Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

Michaël Gillon1, Amaury H. M. J. Triaud2, Brice-Olivier Demory3,4, Emmanuel Jehin1, Eric Agol5,6, Katherine M. Deck7, Susan M. Lederer8, Julien de Wit9, Artem Burdanov1, James G. Ingalls10, Emeline Bolmont11,12, Jeremy Leconte13, Sean N. Raymond13, Franck Selsis13, Martin Turbet14, Khalid Barkaoui15, Adam Burgasser16, Matthew R. Burleigh17, Sean J. Carey10, Aleksander Chaushev17, Chris M. Copperwheat18, Laetitia Delrez1,14, Catarina S. Fernandes1, Daniel L. Holdsworth19, Enrico J. Kotze20, Valérie Van Grootel1, Yaseen Almleaky21,22, Zouhair Benkhaldoun15, Pierre Magain1 and Didier Queloz2,23

One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away1. The transiting configuration of these planets, combined with the Jupiter-like size of their host star—named TRAPPIST-1—makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities1–3. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards4,5. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces6–8.

Among the three initially reported TRAPPIST-1 planets, one of them—called ‘TRAPPIST-1d’ in the discovery publication1—was identified on the basis of only two transit signals, observed at a moderate signal-to-noise ratio. The second transit signal, blended with a transit signal from planet c, was also observed with the High Acuity Widefield K-band Imager (HAWK-I), an infrared imager mounted on the Very Large Telescope (VLT) in Chile. When we analysed the VLT/HAWK-I data—after we submitted the discovery paper—we uncovered a light curve of high enough precision to firmly reveal the triple nature of the observed eclipse (Extended Data Fig. 1). This intriguing result motivated us to intensify our photometric follow-up of the star; this resumed in February and March 2016, with observations of six possible transit windows of TRAPPIST-1d with the Spitzer Space Telescope. Follow-up continued in May 2016 with intense ground-based observations of the star, using the VLT-South telescope in Chile, its newly commissioned northern twin—TRAPPIST-North—in Morocco, the 3.8-metre UK InfraRed Telescope (UKIRT) in Hawaii, the 4-metre William Herschel and the 2-metre Liverpool telescopes at La Palma, Spain, and the South African Astronomical Observatory 1.0-metre telescope. Our photometric campaign culminated on 19 September 2016 with the start of a 20-day, nearly continuous monitoring of the star by the Spitzer Space Telescope at a wavelength of 4.5 μm.

The light curves obtained before 19 September 2016 enabled us to discard the 11 possible periods of TRAPPIST-1d that we inferred previously1, indicating that the two observed transits originated from different objects. Furthermore, these light curves showed several transit-like signals of unknown origins that we could not relate to a single period (Extended Data Figs 2, 3). The situation was resolved with the 20-day photometric monitoring of the star by Spitzer. The resulting light curve shows 34 clear transits (Fig. 1), which—when combined with the ground-based dataset—enabled us to unambiguously identify four periodic transit signals of periods 4.04 days, 6.06 days, 8.1 days and 12.3 days. These signals correspond to four new transiting planets, named, respectively, TRAPPIST-1e, TRAPPIST-1f and TRAPPIST-1g (Fig. 1 and Extended Data Figs 2, 3). This unique solution is supported in several ways: first, enough unique transits were observed per planet (Table 1); second, the shapes of the transit signals were consistent for each planet (see below); and finally, the Spitzer light curve is nearly continuous and its duration was longer than the periods of the four planets. The Spitzer photometry also shows an orphan transit-shaped signal with a depth of around 0.35% and a duration of about 75 minutes, occurring at around Julian Day 2,457,662.55 (Fig. 1); we attribute this signal to a seventh, outermost planet of unknown orbital period—TRAPPIST-1h. We combi our ground-based photometry in search of a second transit of this planet h, but found no convincing match.

We analysed our extensive photometric dataset in three phases. First, we performed individual analyses of all transit light curves with an adaptive Markov chain Monte Carlo (MCMC) code1,9 to measure their depths, durations and timings (see Methods). We derived a mean transit ephemeris for each planet from their measured transit timings. We successfully checked the consistency of the durations and depths of the transits for planets b to g. For each planet, and especially for f and g, the residuals of the fit show transit timing variations (TTVs) with amplitudes ranging from a few tens of seconds to more...
than 30 minutes, indicating notable mutual interactions between the planets10–12 (Extended Data Figs 2, 3).

In a second phase, we carried out a global MCMC analysis of the transits observed by Spitzer to constrain the orbital and physical parameters of the seven planets. We decided to use only the Spitzer data owing to their better precision compared with most of our ground-based data, and because of the minimal amplitude of the limb darkening at 4.5 μm; these factors strengthen the constraints possible on the transit shapes, and thus on the stellar density—and, by extension, on the physical and orbital parameters of the planets13. We assumed circular orbits for all of the planets on the basis of the results of n-body dynamical simulations, which predicted orbital eccentricities of less than 0.1 for the six inner planets (Table 1); the orbital eccentricity of the outer planet, h, cannot be constrained from a single transit. This global analysis assumed the a priori knowledge of the star that is described in ref. 1 (see Methods).

To account for substantial planet–planet interactions, we included TTVs as free parameters for the six inner planets. We used each planet’s transit ephemeris (derived in the first phase) as a prior on the orbital solution.

In a third phase, we used the results obtained above to investigate the TTV signals themselves. By performing a series of analytical and numerical n-body integrations (see Methods), we could determine initial mass estimates for the six inner planets, along with their orbital eccentricities. We emphasize the preliminary nature of this dynamical
solution, which may not correspond to a global minimum of the parameter space, and that additional transit observations of the system will be required to lift the existing degeneracies (see Methods).

Table 1 shows the main planetary parameters derived from our data analysis. We find that five planets (b, c, e, f and g) have sizes similar to that of Earth, while the other two (d and h) are intermediate in size between Mars (which has a radius about half that of Earth) and Earth. The mass estimates for the six inner planets broadly suggest rocky compositions, except for planet f, whose low density suggests a volatile-rich composition (Fig. 2a). The precision of these mass estimates is not high enough to constrain the fraction of volatiles in the planets' compositions, except for planet f, whose low density suggests a volatile-rich composition. The volatile content of the planets could be in the form of an ice layer and/or an atmosphere—something that can be verified with follow-up observations during transit with space telescopes such as Hubble and James Webb. We note that the ratio of masses between the six inner planets and TRAPPIST-1 is around 0.02%, as is that of the Galilean satellites and Jupiter, maybe implying a similar formation history.15,16

The derived planetary orbital inclinations are all very close to 90°, indicating a dramatically co-planar system seen nearly edge-on. Furthermore, the six inner planets form the longest known near-resonant chain of exoplanets, with the ratios of the orbital periods (P) P_b/P_a, P_c/P_a, P_d/P_a, P_e/P_a and P_f/P_a being close to the ratios of small integers, namely 8/5, 3/2, 3/2 and 4/3, respectively. This proximity to mean motion resonances of several planet pairs explains the substantial amplitudes of the measured TTVs. Similar near-resonant chains involving up to four planets have been discovered in compact systems containing super-Earths and Neptunes orbiting Sun-like stars.4,17

Orbital resonances are naturally generated when multiple planets interact within their nascent gaseous discs.18 The favoured theoretical scenario for the origin of the TRAPPIST-1 system involves accretion of the planets further from the star, followed by a phase of disc-driven inward migration—a process first studied in the context of the Galilean moons around Jupiter.19 The planets' compositions should reflect their formation zone, so this scenario predicts that the planets should be volatile-rich and have lower densities than Earth,21,22 in good agreement with our preliminary result for planet f (Fig. 2a).

The stellar irradiation of the planets covers a range from about 4.3S_\text{Earth} to around 0.13S_\text{Earth} (where S_\text{Earth} is the solar irradiation at 1 au); this is very similar to the range seen in the inner Solar System (Mercury, 6.7S_\text{Earth}; Ceres, 0.13S_\text{Earth}). Notably, planets c, d and f have stellar irradiations very close to those of Venus, Earth and Mars, respectively (Fig. 2). However, even at these low insolations, all seven planets are expected to be either tidally synchronized, or trapped in a higher-order spin-orbit resonance, the latter being rather unlikely considering the constraints on the orbital eccentricities (Table 1).

Using a one-dimensional cloud-free climate model that accounts for the low-temperature spectrum of the host star,23 we deduce that planets e, f and g could harbour water oceans on their surfaces, assuming Earth-like atmospheres. The same inference is obtained when running a three-dimensional climate model, assuming that the planets are tidally synchronous. For the three inner planets (b, c and d), our three-dimensional climate modelling results in a runaway greenhouse scenario. The cloud feedback that usually decreases the surface
We found the long-term dynamical evolution of the system to be highly dependent on the exact orbital parameters and masses of the seven planets, which are at present too uncertain to make possible any reliable predictions (see Methods). All of our dynamical simulations predict small but non-zero orbital eccentricities for the six inner planets (see the 2σ upper limits in Table 1). The resulting tidal heating could be strong enough to substantially affect their energy budgets and geological activities.

The TRAPPIST-1 system is a compact analogue of the inner Solar System (Fig. 2b). It represents a unique opportunity to thoroughly characterize temperate Earth-like planets that are orbiting a much cooler and smaller star than the Sun, and, notably, to study the impact of tidal locking, tidal heating, stellar activity and an extended pre-main-sequence phase on their atmospheric properties.

Figure 2 | Mass–radius and incident-flux–radius diagrams for terrestrial planets. In both panels, the coloured circular symbols represent the TRAPPIST-1 planets, and the horizontal and vertical lines are 1σ error bars. a. Relationship between mass and radius for planets of between 0.5 and 1.5 Earth radii, and between 0.1 and 2 Earth masses. The solid lines represent theoretical mass–radius curves for planets with different compositions. The fiducial model is 100% MgSiO3 (rock), whose fractional part decreases either with an increasing fraction of water (the radius increases), or with increasing fractions of iron (the radius decreases). b. Planetary radii are plotted against incident flux. Venus and Earth are shown as grey circles, and Mercury, Mars and Ceres as dotted vertical lines. There are larger errors in the irradiation of the planet TRAPPIST-1h, because its orbital period is unknown.

Received 21 November; accepted 21 December 2016.

1. Gillon, M. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016).
2. de Wit, J. et al. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537, 69–72 (2016).
3. Barstow, J. K. & Irwin, P. G. J. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system. Mon. Not. R. Astron. Soc. 461, L92–L96 (2016).
4. Cresswell, P. & Nelson, R. P. On the evolution of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 450, 833–835 (2006).
5. Mills, S. M. et al. A resonant chain of four transiting, sub-Neptune planets. Nature 533, 509–512 (2016).
6. Kopp, R. K. et al. Habitability zones of near-Neptune stars: new estimates. Astrophys. J. 765, 131 (2013).
7. Leconte, J. et al. 3D climate modelling of close-in land planets: circulation patterns, climate moist instability, and habitability. Astron. Astrophys. 554, A69 (2013).
8. Stevenson, D. J. Life-sustaining planets in interstellar space? Nature 400, 32 (1999).
9. Gillon, M. et al. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultrashort-period planet WASP-43 b. Astron. Astrophys. 542, A4 (2012).
10. Agol, E., Steffen, J., Sotiropoulos, S. D. & Visscher, M. On the detection of terrestrial planets with timing of giant planet transits. Mon. Not. R. Astron. Soc. 359, 567–579 (2005).
11. Holman, M. J. & Murray, N. W. The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005).
12. Fabrycky, D. C. in Exoplanets (ed. Seager, S.) 217–238 (Univ. Arizona Press, 2010).
13. Winn, J. N. in Exoplanets (ed. Seager, S.) 55–77 (Univ. Arizona Press, 2010).
14. Zeng, L., Sasselov, D. D. & Jacobsen, S. B. Mass-radius relation for rocky planets based on PREM. Astrophys. J. 819, 127 (2016).
15. Chiang, E. & Laughlin, G. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Mon. Not. R. Astron. Soc. 431, 3444–3455 (2013).
16. Kane, S. R., Hinkel, N. R. & Raymond, S. N. Solar system moons as analogs for compact exoplanetary systems. Astron. J. 146, 122 (2013).
17. MacDonald, M. G. & et al. A dynamical analysis of the Kepler-80 system of five transiting planets. Astron. J. 152, 105 (2016).
18. Papaloizou, J. C. B. & Szuszkiewicz, E. The migration-induced resonances in a system of two planets with masses in the Earth mass range. Mon. Not. R. Astron. Soc. 363, 153–176 (2005).
19. Terquem, C. & Papaloizou, J. C. B. Migration and the formation of systems of hot super-Earths and Neptunes. Astrophys. J. 654, 1110–1120 (2007).
20. Goldreich, P. & Tremaine, S. Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980).
21. Raymond, S. N., Barnes, R. & Mandell, A. M. Observables of planet formation models in systems with close-in terrestrial planets. Mon. Not. R. Astron. Soc. 384, 653–674 (2008).
22. Alibert, Y. & Benz, W. Formation and composition of planets around very low mass stars. Astron. Astrophys. 559, L5 (2017).
23. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main-sequence stars. Icarus 101, 108–128 (1993).
24. Ribas, I. et al. The habitability of Proxima Centauri b. I. Irradiation, rotation and volatiles from formation to the present. Astron. Astrophys. 596, A111 (2016).
25. Wordsworth, R. D. et al. Is Giselle 581d habitable? Some constraints from radiative-convective climate modeling. Astron. Astrophys. 522, A22 (2010).
26. Turbet, M. et al. The habitability of Proxima Centauri b II. Possible climates and observability. Astron. Astrophys. 596, A112 (2016).
27. Kopparapu, R. K. et al. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. *Astrophys. J.* **819**, 84 (2016).

28. Bolmont, E. et al. Water loss from Earth-sized planets in the habitable zones of ultracool dwarfs: implications for the planets of TRAPPIST-1. *Mon. Not. R. Astron. Soc.* **464**, 3728–3741 (2017).

29. Barnes, R. et al. Tidal limits to planetary habitability. *Astrophys. J.* **700**, L30–L33 (2009).

30. Luger, R. & Barnes, R. Extreme water loss and abiotic O$_2$ buildup on planets throughout the habitable zone of M dwarfs. *Astrobib.* **15**, 119–143 (2015).

Acknowledgements This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The material presented here is based on work supported in part by NASA under contract no. NNX15AF62G. TRAPPIST-South is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Foundation (FNS/SNSF). TRAPPIST-North is a project funded by the University of Liège, and performed in collaboration with Cadi Ayyad University of Marrakesh. The research leading to these results has received funding from the European Research Council (ERC) under the FP/2007-2013 ERC grant agreement no. 336480, and under the H2020 ERC grant agreement no. 679030; and from the F.R.S.-FNRS ExtraOrDynHa research project and acknowledges grants NNX13AF62G and NNX13AF62G. E.B. acknowledges that this work is part of the F.R.S.-FNRS ExtraOrDynHa research project and acknowledges funding by the European Research Council through ERC grant SPIRE 647383.

S.N.R. thanks the Agence Nationale pour la Recherche (ANR) for support via grant ANR-13-BS05-0003-002 (project MOJO); D.L.H. acknowledges financial support from the UK Science and Technology Facilities Council. The authors thank C. Owen, C. Wolf and the rest of the SkyMapper team for their attempts to monitor the star from Australia; from UKIRT, the director R. Green and the staff scientists W. Varricatt and T. Kerr; the ESO staff at Paranal for their support with the HAWK-I observations; JMU and their flexibility as regards the Liverpool Telescope schedule, which allowed us to search actively for the planets, and to extend our time allocation in the face of amazing results; for the William Herschel Telescope, C. Fariña, F. Riddick, F. Jimenez and O. Vaduvescu for their help and kindness during observations; and for SAAO, the telescopes operations manager R. Sefako for his support.

Author Contributions M.G. leads the ultracool dwarf transit survey that uses the TRAPPIST telescope and led the photometric follow-up of the star TRAPPIST-1; he also planned and analysed most of the observations, led their scientific exploitation, and wrote most of the manuscript. A.H.M.J.T. led the observational campaign using the La Palma telescopes (the Liverpool Telescope, LT, and William Herschel Telescope, WHT). C.M.C. managed the scheduling of the LT observations, and Ar.B. performed the photometric analysis of the resulting LT and WHT images. B.-O.D. led the TTV/dynamical simulations. E.A. and K.M.D. performed independent analyses of the transit timings. J.G.I. and S.J.C. helped to optimize the Spitzer observations. B.-D., J.G.I. and J.d.W. performed independent analyses of the Spitzer data. M.G., E.J., L.D., Ar.B., P.M., K.B., Y.A. and Z.B. performed the TRAPPIST observations and their analysis. S.M.L. obtained the director’s discretionary time on UKIRT, and, with E.J., managed the preparation of the UKIRT observations. M.T., J.L., F.S., E.B. and S.N.R. carried out atmospheric modelling for the planets and worked on the theoretical interpretation of their properties. V.V.G. managed the SAAO observations performed by C.S.F., M.R.B., D.L.H., A.C. and E.J.K. All co-authors assisted with writing the manuscript. A.H.M.J.T. prepared most of the figures.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to M.G. (michael.gillon@ulg.ac.be).

Reviewer Information Nature thanks D. Deming and I. Snellen for their contribution to the peer review of this work.
METHODS

Observations and photometry. In addition to the ground-based observations described in ref. 1, this work was based on 1,333 hours of new observations gathered from the ground with the 60-cm telescopes TRAPPIST-South (469 h) and TRAPPIST-North (202 h), the 8-m Very Large Telescope (3 h), the 4.2-m William Herschel Telescope (26 h), the 4-m UKIRT (25 h), the 2-m Liverpool Telescope (50 h), and the 1-m SAAO telescope (11 h), and from space with Spitzer (518 h).

The new observations of the star gathered by the TRAPPIST-South1−15, 60-cm telescope at Observatorio del Teide, and by the point-and-shoot spectroscopy (PSP) camera (mounted on the SHOC camera by University of Liège, in collaboration with the Cadi Ayyad University of Marrakesh, and is, like its southern twin TRAPPIST-North, totally dedicated to observations of exoplanet transits and small bodies of the Solar System. TRAPPIST-North observations of TRAPPIST-1 were performed from 1 June 2016 to 12 October 2016. Each run of observations consisted of 50-s exposures obtained with a thermoelectrically cooled 2k × 2k deep-depletion charge-coupled-device (CCD) camera (field of view of 19.8′ × 19.8′; image scale of 0.61′/pixel). The observations used the same 1′×1′ filter as for most of the TRAPPIST-South observations1.

The new VLT/HAWK-I4 (Paranal Observatory, Chile) observations that revealed a triple transit of planets c and f (see main text and Extended Data Fig. 1) were performed during the night of 10 December 2015 to 11 December 2015, with the observational strategy described in ref. 1 (NB290 filter), except that a new exposure was composed of 18 integrations of 2 s.

The 4-m telescope UKIRT (Mauna Kea, Hawaii) and its Wide-Field Camera (WFCam), an infrared telescope42, observed the star on 24 June, 16, 18, 29 and 30 July, and 1 August 2016. Here, too, the observational strategy was the same as used in previous observations of the star1 (1 filter; exposures of five integrations of 1 s).

The 4.2-m William Herschel Telescope (La Palma, Canary Islands) observed the star for three nights in a row from 23 August 2016 to 25 August 2016 with its optical 2k × 4k auxiliary-port camera (ACAM)36, which has an illuminated circular field of view of diameter 8′ and an image scale of 0.25″/pixel. The observations were performed in the Bessell I filter with exposure times of between 15 s and 25 s.

Ten runs of observation of TRAPPIST-1 were performed by the robotic 2-m Liverpool Telescope between June and October 2016. These observations were obtained through a Sloan-z filter with the 4k × 4k IO:O CCD camera37 (field of view 10′ × 10′). A 2 × 2 binning scheme resulted in an image scale of 0.36″/pixel. An exposure time of 20 s was used for all images.

The 1-m telescope at the South African Astronomical Observatory (SAAO, Sutherland, South Africa) observed the star on the nights of 18 to 19 June 2016, 21 to 22 June 2016, and 2 to 3 July 2016. The observations consisted of 55-s exposures taken by the 1k × 1k Sutherland high-speed optical (SHOC) CCD camera38 (field of view 2.85′ × 2.85′) using a Sloan z filter and with a 4 × 4 binning, resulting in an image scale of 0.67″/pixel.

For all ground-based data, a standard pre-reduction (including bias, dark, flat-field correction) was applied, and then the stellar fluxes were measured from the calibrated images using DAOPHOT aperture photometry software39. In a final stage, a selection of stable comparison stars was manually performed in order to obtain the most accurate differential photometry possible for TRAPPIST-1.

The Spitzer Space Telescope observed TRAPPIST-1 using its Infrared Array Camera (IRAC) detector40 for 5.7 h on 21 February 2016, for 6.5 h on 3, 4, 7, 13, 15 and 18 March 2016, and continuously from 19 September 2016 to 10 October 2016. All of these observations were made at 4.5 μm in subarray mode (32 × 32 pixel windowing of the detector) with an exposure time of 1.925 s. The observations were moved regularly among and the orbiting transit periods (PCRS) peak-up mode41, which maximizes the accuracy in the position of the target on the detector so as to minimize the so-called pixel phase effect of IRAC indium antimonide arrays42. All of the Spitzer data were calibrated with the Spitzer pipeline S19.2.0, and delivered as cubes of 64 subarray images. Our photometric extraction was identical to that described in ref. 43. We used DAOPHOT to measure the fluxes by aperture photometry, and combined the measurements per cube of 64 images. The photometric errors were taken as the errors on the average flux measurements for each cube.

The observations used here are summarized in Extended Data Table 1. Photometry analysis. The total photometric dataset—including the data in ref. 1—consists of 81,493 photometric measurements spread over 351 light curves. We converted each universal time (UT) of mid-exposure to the BJD_{TDB} time system44. We then performed an individual model selection for each light curve; tested a large range of models composed of a baseline model representing the flux variations correlated to variations of external parameters (for example, point-spread function size or position on the chip, time or airmass) as low-order (0 to 4) polynomial functions; and eventually added to this baseline model a transit model45 and/or a flare model (instantaneous flux increase followed by an exponential decrease) if a structure consistent in shape with these astrophysical signals was visible in the light curve (two flares were captured by Spitzer during its 20-day-monitoring campaign; see Fig. 1). The final model of each light curve was selected by minimization of the Bayesian information criterion (BIC)46. For all of the Spitzer light curves, we needed to include a linear or quadratic function of the x- and/or y-directions (PSF) or coarse models (for example, the fit of a two-dimensional gaussian profile) in the baseline model to account for the pixel phase effect42,43, complemented in some light curves by a linear or quadratic function of the measured widths of the PSF in the x- and/or y-directions43.

For each light curve presenting a transit-like structure whose existence was favoured by the BIC, we explored the posterior probability distribution function (PDF) of its parameters (width, depth, impact parameter and mid-transit timing) with an adaptive MCMC code47. For the transits originating from the firmly confirmed planets b and c, we fixed the orbital period to the values in ref. 1. For the other transit-like structures, the orbital period was also a free parameter. As in ref. 1, we assumed circular orbits for the planets, and we assumed the normal distributions N(0.04, 0.083) dex, N(2.55, 95.5) K, N(0.082, 0.011) M_⊙, and N(0.006, 0.014) R_⊙ as prior PDFs for the stellar metallicity, effective temperature, mass, and radius, respectively, on the basis of a priori knowledge of the stellar properties48,49. We assumed a quadratic limb-darkening law for the star46, with coefficients interpolated for TRAPPIST-1 from the tables of ref. 49. Details of the MCMC analysis of each light curve are as in ref. 1.

We used the resulting values for the timings of the transits to identify planetary candidates, by searching for periodicities and consistency between the derived transit shape parameters. Owing to the high precision and near-continuous nature of the photometry acquired by Spitzer in September and October 2016, this process allowed us to firmly identify the four new planets, d, e, f and g, with periods of 4.1 days, 6.1 days, 9.2 days and 12.3 days respectively (Extended Data Figs 2, 3). We then measured updated values for their transit timings through new MCMC analyses of their transit light curves, for which the orbital periods were fixed to the determined values. For the six planets b, c, d, e, f and g, we then performed a linear regression analysis of the measured transit timings, T_i, as a function of their epochs, E_j, to derive a transit ephemeris T_i = T_0 ± (p_i ± σ_i)E_j, with T_0 being the timing of a reference transit for which the epoch is arbitrarily set to 0, P being the orbital period, and σ_i and p_i being their errors as deduced from the co-variance matrix (Table 1). For all planets, the residuals of the fit showed some significant deviation, indicating TTVs, which is unsurprising given the compactness of the system and the near-resonant chain formed by the six inner planets (see below).

For a transit-like signal observed by Spitzer at BJD_{TDB} = 2,457,662.55 (Fig. 1), the significance of the detection (>10σ) was large enough to allow us to conclude that a seventh, outermost planet exists as well. This conclusion is based not only on the high significance of the signal and the consistency of its shape with one expected for a planetary transit, but also on the photometric stability of the star at 4.5 μm (outside of the frequent transits and the rare—about one per week—flares) as revealed by Spitzer (Fig. 1). In a final stage, we performed the global MCMC analysis of the 35 transits observed by Spitzer that is described in the main text. It consisted of two chains of 100,000 steps, whose convergence was successfully checked using the statistical test of ref. 50. The parameters derived from this analysis for the star and its planets are shown in Table 1.

TTV analysis. We used the TVT method10,11 to estimate the masses of the TRAPPIST-1 planets. The continuous exchange of angular momentum between gravitationally interacting planets causes them to accelerate and decelerate along their orbits, making their transit times occur early or late compared with a Keplerian orbit4. We identified all pairs of planets, defined by f(TTV) = P_j - P_i (where P_j is the orbital period, r the mean motion, and i and j the planet indices4).

We modelled TTVs using both numerical integrations (TTVFast14 and Mercury25) and analytical integrations (TTVFaster25) of a system of six gravitationally interacting, co-planar planets. TTVFaster is based on analytical approximations of TTVs derived using perturbation theory and includes all terms at
first order in eccentricity. Furthermore, it includes only those perturbations to a planet from adjacent planets. To account for the 8/5 and 5/3 near-resonances in the system, we also included the dominant terms for these resonances, which appear at second and third order in the eccentricities. We determined these higher-order terms using the results of ref. 54. TTVFast has the advantage that it is much faster to compute compared with \(n \)-body integrations. It is applicable for this system given the low eccentricities determined via TTV analysis (determined independently with \(n \)-body integrations and self-consistently with TTVFast). We used two visualization techniques: Levenberg-Marquardt optimization and Nelder–Mead optimization. For the purpose of analysis, we used the 98 independent transit times for all six planets and 5 free parameters per planet (mass, orbital period, transit epoch and eccentricity vectors \(\cos e \) and \(\sin e \), with \(e \) being the eccentricity and \(\omega \) the argument of periapsis). We elected not to include the seventh planet, \(h \), in the fit, because only a single transit has been observed and there is not yet an indication of detectable interactions with any of the inner planets. Likewise, we did not detect any perturbation that would require the inclusion of an additional, undetected non-transiting planet in the dynamical fit. The six-planet model provided a good fit to the existing data (Extended Data Fig. 4), and we found no compelling evidence for extending the present model complexity given the existing data.

Our three independent analyses of the same set of transit timings revealed multiple, mildly inconsistent, solutions that fit the data equally well provided that non-circular orbits are allowed in the fit. It is likely that this solution degeneracy originates from the high dimensionality of the parameter space, combined with the limited constraints brought by the present dataset. The best-fit solution that we found—computed with Mercury—has a chi-squared of 92 for 68 degrees of freedom, but involves non-negligible eccentricities (0.03 to 0.05) for all planets, probably jeopardizing the long-term stability of the system. In this context, we decided to present conservative estimates of the planets’ masses and upper limits for the eccentricities without favouring one of the three independent analyses. For each parameter, we considered as the 1σ lower/upper limits the smallest/largest values of the 1σ lower/upper limits of the three posterior PDFs, and the average of the two computed limits as the most representative value. The values and error bars computed for the planets’ masses and the 2σ upper limits for their orbital eccentricities are given in Table 1.

Precise transit timings for all seven planets will be key in constraining further the planet masses and eccentricities and in isolating a unique, well defined, dynamical solution.

Initial assessment of the system’s long-term stability. We investigated the long-term evolution of the TRAPPIST-1 system using two \(n \)-body integration packages: Mercury and WHFAST. We started from the orbital solution produced in Table 1, and integrated over 0.5 million years (Myr). This corresponds to roughly 100 million orbits for planet \(h \). We repeated this procedure by sampling a number of solutions within the 1σ intervals of confidence. Most integrations resulted in the disruption of the system on a 0.5-Myr timescale.

We then decided to use a statistical method that yields the probability of a system being stable for a given period of time, based on the planets’ mutual separations\(^{45}\). Using the masses and semi-major axes in Table 1, we calculated the separations between all adjacent pairs of planets in units of their mutual Hill spheres\(^{46}\). We found that average separation is \(\sim 1.9 \) (excluding planet \(h \)) where the uncertainty is the r.m.s. of the six mutual separations. We computed that TRAPPIST-1 has a 25% chance of suffering an instability over 1 Myr, and an 8.1% chance of surviving for 1 billion years (Gyr), in line with our predictions. The Spitzer data that support our findings are available from the Spitzer Heritage Archive database (http://sha.ipac.caltech.edu/applications/Spitzer/SHA). Source Data for Fig. 1 and Extended Data Figs 1–4 are available online from M.G. on reasonable request.

Code availability. The conversion of the \(v \) times of the photometric measurements to the \(B_J \) times of the system was performed using the online program created by J. Eastman and distributed at http://astrolab.astrohawaii.org/data/time/utc2bj.html. The MCMC software used to analyse the photometric data is a custom Fortran 90 code that can be obtained from M.G. on reasonable request. The \(n \)-body integration codes TTVFast, TTVFaster, and Mercury are freely available online at https://github.com/kdeck/TTVFast, https://github.com/ericagol/TTVFaster, and https://github.com/smirik/mercury. To realize Fig. 2a, we relied on TEPCCat, an online catalog of orbiting planets maintained by J. Southworth (we used http://wwwastro.keele.ac.uk/jkt/tepccat/).

Data availability. The Spitzer data that support our findings are available from the Spitzer Heritage Archive database (http://sha.ipac.caltech.edu/applications/Spitzer/SHA). Source Data for Fig. 1 and Extended Data Figs 1–4 are available online from M.G. on reasonable request.

31. Gillon, M. et al. TRAPPIST: a robotic telescope dedicated to the study of planetary systems. EPL Web Conf. 11, 06002 (2011).
32. Jehin, E. et al. TRAPPIST: TrAProtgntg Planets and Planetesimals SmAll Telescope. Messenger 145, 2–6 (2011).
33. http://www.orca.ulg.ac.be/TTVFast/Trappist_main/Home.html
34. Piran, J.-F. et al. HAWK-i: a new wide-field 1- to 2.5 \(\mu \)m imager for the VLT. Proc. SPIE 5492, 1763–1773 (2004).
35. Czesla, M. et al. The UKIRT IR Wide-Field Camera (WFCAM). In The New Era of Wide-Field Astronomy (eds Clowes, R., Adamson, A. & Bromage, G.) 357–363 (ASPC Conf. Series Vol. 232, 2001).
36. Bernard, C., Dee, K. & Agol, E. ACAM: a new imager/spectrograph for the William Herschel Telescope. Proc. SPIE 7014, 70146X (2008).
37. http://telescope.cvmm.ac.uk/TelInst/Inst/IOO/
38. http://shoc.saao.ac.za/Documents/SHocHelpful.pdf
39. Stetson, B. P. DAOPHOT—a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacif. 99, 191–222 (1987).
40. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004).
41. Ingalls, J. G. et al. Intra-pixel gain variations and high-precision photometry with the Infrared Array Camera (IRAC). Proc. SPIE 8442, http://dx.doi.org/10.1117/12.926947 (2012).
42. Knutson, H. A. et al. The 3.6–8.0 \(\mu \)m broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008).
43. Gillon, M. et al. Search for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214. Astron. Astrophys. 563, A21 (2014).
44. Eastman, J., Siverd, R. & Gaia, B. S. Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. Publ. Astron. Soc. Pacif. 122, 935–946 (2010).
45. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).
46. Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
47. Filippazzo, J. C. et al. Fundamental parameters and spectral energy distributions of young and field age objects with masses spanning the stellar to planetary regime. Astrophys. J. 810, 158 (2015).
48. Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, Kepler-16b and Kepler-7b exoplanets. Astron. Astrophys. 548, A75 (2011).
49. Claret, A. A new non-linear limb-darkening law for LTE stellar atmosphere models. Astron. Astrophys. 593, A1 (2016).
50. Gelman, A. & Rubin., D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
51. Deck, K. M. et al. TTVFast: an efficient and accurate code for transit timing inversion problems. Astrophys. J. 787, 132 (2014).
52. Chambers, J. A hybrid sympletic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).
53. Aid, A. E. & Deck, K. M. Transit timing to first order in eccentricity. Astrophys. J. 818, 177 (2016).
54. Deck, K. M. & Agol, E. Transit timing variations for planets near eccentricity-type mean motion resonances. Astrophys. J. 821, 96 (2016).
55. Levenberg, K. A method for certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944).
56. Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965).
57. Okui, R. & Tamayo, D. WFIRST: a fast and unbiased implementation of a sympletic Wisdom-Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015).
58. Pu, B. & Wu, Y. Spacing of Kepler planets: byculming by dynamical instability. Astrophys. J. 807, 44 (2015); erratum 819, 170 (2016).
59. Bolmont, E. et al. Formation, tidal evolution, and habitability of the Kepler-186 system. Astrophys. J. 793, 3 (2014).
60. Bolmont, E. et al. Mercury-7: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62. Astron. Astrophys. 583, A11 (2015).
61. Deck, K. M., Payne, M. & Holman, M. J. First-order resonance overlap and the stability of close two-planet systems. Astrophys. J. 774, 129 (2013).
Extended Data Figure 1 | Light curve of a triple transit of planets c, e and f. The black points show the differential photometric measurements extracted from VLT/HAWK-I images taken on 11 December 2015, with the formal 1σ errors shown as vertical lines. The best-fit triple-transit model is shown as a red line. Possible configurations of the planets relative to the stellar disc are shown below the light curve for three different times (red, planet c; yellow, planet e; green, planet f). The relative positions and sizes of the planets, as well as the impact parameters, correspond to the values in Table 1.
Extended Data Figure 2 | Transit light curve for planets d and e. The black points show the photometric measurements, binned per 0.005 days (7.2 min). The error for each bin (shown as a vertical line) was computed as the 1σ error on the average. These light curves are divided by their best-fit instrumental models and by the best-fit transit models of other planets (for multiple transits). The best-fit transit models are shown as solid lines. The light curves are period-folded on the best-fit transit ephemeris given in Table 1, their relative shifts on the x-axis reflecting TTVs due to planet–planet interactions (see text). The epoch of the transit and the facility used to observe it are indicated above each light curve.
Extended Data Figure 3 | Transit light curves for planets f and g. As for Extended Data Fig. 2, but for planets f and g.
Extended Data Figure 4 | TTVs measured for planets b, c, d, e, f and g. For each planet, the best-fit TTV model computed with the n-body numerical integration code Mercury35 is shown as a red line. The 1 σ errors of the transit timing measurements are shown as vertical lines.
Extended Data Table 1 | Summary of the observation set used

Facility/instrument	Number of hrs	Year(s)	Number of light curves	Filter/grism	Number of transits
TRAPPIST-South	677.9	2013 2015 2016	214	I+z	b: 13, c: 1, d: 3, e: 5, f: 3, g: 4
Spitzer/IRAC	476.8	2016	30	4.5 μm	b: 16, c: 11, d: 5, e: 2, f: 3, g: 2, h: 1
TRAPPIST-North	206.7	2016	75	I+z	b: 4, c: 3, e: 1
LT/IO:O	50.3	2016	10	z'	b: 1, c: 1, e: 1, f: 1
UKIRT/WFCAM	34.5	2015 2016	9	J	b: 4, c: 3
WHT/ACAM	25.8	2016	4	I	b: 1, c: 1, d: 1
SAAO-1m/SHOC	10.7	2016	5	z'	None
VLT/HAWK-I	6.5	2015	2	NB2090	b: 1, c: 1, e: 1, f: 1
HCT/HFOSC	4.8	2016	1	I	b: 1
HST/WFC3	3.9	2016	1	G141 (1.1-1.7 μm)	b: 1, c: 1

For each facility/instrument, the following parameters are given: the effective number of observations (not accounting for calibration and overhead times), the year(s) of observation, the number of resulting light curves, the used filter or grism, and the number of transits observed for the seven planets, TRAPPIST-1b, c, d, e, f, g and h.