On the spectral radius of bi-block graphs with given independence number α

Joyentanuj Das* and Sumit Mohanty*

Abstract

A connected graph is called a bi-block graph if each of its blocks is a complete bipartite graph. Let $B(k, \alpha)$ be the class of bi-block graph on k vertices with given independence number α. It is easy to see that every bi-block graph is a bipartite graph and for a bipartite graph G on k vertices, the independence number $\alpha(G)$, satisfies $\left\lceil \frac{k}{2} \right\rceil \leq \alpha(G) \leq k - 1$. In this article, we prove that the maximum spectral radius $\rho(G)$ among all graphs G in $B(k, \alpha)$, is uniquely attained for the complete bipartite graph $K_{\alpha,k-\alpha}$.

Keywords: complete bipartite graphs, bi-block graphs, independence number, spectral radius.

MSC: 05C50, 15A18

1 Introduction

Let $G = (V(G), E(G))$ be a finite, simple, connected graph with $V(G)$ as the set of vertices and $E(G)$ as the set of edges in G. We simply write $G = (V, E)$ if there is no scope of confusion. We write $u \sim v$ to indicate that the vertices $u, v \in V$ are adjacent in G. The degree of the vertex v, denoted by $d_G(v)$ (or simply $d(v)$), equals the number of vertices in V that are adjacent to v. A graph H is said to be a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For any subset $S \subseteq V(G)$, a subgraph H of G is said to be an induced subgraph with vertex set S, if H is a maximal subgraph of G with vertex set $V(H) = S$. We write $|S|$ to denote the cardinality of the set S. A graph $G = (V, E)$ is said to be bipartite if the vertex set can be partitioned into two subsets M and N such that $E \subseteq M \times N$. A complete bipartite graph is a bipartite graph with partition $V = M \cup N$, in which every vertex of M is adjacent to every vertex of N. A complete bipartite graph with $|M| = m$ and $|N| = n$ is denoted by $K_{m,n}$. To emphasize the vertex partition M and N, we use the notation $K(M, N)$ to represent $K_{m,n}$ whenever $|M| = n$ and $|N| = n$.

A vertex v of a connected graph $G = (V, E)$ is a cut-vertex of G if $G - v$ is disconnected. A block of the graph G is a maximal connected subgraph of G that has no cut-vertex. A block is said to be a leaf block if its deletion does not disconnects the graph. Given two blocks F and H of graph G are said to be neighbours, if they are connected via a cut-vertex. We denote $F \odot H$, to represent the induced subgraph on the vertex set of two neighbouring blocks F and H. A connected graph is called a bi-block graph if each of its blocks is a complete bipartite graph (see Figure 1). Given a vertex $v \in V$, the block index of v is denoted by $bi_G(v)$, equals the number of blocks in G contain the vertex v. It is easy to see that if v is not a cut vertex, then $bi_G(v) = 1$. Also note that, the star $K_{1,n}$, is bi-block graph with a central cut vertex v(say), where $bi_G(v) = d_G(v) = n$, where each of its blocks are edges. In this article we consider the star $K_{1,n}$ as a complete bipartite graph instead of a bi-block graph.

*School of Mathematics, IISER Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala- 695 551, India.

Emails: joyentanuj16@iisertvm.ac.in, sumit@iisertvm.ac.in, sumitmath@gmail.com
A set \(I \) of vertices in a graph \(G \) is an independent set if no pair of vertices of \(I \) are adjacent. The independence number of \(G \), denote by \(\alpha(G) \), is the maximum cardinality of an independent set in \(G \). An independent set of cardinality \(\alpha(G) \) is called an \(\alpha(G) \)-set.

Let \(G = (V,E) \) be a graph. For \(x, y \in V \), the adjacency matrix of the graph \(G \) is, \(A(G) = [a_{xy}] \), where \(a_{xy} = 1 \) if \(x \sim y \) and 0 otherwise. For any column vector \(X \), if \(x_u \) represent the entry of \(X \) corresponding to vertex \(u \in V \), then

\[
X^t A(G) X = 2 \sum_{u \sim w} x_u x_w,
\]

where \(X^t \) represent the transpose of \(X \). For a connected graph \(G \) on \(k \geq 2 \) vertices, by Perron-Frobenius theorem, the spectral radius \(\rho(G) \) of \(A(G) \) is a simple positive eigenvalue and the associated eigenvector is entry-wise positive (for details see [1]). We will refer to such an eigenvector as the Perron vector of \(G \). We simply write \(A \) and \(\rho \) to represent the adjacency matrix and spectral radius, if there is no scope of confusion. Now we state a few known results on spectral radius useful in our subsequent calculations. By Min-max theorem, we have

\[
\rho(G) = \max_{X \neq 0} \frac{X^t A(G) X}{X^t X} = \max_{X \neq 0} \frac{2 \sum_{u \sim w} x_u x_w}{\sum_{u \in V} x_u^2}.
\]

The lemma below gives a relation between spectral radius and degree of vertices.

Lemma 1.1. [1] For a graph \(G \), if \(\Delta(G) \) and \(\delta(G) \) denote the maximum and the minimum of the vertex degrees of \(G \), then \(\delta(G) \leq \rho(G) \leq \Delta(G) \).

Given a graph \(G = (V,E) \), for \(x, y \in V(G) \) we will use \(G + xy \) to denote the graphs obtained by from \(G \) by adding an edge \(xy \notin E(G) \) and we have the following result.

Lemma 1.2. [2] If \(G \) is a graph such that for \(x, y \in V(G), xy \notin E(G) \), then \(\rho(G) < \rho(G + xy) \).

In literature, problems related to maximal and minimal spectral radius of graphs for a given class is an active area in spectral graph theory and has been extensively studied (for example see [2]-[9]). In particular, few interesting article related to maximal and minimal spectral radius with given independence number has been studied for different class of graphs (for details see [2, 3, 5, 9]). We are interested in maximizing spectral radius for bi-block graphs with given independence number. Let \(\mathcal{B}(k,\alpha) \) be the class of bi-block graph on \(k \) vertices with a given independence number \(\alpha \). In this article, we prove that the maximum spectral radius \(\rho(G) \), among all graphs \(G \) in \(\mathcal{B}(k,\alpha) \) is uniquely attained for the complete bipartite graph \(K_{\alpha,k-\alpha} \).

![Figure 1: bi-block graph with blocks \(K_{1,5} - K_{3,3} - K_{4,3} - K_{3,2} \)](image)
2 Main Results

We begin with a few results that gives us some insight to dependency of the independence number of a bi-block graph and its leaf blocks. It is easy to see, if \(G \) is a bipartite graph with vertex partition \(M \) and \(N \), then \(\alpha(G) = \max\{|M|, |N|\} \). Since every bi-block graph is a bipartite graph, so given a bi-block graph \(G \) on \(k \) vertices, the independence number \(\alpha(G) \), satisfies \(\left\lceil \frac{k}{2} \right\rceil \leq \alpha(G) \leq k - 1 \).

Let \(G \) be a bi-block graph. Let \(H \) be any leaf block connected to the graph \(G \) at a cut vertex \(v \in V(G) \) and \(G - H \) be the graph obtained from \(G \) by removing \(H \) – \(\{v\} \). Given a \(\alpha(G) \)-set \(I \), we denote

\[
I|_{G-H} = \{ u \in I \mid u \in V(G - H) \}.
\]

Note that, \(I|_{G-H} \) is an independent set of the graph \(G - H \) which need not be an \(\alpha(G - H) \)-set and hence \(|I|_{G-B} \leq \alpha(G - B) \). The result below gives us a relation between \(I|_{G-H} \) and a \(\alpha(G - H) \)-set.

Lemma 2.1. Let \(G \) be a bi-block graph and \(H = K_{m,n} \) be any leaf block connected to the graph \(G \) at a cut vertex \(v \in V(G) \) and \(G - H \) be the graph obtained from \(G \) by removing \(H - \{v\} \). Let \(I \) be an \(\alpha(G) \)-set and \(I|_{G-H} \) be defined as above. Then

\[
\alpha(G - H) = \begin{cases}
|I|_{G-H} + 1 & \text{if } v \notin I \text{ and } I|_{G-H} \cup \{v\} \text{ is an } \alpha(G - H) \text{-set,} \\
|I|_{G-H} & \text{otherwise.}
\end{cases}
\]

Proof. Suppose \(I|_{G-H} \) is not an \(\alpha(G - H) \)-set. Then there is a vertex \(u \in V(G - H) \) and \(u \notin I|_{G-H} \) such that \(I|_{G-H} \cup \{u\} \) is an independent set. If \(u \neq v \), then \(L = I|_{G-H} \cup \{v\} \cup (I \setminus I|_{G-H}) \) is an independent set of \(G \), which is a contradiction as \(|L| > \alpha(G) \). Now if \(u = v \), then \(I|_{G-H} \cup \{v\} \) is an independent set and \(v \notin I \). Thus \(I|_{G-H} \cup \{v\} \) is an \(\alpha(G - H) \)-set and hence \(\alpha(G - H) = |I|_{G-H} + 1 \).

Next, if \(I|_{G-H} \) is an \(\alpha(G - H) \)-set, then we are done. \(\square \)

It is clear from the argument in the above proof, if \(I \) be an \(\alpha(G) \)-set and \(I|_{G-H} \) is not an \(\alpha(G - H) \)-set, then \(I|_{G-H} \cup \{v\} \) is an \(\alpha(G - H) \)-set. The result below relates the independence number of a bi-block of a graph with its leaf block.

Proposition 2.2. Let \(G \) be a bi-block graph and \(H = K_{m,n} \) be any leaf block connected to the graph \(G \) at a cut vertex \(v \) and \(G - H \) be the graph obtained from \(G \) by removing \(H - \{v\} \). If \(m \geq n \), then \(\alpha(G) \) equals to either \(\alpha(G - H) + m \) or \(\alpha(G - H) + m - 1 \).

Proof. Let \(H = K(M, N) \) where \(|M| = m, |N| = n \) and \(m \geq n \). Let \(I \) be an \(\alpha(G) \)-set and \(I|_{G-H} \) defined as before. We consider the following cases to complete the proof. First consider the case whenever \(v \notin I \) and \(I|_{G-H} \) is an \(\alpha(G - H) \)-set. If \(v \in M \) and \(m > n \), then \(\alpha(G) = |I|_{G-B} + m - 1 \).

Otherwise \(\alpha(G) = |I|_{G-B} + m \). Thus by Lemma 2.1 the result holds true.

Next, consider \(v \in I \) and \(I|_{G-H} \) is an \(\alpha(G - H) \)-set. If \(m > n \), then the cut vertex \(v \) necessarily belongs to \(M \), else \(L = \left(I|_{G-B} \setminus \{v\}\right) \cup M \) is an independent set of \(G \) with \(|L| > \alpha(G) \), which leads to a contradiction. Thus \(\alpha(G) = |I|_{G-B} + m - 1 \) and by Lemma 2.1, we get \(\alpha(G) = \alpha(G - B) + m - 1 \).

If \(m = n \), then either \(I|_{G-H} \cup (M \setminus \{v\}) \), whenever \(v \in M \) or \(I|_{G-H} \cup (N \setminus \{v\}) \), whenever \(v \in N \) is an \(\alpha(G) \)-set. Thus, by Lemma 2.1 we have \(\alpha(G) = \alpha(G - H) + m - 1 \).

Finally, consider the case \(v \notin I \) and \(I|_{G-H} \cup \{v\} \) is an \(\alpha(G - H) \)-set. If \(m > n \), then \(v \) necessarily belongs to \(N \), else \(L = I|_{G-H} \cup M \) is an independent set of \(G \) with \(|L| > \alpha(G) \) which is
a contradiction. Therefore \(\alpha(G) = |T_{G-B}| + m \) and by Lemma 2.1 we have \(\alpha(G) = \alpha(G-H) + m - 1 \). If \(m = n \), then both \(|T_{G-H} \cup M| \) and \(|T_{G-H} \cup N| \) are \(\alpha(G) \)-sets. Thus, by Lemma 2.1 we have \(\alpha(G) = \alpha(G-H) + m - 1 \). This completes the proof. \(\blacksquare \)

Now we consider our main goal, to maximize the spectral radius for the class of bi-block graphs \(B(k, \alpha) \). We begin with the result for bi-block graphs consisting of two-blocks. Before proceeding for the result, we list a few identities as an observation below.

Observation 2.3. Let \(G = (V, E) \) be a bi-block graph consisting of two blocks \(F \) and \(H \) connected by cut vertex \(v \), i.e. \(G = F \otimes H \). Let \(F = K(P, Q) \), where \(|P| = p \), \(|Q| = q \) and \(H = K(M, N) \), where \(|M| = m \), \(|N| = n \) such that \(Q \cap M = \{v\} \). Let \(A \) be the adjacency matrix of \(G \) and \(\rho, X \) be the eigen-pair corresponding to the spectral radius of \(A \). Let \(x_a \) denote the entry of \(X \) corresponding to the vertex \(u \in V \).

Let \(q, m \geq 2 \). Using \(AX = \rho X \), we have \(px_u = \sum_{w \sim u} x_w = \sum_{w \in M} x_w \), for all \(u \in N \). Thus \(x_u \) is a constant, whenever \(u \in N \) and we denote it by \(a_n \). Using similar arguments, let us denote

\[
x_u = \begin{cases}
 a_n & \text{if } u \in N, \\
 a_m & \text{if } u \in M, u \neq v, \\
 a_p & \text{if } u \in P, \\
 a_q & \text{if } u \in Q, u \neq v.
\end{cases} \tag{2.1}
\]

Now using \(AX = \rho X \), we have the following identities:

\((I1) \ (q - 1)a_q + x_v = \rho a_p. \)
\((I2) \ pa_p = \rho a_q. \)
\((I3) \ pa_p + n a_n = \rho x_v. \)
\((I4) \ na_n = \rho a_m. \)
\((I5) \ x_v + (m - 1)a_m = \rho a_n. \)

Using the identities (I2),(I3) and (I4), we have \(x_v = a_q + a_m \). Substituting of \(x_v = a_q + a_m \) in (I1) and (I5), we have

\((I1^*) \ qa_q + a_m = \rho a_p. \)
\((I5^*) \ a_q + ma_m = \rho a_n. \)

Without loss of generality if we assume that \(a_p = 1 \), then

\((I6) \ a_q = \frac{p}{\rho}, \ a_m = \frac{\rho^2 - pq}{p} \) and \(a_n = \frac{\rho^2 - pq}{n} \).

Similarly, if we assume that \(a_n = 1 \), then

\((I7) \ a_m = \frac{n}{p}, \ a_q = \frac{\rho^2 - mn}{\rho} \) and \(a_p = \frac{\rho^2 - mn}{p} \).

Moreover, since the ratio \(\frac{a_p}{a_n} \) is constant for the Perron vector \(X \), so using (I6) and (I7), we have

\((I8) \ pn = (\rho^2 - pq)(\rho^2 - mn). \)

If \(m = 1 \) and \(q > 1 \), then by choosing \(a_m = x_v - a_q \), all the above identities is true. Similarly, for \(q = 1 \) and \(m > 1 \), we choose \(a_q = x_v - a_m \).
Remark 2.4. Under the assumption of Observation 2.3, using identity (I8) the spectral radius ρ of adjacency matrix A is given by

$$\rho = \sqrt{\frac{(pq + mn) + \sqrt{(pq - mn)^2 + 4mn}}{2}}.$$

The next lemma gives us a result on maximal spectral radius among bi-block graphs having two blocks with fixed number of vertices and independence number.

Lemma 2.5. Let $G \in \mathcal{B}(k, \alpha)$ consists of two blocks. Then $\rho(G) < \rho(K_{n,k-\alpha}).$

Proof. Let G be a bi-block graph consisting of two blocks F and H connected by cut vertex v. Let $F = K(P, Q)$, where $|P| = p$, $|Q| = q$ and $H = K(M, N)$, where $|M| = p$, $|N| = q$ such that $Q \cap M = \{v\}$. Then $k = p + q + m + n - 1$.

If $m = 1$ and $q = 1$, then $k = p + n + 1$. and $G = K_{1,p+n}$ with independence number $\alpha(G) = p + n$. Thus, for $\alpha = p + n$ the class $\mathcal{B}(k, \alpha)$ consists of only the star $G = K_{1,p+n}$ and hence result is vacuously true. We complete the proof by considering the following cases.

Case 1: If $p < q$ and $n < m$, then $I = P \cup N$ is the $\alpha(G)$-set. We consider the complete bipartite graph $G^* = K(\tilde{P}, \tilde{Q})$, where $\tilde{P} = P \cup N$ and $\tilde{Q} = Q \cup M$. Thus $\alpha(G) = \alpha(G^*) = p + n$. Since G^* is obtained from G by adding extra edges, so by Lemma 1.2 we have $\rho(G) < \rho(G^*)$.

Case 2: If $q \geq p$ and $m \geq n$, then $I = Q \cup M$ is an $\alpha(G)$-set. We consider the complete bipartite graph $G^* = K(\tilde{P}, \tilde{Q})$, where $\tilde{P} = P \cup N$ and $\tilde{Q} = Q \cup M$. Thus $\alpha(G) = \alpha(G^*) = q + m - 1$. Since G^* is obtained from G by adding extra edges, so by Lemma 1.2 we have $\rho(G) < \rho(G^*)$.

Case 3: If $q > p$ and $n > m$, then $I = (Q \setminus \{v\}) \cup N$ is an $\alpha(G)$-set and hence $\alpha(G) = q + n - 1$. Now consider the complete bipartite graph $G^* = K(\tilde{P}, \tilde{Q})$, where $\tilde{P} = P \cup M$ and $\tilde{Q} = (Q \setminus \{v\}) \cup N$. So $\alpha(G) = \alpha(G^*) = q + n - 1$. Observe that, we can obtain the graph G^* from G using the following operations:

1. Delete the edges between vertex v and the vertices of P.
2. Add edges between vertices of M and $Q \setminus \{v\}$.
3. Add edges between vertices of P and N.

Let A be the adjacency matrix of G and (ρ, X) be the eigen-pair corresponding to the spectral radius of A. Let A^* be the adjacency matrix of G^*. Using the notations and identities in Observation 2.3, we have

$$\frac{1}{2}X^T(A^* - A)X = -x_v \sum_{w \in P} x_w + \sum_{u \in M, w \in Q \setminus \{v\}} x_u x_w + \sum_{u \in P, w \in N} x_u x_w$$

By Eqn.(2.1)]

$$= -pa_p(a_q + a_m) + (q - 1)a_q(a_q + ma_m) + pma_pa_n$$

[Using (I5*)]

$$= -pa_p(a_q + a_m) + (q - 1)pa_qa_n + pma_pa_n$$

[Using (I2)]

$$= p((q - 1)a_n + p\rho a_m - (a_q + a_m))$$

[Using $a_p = 1$]

$$= \frac{p}{\rho n} [\rho(q - 1)(\rho^2 - pq) + \rho n(\rho^2 - pq) - n(p + \rho^2 - pq)]$$

[Using (I6)]

$$= \frac{p}{\rho n} [\rho(q - 1)(\rho^2 - pq) + \rho n(\rho^2 - pq) - n(\rho^2 - pq) - (\rho^2 - pq)(\rho^2 - mn)]$$

[Using (I8)]

$$= \frac{p(\rho^2 - pq)}{\rho n} [\rho(q - 1) + \rho n - n - (\rho^2 - mn)]$$

$$= \frac{p(\rho^2 - pq)}{\rho n} [\rho(q + n - 1) - \rho^2 + n(m - 1)].$$
By Lemma 1.1 we have \(\rho \leq \max\{p + n, q\} \). And using the assumption \(p < q \), we always have \(q + n - 1 \geq \rho \). Since \(X \) is Perron vector of \(G \), so \(X'(A^* - A)X > 0 \). Hence by Min-max theorem we have \(\rho(G) < \rho(G^*) \).

Case 4: If \(p > q \) and \(m > n \), then \(\mathcal{I} = P \cup (M \setminus \{v\}) \) is a \(\alpha(G) \)-set. We consider the complete bipartite graph \(G^* = K(\tilde{P}, \tilde{Q}) \), where \(\tilde{P} = P \cup (M \setminus \{v\}) \) and \(\tilde{Q} = Q \cup N \). This case is analogous to Case 3, hence proceeding similarly we have \(\rho(G) < \rho(G^*) \).

In the above lemma we have considered a bi-block graph \(G \) with two blocks and hence the cut-vertex \(v \) have the block index \(b_{\mathcal{I}}(v) = 2 \). In the next lemma, we will consider bi-block graphs such that the block index of each of the cut-vertex is exactly 2.

Lemma 2.6. Let \(G \in \mathcal{B}(k, \alpha) \). If \(b_{\mathcal{I}}(u) = 2 \), for all cut-vertex \(u \) in \(G \), then \(\rho(G) \leq \rho(K_{\alpha,k-\alpha}) \) and equality holds if and only if \(G = K_{\alpha,k-\alpha} \).

Proof. We will use induction on the number of blocks to prove the lemma. Let \(G \in \mathcal{B}(k, \alpha) \) consists of \(b \) blocks and \(b_{\mathcal{I}}(c) = 2 \) for every cut vertex \(c \) in \(G \). By Lemma 2.5, the result is true for \(b = 2 \). Suppose the result is true for all bi-block graphs \(\mathcal{B}(k, \alpha) \) consisting of \(b - 1 \) blocks. Let \(H = K(M, N) \) with \(|M| = m \) and \(|N| = n \) be any leaf block connected to the graph \(G \) at a cut vertex \(v \). Since \(b_{\mathcal{I}}(v) = 2 \), there exist a unique block \(F = K(P, Q) \), with \(|P| = p \) and \(|Q| = q \) which is a neighbour of \(H \) connected via the cut vertex \(v \). Without loss of generality we assume that \(M \cap Q = \{v\} \). Let \(\mathcal{I} \) be an \(\alpha(G) \)-set of \(G \), i.e. \(|\mathcal{I}| = \alpha \).

Case 1: \(I \cap P = \emptyset \) and \(I \cap Q = \emptyset \). For this case either \(M \setminus \{v\} \subset I \) or \(N \subset I \). We consider the complete bipartite graph \(K(\tilde{P}, \tilde{Q}) \), where \(\tilde{P} = P \cup N \) and \(\tilde{Q} = Q \cup M \). Let \(G^* \) be the graph obtained from \(G \) by replacing the induced subgraph \(F \odot H \) with \(K(\tilde{P}, \tilde{Q}) \). Then \(G^* \) consists of \(b - 1 \) blocks and \(\mathcal{I} \) is an \(\alpha(G^*) \)-set, i.e. \(G^* \in \mathcal{B}(k, \alpha) \). Since \(G^* \) obtained from \(G \) by adding additional edges, so by Lemma 1.2 we have \(\rho(G) < \rho(G^*) \). Hence the induction hypothesis yields the result.

Case 2: \(I \cap P = \emptyset \) and \(I \cap Q \neq \emptyset \). For \(m \geq n \), we can assume \(M \subset I \). We consider graph \(G^* \) be the graph obtained from \(G \) by replacing the induced subgraph \(F \odot H \) with \(K(\tilde{P}, \tilde{Q}) \), where \(\tilde{P} = P \cup N \) and \(\tilde{Q} = Q \cup M \), which implies that \(\mathcal{I} \) is an \(\alpha(G^*) \)-set. Thus arguing similar to the Case 1 yields the result.

Case 3: \(I \cap P = \emptyset \) and \(I \cap Q \neq \emptyset \). For \(n > m \), if \(v \in \mathcal{I} \), then \(\mathcal{L} = (I \setminus \{v\}) \cup N \) is an independent set of \(G \) and \(|\mathcal{L}| > |\mathcal{I}| \), which leads to a contradiction. Thus \(v \notin \mathcal{I} \) and we have the following:

\[
\begin{aligned}
\{ v \notin \mathcal{I} \text{ and } &I = I |_{G-H} \cup N, \\
\alpha(G) = &I |_{G-H} + n. \\
\end{aligned}
\]

Next, we subdivide the case \(I \cap P = \emptyset \) and \(I \cap Q \neq \emptyset \) with \(n > m \), into the following sub cases.

Subcase 1: Suppose all the vertices of \(Q \) are cut-vertices. Let \(u \in Q \setminus \{v\} \) be a cut-vertex and \(u \in \mathcal{I} \). Since \(b_{\mathcal{I}}(u) = 2 \), so let \(B = K(R, S) \) be the neighbour of the block \(F \) via the cut-vertex \(u \), where \(R \cap Q = \{u\} \). Thus \(u \in \mathcal{I} \) and \(u \in R \) implies that \(I \cap S = \emptyset \). Consider the bi-block graph \(G^* \) obtained from \(G \) by replacing the induced subgraph \(F \odot B \) with the complete bipartite graph \(K(\tilde{P}, \tilde{Q}) \), where \(\tilde{P} = P \cup S \) and \(\tilde{Q} = Q \cup R \). It is easy to see, \(\mathcal{I} \) is an \(\alpha(G^*) \)-set and \(G^* \in \mathcal{B}(k, \alpha) \) consists of \(b - 1 \) blocks. Hence the result follows from the Lemma 1.2 and the induction hypothesis.

Subcase 2: Let \(c \in Q \) and \(c \) is not a cut vertex. Since \(I \cap P = \emptyset \), so \(c \in \mathcal{I} \). Let \(A \) be the adjacency matrix of \(G \) and \((\rho, X) \) be the eigen-pair corresponding to the spectral radius of \(A \). Let \(x_u \) denote the entry of \(X \) corresponding to the vertex \(u \in V \). Using \(AX = \rho X \) and arguing similar to the Observation 2.3, we find a few identities as follows. For \(m \geq 2 \), let us denote

\[
x_u = \begin{cases}
 b_n & \text{if } u \in N, \\
 b_m & \text{if } u \in M, u \neq v.
\end{cases}
\]

Using \(c \in Q \), \(c \) is not a cut vertex and \(AX = \rho X \), we have the following identities:
(J1) \(\rho x_c = \sum_{w \in P} x_w \).
(J2) \(\rho x_v = \sum_{w \in P} x_w + nb_n \).
(J3) \(\rho b_n = (m - 1)b_m + x_v \).
(J4) \(\rho b_m = nb_n \).

Using identities (J1), (J2) and (J4), we have \(x_v = x_c + b_m \). Thus the identity (J3) reduces to:

(J3*) \(\rho b_n = mb_m + x_c \).

Next, if \(m = 1 \), then by choosing \(b_m = x_v - x_c \), all the above identities holds true. Now we further subdivide the Subcase 2 as follows:

Subcase 2.1: Whenever \(b_m \geq b_n \).

Let \(G^* \) be a bi-block graph obtained from \(G \) by replacing the induced subgraph \(F \otimes H \) with the complete bipartite graph \(K(P, Q) \), where \(P = P \cup M \) and \(Q = (Q \setminus \{v\}) \cup N \). Thus, \(\mathcal{I} \) is an \(\alpha(G^*) \)-set and \(G^* \in \mathcal{B}(k, \alpha) \) consists of \(b - 1 \) blocks. Note that, we can obtain the graph \(G^* \) from \(G \) using the following operations:

1. Delete the edges between vertex \(v \) and the vertices of \(P \).
2. Add edges between vertices of \(M \) and \(Q \setminus \{v\} \).
3. Add edges between vertices of \(P \) and \(N \).

Let \(A^* \) be the adjacency matrix of \(G^* \). Using the above identities, we have

\[
\frac{1}{2} X^t (A^* - A) X = -x_v \sum_{w \in P} x_w + \sum_{u \sim w, w \in M, w \in Q \setminus \{v\}} x_u x_w + \sum_{u \sim w, w \in N} x_u x_w \\
= -(x_c + b_m) \sum_{w \in P} x_w + (mb_m + x_c) \sum_{w \in Q \setminus \{v\}} x_w + nb_n \sum_{w \in P} x_w \quad \text{[By Eqn. (2.3)]}
\]

\[
= -(x_c + b_m) \rho x_c + (mb_m + x_c) \sum_{w \in Q \setminus \{v\}} x_w + nb_n \rho x_c \quad \text{[Using (J1)]}
\]

\[
= -(x_c + b_m) \rho x_c + (mb_m + x_c) \sum_{w \in Q \setminus \{v\}} x_w + \rho^2 b_m x_c \quad \text{[Using (J4)]}
\]

\[
\geq -(x_c + mb_m) \rho x_c + (mb_m + x_c) \sum_{w \in Q \setminus \{v\}} x_w + \rho^2 b_m x_c \quad \text{[Using (J3*)]}
\]

\[
= -\rho^2 b_n x_c + (mb_m + x_c) \sum_{w \in Q \setminus \{v\}} x_w + \rho^2 b_m x_c
\]

Since \(b_m \geq b_n \), and \(X \) is Perron vector of \(G \), so \(X^t (A^* - A) X \geq 0 \). Hence by Min-max theorem we have \(\rho(G) \leq \rho(G^*) \) and the induction hypothesis yields the result.

Subcase 2.2: Whenever \(b_m < b_n \).

For this case we partition the set \(N \subset \mathcal{I} \) as \(N = N_1 \cup N_2 \) and \(N_1 \cap N_2 = \emptyset \) such that \(|N_1| = m \) and \(|N_2| = n - m \). We consider the complete bipartite graph \(K(P, Q) \), where \(P = P \cup N_1 \) and \(Q = Q \cup M \cup N_2 \). Let \(G^* \) be a bi-block graph obtained from \(G \) by replacing the induced subgraph \(F \otimes H \) with \(K(P, Q) \). Thus, by Eqn. (2.1) we get \(\mathcal{I}^* = \mathcal{I}\big|_{G-H} \cup M \cup N_2 \) is an \(\alpha(G^*) \)-set and \(\alpha(G^*) = \alpha(G) = |\mathcal{I}\big|_{G-H} | + n \), which implies that \(G^* \in \mathcal{B}(k, \alpha) \) consists of \(b - 1 \) blocks. Further note that, we can obtain the graph \(G^* \) from \(G \) using the following operations:

1. Delete the edges between vertices of \(M \) and \(N_2 \).
Let A^* be the adjacency matrix of G^*. Then,
\[
\frac{1}{2}X^t(A^* - A)X = -\sum_{w\sim u} x_u x_w + \sum_{u\in M, w\in N_2} x_u x_w + \sum_{u\in N_1, w\in Q\setminus \{v\}} x_u x_w + \sum_{u\in N_2, w\in P} x_u x_w
\]
\[
= -(n - m)(mb_m + x_c)b_n + mb_n \sum_{w\in Q\setminus \{v\}} x_w + (n - m)b_n \sum_{w\in P} x_w + (n - m)mb_n^2 + b_m(m - 1) \sum_{w\in P} x_w \quad \text{[By Eqn.(2.3)]}
\]
\[
= -(n - m)mb_n b_n - (n - m)x_c b_n + mb_n \sum_{w\in Q\setminus \{v\}} x_w + \rho(n - m)b_n x_c + (n - m)mb_n^2 + \rho(m - 1)b_m x_c \quad \text{[Using (J1)]}
\]
\[
= (n - m)[mb_n(b_n - b_m) + (\rho - 1)x_c b_n] + mb_n \sum_{w\in Q\setminus \{v\}} x_w + \rho(m - 1)b_m x_c.
\]

Since $b_m < b_n$ and $\rho \geq 1$ (by Lemma 1.1), so using the fact that X is Perron vector of G we have $X^t(A^* - A)X \geq 0$. Hence by Min-max theorem we have $\rho(G) \leq \rho(G^*)$ and the induction hypothesis yields the result.

Case 4: $\mathcal{I} \cap P \neq \emptyset$ and $\mathcal{I} \cap Q = \emptyset$. For $n \geq m$ or $m = n + 1$, we have $\mathcal{N} \subset \mathcal{I}$. We consider graph G^* obtained from G by replacing the induced subgraph $F \otimes H$ with $K(\tilde{P}, \tilde{Q})$, where $\tilde{P} = P \cup N$ and $\tilde{Q} = Q \cup M$, which implies that \mathcal{I} is an $\alpha(G^*)$-set. Thus arguments similar to the Case 1 yields the result.

Case 5: $\mathcal{I} \cap P \neq \emptyset$ and $\mathcal{I} \cap Q = \emptyset$. For $m > n + 1$, we have $(M \setminus \{v\}) \subset \mathcal{I}$. We consider all neighbouring blocks of $F = K(P, Q)$, say $B_i = K(R_i, S_i); 1 \leq i \leq j$, connected via cut-vertices to partition P. Without loss of generality we assume $S_j \cap P \neq \emptyset$. For any one of the such neighbour, if $\mathcal{I} \cap R_i = \emptyset$, then we consider graph G^* be obtained from G by replacing the induced subgraph $F \otimes B_i$ with $K(\tilde{P}, \tilde{Q})$, where $\tilde{P} = P \cup S_i$ and $\tilde{Q} = Q \cup R_i$. Since $\mathcal{I} \cap P \neq \emptyset$, so \mathcal{I} is an $\alpha(G^*)$-set and argument similar to the Case 1 leads to desired the result. If no such neighbours exists, then proceeding inductively we need to look for B_i’s neighbours with similar properties. Since G is a finite graph either we will reach a neighbour with suitable properties or reach a leaf block does not satisfies requisite properties. For the later case, we find a finite chain of blocks $C_i = K(M_i, N_i)$; $i = 1 \leq i \leq t$ satisfies the following:

1. $C_1 = H$ and C_t are leaf blocks.
2. For $i = 1, 2, \ldots, t - 1$, the blocks C_i and C_{i+1} are neighbours such that $M_i \cap N_{i+1} \neq \emptyset$.
3. $\mathcal{I} \cap N_t = \emptyset$, for all $i = 1, \ldots, t$.

Since C_t is a leaf block and is connected to C_{t-1} via a cut vertex u(say) with $bi_G(u) = 2$, so it can be seen $\mathcal{I} \cap N_{t-1} = \emptyset$ and $\mathcal{I} \cap N_t = \emptyset$ implies that $|M_i| > |N_i|$. Now if we begin with the leaf block C_t, then this case is analogous to the Case 3. Hence the desired result follows.

Moreover, by Lemma 2.5 and combining all the above cases, the maximum spectral radius $\rho(G)$, among all graphs G in $\mathcal{B}(k, \alpha)$ with $bi_G(u) = 2$, for all cut-vertex u in G, is uniquely attained for the complete bipartite graph $K_{\alpha,k-\alpha}$.
Lemma 2.7. If $G \in \mathcal{B}(k, \alpha)$, then there exists a bi-block graph $G^* \in \mathcal{B}(k, \alpha)$ with $\rho(G^*) = 2$, for every cut-vertex u such that $\rho(G) \leq \rho(G^*)$.

Proof. Let v be a cut-vertex of G with $b_{iG}(v) = t$, where $t \geq 3$. Let $B_i = K(M_i, N_i); i = 1, 2, 3$ be any three neighbours connected via the cut-vertex v such that $v \in N_1 \cap N_2 \cap N_3$. Let \mathcal{I} be an $\alpha(G)$-set. If $V(B_i) \cap \mathcal{I} \neq \emptyset$ for all $i = 1, 2, 3$, then either $M_i \cap \mathcal{I} \neq \emptyset$ or $N_i \cap \mathcal{I} \neq \emptyset$. Thus by pigeonhole principle, there exists $i, j \in \{1, 2, 3\}$ such that either $\mathcal{I} \cap N_i = \emptyset$ and $\mathcal{I} \cap N_j = \emptyset$ or $\mathcal{I} \cap M_i = \emptyset$ and $\mathcal{I} \cap M_j = \emptyset$. Let us consider a bi-block graph G^* obtained from G by replacing the induced subgraph $B_i \oplus B_j$ with $K(\tilde{M}, \tilde{N})$, where $\tilde{M} = M_i \cup M_j$ and $\tilde{N} = N_i \cup N_j$. It is easy to see that, \mathcal{I} is an $\alpha(G^*)$-set and $b_{iG^*}(v) = t - 1$. By Lemma 1.2 we have $\rho(G) \leq \rho(G^*)$. Hence proceeding inductively the result follows. If $V(B_{i_0}) \cap \mathcal{I} = \emptyset$ (i.e. $M_{i_0} \cap \mathcal{I} = \emptyset$ and $N_{i_0} \cap \mathcal{I} = \emptyset$) for some $i_0 \in \{1, 2, 3\}$, then for $j \neq i_0$ and choosing $K(\tilde{M}, \tilde{N})$, where $\tilde{M} = M_{i_0} \cup M_j$ and $\tilde{N} = N_{i_0} \cup N_j$, similar argument yields the desired result. \hfill \Box

Next we state the main result of the article (without proof) which maximizes the spectral radius for the class $\mathcal{B}(k, \alpha)$ and the proof follows from Lemmas 2.6 and 2.7.

Theorem 2.8. If $G \in \mathcal{B}(k, \alpha)$, then $\rho(G) \leq \rho(K_{\alpha, k-\alpha})$ and equality holds if and only if $G = K_{\alpha, k-\alpha}$.

Acknowledgements: Sumit Mohanty would like to thank the Department of Science and Technology, India, for financial support through the projects MATRICS (MTR/2017/000458).

References

[1] R.B. Bapat, Graphs and matrices. Second Edition, Hindustan Book Agency, New Delhi, (2014).
[2] C. M. Conde, E. Dratman, L. N.Grippo, On the spectral radius of block graphs with prescribed independence number α. Linear Algebra Appl., (2020).
[3] L. Feng, J. Song, Spectral radius of unicyclic graphs with given independence number, Util. Math., 84 (2011), 33-43.
[4] J.M. Guo, J.Y. Shao, On the spectral radius of trees with fixed diameter, Linear Algebra Appl., 413 (2006), 131-147.
[5] C. Ji, M. Lu, On the spectral radius of trees with given independence number, Linear Algebra Appl., 488 (2016), 102-108.
[6] H. Liu, M. Lu, F. Tian, On the spectral radius of graphs with cut edges, Linear Algebra Appl., 389 (2004), 139-145.
[7] H. Lu, Y. Lin, Maximum spectral radius of graphs with given connectivity, minimum degree and independence number, J. Discret. Algorithms, 31 (2015), 113-119.
[8] B. Wu, E. Xiao, Y. Hong, The spectral radius of trees on k pendant vertices, Linear Algebra Appl., 395 (2005), 343-349.
[9] M. Xu, Y. Hong, J. Shu, M. Zhai, The minimum spectral radius of graphs with a given independence number, Linear Algebra Appl., 431 (5) (2009), pp. 937-945.