Using Murine Models to Investigate Tumor–Lymphoid Interactions: Spotlight on Chronic Lymphocytic Leukemia and Angioimmunoblastic T-Cell Lymphoma

Tyler A. Herek and Christine E. Cutucache*

Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA

The role of the tumor microenvironment in leukemias and lymphomas is well established, yet the intricacies of how the malignant cells regulate and influence their non-malignant counterparts remain elusive. For example, chronic lymphocytic leukemia (CLL) is an expansion of malignant CD5+CD19+ B cells, yet the non-malignant T cells play just as large of a role in disease presentation and etiology. Herein, we review the dynamic tumor cell to lymphoid repertoire interactions found in two non-Hodgkin’s lymphoma subtypes: CLL and angioimmunoblastic T-cell lymphoma. We aim to highlight the pivot work done in the murine models which recapitulate these diseases and explore the insights that can be gained from studying the immuno-oncological regulation of non-malignant lymphoid counterparts.

Keywords: lymphoma, chronic lymphocytic leukemia, angioimmunoblastic T-cell lymphoma, immune surveillance, tumor-induced immunosuppression

INTRODUCTION

The cancer immunosurveillance and immunoediting concepts posit that the immune system plays a protective role in tumor development through its ability to recognize and eradicate subclinical tumors (1, 2). These theories suggest an ever-shifting balance of tumor eradication and tumor growth wherein equilibrium can be lost and tumor growth can be promoted (3, 4). The promotion of tumor growth can be viewed as a consequence of the immune system as a function of microenvironmental interactions that have been shown to be vital for tumor development and survival (5). Therefore, with the immune system playing seemingly two separate, yet opposite, roles within immuno-oncology interactions it has garnered the “Janus-faced” moniker (3).

To understand the Janus-faced nature of tumor immunology is to understand the impact that a growing tumor has upon its microenvironment; by which we mean how tumors regulate their non-malignant counterparts. Perhaps it is not surprising the impact a tumor can have on the immune system when one considers all the working parts of the immune system function in an antitumor response (6). From NK cells lysing transformed clones, to presentation of tumor-associated antigens by macrophages and dendritic cells to activate T- and therefore B-cells, the immune system plays an integral role in producing and expanding tumor-specific responses (3).

Currently, the most effective method of studying the impact of a tumor microenvironment (TME) on a host immune system is through the use of murine models (7). Specifically, this would extend to transgenic murine models as they allow for the “natural” propagation of a clinical tumor within an immunocompetent host; most closely mirroring what is found in humans. In this review,
we summarize and discuss the impact two distinct hematological malignancies, chronic lymphocytic leukemia (CLL) and angioimmunoblastic T-cell lymphoma (AITL), have upon their adaptive immunological microenvironmental counterparts (i.e., T cells and B cells, respectively) (Figure 1). Explicitly, we summarize how murine models play a role in elucidating the impact of a B-cell malignancy (i.e., CLL) on resident T cells, and the impact of a T-cell malignancy (i.e., AITL) on resident B cells. The aforementioned hematological malignancies were chosen as representative malignancies to study immuno-oncological interactions due to their intense microenvironmental components. As CLL is the most common adult leukemia, we are able rely on a wealth of publications and data from both human and murine investigations to summarize and discuss the above-mentioned interactions. AITL on-the-other-hand is a much rarer and less studied disease. Therefore, we will focus on what is currently known concerning AITL immuno-oncological interactions and put forward recommendations concerning AITL murine models and directions for future investigations.

CHRONIC LYMPHOCYTIC LEUKEMIA

Chronic lymphocytic leukemia is the most common adult leukemia characterized by the clonal expansion of malignant CD5⁺CD19⁺ B cells. The clinical presentation of CLL is heterogeneous, leading to both an indolent and aggressive form demarcated by well-defined prognostic markers (i.e., IGVH status, CD38 and ZAP70 expression, and chromosomal aberrations) (8–10). Chronic lymphocytic leukemia is a malignancy highly dependent on its microenvironment illustrated by the fact that CLL cells readily undergo apoptosis in vitro without coculture of bone marrow stromal cells (BMSC) (11–13) or monocyte-derived nurse-like cells (NLCs) (13). While both BMSC and NLCs display similar recruitment of CLL cells through CXCL12–CXCR4 signaling (12–14), the mechanisms by which these compulsory stromal cells engage in cross talk with CLL cells differ. In vitro, CLL cells are attracted to BMSC and form a contact-dependent protective niche. While in contact with the BMSC, the CLL cells undergo a processes termed pseudoemperipolesis, which describes the migration of a fraction of the CLL cells beneath the BMSC (14–16). This migration results in the cross talk and bi-directional activation of both the BMSC and CLL cells leading to the upregulation of TCL1 and FOS/JUN in the CLL cells (17). Conversely, NLC-dependent activation of CLL cells is characterized by enhanced CLL cell viability through NF-κB activation and the BAFF-/APRIL-binding pathways resulting in the expression of the anti-apoptotic protein MCL-1 by CLL cells for prolonged survival (18). Additionally, CLL cell activation through the B-cell receptor pathway is associated with increased secretion of CCL3 and CCL4 chemokines, allowing for the enhanced recruitment of accessory cells to the TME (19).

The impact of CLL on T Cells

The T cells of CLL patients display distinct expression profiles (26) and are hallmark by an exhausted phenotype,
attenuated immune synapse formation, decreased cytolytic activity, migratory impairments, and dysregulated Rho-GTPase signaling.

T-cell exhaustion is defined by T cells displaying an over-expression of inhibitory receptors, decreased effector function, attenuated cytokine production, and decreased cytolytic activity (27). CLL-T cells have been shown to upregulate the surface expression of PD-1, CD160, and CD244, indicative of an exhausted phenotype (28). Moreover, these markers are known to be highly expressed on effector T cells, indicating a skewing of the T-cell compartment of CLL patients to a more mature, effector differentiation, albeit with attenuated functionality. Further support for a skewed T-cell compartment comes from CD4+ CLL-T cells having decreased gene expression of the JNK and p38 MAPK pathway activators (MINK, NFRKB, PIK3CB) (26) suggesting a defect in Th1 differentiation as the aforementioned genes are crucial in the production of IFN-γ (29–31).

The immune synapse is a localization of receptors, costimulatory molecules, and adhesive anchors that allows for the engagement and recognition of antigen and activation by T cells (32). During the activation process, the cytoskeleton of the T cell undergoes intense rearrangements to better facilitate both contact and signaling through pseudopodia formation and cellular polarization. In essence, the T cell grasps the antigen-presenting cell (APC) forming what is called the immunological synapse (33). Structurally, the immune synapse is described as possessing three concentric rings called supramolecular activation clusters (SMACs) (34). The central supramolecular activation cluster houses the TCR molecules which are relocated from the periphery to be recycled, the peripheral SMAC is vital for maintaining adhesion between the cells and is primarily composed of the integrin, lymphocyte function-associated antigen 1 (LFA-1), and the distal SMAC is a clustering of F-actin. The engagement of the components of these SMACs influences the rearrangement of the cytoskeleton both by signaling relayed via the TCRs and through integrins such as LFA-1. For example, once LAT is phosphorylated via Zap70 following T-cell activation the Rho-family GTPase exchange factor vav guanine nucleotide exchange factor 1 (Vav1) is recruited to the synapse (35, 36). Following Vav1 activation, the small GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) bind GTP and activate actin nucleation promoting factors such as Wiskott–Aldrich syndrome protein (WASP) and Wasp-family verprolin-homologous protein 2 (WAVE2) which coordinate actin-related protein 2/3 (Arp2/3)-dependent polymerization of branched actin filaments (37–39). Following actin polymerization, the immunological synapse functions as a signal specifier acting to focus TCR signaling responses to ensure efficient cross talk with the bound APC. Dysregulation of the polymerization processes could therefore lead to inefficient effector function delivery through poor coordination of T-cell signaling or ineffective delivery of signals to the APC.

Immune synapse formation, including both antigen presentation by CLL cells and the subsequent response by T cells, is attenuated in CLL patients. Phenotypically, immune synapse malformation of CLL-T cells is displayed as a decrease in T-cell–APC conjugation and F-actin polymerization, with further decrement in T-cell receptor, WASp, Dynamin-2, Lck, Cdc42, and Filamin-A recruitment to the synapse site (40, 41). Additionally, the inhibitory receptors CD200R, CD272, and CD279 are upregulated in CLL-T cells, and further impede immune synapse formation (28, 42). These aforementioned defects also contribute to decreased CD8+ T-cell cytolytic effector function, as granzyme B is inefficiently packaged and localized to the immune synapse in CLL CD8+ T cells (26, 28).

T cells from CLL patients display migratory defects through LFA-1 directed T-cell motility (36). This defect is concurrent with the previously described deficiency in cytoskeletal remodeling in CLL-T cells (26) and has been determined to be dependent upon LFA-1 conformation status. In terms of mRNA expression, there is no difference in gene expression of LFA-1 between healthy T cells and CLL-T cells. Rather, CLL-T cells showed impaired migration due to the inefficiency of the low-affinity conformation of LFA-1 to bind intercellular adhesion molecule 1 causing an impediment in leukocyte rolling, arrest, firm adhesion, and diapedesis (43).

At the center of CLL-mediated T-cell impairments is the dysregulation of Rho-GTPase signaling in CLL-T cells. Rho-GTPases are members of the Ras superfamily of small GTP-binding proteins and play key roles in T-cell development, T-cell migration, and T-cell differentiation (44). This regulation is carried out through Rho-GTPase-mediated cytoskeletal rearrangements, as well as signaling through numerous pathways (45, 46). After coculture with CLL cells, T cells display lower active GTase signaling for RhoA, Rac1, and Cdc42, as compared with coculture of T cells with healthy B cells (42). The dysregulation of these signaling molecules is also tied to defective LFA-1-mediated migration, where downregulated RhoA, Rac1, and potentiated Cdc42 are noted among CLL-T cells. Importantly, Cdc42 levels differed in CLL-T cell migration and stimulation assays and suggest that CLL-T cells do not lose all Rho-GTPase signaling potentials; however, they do not display identical signaling patterns as healthy T cells.

Evidence from the Eμ-TCL1 Model

T-cell impairment is a hallmark feature of CLL and is evident within the Eμ-TCL1 murine model. Early investigations into the T-cell phenotype in Eμ-TCL1 mice demonstrated decreased antigen-specific activation, suppressed mitogen initiated proliferation, and impaired idiotype specific CD8+ T cell-mediated CLL clone lysis (47). Gene expression profiling experiments supported the phenotypic differences, giving evidence to a dysregulation of the actin-cytoskeleton formation pathways, impaired F-actin polymerization, and immune synapse formation (47). Additionally, decreased expression of CD28, BTLA, Nfrkb, Pi3k, Kfkb, Gadd45b, and Vav3 were observed.

Hofbauer and colleagues (48) were the first to report on the immunophenotype of Eμ-TCL1 T-cells, finding an increase in the absolute numbers of T cells in the peripheral blood of leukemic mice, with the increased population consisting primarily of CD8+ T cells (~72%). Further, CLL-onset Eμ-TCL1 mice experienced a shift between naïve and antigen experience T cells (as assessed by CD44 expression), presenting with a 48:48 CD4+ naïve:experienced ratio, compared to a 80:20 ratio in wild-type control mice. The CD8+ T cell ratio held a similar shift, with an 86:14 naïve:experienced ratio in Eμ-TCL1 mice compared
to a 70:27 ratio in wild-type controls (48). Importantly, this investigation brought a unique insight into the pathogenesis of CLL by establishing the engraftment of CLL splenocytes within an immunocompetent host. This adoptive transfer model decreased the latency of CLL onset (83 days post-transfer compared to 247 days of Equ-TCL1 development) and fully recapitulated the abovementioned skewing of the T-cell compartment. These data implicate the transferred CLL clones as being directly responsible for the onset of disease progression and changes to the T-cell compartment (48).

Recently, extensive work by the Gribben lab sought to delineate the mechanism behind the PD-1/PD-L1 signaling axis in T cells from Equ-TCL1 mice, as well as provide important evidence for use of PD-1L checkpoint blockade therapy (49, 50). Importantly, these studies lend microenvironmental data to the known role of PD-1/PD-L1 signaling in human CLL (49). As CLL developed in the Equ-TCL1 mice, there was a significant correlation in the reduction of the percentage of CD3+, CD3+CD4+ T cells, and an expansion of CD3+CD8+ T cells in the spleen. This finding is in agreement with Hofbauer et al. (48) of a decrease in the CD4+/CD8+ ratio in Equ-TCL1 mice for the spleen, peripheral blood, and lymph node microenvironments. Further, CD3+CD8+ CD44+CD62L naïve cells were lost with CLL development, with a shift toward CD44+ antigen-experienced T cells in the spleen, peripheral blood, lymph node, and bone marrow microenvironments. These antigen-experienced CD44+ T cells held higher proliferation indices, as evidenced by increased Ki-67+ ratios in Equ-TCL1 mice and adoptive transfer recipients (spleenocytes transferred into 3-month Equ-TCL1 mice).

Consistent with aging, both Equ-TCL1 and wild-type mice developed CD3+CD8+PD-1+ T cells, with higher absolute numbers found in Equ-TCL1 and adoptive transfer mice (49). Investigation into the differential function of PD-1+ subsets in Equ-TCL1 mice revealed an enrichment within the PD-1+ population for cytotoxic cells (as assessed by CD107a+), with increased proliferation ascribed to both PD-1high and PD-1low subsets, with the PD-1high population having greater EdU incorporation compared to PD-1low. Finally, immune synapse assays indicated the PD-1high population to form smaller synapses when compared to the PD-1low population in Equ-TCL1 T cells, suggesting the PD-1high phenotype to contribute more toward T-cell impairment (49).

A causal role for the PD-1/PD-L1 signaling axis impairing clone-specific immune responses in Equ-TCL1 mice has been supported by the work of both McClanahan and colleagues (50) and Gassner et al. (51). α-PD-L1 blockade administered to Equ-TCL1 mice resulted in the effective control of CLL development, concurrent with reduction in both spleen sizes and weights (50). Treatment of adoptively transferred CLL tumor cells with either recombinant PD-1 or anti-CD274 resulted in a significant reduction of transferred tumor cells at both 2- and 24-h time points in peripheral blood (both time points), as well as in the spleen, lymph nodes, and lungs (24-h time point) (51). Antibody blockade restored the relative median frequencies of CD3+, CD4+, and CD8+ T cells, while normalizing the CD4+/CD8+ ratio (50). This restoration was observed in conjunction with a reduced shift toward the CD44+ phenotype seen in the peripheral blood, bone marrow, and spleen.

ANGIOIMMUNOBLASTIC T-CELL LYMPHOMA

Angioimmunoblastic T-cell lymphoma is the second most common subtype of mature T-cell lymphoma, known to originate by the pathogenic clonal expansion of T-follicular helper (Thf) cells and concordant immune dysfunction (52, 53). AITL is an aggressive disease, with a median survival <3 years post-diagnosis and 10–30% of patients alive at 5 years post-diagnosis (54, 55). The poor prognosis is partially due to the highly dysregulated immune system of AITL patients, as most patients succumb to infectious complications rather than the disease itself (54, 55).

The changes AITL imparts upon the lymph node microenvironment are considered a consequence of the cellular origins of the disease. AITL patients display aberrant lymph node architecture, including: hyperplasia of the follicular dendritic meshwork (53), proliferation of high-endothelial venules, thickened extra follicular meshworks, and neoplastic infiltrate (56). The neoplastic cells can be medium sized with round, slightly irregular nuclei featuring abundant clear cytoplasm, with clustering around the high-endothelial venules (57, 58). The neoplastic cells themselves may only account for 5–30% of the tumor (59), and most of the clinical manifestations of the disease (i.e., lymphadenopathy, hepatosplenomegaly, bone marrow involvement) represent complications arising from a compromised immune system (60, 61).

As stated, the cell-of-origin for AITL is the Thf cell. In healthy conditions, these cells are formed from high affinity interactions with B cells though a Thf receptor:antigen-dependent manner (62). Thf cells are located within germinal centers and assist with the production of high affinity antibodies by B cells, as well as plasma cell differentiation, primarily through secretion of IL-21 and IL-4 (63, 64). These cells express high levels of ICOS and CXCR5 and can be immunophenotypically described as CD4+, CD8+, PD-1+, CD10+, BCL6+, and CXCL13+ cells (59, 65, 66). As with many mature T-cell lymphomas, AITL cells also exhibit defective expression of CD5 and CD7 (65), with further clonal aberrations detected in ~90% of cases (58, 67–69). The gene signature of AITL is described as very closely related to that of Thf cells, with upregulations of VEGF, PDGFRA, B-cell and follicular dendritic cell genes, chemokines, extracellular matrix components, and vascular biology-associated genes (70, 71). Such findings are in accordance with the changes to the lymph node architecture and the common involvement of B cells in AITL disease progression.

The Impact of AITL on B-Cells

Due to a compromised immune system, in conjunction with dysregulation of normal immune effector functions, there is a high proclivity for developing secondary B-cell malignancies among AITL patients (72). These secondary malignancies commonly present as either composite lymphomas of diffuse large B-cell lymphoma + AITL (73, 74) or polyclonal populations of immunoblasts or plasma cells (75, 76). The development of these secondary malignancies suggests that the malignant T cells still hold the effector capacity to stimulate B-cell proliferation and antibody production and indicate a relationship between the developments of the two separate disease phenotypes.
Evidence supporting the above hypothesis includes development of hypergammaglobulinemia, gene signature analyses demonstrating an upregulation of genes for B-cell activation and/or receptor signaling (CD22, CD20, CD21, CD23, CD24, CD37) (79), and histological evaluation of germinal centers displaying SH2D1A staining, a protein involved in bi-directional activation of T and B cells (80).

Murine Models That Recapitulate the Defining Characteristics ofAITL

Unlike the Epu-TCL1 mice for CLL, there is no current consensus murine model for AITL. Currently, three genetic models most faithfully recapitulate the defining disease characteristics of AITL and how they impact resident B cells will be discussed below.

Tet2gt/gt Model ofAITL

The ten–eleven translocation 2 (TET2) gene has been found to be mutated in multiple myeloid malignancies (81–83) as well as a wide range of AITL and PTCL-NOS cases (84, 85). A loss of function mutation in TET2 is associated with aberrant methylation processes involving the conversion of methylcytosine to 5-hydroxymethylcytosine, a common epigenetic marker in cancer (86).

While previous studies of Tet2 mutations have been conducted (87–89), Muto and colleagues were the first to describe the resultant disease in terms of its relation to the development of a T-cell lymphoma with follicular helper T-cell-like features (90). After backcrossing Tet2 gene trap mice onto the C57BL/6 background and aging for 40–60 weeks, Tet2gt/gt mice had no differences in complete blood counts or proportions of total T- or B-cell populations in comparison to wild-type or heterozygous controls. The Tet2gt/gt mice presented with splenomegaly and preserved follicle structures and an enlargement of germinal centers in some mice. Flow cytometry analyses revealed an increase in the absolute #’s of T- and B-cell populations, despite harboring no differences in the proportions of the overall populations. Further analyses displayed an increase in the proportions of T-cell populations in the Tet2gt/gt mice, namely: CD4+CD44+/PD-1+ and CD4+PD-1+CXcr5+ Tfh cells.

In five of seven mice aged greater than 60 weeks (median age: 67 weeks), Muto and colleagues (90) observed the development of increased splenomegaly, multiple swollen lymph nodes, and liver and lung nodules in Tet2gt/gt mice. Histological analysis demonstrated the follicular structures of the spleen to be no longer apparent due to the infiltration of large polymorphic cells with irregular nuclei and characterized as CD4+PD-1+CXcr5+ Tfh cells. These T cells were determined to be clonal in nature, with distinct rearrangements of TCR V[β]/J[β2]. Not observed histologically was proliferation of high-endothelial venules, nor eosinophil infiltration. Then, >60-week mice presented with increased proportions of CD4+ T-cell fractions and smaller B220+ B-cell fractions, with the T-cell population mostly composed of CD44+PD-1- cells. Of note, there was no difference in serum Ig levels found in Tet2gt/gt mice compared to controls.

Consistent with the observation that the malignant cells in Tet2gt/gt mice were of Thf origin, microarray analysis of isolated splenic CD4+ T cells from Tet2gt/gt mice compared to control mice found the Tet2gt/gt T cells to be enriched for Tfh genes. Notable genes found to be highly expressed in the Tet2gt/gt mice include: Bcl6, cMaf, PD-1, Icos, and Cxcr5. Control CD4+ T cells were enriched for genes involved in Th1/Th2 differentiation by comparison, suggesting the downregulation of these genes is necessary for the adoption of the Thf phenotype. Sanger sequencing experiments indicated that none of the concurrent mutations identified within human AITL (e.g., Fli3, Npm1, Dmnt3a, Idh2, Rhoa) were found in the Tet2gt/gt mice. Investigation into the differential methylation patterns resulting from reduced Tet2 function revealed disruption of the distribution of methylcytosine and hydroxymethylcytosine in transcriptional start sites, gene body regions, and CpG islands. Specifically, Bcl6 was identified as having aberrant methylation suggesting this as a mechanism for increased Bcl6 expansion and the induction of the outgrowth of Thf-like cells (90).

Heterozygous RoquinSan Model ofAITL

The sanroquin mouse strain bears a homozygous point mutation in the Roquin/Re3hl gene (91), designated as Roquinmut. This point mutation results in increased binding affinity between ROQUIN and Icos mRNA resulting in the decreased decay rate of the transcript and overall upregulation of gene product (92). The upregulation of Icos in these mice results in the expansion of Thf cells driving a disease progression equivocal to a systemic lupus-like disease phenotype—a similar phenotype is observed in Roquinmut/+ mice but in the absence of systemic autoimmunity (91). However, mice heterozygous for the Roquinmut allele (Roquinmut/+ roquin) as described in Ellyard et al. (93) do not develop systemic autoimmunity but instead present with asymmetric lymphadenopathy. Roquinmut/+ mice had a complete absence of generalized lymphadenopathy seen in homozygous mice by 8 weeks, but instead, 53% developed one to four enlarged lymph nodes. The resultant lymphadenopathy was deemed non-lethal and caused an increase in the cellularity of the affected lymph nodes by 50- to 150-fold. A higher prevalence in females (65%) compared to males (41%) was noted for the development of the tumor-bearing lymph nodes. Histological examination of tumor nodes in Roquinmut/+ mice demonstrated an effacement of nodal architecture and vascularization, as well as infiltration of small-to-medium sized T cells and large PAX5+ B cells, but no expansion of the follicular dendritic cell network. An increase in F4/80+ macrophages was observed with prominent vascularization and sinusoidal dilation. Reactive B blasts were observed in interfollicular areas along with a proliferative and polymorphic T-cell infiltrate, small clusters of mature plasma cells, and some rosette formation between T cells and large blasts. Tumor lymph nodes appeared to have no bearing on un-affected lymph nodes in tumor-bearing Roquinmut/+ mice, as un-affected nodes displayed typical morphologies with the exception of an increase in mature plasma cells found within interfollicular areas. All Roquinmut/+ mice presented with increased spleen weight compared to Roquinmut/+ mice regardless of tumor incidence.

Concurrent with the highly affected lymph node environment of the Roquinmut/+ mice, increased serum IgG is observed consistent with the development of hypergammaglobulinemia at 15 weeks of age. While both Roquinmut/+ tumor-bearing and non-tumor-bearing mice show a significant increase in IgG
production compared to Roquin^{−/−} mice, tumor-bearing Roquin^{−/+} mice harbor an additional 1.5-fold increase above non-tumor-bearing Roquin^{−/−} mice. A finding further corroborated by flow cytometry analysis revealing an increased B-cell fraction in the tumor-bearing lymph nodes of Roquin^{−/−} mice in comparison to normal lymph nodes from both Roquin^{−/−} and Roquin^{−/+} mice. Clonality assessments identified a clonal peak of IgH in only 1 of 15 cases, in contrast to clonal arrangements in 12 of 15 cases for TCR-β.

Swiss Jim Lambert (SJL) Model of AITL

Swiss Jim Lambert mice have been studied extensively as a model of lymphoproliferative malignancies. In these mice, the germinal center B cells express an endogenous mouse mammary tumor virus (mtv-29) superantigen (vSag) known stimulate and activate CD4⁺ T cells which in turn drive B cell proliferation (94, 95). Through this dual activation paradigm, heterogeneous lymphoproliferative disorders develop in >90% of mice (96). Recent studies have characterized the heterogeneity of SJL lymphomas finding similarities to non-Hodgkin lymphomas and moving away from the classical reticulum cell sarcoma diagnosis (97, 98).

Jain and colleagues (99) are the first to describe the similarities between RCS and AITL. In an analysis of 80 SJL mice, ~44% developed classical SJL disease [i.e., Non-Hodgkin lymphoma and/or reticulum cell sarcoma (100)]. In SJL disease-diagnosed mice ranging from 2 to 24 months of age, flow cytometry demonstrated an expansion of Tfh cell frequencies (CD4⁺CXCR5⁺ICOS⁺PD-1⁺) in the spleens of SJL mice compared to C57BL/6 controls. Additionally, increased frequencies of splenic GC B cells (B220⁺FAS[−]GL-7⁺) were also found in SJL mice compared to C57BL/6 controls. Microarray analysis of a time course of SJL spleens (mice aged 6 weeks, 6 months, 12 months) revealed a progressive upregulation of genes involved in Tfh signaling, namely: Il21, Il10, Ccl8, and Ccl12. Knockout experiments investigating the impact of IL-21-mediated signaling on the SJL mice established that Il21^{−/−} SJL mice showed significant reductions in frequencies of total CD4⁺ T cells and Tfh cells in 9.5- to 12-month mice. A finding concurrent with reduced frequencies of GC B cells seen in 3- to 12-month Il21^{−/−} SJL compared to SJL WT controls (99). This finding verifies the IL-21 signaling as the etiology of SJL-diseased mice, and re-affirms SJL disease as Tfh-based as IL-21 is considered the major effector cytokine for Tfh cells (101).

Diagnosed SJL-diseased mice underwent age-related changes in splenic and lymph node architecture as assessed by peanut agglutinin (PNA) reactivity. Younger mice had well preserved follicular structures, but by 12 months had uniformly enlarged structures with uneven PNA reactivity. Some mice were noted as having highly enlarged follicles that did not contain germinal centers. The uncontrolled expansion of these follicles leads to the white pulp compressing the red pulp in the spleen.

Higher sera IgG2b protein levels were found in SJL mice compared to C57BL/6 controls. Il21^{−/−} mice exhibited lower sera IgG2b sera levels compared to wild-type SJL mice, implicating the expanded Tfh cell population as a driver of the development of hypergammaglobulinemia. Igh and Tcrb genes from spleens of primary lymphoma or SJL-diagnosed mice were sequenced to assess the presence or absence of clonal populations within the diseased mice. All sequenced Tcrb clones contained identical V gene sequences, albeit with different J gene sequences. For Igh sequences, high somatic hypermutation was evident across all malignant samples with overall identities <95%.

CONCLUSION

The Eq-TCL1 mouse is a powerful model for CLL with a highly analogous microenvironment to that of the human disease (102). Reviewed herein, we see the powerful effect a B-cell malignancy can have on its T-cell counterparts. In CLL, there is a skewing of the T-cell compartment toward antigen-experienced CD8⁺ cytotoxic T cells. These cells further express exhaustion markers (e.g., PD-1) that demonstrate their inability to effectively control malignant clones. In this scenario, we see that a tumor-specific immune response has been stymied by the malignancy itself, allowing for continued tumor growth and dissemination. Support for this observation is seen in that adoption of the exhausted and skewed T-cell phenotype is dependent on the presence of CLL clones (48), and α-PD-1 blockade therapies are successful in restoring the protective capability of the immune system (50, 51). These results demonstrate the potential of treatments aimed at restoring immune equilibrium to help combat tumors in vivo and give further credence to the necessity and power of murine models to support bench-to-bedside investigations.

While there is no current consensus murine model for AITL, we have reviewed the three most prominent proposals to-date. Of these, both the heterozygous Roquin^{−/+} and SJL models appear most suited to be used in future studies modeling AITL microenvironmental interactions. Importantly, both of these models faithfully recapitulate defining disease characteristics of AITL, including: Tfh expansion, hypergammaglobulinemia, effacement of lymphoid architecture, clonal populations, and increased high-endothelial vascularization. It stands to reason that future investigations should be aimed not only at additional model validations and Tfh-based characterization but also focus on the B-cell involvement of AITL that could be key to disease pathogenesis.

Taken together, both murine models for CLL and AITL effectively recapitulate the in vivo expansion of key immune cells. Studies on CLL that have included both cell types in their investigations have provided exceptional clinical insight to modulate immune competence and provide treatment for CLL (including through immunomodulation therapy). Consequently, as seen in CLL, therapies targeted at the lymphoid counterpart of AITL (i.e., B cells) could hold high efficacy and aide in the understanding of tumor microenvironmental manipulation of resident B cells.

AUTHOR CONTRIBUTIONS

TH and CC cowrote the paper in its entirety.
ACKNOWLEDGMENTS

The authors acknowledge the University of Nebraska Foundation, the National Science Foundation, and the UNO College of Arts and Sciences for the support of this work.

REFERENCES

1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoeediting: from immunosurveillance to tumor escape. *Nat Immunol* (2002) 3:991–8. doi:10.1038/nii1102-991
2. Dunn GP, Old LJ, Schreiber RD. The Three Es of cancer immunoeediting. *Annu Rev Immunol* (2004) 22:329–60. doi:10.1146/annurev. immunol.22.012703.104803
3. Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. *Ann Oncol* (2012) 23(Suppl 8):viii6–9. doi:10.1093/annonc/mds256
4. Harris TJ, Drake CG. Primer on tumor immunology and cancer immunotherapy. *J Immunother Cancer* (2013) 1:12. doi:10.1186/2051-4162-1-12
5. Goubran HA, Rokh SS, Stakiw J, Emara ME, Burnouf T. Regulation of tumor immunosurveillance to tumor escape. *Front Immunol* (2014) 5:62. doi:10.3389/fimmu.2014.00062
6. Jaffee ES, Coussens LM. Cytokines in cancer and immunotherapy. *Nat Rev Cancer* (2007) 7:780–93. doi:10.1038/nrc2158
7. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
8. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
9. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
10. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
11. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
12. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
13. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
14. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
15. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
16. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
17. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
18. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
19. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
20. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
21. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
22. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
23. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
24. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
25. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
26. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
27. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
28. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
29. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
30. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
31. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
32. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
33. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
34. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
35. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679
36. Jaffee ES, Coussens LM. Cytokines and cancer therapy. *Nat Rev Cancer* (2005) 5:929–40. doi:10.1038/nrc1679

FUNDING

This work was supported by the University of Nebraska Foundation, Dr. George Haddix (CC), and the National Science Foundation Graduate Research Fellowship Program (TH).
lymphocyte functions and antigen receptor signaling. Mol Cell Biol (2008) 28:3776–89. doi:10.1128/MCB.05070-07
37. Gomez TS, McCarney SD, Carrizosa E, Labno CM, Comiskey EO, Nolz JC, et al. HS1 functions as an essential actin-regulatory adaptor protein at the immune synapse. Immunity (2006) 24:741–52. doi:10.1016/j.immuni.2006.03.022
38. Nolz JC, Gomez TS, Zhu P, Li S, Egle A, et al. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol (2006) 16:24–34. doi:10.1016/j.cub.2005.11.036
39. Zhang J, Shehabeldin A, da Cruz LA, Butler J, Somani AK, McGavin M, et al. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J Exp Med (1999) 190:1329–42. doi:10.1084/jem.190.9.1329
40. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest (2008) 118:3247–32. doi:10.1172/JCI35501
41. Gilling CE, Mittal AK, Chaturvedi NK, Iqbal J, Aoun P, Bierman PJ, et al. Lymph node-induced immune tolerance in chronic lymphocytic leukemia: a role for caveolin-1. Br J Haematol (2012) 158:216–31. doi:10.1111/j.1365-2142.2012.09148.x
42. Ramsay AG, Clear AJ, Fazilleau N, Grogg KL, et al. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood (2012) 120:1412–21. doi:10.1182/blood-2012-02-411678
43. Ramsay AG, Evans R, Kiai S, Svensson L, Hogg N, Gribben JG. Chronic lymphocytic leukemia cells induce defective LFA-1-directed T-cell motility by altering Rho GTPase signaling that is reversible with lenalidomide. Blood (2013) 121:2704–14. doi:10.1182/blood-2012-08-448332
44. Saoudi A, Kassem S, Dejean AS, Gaud G. Rho-GTPases as key regulators of T lymphocyte biology. Small GTPases (2014) 5:983862. doi:10.14611/sgtp.28208
45. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature (2002) 420:629–35. doi:10.1038/nature01148
46. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol (2005) 21:247–69. doi:10.1146/annurev.cellbio.21.020604.150721
47. Gorgun G, Ramsay AG, Holderried TA, Zahrieh D, Le Dieu R, Liu F, et al. E-(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci U S A (2009) 106:6250–5. doi:10.1073/pnas.0901166106
48. Hofbauer JP, Heyder C, Denk U, Kocher T, Holler C, Traupin D, et al. Development of CLL in the TCL1 transgenic mouse model is associated with impaired TCR signaling in the T-cell compartment homologous to human CLL. Leukemia (2011) 25:1452–8. doi:10.1038/leu.2011.111
49. McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D, et al. Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. J Clin Oncol (2006) 24:2472–9. doi:10.1200/JCO.2005.03.6327
50. Laurent C, Fazilleau N, Brousset P. A novel subset of T-helper cells: follicular helper T (TFH) cells. J Immunol (2004) 173:66–78. doi:10.4049/jimmunol.173.1.68
51. Kim JR, Lim HW, Kang SG, Hillsamer P, Kim CH. Human CD57+ germinal center T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunol (2005) 6:3. doi:10.1186/1471-2172-6-3
52. Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol (2009) 10:375–84. doi:10.1038/ni.1704
53. Chiantova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS, et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol (2004) 173:66–78. doi:10.4049/jimmunol.173.1.68
54. Kim JR, Lim HW, Kang SG, Hillsamer P, Kim CH. Human CD57+ germinal center T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunol (2005) 6:3. doi:10.1186/1471-2172-6-3
Herek and Cutucache

Murine Models of Tumor–Lymphoid Interactions

84. Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood (2010) 115:1026–36. doi:10.1182/blood-2009-06-227579

85. Lemonnier F, Couronne L, Parrens M, Jais JP, Travert M, Lamant L, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma. Blood (2010) 115:1026–36. doi:10.1182/blood-2009-06-227579

86. Vasanthakumar A, Godley LA. 5-Hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet (2015) 208:167–77. doi:10.1016/j.cancergen.2015.02.009

87. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. TET2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell (2011) 20:25–38. doi:10.1016/j.ccr.2011.06.003

88. Tang FC, Ho FC, Chan AC, Srivastava G. Clonality of lymphomas at multiple sites in SJL mice. Lab Invest (1998) 78:205–12.

89. Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R, et al. Ten–eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A (2011) 108:14566–71. doi:10.1073/pnas.1112317108

90. Muto H, Sakata-Yanagimoto M, Nagae G, Shiozawa Y, Miyake Y, Yoshida K, et al. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice. Blood Cancer J (2014) 4:e264. doi:10.1038/bcj.2014.83

91. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, et al. A RING-like ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature (2005) 435:452–8. doi:10.1038/nature0355

92. Glasmacher E, Hoefig KP, Vogel KU, Rath N, Du L, Wolf C, et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat Immunol (2010) 11:725–33. doi:10.1038/ni.1902

93. Ellyard II, Chia T, Rodriguez-Pinilla SM, Martin JL, Hu X, Navarro-Gonzalez M, et al. Heterozygosity for Roquin2 leads to aneuploidy in T-cell lymphoma-like tumors in mice. Blood (2012) 120:812–21. doi:10.1182/blood-2011-07-365130

94. Tsaioge VK, Asakawa J, Miranda A, Sutherland RM, Paterson Y, Thorbecke GJ. Synergic response to SJL follicular center B cell lymphoma (reticular cell sarcoma) cells is primarily in V beta 16+ CD4+ T cells. J Immunol (1993) 150:3519–28.

95. Tsaioge VK, Yoshimoto T, Asakawa J, Cho SY, Meruelo D, Thorbecke GJ. Linkage of superantigen-like stimulation of syngeneic T cells in a mouse model of follicular center B cell lymphoma to transcription of endogenous mammary tumor virus. EMBO J (1993) 12:2313–20.

96. Zhang DJ, Tsaioge VK, Huang C, Thorbecke GJ. Control of endogenous mouse mammary tumor virus superantigen expression in SJL lymphomas by a promoter within the env region. J Immunol (1996) 157:3510–7.

97. Stavnezer J, Lasky JL, Ponzo NM, Scheid MP, Jeanette Thorbecke G. Reticulum cell sarcomas of SJL mice have rearranged immunoglobulin heavy and light chain genes. Eur J Immunol (1989) 19:1063–9. doi:10.1002/ ej.1839019046

98. Tang FC, Ho FC, Chan AC, Srivastava G. Clonality of lymphomas at multiple sites in SJL mice. Lab Invest (1998) 78:205–12.

99. Jain S, Chen J, Nicolea A, Wang H, Shin D, Adkins EB, et al. IL-21-driven neoplasms in SJL mice mimic some key features of human angioimmunoblastic T-cell lymphoma. Am J Pathol (2015) 185:3102–14. doi:10.1016/j.ajpath.2015.07.021

100. Kumar RK. Hodgkin’s disease. SJL/J murine lymphoma. Am J Pathol (1983) 110:393–6.

101. Crotty S. Follicular helper CD4 T cells (Tfh). Annu Rev Immunol (2011) 29:621–63. doi:10.1146/annurev-immunol-031210-101400

102. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human follicular helper T-cell-like features in mice. Nature (2005) 435:452–8. doi:10.1038/nature0355

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewers, CS and RJ, and handling editor declared their shared affiliation, and the handling editor states that the process nevertheless met the standards of a fair and objective review.

Copyright © 2017 Herek and Cutucache. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor is credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.