A prognostic CpG score derived from epigenome-wide profiling of tumor tissue was independently associated with colorectal cancer survival

Min Jia¹, Yan Zhang¹, Lina Jansen¹, Viola Walter¹, Dominic Edelmann², Melanie Gündert³, Katrin E. Tagscherer⁵, Wilfried Roth⁵, Melanie Bewerunge-Hudler⁷, Esther Herpel⁵, Matthias Kloor⁹, Alexis Ulrich¹⁰, Barbara Burwinkel³, Hendrik Bläker¹¹, Jenny Chang-Claude¹², Hermann Brenner¹,¹³,¹⁴ and Michael Hoffmeister¹*²

Abstract

Background: Results of previous studies on the association of the CpG island methylator phenotype (CIMP) with colorectal cancer (CRC) prognosis were inconsistent and mostly based on different CIMP definitions. The current study aimed to comprehensively investigate the associations between DNA methylation on genes previously used to define CIMP status with CRC survival.

Results: Patients with CRC followed up for a median of 5.2 years were divided into a study cohort (n = 568) and a validation cohort (n = 308). DNA methylation was measured in tumor tissue using the Illumina Infinium HumanMethylation450 BeadChip and restricted to 43 genes used to define CIMP status in previous studies. Cox proportional hazard regression models were used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) of survival after CRC, including adjustment for tumor stage, microsatellite instability, and BRAF mutation status. In the study cohort, ten CpG sites were identified to be associated with CRC survival. Seven of these ten CpG sites were also associated with CRC survival in the validation cohort and were used to construct a prognostic score. CRC patients with a prognostic score of the lowest methylation level showed poorer disease-specific survival compared with patients with the highest methylation level in both the study cohort and the validation cohort (HR = 3.11 and 95% CI = 1.97–4.91, and HR = 3.06 and 95% CI = 1.71–5.45, respectively).

Conclusions: A CpG panel consisting of seven CpG sites was found to be strongly associated with CRC survival, independent from important clinical factors and mutations associated with CIMP. Further studies are required to confirm these findings.

Keywords: Colorectal cancer, Survival, DNA methylation, CpG site, Prognosis

Background

Colorectal cancer (CRC) is one of the most common cancers worldwide with a 5-year survival rate of more than 60% [1]. Survival after CRC is largely dependent on the disease stage at diagnosis, but there is accumulating evidence that somatic mutations and epigenetic changes play a significant role in the progression of CRC and already guide clinical decision-making [2, 3]. As an important regulation approach in epigenetics, aberrant DNA methylation was extensively observed in various cancers including CRC. High-level methylation of CpG islands in the promoter region (CpG island methylator phenotype (CIMP)) can induce the silencing of the tumor-suppressor genes, which can stimulate tumor onset and progression [4–6]. Colorectal tumors showing such methylation were consistently associated with patient and tumor characteristics, such as older age,
proximal location, and microsatellite instability (MSI-H) [7]. However, studies on the association of CIMP status and survival after CRC were inconsistent [8, 9]. In addition to methodological issues in some of the studies, studies mostly used different marker sets to define CIMP, which likely contributed to the inconsistency of results [10, 11].

In previous studies, genes used to define CIMP status were either selected because they were cancer suppressor genes silenced by methylation in the promoter region or because they were differentially methylated in tumor tissue and normal tissue [5, 7, 12]. Although high methylation of CpG islands in the promoter region is presumed to silence these genes, other aberrant methylations on these genes may also influence their activity. Meanwhile, high-throughput assays are available to comprehensively assess methylation of CpGs on CIMP-related genes [13, 14]. We therefore aimed to investigate the association between methylation of CpG sites on genes previously used to define CIMP status with CRC survival.

Results

Patient cohort

Of 702 patients in the study cohort and 366 patients in the validation cohort, 134 patients and 58 patients, respectively, were excluded because of missing information on important covariates (chemotherapy, MSI status, or BRAF mutation status). Finally, 568 patients in the study cohort and 308 patients in the validation cohort were included in the analyses. The median follow-up time was 5.2 years in both cohorts. The characteristics of the patients included in the study cohort and validation cohort were very similar. Slight differences were observed in the distribution of the education level, alcohol consumption, lymph node count, chemotherapy frequency, and KRAS mutation (Additional file 1: Table S1).

Selection of CIMP-related genes

The literature search yielded 48 genes that were used to define CIMP in previous studies [15, 16]. Five of these 48 genes were not covered by the 450K methylation array but were also rarely used for the definition of CIMP (Additional file 1: Table S2). Within the 43 CIMP genes investigated in this study, 405 CpGs were located in CpG islands of the promoter region (CpG set 1), 701 CpGs were located in CpG islands of any region (CpG set 2), and 1852 CpGs were located anywhere on the genes (CpG set 3) (Fig. 1).

Identification of prognostic CpGs

In adjusted analyses, 42 CpGs from CpG set 1 and 65 CpGs from CpG set 2 were found to be associated with disease-specific survival (DSS) (p value<0.05). However, after correction for multiple testing, none of these CpG sites was associated with DSS anymore. By further extension to CpGs anywhere on the genes (CpG set 3), 10 of the 249 associated CpG sites showed significant associations with DSS after correction for multiple testing.

Three of the 10 CpGs had β values with a range from the 10th to the 90th percentile of less than 0.1 which was considered too narrow to define distinct groups (cg05075097, cg24771017, and cg20537325). Two of the three CpGs were also not associated with DSS in the validation cohort (cg05075097 and cg24771017). Therefore, seven CpGs (cg16935707, cg05481217, cg08044454, cg01552551, cg24311416, cg02425108, and cg15659052) confirmed in the validation cohort were included in the final analyses (Fig. 1, Additional file 1: Table S3).

Associations of identified CpG sites with survival

All seven CpGs showed similar associations with DSS in the study cohort and the validation cohort (Fig. 2, Additional file 1: Figure S1). Compared to tertile group 3, tertile group 1 (lowest methylation) showed significantly poorer survival for all the seven CpGs in the study cohort. Very similar results were observed in the validation cohort, except for cg02425108, where the association was somewhat weaker (Table 1).

Associations of the prognostic methylation score with survival

The coefficient values for the calculation of the coefficient score were −1.24524 for cg16935707, −1.32717 for cg05481217, −1.23953 for cg08044454, −1.15191 for cg01552551, −0.62350 for cg24311416, −0.53487 for cg02425108, and −0.17845 for cg15659052. Using this score based on methylation at seven CpG sites, low methylation was strongly associated with poorer DSS compared with high methylation in the study cohort (HR = 3.16; 95% CI = 2.08–4.80) and in the validation cohort (HR = 2.75; 95% CI = 1.56–4.85) (Table 2). Patients with intermediate methylation scores also showed poorer DSS compared to patients with high methylation scores; however, the trend was not statistically significant.

Unadjusted Kaplan–Meier curves of the association of the prognostic score with DSS and non-DSS showed poorer survival in the lowest tertile group only (survival rates after 36 months were 68% and 87% for patients in the lowest and highest tertile of the prognostic score, respectively; Additional file 1: Figure S2). Using direct adjusted survival curves, the middle and lowest tertile score were increasingly strongly associated with poorer DSS, whereas no association was found for CRC patients who died of other causes (Fig. 3). In addition, by adding our CpG panel to the model constructed by the clinical and molecular factors, the AIC decreased from 1461 to 1433 in the study cohort and from 823 to 812 in the validation cohort. As most of the CRC patients died of CRC, the association of the methylation panel with
overall survival was similar with the association for DSS (data not shown).

In subgroup analyses stratified by tumor location, MSI status, and BRAF mutation status, similar results were observed for the association between the prognostic scores and DSS (Table 2). The prognostic score was not related to clinical and tumor characteristics of the CRC patients such as age, sex, education level, family history of CRC, lifetime regular active smoking status, tumor location, cancer stage, lymph node count, chemotherapy, KRAS mutation, BRAF mutation, and MSI status in both study and validation cohort. Only for chemotherapy heterogeneity was observed in the study cohort due to dissimilar distribution in the tertile 3 group. However, this was not observed in the validation cohort (Additional file 1: Table S4).

Discussion

In this population-based patient cohort study, we identified seven CpG sites on 43 genes previously used to define CIMP status in the published literature that were independently associated with DSS. At each of the seven CpG sites, lower methylation levels were strongly associated with poorer survival after CRC. The associations observed in the study cohort and the validation cohort were very similar, suggesting that results might be reproducible in other cohorts, too. By incorporating the seven
Fig. 2 Dose-response association of methylation levels and disease-specific survival in the study cohort and the validation cohort. Restricted cubic splines analyses with adjustment for age, sex, tumor location, tumor stage, chemotherapy, BRAF mutation and microsatellite instability.
CpGs into a prognostic CpG score we constructed a potential prediction panel for CRC prognosis.

As one of the most widely investigated features of CRC, CIMP was inconsistently associated with poorer outcome in previous studies and the CIMP definitions used were largely different [8, 17]. Mostly, studies focused on CpG sites in the promoter region, where hypermethylation is the aberrant type in cancer cells. In the present study, all seven identified CpGs were selected from CIMP-related genes which we assumed was a more effective approach compared to an epigenome-wide analysis. Recently, a genome-wide methylation study reported a prognostic classifier for non-metastatic CRC consisting of 20 CpGs which also showed poorer survival with lower levels of methylation at the associated CpG sites [18]. The identified CpGs in our study did not overlap, and our score showed a slightly stronger prognostic effect. Among the seven prognostic CpGs identified, cg16935707, cg05481217, and cg24311416 are located in the gene bodies, cg08044454 and cg15659052 are located in the 5′UTR region, cg02425108 is located in the 3′UTR region, and only cg01552551 is located in the S-shore of a CpG island which belongs to the promoter region. At all seven CpG sites, lower methylation instead of higher methylation was associated with poorer survival. Although the molecular mechanism of the association between hypomethylation of CpGs and poorer CRC survival is not known, methylation in the gene

Table 1 Association of methylation at the seven identified CpG sites with disease-specific survival in the study cohort and the validation cohort

CpG sites	Methylation level	Study cohort	Validation cohort					
	N	Deaths (%)	HR (95% CI)*	p value of trend	N	Deaths (%)	HR (95% CI)*	p value of trend
cg16935707	β valueb	568	1.43 (1.22–1.67)	< 0.0001	308	1.33 (1.09–1.61)	0.0046	
	Tertile 3	193	45 (23)	Ref.	125	27 (22)	Ref.	
	Tertile 2 (0.84342)	182	38 (21)	1.53 (0.98–2.39)	99	25 (25)	1.95 (1.08–3.52)	
	Tertile 1 (0.72736)	193	53 (27)	2.22 (1.46–3.36)	84	30 (36)	2.12 (1.20–3.74)	
cg05481217	β valueb	568	1.43 (1.22–1.67)	< 0.0001	308	1.30 (1.06–1.60)	0.0115	
	Tertile 3	187	36 (19)	Ref.	173	42 (24)	Ref.	
	Tertile 2 (0.66890)	183	36 (20)	1.29 (0.79–2.08)	78	17 (22)	1.27 (0.71–2.27)	
	Tertile 1 (0.61265)	198	64 (32)	2.23 (1.46–3.42)	57	23 (40)	2.02 (1.18–3.45)	
cg08044454	β valueb	568	1.44 (1.22–1.69)	< 0.0001	308	1.39 (1.14–1.70)	0.0014	
	Tertile 3	195	40 (21)	Ref.	110	20 (18)	Ref.	
	Tertile 2 (0.71507)	195	41 (21)	1.25 (0.80–1.97)	98	28 (29)	1.87 (1.03–3.42)	
	Tertile 1 (0.57145)	178	55 (31)	2.23 (1.44–3.46)	100	34 (34)	2.48 (1.39–4.44)	
cg01552551	β valueb	568	1.43 (1.22–1.68)	< 0.0001	308	1.28 (1.04–1.58)	0.0215	
	Tertile 3	189	28 (15)	Ref.	104	25 (24)	Ref.	
	Tertile 2 (0.72226)	189	49 (26)	1.94 (1.21–3.10)	95	22 (23)	1.38 (0.76–2.51)	
	Tertile 1 (0.59384)	190	59 (31)	2.50 (1.58–3.95)	109	35 (32)	2.17 (1.24–3.79)	
cg24311416	β valueb	568	1.43 (1.21–1.71)	< 0.0001	308	1.32 (1.04–1.66)	0.0209	
	Tertile 3	190	40 (21)	Ref.	118	27 (23)	Ref.	
	Tertile 2 (0.65694)	185	38 (21)	1.03 (0.64–1.64)	90	23 (26)	1.06 (0.59–1.89)	
	Tertile 1 (0.53430)	193	58 (30)	2.20 (1.45–3.35)	100	32 (32)	2.00 (1.17–3.43)	
cg02425108	β valueb	568	1.40 (1.19–1.65)	< 0.0001	308	1.32 (1.04–1.66)	0.0200	
	Tertile 3	209	35 (17)	Ref.	104	27 (26)	Ref.	
	Tertile 2 (0.62299)	175	38 (22)	1.78 (1.12–2.85)	107	28 (26)	1.32 (0.75–2.31)	
	Tertile 1 (0.52523)	184	63 (34)	2.44 (1.59–3.74)	97	27 (28)	1.68 (0.95–2.96)	
cg15659052	β valueb	568	1.38 (1.17–1.63)	0.0001	308	1.37 (1.09–1.71)	0.0062	
	Tertile 3	183	30 (16)	Ref.	113	25 (22)	Ref.	
	Tertile 2 (0.53788)	193	38 (20)	2.12 (1.28–3.51)	92	17 (18)	1.55 (0.80–2.99)	
	Tertile 1 (0.40182)	192	68 (35)	2.34 (1.50–3.67)	103	40 (39)	1.99 (1.16–3.34)	

Abbreviations: HR hazard ratio, CI confidence interval

*aCox regression analyses adjusted for age, sex, tumor stage, tumor location, chemotherapy, MSI status, and BRAF mutation status

*bHR calculated for per unit decrease of the Z score of the β values
Table 2 Association of the coefficient score with disease-specific survival in the study cohort and the validation cohort

Patient groups Subgroups	Tertile groups (cutoff points)	Study cohort	Validation cohort						
		N	Deaths (%)	HR (95% CI)	p value of trend	N	Deaths (%)	HR (95% CI)	p value of trend
All patients									
	Tertile 3	195	36 (18)	Ref.		124	25 (20)	Ref.	
	Tertile 2 (−4.32247)	188	31 (16)	1.31 (0.80–2.15)	< 0.0001	89	22 (25)	1.66 (0.91–3.05)	0.0004
	Tertile 1 (−3.92950)	185	69 (37)	3.16 (2.08–4.80)	< 0.0001	95	35 (37)	2.75 (1.56–4.85)	0.0004
Microsatellite instability	MSS								
	Tertile 3	175	35 (20)	Ref.		114	25 (22)	Ref.	
	Tertile 2 (−4.32247)	161	29 (18)	1.31 (0.79–2.17)		79	21 (27)	1.63 (0.88–3.01)	
	Tertile 1 (−3.92950)	167	66 (40)	3.11 (2.04–4.76)	< 0.0001	89	33 (37)	2.65 (1.49–4.72)	0.0009
	MSI-H								
	Tertile 3	20	1 (5)	Ref.		10	0 (0)	Ref.	
	Tertile 2 (−4.32247)	27	2 (7)	NC		10	1 (10)	NC	
	Tertile 1 (−3.92950)	18	3 (17)	NC	NC	6	2 (33)	NC	NC
BRAF mutation	Negative								
	Tertile 3	185	34 (18)	Ref.		115	22 (19)	Ref.	
	Tertile 2 (−4.32247)	171	28 (16)	1.23 (0.74–2.07)		81	19 (23)	1.53 (0.81–2.91)	
	Tertile 1 (−3.92950)	166	61 (37)	3.24 (2.09–5.02)	< 0.0001	93	34 (37)	2.72 (1.53–4.85)	0.0007
	Positive								
	Tertile 3	10	2 (20)	Ref.		9	3 (33)	Ref.	
	Tertile 2 (−4.32247)	17	3 (18)	NC		8	3 (38)	NC	
	Tertile 1 (−3.92950)	19	8 (42)	NC	NC	2	1 (50)	NC	NC
Tumor location	Proximal colon								
	Tertile 3	59	5 (8)	Ref.		40	10 (25)	Ref.	
	Tertile 2 (−4.32247)	80	11 (14)	2.60 (0.87–7.84)		27	6 (22)	0.99 (0.31–3.13)	
	Tertile 1 (−3.92950)	71	25 (35)	6.92 (2.46–19.4)	< 0.0001	41	14 (34)	2.05 (0.79–5.34)	0.1176
	Distal colon								
	Tertile 3	71	19 (27)	Ref.		41	5 (12)	Ref.	
	Tertile 2 (−4.32247)	49	5 (10)	0.73 (0.25–2.14)		26	8 (31)	1.76 (0.51–6.09)	
	Tertile 1 (−3.92950)	56	20 (36)	2.03 (1.05–3.94)	0.0477	21	8 (38)	6.00 (1.61–22.4)	0.0098
	Rectum proximal								
	Tertile 3	65	12 (18)	Ref.		43	10 (23)	Ref.	
	Tertile 2 (−4.32247)	59	15 (25)	1.36 (0.62–3.01)		36	8 (22)	3.48 (0.97–12.4)	
	Tertile 1 (−3.92950)	58	24 (41)	3.59 (1.64–7.87)	0.0012	33	13 (39)	4.02 (1.38–11.7)	0.0129

Abbreviations: CI confidence interval, HR hazard ratio, NC not calculated (< 5 patients)

* Cox regression adjusted for age, sex, tumor stage, tumor location, chemotherapy, MSI status, and BRAF mutation status

Fig. 3 Direct survival curves of the coefficient score with disease-specific survival and non-disease-specific survival in the validation cohort (adjusted for age, sex, tumor location, tumor stage, chemotherapy, BRAF mutation, and microsatellite instability)
body, where hypomethylation is the aberrant type, was found to contribute to cancer-causing somatic and germline mutations in previous studies [19, 20]. In a study on primary glioblastoma, Nagarajan et al. found recurring gene body promoter hypomethylation events which may alter the transcriptional landscape of glioblastoma through the activation of a limited number of normally silenced promoters within gene bodies, in at least one case leading to expression of an oncogenic protein [21].

The seven identified CpGs are located on three different genes: ELMO1 (cg05481217, cg08044454, cg01552552, and cg15659052), CADM1 (cg16935707 and cg24311416), and ADAMTS1 (cg02425108). ELMO1 (engulfment and cell motility 1) together with Dock180 as a complex plays an important role in promoting cancer cell invasion which has been shown for gliomas, breast cancer, and ovarian cancer [22–24]. Methylation markers on ELMO1 were reported to be associated with cancers such as oropharyngeal squamous cell carcinoma and glioblastoma. One other smaller study which adjusted for mucin-2 positivity in primary head and neck squamous cell carcinoma [25] as well as for MSI status, other molecular pathological features such as MSI, stage, MSI status, and BRAF mutation status as founders. As validation in an independent cohort yielded similar results, the panel might be a tool for outcome prediction but further validation in large studies is needed. Besides outcome prediction, further studies will be needed to investigate if and to what extent the CpG score is also useful for the prediction of therapy response.

Both the study cohort and validation cohort were derived from a large population-based study including 876 unselected patients with complete information on clinical and molecular characteristics. Despite the adequate size of the cohort population, the statistical power was still limited in many of the subgroup analyses. Also, the prognostic CpGs identified were selected from CIMP-related genes. It is likely that CpGs of other genes could also be associated with CRC survival, and incorporating these additional sites may further improve the prognostic use of our panel. Accordingly, more large studies on the association between methylation of CpG sites and CRC outcomes are needed without restrictions to specific gene regions. Also, although the CpG sites were confirmed and similarly associated in the validation cohort, external validation in another study is still needed to establish the prognostic score.

Conclusion

In summary, our study found that DNA methylations at seven CpG sites on CIMP-related genes were strongly associated with CRC prognosis independent of cancer stage, MSI status, Braf mutation status, and other important factors that affect the outcome of CRC. The prognostic score based on methylation levels at these seven CpG sites strongly predicted CRC survival in the study cohort and the validation cohort. If confirmed in other cohorts, this CpG panel could be a novel tool for CRC outcome prediction and may have relevance for clinical decision-making. Still, other large studies are needed to confirm our findings and to elaborate its potential utility.
Methods

Study population

Patients with CRC were recruited into the DACHS (Darmkrebs: Chancen der Verhütung durch Screening) study, a large ongoing population-based cohort study on CRC with long-term follow-up [37]. Patients histologically confirmed CRC who were at least 30 years old and physically and mentally able to participate in a personal interview were enrolled in 22 hospitals in the Rhine–Neckar–Odenwald region of southwestern Germany. Sociodemographic and lifestyle information was collected by trained interviewers using a standardized questionnaire during face-to-face interviews. Additionally, discharge letters, pathology reports, and endoscopy reports were collected at baseline. After 3 years, information on the patients’ therapy was requested from the patients’ physicians. After 5 years, survivors were contacted to complete a standardized questionnaire. In addition, at both follow-ups, disease recurrence was assessed. Also, data on vital status were obtained from the population registries and causes of death were verified by death certificates from the health authorities. More details on the study design, data collection, and follow-up have been reported previously [38, 39].

In the present study, only patients recruited between 2003 and 2007 with available information on DNA methylation were included. The study was approved by the ethics committees of the Medical Faculty of the University of Heidelberg and of the Medical Chambers of Baden–Wuerttemberg and Rhineland–Palatinate.

Tumor sample analyses

DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples of the patients under microscopic control of unstained slides and was prepared using the DNeasy tissue kit (Qiagen, Hilden, Germany) [40]. Methylation of tissue DNA was analyzed using the Illumina Human Methylation 450 BeadChip (Illumina, San Diego, CA, USA) following the manufacturer’s instructions. Tumors of patients examined in the pathology institutes in Heilbronn, Ludwigshafen, Mannheim, and Speyer (study cohort) were analyzed more than 1 year apart from tumors of patients examined in the pathology institute in Heidelberg (validation cohort). Methylation signals at CpG sites were converted into \(\beta \) values (methylated signal/(unmethylated signal + methylated signal)). \(\beta \) values ranged from 0 to 1: 0 represents totally unmethylated and 1 represents totally methylated. In data pre-processing, the following probes were excluded: probes targeting the X and Y chromosomes, probes containing a single-nucleotide polymorphism (dbSNP132 Common) within five base pairs, probes not mapping uniquely to the human reference genome (hg19) allowing for one mismatch, and probes that have failed in more than 10% of the samples based on the detection \(p \) value (detection \(p \) value > 0.01). Data was normalized by pre-processing in the R package “minfi” [41].

MSI status was determined using a mononucleotide marker panel (BAT25, BAT26, and CAT25) [42]. KRAS mutation was determined by single-stranded conformational polymorphism technique using the same DNA sample [43]. The expression of BRAF V600E was determined by immunohistochemical analyses in sections of tissue microarray blocks and evaluated by two pathologists independently.

Statistical analysis

Genes used to define CIMP in previous studies were identified by a literature review [15, 16]. We focused on CIMP genes because CIMP is an established marker in CRC to differentiate between CRC pathways. We assumed that methylation on these genes could be more relevant than on other genes when investigating associations with survival. Also, by focusing on CIMP genes, the number of association tests is lower which increases the chance to find associations even after adjustment for multiple testing.

In a split-sample approach, we used a larger study cohort to investigate associations of CpG sites on CIMP-related genes with DSS and a smaller validation cohort to validate our findings. Hazard ratios (HR) and 95% confidence intervals (95% CI) were calculated by multivariable Cox proportional hazard regression with adjustment for age, sex, tumor stage, tumor location, chemotheraphy, MSI status, and BRAF mutation status. In addition, a correction for late entry defined as the potentially delayed time between the date of diagnosis and the date of enrolment was included in the adjusted model, as well as a time-dependent variable of age and chemotheraphy. We used three different sets of CpGs on the CIMP genes to test for associations: CpG set 1 consisted of CpGs located in the CpG islands of promoter regions, CpG set 2 included any CpG in CpG islands, and CpG set 3 included any CpG in any region on the genes (Fig. 1). In the study cohort, CpGs were deemed to be associated with CRC prognosis only if they passed the correction for multiple testing by Benjamini–Hochberg (false discovery rates (FDR) < 0.05) and if the \(\beta \) value range was not too narrow (≥ 0.1) to ensure reproducibility.

The CpGs associated with DSS in the study cohort were then analyzed in the validation cohort using the same adjusted Cox model. The association between tertiles of \(\beta \) values and DSS analyzed in the study cohort was analyzed in the validation cohort using the tertile cutoffs of the study cohort. Dose-response curves of methylation levels at the identified CpGs were plotted to illustrate the association with DSS by restricted cubic
spline regression adjusting for the confounders mentioned above. The CpGs confirmed in the validation cohort were used to investigate individual associations and to construct a prognostic score using the coefficient score. A heatmap illustrating the methylation level of the selected CpGs and their association with CRC survival was generated using the R package "pheatmap". The coefficient score was calculated by summing the product of the β value of each validated CpG with its corresponding coefficient value in the Cox regression. Tertiles of the sum were used to build three groups with tertile 3 representing patients with the highest methylation at the selected CpG sites, which was used as the reference (among the identified CpGs, lower methylation was associated with higher mortality). The coefficient value and tertile cutoff point identified in the study cohort were used for the analyses in the validation cohort. Direct adjusted survival curves (adjusting for the same covariates) and Kaplan–Meier curves were plotted to illustrate the association of the prognostic score with DSS and non-DSS (deaths due to other causes) over time. The associations of clinical and molecular features with the coefficient score in the study and the validation cohort were analyzed by chi-square test. The Akaike information criterion (AIC) was computed using R, software version 3.5.0. All other statistical analyses were performed with SAS, software version 9.4 (SAS Institute Inc., Cary, NC, USA).

Additional file

Additional file 1: Table S1. Characteristics of patients in the study cohort and the validation cohort. Table S2. Genes used to define CIMP status in previous studies that were available on the 450k methylation array. Table S3. CpG sites identified in the study cohort that were included or excluded in the final analyses. Table S4. Association of the coefficient score with characteristics of colorectal cancer patients in the study cohort and the validation cohort. Figure S1. Heatmaps showing the methylation level of the seven CpG sites across all the patients in the study cohort (A) and the validation cohort (B), respectively. Figure S2. Unadjusted Kaplan–Meier curves of the association of the coefficient score with disease-specific survival and non-disease-specific survival in the validation cohort. (DOCX 2549 kb)

Abbreviations

AIC: Akaike information criterion; CI: Confidence interval; CIMP: CpG island methylator phenotype; CpGs: CpG sites; CRC: Colorectal cancer; DSS: Disease-specific survival; HR: Hazard ratio; MSi: Microsatellite instability; MSi-H: High-level microsatellite instability

Acknowledgements

The authors thank the study participants and the interviewers who collected the data. The authors also thank the following hospitals and cooperating institutions that recruited patients for this study: Chirurgische Universitätsklinik Heidelberg, Klinik am Gesundbrunnen Heidelberg, St. Vincentiuskrankenhaus Speyer, St. Josefkrankenhaus Heidelberg, Chirurgische Universitätsklinik Mannheim, Diakonissenkrankenhaus Speyer, Krankenhaus Salem Heidelberg, Kreiskrankenhaus Schwetzingen, St. Marienkrankenhaus Ludwigshafen, Klinikum Ludwigshafen, Stadtklinik Frankenthal, Diakonissenkrankenhaus Mannheim, Kreiskrankenhaus Sinheim, Klinikum am Plattenwald Bad Friedrichshall, Kreiskrankenhaus Weinheim, Kreiskrankenhaus Eberbach, Kreiskrankenhaus Buchen, Kreiskrankenhaus Mosbach, Enddarmzentrum Mannheim, Kreiskrankenhaus Brackenheim, and Cancer Registry of Rhineland-Palatinate, Mainz. We are also very grateful for the support of the pathologies in the provision of tumor samples: Institut für Pathologie, Universitätsklinik Heidelberg; Institut für Pathologie, Klinikum Heilbronn; Institut für Angewandte Pathologie, Speyer; Pathologisches Institut, Universitätsklinikum Mannheim; Institut für Pathologie, Klinikum Ludwigshafen; Institut für Pathologie, Klinikum Stuttgart; and Institut für Pathologie, Klinikum Ludwigshburg.

We thank Ute Handte-Daub, Ansgar Brandhorst, Marina Gemold, and Bettina Walter for their excellent technical assistance.

Authors' contributions

MJ, YZ, JC, MH, and HBr made substantial contributions to the conception and design of the study. MJ and MH contributed to the development of methodology. MH, HBr, JC, LJ, WW, MM, KT, WR, MB, EH, MK, AU, BB, and HBl contributed to the acquisition of data. MJ, DE, and MH contributed to the analysis and interpretation of data. MJ and MH contributed to the draft of the article. All authors contributed to the critical revision of the article. All authors approved the final version of the manuscript.

Funding

This work was supported by the German Research Council (BR 1704/6-1, BR 1704/6-3, BR 1704/6-4, CH 1171/1-1, HO 5117/2-1, HE 5998/2-1, KL 2354/3-1, RO 2270/8-1, and BR 1704/17-1); the Interdisciplinary Research Program of the National Center for Tumor Diseases (NCT), Germany; the DKFZ-Heidelberg Center for Personalized Oncology (DKFZ-HP0, H652); and the German Federal Ministry of Education and Research (01KH0404, 01ER0814, 01ER0815, 01ER1506A, and 01ER150SB).

The funders of the study had no role in study design, collection, analysis or interpretation of data, or writing of the report.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The study was approved by the ethics committees of the Medical Faculty of the University of Heidelberg (310/2001) and of the State Medical Boards of Baden–Württemberg (M-198-02) and Rhineland-Palatinate (837.419.02 (3637)).

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. 2Institute of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany. 3Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 4Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany. 5Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany. 6Institute of Pathology, University Medical Center Mainz, Mainz, Germany. 7Core Facility Genomics & Proteomics, German Cancer Research Center (DKFZ), Heidelberg, Germany. 8NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany. 9Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany. 10Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany. 11Institute of Pathology, Charité University Medicine, Berlin, Germany. 12Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 13Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. 14German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
40. Warth A, Kloor M, Schirmacher P, Blaker H. Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP. Mod Pathol. 2011;24(4):564–70.

41. Pidsley R, CC YW, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics. 2013;14:293.

42. Findeisen P, Kloor M, Mex S, Sutter C, Woerner SM, Dostmann N, Benner A, Dondog B, Pawlita M, Dippold W, et al. T25 repeat in the 3’ untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res. 2005;65(18):8072–8.

43. Blaker H, Helmchen B, Bonisch A, Aulmann S, Penzel R, Otto HF, Rieker RJ. Mutational activation of the RAS-RAF-MAPK and the Wnt pathway in small intestinal adenocarcinomas. Scand J Gastroenterol. 2004;39(8):748–53.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.