Omni n-Lie algebras and linearization of higher analogues of Courant algebroids

Jiefeng Liu1, Yunhe Sheng1,2 and Chunyue Wang2,3

1Department of Mathematics, Xinyang Normal University, Xinyang 464000, Henan, China
2Department of Mathematics, Jilin University, Changchun 130012, Jilin, China
3Department of Mathematics, Jilin Engineering Normal University, Changchun 130052, Jilin, China

Email: liujf12@126.com; shengyh@jlu.edu.cn; wang1chun2yue3@163.com

Abstract

In this paper, we introduce the notion of an omni n-Lie algebra and show that they are linearization of higher analogues of standard Courant algebroids. We also introduce the notion of a nonabelian omni n-Lie algebra and show that they are linearization of higher analogues of Courant algebroids associated to Nambu-Poisson manifolds.

1 Introduction

Courant algebroids were introduced in [20] (see also [22]), and have many applications. See [17] and references therein for more details. On $T^{n-1}M \triangleq TM \oplus \wedge^{n-1}T^*M$, define a symmetric nondegenerate $\wedge^{n-2}T^*M$-valued pairing $(\cdot, \cdot)_+: T^{n-1}M \times T^{n-1}M \rightarrow \wedge^{n-2}T^*M$ by

$$(X + \alpha, Y + \beta)_+ = i_X \beta + i_Y \alpha, \quad \forall X + \alpha, Y + \beta \in \mathfrak{X}(M) \oplus \Omega^{n-1}(M),$$

and define a bracket operation $[\cdot, \cdot]: \Gamma(T^{n-1}M) \times \Gamma(T^{n-1}M) \rightarrow \Gamma(T^{n-1}M)$ by

$$[X + \alpha, Y + \beta] = [X, Y] + L_X \beta - i_Y \alpha.$$

The quadruple $(TM \oplus \wedge^{n-1}T^*M, (\cdot, \cdot)_+, \{\cdot, \cdot\}, \text{pr}_{TM})$ is called the higher analogue of the standard Courant algebroid. In particular, if $n = 2$, we obtain the standard Courant algebroid. Recently, due to applications in multisymplectic geometry, Nambu-Poisson geometry, L_∞-algebra theory and topological field theory, higher analogues of Courant algebroids are widely studied. See [2, 3, 10, 11, 12, 13, 27] for more details.

*Keyword: omni n-Lie algebra, higher analogue of the standard Courant algebroid, nonabelian omni n-Lie algebra, Nambu-Poisson structure

MSC: 53D17, 17B99.

*Research supported by NSFC (11471139), NSF of Jilin Province (20140520054JH, 20170101050JC) and Nan Hu Scholar Development Program of XYNU.
The notion of an omni-Lie algebra was introduced by Weinstein in [26] to study the linearization of the standard Courant algebroid. Then it was studied from several aspects [13, 23, 25]. An omni-Lie algebra associated to a vector space V is a triple $(\mathfrak{gl}(V) \oplus V, \{-,\}, \cdot)$, where $(\cdot,\cdot)_+$ is the V-valued pairing given by
\[
(A + u, B + v)_+ = Av + Bu, \quad \forall A + u, B + v \in \mathfrak{gl}(V) \oplus V,
\] and (\cdot,\cdot) is the bilinear bracket operation given by
\[
\{A + u, B + v\} = [A, B] + Av.
\]

Even though $(\mathfrak{gl}(V) \oplus V, \{-,\})$ is not a Lie algebra, its Dirac structures characterize all Lie algebra structures on V. We can construct a Lie 2-algebra from an omni-Lie algebra. See [23] for more details.

In [19], the authors introduced the notion of a nonabelian omni-Lie algebra $(\mathfrak{g}(\mathfrak{g}) \oplus \mathfrak{g}, (\cdot,\cdot)_+, \{\cdot,\cdot\}_g)$ associated to a Lie algebra $(\mathfrak{g}, [\cdot,\cdot]_g)$, which originally comes from the study of homotopy Poisson manifolds [18]. In particular, they showed that it is the linearization of the Courant algebroid $T\mathfrak{g}^* \oplus T\pi^*_\mathfrak{g}^*$ associated to the linear Poisson manifold $(\mathfrak{g}^*, \pi_\mathfrak{g})$, where $\pi_\mathfrak{g}$ is the Lie-Poisson structure on \mathfrak{g}^*.

The purpose of this paper is to extend the above results to the n-ary case. First we introduce the notion of an omni-n-Lie algebra, which is a triple $(\mathfrak{gl}(V) \oplus \Lambda^{n-1}V, (\cdot,\cdot)_+, \{\cdot,\cdot\})$ including a bracket operation (\cdot,\cdot) and a $(V \otimes \Lambda^{n-2}V)$-valued pairing $(\cdot,\cdot)_+$. Similar to the classical case, $(\mathfrak{gl}(V) \oplus \Lambda^{n-1}V, (\cdot,\cdot))$ is a Leibniz algebra. We show that a linear map $F : \Lambda^n V \rightarrow V$ defines an n-Lie algebra structure on V only if the graph of $F^* : \Lambda^{n-1}V \rightarrow \mathfrak{gl}(V)$ is a sub-Leibniz algebra of $(\mathfrak{gl}(V) \oplus \Lambda^{n-1}V, (\cdot,\cdot))$. Note that this result is not totally parallel the classical case. Namely the condition that F being skew-symmetric can not be simply described by being isotropic with respect to the $(V \otimes \Lambda^{n-2}V)$-valued pairing $(\cdot,\cdot)_+$. We further show that an omni-n-Lie algebra $(\mathfrak{gl}(V) \oplus \Lambda^{n-1}V, (\cdot,\cdot)_+, \{\cdot,\cdot\})$ can be viewed as the linearization of the higher analogue of the standard Courant algebroid $(TM \oplus \Lambda^{n-1}T^*M, (\cdot,\cdot)_+, \{\cdot,\cdot\}_M, \text{pr}_{TM})$ via letting $M = V^*$. Then we introduce the notion of a nonabelian omni-n-Lie algebra $(\mathfrak{gl}(\mathfrak{g}) \oplus \Lambda^{n-1}\mathfrak{g}, (\cdot,\cdot)_+, \{\cdot,\cdot\}_g)$ associated to an n-Lie algebra \mathfrak{g} and study its algebraic properties. Finally, we give the notion of higher analogues of Courant algebroids associated to Nambu-Poisson manifolds and study their properties. Furthermore, we show that nonabelian omni-n-Lie algebras are linearization of higher analogues of Courant algebroids associated to Nambu-Poisson manifolds.

The paper is organized as follows. In Section 2, we recall n-Lie algebras and Nambu-Poisson manifolds. In Section 3, we introduce the notion of an omni n-Lie algebra associated to a vector space V and characterize n-Lie algebra structures on V via sub-Leibniz algebra structures of the omni n-Lie algebra. In Section 4, we show that an omni n-Lie algebra is the linearization of the higher analogue of the standard Courant algebroid. In Section 5, we introduce the notion of a nonabelian omni n-Lie algebra and study its algebraic properties. In Section 6, we introduce the notion of higher analogues of Courant algebroids associated to Nambu-Poisson manifolds and show that nonabelian omni n-Lie algebras are their linearization.

2 Preliminaries

In this section, we briefly recall the notions of n-Lie algebras and Nambu-Poisson manifolds. The notion of an n-Lie algebra, or a Filippov algebra, was introduced in [8] and have many applications in mathematical physics. See the review article [6] for more details. Nambu-Poisson structures were introduced in [24] by Takhtajan in order to find an axiomatic formalism for Nambu-mechanics which is a generalization of Hamiltonian mechanics.
Definition 2.1. An n-Lie algebra is a vector space \mathfrak{g} together with an n-multilinear skew-symmetric bracket $[\cdot, \ldots, \cdot]_{\mathfrak{g}} : \wedge^n \mathfrak{g} \rightarrow \mathfrak{g}$ such that for all $u, v_i \in \mathfrak{g}$, the following Fundamental Identity is satisfied:

$$[u_1, u_2, \ldots, u_{n-1}, [v_1, v_2, \ldots, v_n]_{\mathfrak{g}}]_{\mathfrak{g}} = \sum_{i=1}^{n} [v_1, v_2, \ldots, [u_1, u_2, \ldots, u_{n-1}, v_i]_{\mathfrak{g}}, \ldots, v_n]_{\mathfrak{g}}. \quad (5)$$

For $u_1, u_2, \cdots, u_{n-1} \in \mathfrak{g}$, define $\text{ad} : \wedge^{n-1} \mathfrak{g} \rightarrow \mathfrak{gl}(\mathfrak{g})$ by

$$\text{ad}_{u_1, u_2, \ldots, u_{n-1}} v = [u_1, u_2, \ldots, u_{n-1}, v]_{\mathfrak{g}}, \quad \forall \ v \in \mathfrak{g}.$$

Then Eq. (5) is equivalent to that $\text{ad}_{u_1, u_2, \ldots, u_{n-1}}$ is a derivation, i.e.

$$\text{ad}_{u}[v_1, v_2, \ldots, v_n]_{\mathfrak{g}} = \sum_{i=1}^{n} [v_1, v_2, \ldots, \text{ad}_{u}v_i, \ldots, v_n]_{\mathfrak{g}}, \quad \forall \ u = u_1 \wedge u_2 \wedge \cdots \wedge u_{n-1} \in \wedge^{n-1} \mathfrak{g}. \quad (6)$$

Elements in $\wedge^{n-1} \mathfrak{g}$ are called fundamental objects of the n-Lie algebra $(\mathfrak{g}, [\cdot, \ldots, \cdot]_{\mathfrak{g}})$. In the sequel, we will denote $\text{ad}_{u}v$ simply by $u \circ v$.

Define a bilinear operation on the set of fundamental objects $\circ : (\wedge^{n-1} \mathfrak{g}) \otimes (\wedge^{n-1} \mathfrak{g}) \rightarrow \wedge^{n-1} \mathfrak{g}$ by

$$u \circ v = \sum_{\pi \in \Sigma(n)} v_1 \wedge \cdots \wedge v_{i-1} \wedge u \circ v_i \wedge v_{i+1} \wedge \cdots \wedge v_{n-1}, \quad (7)$$

for all $u = u_1 \wedge u_2 \wedge \cdots \wedge u_{n-1}$ and $v = v_1 \wedge v_2 \wedge \cdots \wedge v_{n-1}$. In [5], the authors proved that $(\wedge^{n-1} \mathfrak{g}, \circ)$ is a Leibniz algebra. See [21] for details about Leibniz algebras, which are also called Loday algebras. Moreover, the Fundamental Identity (5) is equivalent to

$$u \circ (v \circ w) - v \circ (u \circ w) = (u \circ v) \circ w, \quad \forall \ u, v, w \in \wedge^{n-1} \mathfrak{g}, w \in \mathfrak{g}. \quad (8)$$

Definition 2.2. [21] A Nambu-Poisson structure of order $n - 1$ on M is an n-linear map $\{\cdot, \cdots, \cdot\} : C^\infty(M) \times \cdots \times C^\infty(M) \rightarrow C^\infty(M)$ satisfying the following properties:

1. skewsymmetry, i.e. for all $f_1, \cdots, f_n \in C^\infty(M)$ and $\sigma \in \text{Sym}(n)$,
 $$\{f_1, \cdots, f_n\} = (-1)^{|\sigma|} \{f_{\sigma(1)}, \cdots, f_{\sigma(n)}\};$$

2. the Leibniz rule, i.e. for all $g \in C^\infty(M)$, we have
 $$\{f_1 g, \cdots, f_n\} = f_1 \{g, \cdots, f_n\} + g \{f_1, \cdots, f_n\};$$

3. integrability condition, i.e. for all $f_1, \cdots, f_{n-1}, g_1, \cdots, g_n \in C^\infty(M),$
 $$\{f_1, \cdots, f_{n-1}, \{g_1, \cdots, g_n\}\} = \sum_{i=1}^{n} \{g_i, \cdots, \{f_1, \cdots, f_{n-1}, g_i\}, \cdots, g_n\}.$$

In particular, a Nambu-Poisson structure of order 1 is exactly a usual Poisson structure. Similar to the fact that a Poisson structure is determined by a bivector field, a Nambu-Poisson structure of order $n - 1$ is determined by an n-vector field $\pi \in \mathfrak{X}^n(M)$ such that

$$\{f_1, \cdots, f_n\} = \pi(df_1, \cdots, df_n).$$

3
An n-vector field $\pi \in \mathfrak{X}^n(M)$ is a Nambu-Poisson structure if and only if for all $f_1, \ldots, f_{n-1} \in C^\infty(M)$, we have
\[
L_{\pi} (df_1 \wedge \cdots \wedge df_{n-1}) \pi = 0,
\]
where $\pi^\sharp : \wedge^{n-1} T^* M \longrightarrow TM$ is defined by
\[
\langle \pi^\sharp (\xi_1 \wedge \cdots \wedge \xi_{n-1}), \xi_n \rangle = \pi (\xi_1 \wedge \cdots \wedge \xi_{n-1} \wedge \xi_n), \quad \forall \xi_1, \ldots, \xi_n \in \Omega^1(M).
\]
Let π be a Nambu-Poisson structure on a manifold M. Then there is a natural operation $[,]_\pi$ on $\Omega^{n-1}(M)$ given by
\[
[\alpha, \beta]_\pi = L_{\pi^1(\alpha)} \beta - L_{\pi^1(\beta)} \alpha + di_{\pi^1(\alpha)} \beta, \quad \forall \alpha, \beta \in \Omega^{n-1}(M)
\]
such that $(\wedge^{n-1} T^* M, [,],_\pi, \pi^\sharp)$ is a Leibniz algebroid. See [2, 13] for more details.

3 Omni n-Lie algebras

Let V be a finite dimensional vector space. For all $A \in \mathfrak{gl}(V)$, define $L_A : \otimes^{n-1} V \longrightarrow \otimes^{n-1} V$ by
\[
L_A (v_1 \otimes \cdots \otimes v_{n-1}) = \sum_{i=1}^{n-1} v_1 \otimes \cdots \otimes Av_i \otimes \cdots \otimes v_{n-1}.
\]

Definition 3.1. An omni n-Lie algebra associated to a vector space V is a triple $(\mathfrak{gl}(V) \otimes \wedge^{n-1} V, (\cdot)_+, \{\cdot,\cdot\})$, where $\{\cdot,\cdot\}$ is the bilinear bracket operation given by
\[
\{A + u, B + v\} = [A, B] + L_A v,
\]
and $(\cdot)_+$ is the $(V \otimes \wedge^{n-2} V)$-valued pairing given by
\[
(A + u, B + v)_+ = \sum_{i=1}^{n-1} (-1)^{i+1} (Av_i \otimes v_1 \wedge \cdots \wedge \hat{v}_i \wedge \cdots \wedge v_{n-1} + Bu_i \otimes u_1 \wedge \cdots \wedge \hat{u}_i \wedge \cdots \wedge u_{n-1}),
\]
where $u = u_1 \wedge u_2 \wedge \cdots \wedge u_{n-1}$ and $v = v_1 \wedge v_2 \wedge \cdots \wedge v_{n-1}$.

Remark 3.2. When $n = 2$, we recover Weinstein’s omni-Lie algebras [26].

Proposition 3.3. With the above notations, $(\mathfrak{gl}(V) \otimes \wedge^{n-1} V, \{\cdot,\cdot\})$ is a Leibniz algebra. Furthermore, the pairing $(\cdot)_+$ and the bracket $\{\cdot,\cdot\}$ are compatible in the sense that
\[
\langle \{e_1, e_2\}_+ + (e_2, \{e_1, e_3\}_+) = \rho_V (e_1)(e_2, e_3)_+,
\]
where $e_i \in \mathfrak{gl}(V) \otimes \wedge^{n-1} V$, $i = 1, 2, 3$, and $\rho_V : \mathfrak{gl}(V) \otimes \wedge^{n-1} V \longrightarrow \mathfrak{gl}(V \otimes \wedge^{n-2} V)$ is given by
\[
\rho_V (A + u)(w) = L_A w, \quad \forall w \in V \otimes \wedge^{n-2} V.
\]

Proof. Since $L_{[A, B]} = L_A L_B - L_B L_A$, we can deduce that $(\mathfrak{gl}(V) \otimes \wedge^{n-1} V, \{\cdot,\cdot\})$ is a Leibniz algebra directly.
For all $A + u, B + v, C + w \in \mathfrak{gl}(V) \oplus \wedge^{n-1}V,$ on one hand, we have
\[
(\{A + u, B + v\}, C + w) + (B + v, A + u, C + w)\]
\[
= (\{A, B\} + \mathcal{L}_A v, C + w) + (B + v, [A, C] + \mathcal{L}_A w) +
\]
\[
= \sum_{j=1}^{n-1} (-1)^{j+1}(ABw_j \wedge v_1 \wedge \cdots \wedge \hat{w}_{j} \wedge \cdots \wedge v_{n-1} + ACv_j \wedge v_1 \wedge \cdots \wedge \hat{v}_{j} \wedge \cdots \wedge v_{n-1})
\]
\[
+ \sum_{i \neq j} (-1)^{i+1}(Bw_i \wedge v_1 \wedge \cdots \wedge Aw_j \wedge \cdots \wedge v_{n-1}) + Cv_i \wedge v_1 \wedge \cdots \wedge Av_j \wedge \cdots \wedge v_{n-1}).
\]
On the other hand, we have
\[
\rho_V(A + u)(B + v, C + w) = \sum_{j=1}^{n-1} (-1)^{j+1} \rho_V(A + u)(Bw_j \wedge v_1 \wedge \cdots \wedge \hat{w}_{j} \wedge \cdots \wedge w_{n-1} + Cw_j \wedge v_1 \wedge \cdots \wedge \hat{v}_{j} \wedge \cdots \wedge v_{n-1})
\]
\[
= \sum_{j=1}^{n-1} (-1)^{j+1}(ABw_j \wedge v_1 \wedge \cdots \wedge \hat{w}_{j} \wedge \cdots \wedge w_{n-1} + ACv_j \wedge v_1 \wedge \cdots \wedge \hat{v}_{j} \wedge \cdots \wedge v_{n-1})
\]
\[
+ \sum_{i \neq j} (-1)^{i+1}(Bw_i \wedge v_1 \wedge \cdots \wedge Aw_j \wedge \cdots \wedge w_{n-1}) + Cv_i \wedge v_1 \wedge \cdots \wedge Av_j \wedge \cdots \wedge v_{n-1}),
\]
which implies that $[12]$ holds.

Let $F : \wedge^n V \to V$ be a linear map. Then F induces a linear map $F^\sharp : \wedge^{n-1}V \to \mathfrak{gl}(V)$ by
\[
F^\sharp(u)(u) = F(u, u), \quad \forall u \in \wedge^{n-1}V, \quad u \in V.
\]
Denote by $G_F \subset \mathfrak{gl}(V) \oplus \wedge^{n-1}V$ the graph of F^\sharp.

Theorem 3.4. Let $F : \wedge^n V \to V$ be a linear map. Then (V, F) is an n-Lie algebra if and only if G_F is a Leibniz subalgebra of the Leibniz algebra $(\mathfrak{gl}(V) \oplus \wedge^{n-1}V, \{\cdot, \cdot\})$.

Proof. G_F is a Leibniz subalgebra of the Leibniz algebra $(\mathfrak{gl}(V) \oplus \wedge^{n-1}V, \{\cdot, \cdot\})$ if and only if for all $u, v \in \wedge^{n-1}V$, $(F^\sharp(u) + u, F^\sharp(v) + v) \in G_F$, which is equivalent to
\[
F^\sharp(\mathcal{L}_{F^\sharp(u)}v) = [F^\sharp(u), F^\sharp(v)].
\]
Since $\mathcal{L}_{F^\sharp(u)}v = \sum_{i=1}^{n-1} v_i \wedge \cdots \wedge F(u, v_i) \wedge \cdots \wedge v_{n-1},$ thus the above equality can be written as
\[
F^\sharp(u \circ v) = [F^\sharp(u), F^\sharp(v)]
\]
which is equivalent to that (V, F) is an n-Lie algebra.

4 Linearization of the higher analogue of the standard Courant algebroid

Let V be an m-dimensional vector space and V^* its dual space. We consider the direct sum bundle $T^{n-1}V^* = TV^* \oplus \wedge^{n-1}T^*V^*$. Denote the vector spaces of linear vector fields and constant $(n−1)$-forms
on \(V^* \) by \(\mathcal{X}_{\text{lin}}(V^*) \) and \(\Omega_{\text{con}}^{n-1}(V^*) \) respectively. It is obvious that \(\mathcal{X}_{\text{lin}}(V^*) \oplus \Omega_{\text{con}}^{n-1}(V^*) \cong \mathfrak{gl}(V) \oplus \wedge^{n-1} V \). To make this explicit, for any \(x \in V \), denote by \(l_x \) the corresponding linear function on \(V^* \). Let \(\{ x^i \} \) be a basis of the vector space \(V \). Then \(\{ l_x \} \) forms a coordinate chart for \(V^* \). So \(\{ \frac{\partial}{\partial x^i} \} \) constitutes a basis of vector fields on \(V^* \) and \(\{ dl_x \} \) constitutes a basis of 1-forms on \(V^* \). For \(A = (a_{ij}) \in \mathfrak{gl}(V) \), we get a linear vector field \(\hat{A} = \sum l_{A(x^i)} \frac{\partial}{\partial x^i} \) on \(V^* \). Also \(u = \sum i \leq m \xi_{i_1 \cdots i_{n-1}} x^{i_1} \wedge \cdots \wedge x^{i_{n-1}} \) defines a constant \((n-1) \)-form \(\hat{u} = \sum i \leq m \xi_{i_1 \cdots i_{n-1}} dl_{x^{i_1}} \wedge \cdots \wedge dl_{x^{i_{n-1}}} \).

Define \(\Phi : \mathfrak{gl}(V) \oplus \wedge^{n-1} V \longrightarrow \mathcal{X}_{\text{lin}}(V^*) \oplus \Omega_{\text{con}}^{n-1}(V^*) \) by

\[
\Phi(A + u) = \hat{A} + \hat{u}.
\]

Obviously, \(\Phi \) is an isomorphism between vector spaces.

Any element \(v \otimes u \in V \otimes \wedge^{n-2} V \) will give rise to a linear \((n-2) \)-form \(\bar{v} \otimes \bar{u} \) defined by

\[
\bar{v} \otimes \bar{u} = l_{u} \hat{u}.
\]

We give some useful formulas first.

Lemma 4.1. With the above notations, for all \(\hat{A} \in \mathfrak{gl}(V) \) and \(u \in \wedge^{n-1} V \), we have

\[
(A, \hat{u})_+ = \{A, u\}_+ ,
\]

(14)

\[
d(\hat{A}, \hat{u})_+ = \hat{L}_A u ,
\]

(15)

\[
L_{\hat{A}} \hat{u} = \hat{L}_A u ,
\]

(16)

\[
[\hat{A}, \hat{B}] = [A, B] .
\]

(17)

Proof. On one hand, for \(u = \sum_{i_1 < \cdots < i_{n-1} \leq m} \xi_{i_1 \cdots i_{n-1}} x^{i_1} \wedge \cdots \wedge x^{i_{n-1}} \in \wedge^{n-1} V \), we have

\[
(A, \hat{u})_+ = \sum \sum_{i_1 < \cdots < i_{n-1} \leq m} (-1)^{j+1} \xi_{i_1 \cdots i_{j} \cdots i_{n-1}} \hat{A} x^{i_1} \wedge \cdots \wedge \hat{A} x^{i_{j}} \wedge \cdots \wedge \hat{A} x^{i_{n-1}} .
\]

On the other hand, we have

\[
(A, u)_+ = \sum \sum_{1 \leq i_1 < \cdots < i_{n-1} \leq m} (-1)^{j+1} \xi_{i_1 \cdots i_{j} \cdots i_{n-1}} \hat{A} x^{i_1} \wedge \cdots \wedge \hat{A} x^{i_{j}} \wedge \cdots \wedge \hat{A} x^{i_{n-1}} ,
\]

which implies that (14) holds.

By direct calculation, we have

\[
d(\hat{A}, \hat{u})_+ = \sum \sum_{1 \leq i_1 < \cdots < i_{n-1} \leq m} (-1)^{j+1} \xi_{i_1 \cdots i_{j} \cdots i_{n-1}} \hat{A} x^{i_1} \wedge \cdots \wedge \hat{A} x^{i_{j}} \wedge \cdots \wedge \hat{A} x^{i_{n-1}} ,
\]

(16)
On the other hand, we have
\[L_A u = A \left(\sum_{1 \leq i_1 < \cdots < i_m \leq n} \xi_{i_1} \cdots \xi_{i_m} x^{i_1} \wedge \cdots \wedge x^{i_m} \right) \]
\[= \sum_{1 \leq i_1 < \cdots < i_m \leq n} \xi_{i_1} \cdots \xi_{i_m} x^{i_1} \wedge \cdots \wedge Ax^{i_1} \wedge \cdots \wedge x^{i_m} \]
\[= \sum_{1 \leq i_1 < \cdots < i_m \leq n} \sum_{j=1}^{m} \xi_{i_1} \cdots \xi_{i_m} x^{i_1} \wedge \cdots \wedge x^k \wedge \cdots \wedge x^{i_m}. \]

Thus (15) follows immediately.

(16) follows from
\[(\Phi(A + u), \Phi(B + v))_+ = (A + u, B + v)_+, \]
\[[\Phi(A + u), \Phi(B + v)] = \Phi(A + u, B + v), \]
\[L_{pr TV} \Phi(A + u)(w) = \rho_V(A + u)(w). \]

Proof. By (14), we have
\[(\Phi(A + u), \Phi(B + v))_+ = (\hat{A}, \hat{B})_+ + (\hat{u}, \hat{B}) = (A, B)_+ + (u, B)_+ = (A + u, B + v)_+. \]

By (16) and (17), we have
\[
\begin{align*}
[\Phi(A + u), \Phi(B + v)] &= [\hat{A} + \hat{u}, \hat{B} + \hat{v}] = [\hat{A}, \hat{B}] + L_{\hat{A}} \hat{v} \\
&= [A, B] + L_A v = \Phi(A + u, B + v).
\end{align*}
\]

Finally, for all \(w = w_1 \otimes w_2 \wedge \cdots \wedge w_{n-1} \in V \otimes \wedge^{n-2} V \), we have
\[L_{pr TV} \Phi(A + u)(w) = L_A (l_{w_1} dw_2 \wedge \cdots \wedge dw_{n-1}) \]
\[= L_A (l_{w_1}) dw_2 \wedge \cdots \wedge dw_{n-1} + l_{w_1} \left(\sum_{i=2}^{n-1} dw_2 \wedge \cdots \wedge L_A dw_i \wedge \cdots \wedge dw_{n-1} \right) \]
\[= l_{Aw_1} dw_2 \wedge \cdots \wedge dw_{n-1} + \sum_{i=2}^{n-1} l_{w_i} dw_2 \wedge \cdots \wedge d(Aw_i) \wedge \cdots \wedge dw_{n-1} \]
\[= Aw_1 \otimes w_2 \wedge \cdots \wedge w_{n-1} + \sum_{i=2}^{n-1} w_1 \otimes w_2 \wedge \cdots \wedge Aw_i \wedge \cdots \wedge w_{n-1} \]
\[= \rho_V(A + u)(w). \]

The proof is finished. \(\blacksquare \)
5 Nonabelian omni n-Lie algebras

Definition 5.1. A nonabelian omni n-Lie algebra associated to an n-Lie algebra $(\mathfrak{g}, \lbrack \cdot, \cdots, \cdot \rbrack_\mathfrak{g})$ is a triple $(\mathfrak{gl}(\mathfrak{g}) \otimes \wedge^{n-1} \mathfrak{g}, \langle \cdot, \cdots, \cdot \rangle_\mathfrak{gl}, \{\cdot, \cdots, \cdot \}_\mathfrak{g})$, where $(\langle \cdot, \cdots, \cdot \rangle_\mathfrak{gl}, \{\cdot, \cdots, \cdot \}_\mathfrak{g})$ is the $(\mathfrak{gl} \otimes \wedge^{n-1} \mathfrak{g})$-valued pairing given by (21) and $\{\cdot, \cdots, \cdot \}_\mathfrak{g}$ is the bilinear bracket operation given by

\[
\{A + u, B + v\}_\mathfrak{g} = [A, B] + [A, ad_u] + [ad_u, B] - ad_{\mathcal{L}_A} v + \mathcal{L}_A v + u \circ v, \quad \forall A, B \in \mathfrak{gl}(\mathfrak{g}), u, v \in \wedge^{n-1} \mathfrak{g}. \tag{21}
\]

Theorem 5.2. Let $(\mathfrak{gl}(\mathfrak{g}) \otimes \wedge^{n-1} \mathfrak{g}, \langle \cdot, \cdots, \cdot \rangle_\mathfrak{gl}, \{\cdot, \cdots, \cdot \}_\mathfrak{g})$ be a nonabelian omni n-Lie algebra. Then we have

(i) $(\mathfrak{gl}(\mathfrak{g}) \otimes \wedge^{n-1} \mathfrak{g}, \{\cdot, \cdots, \cdot \}_\mathfrak{g})$ is a Leibniz algebra;

(ii) $\{A + u, A + u\}_\mathfrak{g} = - \text{ad}_{\mathcal{L}_A} u + \mathcal{L}_A u + u \circ u$;

(iii) the pairing $(\cdot, \cdots, \cdot)_+$ and the bracket $(\cdot, \cdots, \cdot)_\mathfrak{g}$ are compatible in the sense that

\[
\rho_\mathfrak{g}(e_1)(e_2, e_3)_+ = (\{e_1, e_2\}_\mathfrak{g} - ([A, ad_B] - \text{ad}_{\mathcal{L}_A} B), e_3)_+ + (e_2, [e_1, e_3]_\mathfrak{g} - ([A, \text{ad}_u] - \text{ad}_{\mathcal{L}_A} u))_+, \tag{22}
\]

where $e_1 = A + u, e_2 = B + v, e_3 = C + w \in \mathfrak{gl}(\mathfrak{g}) \otimes \wedge^{n-1} \mathfrak{g}$ and $\rho_\mathfrak{g} : \mathfrak{gl}(\mathfrak{g}) \otimes \wedge^{n-1} \mathfrak{g} \rightarrow \mathfrak{gl}(\mathfrak{g} \otimes \wedge^{n-2} \mathfrak{g})$ is given by

\[
\rho_\mathfrak{g}(A + u)(w) = \mathcal{L}_A + \text{ad}_u w, \quad \forall w \in \mathfrak{g} \otimes \wedge^{n-2} \mathfrak{g}. \tag{23}
\]

Proof. (i) We can prove that $(\mathfrak{gl}(\mathfrak{g}) \otimes \wedge^{n-1} \mathfrak{g}, \{\cdot, \cdots, \cdot \}_\mathfrak{g})$ is a Leibniz algebra directly by a complicated computation. In the sequel, we will show that $(\mathfrak{gl}(\mathfrak{g}) \otimes \wedge^{n-1} \mathfrak{g}, \{\cdot, \cdots, \cdot \}_\mathfrak{g})$ is a trivial deformation of the omni n-Lie algebra $(\mathfrak{gl}(\mathfrak{g}) \otimes \wedge^{n-1} \mathfrak{g}, \{\cdot, \cdots, \cdot \})$. Thus, we omit details here.

(ii) It follows from (21) directly.

(iii) By straightforward computation, we have

\[
([A, B] + [ad_u, B] + \mathcal{L}_A v + u \circ v, C + w)_+ = \sum_{i=1}^{n-1} (-1)^{i+1} ([A, B] + [ad_u, B]) w_i \otimes w_1 \wedge \cdots \wedge \hat{w}_i \wedge \cdots \wedge w_{n-1}
\]

\[
+ \sum_{i \neq j} (-1)^{i+1} C v_j \otimes w_1 \wedge \cdots \hat{v}_j \wedge \cdots \wedge (A v_i + u \circ v_i) \wedge \cdots \wedge v_{n-1}
\]

\[
+ \sum_{i=1}^{n-1} (-1)^{i+1} (C A v_i + C (u \circ v_i)) \otimes v_1 \wedge \cdots \hat{v}_i \wedge \cdots \wedge v_{n-1}.
\]

On the other hand, we have

\[
(B + v, [A, C] + [ad_u, C] + \mathcal{L}_A w + u \circ w)_+ = \sum_{i=1}^{n-1} (-1)^{i+1} ([A, C] + [ad_u, C]) v_i \otimes v_1 \wedge \cdots \wedge \hat{v}_i \wedge \cdots \wedge v_{n-1}
\]

\[
+ \sum_{i \neq j} (-1)^{i+1} (B w_j \otimes w_1 \wedge \cdots \wedge \hat{w}_j \wedge \cdots \wedge (A w_i + u \circ w_i) \wedge \cdots \wedge w_{n-1})
\]

\[
+ \sum_{i=1}^{n-1} (-1)^{i+1} (B A w_i + B (u \circ w_j)) \otimes w_1 \wedge \cdots \wedge \hat{w}_i \wedge \cdots \wedge w_{n-1}.
\]
Thus we have

\[
([A, B] + [ad_u, B] + \mathcal{L}_A w + u \circ v, C + w) + (B + v, [A, C] + [ad_u, C] + \mathcal{L}_A w + u \circ w) + \\
= \sum_{i=1}^{n-1} (-1)^{i+1} (A \circ B + ad_u \circ B) w_i \otimes w_1 \wedge \cdots \wedge w_{i-1} \wedge w_{i+1} \wedge \cdots \wedge w_{n-1} \\
+ \sum_{i=1}^{n-1} (-1)^{i+1} (A \circ C + ad_u \circ C) v_i \otimes v_1 \wedge \cdots \wedge v_{i-1} \wedge v_{i+1} \wedge \cdots \wedge v_{n-1} \\
+ \sum_{i \neq j} (-1)^{i+1} B v_j \otimes v_1 \wedge \cdots \wedge v_{i-1} \wedge (Av_i + u \circ v_i) \wedge \cdots \wedge v_{n-1} \\
+ \sum_{i \neq j} (-1)^{i+1} B w_j \otimes w_1 \wedge \cdots \wedge w_{i-1} \wedge (Aw_i + u \circ w_i) \wedge \cdots \wedge w_{n-1} \\
= \rho_g (A + u)(B + v, C + w) +.
\]

The proof is finished. ■

Obviously, for all \(A \in \text{Der}(g) \), we have \([A, ad_u] - ad_{\mathcal{L}_A u} = 0\). Thus, we have

Corollary 5.3. For all \(e_1, e_2, e_3 \in \text{Der}(g) \oplus \wedge^{n-1} g \), we have

\[
\rho_g (e_1)(e_2, e_3)_+ = ([e_1, e_2]_g, e_3)_+ + (e_2, [e_1, e_3]_g)_+.
\]

In the sequel we show that a nonabelian omni \(n \)-Lie algebra \((gl(g) \oplus \wedge^{n-1} g, \{\cdot, \cdot\}_g)\) can be viewed as a trivial deformation of the omni \(n \)-Lie algebra \((gl(g) \oplus \wedge^{n-1} g, \{\cdot, \cdot\})\). For details of deformations of Leibniz algebras, see [4][10].

Let \((\mathfrak{L}, [\cdot, \cdot]_\mathfrak{L})\) be a Leibniz algebra. For an endomorphism \(N \) of \(\mathfrak{L} \), define

\[
[e_1, e_2]_N = [Ne_1, e_2]_\mathfrak{L} + [e_1, Ne_2]_\mathfrak{L} - N[e_1, e_2]_\mathfrak{L},
\]

and set

\[
TN(e_1, e_2) = [Ne_1, e_2]_\mathfrak{L} - N[e_1, e_2]_\mathfrak{L}.
\]

The endomorphism \(N \) is called a **Nijenhuis operator** if \(TN = 0 \).

A Nijenhuis operator gives a trivial deformation of the Leibniz algebra \((\mathfrak{L}, [\cdot, \cdot]_\mathfrak{L})\).

Proposition 5.4. [4] Let \(N \) be a Nijenhuis operator on the Leibniz algebra \((\mathfrak{L}, [\cdot, \cdot]_\mathfrak{L})\). Then we have

1. \((\mathfrak{L}, [\cdot, \cdot]_N)\) is a Leibniz algebra;
2. \(N \) is a morphism of Leibniz algebras from \((\mathfrak{L}, [\cdot, \cdot]_\mathfrak{L})\) to \((\mathfrak{L}, [\cdot, \cdot]_\mathfrak{L})\);
3. \((\mathfrak{L}, [\cdot, \cdot]_\mathfrak{L} + [\cdot, \cdot]_N)\) is a Leibniz algebra.

Let \((g, [\cdot, \cdots, \cdot]_g)\) be an \(n \)-Lie algebra. Then we can define a linear map \(N : gl(g) \oplus \wedge^{n-1} g \longrightarrow gl(g) \oplus \wedge^{n-1} g \) by

\[
N(A + u) = ad_u.
\]

Lemma 5.5. The linear map \(N \) given by \((24)\) is a Nijenhuis operator on the Leibniz algebra \((gl(g) \oplus \wedge^{n-1} g, \{\cdot, \cdot\})\), where the Leibniz bracket \(\{\cdot, \cdot\} \) is given by \((10)\).
Proof. First by definition, we have

\[
\{ A + u, B + v \}_N = \{ N(A + u), B + v \} + \{ A + u, N(B + v) \} - N\{ A + u, B + v \} \\
= \{ \text{ad}_u, B \} + \mathcal{L}_{\text{ad}_u} v + [A, \text{ad}_u] - \text{ad}_{\mathcal{L}_A v} \\
= \{ \text{ad}_u, B \} + u \circ v + [A, \text{ad}_u] - \text{ad}_{\mathcal{L}_A v}.
\]

Hence it is clear that

\[
N\{ A + u, B + v \}_N = \text{ad}_{u \circ v} = \{ \text{ad}_u, \text{ad}_v \} = \{ N(A + u), N(B + v) \},
\]

which says that \(N \) is a Nijenhuis operator.

It is straightforward to see that

\[
\{ A + u, B + v \}_N = \{ A + u, B + v \} + \{ A + u, B + v \}_N.
\]

Therefore, by Proposition 5.4 and Lemma 5.5 we have

Theorem 5.6. Let \(\mathfrak{g}, \{ [], \cdots, [] \}_g \) be an \(n \)-Lie algebra. Then the bracket \(\{ [], \cdot \}_g \) is a trivial deformation of the Leibniz bracket \(\{ [], \cdot \} \). In particular, \((\mathfrak{gl}(\mathfrak{g}) \oplus \wedge^{n-1} \mathfrak{g}, \{ [], \cdot \}_g) \) is a Leibniz algebra.

Remark 5.7. If we view \((\mathfrak{gl}(\mathfrak{g}), \{ [], \cdot \}) \) as a Leibniz algebra, then \((\mathfrak{gl}(\mathfrak{g}), \{ [], \cdot \}) \) and \((\wedge^{n-1} \mathfrak{g}, \circ) \) form a matched pair of Leibniz algebras and the Leibniz algebra \((\mathfrak{gl}(\mathfrak{g}) \oplus \wedge^{n-1} \mathfrak{g}, \{ [], \cdot \}_g) \) is exactly their double. See [2] for more details about matched pairs of Leibniz algebras.

6 Linearization of higher analogues of Courant algebroids associated to Nambu-Poisson structures

Let \((M, \pi)\) be a Nambu-Poisson manifold. We introduce a bracket \(\left[\cdot, \cdot \right]_\pi : \Gamma(T^{n-1}M) \times \Gamma(T^{n-1}M) \longrightarrow \Gamma(T^{n-1}M)\) by

\[
\left[X + \alpha, Y + \beta \right]_\pi = [X, Y] + [X, \pi^t(\beta)] + [\pi^t(\alpha), Y] - \pi^t(L_X \beta) + \pi^t(i_Y d\alpha) + L_X \beta - i_Y d\alpha + [\alpha, \beta]_\pi,
\]

where \(X, Y \in \mathfrak{X}(M), \alpha, \beta \in \Omega^{n-1}(M)\) and \(\left[\cdot, \cdot \right]_\pi\) is given by (25).

Let \(\rho_\pi : T^n M \longrightarrow TM\) be the bundle map defined by

\[
\rho_\pi(X + \alpha) = X + \pi^t(\alpha), \quad \forall X \in \mathfrak{X}(M), \alpha \in \Omega^{n-1}(M).
\]

We call the quadruple \((T^{n-1}M, \left[\cdot, \cdot \right]_\pi, \rho_\pi)\) the higher analogue of the Courant algebroid associated to a Nambu-Poisson manifold and denote it by \(T^n M\). In the sequel, we will see that even though we call it the higher analogue of a Courant algebroid, some important properties for Courant algebroids do not hold anymore.

Theorem 6.1. Let \((T^{n-1}M, \left[\cdot, \cdot \right]_\pi, \rho_\pi)\) be the higher analogue of the Courant algebroid associated to a Nambu-Poisson manifold. Then we have

(i) \((T^{n-1}M, \left[\cdot, \cdot \right]_\pi, \rho_\pi)\) is a Leibniz algebroid.

(ii) The bracket \(\left[\cdot, \cdot \right]_\pi\) is not skew-symmetric. Instead, we have

\[
\left[X + \alpha, X + \alpha \right]_\pi = d(X, \alpha)_+ + d(\pi^t(\alpha), \alpha)_+ - \pi^t(d(X, \alpha)_+).
\]
The conclusion follows from this finishes the proof.

Corollary 6.2.
Proof. For all $c_1 = X + \alpha$, $c_2 = Y + \beta$, $c_3 = Z + \gamma \in \mathfrak{X}_H(M) \oplus \Omega^{n-1}_{\mathfrak{g}}(M)$, since α is closed, we have

$$i_{\pi^*(\gamma)}\gamma = i_{\pi^*(\gamma)}(\gamma) = 0.$$

For all $\xi, \eta \in \Omega^{n-1}(M)$, we have the following formula

$$\pi^*(L_{\pi^*(\xi)}\eta) = [\pi^*(\xi), \pi^*(\eta)] = (-1)^{n-1}(i_d\pi\pi^*(\xi)\eta).$$

Without loss of generality, let $X = \pi^*(df_1 \land \cdots \land df_{n-1})$, then we have

$$i_{[X,\pi^*(\beta)]\gamma} - i_{\pi^*(L_X\beta)\gamma} + i_{[X,\pi^*(\gamma)]\beta} - i_{\pi^*(L_X\gamma)\beta} = (-1)^n(i_{\pi^*(df_1 \land \cdots \land df_{n-1})}\pi^*(\beta)\gamma + (-1)^n(i_{\pi^*(df_1 \land \cdots \land df_{n-1})}\pi^*(\gamma)\beta = 0.$$

We finishes the proof.

In the following, we show that the nonabelian omni n-Lie algebra is a linearization of the higher analogue of the Courant algebroid $(\mathcal{T}^{n-1}M, \{\cdot, \cdot\}, \{\cdot, \cdot, \cdot\}, \rho_n)$ associated to a Nambu-Poisson manifold (M, π).

Let $(\mathfrak{g}, [\cdot, \cdot, \cdot], \rho_3)$ be an m-dimensional n-Lie algebra such that it induces a linear Nambu-Poisson structure $\pi^*\mathfrak{g}$ on \mathfrak{g}^*. Then we obtain the higher analogue of the Courant algebroid $\mathcal{T}^{n-1}_\pi \mathfrak{g}^*$. Let $\{x^i\}$ be a basis of the vector space \mathfrak{g}. Using the same notations as in Section 4 we have

$$\pi^*\mathfrak{g} = \sum_{1 \leq i_1 < \cdots < i_n \leq m} l_{[x^{i_1}, \ldots, x^{i_n}]} \frac{\partial}{\partial x^{i_1}} \land \cdots \land \frac{\partial}{\partial x^{i_n}}.$$

Lemma 6.3. For all $A \in \mathfrak{g}(\mathfrak{g})$ and $u, v \in \land^{n-1} \mathfrak{g}$, we have

$$\pi^*\mathfrak{g}(\tilde{u}) = \overline{\text{ad}_u}, \quad (31)$$

$$\tilde{[u, v]}_{\pi^*\mathfrak{g}} = u \circ v, \quad (32)$$

$$\pi^*\mathfrak{g}(L_A \tilde{u}) = \overline{\text{ad}_{L_A u}}. \quad (33)$$

Proof. For $u = \sum_{1 \leq j_1 < \cdots < j_{n-1} \leq m} \xi_{j_1, \ldots, j_{n-1}} x^{j_1} \land \cdots \land x^{j_{n-1}} \in \land^{n-1} \mathfrak{g}$ with the corresponding constant $(n-1)$-form $\tilde{u} = \sum_{1 \leq j_1 < \cdots < j_{n-1} \leq m} \xi_{j_1, \ldots, j_{n-1}} \cdot \partial_{x^{j_1}} \land \cdots \land \partial_{x^{j_{n-1}}}$, we have

$$\pi^*\mathfrak{g}(\tilde{u}) = \sum_{1 \leq i_1 < \cdots < i_k \leq m} \sum_{k=1}^{n} (-1)^{n-k} \xi_{i_1, \ldots, i_k, \ldots, i_n} l_{[x^{i_1}, \ldots, x^{i_k}, \ldots, x^{i_n}]} \frac{\partial}{\partial x^{i_k}}$$

$$= \sum_{1 \leq i_1 < \cdots < i_n \leq m} \xi_{i_1, \ldots, i_n} l_{[x^{i_1}, \ldots, x^{i_n}]} \frac{\partial}{\partial x^{i_n}}$$

$$= \sum_{1 \leq j_1 < \cdots < j_{n-1} \leq m} \sum_{l=1}^{m} \xi_{j_1, \ldots, j_{n-1}, l} l_{[x^{j_1}, \ldots, x^{j_{n-1}}, x^l]} \frac{\partial}{\partial x^{j_l}}$$

$$= \overline{\text{ad}_u}.$$

which implies that \(\mathfrak{g} \) holds.

\footnote{Not all n-Lie algebras can give linear Nambu-Poisson structures on dual spaces, see \cite{7} for details.}
Since \hat{u} is a constant $(n - 1)$-form, by (16) and (31), we have
\[
[u, \tilde{v}]_{\pi_\theta} = L_{\pi_1(u)} \tilde{v} - L_{\pi_1(\tilde{u})} u + di_{\pi_1(u)} \tilde{u} \\
= L_{\pi_1(u)} \tilde{v} - i_{\pi_1(\tilde{u})} d\tilde{u} \\
= L_{\pi_1(u)} \tilde{v} - \mathcal{L}_{\mathcal{L}_u} \tilde{v} \\
= \mathcal{L}_{\mathcal{L}_u} v = u \circ v,
\]
which implies that (32) holds.

By (16) and (31), we have
\[
\pi^2(L_A \tilde{u}) = \pi^2(\mathcal{L}_A u) = \text{ad}_{\mathcal{L}_u}.
\]
This ends the proof. \blacksquare

Theorem 6.4. Let $(\mathfrak{g}, [\cdot, \cdot, \cdot], \{\cdot, \cdot\}_g)$ be an m-dimensional n-Lie algebra such that it induces a linear Nambu-Poisson structure π_θ on \mathfrak{g}^*. Then the nonabelian omni n-Lie algebra $(\mathfrak{g}(\mathfrak{g}) \oplus \wedge^{n-1} \mathfrak{g}, (\cdot, :)_g, \{\cdot, \cdot\}_g, \rho_{\pi_\theta})$ is induced from the higher analogue of the Courant algebroid $(T^{n-1} \mathfrak{g}^*, (\cdot, :)_g, \{\cdot, \cdot\}_g, \rho_{\pi_\theta})$ associated to the Nambu-Poisson manifold $(\mathfrak{g}^*, \pi_\theta)$ via restriction to $\mathfrak{X}_{\text{lin}}(\mathfrak{g}^*) \oplus \Omega_{\text{con}}^{n-1}(\mathfrak{g}^*)$. More precisely, we have
\[
(\Phi(A + u), \Phi(B + v))_+ = [A + u, B + v]^+, \\
\{\Phi(A + u), \Phi(B + v)\}_{\pi_\theta} = \Phi(A + u, B + v)_g, \\
L_{\rho_{\pi_\theta} \Phi(A + u)} \mathfrak{W} = \rho_{\mathfrak{g}}(A + u)(\mathfrak{W}).
\]

Proof. (34) has been proved in Theorem 1.2. By (15) - (17) and (31) - (33), we deduce that
\[
\left[\hat{A} + \hat{u}, \hat{B} + \hat{v}\right]_{\pi_\theta} = [\hat{A}, \hat{B}] + [\hat{A}, \pi^2(\hat{v})] + [\pi^2(\hat{u}), \hat{B}] - \pi^2(L_A \hat{v}) + \pi^2(i_B d\hat{u}) + L_A \hat{v} - i_B d\tilde{u} + [\hat{u}, \tilde{v}]_{\pi_\theta} \\
= [\hat{A}, \hat{B}] + [\hat{A}, \mathcal{L}_u] + [\mathcal{L}_u, \hat{B}] - \mathcal{L}_{\mathcal{L}_A} \mathcal{L}_v + \mathcal{L}_A \tilde{v} + u \circ \tilde{v} \\
= [\hat{A}, \hat{B}] + [\hat{A}, \mathcal{L}_u] + [\mathcal{L}_u, \hat{B}] - \mathcal{L}_{\mathcal{L}_A} \mathcal{L}_v + \mathcal{L}_A \tilde{v} + u \circ \tilde{v} \\
= \Phi(A + u, B + v)_{\mathfrak{g}},
\]
which implies that (35) holds. By (17), we have $L_{\hat{A} + i^2(\hat{u})} \mathfrak{W} = \rho_{\mathfrak{g}}(A)(\mathfrak{W})$. Thus
\[
L_{\hat{A} + i^2(\hat{u})} \mathfrak{W} = L_{\hat{A} + i^2(\hat{u})} \mathfrak{W} = L_{\hat{A} + i^2(\hat{u})} \mathfrak{W} + L_{\mathcal{L}_u} \mathfrak{W} \\
= \rho_{\mathfrak{g}}(A)(\mathfrak{W}) + \rho_{\mathfrak{g}}(\mathcal{L}_u)(\mathfrak{W}) = \rho_{\mathfrak{g}}(A + u)(\mathfrak{W}),
\]
which says that (36) holds. This ends the proof. \blacksquare

References

[1] A. L. Agore and G. Militaru, Unified products for Leibniz algebras. Applications., Linear Algebra Appl. 2013, 439(9): 2609-2633.

[2] Y. Bi and Y. Sheng, On higher analogues of Courant algebroids, Sci. China Math. Vol. 54 (3) (2011), 437-447.
[3] P. Bouwknegt and B. Jurč, AKSZ construction of topological open p-brane action and Nambu brackets, *Rev. Math. Phys.* 25 (2013), 1330004, 31 pages.

[4] J. Cariñena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions, *J. Phys. A: Math. Gen.* 2004, 37(19): 5189-5202.

[5] Y. Daletskii and L. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, *Lett. Math. Phys.* 39 (1997), 127-141.

[6] J. A. de Azcárraga and J. M. Izquierdo, n-ary algebras: a review with applications, *J. Phys. A: Math. Theor.* 43 (2010), 293001.

[7] J. P. Dufour and N. T. Zung, Linearization of Nambu structures, *Compositio Math.* 117 (1999), no. 1, 77–98.

[8] V. T. Filippov, n-Lie algebras, *Sib. Mat. Zh.* 26 (1985) 126-140.

[9] J. Grabowski, Brackets, *Int. J. Geom. Methods Mod. Phys.* 10 (2013), 1360001, 45 pages.

[10] M. Grützmann and T. Strobl, General Yang-Mills type gauge theories for p-form gauge fields: from physics-based ideas to a mathematical framework or from Bianchi identities to twisted Courant algebroids, *Int. J. Geom. Methods Mod. Phys.* 12 (2015), no. 1, 1550009, 80 pp.

[11] Y. Hagiwara, Nambu–Dirac manifolds, *J. Phys. A* 35(5) (2002) 1263-1281.

[12] C. M. Hull, Generalised geometry for M-theory, *J. High Energy Phys.* 07 (2007) 079.

[13] R. Ibáñez, M. de León, J. Marrero and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, *J. Phys. A* 32 (46): 8129-8144, 1999.

[14] B. Jurč and J. Vysoký, Leibniz algebroids, generalized Bismut connections and Einstein–Hilbert actions, *J. Geom. Phys.* 97 (2015), 25-33.

[15] M. K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, *Amer. J. Math.* 123 (3): 525-550, 2001.

[16] Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids, *Bull. Braz. Math. Soc. (N.S.)* 2011, 42(4): 625-649.

[17] Y. Kosmann-Schwarzbach, Courant algebroids. A short history, *SIGMA Symmetry Integrability Geom. Methods Appl.* 9 (2013), Paper 014, 8 pp.

[18] H. Lang, Y. Sheng and X. Xu, Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids, *Lett. Math. Phys.* (2016), doi:10.1007/s11005-016-0925-8.

[19] H. Lang, Y. Sheng and X. Xu, Nonabelian omni-Lie algebras, *Banach Center Publications*, 110 (2016), 167-176.

[20] Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, *J. Diff. Geom.* 1997, 45(3): 547-574.

[21] J. L. Loday and T. Pirashvilo, Universal enveloping algebras of Leibniz algebras and (co)homology, *Math. Ann.* 1993, 296 (1): 139-158.
[22] D. Roytenberg, *Courant algebroids, derived brackets and even symplectic supermanifolds*, PhD thesis, UC Berkeley, 1999, arXiv: math.DG/9910078.

[23] Y. Sheng and C. Zhu, Semidirect products of representations up to homotopy, *Pacific J. Math.* 2011, 249(1): 211-236.

[24] L. Takhtajan, On foundation of the generalized Nambu mechanics, *Comm. Math. Phys.* 160(2):295-315, 1994.

[25] K. Uchino. Courant brackets on noncommutative algebras and omni-Lie algebras, *Tokyo J. Math.* 30(1):239-255, 2007.

[26] A. Weinstein, Omnip-Lie algebras, Microlocal analysis of the Schrödinger equation and related topics (Japanese) (Kyoto, 1999), *Sūrikaisekikenkyūsho Kōkyūroku*, 2000, 1176: 95-102.

[27] M. Zambon, L_∞-algebras and higher analogues of Dirac structures and Courant algebroids, *J. Symplectic Geom.* 10(4) (2012), 563-599.