The handle http://hdl.handle.net/1887/45030 holds various files of this Leiden University dissertation

Author: Schendel, Robin van
Title: Alternative end-joining of DNA breaks
Issue Date: 2016-12-15
APPENDIX
Summary

DNA is arguably the most important molecule found in any organism, as it contains all information to perform cellular functions and enables continuity of species. It is continuously exposed to DNA-damaging agents both from endogenous and exogenous sources. To protect DNA against these sources of DNA damage various DNA repair mechanisms have evolved. If not properly repaired, DNA damage can lead to mutations that may eventually lead to cell-death or tumorigenesis. One of the most dangerous types of DNA damage is a DNA double-stranded break (DSB), in which a DNA molecule is broken into two pieces. Cells are equipped with several DSB-repair mechanisms to deal with this type of damage. Some of these mechanisms repair DSBs in an error-free fashion, while others are inherently error-prone and can lead to the accumulation of mutations. Although accumulating many mutations in cells can lead to severely reduced cellular fitness, perfect DNA repair is less desirable in the long term as mutations allow for speciation and evolution to take place.

The key question addressed in my thesis is which DSB repair mechanisms organisms use to protect their genome against DSBs. We tried to answer this complex question by whole-genome approaches as this allows us to examine the entire genome in an unbiased way. Most of the work I present here has been performed in a small nematode species: *C. elegans*, which is a 1mm long worm that lives in soil. Many of the DNA repair mechanisms found in vertebrates are also found in this small animal, which makes it an excellent model organism to study and to genetically dissect the contribution of various DNA repair mechanisms to genome stability.

In Chapter 1 I introduce DNA repair mechanisms and next-generation sequencing approaches that I have used during my research. Then I will introduce the model organism *C. elegans* and finally the central research question of this thesis will be introduced.

In Chapter 2 I investigate genomes of related nematode or fly species for genomic alterations that occurred during evolution. More specifically, I investigate the genomic loss of introns: non-coding DNA sequences that in eukaryotes interrupt protein-coding exons and are removed prior to translation. Intron loss was found to be highly correlated with sequence homology at the borders, suggesting the involvement of a DSB repair mechanism that uses microhomology to repair spontaneous DNA breaks within an intron.

In Chapter 3 I present our findings on the contribution of translesion synthesis (TLS) to genome stability. TLS is a damage avoidance mechanism that allows replication to continue past damaged nucleotides, often by incorporating of a wrong nucleotide opposite the damage. We noticed that during culturing of animals that were defective for the TLS polymerase pol eta and pol kappa, animals with apparent phenotypes arose in these populations while they were absent in populations lacking either single TLS polymerase. By next-generation sequencing of propagated populations of these double mutants we uncovered a very narrow mutational spectrum of deletions that were between 50 and 300 base pairs (bp) in size. By thorough analysis of a subset of deletions that were accompanied by insertions that originated from the flanks we inferred the involvement of another DNA polymerase. Genetic dissection of this DSB-repair pathway led to the involvement of Polymerase Theta (POLQ), an A-family polymerase which is required to create these 50-300 bp deletions. In POLQ-deficient animals these small deletions are completely absent and, instead, only large deletions spanning thousands of nucleotides are detected.

The hallmark of POLQ-mediated repair of DSBs is the creation of templated insertions. Surprisingly, when we investigated whole-genome data from a few natural isolates of *C. elegans*,
we noticed that this hallmark was also frequently present in small (<50 bp) events, which were completely absent in the mutational spectrum of TLS mutants. To investigate this further we made use of assays that directly induce DSBs in the germ-line of *C. elegans*. In Chapter 4 I investigate the contribution of POLQ in repairing direct DSBs, either via the recently developed CRISPR/Cas9 system or via transposition, in which a mobile DNA element releases itself from the DNA leaving behind a DSB that is repaired by the cell's machinery. In both assays we observed that DSB repair depends on POLQ and in its absence a completely different mutational spectrum was observed at the DSB sites. Additionally, we show in a small-scale evolution experiment that propagated worm populations that are either proficient (i.e. wild-type) or deficient for POLQ have a completely different deletion spectrum genome-wide. Whereas wild-type animals exclusively show small deletions (median of ~7 bp), POLQ-deficient animals only show very large deletions (median of ~15,000 bp), arguing that POLQ is necessary for the protection of genome integrity at the expense of small mutations instead of catastrophic extensive deletions. Additionally, analysis of tens of sequenced genomes of natural isolates of *C. elegans* predominantly showed POLQ-like footprints, suggesting that POLQ is a key driver of nematode evolution.

Finally, in Chapter 5 I investigate the molecular mechanism of POLQ-mediated repair of DSBs in vivo. I show that POLQ-deficient animals are hypersensitive to the commonly used mutagens ethyl methanesulfonate (EMS) and photoactivatable trimethylpsoralen (UV/TMP). Furthermore, I show that mutagen-induced deletions in wild-type worms are the result of POLQ-mediated repair. Protocols used for inducing and detecting genomic deletions has been used in *C. elegans* research for over four decades and has resulted in ~10,000 deletion alleles that I show to be induced by POLQ-mediated repair. By in-depth bioinformatic analysis of this public available dataset I dissect the mechanism by which the POLQ polymerase repairs mutagen-induced DNA breaks. The data indicates that single nucleotide homology between two break ends is sufficient for POLQ to initiate repair. The extension process is occasionally interrupted and dissociation of the break ends occurs, triggering additional rounds of priming and extension until the break is sealed. In addition to a deletion, this results in an insertion (delins) that is copied from the immediate deletion flank.
Nederlandse Samenvatting

Dit proefschrift bevat een aantal studies die we hebben uitgevoerd om inzicht te krijgen in hoe organismen hun erfelijk materiaal, het DNA, beschermen tegen invloeden van buiten en binnen de cel. Ik heb met name onderzoek gedaan naar DNA herstelmechanismen die in werking treden zodra er een DNA dubbelstrengsbreuk optreedt. Om dit te kunnen onderzoeken heb ik gebruik gemaakt van een model organism genaamd Caenorhabditis elegans. Omdat velen die dit proefschrift lezen wellicht niet bekend zijn met deze materie, zowel met de rondworm C. elegans als met DNA dubbelstrengsbreukeren, volgt nu een korte introductie.

DNA in het kort

Ieder mens is ooit begonnen als een enkele bevruchte eicel. Een opeenstapeling van celdelingen zorgt er uiteindelijk voor dat elk mens uit ongeveer 37.000 miljard cellen bestaat. Dat zijn enorm veel cellen en om een beeld te vormen van de hoeveelheid kunnen we deze cellen achter elkaar leggen en dan vormt er een rij cellen die naar de maan en bijna terug reikt. Deze 37.000 miljard cellen zijn allemaal kopieën van één enkele bevruchte eicel. Zo worden tijdens de celcyclus alle onderdelen (organellen) van een cel verdubbeld en bij de uiteindelijk splitsing van de cel verdeeld over beide dochtercellen. De celkern (nucleus) is een organel dat binnen een cel weer een afgezonderde ruimte vormt waar het erfelijk materiaal, het DNA, zich bevindt. DNA bestaat uit twee lange strengen van nucleotiden die samen de bekende DNA dubbele helix vormen. Nucleotiden zijn de bouwstenen van DNA en deze kunnen vier verschillende soorten basen bevatten: A(denine), T(hymine), G(uanine) en C(ytosine). In het DNA paart A altijd met T en C met G. Een heel lang DNA molecuul dat verpakt is tot een compacte structuur heet een chromosoom. Van elk chromosoom heb je twee kopieën: een van je moeder en een van je vader. In totaal hebben mensen 23 chromosoomparen, maar dit varieert tussen verschillende soorten. Op elk chromosoom liggen verschillende genen, coderende gebieden DNA waarin staat hoe een eiwit gemaakt moet worden. Een menselijk genoom bevat ongeveer 20.000 eiwit-coderende genen en van elk gen heb je dus twee kopieën (een van je vader en een van je moeder). Tijdens een celcyclus verdubbelt de cel het complete DNA in een proces dat replicatie heet. Tijdens de replicatie wordt de dubbele helix van het DNA als het ware opengeritst en bouwen speciale eiwitten genaamd polymerases nieuwe nucleotiden in tegenover de bestaande. Het polymerase bouwt een A tegenover een T in, een G tegenover een C, enz. Doordat dit voor beide strengen gebeurd bestaat elk DNA molecuul aan het einde van de replicatie voor de helft uit bestaand DNA en voor de helft uit nieuw gerepliceerd DNA. Het is dus belangrijk dat polymerases uitermate nauwkeurig zijn in het inbouwen van nucleotide (een 0,001% foutmarge resulteert bijvoorbeeld al in 12.000 foute nucleotiden). Een interessant gegeven is overigens dat om van 1 naar 37.000 miljard cellen te gaan er maar ongeveer 45 replicatieronden nodig zijn. De kracht van verdubbelingen is dat het steeds sneller gaat, denk maar aan de reeks: $1 = 2 = 4 = 8 = 16 = 32 = 64 = 128 = 256, etc. (2^{45} \approx 35.000\, miljard).

Mutaties in het DNA

Door allerlei invloeden van buiten (bijv. zonlicht, kosmische straling, tabaksrook) en binnen de cel (oxidatie van basen, metabole processen) beschadigt het DNA continu en zijn er herstelmechanismen nodig die de integriteit van het DNA kunnen waarborgen door het te repareren. Een misvatting is dat DNA schade altijd leidt tot mutaties. In veruit de meeste gevallen is een cel prima in staat de schade weg te halen, zonder verlies van informatie. Als een T bijvoorbeeld beschadigd is kan deze
uit de ruggengraat van het DNA worden gesneden en omdat er een onbeschadigde A tegenover staat kan de cel dit ‘lezen’ en vervolgens een onbeschadigde T inbouwen. In sommige gevallen lukt het echter niet om de beschadiging te repareren en treedt er een mutatie op. Mutaties kunnen veroorzaakt worden door beschadigd DNA, maar kunnen bijvoorbeeld ook optreden tijdens DNA replicatie (bijv. door het inbouwen van een foutief nucleotide). Over het algemeen zijn mutaties geen direct probleem voor de cel, omdat het merendeel van het DNA bestaat uit niet-coderend DNA. Mutaties leiden dus zelden tot foutieve eiwitten. Daarnaast worden in cellen die bijvoorbeeld afwijzend gedrag vertonen als gevolg van een of meerdere mutaties een zelfvernietigingsprogramma geactiveerd. Echter kunnen er in sommige gevallen mutaties optreden die leiden tot de ontwikkeling van kanker. In het geval van kanker heeft een cel een ongelukkige combinatie van mutaties opgelopen die haar in staat stelt zich ongeremd te delen, hetgeen leidt tot een wildgroei van weefsel: een tumor. Tegenwoordig is het mogelijk om alle mutaties in tumoren uit te lezen en dit heeft ons veel inzicht verschaf over de DNA herstelmechanismen in menselijke cellen en de oorzaken van kanker.

Breuken in het DNA

Een van de ernstigste DNA beschadigingen is een dubbelstrengsbreuk. De naam zegt het al: beide strengen in de DNA helix zijn gebroken waardoor het DNA nu uit twee stukken bestaat. Dit is een ernstig probleem en leidt tot de activatie van allerlei signalering in de cel die vervolgens weer leidt tot de activatie van DNA dubbelstrengsbreuk herstelmechanismen. Er bestaan een aantal van deze mechanismen: Homologous recombination (HR), non-homologous end-joining (NHEJ) en alternative end-joining. HR is een proces dat gebruikt maakt van de identieke DNA kopie die tijdens DNA replicatie gemaakt is. Een van de breukeinden kopieert een deel van de kopie en komt weer los. Dan worden de breukeinden aan elkaar vast gemaakt en de breuk hersteld. Dit wordt ook wel foutloos herstel genoemd. NHEJ zet beide breukeinden aan elkaar vast zonder oog voor mogelijk verlies van DNA. Dit resulteert meestal in een DNA mutatie doordat er een paar nucleotiden verloren gaan (deletie) of soms extra nucleotiden worden ingebouwd (insertie). Alternatieve end-joining is ooit gevonden in de afwezigheid van NHEJ. Daardoor draag het de naam ‘alternatief’ alhoewel uit dit proefschrift blijkt dat het helemaal geen alternatief hoeft te zijn, maar misschien wel de belangrijkste route waarlangs DNA breuken hersteld worden. Anders dan HR en NHEJ bestaat alternative end-joining niet uit een enkel proces, maar is het een verzameling van een aantal reparatieprocessen. Alternatieve end-joining processen laten zich veelal kenmerken door het gebruik van homologe sequenties tijdens de reparatie en is, net als NHEJ, een mutageen proces. HR is namelijk niet altijd beschikbaar (er moet een DNA kopie aanwezig zijn) en dan zijn NHEJ en alternatieve end-joining de enige optie om de schade te herstellen. De beschikbaarheid van verschillende DSB reparatieroutes is afhankelijk van het cel stadium waarin de cel zich bevindt en bijvoorbeeld ook van het celtype. Zo weten we dat de capaciteit om breuken te repareren in somatische cellen (cellen die niet bijdragen aan het doorgeven van erfelijk materiaal aan de volgende generatie) anders is dan in kiemcellen.

C. elegans als modelorganisme

Tot zover is alles vanuit het menselijk perspectief geschreven, dus waarom wordt de rondworm C. elegans gebruikt in dit proefschrift? Het antwoord hierop is dat mensen en wormen niet zoveel van elkaar verschillen. Dat wil zeggen met betrekking tot DNA reparatie mechanismen. Het blijkt dat in vele soorten die qua uiterlijk in niets op elkaar lijken dat fundamentele mechanismen zoals
DNA herstelmechanismen wel geconserveerd is tijdens de evolutie. Van plant tot gist tot mens tot worm. Allemaal bevatten ze vrijwel hetzelfde arsenal aan mechanismen om het erfelijk materiaal te beschermen. Dat doet vermoeden dat deze mechanismen al bestonden in een oercel waaruit later allerlei multicellulaire organismen, zoals de mens en *C. elegans* zijn geëvolueerd. *C. elegans* is een hermafrodiet, een dier dat zowel mannelijk als vrouwelijk is en zichzelf kan voortplanten. Binnen vijf dagen heeft een enkele worm 300 “kinderen” gekregen, die genetisch gezien vrijwel hetzelfde zijn. Soms worden er wel mannetjes geboren, die anders dan bij mensen, geen XY chromosomen bevatten, maar een enkel X chromosoom (X0) in plaats van twee (XX). Deze mannetjes kunnen wel paren met een hermafrodiet en kan op deze manier zijn erfelijk materiaal doorgeven. Wij onderzoekers maken hier gebruik van om vervolgens mutanten te combineren. Ik kan bijvoorbeeld een mannetje met mutatie A met een hermafrodiet met mutatie B kruisen om nageslacht met zowel mutatie A als B te maken). Daarnaast kunnen we het genoom van *C. elegans* wijzigen door de worm te injecteren met DNA of door de worm in mutagene stoffen te laten groeien. Ook kunnen we ontwikkeling van een eicel naar een larve goed observeren en eventuele afwijkingen vinden in het voorplantingsorgaan van deze worm. Ook is *C. elegans* het eerste multicellulaire diertje waarvan het genoom volledig uitgelezen is. Dit alles maakt de worm tot een zeer nuttig en relevant modelorganisme.

Dit proefschrift

In hoofdstuk 2 analyseren we genomen van verschillende rondwormen en fruitvliegen. Specifiek kijken we naar genen en in het bijzonder naar intronen. Een gen bestaat uit eiwit coderende sequenties (exonen) en niet-coderende sequenties (intronen). Tijdens de evolutie van soorten gaan er soms intronen volledig verloren. Alhoewel dit een grote verandering in het DNA is, leidt intronverlies niet tot problemen, omdat het eiwit waarvoor dit gen codeert nog steeds gemaakt kan worden. Onze analyses van intronen die verloren zijn gegaan duiden sterk op een proces waarbij er een deletie optreedt van veelal korte intronen die homologie bevatten tussen de exon-intron juncties. Het gebruik van homologie is een karakteristieke eigenschap van microhomologie gemedieerde end-joining (MMEJ) wat onder alternatieve end-joining valt. Wij vermoeden dat een spontane breuk in een intron door MMEJ hersteld wordt en dat dit soms leidt tot verlies van het volledige intron.

In hoofdstuk 3 kijken we naar wormen die een defect hebben in translesie synthese (TLS). TLS is een proces waarbij een replicatief polymerase (delta en epsilon) niet voorbij een beschadigde DNA base kan. TLS is het proces waarbij in plaats van een replicatief polymerase er een TLS polymerase (die veel tolerant is voor DNA schades) wordt gebruikt om over de schade heen te gaan. Hierdoor blijft de schade wel bestaan, maar kan DNA replicatie wel door gaan. In veel gevallen is het belangrijker dat DNA replicatie kan doorgaan dan dat de schade direct wordt gerepareerd. In *C. elegans* is de timing van celdeling en dus ook DNA replicatie tijdens de ontwikkeling heel belangrijk en enige verstoring hierheen kan leiden tot aberrante ontwikkeling en de dood van het wormembryo. Door het gebruik van whole-genome sequencing (WGS) van TLS-mutanten die ongeveer een jaar in ons lab gekweekt waren (om spontane mutaties te accumuleren) zagen we dat deze wormen een heel nauw-gedefinieerd deletie spectrum van 50 tot 300 basenparen bevatten. Verder onderzoek wees uit dat deze deleties werden veroorzaakt doordat een eiwit genaamd POLQ-1 (Polymerase theta in mensen).

Zoals dat wel vaker gaat in de wetenschap leidde data uit hoofdstuk 3 tot hoofdstuk 4 waarin we een redelijk spectaculaire ontdekking deden: vrijwel alle DNA dubbelstrengsbraken die tot
mutaties leiden in kiemcellen (cellen die leiden tot de volgende generatie wormen) zijn het gevolg van POLQ-gemedieerd herstel. En dat geldt niet alleen voor wormen die gekweekt zijn in het laboratorium, maar ook voor wormen die in de natuur voorkomen en onafhankelijk van elkaar zijn geëvolueerd. Dat betekent dat POLQ-gemedieerd herstel een grote rol speelt tijdens de evolutie doordat foutief herstel van DNA dubbelstrengsbreuken significant bijdraagt aan de genetische variatie tussen individuen: de basis van nieuwe soortvorming.

In hoofdstuk 5 komen we tot de ontdekking dat wormen die gemuteerd zijn door twee veelgebruikte mutagenen (EMS en UV/TMP) die deleties veroorzaken ook het gevolg zijn van POLQ-gemedieerd herstel. EMS en UV/TMP leiden tot problemen tijdens DNA replicatie en in sommige gevallen tot deleties. *C. elegans* consortia gebruiken al 40 jaar EMS en UV/TMP om systematisch mutanten te maken voor allerlei genen. Onderzoekers kunnen vervolgens deze wormen opvragen en analyseren voor hun onderzoeken. Al deze deletie-informatie wordt minutieus bijgehouden in databases. Nadat wij vastgesteld hadden dat dit soort deleties in POLQ mutanten niet meer voorkwamen, en dus hadden laten zien dat EMS en UV/TMP geïnduceerde deleties afhankelijk zijn van POLQ, konden we alle deleties in de databases analyseren om zo te ontrafelen hoe POLQ breuken hersteld. Zo konden we zien dat in het merendeel van de gevallen er een stuk sequentie weg was (deletie) en dat de breuk was gerepareerd met een enkele base microhomologie. Daarnaast zagen we vele voorbeelden van situaties waarin een deel van de flank van de deletie op de plek van de deletie was ingekopieerd.

Recentelijk zijn er een aantal artikelen over POLQ gepubliceerd door andere onderzoekers. Wat blijkt? POLQ speelt niet alleen een cruciale rol in *C. elegans*, maar ook in mensen. Zo vonden onderzoekers dat in verschillende soorten kanker POLQ verhoogd tot expressie kwam en dat dit gepaard ging met een lagere overlevingskans voor patiënten. Daarnaast zijn er tumoren gevonden waarin homologie recombinatie (HR) niet meer functioneert die volledig afhankelijk zijn geworden van POLQ. Als de productie van POLQ vervolgens werd verstoord overleefde deze tumoren niet. POLQ blijkt dus een potentieel anti-kanker target te zijn en onderzoekers zijn druk bezig om chemische stoffen te testen die POLQ kunnen uitschakelen zonder van invloed te zijn op andere cellulaire processen. Zo zien we dat fundamenteel onderzoek in model organismen kan bijdragen aan een levensbedreigende ziekte zoals kanker.
Curriculum Vitae

Robin van Schendel was born on November 21, 1983 in Rijswijk, the Netherlands. He successfully completed pre-university education (VWO) at Interconfessioneel Makeblijde College (IMC) in Rijswijk in 2001. In September 2001, he started the study of Computer Science at the Delft University of Technology (TUDelft) and obtained his Bachelor degree in 2004. His first internship was performed at TNO Defence, Safety & Security which involved designing and developing software that would aid in protecting sea mammals against damage caused by high-power sonar devices. In 2005 he enrolled for the Master Software Engineering, which he completed in 2007. During his internship he focused on detecting software vulnerabilities in commonly used software packages by investigating input paths. After obtaining his master degree he enrolled for the higher laboratory school (HLO) in Leiden with the specialization Molecular Biology. During his internship at the department of Toxicogenetics in the Leiden University Medical Center (LUMC) under the supervision of Dr. Albert Pastink he focused on setting up a quantitative assay for the detection of double-strand break repair by the appearance of fluorescent cells. He obtained his Bachelor degree with honors (cum laude) in June 2009. In February 2010 he started working as a PhD student at the department of Human Genetics in the LUMC, under supervision of Prof. dr. Marcel Tijsterman.
Publications

Microhomology-mediated intron loss during metazoan evolution
van Schendel R, Tijsterman M
Genome Biology & Evolution, 2013

A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites
Koole W, van Schendel R, Karambelas AE, van Heteren JT, Okihara KL, Tijsterman M
Nature Communications, 2014

Polymerase theta-mediated end joining of replication-associated DNA breaks in *C. elegans*
Roerink SF*, van Schendel R*, Tijsterman M
Genome Research, 2014

Polymerase Theta is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis
van Schendel R, Roerink SF, Portegijs V, van den Heuvel S, Tijsterman M
Nature Communications, 2015

Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers
Lemmens B, van Schendel R, Tijsterman M
Nature Communications, 2015

High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation
Agostinho A, Manneberg O, van Schendel R, Hernandez-Hernandez A, Kouznetsova A, Blom H, Brismar H, Hoog C
EMBO reports, 2016

Repression by H3K9me is dispensable for *C. elegans* development, but suppresses RNA:DNA hybrid-associated repeat instability
Zeller P*, Padeken J*, van Schendel R, Kalck V, Tijsterman M, Gasser S
Nature Genetics, 2016

T-DNA integration in plants results from Polymerase Theta-mediated DNA repair
van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas P, Tijsterman M
Nature Plants, 2016

Genomic scars generated by polymerase Theta reveal the versatile mechanism of alternative end-joining
van Schendel R, van Heteren J, Welten R, Tijsterman M
PLOS Genetics, 2016

*: Co-first authors
Acknowledgements

Finished! After a scientific expedition that started almost seven years ago I have reached the finish line. I am very proud of this achievement and feel privileged that I was given the opportunity to work in science. The negative results, the disappointments, the struggles to understand biology were all overcome by occasional moments of clarity which combined together, lead to this thesis. However, no man is an island and I have many, many people to thank.

First, and foremost, Marcel. Your passion for science, your never-ending enthusiasm and desire to understand biology is a driving force for all of us. Combined with your competitive nature and your creative ideas make you an ideal mentor.

I owe many thanks to all current and former members of the Tijsterman group: Daphne, Evelien, Sophie, Wouter, Jennemiek, Marijn, Nick, Jordi, Evelina, Jane, Juliëtte, Ivo, Maartje, Joost S, Hanneke and Ron. Daphne and Jennemiek, you were there to guide me through the first weeks of my PhD, when I could not tell a hermaphrodite from a male, let alone transfer him to another plate. A special thanks also to Jennemiek for teaching me how to microinject C. elegans worms. Nick, thank you for scientific inspiration in the early years of my Phd and for Paul Kelly. Wouter and Sophie, we published three fantastic papers together, which I am very proud to be a part of. Jane, nothing can stop you and without your efforts this thesis and my PhD would surely have been much more boring. Jordi, my dear Catalan, one day we will finish the screen as well as the cava. Ron, thanks to you the whole lab and my experiments keep running. I also wish to thank my students Erika, Eline, Tessa, Richard for helping me during my PhD.

I share my office with some bright young people that make my daily life at the lab pleasant and stimulating as well as providing me with many distractions. Pierre, Jenny, Bharath, Suming, Leonie and Juliëtte it is great to have you around.

Seven years is a long time and I have met many people during this period that contributed in one way or another to this time: Aude, Godelieve, Angela, Alex P, Wouter W, Thomas, Mark, Joost M, Mirna, Albert, Kees V. and Eleni.

The whole Human Genetics department would collapse if it was not for the secretaries and logistic staff that help us in our moments of need and I especially want to thank Matthieu and Ingrid.

I feel privileged to have worked beside my two paranymps who together comprise an entire think tank and are as close to me as brothers: Bennie and Dimitris, thank you for being a source of inspiration and thank you for standing by my side on this special occasion. Behind every man there is a great woman and you two are no exception; Ana and Ileana thank you for being great friends.

Behalve mijn collega’s en vrienden op het lab zijn er nog vele anderen die een bijdrage hebben geleverd, soms zonder het te weten, en voor de nodige afleiding hebben gezorgd. Ivo, sporten met jou zorgt altijd voor de broodnodige afleiding, ontspanning en uitputting. Erik and Agata, thanks again for dragging me to Poland for your wedding. Alexander en Sophie, de avonden squashen en etentjes bij jullie deden meer dan goed. Kees en Joost, we gaan al een tijd terug en hebben vele avonturen beleefd en daar ben ik jullie meer dan dankbaar voor. Dan rest mij nog mijn familie te bedanken voor hun steun en liefde. Moja kochana rodzino: Ulu, Pawle, Alicjo, Aniu, Magdaleno, François oraz dzieci. Czas spędzony z Wami jest dla mnie zawsze wyjątkowym wydarzeniem, prawdopodobnie większym niż Wam się wydaje. Papa en Mama, jullie staan altijd en onvoorwaardelijk voor mij klaar, zelfs in tijden waarin jullie het zelf moeilijk hebben en daar kan ik jullie niet genoeg voor bedanken. Irene, Koen, Dennis, Angela en alle neefjes en nichtjes, onze uitstapjes samen
vormden een welkome en heerlijke afleiding voor mij.

Mijn leven zou er heel anders uitzien zonder de steun van mijn allerliefste Milena. Jij bent mijn inspiratie en steun. Jij zorgt ervoor dat ik me elke dag weer realiseer hoe mooi de wereld is. Daarvan is onze Julia nog het mooiste voorbeeld, die zonder het zich te realiseren mij inspireert en opnieuw het leven leert.