CP violation in long baseline neutrino oscillation experiments

Chise Sakaguchi,a)1 Toshihiko Hattori,a)2 and Seiichi Wakaizumi,b)3

a) Institute of Theoretical Physics, University of Tokushima, Tokushima 770-8502, Japan
b) Center for University Extension, University of Tokushima, Tokushima 770-8502, Japan

Abstract

We define a difference \(D_{\text{CP}}\) of the neutrino oscillation probability differences with matter effect for the CP-conjugate channels, divided by neutrino beam energy, taken between the two baselines \(L = L_1\) and \(L = L_2\) with \(L_1/E_1 = L_2/E_2\), where \(E_1\) and \(E_2\) are the neutrino energy for the experiment with \(L_1\) and \(L_2\), respectively. The quantity \(D_{\text{CP}}\) doesn’t contain the matter effect to the first order in \(aL/2E\), \(a\) representing the matter effect. We show the behavior of \(D_{\text{CP}}\) with \(L_1 = 300\) km fixed and \(L_2\) variable in the three-neutrino model.

1e-mail: chise-s@par.odn.ne.jp
2e-mail: hattori@ias.tokushima-u.ac.jp
3e-mail: wakaizum@medsci.tokushima-u.ac.jp
Where does CP violation originate? In order to study the origin of CP violation, we expect that the observation of CP violation in neutrino oscillation experiments will be fruitful.

The neutrino oscillation is a strong means to examine the masses and mixing angles of the neutrinos [1]. The experiments have shown the solar neutrino deficit [2] and the atmospheric neutrino anomaly [3], which strongly indicate the neutrino oscillation [4]. The large mixing angle solution (LMA) by means of MSW effect [5] to the solar neutrino problem gives a mass-squared difference of $10^{-5} - 10^{-4}$eV2 [6], and the atmospheric neutrino anomaly brings the mass-squared difference of $(1.5 - 5) \times 10^{-3}$eV2 [7]. Especially, long baseline neutrino oscillation experiments are planned [8] to measure precisely the mass-squared differences and the mixing angles and, moreover, the CP violation effects in the neutrino oscillation [9]. For the long baseline experiments, however, the matter effect gives a fake CP violation effect comparable to the pure CP violation effect [10, 11]. Therefore, it is necessary to know how to distinguish the pure CP violation effect from the matter effect.

In this paper we will study the behavior of pure CP violation effects with the quantity D_{CP} (difference of the CP violation effects) newly introduced.

We assume three generations of neutrinos which have mass eigenstates ν_i' with mass $m_i (i = 1, 2, 3)$. The flavor eigenstates $\nu_\alpha (\alpha = e, \mu, \tau)$ and the mass eigenstates in the vacuum are related as

$$\nu_\alpha = U_{\alpha i}^{(0)} \nu_i'$$

by mixing matrix $U^{(0)}$. We take

$$U^{(0)} = \begin{pmatrix}
-c_\psi c_\omega & c_\phi c_\omega e^{i \delta} & c_\phi s_\omega \\
-c_\phi s_\omega - s_\psi s_\delta c_\omega e^{i \delta} & c_\psi c_\omega - s_\psi s_\delta s_\omega e^{i \delta} & c_\phi p_\delta e^{i \delta} \\
s_\psi s_\omega - c_\phi s_\delta c_\omega e^{i \delta} & -s_\phi c_\omega - c_\psi s_\delta s_\omega e^{i \delta} & s_\phi e^{i \delta}
\end{pmatrix}$$

as mixing matrix $U^{(0)}$, where $c_\psi = \cos \psi$, $s_\psi = \sin \psi$, etc.
According to Arafune, Koike and Sato’s formalism [11], the evolution equation for the flavor eigenstate vector in the vacuum is expressed as

$$i \frac{d\nu}{dx} = \frac{1}{2E} U^{(0)} \text{diag}(0, \delta m_{21}^2, \delta m_{31}^2) U^{(0)\dagger} \nu \quad (3)$$

where E is the energy and $\delta m_{ij}^2 = m_i^2 - m_j^2$. Similarly the evolution equation in matter is given as

$$i \frac{d\nu}{dx} = H\nu, \quad (4)$$

where

$$H \equiv \frac{1}{2E} U \text{diag}(\mu_1^2, \mu_2^2, \mu_3^2) U^\dagger. \quad (5)$$

A unitary mixing matrix U and the effective mass squared $\mu_i^2 (i = 1, 2, 3)$ are determined by

$$U \begin{pmatrix} \mu_1^2 & 0 & 0 \\ 0 & \mu_2^2 & 0 \\ 0 & 0 & \mu_3^2 \end{pmatrix} U^\dagger = U^{(0)} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \delta m_{21}^2 & 0 \\ 0 & 0 & \delta m_{31}^2 \end{pmatrix} U^{(0)\dagger} + \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad (6)$$

with

$$a \equiv 2\sqrt{2}G_F n_e E = 7.56 \times 10^{-5}\text{eV}^2 \frac{\rho}{\text{gcm}^{-3}} \frac{E}{\text{GeV}}, \quad (7)$$

where n_e is the electron density and ρ is the matter density.

The solution of Eq. (4) is

$$\nu(x) = S(x)\nu(0), \quad (8)$$

where

$$S \equiv T e^{-i \int_0^x ds H(s)} \quad (9)$$

and T is the symbol for time ordering. S gives the oscillation probability for $\nu_\alpha \rightarrow \nu_\beta (\alpha, \beta = e, \mu, \tau)$ at distance L as

$$P(\nu_\alpha \rightarrow \nu_\beta; L) = |S_{\beta\alpha}(L)|^2. \quad (10)$$

The oscillation probability for the antineutrino $P(\bar{\nu}_\alpha \rightarrow \bar{\nu}_\beta; L)$ is obtained by replacing $a \rightarrow -a$ and $U \rightarrow U^*$ in Eq.(10).
Taking Arafune et al.’s formalism [11] in order to calculate Eq.(10) up to the first order in $aL/2E$, we then obtain the oscillation probability $P(\nu_e \to \nu_\tau)$ in the lowest order approximation as

$$P(\nu_e \to \nu_\tau) = 4 \sin^2 \frac{\delta m^2_{31}L}{4E} c^2_\phi s^2_\phi c^2_\psi \left[1 - 2 \frac{a}{\delta m^2_{31}} \left(2s^2_\phi - 1 \right) \right]$$

$$+ 2 \frac{\delta m^2_{31}L}{2E} \sin \frac{\delta m^2_{31}L}{2E} c^2_\phi s_\phi c_\psi$$

$$\times \left[-\frac{a}{\delta m^2_{31}} s_\phi c_\psi (1 - 2s^2_\phi) + \frac{\delta m^2_{31}}{\delta m^2_{31}} s_\omega (-s_\phi c_\psi s_\omega - s_\psi c_\omega c_\delta) \right]$$

$$- 4 \frac{\delta m^2_{31}}{2E} \sin^2 \frac{\delta m^2_{31}L}{2E} c^2_\phi s_\phi c_\psi s_\omega c_\omega s_\delta,$$ \hspace{1cm} (11)

and $P(\nu_\mu \to \nu_e)$, $P(\nu_\mu \to \nu_\mu)$ and $P(\nu_\mu \to \nu_\tau)$ are given in Arafune et al.’s paper [11]. Recalling that $P(\nu_\alpha \to \nu_\beta)$ is obtained from $P(\nu_\alpha \to \nu_\beta)$ by the replacement $a \to -a$ and $\delta \to -\delta$, we define

$$\Delta P(\nu_\alpha \to \nu_\beta) \equiv P(\nu_\alpha \to \nu_\beta) - P(\nu_\alpha \to \nu_\beta).$$ \hspace{1cm} (12)

Then we have

$$\Delta P(\nu_\mu \to \nu_e) = 16 \frac{a}{\delta m^2_{31}} \left[\sin^2 \frac{\delta m^2_{31}L}{4E} - \frac{1}{4} \frac{\delta m^2_{31}L}{2E} \sin \frac{\delta m^2_{31}L}{2E} \right]$$

$$\times c^2_\phi s^2_\phi s^2_\psi (1 - 2s^2_\phi)$$

$$- 8 \frac{\delta m^2_{31}L}{2E} \sin^2 \frac{\delta m^2_{31}L}{4E} c^2_\phi s_\phi c_\psi s_\omega c_\omega s_\delta,$$ \hspace{1cm} (13)

$$\Delta P(\nu_\mu \to \nu_\mu) = 16 \frac{a}{\delta m^2_{31}} \left[\sin^2 \frac{\delta m^2_{31}L}{4E} - \frac{1}{4} \frac{\delta m^2_{31}L}{2E} \sin \frac{\delta m^2_{31}L}{2E} \right]$$

$$\times c^2_\phi s^2_\phi s^2_\psi (1 - 2c^2_\phi s^2_\psi),$$ \hspace{1cm} (14)

$$\Delta P(\nu_\mu \to \nu_\tau) = 16 \frac{a}{\delta m^2_{31}} \left[\sin^2 \frac{\delta m^2_{31}L}{4E} - \frac{1}{4} \frac{\delta m^2_{31}L}{2E} \sin \frac{\delta m^2_{31}L}{2E} \right]$$

$$\times c^2_\phi s^2_\phi s^2_\psi (-2c^2_\phi s^2_\psi)$$

$$+ 8 \frac{\delta m^2_{31}L}{2E} \sin^2 \frac{\delta m^2_{31}L}{4E} c^2_\phi s_\phi c_\psi s_\omega s_\omega c_\delta,$$ \hspace{1cm} (15)
\[\Delta P(\nu_e \rightarrow \nu_\tau) = 16 \frac{a}{\delta m_{31}^2} \left[\sin^2 \frac{\delta m_{31}^2 L}{4E} - \frac{1}{4} \frac{\delta m_{31}^2 L}{2E} \sin \frac{\delta m_{31}^2 L}{2E} \right] \times c_\phi^2 s_\phi^2 c_\psi^2 (1 - 2s_\phi^2) \]
\[- 8 \frac{\delta m_{31}^2 L}{2E} \sin^2 \frac{\delta m_{31}^2 L}{4E} c_\phi^2 s_\phi s_\psi s_\omega s_\delta, \]
(16)

As \(\Delta P(\nu_\mu \rightarrow \nu_\mu) \) is independent of \(\delta \), we see that it doesn’t give the pure-\(CP \) violation effect and consists only of the matter effect term.

Now we separate out the pure \(CP \)-violation effect from the net \(CP \)-violation by means of the results of experiments with two different baseline \(L \)’s. Suppose that two experiments with \(L = L_1 \) and \(L = L_2 \) are available. We observe two probabilities \(P(\nu_\alpha \rightarrow \nu_\beta; L_1) \) at neutrino energy \(E_1 \) and \(P(\nu_\alpha \rightarrow \nu_\beta; L_2) \) at energy \(E_2 \) with \(L_1/E_1 = L_2/E_2 (\alpha \neq \beta) \). Because the matter effect factor \(a \) is proportional to energy \(E \), we obtain the matter effect as a function of \(L/E \) with dividing \(\Delta P(\nu_\alpha \rightarrow \nu_\beta) \) by energy \(E \) in each experiment. And we define the difference \(D_{CP} \) as

\[D_{CP} \equiv \left[\frac{1}{E_1} \Delta P(L_1) - \frac{1}{E_2} \Delta P(L_2) \right] \frac{E_1}{E_2}. \]
(17)

The quantity \(D_{CP} \) contains no matter effect to the first order in \(aL/2E \). We note that this quantity is different from the one defined by Arafune et al[11]. In Figs.1-3 we show \(D_{CP} \) by taking \(\Delta P(L) \)’s with two different baselines. In Figs.1 and 2 we show \(D_{CP} \) for \(L_1 = 300 \) km, \(L_2 = 50 \) km and \(L_1 = 300 \) km, \(L_2 = 100 \) km, respectively. We have taken \(\Delta m_{32}^2 \equiv \Delta m_{atm}^2 = 2.5 \times 10^{-3}\text{eV}^2 \), \(\Delta m_{21}^2 \equiv \Delta m_{solar}^2 = 4.9 \times 10^{-5}\text{eV}^2 \), and the mixing angles and phases as \(s_\omega = 0.53, s_\psi = 0.74, s_\phi = 0.16 \) and \(\delta = \pi/2 \). Since \(D_{CP} \) does not involve the matter effect, we have used the exact expressions of \(\Delta P(L) \) for the pure \(CP \)-violation effects in the computation of \(D_{CP} \).

As can be seen in Figs.1 and 2, there are two large peaks in \(D_{CP} \) around \(E = 0.12 \) GeV and 0.2 GeV at \(L = 300 \) km. The peaks become smaller, as the second baseline increases. In Fig.3 we compare the magnitude of \(D_{CP} \) for various values of \(L_2 \) with \(L_1 \) fixed as 300 km.
Finally, as the quantity D_{CP} does not involve the matter effect to the first order in $aL/2E$, it is not affected by the matter effect up to the order of about 5% for $\delta(D_{\text{CP}})/D_{\text{CP}}$ for $\rho = 3 \text{ g/cm}^3$ and $L = 300 \text{ km}$. If $\Delta P(L)$ is measured to the accuracy of 10% ($\delta(\Delta P)/\Delta P \sim 0.1$) and the neutrino beam energy is focussed to the precision of 10% ($\delta E/E \sim 0.1$), then the quantity D_{CP} will be observed to the accuracy of 20% ($\delta(D_{\text{CP}})/D_{\text{CP}} \sim 0.2$). We hope that D_{CP} will be measured in the future.
References

[1] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870(1962); B. Pontecorvo, Zh. Eksp. Teor. Fiz. 53, 1717(1967) [Sov. Phys. JETP 26, 984(1968)]; S.M. Bilenky and B.Pontecorvo, Phys. Rep. 41, 225(1978).

[2] B.T. Cleveland, T.Daily, R.Davis, J.R.Distel, K.Lande, C.K.Lee, P.S. Wildenhain, and J.Ullman, Astrophys. J. 496, 505(1988); J.N. Abdurashitov et al. (SAGE Collaboration), Phys. Rev. C 60, 055801(1999); W. Hampel et al. (GALLEX Collaboration), Phys. Lett. B 447, 127(1999); M. Altmann et al. (GNO Collaboration), Phys. Lett. B 490, 16(2000); Y. Fukuda et al. (Kamiokande Collaboration), Phys. Rev. Lett. 77, 1683(1996); S.Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 86, 5651(2001).

[3] K.S. Hirata et al. (Kamiokande Collaboration), Phys. Lett. B 205, 416(1988); R. Becker-Szendy et al. (IMB Collaboration), Phys. Rev. D 46, 3720(1992); W.W.M. Allison et al. (Soudan2 Collaboration), Phys. Lett. B 391, 491(1997); M. Ambrosio et al. (MACRO Collaboration), Phys. Lett. B 434, 451(1998); Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 82, 2644(1999).

[4] G.L.Fogli, E. Lisi, D. Montanino, and G. Scioscia,Phys. Rev. D 55, 4385(1997); G.L.Fogli, E. Lisi, D. Montanino, and A. Palazzo, Phys. Rev. D 62, 013002(2000);

[5] L. Walfenstein, Phys.Rev. D 17, 2369(1978); S.P. Mikheev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913(1985).

[6] J.N. Bahcall, P.I. Krastev, and A.Yu.Smirnov, Phys. Rev. D 58,096016(1998).
[7] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562(1998).

[8] Y. Itow et al. (JHF Neutrino Working Group), Letter of Intent, KEK report 2001-4, ICRR-report-477-2001-7, TRI-PP-01-05, hep-ex/0106019; P. Adamson et al. (MINOS Collaboration), NuMI-L-337, October 1998; M.Guler et al. (OPERA Collaboration), CERN-SPSC-2000-028, CERN-SPSC-P-318, LNGS-25-00, July 2000.

[9] N. Cabibbo, Phys. Lett. B 72, 333(1978); S.Pakvasa, in Proc of the XX International Conference of High Energy Physics, Madison, Wisconsin, USA,1980, Part 2, 1165(1980), edited by L. Durand and L.G. Pondrom, AIP, New York; V. Barger, K. Whisnant and R.J.N. Phillips, Phys. Rev. Lett. 45, 2084(1980); Phys. Rev. D23, 2773(1981); S.M. Bilenky and F. Nidermaler, Sov. J. Nucl. Phys. 34, 606(1981); M. Tanimoto, Phys. Rev. D 55, 322(1997); J. Arafune and J. Sato, Phys. Rev. D 55, 1653(1997); S.M.Bilenky, C. Giunti, and W. Grimus, Phys. Rev. D 58, 033001(1998).

[10] V. Barger, K. Whisnant, S. Pakvasa, and R.J.N. Phillips, Phys. Rev. D 22, 2718(1980); H. Minakata and H. Nunokawa, Phys. Rev. D 57, 4403(1998).

[11] J. Arafune, M. Koike, and J. Sato, Phys. Rev. D 56, 3093(1997); Erratum 62, 119905(1999).
Figure 1: The difference D_{CP} for $L_1 = 300\text{km}$ and $L_2 = 50\text{km}$. E_1 and E_2 are the neutrino energy for L_1 and L_2, respectively.
Figure 2: The difference D_{CP} for $L_1 = 300$km and $L_2 = 100$km. E_1 and E_2 are the neutrino energy for L_1 and L_2, respectively.
Figure 3: The difference D_{CP} for several values of L_2 with $L_1 = 300$km fixed.