Some Classes of Invariant Submanifolds of LP-Sasakian Manifolds

MEHMET ATÇEKEN*

Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa University, 60150, Tokat, Turkey
*Corresponding author: mehmet.atceken382@gmail.com

Received June 01, 2020; Revised July 02, 2020; Accepted July 10, 2020

Abstract The object of the present paper is to study invariant pseudo parallel submanifolds of a LP-Sasakian manifold and obtain the conditions under which the submanifolds are pseudoparallel, 2-pseudoparallel, generalized pseudoparallel and 2-generalized pseudoparallel. Finally, a non-trivial example is used to demonstrate that the method presented in this paper is effective.

1991 Mathematics Subject Classification. 53C15; 53C40, 53D10.

Keywords: LP-Sasakian Manifold, Pseudoparallel, 2-pseudoparallel, Ricci-Generalized Pseudoparallel Submanifolds

Cite This Article: MEHMET ATÇEKEN, “Some Classes of Invariant Submanifolds of LP-Sasakian Manifolds.” Turkish Journal of Analysis and Number Theory, vol. 8, no. 2 (2020): 28-33. doi: 10.12691/tjant-8-2-2.

1. Introduction

Invariant submanifolds of a (para) contact metric manifold have been a major area of research for a long time. It helps us to understand several important topics of applied mathematics. For example, in studying non-linear autonomous systems the idea of invariant submanifolds plays an important role [1].

A submanifold of a Riemannian manifold is said to be totally geodesic if every geodesic in that submanifold is also geodesic in the ambient manifold. In [2], Kon proved that invariant submanifolds of a Sasakian manifold are totally geodesic if the second fundamental form of the immersion is covariantly constant. On the other hand, any submanifold of a Kenmotsu manifold is totally geodesic if and only if the second fundamental form of the immersion is covariantly constant [3].

Furthermore, in [4], authors proved that some equivalent conditions of an invariant submanifold of trans-Sasakian to be totally geodesic. Recently, in [5], authors considered invariant submanifolds of (κ,μ)-contact metric manifold and obtained some conditions for an invariant submanifold to be totally geodesic.

In the present paper, we also introduce some new equivalent conditions for an invariant submanifold of a LP-Sasakian manifold to be pseudoparallel.

2. Preliminaries

On the analogy of Sasakian manifolds, Matsumoto introduced the notion of LP-Sasakian manifolds [6]. After then, some properties of the their submanifolds and LP-Sasakian manifolds are also studied many geometers [4,6,8,9,13].

An n-dimensional smooth manifold \mathcal{M} is said to be an Lorentzian para(briefly LP) Sasakian manifold if it admits a (1,1)-type tensor field ϕ, a unit timelike vector field ξ, a 1-form η and a Lorentzian metric tensor g which satisfy:

$$\phi^2X = X + \eta(X)\xi, \quad \eta(X) = g(X, \xi), \quad \eta(\xi) = -1,$$ (1)

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$$ (2)

$$\nabla_X\phi Y = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi,$$ (3)

for all $X, Y \in \Gamma(T\mathcal{M})$, where ∇ and $\Gamma(T\mathcal{M})$ denote the Levi-Civita connection and set of the differentiable vector fields on \mathcal{M}, respectively.

Moreover, we can easily to see that in an LP-Sasakian manifold,

$$\nabla_X\xi = \phi X,$$ (4)

$$\bar{R}(X, Y)\xi = \eta(Y)X - \eta(X)Y,$$ (5)

$$S(X, \xi) = (n - 1)\eta(X)\xi,$$ (6)

$$S(\phi X, \phi Y) = S(X, Y) + (n - 1)\eta(X)\eta(Y)$$ (7)

for all $X, Y \in \Gamma(TM)$, where \bar{R} and S are the Riemannian curvature tensor and Ricci tensor of \mathcal{M} , respectively.

Now, let M be an immersed submanifold of an LP-Sasakian manifold \mathcal{M}. Then the Gauss and Weingarten formulae are, respectively, given by

$$\nabla_X Y = \nabla_X Y + \sigma(X, Y)$$ (8)

and

$$\nabla_X V = -A_\perp X + \nabla_X^\parallel V.$$ (9)
for all \(X,Y \in \Gamma(TM)\) and \(V \in \Gamma(T^1M)\), where \(\nabla\) is the induced Levi-Civita connection on \(M\), \(\nabla^\perp\) is the normal connection on the normal bundle \(T^\perp M\), \(\sigma\) is the second fundamental form of \(M\) and \(A\) is the shape operator with respect to the normal vector field \(V\).

Moreover the shape operator \(A\), and second fundamental form \(\sigma\) are related by

\[
g(\sigma(X,Y), V) = g(AV X, Y),
\]

for all \(X,Y \in \Gamma(TM)\) and \(V \in \Gamma(T^1M)\).

The covariant derivatives of \(\sigma\) and \(A\) are defined by

\[
(\nabla_X \sigma)(Y,Z) = \sigma(\nabla_X Y, Z) - \nabla_X \sigma(Y, Z) = -\nabla_X \sigma(Y, Z) - \sigma(Y, \nabla_X Z).
\]

Furthermore, the submanifolds satisfying the condition

\[
\tilde{R} \cdot \tilde{\nabla}\sigma = L_\tilde{g} Q(g, \tilde{\nabla}\sigma)
\]

are called 2-pseudoparallel [13]. Particularly, \(\tilde{R} \cdot \tilde{\nabla}\sigma = 0\), then submanifold is said to be 2-semiparallel.

Also, the submanifolds satisfying the condition

\[
\tilde{R} \cdot \tilde{\nabla}\sigma = L_\tilde{g} Q(S, \tilde{\nabla}\sigma)
\]

are called 2-generalized Ricci pseudoparallel.

Riemannian curvature tensor satisfies

\[
\tilde{R} \cdot \tilde{R} = L_\tilde{g} Q(g, \tilde{R})
\]

Particularly, if \(L = 0\), it is called semisymmetric manifold.

3. Some classes of Invariant Submanifolds of LP-Sasakian Manifolds

Now, let \(M\) be an immersed submanifold of an LP-Sasakian manifold manifold \(M'((\phi, \xi, \eta, g)\).

If \(\phi(T^1M) \subseteq T^1M\), for each point at \(x \in M\), then \(M\) is said to be invariant submanifold. We note that all of the properties of an invariant submanifold inherit the ambient manifold.

From (14), we have the following proposition for later use.

Proposition 3.1. Let \(M\) be an invariant submanifold of an LP-Sasakian manifold manifold \(M'((\phi, \xi, \eta, g)\). Then the following equalities hold on \(M\).

\[
\nabla_X \xi = \phi X, \quad R(X,Y)\xi = \eta(Y)X - \eta(X)Y, \\
Q_\xi = (\eta - 1)\xi, \\
S(X,\xi) = (\eta - 1)\eta(X), \\
(\nabla_X \phi)Y = g(X,\xi)(Y + \eta(\eta(X)\xi), \\
\sigma(\phi X, Y) = \phi\sigma(X, Y) = \sigma(X, \phi Y), \\
\sigma(X, \xi) = 0.
\]

for all \(X,Y \in \Gamma(TM)\).

Next, we will give the main results of this paper.

Theorem 3.2. If an LP-Sasakian manifold manifold \(M'((\phi, \xi, \eta, g)\) is a pseudosymmetric, then it is an \(\eta\)-Einstein provided that \(L \neq 1\) and \(n \neq 3\).

Proof. If \(M^\eta((\emptyset, \xi, \eta, g)\) is a pseudosymmetric, (21) implies that

\[
\tilde{R}(X,Y)\tilde{\nabla}(U,V,Z) = L\tilde{g}(\tilde{g})(U,V,Z; X, Y),
\]

for all \(X,Y,Z \in \Gamma(TM)\). It follows that

\[
\tilde{R}(X,Y)\tilde{\nabla}(U,V,Z) - \tilde{R}(\tilde{g}(U,Y)V)Z
\]

\[
= \phi g(X,\xi) + \eta(\eta(X)\xi) + \sigma(X, \phi Y), \\
\sigma(X, \xi) = 0.
\]

The relation (29) yields for \(Y = Z = \xi\).
Let M be an invariant pseudoparallel submanifold of an LP-Sasakian manifold $\bar{M}^n(\emptyset, \xi, \eta, g)$. Then M is either totally geodesic or semisymmetric if and only if it has 1-constant sectional curvature.

Theorem 3.4. Let M be an invariant pseudoparallel submanifold of an LP-Sasakian manifold $\bar{M}^n(\emptyset, \xi, \eta, g)$. Then M is either totally geodesic or semisymmetric if and only if it has 1-constant sectional curvature.

Proof. Let us assume that M is an invariant pseudoparallel submanifold. Then from (14) and (17), we have

$$\langle R \sigma(X,Y,U,V) = L_q \Omega(g, \sigma)(U,V,X,Y)$$

for all $X, Y \in \Gamma(TM)$. This implies that

$$R(X,Y)\sigma(U,V) = -\sigma(R(X,Y)U,V)$$

for all $X, Y \in \Gamma(TM)$. Then by a straightforward calculations, we obtain

$$L_q \Omega(g, \sigma)(U,V,X,Y) = \xi \in \Gamma(TM).$$

Putting $X = V = e_1, e_2, ..., e_n, \xi$ in (30) for orthonormal basis of $\Gamma(TM)$ Then by a straightforward calculations, we obtain

$$1 - L_q \Omega(g, \sigma)(U,V,X,Y) = \xi \in \Gamma(TM).$$

which proves our assertion.

Proposition 3.3. LP-Sasakian manifold $\bar{M}^n(\emptyset, \xi, \eta, g)$ is semisymmetric if and only if it has 1-constant sectional curvature.

Theorem 3.5. Let M be an invariant 2-pseudoparallel submanifold of an LP-Sasakian manifold $\bar{M}^n(\emptyset, \xi, \eta, g)$. Then M is either totally geodesic or $L_q = 1$.

Proof. If M is a 2-pseudoparallel, then (14) and (19) imply that

$$\langle R \sigma(X,Y)\tilde{\nu}(U,V) = L_q \Omega(g, \tilde{\nu})(U,V,X,Y)$$

for all $X, Y, Z, U, V \in \Gamma(TM)$. It follows that

$$R^\perp(X,Y)(\tilde{\nu}_U \sigma)(V,Z)$$

This proves our assertion.
Let M be an invariant Ricci generalized pseudoparallel submanifold of an LP-Sasakian manifold which proves our assertion.

If $X, Y, U, V \in \Gamma(TM)$, (14) and (15) lead to

$$R^\perp(X, Y)\sigma(U, V) - \sigma(R(X, Y)U, V) = -L_S \{\sigma((X \times Y)U, V) + \sigma(U, (X \times Y)V)\}.$$ \hfill (44)

Replacing by $V = \xi$ in (44), we have

$$\sigma(U, R(X, Y)\xi) = L_S \sigma(U, (X \times Y)\xi)$$

$$\sigma(U, \eta(Y)X - \eta(X)Y)$$

$$= L_S \{\sigma(U, S(Y, \xi))X - S(X, \xi)Y\}$$

$$= (n-1) L_S \{U, (Y)X - \eta(Y)Y\}.$$ \hfill (45)

This completes the proof.

Theorem 3.7. Let M be an invariant 2-Ricci generalized pseudoparallel submanifold of an LP-Sasakian manifold $M^n(\varphi, \xi, \eta, g)$ Then M is either totally geodesic or

$$L_S = \frac{1}{n-1}.$$ \hfill (46)

Proof. Let M be an invariant 2-Ricci generalized pseudoparallel submanifold of an LP-Sasakian manifold $M^n(\varphi, \xi, \eta, g)$. Then (20) implies that

$$(\tilde{R}(X, Y), \tilde{\sigma})(U, V, Z) = L_S \{\sigma(\xi, \tilde{\varphi})\sigma(U, V, Z; X, Y)$$

for all $X, Y, Z, U, V \in \Gamma(TM)$. By virtue of (14) and (15), it follows that

$$R^\perp(X, Y)\tilde{\tilde{\sigma}}(V, Z) - \tilde{\tilde{\sigma}}(R(X, Y)U, V) = -L_S \{\tilde{\tilde{\sigma}}((X \times Y)U, V) + \tilde{\tilde{\sigma}}(U, (X \times Y)V)\}.$$ \hfill (47)

$$\tilde{\tilde{\sigma}}(X, Z) - \sigma(V, \sigma(X, Z)) - \sigma(X, \sigma(V, Z))$$

$$= \tilde{\tilde{\sigma}}(X, \sigma(U)) - \sigma(U, \sigma(X)) + \tilde{\tilde{\sigma}}(U, \sigma(X)).$$ \hfill (48)

This yields for $X = V = \xi$,

$$R^\perp(\xi, Y)\tilde{\tilde{\sigma}}(\xi, Z) - \tilde{\tilde{\sigma}}(R(\xi, Y)\xi, Z)$$

See also (11) and (28), we conclude

$$\tilde{\tilde{\sigma}}(X, \xi)$$

$$= \tilde{\tilde{\sigma}}(X, \sigma(U, Z) - \sigma(V, \sigma(X, Z)) - \sigma(X, \sigma(V, Z))$$

$$= -\sigma(X, \phi U) - \phi \sigma(U, X).$$ \hfill (49)

From (42) and (43), we get

$$(L_S - 1) \sigma(X, U) = 0$$

which proves our assertion.

Theorem 3.6. Let M be an invariant Ricci generalized pseudoparallel submanifold of an LP-Sasakian manifold $M^n(\varphi, \eta, \xi, g)$. Then M is either totally geodesic or $L_S = \frac{1}{n-1}$. \hfill (50)

Proof. Assume that M is an invariant Ricci-generalized pseudoparallel. Then from (18), we have

$$\tilde{R}(X, Y)\sigma(U, V) = L_S \sigma(S(S\sigma)(U, V; X, Y)$$

for all $X, Y, U, V \in \Gamma(TM)$. (14) and (15) lead to

$$R^\perp(X, Y)\sigma(U, V) - \sigma(R(X, Y)U, V) = -L_S \{\sigma((X \times Y)U, V) + \sigma(U, (X \times Y)V)\}.$$ \hfill (51)

$$\tilde{\tilde{\sigma}}(X, Z) - \sigma(V, \sigma(X, Z)) - \sigma(X, \sigma(V, Z))$$

$$= -\sigma(X, \phi U) - \phi \sigma(U, X).$$ \hfill (52)

From (42) and (43), we get

$$(L_S - 1) \sigma(X, U) = 0$$

which proves our assertion.
\[(\tilde{V}_{R(\xi,Y)U})_\sigma(\xi,Z) = \nabla^\perp_{R(\xi,Y)U}(\xi,Z) - \sigma \left(\nabla_{R(\xi,Y)U}\xi, Z \right) \]
\[= \nabla_{R(\xi,Y)U}(\xi,Z) - \sigma \left(\nabla_{R(\xi,Y)U}\xi, Z \right) \]
\[= \sigma(\xi, \nabla_{R(\xi,Y)U}Z) - \sigma(\phi\xi, R(\xi,Y)U) \]
\[= -\sigma(\phi\xi, g(Y,\xi)\xi - \eta(Y)Y) \]
\[= \eta(U)\phi\sigma(U,Y) \]
(47)

\((\tilde{V}_U\sigma)(R(\xi,Y)\xi,Z) = (\tilde{V}_U\sigma)(\eta(Y)\xi + Y,Z) \)
\[= (\tilde{V}_U\sigma)(Y,Z) + (\tilde{V}_U\sigma)(\eta(Y)\xi, Z) \]
\[= (\tilde{V}_U\sigma)(Y,Z) + (\tilde{V}_U\sigma)(\eta(Y)\xi, Z) \]
\[= (\tilde{V}_U\sigma)(Y,Z) - \sigma(U\eta(Y)\xi + \eta(Y)V_U\xi, Z) \]
\[= (\tilde{V}_U\sigma)(Y,Z) - \sigma(U\eta(Y)\xi + \eta(Y)V_U\xi, Z) \]
\[= (\tilde{V}_U\sigma)(Y,Z) - \eta(U)\phi\sigma(U,Y) \]
(48)

\((\tilde{V}(\xi_SY)U\sigma)(\xi,Z) \)
\[= \nabla^\perp_{(\xi\wedge S)U}(\xi,Z) - \sigma(\nabla_{(\xi\wedge S)U}\xi, Z) \]
\[= \sigma(\xi, \nabla_{(\xi\wedge S)U}\xi) - \sigma(\phi\xi, R(\xi,Y)Z) \]
\[= -\phi(\sigma(U, g(Y,Z)\xi - \eta(Z)Y)) \]
\[= \eta(Z)\phi\sigma(U,Y) \]
\[(\tilde{V}_U\sigma)(\xi, (\xi\wedge S)Y,Z) \]
\[= (\tilde{V}_U\sigma)(S(Y,\xi)\xi - S(\xi, Y)Z, Z) \]
\[= (n-1)\left[(\tilde{V}_U\sigma)(Y,Z) + (\tilde{V}_U\sigma)(\eta(Y)\xi, Z) \right] \]
\[= (n-1)\left[(\tilde{V}_U\sigma)(Y,Z) - \sigma(\eta(Y)\xi, Z) \right. \]
\[= (n-1)\left[(\tilde{V}_U\sigma)(Y,Z) - \sigma(U\eta(Y)\xi + \eta(Y)V_U\xi, Z) \right] \]
\[= (n-1)\left[(\tilde{V}_U\sigma)(Y,Z) - \eta(Y)\phi\sigma(U,Y) \right] \]
(50)

Finally,
\((U\sigma)(\xi, (\xi\wedge S)Y)Z \)
\[= \nabla^\perp_{U\sigma}(\xi, (\xi\wedge S)Y)Z - \sigma(\nabla_U\xi, (\xi\wedge S)Y)Z \]
\[= \sigma(\xi, \nabla_U\xi, (\xi\wedge S)Y)Z \]
\[= -\phi(\sigma(U, S(Y,\xi)\xi - S(\xi, Y)Y)) \]
\[= S(\xi, \phi\sigma(U,Y)) \]
\[= (n-1)\eta(\xi)\phi\sigma(U,Y) \]
(52)

Consequently, substituting (46), (47), (48), (49), (50), (51) and (52) into (45), we reach at
\[-R^1(\xi,Y)\phi\sigma(U,Z) - \eta(U)\phi\sigma(Z,Y) - (\tilde{V}_U\sigma)(Y,Z) \]
\[+ \eta(Y)\phi\sigma(Z,U) - \eta(Z)\phi\sigma(U,Y) \]
\[= -(n-1)L_S \left[\eta(U)\phi\sigma(Z,Y) + (\tilde{V}_U\sigma)(Y,Z) \right] \]
\[= -(n-1)L_S \left[\eta(Y)\phi\sigma(U,Z) + \eta(Z)\phi\sigma(U,Y) \right] \]
(53)

Replacing by \(Z = \xi \) in (53), we conclude that
\[(n-1)L_S \left[(\tilde{V}_U\sigma)(Y,\xi) - \phi\sigma(U,Y) \right] \]
\[= (\tilde{V}_U\sigma)(Y,\xi) - \phi\sigma(U,Y) \]

By means of (43), we have
\[(n-1)L_S \phi\sigma(U,Y) = \phi\sigma(U,Y) \]

which proves our assertion.

Example 3.8. Let us the 5-dimensional manifold
\[M^5 = \{(x_1, x_2, x_3, x_4, t) \in IR^5 : t \neq 0, \} \]

where \((x_i, t)\) denote the cartesian coordinates in \(R^5 \) for \(1 \leq i \leq 4 \). Then the vector fields
\[e_1 = \frac{\partial}{\partial x_1}, e_2 = \frac{\partial}{\partial x_2}, e_3 = \frac{\partial}{\partial x_3}, \]
\[e_4 = \frac{\partial}{\partial t}, e_5 = -t\frac{\partial}{\partial t} \]

are linearly independent at each point of \(\tilde{M}^5 \). By \(g \), we denote the semi-Riemannian metric tensor such that
\[g(e_i, e_i) = 1, \quad 1 \leq i \leq 4 \]
\[g(e_5, e_5) = -1, \]
\[g(e_i, e_j) = 0, \quad 1 \leq i, j \leq 5. \]

Let \(\eta \) be the 1-form defined by \(\eta(X) = g(X, e_5) \) for all \(X \in \Gamma(T\tilde{M}) \). Now, we define the tensor field \((I, I)\)-type \(\phi \) such that
\[\phi e_i = e_i, \quad 1 \leq i \leq 4, \quad \phi e_5 = 0. \]

Then we can easily to see that
\[\eta(e_5) = 1, \phi^2 X = X + \eta(X) e_5, \quad e_5 = \xi \]

and
\[g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y) \]

for all \(X, Y \in \Gamma(T\tilde{M}) \). Thus \(M^5(\phi, \eta, \xi, g) \) defines an almost Lorentzian paracontact metric manifold. By \(\tilde{\nabla} \), we denote the Levi-Civita connection on \(\tilde{M} \). Then by direct calculations, we have
\[[e_i, e_5] = e_i, \tilde{\nabla}_e_i e_5 = e_i, \quad 1 \leq i \leq 4, \tilde{\nabla}_e_i e_j = 0, \quad \text{otherwise}, \]

thus one can easily verified
\[\tilde{\nabla}_X e_5 = -\phi X, \]

this tells us that \(\tilde{M}^5(\phi, \eta, \xi, g) \) is a LP-Sasakian manifold.

Now, let us a submanifolds \(M \) of \(M^5(\phi, \eta, \xi, g) \) is defined by immersion \(\psi \) as follows;
\[
\psi\left(x_1, x_2, x_3, x_4, t \right) = \left(t x_1, t x_2, t x_3, t x_4, \frac{1}{2} t^2 \right),
\]

\[
x_1^2 + x_2^2 = 1, \quad x_3^2 + x_4^2 = 1.
\]

Then the tangent space of \(M \) is spanned by the vector fields
\[
U = x_2 e_1 - x_1 e_2, \quad V = x_4 e_3 - x_3 e_4, \quad \xi = e_5.
\]

Moreover, we can easily observe that \(\varphi U = U \) and \(\varphi V = V \)
that is, \(M \) is a 3-dimensional invariant submanifold of an LP-Sasakian manifold \(\bar{M}^3(\varphi, \eta, \xi, g) \). Furthermore, we can easily verify that
\[
\nabla_U \xi = U, \quad \nabla_V \xi = V, \quad \nabla_U V = \nabla_V U = 0.
\]

This tells us that \(M \) is pseudoparallel, Ricci generalized pseudoparallel submanifold because of it is a totally geodesic submanifold of \(\bar{M}^3(\varphi, \eta, \xi, g) \).

References

[1] Guojing, Z. and Jianguo, W. Invariant submanifolds and modes of non-linear autonomous systems. Appl. Math. Mech. 1998, 19, 587-693.
[2] Kon, M. Invariant submanifolds of normal contact metric manifolds. Kodai Math. Sem. Rep. 1973, 27, 330-336.
[3] Kobayashi, M. Semi Invariant Submanifolds of a Certain class of Almost contact metric manifolds. Tensor(N.S), 1986, 43, 28-36.
[4] Sarkar, A. and Sen, M. On Invariant Submanifolds Trans-Sasakian Mani-folds. Proc. Estonian Acad. Sci. 2012, 61, 29-37.
[5] Siddesh, M. S. and Bagewadi, C.S. On Some Classes an Invariant Sub- manifolds of \((\alpha, \mu)\)-Contact Manifold. J. of informatics and mathematical Sciences. Vol.9, No.1, 13-26, 2017.
[6] K. Matsumoto, On Lorentzian Almost Paracurvature Manifolds. Bull. Yamagata Univ. Nat. Sci. 12(1989), 151-156.
[7] A. A. Aqeeq, U.C. De, G. C. Ghosh. On Lorentzian Para-Sasakian Mani-folds. Kuwait J. Sci. Eng. 31(2), 2004, 1-13.
[8] I. Mihai, U. C. De, A. A. Shaikh. On Lorentzian para-Sasakian Manifolds. Korean J. Math. Sci. 6(1999), 1-13.
[9] C. Murathan, A. Yildiz, K. Arslan, U. C. De. On a Class of Lorentzian Para-Sasakian Manifolds. Proc. Estonian Acad. Sci. Phys. Math. 55(4), 2006, 210-219.
[10] J. Deprez. Semi-Parallel Surfaces in the Euclidean Space. J. of Geometry, 25(1985), 192-200.
[11] A. C. Asperti, G. A. Lobos and F. Mercuri. Pseudo-Parallel immersions in Space Forms. Math. Contemp. 17(1999), 59-70.
[12] C. Murathan, K. Arslan and R. Ezenta. Ricci-Generalized Pseudoparallel Immersions. Diff. geom. and Its. Appl. 99-108. Matfyzpress Prague. 2005.
[13] C. Özgür and C. Murathan. On Pseudoparallel Invariant Submanifolds of Contact Metric Manifolds. Bull. Transilv. Univ. Braov. Ser. B(N.S), 14(49), 2007.
[14] C. Özgür and C. Murathan. On Invariant Submanifolds of Lorentzian Para-Sasakian Manifolds. The Arabian J. of Sci. and Eng. Vol.34, Num.2A, 2009, 277-185.

© The Author(s) 2020. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).