Characterization of the ABC methionine transporter from Neisseria meningitidis reveals that MetQ is a lipoprotein

Naima G. Sharaf1,2,*; Mona Shahgholi1; Esther Kim1; Jeffrey Y. Lai1,2; David VanderVelde1; Allen T. Lee1,2; Douglas C. Rees1,2,*

1California Institute of Technology, Division of Chemistry and Chemical Engineering 114-96, California Institute of Technology, Pasadena, CA 91125 USA; 2Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA

Abstract NmMetQ is a substrate binding protein (SBP) from Neisseria meningitidis that has been identified as a surface-exposed candidate antigen for meningococcal vaccines. However, this location for NmMetQ challenges the prevailing view that SBPs in Gram-negative bacteria are localized to the periplasmic space to promote interaction with their cognate ABC transporter embedded in the bacterial inner membrane. To address the roles of NmMetQ, we characterized NmMetQ with and without its cognate ABC transporter (NmMetNI). Here, we show that NmMetQ is a lipoprotein (lipo-NmMetQ) that binds multiple methionine analogs and stimulates the ATPase activity of NmMetNI. Using single-particle electron cryo-microscopy, we determined the structures of NmMetNI in the absence and presence of lipo-NmMetQ. Based on our data, we propose that NmMetQ tethers to membranes via a lipid anchor and has dual function/topology, playing a role in NmMetNI-mediated transport at the inner-membrane in addition to moonlighting functions on the bacterial surface.

Introduction The substrate binding protein NmMetQ from the human pathogen Neisseria meningitidis has been identified as a surface-exposed candidate antigen for the meningococcal vaccine (Pizza et al., 2000). Subsequently, NmMetQ was shown to interact with human brain microvascular endothelial cells (Kánová et al., 2018), potentially acting as an adhesin. However, the surface-topology of NmMetQ challenges the prevailing view that substrate binding proteins (SBPs) reside in the periplasm of Gram-negative bacteria (Thomas and Tampé, 2020), binding and delivering molecules to cognate ATP-Binding Cassette (ABC) transporters in the inner-membrane (IM). Several questions arise from these studies: Has NmMetQ lost its ABC transporter-dependent function in the IM? and How does NmMetQ become embedded in the outer membrane (OM) surface of the bacterium?

The ABC transporter-dependent role of SBPs has been well characterized for multiple ABC transporter systems (Hollenstein et al., 2007; Oldham et al., 2013; Sabrialabed et al., 2020; Liu et al., 2020; Nguyen et al., 2018; de Boer et al., 2019). These studies reveal conserved SBP-dependent characteristics, including that the SBP is largely responsible for substrate delivery to the ABC transporter, with concomitant stimulation of the transport coupled ATPase activity. Structural studies have shown that SBPs dock to the periplasmic surface of the transporter’s transmembrane...
Figure 1. Mass spectrometry (MS) analysis of lipo-NmMetQ and NmMetQC20A proteins. A. (Top) Schematic pathway of lipoprotein maturation. Inset contains a schematic of a lipoprotein with acyl chain composition [16:0,16:0,16:0]. Acyl chains are grouped in a dotted line box and their average masses are calculated. Below the schematic are the theoretical masses for the lipo-NmMetQ proteins (in italics) assuming triacylation occurs via the canonical lipoprotein maturation pathway, due to the sequential action of three enzymes (Lgt, LspA and Lnt). The numbers in the brackets correspond to the total number of carbons and double bonds, respectively, present in the fatty acyl chains of the lipid. (Bottom) Schematic illustrating various NmMetQC20A proteins with example theoretical average masses, shown in italics, assuming cleavage occurs between A19 and A20, possibly by signal peptidase I (SPase I). N-terminal signal peptides are represented by a green rectangle. B. Characterization of lipo-NmMetQ. Size-exclusion chromatogram and mass spectra of peak 1. The molecular masses of the major species correspond within 1 Da to the predicted mass for two triacylated NmMetQ species, one with acyl chain composition [16:0, 16:0, 16:0] (31,661 Da) and the other with [16:0, 16:0, 18:1] (31,685 Da). C. Characterization of NmMetQC20A. Size-exclusion chromatogram and mass spectra of the major species from peak 2 and peak 3. The molecular masses of the major species of peak 2 and 3 correspond to the pre-protein NmMetQ (32,802 Da) and secreted NmMetQ (30,839 Da), respectively. These measured masses are within 3 Da of the predicted masses for each species. Assigned NmMetQ species are depicted in cartoon form on the chromatograms.

Figure 1–Figure supplement 1. DLS measurements of NmMetQ proteins
domains, with the substrate binding pocket juxtaposed with the translocation pathway of the transporter. While many SBPs have only been assigned ABC transporter-dependent functions, a few SBPs have also been shown to have both ABC transporter-dependent and ABC transporter-independent functions (often referred to as moonlighting functions) (Adler, 1975). For example, the E. coli maltose SBP (MBP) binds and stimulates its cognate ABC transporter (Davidson et al., 1992). In addition, the MBP-maltose complex is also a ligand for the chemotaxis receptor, triggering the signaling cascade involved in nutrient acquisition (Hazelbauer, 1975; Manson et al., 1985).

Other SBPs have also been assigned ABC transporter-independent functions (Müller et al., 2007; Castañeda-Roldán et al., 2006; Matthysse et al., 1996), including NspS from Vibrio cholerae which has been shown to play a role in biofilm formation (Young et al., 2021) and not transport (Cockerell et al., 2014). Additionally, two MetQ proteins, N. gonorrhoeae (Ng) NgMetQ and Vibrio vulnificus (Vv) VvMetQ have also been identified as putative adhesins, mediating bacterial adhesion to human cervical epithelial cells (Semchenko et al., 2016) and to human intestinal epithelial cells (Lee et al., 2010; Yu et al., 2011), respectively. Evidence that these MetQ SBPs bind and stimulate their cognate ABC transporters, however, is lacking. Therefore, whether NmMetQ has lost its ATP transporter-dependent function, or plays dual roles at the IM and OM cannot be determined through amino acid sequence alone and must be experimentally verified.

Since SBPs are not membrane proteins, the detection of NmMetQ at the cell surface of the bacterium suggests it must be tethered to the OM. In Gram-negative bacteria, the paradigm that SBPs are translocated into the periplasm where they diffuse freely between the IM and OM can be traced back to early experiments by Heppel showing that the osmotic shock of Gram-negative bacteria leads to the release of SBPs (Heppel, 1969). While many SBPs in Gram-negative bacteria have been identified as secreted proteins (Willis and Furlong, 1974; Ahlem et al., 1982), several studies have also identified a few lipid-modified SBPs (lipo-SBP) (Tokuda et al., 2007). However, the presence of lipo-SBPs in Gram-negative bacteria has not been generally appreciated (Thomas and Tampé, 2020) and the role that lipid modifications have on SBP surface-topology remains unexplored.

Although ABC transport-dependent functions of NmMetQ, VvMetQ and NgMetQ are not well studied, the homologous SBP from E. coli EcMetQ, is well characterized. Studies show that the E. coli methionine uptake system consists of EcMetQ and its cognate ABC transporter EcMetNI (Kadner, 1974, 1977). Structures of both EcMetQ and EcMetNI alone and in complex are available. (Kadaba et al., 2008; Johnson et al., 2012; Nguyen et al., 2015, 2018). EcMetNI contains two transmembrane domains (TMD) that provide the substrate translocation pathway, together and two nucleotide binding domains (NBD) that couple transport to the binding and hydrolysis of ATP. In the absence of EcMetQ, EcMetNI adopts the inward-facing conformation, with the TMDs open to the cytoplasm and NBDs separated. The available crystal structures of EcMetQ reveal two domains connected by a linker that form the methionine binding pocket (Nguyen et al., 2015). Of note, EcMetQ has been experimentally verified to be a lipoprotein (Tokuda et al., 2007; Carlson et al., 2018). However, the lipid modification is not present in EcMetQ structures, since the the N-terminal signal sequence was removed from the constructs used to produce protein for crystallization (Nguyen et al., 2015). A structure of the EcMetQ-EcMetNI complex is also available and shows EcMetNI in the outward-facing conformation, with the TMDs and NBDs close together. In this structure, EcMetQ is docked to the periplasmic surface of the TMDs with the binding pocket open to the central cavity (Nguyen et al., 2018). These structures, together with in vivo functional assays (Nguyen et al., 2018; Kadner, 1974, 1977), show that EcMetQ is intimately involved in EcMetNI-mediated methionine transport.

Whereas the interaction between EcMetQ and EcMetNI is well characterized, less is known about the corresponding system in Neisseria meningitidis. To date, there have been no biochemical or structural studies reported for NmMetNI. Recently determined structures of NmMetQ are in the ligand-free, L-methionine-, or D-methionine-bound states, and binding assays show L-methionine binds NmMetQ with greater affinity than D-methionine (Nguyen et al., 2019). These studies were carried out with an NmMetQ protein that lacks the native N-terminal signal sequence, establishing that the N-terminal signal sequence is not necessary for ligand binding. However, NmMetQ
Figure 2. ATP hydrolysis of NmMetNI in the presence and absence of L-methionine and NmMetQ proteins. A. ATP hydrolysis was measured in the presence of 1 μM of DDM solubilized NmMetNI alone (black trace), 50 μM L-methionine (blue trace), 1 μM lipo-NmMetQ (magenta trace) and both 50 μM L-methionine and 1 μM lipo-NmMetQ (green trace). B. Specific activity of NmMetNI with increasing concentrations of various NmMetQ proteins: lipo-NmMetQ (green trace), pre-protein NmMetQ (orange trace) and secreted NmMetQ (cyan trace), and 50 μM L-methionine. N=3 error bars represent standard error of the mean (SEM). These data show the NmMetNI ATPase activity is tightly coupled, requiring both L-methionine and lipo-NmMetQ for maximal NmMetNI ATPase stimulation.

Figure 1A. Lipoproteins are synthesized in the cytoplasm as pre-prolipoproteins, inserted in the IM, and then anchored via their N-terminal signal sequence to the cytoplasmic membrane. While tethered to the IM through the signal sequence, pre-prolipoproteins are subsequently modified by three enzymes: (1) phosphatidylglycerol transferase (Lgt), that trans-

Results

N. meningitidis MetQ is a lipoprotein

While lipoproteins and secreted proteins both must traverse the inner cell membrane during biogenesis, their maturation occurs through different mechanisms depending the N-terminal signal sequence. Lipoproteins are synthesized in the cytoplasm as pre-prolipoproteins, inserted in the IM, and then anchored via their N-terminal signal sequence to the cytoplasmic membrane. While tethered to the IM through the signal sequence, pre-prolipoproteins are subsequently modified by three enzymes: (1) phosphatidylglycerol transferase (Lgt), that trans-

...
fers the diacylglycerol group preferentially from phosphatidylglycerol (PG) to the cysteine residue via a thioester bond of the pre-prolipoprotein, producing a prolipoprotein (Mao et al., 2016), (2) signal peptidase II (LspA), that cleaves the prolipoprotein N-terminal signal sequence to yield a di-acylated lipoprotein with the N-terminal cysteine (Hussain et al., 1982; Vogele et al., 2016), and (3) apolipoprotein N-acyl transferase (Lnt), that N-acylates the cysteine residue to produce a triacylated lipoprotein preferentially using an acyl group of phosphatidylethanolamine (PE) (Noland et al., 2017; Wiktor et al., 2017). Similar to lipoproteins, secreted proteins are synthesized in the cytoplasm as pre-proteins with an N-terminal signal sequence. These pre-proteins serve as substrates for signal peptidase I (Spase I), that cleaves the N-terminal signal sequence to yield the mature secreted protein (Karla et al., 2005; Paetzel et al., 1998).

NmMetQ is predicted to be a lipoprotein by SignalP 5.0, a deep neural network algorithm that analyzes amino acid sequences to predict the presence and location of cleavage sites (Armenteros et al., 2019). To validate this prediction, we expressed NmMetQ using an E. coli expression system with the native N-terminal signal sequence and a C-terminal decahistidine tag. E. coli has been previously used to produce lipid modified N. meningitidis proteins (Fantappiè et al., 2017). We purified NmMetQ in the detergent n-dodecyl-β-D-maltopyranoside (DDM) using an immobilized nickel affinity column followed by size-exclusion chromatography (SEC). The SEC elution profile shows one main peak with an elution volume of 66 mL Figure 1A. An analysis of the peak fraction by liquid chromatography mass spectrometry (LC/MS) revealed two major deconvoluted masses of 31,662 and 31,682 Da Figure 1B. These masses correspond well with the theoretical masses of two lipoprotein NmMetQ proteins: one with a triacyl chain composition of 16:0,16:0 and 16:0 (31,661 Da) and another with a triacyl chain composition of 16:0,16:0 and 18:1 (31,685 Da), respectively Figure 1A (top). We calculated the intact masses of the lipo-NmMetQ proteins using a combination of 16:0 and 18:1 acyl chains because these were the major species found in previous studies of recombinantly expressed lipoproteins (Hantke and Braun, 1973; Luo et al., 2016).

To confirm that lipid attachment site occurs at the N-terminal Cys 20 on NmMetQ, we generated a Cys-to-Ala NmMetQ mutant (NmMetQC20A). We hypothesized that this mutation would prevent lipid attachment and lead to the accumulation of pre-protein NmMetQ, containing an unprocessed N-terminal signal sequence and the C20A mutation. The NmMetQC20A protein was expressed and purified in DDM as previously described. The SEC elution profile reveals two major peaks with distinct elution volumes, 78 ml and 100 mL for peak 1 and 2, respectively Figure 1C. For peak 1, analysis of the fraction containing the highest peak revealed a deconvoluted mass of 32,804, which correlates well with the theoretical intact mass of the pre-protein NmMetQ (32,802 Da). For peak 2 the deconvoluted mass was 30,840, which agrees with the theoretical intact mass of a secreted NmMetQ protein cleaved between Ala 19 and Ala 20 (30,839 Da) Figure 1A (bottom), respectively. The production of the secreted NmMetQ was surprising since we only expected the accumulation of the pre-protein NmMetQ. However, these data suggest that the Cys-to-Ala mutation created a noncanonical cleavage site, possibly allowing Spase I to inefficiently cleave the pre-protein to yield secreted NmMetQ. Together, these data clearly demonstrate that the major species of recombinantly-expressed NmMetQ is heterogeneously triacylated at Cys 20. Mutating Cys 20-to-Ala prevents the production of lipoprotein NmMetQ, leading to the formation of pre-protein NmMetQ and secreted NmMetQ. The location of cleavage site, position of lipid attachment, and heterogeneous triacyl chain composition of NmMetQ in this study are consistent with previous studies characterizing other lipoproteins produced in E. coli (Luo et al., 2016; Kwok et al., 2011).

These data also reveal an interesting property of each DDM solubilized NmMetQ variant: lipo-NmMetQ, pre-protein lipo-NmMetQ, and secreted NmMetQ proteins elute at different volumes despite their similar molecular masses (between 31 and 33 kDa). Specifically, lipo-NmMetQ and pre-protein NmMetQ proteins elute at a much higher apparent mass than secreted NmMetQ on a Superdex 30/60 (GE healthcare) column Figure 1B,C. To further investigate the properties of the NmMetQ proteins, we used dynamic light scattering (DLS) to measure their hydrodynamic radii (R_h) and calculate their theoretical molecular weights assuming a folded globular protein. We found

Figure 1
Figure 3. Characterization of the interaction of methionine analogs with NmMetQ using FAXS and ATPase experiments. A. Schematic diagram of the FAXS experiment. The intensity of the fluorine signal decreases in the presence of NLM-NmMetQ. Addition of the methionine analog causes the fluorine signal intensity of the reporter molecule to increase due to its displacement from NLM-NmMetQ. B. Chemical structures of the methionine analogs used in this study. C. (Top) Ordering of methionine analogs by their binding affinity to NLM-NmMetQ. (Bottom) Schematic representation of FAXS experiment depicted in bulk solution. Methionine analogs with higher affinity are positioned toward the left side of the plot, while lower affinity methionine analogs are positioned toward the right. D. ATPase activity NmMetNI at 2 mM ATP in the presence of lipo-NmMetQ and methionine analogs at 1:8:50 molar ratio, respectively. N=3 error bars represent SEM.

Figure 3–source data 1. The measured \(-\ln(I_{cmpg}/I_{1D})\) values: NMRtable.xlsx
that the R_h values and molecular weight estimates were larger for lipo-NmMetQ ($R_h = 7.9 \pm 0.17$ nm, Mw-R = 430 ± 22 kDa) and pre-protein NmMetQ ($R_h = 7.7 \pm 0.055$ nm, Mw-R = 400 ± 6.7 kDa), than for secreted NmMetQ ($R_h = 3.0 \pm 0.013$ nm, Mw-R = 43 ± 0.33 kDa) (Figure 1–Figure Supplement 1). Based on both the size-exclusion chromatograms and DLS data, we propose that both lipo-NmMetQ and pre-protein NmMetQ aggregate to form micelles-like complexes.

The ATPase activity of NmMetNI is maximally stimulated in the presence of both lipo-NmMetQ and L-methionine

Figure 2A shows that in the presence of 1 μM NmMetNI alone (black trace) and in the presence of 50 μM L-methionine (blue trace), the ATPase activity was low, demonstrating that L-methionine alone is not sufficient to stimulate NmMetNI ATPase activity. However, in the presence of both 1 μM lipo-NmMetQ and 50 μM L-methionine, a marked stimulation of ATPase activity was observed (Figure 2A, green trace). To exclude the possibility that the stimulation of ATPase activity is mediated by either the lipid moiety or the unliganded NmMetQ protein subunit, the experiment was repeated in the absence of L-methionine (NmMetNI and unliganded lipo-NmMetQ only), Figure 2A (magenta trace). Under these conditions the ATPase activity is low, showing that unliganded lipo-NmMetQ is not sufficient to stimulate NmMetNI activity. Given these findings, we conclude that NmMetNI ATPase activity is tightly coupled, requiring both L-methionine and lipo-NmMetQ for maximum stimulation. This data strongly suggests that lipo-NmMetQ plays a role in methionine-mediated NmMetNI ATP hydrolysis.

Next, we characterized the effect of different NmMetQ proteins (lipo-NmMetQ, pre-protein NmMetQ and secreted NmMetQ) on the ATPase activity of NmMetNI. Figure 2B, demonstrates that in the presence of 50 μM L-methionine, the NmMetNI ATPase activity increases with increasing concentration of lipo-NmMetQ up to 2 μM, after which the activity starts to plateau (green trace). The same protocol was performed with pre-protein NmMetQ, which contains an N-terminal signal sequence, but without the lipid modification. Addition of pre-protein NmMetQ also led to stimulation of ATPase activity, although to a lesser extent than observed for lipo-NmMetQ (orange trace). Addition of secreted NmMetQ, however, had little effect on the ATPase activity (cyan), however. Together, these data establish that the lipid moiety of lipo-NmMetQ is required for maximal NmMetNI stimulation, although the N-terminal signal sequence of pre-protein NmMetQ could partially mimic its stimulatory effect.

A comparison of NmMetNI's ATPase activity with that of the previously-characterized EcMetNI reveals that these transporters have different ligand-dependent ATPase activities. When L-methionine and SBP are absent, NmMetNI has no detectable basal ATP activity, however EcMetNI has a basal ATPase rate of 300 nmol Pi/min/mg (Kadaba et al., 2008). These transporters also differ in their response to L-methionine. In the presence of L-methionine, the ATPase activity of EcMetNI decreases due to the binding of L-methionine to the C2 domain, which is responsible for the regulatory phenomenon of transinhibition. For NmMetNI, however, no such effect was detected, as anticipated from the absence in NmMetNI of the C2 autoinhibitory domain.

A comparison of NmMetNI SBP-dependent ATPase stimulation to other ABC importers also reveals some similarities and differences. For NmMetNI, only liganded-SBP maximally stimulated NmMetNI ATP hydrolysis. Maximal stimulation by liganded-SBPs is also a mechanistic feature shared by the ABC importers EcMalFGK (Davidson et al., 1992) and EcHisQMP (Ames et al., 1996). In contrast, for the ABC importer EcYecSC-FliY, full stimulation of ATPase can be achieved in both the liganded-SBP and the unliganded-SBP (Sabrialabed et al., 2020). Although the origin of these differences are unclear, our data show that NmMetNI is tightly coupled and highlight the mechanistic differences between ABC importers.
Figure 4. Architecture of NmMetNI and NmMetNI-lipo NmMetQ complex. A. The 3.3 Å resolution Cryo-EM map and NmMetNI in the inward-facing conformation in two views. B. Transmembrane topology of NmMetI, showing NmMetI contains five transmembrane helices per monomer. C. The 6.4 Å resolution Cryo-EM map and model of NmMetNI in complex with lipo-NmMetQ in the presence of ATP. NmMetNI is in the outward-facing conformation. NmMetI is shown in light/dark blue, NmMetN in light/dark grey and lipo-NmMetQ in light pink. The membrane is represented by a grey box.

Figure 4–Figure supplement 1. CryoEM data collection and refinement statistics.

Figure 4–Figure supplement 2. Comparison of type I ABC transporters.

Figure 4–Figure supplement 3. CryoEM map generation and data processing refinement of NmMetNI in the inward-facing conformation.

Figure 4–Figure supplement 4. CryoEM map generation and data processing refinement of lipo-NmMetQ:NmMetNI complex in the outward-facing conformation.
N-formyl-L-methionine, L-norleucine, L-ethionine, and L-methionine sulfoximine are potential substrates for the lipo-NmMetQ:NmMetNI system

To identify potential substrates of the NmMetQ-lipoprotein MetQ system, we determined the relative binding affinities of several methionine analogs to NmMetQ. For these measurements, we used Fluorine chemical shift Anisotropy and eXchange for Screening (FAXS) in competition mode, a powerful solution NMR experiment that monitors the displacement of a fluorine-containing reporter molecule by a competing ligand. An important feature of FAXS is that fluorine modification of the competing ligand is not required (Dalvit et al., 2003; Dalvit and Vulpetti, 2018). As previously discussed (Gerig, 1994; Dalvit and Vulpetti, 2018), the fluorine nucleus has several properties that are advantageous for NMR: 19F is 100% abundant, possesses a spin 1/2 nucleus, and has a high gyromagnetic ratio, which results in high sensitivity (83 % of 1H). It also has a large chemical shift anisotropy (CSA), allowing higher responsiveness to changes in molecular weight, such as those that occur during a protein-ligand binding event. Additionally, since fluorine atoms are not present in most commonly used buffer systems and virtually absent from all naturally occurring biomolecules, background interference in fluorine NMR experiments is minimal.

To optimize the FAXS experiment, we considered several factors. As shown in Figure 1.B, lipoprotein NmMetQ may multimerize, possibly through an association with the hydrophobic acyl chains, increasing its apparent molecular weight. Because FAXS is sensitive to the apparent molecular weight of the protein, we chose to use a NmMetQ construct lacking its native N-terminal signal sequence and is therefore not modified with lipids (referred to here as NLM-NmMetQ). Trifluoromethylmethionine was selected as a reporter molecule and the fluorine signal intensity was monitored in the presence of NLM-NmMetQ and several methionine analogs (Figure 3A). For these studies, we optimized the concentration of the reporter molecule, NLM-NmMetQ, and the relaxation time (T2) for the NMR measurement. A reporter molecule concentration of 2 mM was chosen here to decrease acquisition time. Additionally, 43 μm NLM-NMNMetQ was chosen as a compromise between using less protein and increasing the fraction of reporter bound to the protein. The relaxation time T2= 120 ms was chosen for its ability to strongly attenuate but not eliminate the reporter signal in the presence of 43 μm NLM-NmMetQ. As previously described (Dalvit et al., 2003; Dalvit and Vulpetti, 2018), for all experiments two fluorine spectra (1D and Car-Purcell-Meiboom-Gill (CPMG filtered) were acquired. The intensity signals of the reporter molecule measured in both spectra and the ratio $-\ln$(CPMG/1D) were calculated. We expected that analogs that bind to NLM-NmMetQ would lead to the displacement of the reporter molecule, resulting in a decrease in the $-\ln$(CPMG/1D) ratio.

Our results for the competition binding experiments are shown in Figure 3.C. The plot shows the signal intensity ratio of the reporter molecule in the presence of each methionine analog. Since displacement of the reporter molecule by the analog correlates to the analog’s binding affinity, methionine analogs with higher affinity will be positioned toward the left side of the plot, while lower affinity methionine analogs will appear on the right side. As controls, we measured the $-\ln$(CPMG/1D) ratios with the reporter molecule alone and reporter molecule plus NLM-NmMetQ. As expected, the reporter molecule alone has a low $-\ln$(CPMG/1D) ratio, while the reporter molecule plus NLM-NmMetQ has a high $-\ln$(CPMG/1D) ratio (less free reporter molecule due to NLM-binding). Next, we carried out the experiments in the presence of various methionine analogs. We first added L-methionine, a known high affinity ligand of NmMetQ (Kd 0.2 nM (Nguyen et al., 2019)). As expected for a higher affinity ligand, L-methionine completely displaced the reporter molecule. Next, we examined two methionine analogs with amino group substitutions: (1) N-acetyl L-methionine, which is present in bacteria (Schmidt et al., 2016) and human brain cells (Smith et al., 2011), and (2) N-formyl L-methionine, which is used by bacteria to initiate translation Figure 3.C (circles). Addition of these analogs lead to the complete or near complete displacement of the reporter molecule, for N-formyl L-methionine and N-acetyl L-methionine respectively, indicating that changes to the amino group retain the ability to bind tightly to NLM-NmMetQ. D-methionine displaced less re-
porter than L-methionine, consistent with its lower binding affinity (3.5 μM (Nguyen et al., 2019)), while N-acetyl-D methionine failed to displace the reporter molecule. These results suggest that modifications to both the amino group and stereochemistry lead to significantly weaker binding than the singly modified derivative.

Likewise, changes to the carboxyl group led to less displacement of the reporter molecule than L-methionine. Specifically, L-methioninol, with the carboxyl group reduced to an alcohol, failed to displace the reporter molecule while L-methionine ethyl ester only partially displaced the reporter molecule. Finally, changes to the L-methionine side chain exhibited varying effects. Methionine analogs with changes to the sulfur atom, including seleno-L-methionine, L-methionine sulfoximine, and L-norleucine were well tolerated, with a greater displacement of the reporter molecule than D-methionine, which has an estimated Kd of 3.5 μM (Nguyen et al., 2019). However, L-ornithine failed to displace the reporter molecule, suggesting that binding of ligands with a charged amino group is energetically unfavorable. Side-chain length also plays a role in methionine analog affinity to NLM-NmMetQ. Increasing the side-chain length by an addition of a methyl group (L-ethionine) was better tolerated than decreasing the length by one carbon (S-methyl-L-cysteine). Shorter thiol derivatives (L-cysteine and L-homocysteine) were ineffective at displacing the reporter molecule. Together, these data establish that NLM-NmMetQ can accommodate variability in the binding of methionine analogs, including modifications to the amino group, D-stereochemistry, and to a more limited extent, changes in the side-chain, while exhibiting little tolerance for variations in the carboxyl group.

To determine whether methionine analogs could serve as potential substrates for the lipo-NmMetQ NmMetNI system, we then measured NmMetNI ATPase activity in presence of lipo-NmMetQ and several methionine analogs. For these assays, we chose several methionine analogs identified by FAXS to bind NLM-NmMetQ with an affinity similar or higher than D-methionine, a known substrate for *E. coli* NmMetNI. Since substrate stimulated ATPase activity is a hallmark of ABC transporters (Bishop et al., 1989; Mimmack et al., 1989), we expected methionine analogs that are substrates for this system would stimulate NmMetNI ATPase activity. Figure 2 shows the results for the methionine analog stimulation of NmMetNI ATPase activity. As a negative control, we tested L-cysteine, where, as expected, no substrate-stimulated ATPase stimulation was detected. Our data shows that the following methionine analogs led to substrate-stimulated ATPase activity: N-acetyl L-methionine, N-formyl-L-methionine, L-norleucine, L-ethionine, and L-methionine sulfoximine. However, no correlation was seen between affinity to NLM-NmMetQ and NmMetNI stimulation. This data suggest that binding to NmMetQ is necessary to initiate transport; however, this step alone does not determine the magnitude of NmMetNI ATPase stimulation. Together, the FAXS and ATPase experiments suggest that N-formyl-L-methionine, L-norleucine, L-ethionine, and L-methionine sulfoximine are potential substrates for the *N. meningitidis* lipo-NmMetQ:NmMetNI system.

Figure 5. Distribution of lipid-modified MetQ proteins in different classes of Proteobacteria, a major phylum of Gram-negative bacteria. Plot of the number of MetQ proteins analyzed in each Order, grouped by Proteobacteria. Predicted lipid-modified and secreted MetQ proteins are shown in magenta and white, respectively.
Structures of N. meningitidis MetNI in the inward-facing conformation and N. meningitidis MetNI:lipo NmMetQ complex in the outward-facing conformation

To gain insight into the potential role of lipo-NmMetQ in the NmMetNI transport cycle, we determined structures of NmMetNI in different conformational states by single-particle cryoEM. Multiple conditions were screened to identify ones that promoted lipo-NmMetNI-NmMetQ complex formation. Unexpectedly, these conditions did not always reveal structures of NmMetNI complex in complex with lipo-NmMetQ. In the presence of lipo-NmMetQ and AMPPNP, only a structure of NmMetNI in the inward-facing conformation at 3.3 Å resolution Figure 4—Figure Supplement 1 was captured: no densities for either AMPPNP and lipo-NmMetQ, Figure 4 were seen. For this data set, the two dimensional class averages showed clear structural features, suggesting a high level of conformational homogeneity Figure 4—Figure Supplement 3. The overall architecture of NmMetNI is similar to previously determined structures of EcMetNI, comprising two copies of each TMD and NBD, encoded by MetI and MetN, respectively (Kadaba et al., 2008; Johnson et al., 2012). Each MetI subunit contains five transmembrane helices per monomer for a total of ten transmembrane helices per transporter Figure 4.

A comparison between NmMetNI and EcMetNI reveals similar subunit folds, with the root mean square deviation (RMSD) of 2.4 Å over 843 Ca atoms. As predicted from the primary sequence, the NmMetN subunits lack the C2 autoinhibitory domain. As a result, the interfaces of NmMetNI and EcMetNI are distinct. In the inward-facing conformation of NmMetNI, the NBDs interact directly. In contrast, in EcMetNI, the inward-facing conformation forms an interface through the C2 autoinhibitory domains, with a slight separation between the NBDs Figure 4—Figure Supplement 1.A. A similar increase in NBD:NBD distance, defined as the average distance between Ca of glycines in the P loop and signature motifs, is observed in the previously determined molybdate ABC transporter structures, Methanosarcina acetivorans ModBC (MaModBC) and Archaeoglobus fulgidus ModBC (AfModBC) (Hollenstein et al., 2007; Gerber et al., 2008) Figure 4—Figure Supplement 1.B. To date, these are the only other reported pair of homologous structures, one with an autoinhibitory domain and one without. For AfModBC, which lacks the autoinhibitory domain, the NBD:NBD distance is ∼17 Å and 21 Å for each AfModBC in the asymmetric unit. For MaModBC, which does have an autoinhibitory domain, this distance increases to ∼27 Å. A comparison of these four structures suggest that type I ABC importers share a common quaternary arrangement in the inward-facing conformation such that the presence of a regulatory domain increases the separation of the NBD:NBD distance in comparison to the homologous structure without a regulatory domain.

We also determined the single-particle cryoEM structure of DDM solubilized NmMetNI in complex with lipo-NmMetQ in the presence of ATP to 6.4 Å resolution Figure 4—Figure Supplement 1.A. This structure was modeled by rigid-body refinement of both NmMetNI in the inward-facing conformation (traced from the 3.3 Å resolution reconstruction) and the previously determined soluble NmMetQ structure in the substrate free conformation (PDB:6CVA). Our model shows lipo-NmMetQ docked onto the NmMetI subunits and the NmMetN subunits in a closed dimer state. No clear density was seen for the lipid anchor of lipo-NmMetQ or ATP Figure 4. A comparison between NmMetNI and EcMetNI in the outward-facing conformation in complex with their respective MetQ proteins reveals they have similar conformations, with RMSD of 2.2 Å over 1048 Ca atoms Figure 4—Figure Supplement 1.C. In contrast to the inward-facing conformation, the NBD:NBD arrangement is similar for both EcNmMetQ and NmMetNI.

Lipo-MetQ proteins may be present in a variety of other Gram-negative bacteria

We used a bioinformatics approach to determine if other Gram-negative bacteria could have lipid-modified MetQ proteins. For the analysis, we chose predicted MetQ protein sequences from the InterPro family IPR004872 (of which NmMetQ is a member), restricting the search to Proteobacteria, Taxonomy ID 1224 and 90% identity. The amino acid sequence of the MetQ proteins were then analyzed using SignalP 5.0. Figure 5 summarizes the results. Our data reveals that lipid-modified MetQ proteins may be present in all classes of Proteobacteria (Alpha, Beta, Gamma, Delta and Ep-
Figure 6. Proposed model for the cellular distribution of the *N. meningitidis* ABC methionine transporter proteins. Lipo-NmMetQ tethers to membranes via a lipid anchor and has dual function/topology, playing a role in NmMetNI-mediated transport at the inner-membrane in addition to moonlighting functions on the bacterial surface. The lipid modifications are central to the model, helping to explain how NmMetQ remains at the surface of the bacterium.

Our identification of NmMetQ as a lipoprotein is predicated on our ability to express and purify lipo-NmMetQ and its processing variants. We recognize that a key assumption in our study is that the *E. coli* and *N. meningitidis* lipoprotein maturation machineries process the N-terminal signal sequences of lipoproteins in a similar manner. Since previous studies have successfully expressed in *E. coli* lipoproteins with their native signal sequences from other Gram-negative bacteria (Parra et al., 2010; Hooda et al., 2016), including two lipoproteins from *N. meningitidis* (Fantappiè et al., 2017), we reasoned that these biochemical pathways are sufficiently similar between *E. coli* and *N. meningitidis* to justify this assumption.
Our ability to express and purify lipo-NmMetQ, pre-protein NmMetQ and secreted NmMetQ allowed us to carry out in vitro studies investigating whether NmMetQ can function as a SBP for NmMetNI. Functional assays show that both lipo-NmMetQ and L-methionine are required for maximal ATPase stimulation of NmMetNI. NmMetNI can also be stimulated, although to a lower extent, by pre-protein NmMetQ/L-methionine, and lipo-NmMetQ/select methionine analogs. Binding of lipo-NmMetQ to NmMetNI was also investigated by determining the cryoEM structures of NmMetNI in the presence and absence of lipo-NmMetQ. Our structures show lipo-NmMetQ binds to the TMDs of NmMetNI, similar to that of well-characterized E. coli ABC methionine transporter system, EcMetNI-EcMetQ (Nguyen et al., 2018). Together, our data suggests that lipo-NmMetQ plays a role in NmMetNI-mediated nutrient acquisition.

The dual functionality of SBPs may help explain why the intracellular concentrations of SBPs are typically ~20x that of their cognate ABC transporters, depending on growth conditions (Schmidt et al., 2016). Of particular note, under many of the tested growth conditions, MetQ was the most abundant SBP in E. coli, present at up to nearly 30,000 copies per cell; for comparison MetNI was typically present at 1,000 copies per cell. A tempting interpretation of this observation is that larger number of SBPs increases the efficiency of nutrient uptake. Given that methionine is a scarce amino acid in human nasopharynx (where N. meningitidis primarily colonize (Stephens et al., 2007)) and one most expensive amino acid to synthesize in terms of ATP requirement (as measure in E. coli) (Kaleta et al., 2013), having multiple copies of NmMetQ may enable N. meningitidis to more efficiently capture methionine from the nutrient limited environment.

However, our study raises the possibility that higher SBPs concentrations may also reflect their participation in ABC transporter-independent functions, including moonlighting functions at the surface of the cell. As a consequence, the stoichiometry of SBPs to cognate ABC transporters measured in (Schmidt et al., 2016) may be misleading if the SBPs are distributed between multiple locations, in addition to the periplasmic space. Our study also calls for caution in interpreting SBP gene knock-out experiments, since the deletion of SBPs genes may lead to phenotype(s) associated with the loss of either or both ABC transporter-dependent and -independent SBP functions.

While previous studies have shown that many SBPs of Gram-negative are soluble (Heppel, 1969), our findings suggest that at least some SBPs may be modified with lipids. Since lipid modifications may allow for SBPs to have a surface-topology in Gram-negative bacteria, we believe that future efforts should be made to experimentally determine which SBPs have lipid modifications, dual topology, and ABC transporter-independent functions. Studies aimed at determining the rules that govern protein surface-exposure will not only increase our understanding of bacterial physiology, but will also help in the rational design of vaccines based on surface-exposed protein antigens.

Methods and Materials

Cloning, expression and purification of N. meningitidis proteins

The protein encoding genes of MetQ and MetNI were obtained from N. meningitidis virulent strain MC58, GeneBank accession number AE002098. To produce MetNI, the DNA sequences encoding both MetN and MetI were inserted into a single modified pET vector, each under the control of a separate T7 promoter. To aid expression and purification, a decahistidine plus enterokinase site MGHHHHHHHHHSSGHIDDDKH sequence was added to the N-terminus of MetN, while MetI contained no additional residues. A similar strategy was used to produce other ABC transporters (Locher et al., 2002; Pinkett et al., 2007). To produce lipo-NmMetQ, the DNA sequence encoding the NmMetQ with the native signal sequence and a C-terminal decahistidine tag was added to a single modified pET vector. This construct served as a template to generate the C20A mutant, which was created using PCR site-directed mutagenesis. NLM-NmMetQ was created as previously described (Nguyen et al., 2019).

All proteins were expressed in E. coli BL21 (DE3) gold (Agilent Technologies, Santa Clara, CA) cells using autoinduction media (Studier, 2005) by growing cells for 48 h at 22 °C. Cells were har-
vested by centrifugation and stored at -80 °C. To purify lipo-NmMetQ, NmMetQC20A proteins (pre-
protein and secreted NmMetQ) and the transporter NmMetNI, 10 grams of frozen cell paste were
thawed and homogenized in 100 mL of ice cold lysis buffer 25 mM Tris, pH 7.5, 100 mM NaCl, 40
mg of lysozyme, 4 mg DNase and one Complete Protease Inhibitor Cocktail Tablet (Roche Diag-
nostics GmbH). Cells were lysed by the addition of 1% v/w n-dodecyl-β-D-maltopyranoside (DDM,
Anatrace) and by stirring the homogenate for 3 hr at 4 °C. Cell debris was removed by 45,000 rpm
centrifugation for 45 min. Proteins were purified using a 5 mL HisTrap HP column (GE healthcare)
followed by gel filtration (Superdex 30/60 GE healthcare).

Dynamic light scattering
DLS measurements were performed using a DynaPro NanoStar instrument (Wyatt Technology)
using the manufacturer's suggested settings. A disposable UVette cuvette (Eppendorf) was used
to contain the samples. Each sample was analyzed in triplicate to yield an average and standard
deviation. Dynamics 7.1.7 software was used to analyze the data.

Single-particle CryoEM
UltrAufoil 1.2/1.3, 300 mesh grids (Electron Microscopy Sciences) were glow-discharged for 60 s at
15 mA using a PELCO easiGLOW (Ted Pella). Samples were then incubated at 37 °C for 5 min and
then applied to the grids (3 μl), blotted with Whatman No.1 filter paper for 4 s with a blot force
of 0 at 22 °C and 100 % humidity and plunge-frozen into liquid ethane using a Mark IV Vitrobot
(Thermo Fisher). The grids were then stored in liquid nitrogen until further use.

Data collection was performed in a 300-KeV Titan Krios transmission electron microscope (Thermo
Fisher Scientific) at the cryoEM facility at Caltech in Pasadena, California. Movies were collected us-
ing SerialEM v.3.7 automated data collection software (Mastronarde, 2005) with a beam-image shift
over a 3-by-3 pattern of 1.2 μm holes with 3 exposures per hole in super-resolution mode (pixel
size of 0.428 Å px⁻¹) on a K3 camera (Gatan).

Image processing
Data collection parameters are summarized in Figure 4–Figure Supplement 1. The data-processing
workflow described below was performed for all datasets using cryoSPARC v.2.15 (Punjani et al.,
2017). CryoEM movies were patch motion corrected for beam-induced motion including dose
weighting with cryoSPARC after binning super-resolution movies. The non-dose-weighted images
were used to estimate CTF parameters using Patch CTF job in cryoSPARC. Micrographs containing
either ice or poor CTF fit resolution estimations were discarded. A subset of images was randomly
selected and used for reference-free particle picking using Blob picker. Particles were subjected
to multiple rounds of 2D classification, and two classes (top and side) were used as templates for
particle picking on the full set of images. The subsequent processing steps were different for the
two datasets.

For the dataset acquired for NmMetNI in the inward-facing conformation, initial particle stacks
were extracted, downsampled four times, and then subjected to 2D classification. Classes that
were interpreted as junk were discarded. The selected particles were then used to generate ab
initio volumes. Two volumes, interpreted as NmMetNI and a junk/noise class, were selected for
heterogeneous refinement. Particles assigned to the NmMetNI class were processed further by
repeating the same strategy using particles downsampled twice, and then again with no downsam-
ples. The final resulting particle stack was then non-uniformly refined (Figure 4–Figure
Supplement 3).

For the dataset acquired for the lipo-NmMetQ:NmMetNI complex in the outward-facing con-
formation, initial particle stacks were extracted, downsampled ten times and subjected to 2D clas-
sification. Classes that were interpreted as junk were discarded. 2D classification was then re-
peated with particles downsampled by four, and then again with no downsampled particles. The
selected particles were then used to generate ab initio volumes. Two volumes, interpreted as lipo-NmMetQ:NmMetNI complex and junk/noise classes were selected for heterogeneous refinement. Particles assigned to the lipo-NmMetQ:NmMetNI complex class were subjected to another round of ab initio, followed by heterogeneous, refinement. The final resulting particle stack was then non-uniformly refined (Figure 4—Figure Supplement 4).

To build the atomic model of NmMetNI in the inward-facing structure, the structure of EcMetNI (PDB:3TUJ) lacking the C2 domain was used as template for model building. The model was built by rigid-body docking, homology modeling, and manually building into the 3.3 Å resolution cryoEM density in Coot v0.9.1 (Emsley et al., 2010) and refined using ISOLDE (Croll, 2018). The model of the NmMetNI:lipo-NmMetQ complex in the outward-facing conformation was built by rigid-body refinement of NmMetNI in the inward-facing conformation (traced from the 3.3 Å resolution reconstruction) and of the previously determined soluble NmMetQ structure in the substrate free conformation (PDB:6CVA) were used as template for model building. The model was built by rigid-body docking in Coot, followed by refinement in ISOLDE using adaptive distance restraints.

Intersubunit distances between ATP-binding domains were defined by the positions of Ca of glycine residues of the P loop and signature motifs like previously described (Kadaba et al., 2008). Specifically, Gly44/Gly144 and Gly43/Gly143 for NmMetNI and EcMetNI (3TUJ), respectively and Gly36/Gly129 and Gly38/Gly130 for AfModBC(2ONK) and MaModBC(3D31), respectively. For each transporter, two intersubunit distances were measured and averaged using UCSF Chimera version 1.1 (Petersen et al., 2021; Goddard et al., 2018).

RMSD measurements were carried out using Coot v0.9.1 using SSM Superposition using default settings (Krissinel and Henrick, 2004). All images of models and densities were prepared using UCSF Chimera version 1.1.

MS analysis

The molecular masses of the proteins were determined by Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) method. The UPLC-MS consisted of a Waters Acquity™ Chromatography platform and a Waters LCT Premier XE mass spectrometer. The chromatography separations used a solvent system of 0.1 % formic in water (solvent A) and 0.1 % formic acid in acetonitrile (solvent B), with a 10 m solvent program that reached 95 % B at 7 m. UPLC solvent flow was 0.4 mL/m from 0-1 m for desalting and was subsequently reduced to 0.22 mL/m. Samples dissolved in 25 mM Tris HCl pH 7.5, 100 mM NaCl, 0.05 % DDM were injected onto a Waters BEH C4 1.7 µ 300 Å 50 mm long -2.0 mm internal diameter column connected directly to the mass spectrometer. Electrospray ionization (ESI) was used in positive ion mode. The mass spectrometer was operated in the V Mode.

ATPase experiments.

Activity assays were performed in an Infinite 200 microplate reader (Tecan) at 37 °C using the EnzChek phosphate assay kit (ThermoFischer Scientific) to measure the amount of inorganic phosphate. Each 100 µL reaction contained 5 µM NmMetNI, 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM β-mercaptoethanol, 200 µM 2-aminocapro-7-methylpurine riboside substrate, 0.1 units of purine nucleoside phosphorylase, and 0.05% DDM. NmMetQ proteins, and L-methionine was present as indicated in the figure captions. Samples were incubated for 15 minutes at 37 °C and the reactions were then initiated by an automatic injection of MgCl₂ to a final concentration of 5 mM. Initial rates were determined using Matlab software by calculating the linear portion of the change in absorbance at 360 nm as a function of time following the injection of MgCl₂.

NMR

19F-NMR spectroscopy All NMR spectra were recorded at 300 K with a Bruker Ascend 400 NMR spectrometer equipped with multinuclear iProbe (1H/19F, 31P/109Ag) and a 24 position sample changer. CPMG relaxation dispersion 19F spectra were recorded with a T₂ of 1 ms before the acquisition.
period and 120 ms between the train of 180 °C-pulses. Free induction decay (FID) signals were backward linear predicted to 11 points and apodized with a 1.5 Hz Lorentzian filter. The spectra were analyzed with MestReNova v12.0.2 (Mestrelab Research), and intensity values were performed using the Line Fitting tool. Trifluoromethyl methionine was synthesized and purchased from Peptech (Bedford, MA). For the competition experiments, each sample contained 43 μM N. meningitidis MetQ, 2 mM trifluoromethyl methionine (reporter molecule), and 43 μM methionine analog (competing molecule).

Bioinformatics

Protein sequences were obtained through the UniProtKB database using the following search terms: Proteobacteria (taxonomy ID 1224), InterPro family IPR004872 (which NmMetQ UniProt ID Q7DD63 is a member) and identity 90%, which groups sequences with > 90% identity and 80% sequence length. SignalP 5.0 was used separately to analyze the N-terminal protein sequences and predict the location of the signal sequence cleavage sites. Sequence alignment data was generated by the EFI Enzyme Similarity Tool (https://efi.igb.illinois.edu/efi-est/) using Option C with FASTA header reading (Gerlt et al., 2015). A SSN network was then created using an alignment score corresponding to approximately 60% sequence identity and filtering for sequences between 240 and 330 residues in length. Cytoscape v3.8.0 (Smoot et al., 2011) was used for visualizing lipometQ trends and obtaining taxonomy information. The table was exported and graphed in Matlab (MathWorks).

Data availability

For NmMetNI in the inward-facing conformation and lipo-NmMetQ:NmMetNI complex in the outward-facing conformation, cryoEM maps have been deposited in the Electron Microscopy Data Bank (EMDB) under accession codes EMD-23752 and EMD-23751. Coordinates for the model are deposited in the Research Collaboratory for Structural Bioinformatics Protein Data Bank under accession numbers 7MC0 and 7MBZ, respectively.

Acknowledgments

We thank Jacob Parres-Gold and Dr. Sara J. Weaver for useful discussions and Dr. Lilien Voong for critical reading of the manuscript. We also thank the staff at the Beckman Institute Resource Center for Transmission Electron Microscopy at Caltech for assistance with data collection. N.G.S was supported by the Postdoctoral Enrichment Program from the Burroughs Wellcome Fund and D.C.R is a Howard Hughes Medical Institute Investigator.

References

Adler J. Chemotaxis in bacteria. Annual Review of Biochemistry. 1975; 44(1):341–356.

Ahlem C, Huisman W, Neslund G, Dahms A. Purification and properties of a periplasmic D-xylose-binding protein from Escherichia coli K-12. Journal of Biological Chemistry. 1982; 257(6):2926–2931.

Ames GF, Liu CE, Joshi AK, Nikaido K. Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases. Journal of Biological Chemistry. 1996; 271(24):14264–14270.

Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology. 2019; 37(4):420.

Bishop L, Agbayani R, Ambudkar SV, Maloney PC, Ames G. Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport. Proceedings of the National Academy of Sciences. 1989; 86(18):6953–6957.

de Boer M, Gouridis G, Vietrov R, Begg SL, Schuurman-Wolters GK, Husada F, Eleftheriadis N, Poolman B, McDevitt CA, Cordes T. Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. Elife. 2019; 8:e44652.
Carlson ML, Young JW, Zhao Z, Fabre L, Jun D, Li J, Li J, Dhupar HS, Wason I, Mills AT, et al. The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. Elife. 2018; 7:e34085.

Castañeda-Roldán EL, Ouahran-Bettache S, Saldaña Z, Avelino F, Rendon MA, Dornand J, Girón JA. Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cellular Microbiology. 2006; 8(12):1877–1887.

Cockerell SR, Rutkovsky AC, Zayner JP, Cooper RE, Porter LR, Pendergast SS, Parker ZM, McGinnis MW, Karatan E. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyclonal signals independent of their transport. Microbiology. 2014; 160(Pt 5):832.

Consortium U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research. 2019; 47(D1):D506–D515.

croll Ti. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallographica Section D: Structural Biology. 2018; 74(6):519–530.

Dalvit C, Fagerness PE, Hadden DT, Serer RW, Stockman BJ. Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. Journal of the American Chemical Society. 2003; 125(25):7696–7703.

Dalvit C, Vulpetti A. Ligand-based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. Journal of Medicinal Chemistry. 2018; .

Davidson AL, Shuman HA, Nikaido H. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proceedings of the National Academy of Sciences. 1992; 89(6):2360–2364.

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography. 2010; 66(4):486–501.

Fantappiè L, Irene C, De Santis M, Armini A, Gagliardi A, Tomasi M, Parri M, Cafardi V, Bonomi S, Ganfini L, et al. Some Gram-negative lipoproteins keep their surface topology when transplanted from one species to another and deliver foreign polypeptides to the bacterial surface. Molecular & Cellular Proteomics. 2017; 16(7):1348–1364.

Gerber S, Comellas-Bigler M, Goetz BA, Locher KP. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science. 2008; 321(5886):246–250.

Gerig J. Fluorine NMR of proteins. Progress in Nuclear Magnetic Resonance Spectroscopy. 1994; 26:293–370.

Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, Whalen KL. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochimica Et Biophysica Acta (BBA)-Proteins and Proteomics. 2015; 1854(8):1019–1037.

Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science. 2018; 27(1):14–25.

Hantke K, Braun V. Covalent Binding of Lipid to Protein: Diglyceride and Amide-Linked Fatty Acid at the N-Terminal End of the Murein-Lipoprotein of the Escherichia coli Outer Membrane. European Journal of Biochemistry. 1973; 34(2):284–296.

Hazelbauer GL. Maltose chemoreceptor of Escherichia coli. Journal of Bacteriology. 1975; 122(1):206–214.

Heppel LA. The effect of osmotic shock on release of bacterial proteins and on active transport. The Journal of General Physiology. 1969; 54(1):95–113.

Hollenstein K, Frei DC, Locher KP. Structure of an ABC transporter in complex with its binding protein. Nature. 2007; 446(7132):213.

Hooda Y, Lai CCL, Judd A, Buckwalter CM, Shin HE, Gray-Owen SD, Moraes TF. Slam is an outer membrane protein that is required for the surface display of lipopolysaccharide virulence factors in Neisseria. Nature Microbiology. 2016; 1(4):16009.

Hussain M, Ichihara S, Mizushima S. Mechanism of signal peptide cleavage in the biosynthesis of the major lipoprotein of the Escherichia coli outer membrane. Journal of Biological Chemistry. 1982; 257(9):5177–5182.
Johnson E, Nguyen PT, Yeates TO, Rees DC. Inward facing conformations of the MetNI methionine ABC transporter: Implications for the mechanism of transinhibition. Protein Science. 2012; 21(1):84–96.

Kadaba NS, Kaiser JT, Johnson E, Lee A, Rees DC. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science. 2008; 321(5886):250–253.

Kadner RJ. Transport systems for L-methionine in Escherichia coli. Journal of Bacteriology. 1974; 117(1):232–241.

Kadner RJ. Transport and utilization of D-methionine and other methionine sources in Escherichia coli. Journal of Bacteriology. 1977; 129(1):207–216.

Kaleta C, Schauble S, Rinas U, Schuster S. Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnology Journal. 2013; 8(9):1105–1114.

Káňová E, Jiménez-Munguía I, Majorová P, Tkáčová Z, Bhide K, Mertinková P, Pulzová L, Kováč A, Bhide M. Deciphering the interactome of Neisseria meningitidis with human brain microvascular endothelial cells. Frontiers in Microbiology. 2018; 9:2294.

Kwok Y, Krissinel E, Lee KJ, Liebeke M, Janek D, Nega M, Rautenberg M, Hornig G, Unger C, Weidenmaier C, Lalk M, Peschel A, Krismer B, Karla A, Kánová E, Jiménez-Munguía I, Majerová P, Tkáčová Z, Bhide K, Mertinková P, Pulzová L, Kováč A, Bhide M. The dual role of lipids of the lipoproteins in trumenba, a self-adjuvanting vaccine against meningococcal B meningitis B disease. The AAPS journal. 2016; 18(6):1562–1575.

Liu F, Liang J, Zhang B, Gao Y, Yang X, Hu T, Yang H, Xu W, Guddat LW, Rao Z. Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. Science advances. 2020; 6(44):eabb9833.

Luo Y, Friese OV, Runnels HA, Khakde L, Zlotnick G, Aulabaugh A, Gore T, Vidunas E, Raso SW, Novikova E, et al. The dual role of lipids of the lipoproteins in trumenba, a self-adjuvanting vaccine against meningococcal meningitis B disease. The AAPS journal. 2016; 18(6):1562–1575.

Manson MD, Boos W, Bassford Jr P, Rasmussen B. Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. Journal of Biological Chemistry. 1985; 260(17):9727–9733.

Mao G, Zhao Y, Kang X, Li Z, Zhang Y, Wang X, Sun F, Sankaran K, Zhang XC. Crystal structure of E. coli lipoprotein diacylglycerol transferase. Nature Communications. 2016; 7(1):1–12.

Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movement. Journal of Structural Biology. 2005; 152(1):36–51.

Matthysse AG, Yarnall HA, Young N. Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. Journal of Bacteriology. 1996; 178(17):5302–5308.

Mimmack M, Gallagher M, Pearce S, Hyde S, Booth I, Higgins C. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo. Proceedings of the National Academy of Sciences. 1989; 86(21):8257–8261.

Müller A, León-Kemps MdR, Dodson E, Wilson KS, Wilkinson AJ, Kelly DJ. A bacterial virulence factor with a dual role as an adhesin and a solute-binding protein: the crystal structure at 1.5 Å resolution of the PEB1a protein from the food-borne human pathogen Campylobacter jejuni. Journal of molecular biology. 2007; 372(1):160–171.
Vogeley L, El Arnaout T, Bailey J, Stansfeld PJ, Boland C, Caffrey M. Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science. 2016; 351(6275):876–880.

Wiktor M, Weichert D, Howe N, Huang CY, Olieric V, Boland C, Bailey J, Vogeley L, Stansfeld PJ, Buddelmeijer N, et al. Structural insights into the mechanism of the membrane integral N-acyltransferase step in bacterial lipoprotein synthesis. Nature communications. 2017; 8(1):1–13.

Willis RC, Furlong CE. Purification and properties of a ribose-binding protein from Escherichia coli. Journal of Biological Chemistry. 1974; 249(21):6926–6929.

Young EC, Baumgartner JT, Karatan E, Kuhn ML. A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation. Microbiology. 2021; p. 001023.

Yu S, Lee NY, Park SJ, Rhee S. Crystal structure of toll-like receptor 2-activating lipoprotein IIpA from Vibrio vulnificus. Proteins: structure, Function, and Bioinformatics. 2011; 79(3):1020–1025.

Zückert WR. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014; 1843(8):1509–1516.
Figure 1–Figure supplement 1. DLS measurement of NmMetQ proteins. Representative DLS intensity distribution plots of lipo-NmMetQ (0.7 mg/ml), pre-protein (2.3 mg/ml) and secreted NmMetQ (2.7 mg/ml) (top panel). The hydrodynamic radius (R_h), the polydispersity (Pd %), molecular weight estimate based on the hydrodynamic radius of a folded globular protein (Mw-R) are listed below each plot. The mean and SEM of each measurement were calculated from triplicate measurements. Proposed models of NmMetQ protein quaternary arrangements (bottom panel).
Inward facing conformation of the MetNI methionine ABC transporter

PDB	7MC0	7MBZ
EMD	EMD-23752	EMD-23751

Outward facing conformation of the MetNI methionine ABC transporter in complex with lipo-MetQ

Data collection conditions

	Inward facing	Outward facing	
Microscope	Titan Krios	Titan Krios	
Camera	Gatan K3 Summit	Gatan K3 Summit	
Magnification	105,000x	105,000x	
Voltage (kV)	300	300	
Recording mode	counting	counting	
Frames/Movies	40	40	
Total Electron dose (e⁻/Å²)	60	60	
Defocus range (µm)	1.0 – 2.8	1.0-2.8	
Pixel size (Å)	0.856	0.856	
Micrographs collected	4,709	6,183	
Micrographs used	3,968	5,494	
Total extracted particles	1,684,719	2,874,862	
Refined particles	322,171	56,434	
Symmetry imposed	C1	C1	
Nominal Map Resolution (Å)	FSC 0.143	FSC 0.143	
	(unmasked/masked)	3.4/3.3	6.4/6.4

Refinement and Validation

Initial model used	3TUJ
Number of atoms	1.19
	1.04

	Favor (%)	Allowed (%)	Outliers (%)
Bond lengths (Å)	95.77	3.90	0.33
Bond angles (°)	95.09	4.91	0
MolProbity score	1.62	1.92	
Clashscore (all atom)	1.76	1.73	
Ramachandran plot	7.56	6.77	
Rotamer outliers (%)	1.19	1.04	

Figure 4—Figure supplement 1. CryoEM data collection and refinement statistics.
Comparison of type I ABC transporters. A. ABC methionine transporters in the inward-facing conformation. B. ABC molybdate transporters in the inward-facing conformation and C. ABC methionine transporters in the outward-facing conformation. For each model the TMDs, NBDs and SBPs, are colored in blue, grey, and pink, respectively. Next to each panel, an overlay is included of the two structures, with the ABC transporter with a regulatory domain colored in grey and the ABC transporter with a regulatory domain colored in red. NBD:NBD inter-subunit distances were assessed using the Cα of NBD glycine residues in the P loop and signature motifs. The average of the two distances are indicated by double arrows.

Figure 4—Figure supplement 2. Comparison of type I ABC transporters. A. ABC methionine transporters in the inward-facing conformation. B ABC molybdate transporters in the inward-facing conformation and C. ABC methionine transporters in the outward-facing conformation. For each model the TMDs, NBDs and SBPs, are colored in blue, grey, and pink, respectively. Next to each panel, an overlay is included of the two structures, with the ABC transporter with a regulatory domain colored in grey and the ABC transporter with a regulatory domain colored in red. NBD:NBD inter-subunit distances were assessed using the Cα of NBD glycine residues in the P loop and signature motifs. The average of the two distances are indicated by double arrows.
Figure 4–Figure supplement 3. CryoEM map generation and data processing refinement of NmMetNI in the inward-facing conformation. A. Representative cryoEM micrograph of (scale bar is 20 nm) and select 2D class averages. B. Workflow of single-particle image processing. C. Local resolution plot of NmMetNI as calculated using cryoSPARC. D. Angular distribution calculated for particle projections. Heatmap shows number of particles for each viewing angle (top) and gold-standard Fourier shell correlation (FSC) curves for masked and unmasked maps generated by cryoSPARC non-uniform refinement (bottom) E. CryoEM density (mesh) overlaid on the atomic model of select regions of NmMetNI. (sticks).
Figure 4—Figure supplement 4. CryoEM map generation and data processing refinement of lipo-NmMetQ:NmMetNI complex in the outward-facing conformation.

A. Representative cryoEM micrograph (scale bar is 20 nm) and select 2D class averages.

B. Workflow of single-particle image processing. Angular distribution calculated for particle projections. Heatmap shows number of particles for each viewing angle (top) and gold-standard Fourier shell correlation (FSC) curves for masked and unmasked maps generated by cryoSPARC non-uniform refinement (bottom).
Lipo-NmMetQ

- $R_h = 7.9 \pm 0.17$ nm
- $P_d (%) = 12 \pm 3$
- Mw-R (observed) = 430 ± 22 kDa
- Mw (calculated) = 32 kDa

Pre-protein NmMetQ

- $R_h = 7.7 \pm 0.055$ nm
- $P_d (%) = 8.9 \pm 1.9$
- Mw-R (observed) = 400 ± 6.7 kDa
- Mw (calculated) = 33 kDa

Secreted NmMetQ

- $R_h = 3.0 \pm 0.013$ nm
- $P_d (%) = 9.5 \pm 3$
- Mw-R (observed) = 43 ± 0.33 kDa
- Mw (calculated) = 31 kDa

Lorem ipsum
A. Schematic representation of FAXS experiment:

- Protein
- Methionine analog
+ Protein

Reporter molecule: trifluoromethyl methionine

B. Methionine analogs:

Amino group
- S-methyl-L-cysteine
- Se-L-methionine

Side chain
- N-formyl-L-methionine
- N-acety-L-methionine

Stereochemistry
- L-ethionine
- L-methionine sulfoximine

Carboxyl group
- L-homocysteine
- L-norleucine

L-methionol
L-methionine ethyl ester

C. Affinity ranking of methionine analogs:

N-formyl-L-methionine
L-methionine
Seleno-L-methionine
N-acetyl-L-methionine
L-norleucine
L-ethionine
D-methionine

D. Substrate-stimulated ATPase activity:

![Bar chart showing ATPase activity](image)
Extract Box 400 px: F-crop to box size 40 px
2,420,314 particles

Extract Box 400 px: F-crop to box size 100 px
2,370,391 particles

Extract Box 400 px
390,720 particles

2D classification

2D classification

2D classification

157,329 particles

33.5% 29.4% 37.1%

NU refinement

6.42 Å
58,434 particles
A. Type I methionine transporters: inward-facing conformation

NmMetNI (this study) → EcMetNI 3TUJ

B. Type I molybdate transporters: inward-facing conformation

AfModBC 2ONK → MaModBC 3D31

C. Type I methionine transporters: outward-facing conformation

NmMetNI-lipo NmMetQ (this study) → EcMetNI-EcMetQ 6CVL
