Simultaneous two-dimensional best Diophantine approximations in the Euclidean norm

Evgeny V. Ermakov

1. Introduction

This paper is devoted to the exponents of growth of denominators of best simultaneous Diophantine approximations. Consider \mathbb{R}^n with a norm $\| \cdot \|$. For any vector $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n \setminus \mathbb{Q}^n$ and any $q \in \mathbb{Z}$ define the following value:

$$\delta_q = \min_{p = (p_1, \ldots, p_n) \in \mathbb{Z}^n} \| q \cdot \alpha - p \|.$$

Let $p(q) \in \mathbb{Z}^n$ be the vector, where the minimum is attained; let $r(q) = q \cdot \alpha - p(q)$, so $\delta_q = \| r(q) \|$. Given a norm $\| \cdot \|$ in \mathbb{R}^n and a vector $\alpha \in \mathbb{R}^n \setminus \mathbb{Q}^n$ we can define the sequence of best approximations (with respect to this norm) as a sequence $(q_k)_{k=1}^\infty$, such that $q_1 = 1$ and $\forall q < q_k \quad \delta_q > \delta_{q_k}$. Now we can define following values:

$$g(\alpha, \| \cdot \|) = \liminf_{k \to \infty} (q_k)^{1/k},$$

$$G(n, \| \cdot \|) = \inf_{\alpha \in \mathbb{R}^n \setminus \mathbb{Q}^n} g(\alpha, \| \cdot \|).$$

J. Lagarias [1] has proved the following statement:

Theorem 1. For any norm $\| \cdot \|$ on \mathbb{R}^n and a vector α, that has at least one irrational coordinate, the inequality $q_{k+2^{n+1}} \geq 2q_{k+1} + q_k$ holds for all $k \geq 1$. So $G(n, \| \cdot \|) \geq \theta$, where θ is the maximal positive root of $\theta^{2^{n+1}} = 2\theta + 1$.

In this paper we consider \mathbb{R}^2 with the Euclidian norm. From Theorem 1 it follows that for the Euclidian norm in \mathbb{R}^2, and any vector α one has $q_{k+8} \geq q_{k+1} + q_k$.

There is another well known statement that holds for any norm. Given a norm $\| \cdot \|$ in \mathbb{R}^n consider the contact number $K(n, \| \cdot \|)$. This number is defined as the maximal number of unit balls with respect to the norm $\| \cdot \|$ without interior common points that can touch another unit ball.

Theorem 2. For any norm $\| \cdot \|$ on \mathbb{R}^n with the contact number $K = K(n, \| \cdot \|)$ and a vector α, that has at least one irrational coordinate, we have the inequality $q_{k+K} \geq q_{k+1} + q_k$, and so $G(\| \cdot \|) \geq \theta$, where θ is maximum positive root of $\theta^K = \theta + 1$.

For the Euclidian norm in \mathbb{R}^2 we have $K = 6$. So Theorem 2 gives the inequality

$$q_{k+6} \geq q_{k+1} + q_k. \quad (1)$$

It follows that $G(2, \| \cdot \|_e) \geq \theta$, where θ is maximum positive root of $\theta^6 = \theta + 1$ and $\| \cdot \|_e$ is the Euclidian norm.
Theorem 2 is a well known result, one can find a proof of it in M. Romanov paper [3]. M. Romanov
proved a stronger result that the inequality
\[q_{k+4} \geq q_{k+1} + q_k. \]
(2)

is valid for any \(k \geq 1 \). From inequality (2) it follows that \(G(2, \| \cdot \|) \geq \theta_0 \) where \(\theta_0 \) is a positive root of \(\theta_0^6 = \theta_0 + 1 \), \(\theta_0 = 1.220744 \) The main result of the present paper is an improvement of Romanov’s result.

Theorem 3. For the Euclidian norm in \(\mathbb{R}^2 \) and any vector \(\alpha \), that has at least one irrational coordinate one has \(G(2, \| \cdot \|) \geq \theta_0 \).

The proof of Theorem 3 is based on following geometric statement that together with the inequality (2) and some numerical calculations gives the lower bound.

Theorem 4. Suppose that \(\alpha \in \mathbb{R}^2 \) has at least one irrational coordinate. Let \(q_k \ldots q_{k+4} \) be consecutive denominators from the sequence of best approximations in Euclidian norm for vector \(\alpha \). Then for every \(k \geq 1 \) at least one of two following inequalities are valid:
\[q_{k+3} + q_{k+2} \geq 2q_{k+1} + q_k \]
(3)
\[q_{k+4} \geq q_{k+2} + q_k \]
(4)

Moreover, among any two successive values of \(k \) for at least one value the inequality (3) holds.

A.Brentjes [2] gave the following example. Let \(\eta \) be the maximal root of the equation \(\eta^3 = \eta + 1 \), \(\eta = 1.3248 \ldots \) Then for \(\alpha = (\alpha_1, \alpha_2) = (\eta, \eta^2) \) one has \(g(\alpha, \| \cdot \|) = \eta \). J.Lagarias [1] made a conjecture, that \(G(2, (\| \cdot \|)) = \eta \).

In Sections 2, 3 below we give a complete proof of Theorem 4. In Section 4 we deduce Theorem 3 from Theorem 4 and Romanov’s theorem. There we describe all necessary computer calculations.

2. Geometric lemmas

Lemma 1. Consider a convex hexagon \(A_1A_2A_3A_4A_5A_6 \). Suppose that its opposite sides are equal and parallel. Suppose that \(O \) is an interior point of the hexagon. Let all the distances \(|A_1O|, |A_2O|, |A_3O|, |A_5O| \) are different. Then there exists \(i \in \{1, 2, 3, 5\} \) such that
\[|A_iO| > \min_{j=1,2,3} |A_jA_{j+1}|. \]

Proof. Let \(a = \min(|A_1A_2|, |A_2A_3|) \). Without loss of generality suppose that \(a = |A_1A_2| \).

Consider circles \(\omega_1 \) and \(\omega_2 \) with radiuses \(a \) and centers in \(A_1 \) and \(A_3 \) correspondingly. Let \(\kappa_1 \) and \(\kappa_2 \) be closed disks bounded by \(\omega_1 \) and \(\omega_2 \). Define \(\Omega = \kappa_1 \cap \kappa_2 \). (See fig.1.)

Suppose that the conclusion of Lemma 1 is not true, that is there exists an interior point \(O \) of hexagon \(A_1A_2A_3A_4A_5A_6 \) such that \(|A_1O|, |A_2O|, |A_3O|, |A_5O| \) are different and
\[|A_iO| \leq \min_{j=1,2,3} |A_jA_{j+1}|, \quad i = 1, 2, 3, 5. \]
So there exist \(i \in \{1, 2, 3, 5\} \) such that
\[
\|OA_i\| \leq \min_{j=1,2,3} |A_jA_{j+1}| \leq a.
\]
By the condition \(\max(|OA_1|,|OA_3|) \leq a \) we see that \(O \in \Omega \). So \(\Omega \neq \emptyset \) and circles \(\omega_1 \) and \(\omega_2 \) have common points. If \(\omega_1 \) and \(\omega_2 \) have the unique common point \(O \) then \(\|A_1O\| = \|A_3O\| \). This contradicts to the conditions of Lemma 1. So we see that circles \(\omega_1 \) and \(\omega_2 \) have two different common points.

The line \(A_1A_3 \) divides the plane into two different half-planes. Define \(Q \) to be that point of the intersection \(\omega_1 \) and \(\omega_2 \) such that \(A_2Q \) and \(Q \) belong to different half-planes. Let \(M \) be the point symmetric to \(A_2 \) with respect to the center of the segment \(A_1A_3 \). So \(MA_3A_4A_5 \) is a parallelogram and \(M \in \omega_2 \). Consider the disk \(\Theta \) with center in \(A_5 \) and radius \(\|A_5M\| = \|A_3A_4\| \).

By the construction \(O \in \Omega \cap \Theta \). But if \(\Omega \) and \(\Theta \) have a common point, it is the unique point \(Q = M \) as the distance from \(Q \) to the line \(A_1A_3 \) is less or equal to the distance from \(M \) to the line \(A_1A_3 \). So \(M \) belongs to \(\omega_2 \) but does not belong to \(\Omega \) if it is not point of intersection of \(\omega_1 \) and \(\omega_2 \). So if such point \(O \) exists it is equal to \(Q \). This contradicts to the condition that \(\|A_1O\| \neq \|A_3O\| \). Lemma 1 is proved.

Suppose that \(q_{k+3} < q_{k+1} + q_k \), otherwise we at once get \[\text{[3]}\] as the sequence \((q_k)\) increases.

Consider remainder vectors \(r(q_k), r(q_{k+1}), r(q_{k+2}), r(q_{k+3}) \). There exist a substitution of four indices \(s = (s(1), s(2), s(3), s(4)) \) such that \(r(q_{k-1+i}) = OR_s(i) \) and \(R_1R_2R_3R_4 \) is a tetragon without
self intersections.

Lemma 2. 1. The tetragon \(R_1R_2R_3R_4 \) is convex, point \(O \) lies inside it.
2. All of its sides and diagonals are not less then the longest remainder vector \(|r(q_k)| \).
3. Angles between vectors \(\overrightarrow{OR_i} \) and \(\overrightarrow{OR_j} \) \((i \neq j)\) are greater than \(\frac{\pi}{3} \).

Proof. Suppose, that \(|R_iR_j| < |r(q_k)|\) for any \(i \neq j\). Let \(R_i, R_j \) are the endpoints of vectors \(r(q_s) \) and \(r(q_l) \) correspondingly. Then \(|r(|q_s - q_l|)| < |r(q_k)|\). From \(q_{k+3} < q_{k+1} + q_k \) it follows that \(0 < |q_s - q_l| < q_{k+1} \). Last inequalities contradict to the fact that \(q_k \) and \(q_{k+1} \) are denominators of consecutive best approximations. The second statement of Lemma 2 is proved.

In any triangle \(OR_iR_j, i \neq j \) the side \(R_iR_j \) is the greatest one. Lengths of \(r(q_k) \) decrease strictly, so those triangles can not have three equal sides and angles between vectors \(\overrightarrow{OR_i} \) are greater then \(\frac{\pi}{3} \). Other angles in these triangles are less or equal to \(\frac{\pi}{3} \). We see that \(R_1R_2R_3R_4 \) is convex, and the point \(O \) lies inside it. Lemma 2 is proved.

3. Proof of Theorem 4

We need two more lemmas.

Lemma 3. If tetragon \(R_1R_2R_3R_4 \) is not a parallelogram, then the inequality \([3]\) holds.

Proof. If \(R_1R_2R_3R_4 \) has no parallel sides, then we can make a convex hexagon by building parallelograms on two pairs of its sides. (See fig.2.) Without loss of generality we may suppose that the hexagon vertex \(R_4 \) lies between the vertices \(X_1 \) and \(X_2 \). So we have constructed the hexagon \(R_1R_2R_3X_2R_4X_1 \).

Consider the segment \(R_3X_1 \) (it is equal and parallel to segment \(R_1X_2 \)). Put \(x = |R_3X_1| \). By the construction the length of the remainder vector for the denominator \(q = |q_1 + q_3 - q_2 - q_4| \) is not greater then \(x \).

As the sequence \((q_k)\) increases strictly, we have three possible values of \(q \). So we should consider three cases.

Case 1. \(q = |q_{k+3} + q_k - q_{k+2} - q_{k+1}| \). Here \(0 < q < q_k \), and the length of the remainder vector for \(q \) is not less then \(|r(q_{k-1})|\). So \(x \geq |r(q_k)|\).

Case 2. \(q = q_{k+3} + q_{k+1} - q_{k+2} - q_k \). Here \(0 < q < q_{k+1} \). The length of the remainder vector for \(q \) is not less then \(|r(q_k)|\) (\(q \) is the denominator of the next best approximation). So \(x \geq |r(q_k)|\).

Case 3. \(q = q_{k+3} + q_{k+2} - q_{k+1} - q_k \). Then \(q > 0 \) and we have 2 subcases:

3a. \(q = q_{k+3} + q_{k+2} - q_{k+1} - q_k < q_{k+1} \). Here as in cases 1 and 2 we have \(x \geq |r(q_k)|\).
3b \(q = q_{k+3} + q_{k+2} - q_{k+1} - q_k \geq q_{k+1} \) Here we get the inequality \([3]\).

In cases 1, 2, 3a we have the following situation. As \(|\mathbf{r}(q_k)| > |\mathbf{r}(q_{k+1})| > |\mathbf{r}(q_{k+2})| > |\mathbf{r}(q_{k+3})|\) we see that the hexagon \(R_1R_2R_3X_2R_4X_1\) and the zero point \(O\) satisfy the conditions of Lemma 1. By Lemma 1 we see that

\[
\max_{i=1,2,3,4} R_iO > \min\{|X_1R_1|, |R_1R_2|, |R_2R_3| \}.
\]

As in our cases \(x \geq |\mathbf{r}(q_k)|\) we see that

\[
\max_{i=1,2,3,4} R_iO > \min\{|R_1R_1|, |R_1R_2|, |R_2R_3|, |R_3R_4| \}.
\]

This contradicts to Lemma 2. So the cases are 1, 2, 3a are not possible.

But in the remaining case 3b we have the inequality \([3]\).

To finish the proof of Lemma 3 we must consider the case when \(R_1R_2R_3R_4\) has a pair of parallel sides. Then the hexagon \(R_1R_2R_3X_2R_4X_1\) is a degenerate one (two its angles are equal to \(\pi\)). Now the proof follows the steps of the proof in non-degenerate case. The only difference is that we apply Lemma 1 for the degenerate hexagon. Lemma 3 is proved.

Lemma 4. If \(R_1R_2R_3R_4\) is a parallelogram and \(q_{k+3} < q_{k+1} + q_k\), then endpoints of the next four remainder vectors (for \(k + 1, k + 2, k + 3, k + 4\)) do not form a parallelogram.

Proof. Suppose they do. Let \(\mathbf{r}(q_{k+1}) = \overline{OR_5}\), \(\mathbf{r}(q_k) = \overline{OR}\). This parallelogram has three common vertices with \(R_1R_2R_3R_4\). So one of the vertices of the hexagon \(R_1R_2R_3R_4\) is the center of the segment \(RR_5\). This vertex we denote by \(R_6\).

As \(|\overline{OR}| = |\mathbf{r}(q_k)| > |\mathbf{r}(q_{k+4})| = |\overline{OR_5}|\), we see that the zero point \(O\) lies closer to \(R_5\) than to \(R\). So in the triangle \(\overline{ORR_6}\) the angle in the vertex \(R_6\) is greater than \(\frac{\pi}{3}\) and the length of the remainder vector \(\mathbf{r}(q_k) = \overline{OR}\) is greater than the length of the parallelogram’s side \(RR_2\). We get the contradiction to Lemma 2. Lemma 4 is proved.

Proof of Theorem 4.

1. If points \(R_1, R_2, R_3, R_4\) do not form a parallelogram, then using Lemma 3 we get inequality \([3]\).
2. If the inequality \(q_{k+3} < q_{k+1} + q_k\) do not holds, we again get inequality \([3]\).
3. We may suppose that \(R_1, R_2, R_3, R_4\) do form a parallelogram and \(q_{k+3} < q_{k+1} + q_k\). Then by Lemma 4 the endpoints of the next four remainder vectors (for \(k + 1, k + 2, k + 3, k + 4\)) do not form a parallelogram. So for the approximations \(k + 1, k + 2, k + 3, k + 4\) the inequality \([3]\) is valid. We see that

\[
q_{k+4} + q_{k+3} \geq 2q_{k+2} + q_{k+1}.
\]

Let the endpoints of vectors

\[
\mathbf{r}(q_k), \mathbf{r}(q_{k+1}), \mathbf{r}(q_{k+2}), \mathbf{r}(q_{k+3})
\]

form a parallelogram in the order

\[
\mathbf{r}(\hat{q}_1), \mathbf{r}(\hat{q}_2), \mathbf{r}(\hat{q}_3), \mathbf{r}(\hat{q}_4).
\]

Then the remainder vector for the denominator \(p = |\hat{q}_1 + \hat{q}_3 - \hat{q}_2 - \hat{q}_4|\) is equal to zero. As \(\alpha\) is not a rational vector we see that \(p = 0\). As the sequence of denominators of best approximations increases strictly we get \(0 = p = q_k + q_{k+3} - q_{k+2} - q_{k+1}\). 5
The last equality together with (5) implies (8). Theorem 4 is proved.

4. Proof of Theorem 3

From Theorem 4 we immediately obtain

Proposition 1. Let \(l \in \mathbb{R} \). Let \(\alpha \in \mathbb{R}^2 \setminus \mathbb{Q}^2 \). Let \(\in \mathbb{R} \). Then for every \(k \geq 1 \) for five consecutive denominators \(q_k, \ldots, q_{k+4} \) we have at least one of three following inequalities

\[
q_{k+2} \geq lq_{k+1} \tag{6}
\]
\[
q_{k+3} \geq (2 - l)q_{k+1} + q_k \tag{7}
\]
\[
q_{k+4} \geq q_{k+2} + q_k \tag{8}
\]

Moreover, for any two successive values of \(k \) for at least one value the inequality (6) or the inequality (7) holds.

For further proof we need to use some computer calculations.

Let \(0 < l < 2 \). Let \(m = 1, \ldots, 7 \).

Put \(r_0 = r_1 = 31, \ r_2 = r_3 = r_4 = 33, \ r_5 = 34, \ r_6 = 35, \)
\(l_0 = \ldots = l_3 = 1.298, \ l_4 = l_5 = l_6 = 1.293, \)
\(\theta_0 = 1.2207, \ \theta_1 = 1.2272, \ \theta_2 = 1.2275, \ \theta_3 = 1.22779, \)
\(\theta_4 = 1.2278, \ \theta_5 = 1.22785, \ \theta_6 = 1.22791, \ \theta_7 = 1.228043. \)

Consider a sequence \(I = (i_0, \ldots, i_{r-1}) \), \(i_\nu \in \{1, 2, 3\} \) such that in any couple \(i_\nu, i_{\nu+1} \) at least one element is not equal to 3. For such \(I \) we construct a sequence \(\{Q_k(I, m)\}, \ 0 \leq k \leq r + 3 \) by the following procedure.

First of all we define three rules for obtaining the vector

\[
(Q^{j+1}_{j+1}, Q^{j+1}_{j+2}, Q^{j+1}_{j+3}, Q^{j+1}_{j+4})
\]

from the vector

\[
(Q^j, Q^j_{j+1}, Q^j_{j+2}, Q^j_{j+3})
\]

rule \(\mathcal{R}_1 \), rule \(\mathcal{R}_2 \) and rule \(\mathcal{R}_3 \). These rules correspond to different inequalities in Proposition 1.

Rule \(\mathcal{R}_1 \):

\[
\begin{align*}
Q^{j+1}_{j+1} &= Q^j_{j+1}, \\
Q^{j+1}_{j+2} &= \max\{lQ^j_{j+2}, Q^j_{j+2}\}, \\
Q^{j+1}_{j+3} &= \max\{lQ^j_{j+3}, Q^j_{j+3}\}, \\
Q^{j+1}_{j+4} &= \max\{lQ^j_{j+4}, Q^j_{j+4}, Q^j + Q^j_{j+1}\}.
\end{align*}
\]

Rule \(\mathcal{R}_2 \):

\[
\begin{align*}
Q^{j+1}_{j+1} &= Q^j_{j+1}, \\
Q^{j+1}_{j+2} &= Q^j_{j+2}, \\
Q^{j+1}_{j+3} &= \max\{(2 - l)Q^j_{j+3} + Q^j, Q^j_{j+3}\}, \\
Q^{j+1}_{j+4} &= \max\{(2 - l)Q^j_{j+4} + Q^j, Q^j_{j+4}, Q^j + Q^j_{j+1}\}.
\end{align*}
\]
Rule \mathcal{R}_3:

$$
\begin{cases}
Q_{j+1}^{j+1} = Q_{j+1}^j, \\
Q_{j+2}^{j+1} = Q_{j+2}^j, \\
Q_{j+3}^{j+1} = Q_{j+3}^j, \\
Q_{j+4}^{j+1} = \max\{Q_{j+3}^j, Q_j^j + Q_{j+2}^j\}.
\end{cases}
$$

For a sequence $I = (i_0, \ldots, i_{r-1})$ we take a sequence of rules $(\mathcal{R}_{i_0}, \ldots, \mathcal{R}_{i_{r-1}})$ and construct a sequence $\{Q_j(I, m)\}$, $j = 0, \ldots, r + 3$ in the following way.

For $j = 0$ put

$$
Q_0(m) = Q_0^0(m) = 1, \quad Q_t^0(m) = \theta_t^m, \quad t = 1, 2, 3.
$$

For $j \geq 0$ given

$$(Q_j^j(m), Q_{j+1}^j(m), Q_{j+2}^j(m), Q_{j+3}^j(m))$$

we construct

$$(Q_{j+1}^{j+1}(m), Q_{j+2}^{j+1}(m), Q_{j+3}^{j+1}(m), Q_{j+4}^{j+1}(m))$$

by the rule \mathcal{R}_{i_j} with $l = l_m$.

Now we define $Q_j(I, m) = Q_j^j(m)$ for $j \leq r$ and $Q_{r+t, I}^r(m) = Q_{r+t, I}^r(m)$, $t = 1, 2, 3$.

The following proposition presents a result of computer calculation.

Proposition 2. Let $m = 0, \ldots, 6$. For any considered sequence of rules I and defined sequence $\{Q_k(I, m)\}$ one has

$$(Q_{r+j}(I, m))^{\frac{1}{r+j}} \geq \theta_{m+1}, \quad j = 0, 1, 2, 3.$$

Remind that the increasing sequence of remainders of best approximations $\{q_k\}$ satisfies (2) and Proposition 1. When $l \in (0, 2)$ all coefficients in inequalities (6), (7), (8) are positive.

So we immediately deduce from Proposition 1 and Proposition 2 the following statement:

Proposition 3. Suppose that

$$q_{i+j} \geq \lambda \theta_m^j, \quad j = 0, 1, 2, 3, \quad \lambda > 0.$$ Then

$$q_{r+j} \geq \lambda \theta_{m+1}^{r+j}, \quad j = 0, 1, 2, 3.$$ From (2) it follows that for some positive λ one has $q_i \geq \lambda \theta_0^j$. By Proposition 3 we see that $q_{j+4r_0+2r_1} \geq \lambda \theta_7^{j+4r_0+2r_1}$ for any j. Theorem 3 is proved.
References

[1] J.C. Lagarias, Best simultaneous diophantine approximation I. Growth rates of best approximation denominators. Trans. Am. Math. Soc., 272:545-554, 1980.

[2] A.J. Brentjes, Multidimensional continued fraction algorithms, volume 145 of Mathematical Center Tracts. Mathematisch Centrum Amsterdam, 1982.

[3] M.V. Romanov, Simultaneous two-dimensional best Diophantine approximations in the Euclidean norm. Moscow Univ. Math. Bull. 61 (2006), no. 2, 34-37.

Author’s address:
Dept. of Number Theory
Fac. Mathematics and Mechanics
Moscow State University
119992 Moscow
Russia
e-mail: zzremi@gmail.com