Gliridae (Rodentia, Mammalia) with a simple dental pattern: a new genus and new species from the European Early and Middle Miocene

ISRAEL GARCÍA-PAREDES1,2*, PABLO PELÁEZ-CAMPOMANES2 and M. ÁNGELES ÁLVAREZ-SIERRA3

1Nationaal Natuurhistorisch Museum – Naturalis, P.O. Box 9517, 2300 RA Leiden, The Netherlands
2Museo Nacional de Ciencias Naturales – CSIC, C/ José Gutierrez Abascal 2, 28006 Madrid, Spain
3Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, C/ José Antonio Novais 2, 28040 Madrid, Spain

Received 22 May 2008; accepted for publication 22 September 2008

A new genus of Gliridae, *Simplomys gen. nov.* is proposed. It contains glirids with a simplified dental pattern from the European Early and Middle Miocene. *Simplomys gen. nov.* includes several species originally described as *Pseudodryomys* such as *Simplomys simplicidens*, *Simplomys robustus*, *Simplomys julii*, and *Simplomys aljaphi*. In addition, a new species, *Simplomys meulenorum* sp. nov., is proposed from the Spanish Miocene. The species of this genus share not only a very reduced and simplified dental morphology, but also unique dental proportions that clearly separate them from any other genera of Gliridae. *Simplomys gen. nov.* is recorded in most of the fossil faunas from the Early and Middle Miocene of the Iberian Peninsula, and shows the maximum diversity in this area during Mammal Neogene Zones MN 3 and MN 4. The genus has been also recorded in other European countries such as France, Germany, and Switzerland, conferring to this very characteristic taxon an important role for biochronological correlations within the European continent.

© 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157, 622–652.
doi: 10.1111/j.1096-3642.2009.00527.x

ADDITIONAL KEYWORDS: dental morphology – Europe – evolution – micromammals – Neogene – *Pseudodryomys* – rodents – Spain – systematics.

INTRODUCTION

The Early and Middle Miocene comprise one of the most important intervals in the evolutionary history of the ‘Old World’ family Gliridae (Rodentia, Mammalia). During this period, they reached their maximum diversity and relative abundance, becoming the most important group in European rodent faunas (Daams & de Bruijn, 1995). This maximum diversity of the family was not only related to an increase in the redundancy of existing dental morphologies but also because of evolution towards new morphological configurations that probably represented an increase in niches occupied by this family. Amongst the new morphological configurations, the evolution towards a more simple dental morphology that occurred during the Early Miocene mainly in the Iberian Peninsula stands out. The glirids with a simple dental morphology are especially abundant in Spanish Lower and Middle Miocene micromammal assemblages, representing the most diverse group of glirids in this area. Most of the species having a simple dental pattern are included in the genera *Armantomys* De Bruijn, 1966, *Praearmantomys* De Bruijn, 1966, and *Pseudodryomys* De Bruijn, 1966. The first two genera, in addition to their trend towards dental simplification, show relatively high crowned teeth, which is a unique character amongst the glirids, and are endemic to the Iberian Peninsula, as was pointed out by Daams (1991) in his revision of these two genera (for comments about correct date of publications and
various species described in the latter paper see García-Paredes & van den Hoek Ostende, 2007). The species included in *Pseudodryomys* have more brachyodont teeth, interpreted as less specialized, and had a wider distribution through Europe.

The genus *Pseudodryomys* was defined based on material from Miocene localities of the Calatayud–Montalbán basin (Spain) and contained two different morphologies. The first morphology is represented by the type species *Pseudodryomys ibericus* De Bruijn 1966, which shows a rather conservative morphology. The second one is represented by *Pseudodryomys simplicidens* De Bruijn, 1966 which shows a derived simplified morphology and proportional reduction of the outer dental elements of the cheek teeth row.

Despite the important morphological differences shown by these two species (Daams, 1974), subsequently described species having affinities with either of these two morphologies have been assigned to *Pseudodryomys* without questioning the homogeneity of the genus (Hugueney *et al*., 1978; Daams, 1989; Martín-Suárez, Freudenthal & Agustí, 1993; Daams & de Bruijn, 1995; Daams, 1999).

Daams (1974) gave detailed descriptions of *Pseudodryomys* from ten Lower and Middle Miocene Spanish localities. Since then, no further detailed descriptions were made until the unpublished work of García-Paredes (2006), even though the number of micromammal localities from the Spanish Lower and Middle Miocene has increased enormously. In the Gliridae assemblages, *Pseudodryomys* (sensu Daams & de Bruijn, 1995) is particularly abundant (García-Paredes, 2006). This increase in information and available material, which remained unstudied for a long time, allows us to define better the different species and evaluate changes in size and morphology amongst the various assemblages.

Several species of *Pseudodryomys* with a simple dental pattern form a well-defined group with particular dental proportions of premolars and third lower molars and more simplified morphology of those elements. These derived characters can be used as diagnostic criteria to propose a new genus, *Simplomys* gen. nov. from Lower and Middle Miocene localities of Spain, Portugal, France, Germany, and Switzerland. Revision of the species assigned to the new genus allows to solve taxonomic problems, to specify the stratigraphical distribution of species and the recognition of a new species of this genus, *Simplomys meulenorum* sp. nov.

MATERIAL AND METHODS

The nomenclature for the parts of the occlusal surface of the cheek teeth of Gliridae (Fig. 1) is modified after De Bruijn (1966) and Daams (1981). P/p and M/m is used for upper/lower premolars and upper/lower molars respectively. The measurements of specimens were taken with a Nikon Mesurosorcope 10 microscope with digital micrometer and are given in mm units. Width represents the maximum width of the crown, taken parallel to the contact facet of the posterior wall, in the case of premolars and first molars, or the anterior wall in second and third molars. Length represents the maximum length of the crown and was measured at right angles to the width. Whenever possible, two indexes were calculated: ‘surface’ as length multiplied by width in mm², and the length : width ratio, a nondimensional index that gives an idea of the slenderness of the tooth.

Additional indices for the relative size of P4/p4 and M3/m3 were calculated by dividing the surface of P4/p4 and M3/m3 by the surface of adjacent teeth (M1/m1 and M2/m2, respectively). These indices represent the relative dental proportions. The ratios were calculated from the average values for surface (Appendix). As a rule, this was only carried out when at least five measurable specimens of each element were available. However, exceptions were made in order to include type localities of important species and/or small collections. Localities, species, and values used to calculate those indices are shown in the Appendix. Scatter diagrams presented in Figure 2A and B and Figure 3A and B show the length : width ratios of P4/p4 and M3/m3 versus their relative dental proportions. Table 1 lists the material studied, including abbreviations for fossil sites and institutions where collections are stored (see below). Descriptive statistics for measurements of the studied assemblages are given in Tables 2 and 3.

Size comparisons between *Simplomys* gen. nov. species were carried out by performing Student’s t-test in localities containing the two species to compare and at least five data per dental element of each species (Table 4).

The chronological framework and correlations used in this paper, as well as the stratigraphical distribution of species of *Simplomys* gen. nov., are shown in Table 5.

The photographs of specimens were taken on the Environmental Scanning Electron Microscope FEI Quanta 200 in environmental mode at the ‘Museo Nacional de Ciencias Naturales – CSIC’ (National Museum of Natural Sciences – CSIC) in Madrid (Spain). All specimens in Figures 4–9 are figured as if they are from the left side. If the original is from the right side its label is underlined on the plates. Holo-types are indicated by an italic character.

Lists of synonymsies of species include only those references that imply a change in name in order to
avoid very long lists of complete references, which are given in Supporting Information Appendix S1.

INSTITUTIONAL ABBREVIATIONS
MNCN, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain; RGM, Nationaal Natuurhistorisch Museum – Naturalis, Geology Department (formerly Rijksmuseum van Geologie en Mineralogie), Leiden, The Netherlands.

SYSTEMATIC PALAEONTOLOGY
STATE OF THE ART
The genus Pseudodryomys was proposed by De Bruijn (1966) for Gliridae of intermediate size that have cheek teeth with concave occlusal surfaces and low crowns. Two different morphologies were included within this genus: one represented by the type species Ps. ibericus De Bruijn, 1966 and the other by Ps. simplicidens De Bruijn, 1966, both defined in Miocene
localities from the Calatayud–Montalbán basin. The most common dental pattern in *Ps. ibericus* consists of upper molars with four main ridges, two centrolophs and sometimes one or two extra ridges inside the trigon. Lower molars always have one posterior extra ridge and a relatively long centrolophid in addition to the four main ridges. In contrast, *Ps. simplicidens* is characterized by a simple dental pattern. The most common morphology shows only the four main ridges in the upper molars and lower molars with a short centrolophid as the only additional crestid. Subsequent species assigned to *Pseudodryomys* have been recognized as part of the two main morphological groups: *Pseudodryomys aljaphi* Hugueney *et al.*, *Simplomys sim...
1978, *Pseudodryomys rex* (García-Moreno, 1986 in Álvarez Sierra & García-Moreno, 1986), and *Pseudodryomys granatensis* Agustí, 1993 in Martín-Suárez et al., 1993, are placed with *Ps. ibericus* in the more complex group (Daams & de Bruijn, 1995; Daams, 1999).

Pseudodryomys robustus De Bruijn, 1967; *Pseudodryomys julii* Daams, 1989 and *Ps. simplicidens* are included in the simple dental pattern group (Daams & de Bruijn, 1995; Daams, 1999). The latter group was recognized on the basis of its particular dental morphology. *Pseudodryomys simplicidens* and *Ps. robustus* were considered as morphologically identical species (De Bruijn, 1967; Daams, 1974) that differ only in size, *Ps. simplicidens* being smaller than *Ps. robustus*. This led to the use of the term ‘simplicidens – robustus’ or the term

![Figure 3. A, scatter diagram of the ratio of length : width of the p4 and the surface of p4/m1 in several Gliridae assemblages. B, scatter diagram of the ratio of length : width of the m3 and the surface of m3/m2 in several Gliridae assemblages (see Appendix for details). The circles denote the ranges of the *Simplomys* gen. nov. assemblages (continuous line) and the *Pseudodryomys* assemblages (discontinuous line).](image-url)

© 2009 The Linnean Society of London, *Zoological Journal of the Linnean Society*, 2009, **157**, 622–652
‘simplicidens–group’ that also included *Ps. julii* after 1989 (e.g. Daams & Freudenthal, 1981, 1988; Cuenca et al., 1983; Daams & van der Meulen, 1984; Sesé, López-Martínez & Herráez, 1985; Daams, Freudenthal & Álvarez Sierra, 1987; Van der Meulen & Daams, 1992; Daams, 1992; Daams et al., 1997; Daams et al., 1998). Thus, the group was treated as a supraspecific entity. Álvarez Sierra et al. (1991) raised the question as to whether or not *Ps. simplicidens* and *Ps. robustus* should be included in the genus *Pseudodryomys*. A discussion on that subject was not included, because it was beyond the scope of their paper (for comments about the correct date of publication of various species described in Álvarez Sierra et al., 1991, see García-Paredes & van den Hoek Ostende, 2007). No further mention has been made about the option to exclude the species with a simple dental pattern from *Pseudodryomys* until the unpublished work of García-Paredes (2006), in which the designation of a new genus to include them was proposed. In this paper we formally propose the new genus *Simplomys* gen. nov. to include all the species that show a highly simplified dental morphology and/or with a reduction in the size proportions of the upper and lower premolars and third molars relative to the first and second molars, as will be discussed below, that were previously included in the genus *Pseudodryomys*.

ORDER RODENTIA BOWDICH, 1821
FAMILY GLIRIDAE MUIRHEAD, 1819
SIMPLOMYS GARCÍA-PAREDES GEN. NOV.

Type species: *Pseudodryomys simplicidens* De Bruijn, 1966.

Diagnosis: Small to large-sized Gliridae with simple dental pattern and cheek teeth with moderately concave occlusal surface. The crowns of the cheek teeth are of medium height and the ridges are wide. Premolars are small and very simplified in morphology compared to molars. The upper molars generally consist of the four main ridges only; one centroloph may be present and in some cases even two. Centroloops are usually not longer than half the width of the occlusal surface. In M1 and M2 the anteroloph ends freely on the lingual side. The protoloph and metaloph are connected before reaching the lingual border, forming an Y-shaped trigon. The lower molars have four or five ridges. If present, the centrolophid is small; its morphology varies from a short prolongation on the anterior lingual border to a well-developed ridge that extends diagonally into the central valley. Its length never exceeds the central axis of the occlusal surface. The mesolophid of the m3 is reduced and does not reach the labial border. The extension of the posterior valley varies from half the width of the occlusal surface to absent.

Differential diagnosis: *Simplomys* gen. nov. differs from *Pseudodryomys* and *Peridyromys* by having a less concave occlusal surface in the upper molars.

Table 1. Material of *Simplomys meulenorum* sp. nov. from localities of the Aragonian type area (Calatayud–Montalbán basin, Spain)

Simplomys meulenorum sp. nov.	P4	M1	M2	M3	p4	m1	m2	m3	Total
MN C 16.13 Vargas 3 VR3 (MNCN)	1	3	7	4	-	2	3	3	23
16.14 Vargas 1A VR1A (RGM)	3	9	22	8	4	6	4	7	63
16.15 Vargas 4BB VR4BB (MNCN)	1	4	8	4	-	1	4	9	31
16.16 Vargas 4B VR4B (MNCN)	-	-	2	-	-	-	2	1	5
16.18 Vargas 4A VR4A (MNCN)	-	3	1	4	-	3	5	7	23
16.35 San Roque 3 SR3 (MNCN)	1	6	5	3	-	5	6	7	33
16.51 **Artesilla** ART (MNCN)	8	10	12	10	4	16	14	9	83
MN B 16.67 San Roque 2 SR2 (RGM)	3	11	14	10	-	11	15	11	75
16.70 San Marcos SAM (MNCN)	2	-	2	1	-	1	1	1	8
16.73 Olmo Redondo 2 OR2 (RGM)	3	1	6	1	-	1	-	6	18
16.76 Olmo Redondo 1 OR1 (RGM)	-	-	-	1	-	1	-	1	3
16.78 San Roque 1 SR1 (RGM)	3	10	21	13	2	14	12	21	96

Total number of specimens in Aragonian type area (Calatayud–Montalbán Basin) = 461. Left columns include Mammal Neogene Zones (MN), local zones and numerical ages (in My) after Daams et al., 1999, as well as abbreviations for localities and institutions where collections are stored (see Material and Methods). Type locality in bold.
Table 2. Descriptive statistics for *Simplomys meulenorum* sp. nov. upper cheek teeth from localities of the Aragonian type area (Calatayud–Montalbán basin)

	L W	Surface area (L × W)	L / W ratio															
	Min.	Mean	Max.	SD	Min.	Mean	Max.	SD	Min.	Mean	Max.	SD						
P4																		
C	16.13 VR3	1	0.80			1	0.80			1	0.80							
	16.14 VR1A	3	0.80	0.86	0.90	1	1.07	1.09	1.10	2	0.94	0.97	0.99					
	16.15 VR4BB	1	0.79			1	0.85			1	0.85							
	16.35 SR3	1	0.90															
	16.51 ART	8	0.88	0.93	0.98	0.040	8	1.04	1.12	1.17	0.042	8	0.95	1.04	1.15	0.071		
B	16.67 SR2	1	0.85															
	16.70 SAM	1	0.82			1	1.01			1	0.83							
	16.73 OR2	3	0.76	0.82	0.86		3	0.97	1.01	1.05	3	0.76	0.83	0.90				
	16.78 SR1	3	0.81	0.84	0.89		3	0.95	0.99	1.01	3	0.81	0.83	0.85				
M1																		
C	16.13 VR3	3	1.39	1.45	1.49		3	1.67	1.67	1.68	3	2.32	2.42	2.49				
	16.14 VR1A	9	1.27	1.46	1.55	0.086	7	1.57	1.64	1.73	0.064	7	2.03	2.42	2.68	0.224		
	16.15 VR4BB	4	1.40	1.47	1.58		4	1.57	1.65	1.76	4	2.21	2.43	2.78				
	16.18 VR4A	1	1.40			1	1.61			1	1.61							
	16.35 SR3	6	1.38	1.48	1.57	0.081	5	1.57	1.64	1.70	0.050	5	2.17	2.43	2.64	0.183		
	16.51 ART	10	1.37	1.44	1.52	0.053	9	1.53	1.60	1.69	0.053	9	2.11	2.33	2.55	0.138		
B	16.67 SR2	8	1.32	1.39	1.45	0.043	6	1.52	1.56	1.59	0.029	6	2.04	2.17	2.31	0.112		
	16.73 OR2	1	1.44															
	16.78 SR1	9	1.37	1.41	1.46	0.028	10	1.52	1.57	1.62	0.030	9	2.11	2.21	2.30	0.075		
M2																		
C	16.13 VR3	6	1.36	1.44	1.49	0.068	5	1.66	1.74	1.82	0.071	5	2.32	2.53	2.74	0.203		
	16.14 VR1A	19	1.26	1.38	1.46	0.063	16	1.59	1.70	1.83	0.074	16	2.04	2.37	2.64	0.184		
	16.15 VR4BB	6	1.21	1.37	1.52	0.119	7	1.62	1.71	1.85	0.086	6	1.96	2.36	2.75	0.329		
	16.16 VR4B	2	1.39	1.40	1.41		2	1.63	1.70	1.77	2	2.30	2.38	2.46	2	0.79	0.83	0.87
	16.18 VR4A	1	1.77															
	16.35 SR3	3	1.38	1.38	1.39		3	1.63	1.73	1.78	3	2.27	2.39	2.46	3	0.78	0.80	0.85
	16.51 ART	11	1.35	1.42	1.49	0.045	8	1.70	1.75	1.82	0.036	7	2.36	2.48	2.62	0.101		
B	16.67 SR2	14	1.29	1.33	1.38	0.024	11	1.55	1.64	1.75	0.068	11	2.02	2.18	2.35	0.117		
	16.70 SAM	2	1.23	1.24	1.25		1	1.58			1	1.58						
	16.73 OR2	6	1.16	1.22	1.28	0.049	6	1.52	1.59	1.69	0.058	6	1.81	1.94	2.11	0.125		
	16.78 SR1	17	1.16	1.29	1.39	0.057	13	1.57	1.63	1.68	0.042	13	1.86	2.09	2.32	0.133		

© 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157, 622–652
Simplomys gen. nov. differs from Prodryomys by having cheek teeth with higher and thicker ridges with slanting walls, as well as narrower valleys.

Simplomys gen. nov. differs from Armantomys De Bruijn, 1966 and Praearmantomys De Bruijn, 1966 by having molars with thinner and lower ridges, by having upper molars with protoloph and metaloph always connected at the lingual half of the occlusal surface forming an Y-shaped trigon. In Simplomys gen. nov. the molars are not progressively smaller from M1/m1 through to M3/m3 as in Armantomys and Praearmantomys.

Simplomys gen. nov. differs from Tempestia Van de Weerd, 1976 by having molars with thinner and lower ridges, M1 and M2 with Y-shaped trigon, m1 and m2 longer than wider and the posterior part of the m3 more reduced and simplified.

Simplomys gen. nov. differs from Altomiramys Díaz Molina & López Martínez, 1979 by having cheek teeth with thicker and slanting ridges and narrower valleys, upper molars with less rounded outline and an anterior valley that does not extend along the lingual border to the protocone.

Etymology: After the simplicity of its dental pattern.

Stratigraphical distribution: Local zones X to E (MN 1, Lower Miocene – MN 5, Middle Miocene).

Geographical distribution: Spain, Portugal, France, Switzerland, and Germany.

Species included

- *Pseudodryomys simplicidens* De Bruijn, 1966
- *Pseudodryomys robustus* De Bruijn, 1967
- *Pseudodryomys aljaphi* Hugueney et al., 1978
- *Pseudodryomys julii* Daams, 1989
- *Simplomys meulenorum* sp. nov.

Discussion on Simplomys gen. nov. and comparison with other genera

The particular characteristics used to define *Simplomys* gen. nov. are the combination of a simplified dental morphology with unusual dental proportions amongst the different elements of the tooth row. In our opinion, the dentition should be understood as a complete organ and hence a functional entity. It is important to study the variability of all cheek teeth. The importance of premolars and third molars for taxonomy has usually been underestimated. Several works pointed out the difficulties in their specific or even generic assignation (Daams, 1974, 1981, 1999b). In our experience, most of the premolars and third molars can be assigned and provide useful systematic characters.
Table 3. Descriptive statistics for *Simplomyys meulenorum* sp. nov. lower cheek teeth from localities of the Aragonian type area (Calatayud–Montalbán basin).

L W Surface area (L × W)	L/W ratio	N	Min.	Mean	Max.	SD
C 16.13 VR3	1	1.59 1.70 1.80	0.048	0.053	0.058	0.120
16.14 VR1A	5	0.91 0.95 1.00	0.047	0.048	0.049	0.053
16.15 VR4BB	1	1.53 1.60 1.66	1.000	0.002	0.004	0.008
16.35 SR3	1	1.36 1.40 1.44	0.036	0.037	0.038	0.040

B 16.14 ART	4	0.86 0.92 0.98	0.033	0.034	0.035	0.036
16.18 VR4BB	2	1.54 1.60 1.67	0.050	0.051	0.052	0.053
16.19 VRBB	4	1.57 1.62 1.68	0.050	0.051	0.052	0.053
16.35 SR3	1	1.48 1.53 1.58	0.034	0.035	0.036	0.037

p4	N	Min.	Mean	Max.	SD
C 16.14 VR1A	4	0.76 0.80 0.84	0.067		
B 16.17 ART	1	1.00 1.04 1.07	0.035		

L W Surface area (L × W)	L/W ratio	N	Min.	Mean	Max.	SD
C 16.13 VR4BB	1	1.57 1.60 1.63	0.037	0.038	0.039	0.040
16.14 VR1A	5	0.91 0.95 1.00	0.047	0.048	0.049	0.053
16.15 VR4BB	1	1.53 1.60 1.66	1.000	0.002	0.004	0.008
16.35 SR3	1	1.36 1.40 1.44	0.036	0.037	0.038	0.040

B 16.14 ART	4	0.86 0.92 0.98	0.033	0.034	0.035	0.036
16.18 VR4BB	2	1.54 1.60 1.67	0.050	0.051	0.052	0.053
16.19 VRBB	4	1.57 1.62 1.68	0.050	0.051	0.052	0.053
16.35 SR3	1	1.48 1.53 1.58	0.034	0.035	0.036	0.037

p4	N	Min.	Mean	Max.	SD
C 16.14 VR1A	4	0.76 0.80 0.84	0.067		
B 16.17 ART	1	1.00 1.04 1.07	0.035		

L W Surface area (L × W)	L/W ratio	N	Min.	Mean	Max.	SD
C 16.13 VR4BB	1	1.57 1.60 1.63	0.037	0.038	0.039	0.040
16.14 VR1A	5	0.91 0.95 1.00	0.047	0.048	0.049	0.053
16.15 VR4BB	1	1.53 1.60 1.66	1.000	0.002	0.004	0.008
16.35 SR3	1	1.36 1.40 1.44	0.036	0.037	0.038	0.040

B 16.14 ART	4	0.86 0.92 0.98	0.033	0.034	0.035	0.036
16.18 VR4BB	2	1.54 1.60 1.67	0.050	0.051	0.052	0.053
16.19 VRBB	4	1.57 1.62 1.68	0.050	0.051	0.052	0.053
16.35 SR3	1	1.48 1.53 1.58	0.034	0.035	0.036	0.037

p4	N	Min.	Mean	Max.	SD
C 16.14 VR1A	4	0.76 0.80 0.84	0.067		
B 16.17 ART	1	1.00 1.04 1.07	0.035		
Table 3. Continued

L W	Surface area (L × W)	L / W ratio						
	N Min. Mean Max. SD	N Min. Mean Max. SD	N Min. Mean Max. SD					
C	16.13 VR3 3 1.04 1.11 1.20	3 1.32 1.35 1.41	3 1.38 1.50 1.69	3 0.78 0.82 0.85				
	16.14 VR1A 6 1.04 1.08 1.13	0.040 6 1.16 1.24 1.31	0.069 6 1.21 1.33 1.48	0.119 6 0.82 0.87 0.90	0.028			
	16.15 VR4BB 8 1.00 1.08 1.18	0.065 8 1.20 1.26 1.33	0.047 8 1.24 1.37 1.53	0.109 8 0.76 0.86 0.93	0.053			
	16.16 VR4B 1 1.11	1	1.28	1	1.42	1	1	0.87
	16.18 VR4A 7 0.99 1.06 1.13	0.056 6 1.17 1.27 1.41	0.083 6 1.17 1.33 1.55	0.136 6 0.78 0.82 0.88	0.043			
	16.35 SR3 7 0.94 1.08 1.13	0.068 7 1.18 1.29 1.40	0.083 7 1.11 1.39 1.54	0.162 7 0.79 0.84 0.89	0.039			
	VR4BB 8 0.78 0.82 0.85	0.034 8 0.82 0.87 0.93	0.034 8 0.78 0.82 0.87	0.034				
B	16.67 SR2 8 0.89 1.05 1.20	0.097 7 1.07 1.18 1.27	0.082 7 0.96 1.21 1.44	0.170 7 0.82 0.87 0.89	0.031			
	16.70 SAM 1 1.02	1	1.20	1	1.22	1	0.85	
	16.73 OR2 5 0.90 0.94 0.97	0.027 5 1.06 1.13 1.19	0.047 4 1.07 1.07 1.08	4 0.76 0.82 0.87				
	16.76 OR1 1 1.11	1	1.23	1	1.37	1	0.90	
	16.78 SR1 19 0.89 0.97 1.02	0.045 17 1.06 1.15 1.26	0.047 17 0.98 1.11 1.26	0.077 17 0.78 0.84 0.91	0.041			

L, length; W, width; N, number of specimens; Min., minimum values; Max., maximum values; SD, standard deviation. First and second left columns show local zones and numerical ages (in My) for the localities after Daams et al., 1999. For abbreviations of localities see Table 1. Type locality in bold.

Table 4. Results of Student’s t-test comparing size variables in localities containing both *Simplomys simplicidens* and *Simplomys meulenorum sp. nov.* and with at least five data points for each species

| S. meulenorum sp. nov. / S. simplicidens |
|-------------------------------|--------|--------|--------|
| | M1 | M2 | M3 |
| | SR1 | ART | SR3 | VR1A | SR1 | OR2 | SR2 | ART | VR4BB | VR1A | SR1 | SR2 | ART |
| L | | | | | | | | | | | | | |
| W | | | | | | | | | | | | | |
| Surface area (L × W) | | | | | | | | | | | | | |
| Ratio L / W | | | | | | | | | | | | | |

L, length; W, width; NS, not significant; *, significant (P < 0.05); **, highly significant (P < 0.01). For abbreviations of localities see Table 1.
Table 5. Stratigraphical distribution of the species of *Simplomys* gen. nov. Series; continental stages; Mammal Neogene Zones (MN zones) proposed for Europe by Mein (1975, 1990) and revised by De Bruijn *et al.* (1992); and local biostratigraphical scale after Daams *et al.* (1999)

SERIE	CONTINENTAL STAGE	MAMMAL NEOGENE ZONE	LOCAL BIOZONE	SPECIES
	(MIDDLE)	ARAGONIAN (MIDDLE)	MN 5	E
MIOCENE	(LOWER)	C	B	
	(LOWER)	RAMBIAN (UPPER)	MN 3	A
		'AEGENIAN' (UPPER)	MN 2	Y
				X
To evaluate relative dental proportions in ‘Pseudodryomys’ (sensu Daams & de Bruijn, 1995), various assemblages of Miocene species included in that genus and other common species assigned to different genera have been analysed (Appendix).

Several indices have been calculated to evaluate relative dental proportions: (1) the length : width ratios of upper and lower premolars and third molars; (2) the ratios between the surface of the upper and lower premolars and the first molar per species; and (3) the ratios between the surface of the upper and lower third molars and the second molar per species.

The results are shown in scatter diagrams (Figs 2A–B, 3A–B) that represent the slenderness of premolars and third molars (length : width ratio) versus their relative size to adjacent teeth.

In the case of P4 (Fig. 2A), most assemblages fall within a well-defined range of length : width ratio (0.7–0.9) showing small differences amongst most analysed species of Gliridae. Lower values of P4 length : width ratio are for species of Armantomys, Armantomys jasperi being the lowest, also for the surface P4 : surface M1 ratio. Similar values of surface P4 : surface M1 ratio are occupied by species

© 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157, 622–652
of Simplomys gen. nov. but with higher P4 length : width ratios, being clearly separated from the other species and particularly from the species of Pseudodryomys. The highest values of P4 length : width ratio are for Simplomys julii, which, with the most rounded P4 of all studied species, is outside of the abovementioned Gliridae range.

For the M3 length : width ratio and surface M3 : surface M2 ratio (Fig. 2B), lower values for both indices are for species of Simplomys gen. nov., species of Armantomys, and Praearmantomys crusafONTI. They form a clearly differentiated group from the rest of species despite the small overlap between higher values of species of Simplomys gen. nov. (S. julii) and lower values of Pseudodryomys ibericus.

In the case of the p4 (Fig. 3A), there is a similar situation as in the P4 (Fig. 2A). Most analysed species of Gliridae have a p4 length : width ratio of approximately 1.0. The lowest values of the p4 length : width ratio are for Simplomys simplicidens. For the p4 : m1 surface ratio there is a clear low values group including species of Simplomys gen. nov. and species of Armantomys. This group is clearly separated from Pseudodryomys ibericus and other Pseudodryomys species.

Figure 3B shows the m3 length : width ratio and surface m3 : surface m2 ratio. The lowest values for both indexes are only for species of Simplomys gen. nov. with a small overlap between the highest values of species of Simplomys gen. nov. (Simplomys aljaphi) and the lowest values of Armantomys aragonensis. Two Simplomys robustus assemblages with low values of the m3 length : width ratio and medium values of the surface ratio are slightly out of the main Simplomys gen. nov. area being near to those of Praearmantomys crusafONTI.

Based on the obtained results there is a clear differentiation in relative dental proportions amongst the genera with a very simple dental morphology (Armantomys, Praearmantomys, and Simplomys gen. nov.) and those with a somewhat conservative dental morphology (Pseudodryomys, Peridyromys, Prodryomys) or the more complicated ones (Microdyromys De Bruijn, 1966 and Glirudinus De Bruijn, 1966). All simple-patterned species have relatively small and slender upper and lower premolars and third molars compared to the more complicated species. The differences amongst the three genera with simple dental morphology are the following: Praearmantomys has in general less reduced premolars and third molars than Simplomys gen. nov. and ArmanTomys. Simplomys gen. nov. and Armantomys differ mainly by the length : width ratio of the P4, being in general on average smaller in Simplomys gen. nov. than in Armantomys (Fig. 2A) and the relatively more reduced m3 in Simplomys gen. nov. (Fig. 3B). In addition, there is a clear difference in hypsodonty amongst these genera, Simplomys gen. nov. being significantly lower crowned than Armantomys and Praearmantomys.
The clear differences between the dental proportions of *Simplomys* gen. nov. species and those of *Pseudodryomys* are remarkable. The species assigned to the latter genus show dental proportions closer to the genera *Peridyromys*, *Prodryomys*, and even *Microdyromys* and *Glirudinus* than to *Simplomys* gen. nov.

The morphology of *Simplomys aljaphi* is intermediate in complexity between *S. simplicidens* and *Pseudodryomys ibericus*, as will be discussed below, but it already shows a high degree of reduction in the upper and lower premolars and third molars, and therefore has been included in *Simplomys* gen. nov.

Simplomys simplicidens (De Bruijn, 1966)
(Fig. 4)

Synonomy

Pseudodryomys ibericus pro-partes in De Bruijn, 1967

Pseudodryomys cf. *robustus* from Armantes 3 in De Bruijn, 1967: 210

Pseudodryomys robustus from Armantes 3 in Daams, 1974

Pseudodryomys robustus from Armantes 3 in Daams, Freudenthal & van de Weerd, 1977

Pseudodryomys meini Adrover, 1978

Pseudodryomys robustus in Alberdi, Morales & Sesé, 1980

Pseudodryomys robustus in Alberdi et al., 1981

Pseudodryomys robustus in Alberdi et al., 1984

Pseudodryomys robustus in Alberdi et al., 1985

Pseudodryomys robustus in Sesé et al., 1985

Pseudodryomys robustus in Antunes et al., 1987

Pseudodryomys robustus in López Martínez, Sesé & Herráez, 1987

Pseudodryomys robustus in Herráez, 1993

Pseudodryomys robustus in Cerdeño & Íñigo, 1997

Pseudodryomys robustus from Armantes 3 in Cerdeño & Íñigo, 1997

Original diagnosis (De Bruijn, 1966: 10): *Pseudodryomys* with cheek teeth that are slightly larger than those of the previous species [*Pseudodryomys ibericus*]...
The dental pattern is very simple. The M1-2 have neither centrolophs nor extra ridges. The m3 is reduced. M1/m1 smaller than M2/m2.

Emended diagnosis by Daams (1974: 234): ‘*Pseudodryomys*–assemblages with a simple dental pattern. The M1,2 has the posterior centroloph only, or no centroloph at all. The main ridges are wide. In the lower molars extra ridges are absent. The m3 is reduced.’

Emended diagnosis: *Simplomys* species with a simple dental pattern, but the posterior centroloph may be present. In some cases, mainly in M2, posterior and anterior centrolophs are present, the posterior one being usually longer. Centrolophs are at right angles to the labial border and not longer than half the width of the occlusal surface. The dental pattern of m1 and m2 shows the four main ridges and a well-developed centrolophid extending diagonally into the central valley and never reaching more than half way along the occlusal surface. The m3 has the posterior part small and simplified in morphology and the posterior valley may be completely absent in the younger occurrences.

Type locality: Valdemoros 3B, Calatayud–Montalbán basin, Spain (local zone Dc, MN 5, Middle Miocene).

Stratigraphical distribution: Local zones Y to E (MN 2, Lower Miocene-MN 5, Middle Miocene).
Geographical distribution: *Simplomys simplicidens* is widely known from Spain and is also present in Portugal, France, Switzerland and Germany (see Supporting Information Appendix S1).

Remarks on *Simplomys simplicidens*

Simplomys simplicidens was proposed by De Bruijn (1966) for glirid material with a rather simple dental pattern from Miocene localities of the Calatayud–Montalbán basin. This author named an assemblage *Ps. ibericus* if more than 75% out of at least ten M1-2 had the ‘*ibericus* – morphotype’ and *Ps. simplicidens* if more than 75% of at least ten M1-2 had the ‘*simplicidens* – morphotype’. If one of the two patterns did not exceed 75% of the total number of M1-2 or if the assemblage consisted of fewer than ten specimens, the indication *Ps. ibericus – simplicidens* was used (De Bruijn, 1967). According to De Bruijn & Moltzer (1974) it was not clear whether the specimens with ‘*ibericus*’ morphology and those with ‘*simplicidens*’ morphology were morphotypes occurring in one

© 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157, 622–652
natural population, or represented two species. In fact, there are several specimens belonging to *S. simplicidens* amongst *Ps. ibericus* paratypes, such as paratype number 60–422, figured in plate IV, figure 7 in De Bruijn (1967).

Daams (1974) studied *Pseudodryomys* material from ten Miocene localities of Spain, analysing the distribution of standard morphotypes of the cheek teeth. The results show that *Ps. ibericus* and *Ps. simplicidens* are separated species and the original diagnoses were emended. Later field campaigns, mainly in the Aragonian and Ramblian type areas (Calatayud–Montalbán basin), have increased the number of localities with *Pseudodryomys* and Simplomys gen. nov. enormously (see Supporting Information Appendix S1).

Based on more than 2700 specimens from 59 localities of the type area of the Aragonian, García-Paredes (2006) demonstrated trends toward size increase of the cheek teeth (Fig. 10), toward simplification of the p4 and toward simplification of the posterior part in the m3 of *S. simplicidens*. This study also demonstrated that morphological features, such as simplification degree of the m3, can be used to distinguish *S. simplicidens* from *S. robustus*, even though size ranges of *S. simplicidens* and *S. robustus* overlap (Fig. 10).

Figure 9. *Pseudodryomys ibericus* De Bruijn, 1966 from La Col C (collection MNCN). A, P4 COL C-2178. B, M1 COL C-1986. C, M2 COL C-2021. D, M3 COL C-2040. E, P4 COL C-2205. F, M1 COL C-2096. G, M2 COL C-2064. H, M3 COL C-2123. I, p4 COL C-2181. J, m1 COL C-1989. K, m2 COL C-2024. L, m3 COL C-2042. M, p4 COL C-2206. N, m1 COL C-2068. O, m2 COL C-2108. P, m3 COL C-2138. Right side specimens underlined.
Figure 10. Temporal distribution of average surface of the upper and lower cheek teeth in species of *Simplomys* gen. nov. from the Aragonian type area (Calatayud–Montalbán basin, Spain). Only localities with at least five measurable specimens of each element are included. Horizontal bars represent two times the standard deviation. Modified after García-Paredes, 2006.
However, when these species occur in the same locality, *S. robustus* is always larger than *S. simplicidens*.

Given these new insights, the material from several middle Aragonian localities in the area of Madrid (Spain), described as *Pseudodryomys robustus* (Alberdi et al., 1980, 1981, 1984, 1985; Sesé et al., 1985; López Martínez et al., 1987; Herráez, 1993; Cerdeño & Íñigo, 1997), could be revised. The measurements of this material fit within the size ranges of *Simplomys simplicidens* from biochronologically similar localities in the Calatayud–Montalbán basin (Fig. 10). Furthermore, the m3 from Madrid show the same degree of simplification as *S. simplicidens* (Fig. 4H). As a consequence, the *Ps. robustus* assemblages from middle Aragonian localities of Madrid (Moratines; Estación Imperial; Paseo de las Acacias; O’Donnell; Henares 2; Arroyo del Olivar) are now assigned to *S. simplicidens*. This change in the specific determination was already suggested by Amezúa et al. (2000), Peláez-Campomanes & Herráez (2000), Soria et al. (2000) and Peláez-Campomanes et al. (2003), without, however, justification or mention of the previous specific status of the aforementioned material.

The situation with the material from Middle Miocene locality Armantes 3 in the Calatayud–Montalbán basin described as *Pseudodryomys* cf. *simplicidens* by De Bruijn (1967) and assigned to *Pseudodryomys robustus* by Daams (1974) and Daams et al. (1977) is similar and is here assigned to *Simplomys simplicidens*.

Pseudodryomys meini Adrover, 1978 described from Navarrete del Río (local biozone Z, MN1, Lower Miocene) was considered a junior synonym of *S. robustus* by Agustí (1983) as well as by Daams & de Bruijn (1995). However, these authors did not give any argument to justify this decision. The morphology of the specimens described as *Ps. meini* fits the diagnosis of *Simplomys simplicidens*. Adrover (1978) noted that the Navarrete del Río material is smaller than the type material of *Pseudodryomys [=Simplomys] simplicidens*. Because of the trend toward size increase in *S. simplicidens*, this species is smaller in older than younger localities (Fig. 10). Therefore, *Ps. meini* Adrover (1978) is considered a subjective synonym of *S. simplicidens*.

Simplomys simplicidens has been reported from localities of Portugal (e.g. Antunes & Mein, 1986), France (e.g. Baudelot & Collier, 1982; Aguilar, Escarguel & Michaux, 1999), Germany (e.g. Mayr, 1979; Wu, 1990, 1993), and Switzerland (e.g. Kälín, 1997) (see Supporting Information Appendix S1 for details on localities and references).

The material from the Lower and Middle Miocene fissure fillings in southern France listed by Aguilar et al. (1999) is of special interest. Several of these localities (Ste. Catherine 3, Ste. Catherine 4, Ste. Catherine 5, and Ste. Catherine 9) contain both *S. simplicidens* and *S. robustus*. As a result of the nature of these fossil sites, the material assigned to *S. simplicidens* and to *S. robustus* in Aguilar et al. (1999), may represent the same species at different stages of evolution (Fig. 10). Therefore, further analysis is needed in order to establish whether this material belongs to *S. robustus*, *S. simplicidens*, or to *Simplomys meulenorum* sp. nov.

Simplomys robustus (De Bruijn, 1967) (Fig. 5)

Original diagnosis (De Bruijn, 1967: 259, translated from Spanish): ‘[Large Pseudodryomys with simple dental pattern. The upper molars have neither centrollops nor extra ridges. The m1 and m2 have a small centrolophid. The m3 is reduced].’

Emended diagnosis by Daams (1974: 236): ‘*Pseudodryomys*-assemblages consisting of large teeth which differ from *P. simplicidens* in size and in the less reduced m3. The dental patterns of the other molars are identical of those of *P. simplicidens*.’

Emended diagnosis: Large *Simplomys* in which the dental pattern in m1 and m2 is formed by the four main ridges and a well-developed centrolophid. The latter extends diagonally into the central valley but never exceeds the middle part of the occlusal surface. The m3 always has a posterior valley and shows little reduction in its posterior part. The M1 may rarely present a small anterior centroloph.

Differential diagnosis: *Simplomys robustus* differs from *S. simplicidens* by having the premolars and the m3 less reduced in size and less simplified in morphology. The posterior valley of m3 is, in contrast to *S. simplicidens*, always present. When both species occur in the same assemblage, *S. robustus* is always larger than *S. simplicidens*.

Type locality: Ateca 3, Calatayud–Montalbán basin, Spain (local zone Z, MN 3, Lower Miocene).

Stratigraphical distribution: Local zones Z to C (MN 3–MN 4, Lower Miocene).

Geographical distribution: Spain, Portugal, and France.

Remarks on Simplomys robustus

Simplomys robustus is rare in the fossil record. Its stratigraphical distribution is restricted to the Ramblian and lowest Aragonian (Lower Miocene). In
Spain it is present in the Calatayud–Montalbán basin and in the Vallès–Penedès basin (Agustí, 1981). Ginsburg, Morales & Soria (1987) cited Ps. robustus from the locality Valquemado (Tagus basin, local zone Y1). However, in later papers (Álvarez Sierra, Daams & Peláz-Campomanes, 1994; Morales et al., 1999) this material is referred to as Pseudodryomys [= Simplomys?] sp. Simplomys robustus is also present in Portugal (Antunes, 1984) and France (e.g. Aguilar et al., 1999) (see Supporting Information Appendix S1 for details on localities and references).

Simplomys aljaphi (Hugueney et al., 1978) (Fig. 6)

Original diagnosis (Hugueney et al., 1978: 28, translated from French): ‘[Pseudodryomys similar in size to P. ibericus and P. simplicidens, close to P. ibericus by the evolutionary degree of its M1-2, which also possesses centrolophs and sometimes accessory ridges, but with a protoloph almost parallel to the metelop, which gives a quite less pointed trigon on the upper molars; this new species on the whole has more simple molars than P. ibericus, with P4 and M3 much more reduced and very simplified. The reduction of the P4 and M3 is not as extreme as in P. simplicidens, which, in addition, has upper molars without centrolophs].’

Emended diagnosis: Medium-sized Simplomys. The dental pattern of the upper molars is formed by the four main ridges. Centrolophs may be present. Sometimes tiny extra ridges are present inside the trigon. The M1 and M2 show a protoloph almost parallel to the metelop, both ridges are joined near the lingual border. The dental pattern of m1 and m2 consists of the four main ridges and a well-developed centrolophid. The centrolophid does not exceed the central curvature. Simple dental pattern. Centrolophs are sometimes tiny extra ridges in variable positions. The premolars and m3 show the lowest degree of reduction and simplification amongst species of Simplomys gen. nov.

Differential diagnosis: Simplomys aljaphi differs from S. simplicidens by its less reduced and simplified premolars and m3. When centrolophs are present in the M1 and M2, they extend diagonally into the central valley. The anterior one is always present and longer than the posterior one in S. aljaphi, whereas in S. simplicidens the centrolophs are closer to being parallel to protoloph and/or metelop and the posterior one is longer. Simplomys aljaphi differs from S. simplicidens by having, in general, a more complicated dental pattern in the lower molars that may include tiny and low extra ridges.

Simplomys robustus differs from S. robustus by its smaller size and its more complicated dental pattern.

Type locality: Montaigu-le-Blin, Allier, Central Massif basin, France (MN 2, Lower Miocene).

Stratigraphical distribution: Local zones X to Y (MN 1-MN 2, Lower Miocene).

Geographical distribution: Spain, France, and Switzerland.

Remarks on Simplomys aljaphi

This species is included in Simplomys gen. nov. because of its degree of reduction and simplification of the premolars and m3. The morphology of the premolars and the m3 of S. aljaphi, and their size relative to the molars are more similar to S. simplicidens than to Ps. ibericus. The morphology of m1 and m2 is also close to that of S. simplicidens. Most specimens from Montaigu-le-Blin described by Hugueney et al. (1978) have a relatively simple morphology and a similar number of ridges as in the most complicated S. simplicidens upper molars. The complicated ones are, however, more similar to Ps. ibericus than to S. simplicidens.

Other than the type locality, this species has been reported from Autol (Cuenca, 1983, 1985) and Monteclillo (Daams, Lacomba & López Martínez, 1986) in central Spain and from the Upper Freshwater Molasse in Switzerland (Källin, 1997) (see Supporting Information Appendix S1 for details on localities and references).

Simplomys julii (Daams, 1989) (Fig. 7)

Synonymy: Pro-parte Peridyromys murinus from Vil-laefeliche 2A in Daams (1981).

Original diagnosis (Daams, 1989: 16): ‘A small Pseudodryomys species with a flat to slightly convex occlusal surface. The M1,2 have a subquadrate circumference. Simple dental pattern. Centrolophs are absent, and centrolophids are short or absent. Protoloph and metelop form a Y – pattern in M1,2’.

Emended diagnosis: Small Simplomys species with molars that have a flat to slightly convex occlusal surface and simple pattern. Anteroloph and posteroloph are situated slightly below the plane of the trigon (protoloph–metelop). The protoloph and metelop form a composite ‘Y’ shape with a bent connection. A line connecting the labial end of the metelop and the lingual end of the protoloph is aligned at right angles to the anteroposterior axis of the tooth. The occlusal
surface of the M1 and M2 has a square outline. In M1 the anteroloph and the anterior valley are straight and parallel to the anterior border of the tooth. In the lower molars, the centrolophid is absent or poorly developed and it does not extend into the central valley. The m3 has the posterior part reduced in size and in most cases the posterior valley is absent.

Differential diagnosis: *Simplomys julii* differs from *S. simplicidens*, *S. robustus*, and *S. aljaphi* in its smaller size, less concave cheek teeth, and by having the centrolophid less developed.

Type locality: Artesilla, Calatayud–Montalbán basin, Spain (local zone C, MN 4, Lower Miocene).

Stratigraphical distribution: Local zones A to Db (MN 3-MN 4, Lower and Middle Miocene).

Geographical distribution: Spain and France (see Supporting Information Appendix S1).

Remarks on *Simplomys julii*

Simplomys julii is a rare species in the fossil record. It has not been studied since Daams (1989). Material from other than the type locality was not described until the revision of *S. julii* from the Aragonian type area by García-Paredes (2006). This study demonstrated a trend toward size increase of the cheek teeth (Fig. 10) and gives for the first time detailed descriptions of the premolars and lower third molars of this species, showing its high degree of simplification and reduction (Fig. 7).

Simplomys julii has been considered to have a short stratigraphical distribution restricted to the lower Aragonian (Lower Miocene) (Daams & de Bruijn, 1995; Daams, 1999). García-Paredes (2006) extended the stratigraphical distribution of this species to the upper Ramblian (Lower Miocene) and part of the middle Aragonian (Middle Miocene) (Table 5). *Simplomys julii* has been found only in Spain and France (see Supporting Information Appendix S1 for details on localities and references).

Simplomys meulenorum García-Paredes sp. nov. (Fig. 8)

Synonymy

Pseudodryomys robustus in Díaz Molina & López-Martínez, 1979.

Pseudodryomys robustus in Alférez et al., 1982.

Pseudodryomys robustus in Álvarez Sierra et al., 1994.

Pseudodryomys robustus in Alférez et al., 1999.

Pseudodryomys robustus in Morales et al., 1999.

Pseudodryomys robustus pro-parte in Van Dam et al., 2006.

Pseudodryomys robustus pro-parte in Van der Meulen et al., 2005.

Pseudodryomys robustus pro-parte in Van der Meulen & Peláez-Campomanes, 2007.

Diagnosis: Medium to large-sized *Simplomys* with simple dental pattern. Centrolophs are absent. The anteroloph is interrupted in the middle in half of the M1 and may be connected medially to the protoloph. The centrolophid is absent or poorly developed and does not extend into the central valley. The mesolophid of the m3 is reduced and limited to the lingual part (entoconid). In most cases the mesolophid and posterolophid are fused as a unique ridge and the posterior valley is absent.

Differential diagnosis: *Simplomys meulenorum* sp. nov. differs from *S. simplicidens* by having a less developed centrolophid and by its less reduced and simplified premolars. When these species occur in the same association, *S. meulenorum* sp. nov. is larger, and the m3 is more reduced and simplified. When the mesolophid and posterolophid of the m3 are fused in a single ridge, in *S. meulenorum* sp. nov. the last ridge is mainly composed of the posterolophid and the mesolophid is almost completely reduced (Fig. 8L, P), whereas in *S. simplicidens* the last ridge is equally composed of the lingual part of the mesolophid and the labial part of the posterolophid (Fig. 4H).

Simplomys meulenorum sp. nov. differs from *S. robustus* by having a less-developed centrolophid and by the simpler morphology of the posterior part of the m3. When both species co-occur in the same locality *S. meulenorum* sp. nov. is smaller than *S. robustus*.

Simplomys meulenorum sp. nov. differs from *S. aljaphi* by its larger cheek teeth and by having in general a less complicated dental pattern, less developed centrolophid, and by having the posterior part of the m3 more reduced and simplified.

Simplomys meulenorum sp. nov. differs from *S. julii* by its larger cheek teeth and by having a more concave occlusal surface. In *S. meulenorum* sp. nov. the central valley of M1 and M2 is narrower and its protoloph–metaloph connection is more pointed than in *S. julii*. In *S. meulenorum* sp. nov. the anteroloph and the anterior valley of M1 are not straight as in *S. julii*.

Etymology: After our friend and colleague Dr Albert J. van der Meulen (Utrecht University, The Netherlands) and his family.
Type locality: Artesilla, Calatayud–Montalbán basin, Spain (local zone C, MN 4, Lower Miocene).

Holotype: m1 left (ART-894 stored at MNCN) Figure 8N.

Paratypes (stored at MNCN)
P4: ART-1142; ART-1148 to ART-1152; ART-1227; ART-1228
M1: ART-870 to ART-876; ART-922; ART-929; ART-1035
M2: ART-878; ART-879; ART-881 to ART-886; ART-888; ART-890; ART-950
M3: ART-524; ART-1160; ART-1162 to ART-1168; ART-1217
p4: ART-1225; ART-2426; ART-2498; ART-2499
m1: ART-891 to ART-898; ART-900 to ART-907
m2: ART-908 to ART-920; ART-984
m3: ART-1154 to ART-1159; ART-1222; ART-1224

Stratigraphical distribution: Local zones A to C (MN 3–MN 4, Lower Miocene).

Material and measurements from localities in the Aragonian type area: Tables 1–3.

Description of Simplusys meulenorum sp. nov. from Artesilla

P4: The occlusal surface is slightly concave and it has an oval or subtriangular outline. It is small in comparison to the molars. The dental pattern is simple and all specimens have four ridges. The anteroloph is usually short and situated in the middle part of the anterior border. Its labial and lingual parts end free in all the specimens. The anteroloph may be interrupted in its medial part and shows a medial connection with the protoloph in three out of eight specimens. The protoloph is oblique and its lingual end shows a cusp-like shape (protocone). The metaloph is short and its lingual end extends just to the centre of the occlusal surface. Protoloph and metaloph are connected in seven out of eight specimens forming a composite Y-shape. The short isolated posteroloph is situated medially and reaches neither the lingual nor the labial border.

M1: The occlusal surface of the M1 is concave and has a square outline with rounded corners. The most common morphotype shows four main ridges, with the metaloph connected to the protoloph, forming an asymmetric Y-shape, and the anteroloph interrupted and medially connected to the protoloph. The anteroloph is well developed and its labial and lingual parts end free in all specimens. The anteroloph is interrupted in seven out of nine specimens. There is a longitudinal connection between the anteroloph and protoloph in six out of nine specimens. The protoloph is the longest ridge; its lingual part is more oblique than the anteroloph and reaches the posterolingual corner of the occlusal surface. The labial end of the protoloph is curved anteriorly near the border of the tooth. There are no centrolophs. The lingual end of the metaloph shows a slight bend and its labial end is curved backwards. The isolated posteroloph is relatively straight, it reaches neither the lingual nor the labial border.

M2: The occlusal surface of the M2 has a more rectangular outline than the M1. The anteroloph is not divided and there is no longitudinal connection with the protoloph. The anteroloph ends free lingually and it is connected labially to the protoloph in one out of ten specimens. As in the M1, the protoloph is the longest ridge. Its lingual end reaches the posterolingual corner of the occlusal surface. The metaloph is relatively straight. The protoloph and metaloph are connected, forming an asymmetrical Y-shape. Centrolophs are absent. The posteroloph is relatively straight; it reaches neither the lingual nor the labial border. It is labially connected to the metaloph in one out of ten specimens and it is lingually connected to the protoloph in four out of 11 specimens.

M3: The M3 has a concave occlusal surface and trapzoidal outline. The posterior part is narrower than the anterior one and it is slightly rounded. All specimens have four ridges. The labial and lingual ends of the anteroloph are curved backwards, and all specimens have the anteroloph connected labially to the protoloph. The anteroloph and protoloph are always connected labially, whereas they are lingually connected in only four out of ten specimens. As in the M2, the anteroloph is neither divided nor medially connected to the protoloph. The protoloph is curved posterolingually. Its lingual and labial ends are aligned at right angles to the anteroposterior axis of the tooth. Most specimens (eight out of ten) show a strongly asymmetric Y-shaped trigon but in two specimens the protoloph and metaloph are joined on the lingual border and the trigon shows an asymmetric V-shape. Centrolophs are absent. The curve of the metaloph is variable. Its labial part may be directed backwards. The posteroloph is the shortest ridge and ends free labially. The lingual end of the posteroloph reaches the border of the occlusal surface. It is lingually connected to the protoloph in seven out of ten specimens (forming an asymmetric Y-shaped trigon) and to the metaloph in two out of ten specimens (forming a V-shaped trigon). Only in one specimen is the posteroloph lingually free-ending.

© 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157, 622–652
p4: The outline of the occlusal surface is oval and slightly concave. The p4 is small compared to the molars and its morphology is simpler than these. The anterior part is occupied by a curved ridge which is assumed to be formed by the union of the anterolophid and metalophid. The mesolophid is very short and connected to the posterolophid near the lingual border in three out of four specimens. There is a narrow trace of the posterior valley.

m1: The occlusal surface is slightly concave, with a subrectangular outline. The anterior part is narrower than the posterior one. The short anterolophid is slightly curved. Its labial part ends free in all specimens and does not reach the labial border of the tooth. The metalophid is sharply bent and its isolated labial end constitutes the anterolabial corner of the tooth, whereas its lingual border does not reach the anterolingual corner, but is connected to the anterolophid in 11 out of 14 specimens. The centrolophid is absent (three out of 14 specimens) or is poorly developed. This ridge, interpreted as a residual centrolophid, extends along the lingual border instead of into the central valley. The centrolophid, metalophid, and anterolophid are connected at the lingual border of the tooth in six out of 14 specimens. Only two specimens show a short isolated centrolophid. The mesolophid is bent and its lingual part is directed anteriorly. The posterolophid is the longest ridge and is more curved than the mesolophid. These ridges are connected lingually in eight out of 14 specimens.

m2: The m2 differs from m1 in having a more rectangular outline, but its morphology is very similar. In general, the anterolophid is not as short as the m1 and its labial end neither reaches the border of the tooth nor joins the metalophid. The angle of the metalophid, situated in its middle part, is less acute than in the m1. The metalophid ends behind the anterolingual corner of the tooth and is connected to the anterolophid in eight out of 12 specimens. In 11 out of 12 specimens a small ridge, interpreted as a residual centrolophid, extends along the lingual border, sometimes almost reaching the mesolophid. In one specimen this structure is absent. The centrolophid, metalophid, and anterolophid are connected at the lingual border in four out of 12 specimens. In the remaining specimen, the centrolophid is connected to the metalophid. The centrolophid is isolated in four out of 12 specimens but connected to the lingual border of the anterolophid in three out of 12 specimens. The mesolophid is less bent than in the m1 and is lingually connected to the posterolophid in six out of 12 specimens. The posterolophid is as described in the m1.

m3: The occlusal surface is not very concave and its outline forms a half-ellipse. The anterolophid and metalophid are connected lingually in eight out of nine specimens. The centrolophid is more variable than in m1 and m2 and it is absent in five out of nine specimens. The centrolophid is isolated in one specimen; in the remaining specimens with a centrolophid (three out of nine) it is connected to the metalophid and the anterolophid at the lingual border of the tooth. The posterior part of the m3 is rounded, narrow, and very simplified in all specimens. The mesolophid and posterolophid are fused, forming a single composite posterior ridge and the posterior valley is absent in eight out of nine specimens. In the remaining specimen, the mesolophid is a very small, cusp-like, ridge connected to the posterolophid, but separated from it by a narrow trace of the posterior valley.

Remarks on Simplomys meulenorum sp. nov.

In the localities of the Aragonian type area, S. meulenorum sp. nov. does not show much morphological variation but does show morphological simplification of the m3. In the older localities of zone B, the m3 is already quite reduced and most specimens develop a single posterior ridge and full reduction of the posterior valley. In localities from the middle part of zone B until the end of zone C, only this completely reduced morphology is found.

Ongoing research shows the presence of this species in the Ramblian. These assemblages will allow us to get a better understanding of the primitive character state of the m3.

The m3 of *S. meulenorum* sp. nov. and *S. simplicidens* have the mesolophid and posterolophid fused into a single ridge, but this union is achieved in different ways in both species. In *S. meulenorum* sp. nov. the mesolophid is almost completely reduced so the last ridge is mainly composed of the posterolophid (Fig. 8L, P). In *S. simplicidens* the labial part of the mesolophid and the lingual part of the posterolophid are short as is shown in specimens with intermediate simplification; thus, the last ridge is equally composed of the lingual part of the mesolophid and the labial part of the posterolophid separated by an inflexion (Fig. 4H). This inflexion is interpreted as a narrow trace of the posterior valley and is situated medially, whereas in *S. meulenorum* sp. nov. it is near the lingual border. Other morphological differences between the m3 of these species have been observed. In *S. meulenorum* sp. nov. the central valley is deeper than in *S. simplicidens*. In *S. meulenorum* sp. nov. the posterior part is lower than the anterior one and the posterior wall of the ridges is more inclined than in *S. simplicidens*.
In the P4 of *Simplomys meulenorum* sp. nov. the main cusps are less distinguishable than in *S. simplicidens*.

An unusual morphological feature in Gliridae is found in *S. meulenorum* sp. nov. In the M1, the anteroloph may be interrupted and connected medi ally to the protoloph (Fig. 5B, F). The taxonomical or functional value of this particular morphology is not clear, but it is present in half of the M1 of *S. meulenorum* sp. nov. from all localities, whereas it is much less common in the M1 of *S. simplicidens*.

Simplomys meulenorum sp. nov. and *S. simplicidens* show statistically significant differences in length, width, and surface for all dental elements when these two species occur in the same locality (Table 4); *S. meulenorum* sp. nov. is the larger one.

Simplomys meulenorum sp. nov. shows a trend to size increase through time in the studied area (García-Paredes, 2006) (Fig. 10). As a result of this size increase through time in the studied area, *S. meulenorum* sp. nov. may overlap with *S. robustus*. However, different morphologies allow us to distinguish them.

The material originally described as *Pseudodryomys robustus* from the Spanish locality Córcoles (zone C, Tagus basin) (Díaz Molina & López Martínez, 1979; Alférez et al., 1982; Álvarez Sierra et al., 1994; Alférez et al., 1999; Morales et al., 1999) has been revised and is assigned to *S. meulenorum* sp. nov.

PSEUDODRYOMYS DE BRUIJN, 1966

Type species: *Pseudodryomys ibericus* De Bruijn, 1966

Original diagnosis (De Bruijn, 1966: 7): ‘Gliridae of intermediate size. Occlusal surface of cheek teeth concave. Crowns of cheek teeth low. P4/p4 small relative to M1/m1 and rounded; M1/m1 smaller than M2/m2. The Spanish representatives of the genus *Pseudodryomys* are characterized by a gradual simplification of the dental pattern through time’.

Emended diagnosis: Medium to large-sized Gliridae, which have cheek teeth with a concave occlusal surface. The dental pattern is formed by the four main ridges and a variable number of extra ridges, usually between two and eight, including centrolophs and centrolophids. The ridges are relatively high, thick, and slanting and the valleys are narrow. In P4, M1, and M2 the trigon is very asymmetric forming a composite Y-shape. The upper molars generally have both centrolophs, the anterior one usually being longer. The lingual parts of the centrolophs may be joined to each other and/or also to the metaloph. The P4 has an oval outline; it is not very simplified and may present one or even two short centrolophs. Lower molars have a relatively long centrolophid and in m1 and m2 there is at least one extra ridge in the posterior valley. The mesolophid of the m3 is not reduced and labially is not connected to the posterolophid.

Stratigraphical distribution: Local zones X to E (MN 1, Lower Miocene – MN 5, Middle Miocene).

Geographical distribution: Central and south-western Europe.

Species included

- *Pseudodryomys ibericus* De Bruijn, 1966
- *Pseudodryomys rex* (García Moreno, 1986 in Álvarez Sierra & García-Moreno, 1986)
- *Pseudodryomys granatensis* Agustí, 1993 in Martín-Suárez et al., 1993

REMARKS ON PSEUDODRYOMYS

After proposing the genus *Simplomys* gen. nov., *Pseudodryomys* is restricted to species having a complex dental pattern and fully developed third molars and premolars.

The differences between *Pseudodryomys* and *Miodyromys, Prodyromys*, and *Peridyromys* are not clear. Possible synonymy of these genera has been suggested by Daams & de Bruijn (1995) and Daams (1999). Several examples showing this problem can be cited. The species ‘*Dryomys* brailloni’ originally described by Thaler, 1966 has been included in *Pseudodryomys* (e.g. Flandrin, Mein & Truc, 1968; Daams, 1974; Adrover, 1978; Hugueney et al., 1992), in *Peridyromys* (e.g. Baudelot & de Bonis, 1966; Aguilar, 1974; Agustí, 1981; Tobien, Fahlbusch & Mayr, 1987; Hugueney & Ringelade, 1990; Sigé et al., 1991), and finally placed in *Prodyromys* (e.g. Wu, 1993; Daams & de Bruijn, 1995; Daams, 1999). Wu (1990) discussed the problems in distinguishing *Peridyromys* from *Prodyromys*.

We consider *Prodyromys* a genus with clear distinctive features that can be used to distinguish it from *Pseudodryomys* as has been pointed out by García-Paredes (2006). In *Pseudodryomys* the ridges are higher, thicker, more slanting, and the valleys are narrower than in *Prodyromys*. The upper molars of *Pseudodryomys* show a more asymmetrical trigon and centrolophs than *Prodyromys*. In the latter genus, the P4 is relatively larger and its morphology is more similar to that of the molars than in *Pseudodryomys*.

Therefore, we agree with Freudenthal & Martín-Suárez (2006) in excluding *Prodyromys* from the possible synonymy of *Pseudodryomys, Peridyromys, Miodyromys*, and *Prodyromys* suggested by Daams & de Bruijn (1995) and Daams (1999).
There are more difficulties in differentiating *Pseudodryomys* and *Miodyromys* because of the possible invalidity of *Miodyromys* as explained by Daams (1999). Some features have been used to distinguish species of *Miodyromys* from *Ps. [= Simpomys] simplicidens* and *Ps. [= Simpomys] robustus* but not from *Ps. ibericus*, the type species of the genus (De Bruijn & Moltzer, 1974). This problem has not been solved yet, and according to Heissig (2006), *Miodyromys* and *Ps. ibericus* can be distinguished by the more simple teeth and higher ridges of the latter genus. Although this distinction is applicable to the ‘simplicidens-group’, it does not hold true for the type species of *Pseudodryomys*, *Ps. ibericus*.

Concerning *Pseudodryomys* and *Peridyromys*, Álvarez Sierra et al. (1991) considered *Peridyromys* to apply to those species with relatively small size, wide ridges, and relatively hypsodont teeth, and assigned to *Pseudodryomys* those species with wide and robust ridges and relatively deep valleys. In addition, De Bruijn (in De Bruijn et al., 2003) proposed the synonymy of *Peridyromys* and *Myomimus* Ognev, 1924, trying to solve an old controversy involving both genera (De Bruijn, Dawson & Mein, 1970; De Bruijn & Moltzer, 1974; Adrover, 1978; Agustí, 1981; Daams, 1981).

The situation involving the genera *Pseudodryomys*, *Peridyromys*, *Miodyromys*, and also *Myomimus* is a complex problem not yet solved. A separate study is necessary to establish uniform and clear diagnostic criteria for these problematic genera, but this question is out of the scope of this paper. However, the proposal of *Simpomys* gen. nov. makes this problem a bit less complicated.

CONCLUDING REMARKS

In general, the dental patterns of the different species of *Simpomys* gen. nov. are very similar because of the limited variations in their simple morphology. Nevertheless, they show different dental proportions as well as particular features in the morphology of the lower cheek teeth, and especially of the m3.

Simpomys aljaphi is the oldest species within the genus (Table 5) and it represents a primitive morphological stage. The information available indicates that *Simpomys* gen. nov. originated either in France or in the Iberian Peninsula. Because of the morphological similarities, *S. simplicidens* is probably directly related to *S. aljaphi*. The more primitive dental pattern shown by the latter suggests an ancestor–descendant relationship. *Simpomys robustus* and *S. simplicidens* are very similar and may therefore be directly related. The timing of the morphological simplification and reduction of the premolars and third molars is different but they share the presence of a centrolophid in the lower molars that is less reduced than in the other more modern species. *Simpomys meulenorum* sp. nov. and *S. julii* show the more derived dental morphology.

The phylogenetic relationships of *Simpomys* gen. nov. with other genera are not clear yet. The dental morphology of *S. aljaphi*, the oldest species within the genus, is similar to that of *Peridyromys murinus*, which is considered to be the ancestor of a number of other genera of Gliridae such as *Armanomys*, *Praearmanomys*, *Pseudodryomys*, etc. (Daams, 1991; Daams & de Bruijn, 1995). The genera of Gliridae with simple dental morphology form a peculiar group within this family. As *Armanomys* and *Praearmanomys* presumably originated on the Iberian Peninsula, a close relationship with *Simpomys* gen. nov. is expected, but morphological similarities can be the result of convergent evolution as a result of living in a similar environment. The change in the morphology of the m3 of *Armanomys* shows a different trend than in *Simpomys* gen. nov. Except for its simple morphology, *Armanomy* looks like a group clearly separated from *Simpomys* gen. nov. *Praearmanomys* shows a reduction in the m3 more similar to *Simpomys* gen. nov., but their possible phylogenetic relationships are not clear at the moment.

The morphological characterization of the species assigned to the new genus allows us to solve taxonomic problems and to specify their stratigraphical distribution. This study also shows the systematic value of the outer elements of the teeth row (premolars and third molars) and its interest concerning the study of evolutionary patterns.

Simpomys gen. nov. is very common in Lower and Middle Miocene localities of the Iberian Peninsula, but it has been also recorded in other European countries such as France, Germany, and Switzerland. As we noted in this paper, there has been considerable taxonomic confusion regarding the species of the ‘simplicidens-group’ (i.e. *Simpomys* gen. nov.). Therefore, a review of the ‘simplicidens-group’ material from localities outside Spain is needed, using the taxonomic framework proposed in this paper and in García-Paredes (2006). This is a worthwhile exercise because *Simpomys* gen. nov. is a very characteristic taxon, which, in combination with its wide distribution, makes it a promising tool for biochronological correlations within Europe.

ACKNOWLEDGEMENTS

We thank all the colleagues and students who helped us with the field work over many years. We want to express our gratitude to L. W. van den Hoek Ostende for valuable suggestions and for improving the English of the manuscript. Thanks are
also due to V. Quiralte Palomar for helping in the preparation of the manuscript and to A. J. van der Meulen for his supportive comments. We acknowledge the facilities provided by Nationaal Natuurhistorisch Museum – Naturalis (The Netherlands), Department of Earth Sciences of the Utrecht University (The Netherlands), and Museo Nacional de Ciencias Naturales – CSIC (Spain) to study their collections. We also want to thank Monique Vianey-Liaud and Hans de Bruijn for constructive review of the manuscript. We acknowledge financial support by the projects PB 98-0691-C03-02, CGL2004-02094/BTE, CGL2007-65208/BTE, CGL2008-04200/BTE, and Research Group CAM-UCM 910607. The first author (I. G.-P.) has a postdoctoral contract of the Spanish Foundation for Science and Technology (FECYT) and the Spanish Ministry of Science and Technology.

REFERENCES

Álvarez Sierra MA, Daams R, Lacomba JI, López Martínez N, van der Meulen AJ, Sesé C, De Visser J. 1991. Palaeontontology and biostratigraphy (micromammals) of the continental Oligocene-Miocene deposits of the North-Central Ebro basin (Huesca, Spain). Scripta Geologica 94: 1–77.

Álvarez Sierra MA, Daams R, Peláez-Campomanes P. 1994. Synthesis of Late Oligocene/Early Miocene micromammal faunas of the Lorana basin (Province of Cuenca, Spain). In: Fernández López S, ed. Comunicaciones de las X Jornadas de Paleontología. Madrid: Sociedad Española de Paleontología, 18–21.

Álvarez Sierra MA, García-Moreno E. 1986. New Gliridae and Cricetidae from the Middle and Upper Miocene of the Duero basin, Spain. Studia Geologica Salmanticensia 39: 145–189.

Adrover R. 1978. Les rongeurs et lagomorphes (Mammalia) du Miocène inférieur continental de Navarrete del rio (province de Teruel, Espagne). Documents des Laboratoires de Geologie de la Faculté des Sciences de Lyon 72: 3–47.

Aguilar JP. 1974. Les rongeurs du Miocène inférieur en Bas-Languedoc et les corrélations entre échelles stratigraphiques marine et continentale. Geobios 7: 345–398, IN1–IN17.

Aguilar JP, Escarguel G, Michaux J. 1999. A succession of Miocene rodent assemblages from fissure fillings in southern France: palaeoenvironmental interpretation and comparison with Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 145: 215–230.

Agústí J. 1981. Roedores miomorphos del Neogeno de Cataluña. Unpublished D. Phil. Thesis, Universidad de Barcelona.

Agústí J. 1983. Roedores (Mammalia) del Miocene inferior de Can Martí Vell (Valles-Penedès, Cataluña, España). Estudios Geológicos 39: 417–430.

Alberdi MT, Hoyos M, Junco F, López N, Morales J, Sesé C, Soria D. 1984. Biostratigraphy and sedimentary evolution of continental Neogene in the Madrid area. Paléobiologie Continentale 14: 47–68.

Alberdi MT, Hoyos M, Mazo AV, Morales J, Sesé C, Soria D. 1985. Bioestratigrafía, Palaeoecología y Biogeografía del Terciario de la provincia de Madrid. In: Alberdi MT, ed. Geología y Paleontología del Terciario continental de la provincia de Madrid. Madrid: Museo Nacional de Ciencias naturales – CSIC, 99–105.

Alberdi MT, Jiménez E, Morales J, Sesé C. 1981. Moratinos: primeros micromamíferos en el Mioceno medio del área de Madrid. Estudios Geológicos 37: 91–305.

Alberdi MT, Morales J, Sesé C. 1980. Un nuevo yacimiento en el Mioceno de Madrid. II Jornadas de Estudios sobre la Provincia de Madrid. Madrid: Ed. Diputación de Madrid, 26–32.

Alférez F, Íñigo C, Molero G, Maldonado E. 1999. El registro fósil de Córcoles (Guadalajara), España: Reflejo de la vida en la Alcarria en el Mioceno inferior. In: Aguirre E, Rábano I, eds. La huella del pasado. Fósiles de Castilla-La Mancha. Toledo: Junta de Comunidades de Castilla-La Mancha, 261–273.

Alférez F, Molero G, Brea P, Santafé JV. 1982. Precisiones sobre la Geología, fauna, cronooestratigrafía y paleoecología del yacimiento Mioceno de Córcoles. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid 76: 249–276.

Amezuza L, Salesa MJ, Pérez B, Peláez-Campomanes P, Fraile S, Morales J, Nieto M. 2000. Palaeoecology. In: Morales J, Nieto M, Amezuza L, Fraile S, Gómez E, Herráez E, Peláez-Campomanes P, Salesa MJ, Sánchez IM, Soria D, eds. Patrimonio Paleontológico de la Comunidad de Madrid. Madrid: Consejería de Educación de la Comunidad de Madrid, 155–172.

Antunes MT. 1984. Essai de synthèse sur les Mammifères du Miocène de Portugal. Volume d’hommage au géologue G. Zbyszewski. Paris: Ed. Recherche sur les civilisations, 301–323.

Antunes MT, Calvo JP, Hoyos M, Morales J, Ordoñez S, Pais J, Sesé C. 1987. Ensayo de correlaciones entre el Neógeno de las áreas de Madrid y Lisboa (Cuencas Alta y Baja del Rio Tajo). Comunicaçöes dos Serviços Geológicos de Portugal 73: 85–102.

Antunes MT, Mein P. 1986. Petits Mammifères Du Burdigalien Inférieur (Universidade CatÓlica, Avenida Do Uruguay). Ciencias da Terra (UNL) 8: 123–138.

Baudelot S, de Bonis L. 1966. Nouveaux Gliridés (Rodentia) de l’Aquitainien du bassin d’Aquitaine. Comptes Rendus Sommaires de la Société Géologique de France 9: 341–343.

Baudelot S, Collier A. 1982. Les faunes de mammifères Miocènes du Haut – Armagnac (Gers, France): Les Gliridés (Mammalia, Rodentia). Geobios 15: 705–727.

Cerdeño E, Íñigo C. 1997. Hispanotherium matritense (Rhinocerotidae) de la Ciudad de Madrid (España) y su relación con el paleoambiente del Aragoniense medio (Mioceno medio). Revista Española de Paleontología 12: 80–90.

Cuenca G. 1983. Nuevo yacimiento de vertebrados del Mioceno inferior del borde meridional de la Cuenca del Ebro. Estudios Geológicos 39: 217–224.

© 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157, 622–652.
Cuenca G. 1985. Los roedores (Mammalia) del Mioceno inferior de Autol (La Rioja). Logroño: Ediciones Instituto de Estudios Riojanos.

Cuenca G, Daams R, Freudenthal M, Gabaldón V, Lacomba JI, López-Martínez N, Sacristán MA, Vega C. 1983. La sucesión de micromamíferos en el Mioceno inferior de España: El proyecto ‘Ramblense’. Coloquios de Paleontología 38: 7–12.

Daams R. 1974. Pseudodryomys (Gliridae, Rodentia, Mammalia) from Early and Middle Miocene deposits in Spain. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B 77: 201–240.

Daams R. 1981. The dental pattern of the Dormice Dryomys, Myominus, Microdryomys and Peridyromys. Utrecht Micropaleontological Bulletins Special publication 3: 1–113.

Daams R. 1988. Peridyromys darocensis and Peridyromys sondaart, two new species of Gliridae (Rodentia, Mammalia) from the Lower Miocene (MN3-5) of the Calatayud-Daroca Basin, Zaragoza, Spain. Deinsea 7: 83–90.

Daams R, Álvarez Sierra MA, van der Meulen AJ, Nieto M, Peláez-Campomanes P, Soria D. 1998. A stratigraphical framework for Miocene (MN4-MN13) continental sediments of central Spain. Comptes Rendus de l’Académie des Sciences de Paris, Sciences de la terre et des planètes/Earth & Planetary Sciences 327: 625–631.

Daams R, Álvarez Sierra MA, van der Meulen AJ, Peláez-Campomanes P. 1997. Los micromamíferos como indicadores de paleoclimas y evolución de las cuencas continentales. In: Aguirre E, Morales J, Soria D, eds. Los roedores (Mammalia) del Mioceno inferior y medio del área central Spain. Boletín del Instituto Geológico y Minero de España 78: 189–373.

Daams R, Freudenthal M, Daxner-Höck G, Fahlbusch V, Ginsburg L, Mein P, Morales J. 1992. Report of the RCMNS working group on fossil mammals, Reisensburg 1990. Newsletters on Stratigraphy 26: 65–118.

Daams R, Daxner-Höck G, Fahlbusch V, Ginsburg L, Mein P, Morales J. 1997. The rodents from Rubielos de Mora. The first evidence of the existence of different biotopes in the Early Miocene of Eastern Spain. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen Series B 73: 536–584.

Díaz Molina M, López Martínez N. 1978. El Terciario continental de la Depresión Intermedia (Cuenca). Bioestratigrafía y Paleogeografía. Estudios Geológicos 35: 149–167.

Flandrin J, Mein P, Truc G. 1968. Données paléontologiques et stratigraphiques nouvelles sur le Miocène continental du bassin d’Eoult, au sud de Castellane (Basses-Alpes). Comptes Rendus de l’Académie des Sciences de Paris 267: 1351–1354.

Freudenthal M, Martin-Suárez E. 2006. Gliridae (Rodentia, Mammalia) from the Late Miocene Fissure Filling Biancone 1 (Gargano, Province of Foggia, Italy). Palaeontologia Electronica 9: 6A: 1–23.

García-Paredes I. 2006. Patrones evolutivos de los Gliridae (Rodentia, Mammalia) del Mioceno inferior y medio del área central de España. Estudios Geológicos 35: 149–167.
type of Aragoniense (Cuenca de Calatayud – Montalbán).
Unpublished D. Phil. Thesis, Universidad Complutense of
Madrid.

García-Paredes I, van den Hoock Ostende LW. 2007.
A nomenclatural note on Miocene dormouse Quercemys
parsani Daams, 1991. Contributions to Zoology 76: 205–206.

Ginsburg L, Morales J, Soria D. 1987. Nouvelles faunes de
grands Mammifères d’âge Miocène inférieur dans la partie
orientale du bassin du Tage (Espagne). Consequences strati-
graphiques. Comptes Rendus de l’Académie des Sciences de
Paris 305: 629–632.

Heissig K. 2006. Die Gattung Miodyromys (Gliridae,
Mammalia) im tiefen Mittelpleistozän der Oberen Süßwasser-
molasse Bayerns. Beiträge zur Paläontologie 30: 143–153.

Herráez E. 1993. Micromammifères (Roedores y Lagomorfof)
del Mioceno del área de Madrid: Estudio sistemático y
bioestratigráfico. Unpublished D. Phil. Thesis, Universidad
Complutense of Madrid.

Hugueney M, Collier A, Huin J, Olivier P. 1975. Un
gliride nouveau du Miocene de Montaigu-le-Blin (Allier):
Pseudodyromys aljaphi nov. sp. (Mammalia, Rodentia).
Revue Scientifique du Bourbonnais 1978: 27–45.

Hugueney M, Mein P, Ringeade M. 1992. Nouvelle data-
tion des gisements de mammifères du bassin de Digne
(Lambert et Barles; Sud-Est de la France); extension prob-
able de la transgression aquitanienne dans cette région.
Paleontologia i Evolució 24-25: 123–134.

Hugueney M, Ringeade M. 1990. Synthese on the ‘Aquita-
nian’ lagomorph and rodent faunas of the Aquitaine basin
(France). In: Lindsay EH, Fahlbusch V, Mein P, eds.
European Neogene mammal chronology. New York: Plenum
Press, 139–156.

Kälin D. 1997. The mammal zonation of the upper marine
molasse of Switzerland reconsidered: A local biozonation of
MN2-MN5. In: Aguilar J-P, Legendre S,Michaux J, eds.
Actes du Congrès BioChroM'97. Mémoires et Travaux de
l’Ecole pratique des Hautes Études, Institut Montpellier 21:
515–531.

Kretzoi M. 1943. Ein neuer Muscardinid aus dem
Ungarischen Miozàn. Kulonlenyomat a Foldtani Kozlony 73:
271–273.

López Martínez N, Sesé C, Herráez E. 1987. Los yacimien-
tos de micromamíferos del área de Madrid. Boletín Geoló-
ógico y Minero 98: 159–176.

Martín-Suárez E, Freudenthal M, Aguisti J. 1993. Micro-
mammals from the Middle Miocene of the Granada basin
(Spain). Geobios 26: 377–387.

Mayr H. 1979. Gebissmorphologische Untersuchungen an
miozänen Gliriden (Mammalia, Rodentia) Süddeutschlands.
Unpublished D. Phil. Thesis, Ludwig-Maximilians
University, Munich.

Mein P. 1975. Résultats du Groupe de Travail des Vertébrés.
In: Senes J, ed. Report on activity of RCMS Working group
(1971-1975). Bratislava: RCMS, 78–81.

Mein P. 1990. Updating of MN zones. In: Lindsay EH, Fahl-
busch V, Mein P, eds. European neogene mammal chronol-
ogy. New York: Plenum Press, 73–90.

Morales J, Nieto M, Peláez-Camponanes P, Soria D,
Álvarez Sierra MA, Alcalá L, Amezua L, Azanza B,
Cerdeño E, Daams R, Fraile S, Guillem J, Hoyos M,
Merino L, De Miguel I, Monparler R, Montoya P,
Pérez B, Salesa MJ, Sánchez IM. 1999. Vertebraed continen-
tales del Terciario de la cuenca de Loranca (Provin-
cia de Cuenca). In: Aguirre E, Rábano I, eds. La huella del
pasado: Fósiles de Castilla-La Mancha. Toledo: Junta de
Comunidades de Castilla-La Mancha, 237–260.

Peláez-Camponanes P, Herráez E. 2000. Orden Rodentia.
In: Morales J, Nieto M, Amezua L, Fraile S, Gómez E,
Herráez E, Peláez-Camponanes P, Salesa MJ, Sánchez IM,
Soria D, eds. Patrimonio Paleontológico de la Comunidad de
Madrid: Consejería de Educación de la Comunidad de
Madrid, 256–262.

Peláez-Camponanes P, Morales J, Álvarez Sierra MA,
Azanza B, Fraile S, García-Paredes I, Hernández
Fernández M, Herráez E, Nieto M, Pérez B, Quiralte
V, Salesa MJ, Sánchez IM, Soria D. 2003. Updated
biochronology of the Miocene mammal fauna from the
Madrid basin (Spain). Deinsea 10: 431–441.

Sesé C, López-Martínez N, Herráez E. 1985. Micromamif-
eros (Insectívoros, Roedores y Lagomorfas) of the province of
Madrid. In: Alberdi MT, ed. Geología y Paleontología del
Terciario continental de la provincia de Madrid. Madrid:
Museo Nacional de Ciencias Naturales – CSIC, 29–39.

Sigé B, Aguilar JP, Matandat B, Astruc JJ. 1991. Extensión
au Miocène inférieur des remplissages phosphatés du
Quercy. La faune de vertébrés de Crémat (Lot, France).
Geobios 24: 497–502.

Soria D, Amezua L, Daams R, Fraile S, Herráez E,
Morales J, Nieto M, Peláez-Camponanes P, Salesa
MJ, Sánchez IM. 2000. Faunas del Mioceno. In: Morales J,
Nieto M, Amezua L, Fraile S, Gómez E, Herráez E,
Peláez-Camponanes P, Salesa MJ, Sánchez IM, Soria D, eds.
Patrimonio Paleontológico de la Comunidad de Madrid.
Madrid: Consejería de Educación de la Comunidad de
Madrid, 110–129.

Steinh G, Schaub S. 1951. Die Trigonodontia der simplici-
cidentaten Nager. Schweizerische Paläontologische Abhan-
dlungen 67: 1–385.

Thaler L. 1966. Les rongeurs fossiles du Bass-Languedoc dans
leurs rapports avec l’histoire des faunes et la stratigraphie
du Tertiaire d’Europe. Mémoires de Muséum National
d’Histoire Naturelle Série C: 1–295.

Tobien H, Fahlbusch K, Mayr H. 1987. Bemerkungen zur
Altersstellung der Altmiocäne Säugerfauna von Frank-
furt Nordbassin und der präbasaltischen Sediment-Folgen
im Untergrund von Frankfurt am Main. Geologische Jahr-
buch, Hessen 113: 205–215.

Van Dam JA, Abdul Aziz H, Álvarez Sierra MA, Hilgen
FJ, van den Hoek Ostende LW, Lourens LJ, Mein P,
v an der Meulen AJ, Peláez-Camponanes P. 2006.
Long-period astronomical forcing of mammal turnover.
Supplementary notes. Nature 443: 687–691.

Van de Weerd A. 1976. Rodent faunas of the Mio-Pliocene
continental sediments of the Teruel-Alfambrá region, Spain.
Utrecht Micropaleontological Bulletins Special publica-
tion 2: 1–185.
Van der Meulen AJ, Daams R. 1992. Evolution of Early-Middle Miocene rodent faunas in relation to long-term palaeoenvironmental changes. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 227–253.

Van der Meulen AJ, Peláez-Campomanes P, Levin SA. 2005. Age structure, residents, and transients of Miocene rodent communities. The American Naturalist 165: E108–E125.

Van der Meulen AJ, Peláez-Campomanes P. 2007. Residents and transients in the fossil record. In: Levin SA, ed. Encyclopedia of Biodiversity. Amsterdam: Elsevier, 1–7.

Wu W. 1990. Die Gliriden (Mammalia, Rodentia) aus der Oberen Süsswasser Molasse von Puttenhausen (Niederbayern). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 30: 65–105.

Wu W. 1993. Neue Gliridae (Rodentia, Mammalia) aus untermiözinischen (orleanischen) Spaltenfüllungen Süddeutschlands. Documenta Naturae 81: 1–149.

APPENDIX

Species, localities, number of specimens, and values used in the scatter diagrams of Figures 2 and 3. Ratios of length : width (L/W) of premolars and third molars and their relative dental proportions are shown. The indices for the relative size of P4/p4 and M3/m3 have been calculated by dividing the surface area of P4/p4 and M3/m3 by the surface area of adjacent teeth (M1/m1 and M2/m2, respectively). As a rule, this was only carried out when at least five measurable specimens of each element were available. However, exceptions were made (grey shaded cells) for material from type localities (bold text) and/or small collections. Abbreviations: MC, F, Massif Central basin; France; C-M, S, Calatayud-Montalbán basin, Spain; T, S, Tagus basin, Spain; D, S, Duero basin, Spain; G, S, Granada basin, Spain. For details on localities see Supporting Information Appendix S1.

Species	Localities	Basin	P4	M1	Surface	M3	M2	Surface	P4	M1	Surface	m3	m2	Surface					
Simplomys aljaphi	Montaigu le Blin	MC, F	18	0.86	44	0.46	13	0.74	47	0.64	14	1.00	52	0.37	30	0.82	39	0.67	
Simulmys julii	Artesilla	C-M, S	4	0.93	8	0.38	3	0.76	14	0.67	2	0.99	13	0.28	1	0.82	9	0.52	
Simulmys robustus	Ageda	C-M, S	7	0.81	26	0.46	15	0.70	26	0.64	6	0.97	15	0.35	11	0.62	14	0.69	
Simulmys simplicidens	Artesilla	C-M, S	27	0.84	14	0.43	12	0.70	16	0.55	9	0.94	19	0.31	9	0.93	24	0.62	
Simulmys simplicidens	La Col	C-M, S	8	0.77	18	0.38	7	0.71	14	0.55	11	0.71	13	0.62	6	1.03	10	0.40	
Simulmys simplicidens	San Roque 3	C-M, S	11	0.71	13	0.62	2	0.97	9	0.32	14	0.72	6	0.66	7	0.90	4	0.64	
Simulmys simplicidens	San Roque 3	C-M, S	5	0.80	8	0.37	12	0.71	8	0.58	5	0.99	7	0.24	10	0.81	7	0.57	
Simulmys meulenorum	Armantomys	San Roque 3	C-M, S	13	0.77	7	0.38	8	0.69	9	0.58	11	0.84	6	0.60	14	0.83	6	0.61
Simulmys meulenorum	Villafeliche 2A	C-M, S	9	0.73	11	0.37	2	0.97	9	0.58	5	0.99	7	0.24	10	0.81	7	0.57	
Simulmys meulenorum	Vargas 3	C-M, S	15	0.81	10	0.41	8	0.99	15	0.33	18	0.84	10	0.62	9	0.86	11	0.58	
Simulmys meulenorum	Vargas 4	C-M, S	5	0.79	10	0.46	5	0.69	13	0.68	12	0.85	7	0.58	22	0.84	6	0.60	
Simulmys meulenorum	Vargas 7	C-M, S	7	0.80	22	0.39	14	0.68	19	0.59	22	0.84	6	0.60	9	0.86	11	0.58	
Simulmys meulenorum sp. nov.	Artesilla	C-M, S	8	0.83	9	0.45	10	0.75	7	0.58	4	0.99	14	0.35	8	0.87	12	0.55	
Simulmys meulenorum sp. nov.	San Roque 1	C-M, S	3	0.86	9	0.38	12	0.72	13	0.58	17	0.84	10	0.51	22	0.84	6	0.60	
Simulmys meulenorum sp. nov.	San Roque 2	C-M, S	10	0.72	11	0.58	7	0.97	9	0.54	7	0.97	11	0.58	7	0.97	6	0.58	
Simulmys meulenorum sp. nov.	Vargas 1A	C-M, S	7	0.75	15	0.65	4	0.99	5	0.36	6	0.98	7	0.31	12	0.94	9	0.79	
APPENDIX

Species	Localities	Basin	Surface	P4	M1	Surface	P4	M1	Surface	P4	M1
Artemantys jasperi	Artesilla	C-M, S	N	1	0.73	6	0.46	5	0.74	6	0.64
	San Roque	C-M, S	N	7	0.79	3	0.51	5	0.68	4	0.67
Artemantys triricistatus	Escobera de	D, S	7	0.73	3	0.33	22	0.77	13	0.75	5
	Calatalashor	C-M, S	3	0.61	2	0.37	3	0.78	5	0.72	2
Glrudinus modestus	Olmo Redondo	C-M, S	1	0.83	6	0.52	2	0.72	1	0.58	
	Villafeliche 2A	C-M, S	9	0.80	8	0.78					11
Microdryomys hoenigwaldi	La Col C	C-M, S	7	1.04	50	0.58	5	0.85	53	0.74	10
	La Col D	C-M, S	6	0.75	34	0.77	5	1.04	26	0.59	7
	Fuente Sierra 2	C-M, S	5	0.79	10	0.84					
	Fuente Sierra 3	C-M, S	5	1.01	17	0.81					
	Las Umbrias 3	C-M, S	6	0.76	5	0.53	10	0.80	18	0.79	5
	Olmo Redondo 8	C-M, S	8	0.76	15	0.59	5	0.80	18	0.57	11
	San Roque 2	C-M, S	5	0.81	10	0.85					
	Valdemoros 1A	C-M, S	5	1.02	5	0.49	8	1.01	12	0.70	
	Valdemoros 6A	C-M, S	5	0.78	21	0.49	7	1.01	16	0.56	7
	Villafeliche 2A	C-M, S	12	0.79	5	0.82	8	0.96	11	0.72	
	Vargas 11	C-M, S	5	0.76	16	0.56	7	0.76	48	0.81	14
	Vargas 1A	C-M, S	13	0.74	53	0.57					
	Vargas 4A	C-M, S	5	0.77	54	0.60	7	0.76	48	0.62	11
	Vargas 4BB	C-M, S	5	0.78	48	0.62					
Peridyromys darocensis	San Roque 4A	C-M, S	7	0.81	33	0.62	7	0.76	33	0.77	5
	Peridyromys marinus	Artesilla	31	0.84	#	0.60	6	0.74	#	0.73	22
	San Marcos	C-M, S	6	0.82	37	0.53	6	1.01	20	0.55	14
	San Roque 1	C-M, S	20	0.82	85	0.60	7	0.76	85	0.73	9
	San Roque 2	C-M, S	17	0.83	47	0.62	8	0.77	47	0.71	11
	San Roque 4A	C-M, S	5	0.80	15	0.67	7	0.75	43	0.72	9
	Villafeliche 2A	C-M, S	9	0.75	43	0.72					
Pracarmantomyx crusafanti	Ateca 1	C-M, S	15	0.81	11	0.65	19	0.65	19	0.63	14
	Olmo Redondo 1	C-M, S	11	0.83	7	0.59	11	0.68	13	0.55	12
	San Roque 1	C-M, S	27	0.84	19	0.61	24	0.66	19	0.58	22
	San Roque 2	C-M, S	22	0.85	35	0.59	35	0.66	38	0.61	30
Pradryomys satus	La Col C	C-M, S	8	0.78	16	0.56	6	0.76	15	0.69	5
	Pseudodryomys granatensis	Murchas	3	0.81	1	0.65	1	0.61	1	0.63	2
	Pseudodryomys rex	Las Planas 4B	C-M, S	2	0.80	1	0.65	1	0.74	1	0.73
	Las Umbrias 8	C-M, S	2	0.80	1	0.65					
	Torremormojón 6B	D, S	1	0.77	2	0.56					

(1) After Hugueney et al. (1978); (2) after De Bruijn (1967); (3) after Daams (1991); (4) after Martín-Suárez et al., 1993; (5) after De Bruijn (1966); (6) after Álvarez Sierra & García-Moreno, 1986.
SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Review of the cited localities in literature for the species of *Simplomys* gen. nov.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.