Pathological observation of the effects of exposure to radioactive microparticles on experimental animals

Kazuko Shichijo1,* and Toshihiro Takatsuji2

1Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
2Faculty of Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan

*Corresponding author. Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 112-4 Sakamoto, Nagasaki 852-8523, Japan. Tel.: +81-95-819-7107; Fax: +81-95-819-7108; E-mail: shichijo@nagasaki-u.ac.jp

(Received 5 November 2021; revised 22 January 2022; editorial decision 17 June 2022)

ABSTRACT

Internal radiation exposure from neutron-induced radioisotopes that were environmentally activated following an atomic bombing or nuclear accident should be considered for a complete picture of the pathologic effects on survivors. Inhaled hot particles expose neighboring tissues to very high doses of particle beams, which can cause local tissue damage. Experimentally, a few μm of 55MnO2 powder was irradiated with neutrons at a nuclear reactor in order to generate 56MnO2 that emits β-rays. Rats were irradiated via inhalation. Pathological changes in various rat tissues were examined. In addition, the 56Mn β energy spectrum around the particles was calculated to determine the local dose rate and the cumulative dose. This review focuses on our latest pathological findings in lungs with internal radiation injury and discusses the pathological changes of early event damage caused by localized, very high-dose internal radiation exposure, including apoptosis, elastin stigma, emphysema, hemorrhage and severe inflammation. The pathological findings of lung tissue due to internal radiation exposure of 0.1 Gy were severe, with no pathological changes observed due to external exposure to γ radiation at a dose of 2.0 Gy. Therefore, it is suggested that new pathological analysis methods for internal exposure due to radioactive microparticles are required.

Keywords: radioactive particle; internal radiation exposure; pathology; lung; atomic bombing; elastin

INTRODUCTION

To fully understand the radiation effects on survivors of the Hiroshima and Nagasaki atomic bombings (A-bombs), as well as victims of nuclear disasters such as nuclear power plant accidents, one must consider not only the initial radiation received directly from the bombs and/or other sources, but also that received from neutron-induced radioisotopes in soil, dust and so on, as well as radiation from dispersed fission products and nuclear fuel materials. Among these, radioactive particles dispersed in the air (radioactive dust) can be a source of internal exposure. In assessing the radiation risk of those who moved to the affected area shortly after an explosion or other nuclear disaster, inhalation of radioactive dust may be more important than external exposure. In Hiroshima, Otani et al. suggested the possibility of radioactive dust exposure from the study of early entrants into Hiroshima following the explosion [1]. There is further evidence of dust falling following the attack in the Nagasaki area [2].

There are two types of radioactivity derived from atomic bombs: (i) fission products such as 137Cs and 90Sr and fuel components such as Pu [3], and (ii) induced radioactivity produced by neutron irradiation of soil such as 54Mn and 24Na. Because most nuclides have short half-lives, neutron-induced radioactivity has received little attention. While the International Atomic Energy Agency (IAEA) recently featured a coordinated study on radioactive particles focusing on environmental fate and transfer into the body [4], we conducted a study to investigate biological effects [5, 6]. For radioactive microparticles in soluble form, irradiation dose is thought to be distributed similarly to external exposure [7, 8]. However, our estimates indicate extremely high-dose rates in the vicinity of insoluble radioactive microparticles.

Because neutrons generated in the process of an atomic bomb explosion or nuclear accident have no electric charge, they can enter the nuclei of atoms very easily without being disturbed by the Coulomb force, and they often create unstable nuclei—radioisotopes—with one extra neutron (neutron activation). The resulting radioactive material generates radioactive particles, which can cause internal radiation exposure by inhalation. In many cases, tissues in contact with inhaled radioactive particles are locally exposed to very high doses of radiation.
from β rays, characteristic X-rays and Auger electrons. These effects must be taken into account in order to obtain a complete picture of the radiopathological effects on survivors.

In terms of internal radiation exposure to the human body, we have already reported Pu deposits in the bodies of Nagasaki A-bomb victims. The average dose of Pu in the Nagasaki A-bomb victims’ organs was evaluated over their survival period, and it was shown to be lower when compared to external exposure. However, the impact of a single α-particle on an individual cell nucleus should not be overlooked, and it would be meaningful to investigate the relationship between the impact of internal exposure on the cellular level dose and the organ average dose [9–11]. When comparing the same tissue average dose, internal exposure has been shown to have a greater effect than external exposure [12]. In 1986, the Chernobyl nuclear power plant accident exposed residents of Ukraine, Belarus and Russia to radioactive iodine, particularly infants and children who drank milk from cows that had eaten hay and other food sources contaminated with radioactive fallout [13]. In 2011, it was claimed that radioactive particles (cesium balls) were scattered in the air during the Fukushima Daiichi Nuclear Power Plant accident, which was triggered by the Great East Japan Earthquake [14].

This review focuses on the pathological effects of 56Mn microparticles on the lung. It is well known that radiation exposure of the lungs can induce ‘radiation pneumonitis’ in laboratory animals at lung doses of more than 8 Gy of low linear energy transfer (LET) radiation [15, 16]. In rats, studies showed that a 20 Gy thorax irradiation did not induce any short-term histological changes in the lungs, while the irradiated lungs developed focal exudative lesions after 2 months and reparative fibrotic lesions after 6 months [17, 18]. In addition, lung function was impaired by irradiation with a single dose of 12 Gy [19].

Our experiments showed that internal exposure to a tissue-averaged dose of 0.10 Gy (Table 1) caused serious pathological changes in the lungs compared to 2 GY of 60Co external exposure.

We have conducted a series of internal radiation exposure experiments on animals in order to study the effects of radioactive particles, including their initial effects and subsequent pathological profiles, and we found that inhaling radioactive microparticles can cause serious radiation damage due to localized exposure to very high doses, even if the average dose is low (Fig. 1). Microdistribution of internal radiation dose in lung tissues exposed to 56Mn dioxide microparticles has been reported [6, 20]. The detection of the three-dimensional spatial distribution of the radiation effects of radioactive particles embedded in tissues, as well as the analysis of their relationship to the microscopic dose distribution around the radioactive particles, will be important for the study of internal exposure. This entails linking the microdistribution of internal radiation dose in biological tissues to pathobiological effects.

EXPOSURE TO 0.1 GY INTERNAL RADIATION CAUSES MUCH MORE PATHOLOGICAL CHANGES THAN EXTERNAL EXPOSURE TO 60Co RADIATION AT A DOSE OF 2.0 GY

A nuclear reactor activates nonradioactive manganese-55 dioxide (55MnO$_2$) powder to produce 56MnO$_2$ powder, which emits β rays (activated powder). The pathological effects of internal exposure to radiation via activated powder inhalation on male Wistar rats were compared to those of external exposure to γ-rays. 56Mn is one of the major radioisotopes generated in soil by neutron irradiation from atomic bomb explosions and is responsible for exposure (DS86 Vol. 1 [21]). Since 56Mn has a short physical half-life of 2.58 hours, exposure to it is largely restricted to the first few hours following inhalation.

The MnO$_2$ powder particles used in this experiment were the same size as previously reported, with a diameter of approximately 5 μm [22, 23]. The activated powder was produced by neutron irradiation of 100 mg of 55MnO$_2$ powder (Rare Metallics, Japan) in the IVG-1 M (‘Baikal-1’) reactor in Kurchatov, Kazakhstan (page 110 of [24]). The irradiating neutrons had a particle fluence of $4 \times 10^{14} \text{n/cm}^2$ per 2000 seconds of irradiation time, which was irradiated for 2000 (1 x), 4000 (2 x) and 8000 (4 x) seconds to produce three types of activated powders [22].

The radioactivity of this activated powder with 56Mn was $2.74 \times 10^6 \text{Bq}$, $2.74 \times 10^6 \text{Bq}$ and $4 \times 2.74 \times 10^6 \text{Bq}$ for the whole 100 mg for 1 x, 2 x and 4 x, respectively. This was pneumatically sprayed onto the rats in the experimental box. On the other hand, γ-irradiation was performed using a Teragam K2 unit (UPR Praha, Praha-Zbraslav, Czech Republic), which externally irradiated rats with 2.0 Gy of 60Co γ-rays at a dose rate of 2.6 Gy/min, which is the dose of fractionated radiation therapy with low LET radiation that falls on the shoulder of the cell survival curve and maximizes sublethal damage repair and repopulation of the normal tissue. In addition, a control group that was neither exposed to activated powder nor γ-irradiation (unexposed control group) [6] and a group that inhaled nonactivated MnO$_2$ powder (stable Mn) [6] were established.

The pathological effects of internal exposure to radiation were emphysema, hemorrhage and severe inflammation, all of which were reported 6 hours to 8 months after the exposure, during which bronchial epithelial cell apoptosis was also found [6].

The initial pathological findings and damage to the lung tissue from 0.1 Gy internal radiation exposure were nonspecific, more rapid and more severe than in the external exposure group to 2.0 Gy of γ rays (externally exposed or γ 2.0 Gy group) [6], the unexposed control group and the stable Mn group. Pathological changes such as emphysema and hemorrhage were observed in the lungs of rats exposed to 1 x radioactive powder (1 $\times 2.74 \times 10^6 \text{Bq}$) and severe inflammation was observed and persisted in the groups exposed to 2 x and 2 x (2 x $2.74 \times 10^6 \text{Bq}$) radioactive powder (internally exposed 56Mn (4 x) and (2 x) groups) [6] 6 hours to 6 months after the exposure. These changes were more pronounced in the group internally exposed to 4 x activated powder (4 $\times 2.74 \times 10^6 \text{Bq}$). The lung tissue damage observed on the third day of internal exposure to 4 x and 2 x (2 x $2.74 \times 10^6 \text{Bq}$) radioactive powders persisted in these same rat groups 6 months after exposure (Tables 1, 2, Figs 2-4).

Collagen fiber deposition, which has been traditionally used as an indicator of fibrosis in radiation-induced pneumonitis, was low in the internally exposed 2 x group. On the other hand, elastic fibers (elastin) demonstrated an abnormally localized high deposition surrounding the alveoli 6 hours after internal radiation exposure, with a staggered distribution that was cut off at intervals (elastin stigma), as if a bullet (shot) had been fired (Fig. 5A). External exposure to γ radiation at 2.0 Gy had a similar effect, but at a lower deposition level compared to the 4 x activated powder, and this effect was normalized to control.
Table 1. The 56Mn specific activities A_0 and tissue average cumulative absorbed doses D of internal irradiation in various organs and tissues of experimental rats [6]

	56Mn(1×)		56Mn(2×)		56Mn(4×)	
	A_0 (kBq/g)	D (Gy)	A_0 (kBq/g)	D (Gy)	A_0 (kBq/g)	D (Gy)
Liver	4.14 ± 0.35	0.015 ± 0.001	1.40 ± 0.33	0.005 ± 0.001	3.00 ± 0.70	0.011 ± 0.003
Heart	5.46 ± 0.60	0.016 ± 0.021	2.00 ± 0.30	0.006 ± 0.001	4.50 ± 0.94	0.014 ± 0.004
Kidney	3.97 ± 0.48	0.013 ± 0.002	2.30 ± 0.51	0.008 ± 0.002	3.60 ± 0.60	0.012 ± 0.003
Tongue	45.0 ± 5.4	0.069 ± 0.011	12.0 ± 2.8	0.018 ± 0.005	28.0 ± 5.0	0.043 ± 0.012
Lungs	71.8 ± 9.3	0.100 ± 0.014	37 ± 7	0.051 ± 0.011	81 ± 13	0.110 ± 0.023
Esophagus	25.5 ± 3.6	0.050 ± 0.009	6.4 ± 1.6	0.012 ± 0.003	16 ± 3.3	0.030 ± 0.007
Stomach	148 ± 16	0.24 ± 0.03	140 ± 28	0.22 ± 0.06	210 ± 47	0.33 ± 0.08
Small intestine	811 ± 93	1.33 ± 0.17	350 ± 79	0.58 ± 0.14	890 ± 210	1.48 ± 0.37
Large intestine	1011 ± 100	1.65 ± 0.18	410 ± 87	0.69 ± 0.17	1160 ± 270	1.90 ± 0.47
Trachea	5.79 ± 0.75	0.014 ± 0.002	3.90 ± 0.77	0.010 ± 0.002	6.50 ± 1.40	0.016 ± 0.004
Eyes	13.2 ± 1.7	0.021 ± 0.003	19.0 ± 4.4	0.031 ± 0.008	24.0 ± 5.3	0.004 ± 0.010
Skin	40.6 ± 4.9	0.076 ± 0.010	45.0 ± 8.2	0.086 ± 0.020	49.0 ± 9.0	0.095 ± 0.020
Whole body	834 ± 11.0	0.150 ± 0.025	51.0 ± 11.0	0.091 ± 0.026	77.0 ± 15.0	0.140 ± 0.030

56Mn(1×); Initial total activity of 100 mg 56MnO$_2$ powder sprayed was 2.74×10^8 Bq [22].

56Mn(2×); Initial total activity of 100 mg 56MnO$_2$ powder sprayed was 5.48×10^8 Bq.

56Mn(4×); Initial total activity of 100 mg 56MnO$_2$ powder sprayed was 1.10×10^9 Bq.
Table 2. Histological findings in the lungs of rats in the internally exposed 56Mn, 2.0 Gy γ externally exposed and unexposed control groups [6]

Group	Hour6	Day3	Day14	Month2	Month6	Group	Month8
Hemorrhage	56Mn(4×) 3	(++)	(++)	(++)	(++)	56Mn(1×) 6	(++)
Emphysema	2	(++)	(++)	(++)	(++)	6	(++)
Inflammation	3	(++)	(++)	(++)	(++)	6	(++)
Atelectasis	0	(−)	(−)	(−)	(−)	3	(++)
Pneumonia	0	(−)	(−)	(−)	(−)	0	(−)
Granuloma	0	(−)	(−)	(−)	(−)	1	(+)
(n=3)	(n=3)	(n=3)	(n=3)	(n=3)	(n=3)	(n=4)	(n=4)

Group	56Mn(2×) 3	(++)	(++)	(++)	(++)	56Mn(2×) 2	(++)
Emphysema	2	(++)	(++)	(++)	(++)	1	(+)
Inflammation	3	(++)	(++)	(++)	(++)	1	(+)
Atlectasis	0	(−)	(−)	(−)	(−)	1	(+)
Pneumonia	0	(−)	(−)	(−)	(−)	0	(−)
Granuloma	0	(−)	(−)	(−)	(−)	0	(−)
(n=3)	(n=3)	(n=3)	(n=3)	(n=3)	(n=3)	(n=4)	(n=4)

Group	γ 2.0 Gy 3	(++)	(++)	(++)	(++)	γ 2.0 Gy 2	(++)
Emphysema	2	(++)	(++)	(++)	(++)	2	(+)
Inflammation	3	(++)	(++)	(++)	(++)	2	(+)
Atlectasis	0	(−)	(−)	(−)	(−)	1	(+)
Pneumonia	0	(−)	(−)	(−)	(−)	0	(−)
Granuloma	0	(−)	(−)	(−)	(−)	0	(−)
(n=3)	(n=3)	(n=3)	(n=3)	(n=3)	(n=3)	(n=4)	(n=4)

Group	Control 0	(−)	(−)	(−)	(−)	Control 0	(−)
Emphysema	0	(−)	(−)	(−)	(−)	1	(+)
Inflammation	1	(−)	(−)	(−)	(−)	0	(−)
Atlectasis	0	(−)	(−)	(−)	(−)	0	(−)
Pneumonia	0	(−)	(−)	(−)	(−)	0	(−)
Granuloma	0	(−)	(−)	(−)	(−)	0	(−)
(n=3)	(n=3)	(n=3)	(n=3)	(n=3)	(n=3)	(n=4)	(n=5)

Notes: a the number of rats with incidence and pathologic grades (in parenthesis) and b pathologic grades ranging from − to +++.
Fig. 1. A comparison between external exposure to high energy γ-ray and internal exposure to radioactive particles emitting β-ray. Near the radioactive particles, the radiation dose is high, and events caused by emitted electrons are concentrated. Therefore, multiple events occur in one cell nucleus, causing severe damage (left). On the other hand, exposure to an external γ-ray source results in a nearly uniform dose, and events occur relatively randomly as a result of photo-electrons and Compton electrons (right).

Fig. 2. Lungs of rats 3 days after exposure showing severe emphysema (a) and hemorrhage (a–1) in the 56Mn internally exposed group (0.1 Gy), but no pathological changes in the 60Co γ rays (2 Gy) externally exposed (b) and unexposed control groups (c). As with the control, experiments with a stable Mn group were also conducted, and no change was observed. Hematoxylin and eosin (H&E) staining, original magnification $\times 10$. (a, a–1, c from [23]/CC BY 4.0).

levels after 3 days, but remained high for 6 months in the internally exposed (activated powder) groups.

Apoptotic cell death occurred in bronchial epithelial cells in the lungs of the internally exposed group 3 days, 14 days, 2 months and 8 months after the inhalations, but not in the externally exposed group (Figs 5A and D).

PATHOLOGICAL CHANGES DUE TO INTERNAL EXPOSURE WERE PERSISTENT

At 6 months, late pathological findings such as atelectasis, granuloma and severe pneumonitis were detected in the 2× and 4× radioactive powder internally exposed groups, with persistent tissue damage due to emphysema and long-term inflammation (Fig. 4, Table 2). Conventionally, the progressive alveolar wall thickening and emphysema detected in radiation-induced pneumonitis, as well as collagen deposition associated with fibrosis [25], were not observed in the case of internal radiation exposure.

In addition, elastin deposition—another pathological indicator of lung fibrosis—was found to be higher in the internally exposed group in our experiment, and this finding was cited as a ‘new pathological indicator’ of internal radiation exposure. Fujimoto et al. [26] found that elastin mRNA levels in the lung were higher in the internally exposed group than in the unexposed control and the 2 Gy externally exposed groups, with no significance. Therefore, further investigation of gene
Large impact of ingested radioactive particles

Fig. 3. Histologically-scored findings in the lungs of the rats exposed to stable Mn, 56Mn, 2.0 Gy γ-radiation and no irradiation. (A) hemorrhage; (B) emphysema; (C) inflammation; (D) elastin; and (E) collagen findings in four groups: externally exposed, 56Mn $(2 \times)$ internally exposed, 56Mn $(4 \times)$ internally exposed and unexposed control and findings in 2.0 Gy γ-radiation externally exposed, stable Mn, 56Mn $(1 \times)$ internally exposed and unexposed control groups. Bars, mean ± standard error of the mean (SEM) ($n = 3–6$). $^* P < 0.05$, $^{**} P < 0.01$ vs control. $^* P < 0.05$, $^{**} P < 0.01$ vs 56Mn $(2 \times)$ [6].

expression is required. Internal exposure was also found to have long-term effects on locomotor activity in rats [27].

EARLY EFFECTS OF INTERNAL EXPOSURE FORESHADOW THE WARNING SIGNS (ELASTIN STIGMA) OF LATE EFFECTS

On Day 3, hemorrhage, emphysema and high score-level inflammation with $2 \times$ and $4 \times$ irradiated powders persisted until the sixth month after irradiation. Figs 4C and 4D show late pathological findings of marked atelectasis and pneumonitis with $2 \times$ and $4 \times$ radiated powder exposure, respectively, as well as granulomas (Fig. 4E) and severe hemorrhage (Fig. 4F) with $4 \times$ radiated powder exposure. Figs 4A and 4B show no pathological findings in the unexposed control and 2.0 Gy γ radiation externally exposed groups, respectively.

Table 2 and Figs 3 and 5 present the pathological findings until 8 months. There was no evidence of hemorrhage or inflammation in the unexposed control and stable Mn groups. The internally exposed group had more emphysema and inflammation than the stable Mn and unexposed control groups. After 8 months, there was no significant difference in collagen deposition, an indicator of conventional fibrosis, between the stable Mn, the internally exposed and the unexposed control groups. However, collagen deposition was significantly higher in the externally exposed group than in the unexposed control group (Figs 5A and C).

Histologically, emphysema is characterized by the destruction of alveolar walls and the enlargement of voids due to apoptosis of lung
We present X-ray spectroscopic imaging data from a tissue sample taken 6 hours after inhaling 56Mn in the area of maximal Mn concentration. The method used in this experiment was synchrotron radiation X-ray fluorescence mapping with an X-ray microbeam (SR-XRF), with
Fig. 5. A comparison of elastin and collagen deposition 8 months and apoptotic frequency 2 months after internal and external radiation exposure to ^{56}Mn ($1 \times$). (A) Lung sections from rats were prepared after exposure and evaluated for elastin deposition (purple black) identified by a Verhoeff–Van Gieson stain; collagen deposition (blue) identified by an Azan–Mallory stain; the presence of apoptotic cells (brown, black arrow) in bronchioles identified by a terminal deoxynucleotidyl transferase dUTP nick end labeling stain; and the presence of broken elastin fibers (green arrows); original magnification $40 \times$. Representative images of the control rat (0 Gy), the stable Mn exposure rat, the γ 2.0 Gy irradiated rat (2.0 Gy) and the ^{56}Mn irradiated rat are shown in panels. Radiation-induced changes in percentage elastin area (B), percentage collagen area (C) and number of TUNEL positive cells in bronchioles (D) were determined using cellSens Dimension image acquisition and computer-aided quantification of sampled images. Bars, mean ± standard error of the mean (SEM) ($n=3$–6). Significantly different (**) $P < 0.01$ from 0 Gy irradiated controls (From [6]/CC BY 4.0).

Mn speciation at the point of interest determined by X-ray absorption near-edge structure (XANES) spectroscopy. The study was performed at the BL-4A station of the High Energy Accelerator Research Organization Photon Factory (KEK-PF, Tsukuba, Japan). Details are provided by Shichijo et al. [6]. Shots 1 and 2 were identified as condensed manganese and iron accumulations (Fig. 7). These particles had a valence species of 4 as MnO$_2$, which changed to divalent after lung tissue deposition (Fig. 7). Inhaling radioactive manganese particles may induce tissue damage, hemorrhage and manganese and iron clots.

EARLY CELLULAR DAMAGE TO LUNG TISSUE FROM INTERNAL RADIATION EXPOSURE IS NON-SPECIFIC, RAPID, SEVERE AND PERSISTENT COMPARED TO EXTERNAL RADIATION EXPOSURE

Pathological changes caused by early cellular damage from internal radiation exposure have a greater impact than that previously reported for experimental animals [16, 17]. While previous studies focused on pathological changes in the lungs caused by external very high doses of more than 8 Gy, our findings showed that internal exposure to a
The absorbed dose rate and the cumulative dose surrounding 56Mn particles of 3, 5 and 10 μm in diameter. The dose rate is measured during inhalation. The cumulative time is 6 hours and infinite time (∞) after inhalation. The irradiated neutrons had a particle fluence of 4×10^{14} n/cm² per 2000 seconds of irradiation time, which was irradiated for 2000 seconds (1 ×) [6].

A new stigma of radiation-induced pneumonitis has been suggested as the interference with epithelial repair mechanisms characterized by high deposition of abnormal elastic fibers (elastin stigma), emphysema and hemorrhage that occur consecutively following an internal radiation exposure. The early onset of these senescence-like effects as a result of localized, very high, internal radiation dose exposure reflects abnormal elastin deposition, along with a disruption of the apoptotic tissue repair mechanisms, as a result of the few lung tissue stem cells [38, 39] in the vicinity of radioactive particles.

A new stigma of radiation-induced pneumonitis has been suggested as the interference with epithelial repair mechanisms characterized by high deposition of abnormal elastic fibers (elastin stigma), emphysema and hemorrhage that occur consecutively following an internal radiation exposure. The early onset of these senescence-like effects as a result of localized, very high, internal radiation dose exposure reflects abnormal elastin deposition, along with a disruption of the apoptotic tissue repair mechanisms, as a result of the few lung tissue stem cells [38, 39] in the vicinity of radioactive particles.

The pathological findings of internal exposure are dose-dependent and closely related to localized radiation exposure. A new stigma of radiation-induced pneumonitis has been suggested as the interference with epithelial repair mechanisms characterized by high deposition of abnormal elastic fibers (elastin stigma), emphysema and hemorrhage that occur consecutively following an internal radiation exposure. The early onset of these senescence-like effects as a result of localized, very high, internal radiation dose exposure reflects abnormal elastin deposition, along with a disruption of the apoptotic tissue repair mechanisms, as a result of the few lung tissue stem cells [38, 39] in the vicinity of radioactive particles.

The pathological findings of internal exposure are dose-dependent and closely related to localized radiation exposure. A new stigma of radiation-induced pneumonitis has been suggested as the interference with epithelial repair mechanisms characterized by high deposition of abnormal elastic fibers (elastin stigma), emphysema and hemorrhage that occur consecutively following an internal radiation exposure. The early onset of these senescence-like effects as a result of localized, very high, internal radiation dose exposure reflects abnormal elastin deposition, along with a disruption of the apoptotic tissue repair mechanisms, as a result of the few lung tissue stem cells [38, 39] in the vicinity of radioactive particles.

The pathological findings of internal exposure are dose-dependent and closely related to localized radiation exposure. A new stigma of radiation-induced pneumonitis has been suggested as the interference with epithelial repair mechanisms characterized by high deposition of abnormal elastic fibers (elastin stigma), emphysema and hemorrhage that occur consecutively following an internal radiation exposure. The early onset of these senescence-like effects as a result of localized, very high, internal radiation dose exposure reflects abnormal elastin deposition, along with a disruption of the apoptotic tissue repair mechanisms, as a result of the few lung tissue stem cells [38, 39] in the vicinity of radioactive particles.
Large impact of ingested radioactive particles

Fig. 7. Cellular damage in lung tissue 6 hours after 56Mn (2 \times) (A–C) and 2 months after 56Mn (1 \times) internal exposure (D). (A) Accumulated dose (Gy) in the rat lung tissue surrounding inhaled 56Mn hot particles, (B) X-ray absorption fine structure (XAFS) analysis, (C) condensed manganese and iron accumulations at the hot particle (Shot 2), and (D) apoptosis, elastin stigma, severe emphysema and hemorrhage in the 56Mn internally exposed group (From [6]/CC BY 4.0).

The present experiments demonstrated that internal exposure of tissue to 0.1 Gy causes serious damage, such as hemorrhage, emphysema and atelectasis, whereas external exposure to 2 Gy of 60Co γ radiation causes no such damage. It is difficult to explain the serious damage caused by 0.1 Gy of 56Mn internal exposure, and the reasons and mechanisms of the serious damage caused by radioactive microparticles should be clarified in the future.

ACKNOWLEDGMENTS

The SR-XRF-XANES measurements were performed with the approval of the Photon Factory Program Advisory Committee (proposals no. 2013G052 and 2014G058). We would like to acknowledge the members of the National Nuclear Center of the Republic of Kazakhstan, Almas Azhimkanov, Vyacheslav Gnyrya and Alexander Kolbayenkov for their support of this work; Aleksey Petukhov and Valeriy Stepanenko of the A. Tsyb Medical Radiological Research Center—National Medical Research Center of Radiology, Ministry of Health of the Russian Federation; Darkhan Uzbehov, Nailya Chaizhunusova, Dariya Shabdarbaeva, Arailym Baurzhan, Gaukhar Amantayeva, Aisulu Saimova, Ynkar Kaikhkanova, Bakhyt Ruslanova, Madina Apbassova and Zhaslan Abishev of Semey State Medical University, Republic of Kazakhstan; Minako Kurisu and Yoshio Takahashi of the Department of Earth and Planetary Science, Graduate School of Science of The University of Tokyo; and Masahiro Nakashima and Daisuke Niino of Nagasaki University.

CONFLICTS OF INTEREST

The authors declare that they have no conflict of interest.

FUNDING

This work was supported by the Semey State Medical University, Kazakhstan, Grants-in-Aid for Scientific Research (C) no. 23510064, no. 18 K10027 and no. 21 K10399, KAKENHI to K. Shichijo, and (A) no. 26257501 and (A) no. 19H01149, KAKENHI to M. Hoshi, Japan. This work was also partly supported by the Program of the Network-type Joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University, Nagasaki University and Fukushima Medical
University (T19-01-007, T20-01-007, T21-01-014, T22-01-011, respectively).

SUPPLEMENT FUNDING
This work was supported by JSPS KAKENHI Grant Number JP19H01149.

REFERENCES
1. Otani K, Ohtaki M, Yasuda H. Solid cancer mortality risk among a cohort of Hiroshima early entrants after the atomic bombing, 1970–2010: implications regarding health effects of residual radiation. J Radiat Res 2022;63(S1):i45–i53.
2. Nagasaki National Peace Memorial Hall for the Atomic Bomb Victims. Rain: Black Ash and Black Rain, https://www.peace-nagasaki.go.jp/abomrecords/b020105.html (31 August 2021, date last accessed).
3. Dagle GE, Sanders CL. Radionuclide injury to the lung. Environ Health Perspect 1984;55:129–37.
4. Salbu B, Ulanowski A, Fesenko S. IAEA: coordinated research on radioactive particles. J Environ Radioact 2021;216:106073, 106111, 106127, 106160.
5. Hoshi M, Stepanenko V, Kaprin A, Ivanov S et al. Overview and analysis of internal radiation dose estimates in experimental animals in a framework of international studies of the sprayed neutron-induced 54Mn radioactive microparticles effects. J Radiat Res 2022;63(S1):i8–i15.
6. Shichijo K, Takatsui T, Abishev Z et al. Impact of local high doses of radiation by neutron activated Mn dioxide powder in rat lungs: protracted pathologic damage initiated by internal exposure. Biomedicines 2020;8:171.
7. ICRP. Dose Coefficients for Intakes of Radionuclides by Workers. ICRP Publication 68, Annals of the ICRP 24. Oxford: Elsevier Science Ltd., 1994.
8. Ishigure N. Dose quantities used in radiological protection for internal radiation exposure. Radioisotopes 2013;62:465–92 (in Japanese).
9. Shichijo K, Takatsui T, Fukumoto M et al. Autoradiographic analysis of internal plutonium radiation exposure in Nagasaki atomic bomb victims. Heliyon 2018;4:e00666.
10. Shichijo K, Takatsui T, Yamamoto M. Nuclide identification of alpha-emitters by autoradiography in specimen of atomic victims at Nagasaki. In: Proceedings of the 17th Hiroshima international symposium. IPSHU English research Report Series No. 28, p.70. Institute for Peace Science, Hiroshima University, 2012.
11. Zeigler JF. Helium Stopping Powers and Ranges in all Elemental Matter, Volume 4 of the Stopping and Ranges of Ions in Matter. New York: Pergamon Press, 1977.
12. El Ghissassi F, Baan R, Straif K et al. A review of human carcinogens—part D: radiation. Lancet Oncol 2009;10:751–2.
13. Cardis E, Howe G, Ron E et al. Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot 2006;26:127–40.
14. Adachi K, Kajino M, Zaizen Y et al. Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci Rep 2013;3:2554.
15. Coggle JE, Lambert BE, Moores SR. Radiation effects in the lung. Environ Health Perspect 1986;70:261–91.
16. Ward WF, Kim YT, Molteni A et al. Pentoxifylline does not spare acute radiation reactions in rat lung and skin. Radiat Res 1992;129:107–11.
17. Travis EL, Harley RA, Fenn JO et al. Pathologic changes in the lung following single and multi-fraction irradiation. Int J Radiat Oncol Biol Phys 1977;2:475–90.
18. Down JD. The nature and relevance of late lung pathology following localized internal irradiation of the thorax in mice and rats. Br J Cancer 1986;7:330–2.
19. Eerde MRV, Kampinga HH, Szabo BG et al. Comparison of three rat strains for development of radiation-induced lung injury after hemithoracic irradiation. Radiother Oncol 2001;58:313–6.
20. Stepanenko V, Kaprin A, Ivanov S et al. Microdistribution of internal radiation dose in biological tissues exposed to 54Mn dioxide microparticles. J Radiat Res 2022;63(S1):i121–5.
21. Okajima S, Fujita S. Radiation doses from residual radioactivity. In: Roesch W (ed). U.S. Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki; Final Report–Dosimetry System, Vol. 1. Hiroshima: Radiation Effects Research Foundation, 1987, 205–26 1986 (DS86).
22. Stepanenko V, Rakhyypbekov T, Otani K et al. Internal exposure to neutron-activated 54Mn dioxide powder in Wistar rats: part 1: dosimetry. Radiat Environ Biophys 2017;56:47–54.
23. Shichijo K, Fujimoto N, Usbekov D et al. Internal exposure to neutron-activated 54Mn dioxide powder in Wistar rats-part 2: pathological effects. Radiat Environ Biophys 2017;56:55–61.
24. Lanin A. Nuclear Rocket Engine Reactor. Berlin/Heidelberg: Springer, 2013.
25. Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 2006;66:1281–93.
26. Fujimoto N, Ruslanova B, Abishev Z et al. Biological impacts on the lungs in rats internally exposed to radioactive 54MnO2 particle. Sci Rep 2021;11:11055.
27. Otani K, Ohtaki M, Fujimoto N et al. Effects of internal exposure to neutron-activated 54MnO2 powder on locomotor activity in rats. J Radiat Res 2022;63(S1):i38–i44.
28. Hagiya M, Yoneshige A, Inoue T et al. The intracellular domain of cell adhesion molecule 1 is present in emphysematous lungs and induces lung epithelial cell apoptosis. J Biomed Sci 2015;22:67.
29. Christofidou-Solomidou M, Pietrofesa RA, Arguiri E et al. Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 2015;308:L416–28.
30. Tudor RM, Petache I. Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest 2012;122:2749–55.
31. Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 2005;63:5–24.
32. Hanania AN, Mainwaring W, Ghebre YTT et al. Radiation-induced lung injury: assessment and management. Chest 2019;156:150–62.
33. Rosenbloom J, Abrams WR, Mecham R. Extracellular matrix 4: the elastic fiber. *FASEB J* 1993;7:1208–18.
34. Pasquali-Ronchetti I, Baccarani-Contr M. Elastic fiber during development and aging. *Microsc Res Tech* 1997;38:428–35.
35. Bailey AJ. Molecular mechanisms of ageing in connective tissues. *Mech Ageing Dev* 2001;122:735–55.
36. Houghton AM, Quintero PA, Perkins DL et al. Elastin fragments drive disease progression in a murine model of emphysema. *J Clin Invest* 2006;116:753–9.
37. ICRP. The 2007 recommendation of the International Commission on Radiological Protection; ICRP Publication 103. *Ann ICRP* Oxford: Elsevier 2007;37:1–332.
38. Kajstura J, Rota M, Hall SR et al. Evidence for human lung stem cells. *N Engl J Med* 2011;364:1795–806.
39. Parekh KR, Nawroth J, Pai A et al. Stem cells and lung regeneration. *Am J Physiol Cell Physiol* 2020;319:C675–93.
40. Diab KJ, Adamowicz JJ, Kamoicki K et al. Stimulation of sphingosine 1-phosphate signaling as an alveolar cell survival strategy in emphysema. *Am J Respir Crit Care Med* 2010;181:344–52.
41. Petrache I, Natarajan V, Zhen L et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. *Nat Med* 2005;11:491–8.
42. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. *Oncogene* 2005;22:5897–906.
43. Mathew B, Jacobson JR, Berdyshev E et al. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. *FASEB J* 2011;25:3388–400.
44. Liebow AA, Warren S, DeCoursey E. Pathology of atomic bomb casualties. *Am J Pathol* 1949;25:853–1027.
45. Groves AM, Williams JP, Hernady E et al. A potential biomarker for predicting the risk of radiation-induced fibrosis in the lung. *Radiat Res* 2018;190:513–25.