Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January–September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7–7.8%, \(p_{FDR} < 0.001 \)) and unspecified disorders of the brain (8.1%, 5.7–10.5%, \(p_{FDR} < 0.001 \)) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19–25%), cerebrovascular diseases (24%, 13–35%), nontraumatic intracranial hemorrhage (34%, 20–50%), encephalitis and/or myelitis (37%, 17–60%) and myopathy (72%, 67–77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease.

The World Health Organization declared coronavirus disease 2019 (COVID-19) due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection as a global pandemic on March 11, 2020. Growing evidence points to the multi-organ involvement of COVID-19, particularly the nervous system, which increases morbidity and mortality. Given the health consequences of neurological complications, recognizing the
neurological phenotypes associated with COVID-19 would inform prevention, diagnosis and treatment that could potentially mitigate disability and death. Early reports highlighted central and peripheral neurological phenotypes in adults with COVID-19, including cerebrovascular disease, meningoencephalitis and encephalomyelitis, encephalopathy, cranial neuropathies, Guillain-Barré syndrome, plexopathy, anosmia and ageusia and cognitive and neuropsychiatric issues. Children with COVID-19 have similar presentations, including ischemic stroke, encephalopathy, headache, and muscle weakness. Prior prevalence studies of neurological conditions in COVID-19 largely examined data from single countries (e.g., China, the United Kingdom and Italy) or single healthcare systems. Few large-scale studies have used a standardized data capture approach to examine the multinational prevalence of the spectrum of neurological conditions in COVID-19 patients and with careful local data quality control, particularly those who experienced severe respiratory and/or critical illness status.

Electronic health records (EHRs) data can facilitate clinical discovery efforts. Our team created the International Consortium for Clinical Characterization of COVID-19 by EHR (4CE; http://www.covidclinical.net) to standardize and aggregate multinational EHR data (from 34 healthcare systems and 338 affiliated hospitals across six countries at the time of data freeze for this study) to address critical clinical and epidemiological questions relevant to COVID-19. Central to the 4CE effort is the ability of local clinician experts and data scientists at each contributing healthcare system to ensure the quality of common EHR data elements. Leveraging the highly scalable, federated, multinational networks of the 4CE consortium, we computed the prevalence of a wide range of central and peripheral neurological conditions in hospitalized patients with reverse transcription polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection by healthcare system and by country. We also compared the differences in the prevalence of neurological conditions between patients with and those without severe COVID-19 based on the internationally validated 4CE severity criteria.

Results
Following a consortium-wide standardized procedure (Fig. 1), we collected the EHR data from 35,177 hospitalized patients with PCR-confirmed SARS-CoV-2 infection from 338 hospitals affiliated with 34 healthcare systems in six countries (eTable 1). Aggregate demographic data were available for 34,647 patients (98.5%). The cohort had a greater proportion of men (20,814, 60.1%) than women (13,546, 39.1%), while 287 (0.8%) patients had unknown gender (Fig. 2A). The study captured a broad range of proportions of severe COVID-19 cases (based on the internationally validated 4CE COVID-19 severity criteria) across this multinational network of healthcare systems. There was no clear relationship between COVID-19 severity and median age (Fig. 2B). Most healthcare systems in Europe did not report race. Among the US healthcare systems, there was a disproportionately high proportion of self-reported Black individuals (Fig. 2C). The study population included a high proportion of individuals above age 50 years and a low proportion of children (age < 18 years) (Fig. 2D).

We first assessed the prevalence of a wide spectrum of neurological conditions during the first hospital admission for COVID-19, importantly, using the estimates in the 1-year pre-admission period at each healthcare system as the comparator. Towards this end, we used EHR data from the early phase of the pandemic (January to September 2020) and queried all potential neurological conditions based on a comprehensive literature review at the start of the analysis. Most of the contributing healthcare systems (77%) reported an increase in the proportion of hospitalized COVID-19 patients with disorders of consciousness (ICD-10 R41: "Other symptoms and signs involving cognitive functions and awareness") with a mean increase of 5.8% (95% CI 3.7–7.8%, pFDR < 0.001)
after admission (Fig. 3, eFig. 1). Similarly, 84% of healthcare systems reported an increase in the proportion of patients with “Other disorders of the brain” (ICD-10 G93, including “encephalopathy”, “cerebral edema”, “brain death”) with a mean increase of 8.1% (5.7–10.5%, $p_{FDR} < 0.001$) after admission (see online interactive data repository: https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#prevalence-change-table). The proportion of patients with “epilepsy and recurrent seizures” (ICD-10 G40), “encephalitis, myelitis, and encephalomyelitis” (ICD-10 G04) and “other and unspecified myopathies” (ICD-10 G72) increased after admission, but these findings were not significant after adjusting for multiple testing. Likewise, none of the other neurological conditions showed a statistically significant difference in prevalence after admission.

To assess the association with COVID-19 severity, we next used Fisher’s exact test to examine the enrichment or depletion of each neurological condition among patients hospitalized for COVID-19 who ever experienced severe disease based on the published 4CE COVID-19 severity criteria, using those who never experienced severe disease as the comparator (Fig. 4). A positive log2 value of enrichment (LOE) value denoted a higher proportion of severe cases for a given neurological condition than the never-severe cases, while a negative LOE value indicated the opposite. For instance, a LOE value of 0.283 for ICD code R41 meant that the observed number of severe cases with R41 (disorder of consciousness) was 1.22 times higher than the expected number of severe cases, which was equivalent to a 22% increase in relative risk ($\text{RRD} = 22\%$). Table 1 listed the neurological phenotypes that exhibited statistically significant associations with severe COVID-19 status ($p_{FDR} < 0.05$). The interactive data table (https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#enrichment-tab) and the results directory of the project online data repository (https://github.com/covidclinical/Phase1.1NeuroRCode/tree/master/results) listed the LOE, 95% confidence intervals and p values for all neurological conditions examined.

In the period after hospital admission for COVID-19, using the patients who never experienced severe COVID-19 as reference, a significantly higher proportion of patients with severe disease had “other symptoms and signs involving cognitive functions and awareness” (ICD-10 R41: RRD$_{dif} = 22\%$), “other cerebrovascular

Figure 2. Characteristics of the study population across healthcare systems and countries. (A) Total number of male (left) and female (right) patients grouped by country shown in square-root scale. (B) Proportion of ever-severe cases by median age estimate at each healthcare system, grouped by country. Node size corresponds to the total number of patients per system. (C) Distribution of self-identified race among patients at healthcare systems in Singapore and the United States. The Other/Unknown category includes patients who did not identify with any of the predefined race categories and/or whose data were not reported. Most European healthcare systems did not report race. (D) Average proportion of patients in each age group within each country. FR, France; DE, Germany; ES, Spain; IT, Italy; SG, Singapore; US(A), United States of America.
disease” (ICD-10 I67: RRD_{after} = 24%), “nontraumatic subarachnoid hemorrhage” (ICD-10 I60: RRD_{after} = 28%), “other and unspecified nontraumatic intracranial hemorrhage” (ICD-10 I61: RRD_{after} = 36%), “other disorders of the brain” (ICD-10 G93, including “encephalopathy”: RRD_{after} = 36%), “encephalitis, myelitis and encephalomyelitis” (ICD-10 G04: RRD_{after} = 37%), and “other and unspecified myopathies” (ICD-10 G72, including “inflammatory and immune myopathies” and “critical illness myopathies”: RRD_{after} = 72%) (Table 1, Fig. 4). In contrast, a significantly lower proportion of patients with severe disease had “blindness and low vision” (ICD-10 H54: RRD_{after} = −23%), “dizziness and giddiness” (ICD-10 R42: RRD_{after} = −28%), “other headache syndromes” (ICD-10 G44: RRD_{after} = −47%), “transient cerebral ischemic attacks and related syndromes” (ICD-10 G45: RRD_{after} = −45%), and “unspecified psychosis not due to a substance or known physiological condition” (ICD-10 F29: RRD_{after} = −44%) during hospitalization. Subgroup analysis comparing the US and non-US healthcare systems yielded consistent results (eFig. 2).

As 12 healthcare systems in Italy and the US contributed EHR data entirely or partially comprising ICD-9 codes, we performed separate subgroup analyses using only the ICD-9 data (eTable 2), given that one-to-one mapping of some ICD-9 codes to ICD-10 codes was not feasible. To summarize, the prevalence of “disorders of consciousness” and “other neurological conditions” increased after COVID-19 admission date when compared to the 1-year pre-admission period, as in the ICD-10 data analysis (eFigs. 3, 4). There was no statistically significant difference when examining the change in prevalence of other neurological ICD-9 codes after admission date. In severity analysis, there were similarities with the ICD-10 data (e.g., “disorders of consciousness”) but also differences involving seizure and cerebrovascular events that would require caution in interpretation due to differences in sample size (see Supplementary Material, eFig. 5, eTable 3).
Following a standardized approach for aggregating EHR-derived clinical facts from a federated network of multinational healthcare systems while preserving patient privacy, we report the change in prevalence of a wide spectrum of central and peripheral neurological conditions among a large cohort of patients hospitalized with PCR-confirmed SARS-CoV-2 infection across geographically diverse healthcare systems from six countries, using the 1-year period before COVID-19 hospitalization as reference. We further report the difference in the prevalence of neurological conditions among hospitalized patients with severe COVID-19 when compared to the non-severe patients. Given the challenges with evaluating patients and obtaining data during the pandemic, EHR-based studies complement the more labor-intensive physician-reported registry studies.

Disorders of consciousness and other disorders of the brain are the most prevalent neurological phenotypes among all patients hospitalized with COVID-19 during the early pandemic. While the specific underlying causes could be broad (e.g., metabolic disturbance, hypoxia, medication effect, seizures, stroke), these findings are

Figure 4

Analysis of enrichment or depletion of neurological conditions after admission in patients with severe disease. For each neurological ICD-10 code, we show the log enrichment (LOE) and its 95% confidence interval (left), and the absolute difference between the observed (filled triangle) and expected (○) number of patients experiencing severe COVID-19 in square-root scale (right). A purple positive LOE value for an ICD-10 code indicates a statistically significantly higher proportion of severe cases having a given neurological ICD-10 code when compared to the never-severe cases. Conversely, a green negative LOE value indicates a statistically significantly lower proportion of severe cases having a given neurological ICD-10 code when compared to the never-severe cases. Neurological ICD-10 codes are ordered by the expected number of severe cases after admission.

Table 1

Neurological condition (ICD-10 code)	LOE	RRD (%)	RRD 95% CI (%)	pFDR
Blindness and low vision (H54)	−0.38	−23	(−33, −11)	2.0 × 10⁻⁶
Dizziness and giddiness (R42)	−0.47	−28	(−33, −22)	6.3 × 10⁻⁶
Encephalitis, myelitis and encephalomyelitis (G04)	0.45	37	(17, 60)	0.0081
Nontraumatic intracerebral hemorrhage (I61)	0.45	36	(23, 51)	3.6 × 10⁻⁵
Nontraumatic subarachnoid hemorrhage (I60)	0.35	28	(10, 48)	0.019
Other and unspecified myopathies (G72)	0.78	72	(67, 77)	8.8 × 10⁻６
Other and unspecified nontraumatic intracranial hemorrhage (I62)	0.43	34	(20, 50)	3.0 × 10⁻⁴
Other cerebrovascular diseases (I67)	0.31	24	(13, 35)	2.0 × 10⁻⁴
Other disorders of the brain (G93)	0.44	36	(32, 40)	5.6 × 10⁻⁵
Other headache syndromes (G44)	−0.91	−47	(−59, −31)	9.4 × 10⁻⁶
Other symptoms and signs involving cognitive functions and awareness (R41)	0.28	22	(19, 25)	2.1 × 10⁻⁶
Transient cerebral ischemic attacks and related syndromes (G45)	−0.85	−45	(−56, −31)	5.0 × 10⁻⁶
Unspecified psychosis not due to a substance or known physiological condition (F29)	−0.84	−44	(−57, −28)	7.7 × 10⁻⁴

*The interactive data table (https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#enrichment_tab) and the results directory of the project online data repository (https://github.com/covidclinical/Phase1.1NeuroRCode/tree/master/results) show the log2 value of enrichment (LOE), 95% confidence intervals, and p values for all neurological ICD-codes adjusted for multiple hypothesis testing.

RRD: Relative risk difference = Observed relative risk − 1.
consistent with prior reports and associated with worse health outcomes. Given that hospitalized COVID-19 patients can manifest a wide range of symptoms and signs, certain neurological conditions do not cleanly fall within parent diagnostic codes with clearly specific descriptions (e.g., ICD-10 G04: encephalitis, myelitis and encephalomyelitis; ICD-10 G61: inflammatory polyneuropathy). In the case of “other disorders of brain” (including “unspecified disorders of the brain”), the parent diagnostic code of ICD-10 G93 covers a wide range of conditions, some of which are potentially relevant to hospitalized COVID-19 patients though they do not belong to a single unifying category (e.g., G93.1: anoxic brain damage; G93.2: benign intracranial hypertension; G93.3: post-viral fatigue syndrome; G93.4: other and unspecified encephalopathy; G93.5: compression of brain; G93.6: cerebral edema; G93.82: brain death). Other diagnosis codes under G93 (e.g., G93.9: unspecified disorders of the brain) likely capture symptoms and signs that may not be easily categorized, commonly reported (i.e., symptoms and signs that are not headache, visual changes, dizziness, confusion, weakness, or sensory changes), and/or revealing any objective pathology based on common clinical tools such as physical exam, laboratory, neuroimaging or electrodiagnostic tests. Here are two potential clinical scenarios that could lead to the diagnostic code of “unspecified disorder of a brain”: (1) non-specific findings on the brain magnetic resonance imaging that were not consistent with ischemic stroke, intracranial hemorrhage, meningitis or encephalitis, neoplasm, or demyelination; (2) subjective sensory complaint without objective findings on exam or diagnostic tests that was not coded with specific diagnosis. In contrast, the diagnosis code ICD-10 R41 (“disorders of consciousness”) specifically refers to symptoms and signs involving awareness and cognitive function, which include disorientation, amnesia, neglect, age-related cognitive decline, altered mental status, specific cognitive deficits involving attention, concentration, communication, visuospatial and psychomotor domains. This code will cover common clinical scenarios in hospitalized patients such as delirium (fluctuating arousal state) and decreased responsiveness.

On the other hand, we find no statistically significant increase in the prevalence of other previously reported neurological conditions such as dizziness, headache, seizure, cranial neuropathy and visual changes that occur after the first admission to the hospital for COVID-19. The lower prevalence of early COVID-19 symptoms such as alterations in smell and taste in this study is likely attributable to the incomplete documentation of these symptoms in the EHR for the hospitalized patient population, particularly those with severe COVID-19. Crucially, these discrepancies may also be due to methodological differences, as our analysis accounted for baseline pre-admission prevalence by reporting the change in prevalence after admission.

Our other major finding indicates that a significantly higher proportion of hospitalized patients with severe COVID-19 (based on a computational phenotyping algorithm of COVID-19 severity that our group previously published) had disorders of consciousness and other disorders of the brain, encephalitis and/or myelitis, cerebrovascular events and myopathy when compared to patients who never had severe disease. Beyond corroborating prior reports, our findings highlighted similar patterns across geographically diverse multinational healthcare systems using a standardized approach. First among these findings, disorders of consciousness and other disorders of the brain include altered mental status, disorientation cognitive deficits, and encephalopathy. Hypoxemia from respiratory failure, metabolic disturbance, sedation for advanced respiratory support, acute delirium, and other more specific neurological involvement in the setting of severe COVID-19 could all be contributory.

Second, encephalitis and myelitis have variable manifestations and were likely under-reported due to difficulties of performing diagnostic studies (e.g., magnetic resonance imaging, lumbar puncture) especially during the early phase of pandemic. Neuropathological examinations have not uncovered evidence of direct viral infection of the central nervous system (CNS) though more detailed studies are needed to confirm whether the mechanisms underlying encephalitis (with or without myelitis) are direct CNS invasion by SARS-CoV-2, acute systemic inflammation with secondary CNS involvement, and/or post-infectious immune-mediated effect on the CNS.

Third, our finding of cerebrovascular diseases associated with severe COVID-19 include both ischemic strokes and intracranial hemorrhages (nontraumatic intracerebral and nontraumatic subarachnoid), highlighting the difficult balance when managing severe COVID-19 with respect to antipateleto and anticoagulation therapy. Strokes that occurred in the setting of COVID-19 were associated with high mortality and morbidity. COVID-19 might increase the risk of ischemic stroke through mechanisms such as activation of innate immune system, cardioembolic events, hypoxia-induced ischemia secondary to severe pulmonary disease, coagulation activation, thrombogenic angiopathy and endothelial damage. Proposed mechanisms underlying intracranial hemorrhage in COVID-19 include coagulation abnormalities, endothelial dysfunction, dysregulation of the renin-angiotensin system, and disruption of cerebral blood flow autoregulation. Patients with severe COVID-19 may have additional risk factors such as hypertension or cardiovascular disease that could further drive cerebrovascular diseases.

Finally, myopathy is common among severe COVID-19 patients. The cause is likely multifactorial: prolonged or severe critical illness, complications due to multi-organ involvement, or medication-induced myotoxicity (e.g., Hydroxychloroquine, steroids). The current data set does not permit subgroup analysis (e.g., ventilated versus non-ventilated patients). Further, most clinical studies to date, including our own, cannot establish whether the neurological phenotypes associated with severe COVID-19 are the direct consequence of SARS-CoV-9 neurotoxicity or due to secondary causes.

Interestingly, some neurological phenotypes are less prevalent in patients with severe COVID-19, including psychosis, dizziness, vision impairment, transient ischemic attack, and headache. The likely explanation is that critically ill patients with or without respiratory failure would either not have an objective evaluation or proper documentation and coding for these conditions given that patients with severe disease are likely to be sedated and/or having altered mental status.

Several analytical elements strengthen the study. Chief of among them, the federated approach of adopting common EHR data elements and standardized processes for representing clinical events with local quality control.
differentials this study from other EHR-based efforts, complements physician/neurologist-reported registry efforts \(^1\), and is well suited for multinational and multi-institutional clinical discovery. Critically, the local clinician experts and data scientists at each 4CE contributing healthcare system ensure the control of EHR data quality according to the consortium standard and improve the study rigor. The overall concordance between the main study findings with other registry-based studies is reassuring. Second, our approach of aggregating EHR data, specifically the ICD codes at categorical level, reduced the potential concern for variations in coding practice across diverse healthcare systems that include general medical, neurology, critical care, and rehabilitation settings.

Third, the 4CE contributing healthcare systems shared aggregate clinical data following a pre-defined analysis plan while adhering to multi-national patient privacy laws such as the United States Health Insurance Portability and Accountability Act (HIPAA) and the European Union General Data Protection Regulation (GDPR). Fourth, we rapidly implemented the analysis plan at scale by leveraging existing informatics infrastructures and frameworks at each 4CE contributing healthcare system. This federated approach of using EHR data for clinical discovery presents a complementary and alternative approach to the more labor-intensive registry-based approach. Finally, our prevalence study used the 1-year pre-admission period for comparison, which generated more realistic prevalence estimation of neurological conditions among hospitalized patients with COVID-19 than approaches that do not account for pre-admission prevalence. Given the protracted and changing nature of the COVID-19 pandemic, we intentionally included only data during the first hospitalization for COVID-19, specifically during the early phase of the pandemic, to appropriately account for pre-admission prevalence.

Our study has limitations as the result of trade-offs to standardize common data collection from multinational healthcare systems while strictly preserving patient privacy and adhering to privacy laws governing all contributing healthcare systems. First, this study relied on ICD codes that may not capture fully or accurately the disease phenotypes, particularly for conditions better documented in clinical notes. To standardize the collection of ICD codes across diverse contributing healthcare systems, we used ICD codes at the categorical level (e.g., the first 3 alphanumeric characters before the decimal point for ICD-10). As such, further characterization of certain conditions such as "other disorders of the brain" was not feasible at this stage, though we are working towards a standardized approach of capturing full ICD codes for the next stage of analyses. Second, because we aggregated data across healthcare systems, we were unable to consolidate all related ICD codes (e.g., organizing into PheCode \(^41\)) at the individual patient level. Similarly, the 4CE consortium is preparing a standardized approach to enable aggregate patient-level analyses from each contributing healthcare system. Third, we might not have captured all pre-admission EHR data if patients did not receive their entire care in the same hospital system as the COVID-19 admission. This is a limitation common to all research using EHR data from countries without universal health systems such as the USA. Reassuringly, subgroup analysis showed consistent results between US and non-US contributing healthcare systems. Finally, contributing healthcare systems with small patient counts used obfuscation to reduce the risk of re-identifying the health systems, but the effect of obfuscation is negligible because few healthcare systems had neurological conditions of interest in cases fewer than the obfuscation level. Despite the limitations of deploying this rapid, scalable, patient privacy-preserving research strategy, our key findings were consistent with prior reports from well-characterized but often smaller, single-country and/or single-center cohort studies.

In conclusion, this multinational prevalence study highlighted a range of central and peripheral neurological phenotypes in hospitalized patients with PCR-confirmed SARS-CoV-2 infection, particularly among patients with severe disease. Our multinational and multi-institutional EHR-based efforts using a standardized procedure and common data elements with careful local data quality control complement registry-based research design. In future studies, we will conduct individual-level analysis using additional EHR data such as complete ICD codes, identify risk factors for worse health outcomes (e.g., hospitalization duration, death, readmission) and examine long-term sequelae in COVID-19 patients with neurological phenotypes.

Methods
Patients and data. 4CE contributing healthcare systems began in March 2020 to collect EHR data from hospitalized patients with positive SARS-CoV-2 RT-PCR tests. The analyzed data captured the early phase of the pandemic, spanning from January 2020 through early September 2020. We defined COVID-19–related hospitalization as the first hospital admission that occurred between 7 days before and up to 14 days after the first positive SARS-CoV-2 PCR test. The first admission date within this ~ 7 to +14 day window is the index admission date.

According to the 4CE consortium agreement, we de-identified contributing healthcare systems to protect their confidentiality. The institutional review board of each participating health system (eTable 1) approved the sharing of anonymous, aggregate data in compliance with multi-national patient privacy laws exempting the requirement for individual patient consent as there was no direct patient recruitment or contact. Some healthcare systems applied a small level of obfuscation (i.e., masking of low counts, eTable 1) to preserve system-specific privacy and to reduce the risk of patient re-identification, though it had no significant impact on the total patient counts.

Using the 4CE standard of common EHR data elements \(^25\), we collected demographics (age, gender, self-identified race/ethnicity) and the International Classification of Disease (ICD) codes (versions 9 or 10) pertaining to neurological conditions (Fig. 1) as well as COVID-19 severity based on the internationally validated 4CE COVID-19 severity criteria \(^30\). Among the contributing healthcare systems, only Italian healthcare systems provided exclusively ICD-9 codes while the rest of the healthcare systems provided predominantly ICD-10 codes. As such, we used ICD-10 data for the main analyses and ICD-9 data for supplementary analyses. To standardize EHR data elements, we used the first three alphanumeric characters of a given ICD code, which designates the category of the disease or injury (e.g., ICD-10 G44 denotes the category of “Other headache syndromes”).
Table 2. The 4CE criteria of severe COVID-19. Comprising the occurrence of diagnoses, procedures, laboratory results and medications, this computational phenotyping algorithm of severity has been internationally validated (through manual chart review by local clinician experts at participating healthcare systems) to be a clinically reasonable proxy for hospitalized patients who experienced severe status of COVID-19. This approach is applicable when the aggregate electronic health records data from each contributing healthcare system are available but not the patient-level data. Please see Methods and further detail in a separate 4CE publication30.

Severe illness category	Clinical events
Diagnoses	Acute respiratory distress syndrome, ventilator-associated pneumonia
Procedures	Insertion of endotracheal tube; invasive mechanical ventilation
Laboratory results	PaCO₂, PaO₂
Medications	General anesthetics; benzodiazepine derivatives; muscle relaxants; other hypnotics and sedatives; adrenergic and dopaminergic agents; other cardiac stimulants; other respiratory system products; phosphodiesterase inhibitors; platelet aggregation inhibitors excluding heparin; vasopressin and analogues

For all patients hospitalized with COVID-19, we collected ICD codes at two time periods, before and after the date of admission of the first hospitalization for COVID-19. The period before COVID-19 hospitalization ranged from −365 days to −15 days preceding the admission date. Inclusion of EHR data up to 1 year before admission is a pragmatic decision to balance available data from all healthcare systems and minimize past medical conditions that might not be relevant. The period after admission date ranged from the date of admission to the end of the hospitalization. According to the pre-planned consortium-wide strategy, we excluded all codes in the 2 weeks preceding the index hospital admission date to ensure that diagnoses before admission were independent of COVID-19. It could take a few days from SARS-CoV-2 infection to symptom onset and additional days before a positive PCR test and/or hospital admission. Similarly, we analyzed ICD codes before and after admission date according to whether patients met the 4CE criteria for severe COVID-1930 (Fig. 1).

Exposures. We first examined all hospitalized patients with PCR-confirmed positive SARS-CoV-2. We then examined hospitalized patients with COVID-19 who met the 4CE criteria for severe COVID-19, including advanced respiratory care management at any point during their hospitalization. Including diagnoses, procedures, laboratory results and medications (Table 2). Because we used aggregate EHR data in this study, patient-level indicators of severity (e.g., patient-level laboratory value or medication) were unavailable. In response, we applied a computational algorithm of COVID-19 severity that the 4CE consortium previously developed and internationally validated (through chart review by local clinician experts at participating healthcare systems) to be a clinically reasonable proxy for hospitalized patients who experienced severe COVID-19 status30.

Neurological outcomes. We queried 21 ICD-10 codes in 12 categories pertaining to neurological phenotypes following a comprehensive literature search in August 2020. The neurological disease categories included consciousness, coordination, dizziness, headache, inflammatory, muscle, neuropathy, psychiatric, seizure, vascular, vision and other unspecified neurological conditions (Table 3).

Statistical analyses. We first compared the prevalence of each neurological ICD code and disease category among all hospitalized patients with COVID-19. For each ICD code, we reported the total count and the proportion of patients hospitalized with COVID-19 at each healthcare system (and each country), both before and after admission date (Supplementary Material, eEq. 1). We used the proportion data before admission as reference control. We calculated the difference in the proportion of cases with a given ICD code before and after admission date (eEq. 2) and used paired two-sided t-tests to examine whether there was a statistically significant difference in the proportion after admission date when compared to that before admission date.

We next compared the prevalence of each neurological ICD code and disease category after admission date between patients who ever met the criteria of severe COVID-19 and those who did not, by healthcare system and by country. For each ICD code, we computed the expected number of severe cases (eEq. 3) and compared with the observed number of severe cases for the given neurological code. To examine the difference in proportion of severe cases for the neurological ICD codes, we calculated the enrichment of each neurological ICD code by dividing the observed number of severe cases by the expected number of severe cases and reported a value of log₂ enrichment (LOE) and its 95% confidence interval (CI) (eEq. 4). We estimated the LOE 95% CI using the Delta method42. We chose LOE as a statistic measure for the difference between the proportion of severe cases and never-severe cases for a given neurological condition because it allows symmetric visualization of enrichment or depletion (equivalent confidence intervals for enrichment and depletion). Finally, we computed the p-values using Fisher’s exact test43 and corrected for multiple hypothesis testing with Benjamini–Hochberg’s false discovery rate (FDR) procedure44. A result was statistically significant if p_{FDR} < 0.05. All analyses were performed in the R environment.
Table 3. Mapping of neurological disease categories to ICD-10 category codes and their descriptions. *To standardize the collection of ICD codes across diverse contributing healthcare systems and to mitigate coding discrepancies, we used ICD codes at the categorical level (e.g., the first 3 alphanumeric characters before the decimal point for ICD-10).

Disease category	ICD-10 code*	ICD-10 code description
Consciousness	R41	Other symptoms and signs involving cognitive functions and awareness
Coordination	R27	Other lack of coordination
Dizziness	R42	Dizziness and giddiness
Headache	G44	Other headache syndromes
Inflammatory	G03	Meningitis due to other and unspecified causes
Inflammatory	G04	Encephalitis, myelitis and encephalomyelitis
Muscle	G72	Other and unspecified myopathies
Muscle	M60	Myositis
Neuropathy	G61	Inflammatory polyneuropathy
Neuropathy	G65	Sequelae of inflammatory and toxic polyneuropathies
Neuropathy	R43	Disturbances of smell and taste
Other	G93	Other disorders of the brain
Psychiatric	F29	Unspecified psychosis not due to a substance or known physiological condition
Seizure	G40	Epilepsy and recurrent seizures
Vascular	G45	Transient cerebral ischemic attacks and related syndromes
Vascular	G46	Vascular syndromes of brain in cerebrovascular disease
Vascular	I60	Nontraumatic subarachnoid hemorrhage
Vascular	I61	Nontraumatic intracerebral hemorrhage
Vascular	I62	Other and unspecified nontraumatic intracranial hemorrhage
Vascular	I67	Other cerebrovascular diseases
Vision	H54	Blindness and low vision

Data availability
The 4CE consortium does not have permission from each individual contributing healthcare system to release electronic health records data for public access. Only aggregate data were shared by healthcare systems for this study. All aggregate data in a de-identified fashion are available for download (http://www.covidclinical.net).

Code availability
Our analysis results are available in browsable R notebooks (https://github.com/covidclinical/Phase1.1Neur oCode/) under CC BY 4.0, with source code distributed under a BSD 3-Clause License. Figure 1 was created with Biorender (Biorender.com). Figures 2, 3, 4 as well as all supplementary figures were created using R v.4.0.3 (http://www.R-project.org)45 and the package ggplot246.

Received: 22 April 2021; Accepted: 23 September 2021
Published online: 12 October 2021

References
1. Mahase, E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ 368, m1036 (2020).
2. Koralnik, I. J. & Tyler, K. L. COVID-19: A global threat to the nervous system. Ann. Neurol. 88, 1–11 (2020).
3. Pezinni, A. & Padovani, A. Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol. 16, 636–644 (2020).
4. Eskandar, E. N. et al. Neurologic syndromes predict higher in-hospital mortality in COVID-19. Neurology 96, e1527–e1538 (2021).
5. Ellul, M. A. et al. Neurological associations of COVID-19. Lancet Neurol. 19, 767–783 (2020).
6. Moriguchi, T. et al. A first case of meningitis/encephalitis associated with SARS-CoV-2 infection. Neurology 96, e1527–e1538 (2021).
7. Novi, G. et al. Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurolog 96, e1527–e1538 (2021).
8. Linkin, M. et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology 95, 221–223 (2020).
9. Yildiz, A. et al. Guillain-Barré syndrome associated with COVID-19. N. Engl. J. Med. 382, 2574–2576 (2020).
10. Novi, G., et al. Neuromuscular and neurological manifestations of Guillain-Barré syndrome associated with COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 7, e797 (2020).
11. Dinkin, M. et al. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurolog 96, e1527–e1538 (2021).
12. Paterson, R. W. et al. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 143, awaa240 (2020).
13. Spinato, G. et al. Alternations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA 323, 2089 (2020).
14. Sydakia, M. et al. Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol. 14, 1474–1480 (2021).
15. Rogers, J. P. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7, 611–627 (2020).
16. Oxley, T. J. et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N. Engl. J. Med. 382, e60 (2020).
17. Abdel-Mannan, O. et al. Neurologic and radiographic findings associated with COVID-19 infection in children. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.2687 (2020)
18. Ray, S. T. J. et al. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: A prospective national cohort study. Lancet Child Adolesc. Health https://doi.org/10.1016/s2352-4642(21)00193-0 (2021)
19. Mao, L. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683 (2020)
20. Varatharaj, A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry 7, 875–882 (2020)
21. Drake, T. M. et al. Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: A prospective, multicentre cohort study. Lancet 398, 223–237 (2021)
22. Benassi, A. et al. Clinical characteristics and outcomes of inpatients with neurologic disease and COVID-19 in Brescia, Lombardy, Italy. Neurology 95, e910–e920 (2020)
23. Helms, J. et al. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382, 2268–2270 (2020)
24. Liotta, E. M. et al. Frequent neurologic manifestations and encephalopathy-associated morbidities in Covid-19 patients. Ann. Clin. Transl. Neurol. 324, 603 (2020)
25. Frontera, J. A. et al. A prospective study of neurologic disorders in hospitalized COVID-19 patients in New York City. Neurology https://doi.org/10.1212/WNL.0000000000001097 (2020)
26. Taquet, M., Geddes, J. R., Husain, M., Luciano, S. & Harrison, P. J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 8, 416–427 (2021)
27. Chou, S.-H.-Y. et al. Global incidence of neurologic manifestations among patients hospitalized with COVID-19—A report for the GCS-NeuroCOVID consortium and the ENERGY consortium. JAMA Netw. Open 4, e2112131 (2021)
28. Brat, G. A. et al. International electronic health record-derived COVID-19 clinical course profiles: The 4CE consortium. NPJ Digit. Med. 3, 109 (2020)
29. Weber, G. M. et al. International comparisons of harmonized laboratory value trajectories to predict severe COVID-19: Leveraging the 4CE collaborative across 342 hospitals and 6 countries: A retrospective cohort study. medRxiv https://doi.org/10.1101/2020.12.16.20247684 (2020)
30. Klann, J. G. et al. Validation of an internationally derived patient severity phenotype to support COVID-19 analytics from electronic health record data. J. Am. Med. Inform. Assoc. 28, 1411–1420. https://doi.org/10.1093/jamia/ocab018 (2021)
31. Bourgeois, F. T. et al. International analysis of electronic health records of children and youth hospitalized with COVID-19 infection in 6 countries. Jama Netw. Open 4, e2112596 (2021)
32. Pun, B. T. et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): A multicentre cohort study. Lancet Respir. Med. 9, 239–250 (2021)
33. Cozentino, G. et al. Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: A critical systematic review. Eur. J. Neurol. https://doi.org/10.1111/ene.15045 (2021)
34. Zühlke, A. et al. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 77, 1018–1027 (2020)
35. Thakur, K. T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain https://doi.org/10.1093/brain/awab148 (2021)
36. Siegl, J. E. et al. Cerebrovascular events and outcomes in hospitalized patients with COVID-19: The SVIN COVID-19 Multinational Registry. Int. J. Stroke 52, 1747493020959216 (2020)
37. Levi, M., Thachil, J., Iba, T. & Levy, J. H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet. Haematol. 7, e438–e440 (2020)
38. Guan, W.-J. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020)
39. Bagnato, S. et al. Critical illness myopathy after COVID-19. Int. J. Infect. Dis. 99, 276–278 (2020)
40. McKnet, M. et al. The Global Consortium Study of Neurological Dysfunction in COVID-19 (GCS-NeuroCOVID): Development of case report forms for global use. Neurocrit. Care 33, 793–828 (2020)
41. Zhang, Y. et al. High-throughput phenotyping with electronic medical record data using a common semi-supervised approach (PheCAP). Nat. Protoc. 14, 3426–3444 (2019)
42. Wasserman, L. All of Statistics: A Concise Course in Statistical Inference (Springer, 2013)
43. Fisher, R. A. On the interpretation of χ^2 from contingency tables, and the calculation of P. J. R. Stat. Soc. 85, 87–94 (1922)
44. Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Ann. Genet. 44, 263–278 (2001)
45. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009)

Acknowledgements
We greatly appreciate Margaret Vella in her coordination of the 4CE consortium effort and assistance in the manuscript submission.

Author contributions
TL, A.G.S., J.S., G.O., P.A., S.V., D.M., and Z.X. contributed to concept and design of the study. B.B., N.L., Y.L., M.M., K.N., L.P., M.S., E.S., A.T., I.K., S.V., D.M., and Z.X. contributed to data collection. TL, A.G.S., J.S., C.H., K.N., T.C., P.A., S.V., D.M., and Z.X. contributed to data analysis. T.L., A.G.S., J.S., C.H., A.S., B.B., N.L., Y.L., J.M., L.P., T.C., G.O., P.A., S.V., D.M., and Z.X. contributed to drafting and editing the manuscript. All named authors have approved the final manuscript.

Funding
AS is funded by National Institutes of Health (NIH) National Heart Lung, and Blood Institute (NHLBI) K23HL148394 and L40HL148910, and NIH-National Center for Advancing Translational Sciences (NCATS) UL1TR001420. JM is funded by NIH-National Institute of Allergy and Infectious Disease (NIAID) AI16179. LP is funded by NCATS Clinical and Translational Science Award (CTSA) Number UL1TR002366. GO is funded by NIH National Institute of Environmental Health Sciences (NIEHS) P30ES017885 and National Cancer Institute (NCI) U24CA210967. SV is funded by NIH-National Library of Medicine (NLM) R01LM012095 and NCATS UL1TR001857. DM is funded by NCATS CTSA Number UL1-TR001878. ZX is funded by NIH National Institute of Neurological Disorders and Stroke (NINDS) R01NS098023.
Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-99481-9.

Correspondence and requests for materials should be addressed to Z.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

The Consortium for Clinical Characterization of COVID-19 by EHR (4CE)

James R. Aaron12, Giuseppe Agapito13, Adem Albayrak14, Mario Alessiani15, Danilo F. Amendola15, François Angoulvant17, Li L. J. Anthony18, Bruce J. Aronow19, Andrew Atz20, Balshi21, Douglas S. Bell22, Antonio Bellasi23, Riccardo Bellazzi24, Vincent Benoît25, Michele Beraghi26, José Luis Bernal Sobrino27, Mélodie Bernaux28, Romain Bey29, Alvar Blanco Martínez27, Martin Boeker29, Clara-Lea Bonzel2, John Booth30, Silvano Bosari31, Florence T. Bourgeois32, Robert L. Bradford32, Gabriel A. Brat2, Stéphane Bréant22, Nicholas W. Brown3, William A. Bryant30, Mauro Bucalo3, Anita Burg34, Mario Cannataro35, Aldo Carmona36, Charlotte Caucheteaux37, Julien Champ38, Krista Chen39, Jin Chen40, Luca Chiavotto41,42, Lorenzo Chiudinelli23, James J. Cimino39, Tiago K. Colicchio43, Sylvie Cormont42, Sébastien Cossin44, Jean B. Craig45, Juan Luis Cruz Bermúdez27, Juan Cruz Rojo27, Arianna Dagliati24, Mohammad Darian46, Christel Daniel25, Anahita Davoudi3, Batsal Devkota47, Julien Dubiel25, Loic Esteve48, Shirley Fan49, Robert W. Follett22, Paula S. A. Gaiolla50, Thomas Ganslandt51, Noelia García Barrio27, Lana X. Garmire11, Nils Gehlenborg2, Alon Geva39,52, Stéphane Granger53, Alexandre Gramfort37, Romain Groux44, Nicolas Grün5, Olivier Grisel17, David A. Hanauer53, Christian Haverkamp29, Bing He11, Warren R. Henderson23, Martin Hilka25, John H. Holmes5, Petar Horki23, Kenneth M. Huling3, Meghan R. Hutch6, Richard W. Issitt26, Anne Sophie Jannot24, Vianney Jouhet44, Ramakanth Kavuru42, Mark S. Keller2, Katie Kirchoff54, Jeffrey G. Klann55, Ian D. Krantz1,56, Detlef Kraska37, Ashok K. Krishnamurthy58, Sehi L’Yi2, Judith Leblanc44, Andressa R. R. Leite4, Guillaume Lemaître37, Leslie Lenert45, Damien Leprovost60, Molei Liu61, Sarah Lozano-Zahonero9, Kristine E. Lynch62, Sadiqa Mahmood14, Sarah Maidlow63, Adeline C. Makoudjou Tchendjou29, Alberto Malovini94, Kenneth D. Mandl19, Chengsheng Mao6, Anupama Maram65, Patricia Martel66, Aaron J. Masino67, Michael E. Matheny68, Thomas Maulhardt29, Maria Mazzitelli35, Michael T. McDuffie2, Arthur Mensch69, Fatima Ashraf70, Marianna Milano53, Marcos P. Minicucci50, Bertrand Moa44, Cinta Moraleta21, Jeffrey S. Morris3, Karyn L. Moshali72, Sajad Mouavi4, Douglas A. Murad22, Shawn N. Murphy73, Thomas P. Naughton65, Antoine Neuraz34, James B. Norman2, Jihad Obeid45, Marina P. Okoshi74, Karen L. Olson39,75, Nina Orlova25, Brian D. Ostasiewski76, Nathan P. Palmer4, Nicolas Paris25, Miguel Pedroza Jimenez27, Emily R. Pfaff22, Danielle Pillioni2, Hans U. Prokosch27, Robson A. Prudente46, Victor Quiroz González27, Rachel B. Ramoni78, Maryna Raskin14, Siegbert Rieg39, Gustavo Roig Dominguez27, Pablo Rojo27, Carlos Sáez29, Elisa Salamanca25, Arnaud Sandrin25, Janaina C. C. Santos16,80,
Maria Savino64, Juergen Schulte62, Luigia Scudeller31, Neil J. Sebire20, Pablo Serrano Balazote37, Patricia Serre20, Arnaud Serret-Larmande3, Zahra Shakeri22, Domenico Silvio63, Piotr Slis39, Charles Sonday83, Anastasia Spiridou30, Bryce W. Q. Tan84, Byorn W. L. Tan84, Suzana E. Tanni74, Deanne M. Taylor47, Ana I. Terriza-Torres27, Valentina Tibollo64, Patric Tippmann29, Carlo Torti35, Enrico M. Trecarichi35, Yi-Ju Tseng85, Andrew K. Vallejos86, Gael Varoquaux27,87, Margaret Vella32, Jill-Jenn Vie88, Michele Vitacca89, Kavishwar B. Wagh利好45, Lemuel R. Waitman30, Demian Wassermann37, Griffin M. Weber2, Yuan William2, Nadir Yehya67, Alberto Zambelli91, Harrison G. Zhang2, Daniela Zoeller29 & Chiara Zucco35

12Department of Biomedical Informatics, University of Kentucky, Lexington, KY, USA. 13Department of Legal, Economic and Social Sciences, University Magna Graecia di Catanzaro, Catanzaro, Italy. 14Department of Peurogery, ASST Pavia, Lombardo. Region Health System, Pavia, Italy. 15Clinical Research Unit of Botucatu Medical School, Sao Paulo State University, Botucatu, Brazil. 16Pediatric Emergency Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France. 17National Center for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore. 18Departments of Biomedical Informatics, Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA. 19Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA. 20Department of Surgery, St. Luke's University Health Network, Bethlehem, PA, USA. 21Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. 22UOC Ricerca, Innovazione e Brand Reputation, ASST Papa Giovanni XXIII, Bergamo, Italy. 23Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy. 24IT Department, Innovation & Data, APHP Greater Paris University Hospital, Paris, France. 25T.I. Department, ASST Pavia, Pavia, Italy. 26Health Informatics, Hospital Universitario, 12 de Octubre, Madrid, Spain. 27Strategy and Transformation Department, APHP Greater Paris University Hospital, Paris, France. 28Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany. 29Digital Research, Informatics and Virtual Environments (DRIVE), Great Ormond Street Hospital for Children, London, UK. 30Scientific Direction, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy. 31North Carolina Translational and Clinical Sciences (NC TraCS) Institute, University of North Carolina, Chapel Hill, NC, USA. 32BIOMERIS (BIOMedical Research Informatics Solutions), Pavia, Italy. 33Department of Biomedical Informatics, HEGP APHP Greater Paris University Hospital, Paris, France. 34Department of Medical and Surgical Sciences, Data Analytics Research Center, University Magna Graecia di Catanzaro, Catanzaro, Italy. 35Department of Anesthesia, St. Luke's University Health Network, Bethlehem, PA, USA. 36Université Paris-Saclay, Inria, CEA, Palaiseau, France. 37INRIA Sophia-Antipolis–ZENITH Team, LIRMM, Montpellier, France. 38Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. 39Department of Internal Medicine, University of Kentucky, Lexington, KY, USA. 40Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy. 41Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy. 42Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA. 43IAM Unit, Bordeaux University Hospital/ERIAS-Inserm U1219 BPH, Bordeaux, France. 44Biomedical Informatics Center, Medical University of South Carolina, Charleston, SC, USA. 45Clinical Research Informatics, Boston Children's Hospital, Boston, MA, USA. 46Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. 47SED/SIERRA, Inria Centre de Paris, Paris, France. 48Health Information Technology & Services, University of Michigan, Ann Arbor, MI, USA. 49Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, Botucatu, Brazil. 50Heinrich-Lanz-Center for Digital Health, University Medicine Mannheim, Heidelberg University, Mannheim, Germany. 51Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Boston, MA, USA. 52Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA. 53MSSI Medical University of South Carolina, Charleston, SC, USA. 54Department of Medicine, Massachusetts General Hospital, Boston, MA, USA. 55Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. 56Center for Medical Information and Communication Technology, University Hospital, Erlangen, Germany. 57Renaissance Computing Institute/Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA. 58Clinical Research Unit, Saint Antoine Hospital, APHP Greater Paris University Hospital, Paris, France. 59Clevy.io, Paris, France. 60Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 61VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, USA. 62MICHR Informatics, University of Michigan, Ann Arbor, MI, USA. 63Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy. 64Harvard Catalyst, Harvard Medical School, Boston, MA, USA. 65Clinical Research Unit, Paris Saclay, APHP Greater Paris University Hospital, Paris, France. 66Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA. 67VA Informatics and Computing Infrastructure, Tennessee Valley Healthcare System, Veterans Affairs Medical Center, Washington, D.C., USA. 68École Normale Supérieure, PSL Université Paris, Paris, France. 69BIG-ARC, The University of Texas Health Science Center at Houston, School of Biomedical Informatics, Houston, TX, USA. 70Pediatric Infectious Disease Department, Hospital Universitario, 12 de Octubre, Madrid, Spain. 71Department of Infectious Diseases, Great Ormond Street Hospital for Children, London, UK. 72Department of Neurology, Massachusetts General Hospital, Boston, MA, USA. 73Internal Medicine Department of Botucatu Medical School, Sao Paulo State University, Botucatu, Brazil. 74Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA. 75Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, NC, USA. 76Department of Medical Informatics, University of Erlangen-Nürnberg, Erlangen, Germany. 77Department of Veterans Affairs, Office of Research and Development, Baltimore, MD, USA. 78Biomedical Data Science Lab, ITACA Institute, Universitat
Politècnica de València, València, Spain. 80Nurse Department of FMB-Medicine School of Botucatu, Botucatu, Brazil. 81Management Engineering, ASST Pavia, Lombardia Region Health System, Pavia, Italy. 82Department of Anesthesiology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany. 83Critical Care Medicine, Department of Medicine, St. Luke's University Health Network, Bethlehem, PA, USA. 84Department of Medicine, National University Hospital, Singapore, Singapore. 85Department of Information Management, Chang Gung University, Taoyuan, Taiwan. 86Clinical & Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA. 87Montréal Neurological Institute, McGill University, Montreal, Canada. 88SequeL, Inria Lille, Villeneuve-d'Ascq, France. 89Respiratory Department, ICS S Maugeri IRCCS, Pavia, Italy. 90Department of Health Management and Informatics, University of Missouri, Columbia, MO, USA. 91Department of Oncology, ASST Papa Giovanni XXIII, Bergamo, Italy.