The hypoxic state in a solid tumor refers to the internal hypoxic environment that appears as the tumor volume increases (the maximum radius exceeds 180-200 microns). This state can promote angiogenesis, destroy the balance of the cell’s internal environment, and lead to resistance to radiotherapy and chemotherapy, as well as poor prognostic factors such as metastasis and recurrence. Therefore, accurate quantification, mapping, and monitoring of hypoxia, targeted therapy, and improvement of tumor hypoxia are of great significance for tumor treatment and improving patient survival. Despite many years of development, PET-based hypoxia imaging is still the most widely used evaluation method. This article provides a comprehensive overview of tumor hypoxia imaging using radionuclide-labeled PET tracers. We introduced the mechanism of tumor hypoxia and the reasons leading to the poor prognosis, and more comprehensively included the past, recent and ongoing studies of PET radiotracers for tumor hypoxia imaging. At the same time, the advantages and disadvantages of mainstream methods for detecting tumor hypoxia are summarized.

Keywords: positron emission tomography (PET), cancer, hypoxia, imaging, radiotracer

INTRODUCTION

Background

The tumor vascular system is the main factor determining the internal microenvironment of a tumor during its growth and is responsible for the exchange of oxygen, metabolites, and energy.
information between blood and tissue fluids. However, the vasculature of tumors differs from that of normal tissues. This structural difference increases the diffusion distance between the supplying vessels and tumor cells, forming a diffusion gradient and resulting in insufficient oxygen supply to the tumor cells that are away from the vessels, eventually leading to tissue hypoxia (1). As the volume of solid tumors continues to increase, especially when larger than 180–200 microns, coupled with the uncontrolled growth of tumor cells that consume high levels of oxygen and nutrients, tumor tissues will have insufficient local tissue perfusion or oxygen supply and lack of nutrients, resulting in the production of a series of acidic wastes and leading to extracellular acidosis. Collectively, these events ultimately result in tumor cells having a hypoxic microenvironment (2).

Hypoxia-inducible factor (HIF)-1 is a nuclear transcription factor that is widely present in mammalian cells. HIF-1 activates selected genes by transcription. These genes increase cell survival and proliferation to help cancer cells adapt to hypoxia by increasing angiogenesis, altering metabolism, degrading the extracellular matrix, inducing tumor cell dedifferentiation, and arresting the cell cycle (3–5). When the oxygen concentration is normal, HIF-1α is ubiquitinated and can be rapidly hydrolyzed by the ubiquitin-proteasome system. Therefore, HIF expression in normoxic cells is low (6). However, hypoxia prevents the ubiquitination of HIF-1α and induces an increase in the expression of HIF-1α (7). The transcriptional activity of HIF-1 also increases with the degree of hypoxia, resulting in activation of the p53 gene and expression of the cyclin-dependent kinase inhibitor (CKI) (8). In hypoxic conditions, the inhibition of prolyl hydroxylase stabilizes HIF-1α, followed by its binding to HIF-1β and transportation to the nucleus. The transcriptional activator protein p300/CPB is recruited through a transcriptional activation region of subunit α, and then interacts with the hypoxia response element (HRE), composed of the core sequence 5'-RCGTG-3' of the promoter region of the target gene, such as carbonic anhydrase-IX (CA-IX). The downstream factors or enzymes are regulated and can then play a regulatory role (10) (Figure 1).

HIF can regulate vascular endothelial growth factor (VEGF), transforming growth factor (TGF), tumor necrosis factor (TNF), and angiopoietin-2 (ANG-2) receptor, among others (11), to

![Figure 1](image_url)

FIGURE 1 The approximate regulation of HIF-1 under normoxia and hypoxia. Normally, under normoxic conditions, HIF-1α hydroxylation is mediated by prolyl 4-hydroxylase (PHD) and factors that inhibit HIF-1 (FIH-1). This process occurs at conserved residues. Hydroxylation of PHD causes instability of the HIF-1α protein, and FIH-1 inhibits transcriptional activity by preventing the interaction of HIF-1α and CBP/p300. Then, the ubiquitin-dependent process performed by the VHL complex mediates the subsequent degradation of HIF-1α. However, under hypoxic conditions, PHD and FIH1 are inactivated, leading to the stabilization of HIF-1α and its translocation into the nucleus to dimerize with HIF-1β/ARNT and form HIF transcription factors. Without the involvement of FIH-1, HIF will transcribe a large number of target genes together with CBP/p300. Other small molecules that can regulate this process are also shown in this figure.
induce the proliferation of vascular endothelial cells. While inducing new blood vessels, HIF also regulates the vascular system of the host for the metastasis of tumor cells (12). Thus, the tumor can not only obtain nutrients and oxygen from the host through the new tumor blood vessels, but can also continuously deliver metastatic cells to the host through these blood vessels, while continuing to grow and inducing blood-vessel formation in other parts of the body, ultimately leading to blood vessels, while continuing to grow and inducing blood-host through the new tumor blood vessels, but can also the tumor can not only obtain nutrients and oxygen from the anti-VEGF antibodies (18).

Inhibiting CA-IX can enhance the anti-angiogenic effect of chemotherapeutic sensitivity or radiosensitivity. Similarly, the catalytic activity of CA-IX can significantly improve chemotherapeutic sensitivity or radioresistance. Similarly, inhibiting CA-IX can enhance the anti-angiogenic effect of anti-VEGF antibodies (18).

Significance

Under hypoxic conditions, up-regulated HIF can regulate a variety of cancer phenotypes, causing various adverse changes in tumors and tissues (Figure 2).

Hypoxia can cause genetic damage. The rapid change in oxygen concentration produces free radicals, which act on tissue cells and cause DNA damage (19). Moreover, hypoxia may lead to the overexpression of tumor suppressor genes, pro-apoptotic factors, and anti-apoptotic factors to salvage damaged cells, but may make these cells polyploid. A study by Nelson et al. (20) shows that these cells have certain defects in their inherent apoptotic pathways, which are important signs of cancer and precancer.

The most important biological effect caused by hypoxia is resistance to radiotherapy and chemotherapy, which is directly related to disease prognosis. Molecular oxygen is very important for the sensitivity of radiotherapy. In conventional photon-based radiotherapy or light ion therapy, such as those using protons, oxygen has a high electron affinity and plays a central role in the fixation process (21, 22). Hypoxia reduces the ability of the drug to produce free oxygen radicals, resulting in hypoxic cells that are less sensitive to chemotherapy.

Another interesting phenomenon is that when the hypoxic state causes cell death, the migration of tumor-associated macrophages (TAM) to the hypoxic area is inhibited, thereby preventing TAM from removing dead and damaged cells. Other effects of TAM include inhibition of the immune response of the body to tumor cells and inhibition of the activation of adjacent macrophages. These phenomena promote angiogenesis and lymphangiogenesis, thereby promoting tumor growth, migration, and transformation (23, 24). Hypoxia-related TAM can upregulate HIF-1 and HIF-2 expression both in vivo and in vitro (25).

E-cadherin is an important intercellular adhesion molecule that mainly maintains the integrity and polarity of epithelial cells. Loss of E-cadherin is a sign of tumor epithelial-to-mesenchymal transition (EMT) in tumor cells and is related to hypoxia-induced HIF activation.

Definition

There are considerable differences in the degree of hypoxia among different tumor types; thus, it is impossible to propose a definite value to define hypoxia. The currently recognized “gold standard” is to measure the distribution of the partial pressure of oxygen (pO2) using polarographic electrodes, but this method is invasive and greatly limits its use in tumor determination. As the oxygen requirement of tissues is met by blood, a method of responding to hypoxia by measuring the vascular supply was proposed. Cryophotometry or magnetic resonance imaging (MRI) to measure blood oxygen saturation, or MRI, computed tomography (CT), or positron emission tomography (PET) to measure tumor perfusion have been widely used (Table 1). However, vascular supply is not the only factor that causes hypoxia in cells and tissues; thus, monitoring of the vascular supply alone cannot completely determine hypoxia (50). Later, it was discovered that the expression of certain genes and proteins changes during hypoxia. Therefore, it was proposed that the state of hypoxia could be determined by measuring the levels of the endogenous markers. These principal markers include HIF-1, CA-IX, glucose transporter (GLUT)-1 and -3, and osteopontin (OPN). However, some reactions that are not related to hypoxia can also lead to upregulation of the endogenous markers. Some studies have reported that reactive oxygen species, cancer-specific mutations, and changes in signal transduction pathways can cause these changes even in normoxic conditions (51).

However, the most widely used method for detecting hypoxia is based on PET/SPECT imaging. For example, foreign substances (imidazole drugs, cytarabine, or other substances) are labeled with radionuclides or fluorescent probes and used as tracers with specific chemical properties to target hypoxic areas within the tumor.

To summarize, pre-monitoring of hypoxic information before tumor diagnosis or treatment is extremely important in selecting accurate and effective individualized treatments and monitoring the efficacy and prognosis. As PET is more commonly used in a clinical setting for tumor diagnosis, in this review, we have focused and conducted a thorough evaluation on several methods that use markers in PET imaging to detect hypoxia. This study sheds light on the timely intensive treatment.
Methodologies to overcome the resistance caused by hypoxia and prevent local recurrence.

MAIN METHOD

Since 1981, misonidazole (Miso) was introduced as the first marker for the identification of tumor hypoxia based on molecular imaging. Miso was labeled with 14C for autoradiography to detect tumor hypoxia (52). Subsequently, two important PET tracer categories, 18F-labelled nitroimidazoles and Cu-labelled diacetyl-bis(N4-methylthiosemicarbazone) analogs, have been developed to specifically study the areas of tumor hypoxia (53).

18F

Janet Rasey and her colleagues at the University of Washington first proposed the noninvasive imaging of hypoxia by PET (54). They synthesized 18F-fluoromisonidazole and then verified its feasibility as a PET hypoxia tracer in several models of human tumors. Since then, researchers have extensively explored the possibility of using 18F-labeled compounds as hypoxia tracers (Figure 3).
TABLE 1 | Main methods of hypoxia assessment.

Technique	Mechanism	Advantage	Disadvantage	
Direct measurements				
Oxygen electrodes	Insert the electrode needle into the tumor for multiple measurements	Directly measure the partial pressure of oxygen at multiple points	Invasive and technically demanding. Suitable only for accessible tumors; risk of modifying oxygen concentration	
(26–31)	(Eppendorf probes)			
OxyLite (32)	Continuous measurement at a single spot in a tumor.	Dynamic measurement (within several hours)	Invasive; not approved for clinical use	
Indirect measurements				
EPR (33–35)	Paramagnetic probes altered by the surrounding paramagnetic O₂ in electron relaxation procedure	No O₂ consumption; dynamic measurement	Existing clinical equipment is unsuitable	
MRI–BOLD (36–40)	Determines changes in the level of oxygenated hemoglobin	No O₂ consumption; high temporal resolution	Easy to be disturbed; unsuitable for tissue hypoxia	
MRI Fluorine (41)	Measures change in relaxivity of fluorinated probes in the presence of oxygen	No O₂ consumption; dynamic measurement	Existing clinical equipment is unsuitable	
Redox-activated MRI contrast agents (42–44)	Examines change in proton relaxivity due to reactive oxygen species with excitation of exogenous radicals	No O₂ consumption; quantitative	Relatively low spatial resolution; requires a high concentration of contrast media	
PET	Nitroimidazole: Radioisotope labeled nitroimidazole trapped in hypoxic cells (45–47)	Noninvasive; high sensitivity; quantitative; assessment of the entire tumor volume; spatial mapping of hypoxia; serial assessment over time	Lack of a suitable trace; prone to false-positive results; ingested in normal tissues; unsatisfactory spatial resolution and tumor background ratio	
	Cu-ATSM: Reduced metal complexes binding to macromolecules and trapped in hypoxic cells (48)			
	Redox-activated MRI contrast agents (42–44)			
	PET	Differential accumulation of SPECT tracers in areas of low oxygen concentration	Noninvasive; assessment of the entire tumor volume; spatial mapping of hypoxia; serial assessment over time	Resolution is limited; fewer agents than those available for PET; difficulties in quantifying hypoxia

FIGURE 3 | Structures of clinically used [18F]-labeled nitroimidazole compounds.
Nitroimidazole

2-Nitroimidazole was originally developed as a radiosensitizer for hypoxic cells and proposed as a hypoxia marker in the 1970s (55). The reduction of nitroimidazole in cells is achieved by nitroreductases. The first one-electron reduction to a nitro group is reversible and the reduced substance is easily reoxidized by molecular oxygen (56). Therefore, substances reduced under aerobic conditions can be quickly reoxidized and can diffuse outside the cell without being retained in normal cells. However, under hypoxic conditions, the free nitro radicals are further reduced in cells, undergo protonation, combine with intracellular macromolecules, and are irreversibly retained in hypoxic cells (Figure 4). These radicals are not encountered in apoptotic or necrotic cells (57–59). However, the accumulation of nitroimidazole compounds in tumor cells is not only affected by hypoxia, but also by many other aspects, such as the expression level of multidrug resistance-associated protein 1 (MRP1) (60, 61). It is reported that tumor cells pretreated with MRP1 inhibitors have significantly higher radioactivity than cells not treated with inhibitors. At the same time, the SUV_{mean} ratio in tumors of mice in the treatment group is significantly higher than that of control mice in vivo PET studies. Therefore, it was found that MRP1 inhibitors can increase the accumulation of {18}F-FMISO in hypoxic cells (62). In other words, during this type of chemotherapy, it may lead to an overestimation of tumor hypoxia.

{18}F-FMISO

Over the years, several fluorinated nitroimidazole-based labels have been developed for PET imaging. Currently, the most commonly used PET hypoxia tracer used clinically and in research is {18}F-fluoromisonidazole (18F-FMISO) (63, 64). It is also the first drug to be clinically tested (65) and has been successfully used in glioma (66), breast cancer (67), head and neck tumors (68, 69), lung cancer (70), and other models to reflect hypoxia, and also used to stratify patients for radiotherapy. However, after intravenous injection, only medium contrast images are obtained owing to its high relative lipophilicity and slow penetration from the blood and passive diffusion, which results in a relatively low uptake (71). Compared with conventional imaging methods such as CT and MRI, {18}F-FMISO PET has a lower resolution (5-7 mm) (72). These limitations of {18}F-FMISO have led to the development of second-generation drugs with improved pharmacokinetic properties.

{18}F-FAZA

The second-generation representative drug {18}F-FAZA [1-(5-fluoro-5-deoxy-\alpha-D-arabinofuranosyl)-2-nitroimidazole)] has better hydrophilicity and can enhance the signal-to-noise ratio.

FIGURE 4 | Schematic diagram of the mechanism of nitroimidazole compounds.
Its low lipophilicity leads to faster clearance of unbound drugs by the blood, which can improve hypoxia-normoxia contrast at an early point in time. In preclinical animal studies, the head-to-head comparison of 18F-FAZA, 124I-IAZA, and 18F-MISO showed that 18F-FAZA had faster vascular clearance than that of 18F-FMISO after 3 hours of injection. Recently, clinical studies have successfully evaluated the feasibility of 18F-FAZA in hypoxic imaging of brain glioma (73) and lymphoma (73); lung (74, 75), head and neck (76, 77), cervical spine (79), and cervical tumors (79); rhabdomyosarcoma (80); and rectal tumors (81). Generally speaking, 18F-FAZA has better application values compared with 18F-FMISO.

18F-FETNIM

18F-Fluoroerythronitromidazole (FETNIM) also has better hydrophilicity than 18F-FMISO, allowing for rapid renal clearance and low liver absorption, which can also explain the negative positive relationship between tumor blood flow and initial tumor 18F-FETNIM absorption (82). Clinical studies in esophageal cancer (83), head and neck tumors (84–86), and cervical cancer (87) have shown that the tumor-to-blood ratio calculated by imaging at 2 h pi is 1.4–2.48 within the range, and that high tissue uptake of FETNIM indicates reduced progression-free and overall survival. Although 18F-FETNIM can also be used in imaging studies to determine hypoxia in lung cancer (88, 89), some studies indicate that the uptake of 18F-FMISO in the tumor/non-tumor ratio is significantly higher than that of 18F-FETNIM. Therefore, whether 18F-FETNIM has a better application value than 18F-FMISO is still debatable (90).

18F-RP-170

Another 18F-labeled 2-nitroimidazole compound, 18F-RP-170, has been used to study patients with glioma, and the average pO_2 in the high uptake area has been reported to be significantly lower than that in the low uptake area. In the high uptake area, a significant negative correlation between the standardized uptake value (SUV) and pO_2 has been noted, whereas the HIF-1α index in the high uptake area is significantly higher than that in the low uptake area. These findings are suggestive of the low oxygen selectivity of 18F-FRP-170 (91, 92). Studies on brain tumors (93) and lung cancer (94) show that the SUV in hypoxic tissue is higher than that in normal tissue. Compared with 18F-FMISO, the shorter time interval before scanning and improved hypoxic contrast may make it more suitable for research and use in clinical imaging.

18F-EF5

18F-EF5 was studied as a PET tracer in 2001. Compared with many other hypoxia tracers, 18F-EF5 has a higher octanol-water partition coefficient, which enables higher cell membrane permeability and longer plasma half-life (95), which can improve the uniformity of tumor uptake and tracer distribution. In the study of patients with head and neck squamous cell carcinoma (HNSCC), the median tumor-to-muscle 18F-EF5 uptake ratio (T/M) was found to increase over time and reported as 1.38 (range, 1.1–3.2) after 3 h of tracer injection (96). The ability of 18F-EF5 to detect hypoxia is encouraging. It was also found in preclinical studies that 18F-EF5 PET could predict the response to graded radiotherapy in tumor models (97); however, its marking chemistry is more complicated by comparison.

18F-HX4

A third-generation nitroimidazole tracer (18F-HX4) has been developed in recent years. A 1,2,3-triazole moiety is introduced using simple click chemistry to make the compound more hydrophilic, which, at the same time, also increases its renal clearance (99). These characteristics of 18F-HX4 help in reducing the background signal faster, thereby improving the signal-to-noise ratio (98). Preliminary studies have shown that compared with 18F-FMISO and 18F-FAZA, 18F-HX4 has a higher maximum tumor-to-blood ratio with a half-life of about 3 h (100). In addition, a piece of evidence that can prove that 18F-HX4 will accumulate in hypoxic areas is the observation of a strong and significant spatial relationship between the distribution of 18F-HX4 and pyridimidazole positivity and CA-IX positivity (98, 99, 101). In non-small cell lung cancer (NSCLC) (102), HNSCC (103, 104), and esophageal and pancreatic cancers (105), a clear correlation with 18FDG is observed, which is important however, better repeatability (106). Therefore, 18F-HX4 is a progressive next-generation tracer that can be used as a tool for monitoring treatment responses and radiotherapy planning.

$^{60-64}$Cu

Copper (Cu)-diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM)

Another widely studied class of agents is the Cu complex with diacetyl-bis(N4-methylthiosemicarbazone) (ATSM) ligand, among which ATSM is the prototype (Figure 5). Fujibayashi
et al. from Eukui Medical School in Japan (107) and Holland et al. from Washington University, St. Louis were the first to study the potential of these compounds in hypoxia imaging (108). Fujibayashi et al. used the $^{60-64}$Cu isotope to label some compounds such as ATSM and used the synthesized 62Cu-ATSM to study cardiac perfusion in a rat model. Their findings suggested that 62Cu-ATSM could accumulate during hypoxia. Similarly, their studies on 64Cu-ATSM, 18F-FMISO, and 64Cu-PTSM in EMT-6 tumor cells showed that 64Cu-ATSM and 18F-FMISO could differentially accumulate in tumors. In hypoxia, the accumulation was region specific and only 64Cu-PTSM was evenly distributed in the tumor (109). Cu-ATSM was first evaluated in humans as a radiodiagnostic agent for imaging lung cancer in the year 2000 (110), following successful preclinical trials (111–113).

Unfortunately, the exact mechanism of Cu-ATSM hypoxia selectivity is unclear and controversial and has conflicting findings (114, 115). In conclusion, based on initial research, it is believed that Cu(II)-ATSM will diffuse rapidly into cells owing to its high membrane permeability and low redox potential, and will be metabolized by NADH/NADPH in the mitochondria that are dysfunctional due to hypoxia. Under normoxic conditions, Cu(I)-ATSM is reversibly oxidized to Cu(II)-ATSM and diffuses out of the cell. In contrast, under hypoxic conditions, the Cu(I)-ATSM complex is irreversibly retained in the cell. Since Cu(I)-ATSM is far less stable than Cu(II)-ATSM, under the mediation of pH and other conditions, copper dissociates from the complex to form ATSMH$_2$, causing radioactive copper to remain in the cell (116, 117) (Figure 6).

Compared with 18F-FDG and fluorine-based hypoxic PET tracer, radiolabeled Cu-ATSM can specifically accumulate in the hypoxic areas of the tumor and form a certain difference. Moreover, Cu-ATSM exhibits better pharmacokinetics and signal-to-noise ratio, is not taken up by the bladder, and does not show any interference (118–122) (Table 2).

Although its retention mechanism in hypoxic cells is still controversial, Cu-ATSM has been used as a PET tracer to study tumor hypoxia for head-and-neck (153, 154) lung (155, 156), cervical (157, 158), and rectal tumors (159), and gliomas (160). Studies have shown that Cu-ATSM has other benefits when used for hypoxia imaging, such as in the staging and detection of recurrent prostate cancer (120, 121); as an effective indicator to predict neoadjuvant chemoradiotherapy and survival rate of patients with rectal cancer (159); as an indicator of treatment
TABLE 2 | Comparison of 18F-labeled nitroimidazoles and Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone) highlighting the characteristics of the ideal hypoxia PET tracer.

Tumor type	18F-FMISO	18F-FAZA	18F-FETNIM	18F-RP-170	18F-EF5	18F-HX4	Cu-ATSM
Brain	green	green	green	green	orange	orange	green
Head and Neck							
Breast	green	orange	orange	orange	green	orange	orange
Sarcoma	green	orange	orange	orange	green	orange	orange
Lung	orange	orange	orange	orange	orange	orange	orange
Lymphoma	orange	orange	orange	orange	orange	orange	orange
Kidney	orange	orange	orange	orange	orange	orange	orange
Liver	orange	orange	orange	orange	orange	orange	orange
Colorectal	orange	orange	orange	orange	orange	orange	orange
Bladder	orange	orange	orange	orange	orange	orange	orange
Cervical	orange	orange	orange	orange	orange	orange	orange
Prostate	orange	orange	orange	orange	orange	orange	orange

green (Yes=good clinical data obtained); red (No=poor clinical data obtained); orange (Recommended=preclinical/metabolic data favorable); blue (Not recommended=preclinical/metabolic data unfavorable); blank=no data. Only relevant references in green and red categories are shown.

response in head and neck cancer (161), and in brain tumors (162). In addition, due to its special radioactivity, many reports have highlighted its use as an effective radiotherapy agent. Since treatment is not within the scope of this review, it has not been discussed here (163, 164).

In summary, the above-mentioned studies show that the use of radiolabeled Cu-ATSM complex in PET examination is feasible and that other benefits to the treatment of patients are also possible (Table 3). Although the mechanism of action is unclear, it is still worth pursuing in-depth research and development on this compound.

EXISTING RESEARCH

68Ga

68Ga ($t_{1/2} = 68$ min, 89% $b+$, $E_{b+max} = 1.92$ MeV, 11% EC) is a generator-produced radionuclide that offers excellent coordination chemistry with several bifunctional chelating agents and provides rapid radiolabeling over a range of pH (191–193). Therefore, 68Ga has been preferentially studied in hypoxic PET. For example, Sudhakara et al. developed 68Ga-labeled agents based on mono-, bis-, and tris-nitroimidazole conjugates with the chelating agent 1,4,7-triazacyclononane-1,4,7-tris[methyl(2-carboxyethyl)phosphinic acid] (TRAP), to obtain a series of 68Ga-labeled compounds. The radiochemical yields were extremely high and the uptake of tumor models in vivo experiments revealed its remarkable ability to target hypoxic areas (194). Recently, Yoichi Shimizu et al. also confirmed that the 68Ga marker could help in the visualization of tumor tissues and hypoxic areas within 2 h of intravenous injection (195). In short, studies on lung (196) and colon cancers (197, 198) show that on the basis of the ease in production, 68Ga-labeled hypoxia tracers are comparable to traditional 18F-labeled tracers.

124/125/131I

Radioactive iodine is a commonly used radiotherapy agent for the diagnosis and treatment of thyroid diseases. The characteristics of its radiation make it well-sought after for radioimmunotherapy (199). Radioactive iodine isotopes play a role in the field of hypoxia imaging as they can be used to label various substrates that can target hypoxic regions. For example,
123I-IAZA is the most common radiotracer with a chemical structure similar to that of 18F-FAZA. 124I is a popular choice owing to its longer half-life. The distribution of 131I-IAZGP (200) is similar to that of pimonidazole, and has a similar CA-IX expression profile in colorectal cancer models. 124I-IAZGP (201) can be used to image liver tumors within 6 h (202); however, there are insufﬁcient tumor-adsorption studies that support the clinical role of 124I-IAZGP PET in patients with colorectal cancer and head and neck cancer. 124I-FIAU (203) can be used to evaluate the expression of HSV1-tkEGFP fusion gene that is associated with hypoxia. The area where 123I-IPOS accumulates is positively correlated with the HIF-1α-positive area (204). 125I-M75 speciﬁcally accumulates in colorectal cancer xenografts within 48 h of administration and delineates hypoxia by targeting CA-IX (205). However, several radioactive iodine isotopes have long half-lives. Although these isotopes play a unique role in radioimmuno-therapy, their use as imaging agents should be carefully assessed.

99mTc

The 99mTc-labeled complex is one of the earliest non-nitroimidazole contrast agents used to determine hypoxia in cells. 99mTc-labeled 2-nitroimidazole was also developed, with BMS181321 being the ﬁrst. However, these agents are unstable and lipophilic, which limits their application (206). Subsequently, other tracers were developed to overcome these shortcomings (207). By choosing different cores and ligands, the tracer was designed to exhibit different characteristics to optimize the selection. The $[^{99mTc}(CO)_3{(H_2O)}]^{-}$ nucleus is well studied for the labeling of nitroimidazole compounds (208). Recently, more focus has been placed on the introduction of tumor-targeting moieties (e.g., RGD). The 99mTc nitroimidazole complex is retained longer in hypoxic tumor cells.

Others

In addition to the radionuclides discussed above, several others have been used for hypoxic PET. For example, 111In is a promising candidate for imaging hypoxic areas to study head and neck tumors (209), prostate cancer (210), and colorectal cancer (211). The nitroimidazole and gastrin-releasing peptide receptor (BB2R) conjugate was labeled with 177Lu (212); the CA-IX antibody G250-F(ab’)2 was labeled with 89Zr (213) and some promising results were obtained. Several nuclides are used in radiotherapy although their imaging effects are unsatisfactory or there are many factors worthy of improvement; however, these studies could help develop new ideas and research methodologies.

DISCUSSION AND CONCLUSIONS

Assessing the relationship between tumor tissue and hypoxia has been a fascinating topic in cancer research for many years mainly due to its complex correlation with disease progression and treatment response. In clinical research, in addition to the use of oxygen electrodes for research, the use of exogenous probes such as FMISO/FAZA-PET, HX4, Cu-ATSM, and pimonidazole, as well as methods that target endogenous markers, such as CA-IX and HIF-1, are the mainstay to determine hypoxia (214). This review summarizes the progress of radionuclide-labeled PET tracers in hypoxia imaging. Each agent has its advantages and disadvantages; thus, it can only be used in a relatively limited range. Although some tracers have demonstrated the feasibility of their use in PET imaging hypoxia in several tumor entities in a clinical setting, so far, a perfect tracer with all desirable characteristics of an ideal PET hypoxia tracer has not been obtained.

One of the most important challenges in a clinical setting is the reproducibility of hypoxia imaging. The deﬁnition of the hypoxic area during measurement, selection of hypoxia-normoxia threshold, time variability of PO2 levels in tumors during continuous measurement, heterogeneity within and between tumors of the same patient, and factors such as receiving treatment affect the reproducibility of scanning (215).

Blood perfusion is one of the obstacles that limits the use of traditional hypoxia tracers in the tumor microenvironment. Insufﬁcient perfusion limits the effective delivery of the tracer to tissues, affects tracer accumulation in normal or tumor tissues, and leads to poor imaging effects or contradictory ﬁndings. Therefore, the special relationship between perfusion and hypoxia requires further clinical research for the evaluation of hypoxia-perfusion patterns in different tumor types as well as to elucidate their relationship with clinical outcomes. With the recent advent of PET-MRI scanners, multiple imaging models and multifunctional tools that provide perfusion information and increase the accuracy of hypoxia measurement and provide complementary information with higher predictive values will soon become possible.

Many problems need to be solved urgently to obtain the ideal and perfect tracer. Deﬁning a relatively standardized hypoxia threshold or observation index, comparing various tracers to study different tumor types, and screening a more optimized imaging plan may be suitable approaches to achieve this goal.

In recent years, the research and application of nanotechnology in tumors has resulted in a very valuable tool, which aims to provide various possible solutions to address the shortcomings of current imaging agents. Nanocarriers have better permeability and retention in solid tumor tissues; thus, they can promote molecular delivery to overcome the poor vascular system in tumor tissues. Nanocarriers can also be used to carry materials with different targeting properties, or can be used in imaging systems with multiple modes to improve their biocompatibility (by reducing cytotoxicity) and add other functions to improve the accuracy and utility of the tracer (216).

Owing to the increasing clinical demand for the assessment of hypoxia, imaging for tumor hypoxia is of great signiﬁcance for tumor diagnosis, prognosis assessment, and planning treatment strategies. Due to hypoxia-induced malignant progression of tumor cells and their resistance to radiotherapy and chemotherapy, several ongoing clinical trials are focusing on adjusting the radiotherapy regimen according to the degree of oxygenation of the tumor and assessing the beneﬁts.
Simultaneously, radiosensitizers and hypoxia activation studies in medicine are also underway. Thus, the goal of researchers who are studying hypoxia is to change clinical outcomes rather than just provide prognostic information.

REFERENCES

1. Pries AR, Cornelissen AJ, Sloot AA, Hinkeldey M, Dreher MR, Höpfner M, et al. Structural Adaptation and Heterogeneity of Normal and Tumor Microvascular Networks. PLoS Comput Biol (2009) 5(5):e1000394. doi: 10.1371/journal.pcbi.1000394
2. Papp-Szabó E, Josephy PD, Coomer BL. Microenvironmental Influences on Mutagenesis in Mammary Epithelial Cells. Int J Cancer (2005) 116 (5):679–85. doi: 10.1002/ijc.21088
3. Carmeliet P, Jain RK. Angiogenesis in Cancer and Other Diseases. Nature (2000) 407(6801):249–57. doi: 10.1038/35025220
4. Ke Q, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol (2006) 70(3):1469–80. doi: 10.1124/mol.106.027029
5. Brahim-Horn C, Pouyssegur J. The Role of Hypoxia-Inducible Factor in Tumor Metabolism Growth and Invasion. Bull Cancer (2006) 93(8):E73–80.
6. Semenza GL. Targeting HIF-1 for Cancer Therapy. Nat Rev Cancer (2003) 3 (10):721–32. doi: 10.1038/nrc1187
7. Pouyssegur J, Dayan F, Mazure NM. Hypoxia Signalling in Cancer and Approaches to Enforce Tumour Regression. Nature (2006) 441(7092):437–443. doi: 10.1038/nature4871
8. Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS. Hypoxia-Inducible Factor 1α Is Essential for Cell Cycle Arrest During Hypoxia. Mol Cell Biol (2003) 23(1):359–369. doi: 10.1128/MCB.23.1.359-369.2003
9. Suzuki H, Tomida A, Tsuruo T. Dephosphorylated Hypoxia-Inducible Factor 1α as a Tumour-Associated Cell Adhesion Protein MN/CA IX: Identification of the Region Mediating Cell Adhesion. Semin Cancer Biol (2000) 11(4):937–47. doi: 10.1006/scbi.2001.0187
10. Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E. Hypoxia and Defective Apoptosis Drive Genomic Instability and Tumorigenesis. Genes Dev (2004) 18(17):2095–2107. doi: 10.1101/gad.1204904
11. Horsman MR, Overgaard J. The Impact of Hypoxia and Its Modification of the Outcome of Radiotherapy. J Radiat Res (2016) 57(Suppl 1):99–108. doi: 10.1093/jrr/rtw007
12. Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging Hypoxia to Improve Radiotherapy Outcome. Nat Rev Clin Oncol (2012) 9 (12):674–87. doi: 10.1038/nrclip.2012.171
13. Qian BZ, Pollard JW. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell (2010) 141(1):39–51. doi: 10.1016/j.cell.2010.03.014
14. Gallez B, Baulette C, Innate Immunity and Cancer: Balance, Tolerance, and Diversity. Curr Opin Immunol (2010) 22(2):231–237. doi: 10.1016/j.coi.2010.01.009
15. Huang et al. Imaging of Tumor Hypoxia
16. Pastorek J, Pastorekova S. Hypoxia-Induced Carbonic Anhydrase IX as a Target for Cancer Therapy: From Biology to Clinical Use. Semin Cancer Biol (2003) 13(6):578–88. doi: 10.1016/s0958-6947(03)00072-0
17. Reis D, Morin D, Lefebvre E, Gosselin B, Desharnais JF, Dagenais A, et al. Intratumoral Po2 Predicts Survival in Advanced Cancer of the Uterine Cervix. Radiother Oncol (1993) 26(1):45–5079. doi: 10.1016/1814-9387(88)90205-4
18. Hockel M, Knoop C, Schlenker K, Vormbrand B, Baussmann E, Mitze M, et al. Intratumoral Po2 Predicts Survival in Advanced Cancer of the Uterine Cervix. Radiother Oncol (1993) 26(1):45–5079. doi: 10.1016/1814-9387(88)90205-4
19. Hockel M, Schlenker K, Knoop C, Vaupel P. Oxygenation of Carcinomas of the Uterine Cervix: Evaluation by Com- Puterized O2 Tension Measurements. Cancer Res (1991) 51(22):6098–102. doi: 10.1158/0008-5472
20. Vaupel P, Schlenker K, Knoop C, Hockel M. Oxygenation of Human Tumors: Evaluation of Tissue Oxygen Distribution in Breast Cancers by Computerized O2 Tension Measurements. Cancer Res (1991) 51(12):3316–22. doi: 10.1158/0008-5472
21. Horsman MR, Overgaard J. The Impact of Hypoxia and Its Modification of the Outcome of Radiotherapy. J Radiat Res (2016) 57(Suppl 1):99–108. doi: 10.1093/jrr/rtw007
22. Vaupel P, Schlenker K, Knoop C, Hockel M. Oxygenation of Human Tumors: Evaluation of Tissue Oxygen Distribution in Breast Cancers by Computerized O2 Tension Measurements. Cancer Res (1991) 51(12):3316–22. doi: 10.1158/0008-5472
23. Zhan Z, Hallac RR, Peschke P, Mason RP. A Noninvasive Tumor Oxygenation Imaging Strategy Using Magnetic Resonance Imaging of Endogenous Blood and Tis-Sue Water. Magn Reson Med (2014) 71 (2):561–9. doi: 10.1002/mrm.24691
24. Deng ZL, Wang Z, Yang XQ, Luo QM, Gong H. In Vivo Imaging of Hemodynamics and Oxygen Metabolism in Acute Focal Cerebral Ischemic Hemodynamics and Oxygen Metabolism in Acute Focal Cerebral Ischemic

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.
Huang et al. Imaging of Tumor Hypoxia

52. Chapman JD, Franko AJ, Sharplin J. A Marker for Hypoxic Cells in Solid Tumors: 18F-Fluoromisonidazole. *J Nucl Med* (2003) 44(11):1950–5.

51. Span PN, Bussink J. Imaging of Hypoxia: Strategies for Probe Design and Application. *J Cereb Blood Flow Metab* (2012) 32(7):1188–206. doi: 10.1038/jcbfm.2012.23

49. Mees G, Dierckx R, Vangestel C, Van de Wiele C. Molecular Imaging of

48. Bayly SR, King RC, Honess DJ, Barnard PJ, Betts HM, Holland JP, et al. Chronic Hypoxia in Glioblastoma Tumors With Potential Clinical Applicability. *Eur J Nucl Med Mol Imaging* (2012) 39(7):1188. doi: 10.1007/s00330-011-2054-6

47. Apte S, Chin FT, Graves EE. Molecular Imaging of Hypoxia: Strategies for Probe Design and Application. *Curr Org Synth* (2011) 8(4):593.

46. Mees G, Dierckx R, Vangestel C, Van de Wiele C. Molecular Imaging of Hypoxia. *Semin Nucl Med* (2007) 37(5):451–61. doi: 10.1016/j.smnuclmed.2007.07.003

45. Li Z, Chu T. Recent Advances on Radionuclide Labeled Hypoxia-Imaging Probes. *Chem Rev* (2012) 112(19):9669–76. doi: 10.1021/cr200026d

44. Gross S, Gilead A, Scherz A, Neeman M, Salomon Y. Monitoring Photodynamic Therapy of Solid Tumors OnLine by BOLD-Contrast MRI. *Nat Med* (2003) 9(10):1327–31. doi: 10.1097/01.nnm40

43. Martinek J, Fekete M, Tei L, Bott M. Cevalable β - Cyclodextrin Nanocapsules Incorporating Gd III-Chelates as Bioresponsive MRI Probes. *Commun* (2011) 47(11):3144–6. doi: 10.1039/c0cc0528c

42. Rojas-Quijano FA, Tircsó G, Tircsóné Benyó E, Baranyai Z, Hoang HT, Kálmán FK, et al. Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe. *Chemistry* (2012) 18(31):9669–76. doi: 10.1002/chem.201200266

41. Tisovich PB, Spernyak JA, Morrow JR. A Redox-Activated MRI Contrast Agent That Switches Between Paramagnetic and Diamagnetic States. *Angew Chem Int Ed Engl* (2013) 52(52):13997–4000. doi: 10.1002/anie.201306394

40. Li Z, Chu T. Recent Advances on Radionuclide Labeled Hypoxia-Imaging Agents. *Curr Pharm Des* (2012) 18(8):1084–97. doi: 10.2174/13816121279315849

39. Chapman JD, Franko AJ, Sharplin J. A Marker for Hypoxic Cells in Solid Tumors: 18F-Fluoromisonidazole. *Semin Nucl Med* (2003) 33(11):1217–24. doi: 10.1067/m0006-2952(97)00344-4

38. Wedgegård U, Kooijman H, Andreas T, Beindorff N, Hecher K, Adam G, T2 and T2* Measurements of Fetal Brain Oxygenation During Hypoxia With MRI at 3T: Correla- Tion With Fetal Arterial Blood Oxygen Saturation. *Eur Radiol* (2010) 20(1):121–7. doi: 10.1007/s00330-009-1513-4

37. Kim SG, Ogawa S. Biophysical and Physiological Origins of Blood Oxygen Level-Dependent fMRI Signals. *J Cereb Blood Flow Metab* (2012) 32(7):1188–206. doi: 10.1038/jcbfm.2012.23

36. Chapman JD, Franko AJ, Sharplin J. A Marker for Hypoxic Cells in Solid Tumors: 18F-Fluoromisonidazole. *J Nucl Med* (2003) 44(11):1950–5.

35. Staunton RE, Xia W, Oettgen HC, Passerini T, Nechev L, et al. Formation of P450 Oxidoreductase as a Major Determinant of Sensitivity to Hypoxia-Activated Prodrugs. *Cancer Res* (2015) 75(19):4211–23. doi: 10.1158/0008-5472.CAN-15-1107

34. Masaki Y, Shimizu Y, Yoshioka T, Nishijima KI, Zhao S, Higashino K, et al. FMISO Accumulation in Tumor Is Dependent on Glutathione Conjugation Capacity in Addition to Hypoxic State. *Ann Nucl Med* (2017) 31(3):596–604. doi: 10.1007/s12149-017-1189-9

33. Chapman JD, Franko AJ, Sharplin J. A Marker for Hypoxic Cells in Solid Tumors: 18F-Fluoromisonidazole. *Semin Nucl Med* (2003) 44(11):1950–5.
Chemosradiotherapy. *J Med Imaging Radiat Oncol* (2013) 57(4):475–81. doi: 10.1111/1754-9845.12086

76. Morita E, LS, John, V, Ijlan, N, Kalhauage, I, Primdahl H, Bisk M, Lassen P, et al. FZTA PET/CT Hypoxia Imaging in Patients With Squamous Cell Carcinoma of the Head and Neck Treated With Radiotherapy: Results From the DHANCA 24 Trial. *Radiother Oncol* (2012) 105(1):14–20. doi: 10.1016/j.radonc.2012.09.015

77. Graves EE, Hicks RJ, Binns D, M, Le QT, Peters L, et al. Quantitative and Qualitative Analysis of [(18)F]FDG and [(18)F]FAZA Positron Emission Tomography of Head and Neck Cancers and Associations With HPV Status and Treatment Outcome. *Eur J Nucl Med Mol Imaging* (2016) 43(4):617–25. doi: 10.1007/s00259-015-3247-7

78. Schuetz M, Schmid MP, Potter R, Komsata S, Georg D, Lukic D, et al. Evaluating Repetitive 18F-Fluoroazomycin-Arabinoside ([18F]FAZA) PET in the Setting of MRI Guided Adaptive Radiotherapy in Cervical Cancer. *Acta Oncol* (2010) 49(7):941–7. doi: 10.3109/0284186X.2010.510145

79. Han K, Shek T, Vines D, Driscoll B, Fyles A, Jaffray D, et al. Measurement of Tumor Hypoxia in Patients With Locally Advanced Cervical Cancer Using Positron Emission Tomography With 18F-Fluoroazomycin Arabinoside. *Int J Radiat Oncol Biol Phys* (2018) 102(4):1202–9. doi: 10.1016/j.ijrobp.2018.02.030

80. Peeters SG, Zegers CM, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen EG, et al. Comparison of 18F-Fluoroazomycin-Arabinoside as PET Imaging Probes of Tumor Hypoxia: A Comparative Study of the Hypoxia PET Tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a Preclinical Tumor Model. *Int J Radiat Oncol Biol Phys* (2015) 91(2):351–9. doi: 10.1016/j.ijrobp.2014.09.045

81. Havelund BM, Holdgaard PC, Rafaelsen SR, Mortensen LS, Theil J, Bender T, et al. Imaging of Blood Flow and Hypoxia in Head and Neck Cancer: Initial Evaluation With [(15)O]H2O and [(18)F] Fluoro-2-Deoxyglucose Positron Emission Tomography With 1-(2-[18F] Fluoro-1-Hydroxymethyl)Ethoxy)Methyl-2-Nitroimidazole, A New 18F-Labeled 2-Nitroimidazole Analog. *Neurosurg* (2010) 113(2):358–68. doi: 10.3171/2009.10.NES09510

82. Keneta T, Takai Y, Iwata R, Hakamatsuka T, Yasuda H, Nakayama K, et al. Initial Evaluation of Dynamic Human Imaging Using 18F-FRPI70 as a New PET Tracer for Imaging Hypoxia. *Ann Nucl Med* (2007) 21(2):101–7. doi: 10.1007/BF03033987

83. Koch CJ, Scheuermann JS, Divgi C, Judy KD, Kachur AV, Freifelder R, et al. Tumor Proliferation and Dosimetry of 18F-EF5 in Cancer Patients With Preliminary Comparison Of18F-EF5 Uptake Versus EF5 Binding in Human Head and Neck Tumor. *Eur J Nucl Med Mol Imaging* (2010) 37:2048–59. doi: 10.1007/s00259-010-1517-y

84. Komar G, Seppanen M, Eskola O, Lindholm P, Grönroos TJ, Forsback S, et al. 18F-EFS: A New PET Tracer for Imaging Hypoxia in Head and Neck Cancer. *Eur J Nucl Med Mol Imaging* (2008) 49(12):1944–51. doi: 10.1007/j.1442-8624.2010.01539.x

85. Ali R, Apte S, Vilalta M, Subbarayan M, Miao Z, Chin FT, et al. 18F-EF PET Is Predictive of Response to Fractionated Radiotherapy in Preclinical Tumor Models. *PloS One* (2010) 5(10):e139425. doi: 10.1371/journal.pone.0139425

86. Dubois J, Lieuwes NG, Jansen MH, Peeters WJ, Windhorst AD, Walsh JC, et al. Preclinical Evaluation and Validation of [18F]HX4, A Promising Hypoxia Marker for PET Imaging. *Proc Natl Acad Sci USA* (2011) 108(35):14620–5. doi: 10.1073/pnas.1102526108

87. Doss M, Zhang JJ, Belanger MJ, Stubbs JB, Hostetler AD, Alpka K, et al. Biodistribution and Radiation Dosemetry of the Hypoxia Marker 18F-HX4 in Monkeys and Humans Determined by Using Whole-Body PET/CT. *Nucl Med Commun* (2010) 31(12):1016–24. doi: 10.1097/MNM.0b013e3283479590

88. Peeters SG, Zegers CM, Lieuwes NG, van Elmp W, Eriksson J, van Dongen EG, et al. A Comparative Study of the Hypoxia PET Tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a Preclinical Tumor Model. *Int J Radiat Oncol Biol Phys* (2015) 91(2):351–9. doi: 10.1016/j.ijrobp.2014.09.045

89. Carlin S, Zhang H, Reese M, Ramos NN, Chen Q, Ricketts SA. A Comparison of the Imaging Characteristics and Microregional Distribution of 4 Hypoxia PET Tracers. *J Nucl Med* (2014) 55(3):515–21. doi: 10.2967/jnumed.113.126615

90. Zegers CM, van Elmp W, Reynen B, Even AJ, Troost EG, Ollers MC, et al. In Vivo Quantification of Hypoxic and Metabolic Status of NSCLC Tumors Using [18F]HX4 and [18F]FDG-PET/CT Imaging. *Clin Cancer Res* (2014) 20(24):6389–97. doi: 10.1158/1078-0432.CCR-14-1524

91. Chen L, Zhang Z, Kolb HC, Walsh JG, Zhang J, Guan Y. [18F]HX4 Hypoxia Imaging With PET/CT in Head and Neck Cancer: A Comparison With [18F]FMISO. *Nucl Med Commun* (2012) 33(10):1096–102. doi: 10.1097/MNM.0b013e3283571016

92. Zegers CM, Hoebers FJ, van Elmp W, HoBonsebers JA, Ollers MC, Troost EG, et al. Evaluation of Tumour Hypoxia During Radiotherapy Using [18F]HX4 PET Imaging and Blood Biomarkers in Patients With Head and Neck Cancer. *Eur J Nucl Med Mol Imaging* (2016) 43(12):2139–46. doi: 10.1007/s00259-016-3429-y

93. Klaassen R, Bennink RJ, van Tienhoven G, Bijlma MF, Bessink MG, van Berge Henegouwen ML, et al. Feasibility and Repetitability of PET With the Hypoxia Tracer [(18)F]HX4 in Oesophageal and Pancreatic Cancer. *Radiother Oncol* (2015) 116(1):94–9. doi: 10.1016/j.radonc.2015.05.009
106. Zegers CM, van Elempt W, Szardenings K, Kolb H, Waxman A, Subramaniam RM, et al. Repeatability of Hypoxia PET Imaging Using [(18)F]FDG/HX4 in Lung and Head and Neck Cancer Patients: A Prospective Multicenter Trial. Eur J Nucl Med Mol Imaging (2015) 42(12):1840–9. doi: 10.1007/s00259-015-3100-0

107. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A. Copper-62-ATSM: A New Hypoxia Imaging Agent With High Membrane Permeability and Low Redox Potential. J Nucl Med (1997) 38:1155–60.

108. Holland JP, Lewis JS, Dehdashti F. Assessing Tumor Hypoxia by Positron Emission Tomography With Cu-ATSM. Q J Nucl Med Mol Imaging (2009) 53:193–200.

109. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ. Evaluation of 64Cu-ATSM In Vitro and In Vivo in a Hypoxic Tumor Model, J. Nucl Med (1999) 40(1):177–83.

110. Takahashi N, Fujibayashi Y, Otsuka Y, Welch MJ, Waki A, Tsuchida T, et al. Evaluation of 62Cu Labeled Dicetyl-Bis(N4-Methylthiosemicarbazone) as a Hypoxic Tissue Tracer in Patients With Lung Cancer. Ann Nucl Med (2000) 14(5):323–8. doi: 10.1007/BF02988690

111. Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ, et al. Assessment of Tumor Hypoxia in Cervical Cancer by Positron Emission Tomography With 60Cu-ATSM: Relationship to Therapeutic Response—a Preliminary Report. Int J Radiat Oncol Biol Phys (2003) 55(5):1233–8. doi: 10.1016/S0360-3016(02)04772-2

112. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforet R, et al. In Vivo Assessment of Tumor Hypoxia in Lung Cancer With 60Cu-ATSM. Eur J Nucl Med Mol Imaging (2003) 30(6):844–50. doi: 10.1007/s00259-003-1130-4

113. Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ, et al. Retention Mechanism of Hypoxia Selective Nuclear Imaging/Radiotherapeutic Agent Cu-Diactyl-Bis(N4-Methylthiosemicarbazone) (Cu-ATSM) in Tumor Cells. Annals of Nuclear Medicine (2001) 15(6):499–504. doi: 10.1007/BF02988502

114. Dearling JL, Packard AB. Some Thoughts on the Mechanism of Cellular Trapping of Cu(II)-ATSM. Nucl Med Biol (2010) 37(3):237–43. doi: 10.1016/j.nucmedbi.2009.11.004

115. Hueting R, Kersemans V, Cornelissen B, Tredwell M, Hussien K, Christlieb E, et al. Copper-62-ATSM: A New Hypoxia Imaging Agent With High Membrane Permeability and Low Redox Potential. Eur J Nucl Med Mol Imaging (2008) 35:229–303. doi: 10.1007/s00259-008-0888-9

116. Lehtiö K, Oikonen V, Nyman S, Grönnroos T, Reivainen A, Eskola O, et al. Quantiﬁcation of Tumour Hypoxia With Fluorine-18 Fluoroerythronitroimidazole ([18F]FETNIM) and PET Using the Tumour to Plasma Ratio. Eur J Nucl Med Mol Imaging (2003) 30(1):101–8. doi: 10.1007/s00259-002-0938-1

117. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Hypoxia: Imaging the Microenvironment for Personalized Cancer Therapy. Semin Nucl Med (2015) 45(5):151–62. doi: 10.1053.j.semnuclmed.2014.10.006

118. Holbjer WI, Li A-R, Koch CJ, Shiu C-Y, Kachur AV. [18F]-EFS, a Marker for PET Detection of Hypoxia: Synthesis of Precursor and a New Fluorination Procedure. Appl Radiat Isot (2001) 54:73–80. doi: 10.1016/s0969-8043(00)00102-0

119. Kaneta T, Takai Y, Iwata R, Hakamatsu T, Yasuda H, Nakayama K, et al. Initial Evaluation of Dynamic Human Imaging Using 18F-FRP170 as a New PET Tracer for Imaging Hypoxia. Ann Nucl Med (2007) 21(2):101–7. doi: 10.1007/BF03393897

120. Rajendran JG, Krohn KA. F-18 Fluoromisonidazole for Imaging Tumor Hypoxia: Imaging the Microenvironment for Personalized Cancer Therapy. Semin Nucl Med (2015) 45:151–62. doi: 10.1053.j.semnuclmed.2014.10.006

121. Picchio M, Beck R, Haubner R, Seidl S, Machulla HJ, Johnson TD, et al. Intratumoral Spatial Distribution of Hypoxia and Angiogenesis Assessed by 18F-FASA and 125I-Gluco-RGD Autoradiography. J Nucl Med (2008) 49(4):597–605. doi: 10.2967/jnumed.107.046870

122. Lehtiö K, Oikonen V, Grönnroos T, Eskola O, Kallioikoski K, Bergman J, et al. Imaging of Blood Flow and Hypoxia in Head and Neck Cancer: Initial Evaluation With [(15)O]H2O and [(18)F]Fluoroerythronitroimidazole J. Nucl Med (2001) 42(11):1643–52. doi: 10.2967/jnumed.2001.011610

123. Reymen BJT, van Gisbergen MW, Even ALG, Zegers CM, Das M, Vegt E, et al. Nitroglycerin as a Radiosensitizer in Non-Small Cell Lung Cancer: Results of a Prospective Imaging-Based Phase II Trial. Clin Transl Radiat Oncol (2019) 21:49–55. doi: 10.1016/j.ctro.2019.12.002

124. Liu J, Hajeibeig A, Ren G, Lin M, Siyambalapitiyage W, Liu Z, et al. Retention of the Radiotracers 64Cu-ATSM and 64Cu-PTSM in Human and Murine Tumors Is Influenced by MDRI Protein Expression. J Nucl Med (2009) 50(8):1332–9. doi: 10.2967/jnumed.100.061879

125. Krohn KA, Link JM, Mason RP. Molecular Imaging of Hypoxia. J Nucl Med (2009) 50 Suppl 2:1295–85. doi: 10.2967/jnumed.2007.045914

126. Vavere AL, Lewis JS. Examining the Relationship Between Cu-ATSM Hypoxia Selectivity and Fatty Acid Synthase Expression in Human Prostate Cancer Cell Lines. Nucl Med Biol (2003) 35:273–9. doi: 10.1016/j.nucmedbio.2007.11.012

127. Verweer E. Quantification and Clinical Applicability of Novel Oncology PET Imaging Biomarkers. Amsterdam, The Netherlands: Universitair Medische Centra (2015).

128. Peeling J, Van De Voorde L, Mitea C, Larue R, Yaromina A, Sandeleanu S, et al. Hypoxia and Hypoxia Response-Associated Molecular Markers in Esophageal Cancer: A Systematic Review. Methods (2017) 130:51–62. doi: 10.1016/j.jemeth.2017.07.002

129. McCall KC, Humm JL, Bartlett R, Reese M, Carlin S. Copper-64-Diactyl-Bis(N (4)-Methylthiosemicarbazone) Pharmacokinetics in FaDu Xenograft Tumors and Correlation With Microscopic Markers of Hypoxia. Int J Radiat Oncol Biol Phys (2012) 84(3):e393–9. doi: 10.1016/j.ijrobp.2012.05.005
206. Huang H, Zhou H, Li Z, Wang X, Chu T. Effect of a Second Nitroimidazole Redox Centre on the Accumulation of a Hypoxia Marker: Synthesis and In Vitro Evaluation of 99mTc-Labeled Bisnitroimidazole Propylene Amine Oxime Complexes. Bioorg Med Chem Lett (2012) 22(1):172–7. doi: 10.1016/j.bmcl.2011.11.042

207. Li N, Zhu H, Chu T-W, Yang Z. Preparation and Biological Evaluation of 99mTc-N4IPA for Single Photon Emission Computed Tomography Imaging of Hypoxia in Mouse Tumor. Eur J Med Chem (2013) 69:223–31. doi: 10.1016/j.ejmech.2013.08.005

208. Giglio J, Fernandez S, Pietzsch HJ, Dematteis S, Moreno M, Pacheco JP, et al. Synthesis, In Vitro and In Vivo Characterization of Novel 99mTc-4+1-Labeled 5-Nitroimidazole Derivatives as Potential Agents for Imaging Hypoxia. Nucl Med Biol (2012) 39(5):679–86. doi: 10.1016/j.nuclmedbio.2011.12.012

209. Huizing FJ, Garousi J, Lok J, Franssen G, Hoeben BAW, Frejd FY, et al. CAIX-Targeting Radiotracers for Hypoxia Imaging in Head and Neck Cancer Models. Sci Rep (2019) 9(1):18898. doi: 10.1038/s41598-019-54824-5

210. Zhou Z, Wagh NK, Ogbomo SM, Shi W, Jia Y, Brusnahan SK, et al. Synthesis and In Vitro and In Vivo Evaluation of Hypoxia-Enhanced 111In-Bombesin Conjugates for Prostate Cancer Imaging. J Nucl Med (2013) 54(9):1605–12. doi: 10.2967/jnumed.112.117986

211. Carlin S, Khan N, Ku T, Longo VA, Larson SM, Smith-Jones PM. Molecular Targeting of Carbonic Anhydrase IX in Mice With Hypoxic HT29 Colorectal Tumor Xenografts. PloS One (2010) 5(5):e10857. doi: 10.1371/journal.pone.0010857

212. Das T, Chakraborty S, Banerjee S, Mukherjee A, Samuel G, Sarma HD, et al. Preparation and Preliminary Biological Evaluation of a 177Lu Labeled Sanazole Derivative for Possible Use in Targeting Tumor Hypoxia. Bioorg Med Chem (2004) 12(23):6077–84. doi: 10.1016/j.bmc.2004.09.007

213. Hoeben BA, Kaanders JH, Franssen GM, Troost EG, Rijken PF, Oosterwik E, et al. PET of Hypoxia With 89Zr-Labeled Cg250-F(Alb2)2 in Head and Neck Tumors. J Nucl Med (2010) 51(7):1076–83. doi: 10.2967/jnumed.109.073189

214. Amarnath C, Laurence C, Eric OA. Molecular Mechanisms of Hypoxia in Cancer. Clin Trans Imaging (2017) 5:225–33. doi: 10.1007/s40336-017-0231-1

215. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging Tumour Hypoxia With Positron Emission Tomography. Br J Cancer (2015) 112:238–2500. doi: 10.1038/bjc.2014.610

216. Zeng Y, Ma JW, Zhang SJ, Wu D. Imaging Agents in Targeting Tumor Hypoxia. Curr Med Chem (2016) 23(17):1775–800. doi: 10.2174/0929867323666160321122023

Conflict of Interest: Authors SF, YC, JW was employed by company Academician (Expert) Workstation of Sichuan Province.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Huang, Fan, Li, Fu, Chen and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.