DNA extraction from *Ganoderma* isolates of PT Socfindo collections

R Hayati\(^1\), M Basyuni\(^2\)*, A Purba\(^1\), D Arifianto\(^3\), I Syahputra\(^3\), D Chalil\(^4\), Y Bimantara\(^2\)

\(^1\)Graduate School of Agroteknologi, Faculty of Agriculture, Universitas Sumatera Utara, Jl. Dr. Sofyan No. 3 Medan, North Sumatera 20155, Indonesia
\(^2\)Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Jl. Tri Dharma Ujung No. 1 Medan, North Sumatera 20155, Indonesia
\(^3\)Laboratory of Biomolecular of PT Socfin Indonesia, Martebing, Dolok Masihul, Tebing Tinggi 20991, North Sumatra, Indonesia
\(^4\)Department of Agribusiness, Faculty of Agriculture, Universitas Sumatera Utara, Medan, North Sumatera 20155, Indonesia

*Email: m.basyuni@usu.ac.id

Abstract. Method of CTAB (cetyltrimethylammonium bromide) is prevalent for low-cost DNA extraction with many published variations for other plants and tissues, including fungi *Ganoderma*. The quantity of DNA extracts from the *Ganoderma* sp fungus from a coconut tree and rubber tree with concentration extraction efficiency and the quality of purity wholeness varied with different DNA characterizations. DNA purity was measured using UV spectroscopy, where a ratio of 260 nm, 280 nm 320 nm was an indicator of different contaminants. The quantity of DNA from the isolate is indicated by 31 ng/ul until 133 ng/ul and range of ratio from 1.279 until 3.6654. The DNA extraction quantity ratio value obtained is below, and above the average, for absorbance 260 nm, 280 nm and 320 nm varies between 1.5 until 1.8 which is an indicator of DNA purity. Pure DNA isolate without contaminants is only found in sample isolate *Ganoderma* sp 141.1 from coconut tree with a ratio value of 2.2707. Furthermore on the other samples thought to be still contaminated with phenols, salts, proteins, polysaccharide or RNA still co-extracted with phenolic acid (chloroform phenol).

1. Introduction
Ganoderma boninense or Basal Stem Rot (BSR) which attacks oil palm plants cause vast economic losses throughout the world [1]. In addition to that oil palm plantations, *Ganoderma* sp of fungus also attack coconut (*Cocos nucifera* L.), rubber (*Hevea brasiliensis*) and sengon (*Falcataria mollucana*) plantations [2-4]. Currently, reputable oil palm plants Moderat Tahan *Ganoderma* (MTG) commercials that have been studied genetic linkages of molecular RAPD have been reported [5].

Diagnoses because *Ganoderma* sp disease is difficult when only observing visual symptoms and takes a long time, but whether the chemical analysis is expensive [6]. The existence of basic identification methods using molecular techniques for identification of *G. boninense* has been reported [7]. High molecular weight DNA fast isolation methods (50,000 base pairs of length) produce total cellular DNA (in nucleus, chloroplasts or mitochondrial DNA) have been reported [8]. This study aims to DNA extraction isolate as confirmation of the *Ganoderma* sp gene in coconut and rubber collections of PT. Socfindo, Bangun Bandar, North Sumatra.
2. Materials and method

The highest level of Ganoderma infection chose identification of sample locations on the plantation. Samples of Ganoderma sp. mushrooms were originating from coconut tree three units and rubber tree two units were collected, from the palm of life with symptoms of high infection (scores 3–4). The fruit body is fresh and not too old with symptoms at the top still smooth and the bottom with white, the thickness of the mycelium in the middle is more than 5 mm.

The sample location (estate, block, line number, tree number) and notes in the form of a Ganoderma sample are recorded. Drawings of sample trees and samples from fruit bodies taken. The body of the palm stem and cut in the middle of the fruiting body to identify that the size of the mycelium is sufficient for the sample, then cover with aluminum foil. The plastic clip is used to identify the sample (code sample), and white into a plastic box then insert it and bring it to the Pathology Laboratory in Tanah Gambus, Bangun Bandar, North Sumatra.

Total DNA extracted from Ganoderma isolates using the cetyl trimethyl ammonium bromide (CTAB) method based on our previous study with minor modification [9]. Briefly, isolation of DNA from isolate sampling used taken from the field was washed and dried with liquid nitrogen. ±0.5 gr of the isolate is ground with mortar while adding liquid nitrogen PVPP. The sample is inserted into a filled centrifuge 1 ml with buffer extraction CTAB and β-mercaptoethanol 10 µl, then stirred using vortex and incubated during water bath for 30 minutes at temperature 65°C.

Every 10 min the sampling turned back slowly. Furthermore, the sample was incubated at room temperature during 4-5 min, added 1 ml chloroform: isoamyl alcohol (24:1). Then, the sample was centrifuged at 13,000 rpm at room temperature for 10 min. The supernatant obtained is transferred to another centrifuge tube, vortex and centrifuged at13,000 rpm at a temperature 4°C for 10 min. The supernatant was homogenized by flipping through the tube, stored in the refrigerator (4°C) for 30 min, centrifuged at 13,000 rpm at 4°C for 10 min. The supernatant obtained are discarded then the pellets are air-dried. Dry pellets were dissolved with a buffer TE 100 µl, added with absolute cold ethanol, then turned back and forth until homogenized. The dried one DNA pellets are dissolved with 100 µl buffer TE, and finally, DNA stored in the freezer (-20ºC).

3. Results and Discussions

Table 1 shows the results of the quantity of DNA with a score of ratio 1,279-3,6654. The quantity of DNA from the isolate Ganoderma sp. is indicated by 31 ng/ul until 133 ng/ul. DNA purity was measured using UV spectroscopy, where a ratio of 260 nm, 280 nm 320 nm was an indicator of different contaminants. They were a reasonably high the value. The dirtiness released by ether has a significant absorbance in the UV region (260 nm, 280 nm) present in the sample, causing incorrect results in DNA quantification, the absorbance ratio (R260 / 280) at 260 nm for absorbance 280 nm varies between 1.5 until 1.8, which is an indicator of DNA purity [10].

No.	Sample	A[260]nm	A[280]nm	Bg[320]nm	Ratio	The quantity of DNA (ng/ul)
1	Isolet 141.1	0.0276	0.0182	0.0107	2.2707	67
2	Isolet 141.2	0.0402	0.287	0.0226	2.8688	99
3	Isolet 141.3	0.0133	0.01	0.0009	1.3655	31
4	Isolet 145.1	0.0541	0.049	0.0307	1.279	133
5	Isolet 145.2	0.0376	0.0178	0.0104	3.6654	92

Classical methods are often used to compromise the integrity of fungal cell walls and membranes, followed by the use of phenol or chloroform to isolate and purify DNA from cell debris [11]. The reference method has the highest proportion of extract with an A260 nm / A280 ratio above 2.0 most likely because RNA still co-extracted with phenolic acid (chloroform phenol) [12]. For the
A260/A230 nm ratio, a good range is 1.8 to 2.2, values below this range can indicate phenol, salt, protein or polysaccharide contamination [13].

Several reported studied by researchers, direct comparison of DNA produced by methods using cetyltrimethylammonium bromide (CTAB) showed lower enzyme inhibition rates and results were still sufficient for use in molecular biology and DNA conditions [14]. The high sensitivity of the PicoGreen test to detergent known as CTAB is very popular for low-cost DNA extraction with many published variations for other plants and tissues, including fungi [15].

4. Conclusions
The DNA extraction quantity ratio value obtained is below and above the average. Pure DNA isolate without contaminants is only found in sample isolate Ganoderma sp 141.1 from coconut tree with a ratio value of 2.2707. Furthermore on the other samples thought to be still contaminated with phenols, salts, proteins or polysaccharide.

Acknowledgment
A Master of Education towards Doctoral Research supported a part of this study (No. 152/SP2H/LT/DPRM/2018). Directorate for Research and Community Service, Ministry of Research, Technology and Higher Education, Republic of Indonesia.

References
[1] Surendran A, Yasmeen S, Sivakumar M, Asgar A 2018 Role of benzoic and salicylic acids in the immunization of oil palm seedlings-challenged by Ganoderma boninense Ind Crops Prod. 122: 358-365.
[2] Karthikeyan M, Radhika K, Bhaskaran R, Mathiyagazan S, Samiyappan R, Velazhahan R 2006 Rapid detection of Ganoderma disease of coconut and assessment of inhibition effect of various control measures by immunoassay and PCR. Plant Protect. Sci 42: 49–57.
[3] Jollands P 2008 Laboratory investigations on fungicides and biological agents to control three diseases of rubber and oil palm and their potential applications Pest Manag Sci. 29: 33-38.
[4] Dendang B 2015 In-vitro Antagonism Experiment of Trichoderma Spp. to Ganoderma SP. Which Attacks Sengon Trees J FOREST RES-JPN 4: 147-156
[5] Basyuni M, Prayogi H, Putri LAP, Syahputra I, Siregar ES, Risnasari I, Wati R, Arifianto D 2018 RAPD markers on genetic diversity in three populations of pisifera type of oil palm (Elaeis guineensis) IOP Conf. Ser.: Earth Environ. Sci. 130 012050
[6] Lelong CCD, Roger JM, Bregand S, Dubertret F, Lanore M, Sitorus NA, Raharjo DA, Caliman JP 2010 Evaluation of Oil-Palm Fungal Disease Infestation with Canopy Hyperspectral Reflectance Data Nutrients 10: 734-747
[7] Chong KP, Lum MS, Foong CP, Wong CMVL, Atong M, Rossall S 2011 First identification of Ganoderma boninense isolated from Sabah based on PCR and sequence homology Afr. J. Biotechnol 10: 10.5897.
[8] Murray MG, Thompson 1980 Rapid isolation of high molecular weight plant DNA Nucleic Acids Res 8: 4321-4326.
[9] Basyuni M, Baba S, Oku H (2017) Microsatellite analysis on genetic variation in two populations of red mangrove Rhizophora Mangle L. (Rhizophoraceae) and its implication to conservation IOP Conf Series: Mater. Sci. Eng. 180: 012243.
[10] Bever RJ, Couch JR, Sutherland LH, Anna JW, Richard DB, Mona IC, Daniel RD, Paul CH 2000 DNA adduct formation by Fusarium culture extracts: lack of role of fusarin C. Chemico-Biological Interactions Chem Biol Interact. 128: 141-157.
[11] Griffin DW, Kellogg CA, Peak KK, Shinn EA 2002 A rapid and efficient assay for extracting DNA from fungi Lett Appl Microbiol, 34 (3): 210-4.
[12] Tan SC, Yiap BC 2009 DNA, RNA and Protein Extraction: The Past and The Present. J Biomed Biotechnol 574398.
[13] Joseph S 2006 The Condensed Protocols from Molecular Cloning: A Laboratory Manual Cold Spring Harb 3: p800
[14] Scott OR, Arnold JB 1994 Extraction of total cellular DNA from plants, algae and fungi *J Plant Mol Biol* pp 183-190

[15] Marcia JH, Ross JH, Savelas AR, Neena S, Kristina Y, Joseph R, Blasic Jr 2009 Factors Affecting Quantification of Total DNA by UV Spectroscopy and PicoGreen Fluorescence *J. Agric. Food Chem* **57** pp 7221–7226.