Longest Square Subsequence Problem Revisited

Takafumi Inoue1, Shunsuke Inenaga1,2, and Hideo Bannai3

1 Department of Informatics, Kyushu University, Fukuoka, Japan
2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
3 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan

\texttt{inenaga@inf.kyushu-u.ac.jp}
\texttt{hdbn.dsc@tmd.ac.jp}

Abstract

The longest square subsequence (LSS) problem consists of computing a longest subsequence of a given string S that is a square, i.e., a longest subsequence of form XX appearing in S. It is known that an LSS of a string S of length n can be computed using $O(n^2)$ time [Kosowski 2004], or with (model-dependent) polylogarithmic speed-ups using $O(n^2(\log \log n)^2/\log^2 n)$ time [Tiskin 2013]. We present the first algorithm for LSS whose running time depends on other parameters, i.e., we show that an LSS of S can be computed in $O(r \min\{n, M\} \log \frac{n}{r} + M \log n)$ time with $O(M)$ space, where r is the length of an LSS of S and M is the number of matching points on S.

1 Introduction

Subsequences of a string S with some interesting properties have caught much attention in mathematics and algorithmics. The most well-known of such kinds is the longest increasing subsequence (LIS), which is a longest subsequence of S whose elements appear in lexicographically increasing order. It is well known that an LIS of a given string S of length n can be computed in $O(n \log n)$ time with $O(n)$ space [8]. Other examples are the longest palindromic subsequence (LPS) and the longest square subsequence (LSS). Since an LPS of S is a longest common subsequence (LCS) of S and its reversal, an LPS can be computed by a classical dynamic programming for LCS, or by any other LCS algorithms.

Computing an LSS of a string is not as easy, because a reduction from LSS to LCS essentially requires to consider $n - 1$ partition points on S. Kosowski [6] was the first to tackle this problem, and showed an $O(n^2)$-time $O(n)$-space LSS algorithm. Computing LSS can be motivated by e.g. finding an optimal partition point on a given string so that the corresponding prefix and suffix are most similar. Later, Tiskin [9] presented a (model-dependent) $O(n^2(\log \log n)^2/\log^2 n)$-time LSS algorithm, based on his semi-local string comparison technique applied to the $n - 1$ partition points (i.e. $n - 1$ pairs of prefixes and suffixes.) Since strongly sub-quadratic $O(n^{2-\epsilon})$-time LSS algorithms do not exist for any $\epsilon > 0$ unless the SETH is false [2], the aforementioned solutions are almost optimal in terms of n.
In this paper, we present the first LSS algorithm whose running time depends on other parameters, i.e., we show that an LSS of S can be computed in $O(r \min\{n, M\} \log \frac{n}{r} + M \log n)$ time with $O(M)$ space, where r is the length of an LSS of S and M is the number of matching points on S. This algorithm outperforms Tiskin’s $O(n^2(\log \log n)^2/\log^2 n)$-time algorithm when $r = o(n(\log \log n)^2/\log^2 n)$ and $M = o(n^2(\log \log n)^2/\log^3 n)$.

Our algorithm is based on a reduction from computing an LCS of two strings of total length n to computing an LIS of an integer sequence of length at most M, where M is roughly n^2/σ for uniformly distributed random strings over alphabets of size σ. We then use a slightly modified version of the dynamic LIS algorithm \cite{3} for our LIS instances that dynamically change over $n-1$ partition points on S. A similar but more involved reduction from LCS to LIS is recently used in an intermediate step of a reduction from dynamic time warping (DTW) to LIS \cite{7}. We emphasize that our reduction (as well as the one in \cite{7}) from LCS to LIS should not be confused with a well-known folklore reduction from LIS to LCS.

2 Preliminaries

Let Σ be an alphabet. An element S of Σ^* is called a string. The length of a string S is denoted by $|S|$. For any $1 \leq i \leq |S|$, $S[i]$ denotes the ith character of S. For any $1 \leq i \leq j \leq |S|$, $S[i..j]$ denotes the substring of X beginning at position i and ending at position j.

A string X is said to be a subsequence of a string S if there exists a sequence $1 \leq i_1 < \cdots < i_{|X|} \leq |S|$ of increasing positions of S such that $X = S[i_1] \cdots S[i_{|X|}]$. Such a sequence $i_1, \ldots, i_{|X|}$ of positions in S is said to be an occurrence of X in S.

A non-empty string Y of form XX is called a square. A square Y is called a square subsequence of a string S if square Y is a subsequence of S. Let $\text{LSS}(S)$ denote the length of the longest square subsequence (LSS) of string S. This paper deals with the problem of computing $\text{LSS}(S)$ for a given string S of length n.

For strings A, B, let $	ext{LCS}(A, B)$ denote the length of the longest common subsequence (LCS) of A and B. For a sequence T of numbers, a subsequence X of T is said to be an increasing subsequence of T if $X[i] < X[i+1]$ for $1 \leq i < |X|$. Let $\text{LIS}(T)$ denote the length of the longest increasing subsequence (LIS) of T.

A pair (i, j) of positions $1 \leq i < j \leq |S|$ is said to be a matching point if $S[i] = S[j]$. The set of all matching points of S is denoted by $\mathcal{M}(S)$, namely, $\mathcal{M}(S) = \{(i, j) \mid 1 \leq i < j \leq |S|, S[i] = S[j]\}$. Let $M = |\mathcal{M}(S)|$.

3 Algorithm

We begin with a simple folklore reduction of computing $\text{LSS}(S)$ to computing the LCS of $n-1$ pairs of the prefix and the suffix of S.

Lemma 1 \cite{6} $\text{LSS}(S) = 2 \max_{1 \leq p < n} \text{LCS}(S[1..p], S[p+1..n])$.

Following Lemma \cite{6}, one can use the decremental LCS algorithm by Kim and Park \cite{5} for computing $\text{LSS}(S)$. Given two strings A and B of length n, Kim and Park proposed how
to update, in $O(n)$ time, an $O(n^2)$-space representation for the dynamic programming table for $LCS(A, B)$ when the leftmost character is deleted from B. Since their algorithm also allows to append a character to A in $O(n)$ time, it turns out that $LSS(S)$ can be computed in $O(n^2)$ time and space. Kosowski [6] presented an $O(n^2)$-time $\Theta(n)$-space algorithm for computing $LSS(S)$, which can be seen as a space-efficient version of an application of Kim and Park’s algorithm to this specific problem of computing LSS. Tiskin [9] also considered the problem of computing $LSS(S)$, and showed that using his semi-local LCS method, $LSS(S)$ can be computed in $O(n^2(\log \log n)^2/\log^2 n)$ time. We remark that the log-shaving factor is model-dependent (i.e., Tiskin’s method uses the so-called “Four-Russian” technique).

Let $A = S[1..p]$, $A' = S[1..p + 1]$, $B = S[p + 1..n]$ and $B' = S[p + 2..n]$. For ease of explanations, suppose that the indices on B and B' begin with $p + 1$ and $p + 2$, respectively. Next, we further reduce computing $LCS(A', B')$ from (a representation of) $LCS(A, B)$, to computing an LIS of a dynamic integer sequence of length at most $M = |\mathcal{M}(S)|$.

For any integer pairs (u, v) and (x, y), let $(u, v) \prec (x, y)$ if (i) $u < x$, or (ii) $u = x$ and $v < y$. Consider the following integer sequence T: Let \mathcal{P} be the set of integer pairs $(i, n - j)$ such that $A[i] = B[j]$. Then, we set $T[q] = j$ iff the integer pair $(i, n - j)$ is of rank q in \mathcal{P} w.r.t. \prec. See Fig. [1] for an example. Intuitively, T is an integer sequence representation of the (transposed) matching points between A and B, obtained by scanning the matching points between A and B from the bottom row to the top row, where each row is scanned from right to left. Thus, the length of the integer sequence T is bounded by M.

Lemma 2 Any common subsequence of A and B corresponds to an increasing subsequence of T of the same length. Also, any increasing subsequence of T corresponds to a common subsequence of A and B of the same length.

Proof. For any common subsequence C of A and B, let $i_1 < \cdots < i_{|C|}$ and $j_1 < \cdots < j_{|C|}$ be occurrences of C in A and B, respectively. For any $1 \leq k < |C|$, let q_k and q_{k+1} be the ranks of integer pairs $(i_k, n - j_k)$ and $(i_{k+1}, n - j_{k+1})$ in the set \mathcal{P} w.r.t. \prec. By the definition of T, $q_k < q_{k+1}$ and $T[q_k] < T[q_{k+1}]$ hold. Hence, C corresponds to an increasing subsequence of T of the same length.

For any increasing subsequence I in T, let $t_1 < \cdots < t_{|I|}$ be an occurrence of I in T. For any $1 \leq k < |I|$, let $(i_k, n - j_k)$ and $(i_{k+1}, n - j_{k+1})$ be the integer pairs corresponding
Figure 2: Illustration on how points in the 2D plane (and elements in T) are to be deleted or inserted when A and B are updated to A' and B', respectively.

Let T' be the integer sequence for A' and B' defined analogously to T for A and B. Now the task is how to compute LIS(T') from (a data structure that represents) LIS(T). See Fig. 2 for an example. Observe that when the leftmost character is deleted from B (upper part of Fig. 2), then the lowest points are deleted from the 2D plane, and thus the smallest elements are deleted from T. Also, when the leftmost character of B is appended to A (upper part of Fig. 2), which gives us A' = S[1..p + 1], then a new point for every j with $A'[j] = B'[j]$ is inserted to the right end of the 2D plane in decreasing order of j, and thus j is appended to the right end of T in decreasing order of j, one by one. Thus, computing LCS(A', B') from LCS(A, B) reduces to the following sub-problem:

Problem 1 For a dynamic integer sequence T, maintain a data structure that supports the following operations and queries:

- **Insertion**: Insert a new element to the right-end of T;
- **Batched Deletion**: Delete all the smallest elements from T;

By Lemma 2, computing LCS(A, B) can be reduced to computing LIS(T).
• Query: Return LIS(T).

We can use Chen et al.’s algorithm \[3\] for insertions. Let \(\ell = \text{LIS}(T) \). Their algorithm supports insertions at the right-end of \(T \) in \(O(\log |T|) \) time each. Since \(|T| \leq M \leq n^2 \), insertions at the right-end can be done in \(O(\log n) \) time.

Next, let us consider batched deletions. Chen et al. \[3\] showed that an insertion or deletion of a single element at an arbitrary position of \(T \) can be supported in \(O(\ell \log |T|) \) time each. However, since our batched deletion may contain \(O(|T|) \) characters in the worst case, a naïve application of a single-element deletion only leads to an inefficient \(O(\ell |T| \log \frac{n}{T}) \) \(\subseteq O(\ell M \log \frac{n}{T}) \) batched deletion. In what follows, we show how to support batched deletions in \(O(\ell \log \frac{n}{T}) \) time each, using Chen et al.’s data structure.

For any position \(1 \leq t \leq |T| \) in sequence \(T \), let \(l(t) \) denote the length of an LIS of \(T[1..t] \) that has an occurrence \(i_1 < \cdots < i_l(t) = t \), namely, an occurrence that ends at position \(t \) in \(T \). The following observations are immediate:

Lemma 3 (\[3\]) Let \(q \) be the second to last position of any occurrence of a length-\(l(t) \) LIS of \(T[1..t] \) ending at position \(t \). Then, \(l(q) = l(t) - 1 \).

Lemma 4 (\[3\]) If \(q < t \) and \(l(q) = l(t) \), then \(T[q] \geq T[t] \).

For any \(1 \leq k \leq \ell \), let \(\mathcal{L}_k \) be a list of pairs \(\langle t, T[t] \rangle \) such that \(l(t) = k \), sorted in increasing order of the first elements \(t \). See Fig. 3 for an example. It follows from Lemma 4 that this list is also sorted in non-increasing order of the second elements \(T[t] \). It is clear that \(\text{LIS}(T) = \max\{k \mid \mathcal{L}_k \neq \emptyset\} \). It is also clear that for any \(k > 1 \), if \(\mathcal{L}_k \neq \emptyset \), then \(\mathcal{L}_{k-1} \neq \emptyset \).

Thus, our task is to maintain a collection of the non-empty lists \(\mathcal{L}_1, \ldots, \mathcal{L}_\ell \) that are subject to change when \(T \) is updated to \(T' \). As in \[3\], we maintain each \(\mathcal{L}_k \) by a balanced binary search tree such as red-black trees \[4\] or AVL trees \[1\].

The following simple claim is a key to our batched deletion algorithm:

Lemma 5 The pairs having the smallest elements of \(T \) are at the tail of \(\mathcal{L}_1 \).

Proof. Since the list \(\mathcal{L}_1 \) is sorted in non-increasing order of the second elements, the claim clearly holds. \(\square\)

Lemma 6 We can perform a batched deletion of the smallest elements of \(T \) in \(O(\ell \log \frac{n}{T}) \) time, where \(\ell = \text{LIS}(T) \).

Proof. Due to Lemma 5 we can delete the smallest elements of \(T \) from the list \(\mathcal{L}_1 \) by splitting the balanced search tree into two, in \(O(\log |\mathcal{L}_1|) \) time.

The rest of our algorithm follows Chen et al.’s approach \[3\]: Note that the split operation on \(\mathcal{L}_1 \) can incur changes to the other lists \(\mathcal{L}_2, \ldots, \mathcal{L}_\ell \). Let \(l'(t) \) be the length of
an LIS of $T'[1..t]$ that has an occurrence ending at position t in T', and let L'_k be the list of pairs $\langle t, T'[t]\rangle$ such that $l'(t) = k$ sorted in increasing order of the first elements t.

Let Q_1 be the list of deleted pairs corresponding to the smallest elements in T, and let $Q_k = \{ t \mid l(t) = k, l'(t) = k - 1 \}$ for $k \geq 2$. Then, it is clear that $L'_k = (L_k \setminus Q_k) \cup Q_{k+1}$.

Chen et al. [3] showed that Q_k can be found in $O(\log |L_{k+1}|)$ time for each k, provided that Q_k has been already computed. Since Q_k is a consecutive sub-list of L_k, the split operation for $L_k \setminus Q_k$ can be done in $O(\log |L_k|)$ time, and the concatenation operation for $(L_k \setminus Q_k) \cup Q_{k+1}$ can be done in $O(\log |L_k| + \log |L_{k+1}|)$ time, by standard split and concatenation algorithms on balanced search trees.

Thus our batched deletion takes $O(\sum_{1 \leq k \leq \ell} \log |L_k|) = O(\log(|L_1| \cdots |L_\ell|))$ time, where $\ell = \text{LIS}(T)$. Since $\sum_{1 \leq k \leq \ell} |L_k| = |T|$ and $\log(|L_1| \cdots |L_\ell|)$ is maximized when $|L_1| = \cdots = |L_\ell|$, the above time complexity is bounded by $O(\ell \log \frac{|T|}{\ell}) \subseteq O(\ell \log \frac{n}{\ell})$ time.

We are ready to show our main theorem.

Theorem 1 An LSS of a string S can be computed in $O(r \min \{n, M\} \log \frac{n}{r} + M \log n)$ time with $O(M)$ space, where $n = |S|$, $r = \text{LSS}(S)$, and $M = |\text{M}(S)|$.

Proof. By Lemma [1] and Lemma [2] it suffices to consider the total number of insertions, batched deletions, and queries of Problem [1] for computing an LSS of our dynamic integer sequence T. Since each matching point in $\text{M}(S)$ is inserted to the dynamic sequence exactly once, the total number of insertions is exactly M. The total number of batched deletions is bounded by the number $n - 1$ of partition points p that divide S into $S[1..p]$ and $S[p+1..n]$. Also, it is clearly bounded by the number M of matching points. Thus, the total number of batched deletions is at most $\min \{n, M\}$. We perform queries $n - 1$ times for all $1 \leq p < n$. Each query for $\text{LIS}(T)$ can be answered in $O(1)$ time, by explicitly maintaining and storing the value of $\text{LIS}(T)$ each time the dynamic integer sequence T is updated. Thus, it follows from Lemma [3] that our algorithm returns $\text{LSS}(S)$ in $O(r \min \{n, M\} \log \frac{n}{r} + M \log n)$ time. By keeping the lists L_k for a partition point p that gives $2\ell = r = \text{LSS}(S)$, we can also return an LSS (as a string) in $O(r \log \frac{n}{r})$ time, by finding an optimal sequence elements from $L_{\ell}, L_{\ell-1}, \ldots, L_1$.

The space complexity is clearly linear in the total size of the lists L_1, \ldots, L_ℓ, which is $|T| \in O(M)$.

We remark that our $O(r \min \{n, M\} \log \frac{n}{r} + M \log n)$-time algorithm outperforms Tiskin’s $O(n^2(\log \log n)^2 / \log^2 n)$-time solution [9] when $r = o(n(\log \log n)^2 / \log^3 n)$ and $M = o(n^2 (\log \log n)^2 / \log^3 n)$. The former condition $r = o(n(\log \log n)^2 / \log^3 n)$ implies that our algorithm can be faster than Tiskin’s algorithm (as well as Kosowski’s algorithm [8]) when the length r of the LSS of the input string S is relatively short. For uniformly distributed random strings of length n over an alphabet of size σ, we have $M \approx n^2 / \sigma$. Thus, for alphabets of size $\sigma = \omega(\log^3 n / (\log \log n)^2)$, the latter condition $M = o(n^2 (\log \log n)^2 / \log^3 n)$ is likely to be the case for the majority of inputs.
References

[1] G. Adelson-Velsky and E. Landis. An algorithm for the organization of information. *Proceedings of the USSR Academy of Sciences (in Russian)*, 146:263–266, 1962. English translation by Myron J. Ricci in Soviet Mathematics - Doklady, 3:1259–1263, 1962.

[2] K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for string problems and dynamic time warping. In *FOCS 2015*, pages 79–97, 2015. full version https://arxiv.org/abs/1502.01063.

[3] A. Chen, T. Chu, and N. Pinsker. Computing the longest increasing subsequence of a sequence subject to dynamic insertion. *CoRR*, abs/1309.7724, 2013.

[4] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In *FOCS 1978*, pages 8–21, 1978.

[5] S.-R. Kim and K. Park. A dynamic edit distance table. *J. Disc. Algo.*, 2:302–312, 2004.

[6] A. Kosowski. An efficient algorithm for the longest tandem scattered subsequence problem. In *Proc. SPIRE 2004*, pages 93–100, 2004.

[7] Y. Sakai and S. Inenaga. A reduction of the dynamic time warping distance to the longest increasing subsequence length. *CoRR*, abs/2005.09169, 2020.

[8] C. Schensted. Longest increasing and decreasing subsequences. *Canadian Journal of Mathematics*, 13:179–191, 1961.

[9] A. Tiskin. Semi-local string comparison: algorithmic techniques and applications. *CoRR*, abs/0707.3619, 2013.