This is the published version of a paper published in *Journal of Neurology*.

Citation for the original published paper (version of record):

Adams, D., Ando, Y., Beirão, J M., Coelho, T., Gertz, M A. et al. (2021)
Expert consensus recommendations to improve diagnosis of ATTR amyloidosis with polyneuropathy
Journal of Neurology, 268(6): 2109-2122
https://doi.org/10.1007/s00415-019-09688-0

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-176103
Expert consensus recommendations to improve diagnosis of ATTR amyloidosis with polyneuropathy

David Adams1 · Yukio Ando2 · João Melo Beirão3 · Teresa Coelho4 · Morie A. Gertz5 · Julian D. Gillmore6 · Philip N. Hawkins6 · Isabelle Lousada7 · Ole B. Suhr8 · Giampaolo Merlini9,10

Received: 10 December 2019 / Revised: 20 December 2019 / Accepted: 23 December 2019 / Published online: 6 January 2020 © The Author(s) 2020

Abstract
Amyloid transthyretin (ATTR) amyloidosis with polyneuropathy (PN) is a progressive, debilitating, systemic disease wherein transthyretin protein misfolds to form amyloid, which is deposited in the endoneurium. ATTR amyloidosis with PN is the most serious hereditary polyneuropathy of adult onset. It arises from a hereditary mutation in the TTR gene and may involve the heart as well as other organs. It is critical to identify and diagnose the disease earlier because treatments are available to help slow the progression of neuropathy. Early diagnosis is complicated, however, because presentation may vary and family history is not always known. Symptoms may be mistakenly attributed to other diseases such as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), idiopathic axonal polyneuropathy, lumbar spinal stenosis, and, more rarely, diabetic neuropathy and AL amyloidosis. In endemic countries (e.g., Portugal, Japan, Sweden, Brazil), ATTR amyloidosis with PN should be suspected in any patient who has length-dependent small-fiber PN with autonomic dysfunction and a family history of ATTR amyloidosis, unexplained weight loss, heart rhythm disorders, vitreous opacities, or renal abnormalities. In nonendemic countries, the disease may present as idiopathic rapidly progressive sensory motor axonal neuropathy or atypical CIDP with any of the above symptoms or with bilateral carpal tunnel syndrome, gait disorders, or cardiac hypertrophy. Diagnosis should include DNA testing, biopsy, and amyloid typing. Patients should be followed up every 6–12 months, depending on the severity of the disease and response to therapy. This review outlines detailed recommendations to improve the diagnosis of ATTR amyloidosis with PN.

Keywords ATTR amyloidosis · ATTRv · Diagnosis · hATTR · Peripheral neuropathy · Transthyretin amyloidosis

Introduction
Hereditary amyloid transthyretin (ATTRv; v for “variant”) amyloidosis with polyneuropathy (PN) is a rare multisystemic disease with predominant involvement of the peripheral nervous system and amyloid deposits in the endoneurium [1]. It was first described in endemic areas in Portugal and later in Japan and Sweden and is now considered a worldwide disease [2]. ATTRv amyloidosis has an autosomal-dominant mode of transmission because of a point mutation of the TTR gene [3]. Certain TTR mutations are associated predominantly with endoneurial amyloid...
deposition that results in polyneuropathy (most commonly Val30Met); others are associated with predominant cardiomyopathy or a mixed phenotype [4–6] (Fig. 1).

ATTRv amyloidosis is the most serious hereditary polyneuropathy of adult onset and a progressive, devastating, and life-threatening disease. Diagnostic delay varies in non-endemic regions from 3 to 4 years. Average survival from disease onset varies from 6 to 12 years, and cardiac involvement is often the cause of death [7, 8].

The disease is caused by abnormal transthyretin (TTR) protein that misfolds and aggregates to form amyloid fibrils that deposit in organs and tissue. It has long been considered an endemic disease with a high prevalence (~1/1000 persons). Early diagnosis is typically facilitated by positive family history, stereotypical neurologic manifestations such as length-dependent polyneuropathy and autonomic dysfunction [9], and presence of the unique TTR variant Val30Met. Gradually, it has been reported in many countries outside endemic areas with a sporadic presentation and is now well accepted as a globally prevalent disease. The estimated prevalence of ATTRv amyloidosis with PN worldwide is 10,000 (1/1,000,000 persons) [2].

Purpose and methodology

The diagnosis of this rare disease is a challenge for the neurologist and is most often delayed by 3–4 years, which impacts patients’ functional and vital prognosis. Diagnostic delays occur for multiple reasons, but oftentimes misleading diagnoses are made because of sporadic, late-onset, highly varied clinical presentation patterns of various TTR variants [10]. In this review, we describe the main phenotypes of neuropathies of this disease and present simple tools to quickly confirm the diagnosis and to perform the minimal investigations needed to clarify the systemic extension of the disease.

Consensus recommendations for the suspicion and diagnosis of all forms of ATTR amyloidosis were developed through a series of development and review cycles by an international working group consisting of key amyloidosis specialists in collaboration with companies conducting research in ATTR amyloidosis (GSK, Ionis, Pfizer, Alnylam) and the Amyloidosis Research Consortium. These consensus recommendations were developed based on the published literature and the medical expertise of the international working group through in-person meetings along with refinement of the draft by telephone or email. The literature was surveyed using PubMed Central, and references were selected by the expert working group according to the relevance of the data. Recently, specific consensus recommendations were provided for cardiology ATTR amyloidosis [11]. This review describes the specific consensus recommendations for best practices in ATTR with predominant PN. It is intended to provide clinicians with an overview of important aspects of ATTR diagnosis that may facilitate rapid and accurate identification of the disease.

Clinical presentation and suspicion index

Clinical manifestations and phenotypes

Historical phenotypes in endemic areas

In endemic areas (such as Portugal, Japan, Sweden, Brazil), the main phenotype represents the hallmark of ATTRv with PN—a length-dependent small-fiber PN with dysautonomia—with manifestations mimicking those of diabetic neuropathy [12]. In these areas, the disease may not be as difficult to diagnose because it is aided by positive family history, high penetrance, and typical clinical presentation and by genetic counseling for, detection in, and follow-up of carriers of the mutant TTR gene [13]. Penetrance, however, is highly variable. For instance, in Portugal, the median age at onset is around 30 years [7], and 80% of mutation carriers are reported to exhibit the disease by age 50, whereas this number is only 11% in Sweden [14, 15].

Initial symptoms of ATTRv with PN vary but can include sensory symptoms such as pain, paresthesia, and numbness in the feet; autonomic dysfunction such as digestive disorders and erectile dysfunction; and general items such as fatigue, weight loss, and plantar ulcers [7, 16]. Sensory loss
progresses with advancing disease and eventually extends to the lower limbs and to the hands and arms. More advanced disease may also involve loss of reflexes, reduced motor skills, and muscle weakness [4, 17].

Two clinical neuropathic phenotypes in late versus early onset in Val30Met variant

ATTRv amyloidosis is classified on the basis of age at onset, and symptoms before the age of 50 distinguish early from late onset [18]. Clinical presentation and disease course differ considerably between patients with early-onset and those with late-onset ATTRv with PN associated with the Val-30Met mutation [7, 8, 18–21] (Table 1). Early-onset disease follows the classical course. In patients with early onset, penetrance is high (0.8) [14] and the disease is nearly always associated with a positive family history, initial symptoms of somatic or autonomic peripheral neuropathy, less severe disease course, and longer survival [19]. Late-onset disease tends to occur sporadically and typically presents with peripheral (not autonomic) neuropathy. In families with late-onset disease, there is a male predominance and low penetrance. At 50 years, sensorimotor symptoms begin in the lower extremities with disturbance of both superficial and deep sensation (mixed sensory loss) and relatively mild autonomic symptoms [19, 22]. In the Swedish population, amyloid fibril composition determines the phenotype; ATTR consisting of full-length TTR is associated with early onset and neuropathy, whereas a mixture of TTR fragments is associated with late onset, neuropathy, and cardiomyopathy [23].

Other clinical phenotypes in nonendemic countries

In nonendemic regions, four ATTRv amyloidosis phenotypes are reported [13, 24]. Small-fiber PN is not predominant and may occur in about 33% of patients. Also reported are length-dependent, all-fiber PN with diffuse areflexia and mixed sensory loss for pain, temperature, and proprioception [19] mimicking demyelinating polyneuropathy [25, 26]; multifocal neuropathy with onset in the upper limbs [8, 22]; ataxic neuropathy [24]; and exceptional motor neuropathy [26, 28, 29].

Misdiagnosis

For people in nonendemic areas, diagnosis is likely to be missed. In these areas, 52–77% of cases occur with no family history of the disease [13, 24, 28], and presentation is variable. It has been reported that ATTRv with PN is suspected in only 26–38% of initial evaluations in these areas [24, 28]. Multiple misdiagnoses before the correct diagnosis of amyloid neuropathy have been reported in 20–40% of cases [25, 27].

Misdiagnoses depend on the initial clinical presentation of neuropathy (symptoms and signs). Common misdiagnoses (Table 2) [13, 25–27, 29–32] of patients before the correct diagnosis of ATTRv with PN include chronic inflammatory

Table 1 Characteristics of Val30Met early- and late-onset ATTR amyloidosis at the time of diagnosis and clinical course

	Early-onset Val30Met [7, 19]	Late-onset Val30Met [8, 19, 20]
Age at onset, years	< 50	≥ 50
Country	Portugal, Japan, Brazil, Sweden	Sweden, France, UK, Italy, Japan, USA
Positive family history, %	94	48
Peripheral neuropathy, %	57	81
Autonomic neuropathy, %	48	10
Weight loss, %	5	0
Disease course		
Mean delay in need for aid in walking, years	> 5.6	3
Mean delay for wheelchair bound, years	10	6
Cardiac events	Progressive conduction disorders	Restrictive cardiomyopathy, Cardiac insufficiency, Progressive conduction disorders
Median survival, years	11	7.3
Cause of death	Cachexia, Infection	Cardiac insufficiency, Sudden death, Cachexia or secondary infection

Reprinted with permission from Adams [18]

ATTR amyloid transthyretin

*Endemic areas, Nagano and Arao Kumamoto, Japan

*Patients with early- and late-onset disease are found in the endemic area in Sweden; all are believed to have a common Swedish founder [21]
demyelinating polyradiculoneuropathy (CIDP), idiopathic axonal polyneuropathy, lumbar spinal stenosis, and, more rarely, diabetic neuropathy and AL amyloidosis. Increased awareness of this serious disease and its symptoms—as well as better knowledge of simple diagnostic tools, especially among neurologists—is essential to enable early diagnosis and optimal treatment of ATTRv with PN.

The disease course for late onset is more aggressive and has a shorter survival time than for early onset [18]. Initial symptoms of late-onset disease may also include sensory problems in upper limbs (33%) and walking disorders (11%) [24], and autonomic neuropathy may occur later in the disease in approximately 47–78% of these patients [24, 28, 30].

Amyloid can also be deposited in the heart, eyes, and leptomeninges, resulting in associated organ dysfunction and clinical symptoms. Cardiac involvement is usually asymptomatic at diagnosis but has been detected in up to 72% of patients when using cardiac imaging [30]. Cardiac hypertrophy (septal thickness > 12 mm) is found at presentation in 33 of 60 (55%) patients with late-onset Val30Met, predominantly in males [20].

Physicians should be aware of the leptomeningeal forms of ATTRv amyloidosis, which are associated with cerebral hemorrhage [33–36] and CNS dysfunction, typically with symptoms related to CNS impairment such as dementia, ataxia, spasticity, seizures, and stroke-like episodes [37–40]. The abnormal TTR protein deposited in the leptomeninges may be produced in the choroid plexus, making liver transplantation less effective in these patients [37].

Suspicion index

Suspicion of ATTRv amyloidosis should be high for patients with progressive and disabling polyneuropathy, particularly in elderly patients. The disease should also be considered in patients with neuropathy plus at least one red flag symptom suggestive of multisystemic involvement (Fig. 2) [41].

For patients with a known family history of ATTRv amyloidosis, any onset of length-dependent axonal polyneuropathy predominantly affecting temperature and pain sensation, autonomic dysfunction, or cardiac arrhythmia signals a need to assess organ involvement.

For patients without a family history of amyloidosis, diagnosis of ATTRv amyloidosis should be considered if they have progressive idiopathic, axonal polyneuropathy, or atypical CIDP. Particular attention should be given to those who have autonomic dysfunction, early gait disorders, gastrointestinal disturbances and weight loss, carpal tunnel syndrome or previous surgery for bilateral carpal tunnel, concurrent cardiac abnormalities, or unexplained weight loss.
Diagnosis

Physicians should be aware of the clinical presentation and diagnostic approaches for patients with ATTRv amyloidosis with PN [10, 18, 25, 42–45] (Figs. 2, 3, Table 3). Clinical manifestations are diverse and nonspecific and may include neuropathic pain, loss of balance, carpal tunnel syndrome, and unexpected weight loss.

Diagnostic tools

There are only two main categories of diagnostic tools in ATTR-PN: *TTR* gene sequencing looking for *TTR* gene amyloidogenic variants and tools for detection of amyloid deposits including classical biopsy and, more recently, bone scintigraphy with diphosphono-1,2-propanodicarboxylic acid (DPD), hydroxymethylene diposphonate (HMDP), etc.

Fig. 2 Suspicion index for diagnosis of ATTRv amyloidosis with PN.
In endemic areas.
In nonendemic areas.
ATTRv hereditary transthyretin amyloid amyloidosis, *CIDP* chronic inflammatory demyelinating polyneuropathy, *GI* gastrointestinal, *OH* orthostatic hypotension. 'No diabetes, no alcohol abuse, vitamin B12 deficiency. Adapted with permission from Conceicao et al. [41]
Staining a tissue biopsy (salivary gland, abdominal fat, or nerve tissue), typing for amyloid, and screening for \textit{TTR} mutations by \textit{TTR} gene sequencing are important measures for identifying amyloid neuropathy in sporadic cases presenting with rapidly idiopathic progressive axonal polyneuropathy of undetermined origin or atypical CIDP [13].

\textit{TTR} gene sequencing

The \textit{TTR} gene, located in chromosome 18, is small (4 exons). More than 130 mutations can occur, most of which are pathogenic and amyloidogenic and are associated with varied phenotypes including predominant neuropathy.

Table 3 Diagnostic tools for ATTR-PN

\textit{TTR} gene analysis	Amyloid detection	DPD, PYP, HMDP scintigraphy
Advantages	Formal proof of amyloidosis in carriers of \textit{TTR} variants and sporadic amyloid neuropathy	Noninvasive demonstration of cardiac amyloid with bone scintigraphy [43, 44]
Rules	Congo red staining under polarized microscopy	Radiolabeling if no light chain
	Examination under polarized microscopy	Sensitivity < 100%
	Many sections often needed to detect a single deposit	LV wall thickness > 12 mm in combination with abnormal heart/whole-body retention
Limits	Sensitivity for amyloid detection 60–80% [25]	Heart/whole-body > 7.5 associated with the highest event rate [45]
	Dependent on experience and expertise of pathologist	
	May be invasive and risky (cardiac)	
	Time-consuming	
	Several biopsy sites sometimes needed to find a deposita	
Remarks	False negative	Complementarity of \textit{TTR} gene analysis
	Amyloid light chain must be excluded	May avoid cardiac biopsy

\textit{ATTR-PN} amyloid transthyretin polyneuropathy, \textit{DPD} diphosphono-1,2-propanodicarboxylic acid, \textit{HMDP} hydroxymethylene diphosphonate, \textit{LV} left ventricular, \textit{PYP} pyrophosphate

aAt least one tissue biopsy should be performed to identify amyloid deposits and, if negative, another biopsy, preferentially mini-invasive (skin, labial salivary gland, abdominal fat), should be performed

or pyrophosphate (PYP) (Table 3). Staining a tissue biopsy (salivary gland, abdominal fat, or nerve tissue), typing for amyloid, and screening for \textit{TTR} mutations by \textit{TTR} gene sequencing are important measures for identifying amyloid neuropathy in sporadic cases presenting with rapidly idiopathic progressive axonal polyneuropathy of undetermined origin or atypical CIDP [13].
cardiomyopathy, and, more rarely, ocular and cerebro-
meningeal. A registry has been established to record the
significance of mutations and phenotypes in ATTRv amy-
loidosis [10]. A few nonamyloidogenic variants have also
been identified, including the polymorphism Gly6Ser; the
discovery of such a variant has no significant value in a
patient with idiopathic sporadic peripheral neuropathy. A
TTR variant alone cannot confirm a diagnosis of ATTRv
amyloidosis because of incomplete penetrance in carriers.
Nevertheless, DNA sequencing of the TTR gene can be
a useful approach in patients with idiopathic neuropathy
to support or exclude a diagnosis of ATTRv amyloidosis
and for predictive genetic counseling testing in healthy but
potentially at-risk persons with a family history of ATTRv
amyloidosis.

Amyloid confirmation

Biopsy

Staining of biopsy samples with Congo red and visuali-
zation of apple-green birefringence of Congo red-stained
preparations under polarized light are crucial to confirm
the diagnosis of disease and are indicative of the presence
of amyloid fibrils. Finding amyloid deposits can be chal-
lenging, however, and negative biopsy results should not
exclude a diagnosis [46, 47]. Mini-invasive biopsy include
labial salivary gland biopsy, skin biopsy, and abdominal

Bone scintigraphy

Myocardial radiotracer uptake in bone scintigraphy with
³⁹⁹ᵐTc-labeled 3,3-DPD, ³⁹⁹ᵐTc-labeled PYP, or
³⁹⁹ᵐTc-labeled HMDP could be useful in patients with
peripheral neuropathy, amyloidogenic TTR mutation,
and hypertrophic cardiopathy who have negative biopsy
findings, and it may obviate the need for endomyocardial
biopsy [44].

Table 4	Histologic and mass spectrometry methods for diagnosis of ATTR amyloidosis		
Investigation	Sensitivity	Specificity	Aim
Biopsy site			
Sural nerve	79–80% TTR	High	Detecting amyloid deposits [24, 28, 30]
Labial salivary gland a	91% Val30Met early onset	High	Detecting amyloid deposits [77]
Abdominal fat pad b	14–83%	High	Detecting amyloid deposits [78]
Heart	~ 100%	~ 100%	Detecting amyloid deposits
Renal	92–100%	High	Detecting amyloid deposits [79–82]
Skin biopsy	70%	100%	Detecting amyloid deposits [49, 50]
Pathology test [83]			
Congo red staining	Medium–high	High	Detecting amyloid deposits
Polarized microscopy examination	High	High	Green birefringence
IHC with anti-TTR antibodies	High	Medium–high	–
Immuno-EM with anti-TTR antibodies	High	High	Detecting and typing amyloid fibrils
Mass spectrometry tests [84]			
LMD/MS	~ 100%	High	Determining specific type of amyloid deposits

Adapted with permission from Adams et al. [85]

ATTR amyloid transthyretin, EM electron microscopy, IHC immunohistochemistry, LMD/MS laser microdissection mass spectrometry-based proteomic analysis, TTR transthyretin

a Portugal and France

b USA, UK, the Netherlands, Germany, Sweden
Assessment of the extent of the disease

Grading and staging other manifestations

Because ATTRv amyloidosis is a systemic disease, physicians should be aware of manifestations other than those of the peripheral nervous system, such as cardiac, ocular, and renal manifestations. A multidisciplinary approach is required to assess whether, through effects of autonomic dysfunction or amyloid deposition, other organs and systems are likely to be affected [18, 41].

Autonomic dysfunction

Autonomic dysfunction occurs in approximately 73% of patients with ATTR amyloidosis with PN and affects the gut, bladder sphincter, genital nerves, and cardiovascular system. Common symptoms include impotence (73% of male patients), gastrointestinal (GI) disturbance (53%), urinary incontinence (50%), and orthostatic dysregulation (46%) [51]. The most common symptoms seen in the GI system include weight loss (approximately 30% of patients), early satiety, and alternating constipation and diarrhea [52]. The incidence of GI disturbances increases as the disease progresses [53], and the onset of diarrhea earlier in the course of the disease is associated with shorter survival [54, 55].

Other organ involvement

Amyloid can also be deposited in the heart, eyes, kidneys, and, rarely, the leptomeninges, resulting in associated organ dysfunction and clinical symptoms. Cardiac involvement is usually asymptomatic at diagnosis but has been detected in up to 72% of patients through cardiac imaging [30] or cardiac multimodal imaging [56]. Cardiac involvement is associated with progressive myocardial infiltration, denervation, and conduction and rhythm disturbances. Systematic assessment and management of cardiac involvement is critical because cardiac manifestations worsen with disease progression and are more likely to cause death [18]. Ophthalmic manifestations have been reported in 20% (glaucoma and/or vitreous opacities) to 70% (dry eye) of patients with ATTR amyloidosis with PN [57–60].

Evaluation of the spread of the disease

Assessment of the spread of the disease is crucial for the detection of accompanying organ damage and requires a multidisciplinary approach by a neurologist (polyneuropathy, autonomic neuropathy), a cardiologist, an ophthalmologist, and a nephrologist or general health practitioner (Table 5) [61–71]. This is essential because the involvement of most organs, other than the nervous system, is latent but may have potentially major consequences—heart blocks, restrictive cardiomyopathy, glaucoma, renal insufficiency—for patients. Required evaluations for neuropathy include neuropathy impairment score (NIS), search for orthostatic hypotension, sudoscan, heart rate variability tests, Compound Autonomic Dysfunction Test for autonomic dysfunction, and Rasch-built Overall Disability Scale (RODS). Required evaluations for cardiac involvement include New York Heart Association (NYHA) score, electrocardiography (ECG), multimodal cardiac imaging [echocardiography (ECHO), magnetic resonance imaging (MRI), DPD, metaiodobenzylguanidine], complete ophthalmologic examination, and modified body mass index (mBMI). Biomarkers are also required for heart [N-terminal fragment of the probrain natriuretic peptide (NT-proBNP) and cardiac troponins] and renal [estimated glomerular filtration rate (eGFR), proteinuria] dysfunction (Table 5).

Grading of the disease

Grading of the disease in each organ system involved is important for the follow-up of these patients. Grading allows detection of eventual disease progression and of organ complications that will require specific management (Tables 3, 5). The frequency of examinations should be determined by the severity and the systemic nature of the disease in each patient.

Follow-up

Patients with confirmed diagnoses should be routinely followed up to monitor for disease progression [18] (Fig. 3). Assessments should evaluate somatic neuropathy with locomotion (polyneuropathy disability score), severity of sensory motor neuropathy (NIS), autonomic dysfunction, manifestations with cardiac insufficiency (NYHA), biomarkers (ECG, ECHO, NT-proBNP), mBMI, renal dysfunction with eGFR, and proteinuria (Table 5). Assessments should be scheduled every 6–12 months, and that schedule should be maintained, depending on investigations.

The quantification of dysfunction caused by ATTRv amyloidosis depends on an array of clinical tests, including those that measure nerve conduction, autonomic neuropathy, manual grip strength, and lower limb function (Tables 5, 6) [7, 8, 18, 51, 72]. However, many of these tests have been used only in relatively small studies; further refinement and validation of these tests in larger patient cohorts are needed.
Table 5 Evaluation of disease progression at initial screening and follow-up

Evaluation Purpose	References	
Neurologic manifestations		
A. Sensory motor neuropathy	Questionnaire	Small fiber loss
Paresthesia, neurogenic pain		
Gait disability	Large fiber loss	
NIS (0–244)		
Weakness in LL and UL	Large fiber loss	
Sensory loss in toes and fingers	Small and large fiber loss	
Tendon reflex loss in the four limbs	Large fiber loss	
Examination		
Pain and thermal sensory loss in the extremities in LL and UL (extension)	Small fiber loss	
Disability	Modified Norris test	Sensorimotor neuropathy
FAP-RODS	Overall disability	
RODS	Overall disability	
Locomotion	PND score	Autonomy to walk
B. Autonomic neuropathy	CADT* (24-0)	Overall dysfunction
COMPASS 31		
Sudoscan	Denervated sweat glands of the soles and palms	
Orthostatic hypotension		
MIBG scintigraphy	Sympathetic cardiac denervation	
Heart rate variability tests	Sympathetic and parasympathetic	
Non-neurologic manifestations		
C. Cardiac	ECG, Holter-ECG	Looking for conduction block or arrhythmia
Cardiac staging	Cardiac involvement	
ECHO (strain)	Cardiac involvement	
Cardiac MRI	Cardiac amyloidosis	
DPD, PYP, and HMDP scintigraphy	Cardiomyocyte stress	
NT-proBNP	Cardiomyocyte death	
Cardiac troponin	Extent of heart failure	
NYHA class	Stage the extent of cardiac damage	
D. Ocular	Slit-lamp examination	Vitreous opacities
Intraocular pressure	Ocular hypertension	
Schirmer test	Dry eye (sicca syndrome)	
E. Kidney	Proteinuria	Renal dysfunction
eGFR	Renal insufficiency	
F. General condition	Weight	Nutritional status
mBMI	Nutritional status	
Quality of life	Norfolk QOL-DN	Disease-specific changes in QOL
SF-36 QOL	Non-disease-specific changes in QOL	
Overall scale for ATTR disease	Kumamoto neurologic scale	Sensory disturbances, motor weakness, autonomic dysfunction, and visceral organ impairment
Sensory motor deficit in the limbs and autonomic dysfunction	NIS + 7, mNIS + 7	Composite score for clinical trial only

CADT Compound Autonomic Dysfunction Test, **COMPASS** Composite Autonomic Symptom Score, **DN** diabetic neuropathy, **DPD** diphosphono-1,2-propanodicarboxylic acid, **ECG** electrocardiography, **ECHO** echocardiography, **eGFR** estimated glomerular filtration rate, **FAP-RODS** Familial Amyloid Polyneuropathy-Specific Rasch-built Overall Disability Scale, **HMDP** hydroxymethylene diphosphonate, **LL** lower limb, **mBMI** modified body mass index, **MIBG** metaiodobenzylguanidine, **MRI** magnetic resonance imaging, **mNIS** modified Neuropathy Impairment Score, **NIS** Neuropathy Impairment Score, **NT-proBNP** N-terminal fragment of the probrain natriuretic peptide, **NYHA** New York Heart Association, **PND** polynueropathy disability, **PYP** pyrophosphate, **QOL** quality of life, **SF-36** 36-Item Short Form Survey, **UL** upper limb
Consequences of diagnosis with ATTRv with PN

For patients with diagnoses of ATTRv with PN, early disease-modifying therapy may be beneficial [73, 74] and underscores the need for diagnosis as soon as possible. Genetic counseling is recommended for family members of patients, and therapeutic patient education is recommended for siblings and children [75, 76].

Conclusions

Identification of ATTRv amyloidosis with PN can be challenging, particularly in nonendemic regions, and a high level of suspicion is required to diagnose patients as early as possible. Patients can present with heterogeneous symptoms and variable levels of disease severity, which often leads to a misdiagnosis of diabetic neuropathy or CIDP. Early and accurate diagnosis may also be confounded by a lack of family history and the presence of various phenotypes common to multiple disease conditions such as GI disorders. Older patient age at disease onset can also contribute to misdiagnosis because symptoms of ATTR amyloidosis may be confused with declines in systemic neurologic function that typically occur with normal aging.

In sporadic and potentially misdiagnosed cases, important tools for identifying amyloid neuropathy include TTR gene sequencing for amyloidogenic mutations, tissue biopsy (salivary gland, skin, abdominal fat, or nerve tissue) with staining, and amyloid typing. Because ATTRv with PN is a systemic disease, a holistic assessment approach should be used that includes consultation across multiple specialties (e.g., neurologists, cardiologists, ophthalmologists and eventually gastroenterologists, and nephrologists). Early and accurate diagnosis of ATTR amyloidosis allows early treatment and will potentially modify disease progression in patients.

Acknowledgements Funding for these recommendations was provided by the Amyloidosis Research Consortium. Medical editorial assistance with nonintellectual content and manuscript preparation was provided by ApotheCom (San Francisco, CA, USA). This review was sponsored by the Amyloidosis Research Consortium.

Author contributions Dr Adams wrote the first draft of the manuscript. All authors revised the manuscript for intellectual content and gave approval for it to be submitted for publication.

Compliance with ethical standards

Conflicts of interest This review was sponsored by the Amyloidosis Research Consortium. Dr Adams reports grants from Alnylam and Pfizer and personal fees from Prothena, GSK, Alnylam, and Pfizer. Dr Ando has nothing to disclose. Dr Beirão has nothing to disclose. Dr Coelho was paid per protocol for clinical trials from FoldRx, Pfizer, Ionis, and Alnylam and received grants from FoldRx and Pfizer; received support from Pfizer, Ionis, Biogen, and Alnylam to attend scientific meetings; and has presented on behalf of Pfizer, Alnylam, GSK, Prothena, and Ionis/Akcea and received honoraria. Dr Gertz has received personal fees from Ionis/Akcea, Alnylam, Prothena, Celgene, Janssen, Annexon, Appellis, Amgen, Medscape, Physicians Education Resource, and Research to Practice; grants and personal fees from Spectrum; personal fees for Data Safety Monitoring board from AbVie; speaker fees from Teva, Johnson and Johnson, Medscape, and
DAVA Oncology; royalties from Springer Publishing; and grant funding from the Amyloidosis Foundation, the International Waldenström Foundation, and the National Cancer Institute (SPORE MM SPORE 5P50 CA186781-04). In addition, he has served on advisory boards for Pharmacyclics and for Proclara (outside the submitted work). Dr Gillmore has participated in advisory boards for Alnylam Pharmaceuticals Inc and GSK Inc. Dr Hawkins has nothing to disclose. Ms Lousada has received honoraria from Akcea. Dr Suhr has received honoraria and travel and consultancy fees from Ionis/Akcea, Alnylam, Prothena, and Intellia. Dr Merlini has received honoraria from Janssen and Prothena; travel support from Prothena and Celgene; and consulting fees from Millennium, Pfizer, Janssen, Prothena, and Ionis.

Ethical standards
Not applicable for this type of study.

Informed consent
Not applicable for this type of study.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Adams D, Koike H, Slama M, Coelho T (2019) Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat Rev Neurol 15(7):387–404
2. Schmidt HH, Waddington-Cruz M, Botteman MF, Carter JA, Chopra AS, Hoppes M, Stewart M, Fallet S, Amass L (2018) Estimating the global prevalence of transthyretin familial amyloid polynuropathy. Muscle Nerve 57:829–837
3. Saravia MJ, Birken S, Costa PP, Goodman DS (1984) Amyloid fibril protein in familial amyloidotic polynuropathy, Portuguese type. Definition of molecular abnormality in transthyretin (prealbumin). J Clin Invest 74:104–119
4. Hawkins PN, Ando Y, Dispenzeri A, Gonzalez-Duarte A, Adams D, Suhr OB (2015) Evolving landscape in the management of transthyretin amyloidosis. Ann Med 47:625–638
5. Raperzi C, Quarta CC, Obici L, Perfetto F, Longhi S, Salvi F, Biagini E, Lorenzini M, Grigioni F, Leone O, Cappelli F, Palladini G, Rimessi P, Ferlini A, Arpesella G, Pinna AD, Merlini G, Perlini S (2013) Disease profile and differential diagnosis of hereditary transthyretin-related amyloidosis with exclusively cardiac phenotype: an Italian perspective. Eur Heart J 34:520–528
6. Castaño A, Drachman BM, Judge D, Maurer MS (2015) Natural history and therapy of TTR-cardiac amyloidosis: emerging disease-modifying therapies from organ transplantation to stabilizer and silencer drugs. Heart Fail Rev 20:163–178
7. Coutinho P, Martins da Silva A, Lopas LJ (1980) Forty years of experience with type 1 amyloid neuropathy. Review of 483 cases. In: Amyloid and amyloidosis. Excerpta Medica, Amsterdam, pp 88–98
8. Koike H, Tanaka F, Hashimoto R, Tomita M, Kagashidora Y, Iijima M, Fujitake J, Kawanami T, Kató T, Yamamoto M, Sobue G (2012) Natural history of transthyretin Val30Met familial amyloid polyneuropathy: analysis of late-onset cases from non-endemic areas. J Neurol Neurosurg Psychiatry 83:152–158
9. Andrade C (1952) A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75:408–427
10. Rowczewicz DM, Noor I, Gillmore JD, Lachmann HJ, Whelan C, Hawkins PN, Obici L, Westerman P, Graebe G, Wechalekar AD (2014) Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum Mutat 35:E2403–2412
11. Maurer MS, Bokhari S, Damy T, Durbala S, Drachman BM, Fontana M, Grogan M, Kristev AV, Lousada I, Nativi-Nicolau J, Cristina Quarta C, Raperzi C, Ruberg FL, Witteles R, Merlini G (2019) Expert consensus recommendations for the suspicion and diagnosis of transthyretin cardiac amyloidosis. Circ Heart Fail 12:e006075
12. Adams D, Cauquil C, Labeyrie C, Beaudonnet G, Algalarrozando V, Theaudin M (2016) TTR kinetic stabilizers and TTR gene silencing: a new era in therapy for familial amyloidotic polyneuropathies. Expert Opin Pharmacother 17:791–802
13. Adams D, Lozeron P, Lacroix C (2012) Amyloid neuropathies. Curr Opin Neurol 25:564–572
14. Plante-Bordeneuve V, Carayol J, Ferreira A, Adams D, Clerget-Darpoux F, Misrahi M, Said G, Bonati-Pellie C (2003) Genetic study of transthyretin amyloid neuropathies: carrier risks among French and Portuguese families. J Med Genet 40:e120
15. Hellman U, Alarcon F, Lundgren HE, Suhr OB, Bonati-Pellie C, Plante-Bordeneuve V (2008) Heterogeneity of penetrance in familial amyloid polyneuropathy. ATTR Val30Met, in the Swedish population. Amyloid 15:181–186
16. Adams D, Beaudonnet G, Adam C, Lacroix C, Theaudin M, Cauquil C, Labeyrie C (2016) Familial amyloid polyneuropathy: when does it stop to be asymptomatic and need a treatment? Rev Neurol (Paris) 172:645–652
17. Coelho T, Vinik A, Vinik EJ, Tripp T, Packman J, Grogan DR (2017) Clinical measures in transthyretin familial amyloid polyneuropathy. Muscle Nerve 55:323–332
18. Adams D (2013) Recent advances in the treatment of familial amyloid polyneuropathy. Ther Adv Neurol Disord 6:129–139
19. Koike H, Misu K, Ikeda S, Ando Y, Nakazato M, Ando E, Yamamoto M, Hattori N, Sobue G (2002) Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan: early vs late-onset form. Arch Neurol 59:1771–1776
20. Hornsten R, Pennlert J, Wiklund U, Lindqvist P, Jensen SM, Suhr OB (2010) Heart complications in familial transthyretin amyloidosis: ATTR Val30Met disease. Curr Opin Neurol 23:61–64
21. Olsson M, Norgren N, Obayashi K, Plante-Bordeneuve V, Suhr OB, Cederquist J, Jonasson J (2010) A possible role for miRNA silencing in disease phenotype variation in Swedish transthyretin V30M carriers. BMC Med Genet 11:130
22. Yamashita T, Ueda M, Misumi Y, Masuda T, Nomura T, Tasaki M, Takamatsu K, Sasada K, Obayashi K, Matsuhi H, Ando Y (2018) Genetic and clinical characteristics of hereditary transthyretin amyloidosis in endemic and non-endemic areas: experience from a single-referral center in Japan. J Neurol Neurosurg Psychiatry 89:134–140
23. Ihse E, Ybo A, Suhr OB, Lindqvist P, Backman C (2008) Amyloid fibril composition is related to the phenotype of hereditary transthyretin amyloidosis in endemic and non-endemic areas: experience from a single-referral center in Japan. J Neurol Neurosurg Psychiatry 89:134–140
24. Adams D, Lozeron P, Theaudin M, Mincheva Z, Cauquil C, Adam C, Signate A, Vial C, Maisonneve T, Delmont E, Franques J, Vallat JM, Sole G, Pereyon E, Lapour A, Echaniz-Laguna A, Misrahi M, Lacroix C (2012) Regional difference and similarity of familial amyloidosis with polyneuropathy in France. Amyloid 19(Suppl 1):61–64

Springer
58. Liu T, Zhang B, Jin X, Wang W, Lee J, Li J, Yuan H, Cheng X (2014) Ophthalmic manifestations in a Chinese family with familial amyloid polyneuropathy due to a TTR Gly83Arg mutation. Eye 28:26–33

59. Beirao JM, Malheiro J, Lemos C, Beirao I, Costa P, Torres P (2015) Ophthalmological manifestations in hereditary transthyretin (ATTR V30M) carriers: a review of 513 cases. Amyloid 22:117–122

60. Martins AC, Rosa AM, Costa E, Tavares C, Quadrado MJ, Murta JN (2015) Ocular manifestations and therapeutic options in patients with familial amyloid polyneuropathy: a systematic review. BioMed Res Int 2015:282405

61. Dyck PJ, Davies JL, Litchy WJ, O’Brien PC (1997) Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy Study cohort. Neurology 49:229–239

62. Denier C, Ducot B, Husson H, Lozeron P, Adams D, Meyer L, Said G, Planté-Bordeneuve V (2007) A brief compound test for assessment of autonomic and sensory-motor dysfunction in familial amyloid polyneuropathy. J Neurol 254:1684–1688

63. Pruppers M, Merkies IS, Faber CG, Da Silva AM, Costa V, Coelho T (2015) The Val30Met familial amyloid polyneuropathy specific Rasch-built overall disability scale (FAP-RODS). J Peripher Nerv Syst 20:319–327

64. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W (2012) COMPASS 31: a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin Proc 87:1196–1201

65. Gillmore JD, Darnell T, Fontana M, Hutchinson M, Lachmann HJ, Martiniez-Naharro A, Quarta CC, Rezk T, Whelan CJ, Vinik AI, Vinik AI, Paulson JF, Merkies IS, Packman J, Grogan LK, Gorevic PD, Adams DH, Plante-Bordeneuve V, Whelan CJ, Ganz TJ, Ikeda S, Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Planté-Bordeneuve V, Barroso FA, Merlino G, Obici L, Scheinberg M, Brannagan TH 3rd, Litchy WJ, Whelan CJ, Drachman BM, Adams D, Heitner SB, Conceicao I, Schmidt HH, Vita G, Campistol JM, Gamez J, Gane E, Shah AM, Solomon SD, Monia BP, Hughes SG, Kwoh TJ, Cevayev BW, Jung SW, Baker BF, Ackermann EJ, Gertz MA, Coelho T (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379:22–31

66. Obici L, Kuku JB, Buades J, Adams D, Suhr OB, Coelho T, Kyriakides T, European Network for T-F (2016) Recommendations for presymptomatic genetic testing and management of individuals at risk for hereditary transthyretin amyloidosis. Curr Opin Neurol 29(Suppl 1):S27–S35

67. Theaudin M, Cauquil C, Antonini T, Algalarrondo V, Labeyrie C, Ayacuquer S, Clement M, Kubertz M, Nonnez G, Morier A, Bourges C, Darras A, Mouzat L, Adams D (2014) Familial amyloid polyneuropathy: elaboration of a therapeutic patient education programme, "EdAmyl". Amyloid 21:225–230

68. Dardiotis E, Koutsou P, Papanicolaou EZ, Vonta I, Kladia A, Vassilopoulos D, Hadjigeorgiou G, Christodoulou K, Kyriakides T (2009) Epidemiological, clinical and genetic study of familial amyloidotic polyneuropathy in Cyprus. Amyloid 16:32–37

69. van Garemen II, Hazenberg BP, Bijzet J, van Rijswijk MH (2006) Diagnostic accuracy of subcutaneous abdominal fat tissue aspiration for detecting systemic amyloidosis and its utility in clinical practice. Arthritis Rheum 54:2015–2021

70. Łobato L, Beirao I, Guimaraes SM, Droz D, Guimaraes S, Grundfeld JP, Noel LH (1998) Familial amyloid polyneuropathy type I (Portuguese): distribution and characterization of renal amyloid deposits. Am J Kidney Dis 31:940–946

71. Łobato L, Beirao I, Silva M, Bravo F, Silvestre F, Guimaraes S, Sousa A, Noel LH, Sequeiros J (2003) Familial ATTR amyloidosis: microalbuminuria as a predictor of symptomatic disease and clinical nephropathy. Nephrol Dial Transplant 18:532–538

72. Oguchi K, Takei Y, Ikeda S (2006) Value of renal biopsy in the prognosis of liver transplantation in familial amyloid polyneuropathy patients. J Am Soc Nephrol 6:585–591

73. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin KP, Vita G, Attarian S, Planté-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH 3rd, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweeter TT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21

74. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Planté-Bordeneuve V, Barroso FA, Merlino G, Obici L, Scheinberg M, Brannagan TH 3rd, Litchy WJ, Whelan CJ, Drachman BM, Adams D, Heitner SB, Conceicao I, Schmidt HH, Vita G, Campistol JM, Gamez J, Ganz TJ, Ikeda S, Benson MD, Monia BP, Hughes SG, Kwoh TJ, Cevayev BW, Jung SW, Baker BF, Ackermann EJ, Gertz MA, Coelho T (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379:22–31

75. Obici L, Kuku JB, Buades J, Adams D, Suhr OB, Coelho T, Kyriakides T, European Network for T-F (2016) Recommendations for presymptomatic genetic testing and management of individuals at risk for hereditary transthyretin amyloidosis. Curr Opin Neurol 29(Suppl 1):S27–S35

76. Theaudin M, Cauquil C, Antonini T, Algalarrondo V, Labeyrie C, Ayacuquer S, Clement M, Kubertz M, Nonnez G, Morier A, Bourges C, Darras A, Mouzat L, Adams D (2014) Familial amyloid polyneuropathy: elaboration of a therapeutic patient education programme, “EdAmyl”. Amyloid 21:225–230

77. Dardiotis E, Koutsou P, Papanicolaou EZ, Vonta I, Kladia A, Vassilopoulos D, Hadjigeorgiou G, Christodoulou K, Kyriakides T (2009) Epidemiological, clinical and genetic study of familial amyloidotic polyneuropathy in Cyprus. Amyloid 16:32–37

78. van Garemen II, Hazenberg BP, Bijzet J, van Rijswijk MH (2006) Diagnostic accuracy of subcutaneous abdominal fat tissue aspiration for detecting systemic amyloidosis and its utility in clinical practice. Arthritis Rheum 54:2015–2021

79. Łobato L, Beirao I, Guimaraes SM, Droz D, Guimaraes S, Grundfeld JP, Noel LH (1998) Familial amyloid polyneuropathy type I (Portuguese): distribution and characterization of renal amyloid deposits. Am J Kidney Dis 31:940–946

80. Łobato L, Beirao I, Silva M, Bravo F, Silvestre F, Guimaraes S, Sousa A, Noel LH, Sequeiros J (2003) Familial ATTR amyloidosis: microalbuminuria as a predictor of symptomatic disease and clinical nephropathy. Nephrol Dial Transplant 18:532–538

81. Oguchi K, Takei Y, Ikeda S (2006) Value of renal biopsy in the prognosis of liver transplantation in familial amyloid polyneuropathy patients. J Am Soc Nephrol 6:585–591

82. Dyck PJ, Kincaid JC, Dyck PJ, Chaudhry V, Goyal NA, Alves C, Salhi H, Wiesman JF, Labeyrie C, Robinson-Papp J, Cardoso M, Laura M, Ruzhansky K, Cortese A, Brannagan TH 3rd, Khoury J, Khella S, Waddington-Cruz M, Ferreira J, Wang AK, Pinto MV, Ayache SS, Benson MD, Berk JL, Coelho T, Polydefkis M, Gorevic P, Adams DH, Planté-Bordeneuve V, Whelan C, Merlino G, Heitner S, Drachman BM, Conceicao I, Klein CJ, Gertz MA, Ackermann EJ, Hughes SG, Mauermann ML, Bergemann R, Lodermeyer KA, Davies JL, Carter RE, Litchy WJ (2017) Assessing mNIS+7 Ionis and international neurologists’ proficiency in a familial amyloidotic polyneuropathy trial. Muscle Nerve 56:901–911

83. Adams D, Cauquil C, Labeyrie C (2017) Familial amyloid polyneuropathy. Curr Opin Neurol 30:481–489

84. Mariani LL, Lozeron P, Theaudin M, Mincheva Z, Signate A, Ducot B, Algalarrondo V, Denier C, Adam C, Nicolas G, Samuel D, Slama MS, Lacrocq C, Misrahi M, Adams D (2015) Genotype-phenotype correlation and course of transthyretin familial amyloid polyneuropathies in France. Ann Neurol 78:901–916

85. Adams D, Suhr OB, Hund E, Obici L, Tournev I, Campistol JM, Slama MS, Hazenberg BP, Coelho T, European Network for T-F (2016) First European consensus for diagnosis, management, and
treatment of transthyretin familial amyloid polyneuropathy. Curr Opin Neurol 29(Suppl 1):S14–S26
86. van Nes SI, Vanhoutte EK, van Doorn PA, Hermans M, Bakkers M, Kuitwaard K, Faber CG, Merkies IS (2011) Rasch-built Overall Disability Scale (R-ODS) for immune-mediated peripheral neuropathies. Neurology 76:337–345
87. Piekarski E, Chequer R, Algarrondo V, Eliahou L, Mahida B, Vigne J, Adams D, Slama MS, Le Guludec D, Rouzet F (2018) Cardiac denervation evidenced by MIBG occurs earlier than amyloid deposits detection by diphosphonate scintigraphy in TTR mutation carriers. Eur J Nucl Med Mol Imaging 45:1108–1118
88. Yamamoto S, Wilczek HE, Nowak G, Larsson M, Oksanen A, Iwata T, Gjertsen H, Soderdahl G, Wikstrom L, Ando Y, Suhr OB, Ericzon BG (2007) Liver transplantation for familial amyloidotic polyneuropathy (FAP): a single-center experience over 16 years. Am J Transplant 7:2597–2604