How Are Smart City Concepts and Technologies Perceived and Utilized? A Systematic Geo-Twitter Analysis of Smart Cities in Australia

Tan Yigitcanlar, Nayomi Kankanamge, and Karen Vella

ABSTRACT

“Smart cities” is a hot topic in debates about urban policy and practice across the globe. There is, however, limited knowledge and understanding about trending smart city concepts and technologies; relationships between popular smart city concepts and technologies; policies that influence the perception and utilization of smart city concepts and technologies. The aim of this study is to evaluate how smart city concepts and technologies are perceived and utilized in cities. The methodology involves a social media analysis approach—i.e., systematic geo-Twitter analysis—that contains descriptive, content, policy, and spatial analyses. For the empirical investigation, the Australian context is selected as the testbed. The results reveal that: (a) innovation, sustainability, and governance are the most popular smart city concepts; (b) internet-of-things, artificial intelligence, and autonomous vehicle technology are the most popular technologies; (c) a balanced view exists on the importance of both smart city concepts and technologies; (d) Sydney, Melbourne, and Brisbane are the leading Australian smart cities; (e) systematic geo-Twitter analysis is a useful methodological approach for investigating perceptions and utilization of smart city concepts and technologies. The findings provide a clear snapshot of community perceptions on smart city concepts and technologies, and can inform smart city policymaking.

KEYWORDS

Smart cities; smart city policy; social media; Twitter; data analytics; Australian cities

Introduction

At the dawn of global socioeconomic and environmental crises, the utilization of smart city technologies is seen by many city administrations as a popular avenue to achieve desired urbanization outcomes (Albino et al., 2015; Komninos, 2016). A smart city can be described as an urban locality that employs digital data and technology to create efficiencies for boosting the economic development, enhancing the quality of life, and improving the sustainability of a city (Bibri, 2019). Today, many cities are developing sound, smart city strategies, and turning them into official local policies (Townsend, 2013). Successful approaches and practices are emerging in London, San Francisco, Singapore, Stockholm, Toronto, Vienna, and in numerous other cities (Yigitcanlar and Kamruzzaman, 2018).
Despite the emergence of good smart city policy practices, our knowledge and understanding about how smart city concepts and technologies are perceived and employed in cities is very limited (Mah et al., 2012). For instance, the literature does not provide clear answers to the following questions: Which smart city concepts and technologies are currently trending? What are the relationships between popular smart city concepts and technologies? What are the official smart city policies that influence perception and utilization of smart city concepts and technologies? The answers to these questions will inform policymakers and planners in shaping their future policy agendas—e.g., improving the quality and implementation of smart city policies.

In order to address this gap in the literature, the paper evaluates how relevant smart city concepts and technologies are perceived and utilized in cities. This investigation is undertaken through a case study analysis. Australian cities are selected as the testbed—as they are among the early and successful adopters of smart city technologies (Pettit et al., 2018). The study provides a snapshot of community perceptions on smart city concepts and technologies with the objective of informing smart city policymaking.

The methodological approach adopted in this study uses a novel approach—instead of traditional survey and interview techniques. Thanks to the proliferation of social media platforms, capturing and evaluating community perceptions has become relatively easy (Williamson and Ruming, 2019). Social media motivates people to express their thoughts, criticisms, and reflections in the form of social media posts (Kankanamge et al., 2020). By commenting, sharing, and responding to such posts, people create trending topics in social media networks—and some go viral (Dufty, 2016). Thus, in this study, trending smart city concepts and technologies are identified and analyzed through the social media analysis of geo-Twitter messages (tweets).

There are two different types of locations associated with a tweet: (a) Geo-tagged tweets that give the exact longitude and latitude information of the sender; (b) Geo-located tweets that give the area name of the sender’s location—e.g., Sydney. As the numbers of the geo-tagged tweets downloaded were marginal in this study, we used a combined set of geo-tagged (n=64) and geo-located (n=3,009) tweets—and we referred to them as “geo-tweets” (n=3,073). These geo-tweets either contain a latitude/longitude coordinate or can be identified by a city or neighborhood name. The systematic geo-Twitter analytics method—containing descriptive, content, policy, and spatial analyses—is used to harvest community perceptions expressed as tweets about smart city-related concepts and technologies.

Literature Background

The urbanization rate across the globe has been growing exponentially (Arbolino et al., 2017). Urbanization, when practiced as densification, can have positive consequences in making an urban footprint smaller. Nonetheless, when urbanization is coupled with overpopulation, excessive consumerism, and fossil fuel energy dependency, its consequences become catastrophic for natural systems (Mysterud, 2017; Arbolino et al., 2018). If these issues are not addressed, the challenges of greenhouse gas emissions, climate change, resource scarcity, housing affordability, and food security will become ever more acute, threatening our existence on the planet (Zhang et al., 2013; Yigitcanlar, Foth, et al., 2019).
Along with sustainability issues, high urbanization levels put heightened pressures on urban infrastructure, amenity and service delivery, and governance of cities (Grossi and Pianezzi, 2017; Mora et al., 2017). Housing large populations in cities—particularly in megacities of over 10 million residents—adds further to the already significant challenges facing urban administrations (Ersoy, 2017). This has led city authorities to search for innovative methods and mechanisms, such as smart and sustainable infrastructures to deliver urban services with increased efficiency (Yigitcanlar, Kamruzzman, et al., 2018; Mora et al., 2019).

In recent years, urban policymakers and technocrats have been adopting technology-centric solutions (such as autonomous vehicles, internet-of-things, artificial intelligence, smart poles, digital twins, blockchain, big data, robotics, open data) to urban development and management more than ever (Söderström et al., 2014; Faisal et al., 2019; Yigitcanlar, Wilson, et al., 2019). Technocentric urban management approaches, which are a part of the “smart cities” agenda, have become mainstream in many local governments (Yigitcanlar, 2006; Caragliu et al., 2011; Praharaj et al., 2018). The digital data and technology utilization aspect of smart cities is widely recognized as their distinctive characteristic in boosting economic growth, enriching living conditions, and maintaining environmental sustainability (Winden and Buuse, 2017; Joss et al., 2019).

The popularity of smart cities has increased rapidly due to their offerings of the digitalization of cities (Yigitcanlar, 2009; Aina, 2017). Paradoxically, the extreme reliance on technology has also created drawbacks. Scholars argue that this dependency on technology solutions could become a threat in the near future. According to Kunzmann (2014: 9), “there is a darker side of the smart city that is not so much the access to this technology, but rather the extreme dependency on technology, and on corporations dominating technology and related services.”

There are various conceptual smart city frameworks developed so far. For instance, Giﬃnger and Pichler-Milanović (2007) put together the following key dimensions in a smart city framework comprising smart environment, people, economy, living, mobility, and governance. This framework was adopted by the European Union. There are a few other smart city frameworks. The most notable ones are developed by Errichiello and Marasco (2014), Fernandez-Anez et al. (2018), and Yigitcanlar (2018). These frameworks aimed at providing a clearer view on how the smart city idea can be best operationalized to deliver desired outcomes.

In general, smart city frameworks can be grouped under two categories. The first category comprises the conceptual frameworks that encompass theories, typologies, features, and strategies for understanding smart cities. They provide the big picture view (De-Jong et al., 2015). The second category comprises the practical frameworks that contain processes, planning mechanisms, and performance evaluation tools for transforming cities into smart cities. These frameworks provide perspective on sectoral or specific application-area-related development (Aina, 2017).

There is not any widely accepted generic smart city framework—either conceptual or practical (Deakin and Reid, 2018). Increasing numbers of local governments have also developed their own smart policy frameworks. To name a few, the following cities have fully fledged official smart city government policies: Belfast, Brussels, Greenwich, London, Newcastle, Nottingham, Ottawa, San Francisco, San Jose, Singapore, Stockholm, Toronto, Vienna, and Western Sydney (Yigitcanlar, Han, et al., 2019).
Each of these official smart city strategies has its own unique features, but each shares common elements. Some of them adopted smart city frameworks developed by scholars. For instance, Giffinger and Pichler-Milanović's (2007) framework was adopted in the smart city policy of the City of Newcastle (Australia). Some others formed their own—e.g., Vienna. Despite the popularity of smart cities policy/practice, how relevant concepts and technologies are being perceived and employed is still an understudied area of research (Alizadeh, 2015; Komninos et al., 2019).

Research Design

Case Study

The research selected Australian cities as the case study context. Table 1 shows the 2016 population of Australian states and territories—for the sake of simplification, territories will also be referred to as states in the rest of this paper. The cases were selected for the following reasons: (a) Australian cities are among the early adopters of smart city technologies (Yigitcanlar, 2018; Yigitcanlar and Kamruzzaman, 2019); (b) Australian cities are listed among the reputable global smart cities (Anthopoulos, 2017); (c) the Australian Government introduced a smart city policy in 2016; (d) at present, more than 50 large-scale smart city projects across the country are in progress—e.g., Parramatta City Council’s smart warning system for flooded roads; Logan City Council’s smart urban irrigation system; Cairns Regional Council’s smart climate responsive neighborhoods, and Monash City Council’s i-Sense Oakleigh smart connected precinct.

Data

In recent years, social media channels have been used frequently as key data sources in academic studies. The followings can be given as examples: (a) determining post-disaster damage levels in smart cities (Kankanamge et al., 2020); (b) evaluating community perceptions, through opinion mining, on smart city projects (Alizadeh et al., 2019); (c) calculating home–work travel metrics as a smart urban mobility measure (Osorio-Arjona et al., 2019); and (d) assessing the impact of smart tourism policies (Brandt et al., 2017). Despite increasing number of studies, the use of social media content and analytic techniques in relation to smart city concepts and technologies is still an understudied area of research.

This research adopted an analysis framework introduced by Fan and Gordon (2014) to conduct social media data analysis. Social media have altered our modes of work and life,

Table 1. Australian state and territory populations
State/Territory
New South Wales (NSW)
Victoria (VIC)
Queensland (QLD)
Western Australia (WA)
South Australia (SA)
Tasmania (TAS)
Australian Capital Territory (ACT)
Northern Territory (NT)
have received attention from multiple fields (Kane, 2017), and there is also an increasing trend toward social media as a source of big data in urban research (Ciuccarelli et al., 2014). The systematic geo-Twitter analysis framework the study used contains three analysis stages: capture, understand, and present (See Figure 1).

The first stage of the framework involves “capturing” social media information. This study selected Twitter as a potential social media platform. Nonetheless, Twitter has certain merits and limitations. The main merits include: (a) Twitter is the fastest growing social media microblogging service; (b) researchers and practitioners can use a free Twitter “application programming interface” (API) to conduct analysis based on their interests; (c) as opposed to Facebook and Instagram, Twitter data is considered as “open data,” which provides succinct real-time data to the public (Dufty, 2016); (d) search and streaming APIs of Twitter allow researchers to write queries and download information under certain keywords and/or hashtags (Guan and Chen, 2014); (e) analyzing Twitter data is a novel method of harvesting dispersed community knowledge (Kankanamge et al., 2019).

The main limitation is the restricted API-based data accessibility, where APIs provide access to only 1 percent of publicly available Twitter data. From this sample, only around 10 percent is either geo-located or geo-tagged (Cebeillac and Rault, 2016). Even from geo-located and geo-tagged tweets, geo-tagged tweets are becoming harder to collect. This is due to not sharing personal mobile location information and ethical barriers as such information contains the exact latitude and longitude information of users.

For instance, from the collected data for this analysis only 64 tweets included geo-tagged information. Therefore, geo-tagged information is often collected through data providers—i.e., DataSift, with 100 percent access, which is a costly approach, or geo-tagged tweets often become available during crisis periods (Kankanamge et al., 2020). As another limitation, Lin and Cromley (2015) highlighted the bias age group of Twitter data. Despite these limitations, an increasing number of studies use tweets as the main data source (Brandt et al., 2017; Yuan and Liu, 2018).

![Figure 1. Systematic geo-Twitter analysis framework (Fan and Gordon, 2014)](image-url)
In this study, Twitter data were collected for the most recent full year—i.e., 2018. The data capturing process started with the identification of keywords. Accordingly, the study downloaded tweets with the keywords of “smart,” “city,” and “cities” circulated in 2018—between January 1 and December 31, 2018—within Australia. The study did not use the hashtag of #smartcity to download the data as it would limit the retrieved number of tweets. These tweets are already picked up by our above-mentioned search keywords. Data were downloaded through APIs obtained from the developers of Twitter. In total, 8241 tweets were obtained. This dataset was not structured; it included duplicates and incomplete or unusable tweets. The study adopted the four-step data cleaning process, introduced by Arthur et al. (2018) to clean the data.

The four-step data cleaning process consists of time zone, date, bot, and relevance filters. Time zone and date filters removed tweets from the downloaded dataset that originated from outside Australia and the time period selected. These two filters were applied at the time of downloading data using the Spyder python programming software. Bot and relevance filters were conducted by using Nvivo—a content analysis software package. Bot filter removed the repetitions generated through automatic systems. Bots can be easily recognized through the number of repetitions that exist—e.g., repeated conference notifications/reminders. Relevance filter was conducted manually by closely inspecting tweets, which are used with a different meaning—e.g., smart people. From the downloaded 8241 tweets, only 3073 of them qualified to be used in the study. Figure 2 presents the selection criteria, and types of analyses.

The second stage of the framework involved “understanding” what tweets say/communicate. Four different, but intertwining, analyses were used to understand tweets. They were descriptive, content, network, and policy analyses. The last stage of the framework involved “presenting” outcomes of the abovementioned analyses. It adopted appropriate visualizing techniques such as graphs and maps for an easy communication of the results.

![Figure 2. Tweet selection criteria for analysis](image-url)
Descriptive Analysis

Twitter data contains various information, such as “created_date,” “user-screen name,” “user-name,” “text,” “photo/video,” and “user-location.” The study used a descriptive analysis (DA) to deliver a broader view about the captured data. This study focused on three descriptive statistics namely Twitter statistics, user analysis, and web-link (URL) analysis. Identifying prominent hashtags is especially useful for urban planners as tweets reflect the emotive and evaluative perceptions of citizens. Twitter statistics provided information about the number of active users, the number of retweets, and the number of hashtags used. The study considered all “retweets” as new tweets with the related location of the retweet sender. This information acted as a gateway for many other inline analyses, such as content analysis and spatial analysis.

Content Analysis

Tweets are informal in nature, and consist of lay language, acronyms, URLs, photos, videos, and ideograms. They also contain people’s opinions. Analyzing tweets is a sensitive and significant task. Word frequency analysis was the initial point for the content analysis. Word frequency analysis identified popular concepts and technologies, and then the co-occurrence of words helped in determining the linkages among the concepts and technologies. Popular concepts and technologies reflect both hidden and dispersed community knowledge about smart cities.

The study also conducted a spatial analysis to complement the content analysis. For the analysis, we used the location information collected in tweets to categorize the main themes of the analysis by their locations. We categorized the most popular concepts and technologies into themes based on the origin of tweets (i.e., city and state) using co-occurrence frequencies of words. This presented a snapshot of the most popular concepts and technologies for each state.

Network Analysis

This research used network analysis to present the association between concepts and technologies and their popularity (centrality). Different metrics can be used in network theory to interpret the strength and topology of a network. We used nodes (concepts and technologies) and edges (relationships between these concepts and technologies) as the key elements of the network. Nodes and edges help in interpreting the network topology. The network topology represents a layout of nodes and edges created based on the co-occurrence of concepts and technologies in tweets and retweets.

Two types of network analysis emerged through the network theory. These analyses were centrality and community-level analyses. First, centrality analysis considered the significance of each node compared to adjacent nodes. Second, community-level analysis explored network-level characteristics such as density. This represents all the possible connections between all the nodes. This study used centrality analysis to identify the association between popular concepts and technologies.

Policy Analysis

Through a policy analysis, the study evaluated prevailing smart city strategies and planning policies. This aimed to understand processes behind the development of planning
policies and the role of strategies in developing the concepts that were identified through descriptive and content analyses. This analysis connects social media data with numerous smart city policies developed and introduced in Australia. It helps in better comprehension of how smart city policies are perceived by the public and how these policies influenced public perceptions. Exploring both policy and perception dimensions provides policymakers with essential information for consolidating existing policies or developing new effective, efficient, and feasible ones.

Results

What Are the Trending Smart City Concepts and Technologies?

Of the 3,073 usable tweets, 1,179 (38 percent) were original, and 1,894 (62 percent) were retweeted, reflecting the highly interactive nature of users. All Twitter discussions developed in total 28 hashtags. The hashtag analysis identified (excluding #smartcities and #smartcity) 16 key hashtags among them as the most strongly associated ones with the smart city domain. These were: #autonomousvehicle; #transport; #5G; #sustainability; #mobility; #internet-of-things; #energy; #innovation; #governance; #artificialintelligence; #blockchain; #bigdata; #robotics; #opendata; #waste; #startups.

Trending hashtags were: #IoT, #AI, #opendata, #robotics, #bigdata, #autonomous, #automation, #autonomousvehicle, #driverless, #selfdriving, #5G, #blockchain. Tweets with these hashtags captured views on incorporating novel, innovative, and advanced technologies to shape smart cities. Other popular hashtags were: #cybersecurity, #android, #traffic, #software, #digitalbuiltaustralia, #austech, #sustainability, #ausbiz. Tweets with these hashtags concentrated on smart city strategies with an economic and mobility focus. The temporal variation of hashtag use is significant to the study. For instance, tweet numbers increased substantially between September and October 2018 due to the Smart Cities Week Australia 2018 event in Sydney. The event hashtags such as #SCW and #SCWAus were frequently circulated during this period.

In total, 1,090 users contributed to create the dataset of 3,073 tweets. Sixty-nine percent of the tweets were circulated by individual users, and 31 percent by institutions. However, 75 percent of the top-20 most active users were institutional users. These organizations include technology firms, research centers, not-for-profit organizations, and conference organizers. The number of tweets of the most active users ranged between 20 and 150 tweets per year. In terms of followers these organizations had more followers than individuals, meaning they naturally had wider outreach. Yet, it would not be correct to interpret this as their dominance in communicating opinions, as individual user tweets were more than double in quantity than institutional ones.

There were 176 tweets with informative URLs in the dataset. Most of them contained links of blogs, discussion sites, articles, and conference websites that talk about the smart city movement in Australia and overseas. Hot topics discussed include Melbourne’s high-tech vision; driverless cars and national autonomous vehicle law; cyber security; smarter irrigation management solutions; and smart waste management systems.
What Are the Relationships Between Smart City Concepts and Technologies?

Tweets obtained from each state were categorized separately (See Figure 3). The states with the highest number of smart city tweets were NSW (1,372), VIC (710), QLD (432), ACT (371), and SA (103). WA (60), and TAS (25) had the lowest number of tweets. The national capital Canberra is located in the Australian Capital Territory (ACT). The city houses almost all of the Federal authorities, and naturally the key national policy issues, including smart cities and technologies, are widely discussed in the city. Interestingly, most of the analyzed tweets consist of scholarly discussions that evaluate the smart city notion under different concepts and technologies. Tweets discussed: Launching robotics roadmaps for automation adoption; the Lake Macquarie smart city network project; the Tesla’s power wall batteries project for smart energy management systems. Twitter provided a user-centric online media/platform to express individual and institutional views on the aforementioned projects. Institutional tweets on policies and projects helped the information circulate widely. This, in turn, motivated or provoked individuals to reflect on their responses. For instance, 28 individuals retweeted posts related to Lake Macquarie Smart City Network with their own comments included. This ultimately developed a thought-provoking discussion thread related to the project by individuals expressing their concerns or endorsements.

To evaluate the intellectual value of such tweets, the study conducted a word count analysis to identify the frequently used concepts and technologies. When the tweets consisted of more concepts such as innovation and sustainability, they were classified as “tweets on smart city concepts,” and when the tweets discussed technologies such as AI and IoT, they were classified as “tweets on smart city technologies.” In a situation

![Figure 3. Spatial distribution of tweets](image-url)
where tweets equally discussed both concepts and technologies, they were classified under both categories. Further, tweets which generally comment on smart cities without referring to any technology or concept—i.e., “Enjoying the life in a smart city of Australia,” were ignored.

Finally, the study identified 16 themes that acted as the basis for most tweets. Across Australia the most referred-to technologies were: Internet-of-Things (IoT) (392); Artificial intelligence (AI) (231); Autonomous vehicle (AV) (220); Big data (152); 5G (126); Robotics (123); Open data (108); and Blockchain (53). These technologies were discussed in relation to key concepts such as Innovation (423); Sustainability (413); Start-ups (269); Governance (255); Mobility (97); Waste (82); Energy (19); and Transport (13). However, as shown in Table 2, the attention paid to each concept and technology varied significantly from state to state.

Australian states have different foci when it comes to adopting novel, innovative, and advanced technologies for making their cities smart (See Table 2). The main exposure technologies of interest in NSW were concentrated around the IoT (162), AI (88), and AV (71); and interest in blockchain was low (0). Conversely, citizens from VIC, QLD, ACT, and SA have a dispersed interest in diversified technologies for smart cities. Although ACT has a comparatively lower number of residents, it performs well with a considerable number of tweets. This reflects the extensive interest, knowledge, and awareness of ACT residents about smart city concepts and technologies. WA and TAS also have a dispersed interest in technologies, but the lower number of tweets made them insignificant/unreliable. The results displayed that motivation and awareness exist among the local communities of each state in making their cities smarter.

As well as technologies, there were engaging concepts. As given in Table 3, eight popular concepts were identified from tweets scrutinized through a word frequency analysis.

Innovation (213), start-ups (145), sustainability (140), and governance (e-governance) (125) were the most popular concepts in NSW. However, compared to the number of tweets, sustainability is much more popular in VIC (207 tweets) as a concept than in NSW. QLD and ACT were interested in smart city agendas to encourage sustainability in their cities through novel innovations and e-governance practices. Accordingly, Twitter users seem to be extensively interested in making their cities smart in transport, governance, innovative economy (e.g., start-ups), and waste management.

| Table 2. Smart city technology tweets by states |

Technologies	States								
	ACT	27	15	27	11	9	6	6	
	NSW	162	88	71	54	58	45	32	0
	QLD	67	41	39	27	6	21	22	11
	SA	21	18	12	12	4	5	8	4
	TAS	9	0	1	1	0	0	1	1
	VIC	103	66	68	44	47	45	34	30
	WA	3	3	2	3	2	1	2	1
	AUSTRALIA	392	231	220	152	126	123	108	53
Table 4 demonstrates that Twitter users from the capital cities of Australian states were highly active in using social media to discuss concepts and technologies—i.e., Sydney, Melbourne, Brisbane, Canberra, Adelaide, Perth, Hobart. Top-10 Twitter active cities on smart city discussions also include some locations outside the capital cities—i.e., Sunshine Coast, Gold Cost, and Ipswich from QLD. Table 4 provides a population weighted rank of the most active locations in terms of smart city discussion. While the top 10 locations do not change, their order do.

Although Tables 1 and 2 reflect the trending concepts and technologies, they do not reflect the relationships among popular concepts and technologies. Neither do they reflect the popularity of each concept and technology (when all concepts and technologies are considered). Hence, we conducted a network analysis.

Figure 4 presents the layout of network topology, which disclosed the relationships between popular concepts and technologies. Square nodes depict concepts, and circular nodes depict technologies. The widths of the edges show the strength of the relationship that exists in between nodes. The strength of the relationships among nodes were calculated through the co-occurrence of concepts and technologies in the tweets and retweets analyzed.

Then, the study calculated the centrality (popularity) level of each node. We used weighted degree centrality—a measure to identify the nodes’ connectedness with the other nodes in the network—to quantify the perceived levels/degrees of the aforesaid concepts and technologies. For instance, a node with five links has a higher degree centrality than a node with two links. The number of co-occurrences were used to create/weight the links among the nodes.

City	Number of tweets and retweets	Population weighted rank
Sydney (NSW)	1,339	1
Melbourne (VIC)	696	3
Brisbane (QLD)	379	7
Canberra (ACT)	371	4
Adelaide (SA)	103	2
Perth (WA)	52	5
Sunshine Coast (QLD)	29	8
Hobart (TAS)	25	6
Gold Coast (QLD)	14	10
Ipswich (QLD)	10	9
As per Table 5, transport (can be merged with mobility) was by far the most central concept. Sustainability was the second most popular concept. Energy, innovation, and governance concepts followed. Waste and start-ups (can be merged with innovation) were other concepts gaining popularity.

Among the technologies, AV was by far the most popular one (by weight) (See Table 5), and had a strong relationship first with transport, and then with the other concepts such as sustainability, mobility, energy, and innovation (See Figure 4). 5G technology was the next most popular technology. IoT, AI, blockchain, and big data were to follow. Robotics and open data were the least popular ones with the lowest centrality.

Figure 4. Relationships between popular concepts and technologies

As per Table 5, transport (can be merged with mobility) was by far the most central concept. Sustainability was the second most popular concept. Energy, innovation, and governance concepts followed. Waste and start-ups (can be merged with innovation) were other concepts gaining popularity.

Among the technologies, AV was by far the most popular one (by weight) (See Table 5), and had a strong relationship first with transport, and then with the other concepts such as sustainability, mobility, energy, and innovation (See Figure 4). 5G technology was the next most popular technology. IoT, AI, blockchain, and big data were to follow. Robotics and open data were the least popular ones with the lowest centrality.

Table 5. Degree centrality of concepts and technologies

Themes	Concept/technology	Weighted score
AV	Technology	129
Transport	Concept	116
5G	Technology	35
Sustainability	Concept	34
Mobility	Concept	32
IoT	Technology	30
Energy	Concept	29
Innovation	Concept	26
Governance	Concept	24
AI	Technology	22
Blockchain	Technology	21
Big data	Technology	20
Robotics	Technology	11
Open data	Technology	11
Waste	Concept	10
Start-ups	Concept	8
Within the top 16 themes ranked by weights (See Table 5), half of them were concepts, and the other half were technologies. This finding presents a balanced view of concepts and technologies in Australia.

What Are the Official Smart City Policies That Influence Perception and Utilization of Smart City Concepts and Technologies?

In general, Australian states perceived concepts and technologies differently. This is most likely due to the varying degree of externalities of smart city policies on local communities in each state. The more a community feels the impacts of such policies (positive or negative), the more it will discuss, appreciate, or criticize them. Sound and well communicated policies receive higher support from the public; the opposite is also true.

Australia is rich in urban policy with numerous government policies focusing on smart cities (Yigitcanlar et al., 2020). Prominent national-level authorities that have prepared and launched smart city policies, funds, and projects include Smart Cities Council of Australia and New Zealand, Australian Department of Infrastructure, Transport, Cities and Regional Development, and Department of the Prime Minister and Cabinet. NSW, VIC, SA, and QLD also have state-level smart city policies. At the local level, smart city policies are also gaining prominence. Table 6 lists cities with a smart city strategy.

Smart city policies are categorized into four themes: transport, energy, economy, and governance-related policies. All state capitals except WA and NT have clear policies in these areas. There are also smart city projects in progress across all states. NSW has 13

State	City	Title	URL
QLD	Brisbane	Smart, Connected Brisbane	https://www.brisbane.qld.gov.au/about-council/governance-and-strategy/vision-and-strategy/smart-connected-brisbane
	Sunshine Coast	Smart City Framework	https://www.sunshinecoast.qld.gov.au/Council/Planning-and-Projects/Major-Regional-Projects/Smart-Cities/Smart-City-Implementation-Program
	Townsville	Smart Townsville	https://www.townsville.qld.gov.au/about-council/news-and-publications/city-update-online/smart-townsville
NSW	Canada Bay	Smart City Draft Plan	https://collaborate.canadabay.nsw.gov.au/smartcity
	Goulburn Mulwaree Lake Macquarie Newcastle	Smart City Strategy	https://www.lakemac.com.au/city/smart-city-smart-council
	Newcastle	Draft Smart City Strategy	http://newcastle.nsw.gov.au/Community/Get-Involved/Completed-Consultation-Projects/Community-Planning/Smart-City-Strategy-2017-2021
	Randwick Western Sydney	Smart City Masterplan Draft Smart City Strategy Smart Cities Plan	https://www.cityofparramatta.nsw.gov.au/smart-city https://www.yoursay.randwick.nsw.gov.au/smartcity https://citydeals.infrastructure.gov.au/western-sydney
NT	Darwin	Smart City Plan	https://citydeals.infrastructure.gov.au/darwin
SA	Adelaide	Smart Cities Plan	https://citydeals.infrastructure.gov.au/adelaide
TAS	Charles Sturt Hobart	Smart City Plan Connected Hobart Smart Cities Action Plan	https://www.charlessturt.sa.gov.au/SmartCity https://yoursay.hobartcity.com.au/smart-city
	Launceston	Smart Cities Plan	https://www.launceston.tas.gov.au/Launceston-City-Deal/City-Deal-Implementation
VIC	Geelong Wyndham	Smart Cities Plan Smart City Strategy	https://citydeals.infrastructure.gov.au/geelong https://theloop.wyndham.vic.gov.au/smart-city
smart city projects, while VIC, QLD, WA, and SA have 10, 9, 7, 6, and 2 projects, respectively, and NT has one project.

Transport-related policies are the most prominent. This might be something to do with transport being a major challenge for Australian populations and cities that rely heavily on private motor vehicles. The key smart city strategies in operation that refer to legislative issues for smart cities include: Future Transport Strategy of NSW; Connected and Automated Vehicle Plan; Greater Sydney Service and Infrastructure Plan; National Smart Cities Plan. Policy discussions focusing on new and forthcoming legislation include: AV trial guidelines; new transport rules and regulations; lessons learned from the United States and Singapore; changing the sign boards; changing property and other infrastructure-related guidelines for compliance with automated vehicles; defining vehicle automation levels, designing trial paths, and establishing a standby setting date to end analogue cars; and smart airports. AV projects and policy for smart transport planning under discussion include: automated traffic management of Fraser Coast, QLD; driverless shuttle service of Sydney; semi-automated port operations in port Botany; Australia posts foot-path-based delivery through drones.

Energy-related policies of Australia are concerned about balancing energy supply and energy demand reduction through smart energy use (Strengers, 2013). Australian policies on energy have already identified the significance of smart energy usage to cut energy bills and reduce environmental impacts. A number of smart city projects are already in operation. These include resilient energy and water systems of Fremantle, WA; energy efficient housing of South East Perth, WA; energy data for smart decision-making in Sydney; smart grid trials in the Greater Newcastle and Sydney CBD. In addition, government policies on increasing infrastructure for electric vehicle users and increasing the awareness about solar and battery storage technologies have also contributed towards the smart energy movement.

Economy-related policies received considerably less attention across Australia, even though the economy has weakened in recent years. Cities are only starting to consider the economic growth dimensions of smart policies. NSW has embraced investors to help Sydney on its mission to achieve 2021 goals. New start-ups, namely Nomad restaurants, Swill house group, Jolly Swagman Backpackers Sydney, Sydney Science Park, and Smart Innovation Center, are some businesses supporting the Smart Green Business Program of Sydney. It was awarded with the NSW Green Globe Award in 2013. Innovation districts are being developed all across the eastern coast of Australia—Sydney, Melbourne, Brisbane (Esmaeilpoorarabi et al., 2018; Pancholi et al., 2019). However, most of these are not directly linked with the smart city initiatives of their host cities. The national innovation district policy is also divorced from smart cities policy. The only exception is in Queensland. In QLD innovation districts were originally designed as part of the former Smart State Strategy of QLD (Hortz, 2016). However, to address this Australia-wide limitation, in late 2018, a national policy was released. “Principles for Australian Innovation Precincts” was prepared by the Federal Department of Industry, Innovation, and Science and emphasizes the connection between innovation districts and smart cities.
Governance-related policies are gaining momentum. Australia is a global leader in digitalization of government services. Today, most government services are delivered virtually across many Australian authorities—e.g., tax, development assessment applications. Extensive online services also attract hackers. On cyber security, Australian Strategic Policy Institute (ASPI) develops strategies to protect the privacy of data and information. Introducing a digital identity, to recognize receipt of a digital signature and secure data exchange mechanisms are the foci of the APSI policy.

Our policy analysis reflects the existence of, but limitations in or the inadequacy of, the smart city initiatives at the national level. For instance, in 2017, more than 170 local governments applied for a share in AUD50 million smart cities Federal Government funding. This indicates the limitation of the funds for smart city projects in Australia. Some Australian states, such as TAS and NT do not have strong smart city policies. Instead, they have certain relevant projects implemented on demand. Although this is useful, having a sound national- and state-level policy for smart cities will help advance smart urbanism practices in Australia.

Discussion and Conclusion

Smart cities have already become a promising approach to creating a sustainable and livable urban future (Yigitcanlar, Kamruzzaman, et al., 2019). Smart city discussions and awareness are especially high within the Australian professional and business communities. Smart cities are also highly popular in urban policy circles around the globe. Local, regional, and national governments have been working to transform their cities into smart ones through strategies, plans, and projects involving the substantial engagement of technology solutions. Still, expectations from smart cities are highly unrealistic as they are full of speculations (Luque-Ayala and Marvin, 2015; Wiig, 2015). There is limited knowledge and understanding about: trending concepts and technologies; relationships between popular concepts and technologies; policies that influence perception and use of concepts and technologies.

In order to bridge this knowledge gap, this study employed systematic geo-Twitter analysis to scrutinize discourse and policy in Australia. The research particularly focused on how smart city concepts and technologies are perceived and employed in Australian cities. The study findings provide a clear snapshot of community perceptions, and disclose the following insights that inform smart city policymaking.

First, the results of the analysis showed that innovation, also including start-ups (with 692 of 3,073 tweets—23 percent), sustainability (413 tweets—13 percent), and governance (with 255—8 percent) were the most popular concepts in Twitter discourse across Australia. When the degree of centrality of concepts is considered, the top three concepts were transport (includes mobility), sustainability, and energy. This was followed by innovation and governance.

The ranking of the top three concepts (i.e., innovation, sustainability, governance) in NSW and ACT were the same as for Australia. In VIC and QLD, sustainability took first place (followed by innovation and governance), whereas in TAS, it moved to third place (following innovation and governance). In SA and WA, governance moved to second place (after innovation and before sustainability). The variations between the states are an indication of local contextual differences in policy and planning priorities and conceptualizations of the smart city notion.
Second, the findings revealed that IoT (with 392 of 3,073 tweets—13 percent), AI (231 tweets—8 percent), and AV (220 tweets—7 percent) were the most popular technologies based on Twitter trends. When the degree of centrality of concepts is considered, the top three ranking was as follows: AV, 5G, and IoT respectively (followed by AI). No tweets were found from NSW mentioning the blockchain technology, though, throughout Australia, blockchain has been widely discussed in relation to energy and governance related issues (See Figure 4). The heightened interest in blockchain in VIC is mainly due to the Blockchain Association of Australia being located in Melbourne, VIC. Similarly, in QLD, University of Queensland has a Blockchain Club, and Brisbane, QLD hosts the Blockchain Australia National Meetup Roadshows.

The three technologies (i.e., IoT, AI, AV) were in the top three in all states besides TAS. Additionally, in some states big data and open data also shared the top three position with AV. This finding indicates a degree of consistency across the states. The ranking of the top three technologies in NSW and QLD were the same as for Australia. In VIC, AV moved one step up (following IoT and followed by AI). In ACT and SA, the first position shared by IoT and AV (followed by AI). In WA, the third place was shared by AV and big data (following IoT and AI). In TAS, the second place was shared by AV, big data, and open data (following IoT). Similar to concepts, technologies also showed minor variations across the states. This is an indication of differences in technology adoption and prioritization, and local smart city plans and projects.

Third, the study disclosed that Sydney, Melbourne, and Brisbane as major Australian cities—also their greater city-regions as the leading Australian metropolitan areas—have a higher interest in concepts and technologies. Nevertheless, different policy interventions and priorities of cities cause the increase/decrease of the popularity of aforesaid concepts and technologies among the public. For instance, although Brisbane’s Smart Connected Brisbane Policy was only released in 2017, Brisbane has been benefiting from the Smart State Strategy legacy of the state government dating back to 1998. Similarly, Melbourne’s relatively new smart city strategy is the rebranding of the knowledge city (Millar and Ju-Choi, 2010; Yigitcanlar, 2014) policy of the city dating back to early 2000s. In other words, Sydney, Melbourne, and Brisbane benefit from their path-dependency. Furthermore, these greater city-regions recently received lucrative funds for their smart city endeavors/transformation—as part of the Commonwealth Government’s Smart Cities Plan. For instance, Western Sydney City Deal in NSW, Geelong City Deal in VIC, and South East Queensland City Deal in QLD are among them—funding is envisaged to stimulate an increase of the economy by improving the productivity and competitiveness of the region.

Fourth, the network analysis findings pointed out a balanced view on the importance of concepts and technologies to achieve smart urbanism or smart city transformation—perhaps this is the Australian way of realizing the smart city dream. This is a critical finding as only with such a balanced view—seeing technology as a means to a goal rather than fully relying on it as the panacea—can we address urban developmental problems (Yigitcanlar, Kamruzzaman, et al., 2015). The development of sound government policies in Australia is the reason for the concept/technology balance regarding smart cities. Currently more than a dozen sound smart city policy frameworks are available (See Table 6) at the local government level, and this number is expected to exponentially increase in the near future.
Fifth, the study proved that systematic geo-Twitter analysis is a useful methodological approach for investigating perceptions and utilization of concepts and technologies. The social media analytics methodology—the capture-understand-present framework (Fan and Gordon, 2014)—was previously applied to other research areas—e.g., business, tourism, and hospitality (Amadio and Procaccino, 2016). This paper showcases its application in another field—i.e., smart city concepts and technologies.

Next, this study provides a big picture view on Twitter user perspectives on smart city concepts and technologies in Australian cities. It also showcases the usefulness of social media analysis as a complementary method to the studies government agencies, not-for-profit organizations, and consultancy firms have been undertaking to follow the latest developments in the field and understand the perceptions of authorities, experts, and the public at large. The findings are informative and encourage authorities to adopt social media analytics in their routine data collection mechanisms to make more informed decisions.

Lastly, in interpreting the study findings the following limitations should be considered: (a) Twitter is used as a social media channel to capture the views shared in Australia; (b) the study presents a snapshot in time by analyzing tweets from 2018; (c) the study does not involve a time-series analysis; (d) 8,241 tweets were obtained and of these 3,073 qualified for analysis; (e) different categorizations of smart city concepts and technologies might have an impact on the results; (f) there might be a degree of unconscious bias in the interpretation of the findings. Our prospective studies will concentrate on addressing these limitations.

Notes on Contributors

Tan Yigitcanlar is an associate professor in the School of Built Environment, Queensland University of Technology, Australia.

Nayomi Kankanamge is a doctoral researcher in the School of Built Environment, Queensland University of Technology, Australia

Karen Vella is head of school and an associate professor in the School of Built Environment, Queensland University of Technology, Australia

ORCID

Tan Yigitcanlar http://orcid.org/0000-0001-7262-7118
Nayomi Kankanamge http://orcid.org/0000-0002-4529-7042
Karen Vella http://orcid.org/0000-0002-5096-2908

References

Y. Aina, “Achieving Smart Sustainable Cities with GeoICT Support,” Cities 71 (2017) 49–58.
V. Albino, U. Berardi, and R. Dangelico, “Smart Cities,” Journal of Urban Technology, 22 (2015) 3–21.
T. Alizadeh, “A Policy Analysis of Digital Strategies,” International Journal of Knowledge-Based Development 6 (2015) 85–103.
T. Alizadeh, S. Sarkar, and S. Burgoyne, “Capturing Citizen Voice Online,” Cities (2019) 95 2751–2761.
W. Amadio, and J. Procaccino, “Competitive Analysis of Online Reviews Using Exploratory Text Mining,” Tourism and Hospitality Management 22 (2016) 193–210.
L. Anthopoulos, “Smart Utopia vs Smart Reality,” Cities 63 (2017) 128–148.
R. Arbolino, F. Carlucci, A. Cirà, G. Ioppolo, and T. Yigitcanlar, “Efficiency of the EU Regulation on Greenhouse Gas Emissions in Italy,” Ecological Indicators 81 (2017) 115–123.
R. Arbolino, L. De Simone, F. Carlucci, T. Yigitcanlar, and G. Ioppolo, “Towards a Sustainable Industrial Ecology,” Journal of Cleaner Production 178 (2018) 220–236.
R. Arthur, C. Boulton, H. Shotton, H. Williams, “Social Sensing of Floods in the UK,” Plos One 13 (2018) 1–18.
S. Bibri, “On the Sustainability of Smart and Smarter Cities in the Era of Big Data,” Journal of Big Data 6 (2019) 25.
T. Brandt, J. Bendler, and D. Neumann, “Social Media Analytics and Value Creation in Urban Smart Tourism Ecosystems,” Information & Management 54 (2017) 703–713.
A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart Cities in Europe,” Journal of Urban Technology 18 (2011) 65–82.
A. Cebeillac and Y. M. Rault, “Contribution of Geotagged Twitter Data in the Study of a Social Group’s Activity Space,” Netcom. Réseaux, Communication et Territoires, 30 (2016) 231–248.
P. Ciuccarelli, G. Lupi, and L. Simeone, Visualizing the Data City (Berlin: Springer, 2014).
M. De-Jong, S. Joss, D. Schraven, C. Zhan, and M. Weijnen, “Sustainable–Smart–Resilient–Low Carbon–Eco–Knowledge Cities,” Journal of Cleaner Production 109 (2015) 25–38.
M. Deakin and A. Reid, “Smart Cities,” Journal of Cleaner Production 173 (2018) 39–48.
N. Dufty, “Twitter Turns Ten,” Australian Journal of Emergency Management 31 (2016) 50–54.
L. Errichietti and A. Marasco, “Open Service Innovation in Smart Cities,” Advanced Engineering Forum 11 (2014) 115–124.
A. Ersoy, “Smart Cities as a Mechanism Towards a Broader Understanding of Infrastructure Interdependencies,” Regional Studies, Regional Science 4 (2017) 26–31.
N. Esmaeilpoorarabi, T. Yigitcanlar, M. Guaralda, and M. Kamruzzaman, “Does Place Quality Matter for Innovation Districts?” Land Use Policy 79 (2018) 734–747.
A. Faisal, T. Yigitcanlar, M. Kamruzzaman, and G. Currie, “Understanding Autonomous Vehicles,” Journal of Transport and Land Use 12 (2019) 45–72.
W. Fan and M. Gordon, “The Power of Social Media Analytics,” Communications of the ACM 57 (2014) 74–81.
V. Fernandez-Anez, J. Fernández-Güell, and R. Giffinger, “Smart City Implementation and Discourses,” Cities 78 (2018) 4–16.
R. Giffinger and N. Pichler-Milanović, Smart Cities (Vienna: Vienna University of Technology, 2007).
G. Grossi and D. Pianezzi, “Smart Cities” Cities 69 (2017) 79–85.
X. Guan and C. Chen, “Using Social Media Data to Understand and Assess Disasters,” Natural Hazards 74 (2014) 837–850.
T. Hortz, “The Smart State Test,” International Journal of Knowledge-Based Development 7 (2016) 75–101.
S. Joss, F. Sengers, D. Schraven, F. Caprotti, and Y. Dayot, “The Smart City as Global Discourse,” Journal of Urban Technology 26 (2019) 3–34.
N. Kankanamge, T. Yigitcanlar, A. Goonetilleke, and M. Kamruzzaman, “Can Volunteer Crowdsourcing Reduce Disaster Risk?” International Journal of Disaster Risk Reduction 35 (2019) 101097.
N. Kankanamge, T. Yigitcanlar, A. Goonetilleke, and M. Kamruzzaman, “Determining Disaster Severity Through Social Media Analysis,” International Journal of Disaster Risk Reduction 42 (2020) 101360.
N. Komninos, “Smart Environments and Smart Growth,” International Journal of Knowledge-Based Development 7 (2016) 240–263.
N. Komninos, C. Kakderi, A. Panori, and P. Tsarchopoulos, “Smart City Planning From an Evolutionary Perspective,” Journal of Urban Technology 26 (2019) 3–20.
G. Kane, “The Evolutionary Implications of Social Media for Organizational Knowledge Management,” Information and Organization 27 (2017) 37–46.
K. Kunzmann, “Smart Cities,” Crios 4 (2014) 9–20.
J. Lin and R.G. Cromley, “Evaluating Geo-Located Twitter Data as a Control Layer for Areal Interpolation of Population,” Applied Geography 58 (2015) 41–47.
A. Luque-Ayala and S. Marvin, “Developing a Critical Understanding of Smart Urbanism?” Urban Studies 52 (2015) 2105–2116.
D. Mah, J. Vleuten, P. Hills, and J. Tao, “Consumer Perceptions of Smart Grid Development,” Energy Policy 49 (2012) 204–216.
C. Millar and C. Ju-Choi, “Development and Knowledge Resources,” Journal of Knowledge Management 14 (2010) 759–776.
L. Mora, R. Bolici, and M. Deakin, “The First Two Decades of Smart-City Research,” Journal of Urban Technology 24 (2017) 3–27.
L. Mora, M. Deakin, and A. Reid, “Strategic Principles for Smart City Development,” Technological Forecasting and Social Change 142 (2019) 70–97.
A. Mysterud, Evolutionary Perspectives on Environmental Problems (New York: Routledge, 2017).
A. Osorio-Arjona and J. García-Palomares, “Social Media and Urban Mobility,” Cities 89 (2019) 268–280.
S. Pancholi, T. Yigitcanlar, and M. Guaralda, “Place Making in Knowledge and Innovation Spaces,” Technological Forecasting and Social Change 146 (2019) 616–625.
C. Pettit, A. Bakelman, S. N., Lieske, S. Glackin, G. Thomson, H. Shearer, and P. Newman, “Planning Support Systems for Smart Cities,” City, Culture and Society 12 (2018) 13–24.
S. Praharaj, H. Han, and S. Hawken, “Urban Innovation through Policy Integration,” City, Culture and Society 12 (2018) 35–43.
O. Söderström, T. Paasche, and F. Klauser, “Smart Cities as Corporate Storytelling,” City 18 (2014) 307–320.
Y. Strengers, Smart Energy Technologies in Everyday Life (Melbourne: Springer, 2013).
A. Townsend, Smart Cities (New York: WW Norton, 2013).
W. Winden and D. Buuse, “Smart City Pilot Projects,” Journal of Urban Technology 24 (2017) 51–72.
A. Wiig, “IBM’s Smart City as Techno-Utopian Policy Mobility,” City 19 (2015) 258–273.
W. Williamson and K. Ruming, “Can Social Media Support Large Scale Public Participation in Urban Planning?” International Planning Studies (2019), https://doi.org/10.1080/13563475.2019.1626221.
T. Yigitcanlar, “Australian Local Governments’ Practice and Prospects with Online Planning,” URISA Journal 18 (2006) 7–17.
T. Yigitcanlar, “Planning for Smart Urban Ecosystems,” Theoretical and Empirical Researches in Urban Management 4 (2009) 5–21.
T. Yigitcanlar, “Position Paper,” Expert Systems with Applications 41 (2014) 5549–5559.
T. Yigitcanlar, “Smart City Policies Revisited,” World Technopolis Review 7 (2018) 97–112.
T. Yigitcanlar and M. Kamruzzaman, “Does Smart City Policy Lead to Sustainability of Cities?” Land Use Policy 73 (2018) 49–58.
T. Yigitcanlar, M. Kamruzzaman, L. Buys, G. Ioppolo, J. Sabatini-Marques, E. Costa, and J. Yun, “Understanding ‘Smart Cities’,” Cities 81 (2018) 145–160.
T. Yigitcanlar and M. Kamruzzaman, “Smart Cities and Mobility,” Journal of Urban Technology 2 (2019) 21–46.
T. Yigitcanlar, M. Kamruzzaman, M., Foth, M., Sabatini-Marques, J. E. Costa, and G. Ioppolo, “Can Cities Become Smart without Being Sustainable?,” Sustainable Cities and Society 45 (2019) 348–365.
T. Yigitcanlar, M. Kamruzzaman, and S. Teriman, “Neighborhood Sustainability Assessment,” Sustainability 7 (2015) 2570–602.
T. Yigitcanlar, M. Foth, and M. Kamruzzaman, “Towards Post-Anthropocentric Cities,” Journal of Urban Technology 26 (2019) 147–152.
T. Yigitcanlar, H. Han, M. Kamruzzaman, G. Ioppolo, and J. Sabatini-Marques, “The Making of Smart Cities,” Land Use Policy 88 (2019) 104–187.
T. Yigitcanlar, M. Wilson, and M. Kamruzzaman, “Disruptive Impacts of Automated Driving Systems on the Built Environment and Land Use,” Journal of Open Innovation 5 (2019), 24.
T. Yigitcanlar, N. Kankanamge, L. Butler, K. Vella, and K. Desouza, *Smart Cities Down Under* (Brisbane: Queensland University of Technology, 2020) <https://eprints.qut.edu.au/136873/> Accessed February 20, 2020.

F. Yuan and R. Liu, “Feasibility Study of Using Crowdsourcing to Identify Critical Affected Areas for Rapid Damage Assessment,” *International Journal of Disaster Risk Reduction* 28 (2018) 758–767.

Q. Zhang, T. Huang, Y. Zhu, and M. Qiu, “A Case Study of Sensor Data Collection and Analysis in Smart City,” *International Journal of Distributed Sensor Networks* 9 (2013) 382132.