Assessing External Validity
Over Worst-case Subpopulations

Hongseok Namkoong
Decision, Risk, and Operations Division
Columbia Business School
namkoong@gsb.columbia.edu

Based on a joint work with Sookyo Jeong
https://arxiv.org/abs/2007.02411
Potential outcomes

• A feature vector $X \in \mathbb{R}^k$

• Potential outcomes: $Y(1), Y(0)$

• A treatment assignment $Z \in \{0, 1\}$

• Observe $Y := Y(Z)$, never $Y(1 - Z)$

Average Treatment Effect (ATE)

\[
ATE = \mathbb{E}[Y(1) - Y(0)]
\]

\[
= \mathbb{E}_{X \sim P_X} \left[\mathbb{E}[Y(1) | X] - \mathbb{E}[Y(0) | X] \right]
\]

\[
= \mathbb{E}_{X \sim P_X} \left[\mu^*_1(X) - \mu^*_0(X) \right] =: \mathbb{E}_{X \sim P_X} [\mu^*(X)]
\]

• P_X is the data generating distribution for X
What if P_X changes?

- Demographic compositions shift over time

![Change in share from 2009](chart.png)
What if P_X changes?

- Even for carefully designed randomized trials, “statistics” starts only at treatment assignment, with big biases in selection into study.

Distribution of log-district size in studies versus total population

[Tipton et al. 2019] The convenience of large urban school districts: a study of recruitment practices in 37 randomized trials
What if P_X changes?

• “Clinical trials for new drugs skew heavily white” [Oh et al. ’15, Burchard et al. ’15, SA Editors ’18]
 - Out of 10,000+ cancer trials, less than 2% focused on racial minorities, and less than 5% of participants were non-white

• Especially problematic when treatment effect is heterogeneous [Leigh et al. ’16, Imai et al. ’13, Gijsberts et al. ’15, Basu et al. ’17, Baum et al. ’17, Duan et al. ’19]

• Recently, two large trials with $n = 5K-10K$ had opposite findings on a treatment to lower blood pressure on cardiovascular disease [ACCORD ’10, SPRINT ’15]
Potential solution?

• Directly estimate conditional average treatment effect (CATE) using ML methods?
 [Leigh et al. '16, Imai et al. '13, Gijsberts et al. '15, Basu et al. '17, Baum et al. '17, Duan et al. '19, Nie and Wager '20]

• ML models perform very poorly on underrepresented groups

• ML estimates are unstable and resulting inference is underpowered

• Predefined subgroup analysis difficult due to intersectionality
Subpopulations

Automatically find **worst-off subpopulations** and measure **treatment effect** on them

\(Q_X \) is a subpopulation \(\iff \exists \) proportion \(a \in (0, 1] \), prob. \(Q'_X \)

s.t. \(P_X(\cdot) = aQ_X + (1 - a)Q'_X \)
Subpopulations

Automatically find **worst-off subpopulations** and measure **treatment effect** on them

\[Q_X \] is a subpopulation

\[\exists \text{proportion } a \in (0, 1], \text{ prob. } Q'_X \]

s.t. \[P_X(\cdot) = aQ_X + (1 - a)Q'_X \]
Subpopulations

Automatically find **worst-off subpopulations** and measure **treatment effect** on them

\[Q_X \text{ is a subpopulation} \iff \exists \text{proportion } a \in (0,1], \text{ prob. } Q'_X \]

s.t. \[P_X(\cdot) = aQ_X + (1 - a)Q'_X \]
Subpopulations

Automatically find **worst-off subpopulations** and measure **treatment effect** on them

Q_X is a subpopulation

\[\exists \text{proportion } a \in (0, 1], \text{ prob. } Q'_X \]

s.t.

\[P_X(\cdot) = aQ_X + (1 - a)Q'_X \]
Subpopulations

Automatically find worst-off subpopulations and measure treatment effect on them.

\(Q_X \) is a subpopulation \iff \exists \text{ proportion } a \in (0, 1], \text{ prob. } Q'_X \text{ s.t. } P_X(\cdot) = aQ_X + (1 - a)Q'_X \)
Worst-case subpopulation

Notation

\[Q_X \geq \alpha \iff \exists \text{probability } Q'_X, \text{ and } a \geq \alpha \]
\[\text{s.t. } P_X = aQ_X + (1 - a)Q'_X \]

Subpopulation with proportion larger than \(\alpha \in (0, 1] \)

Recap

- Covariates: \(X \)
- Treatment assignment: \(Z \)
- Potential outcome: \(Y(0), Y(1) \)
- Response \(Y := Y(Z) \)

Worst-case treatment over subpopulation larger than \(\alpha \in (0, 1] \)

\[
WTE_\alpha := \sup_{Q_X \geq \alpha} \mathbb{E}_{Q_X} [\mu^*(X)]
\]

where \(\mu^*(X) := \mathbb{E}[Y(1) - Y(0) \mid X] \) is the conditional average treatment effect (CATE).
Sensitivity analysis

- Posit a set of “plausible” changes to P_X, and take worst-case over them
- If effects are still valid under plausible violations, we can certify robustness
- Sensitivity of a finding: magnitude of violation when endpoint crosses a threshold
- Today: Worst-case bounds on the Doubly Robust / AIPW estimator

\[WTE_\alpha := \sup_{Q_X \geq \alpha} \mathbb{E}_{Q_X} [\mu^*(X)] \]
Sensitivity analysis

- Posit a set of “plausible” changes to P_X, and take worst-case over them
- If effects are still valid under plausible violations, we can certify robustness
- Sensitivity of a finding: magnitude of violation when endpoint crosses a threshold
- Today: Worst-case bounds on the Doubly Robust / AIPW estimator

Is this a “sensible” amount of distribution shift / violation?
Sensitivity analysis

- Does not assume a fixed target; often appropriate for operational decisions
- Heuristically, set α small if the collected data is not diverse
- Conservative but can still be useful; future work needed on this
- Need to be accompanied by a design-based perspective to maximizing diversity in P_X
Effect of Medicaid on doctor visits over time

• Evaluate effect of Medicaid enrollment on doctors’ office utilization

• Medicaid costs $553 billion/yr; need to ensure valid effects through time

• Outcome: visit to doctors in the two-weeks prior to a random survey date

• Control for demographics, medical history, employment, earnings, insurance, government assistance etc (d = 396)

• Take the viewpoint of an analyst in 2009 (n = 82,993)
Effect of Medicaid on doctor visits over time

- Evaluate effect of Medicaid enrollment on doctors’ office utilization in **2009**
Effect of Medicaid on doctor visits over time

- Evaluate effect of Medicaid enrollment on doctors’ office utilization
Effect of Medicaid on doctor visits over time

- Evaluate effect of Medicaid enrollment on doctors’ office utilization
Welfare attitudes experiment

- Evaluate effect of wording on survey results ("welfare" vs "assistance to the poor")
- WTE guarantees positive findings even for small subpopulations
- WTE is stable across model classes used, similar to ATE, unlike CATE

(a) ATE and WTE_{α}
(b) CATE by years of education
(c) CATE by age
WTE = Tail-average

Recap

- Covariates: X
- Treatment assignment: Z
- Potential outcome: Y(0), Y(1)
- CATE $\mu^*(X) = E[Y(1) - Y(0) | X]$

Lemma (Shapiro et al. ‘09)

$$\sup_{Q_x \succeq \alpha} E_{Q_x}[\mu^*(X)] = E[\mu^*(X)h^*(X)]$$

where

$$h^*(x) := \frac{1}{\alpha} \{\mu^*(x) \geq P_{1-\alpha}(\mu^*)\}$$

$(1 - \alpha)$-quantile of $\mu^*(X)$
Estimation Approach

- Use ML methods to fit nuisance parameters
 \[\mu_z^*(X) = \mathbb{E}[Y(z) \mid X = x], \quad z \in \{0, 1\} \]
 \[e^*(X) = \mathbb{P}(Z = 1 \mid X) \]
 \[h^*(X) = \frac{1}{\alpha} \{ \mu^*(X) \geq P_{1-\alpha}^{-1}(\mu^*) \} \]

- Today: Construct a WTE estimator insensitive to error in nuisance estimates

- Design an mean zero augmentation term that includes nuisance parameters
 \[WTE_\alpha = \mathbb{E} \left[h^*(X) \left(\frac{Z}{e^*(X)} (Y - \mu_1^*(X)) - \frac{1 - Z}{1 - e^*(X)} (Y - \mu_0^*(X)) \right) \right] \]

Recap

- Covariates: X
- Treatment assignment: Z
- Potential outcome: Y(0), Y(1)

Neyman orthogonal: Directional derivative w.r.t. nuisance parameters, taken at the true nuisance value \((\mu_1^*, \mu_0^*, e^*, h^*)\) is zero. [Neyman '59, Chernozhukov et al. '18]
Assumptions

Standard; required for identification and estimation of ATE

- No unobserved confounding: $Y(0), Y(1) \perp Z \mid X$
- Overlap: $\exists c > 0 \text{ s.t. } P(e^*(X) \in [c, 1 - c]) = 1$
- SUTVA: single version of treatment, no interference between units

Recap
- Covariate X, Treatment Z
- Potential outcome: $Y(0), Y(1)$
- Propensity score $e^*(X) = P(Z = 1 \mid X)$
Main Results

Theorem (Jeong & N.’20)

1. Under slower-than-parametric rates of convergence on the nuisance parameters, $\sqrt{n}(\hat{w}_\alpha - WTE_\alpha) \Rightarrow N(0, \sigma^2_\alpha)$
2. σ^2_α is the optimal asymptotic variance

- Central limit rates even when nuisance estimates converge more slowly
- Augmented estimator is semiparametrically efficient for both randomized and observational studies
• Worst-case bounds on the Doubly Robust / AIPW estimator under distribution shift

• Allow flexible use of ML methods to estimate nuisance parameters

• Central limit results even when nuisance parameters converge slower

• Our procedures are optimal; semiparametrically efficient

https://arxiv.org/abs/2007.02411