Alexandre MARTIN & Markus STEENBOCK

A combination theorem for cubulation in small cancellation theory over free products
Tome 67, n° 4 (2017), p. 1613-1670.

<http://aif.cedram.org/item?id=AIF_2017__67_4_1613_0>

© Association des Annales de l’institut Fourier, 2017, Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence Creative Commons attribution – pas de modification 3.0 France. http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/).

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
A COMBINATION THEOREM FOR CUBULATION
IN SMALL CANCELLATION THEORY
OVER FREE PRODUCTS

by Alexandre MARTIN & Markus STEENBOCK

ABSTRACT. — We prove that a group obtained as a quotient of the free product
of finitely many cubulable groups by a finite set of relators satisfying the classical
$C'(1/6)$–small cancellation condition is cubulable. This yields a new large class of
relatively hyperbolic groups that can be cubulated, and constitutes the first in-
stance of a cubulability theorem for relatively hyperbolic groups which does not
require any geometric assumption on the peripheral subgroups besides their cubula-
Bility. We do this by constructing appropriate wallspace structures for such groups,
by combining walls of the free factors with walls coming from the universal cover
of an associated 2-complex of groups.

RÉSUMÉ. — Nous montrons qu’un groupe obtenu comme quotient d’un produit
libre d’un nombre fini de groupes cubulables en ajoutant un nombre fini de relations
satisfaisant la condition de petite simplification $C'(1/6)$ est lui aussi cubulable.
Cela donne une large classe de nouveaux groupes relativement hyperboliques qui
peuvent être cubulés, et constitue le premier exemple de théorème de combinaison
pour la cubulabilité de groupes relativement hyperboliques ne recuevant aucune
hypothèse sur les sous-groupes périphéraux en dehors de leur cubulabilité. Nous
obtenons ceci en construisant des structures d’espaces à murs appropriées pour ces
groupes, en combinant des murs venant des facteurs libres avec des murs venant
du revêtement universel d’un complexe de groupes de dimension 2 associé.

1. Introduction

The geometry of non-positively curved cube complexes has attracted
a lot of attention recently due to spectacular progress in several related
problems, most notably the solution to Thurston’s four remaining questions
on the structure of 3-dimensional manifolds, including the virtual Haken

Keywords: group actions on CAT(0) cube complexes, small cancellation theory over free
products, cubulation of groups.
Math. classification: 20F06, 20F65, 20F67.
conjecture of Waldhausen [1]. An important problem in this circle of ideas is to show that virtually special cubical complexes are stable under various geometric operations. A main geometric task is to combine the various wallspaces at hand to construct a wallspace structure for the group under study.

1.1. Combination problems

A general combination problem for wallspaces can be formulated as follows:

Combination Problem. Let G be a group acting on a polyhedral complex X endowed with a wallspace structure, such that each non-trivial face stabiliser admits a wallspace structure.

- Under which conditions can we combine such structures into a wallspace structure for G?
- If each stabiliser is cubulable, under which conditions can we ensure that G is cubulable?

This problem has been extensively studied to combine CAT(0) cube complexes under strong (relative) hyperbolicity conditions on the group:

Amalgams and HNN extensions. Haglund–Wise [14] and Hsu–Wise [17] prove that virtual specialness of groups is preserved under certain amalgamated products or HNN extensions. In a such setting, G is acting cocompactly on a tree X with vertex stabilisers that are CAT(0) cubulable. Theorem 1.2 of [14] requires the vertex stabilisers and the whole groups to be Gromov hyperbolic, while Theorem A of [17] requires that the group G is hyperbolic relative to virtually abelian subgroups.

Cubical small cancellation theory. The malnormal virtually special quotient theorem [34] deals with cubulable hyperbolic groups and proves the cubulability of appropriate hyperbolic quotients, under strong cubical small cancellation conditions [34, Def. 5.1].

Relatively hyperbolic groups. Hruska–Wise [16] prove that, for a group G that is hyperbolic relative to a finite set of parabolic subgroups (P_i), the G-action on the CAT(0) cube complex dual to a finite family of relatively quasiconvex subgroups is cocompact relative to P_i-invariant subcomplexes. If the parabolic subgroups are abelian and if the action on the dual cube complex is proper, they show that the action is cocompact on a truncation of that dual cube complex.
1.2. The main theorem

The main theorem of this article is a cubulation theorem for large classes of relatively hyperbolic groups, without any assumption on the peripheral subgroups besides their cubulability. These groups are realised as $C'(1/6)$ small cancellation groups over free products. Note that finitely presented $C'(1/6)$ small cancellation groups over a free product of groups are hyperbolic relative to their free factors [26].

Theorem 1.1 (cf. Theorem 4.4 and Theorem 4.6). — Let F be the free product of finitely many cubulable groups. If G is a quotient of F by a finite set of relators that satisfies the classical $C'(1/6)$–small cancellation condition over F, then G is cubulable.

We explain our proof in all detail for one relator, and a free product of two cubulable groups. We do so to keep the article easily accessible by reducing too technical notations in Section 2. However, our proof is readily extendable to the general setting, taking into account Remarks 2.19, 3.12, 3.36 below.

To the authors’ knowledge, there are no prior results for relatively hyperbolic groups to provide a cocompact action on the dual CAT(0) cube complex without strong assumptions on the peripheral subgroups. In particular, the cocompactness of the action does not assume any condition on the free factors besides their cubulability. This contrasts with the aforementioned theorems where either stronger hyperbolicity conditions on the group G, or stronger conditions on the peripheral subgroups are needed. In particular, we do not need the peripheral subgroups to be hyperbolic, nor do we need that they are virtually abelian.

Small cancellation over free products. The class of small cancellation groups over free products provides a natural setting to study the cubulability of groups acting cocompactly but not properly on higher-dimensional complexes for two reasons. As we explain in this article, such groups act in a very controlled way on 2-dimensional $C'(1/6)$–polygonal complexes, and therefore provide natural and elementary examples to develop a good geometric intuition. Moreover, small cancellation theory over free products allows for the construction of groups with a wide range of algebraic and geometric properties. For example, small cancellation theory over free products was fundamental in showing strong embedding properties of infinite groups [24, 30], in the solution of non-singular equations over groups [6, 7], in the construction of torsion-free groups without the unique
product property [2, 9, 27, 32] and in the construction of acylindrically hyperbolic groups with unexpected properties [10, Th. 1.7]. These techniques should enable us, in theory, to produce large classes of cubulable groups that have unexpected extreme properties.

1.3. Comparison to previous work of Wise on cubical small cancellation

In the celebrated essay [34], Wise outlines a far-reaching extension of his results from [33] on the action of finitely presented classical $C'(1/6)$–small cancellation quotients on CAT(0) cube complexes. We explain here how the small cancellation groups over free products considered in this paper can be considered examples of Wise’s cubical small cancellation groups, and to what extent Wise’s approach [34, Th. 5.50, Cor. 5.53] is sufficient to recover some, but certainly not all, of the results obtained in this paper.

In this section, for the sake of a simplified comparison, we use the notations of [34].

1. Cubical presentations. The general setting of Wise’s cubical small cancellation theory deals with so-called cubical presentations $\langle X \mid Y \rangle$ [34, Sec. 3.2], which consists of a non-positively curved cube complex X, and a local isometry $\varphi : Y \to X$ of non-positively curved cube complexes (Wise’s theory deals with an arbitrary number of such maps, but for simplicity we will restrict ourselves to the case of a single local isometry). To this data, one can associate its mapping cone X^*, whose fundamental group is the quotient of $\pi_1(X)$ by the normal subgroup generated by the image of φ.

We obtain a cubical presentation associated with a quotient over a free product of the form $A \ast B / \ll w \gg$, for some appropriate element w of $A \ast B$, as follows (here we only treat the torsion-free case): let us assume that the word w is not a proper power, and that A and B are torsion-free. We choose two non-positively curved complexes X_A and X_B with fundamental groups A and B respectively, and connect them by an edge. This construction yields a non-positively curved cube complex X with fundamental group $A \ast B$. One can then associate to the word w an immersed simplicial loop $\varphi : P \to X$. This yields a cubical presentation for the quotient $G := A \ast B / \ll w \gg$.

In Section 2, we explore such a construction in a technically precise way. We can then treat such groups in more generality than was possible using only the methods of [34].
2. Properness of the action and the generalised $B(6)$–condition.

Wise gives conditions of a small cancellation nature that insures that the universal cover of X^* can be equipped with a wallspace structure that allows for the study of the cubulability and the specialness of $\pi_1(X^*)$. In particular, the generalised $B(6)$–condition [34, Def. 5.1] is a key ingredient to construct an appropriate wallspace structure for the group in [34, Th. 5.50], and to obtain the properness of the action on the dual CAT(0) cube complex. In presence of strong small cancellation conditions [34, Th. 3.20, Cor. 3.32], Wise shows that the crucial non-positive curvature condition (2) in his generalised $B(6)$–condition holds.

In our previous construction, by choosing a sufficiently large length for the edge joining X_A and X_B, the generalised $B(6)$–condition can be verified for the cubical presentation of G. In particular, Wise’s work can be adapted to our setting to show that the groups we consider in this paper act properly on a CAT(0) cube complex. Indeed, properness is treated in Theorem 5.50 of [34]. (One can verify the assertions: The conditions (1), (3), (4), (5) and (6) of Wise generalised $B(6)$–condition are satisfied by construction; Condition (2) follows from Corollary 3.32(1) in [34]. The conditions (2), (3) and (4) of [34, Th. 5.50] are satisfied by construction as well.)

With these general ideas of Wise in the background, the approach followed in this article provides a shorter and more explicit proof of the fact that such groups act properly on CAT(0) cube complexes, and does not require the full strength of Wise’s machinery. In particular, we do not use the generalised $B(6)$–condition, nor do we use Wise’s detailed analysis of cubical van Kampen diagrams.

3. Cocompactness of the action. Our most important contribution lies in the cocompactness of the action. In Wise’s Corollary 5.53 [34] (and in other related results as mentioned above), cocompactness of the action follows from the hyperbolicity of the quotient group. It is therefore not possible to recover our cubulability results from Wise’s argument in [34, Th. 5.50, Cor. 5.53] when the free factors are not hyperbolic. In contrast to such strong conditions, in this article we only require the universal cover of the associated complex of groups to be hyperbolic. This can be thought as controlling the geometry relative to the free factors, and not necessarily the geometry of the whole group, to understand the geometric structure of the wallspace.
1.4. Complexes of groups

In this article we adopt the point of view of complexes of groups, a high-dimensional generalisation of a graph of groups, developed by Gersten–Stallings [31], Corson [5], and Haefliger [11]. In particular, we associate to a group G with small cancellation over a free product a 2-dimensional complex of groups with fundamental group G. Its universal cover is a $C'(1/6)$–small cancellation polygonal complex X on which G acts with vertex stabilisers being conjugates of the free factors. To obtain a space quasi-isometric to G, we then blow up vertices into CAT(0) cube complexes. As a result, we obtain a polyhedral complex with a proper and cocompact G-action. It is on such a polyhedral complex that we want to define a wallspace structure, by combining the walls in X and the walls of the various cube complexes present in the blown-up space.

This complex of groups approach is very natural: it allows us to work directly with the geometric structure of the small cancellation complex X. We can use it to explicitly combine walls of the free factors to obtain a wallspace structure for the small cancellation quotient G.

It is this complex of groups approach that allows us to remove the strong (relative) hyperbolicity conditions required in aforementioned articles: The polygonal complex X itself is hyperbolic, but the blown-up space, which is quasi-isometric to G, can have a very different geometry. One of the key points in this complex of groups approach is to use the geometry of the polygonal complex X to study the walls constructed in the blown-up space.

Note that our main theorem then follows from the following, slightly more general, statement that can be extracted from our proof of Theorem 1.1.

Theorem 1.2. — Let X be $C'(1/6)$–small cancellation polygonal complex on which a group G acts cocompactly, with cubulable vertex stabilisers and trivial edge stabilisers. Then G is cubulable.

1.5. Applications

The existence of a cubulation, or more generally of a proper action on a CAT(0) cube complex, has many interesting consequences. We list here several corollaries of our main theorem.
Baum–Connes conjecture. Recall that a group acting properly on a CAT(0) cube complex has the Haagerup property. In particular, such a group satisfies the strong Baum–Connes conjecture [15] and does not have Kazhdan’s Property (T). By relaxing our assumptions on the free factors, we obtain a combination theorem for groups acting properly on locally finite CAT(0) cube complexes.

Theorem 1.3. — Let F be the free product of finitely many groups acting properly on a locally finite CAT(0) cube complex. If G is the quotient of F by a finite set of relators that satisfies the classical $C'(1/6)$–small cancellation condition over F, then G acts properly on a locally finite CAT(0) cube complex. In particular, G has the Haagerup property and thus the strong Baum–Connes conjecture holds for G.

Consequences of Agol’s theorem. Let us mention two other significant applications of Theorem 1.1 in the particular case of (Gromov) hyperbolic groups. By a recent result of Agol [1] building upon a work of Haglund–Wise [13, 14] among others, a hyperbolic group that acts properly and cocompactly on a CAT(0) cube complex is virtually a special subgroup of a right-angled Artin group. In particular, this implies that a cubulable hyperbolic group is residually finite, linear over the integers and has separable quasiconvex subgroups. We thus obtain the following:

Theorem 1.4. — Let F be the free product of finitely many hyperbolic cubulable groups. If G is a quotient of F by a finite set of relators that satisfies the classical $C'(1/6)$–small cancellation condition over F, then G is residually finite, linear over the integers and has separable quasiconvex subgroups.

Another application of Agol’s theorem, in the context of the Atiyah and Kaplansky zero-divisor conjectures, was provided by [29]. The main result therein, based on the work of Linnell–Schick–Okun and collaborators, see for instance [18], implies the Atiyah conjecture on ℓ^2-Betti numbers for a large class of groups having the Haagerup property, including cubulable hyperbolic groups. We thus obtain the following:

Theorem 1.5. — Let F be the free product of finitely many torsion-free hyperbolic cubulable groups. If G is a torsion-free quotient of F by a finite set of relators that satisfies the classical $C'(1/6)$–small cancellation condition over F, then G satisfies the strong Atiyah conjecture. In particular, G satisfies the Kaplansky zero-divisor conjecture over the complex numbers.
The Kaplansky zero-divisor conjecture asserts that the group ring over the complex numbers of a torsion-free group contains no non-trivial zero-divisor. A usual method to show the Kaplansky conjecture is to prove the unique product property for the group. The question whether small cancellation groups have the unique product property is a difficult and long-standing open problem, cf. Problem N1140 of Ivanov in [22].

Open problem. Torsion-free groups without the unique product property were constructed as graphical small cancellation groups over free products [2, 9, 27, 32]. It is unknown whether these so called generalised Rips–Segev groups satisfy the Kaplansky zero-divisor conjecture. It is therefore natural to ask, in light of Agol’s theorem, whether our approach can be extended to cubulate some generalised Rips–Segev groups.

1.6. Methods

Let us detail the idea and structure of our proof.

Complexes of groups and spaces. In Section 2, we realise a $C'(1/6)$ small cancellation group G over the free product F as the fundamental group of a developable 2-dimensional complex of groups, the universal cover of which is a $C'(1/6)$–small cancellation polygonal complex. From now on we denote this polygonal complex by X. In order to prove that a group is cubulable, a useful approach (which goes back to ideas of Sageev [12, 28]) is to define an appropriate wallspace structure on it. Therefore, we first want a space with a proper and cocompact action of G. The polygonal complex X does not have this property in general. Indeed, vertex stabilisers are conjugates of (the image in G of) the possibly infinite free factors of the free product F.

The blow up space. To overcome this problem, we blow up vertices of X. More precisely, we construct a simply connected space $E G$ with a proper and cocompact G-action as a complex of spaces (a high-dimensional generalisation of the notion of tree of spaces) over X. This complex is polyhedral and is a union of CAT(0) cube complexes and polygons. The CAT(0) cube complexes are exactly the preimages of vertices of X and each one is endowed with a geometric action by the associated vertex stabiliser. The polygons of $E G$ are in one-to-one correspondence with the polygons of X, some of their edges map homeomorphically to edges of X, while portions of their boundary are geodesics in some of the CAT(0) cube complexes.
contained in $\mathcal{E}G$ (see Figure 2.3). This construction can be thought as a generalisation of the action of a classical $C'(1/6)$–small cancellation quotient over the free group on the universal cover of its presentation complex.

Walls on the building blocks of $\mathcal{E}G$. The space $\mathcal{E}G$ is built up from X and the fibre CAT(0) cube complexes.

In Section 3, we put a wallspace structure on (the set of vertices of) $\mathcal{E}G$. First notice that the walls of the small cancellation complex X, the so-called hypergraphs introduced by Wise [33], naturally lift to walls of $\mathcal{E}G$. However, in the case where one of the free factors in the free product F is infinite this collection of walls is not enough to separate elements of G in a conjugate of the image of that factor. This corresponds to the problem of separating vertices of $\mathcal{E}G$ in one of the CAT(0) cube complexes that is the preimage of a vertex of X with an infinite stabiliser. Nonetheless, vertices of a CAT(0) cube complex are separated by so-called hyperplanes. We therefore want to “extend” hyperplanes in a given CAT(0) cube complex to walls of the whole space $\mathcal{E}G$. In order to do that, we extend Wise’s approach [33, 34] to this more general setting.

Walls on complexes of CAT(0) cube complexes. Namely, every time a polygon \tilde{R} of $\mathcal{E}G$ crosses a hyperplane in some vertex fibre along an edge e, we want to combine this hyperplane with the diameter of \tilde{R} (seen as a wall) starting at the midpoint of e. Such a procedure should have the feature that the resulting walls should be realised as trees of hyperplanes over generalised hypergraphs of X. However, since polygons of $\mathcal{E}G$ have part of their boundary contained in the vertex fibres, the overlaps between polygons of $\mathcal{E}G$ can be quite different from the well controlled overlaps between polygons of the small cancellation complex X. In order to overcome this problem, we first perform an appropriate subdivision, called “balancing”, of the complex (see Definition 3.23 for a precise definition). This procedure, as well as the construction of walls, is detailed in Sections 2.1, 2.2 and 2.3. The aforementioned generalised hypergraphs of X, together with the associated generalised hypercarriers, are introduced in Section 2.1. They enjoy the same properties as the usual notions introduced in [33], and Wise’s argument extends to this more general setting in a straightforward way. We give the full proofs of these results in an Appendix.

Properness and cocompactness. Finally, we study in Section 4 the set of walls of $\mathcal{E}G$. Namely, we prove that this set of walls satisfies criteria that, as shown by Chatterji–Niblo [4], imply that the action of G on the
CAT(0) cube complex associated with the wallspace structure is proper and cocompact. This concludes the proof of Theorem 1.1.

1.7. Acknowledgements

We wish to express our gratitude to Goulnara Arzhantseva for her encouragement to work on this problem as well as for many related discussions. Moreover, we thank Frédéric Haglund and Piotr Przytycki for their interest and comments on a previous version of this work. We also wish to thank the anonymous referee for many useful comments and corrections, and for suggestions that significantly improved the exposition of the article.

Both authors were partially supported by the European Research Council (ERC) grant of Goulnara Arzhantseva, grant agreement no 259527. The first author was partially supported by the Austrian Science Fund (FWF) grant M 1810-N25. The second author is recipient of the DOC fellowship of the Austrian Academy of Sciences and was partially supported by the University of Vienna Research Grant 2013.

Both authors acknowledge the support of the Erwin Schrödinger International Institute in Vienna for hosting the workshop “Geometry of computation in groups”, during which part of this research was conducted.

2. Complexes of groups and small cancellation over free products of groups

Suppose G is a finitely presented group, viewed as a quotient of the free group \mathbb{F}_n on n generators. That is, G is given by generators g_1, \ldots, g_n and finitely many relators $r_1, \ldots, r_m \in \mathbb{F}_n$ such that G is the quotient of the free group by the normal closure of the subgroup generated by the relators. We now recall the constructions of the presentation complex and the Cayley complex associated with such presentations. We start from the bouquet of n oriented cycles c_1, \ldots, c_n. We label each cycle c_i by the generator g_i. For each relator r_j we take a polygonal 2-cell R_j, whose boundary edges are oriented and labelled by the generators such that the label of a boundary path of R_j equals r_j. Then glue R_j to the bouquet along its boundary word. The complex so obtained is the presentation complex of G. Its universal cover is the Cayley complex of G. Note that the fundamental group of the presentation complex is G, and G has a free and cocompact action on the associated Cayley complex.
In this paper, we are interested in properties of groups G that are quotients of the (non-trivial) free product F of finitely many groups. In this section, we associate to a small cancellation quotient G of the free product of two groups a developable 2-dimensional complex of groups with fundamental group G, the universal cover of which is a small cancellation polygonal complex, see Definition 2.9. We shall think about this complex of groups as of an analogue for the presentation complex in the case of quotients of free product of groups. The action of G on the universal cover is no longer proper as soon as one of the free factors is infinite. More precisely, stabilisers of vertices correspond to conjugates of the free factors in G. However, we can construct another polyhedral complex with a proper and cocompact G-action, by blowing up vertices of the universal cover. This polyhedral complex is the analogue of the Cayley complex for quotients of free products of groups, and is obtained as a complex of spaces over the universal cover.

2.1. Small cancellation groups over free products of groups

We summarize some aspects of the small cancellation theory of the free product of two groups. A more complete treatment can be found in [19, Chap. V.9]. We let $F = A \ast B$ be the free product of two groups A and B. The groups A and B are called the free factors. Every non-trivial element of F can be represented in a unique way as a product $w = h_1 \cdots h_n$, called the normal form, where h_i is a non-trivial element in either A or B and no two consecutive h_i, h_{i+1} belong to the same free factor. Then the free product length of w is given by $|w| := n$.

The normal form of w is weakly cyclically reduced if $|w| \leq 1$ or $h_1 \neq h_n^{-1}$. If $u, v \in F$, $u = h_1 \cdots h_n$, $v = k_1 \cdots k_m$, and $h_n = k_1^{-1}$, then h_n and k_1 cancel in the product uv. Otherwise, we say that the product uv is weakly reduced.

Let $R \subset F$ be a subset of F, each element of which is represented by a weakly cyclically reduced normal form. Let G be the group defined as $G := F / \langle \langle R \rangle \rangle$, where $\langle \langle R \rangle \rangle$ denotes the normal closure of R in F. We say that R is symmetrised if it is stable by taking weakly cyclically reduced conjugates and inverses. Up to adding all weakly cyclically reduced conjugates of elements of R and their inverses, we can always assume that R is symmetrised.
An element p in F is a piece if there are distinct relators $r_1, r_2 \in R$ such that the products $r_1 = pu_1$ and $r_2 = pu_2$ are weakly reduced.

The set R satisfies the $C'(1/6)$–condition (over F) if it is symmetrised and if for every piece p and every relator $r \in R$ such that the product $r = pu$ is weakly reduced, we have that

$$|p| < \frac{1}{6} |r|.$$

To avoid pathological cases, let us in addition assume that for all $r \in R$ we have that $|r| \geq 6$. If these conditions are satisfied, we say that G is a $C'(1/6)$–group (over F).

Theorem 2.1 ([19, Cor. V.9.4]). — Let G be a $C'(1/6)$–group over the free product F. Then the projection map $F \to G$ embeds each free factor of F.

Theorem 2.2 ([26]). — Let G be a $C'(1/6)$–group over the free product F. Then G is hyperbolic relative to the free factors. If all free factors are hyperbolic, then so is G.

Alternatively this follows from Theorem 1 of [32] in the torsion-free case, proved in a more general setting of graphical small cancellation over free products, and the arguments extend without any change to allow torsion.

Example 2.3 (Fuchsian groups). — These are fundamental groups of orientable surfaces of genus g with r cone-points of order m_1, \ldots, m_r, and s points or closed discs removed. They are generated by

$$a_1, \ldots, a_g, b_1, \ldots, b_g, x_1, \ldots, x_r, y_1, \ldots, y_s,$$

with the relators

$$\Pi_{i=1}^g[a_i, b_i] \Pi_{j=1}^r x_j \Pi_{k=1}^s y_k, x_1^{m_1}, \ldots, x_r^{m_r}.$$

If $4g + r + s \geq 6$, then the set of relators obtained from symmetrising the word

$$\Pi_{i=1}^g[a_i, b_i] \Pi_{j=1}^r x_j \Pi_{k=1}^s y_k$$

satisfies the $C'(1/6)$–condition over the free product

$$\langle a_1 \rangle \ast \langle b_1 \rangle \ast \cdots \ast \langle a_g \rangle \ast \langle b_g \rangle \ast \langle x_1 \mid x_1^{m_1} \rangle \ast \cdots \ast \langle x_r \mid x_r^{m_r} \rangle \ast \langle y_1 \rangle \ast \cdots \langle y_s \rangle.$$
2.2. Complex of groups associated with $C'(1/6)$–groups over a free product of groups

Let $w \in F$ be an element satisfying the $C'(1/6)$–condition over $F = A \ast B$ and define the group

$$G := A \ast B / \langle \langle w \rangle \rangle.$$

Observe that w acts hyperbolically on the Bass–Serre tree associated with $A \ast B$ by the small cancellation condition, and thus we can write

$$w = (a_0b_0 \ldots a_{N-1}b_{N-1})^d,$$

where $d \geq 1$ and $a_0b_0 \ldots a_{N-1}b_{N-1}$ is not a proper power in $A \ast B$. The theory that we develop in this paper can readily be extended to the free product of finitely many groups and to quotients with respect to finitely many relators.

To an action of the group G on a simply connected polyhedral complex X, one can associate a complex of groups $G(Y)$ over the quotient $Y = G \setminus X$ and a morphism F from $G(Y)$ to G [3, Sec. III.C.2.9]. This construction can be reversed. Namely, if one expects G to act on a complex whose existence is yet unknown, one can start by constructing a candidate for the associated complex of groups $G(Y)$ and the associated morphism F. One can then use tools from the theory of complexes of groups to check that this complex of groups is indeed associated to an action of G on a simply connected polyhedral complex. This is the strategy we now follow: We start by defining a complex of groups in Definition 2.4, and then check in Proposition 2.5 that it is associated to the action of the small cancellation quotient G on a polygonal complex, whose construction is then detailed in Definition 2.6.

We start by defining several complexes, see Figure 2.1.

- Let L be the simplicial complex consisting of a single edge with vertices u_A and u_B, and let L' be its barycentric subdivision with c being the barycentre of L. The space L' consists of two edges e_A (containing u_A) and e_B (containing u_B).
- Let R_0 be the model polygon on $2N$ sides, that is, a polygonal complex consisting of a single 2-cell whose boundary consists of $2N$ edges. We choose an orientation of R_0, a vertex v_0 in ∂R_0, and then denote by $(v_i)_{i \in \mathbb{Z}/2N\mathbb{Z}}$ the remaining vertices, so that, seen from v_i, the vertex v_{i+1} is the next vertex in the positive direction on ∂R_0.
- Let $R_{0,\text{simpl}}$ be the simplicial complex obtained from R_0 by adding a vertex, called apex, in the centre of the 2-cell, and, for each vertex v_i an edge, called radius, joining the apex to v_i. In particular, $R_{0,\text{simpl}}$ is the simplicial cone over a loop on $2N$ edges. For each $i \in \mathbb{Z}/2N\mathbb{Z}$,
let e_i be the edge of $R_{0,\text{simpl}}$ between v_i and s, and denote by σ_i the triangle of $R_{0,\text{simpl}}$ containing e_{i-1} and e_i.

- Let $R'_{0,\text{simpl}}$ be the the barycentric subdivision of $R_{0,\text{simpl}}$.

Let us orient the edges in the 1-skeleton of L' and $R'_{0,\text{simpl}}$ as follows. If $\sigma \subsetneq \sigma'$ are two simplices of L or R (i.e. vertices, edges, or faces) with barycentres c and c' respectively, then the edge between c and c' is oriented from c' to c; the barycentre c' is called the initial vertex of that edge, the barycentre c is called the terminal vertex of that edge. The two edges of L' are, in particular, oriented towards the vertices u_A and u_B respectively.

If $\sigma \subsetneq \sigma' \subsetneq \sigma''$ with barycentres c, c' and c'' respectively, then the edges a from c'' to c' and b from c' to c are said to be composable, and their composition is defined to be the edge from c'' to c, which we denote ba.

Starting from these complexes, we now define the CW-complexes

$$K := (L \sqcup R_0)/\sim, \quad K_{\text{simpl}} := (L \sqcup R_{0,\text{simpl}})/\sim$$

and

$$K'_{\text{simpl}} := (L' \sqcup R'_{0,\text{simpl}})/\sim.$$

Let us first describe K'_{simpl}. Here we identify oriented edges in the boundary of $R'_{0,\text{simpl}}$ pointing towards a vertex v_{2i} with the oriented edge e_A of L', while oriented edges in the boundary of $R'_{0,\text{simpl}}$ pointing towards a vertex v_{2i+1} are identified with the oriented edge e_B. The resulting simplicial complex is K'_{simpl}. The construction is illustrated in Figure 2.1. Now, let

$$q : L' \sqcup R'_{0,\text{simpl}} \to K'_{\text{simpl}}$$

denote the projection, seen as the map between the underlying topological spaces. The map q restricts to a homeomorphism on the interior of each cell of $L \sqcup R_0$ and $L \sqcup R_{0,\text{simpl}}$. We can therefore push forward the CW-structures of $L \sqcup R_0$ and $L \sqcup R_{0,\text{simpl}}$ using the map q, and we denote by

$$K_{\text{simpl}} := q(L \sqcup R_{0,\text{simpl}})$$

and

$$K := q(L \sqcup R_0)$$

the associated CW-complexes. In other words, K_{simpl} and K are obtained from K'_{simpl} by forgetting, in each case from left to right, the additional structure we have put on $R'_{0,\text{simpl}}$ and $R_{0,\text{simpl}}$ respectively. In all three cases, we use apex, radii, and v_i to refer to their respective images in $R'_{0,\text{simpl}}$ and K'_{simpl} respectively.

A small category without loop, or scwol in short, is an oriented graph without loop with a notion of compositability of edges, see [3, Chap. III.C Def. 1.1]. The oriented 1-skeleton of the first barycentric subdivision of a simplicial complex can be endowed with a structure of scwol. For such a scwol and simplices $\sigma \subset \sigma'$, we will denote by (σ, σ') the oriented edge corresponding that inclusion. We described a structure of scwol on the
oriented 1-skeleton of \(L' \), which we denote \(L' \), and on the oriented 1-skeleton of \(R'_{0, \text{simp}} \). These scwols can be glued together along the map \(q \), yielding a structure of scwol on the 1-skeleton of \(K'_{\text{simp}} \), which we denote \(K'_{\text{simp}} \).

Observe that pairs of composable edges of \(K'_{\text{simp}} \) are in 1-to-1 correspondence with triangles of \(K'_{\text{simp}} \). The simplicial complex \(K'_{\text{simp}} \) is said to be a geometric realisation of the scwol \(K'_{\text{simp}} \).

A complex of groups over a scwol \(\mathcal{Y} \) consists of the data \((G_{\sigma}, \psi_{\sigma}, g_{b,a})\) of local groups \(G_{\sigma} \), local maps \(\psi_{\sigma} \), and twisting elements \(g_{b,a} \) for every pair \((b,a)\) of composable edges of \(\mathcal{Y} \) subject to additional compatibility conditions, see [3, Chap. III.C, Def. 2.1]. To follow our construction details of such kind are not a prerequisite. However, we refer the interested reader to Bridson–Haefliger [3, Chap. III.C] for more terminology and background on complexes of groups.

Before defining a complex of groups over \(K'_{\text{simp}} \), we associate to each edge \(a \) of \(K'_{\text{simp}} \) an element \(h_a \) of \(G \). For \(i \geq 0 \), we denote by \(w_i \in G \) the product of the first \(i \) factors of the product \(a_0b_0 \cdots a_{N-1}b_{N-1} \). Thus, \(w_0 \) is the trivial element, \(w_1 = a_0, w_2 = a_0b_0, w_3 = a_0b_0a_1 \), etc. Now let us define the following group elements (in what follows, the indices have to be understood modulo \(2N \) for the various simplicies involved):

- for every \(1 \leq i \leq 2N \), \(h_{(v_{i-1},e_{i-1})} := w_{i-1}^{-1} \),
- for every \(1 \leq i \leq 2N \), \(h_{(v_{i-1},\sigma_i)} := w_{i-1}^{-1} \),
- for every \(1 \leq i \leq 2N \), \(h_{(L,\sigma_i)} := w_i^{-1} \),
- for every \(1 \leq i \leq 2N \), \(h_{(v_i,\sigma_i)} := w_i^{-1} \),
- and \(h_{(e_{2N},\sigma_{2N})} := w_{2N}^{-1} \).
- All the other elements \(h_a \) are trivial.

Figure 2.1. Part of the complex of groups \(G(K'_{\text{simp}}) \). Twisting elements corresponding to white triangles of \(R'_{0, \text{simp}} \) are trivial. (The element \(\bar{1} \) denotes the generator of \(\mathbb{Z}/d\mathbb{Z} \).)
Definition 2.4. — We define a complex of groups $G(K'_{\text{simp}})$ over K'_{simp} as follows:

- the local groups at u_A and u_B are respectively A and B, the local group at the apex is $\mathbb{Z}/d\mathbb{Z}$, and all the other local groups are trivial;
- all the local maps are trivial;
- the twisting element associated with a pair of composable edges (b,a) is defined as $g_{b,a} := h_b h_a h_{ba}^{-1}$. As the pairs of composable edges are in bijective correspondence with the triangles of K'_{simp}, we represent the twisting elements in Figure 2.1.

We also define a morphism $F = (F_\sigma, F(a))$ of complexes of groups from $G(K'_{\text{simp}})$ to G. (A general definition of morphism of complexes of groups can be found in [3, Chap. III.C, Def. 2.5].)

- The local morphisms $F_{u_A} : A \to G$ and $F_{u_B} : B \to G$ are the natural compositions $A \hookrightarrow A \ast B \twoheadrightarrow G$ and $B \hookrightarrow A \ast B \twoheadrightarrow G$. The morphism $\mathbb{Z}/d\mathbb{Z} \to G$ sends the generator 1 of $\mathbb{Z}/d\mathbb{Z}$ to the image of $w_{2N} = a_0 b_0 \ldots a_{N-1} b_{N-1}$ in G. All the other local morphisms are trivial;
- For every edge of K'_{simp}, we set $F(a) := h_a$.

Let $\pi_1(G(K'_{\text{simp}}), u_A)$ be the fundamental group of $G(K'_{\text{simp}})$ at the vertex u_A, seen as the group of homotopy classes of $G(K'_{\text{simp}})$-loops, see [3, Chap. III.C, Def. 3.5]. Let $\pi_1 F : \pi_1(G(K'_{\text{simp}}), u_A) \to G$ be the associated morphism of fundamental groups, see [3, Chap. III.C, Prop. 3.6]. The following result is not surprising when viewed against the aforementioned construction of the presentation complex. However, as complexes of groups are in some technical points surprisingly different to the standard situation, we give an elementary proof using the language of [3, Chap. III.C Sec. 3].

Proposition 2.5. — The map

$$\pi_1 F : \pi_1(G(K'_{\text{simp}}), u_A) \to G$$

is an isomorphism.

Proof. — Since A and B generate $A \ast B$, and thus G, the map $\pi_1 F$ is surjective. Let g be an element of $\ker \pi_1 F \subseteq \pi_1(G(K'_{\text{simp}}), u_A)$, and let γ be a $G(K'_{\text{simp}})$-loop based at u_A in the homotopy class g. Note that it is possible to homotop γ to a loop the support of which is contained in the image of L' in K'_{simp}.

In other words, if we denote by $i : G(L') \to G(K'_{\text{simp}})$ the natural embedding of complexes of groups (that is, the pullback of $G(K'_{\text{simp}})$ under
the inclusion of scwols \(\mathcal{L}' \hookrightarrow \mathcal{K}'_{\text{simpl}} \), then the induced morphism of fundamental groups \(\pi_1 : \pi_1(G(\mathcal{L}'), u_A) \rightarrow \pi_1(G(\mathcal{K}'_{\text{simpl}}), u_A) \) is surjective. Let \(h \) be an element of \(\pi_1(G(\mathcal{L}'), u_A) \) such that \(g = \pi_1 i(h) \). We thus have \(\pi_1 F(\pi_1 i(h)) = 0 \). But since \(\pi_1 F \circ \pi_1 i : \pi_1(G(\mathcal{L}'), u_A) \rightarrow G \) is the natural projection \(A*B \rightarrow A*B/\langle \langle w \rangle \rangle \), it follows that \(h \) is in the normal subgroup generated by the \(G(\mathcal{L}') \)-loop \((a_0, e_A^{-1}, e_B, b_0, e_B^{-1}, e_A, a_1, \ldots)^d \). Thus, \(g \) is in the normal closure of the \(G(\mathcal{K}'_{\text{simpl}}) \)-loop \((a_0, e_A^{-1}, e_B, b_0, e_B^{-1}, e_A, a_1, \ldots)^d \). It is now enough to prove that such a \(G(\mathcal{K}'_{\text{simpl}}) \)-loop is homotopically trivial. But the definition of \(\pi_1(G(\mathcal{K}'_{\text{simpl}}), u_A) \) implies that this loop is homotopic to the following edge-path (seen as a \(\pi_1(G(\mathcal{K}'_{\text{simpl}}), u_A) \)-loop):

\[
\begin{align*}
\text{Figure 2.2. A homotopically trivial } G(\mathcal{K}'_{\text{simpl}}) \text{-loop.}
\end{align*}
\]

which is homotopically trivial since the local group at the apex is \(\mathbb{Z}/d\mathbb{Z} \), hence the result. \(\Box \)

Let \(\mathfrak{A}^{(0)}(\mathcal{K}'_{\text{simpl}}) \) be the set of vertices of \(\mathcal{K}'_{\text{simpl}} \), let \(\mathfrak{A}^{(1)}(\mathcal{K}'_{\text{simpl}}) \) be the set of edges of \(\mathcal{K}'_{\text{simpl}} \), and let \(\mathfrak{A}^{(2)}(\mathcal{K}'_{\text{simpl}}) \) denote the set of pairs \(a = (a_2, a_1) \) of composable edges of \(\mathcal{K}'_{\text{simpl}} \). For every (oriented) edge \(a \) define \(i(a) \) to be the initial vertex, and \(t(a) \) to be the terminal vertex. For \(a = (a_2, a_1) \in \mathfrak{A}^{(2)}(\mathcal{Y}) \), we set \(i(a) := i(a_1) \) and \(t(a) := t(a_2) \). As a convention, we set \(i(a) := a \) and \(t(a) := a \) for every vertex \(a \) of \(\mathcal{K}'_{\text{simpl}} \). We define maps

\[
\partial_0, \partial_1 : \mathfrak{A}^{(1)} \rightarrow \mathfrak{A}^{(0)}
\]

by setting \(\partial_0(a) := i(a) \) and \(\partial_1(a) := t(a) \). For \(0 \leq i \leq 2 \), we define maps

\[
\partial_i : \mathfrak{A}^{(2)}(\mathcal{K}'_{\text{simpl}}) \rightarrow \mathfrak{A}^{(1)}(\mathcal{K}'_{\text{simpl}})
\]

by setting \(\partial_0(a_2, a_1) := a_2 \), \(\partial_1(a_2, a_1) := a_2 a_1 \), and \(\partial_2(a_2, a_1) := a_1 \).
Let Δ^k be the standard Euclidean k-simplex, that is, the set of elements (t_0, \ldots, t_k) with $t_i \geq 0$ and $\sum_i t_i = 1$. For $k \geq 1$ and $0 \leq i \leq k$, we denote the embeddings of the sides of Δ^k by
\[
d_i : \Delta^{k-1} \to \Delta^k,
\]
defined by sending (t_0, \ldots, t_{k-1}) to $(t_0, \ldots, t_{i-1}, 0, t_i, \ldots, t_{k-1})$.

Since the morphism F is injective on the local groups, the complex of groups $G(K'_\text{simpl})$ is developable, namely it comes from the action of G on a simply connected complex with quotient K'_simpl [3, Def. III.C.2.11]. We now explicitly construct the complex and the associated action. This complex is the geometric realisation of the development $D(K'_\text{simpl}, F)$ associated to the morphism $F : G(K'_\text{simpl}) \to G$ [3, Th. III.C.2.13], and is obtained by patching up copies of $R'_{0,\text{simpl}}$, using the complex of groups $G(K'_\text{simpl})$ and the morphism F.

Definition 2.6. — Let X'_simpl be the simplicial complex obtained from the disjoint union
\[
\coprod_{0 \leq k \leq 2} \coprod_{a \in \mathcal{A}(k)(K'_\text{simpl})} \left(F_i(a)(G_{i(a)}) \setminus G \times \{a\} \times \Delta^k \right)
\]
by identifying pairs of the form
\[
([gF(a)]^{-1}, \partial_i a, x) \text{ and } ([g], a, d_i(x)) \text{ for } 0 \leq i \leq k
\]
and $a \in \mathcal{A}(1)(K'_\text{simpl}) \cup \mathcal{A}(2)(K'_\text{simpl})$, where a denotes the edge with initial vertex $i(a)$ and terminal vertex $i(\partial_i a)$. We define a cellular action of G on X'_simpl by making it act on the left on each first factor.

Note that there is a natural equivariant projection
\[
\pi : X'_\text{simpl} \to K'_\text{simpl}
\]
obtained by forgetting the first coordinate. The CW-structure on K_{simpl} can be pulled-back along π, yielding a simplicial complex X_{simpl} with barycentric subdivision X'_{simpl}. For simplicity reasons, we still denote by π the projection map $X_{\text{simpl}} \to K_{\text{simpl}}$.

We now construct our polygonal complex X as the pull back of the CW-structure on K along π. We can obtain X from X_{simpl} as follows. We denote by $s \in K_{\text{simpl}}$ the apex of K_{simpl} and by $S \subset X_{\text{simpl}}$ the preimage of s under the projection $\pi : X_{\text{simpl}} \to K_{\text{simpl}}$, called the set of apices of X_{simpl}. A simplicial polygon of X_{simpl} is the star in X_{simpl} of an apex of S, that is, the subcomplex consisting of all simplices containing that apex as a vertex. Two distinct simplicial polygons of X_{simpl} are either disjoint or
meet along a subset of $\pi^{-1}(L)$. Let us delete all the apices of X_{simpl} and all the edges containing them to obtain a polygonal complex denoted X, that is, a CW-complex such that 2-cells are modelled after a model polygon \tilde{R}_0 on $d \cdot 2N$ sides (which is an orbifold cover of the model polygon R_0 on $2N$ sides), and such that the various gluing maps $\partial \tilde{R}_0 \to \pi^{-1}(L)$ are simplicial. Furthermore, we identify \tilde{R}_0 with the polygon of X whose apex in X_{simpl} corresponds to the point $\{1\} \times \{s\} \times \Delta^0$.

By definition, X'_{simpl} is the geometric realisation of the development $D(K'_{\text{simpl}}, F)$, see [3, Th. III.C.2.13]. Note that the following result on complexes of groups follows directly from [3, Prop. III.C.3.14].

Proposition 2.7. — Let $G(\mathcal{Y})$ be a complex of groups over a scwol \mathcal{Y} whose geometric realisation is a simplicial complex, v be a vertex of \mathcal{Y} and $F : G(\mathcal{Y}) \to G$ a morphism from $G(\mathcal{Y})$ to some group G that is injective on the local groups.

The geometric realisation of the development $D(\mathcal{Y}, F)$ is a universal cover of the complex of groups $G(\mathcal{Y})$ if and only if the induced morphism $\pi_1 F : \pi_1(G(\mathcal{Y}), v) \to G$ is an isomorphism.

We thus obtain the following.

Proposition 2.8. — The simplicial complex X'_{simpl} is (equivariantly isomorphic to) a universal cover of $G(K'_{\text{simpl}})$. In particular, the small cancellation group G acts on X'_{simpl} with quotient K'_{simpl}, with vertex stabilisers A, B, or $\mathbb{Z}/d\mathbb{Z}$ at vertices mapped under π on the vertices u_A, u_B, or the apex respectively, and with trivial edge stabilisers.

Proof. — It is enough to prove that the conditions of Proposition 2.7 are satisfied. The geometric realisation of K'_{simpl} is the simplicial complex K'_{simpl}. The morphism $F : G(K'_{\text{simpl}}) \to G$ is injective on the local groups as G is a $C'(1/6)$–small cancellation group, see Theorem 2.1. The result thus follows from Proposition 2.5. \square

Definition 2.9 (piece, $C'(1/6)$ polygonal complex). — Let Y be a polygonal complex. A path of Y is an injective path in the 1-skeleton of Y. For a path P of Y, we denote by $|P|$ the number of edges of P, called its length.

A piece of a polygonal complex Y is a path P of Y such that there exist polygons R_1 and R_2 such that the map $P \to Y$ factors as $P \to R_1 \to Y$ and $P \to R_2 \to Y$ but there does not exist a homeomorphism $\partial R_1 \to \partial R_2$.

TOME 67 (2017), FASCICULE 4
making the following diagram commute:

\[
\begin{array}{c}
P \\
\downarrow \ \\
\partial R_2 \\
\downarrow \\
\partial R_1 \\
\rightarrow \\
\partial R_1 \\
\rightarrow \\

\end{array}
\]

By convention, we also consider edges of \(Y \) as pieces.

The polygonal complex \(Y \) is said to be a \(C'(\lambda) \) polygonal complex, \(\lambda > 0 \), if for every piece \(P \) of \(Y \) and every polygon \(R \) of \(Y \) containing \(P \) in its boundary, we have \(|P| < \lambda \cdot |\partial R| \).

Proposition 2.10. — Let \(G \) be a \(C'(1/6) \)–small cancellation group over the free product \(F \). Then, the polygonal complex \(X \) defined above is a \(C'(1/6) \) polygonal complex.

Proof. — Consider two polygons of \(X \) sharing an edge. Up to the action of \(G \), we can assume that such an edge contains the vertex of \(X \) that is the image in \(X \) of the point \((1_G, \{u_A\}, 0) \) (with the notations of Definition 2.6, and where we denote by \(1_G \) the unit element of \(G \)). The two chosen polygons then correspond to two cyclic conjugates of \(w \). By construction of \(G(K'_{\text{simp}}) \), these cyclic conjugates must be distinct. The result thus follows from the \(C'(1/6) \)–condition satisfied by \(G \). \(\square \)

The Greendlinger Lemma [19] immediately implies the following, see for instance [23, Lem. 13.2].

Corollary 2.11. — The polygons of \(X \) are embedded.

2.3. Complex of spaces with proper and cocompact action

A group is *cubulable* if it acts geometrically, i.e. properly discontinuously and cocompactly, on a CAT(0) cube complex. From now on, we assume that \(A \) and \(B \) are cubulable groups, and denote CAT(0) cube complexes with a geometric action of \(A \) and \(B \) respectively by \(EA \) and \(EB \) respectively.

Let \(Y \) be a CW-complex. We consider the vertex set of \(Y \) as a metric space, equipped with the *graph- or edge metric* on the 1-skeleton of \(Y \). We abuse notation and refer to this metric space again as \(Y \).

We now apply a useful theory for classifying spaces of complexes of groups [20, Sec. 2]. This theory provides us with an explicit construction of a simply connected polyhedral complex with a geometric action of \(G \). The construction can be thought of as of blowing up the vertices of the polygonal complex \(X \).
Definition 2.12 ([20, Def. 2.2]). — Let $G(\mathcal{Y})$ be a complex of groups over a scwol \mathcal{Y}. A complex of classifying spaces $EG(\mathcal{Y})$ compatible with the complex of groups $G(\mathcal{Y})$ consists of the following:

- For every vertex σ of \mathcal{Y}, a space EG_{σ}, called a fibre, which is a cocompact model for the classifying space for proper actions of the local group G_{σ},
- For every edge a of \mathcal{Y} with initial vertex $i(a)$ and terminal vertex $t(a)$, a $G_{i(a)}$-equivariant map $\phi_a : EG_{i(a)} \to EG_{t(a)}$, that is, for every $g \in G_{i(a)}$ and every $x \in EG_{i(a)}$, we have
 $$\phi_a(g.x) = \psi_{a}(g).\phi_a(x),$$
 and such that for every pair (b,a) of composable edges of \mathcal{Y}, we have
 $$g_{b,a} \circ \phi_{ba} = \phi_b \phi_a.$$

Complexes of classifying spaces compatible with a given complex of groups were shown to exist in full generality in [21]. However, we define here an explicit complex of classifying spaces compatible with $G(\mathcal{K}'_{simpl})$. We use this space to define a wallspace structure in Section 3.3. We use the same notations as in Section 2.2, in particular, we will denote by (σ, σ') the oriented edge of \mathcal{K}'_{simpl} corresponding to an inclusion of simplices σ in σ' of K_{simpl}.

- The fibre $EG_{uA} := EA$ and $EG_{uB} := EB$ are the given CAT(0) cube complexes. We view their vertex sets as metric spaces equipped with the edge metric (also referred to as combinatorial metric). We fix base vertices $x_A \in EG_{uA}$ and $x_B \in EG_{uB}$ respectively.
- For each $i = 0,1,\ldots,N − 1$, we choose an oriented combinatorial geodesic
 $$\gamma_{A,i}$$
 from x_A to $a_i \cdot x_A$
 in EG_{uA}, and denote by $|\gamma_{A,i}|$ its edge length. Let $EG_{e_{2i}}$ be the oriented simplicial segment of $|\gamma_{A,i}|$ edges, and let $\phi_{(u_A,e_{2i})} : EG_{e_{2i}} \to EG_{uA}$ be a parametrisation of $\gamma_{A,i}$. In other words, the attaching path $\gamma_{A,i}$ is realised as a simplicial embedding $\phi_{(u_A,e_{2i})}$ from $EG_{e_{2i}}$ mapping the initial vertex of $EG_{e_{2i}}$ to x_A, and the terminal vertex to $a_i \cdot x_A$.
- Analogously, for each $i = 0\ldots,N − 1$, we choose an oriented combinatorial geodesic
 $$\gamma_{B,i}$$
 from x_B to $b_i \cdot x_B$.
in EG_u, and denote by $|\gamma_{B,i}|$ its edge length. Let $EG_{e_{2i+1}}$ be the oriented simplicial segment of $|\gamma_{B,i}|$ edges, and let $\phi_{(u_B,e_{2i+1})} : EG_{e_{2i+1}} \to EG_u$ be a parametrisation of $\gamma_{B,i}$. In other words, the attaching path $\gamma_{B,i}$ is realised as a simplicial embedding $\phi_{(u_B,e_{2i+1})}$ from $EG_{e_{2i+1}}$ mapping the initial vertex of $EG_{e_{2i+1}}$ to x_B, and the terminal vertex to $b_i \cdot x_B$.

- All the other fibres are reduced to a single point.
- For each $i = 0, \ldots, 2N - 1$, the map $\phi_{(e_{i-1},\sigma_i)}$ sends the single point EG_{σ_i} to the terminal vertex of the oriented simplicial segment $EG_{e_{i-1}}$, and the map $\phi_{(e_i,\sigma_i)}$ sends the single point EG_{σ_i} to the initial vertex of the oriented simplicial segment EG_{e_i}. For each $i = 0, \ldots, 2N - 1$, the map $\phi_{(\xi_{i-1},\sigma_i)}$ sends the single point EG_{σ_i} to the point $a_i \cdot x_A \in EG_{u_A}$ if i is even (respectively $b_i \cdot x_B \in EG_{u_B}$ if i is odd), the map $\phi_{(\xi_i,\sigma_i)}$ sends the single point EG_{σ_i} to the the point $x_A \in EG_{u_A}$ if i is even (respectively $x_B \in EG_{u_B}$ if i is odd).
- The map $\phi_{u_A,L}$ sends the single point EG_L to the base vertex of EG_{u_A}, and the map $\phi_{u_B,L}$ sends the single point EG_L to the base vertex of EG_{u_B}.
- All the other maps are the trivial ones.

It is straightforward to check that this indeed defines a complex of classifying spaces compatible with $G(K'_{\text{simple}})$.

We now define, following [20], a geometric realisation $E\!G$ of a classifying space for proper and cocompact actions of G. As in our construction of X, we use the explicitly given map F, and the attaching paths, to patch up 2-simplices and the fibre $\text{CAT}(0)$ cube complexes in an appropriate way.

Definition 2.13 (The space $E\!G$). — We construct a space $E\!G$, obtained from the disjoint union

$$
\prod_{0 \leq k \leq 2} \prod_{a \in \mathbb{A}(k)(K'_{\text{simple}})} \left(F_{i(a)}(G_{i(a)}) \backslash G \times \{a\} \times \Delta^k \times EG_{i(a)} \right)
$$

by identifying pairs of the form

$$
([gF(a)^{-1}], \partial_a x, \phi_a(\xi)) \text{ and } ([g], a, d_i(x), \xi), \text{ for } 0 \leq i \leq k,
$$

where a is the edge with initial vertex $i(a)$ and terminal vertex $i(\partial_a)$. We define a cellular action of G on $E\!G$ by making it act on the left on each first factor. The various maps

$$
F_{i(a)}(G_{i(a)}) \backslash G \times \{a\} \times \Delta^k \times EG_{i(a)} \to F_{i(a)}(G_{i(a)}) \backslash G \times \{a\} \times \Delta^k
$$
obtained by forgetting the last coordinate yield an equivariant projection
\[p : \mathcal{E}G \rightarrow X. \]

The preimage of a vertex \(v \) of \(X \) under \(p \) is called the fibre over \(v \) and denoted \(\mathcal{E}G_v \), as it is a cocompact model for the classifying space for proper actions of the stabiliser \(G_v \) of \(v \).

Figure 2.3. The polyhedrons of \(\mathcal{E}G \). The figure presents portions of two simplicial polygons of \(X \) (one green, one red) and its preimage in \(\mathcal{E}G \). Vertical triangles are shaded. Attaching paths in the various fibres are coloured with respect to the associated polygon of \(X \).

The following proposition is an application of Theorem 2.4 of [20].

Proposition 2.14. — The space \(\mathcal{E}G \) is simply connected, and the \(G \)-action on it is proper and cocompact.

Remark 2.15. — This result was proven in [20, Theo. 2.4] in the case of a complex of groups over a simplicial complex. Here, while \(G(\mathcal{K}'_{\text{simpl}}) \) is not a complex of groups over a simplicial complex, the geometric realisation of \(\mathcal{K}'_{\text{simpl}} \) is nonetheless a simplicial complex, and the proof of [20] carries over to this case without any change.
Definition 2.16 (polyhedrons of $\mathcal{E}G$, Figure 2.3). — The space $\mathcal{E}G$ is a polyhedral complex as can be seen as follows. First note that we have, in particular, a projection $\mathcal{E}G \to K'_{\text{simpl}}$.

- Each fibre is isomorphic to a locally finite CAT(0) cube complex, more specifically $\mathcal{E}G_v$ is isomorphic to EA if v is a vertex in the preimage of u_A, and $\mathcal{E}G_v$ is isomorphic to EB if v is a vertex in the preimage of u_B.

- Let R be a polygon of X, and denote by \hat{R} its interior. The boundary of $p^{-1}(\hat{R})$ in $\mathcal{E}G$ is a path of $\mathcal{E}G$ which is the concatenation of geodesics in the fibres (which are translates of the chosen geodesics $\gamma_{i,A}$ and $\gamma_{i,B}$) and paths which map homeomorphically onto edges of X_{simpl}. Thus, such a boundary comes equipped with a simplicial structure, and we identify the closure of $p^{-1}(\hat{R})$ with the simplicial cone over such a boundary path. The preimage of the closure $p^{-1}(\hat{R})$ with this simplicial structure is called a simplicial polygon of $\mathcal{E}G$.

This shows that $\mathcal{E}G$ is a polyhedral complex, and the projection map $p : \mathcal{E}G \to X_{\text{simpl}}$ is a polyhedral map. For a polygon R of X, we denote by

$$\tilde{R} := \text{closure of } p^{-1}(\hat{R})$$

the unique associated simplicial polygon of $\mathcal{E}G$.

Definition 2.17 (horizontal, vertical polyhedrons). — We say that a polyhedron of $\mathcal{E}G$ is horizontal if p restricts to a homeomorphism on it, and vertical otherwise. For an edge e of X, we denote by \bar{e} the unique horizontal edge of $\mathcal{E}G$ which maps onto e under p.

Definition 2.18 (attaching paths). — Let R be a polygon of X and v be a vertex of R. We define the attaching path of \tilde{R} along $\mathcal{E}G_v$:

$$p_{v,R} := \mathcal{E}G_v \cap \tilde{R}.$$

In this section we have constructed a polygonal complex $\mathcal{E}G$ which is a realisation of an analogue for quotients of free products of the Cayley complex of the group G. In particular, the group G acts properly and cocompactly on $\mathcal{E}G$. The space $\mathcal{E}G$ was realised as a complex of spaces over the $C'(1/6)$–small cancellation polygonal complex X constructed in Section 2.2. $\mathcal{E}G$ is a polyhedral complex consisting of the following two building blocks: polygons of $\mathcal{E}G$, which are mapped to polygons of X (the latter being modelled after the polygon \tilde{R}_0), and CAT(0) cube complexes, which are fibre of vertices of X, and are isomorphic to the chosen complexes E_A or E_B.

Annales de l'Institut Fourier
Remark 2.19. — Our constructions generalise to the setting of Theorem 1.1 in a straightforward way. In the general case, the space L' is a star consisting of $m + 1$ vertices and m edges, a vertex u_{G_j} terminating the j-th edge, a degree m vertex in the center. One constructs a complex of groups with fundamental group G by iterating the “coning off” construction which we explained in the case of one relator, by gluing a polygon to this star (and by choosing appropriate twisting elements) for each relator: The universal cover of this complex of groups is again a $C'(1/6)$–polygonal complex, the map F and the space X being constructed in essentially the same way. Each polygon of this complex corresponds to a conjugacy class of a relator, and vertex stabilisers are conjugates of the free factors of F.

Similarly, our blow-up space construction of $E G$ can be generalised in a straightforward way.

Our next aim is to describe a wall structure on $E G$. One family of walls on $E G$ is obtained by lifting the walls of X. A second family of walls is obtained by combining natural wall structures on the polygons of $E G$ and the various CAT(0) cube complexes. There is however, a priori, no canonical way to combine these walls, see our explanation in Section 3.3. The geometric structure of the corresponding wallspace associated with $E G$ is controlled using the properties of the $C'(1/6)$–small cancellation polygonal complex X in combination with the properties of the fibre CAT(0) cube complexes. The properties of X are discussed in Section 3.1 and the Appendix.

3. The wallspace

Spaces with walls were introduced by Haglund–Paulin [12] and generalise essential properties of CAT(0) cube complexes.

Definition 3.1 (wallspace). — A wallspace is a pair (Y, \mathcal{H}) consisting of a set Y together with a collection \mathcal{H} of non-empty subsets of Y, called half-spaces, such that:

- for every half-space H in \mathcal{H}, its complement $Y \setminus H$ is also in \mathcal{H},
- for every x, y of Y, there are only finitely many half-spaces H such that $x \in H$ and $y \notin H$.

A partition of Y into two half-spaces is called a wall, and we denote the set of walls of (Y, \mathcal{H}) (short: Y) by $W(Y)$.

We say that a wall separates a pair of points of Y if each half-space associated with that wall contains exactly one point of the pair. We say
that two walls $W = \{H, Y \setminus H\}$ and $W' = \{H', Y \setminus H'\}$ cross if all the intersections $H \cap H'$, $H \cap (Y \setminus H')$, $(Y \setminus H) \cap H'$, $(Y \setminus H) \cap (Y \setminus H')$ are non-empty. We define the wall-pseudometric $d_{W(Y)}(x, y)$ between two points x, y of Y to be the number of walls separating them. We say that a group acts on a wallspace if it acts on the underlying set and preserves the set of half-spaces.

Definition 3.2 (wallspace on a polyhedral complex). — A structure of wallspace on a polyhedral complex is a structure of wallspace on its vertex set.

If a wall of a polyhedral complex is defined by means of the complement of a separating subset containing no vertex, we will abuse notation and not distinguish the associated wall and the separating subset.

Whenever a group acts on a space with walls, one can associate an action of the group on a CAT(0) cube complex by isomorphisms. This follows from arguments of [28], and the CAT(0) cube complex can explicitly be described using the walls, see [4, 25] for the explicit construction. Let G be a small cancellation group over the free product of two groups. The aim of this section is to define a set of walls W on the polyhedral complex $\mathcal{E}G$, turning $\mathcal{E}G$ into a wallspace. The above mentioned general procedure then yields the cube complex C_W associated with the action of G on the wallspace $(\mathcal{E}G, W)$.

Again, G denotes the small cancellation quotient $A \star B/\langle \langle w \rangle \rangle$, and X the $C'(1/6)$–polygonal complex constructed in Section 2.

3.1. Galleries, hypercarriers and hypergraphs

In this section we introduce fundamental notions and theory that we use later to define walls and then to study their geometric structure. In what follows, while results are stated for the polygonal complex X, the results hold for an arbitrary $C'(1/6)$–polygonal complex.

Definition 3.3 (far apart). — Let R be a polygon of a $C'(1/6)$–polygonal complex and τ_1, τ_2 two simplices of its boundary ∂R. We say that τ_1 and τ_2 are far apart in R if no path P in ∂R containing both τ_1 and τ_2 is a concatenation of strictly less than four pieces.

Example 3.4. — In a $C'(1/6)$–polygonal complex all polygons of which have an even number of edges, opposite edges of a given polygon are far apart.
Remark 3.5. — If two cells of a given polygon R of a $C'(1/6)$-polygonal complex are far apart in R, then the polygon R is unique by the small cancellation condition. We thus simply say that these cells are far apart, the reference to R being implicit.

Definition 3.6 (polygon with doors, system of doors). — A polygon with doors is a polygon R of X, referred as the underlying cell, together with a choice of simplices τ_1, τ_2 of ∂R called doors. We will denote such a data $R_{\{\tau_1, \tau_2\}}$. (We often write $R_{\{\tau_1, \tau_2\}}$ indistinctly for a polygon with doors and for its underlying cell.)

A system of doors is a collection C of polygons with doors. We will simply speak of a polygon of C when speaking of a polygon with doors of C. A door of C is a door of a polygon of C.

Note that a door can be an edge as well as a vertex in the boundary of a polygon.

Definition 3.7 (Gallery). — A gallery is a system of doors C satisfying the following conditions.

- (coherence condition) For every pair of polygons $R_{\{\tau_1, \tau_2\}}, R_{\{\tau'_1, \tau'_2\}}$ of C with the same underlying cell and such that $\tau_1 = \tau'_1$, we also have $\tau_2 = \tau'_2$.
- (far apart condition) For every polygon $R_{\{\tau_1, \tau_2\}}$ of C, the doors τ_1 and τ_2 are far apart in the sense of Definition 3.3.
- (connectedness condition) For every pair of doors τ, τ' of C, there exists a sequence $R_{\{\tau_1, \tau_2\}}, R_{\{\tau_2, \tau_3\}}, \ldots, R_{\{\tau_{n-1}, \tau_n\}}$ of polygons with doors of C such that $\tau = \tau_1$ and $\tau' = \tau_n$.

Definition 3.8 (hypercarrier and hypergraph associated with a gallery). Given a gallery C, we associate a polygonal complex to it as follows. Take the disjoint union of all polygons $R_{\{\tau_1, \tau_2\}}$ of C. Whenever P is a path embedded in $\partial R_{\{\tau_1, \tau_2\}}$ and $\partial R_{\{\tau_2, \tau_3\}}$, and if P embeds in X such that P is contained in the intersection of $\partial R_{\{\tau_1, \tau_2\}}$ and $\partial R_{\{\tau_2, \tau_3\}}$ in X, then we identify $\partial R_{\{\tau_1, \tau_2\}}$ and $\partial R_{\{\tau_2, \tau_3\}}$ along P. The resulting polygonal complex is denoted by Y_C and called the hypercarrier associated with C.

For each polygon $R_{\{\tau_1, \tau_2\}}$ of C, we denote by $L_{\{\tau_1, \tau_2\}}$ the path of $R_{\{\tau_1, \tau_2\}}$ which is the union of the radii of $R_{\{\tau_1, \tau_2\}}$ joining the apex of $R_{\{\tau_1, \tau_2\}}$ to the barycentres of τ_1 and τ_2. Let

$$\Lambda_C := \bigcup L_{\{\tau_1, \tau_2\}} \subset Y_C.$$
We call Λ_C the hypergraph associated with \mathcal{C}.

The hypercarrier Y_C comes endowed with a map $i_C : Y_C \to X$, by mapping every polygon in Y_C to the corresponding polygon in X. This map is by construction an immersion on the 1-skeletons.

We note that our hypercarriers and hypergraphs extend the corresponding notions of Wise [33, Def. 3.2 and 3.3]. In particular, Wise’s hypercarriers and hypergraphs are defined by means of opposite edges, see Section 3.2.1. Our far apart condition allows, in contrast, the study of hypergraphs and hypercarriers that are not associated with opposite edges. Our definition moreover includes hypergraphs going through the vertices of X. The hypercarriers we consider are therefore allowed to have cutpoints at such vertices, cf. Figure 3.1. Such configurations do not appear in [33].

![Figure 3.1. Examples of hypercarriers with their associated hypergraphs (in red) and doors (in green). Configurations on the left are studied in detail in [33]. The configurations on the right are studied in detail in the appendix.](image)

Definition 3.9 (convex). — A subcomplex Y is called convex if every geodesic between two vertices of Y is contained in Y.

The following results extend Lemma 3.11 and Theorem 3.18 of [33], cf. Proposition 3.14.

Theorem 3.10 (cf. Prop. A.9, Cor. A.14 and Prop. A.16). — Let \mathcal{C} be a gallery in X. Then:

- Its hypercarrier Y_C is connected and simply connected and the map $i_C : Y(\mathcal{C}) \to X$ is an embedding.
- The associated hypergraph Λ_C is a tree which embeds in X.
- The subcomplex Y_C of X is convex.
Corollary 3.11. — Polygons of X are convex.

The proofs are by - now standard - small cancellation arguments, and extend the original arguments of Wise in a straightforward way, using our far apart condition. We give a complete account of the arguments in Appendix A.

We study several examples of galleries, hypergraphs and hypercarriers below. In Section 3.2.1 we review Wise’s hypergraphs and hypercarriers associated with diametrically opposed edges in the $C'(1/6)$–small cancellation complex X. In Section 3.3.2 we lift such hypergraphs and hypercarriers to $\mathcal{E}G$. Finally, in Section 3.3.3 we modify $\mathcal{E}G$ to extend the hyperplanes in the fibres of $\mathcal{E}G$. We obtain graphs of spaces whose projection to X are hypergraphs associated with a gallery of X. In all three situations, we show that the complement of a hypergraph defines a wall. Here Theorem 3.10 is essential.

3.2. Walls on the building blocks

Recall that the space $\mathcal{E}G$ has two building blocks, the polygons of $\mathcal{E}G$ and the CAT(0) cube complexes that are fibres of vertices of X. Its geometric structure and the combination of these building blocks is controlled using the properties of the underlying $C'(1/6)$–small cancellation polygonal complex X. For these three types of spaces, the $C'(1/6)$–small cancellation polygonal complex, the polygons of $\mathcal{E}G$, and the fibre CAT(0) cube complexes, we describe the associated wallspace structures.

3.2.1. Walls of diametrically opposed edges

As usual, X denotes the $C'(1/6)$–polygonal complex constructed in Section 2.2. Note that what follows can be applied to an arbitrary $C'(1/6)$–polygonal complex.

If R is a polygon of X and has an even number of edges, then we say that two edges e and e' are diametrically opposed if the length of the shortest paths in the boundary of R from the midpoint of e to the midpoint of e' realises the diameter of R, that is, half of the number of its edges.

Remark 3.12. — By subdividing each edge of X, we assume that every polygon of X has an even number of edges. This is important in the general setting of Theorem 1.1: if $F = G_1 \ast \cdots \ast G_m$ for odd m, our relator w can have odd free product length, and some polygons of X can otherwise have an odd number of edges.
We first put a wall structure on X. Then we discuss hypergraphs and walls on polygons of $\mathcal{E}G$. We define an equivalence class on the set of edges of X as follows. Two edges e and e' are said to be diametrically opposed or opposite if there exists a polygon R containing them and such that e and e' are diametrically opposed in R. We denote by $R_{\{e,e'\}}$ the associated polygon with doors.

Definition 3.13 (Equivalence class of opposite edges). — Two edges e and e' are equivalent if there is a sequence $e = e_1, \ldots, e_n = e'$ of edges such that any two consecutive ones are diametrically opposed.

For an edge e of X, we define the complex with doors C^X_e to be the disjoint union of all the polygons with doors $R_{\{e_1,e_2\}}$ where e_1,e_2 are diametrically opposed and in the equivalence class of e. Observe that C^X_e is a gallery by definition. The far apart condition follows immediately from the fact that X is a $C'(1/6)$–polygonal complex. We denote the associated hypergraph by Λ^X_e, and the associated hypercarrier by Y^X_e. This coincides with Wise’s hypergraphs and hypercarriers [33, Def. 3.2 and 3.3]. Theorem 3.10 implies:

Proposition 3.14 ([33, Lem. 3.11, Th. 3.18]). — Every hypergraph Λ^X_e embeds in X, is contractible and separates X into two connected components.

Definition 3.15 (Walls on X). — For every edge e of X, the associated hypergraph Λ^X_e separates X in two components. Let W^X_e be the wall of X associated with this decomposition. We say that W^X_e is the wall associated with e.

Let W^X be the set of all these walls.

Proposition 3.16 ([33]). — The space X with the walls W^X is a wallspace. The wall pseudometric on X is a metric.

In Section 3.3.2, we lift the walls W^X to $\mathcal{E}G$.

Remark 3.17 (Hypergraphs and Walls on polygons). — Consider a single polygonal cell R on an even number of edges as a $C'(1/6)$–small cancellation polygonal complex. It then comes with the above defined hypergraphs and walls of diametrically opposed edges. We denote the hypergraph of R associated with e by Λ^R_e. The corresponding wall on R is denoted by W^R_e.

Up to taking a subdivision of $\mathcal{E}G$, this, in particular, endows each polygon of $\mathcal{E}G$ with a wallspace structure.
3.2.2. Hyperplanes in CAT(0) cube complexes

We recall some facts on hyperplanes in CAT(0) cube complexes. Let C be a CAT(0) cube complex. The building blocks of C are cubes, each k-cubing isomorphic to $[-1, 1]^k$ for some integer $k \geq 0$. A cube hyperplane associated with a cube I is obtained by setting exactly one coordinate to zero, and is therefore of the form $[-1, 1]^i \times \{0\} \times [-1, 1]^j$ with $i + j = k - 1$. A hyperplane on C is a connected nonempty subspace whose intersection with each cube I of C is either empty or a cube hyperplane associated with I. Every edge e of C has a unique hyperplane H_e intersecting it, and two hyperplanes H_e and $H_{e'}$ associated to edges e, e' of C coincide if, and only if, there is a sequence $e = e_1, \ldots, e_n = e'$ of edges such that any two consecutive ones are diametrically opposed in a 2-cell of C (cf. Definition 3.13).

Proposition 3.18 ([28, Th. 4.10, Th. 4.13]). — Let H be a hyperplane of C.

- The hyperplane H is contractible and separates C into two connected components.
- The neighbourhood of a hyperplane H is convex.

In particular, given two vertices of C there is a hyperplane separating them, and every hyperplane defines a wall of C. The following follows from the work of Sageev [28].

Proposition 3.19. — A CAT(0) cube complex C with the collection of the complements of its hyperplanes as walls is a wallspace. The wall pseudometric on C is a metric.

In Section 3.3.3 we extend the walls in the fibres EG_v, using the walls on the polygons of $\mathcal{E}G$. We therefore need the following observations.

Lemma 3.20. — Let v be a vertex in X, and let EG_v be the corresponding fibre in $\mathcal{E}G$. Let $p_{v,R}$ be the attaching path where R is a polygon R of X. Suppose H is a hyperplane that crosses an edge e of $p_{v,R}$. Then,

- (Fibre separation) The hyperplane H separates the vertices of e in EG_v. In particular, the hyperplane intersects every path in EG_v that connects the starting and endpoint of the attaching path $p_{v,R}$.
- (No turns) The hyperplane H does not intersect $p_{v,R}$ more than once.

The first fact is immediate from the above properties of CAT(0) cube complexes. For the second fact recall that $p_{v,R}$ is geodesic in EG_v. Hence, a turn would contradict the convexity of hyperplanes in CAT(0) cube complexes.
3.3. Construction of the new walls

In this section we lift the walls of X to $E G$, and explain how to combine the walls on the building blocks of $E G$. The space $E G$ is build up from the various CAT(0) cube complexes $E G_v$, modelled after the CAT(0) cube complexes E_A and E_B, and the various polygons of $E G$. We just saw that these building blocks of $E G$ are equipped with natural wallspace structures. The idea is to combine walls defined by the hyperplanes on the fibre CAT(0) cube complexes with the walls of opposite edges for polygons of $E G$. We now observe that there is a priori no canonical way to do this. In particular, it is not possible to employ the viewpoint of Wise’s seminal paper [34, Sec. 5]: To adapt to the viewpoint of Wise, view the boundary path of a polygon \tilde{R} of $E G$ as a cube complex, and \tilde{R} as a cone over this boundary path. It comes with the wall structure associated with opposite edges. Combining the walls of E_A, E_B and \tilde{R} as in [34, Sec. 5.f], cf. Definition 3.29 below, does not yield walls; in particular, conditions (1), (2) and (3) of Lemma 5.13 in [34] fail. Indeed, the subspaces we obtain with such a procedure no longer embed. More precisely, as the small cancellation condition over the free product of two groups does not control the length of the attaching paths, a hypergraph of diametrically opposed edges of \tilde{R} is likely to intersect two distinct edges of the same attaching path of the same fibre. The corresponding new hyperplane then consists of the two distinct hyperplanes associated with the aforementioned edges of that fibre and the hypergraph of diametrically opposed edges intersecting them. Note that we have no control of the position of these two hyperplanes of the fibre cube complex, meaning that they can intersect, osculate, or just not intersect any other attaching path, hence the claim.

3.3.1. Balancing

We now modify the complex $E G$. This then allows us to combine the hyperplanes in the various CAT(0) cube complexes with the walls associated with opposed edges in polygons of $E G$.

Remark 3.21. — We assume that each polygon of $E G$ and X has an even number of edges by uniformly:
- replacing each fibre CAT(0) cube complex in $E G$ by its cubical barycentric subdivision,
- by subdividing each horizontal edge of $E G$ and each edge of X.
In particular, there is a well defined notion of opposite edge for every edge in the boundary path of a polygon of $\mathcal{E}G$ and X. Moreover, the group action of G naturally induces a cellular action of G on the complexes so obtained.

Definition 3.22 (the subdivided complexes X_k and $(\mathcal{E}G)_k$). — Let $k \geqslant 0$ be an even integer. We refine the polygonal complex X by subdividing each edge of X exactly k times. We denote by X_k the resulting polygonal complex.

Similarly, we define a new polyhedral complex from $\mathcal{E}G$ by subdividing each horizontal edge, see Definition 2.17, exactly k times. We denote by $(\mathcal{E}G)_k$ this new polyhedral complex, and by

$$p : (\mathcal{E}G)_k \to X_k$$

the induced projection map.

Note that this procedure does not modify the CAT(0) cubical structures of the various fibres of $\mathcal{E}G$, and it does not modify the attaching paths. Moreover, each complex X_k does again satisfy the $C'(1/6)$--condition, polygons of $(\mathcal{E}G)_k$ and X_k have again an even number of edges, and pieces of X_k are subdivisions of pieces of X.

The actions of G on $\mathcal{E}G$ and on X induce cellular actions of G on $(\mathcal{E}G)_k$ and X_k such that p_k is again G-equivariant.

Definition 3.23 (balanced). — We say that $(\mathcal{E}G)_k$ is balanced if for every polygon \tilde{R} of $(\mathcal{E}G)_k$ and every edge e of \tilde{R} with opposite edge e', the projections $p(e)$ and $p(e')$ are far apart (see Definition 3.3) in X_k.

Lemma 3.24. — There exists an even integer $k \geqslant 0$ such that $(\mathcal{E}G)_k$ is balanced.

Proof. — Since the number of edges in the various attaching paths $p_{e,R}$ is uniformly bounded above by the maximum of the edge lengths of the geodesics $\gamma_{A,i}, \gamma_{B,i}$, the subdivided complex $(\mathcal{E}G)_k$ becomes balanced for k large enough by the $C'(1/6)$--condition.

Definition 3.25. — Let $k \geqslant 0$ be the smallest even number such that $(\mathcal{E}G)_k$ is balanced. We denote by $\mathcal{E}G_{bal}$ and X_{bal} the complexes $(\mathcal{E}G)_k$ and X_k respectively.

In the next section the properties of X, in combination with the properties of the fibre CAT(0) cube complexes, will be used to control the geometric structure of $\mathcal{E}G$. We first endow $\mathcal{E}G$ with a wall structure.
3.3.2. Lifted hypergraphs

The polygonal complexes X and X_{bal} satisfy the small cancellation condition $C'(1/6)$, hence the hypergraphs of diametrically opposed edges of Section 3.2.1 define a wallspace on X_{bal}. We now lift the corresponding family of walls on X_{bal} to define a first family of walls on $\mathcal{E}G_{bal}$.

Definition 3.26 (hypergraph associated with an edge of X_{bal}). — Let e be an edge of X_{bal} and Λ^X_e the hypergraph of diametrically opposed edges in X_{bal} defined in Section 3.2.1. We call Λ^X_e the hypergraph associated with the edge e of X_{bal}.

We define the subset $\tilde{\Lambda}^X_e$ of $\mathcal{E}G_{bal}$ as the preimage of Λ^X_e under $p : \mathcal{E}G_{bal} \to X_{bal}$. We call $\tilde{\Lambda}^X_e$ the lifted hypergraph (of $\mathcal{E}G_{bal}$) associated with the edge e of X_{bal}.

Lemma 3.27. — Each lifted hypergraph $\tilde{\Lambda}^X_e$ of $\mathcal{E}G$ associated with an edge of X_{bal} is contractible and separates $\mathcal{E}G_{bal}$ into two connected components.

Proof. We use Proposition 3.14. Note that p restricts to a homeomorphism $\tilde{\Lambda}^X_e \to \Lambda^X_e$. Hence, $\tilde{\Lambda}^X_e$ is contractible. The fact that $\tilde{\Lambda}^X_e$ disconnects $\mathcal{E}G_{bal}$ follows from the fact that Λ^X_e disconnects X_{bal} into two components. The fact that $\mathcal{E}G_{bal} - \tilde{\Lambda}^X_e$ has exactly two connected components follows from the fact that the preimage of a connected set under p is again connected. □

Definition 3.28 (wall of $\mathcal{E}G_{bal}$ associated with an edge of X_{bal}). — We define the wall of $\mathcal{E}G_{bal}$ associated with the edge e of X_{bal} as $W^X_e := \tilde{\Lambda}^X_e$.

Note that this family of walls is not large enough to define a wallspace structure on $\mathcal{E}G$ whose associated CAT(0) cube complex is endowed with a proper action, as this family of walls does not separate vertices in a given fibre.

3.3.3. Combining the walls on the building blocks

In this section, we combine walls on the building blocks of $\mathcal{E}G$ to a wall on the whole space $\mathcal{E}G_{bal}$. Let e be an edge of $\mathcal{E}G_{bal}$. If e is a vertical edge (that is, contained in one of the fibre CAT(0) cube complexes), we denote by H_e the hyperplane in that fibre associated with e. If e is a horizontal edge (that is, projects to an edge of X_{bal}), we denote by H_e the midpoint of e. In both cases we call H_e the hyperplane associated with e.
We now extend the construction of C_e^X in Section 3.2.1 in order to construct a system of doors of X_{bal} associated to an edge of $\mathcal{E}G_{\text{bal}}$. First we extend Definition 3.13 of the equivalence class of opposite edges in $C'(1/6)$–polygonal complexes to our $\mathcal{E}G_{\text{bal}}$.

Definition 3.29. — We define an elementary equivalence relation on the set of edges of $\mathcal{E}G_{\text{bal}}$ as follows. Two edges e, e' of $\mathcal{E}G_{\text{bal}}$ are said to be elementarily equivalent, and we denote it $e \sim_1 e'$, if one of the following situations occurs:

- e and e' are opposite edges in some polygon of $\mathcal{E}G_{\text{bal}}$.
- e, e' are vertical edges in the same fibre and the hyperplanes H_e and H'_e coincide.

The transitive closure defines an equivalence relation on the set of edges of $\mathcal{E}G_{\text{bal}}$.

Definition 3.30 (systems of doors associated with an edge of $\mathcal{E}G_{\text{bal}}$). Let e be an edge of $\mathcal{E}G_{\text{bal}}$. We associate to e a system of doors $C_{e, \mathcal{E}G}$ of X as follows. To every polygon \tilde{R} of $\mathcal{E}G_{\text{bal}}$ together with a set $\{e_1, e_2\}$ of diametrically opposed edges $e_1, e_2 \in \tilde{R}$ in the equivalence class of e, we associate a polygon with doors of $C_{e, \mathcal{E}G}$ with underlying cell $p(\tilde{R})$ and with doors being the projections $p(e_1)$ and $p(e_2)$.

We now investigate this specific system of doors $C_{e, \mathcal{E}G}$ in order to construct our wallspace structure on $\mathcal{E}G$. Let us also note that to any two diametrically opposed edges e_1, e_2 in \tilde{R} in the equivalence class of e corresponds exactly one polygon with doors in $C_{e, \mathcal{E}G}$. Any ordering of doors is just to help the reader through our arguments.

Proposition 3.31. — The system of doors $C_{e, \mathcal{E}G}$ is a gallery.

Proof. — We have to verify the conditions listed in Definition 3.7. The connectedness condition follows immediately from the definition. The doors of a given polygon of $C_{e, \mathcal{E}G}$ are far apart because $\mathcal{E}G_{\text{bal}}$ is balanced.

Suppose by contradiction that the coherence condition is not satisfied, that is, there is a pair of polygons with doors $R_{\{\tau_1, \tau_2\}}, R_{\{\tau'_1, \tau'_2\}}$ of $C_{e, \mathcal{E}G}$ with the same underlying cell R, such that $\tau_1 = \tau'_1$ and $\tau_2 \neq \tau'_2$. We now use our construction of the system of doors $C_{e, \mathcal{E}G}$. As usual, let us denote by \tilde{R} the polygon lifting R, and by e_1, e'_1, f_2, f'_2 the edges in the boundary of \tilde{R} lifting $\tau_1, \tau'_1, \tau_2, \tau'_2$ respectively. By Definition 3.29, the edges e_1 and f_1, as well as e'_1 and f'_2 respectively, are diametrically opposed in \tilde{R}. As $\tau_2 \neq \tau'_2$, we have that $f_2 \neq f'_2$. Hence, e_1 and e'_1 are distinct edges. As $\tau_1 = \tau'_1, e_1$
and e_1' are distinct vertical edges that lie on the attaching path of \tilde{R} in EG_{τ_1}.

By construction, we can find a sequence of edges of EG

$$e_1, e_2, e_3, \ldots, e_{n-1}, e_n$$

with $e_n = e_1'$, and such that e_i and e_{i+1} are elementary equivalent. We can further choose this sequence such that $e_i \neq e_j$ where $i \neq j$. Note that e_2 or e_{n-1} does not necessarily coincide with f_2 or f'_2 respectively.

Claim 1. — There are at least two edges e_i, e_j, $1 < i < j \leq n - 1$, that are not in the fibre EG_{τ_1}.

Indeed, suppose for each $1 \leq e_i \leq n - 1$, we have that e_i is a vertical edge in EG_{τ_1}. Then the hyperplane $H = H_{e_1} = H_{e_1'}$ would intersect the attaching path of \tilde{R} in EG_{τ_1} twice, contradicting Lemma 3.20. Thus, we have at least one e_i which is not in EG_{τ_1}. By definition of the elementary equivalence relation and construction, there necessarily exists a second such edge.

By construction, we can associate to the above sequence of edges a sequence $R_{\{\sigma_1, \sigma_2\}}, R_{\{\sigma_2, \sigma_3\}}, \ldots, R_{\{\sigma_{m-1}, \sigma_m\}}$ of polygons of $C_{\varepsilon G}$ such that $\sigma_1 = \tau_1$, $\sigma_m = \tau_1'$, and such that each edge e_j projects onto a door σ_j. Let $R_1, R_2, \ldots, R_{m-1}$ be the associated sequence of polygons. Without restriction, let us assume that m is minimal for the property that σ_1 and σ_m coincide.

Claim 2. — We have that $m \geq 4$, and hence, such a sequence has at least three polygons.

Indeed, suppose by contradiction that there are at most two polygons R_1 and R_2. Claim 1 implies that there are at least two edges e_i, e_j that are not in the fibre EG_{τ_1}. Then e_i and e_j are in the fibre over σ_2. In particular, the intersection $R_1 \cap R_2$ contains both σ_1 and σ_2. As σ_1 and σ_2 are far apart, Remark 3.5 implies that $R_1 = R_2$. Hence, e_i and e_j are two distinct edges on the attaching path of $\tilde{R}_1 = \tilde{R}_2$ in EG_{σ_2}, contradicting Lemma 3.20.

By minimality, the only polygons that possibly coincide and share a door are R_1 and R_{m-1}. As noted before, the coherence condition can only fail in such a situation.

To conclude, there are two cases to consider. First assume that $R_1 = R_{m-1}$ and these polygons share a door. It now follows from the minimality
CUBULATION IN SMALL CANCELLATION THEORY

assumption that $R_{\{\sigma_2, \sigma_3\}}, \ldots, R_{\{\sigma_{m-1}, \sigma_m\}}$ defines a gallery (the coherence condition being trivially verified), and we have $R_2 \cap R_{m-1} \neq \emptyset$ by hypothesis, contradicting Theorem 3.10. In the second case R_1 and R_{m-1} do not share a door. In this case, $R_{\{\sigma_1, \sigma_2\}}, \ldots, R_{\{\sigma_{m-1}, \sigma_m\}}$ defines a gallery for the same reason, contradicting Theorem 3.10. □

Let Λ^E_G be the hypergraph in X_{bal} associated with C^E_G. It follows from Proposition 3.31 and Proposition 3.10 that Λ^E_G is a tree.

Lemma 3.32. — The hypergraph Λ^E_G is a tree embedded in X_{bal}.

Definition 3.33 (wall of E_G associated with an edge of $E_{G_{bal}}$). — Let e be an edge of $E_{G_{bal}}$. We define the wall associated with e as a tree of spaces over the hypergraph Λ^E_G as follows. Let R be a polygon of E_G and let e_1 and e_2 be opposite edges of a polygon R of $E_{G_{bal}}$, which are in the equivalence class of e, see Definition 3.29. Note that the polygon $\mathfrak{p}(R)$ of X_{bal}, together with the doors $\mathfrak{p}(e_1)$ and $\mathfrak{p}(e_2)$, defines a polygon of C^E_G.

We define

$$W^E_G := \bigcup_{e_1 \sim e_2} (H_{e_1} \cup \Lambda^R_{e_1} \cup H_{e_2}),$$

in the equivalence class of e

where $\Lambda^R_{e_1}$ is the hypergraph of the polygon R defined in Remark 3.17. W^E_G is called the wall of E_G associated with e.

We readily observe that the above defined wall W^E_G is a combination of hyperplanes of the various CAT(0) cube complexes of E_G and hypergraphs of the various polygons of E_G.

Note that the projection of the wall W^E_G under $p : E_{G_{bal}} \rightarrow X_{bal}$ is the hypergraph Λ^E_G associated with the gallery C^E_G. Let us distinguish two types of walls W^E_G associated with an edge of $E_{G_{bal}}$ according to their projections Λ^E_G in X_{bal}.

- The wall W^E_G and its associated hypergraph Λ^E_G are said to be of first type if Λ^E_G consists of a single vertex.
- Otherwise, W^E_G and Λ^E_G are said to be of second type.

Note that a wall W^E_G associated with a vertical edge e of $E_{G_{bal}}$ is of first type if and only if e is contained in a fibre CAT(0) cube complex and the associated hyperplane crosses none of the attaching paths defined in Definition 2.18. An example where all occurring types of hypergraphs Λ^E_G and Λ^R_G are displayed is shown in Figure 3.4.

We now show that the walls of E_G associated with edges of $E_{G_{bal}}$ are walls in the sense of Definition 3.1, that is, they separate E_G into exactly
two connected components. As noted in the introduction, the results and methods of [34, Sec. 5] cannot be applied to conclude in our situation. Instead, we use, as already mentioned, the properties of hypercarriers in the $C'(1/6)$–polygonal complex X and the properties of the fibre CAT(0) cube complexes. Hence, we give a more direct approach to the cubulation problem.

Lemma 3.34. — A wall associated with an edge of $\mathcal{E}G_{\text{bal}}$ of first type is contractible and separates $\mathcal{E}G$ into two connected components.

Proof. — Let e be an edge of $\mathcal{E}G_{\text{bal}}$ whose associated hypergraph is of first type. The hypergraph is then completely contained in a CAT(0) cube complex of the form $\mathcal{E}G_v$, that is, it coincides with one of the hyperplanes of $\mathcal{E}G_v$, and such a hyperplane does not cross any attaching path. Thus, the wall is contractible and separates $\mathcal{E}G$ locally into two connected components by Proposition 3.18. Since $\mathcal{E}G$ is simply connected, the wall separates $\mathcal{E}G$ globally into two connected components. □

Figure 3.2. A portion of a wall associated with an edge of $\mathcal{E}G_{\text{bal}}$ of second type, together with its hypergraph. To avoid drawing too many edges, we assume here that $\mathcal{E}G$ is balanced, that is, $\mathcal{E}G = \mathcal{E}G_{\text{bal}}$.
Lemma 3.35. — A wall associated with an edge of $\mathcal{E}G_{bal}$ of second type is contractible and separates $\mathcal{E}G$ into two connected components.

Proof. — Let e be an edge of $\mathcal{E}G_{bal}$ whose associated hypergraph is of second type. We first use properties of hypergraphs in X. Using Lemma 3.32, we observe that the wall associated with e has a structure of tree of spaces over $\Lambda^e_{\mathcal{E}G}$ with fibres being (contractible) hyperplanes. The contractibility of such a wall thus follows.

Since $\mathcal{E}G_{bal}$ is simply connected, it is enough to prove that the associated hypergraph separates locally $\mathcal{E}G_{bal}$ into two connected components. Therefore, we now use geometric properties of X to reduce the problem to the hyperplanes in the CAT(0) cube complexes.

The only non-trivial case to consider is the preimage of a neighbourhood of a vertex of X_{bal} contained in $\Lambda^e_{\mathcal{E}G}$, that is, a point of $\Lambda^e_{\mathcal{E}G}$ whose preimage in $\mathcal{E}G_{bal}$ is a hyperplane in the associate fibre. Let v be such a vertex of X_{bal} and H the hyperplane associated with an edge e on the attaching path $p_{v,R}$ in $\mathcal{E}G_v$ corresponding to a polygon of X.

We now refine the polyhedral complex $\mathcal{E}G_{bal}$ as follows. First consider the simplicial polygon associated with each polygon of $\mathcal{E}G_{bal}$ (as explained in Section 2.2), then take its first barycentric subdivision. For the new polyhedral complex so obtained, consider the star $\text{st}(v)$ of v, that is, the union of all the simplices containing v. Denote by $S(v)$ the preimage of $\text{st}(v)$ under the projection map $p : \mathcal{E}G_{bal} \to X_{bal}$. We define a projection map $q_v : S(v) \to \mathcal{E}G_v$ in two steps. Let R be a polygon of X_{bal} containing v and \tilde{R} its lift to $\mathcal{E}G_{bal}$. First retract radially $\tilde{R} \cap S(v)$ onto $\partial \tilde{R} \cap S(v)$, then retract $\partial \tilde{R} \cap S(v)$ onto $\partial \tilde{R} \cap \mathcal{E}G_v$ (see Figure 3.3). It is straightforward to check that these projections are compatible and define a map from $S(v)$ to $\mathcal{E}G_v$. Furthermore, by definition of $W^e_{\mathcal{E}G}$, q_v restricts to a surjective map from $S(v) \setminus W^e_{\mathcal{E}G}$ onto $\mathcal{E}G_v \setminus H$.

Finally, we use the properties of CAT(0) cube complexes to conclude. As $\mathcal{E}G_v$ is a CAT(0) cube complex, by Proposition 3.18 the latter space is disconnected into exactly two components. So $S(v) \setminus W^e_{\mathcal{E}G}$ has at least two connected components. As the preimage under q_v of a path of $\mathcal{E}G_v$ is a connected subset of $S(v)$ and $\mathcal{E}G_v \setminus H$ has exactly two connected components, $S(v) \setminus W^e_{\mathcal{E}G}$ has at most two connected components, hence it has exactly two connected components. □

We now have defined many walls on $\mathcal{E}G$: lifts of walls of X, and extension of hyperplanes of the fibre CAT(0) cube complexes to the whole space $\mathcal{E}G$. In the next section we use all these walls to define a wallspace structure on
Figure 3.3. The construction of the projection map q_v. The star of v and its preimage in E_G are represented in shaded. On the left, the various radial projections $\tilde{R} \cap S(v) \to \partial \tilde{R} \cap S(v)$. On the right, the various projections $\partial \tilde{R} \cap S(v) \to E_G$.

E_G that makes E_G a wallspace. We then associate a CAT(0) cube complex to such a structure.

Remark 3.36. — We have not used at any point in this chapter that we are working only with one relator: All we need is a cocompact action of G on a $C'(1/6)$-polygonal complex with trivial edge and cubulable vertex stabilisers. This allows, as previously noted, to construct an appropriate E_G in the general setting of Theorem 1.1, and hence to construct a wallspace as above.

3.4. The wallspace and its associated CAT(0) cube complex

In this section we combine the walls associated with edges of X_{bal}, Definition 3.28, and the walls associated with edges of $E_{G_{bal}}$, Definition 3.33. This yields a wallspace structure on $E_{G_{bal}}$. Figure 3.4 shows an example of E_G with all three types of walls, together with their corresponding hypergraphs.
CUBULATION IN SMALL CANCELLATION THEORY

Figure 3.4. Examples of the three types of walls of $\mathcal{E}G$ (left) and their associated hypergraphs in X (right), in the case $A = \mathbb{Z}^2$, $B = \mathbb{Z}$. To avoid a busy picture, we only represent the case of a polygon of X with 4 sides. Blue: Walls/Hypergraphs associated with edges of X. Green: Walls/Hypergraphs associated with edges of $\mathcal{E}G_{bal}$ of first type. Red and pink: Walls/Hypergraphs associated with edges of $\mathcal{E}G_{bal}$ of second type.

Definition 3.37. — We denote by W the family of walls of $\mathcal{E}G_{bal}$ consisting of:

- the walls associated with an edge of X_{bal},
- the walls of first type associated with an edge of $\mathcal{E}G_{bal}$,
- the walls of second type associated with an edge of $\mathcal{E}G_{bal}$.

We call an element of W a wall of $\mathcal{E}G_{bal}$.

The next result follows from combining the properties of the three types of walls that we have discussed above.

Proposition 3.38. — The complex $\mathcal{E}G$ with the previous family of walls W is a wallspace.

The wallspace $(\mathcal{E}G, W)$ comes with an action of G, by setting $g \cdot W_e^X := W_{g \cdot e}^X$ and $g \cdot W_e^{\mathcal{E}G} := W_{g \cdot e}^{\mathcal{E}G}$ respectively.

Proof of Proposition 3.38. — By definition and Lemma 3.27 every edge in X_{bal} defines a unique wall of $\mathcal{E}G$. By definition and Lemmas 3.34 and 3.35 an edge of $\mathcal{E}G_{bal}$ defines a unique wall of $\mathcal{E}G$. Two vertices of $\mathcal{E}G_{bal}$ can be
joined by a finite path in the 1-skeleton of $\mathcal{E}G_{bal}$. As a wall separating two vertices must cross every path connecting them, the result follows. □

The proof immediately implies the following useful remark.

Corollary 3.39. — There is an upper bound on the number of walls of $\mathcal{E}G$, the hypercarriers of which contain a given polygon of X.

Remark 3.40. — We note that the wall-pseudometric on $\mathcal{E}G$ is a metric. Indeed, every pair of vertices of $\mathcal{E}G$ is separated by a wall. To see this first consider two vertices in the same fibre. By assumption the fibre is a CAT(0) cube complex. Then, the proof of Lemma 3.35 implies in particular that two such points are separated by at least one wall associated with a vertical edge. For vertices in two different fibres, as X is a $C'(1/6)$-complex it follows from the fact that the family of hypergraphs \mathcal{W}^X separates any two vertices of X; this last statement follows directly from [33, Lem. 4.3].

Let us now associate a CAT(0) cube complex to the wallspace $(\mathcal{E}G, \mathcal{W})$, and to the wallspace X. A vertex of this complex is a map $\sigma : \mathcal{W} \to \mathcal{H}$ sending each wall to one of the two half-spaces it defines, with some additional conditions, see [4]. Two vertices σ_1 and σ_2 are connected by an edge if σ_1 and σ_2 differ on exactly one wall.

Definition 3.41. — Let $C_\mathcal{W}$ denote the CAT(0) cube complex associated with $(\mathcal{E}G, \mathcal{W})$.

Remark 3.42. — The action of G on \mathcal{W} induces an action of G on $C_\mathcal{W}$.

Remark 3.43. — Using the definition of the CAT(0) cube complexes associated with a wallspace [4], one can show that the embedding of wallspaces associated with the embedding $EG_v \hookrightarrow \mathcal{E}G$ yields an embedding $EG_v \hookrightarrow C_\mathcal{W}$ of CAT(0) cube complexes which is equivariant with respect to the map $G_v \to G$.

Note however that there is a priori no link between the CAT(0) cube complex associated with the wallspace (X, \mathcal{W}^X) and $C_\mathcal{W}$. Therefore, the results of Wise [33] that are valid for C_X cannot directly be used to conclude anything about $C_\mathcal{W}$. It would technically be possible to reason solely with walls associated with the edges of $\mathcal{E}G_{bal}$ and the associated cube complex. However, adding walls associated with edges of X_{bal} only increases the dimension of the cube complex acted upon. We have decided to follow this approach as it seemed to us more natural from the viewpoint of the combination argument.

In the next section, we will combine results of Wise on the geometric positions of walls of \mathcal{W}^X [33, Lem. 6.4, Th. 6.9, Th. 11.1] with new results...
on the combination of such walls with the walls associated with edges of $\mathcal{E}G_{\text{bal}}$. This will be used to prove that the wallspace structure W on $\mathcal{E}G$ is such that the induced action on the associated CAT(0) cube complex C_W is proper and cocompact.

4. Cubulation theorem

The aim of this section is to prove our main result.

Theorem 4.1. — The action of G on the CAT(0) cube complex C_W is proper and cocompact.

The following two criteria provide information about the group action on a cube complex from the properties of the action on the wallspace used to define this cube complex.

Proposition 4.2 ([4, Theorem 3]). — Let H be a group acting by isometries on a space with walls $(Y, W(Y))$, where Y is a metric space. The H-action on the associated CAT(0) cube complex is proper if for some $y \in Y$, we have $d_{W(Y)}(y, h \cdot y) \to \infty$ when $h \to \infty$.

Proposition 4.3. — Let H be a group acting on a space with walls $(Y, W(Y))$. The H-action on the associated cube complex is cocompact if and only if there exist only finitely many configurations of pairwise crossing walls of Y, up to the action of H.

Therefore, we continue to study the combination of the various type of walls underlying C_W.

4.1. Properness

Theorem 4.4. — The action of G on C_W is proper.

Let us mention, once again, that we do not follow a more general approach of Wise [34, Th. 5.50]. This has an advantage of a more elementary proof. Again, we combine in an appropriate way properties of the fibre CAT(0) cube complexes and properties of the $C'(1/6)$–polygonal complex X.

Proof. — We first prove that the wall distance d_W is proper, that is, for every vertex x of $\mathcal{E}G_{\text{bal}}$ and every integer $M \geq 0$, the set of vertices separated by at most M walls from x is compact. We give an inductive
procedure to describe the set of vertices separated of x by at most M walls.

Let v be a vertex of X, x_v be a vertex of EG_v and $M \geq 0$ an integer. Let

$$K_0 := \{ x \in EG \mid x \text{ is a vertex of } EG_v \text{ and } d_W(EG_v)(x_v, x) \leq M \},$$

be the ball in EG_v of radius M around x_v. As EG_v is a locally finite CAT(0) cube complex we see that K_0 is finite.

We now orient edges e of X by setting one vertex of e the initial and the other vertex the terminal vertex, denoted by $i(e)$ and $t(e)$ respectively. Given an oriented edge e we denote by $x_{i(e)}$ and $x_{t(e)}$ the respective attaching points of the lift \tilde{e} in $\mathcal{E}G$. Let us orient each edge e of X at v such that $i(e) = v$. Let E_0 be the set of those such edges with $x_{i(e)} \in K_0$.

Suppose we have inductively defined sets $K_0 \subseteq \ldots \subseteq K_k$ of vertices of EG and finite sets $E_0 \subseteq \ldots \subseteq E_k$ of oriented edges of X such that for every such edge $e \in E_i$ we have that $x_{i(e)} \in K_i, 0 \leq i \leq k$ and $x_{t(e)} \in K_{i-1}, 0 < i \leq k$. For every edge $e \in E_k - E_{k-1}$ denote by K_e the ball in $EG_{t(e)}$ of radius $M + d_W(x_v, x_{t(e)})$ around x_v. Denote by E_e the set of edges e' of X at $t(e)$ such that $i(e') \in K_e$. Set

$$K_{k+1} := K_k \cup \bigcup_{e \in E_k} K_e,$$

and let

$$E_{k+1} := E_k \cup \bigcup_{e \in E_k} E_e.$$

Again, as the various spaces EG_v are CAT(0) cube complexes and $\mathcal{E}G$ is locally finite, the sets E_k and K_k are finite.

Since X is a $C'(1/6)$–polygonal complex, there exists a constant k_M such that a vertex of X at distance at least k_M from v is separated from v by at least M walls of X. Therefore and by construction, the set of vertices of $\mathcal{E}G$ which are separated from x_v by at most M walls of $\mathcal{E}G$ is contained in the set K_{k_M}. This set was shown to be finite, hence the claim.

Finally, let (g_n) be an injective sequence of elements of G. Since G acts properly discontinuously on $\mathcal{E}G$, there are for any integer $m \geq 0$ only finitely many $n \geq 0$ such that $g_n x_v \in K_m$. Thus, $d_W(x_v, g_n x_v) \to \infty$, and the result now follows from Proposition 4.2.

Note that the proof of Theorem 4.4 uses only the fact that the various fibres are locally finite CAT(0) cube complexes, and that $\mathcal{E}G$ is a locally finite polyhedral complex, which follows from the fact that the fibres are locally finite and that G is obtained by considering only finitely many
relators in $A \ast B$. In particular, redoing the whole construction in this more general framework, we obtain a proof of Theorem 1.3.

Corollary 4.5. — If A and B are only assumed to act properly on locally finite CAT(0) cube complexes EA and EB respectively, then G acts properly on CW.

4.2. Cocompactness

Here we prove the cocompactness of the action on CW.

Theorem 4.6. — The action of G on CW is cocompact.

This follows once we have shown that W satisfies the assumptions of Proposition 4.3. In order to do that, we combine, again, the properties of the fibre CAT(0) cube complexes E_A and E_B with the properties of hypergraphs in the $C'(1/6)$–small cancellation polygonal complex X.

In particular, we use the following properties of CAT(0) cube complexes, cf. [8, 28].

Theorem 4.7. — Let Y be a CAT(0) cube complex.

- Given a convex subcomplex of Y, its neighbourhood, that is, the union of all the cubes meeting it, is again convex.
- neighbourhoods of hyperplanes of Y are convex.
- (Helly’s theorem) Let (Y_i) be a family of pairwise convex subcomplexes of Y such that any two such subcomplexes have a non-empty intersection. Then $\bigcap_i Y_i$ is non-empty.

We use the following result on the hypercarriers in X of pairwise crossing walls of $\mathcal{E}G_{bal}$.

Proposition 4.8. — Let W_1, W_2, \ldots be a set of pairwise crossing walls of $\mathcal{E}G$, and let Y_1, \ldots, Y_k, $k \geq 3$, be the set of corresponding hypercarriers of X. Then the intersection $\bigcap Y_i$ is non-trivial.

This result extends the following result of Wise.

Lemma 4.9 ([33, Theorem 6.9]). — Let $\{\Lambda_1, \Lambda_2, \Lambda_3, \ldots\}$ be a set of pairwise crossing hypercarriers of X defined by equivalence of diametrically opposed edges, see Section 3.2.1. If $\Lambda_1, \Lambda_2, \Lambda_3, \ldots$ pairwise cross, then their common intersection contains a vertex.
Let us emphasise once again, that Lemma 4.9 cannot directly be applied because our hypercarriers have cutpoints, and our far apart condition allows hypercarriers that differ significantly from those defined by equivalence classes of opposite edges.

Proof of Proposition 4.8. — We consider three cases. If all walls W_1, W_2, \ldots are associated with vertical edges in $E G_v$, then v is contained in the intersection of their hypercarriers. This is the only configuration where a wall of first type can occur. If all walls W_1, W_2, \ldots are walls coming from X, associated with edges of X_{bal}, then Wise’s Lemma 4.9 immediately implies the claim. All other configurations contain no wall of first type, and at least one wall of second type. In this case, the proof of Wise’s Lemma 4.9 can be extended in a straightforward way, using our generalised notions of hypergraphs and hypercarriers. Our far apart condition is again essential. We give a full account of the arguments in Appendix A.4, see Lemma A.24.

Theorem 4.10. — There is only finitely many configurations of pairwise crossing walls of $E G$, up to the action of G.

Proof. — Let l be the maximal length of an attaching path in the fibres of $E G$. Let (W_i) be a system of pairwise crossing walls of $E G$ and denote by (Y_i) the associated system of hypercarriers in X. By Lemma 4.8, let v be a vertex in the intersection of these hypercarriers. For each i, let K_i be the union of all the attaching paths $p_{v,R} \subset EG_v$, where R is a polygon of Y_i containing v. We now describe the sets K_i, depending on the relative position of the hypergraph and the vertex v, as illustrated in Figure 4.1.

Figure 4.1. The three possible configurations, depending on the relative position of the hypergraph associated with W_i and the vertex v. In red: walls and hypergraphs. In green: K_i. In blue: C_i.

ANNALES DE L’INSTITUT FOURIER
If \(W_i \cap EG_v \) is empty, then the vertex \(v \) either belongs to an exterior arc of a polygon of \(Y_i \), or \(v \) belongs to a door-tree of \(Y_i \). In the former case, \(K_i \) consists of the single attaching path \(p_{v,R} \). We then denote by \(u \) the starting vertex of \(p_{v,R} \) in \(EG_v \). In the latter case, all the polygons \(R_j \) of \(Y_i \) containing \(v \) share a common edge containing \(v \). Then \(K_i \) consists of the union of all the attaching path \(p_{v,R_j} \). These paths intersect in one vertex in \(EG_v \), that we denote by \(u \). In both cases, let \(C_i \) be the \(2l \)-ball around \(u \). It follows that \(K_i \) is contained in \(C_i \).

If \(W_i \cap EG_v \) is nonempty, then \(W_i \) is a wall associated with a vertical edge of \(\mathcal{E}G_{bal} \) of first or of second type. If \(W_i \) is a wall of first type associated with an edge of \(\mathcal{E}G_v \), then \(W_i \cap EG_v = W_i \), and \(K_i \) is empty. Then let \(C_i \) be the \(2l \)-neighbourhood of the hyperplane corresponding to \(W_i \).

If \(W_i \) is a wall of second type associated with an edge of \(EG_v \), then let \(C_i \) be the \(2l \)-neighbourhood of the hyperplane \(W_i \cap EG_v \). By definition the attaching path of any polygon of \(Y_i \) containing \(v \) must cross the hyperplane \(W_i \cap EG_v \). Thus the subset \(K_i \) is contained in \(C_i \).

For two given indices \(i \) and \(j \), we have that \(C_i \cap C_j \neq \emptyset \). Indeed, if \(W_i \) and \(W_j \) cross in \(EG_v \), this is immediate. If \(W_i \) and \(W_j \) do not cross in \(EG_v \), then choose a cell \(R \) of \(X_{bal} \) whose preimage in \(\mathcal{E}G_{bal} \) contains a point of \(W_i \cap W_j \). Choose a vertex \(w \) of \(R \) other than \(v \), and consider a geodesic between \(v \) and \(w \). By Proposition 3.10, such a geodesic is contained in \(Y_i \cap Y_j \). In particular, the unique edge of that geodesic containing \(v \) is in \(Y_i \cap Y_j \), which implies that \(C_i \cap C_j \neq \emptyset \). The various subcomplexes \(C_i \) are convex by Theorem 4.7. Thus, Helly’s theorem implies that the intersection \(\cap_i C_i \) is non-empty. Let \(w \) be a vertex in this intersection, and let \(C \) be the \(4l \)-ball around \(w \). Note that, as \(EG_v \) is a locally finite CAT(0) cube complex, the set \(C \) is finite.

Let us now consider two cases. First suppose all hypergraphs \(W_i \) intersect in \(EG_v \). Then for each hypergraph \(W_i \) there is an edge \(e_i \) contained in \(C \) such that the hyperplane associated with \(e_i \) equals \(\Lambda_i \cap EG_v \). Therefore the information that is necessary to reconstruct such a situation is contained in the finite subset \(C \) of \(EG_v \).

Now suppose that at least one hypergraph \(W_j \) does not contain \(v \), that is \(W_j \cap EG_v = \emptyset \). First note that there is no wall of first type in this situation. Then observe that \(C \) contains \(K_j \). Hence \(C \) contains the attaching paths \(p_{v,R} \) contained in \(K_i \cap K_j \) for all \(i \). Thus, \(C \) contains an attaching path associated with \(W_i \) for all \(i \). Again, as \(C \) is finite, there are only finitely many attaching paths contained in \(C \), and therefore the information that is necessary to reconstruct such a situation is contained in the finite subset \(C \) of \(EG_v \).
Since the action of A on EA (resp. of B on EB) is cocompact, choose a compact subcomplex K_A (resp. K_B) of EG_{v_A} (resp. EG_{v_B}) which contains an A-translate (resp. a B-translate) of every $4l$-ball of EG_{v_A} (resp. EG_{v_B}).

Let g be an element of G which sends C to a subcomplex of $K_A \cup K_B$. In the first case above, as the fibres are locally finite there are only finitely many possibilities for the walls (gWi). In the second above case, let \mathcal{P} be the set of polygons of $\mathcal{E}G$ such that one of their attaching paths meet K_A or K_B. This set is finite since the action of A on EA (resp. of B on EB) is properly discontinuous. As \mathcal{P} is finite, and by Corollary 3.39, there are only finitely many possibilities for the walls (gWi). Hence, in total there are only finitely many possibilities for the walls (gWi). □

Theorem 4.6 now follows from Proposition 4.3 and Theorem 4.10.

Appendix A. Small cancellation polygonal complexes

Let us denote by X a $C'(1/6)$–polygonal complex. Here, we study the geometry of X. The results can then be applied to the $C'(1/6)$–polygonal complex defined in Section 2.2.

A.1. Classification of disc diagrams

Definition A.1 (disc diagram over X, reduced disc diagrams, arcs). A disc diagram D over the $C'(1/6)$–polygonal complex X is a contractible planar polygonal complex endowed with a map $D \to X$ which is an embedding on each polygon. A disc diagram D over X is called reduced if no two distinct polygons of D that share an edge are sent to the same polygon of X.

For a disc diagram D, we denote by ∂D its boundary and \hat{D} its interior. The area of a diagram D, denoted $\text{Area}(D)$, is the number of polygons of D. For a polygon R of D, the intersection $\partial R \cap \partial D$ is called the outer component of R (and the outer path if such an intersection is connected), the closure of $\partial R \cap \hat{D}$ is called the inner component of R (and the inner path if such an intersection is connected).

A diagram is called non-degenerate if its boundary is homeomorphic to a circle, degenerate otherwise. An arc of D is a path of D whose interior vertices have valence 2 and whose boundary vertices have valence at least 3. Such an arc is called internal if its interior is contained in \hat{D}, external if the arc is fully contained in ∂D.

Annales de l'Institut Fourier
We have the following fundamental result:

Theorem A.2 (Lyndon–van Kampen). — Every loop of X is the boundary of a reduced disc diagram.

All disc diagrams considered in this Appendix will be reduced without further notice. We now present a classification theorem for reduced disc diagrams.

Definition A.3 (ladder). — A reduced disc diagram D of X is a ladder if it can be written as a union $D = c_1 \cup \ldots \cup c_n$, where the c_i are edges or polygons of X and such that:

- $D \setminus c_1$ and $D \setminus c_n$ are connected,
- $D \setminus c_i$ has exactly two connected components for $1 < i < n$.

Definition A.4 (shell, spur). — Let D be a reduced disc diagram of X. A shell of D is a polygon of D such that $\partial R \cap \partial D$ is connected and whose inner path is the concatenation of at most 3 internal arcs of D. A spur of D is an edge of D with a vertex of valence 1.

Remark A.5. — Note that the internal arcs involved in the previous definition are automatically sent to pieces of X by the properties of a reduced disc diagram.

The following is the fundamental result of small cancellation theory (a version of the well-known Greendlinger Lemma, see Theorem 4.5 in [19, Chap. V.4]). This version follows directly from Theorem 9.4 of [23].

Theorem A.6 (Classification Theorem for disc diagrams). — Let D be a reduced disc diagram of X. Then either:

- D consists of a single vertex, edge or polygon,
- D is a ladder,
- D contains at least three shells or spurs.

The proof of this theorem is based on a negative curvature phenomenon described via a version of Gauß-Bonnet’s Theorem. We now explain this theorem as it is used later.

Definition A.7 (corner, disc diagram with angles). — A corner of a (reduced) disc diagram D of X is a pair (v, R) where v is a vertex of D and R a polygon containing it. We denote by $\text{Corner}(v)$ (resp. $\text{Corner}(R)$) the set of corners of the form (v, R') (resp. (v', R)).

We say that D is a disc diagram with angles if each corner c is assigned an angle $\angle(c) \geq 0$.
For a vertex v of D, we define its curvature:

$$\kappa(v) = 2\pi - \pi \cdot \chi(\text{link}(v)) - \sum_{c \in \text{Corner}(v)} \angle(c).$$

For a polygon R of X, we define its curvature:

$$\kappa(R) = \sum_{c \in \text{Corner}(R)} \angle(c) - \pi \cdot |\partial R| + 2\pi.$$

Theorem A.8 (Gauß–Bonnet Theorem). — For a (reduced) disc diagram of X with angles, we have:

$$\sum_{v \text{ vertex of } D} \kappa(v) + \sum_{R \text{ polygon of } D} \kappa(R) = 2\pi.$$

A.2. Hypercarriers embed

Galleries were defined in Definition 3.7. We prove the following result, which generalises a result of Wise [33, Lem. 3.11]:

Proposition A.9. — Let C be a gallery. Then its hypercarrier Y_C is connected and simply connected and the map $i_C : Y(C) \to X$ is an embedding.

The proof of this proposition is using all three properties of a gallery, in particular the far apart condition. Extending the arguments of [33] in a straight-forward way, we give the detailed proof below.

Lemma A.10. — Let C be a gallery and let $R_{(\tau_1, \tau_2)}$ be a polygon of C. Let $P_1, P_2 \subset \partial R_{(\tau_1, \tau_2)}$ be distinct paths such that the concatenations $\tau_1 P_1$ and $\tau_2 P_2$ are pieces of X. Then no connected component of $\partial R \setminus (\tau_1 P_1 \cup \tau_2 P_2)$ is covered by a single piece, and P_1 and P_2 are disjoint.

Proof. — If a connected component C of $\partial R \setminus (\tau_1 P_1 \cup \tau_2 P_2)$ is covered by a single piece, the path from τ_1 to τ_2 covering C consists of at most three pieces. This contradicts the far apart condition. If P_1 and P_2 intersect, the path covering $\tau_1 P_1$ and $\tau_2 P_2$ consists of at most two pieces, again contradicting the far apart condition. \(\square\)

Definition A.11 (canonical decomposition of 2-cells, exterior arc, door-tree). — Let C be a gallery with hypercarrier Y_C and let $R_{(\tau_1, \tau_2)}$ be a polygon of C. Let $P_1, P'_1, P_2, P'_2 \subset \partial R_{(\tau_1, \tau_2)}$ be maximal paths such that the concatenations $\tau_1 P_1, \tau_1 P'_1, \tau_2 P_2, \tau_2 P'_2$ are pieces, where the pieces $\tau_1 P_1, \tau_2 P'_2$ (respectively $\tau_1 P'_1, \tau_2 P_2$) are read using the same orientation
of the boundary path $\partial R_{\{\tau_1, \tau_2\}}$, and the pieces $\tau_1 P_1, \tau_1 P_1'$ are read using different orientations of $\partial R_{\{\tau_1, \tau_2\}}$.

Let $A, A' \subset \partial R_{\{\tau_1, \tau_2\}}$ be the paths joining the extremities of P_1, P_2 and P_1', P_2', called the exterior arcs of $R_{\{\tau_1, \tau_2\}}$.

The union of all the paths of the form $\tau_1 P_1$ and $\tau_1 P_1'$, where R runs over the polygons of C containing τ_1 as door, is a tree, called the door-tree associated with the door τ_1.

By definition of Y_C, no edge of A or A' is identified to the edge of a distinct polygon of Y_C which is glued to $R_{\{\tau_1, \tau_2\}}$ along either τ_1 or τ_2. This implies in particular that two distinct polygons of Y_C sharing a door of C are sent to different polygons of X. As the map $i_C : Y_C \to X$ is already an immersion at the level of the 1-skeleton, the following follows:

Corollary A.12. — Let C be a gallery of X. Then the map $i_C : Y_C \to X$ is an immersion.

Lemma A.13. — Let C be a gallery of X. Let R be a polygon of X meeting $i_C(Y_C)$ which does not contain a door of C. Let P be a path of $\partial R \cap i_C(Y_C)$ which admits a lift to Y_C under i_C. Then P is covered by the concatenation of at most two pieces.

Proof. — Lemma A.10 implies that P cannot cover a complete exterior arc A. Thus, either P is a proper subpath of A, or P intersects exactly two polygons of C. In the former case, P is covered by one piece, in the latter case P is covered by two pieces. \hfill \Box

Note that we have, so far, not used the connectedness nor the coherence condition in the definition of a gallery, see Definition 3.7.

Proof of Proposition A.9. — The fact that Y_C is connected is a direct consequence of the connectedness condition.

We say that a path P of Y_C is essential if it is a loop representing a non-trivial element of the fundamental group of Y_C, or if it is a path with distinct extremities which are sent to the same vertex of X. In the latter case, we call such a vertex of X the unique singular vertex of $i_C(P)$. The proposition amounts to proving that there exists no essential path in Y_C.

We reason by contradiction. Let P be such an essential path of Y_C. Since X is simply-connected, the loop $i_C(P)$ is the boundary of a disc diagram D. Notice first that D cannot be a single vertex or edge. Without loss of generality, we can assume that the number of polygons of D is minimal among such diagrams. In particular, D is non-degenerate and each path of its boundary $i_C(P)$ that does not contain the singular vertex of $i_C(P)$ lifts to a path of $P \subset Y_C$.
First suppose that D is a single polygon. By hypothesis on P, D cannot be contained in $i_C(Y_C)$. Let us decompose the boundary of D as the union of two paths P_1 and P_2 neither of which contains the singular vertex of $i_C(Y_C)$ in their interior. Both paths P_1 and P_2 thus lift to paths of Y_C. By Lemma A.10, this implies that P_1 and P_2 can be covered by the concatenation of two pieces, and so the boundary of D is covered by fours pieces, contradicting the condition $C'(1/6)$.

By the classification theorem A.6, this implies that the disc diagram D contains at least two shells, and we can choose one of these shells, say R, so that its outer path does not contain the singular vertex of $i_C(Y_C)$ in its interior. Such a shell must be contained in $i_C(Y_C)$, for otherwise Lemma A.13 would imply that $R \cap \partial D$ is covered by two pieces, making the boundary of R covered by five pieces, a contradiction with condition $C'(1/6)$. Thus $R \subset i_C(Y_C)$ and we can push the path P through the lift of R in Y_C to obtain a new essential path, the image of which in X is the image in X of the boundary of the disc diagram $D \setminus R$. As such a diagram contains strictly fewer polygons than D, we get a contradiction. \[\Box\]

Corollary A.14. — For every gallery C, the associated hypergraph Λ_C is a tree which embeds in X.

Proof. — It is enough by Proposition A.9 to see that the associated hypercarrier Y_C retracts by deformation onto Λ_C. Such a deformation is easily defined using the canonical decomposition of a polygon of C introduced in Definition A.11. \[\Box\]

Remark A.15 (minimal ladder between two simplices of a hypercarrier). Let C be a gallery and τ and τ' be two simplices of Y_C that are not contained in the same door-tree of Y_C. There exists a unique non-degenerate ladder of minimal area containing τ and τ', which we call the (minimal) ladder of Y_C between τ and τ'.

A.3. Convexity of hypercarriers

Here we prove the following:

Proposition A.16. — Let C be a gallery. Then the subcomplex Y_C of X is convex, that is, a geodesic between two vertices of Y_C is contained in Y_C.

We will prove that proposition by contradiction. Let us assume that there exists a geodesic P between two vertices of Y_C and such that P is
not contained in Y_C. Let Q be a path of Y_C joining the two extremities of P. The union of P and Q yields a loop of X, and thus there exists a disc diagram with such a loop as boundary. We choose P, Q and D in such a way that $(|P|, \text{Area}(D))$ is minimal for the lexicographic order. In particular, P does not cross the hypergraph Λ_C. We now study separately three cases.

Lemma A.17. The diagram D cannot consist of a single polygon.

Proof. By contradiction, suppose that D consists of a single polygon R of X. Since R is not contained in Y_C by assumption, the path $Q = R \cap Y_C$ is covered by at most two pieces by Lemma A.13. Thus, condition $C'(1/6)$ implies that $|Q| < \frac{1}{2} |\partial D|$, hence $|P| > \frac{1}{2} |\partial D| > |Q|$, contradicting the fact that P is a geodesic.

Lemma A.18. The diagram D cannot contain three shells.

Proof. By contradiction, suppose that D contains three shells. We can thus choose one of them, say R, whose outer boundary is contained either in P or in Q.

First assume that such an outer path is contained in P. We can thus push P through R to get a new path P' such that the union $P' \cup Q$ is the boundary of the disc diagram $D \setminus R$. Let L be the concatenation of the inner arcs of R. Since R is a shell, the $C'(1/6)$-condition implies $|L| < \frac{1}{2} |\partial R|$, hence $|P'| < |P|$, a contradiction.

Assume now that this outer path of R is contained in Q. First notice that R has to be contained in Y_C, for otherwise such an arc would be covered by two pieces by Lemma A.13 and since R is a shell the whole of ∂R would be covered by five pieces, contradicting the $C'(1/6)$-condition. Thus $R \subset Y_C$ and we can push Q through R to obtain a new path Q' of Y_C such that $P \cup Q'$ is the boundary of the disc diagram $D \setminus R$, contradicting the minimality of D.

Lemma A.19. The disc diagram D cannot be a ladder.

Proof. By contradiction, suppose that D is a (non-trivial) ladder. The minimality assumption implies that D is non-degenerate. Let us write $D = R_1 \cup R_2 \cup \ldots$ and let P_1 be the portion of P contained in R_1, and P_2 its complement in R_1.

We can push P through R_1 to obtain a new path P'_1. Since P does not cross Λ_C, R_1 is not contained in Y_C and thus $R_1 \cap Y_C$ is covered by two pieces by Lemma A.13. As $R_1 \cap R_2$ is also a piece, it follows that P_2 is covered by three pieces, and condition $C'(1/6)$ now implies $|P_2| < \frac{1}{2} |\partial R_1| < |P_1|$, a contradiction.

TOME 67 (2017), FASCICULE 4
Proof of Proposition A.16. — This follows from Lemmas A.17, A.18, A.19, together with the classification theorem for disc diagrams A.6. □

Corollary A.20. — Polygons of X are convex.

A.4. Intersections of hypercarriers

In this section, we extend the following results of Wise.

Lemma A.21 ([33, Lemma 6.4]). — Let Y_1, Y_2 and Y_3 be hypercarriers of X defined by equivalence of diametrically opposed edges, see Section 3.2.1. If Y_1, Y_2 and Y_3 pairwise cross, then their common intersection is non-trivial.

Lemma A.22 ([33, Theorem 6.9]). — Let $\{Y_1, Y_2, Y_3, \ldots\}$ be a set of pairwise crossing hypercarriers of X defined by equivalence of diametrically opposed edges, see Section 3.2.1. If Y_1, Y_2 and Y_3 pairwise cross, then their common intersection contains a vertex.

Again, the proofs are extensions of Wise’s original proofs, the small difference being related to cut-points in hypercarriers. The generalised hypercarriers coming from the far apart condition play no particular role here, as we treat them with the results of the previous sections. However, the corresponding results of [33] are not sufficient.

Lemma A.23. — Let Y_1, Y_2, Y_3 be three pairwise crossing hypercarriers of X_{bal}. Then the intersection $Y_1 \cap Y_2 \cap Y_3$ contains a vertex.

Proof. — We can restrict to the case where $Y_1 \cap Y_2 \cap Y_3$ does not contain a polygon. First choose cells $\sigma_{1,2} \subset Y_1 \cap Y_2$, $\sigma_{2,3} \subset Y_2 \cap Y_3$ and $\sigma_{3,1} \subset Y_3 \cap Y_1$ of maximal dimension such that the preimage of $\sigma_{i,j}$ in EG_{bal} contains a point of $W_i \cap W_j$. The cell $\sigma_{i,j}$ is either a polygon $R_{i,j}$ or a vertex $v_{i,j}$. In the former case, the hypergraphs of Y_i and Y_j intersect in the apex of $R_{i,j}$, in the latter, the fibre over $v_{i,j}$ contains both, a hyperplane of Y_i, and a hyperplane of Y_j.

If two of these cells $\sigma_{i,j}$ coincide, then it defines a cell in $Y_1 \cap Y_2 \cap Y_3$. Suppose this is not the case. For pairwise distinct $i, j, k \in \{1, 2, 3\}$, consider the minimal ladder L_i in Y_i between $\sigma_{i,j}$ and $\sigma_{i,k}$. We choose such a configuration in such a way that the number of polygons in $L_1 \cup L_2 \cup L_3$ is minimal. Denote by $\lambda_1 \subset L_1$ the portion of the hypergraph Λ_1 associated with Y_1 which is the geodesic of Λ_1 joining the barycentres of $\sigma_{1,2}$ and $\sigma_{3,1}$, and define similarly $\lambda_2 \subset L_2$ and $\lambda_3 \subset L_3$. Subdivide the polygons of
$L_1 \cup L_2 \cup L_2$ in a minimal way such that $\lambda_1 \cup \lambda_2 \cup \lambda_3$ defines a triangle of the 1-skeleton of X. Denote by $v_{i,j}$ the vertex associated with the cell $\sigma_{i,j}$. Consider now a reduced disc diagram whose boundary path is $\lambda_1 \cup \lambda_2 \cup \lambda_3$. We now endow D with a structure of disc diagram with angles:

- If $\sigma_{i,j}$ is a polygon $R_{i,j}$, the corner at the vertex corresponding to $R_{i,j}$ is given the angle $\left(\frac{n_{i,j}-3}{3}\right)\pi$, where $n_{i,j}$ is the number of sides of the polygon of D containing that vertex. Note that by minimality of the number of polygons in $L_1 \cup L_2 \cup L_3$, we necessarily have $n_{i,j} \geq 4$. If $\sigma_{i,j}$ is a vertex $v_{i,j}$, then by minimality of the number of polygons of $L_1 \cup L_2 \cup L_3$, there are at least two distinct polygons of D containing $v_{i,j}$.
- Each other corner of D relying on an edge of ∂D is given an angle $\frac{\pi}{2}$.
- All remaining corners are given an angle $\frac{2\pi}{3}$.

It is straightforward to check that with such a choice of angles, every polygon and every vertex of D has non-positive curvature by the $C'(1/6)$–condition, apart maybe from the the vertices corresponding to the various $R_{i,j}$. The curvature at each such vertex being at most $\frac{2\pi}{3}$, it must be exactly $\frac{2\pi}{3}$ by the Gauss Bonnet Theorem A.8 (in particular, each $\sigma_{i,j}$ is a polygon $R_{i,j}$). Thus, there is no vertex or polygon with negative curvature. In particular, since an internal polygon of D would have at least 7 sides by the $C'(1/6)$–condition, and since such a cell would have negative curvature, D contains no internal polygon. Thus the image of D is contained in $L_1 \cup L_2 \cup L_3$ and $L_1 \cap L_2 \cap L_3$, hence $Y_1 \cap Y_2 \cap Y_3$, must be non-empty. \qed

Lemma A.24. — Let Y_1, \ldots, Y_k, $k \geq 3$, be a set of pairwise crossing hypercarriers of X_{bal}. Then the intersection $\bigcap Y_i$ contains a vertex.

Proof. — We again use the methods we have developed in Section 3.3.3 and this Appendix to extend the original arguments of Wise’s proof of Lemma A.22. We prove the result by induction on $k \geq 3$, the case $k = 3$ being Lemma A.23. For a subset S of $I := \{1, \ldots, k\}$, we denote by Y_S the intersection of the hypergraphs Y_i for $i \in S$.

By the induction hypothesis, the intersections $Y_{I-\{1\}}, Y_{I-\{2\}}$ and $Y_{I-\{3\}}$ contain a vertex, denoted respectively v_1, v_2 and v_3. Choose a geodesic between v_i and v_j for $1 \leq i \neq j \leq 3$, which we denote $P_{i,j}$. By Proposition A.16, we have that $P_{i,j} \subset Y_{I-\{i,j\}} \subset Y_k$.

If Y_i is a hypercarrier defined by equivalence of diametrically opposed edges, see Section 3.2.1, its boundary ∂Y_i is the disjoint union of two trees, $\partial_+ Y_i$ and $\partial_- Y_i$ and Y_i retracts by deformation on each of these trees. The situation is slightly different here since vertices can be local cut-points of
However, by reasoning separately on the closure of each component of Y_i with its cut-points removed, we can write ∂Y_i as the union of two trees $\partial_+ Y_i$ and $\partial_- Y_i$ whose intersection is contained in the set of cut-points of Y_i and such that Y_i retracts by deformation on each of these two trees.

We now consider two cases, depending on the relative position of v_1, v_2 and v_3 inside Y_k. First assume that v_1, v_2 and v_3 are contained in the same boundary component of Y_k, say $\partial_+ Y_k$. We can thus replace the paths $P_{i,j}$ by immersed paths $P'_{i,j}$ between v_i and v_j, and which is contained in the tree $\partial_+ Y_k$. In particular, the intersection $P'_{1,2} \cap P'_{2,3} \cap P'_{3,1}$ contains a vertex, which is thus contained in $Y_{I-\{1,2\}} \cap Y_{I-\{2,3\}} \cap Y_{I-\{3,1\}} = Y_I$.

Let us now assume that v_1 and v_2 are contained in the same component $\partial_+ Y_k$ and v_3 is contained in $\partial_- Y_k$. For $i = 1, 2$, consider the minimal ladder $L_{i,3} \subset Y_k$ between v_i and v_3 and define the path $P'_{i,3} := L_{i,3} \cap \partial_+ Y_k$. Consider the sequence of doors between v_3 and v_1, and between v_3 and v_2. If these sequences do not share the same initial door, then v_3 belongs to one of the exterior arcs of some polygon R of Y_k. Since both doors of R also belong to $Y_{I-\{3\}}$, this subcomplex contains a subpath of ∂R of length $\frac{|\partial R|}{2}$ by Corollary A.20. This implies that $R \subset Y_{I-\{3\}}$ by Lemma A.13, and thus the other exterior arc of R is contained $P'_{1,2} \cap Y_{I-\{3\}} \subset Y_I$. Otherwise, consider the last door in this initial common subsequence. Then one of the vertices of this door is contained in $P'_{1,2} \cap Y_{I-\{3\}} \subset Y_I$. □

BIBLIOGRAPHY

[1] I. Agol, “The virtual Haken conjecture”, Doc. Math. 18 (2013), p. 1045-1087, With an appendix by I. Agol, D. Groves, and J. Manning.
[2] G. Arzhantseva & M. Steenbock, “Rips construction without unique product”, https://arxiv.org/abs/1407.2441, 2014.
[3] M. R. Bridson & A. Haefliger, Metric spaces of non-positive curvature, Springer, Berlin, 1999, xxii+643 pages.
[4] I. Chatterji & G. Niblo, “From wall spaces to $\text{CAT}(0)$ cube complexes”, Internat. J. Algebra Comput. 15 (2005), no. 5-6, p. 875-885.
[5] J. M. Corson, “Complexes of groups”, Proc. Lond. Math. Soc. 65 (1992), no. 1, p. 199-224.
[6] M. Edjvet & A. Juhász, “Nonsingular equations over groups II”, Commun. Algebra 38 (2010), no. 5, p. 1640-1657.
[7] ———, “Non-singular equations over groups I”, Algebra Colloq. 18 (2011), no. 2, p. 221-240.
[8] V. N. Gerashimov, “Semi-splittings of groups and actions on cubings”, in Algebra, geometry, analysis and mathematical physics, Izdatel’stvo Institutu Matematiki, 1997, p. 91-109, 190.
[9] D. Gruber, A. Martin & M. Steenbock, “Finite index subgroups without unique product in graphical small cancellation groups”, Bull. Lond. Math. Soc. 47 (2015), no. 4, p. 631-638.
D. Gruber & A. Sisto, “Infinitely presented graphical small cancellation groups are acylindrically hyperbolic”, https://arxiv.org/abs/1408.4488v1, 2014.

F. Haglund & F. Paulin, “Simplicité de groupes d’automorphismes d’espaces à courbure négative”, in The Epstein birthday schrift. Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, p. 181-248 (electronic).

F. Haglund & D. T. Wise, “Special cube complexes”, Geom. Funct. Anal. 17 (2008), no. 5, p. 1551-1620.

———, “A combination theorem for special cube complexes. I”, Ann. Math. 176 (2012), no. 3, p. 1427-1482.

N. Higson & G. Kasparov, “E-theory and KK-theory for groups which act properly and isometrically on Hilbert space”, Invent. Math. 144 (2001), no. 1, p. 23-74.

G. C. Hruska & D. T. Wise, “Finiteness properties of cubulated groups”, Compos. Math. 150 (2014), no. 3, p. 453-506.

T. Hsu & D. T. Wise, “Cubulating malnormal amalgams”, Invent. Math. 199 (2015), no. 2, p. 293-331.

P. Linnell, B. Okun & T. Schick, “The strong Atiyah conjecture for right-angled Artin and Coxeter groups”, Geom. Dedicata 158 (2012), p. 261-266.

R. C. Lyndon & P. E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 89, Springer, Berlin, 1977, xiv+339 pages.

A. Martin, “Non-positively curved complexes of groups and boundaries”, Geom. Topol. 18 (2014), no. 1, p. 31-102.

———, “Combination of universal spaces for proper actions”, J. Homotopy Relat. Struct. 10 (2015), no. 4, p. 803-820.

V. D. Mazurov & E. I. Khukro (eds.), The Kourovka notebook. Unsolved Problems in Group Theory, 18th ed., Institute of Mathematics, Russian Academy of Sciences, 2014, https://arxiv.org/abs/1401.0300v3.

J. P. McCammond & D. T. Wise, “Fans and ladders in small cancellation theory”, Proc. Lond. Math. Soc. 84 (2002), no. 3, p. 599-644.

C. F. Miller, III & P. E. Schupp, “Embeddings into Hopfian groups”, J. Algebra 17 (1971), p. 171-176.

B. Nica, “Cubulating spaces with walls”, Algebr. Geom. Topol. 4 (2004), p. 297-309 (electronic).

A. E. Pankrat’ev, “Hyperbolic products of groups”, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1999), no. 2, p. 9-13, 72.

E. Rips & Y. Segev, “Torsion-free group without unique product property”, J. Algebra 108 (1987), no. 1, p. 116-126.

M. Sageev, “Ends of group pairs and non-positively curved cube complexes”, Proc. Lond. Math. Soc. 71 (1995), no. 3, p. 585-617.

K. Schreve, “The strong Atiyah conjecture for virtually cocompact special groups”, Math. Ann. 359 (2014), no. 3-4, p. 629-636.

P. E. Schupp, “Embeddings into simple groups”, J. Lond. Math. Soc. 13 (1976), no. 1, p. 90-94.

J. R. Stallings, “Non-positively curved triangles of groups”, in Group theory from a geometrical viewpoint (Trieste, 1990), World Scientific, 1991, p. 491-503.

M. Steenbock, “Rips–Segev torsion-free groups without the unique product property”, J. Algebra 438 (2015), p. 337-378.

D. T. Wise, “Cubulating small cancellation groups”, Geom. Funct. Anal. 14 (2004), no. 1, p. 150-214.
[34] ———, “The Structure of Groups with a Quasiconvex Hierarchy”, https://docs.google.com/file/d/0B45cNgxS0t5-2T0twUDFxVXRnQnc, 2011.

Manuscrit reçu le 28 novembre 2015,
révisé le 21 avril 2016,
accepté le 27 octobre 2016.

Alexandre MARTIN
Universität Wien
Fakultät für Mathematik
Oskar-Morgenstern-Platz 1
1090 Wien (Austria)
alexandre.martin@univie.ac.at

Markus STEENBOCK
Universität Wien
Fakultät für Mathematik
Oskar-Morgenstern-Platz 1
1090 Wien (Austria)
Current address:
Université de Strasbourg
CNRS, IRMA UMR 7501
67000 Strasbourg (France)
steenbock@math.unistra.fr