Lattice Operations on Terms over Similar Signatures

Hassan Aït-Kaci1 and Gabriella Pasi2

1 HAK Language Technologies — hak@acm.org
2 Università de Milano-Bicocca — pasi@disco.unimib.it

Abstract. Unification and generalization are operations on two terms computing respectively their greatest lower bound and least upper bound when the terms are quasi-ordered by subsumption up to variable renaming (i.e., $t_1 \preceq t_2$ iff $t_1 = t_2\sigma$ for some variable substitution σ). When term signatures are such that distinct functor symbols may be related with a fuzzy equivalence (called a similarity), these operations can be formally extended to tolerate mismatches on functor names and/or arity or argument order. We reformulate and extend previous work with a declarative approach defining unification and generalization as sets of axioms and rules forming a complete constraint-normalization proof system. These include the Reynolds-Plotkin term-generalization procedures, Maria Sessa’s “weak” unification with partially fuzzy signatures and its corresponding generalization, as well as novel extensions of such operations to fully fuzzy signatures (i.e., similar functors with possibly different arities). One advantage of this approach is that it requires no modification of the conventional data structures for terms and substitutions. This and the fact that these declarative specifications are efficiently executable conditional Horn-clauses offers great practical potential for fuzzy information-handling applications.3

1 Subsumption Lattice

The first-order term (\mathcal{FOT}) was introduced as a data structure in software programming by the Prolog language.4 Just like the S-expression for LISP, the \mathcal{FOT} is Prolog’s universal data structure. Using formal algebra notation, we write $T_{\Sigma,V}$ for the set of \mathcal{FOT}s on an operator signature $\Sigma \overset{\text{def}}{=} \bigcup_{n \geq 0} \Sigma_n$ where Σ_n is a set of operator symbols of n arguments $\Sigma_n \overset{\text{def}}{=} \{ f \mid \text{arity}(f) = n, n \in \mathbb{N} \}$, and V is a set of variables.5 We shall designate an element f in Σ as a functor, with $\text{arity}(f)$ denoting its number of arguments.6 This set $T_{\Sigma,V}$ can then be defined inductively as:

$$T_{\Sigma,V} \overset{\text{def}}{=} V \cup \{ f(t_1, \ldots, t_n) \mid f \in \Sigma_n, t_i \in T_{\Sigma,V}, 0 \leq i \leq n, n \geq 0 \}.$$

3This article appears in the pre-proceedings of LOPSTR 2017 with the title “Lattice Operations on Terms with Fuzzy Signatures.” Its new title is technically more accurate. The work presented in this paper is part of a wider study [2]. All proofs and more examples can be found in a more detailed paper [3].

4https://en.wikipedia.org/wiki/Prolog

5We shall use Prolog’s convention of writing variables with capitalized symbols.

6When $\text{arity}(f) = n$, this is often denoted by writing f/n.
We write c instead of $c()$ for a constant $c \in \Sigma_0$. Also, when the set Σ of functor symbols and the set \mathcal{V} of variables are implicit from the context, we simply write T instead of $T_{\Sigma,\mathcal{V}}$. The set $\text{var}(t)$ of variables occurring in a \mathcal{FOT} $t \in T$ is defined as:

$$\text{var}(t) \equiv \begin{cases} \{X\} & \text{if } t = X \in \mathcal{V} \\ \bigcup_{i=1}^{n} \text{var}(t_n) & \text{if } t = f(t_1, \ldots, t_n) \end{cases}$$

The lattice-theoretic properties of $\mathcal{FOT}s$ as data structures were first exposed and studied by Reynolds (in [16]) and Plotkin (in [14] and [15]). They noted that the set T is ordered by term subsumption (denoted as ‘\preceq’); viz., $t \preceq t'$ (and we say: “t' subsumes t”) iff there exists a variable substitution $\sigma : \text{var}(t') \rightarrow T$ such that $t'\sigma = t$. Two $\mathcal{FOT}s$ t and t' are considered “equal up to variable renaming” (denoted as $t \simeq t'$) whenever both $t \preceq t'$ and $t' \preceq t$. Then, the set of first-order terms modulo variable renaming, when lifted with a bottom element \bot standing for “no term” (i.e., the set $T/\simeq \cup \{\bot\}$) has a lattice structure for subsumption. It has a top element $\top = \mathcal{V}$ (indeed, since any variable in \mathcal{V} can be substituted for any term, \mathcal{V} is therefore the class of any variable modulo renaming). Unification corresponds to its greatest lower bound (glb) operation. The dual operation, generalization of two terms, yields a term that is their least upper bound (lub) for subsumption. This can be summarized as the lattice diagram shown in Fig. 1. In this diagram, given a pair of terms (t_1, t_2), the pair of substitutions (σ_1, σ_2) are their respective most general generalizers, and the substitution σ is the pair’s most general unifier (mgu). We formalize next these lattice operations on $\mathcal{FOT}s$ as declarative constraint normalization rules.

![Subsumption lattice operations](image.png)

Fig. 1. Subsumption lattice operations

1.1 Unification rules

In Fig. 2, we give the set of equation normalization rules that we shall call Herbrand-Martelli-Montanari ([8] and [13]). Each rule is *provably correct* in that it is a solution-preserving transformation of a set of equations. We can use these rules to unify two $\mathcal{FOT}s$ t_1 and t_2. We start with the singleton set of equations $E \overset{\text{def}}{=} \{t_1 \doteq t_2\}$, and apply any applicable rule in any order until none applies. This always terminates into a finite set of equations E'. If all the equations in E' are of the form $X \doteq t$ with X occurring nowhere else in E', then this is a most general unifying substitution (up to consistent variable renaming) $\sigma \overset{\text{def}}{=} \{ t/X \mid X \doteq t \in E' \}$ solving the original
(1) **TERM DECOMPOSITION:**

\[
E \cup \{ f(s_1, \ldots, s_n) \doteq f(t_1, \ldots, t_n) \} \quad [n \geq 0]
\]

\[
E \cup \{ s_1 \doteq t_1, \ldots, s_n \doteq t_n \}
\]

(2) **VARIABLE ERASURE:**

\[
E \cup \{ X \doteq X \}
\]

(3) **VARIABLE ELIMINATION:**

\[
E \cup \{ X \doteq t \} \quad [X \text{ occurs in } E]
\]

\[
E[X\leftarrow t] \cup \{ X \doteq t \}
\]

(4) **EQUATION ORIENTATION:**

\[
E \cup \{ t \doteq X \} \quad [t \notin \mathcal{V}]
\]

\[
E \cup \{ X \doteq t \}
\]

Fig. 2. Herbrand-Martelli-Montanari unification rules

equation (i.e., \(t_1 \sigma = t_2 \sigma \)); otherwise, there is no solution—i.e., \(\text{glb}(t_1, t_2) = \bot \). In these rules, we do not bother checking for circular terms (“occurs-check”). It can be done if wished; without it, technically, these rules perform rational term unification [9].

1.2 Generalization rules

In 1970, John Reynolds and Gordon Plotkin published each an article, in the same volume ([16] and [15]), giving two identical algorithms (up to notation) for the generalization of two \(\mathcal{OT} \)s. Each describes a procedural method computing the most specific \(\mathcal{OT} \) subsuming two given \(\mathcal{OT} \)s in finitely many steps by comparing them simultaneously, and generating a pair of generalizing substitutions from a fresh variable wherever they disagree being scanned from left to right, each time replacing the disagreeing terms by the new variable everywhere they both occur in each term.

Next, we present a set of declarative normalization rules for generalization which are equivalent to these procedural algorithms. As far as we know, this is the first such presentation of a declarative set of rules for generalization besides its more general form as order-sorted feature term generalization in [5]. The advantage of specifying this operation in this manner rather than procedurally as done originally by Reynolds and Plotkin is that each rule or axiom relates a pair of prior substitutions to a pair of posterior substitutions based only on local syntactic-pattern properties of the terms to generalize, and this without resorting to side-effects on global structures. In this way, the terms and substitutions involved are derived as solutions of logical syntactic constraints. In addition, correctness of the so-specified operation is made much easier to establish since we only need to prove each rule’s correctness independently of that of the others. Finally, the rules also provide an effective means for the derivation of an operational semantics for the so-specified operation by constraint solving, without need for control specification as any applicable rule may be invoked in any order.7

Definition 1 (Generalization Judgement). A generalization judgement is an expression of the form:

\[
\begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix} \vdash \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}
\]

7 Such as the Herbrand-Martelli-Montanari unification rules w.r.t. to Robinson’s procedural unification algorithm.
where \(\sigma_i : \text{var}(t_i) \rightarrow T \) and \(\theta_i : \text{var}(t) \rightarrow T \) \((i = 1, 2)\) are substitutions, and \(t \in T \) and \(t_i \in T \) \((i = 1, 2)\) are \(\mathcal{FOT}s. \)

Definition 2 (Generalization Judgement Validity). A generalization judgement such as \((1)\) is said to be valid whenever \(t_i \sigma_i = t \theta_i \), for \(i = 1, 2 \).

Contrary to other normalization rules in this document which are expressed as conditional rewrite rules whereby a prior form (the “numerator”) is related to a posterior form (the “denominator”), these normalization rules are more naturally rendered as (conditional) Horn clauses of judgements. This is as convenient as rewrite rules since a Prolog-like operational semantics can then readily provide an effective interpretation. This operational semantics is efficient because it does not need backtracking as long as the complete set of conditions of a ruleset covers all but mutually exclusive syntactic patterns. Thus, a generalization rule is of the form:

\[
\frac{[\phi]}{J_1 \ldots J_n} \quad J
\]

where \(\phi \) is a side meta-condition, and \(J, J_1, \ldots, J_n \) are judgements, and it reads, “whenever the side condition \(\phi \) holds, if all the \(n \) antecedent judgements \(J_n \) are valid, then the consequent judgement \(J \) is also valid.” Such a generalization rule without a specified antecedent (a “numerator”) is called a “generalization axiom.” Such an axiom is said to be valid iff its consequent (the “denominator”) is valid whenever its optional side condition holds. It is equivalent to a rule where the only antecedent is the trivial generalization judgement \(\text{TRUE} \).

Definition 3 (Generalization Rule Correctness). A conditional Horn rule such as Rule \((2)\) is correct iff \(J_k \) is a valid judgement for all \(k = 1, \ldots, n \) implies that \(J \) is a valid judgement, whenever the side condition \(\phi \) holds.

Given \(t_1 \) and \(t_2 \) two \(\mathcal{FOT}s \) having no variable in common, in order to find the most specific term \(t \) and most general substitutions \(\sigma_i, i = 1, 2 \), such that \(t \sigma_i = t_i, i = 1, 2 \), one needs to establish the generalization judgement:

\[
(\emptyset) \vdash (t_1 \ t_2) t (\sigma_1 \sigma_2)
\]

In other words, this expresses the upper half of Fig. 1 whereby \(t = \text{lub}(t_1, t_2) \), with most general substitutions \(\sigma_1 \) and \(\sigma_2 \). We give a complete set of normalization axioms and rule for generalization for all syntactic patterns in Fig. 3. Rule “**Equal Function**” uses an “unapply” operation (\(\uparrow \)) on a pair of terms \((t_1, t_2)\) given a pair of substitutions \((\sigma_1, \sigma_2)\). It may be conceived as (and in fact is) the result of simultaneously “unapplying” \(\sigma_i \) from \(t_i \) into a common variable \(X \) only if such \(X \) is bound to \(t_i \) by \(\sigma_i \), for \(i = 1, 2 \). If there is no such a variable, it is the identity. Formally, this is defined as:

\[
(t_1 \ t_2) \uparrow (\sigma_1 \sigma_2) \equiv \begin{cases}
(X \ X) & \text{if } t_i = X \sigma_i, \text{ for } i = 1, 2; \\
(t_1 \ t_2) & \text{otherwise.}
\end{cases}
\]
2.1 Fuzzy unification

A fuzzy unification operation on \(\mathcal{FOTs} \), dubbed “weak unification,” was proposed by Maria Sessa in [17]. It normalizes equations between conventional \(\mathcal{FOTs} \) modulo a similarity relation \(\sim \) over functor symbols. This similarity relation is then homomorphically extended to one over all \(\mathcal{FOTs} \). It is: (1) the (crisp) identity relation on variables (i.e., \(X \sim_X X \), for any \(X \in \mathcal{V} \)); otherwise, (2) zero when either of the two terms is a variable (i.e., \(X \sim_0 t \) and \(t \sim_0 X \), for any \(X \neq t \) in \(\mathcal{V} \)); otherwise (3):

\[
f(s_1, \ldots, s_n) \sim_{(\alpha \wedge \Lambda_{i=1}^n \alpha_i)} g(t_1, \ldots, t_n) \quad \text{if} \quad f \sim_\alpha g \quad \text{and} \quad s_i \sim_{\alpha_i} t_i, \quad i = 1, \ldots, n
\]

where \(\alpha \in [0, 1] \) and \(\alpha_i \in [0, 1] \) (\(i = 1, \ldots, n \)) denote the unification degrees to which each corresponding equation holds.\(^8\)

\(^8\) The \(\wedge \) operation used by Sessa in this expression is min; but other interpretations are possible ([7], [2]).
In Fig. 4, we provide a set of declarative rewrite rules equivalent to Sessa’s case-based “weak unification algorithm” [17]. To simplify the presentation of these rules while remaining faithful to Sessa’s weak unification algorithm, it is assumed for now that functor symbols \(f/m \) and \(g/n \) of different arities \(m \neq n \) are never similar. This is without any loss of generality since Sessa’s weak unification fails on term structures of different arities. Later, we will relax this and allow functors of different arities to be similar. Note also that we do not bother checking for circular terms—but this can be done if wished.

(9) Fuzzy Term Decomposition:
\[
\frac{(E \cup \{ f(s_1, \ldots, s_n) \doteq g(t_1, \ldots, t_n) \})_\alpha}{n \geq 0} \quad \frac{(E \cup \{ f \sim g \})_\alpha}{f/m \sim g/n}
\]

(10) Variable Erasure:
\[
(E \cup \{ X \doteq t \})_\alpha \quad (E \cup \{ X \doteq X \})_\alpha
\]

(11) Variable Elimination:
\[
(E \cup \{ X \doteq t \})_\alpha \quad (E \cup \{ X \doteq X \})_\alpha
\]

(12) Equation Orientation:
\[
(E \cup \{ t \doteq X \})_\alpha \quad (E \cup \{ t \doteq t \})_\alpha
\]

Fig. 4. Normalization rules corresponding to Maria Sessa’s “weak unification”

The rules of Fig. 4 transform \(E_\alpha \) a finite conjunctive set \(E \) of equations among \(\mathcal{FOTs} \) along with an associated truth value, or “unification degree,” \(\alpha \in [0, 1] \), into \(E'_\alpha \) another set of equations \(E' \) with truth value \(\alpha' \in [0, \alpha] \). Given to solve a fuzzy unification equation \(s \doteq t \) between two \(\mathcal{FOTs} \) \(s \) and \(t \), form the set \(\{ s \doteq t \}_1 \) (i.e., with unification degree 1), and apply any applicable rules in Fig. 4 until either the unification degree of the set of equations is 0 (in which case there is no solution to the original equation, not even a fuzzy one), or the final resulting set \(E_\alpha \) is a solution with truth value \(\alpha \) in the form of a variable substitution \(\sigma \equiv \{ X/t \mid X \doteq t \in E \} \) such that \(s\sigma \sim \alpha \) \(t\sigma \).

From our perspective, a fuzzy unification operation ought to be able to fuzzify full \(\mathcal{FOT} \) unification: whether (1) functor symbol mismatch, and/or (2) arity mismatch, and/or (3) in which order subterms correspond. Sessa’s fuzzification of unification as weak unification misses on the last two items. This is unfortunate as this can turn out to be quite useful. In real life, there is indeed no such guarantee that argument positions of different functors match similar information in data and knowledge bases, hence the need for alignment [12].

Still, it has several qualities:

- It is simple—specified as a straightforward extension of crisp unification: only one rule (Rule “Fuzzy Term Decomposition”) may alter the fuzziness of an equation set by tolerating similar functors.
- It is conservative—neither \(\mathcal{FOTs} \) nor \(\mathcal{FOT} \) substitutions per se need be fuzzified; so conventional crisp representations and operations can be used; if restricted to only 0 or 1 truth values, it is equivalent to crisp \(\mathcal{FOT} \) unification.

We now give an extension of Sessa’s weak unification which can tolerate such fuzzy similarity among functors of different arities. Given a similarity relation \(\sim \) on a ranked

9 See Case (2) of the weak unification algorithm given in [17], Page 413.
signature $\Sigma \equiv \Sigma_{n \geq 0}, \sim : \Sigma^2 \to [0, 1]$ which, unlike M. Sessa’s equal-arity condition, now allows mismatches of similar symbols with distinct arities or equal arities but different argument orders. Namely,

- it admits that $\sim \cap \Sigma_m \times \Sigma_n \neq \emptyset$ for some $m \geq 0, n \geq 0$, such that $m \neq n$;
- for each pair of functors $\langle f, g \rangle \in \Sigma^2$, such that $f \in \Sigma_m$ and $g \in \Sigma_n$, with $0 \leq m \leq n$, and $f \sim_\alpha g$, $(\alpha \in (0, 1])$, there exists an injective (i.e., one-to-one) mapping $p : \{1, \ldots, m\} \to \{1, \ldots, n\}$ associating each of the m argument positions of f to a unique position among the n arguments of g (which is denoted as $f \sim_\alpha^p g$).

Note that in the above, m and n are such that $0 \leq m \leq n$; so the one-to-one argument-position mapping goes from the lesser set to the larger set. There is no loss of generality with this assumption as this will be taken into account in the normalization rules.

Example 1. [Similar functors with different arities]
Consider person/3, a functor of arity 3, and individual/4, a functor of arity 4 with:

- similarity truth value of .9; i.e., $\text{person}/3 \sim_9 \text{individual}/4$; and,
- one-to-one position mapping $p : \{1, 2, 3\} \to \{1, 2, 3, 4\}$:

 $$\text{person}(\text{Name}, \text{SSN}, \text{Address}) \sim_9^p \text{individual}(\text{Name}, \text{DoB}, \text{SSN}, \text{Address})$$

writing $f \sim_9^p g$ a similarity relation between a functor f and a functor g of truth value α and f-to-g argument-position mapping p; in our example, $\text{person} \sim_9^{\{1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 4\}} \text{individual}$.

With this kind of specification, we can tolerate not only fuzzy mismatching of terms with distinct functors person and individual, but also up to a correspondance of argument positions from person to individual specified as p, all with a truth value of .9.

Starting with the Herbrand-Martelli-Montanari ruleset of Fig. 2, fuzziness is introduced by relaxing “TERM DECOMPOSITION” to make it also tolerate possible arity or argument-order mismatch in two structures being unified. In other words, the given functor similarity relation \sim is adjoined a position mapping from argument positions of a functor f to those of a functor g when $f \neq g$ and $f \sim_\alpha g$ with $\alpha \in (0, 1]$. This is then taken into account in tolerating a fuzzy mismatch between two term structures $s = f(s_1, \ldots, s_m)$ and $t = g(t_1, \ldots, t_n)$. This may involve a mismatch between the terms’ functor symbols (f and g), their arities (m and n), subterm orders, or a combination. We first reorient all such equations by flipping sides so that the left-hand side is the one with lesser or equal arity. In this manner, assuming $f \sim_\alpha^p g$ and $0 \leq \alpha, \beta \leq 1$, an equation of the form: $\{f(s_1, \ldots, s_m) \equiv g(t_1, \ldots, t_n)\}_{\alpha}$ for $0 \leq m \leq n$ acquires its truth value $\alpha \wedge \beta$ due to functor and arity mismatch when equated. A fully fuzzified term-decomposition rule should proceed with replacing such a fuzzy structure equation with the following conjunction of fuzzy equations between subterms at corresponding indices given by the one-to-one argument mapping $p : \{1, \ldots, m\} \to \{1, \ldots, n\}$: $\{s_1 \equiv t_{p(1)}, \ldots, s_m \equiv t_{p(m)}, \ldots\}_{\alpha \wedge \beta}$. Note that all the subterms in the right-hand side term that are arguments at indices which are not p-images are ignored as they
have no counterparts in the left-hand side. These terms are simply dropped as part of the fuzzy approximative unification. This generic rule is shown in Fig. 5 along with another rule needed to make it fully effective: a rule reorienting a term equation into one with a lesser-arity term on the left.

\[(0 \leq m \leq n; \ f \sim^p \ g)\]
\[
\frac{(E \cup \{f(s_1, \ldots, s_m) \doteq g(t_1, \ldots, t_n)\})_\alpha}{(E \cup \{s_1 \doteq t_{p(1)}, \ldots, s_m \doteq t_{p(m)}\})_\alpha \wedge \beta}
\]

(13) **Generic Weak Term Decomposition:**

(14) **Fuzzy Equation Reorientation:**

\[0 \leq n < m\]
\[
\frac{(E \cup \{f(s_1, \ldots, s_m) \doteq g(t_1, \ldots, t_n)\})_\alpha}{(E \cup \{g(t_1, \ldots, t_n) \doteq f(s_1, \ldots, s_m)\})_\alpha}
\]

Fig. 5. Generic fuzzification of \(\mathcal{FOT}\) unification’s decomposition rule

Theorem 2. The fuzzy unification rules of Fig. 4 where Rule “**Fuzzy Term Decomposition**” is replaced by the rules of Fig. 5 are correct.

In other words, applying this modified ruleset to \(E_1 \overset{\text{def}}{=} \{s \doteq t\}_1\), an equation set of truth value 1 (in any order as long as a rule applies and its truth value is not zero) always terminates. And when the final equation set is a substitution \(\sigma\), it is a fuzzy solution with truth value \(\alpha\) such that \(s\sigma \sim_{\alpha} t\sigma\).

Example 2. \(\mathcal{FOT}\) fuzzy unification with similar functors of different arities

Let us take a functor signature such that: \(\{a, b, c, d\} \subseteq \Sigma_0, \{f, g, \ell\} \subseteq \Sigma_2, \{h\} \subseteq \Sigma_3\); and let us further assume that the only non-zero similarities argument mappings among these functors are:

- \(a \sim_7 b,\)
- \(c \sim g, d,\)
- \(f \sim_{g}^{(1 \rightarrow 2, 2 \rightarrow +1)} g\) and \(g \sim_{g}^{(1 \rightarrow 2, 2 \rightarrow +1)} f,\)
- \(\ell \sim_{h}^{(1 \rightarrow 2, 2 \rightarrow +3)} h.\)

Let us consider the fuzzy equation set \(\{t_1 \doteq t_2\}_1:\)

\[\{h(X, g(Y, b), f(Y, c)) \doteq \ell(f(a, Z), g(d(c)))\}_1\]

and let us apply the rules of Figure 4 with rule **Weak Term Decomposition** is replaced by the rules of Figure 5:

- apply Rule **Fuzzy Equation Reorientation** with \(\alpha = 1\) since \(\operatorname{arity}(\ell) < \operatorname{arity}(h)\):
 \[\{\ell(f(a, Z), g(d(c))) \doteq h(X, g(Y, b), f(Y, c))\}_1;\]

- apply Rule **Generic Weak Term Decomposition** to:
 \[\ell(f(a, Z), g(d(c))) \doteq h(X, g(Y, b), f(Y, c))\]
 with \(\alpha = 1\) and \(\beta = .8\) since \(\ell \sim_{h}^{(1 \rightarrow 2, 2 \rightarrow +3)} h,\) to obtain:
 \[\{f(a, Z) \doteq g(Y, b), g(d, c) \doteq f(Y, c)\}_8;\]
– apply Rule Generic Weak Term Decomposition to \(f(a, Z) \cong g(Y, b) \) with \(\alpha = .8 \) and \(\beta = .9 \) since \(f \sim_{.9}^{(1 \rightarrow 2, 2 \rightarrow 1)} g \), to obtain:
\[
\{ a \cong b, Z \cong Y, g(d, c) \cong f(Y, c) \}_{.8} ;
\]
– apply Rule Generic Weak Term Decomposition to \(a \cong b \) with \(\alpha = .8 \) and \(\beta = .7 \) since \(a \sim_{.7} b \), to obtain:
\[
\{ Z \cong Y, g(d, c) \cong f(Y, c) \}_{.7} ;
\]
– apply Rule Generic Weak Term Decomposition to \(g(d, c) \cong f(Y, c) \) with \(\alpha = .7 \) and \(\beta = .9 \) since \(f \sim_{.9}^{(1 \rightarrow 2, 2 \rightarrow 1)} g \), to obtain:
\[
\{ Z \cong Y, d \cong c, c \cong Y \}_{.7} ;
\]
– apply Rule Generic Weak Term Decomposition to \(d \cong c \) with \(\alpha = .7 \) and \(\beta = .6 \) since \(d \sim_{.6} c \), to obtain:
\[
\{ Z \cong Y, c \cong Y \}_{.6} ;
\]
– apply Rule Equation Orientation to \(c \cong Y \) with \(\alpha = .6 \), to obtain:
\[
\{ Z \cong Y, Y \cong c \}_{.6} ;
\]
– apply Rule Variable Elimination to \(Y \cong c \) with \(\alpha = .6 \), to obtain:
\[
\{ Z \cong c, Y \cong c \}_{.6} .
\]
This last equation set is in normal form with truth value .6 and defines the substitution \(\sigma = \{ c/Z, c/Y \} \) so that:
\[
t_1 \sigma = h(X, g(Y, b), f(Y, c)) \{ c/Z, c/Y \} \sim_{.6} t_2 \sigma = \ell(f(a, Z), g(d, c)) \{ c/Z, c/Y \} , (7)
\]
that is:
\[
t_1 \sigma = h(X, g(c, b), f(c, c)) \sim_{.6} t_2 \sigma = \ell(f(a, c), g(d, c)). (8)
\]

Example 3. [The same fuzzy unification with more expressive symbols]

Let us give more expressive names to functors of Example 2 in the context of, say, a gift-shop Prolog database which describes various configurations for multi-item gift boxes or bags containing such items as flowers, sweets, etc., which can be already joined as pairs or not joined as loose couples.

- \(a \overset{\text{def}}{=} \text{violet} \),
- \(b \overset{\text{def}}{=} \text{lilac} \),
- \(c \overset{\text{def}}{=} \text{chocolate} \),
- \(d \overset{\text{def}}{=} \text{candy} \),
- \(f \overset{\text{def}}{=} \text{pair} \),
- \(g \overset{\text{def}}{=} \text{couple} \),
- \(e \overset{\text{def}}{=} \text{small-gift-bag} \),
- \(h \overset{\text{def}}{=} \text{small-gift-box} \),

with the following similarity degrees and argument mappings:
- violet \sim l_{\text{lilac}},
- chocolate \sim c_{\text{andy}},
- pair \sim p_{\text{ouple}},
- pair \sim p_{\text{^1 \rightarrow \text{2} \rightarrow \text{1}}} \text{ couple and couple} \sim p_{\text{^1 \rightarrow \text{2} \rightarrow \text{1}}} \text{ pair},
- small\text{-gift\text{-}bag} \sim s_{\text{mall\text{-}gift\text{-}box}}.

With these functors Equation (6) now reads:

$$
(t_1) \quad \text{small\text{-}gift\text{-}box} (X, \ \text{couple}(Y, l_{\text{lilac}}), \ \text{pair}(Y, c_{\text{andy}})) \\
= \\
(t_2) \quad \text{small\text{-}gift\text{-}bag} (\text{pair}(violet, Z), \ \text{couple}(c_{\text{andy}}, c_{\text{hocolate}}))
$$

With the new functor symbols, the substitution $\sigma = \{ \text{chocolate}/Z, \text{chocolate}/Y \}$ obtained after normalization yields the fuzzy solution:

$$
(t_1 \sigma) \quad \text{small\text{-}gift\text{-}box} (X, \ \text{couple}(\text{chocolate}, l_{\text{lilac}}), \ \text{pair}(\text{chocolate}, \text{chocolate})) \\
\sim 6 \\
(t_2 \sigma) \quad \text{small\text{-}gift\text{-}bag} (\text{pair}(violet, \text{chocolate}), \ \text{couple}(\text{candy}, \text{chocolate}))
$$

with truth value ~ 6 capturing the unification degree to which σ solves the original equation.

Rule **Generic Weak Term Decomposition** is a very general rule for normalizing fuzzy equations over FOT structures. It has the following convenient properties:

1. it accounts for fuzzy mismatches of similar functors of possibly different arity or order of arguments;
2. when restricted to tolerating only similar equal-arity functors with matching argument positions, it reduces to Sessa’s weak unification’s **Weak Term Decomposition** rule;
3. when truth values are further restricted to be in $\{0, 1\}$, it reduces to Herbrand-Martelli-Montanari’s **Term Decomposition** rule;
4. it requires no alteration of the standard notions of FOTs and FOT substitutions: similarity among FOTs is derived from that of signature symbols;
5. finally, and most importantly, it keeps fuzzy unification in the same complexity class as crisp unification: that of Union-Find ([11], [18]).

10 Quasi-linear; i.e., linear with a log\ldots log coefficient [1].
As a result, it is more general than all other extant approaches we know which propose a fuzzy FOT unification operation. The same will be established for the fuzzification of the dual operation: first a limited “functor-weak” FOT generalization corresponding to the dual operation of Sessa’s “weak” unification, then to a more expressive “functor/arity-weak” FOT generalization corresponding to our extension of Sessa’s unification to functor/arity weak unification.

2.2 Fuzzy generalization

Let \(t_1 \) and \(t_2 \) be two FOTs in \(T \) to generalize. We shall use the following notation for a fuzzy generalization judgement:

\[
\left(\sigma_1 \sigma_2 \right)_\alpha \vdash \left(t_1 t_2 \right) \left(\theta_1 \theta_2 \right) _\beta
\]

(9)

given:

- \(\sigma_i : \text{var}(t_i) \to T \ (i = 1, 2) \): two prior substitutions with prior truth value \(\alpha \),
- \(t_i \ (i = 1, 2) \): two prior FOTs,
- \(t \): a posterior FOT,
- \(\theta_i : \text{var}(t) \to T \ (i = 1, 2) \): two posterior substitutions with truth value \(\beta \).

Definition 4 (Fuzzy Generalization Judgement Validity). A fuzzy generalization judgement such as (9) is valid whenever \(0 \leq \beta \leq \alpha \leq 1 \) and \(t_i \sigma_i \sim_\beta t \theta_i \) for \(i = 1, 2 \).

Definition 5 (Fuzzy Generalization Rule Correctness). A fuzzy generalization rule is correct iff, whenever the side condition holds, if all the fuzzy generalization judgements making up its antecedent are valid, then necessarily the generalization judgement in its consequent is valid.

In Fig. 6, we give a fuzzy version of the generalization rules of Fig. 3. As was the case in Sessa’s weak unification, we assume as well (for now) that we are only given a similarity relation \(\sim \in \Sigma \times \Sigma \to [0, 1] \) on the signature \(\Sigma = \cup_{n \geq 0} \Sigma_n \) such that for all \(m \geq 0 \) and \(n \geq 0 \), \(m \neq n \) implies \(\cap \Sigma_m \times \Sigma_n = \emptyset \) (i.e., if functors \(f \) and \(g \) have different arities, then \(f \neq g \)).

Rule SIMILAR FUNCTORS uses a “fuzzy unapply” operation (“\(\uparrow_\alpha \)” on a pair of terms \((t_1, t_2) \) given a pair of substitutions \((\sigma_1, \sigma_2) \) and a truth value \(\alpha \). It is the result of “unapplying” \(\sigma_i \) from \(t_i \) into a common variable, if any, whenever it is bound by \(\sigma_1 \) to a term \(t'_1 \) and by \(\sigma_2 \) to a term \(t'_2 \) which are respectively \(\alpha \)-similar to \(t_i \) for \(i = 1, 2 \). It is defined as:

\[
\left(\begin{array}{c} t_1 \\ t_2 \end{array} \right) \uparrow_\alpha \left(\begin{array}{c} \sigma_1 \\ \sigma_2 \end{array} \right) \triangleq \begin{cases}
\left(\begin{array}{c} X \\ X \end{array} \right) & \text{if } t_i \sim_\alpha X \sigma_i \text{ for } i = 1, 2; \\
\left(\begin{array}{c} t'_1 \\ t'_2 \end{array} \right) & \text{otherwise.}
\end{cases}
\]

(10)

Theorem 3. The fuzzy generalization rules of Fig. 6 are correct.
Example 4. [FOT fuzzy generalization]

Let us apply the fuzzy generalization axioms and rules of Figure 6 to:

\[t_1 \overset{\text{df}}{=} h(f(a, X_1), g(X_1, b), f(Y_1, Y_1)) \]

\[t_2 \overset{\text{df}}{=} h(X_2, X_2, g(c, d)) \]

- Let us find term \(t \), substitutions \(\sigma_i : \text{var}(t) \to \text{var}(t_i) \) (\(i = 1, 2 \)) and truth value \(\alpha \in [0, 1] \) such that \(t \sigma_1 \overset{\alpha}{\rightarrow} h(f(a, X_1), g(X_1, b), f(Y_1, Y_1)) \) and \(t \sigma_2 \overset{\alpha}{\rightarrow} h(X_2, X_2, g(c, d)) \); that is, solve the following fuzzy generalization constraint problem:

\[
\begin{align*}
(\emptyset & \vdash h(f(a, X_1), g(X_1, b), f(Y_1, Y_1)) t \sigma_1) \\
(\emptyset & \vdash h(X_2, X_2, g(c, d)))
\end{align*}
\]

- By Rule Similar Functors, we must have \(t = h(u_1, u_2, u_3) \) since:

\[
\begin{align*}
(\emptyset & \vdash h(f(a, X_1), g(X_1, b), f(Y_1, Y_1)) h(u_1, u_2, u_3) \\
(\emptyset & \vdash h(X_2, X_2, g(c, d)))
\end{align*}
\]

where:

- \(u_1 \) is the fuzzy generalization of \(f(a, X_1) \); that is, of \(f(a, X_1) \) and \(X_2 \); and

by Rule Fuzzy Variable-Term:

\[
\begin{align*}
(\emptyset & \vdash f(a, X_1) X \{f(a, X_1) / X\})_1 \\
X & \overset{\text{df}}{=} X
\end{align*}
\]

and so \(u_1 = X \);
\(u_2\) is the fuzzy generalization of \((g(X_1, b))_{\ac{X_2}} \uparrow_{\ac{X_2}} (\{f(a, X_1)/X\})\); that is, \(g(X_1, b)\) and \(X_2\); and by Rule **Fuzzy Variable-Term**:

\[
\left(\{f(a, X_1)/X\} \right) \vdash_{\ac{X_2}} \left(g(X_1, b)\right)_{\ac{X_2}} \left(\{\ldots, g(X_1, b)/Y\}\right)_{\ac{X_2}} \]

and so \(u_2 = Y\);

* \(u_3 = f(v_1, v_2)\) is the fuzzy generalization of

\[
\left(f(Y_1, Y_1)\right) \vdash_{\ac{g(c, d)}} \left(\{f(a, X_1)/X, g(X_1, b)/Y\}\right)_{\ac{X_2/X, X_2/Y}};
\]

that is, of \(f(Y_1, Y_1)\) and \(g(c, d)\) with truth value \(\oslash\), because of Rule **Similar Functors** and \(f \sim_{\oslash} g\), and:

* \(v_1\) is the fuzzy generalization of

\[
\left(\{f(a, X_1)/X, g(X_1, b)/Y\}\right) \vdash_{\ac{X_2/X, X_2/Y}} \left(Y_1\right)_{\ac{c}};
\]

that is, of \(Y_1\) and \(c\); and by Rule **Fuzzy Variable-Term**:

\[
\left(\{f(a, X_1)/X, g(X_1, b)/Y\}\right) \vdash_{\ac{X_2/X, X_2/Y}} \left(Y_1\right)_{\ac{c}} \left(\{\ldots, Y_1/Z\}\right)_{\ac{X_2/X, X_2/Y}};
\]

that is, \(v_1 = Z\);

* \(v_2\) is the fuzzy generalization of

\[
\left(Y_1\right)_{\ac{d}} \vdash_{\ac{X_2/X, X_2/Y}} \left\{f(a, X_1)/X, g(X_1, b)/Y, Y_1/Z\right\}_{\ac{X_2/X, X_2/Y, c/Z}};
\]

that is, of \(Y_1\) and \(d\); and by Rule **Fuzzy Variable-Term**:

\[
\left(\{f(a, X_1)/X, g(X_1, b)/Y, Y_1/Z\}\right) \vdash_{\ac{X_2/X, X_2/Y, c/Z}} \left(Y_1\right)_{\ac{d}} \left(\{\ldots, Y_1/U\}\right)_{\ac{X_2/X, X_2/Y, c/Z, d/U}};
\]

that is, \(v_2 = U\);

in other words, \(u_3 = f(Z, U)\) since:

\[
\left(\{f(a, X_1)/X, g(X_1, b)/Y\}\right) \vdash_{\ac{X_2/X, X_2/Y}} \left(f(Y_1, Y_1)\right)_{\ac{g(c, d)}} \left(f(Z, U)\right)_{\ac{X_2/X, X_2/Y, c/Z, d/U}};
\]

and so:

\[
\left(\emptyset\right)_{\ac{1}} \vdash_{\ac{1}} \left(t_1\right)_{\ac{h(X, Y, f(Z, U))}} \left\{f(a, X_1)/X, g(X_1, b)/Y, Y_1/Z, Y_1/U\right\}_{\ac{X_2/X, X_2/Y, c/Z, d/U}};
\]

In Fig. 7, we give a fuzzy version of the generalization rules taking into account mismatches not only in functors, but also in arities; *i.e.*, number and/or order of arguments. Unlike Sessa’s unification, we now assume that we are not only given a similarity relation \(\sim \in \Sigma \times \Sigma \rightarrow [0, 1]\) on the signature \(\Sigma = \bigcup_{n \geq 0} \Sigma_n\), but also that functors of different arities may be similar with some non-zero truth value as specified by an one-to-one argument-position mapping for each pair of so-similar functors associating
to each argument position of the functor of least arity a distinct argument position of the functor of larger arity. The only rule among those of Figure 6 that differs is the last one (Similar Functors) which is now a pair of rules called Functor/Arity Similarity Left and Functor/Arity Similarity Right to account for similar functors’ argument positions depending which side has less arguments. If the arities are the same, the two rules are equivalent.

(19) **Functor/Arity Similarity Left**:

\[
\begin{align*}
[f \sim_\beta^\alpha g; \ 0 \leq m \leq n; \ \alpha_0 \equiv \alpha \land \beta] \\
(s_1, \ldots, s_m) \uparrow_{\alpha_0} (s_1, \ldots, s_m) u_1 (s_1, \ldots, s_m) \uparrow_{\alpha_{m-1}} (s_m, \ldots, s_m) u_m \uparrow_{\alpha_{m-1}} \sigma_m (\sigma_m, \ldots, \sigma_m)
\end{align*}
\]

(20) **Functor/Arity Similarity Right**:

\[
\begin{align*}
[g \sim_\beta^\alpha h; \ 0 \leq n \leq m; \ \alpha_0 \equiv \alpha \land \beta] \\
(s_1, \ldots, s_m) \uparrow_{\alpha_0} (s_1, \ldots, s_m) u_1 (s_1, \ldots, s_m) \uparrow_{\alpha_{n-1}} (s_n, \ldots, s_n) u_n \uparrow_{\alpha_{n-1}} \sigma_n (\sigma_n, \ldots, \sigma_n)
\end{align*}
\]

Fig. 7. Functor/arity-weak generalization axioms and rules

Theorem 4. The fuzzy generalization rules of Fig. 6 where Rule “Similar Functors” is replaced with the rules in Fig. 7 are correct.

3 Conclusion

We have summarized the principal results regarding the derivation of fuzzy lattice operations for the data structure known as first-order term. This is achieved by means of syntax-driven constraint normalization rules for both unification and generalization. These operations are then extended to enable arbitrary mismatch between similar terms whether functor-based, arity-based (number and order), or combinations. The resulting lattice operations are in the same class of complexity as their crisp versions, of which they are conservative extensions—namely that of Union/Find. All these details, along with proofs and examples, are to be found in [3].

As for future work, there are several avenues to explore. The most immediate concerns implementation of such operations in the form of public libraries to complement extant tools for first-order terms and substitutions [10]. This is eased by the fact that the fuzzy lattice operations do not require altering these conventional first-order structures. There are several other disciplines where this technology has potential for fuzzifying applications wherever {\it FOT}s are used for their lattice-theoretic properties such as linguistics and learning. Finally, most promising is using this work’s approach to more generic and more expressive knowledge structures for applications such as Fuzzy Information Retrieval [6]. We are currently developing the same formal construction for fuzzy lattice operations over order-sorted feature (OSF) graphs [4]. Encouraging initial results are being reported in [2].
References

1. Aho, A., Hopcroft, J., Ullmann, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, MA (1974)
2. Aît-Kaci, H., Pasi, G.: Fuzzy lattice-theoretic operations over data and knowledge structures. Technical Report (in preparation), HAK Language Technologies (2017), [online]
3. Aît-Kaci, H., Pasi, G.: Fuzzy lattice-theoretic structures of first-order terms with fuzzy signatures. Journal Submission Preprint (2017), [online]
4. Aît-Kaci, H., Podelski, A., Goldstein, S.C.: Order-sorted feature theory unification. Journal of Logic Programming 30(2), 99–124 (1997), [online]
5. Aît-Kaci, H., Sasaki, Y.: An axiomatic approach to feature term generalization. In: de Raedt, L., Flach, P. (eds.) Proceedings of the 12th European Conference on Machine Learning (ECML’01). pp. 1–12. LNCS 2167, Springer-Verlag, Berlin Heidelberg (September 2001), [online]
6. Baziz, M., Boughanem, M., Pasi, G., Prade, H.: A fuzzy set approach to concept-based information retrieval. In: Montseny, E., Sobrevilla, P. (eds.) Proceedings of the Joint 4th Conference of the European Society for Fuzzy Logic and Technology. pp. 1287–1292. Barcelona, Spain (September 7–9, 2005), [online]
7. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications, Mathematics in Science and Engineering, Edited by William F. Ames, Georgia Institute of Technology, vol. 144. Academic Press (1980), [online]
8. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Faculté des sciences de l’université de Paris, Paris (France) (1930)
9. Jaffar, J.: Efficient unification over infinite terms. New Generation Computing 2(3), 207 – 219 (September 1984), [online]
10. Julián-Iranzo, P., Rubio-Manzano, C.: A similarity-based WAM for Bousi~Prolog. In: Proceedings of the 10th International Work-Conference on Artificial Neural Networks (IWANN’09)—Part I: Bio-Inspired Systems: Computational and Ambient Intelligence. pp. 245–252. Springer, Salamanca, Spain (June 10–12, 2009), [online]
11. Knight, K.: Unification: a multidisciplinary survey. ACM Computing Surveys 21(1), 93–124 (March 1989), [online]
12. Lacoste-Julien, S., Palla, K., Davies, A., Kasneci, G., Graepel, T., Ghahramani, Z.: SiGMa: Simple greedy matching for aligning large knowledge bases. In: Proceedings of the 19th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD 2013—Chicago, IL, USA). pp. 572–580. ACM, New York, NY (USA) (August 11–14, 2013), [online]; see also [online]
13. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Transactions on Programming Languages and Systems 4(2), 258–282 (April 1982), [online]
14. Plotkin, G.D.: Lattice theoretic properties of subsumption. Technical Memo MIP-R-77, Department of Machine Intelligence and Perception, University of Edinburgh, Edinburgh, Scotland (UK) (June 1970)
15. Plotkin, G.D.: A note on inductive generalization. In: Metzer, B., Michie, D. (eds.) Machine Intelligence 5, chap. 8, pp. 154–163. Edinburgh University Press, Edinburgh, Scotland (UK) (1970), [online]
16. Reynolds, J.C.: Transformational systems and the algebraic nature of atomic formulas. In: Metzer, B., Michie, D. (eds.) Machine Intelligence 5, chap. 7, pp. 135–151. Edinburgh University Press, Edinburgh, Scotland (UK) (1970), [online]
17. Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theoretical Computer Science 275, 389–426 (2002), [online]
18. Wayne, K.: Union-find. Tutorial lecture slides based on book “Algorithm Design” by Jon Kleinberg and Eva Tardos (Addison-Wesley, 2015), [online]