Meta Distant Transfer Learning for Pre-trained Language Models

Chengyu Wang1, Haojie Pan1, Minghui Qiu1, Fei Yang2, Jun Huang1, Yin Zhang3

1 Alibaba Group 2 Zhejiang Lab 3 Zhejiang University
Introduction (1)

✓ Transfer learning for Pre-trained Language Models (PLMs)
 • Fine-tuning by multi-task learning: learning from source-domain datasets may force PLMs to memorize non-transferable knowledge of source domains, leading to the negative transfer effect.

Research Question: how can we transfer knowledge across distant domains with different classification targets for PLM-based text classification?
Our idea: the Meta-DTL framework
Task Representation Learning

✓ Learning the prototypical vector for each class in each task
 • The input includes both the text and the class label

\[
\hat{p}_{i,j} = \frac{1}{|D_{i,j}|} \sum_{x_{i,j} \in D_{i,j}} \mathcal{E}(x_{i,j}, c_{i,j})
\]

PLM Encoding Function
Multi-task Meta-learner Training

✓ Obtaining the meta-knowledge

 • Considering both the instance-level and the class-level meta-knowledge

 \[\alpha_{i,j} = \max_{\vec{p}_{m,n} \in \tilde{P}_i} \cos(\mathcal{E}(x_{i,j}, c_{i,j}), \vec{p}_{m,n})\]
 \[\beta_{i,j} = \max_{\vec{p}_{m,n} \in \tilde{P}_i} \cos(\vec{p}_{i,j}, \vec{p}_{m,n})\]

✓ Training the meta-learner

 • Weighted cross-entropy loss
 \[\mathcal{L}_{CE}(x_{i,j}) = -\sum_{c \in C_i} \mathbf{1}_{(c_{i,j} = c)} m_{i,j} \log \tau_c(x_{i,j})\]

 • Weighted Maximum Entropy Regularizer
 \[\mathcal{L}_{ME}(x_{i,j}) = -\sum_{c \in C_i} \frac{m_{i,j}}{|C_i|} \log \tau_c(x_{i,j})\]
Task-specific Model Fine-tuning

- Fine-tuning the meta-learner for specific tasks
 - The dataset-level loss function

\[
 \mathcal{L}^*(T_i) = - \sum_{x_{i,j} \in D_i} \sum_{c \in C_i} 1_{(c_{i,j} = c)} \log \tau_c^*(x_{i,j})
\]
Experiments (1)

✓ Experimental datasets

Name	Task Description	Classification Label Set	#Train	#Dev.	#Test
SST-5	Fine-grained movie review analysis	\{1, 2, 3, 4, 5\}	8,544	1,101	2,210
Amazon	Coarse-grained product review analysis	\{positive, negative\}	7,000	500	500
IMDb	Coarse-grained movie review analysis	\{positive, negative\}	23,785	1,215	25,000
MNLI	NLI across multiple genres	\{entailment, neutral, contradiction\}	382,702	10,000	9,815
SciTail	Scientific question answering	\{entailment, neutral\}	23,596	1,304	2,126
Shwartz	Hypernymy detection	\{hypernymy, non-hypernymy\}	20,335	1,350	6,610
BLESS	Lexical relation classification	\{event, meronymy, random, co-hyponymy, attribute, hypernymy\}	18,582	1,327	6,637
Experiments (2)

- Overall experiments

PLM	Method	Review Analysis Tasks	NLI Tasks	Lexical Semantic Tasks							
		SST-5	Amazon	IMDb	Avg.	MNLI	SciTail	Avg.	Shwartz	BLESS	Avg.
Bert											
Single-task		53.4	89.3	95.2	79.3	83.0	92.4	87.7	92.6	93.2	92.9
Multi-task		53.2	89.8	95.6	79.5	83.8	92.0	87.9	92.8	93.0	92.9
Task Comb.		53.2	89.5	94.1	78.9	83.7	92.2	87.9	91.3	91.7	91.5
Meta-FT*		53.6	91.0	95.8	80.1	83.9	93.4	88.6	92.8	93.5	93.1
Meta-DTL		**54.6**	**91.8**	**98.2**	**81.5**	**84.2**	**93.6**	**88.9**	**93.2**	**94.8**	**94.0**
Albert											
Single-task		51.0	87.6	93.6	77.4	80.7	88.2	84.4	92.0	90.7	91.3
Multi-task		50.3	88.1	94.2	77.5	81.0	88.3	84.6	92.4	91.0	91.7
Task Comb.		49.8	88.0	93.6	77.1	80.8	85.2	83.0	91.4	90.6	91.0
Meta-FT*		50.8	88.4	95.0	78.0	81.2	88.7	84.9	92.4	91.9	92.1
Meta-DTL		**51.2**	**88.8**	**97.6**	**79.2**	**82.4**	**89.2**	**85.8**	**92.8**	**93.4**	**93.1**
Experiments (3)

✓ Ablation Study

Task	w/o.IMK	w/o.WMER	Full
SST-5	54.0	53.8	54.6
Amazon	90.6	90.8	91.8
IMDb	97.0	97.6	98.2
MNLI	84.0	84.1	84.2
SciTail	92.9	92.7	93.6
Shwartz	91.8	92.2	93.2
BLESS	93.5	93.8	94.8
Avg.	86.4	86.6	87.2

✓ Learning with Small Data

• Using a small number of MNLI training samples

	PCT	Single	Meta-FT*	Meta-DTL
1%	62.5	64.1	66.5 (+4.0%)	
2%	67.5	68.2	69.8 (+2.3%)	
5%	72.8	73.8	74.2 (+1.4%)	
10%	75.8	76.2	77.6 (+1.8%)	
20%	80.4	80.8	81.4 (+1.0%)	
Conclusion

✓ We present the Meta-DTL framework for few-shot learning across tasks with distant domains and labels.

✓ Experiments confirm the effectiveness of Meta-DTL over various NLP tasks.

✓ Future work includes:
 ✓ Using Meta-DTL in other application scenarios and other NLP tasks
 ✓ Exploring how Meta-DTL can be applied to other PLMs apart from BERT-style models
THANKS

-------- Q&A Section --------