STATISTICAL FUNCTION TAGGING AND GRAMMATICAL RELATIONS OF MYANMAR SENTENCES

Win Win Thant1, Tin Myat Htwe2 and Ni Lar Thein3
1,3University of Computer Studies, Yangon, Myanmar
\\texttt{winwinthant@gmail.com}
\texttt{nilarthein@gmail.com}
2Natural Language Processing Laboratory
University of Computer Studies, Yangon, Myanmar
\texttt{tinmyathtwe@gmail.com}

\textbf{ABSTRACT}
This paper describes a context free grammar (CFG) based grammatical relations for Myanmar sentences which combine corpus-based function tagging system. Part of the challenge of statistical function tagging for Myanmar sentences comes from the fact that Myanmar has free-phrase-order and a complex morphological system. Function tagging is a pre-processing step to show grammatical relations of Myanmar sentences. In the task of function tagging, which tags the function of Myanmar sentences with correct segmentation, POS (part-of-speech) tagging and chunking information, we use Naive Bayesian theory to disambiguate the possible function tags of a word. We apply context free grammar (CFG) to find out the grammatical relations of the function tags. We also create a functional annotated tagged corpus for Myanmar and propose the grammar rules for Myanmar sentences. Experiments show that our analysis achieves a good result with simple sentences and complex sentences.

\textbf{KEYWORDS}
Grammatical relations, Function tagging, Naive Bayesian theory, Context-free-grammar

\section{INTRODUCTION}
Myanmar is an agglutinative language with a very productive inflectional system. This means that for any NLP application on Myanmar to be successful, some amount of functional analysis is necessary. Without it, the development of grammatical relations would not be feasible due to the sparse data problem bound to exist in the training data. It is the process of analyzing an input sequence in order to determine its grammatical structure with respect to a given grammar. Grammatical relations operate at word-level with the assumption that input sentences are pre-segmented, POS tagged and chunked.

The natural language processing community is in the strong position of having many available approaches to solving some of its most fundamental problems [1]. We have taken Myanmar language for information processing. Our approach makes use of two components. They are function tagging and grammatical relations. Function tags are useful for any application trying to follow the thread of the text –they find the ‘who does what’ of each clause, which can be useful to gain information about the situation or to learn more about the behaviour of words in the sentence [2]. The goal of function tagging is to assign syntactic categories like subject, object, time and location to each word in the text document. In case of function tagging, we use Naive Bayesian theory and the functional annotated tagged corpus. Grammatical relations are the process of analyzing an input sequence in order to determine its grammatical structure with
respect to a given grammar. The goal of the second one is to produce the relations of the grammatical structures of the sentences in Myanmar text as a parse tree.

Myanmar is SOV language. It is also a variable phrase order language. The free phrase order feature of Myanmar makes statistical function tagging a challenging task. Function tagging is a part of the Myanmar to English machine translation project. If high quality translation is to be achieved, language understanding is a necessity. One problem in Myanmar language processing is the lack of grammatical regularity in the language. This leads to very complex Myanmar grammar in order to obtain satisfactory results, which in term increases the complexity in the grammatical relation process, it is desired that simple grammar is to be used.

In our approach, we take the chunk level phrase with the combination of POS tag and its category which is the output of a fully described morphological analyzer [3][4], which is very important for agglutinative languages like Myanmar. A small corpus annotated manually serves as training data because the large scale Myanmar Corpus is unavailable at present. Since the large-scale annotated corpora, such as Penn Treebank, have been built in English, statistical knowledge extracted from them has been shown to be more and more crucial for natural language disambiguation [5]. As a distinctive language, Myanmar has many characteristics different from English. The use of statistical information efficiently in Myanmar language is still a virgin land waiting to explore.

Naïve Bayesian is chosen for its simplicity and user-friendliness. Naive-Bayesian classifier make strong assumptions about how the data is generated, and use a probabilistic model that reflects these assumptions [6]. They use a collection of labelled training examples to estimate the parameters of the generative model. Classification of new examples is performed with Bayes’ rule by selecting the class that is most likely to have generated the example.

2. LITERATURE SURVEY

Blaheta and Johnson [7] addressed the task of function tags assignment. They used a statistical algorithm based on a set of features grouped in trees, rather than chains. The advantage was that features can better contribute to overall performance for cases when several features are sparse. When such features are conditioned in a chain model the sparseness of a feature can have a dilution effect of an ulterior (conditioned) one.

Mihai Lintean and Vasile Rus[8] described the use of two machine learning techniques, naive Bayes and decision trees, to address the task of assigning function tags to nodes in a syntactic parse tree. They used a set of features inspired from Blaheta and Johnson [7]. The set of classes they used in their model corresponds to the set of functional tags in Penn Treebank. To generate the training data, they have considered only nodes with functional tags, ignoring nodes unlabeled with such tags. They trained the classifiers on sections 1-21 from Wall Street Journal (WSJ) part of Penn Treebank and used section 23 to evaluate the generated classifiers.

Yong-uk Park and Hyuk-chul Kwon [9] tried to disambiguate for syntactic analysis system by many dependency rules and segmentation. Segmentation is made during parsing. If two adjacent morphemes have no syntactic relations, their syntactic analyzer makes new segment between these two morphemes, and find out all possible partial parse trees of that segmentation and combine them into complete parse trees. Also they used adjacent-rule and adverb subcategorization to disambiguate of syntactic analysis. Their syntactic analyzer system used morphemes for the basic unit of parsing. They made all possible partial parse trees on each segmentation process, and tried to combine them into complete parse trees.

Mark-Jan Nederhof and Giorgio Satta[10] considered the problem of parsing non-recursive context-free grammars, i.e., context-free grammars that generate finite languages and presented two tabular algorithms for these grammars. They presented their parsing algorithm, based on the CYK (Cocke–Younger–Kasami) algorithm and Earley’s algorithm. As parsing CFG (context-
free grammar), they have taken a small hand-written grammar of about 100 rules. They have ordered the input grammars by size, according to the number of nonterminals (or the number of nodes in the forest, following the terminology by Langkilde (2000)).

Kyongho Min and William H. Wilson [11] discussed the robustness of four efficient syntactic error-correcting parsing algorithms that are based on chart parsing with a context-free grammar. They implemented four versions of a bottom-up error-correcting chart parser: a basic bottom-up chart parser, and chart parsers employing selectivity, top-down filtering, and a combination of selectivity and a top-down filtering. They detected and corrected syntactic errors using a system component called IFSCP (III-Formed Sentence Chart Parser) described by Min & Wilson (1994), together with a spelling correction module. They tested 4 different lengths of sentences (3, 5, 7, and 11) and 5 different error types, with a grammar of 210 context-free rules designed to parse a simple declarative sentence with no conjunctions, passivisation, or relative clauses.

3. MYANMAR LANGUAGE

The Myanmar language is the official language and is more than one thousand years old.

3.1. Features of Myanmar Language

Unlike English language Myanmar is syntax of relatively free-phrase-order language. This can be easily illustrated with the example “သူသည္ စာအုပ္ကို စားပြဲေပၚတြင္ ထားသည္” (He places the book on the table) as shown in table 1. All are valid sentences [12].

Case	Myanmar Sentences	Word order
Case 1	သူ စာအုပ္ကို စားပြဲေပၚတြင္ ထားသည္	(Subj-Obj-Pla-Verb)
Case 2	သူ စားပြဲေပၚတြင္ စာအုပ္ကို ထားသည္	(Subj-Pla-Obj-Verb)
Case 3	စာအုပ္ကို စားပြဲေပၚတြင္ သူ ထားသည္	(Obj-Pla-Subj-Verb)
Case 4	စာအုပ္ကို သူ စားပြဲေပၚတြင္ ထားသည္	(Obj-Subj-Pla-Verb)
Case 5	စားပြဲေပၚတြင္ သူ စာအုပ္ကို ထားသည္	(Pla-Subj-Verb)
Case 6	စားပြဲေပၚတြင္ စာအုပ္ကို သူ ထားသည္	(Pla-Obj-Verb)

In all the cases, subject is သူ (He), object is စာအုပ္ကို (the book), place is စားပြဲေပၚတြင္ (on the table) and verb is ထားသည္ (places). From the above example, it is clear that phrase order does not determine the functional structure in Myanmar language and permits scrambling. Myanmar language follows Subject-Object-Verb orders in contradiction with English language.

3.2. Issues of Myanmar Language

The highly agglutinative language like Myanmar, nouns and verbs get inflected. Many times we need to depend on syntactic function or context to decide upon whether the particular word is a noun or adjective or adverb or post position [12]. This leads to the complexity in Myanmar grammatical relations. A noun may be categorized as common, proper or compound. Similarly, verb may be finite, infinite, gerund or contingent.

A number of issues are affecting the function tagging for Myanmar language.

- Myanmar phrases can be written in any order as long as the verb phrase is at the end of sentence. For example:
 စားပြဲေပၚတြင္ စာအုပ္ကို သူ ထားသည္
 Mg Hla - a book - to Mg Ba - gives
The phrase order of Myanmar language is free. The sentence can be constructed by placing emphatic phrases at the beginning of a sentence.

For example:
(a)
ဗိုလ် - မိုး - သီး (Su-Obj-Verb)
He - newspaper - reads

(b)
မိုး - သီး - သီး (Obj-Subj-Verb)
newspaper - he - reads

(He reads the newspaper.)

The subject or object of the sentence can be skipped, and still be a valid sentence.

For example:
သို့မဟုတ် (Go to Yangon)

Myanmar language makes prominent usage of particles, which are untranslatable words that are suffixed or prefixed to words to indicate level of respect, grammatical tense, or mood.

For example:
စီးပွားရေး - ကြီး - ကြီး - ကြီး - ကြီး - ကြီး - ကြီး (Mg Mg)
Mg Mg - particle - first - prize - wins - if - his parents - PPM - surprise - will
(If Mg Mg wins the first prize, his parents will surprise.)

In Myanmar language, an adjective can specialize before or after a noun unlike other languages.

For example:
သူသည် - ချီးချီးသေသာ - လူ - တစ်ယောက် - ဖုံးသည် (He is a rich man.)

The subject /object can be another sentence, which does not contain subject or object.

For example:
ကြက်ကလေး- နောက်ပိုင်း - ကြက်ကလေး - ကြက်ကလေး (I see the children playing under the tree.)

The postpositions of subject phrases or object phrases can be hidden.

For example:
သူသည် - ဆရာ - န် - တစ်ယောက် - ဖုံးသည် (He is a doctor.)

The postpositions of time phrases or place phrases can be omitted.

For example:
သူမ - နောက် - သို့ (She goes to school.)
She - school - goes
(She goes to school.)

- The verb phrase can be hidden in a Myanmar sentence.
 For example:
 သူ ၏မွန် မဲ
 He - Mg Hla - particle
 (He is Mg Hla.)

These issues will cause a lot of problem during function tagging, and a lot of possible tags will be resulted.

3.3. Grammar of Myanmar Language

Grammar studies the rules behind languages. The aspect of grammar that does not concern meaning directly is called syntax. Myanmar (syntax: SOV), because of its use of postposition (wi.Bat), would probably be defined as a “postpositional language”, whereas English (syntax: SVO) because of its use of preposition would probably be defined as a “prepositional language”.

There are really only two parts of speech in Myanmar, the noun and the verb, instead of the usually accepted eight parts (Pe Maung Tin 1956:195). Most Myanmar linguists [13] accepted there are eight parts of speech in Myanmar. Myanmar nouns and verbs need the help of suffixes or particles to show grammatical relations.

For example:

ဗုဒ္ဓသူမ်ား သာ ဂုဏ္ထူးရသည်။ သူတို႔သည္ အတန္းထဲမွာ တွေက်လေျစ်တွေင္းသည်။

Myanmar is a highly verb-prominent language and that suppression of the subject and omission of personal pronouns in connected text result in a reduced role of nominals. This observation misses the critical role of postposition particles marking sentential arguments and also of the verb itself being so marked. The key to the view of Myanmar being structures by nominals is found in the role of the particles. Some particles modify the word's part of speech. Among the most prominent of these is the particle အ, which is prefixed to verbs and adjectives to form nouns or adverbs. There is a wide variety of particles in Myanmar [14].

For example:

သူတို႔သည္ မႏ ၱေလးတြင္ ရက္ တိတိ လည္ခဲ့သည်။

Stewart remarked that “The Grammar of Burmese is almost entirely a matter of the correct use of particles”(Stewart 1956: xi). How one understands the role of the particles is probably a matter of one's purpose.

3.4. Syntactic Structure of Myanmar Language

It is known that many postpositions can be used in a Myanmar sentence. If the words can be misplaced in a sentence, the sentence can be abnormal. There are two kinds of sentence as a sentence construction. They are simple sentence (SS) and complex sentence (CS). In simple sentence, other phrases such as object, time, and place can be added between subject and verb. There are two kinds of clause in a complex sentence called independent clause(IC) and dependent clause (DC). There must be at least one independent clause in a sentence. But there can be more than one dependent clause in it. IC contains sentence’s final particle (sfp) at the end of a sentence [15].

SS=IC+sfp
CS=DC...+IC+sfp
IC may be noun phrase or verb or combination of both.

IC=N... (မ်က္မွန္ႏွင့္ေက်ာင္းသား)
IC=V (စား)
IC=N...+V (ဘုရားမွာပန္းနဲ႔ဆီမီးလွဴ)

DC is the same as IC but it must contain a clause marker (cm) in the end.

DC=N...+cm (ေက်ာင္းကဆရာ)
DC=V+cm (ေရာက္)
DC=N...+V+cm (စိတ္ထား + ျဖဴ + မွ)

4. PROPOSED SYSTEM

The procedure of the proposed system is described in the following.

Step 1. Accept input Myanmar sentence with segmentation, POS tagging and chunking
Step 2. Extract one POS tag and its category from each chunk
Step 3. Choose the possible function tags for each POS tag by using Naive Bayesian theory
Step 4. Display the sentence with function tags
Step 5. Parse the function tags by using CFG rules with the proposed grammar
Step 6. Display the parse tree as an output

5. CORPUS CREATION

We collected several types of Myanmar texts to construct a corpus. Our corpus is to be built manually. We extended the POS tagged corpus that is proposed in [3]. The chunk and function tags are manually added to the POS tagged corpus. The number of sentences is about 3000 sentences with average word length 15 and it is not a balanced corpus that is a bit biased on Myanmar textbooks of middle school. The corpus size is bigger and bigger because the tested sentences are automatically added to the corpus. In table 2, Myanmar grammar books and websites are text collections. Example corpus sentence is shown in figure 2.

Text types	# of sentences
Myanmar textbooks of middle school	1200
Myanmar Grammar books	600
Myanmar websites	900
Others	300
Total	3000

Figure 2. A sentence in the corpus

6. FUNCTION TAGSET

Function tagging is a process of assigning syntactic categories like subject, object, time and location to each word in the text document. These are conceptually appealing by encoding an event in the format of “who did what to whom, where, when”, which provides useful semantic information of the sentences. We use the function tags that is proposed in [16] because it is
easier to maintain and can add new language features. The function tagsets are shown in table 3.

Table 3. Function Tagsets

Tag	Description	Example
Active	Verb	စားသည်
Subj	Subject	ကြား
PSubj	Subject	ကြား
SubjP	Postposition of Subject	ကြား
Obj	Object	ကြား
PObj	Object	ကြား
ObjP	Postposition of Object	ကြား
Plobj	Indirect Object	ကြား
lobjP	Postposition of Indirect Object	ကြား
Pla	Place	ကြား
PPla	Place	ကြား
PlaP	Postposition of Place	ကြား
Tim	Time	ကြား
PTim	Time	ကြား
TimP	Postposition of Time	ကြား
PExt	Extract	ကြား
ExtP	Postposition of Extract	ကြား
PSim	Similie	ကြား
SimP	Postposition of Similie	ကြား
PCom	Compare	ကြား
ComP	Postposition of Compare	ကြား
POwn	Own	ကြား
OwnP	Postposition of Own	ကြား
Ada	Adjective	ကြား
PcomplS	Subject Complement	ကြား
PcomplP	Object Complement	ကြား
PPcomplO	Object Complement	ကြား
PcomplOP	Postposition of Object Complement	ကြား
PUse	Use	ကြား
UseP	Postposition of Use	ကြား
PCAu	Cause	ကြား
CauP	Postposition of Cause	ကြား
PAm	Aim	ကြား
AimP	Postposition of Aim	ကြား
CCS	Join the sentences	ကြား
CCM	Join the meanings	ကြား
CCC	Join the words	ကြား
CCP	Join with particles	ကြား
CCA	Join as an adjective	ကြား
7. PROPOSED GRAMMAR FOR MYANMAR SENTENCES

Since it is impossible to cover all types of sentences in Myanmar language, we have taken some portion of the sentence and try to make grammar for them. Myanmar is free-phrase-order language. In Myanmar language, we see that one sentence can be written in different forms for the same meaning, i.e. the positions of the tags are not fixed. So we cannot restrict the grammar rule for one sentence. The grammar rule may be very long, but we have to accept it. The grammar rule we have tried to make, may not work for all the sentences in Myanmar language because we have not considered all types of sentences. Some of the sentences are shown below, which are used to make the grammar rules.

Our proposed grammar for Myanmar Sentences:

Sentence \(\rightarrow\) I-sent | I-sent CC I-sent | Obj-sent I-sent | Subj-sent I-sent

I-sent \(\rightarrow\) Subj Obj Pla Verb | Subj Verb | Com Pla Verb

CC \(\rightarrow\) CCA | CCS | CCM

Subj-sent \(\rightarrow\) I-sent CCA Subj

Obj-sent \(\rightarrow\) I-sent CCA Obj

Subj \(\rightarrow\) PSubj SubjP

Subj \(\rightarrow\) Subj

Obj \(\rightarrow\) PObj ObjP

Obj \(\rightarrow\) Obj

Pla \(\rightarrow\) PPla PlaP

PcomplO \(\rightarrow\) PPcomplO PcomplOP

Use \(\rightarrow\) PUse UseP

Sim \(\rightarrow\) PSim SimP

8. NAIVE BAYESIAN CLASSIFIER

Before one can build naive Bayesian based classifier, one needs to collect training data. The training data is a set of problem instances. Each instance consists of values for each of the defined features of the underlying model and the corresponding class, i.e. function tag in our case. The development of a naive Bayesian classifier involves learning how much each function tag should be trusted for the decisions it makes [17]. In probability estimation for Naive Bayesian classifiers, namely that the attribute values are conditionally independent when the target value is given. Naive Bayesian classifiers are well-matched to the function tagging problem.

The Naïve Bayesian classifier is a term in Bayesian statistics dealing with a simple probabilistic classifier based on applying Bayes’ theorem with strong (naïve) independence assumptions. It assumes independence among input features. Therefore, given an input vector, its target class can be found by choosing the one with the highest posterior probability.
8.1. Function Tagging by Using Naïve Bayes Theory

The labels such as subject, object, time, etc. are named as function tags. By function, it is meant that action or state which a sentence describes. The system operates at word-level with the assumption that input sentences are pre-segmented, pos-tagged and chunked.

Each proposed function tag is regarded as a class and the task is to find what class/tag a given word in a sentence belongs to a set of predefined classes/tags. A feature is a POS tag word with category. The category of a word is added to the POS tag to obtain more accurate lexical information. It can be formed from the features of that word. For example, noun has 16 categories such as animals, person, objects, food, location, etc. There are 47 categories in our corpus. We show some features of Myanmar words as shown in table 4.

Feature	English	Myanmar
n.food	apple	ပန္းသီး
pron.posessive	his	သူ႕
ppm.time	at	တြင္
adj.dem	happy	ေပ်ာ္ရႊင္ေသာ
part.support	can	ႏိုင္
cc.mean	so	ထို႔ေၾကာင့္
v.common	go	ေတြသာ
sf.declarative	null	၏

In Myanmar language, some words have same meaning but in different features as shown in table 5.

Feature	English	Myanmar
cc.chunk	and	ႏွင့္
ppm.compare	with	ႏွင့္
ppm.use	with	ႏွင့္

A class is a one of the proposed function tags. Same word may have different function tags as shown in table 6.

Function tags	English	Myanmar
PcomplS	He has a house.	။ ။
PPla	He lives in a house.	။ ။
PSubj	A house is near the school.	။ ။
PObj	He buys a house.	။ ။

There are many chunks in a sentence such as NC (noun chunk), PPC (postpositional chunk), AC (adjectival chunk), RC (adverbial chunk), CC (conjunctional chunk), SFC (sentence’s final chunk) and VC (verb chunk). The chunk types are shown in table 7.
A chunk contains a Myanmar head word and its modifier. It can contain more than one POS tag and one of the POS tags is selected with respect to the chunk type. In the following chunk, the POS tag (n.animals) is selected with respect to the chunk type (NC).

For example:
NC [ဃာ/n.animals,ဃာ/part.number,ဃာ/part.type]

If the noun chunk (NC) contains more than one noun, the last noun (n.food) is selected as a main word according to the nature of Myanmar language.

For example:
NC [ဃာ/n.time,ဃာ/n.food,ဃာ/part.number]

There are many possible function tags (t₁, t₂…tₖ) for each POS tag with category (pc). These possible tags are retrieved from the training corpus by using the following equation that is prior probability as shown in figure 3.

\[
P (tₖ|pc) = \frac{C (tₖ,pc)}{C(pc)}
\]

(1)

No.	Chunk Type	Example
1	Noun Chunk	NC[ဃာ/pron.person]
2	Postpositional Chunk	PPC[ဃာ/ppm.subj]
3	Adjectival Chunk	AC[ဃာ/adj.dem]
4	Adverbial Chunk	RC[ဃာ/adv.manner]
5	Conjunctional Chunk	CC[ဃာ/cc.chunk]
6	Sentence Final Chunk	SFC[ဃာ/sf.declarative]
7	Verb Chunk	VC[ဃာ/v.common]

Figure 3. Sample data for POS/Function tag pairs with probability
We calculate the probability between next function tags \((n_1, n_2, \ldots, n_j)\) and previous possible tags by using the following equation that is log likelihood as shown in figure 4.

\[
P(n_j|t_k) = C(n_j, t_k)/C(t_k)
\]

(2)

CCC, PSubj = 0.2
CCC, PAim = 0.04
CCC, Tim = 0.04
CCC, PcompIS = 0.04
PCau, CauP = 1.0
PPla, CCC = 0.0156
CCS, Ada = 0.0196
CCS, PTim = 0.0196
CCS, Tim = 0.0131
PlaP, Active = 0.6111
PlaP, Subj = 0.1111

Figure 4. Sample data for Function/Function tag pairs with probability

Possible function tags are disambiguated by using Naïve Bayesian method. We multiply the probabilities from (1) and (2) and choose the function tag with the largest number as the posterior probability.

Technically, the task of function tags assignment is to generate a sentence that has correct function tags attached to certain words.

Our description of the function tagging process refers to the example as shown in figure 5, which illustrates the sentence ("Ma Ma and Hla Hla go to school by bicycle"). This sentence is represented as a sequence of word-tags as “noun verb conjunction noun ppm pronoun verb”. It is described as a sequence of chunk as “NC VC CC NC PPC NC VC SFC”.

(a) NC[မမ/n.person]#CC[ႏွင့္/cc]#NC[လွလွ/n.person]#PPC[သည္/ppm.subj]#NC[စက္ဘီး/n.objects]#PPC[သည္/ppm.use]#VC[သြား/v.common]#SFC[။/sf]
(b) PSubj[မမ#CCC[ႏွင့္]#PSubj[လွလွ]#SubjP[သည္]#PPla[သို]#PlaP[သြား]#PUse[စက္ဘီး]#UseP[။]#Active[သြား]%

Figure 5. An overview of function tagging of the sentence
(a) The input POS-tagged and chunk sentence (b) The output sentence with function tags

8.2. Grammatical Relations of Myanmar Sentence

The LANGUAGE defined by a CFG (context-free grammar) is the set of strings derivable from the start symbol S (for Sentence). The core of a CFG grammar is a set of production rules that replaces single variables with strings of variables and symbols. The grammar generates all strings that, starting with a special start variable, can be obtained by applying the production rules until no variables remain. A CFG is usually thought in two ways: a device for generating
sentences, or a device if assigning a structure to a given sentence. We use CFG for grammatical relations of function tags.

A CFG is a 4-tuple \(<N, \Sigma, P, S>\) consisting of
- A set of non-terminal symbols \(N\)
- A set of terminal symbols \(\Sigma\)
- A set of productions \(P\)
 - \(A \rightarrow \alpha\)
 - \(A\) is a non-terminal
 - \(\alpha\) is a string of symbols from the infinite set of strings \((\Sigma \cup N)^*\)
- A designated start symbol \(S\)

8.2.1. Simple Sentence

Consider a simple declarative sentence “နတိုင်တိုင်း အောင်းသော လူမျိုး အောင်းသည်” (They selected Mg Ba as a leader).

(a) \(NC[သူတိုင်/pron.possessive][PPC[ဗိ/ppm.subj][NC[သူတိုင်/n.person][PPC[က/ppm.obj][NC[က/nc][PPC[သည်/part.eg][VC[ကန်/v.common,ကို/part.support][SFC[ကန်/sf][။]

(b) \(PSubj[သူတိုင်][Subj[က/nc][PObj[က/nc][ObjP[က/nc][PPcomplO[က/nc][PcomplOP[က/nc][Active[ကန်/v.common]]]]

(c) \(Figure 6. An overview of the function tagging and grammatical relations of simple sentence
(a) The tagged and chunk sentence (b) The sentence with function tags (c) The syntactic tree structure with function tags

8.2.2. Complex Sentence

Our description of the parsing process refers to the example in figure 7, which illustrates the sentence “I read the book which is given by my father”. This sentence is represented as a sequence of word-tags as “N V CC N PPC PRON V” . It is described as a sequence of chunk as “NC VC CC NC PPC NC VC SFC” and the sentence structure (Sentence) contains separate constituents for the object sentence (Obj-sent) and independent sentence (I-sent), which contains other phrases. Note that this parse tree has had
some constituents conflated to comply with the constraint that there be only one constituent per word.

(a) NC [အဖ်/n.person] # VC [ဗျာ/v.common] # CC [နော/cc.adj] # NC [ရား/n.objects] # PPC [ရောင်/ppm.obj] # NC [ပုံ/pron.person] # VC [ရား/v.common] # SFC [ရား/sf]

(b) Subj[အဖ်]#Active[ဗျာ]#CCA[နော]#PObj[ရား]#ObjP[လ]#Subj[သို့]#Active[ရား]

(c)

![Diagram of sentence structure](image)

Figure 7. An overview of the function tagging and grammatical relations of complex sentence
(a) The tagged and chunk sentence (b) The sentence with function tags
(c) The syntactic tree structure with function tags

9. Evaluation and Results

The corpus contains about 3000 sentences with average word length 15. All sentences can be further classified as two sets. One is simple sentence set, in which every sentence has no more than 15 words. The other is complex sentence set, in which every sentence has more than 15 words. There are 1800 simple sentences and 1200 complex sentences in the corpus.

For evaluation purpose, different numbers of sentences collected from Myanmar textbooks of middle school and Myanmar grammar books are used as a test set. The test set can be divided into two groups: first group sentences are composed of word patterns in corpus and second group sentences are composed of word patterns that are not in the corpus. There are 60 sentences in the first group and 40 in the second one. The sentences are tested in the program and the function tagged results are manually checked. In table 8, the performance of function tagging according to the two groups is described.

Sentence Patterns	Accuracy
sentence patterns in the corpus	97.4%
sentence patterns that are not in the corpus	89.6%

After implementation of the system using the grammar, it has been seen that the system can easily generates the parse tree for a sentence if the sentence structure satisfies the grammar rules.
For example we take the following Myanmar simple sentence

မိုး႐ြာလွ်င္ကေလးမ်ားသည္လမ္းေပၚတြင္ေဘာလံုးကန္ၾကသည္။

(Ma Hla buys a cake for her mother.)

The structure of the above sentence is Subj-Aim-Obj-Pla-Verb. This is a correct sentence according to the Myanmar literature. According to the grammar a possible top-down derivation for the above simple sentence is

1. Sentence [start]
2. >> I-sent [Sentence→I-sent]
3. >> Subj-Aim-Obj-Verb [I-sent→Subj-Aim-Obj-Verb]
4. >> PSubj SubjP -Aim-Obj- Verb [Subj→ PSubj SubjP]
5. >> PSubj SubjP -PAim-AimP-Obj-Verb [Aim → PAim AimP]
6. >> PSubj SubjP -PAim-AimP-Obj-Verb [Obj→Obj]

For example we take the following Myanmar complex sentence

ငားစိုးသူကြည့်မှားသည္၊လမ္းေပၚတြင္ေဘာလံုးကန္ၾကသည္။

(If it rains, the children play the football on the road.)

The structure of the above sentence is Verb-CCS-Subj-Pla-Obj-Verb. This is a correct sentence according to the Myanmar literature. According to the grammar a possible top-down derivation for the above complex sentence is

1. Sentence [start]
2. >> I-sent CCS I-sent [Sentence→I-sent CCS I-sent]
3. >> Verb CCS I-sent [I-sent→Verb]
4. >> Verb CCS Subj Pla Obj Verb [I-sent→Subj Pla Obj Verb]
5. >> Verb CCS PSubj SubjP Pla Obj Verb [Subj→ PSubj SubjP]
6. >> Verb CCS PSubj SubjP PPla PlaP Obj Verb [Pla→ PPla PlaP]
7. >> Verb CCS PSubj SubjP PPla PlaP Obj Verb [Obj→Obj]

From the above derivation it has been seen that the Myanmar sentence is correct according to the grammar. So our system generates a parse tree successfully.

Our program tests only the sentence structure according to the grammar rules. So if the sentence structure satisfies the grammar rule, program recognizes the sentence as a correct sentence and generates a parse tree. Otherwise it gives output as an error.

10. CONCLUSION AND FUTURE WORK

In this paper, we investigate the function tag of the word depending on the sentence structure of Myanmar language. We used Naïve Bayesian technique for the task of assigning function tags. For grammatical relations of the function tags, we use context free grammar. The parse tree can be built by using function tags.

As function tagging is a pre-processing step for grammatical relations, the errors occurred in the task of function tagging affect the relations of the words. The corpus may be balanced because Naïve Bayesian framework probability simply describes uncertainty. The corpus creation is time consuming. The corpus is the resource for the development of Myanmar to English translation system and we expect the corpus to be continually expanded in the future because the tested sentence can be added into the corpus.

In this work we have considered limited number of Myanmar sentences to construct the grammar rules. In future work we have to consider as many sentences as we can and some more tags for constructing the grammar rules because Myanmar language is a free-phrase-order language. Word position for one sentence may not be same in the other sentences. So we can not restrict the grammar rules for some limited number of sentences.
REFERENCES

[1] John C. Henderson and Eric Brill. “Exploiting Diversity in Natural Language Processing: Combining Parsers”.

[2] Don Blaheta (2003) “Function tagging”. Ph.D. Dissertation, Brown University. Advisor-Eugene Charniak.

[3] Phyu Hnin Myint (2010) “Assigning automatically Part-of-Speech tags to build tagged corpus for Myanmar language”, The Fifth Conference on Parallel Soft Computing, Yangon, Myanmar.

[4] Phyu Hnin Myint (2011) “Chunk Tagged Corpus Creation for Myanmar Language”. In Proceedings of the ninth International Conference on Computer Applications, Yangon, Myanmar.

[5] Eugene Charniak (1997) “Statistical parsing with a context-free grammar and word statistics”. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pages 598-603, Menlo Park.

[6] Michael Collins (1997) “Three generative, lexicalized models for statistical parsing”. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics, pages 16-23.

[7] Don Blaheta and Mark Johnson (2000) “Assigning function tags to parsed text”. In Proceedings of the 1st Annual Meeting of the North American Chapter of the Association for Computational Linguistics, 234–240.

[8] Mihai Lintean and Vasile Rus (2007) “Naive Bayes and Decision Trees for Function Tagging”. In Proceedings of the International Conference of the Florida Artificial Intelligence Research Society (FLAIRS) 2007, Key West, FL, May 2007 (in press).

[9] Yong-uk Park and Hyuk-chul Kwon (2008) “Korean Syntactic Analysis using Dependency Rules and Segmentation “, Proceedings of the Seventh International Conference on Advanced Language Processing and Web Information Technology(ALPIT2008), Vol.7, pp.59-63, China, July 23-25, 2008

[10] Mark-Jan Nederhof and Giorgio Satta (2002) “Parsing Non-Recursive Context-Free Grammars”. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL ANNUAL’02), July 7-12, Pages 112-119, Philadelphia, Pennsylvania, USA.

[11] Kyongho Min and William H. Wilson (1995) “Are Efficient Natural Language Parsers Robust?” Proceedings of the Eighth Australian Joint Conference on Artifical Intelligence (AI ’95), Canberra 13-17 November 1995, 283-290. Edited Xin Yao. World Scientific, Singapore. ISBN 981-02-2484-2

[12] Myanmar Thudda, vol. 1 to 5 in Bur-Myan, Text-book Committee, Basic Edu., Min. of Edu., Myanmar, ca. 1986

[13] Shwe Pyi Soe (2010) Aspects of Myanmar Language

[14] Thaung Lwin (1978) Aspects of Myanmar Language

[15] Ko Lay (2003) Ph.D. Dissertation, Myanmar Department, University of Education.

[16] Win Win Thant (2010) Naive Bayes for Function Tagging in Myanmar Language”, The Fifth Conference on Parallel Soft Computing, Yangon, Myanmar.

[17] Leon Versteegen (1999) “The Simple Bayesian Classifier as a Classification Algorithm”.

[18] Yoshimasa Tsuruoka and Jun’ichi Tsujii (2005) “Chunk parsing revisited”. In Proceedings of the Ninth International Workshop on Parsing Technologies. Vancouver, Canada.

[19] Michael Collins (1996) “A New Statistical Parser Based on Bigram Lexical Dependencies”. In Proceedings of ACL-96, pp. 184–191.
Win Win Thant is a Ph.D research student. She received B.C.Sc (Bachelor of Computer Science) degree in 2004, B.C.Sc (Hons.) degree in 2005 and M.C.Sc (Master of Computer Science) degree in 2007. She is now Assistant Lecturer of U.C.S.Y (University of Computer Studies, Yangon). She has written one local paper for Parallel and Soft Computing (PSC) conference in 2010 and one international paper for ICCA conference in 2011. Her research interests include Natural Language Processing and Machine Translation.

Tin Myat Htwe is an Associate Professor of U.C.S.Y. She obtained Ph.D degree of Information Technology from University of Computer Studies, Yangon. Her research interests include Natural Language Processing, Data Mining and Artificial Intelligence. She has published few papers in International conferences and International Journals.

Ni Lar Thein is a Rector of U.C.S.Y. She obtained B.Sc.(Chem.),B.Sc.(Hons) and M.Sc. (Computer Science) from Yangon University and Ph.D.(Computer Engg.) from Nanyang Technological University, Singapore in 2003. Her research interests include Software Engineering, Artificial Intelligence and Natural Language Processing. She has published few papers in International conferences and International Journals.