Preoperative High-Protein Diet Can Improve The Serum Albumin Levels of Patients Undergoing Total Knee Arthroplasty

Hong Xu
West China Hospital of Sichuan University

Li Liu
West China Hospital of Sichuan University

Jinwei Xie
West China Hospital of Sichuan University

Duan Wang
West China Hospital of Sichuan University

Zeyu Huang
West China Hospital of Sichuan University

Zongke Zhou (zhouzongke@scu.edu.cn)
West China Hospital of Sichuan University

Research Article

Keywords: albumin, risk factor, high-protein diet, knee, arthroplasty, human albumin solution

DOI: https://doi.org/10.21203/rs.3.rs-115657/v1

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Preoperative hypoproteinemia are risk factors for complications in patients undergoing total knee arthroplasty (TKA). However, the relationship between preoperative albumin levels and postoperative use of albumin is unclear, as are the effects of a high-protein diet on preoperative serum albumin levels for these patients.

Methods: We retrospectively enrolled 660 patients who underwent primary TKA from January to December 2019, of whom 97 received postoperative albumin and 563 did not. Logistic and restrictive cubic spline regression analyses were used to explore the relationship between preoperative serum albumin levels and postoperative albumin use. Additionally, 88 patients undergoing primary TKA were educated to follow a high-protein diet during the preoperative waiting period from January to July 2020. From these 88 patients, data from laboratory tests on the day of the outpatient visit and admission were collected and compared to evaluate the effect of high-protein diet on preoperative serum albumin levels.

Results: Higher preoperative serum albumin levels were negatively associated with risk of postoperative albumin use (relative risk 0.725, 95% confidence interval 0.666-0.789), and the risk of needing postoperative albumin decreased with increasing preoperative albumin level with a negative dose-response relationship ($P_{overall} < 0.001; P_{nonlinear} = 0.186$). After an average of 39.05±22.78 days on a high-protein diet, the albumin levels on admission (46.04±2.49 g/L) were significantly higher than on outpatient (42.79±4.09) g/L), while the biomarkers of liver and kidney function and lipid metabolism did not differ significantly between the two time points.

Conclusions: Preoperative albumin levels were highly associated with postoperative albumin use, showing an obvious dose-response relationship. Preoperative high-protein diet could improve the albumin levels in patients undergoing TKA.

Trial registration: The study was registered in the Chinese Clinical Trial Registry (registration no. ChiCTR2000034978) on July 26, 2020.

Background

Total knee arthroplasty (TKA), a type of total joint arthroplasty (TJA), is a successful surgical treatment for end-stage knee diseases, and its frequency is rapidly increasing with population aging [1, 2]. Malnutrition is a common but often overlooked problem in surgical patients, especially for the elderly [3, 4]. Numerous studies have shown that malnutrition is associated with an increased risk of complications after TKA, including persistent wound drainage, delay of wound healing, superficial surgical site and even deep prosthetic joint infections, as well as intensive care unit admission [5, 6]. Albumin is the most abundant protein in the human plasma, and is considered a reliable and sensitive biomarker of protein status and malnutrition [7, 8]. Albumin, due to its short half-life, is frequently used to assess nutritional status in real time and detect acute nutritional changes [9]. Similar to malnutrition, low serum albumin level is associated with various postoperative complications following TJA, which include pulmonary
infection, renal impaired, superficial and deep infections, myocardial infarction, unplanned intubation, and even mortality [10]. Low serum albumin level is also related to increased treatment costs, longer length of stay, and higher risk of readmission [11].

Human albumin solution (HAS), a blood product, is frequently used to correct hypoproteinemia. However, a study including more than 1 million patients from 510 hospitals in the United States showed that HAS use was associated with an increased risk of thromboembolic, cardiac and pulmonary complications, acute renal failure, and intensive care unit admission [12]. Furthermore, HAS use is quite expensive, placing a substantial financial burden on the health care systems [10]. One study [11] concluded that each 1 g/dL reduction in preoperative serum albumin increased direct costs of TJA on average by 1,282 United States dollars.

Preoperatively correcting hypoalbuminemia and increasing albumin levels may be an effective way to reduce postoperative albumin use, since the elective nature of TKA. Therefore, this study was performed to illustrate the effect of preoperative albumin levels on human albumin use and to determine the effect of high-protein diet during the preoperative waiting period on serum albumin levels in patients scheduled to undergo TKA.

Methods

Study design and patients

This was a single-center retrospective study, and the protocol was approved by the Ethics Committee of West China Hospital of Sichuan University (approval no. 2020-804). The study was registered in the Chinese Clinical Trial Registry (http://www.chictr.org.cn/edit.aspx?pid=57039&htm=4; registration no. ChiCTR2000034978). Written informed consent was deemed unnecessary by the ethics committee because the study had no any adverse effect on the rights and health of the subjects, and patient privacy was strictly protected during the study process.

The participants of the study consisted of two cohorts. First, patients (n = 660) who underwent primary TKA due to primary osteoarthritis or rheumatoid arthritis in our hospital from January to December 2019 were enrolled to investigate the effect of preoperative albumin levels on HAS use. Second, patients (n = 88) who underwent primary TKA from January to July 2020 were included to evaluate the effect of a high-protein diet on preoperative serum albumin levels; those patients were educated to eat a high-protein diet during the preoperative waiting period. The criterion for postoperative use of HAS was serum albumin concentration under 35 g/L. Patients were excluded if they had been diagnosed with hemophilia, tuberculous arthritis, liver and/or kidney disease, or if relevant data for them were missing.

Outpatient education and perioperative treatment

When a patient decided to undergo TKA for severe knee primary osteoarthritis or rheumatoid arthritis at the outpatient clinic, admission times were booked. At the same time, the patient's diet and nutritional
status were assessed according to the levels of hemoglobin and serum albumin. If hemoglobin < 140 g/L or albumin < 48 g/L, the patients were informed that they needed to increase the proportion of proteins in their diet during the preoperative waiting period in order to prepare for the surgery. The recommended daily diet was as follows: at least 3 eggs (fried eggs were not recommended) and 50 g lean meat, which contains about 35 g of protein. If they reported poor appetite, patients received drug that promotes gastric motility. In addition, all patients were treated according to multimodal perioperative care pathways described in the Enhanced Recovery after Surgery protocol during the perioperative period [13].

Data collection and study outcomes

For the 2019 cohort, data were collected on demographic characteristics including sex, age, body mass index (BMI); clinical characteristics, including diagnosis primary osteoarthritis or rheumatoid arthritis; comorbidities, including hypertension, diabetes, coronary heart disease, and chronic obstructive pulmonary diseases; results of laboratory tests on the day of admission, including hemoglobin, serum albumin, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR), and use of postoperative HAS.

For the 2020 cohort, besides the previously mentioned demographic and clinical characteristics, data were also collected on waiting time before admission; and results of laboratory tests on the day of outpatient visit, including albumin, globulin hemoglobin, hematocrit, biomarkers of liver and kidney function, and lipid metabolism.

Statistical analyses

Continuous variables were presented as mean ± standard deviation (x ± SD), while categorical variables were shown in frequency (proportion). The relationship between HAS use (treated as a binary variable) and preoperative serum albumin levels (treated as a continuous variable) was expressed as relative risk (RR) with 95% confidence interval (CI). A crude model of HAS use regarding the preoperative serum albumin levels was built using univariate analyses. Logistic regression analyses were used to adjust other variables included in our analyses. The correlations among the covariates included in the logistic regression were quantified by Spearman's rank correlation analysis [14]. Furthermore, restrictive cubic spline regression analyses were used to detect the dose-response relationships between serum albumin levels tested on the day of admission and postoperative albumin use [15]. The dose-response was analyzed with R version 3.6.1 (R Foundation for Statistical Computing). The paired-samples T test was used to compare biomarker differences between admission and outpatient. A value of P < 0.05 was considered to indicate statistical significance. All data analyses were performed using SPSS version 21 software (IBM, Armonk, NY, USA).

Results

Baseline characteristics of patients
A total of 748 patients were included in our study, of whom 660 patients underwent TKA from January to December 2019, while 88 patients had the procedure from January to July 2020. Among patients from the 2019 cohort, 97 (14.7%) were treated with human albumin. For patients recruited in 2020, the mean preoperative waiting time was 39.05 ± 22.78 days. The baseline demographic and clinical characteristics of the 2019 cohort are shown in Table 1, while those from the 2020 cohort are presented in Table 2.

Spearman’s rank correlation analyses showed that the absolute value of the rank correlation coefficient among covariates included in logistic regression analyses ranged from 0.000 to 0.375, which meant that correlations among the variables were low and that variables met the requirements for logistic regression analyses (Fig. 1).

Impact of preoperative albumin levels on human albumin solution use after primary TKA

Several statistical models including different covariates were built to evaluate the impact of preoperative albumin levels at admission on postoperative human albumin use in primary TKA (Table 3). The univariate analysis (crude model) showed that higher preoperative albumin levels were associated with lower risk of postoperative HAS use (RR = 0.720, 95% CI 0.665-0.778, P < 0.001). After adjusting for demographic variables (age, sex, and BMI) and clinical characteristics in the logistic regression analysis step-by-step (models 1, 2, and 3), high preoperative albumin levels remained significantly associated with lower risk of postoperative albumin use (Table 3). In addition, a negative dose-response relationship was observed between preoperative serum albumin levels at admission and risk of postoperative albumin use ($P_{\text{overall}} < 0.001; P_{\text{nonlinear}} = 0.186$; Fig. 2).

Impact of high-protein diet on preoperative albumin levels in primary TKA

As shown in Table 4, the mean albumin level on the day of admission was significantly higher than the level tested on the day of outpatient visit (46.04 ± 2.49 g/L vs. 42.79±4.09 g/L; $P < 0.001$). In contrast, patients showed no significant differences between admission and outpatient visit in levels of globulin, hemoglobin hematocrit, and fasting blood-glucose, as well as biomarkers of liver and kidney function and lipid metabolism (all $P > 0.05$).

Discussion

Our study is the first to evaluated whether a high-protein diet during the waiting time before admission for primary TKA affects preoperative albumin levels. In our patients, preoperative serum albumin levels were strongly associated with postoperative HAS use in primary TKA and, furthermore, there was a negative dose-response relationship between them. And a high-protein diet during the waiting time before admission for TKA may be a useful tool to improve the albumin levels of these patients and avoid complications after surgery.

Albumin is well known among clinicians for its reliability and sensitivity for assessing nutritional status [16]. Hypoproteinemia can lead to a significantly higher incidence of postoperative complications
including delayed wound healing due to reduced collagen synthesis and protein matrix deposition [17, 18] and superficial or deep infection caused by diminished immune response [19], and adverse events such as myocardial infarction, cardiac arrest, stroke and even mortality in TJA [10, 18]. On the other hand, our study showed that preoperative albumin level was significantly associated with HAS use after TKA, showing a negative dose-response relationship: lower preoperative albumin levels correlated with higher risk of postoperative use of HAS. But HAS use has been associated with higher risk of cardiac, pulmonary, and combined complications, acute renal failure, and unplanned intensive care unit admission [12]. Furthermore, hypoproteinemia was directly associated with increased total costs in revision and primary TJA [11]. Clinicians and policy providers should consider this question for optimizing the nutritional status of patients preoperatively and reducing the risk factors that may increase medical costs in the ear of bundled payments for TJA [20].

Serum albumin levels have been associated with long-term mortality in the general population, especially for the elderly [21], and with postoperative course and mortality for patients with geriatric hip fracture [22]. Malnutrition or hypoproteinemia are common in elderly patients, and age and female sex (female) are its independent risk factors, which may be related to associated with their dietary habit of low-quality nutrient intake and/or low economic status [23, 24]. This population accounts for the majority of patients undergoing TKA. Fortunately, compared with emergency operation, the elective nature of TJA allows these patients to have an adequate preoperative nutritional storage for reducing the risk of postoperative HAS use [16, 25]. One study [26] reported that a high-protein diet could improve the overall survival for older adults diagnosed with advanced gastrointestinal cancer. Although serum albumin < 35 g/L is usually considered as malnutrition [27] or hypoproteinemia [28], our study revealed a negative dose-dependent relationship between preoperative serum albumin levels and postoperative HAS use, consistent with a study showing that lower preoperative albumin levels are associated with higher treatment costs [11].

In our patients, about 35 g of dietary protein (about 0.5 g/kg body weight) were added to the daily diet, which resulted in an increase of about 3.2 g in serum albumin from the day of outpatient visit to admission (an average of 39.05±22.78 days). Several studies have evaluated the effects of a high-protein diet. One study [29] reported that a high-protein diet (1.07–1.60 g/kg body weight/day) lasting for 6–12 months was an effective and safe way to reduce weight: the high protein produced satiety and increased energy expenditure. Furthermore, high-protein diets lasting for 12 weeks could significantly improve body composition in women with normal-weight obesity, reducing the waist circumference, fat mass, and body fat percentage and increasing lean body mass [30]. Interestingly, high-protein diets could also improve skeletal muscle mass in patients with gastrointestinal cancer [31], which may be relevant to our patients, since skeletal muscle mass is also important for recovery of function after TKA [32]. Future studies should evaluate the effect of high-protein diets on quadriceps muscle strength, which will provide more evidence for preoperative high-protein diet combined with muscle exercise for the patients planning to undergo TKA.

Our study showed that a high-protein diet had no significant impact on biomarkers of liver, kidney, or lipid metabolism. Tischmann et al. [33] revealed that a high-protein diet lasting for approximately 34 months
had no significant effect on the biomarkers of cardiometabolic health and vascular function in overweight participants. In contrast, a previous study [34] reported that high-protein diets can decrease the levels of low-density lipoprotein, total cholesterol, and triglycerides as well as mitigate insulin resistance in patients with type 2 diabetes mellitus. The differences with our study may be associated with the metabolic disorder in diabetic patients and shorter duration of our study.

Our study presents several limitations. First, we excluded patients with renal and hepatic diseases, and therefore the safety of a high-protein diet for these patients must be assessed because of its potential effects on renal function [29, 35]. Second, although we asked patients to fast for 6-8 hours before blood collection, some patients, especially at outpatients visit, may have failed to follow it, which would affect our laboratory test results. Third, although we educated patients in detail, some patients may not have strictly followed our suggestions during the preoperative waiting period. Finally, large randomized controlled studies are needed to compare the effect of a high-protein diet on the rate of HAS use and its consumption. Despite these limitations, we believe that the current study provides new ideas for preoperative nutritional management for patients planning to undergo TKA.

Conclusion

Lower preoperative serum albumin levels were associated with increased risk of postoperative HAS use and there was a negative dose-response relationship between them. Given the elective nature of TKA, a high-protein diet during the waiting time before surgery admission may be a useful way to improve the albumin levels in these patients. Future high-quality studies are needed to confirm these findings.

Abbreviations

BMI: body mass index

CI: confidence interval

CRP: C-reactive protein

ESR: erythrocyte sedimentation rate

HAS: human albumin solution

TJA: total joint arthroplasty

TKA: total knee arthroplasty

ALB: albumin

CHD: coronary heart disease

COPD: chronic obstructive pulmonary disease
Hb: hemoglobin
Pre-op: preoperative

Declarations

Ethics approval and consent to participate

The Ethics Committee of West China Hospital of Sichuan University approved the study (approval no. 2020-804). Written informed consent was deemed unnecessary by the hospital’s institutional review board. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Availability of data and materials

The datasets generated and analysed during the current study are not publicly available due to some of them remain unpublished and confidential but are available from the first or corresponding author on reasonable request.

Competing interests

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Funding

This work is supported by the Key Research & Development Program of Science & Technology Department of Sichuan Province (No. 2018SZ0255), and the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (No. ZYJC18039).

Authors' contributions

H X and L L: Applied for ethical and registered this study, drafted the work and revised it critically for important intellectual content. JW X and D W: collected date, analyzed and interpreted data for the work. ZY H: participated in final approval of the version to be published. ZK Z: contributions to the conception and design of the work, and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank A. Chapin Rodríguez, PhD, from Creaducate Enterprises Ltd for editing the English text of a draft of this manuscript.
Authors' information

Affiliation of all authors: Department of Orthopaedic surgery, West China Hospital, Sichuan University.
Address of all authors: No.37, Guoxue Road, Wuhou district, Chengdu, 610041, Sichuan, People's Republic of China.

A statement of the location where the work was performed

The work was performed in Department of Orthopaedic surgery, West China Hospital, Sichuan University.

References

1. Sloan M, Premkumar A, Sheth NP. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg Am. 2018;100(17):1455-60.
2. Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am. 2014;96(8):624-30.
3. Lamb CA, Parr J, Lamb EL, Warren MD. Adult malnutrition screening, prevalence and management in a United Kingdom hospital: cross-sectional study. Br J Nutr. 2009;102(4):571-5.
4. Pratt KJ, Hernandez B, Blancato R, Blankenship J, Mitchell K. Impact of an interdisciplinary malnutrition quality improvement project at a large metropolitan hospital. BMJ Open Qual. 2020;9(1).
5. Nussenbaum FD, Rodriguez-Quintana D, Fish SM, Green DM, Cahill CW. Implementation of Preoperative Screening Criteria Lowers Infection and Complication Rates Following Elective Total Hip Arthroplasty and Total Knee Arthroplasty in a Veteran Population. J Arthroplasty. 2018;33(1):10-13.
6. Jaberi FM, Parvizi J, Haytmanek CT, Joshi A, Purtill J. Procrastination of wound drainage and malnutrition affect the outcome of joint arthroplasty. Clin Orthop Relat Res. 2008;466(6):1368-71.
7. Schalk BW, Visser M, Bremmer MA, Penninx BW, Bouter LM, Deeg DJ. Change of serum albumin and risk of cardiovascular disease and all-cause mortality: Longitudinal Aging Study Amsterdam. Am J Epidemiol. 2006;164(10):969-77.
8. Kishawi D, Schwarzman G, Mejia A, Hussain AK, Gonzalez MH. Low Preoperative Albumin Levels Predict Adverse Outcomes After Total Joint Arthroplasty. J Bone Joint Surg Am. 2020;102(10):889-95.
9. Greene KA, Wilde AH, Stulberg BN. Preoperative nutritional status of total joint patients. Relationship to postoperative wound complications. J Arthroplasty. 1991;6(4):321-5.
10. Wilson JM, Schwartz AM, Farley KX, Bradbury TL, Guild GN. Combined Malnutrition and Frailty Significantly Increases Complications and Mortality in Patients Undergoing Elective Total Hip Arthroplasty. J Arthroplasty. 2020;35(9):2488-94.
11. Rudasill SE, Ng A, Kamath AF. Preoperative Serum Albumin Levels Predict Treatment Cost in Total Hip and Knee Arthroplasty. Clin Orthop Surg. 2018;10(4):398-406.
12. Opperer M, Poeran J, Rasul R, Mazumdar M, Memtsoudis SG. Use of perioperative hydroxyethyl starch 6\% and albumin 5\% in elective joint arthroplasty and association with adverse outcomes: a retrospective population based analysis. BMJ. 2015;350:h1567.
13. Zhang S, Huang Q, Xie J, Xu B, Cao G, Pei F. Factors influencing postoperative length of stay in an enhanced recovery after surgery program for primary total knee arthroplasty. J Orthop Surg Res. 2018;13(1):29.
14. Xu H, Yang J, Xie J, Huang Z, Huang Q, Cao G, et al. Tourniquet use in routine primary total knee arthroplasty is associated with a higher transfusion rate and longer postoperative length of stay: a real-world study. BMC Musculoskeletal Disorders. 2020;21(1):620.
15. Yang J, Yang A, Cheng N, Huang W, Huang P, Liu N, et al. Sex-specific associations of blood and urinary manganese levels with glucose levels, insulin resistance and kidney function in US adults: National health and nutrition examination survey 2011-2016. Chemosphere. 2020;258:126940.
16. Man SL, Chau WW, Chung KY, Ho KKW. Hypoalbuminemia and obesity class II are reliable predictors of peri-prosthetic joint infection in patient undergoing elective total knee arthroplasty. Knee Surg Relat Res. 2020;32(1):21.
17. Cross MB, Yi PH, Thomas CF, Garcia J, Della Valle CJ. Evaluation of Malnutrition in Orthopaedic Surgery. Journal of the American Academy of Orthopaedic Surgeons. 2014;22(3):193-99.
18. Bala A, Ivanov DV, Huddleston JI, 3rd, Goodman SB, Maloney WJ, Amanatullah DF. The Cost of Malnutrition in Total Joint Arthroplasty. J Arthroplasty. 2020;35(4):926-32 e1.
19. Bharadwaj S, Ginoya S, Tandon P, Gohel TD, Guirguis J, Vallabh H, et al. Malnutrition: laboratory markers vs nutritional assessment. Gastroenterology Report. 2016;4(4):272-80.
20. Ryan SP, Goltz DE, Howell CB, Jiranek WA, Attarian DE, Bolognesi MP, et al. Predicting Costs Exceeding Bundled Payment Targets for Total Joint Arthroplasty. Journal of Arthroplasty. 2019;34(3):412-17.
21. Schalk BWM, Visser M, Bremmer MA, Penninx BWJH, Bouter LM, Deeg DJH. Change of serum albumin and risk of cardiovascular disease and all-cause mortality. American Journal of Epidemiology. 2006;164(10):969-77.
22. Bohl DD, Shen MR, Hannon CP, Fillingham YA, Darrith B, Della Valle CJ. Serum Albumin Predicts Survival and Postoperative Course Following Surgery for Geriatric Hip Fracture. J Bone Joint Surg Am. 2017;99(24):2110-18.
23. Kagamimori S, Gaina A, Nasermoaddeli A. Socioeconomic status and health in the Japanese population. Social Science & Medicine. 2009;68(12):2152-60.
24. Katsarou A, Tyrovolas S, Psaltopoulou T, Zeimbekis A, Tsakountakis N, Bountziouka V, et al. Socioeconomic status, place of residence and dietary habits among the elderly: the Mediterranean islands study. Public Health Nutr. 2010;13(10):1614-21.
25. Golladay GJ, Satpathy J, Jiranek WA. Patient Optimization-Strategies That Work: Malnutrition. Journal of Arthroplasty. 2016;31(8):1631-34.
26. Pimentel GD, Pichard C, Laviano A, Fernandes RC. High protein diet improves the overall survival in older adults with advanced gastrointestinal cancer. Clin Nutr. 2020.

27. Lung BE, Kanjiya S, Bisogno M, Komatsu DE, Wang ED. Risk factors for venous thromboembolism in total shoulder arthroplasty. JSES Open Access. 2019;3(3):183-88.

28. Sloan M, Sheth NP, Nelson CL. Obesity and hypoalbuminaemia are independent risk factors for readmission and reoperation following primary total knee arthroplasty. Bone & Joint Journal. 2020;102B(6):31-35.

29. Moon J, Koh G. Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. J Obes Metab Syndr. 2020;29(3):166-73.

30. Haghighat N, Ashtary-Larky D, Bagheri R, Mahmoodi M, Rajaee M, Alipour M, et al. The effect of 12 weeks of euenergetic high-protein diet in regulating appetite and body composition of women with normal-weight obesity: a randomised controlled trial. Br J Nutr. 2020;1-8.

31. Soares JDP, Siqueira JM, Oliveira ICL, Laviano A, Pimentel GD. A high-protein diet, not isolated BCAA, is associated with skeletal muscle mass index in patients with gastrointestinal cancer. Nutrition. 2020;72:110698.

32. Liao C-D, Wu Y-T, Tsauo J-Y, Chen P-R, Tu Y-K, Chen H-C, et al. Effects of Protein Supplementation Combined with Exercise Training on Muscle Mass and Function in Older Adults with Lower-Extremity Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Trials. Nutrients. 2020;12(8).

33. Yu Z, Nan F, Wang LY, Jiang H, Chen W, Jiang Y. Effects of high-protein diet on glycemic control, insulin resistance and blood pressure in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2020;39(6):1724-34.

34. Tischmann L, Drummen M, Joris PJ, Gatta-Cherifi B, Raben A, Fogelholm M, Matias I, Cota D, Mensink RP, Westerterp-Plantenga MS, et al. Effects of a High-Protein Diet on Cardiometabolic Health, Vascular Function, and Endocannabinoids-A PREVIEW Study. Nutrients. 2020;12(5).

35. Jhee JH, Kee YK, Park S, Kim H, Park JT, Han SH, et al. High-protein diet with renal hyperfiltration is associated with rapid decline rate of renal function: a community-based prospective cohort study. Nephrol Dial Transplant. 2020;35(1):98-106.

Tables

Table 1. Baseline characteristics of patients who underwent routine primary TKA in 2019.
Baseline characteristic	No albumin (n=563)	Albumin use (n=97)	All (n=660)
Demographic characteristic			
Age (years)	67.33±8.55	69.44±7.86	67.64±8.48
Female	447 (79.4)	79 (81.4)	526 (79.7)
BMI (kg/m^2)	25.90±3.53	25.50±4.00	25.84±3.60
Diagnosis			
Primary osteoarthritis	529 (95.0)	85 (87.6)	614 (93.0)
Inflammatory arthritis	34 (6.04)	12 (12.3)	46 (6.97)
Comorbidity			
Hypertension	250 (44.4)	35 (36.1)	285 (43.2)
Diabetes	66 (11.7)	11 (11.3)	77 (11.7)
COPD	18 (3.20)	3 (3.09)	21 (3.18)
CHD	13 (2.31)	2 (2.06)	15 (2.27)
Preoperative laboratory test			
ALB (g/L)	43.23±2.48	40.36±3.48	42.85±2.84
Hb (g/L)	134.33±15.28	133.00±12.87	134.13±14.95
CRP (mg/L)	4.11±3.44	5.01±5.02	4.24±3.73
ESR (mm/h)	23.65±16.84	28.82±18.65	24.40±17.19

Values are n (%) or mean ± SD.

Abbreviations: ALB: albumin; BMI: body mass index; CHD: coronary heart disease; COPD: chronic obstructive pulmonary disease; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; Hb: hemoglobin.

Table 2. Baseline characteristics of patients who underwent routine primary TKA from January to August 2020.
Baseline characteristic

No albumin (n=88)
Demographic characteristic
Age (year)
Female
BMI (kg/m^2)
Diagnosis
Primary osteoarthritis
Inflammatory arthritis
Comorbidity
Hypertension
Diabetes
COPD
CHD
Preoperative waiting time (days)

Values are n (%) or mean ± SD.

Abbreviations: BMI: body mass index; COPD: chronic obstructive pulmonary disease; CHD: coronary heart disease.

Table 3. Logistic regression analyses of preoperative albumin level and HAS use after primary TKA.

Model	Risk of postoperative albumin use	
	Risk ratio (95% confidence interval)	P
Crude model	0.720 (0.665-0.778)	<0.001
Model 1	0.772 (0.665-0.784)	<0.001
Model 2	0.722 (0.664-0.785)	<0.001
Model 3	0.725 (0.666-0.789)	<0.001

Model 1: adjusted for age, sex, body mass index and diagnosis.

Model 2: adjusted as in model 1 + hypertension, type 2 diabetes, chronic obstructive pulmonary disease, and coronary heart disease.
Model 3: adjusted as in model 2 + preoperative hemoglobin, C-reactive protein, and erythrocyte sedimentation rate.

Table 4. The effect of high-protein diet on different biomarkers in patients undergoing primary TKA from the 2020 cohort.
Biomarker	Outpatient visit (n=88)	Pre-operative (n=88)	P values
Nutritional status			
Albumin (g/L)	42.79±4.09	46.04±2.49	<0.001*
Globulin (g/L)	28.29±4.59	27.64±3.81	0.158
Hemoglobin (g/L)	134.63±12.59	136.34±11.48	0.069
HCT (L/L)	0.41±038	0.42±0.32	0.585
Liver function			
Total bilirubin (μmol/L)	10.29±3.98	10.57±3.98	0.569
Direct bilirubin (μmol/L)	3.01±1.49	2.91±1.11	0.496
Indirect bilirubin (μmol/L)	7.24±2.97	7.65±3.14	0.273
Total bile acid (μmol/L)	4.17±2.11	3.67±2.77	0.157
ALT (IU/L)	27.55±20.31	24.08±13.76	0.107
AST (IU/L)	23.21±5.95	22.61±7.65	0.438
ALP (IU/L)	97.17±29.17	93.26±25.48	0.090
GGT (IU/L)	35.45±30.92	33.68±26.85	0.473
Kidney function			
Serum urea (μmol/L)	5.69±1.72	5.94±1.78	0.082
Serum creatinine (μmol/L)	66.66±17.58	66.53±16.37	0.876
eGFR (ml/min/1.73 m²)	88.22±18.82	88.69±17.04	0.493
Serum uric acid (μmol/L)	316.58±103.51	310.40±109.96	0.549
Lipid metabolism			
Triglyceride (mmol/L)	1.57±0.60	1.47±0.84	0.261
Cholesterin (mmol/L)	4.88±0.90	5.01±0.96	0.150
HDL-C (mmol/L)	1.35±0.35	1.39±0.34	0.103
LDL-C (mmol/L)	2.82±0.69	2.92±0.69	0.118
Other			
Creatine kinase (IU/L)	101.36±63.63	91.56±41.43	0.079
Lactic dehydrogenase (IU/L)	196.59±26.02	192.02±38.81	0.438
HBDH (IU/L)	155.17±22.89	150.65±32.98	0.329
Fasting blood-glucose (mmol/L)	5.63±1.26	5.46±0.86	0.208

Values are mean ± SD, unless otherwise noted.*: $P < 0.05$.

Abbreviations: ALP: alkaline phosphatase; ALT: alanine transferase; AST: aspartate transferase; eGFR: estimated glomerular filtration rate; GGT: glutamyl transpeptidase; HCT: hematocrit; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; HBDH: hydroxybutyrate dehydrogenase.