Genome Sequence Comparison of *Staphylococcus aureus* TX0117 and a Beta-Lactamase-Cured Derivative Shows Increased Cationic Peptide Resistance Accompanying Mutations in *relA* and *mnaA*

Mia Jade Sales,a George Sakoulas,b Richard Szubin,a Bernhard Palsson,a,b Cesar Arias,c,d Kavindra V. Singh,c,d Barbara E. Murray,c,d Jonathan M. Monk,a

**ABSTRACT** *Staphylococcus aureus* strain TX0117 is a methicillin-susceptible bacterium with type A beta-lactamase exhibiting a high cefazolin inoculum effect. TX0117 was cured of *blaZ*, yielding TX0117c with increased antimicrobial peptide resistance. The sequencing and genome assembly of TX0117 elucidate six mutations between TX0117 and TX0117c, including *relA* truncation and *mnaA* substitution.

Beta-lactam therapy has been associated with better outcomes than non-beta-lactam therapy (i.e., vancomycin) in patients with methicillin-susceptible *Staphylococcus aureus* (MSSA) bacteremia (1–4). Treatment standards recommend therapy with either an isoxazolyl penicillin (e.g., nafcillin, oxacillin) or cefazolin (5). Recent data have emerged to show that cefazolin demonstrates similar efficacy but better tolerability in patients than do antistaphylococcal isoxazolyl penicillins (6, 7). However, cefazolin treatment failures have been reported due to a cefazolin inoculum effect, which is defined by isolates showing an MIC of ≥16 mg/liter in assays utilizing a bacterial inoculum of 10⁷ CFU/ml compared to the standard inoculum of 10⁵ CFU/ml (8–11). The cefazolin inoculum effect is based on the ability of the beta-lactamase of some MSSA strains to overcome and hydrolyze cefazolin when bacteria are at high inoculum, and it has been shown to cause clinical failures in certain deep-seated infections. These isolates may be uncommon, but considerable regional variability is seen in their prevalence (12–15).

In order to examine the effects of different antimicrobial therapies *in vitro* against MSSA with a significant cefazolin inoculum effect, a clinical strain was isolated from a patient with MSSA endocarditis who relapsed after cefazolin therapy (strain TX0117) (11). This strain was subsequently cured by heat at 43°C and by novobiocin exposure to inactivate the beta-lactamase, yielding TX0117c (16–18). The TX0117 and TX0117c MSSA strain pair have been extensively studied in various *in vitro* models and in *in vivo* rat endocarditis models to better understand the comparative efficacy of different antibiotics against MSSA exhibiting the beta-lactamase-mediated cefazolin inoculum effect and against an isogenic MSSA that has been cured of its beta-lactamase (19, 20).

Our evaluation of TX0117 and TX0117c showed subtle but consistent increased resistance to cationic antimicrobial peptides in strain TX0117c compared to that in the TX0117 parent strain (Fig. 1), leading us to hypothesize that in addition to curing the
strain of beta-lactamase, novobiocin and heat treatment may have additionally coselected previously uncharacterized mutations in TX0117c. To investigate these mutations, we mapped short reads from the TX0117c genome to our newly sequenced and assembled TX0117 genome using breseq version 0.31.0 (option breseq -r TX0117_reference.gbk TX0117c_R1.fastq TX0117c_R2.fasta) (21).

The growth-improved clones were isolated and grown in M9 minimal medium supplemented with 4 g/liter glucose. Cells were then harvested while in exponential growth, and genomic DNA was extracted using a KingFisher Flex purification system previously validated for the high-throughput platform mentioned below (22). Shotgun metagenomic sequencing libraries were prepared using a miniaturized version of the HyperPlus Illumina-compatible library prep kit (Kapa Biosystems). DNA extracts were normalized to 5 ng total input per sample using an Echo 550 acoustic liquid-handling robot (Labcyte, Inc.), and 1/10 scale enzymatic fragmentation, end repair, and adapter ligation reactions were carried out using a Mosquito high-throughput sequencing (HTS) liquid-handling robot (TTP Labtech, Inc.). Sequencing adapters were based on the iTru protocol (23), in which short universal adapter stubs are ligated first, and then sample-specific barcoded sequences are added in a subsequent PCR step. Amplified and barcoded libraries were then quantified using a PicoGreen assay and pooled in approximately equimolar ratios before being sequenced on an Illumina HiSeq 4000 instrument with a paired-end protocol and read lengths of 150 nucleotides (nt). For all software, default parameters were used throughout, unless otherwise noted. The resulting short reads were checked for quality control using FastQC (version 0.11.5), which showed that 698,669 paired-end reads were produced in the TX0117c sequencing run with 32% GC content, and approximately 710,028 paired-end reads were produced in the TX0117 run with 33% GC content. The short reads were then assembled with Unicycler (version 0.4.2) (24). The draft TX0117 genome consists of 163 contigs and 2.758 Mb in total. The final assembled genome was annotated using Prokka (version 1.12) (25). The genome has 2,562 annotated coding sequences (CDSs), 16 tRNAs, and 4 rRNAs.

Using the breseq mutation prediction pipeline, we identified genes altered from TX0117 to the TX0117c strain (Table 1). In addition to seven deletions corresponding to regions of decreased coverage, six coding mutations were identified, which will be the focus of this initial study. Most noteworthy is the curing of \textit{blaZ}, as previously documented. The major mechanism of penicillin resistance, involving the hydrolysis of the beta-lactam ring, has been attributed to beta-lactamase, which is encoded by the \textit{blaZ} gene (26). Type A beta-lactamases contribute to more efficient inactivation of beta-lactam drugs and therefore correlate to the inoculum effect (27).

TX0117c also displayed a truncation of \textit{relA}, the GTP pyrophosphokinase involved in the stress response. \textit{relA} encodes the RELA protein, which most commonly binds NFkB1 to form a NF-kappa-B transcription factor, activated downstream by processes such as...
inflammation, tumorigenesis, and differentiation (28). Also mutated, via substitution, is the *mnaA_1* gene. It encodes a UDP-N-acetylglucosamine 2-epimerase responsible for converting UDP-GlcNAc into UDP-N-acetyl mannosamine, which is then oxidized in the formation of teichoic acids (29). Teichoic acids bind to either peptidoglycans or cytoplasmic membranes and dictate functions from cellular shape to pathogenesis. They have been proven necessary for beta-lactam resistance in methicillin-resistant *Staphylococcus aureus* (MRSA) (30) and have been shown to control bacteria susceptibility to antimicrobial peptides and cationic antibiotics (31, 32). Additional studies will be needed to examine the role of *relA* and *mnaA* in *S. aureus* susceptibility to cationic antimicrobial peptides.

**Data availability.** This whole-genome sequencing project has been deposited in NCBI GenBank under the accession no. **VSSN00000000**, and the Illumina short read data for **TX0117** and **TX0117C** have been deposited in the SRA under the accession no. **SAMN12622398** and **SAMN12622402**, respectively.

### TABLE 1 Differences in coding regions between **TX0117** and **TX0117C**

| Gene                  | Description                        | Mutation | Annotation            |
|-----------------------|------------------------------------|----------|-----------------------|
| TX0117_02137-TX0117_02167 | ltyN_3, atl_4                      | Δ25,714 bp |                       |
| TX0117_02458-TX0117_02470 | dnaC_2                             | Δ6,772 bp |                       |
| TX0117_02498-TX0117_02505 |                                    | Δ4,321 bp |                       |
| TX0117_02518-TX0117_02522 |                                    | Δ2,700 bp |                       |
| TX0117_02535-TX0117_02538 |                                    | Δ1,460 bp |                       |
| intQ                  |                                    | Δ1,166 bp | Coding (92/846 nt)    |
| xis-TX0117_02547      |                                    | Δ928 bp  |                       |
| blaZ→                  | Beta-lactamase                      | (T)     |                       |
| relA→                 | GTP pyrophosphokinase               | C→T     | O657T (CAA→AAA) (86% truncation) |
| TX0117_02559→         | Hypothetical protein                | T→A     | N24K (AAT→AAA)        |
| TX0117_01069→         | Hyaluronate lyase                   | T→C     | N476S (AAT→AGT)       |
|                       |                                    | T→C     | I471V (ATC→GTG)       |
|                       |                                    | T→C     | D457G (GAC→GGC)       |
|                       |                                    | T→G     | S450R (AGT→CGT)       |
|                       |                                    | T→G     | K271T (AAA→ACA)       |
|                       |                                    | A→T     | L262M (TTG→ATT)       |
| mnaA_1→               | UDP-N-acetylglucosamine 2-epimerase | C→T     | P1495 (CCA→TCA)       |
| TX0117_02434→         | 65-kDa membrane protein             | A→T     | N181K (AAT→AAA)       |
|                       |                                    | C→T     | S177N (AGC→AAC)       |

### REFERENCES

1. Chang FY, Peacock JE, Jr, Musher DM, Triplett P, MacDonald BB, Mylotte JM, O'Donnell A, Wagener MM, Yu VL. 2003. Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine (Baltimore) 82:333–339. https://doi.org/10.1097/01.md.0000091184.93122.09.
2. Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC, Thom KA, Cosgrove SE, Sakoulas G, Perencevich EN. 2011. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-resistant *Staphylococcus aureus* (MRSA) bacteremia. Ann Clin Microbiol Antimicrob 15:27. https://doi.org/10.1007/s12892-015-0433-3.
3. Wong D, Wong T, Romney M, Leung V. 2016. Comparative effectiveness of beta-lactam versus vancomycin empiric therapy in patients with methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. Antimicrob Agents Chemother 60:2112–2119. https://doi.org/10.1128/AAC.02800-14.
4. Byrant RE, Alford RH. 1977. Successful treatment of staphylococcal endocarditis with cefazolin. JAMA 237:569–570. https://doi.org/10.1001/jama.1977.037003000922.
5. Quinn EL, Pohlod D, Madhavan T, Burch K, Fisher E, Cox F. 1973. Clinical experiences with cephalothin and other cephalosporins in bacterial endocarditis. J Infect Dis 128:S386–S389. https://doi.org/10.1093/infdis/128.supplement_2.s386.
6. MacDowell DS, Echevarria KL, Hughes DW, Cadena JA, Bowling JE, Lewis JS, Jr. 2014. Comparison of cefazolin versus oxacillin for treatment of complicated bacteremia caused by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 58:5117–5124. https://doi.org/10.1128/AAC.02800-14.
7. McDanel JS, Roghmann M-C, Perencevich EN, Oh ME, Goto M, Livorsi DJ, Jones M, Albertson JP, Nair R, O'Shea AMJ, Schweizer ML. 2017. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis 65:100–106. https://doi.org/10.1093/cid/cix287.
8. McDanel JS, Roghmann M-C, Perencevich EN, Oh ME, Goto M, Livorsi DJ, Jones M, Albertson JP, Nair R, O'Shea AMJ, Schweizer ML. 2017. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis 65:100–106. https://doi.org/10.1093/cid/cix287.
9. McDanel JS, Roghmann M-C, Perencevich EN, Oh ME, Goto M, Livorsi DJ, Jones M, Albertson JP, Nair R, O'Shea AMJ, Schweizer ML. 2017. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis 65:100–106. https://doi.org/10.1093/cid/cix287.
10. McDanel JS, Roghmann M-C, Perencevich EN, Oh ME, Goto M, Livorsi DJ, Jones M, Albertson JP, Nair R, O'Shea AMJ, Schweizer ML. 2017. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis 65:100–106. https://doi.org/10.1093/cid/cix287.
11. Nannini EC, Singh KV, Murray BE. 2003. Relapse of type A beta-lactamase-producing Staphylococcus aureus native valve endocarditis during cefazolin therapy: revisiting the issue. Clin Infect Dis 37:1194–1198. https://doi.org/10.1086/379021.
12. Nannini EC, Strzyzowski ME, Singh KV, Bourgogne A, Rude TH, Corey GR, Fowler VG Jr, Murray BE. 2009. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: frequency and possible cause of cefazolin treatment failure. Antimicrob Agents Chemother 53:3437–3441. https://doi.org/10.1128/AAC.00317-09.

13. Wang SK, Gilchrist A, Loukitcheva A, Plotkin BJ, Sigar IM, Gross AE, O'Donnell JN, Pettit N, Buros A, O’Driscoll T, Rhodes NJ, Bethel C, Segreti J, Charnot-Katsikas A, Singh K, Schetz MH. 2018. Prevalence of a cefazolin inoculum effect associated with blaZ gene types among methicillin-susceptible Staphylococcus aureus isolates from four major medical centers in Chicago. Antimicrob Agents Chemother 62:e00382-18. https://doi.org/10.1128/AAC .00382-18.

14. Chong YP, Park S-J, Kim ES, Bang K-M, Kim M-N, Kim S-H, Lee S-O, Choi S-H, Jeong J-Y, Woo JH, Kim YS. 2015. Prevalence of blaZ gene types and the cefazolin inoculum effect among methicillin-susceptible Staphylococcus aureus strains exhibiting the cefazolin high-inoculum effect in a rat model of experimental endocarditis. Antimicrob Agents Chemother 61:e00324-17.

15. McHugh GL, Swartz MN. 1977. Elimination of plasmids from several methicillin-susceptible Staphylococcus aureus isolates from four South American hospitals. J Antimicrob Chemother 68:2773–2778. https://doi.org/10.1093/jac/dkt254.

16. Nannini EC, Singh KV, Arias CA, Murray BE. 2013. In vivo effects of cefazolin, daptomycin, and nafcillin in experimental endocarditis with a methicillin-susceptible Staphylococcus aureus strain showing an inoculum effect against cefazolin. Antimicrob Agents Chemother 57:4276–4281. https://doi.org/10.1128/AAC.00856-13.

17. McHugh GL, Swartz MN. 1977. Elimination of plasmids from several bacterial species by novobiocin. Antimicrob Agents Chemother 12:423–426. https://doi.org/10.1128/aac.12.3.423.

18. Shore AC, Brennan OM, Ehrich R, Monecke S, Schwarz S, Slickers P, Coleman DC. 2010. Identification and characterization of the multidrug resistance gene cfr in a Panton-Valentine leukocidin-positive sequence type 8 methicillin-resistant Staphylococcus aureus Nsa (USA300) isolate. Antimicrob Agents Chemother 54:4978–4984. https://doi.org/10.1128/AAC.01113-10.

19. Singh KV, Tran TT, Nannini EC, Tam VH, Arias CA, Murray BE. 2017. Efficacy of ceftaroline against methicillin-susceptible Staphylococcus aureus exhibiting the cefazolin high-inoculum effect in a rat model of endocarditis. Antimicrob Agents Chemother 61:e00324-17. https://aac.asm.org/content/61/7/e00324-17.

20. Carvajal LP, Santiago A, Echeverri A, Rios R, Rincon S, Panesso D, Diaz L, Miller W, Sun Z, Palzkill T, Arias C, Reyes J. 2018. 2063. Extracellular release of β-lactamase is responsible for the cefazolin inoculum effect (CfIE) in methicillin-susceptible Staphylococcus aureus. Open Forum Infect Dis 5:S602. https://doi.org/10.1093/ofid/ofy210.1719.

21. Deatherage DE, Barrick JE. 2014. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breqse. Methods Mol Biol 1151:165–188. https://doi.org/10.1007/978 -1-4939-0554-6_12.

22. Marotz C, Amir A, Humphrey G, Gaffney J, Gogul G, Knight R. 2017. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62:290–293. https://doi.org/10.2144/000114559.

23. Glenn TC, Nilsen RA, Kieran TJ, Sanders JG, Bayona-Vásquez NJ, Finger JW, Jr, Pierson TW, Bentley KE, Hoffberg SL, Louha S, García-De León FJ, Del Rio Portilla MA, Reed KD, Anderson JL, Meece JK, Aggery SE, Rekaya R, Alabady M, Bélanger M, Winker K. Faircloth BC. 2016. Adapterama: universal stabs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed illumina libraries (iTru & iNext). bioRxiv https://doi.org/10.1101/049114.

24. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

25. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.

26. Olsen JE, Christensen H, Aarestrup FM. 2006. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylocci. J Antimicrob Chemother 57:450–460. https://doi.org/10.1093/jac/dkl492.

27. Komodile DS, Classen DC, Burke JP, Kaiser AB. 1990. Failure of cephalosporins to prevent Staphylococcus aureus surgical wound infections. JAMA 263:961–966. https://doi.org/10.1001/jama.1990.0344070049031.

28. GeneCards Human Gene Database. RELA Gene | TF65 Protein | TF65. https://www.genecards.org/cgi-bin/carddisp.pl ?gene=RELA.

29. The Metabolomics Innovation Centre. Showing metabocard for UDP-N-acetyl-D-mannosamine (HMDB0013112). Human Metabolome Database. http://www.hmdb.ca/metabolites/HMDB0013112.

30. Brown S, Xie G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winslet V, Gekeker J, Irazoqui JE, Peschel A, Walker S. 2012. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci U S A 109:18909–18914. https://doi.org/10.1073/pnas .1209126109.

31. Peschel A, Otto M, Jack RW, Irazoqui JE, Peschel A, Walker S. 2012. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci U S A 109:18909–18914. https://doi.org/10.1073/pnas .1209126109.

32. Peschel A, Otto M, Jack RW, Kabelch J, Jung G, Götzf F. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410. https://doi.org/10.1074/jbc.274.13.8405.

33. Peschel A, Vuong C, Otto M, Götzf F. 2000. The β-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44:2845–2847. https://doi.org/10.1128/AAC.44.10.2845-2847 .2000.