Polymerase synthesis and potential interference of a small-interfering RNA targeting hPim-2

Shu-Qun Zhang, Qing-You Du, Yang Ying, Zong-Zheng Ji, Sheng-Qi Wang

Abstract

AIM: To synthesize three small-interference RNAs (siRNAs) by T7 RNA polymerase-catalyzed reaction, and to investigate their efficacy on modulating the expression of serine/threonine kinase Pim-2 in human colon cancer cell line.

METHODS: siRNA I, II and III were synthesized by T7 RNA polymerase-directed in vitro transcription, then transfected into human colon cancer cells SW-480. After incubation for 6 h at 37 °C, 100 µL/L FBS in RPMI 1640 was substituted into each well. After the transfection was repeated twice to inhibit hPim-2 expression, the cell size and its role in the survival of cancer cells have been just determined recently[14,15]. It is believed to be a cancer-causing gene, or oncogene. Here, we sought to use siRNA-targeting hPim-2 to determine whether this technique could be used to specifically inhibit hPim-2 expression.

RESULTS: Compared to the control group, after transfected for 48 h with hPim-2 siRNA I, II and III, the relative inhibition rates of hPim-2 mRNA expression in colon cancer cells were 65.4% (P<0.05), 45.8% (P<0.05) and 56.1% (P<0.05), respectively. The protein level of hPim-2 was decreased at 72 h compared to the untransfected cells. The relative inhibition percentages of hPim-2 protein by siRNA I, II, III were 61.6% (P<0.05), 45.8% (P<0.05) and 55.6% (P<0.05), respectively.

CONCLUSION: The in vitro transcribed siRNAs can be useful for silencing oncogene hPim-2 expression specifically and efficiently. This may open a new path toward the use of siRNAs as a gene-specific therapeutic tool.

Zhang SQ, Du QY, Ying Y, Ji ZZ, Wang SQ. Polymerase synthesis and potential interference of a small-interfering RNA targeting hPim-2. World J Gastroenterol 2004; 10 (18): 2657-2660

http://www.wjgnet.com/1007-9327/10/2657.asp

INTRODUCTION

RNAi is an evolutionarily conserved mechanism known to control insects, plants, and mammalian cells[1-4]. In this process, introduced double-stranded RNAs (ds-RNAs) silence gene was expressed through specific degradation of their cognate mRNAs[5,6]. Importantly, RNAi can be achieved in mammalian cells following transfection of synthetic 21- and 22-nucleotide (nt) small interfering (si) RNAs, indicating that RNAi may serve as a powerful tool to block the expression of target genes specifically[7,11].

Pim-2 is a member of a family of serine/threonine protein kinases that consists of two other members, Pim-1 and Pim-3, and it exists at high concentrations in many tumor cells[12,13]. Though it was identified 20 years ago, its function that maintains the cell size and its role in the survival of cancer cells have been just determined recently[14,15]. It is believed to be a cancer-causing gene, or oncogene. Here, we sought to use siRNA-targeting hPim-2 to determine whether this technique could be used to specifically inhibit hPim-2 expression.
of the experiment. Transfection of the RNA oligonucleotides was performed using Lipofectamine 2000 (Invitrogen) as directed by the manufacturer to result in a final RNA concentration of 50 mmol/L. After transfection (incubation for 6 h at 37 °C), cells were washed with PBS and incubated in fresh culture medium until additional analyses.

Analysis of hPim-2 mRNA by RT-PCR

After transfection, total RNA was isolated using TRIZOL (Invitrogen) by a single-step phenol-extraction. Subsequent RT-PCR was performed (RT-PCR kit, Promega, Madison, WI.). Briefly, first strand cDNA was synthesized using an Oligo (dT)15 primer at 42 °C for 30 min. PCR for hPim-2 and β-actin was performed in a single reaction of 20 μL volume. The latter served as a control following 28 cycles of denaturing at 95 °C for 45 s, annealing at 58 °C for 40 s, and extending at 72 °C for 40 s. Under this PCR condition, the amplification showed linearity as determined experimentally (data not shown). PCR products were run on a 30 g/L agarose gel and visualized by ethidium bromide staining, and the intensities were then measured by scanning the gel with Gel Doc 1000 (Bio-Rad), and the inhibition percentage (%) was calculated according to the following formula: inhibition percentage = (1- A_{sample}/ A_{control}) ×100.

Analysis of hPim-2 protein

The expression levels of hPim-2 protein in cells transfected with siRNAs were measured by scanning the density of bands on Western blotting. The expression level of hPim-2 mRNA with siRNAs were measured by scanning the gel with Gel Doc 1000 (Bio-Rad), and the inhibition percentage (%) was calculated according to the following formula: inhibition percentage = (1- A_{sample}/ A_{control}) ×100.

Statistics

The data were expressed as mean±standard deviation (mean±SD). Statistical analysis was performed by Student's-t-test (two tailed). All data presented at least two independent experiments.

RESULTS

Synthesis of siRNA by in vitro transcription

To generate siRNAs by *in vitro* transcription, we designed the strategy presented in Figure 2. Target sequences for siRNA were identified by scanning the length of the hPim-2 gene with an appropriate genome database to eliminate any sequences with significant homology to other genes. Those sequences that appear to be specific are the potential siRNA target sites. Besides, it is noteworthy that T7 promoters are invariant and common to any target gene. A 40 mer DNA oligonucleotide template was synthesized according to the following strategy presented in Figure 2.
by a 21 mer oligonucleotide encompassing the T7 promoter with complementary sequence preceded by two additional nucleotides (reading the sequence 5'----3'). Following transcription reactions, sense and antisense transcriptions were annealed, ethanol precipitated and yielded what we refer to as T7siRNAs. The integrity of the transcriptions was checked on a 30 g/L agarose gel (Figure 3).

Figure 3 Lane 1: T7 in vitro transcribed single-strand RNA. Lane 2: annealed double-strand DNA template. Lane 3: hybridized double-strand small interference RNA.

Effect of siRNAs on hPim-2 expression
The mRNA level of hPim-2 was determined by semi-quantitative RT-PCR. A 237-bp DNA fragment of hpim-2 gene and a 317-bp DNA fragment of β-actin gene were amplified by RT-PCR with specific primers, respectively. As shown in Figure 4A, mRNA expression level of hPim-2 was decreased when compared to the uninduced cells, while the mRNA level of β-actin as the control was almost unchanged. As shown in Figure 4B, after transfection with hPim-2 siRNA I, II and III and compared with the levels of β-actin, the relative inhibition rates of hPim-2 mRNA expression were 65.4% (P<0.05), 46.2% (P<0.05) and 56.1% (P<0.05) in colon cancer cells, respectively.

In order to verify the decrease in mRNA expression, which corresponded to the decreases at protein levels, Western blotting was performed. Figure 5A shows that the protein level of hPim-2 was decreased at 72 h compared to the uninduced cells. The relative inhibition percentages of hPim-2 protein by siRNA I, II and III were 61.6% (P<0.05), 45.8% (P<0.05) and 55.6% (P<0.05), respectively (Figure 5B).

DISCUSSION
Oncogene overexpression has been implicated in the development and progression of a variety of human cancers and, therefore, provides a potential target for cancer gene therapy[19-22]. For years, research has been focused on effective tools to specifically down-regulate oncogene overexpression such as antisense oligonucleotide strategy. However, there has been only limited success because of the lack of specificity and potency for this method. For example, screening of more than 20 oligomers is usually required before identifying one antisense that functions effectively, and the dose required for inhibiting gene expression is often not much different from the doses that lead to nonselective toxicity[23-25].

Recent progress of RNAi techniques has demonstrated the potential to overcome those limitations. The selection of targeting sequences of RNAi is less restricted, once the site is identified, sense and antisense oligonucleotides with 3’-UU overhangs can be designed, so the success rates of producing effective duplexes are higher. Just like in this experiment, siRNAs were designed complimentary to three different regions of the corresponding Pim-2 mRNA, and each of them has different level of inhibition efficacy, the suppression of hPim-2

![Image](image-url)
gene expression by these siRNAs directed at different sites varied from 45-65%. This indicates that screening potential target of RNAi is much more easy.

Besides, our results demonstrate that in vitro transcribed siRNA can effectively down-regulate oncogene expression with great efficiency. It has been suggested that siRNA may inhibit gene expression through diverse effects, inhibition of mRNA can occur through the formation of a nuclease complex called RISC (RNA-induced silencing complex) that targets and cleaves mRNA which is complementary to the siRNA. The damaged mRNA may deteriorate through the action of the RNA-dependent RNA polymerase (RdRNP), producing new siRNAs to target other mRNA. This incessant waterfall-like amplification can produce RNA interference effect at a very small dose, and inhibit the protein translation quickly and efficiently[28-30]. In our experiment, the dose required for inhibiting Pim-2 gene expression was 50 nmol/L, far below the dose required for the antisense oligonucleotide[31], indicating that siRNA synthesized by the in vitro transcription strategy can suppress the hPim-2 gene expression sensitively.

Here, we used the in vitro transcription method for the synthesis of siRNAs by T7 RNA polymerase and transferred them into cells. The main advantage of this technique is its simplicity. It provides a reproducible and highly efficient means to inhibit the target gene expression. Human Pim-2 gene, a regulated transcriptional apoptotic inhibitor, has a novel role in promoting cell autonomous survival. Over-expression of Pim-2 allows the tumour cells to ignore or become insensitive to boosters of the immune system[14]. Application of Pim-2-directed siRNA can significantly reduce Pim-2 mRNA and protein levels efficiently. Our next step is to try to manipulate the action of Pim-2 with siRNA, so that we can interfere with the survival of cancer cells.

REFERENCES

1 McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA. RNA interference in adult mice. Nature 2002; 418: 38-39
2 Tiscornia G, Singer O, Ikawa M, Verma IM. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A 2003; 100: 1844-1848
3 Brummelkamp TR, Bernards R, Agami R. A system for state expressing short RNAs in mammalian cells. Science 2002; 296: 550-553
4 Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15: 188-200
5 Wang QC, Nie QH, Feng ZH. RNA interference: Antiviral weapon and beyond. World J Gastroenterol 2003; 9: 1657-1661
6 Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific gene interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806-811
7 Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404: 293-296
8 McManus MT, Peterson CP, Haines BB, Chen J, Sharp PA. Gene silencing using micro-RNA designed hairpins. RNA 2002; 8: 842-850
9 Novina CD, Murray MF, Dykhxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8: 681-686
10 Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16: 948-958
11 Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 2002; 99: 6047-6052
12 Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, Dikkes P, Korosmey SJ, Greenberg ME. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 2002; 3: 631-643
13 Plas DR, Thompson CB. Cell metabolism in the regulation of programmed cell death. Trends Endo Met 2002; 13: 74-78
14 Fox CJ, Hammernan PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 2003; 17: 1841-1854
15 Allen J, Verhoeven E, Domen J, van der Valk M, Berens A. Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myec. Oncogene 1997; 15: 1133-1141
16 Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2002; 411: 494-498
17 Milligan JF, Uhleneck OC. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 1989; 180: 51-62
18 Konarska MM, Sharp PA. Structure of RNAs replicated by the DNA-dependent T7 RNA polymerase. Cell 1990; 63: 609-618
19 Gottlieb E, Thompson CB. Targeting the mitochondria to enhance tumor suppression. Methods Mol Biol 2003; 223: 543-554
20 Watanabe RN. Oncogene and tumor suppressor gene. Rinsho Byori 2002; 123: 131-136
21 Gerdes AM. Cancer genetics. A review of oncological molecular biology seen in relation to the human genome. Ugeskr Laeg 2002; 164: 2865-2871
22 Williams JL. Malignancy: an evolving definition of a cancer cell. Clin Lab Sci 2002; 15: 37-43
23 Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 2003; 13: 1-7
24 Kretschmer-Kazemi Far R, Szakiel G. The activity of siRNA in mammalian cells is related to structural target: accessibility of antisense oligonucleotides. Nucleic Acid Res 2002; 31: 4417-4424
25 Aoki Y, Cioca DP, Oida M, Kamiya J, Kiyosawa K. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol 2003; 30: 96-102
26 Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002; 10: 543-561
27 Scherr M, Morgan MA, Eder M. Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem 2003; 10: 245-256
28 Cathew RW. Gene silencing by double-stranded RNA. Curr Opin Biol 2001; 13: 244-248
29 Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM. Total silencing by intron-spliced hairpin RNAs. Nature 2000; 407: 319-320
30 Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 2003; 13: 41-46
31 Bertrand JR, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C. Comparison of antisense oligonucleotide and siRNAs in cell culture and in vitro. Biochim Biophys Acta 2002; 1581: 494-498