A note on common zeroes of Laplace–Beltrami eigenfunctions

V.M. Gichev

Abstract

Let $\Delta u + \lambda u = \Delta v + \lambda v = 0$, where Δ is the Laplace–Beltrami operator on a compact connected smooth manifold M and $\lambda > 0$. If $H^1(M) = 0$ then there exists $p \in M$ such that $u(p) = v(p) = 0$. For homogeneous M, $H^1(M) \neq 0$ implies the existence of a pair u, v as above that has no common zero.

1 Introduction

Let M be a compact connected closed orientable C^∞-smooth Riemannian d-dimensional manifold and Δ be the Laplace–Beltrami operator on it. Set

$$E_\lambda = \{ u \in C^2(M) : \Delta u + \lambda u = 0 \}.$$

The eigenspace E_λ can be nontrivial only for $\lambda \geq 0$. If the contrary is not stated explicitly, we assume that functions are real valued and linear spaces are finite dimensional; $H^p(M)$ denotes de Rham cohomologies.

Theorem 1. Let M be as above.

(1) Suppose $H^1(M) = 0$. Then for any $\lambda \neq 0$ and each pair $u, v \in E_\lambda$ there exists $p \in M$ such that $u(p) = v(p) = 0$.

(2) If M is a homogeneous space of a compact Lie group of isometries then the converse is true: $H^1(M) \neq 0$ implies the existence of $\lambda \neq 0$ and a pair $u, v \in E_\lambda$ without common zeroes.

The circle $T = \mathbb{R}/2\pi \mathbb{Z}$ and functions $u(t) = \cos t, v(t) = \sin t$ provide the simplest example for (2). Moreover, (2) is an easy consequence of this example and the following observation: for homogeneous Riemannian manifolds $M = G/H$, where G is compact and connected, $H^1(M) \neq 0$ is equivalent to
the existence of G-equivariant mapping $M \to \mathbb{T}$ for some nontrivial action of G on \mathbb{T}.

The corollary below gives the answer to the question in [3]: is it true that each orbit of a compact connected irreducible linear group, acting in a complex vector space, meets any hyperplane? I am grateful to P. de la Harpe for making me aware of this question which in fact was the starting point for this note.

Corollary 1. Let V be a complex linear space, $\dim V > 1$, and $G \subset \text{GL}(V)$ be a compact connected irreducible group. Then for any $v \in V$ and every linear subspace $H \subset V$ of complex codimension 1 there exists $g \in G$ such that $gv \in H$.

There is a real version of this corollary. Let τ be a real linear irreducible representation of a compact connected Lie group G in a real linear space τ_V. We may assume that τ_V is endowed with the invariant inner product $\langle \cdot, \cdot \rangle$ and that G is equipped with a bi-invariant Riemannian metric. Let M_τ be the space of its matrix elements; by definition, M_τ is the linear span of functions $t_{xy}(g) = \langle \tau(g)x, y \rangle$, $x, y \in \tau_V$. Then either τ admits an invariant complex structure or its complexification is irreducible. It follows from the Schur lemma that $\Delta u = \lambda_\tau u$ for each $u \in M_\tau$, where Δ is the Laplace–Beltrami operator for a bi-invariant metric on G. Let us fix Δ and denote by Λ_σ, where σ is a finite dimensional real representation, the spectrum of Δ on M_σ; it is the union of λ_τ over all irreducible components τ of σ.

Corollary 2. Let G be a compact connected semisimple Lie group, σ be as above. Suppose that Λ_σ is a single point $\lambda \neq 0$. Then the orbit of any vector in τ_V meets each linear subspace of codimension 2.

If u is an eigenfunction of Δ on a Riemannian manifold M then

$$N_u = \{ x \in M : u(x) = 0 \}$$

is said to be the *nodal set*, and connected components of its complement $M_u = M \setminus N_u$ are called *nodal domains*. In the following lemma, we formulate the main step in the proof of the theorem (the fact seems to be known but I failed to find a reference).

1If Λ_σ is not a single point then the assertion is not true. The simplest example is the representation of $\text{SO}(3)$ in the space of harmonic polynomials on \mathbb{R}^3 of the type $l(x) + q(x)$, where l is linear and q is quadratic. Let us fix $x_0 \neq 0$ and define a subspace W of codimension 2 by equalities $l(x_0) = 0$ and $q(x_0) = 0$. If q_0 is nondegenerate then there exists l_0 such that $l_0^{-1}(0) \cap q_0^{-1}(0) = \{0\}$; the orbit of $l_0 + q_0$ does not intersect W.

Lemma 1. Let \(u, v \in E_\lambda \), \(u, v \neq 0 \), and let \(U, V \) be nodal domains for \(u \), \(v \), respectively. If \(U \subseteq V \) then \(u = cv \) for some \(c \in \mathbb{R} \).

There are many natural questions concerning the distribution of common zeroes; they seem to be difficult. We prove a very particular result for \(d = \dim M = 2 \). Note that \(M \) is diffeomorphic to the sphere \(S^2 \) if \(d = 2 \) and \(H^1(M) = 0 \).

Proposition 1. Let \(d = 2 \), \(H^1(M) = 0 \), \(\lambda \neq 0 \), \(u \in E_\lambda \). Suppose that zero is not a critical value for \(u \). Then for each \(v \in E_\lambda \) every connected component of \(N_u \) contains at least two points of \(N_v \).

In fact, each component is a Jordan contour and supports a positive measure which annihilates \(E_\lambda \).

Let \(M \) be the unit sphere \(S^2 \subset \mathbb{R}^3 \) with the standard metric. Then \(\lambda_n = n(n+1) \) is \(n \)-th eigenvalue of \(\Delta \). The corresponding eigenspace \(E_n = E_{\lambda_n} \) consists of spherical harmonics which can be defined as restrictions to \(S^2 \) of harmonic (with respect to the ordinary Laplacian in \(\mathbb{R}^3 \)) homogeneous polynomials of degree \(n \) in \(\mathbb{R}^3 \); \(\dim E_n = 2n + 1 \). The space \(E_n \) is spanned by zonal spherical harmonics \(l_{a,n}(x) = L_n((x,a))|_{S^2} \), where \(a \in S^2 \) and \(L_n \) is the Legendre polynomial. The nodal set for \(l_{a,n} \) is the union of \(n \) circles

\[
\{ x \in S^2 : \langle x, a \rangle = x_k \},
\]

where \(x_1, \ldots, x_n \in [-1,1] \) are zeroes of \(L_n \). Set \(u = l_{a,n}, v = l_{b,n} \), \(n(a,b) = \text{card}(N_u \cap N_v) \). Projections of \(N_u \) and \(N_v \) to the plane \(\pi_{ab} \) passing through \(a \) and \(b \) are families of segments in the unit disc in \(\pi_{ab} \) with endpoints in the unit circle which are orthogonal to \(a \) and \(b \), respectively. Outside the boundary circle, the preimage of each point is a pair of points. Further, \(N_u, N_v \) are symmetric with respect to \(\pi_{ab} \). Hence \(N_u \cap N_v \) corresponds to the intersection of the segments. It makes possible to calculate or estimate \(n(a,b) \).

In particular, if \(a \) and \(b \) are sufficiently close then \(n(a,b) = 2n \); if \(a \perp b \) then \(n(a,b) \approx cn^2 \), where \(c \) can be calculated explicitly since zeroes of \(L_n \) are distributed uniformly in \([-1,1]\). The set \(N_u \cap N_v \) can be infinite for independent \(u, v \in E_n \), for instance, it can be a big circle or a family of parallel circles in \(S^2 \) (this is true for suitable \(u, v \) of the type \(P(\cos \theta) \cos(k \varphi + \alpha) \), where \(P \) is a polynomial, \(\theta, \varphi \) are Euler coordinates in \(S^2 \), \(k = 1, \ldots, n \)). I do not know if there are other nontrivial examples of infinite sets \(N_u \cap N_v \) as well as examples of \(u, v \in E_n \) such that \(\text{card}(N_u \cap N_v) < 2n^2 \).

\(^2\)with multiplicities, or for generic \(u, v \). If \(n = 2 \) then \(4 \leq \text{card}(N_u \cap N_v) \leq 8 \); for \(n = 1 \), \(\text{card}(N_u \cap N_v) = 2 \).
It is natural to ask if something like Theorem 1 is true for three or more eigenfunctions. Here is an example. Let S^3 be the unit sphere in \mathbb{C}^2 and set $u = |z_1|^2 - |z_2|^2$, $v = \text{Re} z_1 \overline{z_2}$, $w = \text{Im} z_1 \overline{z_2}$. These three Laplace–Beltrami eigenfunctions have no common zeroes in S^3. They are matrix elements of the three dimensional representation of $\text{SU}(2) \cong S^3$ and correspond to three linear functions on $S^2 \subset \mathbb{R}^3$; the homogeneous space M admits an equivariant mapping $M \rightarrow S^2$. Perhaps, the latter property could be the right replacement of the assumption $H^1(M) \neq 0$ in a version of Theorem 1 for homogeneous spaces and three eigenfunctions.

2 Proof of results

By ρ we denote the Riemannian metric in M, ω is the volume n-form. The metric ρ identifies tangent and cotangent bundles, hence it extends to T^*M. Let D be a domain in M, $C^2_c(D)$ be the set of all functions in $C^2(D)$ with compact support in D, W_0 be the closure of $C^2_c(D)$ in the Sobolev class $W^1_2(D)$ which consist of functions whose first derivatives (in the sense of the distribution theory) are square integrable functions. There is the natural unique up to equivalence norm making it a Banach space. For all $u, v \in C^2_c(D)$ \footnote{Thus, $\Delta = -(d\delta + \delta d)$, where δ is the adjoint operator for d; due to the choice of the sign, Δ is the ordinary Laplacian in the Euclidean case.}

$$\int_D \rho(du, dv) \omega = - \int_D u \Delta v \omega = - \int_D v \Delta u \omega.$$

Hence for every $u, v, w \in C^2_c(D)$

$$\int_D u \rho dv, dw \omega = - \int_D v(\rho(du, dw) + u \Delta w) \omega. \quad (1)$$

For a domain $D \subseteq M$ and a function $u \in W^1_2(D)$, let

$$\mathcal{D}_D(u) = \int_D \rho(du, du) \omega$$

be the Dirichlet form. For most cases, we shall omit the index. For the sake of completeness, we give a proof of the classical result which states that a positive eigenfunction corresponds to the first eigenvalue which is multiplicity free. The proof follows [2, Ch. VI, §7].
Lemma 2. Let D be a domain in M, $v \in C^2(D) \cap W_0$. Suppose $v > 0$ and $\Delta v + \lambda v = 0$ on D. Then for all $u \in W_0$

$$D(u) \geq \lambda \int_D u^2 \omega,$$ \hfill (2)

and the equality holds if and only if $u = cv$ in D for some $c \in \mathbb{R}$.

Proof. Since $v > 0$, each $u \in C^2(D)$ admits the unique factorization $u = \eta v$, where $\eta \in C^2_c(D)$. Due to (1) and the equality $2\eta v \rho(d\eta, dv) = v \rho(d\eta^2, dv)$,

$$D(u) = \int_D \rho(d(\eta v), d(\eta v)) \omega =$$

$$\int_D \left(v^2 \rho(d\eta, d\eta) + 2\eta v \rho(d\eta, dv) + \eta^2 \rho(dv, dv) \right) \omega =$$

$$\int_D \left(v^2 \rho(d\eta, d\eta) + \eta^2 \rho(dv, dv) \right) \omega - \int_D \eta^2 \left(\rho(dv, dv) + v \Delta v \right) \omega =$$

$$\int_D \left(v^2 \rho(d\eta, d\eta) + \lambda \eta^2 v^2 \right) \omega \geq \lambda \int_D \eta^2 v^2 \omega = \lambda \int_D u^2 \omega.$$

Using the approximation, we get (2). Suppose that the equality in (2) holds for some $u \in W_0$. Let η_n be such that $\eta_n v \to u$ in W_0 as $n \to \infty$. Then $D(\eta_n v) \to D(u)$. Due to the calculation above,

$$\lim_{n \to \infty} \int_D v^2 \rho(d\eta_n, d\eta_n) \omega = 0.$$

Let $D' \subset D$ be a domain whose closure is contained in D. Standard arguments show that any limit point of the sequence $\{\eta_n\}$ in $W^2_0(D')$ is a constant function. Hence $u = cv$ in D for some $c \in \mathbb{R}$. The converse is obvious. \hfill \Box

Proof of Lemma 1. Let $D = V \supset U$; we may assume $v > 0$ in D and $u > 0$ in U. Let \tilde{u} be zero outside U and coincide with u in U. Clearly, $\tilde{u} \in W_0$. Furthermore,

$$D_D(\tilde{u}) = D_U(u) = \lambda \int_U u^2 \omega = \lambda \int_D \tilde{u}^2 \omega.$$

By Lemma 2, $u = cv$ in D. To conclude the proof, we refer to Aronszajn’s unique continuation theorem [1] which implies $u = cv$ on M. \hfill \Box

4\tilde{u} can be approximated in W_0 by functions $u_n = \max\{\varepsilon_n, u\} - \varepsilon_n$ in U, $u_n = 0$ outside U, where $\varepsilon_n > 0$ are regular values for u and $\varepsilon_n \to 0$ as $n \to \infty$ (note that $u \in C^1(M)$).
Proof of Theorem 1. \textbf{1)} Let \(\mathfrak{U} \) and \(\mathfrak{V} \) be families of nodal domains for \(u \) and \(v \), respectively. The assumption \(\lambda \neq 0 \) and the orthogonality relations imply \(M_u, M_v \neq M \). Obviously, \(u \) and \(v \) have no common zeroes if and only if \(\mathfrak{C} = \mathfrak{U} \cup \mathfrak{V} \) is a covering:

\[M = \bigcup_{W \in \mathfrak{C}} W. \] (3)

It is sufficient to prove, assuming (3), that there exists a closed 1-form on \(M \) which is not exact. The covering \(\mathfrak{C} \) has following properties:

(A) sets in \(\mathfrak{U} \) are pairwise disjoint, and the same is true for \(\mathfrak{V} \);

(B) nor \(U \subseteq V \) neither \(U \supseteq V \) for every \(U \in \mathfrak{U} \), \(V \in \mathfrak{V} \).

The first is obvious, the second is a consequence of Lemma 1. Also, Lemma 1 implies that

\[U \cap N_v \neq \emptyset, \quad V \cap N_u \neq \emptyset \quad \text{for all} \quad U \in \mathfrak{U}, \ V \in \mathfrak{V}. \] (4)

Due to (4), \(\mathfrak{C} \) is finite; \(\mathfrak{V} \) covers the compact set \(N_u \) by open disjoint sets, and the same is true for \(\mathfrak{U} \) and \(N_v \). This also means that a connected component \(X \) of \(N_u \) is contained in some nodal domain for \(v \). Further, \(u \) cannot keep its sign near \(X \). Otherwise, we get a contradiction assuming \(u > 0 \) and applying the Green formula to functions \(u, 1 \) and the component of the set \(u < \varepsilon \) which contains \(X \) (for sufficiently small regular \(\varepsilon > 0 \)). Hence \(X \) lies in the boundary of at least two domains in \(\mathfrak{U} \). Components of \(N_v \) have this property with respect to \(\mathfrak{V} \). Let \(\Gamma \) be the incidence graph for \(\mathfrak{C} \) whose family of vertices is \(\mathfrak{C} \) and edges join sets with nonempty intersection. For \(\Gamma \), the conditions above read as follows:

(a) each edge of \(\Gamma \) joins \(\mathfrak{U} \) and \(\mathfrak{V} \);

(b) any vertex is common for (at least) two different edges\(^6\).

\(^5\)Indeed, \(\int_{\partial U_\varepsilon} \delta(u \omega) = \int_{U_\varepsilon} d(\delta(u \omega)) = -\int_{U_\varepsilon} \Delta u \omega = \lambda \int_{U_\varepsilon} u \omega > 0 \), where the operator \(\delta \) is adjoint to \(d \) and \(U_\varepsilon \supset X \) is the component above. On the other hand, \(\delta(u \omega) = -\frac{\partial}{\partial n} \omega \varepsilon \), where \(\frac{\partial}{\partial n} \) is the outer normal and \(\omega \varepsilon \) is the volume form for \(\partial U_\varepsilon \). Since \(\frac{\partial}{\partial n} \geq 0 \) on \(\partial U_\varepsilon \), we get a contradiction.

\(^6\)Otherwise, there exist \(U \in \mathfrak{U}, \ V \in \mathfrak{V} \) such that \(U \subseteq \text{clos} \ V \) or \(V \subseteq \text{clos} \ U \). If \(U \subseteq \text{clos} \ V = V \cup \partial V \) then either \(U \subseteq V \) or \(U \cap \partial V \neq \emptyset \). The first contradicts to (B), the second implies the existence of a component \(X \) of \(N_v \) such that \(v \) keeps its sign near \(X \).
It follows that Γ contains a nontrivial cycle C. Let $U \in \mathcal{U}$ and $V \in \mathcal{V}$ be consecutive vertices of C, $Q = \partial U \cap V$. Since $Q \cap \partial V = \emptyset$ due to (3), both Q and $\partial U \setminus Q = \partial U \setminus V$ are compact. Hence there exists a smooth function f on M such that $f = 1$ in a neighbourhood of Q and $f = 0$ near $\partial U \setminus Q$. Then $df = 0$ on ∂U and the 1-form η which is zero outside U and coincides with df on U is well defined and smooth. Obviously, η is closed; we claim that η cannot be exact.

Suppose $\eta = dF$. Then $F = \text{const}$ on each connected set which does not intersect $\text{supp} \eta \subset U$. Let $U_1 = U, V_1 = V, \ldots, U_m, V_m$ be the cycle C. Then $m > 1$ and we may assume that

$$V_k \cap U = \emptyset \quad \text{for} \ 1 < k < m$$

replacing C by a shorter cycle if necessary\footnote{We may assume that C contains no proper subcycle.}. If a curve in V starts outside U and comes into U then it meets U at a point of Q. Hence there exists a curve c_1 in $V \setminus U$ with endpoints in Q and U_2. Analogously, there is a curve c_2 inside $V_m \setminus U$ which joins a point in U_m with a point in $V_m \cap \partial U$. The set

$$X = c_1 \cup U_2 \cup V_2 \cup \ldots \cup U_m \cup c_2$$

is connected; by A) and (5), $X \cap U = \emptyset$. Therefore, F is constant on X. This contradicts to the choice of f since the closure of X has common points with Q and $\partial U \setminus Q$ (recall that $dF = df$ on U and that f takes different values on these sets).

2) Let $M = G/H$, where G is a compact group of isometries. Since M is connected, the identity component of G acts on M transitively. Hence we may assume that G is connected. If $H^1(M) \neq 0$ then there exists an invariant closed 1-form η on M that is not exact. It can be lifted to the left invariant closed 1-form $\tilde{\eta}$ on the universal covering group \tilde{G}. Since $\tilde{\eta}$ is left invariant and closed (hence exact), $\tilde{\eta} = d\chi$ for some nontrivial additive character $\chi : \tilde{G} \to \mathbb{R}$. According to structure theorems, $\tilde{G} = \tilde{S} \times \mathbb{R}^k$, where \tilde{S} is compact, simply connected, and semisimple. Hence $\chi = 0$ on \tilde{S}. Further, η is locally exact on M; thus $\chi = 0$ on the preimage \tilde{H} of the group H in \tilde{G}. Since \tilde{S} is compact and normal, $\tilde{L} = \tilde{S}H$ is a closed subgroup of \tilde{G}. It follows that $\dim \tilde{L} < \dim G$. Let S, L be subgroups of G which are covered by \tilde{S}, \tilde{L}, respectively. Thus, $L = SH$ is a closed proper subgroup of G. The natural mapping $M = G/H \to G/L \cong \mathbb{T}^m$ can be continued to a nontrivial equivariant one $M \to \mathbb{T}$. Realizing \mathbb{T} as the unit circle in \mathbb{C} we get a nonconstant function whose real and imaginary parts satisfies the theorem. \hfill \square
Conditions A) and B) imply $H^1(\mathcal{C}, A) \neq 0$ for any nontrivial abelian group A. Indeed, every three distinct sets in \mathcal{C} have empty intersection whence any function on the set of edges of Γ is a cocycle, while for each coboundary the sum of its values along every cycle in Γ is zero. Besides, for homogeneous spaces of connected compact Lie groups the condition $H^1(M) = 0$ is equivalent to each of following ones: $H_1(M, \mathbb{Z})$ is finite; $\pi_1(M)$ is finite; M is compact; the semisimple part of G acts on M transitively; $g = h + [g, g]$, where g and h are Lie algebras of G and H, respectively.

We omit the proof which is easy.

Proof of Corollary 2. Since G is semisimple, $H^1(G) = 0$. Let $L \subset V_{\sigma}$ be a subspace of codimension 2, $x \in V_{\sigma}$, y and z be a linear base of L^\perp; set $u(g) = \langle \sigma(g)x, y \rangle$, $v(g) = \langle \sigma(g)x, z \rangle$. By Theorem 1, u and v have a common zero $g \in G$; then $\sigma(g)x \perp y, z$ but this is equivalent to $\sigma(g)x \in L$.

Proof of Corollary 1. Clearly, the semisimple part of G is irreducible. Hence G can be assumed to be semisimple. The condition $\dim V > 1$ implies that the representation is not trivial. Therefore, Λ_τ is a single point $\lambda_\tau \neq 0$ and the hyperplane H has the real codimension 2 in V. Thus we may apply Corollary 2.

Note that the centre of G consists of scalar matrices; hence, if G is not semisimple then $H \cap Gv$ includes T_v for any $v \in H$, where T is the unit circle in \mathbb{C}. Therefore, $H \cap Gv$ is infinite for any $v \in V \setminus \{0\}$ in this case.

In what follows, we assume that M is diffeomorphic to the sphere S^2. Let D be a domain in M bounded by a finite number of smooth curves. Then there exists a vector field $\frac{\partial}{\partial n}$ on ∂D orthogonal to ∂D such that the Green formula holds:

\[
\int_{\partial D} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) \, ds = \int_D (u \Delta v - v \Delta u) \, dm \tag{6}
\]

for all smooth u, v, where s and m are linear and area measures defined by ρ on ∂D and D, respectively. The vector field $\frac{\partial}{\partial n}$ depends only on the local geometry of ∂D and does not vanish on ∂D.

Lemma 3. Let $\lambda \neq 0$, $u \in E_\lambda$, and C be a component of N_u. If C is a Jordan contour that contains no critical points of u then there exists a strictly positive continuous function q on C such that $\int_C v q \, ds = 0$ for all $v \in E_\lambda$.

8
Proof. Since $du \neq 0$ on C, it is a smooth curve. Let D be one of the two domains bounded by C due to Jordan Theorem. Applying (6) to it, we get

$$\int_C v \frac{\partial u}{\partial n} \, ds = 0.$$

Clearly, if $\frac{\partial u}{\partial n}(p) = 0$ for $p \in C$ then p is a critical point. Hence either $q = \frac{\partial u}{\partial n}$ or $q = -\frac{\partial u}{\partial n}$ satisfies the lemma.

Proposition 1 is an easy consequence of Lemma 3 (it remains to note that each component of N_u is a Jordan contour if 0 is not a critical value).

References

[1] Aronszajn N., A unique continuation theorem for solutions of elliptic partial differential equations of second order, J. Math. Pures Appl., 36 (1957), 235-239.

[2] Courant R., Hilbert D., Methoden der Mathematischen Physik, Berlin, Verlag von Julius Springer, 1931.

[3] Galindo J., de la Harpe P., Vust T., Two Observations on Irreducible Representations of Groups, J. of Lie Theory, 12 (2002), 535–538.