A review of the lower and middle Miocene of northern Belgium

Stephen LOUWYE1*, Jef DECKERS2, Jasper VERHAEGEN3, Rieko ADRIAENS4 & Noël VANDENBERGHE3

1 Paleontology and Paleoenvironment, Department of geology, Ghent University, Krijgslaan 281/S8; Ghent, Belgium; stephen.louwye@ugent.be.
2 VITO, Flemish Institute for Technological Research, Boeretang, Mol, Belgium.
3 VPO, Planning Bureau for the Environment and Spatial Development, Department of Environment, Flemish Government, Koning Albert II-laan 20, 1000 Brussels, Belgium.
4 Qmineral Analysis & Consulting, Heverlee-Leuven, Belgium.
5 Dept. Earth and Environmental Sciences, KU Leuven, Belgium.
* corresponding author.

ABSTRACT. The stratigraphy, sedimentology and paleogeography of the lower and middle Miocene Berchem and Bolderberg Formations from northern Belgium have been extensively studied during the last decades, a.o. in the framework of doctoral research, as parts of subsurface mapping and interregional geological correlation initiatives by governmental organizations. The last formal stratigraphical revision on formation level, however, almost dates from two decades ago, notwithstanding the fact that a wealth of new data has become available. A compilation and assessment of the stratigraphical data of the lower and middle Miocene has been carried out and a refined stratigraphical framework—based on dinoflagellate cyst stratigraphy—is presented. Recommendations for the National Commission for Stratigraphy of Belgium are proposed. A new member, the Molenbeersel member, is proposed for the glauconite-bearing silts and fine sands in the upper part of the Bolderberg Formation in the Roer Valley Graben.Rhine during the late Tortonian.

KEYWORDS: Neogene, stratigraphic review, dinoflagellate cyst biostratigraphy, Molenbeersel member, southern North Sea Basin.

1. Introduction

The North Sea was a semi-enclosed basin during the Neogene. The marine connection between the southern North Sea Basin and the Channel was prevented by the Weald-Artois ridge, while in the north an open marine connection with the Norwegian-Greenland Sea existed (Ziegler, 1990; Rasmussen et al., 2008; Rasmussen et al., 2010).

Tectonic uplift of northern Belgium during late Oligocene time pushed the southern coastlines of the North Sea northwards, and late Oligocene sedimentation in Belgium was limited to a thin cover of glauconitic sand in northern Belgium; it is only well developed in the subsiding Roer Valley Graben (RVG) in the very northeast (see 2.3.3.) (Table 1). The complete thickness of the Berchem Formation is divided into the Houthalen Member and the Genk Member and the Zonderschot Member, while the Bolderberg Formation is divided into the Biesterbeek Member, the Kiel Member, the Antwerp Member and the Zonderschot Member, while the Bolderberg Formation was deposited further southeast (Fig. 1). The correlation between the Berchem and the Bolderberg Formations has always been hampered by the occurrence of the late Miocene Diest Formation, deposited in a large incised valley in between the two aforementioned formations. The Berchem Formation holds the Edgemen Member, the Kiel Member, the Antwerp Member and the Zonderschot Member, while the Bolderberg Formation is divided into the Houthalen Member and the Genk Member, including the white quartz sand Ogrimbie facies (see 2.3.3.) (Table 1). The complete thickness of the Berchem Formation increases from about 30 m in the west to over 100 m in the east. The Bolderberg Formation has a maximum thickness of circa 160 m in the Roer Valley Graben in northeast Belgium (Molenbeersel borehole (BGD 049w-0225, DOV kb18d49w-B225) according to Broothaers et al. (2012), truncates locally the subjacent formations and wedges out in a westward direction.

The most recent formal revision of the lithostratigraphy of the lower and middle Miocene of Belgium already dates from four decades ago (De Meuter & Laga, 1976), and was only revised by the Stratigraphical Commission of Belgium in the beginning of this century (Laga et al., 2001). However, many recently published studies discuss facies of biostratigraphy, sedimentology, lithostratigraphy, etc. of the lower and middle Miocene (see below) and are complemented by initiatives of governmental authorities to construct detailed, comprehensive geological models. The rationale of this paper is to synthesize the available lithostratigraphical and biostratigraphical data, to review the newly available data, to evaluate the validity and status of formations and members, and to present a consistent stratigraphic framework. An overview of the discussed outcrops and boreholes can be found at https://www.dov.vlaanderen.be/data/opdracht/2020-022192.

2. Stratigraphy

2.1. Berchem Formation in the type area

2.1.1. The formation, sedimentology and wireline log signature

The Berchem Formation was for the first time formally defined in the Berchem Formation and the Bolderberg Formation (De Meuter & Laga, 1976; see also Laga et al., 2001) (Table 1). The former formation was deposited in northernmost Belgium, between Antwerp in the west to Lommel in the east, while the latter formation was deposited further southeast (Fig. 1). Correlation between the Berchem and the Bolderberg Formations has always been hampered by the occurrence of the late Miocene Diest Formation, deposited in a large incised valley in between the two aforementioned formations. The Berchem Formation holds the Edgemen Member, the Kiel Member, the Antwerp Member and the Zonderschot Member, while the Bolderberg Formation is divided into the Houthalen Member and the Genk Member, including the white quartz sand Ogrimbie facies (see 2.3.3.) (Table 1). The complete thickness of the Berchem Formation increases from about 30 m in the west to over 100 m in the east. The Bolderberg Formation has a maximum thickness of circa 160 m in the Roer Valley Graben in northeast Belgium (Molenbeersel borehole (BGD 049w-0225, DOV kb18d49w-B225) according to Broothaers et al. (2012), truncates locally the subjacent formations and wedges out in a westward direction.

The lower and middle Miocene deposits are formally grouped in the Berchem Formation and the Bolderberg Formation (De Meuter & Laga, 1976; see also Laga et al., 2001) (Table 1). The former formation was deposited in northernmost Belgium, between Antwerp in the west to Lommel in the east, while the latter formation was deposited further southeast (Fig. 1). Correlation between the Berchem and the Bolderberg Formations has always been hampered by the occurrence of the late Miocene Diest Formation, deposited in a large incised valley in between the two aforementioned formations. The Berchem Formation holds the Edgemen Member, the Kiel Member, the Antwerp Member and the Zonderschot Member, while the Bolderberg Formation is divided into the Houthalen Member and the Genk Member, including the white quartz sand Ogrimbie facies (see 2.3.3.) (Table 1). The complete thickness of the Berchem Formation increases from about 30 m in the west to over 100 m in the east. The Bolderberg Formation has a maximum thickness of circa 160 m in the Roer Valley Graben in northeast Belgium (Molenbeersel borehole (BGD 049w-0225, DOV kb18d49w-B225) according to Broothaers et al. (2012), truncates locally the subjacent formations and wedges out in a westward direction.

The most recent formal revision of the lithostratigraphy of the lower and middle Miocene of Belgium already dates from four decades ago (De Meuter & Laga, 1976), and was only revised by the Stratigraphical Commission of Belgium in the beginning of this century (Laga et al., 2001). However, many recently published studies discuss facies of biostratigraphy, sedimentology, lithostratigraphy, etc. of the lower and middle Miocene (see below) and are complemented by initiatives of governmental authorities to construct detailed, comprehensive geological models. The rationale of this paper is to synthesize the available lithostratigraphical and biostratigraphical data, to review the newly available data, to evaluate the validity and status of formations and members, and to present a consistent stratigraphic framework. An overview of the discussed outcrops and boreholes can be found at https://www.dov.vlaanderen.be/data/opdracht/2020-022192.

2. Stratigraphy

2.1. Berchem Formation in the type area

2.1.1. The formation, sedimentology and wireline log signature

The Berchem Formation was for the first time formally defined by De Meuter & Laga (1976) as a green to blackish, fine to medium-grained sand, often very glauconitic and with a
minor clay content. Shells are abundantly present, dispersed or concentrated in massive layers. Parts of the formation, such as the Kiel Member, are locally decalcified. A distinct gravel bed of dark, rounded flint pebbles is present at the base. The type locality is Berchem (De Meuter & Laga, 1976) and the type sections of the members were temporary outcrops for the highway around the city of Antwerp (see Fig. 2 for details).

For decades, the Edegem Member, the Zonderschot Member and the Antwerpen Member of the Berchem Formation have been extensively searched for macrofossils, especially mollusks (a.o., Glibert, 1945, 1952, 1954; Herman & Marquet, 2007). Recently macrofossils have been retrieved and studied from the Kiel Member (Everaert et al., 2019; De Schutter & Everaert, 2020, this volume). The Berchem Formation proved to hold a rich fossil fauna of marine mammals which occur in specific horizons (Misonne, 1958; Lambert, 2005, 2007, 2008; Lambert & Louwye, 2006; Steeman, 2010; Dewaele et al., 2017a, 2017b). The first biostratigraphical studies of the Berchem Formation were carried out with calcareous microfossils (mainly foraminifers) retrieved from temporary outcrops made for large infrastructure works around the city of Antwerp (a.o., Hooyberghs & De Meuter, 1972; De Meuter, 1980; Hooyberghs, 1980, 1983). A biostratigraphical analysis with organic-walled dinoflagellate cysts of the members of the Berchem Formation in the type locality was carried out by Louwye et al. (2000). The latter authors analyzed samples from five temporary outcrops which were described in detail by De Meuter et al. (1976), and they correlated the deposits with the Miocene dinoflagellate cyst biozonation by de Verteuil & Norris (1996), defined in the US Atlantic Coastal Plain. The results by Louwye et al. (2000) can now be re-evaluated following the comprehensive and Sr-calibrated biozonation defined onshore and offshore Denmark (Dybkjær & Piasecki, 2010; Eidvin et al., 2014) (Fig. 3). Based on data from Verhaegen (2020, this volume), the modal grain size of the Berchem Formation varies between 130 and 330 µm, with an average of 220 ± 56 µm. The Kiel Member and Antwerpen Member are generally slightly coarser than the Edegem Member. The modal grain size of the Edegem Member,
Lower and Middle Miocene of Belgium

Based on 8 samples, is $190 \pm 38 \mu m$, with a clay content of $4.7 \pm 3.2\%$ and a D90 of $284 \pm 97 \mu m$. The Kiel Member, based on 9 samples, has a modal grain size of $248 \pm 51 \mu m$, a clay content of $2.5 \pm 1.3\%$ and a D90 of $404 \pm 108 \mu m$. The Antwerpen Member, based on 17 samples, has a modal grain size of $219 \pm 61 \mu m$, a clay content of $3.7 \pm 2.3\%$ and a D90 of $352 \pm 102 \mu m$ (Fig. 4).

Based on clay mineralogy, no distinction can be made between the members of the Berchem Formation, with smectite being the dominant clay mineral (Adriaens, 2015). All lower and middle Miocene marine units are rich in glauconite. The highest glauconite contents are noted in the Antwerpen Member, with values over 50% (see below). Bulk mineralogical data are available for the fraction <32 µm (Adriaens, 2015). In this fraction, the sediments of the Berchem Formation are dominated (30–90%) by dioctahedral Al-rich clays (mainly smectite and interstratified illite/smectite) and Fe-rich clay (glauconite).

Figure 2. Geological cross section of the Berchem Formation, including the Edgem, Kiel and Antwerpen Members, in the type area. The type area is along the highway around the city of Antwerp and was defined in the temporary outcrops Antwerp - Montignystraat, Antwerp - Van Rijswijcklaan, Berchem - Grote Steenweg, Borgerhout - Rivierenhof (for location of the temporary outcrops, see Fig. 1). Hatched area: no lithostratigraphic data available. Dashed line: location and depth of profile. After Laga (unpublished, archives BGD PGL 74-103-1bis v2).

Ma Epoch	Stage	Nannoplankton Biozonation	Dybkjær & Piasecki (2010)	de Verteuil & Norris (1996)	Munsterman & Brinkhuis (2004)
L	Tortonian	NN8: A. umbraculum	DN8	M12-13	
		NN7: D. verrucosa		M10-11	
Serravallian		NN6: A. andalusiensis	DN6-7	M6-9	
M	Langhian	NN5: U. aquaeductum	DN5	M5	
		NN4: L. truncatum		M4	
		NN3: C. aubryae			
		NN2: E. insignae			
Burdigalian	Aquitanian	NN1: C. cantharellus	DN1	M1	
	C. hamulatum				
	T. pelagica				
	C. amicum				
	Homotrebiium spp.				
	C. galea				
	D. phosphoritica				
Oligocene	Chattian				

Figure 3. Comparison of the dinoflagellate cysts biozonation by Dybkjær & Piasecki (2010), Munsterman & Brinkhuis (2004) and de Verteuil & Norris (1996). After Dybkjær & Piasecki (2010). Red lines are firm correlations (after Everaert et al., 2020, this volume).
minerals). Both K-feldspar and plagioclase are present (<15%). The carbonate content is highest in the Edegem Member (15–20%) and lowest in the Kiel Member (<5%). Depending on the fossil species, calcite or aragonite are present. Siderite can occur as secondary mineral.

The Berchem Formation is characterized by a large amount of epidote, amphiboles and garnet, making up on average more than 50% of the transparent heavy mineral composition (Verhaegen et al., 2019; Verhaegen, 2020, this volume). The values for these mineral groups combined are the highest of any Belgian Neogene formation. The highest content (36%) of epidote and amphibole, related to a northern marine sediment input, is reached in the Antwerpen Member (Verhaegen, 2020, this volume). The Berchem Formation is relatively rich in CaO and Na2O compared to the other Neogene units, which may be related to the unweathered nature of these sediments and their high smectite content, in comparison to other Belgian Neogene units. The Berchem Formation is also relatively rich in K2O, MgO, P2O5, and Al2O3, all components being related to the high glauconite content (Verhaegen, 2019). The elevated P2O5 in the bulk analysis of glauconite pellets of the Berchem Formation could be related to the common presence of phosphatic pebbles and bone fragments; in this respect it is remarkable that glauconite pellets related to the common presence of phosphatic pebbles and bone fragments. Siderite can occur as secondary mineral.

Data from Bastin (1966) based on sieving analyses. Following intervals were measured: 0–2–10–20–50–63–88–125–175–250–350–490–600 µm. Data points are indicated on the curves. 3 Data from Huygebaert & Nolf (1976), also based on sieving analysis.

On wireline log data, the Berchem Formation is characterized by high gamma ray (GR) and moderate resistivity values. While the gamma ray values can be similar to those of the underlying clays or sandy clays of the Boom and Eigenbilzen Formations, the resistivity values of the sand of the Berchem Formation are markedly higher. The lower boundary of the Berchem Formation therefore coincides with a strong upward increase in resistivity. Compared to the Berchem Formation, the overlying Diest Formation is characterized by lower gamma ray and higher resistivity values which agree with the smaller amounts of glauconite and an overall coarser grain size, except for the Dessel Member (Adriaens, 2015). The boundary between the Berchem Formation and Diest Formation can therefore be positioned at an upward decrease in gamma ray values and increase in resistivity values. Generally, the highest gamma ray values are situated in the upper part of the Berchem Formation (Fig. 5).

2.1.2. Edegem Member

Nyst (1861) first observed the Edegem Member and described the unit as ‘Sables d’Edegem à Panopea menardii’ in a quarry near Antwerp. The Edegem Member was regarded as the lower part of a twofold middle Miocene unit, named the ‘Anversien’ (Cogels & Van Erbortn 1879; de Heinzelin, 1956). This view was also adopted during the International Neogene Symposium in 1961 (Tavernier & de Heinzelin, 1963). The base of the Edegem Member is formed by the Burcht Gravel consisting of dark rounded flint pebbles, shell fragments, shark teeth and bone fragments. Reworked foraminifers, septaria and glauconite provide evidence for substantial reworking of sediment from the underlying Oligocene Boom Formation (Vandenberghje et al., 1998). The Edegem Member consists of green to grayish-green fine-grained, clayey and glauconitic sand. Large numbers of mollusks are dispersed throughout the sediment (De Meuter & Laga, 1976). In general, the granulometry of the Edegem Member displays an upwards coarsening signature as observed in two locations in the Antwerp area (Bastin, 1966), corroborated by the log-interpretation of the Edegem Member in borehole Oelegem (Fig. 5).

Figure 4. Grain size distribution curves for the different members of the Berchem Formation. 1 Data from Verhaegen (2020, this volume), based on laser analyses. 2 Data from Bastin (1966) based on sieving analyses. The curves based on sieving are less accurate than those based on laser analyses as less grain size intervals are defined during sieving. For Bastin (1966) the following intervals were measured: 0–44–62–88–124–175–250–350–490–600 µm. Data points are indicated on the curves. 3 Data from Huygebaert & Nolf (1976), also based on sieving analysis. Following intervals were measured: 0–2–10–20–50–63–88–125–177–250–354–500–600 µm. Data points are indicated on the curve.
Aptian Zone N4 of Blow (1969). Hooyberghs & Moorkens (1988) presented in a synthetic paper a correlation with the planktonic foraminifera NPF11 _Globigerinoides primordius_ Zone defined by Spiegler et al. (1988), also indicating an Aptianian age. The biostratigraphical analysis of the planktonic foraminifera by Hooyberghs (1999a) from a temporary outcrop at Wilrijk confirmed the Aptianian age of the Edegem Member, although _Globorotalia kugleri_ was not recorded. Doppert et al. (1979) placed the benthic foraminifera from the Edegem Member in the lower Miocene BFN1 _Trifarina gracilis rugulosa_ – _Elphidium ungeri_ Zone, an assemblage zone erected by the latter authors and based on the work by De Meuter & Laga (1976) in a temporary outcrop in Antwerp. The compilation by Willems et al. (1988) indicates a correlation with the benthic foraminifera Zone B7, a zone of earliest Miocene age, not further specified. Calcareous nannoplankton of the Edegem Member was studied by Martini & Müller (1973) and correlated to the mid-Burdigalian NN3 Zone of Martini (1971). According to Verbeeck et al. (1988) the Edegem Member correlates to the _Discoaster druggi_ NN2 Zone and the _Sphenolithus belemnos_ NN3 Zone defined by Martini (1971). The correlation is indicative for an Aptianian to Burdigalian age. Gaemers (1988) examined Gadidae otoliths and placed them in his _Collolus johanetta_ Zone11. Rare _Bolboforma rotundata_ were recorded in the Edegem Member in temporary outcrops in the Antwerp area, and point to an age between 23.8 Ma and 18 Ma according to Spiegler (2001), i.e. latest Chattian to early Burdigalian. Janssen & King (1988) reviewed previous pteropod collections from the Edegem Member and proposed a correlation with the early Miocene Pteropod Zone 18 based on the occurrence of _Vaginella austriaca_. Janssen (2001) suggested an age no older than late Burdigalian for the Edegem Member.

The Edegem Member from the temporary outcrops in Antwerp Montignystraat (BGD 028W0394, DOV kb15d28w-B448) and Van Rijswijckerlaan (BGD 028W0395, DOV kb15d28w-B449) (Fig. 2, see also De Meuter et al., 1976) holds the dinoflagellate cysts _Exochosphaeridium insignis_ species and _Cordosphaeridium cantharellus_, indicative of a correlation of the Edegem Member with the _Cordosphaeridium cantharellus_ Zone (Dybkjær & Piasек, 2010) (Fig. 6). The new Sr-dating of dinoflagellate cyst bioevents by the latter authors allows to constrain the age of the Edegem Member between 19 Ma and 18.4 Ma (early Burdigalian).

Glaucolite grains pose particular problems for radiometric dating because of their complicated origin and slow early evolution, and therefore are called sub-authigenic by Dickin (2005). Also, glauconite pellets can be reworked at a considerable scale as was demonstrated for the Tortonian Diest Formation in the Campine area (Vandenberge et al., 2014). Still, many attempts using glauconites for dating strata have been undertaken with a varying success (Odin et al., 1969, 1974; Keppens; 1981; Keppens & Pastecs, 1982). Radiometric glauconite dating of the Miocene deposits of northern Belgium was also attempted (Odin et al., 1969, 1974; Keppens, 1981; Keppens & Pastecs, 1982) and the results were summarized by Odin & Kreuzer (1988) in the IGCP 124 North Sea stratigraphy review volume (Vinken, 1988). The reliability of the obtained ages was evaluated through their compatibility with established biostratigraphical data of the strata and through the similarity of the ages obtained by the couples K-Ar and Rb-Sr in the same stratigraphic level. Applying these criteria, the glauconites in the Edegem Member indicate K-Ar ages between 21.3 Ma and 26.6 Ma (Aptianian – Chattian) while the Rb-Sr ages between 24 and 30 Ma (Chattian – Rupelian) are considered a result of reworking, a conclusion already reached in an earlier paper by Odin et al. (1969) for a sample from the Edegem Member at Terhagen.

2.1.3. Kiel Member

The Kiel Member was for the first time observed by Vanden Broeck (1874) during the construction works for the fortresses around the city of Antwerp. The latter author recognized already the relation with the subjacent Edegem Member and described the Kiel Member then as ‘Partie supérieure altérée des sables à _Panopées du Kiel_.’ The name was never really in use and the sandy Kiel unit was even not discussed during the International Neogene Symposium in 1961 (Tavernier & de Heinzelin, 1963).

The Kiel Member was formally re-introduced by De Meuter & Laga (1976) and described in the type locality Kiel (a suburb of the city of Antwerp) as a non-fossiliferous (i.e. decalcified), medium fine-grained to coarse-grained sand, very rich in glauconite, sometimes concentrated in patches. Thin layers of coarser sand grains are occasionally present at the base of the unit. This facies occurs in the south and central part of the city of Antwerp. To the north and east of Antwerp, however, this member becomes fossiliferous, and renders the distinction with the superjacent Antwerpen Member difficult or even impossible (De Meuter & Laga, 1976). The validity of this facies as a separate member was questioned (Louwye et al., 2000). Everaert et al. (2020, this volume) studied several temporary outcrops of the Kiel Member in Antwerp and could distinguish the Kiel and Antwerpen Members by a slight but marked color difference due to the dark green to black color and very glauconite-rich nature of the sediments.
to a somewhat lower clay and glauconite content and a coarser sand fraction in the Kiel Sand Member.

The Kiel Member was analyzed biostatigraphically with dinoflagellate cysts by Louwye et al. (2000) in temporary outcrops around Antwerp, namely Van Rijswijcklaan and Grote Steenweg (BGD 028W0397, DOV kb15d28w-B451) (Fig. 2, see also De Meuter et al., 1976). The recovered dinoflagellate cyst assemblages had a low diversity and poor to medium preservation, contrary to the subjacent and superjacent members where diverse and well-preserved assemblages were recorded. The presence of Exochosphaeridium insigne, the marker species of the eponymous zone of Dybkjær & Piasecki (2010), in the lower part of the Kiel Member in Van Rijswijcklaan combined with the absence of Cordosphaeridium cantharellus, refers the lower part of Kiel Member to the (lower part of the) Exochosphaeridium insigne Zone of mid-Burdigalian age (18.4 Ma – 17.8 Ma). The upper part of the Kiel Member in the Grote Steenweg outcrop belongs to the superjacent Cousteaudinium aubryae Zone defined by the first occurrence of the eponymous species to the first occurrence of Labyrinthodinium truncatum. The latter species is not recorded in the Kiel Member as two separate incomplete sequences resulting from a competing tectonic uplift and a rising sea level. The Kiel Member was deposited between 18.4 Ma and 15.97 Ma (middle to late Burdigalian) (Fig. 6).

In their study of the stratigraphy and the macrofossils of three temporary outcrops of the Kiel Sand in the Antwerp area, Everaert et al. (2020, this volume) also report on the dinoflagellate cyst assemblages. The relative dating with dinoflagellate cysts, albeit following the biozonation by de Vertueil & Norris (1996), indicate the presence of the DN2 and DN3 Zones and is in agreement with the above-mentioned zonation by Dybkjær & Piasecki (2010) (Fig. 3). The dinoflagellate cyst analysis of a sample from the very base of the Kiel Member however pointed to a late Aquitanian age. The cause for this deviating inferred age of this sample needs further elucidation. Age dating of glauconites in the Berchem Formation shows that reworking is not uncommon even in the Antwerpen Member (see below). This recent study on the Kiel Member confirms the hiatus between the Kiel and Antwerpen Members expressed by the rapid disappearance of dinoflagellate cyst biozone DN3 in northern direction (Everaert et al., 2020, this volume, fig. 11); these authors even suggest to locate the Early Miocene Unconformity (EMU) of Munsterman et al. (2019) at this level.

As is the case for the Edegem Member, the Kiel Member contains glauconite which, based on radiometric dating and grain-size distribution curves, are presumed to be reworked (Odin et al., 1974; Vandenberghe et al., 2014; Adriaens, 2015). The radiometric datings further show divergence between K-Ar ages (23 to 25.3 Ma; Chattian) and Rb-Sr ages (30 Ma; Rupelian) (Odin & Kreuzer, 1988). As is the case for the Edegem Member, the Kiel Member observed only in one outcrop, and a thin layer of coarse sand, Vandenberghe et al. (1998; 2004) interpreted the Edegem Member and Kiel Member as two separate incomplete sequences resulting from a competing tectonic uplift and a rising sea level. The Edegem Member displays a coarsening upwards signature in the grain size (Fig. 5), suggestive of a highstand systems tract. The log-signature suggests that maximum regression is represented by the coarser Kiel Member and a subsequent transgression marked the transition towards the Antwerpen Member. No distinct break in sedimentation can be deduced from dinoflagellate cyst biostratigraphy, indicating that the Kiel Member was deposited only slightly later than the Edegem Member (Louwye, 2000; Louwye, 2005). Taking into account the age constraints as derived above, the Edegem Member and Kiel Member could approximately be correlated to the Bur 2 and Bur 3 sequences.
as figured by Hardenbol et al. (1998, chart 2). A correlation with the sequence stratigraphic scheme by Rasmussen (2004a, 2004b), defined in Denmark, proved more difficult given the absence of a precise dating of the sequence boundaries. The Antwerp Member can maybe be correlated with the highstand system tract of their sequence C, while the Kiel Member would then be correlated to sequence D.

2.1.4. Antwerpen Member

The Antwerp Member was observed for the first time by Nyst (1845) during the works for the fortifications around Antwerp and was called ‘Sable noir du Fort d’Herenthals’. Later, Vanden Broeck (1874) renamed the unit as ‘Sables à Pectunculus pilosus’. The Antwerp Member was for the first time formally described by de Heinzelin (1956) and regarded as the upper part of the middle Miocene ‘Anversien’. This view was later adopted during the International Neogene Symposium in 1961 (Tavernier & de Heinzelin, 1963) and the definition of the member was emended by De Meuter & Laga (1976).

The Antwerp Member consists of dark green to blackish, medium fine-grained, slightly clayey and very glauconitic sand (De Meuter & Laga, 1976). Characteristic are shell layers of a.o. *Glycymeris baldii* with a varying thickness. Layers with phosphatic concretions, friable sandstones, bones and shark teeth are observed towards the base of the member. The latter authors stipulate that no clear basal gravel is present. The average glauconite content reaches 47% (Fig. 7), which is the highest amount in any unit in the Campine Basin (Adriaens, 2015). In contrast to the Edegem Member and the Kiel Member, the Antwerp Member contains mostly authigenic glauconite (Vandenbergh et al., 2014; Odin & Kreuzer, 1988).

![Pellet glauconite content](image)

Figure 7. Pellet glauconite contents (in wt%) of samples of the Edegem, Kiel and Antwerp Members of the Berchem Formation. Pellet glauconite was isolated from the bulk sediments by magnetic separation after washing and pre-sieving at 32 μm. The pellet glauconite content of three Oligocene Voort Formation samples was added for comparison.

The Antwerp Member was examined for planktonic foraminifera by Hooyberghs (1983) in the temporary outcrop Kievistraat, and he proposed a correlation with the N6 *Globigerinoides trilobus* Zone (late Burdigalian) to the N9 *Globorotalia peripheroronda* Zone (Langhian) of Blow (1969). Hooyberghs (1983) studied a poorly preserved foraminifera assemblage from the Antwerp Member and noted that the planktonic foraminifera from the lower part of the member are distinctly older than those from the upper part. Hooyberghs & Moorvens (1988) proposed in a review paper a correlation with the NPF12 *Globobulimininae* trilobus Zone to the NPF13 *Globorotalia praecincta* Zone defined by Spiegler et al. (1988), also pointing towards a late Burdigalian to Langhian age. They furthermore state that the base of the Serravallian NPF14 Zone could be present. Willems et al. (1988) attributed the benthic foraminiferal assemblage of the Antwerp Member to the B7 Zone of the IGCP 124 Working Group. Based on benthic foraminifera, De Meuter & Laga (1976) correlated the Antwerp Member from the Rivierenhof outcrop (BGD 028E0499, DOV kb15d28e-B580) with the mid-Miocene *Uvigerina tenueipustulata – Elphidium inflatum* Assemblage Zone. Doppert et al. (1979), based on De Meuter & Laga (1976), formalized the latter zone as the BFN2 *Uvigerina tenueipustulata – Elphidium inflatum* Zone. The calcareous nannoplankton from a temporary outcrop at Borghout led Martini & Müller (1973) to propose a correlation with the NN4 Zone (late Burdigalian to Langhian). Verbeek et al. (1988) confirmed this attribution in a review paper.

Dinoflagellate cysts from the Antwerp Member were studied in the three temporary outcrops Grote Steenweg, Kievistraat and Rivierenhof (Louwy et al., 2000) (Fig. 2, see also De Meuter et al., 1976). The *Labyrinthodinium truncatum Zone* (Dybkkjær & Piasecki, 2010), defined from the lowest occurrence (LO) of the eponymous species to the LO of *Unipontidinium aquaeductus* and dated as early Langhian (15.97 Ma to 14.8 Ma), was recognized in all three outcrops. The superjacent *Unipontidinium aquaeductus Zone*, defined from the LO of the eponymous species to the LO of *Achomosphaera andalousiensis* and dated as early Langhian to early Serravallian (14.8 Ma to 13.2 Ma), is only present in the Rivierenhof outcrop. The uppermost part of the Antwerp Member in the Rivierenhof outcrop holds both *Achomosphaera andalousiensis* and *Caninosphaera passica* and can therefore be allocated to the *Achomosphaera andalousiensis Zone* dated between 13.2 Ma to 12.8 Ma (early to mid-Serravallian) (Fig. 6). The Antwerp Member was thus deposited between 15.97 Ma and 12.8 Ma (Langhian – mid-Serravallian).

The radiometric datings of glauconites from the Antwerp Member in temporary outcrops along the highway around the city (Fig. 2) give a K-Ar age of 20 Ma (Burdigalian) and a Rb-Sr age of 18.5 Ma to 16.5 Ma (Adriaens, 2015). The obvious discrepancy between the grain shapes and the size distribution of glauconite pellets and quartz grains in samples of the three members of the Berchem Formation confirms the reworking of the pellets in the Edegem Member and Kiel Member and the authigenesis in the Antwerp Member (Vandenbergh et al., 2014; Adriaens, 2015). The obvious discrepancy between the radiometric and biostratigraphical ages indicates that the authigenic glauconites in the Antwerp Member also contain reworked pellets, shifting the radiometric age to somewhat older ages.

The Antwerp Member is the third incomplete sequence of the lower-middle Miocene, due to continuing tectonic uplift of the Brabant Massif to the south. The presence of authigenic glauconite, phosphate pebbles and hardgrounds near the base of the Antwerp Member are interpreted as an indication of a new transgressive phase, i.e. a transgressive surface (see also fig. 11 in Everaert et al., 2020, this volume). Each member of the Berchem Formation was thus considered to represent the transgressive surface (see also fig. 11 in Everaert et al., 2020, this volume). The radiometric age range for the deposition of the Antwerp Member was interpreted as an indication of a new transgressive phase, i.e. a transgressive surface (see also fig. 11 in Everaert et al., 2020, this volume). The radiometric age range for the deposition of the Antwerp Member was interpreted as an indication of a new transgressive phase, i.e. a transgressive surface (see also fig. 11 in Everaert et al., 2020, this volume). The radiometric age range for the deposition of the Antwerp Member was interpreted as an indication of a new transgressive phase, i.e. a transgressive surface (see also fig. 11 in Everaert et al., 2020, this volume). The radiometric age range for the deposition of the Antwerp Member was interpreted as an indication of a new transgressive phase, i.e. a transgressive surface (see also fig. 11 in Everaert et al., 2020, this volume).
2.1.5. Zonderschot Member

The Zonderschot Member occurs in the area of Heist-op-den-Berg in the south of the Berchem Formation outcrop area. The Zonderschot Member was first described during construction works for a gas pipeline and formally defined by De Meuter & Laga (1976) as a dark green, rather fine-grained, clayey, slightly ligniferous, very glauconitic sand. The micaceous sediment is very rich in homogeneously dispersed shells (De Meuter & Laga, 1976). The formation rests unconformably on the lower Oligocene Boom Formation and is overlain to the northeast and east by the Campine Diest Formation. The Zonderschot Member wedges out to the south. The unit was described in detail in a 7 km long trench by Huyghebaert & Nolf (1979). Based on the analyses of these authors, the Zonderschot Member is finer grained than the other members of the Berchem Formation, with a mode between 125 and 17 µm and a higher clay content of approximately 12% (Fig. 4).

Hooberghs (1980) recognized in a temporary outcrop at Heist-op-den-Berg in the Zonderschot Member the regional Globigerinoides trilobus trilobus/Globigerinoides altiaperturus Biozone (Blow, 1969), a zone correlated later by Hooberghs (1966b) to Biozone N6 or Biozone N7, which would then indicate at least a Burdigalian age for the deposits. De Meuter & Laga (1976), Doppert et al. (1979) and De Meuter (1980) examined the benthic foraminifera from the Zonderschot Member in a temporary outcrop and correlated the sand with the middle Miocene Ugiverina tenuipustulata – Elphidium inflatum BFN2 Zone.

The calcareous nanoplankton from the Zonderschot Member indicates the presence of the NN4 Zone, and a late Burdigalian to early Langhian age could be inferred (Verbeek et al., 1988). Nolf (1977), Huyghebaert (1978), and Huyghebaert & Nolf (1979) studied the teleost otoliths from the type-area of the Zonderschot Member and inferred deposition during middle Miocene times. Glaubrecht (1988) correlated the Zonderschot Member with otolith Zone 12 (German regional stages Oxlundian, late Hemmoorian or late Burdigalian, earliest Langhian). Spiegler (2001) recorded the Bolboforma rotundata Zone in the Zonderschot Member and inferred an early Miocene age.

Louwye (2000) analyzed the dinoflagellate cysts from the Zonderschot Member from two locations in the Zonderschot area (DOV TO-19720101 and DOV kb24d9e-B180) and correlated the deposits with the Distatisodinum paradoxxus DN4 Zone by de Verteuil & Norris (1996). The Langhian Labyrinthodinium truncatum Zone by Dybkjær & Piasecki (2010), defined in the Danish part of the North Sea Basin, is correlatable with the latter zone, but is more detailed in terms of the assemblage (Fig. 6). The age of the zone is early Langhian (15.97 Ma to 14.8 Ma). The radiometric dating of the Zonderschot Member based on glauconites is considered as reliable with an age of 15.5 Ma (early Langhian) (Odin & Kreuzer, 1988).

The Zonderschot Member is coeval with the lower part, and the lower sequence (Bur 5/Lan 1), of the Antwerp Member (Louwye, 2000), and differs from the latter by the presence of mica and lignite fragments, a statement previously advanced by Huyghebaert & Nolf (1979).

2.2. The Berchem Formation outside the type area

The Berchem Formation was recovered in the Campine area, i.e. the area north and east of Antwerp, in numerous boreholes, drilled as a service of the Geological Survey of Belgium (Fig. 1). In the records of the Geological Survey of Belgium, the lower and middle Miocene deposits are usually referred to as Berchem Formation with only sporadic reference to members, (e.g. "Sands of Antwerpen s.l." in the Poederlee borehole—see below; “Antwerpens sands” and “Edemeg sands” in the Kalmthout borehole—see below). The Berchem Formation was analyzed biostratigraphically with dinoflagellate cysts in eight cores from the Campine area, from which six by Louwye (2005) at Kalmthout (BGD 006E0110, DOV kb7d9e-B239), Rijkevorsel (BGD 016E0153, DOV kb8d16e-B36), Oostmalle (BGD 029E0124, DOV kb16d29e-B276), Poederlee (BGD 030W0300, DOV kb16d30w-B315), Retie (BGD 031W0243, DOV kb17d31w-B228) and Mol (BGD 031W0221, DOV kb17d31w-B212) (Fig. 8), and two by Munsterman & Deckers

(2020) at Mol (ON-Mol-1, BGD 031w0314, DOV ON-Mol-1) and Weelde (BGD 008E0159, DOV kb8d8e-B161). Two of these cores, the Rijkevorsel core and the Poederlee core were biostratigraphically analyzed with foraminifera and were reported on in the logs (unpublished data by P. Laga).

Munsterman & Deckers (2020) recorded the oldest Miocene (early Aquitanian) at the very base of the Weelde borehole in one sample (Fig. 1). The oldest Miocene deposits noted by Louwye (2005) are present in the Kalmthout well in the Campine area, the Antwerp area and more to the south in the Burcht (DOV TO-20050101A and Terhagen area (DOV TO-20050101B) (Fig. 1), and hold the early Burdigalian Cordosphaeridium cantharellus Zone (19 Ma to 18.4 Ma, see above). In the Antwerp area, the Cordosphaeridium cantharellus Zone is recognized in the Edegem Member. The superjacent mid-Burdigalian Exochosephera insignis Zone (17.8 Ma to 17.8 Ma) has a large geographical extent and is present from the Kalmthout well in the north to Terhagen in the Antwerp area in the south (i.e. the southernmost extent of the Miocene), and to the east as far as Poederlee (Fig. 1). The late Burdigalian Cousteaudinium aurbyae Zone (17.8 Ma to 15.97 Ma) is present in all wells in the central to eastern part of the Campine area as far as Retie, and is particularly well developed in the Oostmalle well with a thickness of circa 12 m. In the Antwerp area, both the Exochosephera insignis Zone and the Cousteaudinium aurbyae Zone are recognized in the Kiel Member. The lower Miocene foraminifera Zone Trifarina gracilis rugulosa – Elphidium ungeri was recognized in the Rijkevorsel and Poederlee wells at comparable depths of the E. insignis and C. cantharellus Zones.

The superjacent early Langhian Labyrinthodinium truncatum Zone (15.97 Ma to 14.8 Ma) and early Langhian to early Serravallian Unipontidinium aquaeductus Zone (14.8 Ma to 13.2 Ma) are present in the entire Campine area with moderate thickness but are best developed in the Oostmalle well with a thickness of 4 m and 3 m, respectively. The youngest mid-Miocene biozone is the early to mid-Serravallian Achomosaphaera andalusiensis Zone (13.2 Ma to 12.8 Ma) in the Kalmthout and Retie wells, and does not exceed 1.5 m. In the type area of the Berchem Formation, the mid-Miocene Labyrinthodinium truncatum, Unipontidinium aquaeductus and Achomosaphaera andalusiensis Zones are recognized in the Antwerp Member. The dinoflagellate cyst zonation corroborates the presence of the mid-Miocene foraminifera Zone Ugiverina tenuipustulata – Elphidium inflatum Zone in the Rijkevorsel and Poederlee wells at comparable depths of the above-mentioned dinocyst zones.

The Miocene transgression thus entered northern Belgium from a north to northwestern direction. Early Aquitanian deposits are recorded in the base of the Weelde borehole in the eastern Campine area near the border with The Netherlands. The oldest deposits of the Berchem Formation in the western Campine area are recorded in the Kalmthout area and are coeval with the Edegem Member of the type area. It is only during mid- and late Burdigalian times that the sea transgressed to the east as far as Retie, and deposited sediments coeval with the Kiel Member of the type area. The thickest Burdigalian deposits are present in the Oostmalle area. Langhian and early Serravallian deposits, coeval with the Antwerp Member in the type area, have a fairly constant and moderate thickness ranging between circa 7 m and 2 m in the Campine area.

2.3. Bolderberg Formation

2.3.1. The formation, sedimentology and wireline log signature

The Bolderberg Formation was described for the first time as ‘Bolderien’ by Dumont (1849) who assigned a Miocene age to the unit. Dumont (1849) already recognized the twofold division: the Elsloo gravel bed, followed by a marine, glauconitic lower unit and an upper lignitic, sandy unit which he considered as fluvialitic in origin. The Bolderberg Formation was subsequently the subject of many studies, and the stratigraphic position of the formation switched from the Miocene to the Pliocene, and back to the Miocene. A key observation was made by Haeft (1935) during the digging of a mine shaft at Houthalen in the coal mining district of the Campine area, where the superposition of the lower glauconitic, marine sand and the superjacent non-marine sand was observed for the first time. Haefl (1935) advanced furthermore
a correlation of the marine ‘Boldérien’ with the ‘Anversien’ (see above), and indirectly attributed a middle Miocene age. De Heinzelin & Gilbert (1956) introduced the ‘Boldérien’ as a stratigraphic entity consisting of a basal gravel, a marine lower part and an upper continental part.

The Bolderberg Formation was formally defined by De Meuter & Laga (1976) and re-iterated by Laga et al. (2001) as a succession of marine to continental deposits. The type locality is the village Bolderberg in the eastern Campine area. The Bolderberg Formation occurs furthermore in the subsoil of the central and eastern part of the Limburg province with outliers in the hills of the southern part of the Limburg province and the eastern part of the Flemish Brabant province (Deckers et al., 2019).

The typical marine-continental cycle was originally used to subdivide the Cenozoic in the Belgian Basin (Rutot, 1883) and was also used in the former 1:40 000 mapping. Gullentops (1963, fig. 4) used the cycle as a sedimentary model for the Cenozoic in north Belgium. However, Houtheus & Matthijs (2020, this volume) and Dusar (archives BGD 048E0294) have argued that the Opitter sand, interpreted as part of the Bolderberg Formation in the sand pit, is erroneous. In a recently drilled well at Opitter (BGD 048E0294, DOV 48E0294), the stratigraphic sequence consisting of the Bolderberg, the Diest and the Kasterlee Formations can unequivocally be identified and is coherent with the regional stratigraphy at the southwestern side of the Neeroeteren Fault, thus rendering an additional fault superfluous.

Based on only three samples, the Houthalen Member of the Bolderberg Formation has a modal grain size of 172 ± 12 µm, a clay content of 2.1 ± 0.7% and a D90 of 411 ± 274 µm (Verhaegen, 2020, this volume). One of those samples has a second coarse mode of 623 µm explaining also the large variation in D90. However, these three samples which are all from the Wijshagen borehole (BGD 048W0180, DOV kb16d30w-B315), should be reconsidered as representing the Genk Member rather than the Houthalen Member (Deckers & Louwye, 2019). Within the Genk Member a very white silica sand occurs which was informally called Opgrimbie sand or Opgrimbie facies.

A third member, the Opitter member, was proposed by Gullentops & Huygebaert (1999) and mapped by Sels et al. (2001) on the geological map 18-10 Maaseik-Beverbeek. The proposal was based on the stratigraphic interpretation of an outcrop in the Opitter Molen sand pit by Gullentops (1963), and follows previous interpretations (a.o. de Heinzelin, 1963a). However, Houtheus & Matthijs (2020, this volume) and Dusar (archives BGD 048E0294) have argued that the Opitter sand, interpreted as part of the Bolderberg Formation in the sand pit, is erroneous. In a recently drilled well at Opitter (BGD 048E0294, DOV 48E0294), the stratigraphic sequence consisting of the Bolderberg, the Diest and the Kasterlee Formations can unequivocally be identified and is coherent with the regional stratigraphy at the southwestern side of the Neeroeteren Fault, thus rendering an additional fault superfluous.

Within the Genk Member a very white silica sand occurs which was informally called Opgrimbie sand or Opgrimbie facies.

A third member, the Opitter member, was proposed by Gullentops & Huygebaert (1999) and mapped by Sels et al. (2001) on the geological map 18-10 Maaseik-Beverbeek. The proposal was based on the stratigraphic interpretation of an outcrop in the Opitter Molen sand pit by Gullentops (1963), and follows previous interpretations (a.o. de Heinzelin, 1963a). However, Houtheus & Matthijs (2020, this volume) and Dusar (archives BGD 048E0294) have argued that the Opitter sand, interpreted as part of the Bolderberg Formation in the sand pit, is erroneous. In a recently drilled well at Opitter (BGD 048E0294, DOV 48E0294), the stratigraphic sequence consisting of the Bolderberg, the Diest and the Kasterlee Formations can unequivocally be identified and is coherent with the regional stratigraphy at the southwestern side of the Neeroeteren Fault, thus rendering an additional fault superfluous.
Compared to the Berchem Formation, a larger amount of Al$_2$SiO$_5$ but without sulfates and with an increased kaolinite content. Of the Opgrimbie facies is similar to that of the Genk Member. In contrast, the Genk Member does contain more secondary sulfate minerals (<32% of all units is dominated by quartz). Bulk mineralogical data are available for the fraction <32 µm (Adriaens, 2015). The mineralogy (≤32 µm) of the Houthalen Member is very similar to that of the Bolderberg Formation. However, the carbonate amount is very low (<1%) and consists only of siderite. The Genk Member is significantly less rich in clay minerals (<50%) and does not contain any glauconite minerals (Fe-rich clays). In contrast, the Genk Member does contain more secondary sulfate minerals and it has a larger amorphous content. The mineralogy of the Opgrimbie facies is similar to that of the Genk Member, but without sulfates and with an increased kaolinite content. Compared to the Berchem Formation, a larger amount of AlSiO$_5$-polymorphs (kyanite, sillimanite and andalusite), staurolite and ultrastable minerals is recorded in the Bolderberg Formation. These differences from the Berchem Formation are apparent in the marine Houthalen Member but become even stronger in the continental Genk Member. The Berchem Formation is characterized by a large amount of epidote, amphiboles and garnet, making up on average more than 50% of the heavy mineral composition (Verhaegen et al., 2019; Verhaegen, 2020, this volume). The difference between the two formations can be explained by the more southern location of the Bolderberg Formation, near the Rhône-Meuse river system and local rivers draining the Ardennes and Brabant Massif (Verhaegen et al., 2019; Verhaegen, 2020, this volume).

The lower boundary of the Bolderberg Formation with the Oligocene Voort or Eigenbieten Formations is not easy to delineate on geophysical log data, but regularly coincides with an upwards increase in gamma ray values and decrease in resistivity values (Deckers et al., 2019) (Fig. 9). The lower part of the Bolderberg Formation consists of high gamma ray and relatively low resistivity values of the glauconite-rich, clayey, fine-grained Houthalen Member. The upper—generally thicker—part consists of low to very low gamma ray and relatively high resistivity values of the glauconite-poor, coarse-grained Genk Member. The transition between the Houthalen and Genk Members is consequently expressed by a gradual upward decrease in gamma ray values and increase in resistivity. This gradual change continues in the lower part of the Genk Member, and is interpreted as representing a coarsening upwards trend (Deckers & Louwye, 2017).

Close to RVG border fault zone, the subdivision of the Bolderberg Formation in the Houthalen and Genk Members is still clearly evidenced in the lithology of the Wijshagen borehole and in the geophysical logs of the Gruitrode borehole (BGD 048W0185, DOV kb18d48W-B186; Fig. 9). However, across this fault zone in the Molenbeersel borehole Deckers & Munsterman (2020, fig. 3) distinguished an additional 156 m slightly glauconitic and lignite-containing fine sand between the top of the Genk Sand and the base of the Diest Sand from which it differs in the marked increase in gamma and therefore higher GI values in the latter. This additional 156 m thick interval has been a stumbling block in all previous interpretative attempts (see, e.g., Demytenaere & Laga, 1988; Verbeek et al., 2002; Broothaers et al., 2012). Deckers & Munsterman (2020) have argued that this additional interval is comparable to the Serravallian Vrijheerenberg Sand in the Dutch stratigraphy. No comparable lithostratigraphic units of such age are known in Belgium and therefore a new lithostratigraphic unit has to be introduced. It is proposed to include this additional sand package in the Bolderberg Formation as the Molenbeersel member (see paragraph 2.3.5.).

The Bolderberg Formation is topped by the basal gravel layer of the Diest Formation. On wireline logs, the boundary between the Bolderberg Formation and Diest Formation coincides with a subtle increase in gamma ray values caused by an increase in glauconite content (Deckers & Louwye, 2017).

2.3.2. Houthalen Member

The well-developed, transgressive Elsloo gravel at the base of the Bolderberg Formation consists of reworked Oligocene components, dark blue, egg-shaped, indented phosphate pebbles and shark teeth (Vandenbergh et al., 1998). Tavernier (1954) already stressed the importance of the Elsloo gravel as a reference level. These characteristic pebbles occur under a thin glauconitic sand between Leuven and Tienen (Vandenbergh & Gullentops, 2001), while Houthuys (2014) reports similar pebbles in the Flemish Hill sand base gravel near Ronse. The Elsloo gravel is overlain by the marine Houthalen Member: a dark green, often clayey, medium fine-grained sandy unit, micaceous, slightly ligniferous and glauconitic. Similar to the Berchem Formation, dispersed and concentrated mollusks occur which are also reworked in the basal gravel of the superjacent Diest Formation (De Meuter & Laga, 1976). The Houthalen Member is slightly less rich in clay minerals (<50%), and its average glauconite content compared to the glauconitic sand of the Bolderberg Formation (17% versus >30%), which can be explained by a more landward position of the Bolderberg Formation with a stronger continental influence (Adriaens, 2015). The presence of lignite in the Houthalen Member furthermore testifies of a more proximal depositional setting, contrasting with the open marine depositional setting of the Berchem Formation (Deckers & Louwye, 2017).

A first study with benthic foraminifera of the Houthalen Member led De Meuter (1970) to propose tentatively a lateral stratigraphical equivalence with the Antwerpen Member, and thus a middle Miocene age. De Meuter & Laga (1976) recognized both in the Edegem Member and the Houthalen Member the Trifarina gracilis rugulosa – Elphidium ungeri Zone and thus lowered the stratigraphic position to the lower Miocene. De Meuter (1980) finally proposed a position in between the Edegem and Antwerpen Members, Willems et al. (1988) stated that the Houthalen Member and the Edegem Member both hold the lower Miocene interregional benthic foraminiferal B7 Zone of the IGC (124 Working Group).

Based on planktonic foraminifera, Hooyberghs & De Meuter (1972) attributed the Houthalen Member to the upper part of the N4 Zone and N5 Zone of Blow (1969) and a stratigraphic position between the Edegem Member and Antwerpen Member was inferred. Hooyberghs (1983) made a more detailed study of the planktonic foraminifera from the Houthalen Member and recognized tentatively the N5 and the N6 Zones of Blow (1969) of Burdigalian age. Hooyberghs & Moorrens (1988) confirmed the presence of the Burdigalian interregional NPF12 Zone (Spiegler et al., 1988) in the Houthalen Member (and in the lower part of the Antwerpen Member), while the Edegem Member holds the Aquitanian NPF11 Zone (cf. supra). In two sequence stratigraphic review papers, Vandenbergh et al. (1998, 2004) linked the Houthalen Member to the Edegem Member, a correlation that was fully supported by the benthic and planktonic foraminifera which actually placed the Houthalen Member in between the Edegem and Antwerpen Member (see above). Martini & Müller (1973) found a similar nannoplankton assemblage in the Houthalen Member and the Edegem Member, a finding that was later corroborated by Verbeek et al. (1988) who stated that both members hold the nannoplankton NN2 Zone and NN3 Zone. Wouters (1978) recognized in the Houthalen Member the ostracod Pterygothyris continens – Kupiera donnae Zone, which is correlatable to the lower Miocene U2 zone of Gramann (1988).

Louwye & Laga (2008) analyzed the dinoflagellate cysts a section in the Wijshagen core that was considered at that time to belong to the Houthalen Member. Their analyses showed that, following the biozonation of de Verteuil & Norris (1996), the entire analyzed section holds the DN4 and DN5 Zones and deposition
Figure 9. The Bolderberg Formation in the Wijshagen borehole and the correlations with the nearby Gruitrode borehole (according to Deckers & Louwye, 2017) and the Molenbeersel borehole (according to Deckers & Munsterman, 2020). The thickness of the Bolderberg Formation strongly increases from the Campine Block into the Ruhr Valley Graben as the Molenbeersel member proposed here is absent in the first and present in the latter. Dinoflagellate cyst analyses on the Wijshagen borehole were carried out by Louwye & Laga (2008). The lowermost sample was taken in the top of the Houthalen Member, which therefore—just like the lower part of the overlying Genk Member—belong to the Labyrinthodinium truncatum Zone. Note that between the Unipontidinium aquaeductus and the Amiculosphaera umbraculum Zones, the Achomosphaera andalousiensis and Gramocysta verrucula are lacking in the Wijshagen borehole.

This inferred pre-Langhian (Burdigalian) age for the Houthalen Member is thus in agreement with previous biostratigraphical studies with calcareous microfossils (cf. Hooyberghs & De Meuter, 1972; Martini & Müller, 1973; De Meuter & Laga, 1976; Wouters, 1978; Hooyberghs, 1983; Hooyberghs & Moorkens, 1988; Willems et al., 1988; see also Louwye & Laga, 2008). The Houthalen Member can be considered coeval with the Edegem and Kiel Members following the palynological analysis, and its topmost part possibly with the lowermost part of Antwerpen and Zonderschot Members.

2.3.3. Genk Member and Opgrimbie facies

The Genk Member is the upper member of the Bolderberg Formation and consists of white to yellowish sand deposited in a more continental setting compared to the subjacent Houthalen Member. The continental influence is indicated by its quartz-rich nature, lack of significant glauconite, the presence of lignite and the heavy mineral and clay mineral composition (Gullentops, 1972-1973; Verhaegen, 2020, this volume; Adriaens & Vandenberghe, 2020, this volume). Macrofossils are generally lacking although shells are recorded at the lower part of the unit in the Wijshagen borehole (Deckers & Louwye, 2017). Based on the dinoflagellate cyst analysis in the Wijshagen borehole by
Louwy & Laga (2008), correlated to chronostatigraphy using the zonation of Dybkjær & Piasecki (2010), the Genk Member in the eastern Campine area was deposited during the Langhian to earliest Serravallian, i.e. the same time interval as the main body of the Antwerpen Member in the Antwerp area (Fig. 6). The Zonderschot Member is a coeval unit lying geographically in between.

The Genk Member has a yellowish color near the surface in the eastern Brabant area (Vandenberghe & Gullentops, 2001) and on the hill tops west of Brussels ('Sables chamois’, see below) (Buffel & Matthijs, 2009). In the deeper subsurface it has a brownish-yellowish color (geological map 25 Hasselt), while in the eastern part of the same map the dominant color becomes white although some levels still have a yellowish color (Matthijs, 1999). Further eastwards, on the geological maps 26 Rekem and 18-10 Maaseik-Beverbeek the entire Genk Member is described as white sand and in this area also very white silica glass quarried by the Sibelco company occurs.

In the Sibelco sand pit in Opgrimbie a lignite complex of about 3 m thickness is observed within the Genk Member (Gullentops, 1963, 1972-1973). It undoubtedly corresponds to the prograding coastal peat swamps of either Morken Lignite Seam or the Frimmersdorf Lignite Seam which have the largest geographical distribution of the lower to middle Miocene Ville Formation lignites in the Lower Rhine Graben. The Morken Lignite Seam has a middle to late Burdigalian age and the Frimmersdorf Seam has a Langhian age (Utescher et al., 2012, fig. 3). In The Netherlands the Heksenberg Member of the Groote Heide Formation consisting of white quartz-rich sand is comprised in between these two seams (van Loon, 2009; van der Meulen et al., 2009; Deckers & Munsterman, 2020).

Matthijs (1999) further subdivided the Genk Member in the eastern part of the geological map 25 Hasselt and established a fourfold subdivision based on the occurrence of gravel layers or equivalent levels of coarser grain size. The lower grain unit has a gradual transition with the underlying marine glauconite Houthalen Member. It is separated from the overlying sand by the Terlamen gravel, which corresponds to the lower gravel in the Bolderberg section and holds silicified mollusks concentrated above the Terlamen gravel, which corresponds to the lower gravel in

The Zonderschot Member is a coeval unit lying geographically in between the above lying section (samples 256.3 m to 279.9 m). In boreholes of the geological map 25 Hasselt, an upper third

The Maaseik cored borehole (BGD 49W20, DOV kb18d49w-B220, Fig. 1) was drilled in the easternmost part of the Campine area near the border with The Netherlands and is structurally located on the shoulder of the Roer Valley Graben. Vandenberghe et al. (2005) reported on the Miocene, Pliocene and Quaternary deposits through a holostratigraphical multi-proxy analysis. The Miocene Breda Formation was encountered between a depth of 302 m and 198 m. The base of the Breda Formation was not attained during the drilling and the formation is overlain by the upper Miocene unit X (Fig. 10) (Vandenberghe et al., 2020; Louwy & Vandenberghe, 2020, this volume). A biostratigraphical analysis with marine palynomorphs (mainly dinoflagellate cysts) was carried out following the biozonation by De Goeije & Norris (1996, 1998) and the reference list of the US. The lowermost part of the sequence (samples 295.8 m and 292.4 m) was tentatively attributed to the upper Langhian–early Serravallian DNS Zone. The above lying sequence holds the Zones DN6 to DN9 implying a correlation with the mid-Serravallian to upper Torritonian.

The Breda Formation is now re-interpreted following the biozonation of Dybkjær & Piasecki (2010) for correlation purposes with the dinoflagellate zonation of the Berchem Formation. The Breda Formation is divided into two parts.

The lowermost part (samples 295.8 m to 279.9 m) hold the Labyrinthodinium truncatum/Unipontadinium aquaductus Zones (Fig. 10). No further differentiation could be made since the key species *U. aquaductus* was not recorded. This section of the core has an inferred Langhian to early Serravallian age. The above lying Achomosphaera andalousiensis Zone is recognized in the interval holding the three samples (275.8 m, 270.9 m and 265.8 m) based on the presence of the eponymous species together with *Cannosphaeropsis passio* and *Cerebrocysta poulsenii*. Both latter species have their first occurrence in this zone according to Dybkjær & Piasecki (2010). The *A. andalousiensis* Zone has an early to mid-Serravallian age. The Gramocysta verrucula Zone is recognized in the above lying section (samples 256.3 m and 245.5 m). The zone has an inferred Serravallian to early Torritonian age. The above lying section until the upper boundary holds the
Tortonian *Amiculosphera umbraclulm* Zone (samples 234.5 m and 227.5 m) and the upper Tortonian *Hystrichosphaeropsis obscura* Zone (samples 220.5 m to 191.5 m). The superjacent unit X holds also the *H. obscura* Zone (Louwye & Vandenberghe, 2020, this volume).

The precise boundaries between the dinoflagellate zones as indicated on Figure 10 are determined by the investigated sample depths combined with the lithological information from the core descriptions and the geophysical log signatures. The latter lithological changes and log signatures fit well with the dinoflagellate cyst zone divisions. Vandenberghe et al. (2005) already stipulated that in the Maaseik well a lithofacies unknown in Campine area is present (‘unknown facies in Campine’, Fig. 10). This interval in the Maaseik core corresponds partly to the *A. andalousiensis* Zone and entirely to the *G. verricula* Zone. The latter zone is indeed absent in the Antwerp and Campine area where the youngest recognized zone is the *A. andalousiensis* Zone. Vandenberghe et al. (2005) furthermore labelled in the Maaseik core a section as ‘Upper Antwerp Sand’ (Fig. 10) which now, after the biostratigraphic re-interpretation following Dybkjær & Piaecki (2010) corresponds to the lower part of the *A. andalousiensis* Zone. The deposits in the Maaseik core holding the upper part of the *A. andalousiensis* Zone and the *Gramocysta verricula* Zone correspond thus to the minimal duration of the hiatus observed in the Antwerp and Campine areas (see above).

The Bolboforma of the Breda Formation were analyzed by Hooyberghs et al. (2004) and four biozones were recognized. The revision of the Bolboforma biozones by King (2016) is used here. From top to base following Bolboforma biozones were recognized: the *B. compressispinosa* Zone (samples 234.5 m), the Bolboforma *compressispinosa* Zone (samples 237.5 m and 246.5 m; 11.9 Ma – 11.56 Ma), the *Bolboforma badenensis* Zone (sample 259.5 m; 12.6 Ma to 11.9 Ma). The Bolboforma *subfragoris* zone (11.56 Ma – 10.50 Ma) was not recognized between the *B. compressispinosa* and *B. capsula* zones, most probably because of the barren interval of circa 10 m. If the barren interval would not correspond to the missing *B. subfragoris* zone but on the other hand to either the *B. capsula* or *B. compressispinosa* zone, a hiatus of about 1 Ma could be present at that level. The Bolboforma zonation and stratigraphic interpretation confirms the dinoflagellate cyst interpretation notwithstanding minor inherent discrepancies related to calibration.

2.3.5. Molenbeersel member

The additional sand interval between 369 m and 525 m in the Molenbeersel borehole (see section 2.3.1.) is here proposed as the new Molenbeersel member. Compared to the underlying Genk Member the unit is characterized by a markedly higher GR signal (Fig. 9). This is consistent with its lithology of brown-gray to gray-green, clay- and shell-bearing silt and fine-grained sand that contains lignite and glauconite, in contrast to the quarter-rich Genk Sand. The gamma ray values in the Molenbeersel member interval increase from a basal gravel towards a maximum in the central part, which is richest in glauconite and shells (including Glycymeris) and is also micaceous. From this maximum, a decrease takes place in the gamma ray values towards the top section, which coincides with an increase in lignite. The top of the Molenbeersel member in the Molenbeersel borehole is capped by the basal gravel layer of the Diest Formation as is the case with the Genk Member in the Campine area (Fig. 9). On wireline logs, this boundary between the Boldenberg Formation and Diest Formation coincides with a subtle increase in gamma ray values caused by an increase in glauconite-content (Deckers & Louwye, 2017). Unfortunately, no relevant biostratigraphic data are available in the Molenbeersel borehole itself for direct comparison with the nearby Dutch RVG stratigraphy or with the nearby Maaseik borehole in the Belgian RVG. Comparison with the Vrijherenberg Sand, as discussed in Deckers & Munsterman (2020) in the borehole Groote Heide, is mainly based on the trends in the GR signal between the Genk Sand and the Diest Sand. The Vrijherenberg Sand has a Serravallian age based on dinoflagellate cysts biostratigraphy. The implied Serravallian age of the additional Molenbeersel member interval is compatible...
The abundance of shallow marine and inner neritic dinoflagellate cyst taxa in the Berchem Formation in the type area indicates deposition in a shallow marine environment (Louwye et al., 2000) and corroborates similar observations by Doppert et al. (1979) based on benthic foraminifera. However, the presence of oceanic dinoflagellate cyst taxa in the Antwerp Member also testifies of a sporadic oceanic influence through currents in the shallow depositional environment of the southern North Sea Basin, most probably during periods of high sea level. The presence of mid-latitude glauconitic microfossils in the Antwerp Member is indicative of slow sedimentation rates generally associated with a marine transgression and a depositional water depth deeper than 15 to 20 m (McRae, 1972; Girèsse & Odin, 1973). Based on teleost otoliths, Huyghebaert & Nolf (1979) suggested deposition of the Zonderschot Member in a warm and rather calm, littoral to neritic environment, and consider it as shallower than the depositional environment of the Antwerp Member. This is supported by the bivalves from the Zonderschot Member indicating a similar depositional near shore environment below wave base, most probably in an embayment (Ringelé, 1974). The presence of dinoflagellate cyst species with an oceanic to outer neritic affinity in the other mainly marginal marine dinoflagellate cyst assemblage of the Zonderschot Member at the southernmost rim of the depositional area of the Berchem Formation may represent a maximum flooding surface at the basin margin (Louwye, 2000).

The Genk Member of the Bolderberg Formation was deposited in a marginal marine depositional environment (Louwye & Laga, 2008; Deckers & Louwye, 2017) with limited short-lived incursions of enhanced continental and fluviatile input, as testified by the variations in marine organic-walled palynomorphs (dinoflagellate cysts, acritarchs), organic-walled non-marine and terrestrial palynomorphs (green algae, pollen), and the presence of lignite and wood fragments. A more proximal depositional setting than the more open marine depositional environment of the coeval Berchem Formation in the Antwerp area can be postulated (Deckers & Louwye, 2017). The well-rounded and very well sorted grains point to a beach environment also suggested by the presence of gravel layers (see also van Loon, 2009). Some rare cross beds also point to a higher energy environment. The relatively shallow depositional environment of the Genk Member despite the deposition during a eustatic sea-level rise related to the middle Miocene Climatic Optimum (MMCO, 17–14.5 Ma) (Zachos et al., 2001; Miller et al., 2005), can be explained by an increase in sediment supply (Deckers & Munsterman, 2020). A similar explanation was given for the synchronous (Langhian) shallowing in the eastern North Sea Basin (Rasmussen et al., 2010). As mentioned above, the Zonderschot Member of the Berchem Formation probably occupies a geographically transitional position between the open marine and the marginal marine environments of the Antwerpen Member of the Berchem Formation and the Genk Member of the Bolderberg Formation, respectively.

The end of the MMCO marks the start of a eustatic sea-level fall (Zachos et al., 2001; Miller et al., 2005), and coincides with the transition from the Genk Member towards the—hereby newly introduced—Molenbeersel member of the Bolderberg Formation (Deckers & Munsterman, 2020). The lithology of the Molenbeersel member, however, does not reflect a shallowing after the Genk Member, but on the contrary, a deepening of the depositional environment, with a return of glauconite (higher gamma ray values) and reduction of the lignite content (Fig. 9). The high gamma ray values in the central part of the Molenbeersel member probably reflect maximum flooding. This maximum flooding surface was indeed correlated by Deckers & Munsterman (2020) with an interval in the Groote Heide borehole where a maximum of open marine dinocyst species was noted by Munsterman et al. (2019). The latter authors’ dinocyst species analyses indicated a middle to early late Serravallian age for the maximum flooding surface. Also, in other parts of the North Sea Basin, such as the northern Roer Valley Graben or eastern North Sea Basin, indications for Serravallian transgression were found despite eustatic sea-level lowering (Rasmussen et al., 2010; Rasmussen & Dybkjær, 2014; Thöle et al., 2014; Prinz et al., 2017). Rasmussen (2004a) explained the relative sea-level rise during eustatic sea-level lowering by Serravallian tectonic subsidence of the North Sea Basin. Alternatively, Deckers & Munsterman (2020) proposed that a strong reduction of the input of sediments after the Langhian—under continued subsidence—might also explain the relative sea-level rise in the Serravallian.

The reduction in gamma ray values and increase in lignite content in the upper part of the Molenbeersel member indicates a shallowing of the depositional environment (probably during this shallowing that former—relatively condensed—deposits of the Molenbeersel member on top of the Campine area were eroded), as reflected by the Serravallian hiatus in the Wijshagen borehole (Deckers & Munsterman, 2020; Fig. 9). During the Tortonian, the Berchem and Bolderberg Formations were transgressed and covered by the Diest Formation.

3. Geographical distribution

The early—middle Miocene strata encountered in the subsurface of northeastern Belgium generally dip in a northern direction. The glauconitic sand of the Berchem Formation outcrops in the city of Antwerp and is buried up to more than 100 m further north at the boundary with The Netherlands. As a result of differential subsidence of the Roer Valley Graben, the depth also increases in an easterly direction. Within the Roer Valley Graben itself, the
A strong northern heavy mineral signature characterizes glauconiceous sand of the Diest Formation. This signal was interpreted as the Molenbeersel Member, located on top of the main lignite seams. The German Neurath Sands, located on top of the main lignite seams, is not characteristic for the Diest Formation, and in the nearby Campine area as testified by the reduced amount of glauconite, the presence of lignite in the Diest Formation, especially in the Genk Member, and by the more southern continental heavy mineral signature. Seismic interpretations show that the clastics of the Genk Member were deposited as part of a northwest prograding delta-system (Deckers, 2015). According to Verhaegen (2019) the main source of sediments from the Genk Member was the submarine cover of the Brabant Massif and Ardennes, drained by local rivers and the larger Meuse river. Further landward in the subsiding Roer Valley Graben, thick lignite seams of the Ville Formation formed in Germany (Schieter et al., 2005). Seaward of this delta-system, the glauconitic sand of the Antwerpen Member was deposited under low sedimentation rates, indicative for sediment starvation (Deckers & Louwye, 2019). Consequently, the boundary between the Genk and Antwerpen Members marks the maximum extent of the Langhian delta-system. In the new 3D geological model of Flanders (the G3Dv3-model) (Deckers et al., 2019), this boundary was estimated to have been situated roughly at the region where the Diest Formation strongly incised in the underlying units. This gully incision at the base of the Diest Formation was thought to be the result of early Tortonian marine ingressions with strong (tidal) current erosion into latest Serravallian fluvial channels (Vandenbergh et al., 2014; Houthuys et al., 2020, this volume). Because of their relatively elevated position, the toposets of the Langhian clinoforms of the Genk Member probably formed a barrier against the Tortonian tidal currents that therefore formed the gully incisions only their toteset region (see fig. 7 in Houthuys, 2014). The Langhian clinoforms may thereby also have redirected these Tortonian currents into the Hageland bay where maximum erosion took place. Contrary to the relatively high-lying Campine area, the differentially subsiding Roer Valley Graben was thought not to have been influenced by the abovementioned erosive processes. Therefore, it is expected to be the most complex diastem succession. In the Molenbeersel borehole (Fig. 9), located in the center of the RVG near the transitional area between the Berchem and Diest Formations, the upper boundary of the Genk Member is situated at a depth of ca. 520 m overlain by glauconite, lignite-poor, shelly sand. The lithology of this sand is not characteristic for the Diest Formation, and in the nearby Maastricht borehole, age-equivalent strata of the Diest Formation occur at much shallower depth according to Vandenberghe et al. (2005; base at circa 240 m depth). Demeytenaere & Laga (1988) interpreted this sand as belonging to the Berchem Formation. However, compared to the Berchem Formation, the sand in the Molenbeersel borehole is much paler and contains less glauconitic and some lignite. More recently, Deckers & Munsterman (2020) correlated this sand with the early to latest Serravallian stratigraphic succession in the Grote Heide borehole located in the southeastern part of The Netherlands. They interpreted this sand as belonging to the Dutch Vrijherenberg Sands, equivalent to the German Neurath Sands, located on top of the main lignite seams. In this study, this sand interval in the Molenbeersel borehole is introduced as the Molenbeersel member. In the Campine area, the Molenbeersel member was not yet described, probably due to non-deposition or —more likely—erosion below the base of the Diest Formation. A thin veneer of early to mid-Serravallian deposits in the Campine area was recorded only in the Kalmthout and Rietie wells as belonging to the Berchem Formation (Fig. 8). Whereas the Genk Member of the Bolderberg Formation has a different lithology than the Berchem Formation, distinguishing the Houthalen Member of the Bolderberg Formation from the Berchem Formation is more difficult. Although the lithology of the Houthalen Member and Zonderschot Member is very similar, i.e. shell-rich, dark green, clayey, glauconite-rich, micaceous fine sand with lignite, these units are thus not entirely coeval (see above) and therefore the Zonderschot Member cannot be regarded wholly as a lateral facies of the Houthalen Member. However, in the Pellenbeersel Hill near Leuven the characteristic Elsloo gravel was observed together with glauconitic sand and was interpreted by Verhaegen (2019) as the Houthalen Member. The heavy mineral composition of this glauconitic sand has a higher proportion of metamorphic material and a lower percentage of epidote, amphibole and garnet compared to the Berchem Formation, making it feasible that it belongs to the more continually influenced Bolderberg Formation (Verhaegen, 2020, this volume). This observation would place the boundary between the Houthalen Member and the Antwerpen Member in the area where the lower to middle Miocene sediments were eroded by the Diest gully. In the G3Dv3-model, the lower Burdigalian Edegem Member of the Berchem Formation was mapped in the area surrounding Antwerp and Tongeren. From Heist-op-den-Berg in the southeast towards Brasschaat in the northwest (Deckers et al., 2019). The presence of the Edegem Member further northwest in the harbor of Antwerp remains uncertain. In the Kalmthout borehole, coeval deposits of the Edegem Member are recorded (see 2.2.). Dinoflagellate cyst biostratigraphy indicates that in the Campine area the mid-Burdigalian to lower Serravallian deposits, i.e. deposits coeval with the Kiel and Antwerpen Members in the type area, are all lithologically regarded as Antwerpen Member, according to the borehole logs of the Geological Survey of Belgium in the absence of sediment analyses of the lithologically not much differing members. Unpublished biostratigraphical analysis of benthic foraminifera (archives Geological Survey of Belgium) in boreholes Rijkevorsel and Poederlee corroborate the dinoflagellate cyst analysis. 4. Conclusion - proposals for stratigraphic re-evaluation and emendations 4.1. The status of the Kiel Member The Kiel and the Antwerpen Members were formally defined by De Meuter & Laga (1976) and described in detailed lithologies by De Meuter et al. (1976). According to these authors both members are lithologically rather similar and the difference lies mainly in the presence or absence of calcareous fossils, respectively, and grain-size difference; the sand of the Kiel Member is regarded as a medium fine-to-coarse-grained sand while the Antwerpen Member sand is medium fine-grained. Furthermore, De Meuter & Laga (1976) state that the Kiel Member is non-fossiliferous in the southern part of the Antwerp area where the unit can readily be recognized, while more to the north and east the Kiel Member becomes fossiliferous and indistinguishable from the superjacent Antwerpen Member. Still, De Meuter et al. (1976) noted that the Kiel Member occasionally holds friable shell fragments in the southern part of the Antwerp area. Everaert et al. (2019, this volume) and De Schutter & Everaert (2020, this volume) recently reported in detail on several temporary outcrops of the Kiel Member in Antwerp. Lithostratigraphically, they identify the Kiel Member with respect to the overlying Antwerpen Member by a slightly paler color of the Kiel Member due to its lower glauconite and clay fraction content and its coarser-sand sand fraction. They could document a well-preserved fauna and even correlate sections by specific mollusk levels. This correlation showed that the boundary between the Kiel and the Dutch Vrijherenberg Members has the geometry of an angular unconformity by the northwards disappearing of the DN3 Zone, i.e. the top part of the Kiel Member. Their data confirm that the Kiel Member, decalcified in the south, becomes fossiliferous northwards. At the time, such detailed analysis was unknown to De Meuter et al. (1976) which explains why these authors
interpreted the entire fossiliferous temporary outcrop Kievtstraat, located north of the Kiel type area, as the Antwerpen Member noting however a layer of sandstone pebbles within the sequence. A biostratigraphical analysis with dinoflagellate cysts showed that the sediments above this pebble layer belong to the Langhian Labyrinthodinium truncatum Zone and are correlatable with other sections of the Antwerpen Member in the vicinity. However, the deposits below this layer are in the middle-Burdigalian Exosphaeridium insigne Zone (Louwye et al., 2000) and are therefore correlatable to sections of the Kiel Member more to the south. Consequently, the late Burdigalian Costeauadinium Aubryae Zone is lacking in the Kievtstraat outcrop which implies a local considerable hiatus at this site of circa 1.8 Ma. With the present knowledge as documented above, the mid-Burdigalian sediments below the sandstone pebble layer should have been interpreted as belonging to the Kiel Member, albeit fossiliferous.

In summary, the Kiel Member is in its type area, south of the city of Antwerp, decalcified and only holds ghosts or fragile fragments of mollusks and, moreover, holds a poorly preserved dinoflagellate cyst assemblage. The taphonomic processes can be attributed to postdepositional alteration phenomena such as decalcification in combination with (mild) oxidation.

This present geometric and stratigraphic model for the relation between Kiel and Antwerpen Members needs further sedimentological, mineralogical and stratigraphical support to fully understand its evolution and determine its extension north of the city of Antwerp into the Campine.

4.2. A new member of the Bolderberg Formation: the Molenbeersel member

A glaucone- and lignite-bearing middle Miocene sandy unit with a thickness of 156 m is recorded in the Molenbeersel borehole between the Genk Member of the Bolderberg Formation and the Diest Formation (Fig. 9) (Deckers & Munsterman, 2020). The Molenbeersel well is located in the strongest subsiding area of the Roer Valley Graben. The latter authors informally interpreted this sand as part the Dutch Vrijherenberg Sands and considered them equivalent to the German Neurath Sands. Here we propose this unit as a new lithostratigraphic unit, the Molenbeersel member, within the Bolderberg Formation (Fig. 9).

The Molenbeersel member consists of brown-gray to gray-green, clay- and shell-bearing silt and fine-grained sand, containing lignite and glauconite. The central part contains the most glauconite and shells (including Glycymeris) and is also micaceous. More lignite is present towards the top. The unit is bounded by gravel at the base and is topped.

The member is named after the hamlet Molenbeersel, located near the town of Kinrooi, in the province of Limburg, northeasternmost Belgium. The type section is the Molenbeersel member key area located south of the city of Antwerp, decalcified and only holds ghosts or fragile fragments of mollusks and, moreover, holds a poorly preserved dinoflagellate cyst assemblage. The taphonomic processes can be attributed to postdepositional alteration phenomena such as decalcification in combination with (mild) oxidation.

This present geometric and stratigraphic model for the relation between Kiel and Antwerpen Members needs further sedimentological, mineralogical and stratigraphical support to fully understand its evolution and determine its extension north of the city of Antwerp into the Campine.

4.2. A new member of the Bolderberg Formation: the Molenbeersel member

A glaucone- and lignite-bearing middle Miocene sandy unit with a thickness of 156 m is recorded in the Molenbeersel borehole between the Genk Member of the Bolderberg Formation and the Diest Formation (Fig. 9) (Deckers & Munsterman, 2020). The Molenbeersel well is located in the strongest subsiding area of the Roer Valley Graben. The latter authors informally interpreted this sand as part the Dutch Vrijherenberg Sands and considered them equivalent to the German Neurath Sands. Here we propose this unit as a new lithostratigraphic unit, the Molenbeersel member, within the Bolderberg Formation (Fig. 9).

The Molenbeersel member consists of brown-gray to gray-green, clay- and shell-bearing silt and fine-grained sand, containing lignite and glauconite. The central part contains the most glauconite and shells (including Glycymeris) and is also micaceous. More lignite is present towards the top. The unit is bounded by gravel at the base and is topped.

The member is named after the hamlet Molenbeersel, located near the town of Kinrooi, in the province of Limburg, northeasternmost Belgium. The type section is the Molenbeersel member key area located south of the city of Antwerp, decalcified and only holds ghosts or fragile fragments of mollusks and, moreover, holds a poorly preserved dinoflagellate cyst assemblage. The taphonomic processes can be attributed to postdepositional alteration phenomena such as decalcification in combination with (mild) oxidation.

This present geometric and stratigraphic model for the relation between Kiel and Antwerpen Members needs further sedimentological, mineralogical and stratigraphical support to fully understand its evolution and determine its extension north of the city of Antwerp into the Campine.
LOWER AND MIDDLE MIocene OF BELGIUM

Lower and Middle Miocene of Belgium. de Heinzelin, J., 1956. Consid.

De Heinzelin, J., 1963a. Moulin d’Opitter. Compte-rendu des excursions. Point 10 de la carte-téterinaire. In Symposium sur la stratigraphie du Néogène nordique, Gand 1961. Société belge de Géologie, de Paléontologie et d’Hydrologie, Mémoires in-8°, 6, 209–211.

De Heinzelin, J., 1963b. Boulderberg. Compte-rendu des excursions. Point 9 de la carte-téternaire. In Symposium sur la stratigraphie du Néogène nordique, Gand 1961. Société belge de Géologie, de Paléontologie et d’Hydrologie, Mémoires in-8°, 6, 206–208.

De Heinzelin, J., 1963c. Heisel-Wemmel. Compte-rendu des excursions. Point 4 de la carte-téternaire. In Symposium sur la stratigraphie du Néogène nordique, Gand 1961. Société belge de Géologie, de Paléontologie et d’Hydrologie, Mémoires in-8°, 6, 195–197.

De Heinzelin, J. & Gilbert, M., 1956. Lexique Stratigraphique International, Vol. 1, Europe. Fascicule 4a, France, Belgique, Pays-Bas, Luxembourg; 7, Tertiaire. Centre National de la Recherche Scientifique, Paris, 1–45.

De Meuter, F., 1970. The Foraminifera from the Miocene of the Zonderschot Sands (Middle Miocene) of the Boulderberg Formation of the deephozing Helchteren. Bulletin de la Société belge de Géologie, Hydrologie et Paléontologie, 79/2, 129–132.

De Meuter, F., 1980. Benthonic foraminifera from the Miocene of Belgium. Aardkundige Mededelingen, 1, 78–170.

De Meuter, F. & Laga, P., 1976. Lithostratigraphy and biostratigraphy based on benthonic foraminifera of the Neogene deposits in Northern Belgium. Bulletin Belgische Vereniging voor Geologie Bulletin de la Société belge de Géologie, 85, 133–152.

De Meuter, F., Wouters, K. & Ringele, A., 1976. Lithostratigraphy from temporary outcrops in the Antwerpse city area. Professional Paper of the Geological Survey of Belgium, 3, 1–19.

Demyttenaere, R. & Laga, P., 1988. Breuken en isohypsenkaarten van de riviervlakte over de Heizel-Wemmel. Afzettingen Werkgroep Tertiaire en Kwartaire Geologie, 40, 33–42.

Démant, A., 1989. Rapport sur la carte géologique du Royaume. Bulletins de l’Académie royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 16/2, 351–373.

Dusar, M. & Vandenberghne, N., 2020. The transition from the Paleogene to the Neogene in Belgium. Geologia Belgica, 23/3–4, this volume. https://doi.org/10.20341/gh.2020.009

Dybkjær, K. & Piascicki, S., 2010. Neogene dinocyst zonation for the eastern North Sea Basin, Denmark. Review of Palaeobotany and Palynology, 161, 1–29. https://doi.org/10.1016/j.revpalbo.2010.02.005

Eidvin, T., Ullmann, C.V., Dybkjær, K., Rasmussen, E.S. & Piascicki, S., 2014. Discrepancy between Sr isotope and biostratigraphic datings of the upper middle and upper Miocene successions (Eastern North Sea Basin, Denmark). Palaeogeography, Palaeoclimatology, Palaeoecology, 411, 267–280. https://doi.org/10.1016/j.palaeo.2014.07.005

Everaert, S., De Schutter, P., Mariën, G., Cleemput, G., Van Boeckel, J., Rondzele, D. & Bor, T., 2019. A vreug-Miocène fauna uit het Zand van Kiel (Formatie van Berchem) bij Post X in Berchem (Antwerpen). Afzettingen Werkgroep Tertiaire en Kwartaire Geologie, 40, 83–94.

Everaert, S., Munsterman, D., De Schutter, P., Bosselaers, M., Van Boeckel, J., Cleenput, G. & Bor, T., 2020. Stratigraphy and palaeontology of the lower Miocene Kiel Sand Member (Berchem Formation) in temporary exposures in Antwerp (northern Belgium). Geologica Belgica, 23/3–4, this volume. https://doi.org/10.20341/gh.2020.025

Gaudemer, P.A.M., 1988. The regional distribution of oolith assemblages; correlation of the interregional zonation with the regional lithostratigraphic formations. In Vinken, R. (ed.), The Northwest European Tertiary Basin. Geologisches Jahrbuch, Reihe A, 100, 379–389.

Gerassimov, S., Odin, S.G., 1973. Nature minéralogique et origine des glauconiesdupleuetasteuntdualGubonorteduCongo.Sedimentology, 20, 457–488. https://doi.org/10.1111/j.1365-3091.1973.tb01626.x

Gillet, M., 1945. Faune malacologique du Miocène de la Belgique. I. Pélécypodes. Mémoires de l’Institut Royal des Sciences naturelles de Belgique, 103, 1–263.

Gillet, M., 1952. Faune malacologique du Miocène de la Belgique. II. Gastropodes. Mémoires de l’Institut Royal des Sciences naturelles de Belgique, 121, 1–197.

Gillet, M., 1954. Pleurotomus du Miocène de la Belgique et du Bassin de la Loire. Institut royal des Sciences naturelles de Belgique, Mémoire, 129, 76 p.

Gramann, F., 1988. The description of the interregional zones (K zones, U zones). In Vinken, R. (ed.), The Northwest European Tertiary Basin. Geologisches Jahrbuch, Reihe A, 100, 225–232.

Gulnick, M., 1956. Note sur la formation des ‘Sables Chamois’ (Néogène) de la région du Heysel. Bulletin de la Société belge de Géologie, de Paléontologie et d’Hydrologie, 65, 227–229.

Gulnick, M., 1961. Note sur le Bouldérian d’Oprinbrimie (Campine) et remarques sur les grès ‘eratiques’ du Limbourg. Bulletin de la Société belge de Géologie, de Paléontologie et d’Hydrologie, 70, 297–301.

Gullentops, F., 1963. Etude de divers facies quaternaires et tertiaires dans le Nord et l’Est de la Belgique. 6e Congrès International de Sédimentologie, Belgique et PAYS-Bas, 20 p.

Gullentops, F., 1972-1973. Grain size and mineralogy of Miocene glass sands of Maasmechelen, Belgium Limburg. Mededelingen Rijks Geologische Dienste, 23, 25–34.

Gullentops, F., 1988. 5.2. Opgrimbie: Bolderberg Formation. In Herbosch, A. (ed.), IAS 9th European Regional Meeting Excursion Guidebook Leuven-Belgium, September 1988. Belgian Geological Survey, Brussels, 256–257.

Gullentops, F. & Huyshebaert, L., 1999. Neogene stratigraphy in the Itter Valley, Roer Valley Graben rim, Belgium. Aardkundige Mededelingen, 9, 143–146.

Halet, F., 1935. A propos des formations dites Casterliennes des environs d’Hérentals en Campine. Bulletin de la Société belge de Géologie, 45, 290–297.

Halen, B.U., Hardenbol, J. & Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1166. https://doi.org/10.1126/science.235.4793.1156

Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.-C. & Vail, P.R., 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. In de Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds). Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special publication, 60, 3–13. https://doi.org/10.2113/pesm.98.02.0003

Herman, J. & Marquet, R., 2007. Le Miocène du Deurganckdoek à Doel. Memoirs of the Geological Survey of Belgium, 54, 1–149.

Hooyberghs, H., 1980. Note on the stratigraphic position of the Zonderschot Sands member of the Berchem Formation (Miocene) at Zonderschot, Belgium. Tertiary Research, 17, 15–25.

Hooyberghs, H., 1983. Contribution to the study of planktonic foraminifera in the Belgian Tertiary. Aardkundige Mededelingen, 2, 1–131.

Hoogensteger, H. 1996a. The stratigraphical position of the Edenam Sands (Berchem Formation, Miocene) in its type area at Wilrijk (N Belgium), based on planktonic foraminifera. Geologie en Mijnbouw, 75, 33–42.

Hooyberghs, H., 1996b. Planktonic foraminifera from the Zonderschot Sands Member of the Berchem Formation (Miocene) at Zonderschot, Belgium. Tertiary Research, 17, 15–25.
heavy-mineral assemblages. Geological Magazine, 156, 1111–1130. https://doi.org/10.1017/s0016756818000584
Vinken, R., 1988. The Northwest European Tertiary Basin. Geologisches Jahrbuch, Reihe A, 100, 508 p.
Willems, W., Laga, P. & Moorkens, T., 1988. Benthic foraminifera - Belgium. In Vinken, R. (ed.), The Northwest European Tertiary Basin. Geologisches Jahrbuch, Reihe A, 100, 179–188.
Wouters, K. 1978. Een systematische, biostratigrafische en paleobiologische studie van de Ostracoda uit de Miocene afzettingen in Noord-België. Unpublished Ph.D. Thesis, KU Leuven, Leuven, 3 vol.
Wouters L. & Vandenberghe, N., 1994. Geologie van de Kempen. ONDRAF-NIRAS, Brussel, NIROND-94, 208 p.
Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693. https://doi.org/10.1126/science.1059412
Ziegler, P.A. 1990. Geological Atlas of Western and Central Europe. Shell International Petroleum Maatschappij, The Hague, 239 p.