All-fiber spatial rotation manipulation for radially asymmetric modes

Qi Mo1,2, Zhikun Hong1, Dawei Yu1, Songnian Fu1, Liang Wang3, Kyunghwan Oh4, Ming Tang1 & Deming Liu1

We propose and experimentally demonstrate spatial rotation manipulation for radially asymmetric modes based on two kinds of polarization maintaining few-mode fibers (PM-FMFs). Theoretical finding shows that due to successful suppression of both polarization and spatial mode coupling, the spatial rotation of radially asymmetric modes has an excellent linear relationship with the twist angle of PM-FMF. Both elliptical core and panda type FMFs are fabricated, in order to realize manageable spatial rotation of LP11 mode within ±360° range. Finally, we characterize individual PM-FMF based spatial orientation rotator and present comprehensive performance comparison between two PM-FMFs in terms of insertion loss, temperature sensitivity, linear polarization maintenance, and mode scalability.

Recently, few-mode fiber (FMF) has shown many remarkable performances in various applications, which are not possible in standard single mode fibers (SSMFs). For fiber optic communication, several modes can be launched into FMFs, enabling mode division multiplexing (MDM) to further increase transmission capacity limit set by SSMF1–3. For fiber-based devices, FMF-based sensors have drawn substantial attentions due to their inherently distinctive optical characteristics of higher order modes4, 5, which cannot be provided by radially symmetric fundamental mode in SSMFs. Generally, the true modes propagating over the circular-core FMF are vector modes1, 6. However, LP mode basis is commonly used because LP modes are more readily excited and detected than the vector modes. For l ≥ 1, LPm0 modes are radially asymmetric modes7 as the electric field distribution along the angular direction is divided into several segments. In other words, spatial distribution of LPm0 (l ≥ 1) modes varies with the different angle. Spatial rotation manipulation means that the mode intensity pattern keeps its original profile while the symmetry axis rotates. Due to the radially asymmetric distribution of LPm0 (l ≥ 1) modes, the need for spatial rotation manipulation is frequently encountered in both scientific research and engineering applications. For the phase plate or liquid crystal on silicon (LCOS) based mode division de-multiplexers8, 9, optimization of spatial orientation of radially asymmetric mode is necessary in order to realize mode selective conversion and reduce the computation complexity of multi-input multi output (MIMO) processing simultaneously. Additionally, spatial rotation capability for radially asymmetric modes can provide a versatile tool for optical trapping and tweezers applications10,11. Recently, generation of cylindrical vector beam (CVB) by coherent superposition of two spatially orthogonal LP modes with high polarization purity has been demonstrated12. Fiber specklegram sensors (FSS) using LP11 mode rotation13 and orbital angular momentum (OAM) generation by two spatially orthogonal LP modes with fixed phase delay14, 15 have been also reported. For those applications, fine and reliable adjustment of the spatial orientation of high order modes has become a basic necessity. Until now, only the LP11 mode rotator based on the planar lightwave circuit (PLC) technique has been demonstrated with an insertion loss (IL) of less than 0.46 dB over the spectral range from 1450 nm to 1650 nm16. The PLC-based LP11 mode rotator is fabricated with a trench structure. The spatially symmetrical axes of LP11 mode can be rotated with 45 or 135 degrees by properly setting those trench parameters. If LP11a (LP11b) mode with an 90 degrees (or 0 degree) symmetrical axes is coupled to such PLC-based rotator, two orthogonal LP11 modes whose symmetrical axes are 45 and 135 degrees are equally excited and propagated with different propagation constants β1 and β2.

1Wuhan National Laboratory for Optoelectronics, and School of optical and electronic information, Huazhong University of Science and Technology, Wuhan, 430074, China. 2Wuhan Research Institute of Posts and Telecommunications, 88# Youkeyuan Road, Hongshan District, Wuhan, 430074, China. 3Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong. 4Photonic Device Physics Laboratory, Department of Physics, Yonsei University, Seoul, 120-749, South Korea. Qi Mo and Zhikun Hong contributed equally to this work. Correspondence and requests for materials should be addressed to S.F. (email: songnian@hust.edu.cn)
By choosing the waveguide length as half beat-length, which is defined as $\pi/((\beta_1 - \beta_2))$, the initially launched LP$_{11a}$ (LP$_{11b}$) mode can be rotated into LP$_{11a}$ (LP$_{11b}$) mode. We can see that the PLC-based mode rotator must agree well with a half beat length, for the purpose of successful mode rotation. In particular, the PLC-based mode rotator can only be applied to LP$_{11}$ mode, because the beat length value is different for individual high order modes. Furthermore, the PLC-based mode rotator can only achieve a fixed rotation between LP$_{11a}$ and LP$_{11b}$ mode. The coupling efficiency between the on-chip device and optical fiber is still challenging, due to the mode field mismatch between the on-chip device and optical fiber. Thus, all-fiber mode orientation rotator has been investigated, but the implementation to realize a fixed angle rotation has been technically challenging17. Recently, 180° spatial orientation rotation of the LP$_{11}$ mode has been reported by introducing a twist-induced mode coupling to traditional two-mode fiber18. Since guided modes in commercial FMF (c-FMF) are the vector modes with different propagation constants, spatial pattern of LP$_{m}$ (l > 0) mode varies periodically as they propagate and therefore they are also called pseudo-modes19. Thus it is very challenging to control the mode rotation manipulation in c-FMF. And all the proposed rotation schemes16–18 are either restricted to specific design parameters and fixed rotation angle or non-universal for all higher order radially asymmetric modes.

In this submission, we accomplish arbitrary spatial rotation manipulation of LP$_{11}$ mode by two types of polarization maintaining few-mode fibers (PM-FMFs). Our theoretical finding shows that all-fiber arbitrary spatial rotation can be achieved by suppression of both spatial and polarization mode coupling. Thus, both elliptical core FMF (e-FMF) and panda type FMF (panda-FMF) with capability of both spatial mode and polarization maintenance are fabricated. Arbitrary rotation manipulation of LP$_{11}$ mode within ±360° range is experimentally demonstrated by both two PM-FMFs with an easy implementation. Finally, we characterize the PM-FMF based spatial orientation rotator and for the first time, a thorough performance comparison between two PM-FMFs in many aspects, including the IL over different operation wavelength, temperature sensitivity, linear polarization maintenance and spatial pattern compatibility with common circular core FMF is presented.

Results

We experimentally examine the characteristics of arbitrary mode rotation by two PM-FMFs. The experimental setup is presented in Fig. 1. The output of a distributed feedback (DFB) laser diode (LD) (Yenista Optics OSICS-DFB), whose operation wavelength is 1550 nm, is coupled to one input port of the mode selective PL (Phoenix Photonics 3PL-0160153). The PL is a three-input mode excitation device which can be used to selectively convert the input fundamental modes to LP$_{01}$, LP$_{11a}$, and LP$_{11b}$ modes, respectively. After the orientation optimization, the PM-FMF is fusion spliced to the output end of the PL by the polarization maintaining fiber fusion splicer (Fujikura FSM 100 P+). As a result, LP$_{11a}$ mode is selectively excited. The two ends of the PM-FMF are respectively fixed to fiber rotator (FR, Thorlabs HFR007) whose angle increment is 5°. The total length of PM-FMF between two FRs is only 12 cm. By manually adjusting the second FR, we are able to manage the fiber twist angle with 2° precision. Mode pattern at the PM-FMF output is captured, in order to carry out both spatial distribution characterization and power measurement. Specifically, spatial distribution is recorded by a collimation lens and an infrared CCD (OPHIR Photonics SP620U-1550). The power measurement is accomplished by a collimation lens and integrating sphere (New Port Power Meter 1918-R with detector 819D-IG-2-CAL). The rotation device including two FRs and a section of PM-FMF is put into a self-fabricated temperature controlled box for temperature-dependent performance investigation. In order to realize pure mode rotation, only single mode is allowed to be launched into PM-FMFs each time, because the power spatial distribution of the mode basis possesses certain orientation with respect to the symmetrical axis of PM-FMF, as shown in Fig. 2. The propagation constants of those modes differ from each other. Otherwise, there will be an evolution of output mode pattern20.

Arbitrary rotation of LP$_{11}$ mode. First we launch LP$_{11}$ mode into two PM-FMFs, respectively, and implement the fiber twisting with the help of the FR2. To make sure only one mode is launched, polarization maintaining fiber fusion splicer is used to rotate the PM-FMF input end to optimize orientation before splicing. When only one mode is launched and the PM-FMF is manually perturbed, no distortion of the captured mode pattern
is observed. Next, the rotation angle of FR 2 is recorded, together with the captured output mode field. For the ease of comparison, LP_{11} mode rotation by twisting the commercial two-mode fiber (TMF, OFS) is also recorded. The results are summarized in Fig. 3.

Performance comparison between two PM-FMFs. In order to provide a quantitative comparison of spatial mode rotation between the commercial TMF (c-TMF) and two PM-FMFs, rotation efficiency for the captured mode profile at PM-FMF output and the corresponding ideal LP mode profile with designated orientation angle are given by

$$\eta_{mode} = \frac{\left| \int E_{\text{capture}}(x, y) \cdot E_{\text{pure-mode j}}(x, y) \, dx \, dy \right|^2}{\int \left| E_{\text{capture}}(x, y) \right|^2 \, dx \, dy \int \left| E_{\text{pure-mode j}}(x, y) \right|^2 \, dx \, dy}$$

(1)

The output electric field of PM-FMF E_{capture} is obtained by the combination of the captured mode intensity distribution with fixed phase difference between adjacent lobes. The ideal LP mode distribution E_{pure} can be achieved according to the diffraction theory. Then, the overlap integral between E_{capture} and E_{pure} can be a good indicator of rotating efficiency after spatial rotation manipulation. As shown in Fig. 4, the mode rotating efficiency of LP_{11} mode by using two types of PM-FMFs is above 0.9. We believe that the little degradation is mainly due to the imperfect mode excitation at the input of PM-FMF. However, the mode rotating efficiency by using the commercial TMF degrades to 0.7. Because of severe mode coupling between degenerate modes arising in commercial TMF, the spatial rotation manipulation by commercial TMF is impossible. In order to investigate the temperature-dependent performance of all-fiber spatial mode manipulation, spatial rotation of LP_{11} modes using two PM-FMFs at four specific twist angles (-360°, 180°, 0°, and 360°) are individually measured, when the temperature is varied from 20 °C to 140 °C. In each twist angle measurement, only the environmental temperature is varied and all the other components are kept stable. The variations of rotation angle as a comparison with initial results at 20 °C are recorded, as shown in Fig. 5. All fluctuations of rotation angles are below ±0.01°, indicating of temperature-insensitive operation of the proposed all-fiber spatial orientation rotator. Meanwhile, we characterize the IL of the proposed spatial mode rotator. We monitor the maximum variation of optical power with respect to the operation wavelength, when the LP_{11} mode are rotated within 360° range. The IL in comparison with the situation without mode rotation operation is summarized in Fig. 6. The IL is less than 0.45 dB for all modes within 360° range, when the operation wavelength is varied from 1540 nm to 1560 nm. Finally, the state of polarization (SOP) at the PM-FMF output is determined, because both elliptical core and panda-type fiber are commonly used for the purpose of polarization maintaining in the SMF design. Thus, we carry out accurate measurement of the Stokes vector during the spatial rotation of LP_{11} mode with interval of 10°, based on a manually rotatable quarter-wave plate and a fixed linear polarizer, as shown in Fig. 1(d). When the e-FMF is rotated, the polarization extinction ratio is 15.1 dB for LP_{01} mode and 14.0 dB for LP_{11} mode. When panda-FMF is used for spatial mode rotation, the corresponding polarization extinction ratio are 26.8 dB for LP_{01} mode and 21.0 dB for LP_{11} mode. The CCD-captured LP_{11} mode pattern, when the polarizer located at the PM-FMF output with two orthogonal linear polarizations, is shown in Fig. 7. For the ease of understanding the SOP characterization results, we also plot the results on Poincare sphere, as shown in Fig. 8. We can conclude that the rotated LP_{11} mode is still linearly polarized, and its linear SOP can also rotate the same value as that of spatial pattern.

Discussion
As shown in Fig. 3, for both e-FMF and panda-FMF, the rotation of LP_{11} mode has an excellent linear relationship with respect to the twist angle of PM-FMF, indicating a flexible manipulation of arbitrary mode profile rotation. Performance comparison of the two PM-FMF has also been carried out in several aspects. By calculating overlap integral between the captured mode profile at PM-FMF output and the corresponding ideal LP_{11} mode profile with designated orientation angle, rotation efficiency for LP_{11} mode by two PM-FMF are obtained. The LP_{11} mode rotation efficiency for two PM-FMF are almost the same, showing a good advantage over commercial TMF. When environmental temperature is varied, the variations of rotation angle of LP_{11} mode by two PM-FMFs is negligible, indicating of temperature-insensitive operation for two types of PM-FMFs. The IL over an operation wavelength from 1540 nm to 1560 nm are also characterized. For both PM-FMF based mode rotators, the IL are less than
0.45 dB. However, the capability of linear polarization maintenance of panda-FMF is better than that of e-FMF. The linear polarization maintenance of e-FMF can be further improved by increasing the ellipticity. However, considering the issue of fiber coupling and mode scalability, the mode profile of panda-FMF is more compatible with that of c-TMF because of its circular core. In a summary, all-fiber spatial rotation performance between e-FMF and panda-FMF is almost the same except the polarization maintenance capability. Thus, we do recommend the use of panda-FMF for the purpose of arbitrary mode rotation manipulation. In particular, the rotation of other radially asymmetric modes is expected, when the designated mode is solely guided over the proposed specialty FMFs. Normally, the increment of core size is helpful to guide more high order radially asymmetric modes.

Figure 3. Spatial mode rotations from -360° to 360° of LP$_{11}$ mode using e-FMF, panda-FMF, and commercial TMF, respectively.

Figure 4. Rotating efficiency comparison of LP$_{11}$ modes arising using e-FMF, panda-FMF, and commercial TMF.

Figure 5. Mode rotation variation with respect to the temperature.
Conclusions

In conclusion, we are able to arbitrarily rotate LP_{11} mode orientation within ±360° range by two types of PM-FMFs. Theoretical finding shows that spatial rotation manipulation of high-order radially asymmetric modes...
is possible due to the suppression of both spatial and polarization mode coupling, when the symmetric axis of input radially asymmetric mode is aligned to the symmetric axis of PM-FMF. Finally, we fabricate both e-FMF and panda-FMF and carry out a thorough performance comparison between two PM-FMFs in many aspects, including insertion loss over different operation wavelength, temperature sensitivity and linear polarization maintenance capability. Finally, we recommend the use of panda-FMF for the purpose of all-fiber spatial rotation manipulation for arbitrary radially asymmetric modes.

Methods

Generally, mode propagation in the FMF can be described by coupled mode theory (CMT). Coupled mode equation can be solved analytically for a length of z in Jones matrix form:

\[
\begin{pmatrix}
E_p(z) \\
E_q(z)
\end{pmatrix}
= e^{-i\beta z}
\begin{pmatrix}
\cos(Sz) - \frac{i\delta}{S} \sin(Sz) & -\frac{k_{pq}}{S} \sin(Sz) \\
-\frac{k_{pq}}{S} \sin(Sz) & \cos(Sz) + \frac{i\delta}{S} \sin(Sz)
\end{pmatrix}
\begin{pmatrix}
E_p(0) \\
E_q(0)
\end{pmatrix}
\]

where \(E_p(0)\) and \(E_q(0)\) are the electrical fields of two input adjacent vector modes. Mode coupling may occur between arbitrary two vector modes, but coupling between adjacent modes is usually the strongest. \(\beta = (\beta_p + \beta_q + \beta_\delta - k_{pq})/2\) is the common propagation constant, \(\delta = (\beta_p + k_{pp} - \beta_q - k_{qq})/2\) is the detuning factor while \(\beta = 2\pi/\lambda\) is propagation constant in vacuum, \(\beta_p = 2\pi n/\lambda\) is propagation constant of mode \(p\) arising in the FMF, \(n\) is the mode effective refractive index, and \(\lambda\) is operation wavelength. \(S = \sqrt{\delta^2 + k_{pq}^2}\) is the coupling strength, \(k_{pq}\) is inter-coupling coefficient and \(k_{pp}\) is the self-coupling coefficient under the designated LP mode group. Normally, the transmission matrix in Eq. (2) must be in close proximity to a unit matrix, in order to preserve the same output mode profile as the input one. Therefore, the off-diagonal elements must be small enough, regardless of the environmental perturbation, especially when the fiber is twisted. As a result, the coupling coefficient \(k_{pq}\) and coupling strength \(S\) need to be well managed by specifically enlarging the detuning factor \(\delta\) and reducing the coupling coefficient \(k_{pq}\). Under the condition of fiber twisting, \(k_{pq}\) is determined by the following procedures. Generally, the transverse electric field of vector modes in the FMF can be described as:

\[
E_t(x, y, z) = \sum_p A_p(z) E_p(x, y)
\]

where \(A_p(z) = a_p \exp(i\beta x)\) is the mode amplitude of the FMF and \(a_p\) is the amplitude coefficient of mode \(p\) with propagation constant \(\beta_p\). When the FMF is twisted, the coupling coefficients becomes:

\[
k_{pq} = \frac{\iint \left| \vec{E}_p \right|^2 \times \vec{H}_p^* \right|^2 + \iint \beta \vec{E}_p \times \vec{H}_p^* \left| \vec{E}_q \right|^2 - \iint \vec{E}_p \times \vec{H}_p^* \cdot \nabla (\vec{E}_q) \right| \, dx \, dy}{2\beta_p \iint \left| \vec{E}_p \right|^2 \times \vec{H}_p^* \, dx \, dy}
\]

where \(E\) and \(H\) are corresponding electric and magnetic fields, superscripts \(z\) and \(t\) indicate the longitudinal and transverse field components, respectively. The asterisk \(^*\) indicates complex conjugation. Then, the coupling coefficient \(k_{pq}\) between two vector modes can be determined. Here we take the coupling between TM_{01} and HE_{21e} modes in LP_{11} mode group as an example to explain rotation manipulation, when the fiber is twisted. By taking the mode coupling into account, the output mode field can be worked out according to Eq. (2) under rotation coordinate system. Meanwhile, the relationship between the stationary coordinate and the rotation coordinate system under the condition of fiber twisting can be described as:

Figure 8. SOP of LP_{11} mode from (a) e-FMF, and (b) panda-FMF with different rotation angles.
where \(\dot{\phi} t \) is twisting rate. Hence, the electric fields at the stationary coordinate can be obtained, when the FMF is twisted. It is obvious that if the off-diagonal coefficients are small and Eq. (2) can be approximated as a unit matrix, there exists a prospect of manageable mode rotation of LP mode, when the FMF is twisted. In order to minimize off-diagonal coefficients, small coupling coefficient \(k_{pq} \) and a large detuning factor \(\delta \) between propagated modes are required. In other words, mode spacing between propagated modes should be enlarged. However, for c-FMF, the coupling between adjacent vector modes within the designated LP mode group is severe\(^{29}\), so that corresponding transmission matrix in Eq. (2) cannot be approximated as a unit matrix. Consequently, the output mode profile after propagation over a section of c-FMF is random\(^{6,18}\). Since e-FMF has been proposed for MIMO-less transmission with the mode spacing substantially enlarged\(^{30,31}\), it might be a promising candidate for realizing mode rotation manipulation. We start to design and fabricate e-FMF first. The circular fiber preform is successfully fabricated by a method of plasma chemical vapor deposition (PCVD). Then, we carry out rod in tube (RIT) process after symmetrically grinding in order to obtain an elliptical shape. After that, the preform is drawn at the drawing speed of 200 m/min with a tension of 140 g. Finally, the e-FMF is ready for further characterization. The major and minor axes of elliptical core are 23 \(\mu m \) and 16 \(\mu m \), respectively. The diameter of cladding is

\[
\begin{pmatrix}
E_x \\
E_y
\end{pmatrix} = \begin{pmatrix}
\cos(\phi_z) & -\sin(\phi_z) \\
\sin(\phi_z) & \cos(\phi_z)
\end{pmatrix} \begin{pmatrix}
E_0 \\
E_1
\end{pmatrix}
\] (5)
121 µm while the refractive index (RI) difference between core and cladding is 3.9 × 10⁻³. The scanning electron microscope (SEM) figure is shown in Fig. 9(a). Meanwhile, since the panda-type structure is commonly used to suppress the polarization mode coupling arising in the polarization maintaining single mode fiber (SMF), we also design PM-FMF with panda-type structure. Panda-FMF is fabricated by a multi-step process, involving drilling holes into a solid preform and inserting pre-fabricated borosilicated stress rod. With almost the same fiber drawing technique, the panda-FMF is fabricated by a multi-step process, involving drilling holes into a solid preform and inserting pre-fabricated borosilicated stress rod. When the fiber structure varies from conventional core, mode degeneration is broken and LP modes become true modes in PM-FMFs, in contrast with c-FMF. When twisting of these PM-FMF happens, two kinds of coupling can be determined. Specifically, spatial mode coupling means the coupling between LP₁₁ and LP₁₁b while polarization mode coupling occurs between LP₁₁ and LP₁₁b. Consequently, for the e-FMF, the off-diagonal coefficients in Eq. (1) are of about 0.09 for spatial mode coupling and 0.71 for polarization mode coupling, respectively. Obviously, the spatial mode coupling is trivial enough, while the polarization mode coupling is non-negligible. When the e-FMF is twisted, spatial distribution of LP₀₁ mode is shown in the Fig. 10. When the fiber structure varies from conventional core, mode degeneration is broken and LP modes become true modes in PM-FMFs, in contrast with c-FMF. When twisting of these PM-FMFs, two kinds of coupling can be determined. Specifically, spatial mode coupling means the coupling between LP₁₁ and LP₁₁b while polarization mode coupling occurs between LP₁₁ and LP₁₁b. Consequently, for the e-FMF, the off-diagonal coefficients in Eq. (1) are of about 0.09 for spatial mode coupling and 0.71 for polarization mode coupling, respectively. Obviously, the spatial mode coupling is trivial enough, while the polarization mode coupling is non-negligible. When the e-FMF is twisted, spatial distribution of LP₁₁ mode is maintained, but the linear polarization may vary from time to time. Similarly, spatial and polarization mode coupling of panda-FMF are calculated as 6.9 × 10⁻³ and 9.2 × 10⁻³. Both couplings are extremely weak, indicating that the spatial pattern can be well preserved with linear polarization, when the panda-FMF is twisted.

References
1. Richardson, D. J., Fini, J. M. & Nelson, L. E. Space–division multiplexing in optical fibres. *Nat. Photonics* 7, 354–362, doi:10.1038/nphoton.2013.94 (2013).
2. Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. *Science* 340, 1545–1548, doi:10.1126/science.1237861 (2013).
3. van Uden, R. G., Okonkwo, C. M., Chen, H., de Waardt, H. & Koonen, A. M. Time domain multiplexed spatial division multiplexing receiver. *Opt. Express* 22, 12668–12677, doi:10.1364/OE.22.012668 (2014).
4. Li, A., Wang, Y., Hu, Q. & Shieh, W. Few-mode fiber based optical sensors. *Opt. Express* 23, 1139–1150, doi:10.1364/OE.23.001139 (2015).
5. Kumar, A., Goel, N. K. & Varshney, R. K. Studies on a Few-Mode Fiber-Optic Strain Sensor Based on LP01-LP02 Mode Interference. *J. Lightwave Technol.* 19, 358–362, doi:10.1109/50.918888 (2001).
6. Golowich, S., Bozinovic, N., Kristensen, P. & Ramachandran, S. Complex mode amplitude measurement for a six-mode optical fiber. *Opt. Express* 21, 4931–4944, doi:10.1364/OE.21.004931 (2013).
7. Gloge, D. Weakly Guiding Fibers. *Appl. Opt.* 10, 2252–2258, doi:10.1364/AO.10.002252 (1971).
8. Hu, T. et al. Experimental Demonstration of Passive Optical Network Based on Mode-Division-Multiplexing. *Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015)* paper Th2A.63 (2015).
9. Koebele, C. et al. 40 km Transmission of Five Mode Division Multiplexed Data Streams at 100 Gb/s with low MIMO-DSP Complexity. *37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011)* paper Th13.C.3 (2011).
10. Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. *Science* 235, 1517–1520, doi:10.1126/science.3547653 (1987).
11. Zhang, Y. et al. Single optical tweezers based on elliptical core fiber. *Opt. Commun.* 365, 103–107, doi:10.1016/j.optcom.2015.11.076 (2016).
12. Ma, P. et al. Generation of azimuthally and radially polarized beams by coherent polarization beam combination. *Opt. Lett.* 37, 2658–2660, doi:10.1364/OL.37.002658 (2012).
13. Fan, Y. et al. Fiber-optic bend sensor using LP 21 mode operation. *Opt. Express* 20, 26127–26134, doi:10.1364/OE.20.026127 (2012).
14. Niederriter, R. D., Siemens, M. E. & Gopinath, J. T. Continuously tunable orbital angular momentum generation using a polarization-maintaining fiber. *Opt. Lett.* 41, 3213–3216, doi:10.1364/OE.41.003213 (2016).
15. Li, S. et al. Controllable all-fiber orbital angular momentum mode converter. *Opt. Lett.* 40, 4376–4379, doi:10.1364/OE.40.004376 (2015).
16. Saitoh, K. et al. PLC-based LP 11 mode rotator for mode-division multiplexing transmission. *Opt. Express* 22, 19117–19130, doi:10.1364/OE.22.019117 (2014).
17. Zeng, X. et al. All-Fiber Broadband Degenerate Mode Rotator for Mode-Division Multiplexing Systems. *IEEE Photonics Technol. Lett.* 28, 1383–1386, doi:10.1109/LPT.2016.2541899 (2016).
18. Piccirilli, S. et al. Experimental analysis of twist-induced mode coupling in few mode fibers. *Optical Fiber Communication Conference. Optical Society of America, 2016, Th11.3 (2016).*
19. von Hoyningen-Huene, J., Ryf, R. & Winzer, P. LCoS-based mode shaper for few-mode fiber. *Opt. Express* 21, 18097–18110, doi:10.1364/OE.21.018097 (2013).
20. Kogelnik, H. & Winzer, P. J. Modal birefringence in weakly guiding fibers. *J. Lightwave Technol.* 21, 18097–18110, doi:10.1109/JLT.2012.2193872 (2012).
21. Anderson, W. Consistency of measurement methods for the mode field results in a single-mode fiber. *J. Lightwave Technol.* 2, 191–197, doi:10.1109/JLT.1984.1073594 (1984).
22. Lü, B. & Duan, K. Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture. *Opt. Lett.* 28, 40–4242 (2003).
23. Noda, J., Okamoto, K. & Sasaki, Y. Polarization-maintaining fibers and their applications. *J. Lightwave Technol.* 4, 1071–1089, doi:10.1109/JLT.1986.1074847 (1986).
24. Berry, H. G., Gabrielse, G. & Livingston, A. E. Measurement of the Stokes parameters of light. *Appl. Opt.* 16, 3200–3205, doi:10.1364/AO.16.003200 (1977).
25. Wang, L. & LaRochelle, S. Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing. *Opt. Lett.* 40, 5846–5849, doi:10.1364/OL.40.005846 (2015).
26. Li, A., Chen, X., Al Amin, A. & Shieh, W. Fused fiber mode couplers for few-mode transmission. IEEE Photonics Technol. Lett. 24, 1953–1956, doi:10.1109/LPT.2012.2218803 (2012).
27. Ulrich, R. & Simon, A. Polarization optics of twisted single-mode fibers. Appl. Opt. 18, 2241–2251, doi:10.1364/AO.18.002241 (1979).
28. Sakai, J. I. & Kimura, T. Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations. IEEE J. Quant. Electron. 17, 1041–1051, doi:10.1109/JQE.1981.1071213 (1981).
29. Palmieri, L. & Galtarossa, A. Coupling effects among degenerate modes in multimode optical fibers. IEEE Photonics Journal 6, 1–8, doi:10.1109/JPHOT.2014.2343998 (2014).
30. Ip, E. et al. SDM transmission of real-time 10 GbE traffic using commercial SFP+ transceivers over 0.5km elliptical-core few-mode fiber. Opt. Express 23, 17120–17126, doi:10.1364/OE.23.017120 (2015).
31. Milione, G. et al. Real-time Bi-directional 10 GbE Transmission using MIMO-less Space-division-multiplexing with Spatial Modes. Optical Fiber Communication Conference Optical Society of America paper W1F.2 (2016).

Acknowledgements
This work is supported by National Natural Science Foundation of China (61711530043, 61575071), National Key Research and Development Program of China (2016YFE0121300), and the ZTE Industry-Academia-Research Cooperation Funds.

Author Contributions
Q.M. designed and fabricated the specialty FMFs, analyzed the data and co-wrote the paper. Z.H. performed experiments, analyzed the data, draw figures and co-wrote the paper. D.Y. performed experiments and analyzed the data. S.F. conceived the study, analyzed the data and co-wrote the paper. L.W. performed numerical simulation and co-wrote the paper. K.O. conceived the experimental characterization and co-wrote the paper. M.T. contributed to the data discussion and paper writing. D.L. contributed to the interpretation of the data and paper writing.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017