Long noncoding RNAs in hematopoiesis [version 1; peer review: 2 approved]

Xu Zhang, Wenqian Hu

Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA

Abstract
Mammalian development is under tight control to ensure precise gene expression. Recent studies reveal a new layer of regulation of gene expression mediated by long noncoding RNAs. These transcripts are longer than 200nt that do not have functional protein coding capacity. Interestingly, many of these long noncoding RNAs are expressed with high specificity in different types of cells, tissues, and developmental stages in mammals, suggesting that they may have functional roles in diverse biological processes. Here, we summarize recent findings of long noncoding RNAs in hematopoiesis, which is one of the best-characterized mammalian cell differentiation processes. Then we provide our own perspectives on future studies of long noncoding RNAs in this field.

Keywords
hematopoiesis, noncoding RNAs, gene expression

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Vinod Scaria, CSIR-IGIB, New Dehli, India
2. Chris P. Ponting, University of Edinburgh
 Western General Hospital, Edinburgh, UK

Any comments on the article can be found at the end of the article.
Corresponding author: Wenqian Hu (hu.wenqian@mayo.edu)

Competing interests: The authors declare that they have no competing interests.

Grant information: This work was supported by start-up funding from the Mayo Clinic Foundation for Research and Education and a grant from the National Heart, Lung, and Blood Institute (R00HL118157) to Wenqian Hu.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2016 Zhang X and Hu W. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Zhang X and Hu W. Long noncoding RNAs in hematopoiesis [version 1; peer review: 2 approved]
F1000Research 2016, 5(F1000 Faculty Rev):1771 https://doi.org/10.12688/f1000research.8349.1

First published: 20 Jul 2016, 5(F1000 Faculty Rev):1771 https://doi.org/10.12688/f1000research.8349.1
Introduction

One of the exciting findings from genomic studies over the past decade is the identification of a large number of long noncoding RNAs (lncRNAs) in mammalian transcriptomes. These transcripts are longer than 200 nucleotides in length, and though structurally similar to mRNAs, lncRNAs do not have functional protein-coding capacity. In addition, lncRNAs are usually expressed at lower levels compared with mRNAs, and most lncRNAs are not evolutionarily conserved in primary sequences. Interestingly, transcriptomic studies revealed that many lncRNAs are expressed in a manner highly specific to cell types, tissues, developmental stages, and pathological conditions in mammals, suggesting that these transcripts are involved in these biological processes. Consistent with this, the biological functions of many lncRNAs are being characterized in diverse biological and pathological settings. Mechanistically quite different from small RNAs, such as micro-RNAs that control gene expression predominantly at one particular step (mRNA translation and degradation), lncRNAs can regulate gene expression at multiple levels, from transcription and splicing to mRNA translation and degradation, in mammals. There are several outstanding reviews summarizing our current understandings of the mechanistic aspects of lncRNA-mediated regulation of gene expression and the hematopoiesis-related lncRNAs. In this review, we focus on biological functions of lncRNAs in hematopoiesis.

For three reasons, the hematopoietic system is one of the best paradigms for studying cellular lineage determination and differentiation in mammals. First, hematopoiesis is well characterized at the cellular level in both humans and mice, and a single hematopoietic stem cell (HSC) can re-constitute all the cells in the hematopoietic system. Based on this, many lineage specification and differentiation processes of HSCs and their progenies are characterized. Second, almost all the multi-potential and lineage-determined progenitor cells in hematopoiesis can be enriched or isolated in an almost pure form by flow cytometry using combinations of cell surface markers. This makes the phenotypic studies of a specific cellular lineage relatively easy. Third, both in vitro and in vivo assays are well established for functional characterization of hematopoietic progenitor cells. Collectively, these features of the hematopoietic system greatly facilitate the exploration of both proteins and RNAs controlling cell fate determination and differentiation.

Here, we summarize recent studies on the biological functions of lncRNAs in hematopoiesis. Particularly, we focus on lncRNAs in the regulation of HSCs and differentiation of several major hematopoietic cell lineages (Table 1). Then we provide our own perspectives on future studies of lncRNAs in hematopoiesis.

Table 1. Examples of long noncoding RNAs in hematopoiesis.

Long noncoding RNA	Cell types	Assay	Observed phenotype	Reference
H19	HSC	Deletion of the upstream region of H19	Reduced adult HSC quiescence and compromise of HSC function	21
LncHSC-1/2	HSC	shRNA knockdown	Impacted HSC self-renewal and differentiation	23
lncRNA-EPS	Erythroid progenitors	shRNA knockdown and overexpression	Essential for maturation of red blood cells	26
alncRNA-EC7	Erythroid	shRNA knockdown	Depletion of BAND 3	24
HOTAIRM1	Myeloid progenitors	shRNA knockdown	Attenuates the maturation of granulocytes	29, 31
Eosinophil granule ontogeny	Eosinophils	shRNA knockdown	Compromises the expression of several proteins that are important for eosinophil development	32
Inc-DC	DCs	RNA interference and overexpression	Vital for DC differentiation in both humans and mice	42
Inc-MAF-4	Th1 cell	siRNA-mediated knockdown	Increases the expression of MAF and skews T-cell differentiation toward the Th2 phenotype	40

DC, dendritic cell; HOTAIRM1, HOX antisense intergenic RNA myeloid 1; HSC, hematopoietic stem cell; shRNA, short hairpin RNA; siRNA, small interfering RNA.
also perform RNA-seq analysis in mouse megakaryocytes and MEP cells. Computational analysis on transcriptomic datasets from erythroid cells, megakaryocytes, and MEPs indicates that many IncRNAs are highly specific to one cell type versus the other two. Thus, it would be very interesting to identify and characterize megakaryocyte-specific IncRNAs, as these noncoding transcripts may potentially regulate megakaryopoiesis. Similarly, analyzing the expression patterns of those MEP-specific IncRNAs during differentiation and loss-of-function and gain-of-function studies of these IncRNAs may reveal how these transcripts modulate the biology of the MEP bi-potential progenitor cells, such as self-renewal and lineage specification.

Long noncoding RNAs in myelopoiesis and innate immunity

The myeloid leukocytes, including eosinophilic granulocytes, basophilic granulocytes, neutrophilic granulocytes, and monocytes, are thought to derive from a common progenitor named granulocyte-macrophage progenitor in the hematopoietic system. Several observations indicate that IncRNAs are involved in modulating myelopoiesis. For example, a human myeloid lineage-specific IncRNA, HOX antisense intergenic RNA myeloid 1 (HOTAIRM1), is upregulated during granulocytic differentiation of myeloid progenitors. The genomic locus of this IncRNA is located within the HOXA loci, which encode several HOXA transcription factors that are important for myelopoiesis. Interestingly, shRNA knockdown of this IncRNA compromises the activation of HOXA1 and HOXA4 during myeloid differentiation and attenuates the maturation of granulocytes as determined by cell surface markers. HOTAIRM1 knockdown is further shown to influence cell cycle arrest at the G1/S transition to inhibit granulocytic maturation in NB4 cells. This observation strongly suggests that IncRNA-mediated regulation of HOXA gene expression is important during granulocyte differentiation. IncRNAs are also implicated in regulating eosinophil formation during myelopoiesis. An IncRNA, with primary sequence conserved among human, mouse, and chicken, named eosinophil granule ontology (EGO) was identified from the inositol triphosphate receptor type 1 gene locus. This IncRNA is highly expressed in mature eosinophils, and biochemical experiments indicate that this transcript is not associated with ribosomes and does not have conserved open reading frames (ORFs), strongly arguing that it is noncoding. Interestingly, shRNA-mediated loss-of-function studies revealed that reduction of EGO level compromises the expression of several proteins that are important for eosinophil development, suggesting the functional importance of EGO in eosinophilopoiesis. It would be very interesting to explore how this conserved IncRNA regulates gene expression.

The terminal differentiated effector cells, such as macrophages, from myelopoiesis play important roles in innate immunity. Interestingly, several groups observed that many IncRNAs are differentially expressed when macrophages are challenged by bacteria infection. The Fitzgerald group functionally characterized one such IncRNA named lincRNA-Cox2. This IncRNA is upregulated more than 20 fold by the Toll-like receptor signaling pathway in mouse bone marrow-derived macrophages. Importantly, biochemical analysis indicates that lincRNA-Cox2 is not uniquely expressed in mouse bone marrow-derived macrophages. In addition, comparing IncRNAs expressed in mouse erythropoiesis and megakaryocytes, Paralkar et al. also performed RNA-seq analysis in mouse megakaryocytes and MEP cells. Computational analysis on transcriptomic datasets from erythroid cells, megakaryocytes, and MEPs indicates that many IncRNAs are highly specific to one cell type versus the other two. Thus, it would be very interesting to identify and characterize megakaryocyte-specific IncRNAs, as these noncoding transcripts may potentially regulate megakaryopoiesis. Similarly, analyzing the expression patterns of those MEP-specific IncRNAs during differentiation and loss-of-function and gain-of-function studies of these IncRNAs may reveal how these transcripts modulate the biology of the MEP bi-potential progenitor cells, such as self-renewal and lineage specification.
associated with ribosomes. Detailed functional and molecular mechanistic studies revealed that lncRNA-Cox2 interacts with heterogeneous nuclear ribonucleoproteins A/B and A2/B2 to modulate the expression of several immune response genes during inflammatory signaling.

Long noncoding RNAs in lymphoid lineages

Lymphopoiesis is the regulated generation of lymphoid cells, including T cells, B cells, natural killer cells, and dendritic cells (DCs) in the hematopoietic system. Transcriptomic studies from numerous groups identified a large number of lymphoid-specific lncRNAs that are differentially expressed during the maturation of these lymphoid cells\[^{19-21}\]. For example, during CD8\(^+\) lymphocyte differentiation, hundreds of lymphoid-specific lncRNAs were identified\[^{42}\]. More recently, comprehensive transcriptomic surveil-

ances in human lymphoid cells identified over 3,000 lncRNAs, and many of these transcripts are highly lineage-specific or developmental stage-specific or both\[^{43}\]. These observations suggest that lncRNAs may play important roles in lymphoid cells. Indeed, the biological functions of several lncRNAs are characterized in these immune cells. For instance, Ranzani \textit{et al.} identified an lncRNA, Linc-MAF-4, which is Th1 cell-specific and plays important roles in helper T-cell differentiation\[^{44}\]. Linc-MAF-4 can recruit chromatin modifiers LSD1 and EZH2 to the promoter to repress the expression of MAF, a Th2-associated transcription factor. Small interfering RNA (siRNA)-mediated knockdown of linc-MAF-4 increases the expression of MAF and skew T-cell differentiation toward the Th2 phenotype. This study reveals the functional importance of lncRNAs in T-cell differentiation \textit{in vitro}. T cells play important roles in modulating immune response during viral and bacterial infection. Interestingly, lncRNAs seem to have regulatory functions in these processes. For example, the lncRNA nettoie Salmonella pas Theiler’s (NeST) is specifically expressed in the mouse Th1 helper T cells. During viral and bacterial infections, this NeST regulates the expression of the cytokine interferon-gamma, thereby modulating the immune response mediated by the Th1 helper T cells\[^{32,39}\]. When lncRNA expression in various helper T-cell subsets was profiled, a Th2-specific lncRNA named LincR-Ccr2-5’AS was identified and characterized\[^{41}\]. Knockdown of this lncRNA by shRNA compromises the ability of the cells to migrate to the lungs \textit{in vivo}. Interestingly, the global gene expression changes of LincR-Ccr2-5’AS knockdown are similar to those of Gata3 depletion, suggesting that there may be a functional link between the lncRNA and the Gata3 transcription factor during T-cell differentiation and immune function.

In addition to finding T cells, Wang \textit{et al.} found an lncRNA, Linc-DC, which seems to be exclusively expressed in human DCS\[^{45}\]. This lncRNA is required for optimal DC differentiation. Functionally, this transcript is involved in regulating DC-mediated T-cell activation, and mechanistically, it achieves this by direct binding to the signal transducer and activator of transcription 3 (STAT3) in the cytoplasm, which promotes STAT3 phosphorylation on tyrosine-705, thereby facilitating STAT3 activation. Collectively, these observations indicate that lncRNAs are involved in both lymphoid cell differentiation and modulating lymphoid cell-mediated immune responses.

Future directions

Thanks to the widely used high-throughput transcriptomic profiling techniques, such as RNA-seq, the number of annotated lncRNAs exploded over the past few years. Loss-of-function and gain-of-function studies have revealed and likely will continue to reveal the regulatory roles of lncRNAs in hematopoiesis and other biological processes. Here, we discuss from our own perspectives some of the outstanding challenges and opportunities for future studies of lncRNA in hematopoiesis.

Coding versus noncoding

Most lncRNAs were identified by computational analysis on transcriptomic datasets. These transcripts are annotated as non-

coding by bioinformatics approaches. Though powerful, these computational algorithms only predict, but by no means dem-onstrate, the absence of coding ability/potential of those ORFs present on lncRNAs. Interestingly, however, recent observations indicate that some of the ORFs on lncRNAs are used by the trans-
lational apparatus, ribosome, to generate small peptides (reviewed in \cite{43}). Critically, the small peptides resulting from annotated lncRNAs can be biologically functional\[^{44-46}\]. Thus, an outstanding question is how many lncRNAs are truly noncoding and how many of these computationally annotated lncRNAs are actually coding transcripts? One approach to address this question is to test the RNA and ribosome association by using polysome analysis for specific transcripts or ribosome profiling for the whole transcriptome\[^{47}\]. Discriminating coding versus noncoding of the computationally annotated lncRNAs will provide important insights into whether the function of the transcript is mediated by the RNA itself or the polypeptides it encodes.

Testing long noncoding RNA functions \textit{in vivo}

Studies from hematopoietic cell lines and cultured primary cells revealed the regulatory roles of several lncRNAs in hematopoi-
esis. Whether the phenotypes from these loss-of-function studies \textit{in vitro} can be recapitulated \textit{in vivo}, however, is unknown. Thus, it is important to use knockout mouse models to determine the \textit{in vivo} functions of lncRNAs. In addition, knockout mouse models can solve some technical challenges of \textit{in vitro} lncRNA studies. For example, some lncRNAs, particularly those localized in the nucleus, cannot be efficiently knocked down by current shRNA/siRNA methods. Therefore, absence of phenotypes in these loss-of-function studies is uninterpretable. In addition, shRNA/siRNA approaches may have off-target effects. Thus, complete depletion of lncRNA locus using a mouse model can provide unambiguous information for establishing roles of lncRNAs in hematopoiesis.

Importantly, several lncRNA knockout mouse models have been generated to address this important question. Encouragingly, knocking out Xist in female mice, which comprises maintenance of X-inactivation in females, severely inhibits HSC maturation and results in highly aggressive myeloproliferative neoplasm and myelodysplastic syndrome with full penetrance\[^{48}\]. Similarly, knocking out Dlue2, an lncRNA frequently deleted in lymphohytic leukemia 2, in mouse results in dys-regulation of cell cycle progression and apoptosis of B cells. Interestingly, the mouse
develops a chronic lymphocytic leukemia (CLL) that is similar to human CLL. These two IncRNA in vivo studies clearly indicate that proper expression of IncRNA is required for normal hematopoiesis. An important issue associated with the IncRNA mouse model is to discriminate whether the phenotype is caused by the RNA or by the DNA sequence that can potentially function as regulatory cis-elements. Bassett et al. provided an insightful discussion of this caveat(1). The rapid development and application of targeted genome editing technologies, such as the CRISPR-Cas9 system, greatly facilitate the generation of targeted gene-altered mouse models. We believe that these technical advances will be of great help in functional characterizing IncRNAs in vivo.

Molecular mechanisms of long noncoding RNA-mediated regulation of gene expression

IncRNA can regulate gene expression via diverse mechanisms(10–14). One common theme of IncRNA-mediated regulation of gene expression is that IncRNA recruits protein partners to exert its biological effect(s). Although not all protein-binding events on IncRNA will result in functional consequence(15), identifying the protein(s) that IncRNAs specifically associated with is an important first step to characterize the molecular mechanisms. To this end, an expanding number of biochemical methods for RNA purification coupled with mass spectrometry have been established(11–13). Usually, many proteins that specifically bind target IncRNA can be identified from the mass spectrometry analysis. The next important question is to test the functional importance of the identified RNA-protein interactions. This can be achieved by structure-function mapping to reveal critical regions on the RNA that are important for recruiting the protein partner(s), and then mutant IncRNA can be generated to test the functional consequence of disrupting the RNA-protein interaction. One caveat of the biochemical approaches is that they usually require a large amount of material. This can be challenging for some lowly expressed IncRNAs. Thus, one complementary approach is to use single-molecular RNA fluorescent in situ hybridization to directly visualize IncRNA localization within the cell. This can provide important insights into the molecular mechanisms of IncRNA. For instance, this cell biology approach can determine whether the target IncRNA is localized to functional subcellular compartments, such as paraspeckles that are involved in splicing, certain chromatin regions, and co-localization with candidate proteins. In combination, the biochemical approaches and cell biology approaches can greatly facilitate the characterization of molecular mechanisms of IncRNA-mediated regulation of gene expression in hematopoiesis.

Abbreviations

CLL, chronic lymphocytic leukemia; DC, dendritic cell; EGO, eosinophil granule ontology; HSC, hematopoietic stem cell; IncRNA, long noncoding RNA; MEP, megakaryocyte-erythroid progenitor; NeST, nettoe Salmonella pas Theiler’s; ORF, open reading frame; RNA-seq, RNA sequencing; shRNA, short hairpin RNA; siRNA, small interfering RNA; STAT3, signal transducer and activator of transcription 3.

Competing interests

The authors declare that they have no competing interests.

Grant information

This work was supported by start-up funding from the Mayo Clinic Foundation for Research and Education and a grant from the National Heart, Lung, and Blood Institute (R00HL118157) to Wenqian Hu.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
16. Nobili L, Lionetti M, Neri A. Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget, 2016. PubMed Abstract | Publisher Full Text

17. Kondo M, Wagers AJ, Manz MG, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003; 21: 759–800. PubMed Abstract | Publisher Full Text

18. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 2006; 169(2): 338–46. PubMed Abstract | Publisher Full Text | Free Full Text

19. Akashi K, Traver D, Miyamoto T, et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000; 404(6774): 193–7. PubMed Abstract | Publisher Full Text

20. Traver D, Miyamoto T, Christensen J, et al. Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood. 2001; 98(3): 627–35. PubMed Abstract | Publisher Full Text

21. Venkatraman A, He XC, Thorvaldsen JL, et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature. 2013; 500(7465): 345–9. PubMed Abstract | Publisher Full Text | Free Full Text

22. F1000 Recommendation

23. Xiao AS, Oley D, Monnier P, et al. The H19 lncRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012; 14(7): 609–613. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

24. Luo M, Jeong M, Sun D, et al. Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell. 2015; 16(4): 426–38. PubMed Abstract | Publisher Full Text | Free Full Text

25. Alvarez-Dominguez JR, Hu W, Yuan B, et al. Global discovery of erythroid long non-coding RNAs reveals novel regulators of red cell maturation. Blood. 2014; 123(4): 570–81. PubMed Abstract | Publisher Full Text | Free Full Text

26. Parakal VR, Mishra T, Luan J, et al. Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood. 2014; 123(12): 1827–37. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

27. Hu W, Yuan B, Flygare J, et al. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011; 25(24): 2573–8. PubMed Abstract | Publisher Full Text | Free Full Text

28. An X, Schulz VP, Li J, et al. Global transcriptome analyses of human and murine terminal erythro differentiation. Blood. 2014; 123(25): 3466–77. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

29. Ghat L, Lin YH, Sierant MC, et al. Developmental transcriptome analysis of human erythropoiesis. Hum Mol Genet. 2014; 23(17): 4588–4602. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

30. Zhang X, Lian Z, Padden C, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003; 21: 759–800. PubMed Abstract | Publisher Full Text

31. Casero D, Sandoval S, Seet CS, et al. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages. Nature. 2014; 16(12): 1282–3. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

32. Collier SP, Collins PL, Williams CL, et al. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Iifg by Th1 cells. J Immunol. 2012; 189(5): 2084–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

33. Gomez JA, Wapinski O, Yang YW, et al. The NeST long ncRNA controls microsatellite and epigenetic activation of the interferon-γ locus. Cell. 2013; 152(4): 743–54. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

34. Petri A, Dybkkaer K, Bøgsted M, et al. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol. 2013; 14(11): 1190–8. PubMed Abstract | Publisher Full Text | Free Full Text

35. Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA Inc-DC controls human dendritic cell differentiation. Science. 2014; 344(6181): 310–3. PubMed Abstract | Publisher Full Text | F1000 Recommendation

36. Andrews SJ, Rothnagel JA. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet. 2014; 15(3): 193–204. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

37. Pauli A, Norris ML, Valen E, et al. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science. 2014; 343(6172): 1248636. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

38. Payre F, Desplan C. Long intergenic non-coding RNA function in vivo. F1000 Research 2016, 5(F1000 Faculty Rev):1771 Last updated: 29 MAR 2022

39. Ingolia NT. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet. 2014; 15(3): 205–13. PubMed Abstract | Publisher Full Text | F1000 Recommendation

40. Yildirim E, Kirby JE, Brown DE, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell. 2015; 162(4): 727–42. PubMed Abstract | Publisher Full Text | Free Full Text

41. Bassett AR, Akhtar A, Barlow DP, et al. Considerations when investigating IncRNA function in vivo. eLife. 2014; 3: e03086. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

42. Davidovich C, Wang X, Cilenotes-Rojas C, et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol Cell. 2015; 57(3): 552–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

43. Chu C, Zhang QC, da Rocha ST, et al. Systematic discovery of Xist RNA binding proteins. Cell. 2015; 161(2): 404–16. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

44. Minajig A, Froberg JE, Wei C, et al. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science. 2015; 349(6245): 1248276. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

45. McHugh CA, Chen CK, Chow A, et al. The Xist IncRNA interacts directly with SHARP to silence transcription through HDAc3. Nature. 2015; 521(7551): 232–6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Chris P. Ponting
 University of Edinburgh Western General Hospital, Edinburgh, UK
 Competing Interests: No competing interests were disclosed.

2. Vinod Scaria
 CSIR-IGIB, New Dehli, India
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com