Topical Polydeoxyribonucleotide Loaded in Hydrogel Formulation for Wound Healing in Diabetic Rats

Mariya Dmitriyeva, Timur Suleimenov, Daulet Yessenbayev, Dulat Turebayev, Saltanat Urazova, Miraisd Izimbergenov, Saken Kozhakhmetov, Talgat Omarov, Medet Toleubayev

1Department of Surgery, Astana Medical University, Astana, Kazakhstan, Central Asia; 2Department of General Medicine, Astana Medical University, Kazakhstan, Central Asia; 3Department of Pathology, Astana Medical University, Kazakhstan, Central Asia

Abstract

BACKGROUND: The patients with diabetes mellitus experience delayed wound healing because of the uncontrolled glucose level leads to impaired cell proliferative function, poor circulation, decreased production, and repair of new blood vessels. Polydeoxyribonucleotide (PDRN) is used in wound healing as a substance that stimulates tissue repair. A hydrogel is a reticular substance generally used as a dressing formulation to accelerate wound healing and also used as a bio-applicable scaffold or vehicle.

AIM: The aim of study is to investigate the effects of PDRN loaded in hydrogel on wound healing, in combination and separately, in an animal diabetic wound model.

METHODS: We studied the effects of PDRN in diabetes-related healing defect using an incisional skin-wound model produced on the back of male diabetic rats. A total of 36 wounds were classified into three groups: A control group, a hydrogel-only group, and a PDRN loaded in hydrogel combined-treatment group. All rats were assessed for changes in wound size and photographed on scheduled dates. The skin specimen sample of diabetic rat wound model was observed on 3, 7, 14, and 21 days after skin injury to measure tissue remodeling through histological evaluation of fibroblasts proliferation, collagen production, and number of blood vessels through histological examination showed a pattern of increase over time that occurred in PDRN loaded in hydrogel combined-treatment group.

RESULTS: Differences in the decrease and change in wound size in the PDRN loaded in hydrogel group were more significant than those in the control and hydrogel single-treatment groups. Analysis of the fibroblasts proliferation, collagen production, and number of blood vessels through histological examination showed a pattern of increase over time that occurred in PDRN loaded in hydrogel combined-treatment group.

CONCLUSION: This experiment demonstrated improved wound healing using a PDRN loaded in hydrogel combined treatment compared to either two groups, resulting in a decrease in diabetic wound size and a shortening of the healing period.
delivery vehicle due to its biocompatibility, low toxicity, and relatively low cost. The application of PDRN in diabetic tissue regeneration has already been proven to be beneficial, with a stimulatory effect on cell proliferation and new blood vessel formation. However, its application and delivery through a hydrogel vehicle have not yet been well defined.

We hypothesized the delivery of PDRN loaded in hydrogel directly application on diabetic wound and provide functional recovery [23], [24], [25], [26]. The objectives were then to: (1) Evaluate the influence of PDRN from carboxymetillcelulose (CMC) hydrogel; (2) evaluate quantitative analysis of diabetic wound size after PDRN loaded in hydrogel topical treatment; and (3) study the histopathological examination of rat diabetic wound sample, measurement number of fibroblasts, collagen fibers, and average number of blood vessels in a diabetic rat wound model within the 21 days of study.

Methods

The study has been carried out along the “Principles of laboratory animal care” (NIH Publication no. 85–23, revised 1985), and according to the national law, if applicable [27].

Preparation of PDRN loaded in hydrogel

PDRN is the liquid substance in prefilled syringe and capacity 2 mg/ml deoxyribonucleic acid 250–350 kDa, Yuma Medical, UK, Scotland.

Comfeel Purilon® Gel, 15 g, is a sterile hydrogel and consists of purified water, sodium CMC, and calcium alginate, Coloplast, Denmark.

Five PDRN-hydrogel compositions were prepared with different ratios, in the 5:1 hydrogel and PDRN relation, full diffusion of PDRN into the hydrogel in 12 h is observed. The PDRN release from the selected hydrogel compositions was determined through agar diffusion test. PDRN loaded in hydrogel was prepared with v/v ratio 1:5, while the maximum PDRN time diffusion from hydrogel was 72 h, this determines the application PDRN interval on the wound during the study.

Creation of the animal experimental model

For this experiment, 60 4-month-old male Wistar nude rats with a weight of 300–400 g (360 g on average) were used. They underwent a 1-week adaptation period while being bred, fed, and given water at the laboratory. All animal procedures were performed according to the Guide for the Care and Use of Laboratory Animals of the University Animal Care Committee. The clearance to conduct this study was provided by the Medical University Astana Committee of Animals and Ethics (Protocol № 6).

All animals n = 60 were given an intraperitoneal injection of alloxan monohydrate in a dosage of 150 mg/kg. On the 7th day after that, 36 rats with persistent glycemia >11 mmol/L (14.1 mmol/l on average) were taken in the experiment.

Creating of a full-layer skin wound was carried out under conditions of inhalation anesthesia; 3 mg/kg of Sevorane and 250 ml (Abbott Laboratories, UK) were used. After the removal of the hair in the dorsum of each rat using an electroepilator, the dorsum was disinfected with 0.05% chlorhexidine and circular wound was drawn in the head side, with a no. 15 blade and fine scissors, a full-thickness skin defect wound was made, the diameter of each wound was 180 mm on average. Each animal was kept in a solitary cage to prevent the wounds from being eaten by other animals. Therefore, a total of 36 wounds (n=12 per group) were created (Figure 1).

![Figure 1: Skin defects in the diabetic rat model](image)

PDRN application and treatment

The 36 rats were divided into three treatment method groups: The control group of 12 rats, to which neither PDRN nor hydrogel was applied, a hydrogel only group of 12 rats, and a group of 12 rats, to which PDRN loaded in hydrogel was applied. The dressing was replaced every 3 days and the wounds were photographed on days 3, 7, 14, and 21 to assess their size.

For the hydrogel-only group, about 1 mL of hydrogel was applied locally. In the PDRN/hydrogel combined-treatment groups, 0.2 mL of PDRN loaded in 1 mL of hydrogel was applied locally on the base of each wound using a 2-mL syringe (Figure 2). Each wound was dressed using Opsite (Smith and Nephew, London, UK) and the dressing was fixed with Surgifix (Panamedic). Each rat was placed in a separate cage and observed for 3 weeks.
Visual examination and measurement of wound size

After the creation of the wound, the dressing was replaced every 3 days and photos of the wound were taken on days 3, 7, 14, and 21 at the same resolution and distance using a digital single-lens reflex camera (Nikon D5600, Tokyo, Japan). The quantitative assessment of the wound size based on the edge of the epithelialized portion and was determined by applying graph paper and calculated in mm2. Total reduction in the wound size was calculated by dividing the surface area at each time point to that of the original wound using the formula: Total wound constriction (\%) = ((wound surface area/original wound surface area) ×100).

Histopathology

On days 3, 7, 14, and 21, three rats were sacrificed, respectively, and 12 specimens were collected from each group. The samples, including about 1.2 mm of normal skin from the edge of the wound (including the epithelialized portion), were resected with a no. 15 blade. After resection of the center of the wound, hematoxylin and eosin (H and E) staining was applied. The collected samples were stored by freezing them at −70°C and fixed in 10% formalin for 1 day to produce histopathology slides. Thereafter, paraffin embedding was performed, the specimens were sliced into 4-μm-thick parts, and H and E staining was applied to produce tissue sample slides. Microscopy and microphotography of histological preparations were performed on an Olympus complex. Using the method of spot counting, the ratio of cells in the infiltrate or in the composition of granulation tissue was also determined. Cells were counted – we list which cells in ten random fields of view per 100 cells. Quantitative indicators were expressed in %.

Counting the number of structural elements of tissue, such as blood vessels and connective tissue fibers were observed with a microscope in each of the different fields of three sites for each slide, at ×100 magnification in absolute values in ten random fields of view. Histologically determined macroscopic and morphological descriptions of wound preparations in groups at all stages of the study, average number of fibroblasts, collagen fibers, and blood vessels.

Statistical analysis

To compare the wound sizes, change rates, and numbers of fibroblasts, collagen fibers and blood vessels at the different time points per group (3, 7, 14, and 21 days), two-way repeated-measures analysis of variance (ANOVA) was conducted.

To determine if the difference between the groups at each time point was significant, ANOVA tests were performed at each time point, the Tukey honest significant difference test was used for paired comparison between groups. Data were expressed as the mean ± standard deviation for each group of animals. All statistical analysis was conducted using SPSS ver. 14.0KO (SPSS Inc., Chicago, IL, USA) and R 3.1.3 (R Foundation for Statistical Computing, Vienna, Austria) and the significance level was set at p<0.05.

Results

Quantitative analysis of wound size

The initial wound sizes were similar across all groups. The wounds of the rats in the PDRN loaded in hydrogel treatment group on day 3 were smaller than those of the rats in the hydrogel-only and control group. On days 7, 14, and 21, the same results were obtained, and on day 21, wound healing was complete in the PDRN loaded in hydrogel group, while the wounds of the rats in the other groups remained. In the quantitative analysis, the differences in wound size between the PDRN loaded in hydrogel group and the two other groups on days 3, 7, 14, and 21 were all significant (p<0.05). The differences in the changes in the wound size were also significant (p<0.05). For the PDRN loaded in hydrogel and hydrogel-only groups, the differences and changes in the wound size were significant on days 7, 14, and 21 and compared to the control group (Figure 3, Table 1).

Histopathology

The results of the analysis of the morphological changes dynamics in the skin wounds of the rats determined that the regression of alternative necrotic and exudative inflammatory changes occurs 2–3 days faster in the bottom and at the edges of the wound defect in rats of the main group, in comparison with the control. Moreover, in the hydrogel-only treatment group
and the PDRN loaded in hydrogel group on day 7, zones of fibrinous necrosis are still preserved in the tissues of the wound defect in the rats of the control group (Figure 4). From the 14th day of the experiment, signs of the predominance of reparative and proliferative processes develop in the bottom and edges of the skin wound of the main group of rats, more pronounced than in the control (Figure 5), on the 21st day in the main group, a greater number of collagen fibers with a small vascular component are determined (Figure 6).

Analysis of the fibroblasts and collagen fibers

The number of fibroblasts and collagen fibers was determined using an optical microscope and the changes were analyzed. After treatment, the differences of the average number of fibroblasts and collagen fibers in the three groups were found to be significant (p<0.05).

In the PDRN loaded in hydrogel treatment group on the 3rd day, the number of fibroblasts in the wounds exceeded these indicators in the control group. On the day 7, the PDRN loaded in hydrogel treatment group showed the highest value of fibroblasts compared to that of the control group. On the day 14, the fibroblast rate in the PDRN loaded in hydrogel treatment group was significantly higher than in the control group and hydrogel-only treatment group. On day 21, the average number of fibroblasts decreases in all groups, while the number of fibroblasts in the control group becomes more than in the PDRN loaded in hydrogel group and hydrogel only group (Table 2).

In the PDRN loaded in hydrogel treatment group, determined a gradual increase of collagen fibers with a peak of this indicator by day 21, this index was significantly higher than in the control group and hydrogel only treatment group (Table 3).

Measurement of the average number of blood vessels

The number of blood vessels was determined using an optical microscope and the changes were analyzed. After treatment, the differences in the average number of blood vessels in the three groups were found to be significant (p<0.05) and the increase in the number of blood vessels over time was found to be significant in all groups (Table 4).

In a comparison of the average numbers of blood vessels per area, the PDRN loaded in hydrogel treatment group showed significant differences on days 7 with a peak of this indicator that was significantly higher than in the control group and hydrogel only treatment group.

Discussion

In patients with diabetes mellitus, the wound healing process is impaired, which can increase the overall morbidity and mortality in this population [1]. Complex cellular and molecular processes, including inflammation, cell migration, angiogenesis, temporary matrix synthesis, collagen deposition, and re-epithelialization, characterize normal skin regeneration [7]. There is a complex cascade of events in skin repair, angiogenesis, and angiogenesis, which play a key role in wound healing and are associated with the expression of several cytokines and angiogenic factors [6], [28], [29], [30].

Previously, it was shown that PDRN, a compound containing a mixture of deoxyribonucleotide polymers of different lengths, is an agent that stimulates

Table 1: Comparison of wound sizes in all groups with time progression

Group	Measurement (mm²)	Comparison (p-value)				
	Day 0	Day 3	Day 7	Day 14	Day 21	
Control	260.2 ± 0.3	198.1 ± 1.2	168.1 ± 1.6	27.7 ± 1.0	14.3 ± 2.1	Group, <0.05
Hydrogel only	251.1 ± 0.3	178.0 ± 3.2	35.0 ± 1.8(а)	19.9 ± 1.6(а)	2.1 ± 1.0(а)	Time, <0.05
PDRN/Hydrogel	259.9 ± 0.3	167.6 ± 2.4(а)	51.1 ± 3.2(а)	19.3 ± 0.6(а)	0.5 ± 0.4(а)	Interaction, <0.05

These results were derived through two-way repeated-measures ANOVA. Values are presented as mean ± standard deviation. (а) Significant difference with the control group. (а) Significant difference with hydrogel-only. (а) Significant difference with PDRN/Hydrogel group.
tissue repair in some pathology, providing a source of deoxyribonucleotides and deoxyribonucleosides, which can increase the proliferation and activity of cells of various tissues [31].

In general, PDRN derivatives may act as stimulators of fibroblast growth [18], [32] and angiogenic activity. All these data have prompted us to study the effect of PDRN on wound healing in diabetes [8], [10], [13], [14].
Dmitriyeva et al. investigated the effects of treating chronic ulcer in diabetic rats with a self-assembling nanofiber gel encapsulated with PDRN. Human embryonic fibroblast cells and vascular endothelial cells were treated with short poly-N-acetylgulcosamine nanofibers and PDRN. Expression levels of cytokines and angiogenic factors increased in the treatment groups (mice with diabetic skin ulcer), especially in the sNAG-PDRN encapsulated group. The results showed that PDRN, sNAG, and sNAG-encapsulated-PDRN can improve wound healing, immunohistochemical results showed that PDRN, sNAG, and sNAG-encapsulated-PDRN promoted cell proliferation and new vessel formation, especially sNAG-encapsulated-PDRN [33].

Table 2: Comparison of the average numbers of fibroblasts per unit area

Group	Measurement (mm²)	Day 3	Day 7	Day 14	Day 21
Control	5.1 ± 0.3	8.0 ± 0.9	16 ± 1.2	14 ± 0.7	
Hydrogel only	6.4 ± 0.4	16.4 ± 1.1	18 ± 1.3	13 ± 0.7	
PDRN/Hydrogel	5.7 ± 0.4	16.7 ± 1.1	21 ± 1.6(*)	13 ± 0.7	Interaction, <0.05

These results were derived through two-way repeated-measures ANOVA. Values are presented as mean ± standard deviation. (*) - Significant difference with the control group.

Xi et al. treated diabetic impaired cell cycle mechanism [34]. Administration of PDRN may improve wound healing on the 12th day after injury; in addition, it improved the greatest upregulation of cyclin D1, CDK6, cyclin E, CDK7, cyclin D1/CDK6 and cyclin E/CDK2 complexes, and p21 on day 6. Diabetic mice had markedly lower proliferation and new vessel formation, especially sNAG-encapsulated-PDRN [33]. Numerous Ki67-positive cells were observed on days 3 and 6 in the granulation tissue of normoglycemic mice. Ki67-positive cells were fewer in diabetic mice than in normoglycemic mice. PDRN increased Ki67-positive cells in diabetic mice. Normoglycemic mice showed the greatest upregulation of cyclin D1, CDK6, cyclin E, and CDK2 at day 6. Diabetic mice had markedly lower expression of cyclin D1, CDK6, cyclin E, and CDK2 on day 6, and p16 proteins (Western blotting), and histological changes was assessed on different days (3, 6, and 12 days after injury).

Table 3: Comparison of the average numbers of collagen fibers per unit area

Group	Measurement (mm²)	Day 3	Day 7	Day 14	Day 21
Control	4.2 ± 0.4	15.3 ± 0.8	21.3 ± 1.4		
Hydrogel	6.6 ± 0.5(*)	16.7 ± 0.9	23.3 ± 1.5	Time, <0.05	
PDRN/Hydrogel	6.6 ± 0.6(*)	17.6 ± 1.2(*)	23.3 ± 1.6(*)	Interaction, <0.05	

These results were derived through two-way repeated-measures ANOVA. Values are presented as mean ± standard deviation. (*) - Significant difference with the control group.

Galeano et al. studied the effect of PDRN on diabetes-related healing defects using a post-operative cutaneous wound model created on the back of diabetic female mice. Animals were treated daily for 12 days with PDRN (8 mg/kg/ip) or vehicle (100 ml 0.9% NaCl). PDRN injection in diabetic mice resulted in an increase in VEGF message and wound protein content on day 6. Impaired wound healing and increased force of wound tearing in diabetic mice. PDRN also produced a marked increase in CD31 immunostaining and induced the expression of transglutaminase-II and angioipoietin-1 [35].

Table 2: Comparison of the average numbers of fibroblasts per unit area

Group	Measurement (mm²)	Day 3	Day 7	Day 14	Day 21
Control	15.9 ± 0.8	19.3 ± 1.2	11.2 ± 0.7	8.9 ± 0.5	Group, <0.05
Hydrogel only	18.0 ± 0.8	20.7 ± 1.2	12.4 ± 0.8	8.4 ± 0.5	Time, <0.05
PDRN/Hydrogel	18.6 ± 0.9	23.1 ± 1.4(*)	12.9 ± 0.7(*)	7.8 ± 0.5	Interaction, <0.05

These results were derived through two-way repeated-measures ANOVA. Values are presented as mean ± standard deviation. (*) - Significant difference with the control group.

Altavilla et al. studied treated animal wounds with PDRN (PDRN, 8 mg/kg/ip). Proliferation of granulation tissue by immunostaining Ki67, cyclin D/CDK6 and cyclin E/CDK2 complexes, and p21 and p16 proteins (Western blotting), and histological changes was assessed on different days (3, 6, and 12 days after injury).

Numerous Ki67-positive cells were observed on days 3 and 6 in the granulation tissue of normoglycemic mice. Ki67-positive cells were fewer in diabetic mice than in normoglycemic mice. PDRN increased Ki67-positive cells in diabetic mice. Normoglycemic mice showed the greatest upregulation of cyclin D1, CDK6, cyclin E, and CDK2 at day 6. Diabetic mice had markedly lower expression of cyclin D1, CDK6, cyclin E, and CDK2 on day 6, and p15 and p27 on day 6. Administration of PDRN to diabetic mice increased the expression of cyclin D1/CDK6 and cyclin E/CDK2 and decreased the inhibitors of p15 and p27 on day 6 after injury; in addition, it improved wound healing on the 12th day. The results suggest that activation of the A2A adenosine receptor by PDRN may represent a therapeutic strategy for overcoming the diabetic-impaired cell cycle mechanism [34].

Table 4: Comparison of the average numbers of blood vessels per unit area

Group	Measurement (mm²)	Day 3	Day 7	Day 14	Day 21
Control	15.9 ± 0.8	19.3 ± 1.2	11.2 ± 0.7	8.9 ± 0.5	Group, <0.05
Hydrogel	18.0 ± 0.8	20.7 ± 1.2	12.4 ± 0.8	8.4 ± 0.5	Time, <0.05
PDRN/Hydrogel	18.6 ± 0.9	23.1 ± 1.4(*)	12.9 ± 0.7(*)	7.8 ± 0.5	Interaction, <0.05

These results were derived through two-way repeated-measures ANOVA. Values are presented as mean ± standard deviation. (*) - Significant difference with the control group.

Study of Kwon et al. confirmed the effects of PDRN and observed that PDRN stimulated closure of wounded monolayers of human fibroblast cells. PDRN (8.25 mg/ml) or phosphate-buffered saline (0.9% NaCl) was injected once daily into the dermis adjacent to the wound of diabetic mice for 12 days after skin injury. Time course observations revealed that mice treated with PDRN showed accelerated wound closure and epidermal and dermal regeneration and enhanced angiogenesis. Histological evaluation showed an increase of vascular endothelial growth factor, CD31, and collagen fibers in the PDRN group compared with the control group [8].

Local application of PDRN can create the inconvenience that the concentration of PDRN can be unstable. To overcome this limitation and increase the duration of action and effect, a scaffold or carrier can be used together with a basic substance such as PDRN; in particular, this study was aimed at examining the effect when using a hydrogel as a base. A hydrogel generally refers to a three-dimensional, hydrophilic, high molecular weight, and reticular substance that can expand easily due to a significant degree of moisture. The hydrogel has received a lot of attention and has been widely discussed in the literature as a bandage. It is currently used in clinics [25].

It comes in various types, including amorphous hydrogel, hydrogel-impregnated gauze, and hydrogel sheet. The hydrogel dressing acts as a moisturizer, prevents crust formation by maintaining the water content of the wound, and promotes wound healing in the center [23], [36].

The hydrogel has a three-dimensional structure, absorbs secretions and foreign materials, and protects the space by expanding the cross-linking structure of the polymer chain. In addition, the hydrogel does not adhere strongly to the wound surface and does not cause irritation. It can also be removed easily without pain. The biodegradation and cell adhesion of the hydrogel can be controlled with excellent biocompatibility and it is mechanically suitable for use as a biologically applicable scaffold in a soft form. One study reported its use as a combination treatment with biological materials [26], [37].

Since the hydrogel has dual properties as a carrier or carrier due to its three-dimensional structure,
the previous studies have noted its use to accelerate the healing of soft tissue and bone defects by adding other bioactive substances. Additives varied and include traditional antibiotics such as povidone iodine, collagen or antibiotics, PRP, PDRN, and stem cells [21]. The hydrogel used in this experiment was Purilon Gel (Coloplast), an amorphous gel composed of highly biocompatible natural materials such as purified water, sodium CMC, and calcium alginate; it applies to any type of wound. The increased size and number of blood vessels are some of the factors important for wound healing, as the blood vessels supply oxygen and nutrients to the tissues undergoing regeneration.

While PDRN wound healing effects had already been reported in the previous studies, this present research aimed to evaluate the efficacy of the PDRN/hydrogel compounds.

To date, there is sample evidence of the positive effect of PDRN on tissue regeneration. A large number of different methods of the treatment of diabetic foot syndrome have been introduced, but in the course of further studies of the complex multifactorial pathogenesis of diabetes, new unresolved problems arise [38]. The incidence of diabetes is increasing worldwide and the number of complications is increasing. This determines the need for the introduction of new methods of the treatment.

Conclusion

This study showed that wound healing was significantly accelerated in the combination treatment group (PDRN loaded in hydrogel) compared to the hydrogel-only group and the control group (no treatment).

In the studied models of healing full-thickness skin wounds against the background of induced diabetes mellitus, topical application of PDRN stabilized in CMC hydrogel showed an acceleration of the regeneration process in the damaged area. The rate of acceleration of wound healing in the group receiving only PDRN was significant compared to the control group, but in this regard, the difference between the groups receiving only hydrogel was less significant. In addition, when analyzing the number of blood vessels per unit area, the differences and changes in the number of blood vessels were significant in the combination treatment group compared to the control group and groups receiving only hydrogel on day 7. In the group receiving only PDRN, significant differences in the number of fibroblasts were observed on day 7 compared to the control group and on day 14 compared to the group receiving only the hydrogel. In the group receiving only PDRN, significant differences in the number of collagen fibers were observed on day 21 compared with the control group and the group receiving only the hydrogel. Therefore, we can say that the use of PDRN accelerates angiogenesis and proliferation of fibroblasts and collagen fibers. Moreover, there was an increase in the total number of blood vessels in the hydrogel-only treatment group. Thus, it is believed that angiogenesis is facilitated by cell migration due to the wet environment of the hydrogel. It is believed that the effective results in the combination treatment group were related to the fact that the hydrogel served as a scaffold to increase maintenance and expression, stimulate angiogenesis, and further accelerate wound healing. Since the hydrogel acts as a scaffold for PRP, it increases the expression of growth factors and helps in maintaining and accelerating wound treatment.

In this study, the combination therapy of PDRN and hydrogel resulted in a more effective acceleration of diabetic wound healing. The hydrogel is believed to act as a scaffold for PDRN, resulting in increased fibroblast expression and collagen production and accelerated angiogenesis.

Limitations

This research has limitations. Further work, including quantification and measurements, is needed to accurately assess the effects of VEGF expression. A more accurate assessment of the diffusion of PDRN from the hydrogel is also needed.

References

1. Armstrong DG, Boulton AJ, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367-75. https://doi.org/10.1056/NEJMrA1615439
PMid:28614678

2. International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels, Belgium: International Diabetes Federation; 2019.

3. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560-82. https://doi.org/10.1089/wound.2015.0635
PMid:26339534

4. Jones RE, Deshka S, Longaker MT. Management of Chronic wounds-2018. JAMA. 2018;320(14):1481. https://doi.org/10.1001/jama.2018.12426
PMid:30326512

5. Clark RA. The Molecular and Cellular Biology of Wound Repair, Disorders, Pathophysiology, Pharmacology and Therapeutics: An Update. Germany: Springer; 2013. p. 494-7.

6. Gałkowski H, Wojewódzka U, Olszewski WL. Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen. 2006;14:558-65. https://doi.org/10.1111/j.1743-6109.2006.00155.x
PMid:17014667

7. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736-43. https://doi.org/10.1016/
Dmitriyeva et al. Topical polydeoxyribonucleotide loaded in hydrogel formulation for wound healing in diabetic rats

Polydeoxyribonucleotide reduces cytokine production. Activation of adenosine A2A receptors by...

8. Kwon TR, Han SW, Kim JH, Lee BC, Kim JM, Hong JY, et al. Polydeoxyribonucleotides improve diabetic wound healing in mouse animal model for experimental validation. Ann Dermatol. 2019;31(4):403-13. https://doi.org/10.5999/aps.2019.31.4.403

9. Lipsky BA, Aragón-Sánchez J, Dibble M, Embil J, Kono S, Lavery L, et al. IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes Metab Res Rev. 2016;32(1):45-74. https://doi.org/10.1002/dmr.2699

10. Morgan C, Nimay Y. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis. 2013;16(3):493-502. https://doi.org/10.1007/s10456-013-9341-1

11. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267. https://doi.org/10.1155/2012/918267

12. Squadrito F, Bitto A, Irrera N, Pizzino G, Pallio G, Minutoli L, et al. Pharmacological activity and clinical use of PDRN. Front Pharmacol 2017;8:224. https://doi.org/10.3389/fphar.2017.00224

13. Shin J, Park G, Lee J, Bae H. The effect of polydeoxyribonucleotide on the survival of random pattern skin flaps in rats. Arch Plast Surg. 2013;40:181-6. https://doi.org/10.5999/aps.2013.40.3.181

14. Chung Ki, Kim HK, Kim WS, Bae TH. The effects of polydeoxyribonucleotide on the survival of random pattern skin flaps in rats. Arch Plast Surg. 2013;40:181-6. https://doi.org/10.5999/aps.2013.40.3.181

15. Jeong W, Yang CE, Roh TS, Kim JH, Lee JH, Lee WJ. Scar prevention and enhanced wound healing induced by polydeoxyribonucleotide in a rat incisional wound-healing model. Int J Mol Sci. 2017;18(8):1698. https://doi.org/10.3390/ijms18081698

16. Lee WY, Park KD, Park Y. The effect of polydeoxyribonucleotide on the treatment of radiating leg pain due to cystic mass lesion in inner aspect of right sciatic foramen: A CARE compliant case report. Medicine. 2018;97(41):e12794. https://doi.org/10.1097/MD.0000000000012794

17. Bitto A, Polito F, Irrera N, D’Ascola A, Avenoso A, Nastasi G, et al. Polydeoxyribonucleotide reduces cytokine production and the severity of collagen-induced arthritis by stimulation of adenosine A2A receptor. Arthritis Rheum. 2011;63(11):3364-71. https://doi.org/10.1002/art.30538

18. Kim S, Kim J, Choi J, Jeong W, Kwon S. Polydeoxyribonucleotide improves peripheral tissue oxygenation and accelerates angiogenesis in diabetic foot ulcers. Arch Plast Surg. 2017;44(6):482-9. https://doi.org/10.5999/aps.2017.00801

19. Guizzardi S, Uggeri J, Bellletti S, Cattarini G. Hyaluronate increases polynucleotides effect on human cultured fibroblasts. J Cosmet Dermatol Sci Appl. 2013;3(1):124-8.

20. Minutoli L, Arena S, Bonvissuto G, Bitto A, Polito F, Irrera N, et al. Activation of adenosine A2A receptors by polydeoxyribonucleotide increases vascular endothelial growth factor and protects against testicular damage induced by experimental varicocele in rats. Fertil Steril. 2011;95(4):1510-3. https://doi.org/10.1016/j.fertnstert.2010.07.1047

21. Wang C, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev. 2010;62(7-8):699-710. https://doi.org/10.1016/j.add.2010.02.001

22. Chattopadhyay S, Raines RT. Collagen-based biomaterials for wound healing. Biopolymers. 2014;101(8):821-33. https://doi.org/10.1002/bip.22486

23. Chang SC, Zhang L. Cellulose-based hydrogels: Present status and application prospects. J Carbohydrate Polymers. 2011;84(1):40-53.

24. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863-87. https://doi.org/10.3390/ma3031863

25. Laçin NT. Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. J. Biol Macromol. 2014;67:22-7.

26. Kabir MF, Sikdar PR, Haque B, Bhuiyan MA, Ali A, Islam MN. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog Biomater. 2018;7(3):153-74. https://doi.org/10.1007/s40204-018-0099-0

27. Principles of Laboratory Animal Care. United States: NIH Publication; 1985.

28. Heilborn JD, Nilsson MF, Krazt G, Weber G, Sørensen O, Borregaard N, et al. The cathelicin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol. 2003;120(3):379-89. https://doi.org/10.1046/j.1523-1747.2003.120689.x

29. Salehi-Lalemarzi H, Shafehbandi D, Shafaghat F, Abbasi-Kenarsi H, Baradaran B, Movassaghpour AA, et al. Cloning and stable expression of cDNA coding for platelet en-dothelial cell adhesion molecule-1 (PECAM-1, CD31) in NIH-3T3 cell line. Adv Pharm Bull. 2015;5(2):247-53. https://doi.org/10.15171/apb.2015.034

30. Cellulose-based hydrogel membranes for wound healing. J. Biol Macromol. 2014;67:22-7.

31. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863-87. https://doi.org/10.3390/ma3031863

32. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863-87. https://doi.org/10.3390/ma3031863

33. Principles of Laboratory Animal Care. United States: NIH Publication; 1985.

34. Cellulose-based hydrogel membranes for wound healing. J. Biol Macromol. 2014;67:22-7.

35. Cellulose-based hydrogel membranes for wound healing. J. Biol Macromol. 2014;67:22-7.

36. Cellulose-based hydrogel membranes for wound healing. J. Biol Macromol. 2014;67:22-7.

37. Cellulose-based hydrogel membranes for wound healing. J. Biol Macromol. 2014;67:22-7.

38. Cellulose-based hydrogel membranes for wound healing. J. Biol Macromol. 2014;67:22-7.

39. Cellulose-based hydrogel membranes for wound healing. J. Biol Macromol. 2014;67:22-7.
et al. Activation of adenosine A2A receptors restores the altered cell-cycle machinery during impaired wound healing in genetically diabetic mice. Surgery. 2011;149(2):253-61. https://doi.org/10.1016/j.surg.2010.04.024
PMid:20570301

35. Galeano M, Bitto A, Altavilla D, Minutoli L, Polito F, Calò M, et al. Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse. Wound Rep Reg. 2008;16(2):208-17. https://doi.org/10.1111/j.1524-475X.2008.00361.x
PMid:18318806

36. El-Sherbiny MI, Yacoub HM. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):316-42. https://doi.org/10.5339/gcsp.2013.38
PMid:24689032

37. Grim C, Marozas IA, Anseth KS. Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels. J Control Release. 2015;219:95-106. https://doi.org/10.1016/j.jconrel.2015.08.040
PMid:26315818

38. de Oliveira Gonzalez C, Costa TF, de Araújo Andrade Z, Medrado AR. Wound healing: a literature review. An Bras Dermatol. 2016; 91:5. https://doi.org/10.1590/abd1806-4841.20164741
PMid:27828635