Clinical effects of pharmacological variations in selective serotonin reuptake inhibitors: an overview

J. L. CARRASCO, C. SANDNER
Servicio de Psiquiatria, Hospital Clinico San Carlos, Madrid, Spain, Clinic Clinigoa, Lisbon, Portugal

SUMMARY
Although the selective serotonin reuptake inhibitor (SSRI) class of antidepressants shares a common primary pharmacology, namely the inhibition of serotonin reuptake, their secondary pharmacology is remarkably heterogeneous. Inhibition of serotonin reuptake and the consequent increase in serotonin availability are responsible for the relief of depressive symptoms and for some of the adverse effects of this class of drugs. Transsynaptic effects such as modulation of signalling cascades, gene expression processes and neuroplasticity are also important in the mechanism of action of antidepressants. However, this review shows that secondary properties of the SSRIs may contribute to the differences in efficacy and tolerability between members of the class. For example, fluvoxamine has affinity for \(\sigma_1 \)-receptors – a property likely to be responsible for its particular efficacy in delusional depression. By understanding the properties of SSRIs and employing careful selection of agents for individual patients, physicians are more able to tailor antidepressant treatments to their patients’ particular circumstances.

Keywords: Selective serotonin reuptake inhibitors; antidepressants; pharmacology; variations; overview; review

INTRODUCTION
Now that there are six selective serotonin reuptake inhibitors (SSRIs) available worldwide for the treatment of depression and other disorders, it is pertinent to consider the similarities and differences among and between them. While it is clear that all the SSRIs share the key property of inhibiting the reuptake of serotonin and thereby increasing the synaptic availability of this neurotransmitter, it is equally clear that, otherwise, their pharmacology is quite heterogeneous. Although all of the SSRIs are effective antidepressants, this heterogeneous pharmacology offers more opportunities for the psychiatrist to tailor the choice of treatment to the particular circumstances of the individual patient. This review based on Medline publications will examine the properties that the SSRIs do and do not share and how those properties that they do not share can be deployed to provide a better outcome for individual patients.

PHARMACOLOGY OF THE SSRIs
The simplified concept of an SSRI is that of a serotonin reuptake inhibitor. It is true that SSRIs all have several things in common, not the least of which is the blockade of the serotonin transporter that leads to elevation of serotonin levels throughout the central nervous system (CNS) and also throughout the entire body. Increases in serotonin levels in specific regions of the brain result in the therapeutic actions of the SSRIs. Unfortunately, the action of SSRIs on the serotonin transporter is not regionally specific, and increases in serotonin levels in some regions of the CNS and peripheral nervous system lead to side effects. The most common adverse reactions to the SSRIs are gastrointestinal, specifically nausea, and neuropsychiatric, particularly headache and tremor (1). While recent systematic reviews of randomised controlled trials have suggested a possible association between suicide attempts and the use of SSRIs (2,3), the evidence currently available does not support the hypothesis that antidepressants, or more specifically SSRIs, cause increased suicidality in patients with depression, nor do they appear to do so in patients treated with these drugs for other reasons (4).

Because this class of drugs has been used for many years, much has been learned of their individual properties, in particular their actions on different receptors, enzymes or other biological systems as well as on the serotonin reuptake site. It is now clear that the SSRIs are not all the same. On the contrary, patients may experience side effects that are due to properties that are different between the different SSRIs.

Some side effects are likely to be due to serotonin reuptake inhibition; indeed, some patients respond almost equally to all the SSRIs. However, the unique responses and side effects have more to teach us about how to use SSRIs most...
effectively. SSRIs not only have serotonin reuptake inhibitory properties, but some of them may also show more noradrenergic reuptake inhibition (e.g. paroxetine) (5). One SSRI, namely sertraline, may even have some potency as a dopamine reuptake inhibitor (6), while another may have effects at 5-HT_{2C} receptors (fluoxetine) (7). Similarly, paroxetine has effects at muscarinic receptors (8). Finally, fluvoxamine has shown affinity for the \(\sigma_1 \)-receptor, which may confer some specific clinical characteristics on this drug (9). These secondary pharmacodynamic properties therefore distinguish these drugs from each other.

Fluvoxamine

Preclinical studies suggest that fluvoxamine has effects at \(\sigma_1 \)-receptors (9). Recent research also shows that the \(\sigma \)-receptor modulates the N-methyl-D-aspartate (NMDA)/glutamate receptor (10). The most studied subtypes are the \(\sigma_1 \)- and \(\sigma_2 \)-receptors. In marked contrast to receptor systems such as serotonin and dopamine, \(\sigma \)-receptors are endoplasmic reticulum proteins (11) that probably interact with intracellular second messenger systems, particularly in the mobilisation of calcium (10). In addition, \(\sigma \)-receptors may exist in organs other than the brain (12–14). The \(\sigma_1 \)-receptor is more abundant in the dentate gyrus of the hippocampal formation, facial nucleus and various thalamic and hypothalamic nuclei (15). \(\sigma_2 \)-Receptor density is highest in various cranial nerve nuclei, followed by certain hippocampal subfields and laminae, the red nucleus, the interpeduncular nucleus and midlayers of primary and secondary motor cortices (15). The distribution of \(\sigma_1 \)- and \(\sigma_2 \)-receptors, as well as their different ontogenetic patterns, suggests that they are distinct entities (16).

\(\sigma \)-Binding sites regulate dopamine release in some areas of the brain (17), modulate NMDA-type glutamate receptors (18) [which has a knockon effect in regulating dopamine (19)] and are even involved in modulating substance P (20). These receptors have been shown to have important antiamnesic effects and a positive role in memory impairments (21–25).

Indeed, selective \(\sigma_1 \)-receptor agonists may have potential as cognitive enhancers during ageing (23). Moreover, the \(\sigma_1 \)-receptor also exerts a potent neuromodulatory role in the brain that may have relevance in the response to anxiety and stress (6,26,27), depression (28,29), learning and cognitive process (23,24,30), neuroprotection (27,31) and antipsychotic activity (32). Among the SSRIs, fluvoxamine has the highest affinity for the \(\sigma_1 \)-receptors (9) (Figure 1), suggesting that this drug may have particular benefits in the treatment of depressed patients who show features of anxiety/stress (33), and for whom memory impairment is particularly undesirable (34,35) [such as in depressed elderly patients (36,37)], and also in treating psychotic depression (38,39).

The most common adverse event reported for fluvoxamine is nausea, which tends to disappear after some days of treatment (40). The overall incidence of nausea is similar for all SSRIs (41). Other side effects include somnolence, asthenia and headache (42).

Fluvoxamine has no active metabolites to continue the pharmacological effects once fluvoxamine has been metabolised.

Paroxetine

Muscarinic effects are generally responsible for the unpleasant side effects of the tricyclic drugs that made compliance with drugs of this class so difficult for many patients. By contrast, a modest degree of anticholinergic sedation could promote a short-term amelioration of insomnia and anxiety and might even reduce the activating actions that some SSRIs possess (43). Routine clinical experience suggests that paroxetine (which is the SSRI with the highest affinity for the cholinergic receptor) appears to have such properties (Figure 2) (44). By contrast, anticholinergic activity can cause dry mouth, fatigue, tremor, weight gain and cognitive impairment (45–48).

![Figure 1](image)
A study by Pollock and colleagues (49) investigated the anticholinergic effects of paroxetine and the tricyclic agent nortriptyline in 61 elderly depressed patients. As expected, paroxetine had significantly less anticholinergic properties than nortriptyline; paroxetine was responsible for around 20% of the anticholinergic effects of nortriptyline. However, paroxetine was not devoid of anticholinergic effects. Randomised controlled clinical studies comparing paroxetine with other SSRIs have also shown that paroxetine possesses a significantly greater propensity to induce anticholinergic effects than other substances of the same class (50). By contrast, the lack of activating properties of paroxetine, or even some sedation, can be used to advantage in patients with insomnia (43).

Paroxetine also inhibits the reuptake of noradrenaline more than other antidepressants (51,52). This effect is substantially less potent than that of the tricyclic drugs such as desipramine and amitriptyline but is a full order of magnitude more potent than that of other SSRIs or nefazodone and venlafaxine (Figure 3) (53). Several case reports suggest that paroxetine has the highest incidence of withdrawal symptoms of all the SSRIs (54,55).

Paroxetine has no active metabolites to continue the pharmacological effects once paroxetine has been metabolised.

Fluoxetine

Although a member of the SSRI class, fluoxetine is in fact a more potent inhibitor of 5-HT$_{2C}$ receptors than other serotonin reuptake inhibitors (56). Inhibition of 5-HT$_{2C}$ receptors modulates brain norepinephrine and dopamine systems (57), which, in turn, cause activation and weight loss (58). It is well known that fluoxetine has activating properties, and this can lead to problems, such as insomnia and agitation, in anxious patients (59,60). By contrast, this property can be used to good effect in patients who have a lack of energy.

Fluoxetine has an active metabolite, norfluoxetine, which has a pharmacologic activity similar to the parent compound, with a half-life of 4–16 days (61).

Sertraline

Like the structurally related nomifensine, sertraline has significant dopamine uptake blocking effects, although these are considerably weaker than its serotonin uptake blocking properties. Nevertheless, sertraline is sufficiently potent at blocking dopamine uptake (62) to anticipate some clinical effects. On the negative side, some cardiovascular or extrapyramidal effects might also be expected (63,64). Sertraline might, however, be useful in patients with melancholic and retarded types of depression.

Together with fluoxetine, sertraline is one of the SSRIs with highest dopaminergic (D$_2$) affinity (65). Besides causing extrapyramidal symptoms, dopaminergic effects may account also for complaints of sexual dysfunction (66).

Sertraline has one active metabolite, which may continue to exert pharmacological effects once sertraline has been metabolised (67).

Citalopram

Citalopram is one of the most selective SSRIs and notably lacks activating and sedating properties. Citalopram has essentially no effect on noradrenergic receptors (65) but has the highest affinity for histamine H$_1$ receptors among the SSRIs (Figure 4) (44). The affinity of citalopram for H$_1$ receptors is, for example, over 100-fold higher than the affinity of fluvoxamine for H$_1$ receptors (44).

Citalopram has recently been associated with craving for carbohydrate (68) with patients experiencing consequent weight gain. Other reported side effects are sexual dysfunction and difficulty in concentration (69,70).
Citalopram has three active metabolites, which may continue to exert pharmacological effects once citalopram has been metabolised (71).

Escitalopram

Escitalopram is the active S-(+)-enantiomer of citalopram. Preclinical studies suggest that the R-(−)-enantiomer present in citalopram may counteract the effects of escitalopram (72), and there is evidence to suggest that escitalopram may have a faster onset of action than citalopram (73,74). Escitalopram has no effects on noradrenaline or dopamine uptake (75). Nevertheless, escitalopram has less affinity for H$_1$ receptors than citalopram, although its H$_1$ receptor affinity is higher than that demonstrated by other SSRIs (44).

The tolerability profile of escitalopram is similar to that of citalopram, with the most common adverse events being nausea, ejaculation disorder and insomnia (76).

Although less potent than the parent drug, two active metabolites have been observed (77). Some specific pharmacological data for escitalopram are still lacking in the literature.

CONCLUSIONS

Each of the SSRIs has a characteristic profile of positive and negative effects, and whilst the primary pharmacology (serotonin reuptake inhibition) is undoubtedly responsible for the antidepressant effects and some of the adverse effects (such as gastrointestinal disturbances), it is their other pharmacological actions that distinguish between the drugs and provide opportunities for the physician to choose the optimal antidepressant treatment for individual patients.

The SSRIs should be considered as distinctive therapeutic agents, and not as ‘almost identical’ drugs in the same therapeutic class. In addition to inhibition of serotonin reuptake, the SSRIs may also have a high σ$_1$-affinity (fluvoxamine),...
anticholinergic and noradrenergic properties (paroxetine), 5-HT\textsubscript{2C} effects (fluoxetine), dopamine activation (sertraline and fluoxetine) and histaminergic affinity (citalopram).

Pharmacological variations in the SSRIs distinguish one drug from the other and may explain why some patients respond better to one SSRI than another or tolerate one SSRI better than another.

REFERENCES

1 Edwards JG, Anderson I. Systematic review and guide to selection of serotonin reuptake inhibitors. Drugs 1999; 57: 507–33.
2 Healy D, Whitaker C. Antidepressants and suicide: risk-benefit conundrums. J Psychiatry Neurosci 2003; 28: 331–7.
3 Ferguson D, Doucette S, Cranley Glass K et al. Association between suicide attempts and selective serotonin reuptake inhibitors: systematic review of randomised controlled trials. BMJ 2005; 330: 396.
4 Lapierre YD. Suicidality with selective serotonin reuptake inhibitors: valid claim? J Psychiatry Neurosci 2003; 28: 340–7.
5 Owens MJ, Knight DL, Nemeroff CB. Paroxetine binding to the serotonin transporter: implications for therapy. Psychopharmacology 2001; 159: 741–8.
6 Lamberti MT, Truita C, Petry F. Extrapyramidal adverse effects associated with sertraline. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22: 741–8.
7 Koch S, Perry KW, Nelson DL, Conway RG, Threlkeld PG, Bymaster FP. R-fluoxetine increases extracellular DA, NE, as well as 5-HT in rat prefrontal cortex and hypothalamus: an in vivo microdialysis and receptor binding study. Neuropsychopharmacology 2002; 27: 949–59.
8 Schmitt JAJ, Kruizinga MJ, Riedel WJ. Non-serotonergic pharmacological profiles and associated effects of serotonergic reuptake inhibitors. J Psychopharmacol 2001; 15: 173–9.
9 Narita N, Hashimoto K, Tomita S, Minabe Y. Interactions of selective serotonin reuptake inhibitors with subtypes of serotonin receptors in rat brain. Eur J Pharmacol 1996; 307: 117–9.
10 Urani A, Romieu P, Portales-Casamar E, Roman FJ, Maurice T. The antidepressant-like effect induced by the sigma(1) receptor agonist igmesine involves modulation of intracellular calcium mobilization. Psychopharmacology 2002; 163: 26–35.
11 Takebayashi M, Hayashi T, Su TP. Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants. J Pharmacol Exp Ther 2002; 303: 1227–37.
12 Waterhouse RN, Mardon K, Giles KM, Collier TL, O’Brien JC. Halogenated 4-(phenoxymethyl) piperidines as potential radiolabeled probes for sigma-1 receptors: in vivo evaluation of [123I]-1-(iodopropen-2-yl)-4-[(4-cyanophenoxy)methyl]piperidine. J Med Chem 1997; 40: 1657–67.
13 Bergeron R, Debonnel G. Effects of low and high doses of selective sigma ligands: further evidence suggesting the existence of different subtypes of sigma receptors. Psychopharmacology 1997; 129: 215–24.
14 Debonnel G, DeMontigny C. Modulation of NMDA and dopaminergic neurotransmissions by sigma ligands: possible implications for the treatment of psychiatric disorders. Life Sci 1996; 58: 721–34.
15 Bouchard P, Quirion R. [3H]1,3-di(2-tyl)guanidine and [3H][+]-pentazocine binding sites in the rat brain: autoradiographic visualization of the putative sigma1 and sigma2 receptor subtypes. Neuroscience 1997; 76: 467–77.
16 McCann DJ, Weissman AD, Su TP. Sigma-1 and sigma-2 sites in rat brain: comparison of regional, ontogenetic, and subcellular patterns. Synapse 1994; 17: 182–9.
17 Gonzalez-Alvare GM, Thompson-Montgomery D, Deben SE, Werling LL. Functional and binding properties of sigma receptors in rat cerebellum. J Neurochem 1995; 65: 2509–16.
18 Shimizu S, Katsuki H, Takenaka C et al. Sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures. Eur J Pharmacol 2000; 388: 139–46.
19 Moison D, De Deurwaerder P, Cagnotto A et al. Intrastriatal administration of sigma ligands inhibits basal dopamine release in vivo. Neuropharmacology 2003; 45: 945–53.
20 Hornfeldt CS, Kitto KF, Larson AA. Evidence that the NH2-terminus of substance P modulates N-methyl-D-aspartate-induced activity by an action involving sigma receptors. Eur J Pharmacol 1996; 306: 15–22.
21 Maurice T, Urani A, Phan VL, Romieu P. The interaction between neuroactive steroids and the sigma1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Brain Res Rev 2001; 37: 116–32.
22 Maurice T, Phan VL, Urani A, Guillemain I. Differential involvement of the sigma(1) receptor in the anti-amnesic effect of neuroactive steroids, as demonstrated using an in vivo antisense strategy in the mouse. Br J Pharmacol 2001; 134: 1731–41.
23 Maurice T. Beneficial effect of the sigma(1) receptor agonist PRE-084 against the spatial learning deficits in aged rats. Eur J Pharmacol 2001; 431: 223–7.
24 Maurice T, Phan VL, Privat A. The anti-amnesic effects of sigma1 (sigma1) receptor agonists confirmed by in vivo antisense strategy in the mouse. Brain Res 2001; 898: 113–21.
25 Senda T, Matsuoka K, Okamoto K, Kobayashi T, Nakata K, Mita S. Ameliorating effect of SA4503, a novel sigma 1 receptor agonist, on memory impairments induced by cholinergic dysfunction in rats. Eur J Pharmacol 1996; 315: 1–10.
26 Kamei H, Kameyama T, Nabeshima T. Effects of sigma receptor ligands on conditioned fear stress. Methods Find Exp Clin Pharmacol 1998; 20: 613–8.
27 Maurice T, Phan VL, Urani A, Kamei H, Noda Y, Nabeshima T. Neuroactive neurosteroids as endogenous effectors for the sigma1 (sigma(1)) receptor: pharmacological evidence and therapeutic opportunities. Jpn J Pharmacol 1999; 81: 125–55.
28 Akkunne HC, Whetzel SZ, Wiley JN et al. The pharmacology of the novel and selective sigma ligand, PD 144418. Neuropharmacology 1997; 36: 51–62.
29 Berman RC, Debonnel G. Modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands. Br J Pharmacol 2001; 134: 691–9.
30 Hong WM, Werling LL. Evidence that the sigma-1 receptor is not directly coupled to G proteins. *Eur J Pharmacol* 2000; **408**: 117–25.

31 Phan VL, Urani A, Romieu P, Maurice T. Strain differences in sigma-1 receptor-mediated behaviours are related to neurosteroid levels. *Eur J Neurosci* 2002; **15**: 1523–34.

32 Langa F, Condony X, Tovar V et al. Generation and phenotypic analysis of sigma receptor type 1 (sigma 1) in knockout mice. *Eur J Neurosci* 2003; **18**: 2188–96.

33 Sonawalla SB, Spillmann MK, Kolsky AR et al. Efficacy of fluoroxetine in treatment of major depression with comorbid anxiety disorders. *J Clin Psychiatry* 1999; **60**: 580–3.

34 Perez A, Ashford JJ. A double-blind comparison of fluoxetine with mianserin in depressive illness. *Curr Med Res Opin* 1990; **12**: 234–41.

35 Hindmarch I. The behavioural toxicity of antidepressants: effects on function and sexual function. *Int Clin Psychopharmacol* 1998; **13** (Suppl. 6): S5–S8.

36 Wakelin J. Fluvoxamine in the treatment of the older depressed patient: double-blind, placebo-controlled data. *Int Clin Psychopharmacol* 1986; **1**: 221–30.

37 Wylie ME, Miller MD, Shear MK et al. Fluvoxamine pharmacotherapy of anxiety disorders in later life: preliminary open-trial data. *J Geriatr Psychiatry Neurol* 2000; **13**: 43–8.

38 Gatti F, Bellini L, Gasperini M, Perez J, Zanardi R, Smeraldi E. Fluvoxamine alone in the treatment of delusional depression. *Am J Psychiatry* 1996; **153**: 414–6.

39 Serreti A, Lattuada E, Zanardi R, Franchini L, Smeraldi E. Patterns of symptom improvement during antidepressant treatment of depression. *Psychiatry Res* 2000; **94**: 185–90.

40 Peretti S, Judge R, Hindmarch I. Safety and tolerability considerations: tricyclic antidepressants vs selective serotonin reuptake inhibitors. *Acta Psychiatr Scand Suppl* 2000; **403**: 17–25.

41 Trindade E, Menon D, Topfer LA, Colona C. Adverse effects associated with selective reuptake inhibitors and tricyclic antidepressants: a meta-analysis. *CMAJ* 1998; **159**: 1245–52.

42 Wagner W, Zaborny BA, Gray TE. Fluvoxamine. A review of its safety profile in world-wide studies. *Int Clin Psychopharmacol* 1994; **9**: 223–7.

43 Nowell PD, Reynolds CF, Buyse DJ, Dew MA, Kuper DJ. Paroxetine in the treatment of primary insomnia: preliminary clinical and electroencephalogram sleep data. *J Clin Psychiatry* 1999; **60**: 89–95.

44 Owens MJ, Knight DL, Nemeroff CB. Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. *Bioi Psychiatry* 2001; **50**: 345–50.

45 Zaninelli R, Bauer M, Jobert M, Muller-Oerlinghausen B. Changes in quantitatively assessed tremor during treatment of major depression with lithium augmented by paroxetine or amitriptyline. *J Clin Psychopharmacol* 2001; **21**: 190–8.

46 Hindmarch I, Kimber S, Cockle SM. Abrupt and brief discontinuation of antidepressant treatment: effects on cognitive function and psychomotor performance. *Int Clin Psychopharmacol* 2000; **15**: 305–18.

47 van Laar MW, Volkerts ER, Verbaten MN, Trooster S, van Megen HJ, Kenemans JL. Differential effects of amitriptyline, nefazodone and paroxetine on performance and brain indices of visual selective attention and working memory. *Psychopharmacology* 2002; **162**: 351–63.

48 Fava M, Judge R, Hoog SL, Nilsson ME, Koke SC. Fluoxetine versus sertraline and paroxetine in major depressive disorder: changes in weight with long-term treatment. *J Clin Psychiatry* 2000; **61**: 863–7.

49 Pollock BG, Mulsant BH, Nebes R et al. Serum anticholinergicity in elderly depressed patients treated with paroxetine or nortriptyline. *Am J Psychiatry* 1998; **155**: 1110–2.

50 Perna G, Bertani A, Caldirola D, Smeraldi E, Bellodi L. A comparison of citalopram and paroxetine in the treatment of panic disorder: a randomized, single-blind study. *Pharmacopsychiatry* 2001; **34**: 85–90.

51 Gilmore ML, Owens MJ, Nemeroff CB. Inhibition of norepinephrine uptake in patients with major depression treated with paroxetine. *Am J Psychiatry* 2002; **159**: 1702–10.

52 David DJ, Bourin M, Jego G, Przybyski C, Jolliet P, Gardier AM. Effects of acute treatment with paroxetine, citalopram and venlafaxine in vivo on noradrenaline and serotonin outflow: a microdialysis study in Swiss mice. *Br J Pharmacol* 2003; **140**: 1128–36.

53 Owens M, Morgan W, Platt S, Nemeroff C. Neurtransmitter receptor and transporter binding profile of antidepressants and their metabolites. *J Pharmacol Exp Ther* 1997; **283**: 1305–22.

54 Schatzberg AF. Antidepressant discontinuation syndrome: an update on serotonin uptake inhibitors. *J Clin Psychiatry* 1997; **58** (Suppl. 7): 3–4.

55 Michelson D, Fava M, Amsterdam J et al. Interruption of selective serotonin reuptake inhibitor treatment. Double-blind, placebo controlled trial. *Br J Psychiatry* 2000; **176**: 363–8.

56 Palvimaki EP, Kuoppamaki M, Syvalathi E, Hietala J. Differential effects of fluoxetine and citalopram treatments on serotonin 5-HT (2C) receptor occupancy in rat brain. *Int J Neuropsychopharmacol* 1999; **2**: 95–9.

57 Millan MJ, Dekeyne A, Gohert A. Serotonin (5HT) 2C receptor tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. *Neuropharmacology* 1998; **37**: 953–5.

58 Brymer C, Winograd CH. Fluoxetine in elderly patients: is there cause for concern? *J Am Geriatr Soc* 1992; **40**: 902–5.

59 Thase ME. Treatment issues related to sleep and depression. *J Clin Psychiatry* 2000; **61** (Suppl. 11): 46–50.

60 Buchman N, Strous RD, Baruch Y. Side effects of long-term treatment with fluoxetine. *Clin Neuropsychopharmacol* 2002; **25**: 55–7.

61 Lemberger L, Bergstrom RF, Wolen RL, Farid NA, Enas GG, Aronoff GR. Fluoxetine: clinical pharmacology and physiology disposition. *J Clin Psychiatry* 1985; **46**: 14–9.

62 Goodnick PJ, Goldstein BJ. Selective serotonin reuptake inhibitors in affective disorders. Basic pharmacology. *J Psychopharmacol* 1998; **12** (Suppl. B): S5–20.

63 Lambert MT, Trutia C, Petty F. Extrapyramidal adverse effects associated with sertraline. *Prog Neuropsychopharmacol Biol Psychiatry* 1998; **22**: 741–8.

64 Richelsen E. The pharmacology of antidepressants at the extrapyramidal symptoms in patients with Parkinson’s disease receiving antidepressant drugs: a pharmacoepidemiology study comparing seroton reuptake inhibitors and other antidepressant drugs. *Clin Neuropsychopharmacol* 2003; **26**: 142–5.
65 Sanchez C, Hyttel J. Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. *Cell Mol Neurobiol* 1999; 19: 467–89.
66 Richelsen E. The pharmacology of antidepressants at the synapse: focus on newer compounds. *J Clin Psychiatry* 1994; 55 (Suppl. A): 34–9.
67 Doogan GD, Caillard V. Sertraline: a new antidepressant. *J Clin Psychiatry* 1988; 49 (Suppl. 8): 46–51.
68 Bouwer CD, Harvey BH. Phasic craving for carbohydrate observed with citalopram. *Int Clin Psychopharmacol* 1996; 11: 273–8.
69 Harvey BH, Bouwer CD. Neuropharmacology of paradoxical weight gain with selective serotonin reuptake inhibitors. *Clin Neuropharmacol* 2000; 23: 90–7.
70 Bouchard JM, Strub N, Nil R. Citalopram and viloxazine in the treatment of depression by means of slow drop infusion. A double-blind comparative trial. *J Affect Disord* 1997; 46: 51–8.
71 Milne RJ, Goa L. Citalopram: a review of its pharmacologic and pharmacokinetic properties and therapeutic potential in depressive illness. *Drugs* 1991; 41: 450–77.
72 Mork A, Kreilgaard M, Sánchez C. The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats. *Neuropharmacology* 2003; 45: 167–73.
73 Montgomery SA, Loft H, Sánchez C, Reines EH, Papp M. Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. *Pharmacol Toxicol* 2001; 88: 282–6.
74 Gorman JM, Korotzer A, Su G. Efficacy comparison of escitalopram and citalopram in the treatment of major depressive disorder: pooled analysis of placebo-controlled trials. *CNS Spectr* 2002; 7: 40–4.
75 Sánchez C, Bergqvist PBF, Brennum LT et al. Escitalopram, the S(-)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects of animal models predictive of antidepressant and anxiolytic activities. *Psychopharmacology* 2003; 167: 353–62.
76 Hakkarainen H, Reines EH. Escitalopram and citalopram: safety comparison. Poster presented at the 7th World Congress of Biological Psychiatry (WCBP), Berlin, Germany, July 1–6, 2001.
77 von Moltke LL, Greenblatt DJ, Giancarlo GM, Granda BW, Harmatz JS, Shader RJ. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects and comparison to R-citalopram. *Drug Metab Dispos* 2001; 29: 1102–9.

Paper received May 2005, accepted July 2005