Creating COVID-19 Stigma by Referencing the Novel Coronavirus as the “Chinese virus” on Twitter: Quantitative Analysis of Social Media Data

Henna Budhwani, MPH, PhD; Ruoyan Sun, MHS, PhD
Department of Health Care Organization and Policy, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States

Abstract

Background: Stigma is the deleterious, structural force that devalues members of groups that hold undesirable characteristics. Since stigma is created and reinforced by society—through in-person and online social interactions—referencing the novel coronavirus as the “Chinese virus” or “China virus” has the potential to create and perpetuate stigma.

Objective: The aim of this study was to assess if there was an increase in the prevalence and frequency of the phrases “Chinese virus” and “China virus” on Twitter after the March 16, 2020, US presidential reference of this term.

Methods: Using the Sysomos software (Sysomos, Inc), we extracted tweets from the United States using a list of keywords that were derivatives of “Chinese virus.” We compared tweets at the national and state levels posted between March 9 and March 15 (preperiod) with those posted between March 19 and March 25 (postperiod). We used Stata 16 (StataCorp) for quantitative analysis, and Python (Python Software Foundation) to plot a state-level heat map.

Results: A total of 16,535 “Chinese virus” or “China virus” tweets were identified in the preperiod, and 177,327 tweets were identified in the postperiod, illustrating a nearly ten-fold increase at the national level. All 50 states witnessed an increase in the number of tweets exclusively mentioning “Chinese virus” or “China virus” instead of coronavirus disease (COVID-19) or coronavirus. On average, 0.38 tweets referencing “Chinese virus” or “China virus” were posted per 10,000 people at the state level in the preperiod, and 4.08 of these stigmatizing tweets were posted in the postperiod, also indicating a ten-fold increase. The 5 states with the highest number of postperiod “Chinese virus” tweets were Pennsylvania (n=5249), New York (n=11,754), Florida (n=13,070), Texas (n=14,861), and California (n=19,442). Adjusting for population size, the 5 states with the highest prevalence of postperiod “Chinese virus” tweets were Arizona (5.85), New York (6.04), Florida (6.09), Nevada (7.72), and Wyoming (8.76). The 5 states with the largest increase in pre- to postperiod “Chinese virus” tweets were Kansas (n=697/58, 1202%), South Dakota (n=185/15, 1233%), Mississippi (n=749/54, 1387%), New Hampshire (n=582/41, 1420%), and Idaho (n=670/46, 1457%).

Conclusions: The rise in tweets referencing “Chinese virus” or “China virus,” along with the content of these tweets, indicate that knowledge translation may be occurring online and COVID-19 stigma is likely being perpetuated on Twitter.

(J Med Internet Res 2020;22(5):e19301) doi: 10.2196/19301

KEYWORDS
COVID-19; coronavirus; Twitter; stigma; social media; public health
Introduction

Stigma is the deleterious, structural force that devalues those who hold undesirable characteristics [1]. Stigma is a social process that occurs between groups; this process can occur in-person and online [2-6]. Regardless of setting, research has consistently found that stigma is associated with negative health outcomes [4,6-9]. For example, HIV-related stigma has pushed the HIV-epidemic underground, fueling ongoing transmission [10], and other disease-related stigmas are associated with negative health outcomes ranging from missed clinical visits to suicidal ideation [1,6,9]. There is evidence to show that stigma can become internalized, and internalized stigma can lead to distrust of health professionals, skepticism of public health systems, and an unwillingness to disclose behaviors related to transmission [2,8,9]. Because the coronavirus disease (COVID-19) is infectious, contact tracing is critically important to assessing community spread; thus, it is imperative that individuals trust their public health and health care systems so that they are willing to accept testing and, if diagnosed with COVID-19, report their whereabouts and activities. Therefore, creating and perpetuating stigma related to COVID-19 could be detrimental to public health efforts that require potentially stigmatized individuals to engage with their health systems.

On March 16, 2020, the president of the United States referred to the novel coronavirus as the “Chinese virus” on Twitter. He tweeted “The United States will be powerfully supporting those industries... that are particularly affected by the Chinese Virus...” After this presidential reference, a dialogue emerged examining if the phrase “Chinese virus” was xenophobic and stigmatizing, considering the availability of alternative scientific names such as coronavirus or COVID-19. Since stigma is created and perpetuated by society through social interaction and public commentary (eg, use of the term “Chinese virus” instead of scientific terms on Twitter), and stigma is reinforced by those in power (eg, use of the term “Chinese virus” by the US president), we hypothesized that there would be an increase in the frequency of the phrases “Chinese virus” and “China virus” on Twitter, comparing the prevalence of these phrases before and after the presidential reference.

Methods

Twitter

Twitter is an online social media platform where users send and receive short posts (maximum 280 characters) called tweets. Twitter currently has 152 million daily users, who produce about 500 million daily tweets [11].

Data, Tweets

We downloaded tweets from all 50 US states, using the Sysomos software (Sysomos, Inc). We extracted tweets that mentioned “Chinese virus” or “China virus” but did not contain “COVID-19” or “coronavirus.” The list of keywords referencing the “Chinese virus” are “Chinesevirus,” “Chinese virus,” “Chinavirus,” “China virus,” “#Chinesivirus19,” “#Chinesevirus,” “#ChineseVirusCorona,” and “#Chinavirus.” We excluded tweets containing the keywords “coronavirus,” “corona virus,” “COVID-19,” “COVID19,” “#COVID2019,” and “#corona.” By excluding tweets that contained both “Chinese virus” and “coronavirus,” we collated a sample of tweets that represented the intent of using “Chinese virus” in place of a scientific alternative, likely indicating deliberate stigmatization. We imputed the location of tweets based on Twitter users’ self-reported state of residence. Tweets posted between March 9 and March 15, 2020 (preperiod), were compared with tweets posted between March 19 and March 25, 2020 (postperiod). Original tweets and quote tweets (adding comments to an existing tweet) were included but not retweets (reposting of an existing tweet). Our final sample (N=193,862) contained all tweets posted in the pre- and postperiods by US-based Twitter users that exclusively mentioned a derivative of “Chinese virus.” Data extraction was conducted on April 10, 2020. Ethical approval was provided by the University of Alabama at Birmingham Institutional Review Board (IRB-#300005071).

Analysis

We used Stata 16 (StataCorp) to analyze our Twitter data and Python software (Python Software Foundation) to plot our state-level gradient heat map.

Results

A total of 16,535 “Chinese virus” or “China virus” tweets were identified in the preperiod, and 177,327 tweets were identified in the postperiod, illustrating a 972.43% (n=160,792/16,535) increase. Comparatively, the number of tweets referencing COVID-19 in the preperiod and postperiod remained steady, at about 4.9 million tweets per period. A total of 13,569 (82.06%) of the preperiod and 145,521 (82.06%) of the postperiod tweets were associated with a Twitter user’s self-reported US state. Figure 1 is a heat map illustrating the state-by-state increases of tweets referencing “Chinese virus” or “China virus.” The darker the shade, the greater the increase. All 50 US states witnessed an increase in the number of tweets exclusively mentioning “Chinese virus” or “China virus” rather than COVID-19 or coronavirus. The 5 US states with the highest number of postperiod “Chinese virus” tweets were Pennsylvania, New York, Florida, Texas, and California. The 5 US states with the largest increase in pre- to postperiod “Chinese virus” tweets were Kansas, South Dakota, Mississippi, New Hampshire, and Idaho.
In Table 1, we present US state-level results of tweets referencing “Chinese virus” or “China virus.” On average, at the state level, 271 such tweets were found in the preperiod and 2910 in the postperiod, indicating a ten-fold increase, similar to what we found at the national level. We also calculated the percentage increase and the prevalence increase. The percentage increase measures the percentage of all COVID-19 related tweets that mentioned “China virus” or “Chinese virus” exclusively. To account for variations in population size, prevalence of “Chinese virus” tweets per 10,000 people for each US state was calculated using the following formula:

\[
\text{prevalence increase} = \left(\frac{\text{number of "Chinese virus" tweets}}{\text{state population}} \right) \times 10,000
\]

State population sizes were taken from the 2019 US Census Bureau estimates [12]. On average, the state-level percentage increase was 997%, with a minimum of 661% and a maximum of 1447%. Similarly, the prevalence increase mean was 1015%, with a minimum of 734% and a maximum of 1456%. Large variations were found across US states, with the lowest postperiod prevalence of “Chinese virus” or “China virus” in South Dakota and the highest in Wyoming. The 5 US states with the highest prevalence of “Chinese virus” or “China virus” postperiod tweets were Arizona, New York, Florida, Nevada, and Wyoming.
Table 1. Tweets referencing the novel coronavirus as “Chinese virus” or “China virus” by state.

States	Preperiod	Postperiod	Change from pre- to postperiod							
	COVID-19 tweets, n	“Chinese virus” tweets, n	Prevalence of tweets	Percentage increase	COVID-19 tweets, n	“Chinese virus” tweets, n	Prevalence of tweets	Percentage increase	Percentage increase	
	n	(%)	n	(%)	n	(%)	n	(%)	(%)	
AL	40,588	153	0.38	0.31	39,434	1749	4.44	3.57	1077	1043
AK	9251	40	0.43	0.55	9597	404	4.21	5.52	874	910
AZ	83,019	438	0.53	0.60	89,127	4256	4.78	5.85	805	872
AR	21,810	109	0.50	0.36	22,741	910	4.00	3.02	701	735
CA	696,645	1806	0.26	0.46	685,596	19,442	2.84	4.92	994	977
CO	84,092	291	0.35	0.51	85,014	3218	3.79	5.59	994	1006
CT	40,304	116	0.29	0.33	40,531	1253	3.09	3.51	974	980
DE	9789	31	0.32	0.32	10,095	304	3.01	3.12	851	881
FL	270,723	1243	0.46	0.58	294,652	13,070	4.44	6.09	866	951
GA	135,543	382	0.28	0.36	136,875	4192	3.06	3.95	987	997
HI	15,261	53	0.35	0.37	18,237	597	3.27	4.22	843	1026
ID	13,810	46	0.33	0.26	14,683	716	4.88	4.01	1364	1457
IL	176,425	410	0.23	0.32	169,849	4918	2.90	3.88	1146	1100
IN	58,767	192	0.33	0.29	57,218	2118	3.70	3.15	1033	1003
IA	27,552	71	0.26	0.23	27,917	847	3.03	2.68	1077	1093
KS	24,678	58	0.24	0.20	24,694	755	0.31	2.59	1201	1202
KY	45,648	179	0.39	0.40	45,841	1765	3.85	3.95	882	886
LA	51,734	151	0.29	0.32	48,623	1535	3.16	3.30	982	917
ME	16,948	54	0.32	0.40	17,762	520	2.93	3.87	819	863
MD	75,527	189	0.25	0.31	76,274	1932	2.53	3.20	912	922
MA	138,665	295	0.21	0.43	137,297	3201	2.33	4.64	996	985
MI	108,514	297	0.27	0.30	103,934	3623	3.49	3.63	1174	1120
MN	63,304	192	0.30	0.34	65,570	1882	2.87	3.34	846	880
MS	19,530	54	0.28	0.18	18,771	803	4.28	2.70	1447	1387
MO	68,869	201	0.29	0.33	71,951	2317	3.22	3.78	1003	1053
MT	9365	61	0.65	0.57	10,503	521	4.96	4.87	662	754
NE	19,791	54	0.27	0.28	18,840	670	3.56	3.46	1203	1141
NV	52,996	217	0.41	0.70	53,730	2377	4.42	7.72	980	995
NH	14,260	41	0.29	0.30	15,096	623	4.13	4.58	1335	1420
NJ	96,806	315	0.33	0.35	100,334	3823	3.81	4.30	1071	1114
NM	18,966	51	0.27	0.24	20,220	627	3.10	2.99	1053	1129
NY	487,901	1225	0.25	0.63	484,515	11,754	2.43	6.04	866	860
NC	110,832	327	0.30	0.31	115,394	3795	3.29	3.62	1015	1061
ND	5649	18	0.32	0.24	6148	193	3.14	2.53	885	972
OH	145,371	366	0.25	0.31	127,421	4613	3.62	3.95	1338	1160
OK	33,480	137	0.41	0.35	33,857	1436	4.24	3.63	937	948
OR	64,817	185	0.29	0.44	65,972	1985	3.01	4.71	954	973
PA	159,712	485	0.30	0.38	161,156	5249	3.26	4.10	973	982
RI	14,234	43	0.30	0.41	14,219	385	2.71	3.63	796	795
Change from pre- to postperiod

States	Preperiod COVID-19 tweets, n	Preperiod “Chinese virus” tweets, n	Percentage of tweets, (%)	Prevalence of tweets	Postperiod COVID-19 tweets, n	Postperiod “Chinese virus” tweets, n	Percentage of tweets, (%)	Prevalence of tweets	Change from pre- to postperiod
SC	43,104	222	0.52	0.43	46,251	2145	4.64	4.17	800 866
SD	6252	15	0.24	0.17	6573	200	3.04	2.26	1168 1233
TN	82,478	361	0.44	0.53	82,050	3431	4.18	5.02	855 850
TX	378,047	1442	0.38	0.50	369,006	14,861	4.03	5.13	956 931
UT	30,422	81	0.27	0.25	28,464	1004	3.53	3.13	1225 1140
VT	8625	18	0.21	0.29	9527	226	2.37	3.62	1037 1156
VA	97,602	301	0.31	0.35	104,176	3351	3.22	3.93	943 1013
WA	123,025	331	0.27	0.43	116,656	3316	2.84	4.35	957 902
WV	15,523	47	0.30	0.26	15,698	509	3.24	2.84	971 983
WI	51,670	130	0.25	0.22	52315	1593	3.05	2.74	1110 1125
WY	6185	45	0.73	0.78	6875	507	7.37	8.76	914 1027
Mean	87,482	271	0.33	0.38	87,545	2910	3.57	4.08	997 1015

aPercentage of all COVID-19 related tweets that mentioned “Chinese virus” or “China virus” exclusively.
bPrevalence of “Chinese virus” tweets per 10,000 people was calculated using the following formula: \[
\frac{\text{number of “Chinese virus” tweets}}{\text{state population}} \times 10,000.
\]
cPercentage of increase was calculated as:
dPrevalence increase was calculated as:

Discussion

Principal Result

We found notable increases in the use of the terms “Chinese virus” and “China virus” on Twitter at both the national and state levels by comparing these tweets (percentage and prevalence) both before and after the March 16, 2020, presidential reference. The following are examples of “Chinese virus” or “China virus” tweets:

- Not parroting MSM’s [main stream media’s] narrative. It’s the #WuFlu #ChineseCoronaVirus #ChinaVirus
- #ChinaVirus #ChinaLiesPeopleDie

Limitations

The pandemic is currently underway, so Twitter data—both in quantity (quantitative) and content (qualitative)—are rapidly shifting. We were unable to screen for automatically generated tweets (bots) within this short report [13,14]. Geographic locations associated with Twitter accounts were self-reported; thus, it is possible that some Twitter users may have moved without updating their state location or may have reported a false state location.

Comparison With Prior Work

There is a growing body of academic literature that leverages Twitter data to assess trends in population health and public sentiment [15-17]. Chew and Eysenbach [18] conducted a seminal examination of knowledge translation using Twitter data during the H1N1 outbreak; they found the proportion of tweets using “H1N1” increased over time compared to the relative use of “swine flu,” suggesting that the media’s choice in terminology (shifting from using the term “swine flu” to “H1N1”) influenced public uptake. In addition, it is relevant that a recent publication by Logie and Turan [19] presented a narrative on how stigma can hurt the COVID-19 public health response. This short report was developed considering the findings from prior studies.

Future Research

Future research could evaluate and show that stigma mechanisms work online, validate if Twitter and social media data can be informative to epidemic surveillance and health communication, examine the extent that Twitter and social media data is reliable in informing public health efforts and social science research, and explore how Twitter users view COVID-19 and the COVID-19 public health response (eg, testing, linkage to care).

Additionally, although there is a growing body of research using tweets to examine aspects of the novel coronavirus [20-22], to our knowledge, no studies have included a comprehensive set of search terms, which may include phrases such as “ncov,” “covid,” “sars-cov,” and “rona,” in defining their samples. If data extraction is not comprehensive, we run the risk of missing emerging sentiments and terminology, such as referencing the novel coronavirus as the “China virus” or “Chinese virus,” and sociobehavioral outcomes related to these trends.

Conclusions

The rise in tweets citing “Chinese virus” or “China virus” instead of COVID-19 or the novel coronavirus after the presidential reference on Twitter, along with the content of these
tweets, indicate that knowledge translation may be occurring online and COVID-19 stigma is likely being perpetuated on Twitter. Generally speaking, perpetuating COVID-19-related stigma by using the phrase “Chinese virus” could harm public health efforts related to addressing the pandemic, specifically inciting fear and increasing distrust of public health systems by Chinese and Asian Americans. If these stigmatizing terms persist as malicious synonyms for the novel coronavirus, reparative efforts may be required to restore trust by marginalized communities.

Acknowledgments

Research reported in this publication was supported by the University of Alabama at Birmingham School of Public Health Back of the Envelope (for RS) and the National Institute of Mental Health of the National Institutes of Health under Award Number 1K01MH116737 (for HB). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Authors’ Contributions

HB conceptualized this study, and RS conducted the data collection and analysis. Both authors contributed to manuscript development and writing.

Conflicts of Interest

None declared.

References

1. Goffman E. Stigma: Notes on the Management of Spoiled Identity. Upper Saddle River, NJ: Prentice Hall; 1963.
2. Budhwani H, De P. Perceived stigma in health care settings and the physical and mental health of people of color in the United States. Health Equity 2019;3(1):73-80 [FREE Full text] [doi: 10.1089/heq.2018.0079] [Medline: 30915422]
3. Ho CL, Pan W, Taylor LD. Stigma of HIV testing on online HIV forums: self-stigma and the unspoken. J Psychosoc Nurs Ment Health Serv 2017 Dec;01(55(12)):34-43. [doi: 10.3928/02793695-20170905-01] [Medline: 28892555]
4. Karamouzian M, Knight R, Davis WM, Gilbert M, Shoveller J. Stigma associated with sexually transmissible infection testing in an online testing environment: examining the perspectives of youth in Vancouver, Canada. Sex Health 2018;15(1):46. [doi: 10.1071/sh17089]
5. Milin R, Kutch S, Lewis SP, Walker S, Wei Y, Ferrill N, et al. Impact of a mental health curriculum on knowledge and stigma among high school students: a randomized controlled trial. J Am Acad Child Adolesc Psychiatry 2016 May;55(5):383-391.e1. [doi: 10.1016/j.jaac.2016.02.018] [Medline: 27126852]
6. Pachankis JE, Hatzenbuehler ML, Wang K, Burton CL, Crawford FW, Phelan JC, et al. The burden of stigma on health and well-being: a taxonomy of concealment, course, disruptiveness, aesthetics, origin, and peril across 93 stigmas. Pers Soc Psychol Bull 2018 Apr;44(4):451-474 [FREE Full text] [doi: 10.1177/0146167217741313] [Medline: 29290150]
7. Budenz A, Klassen A, Purtle J, Yom Toev E, Yudell M, Massey P. Mental illness and bipolar disorder on Twitter: implications for stigma and social support. J Ment Health 2020 Apr;29(2):191-199. [doi: 10.1080/09638227.2019.1677878] [Medline: 31694433]
8. Budhwani H, Healrd KR, Milner AN, Charow R, McGlaughlin EM, Rodriguez-Laurzurique M, et al. Transgender women's experiences with stigma, trauma, and attempted suicide in the Dominican Republic. Suicide Life Threat Behav 2018 Dec;48(6):788-796. [doi: 10.1111/sltb.12400] [Medline: 28950402]
9. Turan B, Budhwani H, Fazeli PL, Browning WR, Raper JL, Mugavero MJ, et al. How does stigma affect people living with HIV? The mediating roles of internalized and anticipated HIV stigma in the effects of perceived community stigma on health and psychosocial outcomes. AIDS Behav 2017 Jan;21(1):283-291 [FREE Full text] [doi: 10.1007/s10461-016-1451-5] [Medline: 27727242]
10. Pachankis JE, Hatzenbuehler ML, Hickson F, Weatherburn P, Berg RC, Marcus U, et al. Hidden from health. AIDS 2015;29(10):1239-1246. [doi: 10.1097/qad.0000000000000724]
11. Dai H, Deem MJ, Hao J. Geographic variations in electronic cigarette advertisements on Twitter in the United States. Int J Public Health 2017 May;62(4):479-487. [doi: 10.1007/s00038-016-0906-9] [Medline: 27742923]
12. United States Census Bureau. 2019 Dec. Table 1. Annual Estimates of the Resident Population for the United States, Regions, States, and Puerto Rico: April 1, 2010 to July 1, 2019 (NST-EST2019-01) URL: https://www.census.gov/newsroom/press-kits/2019/national-state-estimates.html [accessed 2020-04-22]
13. Allem J, Ferrara E. The importance of debiasing social media data to better understand e-cigarette-related attitudes and behaviors. J Med Internet Res 2016 Aug 09;18(8):e219. [doi: 10.2196/jmir.6185] [Medline: 27507563]
14. Allem J, Ferrara E, Uppu SP, Cruz TB, Unger JB. E-cigarette surveillance with social media data: social bots, emerging topics, and trends. JMIR Public Health Surveill 2017 Dec 20;3(4):e98. [doi: 10.2196/publichealth.8641] [Medline: 29263018]
15. Alessa A, Faezipour M. Flu outbreak prediction using Twitter posts classification and linear regression with historical Centers for Disease Control and Prevention reports: prediction framework study. JMIR Public Health Surveill 2019 Jun 25;5(2):e12383. [doi: 10.2196/12383] [Medline: 31237567]

16. Grajales FJ, Sheps S, Ho K, Novak-Lauscher H, Eysenbach G. Social media: a review and tutorial of applications in medicine and health care. J Med Internet Res 2014 Feb 11;16(2):e13. [doi: 10.2196/jmir.2912] [Medline: 24518354]

17. Ji X, Chan SA, Wei Z, Geller J. Twitter sentiment classification for measuring public health concerns. Soc Netw Anal Min 2015;5(1):13 [FREE Full text] [doi: 10.1007/s13278-015-0253-5] [Medline: 32226558]

18. Chew C, Eysenbach G. Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS One 2010 Nov 29;5(11):e14118. [doi: 10.1371/journal.pone.0014118] [Medline: 21124761]

19. Logie CH, Turan JM. How do we balance tensions between COVID-19 public health responses and stigma mitigation? learning from HIV research. AIDS Behav 2020 Apr 07:e. [doi: 10.1007/s10461-020-02856-8] [Medline: 32266502]

20. Abd-Alrazaq A, Alhuwail D, Househ M, Hamdi M, Shah Z. Top concerns of Tweeters during the COVID-19 pandemic: infoveillance study. J Med Internet Res 2020 Apr 21;22(4):e19016. [doi: 10.2196/19016] [Medline: 32287039]

21. Kouzy R, Abi Jaoude J, Kraitem A, El Alam MB, Karam B, Adib E, et al. Coronavirus goes viral: quantifying the COVID-19 misinformation epidemic on Twitter. Cureus 2020 Mar 13;12(3):e7255 [FREE Full text] [doi: 10.7759/cureus.7255] [Medline: 32248871]

22. Rosenberg H, Syed S, Rezaie S. The Twitter pandemic: the critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic. CJEM 2020 Apr 06:1-4 [FREE Full text] [doi: 10.1017/cem.2020.361] [Medline: 32248871]

Abbreviations
COVID-19: coronavirus disease

©Henna Budhwani, Ruoyan Sun. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 06.05.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.