Indirect Vector Control of Squirrel-Cage Induction Generator

Hussam M. I. Alkaafrawi a*, Tarek R. S. Al Aga b, Yaser S. A. Shaheen c, Ismail M. Elkaafrawi d and Haitham Saleh Ali Ben Abdelmula e

a Faculty of Engineering, Benghazi University, Libya.

b Higher Institute of Science and Technology- AL-Beyda, Technical and Vocational Education, Libya.

c College of Engineering Technology – Al Qubbah, Technical and Vocational Education, Libya.

d Department of Electrical and Electronics Engineering, Faculty of Engineering, Benghazi University, Libya.

e College of Computer Technology Zawia, Ministry for Technical and Vocational Education, Libya.

Authors’ contributions

This work was carried out in collaboration among five authors. Author HMIA is designed the study, performed the statistical analysis. Author TRSAA wrote the protocol and wrote the first draft of the manuscript. Author YSAS managed the analyses of the study and authors IME and HSABA wrote the first draft of the manuscript. All authors read and approved the final manuscript managed the literature searches.

Article Information

DOI: 10.9734/JERR/2022/v22i117516

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/83566

Received 01 February 2022
Accepted 10 February 2022
Published 16 February 2022

ABSTRACT

Aims: This paper presents the control of the output torque of SCIG using indirect vector control (IVC) technique.

Study Design: IVC is very popular in industrial applications, which doesn’t rely on the measurement of the airgap flux because the devices that used to measure the air-gap flux is inaccurate in low speed. The IVC technique has been presented to control the torque of the generator and maintain the flux unchanged.

Methodology: The performance of the proposed system is tested using MATLAB/SIMULINK.

Results and Conclusion: Simulation results are introduced showing improvement control system performance.

*Corresponding author: Email: husam.alkafrawi@uob.edu.ly;
Keywords: Induction generators; field orientation; modeling and simulation; torque control.

1. INTRODUCTION

Wind energy is one of the most important and promising renewable energy sources in the world, owing to its nonpolluting and economically viable nature. At the same time, related wind energy technology has advanced at a breakneck pace. The control and estimation of wind energy conversion systems is a broad topic that is more complicated than that of dc drives. For variable speed applications in a wide power range, induction generators with cage type rotors have been widely used in wind power generation systems. Generally, variable speed wind energy conversion systems with Induction generators require both a wide operating range of speed and a fast torque response, regardless of any disturbances and uncertainties (turbine torque variation, parameters variation and un-modeled dynamics). As a result, more advanced control systems are developed to satisfy the actual requirement. Variable speed wind energy conversion systems have become an affordable choice for wind power applications due to recent breakthroughs in the field of field-oriented control, as well as the rapid development and cost reduction of power electronics devices and microprocessors. When great performance is required, the complexity of a wind energy conversion system increases dramatically. The need for changeable frequency, the complicated dynamics of ac machines, machine parameter fluctuations, and other factors all contribute to this complexity. In recent years, a number of control approaches for cage induction generators have been developed.

The control of IM are mainly classified to (V/f Control), direct or indirect FOC [1-7].

V/F control system is easy to achievement but it is easily prone to instability [8,9].

Techniques in which rotor flux is measured by flux measuring coils are generally termed “direct vector control” [10,11]. The use of flux measured may not be acceptable in low speed because the devices that used to measure the air-gap flux is inaccurate in low speed [12]. The indirect field-orientation control systems do without a flux sensor but an accurate measurement of shaft position is required [12,13].

This research introduces the torque control of SCIG using IVC technique. Two models of IVC are presented and simulated. Namely, Indirect vector controlled induction generator without torque feedback and Indirect vector controlled induction generator with torque feedback.

The proposed techniques are explained clearly and simulation results are introduced to show its effectiveness.

2. MODELLING OF IVC SYSTEM

Fig. 1 explains the fundamental principle of indirect vector control with the help of phasor diagram. The d^s-q^s axes are fixed on the stator, but the d^r-q^r axes, which are fixed on the rotor, are moving at speed ω_r, the slip angle between the Synchronously rotating axes d^e–q^e and d^r–q^r axis is θ_{sl} corresponding to slip frequency ω_{sl}. Since $\omega_e=\omega_r+\omega_{sl}$,

$$\theta_e = \int \omega_e dt = \int (\omega_r + \omega_{sl}) dt = \theta_r + \theta_{sl}$$

Fig. 1. Phasor diagram explaining IVC

the derivation of equations of IVC with help of d^s–q^s dynamic model of induction machine as following [14,15,16]:

Stator & Rotor voltage equations:

$$v_{qs} = p \lambda_{qs} + \omega_e \lambda_{ds} + R_s i_{qs}$$

(1)
where:

\[\lambda_{ds} = L_s i_{ds} + L_m i_{dr} \]
\[\lambda_{dr} = L_m i_{ds} + L_r i_{dr} \]

And

\[\lambda_{qs} = L_s i_{qs} + L_m i_{qr} \]
\[\lambda_{qr} = L_m i_{qs} + L_r i_{qr} \]

\[L_s = L_{qs} + L_m \]
\[L_r = L_{qr} + L_m \]

\[T_m = \frac{3}{2} \frac{p}{2} (\lambda_{ds} i_{qr} - \lambda_{qr} i_{ds}) \]

If the rotor field oriented with de–axis, \(\lambda_{qr} \), would be zero \([10, 11]\), that is

\[\dot{\lambda}_{qr} = L_m \dot{i}_{qr} + L_r \dot{i}_{qr} = 0 \]
\[i_{qr} = \frac{L_m}{L_r} i_{qr} \]
With λ_{qr}^e is zero, the first equation in Eq. 11 for the developed torque reduces to:

$$T_{em} = -\frac{3}{2} p \frac{L_m}{L_e} \lambda_{dr}^e i_{qr}^e$$ \text{N.m} \hspace{1cm} \text{(14)}$$

Substituting for i_{qr}^e using Eq. 13, Eq. 14 can be written in the desired form of:

$$T_{em} = \frac{3}{2} p \frac{L_m}{L_e} \lambda_{dr}^e i_{qr}^e$$ \text{N.m} \hspace{1cm} \text{(15)}$$

For $\lambda_{qr}^e = 0$, then $p \lambda_{qr}^e$ must be zero, in which case, the rotor voltages reduces to:

$$v_{qr}^e = r_e i_{qr}^e + p \lambda_{qr}^e + (\omega_e - \omega_s) \lambda_{dr}^e$$ \text{V} \hspace{1cm} \text{(16)}$$

In other words, the slip speed must satisfy:

$$\omega_s - \omega_e = -\frac{r_e i_{qr}^e}{\lambda_{dr}^e}$$ \text{elect.rad/s} \hspace{1cm} \text{(17)}$$

Also, if λ_{dr}^e is constant then $p \lambda_{dr}^e = 0$ and from Eq. 4, we will obtain the condition that i_{dr}^e must be zero, that is:

$$v_{dr}^e = r_e i_{dr}^e + p \lambda_{dr}^e + (\omega_e - \omega_s) \lambda_{qr}^e$$ \text{V} \hspace{1cm} \text{(18)}$$

And, when i_{dr}^e is zero, $\lambda_{dr}^e = L_m i_{ds}^e$. Substituting this into Eq. 17 & using Eq. 13 , we obtain the following relationship:

$$\omega_e - \omega_s = \frac{r_e i_{qr}^e}{L_m i_{ds}^e}$$ \text{elect.rad/s} \hspace{1cm} \text{(19)}$$

Thus, the FOC gives the same performance a separately excited DC machine; this is done by representing the stator current phasor, in the dq synchronous reference frame, to produce two components: magnetizing current component and torque producing current component. By maintaining the magnetizing current component at a fixed value, the torque is linearly proportional to the torque-producing current component, which is quite similar to the control of a separately excited DC motor.

Fig. 3 illustrates the flow chart of IVC.

Fig. 4 shows an Indirect FOC system with torque and flux command.
Fig. 3. The flow chart of indirect vector control

Fig. 4. Indirect field oriented control system with torque and flux command
3. SIMULATION RESULTS

A block diagram of the models presented in Fig. 5. The controller for the model is presented by Subsystem #1. The 3-phase inverter block is presented by Subsystem #2, which changes the reference voltages from the controller to the phase voltages through a PWM converter. The induction machine block is presented by Subsystem #3. The simulation has been carried out for 3-phase, 4 pole, 15 hp, 380 v, 60 Hz. The machine parameters are $R_s = 0.5814 \, \Omega$, $R_r = 0.4165 \, \Omega$, $L_{ls} = 3.48 \, \text{mH}$, $L_{lr} = 4.15 \, \text{mH}$, $L_m = 82.23 \, \text{mH}$ and the inertia (J) is 0.05 kgm^2.

All of the simulations run with the following sequence for reference torque:

$$t = [0 \, 3 \, 3.0001 \, 6 \, 6.0001 \, 9 \, 9.0001 \, 12] \, \text{Sec}$$

$$T_e(\text{Reference}) = [-20 \, -20 \, -40 \, -40 \, -30 \, -30 \, -20 \, -20] \, \text{N.m}$$

In this section, the two models of the indirect-vector torque-control system, namely, IVC model without torque feedback and IVC model with torque feedback are simulated. The torque and flux responses of the system without torque feedback are shown in Fig. 6a and Fig. 6b respectively. The starting period is considered from time $t=0-1$s. The torque reaches the steady-state after 0.5 s after overcoming the rotor inertia. The torque and flux follow the reference torque and the reference flux respectively with a DC offset. Fig. 6c and Fig. 6d shows the speed response and the stator currents of the machine respectively. The torque increasing causes the speed decreasing and the stator current increasing.

In the feedback model, there is a torque sensor on the shaft and therefore the reference I_{qs} is based on the difference between the reference torque and the actual torque, commanded through a PI controller. This provides better response on the torque and flux as shown in Fig. 7a and Fig. 7b respectively. Note that in this system, any change in the torque does not alter the rotor flux. Decoupling is attained and the torque follows the torque reference.
Fig. 6a. Electromagnetic torque (N.m)

Fig. 6b. Rotor flux (Wb)

Fig. 6c. Rotor speed (r.p.m)
Fig. 6. Stator currents (A)

Fig. 6. Response of IVC without torque feedback

Fig. 7a. Electromagnetic torque (N.m)

Fig. 7 b. Rotor flux (Wb)
4. CONCLUSIONS

The goal of FOC system is to maintain an angular relationship between the stator current space vector and one internal field vector, usually rotor flux or stator flux. The FOC makes decoupling between these vectors, and it is used to simplify the torque control of SCIG. The simulation of IVC technique has been achieved and the following notes may be concluded:

1. The rotor flux is kept constant even during changes in generated torque. This indicates that decoupling control of flux and torque been obtained.
2. The system with torque feedback gives better response in comparison with the model without torque feedback.
3. The decoupling in IVC technique is depended on the accuracy of slip determination. The slip calculation depends on the rotor resistanc and inductance which varies continuously with the operational conditions. Also, the IVC technique requires speed or position sensor.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Sandeep Goyat, Rajesh Ahuja. Speed control of induction motor using vector or
field oriented control. International Journal of Advances in Engineering & Technology. 2012;4(1):476-482.

2. Holtz J. Sensorless control of induction motor drives, Proceedings of the IEEE. 2002;90:1359–1394.

3. Kroplewski P, Morawiec M, Jaderko A, Odeh C. Simulation studies of control systems for doubly fed induction generator supplied by the current source converter. Energies. 2021;14:1254.

4. Prasad RM, Mulla M. A mathematical modeling and position-sensorless algorithm for stator-side field oriented control of rotor tied DFIG in rotor flux frame. IEEE Trans. Energy Convers. 2019;35:631-639.

5. Yahdou A, Djilali AB, Boudjema, Mehedi F. Improved vector control of a counter-rotating wind turbine system using adaptive backstepping sliding mode. J. Eur. Syst. Autom. 2020;53:645-651.

6. Boulaam K, Mekhilef A. Output power control of a variable wind energy conversion system. Rev. Sci. Tech. Electrotechnol Energy. 2017;62:197-202.

7. Habib B, Boudjema, Belaidi A. Indirect vector control of a DFIG supplied by a two-level FSVM inverter for wind turbine system. Majlesi J. Electron. Eng. 2019;15:45-55.

8. Vongmanee V. Emulator of wind turbine generator using dual inverter controlled squirrel-cage induction motor, in: The Eighth International Conference on Power Electronics and Drive Systems, Taipei, Taiwan; 2009.

9. Imecs M, Szab C, Incze JJ. Stator-field-oriented control of the variable-excited synchronous motor: numerical simulation, in: 7th International Symposium of Hungarian Researchers on Computational Intelligence, Budapest, Hungary; 2006.

10. Imecs M. A survey of speed and flux control structures of squirrel-cage induction motor drives, Tech. Rep., Acta Universitatis Sapientiae Electrical and Mechanical Engineering; 2009.

11. Leidhold R, Garca G, Valla MI. Field-oriented controlled induction generator with loss minimization, IEEE Transactions on Industrial Electronics. 2002;49:147–156.

12. Rami Maher, Walid, Mohamoud Awad. Indirect field oriented control of an induction motor sensing DC-link current with PI controller. International Journal of Control Science and Engineering. 2012;19:25.

13. Khaled Yahia, Salah-eddine, Fateh Bechabane. Indirect vector control of induction motor with on line rotor resistance identification. Asian Journal of Information Technology. 2006;5(12):1410-1415.

14. Cardenas R, Pena R. Sensorless vector control of induction machines for variable speed wind energy applications,” IEEE Trans. Egy. Conv. 2004;19(1):196-205.

15. Chee-Mun Ong. Dynamic simulation of electric machinery. West Lafayette, Indiana; 1998.

16. Godoy Simoes M, Felix A. Farret. Renewable energy systems: Design and analysis with induction generators. US; 2004.

© 2022 Alkafrawi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/83566