Review Article

Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

Ané Orchard and Sandy van Vuuren

Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa

Correspondence should be addressed to Sandy van Vuuren; sandy.vanvuuren@wits.ac.za

Received 21 July 2016; Accepted 9 October 2016; Published 4 May 2017

Academic Editor: Pinarosa Avato

Copyright © 2017 Ané Orchard and Sandy van Vuuren. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman’s literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as *Staphylococcus aureus* have been well studied, other pathogens such as *Streptococcus pyogenes*, *Propionibacterium acnes*, *Haemophilus influenzae*, and *Brevibacterium* species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils.

1. Introduction

The skin is the body’s largest mechanical barrier against the external environment and invasion by microorganisms. It is responsible for numerous functions such as heat regulation and protecting the underlying organs and tissue [1, 2]. The uppermost epidermal layer is covered by a protective keratinous surface which allows for the removal of microorganisms via sloughing off of keratinocytes and acidic sebaceous secretions. This produces a hostile environment for microorganisms. In addition to these defences, the skin also consists of natural microflora which offers additional protection by competitively inhibiting pathogenic bacterial growth by competing for nutrients and attachment sites and by producing metabolic products that inhibit microbial growth. The skin’s natural microflora includes species of *Corynebacterium*, staphylococci, streptococci, *Brevibacterium*, and *Candida* as well as *Propionibacterium* [3–8].

In the event of skin trauma from injuries such as burns, skin thinning, ulcers, scratches, skin defects, trauma, or wounds, the skin’s defence may be compromised, allowing for microbial invasion of the epidermis resulting in anything from mild to serious infections of the skin. Common skin infections caused by microorganisms include carbuncles, furuncles, cellulitis, impetigo, boils (*Staphylococcus aureus*), folliculitis (*S. aureus, Pseudomonas aeruginosa*), ringworm (*Microsporum* spp., *Epidermophyton* spp., and *Trichophyton* spp.), acne (*P. acnes*), and foot odour (*Brevibacterium* spp.) [3, 8–11]. Environmental exposure, for example, in hospitals where nosocomial infections are prominent and invasive procedures make the patient vulnerable, may also create an opportunity for microbial infection. For example, with the addition of intensive therapy and intravascular cannulae, *S. epidermidis* can enter the cannula and behave as a pathogen causing bloodborne infections. Noninfective skin diseases such as eczema can also result in pathogenic infections by
damaging the skin, thus increasing the risk of secondary infection by herpes simplex virus and/or *S. aureus* [5, 8, 12].

Skin infections constitute one of the five most common reasons for people to seek medical intervention and are considered the most frequently encountered of all infections. At least six million people worldwide are affected by chronic wounds and up to 17% of clinical visits are a result of bacterial skin infections and these wounds are a frequent diagnosis for hospitalized patients. These are experienced daily and every doctor will probably diagnose at least one case per patient. Furthermore, skin diseases are a major cause of death and morbidity [8, 13, 14]. The healing rate of chronic wounds is affected by bacterial infections (such as *S. aureus*, *E. coli*, and *P. aeruginosa*), pain, inflammation, and blood flow, and thus infection and inflammation control may assist in accelerating healing [15–17].

Topical skin infections typically require topical treatment; however, due to the ability of microbes to evolve and due to the overuse and incorrect prescribing of the current available conventional antimicrobials, there has been emergence of resistance in common skin pathogens such as *S. aureus* resulting as methicillin-resistant *Staphylococcus aureus* (MRSA) and other such strains. Treatment has therefore become a challenge and is often not successful [8, 18, 19]. In some regions of the world, infections are unresponsive to all known antibiotics [20]. This threat has become so severe that simple ulcers now require treatment with systemic antibiotics [21]. A simple cut on the finger or a simple removal of an appendix could result in death by infection. The World Health Organization (WHO) has warned that common infections may be left without a cure as we are headed for a future without antibiotics [22]. Therefore, one of the solutions available is to make use of one of the oldest forms of medicine, natural products, to treat skin infections and wounds [18, 23].

Complementary and alternative medicines (CAMs) are used by 60–80% of developing countries as they are one of the most prevalent sources of medicine worldwide [24–27]. Essential oils are also one of the most popular natural products, with one of their main applications being for their use in dermatology [28–30]. In fact, of all CAMs, essential oils are the most popular choice for treating fungal skin infections [13, 31]. Their use in dermatology, in the nursing profession, and in hospitals has been growing with great popularity worldwide, especially in the United States and the United Kingdom [1, 27, 32–35]. Furthermore, the aromatherapeutic literature [1, 2, 26, 32, 36–43] identifies numerous essential oils for dermatological use, the majority of which are recommended for infections. This brought forth the question as to the efficacy of commercial essential oils against the pathogens responsible for infections. The aim of this review was to collect and summarise the *in vivo*, *in vitro*, and clinical findings of commercial essential oils that have been tested against infectious skin diseases and their pathogens and, in doing so, offer aromatherapists and dermatologists valuable information regarding the effectiveness of essential oils for dermatological infections.

The readily available aromatherapeutic literature has reported over 90 (Table 1) commercial essential oils that may be used for treating dermatological conditions [1, 2, 26, 32, 36–43]. An overview of the skin related uses can be seen in Figure 1. Essential oils are mostly used for the treatment of infections caused by bacteria, fungi, or viruses (total 62%). This is followed by inflammatory skin conditions (20%) such as dermatitis, eczema, and lupus and then general skin maintenance (18%) such as wrinkles, scars, and scabs, which are the third most common use of essential oils. Other applications include anti-inflammatory and wound healing applications (Figure 1). Of the 98 essential oils recommended for dermatological use, 88 are endorsed for treating skin infections. Of these, 73 are used for bacterial infections, 49 specifically for acne, 34 for fungal infections, and 16 for viral infections.

2. Materials and Methods

2.1. Searching Strategy/Selection of Papers. The aim of the comparative review was to identify the acclaimed dermatological commercial essential oils according to the aromatherapeutic literature and then compare and analyse the available published literature. This will serve as a guideline in selecting appropriate essential oils in treating dermatological infections. The analysed papers were selected from three different electronic databases: PubMed, ScienceDirect, and Scopus, accessed during the period 2014–2016. The filters used included either “essential oils”, “volatile oils”, or “aromatherapy” or the scientific or common name for each individual essential oil listed in Table 1 and the additional filters “antimicrobial”, “antibacterial”, “skin”, “infection”, “dermatology”, “acne”, “combinations”, “fungal infections”, “dermatophytes”, “Brevibacteria”, “odour”, “antiviral”, “wounds”, “dermatitis”, “allergy”, “toxicity”, “sentitisation”, or “phototoxicity”.

Figure 1: Summary of categorised dermatological conditions in which essential oils are used.
Table 1: Essential oils used in dermatology.

Scientific name	Common name	Dermatological use	Reference
Abies balsamea	Balsam (Peru, Canadian)	Burns*, cracks, cuts, eczema, rashes, sores, and wounds	[32]
Abies balsamea	Fir	Skin tonic	[36]
Acacia dealbata	Mimosa	Antiseptic, general care, oily conditions, and nourisher	[2, 32]
Acacia farnesiana	Cassie	Dry or sensitive conditions	[32]
Achillea millefolium	Yarrow	Acne, burns, chapped skin, cuts, dermatitis, eczema, healing agent, infections, inflammation, oily conditions, pruritus, rashes, scars, toner, sores, ulcers, and wounds	[32, 36, 40, 42]
Allium sativum	Garlic	Acne, antiseptic, fungal infections (ringworm), lupus, septic wounds, and ulcers	[32, 36]
Amyris balsamifera	Amyris	Inflammation	[36]
Anethum graveolens	Dill	Wound healing encouragement	[36]
Angelica archangelica	Angelica	Congested and dull conditions, fungal infections, inflammation, psoriasis, and tonic	[32, 36]
Aniba rosacodora	Rosewood	Acne, congested conditions, cuts, damaged skin, dermatitis, general care, greasy and oily conditions, inflammation, psoriasis, scars, regeneration, sores, wounds, and wrinkles	[2, 32, 36, 37, 39, 41, 42]
Anthemis nobilis	Roman chamomile	Abscesses, acne, allergies, antiseptic, blisters, burns, cleanser, cuts, dermatitis, eczema, foot blisters, general care, herpes, inflammation, insect bites and stings, nappy rash, nourisher, problematic skin, pruritus, psoriasis, rashes, rosacea, sores, sunburn, ulcers, and wounds	[2, 26, 32, 36–43]
Apium graveolens	Celery	Reducing puffiness and redness	[36]
Artemisia dracunculus	Tarragon	Infectious wounds	[36]
Betula alba	Birch (white)	Congested conditions, dermatitis, eczema, psoriasis, and ulcers	[32, 36]
Boswellia carteri	Frankincense/olibanum	Abscesses, acne, aged or dry and damaged complexions, antiseptic, bacterial infections, blemishes, carbuncles, dermatitis, disinfectant, eczema, fungal and nail infections, general care, healing agent, inflammation, oily conditions, psoriasis, problematic conditions, regeneration or rejuvenation, scars, sores, toner, tonic, ulcers, wounds, and wrinkles	[1, 2, 32, 36–43]
Bursera glabrifolia	Linaloe (copal)	Acne, conditioning, cuts, dermatitis, sores, and wounds	[32, 40]
Table 1: Continued.

Scientific name	Common name	Dermatological use	Reference
Calendula officinalis	Marigold	Athlete’s foot, burns, cuts, diaper rash, eczema, fungal infections, inflammation, oily and greasy conditions, and wounds	[26, 32, 39]
Cananga odorata	Ylang-ylang	Acne, balancing sebum, dermatitis, eczema, general care, greasy and oily conditions, insect bites, and toner	[2, 32, 36–38, 40, 42, 43]
Canarium luzonicum	Elemi	Aged and dry complexions, bacterial infections, balancing sebum, cuts, fungal infections, inflammation, sores, ulcers, wounds, and wrinkles	[32, 36, 40]
Carum carvi	Caraway	Acne, boils, infected wounds, oily conditions, and pruritus	[36]
Cedrus atlantica	Cedar wood	Acne, antiseptic, "bromodasis", cellulite, cracked skin, dandruff, dermatitis, eczema, eruptions, fungal infections, general care, genital infections, greasy and oily conditions, inflammation, insect bites and stings, psoriasis, scabs, and ulcers	[1, 2, 32, 36–39, 41–43]
Cinnamomum camphora	Camphor (white)	Acne, burns, inflammation, oily conditions, spots, and ulcers	[32, 36, 42]
Cinnamomum zeylanicum	Cinnamon	Antiseptic, gum and tooth care, warts, and wasp stings	[32, 36, 37, 41, 42]
Cistus ladanifer	Rock rose/Cistus/labdanum	Aged complexion, bacterial infections, bedsores, blocked pores, eczema, oily conditions, sores, ulcers, varicose ulcers, wounds, and wrinkles	[2, 32, 40]
Citrus aurantifolia	Lime	Acne, bacterial infections, boils, cellulite, congested or greasy and oily conditions, cuts, insect bites, pruritus, tonic, sores, ulcers, warts, and wounds	[2, 32, 36, 40–43]
Citrus aurantium var. amara	Neroli	Acne, aged and dry complexions, antiseptic, broken capillaries, cuts, dermatitis, eczema, general care, healing agent, psoriasis, scars, stretch marks, toner, tonic, thread veins, wounds, and wrinkles	[2, 26, 32, 36–43]
Citrus aurantium var. amara	Petitgrain	Acne, antiseptic, bacterial infections, balancing sebum, blemishes, greasy and oily conditions, "" hyperhidrosis, pimples, pressure sores, sensitive complexions, toner, tonic, and wounds	[1, 2, 32, 36, 37, 39–42]
Citrus bergamia	Bergamot	Abscesses, acne, antiseptic, athlete’s foot, bacterial infections, blisters, boils, cold sores, deodorant, dermatitis, eczema, fungal infections, greasy and oily conditions, healing agent, inflammation, insect bites, pruritus, psoriasis, shingles, ulcers, viral infections (chicken pox, herpes, and shingles), and wounds	[2, 26, 32, 36, 37, 40–43]
Citrus limon	Lemon	Abscesses, acne, antiseptic, athlete’s foot, blisters, boils, cellulite, corns, cuts, grazes, greasy and oily conditions, insect bites, mouth ulcers, rosacea, sores, ulcers, viral infections (cold sores, herpes, verrucae, and warts), and wounds	[1, 2, 26, 32, 36, 37, 39, 41–43]
Scientific name	Common name	Dermatological use	Reference
--------------------------	---------------	---	----------------------------
Citrus paradisi	Grapefruit	Acne, antiseptic, cellulite improvement, cleanser, combination and problematic skin, congested and oily conditions, stretch marks, and toner	[1, 2, 32, 36, 37, 39–43]
Citrus reticulata	Mandarin	Acne, cellulite, congested and oily conditions, general care, healing agent, scars, stretch marks, and toner	[1, 32, 36–38, 40, 43]
Citrus sinensis	Orange	Acne, blocked pores, congested and oily conditions, dermatitis, dry and dull complexions, problematic skin, ulcers, and wrinkles	[1, 32, 36–38, 40–43]
Citrus tangerina	Tangerine	Acne, chapped skin, inflammation, oily conditions, rashes, stretch marks, and toner	[36, 40, 42]
Commiphora myrrha	Myrrh	Acne, antiseptic, athlete’s foot, bacterial infections, bedsores, boils, cracked skin, cuts, dermatitis, eczema, fungal infections (athlete’s foot, ringworm), healing agent, inflammation, scars, sores, ulcers, weeping wounds, and wrinkles	[1, 2, 26, 32, 36–43]
Coriandrum sativum	Coriander	Used to prevent the growth of odour causing bacteria	[37]
Cupressus sempervirens	Cypress	Acne, blocked pores, bromodosis, cellulite, cellulitis, deodorant, hyperhidrosis, oily conditions, rashes, rosacea, and wounds	[1, 2, 32, 36–38, 40–43]
Curcuma longa	Turmeric	Cuts, sores, and wounds	[40]
Cymbopogon citratus	Lemongrass	Acne, athlete’s foot, bacterial infections, blocked or open pores, cellulite, fungal infections, hyperhidrosis, oily conditions, and toner	[2, 32, 36, 37, 41, 42]
Cymbopogon martini	Palmarosa	Acne, bacterial infections, balancing sebum, damaged and dry complexions, dermatitis, eczema, fungal infections, oily conditions, pressure sores, psoriasis, scars, toner, tonic, sores, wounds, and wrinkles	[2, 32, 36–42]
Cymbopogon nardus	Citronella	Bromodosis, hyperhidrosis, oily conditions, and softener	[32, 40, 42]
Daucus carota	Carrot seed	Aged and dry complexions, carbuncles, dermatis, eczema, inflammation, oily conditions, pruritus, psoriasis, rashes, scarring, toner, ulcers, vitiligo, weeping sores, wounds, and wrinkles	[2, 32, 36, 40, 42]
Dryobalanops aromatica	Borneol (Borneo Camphor)	Cuts and sores	[32]
Eucalyptus globulus	Eucalyptus	Abscesses, antiseptic, athlete’s foot, bacterial dermatitis, bacterial infections, blisters, boils, burns, chicken pox, cleanser, congested conditions, cuts, fungal infections, general infections, herpes (cold sores), inflammation, insect bites, shingles, sores, ulcers, and wounds	[1, 26, 32, 36–39, 41–43]
Syzygium aromaticum	Clove	Acne, antiseptic, athlete’s foot, burns, cuts, cold sores, fungal infections, lupus, sores, septic ulcers, and wounds	[32, 36, 37, 41, 42]
Scientific name	Common name	Dermatological use	Reference
---------------------------	-------------	---	-------------------
Ferula galbaniflua	Galbanum	Abscesses, acne, blisters, boils, cuts, inflammation, scar tissue improvement, toner, and wounds	[32, 36]
Foeniculum dulce	Fennel	Aged and wrinkled complexions, bromodosis, cellulite, *cellulitis*, congested, greasy, and oily conditions, cleanser, and tonic	[1, 32, 36, 37, 40–43]
Guaiacum officinale	Guaiacwood	Firming or tightening the skin	[36]
Helichrysum italicum	Immortelle/everlasting/Helichrysum	Abscesses, acne, athlete’s foot, bacterial infections, boils, blisters, cell regeneration, cuts, damaged skin conditions, dermatitis, eczema, fungal infections (ringworm), inflammation, *psoriasis*, rosacea, scars, sores, ulcers, and wounds	[2, 32, 36, 40, 41]
Humulus lupulus	Hops	Dermatitis, ulcers, rashes, and nourisher	[32]
Hyssopus officinalis	Hyssop	Cuts, dermatitis, eczema, healing agent, inflammation, scars, sores, and wounds	[32, 36, 41]
Jasminum officinale	Jasmine	Aged and dry complexions, general care, inflammation, revitalization, oily conditions, and psoriasis	[2, 26, 32, 36, 37, 40]
Juniperus virginiana	Juniper	Acne, antiseptic, blocked pores, cellulite, congested and oily conditions, deodorant, eczema, dermatitis, general care, *general infections*, *psoriasis*, toner, ulcers, weeping eczema, and wounds	[1, 2, 32, 36, 37, 39, 41–43]
Juniperus oxycedrus	Cade	Cuts, dermatitis, eczema, sores, and spots	[32]
Kunzea ericoides	Kānuka	Athlete’s foot	[40]
Laurus nobilis	Bay	Acne, fungal infections, inflammation, oily conditions, *pressure sores*, and varicose ulcers	[32, 36, 41]
Lavandula angustifolia	Lavender	Abscesses, acne, antiseptic, bacterial infections, blisters, boils, burns, carbuncles, cellulite, congested and oily conditions, cuts, deodorant, dermatitis, eczema, foot blisters, fungal infections (athlete’s foot, ringworm), general care, healing agent, inflammation, insect bites and stings, *pressure sores*, pruritus, psoriasis, rosacea, scalds, scarring, sores, sunburn, ulcers, viral infections (chicken pox, cold sores, shingles, and warts), and wounds	[2, 26, 32, 36–43]
Lavandula flagrans	Lavandin	Acne, abscesses, boils, blisters, congested conditions, cuts, eczema, healing agent, inflammation, insect bites and stings, *pressure sores*, scalds, sores, and wounds	[32, 36, 41]
Lavandula spica	Lavender spike	Abscesses, acne, bacterial infections, blisters, boils, burns, congested and oily conditions, cuts, dermatitis, eczema, inflammation, fungal infections (athlete’s foot, ringworm), *pressure sores*, psoriasis, sores, ulcers, and wounds	[32, 36, 41]
Leptospermum scoparium	Manuka	Acne, cuts, fungal infections (athlete’s foot, ringworm), ulcers, and wounds	[2, 40]
Scientific name	Common name	Dermatological use	Reference
----------------------------------	-------------------	--	-----------------
Verbena officinalis	Verbena	Congested conditions and nourisher	[36]
Liquidambar orientalis	Sweetgum	Cuts, ringworm, sores, and wounds	[32]
Litsea cubeba	May Chang	Acne, dermatitis, greasy and oily conditions, and hyperhidrosis	[32, 36]
Melaleuca alternifolia	Tea tree	Abrasions, abscesses, acne, antiseptic, bacterial infections, blemishes, blisters, boils, burns, carbuncles, cuts, dandruff, fungal infections (athlete's foot, nails, ringworm, and tinea), inflammation, insect bites, oily conditions, rashes, sores, spots, sunburn, ulcers, viral infections (cold sores, chicken pox, herpes, shingles, and warts), and wounds	[1, 2, 26, 32, 36–43]
Melaleuca cajuputi	Cajuput	Acne, insect bites, oily conditions, psoriasis, and spots	[32, 36, 42]
Melaleuca viridiflora	Niaouli/Gomenol	Abscesses, acne, antiseptic, bacterial infections, blisters, boils, burns, chicken pox, congested and oily conditions, cuts, eruptions, healing agent, insect bites, psoriasis, sores, ulcers, and wounds	[2, 32, 36, 39–42]
Melissa officinalis	Melissa/lemon balm	Allergic reactions, cold sores, eczema, fungal infections, inflammation, insect stings, ulcers, and wounds	[1, 26, 32, 36, 41, 42]
Mentha piperita	Peppermint	Acne, antiseptic, blackheads, chicken pox, congested and greasy conditions, dermatitis, inflammation, pruritus, ringworm, scabies, softerner, toner, and sunburn	[1, 2, 32, 36, 37, 41–43]
Mentha spicata	Spearmint	Acne, congested conditions, dermatisits, pruritus, scabs, and sores	[32, 36, 39, 42]
Myristica fragrans	Nutmeg	Hair conditioner	[36]
Myrocarpus fastigiatus	Cabreuva	Cuts, scars, and wounds	[32]
Myrtus communis	Myrtle	Acne, antiseptic, blemishes, blocked pores, bruises, congested and oily conditions, and psoriasis	[2, 32, 36, 40]
Nardostachys jatamansi	Spikenard	Eczema, inflammation, psoriasis, and sores	[32, 40]
Ocimum basilicum	Basil	Acne, antiseptic, congested conditions, insect bites, and wasp stings	[1, 36, 37, 39, 40, 42]
Origanum majorana	Marjoram	Bruises and fungal infections	[32, 36]
Origanum vulgare	Oregano	Athlete's foot, bacterial infections, cuts, eczema, fungal infections, psoriasis, warts, and wounds	[36, 41]
Pelargonium odoratissimum	Geranium	Acne, aged and dry complexions, bacterial infections, balancing sebum, burns, cellulite, chicken pox, congested and oily conditions, cracked skin, cuts, dermatitis, deodorant, eczema, fungal infections (athlete's foot, ringworm), general care, healing agent, herpes, impetigo, inflammation, measles, psoriasis, rosacea, shingles, problematic skin, sores, ulcers, and wounds	[2, 26, 32, 36–43]
Scientific name	Common name	Dermatological use	Reference
-----------------	-------------	--------------------	-----------
Pelargonium roseum	Rose geranium	Aging and dry or wrinkled skin	[40]
Petroselinum sativum	Parsley	Bruises, scalp conditioning, and wounds	[36]
Pimpinella anisum	Anise	Antiseptic, bromodosis, congested conditions, cuts, eczema, hyperhidrosis, pruritus, psoriasis, and sores	[36]
Pinus sylvestris	Pine		[32, 36, 41–43]
Piper nigrum	Black pepper	Bruses and fungal infections	[36, 42]
Pistacia lentiscus	Mastic	Abscesses, blisters, boils, cuts, ringworm, and wounds	[32]
Pistacia palaestina	Terebinth	Abscesses, blisters, boils, cuts, infectious wounds, ringworm, and sores	[32, 36]
Pogostemon patchouli	Patchouli	Abscesses, acne, chapped or damaged and cracked skin, dermatitis, cold sores, eczema, fungal infections (athlete's foot), general care, healing agent, impetigo, inflammation, oily conditions, pruritus, scalp disorders, scars, sores, tonic, stretch marks, and wounds	[1, 2, 32, 36–43]
Rosa damascena	Rose otto	Aging and dry conditions, bacterial infections, eczema, inflammation, toner, tonic, and wounds	[2, 38–41]
Rosa gallica	Rose	Broken capillaries, cuts, dry and aging conditions, burns, eczema, healing agent, inflammation, pruritus, psoriasis, scars, toner, tonic, stretch marks, sunburn, thread veins, and wrinkles	[26, 32, 36–38, 42, 43]
Rosmarinus officinalis	Rosemary	Acne, bacterial infections, balancing sebum, cellulite, congested and oily conditions, dandruff, dermatitis, dry scalp, eczema, general care, and rosacea	[1, 32, 36, 39, 41, 42]
Salvia lavandulifolia	Spanish sage	Acne, antiseptic, bacterial infections, cellulite, cold sores, cuts, dermatitis, deodorant, hyperhidrosis, oily conditions, psoriasis, sores, and ulcers	[32, 36, 37, 41]
Salvia sclarea	Clary sage	Abscesses, acne, balancing sebum, blisters, boils, cell regeneration, dandruff, dermatitis, greasy and oily conditions, hyperhidrosis of the feet, inflammation, ulcers, and wrinkles	[1, 2, 32, 36, 40, 42]
Santalum album	Sandalwood	Acne, antiseptic, bacterial infections, boils, burns, chapped or damaged and dry conditions, eczema, fungal infections, general care, greasy and oily conditions, inflammation, pruritus, sunburn, and wounds	[1, 2, 26, 32, 36–39, 41–43]
Santolina chamaecyparissus	Santolina	Inflammation, pruritus, ringworm, scabs, verrucae, and warts	[36]
Styrax benzoin	Benzoin	Cracks, cuts, dermatitis, eczema, healing, inflammation, injured and irritated conditions, pruritus, sores, and wounds	[1, 2, 32, 36, 40, 42]
Table 1: Continued.

Scientific name	Common name	Dermatological use	Reference
Tagetes minuta	Tagetes	*Bacterial infections, fungal infections, inflammation, and viral infections* (verrucae and warts)	[32, 36, 42]
Thymus vulgaris	Thyme	*Abscesses, acne, antiseptic, blisters, burns, carbuncles, cellulitis, cuts, deodorant, dermatitis, eczema, fungal infections, oily conditions, sores, and wounds*	[1, 32, 36, 37, 41, 42]
Tilia europaea	Linden Blossom	*Blemishes, burns, freckles, softener, tonic, and wrinkles*	[36]
Vetiveria zizanioides	Vetiver	*Acne, antiseptic, balancing sebum, cuts, eczema, malnourished and aging skin, oily conditions, weeping sores, and wounds*	[1, 2, 32, 36, 37, 41, 42]
Viola odorata	Violet	*Acne, bruises, congested and oily conditions, eczema, inflammation, infections, ulcers, and wounds*	[2, 32, 36, 40]
Zingiber officinale	Ginger	*Bruises, carbuncles, and sores*	[36]

* Conditions involved in dermatological infections are shown in italics.

** A medical condition that causes excessive sweating.

2.2. **Inclusion Criteria.** In order to effectively understand the possible implications and potential of essential oils, the inclusion criteria were broad, especially with this being the first review to collate this amount of scientific evidence with the aromatherapeutic literature. Inclusion criteria included the following:

(i) Type of *in vitro* studies for bacterial and fungal pathogens by means of the microdilution assay, macrodilution assay, or the agar dilution assay

(ii) *In vivo* studies

(iii) Antiviral studies

(iv) Case reports

(v) Animal studies

(vi) All clinical trials

2.3. **Exclusion Criteria.** Papers or pieces of information were excluded for the following reasons:

(i) Lack of accessibility to the publication

(ii) If the incorrect *in vitro* technique (diffusion assays) was employed

(iii) Indigenous essential oils with no relevance to commercial oils

(iv) If they were in a language not understood by the authors of the review

(v) Pathogens studied not relevant to skin disease

2.4. **Data Analysis.** The two authors (Ané Orchard and Sandy van Vuuren) conducted their own data extraction independently, after which critical analysis was applied. Information was extrapolated and recorded and comments were made. Observations were made and new recommendations were made as to future studies.

3. Results

3.1. **Description of Studies.** After the initial database search, 1113 reports were screened. Duplicates were removed, which brought the article count down to 513, after which the abstracts were then read and additional reports removed based on not meeting the inclusion criteria. A final number of 349 articles were read and reviewed. Of these, 143 were *in vitro* bacterial and fungal studies (individual oil and 45 combinations), two *in vivo* studies, 15 antiviral studies, 19 clinical trials, and 32 toxicity studies. The process that was followed is summarised in Figure 2.

3.2. **Experimental Approaches**

3.2.1. **Chemical Analysis.** Essential oils are complex organic (carbon containing) chemical entities, which are generally made up of hundreds of organic chemical compounds in combination that are responsible for the essential oil’s many characteristic properties. These characteristics may include medicinal properties, such as anti-inflammatory, healing, or antimicrobial activities, but may also be responsible for negative qualities such as photosensitivity and toxicity [37].

Even with the high quality grade that is striving for in the commercial sector of essential oil production, it must be noted that it is still possible for essential oil quality to display discrepancies, changes in composition, or degradation. The essential oil composition may even vary between the same species [1, 44]. This may be due to a host of different factors
3.3. Antimicrobial Investigations. Several methods exist that may be employed for antimicrobial analysis, with two of the most popular methods being the diffusion and the dilution methods [56–59].

3.3.1. Diffusion Method. There are two types of diffusion assays. Due to the ease of application, the disc diffusion method is one of the most commonly used methods [60]. This is done by applying a known concentration of essential oil onto a sterile filter paper disc. This is then placed onto agar which has previously been inoculated with the microorganism to be tested, or it is spread on the surface. If necessary, the essential oil may also be dissolved in an appropriate solvent. The other diffusion method is the agar diffusion method, where, instead of discs being placed, wells are made in the agar into which the essential oil is instilled. After incubation, antimicrobial activity is then interpreted from the zone of inhibition (measured in millimetres) using the following criteria: weak activity (inhibition zone \(\leq 12 \text{ mm} \)), moderate activity (12 \(< \text{ inhibition zone} < 20 \text{ mm} \)), and strong activity (inhibition zone \(\leq 20 \text{ mm} \)) [24, 60–62].

Although this used to be a popular method, it is more suitable to antibiotics rather than essential oils as it does not account for the volatile nature of the essential oils. Essential oils also diffuse poorly through an aqueous medium as they are hydrophobic. Thus, the results are less reliable as they are influenced by the ability of the essential oil to diffuse through the agar medium, resulting in variable results, false negatives, or a reduction in antimicrobial activity [24, 63]. The results have been found to vary significantly when tested this way and are also influenced by other factors such as disc size, amount of compound applied to the disc, type of agar, and the volume of agar [57, 59, 64–68]. It has thus been recommended that results are only considered where the minimum inhibitory concentration (MIC) or cidal concentration values have been established [65].

3.3.2. Dilution Methods. The dilution assays are reliable, widely accepted, and promising methods for determining an organism’s susceptibility to inhibitors. The microdilution method is considered the “gold standard” [64, 68–70]. This is a quantitative method that makes it possible to calculate the MIC and allows one to understand the potency of the essential oil [68, 71]. With one of the most problematic characteristics of essential oils being their volatility, the microdilution technique allows for an opportunity to work around this problem as it allows for less evaporation due to the essential oil being mixed into the broth [67].

This microdilution method makes use of a 96-well microtitre plate under aseptic conditions where the essential oils (diluted in a solvent to a known concentration) are serially diluted. Results are usually read visually with the aid of an indicator dye. The microdilution results can also be interpreted by reading the optical density [72, 73]; however, the shortcoming of this method is that the coloured nature of some oils may interfere with accurate turbidimetric readings [74].

Activity is often classified differently according to the quantitative method followed. van Vuuren [56] recommended 2.00 mg/mL and less for essential oils to be considered as noteworthy, Agarwal et al. [75] regarded 1.00% and less, and Hadad et al. [76] recommended \(\leq 250.00 \text{ pg/mL} \). On considering the collection of data and frequency of certain MIC values, this review recommends MIC values of \(\leq 1.00 \text{ mg/mL} \) as noteworthy.

The macrodilution method employs a similar method to that of the microdilution method, except that, instead of a 96-well microtitre plate being used, multiple individual test tubes are used. Although the results are still comparable, this is a time-consuming and a tedious method, whereas the 96-well microtitre plate allows for multiple samples to be tested per plate, allowing for speed, and it makes use of smaller volumes which adds to the ease of its application [77, 78]. The agar
dilution method is where the essential oil is serially diluted, using a solvent, into a known amount of sterile molten agar in bottles or tubes and mixed with the aid of a solvent. The inoculum is then added and then the agar is poured into plates for each dilution and then incubated. The absence of growth after incubation is taken as the MIC [79–81].

3.3.3. The Time-Kill Method. The time-kill (or death kinetic) method is a labour intensive assay used to determine the relationship between the concentration of the antimicrobial and the bactericidal activity [82]. It allows for the presentation of a direct relationship in exposure of the pathogen to the antimicrobial and allows for the monitoring of a cidal effect over time [74]. The selected pathogen is exposed to the antimicrobial agent at selected time intervals and aliquots are then sampled and serially diluted. These dilutions are then plated out onto agar and incubated at the required incubation conditions for the pathogen. After incubation, the colony forming units (CFU) are counted. These results are interpreted from a logarithmic plot of the amount of remaining viable cells against time [74, 82, 83]. This is a time-consuming method; however, it is very useful for deriving real-time exposure data.

3.4. Summary of Methods. The variation in essential oil test methods makes it difficult to directly compare results [24, 58]. Numerous studies were found to employ the use of a diffusion method due to its acclaimed “ease” and “time saving” ability of the application. Researchers tend to use this as a screening tool whereby results displaying interesting outcomes are further tested using the microdilution method [84–87]. The shortcoming of this method is that firstly, due to the discussed factors affecting the diffusion methods, certain essential oils demonstrate no inhibition against the pathogen, and thus further studies with the oils are overlooked. Secondly, the active oils are then investigated further using the microdilution method. Therefore, the researchers have now doubled the amount of time required to interpret the quantitative data. Thirdly, the method may be believed to be a faster method if one considers the application; however, if one considers the preparation of the agar plates and their risk of contamination as well as the overall process of this method, there is very little saving of time and effort.

It is recommended to follow the correct guidelines as set out by the Clinical and Laboratory Standards Institute M38-A (CLSI) protocol [88] and the standard method proposed by the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing (AFST-EUCAST) [89] for testing with bacteria and filamentous fungi.

Other factors that may affect results and thus make it difficult to compare published pharmacological results of essential oils are where data is not given on the chemical composition, the microbial strain number, temperature and length of incubation, inoculum size, and the solvent used. The use of appropriate solvents helps address the factor of poor solubility of essential oils. Examples include Tween, acetone, dimethylformamide (DMF), dimethylsulfoxide (DMSO), and ethanol. Tween, ethanol, and DMSO have, however, been shown to enhance antimicrobial activity of essential oils [24, 53, 90]. Soković et al. [91] tested antimicrobial activity with ethanol as the solvent and Tween. When the essential oils were diluted with Tween, it resulted in a greater antifungal activity; however, Tween itself does not display its own antimicrobial activity [92]. Eloff [93] identified acetone as the most favourable solvent for natural product antimicrobial studies.

The inoculum is a representative of the microorganisms present at the site of infection [94]. When comparing different articles, the bacterial inoculum load ranges from 5×10^2 to 5×10^8 CFU/mL. The antibacterial activity is affected by inoculum size [62, 95–99]. If this concentration is too weak, the effect of the essential oils strengthens; however, this does not allow for a good representation of the essential oil’s activity. If the inoculum is too dense, the effect of the essential oil weakens and the inoculum becomes more prone to cross contamination [100]. Future studies should aim to keep the inoculum size at the recommended 5×10^6 CFU/mL [99].

4. Pathogenesis of Wounds and Skin Infections and the Use of Essential Oils

The pathogenesis of the different infections that are frequently encountered in wounds and skin infections is presented in Table 2. A more in-depth analysis of essential oils and their use against these dermatological pathogens follows.

4.1. Gram-Positive Bacteria. The Gram-positive bacterial cell wall is comprised of a 90–95% peptidoglycan layer that allows for easy penetration of lipophilic molecules into the cells. This thick lipophilic cell wall also results in essential oils making direct contact with the phospholipid bilayer of the cell membrane which allows for a physiological response to occur on the cell wall and in the cytoplasm [183, 184].

4.1.1. Staphylococcus aureus. *Staphylococcus aureus* is a common Gram-positive bacterium that can cause anything from local skin infections to fatal deep tissue infections. The pathogen is also found colonising acne and burn wounds [185–187]. Methicillin-resistant *S. aureus* (MRSA) is one of the most well-known and widespread “superbugs” and is resistant to numerous antibiotics [158]. Methicillin-resistant *S. aureus* strains can be found to colonise the skin and wounds of over 63%–90% of patients and have been especially infamous as being the dreaded scourge of hospitals for several years [22, 188–190]. *Staphylococcus aureus* has developed resistance against erythromycin, quinolones, mupirocin, tetracycline, and vancomycin [190–192].

Table 3 shows some of the antimicrobial *in vitro* studies undertaken on commercial essential oils and additional sub-types against this most notorious infectious agent of wounds. Of the 98 available commercial essential oils documented from the aromatherapeutic literature for use for dermatological infections, only 54 oils have been tested against *S. aureus* and even fewer against the resistant *S. aureus* strain. This is troubling, especially if one considers the regularity of
Table 2: Pathogens responsible for infectious skin diseases.

Skin disease	Anatomical structure affected by infection	Responsible pathogens	Reference			
Bacterial infections						
Abscesses	Skin and subcutaneous tissue	*Staphylococcus aureus*; methicillin-resistant *S. aureus* (MRSA)	[101]			
Acne	Sebum glands	*Propionibacterium acnes*; *S. epidermidis*	[8, 102]			
Actinomyosis	Skin and subcutaneous tissue	*Actinomyces israelii*	[5]			
Boils/carbuncles and furuncles	Hair follicles	*S. aureus*	[8]			
Bromodosis (foot odour)	Epidermis/cutaneous	*Brevibacterium* spp.; *P. acnes*	[6, 103]			
Cellulitis	Subcutaneous fat	*β*-Hemolytic streptococci; *S. aureus*; MRSA	[7, 8, 101]			
Ecthyma	Cutaneous	*S. aureus*; *Streptococcus pyogenes*	[7]			
Erysipelas	Dermis, intradermal	*S. pyogenes*	[8]			
Erythrasma	Epidermis	*Corynebacterium minutissimum*	[5]			
Folliculitis	Hair follicles	*S. aureus* MRSA	[8, 101]			
Impetigo	Epidermis	*S. pyogenes*; *S. aureus*	[8, 104, 105]			
Periorbital cellulitis	Subcutaneous fat	*Haemophilus influenzae*	[106]			
Surgical wounds	Skin, fascia, and subcutaneous tissue	*Escherichia coli*; *Enterococcus* spp.; *Pseudomonas aeruginosa*; *S. aureus*	[8]			
Necrotizing infections						
Necrotizing fasciitis	Skin, fascia, subcutaneous tissue, and muscle	*S. pyogenes*; anaerobic pathogens	[5, 8, 107]			
Gas forming infections	Skin, subcutaneous tissue, and muscle	Gram-negative and various anaerobes	[5]			
Gas gangrene	Skin, subcutaneous tissue, and muscle	*Clostridium* spp. (*C. perfringens, C. septicum, C. tertium, C. oedematiens, and C. histolyticum*)	[5, 8, 107]			
Fungal infections						
Candidal infections	Superficial skin	*Candida albicans*	[7]			
(intertrigo, balanitis, nappy rash, angular cheilitis, and paronychia)						
Eumycetoma	Subcutaneous infection	*Madurella mycetomatis*	[108]			
Dermatophytosis (tinea pedis/athlete's foot, tinea cruris, tinea capitis, tinea corporis, tinea manuum, and tinea unguium/onychomycosis)	Keratin layer, epidermis	*Dermatophytes* (*Microsporum, Epidermophyton, and Trichophyton* spp.)	[8]			
Seborrheic dermatitis	Subcutaneous infection	*Malassezia furfur*	[109]			
Tinea/pityriasis versicolor	Superficial skin	*M. furfur*	[7, 110]			
Viral infections						
Herpes simplex	Mucocutaneous epidermidis	Herpes simplex virus (HSV) type 1, orofacial disease; HSV type 2, genital infection	[7]			
Chicken pox	Mucocutaneous epidermidis	Varicella zoster				
Molluscum contagiosum	Prickle cells of epidermidis	Poxvirus				
Shingles	Mucocutaneous epidermidis	Herpes zoster				
Warts and verrucae	Epidermis	Human papillomavirus	[5, 7]			
Essential oil*	Method*	Species strain†	Solvent‡	Result‡	Main components‡	Reference
---------------	---------	----------------	----------	---------	-----------------	-----------
Abies balsamea (fir/balsam)	MIC	S. aureus (ATCC 6538)	Acetone	3.00 mg/mL	β-Pinene (31.00%), bornyl acetate (14.90%), δ-3-carene (14.20%)	[99]
Abies holophylla (Manchurian fir)	MIC	S. aureus (ATCC 25923)	5% DMSO	21.80 mg/mL >21.80 mg/mL	Bicyclo[2.2.1]heptan-2-ol (28.05%), δ-3-carene (13.85%), α-pinene (11.68%), camphene (10.41%)	[111]
Abies koreana (Korean fir)	MIC	S. aureus (ATCC 6538)	5% DMSO	21.80 mg/mL >21.80 mg/mL	Bornyl ester (41.79%), camphene (15.31%), α-pinene (11.19%)	[111]
Adulaea ambicularis (yarrow)	MIC	S. aureus (ATCC 25923)	Tween 80	72.00 mg/mL	Eucalyptol (24.60%), camphor (16.70%), α-terpineol (10.20%)	[112]
Aegilica setacea (broad leaf yarrow)	MIC	S. aureus (ATCC 25923)	Tween 80	4.50 mg/mL	Sabinene (10.80%), eucalyptol (18.50%)	[113]
Angelica archangelica (angelica), root	MIC	S. aureus (ATCC 6538)	Acetone	1.75 mg/mL	α-Phellandrene (18.50%), α-pinene (13.70%), β-phellandrene (12.60%), δ-3-carene (12.1%)	[99]
Angelica archangelica (angelica), seed	MIC	S. aureus (ATCC 6538)	Acetone	2.00 mg/mL	β-Phellandrene (59.20%)	[99]
Anthemis ssp. (chamomile), flowers	MIC	S. aureus (ATCC 6538)	DMSO	1.00 mg/mL	α-Pinene (39.00%), terpinen-4-ol (32.10%)	[114]
Anthemis ssp. (chamomile), aerial parts	MIC	S. aureus (ATCC 6538)	DMSO	0.50 mg/mL	α-Pinene (49.40%), terpinen-4-ol (21.80%)	[114]
Anthemis ssp. (chamomile), leaves	MIC	S. aureus (ATCC 6538)	Acetone	16.00 mg/mL	2-Methylbutyl-2-methyl propanoic acid (31.50%), limonene (18.30%), 3-methylpentyl-2-butenic acid (16.70%), isobutyl isobutyrate (10.00%)	[99]
Artemisia dracunculus (tarragon)	MIC	S. aureus (ATCC 6538)	Acetone	3.00 mg/mL	Estragole (82.60%)	[99]
Backhousia citriodora (lemon myrtle)	ADM	S. aureus (NCTC 4163)	MRSA (clinical isolate)	Tween 20 0.05% v/v 0.20% v/v	Geranial (51.40%), neral (40.90%)	[115]
Boswellia carterii (frankincense) (9 samples)	MIC	S. aureus (ATCC 12600)	Acetone	5.00–16.00 mg/mL	α-Pinene (4.80–40.40%), myrcene (1.60–52.40%), limonene (1.90–20.40%), α-Bisene (0.30–52.40%), p-cymene (2.70–16.90%), β-pinene (0.30–13.10%)	[116]
Boswellia frereana (frankincense) (3 samples)	MIC	S. aureus (ATCC 6538)	Acetone	4.00–12.00 mg/mL	α-Pinene (2.00–64.70%), α-thujene (0.00–31.10%), p-cymene (5.40–16.90%)	[116]
Boswellia neglecta (frankincense)	MIC	S. aureus (ATCC 12600)	Acetone	6.00 mg/mL	NCR	[116]
Boswellia papyrifera (frankincense)	MIC	S. aureus (ATCC 12600)	Acetone	1.50 mg/mL	NCR	[116]
Boswellia serrata (frankincense) (2 samples)	MIC	S. aureus (ATCC 6538)	Acetone	2.50 mg/mL	α-Pinene (4.80–40.40%), myrcene (1.60–52.40%), limonene (1.90–20.40%), α-Bisene (0.30–52.40%), p-cymene (2.70–16.90%), β-pinene (0.30–13.10%)	[116]
Boswellia spp. (frankincense) (4 samples)	MIC	S. aureus (ATCC 6538)	Acetone	10.00 mg/mL	α-Pinene (28.00%), limonene (14.60%)	[116]
Cananga odorata (ylang-ylang)	MIC	S. aureus (ATCC 6538)	Acetone	2.00 mg/mL	Bicyclohexylphellandrene (19.50%), β-farnesene (13.90%)	[99]
Cananga odorata (ylang-ylang), hairs	MIC	S. aureus (ATCC 6538)	Acetone	4.00 mg/mL	Benzyl acetate (31.90%), linalool (27.00%), methyl benzoate (10.40%)	[99]

* Essential oil: plant species, part of plant, and extraction method
* Method: MIC (minimum inhibitory concentration), ADM (antimicrobial disc method)
* Species strain: S. aureus (ATCC strains, clinical isolates)
* Solvent: Acetone, DMSO
* Result: MIC value
* Main components: Percentage of major compounds
* Reference: Literature citation
| Essential oil | Method | Species strain | Solvent | Result | Main components | Reference |
|--------------|--------|----------------|---------|--------|-----------------|-----------|
| **Carum carvi** (caraway) | MIC | *S. aureus* (ATCC 6538) | Acetone | 2.00 mg/mL | Limonene (27.60%), carvone (67.50%) | [99] |
| | | *S. aureus* | DMSO | ≤1.00 μg/mL | DL-limonene (53.35%), β-selinene (11.08%), β-elemene (10.09%) | [118] |
| **Caryophyllus aromaticus** (clove) | ADM₀ | *S. aureus* (ATCC 25923, 16 MRSA and 15 MSSA clinical isolates) | Tween 80 | 2.70 mg/mL | Eugenol (75.85%), eugenol acetate (16.38%) | [119] |
| **Cinnamomum Cassia** (cinnamon) | MIC | *S. aureus* | DMSO | ≤1.00 μg/mL | Cinnamaldehyde (11.25%) | [118] |
| **Cinnamomum zeylanicum** (cinnamon) | MIC | *S. aureus* (ATCC 25923) | Acetone | 2.70 mg/mL | Eugenol (80.00%) | [99] |
| | | n.m. | n.m. | 0.02 mg/mL | NCR | [85] |
| | ADM | *S. aureus* (ATCC 25923, 16 MRSA and 15 MSSA clinical isolates) | Tween 80 | 0.25 mg/mL | Cinnamaldehyde (86.31%) | [119] |
| **Citrus aurantifolia** (lime) | ADM | *S. aureus* (ATCC 25923) | 10% DMSO | 12.80 mg/mL | Cinnamaldehyde (52.42%) | [80] |
| **Citrus aurantium** (bitter orange), flowers | MIC | *S. aureus* (ATCC 25923) | 50% DMSO | 0.31 mg/mL | Limonene (27.50%), E-nerolidol (17.50%), α-terpineol (14.00%) | [120] |
| | | *S. aureus* (ATCC 6536) | Acetone | 0.25 μL/mL | Bergamol (16.10%), linalool (14.02%), D-limonene (13.76%) | [62] |
| **Citrus bergamia** (bergamot) | MAC | *S. aureus* (ATCC 6538) | n.m. | 1.25 mg/mL | NCR | [99] |
| **Citrus grandis** (grapefruit) | MIC | *S. aureus* (ATCC6538) | Acetone | 3.00 mg/mL | Limonene (74.80%) | [99] |
| **Citrus medica limonum** (lemon) | ADM | *S. aureus* (ATCC 25923) | 10% DMSO | >12.80 mg/mL | NCR | [80] |
| | | *S. aureus* (ATCC 6538) | Acetone | 3.00 mg/mL | NCR | [99] |
| **Citrus sinensis** (orange) | ADM | *S. aureus* (ATCC 25923) | 10% DMSO | >12.80 mg/mL | NCR | [80] |
| | | *S. aureus* (ATCC 9144) | 0.1% ethanol | 0.94 mg/L | NCR | [121] |
| | | *S. aureus* (ATCC 6538) | Acetone | 4.00 mg/mL | Limonene (93.20%) | [99] |
| **Commiphora guidotti** (myrrh) | MIC | *S. aureus* (ATCC 12601) | Acetone | 1.50 mg/mL | (E)-β-Ocimene (52.60%), α-santalene (11.10%), (E)-bisabolene (16.00%) | [117] |
| **Commiphora myrrha** (myrrh) | MIC | *S. aureus* (ATCC 12601) | Acetone | 1.30 mg/mL | Furanogetmacrene (15.90%), furanoeadesma-1,3-diene (44.30%) | [117] |
| | | *S. aureus* (ATCC 6538) | Acetone | 2.00 mg/mL | Furanoeadesma-1,3-diene (57.70%), lindestrene (16.30%) | [117] |
| **Coriandrum sativum** (coriander), seed | MIC | *S. aureus* (7 clinical isolates) | 0.5% DMSO with Tween 80 | 0.16 mg/mL | NCR | [122] |
| **Cupressus arizonica** (smooth cypress), branches | MIC | *S. aureus* (ATCC 25923) | Acetone | 1.50 μg/mL | α-Pinene (58.60%), δ-3-carene (15.60%) | [123] |
| **Cupressus arizonica** (smooth cypress), female cones | | | 10% DMSO | 2.95 μg/mL | α-Pinene (60.50%), δ-3-carene (15.30%) | [123] |
| **Cupressus arizonica** (smooth cypress), leaves | | | | 0.98 μg/mL | α-Pinene (20.00%), umbellulone (18.40%) | [123] |
| **Cupressus sempervirens** (cypress) | MIC | *S. aureus* (ATCC6538) | Acetone | 12.00 mg/mL | α-Pinene (41.20%), δ-3-carene (23.70%) | [99] |
| **Cymbopogon giganteus** (lemongrass) | MIC | *S. aureus* (ATCC 9144) | 0.5% ethanol | 2.10 mg/mL | Limonene (42.00%), trans-p-mentha-1(7),8-dien-2-ol (14.20%), cis-p-mentha-1(7),8-dien-2-ol (12.00%) | [124] |
Table 3: Continued.

Essential oil^a	Method^b	Species strain^c	Solvent^d	Result^e	Main components^f	Reference
Cymbopogon citratus (lemon grass)	MIC	S. aureus (ATCC 9144)	0.5% ethanol	2.50 mg/mL	Geranial (48.10%), neral (34.60%), myrcene (11.00%)	[124]
	MAC	S. aureus (MTCC 96)	DMSO	≤1.00 μg/mL	Geranial (27.34%), β-myrcene (16.53%), Z-citral (8.36%)	[118]
	MIC	S. aureus (ATCC6538)	Acetone	0.27 μL/mL	Citral (72.80%)	[118]
Cymbopogon martinii (palmarosa)	MAC	S. aureus (MTCC 96)	Sodium taurocholate	0.80 μL/mL	Geranial (61.6%)	[125, 126]
Cymbopogon nardus (citronella)	MIC	S. aureus (ATCC6538)	Acetone	4.00 mg/mL	Citronellal (38.30%), geraniol (20.70%), citronellol (18.80%)	[99]
Daucus carota (carrot seed)	MIC	S. aureus (ATCC6538)	Acetone	2.00 mg/mL	Carotol (44.4%)	[99]
Eucalyptus camaldulensis (eucalyptus)	MAC	S. aureus (ATCC 25923)	Acetone	3.90 µg/mL	1,8-Cineole (54.37%), α-pinene (13.24%)	[127]
	MIC	S. aureus (ATCC 10442)	Tween 80	10.00 mg/mL	1,8-Cineole (81.9%)	[128]
	MIC	S. aureus (MTCC 96 USA 300)	DMSO	0.20% v/v	NCR	[129]
	MAC	S. aureus (MTCC 96)	Sodium taurocholate	0.41 μL/mL	Cineole (23.20%)	[125, 126]
Eucalyptus globulus (eucalyptus)	ADM	S. aureus (ATCC 35592)	Tween 20	85.60 μg/mL	Eucalyptol (47.20%), (+)-spathulenol (18.10%)	[81]
	MIC	S. aureus (ATCC 25922)	Tween 20	53.56 μg/mL	85.66 μg/mL	[81]
		S. aureus (MTCC 6538)	Sodium taurocholate	0.41 μL/mL	Eucalyptol (81.9%)	[81]
	MIC	S. aureus (ATCC 25923)	Acetone	4.00 mg/mL	1,8-Cineole (58.00%), α-terpineol (13.20%)	[99]
	MIC	S. aureus (ATCC 33592)	Acetone	2.00 mg/mL	NCR	[130]
		S. aureus (ATCC 33592)	0.75 mg/mL	NCR	[130]	
Eucalyptus radiata (eucalyptus)	MIC	S. aureus (ATCC 25923)	Acetone	2.00 mg/mL	1,8-Cineole (65.7% ± 9.5), α-terpineol (12.8% ± 4.4)	[130]
		MRS A (ATCC 33592)		0.50 mg/mL	NCR	[130]
Eucalyptus camaldulensis (eucalyptus)	MIC	S. aureus (ATCC 25923)	Acetone	1.00 mg/mL	NCR	[130]
Eucalyptus citriodora (eucalyptus)	MIC	S. aureus (ATCC 25923)	Acetone	2.00 mg/mL	NCR	[130]
Eucalyptus smithii (eucalyptus)	MIC	S. aureus (ATCC 25923)	Acetone	2.00 mg/mL	NCR	[130]
Eucalyptus dives (eucalyptus)	MIC	S. aureus (ATCC 25923)	Acetone	1.00 mg/mL	NCR	[130]
Eucalyptus intertexta (eucalyptus)	MIC	S. aureus (ATCC 29737)	10% DMSO	7.80 μg/mL	NCR	[131]
Essential oil	Method	Species strain	Solvent	Result	Main components	
--------------	--------	----------------	---------	--------	-----------------	
Eucalyptus largiflorens (eucalyptus)	MAC	*S. aureus* (ATCC 25923)	n.m.	7.80 μg/mL	1,8-Cineol (70.32%), α-pinene (15.46%)	
	MIC	*S. aureus* (ATCC 29372)	10% DMSO	250.00 μg/mL	NCR	
Eucalyptus melliodora (eucalyptus)	MAC	*S. aureus* (ATCC 25923)	n.m.	3.90 μg/mL	1,8-Cineol (67.65%), α-pinene (18.58%)	
Eucalyptus polycarpa (eucalyptus)	MAC	*S. aureus* (ATCC 25923)	n.m.	1.95 μg/mL	1,8-Cineol (50.12%)	
Foeniculum dulce (fennel)	MIC	*S. aureus* (ATCC 6358)	Acetone	2.00 mg/mL	E-Anethole (79.10%)	
Foeniculum vulgare (fennel)	MIC	*S. aureus* (ATCC 25923)	DMSO	>10.00 mg/mL	trans-Anethole (68.53%), estragole (10.42%)	
		S. aureus (clinical isolate)		≤1.00 μg/mL	trans-Anethole (33.3%), DL-limonene (19.66%), carvone (12.03%)	
Foeniculum vulgare (fennel) (6 samples)	MAC	*S. aureus* (ATCC 28213)	Tween 20	50.00 – 100.00 μg/mL	Limonene (16.50–21.50%), (E)-anethole (59.80–66.00%)	
		S. aureus (ATCC 28213)		<1.00 μg/mL	Limonene (0.20–17.70%), (E)-anethole (66.30–90.40%)	
Geranium dissectum (geranium)	MIC	*S. aureus*	DMSO	≤0.10 μg/mL	β-Citronellol (25.45%), geraniol (13.83%)	
Hyssopus officinalis (hyssop)	MIC	*S. aureus* (ATCC 6358)	Acetone	3.00 mg/mL	Isopinocamphone (48.70%), pinocamphone (15.50%)	
Juniperus aetheroleum (juniper)	MAC₆₀	*S. aureus* (ATCC 6358)	n.m.	40.00% v/v	α-Pinene (29.17%), β-pinene (17.84%), sabine (13.55%)	
	MAC₂₀	*S. aureus* (MFBF)	n.m.	15.00% v/v		
Juniperus communis (juniper), berry	MIC	*S. aureus* (ATCC 25923)	MRSA (15 clinical isolates)	10.00 mg/mL	NCR	
	MIC	*S. aureus* (ATCC 29213)	Rhanol	>2.00% v/v		
Juniperus excelsa (juniper), berries, Dojran	ADM	*S. aureus* (ATCC 29213)	50% DMSO	>50.00%	α-Pinene (70.81%)	
Juniperus excelsa (juniper), leaves, Dojran	ADM	*S. aureus* (ATCC 29213)	50% DMSO	125.00%	α-Pinene (33.83%)	
Juniperus excelsa (juniper), leaves, Ohrid	ADM	*S. aureus* (ATCC 29213)	50% DMSO	125.00%	Sabine (29.49%)	
Juniperus officinalis (juniper), berry	MIC	*S. aureus* (ATCC 29213)	MRSA (clinical isolates)	10.00 mg/mL	α-Pinene (39.76%)	
Juniperus virginiana (juniper)	MIC	*S. aureus* (ATCC 6358)	Acetone	2.00 mg/mL	Thujopsene (29.80%), cedrol (14.90%), α-cedrene (12.40%)	
Juniperus virginiana (juniper), berries	MIC	*S. aureus* (ATCC 6358)	Acetone	3.00 mg/mL	α-Pinene (20.50%), myrcene (13.70%), bicyclophellandrene (10.70%)	
Kunzea ericoides (Kanuka)	MAC	*S. aureus* (ATCC 6358)	MRSA (clinical isolate)	0.25% v/v	Thujopsene (29.80%), cedrol (14.90%), α-cedrene (12.40%)	
	MIC	*S. aureus* (ATCC 12600)	Acetone	0.20% v/v	α-Pinene (61.60%)	
Laurus nobilis (bay)	MIC	*S. aureus* (ATCC 6358)	Acetone	0.83 mg/mL	Eugenol (57.20%), myrcene (14.30%), carvacrol (12.70%)	

[References: 99, 118, 127, 130, 131, 132, 133, 134, 135, 136]
Species	Strain	Solvent	Result	Main Components	Reference	
Lavandula angustifolia (lavender)	MIC	Acetone	2.00 mg/mL	Linalyl acetate (36.70%), linalool (31.40%), terpinen-4-ol (14.90%)	[99]	
	S. aureus (ATCC 6538)					
	S. aureus (NCTC 6571)					
	S. aureus (NCTC1803)					
	MRSA (15 clinical isolates)	Bihanol	0.50% v/v	NCR	[136]	
	S. aureus (ATCC 12600)	Acetone	8.60 mg/mL	Linalool (30.80%), linalyl acetate (31.30%)	[140]	
	S. aureus (clinical strain and ATCC 6538)	Acetone	2.00 mg/mL	Linalyl acetate (36.7%), linalool (31.4%), terpinen-4-ol (14.9%)	[99]	
Lavandula dentata (French lavender)	MIC					
	S. aureus (BI 18)	5% DMSO	1.53 mg/mL	Camphor (12.40%)	[141]	
Lavandula officinalis (lavender)	MIC					
	S. aureus	DMSO	≤0.00 µg/mL	δ-3-Carene (1714%), α-fenchene (16.79%), diethyl phthalate (13.84%)	[118]	
Lavandula stoechas (French lavender)	MIC	Tween 80	2.00 µL/mL	10-h-Octahydro-4-(12)-A-diene (23.62%), cubenol (16.19%)	[142]	
	S. aureus (STCC 976)					
	MRSA (clinical isolate)	20% DMSO	31.25 µg/mL	α-Fenchone (39.20%), α-Fenchone (41.90%), 1,8-cineole (15.60%), camphor (12.10%)	[47]	
Lavandula stoechas (French lavender), flower	MIC					
Lavandula stoechas (French lavender), leaf	MIC					
Leptospermum scoparium (manuka)	MAC	Twee 80	0.10% v/v	(−)-E-Calamenene (14.50%), leptospermone (17.60%)	[137]	
	S. aureus (ATCC 6538)					
	MRSA (clinical isolate)					
	S. aureus (ATCC 12600)	Acetone	4.00 mg/mL	Eudesma-4(14),11-diene (6.2–14.5%), α-selinene (5.90–13.5%), (E)-methyl cinnamate (9.2–19.5%)	[138]	
Litsae cubeba (May Chang)	MIC					
	S. aureus (ATCC 6538)	Acetone	1.50 mg/mL	Geranial (45.60%), nerol (31.20%)	[99]	
Matricaria chamomilla (German chamomile)	MIC					
	S. aureus (ATCC 6538)	Acetone	1.50 mg/mL	Bisabolene oxide A (46.90%), β-farnesene (19.20%)	[99]	
Matricaria recutita (German chamomile)	ADM₉₀					
	S. aureus (ATCC 25923, 16 MRSA and 15 MSSA clinical isolates)	Twee 80	26.50 µg/mL	Chamazulene (31.48%), α-bisabolol (15.71%), bisabolol oxide (15.71%)	[119]	
Matricaria songarica (chamomile)	MIC	S. aureus (CCTCC AB9093)	Twee 80	50.00 µg/mL	E,β-Farnesene (10.58%), bisabolol oxide A (10.46%)	[143]
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
---------------	--------	----------------	---------	--------	-----------------	-----------
ADM	S. aureus (NCIM 2079)	Tween 80	1.00%	NCR	[79]	
S. aureus (clinical isolate)						
MAC	S. aureus (ATCC 6538)	Tween 80	0.25% v/v	α-Terpine (11.40%), γ-terpinene (22.50%), terpinen-4-ol (35.20%)	[137]	
MRSA (clinical isolate)						
S. aureus (ATCC 29213)	Tween 80	0.35% v/v	Terpinen-4-ol (40.00%), δ-terpinen (13.00%), p-cymene (13.00%)	[97]		
MRSA (98 clinical isolates)						
S. aureus (NCIB 6571)	n.m.	1.00% v/v	NCR	[145]		
MIC	Coagulase-negative staphylococci (9 clinical isolates)	Poloxyl 35 castor oil	0.63–2.50% v/v	Terpinen-4-ol (>35.00%)	[146]	
M. alternifolia (tea tree)						
MRSA (10 clinical isolates)		0.30–0.63% v/v				
		0.30% v/v				
S. aureus (ATCC 12601)	Ethanol	0.25% v/v	NCR	[136]		
S. aureus (NCIB 6571)	Acetone	8.60 mg/mL	Terpinen-4-ol (38.60 %), γ-terpinene (21.60%)	[140]		
S. aureus (105 clinical isolates)	Tween 80	0.12–0.50% v/v	Terpinen-4-ol (35.70%)	[147]		
MIC	M. alternifolia (tea tree)	MRSA (15 clinical isolates)	Ehanol	0.25% v/v	NCR	[136]
S. aureus (ATCC 12601)	Acetone	8.60 mg/mL	Terpinen-4-ol (38.60 %), γ-terpinene (21.60%)	[140]		
S. aureus (NCIB 6571)	Tween 80	0.12–0.50% v/v	Terpinen-4-ol (35.70%)	[147]		
MIC	S. aureus (NCTC 8325)	n.m.	0.50% (v/v)	Terpinen-4-ol (39.80 %), p-terpine (17.80%)	[149]	
S. aureus (NCIT 8325)		0.25% (v/v)				
MIC	MRSA (60 clinical isolates, 29 mupirocin-resistant)		0.25%			
MIC	S. aureus (NCTC 8325)	n.m.	0.50% (v/v)	Terpinen-4-ol (39.80 %), p-terpine (17.80%)	[149]	
S. aureus (69 clinical isolates)	Tween 80	0.16–0.32%	NCR	[151]		
MIC	S. aureus (NCIC 4163)	Tween 80	0.12–0.50% v/v	Terpinen-4-ol (35.70%)	[152]	
ADM	S. aureus (NCTC 4163)		0.20% v/v	Terpinen-4-ol (42.80 %), γ-terpinene (18.20%)	[115]	
MRSA (clinical isolate)						
S. aureus (ATCC 6538)	Acetone	8.00 mg/mL	Terpinen-4-ol (49.30 %), γ-terpinene (16.90%)	[99]		
S. aureus (2 clinical isolates)		0.10–0.20%	Eucalyptol (70.08 %)	[153]		
MIC	S. aureus (ATCC 25923)	n.m.	0.20%	α-Pinene (11.95%), α-terpinene (14.63%), terpinen-4-ol (29.50%), p-cymene (17.74%)	[154]	
S. aureus (NCTC 9518)		0.63–1.25% v/v	α-Pinene (24.47%), α-terpinene (12.47%), terpinen-4-ol (28.59%)	[154]		
Essential oila	Methodb	Species strainc	Solventd	Resulte	Main componentsf	Reference
Melaleuca cajuput (cajuput)	MIC	S. aureus (ATCC 25923)	Tween 80	2.50 mg/mL	1,8-Cineol (67.60%)	[128]
	MAC	S. aureus (ATCC 10442)	Tween 80	2.50 mg/mL	1,8-Cineol (67.60%)	[128]
		MRSA (clinical isolate)				
	MAC	S. aureus (ATCC 6538)	Tween 80	0.20% v/v	1,8-Cineole (55.50%)	[137]
		MRSA (clinical isolate)				
Melaleuca quinquenervia (niaouli)	MAC	S. aureus (ATCC 6538)	Tween 80	0.20% v/v	1,8-Cineole (55.50%)	[137]
		MRSA (clinical isolate)				
Melissa officinalis (lemon balm)	MIC	S. aureus (ATCC 12600)	Acetone	2.00 mg/mL	1,8-Cineol (27.40%), α-thujone (16.30%), β-thujone (11.20%), bornol (10.40%)	[139]
		S. aureus (ATCC 9143)	Acetone	11.90 mg/mL	Menthone (18.20%), menthol (42.90%)	[140]
		S. aureus (ATCC 9144)	Acetone	0.60 mg/mL	1,8-Cineol (12.06%), menthone (22.24%), menthol (47.29%)	[128]
		MRSA (ATCC 10442)	Acetone	2.50 mg/mL	1,8-Cineol (27.40%), α-thujone (16.30%), β-thujone (11.20%), bornol (10.40%)	[139]
		MRSA (clinical isolate)				
Mentha piperita (peppermint)	MIC	S. aureus (ATCC 43387)	DMSO	0.63–2.50 mg/mL	Menthol (39.30%), menthone (25.20%)	[156]
		S. aureus (MTCC 96)	Sodium taurocholate	1.66 μL/mL	Menthol (36.40%), Menthone (24.16%)	[118]
		S. aureus (ATCC 9144)	Ethanol	0.50% v/v	NCR	[136]
		S. aureus (ATCC 6538)	DMSO	0.20% v/v		[129]
Myrtus communis (myrtle)	MIC	S. aureus (ATCC 12600)	Acetone	2.00 mg/mL	Myrtene acetate (28.20%), 1,8-cineole (25.60%), α-pinene (12.50%)	[99]
	ADM	S. aureus (ATCC 6538)	Acetone	2.80 mg/mL	NCR	[157]
		S. aureus (ATCC 29213)				
Ocimum basilicum (basil)	MIC	S. aureus (ATCC 9144)	Acetone	2.50 mg/mL	Linalool (30.30–58.60%)	[160]
		S. aureus (ATCC 6538)	Acetone	45.00 μg/mL	Methylchavicol (46.90%), geranial (19.10%), neral (15.15%)	[159]
	MAC	S. aureus (ATCC 6538)	Tween 80	0.68–11.74 μg/mL	Linalool (30.30–58.60%)	[160]
Table 3: Continued.

Essential oil	Method^b	Species strain^c	Solvent^d	Result^e	Main components^f	Reference	
Origanum acutidens (Turkey oregano)	MIC	*S. aureus* (clinical isolate)	10% DMSO	125.00 μg/mL	Carvacrol (72.00%)	[161]	
		S. aureus (ATCC2931)	0% v/v	NCR			
Origanum majorana (marjoram)	MIC	*S. aureus* (ATCC 43387)	DMSO	0.05% v/v	Carvacrol (30.17%)	[129]	
		S. aureus (ATCC 6538)	Acetone	2.00 mg/mL	1,8-Cineole (46.00%), linalool (26.10%)	[99]	
Origanum microphyllum (oregano)	MIC	*S. aureus* (ATCC 29523)	Tween 80	6.21 mg/mL	Terpin-4-ol (24.86%), γ-terpinene (13.83%), linalool (10.81%)	[162]	
Origanum vulgare (oregano)	ADM	*S. aureus* (ATCC 25923)	1% DMSO	0.13% v/v	1,8-Cineole (46.00%), linalool (26.10%)	[163]	
		S. aureus (ATCC 43300)	Ethanol	0.10% v/v	Carvacrol (72.00%), thymol (24.70%), p-cymene (14.60%)	[164]	
		S. aureus (ATCC 25923)	Ethanol	0.10% v/v	Carvacrol (72.00%), thymol (24.70%), p-cymene (14.60%)	[162]	
Pelargonium graveolens (geranium)	MIC	*S. aureus* (ATCC 25923)	10% DMSO + Tween 80	17.07 μg/mL	Linalool (96.31%)	[165]	
		S. aureus (ATCC 25923)	Ethanol	0.25–1.50 μL/mL	Citronellol (26.70%), geraniol (13.40%)	[166]	
		S. aureus (ATCC 29213)	Tween 20	0.70 mg/mL	Thymol (58.31%), carvacrol (16.11%), p-cymene (13.45%)	[157]	
Pogostemon cablin (patchouli)	MIC	*S. aureus* (NCTC 6571)	10% DMSO	395.20 μg/mL	γ-Guaiene (13.80%), γ-bulnesene (17.10%), patchouli alcohol (22.70%)	[139]	
		S. aureus (NCTC 1803)	Acetone	520.00 μg/mL	Patchouli alcohol (32.30%), γ-bulnesene (14.60%), α-guaiene (12.50%)	[99]	
Essential Oil	Method^a	Species	Strain^b	Solvent^c	Result^d	Main Components^e	Reference
--------------	-----------------	---------	----------------	----------------	----------------	----------------	-----------
Rosmarinus officinalis (rosemary)							
	MIC	S. aureus (ATCC 25923)	Tween 80	0.13% v/v	1,8-Cineole (27.23%), α-pinene (19.43%), camphor (14.26%), camphene (11.52%)	[169]	
	MIC	S. aureus (NCTC 6571)	10% DMSO	305.30 µg/mL	1,8-Cineole (29.2%), (+) camphor (17.2%)	[139]	
	MIC	S. aureus (NCTC 803)	Tween 80	0.03% v/v	1,8-Cineole (26.54%), α-pinene (20.14%), camphene (11.38%), camphor (12.88%)	[170]	
	ADM	S. aureus (ATCC 6538)	Hexane	>1.88%	NCR	[118]	
	ADM	S. aureus (MTCC 90)	Tween 80	0.13% v/v	1,8-Cineole (10.56–11.91%), camphor (16.57–16.89%), verbenone (17.43–23.79%)	[171]	
		S. aureus (ATCC 29213)	Tween 80	5.60 mg/mL	NCR	[157]	
		S. aureus (ATCC 12601)	DMSO	0.20% v/v	NCR	[129]	
		S. aureus (ATCC 43387)	Acetone	4.00 mg/mL	1,8-Cineole (48.00%)	[99]	
	ADM₃₀	S. aureus (ATCC 25923, 16 MRSA and 15 MSSA (clinical isolate))	Tween 80	8.60 mg/mL	Camphor (27.51%), limonene (21.01%), myrcene (IL19%), α-pinene (10.37%)	[119]	
		S. aureus (ATCC 25923)	Tween 80	50.00 µg/mL	Caryophyllene oxide (16.60%)	[173]	
		S. aureus (ATCC 299737)	10% DMSO	8.00 µg/mL	Bornol (21.83%), α-pinene (18.80%), bornyl acetate (18.68%)	[174]	
		S. aureus (ATCC 25923)	n.m.	5.40 mg/mL	trans-Caryophyllene (10.90%)	[175]	
		S. aureus (NCTC 6571)	10% DMSO	302.40 µg/mL	1,8-Cineole (27.40%), α-thujone (16.30%), β-thujone (11.20%), bornol (10.40%)	[139]	
		S. aureus (NCTC 1803)	DMSO	0.20% v/v	NCR	[129]	
		S. aureus (ATCC 43387)	Tween 80	11.20 mg/mL	NCR	[157]	
		S. aureus (ATCC 6538)	Tween 20	5.60 mg/mL	NCR	[176]	
		S. aureus (ATCC 29213)	n.m.	7.50 mg/mL			
		S. aureus (ATCC 25923)	n.m.	NI	α-Pinene (12.85%), 1,8-cineole (46.42%)	[177]	
		S. sclarea (sandalwood)	MRS A	20% DMSO	125.00–1000.00 µg/mL	α-Pinene (35.70–34.80%), 1,8-cineole (16.60–25.10%), β-pinene (6.70–13.50%)	[178]
		S. rubifolia (sage)	S. aureus (II MRS A and 16 MSS A)	Tween 20	50.00 µg/mL	γ- Murolene (18.80%)	[133]
		S. sclarea (sandalwood)	Ethanol	3.75–5.25	Linalyl acetate (57.99%), linalool (12.40%)	[179]	
		S. aureus (ATCC 6538)	Acetone	2.00 mg/mL	Linalool (72.90%), linalool (11.90%)	[99]	
Styrax benzoin (benzoin)	MIC	S. aureus	Tween 20	0.13% v/v	Eugenol (68.52%), β-caryophyllene (19.00%), 2-methoxy-4-[2-propenyl]phenol acetate (10.15%)	[169]	
				4.00 µg/mL	Eugenol (84.07%), iso-eugenol (10.39%)	[118]	
				1.50 mg/mL	NCR	[80]	
Syzygium aromaticum (clove)	MIC	S. aureus (ATCC 6538)	Tween 80	0.13% v/v	Eugenol (82.20%), eugenol acetate (13.20%)	[99]	
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference	
---------------	--------	----------------	---------	--------	----------------	-----------	
Tagetes minuta (Mexican marigold)	MIC₉₀	*S. aureus* (ATCC 6538)	n.m.	67.00 µg/mL	Dihydrotagetone (33.90%), E-ocimene (19.90%), tagetone (16.10%)	[159]	
Tagetes patula (French marigold)	MIC	*S. aureus* (ATCC 6538)	Acetone	4.00 µg/mL	(E)-β-Ocimene (41.30%), E-tagetone (11.20%), verbene (10.90%)	[99]	
Thymbra capitata (thyme)	MIC	*S. aureus* (ATCC 29213)	900.00 µg/mL	Thymol (46.90%), carvacrol (20.60%)	[181]		
Thymus capitatus (thyme)	ADM	*S. aureus* (ATCC 6538)	0.28 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Thymus herba-barona (thyme)	MIC	*S. aureus* (ATCC 6538)	n.m.	0.23 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]	
Thymus vulgaris (thyme)	ADM	*S. aureus* (ATCC 6538)	0.23 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Thymus serpyllum (thyme)	MIC	*S. aureus* (ATCC 6538)	2.25 mg/mL	Carvacrol (60.39%), γ-terpinene (12.95%)	[180]		
Thymus numidicus (thyme)	ADM	*S. aureus* (ATCC 6538)	0.23 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Thymus herba-barona (thyme)	MAC	*S. aureus* (CECT 239)	95% ethanol	0.25 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]	
Thymus capitatus (thyme)	ADM	*S. aureus* (ATCC 6538)	0.28 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Thymus herba-barona (thyme)	ADM	*S. aureus* (ATCC 6538)	0.23 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Thymus hyemalis (thyme)	MIC	*S. aureus* (ATCC 6538)	2.50 mg/mL	Thymol (46.00%), carvacrol (20.60%)	[181]		
Thymus capitatus (thyme)	ADM	*S. aureus* (ATCC 6538)	0.28 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Thymus herba-barona (thyme)	ADM	*S. aureus* (ATCC 6538)	0.23 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Thymus vulgaris (thyme)	MIC	*S. aureus* (ATCC 6538)	3.33 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Thymus capitatus (thyme)	ADM	*S. aureus* (ATCC 6538)	0.28 mg/mL	Thymol (46.10%), carvacrol (20.60%)	[181]		
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference	
--------------	--------	----------------	---------	--------	----------------	-----------	
Thymus vulgaris (thyme)	MAC	S. aureus (CECT 239)	95% ethanol	<0.20 μL/mL	p-Cymene (18.70%), thymol (57.70%)	[61]	
Thymus zygis subsp. gracilis (thyme)	MAC	S. aureus (CECT 239)	95% ethanol	<0.20 – 1.20 μL/mL	p-Cymene (0.50 – 11.20%), (E)-sabinene hydrate (0.20 – 18.20%), linalool (2.00 – 82.30%)	[61]	
Vetiveria zizanioides/Andropogon muricatus (vetiver)	MIC	S. aureus (ATCC6538)	Acetone	0.75 mg/mL	Zizanol (13.6%), β-vetirenene (7.2%)	[99]	

a Scientific name (common name), part of plant if applicable.

b MIC: microdilution method; MAC: macrodilution method; ADM: agar dilution method; CTA: contact time assay.

c American Type Culture Collection, Rockville, USA (ATCC); Colección Española de Cultivos Tipo (CECT); collection of microorganisms of the Department of Microbiology (MFBB); culture collection of antibiotics resistant microbes (CCRM); Eskişehir Osmangazi University, Faculty of Medicine, clinical isolate (OGU); Laboratorio de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina (LM), Microbial Type Culture Collection (MTCC); Mycology Laboratory (LM); National Center of Industrial Microorganisms (NCIM); National Collection of Type Cultures, London, Great Britain (NCTC); Spanish Collection of Type Cultures (STCC).

d DMSO concentration was not included; n.m.: not mentioned.

e NI: no inhibition.

f NCR: no composition results reported.
S. aureus resistance. It should be recommended that resistant S. aureus strains always be included with every study.

When considering the antimicrobial activity of the tested essential oils, it can be noted how the main compounds influence overall antimicrobial activity. Melaleuca alternifolia (tea tree), rich in terpinen-4-ol, showed noteworthy activity, and Anthemis aciphylla var. discoidea (chamomile) containing α-pinene and terpinen-4-ol displayed noteworthy activity (1.00 mg/mL) [114], whereas the essential oil predominantly containing terpinen-4-ol displayed an MIC value of 0.50 mg/mL. The Origanum spp. (Origanum scabrum and Origanum vulgare) were shown to display rather impressive antimicrobial activity, which appeared to predominantly be related to the amount of carvacrol [163]. Geraniol also appears to be a compound that influences antimicrobial activity against the staphylococci spp. as can be seen for Backhousia citriodora (lemon myrtle) and Cymbopogon martini (palmarosa) (geraniol 61.6%) [125, 126]. Cymbopogon martini, with lower levels of geranial (44.80%), showed moderate antimicrobial activity [99]. Mentha piperita (peppermint) had higher antimicrobial activity for oils with higher concentrations of menthol [128, 155]. Laurus nobilis (bay), Styrax benzoin, and Cinnamomum zeylanicum (cinnamon), each rich in eugenol, were found to have notable activity [99].

It is interesting to consider the essential oils investigated and to compare them to what is recommended in the aromatherapeutic literature. For example, Lavandula angustifolia (lavender) is recommended for abscesses, carbuncles, and wounds [2, 26, 32, 36–43], which all involve S. aureus; however, in vitro activity was found to discount this oil as an antimicrobial [99, 136, 139, 140]. The same could be said about essential oils such as Achillea millefolium (yarrow) [112], Anthemis nobilis (Roman chamomile) [99], Boswellia carteri (frankincense) [116], Citrus aurantifolia (lime) [80], Foeniculum vulgare (fennel) [132, 133], and Melissa officinalis (lemon balm) [139].

Some clinical studies included the evaluation of the effects of essential oils on malodorous necrotic ulcers of cancer patients. The use of an essential oil combination (mostly containing Eucalyptus globulus (eucalyptus)) resulted in a decrease in inflammation, reduction of the odour, and improved healing rates [193]. Edwards-Jones et al. [194] performed a clinical study with a wound dressing containing essential oils to decrease infection risk. Ames [195] found Melaleuca alternifolia (tea tree) to be effective in treating wounds; and Matricaria recutita (German chamomile) with L. angustifolia at a 50:50 ratio diluted in calendula oil was found to improve leg ulcers and pressure sores.

Methicillin-resistant S. aureus hinders the rate of wound healing, which may lead to chronic wounds [196]. Delayed wound healing has been proven to lead to psychological stress and social isolation [197, 198]. A randomised controlled trial, consisting of 32 patients (16 in control group, 16 in placebo group) with stage II and above MRSA-colonised wounds that were not responding to treatment, was undertaken where the control group was treated with a 10% topical M. alternifolia preparation and was found to effectively decrease colonising MRSA in 87.5% of patients and result in a 100% healing rate within 28 days [196]. These studies lead to the high recommendation of the incorporation of this essential oil combination in palliative care.

Methicillin-resistant S. aureus may potentially be carried and propagated by hospital staff and patients, which is an acknowledged risk for hospital-acquired infections [147, 189]. Therefore, successful decolonisation of MRSA from patients and good hygiene may improve the microbial load, number of reinfections, and ultimately therapeutic outcomes of patients [199]. A topical preparation containing M. alternifolia essential oil has been considered for assistance in eradicating MRSA in hospitals, due to its reported efficacy [200]. The largest randomised trial against MRSA colonisation included 224 patients where the control group was treated with 2% nasal mupirocin applied three times a day, 4% chlorhexidine gluconate soap used at least once a day, and 1% silver sulfadiazine cream applied to skin infections once a day. The study group was treated with 10% M. alternifolia oil nasal cream applied three times a day and 5% M. alternifolia oil body wash used at least once daily with a 10% M. alternifolia cream applied to skin infections. The results showed that 41% of patients in the study group were cleared as opposed to 49% of patients on the standard therapy [200]. A small three-day pilot study was designed by Caelli et al. [189] to observe whether daily washing with a 5% M. alternifolia oil would clear MRSA colonisation which may result in ICU patient outcome improvement [199]. The test group made use of 4% M. alternifolia nasal ointment and 5% M. alternifolia oil body wash and was compared to a conventional treatment consisting of 2% mupirocin nasal ointment and triclosan body wash. The test group overall was found to have more improvement at the infection site when compared to the control group. Although the pilot study was too small to be statistically significant, the researchers did find that the M. alternifolia oil performed better than the conventional treatment and was effective, nontoxic, and well tolerated [189]. Messager et al. [90] tested 5% M. alternifolia ex vivo in a formulation, where it again was proven to decrease the pathogenic bacteria on the skin. In another study, M. alternifolia oil was investigated to determine the influence on healing rates [201]. The patients were treated with water-miscible tea tree oil (3.30%) solution applied as part of the wound cleansing regimen. This study used this oil as a wash only three times a week which is not how this oil is prescribed and hence the results were not positive. A more accurate method of study was shown by Chin and Cordell [202], where M. alternifolia oil was used in a dressing for wound healing abilities. All patients, except for one, were found to have an accelerated healing rate of abscised wounds and cellulitis. The concluding evidence shows that there is definitely potential for the use of M. alternifolia (tea tree) oil as an additional/alternative treatment to standard wound treatments [203].

The healing potential of Commiphora guidotti (myrrh) was investigated via excisions of rats. The authors could confidently report on an increased rate in wound contraction and candid wound healing activity that was attributed to the antimicrobial and anti-inflammatory effects of this oil [204]. Ocimum gratissimum (basil) was also found by Orafidiya et al. [205] to promote wound healing by eradicating the infectious pathogens and by inducing early epithelialisation.
and moderate clotting formation, thereby accelerating scab formation, contraction, and granulation.

From these studies, clearly, *M. alternifolia* has shown great promise against *S. aureus*. However, considering the potential of essential oils in clinical practice and comparing them to essential oils with promising *in vitro* activity, other oils such as *Cymbopogon citratus* (lemongrass), *Santalum album* (sandalwood), and *Vetiveria zizanioides/Andropogon muricatus* (vetiver) should in the future be paid the same amount of attention.

4.1.2. Pathogens Involved in Acne. Pathogens associated with acne include *Propionibacterium acnes*, *Propionibacterium granulosum*, and *Staphylococcus epidermidis* [206–208]. Methicillin-resistant *S. epidermidis* (MRSE) have become extensively problematic microorganisms in the recent years due to their antimicrobial resistance and *P. acnes* has developed resistance to tetracycline, erythromycin, and clindamycin. Both have also shown multidrug resistance, including against quinolones [158, 188, 206]. Table 4 displays the *in vitro* antimicrobial efficacies of commercial essential oils against bacteria involved in the pathogenesis of acne. When observing the number of commercial essential oils that are recommended for acne treatment, less than half of the commercial oils have actually focused on *S. epidermidis*, *P. granulosum*, and *P. acnes*. Overall, the acne pathogens have been sorely neglected in essential oil studies.

For *Anthemis aciphylla* var. *discoidea* (chamomile) 0.13–0.25 mg/mL, initially, it appeared that higher α-pinene and lower terpen-4-ol showed higher antimicrobial activity. However, the sample with terpen-4-ol predominantly as its main component displayed the best activity at 0.06 mg/mL. This makes α-pinene appear as an antimicrobial antagonist. *Cinnamomum zeylanicum*, *Rosa centifolia* (rose), *L. angustifolia*, and *Syzygium aromaticum* (clove) displayed noteworthy antimicrobial activity against both *S. epidermidis* and *P. acnes*. Only the latter two are, however, recommended in the aromatherapeutic literature for the treatment of acne. *Leptospermum scoparium* (manuka) showed noteworthy activity for both *P. acnes* and *S. epidermidis*; however, Tween 80 was used as a solvent, which may overexaggerate the antimicrobial activity. Another study also found *L. scoparium* to effectively inhibit *P. acnes*. As was seen against *S. aureus*, *O. scabrum* and *O. vulgare* also notably inhibited *S. epidermidis*. Unfortunately, these oils were not studied against *P. acnes*. *Cymbopogon citratus* was shown to effectively inhibit *P. acnes*; however, no data was available against *S. epidermidis*. Essential oils such as *S. album*, *V. zizanioides*, *Viola odorata* (violet), *Citrus aurantium* var. *amara* (petitgrain), and *Citrus bergamia* (bergamot) are a few that are recommended for the treatment of acne and other microbial infections [2, 26, 32, 36, 37, 40–43] in the aromatherapeutic literature that are yet to be investigated.

Some clinical studies have shown promising results. A four-week trial comparing *O. gratissimum* oil with 10% benzoyl peroxide and a placebo was conducted and was aimed at reducing acne lesions in students. The 2% and 5% *O. gratissimum* oils in the hydrophilic cetomacrogol base were found to reduce acne lesions faster than standard therapy, and they were well tolerated. The 5% preparation, despite being highly effective, caused skin irritation. Overall, *O. gratissimum* oil showed excellent potential in the management of acne as it was as effective as benzoyl peroxide, although it was less popular with patients due to the unpleasant odor [217].

Melaleuca alternifolia oil demonstrated *in vitro* antimicrobial and anti-inflammatory activity against *P. acnes* and *S. epidermidis* and is in fact the essential oil on which most clinical trials have been undertaken. Bassett et al. [218] performed one of the first rigorous single-blinded randomised (RCT) controlled trials consisting of 124 patients that assessed the efficacy of 5% *M. alternifolia* gel in comparison to 5% benzoyl peroxide lotion in the management of mild to moderate acne. Both treatments showed equal improvement in the acne lesions. Enshaieh et al. [219] evaluated the efficacy of 5% *M. alternifolia* on mild to moderate acne vulgaris. The 5% *M. alternifolia* oil was found to be effective in improving the number of papules in both inflammatory and noninflammatory acne lesions and was found to be more effective than the placebo. Proven efficacy has made *M. alternifolia* preparations popular in acne products.

Other oil studies included a gel formulation containing acetic acid, *Citrus sinensis* (orange), and *Ocimum basilicum* (sweet basil) essential oils, which was tested in acne patients. The combination of these antimicrobial essential oils and the keratolytic agent resulted in a 75% improvement in the rate of acne lesion healing [220].

If one examines the results displayed in Table 4, essential oils such as *Anthemis aciphylla* var. *discoidea* (chamomile), *C. zeylanicum*, *Citrus aurantium* (bitter orange), *O. vulgare* (oregano), and *S. aromaticum* displayed higher antimicrobial activity *in vitro* than *M. alternifolia*, yet these essential oils have to be investigated clinically.

4.1.3. Gram-Negative Bacteria. The Gram-negative bacterial cell wall consists of a 2-3 nm thick peptidoglycan layer (thinner than Gram-positive bacteria), which means that the cell wall consists of a very small percentage of the bacteria. The cell wall is further surrounded by an outer membrane (OM) which is comprised of a double layer of phospholipids that are linked to an inner membrane by lipopolysaccharides (LPS). This OM protects the bacteria from lipophilic particles; however, it makes them more vulnerable to hydrophilic solutes due to the abundance of porin proteins that serve as hydrophilic transmembrane channels [184, 221, 222].

Gram-negative pathogens present a serious threat with regard to drug resistance, especially *Escherichia coli* and *Pseudomonas aeruginosa* [190, 192]. These pathogens are found to colonise wounds often cause multidrug resistance [166, 223]. β-Lactamase-positive *E. coli* is appearing frequently among nonhospital patients [224]. *Pseudomonas aeruginosa* is a regular cause of opportunistic nosocomial infections [187]. It is often involved in localised skin infections, green nail syndrome, and interdigital infection, colonises burn wounds, and may expand into a life-threatening systemic illness [225].

A number of essential oils display antimicrobial activity against *E. coli* and *P. aeruginosa* with the predominant studies
Table 4: Antimicrobial efficacy of essential oils against pathogens associated with acne.

Essential oil (Species strain)	Method	Species strain	Solvent	Result	Main components	Reference
Abies koreana (Korean fir)	MIC	S. epidermidis (antibiotic-susceptible strain SK4)	n.m.	0.63 μL/mL	Bornyl acetate (30.40%), limonene (19.00%)	[208]
		S. epidermidis (antibiotic-resistant strain SK9)		0.31 μL/mL		
		S. epidermidis (antibiotic-resistant strain SK19)		5.00 μL/mL		
		P. acnes (ATCC 334)		0.31 μL/mL		
		P. acnes (antibiotic-resistant strain S.KA 4)		0.31 μL/mL		
		P. acnes (antibiotic-resistant strain SKA 7)		0.63 μL/mL		
Anthemis aciphylla var. discoidea (chamomile), flowers	MIC	S. epidermidis (ATCC 12228)	DMSO	0.25 mg/mL	α-Pinene (39.00%), terpinen-4-ol (32.10%)	[114]
		S. epidermidis (antibiotic-resistant strain SK9)		0.13 mg/mL	α-Pinene (49.40%), terpinen-4-ol (21.80%)	
		S. epidermidis (antibiotic-resistant strain SK19)		0.06 mg/mL	Terpinen-4-ol (24.30%)	
Anthemis nobilis (chamomile)	MIC	P. acnes (CMCC 65002)	Tween 80	0.13% v/v	NCR	[209]
		P. acnes (DMST 4916, 14917, 4918, 21823, 21824)	0.5% polysorbate 80	>4.00% v/v	NCR	
Cananga odorata var. fruticosa (dwarf ylang-ylang)	ADM	P. acnes (RP62A)	5% propylene glycol (PG)	0.50–2.00%	Cinamaldehyde	[211]
Cananga odorata (ylang-ylang)	MIC	S. epidermidis (ATCC 35984)	0.25% v/v	NCR		
		S. epidermidis (ATCC 12228)	0.50% v/v	NCR		
Cinnamomum burmannii (cinnamon stick)	MIC	S. epidermidis (16 clinical isolates)	5%	1.00% v/v	NCR	
		S. epidermidis strains RP62A (ATCC 35984)	1.00% v/v	NCR		
		S. epidermidis (ATCC 12228)	0.50% v/v	NCR		
Cinnamomum zeylanicum (cinnamon)	MIC	P. acnes (CMCC 65002)	Tween 80	0.012% v/v	NCR	[209]
		P. acnes (ATCC 12228)	Tween 80	1.25 mg/mL	Limonene (27.50%), E-nerolidol (17.5%), α-terpineol (14.00%)	[120]
Citrus aurantium (bitter orange), flowers	MIC	S. epidermidis (ATCC 12228)	50% DMSO	0.25% v/v	NCR	
Citrus aurantium (bitter orange)	MAC	P. acnes (CMCC 65002)	Tween 80	0.25% v/v	NCR	
Citrus medica limonum (lemon)	MIC	P. acnes (CMCC 65002)	Tween 80	0.25% v/v	NCR	[209]
		P. acnes (ATCC 6919)	Tween 80	0.31 μL/mL	Limonene (81.60%)	[102]
Citrus paradisi (grapefruit)	MIC	P. acnes (CMCC 65002)	Tween 80	0.25% v/v	NCR	[209]
		P. acnes (ATCC 3958)	Tween 80	>50.00 μL/mL	Limonene (55.40–91.70%), myrcene (2.10–32.10%)	[212]
Essential Oil Method	Species	Strain	Solvent	Result		
----------------------	---------	--------	---------	--------		
Citrus species:	**(citrus)** (14 spp.)					
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Foeniculum vulgare:						
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Kunzea ericoides:	**(Kanuka)**					
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Lavandula angustifolia:						
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Juniperus communis:						
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Juniperus officinalis:						
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Kunzea ericoides:	**(Kanuka)**					
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Lavandula angustifolia:						
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Juniperus communis:						
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Juniperus officinalis:						
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Kunzea ericoides:	**(Kanuka)**					
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Lavandula angustifolia:						
MAC	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
ADM	**P. aeruginosa** (ATCC 27853)	Tween 80	100% polyethylene glycol 800	NCR		
Essential oila	Methodb	Species strainc	Solventd	Resulte	Main componentsf	Reference
----------------	----------	-----------------	-----------	----------	-----------------	------------
Lavandula stoechas (French lavender), flower	MIC	S. epidermidis (ATCC 12228)	20% DMSO	250.00 μg/mL	α-Fenchone (39.20%), α-Fenchone (41.90%), 1,8-cineole (15.60%), camphor (12.10%)	[47]
Lavandula stoechas (French lavender), leaf	MIC	P. acnes (CMCC 65002)	Tween 80	0.13% v/v	NCR	[209]
Lavandula stoechas (lavender)	MIC	S. epidermidis (ATCC 2223)	Acetone	4.00 mg/mL	1,8-Cineole (62.80%), (E)-methyl cinnamate (9.20–19.50%)	[138]
Leptospermum scoparium (manuka)	MAC	S. epidermidis (clinical isolate)	Tween 80	0.05% v/v	(-)-(E)-Calamenene (14.50%), leptospermone (17.60%)	[137]
Melaleuca alternifolia (tea tree)	ADM	S. epidermidis (NCIM number 2493)	Tween 80	1.00%	NCR	[79]
Melaleuca alternifolia (tea tree)	MAC	S. epidermidis (clinical isolate)	Tween 80	0.45% v/v	α-Terpinene (11.40%), γ-terpinene (22.50%), terpinen-4-ol (35.20%)	[137]
Melaleuca alternifolia (tea tree)	MIC	S. epidermidis (15 clinical isolates)	Tween 80	0.12–1.00% v/v	Terpinen-4-ol (35.70%)	[137]
Melaleuca alternifolia (tea tree)	MAC	S. epidermidis (RP621)	5% DMSO	2.00 mg/L	NCR	[213]
Melaleuca alternifolia (tea tree)	MIC	S. epidermidis (clinical isolate TK1)	16.00 mg/L	NCR	[213]	
Melaleuca alternifolia (tea tree)	MIC	S. epidermidis (ATCC 2223)	Acetone	6.20 mg/mL	Terpinen-4-ol (38.60%), γ-terpinene (21.60%)	[140]
Melaleuca alternifolia (tea tree)	MIC	S. epidermidis (antibiotic-susceptible strain SK4)		0.13 μL/mL	NCR	[208]
Melaleuca alternifolia (tea tree)	MIC	S. epidermidis (antibiotic-resistant strain SK9)		1.00 μL/mL	NCR	[208]
Melaleuca alternifolia (tea tree)	MAC	S. epidermidis (antibiotic-resistant strain SK19)		1.00 μL/mL	NCR	[208]
Melaleuca alternifolia (tea tree)	MIC	P. acnes (MTCC1951)	Tween 80	0.50% v/v	NCR	[208]
Melaleuca alternifolia (tea tree)	ADM	P. acnes (DMST 4916, 14917, 4918, 21823, 21824)	0.5% polysorbate 80	1.00% v/v	NCR	[210]
Melaleuca alternifolia (tea tree)	MAC	P. acnes (ATCC 3014)	Tween 80	0.25–0.50% v/v	Terpinen-4-ol (35.70%)	[92]
Melaleuca alternifolia (tea tree)	MIC	P. acnes (antibiotic-resistant strain SKA 4)		0.25 μL/mL	NCR	[208]
Melaleuca alternifolia (tea tree)	MIC	P. acnes (antibiotic-resistant strain SKA 7)		0.25 μL/mL	NCR	[208]
Melaleuca alternifolia (tea tree)	MAC	S. epidermidis (NCTC 11047)	Tween 80	0.63–1.25% v/v	α-Pinene (11.95%), α-terpinene (14.63%), terpinen-4-ol (29.5%), p-cymene (17.4%)	[154]
Melaleuca alternifolia (tea tree)	MAC	S. epidermidis (NCTC 737)	Tween 80	0.63–1.25% v/v	α-Pinene (24.87%), α-terpinene (12.47%), terpinen-4-ol (28.59%)	[154]
Melaleuca cajuputi (cajaput)	MAC	S. epidermidis (clinical isolate)	Tween 80	0.40% v/v	1,8-Cineole (55.50%)	[137]
Melaleuca cajuputi (cajaput)	MIC	S. epidermidis (ATCC 14990)	Tween 80	10.00 mg/mL	1,8-Cineole (67.60%)	[128]
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
---------------	--------	----------------	---------	--------	----------------	-----------
Melaleuca quinquenervia (nianouli)	MAC	*S. epidermidis* (clinical isolate)	Tween 80	0.40% v/v	L-8-Cineole (61.20%)	[137]
Mentha piperita (peppermint)	MIC	*S. epidermidis*	Tween 80	1.25 mg/mL	L-8-Cineole (12.06%), menthone (22.24%), menthol (47.29%)	[128]
Mentha piperita (peppermint)	MIC	*S. epidermidis* (NCTC 12228)	DMSO	2.50 mg/mL	Menthol (27.50–42.30%), menthone (18.40–27.90%)	[155]
Mentha piperita (peppermint)	MIC	*S. epidermidis* (antibiotic-susceptible strain SK4)	Acetone	6.20 mg/mL	Menthol (18.20%), menthol (42.90%)	[140]
Ocimum americanum (hoary basil)	ADM	*P. acnes*	Polysorbate 80	>3.00% v/v	Neral (27.20%), geraniol (32.00%)	[44]
Ocimum sanctum (holy basil)	ADM	*P. acnes*	Polysorbate 80	3.0% v/v	Eugenol (41.50%), methyl eugenol (11.80%), γ-caryophyllene (23.70%)	[44]
Ocimum tenuiflorum (holy basil)	ADM	*P. acnes*	Polysorbate 80	3.0% v/v	Neral (27.20%), geraniol (32.00%)	[44]
Origanum construens (Turkey oregano)	MIC	*S. epidermidis* (ATCC 12228)	Tween 80	10% DMSO	Carvacrol (72.0%)	[160]
Origanum microphyllum (oregano)	MIC	*S. epidermidis* (ATCC 12228)	Tween 80	10% DMSO	Terpin-4-ol (24.86%), γ-terpinene (13.83%), linalool (10.81%)	[162]
Origanum vulgare (oregano)	ADM	*S. epidermidis* (ATCC 12228)	Polysorbate 80	0.5% polysorbate 80	p-Cymene (44.60%), γ-terpinene (11.70%), thymol (24.70%), carvacrol (14.00%)	[163]
Rosmarinus officinalis (rosemary)	MIC	*S. epidermidis* (ATCC 12228)	Tween 80	0.25% v/v	L-8-Cineole (27.23%), α-pinene (19.43%), camphor (14.26%), camphene (11.52%)	[169]
Salvia bracteata (sage)	MAC	*S. epidermidis* (ATCC 12228)	Tween 20	50.00 μg/mL	Caryophyllene oxide (16.6%)	[173]
Salvia staphylea (sage)	MIC	*S. epidermidis* (ATCC 12228)	10% DMSO	32.00 μg/mL	Borneol (21.83%), α-pinene (18.80%), bornyl acetate (18.68%)	[174]
Essential oil	Method	Species strain	Solvent	Result	Main components	
---------------	--------	----------------	---------	--------	-----------------	
Salvia nigotica (sage)	ADM	*S. epidermidis* (ATCC 12228)	n.m.	5.50 mg/mL	trans-Caryophyllene (10.90%)	
Salvia ringens (sage)	MIC	*S. epidermidis* (ATCC 12228)	n.m.	NI	α-Pinene (12.85%), 1,8-cineole (46.42%)	
Salvia rosfolia (sage) (3 samples)	MIC	*S. epidermidis* (ATCC 12228)	20% DMSO	125.00–1000.00 μg/mL	α-Pinene (15.70–34.80%), 1,8-cineole (6.60–25.10%), β-pinene (6.70–13.50%)	
Salvia rubifolia (sage)	MIC	*S. epidermidis* (ATCC 12228)	Tween 20	5.00–1000.00 μg/mL	γ-Muurelone (11.80%)	
Salvia sclarea (clary sage)	MIC	*S. epidermidis* (19 clinical isolates)	Ethanol	4.50–6.25	Linalyl acetate (57.90%), linalool (12.40%)	
Syzygium aromaticum (clove)	MIC	*P. acnes* (DMST 4916, 14917, 4918, 21823, 21824)	Tween 80	0.25% v/v	Linalool (61.60%)	
Thymus capitatus (thyme)	ADM	*P. acnes*	0.5% polysorbate 80	3.0 mg/mL	Eugenol (68.52%), β-caryophyllene (19.00%), 2-methoxy-4-[2-propenyl]phenol acetate (10.15%)	
Thymus herba-barona (thyme), Commercial	MIC	*S. epidermidis* (ATCC 12228)	Tween 80	90.00 mg/mL	p-Cymene (26.40%), thymol (29.30%), carvacrol (10.80%)	
Thymus herba-barona (thyme), Limbara	MIC	*S. epidermidis* (ATCC 12228)	Tween 80	450.00 mg/mL	Thymol (46.90%), carvacrol (20.60%)	
Thymus vulgaris (thyme)	ADM	*P. acnes* (ATCC 6191)	Acetone	4.70 mg/mL	p-Cymen-3-ol (50.41%), p-cymen-2-ol (24.00%), cymene (19.04%)	

aScientific name (common name), part of plant (if applicable).
bMIC: microdilution method; MAC: macrodilution method; ADM: agar dilution method; CTA: contact time assay.
cAmerican Type Culture Collection, Rockville, USA (ATCC); Colección Española de Cultivos Tipo (CECT); collection of microorganisms of the Department of Microbiology (MFBF); culture collection of antibiotics-resistant microbes (CCRM); Eskişehir Osmangazi University, Faculty of Medicine, clinical isolate (OGU); Laboratorio de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina (LM); Microbial Type Culture Collection (MTCC); Mycology Laboratory (LM); National Center of Industrial Microorganisms (NCIM); National Collection of Type Cultures, London, Great Britain (NCTC); Spanish Collection of Type Cultures (STCC).
dDMSO concentration was not included; n.m.: not mentioned.
eNI: no inhibition.
fNCR: no composition results reported.
having been done against E. coli (Table 5). The Gram-negative pathogens appear to be a lot more resistant to essential oil inhibition than the Gram-positive bacteria, but this is a known fact.

Aniba roseodora (rosewood) was found to inhibit E. coli at an MIC value of 0.40 mg/mL. No GC-MS data was given [85]. Anthemis aciphylla var. discoidea (chamomile) also displayed notable inhibition against E. coli and P. aeruginosa; however, the highest activity was seen for the essential oil containing high levels of α-pinene (39.00%) and terpinen-4-ol (32.10%) [114]. Cinnamomum zeylanicum, with the main compound cinnamaldehyde, was shown to have inhibited these two Gram-negative pathogens at noteworthy MIC values [80]. Noteworthy activity was also reported for Com- miphora myrrha (myrrh) and Thymus numidicus (thyme) [99]. Syzygium aromaticum and S. album were reported to effectively inhibit P. aeruginosa [99]; and Thymus vulgaris (thyme) inhibits E. coli (including multidrug-resistant strains) [182].

4.1.4. Other Bacterial Pathogens. Brevibacterium spp. form part of the Coryneform bacteria and are involved in foul body odour [3, 103]. Insufficient quantitative studies have been conducted using commercial essential oils to treat problems caused by these microorganisms, even though there have been some earlier studies using the diffusion assays against B. linens [226–228]. One quantitative study reported on the activity of Ziziphus persica against B. agri (125 µg/mL) and B. brevis (250 µg/mL), in addition to Ziziphus clinopodiooides against B. agri (31.25 µg/mL) and B. brevis (125 µg/mL) [229]. In another study, essential oils of Kunzea ericoides (Kānuka) and L. scoparium were able to inhibit three species of Brevibacterium (MIC: 0.06–1.00 mg/mL) [138]. Clearly, the lack of attention to this neglected group of microorganisms warrants further attention, especially considering that, to the best of our knowledge, not one essential oil recommended for odour has been investigated against relevant pathogens in vitro.

The β-hemolytic Streptococcus (S. pyogenes) is a threatening pathogen that needs to be considered when investigating wound infections [166]. Group A Streptococcus (GAS) is usually involved in impetigo and necrotising fasciitis (“flesh-eating” disease). This pathogen has developed resistance to erythromycin, azithromycin, clarithromycin, clindamycin, and tetracycline [188, 190]. Group B Streptococcus is also involved in skin infections and has developed resistance to clindamycin, erythromycin, azithromycin, and vancomycin [190]. Periorbital cellulitis is a common occurrence in children and is caused by Haemophilus influenzae [106], and Clostridium spp. (C. perfringens, C. septicum, C. tertiun, C. oedematiens, and C. histolyticum) are involved in gas green/gangrene infections. Table 6 summarises the antimicrobial activity of essential oils that have been studied and shown to have some in vitro efficacy against these pathogens. The lack of studies against S. pyogenes, C. perfringens, and H. influenzae highlights the need to investigate these sorely neglected dermatologically important pathogens, especially since the few available studies have shown these organisms to be highly susceptible to essential oil inhibition. These are also pathogens that cause deeper skin infections, so, with the enhanced penetration offered by essential oils, they may prove beneficial.

4.1.5. Fungal Infections: Yeasts. Yeasts may act as opportunistic pathogens and can result in infection if presented with the opportunity, the most common pathogen being Candida albicans. Candida spp. can cause candidiasis at several different anatomical sites [230]. Candida has started developing resistance to first-line and second-line antifungal treatment agents such as fluconazole [190]. Essential oils demonstrating noteworthy activity against this organism are shown in Table 7. Candida albicans has been quite extensively investigated and most oils used in dermatology have been tested against this pathogen.

Cymbopogon citratus, C. martini, L. nobilis, M. piperita, P. graveolens, Santolina chamaecyparissus (santolina), and Thymus spp. are essential oils recommended in the aromatherapeutic literature for the treatment of fungal infections that have in vitro evidence confirming the effectiveness as antifungals. Cananga odorata (ylang-ylang), Cinnamomum cassia (cinnamon), C. zeylanicum, Coriandrum sativum (coriander), Cymbopogon nardus (citronella), Matricaria chamomilla (German chamomile), and S. benzoin also displayed in vitro noteworthy activity; however, these are interestingly not recommended in the aromatherapeutic literature.

In an in vivo study, L. angustifolia was found to effectively inhibit growth of C. albicans isolated from 20 patients, which was comparative to the inhibition observed by clotrimazole [272].

4.1.6. Fungal Infections: Dermatophytes. Infection with these organisms results in dermatophytosis, which affects the skin, nails, or hair [230, 273, 274]. There is a 10–20% risk of a person acquiring a dermatophyte infection [29], and although the symptoms do not necessarily pose a threat, the treatment is costly and onerous due to resistance and side effects [29]. Essential oils present an excellent option for treating superficial human fungal infections, especially when one is confronted with the effective antifungal results found in previous studies (Table 8). This is encouraging considering the difficulty and challenges faced in treating these infections.

The ability of topical formulations to penetrate the skin is crucial for the effective treatment of subcutaneous infections [108]. Melaleuca alternifolia oil has displayed in vitro activity against M. mycetomatis and M. furfur, proving its potential in treating eumycetoma, pityriasis, and seborrhoeic dermatitis, not only because of its antifungal activity, but also because of its ability to penetrate the skin due to its main compound (terpinen-4-ol) [108, 109, 275, 276].

Onychomycosis is generally resilient to topical treatment of any kind; thus, there is a poor cure rate. It is usually treated systemically due to its infrequency in responding to topical treatments [277, 278]. With onychomycosis being the most frequent cause of nail disease, Buck et al. [279] aimed to treat onychomycosis in clinical trials whereby 60% of patients were treated with M. alternifolia oil and 61% of patients were treated with 1% clotrimazole. There was only a 1% difference between the two study groups. What would be interesting for
Table 5: Essential oil studies showing efficacy against Gram-negative pathogens associated with skin infections.

Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
Abies balsamea (fir)	MIC	P. aeruginosa (ATCC 27858)	Acetone	2.00 mg/mL	β-Pinene (31.00%), bornyl acetate (14.90%), δ-3-carene (14.20%)	[99]
Abies holophylla (Manchurian fir)	MIC	E. coli (ATCC 10536) / E. coli (ATCC 25922) / E. coli (ATCC 33312)	DMSO	21.8 mg/mL	Bicyclo[2.2.1] heptan-2-ol (28.05%), δ-3-carene (13.85%), α-pinene (11.68%), camphene (10.41%)	[111]
Abies koreana (Korean fir)	MIC	E. coli (ATCC 10536) / E. coli (ATCC 25922) / E. coli (ATCC 33312)	DMSO	21.8 mg/mL	Bornylester (41.79%), camphene (15.31%), α-pinene (11.19%)	[111]
Achillea millefolium (yarrow)	MIC	P. aeruginosa (ATCC 27853)	Tween 80	NI	Eucalyptol (24.60%), camphor (16.70%), α-terpinol (10.20%)	[112]
Achillea millefolium (yarrow)	MIC	E. coli (ATCC 25922) / P. aeruginosa (ATCC 27853)	0.5% Tween 80	72.00 mg/mL	Sabine (10.80%), eucalyptol (18.50%)	[113]
Angelica archangelica (angelica) root	MIC	P. aeruginosa (ATCC 27858)	Acetone	2.00 mg/mL	α-Phellandrene (18.50%), α-pinene (13.70%), β-phellandrene (12.60%), δ-3-carene (12.10%)	[99]
Angelica archangelica (angelica) seed	MIC	P. aeruginosa (ATCC 27858)	Acetone	2.00 mg/mL	α-Phellandrene (59.20%)	[99]
Anthemis arvensis (rosewood)	MIC	E. coli (ATCC 25922)	n.m.	0.40 mg/mL	NCR	[85]
Anthemis arvensis (rosewood)	MIC	P. aeruginosa (ATCC 27853)	DMSO	1.00 mg/mL	α-Pinene (39.00%), terpinen-4-ol (32.10%)	[114]
Anthemis arvensis (rosewood)	MIC	E. coli (ATCC 25922) / P. aeruginosa (ATCC 27853)	DMSO	1.00 mg/mL	α-Pinene (49.40%), terpinen-4-ol (21.80%)	[114]
Artemisia dracunculus (tarragon)	MIC	P. aeruginosa (ATCC 27858)	Acetone	2.00 mg/mL	2-Methylbutyl-2-methyl propanoic acid (31.50%), limonene (18.30%), 3-methylpentyl-2-butenoic acid (16.70%), isobutyl isobutyrate (10.00%)	[99]
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
---------------	--------	----------------	---------	---------	----------------	-----------
Backhousia cirtiodora (lemon myrtle)	ADM	E. coli (NCTC 8196)	Tween 80	0.03% v/v	Geranial (51.40%), nerol (40.90%)	[115]
		P. aeruginosa (NCTC6750)		2.00% v/v		
Boswellia carteri (frankincense) (9 samples)		E. coli (ATCC 25922)	Acetone	4.00–12.00 mg/mL	α-Pinene (4.80–40.40%), myrcene (1.60–52.40%), limonene (1.90–20.40%), α-thujene (0.30–52.40%), p-cymene (2.70–16.90%), β-pinene (0.30–13.10%)	[116]
Boswellia frereana (frankincense) (3 samples)		E. coli (ATCC 8739)	Acetone	4.00–6.00 mg/mL	α-Pinene (2.00–64.70%), α-thujene (0.00–33.10%), p-cymene (5.40–16.90%)	[116]
Boswellia neglecta (frankincense)	MIC	E. coli (ATCC 25922)	Acetone	3.00 mg/mL		[117]
Boswellia papyrifera (frankincense)		E. coli (ATCC 8739)	Acetone	1.50 mg/mL	NCR	[117]
Boswellia terebra (frankincense)		P. aeruginosa (ATCC 27858)	Acetone	3.00 mg/mL		
Boswellia sacra (frankincense) (2 samples)		E. coli (ATCC 25922)	Acetone	1.00 mg/mL		
Boswellia thurifera (frankincense)		P. aeruginosa (ATCC 27858)	Acetone	4.00–6.00 mg/mL	α-Pinene (18.30–28.00%), α-thujene (3.90–11.20%), limonene (11.20–13.10%)	[116]
Cananga odorata (ylang-ylang)	MIC	P. aeruginosa (ATCC 27858)	Acetone	3.00 mg/mL	Bicyclosesquiphellandrene (19.50%), β-farnesene (13.90%)	[99]
Cananga odorata (ylang-ylang), heads			Acetone	1.50 mg/mL	Benzylacetate (31.90%), linalool (27.60%), methyl benzoate (10.40%)	
Canarium luzonicum (elemi)	MIC	P. aeruginosa (ATCC 27858)	Acetone	2.00 mg/mL	Limonene (41.90%), eugenol (31.60%), α-phellandrene (11.40%)	[99]
Carum carvi (caraway)	MIC	P. aeruginosa (ATCC 27858)	Acetone	2.00 mg/mL	Limonene (276/0%), carvone (675/0%), DL-Limonene (53.35%), β-selinene (11.08%), β-elemene (10.99%)	[99]
Caryophyllum aromatica (clove)	ADM	P. aeruginosa (ATCC 27853 and 15 clinical isolates)	Tween 80	3.00 mg/mL	Eugenol (75.85%), eugenyl acetate (16.38%)	[119]
Cinnamomum cassia (cinnamon)	MIC	P. aeruginosa	DMSO	≤1.00 μg/mL		

Table 5: Continued.
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
Cinnamomum zeylanicum (cinnamon)	MAC	*E. coli* (ATCC 25922)	75% ethanol	200.00 mg/L		[231]
ADM	*E. coli* (10 clinical strains)	400.00 mg/L	NCR			
MIC	*E. coli* (ATCC 25922)	DMSO	1.25 μL/mL	NCR		[232]
ADM	*E. coli* (clinical strain)	10% DMSO	>1.6 mg/mL	Cinnamaldehyde (52.42%)		[80]
MIC	*P. aeruginosa* (ATCC 27853)	75% ethanol	400.00 mg/L	NCR		[231]
ADM	*P. aeruginosa* (clinical strain)	10% DMSO	>0.80 mg/mL	Cinnamaldehyde (52.42%)		[80]
MIC	*E. coli* (ATCC 25922 and 15 clinical isolates)	Tween 80	0.80 mg/mL	Cinnamaldehyde (52.42%)		[119]
ADM	*P. aeruginosa* (ATCC 27853 and 15 clinical isolates)	DMSO	>0.80 mg/mL	Cinnamaldehyde (86.31%)		[80]
Citrus aurantifolia (lime)	ADM	*E. coli* (ATCC 25922)	10% DMSO	6.40 mg/mL		[80]
MIC	*P. aeruginosa* (ATCC 27853)	6.40 mg/mL	NCR			
Citrus aurantium (bitter orange), flowers	MIC	*E. coli* (ATCC 8739)	10% DMSO	1.25 mg/mL	Limonene (27.05%), α-terpineol (14.00%), E-nerolidol (7.50%), α-terpinyl acetate (11.7%)	[120]
Citrus aurantium (petitgrain)	MIC	*P. aeruginosa* (ATCC 27858)	Acetone	2.00 mg/mL	Linalyl acetate (54.90%), linalool (21.10%)	[99]
Citrus bergamia (bergamot)	MAC	*E. coli* (ATCC 8739)	n.m.	5.0 μL/mL	Bergamol (16.10%), linalool (14.02%), D-limonene (13.76%)	[62]
Citrus grandis (grapefruit)	MIC	*P. aeruginosa* (ATCC 27858)	Acetone	1.50 mg/mL	Limonene (74.80%)	[99]
ADM	*E. coli* (ATCC 25922)	DMSO	2.5 μL/mL	NCR		[232]
Citrus madica limonum (lemon)	ADM	*E. coli* (ATCC 25922)	10% DMSO	>6.4 mg/mL		[80]
MIC	*P. aeruginosa* (ATCC 27853)	12.80 mg/mL	NCR			
Citrus sinensis (orange)	ADM	*E. coli* (ATCC 25922)	10% DMSO	>12.8 mg/mL		[80]
MAC	*E. coli* (ATCC 10536)	0.1% ethanol	1.875 mg/L	NCR		[121]
ADM	*P. aeruginosa* (ATCC 27853)	10% DMSO	>12.80 mg/mL			[80]
MAC	*P. aeruginosa* (ATCC 15442)	0.1% ethanol	1.88 mg/mL			[121]
MIC	*P. aeruginosa* (ATCC 27858)	Acetone	2.00 mg/mL			
Commiphora guidotti (myrrh)	ADM	*E. coli* (ATCC 8739)	Acetone	4.00 mg/mL	(E)-β-Ocimene (52.60%), α-santalene (11.10%), (E)-α-bisabolene (16.00%)	[117]
MIC	*P. aeruginosa* (ATCC 27858)	4.00 mg/mL	NCR			
Commiphora myrrha (myrrh)	MIC	*E. coli* (ATCC 8739)	Acetone	4.00 mg/mL	Furanogermacrene (15.9%), furanoeudesma-1,3-diene (44.3%)	[99]
MIC	*P. aeruginosa* (ATCC 27858)	4.00 mg/mL	NCR			
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
---------------	--------	----------------	---------	--------	-----------------	-----------
Coriandrum sativum (coriander), seed	MIC	E. coli (7 clinical isolates)	0.5% DMSO with Tween 80	0.14 mg/mL	α-Pinene (20.00-60.50%), δ-3-carene (1.00-15.60%), umbellulone (0.80-18.40%)	[122]
Cuminum cyminum (cumin) (6 samples)						
Cupressus arizonica (smooth cypress)	MIC	P. aeruginosa (ATCC 27853)	6.02–23.60 μg/mL	α-Pinene (20.00%), δ-3-carene (15.30%)	[123]	
Cupressus arizonica (smooth cypress), branches		E. coli (ATCC 25922)	0.37 μg/mL	α-Pinene (58.60%), δ-3-carene (15.60%)		
Cupressus arizonica (smooth cypress), female cones	MIC	P. aeruginosa (ATCC 27853)	1.00–16.00 μg/mL	α-Pinene (20.00%), umbellulone (18.40%)		
Cupressus arizonica (smooth cypress), leaves	MIC	P. aeruginosa (ATCC 27853)	2.00 mg/mL	α-Pinene (41.20%), δ-3-carene (23.70%)		
Cupressus sempervirens (cypress)	MIC	E. coli (CIP 105182)	0.5% ethanol	6.3 mg/mL	Limonene (42.00%), trans-p-mentha-1(7),8-dien-2-ol (14.20%), cis-p-mentha-1(7),8-dien-2-ol (12.00%)	[124]
Cymbopogon giganteus (lemongrass)	MIC	P. aeruginosa (CRBP 19.249)	0% ethanol	70.00 mg/mL	Citral (72.80%)	[124]
Cymbopogon citratus (lemongrass)	MAC	E. coli (clinical isolate VR12 and MTCC 424)	Sodium taurocholate	1.66–4.16 μL/mL	Geraniol (61.60%)	[124, 112]
	MIC	P. aeruginosa (MTCC 424 and clinical isolate VR 6)	Sodium taurocholate	1.66–4.16 μL/mL	Citral (72.80%)	[124, 112]
	MIC	P. aeruginosa (CMBP 19.249)	Sodium taurocholate	1.66–4.16 μL/mL	Citral (72.80%)	[124, 112]
	MIC	P. aeruginosa (ATCC 27853)	Acetone	2.00 mg/mL	Geraniol (61.60%)	[124, 112]
			Acetone	>16.00 μg/mL	Geraniol (61.60%)	[118]
	MAC	E. coli (clinical isolate VR12 and MTCC 424)	Sodium taurocholate	1.66–4.16 μL/mL	Geraniol (61.60%)	[124, 112]
Cymbopogon martini (palmarosa)	MAC	P. aeruginosa (MTCC 424 and clinical isolate VR 6)	Sodium taurocholate	1.66–4.16 μL/mL	Geraniol (61.60%)	[124, 112]
	MAC	P. aeruginosa (MTCC 424 and clinical isolate VR 6)	Sodium taurocholate	1.66–4.16 μL/mL	Geraniol (61.60%)	[124, 112]
Cymbopogon nardus (citronella)	MIC	P. aeruginosa (ATCC 27853)	Acetone	1.50 mg/mL	Citronellal (38.30%), geraniol (20.70%), citronellol (18.80%)	[99]
Daucus carota (carrot seed)	MIC	P. aeruginosa (ATCC 27853)	Acetone	3.00 mg/mL	Carotol (44.40%)	[99]
Eucahyptus camaldulensis (eucalyptus)	ADM	E. coli	DMSO	5.09 μL/mL	NCR	[232]
	MIC	P. aeruginosa (ATCC 27853)	Acetone	2.00 mg/mL	NCR	[130]
Table 5: Continued.

Essential oila	Methodb	Species-straintc	Solventd	Resulte	Main componentsf	Referencet	
Eucalyptus globulus (eucalyptus)	ADM	E. coli (ATCC 428)	Tween 20	51.36 µg/mL	Eucalyptol (47.20%), (+)-spathulenol (18.10%)	[81]	
	MIC	E. coli (ATCC 25922)	Tween 80	10.00 mg/mL			[128]
	MAC	P. aeruginosa (ATCC 27853)	Sodium taurocholate	1.66–3.33 µL/mL			[125,126]
E. coli (clinical isolate and MTCC 424)							
Foeniculum vulgare fennel	MAC	P. aeruginosa (ATCC 9027)	DMSO	0.10% v/v	NI	[129]	
	MIC	E. coli (ATCC 25922)	Acetone	1.00 mg/mL		[130]	
Eucalyptus radiata (eucalyptus)	MIC	P. aeruginosa (ATCC 27853)	Acetone	1.00 mg/mL		[130]	
	E. coli (ATCC 25922)						
Eucalyptus citriodora (eucalyptus)							
	MAC	P. aeruginosa (ATCC 27853)	Acetone	1.00 mg/mL		[130]	
Eucalyptus smithii (eucalyptus)							
	MIC	E. coli (ATCC 25922)					
Eucalyptus dives (eucalyptus)							
	MAC	P. aeruginosa (ATCC 27853)	Acetone	1.00 mg/mL		[130]	
Eucalyptus intertexta (eucalyptus)							
	MIC	E. coli (ATCC 10536)					
Eucalyptus largiflorens (eucalyptus)							
	MIC	P. aeruginosa (ATCC 27853)	Acetone	15.6 µg/mL		[131]	
Foeniculum dulce (fennel)	MAC	P. aeruginosa (ATCC 27858)	Acetone	3.00 mg/mL	E-Anethole (79.10%)	[99]	
Foeniculum vulgare (fennel)	MAC	P. aeruginosa (ATCC 9027)	DMSO	0.25 mg/mL	trans-Anethole (68.53%), estragole (10.42%)	[132]	
	MIC	P. aeruginosa		>10.00 mg/mL	trans-Anethole (33.3%), DL-limonene (19.66%), carvone (12.03%)	[118]	
Foeniculum vulgare (fennel) (6 samples)	MIC	P. aeruginosa (ATCC 27853)		100.00–>200.00 µg/mL	Fenchone (16.90–34.70%), estragole (2.50–66.00%), trans-anethole (790–7770%)	[133]	
Foeniculum vulgare Mill. sp. vulgare (fennel), Aurelio	MAC	P. aeruginosa (ATCC 27853)		>100.00 µg/mL	Limonene (16.50–21.50%), (E)-anethole (59.80–66.00%)	[134]	
	E. coli (ATCC 25922)			50.00 µg/mL	Limonene (0.20–17.70%), (E)-anethole (66.30–90.40%)	[134]	
Foeniculum vulgare Mill. sp. vulgare (fennel), Spartaco	MAC	P. aeruginosa (ATCC 27853)	Tween 20	50.00–100.00 µg/mL			
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference	
--------------	--------	---------------	---------	--------	----------------	-----------	
Geranium dissectum (geranium)	MAC	*P. aeruginosa*	DMSO	>16.00 μg/mL	β-Citronellol (25.45%), geranial (13.83%)	[118]	
Hyssopus officinalis (hyssop)	MAC	*P. aeruginosa* (ATCC 27858)	Acetone	2.00 mg/mL	Isopinocamphone (48.70%), pinocamphone (15.50%)	[99]	
Jasminum sambac (jasmine)	MAC	*E. coli* (MTCC 443)	Sodium taurocholate	31.25 μL/mL	Linalool (39.00%), benzyl acetate (22.50%)	[233]	
Juniperus excelsa (juniper), berries, Ohrid	ADM	*E. coli* (25927)	50% DMSO	>5.00%	Sabine (58.85%)	[87]	
Juniperus officinalis (juniper), berry	MIC	*E. coli* (ATCC 25922)	Tween 80	20.00 mg/mL	α-Pinene (39.76%)	[128]	
Juniperus virginiana (juniper)	MIC	*P. aeruginosa* (ATCC 27858)	Acetone	2.00 mg/mL	Thujopsene (29.80%), cedrol (14.90%), α-cedrene (12.40%)	[99]	
Juniperus virginiana (juniper), berries	MAC	*E. coli* (ATCC 11229)	DMSO	31.25 μL/mL	α-Pinene (20.50%), myrcene (13.70%), bicyclo[6.1.0]non-1(10)-ene (10.70%)	[137]	
Kurzania ericoides (Kānuka)	MIC	*P. aeruginosa* (ATCC 90127)	Acetone	4.00 mg/mL	α-pinene (61.60%), p-cymene (5.80–19.10%)	[138]	
Laurus nobilis (bay)	MIC	*P. aeruginosa* (ATCC 27858)	Acetone	2.67 mg/mL	Eugenol (57.20%), myrcene (14.30%), chavicol (12.70%)	[99]	
Lavandula angustifolia (lavender)	E. coli (ampicillin-resistant NCTC 10418)	10% DMSO	73.1 μg/mL	Linalool (25.10%), linalyl acetate (2.50%)	[139]		
Lavandula dentata (French lavender)	E. coli (NRRL B-23)	DMSO	>30.0 μg/mL	1,8-cineole (15.60%), terpin-4-ol (14.90%)	[99]		
Lavandula stoechas (French lavender)	*E. coli* (ATCC 1755)	Acetone	8.60 mg/mL	Linalyl acetate (36.70%), linalool (31.40%), terpinen-4-ol (14.90%)	[140]		
Lavandula stoechas (French lavender), flower	*E. coli* (ATCC 1755)	DMSO	>16.00 μg/mL	Camphor (12.40%), δ-3-Carene (17.41%), α-fenchene (16.79%), diethyl phthalate (13.84%)	[118]		
Lavandula stoechas (French lavender), leaf	*E. coli* (ATCC 1755)	Acetone	8.00 μL/mL	1,8,11-Himachal-3(12),4-diene (23.62%), cubenol (16.8%)	[142]		
Leptospermum scoparium (manuka)	MIC	*P. aeruginosa* (ATCC 11229)	DMSO	25.00 μg/mL	α-Fenchone (39.20%)	[47]	
Litsea cubeba (May Chang)	MIC	*P. aeruginosa* (ATCC 27858)	Acetone	1.50 mg/mL	Geraniol (45.60%), nerol (31.20%)	[99]	
Matricaria chamomilla (German chamomile)	MIC	*P. aeruginosa* (ATCC 27858)	Acetone	4.00 mg/mL	Bisabolene oxide A (46.90%), β-farnesene (19.20%)	[99]	
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference	
---------------	--------	----------------	---------	--------	----------------	-----------	
Matricaria recutita (German chamomile)	ADM₉₀	P. aeruginosa (ATCC 27853 and 15 clinical isolates)	Tween 80	54.40 mg/mL	Chamazulene (31.48%), α-bisabolol (15.71%), bisabolol oxide (15.71%)	[119]	
Matricaria recutita (German chamomile)	MIC	E. coli (CCTCC AB91112)	Tween 80	100 µg/mL	E.β-Farnesene (10.58%), bisabolol oxide A (10.46%)	[143]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (CCTCC AB93066)	Tween 80	200.00 µg/mL	Chamazulene (31.48%), α-bisabolol (15.71%), bisabolol oxide (15.71%)	[119]	
Matricaria recutita (German chamomile)	ADM₉₀	E. coli (ATCC 10536)	Tween 80	0.12% v/v	NCR	[147]	
Matricaria recutita (German chamomile)	MIC	E. coli (ATCC 25922)	None used	0.25% (v/v)	Terpinen-4-ol (38.90%), α-terpinene (17.80%)	[140]	
Matricaria recutita (German chamomile)	MIC	E. coli (ATCC 11775)	Acetone	3.70 mg/mL	Terpinen-4-ol (39.80%), γ-terpinene (21.60%)	[140]	
Matricaria recutita (German chamomile)	MAC	E. coli (ATCC 11229)	Tween 80	0.25% v/v	α-Terpinene (11.40%), γ-terpinene (22.50%), terpinene-4-ol (35.20%)	[137]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (ATCC 15442)	Tween 80	2.00% v/v	Terpinen-4-ol (38.60%), γ-terpinene (21.60%)	[140]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (NCTC 6749)	Tween 80	0.12-0.25% v/v	NCR	[140]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (NCTC 6750)	Tween 80	>2.00% v/v	Terpinen-4-ol (42.80%), γ-terpinene (18.20%)	[115]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (NCTC 8293)	Tween 80	1.00% v/v	Terpinen-4-ol (35.70%)	[115]	
Matricaria recutita (German chamomile)	MAC	P. aeruginosa (ATCC 9027)	Tween 80	0.20% v/v	NCR	[145]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (ATCC 275858)	Acetone	2.00% v/v	Terpinen-4-ol (49.30%), γ-terpinene (16.90%)	[99]	
Matricaria recutita (German chamomile)	MIC	E. coli (ATCC 25922)	Tween 80	5.00 mg/mL	1,8-Cineole (67.60%)	[128]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (ATCC 15442)	Tween 80	1.90% v/v	1,8-Cineole (55.50%)	[137]	
Matricaria recutita (German chamomile)	MIC	E. coli (ATCC 11229)	Tween 80	0.40% v/v	1,8-Cineole (61.20%)	[137]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (ATCC 15442)	Tween 80	1.90% v/v	1,8-Cineole (61.20%)	[137]	
Matricaria recutita (German chamomile)	MIC	P. aeruginosa (ATCC 27858)	Acetone	2.00 mg/mL	1,8-Cineole (45.90%), α-terpinene (21.00%)	[99]	
Melissa officinalis (lemon balm)	MIC	P. aeruginosa (NCTC 1662)	Tween 80	1000.30 µg/mL	Citronellal (20.50%), β-citronellol (11.50%), geraniol (17.00%)	[139]	
Melissa officinalis (lemon balm)	MIC	E. coli (ATCC 8739)	Tween 80	442.30 µg/mL	Citronellal (20.50%), β-citronellol (11.50%), geraniol (17.00%)	[139]	
Melissa officinalis (lemon balm)	MIC	E. coli (ampicillin-resistant NCTC 10418)	Tween 80	567.40 µg/mL	Citronellal (20.50%), β-citronellol (11.50%), geraniol (17.00%)	[139]	
Melissa officinalis (lemon balm)	MIC	E. coli (ATCC 25922)	Tween 80	10.00 mg/mL	NCR	[85]	
Table 5: Continued.

Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
Mentha piperita (peppermint)	MIC	*E. coli* (ATCC 25922)	Tween 80	0.6 mg/mL	1,8-Cineol (12.06%), menthone (22.24%), menthol (47.29%)	[128]
	MAC	*E. coli* (clinical isolate and MTCC 424)	Sodium taurocholate	1.66–2.50 µL/mL	Menthol (36.40%), Menthone (18.20%), menthol (42.90%)	[125, 126]
		E. coli (ATCC 11775)	Acetone	5.70 mg/mL	Menthol (27.50–42.30%), menthone (18.40–27.90%)	[155]
		E. coli (ATCC 25922)	DMSO	1.25–2.50 mg/mL	Menthol (36.40%), menthone (22.24%), menthol (47.29%)	[125]
		n.m.	n.m.	n.m.	NCR	[85]
	ADM	*E. coli* (ATCC 25922)	n.m.	n.m.	NCR	[85]
	ADM	*P. aeruginosa* (MTCC 424 and clinical isolate VR 6)	Sodium taurocholate	10.00–20.00 µL/mL	Menthol (36.40%)	[125, 126]
	MAC	*P. aeruginosa* (ATCC 27853)	Acetone	8.60 mg/mL	Menthol (18.20%), menthone (42.90%)	[140]
	MAC	*P. aeruginosa* (ATCC 27853)	DMSO	2.50–5.00 mg/mL	Menthol (27.50–42.30%), menthone (18.40–27.90%)	[155]
	MIC	*P. aeruginosa* (ATCC 27858)	Acetone	2.00 mg/mL	Menthol (47.50%), menthone (18.60%)	[99]
		E. coli (CIP 105182)	Ethanol	4.00 mg/mL	Menthol (39.30%), menthone (25.20%)	[156]
		E. coli (CRB P 19.249)	0.5% ethanol	>8.00 mg/mL	Menthol (39.30%), menthone (25.20%)	[156]
Myrtus communis (myrtle)	MIC	*P. aeruginosa* (ATCC 27858)	Acetone	2.00 mg/mL	Myrtenyl acetate (28.20%), 1,8-cineole (25.60%), α-pinene (12.50%)	[99]
	ADM	*E. coli* (ATCC 35218)	Tween 20	11.20 mg/mL	NCR	[157]
Ocimum basilicum (basil)	MIC	*P. aeruginosa* (CRB P 19.249)	0.5% ethanol	>8.00 mg/mL	Linalool (57.00%), estragole (28.20%)	[156]
	MAC	*E. coli* (CIP 105182)	Ethanol	8.30 mg/mL	Estragole (86.4%)	[223]
	MAC	*E. coli* (ATCC 8739)	n.m.	1.25 µL/mL	Linalool (57.00%), estragole (28.20%)	[156]
		E. coli (ATCC 25922)	8.00 µL/mL	NCR	[157]	
	ADM	*E. coli* (ESBL+) (4 clinical strains from wounds)	96% ethanol	8.50–9.25 µL/mL	Estragole (86.4%)	[223]
	ADM	*E. coli* (ESBL-) (4 clinical strains from wounds)	10.00–11.50 µL/mL	NCR	[157]	

References:
[125], [126], [128], [129], [99], [155], [156], [157], [158], [159], [160].
Essential oil†	Method‡	Species strain¹	Solvent³	Result⁴	Main components⁵	Reference
Origanum acutidens (Turkey oregano)	MIC	*P. aeruginosa* (ATCC9027)	DMSO	6.250 μg/mL	Carvacrol (72.00%)	[161]
Origanum majorana (marjoram)	MIC	*P. aeruginosa* (ATCC27859)	10% DMSO	125.00 μg/mL	DMSO (0.5% v/v)	[129]
Origanum microphyllum (oregano)	MIC	*E. coli* (ATCC27853)	Acetone	2.00 mg/mL	NCR	[99]
Origanum scabrum (oregano)	MIC	*E. coli* (ATCC25922)	Tween 80	3.35 mg/mL	Terpin-4-ol (24.86%), γ-terpinene (13.83%), linalool (10.43%)	[162]
Origanum vulgare (oregano)	MAC	*E. coli* (ATCC8739)	75% ethanol	200.00 mg/L	Carvacrol (30.17%), p-cymene (15.20%), γ-terpinen (12.44%)	[62]
Origanum vulgare subsp. hirtum (Greek oregano)	MIC	*P. aeruginosa* (ATCC27853)	DMSO	0.20% v/v	NCR	[164]
Origanum vulgare subsp. vulgare (oregano)	MIC	*P. aeruginosa* (ATCC27853)	10% DMSO and Tween 80	>512.00 μg/mL	Linalool (96.31%)	[165]
Pelargonium graveolens (geranium)	ADM	*E. coli* (ATCC27858)	Acetone	2.00 mg/mL	Camphor (23.00%), 1,8-cineole (22.00%), α-pinene (12.00%)	[99]
Pelargonium odoratissimum (geranium)	MIC	*P. aeruginosa* (ATCC27853)	Ethanol	9.25–10.50 mL/L	Citronellol (34.20%), geraniol (15.70%)	[99]
Perovskia abrotanoides (Russian sage)	MIC	*E. coli* (ATCC8739)	Acetone	2.00 mg/mL	Citronellol (26.70%), geraniol (13.40%)	[80]
Pimpinella anisum (anise)	MIC	*P. aeruginosa* (ATCC9027)	DMSO	>500.00 μg/mL	Camphor (23.00%), 1,8-cineole (22.00%), α-pinene (12.00%)	[167]
Pinus sylvestris (pine)	MIC	*P. aeruginosa* (ATCC27858)	Acetone	2.00 mg/mL	Bornyl acetate (42.30%), camphene (11.80%), α-pinene (11.00%)	[99]
Piper nigrum (black pepper)	MIC	*P. aeruginosa* (ATCC27858)	Acetone	2.00 mg/mL	β-Caryophyllene (33.80%), limonene (16.40%)	[99]
Pogostemon cablin (patchouli)	MIC	*E. coli* (ampicillin-resistant NCTC1048)	Acetone	530.2 μg/mL	α-Guaiene (13.80%), α-bulnesene (17.10%), patchouli alcohol (22.70%)	[139]
Pogostemon patchouli (patchouli)	MIC	*E. coli* (ATCC8739)	Acetone	2.00 mg/mL	Patchouli alcohol (37.30%), α-bulnesene (14.60%), α-guaiene (12.50%)	[99]

† Essential oil:
- *Origanum acutidens* (Turkey oregano)
- *Origanum majorana* (marjoram)
- *Origanum microphyllum* (oregano)
- *Origanum scabrum* (oregano)
- *Origanum vulgare* (oregano)
- *Origanum vulgare* subsp. hirtum (Greek oregano)
- *Origanum vulgare* subsp. vulgare (oregano)
- *Pelargonium graveolens* (geranium)
- *Pelargonium odoratissimum* (geranium)
- *Perovskia abrotanoides* (Russian sage)
- *Pimpinella anisum* (anise)
- *Pinus sylvestris* (pine)
- *Piper nigrum* (black pepper)
- *Pogostemon cablin* (patchouli)
- *Pogostemon patchouli* (patchouli)

‡ Method:
- MIC: Minimum inhibitory concentration
- MAC: Minimum antimicrobial concentration
- ADM: Automated dilution method

¹ Species strain:
- *P. aeruginosa*
- *E. coli* (ATCC"

² Solvent:
- DMSO
- Acetone
- Tween 80
- Ethanol
- Tween 20
- n.m.

³ Result:
- 6.250 μg/mL
- 125.00 μg/mL
- 0.05% v/v
- NCR
- NI
- 0.20% v/v
- >512.00 μg/mL
- 200.00 mg/L
- 200.00–400.00 mg/L
- 3.35 mg/mL
- 0.28 mg/mL
- 1.27 mg/mL
- 20.00–400.00 mg/L
- 0.63 μL/mL
- 0.70 mg/mL
- 800.00 mg/L
- 400.00 mg/mL
- 164.80 mg/mL
- 213.30 μg/mL
- 256.00 μg/mL
- >6.40 mg/mL
- 5.60 mg/mL
- 3.00–3.75 mL/L
- >12.80 mg/mL
- 0.20% v/v
- >512.00 μg/mL
- 2.00 mg/mL
- >8.00 μL/mL
- >500.00 μg/mL
- >16.00 μg/mL
- 2.00 mg/mL
- 2.00 mg/mL
- 530.2 μg/mL
- 40.7 μg/mL
- 12.00 μg/mL

⁴ Main components:
- Carvacrol (72.00%)
- DMSO (0.5% v/v)
- NCR
- Terpin-4-ol (24.86%), γ-terpinene (13.83%), linalool (10.43%)
- Carvacrol (74.68%)
- Carvacrol (30.17%), p-cymene (15.20%), γ-terpinen (12.44%)
- Linalool (96.31%)
- Thymol (58.31%), carvacrol (16.11%), p-cymene (13.45%)
- Citronellol (26.70%), geraniol (13.40%)
- Citronellol (26.70%), geraniol (13.40%)
- Citronellol (43.20%), geraniol (15.70%)
- Camphor (23.00%), 1,8-cineole (22.00%), α-pinene (12.00%)
- Anethole (64.82%)
- Bornyl acetate (42.30%), camphene (11.80%), α-pinene (11.00%)
- β-Caryophyllene (33.80%), limonene (16.40%)
- α-Guaiene (13.80%), α-bulnesene (17.10%), patchouli alcohol (22.70%)
- Patchouli alcohol (37.30%), α-bulnesene (14.60%), α-guaiene (12.50%)
| Essential oil* | Method† | Species strain* | Solvent* | Result* | Main components† | Reference |
|---------------|---------|-----------------|----------|---------|------------------|-----------|
| E. coli (ATCC 8739) | Tween 80 | E. coli (ATCC 8739) | 0.25% v/v | 1,8-Cineole (27.23%), α-pinene (19.43%), camphor (14.26%), camphene (11.52%) | [169] |
| E. coli (ampicillin-resistant NCTC 10418) | 10% DSMO | E. coli (ATCC 8739) | 73.70 μg/mL | 1,8-Cineole (29.20%), (+)-camphor (17.20%) | [139] |
| E. coli (ATCC 8739) | Tween 80 | E. coli (ATCC 8739) | 80.70 μg/mL | 1,8-Cineole (26.54%), α-pinene (20.14%), camphene (11.38%), camphor (12.88%) | [170] |
| E. coli (MTCC 723) | Tween 80 | E. coli (ATCC 8739) | >1.00 mg/mL | α-Pinene (8.14–11.47%), 1,8-cineole (10.56–11.91%), camphor (16.57–16.89%), verbenone (17.43–23.79%), bornyl acetate (9.19–11.62%) | [171] |
| E. coli (ATCC 8739) | Hexane | E. coli (ATCC 8739) | 0.47–3.75 mg/mL | 1,8-Cineole (41.40%), α-pinene (12.40%), camphene (11.00%) | [171] |
| E. coli (MTCC 723) | n.m. | E. coli (ATCC 8739) | >11.00 mg/mL | 1,8-Cineole (46.40%), camphor (11.40%), α-pinene (11.00%) | [171] |
| E. coli (ATCC 25922) | 10% DMSO | E. coli (ATCC 25922) | >6.40 mg/mL | 1,8-Cineole (41.40%), α-pinene (13.30%), camphor (12.40%) | [140] |
| E. coli (ATCC 25922) | Tween 20 | E. coli (ATCC 25922) | 11.20 mg/mL | 1,8-Cineole (48.00%), α-pinene (12.40%), camphor (11.90%), α-pinene (10.37%) | [140] |
| P. aeruginosa (ATCC 27853) | Tween 80 | P. aeruginosa (ATCC 27853) | 1.00% v/v | 1,8-Cineole (27.23%), α-pinene (19.43%), camphor (14.26%), camphene (11.52%) | [169] |
| P. aeruginosa (ATCC 27853) | 10% DMSO | P. aeruginosa (ATCC 27853) | 113.30 μg/mL | 1,8-Cineole (29.20%), (+)-camphor (17.20%) | [139] |
| P. aeruginosa (MTCC 741) | Tween 80 | P. aeruginosa (ATCC 9027) | 0.10% v/v | 1,8-Cineole (26.54%), α-pinene (20.14%), camphene (11.38%), camphor (12.88%) | [170] |
| P. aeruginosa (ATCC 27853) | Tween 80 | P. aeruginosa (ATCC 27853) | >1.00 mg/mL | α-Pinene (8.14–11.47%), 1,8-cineole (10.56–11.91%), camphor (16.57–16.89%), verbenone (17.43–23.79%), bornyl acetate (9.19–11.62%) | [171] |
| P. aeruginosa (ATCC 27858) | DMSO | P. aeruginosa (ATCC 27858) | 2.00 mg/mL | 1,8-Cineole (48.00%) | [99] |
| P. aeruginosa (ATCC 27853 and 15 clinical isolates) | Tween 80 | P. aeruginosa (ATCC 27853) | 79.91 mg/mL | Camphor (27.51%), limonene (21.01%), myrcene (11.95%), α-pinene (10.37%) | [119] |
| P. aeruginosa (ATCC 25922 and 15 clinical isolates) | Tween 80 | P. aeruginosa (ATCC 25922) | >100.00 μg/mL | Caryophyllene oxide (16.60%) | [173] |
| E. coli (ATCC 10536) | 10% DMSO | E. coli (ATCC 10536) | 500.00 μg/mL | Borneol (21.83%), α-pinene (18.80%), bornyl acetate (18.68%) | [174] |
| E. coli (ATCC 227853) | n.m. | P. aeruginosa (ATCC 227853) | 7.80 mg/mL | trans-Caryophyllene (10.90%) | [175] |
| Essential oil | Method | Species strain | Solvent | Result | Main components | Reference |
|---------------|--------|----------------|---------|--------|----------------|-----------|
| **Salvia officinalis** (sage) | ADM | E. coli (ATCC 35218) | Tween 20 | 11.20 mg/mL | NCR | [157] |
| **Salvia officinalis** (sage) | MIC | E. coli (ampicillin-resistant NCTC 10481) | Tween 20 | 10% DMSO | 1.8-Cinol (274.00%), α-thujone (16.30%), β-thujone (11.20%), bornol (10.40%) | [139] |
| **Salvia officinalis** (sage) | ADM | P. aeruginosa (ATCC 9027) | DMSO | 0.20% w/v | NCR | [129] |
| **Salvia officinalis** (sage) | ADM | E. coli (ATCC 25922) | n.m. | 7.50 mg/mL | NCR | [176] |
| **Salvia officinalis** (sage) | ADM | E. coli (clinical strain) | n.m. | 3.75 mg/mL | NCR | [137] |
| **Salvia officinalis** (sage) | ADM | E. coli (clinical strain) | n.m. | 7.50 mg/mL | NCR | [137] |
| **Salvia officinalis** (sage) | MIC | E. coli (ATCC 25922) | n.m. | 3.25 mg/mL | α-Pinene (12.85%), α-cineole (46.42%) | [177] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27853) | 20% DMSO | 250–500 µg/mL | α-Pinene (15.70–3.40%), 1,8-cineole (16.60–25.10%), β-pinene (6.70–13.50%) | [178] |
| **Salvia officinalis** (sage) | MIC | E. coli (NRRL B 23) | Tween 20 | >100 µg/mL | γ-Muurolene (14.00%) | [173] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 3.50 mg/mL | Linalyl acetate (72.90%), linalool (11.90%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 0.50 mg/mL | α-Santalol (32.10%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 3.00 mg/mL | Cinnamyl alcohol (44.80%), benzene propanol (21.70%) | [111] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 1.50 mg/mL | γ-Muurolene (14.00%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 1.50 mg/mL | γ-Muurolene (14.00%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 1.50 mg/mL | γ-Muurolene (14.00%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 1.50 mg/mL | γ-Muurolene (14.00%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 1.50 mg/mL | γ-Muurolene (14.00%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 1.50 mg/mL | γ-Muurolene (14.00%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 1.50 mg/mL | γ-Muurolene (14.00%) | [99] |
| **Salvia officinalis** (sage) | MIC | P. aeruginosa (ATCC 27858) | Acetone | 1.50 mg/mL | γ-Muurolene (14.00%) | [99] |
| Essential oil | Method | Species strain | Solvent | Result | Main components | Reference |
|---------------|--------|----------------|---------|--------|-----------------|-----------|
| Thymus hyemalis (thymol, thymol/linalool, carvacrol chemotypes) (thyme) | MAC | E. coli (CECT 516) | 95% ethanol | <0.2–2.0 μL/mL | p-Cymene (16.00–19.80%), linalool (2.10–16.60%), thymol (2.90–43.00%), carvacrol (0.30–40.10%) | [61] |
| *Thymus numidicus* | ADM | P. aeruginosa (clinical strain) | n.m. | 0.47 mg/mL | | [176] |
| Thymus schimperi (thyme) | ADM | E. coli (ATCC 35218) | DMSO | 0.63 μL/mL | NCR | [232] |
| Thymus serpyllum (thyme) | ADM | E. coli (ATCC 8739) | Ethanol | 0.25–0.50 μL/mL | Thymol (38.10%), p-cymene (29.10%) | [182] |
| Thymus vulgaris (thyme) | MIC | E. coli (ATCC 11775) | Acetone | 0.50 mg/mL | Thymol (47.20%), p-cymene (22.10%) | [140] |
| Thymus vulgaris (thyme) | ADM | E. coli (ATCC3428) | Tween 20 | 9.25 μL/mL | Thymol (48.10%), p-cymene (15.60%), γ-terpinene (15.40%) | [81] |
| Thymus vulgaris (thyme) | MIC | P. aeruginosa | DMSO | >500.00 μg/mL | NCR | [168] |
| Thymus vulgaris (thyme) | MIC | P. aeruginosa (NCTC 1662) | 10% DSMO | 1250.30 μg/mL | p-Cymene (17.90%), thymol (52.40%) | [139] |
| Thymus vulgaris (thyme) | ADM | P. aeruginosa (multidrug-resistant clinical strain from toes) | Ethanol | 1.50–2.00 μL/mL | Thymol (38.10%), p-cymene (29.10%) | [182] |
| Thymus vulgaris (thyme) | MIC | P. aeruginosa (6 multidrug-resistant clinical strains from wounds) | Acetone | 8.6 mg/mL | Thymol (47.20%), p-cymene (22.10%) | [140] |
| Thymus vulgaris (thyme) | MIC | P. aeruginosa (ATCC 9027) | 2.00 mg/mL | p-Cymene (59.90%), thymol (20.70%) | [99] |
| Essential oil^a | Method^b | Species strain^c | Solvent^d | Result^e | Main components^f | Reference |
|-------------------------|------------------|------------------------|------------------|-----------------|-------------------------|-----------|
| *Thymus vulgaris* (thyme) (thymol chemotype) | MAC | *E. coli* (CECT 516) | 95% ethanol | 0.5µL/mL | *p*-Cymene (18.70%), thymol (57.70%) | [61] |
| *Thymus zygis subsp. gracilis* (thyme) (thymol and two linalool chemotypes) | MAC | *E. coli* (CECT 516) | 95% ethanol | <0.2µL/mL | *p*-Cymene (0.50–11.20%), (E)-sabinene hydrate (0.20–18.20%), linalool (2.00–82.30%) | [61] |
| *Vetiveria zizanioides*/*Andropogon muricatus* (vetiver) | MIC | *P. aeruginosa* (ATCC 27858) | Acetone | 1.50 mg/mL | Zizanol (13.60%), β-vetirenene (7.20%) | [99] |

^aScientific name (common name), part of plant (if applicable).

^bMIC: microdilution method; MAC: macrodilution method; ADM: agar dilution method; CTA: contact time assay.

^cAmerican Type Culture Collection, Rockville, USA (ATCC); Colección Espanola de Cultivos Tipo (CECT); collection of microorganisms of the Department of Microbiology (MFBF); culture collection of antibiotics-resistant microbes (CCRM); Eskisehir Osmangazi University, Faculty of Medicine, clinical isolate (OGU); Laboratorio de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina (LM); Microbial Type Culture Collection (MTCC); Mycology Laboratory (LM); National Center of Industrial Microorganisms (NCIM); National Collection of Type Cultures, London, Great Britain (NCTC); Spanish Collection of Type Cultures (STCC).

^dDMSO concentration was not included; n.m.: not mentioned.

^eNI: no inhibition.

^fNCR: no composition results reported.
Table 6: Essential oil studies showing efficacy against other bacterial skin pathogens.

Essential oil & Species	Method & Species	Solvent	Result	Main components	
Achillea millefolium (yarrow)	MIC	C. perfringens KUKENS-Turkey	Tween 80	4.50 mg/mL	Eucalyptol (24.60%), camphor (16.70%), α-terpineol (10.20%)
Achillea setacea (breezy yarrow)	MIC	C. perfringens KUKENS-Turkey	Tween 80	0.56 mg/mL	Sabine (10.80%), eucalyptol (18.50%)
Achillea terrestris (yarrow)	MIC	C. perfringens KUKENS-Turkey	Tween 80	0.28 mg/mL	Eucalyptol (19.10%), camphor (11.90%)
Eucalyptus globulus (eucalyptus)	MIC	S. pyogenes (ATCC 12344)	Tween 80	10.00 mg/mL	1,8-Cineol (81.93%)
Eucalyptus radiata (eucalyptus)	MIC	S. pyogenes (NHLS 8668)	Acetone	0.50 mg/mL	1,8-Cineole (65.7% ± 9.5), α-terpineol (12.8% ± 4.4)
Eucalyptus citriodora (eucalyptus)	MIC	S. pyogenes (NHLS 8668)	Acetone	1.00 mg/mL	1,8-Cineole (65.7% ± 9.5), α-terpineol (12.8% ± 4.4)
Eucalyptus smithii (eucalyptus)	MIC	S. pyogenes (NHLS 8668)	Acetone	0.50 mg/mL	
Eucalyptus dives (eucalyptus)	MIC	S. pyogenes (clinical isolate)	Twee 80	>0.00%	α-Pinene (70.81%)
Juniperus excelsa (juniper), berries, Dojran	ADM	S. pyogenes (clinical isolate)		31.00 μL/mL	α-Pinene (33.83%), cedrol (24.44%)
Juniperus excelsa (juniper), leaves, Ohrid	ADM	S. pyogenes (clinical isolate)		50% DSMO	α-Pinene (33.83%), cedrol (24.44%)
Juniperus excelsa (juniper), leaves, Dojran	ADM	S. pyogenes (clinical isolate)		125.00 μL/mL	α-Pinene (26.2–46.7%), p-cymene (5.8–19.1%)
Juniperus officinalis (juniper berry)	MIC	S. pyogenes (ATCC 12344)	Tween 80	20.00 mg/mL	α-Pinene (39.76%)
Kunzea ericoides (Kānuka)	MAC	C. diphtheriae (clinical isolate)	Tween 80	0.25% v/v	α-Pinene (61.60%)
Leptospermum scoparium (manuka)	MAC	C. diphtheriae (clinical isolate)	Tween 80	0.05% v/v	α-Pinene (26.2–46.7%), p-cymene (5.8–19.1%)

References: [112], [113], [128], [130], [87], [137], [138].
Essential oil (a)	Method (b)	Species strain (c)	Solvent (d)	Result (e)	Main components (f)	Reference
Melaleuca alternifolia (teatree)	MIC	*Corynebacterium* spp. (10 clinical isolates)	Tween 80	0.06–2% *v/v*	Terpinen-4-ol (35.70%)	[152]
	MIC₉₀	*S. pyogenes* (15 clinical isolates)		0.12%		
	MIC	*C. diphtheriae* (clinical isolate)	Tween 80	0.20% *v/v*	α-Terpinene (11.40%), γ-terpinene (22.50%), terpinen-4-ol (35.20%)	[137]
		C. minutissimus (clinical isolate)				
Melaleuca cajuputi (cajuput)	MIC	*S. pyogenes* (ATCC 12344)	Tween 80	5.00 mg/mL	1,8-Cineol (67.60%)	[128]
	MAC	*C. diphtheriae* (clinical isolate)		0.30% *v/v*	1,8-Cineole (55.50%)	[137]
		C. minutissimus (clinical isolate)				
Melaleuca quinquenervia (niaouli)	MAC	*C. diphtheriae* (clinical isolate)	Tween 80	0.25% *v/v*	1,8-Cineole (61.20%)	[137]
Mentha piperita (peppermint)	MIC	*S. pyogenes* (ATCC 12344)	Tween 80	5.00 mg/mL	1,8-Cineol (12.06%), menthone (22.24%), menthol (47.29%)	[128]

(a) Scientific name (common name), part of plant (if applicable).
(b) MIC: microdilution method; MAC: macrodilution method; ADM: agar dilution method; CTA: contact time assay.
(c) American Type Culture Collection, Rockville, USA (ATCC).
(d) DMSO concentration was not included; n.m.: not mentioned.
(e) NI: no inhibition.
(f) NCR: no composition results reported.
Table 7: Essential oils demonstrating noteworthy antimicrobial efficacy against C. albicans.

Essential oil	Species (strain)	MIC	ADM₀	ADMₐ₀	Result	Reference
Abies balsamea (Korean fir)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Abies balsamea (Chinese fir)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Achillea millefolium (bristly yarrow)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Artemisia dracunculus (ylang-ylang) heads	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cinnamomum camphora (elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Carum carvi	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cedrus atlantica	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cananga odorata (chamomile)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cananga odorata (Elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Carum carvi	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cinnamomum camphora (elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Carum carvi	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cinnamomum camphora (elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cananga odorata (chamomile)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cananga odorata (Elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Carum carvi	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cinnamomum camphora (elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cananga odorata (chamomile)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cananga odorata (Elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Carum carvi	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cinnamomum camphora (elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cananga odorata (chamomile)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Cananga odorata (Elemi)	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Carum carvi	0.50 mg/mL	2.00 mg/mL	2.00 mg/mL	0.50 mg/mL	Tween 80	[99]
Essential oil^c	Method^b	Species strain^a	Solvent^d	Result^e	Main components^f	Reference
----------------	----------	------------------	-----------	----------	-------------------	-----------
Cinnamomum cassia (cinnamon)	MAC_{0.01}	C. albicans (ATCC90029)	n.m.	0.17 µL/mL	trans-Cinnamaldehyde (92.20%)	[238]
Cinnamomum cassia (cinnamon)	MIC	C. albicans	DMSO	≤0.00 µL/mL	trans-Caryophyllene (17.18%), eugenol (14.67%), linalool L (14.52%), trans-cinnamyl acetate (13.85%), cymol (11.79%), cinnamaldehyde (11.25%)	[118]
Cinnamomum zeylanicum (cinnamon)	ADM	C. albicans	DMSO	0.17 µL/mL		
	MIC	C. albicans (ATCC 10231)	Acetone	2.00 mg/mL	Eugenol (80.00%)	[99]
Citrus aurantium (petitgrain)	ADM_{0.01}	C. albicans (ATCC 10231)	Tween 80	0.25% v/v	Linalyl acetate (54.90%), linalool (21.10%)	[99]
Citrus bergamia (bergamot)	ADM	C. albicans (ATCC 10231) and 3 clinical isolates	Tween 20	0.01%	NCR	
Citrus grandis (grapefruit)	MIC	C. albicans (ATCC 10231)	Acetone	2.00 mg/mL	Limonene (74.80%)	[99]
Citrus limon (lemon)	ADM_{0.01}	C. albicans (ATCC 10231)	Tween 80	2.00% v/v		
	ADM	C. albicans (ATCC 10231) and 3 clinical isolates	Tween 20	0.50–1.00%	NCR	[237]
Citrus limon (lemon), aromatic art	MAC	C. albicans (clinical strain C31)	Tween 80	0.03%	Limonene (22.42%), isopropyl myristate (42.78%)	[237]
Citrus limon (lemon), Avicenna	MIC	C. albicans (ATCC 10231)	Tween 80	0.60%	Limonene (42.03%), β-pinene (15.15%)	[239]
Citrus limon (lemon) - Vera Nord	ADM	C. albicans (ATCC 10231) and 3 clinical isolates	Tween 20	1.00%	Limonene (23.39%), trans-citral (15.32%), cis-citral (19.41%)	[237]
Citrus sinensis (orange)	MAC	C. albicans (ATCC 10231)	0.1% ethanol	3.75 mg/L	NCR	[121]
	MIC	C. albicans (ATCC 10231) and 3 clinical isolates	Tween 20	1.00%	Limonene (9.32%)	[121]
Commiphora guidotti (myrrh)	MIC	C. albicans (ATCC 10231)	Acetone	2.00 mg/mL	(E)-β-Ocimene (52.60%), α-santalene (11.0%), (E)-bisabolene (16.00%)	[117]
Commiphora myrrha (myrrh)	MIC	C. albicans (ATCC 10231)	Acetone	1.50 mg/mL	Furanoaegermacrene (15.90%), furanoadesma-1,3-diene (44.30%)	[199]
Coriandrum sativum (coriander)	ADM_{0.01}	C. albicans (ATCC 10231)	Tween 80	0.25% v/v	NCR	[236]
	MIC	C. albicans (CBS 562 and 4 clinical isolates)	n.m.	0.02–0.06 mg/mL	Decanal (10.97%), 1-decanol (15.30%), 2-dodecanol (11.26%)	[240]
Cupressus sempervirens (cypress)	MIC	C. albicans (ATCC 10231)	Acetone	4.00 mg/mL	α-Pinene (41.20%), δ-3-carene (23.70%)	[199]
Essential oil	Method	Species (strain)	Solvent	Result	Main components	Reference
---------------	--------	-----------------	---------	---------	-----------------	-----------
Cymbopogon citratus (lemongrass)	ADM	C. alburnus (ATCC 0231)	Tween 80	0.12% v/v	NCR	[236]
	C. alburnus (SP-14)	Sodium taurocholate	Acetone	2.00 mg/mL	Citral (72.80%)	[125,126]
		DMSO	Tween 20	0.06%	NCR	[237]
	ADM	C. alburnus (ATCC 0231 and 3 clinical isolates)	Tween 20	0.06-0.15% v/v	NCR	[237]
Cymbopogon martinii (palmarosa)	ADM	C. alburnus (SP-14)	Sodium taurocholate	5.00 µL/mL	Geraniol (61.60%)	[125,126]
	C. alburnus (ATCC 0231 and 3 clinical isolates)	Tween 20	0.12–0.15%	NCR	[237]	
		C. alburnus (clinical samples)		0.08%	NCR	[75]
Cymbopogon nardus (citronella)	ADM	C. alburnus (ATCC 0231)	Tween 80	0.2% v/v	NCR	[236]
	C. alburnus (SP-14) and 3 clinical isolates	Sodium taurocholate	Acetone	0.75 mg/mL	Citronellal (38.30%), geraniol (20.70%), citronellol (18.80%)	[99]
	C. alburnus (ATCC 0231 and 3 clinical isolates)	Tween 20	0.50–1.00% NCR	[237]		
Cymbopogon winterianus (citronellagrass)	ADM	C. alburnus (ATCC 0231)	Tween 80	0.75% v/v	NCR	[236]
	C. alburnus (SP-14) and 3 clinical isolates	Sodium taurocholate	Acetone	0.06–0.25 mg/mL	NCR	[240]
Daucus carota (carrotseed)	ADM	C. alburnus (ATCC 0231)				
	C. alburnus (clinical samples)	Tween 20	0.05–0.06%	NCR	[75]	
Eucalyptus camaldulensis (eucalyptus)	ADM					[232]
Eucalyptus fruticetorum (eucalyptus)	ADM	C. alburnus (ATCC 0231)	Tween 80	1.00% v/v	NCR	[236]
	C. alburnus (SP-14) and 3 clinical isolates	Sodium taurocholate	Acetone	1.00 mg/mL	Citronellal (38.30%), geraniol (20.70%), 1,8-Cineole (23.20%)	[125,126]
	C. alburnus (ATCC 0231 and 3 clinical isolates)	Tween 20	1.50%	NCR	[237]	
Eucalyptus globulus (eucalyptus)	ADM	C. alburnus (ATCC 0231)	Tween 80	0.2% v/v	NCR	[236]
	C. alburnus (clinical samples)	Tween 80	0.05%	NCR	[75]	
	C. alburnus (ATCC 0231)	Sodium taurocholate	Acetone	1.50 mg/mL	Citronellal (38.30%), 1,8-Cineole (23.20%)	[125,126]
	C. alburnus (SP-14) and 3 clinical isolates	Tween 20	1.50%	NCR	[237]	
Eucalyptus niger (eucalyptus)	ADM	C. alburnus (ATCC 0231)	Tween 80	0.1% v/v	NCR	[236]
	C. alburnus (clinical samples)	Tween 80	0.05%	NCR	[75]	
	C. alburnus (ATCC 0231)	Sodium taurocholate	Acetone	1.50 mg/mL	Citronellal (38.30%), 1,8-Cineole (23.20%)	[125,126]
	C. alburnus (SP-14) and 3 clinical isolates	Tween 20	1.50%	NCR	[237]	
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
---------------	--------	----------------	---------	--------	-----------------	-----------
Eucalyptus radiata (eucalyptus)	MIC	*C. albicans* (ATCC 10231)	Acetone	1.00 mg/mL	1,8-Cineole (65.7% ± 9.5), α-terpineol (12.8% ± 4.4)	[130]
Eucalyptus camaldulensis (eucalyptus)						
Eucalyptus citriodora (eucalyptus)						
Eucalyptus smithii						
Eucalyptus dives (eucalyptus)	MAC	*C. albicans* (ATCC 10231)	10% DMSO	7.80 μg/mL	NCR	[131]
Eucalyptus intertexta (eucalyptus)						
Eucalyptus largiflorens (eucalyptus)	ADM	*C. albicans* (clinical samples)	Tween 20	0.33%	NCR	[75]
Eugenia caryophyllus (clove)	ADM	*C. albicans*	Tween 20	>3.00%	NCR	[75]
Foeniculum vulgare (fennel)	MIC	*C. albicans*	DMSO	≤1.00 μg/mL	trans-Anethole (33.3%), DL-limonene (19.66%), carvone (12.03%)	[118]
Foeniculum dulce (fennel)	MIC	*C. albicans* (ATCC 10231)	Acetone	2.00 mg/mL	E-Anethole (79.10%)	[99]
Hyssopus officinalis (hyssop)	MIC	*C. albicans* (ATCC 10231)	Acetone	1.00 mg/mL	Isopinocamphone (48.70%), pinocamphone (15.50%)	[99]
Geranium dissectum (geranium)	MIC	*C. albicans*	DMSO	≤1.00 μg/mL	β-Citronellol (25.45%), geraniol (13.83%)	[118]
Juniperus oxycedrus (cade juniper)	ADM	*C. albicans* (clinical samples)	Tween 20	NI	NCR	[75]
Essential oil	Method	Species strain	Solvent	Result	Main components	
--------------	--------	----------------	---------	--------	-----------------	
Juniperus oxycedrus ssp. oxycedrus (cade), leaf	MAC	C. albicans (ATCC10231)	DMSO 2%	1.25–2.00%	DMSO (65.50%), myrcene (18.80%), germacrene D (10.40%)	
Juniperus oxycedrus ssp. oxycedrus (cade), berries	MIC	C. albicans (ATCC10231)	Acetone	0.75 mg/mL	DMSO (65.50%), myrcene (18.80%), germacrene D (10.40%)	
Juniperus oxycedrus ssp. oxycedrus (cade), berries	ADM	C. albicans (ATCC10231)	Tween 20	>0.2%	DMSO (65.50%), myrcene (18.80%), germacrene D (10.40%)	
Kunzea ericoides (Kunzuka)	MAC	C. albicans (ATCC10231)	Tween 80	0.50–1.00%	DMSO (≤1.00 mg/mL)	
Lavandula angustifolia (lavender)	ADM	C. albicans (ATCC10231)	Tween 20	>0.2%	DMSO (≤1.00 mg/mL)	
Lavandula officinalis (lavender)	MAC	C. albicans (ATCC10231)	Tween 80	>0.2%	DMSO (≤1.00 mg/mL)	
Lavandula stoechas (French lavender)	ADM	C. albicans (ATCC10231)	Tween 80	>0.2%	DMSO (≤1.00 mg/mL)	
Lavandula viridis (yellow lavender)	ADM	C. albicans (ATCC10231)	Tween 80	>0.2%	DMSO (≤1.00 mg/mL)	
Leptospermum scoparium (manuka)	MAC	C. albicans (ATCC10231)	Tween 80	>0.2%	DMSO (≤1.00 mg/mL)	
Litsea cubeba (May Chang)	MIC	C. albicans (ATCC10231)	Acetone	0.50 mg/mL	DMSO (≤1.00 mg/mL)	
Matricaria chamomilla (German chamomile)	ADM	C. albicans (ATCC10231)	Tween 20	NI	DMSO (≤1.00 mg/mL)	
Table 7: Continued.

Essential oil^a	Method^b	Species strain^c	Solvent^d	Result^e	Main components^f	Reference
Melaleuca alternifolia	ADM³	C. albicans (clinical samples)	Tween 20	0.73%	NCR	[75]
	MIC⁹⁰	C. albicans (KEM H5)	n.m.	0.13% (v/v)	Terpinen-4-ol (39.80%), \(\gamma\)-terpinene (17.80%)	[149, 150]
	ADM	C. albicans (ATCC10321)	Tween 80	0.25% v/v	NCR	[236]
	MIC⁹⁰	C. albicans (NCCY 854)	n.m.	0.25% v/v	Terpinen-4-ol (42.80%), \(\gamma\)-terpinene (18.20%)	[115]
	MAC	C. albicans (fluconazole- and itraconazole-susceptible isolates)	Tween 80	0.06–0.50% v/v	Terpinen-4-ol (42.35%), \(\gamma\)-terpinene (20.65%)	[248]
	MAC	C. albicans (fluconazole- and/or itraconazole-resistant isolates; six isolates were cross-resistant)	n.m.	0.25–0.50% v/v		
	ADM	C. albicans (NRRL y-12983)	Acetone	1.75 mg/mL	Terpinen-4-ol (38.60%), \(\gamma\)-terpinene (21.60%)	[140]
Melaleuca cajuputi	MIC	C. albicans (ATCC 14053)	3.50 mg/mL			[249]
	ADM	C. albicans (NRRL y-869)	1.75 mg/mL			[249]
	ADM	C. albicans (ATCC 10231)	4.73 mg/mL			[137]
	MIC	C. albicans (ATCC 90028)	4.73 mg/mL			[137]
	MIC	C. albicans (ATCC 22077)	2.30 mg/mL			[99]
	MAC	C. albicans (ATCC 10231)	3.70 mg/mL			[237]
Melaleuca quinquenervia	MAC	C. albicans (ATCC 90028)	Tween 80	0.30% v/v	\(\alpha\)-Terpinene (11.40%), \(\gamma\)-terpinene (22.50%), terpinen-4-ol (35.20%)	[137]
	MAC	C. albicans (ATCC10321)	Acetone	1.50 mg/mL	Terpinen-4-ol (49.30%), \(\gamma\)-terpinene (16.90%)	[137]

^aSpecies | ^bMethod | ^cSpecies strain | ^dSolvent | ^eResult | ^fMain components | Reference |

Melaleuca alternifolia (tea tree)

- **Melaleuca cajuputi (cajuput)**
- **Melaleuca quinquenervia (nuoñi)**
| Essential oil a | Method b | Species strain c | Solvent d | Result e | Main components f | Reference |
|---------------|----------|-----------------|-----------|----------|-------------------|-----------|
| Melaleuca viridiflora (niaouli) | MIC | C. albicans (ATCC10231) | Acetone | 1.75 mg/mL | 1,8-Cineole (45.90%), α-terpinene (21.00%) | [99] |
| Mentha piperita (peppermint) | ADM 90 | C. albicans (ATCC10231) | Tween 80 | 0.50% v/v | NCR | [236] |
| Mentha pulegium (peppermint) | MIC | C. albicans | Acetone | 2.40 mg/mL | Menthone (18.20%), menthol (42.90%) | [140] |
| Mentha rotundifolia (peppermint), Beja | ADM | C. albicans (ATCC10231 and 3 clinical isolates) | Tween 20 | 0.08% | NCR | [75] |
| Mentha spicata (spearmint) | ADM 90 | C. albicans (ATCC10231) | Tween 80 | 0.12% v/v | NCR | [236] |
| Myrtus communis (myrtle) | MIC | C. albicans (ATCC10231) | Acetone | 1.50 mg/mL | Myrtenyl acetate (28.20%), 1,8-cineole (15.50%) | [236] |
| Myrtus nivellei (Sahara myrtle) | MAC | C. albicans (ATCC10231) | 2% DMSO | 1.25–2.50 μg/mL | 1,8-Cineole (37.50%), limonene (25.00%) | [251] |
| Ocimum basilicum var. minimum (basil) | MIC | C. albicans (ATCC10231) | Acetone | 1.00 mg/mL | NCR | [236] |
| Ocimum americanum (basil) | MIC | C. albicans (ATCC10231) | Acetone | 1.00 mg/mL | Linalool (44.0%), 1,8-cineole (15.50%) | [236] |
| Ocimum basilicum var. purpurascens (basil) | MIC | C. albicans (ATCC11006) | DMSO | 500.00 μg/mL | 1,8-Cineole (25.9%), (Z)-methyl cinnamate (29.40%) | [252] |
| Ocimum micranthum (basil) | MIC | C. albicans | Acetone | 1.00 mg/mL | Linalool (41.50%), α-muurol (11.80%) | [252] |
| Ocimum selloi | MIC | C. albicans | n.m. | 30.00 μg/mL | Estragole (45.80%), linalool (24.20%) | [253] |
| Ocimum basilicum (basil) | ADM | C. albicans (clinical samples) | Tween 20 | 1.50% | NCR | [75] |
| Ocimum gratissimum (African basil) | MIC | C. albicans (clinical isolate) | n.m. | 750.00 μg/mL | Eugenol (67.00%) | [254] |
Table 7: Continued.

Essential Oil	Method	Species Strain	Solvent	Result	Main Components	Reference		
Ocimum sanctum (holy basil)	MIC₉₀	C. albicans (ATCC 90028)	10% DMSO	0.25 µL/mL	Methyl chavicol (44.63%), linalool (21.84%)	[255]		
	ADM	C. albicans (clinical samples)	Tween 20	0.48%	NCR	[75]		
Origanum majorana (marjoram)	MIC	C. albicans (ATCC 10231)	Acetone	2.00 mg/mL	1,8-Cineole (46.00%), linalool (26.10%)	[99]		
Origanum acutidens (Turkey oregano)	MIC	C. albicans (A117)	10% DMSO	125.00 µg/mL	Carvacrol (72.0%)	[161]		
Origanum microphyllum (oregano)	MIC	C. albicans	Tween 80	3.23 mg/mL	Terpinen-4-ol (24.86%), γ-terpinene (13.83%), linalool (10.81%)	[162]		
Origanum vulgare subsp. *hirtum* (Greek oregano)	MAC	C. albicans (ATCC 10239)	10% DMSO	85.30 µg/mL	Linalool (96.31%)	[165]		
Origanum vulgare subsp. *vulgare* (oregano)	MAC	C. albicans (ATCC 10231)	+ Tween 80	128.00 µg/mL	Thymol (58.31%), carvacrol (16.11%), p-cymene (13.45%)	[165]		
Pelargonium graveolens (geranium)	MIC	C. albicans (ATCC 10231)	Tween 20	0.12%	NCR	[237]		
Species	Strain	Solvent	MIC	ADM	Method	Result	Main components	Reference
-------------------------------	--------------------	----------------	--------------	----------	-----------------	--------	---	-----------
Perovskia abrotanoides	C.albicans	DMSO 8.00%	10%		MIC	8.00	𝜇L/mL Camphor (23.00%), 1,8-cineole (22.00%), α-pinene (12.00%)	[167]
Pimenta racemosa	C.albicans	Tween 80 0.12%	90%		ADM	0.12	NCR	[236]
Pimpinella anisum	C.albicans	Acetone 1.00%	83%		MAC	1.00	NCR	[256]
Pinus sylvestris	C.albicans	Acetone 1.50mg/mL	1.50mg/mL	Bornylacetate (42.30%), camphene (11.80%), α-pinene (11.00%)	[99]			
Pipernigrum	C.albicans	Acetone 2.00mg/mL	2.00mg/mL	β-Caryophyllene (33.80%), limonene (16.40%)	[99]			
Pogostemon patchouli	C.albicans	Acetone 1.50mg/mL	1.50mg/mL	Patchouli alcohol (37.30%), α-bulnesene (14.60%), α-guaiene (12.50%)	[99]			
Ricinus officinalis	C.albicans	Tween 20 >3.00%	ADM		ADM	3.00	NCR	[75]
Rosaliss gallica	C.albicans	Tween 20 1.00–2.00%	1.00–2.00%		ADM	1.00	NCR	[237]
Rosmarinus officinalis	C.albicans	Tween 80 0.25% v/v	0.25% v/v	1,8-Cineole (27.23%), α-pinene (19.43%), camphor (14.26%), camphene (11.52%)	[169]			
Salvia eremophila	C.albicans	Acetone 10%	10%		MIC	10%	NCR	[174]
Salvia officinalis	C.albicans	Acetone 1%	90%		ADM	0.50	NCR	[236]
Salvia rosmarinus	C.albicans	Acetone 1%	90%		ADM	0.50	NCR	[236]
Styrax benzoin	C.albicans	Acetone 2.00mg/mL	2.00mg/mL	Linalylacetate (56.88%), linalool (20.75%)	[257]			
Essential oil*	Methoda	Species strain*	Solvent†	Result‡	Main components†	Reference		
----------------	----------	-----------------	----------	----------	-----------------	-----------		
Syzygium aromaticum (clove)	ADM	C. albicans (ATCC 10231)	Tween 80	0.12% v/v	Eugenol (68.52%), β-caryophyllene (9.00%), 2-methoxy-4-[2-propenyl]phenol acetate (10.15%)	[258]		
	MIC	C. albicans (ATCC 10231)	Tween 80	0.13% v/v	Eugenol (84.07%), isoeugenol (10.39%)	[118]		
	MAC	C. albicans (ATCC 10231)	DMSO	≤1.00 μg/mL	Eugenol (85.30%)	[258]		
		C. albicans (clinical isolate D1)	DMSO	0.64 μg/mL	Eugenol (85.30%)	[258]		
	MIC	C. albicans (ATCC 10231)	Acetone	0.50 mg/mL	Eugenol (82.20%), eugenol acetate (13.20%)	[99]		
	ADM	C. albicans (ATCC 10231 and 3 clinical isolates)	Tween 20	0.12%	NCR	[237]		
Tоgetes minuta (Mexican marigold)	MIC	C. albicans (ATCC 10231)	n.m.	115.00 μg/mL	Dihydrotagetone (33.90%), E-octimene (19.90%), tagetone (16.10%)	[159]		
	MIC	C. albicans (ATCC 10231)	Acetone	2.00 mg/mL	(E)-β-Ocimene (41.30%), E-tagetone (11.20%), geranial (10.90%)	[99]		
*Thymus capitatus (thyme)	MAC	C. albicans (CCM L4)	n.m.	0.25 mg/mL	Thymol (30.64%), carvacrol (21.31%), borneol (20.13%)	[259]		
	MIC	C. albicans (ATCC 10231)	Tween 80	450.00 μg/mL	p-Cymene (26.40%), thymol (29.30%), carvacrol (10.80%)	[181]		
*Thymus herba-barona (thyme)	MAC	C. albicans (ATCC 10231)	2% DMSO	0.32 μL/mL	Carvacrol (54.00%), thymol (30.20%)	[246]		
	MIC	C. albicans (ATCC 10231)	Tween 80	450.00 μg/mL, 225.00 μg/mL	p-Cymene (27.60%), thymol (50.30%), thymol (46.90%), carvacrol (20.60%)	[181]		
*Thymus herba-barona (thyme), Limbara	MIC	C. albicans (KCCM 11282)	Ethanol and Tween 80	0.39 mg/mL	Thymol (39.80%)	[260]		
	MAC	C. albicans (CCM L4)	n.m.	0.25 mg/mL	Carvacrol (89.15%)	[259]		
		C. albicans (ATCC 10231, H37, MI)	n.m.	1.25–2.50 μL/mL	1,8-Cineole (67.40%)	[261]		
*Thymus quinquecostatus (thyme)	MIC	C. albicans (KCCM 11282)	Ethanol and Tween 80	0.39 mg/mL	Thymol (41.70%), γ-terpinene (16.00%)	[260]		
*Thymus schimperi (thyme)	ADM	C. albicans	DMSO	0.16 μL/mL	NCR	[232]		
*Thymus vulgaris (thyme)	MIC	C. albicans (ATCC 10231, H37, MI)	n.m.	4.00 μg/mL	Thymol (47.90%)	[253]		
	MAC	C. albicans (ATCC 10231, H37, MI)	n.m.	0.16–0.32 μL/mL	Carvacrol (70.30%), p-cymene (11.70%)	[261]		
	MIC	C. albicans (ATCC 10231)	Acetone	2.40 mg/mL	Thymol (47.20%), p-cymene (22.10%)	[140]		
				1.00 mg/mL	p-Cymene (39.90%), thymol (20.70%)	[99]		
*Thymus x vicarioi (thyme)	MAC	C. albicans (clinical isolates MI, D3), C. albicans (ATCC 10231)	1% DMSO	0.04–0.64 μL/mL	Carvacrol (30.00%), thymol (18.00%), p-cymene (19.00%)	[262]		
*Thymus zygis subsp. zygis (thyme)	MAC	C. albicans (ATCC 10231)	2% DMSO	0.32–1.25 μL/mL	p-Cymene (11.00–170.00%), γ-terpinene (3.80–11.50%), linalool (3.50–30.00%), geranial (0.10–19.80%), thymol (5.20–23.80%), carvacrol (3.30–25.00%), geranylacetate (0.50–20.80%)	[263]		
*Thymus zygis subsp. zygis (thyme)		C. albicans (ATCC 10231, H37, MI)	n.m.	NI	Thymol (39.60%), p-cymene (21.20%)	[261]		
Essential oil^a	Method^b	Species strain^c	Solvent^d	Result^e	Main components^f	Reference		
-------------------------	------------------	------------------------	-----------------	------------------	------------------------	-----------		
Vetiveria zizanioides/ *Andropogon muricatus* (vetiver)	ADM	*C. albicans* (clinical samples)	Tween 20	NI	NCR	[75]		
	MIC	*C. albicans* (ATCC 10231)	Acetone	1.75 mg/mL	Zizanol (13.60%), β-vetiverylene (7.20%)	[99]		
Zingiber officinalis (ginger)	ADM	*C. albicans* (clinical samples)	Tween 20	3.00%	NCR	[75]		
		C. albicans (ATCC 10231 and 3 clinical isolates)				[237]		

^aScientific name (common name), part of plant (if applicable).

^bMIC: microdilution method; MAC: macrodilution method; ADM: agar dilution method; CTA: contact time assay.

^cAmerican Type Culture Collection, Rockville, USA (ATCC); Colección Española de Cultivos Tipo (CECT); collection of microorganisms of the Department of Microbiology (MFBF); culture collection of antibiotics-resistant microbes (CCRM); Eskisehir Osmangazi University, Faculty of Medicine, clinical isolate (OGU); Laboratorio de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina (LM); Microbial Type Culture Collection (MTCC); Mycology Laboratory (LM); National Center of Industrial Microorganisms (NCIM); National Collection of Type Cultures, London, Great Britain (NCTC); Spanish Collection of Type Cultures (STCC).

^dDMSO concentration was not included; n.m.: not mentioned.

^eNI: no inhibition.

^fNCR: no composition results reported.
Essential oil^a	Method^b	Species strain^c	Solvent^d	Result^e	Main components^f	Reference	
Apium nodiflorum (celery), aerial parts, Italy	MAC	*E. floccosum* (clinical strain FF9)	2% DMSO	0.16 μL/mL	Dillapiole (70.80%), limonene (14.40%)	[230]	
		T. mentagrophytes (clinical strain FF7)	2% DMSO	0.16 μL/mL			
		M. canis (clinical strain FPI)	0.04 μL/mL				
		T. rubrum (CECT 2794)	0.08 μL/mL				
		M. gypseum (CECT 2908)	0.16 μL/mL				
		T. mentagrophytes var. interdigitale (CECT 2958)	0.16 μL/mL				
		T. verrucosum (CECT 2992)	0.32 μL/mL				
		E. floccosum (clinical strain FF9)	2% DMSO	0.08 μL/mL	Myristicin (29.10%), dillapiole (22.50%), limonene (16.70%)	[230]	
		T. mentagrophytes (clinical strain FF7)	2% DMSO	0.08 μL/mL			
		M. canis (clinical strain FPI)	0.04 μL/mL				
		T. rubrum (CECT 2794)	0.16 μL/mL				
		M. gypseum (CECT 2908)	0.08 μL/mL				
		T. mentagrophytes var. interdigitale (CECT 2958)	0.16 μL/mL				
		T. verrucosum (CECT 2992)	0.32 μL/mL				
Cedrus atlantica (cedarwood)	MIC	*T. erinacei* (KCCM 60411)	Tween 80	2.0 mg/mL		NCR [264]	
		T. mentagrophytes (KCCM 11950)	Tween 80	0.00 mg/mL			
		T. rubrum (ATCC 6345)	Tween 80	0.25 mg/mL			
		T. schoenleinii (KCCM 60477)	Tween 80	0.50 mg/mL			
		T. soudanense (KCCM 60448)	Tween 80	0.25 mg/mL			
		T. rubrum (18 isolates)	Tween 80	0.16–1.03% v/v			
		T. mentagrophytes (20 isolates)	Tween 80	0.16–0.63% v/v			
		T. rubrum (18 isolates)	Tween 80	0.31–1.30% v/v			
		T. schoenleinii (KCCM 60477)	Tween 80	2.50% v/v			
		T. soudanense (KCCM 60448)	Tween 80	1.50% v/v			
		T. rubrum (18 isolates)	Tween 80	0.16–0.31% v/v			
Cinnamomum zeylanicum (cinnamon)	ADM	Trichophyton spp. (nail isolate)	DMSO	0.31 μL/mL		NCR [232]	
		Trichophyton spp. (scalp isolate)	0.16 μL/mL				
		Microsporum spp.	0.16 μL/mL				
		T. erinacei (KCCM 60411)	Tween 80	4.00 mg/mL			
		T. mentagrophytes (KCCM 11950)	Tween 80	2.00 mg/mL			
		T. rubrum (ATCC 6345)	Tween 80	1.00 mg/mL			
		T. schoenleinii (KCCM 60477)	Tween 80	2.00 mg/mL			
		T. soudanense (KCCM 60448)	Tween 80	0.25 mg/mL			
		T. rubrum (18 isolates)	Tween 80	0.16–1.03% v/v			
		T. mentagrophytes (20 isolates)	Tween 80	0.16–0.63% v/v			
		T. rubrum (18 isolates)	Tween 80	0.31–1.30% v/v			
Citrus bergamia (bergamot)	MIC	*T. erinacei* (KCCM 60411)	Tween 80	0.00 mg/mL		NCR [264]	
		T. mentagrophytes (KCCM 11950)	Tween 80	0.25 mg/mL			
		T. rubrum (ATCC 6345)	Tween 80	0.50 mg/mL			
		T. schoenleinii (KCCM 60477)	Tween 80	0.25 mg/mL			
		T. soudanense (KCCM 60448)	Tween 80	0.50 mg/mL			
		T. rubrum (18 isolates)	Tween 80	0.16–1.03% v/v			
		T. mentagrophytes (20 isolates)	Tween 80	0.16–0.63% v/v			
		T. rubrum (18 isolates)	Tween 80	0.31–1.30% v/v			
Citrus limon (lemon)	MIC	*M. canis* (11 clinical isolates)	Tween 80	<0.13 mg/mL		NCR [264]	
		Prunus dulcis (sweet almond oil)	4.60–7.50%				
		Limonene (59.20%), β-pinene (13.70%), γ-terpinene (10.80%)					
		T. erinacei (KCCM 60411)	Tween 80	0.25 mg/mL			
		T. mentagrophytes (KCCM 11950)	Tween 80	0.25 mg/mL			
		T. rubrum (ATCC 6345)	Tween 80	0.25 mg/mL			
		T. schoenleinii (KCCM 60477)	Tween 80	0.25 mg/mL			
		T. soudanense (KCCM 60448)	Tween 80	0.25 mg/mL			
		T. rubrum (18 isolates)	Tween 80	0.16–1.03% v/v			
		T. mentagrophytes (20 isolates)	Tween 80	0.16–0.63% v/v			
		T. rubrum (18 isolates)	Tween 80	0.31–1.30% v/v			
		M. canis (24 isolates)	Tween 80	2.50% v/v			
		M. gypseum (1 isolate)	Tween 80	2.50% v/v			
		E. floccosum (12 isolates)	Tween 80	0.16–0.31% v/v			
Cymbopogon citratus (lemon grass)	ADM	*T. erinacei* (KCCM 60411)	Sodium taurocholate	0.25 μg/mL	Citral (72.80%)	[125, 126]	
		T. mentagrophytes (KCCM 11950)	Sodium taurocholate	0.16 μg/mL			
		T. rubrum (ATCC 6345)	Sodium taurocholate	0.16 μg/mL			
		T. schoenleinii (KCCM 60477)	Sodium taurocholate	0.16 μg/mL			
		T. soudanense (KCCM 60448)	Sodium taurocholate	0.16 μg/mL			
		T. rubrum (18 isolates)	Sodium taurocholate	0.16 μg/mL			
		T. mentagrophytes (20 isolates)	Sodium taurocholate	0.16 μg/mL			
Essential oil\(^f\)	Method\(^d\)	Species strain\(^e\)	Solvent\(^g\)	Result\(^b\)	Main components\(^i\)	Reference	
---------------------------	--------------	-----------------------	-------------------	--------------	---	-------------	
Cymbopogon martinii (palmarosa)	ADM	*T. mentagrophytes* (SP-12)	Sodium taurocholate	1.50 μg/mL	Geraniol (61.60%)	[125, 126]	
Cymbopogon winterianus (citronella)	MIC\(_{MIC}\)	*T. rubrum* (IS LM strain), *T. rubrum* strain (ATCC 1683)	Tween 80	32.00 μg/mL	NCR	[84]	
Daucus carota (carrot seed)	MAC	*E. floccosum* (clinical isolate FF9)	2% DMSO	0.64 μL/mL (v/v)	Geranyl acetate (65.00%)		
		T. mentagrophytes (clinical isolate FF7)	DMSO	0.32–0.64 μL/mL (v/v)	Sabinene (28.30–33.80%), limonene (6.50–11.80%), elemicin (6.20–26.00%)	[241]	
		M. canis (clinical isolate FF)	DMSO	1.25 μL/mL (v/v)	α-Pinene (37.90%), geranyl acetate (15.00%)		
		T. rubrum (CECT 2794)	DMSO	0.32 μL/mL (v/v)	β-Bisabolene (51.00%), (E)-methyl isougenol (10.00%)		
		M. gypseum (CECT 2908)	DMSO	0.64 μL/mL (v/v)			
		E. floccosum (clinical strain FF9)	DMSO	0.32 μL/mL (v/v)			
Eucalyptus camaldulensis (river red gum eucalyptus)	ADM	*T. mentagrophytes* (SP-12)	Sodium taurocholate	0.25 μg/mL	Cinene (23.20%)	[125, 126]	
		T. erinacei (KCCM 60411)	DMSO	<0.13 mg/mL			
Eucalyptus globulus (eucalyptus)	MIC	*T. mentagrophytes* (KCCM 19590)	Tween 80	<0.13 mg/mL		[264]	
		T. rubrum (ATCC 6345)	DMSO	0.25 mg/mL			
		T. schoenleinii (KCCM 60477)	DMSO	0.25 mg/mL			
		T. soudanense (KCCM 60448)	DMSO	0.25 mg/mL			
		T. tonsurans (KCCM 11866)	DMSO	0.25 mg/mL			
		M. canis (ATCC 32903)	DMSO	100.00 μg/mL			
		M. gypseum (ATCC 14683)	DMSO	1.8-Cineole (72.20%)		[267]	
Essential oil	Method	Species	Strain	Solvent	Result	Main components	Reference
--------------	--------	---------	--------	---------	--------	-----------------	-----------
Illicium verum (star anise)	MIC	*M. canis* (11 clinical isolates)	*Prunus dulcis* (sweet almond oil)	1.00–5.00%	v/v	α-Pinene (93.70%), β-pinene (17.84%), sabine (13.55%)	[266]
Juniperus communis (juniper)	MAC	M. canis (MFBF)	Tween 80	n.m.	0.50 mg/mL	NCR	[264]
Juniperus communis (juniper), berries	MAC	M. canis (clinical strain F1)	2% DMSO	0.08–0.16 μL/mL	α-Pinene (65.70%), β-phellandrene (23.10%)	[243]	
Juniperus oxycedrus ssp. oxycedrus (cade), leaf	MAC	M. canis (clinical strain F1)	2% DMSO	0.08 μL/mL	α-Pinene (65.50%)	[243]	
Juniperus oxycedrus ssp. oxycedrus (cade), berries	MAC	M. canis (clinical strain F1)	2% DMSO	0.32 μL/mL	α-Pinene (54.70%), myrcene (17.80%), germacrene D (10.30%)	[264]	
Kunzea ericoides (Kānuka)	MAC	M. canis (clinical isolate)	Tween 80	110% v/v	α-Pinene (64.60%)	[137]	
Lavandula angustifolia (lavender)	MIC	M. canis (ATCC 6435)	Tween 80	0.50 mg/mL	NCR	[264]	
Essential oil	Method	Species strain	Solvent	Result	Main components	Reference	
---------------	--------	----------------	---------	--------	-----------------	-----------	
Lavandula pedunculata (French lavender)	MAC	T. mentagrophytes (clinical strains isolated FF7)	2% DMSO	0.64–1.25 µL/mL	1,8-Cineole (2.40–55.50%), fenchone (1.30–59.70%), camphor (3.60–48.00%)	[245]	
		E. floccosum (clinical strains isolated FF9)					
		M. canis (clinical strains isolated FF1)					
		M. gypseum (CECT 2905)					
Lavandula stoechas (Spanish lavender)	MAC	T. mentagrophytes var. interdigitale (CECT 2958)	2% DMSO	0.32–0.64 µL/mL	Fenchone (37.00%), camphor (27.30%)	[246]	
		E. floccosum (clinical isolate FF9)					
		T. rubrum (CECT 29794)					
		T. verrucosum (CECT 2992)					
		M. canis (clinical strain isolated FF1)					
		M. gypseum (CECT 2908)					
Leptospermum scoparium (manuka)	MAC	E. floccosum (clinical isolate FF7)	Tween 80	0.40% v/v	(−)-(E)-Calamenene (14.50%), leptospernone (17.60%)	[137]	
		T. rubrum (clinical isolate)					
		T. mentagrophytes					
		T. rubrum (CECT 29794)	Tween 80	0.30% v/v			
		M. furfur (10 clinical isolates)	Tween 80	0.03–0.12% v/v			
		M. sympodialis (10 clinical isolates)	Tween 80	0.03–0.12% v/v			
		E. floccosum	Tween 80	0.03–0.12% v/v			
		M. canis	Tween 80	0.03–0.12% v/v			
		T. interdigitale	Tween 80	0.03–0.12% v/v			
		T. mentagrophytes	Tween 80	0.03–0.12% v/v			
		T. rubrum	Tween 80	0.03–0.12% v/v			
		M. syzygii	Tween 80	0.03–0.12% v/v			
		M. tenuifolia	Tween 80	0.03–0.12% v/v			
		M. piperita	Tween 80	0.03–0.12% v/v			
		M. austromontana	Tween 80	0.03–0.12% v/v			
		M. trichosandra	Tween 80	0.03–0.12% v/v			
		M. leucantha	Tween 80	0.03–0.12% v/v			
		M. decumbens	Tween 80	0.03–0.12% v/v			
		M. schwarziana	Tween 80	0.03–0.12% v/v			
		M. incana	Tween 80	0.03–0.12% v/v			
		M. polyanthos	Tween 80	0.03–0.12% v/v			
		M. sinclairiana	Tween 80	0.03–0.12% v/v			
		M. absinthium	Tween 80	0.03–0.12% v/v			
		M. assurgentiflora	Tween 80	0.03–0.12% v/v			
		M. hyemalis	Tween 80	0.03–0.12% v/v			
		M. altissima	Tween 80	0.03–0.12% v/v			
		M. hortensis	Tween 80	0.03–0.12% v/v			
		M. longifolia	Tween 80	0.03–0.12% v/v			
		M. requienii	Tween 80	0.03–0.12% v/v			
		M. pumila	Tween 80	0.03–0.12% v/v			
		M. glyptostroboides	Tween 80	0.03–0.12% v/v			
		M. viridis	Tween 80	0.03–0.12% v/v			
		M. piperitiformis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × rotundifolia	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
		M. × piperitum	Tween 80	0.03–0.12% v/v			
		M. × officinalis	Tween 80	0.03–0.12% v/v			
Essential oil^a	Method^b	Species strain^c	Solvent^d	Result^e	Main components^f	Reference	
-------------------------	------------------	--------------------------	----------------	----------------	----------------	-----------	
Mentha spicata (spearmint)	MIC	Dermatophytes clinical isolates (M. canis, E. floccosum, T. rubrum, T. mentagrophytes, T. tonsurans)	Tween 80	0.075–2.25 μL/mL	Carvone (49.50%), menthone (21.90%)	[91]	
	MIC_n	M. furfur (clinical isolate)	1% DMSO	125.00 μg/mL	NCR	[269]	
Myrtus nivellei (Sahara myrtle)	MAC	E. floccosum (clinical isolate FF9)	Tween 80	0.64 μL/mL	L8-Cineole (37.50%), limonene (25.00%)	[251]	
		T. mentagrophytes var. intensigale (CECT 2958)	2% DMSO	1.25 μL/mL	NCR	[251]	
		T. rubrum (CECT 2794)		0.64 μL/mL			
		T. verrucosum (CECT 2992)		1.25 μL/mL			
		M. gypseum (CECT 2908)					
Ocimum basilicum (basil)	ADM	T. mentagrophytes	n.m.	8.30 μg/μL	Estragole (45.80%), linalool (24.20%)	[253]	
		T. tonsurans		8.00 μg/μL			
		T. rubrum		8.50 μg/μL			
		E. floccosum		15.00 μg/μL			
		M. canis		15.20 μg/μL			
Ocimum gratissimum (African basil)	ADM	M. gypseum (5 clinical isolates)	Tween 80 + DMSO	250.00 μg/mL	NCR	[270]	
		T. rubrum (10 clinical isolates)		250.00 μg/mL			
		T. mentagrophytes (10 clinical isolates)		250.00 μg/mL			
		M. canis (5 clinical isolates)		500.00 μg/mL			
Origanum vulgare (oregano)	ADM	T. mentagrophytes	n.m.	1.00 μg/μL	Carvacrol (61.30%), thymol (13.90%)	[253]	
		T. tonsurans		1.20 μg/μL			
		T. rubrum		2.00 μg/μL			
		E. floccosum					
		M. canis					
		M. canis (II clinical isolates)	Prunus dulcis (sweet almond oil)	0.03–0.05%	p-Cymene (14.30%), γ-terpinene (11.20%), thymol (45.00%)	[266]	
Pelargonium graveolens (geranium)	MIC	T. erinacei (KCCM 60411)	Tween 80	0.50 mg/mL	NCR	[264]	
		T. mentagrophytes (KCCM 11950)					
		T. rubrum (ATCC 6348)					
		T. schoenleinii (KCCM 50477)					
		T. soudanense (KCCM 60448)					
		T. tonsurans (KCCM 18866)					
Pimpinella anisum (anise fruits)	MAC_n	T. rubrum	n.m.	0.20% v/v	Anethole, anisaldehyde, linalool	[256]	
		T. mentagrophytes		0.78% v/v			
		M. canis		0.10% v/v			
		M. gypseum		0.20% v/v			
Pogostemon patchouli (patchouli)	MIC	T. erinacei (KCCM 60411)	Tween 80	8.00 mg/mL >32.00 mg/mL	NCR	[264]	
		T. mentagrophytes (KCCM 11950)					
		T. rubrum (ATCC 6348)					
		T. schoenleinii (KCCM 60477)					
		T. soudanense (KCCM 60448)					
		T. tonsurans (KCCM 18866)					
Table 8: Continued.

Essential oil	Method	Species strain	Solvent	Result	Main components	Reference
Rosmarinus officinalis (rosemary)	MIC	*T. erinacei* (KCCM 60411)	Tween 80	4.00 mg/mL	n.m.	[264]
		T. mentagrophytes (KCCM 11950)	Tween 80	8.00 mg/mL	n.m.	
		T. rubrum (ATCC 6345)	Tween 80	4.00 mg/mL	n.m.	
		T. schoenleinii (KCCM 60477)	Tween 80	0.50 mg/mL	n.m.	
		T. souadinense (KCCM 60448)	Tween 80	8.00 mg/mL	n.m.	
		T. tonsurans (KCCM 11866)	Tween 80	1.38 mg/mL	n.m.	
		M. gypseum	Tween 80	2.75 mg/mL	n.m.	
		M. canis	Tween 80	2.34–7.50%	n.m.	
		Prunus dulcis (sweet almond oil)	Tween 80	1.8-Cineole (27.50%), α-pinene (23.40%)	n.m.	
		M. furfur (clinical isolate)	Tween 80	0.50 mg/mL	n.m.	
		M. canis (11 clinical isolates)	Tween 80	0.08–0.16 μg/mL	n.m.	
		M. gypseum	Tween 80	0.16 μg/mL	n.m.	
		E. floccosum (clinical isolate FF9)	Tween 80	2% DMSO	Carvacrol (54.00%), thymol (30.20%)	[246]
		T. mentagrophytes (clinical isolate FF7)	Tween 80	0.10 μg/mL	n.m.	
		M. furfur (clinical isolate)	Tween 80	0.08–0.16 μg/mL	n.m.	
		T. mentagrophytes (clinical isolate FF3)	Tween 80	0.16 μg/mL	n.m.	
		T. rubrum (clinical isolate)	Tween 80	0.025–0.10%	n.m.	
		M. canis	Tween 80	0.025–0.10%	n.m.	
		M. gypseum	Tween 80	0.025–0.10%	n.m.	
		T. rubrum	Tween 80	0.025–0.10%	n.m.	
		T. mentagrophytes	Tween 80	0.025–0.10%	n.m.	
		T. rubrum	Tween 80	0.025–0.10%	n.m.	
		T. mentagrophytes	Tween 80	0.025–0.10%	n.m.	
		T. rubrum	Tween 80	0.025–0.10%	n.m.	
		T. mentagrophytes	Tween 80	0.025–0.10%	n.m.	
		T. rubrum	Tween 80	0.025–0.10%	n.m.	
		T. mentagrophytes	Tween 80	0.025–0.10%	n.m.	
Essential oil^a	Method^b	Species strain^c	Solvent^d	Result^e	Main components^f	Reference
--------------------------	-------------------	-----------------------------	-------------------	-----------------	-----------------------------	-----------
Thymus zygis subsp. *sylvestris* (thyme)	MAC	*T. rubrum* (CECT 2794)	2% DMSO	0.16–0.32 μL/mL	*p*-Cymene (11.00–17.00%), γ-terpinene (3.80–11.50%), linalool (3.50–30.0%), geraniol (0.10–19.80%), thymol (5.20–23.80%), carvacrol (0.10–25.00%), geranyl acetate (0.50–20.80%)	[263]

^aScientific name (common name), part of plant (if applicable).

^bMIC: microdilution method; MAC: macrodilution method; ADM: agar dilution method; CTA: contact time assay.

^cAmerican Type Culture Collection, Rockville, USA (ATCC), Colección Española de Cultivos Tipo (CECT), collection of microorganisms of the Department of Microbiology (MFBF), Korean Culture Center of Microorganisms (KCCM).

^dDMSO concentration was not included; n.m.: not mentioned.

^eNI: no inhibition.

^fNCR: no composition results reported.
future studies is to determine what the results would be when testing the same treatments against resistant strains.

Tinea pedis is often treated topically, which presents an opportunity for essential oil use [280]. Melaleuca alternifolia oil was evaluated in two trials for treating tinea pedis. In the first trial by Tong et al. [281], the patients were treated with either a 10% M. alternifolia oil in sorbolene, 1% tolnaftate, or a placebo (sorbolene). The patients on M. alternifolia oil treatment had a mycological cure rate of 30%. Mycological cure rates of 21% were seen in the placebo group and of 85% in patients receiving tolnaftate, proving the essential oil to not be as effective. The second trial tested two solutions of 25% and 50% M. alternifolia oil in ethanol and polyethylene glycol. This was compared to a placebo containing only the vehicle in a double-blinded randomised controlled trial [282]. The placebo group showed a clinical response in 39% of patients. Melaleuca alternifolia oil test groups showed a 72% improvement. A higher concentration of the oil is thus required for treating this type of infection.

In spite of the dermatophytes showing susceptibility to essential oils, there are few studies dedicated to these pathogens. One would expect more essential oil treatments considering the difficulty in treating these infections which require expensive prolonged treatment. An essential oil with superior activity certainly warrants further investigation, particularly as essential oils work well on skin surfaces and are shown to display good penetration capabilities [283, 284]. Madurella mycetomatis and Malassezia furfur are sorely neglected pathogens in research. Possibly their fastidious nature acts as a barrier for further research. As far as clinical studies are concerned, essential oils against fungal pathogens have also been neglected. Only M. alternifolia oil has been clinically studied extensively with investigations incorporating onychomycosis, tinea pedis, and dandruff [275, 279, 281, 282, 285]. It would be interesting to observe the antidermatophytic property of essential oils that have shown to be noteworthy in vitro antifungal activity such as for Apium nodiflorum (celery), Cedrus atlantica (cedar wood), C. citratus, Juniperus oxycedrus ssp. oxycedrus (cade), Pelargonium graveolens (geranium), S. aromaticum, and Thymus spp.

5. Essential Oil Combinations

Other than the use of oils within carrier oils, most essential oils are used in blends or combinations of two or more oils [32]. These blends are considered to be an art where the oils are carefully selected and combined with the intention of holistically healing the “whole” individual according to his/her symptoms. The goal of blending is to create a synergistic therapeutic effect where the combination of essential oils is greater than the sum of the individual oil [37, 40, 286]. The beneficial value of synergy has been notorious and used since antiquity [74]. Synergy can be achieved if the compounds in the oil are able to affect different target sites, or they may interact with one another to increase solubility thereby enhancing bioavailability [287–289]. Mechanisms that can lead to pharmacological synergy are (1) multitarget effect where multiple target sites of the bacterial cell are affected; (2) solubility and bioavailability enhancement; (3) the mechanism where the essential oil may inhibit the mutation mechanism of bacteria to the antimicrobial; or (4) the mechanism where the essential oil may inhibit the efflux pump of bacteria, thus allowing for the antimicrobial to accumulate inside the bacteria [11, 288, 290]. The goal is for a multitargeted treatment to decrease pathogen mutation and thus retard the development of resistance. The combined formulation also has the potential to decrease toxicity and adverse side effects by lowering the required dose [290–292]. This is not an infallible method, however, as even the combined penicillin with clavulanic acid has become prone to resistance [293, 294].

When blends are created, the intention is to create therapeutic synergy [2, 26, 32]. The reasoning for the combinations is to produce a forceful blend that has more than one mode of action. For example, in the treatment of abscesses, C. bergamia and L. angustifolia may be used in combination. C. bergamia is used for its antiseptic properties and L. angustifolia for antiseptic and anti-inflammatory effects. Anthemis nobilis is also often used for anti-inflammatory effects [2, 26, 32, 37]. The theory is sound and not too far off considering that numerous essential oils have been proven to possess additional pharmacological properties. For example, P. graveolens is known for antiseptic and anti-inflammatory properties. It is often used for the ability to balance sebum secretions and clear oily and sluggish skin [295]. Eucalyptus globulus (eucalyptus) may be used for its proven antimicrobial and anti-inflammatory activity [296, 297]. Often used on acne prone skin because of its antiseptic properties is L. angustifolia [298, 299]. Anthemis nobilis is believed to ease inflammation and L. angustifolia assists with healing and regeneration [25]. Citrus aurantium (neroli) flower oil has displayed antioxidant activity [120], and the main component of M. alternifolia (terpinen-4-ol) has the ability to hinder tumour necrosis factor (TNF), interleukin-1, interleukin-8, and interleukin-10, and prostaglandin E2 [300]. The anti-inflammatory activity of C. bergamia has been proven by several studies in vitro or on animal models [301, 302]. This supports the theory behind therapeutic synergy; however, the mistaken belief that any essential oil blend will result in synergy is not fully accurate [33]. It is a complex area, because although a certain combination may have a synergistic therapeutic effect, it does not necessarily translate into antimicrobial synergy and this needs further investigation.

By reviewing the aromatherapeutic literature [1, 2, 26, 32, 36–43], at least 1500 possible combinations (made up of two oils) could be identified for dermatology alone. This brings forth the question as to the antimicrobial effect of the overall combination. After all, if essential oils are to be investigated as options to curb antimicrobial resistance, the aim of combination therapy should be to broaden the spectrum of the antimicrobial activity and prevent development of additional resistance occurring [96]. The risk of resistance emerging against essential oils should not be disregarded because suboptimal doses of essential oils may impact these phenomena [303]. Sublethal concentration exposure to M. alternifolia has been proven to result in slightly lowered bacterial susceptibility to M. alternifolia and a larger decrease
in susceptibility to conventional antimicrobials. The study concluded that essential oil products containing sublethal concentrations may result in stress-hardened (mutated) S. aureus isolates and possible treatment failure [146]. This highlights that although therapeutic synergy is strived for, these must still be verified in a controlled environment [288].

Studies have proven that essential oils, whether in combination with other essential oils [99] or in combination with conventional antimicrobials [304], can initiate a synergistic antimicrobial effect. This effect, however, is limited to the studied pathogen [290]. de Rapper et al. [99] demonstrated that even when essential oils displayed synergistic blends against one pathogen, the same could not be said against other pathogens. This highlights how the assumption should not be made that all synergistic blends are the same against all pathogens.

The fractional inhibitory concentration index (FIC) or FICI is the commonly accepted mathematical method employed to interpret interactions in 1:1 combinations [74]. FIC is determined from the sum of all individual FICs of each of the test agents within the combination [305]. This then allows for the determination of their individual interactions in the combination [306]. The results are interpreted as synergistic (FIC ≤ 0.5), additive (FIC > 0.5–1.0), indifferent (FIC >1.0 ≤ 4.0), or antagonistic (FIC > 4.0) [74]. Although using FIC calculations is an easy method, it is not without its limitation. When examining 1:1 ratios between two essential oils, it is assumed that half the concentration will only offer half the effect. This is not necessarily the case between agents, as two agents may not necessarily have the same dose response at the same concentrations [307]. An interactive assessment of the different ratio combinations is mostly carried out using the isobole method [308, 309]. This method allows for more accurate valuation of the combination contribution made by each agent on a mathematical level line where all points are collected on a surface that lies at a specific value [288, 305, 310]. There are, however, other complex methods that can also be used [311, 312].

5.1. Essential Oils in Combination with Other Essential Oils. Although combinations are frequently mentioned in aromatherapy to treat skin ailments, only a handful of studies documenting essential oil combinations were found against skin pathogens (Table 9). The combination studies are predominantly limited to S. aureus, P. aeruginosa, C. albicans, and, to a lesser extent, E. coli. Even fewer studies were found against the dermatophytes and acne pathogens. This is rather abysmally considering the amount of combinations and the regularity of their use. An interesting observation was made even in an early study [316], where it was shown that synergy found in the 1:1 combinations was apparent irrespective of the poor efficacy displayed by the individual oils. This indicates that essential oils do not necessarily have to be combined based purely on independent noteworthy antimicrobial activity.

One of the largest studies on combinations was done by de Rapper et al. [99], where 45 essential oils were combined with L. angustifolia, which is one of the most popular essential oils used in combination. What could be observed was that there was no predictive pattern as to what the combined FIC index would be. There were a few synergistic interactions, most of which against C. albicans and some antagonism; however, the majority of the combinations resulted in an indifferent or additive interaction. A study investigated the antimicrobial activity of the popular commercial product containing essential oils (Olbas). The individual essential oils were tested separately and then in the combined product [128]. The combination of the four oils showed no further enhancement in the antimicrobial. The combination of Syzygium aromaticum (clove) and Rosmarinus officinalis (rosemary) has also displayed synergy against C. albicans, at ratios of 1:5, 1:7, and 1:9 [169]. Synergy was observed with a combination of commercially popular L. angustifolia and M. alternifolia essential oils against dermatophytes T. rubrum and T. mentagrophytes var. interdigitale in various combinations [303]. Unfortunately, only a few essential oil combinations have been investigated in clinical settings.

Essential oil combinations have proven efficacy in clinical settings. L. angustifolia and Matricaria recutita (German chamomile) were investigated in a small trial involving eight patients with chronic leg ulcers. Five received a 6% mixture of the two essential oils mixed in Vitis vinifera (grape seed) carrier oil, and three received conventional wound care. It was noted that four of the five patients in the control group had complete healing of the wounds with the fifth patient making progress towards a recovery [317]. Another successful essential oil combination included L. angustifolia, Artemisia vulgaris (mugwort), and Salvia officinalis (sage) in treating chronic wounds such as venous ulcers, pressure sores, skin tears, and abrasions. It was speculated that the essential oils had increased circulation and vascular permeability resulting in accelerated angiogenesis [318]. An in vivo study by Mugnaini et al. [266] made use of a mixture composed of 5% O. vulgare, 5% R. officinalis, and 2% Thymus serpyllum (Breckland thyme), diluted in Prunus dulcis (sweet almond), and this was topically administered on M. canis lesions. A 71% success rate in treatment was observed.

5.2. Essential Oils in Combination with Conventional Antimicrobials. In an effort to prevent resistance and increase antimicrobial efficacy against multidrug-resistant bacteria, the combination of essential oils with antibiotics has been investigated [182, 319–321]. Certain studies are based on the assumption that the antimicrobial and essential oils attack at different sites of the pathogen [304], while others believe this is due to the increase in chemical complexity, together with the added advantage of enhanced skin penetration by the essential oil components [322], or the hope that the essential oils will improve antibiotic diffusion across the bactericidal cell membranes and/or inhibit the Gram-negative efflux pump [323]. Conventional medication in combination with essential oils (bought over the counter or shelves) is also common among patients [183]; therefore, unknowingly, they may be causing enhancement or failure.

Table 10 displays the studies validating the improvement of antimicrobial activity from the combined use of antimicrobials with essential oils. The majority of the studies have
Essential oil	Species strain	FIC^a	Result^c	Reference	
Aniba rosaeodora (rosewood) + Thymus vulgaris (thyme)	E. coli (ATCC 25922)	0.23	S	[85]	
Boswellia papyrifera (frankincense) + Commiphora myrrha (myrrh)	E. coli (ATCC 8739)	0.65	A		
C. albicans (ATCC 10231)	1.21	I		[117]	
S. aureus (ATCC 12600)	0.82	A			
P. aeruginosa (ATCC 27858)	0.77	I			
Boswellia neglecta (frankincense) + Commiphora guidotti (myrrh)	E. coli (ATCC 8739)	1.46	I		
C. albicans (ATCC 10231)	0.59	A			
S. aureus (ATCC 12600)	2.5	I		[117]	
P. aeruginosa (ATCC 27858)	1.04	I			
Boswellia neglecta (frankincense) + Commiphora myrrha (myrrh)	C. albicans (ATCC 10231)	1.39	I		
S. aureus (ATCC 12600)	3.65	I		[117]	
P. aeruginosa (ATCC 27858)	0.6	A		[117]	
Boswellia papyrifera (frankincense) + Commiphora guidotti (myrrh)	E. coli (ATCC 8739)	0.91	A		
C. albicans (ATCC 10231)	1.21	I			
S. aureus (ATCC 12600)	0.5	S		[117]	
P. aeruginosa (ATCC 27858)	0.91	A			
Boswellia rivae (frankincense) + Commiphora guidotti (myrrh)	E. coli (ATCC 8739)	1.3	I		
C. albicans (ATCC 10231)	1.38	I			
S. aureus (ATCC 12600)	2	I		[117]	
P. aeruginosa (ATCC 27858)	1.2	I			
Boswellia rivae (frankincense) + Commiphora myrrha (myrrh)	E. coli (ATCC 8739)	0.67	A		
C. albicans (ATCC 10231)	2.14	I			
S. aureus (ATCC 12600)	1.27	I		[117]	
P. aeruginosa (ATCC 27858)	0.58	A			
Cinnamomum zeylanicum (cinnamon) + Syzygium aromaticum (clove)	S. aureus (ATCC 29719)	1.8	I		
E. coli (ATCC 29252)	4.2	An		[313]	
Cinnamomum zeylanicum (cinnamon) + Thymus vulgaris (thyme)	S. aureus (ATCC 25923)	0.26	S		
Cymbopogon citratus (lemongrass) + Cymbopogon giganteus (lemongrass)	E. coli (ATCC 10582)	0.5	S		
S. aureus (ATCC 9144)	0.4	S		[124]	
Cuminum cyminum (cumin) + Coriandrum sativum (coriander) seed	S. aureus (7 clinical isolates)	0.5	S		
E. coli (7 clinical isolates)	0.5	S		[122]	
Juniperus communis (juniper berry) + Thymus vulgaris (thyme)	S. aureus (ATCC 25923)	0.74	A		
Lavandula angustifolia (lavender) + Angelica archangelica (angelica) root	C. albicans (ATCC 10231)	0.42	S		
S. aureus (ATCC 6538)	1.07	I		[99]	
P. aeruginosa (ATCC 27858)	0.67	A			
Lavandula angustifolia (lavender) + Anthemis nobilis (chamomile)	C. albicans (ATCC 10231)	0.33	S		
S. aureus (ATCC 6538)	0.84	I		[99]	
P. aeruginosa (ATCC 27858)	0.54	A			
Lavandula angustifolia (lavender) + Citrus aurantium (petitgrain)	C. albicans (ATCC 10231)	0.42	S		
S. aureus (ATCC 6538)	1.13	I		[99]	
P. aeruginosa (ATCC 27858)	0.51	A			
Essential oil	Species strain	FIC	Result	Reference	
---	-------------------------------------	-----	--------	-----------	
Lavandula angustifolia (lavender) + Citrus grandis (grapefruit)	C. albicans (ATCC 10231)	0.42	S	[99]	
	S. aureus (ATCC 6538)	1.67	I		
	P. aeruginosa (ATCC 27858)	0.52	A		
Lavandula angustifolia (lavender) + Citrus sinensis (orange)	C. albicans (ATCC 10231)	0.42	S	[99]	
	S. aureus (ATCC 6538)	0.38	I		
	P. aeruginosa (ATCC 27858)	0.51	A		
Lavandula angustifolia (lavender) + Citrus medica limonum (lemon)	C. albicans (ATCC 10231)	0.42	S	[99]	
	S. aureus (ATCC 6538)	2.5	I		
	P. aeruginosa (ATCC 27858)	0.52	A		
Lavandula angustifolia (lavender) + Abies balsamea (fir)	C. albicans (ATCC 10231)	0.63	A	[99]	
	S. aureus (ATCC 6538)	2.5	I		
	P. aeruginosa (ATCC 27858)	0.52	A		
Lavandula angustifolia (lavender) + Andropogon muricatus (vetiver)	C. albicans (ATCC 10231)	0.45	S	[99]	
	S. aureus (ATCC 6538)	0.92	A		
	P. aeruginosa (ATCC 27858)	1.02	I		
Lavandula angustifolia (lavender) + Angelica archangelica (angelica) seed	C. albicans (ATCC 10231)	0.83	A	[99]	
	S. aureus (ATCC 6538)	2	I		
	P. aeruginosa (ATCC 27858)	0.75	A		
Lavandula angustifolia (lavender) + Artemisia dracunculus (tarragon)	C. albicans (ATCC 10231)	0.42	S	[99]	
	S. aureus (ATCC 6538)	1.67	I		
	P. aeruginosa (ATCC 27858)	0.51	A		
Lavandula angustifolia (lavender) + Cananga odorata (ylang-ylang)	C. albicans (ATCC 10231)	1.25	S	[99]	
	S. aureus (ATCC 6538)	1.5	I		
	P. aeruginosa (ATCC 27858)	1.02	I		
Lavandula angustifolia (lavender) + Cananga odorata heads (ylang-ylang)	C. albicans (ATCC 10231)	0.83	A	[99]	
	S. aureus (ATCC 6538)	1.13	I		
	P. aeruginosa (ATCC 27858)	1.02	I		
Lavandula angustifolia (lavender) + Canarium luzonicum (elemi)	C. albicans (ATCC 10231)	0.25	S	[99]	
	S. aureus (ATCC 6538)	3.33	I		
	P. aeruginosa (ATCC 27858)	0.53	A		
Lavandula angustifolia (lavender) + Carum carvi (caraway)	C. albicans (ATCC 10231)	0.42	S	[99]	
	S. aureus (ATCC 6538)	1	A		
	P. aeruginosa (ATCC 27858)	0.56	A		
Lavandula angustifolia (lavender) + Cinnamomum zeylanicum (cinnamon)	C. albicans (ATCC 10231)	0.4	S	[99]	
	S. aureus (ATCC 6538)	0.5	A		
	P. aeruginosa (ATCC 27858)	0.53	A		
Lavandula angustifolia (lavender) + Commiphora myrrha (myrrh)	C. albicans (ATCC 10231)	0.29	S	[99]	
	S. aureus (ATCC 6538)	1	A		
	P. aeruginosa (ATCC 27858)	1.03	I		
Lavandula angustifolia (lavender) + Cupressus sempervirens (cypress)	C. albicans (ATCC 10231)	0.15	S	[99]	
	S. aureus (ATCC 6538)	0.58	A		
	P. aeruginosa (ATCC 27858)	0.53	A		
Essential oil	Species strain	FIC^a	Result^b	Reference	
-------------------------------------	---------------------------------------	------------------	---------------------	-----------	
Lavandula angustifolia (lavender) + *Cymbopogon citratus* (lemon grass)	*C. albicans* (ATCC 10231)	6.67	An	[99]	
	S. aureus (ATCC 6538)	0.55	A		
	P. aeruginosa (ATCC 27858)	0.52	An		
Lavandula angustifolia (lavender) + *Cymbopogon nardus* (citronella)	*C. albicans* (ATCC 10231)	0.42	S	[99]	
	S. aureus (ATCC 6538)	0.75	A		
	P. aeruginosa (ATCC 27858)	0.53	An		
Lavandula angustifolia (lavender) + *Daucus carota* (carrot seed)	*C. albicans* (ATCC 10231)	0.5	S	[99]	
	S. aureus (ATCC 6538)	1.5	I		
	P. aeruginosa (ATCC 27858)	0.53	A		
Lavandula angustifolia (lavender) + *Eucalyptus globulus* (eucalyptus)	*C. albicans* (ATCC 10231)	0.38	S	[99]	
	S. aureus (ATCC 6538)	1.67	I		
	P. aeruginosa (ATCC 27858)	0.52	A		
Lavandula angustifolia (lavender) + *Foeniculum dulce* (fennel)	*C. albicans* (ATCC 10231)	0.45	S	[99]	
	S. aureus (ATCC 6538)	2	I		
	P. aeruginosa (ATCC 27858)	0.52	A		
Lavandula angustifolia (lavender) + *Hyssopus officinalis* (hyssop)	*C. albicans* (ATCC 10231)	0.33	S	[99]	
	S. aureus (ATCC 6538)	1.67	I		
	P. aeruginosa (ATCC 27858)	0.52	A		
Lavandula angustifolia (lavender) + *Juniperus virginiana* (juniper)	*C. albicans* (ATCC 10231)	0.5	S	[99]	
	S. aureus (ATCC 6538)	0.55	A		
	P. aeruginosa (ATCC 27858)	0.55	A		
Lavandula angustifolia (lavender) + *Juniperus virginiana* berries (juniper)	*C. albicans* (ATCC 10231)	0.21	S	[99]	
	S. aureus (ATCC 6538)	1.25	I		
	P. aeruginosa (ATCC 27858)	0.52	A		
Lavandula angustifolia (lavender) + *Laurus nobilis* (bay)	*C. albicans* (ATCC 10231)	0.83	A	[99]	
	S. aureus (ATCC 6538)	1.7	I		
	P. aeruginosa (ATCC 27858)	0.6	A		
Lavandula angustifolia (lavender) + *Litsea cubeba* (May Chang)	*C. albicans* (ATCC 10231)	0.19	S	[99]	
	S. aureus (ATCC 6538)	1.17	I		
	P. aeruginosa (ATCC 27858)	0.52	A		
Lavandula angustifolia (lavender) + *Matricaria chamomilla* (German chamomile)	*C. albicans* (ATCC 10231)	1.17	I	[99]	
	S. aureus (ATCC 6538)	0.54	A		
	P. aeruginosa (ATCC 27858)	0.5	S		
Lavandula angustifolia (lavender) + *Melaleuca alternifolia* (tea tree)	*C. albicans* (ATCC 10231)	0.5	S	[99]	
	S. aureus (ATCC 6538)	0.63	A		
	P. aeruginosa (ATCC 27858)	0.51	A		
Lavandula angustifolia (lavender) + *Melaleuca viridiflora* (niaouli)	*C. albicans* (ATCC 10231)	0.9	A	[99]	
	S. aureus (ATCC 6538)	2	I		
	P. aeruginosa (ATCC 27858)	0.51	A		
Essential oil Species strain	Species	FIC	Result	Reference	
-----------------------------	---------	-----	--------	-----------	
Lavandula angustifolia (lavender) + *Mentha piperita* (peppermint)	*C. albicans* (ATCC10231)	0.63	A	[99]	
	S. aureus (ATCC6538)	0.75			
	P. aeruginosa (ATCC27858)	0.51			
Lavandula angustifolia (lavender) + *Myrtus communis* (myrrh)	*C. albicans* (ATCC10231)	0.5	S	[99]	
	S. aureus (ATCC6538)	4	An		
	P. aeruginosa (ATCC27858)	0.51	A		
Lavandula angustifolia (lavender) + *Ocimum basilicum* (basil)	*C. albicans* (ATCC10231)	0.67		[99]	
	S. aureus (ATCC6538)	0.58	A		
	P. aeruginosa (ATCC27858)	0.63			
Lavandula angustifolia (lavender) + *Origanum majorana* (marjoram)	*C. albicans* (ATCC10231)	0.42	S	[99]	
	S. aureus (ATCC6538)	4	An		
	P. aeruginosa (ATCC27858)	0.52	A		
Lavandula angustifolia (lavender) + *Pelargonium odoratissimum* (geranium)	*C. albicans* (ATCC10231)	1.04	I	[99]	
	S. aureus (ATCC6538)	1.17	I		
	P. aeruginosa (ATCC27858)	0.52	A		
Lavandula angustifolia (lavender) + *Pinus sylvestris* (pine)	*C. albicans* (ATCC10231)	0.5	S	[99]	
	S. aureus (ATCC6538)	0.75	A		
	P. aeruginosa (ATCC27858)	1			
Lavandula angustifolia (lavender) + *Piper nigrum* (black pepper)	*C. albicans* (ATCC10231)	0.42	S	[99]	
	S. aureus (ATCC6538)	1			
	P. aeruginosa (ATCC27858)	0.57	A		
Lavandula angustifolia (lavender) + *Pogostemon patchouli* (patchouli)	*C. albicans* (ATCC10231)	0.5	S	[99]	
	S. aureus (ATCC6538)	1.17	I		
	P. aeruginosa (ATCC27858)	0.51	A		
Lavandula angustifolia (lavender) + *Rosmarinus officinalis* (rosemary)	*C. albicans* (ATCC10231)	0.42	S	[99]	
	S. aureus (ATCC6538)	0.75			
	P. aeruginosa (ATCC27858)	0.51	A		
Lavandula angustifolia (lavender) + *Salvia sclarea* (clary sage)	*C. albicans* (ATCC10231)	0.73	A	[99]	
	S. aureus (ATCC6538)	1			
	P. aeruginosa (ATCC27858)	0.51			
Lavandula angustifolia (lavender) + *Santalum album* (sandalwood)	*C. albicans* (ATCC10231)	0.42	S	[99]	
	S. aureus (ATCC6538)	2.25	I		
	P. aeruginosa (ATCC27858)	0.51	A		
Lavandula angustifolia (lavender) + *Styrax benzoin* (benzoin)	*C. albicans* (ATCC10231)	0.42	S	[99]	
	S. aureus (ATCC6538)	1			
	P. aeruginosa (ATCC27858)	0.58	A		
Lavandula angustifolia (lavender) + *Syzygium aromaticum* (clove)	*C. albicans* (ATCC10231)	0.58	A	[99]	
	S. aureus (ATCC6538)	1.17	I		
	P. aeruginosa (ATCC27858)	0.53	A		
Essential oil Species	Strain	FIC	Result	Reference	
-----------------------	--------	-----	--------	-----------	
C. albidus (ATCC 10231)	S. aureus (ATCC 6538)	0.75	A	[99]	
S. aureus (ATCC 10231)	P. aeruginosa (ATCC 27853)	2.0	I	[99]	
Lavandula angustifolia (lavender)	Tagetes patula (French marigold)	0.42	S	[99]	
C. albicans (ATCC 10231)	0.75	S			
S. aureus (ATCC 6538)	P. aeruginosa (ATCC 27858)	0.51	A	[99]	
Lavandula angustifolia (lavender)	Thymus vulgaris (thyme)	0.67	A	[99]	
C. albicans (ATCC 10231)	0.67	A			
S. aureus (ATCC 6538)	P. aeruginosa (ATCC 27858)	0.51	A	[99]	
Melaleuca alternifolia (tea tree)	Backhousia citriodora (lemon myrtle)	n.m.	I	[115]	
S. aureus (ATCC 6538)	0.38	S			
E. coli (ATCC 25922)	0.34	S		[115]	
E. coli (ATCC 25923)	0.28	A		[156]	
P. aeruginosa (ATCC 27853)	0.35	A		[83]	
P. aeruginosa (clinical isolate)	n.m.	I		[62]	
Melissa officinalis (lemon balm)	Thymus vulgaris (thyme)	0.34	S	[85]	
E. coli (ATCC 25922)	0.34	S		[85]	
S. aureus (ATCC 6538)	0.38	S		[62]	
Mentha piperita (peppermint)	Ocimum basilicum (basil)	0.29	S	[156]	
E. coli (ATCC 8739)	0.29	S		[156]	
S. aureus (ATCC 6538)	0.36	A		[62]	
Origanum vulgare (oregano)	O. vulgaris (vanilla)	0.12	S	[314]	
E. coli (ATCC 25922)	0.12	S			
S. aureus (ATCC 6538)	0.38	S			
Potassium hydroxide (KOH)	0.51	A		[314]	
Origanum vulgare (oregano)	C. zeylanicum (cinnamon)	1.38	I	[231]	
E. coli (ATCC 25922)	1.17	I			
S. aureus (ATCC 6538)	0.38	S		[62]	
P. aeruginosa (ATCC 27853)	1A				
Origanum vulgare (oregano)	Thymus vulgaris (thyme)	0.88	A	[314]	
P. aeruginosa (ATCC 27853)	0.88	A		[314]	
Origanum vulgare (oregano)	Rosmarinus officinalis (rosemary)	1.83	A	[314]	
E. coli (ATCC 25922)	1.83	A		[314]	
Origanum vulgare (oregano)	Salvia officinalis (sage)	0.5	S	[314]	
E. coli (ATCC 25922)	0.5	S		[314]	
Salvia officinalis (sage)	Thymus vulgaris (thyme)	0.5	S	[314]	
E. coli (ATCC 25922)	0.5	S		[314]	
Table 9: Continued.

Essential oil	Species strain	FIC^a	Result^b	Reference
Syzygium aromaticum (clove) + *Rosmarinus officinalis* (rosemary)	S. aureus (ATCC 6538)	n.m.	A	[169]
	S. epidermidis (ATCC 12228)			
	C. albicans (ATCC 10231)			
	P. aeruginosa (ATCC 27853)			
	E. coli (ATCC 8739)			
Thymus vulgaris (thyme) + *Pimpinella anisum* (anise)	*E. coli*	n.m.	A	[168]
	P. aeruginosa			
	S. aureus			

^an.m.: not mentioned.
^bS: synergy; A: additive; I: indifference; An: antagonism.
Table 10: Essential oil studies demonstrating synergistic interactions in combination with conventional antimicrobials.

Antimicrobial	Essential oil	Microbial species studied	IFIC^a	Result^b	Reference
Amoxicillin	*Origanum vulgare* (oregano)	*E. coli*	0.75	A	[324]
	Elettaria cardamomum (cardamom)	*S. aureus* (ATCC 25923)	1.06–2.00	I	
		MRSA (clinical isolate)	0.56–1.11		[325]
			0.61–1.50		
Amphotericin B	*Melaleuca alternifolia* (tea tree)	*C. albicans* (NRRL y-12983, ATCC 14053, NRRL y-869, NRRL y-22077, ATCC 10231)	0.13–1.75	S	[249]
	Origanum vulgare (oregano)		0.03–0.35		
	Pelargonium graveolens (geranium)		0.04–0.18		
	Thymus broussonetii (thyme)		0.37		
	Thymus maroccatus (thyme)		0.49	S	[259]
	Thymus vulgaris (thyme)		n.m.		
Ampicillin	*Cinnamomum verum* (cinnamon)	*E. coli*	0.75	A	[327]
	Lavandula angustifolia (lavender)		2	I	[327]
	Melaleuca alternifolia (tea tree)		0.75	A	[327]
	Mentha piperita (peppermint)		0.63		[327]
Carbenicillin	*Cinnamomum verum* (cinnamon)	*E. coli*	0.63	A	[327]
	Lavandula angustifolia (lavender)		2	I	[327]
	Melaleuca alternifolia (tea tree)		0.56	A	[327]
	Mentha piperita (peppermint)		0.75		[327]
	Origanum majorana (marjoram)		1.06	I	[327]
Cefazolin	*Cinnamomum verum* (cinnamon)	*E. coli*	0.63	A	[327]
	Lavandula angustifolia (lavender)		2	I	[327]
	Melaleuca alternifolia (tea tree)		1.5		[327]
	Mentha piperita (peppermint)		2	I	[327]
	Origanum majorana (marjoram)				
Cefixime	*Thymus broussonetii* (thyme)	*P. aeruginosa*	0.5	S	[329]
		S. aureus	0.5	S	[329]
		E. coli	0.75	A	[329]
			0.18	S	
Cefotaxime	*Cinnamomum verum* (cinnamon)	*E. coli* (J53 pMG321)	2	I	[327]
	Lavandula angustifolia (lavender)		1	A	[327]
	Melaleuca alternifolia (tea tree)				
	Mentha piperita (peppermint)				
	Origanum majorana (marjoram)				
Ceftriaxone	*Origanum vulgare* (oregano)	*E. coli*	0.63	A	[324]
Cefuroxime	*Cinnamomum verum* (cinnamon)	*E. coli*	2	I	[327]
	Lavandula angustifolia (lavender)		0.53	A	
	Melaleuca alternifolia (tea tree)		1.5	I	[327]
	Mentha piperita (peppermint)		0.56		
	Origanum majorana (marjoram)		0.63	A	
Antimicrobial	Essential oil	Microbial species studied	IFIC	Result	Reference
--------------	--------------	---------------------------	------	--------	-----------
Chlorhexidine	Cinnamomum burmannii (cinnamon)	S. epidermidis (clinical isolate)	0.3		[211]
		S. epidermidis (clinical isolate 64)	0.35		
		S. epidermidis (clinical isolate)	0.3	S	
		S. epidermidis strains (ATCC 35984)	0.15		
		S. epidermidis (ATCC 12228)	0.45		
Chlorhexidine digluconate	Eucalyptus globulus (eucalyptus)	S. epidermidis (RP62A)	2	I	[213]
	Melaleuca alternifolia (tea tree)	S. epidermidis (RP62A)	2	I	
	Melaleuca alternifolia (tea tree)	S. epidermidis (clinical isolate TK1)	2	I	
		S. epidermidis (clinical isolate)	2	I	
		S. epidermidis (clinical isolate)	2	I	
		S. epidermidis (clinical isolate)	2	I	
		S. epidermidis (clinical isolate)	2	I	
	Melaleuca alternifolia (tea tree)	S. epidermidis	1.58–7.70	I-An	[304]
	Mentha piperita (peppermint)	S. aureus	0.75–1.40	A-I	
	Pelargonium graveolens (geranium)	S. aureus (ST2)	0.38	S	[330]
	Rosmarinus officinalis (rosemary)	S. aureus	1.03–1.30	I	[304]
	Thymus broussonetii (thyme)	E. coli	0.37		
		S. aureus	0.14	S	[329]
		S. aureus	0.5		
		E. coli	0.12		
		P. aeruginosa	0.15	S	[329]
		S. aureus	0.26		
	Thymus vulgaris (thyme)	S. aureus	0.80–2.59	A-I	[304]
		S. aureus (ATCC 25923)	0.62–1.12	A-I	
	Elettaria cardamomum (cardamom)	MRSA (clinical isolate)	1.01–1.50	I	[325]
	Salvia officinalis (sage)	E. coli (ATCC 25922)	1.03	I	[176]
		S. aureus (ATCC 25923)	0.62–1.12	A-I	
		S. aureus (ATCC 25923)	0.62–1.12	A-I	
		S. aureus (ATCC 25923)	0.62–1.12	A-I	
Dicycline	Origanum vulgare (oregano)	E. coli	0.38	S	[324]
Erythromycin	Mentha piperita (peppermint)	E. coli	1	A	[328]
Florfenicol	Origanum vulgare (oregano)	E. coli	0.38	S	[324]
		C. albicans (29 clinical isolates)	0.24–0.50	S	[255]
		C. albicans (3 clinical isolates)	0.63–0.93	A	
Fluconazole	Ocimum sanctum (holy basil)	C. albicans (ATCC 90028)	0.48		
	Thymus broussonetii (thyme)	C. albicans (ATCC 10261)	0.47	S	[255]
	Thymus maroccanus (thyme)	C. albicans (ATCC 44829)	0.48		
	Thymus vulgaris (thyme)	T. rubrum (clinical isolate)	0.25		[271]
		C. albicans (CCMM LA)	0.27	S	[259]
Table 10: Continued.

Antimicrobial	Essential oil	Microbial species studied	IFIC^a	Result^b	Reference	
Gentamicin	Cinnamomum burmannii (cinnamon)	S. epidermidis (clinical isolate 46)	1.5	I	[211]	
	S. epidermidis (clinical isolate 64)	0.23	S			
	S. epidermidis (clinical isolate 236)	0.15	S			
	S. epidermidis (ATCC 35984)	1.1	S			
	S. epidermidis (ATCC 12228)	1.2	I			
	Melaleuca alternifolia (tea tree)	MRSA (2 clinical isolates)	n.m.	I	[144]	
	Mentha piperita (peppermint)	E. coli	1.25	S	[328]	
		E. coli	0.37	S		
	Thymus broussonetii (thyme)	P. aeruginosa	0.28	S	[329]	
		S. aureus	0.5	S		
		E. coli	0.28	S		
	Thymus marocanum (thyme)	P. aeruginosa	0.18	S	[329]	
		S. aureus	0.5	S		
Kanamycin	Origanum vulgare (oregano)	T. erinacei (KCCM 60411)	0.56	A	[264]	
	Pelargonium graveolens (geranium)	T. schoenleinii (KCCM 60477)	0.31	A	[264]	
		T. soudanense (KCCM 60448)	0.18	S		
		C. albicans (26 clinical isolates)	0.25–0.50	S		
		C. albicans (6 clinical isolates)	0.52–0.71	A		
Ketoconazole	Ocimum sanctum (holy basil)	C. albicans (ATCC 90028)	0.42	A	[255]	
		C. albicans (ATCC 10261)	0.41	S		
		C. albicans (ATCC 44829)	0.5	A		
	Thymus magnum (thyme)	T. rubrum (ATCC 6345)	0.37	S	[260]	
	Thymus quinquecostatus (thyme)		0.35	S		
Levofloxacin	Origanum vulgare (oregano)	E. coli	0.5	S	[324]	
Lincomycin	Origanum vulgare (oregano)	C. albicans (ATCC 12228)	0.75	A	[324]	
Lysostaphin	Melaleuca alternifolia (tea tree)	MRSA (2 clinical isolates)	n.m.	I	[144]	
Maquindox	Origanum vulgare (oregano)	E. coli	0.5	S	[324]	
Meropenem	Cinnamomum verum (cinnamon)	Lavandula angustifolia (lavender)	0.75	A	[327]	
		Melaleuca alternifolia (tea tree)	1.5	A	[327]	
		Mentha piperita (peppermint)	0.26	S		
		Origanum majorana (marjoram)	1	A		
Mupirocin	Melaleuca alternifolia (tea tree)	MRSA (2 clinical isolates)	n.m.	I	[144]	
Norfloxacin	Pelargonium graveolens (geranium)	E. coli (ATCC 35238)	0.57	A	[157]	
		S. aureus (ATCC 6538)	0.37	S	[157]	
		S. aureus (ATCC 29213)	0.38	S		
Antimicrobial	Essential oil (species)	Microbial species studied	IFIC^a	Result^b	Reference	
---------------	---	--	-----------------	-------------------	-----------	
Nystatin	*Melaleuca alternifolia* (tea tree)	*C. albicans* (ATCC 14053)	>0.5	A	[61]	
	Origanum vulgare (oregano)		0.04			
	Pelargonium graveolens (geranium)		0.04–0.35	S		
			0.01–0.06			
Oxytetracycline	*Mentha piperita* (peppermint)	*E. coli*	0.5	S	[328]	
Piperacillin	*Cinnamomum verum* (cinnamon)		0.56	A		
	Lavandula angustifolia (lavender)		0.31	S		
	Mentha piperita (peppermint)		0.75	A		
Polymycin	*Origanum vulgare* (oregano)		0.37	S		
			0.75	A		
Pristinamycin	*Thymus broussonetii* (thyme)		0.5	S		
Sarafloxacin	*Origanum vulgare* (oregano)	*E. coli*	0.38	S		
Tobramycin	*Melaleuca alternifolia* (tea tree)	*E. coli*	0.37	S	[97]	
			0.62	A		
Triclosan	*Cinnamomum burmannii* (cinnamon)		1.2		[211]	
			1.5	I		
			1.2			
			0.03	S		
			0.06			
Vancomycin	*Melaleuca alternifolia* (tea tree)	MRSA (2 clinical isolates)	>0.50	A	[144]	

^an.m.: not mentioned.

^bS: synergy; A: additive; I: indifference; An: antagonism.
shown essential oils to enhance antimicrobial activity of antibiotics and antifungals [81, 346, 347]. *Origano*um *vulgare* oil displayed synergy (FICs 0.4–0.5) when combined with doxycycline, florfenicol, or sarafoxacin against an ESBL producing *E. coli* [324]. This presents a possible solution for β-lactam antibiotic-resistant bacteria. *Origano*um *vulgare* essential oils were investigated and shown to improve the activity of β-lactam antibiotics against both Gram-positive and Gram-negative β-lactamase-producing bacteria [77, 324]. *Helichrysum italicum* (everlasting) (2.5%) reduced the multidrug resistance of Gram-negative bacteria, *E. coli* and *P. aeruginosa*, to chloramphenicol [320].

Four community-associated methicillin-resistant *S. aureus* (CA-MRSA) isolates were used to compare benzethonium chloride 0.2% with *M. alternifolia* and *T. vulgaris* combination with conventional antimicrobials (neomycin with polymyxin B sulphate and polymyxin B sulphate with gramicidin). The essential oil-antibiotic combination was found to be more effective than conventional medicines on their own [348]. In another study, however, where *M. piperita*, *M. alternifolia*, *T. vulgaris*, and *R. officinalis* were each individually combined with amphotericin B against *C. albicans*, antagonism was observed [304], indicating that there may still be risks present when combining essential oils with antimicrobials. *Cinnamomum cassia* showed potentiation of amphotericin B activity against *C. albicans*. The increased activity was attributed to the essential oil because synergy increased with an increase in essential oil concentration; however, antagonism was observed for combinations with a lower concentration of essential oil [238].

Although there have been some studies in vitro on essential oil combinations with antibiotics and antifungals, little attention has been paid to in vivo studies or clinical trials. Syed et al. [285] tested a 2% butenafine hydrochloride combination with a 5% *M. alternifolia* oil cream in a clinical trial, consisting of 60 patients, treating toenail onychomycosis. The control group showed an 80% cure rate compared to 0% by the placebo group containing *M. alternifolia* alone, allowing the study to conclude clinical effectiveness of butenafine hydrochloride and *M. alternifolia* in combination. However, in order to determine whether the same could be said for butenafine, a control group should have also been allowed for this product to allow for comparison.

6. Antiviral Studies

Viral infections are a worldwide threat, firstly due to the lack of effective treatments available and secondly due to resistance [333]. Essential oils are a potential source for novel medicines in this regard [30]. Certain essential oils have previously displayed antiviral activity [30, 334], with the best viral inhibitors specifically acting on the steps involved in viral biosynthesis. These work by inhibiting viral replication, thereby limiting viral progeny production [30]. It is advantageous that the viral replication cycle consists of a complex sequence of different steps because it increases the chance of interference from antiviral agents [30].

Less than half of the essential oils recommended for skin infections have been studied for antiviral activity. Table 11 records the readily available studies. The most studied virus is the herpes simplex virus (HSV) and the most studied essential oil is *M. alternifolia*.

Antiviral studies encompass an extensive process where the cytotoxicity and antiviral activity need to be determined. Antiviral activity is usually tested via the plaque reduction assay on Vero (African green monkey kidney cells) cells infected with the virus. This assay determines the effective concentration inhibiting 50% of virus growth (IC$_{50}$). The selective indicator or selectivity index is calculated with the equation of CC$_{50}$/IC$_{50}$. An essential oil with a SI value greater than four is considered suitable as an antiviral agent [332, 333]. Besides the criteria being made for the SI, no criteria for the IC$_{50}$ have been made. According to the results reviewed, an IC$_{50}$ value of less than 0.0010% or 1.00 μg/mL should be considered as noteworthy.

Essential oils recommended in the aromatherapeutic literature, with supporting in vitro evidence, include *Citrus limon* (lemon), *Lavandula latifolia* (lavender), *M. piperita*, *Santalina insularis* (santolina), *M. alternifolia*, *E. globulus*, and *S. officinalis*. Of these oils, the latter three are not ideally suited for antiviral use against HSV-1, due firstly to the IC$_{50}$ values being weaker than what is recommended (less than 0.0010% or 1.00 μg/mL) and due to their low selectivity index (below 4) [331, 332, 334, 340, 341]. Essential oils still to be studied according to the literature include *C. zeylanicum*, *C. bergamia*, *Pelargonium odoratissimum* (geranium), and *Tagetes minuta* (Mexican marigold).

In a small pilot study, consisting of 18 patients undergoing treatment of recurrent herpes labialis, a 6% *M. alternifolia* oil gel applied five times daily was compared to a placebo gel [349]. Reepithelialisation occurred after nine days for the test group compared to the placebo group where reepithelialisation occurred only after 12.5 days. Millar and Moore [350], undertook a case study of a patient with six reoccurring warts (human papillomavirus) after countless treatments with 12% w/w salicylic acid and lactic acid (4% w/w) for several weeks. Alternative treatment consisted of 100% topical *M. alternifolia* oil applied each evening straight after bathing and prior to bedtime. After five days, a significant reduction in wart size was observed, and, after an additional seven days, all warts were cleared, with complete reepithelialisation of the infected areas and no recurrence. The main shortfall of the two studies is the small sample size. It should also be recommended that any trial involving viral pathogens include a one-, two-, and six-month follow-up after the discontinuation of treatment, the reason being due to the tendency of viral pathogens remaining dormant for an extended period. It can then be observed how effective the essential oil is for long-term effects.
Table II: Essential oil studies showing efficacy against viral pathogens associated with skin infections.

Essential oil	Type	\(CC_{50}\)^a	\(IC_{50}\)^b	SI^c	[EO]^e	Reference
Citrus limon (lemon)		n.d.	n.m.	n.m.	1.00%	[331]
Cupressus sempervirens (cypress)		n.d.	n.m.	n.m.	1.00%	[331]
Cupressus sempervirens ssp. pyramidalis (cypress)	HSV-1	>1000.00\(\mu g/mL\)	>1000.00\(\mu g/mL\)	>1	n.a.	[332]
Cymbopogon citratus (lemongrass)		n.d.	n.m.	n.m.	0.10%	[331]
Eucalyptus caesia (eucalyptus)		0.2540%	0.01%	38.81	n.a.	[333]
Eucalyptus globulus (eucalyptus)		n.d.	n.m.	n.m.	1.00%	[331]
Hyssopus officinalis (hyssop)		n.d.	n.m.	n.m.	1.00%	[331]
Ilicium verum (anise)		160.00 \(\mu g/mL\)	40.00 \(\mu g/mL\)	4	n.a.	[338]
Juniperus communis (juniper)		n.d.	n.m.	n.m.	>1.00%	[331]
Juniperus oxycedrus ssp. oxycedrus (juniper)	HSV-1	1000.00 \(\mu g/mL\)	200.00 \(\mu g/mL\)	5	n.a.	[332]
Laurus nobilis (bay)		500.00 \(\mu g/mL\)	60.00 \(\mu g/mL\)	8.3	n.a.	[335]
Lavandula latifolia (lavender)		n.d.	n.m.	n.m.	1.00%	[331]
Leptospermum scoparium (manuka)		28.80 \(\mu g/mL\)	0.96 \(\mu g/mL\)	30/50	n.a.	[339]
Matricaria recutita (chamomile)		30.00 \(\mu g/mL\)	0.30 \(\mu g/mL\)	100	n.a.	[338]
Melaleuca alternifolia (tea tree)		0.0030%	0.000%	20	n.a.	[336]
Melissa officinalis (lemon balm)		0.0030%	0.0004%/0.00008%	7.5/37.5	n.a.	[342]
Mentha piperita (peppermint)		n.d.	n.m.	n.m.	1.00%	[331]
Mentha suaveolens (apple mint)		343.60 \(\mu g/mL\)	5.10 \(\mu g/mL\)	67	n.a.	[341]
Ocimum basilicum album (basil)		n.d.	n.m.	n.m.	>1.00%	[331]
Ocimum majorana (marjoram)		0.0140%	0.0020%/0.0008%	7/17.5	n.a.	[343]
Pinus mugo (dwarf pine)		0.0160%	0.00%	5	n.a.	[335]
Pistacia terebinthus (terebinth)		40.00 \(\mu g/mL\)	70 \(\mu g/mL\)	6	n.a.	[338]
Rosmarinus officinalis (rosemary)		0.2580%	0.01%	46.12	n.a.	[333]
Salvia officinalis (sage)		n.d.	n.m.	n.m.	1.00%	[331]
Santolina insularis (santolina)		112.00 \(\mu g/mL\)	0.88/0.70 \(\mu g/mL\)	127/160	n.a.	[345]
Thymus vulgaris (thyme)		0.0070%	0.0010/0.0007%	10/14	n.a.	[335,336]
Zingiber officinale (ginger)		0.0040%	0.0002/0.0001%	20/40	n.a.	[335,336]

^a HSV: herpes simplex virus, type 1 or 2.
^b CC: cytotoxic concentration.
^c IC: inhibitory concentration.
^d Selectivity index ≥ 4.
^e Essential oil concentration at 100% plaque reduction.
that these were compared to a placebo, which is expected to display poor activity.

Although these studies demonstrate some antiviral activity, other viral pathogens (e.g., varicella zoster, herpes zoster, human papillomavirus, and Molluscum contagiosum) associated with skin infections have clearly been neglected and warrant further study.

7. Essential Oil Toxicity

Plants used for therapeutic purposes are normally assumed to be safe and free of toxicity. This misconception is mainly due to the long-term usage of medicinal plants for the treatment of diseases based on basic knowledge accumulated and shared from generation to generation over many centuries. However, scientific studies and reports have highlighted the toxic effects of essential oils used to treat skin ailments, which are known to produce adverse effects such as allergic contact dermatitis, skin irritation, or photosensitization [300]. Phenols and aldehyde containing oils may often cause irritation [352]. Furanocoumarin containing essential oils (such as C. bergamia) have been proven to induce phototoxicity [353–355]. The evidence based review on botanicals in dermatology by Reuter et al. [18] identifies certain medicinal plants which have been used for dermatological purposes, which have also reported toxic effects. These include C. bergamia and M. recutita. Mentha piperita oil has been reported to cause dermal irritation [356]. Prashar et al. [357] have shown in an in vitro study that L. angustifolia oil and linalool (one of the main compounds) are cytotoxic to human fibroblast and endothelial cells [357]. There have also been a few case reports on L. angustifolia use resulting in contact dermatitis [358–360].

Stonehouse and Studdiford [361] determined that nearly 5% of patients that use M. alternifolia oil will experience allergic contact dermatitis. Centred on a patch test study of 311 volunteers, it was determined that neat 5% tea tree oil can cause irritancy (mean irritancy score of 0.25) [362]. In contrast, however, the study of 217 patients from a dermatology clinic, subjected to a patch test with 10% M. alternifolia oil, showed no irritation [363]. Two additional studies tested the M. alternifolia in patch tests at concentrations of 5% and 10%; 0.15–1.8% of patients experienced allergic contact dermatitis [364, 365]. However, considering that patch tests exaggerate real-world product use [366, 367], they do not necessarily give a good indication of products containing the essential oils. This is evident in the discussed clinical trials using M. alternifolia oil where only mild reactions were observed [189, 200, 219, 281, 282, 285]. Increasing the oil concentration to 25–100%, however, resulted in an increased risk of contact dermatitis in 2–8% of patients [275, 279]. Several additional reports exist reporting contact dermatitis and one systemic hypersensitivity reaction, from the use of M. alternifolia [368–371].

As the prospective use of these essential oils may be for topical application, it is necessary to test toxicity against skin fibroblasts and human skin cell lines FI-73 [115]. Backhousia citriodora oil at a concentration of 1.00% showed low toxicity to human skin cells and skin fibroblasts [115], whereas neat B. citriodora oil and citral were shown to be toxic to human skin cells (FI-73) and skin fibroblasts [115]. Thymus quinquecostatus, when tested against fibroblast cells for cytotoxicity, showed low cytotoxicity at concentrations below 12.5 μg/mL in fibroblast cells and thus may be suitable for topical treatment [207]. Mentha piperita is one of the most popularly used essential oils [372]; however, there have been reports that M. piperita oil can cause both dermal irritations [356]. A review by Reichling et al., containing more information regarding essential oil toxicity, is available [30].

8. Conclusion

Of all the skin pathogens studied, dermatophytes were found to be the most sensitive to essential oil inhibition, followed by the yeast C. albicans and then Gram-positive bacteria (anaerobes more than aerobes), with Gram-negative bacteria being the most resistant, especially P. aeruginosa [168, 181]. The most frequently studied organisms are E. coli, P. aeruginosa, C. albicans, and S. aureus. However, less attention has been paid to pathogens such as S. epidermidis, H. influenzae, S. pyogenes, P. acnes, Clostridium spp., Brevibacterium spp., and the dermatophytes. The reason for this may be due to the difficulty in performing such studies on fastidious pathogens and the lack of a perceived threat. Furthermore, many of these pathogens are slow growing and, combined with the volatile nature of oils, may prove difficult in retaining the oil with the pathogen during the incubation period. Where possible, resistant strains should be included in essential oil studies, along with the reference strain [56, 147]. Antiviral studies should extend to the neglected viruses. These should also report on which part of the cycle the inhibition occurred. The focus should be directed towards the aromatherapeutic recommendation of the essential oil and the responsible pathogens connected to the type of infection, together with the inclusion of the microorganism strain number, the solvent, essential oil composition, and the reason for testing. This is especially relevant for combination studies where it is ill advised to just randomly test different combinations.

Regardless of the frequency of the therapeutic claims made for essential oils and the proven in vitro activity, most evidence of the therapeutic efficacy of aromatherapy has been published in books about aromatherapy and not in peer-reviewed journals. A few clinical trials have emerged, but their results are rarely confirmed completely to substantiate essential oil effectiveness. More rigorous clinical trials would establish confidence from the medical professionals [352].

Besides the antimicrobial activities, toxicity studies are also recommended using skin fibroblasts for sensitivity, as the use is topical. The toxicological effects of essential oils are important facets that need to be addressed. Discernment also needs to be applied as certain sensitivity studies may have been done on rabbit skin; however, human skin has been found to be more sensitive to irritants [115].

Further essential oil combinations need to be studied, along with the reason for the combination selection. Whether the interaction is synergistic, additive, indifferent, or antagonistic, each interaction is a valuable result. If antagonism is not reported, it will not be known to avoid those
combinations, which in turn will result in their continuous use, which may eventually lead to resistance to the essential oils themselves. Including synergistic results will allow for these essential oil combinations to be used more frequently in practice. The inclusion of additive and indifferent interactions is also vital in order to report essential oil combinations already studied. This will prevent unnecessary duplication of combination research and confirm essential oil combinations that have useful antimicrobial activity. This research will provide an insight into the understanding of these combinations which could allow for newer directives for integrating essential oils into mainstream medicine. Although essential oil combinations with other essential oils and with antimicrobials have started gaining some attention, there is still a gap in the research with regard to carrier oils. Essential oils are seldom used directly on the skin because direct use onto the skin can cause irritation [26, 38]. Therefore, essential oils are blended with carrier oils before they are applied to the skin. This raises the question as to whether or not the carrier oils influence the overall antimicrobial activity of the essential oils. Gemeda et al. [373] tested the antimicrobial activity of essential oils mixed in different hydrophilic and lipophilic bases. They found better effects in hydrophilic bases than in lipophilic bases. This study confirmed that the base may have an influence on the antimicrobial activity; however, carrier oils in combination have to the best of our knowledge not been studied further.

Essential oils, such as *M. alternifolia*, are often used in subinhibitory concentrations in commercial products such as shampoos, shower gels, and creams to enhance commercial selling point of a greener product or improve fragrance or desire for the product [202]. This in itself can cause resistance. Therefore, although essential oils are showing promise, the use of essential oils in subinhibitory concentrations in cosmetics and other dermatological formulations may weaken the efficacies of the essential oils as antiseptics, as was shown by Nelson [136]. This highlights the need to insure that there is sufficient evidence supporting aromatherapeutic combinations not only for therapeutics, but also in commercial products.

Resistant strains such as *P. aeruginosa*, MRSA, and methicillin-resistant *S. epidermidis* (MRSE) have become extensively problematic microorganisms in the recent years due to their antimicrobial resistance [158], and, as such, including these organisms in screening studies is becoming more and more important.

For viral studies, one needs to consider that genuine antiviral potential is seen for those essential oils that display activity after absorption into the host cell's nucleus because this is where viral DNA replicates by using viral DNA polymerase [30].

Clinical trial and ex vivo studies should consider regular essential oil dosing, instead of once daily, or every several days, application. According to the aromatherapeutic literature, essential oils are generally applied two to three times a day. The reason may be due to the volatile nature resulting in essential oil evaporation. Thus, in order to give credit to essential oil use, application studies should consider timed dosages.

Finally, *M. alternifolia* is the most studied of all commercial essential oils. However, many other oils have shown better antimicrobial activity. It is time essential oil researchers give just as much attention to oils such as *C. zeylanicum*, *L. scoparium*, *O. vulgare*, *S. album*, and *S. aromaticum* in the hope of increasing the global knowledge of essential oils used on the skin.

Competing Interests

The authors declare no competing interests regarding the publication of this paper.

Acknowledgments

The authors are thankful to the bursary funding from NRF.

References

[1] S. Clarke, Essential Chemistry for Aromatherapy, Churchill Livingstone, London, UK, 2008.

[2] G. Farrer-Halls, The Aromatherapy Bible: The Definitive Guide to Using Essential Oils, Bounty Books, London, UK, 2011.

[3] B. Dixon, “Cheese, toes, and mosquitoes,” *British Medical Journal*, vol. 312, no. 7038, p. 1105, 1996.

[4] C. A. Mims, J. Playfair, I. Roitt, D. Wakelin, and R. Williams, *Medical Microbiology*, Mosby, Detroit, Mich, USA, 1998.

[5] B. A. Bannister, N. T. Begg, and S. H. Gillespie, *Infectious Disease*, Blackwell Science, New York, NY, USA, 2000.

[6] M. Wilson, *Microbial Inhabitants of Humans, their Ecology and Role in Health and Disease*, Cambridge University Press, Cambridge, UK, 2005.

[7] N. C. Cevasco and K. I. Tomecki, Common skin infections. Disease Management Project 2012, 2013, http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/dermatology/common-skin-infections.

[8] M. S. Dryden, “Complicated skin and soft tissue infection,” *Journal of Antimicrobial Chemotherapy*, vol. 65, supplement 3, pp. iii35–iii44, 2010.

[9] C. P. Davis, “Normal flora,” in *Medical Microbiology*, S. Baron, Ed., chapter 6, University of Texas Medical Branch at Galveston, Galveston, Tex, USA, 1996.

[10] D. L. Stulberg, M. A. Penrod, and R. A. Blatny, “Common bacterial skin infections,” *American Family Physician*, vol. 66, no. 1, pp. 119–124, 2002.

[11] S. Hemaiswarya, A. K. Kruthiventi, and M. Doble, “Synergism between natural products and antibiotics against infectious diseases,” *Phytotherapy*, vol. 15, no. 8, pp. 639–652, 2008.

[12] D. Greenwood, R. Slack, J. Peutherer, and M. Barer, *Medical Microbiology, A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control*, Churchill Livingstone, Philadelphia, Pa, USA, 2007.

[13] L. E. Millikan, “Complementary medicine in dermatology,” *Clinics in Dermatology*, vol. 20, no. 5, pp. 602–605, 2002.

[14] E. Ranzato, S. Martinotti, and B. Burlando, “Wound healing properties of jojoba liquid wax: an *in vitro* study,” *Journal of Ethnopharmacology*, vol. 134, no. 2, pp. 443–449, 2011.

[15] T. Iossifova, A. Kujumgiev, A. Ignatova, E. Vassileva, and I. Kostova, “Antimicrobial effects of some hydroxycoumarins and
secoiridoids from \textit{Frasinus ornus} bark," \textit{Pharmazie}, vol. 49, no. 4, pp. 298–299, 1994.

[16] L. Halcón and K. Milkus, "\textit{Staphylococcus aureus} and wounds: a review of a tea tree oil as a promising antimicrobial," \textit{American Journal of Infection Control}, vol. 32, no. 7, pp. 402–408, 2004.

[17] N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev, and R. F. Diegelmann, "Impaired wound healing," \textit{Clinics in Dermatology}, vol. 25, no. 1, pp. 19–25, 2007.

[18] J. Reuter, I. Merfort, and C. M. Schempp, "Botanicals in dermatology: an evidence-based review," \textit{American Journal of Clinical Dermatology}, vol. 11, no. 4, pp. 247–267, 2010.

[19] F. Walsh, \textit{Golden Age of Antibiotics 'Set to End'}, BBC News Website, 2014.

[20] Z. F. Udawadia, R. A. Amale, K. K. Ajbani, and C. Rodrigues, "Totally drug-resistant tuberculosis in India," \textit{Clinical Infectious Diseases}, vol. 54, no. 4, pp. 579–581, 2012.

[21] M. S. Dryden, A. T. Andrasevic, M. Bassetti et al., "A European survey of antibiotic management of methicillin-resistant \textit{Staphylococcus aureus} infection: current clinical opinion and practice," \textit{Clinical Microbiology and Infection}, vol. 16, no. 1, pp. 3–30, 2010.

[22] J. Gallagher, \textit{Analysis: Antibiotic Apocalypse}, BBC News, 2013.

[23] G. C. Bodeker, T. I. Ryan, and C.-K. Ong, "Traditional approaches to wound healing," \textit{Clinics in Dermatology}, vol. 17, no. 1, pp. 93–98, 1999.

[24] T. Nakatsu, A. T. Lupo Jr., I. W. Chinn Jr., and R. K. L. Kang, "Biological activity of essential oils and their constituents," \textit{Studies in Natural Products Chemistry}, vol. 21, pp. 571–631, 2000.

[25] J. Buckle, \textit{Clinical Aromatherapy: Essential Oils in Practice}, Churchill Livingstone, New York, NY, USA, 2003.

[26] M. Evans, \textit{Natural Healing: Remedies & Therapies}, Hermes House, London, UK, 2010.

[27] M. S. Lee, J. Choi, P. Posadzki, and E. Ernst, "Aromatherapy for health care: an overview of systematic reviews," \textit{Maturitas}, vol. 71, no. 3, pp. 257–260, 2012.

[28] H. D. Neuwinger, \textit{African Traditional Medicine—A Dictionary of Plant Use and Applications}, Medpharm, Stuttgart, Germany, 2000.

[29] V. K. Bajpai, J. I. Yoon, and S. C. Kang, "Antifungal potential of essential oil and various organic extracts of \textit{Nandina domestica} Thunb. against skin infectious fungal pathogens," \textit{Applied Microbiology and Biotechnology}, vol. 83, no. 6, pp. 1127–1133, 2009.

[30] J. Reichling, P. Schnitzler, U. Suschke, and R. Saller, "Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties—an overview," \textit{Research in Complementary Medicine}, vol. 16, no. 2, pp. 79–90, 2009.

[31] "More evidence is needed to confirm the benefits and risks of many botanicals in dermatology," \textit{Drugs & Therapy Perspectives}, vol. 27, no. 7, pp. 24–26, 2011.

[32] J. Lawless, \textit{The Illustrated Encyclopedia of Essential Oils: The Complete Guide to the Use of Oils in Aromatherapy and Herbalism}, Element Books, Rockport, Mass, USA, 1995.

[33] M. Lis-Balchin, "Essential oils and 'aromatherapy': their modern role in healing," \textit{The Journal of the Royal Society for the Promotion of Health}, vol. 117, no. 5, pp. 324–329, 1997.

[34] C. J. Stevensen, "Aromatherapy in dermatology," \textit{Clinics in Dermatology}, vol. 16, no. 6, pp. 689–694, 1998.

[35] W. Maddocks-Jennings and J. M. Wilkinson, "Aromatherapy practice in nursing: literature review," \textit{Journal of Advanced Nursing}, vol. 48, no. 1, pp. 93–103, 2004.

[36] W. Sellar, \textit{The Directory of Essential Oils}, C. W. Daniel Company, London, UK, 1992.

[37] S. Curtis, \textit{Essential Oils}, Aurum Press, London, UK, 1996.

[38] J. Harding, \textit{A Guide to Essential Oils}, Parragon, Bath, UK, 2002.

[39] Ark Creative, \textit{Just Aromatherapy, Top That!} Publishing, Valencia, Calif, USA, 2005.

[40] J. Harding, \textit{The Essential Oils Handbook}, Duncan Baird, London, UK, 2008.

[41] M. Kovac, \textit{A Quick Guide to Essential Oils}, Aromadelavnice s.p., Ljubljana, Slovenia, 2011.

[42] Meadowbank, \textit{Ailments leaflet-find an essential oil for your ailment}, 2012.

[43] Burgess and Finch, \textit{Burgess and Finch Aromatherapy: Patient Leaflet}, 2013.

[44] J. Vioyo, N. Pisuththan, A. Faikreua, K. Nupangta, K. Wangtorpol, and J. Ngokkuen, "Evaluation of \textit{in vitro} antimicrobial activity of Thai basil oils and their micro-emulsion formulas against \textit{Propionibacterium acneus}," \textit{International Journal of Cosmetic Science}, vol. 28, no. 2, pp. 125–133, 2006.

[45] M. J. Gonçalves, A. M. Vicente, C. Cavaleiro, and L. Salgueiro, "Composition and antifungal activity of the essential oil of \textit{Mentha cervia} from Portugal," \textit{Natural Product Research}, vol. 21, no. 10, pp. 867–871, 2007.

[46] A. Deriu, S. Zanetti, L. A. Sechiet al., "Antimicrobial activity of \textit{Inula helenium} L. essential oil against \textit{Gram}-positive and \textit{Gram}-negative bacteria and \textit{Candida} spp.," \textit{International Journal of Antimicrobial Agents}, vol. 31, no. 6, pp. 588–590, 2008.

[47] H. Kirmizibekmez, B. Demirci, E. Yesilada, K. H. C. Basar, and F. Demirci, "Chemical composition and antimicrobial activity of the essential oils of \textit{Lavandula stoechas} L. spp. stoechas growing wild in Turkey," \textit{Natural Product Communications}, vol. 4, no. 7, pp. 1001–1006, 2009.

[48] H. Nguyen, E. M. Campi, W. R. Jackson, and A. F. Patti, "Effect of oxidative deterioration on flavour and aroma components of lemon oil," \textit{Food Chemistry}, vol. 112, no. 2, pp. 388–393, 2009.

[49] C. Turek and F. C. Stintzing, "Impact of different storage conditions on the quality of selected essential oils," \textit{Food Research International}, vol. 46, no. 1, pp. 341–353, 2012.

[50] L. Riahi, M. Elferchichi, H. Ghazghazi et al., "Phytochemistry, antioxidant and antimicrobial activities of the essential oils of \textit{Mentha rotundifolia} L. in Tunisia," \textit{Industrial Crops and Products}, vol. 49, pp. 883–889, 2013.

[51] J. R. Calo, P. G. Crandall, C. A. O’Bryan, and S. C. Ricke, "Essential oils as antimicrobials in food systems—a review," \textit{Food Control}, vol. 54, pp. 111–119, 2015.

[52] G. B. Lockwood, "Techniques for gas chromatography of volatile terpenoids from a range of matrices," \textit{Journal of Chromatography A}, vol. 936, no. 1-2, pp. 23–31, 2001.

[53] M. Lahlou, "Methods to study the phytochemistry and bioactivity of essential oils," \textit{Phytotherapy Research}, vol. 18, no. 6, pp. 435–448, 2004.

[54] S. F. van Vuuren, \textit{The antimicrobial activity and essential oil composition of medicinal aromatic plants used in African traditional healing [Ph.D. thesis]}, University of Witwatersrand, Johannesburg, South Africa, 2007.

[55] A. Elaissi, Z. Rouis, S. Mabrouk et al., "Correlation between chemical composition and antibacterial activity of essential oils from fifteen \textit{Eucalyptus} species growing in the Korbous and Jbel Abderahman arboreta (North East Tunisia)," \textit{Molecules}, vol. 17, no. 3, pp. 3044–3057, 2012.
[56] S. F. van Vuuren, “Antimicrobial activity of South African medicinal plants,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 462–472, 2008.

[57] A. M. Janssen, J. C. Scheffer, and A. B. Svendsen, “Antimicrobial activity of essential oils: a 1976–1986 literature review. Aspects of the test methods,” Planta Medica, vol. 53, no. 5, pp. 395–398, 1987.

[58] R. J. Lambert and J. Pearson, “Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values,” Journal of Applied Microbiology, vol. 88, no. 3, pp. 784–790, 2000.

[59] Y. X. Seow, C. R. Chen, and H.-G. Yuk, “Plant essential oils as active antimicrobial agents,” Critical Reviews in Food Science and Nutrition, vol. 54, no. 5, pp. 625–644, 2014.

[60] N. P. Varela, R. Friendship, C. Dewey, and A. Valdivieso, “Comparison of Agar Dilution and E-test for antimicrobial susceptibility testing of Campylobacter coli isolates recovered from 80 Ontario swine farms,” The Canadian Journal of Veterinary Research, vol. 72, no. 2, pp. 168–174, 2008.

[61] A. S. Beale and R. Sutherland, Measurement of Combined Antibiotic Action in Antimicrobials: Assessment of Antimicrobial Activity and Resistance, Academic Press, London, UK, 1983.

[62] M. Dufour, R. S. Simmonds, and P. J. Bremer, “Development of a method to quantify in vitro the synergistic activity of natural antimicrobials,” International Journal of Food Microbiology, vol. 85, no. 3, pp. 249–258, 2003.

[63] S. E. van Vuuren and A. M. Viljoen, “Plant-based antimicrobial studies—methods and approaches to study the interaction of natural products,” Planta Medica, vol. 77, no. 11, pp. 1168–1182, 2011.

[64] V. Agarwal, P. Lal, and V. Pruthi, “Effect of plant oils on Candida albicans,” Journal of Microbiology, Immunology and Infection, vol. 43, no. 5, pp. 447–451, 2010.

[65] M. Hadad, J. A. Zygdal, B. Lima et al., “Chemical composition and antimicrobial activity of essential oil from Baccharis grisebachii hieron (asteraceae),” Journal of the Chilean Chemical Society, vol. 52, no. 2, pp. 1186–1189, 2007.

[66] A. M. A. Nascimento, M. G. L. Brandão, G. B. Oliveira, I. C. P. Fortes, and E. Chartone-Souza, “Synergistic bactericidal activity of Eremanthus erythropappus oil and β-bisabolethene with ampicillin against Staphylococcus aureus,” Antonie van Leeuwenhoek, vol. 92, no. 1, pp. 95–100, 2007.

[67] G. N. Teke, K. N. Elisée, and K. J. Roger, “Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Casparia usitansia Mill. leaves from Cameroon,” BMC Complementary and Alternative Medicine, vol. 13, article 130, 2013.

[68] S. S. Biju, A. Aluva, R. K. Khar, and R. Chaudhry, “Formulation and evaluation of an effective pH balanced topical antimicrobial product containing tea tree oil,” Pharmazie, vol. 60, no. 3, pp. 208–211, 2005.

[69] S. Prabuseenivasan, M. Jayakumar, and S. Ignacimuthu, “In vitro antibacterial activity of some plant essential oils,” BMC Complementary and Alternative Medicine, vol. 6, article 39, 2006.

[70] A. Tohidpour, M. Sattari, R. Omidbaigi, A. Yadegar, and J. Nazemi, “Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA),” Phytomedicine, vol. 24, no. 1, pp. 128–131, 2007.

[71] V. H. Tam, A. N. Schilling, and M. Nikolau, “Modelling time-kill studies to discern the pharmacodynamics of mepenem,” Journal of Antimicrobial Chemotherapy, vol. 55, no. 5, pp. 699–706, 2005.

[72] S. Burt, “Essential oils: their antibacterial properties and potential applications in foods—a review,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 223–253, 2004.

[73] F. de Oliveira Pereira, P. A. Wanderley, F. A. C. Viana, R. B. de Lima, F. B. de Sousa, and E. de Oliveira Lima, “Growth inhibition and morphological alterations of Trichophyton rubrum induced by essential oil from Cymbopogon winterianus Jowitt ex Bor,” Brazilian Journal of Microbiology, vol. 42, no. 1, pp. 233–242, 2011.

[74] K. Kon and M. Rai, “Antibacterial activity of Thymus vulgaris essential oil alone and in combination with other essential oils,” Nusantara Bioscience, vol. 4, no. 2, pp. 50–56, 2012.

[75] L. Cherrat, L. Espina, M. Bakkali, D. Garcia-Gonzalo, R. Pagán, and A. Laglaoui, “Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oil,” Planta Medica, vol. 77, no. 11, pp. 1168–1182, 2011.

[76] M. Hadad, J. A. Zygdal, B. Lima et al., “Chemical composition and antimicrobial activity of essential oil from Baccharis grisebachii hieron (asteraceae),” Journal of the Chilean Chemical Society, vol. 52, no. 2, pp. 1186–1189, 2007.

[77] A. M. A. Nascimento, M. G. L. Brandão, G. B. Oliveira, I. C. P. Fortes, and E. Chartone-Souza, “Synergistic bactericidal activity of Eremanthus erythropappus oil and β-bisabolethene with ampicillin against Staphylococcus aureus,” Antonie van Leeuwenhoek, vol. 92, no. 1, pp. 95–100, 2007.

[78] G. N. Teke, K. N. Elisée, and K. J. Roger, “Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Casparia usitansia Mill. leaves from Cameroon,” BMC Complementary and Alternative Medicine, vol. 13, article 130, 2013.

[79] S. S. Biju, A. Aluva, R. K. Khar, and R. Chaudhry, “Formulation and evaluation of an effective pH balanced topical antimicrobial product containing tea tree oil,” Pharmazie, vol. 60, no. 3, pp. 208–211, 2005.

[80] S. Prabuseenivasan, M. Jayakumar, and S. Ignacimuthu, “In vitro antibacterial activity of some plant essential oils,” BMC Complementary and Alternative Medicine, vol. 6, article 39, 2006.

[81] A. Tohidpour, M. Sattari, R. Omidbaigi, A. Yadegar, and J. Nazemi, “Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA),” Phytomedicine, vol. 17, no. 1, pp. 128–131, 2007.

[82] V. H. Tam, A. N. Schilling, and M. Nikolau, “Modelling time-kill studies to discern the pharmacodynamics of mepenem,” Journal of Antimicrobial Chemotherapy, vol. 55, no. 5, pp. 699–706, 2005.

[83] S. Burt, “Essential oils: their antibacterial properties and potential applications in foods—a review,” International Journal of Food Microbiology, vol. 94, no. 3, pp. 223–253, 2004.

[84] F. de Oliveira Pereira, P. A. Wanderley, F. A. C. Viana, R. B. de Lima, F. B. de Sousa, and E. de Oliveira Lima, “Growth inhibition and morphological alterations of Trichophyton rubrum induced by essential oil from Cymbopogon winterianus Jowitt ex Bor,” Brazilian Journal of Microbiology, vol. 42, no. 1, pp. 233–242, 2011.

[85] K. Kon and M. Rai, “Antibacterial activity of Thymus vulgaris essential oil alone and in combination with other essential oils,” Nusantara Bioscience, vol. 4, no. 2, pp. 50–56, 2012.

[86] L. Cherrat, L. Espina, M. Bakkali, D. García-Gonzalo, R. Pagán, and A. Laglaoui, “Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oil,” Planta Medica, vol. 77, no. 11, pp. 1168–1182, 2011.

[87] M. Hadad, J. A. Zygdal, B. Lima et al., “Chemical composition and antimicrobial activity of essential oil from Baccharis grisebachii hieron (asteraceae),” Journal of the Chilean Chemical Society, vol. 52, no. 2, pp. 1186–1189, 2007.

[88] A. M. A. Nascimento, M. G. L. Brandão, G. B. Oliveira, I. C. P. Fortes, and E. Chartone-Souza, “Synergistic bactericidal activity of Eremanthus erythropappus oil and β-bisabolethene with ampicillin against Staphylococcus aureus,” Antonie van Leeuwenhoek, vol. 92, no. 1, pp. 95–100, 2007.
Evidence-Based Complementary and Alternative Medicine

A. Remmal, T. Bouchikhi, K. Rhayour, M. Ettayebi, and A. S.-S. Kim, J. S. Baik, T.-H. Oh, W.-J. Yoon, N. H. Lee, and S.-K. Hong, “Comparative analysis of chemical compositions and antimicrobial activities of Essential oils against acne-inducing bacteria,” Bioresource Technol, vol. 105, no. 2, pp. 295–301, 2014.

[100] A. Remmal, T. Bouchikhi, K. Rhayour, M. Ettayebi, and A. Tantaoui-Elraki, “Improved method for the determination of antimicrobial activity of essential oils in agar medium,” Journal of Essential Oil Research, vol. 5, no. 2, pp. 179–184, 1993.

[101] A. Pulido-Pérez, O. Baniandrés-Rodríguez, M. C. Ceballos-Rodríguez, M. D. Mendoza-Cembranos, M. Campos-Dominguez, and R. Sánchez-Fernández, “Skin infections caused by community-acquired meticillin-resistant Staphylococcus aureus: clinical and microbiological characteristics of 11 cases,” Acta Dermato-Venereologica, vol. 105, no. 2, pp. 150–158, 2014.

[102] S.-S. Kim, J. S. Baik, T.-H. Oh, W.-J. Yoon, N. H. Lee, and C.-G. Hyun, “Biological activities of Korean Citrus unshiu and Citrus natsudaidai essential oils against acnegenic bacteria,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 10, pp. 2507–2513, 2008.

[103] P. J. Rennie, D. B. Gower, K. T. Holland, A. I. Mallet, and W. J. Watkins, “The skin microflora and the formation of human axillary odour,” International Journal of Cosmetic Science, vol. 12, no. 5, pp. 197–207, 1990.

[104] L. L. Barton and A. D. Friedman, “Impetigo: a reassessment of etiology and therapy,” Pediatric Dermatology, vol. 4, no. 3, pp. 185–188, 1987.

[105] L. B. Pereira, “Impetigo—review,” Anais Brasileiros de Dermo-Toologia, vol. 89, no. 2, pp. 293–299, 2014.

[106] D. L. Stevens, A. L. Bisno, H. F. Chambers et al., “Practice guidelines for the diagnosis and management of skin and soft-tissue infections,” Clinical Infectious Diseases, vol. 41, no. 10, pp. 1373–1406, 2005.

[107] L. G. Miller, F. Perdrea-Remington, G. Rieg et al., “Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles,” The New England Journal of Medicine, vol. 352, no. 14, pp. 1445–1453, 2005.

[108] W. W. J. Van de Sande, A. H. Fahal, T. V. Riley, H. Verbrugh, and A. van Belkum, “In vitro susceptibility of Madurella mycetomatis, prime agent of Madura foot, to tea tree oil and artemisinin,” Journal of Antimicrobial Chemotherapy, vol. 59, no. 3, pp. 553–555, 2007.

[109] S. Wanakulukul, A. Chindamporn, P. Yumyourn, S. Payungporn, C. Samathi, and Y. Poovorawan, “Malassezia furfur in infantile seborrheic dermatitis,” Asian Pacific Journal of Allergy and Immunology, vol. 23, no. 2-3, pp. 101–105, 2005.

[110] A. K. Gupta and K. A. Nicol, “Ciclopirox 1% shampoo for the treatment of seborrheic dermatitis,” International Journal of Dermatology, vol. 45, no. 1, pp. 66–69, 2006.

[111] J.-H. Lee and S.-K. Hong, “Comparative analysis of chemical compositions and antimicrobial activities of Essential oils from Abies holophylla and Abies koreana,” Journal of Microbiology and Biotechnology, vol. 19, no. 4, pp. 372–377, 2009.

[112] F. Candan, M. Ulu, B. Tepe et al., “Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium. Afin. (Asteraceae),” Journal of Ethnopharmacology, vol. 87, no. 2-3, pp. 215–220, 2003.

[113] M. Ünlü, D. Daferera, E. Dönmez, M. Polissiou, B. Tepe, and A. Sökmen, “Compositions and the in vitro antimicrobial activities of the essential oils of Achillea setacea and Achillea teretifolia (Compositae),” Journal of Ethnopharmacology, vol. 83, no. 1-2, pp. 117–121, 2001.

[114] K. H. Hüsnü, B. Demirci, G. Iscan et al., “The essential oil constituents and antimicrobial activity of Anthemis aciphylla BOISS. var. discotaeda BOISS,” Chemical and Pharmaceutical Bulletin, vol. 54, no. 2, pp. 222–225, 2006.

[115] A. J. Hayes and B. Markovic, “Toxicity of Australian essential oil Backhousia citriodora (Lemon myrtle). Part I. Antimicrobial activity and in vitro cytotoxicity,” Food and Chemical Toxicology, vol. 40, no. 4, pp. 535–543, 2002.
A. B. Hsouna, N. Hamdi, N. B. Halima, and S. Abdelkafi, “Antimicrobial activity of a traditionally used complex essential oil distillate,” South African Journal of Botany, vol. 76, no. 4, pp. 686–691, 2010.

S. van Vuuren, G. P. P. Kamatou, and A. M. Viljoen, “Volatile composition and antimicrobial activity of twenty commercial frankincense essential oil samples,” South African Journal of Botany, vol. 76, no. 4, pp. 686–691, 2010.

S. de Rapper, S. F. van Vuuren, G. P. P. Kamatou, A. M. Viljoen, and E. Dagne, “The additive and synergistic antimicrobial effects of select frankincense and myrrh oils—a combination from the pharaoic pharmacopoeia,” Letters in Applied Microbiology, vol. 54, no. 4, pp. 352–358, 2012.

N. Tarek, H. M. Hassan, S. M. AbdelGhani, I. Radwan, O. Hammouda, and A. O. El-Gendy, “Comparative chemical and antimicrobial study of nine essential oils obtained from medicinal plants growing in Egypt,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 3, no. 2, pp. 149–156, 2014.

L. N. Barbosa, I. da Silva Probst, B. F. M. T. Andrade et al., “Antibacterial and antifungal activity of aromatic constituents and antifungal activity of ten essential oils,” Journal of Essential Oil Research, vol. 18, no. 12, pp. 1070–1074, 2006.

A. B. Hsouna, N. Hamdi, N. B. Halima, and S. Abdelkafi, “Characterization of essential oil from Citrus aurantium L. flowers: antimicrobial and antioxidant activities,” Journal of Oleo Science, vol. 62, no. 10, pp. 763–772, 2013.

T. Yangu, M. Bouaziz, A. Dhouib, and S. Sayadi, “Potential use of Tunisian Pituranthos chloranthus essential oils as a natural disinfectant,” Letters in Applied Microbiology, vol. 48, no. 1, pp. 112–117, 2009.

A. Bag and R. R. Chattopadhyay, “Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination,” PLoS ONE, vol. 10, no. 7, article e313212, 2015.

I. Chéraif, H. Ben Jannet, M. Hammami, M. L. Khourja, and Z. Mighri, “Chemical composition and antimicrobial activity of essential oils of Cupressus arizonica Greene,” Biochemical Systematics and Ecology, vol. 35, no. 12, pp. 813–820, 2007.

I. H. N. Bassole, A. Lamien-Meda, R. Bayala et al., “Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination,” Phytotherapy, vol. 18, no. 12, pp. 1070–1074, 2011.

S. Pattnaik, V. R. Subramanyam, and C. R. Kole, “Antibacterial and antifungal activity of ten essential oils in vitro,” Microbiosa, vol. 86, no. 349, pp. 237–246, 1996.

S. Pattnaik, V. R. Subramanyam, M. Bapaji, and C. R. Kole, “Antibacterial and antifungal activity of aromatic constituents of essential oils,” Microbiosa, vol. 89, no. 358, pp. 39–46, 1997.

Y. Panahi, M. Sattari, A. P. Babaie et al., “The essential oils activity of Eucalyptus polycarpa, E. largiflorence, E. milliolaria and E. camaldulensis on Staphylococcus aureus,” Iranian Journal of Pharmaceutical Research, vol. 10, no. 1, pp. 43–48, 2011.

R. Hamoud, F. Spoer, J. Reichling, and M. Wink, “Antimicrobial activity of a traditionally used complex essential oil distillate (Olbas® Tropfen) in comparison to its individual essential oil ingredients,” Phytomedicine, vol. 19, no. 11, pp. 969–976, 2012.

V. Patrone, R. Campana, E. Vittoria, and W. Baffone, “In vitro synergistic activities of essential oils and surfactants in combination with cosmetic preservatives against Pseudomonas aeruginosa and Staphylococcus aureus,” Current Microbiology, vol. 60, no. 4, pp. 237–241, 2010.

G. D. Mahumane, S. F. van Vuuren, G. Kamatou, M. Sandasi, and A. M. Viljoen, “Chemical composition and antimicrobial activity of Eucalyptus radiata leaf essential oil, sampled over a year,” Journal of Essential Oil Research, vol. 28, no. 6, pp. 475–488, 2016.

J. Safaei-Ghomi and A. Ahd, “Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus intertexta,” Pharmacognosy Magazine, vol. 6, no. 23, pp. 172–175, 2010.

W.-R. Diao, Q.-P. Hu, H. Zhang, and J.-G. Xu, “Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.),” Food Control, vol. 35, no. 1, pp. 109–116, 2014.

A. S. Mota, M. Rosário Martins, V. R. Lopes et al., “Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare fruits,” Natural Product Communications, vol. 10, no. 4, pp. 673–676, 2015.

F. Senatore, F. Oliviero, E. Scandolera et al., “Chemical composition, antimicrobial and antioxidant activities of anethole-rich oil from leaves of selected varieties of fennel [Foeniculum vulgare Mill. ssp. vulgare var. azoricum (Mill.) Thell],” Fitoterapia, vol. 90, pp. 214–219, 2013.

S. Pepeлинjak, I. Kosalec, Z. Kaloder and N. Blažević, “Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae),” Acta Pharmaceutica, vol. 55, no. 4, pp. 417–422, 2005.

R. R. S. Nelson, “In-vitro activities of five plant essential oils against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium,” Journal of Antimicrobial Chemotherapy, vol. 40, no. 2, pp. 305–306, 1997.

F. Christoph, P.-M. Kauffers, and E. Stahl-Biskup, “A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of β-triketones,” Planta Medica, vol. 66, no. 6, pp. 556–560, 2000.

S. F. van Vuuren, Y. Docrat, G. P. P. Kamatou, and A. M. Viljoen, “Essential oil composition and antimicrobial interactions of understudied tea tree species,” South African Journal of Botany, vol. 92, pp. 7–14, 2014.

A. I. Hussain, F. Anwar, P. S. Nigam et al., “Antibacterial activity of some Lamiaceae essential oils using resazurin as an indicator of cell growth,” IWT—Food Science and Technology, vol. 44, no. 4, pp. 1199–1206, 2011.

S. F. Van Vuuren and A. M. Viljoen, “A comparative investigation of the antimicrobial properties of indigenous South African aromatic plants with popular commercially available essential oils,” Journal of Essential Oil Research, vol. 18, pp. 66–71, 2006.

R. A. Muthana, M. S. Alsaid, S. S. Hasoon, N. M. Al-Mosaiyb, A. J. Al-Rehaily, and M. A. Al-Yahya, “Antimicrobial and antioxidant activities and gas chromatography mass spectrometry (GC/MS) analysis of the essential oils of Ajuga bracteosa Wall. ex Benth. and Lavandula dentata L. growing wild in Yemen,” Journal of Medicinal Plants Research, vol. 6, no. 15, pp. 3066–3071, 2012.

L. Cherrat, L. Espina, M. Bakkali, R. Pagán, and A. Laglaoui, “Chemical composition, antioxidant and antimicrobial properties of Mentha pulegium, Lavandula stoechas and Satureja calamintha Scheele essential oils and an evaluation of their bactericidal effect in combined processes,” Innovative Food Science and Emerging Technologies, vol. 22, pp. 221–229, 2014.

S. Jian-Yu, L. Zhu, and Y.-J. Tian, “Chemical composition and antimicrobial activities of essential oil of Matricaria songarica,” International Journal of Agriculture and Biology, vol. 14, no. 1, pp. 107–110, 2012.

K. L. LaPlante, “In vitro activity of lysoptatin, mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus,” Journal of Essential Oil Research, vol. 28, no. 6, pp. 475–488, 2016.
[145] W. L. Low, C. Martin, D. J. Hill, and M. A. Kenward, "Antimicrobial efficacy of silver ions in combination with tea tree oil against Staphylococcus aureus and Candida albicans," *International Journal of Antimicrobial Agents*, vol. 37, no. 2, pp. 162–165, 2011.

[146] M. A. S. McMahon, M. M. Tunney, J. E. Moore, I. S. Blair, D. F. Gilpin, and D. A. McDowell, "Changes in antibiotic susceptibility in staphylococci habituated to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia)," *Letters in Applied Microbiology*, vol. 47, no. 4, pp. 263–268, 2008.

[147] C. F. Carson, K. A. Hammer, and T. V. Riley, "Broth micro-dilution method for determining the susceptibility of *Escherichia coli* and Staphylococcus aureus to the essential oil of *Melaleuca alternifolia* (tea tree oil)," *Microbios*, vol. 82, no. 332, pp. 181–185, 1995.

[148] C. F. Carson, B. D. Cookson, H. D. Farrelly, and T. V. Riley, "Susceptibility of methicillin-resistant Staphylococcus aureus to the essential oil of *Melaleuca alternifolia*," *Journal of Antimicrobial Chemotherapy*, vol. 35, no. 3, pp. 421–424, 1995.

[149] S. D. Cox, C. M. Mann, J. L. Markham et al., "The mode of antimicrobial action of the essential oil of *Melaleuca alternifolia* (tea tree oil)," *Journal of Applied Microbiology*, vol. 88, no. 1, pp. 170–175, 2000.

[150] S. D. Cox, C. M. Mann, and J. L. Markham, "Interactions between components of the essential oil of *Melaleuca alternifolia*," *Journal of Applied Microbiology*, vol. 91, no. 3, pp. 492–497, 2001.

[151] G. K. F. Elsom and D. Hide, "Susceptibility of methicillin-resistant *Staphylococcus aureus* to tea tree oil and mupirocin," *Journal of Antimicrobial Chemotherapy*, vol. 43, no. 3, pp. 427–428, 1999.

[152] K. A. Hammer, C. F. Carson, and T. V. Riley, "Susceptibility of transient and commensal skin flora to the essential oil of *Melaleuca alternifolia* (tea tree oil)," *American Journal of Infection Control*, vol. 24, no. 3, pp. 186–189, 1996.

[153] S. P. P. Falci, M. A. Teixeira, P. F. das Chagas et al., "Antimicrobial activity of *Melaleuca* sp. oil against clinical isolates of antibiotics resistant *Staphylococcus aureus*," *Acta Cirurgica Brasileira*, vol. 30, no. 6, pp. 401–406, 2015.

[154] A. Raman, U. Weir, and S. F. Bloomfield, "Antimicrobial effects of tea tree oil and its major components on *Staphylococcus aureus*, *Staphylococcus epidermidis* and *Propionibacterium acnes*," *Letters in Applied Microbiology*, vol. 21, no. 4, pp. 242–245, 1995.

[155] G. Işcan, N. Kirimer, M. Kürkcüoğlu, K. H. C. Baser, and F. Demirci, "Antimicrobial screening of *Mentha piperita* essential oils," *Journal of Agricultural and Food Chemistry*, vol. 50, no. 14, pp. 3943–3946, 2002.

[156] I. H. N. Bassolé, A. Lamien-Meda, B. Bayala et al., "Composition and antimicrobial activities of *lippia multiflora* Moldenke, *Mentha x piperita* L. and *Ocimum basilicum* L. essential oils and their major monoterpane alcohols alone and in combination," *Molecules*, vol. 15, no. 11, pp. 7825–7839, 2010.

[157] A. Rosato, C. Vitali, N. De Laurentis, D. Armenise, and M. Antonietta Milillo, "Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin," *Phytotherapy Research*, vol. 14, no. 11, pp. 727–732, 2007.

[158] G. Opalchenova and D. Obreshkova, "Comparative studies on the activity of basil-an essential oil from *Ocimum basilicum* L.-against multidrug resistant clinical isolates of the genera *Staphylococcus*, *Enterococcus* and *Pseudomonas* by using different test methods," *Journal of Microbiological Methods*, vol. 54, no. 1, pp. 105–110, 2003.

[159] M. T. Shirazi, H. Gholami, G. Kavosi, V. Rowshan, and A. Tafsfry, "Chemical composition, antioxidant, antimicrobial and cytotoxic activities of *Tagetes minuta* and *Ocimum basilicum* essential oils," *Food Science and Nutrition*, vol. 2, no. 2, pp. 146–155, 2014.

[160] D. Beatović, D. Krstić-Milošević, S. Trifunović et al., "Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve *Ocimum basilicum* L. cultivars grown in Serbia," *Records of Natural Products*, vol. 9, no. 1, pp. 62–75, 2015.

[161] M. Sökmen, J. Serkedjieva, D. Daferera et al., "In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of *Origanum acutidens*," *Journal of Agricultural and Food Chemistry*, vol. 52, no. 11, pp. 3309–3312, 2004.

[162] N. Alijani, N. Kalpoutzakis, S. Mitaku, and I. B. Chinou, "Composition and antimicrobial activity of the essential oils of two *Origanum species*," *Journal of Agricultural and Food Chemistry*, vol. 49, no. 9, pp. 4168–4170, 2001.

[163] A. Nostro, A. R. Blanco, M. A. Cannatelli et al., "Susceptibility of methicillin-resistant *Staphylococcus* to oregano essential oil, carvacrol and thymol," *FEMS Microbiology Letters*, vol. 230, no. 2, pp. 191–195, 2004.

[164] R. J. W. Lambert, P. N. Skandamis, P. J. Coote, and G.-J. E. Nychas, "A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol," *Journal of Applied Microbiology*, vol. 91, no. 3, pp. 453–462, 2001.

[165] C. Sarikurkcu, G. Zengin, M. Oskay, S. Uysal, R. Ceylan, and A. Aktunsek, "Composition, antioxidant, antimicrobial and enzyme inhibition activities of two *Origanum vulgare* subspecies (subsp. *vulgare* and subsp. *hirtum*) essential oils," *Industrial Crops and Products*, vol. 70, pp. 178–184, 2015.

[166] M. Sienkiewicz, K. Poznańska-Kurowska, A. Kaszuba, and E. Kowalczyk, "The antibacterial activity of geranium oil against Gram-negative bacteria isolated from difficult-to-heal wounds," *Burns*, vol. 40, no. 5, pp. 1046–1051, 2014.

[167] M. Mahboubi and N. Kazempour, "The antimicrobial activity of essential oil from *Petroskaia abrotanoides* karel and its main components," *Indian Journal of Pharmaceutical Sciences*, vol. 71, no. 3, pp. 343–347, 2009.

[168] F. A. Al-Bayati, "Synergistic antibacterial activity between *Thymus vulgaris* and *Pimpinella anisum* essential oils and methanol extracts," *Journal of Ethnopharmacology*, vol. 116, no. 3, pp. 403–406, 2008.

[169] Y. Fu, Y. Zu, L. Chen et al., "Antimicrobial activity of clove and rosemary essential oils alone and in combination," *Phytotherapy Research*, vol. 21, no. 10, pp. 989–994, 2007.

[170] Y. Jiang, N. Wu, Y.-J. Fu et al., "Chemical composition and antimicrobial activity of the essential oil of *Rosemary*," *Environmental Toxicology and Pharmacology*, vol. 32, no. 1, pp. 63–68, 2011.

[171] S. Luqman, G. R. Dwivedi, M. P. Darokar, A. Kalra, and S. P. S. Khanuja, "Potential of *Rosemary* oil to be used in drug-resistant infections," *Alternative Therapies in Health and Medicine*, vol. 13, no. 5, pp. 54–59, 2007.

[172] O. O. Okoh, A. P. Sadimenko, and A. J. Afolayan, "Comparative evaluation of the antibacterial activities of the essential oils..."
M. Gebrehiwot, K. Asres, D. Bisrat, A. Mazumder, P. Lindemann, and F. Bucar, "Evaluation of the wound healing property of Commiphora guidottii Chiov. ex. Guid," BMC Complementary and Alternative Medicine, vol. 15, no. 1, pp. 282–292, 2015.

L. O. Orafidiya, E. O. Agbani, O. A. Abereoje, T. Awe, A. Abudu, and E. A. Fakoya, "An investigation into the wound-healing properties of essential oil of Ocimum gratissimum linn," Journal of Wound Care, vol. 12, no. 9, pp. 331–334, 2003.

N. S. Scheinfeld, "Acne: a review of diagnosis and treatment," Pharmacy and Therapeutics, vol. 32, no. 6, pp. 340–347, 2007.

T. H. Oh, S.-S. Kim, W.-J. Yoon et al., "Chemical composition and biological activities of Jeju Thymus quinquecostatus essential oils against Propionibacterium species inducing acne," Journal of General and Applied Microbiology, vol. 55, no. 1, pp. 63–68, 2009.

W.-J. Yoon, S.-S. Kim, T.-H. Oh, N. H. Lee, and C.-G. H. Th. Oh, S.-S. Kim, W.-J. Yoon et al., "Chemical composition and biological activities of Jeju Thymus quinquecostatus essential oils against Propionibacterium species inducing acne," Journal of General and Applied Microbiology, vol. 55, no. 1, pp. 63–68, 2009.

S. Luangnarumitchai, S. Lamlerththon, and W. Tiyaaboonchai, "Antimicrobial activity of essential oils against five strains of Propionibacterium acnes," Mahidol University Journal of Pharmaceutical Sciences, vol. 34, no. 1–4, pp. 60–64, 2007.

T. Nuryastuti, H. C. Van Der Mei, H. J. Busscher, S. Irvati, A. T. Aman, and B. P. Krom, "Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis," Applied and Environmental Microbiology, vol. 75, no. 21, pp. 6850–6855, 2009.

J. S. Baik, S. S. Kim, J. A. Lee et al., "Chemical composition and biological activities of essential oils extracted from Korean endemic citrus species," Journal of Microbiology and Biotechnology, vol. 18, no. 1, pp. 74–79, 2008.

T. I. Karpanen, T. Worthington, E. R. Hendry, B. R. Conway, and P. A. Lambert, "Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis," Journal of Antimicrobial Chemotherapy, vol. 62, no. 5, pp. 1031–1036, 2008.

S. Athikomkalchai, R. Watthanachaitycharoen, S. Tunvichien et al., "The development of anti-acne products from Eucalyptus globulus and Psidium guajava oil," Journal of Health Research, vol. 22, no. 3, pp. 109–113, 2008.

E. Gavini, V. Sanna, R. Sharma et al., "Solid lipid microparticles (SLM) containing Juniper oil as anti-acne topical carriers: preliminary studies," Pharmaceutical Development and Technology, vol. 10, no. 4, pp. 479–487, 2005.

Y. Fu, L. Chen, Y. Zu et al., "The antibacterial activity of clove essential oil against Propionibacterium acnes and its mechanism of action," Archives of Dermatology, vol. 145, no. 1, pp. 86–88, 2009.

L. O. Orafidiya, E. O. Agbani, A. O. Oyedele, O. O. Babalola, and O. Onayemi, "Preliminary clinical tests on topical preparations of Ocimum gratissimum linn leaf essential oil for the treatment of acne vulgaris," Clinical Drug Investigation, vol. 22, no. 5, pp. 313–319, 2002.

I. B. Bassett, D. L. Pannowitz, and R. S. C. Barnetson, "A comparative study of tea-tree oil versus benzoylperoxide in the treatment of acne," Medical Journal of Australia, vol. 153, no. 8, pp. 455–458, 1990.

S. Enshaieh, A. Jooya, A. H. Siadat, and F. Iraji, "The efficacy of 5% topical tea tree oil gel in mild to moderate acne vulgaris: a randomized, double-blind placebo-controlled study," Indian Journal of Dermatology, Venereology and Leprology, vol. 73, no. 1, pp. 22–25, 2007.

G. Matiz, M. R. Osorio, F. Camacho, M. Atencia, and J. Herazo, "Effectiveness of antimicrobial formulations for acne based on orange (Citrus sinensis) and sweet basil (Ocimum basilicum L) essential oils," Biomedica, vol. 32, no. 1, pp. 125–133, 2012.

M. Vaara, "Agents that increase the permeability of the outer membrane," Microbiological Reviews, vol. 56, no. 3, pp. 395–411, 1992.

S. G. Griffin, S. G. Wylie, and J. L. Markham, "Role of the outer membrane of Eschericia coli AG100 and Pseudomonas aeruginosa NCTC 6749 and resistance/susceptibility to monoterpenes of similar chemical structure," Journal of Essential Oil Research, vol. 13, no. 5, pp. 380–386, 2001.

M. Sienkiewicz, M. Łysakowska, M. Pastuszka, W. Bienia, and E. Kowalczyk, "The potential of use basal and rosemary essential oils as effective antibacterial agents," Molecules, vol. 18, no. 8, pp. 9334–9351, 2013.

C. Velasco, L. Romero, J. M. R. Martínez, J. Rodríguez-Baño, and A. Pascual, "Analysis of plasmin encoding extended-spectrum β-lactamases (ESBLs) from Escherichia coli isolated from non-hospitalised patients in Seville," International Journal of Antimicrobial Agents, vol. 29, no. 1, pp. 89–92, 2007.

D. C. Wu, W. W. Chan, A. I. Metelitsa, L. Fiorillo, and A. N. Lin, "Pseudomonas skin infection: clinical features, epidemiology, and management," American Journal of Clinical Dermatology, vol. 12, no. 3, pp. 157–169, 2011.

S. G. Deans and G. Ritchie, "Antibacterial properties of plant essential oils," International Journal of Food Microbiology, vol. 5, no. 2, pp. 165–180, 1987.

R. Piccaglia, M. Marotti, E. Giovanelli, S. G. Deans, and E. Eaglesham, "Antibacterial and antioxidant properties of Mediterranean aromatic plants," Industrial Crops and Products, vol. 2, no. 1, pp. 47–50, 1993.

H. J. D. Dormann and S. G. Deans, "Antimicrobial agents from plants: antibacterial activity of plant volatile oils," Journal of Applied Microbiology, vol. 88, no. 2, pp. 308–316, 2000.

S. Ozturk and S. Ercişi, "Antibacterial activity and chemical constitutions of Ziziphus clinopodioides," Food Control, vol. 18, no. 5, pp. 535–540, 2007.

A. Maxia, D. Falconieri, A. Piras et al., "Chemical composition and antifungal activity of essential oils and supercritical CO2 extracts of Apium nodiflorum (L.) Lag.," Mycopathologia, vol. 174, no. 1, pp. 61–67, 2012.

R. Becerril, C. Nerín, and R. Gómez-Lus, "Evaluation of bacteriostatic resistance to essential oils and antibiotics after exposure to orégano and cinnamon essential oils," Foodborne Pathogens and Disease, vol. 9, no. 8, pp. 699–705, 2012.

M. Nasir, K. Tafess, and D. Abate, "Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species," BMC Evidence-Based Complementary and Alternative Medicine.
Evidence-Based Complementary and Alternative Medicine

C. Cabral, V. Francisco, C. Cavaleiro et al., “Essential oil and tea tree oil products, against Candida spp,” *Journal of Antimicrobial Chemotherapy*, vol. 51, no. 5, pp. 1223–1229, 2003.

A. Rosato, C. Vitali, M. Piarulli, M. Mazzotta, M. P. Argentieri, and R. Mallamaci, "In vitro synergic efficacy of the combination of Nystatin with the essential oils of *Origanum vulgare* and *Pelargonium graveolens* against some Candida species,” *Phytotherapy Research*, vol. 16, no. 10, pp. 972–975, 2009.

M. Mahboubi and G. Hagh, "Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil,” *Journal of Ethnopharmacology*, vol. 119, no. 2, pp. 325–327, 2008.

A. Bouzabata, O. Bazzali, C. Cabral et al., "New compounds, chemical composition, antifungal activity and cytotoxicity of the essential oil from Myrtus nivellei Btt. & Trab., an endemic species of Central Sahara,” *Journal of Ethnopharmacology*, vol. 149, no. 3, pp. 613–620, 2013.

P. R. N. Vieira, S. M. de Morais, F. H. Q. Bezerra, P. A. T. Ferreira, I. R. Oliveira, and M. G. V. Silva, "Chemical composition and antifungal activity of essential oils from *Ocimum species*, *Industrial Crops and Products*, vol. 55, pp. 267–271, 2014.

B. Bozin, N. Mimica-Dukic, N. Simin, and G. Anackov, "Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils,” *Journal of Agricultural and Food Chemistry*, vol. 54, no. 5, pp. 1822–1828, 2006.

C. V. Nakamura, K. Ishida, L. C. Faccin et al., "In vitro activity of essential oil from *Ocimum gratissimum* L. against four Candida species,” *Research in Microbiology*, vol. 155, no. 7, pp. 579–586, 2004.

K. Amber, A. Aijaz, X. Immaculata, K. A. Lueman, and M. Nikhat, "Anticandidal effect of *Ocimum sanctum* essential oil and its synergy with fluconazole and ketoconazole,” *Phytotherapy Research*, vol. 17, no. 12, pp. 921–925, 2010.

I. Kosalec, S. Papeljnak, and D. Kuatrak, "Antifungal activity of fluid extract and essential oil from anise fruits (*Pimpinella anisum L.*, Apiaceae),” *Acta Pharamaceutica*, vol. 55, no. 4, pp. 377–385, 2005.

Y. Hristova, V. Goechev, J. Wanner, L. Jirovetz, E. Schmidt, and T. Girova, "Chemical composition and antifungal activity of essential oil of *Salvia scarea* L. from Bulgaria against clinical isolates of Candida species,” *Journal of Bioscience and Biotechnology*, vol. 2, no. 1, pp. 39–44, 2013.

E. Pinto, L. Vale-Silva, C. Cavaleiro, and L. Salgueiro, "Antifungal activity of the clove essential oil from *Syzygium aromaticum* on *Candida, Aspergillus* and dermatophyte species,” *Journal of Medical Microbiology*, vol. 58, part II, pp. 1454–1462, 2009.

A. Saad, M. Fadli, M. Bouaziz, A. Benharref, N.-E. Mezrioui, and L. Hassani, "Anticandidal activity of the essential oils of *Thymus maroccanus* and *Thymus broussonetii* and their synergism with amphotericin B and fluconazol,” *Phytotherapy Research*, vol. 17, no. 13, pp. 1057–1060, 2010.

S. Shin and J.-H. Kim, "Antifungal activities of essential oils from *Thymus quinquecostatus* and *T. magnus*,” *Planta Medica*, vol. 70, no. 11, pp. 1090–1092, 2004.

C. Pina-Vaz, A. G. Rodrigues, E. Pinto et al., "Antifungal activity of *Thymus* oils and their major compounds,” *Journal of the European Academy of Dermatology and Venereology*, vol. 18, no. 1, pp. 73–78, 2004.
S. Shin and S. Lim, "Antifungal effects of herbal essential oils"

L. Mugnaini, S. Nardoni, L. Pinto et al., "K.A. Hammer, C.F. Carson, and T.V. Riley,"

S. Shin and S. Lim, "Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp," Journal of Applied Microbiology, vol. 97, no. 6, pp. 1289–1296, 2004.

M. Sanguinetti, B. Postaro, L. Romano et al., "In vitro activity of Citrus bergamia (bergamot) oil against clinical isolates of dermatophytes," Journal of Antimicrobial Chemotherapy, vol. 59, no. 2, pp. 305–308, 2007.

L. Mugnaini, S. Nardoni, L. Pinto et al., "In vitro and in vivo antifungal activity of some essential oils against feline isolates of Microsporum canis," Journal de Mycologie Médicale, vol. 22, no. 2, pp. 179–184, 2012.

E. B. Baptista, D.C. Zimmermann-Franco, A. A. B. Lataliza, and N. R. B. Raposo, "Chemical composition and antifungal activity of essential oil from Eucalyptus smithii against dermatophytes," Revista da Sociedade Brasileira de Medicina Tropical, vol. 48, no. 6, pp. 746–752, 2015.

K. A. Hammer, C. F. Carson, and T. V. Riley, "In vitro activities of ketoconazole, econazol, miconazole, and Melaleuca alternifolia (tea tree) oil against Malassezia species," Antimicrobial Agents and Chemotherapy, vol. 44, no. 2, pp. 467–469, 2000.

A. R. Khosravi, H. Shokri, and S. Fahimirad, "Efficacy of medicinal essential oils against pathogenic Malassezia sp. isolates," Journal of Medical Mycology, vol. 26, no. 1, pp. 28–34, 2016.

M. R. R. Silva, J. G. Oliveira Jr., O. F. L. Fernandes et al., "Antifungal activity of Ocimum gratissimum towards dermatophytes, Mycoses, vol. 48, no. 3, pp. 172–175, 2005.

M. S. A. Khan, I. Ahmad, and S. S. Cameostra, "Carum coticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp," Brazilian Journal of Microbiology, vol. 45, no. 2, pp. 523–531, 2014.

F. Behmanesh, H. Pasha, A. A. Sefidgar et al., "Antifungal effect of lavender essential oil (Lavandula angustifolia) and clotrimazole on Candida albicans: an in vitro study," Scientifica, vol. 2015, Article ID 261397, 5 pages, 2015.

J. A. Woodfølk, "Allergy and dermatophytes," Clinical Microbiology Reviews, vol. 18, no. 1, pp. 30–43, 2005.

J. D. Croxall and G. L. Plosker, "Sertaconazole: a review of its use in the management of superficial mycoses in dermatology and gynaecology," Drugs, vol. 69, no. 3, pp. 339–359, 2009.

A. C. Satchell, A. Saurajen, C. Bell, and R. S. Barnetson, "Treatment of dandruff with 5% tea tree oil shampoo," Journal of the American Academy of Dermatology, vol. 47, no. 6, pp. 852–855, 2002.

A. K. Gupta, K. Nicol, and R. Batra, "Role of antifungal agents in the treatment of seborrhoeic dermatitis," American Journal of Clinical Dermatology, vol. 5, no. 6, pp. 417–422, 2004.

I. Weitzman and R. C. Summerbell, "The dermatophytes," Clinical Microbiology Reviews, vol. 8, no. 2, pp. 240–259, 1995.

C. F. Carson, K. A. Hammer, and T. V. Riley, "Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties," Clinical Microbiology Reviews, vol. 19, no. 1, pp. 50–62, 2006.
90 Evidence-Based Complementary and Alternative Medicine

methicillin-resistant *Staphylococcus aureus* (MRSA),” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 99, no. 11, pp. 7678–7692, 2002.

[295] S. Kapoor and S. Saraf, “Topical herbal therapies an alternative and complementary choice to combat acne,” *Research Journal of Medicinal Plant*, vol. 5, no. 6, pp. 650–669, 2011.

[296] J. Grassmann, S. Hippeli, K. Dornisch, U. Rohnert, N. Beuscher, and E. F. Elstner, “Antioxidant properties of essential oils: possible explanations for their anti-inflammatory effects,” *Arzneimittel-Forschung*, vol. 50, no. 2, pp. 135–139, 2000.

[297] N. A. Trivedi and S. C. Hotchandani, “A study of the antimicrobial activity of oil of *Eucalyptus*,” *Indian Journal of Pharmacology*, vol. 36, no. 2, pp. 93–94, 2004.

[298] M. H. Boelens, “Chemical and sensory evaluation of *lavandula* oils,” *Perfumer and Flavorist*, vol. 20, no. 3, pp. 23–51, 1995.

[299] H. M. A. Cavanagh and J. M. Wilkinson, “Biological activities of lavender essential oil,” *Phytotherapy Research*, vol. 16, no. 4, pp. 301–308, 2002.

[300] N. Pazyar, R. Yaghhoobi, N. Bagherani, and A. Kazerouni, “A review of applications of tea tree oil in dermatology,” *International Journal of Dermatology*, vol. 52, no. 7, pp. 784–790, 2013.

[301] M. Karaca, H. Özbek, A. Him, M. Tütüncü, H. A. Akkan, and V. Kaplanoglu, “Investigation of anti-inflammatory activity of bergamot oil,” *European Journal of General Medicine*, vol. 4, no. 4, pp. 176–179, 2007.

[302] P. Forlot and P. Pevet, “Bergamot (*Citrus bergamia* Risso et Poiteau) essential oil: biological properties, cosmetic and medical use. A review,” *Journal of Essential Oil Research*, vol. 24, no. 2, pp. 195–201, 2012.

[303] S. Cassella, J. P. Cassella, and I. Smith, “Synergistic antifungal activity of tea tree (*Melaleuca alternifolia*) and lavender (*Lavandula angustifolia*) essential oils against dermatophyte infection,” *International Journal of Aromatherapy*, vol. 12, no. 1, pp. 2–15, 2002.

[304] S. F. Van Vuuren, S. Suliman, and A. M. Viljoen, “The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials,” *Letters in Applied Microbiology*, vol. 48, no. 4, pp. 440–446, 2009.

[305] A. N. Boucher and V. H. Tam, “Mathematical formulation of additivity for antimicrobial agents,” *Diagnostic Microbiology and Infectious Disease*, vol. 55, no. 4, pp. 319–325, 2006.

[306] M. C. Berenbaum, “A method for testing for synergy with any number of agents,” *Journal of Infectious Diseases*, vol. 137, no. 2, pp. 122–130, 1978.

[307] R. J. W. Lambert and R. Lambert, “A model for the efficacy of combined inhibitors,” *Journal of Applied Microbiology*, vol. 95, no. 4, pp. 734–743, 2003.

[308] E. M. Williamson, “Synergy and other interactions in phytomedicines,” *Phytotherapy*, vol. 6, no. 5, pp. 401–409, 2001.

[309] A. Bell, “Antimalarial drug synergism and antagonism: mechanistic and clinical significance,” *FEBS Letters*, vol. 253, no. 2, pp. 171–184, 2005.

[310] R. I. Tallarida, “An overview of drug combination analysis with isobolograms,” *The Journal of Pharmacology and Experimental Therapeutics*, vol. 319, no. 1, pp. 1–7, 2006.

[311] D. Wing-Shing Cheung, C.-M. Koon, C.-F. Ng et al., “The roots of *Salvia miltiorrhiza* (Danshen) and *Pueraria lobata* (Gegen) inhibit atherogenic events: a study of the combination effects of the 2-herb formula,” *Journal of Ethnopharmacology*, vol. 143, no. 3, pp. 859–866, 2012.

[312] R. Lewis, R. Guha, T. Korcsmaros, and A. Bender, “Synergy Maps: exploring compound combinations using network-based visualization,” *Journal of Cheminformatics*, vol. 7, article 36, 2015.

[313] P. Goñi, P. López, C. Sánchez, R. Gómez-Lus, R. Becerri, and C. Nerín, “Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils,” *Food Chemistry*, vol. 116, no. 4, pp. 982–989, 2009.

[314] J. Gutierrez, C. Barry-Ryan, and P. Bourke, “The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients,” *International Journal of Food Microbiology*, vol. 124, no. 1, pp. 91–97, 2009.

[315] V. G. Honório, J. Bezerra, G. T. Souza et al., “Inhibition of *Staphylococcus aureus* cocktail using the synergies of oregano and rosemary essential oils or carvacrol and l,8-cineole,” *Frontiers in Microbiology*, vol. 6, article 1223, 2015.

[316] A. K. Geda, “Antibacterial activity of essential oils and their combination,” *Fat Science and Technology*, vol. 97, no. 12, pp. 458–460, 1995.

[317] D. Hartman and J. C. Coetzee, “Two US practitioners’ experience of using essential oils for wound care,” *Journal of Wound Care*, vol. II, no. 8, pp. 317–320, 2002.

[318] R. Guha, “Wound healing,” *International Journal of Aromatherapy*, vol. 9, no. 2, pp. 67–74, 1999.

[319] S. Shin and C.-A. Kang, “Antifungal activity of the essential oil of *Agastache rugosa* Kuntze and its synergism with ketoconazole,” *Letters in Applied Microbiology*, vol. 36, no. 2, pp. 111–115, 2003.

[320] V. Lorenzi, A. Muselli, A. F. Bernardini et al., “Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species,” *Antimicrobial Agents and Chemotherapy*, vol. 53, no. 5, pp. 2209–2211, 2009.

[321] V. de Carvalho Nilo Bitu, H. D. T. F. Cecundo, H. D. M. Coutinho et al., “Chemical composition of the essential oil of *Lippia gracilis* Schauer leaves and its potential as modulator of bacterial resistance,” *Natural Product Research*, vol. 28, no. 6, pp. 399–402, 2014.

[322] R. Harris, “Synergism in the essential oil world,” *International Journal of Aromatherapy*, vol. 12, no. 4, pp. 179–186, 2002.

[323] J.-M. Bolla, S. Albert-Franco, J. Handzlik et al., “Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria,” *FEBS Letters*, vol. 585, no. 11, pp. 1682–1690, 2011.

[324] H. Si, J. Hu, Z. Liu, and Z.-L. Zeng, “Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing *Escherichia coli*,” *FEBS Immunology and Medical Microbiology*, vol. 53, no. 2, pp. 190–194, 2008.

[325] A. C. Gradinaru, A. C. Aprotosoaie, A. Trifan, A. Spac, M. Brebu, and A. Miron, “Interaction between cardamom essential oil and conventional antibiotics against *Staphylococcus aureus* clinical isolates,” *Farmacia*, vol. 62, no. 6, pp. 1214–1222, 2014.

[326] R. Giordani, P. Regli, J. Kaloustian, C. Mikail, L. Abou, and H. Portugal, “Antifungal effect of various essential oils against *Candida albicans*. Potentiation of antifungal action of amphotericin B by essential oil from *Thymus vulgaris*,” *Phytotherapy Research*, vol. 18, no. 12, pp. 990–995, 2004.

[327] P. S. X. Yap, S. H. E. Lim, C. P. Hu, and B. C. Yiap, “Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria,” *Phytomedicine*, vol. 20, no. 8-9, pp. 710–713, 2013.

[328] Z. Schelz, J. Molnar, and J. Hohmann, “Antimicrobial and antiplasmid activities of essential oils,” *Fitoterapia*, vol. 77, no. 4, pp. 279–285, 2006.
[329] M. Fadli, A. Saad, S. Sayadi et al., "Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection-bacteria and their synergistic potential with antibiotics," Phytotherapy Research, vol. 19, no. 5, pp. 464–471, 2012.

[330] T. Malik, P. Singh, S. Pant, N. Chauhan, and H. Lohani, "Poten-
tiation of antimicrobial activity of ciprofloxacin by pelargonium graveolens essential oil against selected uropathogens," Phytotherapy Research, vol. 25, no. 8, pp. 1225–1228, 2011.

[331] M. Minami, M. Kitagawa, T. Yamamoto, H. Kuriyama, and J. Imani,
shi, "The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro," Microbiology and Immunology, vol. 47, no. 9, pp. 681–684, 2003.

[332] M. R. Loizzo, A. M. Saab, R. Tundis et al., "Phytochemical anal-
ysis and in vitro antiviral activities of the essential oils of seven Lebanon species," Chemistry & Biodiversity, vol. 5, no. 3, pp. 461–470, 2008.

[333] S. Gavanji, S. S. Sayedipour, B. Larki, and A. Bakhtari, "Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture," Journal of Acute Medicine, vol. 5, no. 3, pp. 62–68, 2015.

[334] P. Schnitzler, K. Schön, and J. Reichling, "Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture," Die Pharmazie, vol. 56, no. 4, pp. 343–347, 2001.

[335] C. Koch, Antivirale effekte ausgewählter atherischer Ole auf behulte Viren unter besonderer berucksichtigung des herpes simplex virus typ 1 und 2 [Dissertation], Universität Heidelberg, 2005.

[336] C. Koch, J. Reichling, J. Schneeke, and P. Schnitzler, "Inhibitory effect of essential oils against herpes simplex virus type 2," Phytotherapy Research, vol. 15, no. 1-2, pp. 71–78, 2008.

[337] P. Schnitzler, C. Koch, and J. Reichling, "Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood," Antimicrobial Agents and Chemotherapy, vol. 51, no. 5, pp. 1859–1862, 2007.

[338] C. Koch, J. Reichling, and P. Schnitzler, "Essential oils inhibit the replication of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2)," in Botanical Medicine in Clinical Practice, V. R. Preedy and R. R. Watson, Eds., pp. 192–197, CABl, Wallingford, UK, 2008.

[339] J. Reichling, C. Koch, E. Stahl-Biskup, C. Sojka, and P. Schnitz-
zer, "Virucidal activity of a β-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture," Planta Medica, vol. 71, no. 12, pp. 1123–1127, 2005.

[340] A. Garozzo, R. Timpanaro, B. Bisignano, P. M. Furneri, G. Bisignano, and A. Castro, "In vitro antiviral activity of Melaleuca alternifolia essential oil," Letters in Applied Microbiology, vol. 49, no. 6, pp. 806–808, 2009.

[341] L. Civitelli, S. Panella, M. E. Marocci et al., "In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide," Phytotherapy, vol. 21, no. 6, pp. 857–865, 2004.

[342] P. Schnitzler, A. Schuhmacher, A. Astani, and J. Reichling, "Melissa officinalis oil affects infectivity of enveloped herpesviruses," Phytotherapy, vol. 15, no. 9, pp. 734–740, 2008.

[343] A. Schuhmacher, J. Reichling, and P. Schnitzler, "Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro," Phytotherapy, vol. 10, no. 6-7, pp. 504–510, 2003.

[344] F. Benencia and M. C. Courrèges, "Antiviral activity of sandalwood oil against Herpes simplex viruses-1 and -2," Phytotherapy, vol. 6, no. 2, pp. 119–123, 1999.

[345] A. De Logu, G. L. Loy, M. L. Pellerano, L. Bonsignore, and M. L. Schivo, "Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil," Antiviral Research, vol. 48, no. 3, pp. 177–185, 2000.

[346] M. Mahboubi and F. G. Bidgoli, "In vitro synergistic efficacy of combination of amphotericin B with Myrtus communis essential oil against clinical isolates of Candida albicans," Phytotherapy, vol. 17, no. 10, pp. 771–774, 2010.

[347] M. Mahboubi and F. Ghazian Bidgoli, "Antistaphylococcal activity of Zataria multiflora essential oil and its synergy with vancomycin," Phytotherapy, vol. 17, no. 7, pp. 548–550, 2010.

[348] D. T. Bearden, G. P. Allen, and J. M. Christensen, "Comparative in vitro activities of topical wound care products against community-associated methicillin-resistant Staphylococcus aureus," Journal of Antimicrobial Chemotherapy, vol. 62, no. 4, pp. 769–772, 2008.

[349] C. F. Carson, L. Ashton, L. Dry, D. W. Smith, and T. V. Riley, "Melaleuca alternifolia (tea tree) oil gel (6%) for the treatment of recurrent herpes labialis," Journal of Antimicrobial Chemotherapy, vol. 48, no. 3, pp. 450–451, 2001.

[350] B. C. Millar and J. E. Moore, "Successful topical treatment of hand warts in a paediatric patient with tea tree oil (Melaleuca alternifolia)," Complementary Therapies in Clinical Practice, vol. 14, no. 4, pp. 225–227, 2008.

[351] A. E. Edris, "Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review," Phytotherapy Research, vol. 21, no. 4, pp. 308–323, 2007.

[352] D. Raines, "Wound care," in Aromatherapy for Health Professional, S. Price and L. Price, Eds., chapter 10, Churchill Livingstone, London, UK, 4th edition, 2012.

[353] S. M. Clark and S. M. Wilkinson, "Phototoxic contact dermatitis from 5-methoxypsoralen in aromatherapy oil," Contact Dermatitis, vol. 38, no. 5, pp. 289–290, 1998.

[354] H. Cocks and D. Wilson, "Letter to the editor," Burns, vol. 24, no. 1, p. 82, 1998.

[355] S. Kaddu, H. Kerl, and P. Wolf, "Accidental bullous phototoxic reactions to bergamot aromatherapy oil," Journal of the American Academy of Dermatology, vol. 45, no. 3, pp. 458–461, 2001.

[356] B. Nair, "Final report on the safety assessment of Mentha piperita (peppermint) oil, Mentha piperita (peppermint) leaf extract, Mentha piperita (peppermint) leaf, and Mentha piperita (peppermint) leaf water," International Journal of Toxicology, vol. 20, pp. 61–73, 2001.

[357] A. Prashar, I. C. Locke, and C. S. Evans, "Cytotoxicity of lavender oil and its major components to human skin cells," Cell Proliferation, vol. 37, no. 3, pp. 221–229, 2004.

[358] N. Bleasel, B. Tate, and M. Rademaker, "Allergic contact dermatitis following exposure to essential oils," Australasian Journal of Dermatology, vol. 43, no. 3, pp. 211–213, 2002.

[359] A. Trattner, M. David, and A. Lazarov, "Occupational contact dermatitis due to essential oils," Contact Dermatitis, vol. 58, no. 5, pp. 282–284, 2008.

[360] W. Boonchaya, P. Iamtharakhai, and P. Sunthonpalin, "Occupational allergic contact dermatitis from essential oils in aromatherapists," Contact Dermatitis, vol. 56, no. 3, pp. 181–182, 2007.

[361] A. Stonehouse and J. Studdiford, "Allergic contact dermatitis from tea tree oil," Consultant, vol. 47, no. 8, p. 781, 2007.
[362] N. Aspres and S. Freeman, “Predictive testing for irritancy and allergenicity of tea tree oil in normal human subjects,” Exogenous Dermatology, vol. 2, no. 5, pp. 258–261, 2003.

[363] N. K. Veien, K. Rosner, and G. L. Skovgaard, “Is tea tree oil an important contact allergen?” Contact Dermatitis, vol. 50, no. 6, pp. 378–379, 2004.

[364] T. Rutherford, R. Nixon, M. Tam, and B. Tate, "Allergy to tea tree oil: retrospective review of 41 cases with positive patch tests over 4.5 years," Australasian Journal of Dermatology, vol. 48, no. 2, pp. 83–87, 2007.

[365] C. Pirker, B. M. Hausen, W. Uter et al., "Sensitization to tea tree oil in Germany and Austria. A multicenter study of the German Contact Dermatitis Group," Journal of the German Society of Dermatology, vol. 1, no. 8, pp. 629–634, 2003.

[366] M. K. Robinson, G. F. Gerberick, C. A. Ryan, P. McNamee, I. R. White, and D. A. Baskette, “The importance of exposure estimation in the assessment of skin sensitization risk,” Contact Dermatitis, vol. 42, no. 5, pp. 251–259, 2000.

[367] G. F. Gerberick, M. K. Robinson, S. P. Felter, I. R. White, and D. A. Basketter, "Understanding fragrance allergy using an exposure-based risk assessment approach," Contact Dermatitis, vol. 45, no. 6, pp. 333–340, 2001.

[368] P. Van der Valk, A. De Groot, D. Bruynzeel, P. Coenraads, and J. Weijland, “Allergic contact eczema due to tea tree oil,” Nederlands Tijdschrift voor Geneeskunde, vol. 138, no. 16, pp. 823–825, 1994.

[369] N. B. Mozelisio, K. E. Harris, K. G. McGrath, and L. C. Grammer, "Immediate systemic hypersensitivity reaction associated with topical application of Australian tea tree oil," Allergy and Asthma Proceedings, vol. 24, no. 1, pp. 73–75, 2003.

[370] U. Lippert, A. Walter, B. Hausen, and T. Fuchs, "127 Increasing incidence of contact dermatitis to tea tree oil," Journal of Allergy and Clinical Immunology, vol. 105, no. 1, p. S43, 2000.

[371] M. Bhushan and M. H. Beck, "Allergic contact dermatitis from tea tree oil in a wart paint," Contact Dermatitis, vol. 36, no. 2, pp. 117–118, 1997.

[372] E. Herron and S. E. Jacob, "Mentha piperita (Peppermint)," Dermatitis, vol. 21, no. 6, pp. 327–329, 2010.

[373] N. Gemeda, K. Urga, A. Tadele, H. Lemma, D. Melaku, and K. Mudie, "Antimicrobial activity of topical formulation containing Eugenia caryophyllata L. (Krunfu) and Myritus communis L. (Ades) essential oils on selected skin disease causing microorganisms," Ethiopian Journal of Health Sciences, vol. 18, no. 3, pp. 101–107, 2008.