Mineral Nutrition of Prunus Rootstocks: Leaf Concentrations and Diagnosis by Vector Analysis

Antonio L. García, Jesús Gallego, Vicenta Fuentes, Nuria Nicolás, and Ramón Madrid
Departamento Química Agrícola, Facultad de Química, Universidad de Murcia
P.O. Box 4021 Murcia, Spain

Abstract. The effects of different levels of phosphorus fertilization and water provision on the mineral nutrition of two clonal rootstocks of Prunus were studied. Two-year-old Prunus seedlings, Hybrid GF677 (Prunus persica × Prunus amygdalus) (PH) and Pollizzo Puebla de Soto 101 (Prunus insititia) (PI) were planted in an uncultivated calcareous soil (a Xerio torriorthent derived from marl) under greenhouse conditions. They were drip irrigated with subterranean water of slightly alkaline pH (7.63), EC 0.88 dS·m⁻¹, with a low chloride and high sulphate content. The experiment lasted two annual cycles. In October of the second year the leaf nutrient concentration and dry weight of the total leaf weight were determined in four trees of each combination of rootstock × irrigation level × fertilization treatment. The nutritive state of these trees was analyzed by vector analysis. The results point to a highly significant influence of the rootstock nature on the leaf concentrations of most nutrients. Very low Zn and Cu concentrations were recorded on both rootstocks, for both irrigation levels and several fertilizing treatments. Vector analysis confirmed the Cu deficiency resulting from several of the fertilizing treatments and both irrigation levels in PH rootstocks.

Prunus cultivation, homogenizing plantations and permitting higher densities as a result of the less excessive vigor (Rubio and Socías i Company, 1991). Among clonal rootstock, hybrid variants are becoming the norm in stone fruit species of the genus Prunus L for commercial plantations (Rubio and Socías i Company, 1991). Such aspects as the influence of rootstock type on the absorption of different minerals, productivity, root development, salt tolerance and root asphyxia, besides resistance to drought, have contributed to the expansion in the use of hybrid rootstock (Gómez Aparisi, 1991).

The system has a strong influence on the chemical composition of plants, although the nutrient absorption capacity is only part of a wealth of interactions which affect the levels of mineral elements in plant tissues (Wutscher, 1989). Most studies on the effect of the rootstock on mineral nutrition in trees are based on leaf analyses (Brown and Cuming, 1989; Said et al., 1993), despite the fact that all the plant tissues are involved (Holevas et al., 1985). Leaf element levels depend on absorption and transport processes, in which the rootstock has been seen to play an important role in the levels of micronutrients (Gómez Aparisi, 1991).

In an attempt to develop a practical criterion for use in differential fertilization studies, vector analysis was developed for nutritional diagnosis purposes (Timmer and Stone, 1978; Timmer and Armstrong, 1987; Timmer and Teng, 1990). Vector diagnosis involves comparing nutrient (compares) concentration, nutrient content, and biomass of plants in a graphic format known as a vector nomogram. Plant tissues sampled are usually compared to a control or reference (R). Based on the magnitude and direction of vectors describing response to treatment in terms of these three variables, analyses can be used to diagnose nutrient status: sufficiency, deficiency, luxury consumption, excess and dilution.

In this study we examine the mineral nutrition of two Prunus rootstock by determining leaf levels of elements and diagnose this nutrition by vector analysis.

Material and Methods

Plant material and experimental site. Two-year-old Prunus. Hybrid GF677 (Prunus persica × Prunus amygdalus), (PH) and Pollizzo Puebla de Soto (Prunus insititia), (PI), which were in accordance with current Spanish legislation concerning varietal purity and sanitary state, were used. In winter, 2000, these were planted in 250-L plastic containers containing 350 kg of an uncultivated soil (Xeric torriorthent derived from marl), 32.6% sand, 27% clay, low fertility (CEC = 9.21 meq/100 g, Nman = 0.04% – only organic, available P = 1.71 mg·kg⁻¹ (Watanabe and Olsen, 1963), total CaCO₃ = 58.3%, active CaCO₃ = 10.2%, bulk density = 1.40 kg·m⁻³) a quantity considered sufficient for the roots to develop during the 2 years that it was envisaged that the experiment would last. The trees were grown in a plastic greenhouse to avoid any meteorological inclemency in the Segura River valley, 38°5’N, 1°4’W, T max/min = 36/16 °C, % RH max/min = 70/50, S.E. Spain.

The recipients were arranged in 12 rows of 20 containers with sufficient room between them to allow the canopy to grow. A drip line was run across all the containers with one self-compensating emitter in the center of each container. Half the emitters provided 4 L·h⁻¹ and the other half 2 L·h⁻¹, flow rates that were periodically checked throughout the experimental with coefficients in excess of 92% always being obtained. Eight tensiometers of 40 cm length were installed at random, 4 for each irrigation treatment to assess soil humidity, and water was added when measurements above 25 cm were recorded in any of them. The irrigation time for both sets of emitters (2 and 4 L·h⁻¹) was the same so that half of the trees received exactly double amount of water. At the end of each irrigation period it was checked that the tensiometer readings were 0 cb. The water used came from a well and had a slightly alkaline pH 7.63, EC = 0.88 dS·m⁻¹, Cl⁻ = 1.50 mmol·L⁻¹, SO₄²⁻ = 2.60 mmol·L⁻¹, HCO₃⁻ = 2.15 mmol·L⁻¹, Ca²⁺ = 1.80 mmol·L⁻¹, Mg²⁺ = 2.20 mmol·L⁻¹, Na⁺ = 0.80 mmol·L⁻¹ no potassium or carbonates were detected. The experiment lasted two annual cycles.

Experimental design and treatments. After an adaptation period (February to April, 2000), during which the plants only received water, 50 mL of monoammonic phosphate solution at different concentrations were applied at the same time as the irrigation water to the drip zone. Five blocks of four trees in each row were designated and each block received a given fertilizer dose: F1, F2, F3, F4, and F5. Treatment F1 each plant received (NH₄)₂PO₄·H₂O at 0.124 g, which was doubled for F2, tripled for F3 and so forth. During the first year each treatment received 12 applications of fertilizer, which was increased to 18 applications during the second year in the case of F3, F4, and F5. Blocks F2 and F1 received 11 applications in an attempt to ensure that the leaf concentrations of phosphorus in the trees of these treatments were not as high as the levels recorded in the periodic controls carried out during the first year of the experiment. The experimental design, then, consisted of twelve trees per combination of three variables: rootstock type, irrigation level, and fertilizer treatment.

Leaf analysis controls were made in four trees from each of the above mentioned combinations, of which we only refer to the control carried out in the October of the second year. The leaves for analysis were taken in each case from the central part of the branches and washed in deionizer water with non ionic detergent before being dried to constant weight in a forced air oven at 65 °C. They were then triturred, passed through a 0.3-mm mesh and dried at 105 °C. In the case of the October sample, the dry weight of the total leaf weight of the sampled trees was also determined.

The nutrient content was determined by the Kjeldahl method (Bremner, 1965) modified at a semimicro scale with 50 mg of dry leaf sample. Phosphorus was determined colorimetrically by measuring the yellowish of the phosphovanadate complex (Watanabe and Olsen, 1963). The remaining nutrients were determined by atomic absorption spectrometry (Ca, Mg, Fe,
Mn, Zn and Cu) or emission spectrometry (Na and K) after humid mineralization with a nitric-perchloric mixture of dry leaf material (1 g).

A multifactorial variance analysis was applied to the data obtained to ascertain whether the differences observed in the leaf levels of the elements analysed were due to one or more of the different variables: rootstock, irrigation or fertilisation. Differences between treatments means for each rootstock and irrigation levels were compared using the Duncan’s multiple range test.

Vector analysis technique. The vector analysis technique (Timer and Amstrong, 1987; Timer and Teng, 1990; Timer and Stone, 1978) permits simultaneous multielement comparisons of needle dry weight, nutrient concentration and nutrient content of plant components. The technique is used to better understand plant and soil interrelationships with special emphasis on soil fertility and tree mineral nutrition.

The construction of the vector diagram is in a graphical format known as a vector nomogram. In brief, mean concentrations (y-axis) for each mineral element are plotted against corresponding mean contents (x-axis). Because concentration is a ratio between content and biomass, biomass represents the inverse of the slope factor, and the plotted data will automatically lie on diagonal lines corresponding to the mean biomass (z-axis) for each element. The data can be plotted in the form of absolute or relative values. In the latter case, values for each treatment are calculated by dividing their concentrations, contents and biomass by the corresponding values for the reference sample for which x = y = z = 100. The advantage of using absolute values is that standard deviations or standard errors for concentrations and contents can be shown on a vector diagram. Relative values, on the other hand, allow results for several compounds or experiments to be presented on the same graph. Vector diagrams can be based either on plant part or on whole-plant estimates of biomass, content and concentration. The magnitude and direction of the vectors are used to interpret the effect of the treatment.

Based on the magnitude and direction of vectors describing response to treatment in terms of these three variables, analyses can be used to diagnose nutrient status: sufficiency, deficiency, luxury consumption, toxicity, antagonism and are particularly effective in detecting nutrient interactions. All the data are expressed on a leaf dry weight basis (Fig. 1).

Results

Element concentrations in leaves. The following tables depict the mean leaf levels of the different elements for each of the treatments designated above. Each value is the mean of four repetitions.

Table 1. Nutrient concentration in leaves (percent of leaf dry weight) recorded for the final sampling (October of the second year, 2001). Each value is the mean of four repetitions

Treatment	P	N	Ca	Mg	K	Na
PI2F1	0.24 b	1.72 d	6.68	0.71	0.72	0.037
PI2F2	0.62 a	1.47 e	5.29	1.00	1.04	0.015
PI2F3	0.18 b	2.28 a	4.37	0.88	1.08	0.021
PI2F4	0.26 b	2.06 c	4.13	0.82	1.31	0.017
PI2F5	0.20 b	2.19 b	5.17	0.88	1.58	0.025
Means	0.30	1.94	5.13	0.86	1.15	0.023

Table 1. Nutrient concentration in leaves (percent of leaf dry weight) recorded for the final sampling (October of the second year, 2001). Each value is the mean of four repetitions

Table 1. Nutrient concentration in leaves (percent of leaf dry weight) recorded for the final sampling (October of the second year, 2001). Each value is the mean of four repetitions

The table contains dry weight determinations of the leaf weight of each tree. Higher values were estimated for PH rootstock trees. Fertilization of the same trees also affected leaf weight, which increased at higher fertilizer concentrations. Irrigation level had no statistically significant effect on either rootstock, although only significantly so for trees receiving irrigation treatment 4 L h⁻¹.

Nutritional diagnosis by vector analysis. Vector analysis in leaves, which uses leaf dry weight values, and the content and concentration of nutrients in plants submitted to different fertilization levels, enables the interpretation of the nutritional status of plants to be assessed by taking as reference the F1 treatment. However, any diagnosis obtained with this method cannot, strictly speaking, be generalized. We can only conclude that there are signs of deficiency, excess, antagonism, etc., compared with a reference treatment and if a different treatment is used as reference other conclusions might be reached.

Figure 1 demonstrates the application of the vector analysis method of Timmer and Stone (1978), while Figs. 2, 3, 4, and 5 show the results obtained when applying this diagnostic
Table 2. Nutrient concentrations in leaves (ppm over leaf dry weight) and leaf dry weight (g) during final sampling (October 2001).

Treatment	Zn	Mn	Fe	Cu	Dry wt
PH4F1	19.0	94.8	77.8	11.1	200.3
PH4F2	14.8	85.1	48.4	5.06	91.3
PH4F3	14.5	108.1	81.8	10.1	558.0
PH4F4	13.3	130.7	71.1	6.7	659.7
PH4F5	14.5	111.4	60.9	10.1	832.2
Means	15.2	106.0	68.0	8.6	468.3
Anova	NS	NS	NS	NS	NS
PI2F1	16.0	166.7	72.5	11.8	173.7
PI2F2	10.9	155.5	69.1	18.0	226.2
PI2F3	8.2	69.1	75.1	26.9	324.1
PI2F4	11.4	57.3	70.7	12.9	319.1
PI2F5	9.7	93.2	86.8	15.8	668.3
Means	11.2	108.4	74.8	17.1	342.3
Anova	**	NS	NS	NS	NS

The means followed by different letters are significantly different at 0.05% probability by Duncan’s multiple range test.

Discussion

The rootstock used for fruit trees is known to influence nutrient absorption and transport, particularly as regards microelements as opposed to macroelements (Poling and Oberly, 1979).

In our case, N is affected by the nature of the rootstock (Table 1) and the similar values observed in the PI rootstock trees for the different irrigation and fertilization treatments (Rosati et al., 2000) are probably due to the ease which N is translocated in these trees with the help of Cu (Hill et al., 1979; Loneragan et al., 1980) or Zn. The P on PH rootstock seems to be inversely related with Zn values with respect to F4 and F5 and a N deficiency with respect to F3, F4, and F5. The F2, F3, F4, and F5 treatments show diluted Cu, Ca and Zn values with respect to F1.

Table 3. Change in nutrient concentrations in leaves (ppm over leaf dry weight) and leaf dry weight (g) during final sampling (October 2001).

Change in:	Vector	Z. Dero	Conc.	Const.	Interpretation	Diagnosis
A	+	-	+		Dilution	Non limiting
B	+	0	+		Sufficient	Non limiting
C	+	+			Deficiency	Limiting
D	0	+			Superfluous consumption	Non toxic
E	-	++	+ 6	-	Excess	Toxic
F	-	-	-	-	Excess	Antagonism
The low Zn content of leaves cannot effectively control the retranslocation of phosphorus towards the roots (Marschner and Cakmak, 1986), although the responses to the different doses of phosphorus used in the experiment are positive and the intensity of irrigation did not affect to phosphorus retranslocation. The PI trees show an effective (internal) regulation of leaf Zn will mean that root Zn will vary less in relation to external supply (Lambert et al., 1979). However, Cu levels, which vary with irrigation and fertilization treatments, seem to reach a retranslocation equilibrium on this rootstock regardless of nitrogen levels (Loneragan et al., 1980).

No variable affected the leaf levels of Mn on PH rootstock since in all cases they are higher than the critical value described by many authors (Montañés et al., 1993) and, given the calcareous nature of the soil used in the experiment, there is no risk of excess (Horst and Marschner, 1978). Stone fruit trees growing in calcareous soils like those of the Region of Murcia frequently show signs of iron deficiency although a contributory factor is the presence of phosphate (Kolesch et al., 1987). The PI trees show similar leaf levels for both irrigation treatments and lower values for the F1 and F5 fertilization treatments in the positive P × F interaction. Despite the small differences in leaf levels, this demonstrates their resistance to chlorosis (Said et al., 1993; Saddler and Lötze, 1990) even when Fe levels are especially low, as in F2.

The PH trees receiving the lower irrigation level show substantial K and Cu deficiencies in F1 (Fig. 2), while in F2 compared with the higher doses (F3, F4, and F5) a deficiency in K and a toxic excess of P are manifest. This excess of P may be explained by the lack of control of the absorption of this element, which may provoke a deficiency of Zn (Loneragan et al., 1980). The data for F3 and F4 point to the excess of Cu and P, respectively, which may be interpreted as differentiated responses to the fertilizer treatments received (Romera and Alcántara, 1988).

In Fig. 3, which corresponds to the PH rootstock receiving the higher quantity of water, the vectors for the different nutrients of treatment F2 show a general deficiency in their values compared with F1. In turn, the value of N in F1 represents a deficiency with respect to higher dose treatments, in which Cu, Zn, and Ca are substantially diluted. This finding contradicts other reports which point to the simultaneous deficiency of Zn and Cu (Teng and Timmer, 1990), which may be explained by the low reference value taken for Zn (10.38 ppm) since the levels of this element on PH are low.

In the PI trees receiving the lower dose of water, Zn deficiency was detected in F3 and F5, which corroborates previous findings as regards the appearance of such a deficiency induced by phosphoric fertilization (Cakmak and Marschner, 1987; Haynes, 1984). Since Zn can control the absorption of phosphorus, its concentration in leaves is affected (Loneragan et al., 1979). Such an effect, which seems to be determined by the regulatory function of Zn as regards phosphorus retranslocation towards the roots (Cakmak and Marschner, 1987), together with the reduction in growth which accompanies Zn deficiency, may give rise to toxic effects with respect to P in plants affected by this deficiency (Loneragan et al., 1979). In the case of PI trees receiving the higher amount of water, Cu deficiency was detected in F1, F3, and F5 compared with F1, which seems to indicate that there is a relation between Cu retranslocation and high levels of N in leaves (Hill et al., 1978).

As a conclusion of what was said before, it is possible to assert that, diagnosis by vector analysis applied to PH seedlings irrigated with 4 L·h–1 show clear deficiency of Cu in F1 and F2 treatments, on the other hand, the ones irrigated with 2 L·h–1 show deficiencies of Cu and Zn in F1 and K in F2. Also an excess of P appears in both treatments. PI seedlings show a clear deficiency of Cu in F2 and F5 treatments irrigated with 4 L·h–1, whilst the ones irrigated with 2 L·h–1 show an intense deficiency of Cu associated to a possible toxic excess of P and a deficiency of Zn in F5 treatment. Likewise, it is possible to point to that PH seedlings need less level of fertilizer supply to the growth (foliar weight) than PI seedlings. It confirms the best adaptation of PH to soil and climate conditions in Southern Spain, where the main problem is the scarcity and cost of good quality irrigation water.

Literature Cited

Barber, S.A. 1984. Soil nutrient bioavailability. A mechanistic approach. John Wiley and Sons, New York.

Bremner, J.M. 1965. Total nitrogen. In: C.A. Black (ed.). Methods of soil analysis II. Amer. Soc. Agron. Inc. Publ. Madison, Wis.

Brown, S.K. and J.N. Cummins. 1989. Rootstock effect on foliar nutrient concentrations of ‘Redhaven’ peach trees. HortScience 15:41–43.

Cakmak, I. and H. Marschner. 1987. Mechanism of phosphorus-induced zinc deficiency in cotton. III. Changes in physiological availability of zinc in plants. Physiol. Plantarum 70:13–20.

Gómez Aparisi, J. 1991. Patrones de almidon: comportamiento frente a efectos ambientales adversos. ITEA 3:129–136.

Haynes, R.J. 1984. Lime and phosphate in the soil-plant system. Adv. Agron. 37:249–315.

Hill, J., A.D. Robson, and J.F. Loneragan. 1978. The effect of copper and nitrogen supply on the retranslocation of copper in four cultivars of wheat. Austral. J. Agr. Res. 29:925–939.

Hill, J., A.D. Robson, and J.F. Loneragan. 1979. The effect of copper and nitrogen supply on the senescence and the retranslocation of nutrients of the oldest leaf of wheat. Ann. Bot. 44:279–287.

Holevas, C.D., D.C. Stylianidis, and Z. Michaelidis. 1985. Nutrient element variability in the leaves of almond trees in relation to variety, rootstock and the vegetative part of the tree. Options Méditerranéennes.

Horst, W.J. and H. Marschner. 1978. Symptome von mangan-über-schuss bei bohnen (phaseolus vulgaris l.). Z pflanz Bodenk 141:129–142.

Jarrell, W.M. and R.B. Beverly. 1981. The dilution effect in plant nutrition studies. Adv. Agron. 34:197–224.

Kolesch, H., W. Höfner, and K. Schaller. 1987. Effect of bicarbonate and phosphate on iron-chlorosis of grapesvines with special regard to the susceptibility of the rootstocks. J. Plant Nutr. 10:207–249.

Lang, A. 1983. Turgor-regulated translocation. Plant Cell Environ. 6:683–689.

Loneragan, J.F., T.S. Grove, A.D. Robson, and K.
Snowball. 1980. Phosphorus toxicity as a factor in zinc-phosphorus interactions in plants. Soil Sci. Soc. Amer. J. 43:966–972.
Loneragan, J.F., D.L. Grunes, R.M. Welch, E.A. Aduayi, A. Tengah, D.A. Lazar, and E.E. Cary. 1979. Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Annu. Meeting Fort Collins. Agron. Abstr. p. 175–176.
Loneragan, J.F., D.L. Grunes, R.M. Welch, E.A. Aduayi, A. Tengah, V.A. Lazar, and E.E. Cary. 1982. Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci. Soc. Amer. J. 46:345–352.
Marschner, H. and I. Cakmak. 1986. Mechanism of phosphorus-induced zinc deficiency in cotton. II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency. Physiol. Plant 68:491–496.
Montañés, L., L. Heras, J. Abadia, and M. Sanz. 1993. Plant analysis interpretation based on a new index: deviation from optimum percentage (DOP). J Plant Nutr. 16 (7):1289–1308.
Poling, E.B. and G.H. Oberly. 1979. Effect of rootstock on mineral composition of apple leaves. J. Amer. Soc. Hort. Sci. 104:779–801.
Romera, F.J. and E. Alcántara. 1988. Diferencias entre melocotonero e híbrido melocotonero-almendro en resistencia a clorosis férrea, p. 429–438. 2nd Simposio Nacional de Nutrición Mineral de las Plantas. I.C.E. Universidad de Granada.
Rosati, A., K.R. Day, and T.M. Dejong. 2000. Distribution of leaf mass per unit area and leaf nitrogen concentration determine partitioning of leaf nitrogen within tree canopies. Tree Physiol. 20:271–276.
Rubio, M.J. and R. Socías i Company. 1991. Posibilidad de hibridaciones dentro del género Prunus L. para la mejora de patrones. ITEA 3:137–148.
Said, A., A. Felipe, and J. Gómez Aparisi. 1993. Patrones híbridos almendro × melocotonero: Comportamiento en condiciones clorosantes. II Congreso Ibérico de Ciencias Horticolas, Zaragoza. Actas de Horticultura 9:254–261.
Sattler, J.D and G.F.A. Lötze. 1990. Yield efficiency and growth of apricot, peach and plum on different rootstocks. Abstracts del XXIII Congreso Internacional de Horticultura, Florencia.
Teng, Y. and V.R. Timmer. 1990. Phosphorus-induced micronutrient disorders in hybrid poplar. I. Preliminary diagnosis. Plant Soil 126:19–29.
Timmer, V.R. and G. Armstrong. 1987. Diagnosing nutritional status of containerized tree seedlings: comparative plant analyses. Soil Sci. Soc. Amer. J. 51:1082–1086.
Timmer, V.R. and E.L. Stone. 1978. Comparative foliar analysis of young balsam fir fertilized with nitrogen, phosphorus, potassium and lime. Soil Sci. Soc. Amer. J. 42:125–130.
Timmer, V.R. and Y. Teng. 1990. Phosphorus-induced micronutrient disorders in hybrid poplar. II. Responses to zinc and copper in greenhouse culture. Plant Soil 126:31–39.
Troyanos, Y.E., N.A. Hipps, J. Moorby and G. Kingswell. 2000. The effect of external potassium and magnesium concentrations on the magnesium and potassium inflow rates and growth of micropropagated cherry rootstocks, ‘F.12/1’ (Prunus avium L.) and ‘Colt’ (Prunus avium L. × Prunus pseudocerasus L.). Plant Soil 225 (1–2):73–82.
Watanabe, F. and S. Olsen. 1963. Test for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Amer. Proc. 99:667–668.
Wutscher, H.K. 1989. Alteration of fruit tree nutrition through rootstocks. HortScience 24:578–584.