Restoring virulence to mutants lacking subunits of multiprotein machines: functional complementation of a Brucella virB5 mutant

Nicolas Sprynski 1, Christine Felix, David O’Callaghan*, Annette C. Vergunst

INSERM, U1047, UFR Médecine, 186, Chemin du Carreau de Lanes, 30908 Nimes Cedex 2, France
Université Montpellier 1, EA4204, UFR Médecine, 186, Chemin du Carreau de Lanes, 30908 Nimes Cedex 2, France

1. Introduction

Type IV secretion systems (T4SS) are multiprotein complexes which can mediate the transfer of nucleoprotein and protein substrates across the bacterial cell envelope to bacterial recipients for plasmid spread, and to eukaryotic hosts for survival during establishment of pathogenic or symbiotic relationships [1]. T4SS are major virulence factors for several pathogens of plants and animals, including Brucella. Brucella causes brucellosis, a major bacterial zoonosis resulting in abortion in animals and a serious disease with chronic undulant fever in humans [2]. The virulence of Brucella requires its VirB T4SS, which is essential for the establishment of its intracellular niche in macrophages and epithelial cells [3–5]. The VirB system is equally important for virulence in the mouse model of infection [6] and in natural hosts [7], and thus a major target of study to unravel its precise role in virulence.

Structure/function studies have centred on the prototype VirB/D4 T4SS of the plant pathogen Agrobacterium tumefaciens and the Tra system of plasmid pKM101. The current model predicts a dynamic multiprotein machinery [8–10], with a pilus like structure exposed at the bacterial surface. This pilus is built up of the major subunit VirB2, and the minor component VirB5, which is localised at the pilus tip [11]. VirB5 is essential for Brucella virulence [12, this work]. We encountered difficulties in complementing a non-polar deletion virB5 mutant using a pBBR-based vector. Here we show that both multiple copies of the virB operon promoter region and over expression of VirB5. Functional complementation of mutants in individual components of multiprotein complexes such as bacterial secretion systems, are often problematic; this study highlights the importance of using a low copy vector.

2. Materials and methods

2.1. Bacterial strains and plasmids

All bacterial strains, plasmids and primers used in this study are listed in Table 1. Unless stated, Brucella suis was grown in Trypticase Soy (TS) broth, and Escherichia coli in Luria-Bertani (LB) broth. Expression from the lac promoter in pBBRpvirB–virB5 was induced with 1 mM IPTG.

2.2. Plasmid constructions

The virB5 gene was amplified using B. suis 1330 chromosomal DNA as a template with primers virB5-1 and virB5-2 (Table 1). For expression under control of the virB promoter, the PCR fragment was digested with NdeI/BamHI and ligated into similarly digested pIN34 [13], named pBBRpvirB in the text for clarity, to yield pIN144 (pBBRpvirB–virB5). Plasmid pIN144 (pGLpvirB–virB5) was constructed by ligation of an XbaI/PstI fragment of pIN144 into pGL10. For expression from the lac promoter, the NdeI/KpnI

Abbreviations: bp, base pairs; CFU, colony forming units; hpi, hours post-infection; LB, Luria-Bertani; TS, Trypticase Soy; T4SS, type IV secretion system; MOI, multiplicity of infection

* Corresponding author at: INSERM, U1047, UFR Médecine, 186, Chemin du Carreau de Lanes, 30908 Nimes Cedex 2, France. Fax: +33 466 028148.
E-mail address: david.oallaghan@univ-montp1.fr (D. O’Callaghan).
1 Current address: IRBA/CRSSA, UMR-MD1, La Tronche, France.

© 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
fragment of plN144 was ligated into pSRKkm [14] to yield plN164 (pBBRplac–virB5).

A suicide vector was constructed by ligation of a 2.7 kb Bam HI/Xba I fragment of pSDM3005 [15] containing the sacR gene for negative selection, in pHSG398 (CmR) (TaKaRa Bio Inc), and named plN11.

2.3. Construction of a virB5 non-polar mutant

A mutant of B. suis 1330 with a non-polar deletion of the virB5 gene (binN1900, virB5 in the text) was constructed as described previously for virB8 [13]. Both 500 base pair (bp) flanking regions of virB5 were amplified by PCR so that ligation of the fragments would result in a precise deletion of virB5 using primer sets B5MutUF/B2MutUR and B5MutDF/B5MutDR. The PCR fragments were digested with BamHI/Ndel or Ndel/Xbol, respectively, and ligated simultaneously in BamHI/Xbol digested suicide vector plN11, resulting in plN143. After introduction of plN143 into 1330 by electroporation, chloramphenicol resistant colonies resulting from single crossover events were isolated and confirmed by PCR analysis.

2.4. Cell infections

Murine J774 A.1 macrophage-like cells (ATCC) were cultivated and infected with Brucella with a multiplicity of infection (MOI) of 50 in a standard gentamicin protection assay as described previously [3]. The number of colony forming units (CFU) per well for each time point was expressed as the geometric mean (±standard error of the mean, S.E.M.) of three wells. All experiments were performed at least 3 times. A Student’s t-test (with two-tailed distribution and equal variance) was performed to determine whether two strains differed significantly (P < 0.05).

2.5. Analysis of VirB expression

To analyse VirB expression, B. suis strains were grown in minimal medium at pH 4.5 as described [16]. Western blot analysis was performed to detect VirB1, VirB5, VirB9 and VirB10; Bcsp31 was used as a control for equal loading.

3. Results and discussion

3.1. Successful complementation of a virB5 mutant to wild type virulence levels depends on plasmid copy number

We constructed a non-polar deletion of virB5 (binN1900), which was strongly attenuated for virulence in macrophages at 24 h post-infection (hpi) and 48 hpi (Fig. 1). However, we were unable to restore virulence when we complemented the virB5 deletion mutant with the virB5 gene under the control of the virB5 promoter using the medium copy number plasmid pBBR1-MCS (pBBRpvirB–virB5) (Fig. 1), despite restoration of VirB5 production (Fig. 2c). In contrast, virulence was restored when the gene was carried on the low copy number plasmid pGL10 (pGLpvirB–virB5) (Fig. 1). Since genetic complementation studies with individual components of multiprotein complexes are a recurrent problem, we analysed this in more detail for VirB5.

3.2. Multiple copies of the virB promoter sequence and overproduction of VirB5 attenuate virulence of wild type B. suis

The expression of the Brucella virB operon is controlled through several layers of regulation [17–22]. We have previously suggested...
that the presence of multiple copies of the virB promoter sequence might sequester regulatory factors essential for expression of the chromosomal virB operon or possibly of other genes that are co-regulated with the virB operon and essential for virulence [3]. A second possibility is that non-stoichiometric (high) levels of VirB5 could interfere with correct T4SS biogenesis and/or function [12], as shown for VirB6 of A. tumefaciens [23].

We introduced pBBR_{virB5} into wild type 1330, finding that it had a dominant negative effect, completely abolishing the virulence of the wild type strain (Fig. 2a). To determine the individual contribution of the presence of multiple virB promoter sequences that might result in the sequestration of transcription factors, we analysed the virulence of wild type 1330 carrying pBBR_{virB5}, an identical pBBR-based plasmid with the virB promoter, but lacking the virB₅ coding region. This strain was also attenuated in J774 macrophages, although significantly less attenuated than wild type 1330 with plasmid pBBR_{virB5}–_{virB5} (Fig. 2a). This clearly indicated that multiple promoter sequences partially contributed to the observed attenuation of 1330 (pBBR_{virB5}–_{virB5}), but that an additional effect of over expression of VirB5 contributed to the complete attenuation seen with pBBR_{virB5}–_{virB5} and possibly the inability of pBBR_{virB5}–_{virB5} to fully complement the virB5 mutant. To further investigate the sequestration of transcription factors, we constructed plasmids carrying the putative binding sites for VjbR and HutC but saw no effects on virulence (data not shown), not unexpectedly due to the complex regulation of the virB operon.

3.3. Controlled expression of virB5 from a lac promoter partially complements the virB5 mutant

To further dissect the reason for the observed attenuation of wild type 1330 by the presence of pBBR_{virB5}–_{virB5}, we placed the virB5 gene under the control of a tightly regulated lac promoter in pSKKm₁₄, which would not sequester virB specific transcription factors. Macrophages were infected with virB5 (pBBR_{lac}–_{virB5}) and virB5 expression was induced at different times with IPTG.
(Fig. 2d). To restore virulence even partially, VirB5 production had to be induced within the first 5 h after infection, which is fitting with previous studies showing intracellular induction of the virB operon at 3–4 h after uptake, and the importance of early phagosome acidification to induce the virB operon [16,24]. Within those 5 h, better complementation correlated with later time points of induction of VirB5 expression, suggesting that either increasing levels of VirB5 reduce virulence or that virB5 expression from the lac promoter must be coordinated with induction of the rest of the chromosomal virB operon from its own promoter.

3.4. Pleiotropic effects on VirB protein expression during complementation

As several regulators have either positive or negative effects on virB expression by binding to specific sequences in the promoter region [17,25], we would expect that an effect on endogenous virB transcription by the presence of multiple virB sequences would result in a general reduction of virB expression in the wild type carrying pBBR_{psppr}. Immunoblot analysis showed that in wild type 1330 (pBBR_{psppr}), levels of VirB5, VirB9 and VirB10 were indeed slightly reduced (Fig. 2b). However, additional over expression of VirB5 in 1330 (pBBR_{psppr}-virB5) led to a greater reduction of VirB9, and even undetectable VirB10 (Fig. 2b). This reduction in VirB protein levels correlates with the complete attenuation of 1330 (pBBR_{psppr}-virB₅) and the inability of pBBR_{psppr}-virB₅ to complement the virB5 mutant. In contrast, in virB5 (pGL_{psppr}-virB₅) with virulence restored to almost wild type levels, VirB5 and VirB10 levels were intermediate to those in 1330 and virB5 (pBBR_{psppr}-virB₅-virB₁₀) (Fig. 2c). Importantly, VirB10 was still detectable and VirB5 levels were still higher than those in wild type 1330, suggesting that some variation in VirB protein levels is tolerated to reach almost WT levels of complementation.

Other studies have shown that the assembly of a TASS in the bacterial envelope is a complex process in which many different, often transitory, protein–protein interactions occur. Often TASS genetic complementation studies are difficult and do not result in full functional complementation to wild type virulence levels [12,23,26]. The presence of one protein is often required to stabilize another; VirB5 was shown to interact in Agrobacterium with VirB9 and VirB10 [27,28] and co-expression of the TASS components VirB7 and VirB8 is essential to restore virulence of individual null mutants [26]. In Agrobacterium, VirB10 plays an essential role in both substrate translocation and biosynthesis of the VirB pilus [29]. Disturbance of its regulation or stability may have dramatic effects on TASS function. Alternatively, an indirect effect on production of VirB9, which was shown in A. tumefaciens to be essential to stabilize VirB10 under specific conditions of low osmolality [28], may play a role in the attenuation of our VirB5 overproducing strain. Overproduction of VirB5 might also result in mislocalisation of the protein at the pilus tip [11].

Our data highlight that the choice of promoter and plasmid replication origin are critical components to ensure optimal levels of protein of individual TASS components and not to deregulate expression of the endogenous operon. The protein levels required to maintain stoichiometric levels; however, may be different for each TASS component under investigation. An easy assay to determine whether the original multiprotein complex will be deregulated is to verify virulence of the wild type strain containing the complementing plasmid. A low copy plasmid, with the gene expressed from its natural promoter is effective in complementation of a B. suis virB5 mutant. This approach has also been used with other proteins for which over expression may have inhibitory effects on bacterial physiology such as the CcrM protein [30]. An alternative way to ensure ‘perfect’ complementation is to recombine the complementing gene back into the chromosomal virB operon, a strategy used to complement a B. abortus virB2 mutant [31]. However, this method will be too time consuming for studies requiring complementation with multiple variant alleles, and unfeasible for certain bacterial species that are difficult to manipulate.

Acknowledgements

We thank Christian Baron and Renee Tsolis for antisera, and Stephen Farrand for plasmid pSRKKm. This work was supported by institutional grants from INSERM and the Université Montpellier 1, the Agence Nationale de la Recherche (ANR), the Region Languedoc-Roussillon and the Ville de Nîmes. NS was supported by grants from the Ministère de la Recherche et de l’Enseignement Supérieur and the Fondation pour la Recherche Médicale.

References

[1] Christie, P.J., Attmakuri, K., Krishnamoorthy, V., Jakubowska, S. and Cascales, E. (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485.
[2] Boschiroli, M.L., Foulongne, V. and O’Callaghan, D. (2001) Brucellosis: a worldwide zoonosis. Curr. Opin. Microbiol. 4, 58–64.
[3] O’Callaghan, D., Cazevieille, C., Allardet, S.A., Boschiroli, M.L., Bourg, G., Foulongne, V., Frutos, P., Kulasiak, Y. and Ramuz, M. (1999) A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptx17 type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol. 33, 1210–1220.
[4] Sieira, R., Comerci, D.J., Sanchez, D.O. and Ugale, R.A. (2000) A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J. Bacteriol. 182, 4849–4854.
[5] Celli, J. (2006) Surviving inside a macrophage: the many ways of Brucella. Res. Microbiol. 157, 93–98.
[6] de Jong, M.F., Rolan, H.G. and Tsolis, R.M. (2010) Innate immune encounters of the (Type) 4th kind: Brucella. Cell. Microbiol. 12, 1195–1202.
[7] Zygmunt, M.S., Hagius, S.D., Walker, J.V. and Elzer, P.H. (2006) Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect. 8, 2849–2854.
[8] Bourg, G., Sube, R., O’Callaghan, D. and Patey, G. (2009) Interactions between Brucella suis VirB8 and its homolog Traf from the plasmid pSB102 underline the dynamic nature of type IV secretion systems. J. Bacteriol. 191, 2985–2992.
[9] Cascales, E. and Christie, P.J. (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170–1173.
[10] Waksman, G. and Fronzes, R. (2010) Molecular architecture of bacterial type IV secretion systems. Trends Biochem. Sci. 35, 691–698.
[11] Aly, K.A. and Baron, C. (2007) The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766–3775.
[12] den Hartigh, A.B., Rolan, H.G., de Jong, M.F. and Tsolis, R.M. (2008) VirB3 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. J. Bacteriol. 190, 4427–4436.
[13] Patey, G., Qi, Z., Bourg, G., Baron, C. and O’Callaghan, D. (2006) Switching of periplasmic domains between Brucella suis VirB8 and a pSB102 VirB8 homologue allows heterologous complementation. Infect. Immun. 74, 4945–4949.
[14] Khan, S.R., Gains, J., Roop, R.M. and Farrand, S.K. (2008) Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of Traf and TraM expression on T plasmid quorum sensing. Appl. Environ. Microbiol. 74, 5053–5062.
[15] Vergunst, A.C., van Lier, M., den Dulk-Ras, A. and Hooykaas, P.J.J. (2003) Recognition of the Agrobacterium tumefaciens VirE2 translation signal by the VirD4 transport system does not require VirE1. Plant Physiol. 133, 978–988.
[16] Boschiroli, M.L., Ouaïrani-Matche, S., Foulongne, V., Michaux-Charron, S., Bourg, G., Lardet-Servent, A., Cazevieille, C., Liautard, J.P., Ramuz, M. and O’Callaghan, D. (2002) The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. USA 99, 1544–1549.
[17] Sieira, R., Comerci, D.J., Pietrascata, L.I. and Ugale, R.A. (2004) Integration host factor is involved in transcriptional regulation of the Brucella abortus virB operon. Mol. Microbiol. 54, 808–822.
[18] Dozot, M., Bougegrain, A., Delreu, R.M., Hallez, R., Ouaïrani-Bettache, S., Danese, I., Letesson, J.J., De Bolle, X. and Kohler, S. (2006) The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell. Microbiol. 8, 1791–1802.
[19] Uzureau, S., Godefroid, M., Deschamps, C., Lemaire, J., De Bolle, X. and Letesson, J.J. (2007) Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. J. Bacteriol. 189, 6035–6047.
[20] Haine, V., Sinon, A., Van, S.F., Rousseau, S., Dozot, M., Lestrade, P., Lambert, C., Letesson, J.J. and De Bolle, X. (2005) Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect. Immun. 73, 5578–5586.
[21] Sieira, R., Arocena, G.M., Bukata, L., Comerci, D.J. and Ugalde, R.A. (2010) Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters. J. Bacteriol. 192, 217–224.

[22] Caswell, C.C., Gaines, J.M. and Roop, R.M. (2012) The RNA Chaperone Hfq Independently Coordinates Expression of the VirB Type IV Secretion System and the LuxR-Type Regulator BabR in Brucella abortus 2308. J. Bacteriol. 194, 3–14.

[23] Jakubowski, S.J., Krishnamoorthy, V. and Christie, P.J. (2003) Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J. Bacteriol. 185, 2867–2878.

[24] Porte, F., Liautard, J.P. and Kohler, S. (1999) Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect. Immun. 67, 4041–4047.

[25] de Jong, M.F., Sun, Y.H., den Hartigh, A.B., van Dijl, J.M. and Tsolis, R.M. (2008) Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol. Microbiol. 70, 1378–1396.

[26] Berger, B.R. and Christie, P.J. (1994) Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J. Bacteriol. 176, 3646–3660.

[27] Yuan, Q., Carle, A., Gao, C., Sivanesan, D., Aly, K.A., Hoppner, C., Krall, L., Domke, N. and Baron, C. (2005) Identification of the VirB4–VirB8–VirB5–VirB2 pilus assembly sequence of type IV secretion systems. J. Biol. Chem. 280, 26349–26359.

[28] Banta, L.M., Bohne, J., Lovejoy, S.D. and Dostal, K. (1998) Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaption. J. Bacteriol. 180, 6597–6606.

[29] Jakubowski, S.J., Kerr, J.E., Garza, I., Krishnamoorthy, V., Bayliss, R., Waksman, G. and Christie, P.J. (2005) Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol. Microbiol. 71, 779–794.

[30] Robertson, G.T., Reisenauer, A., Wright, R., Jensen, R.B., Jensen, A., Shapiro, L. and Roop, R.M. (2000) The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J. Bacteriol. 182, 3482–3489.

[31] den Hartigh, A.B., Sun, Y.H., Sondervan, D., Heuvelmans, N., Reinders, M.O., Ficht, T.A. and Tsolis, R.M. (2004) Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect. Immun. 72, 5143–5149.

[32] Elzer, P.H., Kovach, M.E., Phillips, R.W., Robertson, G.T., Peterson, K.M. and Roop, R.M. (1995) In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCS in six Brucella species. Plasmid 33, 51–57.

[33] Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M. and Peterson, K.M. (1994) PBBR1MCS: a broad-host-range cloning vector. BioTechniques 16, 800–802.