COVID-19 mortality and its predictors in the elderly: A systematic review

Omid Dadras1,2 | SeyedAhmad SeyedAlinaghi1 | Amirali Karimi3 | Ahmadreza Shamsabadi4 | Kowsar Qaderi5 | Maryam Ramezani6 | Seyed Peyman Mirghaderi3 | Sara Mahdiabadi3 | Farzin Vahedi3 | Solmaz Saeidi7 | Alireza Shojaei1 | Mohammad Mehrtak8 | Shiva A. Azar9 | Esmaeil Mehraeen10 | Fabrício A. Voltarelli11

1Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran, Iran
2Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
3School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
4Department of Health Information Technology, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
5Kermanshah University of Medical Sciences, Kermanshah, Iran
6Department of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
7Department of Nursing, University of Medical Sciences; Khalkhal, Khalkhal, Iran
8School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
9School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
10Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
11Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil

Correspondence
Esmail Mehraeen, Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, 5681761351, Iran. Email: es.mehraeen@gmail.com

Abstract
Background and Aims: Older people have higher rates of comorbidities and may experience more severe inflammatory responses; therefore, are at higher risk of death. Herein, we aimed to systematically review the mortality in coronavirus disease 2019 (COVID-19) patients and its predictors in this age group.

Methods: We searched PubMed, Web of Science, and Science Direct using relevant keywords. Retrieved records underwent a two-step screening process consisting of title/abstract and full-text screenings to identify the eligible studies.

Results: Summarizing findings of 35 studies demonstrated that older patients have higher mortality rates compared to the younger population. A review of articles revealed that increasing age, body mass index, a male gender, dementia, impairment or dependency in daily activities, presence of consolidations on chest X-ray, hypoxemic respiratory failure, and lower oxygen saturation at admission were risk factors for death. High D-dimer levels, 25-hydroxy vitamin D serum deficiencies, high C-reactive protein (≥5 mg/L) levels plus any other abnormalities of lymphocyte,
higher blood urea nitrogen or lactate dehydrogenase, and higher platelet count were
predictors of poor prognosis and mortality in the elderly. Studies have also shown
that previous treatment with renin–angiotensin–aldosterone system inhibitors,
pharmacological treatments of respiratory disorders, antibiotics, corticosteroids,
vitamin K antagonist, antihistamines, azithromycin, Itolizumab (an anti-CD6
monoclonal antibody) in combination with other antivirals reduces COVID-19
worsening and mortality. Vaccination against seasonal influenza might also reduce
COVID-19 mortality.

Conclusion: Overall, a critical consideration is necessary for the care and
management of COVID-19 in the aged population considering the drastic contrasts
in manifestation and prognosis compared to other age groups. Mortality from
COVID-19 is independently associated with the patient's age. Elderly patients with
COVID-19 are more vulnerable to poor outcomes. Thus, strict preventive measures,
timely diagnosis, and aggressive therapeutic/nontherapeutic care are of great
importance to reduce acute respiratory distress syndrome and severe complications
in older people.

KEYWORDS
aging, COVID-19, elderly, older people, SARS-CoV-2

1 | BACKGROUND AND AIMS

In the winter of 2019, an unknown infection was reported from Wuhan, China. Further investigations demonstrated its Coronaviridae
origin. Soon, many countries around the world reported cases of coronavirus disease 2019 (COVID-19). After some months, the
World Health Organization announced this outbreak as a pandemic. The clinical spectrum of this disease ranges from asymptomatic
infection to a severe disease turning into acute respiratory distress syndrome (ARDS) and death. ARDS causes lungs to
become stiff and precipitates hypoxemia and subsequent death in a considerable proportion of the patients if they do not receive
adequate ventilation. Since then, as of February 19th, more than 416.6 million confirmed cases and more than 5.8 million deaths were
reported around the world. There have been many efforts how to make COVID-19 diagnosis faster and more reliable; but still, real-time
reverse transcription-polymerase chain reaction is the most helpful assay for COVID-19 diagnosis. Severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2) can affect not only the respiratory system but also many vital human organs. Few options exist for
COVID-19 treatment and physicians mostly rely on symptomatic treatments.

Aging can change the human body in many aspects and then affect the human immune system in many ways, such as a higher
inflammatory response to antigens with lower efficacy to suppress infections. On the other hand, older patients have more chronic
diseases, such as hypertension, making them more susceptible to severe forms of COVID-19 based on some earlier reports.

Therefore, older people have higher mortality rates compared to younger patients (the mortality of people over 60 years old is 4.5% in
comparison to 1.4% in people under 60) and therapeutic interventions may be less effective among them. Therefore, it has
become an important challenge how to manage elderly people infected by COVID-19 to decrease the mortality rate.

In the present article, we aimed to systematically review the mortality rates in older patients compared to young patients. We also
reviewed the factors increasing the mortality rate in the elderly, such as underlying diseases.

2 | METHODS

2.1 | Study design

This systematic review follows the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines
(PRISMA 2020 checklist is mentioned in Supporting Information Material). We conducted this systematic review by searching
the online databases of PubMed, Web of Science, and Science Direct for the relevant literature using keywords and operational
phrases. The studies were retrieved and the duplicate records were removed. We followed a two-step screening process to sort
the eligible results. First, we examined the title and abstract of the records and the ineligible studies were removed. Then, their
full texts were evaluated based on their cohesion to the inclusion/exclusion criteria and the eligible ones were included.
for qualitative synthesis. The screening process was performed by two researchers, and another independent researcher addressed any controversies between them.

2.2 | Search terms

We performed a title search of the following keywords on the articles published until March 15th, 2021:

A. [Old patient] OR [Old] OR [Elder] OR [Elderly];
B. [SARS-CoV-2] OR [COVID-19];
C. [A] AND [B].

2.3 | Eligibility criteria

We included the original studies that evaluated the mortality in the elderly and/or reported the risk factors for higher mortality rates. The exclusion criteria were the following:

1) Nonoriginal studies, including reviews and non-original editorials;
2) pure laboratory or animal studies not conducted on humans;
3) case reports and case series;
4) studies not conducted on the elderly patients;
5) studies not related to the mortality of the patients; and
6) abstracts or conference abstracts, or not available full-text.

2.4 | Data extraction

Two researchers extracted and organized it into a word table. The extracted data consisted of the first author, type of study, country of study’s origin, age of the participant (preferably mean age of the patients, if the studies reported), underlying diseases (categorized into neurological diseases, lung diseases, liver diseases, heart diseases, autoimmune diseases, kidney diseases, diabetes, hypertension, cancer, and other diseases), and preventative and care measures that decrease the mortality of the patients. Another independent researcher reviewed the extracted data and solved any discrepancies and issues among the other researchers. After the data for each of the variables were extracted into the table, two researchers read and compare them and used them for the qualitative synthesis.

2.5 | Quality assessment

We used the Newcastle–Ottawa scale (NOS) to analyze the risk of bias in the studies.21 NOS provides a maximum score of 9 for each study in three categories of selection, comparability, and exposure. We defined a score of 4 or below as "poor," and above that as "acceptable."

2.6 | Certainty of evidence

We used the recommendations of the Cochrane handbook of systematic reviews chapter 14.2 to assess the certainty of the evidence for this study.22

3 | RESULTS

After removing irrelevant and duplicates, the title and abstract of the remaining 110 articles were reviewed. Applying the eligibility criteria, 23 articles were excluded, and 35 full-text articles that met the inclusion criteria were included in the final review (Figure 1).

The included studies were conducted in 10 countries (China = 14, Italy = 5, Spain = 5, France = 2, South Korea = 2, Cuba = 2, and one study from Germany, Australia, Brazil, and Japan). One of the articles was also a report on multinational scientific collaborations. Table 1 shows a summary of the findings. All the studies had acceptable scores in the risk of bias assessment (Table 2). Certainty of evidence analysis results is mentioned in Table 3, demonstrating acceptable evidence certainty for most of the parameters, except for the lack of matching the control groups of several studies for confounders.

We summarized each study’s main findings. Studies have revealed that increasing age, dementia, and impairment in dependency and activities of daily living were strong risk factors for inhospital death, regardless of disease severity. D-dimer level was also an independent predictor of mortality.

According to the findings, body mass index had an association with severe COVID-19. Moreover, 25-hydroxy vitamin D deficiency is associated with more severe lung involvement, longer disease duration, and risk of death in the elderly.

The review of articles showed that predicting survival factors were female sex, previous treatment with renin–angiotensin–aldosterone system inhibitors, higher oxygen saturation at admission, and a greater platelet count.

The presence of consolidations at chest x-ray along with hypoxemic respiratory failure, high C-reactive protein (CRP ≥5 mg/L) level plus any other abnormalities of lymphocyte, high blood urea nitrogen, or lactate dehydrogenase were significant predictors of poor prognosis.

Studies have demonstrated that pharmacological treatments of respiratory disorders, antibiotics, corticosteroids, use of vitamin K antagonist, antihistamines, azithromycin, and itolizumab (an anti-CD6 monoclonal antibody) in combination with other antivirals reduce COVID-19 worsening and mortality. Vaccination against seasonal influenza might also reduce COVID-19 mortality.

4 | DISCUSSION

Considerable differences in the clinical course and risk predictors for COVID-19 exist between the elderly and other age groups patients.53

Our knowledge of the COVID-19 infection implies that the elderly, in
contrast to young- and middle-aged patients, are more susceptible to severe clinical outcomes of the disease and fatality. In fact, old age is a significant predictor of poor prognosis, suggesting that aging-related mechanisms may be integral elements in disease severity. A gradual age-associated increase in the COVID-19 mortality rate has been demonstrated in previous literature. For instance, a study showed a 10.5% fatality ratio for the elderly versus 0.43% for younger patients. Another study demonstrated a 1.55-fold increase in the mortality rate for every 5 years increase in age. To date, both predictors for in-hospital mortality of the elderly and some survival factors have been identified. The mortality predictors include hypernatremia, lymphopenia, high interleukin 6 (IL-6) and CRP serum levels, elevated D-dimer, dyspnea, dementia, and so forth. Also, in a study on the elderly population, men had higher mortality than women. On the other hand, survival factors such as interferon atmotherapy and reduced metabolic pathway activities were also identified.

Subject to advanced age and comorbidities, the elderly are considered a high-risk group for developing severe manifestations and complications, some of which are discussed as follows. They are more likely to be hospitalized or admitted to the intensive care unit. Also, compared with younger people, they have a longer hospitalized time, and their duration of the disease has a positive correlation with age. From the pulmonary aspect, they are more likely to develop critical pneumonia and ARDS. A study found more grade IV and V pneumonia, based on the pneumonia severity index, among the elderly than younger COVID patients. These severe complications can be traced back to lung muscle atrophy, reduced airway clearance, lung reserve, and defense barrier function. Heart failure and acute cardiac injury are other complications of COVID-19 that are more common in the elderly. The reason for their higher frequency could be underlying chronic cardiovascular diseases. Moreover, fungal and bacterial infections were more prevalent among the elderly based on the increased number of white blood cells and neutrophils in their laboratory tests. Furthermore, gastrointestinal symptoms interfering with feeding can make the elderly more vulnerable to malnutrition. Acute liver and kidney injuries, septic shock, and multiple organs dysfunction syndrome are other complications quite common in this age group.

The general pattern of signs and symptoms in COVID-19 infection among the elderly is almost similar to that of young- and middle-aged patients. However, a few differences may be noticed. A study reported fever, cough, and dyspnea as the most common symptoms. Also, it has been reported that symptoms in the elderly begin with fever and cough, followed by shortness of breath and admission in 2–7 days. Then, they can be developed into respiratory failure, ARDS, and death in the following days. COVID-19 signs and symptoms in the elderly differ from others in some aspects. The time from onset of the infection to confirmed diagnosis has been reported longer than that nonelderly patients. A study has attributed this to the atypical manifestation of clinical symptoms. Another study has found that anorexia is more common in the elderly, while younger patients are more likely to develop a fever. Also, the elderly showed a higher systolic blood pressure and slower heart rate than the younger patients. Substantial risk factors for poor prognosis among the elderly include fever during hospitalization and severe initial
| ID  | The first author (reference) | Type of study   | Country            | Age       | Mortality rate (N (%)) | Underlying diseases | Other                                                                 | Prevention and care                                                                 |
|-----|-----------------------------|----------------|--------------------|-----------|------------------------|---------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1   | Hwang J.23                   | Cohort         | South Korea        | ≥60       | 15                     |                     | Dependency in activities of daily living (ADL) impairment, comorbidity, fever during hospitalization, and initial increased C-reactive protein (CRP) | Antiviral or antibiotic agents, oxygen supply, ventilator, dialysis, and even extracorporeal membrane oxygenation |
| 2   | Lee J.24                     | Cohort         | South Korea        | ≥65       | 20.4                   | *                   | Nosocomial acquisition, diabetes, chronic lung diseases, and chronic neurologic diseases | MV/HFNC laboratory abnormalities, especially high CRP |
| 3   | Li P.25                      | Cohort         | China              | 60        | 54 patients were discharged and 76 died. |                     | Hypertension, diabetes, cardiovascular disease (CVD), and chronic obstructive pulmonary disease (COPD) | Dyspnea (hazards ratio), older age, neutrophilia, and elevated ultrasensitive cardiac troponin |
| 4   | Li G.26                      | Cohort         | China, European regions, and North America | Males ≥70 | High                   |                     | Cerebrovascular disease and chronic obstructive pulmonary disease | Neither dexamethasone nor remdesivir |
| 5   | Li Q.27                      | Cohort         | China              | The median age 70 (64–78) | 47.7                   | *                   | Kidney injury28                                                        |                                                                                  |
| 6   | Liu K.29                     | Cohort (Retropective) | China              | 68        | 5.3                    |                     | PSI grades IV and V, Lower lymphocytes and ARDS | Lopinavir and ritonavir tablets, Chinese medicine, oxygen therapy, and mechanical ventilation |
| 7   | Liu Z.30                     | Cohort         | China              | >60       |                        | *                   | Higher hypertension, The median systolic blood pressure, The levels of proBNP & cTnI, Lower hemoglobin, nine lymphocyte percentages, ALT levels, albumin levels higher neutrophil percentages, total bilirubin levels, direct bilirubin levels | Cardiovascular protection |

(Continues)
| ID | The first author (reference) | Type of study | Country | Age | Mortality rate (N (%)) | Underlying diseases | Prevention and care |
|----|----------------------------|---------------|---------|-----|------------------------|---------------------|-------------------|
|    |                            |               |         |     |                        | Neurological disease |                   |
|    |                            |               |         |     |                        | Lung disease        |                   |
|    |                            |               |         |     |                        | Liver diseases      |                   |
|    |                            |               |         |     |                        | Heart damage        |                   |
|    |                            |               |         |     |                        | Autoimmune          |                   |
|    |                            |               |         |     |                        | Kidney disease      |                   |
|    |                            |               |         |     |                        | Diabetes            |                   |
|    |                            |               |         |     |                        | Hypertension        |                   |
|    |                            |               |         |     |                        | Cancer              |                   |
|    |                            |               |         |     |                        | Other               |                   |
|    |                            |               |         |     |                        |                     |                   |
| 8  | Mei Q.31                   | Cohort        | China   | ≥65 | 59.2                   |                     | Phenylalanine, fatty acid, and pyruvate showed a consistently lower flux |
|    |                            |               |         |     |                        |                     |                   |
| 9  | Ménager P.32               | Cohort        | France  | 88.8| Shorter survival times than those not using VKA | Use of VKA |
|    |                            |               |         |     |                        |                     |                   |
| 10 | Blanco J. I. M.33          | Cohort        | Spain   | 85  | 0% while comparator retirement homes had a mortality rate of 28% | Anthistamines and azithromycin |
|    |                            |               |         |     |                        |                     |                   |
| 11 | Mostaza J.34               | Cohort        | Spain   | ≥75 years | (35.9%) | Age, heart rate, a decline in renal function during hospitalization, and worsening dyspnea during hospitalization | Factors predicting survival was female gender, previous treatment with RAAS inhibitors, higher oxygen saturation at admission, and a greater platelet count |
|    |                            |               |         |     |                        |                     |                   |
| 12 | Mori H.38                  | Cohort        | Japan   | 72 (67–76)   | Unable to address the relationship between the | Silent pneumonia, lung anatomy, including muscle atrophy |
|    |                            |               |         |     |                        |                     |                   |
| 13 | Annweiler G.35             | RCT           | France  | 84–93 | 2–10                   | *                   | Pharmacological treatments of respiratory disorders, antibiotics, corticosteroids |
|    |                            |               |         |     |                        | *                   |                   |
| 14 | Araújo, M. P. D.36        | Cross-sectional | Brazil | >80 | -                      | * * *               | Asthma |
|    |                            |               |         |     |                        |                     | Showed an association between severe Covid-19 and BMI |
| 15 | Bongiovanni, M.37          | Cohort        | Italy   | <70 | 3–22                   | * * *               | Use of antivirals and hydroxychloroquine was associated with a higher risk of death, D-dimer level was an independent predictor of mortality |
|    |                            |               |         | >80 |                        |                     |                   |
| ID  | The first author        | Type of study | Country | Age  | Mortality rate (%) | Other |
|-----|-------------------------|---------------|---------|------|--------------------|-------|
| 16  | Cocco P.                | Observational | Italy   | >65  | –                  | 16    |
| 17  | Covino M.               | Observational | Italy   | ≥80  | –                  | Vaccination against seasonal influenza might reduce COVID-19 mortality |
| 18  | Dai S. P.               | Observational | China   | >60  | –                  | More severe COVID-19 infection, more severe underlying disease |
| 19  | Díaz Y.                 | Clinical trial | Cuba    | 77-79 | 7.1-42.4           | Low immune function (the cell counts of T lymphocyte subtypes, B and NK cells of them were significantly decreased) |
| 20  | Franchini M.            | RCT           | Italy   | ≥65  | 13.6-38.3          | Convalescent plasma transfusion in severe COVID-19 cases, then finding in the literature |
| 21  | Gao S.                  | Observational | China   | ≥65  | 20                 | Higher CRP (≥5 mg/L) plus any other abnormalities of lymphocytes, blood urea nitrogen or lactate dehydrogenase (LDH) significantly predicted poor prognosis |
| 22  | Pratt N.                | Observational | Australia | ≥70  | –                  | Chronic renal failure, chronic obstructive pulmonary disease, long-acting beta-agonists, muscarinic antagonists alone or in combination |

**Underlying diseases**

| ID  | The first author        | Type of study | Country | Age  | Mortality rate (%) | Other |
|-----|-------------------------|---------------|---------|------|--------------------|-------|
| 16  | Cocco P.                | Observational | Italy   | >65  | –                  | 16    |
| 17  | Covino M.               | Observational | Italy   | ≥80  | –                  | Vaccination against seasonal influenza might reduce COVID-19 mortality |
| 18  | Dai S. P.               | Observational | China   | >60  | –                  | More severe COVID-19 infection, more severe underlying disease |
| 19  | Díaz Y.                 | Clinical trial | Cuba    | 77-79 | 7.1-42.4           | Low immune function (the cell counts of T lymphocyte subtypes, B and NK cells of them were significantly decreased) |
| 20  | Franchini M.            | RCT           | Italy   | ≥65  | 13.6-38.3          | Convalescent plasma transfusion in severe COVID-19 cases, then finding in the literature |
| 21  | Gao S.                  | Observational | China   | ≥65  | 20                 | Higher CRP (≥5 mg/L) plus any other abnormalities of lymphocytes, blood urea nitrogen or lactate dehydrogenase (LDH) significantly predicted poor prognosis |
| 22  | Pratt N.                | Observational | Australia | ≥70  | –                  | Chronic renal failure, chronic obstructive pulmonary disease, long-acting beta-agonists, muscarinic antagonists alone or in combination |

**Underlying diseases**

- Cancer
- Hypertension
- Diabetes
- Kidney disease
- Autoimmune diseases
- Heart damage
- Liver disease
- Lung disease
- Neurological diseases
| ID  | The first author (reference) | Type of study | Country | Age | Mortality rate (N (%)) | Underlying diseases | Other | Prevention and care |
|-----|------------------------------|---------------|---------|-----|------------------------|---------------------|-------|---------------------|
| 23  | Ramos-Rincon J. M. 45        | Original Spain | ≥80     | 46.9| *                       | *                   | *     | Age and gender, Charlson comorbidity index (CCI), mean (SD), dyslipidemia, nonatherosclerotic CVDs, atherosclerotic CVDs, dementia, moderate-to-severe renal disease, symptoms (shortness of breath, cough, fatigue, anorexia, diarrhea, vomiting) |
| 24  | Recinella G. 46              | Original Italy | ≥65     | higher | *                       | *                   | *     | Antimicrobial therapy: Beta-lactam antibiotics, hydroxychloroquine, azithromycin, lopinavir/ritonavir; Immunomodulatory therapy: Systemic corticosteroids, Interferon beta-1b, tocilizumab, colchicine, anakinra, baricitinib, immunoglobulin; Ventilation therapy: High-flow nasal cannula oxygen, noninvasive mechanical ventilation, invasive mechanical ventilation; Anticoagulant therapy: Oral anticoagulants, low-molecular-weight heparin |
| 25  | Rui L. 47                    | Original China | ≥87     | *   | *                       | *                   | *     | Analysis of laboratory results, chest computed tomography manifestation |

TABLE 1 (Continued)
| ID | The first author (reference) | Type of study | Country | Age | Mortality rate (N %) | Underlying diseases | Prevention and care |
|----|-----------------------------|---------------|---------|-----|---------------------|---------------------|---------------------|
| 26 | Saavedra D. | Original | Cuba | ≥73 | 6.48 | * * * * * | Age and Gender, COPD | - Serum cytokines |
|    |                |               |         |    |                     |                     |                     | - An anti-CD6 monoclonal antibody (iltolizumab) |
| 27 | Song J. | Original | China | ≥60 | 5.3 | * * | Age and gender, smoking history, cerebrovascular disease, fever, dry cough, fatigue, diarrhea, expectorant, muscle ache, sore throat, anorexia, runny nose, chest pain, headache, asymptomatic | Antiviral treatment, arbidol, lopinavir/ritonavir, oseltamivir, interferon alpha inhalation, traditional Chinese medicine, antibiotics, corticosteroid, gamma globulin |
| 28 | Sulli A. | Original | Italy | ≥76 | - | * * * * * | Age and gender, smoking history, BMI, ethnicity, cerebral ischemic vasculopathy, recent hip or vertebral fracture, dysthyroidism, colic diverticulosis, chronic arthritis (rheumatoid or psoriatic), epilepsy, allergic asthma, liver cirrhosis, hepatitis B infection | Confirms that 25-OH-vitamin D serum deficiency is associated with more severe lung involvement, longer disease duration, and risk of death in the elderly. |
| 29 | Tan X. | Original | China | ≥70 | 12.12 | * * | Age and gender, chronic hepatic disease, chronic renal disease, cerebrovascular disease, anemia, symptoms (fever, cough, fatigue, myalgia, sputum production, dyspnea, nausea, vomiting, abdominal pain, diarrhea, headache, anorexia, shortness of breath) | - |
| 30 | Trecarichi E. | Cohort | Italy | ≥80 | 49–64 | * * * * * | Hypermantrema, lymphopenia, CVD other than hypertension, psychiatric disorders, obesity, neurologic diseases, >2 | Combination therapy with hydroxychloroquine plus azithromycin, electrocardiographic |
| ID | The first author (reference) | Type of study | Country | Age | Mortality rate (N %) | Neurological disease | Lung disease | Liver diseases | Heart damage | Autoimmune | Kidney disease | Diabetes | Hypertension | Cancer | Other | Prevention and care |
|----|-------------------------------|---------------|---------|-----|----------------------|---------------------|---------------|----------------|--------------|-------------|----------------|----------|-------------|--------|-------|-------------------|
| 31 | Wang L. | Cohort | China | ≥65 | 15.74 | * * * * * | Cerebrovascular disease, | - |
| 32 | Wassenaar T. M. | Original | Germany | ≥70 | * * * | Cardiovascular disease, obesity | BCG vaccination |
| 33 | Yan F. | Cohort | China | ≥65 | * * * * * | Cerebrovascular disease, fatigue, dyspnea | Antihypertensive drugs |
| 34 | Zeng F. | Cohort | China | ≥66 | * * * * * | Chronic respiratory disease. Symptoms are fever,expectoration, fatigue, myalgia, pharyngalgia, nausea, vomiting, pectoralgia, rhinorrhoea, diarrhoea | - |
| 35 | Zhang P. | Cohort | China | ≥67 | * * * * * | CHD, cerebrovascular disease, COPD. symptoms (fever, cough, fatigue, myalgia, expectoration, nausea, vomiting, shortness of breath, rhinorrhoea, haemoptysis, diarrhoea, arrhythmias, dizziness, palpitation) | - |

Abbreviations: ALT, alanine transaminase; ARDS, acute respiratory distress syndrome; BCG, bacille Calmette–Guérin; BMI, body mass index; CKD, chronic kidney disease; COVID-19, coronavirus disease 2019; cTnl, cardiac troponin-I; GNRI, geriatric nutritional risk index; GRF, glomerular filtration rate; HFNC, high-flow nasal cannula; hsCRP, high-sensitivity C-reactive protein; IL-6, interleukin-6; MV, mechanical ventilation; proBNP, pro-B-type natriuretic peptide; PSI, pneumonia severity index; RAAS, renin-angiotensin-aldosterone system; VKA, vitamin K antagonist.
presentations, such as dyspnea, tachypnea, hypoxia, altered mental status, and hypotension. Of interest, the elderly are more often asymptomatic and afebrile while having a similar viral load to the symptomatic patients; therefore, they can be a significant source of viral spread.

Considering that the elderly usually have different underlying comorbidities and are more susceptible to severe complications of COVID-19 infection, comprehensive care for them is of great importance. Early diagnosis and supportive care may prevent severe outcomes. Also, particular attention should be paid to a thorough

**TABLE 2** Newcastle–Ottawa scale quality assessment for the included studies

| ID | First author | Selection (out of 4) | Comparability (out of 2) | Outcome (out of 3) | Total (out of 9) |
|----|--------------|----------------------|--------------------------|-------------------|-----------------|
| 1  | Hwang J.     | ***                  | -                        | ***               | 6               |
| 2  | Lee J.       | ***                  | -                        | ***               | 6               |
| 3  | Li P.        | ***                  | **                       | ***               | 8               |
| 4  | Li C.        | ****                 | -                        | ***               | 7               |
| 5  | Li Q.        | ****                 | **                       | ***               | 9               |
| 6  | Liu K.       | ****                 | -                        | ***               | 7               |
| 7  | Liu Z.       | ****                 | -                        | ***               | 7               |
| 8  | Mei Q.       | ****                 | **                       | ***               | 9               |
| 9  | Ménager P.   | ****                 | **                       | **                | 8               |
| 10 | Blanco J. I. M. | ****            | -                        | ***               | 7               |
| 11 | Mostaza J.   | ****                 | -                        | ***               | 7               |
| 12 | Mori H.      | ****                 | -                        | ***               | 7               |
| 13 | Annweiler G. | ****                 | **                       | ***               | 9               |
| 14 | Araújo, M. P. D. | ***             | -                        | ***               | 6               |
| 15 | Bongiovanni M. | ***                | *                        | ***               | 7               |
| 16 | Cocco P.     | ***                  | **                       | **                | 7               |
| 17 | Covino M.    | ***                  | **                       | ***               | 8               |
| 18 | Dai S.       | ****                 | -                        | ***               | 7               |
| 19 | Díaz Y.      | ***                  | -                        | ***               | 6               |
| 20 | Franchini M. | ***                  | -                        | ***               | 6               |
| 21 | Gao, S.      | ***                  | -                        | ***               | 6               |
| 22 | Pratt N.     | ***                  | -                        | ***               | 6               |
| 23 | Ramos-Rincon J. M. | ***     | **                       | ***               | 8               |
| 24 | Recinella G. | ***                  | **                       | ***               | 8               |
| 25 | Rui L.       | ***                  | -                        | **                | 5               |
| 26 | Saavedra D.  | ***                  | -                        | **                | 5               |
| 27 | Song J.      | ****                 | -                        | ***               | 7               |
| 28 | Sulli A.     | ****                 | **                       | ***               | 9               |
| 29 | Tan X.       | ***                  | -                        | ***               | 6               |
| 30 | Trecanichi E. | ***                | **                       | ***               | 8               |
| 31 | Wang L.      | ***                  | **                       | ***               | 8               |
| 32 | Wassenaar T. M. | ***             | -                        | ***               | 6               |
| 33 | Yan F.       | ****                 | **                       | ***               | 9               |
| 34 | Zeng F.      | ****                 | **                       | ***               | 8               |
| 35 | Zhang P.     | ****                 | **                       | ***               | 9               |
TABLE 3  Certainty of evidence analysis of the included studies.

| Risk of bias | Inconsistency | Indirectness | Large effects | Dose response | Opposing plausible residual bias and confounding |
|--------------|---------------|--------------|---------------|---------------|-----------------------------------------------|
| Results section | The studies had an acceptable risk of bias, particularly in the selection and outcome parameters. However, most of the studies lacked adequate measures in the comparability section, as several of them did not match their participants based on gender, comorbidities, or other confounders. | Most of the studies used and found similar outcomes, the increased severity of COVID-19 in the elderly. Furthermore, this outcome is also empowered and regenerated by other systematic reviews and meta-analyses. | Several of the cohorts had a high number of participants. Furthermore, besides our study, other systematic reviews and meta-analyses demonstrated increased COVID-19 mortality with increased age. | Several studies found an increasing trend of mortality with an increase in decades of life. | Several studies did not match the participants based on various confounders, as mentioned in the risk of bias section. |
| Reasons for lowering or increasing the certainty of the evidence | Downgraded because several studies lacked matching the groups for confounders. | Not downgraded due to inconsistency. | Not downgraded due to indirectness. | Upgraded, due to high participant numbers in the studies. | Upgraded, because of the increased mortality with an increase in age. | Not downgraded as the problem was mentioned earlier. |

Abbreviations: COVID-19, coronavirus disease 2019; PICO, population, intervention, control, and outcome; RCT, randomized controlled trial.
introduces an additional risk for acute kidney injury and renal complications in elderly patients.52

Contrary to intuitive beliefs, carcinoma was not associated with survivorship among elderly COVID-19 patients.31,45,68 On the other hand, lung disease and COPD impose higher mortality on senescent patients with COVID-19 (hazards ratio [HR] = 3.1).34,51,68 Besides, in the case of kidney disease, elderly patients with chronic renal failure are also at higher risk of mortality (HR = 4.2).45

Due to the retrospective nature of a significant fraction of included studies, the results of this review study should be interpreted with caution. The limited population enrolled in the included studies in which only the elderly were included was another drawback and limited our ability in making valid comparisons between this age group with the younger population. We not only faced heterogeneity in the sample population of selected studies but also, may include some duplicate data from case studies that are shared with another study chosen from the same setting.

5 | CONCLUSION

A critical consideration is necessary for the care and management of COVID-19 in the aged population considering the drastic contrasts in manifestation and prognosis compared to other age groups. Mortality from COVID-19 is independently associated with the patient’s age. Specific blood and serum elements (hypernatremia, lymphopenia, high IL-6 and CRP serum levels, and elevated d-dimer), symptoms (severe initial presentations, e.g., dyspnea), and comorbidities (dementia, DM, and cardiac disease) are predictive of the severe form of the disease. Being asymptomatic with a capable viral load to disseminate, make the elderly a potential source of viral spread. Old-aged patients with COVID-19 are more vulnerable to poor outcomes. Thus, strict preventive measures, timely diagnosis, and aggressive therapeutic and nontherapeutic care should be considered in the elderly to reduce ARDS and severe complications. Further prospective investigations are necessary to eliminate confounding variables and to elucidate the predictive risk factors that contribute to the patients’ mortality and morbidity.

AUTHOR CONTRIBUTIONS
Esmaeil Mehraeen and SeyedAhmad SeyedAlinaghi: Conception and design of the study. Esmaeil Mehraeen, SeyedAhmad SeyedAlinaghi, Amirali Karimi, and Shiva A. Azar: Methodology. Kowsar Qaderi, Maryam Ramezani, Solmaz Saeidi, and Amirali Karimi: Acquisition of data. Ahmadreza Shamsabadi and Farzin Vahedi: Analysis and interpretation of data. Alireza Shojaei, Seyed Peyman Mirghaderi, Sara Mahdiabadi, and Amirali Karimi: Writing – original draft preparation. SeyedAhmad SeyedAlinaghi, Omid Dadras, and Mohammad Mehrtak: Writing – review & editing. Esmaeil Mehraeen, Omid Dadras, Fabrizio A. Voltarelli, and SeyedAhmad SeyedAlinaghi: Validation.

ACKNOWLEDGMENTS
The present study was conducted in collaboration with Khalkhal University of Medical Sciences, Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

TRANSPARENCY STATEMENT
Esmaeil Mehraeen affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained. All authors have read and approved the final version of the manuscript. Esmaeil Mehraeen had full access to all of the data in this study and takes complete responsibility for the integrity of the data.

DATA AVAILABILITY STATEMENT
The authors confirm that the data supporting the findings of this study are available within the article and/or its Supporting Information.

ORCID
Omid Dadras https://orcid.org/0000-0001-9385-2170
SeyedAhmad SeyedAlinaghi https://orcid.org/0000-0003-3210-7905
Esmaeil Mehraeen https://orcid.org/0000-0003-4108-2973

REFERENCES
1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-154.
2. Mehraeen E, Dadras O, Afshai AM, et al. Vaccines for COVID-19: a review of feasibility and effectiveness. Infect Disord Drug Targets. 2022;22(2):e230921196758.
3. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052-2059.
4. Caduff C. What went wrong: corona and the world after the full stop. Med Anthropol Q. 2020;34(4):467-487.
5. Mehraeen E, Oliaei S, SeyedAlinaghi S, et al. COVID-19 in pediatrics: the current knowledge and practice. Infect Disord Drug Targets. Forthcoming 2022.
6. Carpenter CR, Mudd PA, West CP, Wilber E, Wilber ST. Diagnosing COVID-19 in the Emergency Department: a scoping review of clinical examinations, laboratory tests, imaging accuracy, and biases. Acad Emerg Med. 2020;27(8):653-670.
7. SeyedAlinaghi S, Mehrtak M, MohsseniPour M, et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. Eur J Med Res. 2021;26(1):46.
8. Fanelli V, Vlachou A, Ghanadlian S, Simonetti U, Slutsky AS, Zhang H. Acute respiratory distress syndrome: new definition, current and future therapeutic options. J Thorac Dis. 2013;5(3):326-334.
9. World Health Organization. WHO coronavirus (COVID-19) dashboard. 2021. Accessed November 19, 2021. https://covid19.who.int/
10. Oliaei S, SeyedAlinaghi S, Mehrtak M, et al. The effects of hyperbaric oxygen therapy (HBOT) on coronavirus disease-2019 (COVID-19): a systematic review. *Eur J Med Res*. 2021;26(1):61.

11. Hong KH, Lee SW, Kim TS, et al. Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. *Ann Lab Med*. 2020;40(5):351-360.

12. Çınar OE, Saynalp B, Aladã§̣ Karakulak E, et al. Convalescent (immune) plasma treatment in a myelosuppressive COVID-19 patient with disseminated tuberculosis. *Transfus Apher Sci*. 2020;59(5):102821.

13. Şuñeçek Yavuz S, Ünal S. Antiviral treatment of COVID-19. *Turk J Med Sci*. 2020;50(S1-1):611-619.

14. Nikolic-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. *Nat Immunol*. 2018;19(1):10-19.

15. Mehrtat M, Vatankhah S, Delgoshaei B, Gholipour A. Succession planning in the Iranian health system: a case study of the Ministry of Health and medical education. *Glob J Health Sci*. 2014;6(5):174-182.

16. Amatrãain-Fernãndez S, Gronwald T, Murillo-Rodriguez E, et al. Physical exercise potentials against viral diseases like COVID-19 in the elderly. *Front Med*. 2020;7:379.

17. Mehraeen E, Karimi A, Barzegary A, et al. Predictors of mortality in patients with COVID-19-a systematic review. *Eur J Integr Med*. 2020;40:101226.

18. SeyedAlinaghi S, Karimi A, MohsseniPour M, et al. The clinical outcomes of COVID-19 in HIV-positive patients: a systematic review of current evidence. *Immun Inflamm Dis*. 2021;9(4):1160-1185.

19. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. *Lancet Infect Dis*. 2020;20(6):669-677.

20. SeyedAlinaghi S, Mirzapour P, Dadras O, et al. Characterization of SARS-CoV-2 different variants and related morbidity and mortality: a systematic review. *Eur J Med Res*. 2021;26(1):51.

21. Parve Z, et al. Vitamin D: implications in COVID-19. *Lat Am J Pharm*. 2021;40:23-26.

22. Cochrane. Assessing the certainty or quality of a body of evidence. *Cochrane Handbook of Systematic Reviews*.

23. Hwang J, Ryu HS, Kim HA. Prognostic factors of COVID-19 infection in elderly patients: a multicenter study. *J Clin Med*. 2020;9(12):3932.

24. Lee JY, Kim HA, Huh K, et al. Risk factors for mortality and respiratory support in elderly patients hospitalized with COVID-19 in Korea. *J Korean Med Sci*. 2020;35(23):e223.

25. Li P, Chen L, Liu Z, et al. Clinical features and short-term outcomes of elderly patients with COVID-19. *Int J Infect Dis*. 2020;97:245-250.

26. Li G, Liu Y, Jing X, et al. Mortality risk of COVID-19 in elderly males with comorbidities: a multi-country study. *Aging*. 2020;13(1):27-60.

27. Li Q, Zhang T, Li F, et al. Acute kidney injury can predict in-hospital mortality in elderly patients with COVID-19 in the ICU: a single-center study. *Clin Interv Aging*. 2020;15:2095-2107.

28. Mori H, Obinata H, Murakami W, et al. Comparison of COVID-19 disease between young and elderly patients: hidden viral shedding of COVID-19. *J Infect Chemother*. 2021;27(1):70-75.

29. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. *J Infect*. 2020;80(6):e134-e138.

30. Liu Z, Wu D, Han X, et al. Different characteristics of critical COVID-19 and thinking of treatment strategies in non-elderly and elderly severe adult patients. *Int Immunopharmacol*. 2021;92:107343.

31. Mei Q, Wang AY, Bryant A, et al. Survival factors and metabolic pathogenesis in elderly patients (>65) with COVID-19: a multicenter study. *Front Med*. 2020;7:595503.

32. Ménager P, Brière O, Gautier J, et al. Regular use of VKA prior to COVID-19 associated with lower 7-day survival in hospitalized frail elderly COVID-19 patients: the GERIA-COVID cohort study. *Nutrients*. 2020;13(1):39.

33. Blanco JIM, Alvarenga Bonilla JA, Homma S, Suzuki K, Fremont-Smith P, Villar Gómez de Las Heras K. Anthistamines and azithromycin as a treatment for COVID-19 on primary health care—a retrospective observational study in elderly patients. *Pulm Pharmacol Ther*. 2021;67:101989.

34. Mostaza JM, García-Iglesias F, González-Alegre T, et al. Clinical course and prognostic factors of COVID-19 infection in an elderly hospitalized population. *Arch Gerontol Geriatr*. 2020;91:104204.

35. Annweiler G, Corvaisier M, Gautier J, et al. Vitamin D supplementation associated to better survival in hospitalized frail elderly COVID-19 patients: the GERIA-COVID quasi-experimental study. *Nutrients*. 2020;12(11):3377.

36. Araújo MPD, Nunes V, Costa LA, Souza TA, Torres GV, Nobre T. Health conditions of potential risk for severe Covid-19 in institutionalized elderly people. *PloS One*. 2021;16(1):e0245432.

37. Bongiovanni M, De Lauretis A, Manes G, et al. Clinical characteristics and outcome of COVID-19 pneumonia in elderly subjects. *J Infect*. 2021;82(2):e33-e34.

38. Cocco P, Meloni F, Coratza A, Schirru D, Campagna M, De Matteis S. Vaccination against seasonal influenza and socio-economic and environmental factors as determinants of the geographic variation of COVID-19 incidence and mortality in the Italian elderly. *Prev Med*. 2021;143:106351.

39. Covino M, De Matteis G, Polla D, et al. Predictors of in-hospital mortality and death risk stratification among COVID-19 patients aged ≥80 years old. *Arch Gerontol Geriatr*. 2021;95:104383.

40. Dai SP, Zhao X, Wu JH. Effects of comorbidities on the elderly patients with COVID-19: clinical characteristics of elderly patients infected with COVID-19 from Sichuan, China. *J Nutr Health Aging*. 2021;25(1):18-24.

41. Díaz Y, Ramos-Suzarte M, Martín Y, et al. Use of a humanized anti-Cd6 monoclonal antibody (itolizumab) in elderly patients with moderate COVID-19. *Gerontology*. 2020;66(6):553-561.

42. Franchini M, Glingani C, Morandi M, et al. Safety and efficacy of convalescent plasma in elderly COVID-19 patients: the RESCUE trial. *Mayo Clin Proc Innov Qual Outcomes*. 2021;5:403-412.

43. Gao S, Jiang F, Jin W, et al. Risk factors influencing the prognosis of elderly patients infected with COVID-19: a clinical retrospective study in Wuhan, China. *Aging*. 2020;12(13):12504-12516.

44. Pratt NL, Kalisch Ellett LM, Andrade AQ, Le Blanc VT, Barratt J, Roughhead EE. Prevalence of multiple risk factors for poor outcomes associated with COVID-19 among an elderly Australian population. *Aust J Gen Pract*. 2021;50(1):28-39.

45. Ramos-Rincon JM, Buonaito V, Ricci M, et al. Clinical characteristics and risk factors for mortality in very old patients hospitalized with COVID-19 in Spain. *J Gerontol A Biol Sci Med Sci*. 2021;76(3):e28-e37.

46. Recinella G, Marasco G, Serafini G, et al. Prognostic role of nutritional status in elderly patients hospitalized for COVID-19: a monocentric study. *Aging Clin Exp Res*. 2020;32(12):2695-2701.

47. Rui L, Sirui L, Xuebei D, Xujun Y, Yanggan W. Clinical observations in very elderly patients with COVID-19 in Wuhan. *Geriatr Gerontol Int*. 2020;20(7):709-714.

48. Saavedra D, Afãš̀ Kouri AL, Sánchez N, et al. An anti-Cd6 monoclonal antibody (itolizumab) reduces circulating IL-6 in severe COVID-19 elderly patients. *Immun Ageing*. 2020;17(1):34.

49. Song J, Hu W, Yu Y, et al. A comparison of clinical characteristics and outcomes in elderly and younger patients with COVID-19. *Med Sci Monit*. 2020;26:e925047.

50. Sulli A, Gotelli E, Casabella A, et al. Vitamin D and lung outcomes in elderly COVID-19 patients. *Nutrients*. 2021;13(3):717.

51. Tan X, Zhang S, Xu J, et al. Comparison of clinical characteristics among younger and elderly deceased patients with COVID-19: a retrospective study. *Aging*. 2020;12(1):16-26.
52. Trecarichi EM, Mazzitelli M, Serapide F, et al. Clinical characteristics and predictors of mortality associated with COVID-19 in elderly patients from a long-term care facility. Sci Rep. 2020;10(1):20834.

53. Wang L, Lv Q, Zhang X, et al. The utility of MEWS for predicting the mortality in the elderly adults with COVID-19: a retrospective cohort study with comparison to other predictive clinical scores. PeerJ. 2020;8:e10018.

54. Wassenaar TM, Buzard GS, Newman DJ. BCG vaccination early in life does not improve COVID-19 outcome of elderly populations, based on nationally reported data. Lett Appl Microbiol. 2020;71(5):498-505.

55. Yan F, Huang F, Xu J, et al. Antihypertensive drugs are associated with reduced fatal outcomes and improved clinical characteristics in elderly COVID-19 patients. Cell Discov. 2020;6(1):77.

56. Zeng F, Deng G, Cui Y, et al. A predictive model for the severity of COVID-19 in elderly diabetes patients. Diabetes Res Clin Pract. 2021;171:108550.

57. Zhang P, Wang M, Wang Y, et al. Risk factors associated with the progression of COVID-19 in elderly diabetes patients. Diabetes Res. 2022;109:104626.

58. Poletti P, Tirani M, Cereda D, et al. Age-specific SARS-CoV-2 infection fatality ratio and associated risk factors, Italy, February to April 2020. Euro Surveill. 2020;25(31):2001383.

59. Lowe B, Bopp B. COVID-19 vaginal delivery—a case report. Aust N Z J Obstet Gynaecol. 2020;60:465-466.

60. Hwang J, Ryu HS, Kim HA, Hyun M, Lee JY, Yi HA. Prognostic factors of COVID-19 infection in elderly patients: a multicenter study. J Clin Med. 2020;9(12):3932.

61. Sung HK, Kim JY, Heo J, et al. Clinical course and outcomes of 3,060 patients with coronavirus disease 2019 in Korea, January-May 2020. J Korean Med Sci. 2020;35(30):e280.

62. Poblador-Plou B, Carmona-Pirez J, Ioakeim-Skoufa I, et al. Baseline chronic comorbidity and mortality in laboratory-confirmed COVID-19 cases: results from the PRECOVID study in Spain. Int J Environ Res Public Health. 2020;17(14):5171.

63. Wu P, Zheng Y, Fan X, et al. Predictors of caregiver burden in patients with neurologic Wilson disease. J Int Med Res. 2020;48(6):300060520930156.

64. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.

65. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062.

66. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. Published online March 31, 2020:e3319. doi:10.1002/dmrr.3319

67. Nogueira PJ, et al. The role of health preconditions on COVID-19 deaths in Portugal: evidence from surveillance data of the first 20293 infection cases. J Clin Med. 2020;9(8):2368.

68. Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: a systematic review and meta-analysis. PLoS One. 2020;15(8):e0238215.

69. Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068-1077.

70. Hariyanto TI, Rosalind J, Christian K, Kurniawan A. Human immunodeficiency virus and mortality from coronavirus disease 2019: a systematic review and meta-analysis. South Afr J HIV Med. 2021;22(1):1220.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Dadras O, SeyedAlinaghi S, Karimi A, et al. COVID-19 mortality and its predictors in the elderly: a systematic review. Health Sci Rep. 2022;5:e657. doi:10.1002/hsr2.657