A Novel “Off-On” Fluorescent Probe Based on Carbon Nitride Nanoribbons for the Detection of Citrate Anion and Live Cell Imaging

Yanling Hu 1, Dongliang Yang 1, Chen Yang 1, Ning Feng 1, Zhouwei Shao 1, Lei Zhang 1, Xiaodong Wang 1, Lixing Weng 2, Zhimin Luo 1 and Lianhui Wang 1,*

1 Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; huyanling124@hotmail.com (Y.H.); yangdl1023@163.com (D.Y.); 1015061531@njupt.edu.cn (C.Y.); 18705196782@163.com (N.F.); 18305167897@163.com (Z.S.); iamlzhang@njupt.edu.cn (L.Z.); 18851825985@163.com (X.W.); iamzmluo@njupt.edu.cn (Z.L.)

2 College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; lxweng@njupt.edu.cn

* Correspondence: iamlhwang@njupt.edu.cn; Tel.: +86-25-8586-6332

Received: 9 March 2018; Accepted: 6 April 2018; Published: 11 April 2018

Abstract: A novel fluorescent “off-on” probe based on carbon nitride (C₃N₄) nanoribbons was developed for citrate anion (C₆H₅O₇³⁻) detection. The fluorescence of C₃N₄ nanoribbons can be quenched by Cu²⁺ and then recovered by the addition of C₆H₅O₇³⁻, because the chelation between C₆H₅O₇³⁻ and Cu²⁺ blocks the electron transfer between Cu²⁺ and C₃N₄ nanoribbons. The turn-on fluorescent sensor using this fluorescent “off-on” probe can detect C₆H₅O₇³⁻ rapidly and selectively, showing a wide detection linear range (1~400 µM) and a low detection limit (0.78 µM) in aqueous solutions. Importantly, this C₃N₄ nanoribbon-based “off-on” probe exhibits good biocompatibility and can be used as fluorescent visualizer for exogenous C₆H₅O₇³⁻ in HeLa cells.

Keywords: carbon nitride; nanoribbons; fluorescent detection; citrate anion; biosensing

1. Introduction

Citrate is a critical metabolite that is involved in various biological systems, such as mitochondrial energy generation, cytosolic biomacromolecular synthesis, inflammatory response, blood coagulation, and the regulation of the size of apatite crystals in bone [1–5]. Citrate deficiency is the main reason for kidney dysfunction such as nephrocalcinosis and nephrolithiasis [6]. Recent medical research has shown that the tracking of citrate levels has become an effective method for the identification of prostate cancer [2,7]. Therefore, monitoring citrate content is of great importance in biomedical and analytical sciences. To date, many analytical methods have been used for citrate detection including electrochemistry [8], capillary electrophoresis [9], polarography [10], gas or liquid chromatography [11,12], UV-vis spectrophotometry [6,13], and spectrofluorimetry [14,15]. The spectrofluorimetry method has attracted great attention owing to its easy operation, high sensitivity, and lower equipment requirements [6,13,16].

Carbon nitride (C₃N₄) is a metal-free polymeric semi-conductor with a narrow bandgap of about 2.7 eV. Due to its special photoluminescence (PL), facile synthesis, and good biocompatibility [17,18], C₃N₄ has been applied for environmental decontamination, artificial photosynthesis, biotherapy, bioimaging, and sensors [17–24]. So far, some fluorescent sensing platforms based on C₃N₄ have been designed for the detection of various ions and molecules, including Cu²⁺, Fe³⁺, Ag⁺, acetylthiocholine,
biothiols, and cyanide [18,23,25,26]. However, to the best of our knowledge, there is no report of fluorescent sensors based on C$_3$N$_4$ nanoribbons for citrate anion detection.

In this work, blue fluorescent C$_3$N$_4$ nanoribbons were prepared by alkali-catalyzed hydrolysis from bulk C$_3$N$_4$ [27]. Furthermore, we demonstrated that the obtained C$_3$N$_4$ nanoribbons can serve as a novel “off-on” fluorescent probe for the detection of citrate anion (C$_6$H$_5$O$_7^{3-}$) with excellent sensitivity and selectivity based on fluorescence quenching by Cu$^{2+}$ through a photoinduced electron transfer [28,29] and fluorescence recovery by the addition of C$_6$H$_5$O$_7^{3-}$. We hypothesized that the interaction of Cu$^{2+}$ and C$_3$N$_4$ nanoribbons is inhibited by the strong chelation between Cu$^{2+}$ and C$_6$H$_5$O$_7^{3-}$ [30–32]. This is the first time that C$_3$N$_4$ nanoribbons have been applied for C$_6$H$_5$O$_7^{3-}$ detection. Importantly, the turn-on fluorescent sensor using this fluorescent “off-on” probe exhibits low cytotoxicity and can be applied for C$_6$H$_5$O$_7^{3-}$ detection in living cells. Scheme 1 illustrates the sensing principle of the C$_3$N$_4$ nanoribbon-based fluorescent sensor.

Scheme 1. Schematic illustration of the C$_3$N$_4$ nanoribbon-based fluorescent citrate sensor.

2. Materials and Methods

2.1. Materials and Reagents

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum, and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from Hyclone. HeLa cells were supplied by KeyGen Biotech Co., Ltd. (Nanjing, China). All inorganic salts were of analytical grade and obtained from Aladdin reagent (Shanghai, China). Formic acid, sodium acetate, and propionic acid were purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Ultrapure water (Milli-Q system, Millipore Corp., Billerica, MA, USA) was used throughout this study.

2.2. Characterization

UV–vis spectroscopy measurements were performed on a Shimadzu UV-3600 spectrophotometer. Fluorescence spectra were recorded on an RF-5301PC spectrofluorophotometer. The Fourier transform infrared (FTIR) spectrum of C$_3$N$_4$ nanoribbons was measured on a Nexus 870 FTIR spectrometer. A JEOL 2010 transmission electron microscope (TEM) was used for the characterization of C$_3$N$_4$ nanoribbons. The X-ray diffraction (XRD) pattern of C$_3$N$_4$ nanoribbons was recorded on an X-ray powder diffractometer with graphite monochromatized Cu Ka radiation (D8 Advance; Bruker, Karlsruhe, Germany). The X-ray photoelectron spectroscopy (XPS) investigation was carried out on PHI 5000 VersaProbe system with Al cathode as the X-ray source. The C$_3$N$_4$ nanoribbons was dropped on silicon slices for XPS characterization. Dynamic light scattering (DLS) and zeta potential measurements were conducted on a zeta potential analyzer (Zeta PALS, Brookhaven Instruments Corp.,
Brookhaven, NY, USA). Cell fluorescent images were recorded by confocal laser scanning microscopy (Olympus FV1000, Tokyo, Japan).

2.3. Preparation of C$_3$N$_4$ Nanoribbons

The bulk C$_3$N$_4$ was prepared by the calcination of melamine at 600 °C (5.0 °C min$^{-1}$) for 4 h under an Ar atmosphere [33]. The C$_3$N$_4$ nanoribbons were prepared via the alkali-catalyzed hydrolysis of bulk C$_3$N$_4$ [27]. In brief, 10 mg of bulk C$_3$N$_4$ was dispersed in 10 mL of sodium hydroxide solution (8.0 M) and sonicated for 2 h at 60 °C. After cooling to room temperature, this solution was centrifuged and washed five times with ultrapure water. The product was collected and dialyzed (the molecular weight cutoff of the dialysis bag was 1000 kDa) for further experiments.

2.4. Synthesis of Cu$^{2+}$-C$_3$N$_4$ Nanoribbon Complex

One hundred microliters of CuCl$_2$ (10 mM) was added to 9.9 mL of C$_3$N$_4$ nanoribbons aqueous solution (1 mg mL$^{-1}$). Then, the mixture was stirred for 10 min at room temperature. After that, the mixture was centrifuged and washed with ultrapure water to remove excessive copper ions. Finally, the obtained precipitate was dispersed in ultrapure water to obtain a Cu$^{2+}$-C$_3$N$_4$ nanoribbon solution.

2.5. Fluorescent Detection of C$_6$H$_5$O$_7^{3−}$

Forty microliters of Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex (C$_3$N$_4$: 1 mg mL$^{-1}$) was added to 960 µL ultrapure water, and then C$_6$H$_5$O$_7^{3−}$ solution with various concentrations was added to the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex. After standing for 20 s, the fluorescence spectra were monitored at the excitation of 360 nm.

2.6. Selectivity of Cu$^{2+}$-C$_3$N$_4$ Nanoribbon-Based Probe for C$_6$H$_5$O$_7^{3−}$ Detection

To explore the possible interference of other anions, formic acid, sodium acetate, propionic acid and the following anionic sodium/potassium salts were used in this study: 1 mM anion solutions, including Br$^{−}$, C$_6$H$_5$O$_7^{3−}$, Cl$^{−}$, CN$^{−}$, F$^{−}$, H$_2$PO$_4^{−}$, HCO$_3^{−}$, I$^{−}$, NO$_3^{−}$, OH$^{−}$, CH$_3$COO$^{−}$, and SO$_4^{2−}$ were added to the solution of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex, respectively. After thoroughly mixing and standing for 20 s, the fluorescence measurements were carried out to investigate the selectivity of the proposed fluorescent sensor.

2.7. Cell Imaging and Cytotoxicity Assay

Human cervical cancer (HeLa) cells used in this study were cultured at 37 °C in a 5% CO$_2$ incubator in DMEM medium, which contains fetal bovine serum (10%), streptomycin (100 mg mL$^{-1}$), and penicillin (100 U mL$^{-1}$). When the cells had grown to 80% confluency, the cells were digested with trypsin, collected and seeded in a confocal dish, and cultured overnight. Then the cells were pretreated with C$_6$H$_5$O$_7$Na$_3$ (1 mM). After 12 h incubation, the cells were gently washed with phosphate-buffered saline (PBS) solution (10 mM, pH = 7.4) and treated with Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex for another 4 h. Finally, the resulting cells were washed with PBS solution (10 mM, pH = 7.4) and then fluorescence images were taken on a confocal microscope under UV excitation.

For cytotoxicity assay, 100 µL of cells suspension (105 cells mL$^{-1}$) was seeded to each well of 96-well plates. Then the medium was replaced by different concentrations of C$_3$N$_4$ nanoribbons or Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex and culture for 24 h. Following this, the cells were washed with PBS solution. After that, the standard MTT assay was carried out for the determination of cell viabilities relative to the untreated cells.
3. Results and Discussion

3.1. Characterization of C$_3$N$_4$ Nanoribbons

The C$_3$N$_4$ nanoribbons were prepared by ultrasonic exfoliation of bulk C$_3$N$_4$ in an alkaline solution. The related characterizations of bulk C$_3$N$_4$ are shown in Figure S1. TEM images display the morphology and size distribution of the C$_3$N$_4$ nanoribbons. As shown Figure 1a, C$_3$N$_4$ nanoribbons present an average diameter of approximately 5 nm and a length of up to 200 nm. High-resolution transmission electron microscopy (HRTEM) image clearly shows that single and few-layer C$_3$N$_4$ nanoribbons were obtained (Figure 1b). The XRD pattern of C$_3$N$_4$ nanoribbons (Figure 1c) showed a broad distinct diffraction peak at 27.2°, which can be ascribed to the strong π-conjugated layers characteristic (002) of C$_3$N$_4$ [17,34].

![Figure 1](image-url)

Figure 1. (a) TEM image, (b) HRTEM image, (c) X-ray diffraction (XRD) pattern and (d) N 1s X-ray photoelectron spectroscopy (XPS) spectrum of C$_3$N$_4$ nanoribbons.

The composition and structure of C$_3$N$_4$ nanoribbons were confirmed by XPS and FTIR measurements. The XPS survey spectrum of C$_3$N$_4$ nanoribbons (Figure S2) displays binding energies of C (283 eV) and N (397 eV). The C 1s XPS spectrum of C$_3$N$_4$ nanoribbons (Figure S3) can be fitted into three peaks centering at 284.6, 285.4, and 287.8 eV, which can be attributed to C-C, sp2C=N, and sp3C-N of C$_3$N$_4$, respectively [35–39]. The XPS spectrum of the N 1s spectrum (Figure 1d) can be fitted into three different peaks at 398.3, 399.5, and 400.5 eV, being assigned to C=N-C, (N-(C)$_3$), and -NH$_2$, respectively [36,40]. The FTIR spectrum of C$_3$N$_4$ nanoribbons is presented in Figure S4. The broad peaks at 3330 and 3182 cm$^{-1}$ indicated the typical stretching vibrations of NH$_2$ and N-H groups, respectively [39]. The peaks centered at 1637, 1577, 1420, 1334, and 1284 cm$^{-1}$ indicated the vibration of the s-triazine ring [34,44].

The photophysical properties of C$_3$N$_4$ nanoribbons were investigated by UV-vis and PL spectra (Figure 2a). The prepared C$_3$N$_4$ nanoribbons present two strong absorption peaks at 216 and 278 nm. Meanwhile, a fluorescent emission at 415 nm can be seen from fluorescence spectrum at the excitation of 360 nm (Figure 2a). The PL intensity of C$_3$N$_4$ nanoribbons increases dramatically with the increasing pH of solution ranging from 9 to 12, and displays slight changes under acid conditions (Figure S5).
3.2. The Influence of Metal Ions on the Fluorescence of C$_3$N$_4$ Nanoribbons

A previous study indicated that Cu$^{2+}$, Fe$^{3+}$, and Ag$^+$ can quench the fluorescence of C$_3$N$_4$ due to the photoinduced electron transfer from C$_3$N$_4$ to metal ions [23,25,45]. In this experiment, the fluorescent responses of C$_3$N$_4$ nanoribbons towards different metal ions were investigated. As shown in Figure S6, C$_3$N$_4$ nanoribbons display a slight change of the PL intensity in the presence of Al$^{3+}$, Ba$^{2+}$, K$^+$, Li$^+$, Mg$^{2+}$, Na$^+$, Pb$^{2+}$, Sn$^{2+}$, and Zn$^{2+}$ (100 µM). However, the PL intensity of C$_3$N$_4$ nanoribbons dramatically decreases with the addition of Cu$^{2+}$, Ag$^+$, Fe$^{3+}$, Co$^{2+}$, Mn$^{2+}$, and Ni$^{2+}$, especially for Cu$^{2+}$ and Ag$^+$. Cu$^{2+}$ was chosen as the quencher in this work [36]. A decrease of PL intensity of C$_3$N$_4$ nanoribbons is observed as the concentration of Cu$^{2+}$ increases (Figure 2b,c), and it is almost completely quenched after the addition of 40 µM Cu$^{2+}$. Figure 2d shows that the PL intensity of C$_3$N$_4$ at 415 nm versus the concentrations of Cu$^{2+}$ exhibits a linear relationship ranging from 10 to 300 nM ($R^2 = 0.9976$).

3.3. Sensitivity and Selectivity of the Fluorescent “Off-On” Probe Based on C$_3$N$_4$ Nanoribbons for C$_6$H$_5$O$_7^{3-}$ Detection

The influence of incubation time on the fluorescence recovery of C$_3$N$_4$ nanoribbons was measured. As Figure S7 displayed, the PL intensity of Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex increases rapidly with the time after the addition of C$_6$H$_5$O$_7^{3-}$, and maintains a plateau after 20 s. Therefore, an incubation time of 20 s was selected for subsequent experiments.

As is well known, sensitivity is a critical parameter to assess the sensing performance [46,47]. The sensitivity of the fluorescent sensor using the C$_3$N$_4$ nanoribbon-based “off-on” probe was evaluated. The PL intensity of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex with different concentrations of C$_6$H$_5$O$_7^{3-}$ was recorded. As illustrated in Figure 3a,b, the PL intensity of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex was obviously recovered as the concentration of C$_6$H$_5$O$_7^{3-}$ increased. The PL intensity of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex was completely recovered with the addition of C$_6$H$_5$O$_7^{3-}$ (2.25 mM). The fluorescent sensor using the C$_3$N$_4$ nanoribbon-based “off-on” probe shows a linear range from 1 to 400 µM and the calculated detection limit is 0.78 µM (S/N = 3) (inset in Figure 3b). Compared with previously reported
fluorescent probes, such as coumarin [6], rhodamine [13], diketopprrolopyrrole [15], TPIOP-boronate [48], and CdTe quantum dots [14], the fluorescent sensor using the C$_3$N$_4$ nanoribbon-based “off-on” probe exhibits better sensing performance for C$_6$H$_5$O$_7^{3-}$ detection with a broader linear range and faster response time (Table S1) [6,14,15,49].

To investigate the selectivity of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon-based probe towards C$_6$H$_5$O$_7^{3-}$, the fluorescence responses of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex towards other anions (Br$^-$, Cl$^-$, CN$^-$, F$^-$, H$_2$PO$_4^-$, HCO$_3^-$, I$^-$, NO$_3^-$, OH$^-$, SO$_4^{2-}$) was measured. As shown in Figure 3c,d, most of the tested anions almost do not affect the PL intensity of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex, while C$_6$H$_5$O$_7^{3-}$ can recover the fluorescence of C$_3$N$_4$ nanoribbons effectively. Moreover, formic acid, sodium acetate, and propionic acid were also applied for the selectivity analysis of the proposed detection method (Figure S8), showing that the fluorescence presented the highest recovery in the presence of C$_6$H$_5$O$_7^{3-}$. Furthermore, the PL responses of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon-based probe towards C$_6$H$_5$O$_7^{3-}$ were also investigated under different pH levels and metal ions environments. As shown in Figure S9a, the fluorescence intensity of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon-based probe with or without C$_6$H$_5$O$_7^{3-}$ did not show obvious change in the pH range from 4 to 8. More importantly, almost all of the cations (10 µM) did not affect the fluorescence response of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon-based probe, except for Ag$^+$ (Figure S9b). Further, cell lysate (1 × 106 cell mL$^{-1}$) and biological molecules (10 µM), including glutamic acid, ascorbic acid, glutathione, and DNA, were introduced to examine the probe’s stability. As Figure S9c shows, except for glutathione, the Cu$^{2+}$-C$_3$N$_4$ nanoribbon-base probe exhibited no obvious fluorescence

Figure 3. (a) Fluorescence spectra of Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex with increasing concentrations of C$_6$H$_5$O$_7^{3-}$. (b) Plot of the fluorescence enhancement (I/I$_0$) of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex after the addition of different concentrations of C$_6$H$_5$O$_7^{3-}$. The linear calibration range from 1 to 400 µM is shown as an inset. (c) Fluorescence spectra of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex in the presence of Br$^-$, C$_6$H$_5$O$_7^{3-}$, Cl$^-$, CN$^-$, F$^-$, H$_2$PO$_4^-$, HCO$_3^-$, I$^-$, NO$_3^-$, OH$^-$, SO$_4^{2-}$, HCOO$^-$, CH$_3$COO$^-$, and CH$_3$CH$_2$COO$^-$ (1 mM). (d) The value of fluorescent enhancement (I/I$_0$) of the Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex after the addition of Br$^-$, C$_6$H$_5$O$_7^{3-}$, Cl$^-$, CN$^-$, F$^-$, H$_2$PO$_4^-$, HCO$_3^-$, I$^-$, NO$_3^-$, OH$^-$, and SO$_4^{2-}$ (1 mM). I$_0$ and I stand for the fluorescence intensities of Cu$^{2+}$-C$_3$N$_4$ nanoribbon complex at 415 nm in the absence and presence of different anions, respectively.
change upon the addition of C₆H₅O₇⁻ and a biological molecule (10 µM) mixture, even in cell lysate. These results indicate that the Cu²⁺-C₃N₄ nanoribbon-based probe can be used for C₆H₅O₇⁻ detection in more complex environments.

The mechanism of the fluorescence quenching and recovering process were studied by DLS and zeta-potential for this system (Figure S10). The average hydrodynamic size of C₃N₄ nanoribbons increased from 230 to 1523 nm in the presence of Cu²⁺ along with fluorescence quenching. A change of the zeta-potential from −20.6 mV to −10.4 mV was observed after the C₃N₄ nanoribbons interacted with Cu²⁺. This result indicates that a non-fluorescent complex (Cu²⁺-C₃N₄ nanoribbon) was formed [50]. With the addition of C₆H₅O₇⁻, the hydrodynamic size decreased because of the chelation between Cu²⁺ and C₆H₅O₇⁻, indicating the release of Cu²⁺ from C₃N₄ nanoribbons and resulting in the restoration of the fluorescence of C₃N₄ nanoribbons [18,19,40]. In order to rule out the effect of nonspecific binding, the PL intensity of the C₃N₄ nanoribbons was monitored after the addition of different anion solutions. The result shows that, except for OH⁻, the other anions did not dramatically affect the PL intensity of the C₃N₄ nanoribbons (Figure S11).

3.4. Intracellular Imaging of C₆H₅O₇⁻

For further biological applications, the cytotoxicity of the C₃N₄ nanoribbons and Cu²⁺-C₃N₄ nanoribbon complex to HeLa cells was assessed through MTT assays. As shown in Figure S12, the viability of HeLa cells showed no obvious change after incubation with the C₃N₄ nanoribbons or Cu²⁺-C₃N₄ nanoribbon complex for 24 h, indicating their good biocompatibility. Since the Cu²⁺-C₃N₄ nanoribbon complex showed a highly selective and sensitive response towards C₆H₅O₇⁻, this novel fluorescent “off-on” probe based on C₃N₄ nanoribbons might be potentially applied for the intracellular detection of C₆H₅O₇⁻. As shown in Figure 4, bright blue fluorescence was observed in C₆H₅O₇⁻-overloaded HeLa cells incubated with the Cu²⁺-C₃N₄ nanoribbon complex, whereas no fluorescence was detected in the control HeLa cells incubated with the Cu²⁺-C₃N₄ nanoribbon complex. Besides, Z-scan fluorescent images of living HeLa cells further confirmed that the Cu²⁺-C₃N₄ nanoribbon-based probe can be taken up by the cells (Figure S9d). These results demonstrate that the Cu²⁺-C₃N₄ nanoribbon complex is membrane permeable and could be used as a fluorescent visualizer for the intracellular imaging of C₆H₅O₇⁻.

Figure 4. (a) Bright field and (b) fluorescent images of HeLa cells incubated with the Cu²⁺-C₃N₄ nanoribbon complex for 4 h. (c) Bright field and (d) fluorescent images of HeLa cells pretreated with C₆H₅O₇Na₃ (1 mM) for 12 h and then incubated with the Cu²⁺-C₃N₄ nanoribbon complex for 4 h.
4. Conclusions

In summary, a novel fluorescent “off-on” probe based on C₃N₄ nanoribbons was developed for C₆H₂O₃³⁻ detection. The fluorescence of C₃N₄ nanoribbons can be quenched by Cu²⁺ and then recovered by the addition of C₆H₂O₃³⁻. The sensor using this fluorescent “off-on” probe showed a good detection linear range (1–400 μM) with a low detection limit (0.78 μM) as well as high selectivity in aqueous solutions. More importantly, this “off-on” probe based on C₃N₄ nanoribbons exhibited good biocompatibility and low cytotoxicity in cell environments and can be utilized for intracellular imaging of C₆H₂O₃³⁻.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/4/1163/s1. Figure S1: (a) SEM image, (b) XPS survey spectrum, (c) XRD pattern and (d) FTIR spectrum of C₃N₄ nanoribbons. Figure S2: XPS survey spectrum of C₃N₄ nanoribbons. Figure S3: C 1s XPS spectrum of C₃N₄ nanoribbons. Figure S4: FTIR spectrum of C₃N₄ nanoribbons. Figure S5: Effect of the pH value on the PL intensity of C₃N₄ nanoribbons. Figure S6: The fluorescence responses of C₃N₄ nanoribbons to various metal ions (Cu²⁺, Al³⁺, Ba²⁺, Ca²⁺, Ag⁺, Fe³⁺, K⁺, Li⁺, Mg²⁺, Mn²⁺, Na⁺, Ni²⁺, Pb²⁺, Sn²⁺, and Zn²⁺) at a concentration of 100 μM in an aqueous solution. Figure S7: The fluorescent changes of Cu²⁺-C₃N₄ nanoribbon complex as a function of interaction time after the addition of C₆H₂O₃³⁻ (1 mM). Figure S8: The value of the fluorescent enhancement (I/I₀) of Cu²⁺-C₃N₄ nanoribbon complex after the addition of C₆H₂O₃³⁻, formic acid, sodium acetate, and propionic acid. I₀ and I are the fluorescence intensities of the Cu²⁺-C₃N₄ nanoribbon complex at 415 nm in the absence and presence of different anions, respectively. Figure S9: (a) Effect of the pH value on the fluorescence responses of the Cu²⁺-C₃N₄ nanoribbon complex after the addition of C₆H₂O₃³⁻ (1 mM). (b) Fluorescence responses of the Cu²⁺-C₃N₄ nanoribbon complex upon the addition of C₆H₂O₃³⁻ and metal ions (10 μM) mixture. (c) Fluorescence responses of the Cu²⁺-C₃N₄ nanoribbon complex upon the addition of C₆H₂O₃³⁻ and biological molecule (10 μM) mixture. (d) Z-scan images of living HeLa cells that were preincubated with 1 mM C₆H₂O₃³⁻ for 12 h and then stained with the Cu²⁺-C₃N₄ nanoribbon complex for 4 h. Figure S10: (a) Hydrodynamic size of C₃N₄ nanoribbons. (b) Hydrodynamic size of the Cu²⁺-C₃N₄ nanoribbon complex. (c) Hydrodynamic size of C₃N₄ nanoribbons after the C₆H₂O₃³⁻ was added into the Cu²⁺-C₃N₄ nanoribbon solution. Figure S11: The fluorescent responses of C₃N₄ nanoribbons in an aqueous solution upon the addition of different anions (Br⁻, C₆H₂O₃³⁻, Cl⁻, CN⁻, F⁻, H₂PO₄⁻, HCO₃⁻, NO₃⁻, OH⁻, CH₃COO⁻, and SO₄²⁻) (final concentration: 1 mM). Figure S12: Cell viability of HeLa cells incubated with various concentrations of C₃N₄ nanoribbons (grey) or Cu²⁺-C₃N₄ nanoribbon complex (black) for 24 h. Table S1: Comparison of fluorescent citrate sensors.

Acknowledgments: This work was financially supported by the National Key Basic Research Program of China (2017YFA0205300), the National Natural Science Foundation of China (21475064), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R37), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (XYY03002).

Author Contributions: Y.L.H. and D.L.Y. conceived and designed the experiments; C.Y., N.F., Z.W.S., and X.D.W. synthesized carbon nitride nanoribbons and performed the characterizations. Y.L.H. and D.L.Y. performed all the rest of the experiments; Y.L.H., D.L.Y., Z.M.L., and L.Z. analyzed the data; L.X.W. and L.H.W. contributed reagents/materials/analysis tools; Y.L.H. and D.L.Y. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wise, D.R.; Ward, P.S.; Shay, J.E.S.; Cross, J.R.; Gruber, J.J.; Sachdeva, U.M.; Platt, J.M.; DeMatteo, R.G.; Simon, M.C.; Thompson, C.B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA 2011, 108, 19611–19616. [CrossRef] [PubMed]
2. Costello, L.C.; Franklin, R.B. Concepts of citrate production and secretion by prostate 1. Metab. Relatsh. Prostate 1991, 18, 25–46. [CrossRef]
3. Akram, M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 2014, 68, 475–478. [CrossRef] [PubMed]
4. Ashbrook, M.J.; McDonough, K.L.; Pittuch, J.J.; Christopherson, P.L.; Cornell, T.T.; Selewski, D.T.; Shanley, T.P.; Blatt, N.B. Citrate modulates lipopolysaccharide-induced monocyte inflammatory responses. Clin. Exp. Immunol. 2015, 180, 520–530. [CrossRef] [PubMed]
5. Hu, Y.Y.; Rawal, A.; Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2010, 107, 22425–22429. [CrossRef] [PubMed]
6. Liu, Z.; Devaraj, S.; Yang, C.; Yen, Y. A new selective chromogenic and fluorogenic sensor for citrate ion. *Sens. Actuators B* 2012, 174, 555–562. [CrossRef]
7. Costello, L.; Franklin, R.; Narayan, P. Citrate in the diagnosis of prostate cancer. *Prostate* 1999, 38, 237–245. [CrossRef]
8. Hikima, S.; Hasebe, K.; Taga, M. New amperometric biosensor for citrate with mercury film electrode. *Electroanalysis* 1992, 4, 801–803. [CrossRef]
9. Peres, R.G.; Moraes, E.P.; Micke, G.A.; Tonin, F.G.; Tavares, M.F.M.; Rodriguez-Amaya, D.B. Rapid method for the determination of organic acids in wine by capillary electrophoresis with indirect UV detection. *Food Control* 2009, 20, 548–552. [CrossRef]
10. Hasebe, K.; Hikama, S.; Yoshida, H. Determinations of citric acid by differential pulse polarography with immobilized enzymes. *Fresenius J. Anal. Chem.* 1990, 336, 232–234. [CrossRef]
27. Tian, J.; Liu, Q.; Asiri, A.M.; Sun, X.; He, Y. Ultrathin graphitic C$_3$N$_4$ nanofibers: Hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe$^{3+}$. *Sens. Actuators B* 2015, 216, 453–460. [CrossRef]

28. Lee, E.Z.; Jun, Y.S.; Hong, W.H.; Thomas, A.; Jin, M.M. Cubic mesoporous graphitic carbon(IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. *Angew. Chem. Int. Ed.* 2010, 49, 9706–9710. [CrossRef] [PubMed]

29. Tian, J.; Liu, Q.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu$^{2+}$. *Anal. Chem.* 2013, 85, 5595–5599. [CrossRef] [PubMed]

30. Field, T.B.; McCourt, J.L.; McBryde, W. Composition and stability of iron and copper citrate complexes in aqueous solution. *Can. J. Chem.* 1974, 52, 3119–3124. [CrossRef]

31. Still, E.R.; Wikberg, P. Solution studies of systems with polynuclear complex formation. 1. The copper(II) citrate system. *Inorg. Chim. Acta* 1980, 46, 147–152. [CrossRef]

32. Parry, R.; Dubois, F. Citrate complexes of copper in acid solutions. *J. Am. Chem. Soc.* 1952, 74, 3749–3753. [CrossRef]

33. Zhang, Y.; Pan, Q.; Chai, G.; Liang, M.; Dong, G.; Zhang, Q.; Qiu, J. Synthesis and luminescence mechanism of multicolor-emitting g-C$_3$N$_4$ nanopowders by low temperature thermal condensation of melamine. *Sci. Rep.* 2013, 3, 1943. [CrossRef] [PubMed]

34. Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C$_3$N$_4$ nanosheets for bioimaging. *J. Am. Chem. Soc.* 2013, 135, 18–21. [CrossRef] [PubMed]

35. Yang, J.; Wu, X.; Li, X.; Liu, Y.; Gao, M.; Liu, X.; Kong, L.; Yang, S. Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine. *Appl. Phys. A Mater. Sci. Process.* 2011, 105, 161–166. [CrossRef]

36. Rong, M.; Song, X.; Zhao, T.; Yao, Q.; Wang, Y.; Chen, X. Synthesis of highly fluorescent P$_2$O$_5$-g-C$_3$N$_4$ nanodots for the label-free detection of Cu$^{2+}$ and acetylcholinesterase activity. *J. Mater. Chem. C* 2015, 3, 10916–10924. [CrossRef]

37. Bai, X.; Cao, C.; Xu, X.; Yu, Q. Synthesis and characterization of crystalline carbon nitride nanowires. *Solid State Commun.* 2010, 150, 2148–2153. [CrossRef]

38. Dementjev, A.P.; de Graaf, A.; van de Sanden, M.C.M.; Maslakov, K.I.; Naumkin, A.V.; Serov, A.A. X-ray photoelectron spectroscopy reference data for identification of the C$_3$N$_4$ phase in carbon-nitrogen films. *Diam. Relat. Mater.* 2000, 9, 1904–1907. [CrossRef]

39. Lu, X.; Gai, L.; Cui, D.; Wang, Q.; Zhao, X.; Tao, X. Synthesis and characterization of C$_3$N$_4$ nanowires and pseudocubic C$_3$N$_4$ polycrystalline nanoparticles. *Mater. Lett.* 2007, 61, 4255–4258. [CrossRef]

40. Tang, Y.; Song, H.; Su, Y.; Lv, Y. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. *Anal. Chem.* 2013, 85, 11876–11884. [CrossRef] [PubMed]

41. Gunasekaran, S.; Sailath, E.; Seshadri, S.; Kumaresan, S. FTIR, FT raman spectra and molecular structural confirmation of isoniazid. *Indian J. Pure Appl. Phys.* 2009, 47, 12–18.

42. Gunasekaran, S.; Seshadri, S.; Muthu, S. Vibrational spectra and normal coordinate analysis of flucytosine. *Indian J. Pure Appl. Phys.* 2006, 44, 581–586.

43. Urbaniai-Domagala, W. The use of the spectrometric technique FTIR-ATR to examine the polymers surface. In Advances Aspects Spectroscopy, Farrukh, M.A., Ed.; InTech: London, UK, 2012; pp. 85–104, ISBN 978-953-51-0715-6.

44. Lin, T.; Zhong, L.; Wang, J.; Guo, L.; Wu, H.; Guo, Q.; Fu, F.; Chen, G. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection. * Biosens. Bioelectron.* 2014, 59, 89–93. [CrossRef] [PubMed]

45. Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. *J. Mater. Chem.* 2012, 22, 21832–21837. [CrossRef]

46. Yang, D.; Dai, C.; Hu, Y.; Liu, S.; Weng, L.; Luo, Z.; Cheng, Y.; Wang, L. A new polymer-based fluorescent chemosensor incorporating propane-1,3-dione and 2,5-diethynylbenzene moieties for detection of copper(II) and iron(III). *Polymers* 2017, 9, 267. [CrossRef]
47. Hu, Y.; Huang, Y.; Tan, C.; Zhang, X.; Lu, Q.; Sindoro, M.; Huang, X.; Huang, W.; Wang, L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. *Mater. Chem. Front.* **2016**, *1*, 24–36. [CrossRef]

48. Rajalakshmi, K.; Nam, Y.S.; Selvaraj, M.; Lee, Y.; Lee, K.B. Metal free bioimaging reagent for intracellular citrate in prostate cancer cells using aryl boronate derivative. *Sens. Actuators B* **2018**, *259*, 90–96. [CrossRef]

49. Parker, D.; Yu, J. A pH-insensitive, ratiometric chemosensor for citrate using europium luminescence. *Chem. Commun.* **2005**, *25*, 3141–3143. [CrossRef] [PubMed]

50. Zhang, Q.; Song, C.; Zhao, T.; Fu, H.W.; Wang, H.Z.; Wang, Y.J.; Kong, D.M. Photoluminescent sensing for acidic amino acids based on the disruption of graphene quantum dots/europium ions aggregates. *Biosens. Bioelectron.* **2015**, *65*, 204–210. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).