Rapid hydrodynamic expansion in relativistic heavy-ion collisions

Piotr Bożek and Iwona Wyskiel

1 The H. Niewodniczański Institute of Nuclear Physics, PL-31342 Kraków, Poland
2 Institute of Physics, Rzeszów University, PL-35959 Rzeszów, Poland

(Dated: February 24, 2009)

Hydrodynamic expansion of the hot fireball created in relativistic Au-Au collisions at $\sqrt{s} = 200\text{GeV}$ in 3 + 1-dimensions is studied. We obtain a simultaneous, satisfactory description of the transverse momentum spectra, elliptic flow and pion correlation radii for different collision centralities and different rapidities. Early initial time of the evolution is required to reproduce the interferometry data, which provides a strong indication of the early onset of collectivity. We can also constraint the shape of the initial energy density in the beam direction, with a relatively high initial energy density at the center of the fireball.

PACS numbers: 25.75.-q, 25.75.Dw, 25.75.Ld

Keywords: relativistic heavy-ion collisions, hydrodynamic model, collective flow

I. INTRODUCTION

A multitude of experimental data from the Relativistic Heavy Ion Collider (RHIC) indicate that dense, collectively expanding matter is created in ultrarelativistic nuclear collisions [1, 2, 3, 4]. Ratios of multiplicities of different particles produced in central collisions can be described assuming chemical equilibration of particle abundances [5, 6, 7, 8, 9, 10]. Transverse momentum spectra of particles produced at central rapidities are thermal up to transverse momenta of about 2GeV/c. Particle spectra result from a collective, transverse expansion of the matter coupled with subsequent thermal emission [11, 12]. Possible rescattering and resonance decays have been modelled and the conclusion, that at some stage of the expansion a dense locally equilibrated fireball is formed, remains unchanged [13, 14]. Another measured quantity directly resulting from the collective expansion is the elliptic flow. For non-zero impact parameters the fireball is azimuthally asymmetric in the transverse plane, and its expansion imprints the momentum distribution of final hadrons with measurable azimuthal asymmetry [15, 16, 17, 18]. The existence of the dense matter is demonstrated in yet another way by the observation of the attenuation of the production of high energy hadrons in nuclear collisions. This effect is due to the energy loss of energetic partons while traversing the dense fireball [19, 20, 21, 22, 23, 24].

Relativistic hydrodynamics is very well suited for the description of the collective phase of the fireball expansion [14, 16, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Assuming local thermal equilibration, perfect fluid hydrodynamics can be used. Starting from an initial energy density profile, the fluid expands and cools down. In the process, gradients of the pressure cause the acceleration of the fluid elements and collective flow velocity is formed. In the longitudinal (beam) direction Bjorken flow with velocity $v_z = z/t$ is usually assumed in the initial conditions. On the other hand, the appearance of a substantial transverse flow can be considered as a robust signature of the formation of strongly interacting matter in the overlap region of heavy-ion collisions. Most of the hydrodynamic calculations modeling nuclear collisions at RHIC energies assume boost-invariance [38] in the beam direction. Such approaches are effectively 2+1-dimensional (2+1D) and are restricted to central rapidities. Existing experimental data outside of the central rapidity region on particle multiplicity and elliptic flow show that at RHIC energies the Bjorken boost-invariance is not realized. Calculations exist for the general 3 + 1D geometry of the collision [14, 27, 28, 31, 36]. They show that relativistic hydrodynamics can be applied for a broad range of rapidities in central and semiperipheral collisions. These studies can describe transverse momentum spectra and the elliptic flow of produced particles. On the other hand, Hanbury Brown-Twiss (HBT) correlations between identical particles cannot be accounted for [27, 39, 40, 41]. In the present paper we investigate 3 + 1D hydrodynamic expansion of the fireball and show that a simultaneous and satisfactory description of the particle spectra and elliptic flow (for a broad range of rapidities) as well as of the HBT radii for central rapidities can be achieved. The key ingredients of the model leading to this success are the use of a realistic equation of state without a first order phase transition and a relatively early start up time for the collective expansion. This hard equation of state and the small initial time indicate that the initial state is a highly compressed matter. Early initial time of the evolution is required to reproduce the interferometry data, which provides a strong indication of the early onset of collectivity. We can also constraint the shape of the initial energy density in the beam direction, with a relatively high initial energy density at the center of the fireball.

Keywords: relativistic heavy-ion collisions, hydrodynamic model, collective flow

*Supported by Polish Ministry of Science and Higher Education under grant N202 034 32/0918

Electronic address: Piotr.Bozek@hij.edu.pl

I. INTRODUCTION

A multitude of experimental data from the Relativistic Heavy Ion Collider (RHIC) indicate that dense, collectively expanding matter is created in ultrarelativistic nuclear collisions [1, 2, 3, 4]. Ratios of multiplicities of different particles produced in central collisions can be described assuming chemical equilibration of particle abundances [5, 6, 7, 8, 9, 10]. Transverse momentum spectra of particles produced at central rapidities are thermal up to transverse momenta of about 2GeV/c. Particle spectra result from a collective, transverse expansion of the matter coupled with subsequent thermal emission [11, 12]. Possible rescattering and resonance decays have been modelled and the conclusion, that at some stage of the expansion a dense locally equilibrated fireball is formed, remains unchanged [13, 14]. Another measured quantity directly resulting from the collective expansion is the elliptic flow. For non-zero impact parameters the fireball is azimuthally asymmetric in the transverse plane, and its expansion imprints the momentum distribution of final hadrons with measurable azimuthal asymmetry [15, 16, 17, 18]. The existence of the dense matter is demonstrated in yet another way by the observation of the attenuation of the production of high energy hadrons in nuclear collisions. This effect is due to the energy loss of energetic partons while traversing the dense fireball [19, 20, 21, 22, 23, 24].

Relativistic hydrodynamics is very well suited for the description of the collective phase of the fireball expansion [14, 16, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Assuming local thermal equilibration, perfect fluid hydrodynamics can be used. Starting from an initial energy density profile, the fluid expands and cools down. In the process, gradients of the pressure cause the acceleration of the fluid elements and collective flow velocity is formed. In the longitudinal (beam) direction Bjorken flow with velocity $v_z = z/t$ is usually assumed in the initial conditions. On the other hand, the appearance of a substantial transverse flow can be considered as a robust signature of the formation of strongly interacting matter in the overlap region of heavy-ion collisions. Most of the hydrodynamic calculations modeling nuclear collisions at RHIC energies assume boost-invariance [38] in the beam direction. Such approaches are effectively 2+1-dimensional (2+1D) and are restricted to central rapidities. Existing experimental data outside of the central rapidity region on particle multiplicity and elliptic flow show that at RHIC energies the Bjorken boost-invariance is not realized. Calculations exist for the general 3 + 1D geometry of the collision [14, 27, 28, 31, 36]. They show that relativistic hydrodynamics can be applied for a broad range of rapidities in central and semiperipheral collisions. These studies can describe transverse momentum spectra and the elliptic flow of produced particles. On the other hand, Hanbury Brown-Twiss (HBT) correlations between identical particles cannot be accounted for [27, 39, 40, 41]. In the present paper we investigate 3 + 1D hydrodynamic expansion of the fireball and show that a simultaneous and satisfactory description of the particle spectra and elliptic flow (for a broad range of rapidities) as well as of the HBT radii for central rapidities can be achieved. The key ingredients of the model leading to this success are the use of a realistic equation of state without a first order phase transition and a relatively early start up time for the collective expansion. This hard equation of state and the small initial time indicate that the initial state is a highly compressed matter. Early initial time of the evolution is required to reproduce the interferometry data, which provides a strong indication of the early onset of collectivity. We can also constraint the shape of the initial energy density in the beam direction, with a relatively high initial energy density at the center of the fireball.

Keywords: relativistic heavy-ion collisions, hydrodynamic model, collective flow

*Supported by Polish Ministry of Science and Higher Education under grant N202 034 32/0918

Electronic address: Piotr.Bozek@hij.edu.pl
II. HYDRODYNAMIC EQUATIONS AND INITIAL CONDITIONS

In a perfect fluid each element is locally in thermal equilibrium. At each point the fluid is characterized by its four velocity u^μ, the energy density ϵ, and the pressure p. The energy momentum tensor is

$$T^{\mu\nu} = (\epsilon + p)u^\mu u^\nu - g^{\mu\nu}p .$$

Hydrodynamic equations

$$\partial_\mu T^{\mu\nu} = 0$$

in the full 3+1D geometry represent 4 independent equations, and together with the equation of state allow to calculate the evolution of the densities and velocities of the fluid starting from some initial conditions. We use a realistic equation of state interpolating between lattice data at high temperature (above the critical temperature $T_c = 170\text{MeV}$) and an equation of state of a noninteracting gas of massive hadrons at lower temperatures \cite{48}. This equation of state presents only a very moderate softening around the critical point. The use of this realistic equation of state is the key to the success of 2+1D hydrodynamic description of RHIC data on transverse momentum spectra, elliptic flow and HBT radii \cite{26, 49}. For the modelling of the expansion of the fireball created in ultrarelativistic collisions it is useful to define the proper time and space-time rapidity variables

$$\tau = \sqrt{t^2 - z^2}, \quad \eta = \frac{1}{2} \log \left(\frac{t + z}{t - z}\right),$$

with z the beam axis coordinate. The four velocity is parameterized using the two components of the transverse velocity u_x and u_y and the longitudinal fluid rapidity Y

$$u^\mu = (\gamma \cosh Y, u_x, u_y, \gamma \sinh Y) ,$$

where $\gamma = \sqrt{1 + u_x^2 + u_y^2}$. Hydrodynamic equations relate four unknown functions: the velocity fields Y, u_x, and u_y and either the energy or the pressure. In practice the numerical solution is more stable if instead of the energy density (pressure) the logarithm of the temperature is used

$$\mathcal{F} = \log(T/T_L) ,$$

with T_L a constant temperature. The velocities and \mathcal{F} are function of τ, η, x, y and the hydrodynamic equations can be written in the following form

$$D\mathcal{F} = -c_s^2 \left[\gamma \left(\sinh(Y-\eta)\partial_\tau + \frac{\sinh(Y-\eta)}{\tau} \partial_\eta \right) - D_\tau u_x + \partial_\eta u_y \right]$$

$$D_{ux} = -(1 + u_x^2)\partial_x F - u_x u_y \partial_y F$$

$$D_{uy} = -(1 + u_y^2)\partial_y F - u_x u_y \partial_x F$$

$$D(\gamma \sinh Y) = -\gamma \sinh Y \left[\sinh(Y-\eta)\partial_\tau + \frac{\sinh(Y-\eta)}{\tau} \partial_\eta \right]$$

$$D = u^\mu \partial_\mu = u_x \partial_x + u_y \partial_y$$

$$+ \gamma(\cosh(Y-\eta)\partial_\tau + \frac{\sinh(Y-\eta)}{\tau} \partial_\eta) .$$

The first of Eqs (2.6) is the entropy conservation equation $\partial_\mu (u^\mu s) = 0$.

The differential equations (2.6) are solved as an evolution in proper time starting from some initial conditions at $\tau = \tau_0$. At the initial time there is no transverse flow ($u_x = 0$ and $u_y = 0$), the initial longitudinal rapidity follows the Bjorken scaling flow $Y(\tau_0, \eta, x, y) = \eta$. Early initial time of the hydrodynamic evolution $\tau_0 = 0.25\text{fm}/c$ implies a high energy density in the initial state. The system evolves for a longer time, which leads to a stronger transverse as well as longitudinal flow. Experimental observation of a strong rapidity dependence of the elliptic flow \cite{50} and of the particle densities \cite{51} indicates that the Bjorken scaling scenario is not realized at RHIC energies. It means that a Bjorken scaling plateau in the initial energy density distribution in space-time rapidity cannot extend over a large interval. In the transverse plane the energy density is assumed to be proportional to a combination of Glauber Model densities of wounded nucleons and binary collisions. The initial energy density distribution at impact parameter b is

$$\epsilon(\tau_0) = k(\eta - \eta_{sk}) \left[(N_A(x,y) + N_B(x,y)) (1 - \alpha) + 2\alpha N_{bin}(x,y) \right] .$$

N_A and N_B are the densities of wounded nucleons from the right and left moving nuclei respectively, N_{bin} is the density of binary collisions

$$N_A(x,y) = T(x - b/2, y) (1 - \exp(-\sigma T(x - b/2, y)/A))$$

$$N_B(x,y) = T(x + b/2, y) (1 - \exp(-\sigma T(x - b/2, y)/A))$$

$$N_{bin}(x,y) = \sigma T(x - b/2, y) T(x + b/2, y)$$

(2.9)
and

\[T(x, y) = \int dz \rho(x, y, z) \]

(2.10)

is the thickness function calculated from the Woods-Saxon density of colliding nuclei

\[\rho(x, y, z) = \frac{\rho_0}{1 + \exp\left(\frac{\sqrt{x^2 + y^2 + z^2} - R_A}{a}\right)} \]

(2.11)

For Au nuclei \((A = 197)\) we take \(\rho_0 = 0.17\text{fm}^{-3}\), \(R_A = 6.38\text{fm}\) and \(a = 0.535\text{fm};\) the inelastic cross section is \(\sigma = 42\text{mb}\). The density of wounded nucleons \(N_A + N_B\) is used to calculate the total number of participants at each impact parameter, these numbers are used to fix the impact parameters corresponding to centrality bins used in the analysis of the experimental data. The profile in the longitudinal direction is

\[f(\eta) = \exp\left(-\frac{(\eta - \eta_0)^2}{2\sigma_0^2}\right) \]

(2.12)

with a plateau of width \(2\sigma_0 = 2.0\) units in space-time rapidity, and Gaussian tails with half width \(\sigma_\eta = 1.3\). At each point in the transverse plane the distribution in space-time rapidity is shifted by the center of mass rapidity of the local fluid \(\frac{1}{2}\)

\[\eta_{sh} = \frac{1}{2} \log\left(\frac{N_A + N_B + v_N(N_A - N_B)}{N_A + N_B - v_N(N_A - N_B)}\right) \]

(2.13)

where \(v_N\) is the velocity of the projectile in the center of mass frame. The coefficient of \(k\) in Eq. (2.8) is taken so that the energy density at the center of the fireball at zero impact parameter is \(107\text{GeV/fm}^3\) at \(\tau_0 = 0.25\text{fm}/c\). It corresponds to a temperature of \(510\text{MeV},\) well above the critical temperature. The initial distributions for other impact parameters are obtained from geometrical scaling (2.8) only, with a contribution of binary collisions \(\alpha = 0.145\) \(\text{[52]}\). This provides a satisfactory description of charged particle multiplicities for centralities \(0 - 40\%\).

III. EVOLUTION OF THE HOT MATTER

The numerical solution of Eqs. (2.6) is obtained as an evolution in proper time from initial densities (2.8). The total entropy \((s)\) is the entropy density

\[S = \int \gamma \cosh(Y - \eta) s \, dx \, dy \, d\eta \]

(3.1)

is conserved to the accuracy of less than \(0.5\%\). At the very beginning of the evolution a very rapid longitudinal expansion occurs (Fig. 1). The matter at the edges of the plateau of the energy density distribution is subject to longitudinal acceleration and eventually the distribution becomes approximately a Gaussian, that grows wider in time. The longitudinal acceleration is known to depend on the equation of state \(\text{[53]}\) and on possible viscosity effects \(\text{[54]}\). For the perfect fluid and a hard equation of state the longitudinal expansion and acceleration is significant \(\text{[53]}\).

For comparison we calculate a hydrodynamic evolu-

FIG. 1: (Color online) Energy density as function of space-time rapidity for different proper times \(\tau = 0.25\, 2\, 4\, 6\text{fm}/c\) (dashed-dotted, solid, dotted and dashed lines respectively).

FIG. 2: (Color online) Deviation of the longitudinal fluid rapidity from the Bjorken flow \(Y(\tau, \eta, x, y) - \eta\) for different proper times \(\tau = 2\, 4\, 6\text{fm}/c\) (solid, dotted and dashed lines respectively).

FIG. 3: (Color online) Temperature at the center of the fireball as function of the proper time from the \(3 + 1\text{D}\) (dashed-dotted line) and from the \(2 + 1\text{D}\) (solid line) evolutions \((b = 2.1\text{fm})\).
represents the freeze-out hypersurface for the 2+1D evolution.

FIG. 4: (Color online) Freeze-out hypersurface formed in the can be deformed due to a strong collective flow and is deformed due to the shift in the space-time rapidity in the initial conditions (2.13). In Figs 4 and 5 is shown a cut $(\tau - x)$ through the freeze-out hypersurface at the freeze-out temperature $T_f = 150$MeV. At the central space-time rapidity $\eta = 0$ the freeze-out hypersurfaces in the 3+1D and 2+1D calculations are very similar. For central collisions the dense system exists for 10fm/c. This short life-time of the fireball results in values of extracted HBT radii compatible with the experiment. For large space-time rapidities the transverse size and the life-time of the fireball is smaller. The asymmetric shape of the freeze-out hypersurface for $\eta \neq 0$ is the result of the tilt in the initial flow of the matter (Eq. 2.13).

Most general freeze-out hypersurfaces realized in the hydrodynamic expansion can be parameterized using 3 angles

$$\tau_{HS} = d(\theta, \zeta, \phi) \sin \zeta \sin \theta + \tau_0$$

$$\eta_{HS} = \Lambda \cos \phi$$

$$x_{HS} = d(\theta, \zeta, \phi) \cos \zeta \sin \theta \cos \phi$$

$$y_{HS} = d(\theta, \zeta, \phi) \cos \zeta \sin \theta \sin \phi ;$$

$$0 \leq \theta \leq \pi$$

$$0 \leq \zeta \leq \pi/2$$

$$0 \leq \phi < 2\pi , \quad (3.2)$$

Λ is a constant length.

Following the Cooper-Frye prescription [53], particle spectra are given by

$$E \frac{d^3 N}{dp^3} = \int d\Sigma_{\mu} p^\mu f(p_{\mu} u^\mu) . \quad (3.3)$$

$$d\Sigma_{\mu} = \epsilon_{\mu\nu\alpha\beta} \partial_{\theta} x^\nu \partial_{\zeta} x^\alpha \partial_{\phi} x^\beta d\theta d\zeta d\phi$$ is the integration element on the freeze-out hypersurface and f is the equilibrium Bose or Fermi momentum distribution. The four momentum of the emitted particle is

$$p^\mu = (p_{\perp y}, p_{\perp} \cos \phi_p, p_{\perp} \sin \phi_p, m_{\perp} y) , \quad (3.4)$$

and

$$p_{\mu} u^\mu = m_{\perp} \gamma \cosh(Y - y) - p_{\perp} (u_x \cos \phi_p + u_y \sin \phi_p) . \quad (3.5)$$
resonances are allowed to decay.

After the hydrodynamic evolution, the 3 dimensional hypersurface parameterized by the variables θ, ζ, ϕ is exported to the statistical emission and resonance decay code THERMINATOR. The density (3.3) (with η) is implemented in the code. THERMINATOR generates events in two steps. First 380 different particles for centrality classes 0 - 5%, 5 - 50%, 25 - 35%, 35 - 45% and 45 - 50% calculated for the freeze-out temperatures $T_f = 165$ and 150MeV (solid and dashed lines respectively) compared to PHOBOS Collab. data (dots). The squares represent the BRAHMS Collab. data for centrality 0 - 5%.

After the hydrodynamic evolution, the 3 dimensional hypersurface parameterized by the variables θ, ζ, ϕ is exported to the statistical emission and resonance decay code THERMINATOR. The density (3.3) (with η) is implemented in the code. THERMINATOR generates events in two steps. First 380 different particles for centrality classes 0 - 5%, 5 - 50%, 25 - 35%, 35 - 45% and 45 - 50% calculated for the freeze-out temperatures $T_f = 165$ and 150MeV. The first one is close to the estimate of the chemical freeze-out temperature in Au-Au collisions. When decreasing the freeze-out temperature particle multiplicity goes down, but the effect is small. It gives confidence to our model, that assumes a chemically equilibrated fluid down to $T_f = 150\text{MeV}$. For lower freeze-out temperatures the difference between a chemically equilibrated and a partially equilibrated fluid becomes significant. The centrality dependence that comes significant. The centrality dependence that comes solely from the geometrical scaling of the fireball density according to Eq. (2.3), other parameters (in particular the freeze-out temperature) remain unchanged. On general grounds, one expects the hydrodynamic model to break down for very peripheral collisions. The interaction region in peripheral collisions is not dense enough to equilibrate completely. Experimental data on the centrality dependence of strangeness production and of particle spectra suggest that at impact parameters $b > 9\text{fm}$ less than 70% of the interaction region can be treated as a thermally equilibrated fireball.

Charged particle distributions in pseudorapidity $\eta_{PS} = \frac{1}{2} \log \left(\frac{p_{+} - p_{-}}{p_{+} + p_{-}} \right)$ have been measured for different centralities. The 3 + 1D hydrodynamic model can reproduce the data for centralities 0 - 40% (Fig 6). We show results for two freeze-out temperatures $T_f = 165$ and 150MeV. The first one is close to the estimate of the chemical freeze-out temperature in Au-Au collisions. When decreasing the freeze-out temperature particle multiplicity goes down, but the effect is small. It gives confidence to our model, that assumes a chemically equilibrated fluid down to $T_f = 150\text{MeV}$. For lower freeze-out temperatures the difference between a chemically equilibrated and a partially equilibrated fluid becomes significant. The centrality dependence that comes solely from the geometrical scaling of the fireball density according to Eq. (2.3), other parameters (in particular the freeze-out temperature) remain unchanged. On general grounds, one expects the hydrodynamic model to break down for very peripheral collisions. The interaction region in peripheral collisions is not dense enough to equilibrate completely. Experimental data on the centrality dependence of strangeness production and of particle spectra suggest that at impact parameters $b > 9\text{fm}$ less than 70% of the interaction region can be treated as a thermally equilibrated fireball.

Charged particle distributions in pseudorapidity $\eta_{PS} = \frac{1}{2} \log \left(\frac{p_{+} - p_{-}}{p_{+} + p_{-}} \right)$ have been measured for different centralities. The 3 + 1D hydrodynamic model can reproduce the data for centralities 0 - 40% (Fig 6). We show results for two freeze-out temperatures $T_f = 165$ and 150MeV. The first one is close to the estimate of the chemical freeze-out temperature in Au-Au collisions. When decreasing the freeze-out temperature particle multiplicity goes down, but the effect is small. It gives confidence to our model, that assumes a chemically equilibrated fluid down to $T_f = 150\text{MeV}$. For lower freeze-out temperatures the difference between a chemically equilibrated and a partially equilibrated fluid becomes significant. The centrality dependence that comes solely from the geometrical scaling of the fireball density according to Eq. (2.3), other parameters (in particular the freeze-out temperature) remain unchanged. On general grounds, one expects the hydrodynamic model to break down for very peripheral collisions. The interaction region in peripheral collisions is not dense enough to equilibrate completely. Experimental data on the centrality dependence of strangeness production and of particle spectra suggest that at impact parameters $b > 9\text{fm}$ less than 70% of the interaction region can be treated as a thermally equilibrated fireball.
ent rapidities. In the whole rapidity range where identified particle spectra are available [51], we find an excellent agreement between the results of the hydrodynamic evolution coupled with statistical emission and the BRAHMS Collab. data (Figs. 7 and 8). The best agreement is achieved for a freeze-out temperature of 150 MeV. This very good agreement between the data and the hydrodynamic model indicates that the matter created in central collisions behaves as a thermally equilibrated (in the rapidity range $-3.5 < y < 3.5$) although not boost-invariant fireball.

A different way of testing thermalization in Au-Au collisions is to compare predictions and experimental data for transverse momentum spectra at different centralities. In Fig. 9 are shown π^+ spectra for p_{\perp} up to 3 GeV/c and centralities in the range 0–50%. We find that hydrodynamic calculations with $T_f = 150$ MeV are in very good agreement with the experiment for all centralities and transverse momenta $p_{\perp} < 2$ GeV/c. Pions with higher transverse momenta originate mostly from hard processes and cannot be described as emitted thermally from a collectively expanding fluid. The agreement between the experimental spectra and the results of the calculation for K^+ (Fig. 10) is limited to centralities 0–30%. For centrality bins 30–40% and 40–50% the calculation overpredicts the kaon multiplicity, even

FIG. 8: (Color online) Transverse momentum spectra of K^+ for different rapidity windows ranging from $-0.1 < y < 0$ to $3.2 < y < 3.4$ for centrality 0–5% (results for different rapidity bins are scaled down by powers of $1/10$). The dots represent the data of the BRAHMS Collab. [51].

FIG. 9: (Color online) Transverse momentum spectra of π^+ for different centrality classes 0–5%, 5–10%, 10–15%, 15–20%, 20–30%, 30–40% and 40–50% (results for different centralities are scaled down by powers of $1/10$) calculated for the freeze-out temperatures $T_f = 165$ and 150 MeV (solid and dashed lines respectively) compared to PHENIX Collab. data (dots) [62].

FIG. 10: (Color online) Same as Fig. 9 but for K^+.
FIG. 11: (Color online) Pseudorapidity dependence of the elliptic flow coefficient for charged particles for centralities 15 – 25% for freeze-out temperatures $T_f = 150$ and 165 MeV (dashed and solid lines respectively), data for the PHOBOS Collab. are denoted by dots [50].

FIG. 12: (Color online) Transverse momentum dependence of the elliptic flow coefficient for protons (dotted line and dots) and for π^+ and K^+ (solid line and triangles). Calculations are performed for $T_f = 150$ MeV, data are from the PHENIX Collab. [65].

though the slope of the spectra is similar in the model and in the data. The reduced strangeness production in peripheral collisions can be an effect of energy and momentum conservation [63], canonical suppression [64], or reduced size of the thermally equilibrated fireball [59, 61]. In Figs. 9 and 10 are also shown the results of a 2 + 1D hydrodynamic calculation for two centralities 0 – 5% and 20 – 30% (dotted lines, indistinguishable from the 3 + 1D results). The resulting spectra for central rapidities are very similar to the ones from the 3 + 1D calculations, but are obtained after the expansion of the matter with smaller initial energy density.

The elliptic flow represents a very sensitive probe of the collective behavior of the dense matter [18]. The azimuthal asymmetry with respect to the reaction plane is described by the elliptic flow coefficient v_2

$$\frac{dN}{p_\perp dp_\perp d\phi_p} = \frac{dN}{p_\perp dp_\perp} (1 + 2v_2(p_\perp) \cos(2\phi_p) + \ldots) \quad (4.1)$$

The elliptic flow coefficient for charged particles has been measured for a broad range of pseudorapidities [50], showing a strong pseudorapidity dependence. There is no sign of a Bjorken plateau for central rapidities. To reproduce the shape of the v_2 pseudorapidity dependence, initial conditions in energy density with a relatively narrow plateau in space-time rapidity must be chosen (Eq. 2.12) [14, 33]. Such initial conditions, combined with a hard equation of state and an early initial time of the evolution result in a complete disappearance of the Bjorken plateau in the final hadron distributions. It must be stressed however, that it does not mean that for non-central rapidities the evolution is not described by hydrodynamics and statistical emission. The model model works very well and describes the observed spectra for $-3.5 < y < 3.5$ (Figs. 7 and 8). The longitudinal expansion and the smaller size of the system at non-zero space-time rapidities reduce the final elliptic flow. The elliptic flow as function of p_\perp for identified particles is shown in Fig. 12. Hydrodynamic calculations describe the elliptic flow for mesons with $p_\perp < 1.5$ GeV/c, but to reproduce the saturation of v_2 for large p_\perp dissipative or viscosity effects must be invoked. The elliptic flow for baryons is overpredicted for the freeze-out temperatures chosen.

Pairs of identical particles emitted from the thermal source can be used to extract the size of the fireball from the interferometry measurement [67, 68, 69, 70]. The
statistical emission code THERMINATOR provides the space-time points of particle creation. For a set of generated events the correlation function is constructed from same-event and mixed-event pairs. Such a general procedure allows for an easy implementation of experimental cuts, final interaction or Coulomb corrections and can be also applied to non-identical particle correlations. The extracted multidimensional correlation functions are parameterized by the Bertsch-Pratt formula:

\[C(k_{\perp}, q_{\text{out}}, q_{\text{side}}, q_{\text{long}}) = 1 + \lambda \exp(-R_{\text{side}}^2 q_{\text{side}}^2
- R_{\text{out}}^2 q_{\text{out}}^2 - R_{\text{long}}^2 q_{\text{long}}^2) \] (4.2)

The fit parameters \(R \) (HBT radii) are extracted for fixed bins of pair total transverse momenta \(k_{\perp} \). The experimental radii \(R_{\text{out}}, R_{\text{side}}, \) and \(R_{\text{long}} \) are well described by the hydrodynamic calculations with \(T_f = 150 \text{MeV} \) (Fig. 13). We notice that the 3 + 1D and 2 + 1D calculations that both describe the transverse momentum spectra, give also very similar HBT radii. Similarity in the spectra means that the transverse collective flow is the same; together with the similarity in the freeze-out hypersurfaces (Fig. 4) it explains why the HBT radii from the 3 + 1D and 2 + 1D evolutions come out so close. The discrepancies between the calculations and the data are smaller than 10%. The ratio \(R_{\text{out}}/R_{\text{side}} \) from the model comes out close to the data as well. This remarkable property of modern hydrodynamic calculations, which solves the so called RHIC HBT puzzle, has been noticed in Ref. 26.

V. CONCLUSIONS

We present an extensive study of the 3 + 1D hydrodynamic model of the evolution of the fireball. Compared to other similar calculations we use a different equation of state and an early initial time to start up the expansion. As a result we find a very good agreement between the calculated transverse momentum spectra for pions and kaons for different centralities and a broad range of rapidities. The fireball formed in Au-Au collisions at \(\sqrt{s} = 200 \text{GeV} \) is thermalized for centralities 0 – 40%. The result is remarkable, since we use an energy density profile for different impact parameters predicted from the Glauker Model geometrical scaling, with an overall normalization fixed for most central collisions. It is not surprising that for peripheral collisions this scaling breaks down, and we overpredict the size of the thermalized fireball. The thermal description of the production of strange particles is subject to even more restrictions. As a result the spectra of kaons are well reproduced for centralities 0 – 30%. For more peripheral collisions the number of observed kaons is smaller than predicted in the model, signaling an incomplete chemical equilibration of the interaction region.

The calculation reproduces the observed spectra up to transverse momenta of 2GeV/c, in a wider range than most of the previous calculations. This indicates that a long hydrodynamical evolution generates the correct amount of collective flow. For central collisions we obtain an excellent description of pion and kaon spectra for non-central rapidities. This demonstrates that the fireball is thermalized and that particle production is statistical for all rapidities in the range ±3.5 units. This confirms in a dynamical calculation the applicability of the statistical fits from Ref. 17. The elliptic flow shows a strong pseudorapidity dependence, that can be reproduced assuming a collective thermal evolution but with reduced initial energy density at non-zero space-time rapidities.

Another important result is the satisfactory description of pion interferometry radii. Assuming a rapid expansion of the system, the right amount of transverse flow and a reasonable life-time of the fireball are obtained. This gives HBT radii \(R_{\text{out}}, R_{\text{side}}, \) and \(R_{\text{long}} \) similar as in the experiment. The ratios \(R_{\text{out}}/R_{\text{side}} \) come out to within less than 10% of the measured values. We also show that very similar HBT radii can be obtained from a 2 + 1D hydrodynamic calculation with correctly chosen initial conditions. It must be stressed however, that the initial energy density that reproduces the experimental spectra and HBT radii is 86GeV/fm

\[\text{Acknowledgments} \]

Discussions with Mikolaj Chojnacki, Wojtek Florkowski and Tetsufumi Hirano are gratefully acknowledged. The authors thank Adam Kisiel for providing the pair correlations analysis code.

[1] I. Arsene et al. (BRAHMS), Nucl. Phys. A757, 1 (2005), nucl-ex/0410020.
[2] B. B. Back et al. (PHOBOS), Nucl. Phys. A757, 28 (2005), nucl-ex/0410022.
[3] J. Adams et al. (STAR), Nucl. Phys. A757, 102 (2005), nucl-ex/0501009.
[4] K. Adcox et al. (PHENIX), Nucl. Phys. A757, 184 (2005), nucl-ex/0410003.
[5] P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. B518, 41 (2001), hep-ph/0105229.
[6] A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A772, 167 (2006), nucl-th/0511071.
[7] J. Cleymans, B. Kämpfer, M. Kaneta, S. Wheaton, and N. Xu, Phys. Rev. C71, 054901 (2005), hep-ph/0409071.
[70] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005), nucl-ex/0505014.
[71] A. Kisiel, W. Florkowski, W. Broniowski, and J. Pluta, Phys. Rev. C73, 064902 (2006), nucl-th/0602039.
[72] M. G. Bowler, Phys. Lett. B270, 69 (1991).
[73] Y. Sinyukov, R. Lednicky, S. V. Akkelin, J. Pluta, and B. Erazmus, Phys. Lett. B432, 248 (1998).
[74] A. Kisiel, Braz. J. Phys. 37, 917 (2007), nucl-th/0612052.
[75] S. Pratt, Phys. Rev. D33, 1314 (1986).
[76] G. Bertsch, M. Gong, and M. Tóhyama, Phys. Rev. C37, 1896 (1988).
[77] B. Biedron and W. Broniowski, Phys. Rev. C75, 054905 (2007), nucl-th/0610083.