Research Article

Transition Threshold of Granite Mechanical Characteristics at High Temperature

Hongjun Guo,1 Ming Ji,2 and Dapeng Liu1

1Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, China
2Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining & Technology, Xuzhou 221116, China

Correspondence should be addressed to Ming Ji; jiming@cumt.edu.cn

Received 16 June 2020; Accepted 18 July 2020; Published 17 August 2020

Academic Editor: Hailing Kong

Copyright © 2020 Hongjun Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A unified criterion exists for the transition threshold of rock mechanical characteristics. We combine rock stress-strain curves to propose an increment ratio of axial pressure based on uniaxial compression tests on granite at high temperature. The behavior of the increment ratio of strain, elastic modulus, Poisson’s ratio, and energy with axial pressure is analyzed, and the following conclusions are drawn. (1) High temperatures aggravate rock deterioration, reduce failure strength, and enhance ductility characteristics. (2) Under loading, the compression-to-elasticity and elasticity-to-plasticity transition thresholds for rock occur, respectively, at 20%–35% and 75%–80% stress levels at temperatures of 25–800°C. (3) The source data for calculating rock deformation parameters or unloading points for unloading tests can be selected over the stress level range of 35%–75%.

1. Introduction

Rock mechanics tests have gathered significant attention worldwide. The tests include uniaxial and triaxial, single-stress and complex-stress paths, dry and saturated environments, freeze-thaw and high-temperature conditions, cracks and pore pressure, and natural and prefabricated samples, as well as auxiliary methods (e.g., acoustic emission, electromagnetic or infrared radiation, and computed tomography scanning) and have provided important results [1–6].

However, some qualitative conclusions are difficult to quantify from the available results as described by the following examples. (1) In the stress-strain curve, the transition zone or conversion threshold in the compaction-to-elastic and elastic-to-plastic stages is not quantified and the selection is inevitably affected by subjective factors. (2) When the stress-strain curve is used to solve for deformation parameters (elastic modulus and Poisson’s ratio), the data interval selection varies from user to user and is often chosen on the premise of conforming to objective facts. (3) There is no uniform standard for selecting the unloading point in an uniaxial or triaxial unloading test. Most previous studies have chosen 80% of the peak rock strength as the unloading point (Table 1). This introduces confusion in the calculation of relevant parameters or design of complex test schemes.

In view of the abovementioned problems, Ji [19] combined conventional triaxial compression tests to explore the critical value of rock damage transitions under triaxial compression [20]. Following on this work, we further study the mechanical properties of rock after high temperature under different stress conditions.

2. Materials and Methods

The granite samples used in the tests were collected from a mine in Weifang, Shandong, China, with an average density of 2.612 g/cm³ at room temperature. The samples were processed into standard cylindrical specimens of Φ50 mm × H100 mm (error ± 0.5 mm) following the International Society of Rock Mechanics (ISRM) standards, as shown in Figure 1. The tests were performed using an MTS815.02 electrohydraulic servo material test system (Figure 2).
(1) The specimen was subjected to high-temperature treatment at 25, 200, 400, 600, and 800°C. To ensure uniform internal heating, the temperature was raised to the set value and held constant for 2 h and then cooled to room temperature.

(2) Axial pressure was applied using the displacement control mode at a loading rate of 0.003 mm/s until the specimen broke.

3. Results

The uniaxial compression test data of granite at high temperature are given in Table 2, and the typical data were selected to draw the stress-strain curve as shown in Figure 3.

The compression process goes through several stages including compaction, elasticity, yield, failure, and residue. With increasing temperature, the strain growth rate is more prominent than the stress growth rate and ductility characteristics are observed. Rock strength is less affected when the temperature is < 200°C. Above 200°C, rock strength reduces approximately linearly. Between 400 and 600°C, the strength drop is more significant [21, 22], as shown in Figure 4.
3.1. Strain Evolution. Under uniaxial compression, rock strain is only related to axial pressure. To study the effect of stress level, we introduce the concept of increment ratio of strain to axial pressure [19, 23–25], namely, the ratio of the increase in strain to the increase in axial pressure, which is expressed as follows:

$$\frac{\Delta \varepsilon_1(t+1)}{\Delta \sigma_1(t+1)} = \frac{\varepsilon_1(t+1) - \varepsilon_1(t)}{\sigma_1(t+1) - \sigma_1(t)}, \quad (1)$$

where $\Delta \varepsilon_1(t+1)$ is the increment of axial strain at $t+1$; $\varepsilon_1(t+1)$ and $\varepsilon_1(t)$ are the axial strains at $t+1$ and t; $\Delta \sigma_1(t+1)$ is the increment of axial pressure at $t+1$; and $\sigma_1(t+1)$ and $\sigma_1(t)$ are the axial pressures at $t+1$ and t.

The increment ratio of strain to axial pressure is a physical quantity that characterizes the rapid or slow change of strain with axial pressure. It well reflects the influence of axial pressure changes on rock deformation and damage during loading, as well as the internal structural response to the change of external macromechanical state. Larger increment ratios of strain to axial pressure are associated with higher sensitivity of rock deformation to changes of axial pressure. The relationship between the increment ratio of strain to axial pressure and stress level is obtained by combining the test data and equation (1), as shown in Figure 5.

The increment ratio of strain to axial pressure shows a peak at the approximate compression-to-elastic and elastic-to-plastic transition stages in the stress-strain curve. This indicates that the ratio can be used as an indicator for assessing a change of rock mechanical characteristics. The corresponding stress levels of axial pressure are listed in Table 3.

It should be emphasized that (1) the rock samples are heterogeneous and anisotropic, and the transition points of their mechanical characteristics should be over a small stress range; (2) some specimens also show a strong response in the increment ratio of strain to axial pressure during the compaction stage, which is related to the initial state of their internal pores and fractures.

The compaction-to-elastic transition point in the stress-strain curve changes with increasing temperature, which is related to the internal cracks [21], whereas the elastic-to-plastic transition point remains essentially unchanged at about 80% stress level.

3.2. Deformation Parameter Evolution. The elastic modulus and Poisson’s ratio are important mechanical parameters of rock, and their changes are closely related to deformation and damage. Similarly, the increment ratio of deformation parameters to axial pressure can also be obtained:

$$\begin{align*}
\frac{\Delta E_{t+1}}{\Delta \sigma_1(t+1)} &= \frac{E_{t+1} - E_t}{\sigma_1(t+1) - \sigma_1(t)}; \\
\frac{\Delta \mu_{t+1}}{\Delta \sigma_1(t+1)} &= \frac{\mu_{t+1} - \mu_t}{\sigma_1(t+1) - \sigma_1(t)},
\end{align*} \quad (2)$$

where ΔE_{t+1} is the increment of elastic modulus at $t + 1$; E_{t+1} and E_t are the elastic modulus at $t + 1$ and t; $\Delta \mu_{t+1}$ is the increment of Poisson’s ratio at $t + 1$; and μ_{t+1} and μ_t are the Poisson ratios at $t + 1$ and t.

The relationship between deformation parameters and the increment ratio to axial pressure and stress level is shown in Figures 6 and 7. The results shown in Figures 6 and 7 are consistent with those in Figure 5, further indicating that a significant change of the increment ratio of rock parameters to axial compression can be used as an indicator of its mechanical characteristics. Table 4 lists the stress levels under different temperature conditions.

3.3. Strain Energy Evolution. To further verify the accuracy of the results, we analyzed changes of rock strain energy. The law of energy conservation states that energy transformation occurs during rock deformation and failure. The change of thermal energy is not considered because the specimens were cooled to room temperature after heat treatment and loading was also performed at room temperature. Therefore, according to the law of thermodynamics, energy production mainly comes from the work of external forces. During uniaxial compression, the external forces on the rock specimen are only the axial pressure of the testing machine. The total energy absorbed by the rock sample is therefore the axial strain energy [18, 26], then

$$U_1 = \int_0^{\varepsilon_1(t)} \sigma_1 d\varepsilon_1, \quad (3)$$

where $\varepsilon_1(t)$ is the axial strain at any t.

According to the concept of definite integral in equation (3), we adopt the method of microelement area, which is

$$U_1 = \sum_{t=0}^{t_n} \frac{1}{2} \left(\sigma_1(t+1) + \sigma_1(t)\right) \left(\varepsilon_1(t+1) - \varepsilon_1(t)\right). \quad (4)$$

In combination with the previously described concept, the increment ratio of strain energy to axial pressure can be expressed as follows:
\[
\Delta U_{t+1} = \frac{U_{t+1} - U_t}{\sigma_{1(t+1)} - \sigma_{1(t)}},
\]
where \(\Delta U_{t+1}\) is the increment of strain energy at \(t + 1\), and \(U_{t+1}\) and \(U_t\) are the strain energies at \(t + 1\) and \(t\).
Table 3: Statistics of the incremental ratio of strain to axial pressure peak.

Temperature (°C)	Compaction to elastic	Stress level (%)	Elastic to plastic
25	35.75	78.17–86.13	
200	11.55–28.49	79.65	
400	12.34–26.97	76.13	
600	20.98	74.98	
800	13.23–31.02	78.1	

Figure 6: Evolution curve of the incremental ratio of elastic modulus to axial pressure. (a) 25°C, (b) 200°C, (c) 400°C, (d) 600°C, and (e) 800°C.
Figure 8 shows the relationship between strain energy and increment ratio of strain energy to axial pressure and stress level during loading.

The threshold of rock mechanical characteristics is consistent with the conclusions obtained from strain, elastic modulus, and Poisson’s ratio. The corresponding stress levels of axial pressure are listed in Table 5.

Critical points are believed to exist at the compaction-to-elasticity and elasticity-to-plasticity transitions during rock loading. A peak in the increment ratio of
Table 4: Statistics of the incremental ratio of deformation parameters to axial pressure peak.

T (°C)	(Compaction to elastic) E	(Elastic to plastic) E	(Compaction to elastic) $μ$	(Elastic to plastic) $μ$
25	35.75	78.17	71.68	71.68
200	28.49	79.65	23.24	67.36
400	15.96	74.4	65.83	65.83
600	19.9	75.18	20.12	74.56
800	31.02	77.86	30.31	77.86

Figure 8: Continued.
different parameters to axial pressure can be used as the basis for evaluating the stress level.

4. Discussion

Figure 9 shows the loads corresponding to the critical compaction-to-elasticity and elasticity-to-plasticity transition points of granite under compression and variable temperature. The transition thresholds of rock mechanical characteristics obtained from the increment ratio of different parameters to axial pressure are in good agreement. The difference of initial rock state is enlarged to some extent at high temperature. The threshold of the compression-to-elasticity transition is therefore strongly affected by temperature. The transition threshold

![Graph showing stress level vs. temperature for granite under compression and variable temperature.](image)

Figure 8: Evolution curve of the increment ratio of strain energy to axial pressure. (a) 25°C, (b) 200°C, (c) 400°C, (d) 600°C, and (e) 800°C.

Figure 9: Relationship between the transition threshold of the rock mechanical characteristics and temperature. (a) Compression-to-elasticity transition. (b) Elasticity-to-plasticity transition.

T (°C)	Stress level (%)	Stress level (%)
	Compaction to elastic	Compaction to elastic
25	34.97	78.49–85.85
200	28.49	80.07
400	12.34	75.56
600	20.12	75.6
800	31.02	77.86

Table 5: Statistics of the incremental ratio of strain energy to axial pressure peak.
Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This study was supported by Jiangsu Construction System Science and Technology Project (Guidance) (2019ZD080), Xuzhou Science and Technology Plan Project (KC17156), the Fundamental Research Funds for the Central Universities (2017XKQY044 and 2017XKQY045), and University Scientific Research Project (Doctoral Program) (JYJBZX19-08). The authors thank Esther Posner, PhD, from Liwen Bianji, Edanz Editing China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

[1] A. Momeni, M. Karakus, G. R. Khanlari, and M. Heidari, “Effects of cyclic loading on the mechanical properties of a granite,” International Journal of Rock Mechanics and Mining Sciences, vol. 77, pp. 89–96, 2015.
[2] A. Singh, C. Kumar, L. G. Kannan, K. S. Rao, and R. Ayothisran, “Estimation of creep parameters of rock salt from uniaxial compression tests,” International Journal of Rock Mechanics and Mining Sciences, vol. 107, pp. 243–248, 2018.
[3] H. Munoz, A. Taheri, and E. K. Chanda, “Fracture energy-based brittleness index development and brittleness quantification by pre-peak strength parameters in rock uniaxial compression,” Rock Mechanics and Rock Engineering, vol. 49, no. 12, pp. 4587–4606, 2016.
[4] H. Guo, M. Ji, Y. Zhang, and M. Zhang, “Study of mechanical property of rock under uniaxial cyclic loading and unloading,” Advances in Civil Engineering, vol. 2018, Article ID 1670180, 6 pages, 2018.
[5] M. Ji, Y. D. Zhang, W. P. Liu, and L. Cheng, “Damane evolution law based on acoustic emission and wellbore distribution of granite under uniaxial stress,” Acta Geodynamicica Et Geomatetalia, vol. 11, no. 3, pp. 269–277, 2014.
[6] M. Ji, K. Chen, and H. J. Guo, “Constitutive model of rock uniaxial damage based on rock strength Statistics,” Advances in Civil Engineering, vol. 2018, Article ID 5047834, 8 pages, 2018.
[7] S. D. Duan, Q. Jiang, D. P. Xu, and G. F. Liu, “Experimental study of mechanical behavior of interlayer staggered zone under cyclic loading and unloading condition,” International Journal of Geomechanics, vol. 20, no. 3, pp. 1–12, 2020.
[8] Z. Zhou, H. Zhan, J. Hu, and C. Ren, “Characteristics of unloading creep of tuffaceous sandstone in east tianshan tunnel under freeze-thaw cycles,” Advances in Materials Science and Engineering, vol. 2019, Article ID 7547564, 16 pages, 2019.
[9] K. Duan, Y. Ji, W. Wu, and C. Y. Kwok, “Unloading-induced failure of brittle rock and implications for excavation-induced strain burst,” Tunnelling and Underground Space Technology, vol. 84, pp. 495–506, 2019.
[10] J. Liu and J. P. Li, “Experimental Research on sandstone pre-peak unloading process under high confining pressure,” Chinese Journal of Rock Mechanics and Engineering, vol. 30, no. 3, pp. 473–479, 2011.
[11] X. R. Liu, J. Liu, D. L. Li, J. B. Wang, Z. J. Wang, and Z. L. Zhong, "Unloading mechanical properties and constitutive model of sandstone under different pore pressures and initial unloading levels," *Journal of China Coal Society*, vol. 42, no. 10, pp. 2592–2600, 2017.

[12] Z. B. Zhong, *Experimental Study on Mechanical Properties of Microfissured Rhyolite Under Triaxial Test*, Southwest Jiaotong University, Chengdu, China, 2013.

[13] Z. Chang, Q. Cai, W. Zhou, I. M. Jiskani, and R. Wang, "Effects of the loading and unloading conditions on crack propagation in high composite slope of deep open-pit mine," *Advances in Civil Engineering*, vol. 2019, Article ID 3168481, 11 pages, 2019.

[14] K. Du, M. Tao, X.-b. Li, and J. Zhou, "Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance," *Rock Mechanics and Rock Engineering*, vol. 49, no. 9, pp. 3437–3453, 2016.

[15] R. Yang, D. Ma, and Y. Yang, "Experimental investigation of energy evolution in sandstone failure during triaxial unloading confining pressure tests," *Advances in Civil Engineering*, vol. 2019, Article ID 37419752, 11 pages, 2019.

[16] T. Qin, H. Sun, H. Liu et al., "Experimental study on mechanical and acoustic emission characteristics of rock samples under different stress paths," *Shock and Vibration*, vol. 2018, Article ID 4813724, 9 pages, 2018.

[17] B. Dai, G. Zhao, L. Dong, and C. Yang, "Mechanical characteristics for rocks under different paths and unloading rates under confining pressures," *Shock and Vibration*, vol. 2015, Article ID 578748, 8 pages, 2015.

[18] G.-Y. Zhao, B. Dai, L.-J. Dong, and C. Yang, "Energy conversion of rocks in process of unloading confining pressure under different unloading paths," *Transactions of Nonferrous Metals Society of China*, vol. 25, no. 5, pp. 1626–1632, 2015.

[19] M. Ji and H. Guo, "Elastic-plastic threshold and rational unloading level of rocks," *Applied Sciences*, vol. 9, no. 15, p. 3164, 2019.

[20] Q. Sun, M. Ji, L. Xue, and T. M. Su, "The influence of moisture content on the acoustic emission at threshold of rock destruction," *Acta Geodynamica et Geomatetria*, vol. 12, no. 3, pp. 279–287, 2015.

[21] X. L. Xu, F. Gao, and Z. Z. Zhang, "Research on triaxial compression test of granite after high temperatures," *Rock and Soil Mechanics*, vol. 35, no. 11, pp. 3177–3183, 2014.

[22] X. L. Xu, F. Gao, and Z. Z. Zhang, "Influence of confining pressure on deformation and strength properties of granite after high temperatures," *Chinese Journal of Geotechnical Engineering*, vol. 36, no. 12, pp. 2246–2252, 2014.

[23] T. Li, *Silstone’s Mechanical Properties in Different Stress Paths and Research of Unloading Constitutive Model*, China University of Mining and Technology, Xuzhou, China, 2015.

[24] D.-M. Zhang, Y.-S. Yang, Y.-P. Chu, X. Zhang, and Y.-G. Xue, "Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone," *Results in Physics*, vol. 9, pp. 1363–1370, 2018.

[25] S. L. Qiu, X. T. Feng, C. Q. Zhang, H. Zhou, and F. Sun, "Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures," *Chinese Journal of Rock Mechanics and Engineering*, vol. 31, no. 8, pp. 1686–1698, 2012.

[26] D. Huang and Y. Li, "Conversion of strain energy in triaxial unloading tests on marble," *International Journal of Rock Mechanics and Mining Sciences*, vol. 66, pp. 160–168, 2014.