Long-term clinical outcomes of cardiac resynchronization therapy with or without defibrillation: impact of the aetiology of cardiomyopathy

Francisco Leyva1*, Abbasin Zegard1, Fraz Umar2, Robin James Taylor2, Edmund Acquaye3, Christopher Gubran3, Shajil Chalil2, Kiran Patel4,5, Jonathan Panting4, Howard Marshall3, and Tian Qiu3

1Aston Medical Research Institute, Aston Medical School, Aston University, Aston Triangle, Birmingham B4 7ET, UK; 2Centre for Cardiovascular Sciences, University of Birmingham, United Kingdom Queen Elizabeth Hospital, Metchley Drive, Birmingham B15 2TH, UK; 3Queen Elizabeth Hospital, Metchley Drive, Birmingham B15 2TH, UK; 4Heart of England NHS Trust, Bordesley Green E, Birmingham B9 5SS, UK; and 5University of Warwick, Coventry CV4 7AL, UK

Received 5 September 2017; revised 9 October 2017; editorial decision 12 November 2017; accepted 11 December 2017

Aims
There is a continuing debate as to whether cardiac resynchronization therapy-defibrillation (CRT-D) is superior to CRT-pacing (CRT-P), particularly in patients with non-ischaemic cardiomyopathy (NICM). We sought to quantify the clinical outcomes after primary prevention of CRT-D and CRT-P and identify whether these differed according to the aetiology of cardiomyopathy.

Methods and results
Analyses were undertaken in the total study population of patients treated with CRT-D (n = 551) or CRT-P (n = 999) and in propensity-matched samples. Device choice was governed by the clinical guidelines in the United Kingdom. In univariable analyses of the total study population, for a maximum follow-up of 16 years (median 4.7 years, interquartile range 2.4–7.1), CRT-D was associated with a lower total mortality [hazard ratio (HR) 0.72] and the composite end-points of total mortality or heart failure (HF) hospitalization (HR 0.72) and total mortality or hospitalization for major adverse cardiac events (MACE; HR 0.71) (all \(P < 0.001 \)). After propensity matching (n = 796), CRT-D was associated with a lower total mortality (HR 0.72) and the composite endpoints (all \(P < 0.01 \)). When further stratified according to aetiology, CRT-D was associated with a lower total mortality (HR 0.62), total mortality or HF hospitalization (HR 0.63), and total mortality or hospitalization for MACE (HR 0.59) (all \(P < 0.001 \)) in patients with ischaemic cardiomyopathy (ICM). There were no differences in outcomes between CRT-D and CRT-P in patients with NICM.

Conclusion
In this study of real-world clinical practice, CRT-D was superior to CRT-P with respect to total mortality and composite endpoints, independent of known confounders. The benefit of CRT-D was evident in ICM but not in NICM.

Keywords
Cardiac resynchronization therapy • Implantable cardioverter-defibrillator • Heart failure • Cardiomyopathy • Aetiology • Sudden cardiac death • Mortality • Outcome

Introduction
Cardiac resynchronization therapy (CRT) has revolutionized the treatment of patients with heart failure (HF), left ventricular (LV) systolic dysfunction, and a prolonged QRS duration. Besides prolonging survival, CRT also reduces HF hospitalization and improves symptoms, exercise capacity, and quality of life.1

* Corresponding author. Tel: +44 121 371 2000; fax: +44 121 424 4000. E-mail address: f.leyva@aston.ac.uk
© The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

CLINICAL RESEARCH
doi:10.1093/europace/eux357

EUROPEAN SOCIETY OF CARDIOLOGY
What's new?

- There is a debate as to whether cardiac resynchronization therapy-defibrillation (CRT-D) is superior to CRT-pacing (CRT-P), particularly in patients with non-ischaemic cardiomyopathy (NICM).
- In propensity-matched samples, we found that CRT-D was associated with a lower total mortality and the composite endpoints of total mortality or heart failure hospitalization and total mortality or hospitalization for major adverse cardiac events.
- When stratified according to aetiology, CRT-D was associated with a lower total mortality and composite endpoints in ischaemic cardiomyopathy, but not in NICM.

There is a continuing debate as to whether CRT-defibrillation (CRT-D) is superior to CRT-pacing (CRT-P). The Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure (COMPANION) study showed that CRT-D leads to a greater survival benefit than optimal pharmacological therapy but was underpowered to compare CRT-D with CRT-P. On the other hand, CRT-P has been shown to reduce sudden cardiac death (SCD), an effect that is probably due to LV reverse remodelling. In this context, there is no firm evidence from meta-analyses of randomized controlled trials of a survival benefit from CRT-D over CRT-P. Whether or not these factors have influenced device choice, there has been a wide variation in the usage of CRT-P than CRT-D, ranging from 14% for CRT-P in the USA to 30% in Japan and around 48% in the United Kingdom. Following the recent publication of the DANISH (Defibrillator Implantation in Patients with Nonischaemic Systolic Heart Failure) study, a European survey has shown that CRT-P is being used in preference to CRT-D in patients with non-ischaemic cardiomyopathy (NICM).

This study of real-world clinical practice explores survival and other clinical outcomes of CRT-P and CRT-D over a period of 16 years. We also focus on the influence of ischaemic cardiomyopathy (ICM) and NICM on clinical outcomes.

Methods

Patients were recruited from two centres (Good Hope Hospital, Birmingham, UK) from October 2000 to January 2017. Implantation practice was governed by the UK's National Institute of Clinical Excellence (NICE) guidelines, which before 2007 recommended CRT-D only in the setting of secondary prevention. After 2007, NICE recommended CRT-P rather than CRT-D for patients with NICM. With a subsequent NICE guideline change in 2014 recommending CRT-D in NICM, the proportion of CRT-D recipients increased thereafter. This study was approved by the local ethics committee and/or the local Clinical Audit Departments and conforms with the Declaration of Helsinki.

Device therapy

Device implantation was undertaken using standard transvenous techniques under local anaesthesia and intravenous sedation. After implantation, patients were followed up in dedicated device therapy clinics. Before 2013, patients in sinus rhythm underwent echocardiographic optimization using an iterative technique prior to discharge and at every scheduled visit thereafter. Routine echocardiographic optimization was abandoned in 2013 when targeted optimization was undertaken in symptomatic non-responders. Backup atrial pacing was set at 60 b.p.m., and the pacing mode was set to DDDR with an inter-ventricular delay of 0–20 ms (LV first), according to the implanter preference. In patients in permanent atrial fibrillation, right ventricular and LV leads were deployed, and a CRT generator or a dual-chamber generator was implanted. Programming to a ventricular triggered mode and atrioventricular junction ablation was undertaken according to physicians' discretion.

Endpoints

The primary endpoint was total mortality, which included cardiac transplantation or implantation of a ventricular assist device. Secondary end-points included the composite endpoint of total mortality or HF hospitalization and the composite endpoint of total mortality or unplanned hospitalization for major adverse cardiac events (MACE), which included hospitalization for HF, myocardial infarction, acute coronary syndrome, and arrhythmia (ventricular tachycardia (VT), ventricular fibrillation (VF) and atrial fibrillation). Device-treated arrhythmias (appropriately treated with shocks or anti-tachycardia pacing) not leading to an unplanned hospitalization were not regarded as MACE. Ancillary endpoints included cardiac mortality, death from pump failure, and the composite endpoint of SCD or hospitalization for VT or VF. In composite endpoints, the first event was included in statistical analyses. Mortality data were collected through medical records and, where appropriate, from interviews with patients' caregivers. Data were collected retrospectively from medical records and interviews with care givers and entered into an electronic database. Clinical outcome data were collected every 6 months by investigators who were blinded to clinical and imaging data. Events were adjudicated by blinded investigators on a 6-monthly basis.

Cause and mode of death

A natural, unexpected death due to cardiac causes, heralded by an abrupt loss of consciousness within 1 h of the onset of acute symptoms was regarded as an SCD. Death from pump failure was defined as 'death after a period of clinical deterioration in signs and symptoms of HF despite medical treatment'. Non-cardiac deaths and causes thereof were adjudicated on the basis of hospital records or correspondence from primary care physicians. Deaths were classified as 'unknown' if no definitive data were found in hospital or primary care records or from interviews with caregivers.

Statistical analysis

Continuous variables were expressed as mean ± standard deviation (SD). Normality was tested using the Shapiro–Wilk test. Comparisons between normally distributed continuous variables were made using analysis of variance with Scheffe’s F-test for multiple comparisons. Categorical variables were analysed using χ² tests and Scheffe's post hoc test. The Kaplan–Meier curves and the log-rank test were used to assess observed cumulative survival. Cox proportional hazard models were used to assess relative risks. Statistical analyses were undertaken using Stata14 (StataCorp, College Station, TX, USA). A two-sided P-value ≤0.05 was considered statistically significant.

Propensity matching

Variables selected for propensity matching between the CRT-D and the CRT-P groups included those which differed significantly at baseline and which emerged as predictors of the primary endpoint. Patients with similar propensity scores were selected using 1:1 nearest-neighbour matching within a specified caliper width (0.01). Each pair was used once and
unpaired cases were excluded from further analysis. The standardized difference was used to access balance in means or proportions between CRT-D and CRT-P recipients, and a difference of <10% was accepted for matched cohorts.

Results

Baseline characteristics

Over the study period, 1500 patients underwent primary prevention CRT-D \([n = 551 \ (36.7\%)] \) or CRT-P \([n = 999 \ (66.6\%)] \). Of these, 252 patients with NICM were included in a previous study.\(^1\) As shown in Table 1, CRT-D recipients were 3 years younger, were more often male, and were having ICM \((P < 0.001) \). In addition, the CRT-D group had a greater proportion of patients with diabetes \((P = 0.016) \) and hypertension \((P = 0.048) \) but a lower proportion with atrial fibrillation \((P < 0.001) \). Excluding patients with conventional indications for pacing and those who were upgraded from a pacemaker to CRT \((n = 426) \), QRS duration was 4.3 ms shorter in CRT-D patients \((P < 0.001) \). In addition, LBBB was less prevalent in CRT-D recipients \((P = 0.013) \). A total of 314 (20.3%) patients had conventional indications for pacing (CRT-D: 15.1%, CRT-P: 23.1%; \(P = 0.388 \)).

Total study population

Total mortality was 205 of 551 (37.2%; 9.8 per 100 person-years) after CRT-D and 580 of 999 (58.1%; 13.5 per 100 person-years) after CRT-P. Cardiac mortality was 113 of 551 (20.5%; 4.4 per 100 person-years) after CRT-D and 384 of 999 (38.4%; 7.1 per 100 person-years) after CRT-P. Over a maximum follow-up period of 16 years [median 4.7 years, interquartile range (IQR) 2.4–7.1 for total surviving patients; median 4.1 years, IQR 2.2–6.7 for CRT-D; and median 5.1 years, IQR 2.8–8.1 for CRT-P], CRT-D was associated with a lower total mortality in the Kaplan–Meier survival analyses (log-rank \(P < 0.001 \) (Figure 1). In univariable Cox proportional hazards analyses, CRT-D was associated with a lower total mortality [HR 0.72, 95% confidence interval (CI) 0.61–0.84; Table 2]. Total mortality or HF hospitalization was 231 of 551 (41.9%; 11.9 per 100 person-years) after CRT-D and 627 of 999 (62.8%; 16.2 per 100 person-years) after CRT-P. In the Kaplan–Meier survival analyses, CRT-D was associated with a lower total mortality or HF hospitalization (log-rank \(P < 0.001 \); Figure 1). In univariable Cox proportional hazards analyses, CRT-D was associated with a lower total mortality or HF hospitalization (HR 0.72, 95% CI 0.62–0.84; Table 2).

Cause and mode of death

Over the follow-up period, 785 patients died. The cause of death was unknown in 142 patients [CRT-D: 58/551 (10.5%), CRT-P: 84/999 (8.4%); \(P = 0.167 \)]. Of the 643 deaths of known cause, 497 (77.3%) were due to cardiac causes and 146 (22.7%) to non-cardiac causes. In CRT-P patients, 60 of 999 (6.0%) suffered an SCD and 315 of 551 (57.1%) died from pump failure. In CRT-D patients, 14 of 551 (2.5%) suffered an SCD and 96 of 551 (17.4%) died from pump failure (Figure 2).

Propensity-matched population

In univariable Cox proportional hazards analyses (Table 2), age, male gender, New York Heart Association (NYHA) class (III and IV), ischaemic aetiology, diabetes, atrial fibrillation, and no uptake of angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin-receptor antagonists (ARBs) or beta-blockers emerged as significant predictors of total mortality. These variables, which differed significantly between the CRT-D and the CRT-P groups (Table 1), were included in propensity matching. The propensity-matched sample, which included 796 patients, was well balanced for confounding variables (Table 3). As shown in Figure 3, CRT-D was associated with a lower total mortality (HR

Table 1 Baseline characteristics

	CRT-D	CRT-P	\(P\)-value*
\(n \)	551	999	
Gender (male)	439 (79.67)	707 (70.77)	<0.001
Age (years)	70.1 ± 9	73.1 ± 11	<0.001
NYHA class	2.8 ± 0.6	3.1 ± 0.6	<0.001
I	34 (6.36)	15 (1.54)	<0.001
II	68 (12.71)	70 (7.17)	
III	401 (74.95)	699 (71.62)	
IV	32 (5.98)	192 (19.67)	
Aetiology (ischaemic)	415 (75.32)	437 (43.74)	<0.001
Co-morbidity			
Diabetes mellitus	140 (25.41)	201 (20.12)	0.016
Hypertension	141 (25.59)	303 (30.33)	0.048
CABG	144 (26.13)	143 (14.31)	<0.001
ECG variables			
Sinus rhythm	397 (72.05)	637 (63.76)	0.001
Atrial fibrillationb	154 (27.95)	362 (36.24)	
QRS morphology (LBBB)	421 (78.69)	824 (83.83)	0.013
QRS duration (ms)c	150.8 ± 21	155.1 ± 21	0.001
Upgrades from pacemaker to CRT	67 (13.27)	193 (19.75)	0.002
Medications			
Loop diuretics	526 (98.32)	920 (95.14)	0.002
ACEIs/ARBs	500 (92.94)	850 (87.36)	0.001
Beta-blockers	416 (77.32)	591 (60.74)	<0.001
MRA	274 (50.93)	381 (39.16)	<0.001
LVEF	23.5 ± 9	24.8 ± 10	0.018

Variables are expressed as mean ± SD or n (%).
ACEI, angiotensin-converting enzyme inhibitor; ANOVA, analysis of variance; ARA, angiotensin receptor antagonists; CRT-D, cardiac resynchronization therapy-defibrillation; CRT-P, cardiac resynchronization therapy-pacing; MRA, mineralocorticoid receptor antagonists.
*Refers to differences between the groups from ANOVA with Scheffe’s post hoc test for continuous variables and from the \(\chi^2 \) tests for categorical variables.
*b Includes permanent, persistent and paroxysmal atrial fibrillation.
c Excludes patients who were upgraded from a pacemaker to CRT and patients with conventional indications for pacing.
0.72, 95% CI 0.59–0.89), total mortality of HF hospitalization (HR 0.74, 95% CI 0.60–0.90), and total mortality or hospitalization for MACE (HR 0.70, 95% CI 0.58–0.85). In addition, CRT-D was associated with a lower cardiac mortality (HR 0.59, 95% CI 0.46–0.77), mortality from pump failure (HR 0.65; 95% CI 0.48–0.86), SCD (HR 0.49; 95% CI 0.25–0.98), and the combined endpoint of SCD or hospitalization for VT or VF (HR 0.51; 95% CI 0.30–0.88). When stratified according to the aetiology of cardiomyopathy, CRT-D was associated with an improved survival in patients with ischemic cardiomyopathy (HR 0.62, 95% CI 0.47–0.83) and a trend towards a lower mortality in patients with non-ischemic cardiomyopathy (HR 0.77, 95% CI 0.59–1.00).

Figure 1: Primary and secondary endpoints according to the device type. The Kaplan–Meier survival curves for clinical outcomes according to the device type in the total patient population. CRT-D, cardiac resynchronization therapy-defibrillation; CRT-P, cardiac resynchronization therapy-pacing; HF, heart failure; MACE, major adverse cardiovascular events.

Figure 2: Ancillary endpoints according to the device type. The Kaplan–Meier survival curves for clinical outcomes according to the device type in the total patient population. CRT-D, cardiac resynchronization therapy-defibrillation; CRT-P, cardiac resynchronization therapy-pacing; HF, heart failure; MACE, major adverse cardiovascular events; SCD, sudden cardiac death; VF, ventricular fibrillation; VT, ventricular tachycardia.
associated with a lower risk of total mortality (HR 0.62, 95% CI 0.49–0.79), total mortality or HF hospitalization (HR 0.63, 95% CI 0.50–0.79) and total mortality or hospitalization for MACE (HR 0.59, 95% CI 0.48–0.74). No difference in outcomes between CRT-D and CRT-P emerged in patients with NICM.

Aetiology

Crude total mortality, according to device type and HF aetiology, is shown in Figure 4. In univariable Cox proportional hazards analyses (Table 2), ischaemic aetiology was associated with higher total mortality (HR 1.28, 95% CI 1.11–1.47), total mortality or HF hospitalization (HR 1.29, 95% CI 1.13–1.48), and total mortality or hospitalization for MACE (HR 1.36, 95% CI 1.19–1.56). In the total study population, CRT-D was superior to CRT-P with respect to all clinical outcomes in ICM but not in NICM (data not shown). Similar findings emerged from the analyses of propensity-matched samples (Figure 3, Table 4).

Discussion

This study is unique insofar as it provides the longest clinical outcome follow-up of CRT-D and CRT-P recipients among randomized

Table 2 Univariable analyses

	Total mortality	Total mortality or HF hospitalization	Total mortality or hospitalization for MACE						
	HR	95% CI	P-value	HR	95% CI	P-value	HR	95% CI	P-value
Device type (CRT-D)	0.72	0.61–0.84	<0.001	0.72	0.62–0.84	<0.001	0.71	0.61–0.82	<0.001
Gender (male), n (%)	1.55	1.30–1.84	<0.001	1.38	1.18–1.63	<0.001	1.33	1.14–1.55	<0.001
Age (years)	1.03	1.02–1.04	<0.001	1.03	1.02–1.04	<0.001	1.02	1.02–1.03	<0.001
NYHA class									
III	1.77	1.21–2.60	0.003	1.49	1.08–2.05	0.016	1.62	1.18–2.22	0.003
IV	3.51	2.36–5.24	<0.001	3.14	2.23–4.43	<0.001	3.22	2.30–4.51	<0.001
Aetiology (ischaemic)	1.28	1.11–1.47	0.001	1.29	1.13–1.48	<0.001	1.36	1.19–1.56	<0.001
Co-morbidity									
Diabetes mellitus	1.15	0.97–1.36	0.100	1.20	1.03–1.41	0.023	1.21	1.03–1.41	0.018
Hypertension	0.96	0.82–1.12	0.571	1.01	0.87–1.17	0.948	0.99	0.86–1.17	0.937
ECG variables									
Atrial fibrillationb	1.29	1.11–1.49	0.001	1.21	1.05–1.39	0.008	1.18	1.03–1.35	0.021
QRS morphology (LBBB)c	0.97	0.81–1.16	0.711	0.89	0.75–1.05	0.155	0.88	0.74–1.03	0.116
QRS duration (ms)c	1.00	1.00–1.00	0.733	1.00	0.99–1.00	0.299	1.00	0.99–1.00	0.280
Upgrade from pacemaker	1.00	0.83–1.21	0.996	1.00	0.83–1.19	0.969	0.92	0.77–1.10	0.374
to CRT									
Medication									
Loop diuretics	1.27	0.90–1.81	0.178	1.47	1.03–2.09	0.032	1.25	0.90–1.74	0.187
ACEIs/ARAs	0.74	0.60–0.91	0.005	0.74	0.60–0.91	0.005	0.69	0.56–0.84	<0.001
Beta-blockers	0.69	0.60–0.80	<0.001	0.72	0.62–0.83	<0.001	0.72	0.63–0.83	<0.001
MRA	1.03	0.89–1.19	0.722	1.01	0.88–1.16	0.842	1.04	0.91–1.19	0.539
LVEF	0.99	0.99–1.00	1.00	0.99	0.99–1.00	1.00	0.99	0.99–1.00	0.271

ACEI, angiotensin-converting enzyme inhibitors; ARA, angiotensin receptor antagonists; CI, confidence interval; CRT-D, cardiac resynchronization therapy-defibrillation; HR, hazard ratio; MRA, mineralocorticoid receptor antagonists.

	Total mortality or HF hospitalization	Total mortality or hospitalization for MACE							
	HR	95% CI	P-value	HR	95% CI	P-value			
	0.62	0.50–0.79	<0.001	0.63	0.50–0.79	<0.001	0.59	0.48–0.74	<0.001

Aetiology

Crude total mortality, according to device type and HF aetiology, is shown in Figure 4. In univariable Cox proportional hazards analyses (Table 2), ischaemic aetiology was associated with higher total mortality (HR 1.28, 95% CI 1.11–1.47), total mortality or HF hospitalization (HR 1.29, 95% CI 1.13–1.48), and total mortality or hospitalization for MACE (HR 1.36, 95% CI 1.19–1.56). In the total study population, CRT-D was superior to CRT-P with respect to all clinical outcomes in ICM but not in NICM (data not shown). Similar findings emerged from the analyses of propensity-matched samples (Figure 3, Table 4).

Discussion

This study is unique insofar as it provides the longest clinical outcome follow-up of CRT-D and CRT-P recipients among randomized

Table 3 Characteristics of the propensity-matched sample

	CRT-D	CRT-P	P-value*
n	398	398	
Gender (male)	309 (77.64)	299 (75.13)	0.404
Age (years)	71.1 ± 9	71.0 ± 11	0.868
NYHA class	2.9 ± 0.5	2.9 ± 0.6	0.846
Aetiology (ischaemic)	282 (70.85)	284 (71.36)	0.876
Diabetes mellitus	92 (23.12)	99 (24.87)	0.561
Atrial fibrillationn	118 (29.65)	117 (29.40)	0.938
Medication			
ACEIs/ARAs	366 (91.96)	367 (92.21)	0.896
Beta-blockers	289 (72.61)	284 (71.36)	0.693

Variables are expressed as mean ± SD or n (%).

ACEI, angiotensin converting enzyme inhibitors; ARA, angiotensin receptor antagonists; CRT-D, cardiac resynchronization therapy-defibrillation; CRT-P, cardiac resynchronization therapy-pacing.

*Refers to differences between the groups from ANOVA with Scheffe’s post hoc test for continuous variables and from the χ² tests for categorical variables.

†Includes permanent, persistent and paroxysmal atrial fibrillation.
Figure 3 Primary and secondary endpoints according to the aetiology of cardiomyopathy in propensity-matched samples. The Kaplan–Meier survival curves for primary endpoints according to the device type and aetiology of cardiomyopathy. CRT-D, cardiac resynchronization therapy-defibrillation; CRT-P, cardiac resynchronization therapy-pacing; HF, heart failure; ICM, ischaemic cardiomyopathy; MACE, major adverse cardiovascular events; NICM, non-ischaemic cardiomyopathy.
controlled trials or any other observational study. Several findings have emerged from the analyses of the total patient population and propensity-matched samples. First, after propensity matching, total mortality was 38% lower after CRT-D than after CRT-P. Second, total mortality or HF hospitalization and total mortality or hospitalization for MACE was also lower after CRT-D. Third, the superiority of CRT-D over CRT-P was observed in ICM but not in NICM. Fourth, predictors of survival after CRT-D compared with CRT-P included a younger age, female gender, NICM, a ‘low’ NYHA class (I and II), sinus rhythm, and a non-diabetic status and treatment with ACEIs/ARAs and/or beta-blockers.

Cardiac resynchronization therapy-defibrillation vs. cardiac resynchronization therapy-pacing in the total study population

Notwithstanding the limitations of comparing studies of different design and patient characteristics, our observed total mortality rate of 9.8% for CRT-D is within the range of that found in COMPANION study (12%) and the European CRT Survey (8.6%). For CRT-P, we have found a total mortality rate of 13.5%, which is also comparable to the 15% found in COMPANION study.

In COMPANION study, the only randomized controlled trial to include CRT-D and CRT-P recipients, no difference emerged in all-cause mortality between CRT-D (18%) and CRT-P (21%) after a median follow-up of 16 months. In the Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE) trial of CRT of patients with mild heart failure, CRT-D was associated with a lower mortality (HR = 0.35, \(P = 0.003 \)) than CRT-P. In a recent European registry of 1705 consecutive patients, CRT-D was superior to CRT-P over a follow-up of 2 years. We too have found that CRT-D was superior to CRT-P. In the propensity-matched population, CRT-D was associated with a 28% lower total mortality. Moreover, CRT-D was associated in lower total mortality or HF hospitalization, total mortality or hospitalization for MACE, cardiac mortality, death from pump failure, and SCD or hospitalization for VT/VF.

Long-term follow-up

Some studies suggest that the benefit of CRT-D may be time limited and that CRT-D merely ‘converts’ a potential SCD into a death from other causes. In COMPANION study, survival curves for CRT-D and CRT-P merged after 9 months. In a subanalysis of COMPANION study, comparing CRT-D with CRT-P, CRT-D was associated with a reduction in SCD but not total mortality. Looi et al. also observed a trend in favour of CRT-D at 1 year (HR 0.54, 95% CI 0.27–1.07, \(P = 0.08 \)), but this was absent after 2.4 years. In contrast, we have found that over a much longer follow-up period (maximum 16 years;

Table 4 Events and Cox proportional hazards analyses in the propensity-matched population

All patients (n = 796)	CRT-D (n = 398)	CRT-P (n = 398)	HR	95% CI	P-value		
Total mortality	373	144	229	0.72	0.59	0.89	0.003
Total mortality or HF hospitalization	418	167	251	0.74	0.60	0.90	0.002
Total mortality or hospitalization for MACE	443	177	266	0.70	0.58	0.86	<0.001
Cardiac mortality	257	89	168	0.59	0.46	0.77	<0.001
Death from pump failure	207	73	134	0.65	0.48	0.86	0.003
SCD or hospitalization for VT/VF	63	19	44	0.51	0.30	0.88	0.015
ICM (n = 566)							
Total mortality	300	114	186	0.62	0.49	0.79	<0.001
Total mortality or HF hospitalization	333	131	202	0.63	0.50	0.79	<0.001
Total mortality or hospitalization for MACE	354	140	214	0.59	0.48	0.74	<0.001
Cardiac mortality	207	73	134	0.56	0.42	0.75	<0.001
Death from pump failure	168	60	108	0.60	0.44	0.83	0.002
SCD or hospitalization for VT/VF	53	17	36	0.54	0.30	0.97	0.039
NICM (n = 230)							
Total mortality	73	30	43	1.11	0.68	1.79	0.681
Total mortality or HF hospitalization	85	36	49	1.16	0.74	1.81	0.518
Total mortality or hospitalization for MACE	89	37	52	1.09	0.71	1.68	0.695
Cardiac mortality	50	16	34	0.68	0.37	1.25	0.213
Death from pump failure	39	13	26	0.77	0.39	1.54	0.464
SCD or hospitalization for VT/VF	10	2	8	0.32	0.07	1.51	0.151

ANOVA, analysis of variance; CI, confidence interval; CRT-D, cardiac resynchronization therapy-defibrillation; CRT-P, cardiac resynchronization therapy-pacing; HR, hazard ratio; ICM, ischaemic cardiomyopathy; MACE, major adverse cardiovascular events; MRA, mineralocorticoid receptor antagonists; NICM, non-ischaemic cardiomyopathy; SCD, sudden cardiac death; VF, ventricular fibrillation; VT, ventricular tachycardia.

Results are expressed in terms of HRs and 95% CIs from univariable Cox proportional hazards analyses of the propensity-matched sample for the comparison between CRT-D and CRT-P.
The Kaplan–Meier survival curves for ICM and NICM at 5 years revealed differences in outcomes after CRT-D vs. CRT-P. The hazard ratio (HR) for mortality was 0.65, P = 0.003. This suggests that CRT-D offers a lower risk of death from pump failure compared to CRT-P in the total propensity-matched population. In patients with NICM, the benefit of CRT-D over CRT-P was even more pronounced, with an HR of 0.49, P < 0.001. In ICM, the benefit was less pronounced, with an HR of 0.74, P = 0.024. These findings highlight the importance of considering patient-specific factors when choosing between CRT-D and CRT-P.

Limitations
This study has all the limitations of an observational study. First, the lack of randomization does not discount the possibility that unobserved variables may have contributed to outcomes. Second, although we have attempted to correct for potential confounders, we have not quantified other co-morbidities nor frailty, a factor that often influences the choice of CRT-P over CRT-D. Third, we have not collected device data at the time of death. In this regard, we should consider that not all SCDs are necessarily arrhythmic and that some may be due to non-cardiac causes. Nevertheless, CRT-D may have prevented at least some of the 60 SCDs that occurred in CRT-P recipients. Finally, as this is an observational study, any parallels or discrepancies with randomized controlled trials should be interpreted with caution.

Conclusions
In this study of real-world clinical practice, we have shown that CRT-D is superior to CRT-P with respect to total mortality and composite endpoints, independent of known confounders. The benefit of CRT-D in terms of total mortality and the composite endpoints, however, was observed in ICM but not in NICM. Further studies are needed to identify subpopulations of patients with NICM with indications for CRT who may benefit from CRT-D.
Conflict of interest: F.L. is a consultant and has received research support from Medtronic Inc, St Jude Medical, Boston Scientific, and LivaNova. Other authors report no conflicts of interest.

Funding
This study was funded by an unrestricted educational grant from Boston Scientific.

References
1. Leyva F, Niam S, Auricchio A. 20 years of cardiac resynchronization therapy. J Am Coll Cardiol 2014;64:1047–58.
2. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L et al. Long-term effects of cardiac resynchronisation therapy on mortality in heart failure [the CaRdiac RESynchronization-Heart Failure (CARE-HF) trial extension phase]. Eur Heart J 2006;27:1928–32.
3. Colquitt J, Mendes D, Clegg A, Harris P, Cooper K, Pictet J et al. Implantable cardioverter defibrillators for the treatment of arrhythmias and cardiac resynchronisation therapy for the treatment of heart failure: systematic review and economic evaluation. Health Technol Assess 2014;18:1.
4. Lindvall C, Chatterjee NA, Chang Y, Chernack B, Jackson VA, Singh JP et al. National trends in the use of cardiac resynchronization therapy with or without implantable cardioverter-defibrillator. Circulation 2016;133:273–81.
5. Cunningham D, Charles R, Cunningham M, Whittaker T. Cardiac Rhythm Management UK National Clinical Audit Report 2013-2014. London: National Institute for Cardiovascular Outcomes Research; 2013.
6. Keber L, Thune JJ, Nielsen JC, Haarbo J, Vildebak L, Korup E et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 2016;375:1221–30.
7. Haugaa KH, Tilz R, Boveda S, Dobresanu D, Sciarraffa E, Mansourati J et al. Implantable cardioverter defibrillator use for primary prevention in ischemic and non-ischemic heart disease-indicators in the post-DANISH trial era: results of the European Heart Rhythm Association survey. Europace 2017;19:660–4.
8. National Institute of Health and Care Excellence. NICE Technology Appraisal [TA 314]: Implantable Cardioverter Defibrillators and Cardiac Resynchronisation Therapy for Arrhythmias and Heart Failure (Review of TAV5 and TAI20). http://www.nice.org.uk/Guidance/TA314 (20 August 2017, date last accessed).
9. Rockman HA, Juneau C, Chatterjee K, Rouleau JL. Long-term predictors of sudden and low output death in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1989;64:1344–8.
10. Leyva F, Zegard A, Acqueve E, Gubran C, Taylor R, Foley PWX et al. Outcomes of cardiac resynchronization therapy with or without defibrillation in patients with nonischemic cardiomyopathy. J Am Coll Cardiol 2017;70:1216–27.
11. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass D, De Marco T et al. Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure (COMPANION) Investigators. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced heart failure. N Engl J Med 2004;350:2140–50.
12. Bogile N, Priori S, Cleland JG, Brugada J, Linde C, Auricchio A et al. The European CRT Survey: 1 year (9-15 months) follow-up results. Eur J Heart Fail 2012;14:61–73.
13. Gold MR, Daubert J-C, Abraham WT, Hassager C, Dinerman JL, Hudnall JH et al. Implantable defibrillators improve survival in patients with mildly symptomatic heart failure receiving cardiac resynchronization therapy. Circ Arrhythm Electrophysiol 2013;6:1163–8.
14. Marijon E, Leclercq C, Narayan K, Boveda S, Klug D, Lacaze-Garoneix J et al. Causes-of-death analysis of patients with cardiac resynchronization therapy: an analysis of the CefeDuSt cohort study. Eur Heart J 2015;36:2767–76.
15. Carson P, Anand I, O’Connor C, Jaski B, Steinberg J, Lwin A et al. Mode of death in advanced heart failure the comparison of medical, pacing, and defibrillation therapies in heart failure (COMPANION) trial. J Am Coll Cardiol 2005;46:2329–34.
16. Looi KL, Gajendragadkar PR, Khan FZ, Elsk M, Begley DA, Fynn SP et al. Cardiac resynchronisation therapy: pacemaker versus internal cardioverter-defibrillator in patients with impaired left ventricular function. Heart 2014;100:794–9.
17. Woods B, Hawkins N, Mealing S, Sutton A, Abraham WT, Beshai JF et al. Individual patient data network meta-analysis of mortality effects of implantable cardiac devices. Heart 2015;101:1800–6.
18. Kuttyva V, Geller L, Bogui P, Zima E, Akta MK, Ozcan EE et al. Effect of cardiac resynchronization therapy with implantable cardioverter defibrillator versus cardiac resynchronization therapy with pacemaker on mortality in heart failure patients results of a high-volume, single-centre experience. Eur J Heart Fail 2014;16:1323–30.
19. Barra S, Boveda S, Providencia R, Sadoul N, Duehmke R, Reitan C et al. Adding defibrillation therapy to cardiac resynchronization on the basis of the myocardial substrate. J Am Coll Cardiol 2017;69:1669–78.
20. Al-Khatib SM, Fonarow GC, Juglar JA, Inoue LY, Mark DB, Lee KL et al. Primary prevention implantable cardioverter defibrillators in patients with nonischemic cardiomyopathy: a meta-analysis. JAMA Cardiol 2017;2:685.