Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: the Pros-IT CNR study

Angelo Porreca, Marianna Noale, Walter Artibani, Pier Francesco Bassi, Filippo Bertoni, Sergio Bracarda, Giario Natale Conti, Renzo Corvo, Mauro Gacci, Pierpaolo Graziotti, Stefano Maria Magrini, Vincenzo Mirone, Rodolfo Montironi, Giovanni Muto, Stefano Pecoraro, Umberto Ricardi, Elvio Russi, Andrea Tubaro, Vittorina Zagonel, Gaetano Crepaldi, Stefania Maggi and the Pros-IT CNR study group

Abstract

Background: The National Research Council (CNR) prostate cancer monitoring project in Italy (Pros-IT CNR) is an observational, prospective, ongoing, multicentre study aiming to monitor a sample of Italian males diagnosed as new cases of prostate cancer. The present study aims to present data on the quality of life at time prostate cancer is diagnosed.

Methods: One thousand seven hundred five patients were enrolled. Quality of life is evaluated at the time cancer was diagnosed and at subsequent assessments via the Italian version of the University of California Los Angeles-Prostate Cancer Index (UCLA-PCI) and the Short Form Health Survey (SF-12).

Results: At diagnosis, lower scores on the physical component of the SF-12 were associated to older ages, obesity and the presence of 3+ moderate/severe comorbidities. Lower scores on the mental component were associated to younger ages, the presence of 3+ moderate/severe comorbidities and a T-score higher than one. Urinary and bowel functions according to UCLA-PCI were generally good. Almost 5% of the sample reported using at least one safety pad daily to control urinary loss; less than 3% reported moderate/severe problems attributable to bowel functions, and sexual function was a moderate/severe problem for 26.7%. Diabetes, 3+ moderate/severe comorbidities, T2 or T3-T4 categories and a Gleason score of eight or more were significantly associated with lower sexual function scores at diagnosis.

Conclusions: Data collected by the Pros-IT CNR study have clarified the baseline status of newly diagnosed prostate cancer patients. A comprehensive assessment of quality of life will allow to objectively evaluate outcomes of different profile of care.

Keywords: Prostate cancer, Quality of life, Diagnosis, Pros-IT CNR study
Background
Prostate cancer was the most common cancer diagnosed in men worldwide in 2015 [1]. With the exclusion of skin cancers, it represents 20% of all malignancies diagnosed in Italian males 50 years old or older [2]. Survival rates after a prostate cancer diagnosis continue to rise; approximately 89% of Italian patients are still alive 5 years after diagnosis, with North-western regions showing better rates with respect to Southern ones [2].

Clinical cancer researchers and oncologists recognize the importance of measuring survival and the clinical effects of treatments as well as patients’ quality of life in terms of subjective perceptions of symptoms, including physical, emotional and social functions [3, 4]. The increasing numbers of men with prostate cancer diagnoses and rising life expectancies underscore the importance of evaluating the quality of life of these patients [5, 6]. A number of studies have demonstrated that prostate cancer and its treatments affect physical and psychological health, as well as urinary, bowel and sexual function, with effects that seem to differ depending on the stage of the disease and the treatment being given [5, 7].

The National Research Council (CNR) prostate cancer monitoring project in Italy (Pros-IT CNR) is an ongoing study that is monitoring a sample population of Italian male patients 18 years and older who were newly diagnosed with biopsy-verified treatment-naïve prostate cancer after September 1, 2014. Ninety-seven centers including 51 Urology, 39 Radiation Oncology and 7 Oncological facilities located throughout Italy were actively involved in the enrollment phase. The baseline questionnaires were administered at the time the patients were diagnosed with prostate cancer.

Methods
Study design
The Pros-IT CNR study design has been described elsewhere [8]. Briefly, the Pros-IT CNR is a multicenter, prospective study that aims to monitor the quality of life of a sample of Italian male patients 18 years and older who were diagnosed with biopsy-verified treatment-naïve prostate cancer after September 1, 2014.

Sixty patients who were newly diagnosed with prostate cancer. After signing the informed consent form, a baseline Data Collection Form (DCF) was completed by the referring specialist using a web-platform that was specifically created for the study. The Italian version of the UCLA-PCI questionnaire was, instead, printed and completed by each patient privately, and then returned to the specialist who loaded the responses into the web-platform.

Data collection
The participating centers identified eligible patients who were newly diagnosed with prostate cancer. After signing the informed consent form, a baseline Data Collection Form (DCF) was completed by the referring specialist using a web-platform that was specifically created for the study. The Italian version of the UCLA-PCI questionnaire was, instead, printed and completed by each patient privately, and then returned to the specialist who loaded the responses into the web-platform.

Statistical analysis
The missing baseline data were analyzed without imputation of missing data.

Categorical variables are presented as numbers and percentages. Continuous variables are reported as means and standard deviations (SD) or medians and interquartile ranges for skewed variables. Normal distributions of continuous variables were tested using the Shapiro-Wilk test.
The patients’ overall quality of life, assessed using the SF-12 (PCS and MCS), and their quality of life linked to urinary, bowel and sexual function, assessed using the Italian version of the UCLA-PCI, were analyzed in relation to demographic characteristics, risk factors and disease-staging using a Generalized Linear Model (GLM) on rank-transformed data, adjusting for age at diagnosis. Multivariable logistic regression models were defined, with outcomes the PCS and MCS SF-12 scores as well as the urinary, bowel and sexual functions of the UCLA-PCI, dichotomized according to the first quartile of their distribution (Q1). Each model was adjusted for age at diagnosis (years), education (lower secondary school diploma or less vs high school diploma or University degree), marital status (married or cohabitating vs widowed, divorced or single), geographical area of residence (northern regions of Italy vs central or southern regions), Body Mass Index (BMI; normal weight vs overweight or obesity), smoking status (current smoker vs former or never), diabetes mellitus, having three or more moderate/severe comorbidities, T stage (T1 vs T2 or T3-T4) and Gleason score at diagnosis (6 vs 3+4, 4+3, 8+).

All statistical tests were two-tailed, and \(p \)-values < 0.05 were considered statistically significant. All the analyses were performed using the SAS 9.4 statistical software.

Results

One thousand seven hundred fifty-three patients with a biopsy-verified prostate cancer were originally enrolled. Forty-eight protocol violations were registered in relation to inclusion criteria: diagnoses were formulated before September 1, 2014 for 35 patients and 13 were not naïve to prostate cancer treatments. Excluding those patients, our sample was made up of 1705 patients: 949 (55.7%) were enrolled in Urology, 717 (42.1%) in Radiation Oncology and 39 (2.3%) in Oncological Departments.

More than half of the participants were residing at the time of diagnosis in Northern Italy, about a quarter in Central Italy and the rest in Southern regions of the country. A “health migration” phenomenon was noted in these patients, as many travelled to centers located in...
the North to undergo diagnosis and/or treatment. In fact, 13.7 and 9% of patients residing in the South and Central areas, respectively, were enrolled at centers located in the North.

Socio-demographic characteristics

The main socio-demographic data are presented in Table 1. The patients’ mean age at diagnosis was 68.9 ± 7.4 years. Almost 12% of the participants had a university degree, 36% had a high school diploma, and almost 30% had completed elementary school or had no study degree. Eighty-five percent of the participants were married or cohabiting. More than 90% of the participants were living with other members of their family such as a spouse and/or children. Approximately three-quarters were retired.

Anamnestic data

More than half of the patients were overweight and had a BMI between 25 and 29.9 kg/m² (Table 1). Almost 14% declared that they were current smokers, while 41% were former smokers.

Seventeen percent of the patients reported having a family history of prostate cancer; 5.8 and 2.1%, respectively, reported family breast and ovarian cancer history. The mean age at the diagnosis of prostate cancer in the participants with a family history of the disease was significantly lower than that in those without one (66.8 ± 8.3 vs 69.3 ± 7.2, \(p < 0.0001\)).

Two hundred sixty-three patients (15.5%) declared that they had diabetes mellitus. Four hundred sixty-four of the patients (27.3%) reported having moderate, severe or extremely severe diseases, as defined by the Cumulative Illness Rating Scale (CIRS; [12]), of the vascular, lymphatic or hematopoietic system; 322 (19.0%) referred having a disease of the cardiac system, 236 (13.9%) of the gastrointestinal apparatus and 174 (10.3%) of the neurological system, excluding dementia.
At enrollment, more than 70% of the participants were taking at least one medication; the median number of drugs assumed was three (interquartile range IQ 1–4). Precisely 53.7% were taking drugs for the circulatory system, 27% of the participants were receiving antithrombotic agents, 25.4% were medication for the digestive system and metabolism (16.4% for acidosis, 10.6% hypoglycemic drugs). About one quarter of the enrolled patients (22.6%) were taking urological drugs for lower urinary tract symptoms or for erectile dysfunction.

Diagnosis

The median prostate-specific antigen (PSA) level at diagnosis was 7.2 ng/mL (IQ 5.2–10.6). Approximately half of the study participants had a T1 clinical stage (786, 48%), 38.6 and 11.4% had a T2 or T3-T4 clinical stage, respectively. The Gleason score for prostate biopsy tissue was six for 718 patients (42.8%), 3 + 4 for 381 (22.7%), 4 + 3 for 233 (13.9%) and 8+ for 349 patients (20.8%). The association of age at diagnosis with both the clinical T stage and the Gleason score was significant (p < 0.0001 for trend; Fig. 1a, b).

Quality of life: SF-12

Complete responses to the SF-12 were available for 1664 participants (data was missing for 2.4% of the participants). The mean PCS value for the entire study population was 51.6 ± 7.5; the mean MCS value was 49.3 ± 9.7. While mean PCS scores tended to be lower in the oldest patients (p < 0.0001), the mean MCS scores tended to be higher in the oldest patients (p = 0.0059).

Table 2 outlines the mean PCS and MCS values at diagnosis analyzed together with other characteristics of the participants of the Pros-IT CNR study at the time they were diagnosed with prostate cancer (Continued)

T staging at diagnosis	PCS*	p-value	MCS*	p-value
T1	52.0 ± 7.2	0.8226	50.4 ± 9.3	< 0.0001
T2	51.6 ± 7.6		48.7 ± 9.6	a
T3 or T4	51.1 ± 7.9		48.6 ± 10.1	b

Gleason score at diagnosis	PCS*	p-value	MCS*	p-value
6	52.1 ± 7.0	0.3409	49.6 ± 9.3	0.1599
3 + 4	51.9 ± 7.3		50.0 ± 9.5	
4 + 3	51.6 ± 7.8		48.6 ± 10.3	
8+	50.7 ± 8.3		48.7 ± 10.1	

| *mean ± SD | §p-value from test for trend | a, b significant post-hoc (p < 0.05 adjusting for age at diagnosis) |

Table 2 Demographic data and responses to the physical (PCS) and mental components (MCS) of the SF-12 of the participants of the Pros-IT CNR study at the time they were diagnosed with prostate cancer

- **Age at diagnosis (years)**
 - < 60: 54.4 ± 6.2, 47.3 ± 9.9
 - 60–64: 52.8 ± 6.6, 48.5 ± 9.7
 - 65–69: 52.2 ± 6.8, 50.2 ± 9.3
 - 70–74: 51.1 ± 7.7, 49.5 ± 10.1
 - 75–79: 50.1 ± 8.0, 49.9 ± 9.3
 - 80+: 48.1 ± 10.2, 49.9 ± 9.0

- **Education**
 - University degree: 52.7 ± 6.6, 49.6 ± 9.4
 - High school diploma: 52.1 ± 7.2, 49.0 ± 9.5
 - Lower secondary school diploma: 51.2 ± 7.9, 49.0 ± 9.8
 - Elementary license or less: 51.0 ± 7.9, 50.0 ± 9.8

- **BMI**
 - Under/normal weight (< 25 kg/m²): 52.0 ± 7.5, 49.1 ± 9.7
 - Overweight (25–29.9 kg/m²): 52.0 ± 7.1, 49.5 ± 9.5
 - Obesity (≥ 30 kg/m²): 49.7 ± 8.4, 49.7 ± 9.9

- **Smoking status**
 - Non-smoker or former: 51.6 ± 7.6, 49.4 ± 9.6
 - Current smoker: 51.9 ± 7.2, 48.4 ± 10.1

- **Diabetes mellitus**
 - No: 52.0 ± 7.3, 49.4 ± 9.7
 - Yes: 49.6 ± 8.4, 49.0 ± 9.6

- **Number of moderate/severe comorbidities (according to CIRS)**
 - 0–2: 52.5 ± 6.7, 49.8 ± 9.4
 - 3+: 47.0 ± 9.9, 46.8 ± 10.4

- **Geographical area of residence**
 - North Italy: 51.7 ± 7.5, 49.9 ± 9.6
 - Central Italy: 52.3 ± 7.2, 49.0 ± 9.7
 - Southern Italy: 50.4 ± 7.8, 48.7 ± 9.8

- **Marital status**
 - Married or cohabiting: 51.8 ± 7.4, 49.5 ± 9.4
 - Widowed: 51.1 ± 7.7, 49.1 ± 10.2
 - Separated, divorced or single: 51.1 ± 8.0, 48.0 ± 11.0

- **T staging at diagnosis**
 - T1: 52.0 ± 7.2, 50.4 ± 9.3
 - T2: 51.6 ± 7.6, 48.7 ± 9.6
 - T3 or T4: 51.1 ± 7.9, 48.6 ± 10.1

- **Gleason score at diagnosis**
 - 6: 52.1 ± 7.0, 49.6 ± 9.3
 - 3 + 4: 51.9 ± 7.3, 50.0 ± 9.5
 - 4 + 3: 51.6 ± 7.8, 48.6 ± 10.3
 - 8+: 50.7 ± 8.3, 48.7 ± 10.1

- **Diagnosis**

 The median prostate-specific antigen (PSA) level at diagnosis was 7.2 ng/mL (IQ 5.2–10.6). Approximately half of the study participants had a T1 clinical stage (786, 48%), 38.6 and 11.4% had a T2 or T3-T4 clinical stage, respectively. The Gleason score for prostate biopsy tissue was six for 718 patients (42.8%), 3 + 4 for 381 (22.7%), 4 + 3 for 233 (13.9%) and 8+ for 349 patients (20.8%). The association of age at diagnosis with both the clinical T stage and the Gleason score was significant (p < 0.0001 for trend; Fig. 1a, b).

- **Quality of life: SF-12**

 Complete responses to the SF-12 were available for 1664 participants (data was missing for 2.4% of the participants). The mean PCS value for the entire study population was 51.6 ± 7.5; the mean MCS value was 49.3 ± 9.7. While mean PCS scores tended to be lower in the oldest patients (p < 0.0001), the mean MCS scores tended to be higher in the oldest patients (p = 0.0059).

Table 2 outlines the mean PCS and MCS values at diagnosis analyzed together with other characteristics of...
The characteristics associated with lower PCS scores in the multivariable logistic regression model were age (Odds Ratio OR 1.06 for each year of age, 95% Confidence Interval CI 1.04–1.08, p < 0.0001), obesity (OR 1.84, 95% CI 1.27–2.65, p = 0.0012), the presence of three or more moderate/severe comorbidities (OR 2.75, 95% CI 2.01–3.76, p < 0.0001) and a Gleason score at diagnosis of 8+ (OR = 1.44, 95% CI 1.02–2.05, p = 0.0401). Living in Southern regions of Italy and being widowed or single were also associated with lower PCS scores in the multivariable model (OR = 1.69, 95% CI 1.23–2.33, p = 0.0013 and OR = 1.42, 95% CI 1.02–1.98, p = 0.040, respectively).

The characteristics associated with lower MCS scores in the multivariable logistic model were younger age (OR = 0.97, 95% CI 0.96–0.98, p = 0.0012), the presence of three or more moderate/severe comorbidities (OR 1.95, 95% CI 1.42–2.70, p < 0.0001), a T-score at diagnosis that was higher than T1 (T2 vs T1 OR 1.51, 95% CI 1.15–1.98, p = 0.0029; T3-T4 vs T1 OR 1.62, 95% CI 1.06–2.48, p = 0.0253).

Quality of life: UCLA-PCI
Complete responses to the UCLA-PCI were available for 1645 participants (3.5% missing data). At the time prostate cancer was diagnosed, urinary function was good (93.2 ± 15.7) and urinary bother scores were low (88.5 ± 23.3). Four point 9 % of the study participants reported using at least one safety pad daily to control urinary loss; the increase with age was not significant (p = 0.1943): the percent ranged from 3.2% in the patients younger than 65 to 5.8, 5.3 and 5.4% in the patients between 65 and 69, 70–74 and 75-older, respectively. The use of a daily safety pad to control urinary loss was significantly associated with lower urinary bother scores (45.7 ± 29.3 vs 90.7 ± 20.7, p < 0.0001).

Bowel function and bother scores on the UCLA-PCI were generally good (93.6 ± 13.2 and 93.3 ± 18.3, respectively), and less than 3% of the participants reported a moderate or severe problem attributable to bowel function. The mean sexual function and bother scores were 48.6 ± 32.2 and 64.1 ± 35.0, respectively. Twenty-six point 7 % of the participants declared that their sexual function was a moderate/large problem: the percentages ranged from 22.9 to 23.8% to 29.8 and 30.5% in the patients younger than 65, between 65 and 69, 70–74 or 75 or older respectively (p = 0.0044).

Age was the main characteristic associated with prostate cancer scores (Fig. 2; Table 3), also in the multivariable logistic regression models; the p-values for trend with increasing age were statistically significant for every health aspect evaluated by UCLA-PCI. Variables significantly associated with lower scores on sexual function in the multivariable models were age (OR 1.10, 95% CI 1.08–1.13, p < 0.0001), diabetes (OR = 1.40, 95% CI 1.01–1.96, p = 0.0485), three or more moderate/severe comorbidities according to CIRS (OR 1.55, 95% CI 1.11–2.16, p = 0.0103), T2 or T3-T4 at diagnosis (OR = 1.42, 95% CI 1.06–1.89, p = 0.0185, and OR = 1.75, 95% CI 1.14–2.69, p = 0.0093, vs T1, respectively) and a Gleason score of eight or more (OR = 2.03, 95% CI 1.42–2.92, p = 0.0001).

Discussion
The PROS-IT CNR Study allows to assess the quality of life of males diagnosed as new cases of prostate cancer in Italy. More than half of the patients reside in Northern Italy, a fact that is linked to the geography of the centers, which all voluntarily agreed to participate in
Table 3: Demographic data and responses regarding urinary, bowel and sexual function and bother to the UCLA-PCI of the participants of the Pros-IT CNR study at the time they were diagnosed with prostate cancer

	Urinary Function*	p-value	Urinary Bother*	p-value	Bowel Function*	p-value	Bowel Bother*	p-value	Sexual Function*	p-value	Sexual Bother*	p-value
Age at diagnosis												
< 60 years	95.5 ± 12.4	0.0015	93.3 ± 18.1	0.0030	94.7 ± 12.4	0.0058	94.9 ± 17.5	0.0167	74.3 ± 25.0	< 0.0001	74.8 ± 34.6	< 0.0001
60–64	94.3 ± 14.2		88.7 ± 23.7		94.5 ± 13.4		94.3 ± 15.7		63.2 ± 27.8		66.9 ± 34.6	
65–69	93.3 ± 16.3		88.9 ± 23.5		94.7 ± 11.4		94.6 ± 16.0		51.2 ± 30.4		65.3 ± 32.8	
70–74	92.2 ± 166		86.9 ± 245		92.9 ± 13.7		92.1 ± 19.6		43.1 ± 30.2		59.5 ± 35.1	
75–79	92.3 ± 163		87.5 ± 242		92.8 ± 13.9		93.3 ± 18.9		33.2 ± 29.5		58.5 ± 36.4	
80+	92.2 ± 167		88.0 ± 239		91.9 ± 16.2		87.1 ± 25.1		23.0 ± 25.3		70.3 ± 33.6	
		0.8255	0.7833	0.3867	0.1411	0.2339	0.4686					
Education												
University degree	94.3 ± 142		89.3 ± 22.1		95 ± 11.2		93.1 ± 17.2		568 ± 32.6		67.7 ± 35.3	
High school diploma	93.6 ± 154		88.2 ± 238		93.4 ± 13		92.8 ± 18.7		52.2 ± 31.8		63.6 ± 35.2	
Lower secondary school diploma	92.8 ± 157		88.9 ± 235		94.4 ± 12.4		94.5 ± 16.9		496 ± 32.5		66.2 ± 34.3	
Elementary or less	92.4 ± 168		88.3 ± 234		92.8 ± 14.7		92.9 ± 19.3		399 ± 30.5		61.8 ± 35.2	
Marital status		0.1720	0.6739	0.0158	0.6490	0.0543	0.6904					
Married/cohabiting	934 ± 156		88.7 ± 232		93.9 ± 13.1		93.5 ± 18.1		49.1 ± 32.2		68.9 ± 35.1	
Widowed	917 ± 15		88.7 ± 229		92.7 ± 14.2		91.1 ± 21.9		406 ± 29.9		63.5 ± 34.5	
Separated, divorced, single	919 ± 171		87.1 ± 25.1		91.5 ± 13.9		93 ± 18.3		484 ± 32.7		66.6 ± 34.8	
Geographical residence	0.0792		0.0968	0.1680	0.2818	0.0651	< 0.0001					
North Italy	932 ± 153		88.3 ± 232		93.5 ± 12.8		93.1 ± 18.3		475 ± 32.3		67.8 ± 34.1	0.6455
Central Italy	927 ± 165		90.2 ± 221		94.7 ± 12.3		94.2 ± 17.6		51.4 ± 31.3		58.8 ± 35.3	0.3423
South Italy	925 ± 16		86.9 ± 255		93 ± 14.9		92.8 ± 19.1		467 ± 33.2		60 ± 36.3	0.4686
BMI		0.8219	0.3962	0.0290	0.6373	0.0012	0.3423					
Under/normal weight (≤ 25 kg/m²)	93 ± 16.2		88.7 ± 239		94 ± 12.6		93.3 ± 18.3		503 ± 32.4		63.3 ± 34.8	
Overweight (25–29.9 kg/m²)	93.1 ± 156		88.7 ± 229		94.1 ± 12.5		93.6 ± 17.6		489 ± 32.3		64.1 ± 34.8	
Obesity (≥ 30 kg/m²)	93.3 ± 15.1		87.4 ± 237		91 ± 16.5		91.8 ± 21.0		434 ± 32.4		61.8 ± 36.1	
Smoking status		0.3011	0.2375	0.5201	0.8061	0.0652	0.9697					
Non-smoker or former	929 ± 16		88.1 ± 239		93.4 ± 13.5		93.1 ± 18.6		478 ± 32.2		68.3 ± 35.2	
Current smoker	944 ± 143		91.1 ± 204		94.7 ± 11.3		93.9 ± 16.6		536 ± 31.2		66.1 ± 34.0	
Diabetes mellitus		0.3837	0.2607	0.6216	0.0058	< 0.0001	0.6154					
No	933 ± 157		88.9 ± 230		93.8 ± 12.9		93.7 ± 17.7		505 ± 32.0		64.5 ± 34.9	
Yes	926 ± 159		86.9 ± 250		92.9 ± 14.6		91.1 ± 21.4		382 ± 31.0		60.2 ± 35.7	
Table 3 Demographic data and responses regarding urinary, bowel and sexual function and bother to the UCLA-PCI of the participants of the Pros-IT CNR study at the time they were diagnosed with prostate cancer (Continued)

N. of moderate/severe comorbidities (CIRS)	Urinary Function*	p-value	Urinary Bother*	p-value	Bowel Function*	p-value	Bowel Bother*	p-value	Sexual Function*	p-value	Sexual Bother*	p-value
0–2	93.4 ± 15.5	0.0774	89.4 ± 22.3	0.0072	94.2 ± 12.5	0.0001	94.5 ± 16.3	< 0.0001	508 ± 31.9	< 0.0001	64.9 ± 34.9	0.1873
3+	919 ± 166	0.0001	83.8 ± 278	0.0013	90.3 ± 16.3	0.2658	86.5 ± 26.1	0.5184	35.7 ± 30.7	< 0.0001	60.2 ± 35.4	0.4077

T staging at diagnosis												
T1	942 ± 14	0.1070	90.3 ± 22	0.0133	94.6 ± 12.2	0.2658	94 ± 17.2	0.5184	55.7 ± 30.6	< 0.0001	66.6 ± 33.8	0.0477
T2	928 ± 162	0.2894	87.2 ± 24.4	0.8231	93.6 ± 13.0	0.8231	93.0 ± 18.3	0.5100	43.5 ± 31.7	0.628	62.8 ± 34.8	0.5015
T3 or T4	907 ± 19	0.6653	86.4 ± 243	0.0289	93.5 ± 13.6	0.0133	93.2 ± 19.5	0.8231	37.1 ± 32.3	0.636	63.6 ± 36.9	0.0505

Gleason score at diagnosis												
6	939 ± 144	0.6653	90.1 ± 21.6	0.2894	94.3 ± 12.2	0.8231	94.3 ± 16.6	0.5100	548 ± 30.3	< 0.0001	66.0 ± 34.1	0.0515
3 + 4	933 ± 164	0.0505	88.9 ± 233	0.0505	93.8 ± 12.5	0.0505	92.8 ± 18.3	0.0505	488 ± 31.7	0.627	62.7 ± 35.5	0.0505
4 + 3	937 ± 134	0.0133	86.7 ± 250	0.0133	93.4 ± 13.1	0.0133	93.8 ± 17.0	0.0133	449 ± 32.5	0.606	60.6 ± 35.9	0.0133
8+	916 ± 185	0.0133	87.1 ± 248	0.0133	93 ± 16.7	0.0133	92.1 ± 21.2	0.0133	39 ± 33.3	0.645	64.5 ± 35.7	0.0133

*mean ± SD
§p-value from test for trend
a, b significant post-hoc (p < 0.05 adjusting for age at diagnosis)
the study. Half, in fact, are located in the North; approximately a fourth are located in Central Italy and the rest in the Southern part of the country. According to the last report of the Italian Association of Cancer Registry (AI R T U M), the standardized incidence of prostate cancer was inferior in the Southern and Central regions with respect to that in the Northern ones (68 and 85.7 vs 99.8 per 100,000 men) [2]. Official records also show that while the Southern part of Italy is characterized by a lower incidence rate of prostate cancer, it nonetheless also registers a shorter survival rate. Our study will provide evidence on potential delay in the diagnosis of prostate cancer in South Italy, which could explain these epidemiological trends.

The patients participating in the Pros-IT CNR study were found to be characterized by a higher education with respect to data referring to the general population of males over 75 reported by the Italian Statistics Institute (ISTAT) [13]. While 12% of the men enrolled in our study had a university degree, only 7% of the general population did so. While 30% of the participants completed grade school or had no official schooling, 48.6% of the general male elderly population did so. The differences in educational status of the participants and the general population, seem to suggest that socio-economic characteristics might be associated to the risk of prostate cancer in the Italian population. We cannot however exclude a selection bias as more highly educated males may have agreed to participate in the study.

The mean score physical SF-12 component score was 51.7, which was higher than that described by the ISTAT in males between 65 and 74 (48.4) or those over 75 (41.5). The scores on the emotional-psychological SF-12 component in the participants were consistent with those reported by the ISTAT in males between 65 and 74 and slightly higher than those calculated for men over 75 [13]. These results disagree to some extent with what has been reported by other studies. For example, both the investigators of the ProtecT trial and a review on cancer and health-related quality of life, reported scores on the two SF-12 components in just diagnosed patients that were consistent with those in the population at large [5, 7]. Moreover, according to other studies, just diagnosed with prostate cancer patients had lower scores on the emotional-psychological component with the respect to those in the general population [14, 15]. Again, these results could be explained by the higher level of education of the participants in our sample compared to that of the general population, a factor that is usually associated to an overall better physical and emotional health.

The scores on the physical component and thus concerning the perception of physical health were worse, in our study, in the older age-groups, while those concerning emotional-psychological status tended to be worse in the youngest age-group, suggesting, just as has been pointed out in other studies, that a certain amount of psycho-emotional adjustment takes place with aging [16, 17].

It is interesting that worse emotional-psychological component scores were associated to worse T classes at diagnosis regardless of age or other confounding factors such as comorbidities. Likewise, worse T or Gleason scores at diagnosis were associated to worse scores on sexual function, although in some studies men with localized prostate cancer reported more sexual problems with respect to same-age peers without cancer [3]. Approximately 5% of the patients included in our study declared that they used at least one safety pad daily to control urinary loss. That percentage did not change in the older patients, but it did when there were other urinary disturbances. This baseline finding is of primary relevance when post-treatment continence is being defined and evaluated.

The Pros-IT CNR study has several strengths, including its multidisciplinary approach and its prospective design. The study's longitudinal design that foresees monitoring the participants for 60 months from the time of diagnosis, will allow to evaluate the disease's evolution over time and the patients quality of life. One of the study's limitations instead is connected to the fact that centres were involved on a voluntary basis and a selection bias cannot be excluded.

Conclusions

The importance of the results presented here is twofold: they draw a profile of the general state of health and the subjective perception of quality of life of patients who have just been diagnosed with prostate cancer. Moreover, they underscore the patients' characteristics at diagnosis that are relevant for appreciating the variations over time of their quality of life. More detailed knowledge about patients' pre-treatment status and perception of health and quality of life will be essential to evaluate their response to treatment and to permit us to compare our data with those reported by other studies.

Abbreviations

AI R T U M: Italian Association of Cancer Registry; BMI: Body Mass Index; CI: Confidence Interval; CIRS: Cumulative Illness Rating Scale; DCF: Data Collection Form; GLM: Generalized Linear Model; IQ: Interquartile range; ISTAT: Italian Statistics Institute; MCS: Mental Component Summary; OR: Odds Ratio; PCS: Physical Component Summary; PSA: Prostate-specific antigen; SD: Standard Deviation; SF-12: Short Form Health Survey; UCLA-PCI: University of California Los Angeles-Prostate Cancer Index

Acknowledgements

The authors wish to thank Linda Inverso Moretti for reviewing the English version of this paper.

The Pros-IT CNR Group:

Steering Committee: Crepaldi Gaetano (Padova); Maggi Stefania (Padova); Noale Marianna (Padova); Porreca Angelo (Padova); Artibani Walter (Verona); Bassi Pierfrancesco (Roma); Bracarda Sergio (Arezzo); Conti Giario Natale
The Pros-IT CNR study protocol was approved by the Ethics Committee of the clinical coordinating center located at the Sant’Anna Hospital (Como, Italy; register number 45/2014). It was also approved by the Ethics Committees of each of the other participating centers. All participants gave informed consent.

Competing interests
AP, MN, WA, PFB, FB, GNC, RC, MG, SM, VM, RM, GM, SP, UR, VZ declare that they have no conflicts of interest. AT reports personal fees and other from Astellas, other from Allergan, other from Bayer, other from GSK, personal fees and other from Pierre Fabre, other from Takeda, outside the submitted work. SM and GC report grants from Takeda, during the conduct of the study; personal fees from Takeda, outside the submitted work. Conflict of interest forms for PG, ER and SB were not received.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Policlinico di Abano Terme, Padova, Italy. 2 National Research Council (CNR), Neuroscience Institute, Aging Branch, Via Giustiniani 2, 35128 Padova, Italy. 3 Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy. 4 Policlinico di Abano Terme, Padova, Italy. 5 National Research Council (CNR), Association for Radiation Oncology, Milano, Italy. 6 Ospedale San Donato, Arezzo, Italy. 7 Ospedale Sant’Anna, Como, Italy. 8 RCCS San Martino-IST, Genova, Italy. 9 Università di Firenze, Firenze, Italy. 10 Ospedale S. Giuseppe, Milano, Italy. 11 Università di Brescia, Brescia, Italy. 12 Università degli Studi di Napoli Federico II, Napoli, Italy. 13 Università Politecnica delle Marche, Ancona, Italy. 14 Ospedale Sant’Andrea, Roma, Italy. 15 Istituto Oncologico Veneto IO-RCCS, Padova, Italy.
2. AIOM, AIRTUM. I numeri del cancro in Italia. Roma: Il Pensiero Scientifico Editore; 2016.
3. Bottomley A. The Cancer patient and quality of life. Oncologist. 2002;7:120–5.
4. Velikova G, Coensel C, Efficacce F, Greimel E, Groenvolde M, Johansson C, et al. Health-Related Quality of Life in EORTC clinical trials – 30 years of progress from methodological developments to making a real impact on oncology practice. EJC. 2012;Supplements 10(1):141–9.
5. Eton DT, Lepore SJ. Prostate cancer and health-related quality of life: a review of the literature. Psychooncology. 2002;11(4):207–26.
6. Penson DF, Litwin MS, Aaronsen NK. Health related quality of life in men with prostate cancer. J Urol. 2003;169(5):1653–61.
7. Lane A, Metcalfe C, Young GJ, Peters TJ, Blazey J, Avery KN, et al. Patient-reported outcomes in the ProtecT randomized trial of clinically localized prostate cancer treatments: study design, and baseline urinary, bowel and sexual function and quality of life. BJU Int. 2016;118:869–79.
8. Noale M, Maggi S, Antinani W, Bassi F, Bertoni F, Bracarda S, et al. Pros-IT CNR: an Italian prostate cancer monitoring project. Aging Clin Exp Res. 2017;29(2):165–72.
9. Garci M, Livl L, Paiar F, Detti B, Litwin MS, Bartolotti R, Guicilei G, Cai T, Mariani M, Carini M. Quality of life after radical treatment of prostate cancer: validation of the Italian version of the University of California Los Angeles-Prostate Cancer Index. Urology. 2005;66:338–43.
10. Apolone G, Mosconi P, Quattrococchi L, Gianicolo EAL, Groth N, Ware JE. Questionario sullo stato di salute SF-12. Versione Italiana. Guerini e Associati Editore: Milano; 2001.
11. Hamoen EH, De Rooij M, Witjes JA, Barentsz JO, Rovers MM. Measuring health-related quality of life in men with prostate cancer: a systematic review of the most used questionnaires and their validity. Urol Oncol. 2015;33(2):e19–28.
12. Convell Y, Forbes NT, Cox C, Caine ED. Validation of a measure of physical illness burden at autopsy: the cumulative illness rating scale. J Am Geriatr Soc. 1993;41:38–41.
13. ISTAT Indagine “Aspetti della vita quotidiana” 2013 http://www.istat.it/it/archivio/129956.
14. Choi EPH, Wong CKH, Tsu JHL, Chin WY, Kung K, Wong CKW, Yiu MK. Health-related quality of life of Chines patients with prostate cancer in comparison to general population and other cancer populations. Support Care Cancer. 2016;24:1849–56.
15. Krupski TL, Fink A, Kwan L, Malik S, Connor SE, Clerkin B, Litwin MS. Health-related quality-of-life in low-income, uninsured men with prostate cancer. J Health Care Poor Underserved. 2005;16(2):375–90.
16. Singer MA, Hopman WM, Mackenzie TA. Psychological adjustment in four chronic medical conditions. Qual Life Res. 1999;8:687–91.
17. Hopman WM, Harrison MB, Coo H, Friedberg E, Buchanan M, VanDenKerkhof EG. Association between chronic disease, age and physical and mental health status. Chronic Dis Can. 2009;29(3):108–16.

Ready to submit your research? Choose BMC and benefit from:
• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions