Precipitation mediate the distribution of phytoplankton communities in a tributary of Three Gorges Reservoir

Chengrong Peng (pengcr@ihb.ac.cn)
Institute of Hydrobiology, Chinese Academy of Sciences

Yonghong Bi
Institute of Hydrobiology, Chinese Academy of Sciences

Zhengyu Hu
Institute of Hydrobiology, Chinese Academy of Sciences

Research Article

Keywords: Precipitation, Phytoplankton bloom, Distribution, Mixing regime, Spatiotemporal difference

DOI: https://doi.org/10.21203/rs.3.rs-218622/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Precipitation is a driver of changes in spatiotemporal distribution of phytoplankton communities. The ecological consequences of precipitation is importance but the underlying processes are not clear. Here we conducted an immediate prior- and after-event short-interval investigation in the Three Gorges Reservoir region, to test whether the short-term changes in the phytoplankton communities and functional groups could be predicted based on the precipitation level. We found that precipitation of moderate and high levels immediately changed the phytoplankton distribution and altered functional groups. According to structural equation model, the vertical velocity ($\lambda = -0.81$), Z_{eu}/Z_{mix} ($\lambda = 0.47$) and RWCS ($\lambda = 0.38$) were important parameters for phytoplankton distribution during the precipitation event. Water quality was not directly affected phytoplankton distribution ($\lambda = -0.11$) and effects of precipitation on the water quality only lasted 1–2 days. Phytoplankton community was redistributed with some tolerance functional groups appearance, such as group F, Lo, M and groups M, MP, TB, W1 appeared during- and after- precipitation event, respectively. We also found that the mixing rather than flushing was the driving force for the decrease of phytoplankton biomass. Our study provided valuable data for reservoir regulation and evidence for predictions of phytoplankton during the precipitation events under different climate change scenarios.

1. Introduction

Phytoplankton are essential organisms of aquatic food webs, but they can reach unusually high concentrations under suitable conditions. Phytoplankton blooms are becoming increasingly common in aquatic ecosystems worldwide (Chen et al., 2018). The dynamics and maximal biomass of phytoplankton are driven by a wide range of factors including abiotic factors such as hydrological conditions and biotic variables like the presence of filter-feeders (Havens et al., 2017; Kuo and Wu, 2016). As a result, the distribution of phytoplankton is site-specific and notoriously patchy and dynamic (Cyr, 2017). Distribution is often disturbed by factors such as precipitation or wind over short-term scales (Serra et al., 2007; Vidal et al., 2014; Yang et al., 2017). Understanding the ecological consequences of phytoplankton community and distribution change in the water column caused by different variables acting on spatial and temporal scales is a challenge for controlling ecosystem productivity (Serra et al., 2007). Previous studies have reported that precipitation can change phytoplankton community structure (Ahn et al., 2002b; Jeong et al., 2007; Sung et al., 2002) and succession (Znachor et al., 2008), and can delay the outbreak of phytoplankton blooms (Iriarte and Purdie, 2004). The physical processes by which precipitation changes phytoplankton aggregation in space and in time are not entirely clear. In this study, we examine how precipitation affects the distribution and composition of phytoplankton in the Three Gorges Reservoir (TGR) region, China, which is one of the largest reservoirs in the world and has experienced frequent phytoplankton blooms since completion of the dam in 2003.

The effects of precipitation on freshwater ecosystems have received increasing attention in recent decades, because extreme precipitation events are predicted to increase due to climate change in the near future (IPCC, 2013), and more extreme precipitation events are now being observed globally (Lehmann et
al., 2015; Richardson et al., 2019). Freshwater ecosystems in China are directly influenced by the East Asian monsoon which drives concentrated precipitation spikes in summer, and might play a key role in influencing water quality and aquatic biota (Guo et al., 2018). Some studies have examined the relationship between precipitation and phytoplankton (Ahn et al., 2002a; Richardson et al., 2019; Sung-Su-Hong et al., 2002; Wu et al., 2013; Zhou et al., 2012), and precipitation and water quality (Jeong et al., 2011). The fields observation also displayed a disappearance of phytoplankton bloom and decrease of biomass after precipitation. A question that remains unanswered is how precipitation regulates phytoplankton assemblage and distribution. Additionally, previous studies were limited to rivers, shallow lakes, or small reservoirs as study systems, where precipitation can strongly affect phytoplankton assemblage through flushing and changes in selection pressures such as nutrient concentrations or mixing depth (Badylak et al., 2016; Richardson et al., 2019; Sadro and Melack, 2012), due to the high fluidity or limited storage capacity of the water body. In large and deep reservoirs, precipitation events may have different impacts on phytoplankton assemblage and dynamics (Paerl et al., 2016; Perga et al., 2018). Precipitation is difficult to predict accurately; a rigorous and immediate prior- and after-event short-interval sampling program is required to measure its effects. The potential for global climate change highlights the importance of understanding the ecological consequences of precipitation in terms of the structure and function of aquatic ecosystems in the TGR region and other large water bodies. Huge, deep reservoirs are of particular ecological interest as 57,000+ large dams have been constructed on half of the Earth’s major rivers.

Phytoplankton are sorted into functional groups based on their ecological and physiological traits rather than common morphological characteristics or phylogenetic origins; the functional groups concept better characterizes their role in biogeochemical cycles and reflects environmental changes (Reynolds et al., 2002; Yang et al., 2016), such as *Microcystis* from Group M and *Merismopedia* from Group Lo survive in distinct adaptive strategies with different favor habitat, but they belong to same taxa, Chrococcaceae of Cyanophyta. The phytoplankton structure of the TGR and its relationship to water management and flood regulation has been previously described, with different functional groups dominating during the stratification and mixing seasons (Peng et al., 2013; Zhu et al., 2013). However, the effect of precipitation events, including that of the spikes associated with the annual East Asian monsoon, has yet to be adequately measured.

Here, we describe an *in situ* timely sampling program in a tributary of TGR during the cyanobacteria bloom period, and test whether short-term changes in the phytoplankton assemblage and functional groups can be predicted from precipitation amount. We tested the hypotheses that: (a) precipitation events would rapidly change the distribution of the phytoplankton assemblage and functional groups; (b) precipitation would result in a loss of phytoplankton biomass, and (c) taxonomic composition of phytoplankton communities differs between prior- and after-precipitation events.

2. Materials And Methods

2.1 Sampling site and sampling methods
This study was performed in the Xiangxi River, a tributary of the TGR and eventually the Yangtze River. It has a watershed of 3095 km2, annual average flow 47.4 m3/s (Liu et al., 2012), and annual precipitation ranging from 670 mm to 1700 mm (Han et al., 2014). Daily precipitation and wind data were obtained from the nearest official weather station of Xingshan, which was about 5 km from the sampling site (Fig. 1). During a *Microcystis* sp. dominated cyanobacteria bloom in summer, phytoplankton and water quality parameters were measured every day at the sampling site (Fig. 1), and data of 10 consecutive days were selected to analyze once continuous precipitation appeared.

Water samples were collected from depths of 0.5, 1.0, 2.0, 5.0, and 10.0 m below the water surface, and the water quality parameters of each depth were measured synchronously in situ. Water temperature (WT) and dissolved oxygen (DO) were measured with a YSI Professional Plus (YSI Incorporated, Yellow Springs, OH, USA). The photosynthetically active radiation (PAR) in the air and underwater was measured with a LI-1400 data logger (LI-COR, Lincoln, NE, USA). The flow fields of the sampling sites were surveyed with FlowQuest 600 (LinkQuest Incorporated, San Diego, CA, USA) installed on a boat. Three-dimensional velocity and discharge at the sampling site were analyzed with the FlowQuest 600 Discharge Measurement 6.0.0 package with the offline analysis according to the user’s manual.

Total nitrogen (TN) and permanganate index (COD$_{Mn}$) were determined in accordance with standard methods for water and wastewater (APHA, 2012). Bulk water samples for phytoplankton analysis were preserved with 1.5% Lugol’s solution and concentrated to 30 mL after sedimentation for more than 48 h, then counted with an optical microscope (Olympus CX21, Tokyo, Japan) under ×400 magnification. Phytoplankton were identified according to algal taxonomy keys (Hu and Wei, 2006; John et al., 2002). Mean biovolume (organism mm3 L$^{-1}$) of main taxa was calculated by assigning geometric shapes to each cell or filament (Brierley et al., 2007), and assuming the biomass unit as expressed in mass, where 1 mm3 L$^{-1}$ = 1 mg L$^{-1}$ (Napiórkowska-Krzebietke and Kobos, 2016). Phytoplankton were classified into functional groups, using the criteria established by Reynolds et al. (Reynolds et al., 2002) and Padisák et al. (Padisák et al., 2009).

2.3 Data analysis

In order to assess the immediate effect of precipitation on water quality, a minimum water quality index (WQI_{min}) method was established according to the equation below (Pesce and Wunderlin, 2000):

$$WQI_{min} = \sum_{i=1}^{n} \frac{Ci}{n}$$

where n is the total number of parameters and Ci is the value after normalization. In this study, DO, TN, and COD$_{Mn}$ were normalized based on normalization factors and used to calculate the WQI_{min}, following the methods of a water quality assessment at Lake Taihu, China, a large lake at a similar latitude, where WQI_{min} values were positive correlated with water quality (Wang et al., 2019b).
The euphotic zone (Z_{eu}) was calculated as the depth where underwater PAR is 1% of its surface strength (Kirk, 1994). A minimum temperature gradient of 0.2 °C over the depth spacing of the temperature profiles was used to identify the mixing depth (Z_{mix}) (Amaral et al., 2018). The ratio between the euphotic zone and the mixing zone (Z_{eu}/Z_{mix}) was used as a measure of light availability (Jensen et al., 1994).

The dimensionless parameter of relative water column stability (RWCS) was used to describe the hydrodynamic conditions, and calculated according to the following formula (Padisák et al., 2003):

$$RWCS = \frac{D_b - D_s}{D_4 - D_5}$$ \hspace{1cm} (2)

Where D_b is the density of bottom waters; D_s is the density of the surface waters; and D_4 and D_5 are the densities of pure water at 4°C and 5°C, respectively.

Morisita’s index was used to evaluate the distribution of phytoplankton in the water column. The index was calculated as (Hills and Thomason, 1996; Thackeray et al., 2006):

$$I_\delta = N \cdot \frac{\sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} x_i}{\left(\sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} x_i\right)^2}$$ \hspace{1cm} (3)

Where N is the total number of layers in water column; X_i is the number of individuals in the i^{th} layer. The index is equal to 1 for a random distribution, less than 1 for a uniform distribution, and greater than 1 for a clumped distribution.

2.4 Statistical analysis

Based on the precipitation events, the sampling days were divided into two periods (Fig. 2): the continuous precipitation period (P1) which included moderate precipitation (Jun 21-Jun 24) and heavy precipitation (Jun 25) days, and the five-day post-precipitation period (P2; Jun 26-30). The precipitation effect is believed to persist for 3-5 days (Baek et al., 2009).

The significant dissimilarities of phytoplankton assemblage structure between P1 and P2 were tested by applying analysis of similarity (ANOSIM) based on permutation procedures with 999 runs (Clarke, 1993). ANOSIM was carried out with the software package Primer 6.0. The differences of selected parameters were separately compared with P1 and P2 using a Wilcoxon rank-sum test. Time-series analysis of a cross-correlation statistical method was used to show time lag of the influence of precipitation on selected parameters (Baek et al., 2009; Zhang et al., 2019). Statistical analysis was carried out in the IBM SPSS Statistics 25 package. To characterize the variation of functional groups during- and after- precipitation event, coefficient of variation (CV) was calculated based on standard deviation divided by the mean value.
Structural equation model (SEM) analyses were used to analyze the significance of the hypothesized causal relationships among precipitation, water quality (WQI_{min}), hydrologic regime (velocity, RWCS, Z_{eu}/Z_{mix}), and phytoplankton assemblage distribution (I_δ). The best-fit model was obtained by using maximum likelihood estimation and improved iteratively by modification in prior models according to a set of modification indices, such as chi-square test (χ^2), p values, degrees of freedom (df), goodness-of-fit index (GFI), and root mean square errors of approximation (RMSEA) (Wang et al., 2019a). SEM analyses were performed using the IBM Amos 24 package.

3. Results

3.1 Effects of precipitation on water quality

The WQI_{min} fluctuated during the observation period, ranging from 31.8 to 76.7 (Fig. 3a), representing trophic state indices from hypereutrophic to mesotrophic, and the overall WQI_{min} showed significant change between P1 and P2 (Wilcoxon tests, $p < 0.05$). Before the five-day precipitation event, the sampling site was experiencing a cyanobacteria bloom, which was dominated by Microcystis, and the spatial distribution of WQI_{min} was uneven across different depths, with a relatively low average WQI_{min} of 45.1. The WQI_{min} decreased, with trophic state worsening, with the continuous moderate precipitation. The highest peak was observed 2 m below the water surface during heavy precipitation (Jun 25). After precipitation, the average WQI_{min} was much higher, though the spatial distribution of WQI_{min} was uneven in the water column. Cross-correlation indicated that the water quality of the upper layer (0-5 m) increased the day of precipitation, but that of the lower layer (5-10 m) increased 1 day after the precipitation event (Fig. 3b). The effects of precipitation on the water quality lasted 1-2 days, then the water column gradually reverted to pre-precipitation state.

3.2 Effects of precipitation on hydrodynamics

The horizontal and vertical velocity in the water column showed different patterns, with the vertical velocity being much higher than horizontal velocity during the study period (Fig. 4a and 4b). The horizontal velocity at different depths in the water column remained relatively stable during rainy days, even during heavy precipitation, and the overall horizontal velocity showed no significant change between P1 and P2 (Wilcoxon tests, $p > 0.05$). However, the vertical velocity at different depths in the water column varied greatly during rainy days, especially in the upper layer, in which it increased almost two times during heavy precipitation, and vertical velocity changed significantly between P1 and P2 (Wilcoxon tests, $p < 0.05$). The RWCS decreased as the water column started mixing across the precipitation period (Fig. 4c) and became almost completely mixed during the heavy precipitation day. Stratification resumed 1 day after the precipitation disturbance and RWCS showed significant change between P1 and P2 (Wilcoxon tests, $p < 0.05$). Cross-correlation indicated that precipitation affected flow field and stratification of the water column at different times. The vertical velocity increased and RWCS decreased the day of precipitation, while the horizontal velocity changed 1 day after the precipitation event (Fig. 4d).
3.3 Phytoplankton assemblage dynamics

During the study period, the phytoplankton assemblage was dominated by *Microcystis* sp., and a total of 36 algal taxa belonging to 6 phyla were recorded. 16 functional groups were classified, including the 28 descriptor taxa (Tab.S1). The M, H1, G, A, and Y functional groups were the main contributors to the phytoplankton assemblage in the Xiangxi River across the study period (Fig. 5a). Before the precipitation event, the phytoplankton community was dominated by M and H1 functional groups, but there was marked temporal and spatial variation in representation of the functional groups of phytoplankton during rainy days (Fig. 5a). Group Y sharply decreased in the water column after the start of precipitation. During the heavy precipitation day, the phytoplankton community was dominated by Groups M, A, and G, and the deeper layer of water column was dominated by Groups A, D, P, and M. The overall phytoplankton assemblage structure showed no detectable change between P1 and P2 (ANOSIM, p > 0.05). The dominant taxon was cyanobacteria over the entire course of the study, with the proportion of cyanobacteria remaining higher than that of the other taxa. After the precipitation event, the proportion of bacillariophyta increased slowly, but this phenomenon just lasted 3 days. The vertical distribution of phytoplankton biomass changed significantly during the precipitation period (Fig. 5c). The biomass was higher in the upper layer than in the deeper layer during the continuous moderate precipitation period, while it became very low in the entire water column during the heavy precipitation day. However, the distribution of phytoplankton recovered quickly from this stage after the cessation of heavy precipitation, with the biomass increasing, and even being higher, in the upper layer than before precipitation occurred.

CV values for each functional group were calculated and used to identify variation of functional groups during- and after- precipitation event (Tab. S2). High CV means the presence of strong distribution heterogeneity. Low CV indicates low cohort heterogeneity in relation to distribution. For our study, in most functional groups the values of CV are rather high, indicating heterogeneity of the spatiotemporal distribution. Groups F, Lo, M, and groups M, MP, TB, W1 shared the last 20% average CV values at all sampling depth in the P1 and P2, respectively (Tab. S2), indicated their relatively stability along the time course. Group M (i.e. cyanobacteria) could persist during- and after- precipitation event, even after ca. 80 mm precipitation in 5 days.

Distribution of phytoplankton in the water column was affected by the precipitation event. Before the precipitation period, Morisita’s index was higher than during the precipitation period, indicating that the phytoplankton had a clumped distribution (Fig. 5c and 6). During the continuous precipitation, Morisita’s index decreased over time. The lowest value was observed during heavy precipitation; the value was close to 1, revealing that the vertical distribution of phytoplankton was significantly affected by the precipitation. Phytoplankton was randomly distributed during this time. After the rainy period, the distribution of phytoplankton returned to a clumped distribution. Corresponding to the cross-correlation coefficient, the lag was negative, indicating no direct significant effect of precipitation on Morisita’s index (Fig. 6b).

3.4 Structural equation model (SEM)
The fitting parameters of all minimal adequate path analysis explained 61% of the variance in phytoplankton distribution (Fig. 7a). Vertical velocity ($\lambda = -0.81$) was the strongest predictor of phytoplankton distribution (Fig. 7b) and was positively driven by precipitation ($r = 0.59, p < 0.001$). The vertical velocity directly affected phytoplankton distribution ($r = -0.72, p < 0.001$), also strongly explained the variance of RWCS and Z_{eu}/Z_{mix}, which directly contributed to the phytoplankton distribution in the water column (Fig. 7a).

4. Discussion

Precipitation governs water quality variation in river systems, especially when the river is regulated by dams (Jeong et al., 2011; Wolf et al., 2020). But there is a knowledge gap in the physical processes by which precipitation changes phytoplankton aggregation in space and in time. Surface water nutrient concentrations often increase markedly during and immediately after precipitation events (Sherson et al., 2015; Walker, 1991). Nutrients from precipitation-runoff lead to deterioration of water quality in the TGR basin. This phenomenon was observed in the current study, where continuous moderate precipitation increased the concentration of many nutrients in the water column (unpublished data), and the WQI$_{min}$ decreased (Fig. 3a). However, the water quality of surface water increased during heavy precipitation, which may be due to a dilution effect. Although WQI$_{min}$ increased slightly during heavy precipitation, it returned to pre-precipitation values quickly, and even continued to decrease. Water quality variation was observed 0 and 1 day following precipitation at the depths of 0-5 m and 10 m, respectively (Fig. 3b). The results of cross-correlation statistical analysis imply that water quality synchronized with discharge after precipitation, which is a main cue for dynamics of phytoplankton population during the summer season (Baek et al., 2009). The possibility that the East Asian monsoon summer rains drive phytoplankton dynamics in the TGR deserves further study.

Wind plays an important role in the distribution of phytoplankton by mixing the surface layer (Cyr, 2017; Liu et al., 2012; Monismith and MacIntyre, 2009). The strength and effect of these shear forces depends on the wind speed (Boegman, 2009; Cyr, 2017; Kim et al., 2014). The patchiness of phytoplankton in lakes and reservoirs disappears at wind speeds above 3-4 m s$^{-1}$ (Hunter et al., 2008; Vidal et al., 2014). During this study, the maximum wind speed reached 12.3 m s$^{-1}$, but the mean wind speed was only 1.1 m s$^{-1}$, with the main wind direction from the south-southwest (Fig. S1). The influence of winds on mixing of the surface layer is small: the horizontal velocity at all depths in the water column remained relatively low during rainy days, even during heavy precipitation (Fig. 4a and 4b). This fresh water probably reached the sampling site 1 day after precipitation (Fig. 4d). The RWCS decreased as the mixing increased: the water column started mixing the day of precipitation (Fig. 4d), and almost completely mixed in the heavy precipitation day (Fig. 4c). Mixing regime governs the phytoplankton composition (Becker et al., 2010); the structure of phytoplankton communities is mainly determined by resource availability (Reynolds, 2006) and hydrological conditions (Cyr, 2017; Monismith and MacIntyre, 2009). Hydrological conditions are integral drivers of community assemblages in short-term weather events. During the precipitation days, mixing may have selected for groups tolerant to mixing regime and low light, such as groups F, Lo
and M. After the precipitation event, groups M, MP, TB, W1 were more stable than other groups. Contrarily to the traditional paradigm that short-term and abrupt changes in water column attenuate cyanobacterial blooms, the results showed that in some cases (after ca. 80 mm precipitation in 5 days), cyanobacteria (i.e. group M) can persist over time.

During the study period, the dominant taxon in the Xiangxi River was cyanobacteria, primarily *Microcystis* sp., and accounted for nearly 90% of the cell density. Previous research showed that an intense East Asian monsoon reduced a cyanobacteria bloom while a weak monsoon increased it (An and Jones, 2000). However, our data suggested that phytoplankton concentrated in the upper layer of water column after continuous moderate precipitation, resulting in low cell density of phytoplankton in the deeper layer of the water column. Cell density of phytoplankton in the entire water column was significantly lower on the day of heavy precipitation than during other days (Fig. 5c), providing partial support for our second hypothesis. However, cell density recovered and proliferated from the precipitation event quickly, faster than other studies have reported (Ye et al., 2007; Zhou et al., 2011). There are several potential explanations for this rapidity: an increased concentration of nutrients in the upper layers of the water column after moderate rain drew phytoplankton there (evidenced by their clumped distribution), and/or subsequent heavy rains caused phytoplankton migrated horizontally and vertically due to the destabilization of the water column (resulting in random distribution; Fig. 6).

The most important precondition for a cyanobacteria bloom is water column stability (Park et al., 2000). Previous studies showed that the phytoplankton diversity is low during blooms (Jacobsen and Simonsen, 1993; Sung-Su-Hong et al., 2002). Our study similarly found that during the cyanobacteria bloom, phytoplankton diversity in the water column was also low. When the hydrological conditions of Xiangxi River were significantly affected by heavy precipitation, the cyanobacteria bloom disappeared (Fig. 5c). We observed changes in phytoplankton distribution after the precipitation event, in support of our first hypothesis. The physical disturbance caused by heavy precipitation may generate a uniform phytoplankton distribution in the water column and enable benthic taxa to co-exist in surface water (Sung-Su-Hong et al., 2002). This positively affects phytoplankton diversity, and a tendency of diversity to increase at lower biomass is also observed (Moustaka-Gouni, 1993). Similarly, during the heavy precipitation period of this study, phytoplankton diversity slightly increased in the lower water column even though the biomass decreased. During moderate continuous precipitation, Morisita's index decreased, suggesting that the distribution of phytoplankton in the water column was affected (Fig. 6); however, there were no obvious changes in phytoplankton composition structure during the continuous precipitation period (Fig. 5a).

Precipitation can abruptly affect environmental conditions and community assemblages. In the current study, a precipitation event altered water quality and phytoplankton distribution. However, no overarching changes to the phytoplankton taxonomic composition were found during the study period. This is likely because cyanobacteria overwhelmingly dominated the community (>90%), while other taxons were scarce. The reason for the disappearance of the cyanobacteria bloom during heavy precipitation is the phytoplankton vertical migration driven by vertical velocity (Fig. 7). The measured water quality
parameters and phytoplankton biomass returned to pre-rain levels quickly (Fig. 3a and 5c), after sedimentation of suspended particles and an increase in light availability. Precipitation has the potential to show long-term effects on aquatic ecosystems, in particularly there may be a massive phytoplankton bloom after precipitation event due to the high input of nutrients and light availability.

After the completion of the dam at the TGR, ecological changes to tributary backwaters have attracted widespread attention and study due to high incidence of phytoplankton blooms (Ministry of Environmental Protection of China, 2019). Some studies have indicated that a mixing regime caused by sufficiently large water level fluctuations might be an effective way to inhibit phytoplankton blooms (Liu et al., 2012; Paillisson and Marion, 2011; Yang et al., 2010). Unfortunately, it is impossible for the TGR to maintain regular, sufficiently large water level fluctuations and meet the goals of flood management, water resource supplies, and hydropower production. Flood-operations and flow-operations are carried out each year in the TGR according to the Directive of the Ministry of Water Resources of the People's Republic of China; however, these hydrological approaches are based on flow, without consideration of biology. A practical approach for phytoplankton bloom or productivity control is still needed. Our results suggest that under future climate change scenarios, precipitation might be a valuable signal for reservoir regulation due to the widespread climate monitoring network that makes it easy to obtain real-time precipitation information, and timely flow-operation can flush more phytoplankton when they are mixed by precipitation, limiting harmful blooms.

Declarations

Authors’ contributions Chengrong Peng: Conceptualization, Investigation, Formal analysis, Writing – original draft. Zhengyu Hu: Resources. Yonghong Bi: Conceptualization, writing – review and editing.

Funding This study was supported by the National Natural Science Foundation of China (No: 31901156) and National Key Research and Development Project (2019YFD0900603). We are thankful to Yijun Yuan, Yi Yang, and Yongmei Lei for their assistance with field work and analysis of water samples.

Availability of data and materials Not applicable.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

References

Ahn C-Y, Chung A-S, Oh H-M. Rainfall, phycocyanin, and N: P ratios related to cyanobacterial blooms in a Korean large reservoir. Hydrobiologia 2002a; 474: 117-124.
Ahn CY, Chung AS, Oh HM. Rainfall, phycocyanin, and N: P ratios related to cyanobacterial blooms in a Korean large reservoir. Hydrobiologia 2002b; 474: 117-124.

Amaral JHF, Borges AV, Melack JM, Sarmento H, Barbosa PM, Kasper D, et al. Influence of plankton metabolism and mixing depth on CO₂ dynamics in an Amazon floodplain lake. Science of the Total Environment 2018; 630: 1381-1393.

An K-G, Jones JR. Factors regulating bluegreen dominance in a reservoir directly influenced by the Asian monsoon. Hydrobiologia 2000; 432: 37-48.

APHA. Standard methods for the examination of water and wastewater (22nd ed.). Washington DC: American Public Health Association (APHA), 2012.

Badylak S, Phlips E, Dix N, Hart J, Srifa A, Haunert D, et al. Phytoplankton dynamics in a subtropical tidal creek: influences of rainfall and water residence time on composition and biomass. Marine and Freshwater Research 2016; 67: 466-482.

Baek SH, Shimode S, Kim HC, Han MS, Kikuchi T. Strong bottom-up effects on phytoplankton community caused by a rainfall during spring and summer in Sagami Bay, Japan. Journal of Marine Systems 2009; 75: 253-264.

Becker V, Caputo L, Ordonez J, Marce R, Armengol J, Crossetti LO, et al. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research 2010; 44: 3345-3354.

Boegman L. Currents in Stratified Water Bodies 2: Internal Waves. In: Likens GE, editor. Encyclopedia of Inland Waters. Academic Press, Oxford, 2009, pp. 539-558.

Brierley B, Carvalho L, Davies S, Krokowski J. Guidance on the Quantitative Analysis of Phytoplankton in Freshwater Samples. 2007.

Chen NW, Mo QL, Kuo YM, Su YP, Zhong YP. Hydrochemical controls on reservoir nutrient and phytoplankton dynamics under storms. Science of the Total Environment 2018; 619: 301-310.

Clarke KR. Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology 1993; 18: 117-143.

Cyr H. Winds and the distribution of nearshore phytoplankton in a stratified lake. Water Research 2017; 122: 114-127.

Guo CX, Zhu GW, Paerl HW, Zhu MY, Yu L, Zhang YB, et al. Extreme weather event may induce Microcystis blooms in the Qiantang River, Southeast China. Environmental Science and Pollution Research 2018; 25: 22273-22284.
Han JC, Huang GH, Zhang H, Li Z, Li YP. Heterogeneous Precipitation and Streamflow Trends in the Xiangxi River Watershed, 1961-2010. Journal of Hydrologic Engineering 2014; 19: 1247-1258.

Havens KE, Ji G, Beaver JR, Fulton RS, Teacher CE. Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia 2017: 1-17.

Hills JM, Thomason JC. A multi-scale analysis of settlement density and pattern dynamics of the barnacle Semibalanus balanoides. Marine ecology progress series. Oldendorf 1996; 138: 103-115.

Hu H, Wei Y. The freshwater algae of China: systematics, taxonomy and ecology: Science Press, 2006.

Hunter PD, Tyler AN, Willby NJ, Gilvear DJ. The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing. Limnology and Oceanography 2008; 53: 2391-2406.

IPCC. Climate change 2013: The physical science basis. Geneva: IPCC, 2013.

Iriarte A, Purdie DA. Factors controlling the timing of major spring bloom events in an UK south coast estuary. Estuarine Coastal and Shelf Science 2004; 61: 679-690.

Jacobsen BA, Simonsen P. Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Springer, 1993, pp. 9-14.

Jensen JP, Jeppesen E, Olrik K, Kristensen P. Impact of Nutrients and Physical Factors on the Shift from Cyanobacterial To Chlorophyte Dominance in Shallow Danish Lakes. Canadian Journal of Fisheries and Aquatic Sciences 1994; 51: 1692-1699.

Jeong K-S, Kim D-K, Shin H-S, Yoon J-D, Kim H-W, Joo G-J. Impact of summer rainfall on the seasonal water quality variation (chlorophyll a) in the regulated Nakdong River. KSCE Journal of Civil Engineering 2011; 15: 983-994.

Jeong KS, Kim DK, Joo GJ. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Research 2007; 41: 1269-1279.

John DM, Whitton BA, Brook AJ. The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae: Cambridge University Press, 2002.

Kim TW, Najjar RG, Lee K. Influence of precipitation events on phytoplankton biomass in coastal waters of the eastern United States. Global Biogeochemical Cycles 2014; 28: 1-13.

Kirk JTO. Light and photosynthesis in aquatic ecosystems: Cambridge university press, 1994.
Kuo YM, Wu JT. Phytoplankton dynamics of a subtropical reservoir controlled by the complex interplay among hydrological, abiotic, and biotic variables. Environmental Monitoring and Assessment 2016; 188.

Lehmann J, Coumou D, Frieler K. Increased record-breaking precipitation events under global warming (vol 132, pg 501, 2015). Climatic Change 2015; 132: 517-518.

Liu L, Liu DF, Johnson DM, Yi ZQ, Huang YL. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: Implications for management. Water Research 2012; 46: 2121-2130.

Ministry of Environmental Protection of China. Bulletin on the Ecological and Environmental Monitoring Results of the Three Gorges Project(2003-2018), 2019.

Monismith SG, MacIntyre S. The Surface Mixed Layer in Lakes and Reservoirs. In: Likens GE, editor. Encyclopedia of Inland Waters. Academic Press, Oxford, 2009, pp. 636-650.

Moustaka-Gouni M. Phytoplankton succession and diversity in a warm monomictic, relatively shallow lake: Lake Volvi, Macedonia, Greece. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Springer, 1993, pp. 33-42.

Napiórkowska-Krzebietke A, Kobos J. Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies. Water Research 2016; 104: 532-546.

Padisák J, Barbosa F, Koschel R, Krienitz L. Deep layer cyanoprokaryota maxima in temperate and tropical lakes. Arch Hydrobiol Spec Issues Adv Limnol 2003; 58: 175-199.

Padisak J, Crossetti LO, Naselli-Flores L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 2009; 621: 1-19.

Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJ, Newell SE, et al. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016; 54: 213-222.

Paillisson JM, Marion L. Water level fluctuations for managing excessive plant biomass in shallow lakes. Ecological Engineering 2011; 37: 241-247.

Park H, Jheong W, Kwon O, Ryu J. Seasonal succession of toxic cyanobacteria and microcystins concentration in Paldang reservoir. Algae 2000; 15: 277-282.

Peng C, Zhang L, Zheng Y, Li D. Seasonal succession of phytoplankton in response to the variation of environmental factors in the Gaolan River, Three Gorges Reservoir, China. Chinese Journal of Oceanology and Limnology 2013; 31: 737-749.
Perga ME, Bruel R, Rodriguez L, Guenand Y, Bouffard D. Storm impacts on alpine lakes: Antecedent weather conditions matter more than the event intensity. Global Change Biology 2018; 24: 5004-5016.

Pesce SF, Wunderlin DA. Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquia River. Water Research 2000; 34: 2915-2926.

Reynolds CS. The Ecology of Phytoplankton. Cambridge: Cambridge University Press, 2006.

Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 2002; 24: 417-428.

Richardson J, Feuchtmayr H, Miller C, Hunter PD, Maberly SC, Carvalho L. Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Global Change Biology 2019; 25: 3365-3380.

Sadro S, Melack JM. The Effect of an Extreme Rain Event on the Biogeochemistry and Ecosystem Metabolism of an Oligotrophic High-Elevation Lake. Arctic Antarctic and Alpine Research 2012; 44: 222-231.

Serra T, Vidal J, Casamitjana X, Soler M, Colomer J. The role of surface vertical mixing in phytoplankton distribution in a stratified reservoir. Limnology and Oceanography 2007; 52: 620-634.

Sherson LR, Van Horn DJ, Gomez-Velez JD, Crosse LJ, Dahm CN. Nutrient dynamics in an alpine headwater stream: use of continuous water quality sensors to examine responses to wildfire and precipitation events. Hydrological Processes 2015; 29: 3193-3207.

Sung-Su-Hong, Bang SW, Kim YO, Han MS. Effects of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the Pal'tang Reservoir, Korea. Journal of Freshwater Ecology 2002; 17: 507-520.

Sung SH, Bang SW, Kim YO, Han MS. Effects of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the Pal'tang Reservoir, Korea. Journal of Freshwater Ecology 2002; 17: 507-520.

Thackeray SJ, George DG, Jones RI, Winfield IJ. Statistical quantification of the effect of thermal stratification on patterns of dispersion in a freshwater zooplankton community. Aquatic Ecology 2006; 40: 23-32.

Vidal J, Rigosi A, Hoyer A, Escot C, Rueda FJ. Spatial distribution of phytoplankton cells in small elongated lakes subject to weak diurnal wind forcing. Aquatic Sciences 2014; 76: 83-99.

Walker JCG. Biogeochemistry - an Analysis of Global Change. Science 1991; 253: 686-687.
Wang DD, Zhu ZK, Shahbaz M, Chen L, Liu SL, Inubushi K, et al. Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: a 100-day incubation experiment. Biology and Fertility of Soils 2019a; 55: 701-712.

Wang JL, Fu ZS, Qiao HX, Liu FX. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Science of the Total Environment 2019b; 650: 1392-1402.

Wolf KA, Gupta SC, Rosen CJ. Precipitation Drives Nitrogen Load Variability in Three Iowa Rivers. Journal of Hydrology: Regional Studies 2020; 30: 100705.

Wu TF, Qin BQ, Zhu GW, Luo LC, Ding YQ, Bian GY. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China. Environmental Science and Pollution Research 2013; 20: 8546-8556.

Yang J, Lv H, Yang J, Liu LM, Yu XQ, Chen HH. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Science of the Total Environment 2016; 557: 445-452.

Yang JR, Lv H, Isabwe A, Liu LM, Yu XQ, Chen HH, et al. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research 2017; 120: 52-63.

Yang ZJ, Liu DF, Ji DB, Xiao SB. Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay. Science China-Technological Sciences 2010; 53: 1114-1125.

Ye L, Han X, Xu Y, Cai Q. Spatial analysis for spring bloom and nutrient limitation in Xiangxi bay of three Gorges Reservoir. Environmental monitoring and assessment 2007; 127: 135-145.

Zhang M, Niu ZP, Cai QH, Xu YY, Qu XD. Effect of Water Column Stability on Surface Chlorophyll and Time Lags under Different Nutrient Backgrounds in a Deep Reservoir. Water 2019; 11.

Zhou G, Zhao X, Bi Y, Hu Z. Effects of rainfall on spring phytoplankton community structure in Xiangxi Bay of the Three-Gorges Reservoir, China. Fresen Environ Bull 2012; 21.

Zhou G, Zhao X, Bi Y, Liang Y, Hu J, Yang M, et al. Phytoplankton variation and its relationship with the environment in Xiangxi Bay in spring after damming of the Three-Gorges, China. Environmental monitoring and assessment 2011; 176: 125-141.

Zhu KX, Bi YH, Hu ZY. Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China. Science of the Total Environment 2013; 450: 169-177.

Znachor P, Zapomelova E, Rehakova K, Nedoma J, Simek K. The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquatic Sciences 2008; 70: 77-86.
Figure 1

Location of sampling site and weather station in the Xiangxi River of Three Gorges Reservoir. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 2

Daily precipitation at the sampling site during the study period.

Figure 3

(a) Spatiotemporal variation in WQImin at the sampling site during the study period; (b) Time lagged cross-correlation between precipitation and WQImin at different depths. Asterisk indicate precipitation and corresponding parameter change with a time lag (days).
Figure 4

Spatiotemporal variation in (a) horizontal velocity, (b) vertical velocity, and (c) RWCS at the sampling site during the study period; (d) time lagged cross-correlation between precipitation and horizontal velocity, vertical velocity, and RWCS. Asterisk indicates precipitation and corresponding parameter change with a time lag (days).
Figure 5

Variation of phytoplankton assemblage in the Xiangxi River during the study period. (a) Vertical distribution of phytoplankton function groups, (b) Relative contribution of phytoplankton, (c) Vertical distribution of phytoplankton biomass.
Figure 6

(a) Temporal variation in Morisita’s index during the study period; (b) time lagged cross-correlation between precipitation and Morisita’s index.

Figure 7

The direct (a) and total (b) effects of five variables on phytoplankton distribution, as determined by structural equation modeling. Arrow width and the numbers on the arrows correspond to the standardized path coefficients; significant and nonsignificant path coefficients are indicated by solid and dotted lines, respectively; blue and red arrows indicate positive and negative flows of causality (p<0.05), respectively.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMaterials.pdf