Micropropagation of three genotypes of Indian mustard \([Brassica juncea (L.) Czern.]\) using seedling-derived transverse thin cell layer (tTCL) explants.

Michel AOUN, Gilbert CHARLES, and Annick HOURMANT
Laboratoire de Biotechnologie et Physiologie Végétales,
Université de Bretagne Occidentale (Brest - France).

Micropropagation of three genotypes of Indian mustard \([Brassica juncea (L.) Czern.]\) using 7-days old seedling-derived transverse thin cell layer (tTCL) explants was accomplished. The genotype, explant source and addition of silver nitrate to the medium significantly influenced shoot bud induction. MS medium with 26.6 \(\mu\)M of 6-Benzylaminopurin (BAP) and 3.22 \(\mu\)M of 1-naphtaleneacetic acid (NAA) was identical (in the case of cotyledon tTCLs whatever the organ) and superior for the induction of buds (in the cases of petiole tTCL explants of genotypes 1 and 2 and hypocotyl tTCL explants of genotypes 1 and 3) than 53.3 \(\mu\)M of BAP and 3.22 \(\mu\)M of NAA. However, 53.3 \(\mu\)M of BAP was superior for the induction of buds than 26.6 \(\mu\)M in the presence of the same concentration of NAA for petiole tTCL explants of genotype 3 and hypocotyl tTCL explants of genotype 2.

The addition of silver nitrate significantly enhanced the rate of shoot induction in all genotypes. Cotyledon-derived tTCL explants exhibited the highest shoot bud induction potential and was followed by petiole- and hypocotyl-derived ones. Addition of 10 \(\mu\)M of silver nitrate to BAP and NAA supplemented medium induced higher frequency shoot bud induction (up to 100 \%) with the highest means of 4.45 shoots per cotyledon-derived tTCL explants obtained with the genotype 2. Shoot regenerated were rooted on MS basal medium without PGRs which induced 99 \% of roots per shoot. The plantlets established in greenhouse conditions with 99 \% survival, flowered normally and set seeds.

Keywords Brassica juncea - Genotype - Shoot regeneration – caulogenesis - Silver nitrate - transverse Thin Cell Layers (tTCLs).

Abbreviations BAP 6-Benzylaminopurin; NAA 1-naphtaleneacetic acid; AVG (aminoethoxyvinylglycin), tTCLs transverse Thin Cell Layers.

I. INTRODUCTION

Brassica oilseed crops including, *Brassica napus, B. rapa* and *B. juncea*, cover approximately 11 million hectares of the world's agricultural land and provide over 8\% of the major oil grown under a variety of climatic conditions (Downey, 1990). The annual production of *Brassica juncea* in India alone reaches 5 million tons (FAO, 2003). *Brassica juncea* is widely grown as a vegetable but also for its uses in the food industry, in condiments, vegetable oils, hair industry, in lubricants and, in some countries, as a substitute for olive oil. Seed residues are used as cattle feed and in fertilizers (Reed, 1976).

For the sake of crop improvement, *Brassica* species have been subjected to many genetic manipulations with *Agrobacterium* species (Barfield and Pua, 1991; Jonoubi et al. 2005). However, it is better to obtain a high rate of shoot regeneration in these species for \textit{in vitro} selection and routine genetic manipulation. Shoot regeneration in *Brassica juncea* has been reported from mesophyll protoplasts (Chatterjee et al. 1985), and traditional explants such as hypocotyls (Sethi et al. 1990), petioles (Pua and Chi, 1993), leaf discs and peduncle explants (Eapen and George, 1996, 1997), cotyledon or leaf segments (Guo et al. 2005) and microspores (Prem et al. 2005). However, to the best of our knowledge there is no report on shoot regeneration of *B. juncea* using explant-derived from young plants.

Shoot regeneration is affected by many factors like genotype, explant source, medium, growth hormones and physical conditions (Jain et al. 1988; Zhang et al. 1998; Tang et al. 2003; Guo et al. 2005).

\textit{In vitro} culture of longitudinal thin cell layer explants, developed by Tran Thanh Van (1973), enabled regeneration

Electronic address: michel.aoun@univ-brest.fr
in many species such as *Brassica napus* (Klimaszewska and Keller, 1985), *Beta vulgaris* (Detrez et al. 1988), *Lupinus mutabilis* and *L. albus* (Mullin and Bellio-Spataru, 2000).

The use of thin transverse sections has been successfully applied to *Panax ginseng* (Ahn et al. 1996), *Digitaria sanguinalis* (Bui et al. 1997), *Lilium longiflorum* (Nhut et al. 2002), *Spinacia oleracea* (Léguillon et al. 2003) or *Brassica napus* (Ben Ghnaya et al. 2008). Such technique with high reactivity and sensibility, seems to have a potential for intensive caulogenesis and regeneration of *Brassica juncea* plants.

In this study we investigate the effect of silver nitrate on the efficiency of shoot regeneration from cotyledon-, petiole- and hypocotyl-derived tTCL explants of three genotypes of *Brassica juncea* (L.) Czern.

II. MATERIALS AND METHODS

Plant material

Seeds of *Brassica juncea* I39/1 (genotype 1), AB79/1 (genotype 2) and J99 (genotype 3), provided by ‘Ecole Nationale d’Enseignement Supérieur Agronomique (ENESA)’ in Dijon (France) were used to evaluate shoot regeneration in presence or the absence of AgNO$_3$. These genotypes are pure spring lines, genetically fixed and were obtained by autofertilization. The choice of concentrations of BAP and NAA is based on preliminary results in our laboratory that give relatively the best rate of shoot regeneration.

Culture conditions and plant regeneration

Seeds of *Brassica juncea* were decontaminated in 70% ethanol for 30 sec, followed by immersion in calcium hypochlorite (5%, w/v) added with two drops of Tween-20 for 10 min. The seeds were rinsed twice for 5 min with sterile water upon sterilization. For germination, one seed was placed per culture tube containing 0.6 % agar-solidified MS basal medium (Murashige and Skoog, 1962) and 2 % sucrose at 5.8 pH.

For the regeneration studies, tTCLs (400-500 μm thick) were excised from hypocotyls, petioles and cotyledons of 7 day-old plantlets. They were cultured in Petri dishes (15 tTCLs / dish) on MS medium supplemented with agar 0.6 % (w/v), sucrose 2% (w/v), NAA (3.22 μM), BAP (26.6-53.3 μM) and AgNO$_3$ (0-20 μM). All experiments were conducted in a culture chamber with a 12h photoperiod (60 μmol photon.m$^{-2}$.s$^{-1}$) provided by cool white fluorescent lamps with a 22/20°C thermoperiod (light/dark). The pH was adjusted to 5.8 with NaOH before autoclaving at 121°C for 20 min.

After three or four weeks, regenerated shoots were transferred to 0.7 % agar-solidified MS medium without any growth hormones. After two weeks, rooted plants were hardened under greenhouse conditions until flowering.

Data analysis

The number of explants that showed bud formation, as well as the number of buds per tTCL were counted and the frequency of bud formation was calculated.

There were 15 tTCLs per Petri dish and four plates per organ and treatment. Each experiment was repeated 3 times with 3 independent runs.

For data analysis, one way ANOVA and LSD (Least Significance difference) test were performed using the Statgraphics computer program at P < 0.05 or 0.01 (Statgraphics Plus version 5.1).

III. RESULTS

Results indicate that shoot regeneration ability is strongly influenced by genotype and tTCL explants between and within the *Brassica juncea* genotypes (Table 1). The first shoots were observed after ten days on tTCLs, whatever the genotype, and reached their largest number of occurrence at day-27. Callogenesis was the first observed
phenomenon, followed by rhizogenesis and caulogenesis respectively. Whatever the origin of tTCL explants, high rates of callogenesis and rhizogenesis were observed in calli culture (up to 99 %) (Figure 2 A, B and C). The caulogenesis frequency ranged from 0 to 1 % for genotype 3; 6.67 to 30.47 % for genotype 2 and 0 to 78.67 % for genotype 1. Furthermore, the origin of tTCL explants also affected shoot regeneration; cotyledon tTCLs best responded compared to petiole and hypocotyl tTCLs respectively and that whatever the genotype (Table 1). The best number of buds per tTCL explant was obtained with hypocotyl tTCLs of genotype 2 cultivated on MS medium added with 26.6 µM BAP, 3.22 µM NAA and sucrose 2% (w/v) (Table 2).

The presence of AgNO₃ in the culture medium showed a significantly beneficial effect on shoot regeneration. It influenced both the frequency of shoot regeneration (Table 1) and the number of buds per tTCL explant (Table 2). In MS medium added with 26.6 µM BAP and 10 µM AgNO₃, B. juncea AB79/1 (genotype 2) does not show any significant difference between the frequencies of shoot formation between organs, which reach up to 100 % (Table 1). However, in the same conditions, the highest number of shoots per explant was obtained with hypocotyl tTCLs (Table 2).

In MS medium added with 26.6 µM BAP and 10 µM AgNO₃, B. juncea I39/1 (genotype 1) and B. juncea J99 (genotype 3), cotyledon tTCLs were more sensitive for shoot regeneration than those of petiole and hypocotyl respectively (Table 1). Furthermore, their number of buds per tTCL explants rose from 1 to approximately 2 when 10 µM AgNO₃ were added to culture medium. The addition of 53.3 µM BAP and 10 µM AgNO₃ to culture medium seems to be more sensitive for given a highest frequency of shoot regeneration for petiole tTCL explants (19.07 %) than 26.6 µM BAP (1.13 %) for genotype 3.

Moreover, 1 µM AgNO₃ increases significantly caulogenesis for genotypes 1 and 2, but not for genotype 3. This more recalcitrant genotype required 10 µM AgNO₃ to have a significant increase on bud formation (Table 1). Concentrations of AgNO₃ higher than 10 µM (15 and 20 µM) do not show any significant difference compared to 10 µM whatever the genotype tested (data not shown).

In addition, in the presence of silver nitrate, calli were compact and had dark green color (Figure 1B). However, in its absence, calli were soft and had a pale green color whatever the concentration of growth regulators and the origin of tTCL explants (Figure 1A).

Finally, after 27 days of tTCL culture, shoots excised and transferred in the test tubes on 0.7 % agar-solidified MS medium without PGRs exhibited rooting and rapid development (Figure 2D). After 2 weeks, plantlets were transferred to grow in pots under greenhouse conditions. The phenotype of regenerant plants were similar to plant control grown from seeds. They flowered normally 6 weeks after transfer in pots and set seeds (Figure 2E).

IV. DISCUSSION AND CONCLUSION

Thin cell layer technology was known efficient for the propagation of various plant species. This study was conducted to achieve a high rate of regeneration in B. juncea L. Czern. From tTCL explants in presence or in the absence of silver nitrate. This technique combined to AgNO₃ promoted rapid and high frequency of shoot regeneration with shoot buds developing within 10 days for all B. juncea genotypes. These results compare favourably with recent studies of shoot regeneration of B. napus L. from traditional explants (Tang et al. 2003; Akasaka-Kennedy et al. 2005), longitudinal thin cell layers (Klimaszewska and Keller, 1985) and transverse thin cell layers (Ben Ghnaya et al. 2008). In our study, tTCL explants were excised transversally from 7-day old axenic plants.

In our experiments, all factors evaluated (genotype, explant, BAP and AgNO₃) influenced shoot regeneration. Shoot regeneration ability is strongly influenced by genotype as proved earlier in B. napus L. (Ono et al. 1994; Akasaka-Kennedy et al. 2005; Ben Ghnaya et al. 2008) and B. campestris L. ssp. Pekinensis (Zhang et al. 1998). B. juncea AB79/1 (genotype 2) and B. juncea I39/1 (genotype 1) showed a greater capacity to produce shoots on the MS medium containing 3.22 µM NAA, 26.6 or 53.3 µM BAP and sucrose 2 % (w/v) than B. juncea J99 (genotype 3). Furthermore, we showed an explant effect on shoot regeneration process. For all genotypes, cotyledon tTCLs best responded than petiole and hypocotyl tTCLs and exhibited the highest shoot regeneration rate (Table 1). Tang et al. (2003) and more recently Ben Ghnaya et al. (2008) showed that PGR content affected significantly the regeneration
process as observed from tTCL explants in our study. Whatever the genotype and organ, 26.6 µM BAP seems to be more sensitive on shoot regeneration frequency than 53.3 µM.

Moreover, silver nitrate showed to be significantly beneficial to the shoot regeneration process for all genotypes of *Brassica juncea*, even for the more recalcitrant one (genotype 3). Indeed, 10 µM AgNO₃ was able to induce the response of genotype 3 but concentrations up to more than 10 µM (15 and 20 µM, data not shown) didn’t increase the frequencies of caulogenesis (Table 1). The positive effect of silver nitrate on shoot regeneration process, was shown in previous studies with traditional explants such as cotyledons of *Brassica rapa* ssp. Oleifera (Burnett *et al.* 1998), *Brassica campestris* ssp. Pekinesis (Chi *et al.* 1991; Zhang *et al.* 1998), hypocotyls of *Brassica juncea* (Pua and Chi, 1993), peduncle and leaf segments of *Brassica napus* (Eapen and George, 1997; Akasuka-Kennedy *et al.* 2005). Furthermore, the presence of silver nitrate, especially 10 µM seems to be sensitive significantly in the enhancement of the number of buds per tTCL explants, whatever the genotype and the organ (Table 2).

In the present study, an original and efficient regeneration system from cotyledon, petiole and hypocotyl tTCLs has been developed in *Brassica juncea*. It produces good results with tTCL explants of all genotypes. Despite a smaller surface and a larger number of wounded cell, shoot regeneration is obtained typically ten days after the tTCL explant initiation culture. This swift response, in agreement with the observation described previously by Tran Thanh Van (1973), due to the combined process of cell dedifferentiation and reprogramming. Typically, two months later, we observed the normal flowering of regenerant plantlets. Nonetheless, in this system, a single subculture step preceding the regenerated plant transfer into culture tube is required and no subsequent phenotypic alterations were observed in these plants at all.

For further improvements, other factors could be taken into account, such as the concentration of sugar used (Ben Ghnaya *et al.* 2008), the use of other inhibitors that block ethylene synthesis (e.g. AVG, nickel and cobalt) or action (silver thiosulfate) (Chraibi *et al.* 1991; Burnett *et al.* 1994), but also tTCL explant thickness or position along the organ (Nhut *et al.* 2001).

Our tTCL model could be used as a tool for fundamental regeneration studies and for crop improvement using *Agrobacterium* transformation of *Brassica juncea* cultivars as well as other *Brassica* species. Furthermore this system may will be used for *in vitro* selection, in presence of many metals, of plants which may will be used in different phytoremediation processes.

Acknowledgements

We thank Dr T. Guinet (ENESA) for providing seeds of spring lines of *Brassica juncea*, Pr L. Quiniou [Institut Européen de la Mer (IUEM)] and Dr P. Rey [Ecole Supérieure de Microbiologie Industrielle et de Sécurité Alimentaire de Brest (ESMISAB)] for statistical analysis.

References

Ahn, I.O., Bui, V.L., Gendy, C., Tran Thanh Van, K., 1996. Direct somatic embryogenesis through thin cell layer culture in *Panax ginseng*. *Plant Cell Tiss. Org. Cult*. 45, 237-243.

Akasada-Kennedy, Y., Yoshida, H., Takahata, Y., 2005. Efficient plant regeneration from leaves of rapeseed (*Brassica napus* L.) The influence of AgNO₃ and genotype. *Plant Cell Rep.* 24, 649-654.

Barfield, D.G., Pua, E.C., 1991. Gene transfer in plants of *Brassica juncea* using *Agrobacterium tumefaciens*-mediated transformation. *Plant Cell Rep.* 10, 308-314.

Ben Ghnaya, A., Charles, G., Branchard, M., 2008. Rapid shoot regeneration from thin cell layer explants excised from petioles and hypocotyls in four cultivars of *Brassica napus* L. *Plant Cell Tiss. Organ Cult*. 92, 25-30.

Bui, V.L., Do My, N.T., Gendy, C., Vidal, J., Tran Thanh Van, K., 1997. Somatic embryogenesis on thin cell layers of a C₄ species, *Digitaria sanguinalis* (L.) Scop. *Plant Cell Tiss. Org. Cult*. 49, 201-208.

Burnett, L., Arnoldo, M., Yarrow, S., Huang, B., 1994. Enhancement of shoot regeneration from cotyledon explants of *Brassica rapa* ssp. Oleifera through pretreatment with auxine and cytokinin and use of ethylene inhibitors. *Plant Cell Tiss. Org. Cult*. 35, 253-258.
Chatterjee, G., Sikdar, S.R., Das, S., Sen, S.K., 1985. Regeneration of plantlets from mesophyll protoplasts of *Brassica juncea* (L.) Czern. *Plant Cell Rep.* 4, 245-247.

Chi, G.-L., Pua, E.-C., Goh, C.-J., 1991. Role of ethylene on *de novo* shoot regeneration cotyledonary explants of *Brassica campestris* pekinensis (Lour) Olsson *in vitro*. *Plant Physiol.* 96, 178-183.

Chraibi, K.M.B., Latche, A., Roust, J., Fallot, J., 1991. Stimulation of shoot regeneration from cotyledons of *Helianthus annuus* by the ethylene inhibitors, silver and cobalt. *Plant Cell Rep.* 10, 204-207.

Detrez, C., Tetu, T., Sangwan, R.S., Sangwan-Norreel, B.S., 1988. Direct organogenesis from petiole and thin cell layer explants in sugar beet cultured *in vitro*. *J. Exp. Bot.* 39, 917-926.

Downey, R.K., 1990. *Brassica* oilseed breeding-achievements and opportunities. *Plant Breed.* 60, 1165-1170.

Eapen, S., George, L., 1996. Enhancement in shoot regeneration from leaf discs of *Brassica juncea* L. Czern. and Coss. By silver nitrate and silver thiosulfate. *Physiol. Mol. Biol. Plants* 2, 83-86.

Eapen, S., George, L., 1997. Plant regeneration from peduncle segments of oil seed *Brassica* species Influence of silver nitrate and silver thiosulfate. *Plant Cell Tiss. Org. Cult.* 51, 229-232.

Food and Agriculture Organization (FAO) 2003. *FAO bulletin of statistics*, Vol. 4 No 2.

Guo, D.-P., Zhu, Z.-J., Hu, X.-X., Zheng, S.-J., 2005 Effects of cytokinins on shoot regeneration from cotyledon and leaf segment of stem mustard *Brassica juncea* var. Tsatsai. *Plant Cell Tiss.Org.Cult.* 83, 123-127.

Jain, R.K., Chowdhury, J.B., Sharma, D.R., Friedt, W., 1988. Genotypic and media effects on plant regeneration from cotyledon explant cultures of some *Brassica* species. *Plant Cell Tissue Org. Cult.* 14, 197-206.

Jonoubi, P., Mousavi, A., Majd, A., Salmanian, A.H., Jalali Javaran, M., Dane Shian, J., 2005. Efficient regeneration of *Brassica napus* L. hypocotyls and genetic transformation by *Agrobacterium tumefaciens*. *Biol Plant.* 49, 175-180.

Klimaszewska, K., Keller, W.A., 1985. High frequency plant regeneration from thin layer explants of *Brassica napus*. *Plant Cell Tiss. Organ Cult.* 4, 183-197.

Léguillon, S., Charles, G., Branchard, M., 2003. Plant regeneration from thin cell layers in *Spinacia oleracea*. *Plant Cell Tiss. Org. Cult.* 74, 257-265.

Mullin, M., Bellio-Spataru, A., 2000. Organogenesis from hypocotyl thin cell layers of *Lupinus mutabilis* and *L. albus*. *Plant Growth Reg.* 30, 177-183.

Murashige, T., Skoog, F., 1962. Revised medium for rapid growth and bioassay with tobacco tissue cultures. *Physiol. Plant.* 15, 473-497.

Nhut, D.T., Bui, V.L., Fukai, S., Tanaka, M., Tran Thanh Van, K., 2001. Effects of activated charcoal, explant size, explant position and sucrose concentration on plant and shoot regeneration of *Lilium longiflorum* via young stem culture. *Plant Growth Regul.* 33, 59-65.

Nhut, D.T., Bui, V.L., Tran Thanh Van, K., 2002. Somatic embryogenesis through pseudo-bulblet transverse thin cell layer of *Lilium longiflorum*. *Plant Growth Reg.* 37, 193-198.

Ono, Y., Takahata, Y., Kaizuma, N., 1994. Effect of genotype on shoot regeneration from cotyledonal explants of rapeseed (*Brassica napus* L.). *Plant Cell. Rep.* 14, 13-17.

Prem, D., Gupta, K., Agnihotri, A., 2005. Effect of various exogenous and endogenous factors on microspore embryogenesis in Indian mustard [*Brassica juncea* (L.) Czern. And Coss.]. *In Vitro Cell Dev. Biol. - Plant* 41, 266-273.

Pua, E.-C., Chi, G.-L., 1993. *De novo* shoot morphogenesis and plant growth of mustard (*Brassica juncea*) *in vitro* in relation to ethylene. *Physiol. Plant.* 88, 467-474.

Reed, C.F., 1976. Information summaries on 1000 economic plants, United States Department of Agriculture (USDA).

Sethi, U., Basu, A., Guha-Mukherjee, S., 1990. Control of cell proliferation and differentiation by modulators of ethylene biosynthesis and action in *Brassica* hypocotyl explants. *Plant Sci.* 69, 225-229.

Tang, G.X., Zhou, W.J., Li, H.Z., Mao, B.Z., He, Z.H., Yoneyama, K., 2003. Medium, explant and genotype factors influencing shoot regeneration in oilseed *Brassica* spp. *J. Agron. Crop Sci.* 189, 351-358.

Tran Thanh Van, M., 1973. *In vitro* control of *de novo* flower, bud, root, and callus differentiation from excised epidermal tissues. *Nature* (Lond.) 246, 44-45.

Zhang, F.L., Takahata, Y., Xu, J.B., 1998. Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (*Brassica campestris* L. ssp. Pekinensis). *Plant Cell Rep.* 17, 780-786.
FIG. 1: Morphology of calli obtained from hypocotyl tTCL explants of *Brassica juncea* AB79/1 in absence (A) or in presence (B) of AgNO₃.

FIG. 2: Shoot regeneration from tTCL explants of *Brassica juncea* AB79/1. (A): cotyledon tTCLs; (B): petiole tTCLs; (C): hypocotyl tTCLs; (D): plantlet obtained from excised tTCL grown 2 weeks in a test tube and (E): regenerated plants grown and flowered in the greenhouse.

The frequency of shoot regeneration were recorded 27 days after the tTCL initiation culture on MS basal medium supplemented with NAA (3.22 µM), BAP (26.6 or 53.3 µM), sucrose 2 % (w/v) and AgNO₃ (0 - 10 µM). The results were calculated from three independent experiments, each with, at least, five Petri dishes with 15 tTCLs per dish. The mean values with different letters are significantly different at $p = 0.05$ (LSD test).
TABLE I: Effect of genotype, explant, BAP and AgNO₃ on in vitro organogenesis from tTCLs of cotyledons, petioles and hypocotyls. The percentage of buds were recorded 27 days after the tTCL initiation culture.

Genotypes	AgNO₃	BAP	Frequency of of regenerating tTCL (%)	Petioles	Hypocotyls
1	0	26.6	78.67^c	23.34^{f,g}	0.00^k
1	1	93.34^a	68.93^d	11.13^{g,h}	
5	2	96.67^a	75.60^e	13.34^{g,h}	
10	1	97.34^a	77.80^e	18.67^g	
0	53.3	72.20^c	8.00^{g,h}	0.00^k	
1	1	86.67^b	32.27^f	7.80^b	
5	5	93.34^a	44.00^e	7.80^b	
10	10	94.47^a	46.67^c	11.14^{g,h}	
2	0	26.6	30.47^f	22.27^{f,g}	6.67^h
1	1	93.34^a	87.88^b	65.56^d	
5	5	96.67^a	92.27^a	87.80^b	
10	10	100.00^b	98.87^a	92.23^a	
0	53.3	26.67^f	10.00^{g,h}	16.67^g	
1	1	95.34^a	67.80^d	37.80^e	
5	5	95.60^a	75.60^e	73.34^c	
10	10	96.67^a	84.47^f	75.60^e	
3	0	26.6	0.93^c	0.00^k	0.00^k
1	1	0.93^c	0.00^k	0.93^f	
5	5	6.67^h	0.00^k	9.53^{g,h}	
10	10	15.20^g	1.13^e	9.53^{g,h}	
0	53.3	0.93^f	0.93^f	0.00^k	
1	1	0.93^f	2.87ⁱ	0.00^k	
5	5	12.40^h	10.47^h	0.00^k	
10	10	13.34^h	19.07^j	0.00^k	

Data were recorded 4 weeks after the tTCL initiation culture on MS basal medium supplemented with NAA (3.22 µM), BAP (26.6 or 53.3 µM), sucrose 2 % (w/v) and AgNO₃ (0 - 10 µM).

The results are obtained from three independent experiments, each with, at least, five Petri dishes and 15 tTCLs per dish. Letters indicate significant statistical differences at $p = 0.01$ (One way ANOVA and LSD test).
TABLE II: Effect of genotype, explant, BAP and AgNO$_3$ on the number of adventitious buds per tTCL excised from different organs (cotyledons, petioles and hypocotyls).

Genotypes	AgNO$_3$	BAP	Cotyledons	Petioles	Hypocotyls
1	0	26.6	1.34ef	1.16ef	0g
1	1	1.69e	1.75e	1.00f	
5	1.81e	1.86e	1.07f		
10	1.86e	1.90f	1.12f		
0	53.3	1.26ef	1.00f	0g	
1	1.51e	1.02f	1.00f		
5	1.82e	1.23cd	1.00f		
10	1.89e	1.30cd	1.14f		
2	0	26.6	1.00f	1.23ef	2.09de
1	1.64e	2.60d	2.88d		
5	2.27de	3.16d	3.87b		
10	2.40de	3.30f	4.45a		
0	53.3	1.00f	1.12f	1.42ef	
1	1.14f	2.75d	1.68e		
5	2.15de	3.26d	2.67cd		
10	2.22de	3.43d	2.78d		
3	0	26.6	1.00f	0g	0g
1	1.00f	0g	1.00f		
5	1.23ef	0g	1.12f		
10	1.34ef	1.00f	1.23ef		
0	53.3	1.00f	1.00f	0g	
1	1.00f	1.11f	0g		
5	1.27ef	1.31ef	0g		
10	1.41ef	1.37ef	0g		