ON FRENKEL-MUKHIN ALGORITHM
FOR q-CHARACTER OF QUANTUM AFFINE ALGEBRAS

WAKAKO NAKAI AND TOMOKI NAKANISHI

Dedicated to Professor Akihiro Tsuchiya

Abstract. The q-character is a strong tool to study finite-dimensional representations of quantum affine algebras. However, the explicit formula of the q-character of a given representation has not been known so far. Frenkel and Mukhin proposed the iterative algorithm which generates the q-character of a given irreducible representation starting from its highest weight monomial. The algorithm is known to work for various classes of representations. In this note, however, we give an example in which the algorithm fails to generate the q-character.

1. Background

1.1. Finite-dimensional representations of quantum affine algebras. Let \(g \) be a simple Lie algebra over \(\mathbb{C} \), and let \(U_q(\hat{g}) \) be the untwisted quantum affine algebra of \(g \) by Drinfeld and Jimbo \([D1, D2, J]\).

The following are the most basic facts on the finite-dimensional representations of \(U_q(\hat{g}) \), due to Chari-Pressley \([CP1, CP2]\):

(i) The isomorphism classes of the irreducible finite-dimensional representations of \(U_q(\hat{g}) \) are parametrized by an \(n \)-tuple of polynomials of constant term 1, \(P = (P_i(u))_{i \in I} \), where \(I = \{1, \ldots, n\} \) and \(n = \text{rank } g \). The polynomials \(P \) are often called the Drinfeld polynomials because an analogous result for Yangian was obtained earlier by Drinfeld \([D2]\).

(ii) For given Drinfeld polynomials \(P \), let \(V(P) \) denote the corresponding irreducible representation. For a pair of Drinfeld polynomials \(P = (P_i(u))_{i \in I} \) and \(Q = (Q_i(u))_{i \in I} \), let \(PQ := (P_i(u)Q_i(u))_{i \in I} \). Then, \(V(PQ) \) is a subquotient of \(V(P) \otimes V(Q) \).

(iii) A representation \(V(P) \) is called the \(i \)th fundamental representation and denoted by \(V_{\omega_i}(a) \) if \(P_i(u) = 1 - au \) and \(P_j(u) = 1 \) for any \(j \neq i \). Suppose that Drinfeld polynomials \(P \) are in the form

\[
P_i(u) = \prod_{k=1}^{n_i} (1 - a_k^{(i)} u).
\]

Namely, \(a_k^{(i)} \) are the inverses of the zeros of \(P_i(u) \). Then, as a consequence of (ii), \(V(P) \) is a subquotient of the tensor product of fundamental representations \(\bigotimes_{i \in I} \bigotimes_{k=1}^{n_i} V_{\omega_i}(a_k^{(i)}) \).
For \(\mathfrak{g} \) of type \(A_1 \), the structure of \(V(P) \) for an arbitrary \(P \) is known \[CP1\]. Also, when \(\mathfrak{g} \) is simply-laced, the relation between \(V(P) \) and the so-called standard representations is described by an analogue of the Kazhdan-Lusztig polynomials \[N1\]. So far, no more general results are known for the structure of \(V(P) \).

1.2. \(q \)-Character. To study the structure of \(V(P) \), the \(q \)-character \(\chi_q \) was introduced by Frenkel and Reshetikhin \[FR\]. It is an injective ring homomorphism from the Grothendieck ring of the finite-dimensional representations of \(U_q(\hat{\mathfrak{g}}) \) to the Laurent polynomial ring of infinitely-many variables \(Y_{i,a} \), \(i \in I, a \in \mathbb{C}^\times \),

\[
\chi_q : \text{Rep} U_q(\hat{\mathfrak{g}}) \to \mathbb{Z}[Y_{i,a}^{\pm 1}]_{i \in I, a \in \mathbb{C}^\times}.
\]

The variables \(Y_{i,a} \) are regarded as affinizations of the formal exponentials \(\exp(\omega_i) \) of the fundamental weights \(\omega_i \) of \(U_q(\mathfrak{g}) \). By replacing \(Y_{i,a} \) with \(\exp(\omega_i) \), \(\chi_q(V(P)) \) reduces to the underlying \(U_q(\mathfrak{g}) \)-character of \(V(P) \) with respect to the standard embedding \(U_q(\mathfrak{g}) \subset U_q(\hat{\mathfrak{g}}) \).

There are several equivalent ways to define the \(q \)-character.

(i) By universal \(R \)-matrix. This is the original definition of \[FR\]. The idea originates from the transfer matrix, which plays the central role in the quantum inverse scattering method, or the Bethe ansatz method for integrable spin chains such as the Heisenberg XXX model \[TF\]. The \(q \)-character \(\chi_q(V) \) of a representation \(V \) is defined as a partial trace of the universal \(R \)-matrix of \(U_q(\hat{\mathfrak{g}}) \) on \(V \).

(ii) By weight decomposition. It is shown also in \[FR\] that \(\chi_q(V) \) is regarded as the formal character of the weight decomposition of \(V \) with respect to certain elements in the Cartan subalgebra in the ‘second realization’ of \(U_q(\hat{\mathfrak{g}}) \) \[D2\]. Hernandez extended this definition of \(\chi_q \) to the affinizations of the full family of the quantum Kac-Moody algebras \[H2, H4\].

(iii) By quiver varieties. When \(\mathfrak{g} \) is simply-laced, Nakajima \[N1, N2\] geometrically defined a \(t \)-analogue of \(q \)-character \(\chi_{q,t} \) (the \(q,t \)-character) as the generating function of the Poincaré polynomials of graded quiver varieties. Then, \(\chi_q \) is obtained by \(\chi_q = \chi_{q,1} \). The algorithm of calculating \(\chi_{q,t} \) is given based on the analogue of the Kazhdan-Lusztig polynomials.

(iv) By axiom. In \[N2\] the axiom which characterizes \(\chi_{q,t} \) in (iii) is given. The axiom is further extended for non simply-laced cases in \[H3\]. Then, \(\chi_q \) is obtained by \(\chi_q = \chi_{q,1} \).

Before the introduction of the \(q \)-character, the spectrum of the transfer matrix defined by the trace on a so-called Kirillov-Reshetikhin (KR) representation \[KR\] of \(U_q(\hat{\mathfrak{g}}) \) was extensively studied by the Bethe ansatz method \([R1, R2, R3, BR, KR, KNS, KNH, KOS, KS, TK]\), etc.). The fundamental representations \(V_{\omega_i}(a) \), for example, are special cases of the KR representations. Because of Definition (i) above, these results, including many
conjectures, are naturally translated and restudied in the context of the q-character \([\text{FR, FM1, CM, KOSY, N3, H3, H6}]\). As a result, the q-characters of the KR representations are, not fully, but rather well understood now.

However, beyond the KR representations, not much is known for the explicit formula of the q-character except for some partial results and conjectures (e.g., \([\text{H5, NN1, NN2, NN3}]\)).

1.3. Frenkel-Mukhin algorithm. We say that a monomial in \(\mathbb{Z}[Y_{i,a}]_{i \in I, a \in \mathbb{C}^\times}\) is \textit{dominant} if it is a monomial of variables \(Y_{i,a}, i \in I, a \in \mathbb{C}^\times\), i.e., without \(Y_{i,a}^{-1}\). Suppose that Drinfeld polynomials \(P\) are in the form \((1.1)\). Then, \(\chi_q(V(P))\) contains a dominant monomial

\[
m_+ = \prod_{i \in I} \prod_{k=1}^{n_i} Y_{i,a_k}^{n_i(i)}
\]

called the \textit{highest weight monomial} of \(V(P)\) \([\text{FR}]\). Since \(P\) and \(m_+\) are in one-to-one correspondence, we parametrize the irreducible representations of \(U_q(\hat{g})\) by their highest weight monomials as \(V(m_+)\), instead of \(V(P)\), from now on.

Frenkel and Mukhin \([\text{FM1}]\) introduced the iterative algorithm which generates a polynomial, say, \(\chi(m_+) \in \mathbb{Z}[Y_{i,a}]_{i \in I, a \in \mathbb{C}^\times}\) from a given dominant monomial \(m_+\). We call it the \textit{FM algorithm} here. \textit{A priori}, it is not clear whether the algorithm does not fail (i.e., it is not halted halfway); also it is not clear whether it stops at finitely many steps. It was conjectured that

\textbf{Conjecture 1.1} \((\text{[FM1], Conjecture 5.8})\). \textit{For any dominant monomial} \(m_+\), \textit{the algorithm never fails and stops after finitely many steps. Moreover, the result} \(\chi_q(V(P))\text{ equals to }\chi_q(V(m_+))\).

The algorithm is fairly practical so that, assuming the conjecture, one can explicitly calculate the q-characters of representations, by hand, or by computer, when the dimensions are small.

Conjecture \((1.1)\) is partially proved by \([\text{FM1}]\) as we shall explain now. We say a representation \(V(m_+)\) is \textit{special} if its highest weight monomial \(m_+\) is the unique dominant monomial occurring in \(\chi_q(V(m_+))\). For example, the fundamental representations are special \([\text{FM1}]\). More generally, the KR representations are special \([\text{N3, H3, H6}]\). (See \([\text{H5}]\) for further examples of special representations.)

\textbf{Theorem 1.2} \((\text{[FM1], Theorem 5.9})\). \textit{If} \(V(m_+)\text{ is special, then Conjecture \((1.1)\text{ is true.})}\)

In particular, the FM algorithm is applicable to the fundamental representations and the KR representations, and provides the aforementioned results for their q-characters. We note that there are also many \textit{nonspecial} representations for which Conjecture \((1.1)\) is true; \textit{e.g.}, \(g\) of type \(A_2\) with \(m_+ = Y_{1,1}^2 Y_{1,q^2}\), where \(V(m_+) \simeq V(Y_{1,1}) \otimes V(Y_{1,1} Y_{1,q^2})\).
The purpose of this note is to give a counterexample of Conjecture 1.1. More precisely, it is an example where the algorithm fails in the sense of [FM1] (see Definition 2.7).

In Section 2 the FM algorithm is recalled. In Section 3, as a warmup, we give two examples in which the algorithm works well. Then, a counterexample is given in Section 4. Taking this opportunity, we also demonstrate the synthesis of the FM algorithm and Young tableaux in [BR, KOS, KS, NT, NN1, NN2, NN3] by these examples.

We thank D. Hernandez for his helpful comments.

2. FM ALGORITHM

Here we recall the FM algorithm. The presentation here is minimal to describe the counterexample in Section 4. We faithfully follow [FM1, Section 5.5], so that the reader is asked to consult it for more details.

2.1. Preliminary: q-character of $U_q(\hat{\mathfrak{sl}}_2)$. The FM algorithm is based on the explicit formula of the q-characters of the irreducible representations of $U_q(\hat{\mathfrak{sl}}_2)$ [CP1, FR].

Example 2.1. Let $W_r(a)$ be the irreducible representation $U_q(\hat{\mathfrak{sl}}_2)$ with highest weight monomial

$$m_+ = \prod_{k=1}^r Y_{aq^r-2k+1}, \quad (2.1)$$

where we set $Y_a := Y_{1,a}$. Then, its q-character is given by

$$\chi_q(W_r(a)) = m_+ \sum_{i=0}^r \prod_{j=1}^i A_{aq^r-2j+2}^{-1}, \quad A_a := Y_{aq^r-1} Y_{aq}. \quad (2.2)$$

Generally, the q-character of any irreducible representation of $U_q(\hat{\mathfrak{sl}}_2)$ is given by a product of (2.2) as follows [CP1]: Let $\Sigma_{a,r}$ be the set of the indices of the variables Y_b in (2.1), i.e., $\Sigma_{a,r} = \{aq^r-2k+1\}_{k=1,\ldots,r}$. We call it a q-string. We say that two q-strings $\Sigma_{a,r}$ and $\Sigma_{a',r'}$ are in general position if either (i) the union $\Sigma_{a,r} \cup \Sigma_{a',r'}$ is not a q-string, or (ii) $\Sigma_{a,r} \subset \Sigma_{a',r'}$ or $\Sigma_{a',r'} \subset \Sigma_{a,r}$. Then,

Example 2.2. Let $m_+ \in \mathbb{Z}[Y_{a}^{\pm 1}]_{a \in \mathbb{C}^\times}$ be a given dominant monomial. Then, one can uniquely (up to permutations) factorize m_+ as

$$m_+ = \prod_{i=1}^k \left(\prod_{b \in \Sigma_{a_i, r_i}} Y_b \right), \quad (2.3)$$
where $\Sigma_{a_1, r_1}, \ldots, \Sigma_{a_k, r_k}$ are q-strings which are pairwise in general position. The q-character of $V(m_+)$ is given by

\begin{equation}
(2.4) \quad \chi_q(V(m_+)) = \prod_{i=1}^k \chi_q(W_{r_i}(a_i)).
\end{equation}

2.2. Algorithm. Let us start from some key definitions.

Definition 2.3. (i) We say that a monomial $m \in \mathbb{Z}[Y_{i,a}^{\pm 1}]_{i \in I, a \in \mathbb{C}^\times}$ is i-dominant if it does not contain variables $Y_{i,a}^{-1}$, $a \in \mathbb{C}^\times$.

(ii) For a polynomial $\chi \in \mathbb{Z}[Y_{i,a}^{\pm 1}]_{i \in I, a \in \mathbb{C}^\times}$ and a monomial m occurring in χ with coefficient s, a coloring of m is a set of integers $\{s_i\}_{i \in I}$ such that $0 \leq s_i \leq s$. We say that a polynomial χ is colored if all monomials occurring in χ have colorings.

(iii) Let $\mathbb{Z}[Y_{i,a}^{\pm 1}]_{i \in I, a \in \mathbb{C}^\times}$ be a colored polynomial, and let m be a monomial occurring in χ with coefficient $s \in \mathbb{Z}_{\geq 0}$ and coloring $\{s_i\}_{i \in I}$. We say that m is admissible if, for any $i \in I$ such that $s_i < s$, m is i-dominant.

Let

\begin{equation}
(2.5) \quad A_{i,a} = Y_{i,aq^{-1}Y_{i,aq}}, \prod_{j:C_{j}=-1} Y_{j,a}^{-1}
\end{equation}

\begin{equation}
\times \prod_{j:C_{j}=-2} Y_{j,aq^{-1}Y_{j,aq}}, \prod_{j:C_{j}=-3} Y_{j,aq^{-1}Y_{j,aq}},
\end{equation}

where $C_{ij} = 2(\alpha_i, \alpha_j)/\langle \alpha_i, \alpha_i \rangle$ is the Cartan matrix of g. The monomials $A_{i,a}$ are regarded as affinizations of the formal exponentials $\exp(\alpha_i)$ of the simple roots α_i of $U_q(g)$.

The FM algorithm is an iterative algorithm, and its main routine utilizes the following procedure called the i-expansion:

Definition 2.4. Let $i \in I$, χ be a colored polynomial, and m be an admissible monomial occurring in χ with coefficient s and coloring $\{s_i\}_{i \in I}$. Then, a new colored polynomial $i_m(\chi)$, called the i-expansion of χ with respect to m, is defined as follows:

(i) If $s_i = s$, then $i_m(\chi) = \chi$.

(ii) If $s_i < s$, we define $i_m(\chi)$ in the following two steps.

First, we obtain a colored polynomial μ which depends on m and i (but not on χ) as follows: Let \overline{m} be the ith projection of m, i.e., $\overline{Y_{i,a}^{\pm 1}} = Y_{a}^{\pm 1}$ and $\overline{Y_{j,a}^{\pm 1}} = 1$ for any $j \neq i$. Let $\chi_q(V(\overline{m})) = \overline{m}(1 + \sum_p \overline{M_p})$ be the q-character of the irreducible representation $V(\overline{m})$ of $U_q(sl_2)$ with highest weight monomial \overline{m}, where $\overline{M_p}$ is a product of $A_{i,a}^{-1}$ (see (2.2), (2.4), and (2.5)). Then,

\begin{equation}
(2.6) \quad \mu = m(1 + \sum_p M_p),
\end{equation}
where M_p is obtained from M_p by replacing all $A^{-1}_{i,a}$ by $A^{-1}_{i,a}$ in (2.5).

Next, we obtain $i_m(\chi)$ by adding the monomials occurring in μ to χ as follows: Suppose that a monomial n occurs in χ with coefficient t. If n does not occur in χ, we add n to χ with coefficient $t(s-s_i)$ and set its coloring $\{s'_j\}_{j\in I}$ as $s'_j = 0$ for any $j \neq i$ and $s'_i = t(s-s_i)$. If n occurs in χ with coefficient r and coloring $\{r_j\}_{j\in I}$, we set the coefficient s' and the coloring $\{s'_j\}_{j\in I}$ of n in $i_m(\chi)$ as $s' = \max\{r, r_i + t(s-s_i)\}$, $s'_j = r_j$ for any $j \neq i$, and $s'_i = r_i + t(s-s_i)$. The coefficients and the colorings of other monomials occurring in χ are unchanged in $i_m(\chi)$.

Note that the i-expansion is defined only if m is admissible.

Remark 2.5. In (2.6), the coefficient of m in μ is always 1. Therefore, both the coefficient and the ith coloring of m in $i_m(\chi)$ are s in Definition 2.4. In other words, the i-expansion of χ with respect to m is designed to saturate the ith coloring of m to its coefficient.

Definition 2.6. (i) The $U_q(\mathfrak{g})$-weight of a monomial

$$\prod_{i\in I} \left(\prod_{r=1}^{k_i} Y_{i,ar} \prod_{s=1}^{l_i} Y_{i,bs}^{-1} \right)$$

is defined by $\sum_{i\in I} (k_i - l_i)\omega_i$.

(ii) We equip the $U_q(\mathfrak{g})$-weight lattice $P := \bigoplus_{i\in I} \mathbb{Z}\omega_i$ with a partial order such that $\lambda \geq \lambda'$ if $\lambda - \lambda' = \sum a_i\alpha_i$, $a_i \in \mathbb{Z}_{\geq 0}$, and call it the natural partial order in P.

Now let us define the FM algorithm. It is an algorithm generating a colored polynomial $\chi(m_+), \in \mathbb{Z}[Y_{i,a}^{\pm1}]_{i\in I, a \in \mathbb{C}^\times}$ from a given dominant monomial m_+.

Definition 2.7 (The FM algorithm). Let m_+ be a given dominant monomial in $\mathbb{Z}[Y_{i,a}^{\pm1}]_{i\in I, a \in \mathbb{C}^\times}$, and λ_+ be the $U_q(\mathfrak{g})$-weight of m_+. Choose any total order in the set $P_{\leq \lambda_+} := \{ \mu \in P \mid \mu \leq \lambda_+ \}$ such that it is compatible with the natural partial order in P; then enumerate the elements in $P_{\leq \lambda_+}$ as $\lambda_1 = \lambda_+ > \lambda_2 > \lambda_3 > \ldots$.

Step 1. We set the colored polynomial χ by $\chi = m_+$ with the ith coloring of m_+ being 0 for any $i \in I$.

Step 2. Repeat the following steps (i)–(iii) for $\lambda = \lambda_1, \lambda_2, \lambda_3, \ldots$.

(i) Let χ be the colored polynomial obtained in the previous step. Let m_1, \ldots, m_t be all the monomials occurring in χ whose $U_q(\mathfrak{g})$-weights are λ. If there is at least one non-admissible monomial among them, then the algorithm halted halfway. We say that the algorithm fails at m_i if m_i is one of such non-admissible monomials.

(ii) Repeat the following for all $i \in I$ and all $k = 1, \ldots, t$: Replace χ with the i-expansion $i_{m_k}(\chi)$ of χ with respect to m_k.

(iii) If there is no monomial occurring in χ whose $U_q(\mathfrak{g})$-weight is less than λ in the total order of $P_{\leq \lambda}$, then set $\chi(m_+) = \chi$ and the algorithm stops (i.e., completes).

It follows from Remark 2.5 that, if the algorithm successfully stops, the ith coloring of any monomial m occurring in $\chi(m_+)$ equals to the coefficient of m for any $i \in I$. Thus, once $\chi(m_+)$ is obtained, one can safely forget the coloring.

3. Examples

Let us see how the FM algorithm works in good situations. This is a warmup to understand the ‘bad situation’ in the next section.

3.1. Example 1. Let us consider the case where \mathfrak{g} is of type A_2 and the representation $V(m_+)$ has the highest weight monomial

\[(3.1) \quad m_+ = Y_{1,q^2}Y_{2,q^{-1}}.\]

The $U_q(\mathfrak{g})$-weight of m_+ is $\lambda_+ = \omega_1 + \omega_2$. It is well known that $V(m_+)$ is an evaluation representation of the adjoint representation $V_{\omega_1+\omega_2}$ of $U_q(\mathfrak{g})$. As a $U_q(\mathfrak{g})$-representation, it is isomorphic to $V_{\omega_1+\omega_2}$. It is also known that $V(m_+)$ is special \[\text{[H5]}\] so that the FM algorithm is applicable.

We use the following data: $q_1 = q_2 = q$, $\alpha_1 = 2\omega_1 - \omega_2$, $\alpha_2 = -\omega_1 + 2\omega_2$, and

\[(3.2) \quad A_{1,a}^{-1} = Y_{1,aq^{-1}}^{-1}Y_{1,aq}^{-1}Y_{2,a}, \quad A_{2,a}^{-1} = Y_{2,aq^{-1}}^{-1}Y_{2,aq}^{-1}Y_{1,a}.\]

Now let us execute the FM algorithm step by step. We choose a total order in $P_{\leq \lambda_+}$ as

\[(3.3) \quad \lambda_1 = \lambda_+, \quad \lambda_2 = \lambda_+ - \alpha_1, \quad \lambda_3 = \lambda_+ - \alpha_2, \quad \lambda_4 = \lambda_+ - 2\alpha_1,\]

\[\lambda_5 = \lambda_+ - \alpha_1 - \alpha_2, \quad \lambda_6 = \lambda_+ - 2\alpha_2, \quad \lambda_7 = \lambda_+ - 2\alpha_1 - \alpha_2,\]

\[\lambda_8 = \lambda_+ - \alpha_1 - 2\alpha_2, \quad \lambda_9 = \lambda_+ - 2\alpha_1 - 2\alpha_2, \quad \ldots,\]

where the rest of the order is irrelevant.

Step 1. Set $\chi = m_+ = Y_{1,q^2}Y_{2,q^{-1}}$ with the coloring of m_+ being $(0,0)$.

Step 2. (1) $\lambda = \lambda_1 = \omega_1 + \omega_2$.

The 1-expansion of χ with respect to $m_+ = Y_{1,q^2}Y_{2,q^{-1}}$ is done as follows:

Since $Y_{1,q^2}Y_{2,q^{-1}} = Y_{q^2}$, we have

\[\chi_q(V) = Y_{q^2}(1 + A_{1,q^2}^{-1}),\]

\[\mu = Y_{1,q^2}Y_{2,q^{-1}}(1 + A_{1,q^2}^{-1}) = Y_{1,q^2}Y_{2,q^{-1}} + Y_{1,q^2}^{-1}Y_{2,q^{-1}}Y_{2,q^{3}},\]

\[1_{m_+}(\chi) = Y_{1,q^2}Y_{2,q^{-1}} + Y_{1,q^2}^{-1}Y_{2,q^{-1}}Y_{2,q^{3}},\]

\[(1,0) \quad (1,0)\]

where $(1,0)$ represents the coloring. Then, χ is replaced with $1_{m_+}(\chi)$.

Similarly, the 2-expansion of \(\chi \) with respect to \(m_+ \) is calculated as

\[
\mu = Y_{1,q} Y_{2,q}^{-1} (1 + A_{1,q}^{-1}) = Y_{1,q} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q} Y_{2,q}^{-1},
\]

\[
\chi = Y_{1,q} Y_{2,q}^{-1} + Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q} Y_{2,q}^{-1}.
\]

(1, 1) (1, 0) (0, 1)

(2) \(\lambda = \lambda_2 = -\omega_1 + 2\omega_2 \). From now on, we only write down the nontrivial \(i \)-expansions, i.e., the cases where \(s_i < s \).

The 2-expansion w.r.t. \(Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1} \):

\[
\mu = Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1} (1 + A_{2,q}^{-1}) = Y_{1,q}^{-1} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q}^{-1} Y_{2,q}^{-1} + Y_{2,q}^{-1} Y_{2,q}^{-1} + Y_{1,1} Y_{2,q}^{-1} Y_{2,q}^{-1},
\]

\[
\chi = Y_{1,q}^{-1} Y_{2,q}^{-1} + Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q}^{-1} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1}
\]

(1, 1) (1, 1) (0, 1) (0, 1)

(3) \(\lambda = \lambda_3 = 2\omega_1 - \omega_2 \).

The 1-expansion w.r.t. \(Y_{1,q} Y_{2,q}^{-1} \):

\[
\mu = Y_{1,1} Y_{1,q} Y_{2,q}^{-1} (1 + A_{1,q}^{-1} + A_{1,q}^{-1} A_{1,q}^{-1})
\]

\[
= Y_{1,1} Y_{1,q} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1},
\]

\[
\chi = Y_{1,q} Y_{2,q}^{-1} + Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1}
\]

(1, 1) (1, 1) (1, 1) (1, 1)

(0, 1) (0, 1) (1, 0)

(4) \(\lambda = \lambda_4 = -3\omega_1 + 3\omega_2 \). No nontrivial \(i \)-expansions.

(5) \(\lambda = \lambda_5 = 0 \).

The 1-expansion w.r.t. \(Y_{2,q}^{-1} Y_{2,q}^{-1} \):

\[
\mu = Y_{2,q}^{-1} Y_{2,q}^{-1},
\]

\[
\chi = Y_{1,q} Y_{2,q}^{-1} + Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q} Y_{2,q}^{-1} + Y_{1,1} Y_{1,q}^{-1} Y_{2,q}^{-1} Y_{2,q}^{-1}
\]

(1, 1) (1, 1) (1, 1) (1, 1)

(0, 1) (1, 0)

(6) \(\lambda = \lambda_6 = 3\omega_1 - 3\omega_2 \). No nontrivial \(i \)-expansions.

(7) \(\lambda = \lambda_7 = -2\omega_1 + \omega_2 \).
The 2-expansion w.r.t. $Y_{1,q}^{-1}Y_{2}^{-1}Y_{2,q}^{-1}$:

$$
\mu = Y_{1,q}^{-1}Y_{1,q}^{-1}Y_{2}^{-1}Y_{2,q}^{-1}(1 + A_{1,q}^{-1}) = Y_{1,q}^{-1}Y_{1,q}^{-1}Y_{2}^{-1}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2}^{-1},
$$

$$
\chi = Y_{1,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}^{-1}Y_{2,q}^{-1} + Y_{1,q}Y_{2,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}^{-1}Y_{2,q}^{-1}
\quad + Y_{2,q}^{-1}Y_{2,q}^{-1} + Y_{1,q}Y_{2,q}^{-1}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}^{-1}Y_{2,q}^{-1}.
$$

(3.4) (1, 1) (1, 1) (1, 1) (1, 1)

(3.5) (1, 1) (1, 1) (1, 1)

(3.6) $m\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = Y_{1,q}Y_{1,q}^{-1}Y_{2}^{-1}Y_{2,q}^{-1} = Y_{1,q}Y_{2,q}^{-1},$

(3.7) $m\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = Y_{1,q}Y_{1,q}^{-1}Y_{2,q}^{-1}Y_{2,q}^{-1} = Y_{1,q}Y_{2,q}^{-1}Y_{2,q}^{-1}.$

\begin{align*}
(8) \lambda &= \lambda_{8} = \omega_{1} - 2\omega_{2}. \\
\text{The 1-expansion w.r.t. } &Y_{1,q}^{-1}Y_{2,q}^{-1}:
\end{align*}

$$
\mu = Y_{1,q}^{-1}Y_{2,q}^{-1}(1 + A_{1,q}^{-1}) = Y_{1,q}^{-1}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}^{-1},
$$

$$
\chi = Y_{1,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}^{-1}Y_{2,q}^{-1} + Y_{1,q}Y_{2,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}^{-1}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}^{-1}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{2,q}^{-1}Y_{2,q}^{-1}.
$$

(3.6) (1, 1) (1, 1) (1, 1) (1, 1)

(3.7) (1, 1) (1, 1) (1, 1)

(9) $\lambda = \lambda_{9} = -\omega_{1} - \omega_{2}$. There is no nontrivial i-expansions; furthermore, there is no monomial occurring in χ in (3.4) whose $U_{q}(g)$-weight is less than λ_{9} in the total order. Therefore, we set $\chi(m_{+})$ to be χ in (3.4), and the algorithm stops.

Thus, we obtain the q-character of $V(m_{+})$ as χ in (3.4) by forgetting coloring.

Next, let us introduce a diagrammatic notation of monomials by Young tableaux, following [BR] [KOS] [KS] [NT] [FR] [FM2] [NN1].

To each letter $a = 1, 2, 3$ within a box of a Young diagram Y, we assign a monomial as (cf. [FR] Section 5.4.1)

$$
\begin{align*}
1_{ij} &= Y_{1,q}^{-1+2i+2j}, \\
2_{ij} &= Y_{1,q}^{-1+2i+2j+2}Y_{2,q}^{-1+2i+2j+1}, \\
3_{ij} &= Y_{2,q}^{-1+2i+2j+3},
\end{align*}
$$

where the subscription ‘ij’ indicates that the box is located in the ith row and jth column of Y. To each tableau T on Y, we assign a monomial $m(T)$ by multiplying the monomials assigned to all the boxes in T. For example, the first and the second monomials in χ in (3.4) are represented by tableaux as

$$
\begin{align*}
(3.6) \quad m\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} &= Y_{1,1}Y_{1,1}^{-1}(Y_{1,1}^{-1}Y_{2,1}^{-1}) = Y_{1,1}Y_{2,1}^{-1}, \\
(3.7) \quad m\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} &= Y_{1,1}(Y_{1,1}^{-1}Y_{2,1}^{-1})(Y_{1,1}^{-1}Y_{2,1}^{-1}) = Y_{1,1}^{-1}Y_{2,1}^{-1}Y_{2,1}^{-1}.
\end{align*}
$$
Figure 1. The flow of the FM algorithm by Young tableaux for Example 1. The symbol i, q^k at an arrow represents the action of A_{1,q^k}^{-1}. The suffix i at a tableau indicates that $s_i < s$ when χ is to be i-expanded with respect to the corresponding monomial.

The definition (3.5) is designed so that the following equalities hold [FR, Section 5.4.1]:
\[
A_{1,q^k}^{-1} \begin{array}{c} 1 \\ 2 \end{array} = \begin{array}{c} 2 \\ 1 \end{array}, \quad A_{2,q^{2i}+2j+2}^{-1} \begin{array}{c} 2 \\ 3 \end{array} = \begin{array}{c} 3 \\ 1 \end{array}.
\]

Namely, the multiplication of A_{1,q^k}^{-1} is regarded as the ‘action’ of changing the letter i to $i+1$ in a tableau, if α is appropriately chosen.

With this notation, one can concisely keep track and express the whole process of the algorithm presented above by the semistandard tableaux of shape (2,1) as in Figure 1. Moreover, as a corollary of Figure 1, we obtain the tableaux expression of the q-character
\[
\chi_q(V(m_+)) = \sum_{T \in \text{SST}(2,1)} m(T),
\]
where SST(2,1) is the set of all the semistandard tableaux of shape (2,1).

Remark 3.1. For \mathfrak{g} of classical type, similar tableaux expressions to (3.9) have been conjectured and partially proved for a large class of irreducible representations $V(\lambda/\mu)$ parametrized by skew Young diagrams λ/μ [BR, KOS, KS, FR, FM2, NN1, NN2, NN3, H5]. More precisely, there is a
tableaux expression for the ‘Jacobi-Trudi-type determinant’ $\chi(\lambda/\mu)$, which lies in the image of the homomorphism χ_q. For types A_n and B_n, it is known that $\chi(\lambda/\mu) = \chi_q(V(\lambda/\mu))$ for any skew Young diagram $[H5] [H7]$. For type A_n, this was also shown in the context of the character of Yangian $Y(\mathfrak{g}_n)$ $[NT]$. For types C_n and D_n $[NN1] [NN2] [NN3]$, for a (non-skew) Young diagram λ, it was conjectured that $\chi(\lambda) = \chi_q(V(\lambda))$. In general, $\chi(\lambda/\mu)$ is conjectured to be the q-character of, not $V(\lambda/\mu)$ itself, but some representation which has $V(\lambda/\mu)$ as a subquotient. Using this opportunity, let us withdraw our false claim for types C_n and D_n in $[NN1] [NN2] [NN3]$ that we expect that $\chi(\lambda/\mu) = \chi_q(V(\lambda/\mu))$, if λ/μ is connected. A counterexample is given by \mathfrak{g} of type C_2 with $\lambda = (2, 2, 1), \mu = (1)$.

Remark 3.2. The underlying $U_q(\mathfrak{g})$-character of $V(m_+)$ is symmetric under the Dynkin diagram automorphism $1 \leftrightarrow 2$. However, we see in Figure 1 that the $U_q(\mathfrak{g})$-structure of $V(m_+)$ is not so. Of course, this is not a contradiction, because the highest weight monomial m_+ in (3.1) are not symmetric under the automorphism.

3.2. Example 2. To convince the reader further that the FM algorithm is well designed, let us give another, a little more complicated example, where the coefficients of some monomials in the q-character are greater than one. We consider the case where \mathfrak{g} is of type C_2 and the representation $V(m_+)$ has the highest weight monomial

\begin{equation}
 m_+ = Y_{2,q}^{-1}Y_{2,q}.
\end{equation}

The $U_q(\mathfrak{g})$-weight of m_+ is $\lambda_+ = 2\omega_2$. We faithfully follow the convention in $[FR] [FM1]$; in particular, α_2 is the long root. Since any monomial occurring in $\chi_q(V(m_+))$ for (3.10) should occur in the product $\chi_q(V(Y_{2,q}^{-1}))\chi_q(V(Y_{2,q}))$, and

\begin{equation}
 \chi_q(V(Y_{2,q}^{-1})) = Y_{2,q}^{-1} + Y_{1,1}Y_{1,q}^2Y_{2,q}^{-1} + Y_{1,1}Y_{1,q}^{-1} + Y_{1,q}^{-1}Y_{1,1}Y_{1,q}^{-1} + Y_{1,q}^{-1}Y_{1,1}Y_{1,q}^{-1} + Y_{1,q}^{-1}Y_{1,1}Y_{1,q}^{-1} + Y_{1,q}^{-1}Y_{1,1}Y_{1,q}^{-1},
\end{equation}

\begin{equation}
 \chi_q(V(Y_{2,q})) = Y_{2,q} + Y_{1,q}Y_{1,q}Y_{2,q}^{-1} + Y_{1,q}Y_{1,q}^{-1} + Y_{1,q}^{-1}Y_{1,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{1,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{1,q}Y_{2,q}^{-1} + Y_{1,q}^{-1}Y_{1,q}Y_{2,q}^{-1},
\end{equation}

one can immediately see that m_+ is the only possible dominant monomial in $\chi_q(V(m_+))$. Thus, $V(m_+)$ is special, and the FM algorithm is applicable. It also implies that $V(Y_{2,q}^{-1}) \otimes V(Y_{2,q})$ is irreducible and isomorphic to $V(m_+)$. In particular, as a $U_q(\mathfrak{g})$-representation, $V(m_+)$ is decomposed as $V_{\omega_2} \otimes V_{\omega_2} \simeq V_{2\omega_2} \oplus V_{2\omega_2} \oplus V_0$ with dimension $5 \times 5 = 14 + 10 + 1$, and its $U_q(\mathfrak{g})$-weight diagram is given in Figure 2.

Keep in mind that (Definition 2.4 (ii)) the i-expansion should be done, not with $U_q(\mathfrak{sl}_2)$, but with $U_q(\hat{\mathfrak{sl}}_2)$. Then, the algorithm can be straightforwardly executed with the data: $q_1 = q$, $q_2 = q^2$, and

\begin{equation}
 A_{1,a}^{-1} = Y_{1,aq}^{-1}Y_{1,aq}^{-1}Y_{2,a}, \quad A_{2,a}^{-1} = Y_{2,aq}^{-1}Y_{2,aq}^{-1}Y_{1,aq}^{-1}Y_{1,aq}.
\end{equation}
Again, the flow of the algorithm can be expressed with tableaux of shape \((2, 2)\). We assign a monomial to each letter \(a = 1, 2, \overline{3}, \overline{4}\) within the box at position \((i, j)\) as (cf. \([FR, \text{Section 5.4.3}]\)).

\[
\begin{array}{cccc}
1 & 2 & \omega_2 \\
2 & \alpha_2 & 2 & 2 \\
1 & 2 & \alpha_1 & 2 & 1 \\
2 & 2 & 2 & 1
\end{array}
\]

Figure 2. The \(U_q(\mathfrak{g})\)-weight diagram of \(V(m_+)\) in Example 2. The numbers represent the weight multiplicities.

For example, the highest weight monomial \(m_+\) is represented as

\[
m_{ij} = Y_{1,q}^{-2i+2j}Y_{2,q}^{-2i+2j+1}Y_{2,q}^{-2i+2j+3}.
\]

\[(3.14)\]

The ‘action’ of \(A_{i,a}^{-1}\) on a box is given by

\[
\begin{array}{c}
1 \rightarrow 2 \\
2 \rightarrow 1
\end{array}
\]

\[(3.16)\]

Then, the flow and the result of the algorithm is expressed by tableaux in Figure 3.

We note that two monomials occur in \(\chi_q(V(m_+))\) with coefficient two, and, in Figure 3, each monomial is represented by two different tableaux such as

\[
m \left(\begin{array}{c}
1 \\
2 \\
1 \\
2
\end{array}\right) = m \left(\begin{array}{c}
1 \\
2 \\
1 \\
T
\end{array}\right),
\]

\[
m \left(\begin{array}{c}
2 \\
1 \\
1 \\
T
\end{array}\right) = m \left(\begin{array}{c}
1 \\
2 \\
T \\
T
\end{array}\right).
\]

Purely from the point of view of the FM algorithm, this is redundant, because the FM algorithm does not distinguish tableaux if they represent the same monomial. However, by doing this, we have the following **tableaux expression** of the \(q\)-character

\[
\chi_q(V(m_+)) = \sum_{T \in \text{Tab}} m(T),
\]

\[(3.18)\]

where Tab is the set of the tableaux occurring in Figure 3. Remarkably, the formula \((3.18)\) exactly coincides with the tableaux expression in \([NN1]\).
Figure 3. The flow of the FM algorithm by Young tableaux for Example 2. The equality between two tableaux means that they represent the same monomial.

[NN3] based on the Jacobi-Trudi-type determinant, thereby showing nice compatibility between two approaches.

Remark 3.3. The implementation of the FM algorithm with tableaux (or, equivalently, with paths) of [NN1, NN3] demonstrated here, can be generalized to the skew diagram representations of type C_n [NN4]. See also Remark 4.4.
4. **Counterexample**

Now we are ready to present an example where the FM algorithm *fails* in the sense of Step 2 (i) of Definition 2.7.

We consider the case where \(g \) is of type \(C_3 \) and the representation \(V(m_+) \) has the highest weight monomial

\[
m_+ = Y_{1,q^4} Y_{2,q} Y_{3,q^{-2}}. \tag{4.1}
\]

According to [NN1, Conjecture 2.2, Theorem A.1], it is expected to be decomposed into \(V_{\omega_1+\omega_2+\omega_3} \oplus V_{2\omega_1+\omega_2} \oplus V_{2\omega_2} \oplus V_{\omega_1+\omega_3} \oplus V_{2\omega_1+\omega_3} \oplus V_{\omega_3} \) as a \(U_q(g) \)-representation, with dimension \(512 + 189 + 90 + 70 + 21 + 14 = 896 \). The algorithm is executed with the data: \(q_1 = q_2 = q, q_3 = q^2 \), and

\[
\begin{align*}
A^{-1}_{1,1} &= Y_{1,q^{-1}}^{-1} Y_{1,aq}^{-1} Y_{2,a}, \\
A^{-1}_{2,2} &= Y_{2,aq}^{-1} Y_{2,a}^{-1} Y_{1,a} Y_{3,a}, \\
A^{-1}_{3,3} &= Y_{3,aq}^{-1} Y_{3,a}^{-1} Y_{2,a}^{-1} Y_{2,aq}.
\end{align*}
\]

Again, the process of the algorithm can be expressed by Young tableaux of shape \((3,2,1)\). We assign a monomial to each letter \(a = 1, 2, 3, \overline{3}, \overline{2}, \bar{1} \) within the box at position \((i,j)\) as

\[
\begin{align*}
\begin{array}{c|c}
1 & 1 \\
2 & 2 \\
3 & 1
\end{array}
&= Y_{1,q^{-2i+2j}}, \\
\begin{array}{c|c}
3 & 1 \\
2 & 2 \\
1 & 1
\end{array}
&= Y_{2,q^{-2i+2j+5}} Y_{3,q^{-2i+2j+6}}, \\
\begin{array}{c|c}
1 & 1 \\
2 & 2 \\
3 & 2
\end{array}
&= Y_{1,q^{-2i+2j+6}} Y_{2,q^{-2i+2j+7}}.
\end{align*}
\]

(4.3)

For example, the highest weight monomial \(m_+ \) is represented as

\[
m \left(\begin{array}{c|c|c|c}
1 & 1 & 1 \\
2 & 2 & 1 \\
3 & 1 & 1
\end{array} \right)
\]

\[
= Y_{1,1} Y_{1,q^4} Y_{1,q^2} Y_{1,1}^{-1} Y_{2,q^{-1}} Y_{2,q}^{-1} Y_{3,q^{-2}}
\]

\[
= Y_{1,q^4} Y_{2,q} Y_{3,q^{-2}}.
\]

The ‘action’ of \(A_{i,j}^{-1} \) on a box is given by

\[
\begin{align*}
\begin{array}{c|c}
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}
&\xrightarrow{A_{i,j}^{-1}} \begin{array}{c|c|c|c}
1 & 1 & 1 \\
2 & 2 & 1 \\
3 & 1 & 1
\end{array}, \\
\begin{array}{c|c}
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}
&\xrightarrow{A_{2,2}^{-1}} \begin{array}{c|c|c|c}
1 & 1 & 1 \\
2 & 2 & 1 \\
3 & 1 & 1
\end{array}, \\
\begin{array}{c|c|c|c}
1 & 1 & 1 \\
2 & 2 & 1 \\
3 & 1 & 1
\end{array}
&\xrightarrow{A_{3,3}^{-1}} \begin{array}{c|c|c|c}
1 & 1 & 1 \\
2 & 2 & 1 \\
3 & 1 & 1
\end{array}.
\end{align*}
\]

(4.5)

Theorem 4.1. The FM algorithm fails for \(m_+ \) in (4.4).
Let us prove the theorem. We set

\begin{align*}
(4.6) \quad m_1 & := A_{3,1}^{-1}m_+ = Y_{1,q^4}(Y_2q^{-1}Y_2q^2)Y_3^{-1}, \\
(4.7) \quad m_2 & := A_{2,q^2}^{-1}A_{3,1}^{-1}m_+ = (Y_{1,q^2}Y_1q^4)(Y_2q^{-1}Y_2q^2), \\
(4.8) \quad m_3 & := A_{2,q^2}^{-2}A_{3,1}^{-1}m_+ = (Y_2q^{-1}Y_2q^2), \\
(4.9) \quad m_4 & := A_{1,q^4}^{-1}A_{2,q^2}^{-2}A_{3,1}^{-1}m_+ = Y_1q^4(Y_2q^{-1}Y_2q^2), \\
(4.10) \quad m_5 & := A_{1,q^4}^{-1}A_{2,q^2}^{-1}A_{3,1}^{-1}m_+ = Y_2q^{-1}Y_2q, \\
(4.11) \quad m_6 & := A_{2,q^2}^{-1}m_+ = (Y_1q^4Y_1q^4)(Y_3q^{-2}Y_3q^2).
\end{align*}

We show below that the algorithm fails at \(m_4 \). See Figure 4 for the outline of the proof in terms of tableaux.

Lemma 4.2. The monomial \(m_4 \) occurs in \(\chi \) at some step in the algorithm.

Proof. By (4.1), the 3-expansion of \(\chi \) with respect to \(m_+ \) gives \(\mu = m_+(1 + A_{3,1}^{-1}) \), where \(\mu \) is the polynomial in (2.6). Therefore, \(m_1 \) occurs in \(\chi \) after the expansion. Next, by (4.6), \(m_1 \) is admissible, and the 2-expansion of \(\chi \)
with respect to m_1 gives $\mu = m_1(1 + A_{2,q}^{-1}A_{2,q}^{-1})(1 + A_{2,q}^{-1}).$ Thus, m_3 occurs in χ after the expansion. Finally, by (4.5), m_3 is admissible, and the 1-expansion of χ with respect to m_3 gives $\mu = m_1(1 + A_{1,q}^{-1}A_{1,q}^{-1})(1 + A_{1,q}^{-1})$. In particular, m_4 occurs in χ after the expansion. \hfill \square

Let $\lambda (= \omega_1 + \omega_3)$ denote the $U_q(\mathfrak{g})$-weight of m_4. Let us show that the monomial m_4 is not admissible when χ is going to be expanded at λ; hence, the algorithm fails at m_4. To see it, suppose that m_4 is admissible when χ is going to be expanded χ at λ. Since m_4 is not 2-dominant, it should occur in the 2-expansion with respect to some 2-dominant monomial, say n, whose $U_q(\mathfrak{g})$-weight is greater than λ. Since $\{A_{i,a}\}_{i \in I, a \subseteq C^\times}$ are algebraically independent, n should be either $m_5 = A_{2,q^2}m_4$ or $m'_5 = A_{2,q^2}m_4$. Then, one can easily check that the 2-expansion with respect to m_5 generates m_4, while the 2-expansion with respect to m'_5 does not. Therefore, $n = m_5$. However,

Lemma 4.3. The monomial m_5 does not occur in χ at any step in the algorithm.

Proof. By (4.10), there are six possible routes to obtain m_5 from m_+ by i-expansions: (The symbol $\overrightarrow{i,q^k}$ represents the action of A_{i,q^k}^{-1}.)

(i) $m_+ \overrightarrow{1,q^3} \ast \overrightarrow{2,q^2} \ast \overrightarrow{3,1} m_5$. The 1-expansion of χ with respect to m_+ gives $\mu = m_+(1 + A_{1,q^3}^{-1})$. So, it does not happen.

(ii) $m_+ \overrightarrow{1,q^3} \ast \overrightarrow{3,1} \ast \overrightarrow{2,q^2} m_5$. By the same reason as above, it does not happen.

(iii) $m_+ \overrightarrow{2,q^2} \ast \overrightarrow{1,q^3} \ast \overrightarrow{3,1} m_5$. The 2-expansion of χ with respect to m_+ gives $\mu = m_+(1 + A_{2,q^2}^{-1})$. So, m_6 occurs in χ. Then, the 1-expansion of χ with respect to m_6 gives $\mu = m_6(1 + A_{1,q^3}^{-1} + A_{1,q^3}^{-1}A_{1,q^3}^{-1})$. So, it does not happen.

(iv) $m_+ \overrightarrow{2,q^2} \ast \overrightarrow{3,1} \ast \overrightarrow{2,q^2} m_5$. The 3-expansion of χ with respect to m_6 gives $\mu = m_6(1 + A_{2,q^2}^{-1} + A_{2,q^2}^{-1}A_{3,q^3}^{-1})$. So, it does not happen.

(v) $m_+ \overrightarrow{3,1} \ast \overrightarrow{1,q^3} \ast \overrightarrow{2,q^2} m_5$. The 1-expansion of χ with respect to m_1 gives $\mu = m_1(1 + A_{1,q^3}^{-1})$. So, it does not happen.

(vi) $m_+ \overrightarrow{3,1} \ast \overrightarrow{2,q^2} \ast \overrightarrow{1,q^3} m_5$. The 1-expansion of χ with respect to m_2 gives $\mu = m_2(1 + A_{2,q^2}^{-1} + A_{2,q^2}^{-1}A_{1,q^3}^{-1})$. So, it does not happen.

Therefore, m_5 does not occur in χ at any step. \hfill \square

This completes the proof of Theorem 4.11.

Shortly speaking, the algorithm fails because it fails to generate m_5 which is an extra dominant monomial in $\chi_q(V(m_+))$.

It is not difficult to find some other examples where similar phenomena happen. For example, it is a good exercise to check that, if \mathfrak{g} is of type D_4.
and the representation has the highest weight monomial

\[m \left(\begin{array}{ccc} 1 & 1 \\ 2 \\ 3 \end{array} \right) = Y_{1,q^2}Y_{3,q^{-2}}Y_{4,q^{-2}}, \]

the FM algorithm fails at the monomial

\[m \left(\begin{array}{ccc} 1 & 1 \\ 3 \\ 1 \end{array} \right) = Y_{1,1}Y_{2,q^{-1}}Y_{3,1}Y_{4,1}, \]

where we use the diagrammatic notation in \[\text{FR NN1 NN2}. \]

We conclude with a remark on a modification of the FM algorithm.

Remark 4.4. Actually, in the counterexample above, the FM algorithm almost works except for missing one monomial \(m_5 \). It suggests the following modification of the algorithm: when we encounter the non-admissible monomial \(m_4 \) in the algorithm, one simply adds \(m_5 \) (the ‘2-ancestor’ of \(m_4 \)) to \(\chi \) with coloring \((0,0,0)\), then restart the expansions from \(\lambda = 2\omega_2 \). Then, we have checked by computer that the modified algorithm stops and certainly generates monomials represented by 896 tableaux as expected in \[\text{NN1 NN3}. \] For general representations, this trace-back procedure is, a priori, not well-defined, because one cannot uniquely determine the ‘i-ancestor’ of a given monomial. However, for the family of the skew diagram representations of type \(C_n \) in \[\text{NN1 NN3}, \] one can do so with help of tableaux representation (or, more conveniently, paths representation) of monomials. Observe Figure 4 as a simple example. By modifying the FM algorithm with the trace-back procedure, we expect that Conjecture 1.1 is true for these representations, and it is supported by our computer experiment. The detail will be published elsewhere \[\text{NN4}. \]

References

[Bazhanov, Reshetikhin] V. V. Bazhanov, N. Reshetikhin, Restricted solid-on-solid models connected with simply laced algebras and conformal field theory, *J. Phys. A: Math. Gen.* 23 (1990), 1477–1492.

[Chari, Moura] V. Chari, A. Moura, Characters of fundamental representations of quantum affine algebras, *Acta Appl. Math.* 90 (2006), 43–63.

[Chari, Pressley 1] V. Chari, A. Pressley, Quantum affine algebras, *Comm. Math. Phys.* 142 (1991), 261–283.

[Chari, Pressley 2] V. Chari, A. Pressley, Quantum affine algebras and their representations, in *Proc. of Representations of groups*, Banff, 1994, 59–78, CMS Conf. Proc. 16, 1995.

[Drinfeld 1] V. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, *Soviet. Math. Dokl.* 32 (1985), 254–258.

[Drinfeld 2] V. Drinfeld, A new realization of Yangians and quantized affine algebras, *Soviet. Math. Dokl.* 36 (1988), 212–216.

[Frenkel, Mukhin 1] E. Frenkel, E. Mukhin, Combinatorics of \(q \)-characters of finite-dimensional representations of quantum affine algebras, *Comm. Math. Phys.* 216 (2001), 23–57.

[Frenkel, Mukhin 2] E. Frenkel, E. Mukhin, The Hopf algebra \(\text{Rep} U_q(\widehat{\mathfrak{sl}}_2) \), *Selecta Math. (N.S.)* 8 (2002), 537–635.
[FR] E. Frenkel, N. Reshetikhin, The q-characters of representations of quantum affine algebras and deformations of W-algebras, *Contemp. Math.* 248 (1999), 163–205.

[H1] D. Hernandez, Algebraic approach to q,t-characters, *Advances in Math.* 187 (2004) 1–52.

[H2] D. Hernandez, Representations of quantum affinizations and fusion product, *Transformation Groups* 10 (2005) 163–200.

[H3] D. Hernandez, The Kirillov–Reshetikhin conjecture and solutions of T-systems, *J. Reine Angew. Math.* 596 (2006), 63–87.

[H4] D. Hernandez, Drinfeld coproduct, quantum fusion tensor category and applications, *Proc. London Math. Soc.* 95 (2007) 567–608.

[H5] D. Hernandez, On minimal affinizations of representations of quantum groups, *Comm. Math. Phys.* 277 (2007) 221–259.

[H6] D. Hernandez, Kirillov-Reshetikhin conjecture: the general case, arXiv: 0704.2838.

[H7] D. Hernandez, private communication.

[J] M. Jimbo, A q-difference analogue of $U(\hat{g})$ and the Yang–Baxter equation, *Lett. Math. Phys.* 10 (1985), 63–69.

[KR] A. N. Kirillov, N. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, *J. Sov. Math.* 52 (1990), 3156–3164.

[KNS] A. Kuniba, T. Nakanishi, J. Suzuki, Functional relations in solvable lattice models: I. Functional relations and representation theory, *Internat. J. Modern Phys. A* 9 (1994), 5215–5266.

[KNH] A. Kuniba, S. Nakamura, R. Hirota, Pfaffian and determinant solutions to a discretized Toda equation for B_n, C_n, and D_n, *J. Phys. A: Math. Gen.* 29 (1996), 1759–1766.

[KOS] A. Kuniba, Y. Ohta, J. Suzuki, Quantum Jacobi–Trudi and Giambelli formulæ for $U_q(B^{(1)}_k)$ from the analytic Bethe ansatz, *J. Phys. A: Math. Gen.* 28 (1995), 6211–6226.

[KOSY] A. Kuniba, M. Okado, J. Suzuki, Y. Yamada, Difference L operators related to q-characters, *J. Phys. A: Math. Gen.* 35 (2002), 1415–1435.

[KS] A. Kuniba, J. Suzuki, Analytic Bethe ansatz for fundamental representations of Yangians, *Comm. Math. Phys.* 173 (1995), 225–264.

[N1] H. Nakajima, t-analogue of the q-characters of finite dimensional representations of quantum affine algebras, in *Physics and Combinatorics, Proc. of Nagoya 2000 International Workshop*, Nagoya, 2000, World Scientific, 2001, 181–212.

[N2] H. Nakajima, *Quiver varieties and t-analogues of q-characters of quantum affine algebras*, Ann. of Math. 160 (2004) 1057–1097.

[N3] H. Nakajima, t-analog of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras, *Represent. Theory* 7 (2003), 259–274.

[NN1] W. Nakai, T. Nakanishi, Paths, tableaux and q-characters of quantum affine algebras: the C_n case, *J. Phys. A: Math. Phys.* 39 (2006), 2083–2115.

[NN2] W. Nakai, T. Nakanishi, Paths and tableaux descriptions of Jacobi–Trudi determinant associated with quantum affine algebra of type C_n, *J. Alg. Combin.* 26 (2007) 253–290.

[NN3] W. Nakai, T. Nakanishi, Paths and tableaux descriptions of Jacobi–Trudi determinant associated with quantum affine algebra of type D_n, *SIGMA* 3 (2007) 078, 20 pages.

[NN4] W. Nakai, T. Nakanishi, in preparation.

[NT] M. Nazarov, V. Tarasov, Representations of Yangians with Gelfand-Zetlin basis, *J. Reine Angew. Math.* 496 (1998) 181–212.

[R1] N. Reshetikhin, A method of functional equations in the theory of exactly solvable quantum systems, *Lett. Math. Phys.* 7 (1983) 205–213.
ON FRENKEL-MUKHIN ALGORITHM

[R2] N. Reshetikhin, Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry, Theor. Math. Phys. 63 (1985) 559–569.

[R3] N. Reshetikhin, The spectrum of the transfer matrices connected with Kac-Moody algebras, Lett. Math. Phys. 14 (1987) 235–246.

[TF] L. Takhtajan, L. Faddeev, The quantum inverse problem method and the Heisenberg XYZ model, Russ. Math. Survey 34 (1979) 11-68.

[TK] Z. Tsuboi, A. Kuniba, Solutions of a discretized Toda field equation for D_r from analytic Bethe ansatz, J. Phys. A: Math. Phys. 29 (1996), 7785–7796.

Wakako Nakai, Kaiyo Academy, Kaiyo-cho, Gamagori, 443-8588, Japan, Tomoki Nakanishi, Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8604, Japan