Dipper-Donkin algebra as global symmetry of quantum chains.

Suemi Rodríguez-Romo
Centre of Theoretical Research
Universidad Nacional Autónoma de México, Cuautitlán
Apdo. Postal 142, Cuautitlán Izcalli
Estado de México, 54740 México.*

Abstract. We analyze the role of GL_2, a quantum group constructed by Dipper and Donkin [1], as a global symmetry for quantum chains, and show the way to construct all possible Hamiltonians for four states quantum chains with GL_2 global symmetry. In doing this, we search all inner actions of GL_2 on the Clifford algebra $C(1,3)$ and show them. We also introduce the corresponding operator algebras, invariants and Hamiltonians, explicitly.

* e-mail: suemi@servidor.unam.mx
1 Introduction.

In the last few years, quasi triangular Hopf algebras or quantum groups have attracted a lot of attention from physicists. One of the most interesting features is that such structures can be related to underlying symmetries on spaces where the coordinates are noncommutative. Promoting these coordinates to functions, it has been shown that it is possible to write down an action for such fields that, when added to the action of a commuting field, has a symmetry resembling supersymmetry. Quantum groups can help us to understand the transformations on such fields and the action invariances.

Symmetry has always played an important role in theoretical physics in helping to reduce a problem with many variables to a more tractable size. The basis of the method built on Bethe Ansatz is to diagonalize the Hamiltonian along with an infinite set of constants of motion. In some cases the occurrence of this infinite set of constants of motion is related to the appearance of a new kind of symmetry, the quantum group symmetry. This nourishes the hope that, by relaxing the demands usually made on the structure of a symmetry group, and allowing the wider class of quantum groups, one can benefit from symmetry considerations in new situations, where a symmetry in the traditional sense is simply not present.

We model physical systems where the variables at the lattice sites take values so that the operators acting on them are matrices of dimension four by four and complex entries.

For some subclass of conformal integrable systems; well-know examples are given by the minimal models, the WZW models and Liouville-Toda theory, the underlying symmetries are indeed known to be given by quantum groups. However, in spite of extensive studies, our understanding of the quantum group symmetry in these theories is still somewhat incomplete. We also think that there are realizations of the quantum group symmetry in nature.

The adjoint inner actions studied here are also called spectrum generating
quantum group. So, we are classifying all possible roles of GL_2 as a spectrum generating algebra for $C(1,3)$. These inner actions have been used as a gauge transformation $H \rightarrow B$ in quantum group gauge theory. Here B is the space-time algebra and H the coordinate ring of the gauge group.

Quantum GL_n are unique because they are related with q-Schur algebras, hence Hecke algebras and the representation theory of finite general linear groups. In fact the representations of quantum GL_n provide the connection between the classical theory of polynomial representations of infinite general linear groups and the representation theory of finite general linear groups in the non-describing characteristic case; obviously if we take q to be 1, we are in the classical case. In this limit the representation theory of Dipper-Donkin quantum groups is equivalent to the representation theory of q-Schur algebras. From this follows that the importance of this paper is to gain an understanding of the q-Schur algebra as a global symmetry for quantum chains. We remark that the Dipper-Donkin quantum group are not special cases of the well known Manin’s construction. There is one fundamental difference: the Dipper-Donkin quantum determinant is in general not central.

Weyl and Clifford algebras are at the heart of quantum physics. The most useful of them are those endowed with definite transformation properties under the action of some symmetry group. The idea that quantum groups could generalize Lie groups in describing symmetries of quantum physical systems has attracted much interest in the past decade.

In this paper we study the inner action of the Dipper-Donkin quantum group on the $C(1,3)$ algebra, namely the algebra generated by the Dirac matrices, as a testing ground for applications of quantum group symmetries. We search for the corresponding operator and invariant algebras in order to have additional information to propose Hamiltonians for quantum chains with this global symmetry. Interpreting the quantum group as a gauge group, one would consider only the invariant elements as observables. The rest of the algebra would then be an algebra of unobservable fields, whose function in the theory is to describe operations changing the superselection sector.
(creating charge). Besides, we are interested in some fundamental questions. Can a quantum chain have global symmetry given by a quantum group with no central but group-like determinant? and what would it be the meaning of this?

We address here the first question and study (as a particular case) four states quantum chains. We are able of showing all possible, non-trivial Hamiltonians for this system, with Dipper-Donkin global symmetry.

Having discovered all the Hamiltonians which are invariant under the Dipper-Donkin quantum group for four states quantum chains, we think of these, as systems whose energy eigenstates organize into GL_2 multiplets, with no energy splitting among members of the same multiplet. This is done in spite of the fact that the GL_2 determinant is group-like as it should, but not central to the algebra, as it is the case.

2 Dipper-Donkin algebra.

The algebraic structure of Dipper-Donkin quantization GL_2 \[^{[1]}\] is generated by four elements c_{ij}, $1 \leq i, j \leq 2$ with relations which can be presented by the following diagram.

![Diagramatic representation of Dipper-Donkin algebra.](image)
Here we denote by arrows $x \rightarrow y$ the “quantum spinors” (or generators of the quantum plane [3]) $xy = qyx$. By straight line $x - y$ we denote the “classical spinors” $xy = yx$ and by dots $x \cdots y$ a classical spinor with a nontrivial perturbation [4], $xy - yx = p$ being $p = (q-1)c_{12}c_{21}$.

In this algebra the quantum determinant $d = c_{11}c_{22} - c_{12}c_{21}$ is noncentral and group-like. This, in contrast with Manin’s approach [3]. A group-like element d, in a Hopf algebra, is such that $\Delta d = d \otimes d$ and $\epsilon(d) = 1$. In any Hopf algebra every group-like element is invertible, therefore the quantum GL_2 includes the formal inverse d^{-1}.

The coalgebra structure is defined in the standard way for all quantizations and the antipode S is given in reference [1].

As we know, the Clifford algebra $C(1,3)$ is generated by the vectors γ_μ, $\mu = 0, 1, 2, 3$ with relations defined by the form $g_{\mu\nu} = \text{diag}(1, -1, -1, -1)$, as follows:

\[
\begin{align*}
\gamma_\mu \gamma_\nu &= g_{\mu\nu} + \gamma_{\mu\nu}, \quad \gamma_{\mu\nu} = -\gamma_{\nu\mu}; \\
\gamma_\rho \gamma_{\mu\nu} &= g_{\rho\mu} \gamma_\nu - g_{\rho\nu} \gamma_\mu + \gamma_{\rho\mu\nu}, \\
\gamma_\lambda \gamma_{\mu\nu\rho} &= g_{\lambda\mu} \gamma_{\nu\rho} - g_{\lambda\nu} \gamma_{\mu\rho} + g_{\lambda\rho} \gamma_{\mu\nu} + \gamma_{\lambda\mu\nu\rho}.
\end{align*}
\]

This algebra is isomorphic to the algebra of the 4×4 complex matrix and it includes the basis of matrix units reported in reference [4]; $e_{ij} = \delta_{ij} \gamma_0$, $1 \leq i, j \leq 4$, among others.

An action of GL_2 on $C(1,3)$ is uniquely defined by actions of c_{ij} on the generators of $C(1,3)$ [3][4];

\[
c_{ij} \cdot \gamma_k = f_{ijk}(\gamma_0, \gamma_1, \gamma_2, \gamma_3), \tag{1}
\]

where f_{ijk} are some noncommutative polynomials in four variables.

For every action \cdot there exist an invertible matrix $M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \in C(1,3)_{2 \times 2}$, such that

\[
c_{ij} \cdot v = \sum m_{ik}v_{mj}^*,
\]
where \(\left(\begin{array}{cc} m_{11}^* & m_{12}^* \\ m_{11}^* & m_{12}^* \end{array} \right) = M^{-1} \) (see Skolem-Noether theorem for Hopf algebras \[8\][9]). The action \(\cdot \) is called inner if the map \(c_{ij} \to m_{ij} \) defines an algebra homomorphism \(\varphi : GL_2 \to C(1, 3) \). Since the algebra \(C(1, 3) \) is isomorphic to the algebra of \(4 \times 4 \) matrices, the homomorphism \(C(1, 3) \) defines (and is defined by) a four dimensional module over (the algebraic structure of) \(GL_2 \), or, equivalently, a four dimensional representation of \(GL_2 \).

If \(\varphi(c_{12}c_{21})=0 \), then by definition in Figure 1 the representation \(\varphi \) is given for an essentially more simple structure, generated by two commuting "quantum spinors" \((c_{21}, c_{11}) \) and \((c_{22}, c_{12}) \). In the case when \(\varphi(c_{12}c_{21}) \neq 0 \) we say that the inner action defined by \(\varphi \) has nonzero perturbation.

If we add the formal inverse \(c_{11}^{-1} \), then the algebraic structure of Dipper-Donkin quantization \(GL_2 \) is generated by the elements in the following diagram.

\[
\begin{array}{c}
\begin{array{c}}}}}
generated by d, c_{12}, c_{21} with $CB \neq 0$.

Following the method already developed for studying the actions of $GL_q(2, C)$ on the Clifford algebra $C(1, 3)$ [5] we can construct all inner action of Dipper-Donkin quantization on this Clifford algebra, provided $q^m \neq 1$. We also can provide with the corresponding operator algebra \mathcal{R} (namely the image of the representation), the algebra of invariants I which is equal to the centralizer of \mathcal{R} in $C(1, 3)$, and the perturbation of the representation [4]. We define $c_{ij} \to C_{ij}$ to be a finite dimensional representation of the quantum GL_2.

Here, we summarize the method used in [4] and [5] to find and classify all possible inner actions of $GL_q(2, C)$ and GL_2 on $C(1, 3)$. The Hopf algebra $GL_q(2, C)$ is made out of q-spinors, classical spinors and a kind of perturbed spinors. The first and second types of spinors are defined as it is shown in this paper. For the perturbed spinors; in $GL_q(2, C)$, we consider $p = (q - q^{-1})a_{12}a_{21}$ meanwhile $p = (q - 1)c_{12}c_{21}$ for GL_2. Actually, $GL_q(2, C)$ can be presented as follows

\begin{equation}
\begin{array}{c}
\vdots \\
\, \\
\, \\
\vdots \\
\end{array}
\begin{array}{c}
| \quad | \\
\, \\
\, \\
\, \\
\end{array}
\begin{array}{c}
a_{11} \quad a_{12} \\
\, \\
\, \\
\, \\
\end{array}
\begin{array}{c}
| \quad | \\
\, \\
\, \\
\, \\
\end{array}
\begin{array}{c}
a_{21} \quad a_{22} \\
\, \\
\, \\
\, \\
\end{array}
\end{equation}

Figure 3. Diagramatic representation of $GL_q(2, C)$.

Being a_{11}, a_{12}, a_{21}, a_{22}, d^{-1} generators of the algebra. Here $d = a_{11}a_{22} - qa_{12}a_{21}$. By arrows we again denote q-spinors, by the straight line commuting elements (classical spinors) and by dots, perturbed spinors.

For any Hopf algebra that can be presented in terms of combinations of
q-spinors, classical spinors and perturbed spinors (whatever the definition of perturbed spinors is), we can use our method to find and fully classify all inner actions on any given algebra. So far we have used $C(1,3)$ as a particular example on which $GL_q(2,C)$ and GL_2 are acting but we want to stress that our method allows us to use any other algebra. We choose $C(1,3)$ since we want to have a realization isomorphic to the algebra of 4×4 complex matrices, having in mind further applications in quantum field theory. Moreover, in this paper some results are given in terms of matrix units.

At first, we study all possible q-spinor representations on $C(1,3)$ such that $q^3, q^4 \neq 1$ and analyze the equivalence of representations. Then, we simplify the algebraic structure of $GL_q(2,C)$ by defining an auxiliary algebra. From this, we find the representation of $SL_q(2,C)$ (provided $q^m \neq 1$) and connected $GL_q(2,C)$.

Our classification scheme uses this connection and follows straightforward. The operator algebras, the quantum determinants and the invariants of the corresponding inner actions can also be presented. Two of these given representations are equivalent if and only if they are equal to each other. From this, we learn that, for $GL_q(2,C)$, the quantum determinants are the only quantum invariants.

The Dipper-Donkin algebra GL_2 is also generated by q-spinors, classical spinors and a perturbated spinor, like $GL_q(2,C)$. Our method can be applied with some extra conditions coming from the particular structure of GL_2. Following the steps reported above we find, for GL_2, that the corresponding algebra of invariants equals the centralizer of coefficients of M. By definition, the centralizer commutes with all elements of the algebra, thereby defining Hamiltonians with conserved energy.

Whenever the algebra of invariants is in the field (complex for our case) the Hamiltonian obtained is trivial. Besides, if and only if $I \in \mathbb{R}$ the corresponding Hamiltonian can be defined, since this can be written in terms of the generators for GL_2. In any other case the invariant algebra cannot be used to construct Hamiltonians of a quantum chain.
3 Quantum chains with global Dipper-Donkin symmetry.

In this Section we learn about global quantum group symmetry. Although this does not lead straightforward to integrability, we hope to be able of giving some additional information related to this subject.

A method to construct quantum chains with symmetry associated to the algebra of functions on a particular quantum group has been recently used, for q being root of unity [10].

In this section we address the role of the Dipper-Donkin quantum group as a global symmetry and show that, contrary with general believe (see e.g. [10]), the mixing of the generators in the coproduct of the corresponding coalgebra of a quantum group is not sufficient condition to construct a non trivial Hamiltonian for quantum chains. See, for instance, the constructions shown in references [11], [12], [13] and [14].

A quantum chain with global quantum group symmetry can be defined as follows [10], [11]; to each site $j = 1, ..., L$ of the chain, we assign a representation π_j. We write the Hamiltonian

$$H = \sum_{j=1}^{L-1} id \otimes ... \otimes id \otimes H_j \otimes id \otimes ... \otimes id,$$

where H_j acts on sites j and $j + 1$ as

$$H_j = (\pi_j \otimes \pi_{j+1}) [Q_j(\Delta(C))].$$

Here j denotes the site of the lattice, C is a central element of the algebra, by π_j we mean a representation for the algebra and Q_j is a polynomial function.

Let us study, at first, when q is root of unity. In this case, this polynomial function can be taken of degree $d \leq p$ where the integer p is characterized by the value of q ($q^p=1$) as is done in references [10] and [11].

If q is a root of unity ($q^p = 1$), all the elements e_{ij}^p are central. In this case, one can uniquely define a state $|0\rangle$ which is a common eigenvector of
c_{22} and c_{21} with eigenvalues α and $\alpha \beta$ (α and β being arbitrary constants), respectively. Then we build the space V as the linear span of the vectors

\[|n\rangle = c_{12}^n |0\rangle, \quad 0 \leq n \leq p - 1. \]

We can show that V is an invariant vector space under the action of the Dipper-Donkin quantum group. Thus, we construct π_j as follows

\begin{align*}
 c_{12}|n\rangle &= |n + 1\rangle \quad \text{for} \quad n < p - 1 \\
 c_{11}|n\rangle &= \beta |n + 1\rangle \quad \text{for} \quad n < p - 1 \\
 c_{21}|n\rangle &= q^n \alpha \beta |n\rangle \\
 c_{22}|n\rangle &= \alpha |n\rangle \\
 c_{12}|p - 1\rangle &= \eta |0\rangle \\
 c_{11}|p - 1\rangle &= \beta \eta |0\rangle.
\end{align*}

Here η is the central value of c_{12}^p. All the parameters are independent.

We would like to remark that, in spite of the mixing of the generators in the coproduct for the Dipper-Donkin algebra which has the same structure than the coproduct defined for $GL_q(n)$, the Dipper-Donkin algebra leads only to trivial Hamiltonians (proportional to the identity). This is true, even for the two states quantum chains for which it is known that a $GL_q(2)$ global symmetry can be implemented [10].

Now, let us study the case $q^m \neq 1$. We introduce here an alternative way to build up Hamiltonians with Dipper-Donkin quantum global symmetry. Since for any Dipper-Donkin quantum group the quantum determinant is group-like but not central and the invariants I are central, we can define a Hamiltonian as follows

\[H_j = (\pi_j \otimes \pi_{j+1})[Q_j(\Delta(I))]. \]

Our method works only for $q^m \neq 1$. Here Q_j is any polinomial function.

We propose, as a particular case, to study the Dipper-Donkin algebra like a global symmetry of four states quantum chains. This is done by searching all possible finite dimensional representations of the Dipper-Donkin group on the algebra of 4×4 complex matrices on which a well defined coproduct for the algebra of invariants can be applied. Here π_j is one of a this representations.

In next Table we give the full set of all possible inner actions that, being non trivial, are in the operator algebra \mathcal{R}; thereby properly defining $\Delta(I)$ and
a corresponding Hamiltonian. Each particular case provides a Hamiltonian with quantum Dipper-Donkin global symmetry for a four states quantum chain. An important result of this paper is that for all the cases reported in next Table the Hamiltonians for four states quantum chains with Dipper-Donkin global symmetry have the unique form

\[H_j = (\pi_j \otimes \pi_{j+1})[Q_j(\Delta(A_j d + B_j C_{11} + C_j C_{22})]] \]

being \(A_j, B_j \) and \(C_j \) some constants also given in the Table. This, together with the representation of the \(GL_2 \) generators, straightforward leads to a Hamiltonian written in matrix units, Dirac gamma matrices or “mass” \(m_{\pm}=(1 \pm \gamma_0)/2 \) and “spin” \(s_{\uparrow/\downarrow}=(1 \pm i\gamma_{12})/2 \) operators.

Let us now introduce some concrete examples for each case (namely particular form of the quantum determinant). To reach this goal we obtain at first \((\pi_j \otimes \pi_{j+1})[Q_j(\Delta(C_{11})] \). Explicitly,

\[
(\pi_j \otimes \pi_{j+1})[Q_j(\Delta(C_{11} \otimes C_{11}) + Q_j(\Delta(C_{12} \otimes C_{21})) = \\
\pi_j[Q_j(C_{11}) \otimes \pi_{j+1}[Q_j(C_{11}) + \pi_j[Q_j(C_{12}) \otimes \pi_{j+1}[Q_j(C_{21})].
\]

We consider the simplest case and take \(Q_j \) to be lineal. In a similar way we get \((\pi_j \otimes \pi_{j+1})[Q_j(\Delta(C_{22})] \). Explicitly

\[
(\pi_j \otimes \pi_{j+1})[Q_j(\Delta(C_{21} \otimes C_{12}) + Q_j(\Delta(C_{22} \otimes C_{22})) = \\
\pi_j[Q_j(C_{21}) \otimes \pi_{j+1}[Q_j(C_{12}) + \pi_j[Q_j(C_{22}) \otimes \pi_{j+1}[Q_j(C_{22})].
\]

Again we consider the simplest case and take \(Q_j \) to be lineal. At last, we obtain \((\pi_j \otimes \pi_{j+1})[Q_j(\Delta(d)) \). Explicitly

\[
(\pi_j \otimes \pi_{j+1})[Q_j(\Delta(d \otimes d)) = \\
\pi_j[Q_j(C_{11}C_{22})] \otimes \pi_{j+1}[Q_j(C_{11}C_{22})] - \pi_j[Q_j(C_{11}C_{22})] \otimes \pi_{j+1}[Q_j(C_{12}C_{21})] - \\
\pi_j[Q_j(C_{12}C_{21})] \otimes \pi_{j+1}[Q_j(C_{11}C_{22})] + \pi_j[Q_j(C_{12}C_{21})] \otimes \pi_{j+1}[Q_j(C_{12}C_{21})].
\]

As usual, we consider \(Q_j \) to be lineal.

We are now ready to present concrete examples.

CASE 2.2)

\[H_j = (m_+s_\uparrow + \alpha_j m_+s_\downarrow + \beta_j m_-s_\uparrow + \gamma_j m_-s_\downarrow) \otimes \]
\((m_+ s_\uparrow + \alpha_{j+1} m_+ s_\uparrow + \beta_{j+1} m_- s_\uparrow + \gamma_{j+1} m_- s_\downarrow) \)

CASE 3.5

\[
H_j = \left(q^2 / \alpha_j m_+ s_\uparrow + q^2 / \alpha_j m_+ s_\downarrow + m_- s_\uparrow + m_- s_\downarrow - q^2 / \alpha_j^2 m_+ (\gamma_1 + i \gamma_2) \gamma_3 / 2 \right) \otimes \\
\left(q^2 / \alpha_{j+1} m_+ s_\uparrow + q^2 / \alpha_{j+1} m_+ s_\downarrow + m_- s_\uparrow + m_- s_\downarrow - q^2 / \alpha_{j+1}^2 m_+ (\gamma_1 + i \gamma_2) \gamma_3 / 2 \right)
\]

CASE 4.4

\[
H_j = \\
A_j \left(\alpha_j m_+ s_\uparrow + q^2 m_+ s_\downarrow + q m_- s_\uparrow + m_- s_\downarrow \right) \otimes \left(\alpha_{j+1} m_+ s_\uparrow + q^2 m_+ s_\downarrow + q m_- s_\uparrow + m_- s_\downarrow \right) \\
+ B_j \left(\delta_j m_+ s_\uparrow + q m_+ s_\downarrow + q m_- s_\uparrow + m_- s_\downarrow \right) \otimes \left(\delta_{j+1} m_+ s_\uparrow + q m_+ s_\downarrow + q m_- s_\uparrow + m_- s_\downarrow \right) \\
- B_j \gamma_j \beta_{j+1} m_+ (\gamma_1 - i \gamma_2) / 2 \otimes m_- (- \gamma_1 + i \gamma_2) \gamma_3 / 2 + \\
C_j \left(\alpha_j / \delta_j m_+ s_\uparrow + q m_+ s_\downarrow + m_- s_\uparrow + m_- s_\downarrow \right) \otimes \left(\alpha_{j+1} / \delta_{j+1} m_+ s_\uparrow + q m_+ s_\downarrow + q m_- s_\uparrow + m_- s_\downarrow \right) \\
- C_j \gamma_{j+1} \beta_{j+1} m_- (- \gamma_1 + i \gamma_2) \gamma_3 / 2 \otimes m_+ (\gamma_1 - i \gamma_2) / 2.
\]

CASE 5.5

\[
H_j = \left(q^2 \beta_j m_+ s_\uparrow + q^2 \beta_j m_+ s_\downarrow + q^2 \beta_j m_- s_\uparrow + \delta_j m_- s_\downarrow + \beta_j m_+ (\gamma_1 + i \gamma_2) \gamma_3 / 2 \right) \otimes \\
\left(q^2 \beta_{j+1} m_+ s_\uparrow + q^2 \beta_{j+1} m_+ s_\downarrow + q^2 \beta_{j+1} m_- s_\uparrow + \delta_{j+1} m_- s_\downarrow + \beta_{j+1} m_+ (\gamma_1 + i \gamma_2) \gamma_3 / 2 \right)
\]

CASE 6.10

\[
H_j = A_j \left(q^2 m_+ s_\uparrow + q m_+ s_\downarrow + m_- s_\uparrow + m_- s_\downarrow + m_- (\gamma_1 + i \gamma_2) \gamma_3 / 2 \right) \otimes \\
\left(q^2 m_+ s_\uparrow + q m_+ s_\downarrow + m_- s_\uparrow + m_- s_\downarrow \right) - \\
B_j \left(1 + m_- (\gamma_1 + i \gamma_2) \gamma_3 / 2 \right) \otimes \left(1 + m_- (\gamma_1 + i \gamma_2) \gamma_3 / 2 \right) + \\
C_j \left(q^2 m_+ s_\uparrow + q m_+ s_\downarrow + m_- s_\uparrow + m_- s_\downarrow \right) \otimes \left(q^2 m_+ s_\uparrow + q m_+ s_\downarrow + m_- s_\uparrow + m_- s_\downarrow \right)
\]

From these concrete examples it is straightforward to see that the Hamiltonians we have introduced are somehow related with Ashkin-Teller model written in terms of Ising spin; namely with each site \(i \) we associate two spins (in our case, \(m_\pm \) and \(s_{\uparrow/\downarrow} \)).
Some additional standard symmetries can also be identified. For example, in CASE 3.5), there is an invariance under the transformation $s_\uparrow \rightarrow s_\downarrow$.

Finally, in next Table, we explicitly show all the inner actions of GL_2 on $C(1,3)$ which can provide with non trivial Hamiltonians for four states quantum chains with Dipper-Donkin quantum global symmetry, the operator algebra R, the algebra of invariants I and the value of the coefficients A_j, B_j and C_j in the unique expression for the corresponding Hamiltonians. In all the reported cases the perturbation is zero.
CASE 1) $d = \text{diag}(q^2, q, 1, 1)$

CASE 1.1) $C_{12} = \alpha e_{12} + \beta e_{24}$	$C_{21} = 0$	$C_{11} = 1 + e_{34}$	$C_{22} = q^2 e_{11} + q e_{22} + e_{33} + e_{44} - e_{34}$	$\mathcal{R} = \begin{pmatrix} * & * & 0 & 0 \\ 0 & * & 0 & * \\ 0 & 0 & \epsilon & * \\ 0 & 0 & 0 & \epsilon \end{pmatrix}$
$\dim \mathcal{R}$	6	$I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & \gamma \\ 0 & 0 & 0 & \alpha \end{pmatrix}$	$A_j = C_j = 0$	
$\dim I$	2			

CASE 1.2) $C_{12} = 0$	$C_{21} = \alpha e_{21} + \beta e_{32}$	$C_{11} = e_{11} + q^{-1} e_{22} + q^{-2} e_{33} + q^{-2} e_{44} + e_{34}$	$C_{22} = q^2 1 - q^4 e_{34}$	$\mathcal{R} = \begin{pmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & * & \epsilon & * \\ 0 & 0 & 0 & \epsilon \end{pmatrix}$
$\dim \mathcal{R}$	6	$I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \alpha \end{pmatrix}$	$A_j = B_j = 0$	
$\dim I$	2			

CASE 1.3) $C_{12} = \alpha e_{12}$	$C_{21} = \beta e_{32}$	$C_{11} = e_{11} + e_{22} + q^{-1} e_{33} + q^{-1} e_{44} + e_{34}$	$C_{22} = q^2 e_{11} + q e_{22} + q e_{33} + q e_{44} - q^2 e_{34}$	$\mathcal{R} = \begin{pmatrix} * & * & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & * & \epsilon & * \\ 0 & 0 & 0 & \epsilon \end{pmatrix}$
$\dim \mathcal{R}$	6	$I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \alpha \end{pmatrix}$	$A_j = -C_j = -\alpha q^{-1}$	
$\dim I$	2	$B_j = \alpha$		
CASE 2) \(d = \text{diag}(q^2, q, q, 1) \)

| CASE 2.1) | \[C_{12} = q\lambda \delta e_{13} \]
| | \[C_{21} = \delta e_{43} \]
| | \[C_{11} = e_{11} + \alpha e_{22} + e_{33} + q^{-1}e_{44} \]
| | \[C_{22} = q^2 e_{11} + q\alpha^{-1} e_{22} + q e_{33} + q e_{44} \]
| \(\alpha \neq 1 \) | | \[\mathcal{R} = \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & * & * \end{pmatrix} \]
| | | \[A_j = -C_j = \frac{\alpha(q^{-1} - 1)}{q^{-1}} \]
| | | \[B_j = \alpha \]
| \(\dim \mathcal{R} \) | \(6 \)
| \(\dim I \) | \(2 \)
| | \(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \alpha \end{pmatrix} \)
| \[
\begin{array}{c}
\text{CASE 2.2)} \\
C_{12} = 0; \quad \alpha \neq \beta \neq \gamma \neq 1 \\
C_{21} = 0 \\
C_{11} = e_{11} + \alpha e_{22} + \beta e_{33} + \gamma e_{44} \\
C_{22} = q^2 e_{11} + q\alpha^{-1} e_{22} + q\beta^{-1} e_{33} + \gamma^{-1} e_{44}
\end{array}
\]
| \(\dim \mathcal{R} \) | \(4 \)
| \(\dim I \) | \(4 \)
| | \(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \delta \end{pmatrix} \)
| \[A_j = C_j = 0 \]
| \[
\begin{array}{c}
\text{CASE 2.3)} \\
C_{12} = 0; \quad \alpha \neq \beta \\
C_{21} = 0 \\
C_{11} = e_{11} + \alpha e_{22} + \beta e_{33} + \gamma e_{44} \\
C_{22} = q^2 e_{11} + \frac{2}{\alpha} e_{22} + \frac{\beta}{\gamma} e_{33} + \gamma^{-1} e_{44}
\end{array}
\]
| \(\dim \mathcal{R} \) | \(4 \)
| \(\dim I \) | \(4 \)
| | \(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \delta \end{pmatrix} \)
| \[A_j = C_j = 0 \]
| CASE 2.4) | \(C_{12} = 0 \)
| | \(C_{21} = 0 \)
| | \(C_{11} = e_{11} + \alpha e_{22} + \alpha e_{33} + \beta e_{44} + e_{23} \)
| | \(C_{22} = q^2 e_{11} + \frac{q}{\alpha} e_{22} + \frac{q}{\alpha} e_{33} + \frac{1}{\beta} e_{44} - \frac{q}{\alpha^2} e_{23} \)
| | \(\Re = \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & \epsilon & * & 0 \\ 0 & 0 & \epsilon & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \)
| \(\dim \Re \) | 4
| \(\dim I \) | 4
| | \(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \gamma & \delta & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix} \)
| | \(A_j = B_j = 0 \)

| CASE 2.5) | \(C_{12} = q \lambda \delta e_{13} \)
| | \(C_{21} = \delta e_{43} \)
| | \(C_{11} = e_{11} + e_{22} + e_{33} + q^{-1} e_{44} + e_{23} \)
| | \(C_{22} = q^2 e_{11} + q e_{22} + q e_{33} + q e_{44} - q e_{23} \)
| | \(\Re = \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & \epsilon & * & 0 \\ 0 & 0 & \epsilon & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \)
| \(\dim \Re \) | 6
| \(\dim I \) | 2
| | \(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & \beta & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \alpha \end{pmatrix} \)
| | \(A_j = -C_j = \frac{\alpha(q^{-1}-1)}{q-1} \)
| | \(B_j = \alpha \)

| CASE 2.6) | \(C_{12} = 0 \)
| | \(C_{21} = 0 \)
| | \(C_{11} = e_{11} + \alpha e_{22} + \alpha e_{33} + \beta e_{44} + e_{23} \)
| | \(C_{22} = q^2 e_{11} + \frac{q}{\alpha} e_{22} + \frac{q}{\alpha} e_{33} + \frac{1}{\beta} e_{44} - \frac{q}{\alpha^2} e_{23} \)
| | \(\Re = \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & \epsilon & * & 0 \\ 0 & 0 & \epsilon & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \)
| \(\dim \Re \) | 4
| \(\dim I \) | 3
| | \(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & \gamma & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \alpha \end{pmatrix} \)
| | \(A_j = B_j = 0 \)

16
CASE 3) $d=\text{diag}(q^2, q^2, q, 1)$

CASE 3.1)	$C_{12} = \alpha e_{13} + \gamma e_{34}$	$\mathcal{R} = \begin{pmatrix} \epsilon & * & * & * \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$
$\dim \mathcal{R}$	7	$A_j = C_j = 0$
$\dim I$	2	

CASE 3.2)	$C_{12} = \gamma e_{34}$	$\mathcal{R} = \begin{pmatrix} \epsilon & * & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$
$\dim \mathcal{R}$	6	$A_j = -C_j = -q^{-1}\alpha$
$\dim I$	2	$B_j = \alpha$

CASE 3.3)	$C_{12} = \gamma e_{34}$	$\mathcal{R} = \begin{pmatrix} \epsilon & * & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$
$\dim \mathcal{R}$	5	$A_j = C_j = 0$
$\dim I$	3	
CASE 3.4	$C_{12} = \beta e_{23}$	
$C_{21} = \gamma e_{43}$		
$C_{11} = \alpha e_{11} + q e_{22} + q e_{33} + e_{44}$		
$C_{22} = \frac{q^2}{\alpha} e_{11} + q e_{22} + e_{33} + e_{44}$		
$\alpha \neq q$	$\Re = \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & * & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & * & * \end{pmatrix}$	
---	---	---
$\dim \Re$	6	
$\dim I$	2	
I	$\begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix}$	$A_j = -B_j = -q^{-1} \alpha$
$C_j = \alpha$ |

| CASE 3.5 | $C_{12} = 0$
$C_{21} = \gamma e_{43}$
$C_{11} = \alpha e_{11} + \alpha e_{22} + q e_{33} + e_{44} + e_{12}$
$C_{22} = \frac{q^2}{\alpha} e_{11} + \frac{q^2}{\alpha} e_{22} + e_{33} + e_{44} - \frac{q^2}{\alpha^2} e_{12}$ | $\Re = \begin{pmatrix} \epsilon & * & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & * & * \end{pmatrix}$ |
| --- | --- | --- |
| $\dim \Re$ | 5
$\dim I$ | 3 |
| I | $\begin{pmatrix} \beta & \varphi & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \alpha \end{pmatrix}$ | $A_j = B_j = 0$ |

| CASE 3.6 | $C_{12} = \alpha e_{13}$
$C_{21} = \gamma e_{43}$
$C_{11} = q e_{11} + \alpha e_{22} + q e_{33} + e_{44}$
$C_{22} = q e_{11} + \frac{q^2}{\alpha} e_{22} + e_{33} + e_{44}$
$\alpha \neq q$ | $\Re = \begin{pmatrix} * & 0 & * & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & * & * \end{pmatrix}$ |
| --- | --- | --- |
| $\dim \Re$ | 6
$\dim I$ | 2 |
| I | $\begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \alpha \end{pmatrix}$ | $A_j = -B_j = -q^{-1} \alpha$
$C_j = \alpha$ |
CASE 3.7)

		\mathbb{R} =
	$C_{12} = \alpha e_{13}$	$$\begin{pmatrix} \epsilon & \ast & \ast & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & \ast & \ast \end{pmatrix}$$
	$C_{21} = \gamma e_{43}$	
	$C_{11} = q e_{11} + q e_{22} + q e_{33} + e_{44} + e_{12}$	
	$C_{22} = q e_{11} + q e_{22} + e_{33} + e_{44} - e_{12}$	

		$I = \begin{pmatrix} \alpha & \beta & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \alpha \end{pmatrix}$
		$A_j = -C_j = -q^{-1}\alpha$
		$B_j = \alpha$

| dim\mathbb{R} | 6 |
| dimI | 2 |

19
CASE 4) \(d = \text{diag}(\alpha, q^2, q, 1) \)

\(\alpha \neq 0, q^{-1}, 1, q, q^2, q^3 \)

CASE 4.1) \(\alpha \neq 0 \)	\(C_{12} = 0 \)	\(C_{11} = \delta e_{11} + q^2 e_{22} + q e_{33} + e_{44} \)	\(\mathbb{R} = \begin{pmatrix} \ast & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & * & * & 0 \\ 0 & 0 & * & * \end{pmatrix} \)
\(C_{21} = \gamma e_{32} + \beta e_{43} \)	\(C_{22} = \frac{\alpha}{\beta} e_{11} + e_{22} + e_{33} + e_{44} \)	\(\dim \mathbb{R} = 6 \)	\(\dim I = 2 \)
\(I = \begin{pmatrix} \beta & 0 & 0 & 0 \\ 0 & \gamma & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \gamma \end{pmatrix} \)	\(A_j = B_j = 0 \)		

CASE 4.2) \(C_{12} = \beta e_{23} + \gamma e_{34} \)	\(C_{21} = 0 \)	\(C_{11} = \delta e_{11} + e_{22} + e_{33} + e_{44} \)	\(\mathbb{R} = \begin{pmatrix} \ast & 0 & 0 & 0 \\ 0 & * & * & 0 \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix} \)
\(C_{22} = \frac{\alpha}{\beta} e_{11} + q^2 e_{22} + q e_{33} + e_{44} \)	\(\dim \mathbb{R} = 6 \)	\(\dim I = 2 \)	\(\dim I = 2 \)
\(I = \begin{pmatrix} \gamma & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix} \)	\(A_j = C_j = 0 \)		

CASE 4.3) \(C_{12} = \beta e_{34} \)	\(C_{21} = \gamma e_{32} \)	\(C_{11} = \delta e_{11} + q e_{22} + e_{33} + e_{44} \)	\(\mathbb{R} = \begin{pmatrix} \ast & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & * & * & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \)
\(C_{22} = \frac{\alpha}{\beta} e_{11} + q e_{22} + e_{33} + e_{44} \)	\(\dim \mathbb{R} = 6 \)	\(\dim I = 2 \)	\(\dim I = 2 \)
\(I = \begin{pmatrix} \gamma & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix} \)	\(A_j = -C_j = -q^{-1} \beta \)	\(B_j = \beta \)	
CASE 4.4)

\(C_{12} \)	\(C_{21} \)	\(C_{11} \)	\(C_{22} \)
\(\gamma e_{23} \)	\(\beta e_{43} \)	\(\delta e_{11} + q e_{22} + q e_{33} + e_{44} \)	\(\alpha e_{11} + q e_{22} + e_{33} + e_{44} \)

\[
\Re = \begin{pmatrix}
* & 0 & 0 & 0 \\
0 & * & * & 0 \\
0 & 0 & * & 0 \\
0 & 0 & * & *
\end{pmatrix}
\]

\(\dim \Re \)	\(I \)	\(A_j = -B_j = -q^{-1} \beta \)	\(C_j = \beta \)
6	\(I = \begin{pmatrix}		
\gamma & 0 & 0 & 0 \\			
0 & \beta & 0 & 0 \\			
0 & 0 & \beta & 0 \\			
0 & 0 & 0 & \beta			
\end{pmatrix} \)			
\(\dim \mathcal{I} \)	2		

21
\[
\text{CASE 5) } d = \text{diag}(q^2, q^2, q, 1) + e_{12}
\]

| CASE 5.1) | \[C_{12} = 0
C_{21} = \alpha e_{43}
C_{11} = q^2 \beta e_{11} + q^2 \beta e_{22} + q \gamma e_{33} + \gamma e_{44} + \beta e_{12}
C_{22} = \beta^{-1} e_{11} + \beta^{-1} e_{22} + q \gamma^{-1} e_{33} + \gamma^{-1} e_{44}\] | \[\Re = \begin{pmatrix}
\epsilon & * & 0 & 0 \\
0 & \epsilon & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & * & * \\
\end{pmatrix}\] |
| --- | --- | --- |
| \[\dim \Re = 5\] | \[\dim I = 3\] | \[I = \begin{pmatrix}
\beta & \gamma & 0 & 0 \\
0 & \beta & 0 & 0 \\
0 & 0 & \alpha & 0 \\
0 & 0 & 0 & \alpha \\
\end{pmatrix}\] | \[A_j = -\gamma B_j - \gamma^{-1} C_j\] |

| CASE 5.2) | \[C_{12} = \alpha e_{13} + \beta e_{34}
C_{21} = 0
C_{11} = q^2 e_{11} + q^2 e_{22} + q^2 e_{33} + q^2 e_{44} + e_{12}
C_{22} = e_{11} + e_{22} + q^{-1} e_{33} + q^{-2} e_{44}\] | \[\Re = \begin{pmatrix}
\epsilon & * & * & 0 \\
0 & \epsilon & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & * \\
\end{pmatrix}\] |
| --- | --- | --- |
| \[\dim \Re = 6\] | \[\dim I = 2\] | \[I = \begin{pmatrix}
\alpha & \beta & 0 & 0 \\
0 & \alpha & 0 & 0 \\
0 & 0 & \alpha & 0 \\
0 & 0 & 0 & \alpha \\
\end{pmatrix}\] | \[A_j = C_j = 0\] |

| CASE 5.3) | \[C_{12} = \alpha e_{34}
C_{21} = \beta e_{32}
C_{11} = q^2 e_{11} + q^2 e_{22} + q e_{33} + q e_{44} + e_{12}
C_{22} = e_{11} + e_{22} + e_{33} + q^{-1} e_{44}\] | \[\Re = \begin{pmatrix}
\epsilon & * & 0 & 0 \\
0 & \epsilon & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & * \\
\end{pmatrix}\] |
| --- | --- | --- |
| \[\dim \Re = 6\] | \[\dim I = 2\] | \[I = \begin{pmatrix}
\alpha & \beta & 0 & 0 \\
0 & \alpha & 0 & 0 \\
0 & 0 & \alpha & 0 \\
0 & 0 & 0 & \alpha \\
\end{pmatrix}\] | \[A_j = -B_j = -q^{-1} \beta
c_j = \beta\] |
| CASE 5.4 | \[C_{12} = \alpha e_{34} \]
| \[C_{21} = 0 \]
| \[C_{11} = q^2 \beta e_{11} + q^2 \beta e_{22} + \gamma e_{33} + \beta e_{12} \]
| \[C_{22} = \beta^{-1} e_{11} + \beta^{-1} e_{22} + q \gamma^{-1} e_{33} + \gamma^{-1} e_{44} \] | \[\mathcal{R} = \begin{pmatrix} \epsilon & * & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix} \]
| |
| \[\text{dim} \mathcal{R} \]
| 5
| \[\text{dim} I \]
| 3
|
| | \[I = \begin{pmatrix} \alpha & \gamma & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix} \]
|
| \[A_j = C_j = 0 \]
|
| CASE 5.5 | \[C_{12} = \alpha e_{13} \]
| \[C_{21} = 0 \]
| \[C_{11} = q^2 \beta e_{11} + q^2 \beta e_{22} + q^2 \beta e_{33} + \delta e_{44} + \beta e_{12} \]
| \[C_{22} = \beta^{-1} e_{11} + \beta^{-1} e_{22} + q \gamma^{-1} \beta^{-1} e_{33} + \delta^{-1} e_{44} \] | \[\mathcal{R} = \begin{pmatrix} \epsilon & * & * & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \]
| |
| \[\text{dim} \mathcal{R} \]
| 5
| \[\text{dim} I \]
| 3
|
| | \[I = \begin{pmatrix} \alpha & \gamma & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix} \]
|
| \[A_j = C_j = 0 \]
|
| CASE 5.6 | \[C_{12} = 0 \]
| \[C_{21} = \alpha e_{32} \]
| \[C_{11} = q^2 \beta e_{11} + q^2 \beta e_{22} + q^2 \beta e_{33} + \delta e_{44} + \beta e_{12} \]
| \[C_{22} = \beta^{-1} e_{11} + \beta^{-1} e_{22} + \beta^{-1} e_{33} + \delta^{-1} e_{44} \] | \[\mathcal{R} = \begin{pmatrix} \epsilon & * & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \]
| |
| \[\text{dim} \mathcal{R} \]
| 5
| \[\text{dim} I \]
| 3
|
| | \[I = \begin{pmatrix} \alpha & \gamma & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix} \]
|
| \[A_j = -\beta B_j = -b \beta \]
|
| CASE 5.7 | \[C_{12} = 0 \]
| \[C_{21} = 0 \]
| \[C_{11} = q^2 \alpha e_{11} + q^2 \alpha e_{22} + \beta e_{33} + \gamma e_{44} + \alpha e_{12} \]
| \[C_{22} = \alpha^{-1} e_{11} + \alpha^{-1} e_{22} + q \beta^{-1} e_{33} + \gamma^{-1} e_{44} \] | \[\mathcal{R} = \begin{pmatrix} \epsilon & * & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \]
| |
| \[\text{dim} \mathcal{R} \]
| 4
| \[\text{dim} I \]
| 4
|
| | \[I = \begin{pmatrix} \gamma & \varphi & 0 & 0 \\ 0 & \gamma & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \alpha \end{pmatrix} \]
|
| \[A_j = C_j = 0 \]
|
| 23
CASE 6) \(d = \text{diag}(q^2, q, 1, 1) + e_{34} \)

CASE 6.1)	\(C_{12} = 0 \)	\(C_{21} = \alpha e_{21} \)	\(C_{11} = q\beta e_{11} + \beta e_{22} + \gamma e_{33} + \delta e_{44} + \delta e_{34} \)	\(C_{22} = q\beta^{-1} e_{11} + q\beta^{-1} e_{22} + \gamma^{-1} e_{33} + \delta^{-1} e_{44} \)	either \(\gamma = \delta = \beta \) or \(\gamma = \delta = q\beta \)	\(\text{or } \gamma = \delta \neq \beta \) or \(\gamma = \delta \neq q\beta \)	\(\mathbb{R} = \begin{pmatrix} * & 0 & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & \epsilon & * \\ 0 & 0 & 0 & \epsilon \end{pmatrix} \)	\(\dim \mathbb{R} = 5 \)	\(\dim I = 3 \)	\(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \beta & \gamma \\ 0 & 0 & 0 & \beta \end{pmatrix} \)	\(A_j = -q^{-1} \beta B_j \)	
CASE 6.2)	\(C_{12} = 0 \)	\(C_{21} = \alpha e_{21} \)	\(C_{11} = q\beta e_{11} + \beta e_{22} + \gamma e_{33} + \delta e_{44} + \delta e_{34} \)	\(C_{22} = q\beta^{-1} e_{11} + q\beta^{-1} e_{22} + \gamma^{-1} e_{33} + \delta^{-1} e_{44} \)	neither \(\gamma = \delta = \beta \) nor \(\gamma = \delta = q\beta \)	\(\text{nor } \gamma = \delta \neq \beta \) nor \(\gamma = \delta \neq q\beta \)	\(\mathbb{R} = \begin{pmatrix} * & 0 & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix} \)	\(\dim \mathbb{R} = 6 \)	\(\dim I = 2 \)	\(I = \begin{pmatrix} \beta & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \alpha \end{pmatrix} \)	\(A_j = \frac{\delta^{-1} \gamma^{-1} C_j}{\gamma - \delta} \)	\(B_j = \frac{\delta^{-1} \gamma^{-1} C_j}{\gamma - \delta} \)
CASE 6.3)	\(C_{12} = \alpha e_{24} + \beta e_{12} \)	\(C_{21} = 0 \)	\(C_{11} = 1 + e_{34} \)	\(C_{22} = q^2 e_{11} + qe_{22} + e_{33} + e_{44} \)	\(\mathbb{R} = \begin{pmatrix} * & * & 0 & 0 \\ 0 & * & 0 & * \\ 0 & 0 & \epsilon & * \\ 0 & 0 & 0 & \epsilon \end{pmatrix} \)	\(\dim \mathbb{R} = 6 \)	\(\dim I = 2 \)	\(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \alpha \end{pmatrix} \)	\(A_j = C_j = 0 \)			
CASE 6.4)

\[
\begin{align*}
C_{12} &= \beta e_{12} \\
C_{21} &= 0 \\
C_{11} &= \alpha e_{11} + \alpha e_{22} + \gamma e_{33} + \gamma e_{44} + \gamma e_{34} \\
C_{22} &= \frac{\alpha}{\alpha} e_{11} + \frac{\alpha}{\beta} e_{22} + \gamma^{-1} e_{33} + \gamma^{-1} e_{44}
\end{align*}
\]

\[\mathfrak{R} = \begin{pmatrix} * & * & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & \epsilon & * \\ 0 & 0 & 0 & \epsilon \end{pmatrix}\]

\(\dim \mathfrak{R}\)	\(\dim I\)	\(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \beta & \gamma \\ 0 & 0 & 0 & \beta \end{pmatrix}\)	\(A_j = C_j = 0\)
5	3		

CASE 6.5)

\[
\begin{align*}
C_{12} &= \beta e_{12} \\
C_{21} &= 0 \\
C_{11} &= \alpha e_{11} + \alpha e_{22} + \gamma e_{33} + \delta e_{44} + \delta e_{34} \\
C_{22} &= \frac{\alpha}{\alpha} e_{11} + \frac{\alpha}{\beta} e_{22} + \gamma^{-1} e_{33} + \delta^{-1} e_{44}
\end{align*}
\]

\(\gamma \neq \delta\)

\(\dim \mathfrak{R}\)	\(\dim I\)	\(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix}\)	\(A_j = -\gamma^{-1}, C_j = 1\)
6	2		

CASE 6.6)

\[
\begin{align*}
C_{12} &= \delta e_{24} \\
C_{21} &= 0 \\
C_{11} &= \alpha e_{11} + \beta e_{22} + \gamma e_{33} + \beta e_{44} + \beta e_{34} \\
C_{22} &= \frac{\alpha^2}{\alpha} e_{11} + \frac{\alpha}{\beta} e_{22} + \gamma^{-1} e_{33} + \beta^{-1} e_{44}
\end{align*}
\]

either \(\alpha = \beta = \gamma\) or \(\gamma^{-1} = q^2 \alpha^{-1} = \beta^{-1}\)

\(\dim \mathfrak{R}\)	\(\dim I\)	\(I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix}\)	\(B_j = -\beta^{-1} A_j, C_j = \frac{1-q}{q \beta^{-1} - \beta^{-1}} A_j\)
5	2		
CASE 6.7)

\[
C_{12} = \delta e_{24} \\
C_{21} = 0 \\
C_{11} = \alpha e_{11} + \beta e_{22} + \gamma e_{33} + \delta e_{44} \\
C_{22} = \frac{q^2}{\alpha} e_{11} + \frac{2q}{\beta} e_{22} + \gamma^{-1} e_{33} + \delta^{-1} e_{44} \\
\text{neither } \alpha = \beta = \gamma \text{ nor } 1/\gamma = q^2/\alpha = 1/\beta
\]

\[
\mathbb{R} = \begin{pmatrix}
* & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{pmatrix}
\]

\(\dim\mathbb{R} \)	\(\mathbb{R} \)
6	\[
I = \begin{pmatrix}	
\alpha & 0 & 0 & 0 \\	
0 & \beta & 0 & 0 \\	
0 & 0 & \beta & 0 \\	
0 & 0 & 0 & \beta	
\end{pmatrix}	
\]	
\(A_j = -\beta B_j \)	
\(B_j = \beta^2 B_j \)	

CASE 6.8)

\[
C_{12} = 0 \\
C_{21} = \beta e_{32} \\
C_{11} = \alpha e_{11} + q\gamma e_{22} + \gamma e_{33} + \delta e_{44} + \delta e_{34} \\
C_{22} = \frac{q^2}{\alpha} e_{11} + \gamma^{-1} e_{22} + \gamma^{-1} e_{33} + \delta^{-1} e_{44} \\
either \alpha = \gamma = \delta \text{ or } \alpha \neq \gamma \neq \delta
\]

\[
\mathbb{R} = \begin{pmatrix}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & \epsilon & * \\
0 & 0 & 0 & \epsilon
\end{pmatrix}
\]

\(\dim\mathbb{R} \)	\(\mathbb{R} \)
5	\[
I = \begin{pmatrix}	
\alpha & 0 & 0 & 0 \\	
0 & \beta & 0 & 0 \\	
0 & 0 & \beta & \gamma \\	
0 & 0 & 0 & \beta	
\end{pmatrix}	
\]	
\(A_j = \frac{1-\delta^{-1}}{\gamma-\delta} \)	
\(C_j = 1 \)	
\(B_j = \frac{\delta^{-1}-\gamma^{-1}}{\gamma-\delta} \)	
\(\text{For } \alpha = \gamma = \delta \)	
\(A_j = -\gamma B_j \)	

CASE 6.9)

\[
C_{12} = 0 \\
C_{21} = \beta e_{32} \\
C_{11} = \alpha e_{11} + q\gamma e_{22} + \gamma e_{33} + \delta e_{44} + \delta e_{34} \\
C_{22} = \frac{q^2}{\alpha} e_{11} + \gamma^{-1} e_{22} + \gamma^{-1} e_{33} + \delta^{-1} e_{44} \\
\text{neither } \alpha = \gamma = \delta \text{ nor } \alpha \neq \gamma \neq \delta
\]

\[
\mathbb{R} = \begin{pmatrix}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{pmatrix}
\]

\(\dim\mathbb{R} \)	\(\mathbb{R} \)
6	\[
I = \begin{pmatrix}	
\alpha & 0 & 0 & 0 \\	
0 & \beta & 0 & 0 \\	
0 & 0 & \beta & 0 \\	
0 & 0 & 0 & \beta	
\end{pmatrix}	
\]	
\(A_j = B_j = 0 \)	
\(C_j = \frac{\delta^{-1}-\gamma^{-1}}{\gamma-\delta} \)	
Table. GL_2 representations, corresponding operator algebras \mathcal{R}, algebra of Invariants which are used to define non trivial Hamiltonians for four states quantum chains and the coefficients in the unique expression for these Hamiltonians are presented. The classification used is given by means of the different determinants in GL_2.

| CASE 6.10) | $C_{12} = 0$
$C_{21} = 0$
$C_{11} = 1 + e_{34}$
$C_{22} = q^2 e_{11} + q e_{22} + e_{33} + e_{44}$ | $\mathcal{R} = \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & \epsilon & * \\ 0 & 0 & 0 & \epsilon \end{pmatrix}$
$dim\mathcal{R} = 4$
$dimI = 4$
$I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \gamma & \delta \\ 0 & 0 & 0 & \gamma \end{pmatrix}$ | A_j, B_j, C_j arbitrary |
| CASE 6.11) | $C_{12} = 0$
$C_{21} = 0$
$C_{11} = \alpha e_{11} + \beta e_{22} + \gamma e_{33} + \delta e_{44} + \delta e_{34}$
$C_{22} = q^2 \alpha e_{11} + \frac{q}{\beta} e_{22} + \gamma^{-1} e_{33} + \epsilon^{-1} e_{44}$
$\alpha \neq \beta \neq \gamma \neq \delta \neq \epsilon$ | $\mathcal{R} = \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$
$dim\mathcal{R} = 5$
$dimI = 3$
$I = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \gamma \end{pmatrix}$ | $B_j = C_j = \frac{\epsilon^{-1} - \gamma^{-1}}{\gamma - \delta}$
$A_j = \frac{\delta (\gamma^{-1} - \epsilon^{-1})}{\gamma - \delta}$ |
4 Summary and Conclusions.

We are able of showing the way to construct all possible Hamiltonians for four states quantum chains with Dipper-Donkin global symmetry, for $q^m \neq 1$. This is done, although the Dipper-Donkin quantum group has non central but group-like determinant. We use the algebra of invariants for the actions of GL_2 on $C(1, 3)$ which corresponds to the centralizer of the operator algebra, or image of the representation.

It is straightforward to see that in all the possible cases the perturbation of the corresponding action is zero. Moreover, there are only few cases where all generators are not null. This occurs whenever the algebra of invariants is of the form $\alpha 1 + \beta e_{ii+1}$ or $\alpha e_{ii} + \beta e_{jj}$ (being $(ii) = (11)$ and $(jj) = (22) = (33) = (44)$ or $(ii) = (22)$ and $(jj) = (11) = (33) = (44)$). We find out that all the Hamiltonians for four states quantum chains with Dipper-Donkin global symmetry have the following unique form

$$H = \sum_{j=1}^{L-1} id \otimes ... \otimes id \otimes (\pi_j \otimes \pi_{j+1})[Q_j(\Delta(A_j d + B_j C_{11} + C_j C_{22}))] \otimes id ... \otimes id,$$

and we provide with the specific values for A_j, B_j and C_j in all cases. Some concrete examples, written in terms of m_{\pm} and $s^{+/\pm}$ are also introduced.

We report elsewhere [15] the complete classification of all inner actions of the Dipper-Donkin quantum group on the $C(1, 3)$ algebra. In that paper can be seen how all invariants of the corresponding CASE 4) generate trivial Hamiltonians (this is not shown in current paper), all invariants of the corresponding CASE 5) are $C \otimes C$ (this is CASE 4) in current paper), and finally all invariants of the corresponding CASE 6) (in current paper CASE 5)) are diagonal plus βe_{12}. It is also remarkable that all invariant algebras used to construct Hamiltonians with Dipper-Donkin global symmetry for four states quantum chains, are either diagonal or have elements in the diagonal plus βe_{ii+1}.
5 Acknowledgments

The author wishes to thank V. Kharchenko for helpful discussion and CONACYT-México for partial support under grant No 4336-E.

References

[1] Dipper, R., Donkin, S.: Quantum GL_n. Proc. London Math. Soc. (3)\textbf{63} (1991), 165-211.

[2] Dipper, R., James J.: The q-Schur algebra. Proc. London Math. Soc. (3)\textbf{59} (1989), 23-50.

[3] Manin, Yu.I.: Quantum groups and non-commutative geometry. CRM, Université de Montreal 1988.

[4] Suemi Rodríguez-Romo: Actions of the Dipper-Donkin quantization GL_2 on the Clifford algebra $C(1,3)$, to appear in Communication in Algebra.

[5] Vladislav Kharchenko, Jaime Keller and Suemi Rodríguez-Romo: Actions of $GL_q(2,C)$ on $C(1,3)$ and its four dimensional representations”, Communication in Algebra, \textbf{27} No 4 (1999), 1843-1878.

[6] Cohen, M., and Fishman, D.: Hopf algebra actions. Journal of Algebra, \textbf{100} (1986), 363-379.

[7] Shnider, S., and Stenberg, S.: Quantum Groups. International Press, Boston, 1993.

[8] Koppinen, M.: A Skolem-Noether theorem for coalgebra measurings, Arch. Math. 57 (1991), 34-40.

[9] Montgomery, S.: Hopf Algebras and their Actions on Rings, CBMS, AMS Regional Conference Series in Mathematics, w. 82, 1992.
[10] Alimohammadi, M.: Quantum chains with $GL_q(2)$ symmetry, J. Math.Phys. 37, (1996), 1-5.

[11] Arnaudon D. and Rittenberg V. Quantum chains with $U_q(sl(2))$ symmetry and unrestricted representations, Phys.Lett B 306, (1993), 86-90.

[12] Hinrichsen H. and Rittenberg V., A two parameter deformation of the SU(1,1) superalgebra and the XY quantum chain in a magnetic field, Phys. Lett. B 275, (1992), 350.

[13] Hinrichsen H. and Rittenberg V., Quantum groups, correlation functions and infrared divergences, Phys. Lett. B 304, (1993), 115.

[14] Arnaudon D. and Rittenberg V., Quantum chains with $U(sl(2))$ symmetry, an unrestricted representation, Phys. Lett. B 306, (1993), 86.

[15] Rodríguez-Romo, S.: math.QA/9805017.