Novel Design of a 3-RRUU 6-DOF Parallel Manipulator

Zhongxing Yang1,a and Dan Zhang1,b,*

1Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, Canada

E-mail addresses: azxyang@yorku.ca; b,*dan.zhang@lassonde.yorku.ca

Abstract. A novel 3-RRUU 6-DOF parallel manipulator is designed based on the multi-plane design principle, that provides larger workspace, less chance of link interference and simplified kinematic analysis. The link interference detection by pentagon identification and cross-product is demonstrated. Workspace is optimized by different orientations. The Jacobian matrix by global cartesian coordinate system is developed. A transformation matrix could convert that to Jacobian matrix of a new coordinate system.

1. Introduction

A parallel manipulator has a moving platform that is actuated and connected to the base by more than one limb. This structure has higher stiffness and precision but smaller workspace [1].

Six limbed 6-DOF parallel manipulators, such as 6-UPS [2] and 6-RUS [3], are common designs. There are some topology methods [4] [5] [6] for chain design of unique applications, that include three limbed 6-DOF manipulators with serial chain for each limb [7] [8] [9] [10]; three limbed 6-DOF manipulators with parallel actuation in each limb [11] [12] [13] [14]. Compared to the six limbed counterparts, three limbed 6-DOF manipulators usually have larger workspace and less link interference [7] [8] [9] [10] [13]. Although the chance of interference is lower, some three limbed 6-DOF manipulators [12] [14] still need to detect such conditions, generally by determining the link to link distance. The RHHR chain in [13] is free from interference, while the spherical joints connected to the moving platform might limit the motion range (e.g. the rotation around z axis).

This paper discusses the multi-plane design principle. Different from [11] where the links connected to the platform have their motions restricted in the planes perpendicular to the platform plane, this paper suggests deploying these links in three intersecting planes that coincide at a line which is perpendicular to the horizontal base plane and passes platform equilateral triangle center. The links are designed similarly as to the PRU link in HALF and HANA structure [15], this avoids using spherical joints with limited motion range [16]. The five-bar robot [17] with large workspace is employed for the limb movement. The actuating five-bar links are on the horizontal base plane. This manipulator also has the lie-flat function [18] [19] that protects it from outdoor weather damages.

2. Mechanical Design

The 3-RRUU parallel manipulator has 6 DOFs. Figure 1 shows (a) the structure and (b) the kinematic chains represented by topology diagram [20]. A structure could also be expressed by a notation [14]. Therefore the structure is denoted as 3-[(2-RR)UU], where underlined joints are actuated. Each limb has two motors $A_{Ap[i]}$ and $A_{Aq[i]}$ in hybrid chain. This increases the precision and reduces the bending of link B_{pi} and B_{qi}. The revolute joints $R_{Ap[i]}$ and $R_{Aq[i]}$ are driven. The revolute joint R_{Ci}
connects to the universal joint $U_{[Di]}$ which consists two revolute joints and one of these is colinear to $R_{[Ci]}$.

![Figure 1. Mechanical design.](image)

3. Inverse Kinematics

This chapter gives the calculation of link positions, and detection of link interference.

3.1. Link Positions

The global cartesian coordinate is at base center $A_o: [0 \ 0 \ 0]^T$ (figure 2. (a)).

\[
X_o = [1 \ 0 \ 0]^T, Y_o = [0 \ 1 \ 0]^T, Z_o = [0 \ 0 \ 1]^T
\]

\[
A_{pi} = r_e \cdot [\cos(\alpha_i - \beta) \ \sin(\alpha_i - \beta)]^T
\]

\[
A_{qi} = r_e \cdot [\cos(\alpha_i + \beta) \ \sin(\alpha_i + \beta)]^T
\]

The pose of the moving platform (an equilateral triangle) is defined by its orientation θ_e and position E_o from global coordinate.

\[
\theta_e = [\theta_x \ \theta_y \ \theta_z]^T \text{ and } E_o = [x_e \ \ y_e \ \ z_e]^T
\]

Let $\theta_e = \sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2}$, so that $u_x = \theta_x/\theta_e$, $u_y = \theta_y/\theta_e$, $u_z = \theta_z/\theta_e$.

With orientation matrix R, the positions E_i are calculated, where the universal joints are located with one rotational axis along symmetry lines E_iE_o and the other rotational axis along Y_{di}. The platform has a normal vector N_e that points upward.

\[
R = \begin{bmatrix}
 c \theta_e + u_x u_z^2(1 - c \theta_e) & u_x u_y(1 - c \theta_e) - u_z s \theta_e & u_x u_e(1 - c \theta_e) + u_y s \theta_e \\
 u_x u_y(1 - c \theta_e) + u_z s \theta_e & c \theta_e + u_y^2(1 - c \theta_e) & u_y u_e(1 - c \theta_e) - u_x s \theta_e \\
 u_x u_z(1 - c \theta_e) - u_y s \theta_e & u_y u_z(1 - c \theta_e) + u_x s \theta_e & c \theta_e + u_z^2(1 - c \theta_e)
\end{bmatrix}
\]

\[
E_i = R \cdot r_e \cdot [\cos(\alpha_i) \ \sin(\alpha_i) \ 0]^T + E_o
\]

\[
N_e = \frac{E_o \times E_1 \times E_2}{|E_o \times E_1 \times E_2|}
\]

\[
Y_{di} = Z_o \times E_i E_o \text{ and } X_{di} = Y_{di} \times Z_o
\]
Figure 2. Kinematics analysis.

As in figure 2. (b), the universal joints located at \(E_i \) and \(D_i \) each has a rotational axis along \(Y_{di} \). Links \(E_iD_i \) and lines \(E_iE_o \) lie in plane \(B_i \) which is perpendicular to horizontal plane \(C \) and horizontal plane \(D \). Let \(E_i \) be projected along \(-Z_o\) on plane \(D_o \), where \(E_oD_o \) is the intersecting line of plane \(B_1 \), plane \(B_2 \) and plane \(B_3 \). One obtains \(h_i \) and \(b_i \) in plane \(B_i \).

\[
h_i = E_i \cdot Z_o - d \quad \text{(8.a)}
\]

\[
b_i = \sqrt{e^2 - h_i^2} \quad \text{(8.b)}
\]

Position \(D_i \) indicates where the universal joint is located. The universal joint has one rotational axis along \(Z_o \) and the other rotational axis along \(Y_{di} \). As in figure 2. (c), let the five-bar mechanisms be in the plane \(C \) where the limbs are actuated. The position \(C_i \) indicates the location of revolute joint. The revolute joints rotate around \(Z_o \), and colinear with the universal joints at \(D_i \).
\[D_i = E_i + b_i X_{di} - h_i Z_o \]
\[C_i = D_i - d Z_o \]

The \(B_{pi} \) and \(B_{qi} \) represent the locations of two revolute joints, rotational axis along \(Z_o \).

\[p_i = |A_{pi} C_i| \quad \text{and} \quad q_i = |A_{qi} C_i| \]
(11.a)
\[y_{pi} = \cos^{-1} \left(\frac{b_i^2 + p_i^2 - c_i^2}{2 b p_i} \right) \quad \text{and} \quad y_{qi} = \cos^{-1} \left(\frac{b_i^2 + q_i^2 - c_i^2}{2 b q_i} \right) \]
(11.b)
\[R_{pi} = \begin{bmatrix} \cos y_{pi} & \sin y_{pi} & 0 \\ -\sin y_{pi} & \cos y_{pi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad R_{qi} = \begin{bmatrix} \cos y_{qi} & -\sin y_{qi} & 0 \\ \sin y_{qi} & \cos y_{qi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
(11.c)
\[B_{pi} = R_{pi} \cdot A_{pi} C_i \cdot \frac{b}{p_i} + A_{pi} \quad \text{and} \quad B_{qi} = R_{qi} \cdot A_{qi} C_i \cdot \frac{b}{q_i} + A_{qi} \]
(11.d)

One could calculate actuation angles \(\alpha_{pi} \) and \(\alpha_{qi} \) by \(A_{pi} B_{pi} \) or \(A_{qi} B_{qi} \).

3.2. Link Interference

There are some literatures [12] [14] [21] [22] [23] discussing the link interference detection, where the main algorithm is to keep safe distance between links. One needs to check that three five-bar mechanisms have no link interference. The interference detection in this analysis has three sections.

Section 1 is to limit \(\alpha_{pi} \) and \(\alpha_{qi} \) ranges so that the moving sides of the link will not collide with the base arc of a neighboring link. Such as in figure 3. (a), the side of \(A_{qi} B_{qi} \) interferes with the arc of \(A_{pi} \). Let \(a_{in} = 2 r_a \sin \beta \) and \(a_{ex} = 2 r_a \sin (\frac{\pi}{3} - \beta) \) that are the lengths of hexagon sides. One needs to verify that \(a_{in} > 2 r_m \) and \(a_{ex} > 2 r_m \) so that it has enough distance for two motors with radius \(r_m \).

\[a_{min} = \sqrt{b^2 + 4 r_b^2} \quad \text{and} \quad a_{max} = b + 2 r_b \]
(12.a)
\[y_{in} = g(a_{in}) \quad \text{and} \quad y_{ex} = g(a_{ex}) \]
(12.b)

Conditions	\(g(x) \)
\(x \in (0, a_{min}] \)	\(\sin^{-1} \left(\frac{2 r_b}{a_x} \right) \)
\(x \in [a_{min}, a_{max}] \)	\(\cos^{-1} \left(\frac{b^2 + a_x^2 - 4 r_b^2}{2 \cdot a_x \cdot b} \right) \)
\(x \in [a_{max}, \infty) \)	0

Table 1 gives \(y_{in} \) and \(y_{ex} \) as offsets on \(\alpha_{pi} \) and \(\alpha_{qi} \), to be interference free for section 1.

\[\alpha_{pi} \text{ and } \alpha_{qi} \in \left[y_{in}, \frac{240}{180} \pi - y_{ex} \right] \]
(12.c)

Section 2 is to wipe out the conditions where \(\alpha_{pi} \) and \(\alpha_{qi} \) are within ranges but there exists intersection of links in a loop (see loop 1 and loop 2 in figure 2. (d)). An algorithm of pentagon identification could easily find intersection. For concave or convex pentagons, the sum \(\theta_i \) should be \(3\pi \) to be interference free for section 2.

\[\theta_i = \alpha_{pi} + \beta_{qi} + \alpha_{pi} + \beta_{qi} + y_i \]
(13)
Section 3 is to avoid the moving arc of a link interfering with the moving side of a link in another loop. Such as in figure 3. (a), the arc of \mathbf{B}_{p1} interferes with the side of $\mathbf{A}_{q3}\mathbf{B}_{q3}$. For when $\alpha_{pi} + \alpha_{qk} > 5\pi/3$ (i and k index two loops in clockwise order), the cross-product method could conveniently calculate the distance between the two. The link $\mathbf{B}_{pi}\mathbf{C}_i$ or $\mathbf{B}_{qk}\mathbf{C}_i$ are in different levels, thus are exempted form examination. The criteria in table 2 need to be met to be interference free for section 3.

Table 2. Cross product criteria.

Conditions	Criteria
$\alpha_{pi} > \alpha_{qk}$	$Z_o \cdot (\mathbf{B}_{pi}\mathbf{A}_{qk} \times \mathbf{B}_{pi}\mathbf{B}_{qk}) - 2r_bb > 0$
$\alpha_{pi} < \alpha_{qk}$	$Z_o \cdot (\mathbf{B}_{qk}\mathbf{B}_{pi} \times \mathbf{B}_{qk}\mathbf{A}_{pi}) - 2r_bb > 0$

4. Workspace Optimization

The workspace is evaluated by setting three orientations θ_{ej} ($j = 1, 2, 3$) of the platform, and then searching for all eligible positions of the \mathbf{E}_o within the searching ranges. The number n_{ej} of the eligible positions indicate the volume of the workspace by orientation θ_{ej}.

Considering the efficiency of workspace (largest workspace made by minimum limb sizes), cost function f_j is taken. Pareto method [24] is used to search for the best result of each cost function with non-sacrifice to another cost function.

$$f_j = -\frac{n_{ej}}{(\Sigma_{i=1}^n x_i)^3}$$

The basic modeling parameters are given in table 3. Table 4 gives the ranges of the optimization variables x_1-x_6, considering that each revolute or universal joint is at least 0.05 m from the center of a body it connects to. Table 5 gives the three orientations, and the \mathbf{E}_o search ranges by each orientation.

Table 6 shows the results of the optimization and the cost function value, where $F = f_1 + f_2 + f_3$. The four results are selected from the final optimization solutions, with result 1 for the best of f_1; result 2 for the best of f_2; result 3 for the best of f_3; and result 4 for the best of F overall. The result 4 is chosen for the full workspace plotting in θ_{e1}, θ_{e2} and θ_{e3} in figure 4.
Table 3. Modeling parameters.

Parameters	Values	Units
d	0	m
r_b	0.015	m
r_c	0.010	m
r_m	0.025	m
α_i	$(4i - 1) \cdot \pi / 6$	rad

Table 4. Optimization variables.

Variables	x_1	x_2	x_3	x_4	x_5	x_6	β
Ranges	[0.1, 0.7]	[0.05, 0.7]	[0.1, 0.7]	[0.05, 0.7]	[0.1, 0.7]	[0.1, 0.7]	$[\pi / 18, 5\pi / 18]$
Units	m	m	m	m	m	m	rad

Table 5. Motion and search ranges.

Orientations and positions	Values	Units
θ_{e1}	[0 0 0]	rad
θ_{e2}	$[\pi / 6 0 0]$	rad
θ_{e3}	[0 0 $\pi / 6$]	rad
x_e	-0.1: 0.05: 0.1	m
y_e	-0.1: 0.05: 0.1	m
z_e	0.1: 0.05: 0.3	m

Table 6. Optimization results.

x_1	x_2	x_3	x_4	x_5	x_6	f_1	f_2	f_3	F	
Result 1	0.361	0.051	0.102	0.207	0.218	0.296	-126.574	-89.204	-309.804	
Result 2	0.345	0.051	0.102	0.208	0.219	0.303	-119.825	-119.825	-99.644	-339.294
Result 3	0.386	0.051	0.079	0.245	0.232	0.344	-120.724	-85.939	-111.52	-318.179
Result 4	0.348	0.051	0.102	0.205	0.219	0.300	-121.277	-117.488	-101.07	-339.829

Figure 4. Full workspace in θ_{e1}, θ_{e2}, θ_{e3} of result 4.

5. Jacobian-based Stiffness
In figure 5. (a), from the global cartesian coordinate at A_o, the moving platform center E_o has a linear velocity v_{eo} and an angular velocity ω_{eo}, that contribute to the linear velocity at E_1. The linear velocity at D_1 could be divided to v_{xdi} and v_{ydi}, which are along X_{di} and Y_{di} respectively.

A method of dot multiplication [25] [26] can be used since v_{xdi} is not perpendicular to E_1D_i.

![Figure 4](image-url)
\[E_i D_i \cdot (v_{eo} + \omega_{eo} \times E_a E_i) = E_i D_i \cdot v_{xdt} \]

(15.a)

So that

\[v_{xdt} = \frac{E_i D_i (v_{eo} + \omega_{eo} \times E_a E_i)}{E_i D_i X_{dt}} \cdot X_{dt} \]

(15.b)

The angular velocity \(\omega_{eo} \) could be divided to \(\omega_{e1}, \omega_{y1} \text{ and } \omega_{z1} \), that are along \(E_a E_i, Y_{dt} \text{ and } Z_o \) respectively. Components \(\omega_{e1} \text{ and } \omega_{y1} \) have no contribution to \(v_{ydi} \), except \(\omega_{z1} \).

\[v_{eo} \cdot Y_{dt} \cdot Y_{dt} + \omega_{z1} \times E_o D_i = v_{ydi} \], where \(\omega_{z1} = \left(\omega_{eo} \cdot Z_o - \frac{E_o E_i Z_o}{E_o E_i X_{dt}} \cdot \omega_{eo} \cdot X_{dt} \right) \cdot Z_o \]

(16.a)

So that

\[v_{ydi} = v_{eo} \cdot Y_{dt} \cdot Y_{dt} + \left(\omega_{eo} \cdot Z_o - \frac{E_o E_i Z_o}{E_o E_i X_{dt}} \cdot \omega_{eo} \cdot X_{dt} \right) \cdot Z_o \times E_o D_i \]

(16.b)

The angular velocity \(\omega_{pi} \cdot Z_o \text{ and } \omega_{qi} \cdot Z_o \) are the actuation angular velocities at \(A_{pi} \text{ and } A_{qi} \).

\[B_{pi} C_{i} \cdot (v_{xdi} + v_{ydi}) = B_{pi} C_{i} \cdot \left(Z_o \times A_{pi} B_{pi} \right) \cdot \omega_{pi} \]

(17)

So that,

\[\omega_{pi} = J_{pvi}^T \cdot v_{eo} + J_{pwi}^T \cdot \omega_{eo} \]

(18.a)

where,

\[J_{pvi} = \frac{B_{pi} C_i X_{di}}{B_{pi} C_i (Z_o \times A_{pi} B_{pi})} \cdot \frac{E_i D_i}{E_i D_i X_{di}} + \frac{B_{pi} C_i Y_{di} Y_{dt}}{B_{pi} C_i (Z_o \times A_{pi} B_{pi})} \]

(18.b)

\[J_{pwi} = \frac{B_{pi} C_i X_{di}}{B_{pi} C_i (Z_o \times A_{pi} B_{pi})} \cdot \frac{E_i D_i}{E_i D_i X_{di}} + \frac{B_{pi} C_i (Z_o \times E_o D_i) Z_o}{B_{pi} C_i (Z_o \times Z_o B_{pi})} - \frac{B_{pi} C_i (Z_o \times E_o D_i) X_{di}}{B_{pi} C_i (Z_o \times A_{pi} B_{pi})} \]

(18.c)

Figure 5. Jacobian matrix analysis.

One could have the similar for \(\omega_{qi}, J_{qv1} \text{ and } J_{qw1} \). The Jacobian matrix is obtained as below.

\[J = \begin{bmatrix} J_{pvi} & J_{pv2} & J_{pv3} & J_{qv1} & J_{qv2} & J_{qv3} \\ J_{pwi} & J_{pw2} & J_{pw3} & J_{qw1} & J_{qw2} & J_{qw3} \end{bmatrix}^T \]

(19.a)

So that,

\[\begin{bmatrix} \omega_p \\ \omega_q \end{bmatrix} = J \cdot [v_{eo} \omega_{eo}] \]

(19.b)
The stiffness of manipulator at \(E_o \) by the global cartesian coordinate at \(A_o \) is given as \(K_a \) which is related to the stiffness of actuator \(K_q = k_q \cdot I_6 \) through Jacobian matrix \(J \) [27].

\[
K_a = J^T \cdot K_q \cdot J
\]

(19.c)

\[
\theta_e = \begin{bmatrix}
15 \cdot \frac{\pi}{180} & 20 \cdot \frac{\pi}{180} & 10 \cdot \frac{\pi}{180}
\end{bmatrix}^T.
\]

Figure 6. Stiffness mapping \(\theta_e \) = \(\begin{bmatrix}
15 \cdot \frac{\pi}{180} & 20 \cdot \frac{\pi}{180} & 10 \cdot \frac{\pi}{180}
\end{bmatrix}^T \).

A transformation matrix is needed [19] to convert to another coordinate system. In figure 5. (b), the coordinate system is established at \(E_o \) with unit vectors \(X_{eo}, Y_{eo} \) and \(N_e \). Vector \(X_o \) from global coordinate \(A_o \) equals the \(X_{eo} \) from the platform coordinate at \(E_o \). One could transform \(J \) to \(J_e \).

\[
(X_o)_{Ao} = (X_{eo})_{Eo}
\]

(20.a)

\[
(X_{eo})_{Ao} = R \cdot (X_o)_{Ao} = R \cdot (X_{eo})_{Eo}
\]

(20.b)

\[
J_e = J \begin{bmatrix}
R & 0_{3,3} \\
0_{3,3} & R
\end{bmatrix}
\]

(20.c)
Similarly, in figure 5. (b) a coordinate of Φ has a vector X_φ that rotates from X_{eo} by φ_y and φ_z.

\[(X_o)_{Ao} = (X_\varphi)_{\varphi} \] \hspace{1cm} (21.a)

\[(X_\varphi)_{Ao} = R \cdot (X_\varphi)_{Eo} = R \cdot R_z \cdot R_y \cdot (X_\varphi)_{\varphi} \] \hspace{1cm} (21.b)

\[
R_z = \begin{bmatrix}
\cos \varphi_z & -\sin \varphi_z & 0 \\
\sin \varphi_z & \cos \varphi_z & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

and

\[
R_y = \begin{bmatrix}
\cos \varphi_y & 0 & \sin \varphi_y \\
0 & 1 & 0 \\
-\sin \varphi_y & 0 & \cos \varphi_y
\end{bmatrix}
\] \hspace{1cm} (21.c)

A vector in coordinate A_o could be converted to that in coordinate Φ. One could transform J to J_φ.

\[J_\varphi = J \cdot \begin{bmatrix}
R \cdot R_z \cdot R_y & 0_{3,3} \\
0_{3,3} & R \cdot R_z \cdot R_y
\end{bmatrix} \] \hspace{1cm} (21.d)

\[K_\varphi = J_\varphi^T \cdot K_q \cdot J_\varphi \] \hspace{1cm} (21.e)

As one could calculate the stiffness in or around X_φ. The polar stiffness of the end effector center E_o at any pose could be plotted about rotation angle φ_y and φ_z. The unit stiffness in and around vectors X_o, Y_o, Z_o from global coordinate at A_o are mapped over an area of $E_o = [x_e \ y_e \ 0.2]^T$ in figure 6. (a)–(f). The unit stiffness in and around X_φ from given coordinate of Φ is mapped about angle $[\varphi_y \ \varphi_z]$ when $E_o = [0.1 \ 0.1 \ 0.2]^T$ in figure 6. (g) and (h).

6. Conclusion
A 3-[(2-RR)UU] 6-DOF parallel manipulator is designed with multi-plane principle. The pentagon identification and cross-product method are developed for link interference detection. The workspace boundaries of different orientation angles are plotted. The unit stiffness in and around the global coordinate vectors are mapped. With a transformation matrix this stiffness could be converted to indicate stiffness in or around any vector that is a rotation angle from the global coordinate system.

Acknowledgement
The authors would like to thank the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors gratefully acknowledge the financial support from Kaneff Research Chairs program.

References
[1] D. Zhang, Chapter 1 Introduction, Parallel Robotic Machine Tool, Springer 2010
[2] D. Zhang, Chapter 5 Spatial Parallel Robotic Machines with Prismatic Actuators, Parallel Robotic Machine Tool, Springer 2010
[3] D. Zhang, Chapter 6 Spatial Parallel Robotic Machines with Revolute Actuators, Parallel Robotic Machine Tool, Springer 2010
[4] D. Zhang, Chapter 3 Architectures of Parallel Robotic Machine, Parallel Robotic Machine Tool, Springer 2010
[5] Q. Zeng and K. F. Ehmann, 2014, “Design of Parallel Hybrid-loop Manipulators with Kinematotropic Property and Deployability”, Mechanism and Machine Theory, 71 (2014) 1–26
[6] C. Tian, Y. Fang, Q. J. Ge, 2017, “Structural Synthesis of Parallel Manipulators with Coupling Sub-chains”, Mechanism and Machine Theory, 118 (2017) 84–99
[7] Kim, J., Park, F. C., Ryu, S. J., Kim, J., Hwang, J. C., Park, C., and Iurascu, C. C., 2001, “Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining,” IEEE Trans. Rob. Autom., 17(4), pp. 423–434.
[8] Yang, G., Chen, I. M., Chen, W., and Lin, W., 2004, “Kinematic Design of a Six-DOF Parallel-Kinematics Machine With Decoupled-Motion Architecture,” IEEE Trans. Rob., 20(5), pp. 876–
[9] Chen, C., Gayral, T., Caro, S., Chablat, D., Moroz, G., and Abeywardena, S., 2012, “A Six Degree of Freedom Epicyclic-Parallel Manipulator,” ASME J. Mech. Rob., 4(4), p. 041011.

[10] R. Lin, W. Guo, F. Gao, 2016, “Type Synthesis of a Family of Novel Four, Five, and Six Degrees-of-Freedom Sea Lion Ball Mechanisms With Three Limbs”, Journal of Mechanisms and Robotics Transaction of ASME, APRIL 2016, Vol. 8

[11] Tahmasebi, F, Tsai, L-W, 1992, “Jacobian and Stiffness Analysis of a Novel Class of Six-DOF Parallel Minim manipulators”, 22nd ASME Biennial Mechanisms Conference, September 1992.

[12] Monsarrat, B., and Gosselin, C. M., 2003, “Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism,” IEEE Trans. Rob. Autom., 19(6), pp. 954–966.

[13] W. Li, Jorge Angeles, 2017, “A Novel Three-Loop Parallel Robot with Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis”, Journal of Mechanisms and Robotics, ASME, OCTOBER 2017, Vol. 9

[14] J. Landure and C. Gosselin, 2018, “Kinematic Analysis of a Novel Kinematically Redundant Spherical Parallel Manipulator”, Journal of Mechanisms and Robotics Transactions of ASME, Volume 10, April 2018

[15] X. Liu, J. Wang, C. Wu, and J. Kim, 2009, “A New Family of Spatial 3-DOF Parallel Manipulators with Two Translational and One Rotational DOFs”, Robotica 27(2):241-247

[16] D. Talaba, 2012, “The Angular Capacity of Spherical Joints Used in Mechanisms with Closed Loops and Multiple Degrees of Freedom”, Robotics and Computer-Integrated Manufacturing, Volume 28, Issue 5, October 2012

[17] L. Campos, F. Bourbonnais, I. Boney, P. Bigras, 2010, “Development of a Five-Bar Parallel Robot With Large Workspace”, Proceedings of the ASME 2010 International Design Engineering Technical Conferences, IDETC2010 August 2010, Montreal, QC, Canada

[18] Z. Yang and D. Zhang, 2017, “Reconfigurable 3-PRS Parallel Solar Tracking Stand”, Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC2017 August 6-9, 2017, Cleveland, USA

[19] Z. Yang and D. Zhang, 2018, “Hybrid Harvester 3-RPS Robotic Parallel Manipulator”, 2018 2nd International Conference on Artificial Intelligence Applications and Technologies, AIAAT 2018, August 8-10, 2018, Shanghai, China

[20] C. Gosselin, “Chapter 3 Analysis of Complex Kinematic Chain”, Kinematic Analysis, Optimization and Programming of Parallel Robotic Manipulators, 1988

[21] J-P. Merlet, 1992, “Geometrical Determination of the Workspace of a Constrained Parallel Manipulator”, In ARK, pages 326-329, Ferrare September 7-9, 1992

[22] J-P. Merlet, 1995, “Determination of the Orientation Workspace of Parallel Manipulators”, Journal of Intelligent and Robotic Systems June 1995, Volume 13, Issue 2, pp 143–160

[23] D. Ferrari and H. Giberti, 2014, “A Genetic Algorithm Approach to the Kinematic Synthesis of a 6-DOF Parallel Manipulator”, 2014 IEEE Conference on Control Applications (CCA) Part of 2014 IEEE Multi-conference on Systems and Control October 8-10, 2014. Antibes, France

[24] “Multi-Objective Optimization”, from www.polymtl.ca

[25] Y. Li and Q. Xu, 2004, “Kinematics and Stiffness Analysis for a General 3-PRS Spatial Parallel Mechanism”, ROMANSY Conference 2004, June 14-18, 2004, Montreal, Canada

[26] S. R. Babu, V. R. Raju and K. Ramji, 2013, “Design for Optimal Performance of 3-RPS Parallel Manipulator Using evolutionary Algorithms”, Transactions of the Canadian Society for Mechanical Engineering, Vol. 37, No. 2, 2013

[27] C. Gosselin, “Stiffness Mapping for Parallel Manipulators”, IEEE Transactions on Robotics and Automation, Vol. 6, Issue 3, Jun 1990