Mid to Late Cambrian docking of the Río de la Plata craton to southwestern Gondwana: age constraints from U–Pb SHRIMP detrital zircon ages from Sierras de Ambato and Velasco (Sierras Pampeanas, Argentina)

Sebastián O. Verdecchia¹, Cesar Casquet², Edgardo G. Baldo¹, Robert J. Pankhurst³, Carlos W. Rapela⁴, Mark Fanning⁵ & Carmen Galindo²

¹ - CICTERRA – Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional de Córdoba (CONICET-UNC). Av. Veléz Sarsfield 1611. CP.:X5016CGA, Córdoba, Argentina. sverdecchia@gmail.com; ebaldo@efn.uncor.edu

² - Dpto. de Petrología y Geoquímica, Fac. Ciencias Geológicas-Inst. de Geología Económica (CSIC-Universidad Complutense) 28040 Madrid, Spain. casquet@geo.ucm.es; cgalindo@geo.ucm.es

³ – Visiting Research Associate, British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom. rjpankhurst@gmail.com

⁴ - Centro de Investigaciones Geológicas, Universidad Nacional de la Plata-CONICET 1900 La Plata, Argentina. crapela@cig.museo.unlp.edu.ar

⁵ - Research School of Earth Sciences, the Australian National University, Canberra, Australia. Mark.Fanning@anu.edu.au

* Corresponding Author.

Running title: Docking of the Río de la Plata craton
Abstract

The Early Palaeozoic stratigraphy and tectonic history of the Eastern Sierras Pampeanas of central Argentina are complicated by metamorphism and deformation resulting from the Pampean (545–510 Ma) and Famatinian (490–440 Ma) orogenies. We report U–Pb SHRIMP dating of detrital zircons in two metasedimentary successions exposed at Quebrada de La Cébila (c. 28°45’S; 66°25’W): the Ambato and the La Cébila metamorphic complexes. The Ambato zircons record age peaks corresponding to Pampean (530 ± 10 Ma), Brasiliano (~570 and ~640 Ma), and Grenville (~950 to ~1025 Ma) and minor Neoarchaean ages. Similar peaks are also apparent in the La Cébila sample but it additionally contains Palaeoproterozoic zircons (~2.1 Ga) corresponding to the age of the Rio de la Plata craton, from which they are considered to have been sourced. Our interpretation is that the protolith of the Ambato was deposited prior to juxtaposition with the craton and is older than the Early Ordovician La Cébila metamorphic complex. We infer that the craton reached its current relative position in the Mid to Late Cambrian, after the main Pampean tectonothermal event (530–520 Ma) and before deposition of the La Cébila protolith and the Achavil Formation (Sierra de Famatina), which contain comparable detrital zircon populations.
The Palaeoproterozoic Río de la Plata craton of central-eastern Argentina and southern Uruguay has an important role in the tectonic framework of Southwestern Gondwana. Historically, this craton was considered the upper plate in collisional models for the Neoproterozoic to Early Cambrian Pampean orogeny (545–510 Ma) during the amalgamation of Gondwana (Escayola et al. 2007; Schwartz et al. 2008; Ramos et al. 2010). However, Schwartz and Gromet (2004) and Rapela et al. (2007) observed that the pre-Pampean sedimentary rocks, the largely turbiditic Puncoviscana Formation of Late Neoproterozoic to Early Cambrian age (for a review about the significance and age of this formation see Zimmermann 2005), did not contain zircons of Rio de la Plata craton age (c. 2.05–2.25 Ga) as should be expected from models involving orthogonal collision. Therefore the present position of the Río de la Plata craton had to be attained during or after the Pampean orogeny. From this evidence a new geotectonic model for the Pampean orogeny was developed by Rapela et al. (2007), involving significant right-lateral displacements of continental masses during oblique subduction that preceded collision.

In this work, we present new U–Pb SHRIMP detrital zircon ages from high-grade metasedimentary successions from Quebrada de La Cébila (southern Sierra de Ambato and northeast Sierra de Velasco): the Ambato and La Cébila metamorphic complexes (Figs. 1 and 2). Provenance patterns, combined with existing geochronological data relevant to Neoproterozoic to Early Palaeozoic metasedimentary successions elsewhere in the Sierras Pampeanas (Rapela et al. 2007; Collo et al. 2009), constrain the time of docking of the Río de la Plata craton to southwest Gondwana, i.e., This is considered to signify the moment when this craton became available as a source of sediments for late to post-Pampean basins.

Geological setting

Outcrops and samples from drill-holes of the Río de la Plata craton suggest that it consists of a mosaic of Palaeoproterozoic igneous and metamorphic terranes of 2260 to 2020 Ma (e.g. Tandilia belt, Pando belt, Piedra Alta terrane) (Fig. 1; Ramos 1996; Rapela et al. 2007; Oyhantçabal et al. 2010 and references therein). Its present position was probably reached through large-scale dextral strike-slip movement (present coordinates will be considered throughout the paper) relative to the Puncoviscana Formation that forms the bulk of the sedimentary involved in the Pampean orogen. The latter formation which overlies an unexposed basement, is thought to have originated on the margin of the Kalahari craton and
transferred laterally during oblique subduction of the ephemeral Clymene Ocean (Trindade et al. 2006; Rapela et al. 2007). In this interpretation, the final stage is represented by the oblique collision in Cambrian times of a large, probably allochthonous, Mesoproterozoic to Palaeoproterozoic terrane in the west that embraced the Western Sierras Pampeanas (Sierra de Pie de Palo and Sierra de Maz), the Arequipa block (southern Peru; Ramos 2008 and references therein; Casquet et al., 2010) and Amazonia among other continental blocks (Rapela et al. 2007; Casquet et al. 2009). This collision resulted in the Pampean orogenic belt (545–510 Ma, Rapela et al. 1998; Schwartz et al. 2008) in the Eastern Sierras Pampeanas, juxtaposed with the Río de la Plata craton across a major fault (Fig. 1).

Alternative models for the Pampean orogeny involve either Late Neoproterozoic to Early Cambrian orthogonal collision or ridge subduction against the Río de la Plata craton (Ramos & Vujovich 1993; Escayola et al. 2007; Schwartz et al. 2008; Ramos et al. 2010). Folding and the development of foliation took place in the Early Cambrian and were accompanied by low- to high-grade regional metamorphism under low-to-medium pressure between 530 and 520 Ma. Intrusion of calc-alkaline I-type plutons and S-type granites (magmatic arc) started at c. 545 Ma (Lira et al. 1997; Rapela et al. 1998, 2002; Schwartz et al. 2008; Martino et al. 2009).

The Sierras Pampeanas are blocks of pre-Andean basement tilted during Late Cenozoic flat-slab subduction of the Nazca plate beneath the Central Andean continental margin between 27° and 33°30’ S, (Jordan & Allmendinger 1986; Ramos et al. 2002). Two successive orogenies have long been recognized in the Eastern Sierras Pampeanas, i.e., the Pampean orogeny referred to above, and the accretionary Famatinian orogeny (Aceñolaza & Toselli 1977; Pankhurst et al. 1998; Rapela et al. 1998; Dahlquist et al. 2008; Fig. 1). The Famatinian belt lies to the west of the Pampean belt and developed mainly between the Late Cambrian and the Early Silurian (490–440 Ma) (e.g. Pankhurst et al. 1998, 2000; Astini and Davila 2004). This orogeny partially reworked the Pampean foreland to the east, and extended well into the Western Sierras Pampeanas on the west (e.g. Rapela et al. 1998; Pankhurst et al. 2000; Baldo et al. 2006; Casquet et al. 2008). The Famatinian belt is characterized by Late Cambrian to Early-Middle Ordovician marine and volcanioclastic successions, Early to Mid Ordovician I- and S-type intrusions (magmatic arcs), minor tonalite–trondhjemite–granodiorite suites in the foreland and low- to high-grade, low-to-intermediate pressure, metamorphism coeval with foliation development, folding and thrusting (e.g. Pankhurst et al. 1998, 2000; Rapela et al. 2001; Casquet et al. 2001, 2008; Astini 2003 and references therein;
Astini & Davila 2004; Büttner et al. 2005; Verdecchia et al. 2007; Dahlquist et al. 2008; Otamendi et al. 2008, 2009; Collo et al. 2009). On the other hand, the Western Sierras Pampeanas close to the Andes consist of a Proterozoic basement of Grenville age (c. 1.0–1.3 Ga) that was pervasively reworked by the Famatinian orogeny (Pankhurst & Rapela 1998; Varela et al. 2004; Vujovich et al. 2004; Casquet et al. 2001, 2008; Rapela et al. 2010). Evidence for Pampean-age tectonothermal activity in the Western Sierras Pampeanas is provided by U-Pb data, both conventional and SHRIMP, and Ar-Ar determinations (e.g. Lucassen & Becchio 2003; Mulcahy et al. 2007; Casquet et al. 2008).

This work is focused on the southern tip of the Sierra de Ambato and east tip of Sierra de Velasco in the Eastern Sierras Pampeanas (Fig. 2), which underwent Famatinian deformation and metamorphism. Two metasedimentary successions are recognized, yielding contrasting detrital zircon ages. The Ambato metamorphic complex (Fig. 2b) mainly consists of high-grade metasedimentary rocks (migmatites and gneisses) and discordant granitic and pegmatitic bodies (Caminos 1979). Larrovere (2009) obtained an Early to Mid Ordovician metamorphic age on monazite from one migmatite from the central-northern part of the sierra. However, the ages of igneous rocks and sedimentary protoliths in this region are still unknown. At the southern tip of the Sierra de Ambato, the metamorphic complex overlies the low-grade successions of the La Cébila metamorphic complex across a west-directed Cenozoic reverse fault (Fig. 2b).

The La Cébila metamorphic complex consists of a low- to high-grade metasedimentary succession, peraluminous granites and pegmatitic bodies (Espizúa & Caminos 1979; Verdecchia 2009; Fig. 2b) that crop out discontinuously along the eastern edge of the Sierra de Velasco with the main outcrops along the Quebrada de La Cébila (Fig. 2b). The Sierra de Velasco is a large igneous massif consisting of Ordovician peraluminous to metaluminous granites (Pankhurst et al. 2000; Toselli et al. 2007) that underwent shearing to produce mylonites in the Devonian (e.g. TIPA shear zone, Hockenreiner et al. 2003), and undeformed Carboniferous A-type granitic plutons (Dahlquist et al. 2006; Grosse et al. 2008; Dahlquist et al. 2010). The LCMC consists of phyllites, metapsammites, quartzites, mica- and quartz-schists, gneisses and migmatites with minor calcisilicate rocks, graphite-schist layers and discordant pegmatite bodies (Espizúa & Caminos 1979; Verdecchia 2009). The metamorphic grade increases from very low in the east to high in the west, towards the contact with the Punta del Negro pluton, giving rise to a succession of metamorphic zones (chlorite, biotite, cordierite, andalusite, andalusite–K-feldspar, sillimanite–K-feldspar and cordierite–K-
feldspar) roughly parallel to the contact (Verdecchia 2009; Fig. 2b). South of the studied area at Quebrada de la Rioja (Fig. 2a) one granitoid that intrudes rocks equivalent to the La Cébila metamorphic complex has yielded an age of 476.4 ± 1.5 Ma (U–Pb ID-TIMS on monazite; De los Hoyos et al. 2008). Although the age of metamorphism is unknown, Verdecchia (2009) suggested on geological and petrological grounds that Ordovician magmatism was roughly coeval.

An Early Ordovician depositional age for the protoliths of the La Cébila metamorphic complex has been determined from biostratigraphy in quartzites from the sillimanite–K-feldspar zone that preserve a shelly fauna (Verdecchia et al. 2007). This age is compatible with U–Pb detrital zircon ages that yielded a maximum sedimentation age of c. 530 Ma (sample QCE-6004, Rapela et al. 2007; Fig. 2b). A shallow-water marine siliciclastic platform, in a foreland position relative to the Famatinian magmatic arc to the west, was previously suggested for protoliths of the La Cébila metamorphic complex (Astini et al. 2003 2004; Verdecchia et al. 2007; Verdecchia & Baldo 2010).

Samples

One sample from each metamorphic complex referred to above was selected for U–Pb SHRIMP zircon dating.

Sample CEB-392 is a banded migmatite from southern Sierra de Ambato (28°50'29.10"S; 66°20'39.40"W, see Fig. 2b). The mineral association consists of plagioclase, biotite, quartz, K-feldspar and secondary muscovite and chlorite, with accessory zircon (both in the matrix and as inclusions in biotite), apatite and scarce opaque minerals. The migmatite is a stromatite with alternation of leucosome and melanosome concordant with the foliation. The melanosome is composed of aligned biotite layers (<3–5 mm thick), whereas the leucosome layers (<30 mm thick) have an interlobate mosaic of quartz, plagioclase, K-feldspar and subordinate biotite.

Sample CEB-428 is a paragneiss of the inner La Cébila metamorphic complex collected near the contact with the porphyritic Punta del Negro granite (28°45'46.80"S; 66°24'29.60"W, Fig. 2b). The mineral association includes cordierite, K-feldspar, biotite, plagioclase, quartz and secondary muscovite, with accessory tourmaline, zircon, monazite, apatite and opaque minerals. Compositional banding is characterized by leucocratic layers <10 mm thick.
consisting of slightly interlobate aggregates of cordierite, K-feldspar, plagioclase, quartz with minor biotite, and thin biotitic layers (<1 mm thick) with subordinate cordierite, plagioclase, K-feldspar and quartz. In both domains, a foliation is defined by biotite aligned parallel to the banding.

Analytical methods

Zircons were concentrated using standard crushing, washing, heavy liquid, and paramagnetic separation procedures as in Rapela et al. (2007). The zircon-rich heavy mineral concentrates were poured onto double-sided tape, mounted in epoxy together with chips of the Temora reference zircon, sectioned approximately in half, and polished. Cathodo-luminescence images were used to decipher the internal structures of the sectioned grains.

The U–Th–Pb analyses were made using SHRIMP RG at the Research School of Earth Sciences, The Australian National University, Canberra, Australia as described by Williams (1998, and references therein). Each analysis consisted of 4 scans through the mass range, with the reference zircon analysed once for every five unknowns. Data were reduced using the SQUID Excel macro of Ludwig (2001). Since young zircons with normal U contents have low 207Pb/235U ratios and statistically highly imprecise 204Pb/206Pb ratios, common-Pb correction was made using the measured 204Pb measurements only for ages older than about 1100 Ma, and 207Pb measurement for younger ages (see Williams 1998); in the latter case there are no common-Pb corrected 207Pb/235U ratios reported in Table 1.

Tera–Wasserburg Concordia plots (Fig. 4), probability density plots with stacked histograms (Fig. 5), and weighted-mean 206Pb/238U age calculations were carried out using ISOPLOT/Ex (Ludwig 2003). Uncertainties on all calculated ages are reported as 95% confidence limits.

U–Pb results

CEB-392 (Ambato metamorphic complex)

Zircon grains are up to 200 μm long, rounded, anhedral, but with a minority of euhedral prismatic crystals, some of the latter showing bi-pyramidal terminations (Fig. 3 a-c). Cathodo-luminescence images (CL) show irregular detrital cores and discordant low-luminescence
overgrowths, some showing faint oscillatory-zoning that is interpreted as metamorphic in origin. Sixty-one grains were analysed (Table 1). The zircons moderate Th/U ratios, mostly ≤ 0.5, and their $^{206}\text{Pb}/^{238}\text{U}$ ages range from ~460 to ~2650 Ma, with only three analyses being more than 10% discordant. The inheritance pattern shows a bimodal distribution with fifty-four ages in the range 460–1200 Ma and five Archaean ages at ~2600 Ma (for which $^{207}\text{Pb}/^{206}\text{Pb}$ ages are considered more reliable than $^{238}\text{U}/^{206}\text{Pb}$ ages). There is a notable absence of Palaeoproterozoic ages. The two youngest ages (459 ± 5 and 471 ± 5 Ma) are from rims with high U (>1000 ppm) and low Th/U (<0.05), which suggests a metamorphic origin during the Famatinian orogeny and provides a minimum age for sedimentation, although the precise age of metamorphism cannot be determined with only two results. There is a major peak at ~530 ± 10 Ma, defined by six analyses of grains showing oscillatory zoning characteristic of igneous crystallization and hence it is assumed that these are of detrital origin, constraining a maximum possible age for deposition. Other significant post-Archaean age peaks occur at ~570 Ma, ~640 Ma, ~900 Ma, 950–1025 Ma (concentrated at ~1015 Ma) and, perhaps ~1165 Ma.

CEB-428 (La Cébila metamorphic complex)

Zircon grains are up to 100 µm in size and show a variety of rounded to euhedral prismatic shapes, some with bi-pyramidal terminations (Fig. 3 d-e). Many grains are fragments. Strong oscillatory zoning is evident in the CL images. Some grains show zoned cores overgrown by thin rims of low luminescence (Fig. 3 d-e). On the other hand, some of the anhedral zircon grains show little or no zoning. Sixty-five grains were analysed, all of which yielded ages that are mostly less than 10% discordant. The majority of the grains exhibit Th/U ratios in the range 0.2 to 1.0, which is normal for igneous zircon. The inheritance pattern shows a similar but more continuous spread of ages than that for sample CEB-392. Five youngest ages form a coherent group with a mean age of 520 ± 10 Ma, but more prominent peaks are defined at ~570, ~610 and ~660 Ma. Early Neoproterozoic ages in the range 950–1150 Ma (with a small peak at ~1015 Ma) are less common than in CEB-392, but there is a significant grouping of Palaeoproterozoic $^{207}\text{Pb}/^{206}\text{Pb}$ ages (1750–2200 Ma, with possible minor peaks at ~1890, ~2050 and 2150 Ma), as well as a few Archaean ages of ~2600 Ma.

Discussion
Neoproterozoic to Early Cambrian sedimentary rocks that were involved in the Pampean orogeny are characterized by detrital zircon provenance patterns with well-developed Brasiliano age peaks between 680 and 570 Ma and Grenvillian-age peaks between 950 and 1100 Ma, but lack Pampean magmatic and metamorphic zircons with ages in the range 545–520 Ma. A minor group of Paleoproterozoic (1.7 to 2.0) and Archean (ca. 2.6 Ga) grains is also present (cf., Sims et al. 1998; Pankhurst et al. 2000; Schwartz & Gromet 2004; Escayola et al. 2007; Rapela et al. 2007; Drobe et al. 2009; Adams et al. 2011). In contrast the migmaticite of the Ambato metamorphic complex records a maximum sedimentation age of 530 ± 10 Ma (CEB-392, Fig. 5). Age peaks corresponding to Brasiliano-ages (~570 and ~640 Ma) and Grenville-ages (~950 to ~1025 Ma) are present, whereas Palaeoproterozoic ages characteristic of the Río de la Plata craton (2260–2020 Ma; Rapela et al. 2007 and references therein) are absent. Two overgrowth ages [471 ± 5 and 459 ± 5 Ma] from the Ambato metamorphic complex sample are interpreted as the age of Famatinian metamorphic overprint and are compatible with an Early to Mid Ordovician U–Pb monazite age (c. 470 Ma) determined by Larrovere (2009). The protolith of the complex was thus deposited between Early Cambrian and Mid Ordovician time (ICS Stratigraphic Chart 2009).

The Ambato migmaticite detrital zircon age pattern resembles that of the Middle Cambrian Negro Peinado Formation of the Sierras Pampeanas (Collo et al. 2009), which yielded a youngest detrital zircon age of 505 ± 13 Ma (and a more significant peak at 522 ± 8 Ma) but also lacks zircons of Río de la Plata craton age (see Fig. 5). Brasiliano age peaks are present in both samples (stronger in CEB-392) and are consistent with provenance from reworking of Late Neoproterozoic sedimentary successions such as the Puncoviscana Formation (e.g. Drobe et al. 2009; Adams et al. 2011; Hauser et al. 2011) and the equivalent Ancasti metamorphic complex of the easternmost Sierras Pampeanas (Rapela et al. 2007; Murra et al. 2011; see Fig. 5). Provenance of the Puncoviscana Formation has been related in part to sources in the Kalahari craton (see Schwartz & Gromet 2004; Rapela et al. 2007). On the other hand, 1165–950 Ma zircon ages in the Ambato metamorphic complex and the Negro Peinado Formation suggest derivation from a Grenville-age basement similar to that recognized in the Western Sierras Pampeanas, probably the tip of a much larger terrane that collided during the Pampean orogeny embracing the Arequipa block and Amazonia (see Rapela et al. 2007; Casquet et al. 2008, 2010). Alternatively the Grenvillian-age grains might be derived from reworking of the underlaying Puncoviscana Formation. Collo et al. (2009)
interpreted the Negro Peinado Formation as deposited in a Mid Cambrian foreland basin related to the Pampean orogen exposed in the east.

Protoliths of the La Cébila metamorphic complex are Early Ordovician according to fossil remains in quartzitic layers (Verdecchia et al. 2007). The provenance pattern of the paragneiss studied here is characterized by Pampean-ages (~520 to ~540 Ma), Brasiliano ages (~570 to ~660 Ma) and Grenville ages (~1015 Ma) peaks, but significantly includes Palaeoproterozoic zircons with ages that match those of the Río de la Plata craton (2.02–2.26 Ga; Hartmann et al. 2002; Rapela et al. 2007) and few older grains. Similar results were obtained on a quartzite from this same complex by Rapela et al. (2007) (Fig. 5), which strengthens the view that by the Early Ordovician the Río de la Plata craton was in its present position, providing clastic detritus to wide sedimentary basins in the west that joined those resulting from the reworking of the underlying metasedimentary rocks.

Detrital zircons with Río de la Plata craton ages of ~2100 Ma were also recorded by Collo et al. (2009) in the Achavil Formation, as well as Pampean (~520 Ma), Brasiliano (~630 Ma) and Grenville-age (~1040–1120 Ma) peaks, much like the La Cébila metamorphic complex provenance. The maximum age of the Achavil Formation is poorly constrained since the youngest detrital zircon age peak is 519 ± 23 Ma (1σ). The minimum sedimentation age however is Late Cambrian as the base of the overlying Volcancito Formation contains fossils of that age (Astini 2003; Albanesi et al. 2005). Collo and Astini (2008) and Collo et al. (2009) suggested that the Achavil Formation had to be late Middle to Late Cambrian and younger than the Negro Peinado Formation on the basis of stratigraphical evidence and detrital zircon age patterns. Thus the record of Río de la Plata craton influence extends back into the Late Cambrian.

From these results we suggest here that the Ambato metamorphic complex is older than both the La Cébila metamorphic complex and the Achavil Formation, and is probably equivalent to the Middle Cambrian Negro Peinado Formation of Sierra de Famatina. Both the Ambato metamorphic complex and the Negro Peinado Formation lack detrital zircons of Río de la Plata age (Fig. 5). On the other hand the Achavil Formation and the La Cébila metamorphic complex, although not equivalent stratigraphically, both contain detrital zircon populations with age peaks in part similar to those of the Ambato and Negro Peinado formations, but additionally include Palaeoproterozoic zircons that can be related to the Río de la Plata craton. The latter implies that by the Mid or Late Cambrian the Río de la Plata craton had reached a
palaeogeographical position close to present. Moreover the Rio de la Plata craton does not show evidence of deformation and metamorphism of Pampean age (Rapela et al. 2007) which implies that it sourced zircons to the Achavil sedimentary basin after the main Pampean tectonothermal events, i.e., between 545 and 520 Ma. Orographic barriers such as the rising Pampean orogen played a transient role sometime between 520 and 510 Ma. By the time the Achavil Formation was deposited, such a barrier did not exist and Palaeoproterozoic zircons could easily reach sedimentary realms in the west. We conclude that the Rio de la Plata craton reached a position close to present sometime between the end of the Pampean tectonothermal event (c. 520 Ma) and the deposition of the Achavil Formation in the Mid to Late Cambrian.

One alternative source for zircons with Palaeoproterozoic ages similar to the Rio de la Plata craton might have been in the Amazonia craton, particularly in the Maroní-Itacaiunas province of northern Amazonia (e.g. Cordani & Teixeira 2007). If a static palaeogeographical model is implied, i.e., that Amazonia were in a position similar to today relative to other cratons, basins and orogenic belts of southern South America, then zircons would have had to travel between 3000 and 4000 km from the Maroní-Itacaiunas province – all the way round the craton itself – to reach the La Cébila basin. This enormous distance might be feasible if long-range energetic submarine currents were involved, but we can also add the fact that to our knowledge there is no evidence for the anticipated string of basins similar to La Cébila (Early Ordovician) that would connect the Sierras Pampeanas with the Maroní-Itacaiunas region of Amazonia. The possibility of the Palaeoproterozoic Arequipa block of southern Peru as another alternative source to the Rio de la Plata craton is more difficult to justify: Trans-Amazonian/Eburnian ages between c. 1.8 and 2.1 Ga have been recorded from this block (Loewy et al. 2004; Casquet et al. 2010), but also sedimentary rocks with detrital zircons between c. 1.2 and 1.6 Ga that are not recorded in the La Cébila basin.

Conclusions

The metasedimentary Ambato metamorphic complex and the La Cébila metamorphic complex that crop out at the southern end of the Sierra de Ambato and northeast tip of Sierra de Velasco are Middle Cambrian and Early Ordovician respectively. They were deposited before the start of the Famatinian magmatism in the late Early Ordovician, and after the Pampean Orogeny. Sources for most detrital zircons in both formations can be found in neighbouring regions, particularly in the Pampean orogen and the Proterozoic Western Sierras
Pampeanas. However Palaeoproterozoic zircons are recorded only in the La Cébila metamorphic complex. The source for these zircons probably lay in the Rio de la Plata craton to the east. The Late Cambrian Achavil Formation also contains Palaeoproterozoic zircons.

The Rio de la Plata craton juxtaposed obliquely to the Pampean orogen, reaching a position close to present sometime between the end of the main Pampean tectonothermal event (c. 520 Ma) and when it became the source for Palaeoproterozoic detrital zircons in the Achavil Formation, i.e. during the Mid-to-Late Cambrian interval. The situation persisted in the lower Early Ordovician when the La Cébila sedimentary succession was deposited.

Acknowledgements

Financial support for this paper was provided by Argentine Grants PIP-CONICET 5719 and FONCYT PICT 2006-1009 and Spanish MEC Grants CGL2005-02065/BTE, CGL2009-07984, UCM-Santander GR58/08. We acknowledge comments by Victor Ramos and one anonymous reviewer.

References

Aceñolaza, F. & Toselli, A. 1977. Observaciones geológicas y paleontológicas sobre el Ordovícico de la zona de Chaschuil, Provincia de Catamarca. Acta Geológica Lilloana, Tucumán. Tomo XIV, 233–259.

Adams C.J., Miller H., Aceñolaza F.G., Toselli A.J. & Griffin W.L. 2011. The Pacific Gondwana margin in the late Neoproterozoic–early Paleozoic: Detrital zircon U–Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Research, 19, 71–83.

Albanesi, G.L., Esteban, S.B., Ortega, G., Hünicken M.A. & Barnes, C.R. 2005. Bioestratigrafía y ambientes sedimentarios de las Formaciones Volcancito y Bordo Atravesado (Cámbrico Superior - Orдовícico Inferior), Sistema de Famatina, provincia de La Rioja. In: Dahlquist, J.A., Baldo, E.G. & Alasino P.H. (eds) Geología de la provincia de La Rioja, Precámbrico - Paleozoico Inferior. Asociación Geológica Argentina, Serie D, 8, 42–64.
Astini, R.A. 2003. The Ordovician proto-Andean basins. In: Benedetto, J. L. (ed.) *Ordovician fossils of Argentina*. Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba, 1–74.

Astini, R.A. & Dávila, F.M. 2004. Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion. *Tectonics*, 23, TC4008, doi:10.1029/2003TC001620.

Astini, R.A., Dávila, F.M., Rapela C.W., Pankhurst, R.J. & Fanning, C.M. 2003. Ordovician back-arc clastic wedge in the Famatina Ranges: New ages and implications for reconstruction of the Proto-Andean Gondwana Margin. In: Albanesi, G.L., Beresi, M.S. & Peralta, S.H. (eds) *Ordovician from the Andes*. Serie de Correlación Geológica, 17, San Miguel de Tucumán, Argentina, 375–380.

Astini, R.A., Dávila, F.M., Collo, G. & Martina, F. 2004. La Formación La Aguadita (Ordovico medio-superior): Su implicancia en la evolución temprana del Famatina y como parte del orógeno oclóyico en el noroeste argentino. In: Dahlquist, J.A., Baldo, E.G. & Alasino P.H. (eds) *Geología de la provincia de La Rioja, Precámbrico - Paleozoico Inferior*. Asociación Geológica Argentina, Serie D, 8, 67–84.

Baldo, E., Casquet, C., Pankhurst, R.J., Galindo, C., Rapela, C.W., Fanning, C.M., Dahlquist, J. & Murra, J. 2006. Neoproterozoic A-type magmatism in the Western Sierras Pampeanas (Argentina): evidence for Rodinia break-up along a proto-Iapetus rift? *Terra Nova*, 18, 388–394.

Büttner, S.H., Glodny, J., Lucassen, F., Wemmerd, K., Erdmann, S., Handler, R., Franz, G. & 2005. Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: Implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina). *Lithos*, 83, 143–181.

Caminos, R. 1979. Sierras Pampeanas Noroccidentales. Salta, Tucumán, Catamarca, La Rioja y San Juan. In: Turner, J.C.M. (ed.) *Segundo Simposio de Geología Regional Argentina*. Academia Nacional de Ciencias, Córdoba, 225–291.

Casquet, C., Baldo, E., Pankhurst, R.J., Rapela, C.W., Galindo, C., Fanning, C.M. & Saavedra, J. 2001. Involvement of the Argentine Precordillera Terrane in the Famatinian
mobile belt: Geochronological (U–Pb SHRIMP) and metamorphic evidence from the Sierra de Pie de Palo. *Geology*, **29**, 703–706.

Casquet, C., Pankhurst, R.J., Rapela, C.W., Galindo, C., Fanning, C.M., Chiaradia, M., Baldo, E.G., González-Casado, J.M. & Dahlquist, J.A. 2008. The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa-Antofalla block of southern Peru? Implications for West Gondwana margin evolution. *Gondwana Research*, **13**, 163–175.

Casquet, C., Rapela, C.W., Pankhurst, R.J., Baldo, E., Galindo, C., Fanning, M. & Saavedra, J. 2009. Proterozoic terranes in southern South America: Accretion to Amazonia, involvement in Rodinia formation and further west Gondwana accretion. In: *Rodinia: Supercontinents, Superplumes & Scotland*. Fermor Meeting, Edinburgh, Abstract.

Casquet, C., Fanning, C.M., Galindo, C., Pankhurst, R.J., Rapela, C.W. & Torres, P. 2010. The Arequipa Massif of Peru: New SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian orogen. *Journal of South American Earth Sciences*, **29**, 128–142.

Collo, G. & Astini, R.A. 2008. La Formación Achavil: una unidad diferenciable dentro del basamento metamórfico de bajo grado del Famatina en la región pampeana de los Andes Centrales. *Revista de la Asociación Geológica Argentina*, **63**, 344–362.

Collo, G., Astini, R.A., Cawood, P.A., Buchan C. & Pimentel M. 2009. U–Pb detrital zircon ages and Sm–Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: implications for late Neoproterozoic – early Palaeozoic evolution of the proto-Andean margin of Gondwana. *Journal of the Geological Society*, London, **116**, 1–17.

Cordani, U.G. & Teixeira, W. 2007. Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., & Martinez Catalán, J.R. (eds) *4-D Framework of Continental Crust*. Geological Society of America Memoir, **200**, 297–320.

Cordani, U.G., D’Agrella-Filho, M.S., Brito-Neves, B.B. & Trindade, R.I.F. 2003. Tearing up Rodinia: the Neoproterozoic palaeogeography of South American cratonic fragments. *Terra Nova*, **15**, 350–359.
Dahlquist, J.A., Pankhurst, R.J., Rapela, C.W., Casquet, C., Fanning, C.M., Alasino, P. & Báez, M.A. 2006. The San Blas Pluton: An example of Carboniferous plutonism in the Sierras Pampeanas, Argentina. *Journal of South American Earth Sciences*, 20, 341-350.

Dahlquist, J.A., Pankhurst, R.J., Rapela, C.W., Galindo, C., Alasino, P., Fanning, C.M., Saavedra, J. & Baldo, E. 2008. New SHRIMP U–Pb data from the Famatina Complex: constraining Early–Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. *Geologica Acta*, 6, 319-333.

Dahlquist, J.A., Alasino, P.H., Eby, N., Galindo, C. & Casquet, C. 2010. Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): Geochemical constraints and petrogenesis. *Lithos*, 115, 65–81.

De los Hoyos, C.R., Basei, M.A, Rossi, J.N. & Toselli, A.J. 2008. Four new ID-TIMS U–Pb monazite ages for deformed and undeformed granitoids in the eastern sector of the Velasco range, Sierras Pampeanas, Argentina. *VI South American Symposium on Isotope Geology*, Extended Abstracts Volume (CD-ROM), 6 p.

Drobe, M., López de Luchi, M.G., Steenken, A., Frei, R., Naumann, R., Siegesmund, S. & Wemmer, K. 2009. Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. *Journal of South American Earth Sciences*, 28, 239–262.

Escayola, M.P., Pimentel, M. & Armstrong, R. 2007. Neoproterozoic backarc basin: Sensitive high-resolution ion microprobe U–Pb and Sm–Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. *Geology*, 35, 495–498.

Espizúa, L. & Caminos, R. 1979. Las rocas metamórficas de la Formación La Cébila, Sierra de Ambato, provincias de Catamarca y La Rioja. *Boletín de la Academia Nacional de Ciencias de Córdoba*, Argentina, 53, 125-142.

Grosse, P., Söllner, F., Báez, M., Toselli, A.J., Rossi, J.N. & De la Rosa J. 2008. Lower Carboniferous post-orogenic granites in central-eastern Sierra de Velasco, Sierras Pampeanas, Argentina: U–Pb monazite geochronology, geochemistry and Sr–Nd isotopes. *International Journal of Earth Sciences*, 98, 1001-1025.

Hartmann, L.A., Santos, J.O.S., Cingolani, C.A. & McNaughton, N.J. 2002. Two Palaeoproterozoic orogenies in the evolution of the Tandilia Belt, Buenos Aires, as
evidenced by zircon U–Pb SHRIMP geochronology. *International Geology Review*, **44**, 528–543.

Hauser, N., Matteini, M., Omarini, R.H. & Pimentel, M.M. 2011. Combined U–Pb and Lu–Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: Implications for the tectonic evolution of western Gondwana between 560 and 460 Ma. *Gondwana Research*, **19**, 100–127.

Höckenreiner, M., Söllner, F. & Miller, H. 2003. Dating the TIPA shear zone: an Early Devonian terrane boundary between Famatinian and Pampean systems (NW-Argentina). *Journal of South American Earth Sciences*, **16**, 45–66.

Jordan, T. & Allmendinger, R. 1986. The Sierras Pampeanas of Argentina: a modern analogue of Laramide deformation. *American Journal of Science*, **286**, 737–764.

Larrovere M. 2009. *Petrología de la faja migmatítica entre el flanco noroccidental de la sierra de Ancasti, su continuación en la sierra de Aconquija y el flanco nororiental de la sierra de Ambato*. Ph.D. Thesis. Universidad Nacional de Córdoba.

Lira, R.R., Millone, H.A., Kirschbaum, A.M. & Moreno, R.S. 1997. Calc-alkaline arc granitoid activity in the Sierra Norte–Ambargasta Ranges, central Argentina. *Journal of South American Earth Sciences*, **10**, 157–177.

Loewy, S., Connelly, J.N. & Dalziel, I.W.D. 2004. An orphaned block: The Arequipa-Antofalla Basement of central Andean margin of South America. *Geological Society of America Bulletin*, **116**, 171-187.

Lucassen, F. & Becchio, R. 2003. Timing of high-grade metamorphism: early Palaeozoic U–Pb formation ages of titanite indicate long-standing high-T conditions at the western margin of Gondwana (Argentina, 26–29 S). *Journal of Metamorphic Geology*, **21**, 649–662.

Ludwig, K.R. 2001. *SQUID 1.02, a User’s Manual*. Berkeley Geochronology Center, Special Publication No. 2, 2455 Ridge Road, Berkeley, CA 94709, USA.

Ludwig, K.R. 2003. *Isoplot/ExVersion 3.0, a Geochronological Toolkit for Microsoft Excel*. Berkeley Geochronology Center, Special Publication No. 4, 2455 Ridge Road, Berkeley CA 94709, USA.
Martino, R.D., Guereschi, A.B. & Sfragulla, J.A. 2009. Petrography, structure and tectonic significance of the Tuclame banded schists in the Sierras Pampeanas de Córdoba and their relationship with the Argentinian Northwestern metamorphic basement. *Journal of South American Earth Sciences*, **27**, 280–298.

Mulcahy, S.R., Roeske, S.M., McClelland, W.C., Nomade, S. & Renne, P.R. 2007. Cambrian initiation of the Las Pirquitas thrust of the western Sierras Pampeanas, Argentina: implications for the tectonic evolution of the proto-Andean margin of South America. *Geology*, **35**, 443–446.

Murra, J., Baldo, E., Galindo, C., Casquet, C., Pankhurst, R., Rapela, C. & Dahlquist, J. 2011. Sr, C and O isotope composition of marbles from the Sierra de Ancasti, Eastern Sierras Pampeanas, Argentina: age and constraints for the Neoproterozoic–Lower Paleozoic evolution of the proto-Gondwana margin. *Geologica Acta*, **9**, 1, 1–23.

Otamendi, J.E., Tibaldi, A.M., Vujovich, G.I. & Viñao, G.A. 2008. Metamorphic evolution of migmatites from the deep Famatinian arc crust exposed in Sierras Valle Fértil–La Huerta, San Juan, Argentina. *Journal of South American Earth Sciences*, **25**, 313–335.

Otamendi, J.E., Vujovich, G.I., de la Rosa, J.D., Tibaldi, A.M., Castro, A., Martino, R.D. & Finotti, L.P. 2009. Geology and petrology of a deep crustal zone from the Famatinian paleo-arc, Sierras Valle Fértil-La Huerta, San Juan, Argentina. *Journal of South American Earth Sciences*, **27**, 258–279.

Oyhantçabal P., Siegesmund, S. & Wemmer, K. 2010. The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature. *International Journal of Earth Sciences*, doi: 10.1007/s00531-010-0580-8.

Pankhurst, R.J. & Rapela, C.W. 1998. The Proto-Andean Margin of Gondwana: An Introduction. In: Pankhurst, R.J. & Rapela, C.W. (eds) *The Proto-Andean Margin of Gondwana*. Geological Society, London, Special Publications, **142**, 1–9.

Pankhurst, R., Rapela, C. & Fanning, C. 2000. Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. *Transactions of the Royal Society of Edinburgh*, Earth Sciences, **91**, 151–168.

Pankhurst, R., Rapela, C., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. & Fanning, C. 1998. The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-
Ordovician continental arc on the Gondwana margin. *In:* Pankhurst, R. & Rapela, C. (eds) *The Proto-Andean Margin of Gondwana.* Geological Society, London, Special Publications, **142**, 343–397.

Ramos, V.A. 1996. Evolución tectónica de la Plataforma Continental. *In:* Ramos, V.A. & Turic, M.A. (eds) *Geología y Recursos Naturales de la Plataforma Continental Argentina.* Asociación Geológica Argentina/Instituto Argentino del Petróleo, Buenos Aires, 385–404.

Ramos, V.A. 2008. The basement of the Central Andes: The Arequipa and related terranes. *Annual Review of Earth and Planetary Sciences,* **36**, 289–324.

Ramos, V.A. & Vujovich, G.I. 1993. The Pampia Craton within Western Gondwanaland. *In:* Ortega-Gutiérrez, F., Coney, P., Centeno-García, E. & Gómez-Caballero, A. (eds) *Proceedings of The First Circum-Pacific and Circum-Atlantic Terrane Conference,* Mexico, 113–116.

Ramos, V.A., Cristallini, E.O. & Pérez, D.J. 2002. The Pampean flat slab of the Central Andes. *Journal of South American Earth Sciences,* **15**, 59–78.

Ramos V.A., Vujovich G., Martino R. & Otamendi J. 2010. Pampia: a large cratonic block missing in the Rodinia supercontinent. *Journal of Geodynamics,* **50**, 243-255.

Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C. & Fanning, C.M. 1998. The Pampean Orogeny of the southern proto-Andes: evidence for Cambrian continental collision in the Sierras de Córdoba. *In:* Pankhurst, R.J. & Rapela, C.W. (eds) *The Proto-Andean Margin of Gondwana.* Geological Society, London, Special Publications, **142**, 181–217.

Rapela, C.W., Pankhurst, R.J., Baldo, E., Casquet, C., Galindo, C., Fanning, C.M. & Saavedra, J. 2001. Ordovician metamorphism in the Sierras Pampeanas: New U-Pb SHRIMP ages in Central-East Valle Fértil and the Velasco Batholith. *III Simposio Sudamericano de Geología Isotópica (III SSAGI)*, Pucón. Publicación en CD-ROM. Article 616, 4 p.

Rapela, C.W., Baldo, E.G., Pankhurst, R.J. & Saavedra, J. 2002. Cordierite and leucogranite formation during emplacement of highly peraluminous magma: the El Pilón Granite Complex(Sierras Pampeanas, Argentina). *Journal of Petrology,* **43**, 1003–1028.
Rapela, C., Pankhurst, R., Casquet, C., Fanning, C., Baldo, E., González-Casado, J., Galindo, C. & Dahlquist, J. 2007. The Río de la Plata craton and the assembly of SW Gondwana. *Earth-Science Reviews*, **83**, 49–82.

Rapela, C.W., Pankhurst, R.J., Casquet, A., Baldo, E., Galindo, C., Fanning, C.M. & Dahlquist, J.M. 2010. The Western Sierras Pampeanas: Protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction–accretion at continental-edge and AMCG intraplate magmatism. *Journal of South American Earth Sciences*, **29**, 105–127.

Schwartz, J.J. & Gromet, L.P. 2004. Provenance of a late Proterozoic–early Cambrian basin, Sierras de Córdoba, Argentina. *Precambrian Research*, **129**, 1–21.

Schwartz, J.J., Gromet, L.P. & Miró, R. 2008. Timing and duration of the calcalkaline arc of the Pampean Orogeny: implications for the Late Neoproterozoic to Cambrian evolution of Western Gondwana. *Journal of Geology*, **116**, 39–61.

Sims, J.P., Ireland, T.R., Comacho, A., Lyons, P., Pieters, P.E., Skirrow, R.G., Stuart-Smith, P.G. & Miró, R. 1998. U–Pb, Th–Pb and Ar–Ar geochronology form the southern Sierras Pampeanas: implication for the Palaeozoic tectonic evolution of the western Gondwana margin. *In:* Pankhurst, R.J. & Rapela, C.W. (eds) *The Proto-Andean Margin of Gondwana*. Geological Society, London, Special Publications, **142**, 259–281.

Toselli, A.J., Miller, H., Aceñolaza, F.G., Rossi, J.N. & Söllner, F. 2007. The Sierra de Velasco (northwestern Argentina) - an example for polyphase magmatism at the margin of Gondwana. *Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen*, **246** (3), 325-345.

Trindade, R.I.F., D’Agrella-Filho, M.S., Epof, I. & Brito Neves, B.B. 2006. Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. *Earth and Planetary Science Letters*, **244**, 361–377.

Varela, R., Sato, A., Basei, M.A.S. & Siga Jr., O. 2004. Proterozoico medio y Paleozoico inferior de la Sierra de Umango, antepais andino (29°S), Argentina: edades U–Pb y caracterizaciones isotópicas. *Revista Geológica de Chile*, **30**, 265–284.

Verdecchia, S.O. 2009. *Las metamorfitas de baja presión vinculadas al arco magmático famatiniano: las unidades metamórficas de la Quebrada de La Cébila y el borde*
oriental del Velasco. Provincia de La Rioja – Argentina. Ph.D. Thesis (unpublished), Universidad Nacional de Córdoba, Córdoba.

Verdecchia, S.O. & Baldo, E.G. 2010. Geoquímica y procedencia de los metasedimentos ordovícicos del complejo metamórfico La Cébila, provincia de La Rioja, Argentina. Revista Mexicana de Ciencias Geológicas, 27, 97-111.

Verdecchia, S.O., Baldo, E.G., Benedetto, J.L. & Borghi, P.A. 2007. The first shelly faunas from metamorphic rocks of the Sierras Pampeanas (La Cébila Formation, Sierra de Ambato, Argentina): age and paleogeographic implications. Ameghiniana, 44, 493-498.

Vujovich, G.I., Van Staal, C.R. & Davis, W. 2004. Age constraints and the tectonic evolution and provenance of the Pie de Palo Complex, Cuyania composite terrane, and the Famatinian orogeny in the Sierra de Pie de Palo, San Juán, Argentina. Gondwana Research, 7, 1041–1056.

Williams, I.S. 1998. U–Th–Pb Geochronology by Ion Microprobe. In: McKibben, M.A. Shanks III, W.C. & Ridley, W.I. (eds) Applications of microanalytical techniques to understanding mineralizing processes. Reviews of Economic Geology, 7, 1–35.

Zimmermann, U. 2005. Provenance studies of very low- to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. In: Vaughan, A.P.M., Leat, P.T. & Pankhurst, R.J. (eds) Terrane Processes at the Margins of Gondwana. Geological Society, London, Special Publication, 246, 381-416.
Figure captions

Fig. 1. Digital elevation model (DEM, 90-SRTM type) of central South America showing the Neoproterozoic to Early Palaeozoic tectonic framework and inferred limit of Río de la Plata craton (modified from Cordani *et al.* 2003, Rapela *et al.* 2007 and Oyhantçabal *et al.* 2010). Abbreviation: Transbrasiliano lineament (TB), Tandilia belt (T), Pando belt (PB), Piedra Alta terrane (PA), Nico Pérez terrane (NP), Rivera block (RB), Tacuarembó block (TA), Asunción arch (AA), Eastern Sierras Pampeanas (ESP), Western Sierras Pampeanas (WSP), Precordillera terrane (P).

Fig. 2. (a) Schematic geological map of central-western Argentina (after Astini & Dávila 2004; Dahlquist *et al.* 2008; Grosse *et al.* 2008). The main metasedimentary outcrops of the La Cébila metamorphic complex are marked (Quebradas of La Cébila, Cantadero and La Rioja). (b) Geological map of Quebrada de La Cébila. New and previously published sample localities are shown.

Fig. 3. Cathodo-luminescence images showing examples of the zircon grains analyzed. (a–c) migmatite (CEB-392) from the Ambato metamorphic complex, (d–e) paragneiss (CEB-428) from the La Cébila metamorphic complex. Rims are indicated with white triangles.

Fig. 4. Tera-Wasserburg plots for U–Pb SHRIMP data for (a) migmatite sample CEB-392 from the Ambato metamorphic complex and (b) paragneiss sample CEB-428 from the La Cébila metamorphic complex.

Fig. 5. Detrital zircon U–Pb age patterns for metasedimentary samples from the La Cébila metamorphic complex (CEB-428, this work; quartzite QCE-6004, Rapela *et al.* 2007), the Ambato metamorphic complex (CEB-392, this work, excluding one discordant point from Table 1), the Ancasti metamorphic complex (schist ANC-1008, Rapela *et al.* 2007), and the Negro Peinado and Achavil formations (Collo *et al.* 2009). The position of final docking of Río de la Plata craton (RLPC) is indicated as Mid-to-Late Cambrian.