Optimization and characterization of n-hexane extracts of arabica coffee ground (Coffea arabica L.) from Gayo plateau as source of natural antioxidant

Salfauqi Nurman¹*, Asmeri Lamona¹, Muhammad Nasir²

¹Agricultural Industrial Technology Department, Serambi Mekkah University, Banda Aceh, 23245, Indonesia
²Physics Education Department, Ar-Raniry State Islamic University, Banda Aceh, Indonesia

*salfauqi.nurman@serambimekkah.ac.id

Abstract. Arabica coffee is a major commodity crop in the Gayo Plateau, Aceh Province. Utilization of coffee in the area only as a raw material for making coffee drinks and produce waste that is not utilized. The aim of this study is optimization and characterization of n-hexane extract of Arabica Gayo coffee ground (Coffea arabica L.) as a source of natural antioxidant. The extraction process used soxhlet method with n-hexane solvent. Characterization of arabica coffee ground oil consist of analysis of functional group using FTIR, component analysis using GC-MS and antioxidant analysis using DPPH method. The optimum time of the soxhlet process of Arabica coffee is 180 minutes with rendement of 9.54%, analysis of functional group shows CH₂ asymmetric stretch at 2922 cm⁻¹, CH₂ symmetric stretch at 2853 cm⁻¹, C=O asymmetric stretch at 1741 cm⁻¹, CH₂ bending at 1458 cm⁻¹, C-CH₃ vibration at 1159 cm⁻¹ and CH vibration at 718 cm⁻¹. The main component of Arabica Gayo coffee ground oil is 1,2-benzenedicarboxylic acid, bis(2-ethylhexyl) ester with an area of 18.09%, antioxidant activity of Arabica Gayo coffee ground oil is very weak with IC₅₀ value = 1222,31 ppm.

1. Introduction

The Gayo Plateau is an area in Aceh that includes three regencies i.e. Bener Meriah, Central Aceh and Gayo Lues. The main commodity from these regencies is coffee. The coffee cultivated massively in the three regencies is Arabica Coffee (Coffea arabica L.) due to its best taste and high price. In Aceh, Arabica Coffee is only used as raw material to make coffee and has not been treated in industry yet. In making a cup of coffee, it will be obtained something called coffee ground. The coffee ground usually become waste product that not being used.

Coffee ground contains polyphenol 18,180 mg/g, but polar extract of coffee ground contains polyphenols 1,746 mg/g and has an antioxidant activity of 29.04% [1]. The coffee ground extracted using subcritical water extraction method contains phenol compound of 86,23 mgGAE/g with ABTS antioxidant activity (81,38 mmolTE/100 g) and DPPH (42,12 mmolTE/100 g) [2]. The concentration of polyphenols in water extracts of coffee grounds reaches 5.66 mgGAE/g and has an antioxidant activity of 1222,31 ppm.
activity of 80.5% [3]. Varying extraction methods (soxhlet, ultrasonic and supercritical fluids) and solvents (hexane, dichloromethane, ethylacetate, ethanol and CO₂) used to observe the antioxidant activities of coffee grounds, all result indicate the presence of antioxidant activities of coffee ground with different levels [4]. Other studies have shown that coffee grounds used as fertilizers can increase the antioxidants activities and bioactive compounds from plants [5].

The aim of this study was optimization of time extraction and characterization of Arabica Gayo Coffee ground oil (Coffea arabica L.) grown in Gayo Plateau, Aceh, Indonesia as source of natural antioxidant. Extraction process was performed using soxhlet method with nonpolar solvent i.e. n-hexane, analysis of functional groups was performed using FTIR, analysis of oil component was performed using GC-MS and activity test of antioxidant was performed using DPPH method.

2. Methodology
2.1. Tools and materials
Tools used in this study were glasses, analytical scale, soxhlet, vortex mixer, rotary evaporator, Fourier transform infrared (FTIR) (Agilent resolution Cary 630 FTIR spectrometer), gas chromatography – mass spectrometry (GC-MS) (Shimadzu qp ultra 2010, with stationary phase colom db5ms and mobile phase helium gas), spectrophotometry UV-Vis (UV mini-1240 Shimadzu). Materials used in this study were sample of Arabica Coffee ground from Bandar, Bener Meriah Regency, n-hexane solvent, methanol solvent, and DPPH reagent (1,1-diphenyl-2-picrylhydrazyl) from sigma-aldrich.

2.2. Extraction of coffee ground oil
Extraction of coffee ground oil was performed using soxhlet method. Firstly, sample of coffee ground was measured of 30 grams and wrapped using a filter paper. Then, it was put in extraction tube. The solvent used was 200 mL n-hexane. The extraction process was performed at temperature 80°C with varying time of 90, 120, 150, 180 and 210 minutes. Rotary evaporator was used to separate coffee ground oil and the solvent at temperature 60°C for 30 minutes [6].

2.3. Analysis of functional groups
Analysis of coffee ground oil functional groups was performed using Fourier transform infrared (FTIR) Agilent resolution Cary 630 FTIR spectrometer at instrumentation laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh.

2.4. Analysis of Component
Analysis of coffee ground oil component was performed using gas chromatography–mass spectrometry (GC-MS) Shimadzu qp ultra 2010 with stationary phase colom db5ms and mobile phase helium gas, performed at chemical instrumentation laboratory, Department of Chemistry Education, Faculty of Mathematics and Science Education, Indonesia University of Education, Bandung.

2.5. Activity test of antioxidant
Analysis of antioxidant was performed using DPPH method (1,1-diphenyl-2-picrylhydrazyl) [7,8,9].

2.5.1. Preparation of DPPH solution
DPPH was measured of 7.9 mg, dissolved in methanol until 50 mL then homogenized, and obtained 0.4 mM DPPH solution. The DPPH solution must be stored in a dark bottle. The new solution was always made when needed.

2.5.2. Preparation of extract solution variation
The 500 ppm main solution was made by dissolving 5 mg extract of coffee ground oil into 10 mL flask using methanol. The main solution was diluted and obtained varying solution concentration of 25, 50 and 100 ppm. Each solution was homogenized using a vortex mixer and incubated at 37°C for 30 minutes.

2.5.3. Measurement of blanko absorbance
1 mL of 0.4 mM DPPH solution was set its volume to 5 mL using methanol, homogenized using a vortex mixer and incubated at 37°C for 30 minutes. Furthermore, its absorbance was measured using UV-Vis spectroscopy at 517 nm wavelength.

2.5.4. Measurement of sample absorbance
Arabica coffee ground oil was set at 25 ppm concentration of 250 μL, 50 ppm of 500 μL and 100 ppm of 1000 μL, each of them was added 1 mL of 0.4 mM DPPH solution and converted the volume to 5 mL using methanol, homogenized using a vortex mixer and incubated at 37°C for 30 minutes. Its absorbance was measured using UV-Vis spectroscopy at 517 nm wavelength.

2.5.5. Calculation IC₅₀

The IC₅₀ (inhibition concentration 50) is an antioxidant concentration in ppm (μg/mL) that can inhibit 50% free radical. The determination of IC₅₀ value is obtained from the linear equation of 50% of inhibition and concentration. By using the equation y=a+bx where y=50 and x=IC₅₀ value. The percentage of inhibitory power is calculated using the equation (1):

\[
\text{inhibition} \% = \left(\frac{\text{absorbance of control} - \text{absorbance of test}}{\text{absorbance of control}} \right) \times 100
\]

3. Results and Discussion

3.1. Rendement of coffee ground oil

Rendement of coffee ground oil was calculated using equation (2), rendement obtained from mean soxhlet process was 9.03%. Time soxhlet affected rendement that was obtained. Figure 1 shows the correlation of rendement result with time soxhlet. As can be seen in Figure 1 that the optimum time used in the soxhlet process was 180 minutes with rendement obtained value of 9.54%. It can be seen that the longer time spent the amount of rendement increasing. This is due to more frequent contact between the solvent and the sample. The density of arabica coffee ground oil produced is 0.9227 g/cm³.

3.2. Functional groups of coffee ground oil

The result of analysis of functional groups of Arabica Coffee ground oil (Coffea arabica L.) is presented in Figure 2. The result of spectrum shows there are some specific functional groups for coffee oil as can be seen in Figure 1. There are some functional groups have sharp peaks (% transmit) like \(\text{CH}_2 \text{asymmetric stretch at 2922 cm}^{-1} \), \(\text{CH}_2 \text{symmetric stretch at 2853 cm}^{-1} \), C=O\text{asymmetric stretch at 1741 cm}^{-1} \), \(\text{CH}_2 \text{bending at 1458 cm}^{-1} \), C-\text{CH}_3\text{vibration at 1159 cm}^{-1} \) and C-H\text{vibration at 718 cm}^{-1} [10,11,12]. These show there are many functional groups in the sample.
Figure 2. FTIR spectrum of Arabica Coffee ground oil

Table 1. Characterization of FTIR peak of Arabica Coffee ground oil

Peak position (cm⁻¹)	Characterization of Absorbance
3008	C-H alkene
2922	CH₂ asymmetric stretch
2853	CH₂ symmetric stretch
1741	C=O asymmetric stretch
1458	CH₂ bending
1377	C-H symmetric bending
1269	C-O stretch
1159	C-CH₃ vibration
1042	C-O-HDeformasi
718	C-H vibration

3.3. Component of Coffee Ground Oil

The result of component analysis of Arabica Coffee ground oil using GC is presented in Figure 3 and Table 2. The result shows there are some active compounds contained in coffee oil. As can be seen in Figure 3 that there are seven compounds with area above 1% i.e.: methylcyclopentane (14.93%), cyclohexane (1.36%), pentadecylic acid (8.81%), linoleic acid (9.00%), ethyl linoleate (6.36%), 2,3-dimethylbenzofuran (1.61%) and 1,2-benzenedicarboxylic acid, bis (2-ethylhexyl) ester (18.09%), with time retention successively of 1.599; 1.697; 19.148; 21.193; 21.321; 25.078 and 25.724 minutes. The MS fragmentation form of the compounds are presented in Figure 4. The peak 1 with time retention of 1,532 minute is n-hexane solvent (34.45%).

The result of GC-MS shows that there is a main compound, 1,2-benzenedicarboxylic acid bis (2-ethylhexyl) ester (Figure 5) which has the largest area (18.09%) than others. The compound contains some bioactivities like anti-cancer, antimicrobial, antifungal dan antioxidant[13,14,15,16,17].
Figure 3. Chromatogram GC of Arabica Coffee ground oil

Table 2. Characterization of Arabica Coffee ground oil GC peak

Peak	R.Time	Area	Area%	Height	A/H	Name
1	1.523	27537902	34.45	10351345	2.66	Hexane
2	1.599	11934777	14.93	6498872	1.84	Methylcyclopentane
3	1.697	1086488	1.36	684829	1.59	Cyclohexane
4	1.795	48846	0.06	18680	2.61	Heptane
5	1.923	26983	0.03	21298	1.27	Methylcyclohexane
6	2.162	164556	0.21	122034	1.35	Toluene
7	4.479	80751	0.10	37044	2.18	Decane
8	4.811	25838	0.03	16858	1.53	Benzene,1,4-dichloro-
9	6.034	47378	0.06	31891	1.49	Undecane
10	9.853	35674	0.04	19625	1.82	Decanoic acid, methyl ester
11	11.032	37623	0.05	24545	1.53	Tetradecane
12	13.020	360953	0.45	171031	2.11	Dodecanoic acid, methyl ester
13	13.985	28151	0.04	12047	2.34	Cyclohexadecane
14	14.089	41180	0.05	26038	1.58	Iron, tricarbonyl[N-(phenyl-2-pyridinylmethylene)benzenamine-]
15	15.901	104645	0.13	59618	1.76	Tetradecanoic acid, methyl ester
16	16.858	26168	0.03	18121	1.44	Eicosane
17	18.518	509379	0.64	273230	1.86	Hexadecanoic acid, methyl ester
18	19.148	7042720	8.81	1635011	4.31	Pentadecanoic acid
19	19.345	787716	0.99	209359	3.76	Hexadecanoic acid, ethyl ester
20	20.561	88723	0.11	49981	1.78	9,12-Octadecadienoic acid(Z,Z), methyl ester
21	20.621	597383	0.75	336751	1.77	9-Octadecenoic acid, methyl ester
22	20.904	220964	0.28	118434	1.87	Octadecanoic acid, methyl ester
23	21.193	7193004	9.00	1644113	4.38	Linoleic acid
24	21.321	5084017	6.36	555188	9.16	Ethyllinoleate
25	21.617	287097	0.36	98682	2.91	1-Eicosanol
26	21.655	134680	0.17	68347	1.97	Pentacosanoic acid, ethyl ester
27	23.747	47889	0.06	21518	2.23	1-Eicosanol
					2.29 Hexanedioic acid, bis(2-ethylhexyl) ester	
----	----	----	----	----	---	
28	23.853	94535	0.12	41268	2.29 Hexanedioic acid, bis(2-ethylhexyl) ester	
29	25.078	1285779	1.61	412086	3.12 2,3-Dimethylbenzofuran	
30	25.455	312343	0.39	101688	3.07 2,3-Dimethylbenzofuran	
31	25.724	14460503	18.09	3848697	3.76 1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester	
32	26.042	194991	0.24	58262	3.35 Pregnenoloneacetate	

Figure 4. MS fragmentation form of Arabica Coffee ground oil compound (a) methylcyclopentane (m/z = 84), (b) cyclohexane (m/z = 84), (c) pentadecylic acid (m/z = 242), (d) linoleic acid (m/z = 280), (e) ethyl linoleate (m/z = 308), (f) 2,3-dimethylbenzofuran (m/z = 146) and (g) 1,2-benzenedicarboxylic acid, bis(2-ethylhexyl) ester (m/z = 279).
3.4. Antioxidant activities

Antioxidant activities of coffee ground oil extracted using soxhlet method with n-hexane was tested using DPPH method. Testing antioxidant activities of coffee ground oil was performed by varying extract concentration of 25, 50 and 100 ppm. The result of testing antioxidant activities of coffee ground oil is presented in Table 3. It can be seen that inhibition percentage and IC$_{50}$ value of coffee ground oil sample. Determination of IC$_{50}$ value of coffee ground oil sample is obtained from linear equation/interpolation presented in Figure 6. $y = 0.0413x - 0.4813$ with $y = 50$ as it was obtained $x = 1222.31$ ppm that is IC$_{50}$ value. It indicates that antioxidant activities of coffee ground oil is very weak, another study showed the same value of 1421.53 ppm [4].

Sample	Concentration (ppm)	Sample Absorbance	Blanko Absorbance (DPPH)	Inhibition (%)	IC$_{50}$ (ppm)
Coffee ground oil	25	0.825	0.831	0.722	1222.31
	50	0.820	0.831	1.324	
	100	0.800	0.831	3.730	

Figure 6. Correlation between concentration with Arabica Coffee ground oil inhibition curve

4. Conclusions

Extract of n-hexane Arabica Gayo Coffee ground (*Coffea arabica* L.) contains some active compounds, the main component is 1,2-benzenedicarboxylic acid, bis(2-ethylhexil) ester. Arabica Gayo Coffee ground oil also contains antioxidant activities of 1222.31 ppm IC$_{50}$ value.
Acknowledgement
This study has been financially supported by Directorate of Research and Community Services Directorate General of Strengthening Research and Development, Ministry of Research, Technology and Higher Education, No. 117/SP2H/LT/DRPM/2018.

References
[1] Palupi, N. W., & Praptiningsih, Y. (2016). Oxidized Tapioca Starch As an Alginate Substitute for Encapsulation of Antioxidant from Coffee Residue. Agriculture and Agricultural Science Procedia. https://doi.org/10.1016/j.aaspro.2016.02.136
[2] Xu, H., Wang, W., Liu, X., Yuan, F., & Gao, Y. (2015). Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2015.07.054
[3] Sant’Anna, V., Biondo, E., Kolchinski, E. M., da Silva, L. F. S., Corrêa, A. P. F., Bach, E., & Brandelli, A. (2017). Total Polyphenols, Antioxidant, Antimicrobial and Allelopathic Activities of Spend Coffee Ground Aqueous Extract. Waste and Biomass Valorization, 8, 439–442. https://doi.org/10.1007/s12649-016-9575-4
[4] Andrade, K. S., Goncalves, R. T., Maraschin, M., Ribeiro-Do-Valle, R. M., Martinez, J., & Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, (88). https://doi.org/10.1016/j.talanta.2011.11.031
[5] Cruz, R., Gomes, T., Ferreira, A., Mendes, E., Baptista, P., Cunha, S., … Casal, S. (2014). Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues. Food Chemistry, 145, 95–101. https://doi.org/10.1016/j.foodchem.2013.08.038
[6] Marlina, Saiful, Rahmi, Saleha, S., & Nurman, S. (2017). Synthesis and characterization new polyurethane membrane from hydroxylated rubber seed oil. Oriental Journal of Chemistry, 33(1). https://doi.org/10.13005/ojc/330122
[7] Gülçin, I., Huyut, Z., Elmašt, M., & Aboul-Enein, H. Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1), 43–53. https://doi.org/10.1007/s12649-016-9575-4
[8] Ramaswamy, V., Varghese, N., & Simon, A. (2011). An Investigation on Cytotoxic and Antioxidant Properties of Clitoria Ternatea L., 3(1), 74–77.
[9] Thangaraj, P. (2016). Pharmacological Assays of Plant-Based Natural Products. (K. D. Rainsford, Ed.). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-26811-8
[10] Paula, A., Franca, A. S., & Oliveira, L. S. (2012). Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chemistry, 132(3), 1368–1374. https://doi.org/10.1016/j.foodchem.2011.11.121
[11] Marlina, Nurman, S., Saleha, S., Fitriani, & Thanthawi, I. (2017). Synthesis of polyurethanes membranes from rubber seed oil and methylene diphenyl diisocyanates (MDI). In IOP Conference Series: Materials Science and Engineering (Vol. 180). https://doi.org/10.1088/1757-899X/180/1/012134
[12] Nurman, S., Marlina, Saiful, & Saleha, S. (2015). Sintesis dan Karakterisasi Membran Poliuretan dari Minyak Biji Synthese and Characterization Polyurethanes Membranes of Rubber Seed Oil and Hexamethylene-1 , 6-diisocyanate. Jurnal Rekayasa Kimia Dan Lingkungan, 10(4), 188–195. https://doi.org/10.23955/rkl.v10i4.3772
[13] Sani, U.M, and U. U. P. (2009). Isolation of 1 , 2-benzenedicarboxylic acid bis (2-ethylhexyl) ester from methanol extract of the variety minor seeds of Ricinus communis Linn. (Euphorbiaceae), 8(2), 107–114.
[14] Save, S. A., Lokhande, R. S., & Chowdhary, A. S. (2015). Determination of 1, 2-Benzenedicarboxylic acid, bis (2-ethylhexyl) ester from the twigs of Thevetia peruviana as a Colwell Biomarker. Journal of Innovations in Pharmaceuticals and Biological Sciences, 2(3),
[15] Wang, J., Zhang, M. Y., Chen, T., Zhu, Y., Teng, Y., Luo, Y. M., & Christie, P. (2015). Isolation and identification of a di-(2-ethylhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil. Pedosphere. https://doi.org/10.1016/S1002-0160(15)60005-4

[16] Montevecchi, G., Masino, F., Di Pascale, N., Vasile Simone, G., & Antonelli, A. (2017). Study of the repartition of phthalate esters during distillation of wine for spirit production. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.05.074

[17] Ozaki, H., Sugihara, K., Watanabe, Y., Moriguchi, K., Uramaru, N., Sone, T., … Kitamura, S. (2017). Comparative study of hydrolytic metabolism of dimethyl phthalate, dibutyl phthalate and di (2-ethylhexyl) phthalate by microsomes of various rat tissues. Food and Chemical Toxicology, 100, 217–224. https://doi.org/10.1016/j.fct.2016.12.019