Fischer Carbene Complexes of Iridium(I) for Application in Catalytic Transfer Hydrogenation

G. Kabelo Ramollo, Ian Strydom, Manuel A. Fernandes, Andreas Lemmerer, Stephen O. Ojwach, Juanita L. van Wyk, and Daniela I. Bezuidenhout*

ABSTRACT: New examples of the very rare class of iridium(I) Fischer carbene complexes (FCCs) are reported from the facile transmetalation from group 6 FCCs. Postcomplexation modification of either the carbene ligand or the ancillary ligands results in a tunable Ir² metal center, for unprecedented application as a (pre)catalyst in a benchmark transfer hydrogenation reaction. The introduction of an aminocarbene ligand with a pendant N-donor moiety capable of hemilabile coordination yielded the best catalytic results with turnover frequencies reaching 445 h⁻¹ and requiring 0.1 mol % catalyst and 0.5 mol % base loading, respectively.

The ability to finely tune the electronic poles of the metal–carbon (double) bond results in unique chemical reactivity. In the case of heteroatom-stabilized Fischer carbene complexes (FCCs),¹ a resurgence in the interest of this versatile chemical bond has been seen to go beyond the traditional applications in template organic synthesis to especially photophysical, optical, and sensing applications.² However, applications in catalysis are still lacking due to the inherent difficulties associated with preparing FCCs of the late transition metals. The requirements of low metal oxidation states and the presence of modifiable carbonyl or isonitrile ligands for nucleophilic attack in the preparation of FCCs,³ often in the presence of halide coligands, are limiting. The use of carbene transfer reactions from group 6 metals have been employed in catalytic transmetalation reactions for alkene and allene cyclization reactions, but reports of isolated late-transition-metal FCCs are rare.⁴ This is primarily due to the self-dimerization observed for the electrophilic carbene ligands,⁵ although appropriate electron-donating coligands or donating Fischer carbene ligand substituents have enabled the isolation of rhodium(I) FCCs that are stable at room temperature.⁶ In this regard, we have reported ferrocenyl Fischer carbene ligands coordinated to rhodium(I) that were stable to both atmospheric conditions and elevated temperatures and pressures.⁷ More importantly, we could show that these Rh² FCCs were efficient in catalyzing the hydroformylation of 1-octene. In this work, the strategy of transmetalation is extended to the preparation of unprecedented iridium(I) FCC analogues, and the use of these group 9 transition-metal FCCs as catalyst precursors in the transfer hydrogenation reaction is investigated.

Pentacarbonyl tungsten(0) ethoxycarbene complexes, containing the strongly electron donating carbene substituent p,N,N-dimethylaniline (p-DMA)⁸ or the organometallic fragment ferrocenyl (Fc),⁹ were employed as the precursor tungsten(0) FCCs for the preparation of the corresponding Ir² FCCs 1 and 2 (see Scheme 1), following a methodology similar to that employed for the analogous rhodium(I) FCC with a ferrocenyl (Fc) carbene substituent, [Rh(cod)Cl(\text{C(OEt)Fc})] (cod = 1,5-cyclooctadiene).⁷ The carbene transfer reaction ensues with stirring of an equimolar mixture of the group 6 precursor FCC with the dimer [Ir(cod)Cl]₂₀ in dichloromethane solvent, at room temperature. The reaction progress was monitored with thin-layer chromatography (tlc), and reaction completion was observed within 24 h. Surprisingly, employing the precursor [W(CO)₅\{C(OEt)-Cp′Re(CO)₃\}]¹⁰ (Cp′ = cyclopentadienyl), using the same methodology, gave facile access to the FCC 3 (Scheme 1), despite the known electrophilicity of this carbene ligand as a result of the “draining” of electron density by the −Re(CO)₃ moiety.¹¹ Previously, Fischer carbene ligands containing

Scheme 1. Carbene Transfer from Tungsten(0) FCCs for the Preparation of 1–3

1 Ar = p-DMA (91%)
2 Ar = Fc (77%)
3 Ar = Cp′Re(CO)₃ (75%)

Received: January 10, 2020
Published: March 26, 2020
electron-withdrawing substituents have resulted exclusively in kinetic and thermal decomposition dimerization products.6–7

Examples of iridium(III) FCCs are very rare. These include the iridium(III) FCCs generated by C–H bond activation of ethers as reported by the groups of Carmona12 and Grubbs,13 respectively. In addition to this class of compounds, two isolated examples of IrIII heteroatom-stabilized carbene complexes have been reported,14 while the use of either a cyclic aminocarbene ligand15 or an acyclic diaminocarbene ligand16 has paved the way for free carbene generation and complexation to the only two examples of IrIII FCCs preceding this report. In our case, such stringent reaction conditions could be circumvented via direct carbene transfer reactions (see the Supporting Information for complex synthesis and characterization). Simple substitution reactions could be employed to significantly alter the electronic environment around the central IrI, by replacement of the cod ligands with the nitrogen lone pair.17 The ethoxycarbene complexes increased stabilization of the electrophilic carbene carbon by NMR resonances of the carbene carbon atoms due to the ligand16 has paved the way for free carbene generation and characterization. Simple substitution reactions could be employed to significantly alter the electronic environment around the central IrI, by replacement of the cod ligands with the nitrogen lone pair.17

The ubiquitous NHC ligands are also widely employed as hemilabile chelation activity of the ethoxycarbenes with either N-propylamine or N,N-dimethyl-1,2-diaminoethane (4–6, 8) (Scheme 2). The latter diamine was employed to investigate the possibility of chelation to form a metallacyclic FC ligand. The tertiary amino group remains as a metallacyclic FC ligand. The tertiary amino group remains as

![Scheme 2. Postcomplexation Modification to Yield Complexes 4–8](https://dx.doi.org/10.1021/acs.inorgchem.0c00079)

Table 1. Selected Spectroscopic Data for Complexes 1–8

[Ir]	13C δ(C(carbene))	13C δ(CO)	IR ν(CO) (cm⁻¹)	TEP (cm⁻¹)
1	276.7h	2052h		
2	286.6h	2063h		2049h
3	275.1h	2063h		2051h
4	240.3h	2063h		2049h
5	245.4h	2063h		2051h
6	245.5h	2063h		2051h
7	277.4h	184.1f, 170.1f	1987f, 2069df	2055f
8	232.5h	183.6f, 170.3f	1980, 2063df	2050f

hRecorded in CD2Cl2. Recorded in CDCl3. Recorded in C6D6. Calculated for the nonisolated dicarbonyl analogues of these complexes; see section S3 in the Supporting Information.

The tautomeric C(carbene) bond lengths (1.954(7) Å), due to the increased π back-donation required for the significantly more electrophilic ethoxycarbene ligand in comparison to the p-DMA- and Fc-substituted FCCs 1 and 2, with Ir–C(carbene) bond lengths of 1.972(2) and 1.963(9) Å, respectively. In contrast, the cod coligand substitution by two carbonyl ligands has the opposite effect, where introduction of the strongly π acidic CO ligands and competing requirement for π back donation result in a significantly longer Ir–C(carbene) bond length for 7 (2.065(9) Å), in comparison to the cod analogue 2 (1.963(9) Å). Similarly, the shortest C(carbene)–O bond length is seen for 7 (2.065(9) Å) and is indicative of significant participation of the ethoxy O atom toward carbene carbon stabilization. However, all of the Ir–C(carbene) bond lengths (1.954(7)–2.065(9) Å) are significantly shorter in comparison to those of the only other known structure of an IrIII FCC, with Ir–C(carbene) = 2.094(5) Å,15a attesting to the greater Ir–C bond order and degree of backdonation. The presence of the coordinated carbonyl ligands also provides the opportunity to calculate Tolman electronic parameters (TEPs) for the carbene ligands as an estimation of the electron-donating ability of the :C(OEt)Fc and :C(NHPr)Fc carbene ligands18 in comparison to what is known for a wide range of N-heterocyclic carbene (NHCs). The TEP values were determined from a linear regression model TEP = 0.8475[ν ν(CO)Ir] + 336.2 cm⁻¹.19 Calculated for the nonisolated dicarbonyl analogues of these complexes; see section S3 in the Supporting Information.
hydrogen transfer reactions, although examples of iridium(I) catalysts are less common. However, to our knowledge, only one example of an acyclic carbene IrI complex active in transfer hydrogenation has been reported.15a The stability displayed by complexes 1−8 with the electronically modifiable FCC ligands portended their use as catalysts in the transfer hydrogenation of ketones.20 Acetophenone was employed as the model substrate, with isopropyl alcohol solvent as the sacrificial hydrogen donor. The reaction conditions were optimized by variation of reaction times, catalysts, and base loadings (see Table S4, section S6, in the Supporting Information). Finally, the catalytic experiments were conducted in isopropyl alcohol solvent at reflux temperature, with 0.1 mol % catalyst and 0.5 mol % base loading, with respect to the substrate acetophenone (Table 2). The addition of mercury to the catalytic reaction (entry 11, Table 2) did not result in a variation of either the conversion or calculated TOF in comparison to the mercury-free equivalent entry 6 of Table 2, indicative of a homogeneous mode of action.21 In addition, a stability test was conducted whereby complex 6 and a stoichiometric amount of base KOH was refluxed in isopropyl alcohol solvent for 16 h. Both the 1H and 13C NMR spectra provide clear evidence that the coordinated carbene ligand remains intact (Figures S22 and S23 in the Supporting Information).

In general, more electron donating carbene ligands, e.g. aminocarbene (entry 4, Table 2) vs ethoxycarbene (entry 1, Table 2) or Fc-FC (entry 2, Table 2) and p-DMA-FC (entry 1, Table 2) vs Cp‘Re(CO)\textsubscript{3}-FC (entry 3, Table 2), perform better, as was also found to be the case for NHCs.22b This is also true for the coligands cod (entries 2 and 5, Table 2) vs (CO)\textsubscript{2} (entries 7 and 8, Table 2), where the overall electrophilic nature of the coordination sphere influences the performance of the catalytic metal center. However, the most noteworthy observation is the best performance of complex 6 (entry 6, Table 2), in comparison to not only its ethoxy analogue 2 (entry 2) but also its monoamine analogue 5 (entry 5). Indeed, a yield of 89% is achieved after a reaction time of 2 h, giving rise to a calculated TOF of 445 h−1, employing a 0.1 mol % catalyst loading, and a low catalyst/base ratio of 1/5. This result rivals that of the best-performing Ir1 NHC catalysts previously reported.22 The excellent performance of this (pre)catalyst 6 can be ascribed not only to the donating ability of the Fc substituent for the electrophilic carbene ligand but possibly also to the synergistic benefits associated with the inclusion of a secondary catalytically active metal center, where FeII is known to be active in transfer hydrogenation.23 More
importantly, the improved activity of the catalyst 6 in comparison to 5, where 6 contains an aminocarbene ligand carrying a pendant N-donor moiety, is indicative of the potential hemilabile role of this aminocarbene ligand in the catalytic cycle, as proven for other iridium-mediated transfer hydrogenation catalysts.

In summary, rare examples of monoheteroatom-stabilized carbene complexes of Ir I are accessible via facile carbene transfer from group 6 FCCs. This paves the way to tunable carbene ligands coordinated to Ir I, via simple ligand modification reactions for new examples of catalytically relevant iridium(1) FCCs. Introduction of a donor-function-alized FCC ligand with a pendant N donor yields an Ir I (pre)catalyst for the hydrogen transfer reaction from isopropanol alcohol to acetophenone with high efficiency, requiring both a low catalyst and base loading for this benchmark reaction. This work reports but the second example of acyclic carbene complexes of iridium(1) for catalytic application in hydrogen transfer reactions. The catalytic activities of the Ir I complexes are largely controlled by the electrophilicity of the Ir I metal center.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acs.inorgchem.0c00079.

Experimental details, including synthesis, NMR and FT-IR spectra, SC-XRD, and catalysis details (PDF)

Accession Codes

CCDC 1970902–1970907 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: ++44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Daniela I. Bezuidenhout — Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, 90014 Oulu, Finland; orcid.org/0000-0001-7776-8227; Email: daniela.bezuidenhout@oulu.fi

Authors

G. Kabelo Ramollo — Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa

Ian Strydom — Chemistry Department, University of Pretoria, 0028 Pretoria, South Africa

Manuel A. Fernandes — Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; orcid.org/0000-0002-4849-5335

Andreas Lemmerer — Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; orcid.org/0000-0003-1569-2831

Stephen O. Ojwach — School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa

Juanita L. van Wyk — Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.0c00079

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the National Research Foundation, South Africa (NRF 115642; NRF 94784; NRF 100119; NRF 111705), University of KwaZulu-Natal (S.O.O.), and Sasol Technology R&D Pty. Ltd. (South Africa) for financial support (D.I.B.).

ABBREVIATIONS

FCC, Fischer carbene complex; NHC, N-heterocyclic carbene; Fe, ferrocenyl; p-DMA, para-N,N-dimethylamino; cod, 1,5-cyclooctadiene; tlc, thin-layer chromatography; TOF, turnover frequency

REFERENCES

(1) For recent reviews on FCCs, see: (a) Munz, D. Pushing electrons - Which carbene ligand for which application? Organometallics 2018, 37, 275. (b) Raubenheimer, H. G. Fischer carbene complexes remain favourite targets, and vehicles for new discoveries. Dalton Trans. 2014, 43, 16959. (c) Bezuidenhout, D. I.; Lotz, S.; Liles, D. C.; van der Westhuizen, B. Recent advances in the field of multicarbene and multimetal carbene complexes of the Fischer-type. Coord. Chem. Rev. 2012, 256, 479. (d) Dzik, W. I.; Zhang, X. P.; de Bruin, B. Redox noninnocence of carbene ligands: carbene radicals in...
(catalytic) C-C bond formation. *Inorg. Chem.* 2011, 50, 9896.

(e) Fernandez, I.; Cossio, F. P.; Sierra, M. A. Photochemistry of group 6 Fischer carbene complexes: Beyond the photocatalytation reaction. *Acc. Chem. Res.* 2011, 44, 479. (f) Fernandez-Rodriguez, Garcia-Pérez, P.; Aguilar, E. *Chem. Commun.* 2010, 46, 7670.

(11) The methoxycarbene analogue of this precursor, [W(CO)₃(C(OEt)CP(Re)(CO)₃)], has been previously reported by: Lage, M. L.; Fernandez, I.; Manchano, M. J.; Gomez-Gallego, M.; Sierra, M. A. The electronic structure and photochemistry of group 6 bimetallic (Fischer) carbene complexes: Beyond the photocatalytation reaction. *Chem. - Eur. J.* 2010, 16, 6616.

(12) Carmona, E.; Paneque, M.; Santos, L. L.; Salazar, V. Iridium carbonylcarbene complexes by C-H bond activation of aliphatic ethers and of alkyl aeryl ethers. *Coord. Chem. Rev.* 2005, 249, 1729.

(13) Whited, M. T.; Grubbs, R. H. Synthesis and reactivity of iridium(III) dihydroxyaminocarbenes. *Organometallics* 2008, 27, 5373.

(14) (a) Luecke, H. F.; Bergman, R. G. Synthesis, structural characterisation, and chemistry of a monocyclic cationic iridium carbene complex. *J. Am. Chem. Soc.* 1998, 120, 11008. (b) O’Connor, J. M.; Pu, L.; Rheimgold, A. L. J. *Am. Chem. Soc.* 1990, 112, 6232.

(15) (a) Yasue, R.; Yoshida, K. Synthesis and application of planar chiral cyclic (amino)(ferrrocenyl)carbene ligands bearing FeCp* group. *Organometallics* 2019, 38, 2211. (b) Rooyen, P. H.; Roper, W. R.; Stone, F. G. A. Carbene complexes of iridium, rhodium, manganese, chromium and iron containing thiazolidinyldiene and pyridinylidene ligands. *J. Chem. Soc., Dalton Trans.* 2017, 760.

(16) Herrmann, W. A.; Oefe, K.; von Preysing, D.; Herdtweck, E. Metal complexes of acyclic dianinocarbenes: links between N-heterocyclic carbene (NHC)- and Fischer-carbene complexes. *J. Organomet. Chem.* 2003, 684, 235.

(17) The electronic carbene stabilization effect of replacing the alkoxy carbene substituent with an amino group is well-documented. For recent representative examples, see: (a) Krapilović, H.; Hossoković, I.; Ludvik, J.; Zâlić, I. Theoretical predictions of redox potentials of Fischer-type chromium aminocarbenes complexes. *Organometallics* 2014, 33, 4964. (b) Landman, M.; Levell, T.; Pretorius, R.; Fraser, R.; Buitendach, B. E.; Conradie, M. M.; van Rooyen, P. H.; Conradie, J. Electrochemical behaviour and structure of novel phosphate- and phosphite-substituted tungsten(0) Fischer carbene complexes. *Electrochim. Acta 2014*, 130, 104. (c) Van der Westhuizen, B.; Swarts, P. J.; van Jaarsveld, L. J.; Liles, D. C.; Siegert, U.; Swarts, J. C.; Fernández, I.; Bzuiednout, D. I. Substituent effects on the electrochemical, spectroscopic and structural properties of Fischer mono- and bircarbene complexes of chromium(0). *Inorg. Chem.* 2013, 52, 6674. (d) Chu, G. M.; Guerrero-Martinez, A.; Fernandez, I.; Sierra, M. A. Tuning the photophysical properties of BODIPY molecules by π-conjugation with Fischer carbene complexes. *Chem. - Eur. J.* 2014, 20, 1367.

(18) Tolman, C. A. Steric effects of phosphorous ligands in organometallic chemistry and homogeneous catalysis. *Chem. Rev.* 1977, 77, 313.

(19) (a) Chiaramonte, A. R.; Li, X. W.; Jansen, M. C.; Faller, J. W.; Crabbé, R. H. Rhodium and iridium complexes of N-heterocyclic carbenes via transmetallation: Structure and dynamics. *Organometallics* 2003, 22, 1663. (b) Kelly, R. A., III; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens, E. D.; Bodner, J.; Smardiej, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. Determination of N-heterocyclic carbene (NHC) steric and electronic parameters using the [(NHCH)[[Cr(CO)3]Cl] system. *Organometallics* 2008, 27, 202.

(20) (a) Wang, D.; Astruc, D. The golden age of transfer hydrogenation. *Chem. Rev.* 2015, 115, 6621. (b) Brieger, G.; Nestrick, T. J. Catalytic transfer hydrogenation. *Chem. Rev.* 1974, 74, 567.

(21) Crabbé, R. H. Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts. *Chem. Rev.* 2012, 112, 1536.

(22) For selected relevant examples of 1⁺-NHC complexes employed as TH catalysts, see: (a) Gong, X.; Zhang, H.; Li, X. Iridium phosphine abnormal N-heterocyclic carbene complexes in catalytic hydrogen transfer reactions. *Tetrahedron Lett.* 2011, 52, 5596. (b) Gulcenal, S.; Gokeç, A. G.; Getinkaya, B. Iridium(1)-N-heterocyclic carbene complexes of benzimidazole-2-yliden: effect of electron donating groups on the catalytic transfer hydrogenation
reaction. *Dalton Trans.* 2013, 42, 7305. (c) Azua, A.; Mata, J. A.; Peris, E. *Organometallics* 2011, 30, 5532. (d) Jimenez, M. V.; Fernandez-Tornos, J.; Perez-Torrente, J. J.; Modrego, F. J.; Winterle, S.; Cunchillos, C.; Lahoz, F. J.; Oro, L. A. Iridium(I) complexes with hemilabile N-heterocyclic carbenes: efficient and versatile hydrogenation catalyst. *Organometallics* 2011, 30, 5493. (e) Jimenez, M. V.; Fernandez-Tornos, J.; Modrego, F. J.; Perez-Torrente, J. J.; Oro, L. A. Oxidation and β-alkylation of alcohols catalysed by iridium(I) complexes with functionalised N-heterocyclic carbene ligands. *Chem. - Eur. J.* 2015, 21, 17877. (f) Mazloomi, Z.; Pretorius, R.; Pamies, O.; Albrecht, M.; Dieguez, M. Triazolylidene iridium complexes for highly efficient and versatile transfer hydrogenation of C==O, C==N, and C==C bonds and for acceptorless alcohol oxidation. *Inorg. Chem.* 2017, 56, 11282.

(23) (a) Zuo, W.; Lough, J.; Li, Y. F.; Morris, R. H. Amine(imine)-diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. *Science* 2013, 342, 1080. (b) Naik, A.; Maji, T.; Reiser, O. Iron(II)-bis(sonitrile) complexes: novel catalysts in asymmetric transfer hydrogenation of aromatic and heteroaromatic ketones. *Chem. Commun.* 2010, 46, 4475. (c) Hopewell, J. P.; Martins, J. E. D.; Johnson, T. C.; Godfrey, J.; Wills, M. Developing asymmetric iron and ruthenium-based cyclone complexes; complex factors influence the asymmetric induction in the transfer hydrogenation of ketones. *Org. Biomol. Chem.* 2012, 10, 134.

(24) (a) Pretorius, R.; Mazloomi, Z.; Albrecht, M. Synthesis, hemilability, and catalytic transfer hydrogenation activity of iridium(III) and ruthenium(II) complexes containing oxygen-functionalised triazolylidene ligands. *J. Organomet. Chem.* 2017, 845, 196. (b) Azua, A.; Finn, M.; Yi, H.; Beatriz Dantas, A.; Voutchkova-Kostal, A. Transfer hydrogenation from glycerol: activity and recyclability of iridium and ruthenium sulfonate functionalized N-heterocyclic carbenes catalysts. *ACS Sustainable Chem. Eng.* 2017, 5, 3963. (c) Popoola, S. A.; Jaseer, E. A.; Al-Saadi, A. A.; Polo, V.; Casado, M. A.; Oro, L. A. Iridium complexes as catalysts in the hydrogen transfer of isopropanol to acetophenone: Ligand effects and DFT studies. *Inorg. Chim. Acta* 2015, 436, 146. (d) Gnanamgari, E.; Sauer, E. L. O.; Schley, N. D.; Butler, C.; Incarvito, C. D.; Crabtree, R. H. Iridium and ruthenium complexes with chelating N-heterocyclic carbenes: efficient catalysts for transfer hydrogenation, β-alkylation of alcohols, and N-alkylation of amines. *Organometallics* 2009, 28, 321.