Origin and Evolutionary Dynamics of the miR2119 and ADH1 Regulatory Module in Legumes

Carlos De la Rosa1,4,*, Luis Lozano2,3, Santiago Castillo-Ramírez2,3, Alejandra A. Covarrubias1, and José L. Reyes1,*

1Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
2Luis Lozano Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, México
3Santiago Castillo Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
4Present address: Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis D. Colosio S/N entre Reforma y Sahuaripa, Col Centro, Hermosillo, Mexico

*Corresponding authors: E-mails: carlos.delarosa@unison.mx; jlreyes@ibt.unam.mx.

Accepted: 29 September 2020

Abstract

MicroRNAs are important regulators of gene expression in eukaryotes. Previously, we reported that in Phaseolus vulgaris, the precursor for miR2119 is located in the same gene as miR398a, conceiving a dicistronic MIR gene. Both miRNA precursors are transcribed and processed from a single transcript resulting in two mature microRNAs that regulate the mRNAs encoding ALCOHOL DEHYDROGENASE 1 (ADH1) and COPPER-ZINC SUPEROXIDE DISMUTASE 1 (CSD1). Genes for miR398 are distributed throughout the spermatophytes; however, miR2119 is only found in Leguminosae species, indicating its recent emergence. Here, we used public databases to explore the presence of the miR2119 sequence in several plant species. We found that miR2119 is present only in specific clades within the Papilionoideae subfamily, including important crops used for human consumption and forage. Within this subfamily, MIR2119 and MIR398a are found together as a single gene in the genomes of the Millettioids and Hologalegina. In contrast, in the Dalbergioids MIR2119 is located in a different locus from MIR398a, suggesting this as the ancestral genomic organization. To our knowledge, this is a unique example where two separate MIRNA genes have merged to generate a single polycistronic gene. Phylogenetic analysis of ADH1 gene sequences in the Papilionoideae subfamily revealed duplication events resulting in up to four ADH1 genes in certain species. Notably, the presence of MIR2119 correlates with the conservation of target sites in particular ADH1 genes in each clade. Our results suggest that post-transcriptional regulation of ADH1 genes by miR2119 has contributed to shaping the expansion and divergence of this gene family in the Papilionoideae. Future experimental work on ADH1 regulation by miR2119 in more legume species will help to further understand the evolutionary history of the ADH1 gene family and the relevance of miRNA regulation in this process.

Key words: microRNA evolution, dicistronic miRNA precursor, alcohol dehydrogenase 1, miR398.

Significance

The plant microRNA miR2119 is present only in specific clades within the Papilionoideae subfamily, including important crops used for human consumption and forage. In some species, miR2119 is processed from a dicistronic transcript also containing miR398a to regulate the expression of ADH1 and CSD1 transcripts, respectively. Here we performed an exploration of different plant genome and small RNA databases to study the prevalence of the miR2119 precursor and the ADH1 target genes. Our results indicate that several genomic rearrangement events have occurred, shaping the genomic organization of MIR2119 and that of its corresponding target ADH1 genes.
Introduction

Legumes (Leguminosae or Fabaceae) are the third-largest plant family with around 20,000 species. Grains derived from legumes provide one-third of the protein in the human diet and also contribute to about a third of vegetable oil used for human consumption. In addition, legumes are also important for the production of temperate-climate forage species (alfalfa, *Trifolium pratense*) or tropical climate species (*Stylosanthes, Desmodium*) (Graham and Vance 2003; Gepts et al. 2005).

The legume family maintains a cosmopolitan distribution, representing an important ecological constituent and has a widespread use in agricultural systems. Although not all legumes form an association with nitrogen-fixing bacteria (Griesmann et al. 2018), the ability of most legume species to fix nitrogen through symbiosis with bacteria from the genus *Rhizobium* is perhaps one of the best-known features of this family. Bacteria can convert atmospheric nitrogen into ammonium by the enzyme nitrogenase, this process occurs inside specialized organs in the root called nodules. The nitrogen fixed is ceded to the host plant for use in the synthesis of essential compounds such as amino acids, nucleic acids, among others (Dos Santos et al. 2012). In general, the legume family is exceptionally diverse in morphology, physiology, and in ecological terms; thus, this family represents one of the most interesting known examples in evolutionary aspects and diversification in plants (Azani et al. 2017).

Recently, an international community studying legumes systematics classified the legume family into six subfamilies: Caesalpinioidae (including clade Mimosoidea), Cercidioideae, Detarioideae, Dialioideae, Duparquetioideae, and Papilionoideae (Azani et al. 2017). This classification was based on a phylogenetic analysis of the plastid gene *matK* sequence, which included almost all the genera (698 of the 765 recognized genera) and ~20% of the species (3,696) known to date. This novel classification is the most complete evolutionary study of legumes known thus far (Azani et al. 2017). In particular, the Papilionoideae subfamily contains legumes that provide food and are economically important to human beings (Doyle and Luckow 2003). As part of the Papilionoideae subfamily, there are four important clades Genistoids, Dalbergioids, Hologalegina, and Millettioids (Gepts et al. 2005). The Genistoids clade includes the genus *Lupinus* and the Dalbergioids clade contains the genera *Arachis* and *Nissolia* represented by *Arachis hypogaea* (peanut) and *Nissolia schottii*. The Hologalegina clade is divided into two subclades: Robinioids represented by *Lotus japonicus*, and IRLC (for its acronym Inverted Repeat Lacking Clade), which includes species characterized by the loss of a copy of an inverted repeat in the chloroplast DNA found in most angiosperms. The IRLC subclade includes species such as *Medicago sativa* (alfalfa), *Cicer arietinum* (chickpea), *Vicia faba* (faba bean), *Lens culinaris* (lentil), and *Pisum sativum* (pea). Finally, the Millettioids clade includes several legumes that are better adapted to tropical climates and, therefore, were named as warm season legumes, including *Phaseolus vulgaris* (common bean), *Vigna unguiculata* (cowpea), * Cajanus cajan* (pea bean or pigeon pea), and *Glycine max* (soybean) (Doyle and Luckow 2003; Gepts et al. 2005). Representative clades in the Papilionoideae subfamily can be seen in figure 1.

MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in animals and plants. These small RNA molecules are generated from a double-stranded precursor by the action of DICER-LIKE 1 (DCL1), an RNase III family endonuclease that produces mature miRNAs about 21–22 nt in length. In complex with an Argonaute protein, miRNAs catalyze the recognition of target mRNAs through base-pairing resulting in the inhibition of their expression by RNA cleavage or translation inhibition (Axtell 2013). In plants, conserved miRNAs are present in non-vascular and vascular plants. Within individual plant families, less-conserved miRNAs regulate family-specific processes, relevant for their own lifestyles. We have previously shown that in common bean, miR2119 regulates the expression of ADH1 in response to water deficit, and that MIR2119 is encoded in a dicistronic transcript together with MIR398a, which is a different miRNA targeting the transcript for CSD1 (De la Rosa et al. 2019). We reported the function of miR2119 in *P. vulgaris* and also provided evidence for its presence in other legumes such as *G. max, Medicago truncatula*, and *A. hypogaea* (Arenas-Huertero et al. 2009; De la Rosa et al. 2019). To expand our analysis on the distribution of the MIR398-MIR2119 gene, we carried out an exploration in different plant genome databases to study the prevalence of this precursor and the ADH1 target genes. Our results indicate that within the Papilionoideae subfamily several genomic rearrangement events have shaped the current genomic organization of MIR2119 and its target ADH1 genes; thus, likely affecting the patterns of mRNA regulation within the ADH1-MIR2119 module.

Materials and Methods

Databases Used

We explored genome sequences available from different legumes in databases including NCBI (www.ncbi.nlm.nih.gov): *Phaseolus coccineus* UCLA_Phococ_1.0, *Glycine soja* ASM419377v2, *Cicer reticulatum* ASM368901v2, *Cicer ecchi nospcrum* S2Drd065_v0.5, *Trifolium medium* ASM349008v1, *Trifolium subterraneum* TSU_Ur1.1, *P. sativum* ASM301357v1, *Arachis monticola* ASM306328v2, *N. schottii* ASM325490v1, *Mimosa pudica* ASM325494v1 and *Cercis canadensis* ASM325506v1; in the Phytozome database (phytozome.jgi.doe.gov): *P. vulgaris* v2.1, *G. max* Wm82.a2.v1, and *M. truncatula* Mt4.0v1; in the Legume database (phytozome.jgi.doe.gov): *P. vulgaris* v2.1, *G. max* Wm82.a2.v1, and *M. truncatula* Mt4.0v1; in the Legume
miR398 and miR2119 Gene Sequences

The sequences for *P. vulgaris* pre-miR398-miR2119 and pre-miR398b (Chromosome 2 pos.9731038-9732110 and Chromosome 8 pos. 54889992-54890117 negative strand, respectively) were used as queries to identify related sequences using the BLASTN program in the collection of Expressed Sequence Tags (ESTs), mRNAs, and genomic sequences in the legumes described above. To expand our search, we used some of the resulting sequences to perform a subsequent BLASTN search and identify more divergent candidate sequences. Each obtained full-length sequence was used to predict its potential secondary structure in search for the foldback expected for miRNA precursors using the Mfold software (mfold.rna.albany.edu) (Zuker 2003), and then we confirmed the position of the mature miRNA within the stem region.

ADH1 Gene Sequences

The gene sequences for *ADH1.1* (Phvul.009G134700), *ADH1.2* (Phvul.001G064000), *ADH1.3* (Phvul.001G063000), and *ADH1.4* (Phvul.009G149500) of *P. vulgaris* cultivar G19833 were obtained from the Phytozone database. To retrieve other *ADH1* sequences, we first identified a phylogenetic tree of the *ADH1* gene family containing sequences belonging to eight legume and five nonlegume species,
available in the Gene family and phylogenetic tree section (Dash et al. 2016) of the Leguine Info website (https://legumeinfo.org/, last accessed October 12, 2020). To expand this information, we obtained all ADH1 protein sequences available therein.

Phylogenetic Analyses

The phylogenetic reconstruction of the ADH1 gene family was made based on 66 protein sequences obtained from the Legume Information System database. Some of the protein sequences were manually curated to correct annotation errors and only those sequences comprising above 90% of the total protein length (average of 380 aa) were selected. The ADH2 gene (AT5G43940.1) from Arabidopsis thaliana was selected as an outgroup for these analyses. ADH2 is a class III ADH also referred to as nitrosoglutathione reductase (Xu et al. 2013). The ADH2 genes define a separate clade, independent of all other ADH1 and ADH1-like genes present in land plants (Bui et al. 2019). The 67 protein sequences were aligned with the program MUSCLE V3.8.31 (Edgar 2004). Afterwards, we used the ProtTest 3.4.2 program which determined JTT+G as the best-fit substitution model for the alignment (Danila et al. 2011). The maximum likelihood method (ML) phylogeny was built with PhyML 3.0 program with SH-like support values considered as significant if higher than 0.7 (Guindon et al. 2009). The phylogenetic tree was visualized with the program FigTree V1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/, last accessed October 12, 2020). To estimate possible duplication events, we employed the NOTUNG 2.9.1.5 program using default parameters (Stolzer et al. 2012). As species tree we used the ML phylogeny of the matK gene constructed again via PhyML 3.0, setting the model to GTR + I + G, which was the best model as per jModelTest (Posada 2009).

Other Bioinformatical Tools Used

The RNAhybrid program (Krüger and Reinhsmeier 2006) was used to determine and calculate the most favorable hybridization site between each ADH1 gene sequence and the corresponding miR2119 sequence for each species analyzed. For prediction of the consensus sequences and sequence alignments, we employed the Meme suite 5.0.4, Clustal-O program (Bailey et al. 2009; Sievers et al. 2011) and the T-coffee program (Notredame et al. 2000; Di Tommaso et al. 2011).

Results

miR2119 Is Present Only in Specific Clades within the Papilionoideae Subfamily

In order to identify potential homologous sequences for miR2119 in other legume species, we first conducted BLAST searches, using the miR398a-miR2119 and miR398b precursors of P. vulgaris as queries, against the ESTs, mRNAs, and genomic sequences in the genomes of legumes present in NCBI, Phytozome, the Legume Information System (LIS), and KnowPulse databases. To expand this approach, we also employed some of the obtained sequences in subsequent BLAST searches to uncover more divergent sequences.

The sequence data obtained for the mature sequence of miR398b and miR2119 in legumes are summarized in tables 1 and 2, respectively. Each of the identified precursor miRNA sequences was subjected to an in silico secondary structure prediction using the Mfold program using default parameters (Zuker 2003). Most sequences conformed to the expected structure for miRNA precursors with the exception of some isoforms of miR398 in the genus Arachis such as miR398b of A. duranensis and A. ipaensis, miR398d and miR398e in A. hypogaea, and miR398c and miR398d in A. monticola. Their predicted secondary structure showed limited complementarity in the stem region due to the presence of nine consecutive adenosine residues upstream of the mature miRNA, which reduces the stability of the secondary structure; however, it is likely that this array of adenosines is present due to sequencing or assembly errors. Despite this, the mature sequences of these isoforms were retained for further analysis because of their high identity to the canonical miR398a sequence.

Our previous analysis of the P. vulgaris, G. max, and M. truncatula genomes revealed two kinds of MIR398 loci: one where the transcript contains the precursors for miR398 and miR2119, and another where MIR398 remains as an independent transcriptional unit and is similar to the loci found in species outside legumes (De la Rosa et al. 2019). In A. thaliana, there are three loci for the MIR398 gene family: MIR398a, MIR398b, and MIR398c, whereas Oryza sativa (rice) contains two loci encoding MIR398a and MIR398b (Jones-Rhoades and Bartel 2004; Sunkar and Zhu 2004). Our search for sequences in the different databases revealed that most legume genomes analyzed possess at least two MIR398 loci, whereas the genomes of G. max and of A. hypogaea contain six and five loci for MIR398, respectively. In addition, for P. vulgaris, we identified another locus for MIR398 in chromosome 6, named here as MIR398c, whose mature miRNA differs in four positions from miR398a (table 1). We did not find any potential small RNA in its vicinity, as is the case for the MIR398b gene. It was previously described that miR398 is conserved in spermatophytes (Jones-Rhoades and Bartel 2004; Sunkar and Zhu 2004). In particular, the sequence of miR398a is highly conserved and was almost identical in each of the legume species analyzed, indicating that in all cases it regulates the transcript encoding for CSD1 as it has been demonstrated in several plant species (Zhu et al. 2011). Together, these data indicate that the organization of the MIR398 gene family in legumes is similar to that of other plant species, except for the presence of MIR2119 in certain loci, as we describe below.
Table 1

miR398 Sequences Identified in Legumes

Organism	miR398a Sequence	Mapping	Position	Database
Phaseolus vulgaris	miR398a: UGUGUUCAGGUCACCCCUU	Chr02	973114..9731163	Phytozome
	miR398b: UGUGUUCAGGUCGCCCCUG	Chr08	5489009..54890029	NCBI
	miR398c: UGUGUUCAGGUCUUUCG	Chr06	29983237..29983257	NCBI
Phaseolus coccineus	miR398a: UGUGUUCAGGUCACCCCUU	QBDZ01159137	1394..1414	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	QBDZ01190595	19025..19045	NCBI
	miR398c: UGUGUUCAGGUCGUUCUG	QBDZ01192480	2117..2137	NCBI
Phaseolus acutifolius	miR398a: UGUGUUCAGGUCACCCCUU	QBDZ01159137	1394..1414	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	QBDZ01159137	1394..1414	NCBI
	miR398c: UGUGUUCAGGUCGUUCUG	QBDZ01159137	1394..1414	NCBI
Vigna radiata	miR398a: UGUGUUCAGGUCACCCCUU	scaffold_100	976412..976432	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Vr06	2914498..2914518	NCBI
Vigna angularis	miR398a: UGUGUUCAGGUCACCCCUU	vigan.scaffold_5	327943..327963	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Va01	511634..511636	NCBI
Vigna unguiculata	miR398a: UGUGUUCAGGUCACCCCUU	QBDZ01159137	1394..1414	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	QBDZ01159137	1394..1414	NCBI
Glycine max	miR398a: UGUGUUCAGGUCACCCCUU	Chr02	11081015..11081035	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Chr01	7214768..7214768	NCBI
	miR398c: UGUGUUCAGGUCGCCCCUG	Chr08	14536894..14536914	NCBI
	miR398d: UGUGUUCUCAGGUCACCCCUU	Chr02	46102437..46102457	NCBI
	miR398e: UGUGUUCAGGUCACCCCUU	Chr14	4337756..4337776	NCBI
Glycine soja	miR398a: UGUGUUCAGGUCACCCCUU	CM009366	7311716..7311736	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	CM009367	11364601..11364621	NCBI
	miR398c: UGUGUUCAGGUCGCCCCUG	CM009373	14536894..14536914	NCBI
	miR398d: UGUGUUCAGGUCGCCCCUG	CM009367	48771094..48771114	NCBI
	miR398e: UGUGUUCAGGUCGCCCCUG	CM009379	2816972..2816992	NCBI
Lotus japonicus	miR398a: UGUGUUCAGGUCACCCCUU	Chr02	5582356..55824376	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Chr02	5582356..55824376	NCBI
	miR398c: UGUGUUCAGGUCGCCCCUG	Chr02	5582356..55824376	NCBI
Cajanus cajan	miR398a: UGUGUUCAGGUCACCCCUU	Co06	7014889..7014909	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Co02	12942141..12942161	NCBI
Lotus japonicus	miR398a: UGUGUUCAGGUCACCCCUU	Lj0	5582356..55824376	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Lj0	5582356..55824376	NCBI
	miR398c: UGUGUUCAGGUCGCCCCUG	Lj0	5582356..55824376	NCBI
Cicer arietinum	miR398a: UGUGUUCAGGUCACCCCUU	Ca2	22138145..22138165	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Ca2	4829006..4829026	NCBI
	miR398c: UGUGUUCAGGUCGCCCCUG	Ca2	4880660..4880680	NCBI
Cicer reticulatum	miR398a: UGUGUUCAGGUCACCCCUU	Ca2	4742878..4742898	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Ca2	4742878..4742898	NCBI
Cicer echinospermum	miR398a: UGUGUUCAGGUCACCCCUU	CM010872	22687187..22687207	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	CM010872	4053621..4053641	NCBI
	miR398c: UGUGUUCAGGUCGCCCCUG	CM010872	4053621..4053641	NCBI
Medicago truncatula	miR398a: UGUGUUCAGGUCACCCCUU	chr5	19181153..19181173	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	chr5	3768799..3768819	NCBI
	miR398c: UGUGUUCAGGUCGCCCCUG	chr7	3768799..3768819	NCBI
Trifolium pratense	miR398a: UGUGUUCAGGUCACCCCUU	Tp57577_LG2	8753507..8753527	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Tp57577_LG2	8753507..8753527	NCBI
Trifolium medium	miR398a: UGUGUUCAGGUCACCCCUU	Lxqa01140102	148..168	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	Lxqa01140102	148..168	NCBI
Trifolium subterraneum	miR398a: UGUGUUCAGGUCACCCCUU	DF973777	105122..105142	NCBI
	miR398b: UGUGUUCAGGUCGCCCCUG	DF973242	64770..64790	NCBI
Pisum sativum	miR398a: UGUGUUCAGGUCACCCCUU	Puca013739517	14511..14531	NCBI

(continued)
We previously characterized miR2119 as a legume-specific miRNA (Arenas-Huertero et al. 2009; De la Rosa et al. 2019). The results obtained from the search for miR2119 sequences in the available genomes showed its presence only in species belonging to the Papilionoideae subfamily, as detailed in Table 2. We identified the sequence of miR2119 in the genome sequences of Millettioids, Hologalegina, and Dalbergioids, but not in the Genistoids. The Millettioids are represented by *P. vulgaris*, *P. coccineus*, *Phaseolus acutifolius*, *V. radiata*, *V. angularis*, *V. unguiculata*, *G. max*, and *G. soja*, and all have an identical miR2119 sequence except for *C. cajan*, which differs in the first position (1C), and *V. unguiculata* that contains an additional copy (miR2119b) with three substitutions (6A, 14C, and 17U). In the Hologalegina clade, there are species belonging to the IRLC subclade such as *M. truncatula*, *T. pratense*, *T. medium*, *T. subterraneum*, *P. sativum*, and *L. culinaris*, which share the same miR2119 sequence; whereas *C. arietinum* and *C. reticulatum* show two changes at positions 9G and 14A. In *L. japonicus* (Robinioids subclade), the miR2119 sequence differs in the second position (2A) with respect to *M. truncatula*. Considering the Dalbergioid clade, species within the genus *Arachis* (*A. duranensis*, *A. ipaensis*, *A. hypogaea*, and *A. monticola*) contain an identical sequence for miR2119, whereas the latter

Table 1

Organism	Sequence	Mapping	Position	Database
Lens culinaris	miR398a	UGUGUUCUCAGGUCACCCCUU	LcChr5	KnowPulse
	miR398b	UGUGUUCUCAGGUCGCCCCUG	LcContig611472	
	miR398c	UGUGUUCUGUGUCGUCCUU	Adaru.A09	LIS
	miR398b	UGUGUUCUCAGGUCACCCCUU	Arapi.B09	LIS
	miR398b	UGUGUUCUCAGGUCGCCCCUG	Arapi.B03	LIS
	miR398a	UGUGUUCUCAGGUCACCCCUU	Arahy.07	LIS
	miR398b	UGUGUUCUCAGGUCACCCCUU	Arahy.09	LIS
	miR398c	UGUGUUCUCAGGUCACCCCUU	Arahy.19	LIS
	miR398d	UGUGUUCUCAGGUCACCCCUU	Arahy.07	LIS
	miR398e	UGUGUUCUCAGGUCACCCCUU	Arahy.13	LIS
Arachis monticola	miR398a	UGUGUUCUCAGGUCACCCCUU	CM009791	NCBI
	miR398b	UGUGUUCUCAGGUCACCCCUU	CM009781	NCBI
	miR398c	UGUGUUCUCAGGUCACCCCUU	CM009785	NCBI
Nissolia schottii	miR398a	UGUGUUCUCAGGUCACCCCUU	QANU01088005	NCBI
	miR398b	UGUGUUCUCAGGUCACCCCUU	QANU01070409	NCBI
	miR398c	UGUGUUCUCAGGUCACCCCUU	QANU01029087	NCBI
Lupinus angustifolius	miR398a	UGUGUUCUCAGGUCACCCCUU	NULL-11	LIS
	miR398b	UGUGUUCUCAGGUCACCCCUU	NULL-09	LIS
Mimosa pudica	miR398a	UGUGUUCUCAGGUCACCCCUU	QANV01072731	NCBI
	miR398b	UGUGUUCUCAGGUCACCCCUU	QANV01054059	NCBI
	miR398c	UGUGUUCUCAGGUCACCCCUU	QANV01051282	LIS
Faidherbia albida	miR398a	UGUGUUCUCAGGUCACCCCUU	scaffold2728_-cov186	LIS
	miR398b	UGUGUUCUCAGGUCACCCCUU	scaffold2728_-cov186	LIS
Cercis Canadensis	miR398a	UGUGUUCUCAGGUCACCCCUU	QAOA01003368	NCBI
	miR398b	UGUGUUCUCAGGUCACCCCUU	QAOA01003028	NCBI
	miR398c	UGUGUUCUCAGGUCACCCCUU	QAOA01002999	NCBI
Arabidopsis thaliana	miR398a	UGUGUUCUCAGGUCACCCCUU	Chr2	Phytozone
	miR398b	UGUGUUCUCAGGUCACCCCUU	Chr5	Phytozone
	miR398c	UGUGUUCUCAGGUCACCCCUU	Chr5	Phytozone
Oryza sativa	miR398a	UGUGUUCUCAGGUCACCCCUU	Chr10	Phytozone
	miR398b	UGUGUUCUCAGGUCACCCCUU	Chr7	Phytozone

Note: The table shows the name of the species, miR398 isoforms and their sequences, the fragment and the position where this sequence is located, and the information source (NCBI, Phytozone, Legumes information System [LIS] or KnowPulse). For each sequence, the position in gray highlights the base change with respect to the *P. vulgaris* miR398a sequence. In mapping, EST, Chr, Chromosome, contig, scaffold, or identifier number indicate assembled sequences or fragments of the genome. In position, (-) indicates the sequence is located in the opposite strand. The version of each database used can be found in the Materials and Methods.
two species encode an additional copy of miR2119. Also, within this clade, *N. schottii* presents a miR2119 sequence differing in a single position (2C) from that of *Arachis*. Remarkably, we could not identify miR2119 in the genomes of *L. angustifolius* and *L. albus* (Genistoids clade), nor in species representative of the subfamilies Caesalpinioideae (*M. pudica* and *F. albida*) and Cercidioideae (*C. canadensis*). The expression of miR2119 as a small RNA has been reported for several Legume species in the Milletioids and the Hologalegina, including *G. max* (Yan et al. 2015; Wang et al. 2019); *G. soja* (Zheng et al. 2012); *Vigna mungo* (Paul et al. 2014); *V. unguiculata* (Barrera-Figueroa et al. 2011); *P. vulgaris* (Pelaez et al. 2012); *M. truncatula* (Jagadeeswaran et al. 2009; Lelandais-Briere et al. 2009); *M. sativa* (Shu et al. 2016); *Caragana intermedia* (Zhu et al. 2013); *C. arietinum* (Garg et al. 2019). In the *Arachis* genus (Dalbergioids), no annotation of mature miR2119 has been reported. For *A. hypogaea*, we explored two small RNAseq data sets and identified the expression of mature miR2119 as a small RNA through sequence analysis of the published raw data (Chi et al. 2011; Chen et al. 2019). This finding is in agreement with the sequence that we identified as encoded in the genome. Next, we analyzed the expression of miR2119 in *Lupinus* (Genistoids), where our genomic sequence analysis suggests it is absent. For *Lupinus luteus*, the expression of miR398 was documented before (Glazinska et al. 2019), but we could not find evidence of miR2119-related sRNAs in this data set, supporting the idea that miR2119 is absent in the Genistoids. Therefore, these data suggest that miR2119 is a legume-specific miRNA only found in some clades (Milletioids, Hologalegina, and Dalbergioids) within the subfamily of the Papilionoideae; notably, this miRNA is not found in the Genistoids or in more distantly related subfamilies (Caesalpinioideae and Cercidioideae).

Next, we extended the analysis of the miR2119 precursors that we found in the genomic sequences. We performed a T-coffee sequence alignment of all the precursors for miR2119 identified (sequences in table 2, supplementary fig. S1A, Table 2

Organism	miR2119	Sequence	Mapping	Position	Database
Phaseolus vulgaris	miR2119	UCAAAGGGAGUUGAGGGGAA	Chr02	9731434..9731454	Phytozome
Phaseolus cocineus	miR2119	UCAAAGGGAGUUGAGGGGAA	QBDZ01159137	1123..1143 (-)	NCBI
Phaseolus acutifolius	miR2119	UCAAAGGGAGUUGAGGGGAA	H0796397	845..865 (-)	NCBI
Vigna radiata	miR2119	UCAAAGGGAGUUGAGGGGAA	scaffold_100	976653..976673	LIS
Vigna angularis	miR2119	UCAAAGGGAGUUGAGGGGAA	vigan.scaffold_5	328184..328204	LIS
Vigna unguiculata	miR2119	UCAAAGGGAGUUGAGGGGAA	Vu02	19512408..19512428	LIS
Vigna unguiculata	miR2119b	UCAAAGGGAGUUGAGGGGAA	Vu02	19522269..19522289	LIS
Glycine max	miR2119	UCAAAGGGAGUUGAGGGGAA	Chr02	11080751..11080771 (-)	Phytozome
Glycine soja	miR2119	UCAAAGGGAGUUGAGGGGAA	Chr01	7214498..7214518	LIS
Cajanus cajan	miR2119	UCAAAGGGAGUUGAGGGGAA	Co06	7002140..7002160	LIS
Lotus japonicus	miR2119	UCAAAGGGAGUUGAGGGGAA	Lj0	55824002..55824022 (-)	LIS
Cicer arietinum	miR2119	UCAAAGGGAGUUGAGGGGAA	Ca2	22138566..22138586	LIS
Cicer reticulatum	miR2119	UCAAAGGGAGUUGAGGGGAA	CM010872	22687608..22687628	NCBI
Cicer echinospermum	miR2119	UCAAAGGGAGUUGAGGGGAA	PGTU01016578	14495..14516 (-)	NCBI
Medicago truncatula	miR2119	UCAAAGGGAGUUGAGGGGAA	chr5	19180857..19180877 (-)	Phytozome
Trifolium pratense	miR2119	UCAAAGGGAGUUGAGGGGAA	Tp5757741725	8753814..8753834	Phytozome
Lens culinaris	miR2119	UCAAAGGGAGUUGAGGGGAA	Tp5757741725	18586895..18586915	NCBI
Arachis duranensis	miR2119	UCAAAGGGAGUUGAGGGGAA	DF973777	105429..105449	NCBI
Arachis ipaensis	miR2119	UCAAAGGGAGUUGAGGGGAA	PUC0013739517	14784..14804	NCBI
Arachis hypogaea	miR2119	UCAAAGGGAGUUGAGGGGAA	PUC0013739517	55469494..55469514 (-)	KnowPulse
Arachis monticola	miR2119	UCAAAGGGAGUUGAGGGGAA	CM009774	93998826..93998846	LIS
Arachis monticola	miR2119	UCAAAGGGAGUUGAGGGGAA	Arapid.05	12544005..125440070 (-)	LIS
Arachis hypogaea	miR2119	UCAAAGGGAGUUGAGGGGAA	Arapid.05	12544005..125440070 (-)	LIS
Arachis monticola	miR2119	UCAAAGGGAGUUGAGGGGAA	Arapid.15	13546896..135468976 (-)	LIS
Nissolia schottii	miR2119	UCAAAGGGAGUUGAGGGGAA	QANU00202159	196694..196714	NCBI

Note.—The table shows the name of the species, miR2119 isoforms and their sequences, the fragment and the position where this sequence is located, and the information source (NCBI, Phytozome, Legumes information System [LIS] or KnowPulse). For each sequence, the position in gray highlights the base change with respect to the sequence of *P. vulgaris*. In mapping, EST, Chr: Chromosome, contig, scaffold, or identifier number indicate assembled sequences or fragments of the genome. In position, (−) indicates the sequence is located in the opposite strand. The version of each database used can be found in the Materials and Methods.
Fig. 2.—miR2119 recognition site in ADH1 transcripts of P. vulgaris. The miR2119 binding site was identified in each of the P. vulgaris ADH1 genes: ADH1.1 (Phvul.009G134700), ADH1.2 (Phvul.001G064000), ADH1.3 (Phvul.001G067300), and ADH1.4 (Phvul.009G149500), and the thermodynamic stability of base-pairing interaction (ΔG between ADH1: miR2119 calculated using the RNAhybrid program) is shown. Nucleotides represented in gray indicate changes based on the sequence of ADH1.1. Base-pairing is represented by “|,” wobble pairing indicated with “-,” and mismatches indicated by “-.” ADH1 gene colors represent individual members of the family, used in subsequent sections.

ADH1.1 (-31.6 kcal/mol)

5’ AUCCCUACACACCCUCCUCG 3’ ADH1.1

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

3’ AAGGGGAGUGUAGGAGAAGCU 5’ pvu-miR2119

ADH1.2 (-34.6 kcal/mol)

5’ AUCCCUACACACCCUCCUCG 3’ ADH1.2

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

3’ AAGGGGAGUGUAGGAGAAGCU 5’ pvu-miR2119

ADH1.3 (-34.2 kcal/mol)

5’ AUCCCUACACACCCUCCUCG 3’ ADH1.3

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

3’ AAGGGGAGUGUAGGAGAAGCU 5’ pvu-miR2119

ADH1.4 (-15.5 kcal/mol)

5’ AUCCCUACACACCCUCCUCG 3’ ADH1.4

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

3’ AAGGGGAGUGUAGGAGAAGCU 5’ pvu-miR2119

Supplementary Material online). This analysis revealed that, in addition to sequence conservation expected for the miRNA: miRNA* segment, a second region corresponding to the “lower stem” (the region located below the miRNA in the stem-loop structure) also revealed conserved segments. This observation is consistent with a model where the miR2119 precursor is processed in a base-to-loop manner as observed in the legumes (table 1) revealed a similar pattern of processing (supplementary fig. S1B, Supplementary Material online).

As described above, by analyzing the sequences of miR398 and miR2119 present in the genomes of the Papilionoideae subfamily, we found two kinds of loci encoding for miR398. In the Millettioids and Hologalegina clades, MIR398a is always linked to MIR2119. In those species that have an additional copy of MIR2119, such as V. unguiculata, G. max, and T. pratense, it was always associated to a MIR398a isoform. In contrast, when we analyzed MIR398a and MIR2119 genes in the Dalbergioids clade (A. duranensis, A. ipaensis, A. hypogaea, A. monticola, and N. schotti), we found that these two miRNA genes are located in separate genomic regions. These results indicate that in the Dalbergioids clade there are two loci, one encoding for MIR398a and another independent locus encoding for MIR2119 (summarized in fig. 1).

ADH1 Gene Duplication Events in the Papilionoideae Subfamily

In our previous work, the best prediction of the target mRNA for miR2119 in P. vulgaris was the transcript encoding for ADH1. In addition, the ADH1 transcript was also the best candidate target for miR2119 in P. acutifolius, G. max, M. truncatula, A. hypogaea, and L. japonicus (De la Rosa et al. 2019). However, legumes have more than one copy of the ADH1 gene, probably due to gene duplication events. In the P. vulgaris genome, there are four ADH1 genes, which we have named as ADH1.1 through ADH1.4. Three of these genes ADH1.1, ADH1.2, and ADH1.3 contain a base-pairing site for miR2119 with similar thermodynamic stability values (−31.6, −34.6, and −34.2 kcal/mol, respectively, fig. 2). In addition, ADH1.1 and ADH1.2 were experimentally validated as miR2119 target mRNAs in P. vulgaris (De la Rosa et al. 2019), and related transcripts in M. truncatula and G. max (Devers et al. 2011; Shamimuzzaman and Vodkin 2012). In contrast, P. vulgaris ADH1.4 was ruled out as a target mRNA because of the low thermodynamic stability of base-pairing to miR2119 (−15.5 kcal/mol, fig. 2).

To complement this analysis, we identified ADH1 genes and traced their possible evolutionary history within the Papilionoideae subfamily. To this end, we obtained the protein sequences of annotated ADH1 genes in the available genomes of species representing the Millettioids (P. vulgaris, V. unguiculata, V. angularis, V. radiata, and C. cajan), Hologalegina (IRLC: M. truncatula, T. pratense, and C. arietinum), Robiniods: L. japonicus), Dalbergioids (A. duranensis, A. ipaensis, and A. hypogaea) and Genistoids clades (L. angustifolius). The phylogenetic analysis of ADH1 was carried out using 67 protein sequences, including five from species outside the legumes (A. thaliana, Prunus persicum, Solanum lycopersicum, Cucumis sativus, and Vitis vinifera), and we used the ADH2 protein sequence (At5g43940.1 from A. thaliana) as an outgroup to root the phylogenetic tree. Based on this analysis, we defined four different clades in the Papilionoideae subfamily, each containing one of the P. vulgaris ADH1 genes. We named these clades based on the P. vulgaris genes, as described in figure 3.

The ADH1.4 clade includes unique sequences from species in the Millettioids, Genistoids, and Dalbergioids clades (fig. 3,
blue rectangle). Other sequences that are grouped within this clade also include the nonlegumes Prunus persica (peach) and V. vinifera (grape). It is important to note that all sequences in this clade have a predicted weak base-pairing interaction with miR2119 (ΔG = 22.6 kcal/mol), so they cannot be confidently predicted as target mRNAs for miR2119 (supplementary fig. S2, Supplementary Material online). Given the phylogenetic position of this clade, we suggest that ADH1.4 was the first clade to diverge within the Papilionoideae subfamily whereas other clades diverged later through consecutive duplication events. For instance, within the sister group to the ADH1.4 clade, a duplication event gave rise to the ADH1.1 clade and the common ancestor of the ADH1.2 and ADH1.3 clades (see black node and upward red arrow in fig. 3); then, a subsequent duplication event led to the divergence between the ADH1.2 and ADH1.3 clades (see red node and downward red arrow fig. 3) during the evolution of the Papilionoideae subfamily. In the ADH1.1 clade, we identified the largest number...
of ADH1 sequences belonging to the Millettioids, Hologalegina, and Dalbergioids clades (fig. 3, green rectangle). For all ADH1.1 nucleotide sequences, we observed that base-pairing to miR2119 is conserved and energetically favorable (supplementary figs. S3–S5, Supplementary Material online, Millettioids, Hologalegina, and Dalbergioids clades, respectively). Remarkably, the ADH1.2 clade contains sequences exclusively from the Millettioids (P. vulgaris, V. unguiculata, V. angularis, V. radiata, and C. cajan), and all maintain a base-pairing site for miR2119 (supplementary fig. S6, Supplementary Material online), suggesting that the ADH1.2 group emerged late in legume evolution, as it is only found in the Millettioids clade, and from an ancestor already under miR2119 regulation. In contrast, in the ADH1.3 clade, there are sequences of the Millettioids, Hologalegina, and Dalbergioids clades, and the presence of the binding site for miR2119 is not uniform. In the Millettioids clade, each species maintains the miR2119 binding site in ADH1.3 (left panel on supplementary fig. S7, Supplementary Material online). However, the sequences from L. japonicus (Hologalegina) and those from A. duranensis, A. ipaensis, and A. hypogaea (Dalbergioids) present certain substitutions that decrease the thermodynamic stability of base-pairing to miR2119 (≥ –24.1 kcal/mol), suggesting the loss of miRNA regulation in these particular genes (right panel in supplementary fig. S7, Supplementary Material online). Finally, there are two ADH1.3 genes in L. angustifolius (Lup001875 and Lup001876, Genistoids). Surprisingly, these sequences retain the binding site for miR2119 (supplementary fig. S8, Supplementary Material online), even though we could not identify miR2119 in this species. However, at this point, we cannot discard the possibility that these ADH1.3 mRNAs could be regulated by an as-yet- unidentified miR2119 in L. angustifolius. The possible duplicate events described thus far were evaluated using the NOTUNG program (version 2.9.1.5), which employs a parsimony criterion to infer gene transfers, duplications, and losses within gene families. The results from this analysis (see supplementary fig. S9, Supplementary Material online) not only corroborated the major duplications events shown in figure 3, but also suggested many other duplications (39 events in total) and quite a few gene losses (115 events) within this gene family.

We can summarize our analysis of the presence or absence of ADH1 genes to understand the events that lead to their current organization in the Papilionoideae subfamily. In the early branching Genistoids clade, there are ADH1 genes (Lup018096 and Lup019889 in L. angustifolius) that we infer gave rise to ADH1.1, as well as to the ancestor of ADH1.2 and ADH1.3 (fig. 3 and supplementary fig. S10, Supplementary Material online). Accordingly, the Dalbergioids clade contains the sequences of ADH1.1, ADH1.3, and ADH1.4. In the Hologalegina clade, L. japonicus of the Robinioide subclade, presents ADH1.1 and ADH1.3, with the possible loss of ADH1.4, whereas the IRLC subclade only contains multiple copies of ADH1.1, suggesting the loss of ADH1.3 and ADH1.4. Finally, the Millettioids clade contains sequences encoding ADH1.1, ADH1.3, and ADH1.4, and interestingly, we detected ADH1.2, a gene unique to this clade, which suggests its late emergence (supplementary fig. S10, Supplementary Material online). Altogether, each species of the Millettioids, Hologalegina, and Dalbergioids shares at least one copy of ADH1.1 regulated by miR2119.

The Recognition Site for miR2119 Is Conserved in ADH1 Genes Independently of Amino Acid Sequence Requirements

In plants, the binding site for an miRNA can be located throughout the target transcript, in the 5′UTR, in the coding region or in the 3′UTR (Brodersen et al. 2008). The miR2119 binding site in ADH1 transcripts is located in the coding region; thus, its sequence conservation may be determined by the selection pressure operating at the nucleotide level to maintain the recognition by miR2119, as well as by the amino acid identity in the protein sequence. To dissect the contribution of these two factors, we first determined the consensus for the nucleotide and amino acid sequences corresponding to the miR2119 binding site for each of the ADH1.1, ADH1.2, ADH1.3, and ADH1.4 clades.

The consensus sequences obtained show a high similarity and conservation between the ADH1.1 and ADH1.2 clades at the nucleotide level (fig. 4A), notably both target mRNAs were validated experimentally in P. vulgaris before (De la Rosa et al. 2019). The consensus sequence of ADH1.3 shows considerable variation at positions 11–15, and these changes cause an extended mismatched region in the ADH1.3:miR2119 interaction (fig. 4A and right panel in supplementary fig. S7, Supplementary Material online). Remarkably, the nucleotide consensus sequence for ADH1.4 has a larger number of variations with respect to the other ADH1 clades, as it shows poor conservation in positions 3–6 and 8–9, and contains at least four positions completely different from ADH1.1, ADH1.2, and ADH1.3 (pos. 4, 6, 15, and 18, fig. 4A, marked with red arrows). Taken together, these results indicate that miR2119 has perfect binding sites in ADH1.1 and ADH1.2, a slightly degenerate site in ADH1.3, but a nonfunctional binding site in ADH1.4 (representative miR2119 sites as those present in P. vulgaris ADH1 genes are shown in fig. 4B).

Despite the differences at the nucleotide level shown in the sequence corresponding to the miR2119 binding site, the corresponding amino acid consensus sequences in the four ADH1 clades show high degree of similarity to each other (right panel in fig. 4A). The 21-nt binding site matches the +1 open reading frame for protein translation, encoding for seven amino acid residues located in the catalytic domain of the protein. The amino acids at positions 5–7 (Ser, Leu, and Cys, respectively) are highly conserved in angiosperms with
the cysteine residue being important for binding of a zinc ion, used as a cofactor by this enzyme (Strommer 2011). However, the nucleotide consensus of ADH1.4 shows synonymous substitutions in the third position of codons 5 and 6 that are incompatible with the regulation by miR2119 but maintain the identity of the encoded amino acid residues. By contrast, these positions remain unchanged in ADH1.1, ADH1.2, and ADH1.3, strongly suggesting an additional selection pressure at the nucleotide level in these genes to maintain the regulation by miR2119 (fig. 4). Thus, these results show that the sequence of the miR2119 binding site is under selective pressure by at least two independent factors, first at the nucleotide level to retain regulation by miR2119 and second, to preserve the amino acid sequence necessary for enzyme activity.

Discussion

There are different models to explain the varied origins of new miRNAs in plants. One such model entails the duplication of the gene encoding the future target mRNA to generate a partial inverted repeat. The transcript originating from this new locus then adopts a perfectly complementary secondary structure, which is substrate of double-stranded RNA endonucleases of the Dicer-like family such as DCL3 or DCL4 to generate multiple small RNAs (siRNA, small interfering RNA). In turn, these siRNAs regulate the expression of the transcript of origin, as well as those of homologous genes. Over time, the novel partial inverted repeat gene accumulates mutations that allow the double-stranded RNA to be recognized as an miRNA precursor and to be processed by DCL1, giving rise to a new miRNA (Allen et al. 2004; Cui et al. 2017; Baldrich et al. 2018). A handful of examples has emerged to provide support to the model of partial tandem gene duplication encoding for a target mRNA as a generator for new miRNAs. One such case involves the large family of Nucleotide-binding site Leucine-rich repeat (NBS-LRR) receptors associated to pathogen defense responses and widely distributed in both monocotyledonous and dicotyledonous plants. At least eight different miRNA families have been described as regulators of the...
NBS-LRR genes, where a common attribute among them is the conservation of the sequence that serves as binding site on target mRNAs, allowing the regulation of multiple-related genes using a single miRNA (Fei et al. 2016). For example, members of the miR482/2118 family recognize the site encoding for the conserved P-Loop motif present in the NBS-LRR (Shivaprasad et al. 2012). Recently, it was observed that high duplication frequency in the different families of NBS-LRR genes was associated with the emergence of a novel miRNA. This was supported by the extensive similarity observed between the miRNA precursor sequence and the sequence of its target NBS-LRR genes (Zhang et al. 2016). Other lineage-specific miRNAs with similar characteristics include MIR472, MIR825, and MIR1885 in Brassicaceae; MIR1510 and MIR2089 in Fabaceae; MIR6025 in Solanaceae, MIR5163 and MIR9863 in Poaceae (Zhang et al. 2016), suggesting that similar duplication events have occurred in different plant families. To address this possibility for MIR2119, we explored the sequences of the miRNA precursors and their similarity to ADH1 genes. The MIR2119 precursor sequences obtained for Millettioids, Hologalegina, and Dalbergioids were separated into shorter regions considering their conservation. Each sequence was then used as a query to search for limited similarities with ADH1 genes or any other genomic regions. Despite adjusting some parameters to allow for nucleotide mismatches, our sequence comparison did not reveal any clear similarities between the precursor of miR2119 and the ADH1 genes in several Papilionoideae analyzed, yet this could be due to accumulated mutations in the precursor during the long-elapsed time since its origin.

Independently of the mechanism that gave rise to the MIR2119 gene within the Papilionoideae subfamily, we propose it originated in the common ancestor of the Dalbergioids and Hologalegina-Millettioids clades, ca. 55–56 Ma, according to the commonly accepted evolutionary history of the Papilionoideae (Lavin et al. 2005). Within the Dalbergioids, an MIR2119 locus is present in species belonging to the genera Arachis and Nissolia as an independent transcription unit (fig. 1). In contrast, MIR2119 was not identified in L. angustifolius and L. albus, representatives of the Genistoids clade, and neither in earlier diverging species, such as M. pudica, F. albida, and C. canadensis, which belong to the Caesalpinioideae and Cercidoideae subfamilies, respectively. However, we cannot rule out that L. angustifolius, L. albus, M. pudica, F. albida, and C. canadensis have suffered the loss of miR2119 or that sequencing errors in the annotation of these genomes precluded its identification. Alternatively, the sequence of miR2119 in these species could be so different from the one detected here, that it prevented its recognition. The future availability of genome sequences and more small RNA-sequencing data for related species will help to clarify this issue.

Polycistronic miRNA precursors in plants can have different evolutionary origins. In the case of MIR395, tandem homologous miRNAs are present in the same transcript in different species, which could have originated from multiple duplication events. This arrangement results in larger miRNA accumulation and consequently in a larger dose effect on the repression of its target mRNA(s) (Guddeti et al. 2005; Nozawa et al. 2012). A different scenario has been described for polycistronic precursors containing nonhomologous miRNAs. It has been proposed that these polycistronic precursors originated from a partial gene duplication event, where the duplicated inverted fragment would be large enough to generate two new miRNA precursors with different sequence. As the new miRNAs originated from a single source, they end up regulating transcripts from the same or similar gene family (Merchant et al. 2009).

During the study of MIR398 and MIR2119, we identified the presence of a dicistronic precursor gene in the Hologalegina and Millettioids clades. The acquisition of a MIR398–MIR2119 gene probably occurred in their common ancestor ca. 50–55 Ma (Lavin et al. 2005), after the separation from the Dalbergioids clade, which already contained an independent MIR2119 locus (in Arachis and Nissolia genera). This event probably originated through a process of genomic rearrangement that caused the fusion of two genes initially separated and that allowed the cotranscription of both miRNAs, showing a new mechanism for the generation of polycistronic miRNA genes. We speculate that this rearrangement created new opportunities for the spatial and temporal coordination of the expression of their target mRNAs, CSD1 and ADH1; likely contributing to a better coupling of the corresponding enzymatic activities according to the adaptive metabolic needs of the legume species involved.

In our study, we confirmed that MIR2119 is only found in species of the Millettioids, Hologalegina, and Dalbergioids clades within the Papilionoideae subfamily. Given the MIR2119 species distribution, in conjunction with the phylogenetic analysis of the ADH1 genes, we propose that the emergence of MIR2119 probably occurred during the duplication processes involving its future target genes (fig. 5). In our model, an ancestral ADH1 gene lacking an miR2119 binding site gave rise to ADH1.1 by gene duplication. Because ADH1.1 is shared in species containing miR2119, it is possible that the miRNA emerged through the doubling model of “the gene in tandem” (opposite orientation) by partial duplication of ADH1.1. Transcription of this new gene generated a perfectly complementary double-stranded RNA, capable of DCL processing to generate siRNAs targeting ADH1.1 transcripts. After its emergence, the novel gene accumulated point mutations leading to the production of a functional precursor encoding miR2119. In consequence, paralogous genes emerging from ADH1.1 would then be subjected to miR2119 regulation (fig. 5).

Finally, we observed that the complex combination of ADH1 genes in the different Papilionoideae clades correlates with the presence of MIR2119 (supplementary fig. S10,
This fact suggests that these two elements could be closely linked. As discussed above, it remains to be determined if ADH1 gene rearrangements were responsible for MIR2119 emergence in the Papilionoideae. At a different level, miR2119 regulation constrains the abundance of ADH1 gene transcripts containing miRNA binding sites, but not of other transcripts, such as ADH1.4. In this way, the presence of miR2119 in a given genome may affect the number and kind of ADH1 genes present, suggesting another layer of complexity to the evolutionary history of the ADH1-MIR2119 module.

Supplementary Material

Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments

C.D.I.R. first conceived this work. C.D.I.R. and L.L. retrieved sequence data and performed phylogenetic analyses. C.D.I.R., L.L., S.C., A.C.R., and J.L.R. discussed results and planned analyses. C.D.I.R. and J.L.R. wrote the first manuscript draft with input from all authors. We are grateful to Blake C.
*Devers EA, Branscheid A, May P, Krajinski F. 2011. Stars and symbiosis: microRNA- and microRNA-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol. 156(4):1990–2010.

Di Tommaso P, et al. 2011. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39(Suppl 1):W13–W17.

Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. 2012. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13(1):162.

Doyle JJ, Luckow MA. 2003. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol. 131(3):900–910.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797.

Fei Q, Zhang Y, Xia R, Meyers BC. 2016. Small RNAs add zing to the Zig-Zag-Zig model of plant defenses. Mol Plant Microbe Interact. 29(3):165–169.

Garg V, et al. 2019. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol J. 17(5):914–931.

Gepts P, et al. 2005. Legumes as a model plant family. Plant Physiol. 137(4):1228–1235.

Glazinskia P, Kulasek M, Glinkowski W, Wojciechowski W, Kosiński J. 2019. Integrated analysis of small RNA, transcriptome and degradome sequencing provides new insights into floral development and abscission in yellow lupine (Lupinus luteus L.). Int J Mol Sci. 20:5122.

Graham PH, Vance CP. 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131(3):872–877.

Griesmann M, et al. 2018. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361:eaat1743.

Guddeti S, et al. 2005. Molecular evolution of the rice miR395 gene family. Cell Res. 15(8):631–638.

Gunson D, Deluc F, Dufayard JF, Gascuel O. 2009. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol. 537:113–137.

Jagadeeswaran G, et al. 2009. Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol. 184(1):85–98.

Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 14(6):787–799.

Kruger J, Rehmsmeier M. 2006. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34(Web Server issue):W451–W454.

Lavin M, Herendeen PS, Wojciechowski MF. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol. 54(4):575–594.

Lelandais-Briere C, et al. 2009. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell. 21(9):2780–2796.

Merchan F, Boualem A, Crespi M, Frugier F. 2009. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins. Genome Biol. 10(12):R136.

Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 302(1):205–217.

Nozawa M, Miura S, Nei M. 2012. Origins and evolution of microRNA genes in plant species. Genome Biol Evol. 4(3):230–239.

Paul S, Kundu A, Pal A. 2014. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing. J Integr Plant Biol. 56(1):15–23.

Data Availability

The data underlying this article are available in the article and in its online supplementary material.

Literature Cited

Allen E, et al. 2004. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet. 36(12):1282–1290.

Arenas-Huerto C, et al. 2009. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol. 70(4):385–401.

Axell MJ. 2013. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 64(1):137–159.

Azani N, et al. 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny—the Legume Phylogeny Working Group (LPWG). Taxon 66(1):44–77.

Bailey TL, et al. 2009. MEME SUITE: tools for motif discovery and search. Nucleic Acids Res. 37(Web Server):W202–W208.

Baldrich P, Beric A, Meyers BC. 2018. Despacito: the slow evolutionary changes in plant microRNAs. Curr Opin Plant Biol. 42:16–22.

Barrera-figueroa BE, et al. 2011. Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol. 11(1):127.

Brodersen P, et al. 2008. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320(5880):1185–1190.

Bu LT, et al. 2019. Conservation of ethanol fermentation and its regulation in land plants. J Exp Bot. 70(6):1815–1827.

Chen H, et al. 2019. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut (Arachis hypogaea L.). BMC Genomics 20(1):392.

Chi X, et al. 2011. Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6(11):e27530.

Chorosteku I, et al. 2017. Evolutionary footprints reveal insights into plant microRNA biogenesis. Plant Cell 29(6):1248–1261.

Cui J, You C, Chen X. 2017. The evolution of microRNAs in plants. Curr Opin Plant Biol. 35:61–67.

Darrab D, Tabekdaa GL, Drolallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165.

Dash S, et al. 2016. Legume information system (Legumelnfo.org): a key component of a set of federated data resources for the legume family. Nucleic Acids Res. 44(D1):D1181–D1188.

De la Rosa C, Covarrubias AA, Reyes JL. 2019. A dicistronic precursor encoding miR398 and the legume-specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit. Plant Cell Environ. 42(1):133–144.

Di Tommaso P, et al. 2011. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39(Suppl 1):W13–W17.

Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. 2012. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13(1):162.

Doyle JJ, Luckow MA. 2003. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol. 131(3):900–910.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797.

Fei Q, Zhang Y, Xia R, Meyers BC. 2016. Small RNAs add zing to the Zig-Zag-Zig model of plant defenses. Mol Plant Microbe Interact. 29(3):165–169.
Origin and Evolutionary Dynamics of miR2119 and ADH1

Pelaez P, et al. 2012. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. BMC Genomics 13(1):83.

Posada D. 2009. Selection of models of DNA evolution with jModelTest. Methods Mol Biol. 537:93–112.

Shamimuzzaman M, Vodkin L. 2012. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics 13(1):310.

Shivaprasad PV, et al. 2012. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24(2):859–874.

Shu Y, et al. 2016. Genome-wide investigation of microRNAs and their targets in response to freezing stress in Medicago sativa L. based on high-throughput sequencing. G3 (Bethesda) 6(3):755–765.

Sievers F, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7:539.

Stolzer M, et al. 2012. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18):i409–i415.

Strommer J. 2011. The plant ADH gene family. Plant J. 66(1):128–142.

Sunkar R, Zhu JK. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019.

Wang R, et al. 2019. Construction and analysis of degradome-dependent microRNA regulatory networks in soybean. BMC Genomics 20(1):534.

Xu S, Guerra D, Lee U, Vierling E. 2013. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front Plant Sci. 4:430.

Yan Z, et al. 2015. Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393-3p in soybean nodulation. New Phytol. 207(3):748–759.

Zeng QY, et al. 2012. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol. 12(1):182.

Zhang Y, Xia R, Kuang H, Meyers BC. 2016. The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol Biol Evol. 33(10):2692–2705.

Zhu C, Ding Y, Liu H. 2011. MiR398 and plant stress responses. Physiol Plant. 143(1):1–9.

Zhu J, Li W, Yang W, Qi L, Han S. 2013. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress. Plant Cell Rep. 32(9):1339–1349.

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13):3406–3415.

Associate editor: Vision Todd