Horseshoe crabs are an iconic group of extant chelicerates, with a stunning fossil record that extends to at least the Lower Ordovician (~480 million years ago). As such, the group has retained significant biological and palaeontological interest. The sporadic nature of descriptive and systematic research into fossil horseshoe crabs over the last two centuries has spread information on the group across more than 200 texts dating from the early nineteenth century to the present day. We present the most comprehensive pictorial atlas of horseshoe crabs to date to pool these important data together. This review highlights taxa such as *Bellinurus lacoei* and *Limulus priscus* that have never been documented with photography. Furthermore, key morphological features of the true horseshoe crab (Xiphosurida) families —Austrolimulidae, Belinuridae, Limulidae, Paleolimulidae, and Rolfeiidae—are described. The evolutionary history of horseshoe crabs is reviewed and the current issues facing any possible biogeographic work are presented. Four major future directions that should be adopted by horseshoe crab researchers are outlined. We conclude that this review provides the basis for innovative geographic and geometric morphometric studies needed to uncover facets of horseshoe crab evolution.

Keywords: Xiphosura, Xiphosurida, synziphosurines, horseshoe crab, pictorial atlas, evolution

INTRODUCTION

Chelicerates, a group that includes arachnids (spiders, scorpions), eurypterids (sea scorpions), and Xiphosura (the so-called horseshoe crabs) have a stunning and extensive fossil spanning the early Palaeozoic to today and an exceptional modern diversity (Dunlop, 2010). Of these taxa, extant horseshoe crabs have been subject to detailed anatomical (van Der Hoeven, 1838; Owen, 1872; Lankester, 1881; Shuster, 1982; Shultz, 2001; Bicknell et al., 2018b,c,d), biochemical (Kaplan et al., 1977; Botton and Ropes, 1987), physiological (Sokoloff, 1978), morphological (Lee and Morton, 2005; Chatterji and Pati, 2014; Jawahir et al., 2017), and population dynamic (Botton, 1984; Brockmann, 1990; Gerhart, 2007) studies over the past two centuries. Furthermore, the impressive fossil record of this group, and apparent morphological conservatism that allowed survival of all five big mass extinctions, have driven extensive palaeontological interest in the group (Babcock et al., 2000; Rudkin and Young, 2009; Sekiguchi and Shuster, 2009; Krzeminski et al., 2010; Briggs et al., 2012; Dunlop et al., 2012; Lamsdell, 2013; Blażejowski, 2015; Lamsdell and Mckenzie, 2015; Bicknell et al., 2018b,c, 2019b; Bicknell, 2019; Figure 1). Despite this extensive
FIGURE 1 | The geological and morphological history of horseshoe crabs across the Phanerozoic. Number of named species is presented as well as suggested palaeoenvironment (Tables 1–7). A major transition to freshwater conditions occurred between the Devonian and Carboniferous. This was concurrent with a decrease in synziphosurine taxa and an increase in xiphosurids. Limulids had a diversification event in the Triassic and there was a transition back to dominantly marine conditions in the Jurassic. Dashed lines represent ghost lineages.

research, numerous avenues for further research remain for horseshoe crabs, and we highlight three here. Firstly, the evolutionary relationship between synziphosurines (the so-called “Synziphosura”) and Xiphosura (Lamsdell, 2013, 2016; Legg et al., 2013; Garwood and Dunlop, 2014). To help clarify this relationship, Lamsdell (2013) removed synziphosurines
from Xiphosura and arrayed them within Prosomapoda and Planaterga. Secondly, there are a number of specimens that have been described in open terminology (Haug et al., 2012; Lamsdell et al., 2020) and despite the recent effort to bring taxa into recognized families, and genera, and erect new groups where appropriate (Bicknell, 2019; Bicknell et al., 2019e; Lamsdell et al., 2020), there remain an array of individuals that require taxonomic revision. Lastly, some genera appear to have been extensively over-split (Dunbar, 1923; Stormer, 1972; Fisher, 1984; Anderson, 1994; Haug et al., 2012; Kin and Blazejowski, 2014; Haug and Rötzer, 2018b). We therefore present a pictorial review of horseshoe crabs to aid current and future researchers in (1) the morphology and re-evaluation of taxa, (2) the determination of evolutionary relationships, and (3) the confirmation of species validity (Waterston, 1985; Selden and Siveter, 1987).

The palaeontological and evolutionary histories, broad taxonomy of families (Stormer, 1955; Novozhilov, 1991), and phylogenetic relationships (Lamsdell, 2013, 2016) of horseshoe crabs has often been reviewed (Bergström, 1975; Selden and Siveter, 1987; Anderson and Selden, 1997; Anderson and Shuster, 2003; Rudkin and Young, 2009). However, a document illustrating all horseshoe crab taxa has not been presented since Woodward (1866, 1867, 1879), Dix and Pringle (1929, 1930), Eller (1938b), and Raymond (1944). We have therefore collated images of all species considered horseshoe crabs (see taxa Dunlop et al., 2019), in a vital step toward understanding the true diversity and extent of Xiphosura (Lamsdell, 2013). We also present taxonomic descriptions of the facets that define members of xiphosurid families and consider of lifestyle and diversity of each group. We have focused on Xiphosurida as there are more taxa in this group than stem xiphosurids and synziphosurines. Nonetheless, synziphosurines and non-xiphosurid xiphosurans (previously considered Kasibelinuridae) are also briefly considered. It is vital to note that a thorough taxonomic revision of all species is beyond the intended scope of this review—namely the depiction and discussion of major horseshoe crab groups—but the images and details here represent the basis for such future work. The ultimate goal of this work is to depict all taxa in an open-access environment for future researchers to use as a reference point to continue research into this somewhat enigmatic group of chelicerates.

TERMINOLOGY

The following definitions are provided to clarify terminology used in descriptions. See Figure 2 for a depiction of these features.

Somite: Fundamental unit or division that construct arthropod bodies (Lamsdell, 2013; Dunlop and Lamsdell, 2017).

Tergite: Physical expression of somites as discrete plates on the dorsal exoskeleton (Lamsdell, 2013; Dunlop and Lamsdell, 2017).

Prosoma: Anterior body section consisting of six somites (Dunlop and Lamsdell, 2017). Prosoma refers to the anterior

FIGURE 2 | Depiction of horseshoe crab features outlining the key morphological aspects of horseshoe crabs. (A) Reconstruction of *Cyamocephalus loganensis* showing main morphological features of synziphosurines. (B) Reconstruction of *Euproops danae*, showing main morphological features of belinurids. (C) Reconstruction of *Limulus polyphemus*, showing main morphological features of Limulina. Car, cardiac lobe; Cep, cephalothorax; Oph, ophthalmic ridge; Ops, opisthosoma; Pro, prosoma; Tel, telson; Ter, tergite; Thor, thoracetron.
section of synziphosurines and xiphosurans (Dunlop, 2010; Dunlop and Lamsdell, 2017). The prosoma in Xiphosura is combined with the two most anterior opisthosomal sections to produce the cephalothorax (Dunlop, 2010; Dunlop and Lamsdell, 2017).

Cephalothorax: Anterior body section of Xiphosura. Combination of two most anterior opisthosomal segments with prosoma (Dunlop, 2010).

Opthalmic ridge: Ridge above the lateral compound eye that extends anteriorly and posteriorly relative to the compound eye (Störmer, 1955).

Cardiac lobe: Lobe in the center of the prosoma/cephalothorax that extends into opisthosoma/thoracetron (Störmer, 1955).

Opisthosoma: Posterior section of the arthropod body, consisting of up to 13 tergites (Dunlop and Lamsdell, 2017). Used here for synziphosurines and non-xiphosurid xiphosurans as the group lack a fused opisthosoma (=thoracetron) (Lamsdell, 2013).

Thoracetron: Posterior section of Xiphosura that is a fused solid plate. Shultz (2001) also suggested the termed tergum for this feature. The section may have expressed tergites.

Telson: Most posterior section of the xiphosuran exoskeleton, styliform and highly mobile (Eagles, 1973). Also called a tailspine.

INSTITUTIONAL ACRONYMS

AM F: Australian Museum, Sydney, NSW, Australia. **AMNH:** American Museum of Natural History, New York, USA. **B:** Geomuseum der WWU Münster, Germany. **BGS GSE:** British Geological Survey, Keyworth, England, UK. **BMSC:** Buffalo Museum, Buffalo, NY, USA. **CM:** Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA. **CCMGE:** Chernyshev Central Research Geological Exploration Museum, St. Petersburg, Russia. **GIN:** Geological Institute of the Russian Academy of Sciences, Moscow, Russia. **GIUS:** Faculty of Earth Sciences, Silesian University, Sosnowiec, Czech Republic. **GSC:** Geological Survey of Canada, Ottawa, Canada. **GZ INV:** Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, Germany. **ISEA:** Museum of the Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Warsaw, Poland. **L, LL:** Manchester Museum, University of Manchester, Manchester, England, UK. **LPI:** Chengdu Geological Center, Chengdu, China. **MAN:** Museum-Aquarium de Nancy, Lorraine, France. **MAS Pal:** Museum am Schörberg, Osnabrück, Germany. **MBA:** Museum für Naturkunde Leibniz-Institut, Berlin, Germany. **MCZ:** Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA. **MGSB:** Museo Geológico del Seminario de Barcelona, Barcelona, Spain. Specimens ending in **MLU, HAU-WIL:** Institut für Geologische Wissenschaften und Geiseltaluseum Martin Luther University Halle-Wittenberg, Halle, Saale, Germany. **MM:** Manitoba Museum, Winnipeg, Canada. **MMP:** Geological Survey of New South Wales, Londonderry, NSW, Australia. **MMO B:** Municipal Museum of Ostrava, Ostrava, Czech Republic. **MNHN:** Museum National d’Histoire Naturelle of Paris, Paris, France. **MNHP:** Národní muzeum, Prague, Czech Republic. **MSNM:** Museo Civico di Storia Naturale di Milano, Milan, Italy. **NHM UK P:** Natural History Museum, London, UK. **NME:** Geologisch-Palaontologische Sammlung des Naturkundemuseums Erfurt, Germany. **NMK D:** Wolfgang Munk collection in Naturkundemuseum Kassel, Ottoneum in Kassel, Germany. **NMS:** National Museums of Scotland, Edinburgh, Scotland. **NMW:** National Museum of Wales, Cardiff, United Kingdom. **NSM:** Nova Scotia Museum, Halifax, NS, Canada. **NYSM:** New York State Museum, Albany, NY, USA. **OUMNH:** Oxford University Museum of Natural History, Oxford, England, UK. **NMV P:** Museums Victoria, Carlton, Victoria, Australia. **PIN:** Paläontologisches Museum of Yu A Orlov, Moscow, Russia. **NHM-UIO:** Natural History Museum, University of Oslo, Oslo, Norway. **PMSL:** Natural History Museum of Slovenia, Ljubljana, Slovenia. **SLK:** Leunissen private collection. **SMF:** Forschungsinstitut Senckenberg, Frankfurt am Main, Germany. **SNMH:** Swedish Museum of Natural History, Stockholm, Sweden. **SMNS:** State Museum of Natural History Stuttgart, Stuttgart, Germany. **SNSB-BSPG:** Staatliche Naturwissenschaftliche Sammlungen Bayern – Bayerische Staatsammlung für Paläontologie und Geologie, Munich, Germany. **SPW:** Poschmann private collection. **TMP:** The Royal Tyrrell Museum, Drumheller, AB, Canada. **TSNIGRI:** Chernyshev Central Research Geological Museum, St. Petersburg, Russia. **UCM:** University of Colorado Museum of Natural History, Boulder, CO, USA. **UM:** Paleontology Center of University of Montana, MT, USA. **UMUT PA:** The University Museum of the University of Tokyo, Tokyo, Japan. **USNM:** United States National Museum, Washington, DC, USA. **USTL:** Laboratoire de paléontologie de l’université de Lille-1, Poitiers, France. **UTGD:** Geology Department, University of Tasmania, Tasmania, Australia. **U.W.:** University of Wisconsin Geology Museum, Madison, WI, USA. **W.U.:** Wichita State University, Wichita, KS, USA. **YPM JP:** Division of Invertebrate Paleontology in the Yale Peabody Museum, New Haven, CT, USA. **YPM IZ:** Division of Invertebrate Zoology in the Yale Peabody Museum, New Haven, CT, USA. **ZIK:** Ukrainian Academy of Sciences, 252.150 Kiev, Ukraine. **ZPAL:** Institute of Paleobiology, Polish Academy of Science, Warsaw, Poland.

DIVISIONS OF HORSESHOE CRABS

Synziphosurines

First appearing in at least the early Ordovician of Morocco, synziphosurines went extinct in the Mississippian (Tables 1–4, Figures 3–9) (Anderson and Selden, 1997; Moore et al., 2005b, 2007; Krzeminski et al., 2010; Van Roy et al., 2010; Briggs et al., 2012). There are 13 synziphosurine genera and 20 species. Anderella, Borchgrevinkium, Camanchia, Legrandella, Venustulus, and Weinbergina are currently considered to belong to the clade Prosomapoda (the group that also contains Xiphosura, Figures 4, 5), while Bembicosoma, Bunaia, Bunodes,
TABLE 1 | Horseshoe crabs with currently uncertain suprageneric affinities.

Taxon	Family	Geological information (where detailed) and country	Time period	Environment	Citation for figured specimens	Figured here
Drabovaspis complexa	Unspecified	Letná Formation, Czech Republic Ordovician Marine			Chlupáč, 1963, 1965, 1999; Bergström, 1968; Ortega Hernández et al., 2010	Figure 3D
Unnamed synziphosurine	Unspecified	Lower Fezouata Formation, Morocco Ordovician Marine			Van Roy et al., 2010; Martin et al., 2016	Figure 3C
Unnamed xiphosuran	Unspecified	Upper Fezouata Formation, Morocco Ordovician Marine			Van Roy et al., 2010; 2015; Lefebvre et al., 2016	Figure 3E
Dibasterium durgae	Unspecified	Herefordshire Konservat-Lagerstätte, England, UK Silurian Marine			Briggs et al., 2012; Sutton et al., 2014	Figures 3A,B

Ordered time period and alphabetically by genus.

TABLE 2 | Taxa in Prosomapoda that are potentially related to Xiphosura.

Taxon	Family	Geological information (where detailed) and country	Time period	Environment	Citation for figured specimens	Figured here
Camanchia grovensis	Moore et al., 2011	Wenlock Scotch Grove Formation, Iowa, USA Silurian Marine			Moore et al., 2011	Figure 4F
Venustulus waukeshaensis	Moore et al. 2005	Waukesha Konservat-Lagerstätte, Brandon Bridge Formation, Wisconsin, USA Silurian Marine			Moore et al., 2005b	Figure 4C
Borchgrevinkium taimyrensis	Novojilov, 1959	Sheshenkarinskoy Suite, Kazakhstan Devonian Freshwater			Novojilov, 1959	Figure 4D
Legrandella lombardi Eldredge, 1974	Unspecified	Icla Formation, Bolivia Devonian Marine			Eldredge, 1974; Shuster, 2001; Shuster and Anderson, 2003; Bicknell et al., 2019a	Figure 5
Anderella parva	Moore et al. 2007	Bear Gulch Limestone, Montana, USA Carboniferous Marine			Moore et al., 2007	Figures 4B,E
Weinbergina opitzi	Richter and Richter, 1929	Hunsrück Slate, Germany Devonian Marine			Richter and Richter, 1929; Stürmer, 1955; Lehmann, 1956; Eldredge, 1974; Stürmer and Bergström, 1981; Novozhilov, 1991; Shuster, 2001; Shuster and Anderson, 2003; Jansen andTürkay, 2010; Rust et al., 2016	Figure 4A

Ordered by family, time period and alphabetically by genus.

Cyamocephalus, Limuloides, Pasternakevia, and Pseudoniscus have been placed into Planaterga (Figures 6–9; Lamsdell, 2013). Synziphosurines are characterized by large prosomal shields, unfused opisthosoma with nine to 11 segmented and expressed tergites (Störmer, 1934, 1955; Rudkin et al., 2008; Lamsdell, 2013; Selden et al., 2015). In extreme cases, the three most posterior tergites form a narrow postabdominal (pretelson) section leading to a styliform telson. Lateral compound eyes are known from Legrandella lombardi and Pseudoniscus roosevelti (Eldredge, 1974; Bergström, 1975; Bicknell et al., 2019a). Furthermore, Pasternakevia podolica (Krzeminski et al., 2010) and Weinbergina opitzi (Lehmann, 1956; Stürmer and Bergström, 1981) show evidence for putative ocular features. The remaining taxa lack such ocular features and were possibly blind (Bicknell et al., 2019a). Appendages are known from at least Anderella parva, Venustulus waukeshaensis, and Weinbergina opitzi (Richter and Richter, 1929; Störmer, 1934; Stürmer and Bergström, 1981; Moore et al., 2005a,b, 2007). Synziphosurines inhabited marine to marginal marine environments, and the general lack of thick prosomal margin suggests that the group may not have burrowed, and instead potentially moved above the substrate (Störmer, 1952; Bergström, 1975; Stürmer and Bergström, 1981; Lamsdell et al., 2013). Affinities of synziphosurines are actively debated due to the few useful synapomorphies that have been identified to date (Anderson et al., 1998), which has resulted in an unnatural grouping of assorted stem eucelicerates (Krzeminski et al., 2010; Lamsdell, 2013, 2016; Lamsdell and Mckenzie, 2015; Selden et al., 2015). To build on the phylogenetic work presented in Lamsdell (2013), in which Lamsdell highlighted that
TABLE 3 | Taxa in clade Planaterga, excluding the group Dekatriata, sensu Lamsdell (2013) that traditionally represent synziphosurine groups.

Taxon	Family	Geological information (where detailed) and country	Time period	Environment	Citation for figured specimens	Figured here
Bunodes lunula	Bunodidae	Oesel Group, Saaremaa Island, Estonia	Silurian	Marine	Eichwald, 1854; Woodward, 1866, 1867; Zittel, 1881; Vogdes, 1917; Eldredge, 1974; Bergström, 1975; Novozhilov, 1991; Bicknell et al., 2019a	Figure 6
Limuloides hornidus	Bunodidae	Leintwardine Formation, England, UK	Silurian	Marine (sensu Gladwell, 2018)	Woodward, 1872	Figure 7H
Limuloides limuloides	Bunodidae	Leintwardine Formation, England, UK	Silurian	Marine (sensu Gladwell, 2018)	Woodward, 1865, 1866, 1867; Zittel, 1881; Gaskell, 1908; Vogdes, 1917; Stærmer, 1955; Bergström, 1975; Novozhilov, 1991; Bicknell et al., 2019a	Figures 7A–C
Limuloides salweyi	Bunodidae	Leintwardine Formation, England, UK	Silurian	Marine (sensu Gladwell, 2018)	Woodward, 1872	Figure 7D
Limuloides speratus	Bunodidae	Leintwardine Formation, England, UK	Silurian	Marine (sensu Gladwell, 2018)	Woodward, 1872	Figure 7G
Pastenakevia podolica	Bunodidae	Ustye Suite Series, Russia	Silurian	Marine	Selden and Drygant, 1987; Krzeminski et al., 2010	Figures 7E,F
Bembicosa pomphicus	Unspecified	Reservoir Formation, Scotland, UK	Silurian	Marine	Laurie, 1899; Anderson and Moore, 2003	Figure 8F
“Bunaia” heintzi	Unspecified	Ringerike Sandstone, Norway	Silurian	Marine	Stærmer, 1934, 1955; Novozhilov, 1991	Figure 8E
Bunaia woodwardi	Unspecified	Vernon Formation, New York, USA	Silurian	Marine	Clarke, 1919; Eldredge, 1974; Selden and Nudds, 2008; Rudkin and Young, 2009	Figures 8B,D
Cyamocephalus loganensis	Unspecified	Patrick Burn Formation, Scotland, UK; Wenlock Limestone (?), Shropshire, England, UK	Silurian	Marine	Currie, 1927; Eldredge and Plotnick, 1974; Anderson, 1999; Bicknell et al., 2019a	Figure 8A
Pseudoniscus aculeatus	Unspecified	Oesel Group, Saaremaa Island, Estonia	Silurian	Marine	Nieszkowski, 1858; Woodward, 1866, 1867; Vogdes, 1917; Eldredge, 1974; Bergström, 1975	Figure 9B
Pseudoniscus clarkei	Unspecified	Vernon Formation, New York, USA	Silurian	Marine	Ruedemann, 1916; Selden and Nudds, 2008; Bicknell et al., 2019a	Figure 9E
Pseudoniscus falcatus	Unspecified	Patrick Burn Formation, Scotland, UK	Silurian	Marine	Woodward, 1868; Ruedemann, 1916; Stærmer, 1952, 1955; Bergström, 1975; Novozhilov, 1991; Bicknell et al., 2019a	Figure 9A
Pseudoniscus roosevelti	Unspecified	Vernon Formation, New York, USA	Silurian	Marine	Clarke, 1902; Stærmer, 1955; Eldredge, 1974; Novozhilov, 1991; Bicknell et al., 2019a	Figures 9C,D
Indeterminate synziphosurine	Unspecified	Ardenno- Rhenish Massif, Germany	Devonian	Marginal marine	Poschmann and Franke, 2006	Figure 8C

Ordered by family, time period, and then genus. Synonyms mentioned in Dunlop et al. (2019): Pseudoniscus = Neolimulus, Bunodes = Exapinurus, Limuloides = Hemiaspis. ? denote uncertain formation assignment.

Synziphosurines constitute both possible stem-horseshoe crabs and stem arachnids, images of all accepted synziphosurines are presented here (Figures 3–9).

Non-xiphosurid Xiphosura

First appearing in at least the Upper Ordovician of Canada and potentially the Lower Ordovician of Morocco the group contains taxa that have been considered stem-xiphosurids (Tables 1, 4, Figures 10–12; Rudkin and Young, 2009). There are eight genera and 10 species in this group. Two genera—Maldybulakia and Willwerathia—lack a family and the remaining six genera are considered stem-xiphosurids (formerly Kasibelinuridae, although this family was considered unhelpful by Bicknell et al., 2019c as it is a paraphyletic group). Non-xiphosurid xiphosurans are defined as chelicerae with a cardiac lobe extending to the anterior prosomal shield (Lamsdell, 2013). Species of this group...
TABLE 4 | Taxa considered non-xiphosurid Xiphosura and stem xiphosurids.

Taxon	Group	Geological information (where detailed) and country	Time period	Environment	Citation for figured specimens	Figured here
Lunataspis aurora	Stem xiphosurid	Churchill River Group, Canada	Ordovician	Marine	Rudkin et al., 2008; Rudkin and Young, 2009; Dunlop, 2010; Young et al., 2013; Bicknell et al., 2019a	Figure 10B
"Belinurus" allgegenynensis	Stem xiphosurid	Chadakoin Formation, New York State, USA	Devonian	Marginal marine	Eller, 1938b; Bicknell et al., 2019c	Figure 10C
Elleria morani	Stem xiphosurid	Venango Formation, Pennsylvania, USA	Devonian	Marginal marine	Eller, 1938a; Stormer, 1955; Babcock et al., 1995	Figure 10D
Kasibelinurus amicorum	Stem xiphosurid	Mandagery Sandstone, Australia	Devonian	Marine	Pickett, 1993; Itow et al., 2003; Bicknell et al., 2019a,c	Figure 11A
"Kasibelinurus" randalli	Stem xiphosurid	Chadakoin Formation, Pennsylvania, USA	Devonian	Marginal marine	Beecher, 1902; Babcock et al., 1995; Bicknell et al., 2019c	Figures 11B-D
Picketta carteri	Stem xiphosurid	Cattaraugus Formation, Pennsylvania, USA	Devonian	Marine (sensu Wilmarth, 1938)	Eller, 1940; Bicknell et al., 2019c	Figure 10A
Maldybulakia angusi	Unspecified	Sugarloaf Creek Formation, NSW, Australia	Devonian	Freshwater	Edgecombe, 1998a,b	Figures 12C,F,G
Maldybulakia malcomi	Unspecified	Boyd Volcanic Complex, NSW, Australia	Devonian	Freshwater	Edgecombe, 1998a,b	Figures 12B,E
Maldybulakia mirabilis	(Tesakov and Alekscev, 1992)	Sheshenkarinskoy Suite, Kazakhstan	Devonian	Freshwater	Tesakov and Alekscev, 1992	Figure 12D
Willwerathia laticeps	Stem xiphosurid	Köppen quarry, Willwerath, Klerf Formation, Germany	Devonian	Marginal marine	Stormer, 1936; Anderson et al., 1998; Poschmann and Franke, 2006	Figure 12A

Taxa order alphabetically by grouping, time period, and then genus. Synonyms mentioned in Dunlop et al. (2019): Maldybulakia = Lophodesmus. Note "Kasibelinuridae" is not used here as the group is considered paraphyletic (Bicknell et al., 2019a).

can also have ophthalmic ridges, but this is taxon-specific and may be taphonomically controlled. Select taxa have preserved eyes: Kasibelinurus amicorum (Pickett, 1993; Dunlop and Selden, 1998) Lunataspis aurora (Rudkin et al., 2008; Rudkin and Young, 2009), and putatively Willwerathia laticeps (Anderson et al., 1998). Appendages are not known from this group of horseshoe crabs. Similar to synxiphosurines, these taxa are mostly marine. Select non-xiphosurid xiphosurans, such as Lu. aurora, show a remarkable morphological similarity to xiphosurids (Rudkin et al., 2008).

Xiphosurida

True horseshoe crabs are an extant order that first appeared in the Devonian (Figure 1). Key characteristics of true horseshoe crabs are a large, keeled, crescentic cephalothorax with anteriorly located lateral compound eyes, a thoraceton of fused tergites containing one or two sections, and a styliform telson (Anderson and Selden, 1997; Rudkin et al., 2008; Briggs et al., 2012; Lamsdell, 2016). There are 30 genera and at least 82 species in Xiphosurida that are arrayed across the two suborders Belinurina and Limulina (Tables 5–7). Belinurina comprises only the family Belinuridae. Limulina comprises the superfamilies Limuloidae, which includes Austrolimulidae, Limulidae, Paleolimulidae, and Rolfelidae, and the genera Belinuroopsis and Valloisella (sensu Lamsdell, 2016).

Belinurina

All taxa within this sub-order are members of the family Belinuridae. The fossil record of Belinuridae spans possibly from latest Devonian, with the example of Bellinurus kilkorensis (Eller, 1938b), through to the Carboniferous and the Permian (Figure 1) and this family has the second largest generic diversity in Xiphosurida, with seven genera Alanops, Anacontium, Bellinurus, Euproops, Liomesaspis, Prolimulus, and Xiphosuroidea, and 37 named species (Table 5, Figures 13–21). Belinurids have domed cephalothoraxes with flattened margins, genal spines that are either flat, posteriorly extending, or vestigial (Stormer, 1955), and ophthalmic ridges that curve posteriorly from the lateral compound eyes (Stormer, 1955; Fisher, 1977; Haug et al., 2012), which sometimes extend into ophthalmic spines (Fisher, 1977). The thoraceton is fused and ranges between round, trapezoidal, or triangular shapes (Stormer, 1955). Euproops and Bellinurus species have between five and seven articulated and expressed thoracietron tergites with lateral spines (Stormer, 1955; Bergström, 1975; Fisher, 1977; Haug et al., 2012; Lamsdell, 2016). Anacontium, Liomesaspis, Prolimulus, and Xiphosuroidea species have no exposed tergites and no marginal spines (Stormer, 1955; Shpinev and Vasilenko, 2018). Where known, the telson is styliform and elongate for all genera (Bergström, 1975). Appendages are known from select belinurids. Chelicerae and prosomal appendages are known from Euproops danae.
Bicknell and Pates Pictorial Atlas of Horseshoe Crabs

FIGURE 3 | Taxa considered possible horseshoe crabs that currently lack definitive affinities. (A,B) Dibasterium durgae: reconstructed in 3D from the Silurian-aged Herefordshire Konservat-Lagerstätte, England, UK. OUMNH C.29640, holotype (A) Ventral view. (B) Dorsal view. (C) An unnamed xiphosuran from the lower Ordovician-aged Upper Fezouata Formation, Morocco. YPM IP 227586. (D) Oratoavispis complexa from the Ordovician-aged Litná Formation, Czech Republic. MNHP L23577, holotype. This taxon is also considered to have aglaspid affinities (Dunlop et al., 2019). (E) Two unnamed synziphosurines from the lower Ordovician-aged Lower Fezouata Formation, Morocco. YPM IP 517856. Photo credit: (A,B) Russell Garwood (also see Briggs et al., 2012); (C) Russell Bicknell; (D) Javier Ortega Hernández; (E) Jessica Utrup.

Belinurids are an extremely well-studied group of xiphosurids reflecting the expansive literature on the life mode, ontogeny and taxonomy of the group (e.g., Fisher, 1977, 1979; Anderson, 1994; Haug et al., 2012; Haug and Rötzer, 2018b; Bicknell et al., 2019b) and Alanops magnificus (Montceau-les-Mines Konservat-Lagerstätte, Great Seams Formation, France; Racheboeuf et al., 2002; Bicknell et al., 2019b).

Belinurids were the most successful horseshoe crab group in exploiting freshwater conditions (Fisher, 1984; Lamsdell, 2016). It has been suggested, that select taxa were likely effective at sub-aerial activity (more so than extant taxa) as cephalothoracic appendages were arranged similarly to extant xiphosurids, permitting more on-land exploration than is observed in extant taxa (Racheboeuf et al., 2002; Haug and Rötzer, 2018b). Euproops danae specifically had morphological characteristics that may have mimicked co-occurring leaves and arachnids (Dunbar, 1923; Fisher, 1979; Todd, 1991; Filipiak and Krawczynski, 1996),
FIGURE 4 | Taxa in Prosomapoda that are not within Planaterga or Xiphosura. (A) Weinbergina opitzi from the Devonian-aged Hunsrück Slate Rheinland, Germany. MB.A.1987. (B,E) Anderella parva from the Carboniferous-aged Bear Gulch Limestone, Montana, USA. (B) CM 54200, holotype. (E) CM 54201, paratype. (C) Venustulus waukeshaensis from the Silurian-aged Waukesha Lagerstätte, Wisconsin, USA. YPM IP 204461. (D) Borchgrevinkium taimyrensis from the Devonian-aged Sheshenkarinskoy Suite, Kazakhstan. PIN 127/11, holotype. (F) Camanchia grovensis from the Silurian-aged Wenlock Scotch Grove Formation, Iowa, USA. U.W.4018/1a, holotype. Photo credit: (A) Andreas Abele, (B,C,E) Russell Bicknell, (D) Dmitry E. Shcherbakov, (F) Carrie A. Eaton. All converted to gray scale.
FIGURE 5 | Legrandella lombardii from the Devonian-aged Icla Formation, Bolivia. (A–C,E,F) AMNH 029273, holotype. (A) Lateral view. (B) Anterior view of prosoma. (C) Dorsal view of prosoma. (E) Ventral view of prosoma. (F) Lateral view of telson. (D) AMNH 029274, plastoparatype. Dorsal view of prosoma. Photo credit: Russell Bicknell.
FIGURE 6 | Examples of *Bunodes lunula* from the Silurian-aged Oesel Group, Saaremaa Island, Estonia. (A) NMS G.2001.10.1. (B) YPM IP 212839. (C) NYSM 19113. (D) NYSM 19114. (E) Slab showing two specimens. AMNH 028734. Photo credit: (A) Bill Crighton; (B–E) Russell Bicknell.
FIGURE 7 | Limuloides and Pasternakevia. (A–C) Limuloides limuloides from the Silurian-aged Leintwardine Formation, England, UK. (A) BGS.GSE 32393. (B) NHMUK PI. In. 60018. (C) NHMUK PI. In. 48422. (D) Limuloides salweyi from the Silurian-aged Leintwardine Formation, England, UK. NHMUK PI. In. 61510, holotype. (E,F) Pasternakevia podolica from the Silurian-aged Ustye Suite Series, Russia. (E) ISEA I-F/M/P/3/1499/08. (F) ZIK 35611, holotype. (G) Limuloides speratus from the Silurian-aged Leintwardine Formation. NHMUK PI. I. 1180. (H) Limuloides horridus from the Silurian-aged Leintwardine Formation, England, UK. NHMUK PI. In. 61509, holotype. Photo credit: (A) David Marshall; (B–D,G,H) Stephen Pates; (E) Błaży Błażejowski; (F) Ewa Krzeminska.
"Synziphosurines" currently lacking a family assignment. (A) *Cyamocephalus loganensis* from the Silurian-aged Patrick Burn Formation, Scotland, UK. NHMUK Pl. I. 16521, holotype. (B, D) *Bunaia woodwardi* from the Silurian-aged Vernon Shale, New York, USA. (B) NYSM 9911. (D) NYSM 9910. (C) Indeterminate (Continued)
FIGURE 8 | Synziphosurine from the Devonian-aged Klerf Formation, Germany. SPW 631-D. (E) "Bunaia" heintzi from the Silurian-aged Ringerike Sandstone, Norway. NHM-UC PMOA4361, holotype. (F) Bembicosoma pomphicus from the Silurian-aged Reservoir Formation, Scotland, UK. NMS G.1897.32.146, holotype. Photo credit: (A) Javier Ortega Hernández; (B,D) Russell Bicknell; (C) Markus Poschmann; (E) Hans Arne Nakrem; (F) Bill Crighton.

FIGURE 9 | Species within Pseudoniscus. (A) Pseudoniscus falcatus from the Silurian-aged Patrick Burn Formation, Scotland, UK. NHMUK PI. In. 44122, holotype. (B) Pseudoniscus aculeatus from the Silurian-aged Oesel Group, Saaremaa Island, Estonia. AMNH 029281. (C,D) Pseudoniscus roosevelti from the Silurian-aged Vernon Shale, New York, USA. (C) NMS G.2004.45.5a. (D) NYSM 4762. (E) Pseudoniscus clarkei from the Silurian-aged Vernon Shale, New York, USA. NYSM E1030. (D,E) were photographed under ethanol. Photo credit: (A) Lucie Goodayle, NHM, London; (B,D,E) Russell Bicknell; (C) Bill Crighton.
Bicknell and Pates Pictorial Atlas of Horseshoe Crabs

FIGURE 10 | Stem xiphosurids from Canada and the USA. (A) Pickettia carteri from the Devonian-aged Cattaraugus Formation, Pennsylvania, USA. BMSC E 9644, holotype. (B) Lunataspis aurora from the Ordovician-aged Churchill River Group, Canada. MM I-4000A, holotype. (C) “Beltnurus” alleghenyensis from the Devonian-aged Chadakoin Formation, New York, USA. Cast of CM11065, holotype. (D) Elleria morani from the Devonian-aged Venango Formation, Pennsylvania, USA. CM11574, holotype. (C,D) were coated with ammonium chloride sublimate. Photo credit: (A) KC Kratt; (B) Permission to reproduce photographs granted by Graham Young and the Manitoba Museum; (C,D) Russell Bicknell.
although this suggestion remains to be thoroughly explored. The ontogeny of fossil belinurids has been documented using *Euproops* sp. from the Osnabrück Formation (Pennsylvanian) of Germany (Haug et al., 2012), and *E. danae* from the Mazon Creek *Konservat-Lagerstätte* (Pennsylvanian) of the USA (Haug and Rötzer, 2018b). The apparently large belinurid diversity almost definitely reflects over-splitting during the early twentieth century (Anderson, 1997; Lamsdell, 2016) and grouping Euproopidae with Belinuridae (Dunlop et al., 2019). A re-evaluation of the family is therefore needed (Selden and Siveter, 1987) and should build on Anderson (1994), Haug et al. (2012), and Haug and Rötzer (2018b) who synonymised *Euproops* species after determining that cephalothoracic compression produced variable, supposedly species-diagnostic features (Haug and Rötzer, 2018b; Shpinev, 2018).

Limulina

This sub-order comprises the superfamily Limuloidea, the families Paleolimulidae and Rolfeiidae, and the genus *Bellinuroopsis*. Limulina has a fossil record ranging from the Devonian to Recent. The diagnostic feature that separates Limuloidea from Belinurina is the fusion of the two most posterior thoracetronic tergites (*sensu* Lamsdell, 2016).

Paleolimulidae

This family has a fossil record spanning the Carboniferous to Permian (Table 6). Three genera construct Paleolimulidae: *Moravurus*, *Paleolimus*, and *Xaniopyramis* and there are six species within these three genera (Figure 22). The morphology of paleolimulids broadly resembles that of modern horseshoe crabs, but members of this group are smaller than extant taxa (Størmer, 1955; Shuster, 2001). Paleolimulids have a domed cephalothorax,
FIGURE 12 | Xiphosuran taxa within genera Maldybulakia and Willwerathia. (A) Willwerathia laticeps from the Devonian-aged Klerf Formation, Germany. Cast of Leunissen collection specimen SLK lb, cast number SPW 1308-D. (B,E) Maldybulakia malcomi from the Devonian-aged Boyd Volcanic Complex, NSW, Australia. AM F102533, holotype. (B) Dorsal view. (E) Lateral view. (C,F,G) Maldybulakia angusi from the Devonian-aged Sugarloaf Creek Formation, NSW, Australia. (C) Reconstruction presented in Edgecombe (1998b, Figure 12). (F) AM F102560. (G) AM F102565, cast of holotype. (D) Maldybulakia mirabilis from the Devonian-aged Sheshenkarinskoy Suite, Kazakhstan. PIN No. 249/1, holotype. (B,E-G) Coated in ammonium chloride sublimate. (B,E-G) Converted to gray scale. Photo credit: (A) Markus Poschmann; (B,E-G) Patrick Smith; (C) Permission to use reconstruction granted by Gregory Edgecombe; (D) Alexander S. Alekseev.
Taxon	Family	Geological information (where detailed) and country	Time period	Environment	Citation for figured specimens	Figured here
Bellinurus kiltorkensis	Belinuridae	Kiltorcan Formation, Republic of Ireland	Devonian- Carboniferous	Freshwater	Baily, 1870; Cole, 1901; Eller, 1938b	Figure 14F
Alysops magnifica	Belinuridae	Montceau-les-Mines, Great Seams Formation, France	Carboniferous	Freshwater	Racheboeuf et al., 2002; Perrier and Charbonnier, 2014; Bicknell et al., 2019b	Figures 13A,B
Bellinurus arcuatus	Belinuridae	Pennine Middle Coal Measures Formation, England, UK; South Wales Lower Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Baily, 1863, 1870; Dix and Pringle, 1929; Eller, 1938b; Parkes and Sleeman, 1997	Figure 13C
Bellinurus baldwini	Belinuridae	Pennine Middle Coal Measures Formation, England, UK	Carboniferous	Freshwater	Woodward, 1907; Eller, 1938b; Novozhilov, 1991	Figure 13E
Bellinurus bellulus	Belinuridae	South Wales Lower Coal Measures Formation, Wales, UK; Pennine Middle Coal Measures Formation, Lancashire, England, UK	Carboniferous	Freshwater	Dix and Pringle, 1929; Eller, 1938b	Figure 13D
Bellinurus carwayensis	Belinuridae	South Wales Lower Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Dix and Pringle, 1929; Eller, 1938b	Figure 13C
Bellinurus concinnus	Belinuridae	South Wales Lower Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Dix and Pringle, 1929; Eller, 1938b	Figure 14B
Bellinurus grandiceps	Belinuridae	Canso Group, Parrsboro, Nova Scotia, Canada; Riversdale Group, Nova Scotia, Canada	Carboniferous	Freshwater	Jones and Woodward, 1999; Eller, 1938b; Copeland, 1957a	Figure 14D
Bellinurus iswariensis	Belinuridae	Almaznaya Formation; Ukraine; Mospinskaya Formation, Ukraine; Smol’yannovskaya (?) Formation, Russia	Carboniferous	Freshwater	Chernyshev, 1928; Eller, 1938b; Shpinev, 2018	Figure 14C
Bellinurus koenigianus	Belinuridae	South Wales Lower Coal Measures Formation, Wales, UK; Pennine Middle Coal Measures Formation, England, UK	Carboniferous	Freshwater	Woodward, 1872; Dix and Pringle, 1929; Eller, 1938b; Bergström, 1975	Figure 14E
Bellinurus lacoei	Belinuridae	Mazon Creek, Konserv-Lagemstätte, Carbondale Formation, Illinois, USA	Carboniferous	Freshwater	Packard, 1885	Figure 14A
Bellinurus longicaudatus	Belinuridae	Pennine Middle Coal Measures Formation, England, UK	Carboniferous	Freshwater	Woodward, 1907; Eller, 1938b	Figure 15C
Bellinurus lunatus	Belinuridae	Pennine Middle Coal Measures Formation, Rochdale, England, UK; Upper Silesia Coal Basin, Czech Republic	Carboniferous	Freshwater	Martin, 1809; Pranti and Přibyl, 1966; Filipiak and Krawczynski, 1996; Krawczynski et al., 1997	Figures 15A,B
Bellinurus metschetnensis	Belinuridae	Belaya Kalitva Formation, Ukraine	Carboniferous	Freshwater	Chernyshev, 1928; Eller, 1938b; Shpinev, 2018	Figure 15D
Bellinurus morgani	Belinuridae	South Wales Lower Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Dix and Pringle, 1930; Fisher, 1982	Figure 15E
Bellinurus pustulosus	Belinuridae	South Wales Lower Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Dix and Pringle, 1929; Eller, 1938b	Figure 16D

(Continued)
Taxon	Family	Geological information (where detailed) and country	Time period	Environment	Citation for figured specimens	Figured here
Bellinurus reginae	Belinuridae	Canso Group, Parrsboro, Nova Scotia, Canada; Karvíná Formation (?), Upper Silesia, Poland; South Wales Lower Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Baily, 1863; Woodward, 1867; Zittel, 1881; Vogdes, 1917; Copeland, 1957a; Novozhilov, 1991; Parkes and Steeman, 1997	Figures 16C,E
Bellinurus šustai	Belinuridae	Karvíná Formation, Czech Republic.	Carboniferous	Freshwater	Prantl and Přibyš, 1956	Figure 17A
Bellinurus stepanowi	Belinuridae	Almaznaya Formation, Ukraine; Kamenskaya Formation, Russia	Carboniferous	Freshwater	Chernyshev, 1928; Eller, 1938b; Shpinev, 2018	Figure 16B
Bellinurus silesiacus	Belinuridae	Upper Silesia Coal Basin, Poland	Carboniferous	Freshwater	Roemer, 1883; Eller, 1938b	Figure 16A
Bellinurus trechmanni	Belinuridae	Pennine Upper Coal Measures Formation, England, UK; Sprockhövel Formation, Germany	Carboniferous	Freshwater	Woodward, 1918; Trechmann and Woolacott, 1919; Eller, 1938b	Figure 17B
Bellinurus trilobitoides	Belinuridae	Bickershaw Konservat-Lagerstätte, England, UK; Clay Ironstone, England, UK; ?Pennine Upper Coal Measures Formation, England, UK.	Carboniferous	Freshwater	Buckland, 1837; Prestwich, 1840; Anderson et al., 1997; Bicknell and Pates, 2019b	Figure 17D
Bellinurus truemani	Belinuridae	South Wales Lower Coal Measures Formation, Wales, UK; Sprockhövel Formation, Germany	Carboniferous	Freshwater	Dix and Pringle, 1929; Eller, 1938b; Schultka, 1994; Brauckmann, 2005	Figure 17C
Euproops anthrax	Belinuridae	Pennant Sandstone Formation, Wales, UK; South Wales Upper Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Prestwich, 1840; Stormer, 1955; Bergström, 1975; Novozhilov, 1991	Figure 18F
Euproops bifidus	Belinuridae	Flöz Dreibanke Formation, Germany	Carboniferous	Freshwater	Siegfried, 1972; Brauckmann, 1982, 2005	Figure 18D
Euproops cambrensis	Belinuridae	South Wales Lower Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Dix and Pringle, 1929	Figure 18C
Euproops danae	Belinuridae	Almaznaya Formation; Ukraine; Beenan Formation, New Mexico, USA; Donets Black Coal Basin, Ukraina; Farrington Group, England, UK; Mazon Creek Konservat-Lagerstätte, Carbondale Formation, Illinois, USA; Riversdale Group, Canada; Smolyanovskaya Formation, Russia; Uffington Shale; West Virginia, USA	Carboniferous	Freshwater	Meek and Worthen, 1885; Packard, 1885; Chernyshev, 1928; Raymond, 1945; Copeland, 1957b; Murphy, 1970; Ambrose and Romano, 1972; Fisher, 1979; Anderson, 1994; Babcock and Merriam, 2000; Shuster, 2001; Ruckin and Young, 2009; Lucas et al., 2014; Bicknell et al., 2018; 2019b; Haug and Rötzer, 2018b; Shpinev, 2018; Tashman et al., 2019; Haug and Haug, 2020	Figure 19
Euproops longispina	Belinuridae	Allegheny Formation, Pennsylvania, USA	Carboniferous	Freshwater	Packard, 1885	Figures 18A,B
Euproops mariae	Belinuridae	Graissessac Shale and Coal, Graissessac Basin, France	Carboniferous	Freshwater	Crönier and Courville, 2005	Figure 18E
Euproops meeki	Belinuridae	South Wales Upper Coal Measures Formation, Wales, UK	Carboniferous	Freshwater	Dix and Pringle, 1929	Figure 20D
Euproops orientalis	Belinuridae	Jido Series, Korea	Carboniferous	Freshwater	Kobayashi, 1933	Figure 20C

(Continued)
ophthalmic ridges that converge anteriorly to lateral compound eyes and genal spines that extend posteriorly as far as the fourth thoracic tergite (Lerner et al., 2016). The thorac劃on is fused and has an angular axial section with transverse and longitudinal thorac划onic ridges occasionally present (Raymond, 1944; Siveter and Selden, 1987; Novozhilov, 1991), along with a styliform telson (Pickett, 1984; Seegis, 2014). Moveable thorac划onic spines are occasionally preserved (Seegis, 2014). Unique features of select taxa include the additional articulation between the thorac划on and telson known from Paleo_/\textit{limulus signatus} and the expressed opercular (VIII) tergite producing a free thorac划onic lobe in \textit{Pa. woodae} and \textit{Xaniopyramis linseyi} (Stormer, 1952; Babcock et al., 2000; Lerner et al., 2016). Rare specimens preserve soft-parts. \textit{Paleolimulus signatus} (Insect Hill Konservat-Lagerstätte, Wellington Formation, USA, Permian) preserves cephalothoracic and thorac划onic appendages (Dunbar, 1923; Raymond, 1944; Stormer, 1952; Babcock and Merriam, 2000; Bicknell et al., 2019b). These appendages are strikingly similar to modern horseshoe crabs (Stormer, 1955; Bicknell et al., 2019b). \textit{Xaniopyramis linseyi} (Upper Limestone Group, Scotland, Carboniferous) preserves impressions of cephalothoracic appendage muscles (Siveter and Selden, 1987).
Paleolimulid species were mostly marine taxa and their morphologies, similar to extant horseshoe crabs, reflect this life mode. They may have therefore variably explored swimming and burrowing life modes, with these ecological inferences related to the presence of movable thoracic spines (Siveter and Selden, 1987). *Paleolimulus woodae* lacked thoracic movable spines and may have been capable of swimming, while *Xaniopyramis linseyi*, adorned with large thoracetronic spines, would have likely burrowed (Siveter and Selden, 1987; Lerner et al., 2016). The diversity of Paleolimulidae has previously been overstated and *Paleolimulus* is now considered a paraphyletic group (Lamsdell, 2016; Lerner et al., 2017; Bicknell, 2019). Many paleolimulid forms are now considered to be austrolimulids (discussed below), so continued research into these taxa is needed to uncover the true disparity of forms within this family and diversity of both austrolimulids and paleolimulids (Bicknell, 2019).

Rolfeiidae

This monospecific family consists of *Rolfeia fouldenensis* and is known from the Carboniferous-aged Cementstones Group, Scotland (Table 6, Figure 23). The cephalothorax is domed, exhibiting small genal spines, and a thick cephalothoracic margin. The species has a cardiac lobe narrows anteriorly and ophthalmic ridges that cross the lateral compound eyes, converging at the cardiac lobe (Waterston, 1985). The thoraceton is fused with visible tergal divisions and the opercular tergite is fully expressed. Large fixed and small moveable thoracetronic spines are known from *R. fouldenensis* (Waterston, 1985; Selden and Siveter, 1987; Lamsdell, 2016) and the telson is styliform. Lamsdell (2016) suggested that transverse cephalothoracic ridge nodes were characteristic of the family; however, as the holotype considered here lack these features, this feature may be treated tentatively. Presently, no appendages are known from this group (Waterston, 1985).

Rolfeia fouldenensis is the only species exhibiting large fixed thoracetronic spines extending laterally, coupled with smaller moveable thoracetronic spines (Clarkson, 1985). These spines likely provided the thoraceton with more surface area to prevent individuals from sinking into the substrate (Anderson, 1994) when they were not suspended in water (Siveter and Selden, 1987). Originally thought to be a possible paleolimulid due to tergal expression on the thoraceton (Waterston, 1985), the unique characters of both moveable and overdeveloped fixed spines, coupled with an expressed opercular tergite, were

TABLE 6 | Taxa in the suborder Limulina.

Taxon	Family	Geological information (where detailed and locality)	Time period	Environment	Citation for figured specimens	Figured here
Moravurus renori	Paleolimulidae	Kyjovice Formation, Czech Republic	Carboniferous	Marine (sensu Bábek et al., 2004)	Přibyl, 1967	Figure 22C
Paleolimulus woodae	Paleolimulidae	Horton Bluff Formation, Nova Scotia, Canada	Carboniferous	Marine	Lerner et al., 2016	Figure 22B
Xaniopyramis linseyi	Paleolimulidae	Upper Limestone Group, England, UK	Carboniferous	Marine	Siveter and Selden, 1987	Figure 22A
Paleolimulus signatus (Beecher, 1904)	Paleolimulidae	Barneston Limestone Kansas, USA; Francis Creek Shale Member, Illinois, USA; Insect Hill Konservat-Lagerstätte, Wellington Formation, Kansas, USA; Pony Creek Shale Konservat-Lagerstätte, Wood Siding Formation, Kansas, USA	Carboniferous–Permian	Marine	Beecher, 1904; Dunbar, 1923; Stormer, 1955; Novozhilov, 1991; Babcock et al., 2000; Shuster, 2001; Shuster and Anderson, 2003; Bicknell et al., 2019b	Figures 22D,F
Paleolimulus kungunicus Naugolnykh, 2017	Paleolimulidae	Philippovian Formation, Russia	Permian	Marine	Naugolnykh, 2017, 2018	Figure 22G
P.? Paleolimulus juresanensis Chernyshev, 1933	Paleolimulidae	Mattchev or Belogor Beds. No certain formation (T. Tolmacheva pers. Comms. 2018)	Permian	Marine	Chernyshev, 1933	Figure 23E
Rolfeia fouldenensis Waterston, 1985	Rolfeiidae	Cementstones Group, Scotland, UK	Carboniferous	Marine	Waterston, 1985	Figure 23B
Bellinuroopsis rassicus Chernyshev, 1933	Unspecified	Lebedjan Formation, Russia	Devonian	Marine	Chernyshev, 1933; Eiler, 1938b; Stormer, 1955; Novozhilov, 1991	Figure 23A

The taxa are order by family, time-period and then alphabetically by genus and species. Synonyms mentioned in Dunlop et al. (2019): Paleolimulidae = Moravurdiae. Bellinuroopsis = Neobelinurus. Paleolimulus = Prestwichia. ? denotes uncertain taxonomic affinities.
TABLE 7 | Fossil taxa in superfamily Limuloidea.

Taxon	Family	Geological information (where detailed) and locality	Time period	Environment	Citation for figured specimens	Figured here
?Paleolimulus longispinus Schram, 1979	Austrolimulidae	Bear Gulch Limestone, Montana, USA	Carboniferous	Marginal Marine	Schram, 1979; Haagdorn, 2002; Haug et al., 2012	Figures 25B,C
?Paleolimulus jakovlevi Glushenko and Ivanov, 1961	Austrolimulidae	Auranarkovaya Formation, Ukraine	Permian	Marine	Glushenko and Ivanov, 1961	Figure 26E
Pandorolimulus babcocki Allen and Feldmann, 2005	Austrolimulidae	Maybelle Limestone, Texas, USA	Permian	Marginal marine	Allen and Feldmann, 2005	Figures 25A,F
Tasmaniolimulus patersoni Bicknell, 2019	Austrolimulidae	Jackey Shale, Tasmania, Australia	Permian	Freshwater	Ewington et al., 1989; Ito et al., 2003; Bicknell and Pates, 2019b; Bicknell et al., 2019e	Figure 24B
Austrolimulus flitcherii Riek, 1955	Austrolimulidae	Beacon Hill Shale, NSW, Australia	Triassic	Freshwater	Riek, 1955; Novozhilov, 1991; Ito et al., 2003; Rudkin and Young, 2009; Bicknell and Pates, 2019b; Bicknell et al., 2019e	Figure 24A
Dubbo limulus peetae Pickett, 1984	Austrolimulidae	Ballimore Formation, NSW, Australia	Triassic	Freshwater	Pickett, 1984; Ito et al., 2003	Figure 24C
?Paleolimulus fuchsbergensis Hauschke and Wilde, 1987	Austrolimulidae	Exter Formation, Germany	Triassic	Freshwater	Hauschke and Wilde, 1987; Hauschke, 2014	Figure 26D
Psammolimulus gottingensis Lange, 1923	Austrolimulidae	Solling Formation, Germany	Triassic	Freshwater	Lange, 1922; Meischner, 1962; Novozhilov, 1991; Kustatscher et al., 2014; Bicknell and Pates, 2019b; Bicknell et al., 2019b	Figure 26A
Vaderlimulus tricki Lerner et al., 2017	Austrolimulidae	Thaynes Group, Idaho, USA	Triassic	Marginal marine	Lerner et al., 2017	Figure 25E
Casterolimulus kletti Holland et al., 1975	Austrolimulidae	Fox Hills Formation, North Dakota, USA	Cretaceous	Freshwater	Holland et al., 1975	Figure 25D
Albahlimulus bottoni Bicknell and Pates, 2019b	?Limulidae	Ballagan Formation, Scotland, UK	Carboniferous	Marine	Bicknell and Pates, 2019b	Figures 27A,B
Limulitella bronni Schimper, 1853	Limulidae	Grés à Voltzia Formation, France	Triassic	Freshwater	Schimper, 1853; Pfannenstiel, 1928; Wincierz, 1960; Novozhilov, 1991; Gall and Grauvogel-Stamm, 1999; Röhling and Heunisch, 2010; von Fritsch, 1906; Hauschke and Mertmann, 2015	Figure 28A
Limulitella henkeli von Fritsch, 1906	Limulidae	Jena Formation, Germany	Triassic	Marine (sensu Blażejowski et al., 2017)	Hauschke and Wilde, 2000	Figure 28B
?Limulitella sp.	Limulidae	Bernburg Fordmation, Germany	Triassic	Marine to freshwater	Hauschke and Wilde, 2000	Figure 30A
Limulitella sp.	Limulidae	Sakamena Group, Madagascar	Triassic	Marine	Hauschke et al., 2004	Figure 29E
Limulitella sp.	Limulidae	Lower Wellekkaalk Member, Netherlands	Triassic	Marine	Zuber et al., 2017	Figure 28C
?Limulitella sp.	Limulidae	Buntsandstein, Germany	Triassic	Marine	Hauschke and Wilde, 2008	Figures 29C,D
?Limulitella sp.	Limulidae	Lower Muschelkaalk, Netherlands	Triassic	Marine	Hauschke et al., 2009; Klompmaker, 2019	Figure 28D
Limulitella tejaensis Blażejowski et al., 2017	Limulidae	Ouled Chebbi Formation, Tunisia	Triassic	Freshwater	Blażejowski et al., 2017	Figure 29B
Limulitella vicensis (Beicher, 1897)	Limulidae	Keuper Formation, France	Triassic	Marine	Bleicher, 1897; Fisher, 1984	Figure 29A

(Continued)
Taxon	Family	Geological information (where detailed) and locality	Time period	Environment	Citation for figured specimens	Figured here
Luingulitella volgensis	Limulidae	Rybinsk Formation, Russia	Triassic	Marine	Ponomarenko, 1985	Figure 30E
Luingulitella	Limulidae	?Exter Formation, Germany	Triassic	Freshwater	Braun, 1860; Hauschke and Wilde, 1984	Figure 30D
Limulus nathorsti	Limulidae	Höör Sandstone, Sweden	Triassic	Marine	Jackson, 1906	Figure 31E
Limulus priscus	Limulidae	Muschelkalk Limestone, Germany	Triassic	Marine	Münster, 1839	Figure 32F
Mesolimulus crespellii	Limulidae	Alcover Limestone Formation, Spain	Triassic	Marine	Via Boada, 1987a,b; Marti, 1994	Figure 31B
Slovenolimus rudkini	Limulidae	Strelovec Formation, Slovenia	Triassic	Marine	Krizhar and Hitij, 2010; Bicknell et al., 2019e	Figure 32C
Tachypleus gadeai	Limulidae	Alcover Limestone Formation, Spain	Triassic	Marine	Via Boada and Villalta, 1966; Romero and Via Boada, 1977; Via Boada et al., 1977; Marti, 1993, 1994; Diedrich, 2011; Bicknell et al., 2019e	Figure 31A
Tarracolimus nieki	Limulidae	Alcover Limestone Formation, Spain	Triassic	Marine	Romero and Via Boada, 1977; Via Boada et al., 1977	Figure 31C
Yunnanolimus luopingensis	Limulidae	Guanling Formation, Luoping, China	Triassic	Marine	Zhang et al., 2009; Hu et al., 2011, 2017; Bicknell et al., 2019b	Figures 32A,B
Limulidae gen. et sp. indet, previously Limulus kieri	Limulidae	Muschelkalk Limestone, Germany	Triassic	Marine	Hauschke et al., 1992	Figure 31D
Limulidae gen. et sp. indet	Limulidae	Bernburg Formation, Germany	Triassic	Freshwater	Hauschke, 2014	Figure 32E
Limulidae gen. et sp. indet	Limulidae	Volpriehausen Formation, Germany	Triassic	Freshwater	Hauschke, 2014	Figure 32D
Crenatolimus sp.	Limulidae	Kcynia Formation, Poland	Jurassic	Marine	Kin et al., 2013; Blazejowski, 2015; Blazejowski et al., 2015, 2016	Figure 33A
“Limulus” darwini Kin and Blazejowski, 2014	Limulidae	Kcynia Formation, Poland	Jurassic	Marine	Kin and Blazejowski, 2014; Tashman, 2014; Blazejowski, 2015; Blazejowski et al., 2015, 2016, 2019	Figure 33B
Limulus woodwardi Watson, 1909	Limulidae	Northampton Sand Formation(?), England, UK	Jurassic	Marine	Watson, 1909	Figure 33C
Mesolimulus aribicus Ponomarenko, 1985	Limulidae	Talyznhansk Formation, Russia	Jurassic	Marginal marine	Ponomarenko, 1985	Figure 33E
Mesolimulus sp.	Limulidae	Purbeck Limestone Group, England, UK	Jurassic	Marine	Ross and Vannier, 2002	Figure 33D
Mesolimulus walchi (Desmarest, 1822)	Limulidae	Konservat-Lagerstätte of Etting, Germany; Solnhofen Limestone, Germany	Jurassic	Marine	Desmarest, 1822; Koenig, 1825; Zittel, 1881; Maiz, 1964; Fisher, 1984; Briggs and Wilby, 1996; Shuster, 2001; Itow et al., 2003; Shuster and Anderson, 2003; Briggs et al., 2005; Novitsky, 2009; Rudkin and Young, 2009; Sekiguchi and Shuster, 2009; Diedrich, 2011; Haug et al., 2011; Ebert et al., 2015; Hauschke and Mertrmann, 2016; Bicknell et al., 2018d, 2019b	Figure 34

(Continued)
TABLE 7 | Continued

Taxon	Family	Geological information (where detailed) and locality	Time period	Environment	Citation for figured specimens	Figured here
Crenatolimulus paluxyensis	Limulidae	Glen Rose Formation, Texas, USA	Cretaceous	Marine	Feldmann et al., 2011; Bicknell et al., 2019b	Figure 35D
Limulus coffini Reeside and Harris, 1952	Limulidae	Pierre Shale, Colorado, USA	Cretaceous	Marine	Reeside and Harris, 1952; Shuster, 2001; Shuster et al., 2003; Sekiguchi and Shuster, 2009	Figure 35F
Mesolimulus tatraeotensis	Limulidae	Gara Stbaa Konservat-Lagerstätte, Kem Kern Beds, Morocco	Cretaceous	Marine	Garassino et al., 2008; Lamsdell et al., 2020	Figure 35E
Tachypleus syriacus (Woodward, 1879)	Limulidae	Hagel and Hadjoula Konservat-Lagerstätten, Lebanon	Cretaceous	Marine	Woodward, 1879; Novozhilov, 1991; Lamsdell and Mckenzie, 2015; Bicknell et al., 2019b	Figures 35C,G
Vicatolimulus mcqueeni/ Riek and Gill, 1971	Limulidae	Korumburra Group, NSW, Australia	Cretaceous	Freshwater	Riek and Gill, 1971; Itow et al., 2003; Poropat et al., 2018; Bicknell et al., 2019b,e	Figures 35A,B
Limulus decheni/ Zincken, 1862	Limulidae	Braunkohlen Formation, Germany; Domsen Sands, Weßelster Basin, Germany	Eocene	Marine	Zincken, 1862; Giebel, 1863; Fiebelkorn, 1895; Böhm, 1908; Vetter, 1933; Novozhilov, 1991; Bellmann, 1997; Hauschke and Wilde, 2004; Dunlop et al., 2012; Hauschke, 2013, 2018; Hauschke and Mertmann, 2015; Schimpf et al., 2017	Figures 36C–E
Unnamed specimen	Unspecified	Zechstein, Germany	Permian	Marine	Hauschke and Wilde, 1989	Figures 36A,B
Unnamed specimen	Unspecified	Trochitenkalk Formation, Germany	Triassic	Marine	Krause et al., 2009; Diedrich, 2011	Figures 30B,C
Valloisella livinensis Racheboeuf, 1992	Unspecified	Bickershaw Complex, England UK; Westphalian B Coal Measures, England, UK; Westphalian C Coal Measures, France	Carboniferous	Freshwater	Ox and Jones, 1932; Racheboeuf, 1992; Anderson and Horrocks, 1995	Figure 36F

The taxa are ordered by family, time-period and then alphabetically by genus and species. Synonyms mentioned in Dunlop et al. (2019); Limulidae = Mesolimulidae; Limulitella = Limulites. Tachypleus = Heterolimulus. Note that due to the paraphyletic status of Paleolimulus, taxa in this genus have been placed into Austrolimulidae. These taxa require revision. 7 denotes uncertain taxonomic affinities or formation assignment.

sufficient to erect a new family (Selden and Siveter, 1987; Siveter and Selden, 1987).

Bellinuroopsis

This Devonian-aged, monospecific genus (*Bellinuroopsis rossicus*) is known from one Russian specimen (Lebedjan Formation, *Table 6, Figure 23*; Chernyshev, 1933; Moore et al., 2007). The main characteristics that distinguishes *Bel. rossicus* from other taxa in Limulina are the following: a wedge-shaped cardiac lobe (Störmer, 1955); and an oblong thoracetron with eight, free moving, expressed tergites, tapering slightly to a telson. Furthermore, an expressed opercular (VIII) tergite that is more pronounced than in Rolfeiidae (Störmer, 1955; Novozhilov, 1991). These unique features potentially warrant the erection of a separate family, as suggested by Störmer (1955).

Limuloidea

Taxa in this superfamily are Austrolimulidae, Limulidae, and Valloisella. The diagnostic features of these taxa are a “thoracetron showing no lateral expression of individual tergites” (Lamsdell, 2016, p. 190).

Austrolimulidae

This family ranges from at least the Permian to the Cretaceous (*Figure 1*). There are at least seven monospecific genera: Austrolimulus, Casterolimulus, Dubbolimulus, Panduralimulus, Psammolimulus, Tasmanolimulus, and Vaderlimulus (*Table 7, Figures 24–26*). Austrolimulidae have domed cephalothoraces, with overdeveloped genal spines that terminate as far back as the telson onset. Thoracetrons are mostly fused; occasionally preserve apodemal pits with highly reduced or vestigial moveable spines and styliform telsons (Rick, 1955, 1968; Lerner et al., 2013, 2017; Bicknell, 2019). Swallow-tailed thoracetrons are observed in *A. fletcheri* (Beacon Hill Shale, NSW, Australia, Triassic) and *V. tricki* (Thaynes Group, Idaho, USA, Triassic; Lerner et al., 2017), but this character is not known from all taxa in the family, including *T. patersoni* (Jackey Shale, Tasmania, Australia, Permain; Bicknell, 2019). Furthermore, *A. fletcheri* has a thoracetron with two sections, the posterior section of which has three exposed tergites (Rick, 1955; Pickett, 1984; Novozhilov, 1991; Itow et al., 2003). Lamsdell (2016) described a dorsal thoracetronic keel in Austrolimulidae. This feature
is noted in *D. pectae* (Baltimore Formation, NSW, Australia, Triassic) and *T. patersoni*, but is not known to the other taxa (Riek, 1955; Pickett, 1984; Allen and Feldmann, 2005; Feldmann et al., 2011; Lerner et al., 2017; Bicknell, 2019). Appendages are known from *T. patersoni*, in which the distal portions of walking legs are observed (Ewington et al., 1989; Bicknell, 2019), and *P. gottingensis* (Solling Formation, Germany, Triassic) shows evidence of pushing legs (Meischner, 1962; Bicknell et al., 2019b).

The large genital spine splay and abnormal forms of australimulids represent the strongest and most extreme xiphosurid morphologies (they have been considered odd-ball taxa, Eldredge, 1976; Bicknell, 2019). Their morphologies likely reflect the freshwater and marginal conditions that were exploited by the group, and provide evidence against the highly conserved nature of Xiphosurida (Fisher, 1984; Bicknell, 2019). The hypertrophied spines may have permitted more effective motion within unidirectional fluid-flow in rivers (Bicknell, 2019; Bicknell and Pates, 2019b). As discussed above, Lamsdell (2016) and Lerner et al. (2017) suggested that species in *Paleolimulus* belong in Australimulidae (e.g., *Pa. fuchsb ergensis*, *Pa. jakovlevi*, and *Pa. longispinus*) using phylogenetic and linear morphometric arguments respectively. These taxa require revision; a direction of research that will begin to uncover the true diversity of these taxa and their interesting morphologies.

Limulidae

This is the most long-lived and most generically diverse xiphosurid family, with a fossil record that spans possibly from the Carboniferous to Recent (Figure 1). There are 10 limulid genera: *Albalimulus*, *Crenatolimulus*, *Limulitella*, *Limulus*, *Mesolimulus*, *Sloveniolimulus*, *Tachypleus*, *Tarracolimus*, *Vic talimulus*, and *Yunnanolimulus* with 24 species (Table 7, Figures 27–38; Lamsdell, 2016). Limulids have a domed, horseshoe-shaped cephalothoraces with genal spines that can extend posteriorly up to the first third of the thoracetron (Novozhilov, 1991). Ophthalmalic ridges are known from all taxa and the lateral compound eyes are located along these ridges (Stormer, 1955; Novozhilov, 1991). Ophthalmalic ridges do not converge anteriorly. The thoracetron is completely fused, unsegmented, trapezoidal to sub-hexagonal, often displaying movable spines, with small fixed spines, and a styliform telson (Stormer, 1955; Tieg and Manton, 1958; Siveter and Selden, 1987; Lamsdell, 2016). Appendages and soft-bodied material are occasionally preserved in fossil limulids. *Vic talimulus mcqueeni* (Latrobe Group, NSW, Australia, Cretaceous), *T. syriacus* (Haqel and Hadjoula *Konservat-Lagerstätten*, Lebanon, Cretaceous) and *Y. luopingensis* (Member II, Guanling Formation, Luoping, China, Triassic) all preserved cephalothoracic and thoracotenic appendages (Riek and Gill, 1971; Hu et al., 2011, 2017; Lamsdell and Mckenzie, 2015; Bicknell et al., 2019b). *Limulitella bronni* (Grès à Voltzia Formation, France, Triassic) only preserved cephalothoracic appendages (Wincierz, 1960). *Mesolimulus walchi* preserved muscle fibers, and cephalothoracic and thoracotenic appendages (Zittel, 1881; Briggs et al., 2005; Bicknell et al., 2019b). Finally, muscle insertions were identified using and augmented laminography on a *Limulitella* sp. specimen from the Triassic-aged Lower Wellenkalk Member, Muschelkalk, Netherlands (Zuber et al., 2017). Sexual dimorphism has been suggested for select fossil taxa (Bicknell et al., 2019b): *Limulus decheni* (females have longer cephalothoraces; Hauschke and Wilde, 2004), *T. syriacus* (females have broader thoracetrons and males have scalloped anterior cephalothoraces; Lamsdell and Mckenzie, 2015) and *Y. luopingensis* (females have shorter posterior thoracotenic moveable spines and males have modified anterior walking legs; Hu et al., 2017). Most limulids were marine, but *V. mcqueeni*, *Lim. bronni*, and *Lim. tejaensis* are considered freshwater species, while *Lim. liasokeuperinus* is considered a marginal marine taxon.

Limulids are thought to represent bradytelic evolution and exhibit strong morphological conservation between extant and fossil taxa. As such, they have been the focus of evolutionary and morphological research (Fisher, 1984; Bicknell and Pates, 2019b; Bicknell et al., 2019b). The limited morphological difference between the 148 Mya Jurassic “*Limulus* darwini” (Kcyna Formation, Poland) and modern juvenile *L. polyphemus* has been used to assert stabilomorphism; the “relative morphological stability of organisms in time and spatial distribution, the taxonomic status of which does not exceed genus level” (Blazejowski, 2015, p. 11). The conservation may reflect habitat of similar marine conditions, or convergence on an effective morphology.

Extant limulids have distributions across the east coast of the USA and Asia, with their common names reflecting said distribution (Shuster, 2001; Bicknell and Pates, 2019a): the American, or Atlantic, horseshoe crab, *Limulus polyphemus*; the Indonesian horseshoe crab, *Carcinoscorpius rotundicauda*; the Chinese horseshoe crab, *Tachypleus gigas*; and the Japanese horseshoe crab, *T. tridentatus* (Figures 35, 36; Itow et al., 2003; Zhou and Morton, 2004; Sekiguchi and Shuster, 2009). The ontogeny and morphology of these taxa has been documented thoroughly across the past two centuries (Shuster, 1982; Haug and Rötzer, 2018a) and the morphological similarities are depicted in Figures 35 and 36. Extant limulids occupy many environmental conditions and can exploit brackish, freshwater, shallow water, and fully-marine conditions (Siveter and Selden, 1987). *Limulus polyphemus*, *T. gigas*, and *T. tridentatus* are mostly shallow marine, bottom-dwelling taxa that spawn on beaches and inhabit a combination of marine sub-habits during ontogeny (Fisher, 1984). Conversely, *C. rotundicauda* migrates into completely freshwater (Stormer, 1952; Fisher, 1984; Crönier and Courville, 2005; Sekiguchi and Shuster, 2009; Lamsdell, 2016). Despite representing the descendants of a long fossil lineage, they now face an extinction event. Extensive harvesting of specimens for their blood, and as a food source, as well as habitat modification have majorly impacted populations (Botton, 2001; Hsieh and Chen, 2009; Shin et al., 2009; Akbar John et al., 2011; Cartwright-Taylor et al., 2011; Carmichael and Brush, 2012; Nelson et al., 2015; Kwan et al., 2016; Fairuz-Fozi et al., 2018). Measures therefore need to be taken to prevent this group from an extinction event. To this end, *L. polyphemus* and its kin have now been suggested as world heritage species (Tanacredi et al., 2009) and *T. tridentatus* was recently listed as an endangered taxon (Laurie et al., 2019).
FIGURE 13 | Belinurid species in the genera Alanops and Bellinurus. (A,B) Alanops magnifica from the Carboniferous-aged Montceau-les-Mines Konservat-Lagerstätte, Great Seams Formation, France. (A) MNHN SOT001784, paratype, ventral view. Note appendages. (B) MNHN SOT002154, paratype, dorsal view. (C) Bellinurus arcuatus from the Pennine Middle Coal Measures Formation, England, UK. AM F29886. (D) Bellinurus bellulus from the Carboniferous-aged South Wales Lower Coal Measures Formation, Wales, UK. NMW 70.17. G9. (E) Bellinurus baldwini from the Carboniferous-aged Pennine Middle Coal Measures Formation, England, UK. NHMUK PI. In. 18572, holotype. (F) Bellinurus carwayensis from the Carboniferous-aged South Wales Lower Coal Measures Formation, Wales, UK. NMW 29.197.G3, holotype. (B,C) Converted to gray scale. (C) Coated in ammonium chloride sublimate. Photo credit: (A,B) Dominique Chabard; (C) Patrick Smith, (D,F) Stephen Pates; (E) Lucie Goodayle, NHM, London.
FIGURE 14 | Bellinurus species from Canada, UK, Ukraine, and USA. (A) Bellinurus lacoei from the Carboniferous-aged Mazon Creek Konservat-Lagerstätte, Carbondale Formation, Illinois, USA. USNM 38861, cotype. (B) Bellinurus concinnus from the Carboniferous-aged South Wales Lower Coal Measures Formation, Wales, UK. BGS.GSE 48775, holotype. (C) Bellinurus iswariensis from the Carboniferous-aged Almaznaya Formation, Ukraine. TsNIGR 3/2095. (D) Bellinurus grandaevus from the Carboniferous-aged Canso Group, Nova Scotia, Canada. GSC 12806, hypotype. (E) Bellinurus koenigianus from the Carboniferous-aged Coal Measures Formation, England, UK. CM 11066. (F) Bellinurus kiltorkensis from the Devonian to Carboniferous-aged Kiltoran Formation, Ireland. NHMUK PI. In. 25931, cast of original specimen. (D,E) Converted to gray scale. Photo credit: (A,C,E) Russell Bicknell; (B) GB3D image, permission given by Mike Howe © 2018 JISC GB3D Type Fossils Online project partners (Amgueddfa Cymru–National Museum Wales); (D) Jodie Francis; (F) Lucie Goodayle, NHM, London.
FIGURE 15 | Bellinurus species from the Czech Republic, UK, and Ukraine. (A,B) Bellinurus lunatus. (A) Specimen from Carboniferous-aged Upper Silesia Coal Basin, Czech Republic. GIUS 5-845/7. (B) Specimen from Pennine Middle Coal Measures Formation, England, UK. NHMUK PI. I. 2754. (C) Bellinurus longicaudatus from Carboniferous-aged Pennine Middle Coal Measures Formation, England, UK. NHMUK PI. In. 18563, holotype. (D) Bellinurus metschetnensis from Carboniferous-aged Belaya Kalitva Formation, Ukraine. TsNIGR 8/2095. (E) Bellinurus morgani from Carboniferous-aged South Wales Lower Coal Measures Formation, Wales, UK. BGS.GSE 49362, holotype. (D,E) Converted to gray scale. Photo credit: (A) Błaże Błażejowski; (B,C) Stephen Pates; (D) Russell Bicknell; (E) GB3D image, permission given by Mike Howe © 2018 JISC GB3D Type Fossils Online project partners (Amgueddfa Cymru – National Museum Wales).
Bicknell and Pates Pictorial Atlas of Horseshoe Crabs

FIGURE 16 | Bellinurus species from Canada, Poland, UK, and Ukraine. (A) Bellinurus silesiacus from the Carboniferous Upper Silesia Coal Basin, Poland. MB.A.1091, cast of original. (B) Bellinurus stepanowi from the Carboniferous-aged Almaznaya Formation, Ukraine. TsNIGR 6/2095. (C,E) Bellinurus reginae. (C) Specimen from Karviná Formation(?) , Upper Silesia, Poland. MB.A.1090. (E) Specimen from Carboniferous-aged Canso Group, Nova Scotia, Canada. GSC 12803. (D) Bellinurus pustulosus from Carboniferous-aged South Wales Lower Coal Measures Formation, Wales, UK. NMW 29.197.02, holotype. ? denotes uncertain formation assignment. (A–C,E) Converted to gray scale. Photo credit: (A) Andreas Abele; (B) Russell Bicknell; (C) Christian Neumann; (D) Stephen Pates; (E) Matt Stimson. (A,B,C,E) Converted to gray scale.
Figure 17 | Bellinurus species from the Czech Republic, Germany, and UK. (A) *Bellinurus šustai* from the Carboniferous-aged Karviná Formation, Czech Republic. MMO B 976, holotype. (B) *Bellinurus* cf. *truemani* from the Carboniferous-aged Sprockhövel Formation, Germany. SMF VII 314. (C) *Bellinurus trechmannii* from the Carboniferous-aged Pennine Upper Coal Measures Formation, England, UK. NHMUK PI. In. 18487, holotype. (D) *Bellinurus trilobitoides* from the Carboniferous-aged ?Pennine Upper Coal Measures Formation, England, UK. LL.111267a. (A) Converted to gray scale. ‘?’ denotes uncertain formation assignment. Photo credit: (A) Mertová Eva; (B) Monica Solorzano-Kraemer; (C) Lucie Goodayle; (D) Russell Bicknell.
FIGURE 18 | Euproops species from France, Germany, UK, and USA. (A,B) Euproops longispina from the Carboniferous-aged Allegheny Formation, Pennsylvania, USA. (A) USNM 38857, cotype. (B) USNM 38858, cotype. (C) Euproops cambrensis from the Carboniferous-aged South Wales Lower Coal Measures Formation, (Continued)
showing that progress is being made in preventing the human-driven extinction of Xiphosurida.

Valloisella

This monospecific genus from the Carboniferous Coal Measures in England and France (Figure 36) was originally considered a belinurid (Anderson and Horrocks, 1995) but has since been placed at the base of Limuloidea by recent phylogenetic analyses (Lamsdell, 2016). The genus is defined by an almond-shaped cephalothorax, genal spines that extend almost to the thoracetron terminus, and a flange located along the thoracetronic margin (Anderson and Horrocks, 1995). The fused thoracetron is trapezoidal with expressed tergal divisions, contrasting most other species in Limuloidea. No appendages are known from this genus.

HORSESHOE CRAB EVOLUTIONARY HISTORY AND DIVERSITY

Horseshoe crabs experienced three major evolutionary events across the Phanerozoic (Figure 1). The Palaeozoic horseshoe crab record was the most exploratory anatomically and evolutionarily (Blążejowski et al., 2017). The rise of synziphosurines began in the Lower Ordovician (Rudkin et al., 2008; Rudkin and Young, 2009; Dunlop, 2010; Van Roy et al., 2010, 2015). Across the Silurian and Devonian, the marine and marginal marine forms were abundant and represent the first evolutionary radiation of this group, before the diversification of Xiphosurida (Størmer, 1955). Synziphosurine diversity declined heavily, reducing to one taxon in the Carboniferous, when they subsequently went extinct (Selden and Drygant, 1987; Selden and Siveter, 1987; Babcock et al., 1995; Anderson and Selden, 1997; Moore et al., 2007; Lucas et al., 2014). Non-xiphosurid xiphosurans also arose in the Upper Ordovician, potentially even the Lower Ordovician, and are unknown after the Devonian (Bicknell et al., 2019c). Xiphosurida arose in the late Devonian with _Bellinuroopsis_ (Moore et al., 2007). After this, at least four xiphosurid families arose in the Carboniferous: the Belinuridae, Limulidae, Paleolimulidae and Rolfeiidae (Selden and Drygant, 1987; Selden and Siveter, 1987; Babcock et al., 1995; Anderson and Selden, 1997; Lucas et al., 2014; Bicknell, 2019; Bicknell and Pates, 2019b; Bicknell et al., 2019c), with evidence suggesting that Austrolimulidae may also have arisen at this time (Lamsdell, 2016). Carboniferous Coal Measures and Konservat-Lagerstätten record the highest specific diversity and first radiation of Xiphosurida (Anderson, 1997; Moore et al., 2007; Rudkin and Young, 2009). Exploitation of brackish and freshwater conditions by the late Palaeozoic Xiphosurida may reflect adaptation to inconsistent coastlines and fluctuating shallow-marine conditions (Blążejowski et al., 2017). Xiphosurid diversity apparently decreased drastically during the Permian, reflecting the closure of exceptional preservation windows and an increase in xiphosurids inhabiting marginal environments that are poorly preserved in the geological record (Rudkin and Young, 2009). At the end of the Carboniferous, there is no further record of Rolfeiidae, while the first definite austrolimulid species arose in the Permian (Bicknell, 2019). The Permian-Triassic “Great Dying” drove belinurids and paleolimulids to extinction, while austrolimulids and limbulids survived into the Mesozoic (Bicknell and Pates, 2019b). The Triassic was a period of extensive exploration in morphology and the second radiation of xiphosurids and the third evolutionary pulse in horseshoe crabs (Bicknell and Pates, 2019b; Bicknell et al., 2019e). An aspect of this radiation was size increase: Mesozoic taxa were much larger (30–60 cm long, including telson) than the Palaeozoic counterparts (3–5 cm) (Størmer, 1955; Bicknell and Pates, 2019b). Austrolimulid diversity peaked in the Triassic (Figure 1) but then decreased into the Cretaceous, during which time the group went extinct. Limulid diversity peaked in the Triassic with 12 species and decreased to five during the Cretaceous (Bicknell et al., 2019e). Only limbulids survived into the Tertiary with one named Cenozoic species: the Eocene _Limulus decheni_ (Rudkin and Young, 2009; Schimpf et al., 2017), a suggested “missing link” between extant Asian and American taxa (Hauschke and Wilde, 2004). This evolutionary history is one of generally low generic diversity, such as in the four extant species (Anderson and Selden, 1997; Anderson, 1999; Shuster et al., 2003; Sekiguchi and Shuster, 2009; Dunlop et al., 2012). However, the habitation of marginal environments with poor conditions for exceptional preservation of un-biomineralised exoskeleton cuticle may also have impacted this observed low diversity (Babcock, 1998; Anderson, 1999; Babcock and Merriam, 2000; Lamsdell and Mckenzie, 2015).

GEOGRAPHICAL DISTRIBUTION OF XIPHSURAN MATERIAL

Distribution of horseshoe crab fossils is uneven in space and time; reflecting historical biases in collecting that favored North America and Western Europe. The UK has the highest number of taxa (_n_ = 35), followed by the USA (_n_ = 23) and Germany (_n_ = 22). Other areas with much larger landmasses have far fewer known taxa: South America (_n_ = 1), Australia (_n_ = 7), Asia (_n_ = 5), and Africa (_n_ = 6). This uneven geographical sampling also partly reflects uneven temporal sampling (e.g., 25 UK taxa are Carboniferous, and eight are Silurian and 11 of 22 German taxa are Triassic). Within countries, well-explored horizons or formations also provide apparent diversity peaks. Notably the South Wales Coal Measures formations (South Wales, UK. NMW 27.177.G3. Photo credit: Markus Bertling; (E) Jessie Cuvelier. (Figure 18) (A,B) Euproops mariae from the Carboniferous-aged South Wales Upper Coal Measures Formation, Wales, UK. NMW 27.177.G3. Photo credit: (A,B) Russell Bicknell, (C,F) Stephen Pates. (D) Markus Bertling. (E) Jessie Cuvelier.
FIGURE 19 | Euproops danae from Carboniferous-aged deposits and select species that have been synonymised with E. danae. (A) Specimen from Carboniferous-aged lower Mercer Shale, Pennsylvania, USA. USNM 697642. (B–H,J) Specimens from the Carboniferous-aged Mazon Creek Konservat-Lagerstätte. (Continued)
Wales, UK) where six belinurids are known from the South Wales Lower Coal Measures Formation and three belinurids from the South Wales Upper Coal Measures Formation. These nine taxa, within a limited geographic and temporal sample, provide an apparently high Carboniferous diversity skewing the understanding of overall belinurid diversity and geographic spread as well as reflecting an over-splitting of the group. To address these sampling issues (which are by no means limited to horseshoe crabs) further exploration needs to be targeted to under-sampled regions (Africa, Asia, South America) and time periods (Jurassic and younger), as well as reassessing the apparent high diversity of taxa that have not been recently studied. Such efforts, combined with a concerted effort to redescribe and refine horseshoe crab taxonomy will allow ranges of different groups to be compared without the current underlying biases.

FUTURE DIRECTIONS

Horseshoe crabs are an iconic group of chelicerates and, as depicted here, have been thoroughly, if somewhat sporadically, scientifically explored over the past two centuries. However, in conducting this review we highlighted four main research areas that should be addressed. To conclude this review, potential future directions for horseshoe crab research are presented.

1. Bicknell (2019), and Bicknell et al. (2019e) highlighted that the traditional views that horseshoe crabs represent evolutionary conservatism, stasis, and bradytelic evolution (Fisher, 1984; Selden and Siveter, 1987; Rudkin et al., 2008) is overstated. In reality, the group experienced three major changes across the Phanerozoic: increased size, thoracetic fusion, and restriction to marine habitats (Stormer, 1955; Crónier and Courville, 2005; Bicknell and Pates, 2019b). Lamsdell (2016) thoroughly explored the record of habitat change, but the remaining two points should be considered. Thoracetic fusion has been attributed to a change in ecology, from enrolment to burrowing, but this remains fairly unexplored (Fisher, 1977, 1981, 1982; Waterston, 1985; Lamsdell, 2016; Blażejowski et al., 2017). A study considering complete fusion developed in the context of palaeoenvironmental and palaeoecological conditions may confirm this hypothesis. Size change is likely associated with exploitation of different niches: smaller Xiphosurida likely preferred freshwater conditions, reflected today in the smallest taxon—Carcinoscorpius rotundicauda (Hauschke and Wilde, 1991; Dunlop et al., 2012). A study considering shape and size change through time would allow this hypothesis to be tested. In addition, modern descriptive and statistical tools, such as multivariate geometric morphometrics, semilandmark, and landmark analyses could be employed to explore this topic in more detail (Bicknell, 2019; Bicknell and Pates, 2019b; Bicknell et al., 2019e).

2. Rates of morphometric change in horseshoe crabs have not been thoroughly explored (Fisher, 1984). The same morphometric data outlined above could be used to address possible evolutionary rates and quantify whether the group, especially limulids, represent arrested evolution. Time series analyses can also be conducted with these data to study modes and models of evolution (Hunt and Carrano, 2010; Hunt et al., 2015; Bicknell et al., 2018).

3. As Tables 6 and 7 outline there are many specimens have been identified as xiphosurids but not formally (re)described in light of recent progress in the field (Lamsdell et al., 2020). Formally describing these specimens would thoroughly aid understanding patterns of horseshoe crab diversity through time. Similarly, new collecting efforts should be focussed on under-represented parts of the globe such as Asia, Africa and South America, as well as Jurassic and younger deposits, where knowledge of this group is hindered by a lack of specimens.

4. Computer tomography (CT) scanning to document fossil and extant species has become a major tool over the past decade, which has started to positively impact horseshoe crab research. Schimpf et al. (2017) CT scanned Limulus decheni specimens to accelerate digital transfer of important morphological information (Figure 35). Zuber et al. (2017) used CT scans and augmented laminography to document muscle detail in a Limulitella sp. specimen (Figure 24), and Bicknell et al. (2018b) conducted micro-CT scans of iodine stained appendages to show L. polyphemus muscles in situ. Scanning and 3D reconstructions of specimens are still developing and therefore ripe for research, especially for documenting and disseminating information on holotypes.

CONCLUSIONS

The atlas presented here is the first comprehensive collation of named taxa and other unnamed specimens considered horseshoe
FIGURE 20 | *Euproops* species from Germany, Korea (formerly the Choson region) and UK, and *Xiphosuroidea*. (A) *Euproops* sp., so-called “Piesproops”, from the Carboniferous-aged Osnabrück Formation, Germany. MAS Pal. 1308. (B) *Euproops rotundatus* specimens from the Carboniferous-aged Pennine Upper Coal Measures Formation (?), England, UK. YPM IP 428963. (C) *Euproops orientalis* from the Carboniferous-aged Jido Series, Korea. UMUT PA 00433, holotype. (D) *Euproops meeki* from the Carboniferous-aged South Wales Upper Coal Measures Formation, Wales, UK. BGS.GSE 48529, holotype. (E) *Xiphosuroidea* khakassicus from the Carboniferous-aged Sarskaya Formation, Khakassia, Russia. Scanning electron microscope image. PIN 384/211, holotype. (E) Converted to gray scale. ? denotes uncertain formation assignment. Photo credit (A) Angelika Leipner; (B) Russell Bicknell; (C) Tai Kubo; (D) GB3D image, permission given by Mike Howe © 2018 JISC GB3D Type Fossils Online project partners (Amgueddfa Cymru – National Museum Wales); (E) Constantine Tarasenko.
FIGURE 21 | Belinurids in the genera Anacontium, Liomesaspis, and Prolimulus. (A,B) *Liomesaspis laevis* specimens from the Carboniferous-aged Mazon Creek Lagerstätte, Illinois, USA. (A) MCZ 109536, holotype. (B) YPM IP 16913, paratype. (C) *Liomesaspis birtwelli* from the Carboniferous-aged Pennine Middle Coal Measures Formation, England, UK. NHMUK Pt. I. 13882. (D–F) *Prolimulus woodwardi* from the Carboniferous-aged Kladno Formation, Czech Republic. (D) NHMUK Pt. In. 18588, syntype. (E) MCZ 109537, hypotype. (F) MB.A.1989. (G) *Anacontium carpenteri* from the Permian-aged Wellington Formation, Oklahoma, USA. MCZ 109531, paratype. (H) *Anacontium brevis* from the Permian-aged Wellington Formation, Oklahoma, USA. MCZ 109533, holotype. (I) *Liomesaspis leonardensis* from the Permian-aged Wellington Formation, Kansas, USA. Image reproduced from Tasch (1961) as the specimen has been lost (C.D. Burke, pers. comm. 2018). W.U. 200, holotype. (A,F) Converted to gray scale. ? denotes uncertain taxonomic assignment. (G,H) Coated with ammonium chloride sublimate and converted to gray scale. Photo credit: (A,B) Russell Bicknell; (C,E,G,H) Stephen Pates; (D) Lucie Goodayle, NHM, London; (F) Lorenzo Lustri; (G) Mark Renczkowski; (I) Permission to reproduce holotype granted by Kathleen Huber.
FIGURE 22 | Examples of Carboniferous and Permian paleolimulids. (A) Xaniopyramis lynseyi from the Carboniferous-aged Upper Limestone Group, Weardale, England, UK. OUMNH E.03994, rubber cast of holotype. (B) Paleolimulus woodae from the Carboniferous-aged Horton Bluff Formation, Nova Scotia, Canada. (Continued)
crabs. The work builds on research presented during the early- to middle-twentieth century and, its presentation in an open-access environment will allow all researchers interested in horseshoe crabs access to key anatomical information needed for new taxonomic studies. Brief notes detailing the characteristic features and supposed life modes of families within Xiphosurida are presented, synthesizing other key works on the group. A brief evolutionary history of horseshoe crabs is presented, which outlines diversity changes from the Lower Ordovician to today. Finally, we highlight four major avenues for future research: most notably analyses of morphometric data of horseshoe crabs to mathematically probe the evolutionary history of the group. These same data may represent an important step toward reconciling synziphosurines with true horseshoe crabs.
FIGURE 24 | Austrolimulids from Australia. (A) *Austrolimbus fletcheri* from the Triassic-aged Beacon Hill Shale, NSW, Australia, AM F38274, holotype. (B) *Tasmanolimbus patersoni* from the Permian-aged Jackey Shale, Tasmania, Australia. UTGD 123979, holotype. (C) *Dubbolimbus peetae* from the Triassic-aged Ballimore Formation, NSW, Australia. MMF 27693, holotype. (B,C) Converted to gray scale. Photo credit: (A) Josh White; (B) Russell Bicknell; (C) David Barnes. (B) Coated in ammonium chloride sublimate.
FIGURE 25 | Austrolimulids from the USA. (A,F) Panduralimulus babcocki from the Permian-aged Maybelle Limestone, Texas, USA. (A) USNM 520723, holotype. (F) USNM 520724, paratype. (B,C) Paleolimulus longispinus specimens from the Carboniferous-aged Bear Gulch Limestone, Montana, USA. (B) UM 81-8-5-1. (C) CM 54050. (D) Casterolimulus kletti from the Cretaceous-aged Fox Hills Formation, North Dakota, USA. USNM 206801, holotype. (E) Vaderlimulus tricki from the Triassic-aged Thaynes Group, Idaho, USA. UCM 140.25, holotype. (C) Converted to gray scale. Photo credit: (A,C,D,F) Russell Bicknell; (B) Kallie Moore; (E) Allan Lerner.
FIGURE 26 | Austrolimulids from Europe. (A–C) Psammolimulus gottingensis from the Triassic-aged Solling Formation, Germany. (A) Complete specimen, GZG INV 15356a. (B) Specimen with pushing leg preserved (black arrow), GZG INV 15376a. (C) Complete specimen with appendage impressions in cephalothorax, GZG.INV.45730a. (D) ?Paleolimulus fuchsbergensis from the Triassic-aged Exter Formation, Germany, SMF VII 1 311, holotype. (E) ?Paleolimulus jakovlevi from Permian-aged Araukartovaya Formation Novoselovka, Ukraine. CCMGE CM1/8886, holotype. ? denotes uncertain taxonomic assignment. Photo credit: (A–C) Gerhart Hundertmark; (D) Norbert Hauschke; (E) Russell Bicknell.
FIGURE 27 | The oldest suggested limulid from the lower Carboniferous-aged Ballagan Formation, Scotland, UK; Albalimulus bottoni. (A) BSG.GSE2028, holotype, part. (B) BGS.GSE9680, holotype, counter-part. Image mirrored to align with (A) Phylogenetic analyses of Xiphosurida placed this taxon close to the base of Limulidae (Bicknell and Pates, 2019b). Specimens were coated with ammonium chloride sublimate and converted to gray-scale. Photo credit: Russell Bicknell.
FIGURE 28 | Triassic-aged Limulitella species from France, Germany, and the Netherlands. (A) *Limulitella bronni* from the Triassic-aged Grés à Voltzia Formation, France. State Museum of Natural History Stuttgart specimen in Grauvogel collection, LIM 68. (B) *Limulitella henkelii* from the Triassic-aged Jena Formation, Germany. (Continued)
FIGURE 28 | Slg-TC-4/MLU.Fr1906.VII/5, holotype. (C) *Limulitella* sp. from the Triassic-aged Lower Wellenkalk Member, Muschelkalk, Netherlands. Specimen within Oosterink private collection. (D) *Limulitella* sp. from the Triassic-aged Lower Muschelkalk, Netherlands, no specimen number. (A,B,D) Converted to gray scale. ? denotes uncertain taxonomic assignment. Photo credit: (A) Dieter Seegis; (B) Norbert Hauschke; (C) Thomas König; (D) Martien Oosterink.

FIGURE 29 | Triassic-aged *Limulitella* species from France, Germany, Madagascar, and Tunisia. (A) *Limulitella vicensis* from the Triassic-aged Keuper Formation, France. MAN 8240, holotype. (B) *Limulitella tejraensis* from the Triassic-aged Ouled Chebbi Formation, Tunisia. ZPAL V. a6/101, holotype. (C,D) *Limulitella* sp. from the Triassic-aged Buntsandstein, Germany. (C) Exemplar 2 figured in Hauschke and Wilde (2008). (D) Exemplar 1 figured in Hauschke and Wilde (2008). (C,D) Geologisch-Paläontologischen Instituts der Ruprecht-Karls-Universität Heidelberg specimens and associated with Ph.D. thesis No. 3R.8.34-4. Specimens are likely lost as they were not found again in the collection. (E) *Limulitella* sp. from the Triassic-aged Sakamena Group, Madagascar. MSNM11170, counterpart. ? denotes uncertain taxonomic assignment. Photo credit: (A) Lukáš Laibl; (B) Błażej Błażejowski; (C,D) Permission to reproduce photographs granted by Norbert Hauschke; (E) Giorgio Teruzzi.
FIGURE 30 | Triassic and Jurassic Limulitella from Germany and Russia. (A) *Paleolimulus* sp., likely *Limulitella* sp., from the Triassic-aged Bernburg Formation, Germany. HAU-WIL2000. (B,C) Unnamed specimen from the Triassic-aged Trochitenkalk Formation, Germany. (B) Part of specimen. NME 07-56a. (C) Counter-part of specimen. NME 07-56b. (A) may have been lost. (B,C) May be lost (Hartmann pers. comm.). (D) *Limulitella* cf. *liasokeuperinus* from the Triassic-aged ?Exter Formation Germany. SNSB-BSPG 1967 XVI 27. Note: holotype lost in World War II. (E) *Limulitella* volgensis from the Triassic-aged Parshinskaya Formation, Russia. PIN 4048/7. (A–C) Converted to gray scale. ? denotes uncertain taxonomic or formation assignment. Photo credit: (A–C) Permission to reproduce photographs granted by Norbert Hauschke; (D) Mike Reich; (E) Constantine Tarásenko.
FIGURE 31 | Triassic-aged limulids from Germany, Spain, and Sweden. (A) Tachypleus gadeai from the Triassic-aged Alcover Limestone Formation, Spain. MG SB 19195, holotype. (B) Mesolimus crespelli from the Triassic-aged Alcover Limestone Formation, Spain. MG SB 35088, holotype. (C) Tarracolimus rieki from the Triassic-aged Alcover Limestone Formation, Spain. MG SB M 262, holotype. (D) Limulidae gen. et sp. indet, previously Limulus kieri from the Triassic-aged Muschelkalk Limestone, Germany. MB,A.0207. (E) Limulus nathorsti from the Triassic-aged Höör Sandstone, Sweden. SMNH Ar33179, holotype. (D) Converted to gray scale. Photo credit: (A–C) Pedro Adserà; (D) Lorenzo Lustri; (E) Liping Liu.
FIGURE 32 | Triassic-aged limulids from China and Europe. (A,B) Yunnanolimulus luopingensis from the Triassic-aged Member II, Guanling Formation, Luoping, China. (A) LPI-61299, holotype. (B) Specimen displaying walking legs and book gills, LPI-61734. (C) Sloveniolimulus rudkini from the Triassic-aged Strelovec Formation, Slovenia. PMSL T-993, holotype. (D,E) Limulidae gen. et sp. indet from the Triassic-aged Volpriehausen Formation, Germany. GPS, MLU 2018.23. (E) Limulidae gen. et sp. indet from the Triassic-aged Bernburg Formation, Germany. GPS, MLU 2018.24. (F) Limulus priscus from the Triassic-aged Muschelkalk Limestone, Germany. SNSB-BSPG AS I 939, holotype. (D,E) Converted to gray scale. Photo credit: (A,B) Shixue Hu; (C) Tomaž Hitj; (D,E) Permission to reproduce photographs granted by Norbert Hauschke; (F) Mike Reich.
FIGURE 33 | Jurassic-aged limulids from Poland, Russia, and UK. (A) Crenatolimulus sp. from the Jurassic-aged Kcynia Formation, Poland, ZPAL X.1/O-B/XA 13.B. (B) "Limulus" darwini from the Jurassic-aged Kcynia Formation, Poland, ZPAL X.1O-BXA, holotype. (C) Limulus woodwardi from the Jurassic-aged Northampton Sand Formation (?), England, UK, L8827, holotype. (D) Mesolimulus sp. from the Jurassic-aged Purbeck Limestone Group, England, UK, NHMUK PI. I. 3042. (E) Mesolimulus sabiricus from the Jurassic-aged Talyzhansk Formation, Russia, PIN 3290-21, holotype. (A) Converted to gray scale. Photo credit: (A,B) Blażej Blazejowski; (C) Russell Bicknell; (D) Lucie Goodayle, NHM, London; (E) Sergey Bagirov.
FIGURE 34 | Examples of the iconic Jurassic-aged *Mesolimulus walchi* from Germany. (A–H, J–L) Specimens from the Solnhofen Limestone, Germany. (A) MNHN.F.A33516. (B) TMP 1984.69.5. (C) YPM IP 9011. (D) SMNS 27585. (E) CM 28515. (F) USNM 706404. (G) MCZ 106368. (H) OUMNH F11569. (J) Specimen preserving gut tract, YPM IP 8975. (K) SMNS 694513. (L) Specimen preserving gut tract, YPM IP 10183. (I) Specimen from the Nusplingen Plattenkalk, Germany, SMNS 70204. Photo credit: (A) Lilian Cazes; (B,C,E–G,J,L) Russell Bicknell; (D,I,K) Guenter Schweigert; (H) Javier Ortega Hernández.
FIGURE 35 | Cretaceous-aged limulids. (A,B) Victalimulus mcqueeni from the Korumburra Group, NSW, Australia. (A) Part, NMV P22410B, holotype. (B) Counter-part showing appendage impressions, NMV P22410A. (C,G) Tachypleus syriacus from the Haqel Konservat-Lagerstätte, Lebanon. (C) NHMUK PI. OR. 59783, holotype. (G) Specimen showing possible sexual dimorphic trait of scalloped anterior cephalothorax, NHMUK PI. OR. 187. (D) Crenatolimulus paluxensis from the Glen Rose Formation, Texas, USA. (D) USNM 545241, cast of holotype. (E) Mesolimulus tafraoutensis from the Gara Sbaa Lagerstätte, Morocco. MSNM i26844, holotype. (F) Limulus coffini from the Pierre Shale, Colorado, USA, USNM 129043, holotype. Photo credit: (A,B) Frank Holmes; (C,G) Stephen Pates; (D,F) Russell Bicknell; (E) Giorgio Teruzzi.
FIGURE 36 | **A,B** Unnamed xiphosurid from the Permian-aged Zechstein, Germany. (A) Counterpart showing thoracetron, NMK D2.11b. (B) Part showing thoracetron and telson, NMK D2.11a. (C–E) *Limulus decheni* from the Eocene-aged Domsen Sands, Germany. (C) 3D reconstruction of a surface scan, VET1931.1.MLU. (D) 3D reconstruction of a surface scan, GIE1863.1a.MLU, holotype. (E) Specimen with part of telson preserved, MB.A.1901. (F) *Valloisella lievinensis* from the Carboniferous-aged Bickershaw Complex, England, UK; LL11133. Photo credit: (A,B) Peter Mansfeld; (C,D) Permission to use 3D reconstructions granted by Lars Schimpf; (E) Andreas Abele; (F) Russell Bicknell.
FIGURE 37 | Examples of extant male and female Tachypleus species. (A,B) Male T. tridentatus, YPM IZ 55603. (A) Dorsal view. (B) Ventral view. (C,D) Male T. gigas, YPM IZ 55578. (C) Dorsal view. (D) Ventral view. (E,F) Female T. tridentatus, YPM IZ 55576. (E) Dorsal view. (F) Ventral view. (G,H) Female T. gigas, YPM IZ 103393. (G) Dorsal view. (H) Ventral view. Photo credit: Russell Bicknell.
FIGURE 38 | Examples of extant male and female Limulus polyphemus and Carcinoscorpius rotundicauda. (A,B) Male C. rotundicauda, YPM IZ 55595. (A) Dorsal view. (B) Ventral view. (C,D) Male L. polyphemus, YPM IZ 55605. (C) Ventral view. (D) Dorsal view. (E,F) Female C. rotundicauda, YPM IZ 55574. (E) Dorsal view. (F) Ventral view. (G,H) Female L. polyphemus YPM IZ 55601. (G) Ventral view. (H) Dorsal view. Photo credit: Russell Bicknell.

AUTHOR CONTRIBUTIONS
RB designed the study and made the figures, with input from SP. RB and SP photographed material and wrote the manuscript.

FUNDING
This research was supported by funding from an Australian Postgraduate Award (to RB), a University of New England Postdoctoral Research Fellowship (to RB), a Charles Schuchert and Carl O. Dunbar Grants-in-Aid award (to RB), a James R. Welch Scholarship (to RB), and an Alexander Agassiz Postdoctoral Fellowship (to SP). There is no funding for open access publication.

ACKNOWLEDGMENTS
We thank the following people for providing images of specimens: Alexander S. Alekseev, Allan Lerner, Andreas Abele, Bill Crighton, Błażej Błażejowski, Carrie A. Eaton, Carsten
REFERENCES

Akbar John, B., Jalal, K. C. A., Zaleha, K., Armstrong, P., and kmarruzzaman, B. Y. (2011). Effects of blood extraction on the mortality of Malaysian horseshoe crabs (Tachypleus gigas). Mar. Freshw. Behav. Physiol. 44, 321–327. doi: 10.1080/10236244.2011.642505

Allen, J. G., and Feldmann, R. M. (2005). Pandurilimus babcocki n. gen. and sp., a new Limulacean horseshoe crab from the Permian of Texas. J. Paleontol. 79, 594–600. doi: 10.1666/0002-3365(2005)079<0594:plbngas>2.0.co;2

Ambrose, T., and Romano, M. (1972). New Upper Carboniferous Chelicera ta sp., a new Limulacean horseshoe crab from the Permian of Texas. J. Paleontol. 46, 252–260. doi: 10.1080/10999954.1972.1004440.x

Anderson, L. I. (1994). Xiphosurans from the Westphalian D of the Radstock basin, Somerset Coalfield, the South Wales Coalfield and Mazon Creek, Illinois. Proc. Geol. Assoc. 105, 265–275. doi: 10.1006/snga.1997.00179-4

Anderson, L. I. (1997). The xiphosuran Limocatuspis from the Montceau-les-Mines Konservat-Lagerstätte, Massif Central, France. Neues. Jahrb. Geol. Palaeontol. Abh. 204, 415–436. doi: 10.1127/njgp/204/1997/415

Anderson, L. I. (1999). A new specimen of the Silurian synziphosurine arthropod, Cyamocephalus. Proc. Geol. Assoc. 110, 211–216. doi: 10.1006/snga.1997.00016-6

Anderson, L. I., Dunlop, J. A., Eagar, R. M. C., Horrocks, C. A., and Wilson, H. M. (1999). Soft-bodied fossils from the roof shales of the Wigan Four Foot coal seam, Westhoughton, lancashire, UK. Geol. Mag. 136, 321–329. doi: 10.1017/s0016756899002575

Anderson, L. I., Dunlop, J. A., Horrocks, C. A., Winklemann, H. M., and Eagar, R. M. C. (1997). Exceptionally preserved fossils from Bickershaw, lancashire UK (Upper Carboniferous, Westphalian A (Langsettian)). Geol. J. 32, 197–210.

Anderson, L. I., and Horrocks, C. (1995). Vajvescula lievinensis Rachoehefu, 1992 (Chelicera: Xiphosura) from the Westphalian B of England. Neues. Jahrb. Geol. Palaeontol. Mh. 11, 647–658. doi: 10.1127/njgp/1995/1995/647

Anderson, L. I., and Moore, R. A. (2003). Bembicosema: re-examined: a xiphosuran from the Silurian of the North Esk Inlier, Pentland Hills, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 94, 199–206. doi: 10.1007/s10235-0330006-164

Anderson, L. I., Poschmann, M., and Brauckmann, C. (1998). On the Enian (Lower Devonian) arthropods of the Rheinish Slate Mountains: 2. The synziphosurine Willertheria. Palaeontol. Z. 72, 325–336. doi: 10.1007/S002898363

Anderson, L. I., and Selden, P. A. (1997). Oppositional fusion and phylogeny of Palaeozoic Xiphosura. Lethaia 30, 19–31. doi: 10.1111/j.1502-3931.1997.tb00440.x

Anderson, L. I., and Shuster, C. N. Jr. (2003). “Throughout geologic time: where have they lived,” in The American Horseshoe Crab, eds C. N. Shuster, Jr., R. B. Barlow, and H. J. Brockmann (Cambridge: Harvard University Press), 189–223.

Babcock, L. E. (1998). Experimental investigation of the processes of fossilization. J. Geosci. Educ. 46, 252–260. doi: 10.5408/1089-9995-46.3.252

Babcock, L. E., and Merriam, D. F. (2000). Horseshoe crabs (Arthropoda: Xiphosurida) from the Pennsylvanian of Kansas and elsewhere. Trans. Kansas Acad. Sci. 103, 76–94. doi: 10.2307/3627941

Babcock, L. E., Merriam, D. F., and West, R. R. (2000). Pandurilimus babcocki, an early limuline (Xiphosurida), from Pennsylvania-Pennsylvanian Lagerstätten of Kansas and taphonomic comparison with modern Limulus. Lethaia 33, 129–141. doi: 10.1080/00222936309454937

Babcock, L. E., Wegweiser, M. D., Wegweiser, E. A., Stanley, T. M., and Mckenzie, S. C. (1995). Horseshoe crabs and their trace fossils from the Devonian of Pennsylvania. Penn. Geol. 26, 2–7.

Babe, O., Mikulá, R., Zapletal, J., and Lehotsky, T. (2004). Combined tectonic-sediment supply-driven cycles in a Lower Carboniferous deep-marine foreland basin, Moravice Formation, Czech Republic. Int. J. Earth. Sci. 93, 241–261. doi: 10.1007/s00531-004-0388-5

Baily, W. H. (1863). Remarks on some coal-measure Crustacea belonging from Queen’s County, Ireland. Ann. Mag. Nat. Hist. 11, 107–114. doi: 10.1080/02222936.1863.10899999

Baily, W. H. (1870). On Fossils Obtained at Killicranky Quarry, Co. Kilkenny. Report of the British Association for the Advancement of Science.

Baldwin, W. (1902). On Prestwichia rotundata found in Sparth Bottoms, Rochdale, lancashire. Trans. Manchester Geol. Soc. 27, 149–155.

Baldwin, W. (1905). Belinurus bellulus, from Sparth, Rochdale. Trans. Manchester Geol. Soc. 28, 198–202.

Baldwin, W. (1906). Prestwichia anthax and Belinurus lunatus from Sparth Bottoms, Rochdale. Trans. Manchester Geol. Soc. 29, 124–128.

Beecher, C. E. (1902). Note on a new xiphosuran from the Upper Devonian of Pennsylvania. Am. Geol. 29, 143–146.

Beecher, C. E. (1904). Note on a new Permian Xiphosuran from Kansas. Am. J. Sci. 18, 23–24.

Bellmann, H. J. (1997). Die Domsener Sande und die Funde von Limulus dacheni zinschen bei Teuchern. Hallesches Jahrbuch Geowissensch. 19, 115–119.

Bergström, J. (1968). Eolimus, a lower Cambrian xiphosurid from Sweden. Geologiska Föreningen Stockholm Förhandlingar 90, 489–503. doi: 10.1016/00105389/00114-1969-437

Bergström, J. (1975). Functional morphology and evolution of xiphosurids. Fossils Striae 4, 291–305.

Bicknell, R. D. C., Zalohar, P., Miklave, P., Celen, B., Križman, M., and Hitij, T. (2019e). A new limulid genus from the Strelcove Formation (Middle Triassic, Anbian) of northern Slovenia. Geol. Mag. 156, 2017–2030. doi: 10.1017/S0016756819003323

Bicknell, R. D. C. (2019). Xiphosurid from the Upper Permian of Tasmania confirms Palaeozoic origin of Austrolimulidae. Palaeontol. Electron. 22, 1–13. doi: 10.26879/1105

Bicknell, R. D. C., Amati, L., and Ortega Hernández, J. (2019a). New appendicular anatomy of the xiphosurid Tachypleus cyrtus and the evolution of fossil horseshoe crab appendages. Sci. Nat. 106.38: doi: 10.1007/s00114-019-1629-6

Bicknell, R. D. C., Brougham, T., Charbonnier, S., Sautereau, F., Hitij, T., and Campione, N. E. (2019b). On the appendicular anatomy of the xiphosurid Tachypleus cyrtus and the evolution of fossil horseshoe crab appendages. Sci. Nat. 106.38: doi: 10.1007/s00114-019-1629-6
Haug, J. T., Haug, C., Waloszek, D., and Schweigert, G. (2011). The importance of lithographic limestones for revealing ontogenies in fossil crustaceans. *Swiss J. Geosci.* 104, 85–98. doi: 10.1007/s00015-010-0033-1

Hauschke, N., Oosterink, H. W., and Wilde, V. (2009). Erster Nachweis eines Limuliden (*Xiphosura, Limulacea*) im Muschelkalk von Winterswijk (*Niederlande*). *Der Aufschluss* 66, 13–23.

Hauschke, N. (2013). “Die Geologisch-Paläontologischen Sammlungen,” in *Die Akademischen Sammlungen und Museen der Martin-Luther-Universität Halle-Wittenberg*, ed S. Lehmann (Halle (Saale): Universität Halle-Wittenberg), 80–82.

Hauschke, N., and Mertmann, D. (2015). Ausgewählte Fossilfunde aus den Geologisch-Paläontologischen Sammlungen der Martin-Luther-Universität in Halle (Saale): Sachsen-Anhalt. *Der Aufschluss* 66, 335–351.

Hauschke, N., and Mertmann, D. (2016). Ausgewählte Fossilfunde aus den Geologisch-Paläontologischen Sammlungen der Martin-Luther-Universität in Halle (Saale): Deutschland. *Der Aufschluss* 67, 325–353.

Hauschke, N., and Wilde, V. (1984). Limuliden-Reste aus dem unteren Lias Frankens. *Mitt. Bayer. Staatsamml. Paläontol.* 24, 51–56.

Hauschke, N., and Wilde, V. (1987). *Paleolimulus fuchsergensis* n. sp. (*Xiphosura, Merostomata*) aus der oberen Trias von Nordwestdeutschland, mit einer Übersicht zur Systematik und Verbreitung rezenter Limuliden. *Paläontol. Z.* 61, 87–108. doi: 10.1007/BF02985944

Hauschke, N., and Wilde, V. (1989). Ein Limulide aus dem Zechstein (Oberes Perm) der Korbacher Bucht (Hessen, Bundesrepublik Deutschland). *Geol. Jahrbuch Hessen* 117, 281–292.

Hauschke, N., and Wilde, V. (1991). Zur Verbreitung und Ökologie mesozoischer Limuliden. *Neues Jahrb. Geol. Paläontol. Abh.* 183, 391–411.

Hauschke, N., and Wilde, V. (2000). Limulidenreste aus dem unteren Buntsandstein (Bernburg-Formation) von Beesenlabungiten (Sachsen-Anhalt). *Hallesches Jahrbuch Geowissenschaft.* 22, 87–90.

Hauschke, N., and Wilde, V. (2004). Palaeogene limulids (*Xiphosura*) from Saxony-Anhalt (Germany): systematics and palaeobiogeography. *Hallesches Jahrbuch Geowissenschaft.* 18, 161–168.

Hauschke, N., and Wilde, V. (2008). Limuliden aus dem Oberen Buntsandstein von Südwestdeutschland. *Hallesches Jahrbuch Geowissenschaft.* 30, 21–26.

Hauschke, N., Wilde, V., and Brauckmann, C. (2004). Triassic limulids from Madagascar-missing links in the distribution of Mesozoic Limulacea. *N. Jb. Paläontol. Mh.* 2, 87–94. doi: 10.1127/njp/2004/2004/87

Hauschke, N., Wilde, V., and Pietrzieniuk, E. (1992). Ein Limulide aus dem Muschelkalk (mittlere Trias) von Rüdersdorf bei Berlin. *Z. Geol. Wissenschaft* 20, 461–466.

Hauschke, N. (2018). “HALLE: The Palaeontological Collection of the Martin Luther University Halle-Wittenberg in Halle (Saale),” in *Palaeontological Collections of Germany, Austria and Switzerland*, eds L. A. Beck and U. Joger (Cham: Springer), 281–292.

Hauschke, N. (2014). Conchostraken als Zeitmarken und Faziesanzeiger in der Solling-Formation (Chirotheriensandstein) im Merkelschen Steinbruch in dem östlichen Niedersachsen. *Geology (Eisen)* 30, 21–26.

Hauschke, N., and Wilde, V. (2000). Limuliden-Reste aus dem unteren Lias Frankens. *Mitt. Bayer. Staatsamml. Paläontol.* 24, 51–56.

Hauschke, N., and Wilde, V. (1984). Limuliden-Reste aus dem unteren Lias Frankens. *Mitt. Bayer. Staatsamml. Paläontol.* 24, 51–56.

Hauschke, N., and Wilde, V. (1987). *Paleolimulus fuchsergensis* n. sp. (*Xiphosura, Merostomata*) aus der oberen Trias von Nordwestdeutschland, mit einer Übersicht zur Systematik und Verbreitung rezenter Limuliden. *Paläontol. Z.* 61, 87–108. doi: 10.1007/BF02985944

Hauschke, N., and Wilde, V. (1989). Ein Limulide aus dem Zechstein (Oberes Perm) der Korbacher Bucht (Hessen, Bundesrepublik Deutschland). *Geol. Jahrbuch Hessen* 117, 281–292.

Kaplan, R., Li, S. S. L., and Kehoe, J. M. (1977). Molecular characterization of limulin, a sialic acid binding lectin from the hemolymph of the horseshoe crab, *Limulus polyphemus*. *Biochemistry* 16, 4297–4303. doi: 10.1012/bioh 638a026

Kin, A., and Blazejowski, B. (2014). The horseshoe crab of the genus *Limulus*: living fossil or stabilomorph? *PLoS ONE* 9 e108036. doi: 10.1371/journal.pone.0108036

Krause, T., Hauschke, N., and Wilde, V. (2001). Ein Limulide aus dem Muschelkalk (mittlere Trias) von Rüdersdorf bei Berlin. *Z. Geol. Wissenschaft* 20, 461–466.

Kubayashi, T. (1933). On the occurrence of Xiphosuran remains in Cho sen (Korea). *Ipn J. Geol. Geoge.* 10, 175–182.

Koenig, C. D. E. (1825). *Korallen*—*Scheiben*—*Sfere*—*Sfereyderyt* (Westfalen). *Mitt. Bayer. Staatssamml. Paläontol.* 30, 21–26.

Krause, T., Hauschke, N., and Wilde, V. (2001). Ein Limulide aus dem Muschelkalk (mittlere Trias) von Rüdersdorf bei Berlin. *Z. Geol. Wissenschaft* 20, 461–466.

Krause, T., Hauschke, N., and Wilde, V. (2001). Ein Limulide aus dem Muschelkalk (mittlere Trias) von Rüdersdorf bei Berlin. *Z. Geol. Wissenschaft* 20, 461–466.

Hunt, G., and Carrano, M. T. (2010). Models and methods for analyzing phenotypic evolution in lineages and clades. *Spec. Pap. Paleontol.* 16, 245–269. doi: 10.1017/S00332600001893

Hunt, G., Hopkins, M. J., and Lidgard, S. (2013). Simple versus complex models of trait evolution and stasis as a response to environmental change. *Proc. Natl. Acad. Sci. U.S.A.* 112, 4880–4889. doi: 10.1073/pnas.1403662111

Jackson, R. T. (1906). A new species of fossil *Xiphosurus* from Nevada. *Proc. R. Soc. B* 62, 235–249.

Križnar, M., and Hitij, T. (2010). Nevreten ˇcarji (invertebrates) Strelovške formacije. *Mitt. Bayer. Staatssamml. Paläontol.* 30, 21–26.
Martí, J. C. (1993). El Pinetell, un nou jaciment paleontològic de la “Pedra Lerner, A. J., Lucas, S. G., and Lockley, M. (2017). First fossil horseshoe crab

Martin, W. (1809).

Meischner, K.-D. (1962). Neue Funde von

Martí, J. C. (1994). Noves aportacions paleontològiques al muschelkalk superior de

Meek, F. B., and Worthen, A. H. (1865). Notice of some new types of organic

Martin, E. L. O., Pittet, B., Gutiérrez-Marco, J.-C., Vannier, J., El Hariri, K., Lerosey-Aubril, R., Servais, T., and van Roy, P. (2016). The Fezouata Shale (Lower Ordovician, Anti-Atlas, Morocco): a historical review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 460, 7–23. doi: 10.1016/j.palaeo.2015.10.048

Legg, D. A., Sutton, M. D., and Edgecombe, G. D. (2013). Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat. Commun. 4:1038. doi: 10.1038/ncomms3485

Lehmann, W. M. (1956). Beobachtungen an Weinbergina opitzi (Mesor, Devon). Senck. Leth. 37, 67–77.

Lerner, A. J., Lucas, S. G., and Lockley, M. (2017). First fossil horseshoe crab (Xiphosurida) from the Triassic of North America. Neues Jahrb. Geol. Paläontol. Abh. 286, 289–302. doi: 10.1127/njgpa/2017/0702

Lerner, A. J., Lucas, S. G., and Mansky, C. F. (2016). The earliest paleomilid and its attributed ichnogenus from the lower Mississippian (Tournaissian) Hartford Bluff Formation of Blue Beach, Nova Scotia, Canada. Neues Jahrb. Geol. P.A. 280, 193–214. doi: 11.1227/njgpa/2016/0575

Lomax, D. R., Robinson, P., Cleal, C. J., Bowden, A., and Larkin, N. R. (2016). Exceptional preservation of Upper Carboniferous (lower Westphalian) fossils from Edlington, Doncaster, South Yorkshire, UK. Geol. J. 51, 42–50. doi: 10.1002/gj.2062

Lucas, S. G., Lerner, A. J., Dimichele, W. A., Cantrell, A. K., Suazo, T. L., and Chaney, D. S. (2014). “Xiphosurid fossils from the Pennsylvaniaian Beeman Formation, Otero County, New Mexico,” in New Mexico Geological Society Guide Book, 64th Field Conference, Geology of the Sacramento Mountains Region, Vol. 64, 311–314.

Malz, H. (1964). Kaphischium walchi, die Geschichte einer Fährte und ihres Tiers. Naturwissenschafliche Mitteilungen 19, 21–24.

Martí, J. C. (1993). El Pinetell, un nou jaciment paleontològic de la “Pedra d’Alcover” a la conca de Barberà.

Marti, J. C. (1994). Noves aportacions paleontològiques al muschelkalk superior de les muntanyes de prades: el cas del Pinetell. Quaderns Vilaniu 28, 25–68.

Martin, E. L. O., Pittet, B., Gutiérrez-Marco, J.-C., Vannier, J., El Hariri, K., Lerosely-Aubril, R., et al. (2016). The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. Gondwana Res. 34, 274–283. doi: 10.1016/j.gr.2015.03.009

Martin, W. (1809). Petriflaca Derbiensis: Or, Figures and Descriptions of Petrifications Collected in Derbyshire. Wigan: Kessinger Publishing.

Meek, F. B., and Worthen, A. H. (1865). Notice of some new types of organic remains, from the Coal Measures of Illinois. Proc. Acad. Natl. Sci. U.S.A. 17, 41–48.

Meischner, K.-D. (1962). Neue Funde von Psammomimus guttingeri (Merosomata, Xiphosura) aus dem Mittleren Buntsandstein von Göttingen. Paläontol. Z. 36, 185–193. doi: 10.1007/BF02987900

Moore, R. A., Briggs, D. E. G., and Bartels, C. (2005a). A new specimen of Weinbergina opitzi (Chelicarata: Xiphosura) from the lower Devonian Hunsrück Slate, Germany. Paläontol. Z. 79, 399–408. doi: 10.1007/BF02991931

Moore, R. A., Briggs, D. E. G., Braddy, S. J., and Shultz, J. W. (2011). Synziphosurines (Xiphosura: Chelicera) from the Silurian of Iowa. J. Paleontol. 85, 83–91. doi: 10.1666/05-071

Moore, R. A., Mckenzie, S. C., and Lieberman, B. S. (2007). A Carboniferous synziphosurine (Xiphosura) from the Bear Gulch Limestone, Montana, USA. Palaeontol. 50, 1013–1019. doi: 10.1111/j.1475-4983.2007.00685.x

Müller, A. H. (1962). Ein weiterer Fund von Pringlia (Merostomata) aus Oberen Karbon Mitteldeutschlands. Ber. Akad. Wiss. Berlin 4, 315–318.

Münster, G. G. (1839). “Die Rhyncholiten des Muschelkalks mit ihrem Fortsätzen, ” in Die Geschichte einer Fährte und ihres Tiers. Naturwissenschafliche Mitteilungen 19, 21–24.

Novozhilov, N. (1991). “Class Merostomata” in Palaeontologia Generalis, 3, 143–157. doi: 10.5962/bhl.title.14755

Novikov, T. J. (2009). “Biomedical applications of Limulus amebocyte lysate,” in Biology and Conservation of Horseshoe Crabs, eds J. T. Tarcocci, M. L. Botton, and D. R. Smith (Dordrecht: Springer), 315–329. doi: 10.1007/978-3-879959-6.20

Novojilov, N. J. (1959). Mérostromes du Dévonien inférieur et moyen de Sibérie. Ann. Soc. Géol. Belg. 78, 241–258.

Novozhilov, N. (1991). “Class Merostomata” in Fundamentals of Paleontology, Volume 9: Arthropoda, Tracheta, Chelictera, eds B. B. Rohdehendorf and D. R. Davis (Washington, DC: Smithsonian Institution and National Science Foundation), 591–613.

Ortega Hernández, J., Braddy, S. J., and Rak, Š. (2010). Trilobe and xiphosuran affinities for putative aglaspid arthropods Caryon and Druhovaspis, Upper Ordovician, Czech Republic. Lethaia 43, 427–431. doi: 10.1111/j.1502-3931.2010.00216.x

Owen, R. (1872). On the anatomy of the American King-crab (Limulus polyphemus, Latr.). Trans. Linnean Soc. London 28, 459–506. doi: 10.1111/j.1096-3642.1873.tb00226.x

Packard, A. S. (1885). On the Carboniferous xiphosurous fauna of North America. Mem. Natl. Acad. Sci. 3, 143–157. doi: 10.5962/bhl.title.14755

Parkes, M. A., and Sleeman, A. G. (1997). Catalogue of the Type, Figured and Cited Fossils in the Geological Survey of Ireland. Dublin: Geological Survey of Ireland Dublin.

Perrier, V., and Charbonnier, S. (2014). The Montceau-les-Mines Lagerstätte (Late Carboniferous, France). C.R. Palevol 13, 353–367. doi: 10.1016/j.crpb.2014.03.002

Pflannenstiel, M. (1928). Eine Jugendform von Pringlia (Merosomata, Xiphosura) aus dem Mittleren Buntsandstein von Göttingen. Paläontol. Z. 41, 281–286.

Pickett, J. W. (1984). A new freshwater limuloid from the middle Triassic of New Mexico. New Mexico Geological Society Guide Book, 64th Field Conference, Geology of the Sacramento Mountains Region, Vol. 64, 311–314.

Pickett, J. W. (1993). A late Devonian xiphosuran from near Parkes, New South Wales. Mem. Natl. Acad. Sci. 17, 279–287.

Pickett, F. J. (1846). Traite Elémentaire de Paléontologie. Paris: Langlois et Leclercq, Ponomarenko, A. G. (1985). King crabs and eurypterids from the Permian and Mesozoic of the USSR. Paleontol. J. 19, 100–104.

Poropat, S. F., Martin, S. K., Tosolini, A.-M. P., Wagstaff, B. E., Bean, L. R., Kear, B. P., et al. (2018). Early Cretaceous polar biotas of Victoria,
