Multiple Segmentations of Thai Sentences for Neural Machine Translation

Alberto Poncelas¹, Wichaya Pidchamook², Chao-Hong Liu³, James Hadley⁴, Andy Way¹

¹ADAPT Centre, School of Computing, Dublin City University, Ireland
²SALIS, Dublin City University, Ireland
³Iconic Translation Machines
⁴Trinity Centre for Literary and Cultural Translation, Trinity College Dublin, Ireland

Abstract

Thai is a low-resource language, so it is often the case that data is not available in sufficient quantities to train an Neural Machine Translation (NMT) model which perform to a high level of quality. In addition, the Thai script does not use white spaces to delimit the boundaries between words, which adds more complexity when building sequence to sequence models. In this work, we explore how to augment a set of English–Thai parallel data by replicating sentence-pairs with different word segmentation methods on Thai, as training data for NMT model training. Using different merge operations of Byte Pair Encoding, different segmentations of Thai sentences can be obtained. The experiments show that combining these datasets, performance is improved for NMT models trained with a dataset that has been split using a supervised splitting tool.

Keywords: Machine Translation, Word Segmentation, Thai Language

In Machine Translation (MT), low-resource languages are especially challenging as the amount of parallel data available to train models may not be enough to achieve high translation quality. One approach to mitigate this problem is to augment the training data with similar languages [10] or artificially-generated text [23; 16]. State-of-the-art Neural Machine Translation (NMT) models are based on the sequence-to-sequence framework (i.e. models are built using pairs of sequences as training data). Therefore, sentences are modeled as a sequence of tokens. As Thai is a scriptio continua language (where whitespaces are not used to indicate the boundaries between words) sentences need to be segmented in the preprocessing step in order to be converted into sequences of tokens.

The segmentation of sentences is a well-known problem in Natural Language Processing (NLP), Thai is no exception. How Thai sentences should be split has been discussed at the linguistic level [3] and different algorithms have been proposed [5] including dictionary-based and machine learning-based approaches.

In this work, we use the problem of segmentation to our advantage. We propose using an unsupervised training method such as Byte Pair Encoding (BPE) to obtain different versions of the same sentence with different segmentations (by using different merge operations). This leads to different parallel sets (each with different segmentation on the Thai side). These sets can be combined to train NMT models and achieve better translation performance than using one segmentation strategy alone.

1. Combination of Segmented Texts

As the encoder-decoder framework deals with a sequence of tokens, a way to address the Thai language is to split the sentence into words (or tokens). We investigate three splitting strategies: (i) Character-based, using each character as token. This is the simplest approach as there is no need to identify the words; (ii) Supervised word-segmentation: using tokenizers which have been trained on supervised data such as the “Deepcut” library [6] (trained on the BEST corpus [8]); and (iii) Language-independent split: using a language-independent algorithm for splitting such as BPE [24]. This last method splits the sentence based on the statistics of sequences of letters. Therefore the split is not necessarily word-based. BPE is executed as follows: Initially it considers each character as an independent token; then iteratively the most frequent subsequent pair of tokens x and y are merged into a single token xy. The process is executed iteratively until a given number of merge operation are completed.

Once the sentences of a parallel corpus have been split, they can be used as training data for an NMT engine. Among the three approaches, the supervised word-segmentation strategy is the one that might allow NMT to perform the best, as it encodes the information from the manually-segmented sentences. However, by changing the merge operation parameter of BPE, the set can be split in different ways. Accordingly, in this work we want to explore whether augmenting the training set with the same sentences (but split with BPE using different merge operations) can be beneficial for training an NMT model. By doing this, we artificially increase the vocabulary on the target side. This causes the number of translation candidates of source-side words to be extended, which has been shown to have a positive impact in other approaches such as in statistical MT [13; 14]. In addition, we want to explore whether this approach can be followed to augment a dataset split using Deepcut to improve the performance of NMT models.

Note that in this work we are building models in the

¹In this work, we use interchangeably the term split or segmentation to refer to the process of dividing a word or a sentence into sub-units.

²https://github.com/rkcosmos/Deepcut
English-to-Thai direction. The datasets with different splits are only on the target side whereas we keep the same number of merge operations on the source side. The main reason for this is that using several splits on the source side would also mean that NMT models would be evaluated with different versions (different splits) of the test set, which would obviously affect the results.

2. Data and Model Configuration

The models are built in the English to Thai direction using OpenNMT-py [7]. We keep the default settings of OpenNMT-py: 2-layer LSTM with 500 hidden units and a maximum vocabulary size of 50000 words for each language.

We use the Asian Language Treebank (ALT) Parallel Corpus [21] for training and evaluation. We split the corpus so we use 20K sentences for training and 106 sentences for development. We use Tatoeba Tiedemann [24] for evaluating the models (173 sentences).

In order to evaluate the models we translate the test set and measure the quality of the translation using an automatic evaluation metric, which provides an estimation of how good the translation is by comparing it to a human-translated reference. As the evaluation is made in a Thai language, we use CHRF3 [20] which is a character-level metric, instead of BLEU [12], which is based on overlap of n-grams.

The English side is tokenized and truecased (applying the proper case of the words) and we apply BPE with 89500 merge operations on the source side. The main reason for this is that using several splits on the source side would also mean that NMT models would be evaluated with different versions (different splits) of the test set, which would obviously affect the results.

First, we evaluate the performance of the models when different merge operations are used on the target-side. Numbers in bold indicate statistical significant improvement at p=0.01.

dataset	CHRF3
Deepcut	47.90
character	20.70
BPE 1000	39.88
BPE 5000	45.49
BPE 10000	41.75
BPE 20000	38.77

Table 1: Performance of the NMT model trained with data using different methods for word segmentation on the target-side.

As expected, we see in the table that the best results are obtained when using the Deepcut tool (Deepcut row), which splits Thai words grammatically. Regarding the models in which BPE has been used, we see in Table 1 that the best performance is achieved when 5000 merge operations is used (BPE 5000 row).

When too many merge operations are performed there is the risk of merging characters of different words into a single token, so the score decreases.

3.1. Combination of Datasets with Unsupervised Split

In total there are six different datasets. Note that they contain the same unique sentences. We train NMT models using these datasets either independently or in combination. The combination is carried out by appending different datasets. In particular we use character, Deepcut or BPE 1000 datasets and then accumulatively add BPE 1000, BPE 5000, BPE 10000 and BPE 20000 datasets.

dataset	CHRF3
character	20.70
+ 1000	38.23
+ 5000	45.63
+ 10000	49.93
+ 20000	52.17
BPE 1000	39.88
+ 5000	49.54
+ 10000	52.33
+ 20000	53.45

Table 2: Performance of the NMT model trained with data combining different unsupervised methods for word segmentation on the target-side. Numbers in bold indicate statistical significant improvement at p=0.01.

The main focus of this paper is to study the impact on the performance when several training sets with different splits are gathered together. We show the results in Table 2. Note that only the training set has been augmented, the development and test set remains the same for all experiments. In the table, each subtable presents the results when the sets are appended. For example, in the first subtable the row character indicates the performance of the model trained with the data split by character (the same as in Table 1). The
following row, +1000, shows the score of the model trained with character-wise split and that split with BPE using 1000 merge operations (so there are two instances of each source sentence). The last row of the subtable (+20000) indicates the performance of the model trained with the five datasets concatenated (five instances of each source sentence). In the table we observe that combining datasets with different segmentations is beneficial. In each subtable of Table 2 we see that the score goes up when we add more datasets with different splits. For example, the performance of the model using data split in a character-wise achieves a score of only 20.70 (first subtable). When we concatenate the same dataset but split using 1000 merge operations, the score increases to 38.23 (85% improvement) and we see that the score increases as we add sentences with different splits. This effect is observed for all three subtables.

The results also show that the lowest scores are achieved in those datasets in which a character-wise split fashion is performed. For example, the performance when using the dataset split with BPE using 1000 operations is 39.88 (BPE 1000 row in Table 2), whereas when used in combination with character-split set (+1000 row in the first subtable of Table 2) the score is 38.23. Another indication that character-wise splitting hurts performance is the comparison between the subtables of Table 2. If we compare the rows +1000, +5000, +10000 and +20000 of each subtable, the lower scores are seen in the first subtable.

Another research question we want to answer is whether using a combination of splits using BPE can outperform the model trained with a language-independent tool like Deepcut. We see that in the second subtable of Table 2 all of the combinations of BPE-split datasets (+5000, +10000 and +20000 rows) exceed the 47.90 score achieved by using Deepcut alone.

3.2. Augmenting the Dataset Split with Deepcut

dataset	CHRF3
Deepcut	47.90
+ 1000	47.00
+ 5000	51.25
+ 10000	54.94
+ 20000	54.96

Table 3: Performance of combination of dataset with different split using Deepcut. Numbers in bold indicate statistical significant improvement at p=0.01.

As combining different splits can increase the performance of the model, does it also help when used in combination with Deepcut? In Table 3 we present the results when the dataset split using Deepcut is augmented with datasets split with different merge operations using BPE. We see that initially, adding the set split with BPE using 1,000 merge operation (+1000 row) causes the performance to drop slightly. Nonetheless, the performance increases when more data are added (i.e. +5000, +10000, +20000 rows). Moreover, it even outperforms the model trained with the Deepcut-split dataset alone.

3.3. Analysis

In Table 4 we show some examples of the output. For each sentence we present the translations produced by the NMT model trained on Deepcut, BPE 20000 and Deepcut BPE 20000. We do not include the outputs of the NMT models trained on the character dataset as all the translation consisted of the same, meaningless, sequence of characters. In the third column of the table we show the translation of the output of the NMT system after it has been postedited by removing characters (in gray) or replaced (in blue). In the first sub-table we present how the sentence “the train is here” (meaning that the train is here because it has arrived) has been translated by different models. On the one hand, we see in the Deepcut row that the model has not produced an accurate translation. On the other hand, the models trained with data containing sentences of different segmentations (i.e. BPE 20000 and Deepcut BPE 20000) achieve a more accurate translation. Nevertheless, the output is not a perfect translation as it indicates where the train is located instead of expressing that it has arrived.

In the following subtables we observe a similar effect. The models trained with the Deepcut dataset produced a translation that is either inaccurate or makes no sense. However, the models trained on BPE 20000 or Deepcut BPE 20000 produce a translation closer to the input after some post-editing (i.e. removing the characters in gray).

4. Related Work

There are several studies aiming to address the problem of splitting words in Thai. One of the first approaches to segmenting is the longest-matching method [19], consisting of identifying the longest sequence of characters that match a word in the dictionary. Another approach is maximal-matching method [25], which consists of generating all possible segmentations and retrieving those containing the smallest amount of words.

Haruechaiyasak and Kongyoung [4] used conditional random fields to classify each character as either word-beginning or intra-word. Nararatwong et al. [11] proposed an improvement to this approach by adding information from POS tags. The use of several segmentations has also been proposed by Kudo [9], in which he tries to integrate candidates from different segmentations. This technique has applications in a number of topics such as word-alignment [28] or language modeling [23].

The use of multiple instances in the training data, where only one side is modified, has been used by Poncelas et al. [18], who showed that using multiple instances of the same target sentences, with different source-sides (generated by different MT engines) leads to better results than using a single instance of each sentence.

5. Conclusions and Future Work

In this work we have explored whether the duplication of training sentences with different splits is useful to build NMT models with improved performance. The experiments show that the combination of different splits on the target side does improve NMT models involving a low-resource language such as Thai.
Source Sentence	Output
the train is here.	รถไฟมาแลว
Reference	รถไฟไม่เป็นสายพันธุ์
Deepcut	This train is a breed.
BPE 20000	รถไฟอยู่ที่นี่
Deepcut + BPE 20000	This train is located here.

Source Sentence	Output
I have a new bicycle.	เลิกไม่มีจักรยานใหม่
Reference	ผมได้ทำการทดลองใหม่
Deepcut	I made a new experiment.
BPE 20000	ผมมีรถบรรทุกคนใหม่ๆ
Deepcut + BPE 20000	I have a new set of bicycles.

Source Sentence	Output
she does not have many friends in Kyoto.	เธอไม่มีเพื่อนที่เกียวโต
Reference	เธอยังไม่มีใครได้รับบาดเจ็บ
Deepcut	She still doesn’t have anyone injured.
BPE 20000	เธอยังไม่มีเพื่อนหลายๆคนในเกียวโต
Deepcut + BPE 20000	She does not have many friends in Kyoto.

Table 4: Examples of translations using different splits

The experiments also reveal that combining the same dataset using different merge operations of BPE not only improves the model trained on the dataset using the single configuration (regardless of the number of merge operations), but also the model trained on data that has been split using a tool trained on supervised data such as Deepcut.

In the future, we plan to conduct more fine-grained experiments to explore which configurations of BPE perform better. For example, would the combination of BPE 10000 and BPE 20000 (those with the highest number of operations explored) perform better than the model’s original setup? And what would the results be if only BPE 1000 and BPE 20000 (those with the lowest and highest number of operations) are combined?

Furthermore, as all the experiments with different splits have been applied on the target side, we plan to investigate NMT models when Thai is on the source side. Similarly, we will also investigate whether these improvements will be achieved using other languages.

Another variation we are interested in exploring is not to replicate all the sentences but to use data-selection algorithms to find a subset of sentences that may boost the performance of the models trained on the subset [15-17].

Finally, we would like to investigate the applicability of the method of employing several segmentations to other NLP tasks such as text classification [2,27].

6. Acknowledgements

The QuantiQual Project, generously funded by the Irish Research Council’s COALESCE scheme (COALESCE/2019/117).

This research has been supported by the ADAPT Centre for Digital Content Technology which is funded under the SFI Research Centres Programme (Grant 13/RC/2106).

References

[1] Solomon Teferra Abate, Laurent Besacier, and Sophheap Seng. Boosting n-gram coverage for unsegmented languages using multiple text segmentation approach. In 23rd International Conference on Computational Linguistics, pages 1–7, Beijing, China, 2010.

[2] Chanudom Apichai, Karman Chan, and Yoshimi Suzuki. Classifying short text in social media for extracting valuable ideas. In 20th International Conference on Computational Linguistics and Intelligent Text Processing, La Rochelle, France, 2019.

[3] Wirote Aroonmanakun. Thoughts on word and sentence segmentation in thai. In Proceedings of the Seventh Symposium on Natural language Processing, pages 85–90, Pattaya, Thailand, 2007.

[4] Choochart Haruechaiyasak and Sarawoot Kongyoung. Tlex: Thai lexeme analyser based on the conditional random fields. In Proceedings of 8th International Symposium on Natural Language Processing, Bangkok, Thailand, 2009.

[5] Choochart Haruechaiyasak, Sarawoot Kongyoung, and Matthew Dailey. A comparative study on Thai word segmentation approaches. In 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, volume 1, pages 125–128, 2008.

[6] Rakpong Kittinaradorn, Korakot Chaovavanich, Titipat Achakulvisut, and Chanwit Kaewkasi. A Thai word tokenization library using deep neural network, 2018.
[7] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. OpenNMT: Open-source toolkit for neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 67–72, Vancouver, Canada, 2017.

[8] Krit Kosawat, Monthika Boriboon, Patcharika Chootrakool, Ananlada Chotimongkol, Supon Klaithin, Sarawoot Kongsyoung, Kanyakun Kriengket, Sithaah Phaholphinyo, Sumonmah Purodakanda, Tipraporn Thanakulwarapap, et al. BEST 2009: Thai word segmentation software contest. In 2009 Eighth International Symposium on Natural Language Processing, pages 83–88, Bangkok, Thailand, 2009.

[9] Taku Kudo. Subword regularization: Improving neural network translation models with multiple subword candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 66–75, Melbourne, Australia, 2018.

[10] Surafe Melaku Lakew, Aliia Erofeeva, and Marcello Federico. Neural machine translation into language varieties. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 156–164, Brussels, Belgium, 2018.

[11] Rungsiman Nararatwong, Natthawut Kertkeida, Suphit Sornlertlamvanich. Word segmentation for Thai in machine translation system. In 21st Annual Conference of the European Association for Machine Translation, pages 249–258, Alacant, Spain, 2018.

[12] Alberto Poncelas, Andy Way, and Kepa Sarasola. The ADAPT system description for the IWSLT 2018 Basque to English translation task. In 15th International Workshop on Spoken Language Translation, pages 76–82, Bruges, Belgium, 2018.

[13] Alberto Poncelas, Maja Popovic, Dimitar Shterionov, Gideon Maillette de Buy Wenneger, and Andy Way. Combining SMT and NMT back-translated data for efficient NMT. In Proceedings of Recent Advances in Natural Language Processing (RANLP), pages 922–931, Varna, Bulgaria, 2019.

[14] Yuen Poowarawan. Dictionary-based thai syllable separation. In Proc. Ninth Electronics Engineering Conference (EECON-86), pages 409–418, Bangkok, Thailand, 1986.

[15] Maja Popovic. chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 392–395, Lisbon, Portugal, 2015.

[16] Veerach Sornlertlamvanich. Word segmentation for thai in machine translation system. Machine Translation, pages 556–561, 1993.
[26] Jörg Tiedemann. Parallel data, tools and interfaces in opus. In *Proceedings of the Eighth International conference on on Language Resources and Evaluation (LREC 2012)*, pages 2214–2218, Istanbul, Turkey, 2012.

[27] Attaporn Wangpoonsarp, Kazuya Shimura, and Fumiyo Fukumoto. Acquisition of domain-specific senses and its extrinsic evaluation through text categorization. In *20th International Conference on Computational Linguistics and Intelligent Text Processing*, La Rochelle, France, 2019.

[28] Ning Xi, Guangchao Tang, Boyuan Li, and Yinggong Zhao. Word alignment combination over multiple word segmentation. In *Proceedings of the ACL 2011 Student Session*, pages 1–5, Portland, USA, 2011.
