Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems

Amelia K. Almeida a,*, Roger S. Hegarty a, Annette Cowie a, b

a School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
b NSW Department of Primary Industries, Trevenna Rd, Armidale, NSW, 2351, Australia

ABSTRACT

Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries, and livestock production in particular, as part of their climate change management. While many reviews update progress in mitigation research, a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane (CH4) emissions from ruminants has been lacking. A meta-analysis was conducted based on 108 refereed papers from recent animal studies (2000–2020) to report effects on CH4 production, CH4 yield and CH4 emission intensity from 8 dietary interventions. The interventions (oils, microalgae, nitrate, ionophores, protozoal control, phytochemicals, essential oils and 3-nitrooxypropanol). Of these, macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH4 yield (g CH4/kg of dry matter intake) at the doses trialled. The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.

1. Introduction

Recognising the urgent need to address climate change, nations have agreed to reduce greenhouse gas (GHG) emissions, aiming for net zero emissions by the second half of this century (UNFCCC, 2015). Livestock enteric methane (CH4) contributes 11.6% of global GHG emissions from anthropogenic activities (Ripple et al., 2014), and it is the main source of GHG in agriculture, accounting for 43% of the GHG emissions from livestock globally (Herrero et al., 2016). Enteric CH4 emissions represent a waste of energy by the ruminant fermentation process, and efforts are being made to identify and encourage actions to reduce these emissions (Rivera-Ferre et al., 2016).

As CH4 has a relatively brief lifetime in the atmosphere (i.e., from 8.4 to 12 years, Ehhalt et al., 2001), mitigating CH4 may represent a timely contribution to achieving climate stabilisation targets (Reisinger et al., 2021). Mitigation efficacy of these many strategies have been reported and often combined in broad-ranging reviews (Martin et al., 2010; Cottle et al., 2011; Asizua et al., 2014; Patra, 2016; Grossi et al., 2019), the effect of feed management on animal productivity is less well assessed. Progress towards carbon neutrality for the ruminant production sector may involve nutritional strategies, as well as whole farm systematic approaches including vaccines, improving reproductive rate, stock number and productivity, pasture management and animal genetics.

The nutritional approach, more specifically rumen manipulation, encompasses a wide range of possibilities (e.g., oils, algae, nitrate, ionophores, protozoa population control, bacteriocins, phytochemicals, 3-nitrooxypropanol, acetogens, organic acids, among others). In this meta-analysis, we focus on nutritional strategies that are more likely to contribute to carbon neutrality in the near decades. Therefore, the approach of this assessment is to use CH4 mitigation data published since 2000 to quantify the technical potential of strategies for CH4 mitigation by ruminants (cattle and sheep), as well as quantifying the co-benefits and
identifying barriers to implementation. The ultimate purpose of this assessment is to estimate the \(\text{CH}_4 \) mitigation potential of nutritional strategies to inform the development of effective policies to support \(\text{CH}_4 \) abatement.

2. Materials and methods

2.1. Published literature screening

A database was created with publications from 2000 to 2020, using only reports of in vivo trials that measured ruminant enteric \(\text{CH}_4 \) emissions. Studies included addressed the effects of a range of dietary abatement measures (oils, algae, nitrate, ionophores, protozoa population control, bacteriocins, phytochemicals, 3-nitrooxypropanol, acetogens, organic acids). Keywords used to identify papers were as follows: “ruminant”, “enteric”, “methane emission”, and one of the potential strategies. Pertinent literature cited in each considered article was also screened for inclusion. All data were from articles published in indexed journals identified through searches conducted using the Google Scholar search engine (https://scholar.google.com) from 18th of August 2019 to 26th of April 2020. Data were entered in an Excel spreadsheet in a systematic fashion in which each row represented a treatment and each column represented an exploratory variable (Sauvant et al., 2008). A summary of the data of all publications is presented in Table 1. Data reported in divergent units of measure were transformed to matching units. When a study did not report all needed results and it was possible to calculate from the reported data, appropriate calculations were performed from the reported data.

The investigated factors were body weight (BW; kg), dry matter (DM; kg/d) intake, liveweight gain (g/d), milk production (kg/d), diet chemical composition (crude protein, CP; neutral detergent fiber, NDF; fat; and non-fiber carbohydrate, NFC; %DM), and digestibility of nutrients (DM, CP, fat and NDF; %). Methane emissions were reported as \(\text{CH}_4 \) production (g \(\text{CH}_4 \)/animal per d), \(\text{CH}_4 \) yield (MY; g \(\text{CH}_4 \)/kg DMI) and \(\text{CH}_4 \) emission intensity (MI; g \(\text{CH}_4 \)/kg animal product, typically milk or liveweight gain).

2.2. Inclusion criteria

For inclusion in the meta-analysis, studies were required to have MY (g/kg DMI) measured, as well as data reported on composition of diets and intake. Besides these, other variables required in the dataset were digestibility, animal performance and rumen fermentation indicators (pH, molar proportion of volatile fatty acids, and protozoa count). Overall, 108 publications met these requirements and were included in the analysis (Table 1).

2.3. Statistical analysis

The meta-analysis was performed using the MIXED procedure of SAS (version 9.4, SAS/STAT, SAS Institute Inc., Cary, NC), considering study as a random effect. Furthermore, to account for variations in precision across studies, the inverse of the squared standard error of the mean (SEM) (Wang and Bushman, 1999) of MY was used as a factor in the WEIGHT statement of the model (St-Pierre, 2001). The slopes and intercepts by study were included as random effects, specifying an unstructured variance-covariance matrix for the intercepts and slopes (St-Pierre, 2001). Differences between means were determined using the PDIFF option of the LSMEANS statement, which is based on Fisher’s P-protected least significant difference test. Significant difference was declared at \(P < 0.05 \).

3. Results and discussion

An appraisal of the quantitative potential enteric \(\text{CH}_4 \) abatement of each considered dietary strategy is given below and summarized in Fig. 1. Among the strategies assessed, one may note that nutritional management can alter MPR and MY by multiple means that directly target methanogens or affect methanogenesis by altering residual hydrogen availability in the rumen.

3.1. Oils

Among the several dietary strategies specifically developed to mitigate enteric \(\text{CH}_4 \) production, oil inclusion in the diet is the one with most papers published in the last 20 years, that were included in the meta-analysis (\(n = 35 \); Table 1). Our analysis revealed that the MY mitigation ranges from 12% to 20% (95% CI of the mean effect size; mean reduction of 15%). For every increase of 1% of oil (g/kg DM) from 2.85% to 6.20% inclusion, the MY was reduced by \(1.02 ± 0.113 \) g \(\text{CH}_4 \)/kg DMI or 4.37% (\(P < 0.01 \); RMSE = 4.56). A previous meta-analysis (of 17 studies) examined the reduction in MY in response to oil in the diet and reported that for each 1% oil added to the diet MY was reduced by 5.6% (Beauchemin et al., 2007).

Oils (i.e., polyunsaturated fatty acids and the medium-chain saturated fatty acids) have been previously recognised to suppress \(\text{CH}_4 \) production in ruminants (Blaxter and Czerkawski, 1966). For instance, adding oil to the ruminant diet reduces H2 producers (i.e., protozoa; Mao et al., 2010, Guyader et al., 2015), as well as methanogen populations (Mao et al., 2010), and may act as a \(\text{H}^+ \) acceptor through fatty acid biohydrogenation, although the effect is small (Ungerfeld, 2015). Among the papers included, only two (Johnson et al., 2002, Silva et al., 2018) out of 35 showed that adding oil to the diet of dairy cattle, beef cattle, or sheep did not affect enteric \(\text{CH}_4 \) production.

Oil addition within the range of the studies included reduced DMI by 1.24% to 6.17% (Fig. 2A), and reduced NDF digestibility by 6.30% to 13.0% (Fig. 2B). No effect of oil on growth rate was detected using the present database, whereas oil addition decreased milk production by 1.17% to 13.7% (95% CI). The extent of the \(\text{CH}_4 \) mitigation by dietary oil may vary with basal diet. Oil can be added to a low-fibre diet without impairing fibre digestibility, but negative effects on DMI, fibre digestibility, as well as animal performance, have been reported from adding oil to ruminants fed high-fibre diets (Machmüller et al., 2001; Machmuller et al., 2003; Benchaar et al., 2015; Beauchemin and McGinn, 2006; Hollmann et al., 2012, Troy et al., 2015). Therefore, the risk of adverse effects on fibre digestibility could restrict the use of oils as a mitigation strategy for grazing livestock.

A reduction in MI (g \(\text{CH}_4 \)/kg of milk or weight gain) from 14.4% to 21.5% (\(P < 0.01 \); Fig. 2C) was found. Supplementation with unsaturated fatty acid rich-oils may influence the biohydrogenation, yielding the production of trans-10 18:1 fatty acid, which may result in a greater concentration of anti-lypogenic conjugated linoleic acid (trans-10, cis 12) production in the mammary gland (Odongo et al., 2007), and therefore may depress milk production (Baumgard et al., 2002). Moreover, the practicality of oil supplementation in the diet in a farm setting should be evaluated considering its benefits in \(\text{CH}_4 \) mitigation, as well as effects on animal performance and cost of feeding. Oil as a mitigation strategy can readily be applied to feedlot and dairy systems. The main barriers to adoption in grazing systems relate to reduction in fibre digestibility and logistics of delivery in extensive rangelands.
Table 1
Summary of the data used in the meta-analysis of the effect of different strategies for enteric methane abatement.

Study code	Source	Animal	Strategy	Methane analysis method	n
1	Alemu et al. (2019)	Sheep	Phytochemicals, NO₃	GreenFeed	22
2	Beauchemin et al. (2006)	Beef	Phytochemicals, oil, organic acid	Chamber	8
3	Beauchemin et al. (2007)	Beef	Oil	Chamber	4
4	Beauchemin et al. (2009)	Dairy	Oil, protozoa control	Chamber	4
5	Benchaar (2016)	Dairy	Phytochemicals, ionophores	SF₆	8
6	Benchaar et al. (2015)	Dairy	Oil, protozoa control	Chamber	6
7	Bird et al. (2008)	Sheep	Protozoa control	Chamber	7
8	Caetano et al. (2019)	Beef	Phytochemicals	GreenFeed	10
9	Carulla et al. (2005)	Sheep	Phytochemicals, protozoa control	Chamber	6
10	Carvalho et al. (2016)	Beef	Oil	SF₆	9
11	Chung et al. (2013)	Beef	Phytochemicals, protozoa control	Chamber	8
12	Cooprider et al. (2011)	Beef	Ionophores	Chamber	4
13	Cosgrove et al. (2008)	Sheep	Oil	SF₆	2
14	Ding et al. (2012)	Sheep	Oil	other	3
15	Duthie et al. (2018)	Beef	NO₃	Chamber	18
16	El-Zaait et al. (2014)	Sheep	Phytochemicals, NO₃	Chamber	6
17	Fiorentini et al. (2014)	Beef	Oil, protozoa control	SF₆	9
18	Grainger et al. (2008)	Dairy	Oil	SF₆	6
19	Grainger et al. (2008b)	Dairy	Ionophores	Chamber/SF₆	15
20	Grainger et al. (2010)	Dairy	Phytochemicals	SF₆	10
21	Grainger et al. (2010)	Dairy	Ionophores	Chamber/SF₆	10/15
22	Granja-Salcedo et al. (2019)	Beef	NO₃	SF₆	10
23	Guyader et al. (2015a)	Dairy	Phytochemicals, NO₃	Chamber	4
24	Guyader et al. (2015b)	Dairy	Oil, NO₃, protozoa control	Chamber	4
25	Guyader et al. (2016)	Dairy	Oil, NO₃	Chamber	8
26	Haisan et al. (2014)	Dairy	3-nitrooxypropanol (3-NOP)	SF₆	5
27	Haisan et al. (2017)	Dairy	3-NOP	SF₆	6
28	Hegarty et al. (2008)	Sheep	Protozoa control	Chamber	6
29	Hess et al. (2016)	Sheep	Phytochemicals, protozoa control	Chamber	6
30	Hohnmann et al. (2012)	Dairy	Oil	Chamber	6
31	Holtshausen et al. (2009)	Dairy	Phytochemicals, protozoa control	Chamber/SF₆	4
32	Hosoda et al. (2005)	Dairy	Phytochemicals	Chamber	4
33	Hristov et al. (2013)	Dairy	Phytochemicals	SF₆	8
34	Hristov et al. (2015)	Dairy	3-NOP	GreenFeed	12
35	Hulshof et al. (2012)	Beef	NO₃	SF₆	8
36	Hünherberg et al. (2013a)	Beef	Oil	Chamber	8
37	Hünherberg et al. (2013b)	Beef	Oil	Chamber	4
38	Johnson et al. (2002)	Dairy	Oil	SF₆	4
39	Jordan et al. (2006a)	Beef	Oil	Chamber	10
40	Jordan et al. (2006b)	Beef	Oil	SF₆	12
41	Jordan et al. (2007)	Beef	Oil	SF₆	4
42	Jose Neto et al. (2019)	Beef	Oil	SF₆	9
43	Kim et al. (2019)	Beef	3-NOP	GreenFeed	9
44	Kinley et al. (2020)	Beef	Seaweed	Chamber	5
45	Klevenhuesen et al. (2011)	Sheep	Phytochemicals, protozoa control	Chamber	6
46	Lee et al. (2015)	Beef	NO₃	Chamber	8
47	Lee et al. (2017)	Beef	NO₃	Chamber	7
48	Lee et al. (2017)	Beef	NO₃	Chamber	7
49	Li et al. (2012)	Sheep	NO₃	Chamber	5
50	Li et al. (2013)	Sheep	NO₃	Chamber	6
51	Li et al. (2018)	Sheep	Seaweed	Chamber	6
52	Liu et al. (2011)	Sheep	Phytochemicals, oil	Chamber	8
53	Lopes et al. (2016)	Dairy	3-NOP	GreenFeed	6
54	Ma et al. (2015)	Sheep	Phytochemicals	Chamber	6
55	Ma et al. (2017)	Sheep	Phytochemicals	Chamber	6
56	Machmüller et al. (2000)	Sheep	Oil, protozoa control	Chamber	3
57	Machmüller et al. (2001)	Sheep	Oil, protozoa control	Chamber	3
58	Machmüller et al. (2003)	Sheep	Oil, protozoa control	Chamber	3
59	Malik et al. (2017)	Sheep	Phytochemicals, protozoa control	SF₆	10
60	Mao et al. (2010)	Sheep	Phytochemicals, oil	Chamber	8
61	Martin et al. (2008)	Dairy	Oil	SF₆	8
62	Martin et al. (2016)	Dairy	Oil	SF₆	4
63	Martinez-Fernandez et al. (2018)	Beef	3-NOP	Chamber	4
64	McGinn et al. (2004)	Beef	Oil, organic acid, ionophores	Chamber	8
65	McGinn et al. (2009)	Beef	Oil	SF₆	30
66	Melgar et al. (2020)	Dairy	NO₃	GreenFeed	24
67	Moate et al. (2011)	Dairy	Oil	Chamber	4
68	Moate et al. (2014)	Dairy	Phytochemicals, protozoa control	SF₆	10
69	Mohammed et al. (2004)	Dairy	Phytochemicals, protozoa control	Chamber	4
70	Moreira et al. (2013)	Sheep	Phytochemicals	SF₆	3
71	Mwenya et al. (2005)	Beef	Ionophores	Other	4
72	Newbold et al. (2014)	Beef	NO₃	Chamber	6
73	Nguyen and Hegarty (2017)	Beef	Oil, protozoa control	Chamber	6
Table 1 (continued)

Study code	Source	Animal	Strategy	Methane analysis method	n
74	Nolan et al. (2010)	Sheep	NO3	Chamber	4
75	Norris et al. (2020)	Beef	Phytochemicals, protozoa control	Chamber	8
76	Odongo et al. (2007)	Dairy	Oil	Chamber	6
77	Odongo et al. (2007b)	Dairy	Ionophores	Other	12
78	Olijhoek et al. (2016)	Dairy	NO3	Chamber	4
79	de Oliveira et al. (2007)	Beef	Phytochemicals	Chamber	4
80	Patra et al. (2011)	Sheep	Phytochemicals	Chamber	4
81	Pen et al. (2007)	Sheep	Phytochemicals	Chamber	4
82	Rebelo et al. (2009)	Beef	NO3	SF6	10
83	Reynolds et al. (2014)	Dairy	3-NOP	GreenFeed	6
84	Romero-Perez et al. (2014)	Beef	3-NOP	Chamber	8
85	Romero-Perez et al. (2015)	Beef	3-NOP	Chamber	8
86	Roque et al. (2019)	Dairy	Seaweed	GreenFeed	12
87	Rossi et al. (2017)	Beef	Oil	SF6	7
88	Santoso et al. (2004)	Sheep	Phytochemicals	Chamber	4
89	Silva et al. (2018)	Beef	Oil	SF6	6
90	Soilan et al. (2013)	Sheep	Phytochemicals	Chamber	6
91	Staerfl et al. (2012)	Beef	Phytochemicals, protozoa control	Chamber	6
92	Sun et al. (2017)	Beef	NO3	Chamber	4
93	Tienmann et al. (2008)	Sheep	Phytochemicals	Chamber	6
94	Troy et al. (2015)	Beef	Oil, NO3	Chamber	6
95	Van Wesemael et al. (2019)	Dairy	3-NOP	GreenFeed	10
96	van Zijderveld et al. (2010)	Sheep	NO3	Chamber	5
97	van Zijderveld et al. (2011a)	Dairy	Oil, Phytochemicals	Chamber	10
98	van Zijderveld et al. (2011b)	Dairy	NO3	Chamber	5
99	Velazco et al. (2014)	Beef	NO3	GreenFeed	10
100	Veneman et al. (2015)	Dairy	oil, NO3	Chamber	6
101	Villar et al. (2019)	Beef	oil, NO3	Chamber	4
102	Vyas et al. (2016)	Beef	3-NOP	Chamber	5
103	Vyas et al. (2018a)	Beef	3-NOP	Chamber	5
104	Vyas et al. (2018b)	Beef	3-NOP, ionophores	Chamber	5
105	Waghorn et al. (2008)	Dairy	Ionophores	SF6	16
106	Wang et al. (2009)	Sheep	Phytochemicals	Chamber	4
107	Yang et al. (2017)	Beef	Phytochemicals, protozoa control	Chamber	4
108	Zhou et al. (2011)	Sheep	Phytochemicals, protozoa control	Chamber	3

n = total number of animals.

Fig. 1. Forest plot depicting the standardized mean effect of the estimated ratio of methane (CH4) yields for mitigation strategy vs. control emissions (mean CH4 emission in treatment with mitigation strategy divided by mean CH4 emission in control) and the 95% confidence interval (95% CI). Values below 1.0 (vertical line) indicate that the mitigation strategy yields a reduction in CH4 emissions.
3.2. Seaweeds

In vivo animal trials testing seaweeds as a mitigation option have only recently been published. One study in sheep (Li et al., 2018), one in dairy cattle (Roque et al., 2019) and one in feedlot cattle (Kinley et al., 2020) are available, showing a dose dependent MY reduction from 30.0% up to 69.0% (95% CI; \(P < 0.01; n = 3 \); mean reduction of 49.0%), with Asparagopsis inclusion from 0.5% to 3.0%. Li et al. (2018) revealed reduction of 3.50 g CH4/kg DMI (i.e., or 23.3% CH4 mitigation) for every gram of Asparagopsis taxiformis intake, with no effect on DMI or blood chemistry and pathology, but with some effect on rumen fermentation (Li et al., 2018), in sheep. Roque et al., 2019 reported 38% DMI reduction and reduced milk production when Asparagopsis was fed to dairy cows at 1% of DM.

Seaweeds are macroalgae, complex and diverse multicellular organisms that can grow in both marine and fresh water environments (van der Spiegel et al., 2013). The term “seaweed” has no taxonomic importance but is commonly used to refer to the marine algae (Makkar et al., 2016). Based on the pigment involved in their photosynthetic process, seaweeds can be categorised as red algae (Rhodophyceae), brown algae (Phaeophyceae), and green algae (Chlorophyceae) (Chapman and Chapman, 1980). There are more than 13,000 species of macroalgae (Huisman et al., 1998) and several species of macroalgae have been proposed as a novel ingredient in ruminant diets (van der Spiegel et al., 2013; Halmemies-Beauchet-Filleau et al., 2018). Seaweeds vary in chemical composition (Machado et al., 2014; Makkar et al., 2016), digestibility (i.e., 15% to 94% as reviewed by Makkar et al., 2016) and show a wide diversity and concentration of secondary metabolites (Carroll et al., 2019), including those by which CH4 mitigation is achieved (Dubois et al., 2013; Machado et al., 2014; Kinley and Fredeen, 2015).

Previous studies have identified that the red macroalgae Asparagopsis taxiformis has a high efficacy in CH4 abatement in vitro (Kinley and Fredeen, 2015; Machado et al., 2016; Machado et al., 2018) and in vivo (Li et al., 2018) due to its high content of bromoform, a halogenated CH4 analogue (Langan, 1972). Halogenated CH4 analogues inhibit enzymatic activity of the methyltransferase enzyme by reacting with the reduced vitamin B12 cofactor required in one of the final steps of CH4 formation, decreasing the cobamide-dependent pathway (Wood et al., 1968).

A previous study reported moderate potential of seaweed to be market-ready as a ruminant feed within 2 to 3 years (Halmemies-Beauchet-Filleau et al., 2018) and preparations are well underway for marketing of a commercial product in Australia. The biochemical profile varies between species of seaweeds (Machado et al., 2014; Carroll et al., 2019), and it seems that Asparagopsis is the most effective macroalga for CH4 mitigation. However, the effect of feeding macroalgae to ruminants on diet digestibility, animal performance and health, together with CH4 abatement are yet to be extensively addressed using in vivo trials. Recently, studies reported residue in the milk (increased iodine and bromide concentrations) as a result of feeding Asparagopsis to dairy cattle (Stefenoni et al., 2021), thus, establishing the recommended concentration of Asparagopsis in the diet is necessary to enable its safe use as a feed additive.

Moreover, the mitigation effect of seaweed appears to vary among its species in vitro, and is influenced by basal diet (Machado et al., 2014, 2016; Maia et al., 2016), thus future in vivo studies should focus on the influence of basal diet on the seaweed mitigation effect. The animal performance response in a pasture-based setting is yet to be defined, as well as delivery method. Additionally, lifecycle assessment will be important, to quantify the net climate change effects of this strategy, including the seaweed production process. Among caveats to tackle before the adoption of seaweed as a mitigation strategy are the concerns that high harvesting rates in the wild may disrupt the equilibrium of coastal ecosystems (Makkar et al., 2016), and that cultivation of seaweeds may release bromoform, an ozone-depleting substance (Carpenter and Liss, 2000; Quack and Wallace, 2003).

3.3. Nitrate

Our meta-analysis revealed that NO3 supplementation decreased MY by 15.7% on average, compared with a control diet (16.1 ± 0.855 g vs. 19.1 ± 0.853 CH4/kg DMI; \(P < 0.01; n = 25 \)) in ruminants. Dietary NO3 inclusion from 17.2 to 22.1 g/kg DM (95% CI) led to MY reduction from 10.0% to 22.1% (95% CI; \(P < 0.05; n = 25 \)). Unlike oils, NO3 supplementation does not impair DMI (\(P = 0.86; n = 25 \); Fig. 3A) or fibre digestibility (i.e., NDF digestibility; \(P = 0.86; n = 12 \); Fig. 3B), which is a beneficial outcome for grazing systems. Moreover, dietary NO3 supplies non-protein nitrogen to the rumen biota, reducing the need for other dietary non-protein nitrogen sources (Hulshof et al., 2012; Li et al., 2012; Villar et al., 2020). The overall reduction in MI (g CH4/kg of milk or weight gain) from NO3 inclusion ranged from 10.7% to 18.7% (\(P < 0.01; n = 11 \); Fig. 3C).

The mechanism by which NO3 may lower ruminal CH4 production is through competition with methanogenesis for reducing equivalents. Because NO3 has a higher affinity for H2 than does CO2 in the rumen (Jones, 1972; Latham et al., 2016), CH4 production is
reduced by feeding NO₃ to ruminants. In the rumen, NO₃ is initially reduced to NO₂ (nitrite) and then to NH₃, decreasing the availability of H₂ for methanogens (Lewis, 1951; Nolan et al., 2016).

Since 2015, the Australian Emissions Reduction Fund has included a method through which carbon credits can be generated for feeding of NO₃ to grazing ruminants (DoE, 2015). The major limitation of feeding NO₃ to ruminants is the possibility of accumulation and absorption of intermediates of NO₂ reduction (i.e., NO₂ into the bloodstream). Besides being a precursor to carcinogenic compounds, NO₂ can impair the capacity of blood to transport oxygen to an animal’s tissues due to methaemoglobinemia (Lewis, 1951; Sindelar and Milkowski, 2012; Bedale et al., 2016). In most studies used in the present analysis, blood methaemoglobin concentrations in nitrate-supplemented animals were higher than non-supplemented ones (Velazco et al., 2014; Guyader et al., 2016; Rebelo et al., 2019). None of the included studies that measured blood methaemoglobin levels observed clinical symptoms of methaemoglobinemia, i.e., cyanosis and hypoxia that may arise at methaemoglobin >20% of total haemoglobin (Mensinga et al., 2003).

In this regard, management and nutritional strategies to reduce the risk of NO₂ poisoning may be used, including adapting animals to NO₂, i.e., microbial acclimation (Lee and Beauchemin, 2014; Nolan et al., 2016), slowing the rate of NO₂ reduction reaction in the rumen (e.g., by encapsulating in lipid; de Raphelis-Soissan et al., 2016), as well as combining different mitigation strategies (e.g., NO₃ + oil; Nolan et al., 2016, Lee et al., 2017; Villar et al., 2019), so less NO₃ is required in the diet. Evaluating the combined effect of using nitrate and an oil source for CH₄ mitigation, the change in MY varied from 38.6% MY reduction up to 3.5% MY increase; (95% CI; P < 0.05; n = 4). Although these results were based on only four papers that evaluated the interaction of oil and NO₃, it seems that the combination of NO₃ supplementation with oil would reduce the likelihood of nitrate poisoning.

3.4. Ionophores

The present study revealed that including an ionophore (monensin was used in the majority of studies) in cattle diets reduced MY by only 4% (95% CI from 0.5% to 7.4%; P = 0.05; n = 10; Fig. 1). Moreover, the use of ionophores as a mitigation strategy is limited to the period prior to microbime adaptation. The current study showed only a modest MI reduction (g/CH₄ per kg liveweight gain: 95% CI from 0% to 14.7%; P = 0.04; n = 5). Ionophores affect ammonia production, changing the fermentation dynamics towards improving energetics and N use in the rumen, as well as controlling acidosis. Ionophores are used mainly in feedlots and dairy herds (i.e., cattle fed high grain diets), and CH₄ mitigation appears to be only a small co-benefit of the use of ionophores.

Ionophores are compounds of diverse chemical structures that are able to anchor to the lipid bilayer of cell membranes of organisms and translocate protons (H⁺) and metal ions through the membrane as futile ion fluxes leading to eventual death of the microbial cell (i.e., gram + bacteria and protozoa) (Russell and Strobel, 1989; Chow et al., 1994). Typically, this shifts the microbial population toward gram-negative bacteria that are less sensitive to ionophores, at the expense of H⁺-, ammonia-, and lactate-producing organisms, resulting in higher propionate production, less CH₄, greater protein availability and higher ruminal pH (Russell and Houlihan, 2003).

Ionophores have been commonly used as a performance enhancer in ruminants, for 4 decades. Several ionophores are registered and approved for use as feed additives (e.g., monensin, lasalocid, narasin, lialdomycin), but this varies between countries. Monensin, the most widely used ionophore in ruminant nutrition, is produced by Streptomyces spp. Over time, rumen microbes adapt, reducing the ionophore response, including the CH₄ mitigation (Callaway et al., 2003). Rotating ionophores and antibiotics (daily, weekly or biweekly) may improve the longevity of the effect of ionophores on feed efficiency (Guan et al., 2006; Crossland et al., 2017). As ruminal bacteria become resistant to ionophores, one may argue that ionophore resistance poses a public health threat, as genes linked to ionophore resistance in ruminal bacteria have not yet been identified.

3.5. Protozoa population control

The meta-analysis found that when a protozoa population-controlling additive was used, the protozoa population reduced by 23% (95% CI = 12% to 35%; P < 0.01; n = 22) but rumen MY diminished by only 2% on average (95% CI = −0.16% to 14.0%; P = 0.03; n = 22; Fig. 1), noting wide variation inherent to diet. The reduction in MY may be due to a reduced methanogen population, an altered pattern of volatile fatty acid production and hydrogen availability; and greater dry matter digestion in the rumen. Our results did not show reduction in DM digestibility (P = 0.91) or NDF digestibility (P = 0.87). The decline in methanogenesis associated with removal of protozoa is greatest on high concentrate diets and this is in keeping with protozoa being relatively more important sources of hydrogen on starchy diets, as many starch-fermenting bacteria do not produce H₂.

Fig. 3. Mean effect of the estimated ratio of diets containing nitrate (NO₃) and control diets in dry matter intake (DMI; A), neutral detergent fibre digestibility (NDFd; B) and methane (CH₄) intensity (g/kg animal product; C).
Some methanogens in the rumen exist as endo- and ectosymbionts with ciliate protozoa (Finlay et al., 1994; Tokura et al., 1997) and such symbionts may account for up to 37% of the rumen methanogens (Finlay et al., 1994). Although protozoa are a significant proportion of the biomass in the rumen ecosystem, they are not essential (Newbold et al., 2015). On the contrary, some co-benefits of rumen defaunation (removing protozoa) have been reported, such as increases in growth rate and live weight gain of ruminants (Eugene et al., 2004; Newbold et al., 2015) especially when the feed is deficient in protein relative to energy content. In addition, rumen protozoa are significant H2 producers, due to their preferred production of acetate and butyrate rather than propionate.

In brief, one may use physical and chemical techniques to achieve defaunation of the rumen: the most commonly used techniques are the isolation of animals from their mothers at birth, and the use of surfactants and other chemicals (e.g., sodium lauryl sulfate, alkanes, synperonic NP9, calcium peroxide, copper sulfate), as well as emptying and washing the rumen (Hegarty et al., 2008; Newbold et al., 2015). Moreover, some feed additives used to mitigate CH4 or as efficiency enhancers may control the protozoal population including ionophores, oil, and NO3 supplementation. It is noteworthy that none of the available techniques is considered efficient for commercial application to date.

3.6. Phytochemicals

For the purpose of the present study, a wide array of heterogeneous plant secondary compounds with antimethanogenic properties were grouped as phytochemicals (Patra and Saxena, 2010) including tannin-rich feeds, essential oils, and saponins but excluding macroalgal bromofurin.

Our meta-analysis indicated no effect of phytochemical inclusion on DMI of dairy, beef cattle, and sheep (mean effect of 1.00 ± 0.00386; 95% CI 0.992 to 1.01; P = 0.81; n = 33; Fig. 4). Among studies included in the analysis, 24% trialed saponins, 50% used tannins and 21% fed essential oils, while 5% of these studies examined other phytochemicals (e.g., flavonoids). The estimated mean reduction in MY through phytochemical supplementation was 10% compared with the control diet (16.7 ± 1.11 g vs. 18.6 ± 1.12 CH4/kg DMI; P < 0.01; n = 33), with tannins and saponins having the greatest effect (Fig. 4). The observed mean reduction in MY due to phytochemical supplementation ranged from 8% to 14% (Fig. 1; 95% CI; P < 0.01; n = 33). Phytochemical inclusion in the diet of ruminants affected fibre digestibility (mean reduction in NDF digestibility of 4.69%; 95% CI 0.86 – 8.56; P = 0.02; n = 21), without affecting total tract DM digestibility (mean effect 95% CI 0.97 – 1.01; P = 0.97; n = 21). Overall, phytochemical supplementation tended to reduce CH4 intensity in ruminant animals (mean effect 0.922 ± 0.0351; 95% CI 0.83 to 1.00; P = 0.08; n = 21).

When using phytochemicals as feed additives, one should pay close attention to the dose and purity, as they may possess anti-nutritional characteristics at higher concentrations. The aim is to find the equilibrium between the beneficial CH4 abatement and optimum nutrient utilisation. This balance is particularly complex to attain, as the composition and quantity of phytochemicals varies widely within natural sources (e.g., legumes), even when fed as extracts. More than 200,000 plant secondary compounds have been identified (Hartmann, 2007), and some have antimethanogenic proprieties.

Saponins are high molecular-weight glycosides that occur in a variety of plants, with triterpene saponins (i.e., saccharide chain units linked to a triterpene) more abundant in nature than steroidal saponins (Hostettmann and Marston, 2005). The CH4-suppressing traits of saponin-rich plants are principally related to the inhibition of rumen ciliate protozoa, which may enhance efficiency of synthesis of microbial protein (Patra and Saxena, 2009). Similar beneficial effects on N and energy ruminal metabolism have been observed when feeding tannins to ruminants (Norris et al., 2020). Tannins are high molecular weight polyphenolic compounds soluble in water and have capacity to interact with proteins (and carbohydrates) due to the presence of a large number of phenolic hydroxyl groups forming complexes (Patra and Saxena, 2010). They exist as hydrolysable tannins (HT) and condensed tannins (CT); both have antimethanogenic effects, however CT are more commonly used as a feed additive because HT represent a high risk of toxicity to the animal (Field and Lettinga, 1987; McSweeney et al., 2001).

Tannin-rich plants include legumes that may be used to improve pasture productivity as well as nitrogen level in the diet. The

![Fig. 4](image-url) Mean effect of the estimated ratio of diets: essential oils (diamond), saponins (triangle), and tannins (circle) and control diets in methane (CH4) yield, dry matter intake (DMI), NDF (neutral detergent fibre) digestibility and DM (dry matter) digestibility.
tropical legumes Desmanthus and Leucaena leucocephala have significant antimethanogenic properties, and are considered a promising approach for mitigation of enteric CH₄ in beef production in the northern Australian rangelands (Suybeng et al., 2019; Tomkins et al., 2019; Vandermeulen et al., 2018). Leucaena is not currently recommended in southern Australia due to its propensity to become a weed.

Essential oils are not based on long chain fatty acids but are bioactive molecules with antimicrobial properties that can directly inhibit methanogens and hydrogen-producing microorganisms. They include garlic oil, thymol, cinnamaldehyde, peppermint, menthol and eucalyptus oils, as well as commercial blends. The type of essential oil determines the effect on CH₄ production. It is important to consider the potential anti-nutritional effect of essential oils and the adaptation of rumen microbes to essential oils, the change in flavour of animal products due to presence of residues in meat and milk, as well as acceptability by the animals, which could affect DMI (Rae, 1999; Calsamiglia et al., 2007).

Due to high variation in the concentrations and types of antimethanogenic compounds between plant species, as well as spatial and temporal inconsistency, it is not possible to provide generic recommendations about the dietary inclusion of phytochemicals for CH₄ mitigation.

3.7. 3-Nitrooxypropanol (3-NOP)

Reviewing previous studies, the in-feed doses of 3-NOP fed to ruminants ranged from 40 to 340 mg 3-NOP/kg DM (64.2 to 122 mg 3-NOP/kg DM; 95% CI) and responses are highly dose dependent. From our meta-analysis, 3-NOP supplementation decreased ruminant CH₄ emission by 23.3% compared with a control diet (151 ± 0.995 g vs. 19.7 ± 1.11 CH₄/kg DM; P < 0.01; n = 14). The mean reduction in the MY ranged from 18 to 39% (95% CI; P < 0.01; n = 14; Fig. 1). All individual studies used in the meta-analysis noted the efficacy of 3-NOP in lowering enteric CH₄ emissions (Table 1).

Previously, CH₄ abatement achieved with dietary 3-NOP in ruminants was associated with a decrease in DMI (Romero-Perez et al., 2014; Vyas et al., 2016), and this was borne out in the current analysis where 3-NOP supplementation reduced DMI up to 4.5% (P = 0.02; Fig. 5A; n = 14). The reduction in DMI itself is not a concern if it results in the same liveweight gain by the animal, which would indicate improved feed use efficiency. In the present study, the 3-NOP supplementation did not alter fibre digestibility (i.e., NDF; P = 0.25; Fig. 5B; n = 5). The reduction in MY with 3-NOP ranged from 6.5% to 38% in dairy cattle (mean of 22.2%; P < 0.01; n = 7) and from 1.5% to 59% in beef cattle (mean of 30.0%; P < 0.01; n = 7). In contrast, previous studies suggested stronger antimethanogenic effects of 3-NOP in dairy cattle than in beef cattle (Dijkstra et al., 2018). Additionally, 3-NOP has a greater CH₄ suppressing effect in high-forage than high-grain feedlot diets (Kim et al., 2019). One may expect a larger variation within grazing beef cattle compared to dairy production systems, because of the greater complexity involved in delivering any feed additive to cattle in a grazing situation. The overall reduction in CH₄ intensity (g CH₄/kg of milk or weight gain) from 3-NOP ranged from 13.2% to 39.9% (P < 0.01; Fig. 5C).

The commercially developed compound 3-NOP provides a novel and promising feed additive to mitigate CH₄. It is a structural analogue of the nickel enzyme methyl CoM reductase produced by the methanogenic archaea, thus it inhibits the last step of CH₄ formation in the rumin (Duin et al., 2016). Previous studies have shown that 3-NOP is a potent CH₄ suppressant, effective in a wide range of diet types, exhibiting no DMI nor digestibility reduction in beef or dairy cattle (Romero-Perez et al., 2014; Haisan et al., 2017; Jayanegara et al., 2017). Research has found that 3-NOP is metabolised rapidly, and does not accumulate in the mammal’s bloodstream (Thiel et al., 2019). Moreover, 3-NOP and its metabolites were not found to have mutagenic or genotoxic potential (Thiel et al., 2019b). Thus, 3-NOP does not seem to represent a food security threat or risk to animal health.

Thus, 3-NOP may offer a reliable and effective strategy for CH₄ abatement in beef, sheep and dairy cattle, yet as a relatively novel feed additive, there may be resistance to adoption. The magnitude of the mitigation differ between ruminant types. Optimal doses of 3-NOP are yet to be defined, to support registration as a permitted feed additive, enabling the use of 3-NOP in the meat, wool and dairy industries.

3.8. Other CH₄ mitigation strategies

Among the reviewed CH₄ reduction strategies, it was found that comprehensive data regarding the use of bacteriocins (for review: Garsa et al., 2019), organic acids and prebiotics (e.g., acetogens, yeasts) (Martin et al., 2010; Patra, 2016) is too sparse to support adoption in the next 10 years. Moreover, these technologies generally yield modest results in CH₄ abatement, thus they were not included in the present meta-analysis.

4. Conclusions

This meta-analysis assessed dietary strategies for CH₄ mitigation in ruminant production systems. Seaweed, 3-NOP and NO₃⁻ are the most effective feed additives for abatement of ruminant CH₄ emissions, and show promise as mitigation strategies available to the livestock sector within the short term.
Further investigation is required to assess combinations of different strategies for CH₄ mitigation using a systematic approach, and to devise delivery method to enable their use in grazing systems.

Author contributions

Amelia Katiane de Almeida: Formal analysis, Data Curation, Conceptualization, Interpretation of Results, Writing - Original Draft. Roger Hegarty: Interpretation of Results, Writing - Original Draft, Review & Editing. Annette Cowie: Conceptualization, Interpretation of Results, Writing - Review & Editing.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

Acknowledgment

This study was funded by the NSW Climate Change Fund through the NSW Primary Industries Climate Change Research Strategy.

References

Alemu AW, Romero-Perez A, Araujo RC, Beauchemin KA. Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals 2019;9:11:21.

Asizu D, Mpiawie D, Kabi F, Mutetikka D, Kamatara K, Hvelplund T, Weisbjerg MR, Mugasi S, Madsen J. Growth performance, carcass and non-carcass characteristics of Mubende and Mubende × Boer crossbred goats under different feeding regimes. Livest Sci 2014;169:63–70.

Baumgard LH, Matitashvili E, Corl BA, Dwyer DA, Bauman DE. trans-10, cis-12 vaccenic acid in rumen fermentation, and milk production. J Dairy Sci 2009;92:2118–27.

Bedale W, Sindelar JJ, Milkowski AL. Dietary nitrate and nitrite: benefits, risks, and evolving perceptions. Meat Sci 2016;120:45–92.

Benchaar C, Hassanat F, Martineau R, Gervais R. Linseed oil supplementation to dairy cows fed citrus rind Silage, and methane production in ewes. Aust J Exp Agric 2008;48.

Benchaar C. Diet supplementation with cinnamon oil, cinnamaldehyde, or monoterpenoids improves methane reduction and ruminal fermentation, and to devise delivery method to enable their use in grazing systems. Aust J Exp Agric 2005;56:961–70.

Carvalho IPCd, Fiorentini G, Berndt A, Castagnino PDs, Messana JD, Fregilho RTS, Reis RA, Berchielli TT. Performance and methane emissions of Nellore steers grazing tropical pasture supplemented with lipid sources. Rev Bras Zootec 2016;45:760–77.

Chapman VJ, Chapman DJ. Seaweeds and their Uses (3rd ed.). Chapman and Hall. 1980.

Chow YM, Van Kessel JAS, Russell JB. Binding of radioabeled monensin and lasalocid to ruminal microorganisms and feed. J Anim Sci 1994;72:1630–5.

Chung Y-H, Mc Gough E, Acharya S, McAllister T, McGinn S, Harstand O, Beauchemin K. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed safflower or alfalfa. J Anim Sci 2013;91:4861–74.

Coopriker RL, Mitoieghmer FM, Fanula TR, Kebreab E, Zhao Y, Van Eenennaam AL. Feedlot efficiency implications on greenhouse gas emissions and sustainability. Animal Prod Sci 2011;89:2643–56.

Cossu-Grave P, Waghorn GC, Anderson CB, Peters JS, Smith A, Molano G, Deighton K. The effect of oils fed to sheep on methane production and digestion of ryegrass pasture. Aust J Exp Agric 2008;48.

Cottle DJ, Nolan JV, Wiedemann SG. Ruminant enteric methane mitigation: a review. Anim Prod Sci 2021;51:491–514.

Crossland WL, Tedeschi LO, Callaway TR, Miller MD, Smith WB, Cravey M. Effects of rotating antibiotic and ionophore feed additives on volatile fatty acid production, potential for methane production, and microbial populations of steers consuming a moderate-forage diet. J Anim Sci 2017;95:4554–67.

D’oliveira SG, Berchielli TT, Pedreira MDs, Primavesi O, Fregilho R, Lima MA. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Anim Feed Sci Technol 2007;135:236–48.

d’al T, Valente C, Viana SF, Oelkers E, et al., editors. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge, United Kingdom. New York: Cambridge University Press; 2001, p. 239–87.

Dikstra J, Bannink A, France J, Kebreab E, van Gestelen S. Short communication: antimethane effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. J Dairy Sci 2018;101:5041–7.

Ding X, Long R, Zhang Q, Huang X, Guo X, Mi J. Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil. Trop Anim Health Prod 2012;44:154–5.

Dubois R, Tomkins NW, Kinyed RB, Bai M, Seymour S, Paul NA, de Nys R. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 2013;4:34–43.

Duin EC, Wagner T, Shinma S, Prakash D, Cramin B, Yanez-Ruiz DR, et al. Mode of action revealed for the specific reduction of methane emissions from rumen microbes by the small molecule 3-nitrooxypropanol. Proc Natl Acad Sci U S A 2016;113:6172–77.

Duthie CA, Troy SM, Hyslop JJ, Ross DW, Roehe R, Roche JA. The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle. Animal 2018;12:280–7.

Eholt D, Prather M, Destenier F, Dervent R, Dlugockzcyk E, et al. Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, et al., editors. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge, United Kingdom. New York: Cambridge University Press; 2001, p. 239–87.

El-Zaait H, Araujo R, Soltau YA, Morsy AS, Louvandini H, Pires A, Patino HD, Correa PS, Abdalla AL. Encapsulated nitrate and cashew nut shell liquid on blood and rumen constituents, methane emission, and growth performance of Holstein dairy steers. J Anim Sci 2014;92:465–74.

Eugène M, Archimède H, Sauvant D. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest Prod Sci 2004;95:61–67.

Field JA, Lettinga G. The methanogenic toxicity and anerobic degradability of a hydrolyzable tannin. Water Res 1987;21:367–74.

Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 1994;117:157–61.

Fiorentini G, Carvalho IPC, Messana JD, Castagnino PS, Berndt A, Canesic RN, Fregilho RTH, Berchielli TT. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers. J Anim Sci 2014;92:1613–20.

Garsa AK, Choudhury PK, Puniya AK, Dhewa T, Malik RK, Tomar SK. Bovicins: the bacteriocins of streptococci and their potential in methane mitigation. Probiotics Antimicrob Proteins 2021;13:1403–13.

Grainger C, Auldist MJ, Clarke T, Beauchemin KA, McGinn SM, Hannah MC, Eckard BJ, Love IB. Use of monensin controlled-release capsules to reduce methane emissions and improve milk production of dairy cows offered pasture supplemented with grass. J Dairy Sci 2008b;91:1155–69.

Grainger C, Clarke T, Auldist M, Beauchemin K, McGinn S, Waghorn G, Eckard BJ. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can J Anim Sci 2009;89:71–8.

Grainger C, Clarke T, Beauchemin KA, McGinn SM, Eckard BJ. Supplementation with whole cottonseed reduces methane emissions and can profitably increase milk production of dairy cows offered a forage and cereal grain diet. Aust J Exp Agric 2008a;48.

Pittore B, Tomkins NW, Kinyed RB, Bai M, Seymour S, Paul NA, de Nys R. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 2013;4:34–43.

Diné EC, Wagnér T, Shinma S, Prakash D, Cramin B, Yanez-Ruiz DR, et al. Mode of action revealed for the specific reduction of methane emissions from rumen microbes by the small molecule 3-nitrooxypropanol. Proc Natl Acad Sci U S A 2016;113:6172–77.
Jordan E, Lovett DK, Hawkins M, Callan JJ, O’Mara FP. The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers. Anim Sci 2007;85:283-91.

Jordan E, Lovett DK, Monahan FJ, Callan J, Flynn B, O’Mara FP. Effect of refined coconut oil or copra meal on methane output on intake and performance of beef heifers. J Anim Sci 2006b;84:162-70.

Jones EA, O’Mara FP, Callan J. The effect of dried oilseeds in diets of lactating cows on methane production and nitrogen excretion. J Dairy Sci 2002;85:1509-15.

Jones EA, Johnson KA, Nissen J, Johnston RR, Coalvölgyi IP, Berchielli TT. Methane emissions from Nellore bulls on pasture fed two levels of starch-based supplement with or without a source of oil. Anim Prod Sci 2019;59.

Kim S-H, Lee C, Pechtl HA, Hettick JM, Campier MR, Pairs-Garcia MD, Beauchemin KA, Celi D, Duval S, VM. Effects of 3-nitropropanoic acid on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high-forage or high-grain diet. J Anim Sci 1999;79:2867-99.

Kinley R, Fredeen A. In vitro evaluation of feeding North Atlantic stormtoss seaweed as the nitrogen source. J Anim Physiol Anim Nutr 2011;98:2378-93.

Kinley RD, Martinez-Fernández G, Matthews MK, de Nys R, Magounus R, Magnis TMW. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J Clean Prod 2020;255.

Klenvenhusen F, Zeitz JD, Duval S, Kreuzer M, Soliva CR. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Technol 2011;166:356-62.

Lanigan G. Metabolism of pyrrolizidine alkaloids in the ovine rumen. IV. Effects of chloral hydrate and halogenated methanes on rumen methanogenesis and alkaloid metabolism in fistulated sheep. Aust J Agric Res 1972;23:1085-91.

Lathum EA, Anderson RC, Pischak WE, Nibet DJ. Insights on alterations to the microbial ecosystem by nitrate and nitrite. Anim Sci 2015;98:227-38.

Lee C, Beauchemin KA. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Can J Anim Sci 2015;95:1-15.

Lee C, Araujo RC, Kreoug KM, Beauchemin KA. Effects of encapsulated nitrate on enteric methane production and nitrogen and energy utilization in beef heifers. J Anim Sci 2013;93:2391-404.

Lee C, Araujo RC, Kreoug KM, Beauchemin KA. Effects of encapsulated nitrate on growth performance, carcass characteristics, nitrate residues in tissues, and enteric methane emissions in beef steers: finishing phase. J Anim Sci 2017;95:4712-26.

Lewis D. The metabolism of nitrate and nitrite in the sheep: the reduction of nitrate in the rumen of the sheep. Biochem J 1951;48:175-80.

Li L, Davis J, Nolan J, Hegarty R. An initial investigation on rumen fermentation pattern and methane emissions of sheep offered diets containing urea or nitrate as the nitrogen source. J Dairy Sci 2012;95:5258-68.

Li L, Silveira CL, Nolan JV, Godwin IR, Leng RA, Hegarty RS. Effect of added dietary nitrate and elemental sulfur on wool growth and methane emission of Merino lambs. Anim Prod Sci 2013;53.

Li X, Norman HC, Kinley RD, Laurence M, Wilnrot M, Bender H, de Nys R, Tomkins N. Asparagus taxiformis decreases enteric methane production from sheep. Anim Prod Sci 2018;58:681-8.

Liu H, Vaddella V, Zhou D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J Dairy Sci 2011;94:6069-77.

Lopes J, de Matos L, Harper M, Giallongo F, Oh J, Gruen D, Ono S, Kindermann M, Meunier B, Doreau M, Morgavi DP, Silberberg M, Rochette Y, Latham EA, Anderson RC, Pinchak WE, Nisbet DJ. Insights on alterations to the microbial ecosystem by nitrate and nitrite. Anim Sci 2015;98:227-38.

Lopez J, de Matos L, Harper M, Giallongo F, Oh J, Gruen D, Ono S, Kindermann M, Meunier B, Doreau M, Morgavi DP, Silberberg M, Rochette Y, Latham EA, Anderson RC, Pinchak WE, Nisbet DJ. Insights on alterations to the microbial ecosystem by nitrate and nitrite. Anim Sci 2015;98:227-38.

Luo J, Maia MR, Fonseca AJ, Oliveira HM, Mendonça C, Cabrita AR. The potential role of pyrrolizidine alkaloids from black mustard in preventing methane production in bovine rumen. J Dairy Sci 2019;102:273-83.

Luo J, Maia MR, Fonseca AJ, Oliveira HM, Mendonça C, Cabrita AR. The potential role of pyrrolizidine alkaloids from black mustard in preventing methane production in bovine rumen. J Dairy Sci 2019;102:273-83.

Luo J, Maia MR, Fonseca AJ, Oliveira HM, Mendonça C, Cabrita AR. The potential role of pyrrolizidine alkaloids from black mustard in preventing methane production in bovine rumen. J Dairy Sci 2019;102:273-83.
Makkar HPS, Tran G, Heuzech V, Giger-Verdun S, Messier L, Lebas F, Ankers P, Seeweeds for livestock diets: a review. Anim Feed Sci Technol 2016;212:1-17.
Malki K, Kolte AP, Saravanam M, Bakshi B, Bharti R. Enteric methane mitigation in sheep through leaves of selected tanniniferous tropical tree spe-
cies. Livest Coat 2017;2020:29–34.
Mao H-L, Wang J-K, Zhou Y-V, Liu X-J. Effects of addition of tea saponins and soy-
bean oil on methanogenesis, fermentation, methane and microbial population in
the rumen of growing lambs. Livest Coat 2010;129:56–62.
Martin C, Ferlay A, Mosoni P, Rochette Y, Chilliard Y, Doreau M. Increasing linseed
supply in dairy cow diets based on hay or corn slilage: effect on enteric methane
emission, rumen microbial fermentation, and digestion. J Dairy Sci 2016;99:
3445–56.
Martin C, Morgavi DP, Doreau M. Methane mitigation in ruminants: from microbe
 to the farm scale. Animal 2010;4:351–65.
Martin C, Rogel J, Tantau K, Chilliard Y. Methane output and diet di-
gestibility in response to feeding dairy cows crude linseed, extruded linseed, or
limestone oil. J Anim Sci 2008;86:2642–50.
Martinez-Fernandez G, Duval S, Kindermann M, Schirra HJ, Dennen SM, McSweeney CS. 3-NOP vs. halogenated compounds: methane production, ruminal fermentation and microbial community response in forage fed cattle. Front Microbiol 2018:3;1582.
McGinn SM, Beauchemin KA, Coates T, Colombatto D. Methane emissions from beef
cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J
Anim Sci 2004;82;3346–56.
McGinn SM, Chung YH, Beauchemin KA, Iwaasa AD, Grainger C. Use of corn dis-
card as a source of 3-nitrooxypropanol (3-NOP) to reduce enteric methane emis-
sions from beef cattle. J Anim Sci 2014;92:1835–43.
McSweeney CS, Palmer B, McNeill DM, Krause DO. Microbial interactions with
plants: nitrification consequences for ruminants. Anim Feed Sci Technol 2008;
138:65–94.
Melgar A, Harper M, Oh J, Giannollo F, Young M, Ott T, Duval S, Hirato A. Effects of
3-nitroxypropanol on rumen fermentation, lactational performance, and resump-
tion of ovarian cyclicity in dairy cows. J Dairy Sci 2020;103:410–32.
Mensinga TT, Spieters GJA, Meulenbelt J. 17Health implications of exposure to
environmental nitrogenous compounds. Toxicol Rev 2003;22:41–51.
Moate PJ, Williams SR, Tonk AV, Hannah MC, Raimondi N, Schirra HJ, Dennen SM, McSweeney CS. 3-NOP vs. halogenated compounds: methane production, ruminal fermentation and microbial community response in forage fed cattle. Front Microbiol 2018:3;1582.
McGinn SM, Beauchemin KA, Coates T, Colombatto D. Methane emissions from beef
on diet alters digestibility, nitrogen balance, and energy partitioning. J Anim Sci
2004;82:3346.
Nolan JV, Hegarty J, Godwin IR, Woodgate R. Effects of dietary nitrate on
in vitro and in vivo methane production in lactating dairy cows. J Dairy Sci 2020;
103:410–32.
Nolan JV, Godwin IR, de Rapheils-Soisson V, Hegarty RS. Managing the rumen to
adapt to feed, microclimate, diet and managed-eating options. Philos Trans Royal Soc A 2021;379:20200452.
Reid JS, Chadwick DW. Air-sea flux of bromoform: controls, rates, and implications.
Global Biogeochem Cycles 2003;17.
Romero-Perez A, Okine E, McGinn S, Guan L, Oba M, Duval S, Kindermann M, Beauchemin K. The potential of 3-nitroxypropanol to lower enteric methane emissions from beef cattle. J Anim Sci 2014;92:4862–93.
Russell JB, Houlihan AJ. Ionophore resistance of ruminal bacteria and its potential
implication on human health. FEMS Microbiol Rev 2003;27:65–74.
Russell JB, Houlihan AJ. Ionophore resistance of ruminal bacteria and its potential
implication on human health. FEMS Microbiol Rev 2003;27:65–74.
Silva RA, Fiorentini G, Messana JD, Lage JF, Castagnino PS, San Vito E, Carvalho IPC,
Stefenoni HA, Rumbeli R, Mair P, Yeman H, Beilstein P. 3-NOP: ADME studies in rats and
human volunteers. Global Biogeochem Cycles 2003;17.
Van Adrichem P, Paton N, Perdok H. The effect of incremental levels of dietary
nitrate on enteric methane emissions from dairy cows. Livest Sci 2010;129:56–94.
Wapstra AK, Saxena J, Akter S, Koivula L, tiez JO, Kreuzer M, Soliva CR. Methane conversion rate of bulls fattened on dairy cows' diet reduces enteric methane emission by over 50 percent. J Anim Sci 2011;93:1312–20.
Williams SR, Singh-Uppal M, Smith S, Smith MJ, Morton JF, Hegarty M. Re-
framing the climate change debate in the livestock sector: mitigation and adap-
tation options. Wiley Interdisc Rev: Clim Change 2016;7(6):869–92.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
Zanella JJ, Milkowski AL. Human safety controversies surrounding nitrate and ni-	rate in food. Curr Opin Food Sci 2013;67:169–84.
