Optical Adaptive Precoding for Visible Light Communications

Hanaa Marshoud, Student Member, IEEE, Paschalis C. Sofotasios, Senior Member, IEEE, Sami Muhaidat, Senior Member, IEEE, Bayan S. Sharif, Senior Member, IEEE, and George K. Karagiannidis, Fellow, IEEE

Abstract—Multiple-input multiple-output (MIMO) techniques have recently demonstrated significant potentials in visible light communications (VLC), as they can overcome the modulation bandwidth limitation and provide substantial improvement in terms of spectral efficiency and link reliability. However, MIMO systems typically suffer from inter-channel interference, which causes severe degradation to the system performance. In this context, we propose a novel optical adaptive precoding (OAP) scheme for the downlink of MIMO VLC systems, which exploits the knowledge of transmitted symbols to enhance the effective signal-to-interference-plus-noise ratio. We also derive bit-error-rate expressions for the OAP under perfect and outdated channel state information (CSI). Our results demonstrate that the proposed scheme is more robust to both CSI error and channel correlation, compared to conventional channel inversion precoding.

Index Terms—Visible light communications, MIMO, precoding, constructive interference, CSI error.

I. INTRODUCTION

With the explosive growth of broadband applications and Internet services, the consumer demands for seamless mobile data connectivity increase rapidly. Given that the majority of wireless data traffic is generated indoors [1], service providers are constantly looking for innovative solutions to provide robust indoor wireless coverage. In this context, the concept of small cells and heterogeneous networks has been proposed as a potential solution to this problem. Nevertheless, the imminent shortage of radio frequency (RF) resources at large, along with the evidenced spectral efficiency saturation, has revealed the need for larger bandwidth and spectral relief.

To address some of the aforementioned challenges, visible light communication (VLC) has recently emerged as a promising solution to support and complement traditional RF communication systems, owing to its capability to overcome the currently witnessed scarcity of the radio spectrum resources. To this effect, VLC is opening a new pathway for connecting indoor users to the Internet by practically unlocking the untapped electromagnetic spectrum in the visible light region [2]. The interest in this technology is driven by several factors as it offers high degree of spatial reuse, enhanced communication security and increased energy efficiency. Moreover, unlike RF signals, VLC does not interfere with electromagnetic radiations, which makes it safe to be used in places with high electromagnetic interference (EMI), such as hospitals and industrial plants [3], [4].

VLC uses light emitting diodes (LEDs) as transmitters and photo detectors (PDs) as receivers. Due to the relatively high modulation bandwidth of the LEDs, the amplitude of the optical signals can be modulated at sufficiently high switching rate that cannot be perceived by the human eye. Thus, the illumination function of the LEDs is not affected. This process is known as intensity modulation (IM), and it is feasible due to the incoherent light emitted by the LEDs, where photons have different wavelengths and phases, unlike coherent light sources such as lasers. At the receiver site, direct detection (DD) of the arriving signals is performed to convert the received optical signal into electric current. It is recalled that direct detection is substantially simpler than coherent detection used in RF, where an oscillator is required to extract the baseband signal from the carrier. Also, the diameters of the PDs are typically several hundred times the wavelength of light signals and thus, spatial multi-path interference is mitigated by the integrating effect at the PDs’ surfaces [5]–[7].

It has been recently shown that multiple-input-multiple-output (MIMO) systems can contribute towards enhancing the spectral efficiency of indoor VLC systems [8]–[13]. As demonstrated in the open literature, the implementation of MIMO schemes in multi-user (MU) scenarios creates MU interference, which has a detrimental impact on the overall system performance. Hence, interference mitigation techniques are essential and transmit precoding techniques constitute an effective method, which is widely considered in downlink transmissions [14].

Various transmit precoding schemes have been recently proposed aiming to eliminate the incurred inter-channel interference (ICI) in indoor MU-MIMO VLC systems [15], [16]. Motivated by this, in the present contribution we propose a design framework for a novel and effective optical adaptive precoding (OAP) scheme. Specifically, unlike most existing approaches, where precoding is employed to completely eliminate interference, the proposed precoder exploits the knowledge of constructive interference between spatial streams in order to enhance the overall system performance. This scheme
is based on on-off keying (OOK) modulation, which is widely considered in VLC systems [17]. Note that a similar concept was considered in the context of radio frequency (RF) MIMO systems [18], [19], where it led to performance gains compared to conventional channel inversion (CI) precoding. It is evident that OAP is particularly suitable in the context of VLC systems for the following reasons:

- The channel coefficients in indoor VLC remain constant, unless a change in the user position occurs. Thus, given that the indoor mobility velocity is relatively low, we can assume that the precoder calculation can be performed once per symbol, which leads to lower complexity overhead, compared to conventional RF systems.
- Optical channels are real and positive, which allows the estimation of the received interference, based only on the transmitted symbols. Hence, adaptive precoding in VLC becomes robust to channel state information (CSI) errors.
- Given that ICI is not completely eliminated, the high correlation between the optical subchannels is practically beneficial, when the transmitted symbols are equal.

To the best of our knowledge, this is the first work that proposes the exploitation of constructive interference to enhance the performance of VLC systems. In addition, it quantifies the impact of outdated CSI that results from the mobility of indoor users in the proximity of the LEDs, leading to erroneous generation of the precoding matrix at the transmitter and, thus, to inaccurate detection at the receiver [20]. Specifically, the contribution of the present paper is summarized below:

- We propose an optical adaptive precoding scheme that utilizes the knowledge of the transmitted symbols to constructively correlate the interference in an indoor MU-MIMO VLC downlink network.
- We investigate the bit-error-rate (BER) performance of the proposed scheme assuming perfect and outdated CSI, where we derive a closed-form expression for the former and an upper bound for the latter.
- We provide extensive simulation results to demonstrate the validity of the derived analytic expressions and extract useful insights on the performance of the proposed scheme under different realistic scenarios.

It is shown that the proposed OAP scheme introduces significant performance improvement compared to conventional channel inversion, while the corresponding added complexity is minimal. Furthermore, it is particularly robust to outdated CSI error, which result due to the mobility of users, and to the correlation between the channels of different users.

The remainder of the paper is organized as follows: Section II introduces the system and channel model of MU-MIMO VLC. Section III presents the conventional channel inversion and the proposed OAP, along with the corresponding BER analysis for both schemes under perfect and outdated CSI. The respective numerical results are presented in Section IV, while closing remarks are provided in Section V.

II. SYSTEM AND CHANNEL MODEL

A. System Model

We consider a generic VLC system with N_T transmitting LEDs and N_R receiving PDs, as illustrated in Fig. 1, where the employed PDs may correspond to single or multi users with no impact on the presented analysis. Based on this, the received signal can be represented as

$$ y = Hx + n $$

where $H \in \mathbb{R}^{N_R \times N_T}$ is the MIMO channel, namely

$$ H = \begin{bmatrix} h_{11D} & h_{12I} & \cdots & h_{1N_T I} \\ h_{21I} & h_{22D} & \cdots & h_{2N_T I} \\ \vdots & \vdots & \ddots & \vdots \\ h_{N_R 1D} & h_{N_R 2I} & \cdots & h_{N_R N_T D} \end{bmatrix} $$

where $h_{ij D}$ and $h_{ij I}$ indicate the desired and interference channel paths, respectively. Hence, the received signal at the i^{th} PD can be expressed as

$$ y_i = \gamma P h_i^T x + n_i $$

where γ is the detector responsivity, P is the LED transmitting power, h_i^T denotes the i^{th} row in H and x is the transmitted signal. Also, n_i is the noise vector with statistically independent and identically distributed entries drawn from a circularly-symmetric Gaussian distribution of zero mean and variance,

$$ \sigma_i^2 = \sigma_{sh}^2 + \sigma_{th}^2 $$

with σ_{sh}^2 and σ_{th}^2 denoting the variances of the shot noise and the thermal noise, respectively. The shot noise in an optical wireless channel results from the high rate physical photo electronic conversion process, with variance at the ith PD

$$\sigma_{sh}^2 = 2qB \left(\sum_{j=1}^{N_T} h_{ij} x_j + I_{bg} I_2 \right)$$

(5)

where q is the electronic charge, B is the bandwidth, I_{bg} is background current, and I_2 is the noise bandwidth factor. Moreover, the thermal noise is generated within the transimpedance receiver circuitry, and its variance can be determined by

$$\sigma_{th}^2 = \frac{8\pi kT_h}{G} \eta A I_2 B^2 + \frac{16\pi^2 kT_h \Gamma}{g_m} \eta^2 A^2 I_3 B^3.$$

(6)

In [6], k is Boltzmann’s constant, T_h is the absolute temperature, G is the open-loop voltage gain, A is the PD area, η is the fixed capacitance of the PD per unit area, Γ is the field-effect transistor (FET) channel noise factor, g_m is the FET transconductance, and $I_3 = 0.0868$ [21].

Based on the above, the corresponding signal-to-interference-plus-noise ratio (SINR) at the ith PD is expressed as

$$\text{SINR}_i = \frac{\gamma P h_{ii}}{\gamma P \sum_{j=1,j\neq i}^{N_H} h_{ij} + 2\sigma_i}.$$

(7)

B. Channel Model

A line of sight (LOS) VLC channel is naturally assumed and the coefficients of the channel matrix H are given by

$$h_{ij} = \left\{ \begin{array}{ll}
 \frac{\sqrt{A_i}}{d_{ij}} R_o(\varphi_{ij}) T_s(\varphi_{ij}) g(\varphi_{ij}) \cos(\varphi_{ij}) & 0 \leq \varphi_{ij} \leq \phi_c \\
 0 & \phi_{ij} > \phi_c
\end{array} \right.$$

(8)

where $i = 1, 2, 3, \ldots, N_R$, $j = 1, 2, 3, \ldots, N_T$, A_i denotes the receiver PD area, d_{ij} is the distance between the jth transmitting LED and the ith receiving PD, φ_{ij} is the angle of emergence with respect to the transmitter axis, ϕ_{ij} is the angle of incidence with respect to the receiver axis, ϕ_c is the field of view (FOV) of the PD, $T_s(\varphi_{ij})$ is the gain of optical filter and $g(\varphi_{ij})$ is the gain of the optical concentrator, which is expressed as

$$g(\varphi_{ij}) = \left\{ \begin{array}{ll}
 \frac{n^2}{\sin^2(\varphi_c)} & 0 \leq \varphi_{ij} \leq \phi_c \\
 0 & \varphi_{ij} > \phi_c
\end{array} \right.$$

(9)

where n denotes the corresponding refractive index. Moreover,

$$R_o(\varphi_{ij}) = \frac{m + 1}{2\pi} \cos^m(\varphi_{ij})$$

(10)

denotes the Lambertian radiant intensity of the transmitting LEDs, where

$$m = \frac{-\ln(2)}{\ln(\cos(\varphi_{1/2}))}$$

(11)

with $\varphi_{1/2}$ representing the corresponding transmitter semi-angle at half power.

C. Outdated CSI

While the channel in VLC is considered deterministic for given transmitter-receiver specifications and fixed locations, the assumption of perfect CSI at the transmitters is not in fact realistic even for indoor VLC systems. This is because the mobility of users in indoor environments, such as museums, libraries or large offices, can change the channel coefficients of the users. Thus, it is evident that if this change occurs between CSI updates, it results to outdated CSI error. Based on this, in order to quantify and develop insights on the effect of imperfect CSI on system performance, we assume additive stochastic error for the CSI at the transmitter, namely

$$\hat{H} = H + \epsilon_o.$$

(12)

In the above, \hat{H} denotes the estimate of H available at the transmitter and $\epsilon_o \leq E$, with E denoting the error bound that occurs when the mobile user moves with maximum velocity between the reception of pilot signals and data [20].

In order to determine the value of E, we simplify the channel gain in [8] using [9] and [10]. To this end, we substitute $\cos \varphi_i$ with $\sqrt{z/d_i}$, where z denotes the height between the LEDs’ and the PDs’ planes, which is assumed to be fixed. To this effect, it follows that the corresponding channel gain h_{ij} can be expressed as

$$h_{ij} = \frac{\omega}{d_{ij}^{m+3}}$$

(13)

where

$$\omega = \frac{(m + 1) A_i T_s(\varphi_{ij}) g(\varphi_{ij})}{2\pi}.$$

(14)

By also assuming that a user U_i moves along the horizontal plane from (x_1, y_1) to (x_2, y_2), with maximum velocity v as illustrated in Fig. 2, the error bound E can be determined by

$$E = \frac{1}{d_2^{m+3}} - \frac{1}{d_1^{m+3}}$$

(15)

where

$$d_2^2 = x_2^2 + y_2^2 + z^2,$$

(16)

$$d_2^2 = x_2^2 + y_2^2 + z^2$$

(17)

and

$$v = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

(18)

with t denoting the time elapsed since the last CSI update at the receiver.

III. LINEAR PRECODING FOR MU-MIMO VLC

It is recalled that the main objective of transmit precoding is to mitigate the ICI between the different users, in order to establish parallel channels. In the following, we discuss the design of CI precoding in MU-MIMO VLC systems. Then, it is shown that exploiting the knowledge of the ICI results to benefits from the constructive part of this interference that ultimately lead to considerable performance enhancement.
where the * symbol denotes Hermitian transpose and
\[\beta = \sqrt{\frac{1}{\mathbf{x}^\ast (\mathbf{H}^\ast \mathbf{H})^{-1} \mathbf{x}}}, \]
(20)
is a scaling factor that ensures instantaneous normalization of the transmit power [18]. Based on this, the inversion of the channel crosscorrelation matrix \(\mathbf{R} = \mathbf{H} \mathbf{H}^\ast \) in (19) nulls all the off-diagonal components, which results to interference free subchannels. Accordingly, the signal-to-noise ratio (SNR) at the \(i^{th} \) PD can be expressed as
\[\text{SNR}_i = \frac{\gamma P \mathbf{h}_i^\ast \mathbf{w}_i}{2\sigma_i}, \]
(21)
where \(\mathbf{w}_i \) denotes the \(i^{th} \) column vector in \(\mathbf{W} \). Nevertheless, this leads to significant noise enhancement at the receiving terminal. This can be achieved by multiplying the transmitted signal with a precoder \(\mathbf{W} \), which is obtained by means of the generalized inverse of the channel matrix, namely
\[\mathbf{W} = \beta \mathbf{H}^\ast (\mathbf{H} \mathbf{H}^\ast)^{-1} \]
(19)
where \(\mathbf{H} \) is the precoding matrix associated with a transmitted symbol \(\mathbf{x}_s \) and \(\mathcal{N}(\mu, \sigma^2) \) denotes the probability density function (PDF) of Gaussian distribution with mean \(\mu \) and variance \(\sigma^2 \). It is evident that (23) can be expressed in terms of the one dimensional Gaussian \(Q \)-function, \(Q(\cdot) \), yielding
\[\Pr_{e_i} = \frac{1}{2^{N_T}} \sum_{s=1}^{2^{N_T}} Q \left(\frac{\gamma P \mathbf{h}_i^\ast \mathbf{w}_i}{2\sigma_i} \right) . \]
(24)
\[2) \ CI \ BER \ Performance \ Under \ Outdated \ CSI: \]
Assuming outdated CSI which results from the mobility of users between consecutive CSI updates, the error probability at the \(i^{th} \) PD can be upper bounded by (25), at the top of the next page, where \(\Upsilon \in \mathbb{R}^{N_T \times N_T} \) is the residual error matrix, due to the movement of a user between two channel updates, namely
\[\Upsilon_{ik} = h_{ik}^T \times \tilde{w}_k. \]
(26)
Also, \(\tilde{w}_k \) is the \(k^{th} \) column vector in \(\mathbf{W} \), that is determined based on the estimate \(\hat{\mathbf{H}} = \mathbf{H} + \mathbf{E} \), with \(\mathbf{E} \) denoting the error bound resulting when a user moves with maximum velocity between two channel updates. Finally,
\[\mathbf{A} = \begin{bmatrix} A_{11} & \cdots & A_{1N_T} \\ A_{21} & \cdots & A_{2N_T} \\ \vdots & \vdots & \vdots \\ A_{2N_T1} & \cdots & A_{2N_TN_T} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \]
(27)
where the elements of \(\mathbf{A} \) illustrate the possible combinations of the transmitted OOK symbols.

B. Optical Adaptive Precoding

It is evident that when the interference between the different users is constructive, not all off-diagonal components of \(\mathbf{H} \) need to be nulled. Thus, eliminating only the destructive interference can provide diversity gain for the receivers to avert from the noise enhancement effect. We refer to this as optical adaptive precoding (OAP). More specifically, the constructive interference denotes the ICI that adds to the energy of the symbol of interest, yielding favorable increase in its distance from the constellation thresholds. By also considering OOK and recalling that the channel matrix \(\mathbf{H} \) in VLC is always positive, it follows that ICI is constructive when the instantaneous symbols are equal. Thus, using the knowledge of transmitted data, the interference can be evaluated symbol by symbol and a constructive adaptive matrix \(\mathbf{T} \) can be constructed as follows:

It is noticed that the new adaptive precoding matrix \(\mathbf{W}_d = \mathbf{W} \mathbf{T} \) consists of a fixed user-level precoding matrix \(\mathbf{W} \), which depends on the channels of the individual users, as well as a symbol-level adaptive precoding matrix \(\mathbf{T} \) that only depends on the symbols to be transmitted to each user. Furthermore, since the values of \(\mathbf{T} \) are either zeros or ones, we can use the same scaling factor as in (20).

It is evident that the received signal at each PD is a summation of its desired signal and the signals of the LEDs with constructive ICI. Based on this, the received signal at \(PD_i \), \(i = 1, 2, \ldots, N_R \) is represented as
\[y_i = \gamma P \sum_{j \in C(i)} h_{ij}^T w_d j x_j + z_i \]
(28)
for all symbols $s = 1 : N_{\text{symbols}}$ do
 for $k = 1 : N_R$ do
 for $l = 1 : N_T$ do
 if $x_{l_k} = x_{l_s}$ then $T_{kl} = 1$
 else $T_{kl} = 0$
 end
 end
end

Algorithm 1: Design of adaptive precoding matrix

Consequently, the normalized overall achievable throughput of the MIMO VLC system under OAP can be expressed as:

$$\text{Th}_{OAP} = \sum_{i=1}^{N_R} \log_2 \left(1 + \frac{\gamma P}{2\sigma_i} \sum_{j \in G(i)} h_i^T w_{d_j} x_j \right).$$ \hspace{1cm} (30)

1) OAP BER Performance Under Perfect CSI: The error probability at the i^{th} PD can be expressed by (31), at the top of the next page, which can be expressed in closed-form in terms of the Q–function, namely

$$\text{Pr}_{e_i} = \frac{1}{2^{N_T}} \sum_{s=1}^{2^{N_T}} \text{Q} \left(\frac{\gamma P}{2\sigma_i} h_i^T w_{d_{i_s}} + \frac{\gamma P}{\sigma_i} \sum_{j \in G(i) \setminus j \neq i} h_j^T w_{d_j} \right) + \frac{1}{2^{N_T}} \sum_{s=1}^{2^{N_T}} \text{Q} \left(\frac{\gamma P}{2\sigma_i} h_i^T w_{d_{i_s}} \right).$$ \hspace{1cm} (32)

2) OAP BER Performance Under Outdated CSI: By following the same methodology as in the case of CI, it follows that the BER of OAP under outdated CSI, can be upper bounded by (33), at the top of the next page.

\begin{table}[h]
\centering
\caption{Simulation Parameters}
\begin{tabular}{|c|c|}
\hline
\textbf{Transmitters Parameters} & \\
\hline
Number of LEDs per luminary & 60×60 \\
\hline
Transmitted power per LED & 10 mW \\
\hline
Transmitter semi-angle $\varphi_{1/2}$ & 15° \\
\hline
\textbf{Receivers Parameters} & \\
\hline
Receiver FOV & 15° \\
\hline
Physical area of PD & 1.0 cm2 \\
\hline
PD responsivity γ & 1 A/W \\
\hline
Gain of optical filter $T_s(\phi)$ & 1.0 \\
\hline
Background current I_{b_2} & $100 \mu A$ \\
\hline
Noise bandwidth factor I_2 & 0.562 \\
\hline
\end{tabular}
\end{table}

IV. Numerical Results

In this section, we analyze the corresponding results for the conventional CI and the proposed adaptive precoding. This is realized by both analytic (solid lines) and respective computer simulation (markers) results. To this end, we consider a 4.0m × 4.0m × 3.0m indoor room scenario and an indicative 4 × 4 MIMO setup with different LEDs' spacings on the x- and y-axis of 0.25m, 0.5m and 1.0m2. The corresponding channel gains across the room for the three different setups are shown in Fig.3 for a receiver plane $z = 0.75$ m. Also, the locations of the users are assumed to be fixed and aligned with their respective transmitters and unless otherwise specified, the system parameters in Table I are used in the computer simulations.

Fig. 4 illustrates the BER of CI and OAP for the three considered scenarios. It is shown that the proposed OAP outperforms the conventional CI regardless of the transmitters spacings. In fact, it is noticed that CI requires an SNR increase of about 8 dB to achieve the BER of the OAP counterpart. Furthermore, the highest error rate occurs at the smallest spacing, which is due to the highly correlated links that increase the severity of the noise enhancement induced at the receivers. It is also shown that the analytical and simulation results are in tight agreement, which verifies the validity of the derived expressions.

Next, we investigate the effect of changing the transmitters semi-angle at half power, $\varphi_{1/2}$, where fixed transmitters spacing of 1.0m is assumed. Larger $\varphi_{1/2}$ alleviates the transmitted beam concentration. In the case of conventional CI, this has a detrimental effect on the system performance for two reasons: i) it reduces the channel gains of the users leading to lower received power; and ii) it increases the ICI that needs to be cancelled, which practically creates more noise enhancement at the receivers. Fig. 5 demonstrates the performance degradation of CI when larger transmitting
\begin{equation}
Pr_{ei} = \frac{1}{2NT} \sum_{i=1}^{2^{NT}} \int_{-\infty}^{\gamma P h_i^T w_{d_{i+}} + \sigma_i^2} \mathcal{N}_y \left(\gamma P \sum_{j \in G(i)} h_i^T w_{d_{j+}} + \sigma_i^2 \right) dy_i + \frac{1}{2NT} \sum_{i=1}^{2^{NT}} \int_{-\infty}^{\gamma P h_i^T w_{d_{j-}}} \mathcal{N}_y \left(0, \sigma_i^2 \right) dy_i
\end{equation}

\begin{equation}
Pr_{ei} \leq \frac{1}{2N^2} \sum_{s=1}^{2^{N-1}} Q \left(\frac{\gamma P}{\sigma_i} \left(\frac{1}{2} h_i^T w_{d_{i+}} - \sum_{k \neq i} Y_{ik} A_{sk} \right) \right) + \frac{1}{2N^2} Q \left(\frac{\gamma P}{\sigma_i} \left(\frac{1}{2} h_i^T w_{d_{i-}} + \sum_{j \in G(i)} h_i^T w_{d_{j+}} + Y_{ii} + \sum_{k \neq i} Y_{ik} A_{sk} \right) \right)
\end{equation}

Next, Fig. 6 illustrates the effect of outdated CSI on the system performance, where the proposed error bound is computed assuming maximum velocity of users between two channel updates. It is evident that adaptive precoding is more robust to CSI error, especially in the low SNR region. On the contrary, the effect of imperfect CSI becomes more significant at high SNR as the noise is no longer dominating, and thus channel uncertainty becomes a limiting factor.

In the following, we examine the performance of the VLC MIMO system under different number of transmitting LEDs. To this end, Fig. 7 shows the BER performance for 2×2, 4×4 and 8×8 MIMO configurations. As expected, the BER performance degrades as the number of transmitters increases, which is due to the severity of the noise enhancement caused by the high correlation between the spatial subchannels. It is evident that OAP provides noticeable performance enhancement compared to conventional CI. Moreover, the normalized achievable system throughput for the three MIMO configurations is shown in Fig. 8. As expected, increasing the number of transmitters from 2 to 4 leads to increased achievable throughput for both schemes. It is noted, however, that the system throughput under conventional CI degrades significantly for the case of 8 transmitters despite the increase in the number of users. This is due to the noise enhancement that compromises the achievable system throughput. On the contrary, the proposed OAP provides substantial throughput enhancement for the 8×8 MIMO setup.

angles are used, which indicates that the effect of increasing $\varphi_{1/2}$ is less significant in the case of adaptive precoding. This is mainly because the effect of the reduction of the channel gains of the users is offset by the constructive interference that adds to the SNR at the receivers.
V. CONCLUSIONS

In this paper, the knowledge of transmitted data was exploited to design a low-complexity adaptive precoder based on channel inversion. The presented analysis and respective simulations showed that the proposed precoding scheme provides considerable performance enhancement compared to conventional channel inversion. In this context, it was shown that the concept of adaptive precoding creates new opportunities in VLC systems, as the classification of interference into constructive and destructive is independent of CSI due to the nature of the optical channel. Future work will attempt extensions to higher-order modulations, which is a non-trivial task as it requires a thorough design of the precoding matrix.

REFERENCES

[1] “Cisco service provider wi-fi: A platform for business innovation and revenue generation. Cisco, San Jose, CA, USA, 2012.”
[2] H. Burchardt, N. Serafimovski, D. Tsony, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Commun. Mag., vol. 52, no. 7, pp. 98–105, July 2014.
[3] A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag., vol. 51, no. 12, pp. 26–32, Dec. 2013.
[4] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2047–2077, Fourthquarter 2015.
[5] S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge University Press, 2015.
[6] F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photon. J., vol. 7, no. 6, pp. 1–16, Dec. 2015.
[7] D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the art,” IEEE Communications Surveys Tutorials, vol. 17, no. 3, pp. 1649–1678, thirdquarter 2015.
[8] L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh,
and E. T. Won, “High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1654–1662, Dec. 2009.

[9] S. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2813–2819, Aug. 2007.

[10] W. Popoola, E. Poves, and H. Haas, “Spatial pulse position modulation for optical communications,” J. Lightw. Technol., vol. 30, no. 18, pp. 2948–2954, Sep. 2012.

[11] Y.-J. Zhu, W.-F. Liang, J.-K. Zhang, and Y.-Y. Zhang, “Space-collaborative constellation designs for MIMO indoor visible light communications,” IEEE Photon. Technol. Lett., vol. 27, no. 15, pp. 1667–1670, Aug. 2015.

[12] A. Nuwanpriya, S. Ho, and C. Chen, “Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1780–1792, Sep. 2015.

[13] T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, Feb. 2013.

[14] H. Marshoud, D. Dawoud, V. Kapinas, G. Karagiannidis, S. Muhaidat, and B. Sharif, “MU-MIMO precoding for VLC with imperfect CSI,” in Proc. IEEE 4th International Workshop on Optical Wireless Communications (I WOW), Sep. 2015, pp. 93–97.

[15] Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications,” IEEE Photon. J., vol. 5, no. 4, pp. 7800.211–7800.211, Aug. 2013.

[16] J. Chen, N. Ma, Y. Hong, and C. Yu, “On the performance of MU-MIMO indoor visible light communication system based on THP algorithm,” in Proc. IEEE International Conference on Communications in China (ICCC), Oct. 2014, pp. 136–140.

[17] “IEEE standard for local and metropolitan area networks—part 15.7: Short-range wireless optical communication using visible light,” in IEEE Std 802.15.7-2011, pp. 1–309, Sep. 2011.

[18] C. Masouros and E. Alsusa, “Dynamic linear precoding for the exploitation of known interference in MIMO broadcast systems,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 1396–1404, Mar. 2009.

[19] C. Masouros, “Correlation rotation linear precoding for MIMO broadcast communications,” IEEE Trans. Signal Process, vol. 59, no. 1, pp. 252–262, Jan. 2011.

[20] H. Ma, L. Lampe, and S. Hranilovic, “Coordinated broadcasting for multiuser indoor visible light communication systems,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3313–3324, Sep. 2015.

[21] T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, Feb. 2004.