Stealing Links from Graph Neural Networks

Xinlei He¹, Jinyuan Jia², Michael Backes¹, Neil Zhenqiang Gong², Yang Zhang¹

¹CISPA Helmholtz Center for Information Security
²Duke University
Era of Machine Learning
Modern machine learning excels at exploiting **grid-structured data**
Many Data are Graphs

Graphs are combinatorial structures, have arbitrary sizes, and contain multi-modal information.
Graph Neural Networks

Image source: https://tkipf.github.io/graph-convolutional-networks/
News source: https://syncedreview.com/2020/09/04/deepmind-uses-gnns-to-boost-google-maps-eta-accuracy-by-up-to-50/, https://syncedreview.com/2020/11/04/cornell-facebook-ai-simplified-graph-learning-approach-outperforms-sota-gnns/, https://blog.twitter.com/engineering/en_us/topics/insights/2020/graph-ml-at-twitter.html
Research question: Given two nodes used to train a black-box GNN, can we predict whether they are linked?
Attack Taxonomy

- Attacker can have either of these 3 knowledge
- Totally 8 different attack models

Node Features
- [12, 32, 6, 0.3]
- [14, 10, 9, 1.2]
- [22, 78, 5, 9.1]
- [15, 32, 9, 4.1]

Partial Graph

Shadow Dataset
- [10, 5, 8]
- [5, 3, 12]
- [8, 5, 13]
- [12, 7, 8]
Attack 0

Node Features:
- [12, 32, 6, 0.3]
- [14, 10, 9, 1.2]
- [22, 78, 5, 9.1]
- [15, 32, 9, 4.1]
- [61, 2, 13, 7.2]

Partial Graph:

Shadow Dataset:
- [10, 5, 8]
- [14, 6, 9]
- [5, 3, 12]
- [8, 5, 13]
- [12, 7, 8]

Posterior Difference

Unsupervised Attack
Correlation performs the best!

Figure 1: AUC for Attack-0 on all the 8 datasets with all the 8 distance metrics. The x-axis represents the dataset and the y-axis represents the AUC score.

Table 15: Prediction results for Attack-0 on all the 8 datasets with Correlation distance.

Dataset	Precision	Recall	F1-Score	AUC
AIDS	0.524	0.996	0.687	0.691
COX2	0.523	0.987	0.684	0.867
DHFR	0.555	0.977	0.708	0.765
ENZYMES	0.501	1.000	0.667	0.630
PROTEINS_full	0.540	0.998	0.701	0.815
Citeseer	0.788	0.991	0.878	0.959
Cora	0.777	0.966	0.861	0.929
Pubmed	0.691	0.965	0.806	0.874

Use KMeans to give a concrete prediction.
Attack 1

Node Features
- [12, 32, 6, 0.3]
- [14, 10, 9, 1.2]
- [22, 78, 5, 9.1]
- [15, 32, 9, 4.1]
- [61, 2, 13, 7.2]

Partial Graph

Shadow Dataset
- [10, 5, 8]
- [14, 6, 9]
- [5, 3, 12]
- [8, 5, 13]
- [12, 7, 8]

Transfer Knowledge
Supervised Attack
Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. In KDD 2016.
Attack 1

- **GNN**
- **Distance (8)**
- **Entropy (4)**
- **MLP**

Training

- **GNN**
- **Distance (8)**
- **Entropy (4)**
- **MLP**

Testing

- **GNN**
- **Distance (8)**
- **Entropy (4)**
- **MLP**
Attack 1

For all best performing shadow datasets, attack 1 is **better** than attack 0.

Table 4: Average AUC with standard deviation for Attack-1 on all the 8 datasets. Best results are highlighted in bold.

Target Dataset	AIDS	COX2	DHFR	ENZYMES	PROTEINS_full	Citeseer	Cora	Pubmed
AIDS	-	0.720 ± 0.009	0.690 ± 0.005	**0.730 ± 0.010**	0.720 ± 0.005	0.689 ± 0.019	0.650 ± 0.025	0.667 ± 0.014
COX2	0.755 ± 0.032	-	0.831 ± 0.005	0.739 ± 0.116	**0.832 ± 0.009**	0.762 ± 0.009	0.773 ± 0.008	0.722 ± 0.024
DHFR	0.689 ± 0.004	**0.771 ± 0.004**	-	0.577 ± 0.044	0.701 ± 0.010	0.736 ± 0.005	0.740 ± 0.003	0.663 ± 0.010
ENZYMES	**0.747 ± 0.014**	0.695 ± 0.023	0.514 ± 0.041	-	0.691 ± 0.030	0.680 ± 0.012	0.663 ± 0.009	0.637 ± 0.018
PROTEINS_full	0.775 ± 0.020	0.821 ± 0.016	0.528 ± 0.038	0.822 ± 0.020	-	**0.823 ± 0.004**	0.809 ± 0.015	0.809 ± 0.013
Citeseer	0.801 ± 0.040	0.920 ± 0.006	0.842 ± 0.036	0.846 ± 0.042	0.848 ± 0.015	-	**0.965 ± 0.001**	0.942 ± 0.003
Cora	0.791 ± 0.019	0.884 ± 0.005	0.811 ± 0.024	0.804 ± 0.048	0.869 ± 0.012	**0.942 ± 0.001**	-	0.917 ± 0.002
Pubmed	0.705 ± 0.039	0.796 ± 0.007	0.704 ± 0.042	0.708 ± 0.067	0.752 ± 0.014	**0.883 ± 0.006**	**0.885 ± 0.005**	-
Figure 3: The last hidden layer’s output from the attack model of Attack-1 for 200 randomly sampled positive node pairs and 200 randomly sampled negative node pairs projected into a 2-dimension space using t-SNE. (a) Cora as the shadow dataset and Citeseer as the target dataset, (b) Cora as the shadow dataset and ENZYMES as the target dataset.
Evaluation of All Attacks

• More knowledge leads to better attack performance
• Partial graph contains the strongest signal
• Shadow dataset is the weakest
• Better performance than traditional link prediction, this means GNN indeed leaks graph information
Conclusion

- We are the first to propose link stealing attack against GNNs
- Our attacks can effectively steal the links from GNNs
- More information leads to better attack performance
- Transferring attack can achieve good performance

Questions?

Code is available at https://github.com/xinleihe/link_stealing_attack

Xinlei He
CISPA Helmholtz Center for Information Security
@AllenXinleiHe
http://www.xinlei.info/
Thanks!