Regularity estimates in Hölder spaces for Schrödinger operators via a T_1 theorem

Tao Ma · Pablo Raúl Stinga · José L. Torrea · Chao Zhang

Abstract We derive Hölder regularity estimates for operators associated with a time-independent Schrödinger operator of the form $-\Delta + V$. The results are obtained by checking a certain condition on the function T_1. Our general method applies to get regularity estimates for maximal operators and square functions of the heat and Poisson semigroups, for Laplace transform type multipliers and also for Riesz transforms and negative powers $(-\Delta + V)^{-\gamma/2}$, all of them in a unified way.

Keywords Schrödinger operators · Regularity estimates · Campanato spaces · T_1 criterion · BMO spaces

Mathematics Subject Classification (2000) 35J10 · 35B65 · 26A33 · 42B37 · 46E35 · 42B25

Research partially supported by Ministerio de Ciencia e Innovación de España MTM2008-06621-C02-01. The first and fourth authors were partially supported by National Natural Science Foundation of China No.11071190. Second author was partially supported by grant COLABORA 2010/01 from Planes Riojanos de I+D+I, Spain.

123
1 Introduction and statement of the results

Regularity estimates for second-order differential operators are central in the theory of PDEs. In this context, Sobolev and Schauder estimates are fundamental results. The latter can be seen as boundedness between Hölder spaces of negative powers of operators.

In this paper we study regularity estimates in the Hölder classes \(C^{-\alpha}_r, \ 0 < \alpha < 1 \), of operators associated with the time-independent Schrödinger operator in \(\mathbb{R}^n, n \geq 3 \),

\[
\mathcal{L} := -\Delta + V.
\]

The nonnegative potential \(V \) satisfies a reverse Hölder inequality for some \(q \geq n/2 \), see Sect. 2.

It is well known that the classical Hölder space \(C^\alpha(\mathbb{R}^n) \) can be identified with the Campanato space \(BMO^\alpha \), see [8]. In the Schrödinger case the analogous result was proved by Bongioanni et al. in [6]. They identified the Hölder space associated with \(L^r \) with a Campanato type \(BMO^{\alpha}_r \) space, see Proposition 2.4 below. Therefore, in order to study regularity estimates, we can take advantage of this characterization. In fact we shall present our results as boundedness of operators between \(BMO^\alpha \) spaces.

The main point of this paper is to give a simple \(T1 \) criterion for boundedness in \(BMO^\alpha_L \) of the so-called \(\gamma \)-Schrödinger–Calderón–Zygmund operators \(T \), see Definition 3.1. The advantage of this criterion is that everything is reduced to checking a certain condition on the function \(T \). The method is applied to the maximal operators associated with the semigroups \(e^{-t\mathcal{L}} \) and \(e^{-t\mathcal{L}^{1/2}} \) (or more general Poisson operators associated with the extension problem for \(\mathcal{L}^\alpha \)), the \(\mathcal{L} \)-square functions, the Laplace transform type multipliers \(m(\mathcal{L}) \), the \(\mathcal{L} \)-Riesz transforms and the negative powers \(\mathcal{L}^{-\gamma/2}, \gamma > 0 \).

We use the notation \(f_B = \frac{1}{|B|} \int_B f \). The first result reads as follows.

Theorem 1.1 (\(T1 \) criterion for \(BMO^\alpha_L \), \(0 < \alpha < 1 \)) Let \(T \) be a \(\gamma \)-Schrödinger–Calderón–Zygmund operator, \(\gamma \geq 0 \), with smoothness exponent \(\delta \), such that \(\alpha + \gamma < \min\{1, \delta\} \). Then \(T \) is bounded from \(BMO^{\alpha}_L \) into \(BMO^{\alpha + \gamma}_L \) if and only if there exists a constant \(C \) such that

\[
\left(\frac{\rho(x)}{s} \right)^\alpha \frac{1}{|B|^{1 + \frac{\gamma}{n}}} \int_B |T1(y) - (T1)_B| \, dy \leq C,
\]

for every ball \(B = B(x, s), x \in \mathbb{R}^n \) and \(0 < s \leq \frac{1}{2} \rho(x) \). Here \(\rho(x) \) is defined in (2.1).

We can also consider the endpoint case \(\alpha = 0 \).

Theorem 1.2 (\(T1 \) criterion for \(BMO_L \)) Let \(T \) be a \(\gamma \)-Schrödinger–Calderón–Zygmund operator, \(0 \leq \gamma < \min\{1, \delta\} \), with smoothness exponent \(\delta \). Then \(T \) is a bounded operator from \(BMO_L \) into \(BMO^\gamma_L \) if and only if there exists a constant \(C \) such that

\[
\log \left(\frac{\rho(x)}{s} \right) \frac{1}{|B|^{1 + \frac{\gamma}{n}}} \int_B |T1(y) - (T1)_B| \, dy \leq C,
\]

for every ball \(B = B(x, s), x \in \mathbb{R}^n \) and \(0 < s \leq \frac{1}{2} \rho(x) \).

Observe that for any \(x \in \mathbb{R}^n \) and \(0 < \alpha \leq 1 \), if \(0 < s \leq \frac{1}{2} \rho(x) \) then \(1 + \log \frac{\rho(x)}{s} \sim \log \frac{\rho(x)}{s} \) and \(1 + \frac{2^\alpha - 1}{2^\alpha - 1} \sim \left(\frac{\rho(x)}{s} \right)^\alpha \). Therefore, by tracking down the exact constants in the proof, we can see that Theorem 1.2 is indeed the limit case of Theorem 1.1.
Theorem 1.2 is a generalization of the $T1$-type criterion given in Betancor et al. [2] for the case of the harmonic oscillator $H = -\Delta + |x|^2$. Here we require the dimension to be $n \geq 3$, while in Betancor et al. [2] the dimension can be any $n \geq 1$.

As a by-product of our main results we are able to characterize pointwise multipliers of the spaces BMO^α_L, see Proposition 3.2 below. For pointwise multipliers of the classical BMO^α spaces see the papers by Bloom [3], Janson [18] and Nakai and Yabuta [21].

Next we present the announced applications. For the definitions of the operators see Sects. 4.1–4.5.

Theorem 1.3

Let $0 \leq \alpha < \min\{1, 2 - \frac{n}{q}\}$. The maximal operators associated with the heat semigroup $\{W_t\}_{t > 0}$ and with the generalized Poisson operators $\{P^\sigma_t\}_{t > 0}$, the Littlewood–Paley g-functions given in terms of the heat and the Poisson semigroups, and the Laplace transform type multipliers $m(\mathcal{L})$ are bounded from BMO^α_L into itself.

In [11] it was proved that the maximal operator of the heat semigroup, the maximal operator of the Poisson semigroup and the square function of the heat semigroup are bounded in BMO_L and that the fractional integral $\mathcal{L}^{-\gamma/2}$ maps $L^{n/\gamma}(\mathbb{R}^n)$ into BMO_L, $0 < \gamma < n$. The square function was also studied in [1]. In [25] it was proved that the fractional integral in the case of the harmonic oscillator has similar boundedness properties in the scale of spaces BMO^α_H, or more generally, $C^{k,\alpha}_H(\mathbb{R}^n)$.

The Riesz transforms associated with \mathcal{L} were introduced and studied in $L^p(\mathbb{R}^n)$ in the seminal paper by Shen [22]. Their mapping properties on BMO^α_L were developed by Bonigioanni et al. in [5]. They also studied the corresponding boundedness results for the negative powers, see [6], and L^p-boundedness for the commutators with a function, see [4]. Following the pattern of the proof of Theorem 1.3, we can recover the results from [5] and [6]. We state them as a theorem for further reference.

Theorem 1.4

Let $\alpha \geq 0$ and $0 < \gamma < n$. Then:

- The \mathcal{L}-Riesz transforms are bounded from BMO^α_L into itself, for any $0 \leq \alpha < 1 - \frac{n}{q}$, with $q > n$.
- The negative powers $\mathcal{L}^{-\gamma/2}$ are bounded from BMO^α_L into $BMO^{\alpha + \gamma}_L$ for $\alpha + \gamma < \min\{1, 2 - \frac{n}{q}\}$.

Regarding Sobolev estimates, more general operators can be considered by replacing $-\Delta$ by some second-order elliptic operator A with bounded measurable coefficients. When A is a degenerate divergence form elliptic operator, some estimates for the Green function and the heat semigroup were obtained by Dziubański in [10]. A priori L^p estimates and global existence and uniqueness results in L^p for the case when A is in nondivergence form with VMO coefficients were found by Bramanti et al. in [7].

The use of the action of an operator T on the function 1 in order to get some boundedness properties of T goes back to the celebrated work by G. David and J.-L. Journé, see [9]. For vector-valued versions of these criteria, see the papers by Hytönen [16] and Hytönen and Weis [17].

The paper is organized as follows. In Sect. 2 we collect the technical results about the space BMO^α_L. Section 3 is devoted to the proofs of the main theorems. The applications are given in Sect. 4. Through the paper the letters C and c denote positive constants that may change at each occurrence, and \mathcal{S} is the class of rapidly decreasing C^∞ functions in \mathbb{R}^n.

\[\square \] Springer
The spaces $BMO_\alpha L$, $0 \leq \alpha \leq 1$

The nonnegative potential V satisfies a reverse Hölder inequality for some $q \geq \frac{n}{2}$, that is, there exists a constant $C = C(q, V)$ such that

$$\left(\frac{1}{|B|} \int_B V(y)^q \, dy \right)^{1/q} \leq \frac{C}{|B|} \int_B V(y) \, dy,$$

for all balls $B \subset \mathbb{R}^n$. We write $V \in RH_q$. Associated with this potential, Shen defines the critical radii function in [22] as

$$\rho(x) := \sup \left\{ r > 0 : \frac{1}{r^{n-2}} \int_{B(x,r)} V(y) \, dy \leq 1 \right\}, \quad x \in \mathbb{R}^n. \quad (2.1)$$

We have $0 < \rho(x) < \infty$.

Let us begin with some properties of the critical radii function ρ.

Lemma 2.1 (See [22, Lemma 1.4]) There exist $c > 0$ and $k_0 \geq 1$ such that for all x, $y \in \mathbb{R}^n$,

$$c^{-1} \rho(x) \left(1 + \frac{|x - y|}{\rho(x)} \right)^{-k_0} \leq \rho(y) \leq c \rho(x) \left(1 + \frac{|x - y|}{\rho(x)} \right)^{k_0} \frac{k_0}{k_0 + 1}.$$

In particular, there exists a positive constant $C_1 < 1$ such that if $|x - y| \leq \rho(x)$ then $C_1 \rho(x) < \rho(y) < C_1^{-1} \rho(x)$.

Covering by critical balls. According to [12, Lemma 2.3] there exists a sequence of points $\{x_k\}_{k=1}^\infty$ in \mathbb{R}^n such that if $Q_k := B(x_k, \rho(x_k))$, $k \in \mathbb{N}$, then

(a) $\bigcup_{k=1}^\infty Q_k = \mathbb{R}^n$, and
(b) there exists $N \in \mathbb{N}$ such that card $\{j \in \mathbb{N} : Q_j^{**} \cap Q_k^{**} \neq \emptyset\} \leq N$, for every $k \in \mathbb{N}$.

For a ball B, the notation B^* means the ball with the same center as B and twice the radius.

The definition of space $BMO_\alpha L$ was given in Dziubański et al. [11]. The space $BMO_\alpha L$, $0 < \alpha \leq 1$, was introduced in Bongioanni et al. [6]. We collect from there the following facts.

A locally integrable function f in \mathbb{R}^n is in $BMO_\alpha L$, $0 \leq \alpha \leq 1$ provided there exists $C > 0$ such that

(i) $\frac{1}{|B|} \int_B |f(x) - f_B| \, dx \leq C |B|^\frac{\alpha}{n}$, for every ball B in \mathbb{R}^n, and
(ii) $\frac{1}{|B|} \int_B |f(x)| \, dx \leq C |B|^\frac{\alpha}{n}$, for every $B = B(x_0, r_0)$, where $x_0 \in \mathbb{R}^n$ and $r_0 \geq \rho(x_0)$.

The norm $\|f\|_{BMO_\alpha L}$ of f is defined as the minimum $C > 0$ such that (i) and (ii) above hold. We have $BMO_0 L = BMO L$.

By using the classical John–Nirenberg inequality, it can be seen that if in (i) and (ii) L^1-norms are replaced by L^p-norms, for $1 < p < \infty$, then the space $BMO_\alpha L$ does not change and equivalent norms appear. In this case the conditions read:
Regularity for Schrödinger operators via a $T1$ theorem

(i) $p \left(\frac{1}{|B|} \int_{B} |f(x) - f_{B}|^{p} \, dx \right)^{1/p} \leq C \frac{|B|^\frac{a}{p}}{r} \, , \text{ for every ball } B \in \mathbb{R}^{n} \, , \text{ and}$

(ii) $p \left(\frac{1}{|B|} \int_{B} |f(x)|^{p} \, dx \right)^{1/p} \leq C \frac{|B|^\frac{a}{p}}{r} \, , \text{ for every } B = B(x_{0}, r_{0}) \, , \text{ where } x_{0} \in \mathbb{R}^{n} \text{ and } r_{0} \geq \rho(x_{0}) \, .

Let us note that if (ii) (resp. (ii)$_{p}$) above is true for some ball B then (i) (resp. (i)$_{p}$) holds for the same ball, so we might ask for (i) (resp. (i)$_{p}$) only for balls with radii smaller than $\rho(x)$.

The restriction $\alpha \leq 1$ in the definition above is necessary because if $\alpha > 1$ then the space BMO_{α}^{a} only contains constant functions.

Proposition 2.2 Let $B = B(x, r)$ with $r < \rho(x)$.

1. (See [11, Lemma 2]) If $f \in BMO_{\alpha}$ then $|f_{B}| \leq C \left(1 + \log \frac{\rho(x)}{r} \right) \|f\|_{BMO_{\alpha}}$.
2. (See [20, Proposition 4.3]) If $f \in BMO_{\alpha}^{a}$, $0 < \alpha \leq 1$, then we have $|f_{B}| \leq C_{\alpha} \|f\|_{BMO_{\alpha}^{a}} \rho(x)^{a}$.
3. (See [6, Proposition 3]) A function f belongs to BMO_{α}^{a}, $0 \leq \alpha \leq 1$, if and only if f satisfies (i) for every ball $B = B(x_{0}, r_{0})$ with $r_{0} < \rho(x_{0})$ and $|f|_{Q_{k}} \leq C |Q_{k}|^{1 + \frac{a}{n}}$, for all balls Q_{k} given in the covering by critical balls above.

Lemma 2.3 (Boundedness criterion) Let S be a linear operator defined on BMO_{α}^{a}, $0 \leq \alpha \leq 1$. Then S is bounded from BMO_{α}^{a} into $BMO_{\alpha+\gamma}^{a+\gamma}$, $\alpha + \gamma \leq 1$, $\gamma \geq 0$, if there exists $C > 0$ such that, for every $f \in BMO_{\alpha}^{a}$ and $k \in \mathbb{N}$,

\[
(A_{k}) \frac{1}{|Q_{k}|^{1 + \frac{a+\gamma}{n}}} \int_{Q_{k}} |Sf(x)| \, dx \leq C \|f\|_{BMO_{\alpha}^{a}} \, , \text{ and } \]

\[
(B_{k}) \|Sf\|_{BMO_{\alpha+\gamma}(Q_{k}^{x})} \leq C \|f\|_{BMO_{\alpha}^{a}}, \text{ where } BMO_{\alpha}(Q_{k}^{x}) \text{ denotes the usual } BMO_{\alpha} \text{ space on the ball } Q_{k}^{x}.
\]

Proof For $\alpha = 0$ the result is already contained in Dziubański et al. [11, p. 346]. The general statement follows immediately from the definition of BMO_{α}^{a} and Lemma 2.1 (see Proposition 2.2). \Box

The duality of the L-Hardy space H_{L}^{1} with BMO_{α} was proved in Dziubański et al. [11]. As already mentioned in the paper by Bongioanni et al. [6], the BMO_{α}^{a} spaces are the duals of the H_{L}^{a} spaces defined in Dziubański and Zienkiewicz [12–14]. In fact, if $s > n$ and $0 \leq \alpha < 1$ then the dual of $H_{L}^{\frac{a}{n}}$ is BMO_{α}^{a}; see also [15], references in [20] and [26].

We denote by $C^{a}(\mathbb{R}^{n})$ the space of α-Hölder continuous functions on \mathbb{R}^{n} and by $[f]_{C^{a}}$ its usual seminorm. Recall that $BMO^{a}(\mathbb{R}^{n}) = C^{a}(\mathbb{R}^{n})$ with $\|f\|_{BMO^{a}(\mathbb{R}^{n})} \sim [f]_{C^{a}}$.

Proposition 2.4 (Campanato description, [6, Proposition 4]) Let $0 < \alpha \leq 1$. A function f belongs to BMO_{α}^{a} if and only if $f \in C^{a}(\mathbb{R}^{n})$ and $|f(x)| \leq C \rho(x)^{a}$, for all $x \in \mathbb{R}^{n}$.

Moreover, $\|f\|_{BMO_{\alpha}^{a}} \sim [f]_{C^{a}(\mathbb{R}^{n})} + \|f \rho^{-\alpha}\|_{L^{\infty}(\mathbb{R}^{n})}$.

In the following lemma we present examples of families of functions indexed by $x_{0} \in \mathbb{R}^{n}$ and $0 < s \leq \rho(x_{0})$ that are uniformly bounded in BMO_{α}^{a}. They will be useful in the sequel.
Lemma 2.5 There exist constants $C, C_\alpha > 0$ such that for every $x_0 \in \mathbb{R}^n$ and $0 < s \leq \rho(x_0)$,

(a) the function

$$
g_{x_0,s}(x) := \chi_{[0,s]}(|x - x_0|) \log \left(\frac{\rho(x_0)}{s} \right) + \chi_{(s,\rho(x_0))}(|x - x_0|) \log \left(\frac{\rho(x_0)}{|x - x_0|} \right),
$$

$x \in \mathbb{R}^n$, belongs to BMO_L and $\|g_{x_0,s}\|_{BMO_L} \leq C$;

(b) the function

$$
f_{x_0,s}(x) = \chi_{[0,s]}(|x - x_0|) \left(\rho(x_0)^\alpha - s^\alpha \right)
+ \chi_{(s,\rho(x_0))}(|x - x_0|) \left(\rho(x_0)^\alpha - |x - x_0|^\alpha \right),
$$

$x \in \mathbb{R}^n$, belongs to BMO_L^α, $0 < \alpha \leq 1$, and $\|f_{x_0,s}\|_{BMO_L^\alpha} \leq C_\alpha$.

Proof The proof of (a) follows the same lines as the proof of Lemma 2.1 in Betancor et al. [2]. We omit the details.

Let us continue with (b). Recall that the function $h(x) = \left(1 - |x|^{\alpha} \right) \chi_{[0,1]}(|x|)$ is in $BMO^\alpha(\mathbb{R}^n)$. Hence, for every $R > 0$, the function $h_R(x) := R^\alpha h(x/R)$ is in $BMO^\alpha(\mathbb{R}^n)$ and $\|h_R\|_{BMO^\alpha(\mathbb{R}^n)} \leq C$, where $C > 0$ is independent of R. Moreover, for every $R > 0$ and $S \geq 1$, the function $h_{R,S}(x) = \min\{R^\alpha(1 - S^{-\alpha})\}$ belongs to $BMO^\alpha(\mathbb{R}^n)$ and $\|h_{R,S}\|_{BMO^\alpha(\mathbb{R}^n)} \leq C$, where $C > 0$ does not depend on R and S. Then, since for every $x_0 \in \mathbb{R}^n$ and $0 < s \leq \rho(x_0)$,

$$
f_{x_0,s}(x) = \frac{h_{\rho(x_0),\rho(x_0)/s}(x - x_0)}{s}, \quad x \in \mathbb{R}^n,
$$

we get $f_{x_0,s} \in BMO^\alpha(\mathbb{R}^n) = C^\alpha(\mathbb{R}^n)$ and $\|f_{x_0,s}\|_{BMO^\alpha(\mathbb{R}^n)} \leq C$. This, the obvious inequality $|f_{x_0,s}(x)| \leq C \rho(x)^\alpha$, for all x, uniformly in x_0 and $s \leq \rho(x_0)$, and Proposition 2.4 imply the conclusion.

\[\square\]

3 Operators and proofs of the main results

3.1 The operators related to L

We denote by $L^p_c(\mathbb{R}^n)$ the set of functions $f \in L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$, whose support $\text{supp}(f)$ is a compact subset of \mathbb{R}^n.

Definition 3.1 Let $0 \leq \gamma < n$, $1 < p \leq q < \infty$, $\frac{1}{q} = \frac{1}{p} - \frac{\gamma}{n}$. Let T be a bounded linear operator from $L^p(\mathbb{R}^n)$ into $L^q(\mathbb{R}^n)$ such that

$$
Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy, \quad f \in L^p_c(\mathbb{R}^n) \text{ and a.e. } x \notin \text{supp}(f).
$$

We shall say that T is a γ-Schrödinger–Calderón–Zygmund operator with regularity exponent $\delta > 0$ if for some constant C

1. $|K(x, y)| \leq \frac{C}{|x - y|^{n - \gamma} \left(1 + \frac{|x - y|}{\rho(x)}\right)^{-N}}$, for all $N > 0$ and $x \neq y$,

2. $|K(x, y) - K(x, z)| + |K(y, x) - K(z, x)| \leq C \frac{|y - z|^{\delta}}{|x - y|^{n - \gamma + 3\delta}}$, when $|x - y| > 2|y - z|$.
Definition of Tf for $f \in BMO_\mathcal{L}^\alpha$, $0 \leq \alpha \leq 1$. Suppose that $f \in BMO_\mathcal{L}^\alpha$ and $R \geq \rho(x_0)$, $x_0 \in \mathbb{R}^n$. We define

$$Tf(x) = T(f \chi_{B(x_0, R)}) (x) + \int_{B(x_0, R)^c} K(x, y) f(y) \, dy, \text{ a.e. } x \in B(x_0, R).$$

Note that the first term in the right-hand side makes sense since $f \chi_{B(x_0, R)} \in L^p_c(\mathbb{R}^n)$. The integral in the second term is absolutely convergent. Indeed, by Lemma 2.1, there exists a constant C such that for any $x \in B(x_0, R)$,

$$\rho(x) \leq c \rho(x_0) \left(1 + \frac{|x - x_0|}{\rho(x_0)}\right)^{\frac{k_0}{k_0 + 1}} \leq C \left(\rho(x_0) + \rho(x_0)^{1 - \frac{k_0}{k_0 + 1}} |x - x_0|^{\frac{k_0}{k_0 + 1}}\right) \leq C \left(R + R^{1 - \frac{k_0}{k_0 + 1}} |x - x_0|^{\frac{k_0}{k_0 + 1}}\right) \leq C2R.$$

Hence, using the γ-Schrödinger–Calderón–Zygmund condition (1) for K with $N - \gamma > \alpha$,

$$\int_{B(x_0, 2R)^c} |K(x, y)||f(y)| \, dy \leq C \sum_{j=1}^{\infty} \int_{|y-x_0| \leq 2^{j+1}R} \frac{\rho(x)^N}{|x - y|^{n+N-\gamma}} |f(y)| \, dy \leq C \sum_{j=1}^{\infty} \frac{\rho(x)^N (2^{j+1}R - R)^{n+N-\gamma}}{|y-x_0| \leq 2^{j+1}R} |f(y)| \, dy \leq CR^{\alpha + \gamma} \|f\|_{BMO_\mathcal{L}^\alpha}, \text{ a.e. } x \in B(x_0, R). \quad (3.1)$$

The definition of $Tf(x)$ is also independent of R in the sense that if $B(x_0, R) \subset B(x_0', R')$, with $R' \geq \rho(x_0)$, then the definition using $B(x_0', R')$ coincides almost everywhere in $B(x_0, R)$ with the one just given, because in that situation,

$$T \left(f \chi_{B(x_0', R')}\right) (x) - T \left(f \chi_{B(x_0, R)}\right) (x) = T \left(f \chi_{B(x_0', R') \setminus B(x_0, R)}\right) (x) = \int_{B(x_0', R') \setminus B(x_0, R)} K(x, y) f(y) \, dy = \int_{B(x_0, R)^c} K(x, y) f(y) \, dy - \int_{B(x_0', R')^c} K(x, y) f(y) \, dy.$$

for almost every $x \in B(x_0, R)$.

The definition just given above is equally valid for $f \equiv 1 \in BMO_\mathcal{L}$.

Next we derive an expression for Tf, where $T1$ appears, that will be useful in the proof of our main results. Let $x_0 \in \mathbb{R}^n$ and $r_0 > 0$. For $B = B(x_0, r_0)$ we clearly have

$$f = (f - f_B) \chi_{B^{***}} + (f - f_B) \chi_{(B^{**})^c} + f_B =: f_1 + f_2 + f_3. \quad (3.2)$$

Let us choose $R \geq \rho(x_0)$ such that $B^{***} \subset B(x_0, R)$. By using the definition of Tf given above, the identity in (3.2), adding and subtracting f_B in the integral over $B(x_0, R)^c$ and collecting terms we get
Indeed, by Hölder’s inequality and the L^p boundedness of T,

$$
\frac{1}{|B|^{1 + \frac{\gamma}{n}}} \int_B |T f(x)| \, dy \leq C, \quad \text{for all } B = B(x, \rho(x)), \ x \in \mathbb{R}^n.
$$

We observe that there exists a constant C such that

$$
\frac{1}{|B|^{1 + \frac{\gamma}{n}}} \int_B |T (\chi_{B^*}) (y)| \, dy \leq C, \quad \text{for all } B = B(x, \rho(x)), \ x \in \mathbb{R}^n.
$$

Indeed, by Hölder’s inequality and the $L^p - L^q$ boundedness of T,

$$
|T (\chi_{B^*}) (y)| \leq C \sum_{k=1}^{\infty} \int_{\rho(y) \leq |x - z| < 2^{j+1} \rho(y)} \frac{\rho(y)^{n+\gamma}}{|y - z|^{\frac{2n}{\gamma}}} \, dz
$$

$$
\leq C \rho(y)^{n+\gamma} \sum_{k=1}^{\infty} \frac{(2^{j+1} \rho(x))^n}{(2^{j} \rho(x) - \rho(x))^{2n}} \leq C \rho(y)^{\gamma},
$$

because $\rho(x) \sim \rho(y)$. Thus (3.4) follows by linearity.

3.2 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 First we shall see that the condition on T implies that T is bounded from $BMO^\alpha_{L^p}$ into $BMO^\alpha_{L^q}$. In order to do this, we will show that there exists $C > 0$ such that the properties (A_k) and (B_k) stated in Lemma 2.3 hold for every $k \in \mathbb{N}$ and $f \in BMO^\alpha_{L^p}$.

We begin with (A_k). According to (3.3) with $B = Q_k$,

$$
T f(x) = T \left((f - f_{Q_k}) \chi_{Q_k^*} \right) (x) + \int_{(Q_k^*)^c} K(x, y)(f(y) - f_{Q_k}) \, dy
$$

$$
+ f_{Q_k} T 1(x), \quad \text{a.e. } x \in Q_k.
$$

Springer
As T maps $L^p(\mathbb{R}^n)$ into $L^q(\mathbb{R}^n)$, $\frac{1}{q} = \frac{1}{p} - \frac{\gamma}{n}$, by Hölder’s inequality,

\[
\frac{1}{|Q_k|^{1 + \frac{\alpha + \gamma}{n}}} \int_{Q_k} \left| T \left((f - f_{Q_k}) \chi_{Q_k^{**}} \right)(x) \right| \, dx \\
\leq \frac{1}{|Q_k|^{1 + \frac{\alpha + \gamma}{n}}} \left(\int_{Q_k} \left| T \left((f - f_{Q_k}) \chi_{Q_k^{**}} \right)(x) \right|^q \, dx \right)^{1/q} \\
\leq \frac{C}{|Q_k|^{\frac{q \gamma}{n}}} \left(\frac{1}{|Q_k|} \int_{Q_k^{**}} |f(x) - f_{Q_k}|^p \, dx \right)^{1/p} \\
\leq C \|f\|_{BMO_{\alpha}^q}.
\]

On the other hand, given $x \in Q_k$, we have $\rho(x) \sim \rho(x_k)$ and if $|x_k - y| > 2^j \rho(x_k)$, $j \in \mathbb{N}$, then $|x - y| \geq 2^{j-1} \rho(x_k)$. By the size condition (1) of the kernel K, for any $N > \alpha$ we have

\[
\frac{1}{|Q_k|^{\frac{\alpha + \gamma}{n}}} \int_{Q_k^{**} \cap (Q_k^{**})^c} K(x, y)(f(y) - f_{Q_k}) \, dy \\
\leq \frac{1}{|Q_k|^{\frac{\alpha + \gamma}{n}}} \int_{Q_k^{**} \cap (Q_k^{**})^c} |K(x, y)||f(y) - f_{Q_k}| \, dy \\
\leq \frac{C}{|Q_k|^{\frac{\alpha + \gamma}{n}}} \int_{Q_k^{**} \cap (Q_k^{**})^c} \frac{1}{|x - y|^{n - \gamma}} \left(1 + \frac{|x - y|}{\rho(x)} \right)^{-N} |f(y) - f_{Q_k}| \, dy \\
\leq \frac{C}{\rho(x_k)^\alpha} \sum_{j=3}^{\infty} \frac{\rho(x_k)^N}{2^{j+1} \rho(x_k)^{n + N}} \int_{|x - y| \leq 2^j \rho(x_k)} |f(y) - f_{Q_k}| \, dy \\
\leq C \sum_{j=3}^{\infty} 2^{-j(N - \alpha)} (j + 1) \|f\|_{BMO_{\alpha}^q} \leq C \|f\|_{BMO_{\alpha}^q}.
\]

Finally, by (3.4),

\[
\frac{1}{|Q_k|^{1 + \frac{\alpha + \gamma}{n}}} \int_{Q_k} \left| f_{Q_k} T 1(x) \right| \, dx = \frac{1}{|Q_k|^{\frac{\gamma}{n}}} \frac{1}{|Q_k|^{\frac{1}{p} + \frac{\alpha + \gamma}{n}}} \int_{Q_k} |T 1(x)| \, dx \leq C \|f\|_{BMO_{\alpha}^q}.
\]

Hence, we conclude that (A_k) holds for T with a constant C that does not depend on k.

Let us continue with (B_k). Let $B = B(x_0, r_0) \subseteq Q_k^*$, where $x_0 \in \mathbb{R}^n$ and $r_0 > 0$. Note that if $r_0 \geq \frac{1}{2} \rho(x_0)$ then $\rho(x_0) \sim \rho(x_k) \sim r_0$, so proceeding as above we have

\[
\frac{1}{|B|^{1 + \frac{\alpha + \gamma}{n}}} \int_{B} \left| T f(x) - (T f)_B \right| \, dx \leq \frac{2}{|B|^{1 + \frac{\alpha + \gamma}{n}}} \int_{B} |T f(x)| \, dx \leq C \|f\|_{BMO_{\alpha}^q}.
\]
Assume next that $0 < r_0 < \frac{1}{2} \rho(x_0)$. We have

\[
\frac{1}{|B|^{1 + \frac{\alpha + \gamma}{n}}} \int_B |Tf(x) - (Tf)_B| \, dx \\
\leq \frac{1}{|B|^{1 + \frac{\alpha + \gamma}{n}}} \int_B \frac{1}{|B|} \int_B |Tf_1(x) - Tf_1(z)| \, dz \, dx \\
+ \frac{1}{|B|^{1 + \frac{\alpha + \gamma}{n}}} \int_B \frac{1}{|B|} \int_B |F_2(x) - F_2(z)| \, dz \, dx \\
+ \frac{1}{|B|^{1 + \frac{\alpha + \gamma}{n}}} \int_B |Tf_3(x) - (Tf_3)_B| \, dx =: L_1 + L_2 + L_3,
\]

where $f = f_1 + f_2 + f_3$ as in (3.2) and we defined

\[
F_2(x) = \int_{(B^{**})^c} K(x, y) f_2(y) \, dy, \quad x \in B.
\]

Again Hölder’s inequality and $L^p - L^q$ boundedness of T give $L_1 \leq C \|f\|_{BMO^q}$. Let us estimate L_2. Take $x, z \in B$ and $y \in (B^{**})^c$. Then $8r_0 < |y - x_0| \leq |y - x| + r_0$ and therefore $2 |x - x_0| < 4r_0 < |y - x|$. Under these conditions we can apply the smoothness of the kernel (recall Definition 3.1(2)) and the restriction $\alpha + \gamma < \min \{1, \delta\}$ to get

\[
\frac{1}{|B|^{\frac{\alpha + \gamma}{n}}} |F_2(x) - F_2(z)| \leq \frac{C}{r_0^{\alpha + \gamma}} \int_{(B^{**})^c} |K(x, y) - K(z, y)| \|f(y) - f_B\| \, dy \\
\leq \frac{C}{r_0^{\alpha + \gamma}} \sum_{j=3}^\infty \int_{2^j r_0 \leq |x_0 - y| < 2^{j+1} r_0} \frac{|x - z|}{|x - y|^{n - \gamma + \delta}} |f(y) - f_B| \, dy \\
\leq \frac{C}{r_0^{\alpha + \gamma}} \sum_{j=3}^\infty \int_{2^j r_0 \leq |x_0 - y| < 2^{j+1} r_0} |f(y) - f_B| \, dy \\
\leq C \sum_{j=3}^\infty \frac{2^{-j(\delta - (\alpha + \gamma))}}{(2^j + 1) r_0^{a + \alpha}} \int_{2^j r_0 \leq |x_0 - y| < 2^{j+1} r_0} |f(y) - f_{2j+1}B + \sum_{k=0}^j (f_{2k+1}B - f_{2k}B)| \, dy \\
\leq C \sum_{j=3}^\infty \frac{2^{-j(\delta - (\alpha + \gamma))}}{(2^j + 1) r_0^{a + \alpha}} \int_{2^j r_0 \leq |x_0 - y| < 2^{j+1} r_0} |f(y) - f_{2j+1}B| \, dy \\
+ \frac{1}{(2^j + 1) r_0^{a + \alpha}} \sum_{k=0}^j \frac{|2^{k+1} B|}{|2^k B|} \int_{2^k B} |f(y) - f_{2k+1}B| \, dy
\]
\[C \sum_{j=3}^{\infty} 2^{-j(\delta-(\alpha+\gamma))} \left[\|f\|_{BMO_L^p} + \sum_{k=0}^{j} \frac{1}{|2^{k+1}B|^{1+\frac{\gamma}{n}}} \int_{2^{k+1}B} |f(y) - f_{2^{k+1}B}| \, dy \right] \]

\[\leq C \|f\|_{BMO_L^p} \sum_{j=3}^{\infty} 2^{-j(\delta-(\alpha+\gamma))} (j+2) = C \|f\|_{BMO_L^p}. \]

Therefore, \(L_2 \leq C \|f\|_{BMO_L^p}. \) We finally consider \(L_3. \) Using Proposition 2.2(2) and the assumption on \(T1, \) it follows that

\[L_3 = \frac{|f_B|}{|B|^{1+\frac{\alpha+\gamma}{n}}} \int_B |T1(x) - (T1)_B| \, dx \]

\[\leq C \|f\|_{BMO_L^p} \left(\frac{\rho(x_0)}{r_0} \right)^{\alpha} \frac{1}{|B|^{1+\frac{\alpha}{n}}} \int_B |T1(x) - (T1)_B| \, dx \]

\[\leq C \|f\|_{BMO_L^p}. \] (3.5)

This concludes the proof of \((B_k).\) Hence, \(T \) is bounded from \(BMO_L^a \) into \(BMO_L^{a+\gamma}. \)

Let us now prove the converse statement. Suppose that \(T \) is bounded from \(BMO_L^a \) into \(BMO_{L+\gamma}. \) Let \(x_0 \in \mathbb{R}^n \) and \(0 < s \leq \frac{1}{2} \rho(x_0) \) and \(B = B(x_0, s). \) For such \(x_0 \) and \(s \) consider the nonnegative function \(f_0(x) \equiv f_{x_0,s}(x) \) defined in Lemma 2.5. Using the decomposition \(f_0 = (f_0 - (f_0)_B) \chi_{B**} + (f_0 - (f_0)_B) \chi_{B^{**}B} + (f_0)_B \equiv f_1 + f_2 + (f_0)_B \) as in (3.2), we can write \((f_0)_B T1(y) = T f_0(y) - T f_1(y) - T f_2(y), \) so

\[(f_0)_B \frac{1}{|B|^{1+\frac{\alpha+\gamma}{n}}} \int_B |T1(y) - (T1)_B| \, dy \leq \sum_{i=0}^{2} \frac{1}{|B|^{1+\frac{\gamma}{n}}} \int_B |T f_i(y) - (T f_i)_B| \, dy. \]

We can check that each of the three terms above is controlled by \(C \|f_0\|_{BMO_L^a} \leq C, \) where \(C \) is independent of \(x_0 \) and \(s. \) Indeed, the case \(i = 0 \) follows by the hypothesis about the boundedness of \(T. \) For \(i = 1 \) the estimate follows, as usual, by Hölder’s inequality and \(L^p - L^q \) boundedness of \(T. \) The term for \(i = 2 \) is done as \(L_2 \) above. Thus, since \((f_0)_B = C(\rho(x_0)^a - s^a) \) we obtain

\[\left(\frac{\rho(x_0)}{s} \right)^{\alpha} \frac{1}{|B|^{1+\frac{\alpha}{n}}} \int_B |T1(y) - (T1)_B| \, dy \leq C. \]

\(\square \)

Proof of Theorem 1.2 The proof is the same as the proof of Theorem 1.1 putting \(\alpha = 0 \) everywhere, except for just two differences. The first one is the estimate of the term \(L_3, \) where we must apply Proposition 2.2(1) instead of (2). The second difference is the proof of the converse, where instead of \(f_{x_0,s}(x) \) we have to consider the function \(g_{x_0,s}(x) \) of Lemma 2.5. \(\square \)

3.3 Pointwise multipliers in \(BMO_L^a, \ 0 \leq \alpha < 1 \)

Proposition 3.2 Let \(\psi \) be a measurable function on \(\mathbb{R}^n. \) We denote by \(T_\psi \) the multiplier operator defined by \(T_\psi(f) = f \psi. \) Then
(A) \(T_\psi \) is a bounded operator in \(BMO_\mathbb{L} \) if and only if \(\psi \in L^\infty(\mathbb{R}^n) \) and there exists \(C > 0 \) such that, for all balls \(B = B(x_0, s) \) with \(0 < s < \frac{1}{2} \rho(x_0) \),
\[
\log \left(\frac{\rho(x_0)}{s} \right) \frac{1}{|B|} \int_B |\psi(y) - \psi_B| \, dy \leq C.
\]

(B) \(T_\psi \) is a bounded operator in \(BMO_\mathbb{L}^\alpha \), \(0 < \alpha < 1 \), if and only if \(\psi \in L^\infty(\mathbb{R}^n) \) and there exists \(C > 0 \) such that, for all balls \(B = B(x_0, s) \) with \(0 < s < \frac{1}{2} \rho(x_0) \),
\[
\left(\frac{\rho(x_0)}{s} \right)^\alpha \frac{1}{|B|} \int_B |\psi(y) - \psi_B| \, dy \leq C.
\]

Remark 3.3 If \(\psi \in C^{0,\beta}(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) \), \(0 < \beta \leq 1 \), then \(T_\psi \) is bounded on \(BMO_\mathbb{L} \). Moreover, if for some \(\gamma \)-Schrödinger–Calderón–Zygmund operator \(T \) we have that \(T1 \) defines a pointwise multiplier in \(BMO_\mathbb{L}^\alpha \), then the proposition above and Theorems 1.2 and 1.1 imply that \(T \) is a bounded operator on \(BMO_\mathbb{L}^\alpha \).

Proof of Proposition 3.2 Let us first prove (B). Suppose that \(T_\psi \) is a bounded operator on \(BMO_\mathbb{L}^\alpha \), \(0 < \alpha < 1 \). For the function \(f_{x_0,s}(x) \) defined in Lemma 2.5 and any ball \(B = B(x_0, s) \) with \(0 < s \leq \frac{1}{2} \rho(x_0) \), by Proposition 2.2(2) applied to \(f_\psi \) and the hypothesis, we get
\[
\left(\frac{\rho(x_0)}{s} \right)^\alpha \frac{1}{|B|} \int_B |\psi(x)| \, dx \leq C_\alpha \left(\frac{\rho(x_0)^\alpha - s^\alpha}{s^\alpha} \right) \frac{1}{|B|^{1+\frac{\alpha}{n}}} \int_B |\psi(x)f_{x_0,s}(x)| \, dx
\]
\[
\leq \frac{C_\alpha}{|B|^{1+\frac{\alpha}{n}}} \int_B |(\psi f_{x_0,s})(x) - (\psi f_{x_0,s})_B| \, dx + \frac{C_\alpha}{|B|^{1/\frac{n}{n}}} (\psi f_{x_0,s})_B
\]
\[
\leq C_\alpha \|f_{x_0,s}\|_{BMO_\mathbb{L}^\alpha} + C_\alpha \left(\frac{\rho(x_0)}{s} \right)^\alpha \|\psi f_{x_0,s}\|_{BMO_\mathbb{L}^\alpha}
\]
\[
\leq C_\alpha \left(\frac{\rho(x_0)}{s} \right)^\alpha \|f_{x_0,s}\|_{BMO_\mathbb{L}^\alpha} \leq C \left(\frac{\rho(x_0)}{s} \right)^\alpha.
\]

Hence, \(|\psi|_B \leq C \) with \(C \) independent of \(B \), so that \(\psi \) is bounded. Next we check the condition on \(\psi \). We have
\[
\left(\frac{\rho(x_0)}{s} \right)^\alpha \frac{1}{|B|} \int_B |\psi(x) - \psi_B| \, dx \leq C_\alpha \left(\frac{\rho(x_0)^\alpha - s^\alpha}{s^\alpha} \right) \frac{1}{|B|^{1+\frac{\alpha}{n}}} \int_B |\psi(x) - \psi_B| \, dx
\]
\[
\leq \frac{C_\alpha}{|B|^{1+\frac{\alpha}{n}}} \int_B |\psi(x)f_{x_0,s}(x) - (\psi f_{x_0,s})_B| \, dx
\]
\[
\leq C_\alpha \|\psi f_{x_0,s}\|_{BMO_\mathbb{L}^\alpha} \leq C_\alpha \|f_{x_0,s}\|_{BMO_\mathbb{L}^\alpha} \leq C.
\]

The constants \(C \) and \(C_\alpha \) appearing in this proof do not depend on \(x_0 \in \mathbb{R}^n \) and \(0 < s \leq \frac{1}{2} \rho(x_0) \).

For the converse statement, assume \(\psi \) satisfies the properties required in the hypothesis. The kernel of the operator \(T = T_\psi \) is zero and \(T_\psi 1(x) = \psi(x) \), so the conclusion follows by Theorem 1.1.
The proof of (A) is completely analogous by using the function $g_{x_0,s}(x)$ of Lemma 2.5 instead of $f_{x_0,s}(x)$ and by applying Theorem 1.2.

4 Applications

In the following subsections, we prove Theorems 1.4 and 1.3. In order to adapt our results to the applications, we need the following remark.

Remark 4.1 (Vector-valued setting) Theorems 1.1 and 1.2 can also be stated in a vector-valued setting. If Tf takes values in a Banach space \mathcal{B} and the absolute values in the conditions are replaced by the norm in \mathcal{B}, then both results hold.

4.1 Maximal operators for the heat-diffusion semigroup e^{-tL}.

Let $\{W_t\}_{t>0}$ be the heat-diffusion semigroup associated with L:

$$W_tf(x) \equiv e^{-tL}f(x) = \int_{\mathbb{R}^n} W_t(x,y)f(y)\,dy, \quad f \in L^2(\mathbb{R}^n), \; x \in \mathbb{R}^n, \; t > 0.$$

The kernel of the classical heat semigroup $\{W_t\}_{t>0} = \{e^{t\Delta}\}_{t>0}$ on \mathbb{R}^n is

$$W_t(x) := \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}, \quad x \in \mathbb{R}^n, \; t > 0.$$

In the following arguments we need some well-known estimates about the kernel $W_t(x,y)$.

Lemma 4.2 (See [14,19]) For every $N > 0$ there exists a constant C_N such that

$$0 \leq W_t(x,y) \leq C_N t^{-n/2} e^{-|x-y|^2/4t} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(y)}\right)^{-N}, \quad x, y \in \mathbb{R}^n, \; t > 0.$$

Lemma 4.3 (See [14, Proposition 2.16]) There exists a nonnegative function $\omega \in S$ such that

$$|W_t(x,y) - W_t(x-y)| \leq \left(\frac{\sqrt{t}}{\rho(x)}\right)^{\delta_0} \omega_t(x-y), \quad x, y \in \mathbb{R}^n, \; t > 0,$$

where $\omega_t(x-y) := t^{-n/2} \omega((x-y)/\sqrt{t})$ and

$$\delta_0 := 2 - \frac{n}{q} > 0.$$

In fact, going through the proof of Dziubański and Zienkiewicz [14] we see that $\omega(x) = e^{-|x|^2}$.

Lemma 4.4 (See [13, Proposition 4.11]) For every $0 < \delta < \delta_0$, there exists a constant $c > 0$ such that for every $N > 0$ there exists a constant $C > 0$ such that for $|y-z| < \sqrt{t}$ we have

$$|W_t(x,y) - W_t(x,z)| \leq C \left(\frac{|y-z|}{\sqrt{t}}\right)^{\delta} t^{-n/2} e^{-c|x-y|^2/t} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(y)}\right)^{-N}.$$

\(\Box\) Springer
Lemma 4.5 (See [14, Proposition 2.17]) For every $0 < \delta < \min\{1, \delta_0\}$,

\[|(\mathcal{W}_t(x, y) - W_t(x, y)) - (\mathcal{W}_t(x, z) - W_t(x, z))| \leq C \left(\frac{|y - z|}{\rho(x)} \right)^\delta \omega_t(x - y), \]

for all $x, y \in \mathbb{R}^n$ and $t > 0$, with $|y - z| < C\rho(y)$ and $|y - z| < \frac{1}{4} |x - y|$.

To prove that the maximal operator \mathcal{W}^* defined by $\mathcal{W}^* f(x) = \sup_{t > 0} |\mathcal{W}_t f(x)|$ is bounded from BMO_α into itself, we give a vector-valued interpretation of the operator and apply Remark 4.1. Indeed, it is clear that $\mathcal{W}^* f = ||\mathcal{W}_t f||_E$, with $E = L^\infty((0, \infty), dt)$. Hence, it is enough to show that the operator $\Lambda(f) := (\mathcal{W}_t f)_{t > 0}$ is bounded from BMO_α into $BMO_\alpha^{\ast\ast}$, where the space $BMO_\alpha^{\ast\ast}$ is defined in the obvious way by replacing the absolute values $| \cdot |$ by norms $\| \cdot \|_E$.

By the Spectral Theorem, Λ is bounded from $L^2(\mathbb{R}^n)$ into $L^2_E(\mathbb{R}^n)$. The desired result is then deduced from the following proposition.

Proposition 4.6 Let $x, y, z \in \mathbb{R}^n$ and $N > 0$. Then

(i) $\|\mathcal{W}_t(x, y)\|_E \leq \frac{C}{|x - y|^n} \left(1 + \frac{|x - y|}{\rho(x)} + \frac{|x - y|}{\rho(y)} \right)^{-N}$;

(ii) $\|\mathcal{W}_t(x, y) - \mathcal{W}_t(x, z)\|_E + \|\mathcal{W}_t(y, x) - \mathcal{W}_t(z, x)\|_E \leq C\delta \frac{|y - z|\delta}{|x - y|^{\alpha + \delta}}$, whenever $|x - y| > 2|y - z|$, for any $0 < \delta < 2 - \frac{n}{q}$;

(iii) there exists a constant C such that for every ball $B = B(x, s)$ with $0 < s \leq \frac{1}{2} \rho(x)$,

\[
\log \left(\frac{\rho(x)}{s} \right) \frac{1}{|B|} \int_B \|\mathcal{W}_t 1(y) - (\mathcal{W}_t 1)_B\|_E \, dy \leq C,
\]

and, if $\alpha < \min\{1, 2 - \frac{n}{q}\}$ then

\[
\left(\frac{\rho(x)}{s} \right)^\alpha \frac{1}{|B|} \int_B \|\mathcal{W}_t 1(y) - (\mathcal{W}_t 1)_B\|_E \, dy \leq C.
\]

Proof Let us begin with (i). If $t > |x - y|^2$ then the conclusion is immediate from the estimate of Lemma 4.2. Assume that $t \leq |x - y|^2$. Then

\[
0 \leq \mathcal{W}_t(x, y) \leq \frac{C}{|x - y|^n} e^{-c|x-y|^2 t} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(y)} \right)^{-N}
\leq \frac{C}{|x - y|^n} \left(\frac{\sqrt{t}}{|x - y|} \right)^{-N (1 + |x - y|/\rho(x))} \left(\sqrt{t} + \frac{|x - y|}{\rho(x)} + \frac{|x - y|}{\rho(y)} \right)^{-N}
\leq \frac{C}{|x - y|^n} \left(\sqrt{t} + \frac{|x - y|}{\rho(x)} + \frac{|x - y|}{\rho(y)} \right)^{-N}
\leq \frac{C}{|x - y|^n} \left(1 + \frac{|x - y|}{\rho(x)} + \frac{|x - y|}{\rho(y)} \right)^{-N}.
\]

We prove (ii). Observe that if $|x - y| > 2|y - z|$ then $|x - y| \sim |x - z|$. For any $0 < \delta < \delta_0$, if $|y - z| \leq \sqrt{t}$, by Lemma 4.4,

\[
|\mathcal{W}_t(x, y) - \mathcal{W}_t(x, z)| \leq C \left(\frac{|y - z|}{\sqrt{t}} \right)^\delta t^{-n/2} e^{-c|x-y|^2 t} \leq C \frac{|y - z|^\delta}{|x - y|^{n + \delta}}.
\]

Springer
Consider the situation $|y - z| > \sqrt{t}$. Then Lemma 4.2 gives

$$|\mathcal{W}_t(x, y)| \leq C \left(\frac{|y - z|}{\sqrt{t}} \right)^{\delta} t^{-n/2} e^{-\frac{|x-y|^2}{t}} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(y)} \right)^{-N} \leq C \frac{|y - z|^{\delta}}{|x - y|^{n+\delta}}.$$

The same bound is valid for $\mathcal{W}_t(x, z)$ because $|x - z| \sim |x - y|$. Then the estimate follows directly since $|\mathcal{W}_t(x, y) - \mathcal{W}_t(x, z)| \leq |\mathcal{W}_t(x, y)| + |\mathcal{W}_t(x, z)|$. The symmetry of the kernel $\mathcal{W}_t(x, y) = \mathcal{W}_t(y, x)$ gives the conclusion of (ii).

Let us prove the first statement of (iii). Let $B = B(x, s)$ with $0 < s \leq \frac{1}{2} \rho(x)$. The triangle inequality gives

$$\|\mathcal{W}_t(1) - (\mathcal{W}_t)_{B}\|_E \leq \frac{1}{|B|} \int_B \|\mathcal{W}_t(1) - \mathcal{W}_t(z)\|_E dz \quad (4.2)$$

We estimate the integrand $\|\mathcal{W}_t(1) - \mathcal{W}_t(z)\|_E$. Because $y, z \in B$, we have $\rho(y) \sim \rho(z) \sim \rho(x)$ (see Lemma 2.1). The fact that $\mathcal{W}_t(1) \equiv 1$ and Lemma 4.3 entail

$$|\mathcal{W}_t(1) - \mathcal{W}_t(z)| \leq |\mathcal{W}_t(1) - \mathcal{W}_t(y)| + |\mathcal{W}_t(y) - \mathcal{W}_t(z)|$$

$$\leq \int_{\mathbb{R}^n} \left[\left(\frac{\sqrt{t}}{\rho(y)} \right)^{\delta_0} \omega_t(y - w) + \left(\frac{\sqrt{t}}{\rho(z)} \right)^{\delta_0} \omega_t(z - w) \right] dw$$

$$\leq \left(\frac{\sqrt{t}}{\rho(x)} \right)^{\delta_0} \int_{\mathbb{R}^n} \left[\omega_t(y - w) + \omega_t(z - w) \right] dw = C \left(\frac{\sqrt{t}}{\rho(x)} \right)^{\delta_0}. \quad (4.3)$$

So (4.3) gives

$$|\mathcal{W}_t(1) - \mathcal{W}_t(z)| \leq C \left(\frac{s}{\rho(x)} \right)^{\delta_0}, \quad \text{when } \sqrt{t} \leq 2s. \quad (4.4)$$

If $\sqrt{t} > 2s$ then $|y - z| \leq 2s < \sqrt{t}$. Hence, Lemma 4.4 implies that

$$|\mathcal{W}_t(1) - \mathcal{W}_t(z)| \leq \int_{\mathbb{R}^n} |\mathcal{W}_t(y, w) - \mathcal{W}_t(z, w)| \ dw$$

$$\leq C \left(\frac{|y - z|}{\sqrt{t}} \right)^{\delta} \leq C \left(\frac{s}{\sqrt{t}} \right)^{\delta}, \quad (4.5)$$

where $0 < \delta < \delta_0$. Therefore, estimate (4.5) gives

$$|\mathcal{W}_t(1) - \mathcal{W}_t(z)| \leq C \left(\frac{s}{\rho(x)} \right)^{\delta}, \quad \text{when } \sqrt{t} > \rho(x). \quad (4.6)$$

When $2s < \sqrt{t} < \rho(x)$ we write

$$|\mathcal{W}_t(1) - \mathcal{W}_t(z)| = |(\mathcal{W}_t(1) - \mathcal{W}_t(y)) - (\mathcal{W}_t(y) - \mathcal{W}_t(z))|$$

$$= \left| \left(\int_{|w-y| > C \rho(y)} - \int_{|w-y| < C \rho(y)} + \int_{|w-y| < 4|y-z|} \right) \left((\mathcal{W}_t(y, w) - \mathcal{W}_t(z, w)) + (\mathcal{W}_t(z, w) - \mathcal{W}_t(z, w)) \right) \ dw \right|$$

$$= |I + II + III|.$$
For I we use the smoothness proved in part (ii) of this proposition. Note that the same smoothness estimate is valid for the classical heat kernel. So we get

$$|I| \leq C \int_{|w-y|>C\rho(y)} \frac{|y-z|^{\delta}}{|w-y|^{n+\delta}} \, dw \leq C \left(\frac{s}{\rho(x)} \right)^{\delta}. $$

In II we apply Lemma 4.5 and the fact that $\rho(w) \sim \rho(y)$ in the region of integration:

$$|II| \leq C |y-z|^{\delta} \int_{C\rho(y)>|w-y|>4|y-z|} \frac{\omega_{t}(w-y)}{\rho(w)^{\delta}} \, dw \leq C \left(\frac{s}{\rho(x)} \right)^{\delta}. $$

The estimate of III is obtained by applying Lemma 4.3:

$$|III| \leq C \left(\frac{\sqrt{t}}{\rho(x)} \right)^{\delta_0} \left(\int_{|w-y|<4|y-z|} \omega_{t}(y-w) \, dw + \int_{|w-z|\leq5|y-z|} \omega_{t}(z-w) \, dw \right) \leq C \left(\frac{\sqrt{t}}{\rho(x)} \right)^{\delta_0} \left(\frac{|y-z|}{\sqrt{t}} \right)^{n} \leq C \frac{s^n}{\rho(x)^{\delta_0}(\sqrt{t})^{n-\delta_0}} \leq C \frac{s^n}{\rho(x)^{\delta_0}s^{n-\delta_0}} = C \left(\frac{s}{\rho(x)} \right)^{\delta_0},$$

since $2s < \sqrt{t}$ and $n - \delta_0 > 0$. Thus

$$|W_t 1(y) - W_t 1(z)| \leq C \left(\frac{s}{\rho(x)} \right)^{\delta}, \quad \text{when } 2s < \sqrt{t} < \rho(x). \quad (4.7)$$

Combining (4.4), (4.6) and (4.7), we get

$$\|W_t 1(y) - W_t 1(z)\|_E \leq C \left(\frac{s}{\rho(x)} \right)^{\delta}. \quad (4.8)$$

Therefore, from (4.2) and (4.8) we get

$$\log \left(\frac{\rho(x)}{s} \right) \frac{1}{|B|} \int_B \|W_t 1(y) - (W_t 1)_B\|_E \, dy \leq C \left(\frac{s}{\rho(x)} \right)^{\delta} \log \left(\frac{\rho(x)}{s} \right) \leq C,$$

which is the first conclusion of (iii).

For the second estimate of (iii), by (4.8), we have

$$\left(\frac{\rho(x)}{s} \right)^{\alpha} \frac{1}{|B|} \int_B \|W_t 1(y) - (W_t 1)_B\|_E \, dy \leq C \left(\frac{s}{\rho(x)} \right)^{\delta-\alpha} \leq C,$$

as soon as $\delta - \alpha \geq 0$, which can be guaranteed if $\alpha < \min\{1, 2 - \frac{n}{q}\}$ and we choose $\delta \geq \alpha$. \qed
4.2 Maximal operators for the generalized Poisson operators P_t^σ.

For $0 < \sigma < 1$ we define the generalized Poisson operators P_t^σ as

$$u(x, t) \equiv P_t^\sigma f(x) = \frac{t^{2\sigma}}{4^\sigma \Gamma(\sigma)} \int_0^\infty e^{-\frac{r^2}{4t}} \mathcal{W}_r f(x) \frac{dr}{r^{1+\sigma}}$$

$$= \frac{1}{\Gamma(\sigma)} \int_0^\infty e^{-\frac{r^2}{4t}} \mathcal{W}_r^2 f(x) \frac{dr}{r^{1-\sigma}},$$

(4.9)

for $x \in \mathbb{R}^n$ and $t > 0$. The function u satisfies the following boundary value (extension) problem:

$$\begin{cases}
-\mathcal{L}_x u + \frac{1-2\sigma}{t} u_t + u_{tt} = 0, & \text{in } \mathbb{R}^n \times (0, \infty); \\
u(x, 0) = f(x), & \text{on } \mathbb{R}^n.
\end{cases}$$

Moreover, u is useful to characterize the fractional powers of \mathcal{L} since

$$-t^{1-2\sigma} u_t(x, t) \big|_{t=0} = c_\sigma \mathcal{L}^\sigma f(x),$$

for some constant $c_\sigma > 0$, see [24]. The fractional powers \mathcal{L}^σ can be defined in a spectral way. When $\sigma = 1/2$ we get that $P_t^{1/2} = e^{-t\mathcal{L}^{1/2}}$ is the classical Poisson semigroup generated by \mathcal{L} given by Bochner’s subordination formula, see [23]. It follows that

$$P_t^\sigma f(x) = \int_{\mathbb{R}^n} P_t^\sigma(x, y) f(y) \, dy,$$

where

$$P_t^\sigma(x, y) = \frac{t^{2\sigma}}{4^\sigma \Gamma(\sigma)} \int_0^\infty e^{-\frac{r^2}{4t}} \mathcal{W}_r(x, y) \frac{dr}{r^{1+\sigma}}$$

$$= \frac{1}{\Gamma(\sigma)} \int_0^\infty e^{-\frac{r^2}{4t}} \mathcal{W}_r^2(x, y) \frac{dr}{r^{1-\sigma}}.$$

(4.10)

To get the boundedness of the maximal operator

$$P_\ast f(x) := \sup_{t > 0} |P_t^\sigma f(x)| = \|P_t^\sigma f(x)\|_E$$

in BMO^α, we proceed using the vector-valued approach and the boundedness of the maximal heat semigroup $\mathcal{W}_\ast f$. The following proposition completely analogous to Proposition 4.6 holds.

Proposition 4.7 The estimates of Proposition 4.6 are valid when \mathcal{W}_t is replaced by P_t^σ.

Proof The proof follows by transferring the estimates for $\mathcal{W}_t(x, y)$ to $P_t^\sigma(x, y)$ through formula (4.10). We just sketch the proof of (iii). For any $y, z \in B = B(x, s), x \in \mathbb{R}^n$, $0 < s \leq \frac{1}{2} \rho(x)$, by (4.10), Minkowski’s integral inequality and (4.8) we have
\[
\|P_t^\sigma 1(y) - P_t^\sigma 1(z)\|_E \leq C_\sigma \int_0^\infty t^{2\sigma} e^{-\frac{s^2}{2t}} \|W_t 1(y) - W_t 1(z)\|_E \frac{dr}{r^{1+\sigma}}
\]

\[
\leq C \left(\frac{s}{\rho(x)} \right)^\delta \int_0^\infty t^{2\sigma} e^{-\frac{s^2}{2t}} \frac{dr}{r^{1+\sigma}} = C \left(\frac{s}{\rho(x)} \right)^\delta.
\]

Then the same computations for the heat semigroup apply in this case and give (iii). □

4.3 Littlewood–Paley \(g\)-function for the heat-diffusion semigroup

The Littlewood–Paley \(g\)-function associated with \(\{W_t\}_{t>0}\) is defined by

\[
g_{W}(f)(x) = \left(\int_0^\infty |t \partial_t W_t f(x)|^2 \frac{dt}{t} \right)^{1/2} = \|t \partial_t W_t f(x)\|_F,
\]

where \(F := L^2((0, \infty), \frac{dt}{t})\). The Spectral Theorem implies that \(g_W\) is an isometry on \(L^2(\mathbb{R}^n)\), see Dziubański et al. [11, Lemma 3]. As before, to get the boundedness of \(g_W\) from \(BMO^2_E\) into itself, it is sufficient to prove the following result.

Proposition 4.8 The estimates of Proposition 4.6 are valid when \(W_t\) is replaced by \(t \partial_t W_t\) and the Banach space \(E\) is replaced by \(F\).

The proof of Proposition 4.8 requires some extra effort. Let us recall the following already well-known estimates.

Lemma 4.9 (See [11, Proposition 4]) For any \(N > 0\) there exist constants \(C = C_N\) and \(c > 0\) such that for all \(x, y \in \mathbb{R}^n\), \(t > 0\) and \(0 < \delta < \delta_0\),

(a) \(|t \partial_t W_t(x, y)| \leq C t^{-n/2} e^{-c \frac{|x-y|^2}{t}} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(y)}\right)^{-N} ;

(b) For all \(|h| \leq \sqrt{t}\) we have

\(|t \partial_t W_t(x + h, y) - t \partial_t W(x, y)| \leq C \left(\frac{|h|}{\sqrt{t}} \right)^\delta e^{-c \frac{|x-y|^2}{t}} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(y)}\right)^{-N} ,

(c) \(\left| \int_{\mathbb{R}^n} t \partial_t W_t(x, y) \, dy \right| \leq C \left(\frac{\sqrt{t}/\rho(x)}{1 + \sqrt{t}/\rho(x)}\right)^N.

Proof of Proposition 4.8 Part (i) is proved using Lemma 4.9(a) and the same argument of the proof of Proposition 4.6 (i).

Similarly, (ii) follows by Lemma 4.9(b) and the symmetry \(W_t(x, y) = W_t(y, x)\).

To prove (iii) let us fix \(y, z \in B = B(x_0, s), 0 < s \leq \frac{1}{2} \rho(x_0)\). In view of an estimate like (4.2), we must handle \(\|t \partial_t W_t 1(y) - t \partial_t W_t 1(z)\|_F\) first. We can write

\[
\|t \partial_t W_t 1(y) - t \partial_t W_t 1(z)\|_F^2
= \int_0^\infty \left(\int_{\mathbb{R}^n} (t \partial_t W_t(x, y) - t \partial_t W_t(x, z)) \, dx \right)^2 \frac{dt}{t}
= \left(\int_0^{4s^2} \rho(x_0)^2 \int_{\mathbb{R}^n} (t \partial_t W_t(x, y) - t \partial_t W_t(x, z)) \, dx \right)^2 \frac{dt}{t}
=: A_1 + A_2 + A_3.
\]
Since $y, z \in B \subset B(x_0, \rho(x_0))$, it follows that $\rho(y) \sim \rho(x_0) \sim \rho(z)$. By Lemma 4.9(c),
\[
A_1 \leq C \int_0^{4s^2} \frac{(\sqrt{t}/\rho(x_0))^{2\delta}}{(1 + \sqrt{t}/\rho(x_0))^{2N}} \frac{dt}{t} \leq C \int_0^{4s^2} \left(\frac{\sqrt{t}}{\rho(x_0)} \right)^{2\delta} \frac{dt}{t} = C \left(\frac{s}{\rho(x_0)} \right)^{2\delta}.
\] (4.12)

Also, by Lemma 4.9(b),
\[
A_3 \leq C \int_0^{\rho(x_0)^2} \left(\frac{|y - z|}{\sqrt{t}} \right)^{1-\delta} \left\| \int_{\mathbb{R}^n} t^{-n/2} e^{-c t |y - x|^2} dx \right\|^2 \frac{dt}{t} = C \left(\frac{s}{\rho(x_0)} \right)^{2\delta}.
\] (4.13)

It remains to estimate the term A_2. Recall from Dziubański et al. [11, Eq. (2.8)] that, because the potential V is in the reverse Hölder class,
\[
\int_{\mathbb{R}^n} \omega_t(x - y) V(y) dy \leq C \left(\frac{\sqrt{t}}{\rho(x)} \right)^{\delta}, \text{ for } t \leq \rho(x)^2.
\] (4.14)

Clearly $\partial_t \mathcal{W}_1(x) = \mathcal{L} \mathcal{W}_1(x) = \mathcal{W}_1 V(x)$, that is
\[
\int_{\mathbb{R}^n} \partial_t \mathcal{W}_1(x, y) dy = \int_{\mathbb{R}^n} \mathcal{W}_1(x, y) V(y) dy.
\] (4.15)

We then have, by Lemma 4.4 (remember that $|y - z| \leq 2s \leq \sqrt{t}$),
\[
A_2 = \int_{4s^2}^{\rho(x_0)^2} \left\| \int_{\mathbb{R}^n} (t \partial_t \mathcal{W}_1(x, y) - t \partial_t \mathcal{W}_1(x, z)) dx \right\|^2 dt \leq C |y - z|^{2\delta} \int_{4s^2}^{\rho(x_0)^2} \left\| \int_{\mathbb{R}^n} t^{-n/2} e^{-c t |y - x|^2} \mathcal{W}(x) dx \right\|^2 dt
\]
\[
\leq C s^{2\delta} \int_{4s^2}^{\rho(x_0)^2} t^{1-\delta} \left(\frac{\sqrt{t}}{\rho(y)} \right)^{2\delta} dt
\]
\[
\leq C \left(\frac{s}{\rho(x_0)} \right)^{2\delta} \int_{s^2}^{\rho(x_0)^2} \frac{dt}{t} = C \left(\frac{s}{\rho(x_0)} \right)^{2\delta} \log \left(\frac{\rho(x_0)}{s} \right).
\] (4.16)
Combining (4.11), (4.12), (4.13) and (4.16) we get
\[\| t \partial_t \mathcal{W}_t 1(y) - t \partial_t \mathcal{W}_t 1(z) \|_F \leq C \left(\frac{s \delta}{\rho(x_0)} \right)^\delta \left(\log \left(\frac{\rho(x_0)}{s} \right) \right)^{1/2}. \] (4.17)

Thus (iii) readily follows. \(\square \)

4.4 Littlewood–Paley \(g \)-function for the Poisson semigroup

The Littlewood–Paley \(g \)-function associated with the Poisson semigroup \(\{ P_t \}_{t > 0} \equiv \{ P_t^{1/2} \}_{t > 0} \) (see (4.9) and (4.10)) is defined analogously as \(g_{\mathcal{W}} \) by replacing the heat semigroup by the Poisson semigroup:
\[g_{P}(f)(x) = \left(\int_0^\infty \frac{|t \partial_t P_t f(x)|^2 dt}{t} \right)^{1/2} = \| t \partial_t P_t f(x) \|_F. \]

By the spectral Theorem, \(g_{P} \) is an isometry on \(L^2(\mathbb{R}^n) \), see [20, Lemma 3.7]. We also have

Proposition 4.10 The estimates of Proposition 4.6 are valid when \(\mathcal{W}_t \) is replaced by \(t \partial_t P_t \) and the Banach space \(E \) is replaced by \(F \).

Proof First we derive a convenient formula to treat the operator \(t \partial_t P_t \). By the second identity of (4.10) with \(\sigma = 1/2 \) (Bochner’s subordination formula) and a change of variables,
\begin{align*}
 t \partial_t P_t(x, y) &= \frac{t}{\sqrt{\pi}} \int_0^\infty \frac{e^{-r}}{r^{1/2}} \partial_t \left(\mathcal{W}_{t^{1/2}}(x, y) \right) dr \\
 &= \frac{t^2}{2\sqrt{\pi}} \int_0^\infty \frac{e^{-r}}{r^{1/2}} \partial_v \left(\mathcal{W}_{v}(x, y) \right) \bigg|_{v=t^{1/2}} \frac{dr}{r} \\
 &= \frac{t}{\sqrt{\pi}} \int_0^\infty e^{-\frac{r}{4\pi}} v \partial_v \mathcal{W}_v(x, y) \frac{dv}{v^{3/2}}. \tag{4.18}
\end{align*}

Formula (4.18) should be compared with the first identity of (4.10) for \(\sigma = 1/2 \). It will allow us to transfer the estimates for \(v \partial_v \mathcal{W}_v \) to \(t \partial_t P_t \).

For (i) we use (4.18), Minkowski’s integral inequality and the estimate for \(v \partial_v \mathcal{W}_v \):
\begin{align*}
 \| t \partial_t P_t(x, y) \|_F^2 &\leq C \int_0^\infty |v \partial_v \mathcal{W}_v(x, y)|^2 \int_0^\infty t e^{-\frac{2}{4\pi}} \frac{dt}{t} \frac{dv}{v^{3/2}} \\
 &= C \int_0^\infty |v \partial_v \mathcal{W}_v(x, y)|^2 \frac{dv}{v} \\
 &\leq \frac{C}{|x - y|^{2\alpha}} \left(1 + \frac{|x - y|}{\rho(x)} + \frac{|x - y|}{\rho(y)} \right)^{-2N}.
\end{align*}

The estimate for (ii) follows in the same way.
By (4.18), Fubini’s Theorem and (4.17),

$$
\| t \partial_t P_t 1 (y) - t \partial_t P_t 1 (z) \|_F \leq C \left(\frac{s}{\rho (x_0) } \right)^{\delta} \log \left(\frac{\rho (x_0)}{s} \right)^{1/2},
$$

which is sufficient for (iii).

4.5 Laplace transform type multipliers

Given a bounded function a on $[0, \infty)$ we let

$$
m(\lambda) = \lambda \int_0^\infty a(t) e^{-t \lambda} \ dt.
$$

The Spectral Theorem allows us to define the Laplace transform type multiplier operator $m(\mathcal{L})$ associated with a, which is a bounded operator on $L^2 (\mathbb{R}^n)$. Observe that

$$
m(\mathcal{L}) f (x) = \int_0^\infty a(t) \mathcal{L} e^{-t \mathcal{L}} f (x) \ dt = \int_0^\infty a(t) \partial_t \mathcal{W}_t f (x) \ dt, \quad x \in \mathbb{R}^n.
$$

Then the kernel $\mathcal{M}(x, y)$ of $m(\mathcal{L})$ can be written as

$$
\mathcal{M}(x, y) = \int_0^\infty a(t) \partial_t \mathcal{W}_t (x, y) \ dt.
$$

Proposition 4.11 Let $x, y, z \in \mathbb{R}^n$, $N > 0$, $0 \leq \alpha < 1$ and $B = B(x, s)$ for $0 < s \leq \rho (x)$. Then

(a) $| \mathcal{M}(x, y) | \leq \frac{C}{|x - y|^n} \left(1 + \frac{|x - y|}{\rho (x)} + \frac{|x - y|}{\rho (y)} \right)^{-N};$

(b) $| \mathcal{M}(x, y) - \mathcal{M}(x, z) | + | \mathcal{M}(y, x) - \mathcal{M}(z, x) | \leq C_\delta \frac{|y - z|^\delta}{|x - y|^{n+\delta}},$ for all $|x - y| > 2 |y - z|$ and any $0 < \delta < \delta_0$;

(c) $\log \left(\frac{\rho (x)}{s} \right) \frac{1}{|B|} \int_B |m(\mathcal{L}) 1 (y) - (m(\mathcal{L}) 1)_B | \ dy \leq C;$

(d) $\left(\frac{\rho (x)}{s} \right)^\alpha \frac{1}{|B|} \int_B |m(\mathcal{L}) 1 (y) - (m(\mathcal{L}) 1)_B | \ dy \leq C,$ for any $0 \leq \alpha < \min \{1, 2 - \frac{n}{q} \}.$

Proof The reader should recall the estimates for $\partial_t \mathcal{W}_t (x, y)$ stated in Lemma 4.9.
For (a), by Lemma 4.9(a),
\[
\int_0^{\frac{|x-y|^2}{t}} |a(t)\partial_t W_t(x, y)| \, dt
\leq C \int_0^{\frac{|x-y|^2}{t}} t^{-n/2} e^{-c \frac{|x-y|^2}{t}} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(y)}\right)^{-N} \frac{dt}{t}
\]
\[
= C \int_0^{\frac{|x-y|^2}{t}} t^{-n/2} e^{-c \frac{|x-y|^2}{t}} \left(|x-y| \sqrt{t} + \frac{|x-y|}{\rho(x)} + \frac{|x-y|}{\rho(y)}\right)^{-N} \frac{dt}{t}
\]
\[
\leq C \int_0^{\frac{|x-y|^2}{t}} t^{-n/2} e^{-c \frac{|x-y|^2}{t}} \left(1 + \frac{|x-y|}{\rho(x)} + \frac{|x-y|}{\rho(y)}\right)^{-N} \frac{dt}{t}
\]
\[
\leq \frac{C}{|x-y|^n} \left(1 + \frac{|x-y|}{\rho(x)} + \frac{|x-y|}{\rho(y)}\right)^{-N},
\]

and
\[
\int_0^\infty |a(t)| |\partial_t W_t(x, y)| \, dt \leq C \int_0^\infty t^{-n/2} e^{-c \frac{|x-y|^2}{t}} \left(1 + \frac{\sqrt{t}}{\rho(x)} + \frac{\sqrt{t}}{\rho(y)}\right)^{-N} \frac{dt}{t}
\]
\[
\leq C \int_0^\infty t^{-n/2} e^{-c \frac{|x-y|^2}{t}} \left(1 + \frac{|x-y|}{\rho(x)} + \frac{|x-y|}{\rho(y)}\right)^{-N} \frac{dr}{r}
\]
\[
\leq \frac{C}{|x-y|^n} \left(1 + \frac{|x-y|}{\rho(x)} + \frac{|x-y|}{\rho(y)}\right)^{-N}.
\]

To check (b) we apply Lemma 4.9(b) to see that
\[
\int_0^\infty |a(t)||\partial_t W_t(x, y) - \partial_t W_t(x, z)| \, dt
\leq C \int_0^\infty \left(\frac{|y-z|}{\sqrt{t}}\right)^\delta t^{-n/2} e^{-c \frac{|x-y|^2}{t}} \frac{dt}{t}
\]
\[
\leq C \frac{|y-z|^\delta}{|x-y|^{n+\delta}}.
\]

Moreover, by Lemma 4.9(a),
\[
\int_0^{\frac{|x-y|^2}{t}} |a(t)\partial_t W_t(x, y)| \, dt \leq C \int_0^{\frac{|x-y|^2}{t}} \left(\frac{|y-z|}{\sqrt{t}}\right)^\delta t^{-n/2} e^{-c \frac{|x-y|^2}{t}} \frac{dr}{t}
\]
\[
\leq C \frac{|y-z|^\delta}{|x-y|^{n+\delta}}.
\]
The same bound is valid for $\int_0^{|x-y|^2} |a(t)| \left| \partial_t \mathcal{W}_t(x, z) \right| \frac{dt}{T}$ because $|x - z| \sim |x - y|$. The symmetry of the kernel $\mathcal{M}(x, y) = \mathcal{M}(y, x)$ gives the conclusion of (b).

Fix $y, z \in B$. For (c) and (d), let us estimate the difference

$$\left| m(\mathcal{L})1(y) - m(\mathcal{L})1(z) \right| \leq \|a\|_{L^\infty} \int_0^\infty \left| \int_{\mathbb{R}^n} (\partial_t \mathcal{W}_t(y, w) - \partial_t \mathcal{W}_t(z, w)) \, dw \right| \, dt.$$

To that end we split the integral in t into three parts. We start with the part from 0 to $4s^2$. From Lemma 4.9(c),

$$\left| \int_{4s^2}^{\infty} \left(\int_{\mathbb{R}^n} (\partial_t \mathcal{W}_t(y, w) - \partial_t \mathcal{W}_t(z, w)) \, dw \right) \, dt \right| \leq C \int_0^{4s^2} \left(\frac{\sqrt{t}}{\rho(x)} \right)^\delta \, dt = C \left(\frac{s}{\rho(x)} \right)^\delta.$$

Let us continue with the integral from $\rho(x)^2$ to ∞. We apply Lemma 4.9(b):

$$\left| \int_{\rho(x)^2}^{\infty} \left(\int_{\mathbb{R}^n} (\partial_t \mathcal{W}_t(y, w) - \partial_t \mathcal{W}_t(z, w)) \, dw \right) \, dt \right| \leq C \int_{\rho(x)^2}^{\infty} \left(\frac{|y - z|}{\sqrt{t}} \right)^\delta \, dt \leq C \left(\frac{s}{\rho(x)} \right)^\delta.$$

Finally, we consider the part from $4s^2$ to $\rho(x)^2$. Applying (4.15), Lemma 4.4 and (4.14),

$$\left| \int_{\rho(x)^2}^{\rho(x)^2} \left(\int_{\mathbb{R}^n} (\partial_t \mathcal{W}_t(y, w) - \partial_t \mathcal{W}_t(z, w)) \, dw \right) \, dt \right| = \left| \int_{4s^2}^{\rho(x)^2} \left(\int_{\mathbb{R}^n} (\mathcal{W}_t(y, w) - \mathcal{W}_t(z, w)) \, V(w) \, dw \right) \, dt \right| \leq C \left(\frac{s}{\rho(y)} \right)^\delta \int_{4s^2}^{\rho(x)^2} \frac{\rho(x)^2}{\rho(y)} \, dt \leq C \left(\frac{s}{\rho(x)} \right)^\delta \log \left(\frac{\rho(x)}{s} \right).$$

Hence,

$$\frac{1}{|B|} \int_B \left| m(\mathcal{L})1(y) - m(\mathcal{L})1_B \right| \, dy \leq \frac{C}{s^{2n}} \int_B \left| m(\mathcal{L})1(y) - m(\mathcal{L})1_B \right| \, dy \, dz \leq C \left(\frac{s}{\rho(x)} \right)^\delta \log \left(\frac{\rho(x)}{s} \right).$$

Thus, (c) is valid and also (d) holds when $\alpha < \delta$. □
4.6 Riesz transforms

For every \(i = 1, 2, \ldots, n \), the \(i \)-th Riesz transform \(\mathcal{R}_i \) associated with \(L \) is defined by

\[
\mathcal{R}_i = \partial_{x_i} L^{-1/2} = \partial_{x_i} \frac{1}{\sqrt{\pi}} \int_0^\infty e^{-tL} \frac{dt}{t^{1/2}}.
\]

We denote by \(\mathcal{R} \) the vector \(\nabla L^{-1/2} = (\mathcal{R}_1, \ldots, \mathcal{R}_n) \). The Riesz transforms associated with \(L \) were first studied by Shen in [22]. He showed (Theorem 0.8 of [22]) that if the potential \(V \in RH_q \) with \(q > n \), then \(\mathcal{R} \) is a Calderón–Zygmund operator. In particular, the \(\mathbb{R}^n \)-valued operator \(\mathcal{R} \) is bounded from \(L^2(\mathbb{R}^n) \) into \(L^2_{\mathbb{R}^n}(\mathbb{R}^n) \) and its kernel \(K \) satisfies, for any \(0 < \delta < 1 - \frac{n}{q} \),

\[
|K(x, y) - K(x, z)| + |K(y, x) - K(z, x)| \leq C \frac{|y - z|^\delta}{|x - y|^{n+\delta}},
\]

whenever \(|x - y| > 2 |y - z| \). Moreover, when \(q > n \) we have that for any \(x, y \in \mathbb{R}^n, x \neq y \), and \(N > 0 \) there exists a constant \(C_N \) such that

\[
|K(x, y)| \leq \frac{C_N}{|x - y|^n} \left(1 + \frac{|x - y|}{\rho(x)} \right)^{-N},
\]

see [22, Eq. (6.5)] and also [5, Lemma 3]. Hence, \(\mathcal{R} \) is a \(\gamma \)-Schrödinger–Calderón–Zygmund operator with \(\gamma = 0 \).

The boundedness results of \(\mathcal{R} \) in \(BMO_L^\infty \) follow by checking the properties of \(\mathcal{R}_1 \).

Proposition 4.12 Let \(V \in RH_q \) with \(q > n \) and \(B = B(x_0, s) \) for \(x_0 \in \mathbb{R}^n \) and \(0 < s \leq \frac{1}{\pi} \rho(x_0) \). Then

(i) \(\log \left(\frac{\rho(x_0)}{s} \right) \frac{1}{|B|} \int_B |\mathcal{R}1(y) - (\mathcal{R}1)_B| \, dy \leq C \);

(ii) \(\left(\frac{\rho(x_0)}{s} \right)^\alpha \frac{1}{|B|} \int_B |\mathcal{R}1(y) - (\mathcal{R}1)_B| \, dy \leq C \), for \(\alpha < 1 - \frac{n}{q} \).

To prove Proposition 4.12, we collect some well-known estimates on \(K(x, y) \). Let us denote by \(K_0 \) the kernel of the \((\mathbb{R}^n\text{-valued})\) classical Riesz transform \(\mathcal{R}_0 = \nabla(-\Delta)^{-1/2} \).

Lemma 4.13 ([5, Lemmas 3 and 4]) Suppose that \(V \in RH_q \) with \(q > n \).

(a) For any \(x, y \in \mathbb{R}^n, x \neq y \),

\[
|K(x, y) - K_0(x, y)| \leq \frac{C}{|x - y|^n} \left(\frac{|x - y|}{\rho(x)} \right)^{2-n/q}.
\]

(b) For any \(0 < \delta < 1 - \frac{n}{q} \) there exists a constant \(C \) such that if \(|z - y| \geq 2 |x - y| \) then

\[
|K(x, z) - K_0(x, z)) - (K(y, z) - K_0(y, z))| \leq C \frac{|x - y|^{\delta}}{|z - y|^{n+\delta}} \left(\frac{|z - y|}{\rho(z)} \right)^{2-n/q}.
\]

Proof of Proposition 4.12 Let \(y, z \in B \). Then \(\rho(y) \sim \rho(x_0) \sim \rho(z) \). Since

\[
\mathcal{R}1(x) = \lim_{\varepsilon \to 0^+} \int_{|x-y| \geq \varepsilon} K(x, y) \, dy, \text{ a.e. } x \in \mathbb{R}^n,
\]
we have

\[
|R_1(y) - R_1(z)| \leq \lim_{\varepsilon \to 0^+} \left| \int_{\varepsilon <|x-y| \leq 4 \rho(x_0)} K(y, x) \, dx - \int_{\varepsilon <|x-z| \leq 4 \rho(x_0)} K(z, x) \, dx \right|
+ \left| \int_{|x-y| > 4 \rho(x_0)} K(y, x) \, dx - \int_{|x-z| > 4 \rho(x_0)} K(z, x) \, dx \right|
= : \lim_{\varepsilon \to 0^+} A_{\varepsilon} + B.
\]

First, let us consider \(A_{\varepsilon}\). Since we will consider the limit as \(\varepsilon\) tends to zero, we can assume that \(0 < \varepsilon < 4 \rho(x_0) - 2s\). For every annulus \(E\) we have \(\int_E K_0(x, y) \, dy = 0\). Therefore,

\[
A_{\varepsilon} = \left| \int_{\varepsilon <|x-y| \leq 4 \rho(x_0)} (K(y, x) - K_0(y, x)) \, dx \right|
- \left| \int_{\varepsilon <|x-z| \leq 4 \rho(x_0)} (K(z, x) - K_0(z, x)) \, dx \right|
\leq \left| \int_{\mathbb{R}^n} (K(y, x) - K_0(y, x)) \left(\chi_{\varepsilon <|x-y| \leq 4 \rho(x_0)}(x) - \chi_{\varepsilon <|x-z| \leq 4 \rho(x_0)}(x) \right) \, dx \right|
+ \left| \int_{\mathbb{R}^n} [(K(y, x) - K_0(y, x)) - (K(z, x) - K_0(z, x))] \chi_{\varepsilon <|x-z| \leq 4 \rho(x_0)}(x) \, dx \right|
= : A_{\varepsilon}^1 + A_{\varepsilon}^2.
\]

The term \(A_{\varepsilon}^1\) is not zero when \(\left| \chi_{\varepsilon <|x-y| \leq 4 \rho(x_0)}(x) - \chi_{\varepsilon <|x-z| \leq 4 \rho(x_0)}(x) \right| = 1\), namely, when

- \(\varepsilon < |x-y| \leq 4 \rho(x_0)\) and \(|x-z| \leq \varepsilon\); or
- \(\varepsilon < |x-y| \leq 4 \rho(x_0)\) and \(|x-z| > 4 \rho(x_0)\); or
- \(\varepsilon < |x-z| \leq 4 \rho(x_0)\) and \(|x-y| \leq \varepsilon\); or
- \(\varepsilon < |x-z| \leq 4 \rho(x_0)\) and \(|x-y| > 4 \rho(x_0)\).

In the first case we have \(\varepsilon < |x-y| \leq |x-z| + |z-y| < \varepsilon + 2s\). Then, by Lemma 4.13(a),

\[
A_{\varepsilon}^1 \leq \int_{\varepsilon <|x-y| \leq 2s + \varepsilon} \frac{C}{|x-y|^m} \left(\frac{|x-y|}{\rho(y)} \right)^{2-n/q} \, dx \leq C \left(\frac{s}{\rho(x_0)} \right)^{2-n/q}.
\]

In the second case, by the assumption on \(\varepsilon\), we get \(\max \{\varepsilon, 4 \rho(x_0) - 2s\} = 4 \rho(x_0) - 2s < |x-y| \leq 4 \rho(x_0)\). Then Lemma 4.13(a) and the Mean Value Theorem give

\[
A_{\varepsilon}^1 \leq \frac{C}{\rho(x_0)^{2-n/q}} \int_{4 \rho(x_0) - 2s <|x-y| \leq 4 \rho(x_0)} |x-y|^{2-n/q-n} \, dx \leq C \frac{s}{\rho(x_0)}.
\]
In the third and fourth cases we obtain the same bounds as in (4.22) and (4.23) by replacing y by z. Thus, when $0 < \delta < 1 - n/q$,

$$A^1_\varepsilon \leq C \left(\frac{s}{\rho(x_0)} \right)^\delta.$$ \hspace{1cm} (4.24)

We see that A^2_ε is bounded by $|A^2.1_\varepsilon| + |A^2.2_\varepsilon|$, where

$$A^2.1_\varepsilon + A^2.2_\varepsilon = \int_{|x-z| > 2|y-z|} [(\mathcal{K}(y, x) - \mathcal{K}_0(y, x)) - (\mathcal{K}(z, x) - \mathcal{K}_0(z, x))]$$

$$\times \chi_{|x-z| \leq 4\rho(x_0)}(x) dx$$

$$+ \int_{|x-z| \leq 2|y-z|} [(\mathcal{K}(y, x) - \mathcal{K}_0(y, x)) - (\mathcal{K}(z, x) - \mathcal{K}_0(z, x))]$$

$$\times \chi_{|x-z| \leq 4\rho(x_0)}(x) dx.$$ \hspace{1cm} (4.25)

By Lemma 4.13(b),

$$A^2.1_\varepsilon \leq C \frac{|y-z|}{\rho(z)^{2-n/q}} \int_{|x-z| \leq 4\rho(x_0)} |x-z|^{2-n/q-n-\delta} dx \leq C \left(\frac{s}{\rho(x_0)} \right)^\delta.$$ \hspace{1cm} (4.26)

On the other hand, Lemma 4.13(a) gives

$$A^2.2_\varepsilon \leq \int_{|x-z| \leq 2|y-z|} C \frac{|x-y|^n}{|x-z|^n} \left(\frac{|x-y|}{\rho(y)} \right)^{2-n/q} dx$$

$$+ \int_{|x-z| \leq 2|y-z|} \frac{C}{|x-z|^n} \left(\frac{|x-z|}{\rho(z)} \right)^{2-n/q} dx$$

$$\leq \frac{C}{\rho(x_0)^{2-n/q}} \int_{|x-y| \leq 3|y-z|} |x-y|^{2-n/q-n} dx$$

$$+ \frac{C}{\rho(x_0)^{2-n/q}} \int_{|x-z| \leq 2|y-z|} |x-z|^{2-n/q-n} dx$$

$$\leq C \left(\frac{s}{\rho(x_0)} \right)^{2-n/q} \leq C \left(\frac{s}{\rho(x_0)} \right)^\delta,$$ \hspace{1cm} (4.27)

for any $0 < \delta < 1 - n/q$. Hence, from (4.21), (4.24), (4.25), (4.26) and (4.27) we obtain that for all $\varepsilon > 0$ sufficiently small,

$$A_\varepsilon \leq C \left(\frac{s}{\rho(x_0)} \right)^\delta.$$ \hspace{1cm} (4.28)
Let us now estimate B. In a similar way,

\[
B \leq \int_{|x-y|>4\rho(x_0)} |\mathcal{K}(y, x) - \mathcal{K}(z, x)| \, dx \\
+ \int_{\mathbb{R}^n} |\mathcal{K}(z, x)| \left| \chi_{|x-z|>4\rho(x_0)}(x) - \chi_{|x-z|>4\rho(x_0)}(x) \right| \, dx \\
= : B_1 + B_2.
\]

In the integrand of B_1 we have $|x - y| > 4\rho(x_0) \geq 8s > 2|x - z|$. Therefore, the smoothness of the Riesz kernel (4.19) can be applied to get

\[
B_1 \leq C \int_{|x-y|>4\rho(x_0)} \frac{|y-z|^\delta}{|x-y|^{n+\delta}} \, dx \leq C \left(\frac{s}{\rho(x_0)} \right)^\delta.
\]

It is possible to deal with B_2 as with A_{ε}^1 above to derive the same bound. Hence,

\[
B \leq C \left(\frac{s}{\rho(x_0)} \right)^\delta.
\]

This last estimate together with (4.28) implies

\[
|R_1(y) - R_1(z)| \leq C \left(\frac{s}{\rho(x_0)} \right)^\delta,
\]

where $0 < \delta < 1 - n/q$. From here (i) and (ii) readily follow.

4.7 Negative powers

For any $\gamma > 0$ the negative powers of \mathcal{L} are defined as

\[
\mathcal{L}^{-\gamma/2} f(x) = \frac{1}{\Gamma(\gamma/2)} \int_0^\infty e^{-t\mathcal{L}} f(x) \frac{dt}{t^{1-\gamma/2}} = \int_{\mathbb{R}^n} \mathcal{K}_\gamma(x, y) f(y) \, dy,
\]

where

\[
\mathcal{K}_\gamma(x, y) = \frac{1}{\Gamma(\gamma/2)} \int_0^\infty \mathcal{W}_\gamma(x, y) \frac{dt}{t^{1-\gamma/2}}, \quad x \in \mathbb{R}^n.
\]

Therefore, by Lemma 4.2 and a similar argument as in the proof of Proposition 4.6(i), for every $N > 0$,

\[
|\mathcal{K}_\gamma(x, y)| \leq \frac{C}{|x-y|^{n-\gamma}} \left(1 + \frac{|x-y|}{\rho(x)} + \frac{|x-y|}{\rho(y)} \right)^{-N}.
\]

In particular, $\mathcal{L}^{-\gamma/2}$ is bounded from $L^p(\mathbb{R}^n)$ into $L^q(\mathbb{R}^n)$, for $\frac{1}{q} = \frac{1}{p} - \frac{\gamma}{n}$ with $1 < p < q < \infty$ and $0 < \gamma < n$. Using similar arguments to those in the proof of Proposition 4.6(ii), it can be checked that

\[
|\mathcal{K}_\gamma(x, y) - \mathcal{K}_\gamma(x, z)| + |\mathcal{K}_\gamma(y, x) - \mathcal{K}_\gamma(z, x)| \leq C \frac{|y-z|^\delta}{|x-y|^{n-\gamma+\delta}},
\]
when $|x - y| > 2|y - z|$, for any $0 < \delta < 2 - \frac{n}{q}$. Thus, $\mathcal{L}^{-\gamma}$ is a γ-Schrödinger–Calderón–Zygmund operator according to Definition 3.1.

The second item of Theorem 1.4 is a consequence of the following proposition and our two main theorems.

Proposition 4.14 Let $B = B(x, s)$ with $0 < s \leq \frac{1}{2} \rho(x)$. Then

(i) $\log \left(\frac{\rho(x)}{s} \right) \frac{1}{|B|^{1 + \frac{n}{p}}} \int_B |\mathcal{L}^{-\gamma/2} 1(y) - (\mathcal{L}^{-\gamma/2} 1)_B| \, dy \leq C$ if $\gamma \leq 2 - \frac{n}{q}$;

(ii) $\left(\frac{\rho(x)}{s} \right)^{\alpha} \frac{1}{|B|^{1 + \frac{n}{p}}} \int_B |\mathcal{L}^{-\gamma/2} 1(y) - (\mathcal{L}^{-\gamma/2} 1)_B| \, dy \leq C$ if $\alpha + \gamma < \min\{1, 2 - \frac{n}{q}\}$.

Proof Fix $y, z \in B$, so that $\rho(x) \sim \rho(y) \sim \rho(z)$. We can write

$$\mathcal{L}^{-\gamma/2} 1(y) - \mathcal{L}^{-\gamma/2} 1(z) = \int_0^\infty \int_{\mathbb{R}^n} (\mathcal{W}_t(y, w) - \mathcal{W}_t(z, w)) \, dw \, t^{\gamma/2} \frac{dt}{t}. \quad (4.29)$$

We split the integral in t of the difference (4.29) into two parts. From (4.8) we have

$$\left| \int_0^\infty \int_{\mathbb{R}^n} (\mathcal{W}_t(y, w) - \mathcal{W}_t(z, w)) \, dw \, t^{\gamma/2} \frac{dt}{t} \right| \leq C \left(\frac{s}{\rho(x)} \right)^{\delta} \int_0^\infty t^{\gamma/2} \frac{dt}{t} = C \left(\frac{s}{\rho(x)} \right)^{\delta} \rho(x)^{\gamma}.$$

On the other hand, we can use (4.5) to get

$$\left| \int_\rho(x)^2 \int_{\mathbb{R}^n} (\mathcal{W}_t(y, w) - \mathcal{W}_t(z, w)) \, dw \, t^{\gamma/2} \frac{dt}{t} \right| \leq C \int_\rho(x)^2 \left(\frac{s}{\sqrt{t}} \right)^{\delta} t^{\gamma/2} \frac{dt}{t} \leq C \left(\frac{s}{\rho(x)} \right)^{\delta} \rho(x)^{\gamma},$$

since $\gamma < \delta$. An application of these last two estimates to (4.29) finally gives

$$\frac{1}{|B|^{1 + \frac{n}{p}}} \int_B |\mathcal{L}^{-\gamma/2} 1(y) - (\mathcal{L}^{-\gamma/2} 1)_B| \, dy \leq \frac{C}{s^{2n+\gamma}} \int_B |\mathcal{L}^{-\gamma/2} 1(y) - \mathcal{L}^{-\gamma/2} 1(z)| \, dy \, dz \leq C \left(\frac{s}{\rho(x)} \right)^{\delta - \gamma}.$$

Thus, (i) is valid if $\gamma < 2 - \frac{n}{q}$ and $\delta < 2 - \frac{n}{q}$ is chosen such that $\gamma \leq \delta$. Also (ii) holds when $\alpha + \gamma < \min\{1, 2 - \frac{n}{q}\}$. \qed

Acknowledgments The second author wishes to thank the Departamento de Matemáticas y Computación of Universidad de La Rioja, Spain, for their kind hospitality.
References

1. Abu-Falahah, I., Stinga, P.R., Torrea, J.L.: Square functions associated to Schrödinger operators. Studia Math. 203, 171–194 (2011)
2. Betancor, J. J., Crescimbeni, R., Fariña, J. C., Stinga, P. R., Torrea, J. L.: A $T1$ criterion for Hermite-Calderón-Zygmund operators on the $BMO_H(R^n)$ space and applications. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (2010). arXiv:1006.0416v2, (to appear)
3. Bloom, S.: Pointwise multipliers of weighted BMO spaces. Proc. Am. Math. Soc. 105, 950–960 (1989)
4. Bongioanni, B., Harboure, E., Salinas, O.: Commutators of Riesz transforms related to Schrödinger operators. J. Fourier Anal. Appl. 17, 115–134 (2011)
5. Bongioanni, B., Harboure, E., Salinas, O.: Riesz transforms related to Schrödinger operators acting on BMO type spaces. J. Math. Anal. Appl. 357, 115–131 (2009)
6. Bongioanni, B., Harboure, E., Salinas, O.: Weighted inequalities for negative powers of Schrödinger operators. J. Math. Anal. Appl. 357, 115–131 (2009)
7. Bramanti, M., Brandolini, L., Harboure, E., Viviani, B.: Global $W^{2,p}$ estimates for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition. Ann. Mat. Pura Appl. 191, 339–362 (2012)
8. Campanato, S.: Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 17, 175–188 (1963)
9. David, G., Journé, J.-L.: A boundedness criterion for generalized Calderón-Zygmund operators. Ann. Math. 120, 371–397 (1984)
10. Dziubański, J.: Note on H^1 spaces related to degenerate Schrödinger operators. Ill. J. Math. 49, 1271–1297 (2005)
11. Dziubański, J., Garrigós, G., Martínez, T., Torrea, J.L., Zienkiewicz, J.: BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249, 329–356 (2005)
12. Dziubański, J., Zienkiewicz, J.: Hardy space H^1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoamericana 15, 279–296 (1999)
13. Dziubański, J., Zienkiewicz, J.: H^p spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. 98, 5–38 (2003)
14. Dziubański, J., Zienkiewicz, J.: H^p spaces for Schrödinger operators. In: Fourier Analysis and Related Topics (Bedlewo, 2000), pp. 45–53. Banach Center Publication 56, Polish academic science, Warszaw (2002)
15. Harboure, E., Salinas, O., Viviani, B.: A look at $BMO_ω$ through Carleson measures. J. Fourier Anal. Appl. 13, 267–284 (2007)
16. Hytönen, T.: An operator-valued Tb theorem. J. Funct. Anal. 234, 420–463 (2006)
17. Hytönen, T., Weis, L.: A $T1$ theorem for integral transformations with operator-valued kernels. J. Reine Angew. Math. 599, 155–200 (2006)
18. Janson, S.: On functions with conditions on the mean oscillation. Ark. Mat. 14, 189–196 (1976)
19. Kurata, K.: An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials. J. Lond. Math. Soc. 2(62), 885–903 (2000)
20. Ma, T., Stinga, P.R., Torrea, J.L., Zhang, C.: Regularity properties of Schrödinger operators. J. Math. Anal. Appl. 388, 817–837 (2012)
21. Nakai, E., Yabuta, K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Jpn. 37, 207–218 (1985)
22. Shen, Z.: L^p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513–546 (1995)
23. Stein, E. M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Annals of Mathematics Studies 63, Princeton University Press, Princeton, (1970)
24. Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35, 2092–2122 (2010)
25. Stinga, P.R., Torrea, J.L.: Regularity theory for the fractional harmonic oscillator. J. Funct. Anal. 260, 3097–3131 (2011)
26. Yang, D., Yang, Y., Zhou, Y.: Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators. Nagoya Math. J. 198, 77–119 (2010)