$$\{z \in \mathbb{C} : |z - 1| = |v|\}, \quad \{z \in \mathbb{C} : |z - 1| = |w|\}, \quad (2.6)$$

respectively. Thus, each line segment mentioned above is contained in the disk $D(1, r) = \{ z \in \mathbb{C} : |z - 1| \leq \max(\{|v|, |w|\}) \}$.

Lemma 2.10. Let $\psi, \zeta \in \mathbb{R}$ and $v, w \in \mathbb{C}$ with $|v| < 1$, $|w| < 1$. If

$$g(x) := (1 - ve^{i\psi x})^{-1}p_2^+(x) + (1 - we^{i\zeta x})^{-1}p_2^-(x), \quad x \in \mathbb{R}, \quad (2.7)$$

then $g(\mathbb{R}) \subset D((1 - r^2)^{-1}, (1 - r^2)^{-1}r)$, where $r = \max(\{|v|, |w|\}) < 1$.

Proof. From (2.4) and (2.7) we see that for every $x \in \mathbb{R}$ the point $g(x)$ lies on the line segment connecting the points $1 - ve^{i\psi x}$ and $1 - we^{i\zeta x}$.

In turn, these points lie on the images of the circles given by (2.6) under the inversion mapping $z \mapsto 1/z$. The image of the first circle in (2.6) is the circle $T_v := \{ z \in \mathbb{C} : |z - b| = \rho \}$ with center and radius given by

$$b = [(1 - |v|)^{-1} + (1 + |v|)^{-1}] / 2 = (1 - |v|^2)^{-1},$$

$$\rho = [(1 - |v|)^{-1} - (1 + |v|)^{-1}] / 2 = (1 - |v|^2)^{-1} |v|.$$

Analogously, the image of the second circle in (2.6) is the circle

$$T_w := \{ z \in \mathbb{C} : |z - (1 - |w|^2)^{-1}| = (1 - |w|^2)^{-1} |w| \}.$$

Let D_v and D_w be the closed disks whose boundaries are T_v and T_w, respectively. Obviously, one of these disks is contained in another one, namely, $D_v \subset D_w$ if $|v| \leq |w|$ and $D_w \subset D_v$ otherwise. Then each point $g(x)$, lying on the segment connecting the points $(1 - ve^{i\psi x})^{-1} \in T_v$ and $(1 - we^{i\zeta x})^{-1} \in T_w$, belongs to the biggest disk in $\{D_v, D_w\}$, that is, to the disk with center $(1 - r^2)^{-1}$ and radius $(1 - r^2)^{-1}r$, where $r = \max(\{|v|, |w|\}) < 1$.

From Lemmas 2.9 and 2.10 it follows that the ranges $f(\mathbb{R})$ and $g(\mathbb{R})$ do not contain the origin if $|v| < 1$ and $|w| < 1$.

Proof. In view of [7 Corollary 6.4], we have $aB - BaI \in \mathcal{K}(L^p(\mathbb{R}_+))$ for all $a \in SO(\mathbb{R}_+)$ and all $B \in \mathcal{A}$. On the other hand, from [9 Lemma 2.7] it follows that $U_B \in \mathcal{K}(L^p(\mathbb{R}_+))$ for all $\gamma \in \{ \alpha, \beta \}$ and $B \in \mathcal{A}$. Hence, $AB - BA \in \mathcal{K}(L^p(\mathbb{R}_+))$ for each generator A of $\mathcal{F}\mathcal{O}_{\alpha, \beta}$ and each $B \in \mathcal{A}$. Thus, the same is true for all $A \in \mathcal{F}\mathcal{O}_{\alpha, \beta}$ by a standard argument. □
3. Weighted Singular Integral Operators Are Similar to Mellin Convolution Operators

3.1. Mellin Convolution Operators

Let $F : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ denote the Fourier transform,

$$(Ff)(x) := \int_{\mathbb{R}} f(y)e^{-ixy}dy, \quad x \in \mathbb{R},$$

and let $F^{-1} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be the inverse of F. A function $a \in L^\infty(\mathbb{R})$ is called a Fourier multiplier on $L^p(\mathbb{R})$ if the mapping $f \mapsto F^{-1}aFf$ maps $L^2(\mathbb{R}) \cap L^p(\mathbb{R})$ onto itself and extends to a bounded operator on $L^p(\mathbb{R})$. The latter operator is then denoted by $W^0(a)$. We let $M_p(\mathbb{R})$ stand for the set of all Fourier multipliers on $L^p(\mathbb{R})$. One can show that $M_p(\mathbb{R})$ is a Banach algebra under the norm

$$\|a\|_{M_p(\mathbb{R})} := \|W^0(a)\|_{\mathcal{B}(L^p(\mathbb{R}))}.$$

Let $d\mu(t) = dt/t$ be the (normalized) invariant measure on \mathbb{R}_+. Consider the Fourier transform on $L^2(\mathbb{R}_+,d\mu)$, which is usually referred to as the Mellin transform and is defined by

$$(Mf)(x) := \int_{\mathbb{R}_+} f(t)t^{-ix}dt, \quad x \in \mathbb{R}.$$}

It is an invertible operator, with inverse given by

$$(M^{-1}g)(t) = \frac{1}{2\pi} \int_{\mathbb{R}} g(x)t^{ix}dx.$$}

Let E be the isometric isomorphism

$$E : L^p(\mathbb{R}_+,d\mu) \to L^p(\mathbb{R}_+), \quad (Ef)(x) := f(e^x), \quad x \in \mathbb{R}. \quad (3.1)$$

Then the map $A \mapsto E^{-1}AE$ transforms the Fourier convolution operator $W^0(a) = F^{-1}aF$ to the Mellin convolution operator

$$\text{Co}(a) := M^{-1}aM$$

with the same symbol a. Hence the class of Fourier multipliers on $L^p(\mathbb{R})$ coincides with the class of Mellin multipliers on $L^p(\mathbb{R}_+,d\mu)$.

3.2. Algebra \mathcal{A} of Singular Integral Operators

Consider the isometric isomorphism

$$\Phi : L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+,d\mu), \quad (\Phi f)(t) := t^{1/p}f(t), \quad t \in \mathbb{R}_+, \quad (3.2)$$

The following statement is well known (see, e.g., [3], [5, Section 2.1.2], and [18, Sections 4.2.2–4.2.3]).

Lemma 3.1. For every $y \in (1, \infty)$, the functions s_y and r_y given by

$$s_y(x) := \coth[\pi(x + iy)], \quad r_y(x) := 1/\sinh[\pi(x + iy)], \quad x \in \mathbb{R},$$
belong to \(M_p(\mathbb{R}) \), the operators \(S_y \) and \(R_y \) belong to the algebra \(\mathcal{A} \), and
\[
S_y = \Phi^{-1} \text{Co}(s_y)\Phi, \quad R_y = \Phi^{-1} \text{Co}(r_y)\Phi.
\]

For \(y \in (1, \infty) \) and \(x \in \mathbb{R} \), put
\[
p_y^\pm(x) := \frac{(1 \pm s_y(x))}{2}.
\]
This definition is consistent with (2.4) because \(s^2_y(x) = \tanh(\pi x) \) for \(x \in \mathbb{R} \).

In view of Lemma 3.1 we have
\[
P_y^\pm = (I \pm S_y)/2 = \Phi^{-1} \text{Co}(p_y^\pm)\Phi.
\]

Lemma 3.2.

(a) For \(y \in (1, \infty) \) and \(x \in \mathbb{R} \), we have
\[
p_y^+p_y^-(x) = -\frac{(r_y(x))^2}{4}, \quad (p_y^\pm(x))^2 = p_y^\pm(x) + \frac{(r_y(x))^2}{4}.
\]
(b) For every \(y \in \mathbb{R}_+ \), we have
\[
P_y^+P_y^- = P_y^-P_y^+ = -\frac{R_y^2}{4}, \quad (P_y^\pm)^2 = P_y^\pm + \frac{R_y^2}{4}.
\]

Proof. Part (a) follows straightforwardly from the identity \(s^2_y(x) - r^2_y(x) = 1 \).
Part (b) follows from part (a) and Lemma 3.1. \(\square \)

4. Mellin Pseudodifferential Operators and Their Symbols

4.1. Boundedness of Mellin Pseudodifferential Operators

In 1991 Rabinovich [16] proposed to use Mellin pseudodifferential operators with \(C^\infty \) slowly oscillating symbols to study singular integral operators with slowly oscillating coefficients on \(L^p \) spaces. This idea was exploited in a series of papers by Rabinovich and coauthors. A detailed history and a complete bibliography up to 2004 can be found in [17, Sections 4.6–4.7]. Further, the second author developed in [12] a handy for our purposes theory of Fourier pseudodifferential operators with slowly oscillating symbols of limited smoothness (much less restrictive than in the works mentioned in [17]). In this section we translate necessary results from [12] to the Mellin setting with the aid of the transformation
\[
A \mapsto E^{-1}AE,
\]
where \(A \in \mathcal{B}(L^p(\mathbb{R})) \) and the isometric isomorphism \(E : L^p(\mathbb{R}_+, d\mu) \to L^p(\mathbb{R}) \) is defined by (3.1).

Let \(a \) be an absolutely continuous function of finite total variation
\[
V(a) := \int_\mathbb{R} |a'(x)|dx
\]
on \(\mathbb{R} \). The set \(V(\mathbb{R}) \) of all absolutely continuous functions of finite total variation on \(\mathbb{R} \) becomes a Banach algebra equipped with the norm
\[
\|a\|_{V} := \|a\|_{L^\infty(\mathbb{R})} + V(a). \tag{4.1}
\]
Following [12][13], let $C_b(\mathbb{R}_+, V(\mathbb{R}))$ denote the Banach algebra of all bounded continuous $V(\mathbb{R})$-valued functions on \mathbb{R}_+ with the norm
\[
\|a(\cdot, \cdot)\|_{C_b(\mathbb{R}_+, V(\mathbb{R}))} = \sup_{t \in \mathbb{R}_+} \|a(t, \cdot)\|_V.
\]
As usual, let $C_0^\infty(\mathbb{R}_+)$ be the set of all infinitely differentiable functions of compact support on \mathbb{R}_+.

The following boundedness result for Mellin pseudodifferential operators follows from [13 Theorem 6.1] (see also [12 Theorem 3.1]).

Theorem 4.1. If $a \in C_b(\mathbb{R}_+, V(\mathbb{R}))$, then the Mellin pseudodifferential operator $\mathrm{Op}(a)$, defined for functions $f \in C_0^\infty(\mathbb{R}_+)$ by the iterated integral
\[
[\mathrm{Op}(a)f](t) = \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}_+} a(t, x) \left(\frac{t}{\tau} \right)^{ix} f(\tau) \frac{d\tau}{\tau} \quad \text{for} \quad t \in \mathbb{R}_+,
\]
extends to a bounded linear operator on the space $L^p(\mathbb{R}_+, d\mu)$ and there is a number $C_p \in (0, \infty)$ depending only on p such that
\[
\|\mathrm{Op}(a)\|_{B(L^p(\mathbb{R}_+, d\mu))} \leq C_p \|a\|_{C_b(\mathbb{R}_+, V(\mathbb{R}))}.
\]

Obviously, if $a(t, x) = a(x)$ for all $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$, then the Mellin pseudodifferential operator $\mathrm{Op}(a)$ becomes the Mellin convolution operator
\[
\mathrm{Op}(a) = \mathrm{Co}(a).
\]

4.2. Algebra $\mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$

Let $SO(\mathbb{R}_+, V(\mathbb{R}))$ denote the Banach subalgebra of $C_b(\mathbb{R}_+, V(\mathbb{R}))$ consisting of all $V(\mathbb{R})$-valued functions a on \mathbb{R}_+ that slowly oscillate at 0 and ∞, that is,
\[
\lim_{r \to 0} \text{cm}_r^C(a) = \lim_{r \to \infty} \text{cm}_r^C(a) = 0,
\]
where
\[
\text{cm}_r^C(a) := \max \left\{ \|a(t, \cdot) - a(\tau, \cdot)\|_{L^\infty(\mathbb{R})} : t, \tau \in [r, 2r] \right\}.
\]

Let $\mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$ be the Banach algebra of all $V(\mathbb{R})$-valued functions $a \in SO(\mathbb{R}_+, V(\mathbb{R}))$ such that
\[
\lim_{|h| \to 0} \sup_{t \in \mathbb{R}_+} \|a(t, \cdot) - a^h(t, \cdot)\|_V = 0
\]
where $a^h(t, x) := a(t, x + h)$ for all $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$.

Let $a \in \mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$. For every $t \in \mathbb{R}_+$, the function $a(t, \cdot)$ belongs to $V(\mathbb{R})$ and, therefore, has finite limits at $\pm \infty$, which will be denoted by $a(t, \pm \infty)$. Now we explain how to extend the function a to $\Delta \times \overline{\mathbb{R}}$. By analogy with [12 Lemma 2.7] with the aid of Lemma 2.1 one can prove the following.

Lemma 4.2. Let $s \in \{0, \infty\}$ and $\{a_k\}_{k=1}^\infty$ be a countable subset of the algebra $\mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$. For each $\xi \in M_s(SO(\mathbb{R}_+))$ there is a sequence $\{t_j\}_{j \in \mathbb{N}} \subset \mathbb{R}_+$ and functions $a_k(\xi, \cdot) \in V(\mathbb{R})$ such that $t_j \to s$ as $j \to \infty$ and
\[
a_k(\xi, x) = \lim_{j \to \infty} a_k(t_j, x)
\]
for every $x \in \overline{\mathbb{R}}$ and every $k \in \mathbb{N}$.
A straightforward application of Lemma 4.2 leads to the following.

Lemma 4.3. Let $b \in \mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$, $m, n \in \mathbb{N}$, and $a_{ij} \in \mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$ for $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n\}$. If

$$b(t, x) = \sum_{i=1}^{m} \prod_{j=1}^{n} a_{ij}(t, x), \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R},$$

then

$$b(\xi, x) = \sum_{i=1}^{m} \prod_{j=1}^{n} a_{ij}(\xi, x), \quad (\xi, x) \in \Delta \times \mathbb{R}. \quad (4.2)$$

Lemma 4.4 ([10, Lemma 3.2]). Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of functions in $\mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$ such that the series $\sum_{n=1}^{\infty} a_n$ converges in the norm of the algebra $C_b(\mathbb{R}_+, V(\mathbb{R}))$ to a function $a \in \mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$. Then

$$a(t, \pm\infty) = \sum_{n=1}^{\infty} a_n(t, \pm\infty) \quad \text{for all} \quad t \in \mathbb{R}_+, \quad (4.2)$$

$$a(\xi, x) = \sum_{n=1}^{\infty} a_n(\xi, x) \quad \text{for all} \quad (\xi, x) \in \Delta \times \mathbb{R}. \quad (4.3)$$

4.3. Products of Mellin Pseudodifferential Operators

Applying the relation

$$\text{Op}(a) = E^{-1}a(x, D)E \quad (4.4)$$

between the Mellin pseudodifferential operator $\text{Op}(a)$ and the Fourier pseudodifferential operator $a(x, D)$ considered in [12], where

$$a(t, x) = a(\ln t, x), \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R}, \quad (4.5)$$

and E is given by (3.1), we infer from [12, Theorem 8.3] the following compactness result.

Theorem 4.5. If $a, b \in \mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$, then

$$\text{Op}(a) \text{Op}(b) \simeq \text{Op}(ab).$$

From (3.1), (4.4), (4.5), [12, Lemmas 7.1, 7.2], and the proof of [12, Lemma 8.1] we can extract the following.

Lemma 4.6. If $a, b, c \in \mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$ are such that a depends only on the first variable and c depends only on the second variable, then

$$\text{Op}(a) \text{Op}(b) \text{Op}(c) = \text{Op}(abc).$$

4.4. Fredholmness of Mellin Pseudodifferential Operators

To study the Fredholmness of Mellin pseudodifferential operators, we need the Banach algebra $\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R}))$ consisting of all functions a belonging to $\mathcal{E}(\mathbb{R}_+, V(\mathbb{R}))$ and such that

$$\lim_{m \to \infty} \sup_{t \in \mathbb{R}_+} \int_{[-m,m]} \left| \frac{\partial a(t, x)}{\partial x} \right| \, dx = 0.$$

Now we are in a position to formulate the main result of this section.
5. Applications of Mellin Pseudodifferential Operators

5.1. Some Important Functions in the Algebra \(\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R})) \)

Lemma 5.1 ([9, Lemma 4.2]). Let \(g \in SO(\mathbb{R}_+) \). Then for every \(y \in (1, \infty) \) the functions
\[
g(t, x) := g(t), \quad s_y(t, x) := s_y(x), \quad r_y(t, x) := r_y(x), \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R},
\]
belong to the Banach algebra \(\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R})) \).

Lemma 5.2 ([9, Lemma 4.3]). Suppose \(\omega \in SO(\mathbb{R}_+) \) is a real-valued function. Then for every \(y \in (1, \infty) \) the function
\[
b(t, x) := e^{i\omega(t)x}r_y(x), \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R},
\]
belongs to the Banach algebra \(\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R})) \) and there is a positive constant \(C(y) \) depending only on \(y \) such that
\[
\|b\|_{C_b(\mathbb{R}_+, V(\mathbb{R}))} \leq C(y) \left(1 + \sup_{t \in \mathbb{R}_+} |\omega(t)| \right).
\]

5.2. Operator \(U_\gamma R_y \)

Lemma 5.3 ([9, Lemma 4.4]). Let \(\gamma \in SOS(\mathbb{R}_+) \) and \(U_\gamma \) be the associated isometric shift operator on \(L^p(\mathbb{R}_+) \). For every \(y \in (1, \infty) \), the operator \(U_\gamma R_y \) can be realized as the Mellin pseudodifferential operator:
\[
U_\gamma R_y = \Phi^{-1} \text{Op}(\partial) \Phi,
\]
where the function \(\partial \), given for \((t, x) \in \mathbb{R}_+ \times \mathbb{R} \) by
\[
\partial(t, x) := (1 + tv'(t))^{1/p} e^{i\psi(t)x}r_y(x) \quad \text{with} \quad \psi(t) := \log[\gamma(t)/t],
\]
belongs to the algebra \(\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R})) \).
5.3. Operator $(I - vU_\gamma)R_y$

The previous lemma can be easily generalized to the case of operators containing slowly oscillating coefficients.

Lemma 5.4. Let $y \in (1, \infty)$, $v \in SO(\mathbb{R}^+)$, and $\gamma \in SO(\mathbb{R}^+)$.

(a) the operator $(I - vU_\gamma)R_y$ can be realized as the Mellin pseudodifferential operator:

$$(I - vU_\gamma)R_y = \Phi^{-1} \text{Op}(a)\Phi,$$

where the function a, given for $(t, x) \in \mathbb{R}^+ \times \mathbb{R}$ by

$$a(t, x) := (1 - v(t)(\Psi(t))^{1/p} e^{i\psi(t)x})r_y(x)$$

with $\psi(t) := \log[\gamma(t)/t]$ and $\Psi(t) := 1 + t\psi'(t)$, belongs to $\tilde{E}(\mathbb{R}^+, V(\mathbb{R}))$;

(b) we have

$$a(\xi, x) = \begin{cases} (1 - v(\xi)e^{i\psi(\xi)x})r_y(x), & \text{if } (\xi, x) \in \Delta \times \mathbb{R}, \\ 0, & \text{if } (\xi, x) \in (\mathbb{R}^+ \cup \Delta) \times \{\pm \infty\}. \end{cases}$$

Proof. (a) This statement follows straightforwardly from Lemmas 5.1, 5.3 and 4.6.

(b) If $t \in \mathbb{R}^+$, then obviously

$$a(t, x) = 0 \quad \text{for} \quad x \in \{\pm \infty\}. \quad (5.1)$$

By Lemma 2.3 $\psi \in SO(\mathbb{R}^+)$. Since $v, \psi \in SO(\mathbb{R}^+)$, from Lemma 5.1 it follows that the functions

$$v(t, x) := v(t), \quad \tilde{\psi}(t, x) := \psi(t), \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}, \quad (5.2)$$

belong to $\tilde{E}(\mathbb{R}^+, V(\mathbb{R}))$. Consider the finite family \(\{a, v, \tilde{\psi}\} \in \tilde{E}(\mathbb{R}^+, V(\mathbb{R}))\).

Fix $s \in [0, \infty)$ and $\xi \in M_s(SO(\mathbb{R}^+))$. By Lemma 4.2 and (5.2), there is a sequence \(\{t_j\}_{j \in \mathbb{N}} \subset \mathbb{R}^+\) and a function $a(\xi, \cdot) \in V(\mathbb{R}^+_s)$ such that

$$\lim_{j \to \infty} t_j = s, \quad v(\xi) = \lim_{j \to \infty} v(t_j), \quad \psi(\xi) = \lim_{j \to \infty} \psi(t_j), \quad (5.3)$$

$$a(\xi, x) = \lim_{j \to \infty} a(t_j, x), \quad x \in \mathbb{R}. \quad (5.4)$$

From Lemmas 2.2 and 2.3 we obtain

$$\lim_{j \to \infty} (\Psi(t_j))^{1/p} = 1. \quad (5.5)$$

From (5.1) and (5.4) we get

$$a(\xi, x) = 0 \quad \text{for} \quad (\xi, x) \in (\mathbb{R}^+ \cup \Delta) \times \{\pm \infty\}. \quad (5.6)$$

Finally, from (5.3)–(5.5) we obtain for $(\xi, x) \in \Delta \times \mathbb{R},$

$$a(\xi, x) = \lim_{j \to \infty} a(t_j, x)$$

$$= \left(1 - \left(\lim_{j \to \infty} v(t_j)\right)\left(\lim_{j \to \infty} (\Psi(t_j))^{1/p}\right)\exp\left(ix \lim_{j \to \infty} \psi(t_j)\right)\right)r_y(x)$$

$$= (1 - v(\xi)e^{i\psi(\xi)x})r_y(x),$$

which completes the proof. \(\square\)
5.4. Operator \((I - vU_\gamma)^{-1}R_y\)

The following statement is crucial for our analysis. It says that the operators \((I - vU_\gamma)R_y\) and \((I - vU_\gamma)^{-1}R_y\) have similar nature.

Lemma 5.5. Let \(y \in (1, \infty), v \in SO(\mathbb{R}_+),\) and \(\gamma \in SOS(\mathbb{R}_+).\) If \(1 \gg v,\) then

(a) the operator \(A := I - vU_\gamma\) is invertible on \(L^p(\mathbb{R}_+)\);

(b) the operator \(A^{-1}R_y\) can be realized as the Mellin pseudodifferential operator:

\[
A^{-1}R_y = \Phi^{-1} \text{Op}(c) \Phi,
\]

where the function \(c,\) given for \((t, x) \in \mathbb{R}_+ \times \mathbb{R}\) by

\[
c(t, x) := ry(x) + \sum_{n=1}^{\infty} \left(\prod_{k=0}^{n-1} v[\gamma_k(t)](\Psi[\gamma_k(t)]) \right)^{1/p} e^{i\psi[\gamma_k(t)]x} ry(x)
\]

with \(\psi(t) := \log[\gamma(t)/t]\) and \(\Psi(t) := 1 + t\psi'(t),\) belongs to \(\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R}));\)

(c) we have

\[
c(\xi, x) = \begin{cases}
(1 - v(\xi)e^{i\psi(\xi)x})^{-1}ry(x), & \text{if } (\xi, x) \in \Delta \times \mathbb{R}, \\
0, & \text{if } (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm\infty\}.
\end{cases}
\]

Proof. (a) Since \(1 \gg v,\) from Lemma 2.7 we conclude that \(A\) is invertible on the space \(L^p(\mathbb{R}_+)\) and

\[
A^{-1} = \sum_{n=0}^{\infty} (vU_\gamma)^n.
\]

Part (a) is proved.

(b) By Lemmas 3.1 and 5.1,

\[
R_y = \Phi^{-1} \text{Op}(c_0) \Phi,
\]

where the function \(c_0,\) given by

\[
c_0(t, x) := ry(x), \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R},
\]

belongs to \(\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R})).\)

If \(\gamma \in SOS(\mathbb{R}_+),\) then from Lemma 2.3 it follows that \(\gamma_n \in SOS(\mathbb{R}_+)\) for every \(n \in \mathbb{Z}.\) By Lemma 2.3 the functions

\[
\psi_n(t) := \log \frac{\gamma_n(t)}{t}, \quad \Psi_n(t) := 1 + t\psi'_n(t) \quad t \in \mathbb{R}_+, \quad n \in \mathbb{Z},
\]

are real-valued functions in \(SO(\mathbb{R}_+) \cap C^1(\mathbb{R}_+).\) For every \(n \in \mathbb{N},\)

\[
(vU_\gamma)^n R_y = \left(\prod_{k=0}^{n-1} v \circ \gamma_k \right) U_{\gamma_n} R_y.
\]

By Lemma 5.3,

\[
U_{\gamma_n} R_y = \Phi^{-1} \text{Op}(d_n) \Phi,
\]

where the function \(d_n,\) given by

\[
d_n(t, x) := (\Psi_n(t))^{1/p} e^{i\psi_n(t)x} ry(x), \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R},
\]
belongs to $\tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$. From (5.11) it follows that
\[
\psi_n(t) = \log \frac{\gamma_n-1[\gamma(t)]}{t} = \log \frac{\gamma_n-1[\gamma(t)]}{\gamma(t)} + \log \frac{\gamma(t)}{t} = \psi_{n-1}[\gamma(t)] + \psi(t).
\]
Therefore
\[
\psi_n'(t) = \psi_{n-1}[\gamma(t)]\gamma'(t) + \psi'(t). \tag{5.15}
\]
By using $\gamma(t) = te^{\psi(t)}$ and $\gamma'(t) = \Psi(t)e^{\psi(t)}$, from (5.11) and (5.15) we get
\[
\Psi_n(t) = t\psi_{n-1}[\gamma(t)]\Psi(t)e^{\psi(t)} + (1 + t\psi'(t))
= \Psi(t)(1 + \gamma(t)\psi'_{n-1}[\gamma(t)]) = \Psi(t)\Psi_{n-1}[\gamma(t)].
\]
From this identity by induction we get
\[
\Psi_n(t) = \prod_{k=0}^{n-1} \Psi[\gamma_k(t)], \quad t \in \mathbb{R}_+, \quad n \in \mathbb{N}. \tag{5.16}
\]
From (5.12)–(5.14) and (5.16) we get
\[
(vU_\gamma)^nR_y = \Phi^{-1}\text{Op}(c_n)\Phi, \quad n \in \mathbb{N},
\tag{5.17}
\]
where the function c_n is given for $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$ by
\[
c_n(t, x) := a_n(t)b_n(t, x) \tag{5.18}
\]
with
\[
a_n(t) := \prod_{k=0}^{n-1} v[\gamma_k(t)](\Psi[\gamma_k(t)])^{1/p}, \quad b_n(t, x) := e^{i\psi_n(t)x}r_y(x). \tag{5.19}
\]
By the hypothesis, $v \in SO(\mathbb{R}_+)$. On the other hand, $\Psi \in SO(\mathbb{R}_+)$ in view of Lemma 2.3. Hence $\Psi^{1/p} \in SO(\mathbb{R}_+)$. Then, due to Lemmas 2.4 and 2.5 $a_n \in SO(\mathbb{R}_+)$ for all $n \in \mathbb{N}$. Therefore, from Lemma 5.1 we obtain that
\[
a_n(t, x) := a_n(t), (t, x) \in \mathbb{R}_+ \times \mathbb{R}, \text{ belongs to } \tilde{E}(\mathbb{R}_+, V(\mathbb{R})).
\]
On the other hand, by Lemma 5.2 $b_n \in \tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$. Thus, $c_n = a_n b_n$ belongs to $\tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$ for every $n \in \mathbb{N}$.

Following the proof of [6, Lemma 2.1] (see also [1, Theorem 2.2]), let us show that
\[
\lim \sup \|a_n\|_{C^1_b(\mathbb{R}_+)}^{1/n} < 1. \tag{5.20}
\]
By Lemmas 2.2 and 2.3
\[
\lim_{t \to s} \Psi(t) = 1 + \lim_{t \to s} t\psi'(t) = 1, \quad s \in \{0, \infty\}. \tag{5.21}
\]
If $1 \gg v$, then
\[
\lim \sup_{t \to s} |v(t)| < 1, \quad s \in \{0, \infty\}. \tag{5.22}
\]
From (5.21)–(5.22) it follows that
\[
L^s(s) := \lim \sup_{t \to s} |v(t)(\Psi(t))^{1/p}| < 1, \quad s \in \{0, \infty\}.
\]
Fix $\varepsilon > 0$ such that $L^*(s) + \varepsilon < 1$ for $s \in \{0, \infty\}$. By the definition of $L^*(s)$, there exist points $t_1, t_2 \in \mathbb{R}_+$ such that

\[
\begin{align*}
|v(t)(\Psi(t))^{1/p}| &< L^*(0) + \varepsilon & \text{for} & t \in (0, t_1), \\
|v(t)(\Psi(t))^{1/p}| &< L^*(\infty) + \varepsilon & \text{for} & t \in (t_2, \infty). \\
\end{align*}
\]

(5.23)

The mapping γ has no fixed points other than 0 and ∞. Hence, either $\gamma(t) > t$ or $\gamma(t) < t$ for all $t \in \mathbb{R}_+$. For definiteness, suppose that $\gamma(t) > t$ for all $t \in \mathbb{R}_+$. Then there exists a number $k_0 \in \mathbb{N}$ such that $\gamma_{k_0}(t_1) \in (t_2, \infty)$. Put

\[
M_1 := \sup_{t \in \mathbb{R}_+} |v(t)(\Psi(t))^{1/p}|, \quad M_2 := \sup_{t \in \mathbb{R}_+ \setminus [t_1, \gamma_{k_0}(t_1)]} |v(t)(\Psi(t))^{1/p}|.
\]

Since $v\Psi^{1/p} \in SO(\mathbb{R}_+)$, we have $M_1 < \infty$. Moreover, from (5.23) we obtain

\[
M_2 \leq \max(L^*(0), L^*(\infty)) + \varepsilon < 1.
\]

Then, for every $t \in \mathbb{R}_+$ and $n \in \mathbb{N}$,

\[
|a_n(t)| = \prod_{k=0}^{n-1} |v[\gamma_k(t)](\Psi[\gamma_k(t)])^{1/p}| \leq M_1^{k_0} M_2^{n-k_0} \leq M_1^{k_0} (\max(L^*(0), L^*(\infty)) + \varepsilon)^{n-k_0}.
\]

From here we immediately get (5.20).

Now let us show that

\[
\limsup_{n \to \infty} \|b_n\|_{C^0(\mathbb{R}_+,V(\mathbb{R}))}^{1/n} \leq 1.
\]

(5.24)

By Lemma [5.2] there exists a constant $C(y) \in (0, \infty)$ depending only on y such that for all $n \in \mathbb{N}$,

\[
\|b_n\|_{C^0(\mathbb{R}_+,V(\mathbb{R}))} \leq C(y) \left(1 + \sup_{t \in \mathbb{R}_+} |\psi_n(t)| \right).
\]

(5.25)

From (5.11) we obtain

\[
\psi_n(t) = \log \left(\prod_{k=0}^{n-1} \frac{\gamma[\gamma_k(t)]}{\gamma_k(t)}\right) = \sum_{k=0}^{n-1} \log \frac{\gamma[\gamma_k(t)]}{\gamma_k(t)} = \sum_{k=0}^{n-1} \psi[\gamma_k(t)].
\]

(5.26)

Let

\[
M_3 := \sup_{t \in \mathbb{R}_+} |\psi(t)|.
\]

Since γ_k is a diffeomorphism of \mathbb{R}_+ onto itself for every $k \in \mathbb{Z}$, we have

\[
M_3 = \sup_{t \in \mathbb{R}_+} |\psi(t)| = \sup_{t \in \mathbb{R}_+} |\psi[\gamma(t)]| = \cdots = \sup_{t \in \mathbb{R}_+} |\psi[\gamma_{n-1}(t)]|.
\]

(5.27)

From (5.26)–(5.27) we obtain

\[
\|b_n\|_{C^0(\mathbb{R}_+,V(\mathbb{R}))} \leq C(y)(1 + M_3 n), \quad n \in \mathbb{N},
\]
which implies (5.24). Combining (5.18), (5.20), and (5.24), we arrive at
\[
\limsup_{n \to \infty} \|c_n\|_{C_b(\mathbb{R}^+, V(\mathbb{R}))}^{1/n} \leq \left(\limsup_{n \to \infty} \|a_n\|_{C_b(\mathbb{R}^+)}^{1/n} \right) \times \left(\limsup_{n \to \infty} \|b_n\|_{C_b(\mathbb{R}^+, V(\mathbb{R}))}^{1/n} \right) < 1.
\]

This shows that the series \(\sum_{n=0}^{\infty} c_n \) is absolutely convergent in the norm of \(C_b(\mathbb{R}^+, V(\mathbb{R})) \). From (5.18)–(5.19) and (5.26) we get for \((t, x) \in \mathbb{R}^+ \times \mathbb{R}\) and \(n \in \mathbb{N}\),
\[
c_n(t, x) = \left(\prod_{k=0}^{n-1} v[\gamma_k(t)] \left(\Psi[\gamma_k(t)] \right)^{1/p} e^{i\psi[\gamma_k(t)]x} \right) r_y(x).
\]

We have already shown that \(c_0 \) given by (5.10) and \(c_n, n \in \mathbb{N}, \) given by (5.28) belong to \(\hat{E}(\mathbb{R}^+, V(\mathbb{R})) \). Thus \(c := \sum_{n=0}^{\infty} c_n \) is given by (5.7) and it belongs to \(\hat{E}(\mathbb{R}^+, V(\mathbb{R})) \).

From (5.9), (5.17) and Theorem 4.1 we get
\[
\left\| \Phi^{-1} \operatorname{Op}(c) \Phi - \sum_{n=0}^{N} (vU_\gamma)^n R_y \right\|_{L^p(\mathbb{R}^+)} \leq \left\| \Phi^{-1} \left(c - \sum_{n=0}^{N} c_n \right) \Phi \right\|_{L^p(\mathbb{R}^+)} \leq C_p \left\| c - \sum_{n=0}^{N} c_n \right\|_{C_b(\mathbb{R}^+, V(\mathbb{R}))} = o(1) \quad \text{as} \quad N \to \infty.
\]

Hence
\[
\sum_{n=0}^{\infty} (vU_\gamma)^n R_y = \Phi^{-1} \operatorname{Op}(c) \Phi.
\]

Combining this identity with (5.8), we arrive at (5.6). Part (b) is proved.

(c) From (5.10) and (5.28) it follows that \(c_n(t, \pm \infty) = 0 \) for \(n \in \mathbb{N} \cup \{0\} \) and \(t \in \mathbb{R}^+ \). Then, in view of Lemma 4.4,
\[
c(t, \pm \infty) = 0, \quad t \in \mathbb{R}^+.
\]

Since \(v, \psi \in SO(\mathbb{R}^+) \), from Lemma 5.1 it follows that the functions
\[
v(t, x) = v(t), \quad \tilde{\psi}(t, x) := \psi(t), \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R},
\]
belong to the Banach algebra \(\hat{E}(\mathbb{R}^+, V(\mathbb{R})) \). Consider the countable family \(\{v, \tilde{\psi}, c\} \cup \{c_n\}_{n=0}^{\infty} \) of functions in \(\hat{E}(\mathbb{R}^+, V(\mathbb{R})) \).

Fix \(s \in \{0, \infty\} \) and \(\xi \in M_q(SO(\mathbb{R}^+)) \). By Lemma 4.2 and (5.30), there is a sequence \(\{t_j\}_{j \in \mathbb{N}} \subset \mathbb{R}^+ \) and functions \(c(\xi, \cdot) \in V(\mathbb{R}^+), c_n(\xi, \cdot) \in V(\mathbb{R}^+), n \in \mathbb{N} \cup \{0\}, \) such that
\[
\lim_{j \to \infty} t_j = s, \quad v(\xi) = \lim_{j \to \infty} v(t_j), \quad \psi(\xi) = \lim_{j \to \infty} \psi(t_j),
\]
and for \(n \in \mathbb{N} \cup \{0\} \) and \(x \in \mathbb{R},
\[
c_n(\xi, x) = \lim_{j \to \infty} c_n(t_j, x), \quad c(\xi, x) = \lim_{j \to \infty} c(t_j, x).
\]
From (5.29) and the second limit in (5.32) we get
\[c(\xi, \pm\infty) = \lim_{j \to \infty} c(t_j, \pm\infty) = 0. \] (5.33)

Trivially,
\[c_0(\xi, x) = r_y(x), \quad (\xi, x) \in (\Delta \cup \mathbb{R}_+) \times \mathbb{R}. \] (5.34)

From Lemmas 2.2 and 2.3 we obtain
\[\lim_{t \to s} \left(\Psi(t) \right)^{1/p} = 1, \quad s \in \{0, \infty\}. \] (5.35)

From Lemma 2.5 it follows that for \(k \in \mathbb{N} \),
\[\lim_{j \to \infty} v(t_j) = \lim_{j \to \infty} v[\gamma_k(t_j)], \quad \lim_{j \to \infty} \psi(t_j) = \lim_{j \to \infty} \psi[\gamma_k(t_j)]. \] (5.36)

Combining (5.28), (5.31), the first limit in (5.32), and (5.35)–(5.36), we get
for \(x \in \mathbb{R} \) and \(n \in \mathbb{N} \),
\[c_n(\xi, x) = \lim_{j \to \infty} \left(\prod_{k=0}^{n-1} v[\gamma_k(t_j)] \left(\Psi[\gamma_k(t_j)] \right)^{1/p} e^{i\psi[\gamma_k(t_j)] x} \right) r_y(x) \]
\[= (v(\xi)e^{i\psi(\xi)x})^n r_y(x). \] (5.37)

From (5.34), (5.37), and Lemma 4.4 we obtain
\[c(\xi, x) = \sum_{n=0}^{\infty} (v(\xi)e^{i\psi(\xi)x})^n r_y(x). \] (5.38)

Since \(1 \gg v \), we have
\[\limsup_{t \to s} |v(t)| < 1, \quad s \in \{0, \infty\}, \]
whence, in view of Lemma 2.1 we obtain
\[|v(\xi)e^{i\psi(\xi)x}| \leq \max_{s \in \{0, \infty\}} \left(\limsup_{t \to s} |v(t)| \right) < 1. \]

Therefore,
\[\sum_{n=0}^{\infty} (v(\xi)e^{i\psi(\xi)x})^n = (1 - v(\xi)e^{i\psi(\xi)x})^{-1}. \] (5.39)

From (5.38) and (5.39) we get
\[c(\xi, x) = (1 - v(\xi)e^{i\psi(\xi)x})^{-1} r_y(x), \quad (\xi, x) \in \Delta \times \mathbb{R}. \] (5.40)

Combining (5.29), (5.33), and (5.40), we arrive at the assertion of part (c). \(\square \)
6. Fredholmness and Index of the Operator V

6.1. First Step of Regularization

Lemma 6.1. Let $\alpha, \beta \in SOS(\mathbb{R}_+)$ and let $c, d \in SO(\mathbb{R}_+)$ be such that $1 \gg c$ and $1 \gg d$. Then for every $\mu \in [0, 1]$ and $y \in (1, \infty)$ the following statements hold:

(a) the operators $I - \mu c U_\alpha$ and $I - \mu d U_\beta$ are invertible on $L^p(\mathbb{R}_+)$;
(b) for $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$, the functions
\[
a_{\mu, y}^{c, \alpha}(t, x) := (1 - \mu c(t)(\Omega(t))^{1/p} e^{i \omega(t)x}) r_y(x),
\]
\[
a_{\mu, y}^{d, \beta}(t, x) := (1 - \mu d(t)(H(t))^{1/p} e^{i \eta(t)x}) r_y(x)
\]
and
\[
c_{\mu, y}^{c, \alpha}(t, x) := r_y(x)
\]
\[
+ \sum_{n=1}^\infty \mu^n \left(\prod_{k=0}^{n-1} c[\alpha_k(t)](\Omega[\alpha_k(t)])^{1/p} e^{i \omega[\alpha_k(t)]x} \right) r_y(x),
\]
\[
c_{\mu, y}^{d, \beta}(t, x) := r_y(x)
\]
\[
+ \sum_{n=1}^\infty \mu^n \left(\prod_{k=0}^{n-1} d[\beta_k(t)](H[\beta_k(t)])^{1/p} e^{i \eta[\beta_k(t)]x} \right) r_y(x),
\]
with
\[
\omega(t) = \log[\alpha(t)/t], \quad \Omega(t) = 1 + t \omega'(t),
\]
\[
\eta(t) = \log[\beta(t)/t], \quad H(t) = 1 + t \eta'(t),
\]
belong to the algebra $\tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$;
(c) the operators
\[
V_{\mu, y} := (I - \mu c U_\alpha)P_y^+ + (I - \mu d U_\beta)P_y^-,
\]
\[
L_{\mu, y} := (I - \mu c U_\alpha)^{-1}P_y^+ + (I - \mu d U_\beta)^{-1}P_y^-
\]
are related by
\[
V_{\mu, y}L_{\mu, y} \simeq L_{\mu, y}V_{\mu, y} \simeq H_{\mu, y},
\]
where
\[
H_{\mu, y} := \Phi^{-1} \text{Op}(h_{\mu, y}) \Phi
\]
and the function $h_{\mu, y}$, given for $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$ by
\[
h_{\mu, y}(t, x) := 1 + \frac{1}{4} \left[2(r_y(x))^2 - a_{\mu, y}^{d, \beta}(t, x)c_{\mu, y}^{c, \alpha}(t, x) - a_{\mu, y}^{c, \alpha}(t, x)c_{\mu, y}^{d, \beta}(t, x) \right],
\]
belongs to the algebra $\tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$.

Proof. (a) From Lemma 2.7 it follows that the operators
\[
I - \mu c U_\alpha, I - \mu d U_\beta \in F\mathcal{O}_{\alpha, \beta}
\]
are invertible and
\[(I - \mu c U_\alpha)^{-1}, (I - \mu d U_\beta)^{-1} \in \mathcal{FO}_{\alpha,\beta}.\] \hfill (6.13)

This completes the proof of part (a).

(b) From Lemma 3.1 it follows that
\[R_y^2 = \Phi^{-1} \text{Co}(r_y^2)\Phi = \Phi^{-1} \text{Op}(r_y^2)\Phi,\] \hfill (6.14)

where \(r_y(t, x) = r_y(x)\) for \((t, x) \in \mathbb{R}_+ \times \mathbb{R}\). From Lemma 5.1 we deduce that \(r_y^2 \in \tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R}))\). By Lemma 5.4(a),
\[(I - \mu c U_\alpha) R_y = \Phi^{-1} \text{Op}(\alpha^{c,\alpha}_{\mu,y})\Phi,\] \hfill (6.15)
\[(I - \mu d U_\beta) R_y = \Phi^{-1} \text{Op}(\alpha^{d,\beta}_{\mu,y})\Phi,\] \hfill (6.16)

where the functions \(\alpha^{c,\alpha}_{\mu,y}\) and \(\alpha^{d,\beta}_{\mu,y}\), given by (6.1) and (6.2), respectively, belong to \(\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R}))\). In particular, this completes the proof of part (b).

(c) From (6.12)–(6.13) and Lemmas 2.8 and 3.1 it follows that
\[(I - \mu c U_\alpha)^T T \simeq T (I - \mu c U_\alpha)^T,\] \hfill (6.19)
\[(I - \mu d U_\beta)^T T \simeq T (I - \mu d U_\beta)^T;\] \hfill (6.20)

for every \(t \in \{ -1, 1 \}\) and \(T \in \{ P^+_y, P^-_y, R_y \}\). Applying consecutively relations (6.19)–(6.20) with \(T \in \{ P^+_y, P^-_y \}\), Lemma 3.2(b), and relations (6.19)–(6.20) with \(T = R_y\), we get
\[V_{\mu,y} L_{\mu,y} \simeq (P^+_y)^2 + (I - \mu d U_\beta)(I - \mu c U_\alpha)^{-1} P^-_y P^+_y + (P^-_y)^2 + (I - \mu c U_\alpha)(I - \mu d U_\beta)^{-1} P^+_y P^-_y\]
\[= (P^+_y + \frac{R_y^2}{4}) - (I - \mu d U_\beta)(I - \mu c U_\alpha)^{-1} \frac{R_y^2}{4} \]
\[+ (P^-_y + \frac{R_y^2}{4}) - (I - \mu c U_\alpha)(I - \mu d U_\beta)^{-1} \frac{R_y^2}{4} \]
\[\simeq I + \frac{R_y^2}{2} - \frac{1}{4} (I - \mu d U_\beta) R_y (I - \mu c U_\alpha)^{-1} R_y \]
\[\quad - \frac{1}{4} (I - \mu c U_\alpha) R_y (I - \mu d U_\beta)^{-1} R_y.\] \hfill (6.21)

Applying equalities (6.15)–(6.18) to (6.21), we obtain
\[V_{\mu,y} L_{\mu,y} \simeq I + \frac{1}{2} \Phi^{-1} \text{Op}(r_y^2)\Phi - \frac{1}{4} \Phi^{-1} \text{Op}(\alpha^{d,\beta}_{\mu,y}) \text{Op}(\alpha^{c,\alpha}_{\mu,y})\Phi \]
\[\quad - \frac{1}{4} \Phi^{-1} \text{Op}(\alpha^{c,\alpha}_{\mu,y}) \text{Op}(\alpha^{d,\beta}_{\mu,y})\Phi.\] \hfill (6.22)
From Theorem 4.5 we get
\[
\begin{align*}
\text{Op}(a_{\mu,y}^{d,\beta}) \text{Op}(c_{\mu,y}^{\alpha,\mu}) & \simeq \text{Op}(a_{\mu,y}^{d,\beta}c_{\mu,y}^{\alpha,\mu}), \\
\text{Op}(a_{\mu,y}^{c,\alpha}) \text{Op}(c_{\mu,y}^{d,\beta}) & \simeq \text{Op}(a_{\mu,y}^{c,\alpha}d_{\mu,y}^{\beta}).
\end{align*}
\]
(6.23) (6.24)

Combining (6.22)–(6.24), we arrive at
\[
V_{\mu,y}L_{\mu,y} \simeq \Phi^{-1} \text{Op}(h_{\mu,y})\Phi,
\]
where the function \(h_{\mu,y} \), given by (6.11), belongs to the algebra \(\tilde{\mathcal{E}}(\mathbb{R}_+, V(\mathbb{R})) \) because the functions (6.1)–(6.4) lie in this algebra in view of part (b). Analogously, it can be shown that
\[
L_{\mu,y}V_{\mu,y} \simeq \Phi^{-1} \text{Op}(h_{\mu,y})\Phi,
\]
which completes the proof.

6.2. Fredholmness of the Operator \(H_{\mu,2} \)

In this subsection we will prove that the operators \(H_{\mu,2} \) given by (6.10) are Fredholm for every \(\mu \in [0, 1] \). To this end, we will use Theorem 4.7.

First we represent boundary values of \(h_{\mu,y} \) in a way, which is convenient for further analysis.

Lemma 6.2. Let \(\alpha, \beta \in \text{SOS}(\mathbb{R}_+) \) and let \(c, d \in \text{SO}(\mathbb{R}_+) \) be such that \(1 \gg c \) and \(1 \gg d \). If \(h_{\mu,y} \) is given by (6.11) and (6.1)–(6.6), then for every \(\mu \in [0, 1] \) and \(y \in (1, \infty) \), we have
\[
h_{\mu,y}(\xi, x) = \begin{cases}
v_{\mu,y}(\xi, x)\ell_{\mu,y}(\xi, x), & \text{if } (\xi, x) \in \Delta \times \mathbb{R}, \\
1, & \text{if } (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\},
\end{cases}
\]
where
\[
\begin{align*}
v_{\mu,y}(\xi, x) & := (1 - \mu c(\xi)e^{i\omega(\xi)x})p_{y}^+(x) + (1 - \mu d(\xi)e^{i\eta(\xi)x})p_{y}^-(x), \\
\ell_{\mu,y}(\xi, x) & := (1 - \mu c(\xi)e^{i\omega(\xi)x})^{-1}p_{y}^+(x) + (1 - \mu d(\xi)e^{i\eta(\xi)x})^{-1}p_{y}^-(x)
\end{align*}
\]
(6.25) (6.26)

for \((\xi, x) \in \Delta \times \mathbb{R} \).

Proof. From (6.11), Lemmas 4.3, 5.4(b), and 5.5(c) it follows that
\[
h_{\mu,y}(\xi, x) = 1 \quad \text{for} \quad (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\}
\]
and
\[
h_{\mu,y}(\xi, x) = 1 + \frac{1}{4}[2(r_y(x))^2 - (1 - \mu d(\xi)e^{i\eta(\xi)x})r_y(x)(1 - \mu c(\xi)e^{i\omega(\xi)x})^{-1}r_y(x) - (1 - \mu c(\xi)e^{i\omega(\xi)x})r_y(x)(1 - \mu d(\xi)e^{i\eta(\xi)x})^{-1}r_y(x)]
\]
for \((\xi, x) \in \Delta \times \mathbb{R}\). By Lemma 3.2(a),

\[
\mathfrak{h}_{\mu, y}(\xi, x) =
\]

\[
= \left(\frac{p_y^+(x) + (r_y(x))^2}{4} \right) - \left(1 - \mu d(\xi)e^{i\eta(\xi)x} \right) \left(1 - \mu c(\xi)e^{i\omega(\xi)x} \right) - 1 \frac{(r_y(x))^2}{4} \\
+ \left(\frac{p_y^-(x) + (r_y(x))^2}{4} \right) - \left(1 - \mu c(\xi)e^{i\omega(\xi)x} \right) \left(1 - \mu d(\xi)e^{i\eta(\xi)x} \right) - 1 \frac{(r_y(x))^2}{4}
\]

\[
= (p_y^+(x))^2 + (1 - \mu d(\xi)e^{i\eta(\xi)x})(1 - \mu c(\xi)e^{i\omega(\xi)x})^{-1}p_y^-(x)p_y^+(x) \\
+ (p_y^-(x))^2 + (1 - \mu c(\xi)e^{i\omega(\xi)x})(1 - \mu d(\xi)e^{i\eta(\xi)x})^{-1}p_y^+(x)p_y^-(x)
\]

for \((\xi, x) \in \Delta \times \mathbb{R}\), which completes the proof. \(\square\)

We were unable to prove that \(\mathfrak{h}_{\mu, y}\) satisfies the hypotheses of Theorem 4.7 for every \(y \in (1, \infty)\) or at least for \(y = p\). However, the very special form of the ranges of \(v_{\mu,2}\) and \(\ell_{\mu, 2}\) given by \((6.25)\) and \((6.26)\), respectively, allows us to prove that \(v_{\mu,2}\) and \(\ell_{\mu, 2}\) are separated from zero for all \(\mu \in [0, 1]\), and thus \(\mathfrak{h}_{\mu, 2}\) satisfies the assumptions of Theorem 4.7.

Lemma 6.3. Let \(\alpha, \beta \in \text{SOS}(\mathbb{R}_+)\) and let \(c, d \in \text{SO}(\mathbb{R}_+)\) be such that \(1 \gg c\) and \(1 \gg d\). Then for every \(\mu \in [0, 1]\) the operator \(H_{\mu,2}\) given by \((6.10)\) is Fredholm on \(L^p(\mathbb{R}_+)\).

Proof. By Lemma 6.2 for the function \(\mathfrak{h}_{\mu,2}\) defined by \((6.11)\) and \((6.1) - (6.6)\) we have

\[
\mathfrak{h}_{\mu,2}(\xi, x) = 1 \neq 0 \quad \text{for} \quad (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\} \quad (6.27)
\]

and

\[
\mathfrak{h}_{\mu,2}(\xi, x) = v_{\mu,2}(\xi, x)\ell_{\mu,2}(\xi, x) \quad \text{for} \quad (\xi, x) \in \Delta \times \mathbb{R},
\]

where \(v_{\mu,2}\) and \(\ell_{\mu,2}\) are defined by \((6.25)\) and \((6.26)\), respectively. From Lemmas 2.9 and 2.10 it follows that for each \(\xi \in \Delta\) the ranges of the continuous functions \(v_{\mu,2}(\xi, \cdot)\) and \(\ell_{\mu,2}(\xi, \cdot)\) defined on \(\mathbb{R}\) lie in the half-plane

\[
\mathcal{H}^{\mu, \xi} := \{ z \in \mathbb{C} : \text{Re } z > 1 - \mu \max(|c(\xi)|, |d(\xi)|) \}.
\]

From Lemma 2.1 we get

\[
C(\Delta) := \sup_{\xi \in \Delta} |c(\xi)| = \max_{\xi \in \Delta} \left(\limsup_{t \to s} |c(\xi)| \right),
\]

\[
D(\Delta) := \sup_{\xi \in \Delta} |d(\xi)| = \max_{\xi \in \Delta} \left(\limsup_{t \to s} |d(\xi)| \right).
\]

Since \(1 \gg c\) and \(1 \gg d\), we see that \(C(\Delta) < 1\) and \(D(\Delta) < 1\). Therefore, for every \(\xi \in \Delta\) and \(\mu \in [0, 1]\), the half-plane \(\mathcal{H}^{\mu, \xi}\) is contained in the half-plane

\[
\{ z \in \mathbb{C} : \text{Re } z > 1 - \max((|C(\Delta)|, |D(\Delta)|)) \}
\]

and the origin does not lie in the latter half-plane. Thus

\[
\mathfrak{h}_{\mu,2}(\xi, x) = v_{\mu,2}(\xi, x)\ell_{\mu,2}(\xi, x) \neq 0 \quad \text{for all} \quad (\xi, x) \in \Delta \times \mathbb{R}. \quad (6.28)
\]
From (6.27)–(6.28) and Theorem 4.7 we obtain that the operator \(H_{\mu,2} \) is Fredholm on \(L^p(\mathbb{R}_+) \).

\[\square \]

6.3. Proof of the Main Result

For \(\mu \in [0,1] \), consider the operators \(V_{\mu,2} \) and \(L_{\mu,2} \) defined by (6.7) and (6.8), respectively. It is obvious that \(V_{0,2} = P_y^+ + P_y^- = I \) and \(V_{1,2} = V \). By Lemma 6.1(c),

\[V_{\mu,2} L_{\mu,2} \simeq L_{\mu,2} V_{\mu,2} \simeq H_{\mu,2}, \quad \mu \in [0,1], \tag{6.29} \]

where the operator \(H_{\mu,2} \) given by (6.10) is Fredholm in view of Lemma 6.3.

Let \(H^{(-1)}_{\mu,2} \) be a regularizer for \(H_{\mu,2} \). From (6.29) it follows that

\[V_{\mu,2} (L_{\mu,2} H^{(-1)}_{\mu,2}) \simeq I, \quad (H^{(-1)}_{\mu,2} L_{\mu,2}) V_{\mu,2} \simeq I, \quad \mu \in [0,1]. \tag{6.30} \]

Thus, \(L_{\mu,2} H^{(-1)}_{\mu,2} \) is a right regularizer for \(V_{\mu,2} \) and \(H^{(-1)}_{\mu,2} L_{\mu,2} \) is a left regularizer for \(V_{\mu,2} \). Therefore, \(V_{\mu,2} \) is Fredholm for every \(\mu \in [0,1] \). It is obvious that the operator-valued function \(\mu \mapsto V_{\mu,2} \in \mathcal{B}(L^p(\mathbb{R}_+)) \) is continuous on \([0,1]\). Hence the operators \(V_{\mu,2} \) belong to the same connected component of the set of all Fredholm operators. Therefore all \(V_{\mu,2} \) have the same index (see, e.g., [4, Section 4.10]). Since \(V_{0,2} = I \), we conclude that

\[\text{Ind } V = \text{Ind } V_{1,2} = \text{Ind } V_{0,2} = \text{Ind } I = 0, \]

which completes the proof of Theorem 1.1. \(\square \)

7. Regularization of the Operator \(W \)

7.1. Regularizers of the Operator \(W \)

As a by-product of the proof of Section 6, we can describe all regularizers of a slightly more general operator \(W \).

Theorem 7.1. Let \(1 < p < \infty \), \(\varepsilon_1, \varepsilon_2 \in \{-1,1\} \), and \(\alpha, \beta \in \text{SOS}(\mathbb{R}_+) \). Suppose \(c,d \in \text{SO}(\mathbb{R}_+) \) are such that \(1 \gg c \) and \(1 \gg d \). Then the operator \(W \) given by

\[W := (I - cU^{\varepsilon_1}) P_2^+ + (I - dU^{\varepsilon_2}) P_2^- \]

is Fredholm on the space \(L^p(\mathbb{R}_+) \) and \(\text{Ind } W = 0 \). Moreover, each regularizer \(W^{(-1)} \) of the operator \(W \) is of the form

\[W^{(-1)} = [\Phi^{-1} \text{Op}(f) \Phi] \cdot [(I - cU^{\varepsilon_1})^{-1} P_2^+ + (I - dU^{\varepsilon_2})^{-1} P_2^-] + K, \tag{7.1} \]

where \(K \in \mathcal{K}(L^p(\mathbb{R}_+)) \) and \(f \in \tilde{E}(\mathbb{R}_+, V(\mathbb{R})) \) is such that

\[f(\xi, x) = \begin{cases}
1, & \text{if } (\xi, x) \in \Delta \times \mathbb{R}, \\
\frac{1}{w(\xi, x)\ell(\xi, x)}, & \text{if } (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\},
\end{cases} \tag{7.2} \]
where
\[
\omega(\xi, x) := (1 - c(\xi)e^{i\xi_1\omega(\xi)x})p_2^+(x) + (1 - d(\xi)e^{i\xi_2\eta(\xi)x})p_2^-(x) \neq 0, \quad (7.3)
\]
\[
\ell(\xi, x) := \frac{p_2^+ (x)}{1 - c(\xi)e^{i\xi_1\omega(\xi)x}} + \frac{p_2^- (x)}{1 - d(\xi)e^{i\xi_2\eta(\xi)x}} \neq 0 \quad (7.4)
\]
for \((\xi, x) \in \Delta \times \mathbb{R}\) with \(\omega(t) := \log[\alpha(t)/t]\) and \(\eta(t) := \log[\beta(t)/t]\) for \(t \in \mathbb{R}_+\).

Proof. Since \(\alpha, \beta \in \text{SOS}(\mathbb{R}_+),\) from Lemma 2.5 it follows that \(\alpha_{-1}\) and \(\beta_{-1}\) also belong to \(\text{SOS}(\mathbb{R}_+).\) Taking into account that \(U_{\alpha}^c = U_{\alpha_1}\) and \(U_{\beta}^c = U_{\beta_2},\) from Theorem 1.1 we deduce that the operator \(W\) is Fredholm and \(\text{Ind} W = 0.\) Further, from (6.30) and Lemma 6.3 it follows that each regularizer \(W^{(-1)}\) of \(W\) is of the form
\[
W^{(-1)} = H^{(-1)}L + K_1, \quad (7.5)
\]
where \(K_1 \in \mathcal{K}(L^p(\mathbb{R}_+)),\)
\[
L := (I - cU_{\alpha}^c)^{-1}P_2^+ + (I - dU_{\beta}^c)^{-1}P_2^-, \quad (7.6)
\]
and \(H^{(-1)}\) is a regularizer of the Fredholm operator \(H\) given by
\[
H := \Phi^{-1} \text{Op}(\mathbf{h})\Phi,
\]
where \(\mathbf{h} \in \tilde{E}(\mathbb{R}_+, V(\mathbb{R}))\) is given for \((t, x) \in \mathbb{R}_+ \times \mathbb{R}\) by
\[
\mathbf{h}(t, x) := 1 + \frac{1}{4} \left[2(r_2(x))^2 - a_{1,2}^d, \beta_2(t, x) \epsilon_{c, \alpha_1}^c, \epsilon_{1,2}^\alpha (t, x) - a_{1,2}^d, \alpha_1 (t, x) \epsilon_{1,2}^d, \beta_2 (t, x)\right],
\]
and the functions \(a_{1,2}^c, \epsilon_{1,2}^\alpha\) and \(a_{1,2}^d, \epsilon_{1,2}^d\) are given by (6.1)–(6.2) and (6.3)–(6.4) with \(\alpha\) and \(\beta\) replaced by \(\alpha_\epsilon\) and \(\beta_\epsilon,\) respectively.

Taking into account Lemma 2.6 by analogy with Lemma 6.2 we get
\[
\mathbf{h}(\xi, x) = \left\{ \begin{array}{ll}
w(\xi, x)\ell(\xi, x), & \text{if } (\xi, x) \in \Delta \times \mathbb{R}, \\
1, & \text{if } (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\}. \end{array} \right. \quad (7.7)
\]
By Theorem 4.7(b), each regularizer \(H^{(-1)}\) of the Fredholm operator \(H\) is of the form
\[
H^{(-1)} = \Phi^{-1} \text{Op}(\mathbf{f})\Phi + K_2, \quad (7.8)
\]
where \(K_2 \in \mathcal{K}(L^p(\mathbb{R}_+))\) and \(\mathbf{f} \in \tilde{E}(\mathbb{R}_+, V(\mathbb{R}))\) is such that
\[
\mathbf{f}(t, \pm \infty) = 1/\mathbf{h}(t, \pm \infty) \quad \text{for all} \quad t \in \mathbb{R}_+, \quad (7.9)
\]
From (7.5)–(7.6) and (7.8) we get (7.1). Combining (7.7) and (7.9), we arrive at (7.2). \(\square\)
7.2. One Useful Consequence of Regularization of W

Theorem 7.2. Under the assumptions of Theorem 7.1 for every $y \in (1, \infty)$ there exists a function $g_y \in \tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$ such that

$$ (\Phi^{-1} \text{Op}(g_y) \Phi) W \simeq R_y $$

(7.10)

and

$$ g_y(\xi, x) = \begin{cases} \frac{r_y(x)}{w(\xi, x)}, & \text{if } (\xi, x) \in \Delta \times \mathbb{R}, \\ 0, & \text{if } (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\}, \end{cases} $$

where the function w is defined for $(\xi, x) \in \Delta \times \mathbb{R}$ by (7.3).

Proof. From Theorem 7.1 it follows that

$$ (\Phi^{-1} \text{Op}(f) \Phi) LW \simeq R_y, $$

(7.11)

where L is given by (7.6) and $f \in \tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$ satisfies (7.2). From Lemmas 2.8 and 3.1 we get

$$ WR_y \simeq R_y W. $$

(7.12)

Lemmas 3.1 and 5.5(a)–(b) imply that

$$ LR_y = (I - c_U^{\alpha_1})^{-1} R_y P_2^+ + (I - d_U^{\beta_2})^{-1} R_y P_2^- $$

$$ = \Phi^{-1} \text{Op}(c_{1,y}^{\alpha_1}) \text{Co}(p_2^+) \Phi + \Phi^{-1} \text{Op}(d_{1,y}^{\beta_2}) \text{Co}(p_2^-) \Phi, $$

(7.13)

where the functions $c_{1,y}^{\alpha_1}$ and $d_{1,y}^{\beta_2}$, given by (6.3) and (6.4) with α and β replaced by α_{ε_1} and β_{ε_2}, respectively, belong to $\tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$. From (7.13) and Lemmas 5.1 and 4.6 we obtain

$$ LR_y = \Phi^{-1} \text{Op}(c_{1,y}^{\alpha_{\varepsilon_1}} p_2^+ + d_{1,y}^{\beta_{\varepsilon_2}} p_2^-) \Phi, $$

(7.14)

where $c_{1,y}^{\alpha_{\varepsilon_1}} p_2^+ + d_{1,y}^{\beta_{\varepsilon_2}} p_2^- \in \tilde{E}(\mathbb{R}_+, V(\mathbb{R}))$. From (7.11), (7.12), (7.14), and Theorem 4.5 we get (7.10) with

$$ g_y := f(c_{1,y}^{\alpha_{\varepsilon_1}} p_2^+ + d_{1,y}^{\beta_{\varepsilon_2}} p_2^-) \in \tilde{E}(\mathbb{R}_+, V(\mathbb{R})). $$

(7.15)

Obviously,

$$ p_2^+ (\pm \infty) = 1, \quad p_2^\pm (\mp \infty) = 0. $$

(7.16)

By Lemmas 2.6 and 5.5(c),

$$ c_{1,y}^{\alpha_{\varepsilon_1}} (\xi, x) = \begin{cases} \frac{r_y(x)}{1 - c(\xi)e^{i\varepsilon_1 \omega(\xi)x}}, & \text{if } (\xi, x) \in \Delta \times \mathbb{R}, \\ 0, & \text{if } (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\}, \end{cases} $$

(7.17)

$$ d_{1,y}^{\beta_{\varepsilon_2}} (\xi, x) = \begin{cases} \frac{r_y(x)}{1 - d(\xi)e^{i\varepsilon_2 \eta(\xi)x}}, & \text{if } (\xi, x) \in \Delta \times \mathbb{R}, \\ 0, & \text{if } (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\}. \end{cases} $$

(7.18)

From (7.15), (7.18), (7.2), (7.4), and Lemma 4.3 we get

$$ g_y(\xi, x) = 0 \quad \text{for} \quad (\xi, x) \in (\mathbb{R}_+ \cup \Delta) \times \{\pm \infty\}. $$
and
\[
\mathfrak{g}_y(\xi, x) = f(\xi, x) \left(\frac{r_y(x)p_2^+(x)}{1 - c(\xi)e^{i\varepsilon_1\omega(\xi)x}} + \frac{r_y(x)p_2^-(x)}{1 - d(\xi)e^{i\varepsilon_2\eta(\xi)x}} \right)
\]
\[
= \frac{\ell(\xi, x)r_y(x)}{w(\xi, x)\ell(\xi, x)} - \frac{r_y(x)}{w(\xi, x)}
\]
for \((\xi, x) \in \Delta \times \mathbb{R}.
\]

Relation (7.10) will play an important role in the proof of an index formula for the operator \(N\) in (11).

References

[1] Antonevich, A.B.: Linear Functional Equations. Operator Approach. Operator Theory: Advances and Applications, vol. 83. Birkhäuser, Basel (1996)
[2] Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators. 2nd edn. Springer, Berlin (2006)
[3] Duduchava, R.: On algebras generated by convolutions and discontinuous functions. Integral Equat. Oper. Theory 10, 505–530 (1987)
[4] Gohberg, I., Krupnik, N.: One-Dimensional Linear Singular Integral Equations. I. Introduction. Operator Theory: Advances and Applications, vol. 53. Birkhäuser, Basel (1992)
[5] Hagen, R., Roch, S., Silbermann, B.: Spectral Theory of Approximation Methods for Convolution Equations. Operator Theory: Advances and Applications, vol. 74. Birkhäuser, Basel (1994)
[6] Karlovich, A.Yu., Karlovich, Yu.I., Lebre, A.B.: Invertibility of functional operators with slowly oscillating non-Carleman shifts. In: “Singular Integral Operators, Factorization and Applications”. Operator Theory: Advances and Applications, vol. 142, pp. 147–174 (2003)
[7] Karlovich, A.Yu., Karlovich, Yu.I., Lebre, A.B.: Sufficient conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data. Integr. Equ. Oper. Theory 70, 451–483 (2011)
[8] Karlovich, A.Yu., Karlovich, Yu.I., Lebre, A.B.: Necessary conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data. Integr. Equ. Oper. Theory 71, 29–53 (2011)
[9] Karlovich, A.Yu., Karlovich, Yu.I., Lebre, A.B.: Fredholmness and index of simplest singular integral operators with two slowly oscillating shifts. Operators and Matrices, 8, no. 4, 935–955 (2014)
[10] Karlovich, A.Yu., Karlovich, Yu.I., Lebre, A.B.: On regularization of Mellin PDO’s with slowly oscillating symbols of limited smoothness. Comm. Math. Anal. 17, no. 2, 189–208 (2014)
[11] Karlovich, A.Yu., Karlovich, Yu.I., Lebre, A.B.: The index of weighted singular integral operators with shifts and slowly oscillating data. Work in progress (2015)
[12] Karlovich, Yu.I.: An algebra of pseudodifferential operators with slowly oscillating symbols. Proc. London Math. Soc. 92, 713–761 (2006)
[13] Karlovich, Yu.I.: Pseudodifferential operators with compound slowly oscillating symbols. In: “The Extended Field of Operator Theory”. Operator Theory: Advances and Applications, vol. 171, pp. 189–224 (2006)

[14] Karlovich, Yu.I.: Nonlocal singular integral operators with slowly oscillating data. In: “Operator Algebras, Operator Theory and Applications”. Operator Theory: Advances and Applications, vol. 181, pp. 229–261 (2008)

[15] Karlovich, Yu.I.: An algebra of shift-invariant singular integral operators with slowly oscillating data and its application to operators with a Carleman shift. In: “Analysis, Partial Differential Equations and Applications. The Vladimir Maz’ya Anniversary Volume”. Operator Theory: Advances and Applications, vol. 193, pp. 81–95 (2009)

[16] Rabinovich, V.S.: Singular integral operators on a composed contour with oscillating tangent and pseudodifferential Mellin operators. Soviet Math. Dokl. 44, 791–796 (1992)

[17] Rabinovich, V.S., Roch, S., Silbermann, B.: Limit Operators and Their Applications in Operator Theory. Operator Theory: Advances and Applications, vol. 150. Birkhäuser, Basel (2004)

[18] Roch, S., Santos, P.A., Silbermann, B.: Non-commutative Gelfand theories. A tool-kit for operator theorists and numerical analysts. Universitext. Springer-Verlag London, London (2011)

[19] Simonenko, I.B., Chin Ngok Minh: Local method in the theory of one-dimensional singular integral equations with piecewise continuous coefficients. Noetherity. Rostov-on-Don State Univ., Rostov-on-Don, in Russian (1986)

Alexei Yu. Karlovich
Centro de Matemática e Aplicações (CMA) and
Departamento de Matemática
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
Quinta da Torre
2829–516 Caparica
Portugal
e-mail: oyk@fct.unl.pt

Yuri I. Karlovich
Facultad de Ciencias
Universidad Autónoma del Estado de Morelos
Av. Universidad 1001, Col. Chamilpa
C.P. 62209 Cuernavaca, Morelos
México
e-mail: karlovich@uaem.mx
Amarino B. Lebre
Departamento de Matemática
Instituto Superior Técnico
Universidade de Lisboa
Av. Rovisco Pais
1049-001 Lisboa
Portugal
e-mail: alebre@math.tecnico.ulisboa.pt