Innate, translation-dependent silencing of an invasive transposon in Arabidopsis

Stefan Oberlin¹,², Rajendran Rajeswaran¹, Marieke Trasser³,⁴, Verónica Barragán-Borrero¹,³, Michael A. Schon³, Alexandra Plotnikova³, Lukas Loncsek³, Michael D. Nodine³,⁵, Arturo Marí-Ordóñez¹,³* and Olivier Voinnet¹*

¹ Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, 8092, Switzerland.

² Current address: Department of Microbiology and Immunology, UCSF Diabetes Center, University of California, San Francisco, USA.

³ Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria.

⁴ Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Austria.

⁵ Laboratory of Molecular Biology, Wageningen University, Wageningen 6708 PB, The Netherlands.

* For correspondence:

Olivier Voinnet: voinneto@ethz.ch

Arturo Marí-Ordóñez: arturo.mari-ordonez@gmi.oeaw.ac.at
Abstract

Co-evolution between hosts' and parasites' genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence-degeneration and, ultimately, loss-of-autonomy of most transposable elements (TEs). Recognition of newly-invasive plant TEs, by contrast, involves an innate antiviral-like silencing response. To investigate this response’s activation, we studied the single-copy element \textit{EVADÉ (EVD)}, one of few representatives of the large \textit{Ty1/Copia} family able to proliferate in Arabidopsis when epigenetically-reactivated. In \textit{Ty1/Copia}-elements, a short subgenomic mRNA (\textit{shGAG}) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full-length genomic \textit{flGAG-POL}. We show here that the predominant cytosolic distribution of \textit{shGAG} strongly favors its translation over mostly-nuclear \textit{flGAG-POL}, during which an unusually intense ribosomal stalling event coincides precisely with the starting-point of sRNA production exclusively on \textit{shGAG}. mRNA breakage occurring at this starting-point yields unconventional 5’OH RNA fragments that evade RNA-quality-control and concomitantly likely stimulate RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6) to initiate sRNA production. This \textit{hitherto}-unrecognized “translation-dependent silencing” (TdS) is independent of codon-usage or GC-content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against \textit{de novo} invasive TEs that underlies their associated sRNA patterns.
Introduction

Transposable elements (TEs) colonize and threaten the integrity of virtually all genomes (Huang et al., 2012). Chromosomal rearrangements caused by their highly-repetitive nature (Fedoroff, 2012) are usually circumvented by cytosine methylation and/or histone-tail modifications at their loci-of-origin. The ensuing heterochromatic DNA is not conducive to transcription by RNA Pol II, bringing TEs into an epigenetically silent transcriptional state (Allshire & Madhani, 2018). This “transcriptional gene silencing” (TGS) is observed at the majority of TE loci in plants, including the model species *Arabidopsis thaliana*, and causes, over evolutionary times, accumulating mutations resulting in mostly degenerated, non-autonomous entities (Vitte & Bennetzen, 2006; Civáň et al., 2011). Nonetheless, the genome-invasiveness of these remnants remains evident by their methyl cytosine-marked DNA, which is perpetuated over generations by METHYL-TRANSFERASE 1 (MET1), among other factors. MET1 reproduces symmetrical methylation sites from mother- to daughter-strands during DNA replication (Kankel et al., 2003) aided by the (hetero)chromatin remodeler DEFICIENT IN DNA METHYLATION 1 (DDM1) (Saze et al., 2003; Zemach et al., 2013).

Loss of MET1 or DDM1 functions in *Arabidopsis* leads to genome-wide demethylation, transcriptional reactivation of many TE remnants, and mobilization of a small portion of intact, autonomous TEs (Mirouze et al., 2009; Tsukahara et al., 2010). Their proliferation together with genome-wide deposition of aberrant epigenetic marks likely explains why *met1* and *ddm1* mutants accumulate increasingly severe genetic and phenotypic burdens over inbred generations (Vongs et al., 1993). However, such secondary events can be avoided by backcrossing the first homozygous generation of
ddm1- or met1-derived mutants with wild type plants, upon which continuous selfing of F2 plants creates “epigenetic recombinant inbred lines” (epiRILs). These harbor only mosaics of de-methylated DNA while maintaining wild-type (WT) MET1 and DDM1 functions (Teixeira et al, 2009; Reinders et al, 2009a). One such met1 epiRIL, epi15, endows epigenetic reactivation of the autonomous, long terminal repeat (LTR) retroelement EVADÉ (EVD) in the Ty1/Copia family, which is one of the most proliferative families in plants (Vitte & Panaud, 2005). Of the two EVD copies in the Arabidopsis Col-0 genome, only one is reactivated in epi15 (Marí Ordóñez et al, 2013).

By providing a proxy for a de novo genomic invasion, this reactivation granted a unique opportunity to grasp how, over multiple inbred generations, newly invasive TEs might be detected and eventually epigenetically silenced (Marí Ordóñez et al, 2013).

We found that EVD is initially confronted to post-transcriptional gene silencing (PTGS) akin to that mounted against plant viruses (Voinnet, 2005; Marí Ordóñez et al, 2013). Antiviral RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) produces cytosolic, long double-stranded (ds)RNAs from EVD-derived transcripts, which are then processed by DCL4 or DCL2, two of the four Arabidopsis Dicer-like RNase-III enzymes, into populations of respectively 21- and 22-nt small interfering (si)RNAs. However, despite their loading into the antiviral PTGS effectors ARGONAUTE1 and ARGONAUTE2 (AGO1/2), they do not suppress expression of EVD’s increasingly more abundant genomic copies. This ultimately gives way to DCL3, instead of DCL4/2, to process the RDR6-made long dsRNAs into 24-nt siRNAs. In association with AGO4-clade AGOs, these species guide RNA-directed DNA methylation (RdDM) of EVD copies. Initially localized within the EVD gene body, it later spreads into the LTRs to eventually shut down the expression of EVD genome-wide via TGS (Marí Ordóñez et al, 2013).
A key, unsolved question prompted by this proposed suite of events pertains to the mechanisms whereby RDR6 is initially recruited onto EVD, and more generally on newly invasive TEs, during the primary antiviral-like silencing phase. “Homology-” or “identity”-based silencing entails sequence complementarity between TE transcripts and host-derived small RNAs. Loaded into AGOs, they likely attract RDR6 concomitantly to silencing execution. One such type of PTGS occurs with TEs reactivated in \textit{ddm1/met1} mutants, which, by displaying complementarity mostly to host-encoded microRNAs, spawn “epigenetically-activated siRNAs” (easiRNAs) in an AGO1-dependent manner (Creasey \textit{et al}, 2014). easiRNA production likely entails substantial co-evolution between host and TE genomes (Sarazin & Voinnet, 2014) because miRNAs usually target short and highly conserved TE regions, including the primer-binding sites required for retroelements’ reverse-transcription (RT) (Šurbanovski \textit{et al}, 2016; Borges \textit{et al}, 2018). Another form of acquired immunity underlying identity-based silencing is conferred by siRNAs derived from relics of previous genome invasions by the same or sequence-related TE(s) (Fultz & Slotkin, 2017).

New intruder TEs are unlikely to engage either form of identity-based silencing, as indeed noted for \textit{EVD} (Creasey \textit{et al}, 2014). Thus, RDR6-dependent PTGS initiation should involve intrinsic features of the TEs themselves (Sarazin & Voinnet, 2014). In the yeast \textit{Cryptococcus neoformans}, stalled spliceosomes on suboptimal TE introns provide an opportunity for an RDR-containing complex to co-transcriptionally initiate such innate PTGS (Dumesic \textit{et al}, 2013). Studies of transgene silencing in plants (Luo & Chen, 2007; Thran \textit{et al}, 2012) have advocated other possible mechanisms, though none has yet been linked to epigenetically reactivated TEs. These studies describe how uncapped, prematurely terminated or non-polyadenylated
transcripts might stimulate RDR activities when they evade or overwhelm RNA quality control (RQC) pathways that normally degrade these “aberrant” RNAs (Parent et al, 2015; Gy et al, 2007b; Herr et al, 2006). A recent model also contends that widespread translation-coupled RNA degradation as a consequence of suboptimal codon usage and low GC content might trigger RDR-dependent silencing in plants (Kim et al, 2021).

Initiation of innate PTGS in the context of EVD likely ties in with an unusual process of splicing-coupled premature cleavage and poly-adenylation (PCPA) shared by Ty1/Copia retroelements to optimize protein expression from their compact genomes (Oberlin et al, 2017). On the one hand, an unspliced and full-length (fl) GAG-POL isoform codes for a polyprotein processed into protease, integrase/reverse-transcriptase-RNase and GAG nucleocapsid components. On the other hand, a spliced and prematurely terminated short (sh) GAG subgenomic isoform is solely dedicated to GAG production. Though less abundant than the flGAG-POL mRNA, shGAG is substantially more translated (Oberlin et al, 2017). This presumably results in a molar excess of structural GAG for viral-like particle (VLP) formation compared to Pr-IN-RT-RNase required for reverse-transcription (RT) and, ultimately, mobilization (Oberlin et al, 2017; Lee et al, 2020). Supporting the notion that genome expression of Ty1/Copia elements influences PTGS initiation, EVD-derived RDR6-dependent siRNAs do not map onto the unspliced flGAG-POL mRNA, but instead specifically onto the spliced shGAG transcript of which, intriguingly, they only cover approximately the 3’ half (Oberlin et al, 2017).

Here, we show that differential subcellular distribution of the two mRNA isoforms due to splicing-coupled PCPA accounts for the peculiar EVD siRNA distribution and activity patterns. While the flGAG-POL isoform remains largely nuclear, the shGAG mRNA is enriched in the cytosol and endows vastly
disproportionate translation of \textit{shGAG} over \textit{flGAG-POL}. However, a previously uncharacterized innate PTGS process accompanies active \textit{shGAG} translation, manifested as a discrete and unusually intense ribosome stalling event independent of codon usage or GC content, among other tested parameters. Ribosome stalling coincides precisely with the starting point of \textit{shGAG} siRNA production and maps to the 5’ ends of discrete, \textit{shGAG}-derived RNA breakage fragments. These harbor unconventional 5’OH \textit{termini} that prevent their RQC-based degradation via 5’P-dependent XRN4 action (Stevens, 2001; Peach \textit{et al}, 2015). Based on the well-documented substrate competition between XRN4 and RDR6 (Gazzani, 2004; Gy \textit{et al}, 2007b; Gregory \textit{et al}, 2008; Moreno \textit{et al}, 2013; Martínez de Alba \textit{et al}, 2015), we suggest that the 5’OH status of breakage fragments licenses their conversion into dsRNA by RDR6, thereby initiating PTGS of \textit{EVD}. We further show that splicing-coupled PCPA suffices to recapitulate this “translation-dependent silencing” (TdS) in reporter-gene settings. Given that \textit{Ty1/Copia} retroelements share a PCPA-based genome expression strategy (Oberlin \textit{et al}, 2017), we contend that TdS forms a generic and primal defense against \textit{de novo} invasive TEs that shapes the siRNA patterns initially associated with them.
Results

shGAG is the main source and target of EVD-derived siRNAs

Arabidopsis lines constitutively overexpressing an LTR-deficient but otherwise intact form of *EVD* driven by the 35S promoter (35S:*EVD*_{wt}) recapitulate the restriction of *EVD* siRNA to the 3' part of the *shGAG* sequence (Mari Ordóñez *et al.*, 2013; Oberlin *et al.*, 2017) (Fig.1A-B). We explored *EVD* transcripts levels in 35S:*EVD*_{wt} in WT (siRNA-proficient) as opposed to *rdr6* (siRNA-deficient) background (Fig.1B, S1A).

Both in RNA blot and qRT-PCR analyses, the spliced *shGAG* mRNA levels were increased in *rdr6* compared to WT, whereas those of unspliced *flGAG-POL* were globally unchanged (Fig.1C-D). Accordingly, accumulation of the GAG protein – mainly produced via *shGAG* translation (Oberlin *et al.*, 2017) – was higher in *rdr6* compared to WT background (Fig.1E). Essentially identical results were obtained upon epigenetic reactivation of endogenous *EVD* in non-transgenic Arabidopsis with the *ddm1* single- versus *ddm1 rdr6* double mutant background (Fig.S1B-E). Following *EVD* mobilization from an early (F8) to a more advanced (F11) epi15 inbred generation (Mari Ordóñez *et al.*, 2013) revealed that its progressively increased copy number correlates with progressively higher steady-state levels of *EVD*-derived transcripts and *EVD*-derived siRNAs (Fig.S1F-G). Again, these siRNAs disproportionately target the *shGAG* relative to *flGAG-POL* mRNA from F8 to F11 (Fig.S1H). Collectively, these results indicate that PTGS activated *de novo* by *EVD* is both triggered by, and targeted against, the spliced *shGAG* mRNA. Therefore, features associated with *shGAG*, but not *flGAG-POL*, likely stimulate RDR6 recruitment, which we explored by testing current models for PTGS initiation from TEs and transgenes.
shGAG siRNA production is likely miRNA-independent

Though unlikely (Creasey et al., 2014; Sarazin & Voinnet, 2014), we first considered that production of RDR6-dependent siRNAs from shGAG might require its cleavage by miRNAs via the easiRNA pathway (Creasey et al., 2014). Arabidopsis miRNA biogenesis depends on DCL1 and the dsRNA-binding protein HYL1, among other factors (Brodersen & Voinnet, 2006). Analyses of publicly available sRNA-seq data (Creasey et al., 2014) showed, however, that epigenetically reactivated EVD spawns qualitatively and quantitatively identical shGAG-only siRNAs in both ddm1 single and ddm1 dcl1 double mutants (Fig.1F-G). Moreover, levels of shGAG siRNA, shGAG mRNA, and GAG protein remained unchanged in 35S:EVD\textsubscript{wt} plants with either the WT, hypomorphic dcl1-11 or loss-of-function hyl1-2 background (Fig.S2A-D). By contrast and as expected, production of trans-acting (ta)siRNAs, which is both miRNA- and RDR6-dependent, was dramatically reduced and the levels of tasiRNA precursors and target transcripts enhanced in both mutant backgrounds (Fig.S2). Therefore, RDR6 recruitment to the spliced shGAG mRNA is unlikely to involve endogenous miRNAs via an identity-based mechanism. We then explored known innate processes of PTGS initiation instead.

Splicing-coupled premature cleavage and poly-adenylation suffices to spawn EVD-like siRNA accumulation and activity patterns

Some cases of transgene-induced PTGS correlate with a lack of polyadenylation due to aberrant RNA transcription (Luo and Chen 2007). We ruled that this feature underlies EVD-derived siRNA production because shGAG displays no overt
polyadenylation defects regardless of the onset of PTGS (Fig.S3). Next, we considered splicing defects, such as inaccurate splicing or spliceosome stalling, and premature transcriptional termination as possible PTGS triggers, two processes previously independently linked to innate, RDR-dependent siRNA production in plants and fungi (Dalakouras et al, 2019; Dumesic et al, 2013). Ty1/Copia elements have introns that are significantly longer than those of Arabidopsis genes. Moreover, shGAG undergoes atypical splicing-coupled PCPA (Oberlin et al, 2017). When engineered between the GFP and GUS sequences of a translational fusion, the shGAG intron and proximal PCPA signal spawn unspliced flGFP-GUS and spliced GFP-only (shGFP) mRNAs in the Arabidopsis line 35S:GFP-EVD_{int/ter}-GUS (Oberlin et al, 2017) (Fig.2A-B;Fig.S4A). Since this artificial system recapitulates the production of respectively flGAG-POL and shGAG, we asked if an EVD-like siRNA pattern was likewise reproduced.

The majority of RDR6-dependent 21-nt siRNAs mapped to the GFP, but not the GUS region downstream of the PCPA signal (Fig.2C-D) suggesting that, just like shGAG in EVD, the spliced shGFP mRNA is the main source of siRNAs in GFP-EVD_{int/ter}-GUS. Accordingly, and similar to EVD (Oberlin et al, 2017), many siRNAs spanned the exon-exon junction of GFP-EVD_{int/ter}-GUS (Fig.S4B). Moreover, shGFP, unlike flGFP-GUS, over-accumulated in GFP-EVD_{int/ter}-GUS plants with the rdr6 background (Fig.2B, Fig.S4A), indicating that only shGFP is efficiently targeted by PTGS (Fig.2B). Therefore, in the reconstituted setting, the intron and PCPA signal found in shGAG suffice to spawn RDR6-dependent siRNAs displaying accumulation and activity patterns resembling those generated in the authentic EVD context (Fig.1A-D).
Neither splicing nor intron-retention per se initiate RDR6 recruitment

The above result prompted us to investigate a potential facilitating role for splicing in shGAG siRNA biogenesis or, conversely, a role for intron-retention in inhibiting RDR6 recruitment to flGAG-POL. We used previously engineered Arabidopsis EVD-overexpression lines with a point-mutated U1 snRNP-binding site (35S:EVD\textsubscript{mU1}) or a fully deleted intron (35S:EVD\textsubscript{Δi}) (Oberlin et al., 2017) (Fig.3A-C). 35S:EVD\textsubscript{Δi} spawns fully matured shGAG transcripts that do not associate with the spliceosome, leading exclusively to prematurely terminated and polyadenylated mRNA species with a stop codon (Oberlin et al., 2017) (Fig.3B, 3D, 3E, Fig.S5A). However, lack of the intron, and hence splicing, did not prevent RDR6-dependent siRNA production from 35S:EVD\textsubscript{Δi}, which was comparable to that of 35S:EVD\textsubscript{wt} (Fig.3E). Moreover, the shGAG mRNA and GAG protein levels from 35S:EVD\textsubscript{Δi} were higher in an rdr6 compared to WT background (Fig.3D-F), indicating that EVD’s unconventional splicing is unlikely to underpin shGAG siRNA production.

To test the alternative possibility that intron-retention or specific sequences within the EVD intron prevent siRNA biogenesis from flGAG-POL, we analyzed the siRNAs from 35S:EVD\textsubscript{mU1}. Impeding U1 binding and its inhibitory action on PCPA causes a complete lack of splicing in EVD\textsubscript{mU1} (Fig.3C-D). This generates short unspliced transcripts, alternatively terminated at the cognate shGAG terminator or at an intronic cryptic site previously mapped by 3’ RACE (Oberlin et al., 2017), both detected here by northern analysis (Fig.3C-E, Fig.S5A). Both alternatively terminated transcripts likely undergo translation, albeit largely unproductively (Fig.3F), because low levels of cryptic GAG translation products were detectable in rdr6 compared to WT (Fig.S5B). EVD\textsubscript{mU1} bestowed RDR6-dependent siRNA production expanding – as expected from its non-spliceable nature – into the retained intron sequence (Fig.3E). The near-
complete lack of siRNAs downstream of the intron (Fig.S5A), by contrast, suggested
that both cryptically terminated shGAG transcripts are mainly involved in recruiting
RDR6. Therefore, even though the shGAG intron and PCPA signal suffice to trigger
PTGS from EVD and GFP-EVD_{int/ter-GUS} (Figs.1-2), neither splicing nor intron-
retention per se seem to initiate PTGS. This suggests that splicing-coupled PCPA
does not co-transcriptionally condition the sensitivity of shGAG to RDR6 but, rather,
downstream in the gene expression pathway.

RDR6 recruitment onto shGAG likely requires translation

Splicing-coupled PCPA, conserved among Arabidopsis Ty1/Copia elements,
correlates with the over-representation of shGAG on polysomes as opposed to the
paradoxically more abundant flGAG-POL (Oberlin et al, 2017). However, among the
ddm1- or met1- reactivated Ty1/Copia elements sharing the same genome expression
strategy, only EVD spawns detectable RDR6-dependent shGAG siRNAs (Oberlin et
al, 2017), prompting us to explore the basis for this difference. Polysome association,
independently of translation efficiency, is the most decisive prerequisite for any given
RNA to engage the translation machinery. For instance, many non-coding RNAs are
mostly nuclear (Khanduja et al, 2016), and aberrant (e.g. uncapped and/or poly(A)-)
mRNAs are actively degraded by RQC, both of which explain their general absence
from polysomes (Doma & Parker, 2007). We conducted genome-wide correlation
analyses between steady-state transcript accumulation, polysome association, and
siRNA levels of reactivated TEs in the ddm1 versus ddm1 rdr6 background by
calculating the ratio of polysome-associated versus total mRNA levels. The same
approach was applied to Arabidopsis protein-coding compared to non-coding RNAs
used as references (Oberlin et al, 2017). This analysis revealed two distinct TE
populations according to the levels of associated RDR6-dependent siRNAs. On the one hand, approximately $\frac{3}{4}$ of $ddm1$ de-repressed TEs (530/674) display varying degrees of polysome association, some within the range of protein-coding genes (Fig. 4A, quartiles 1-3). However, RDR6-dependent siRNA production does not accompany their reactivation presumably because of their low expression levels (Fig. 4B, quartiles 1-3). The remaining $\frac{1}{4}$ (144/674) of TEs spawn RDR6-dependent siRNAs, correlating with higher RNA expression levels (Fig. 4A-B quartile 4). Nonetheless, unlike those of quartiles 1-3, these TEs, almost exclusively composed of degenerated LTR/Gypsy elements (i.e. elements shorter than-full-length reference ORFs; Fig. 4C), resemble non-coding RNAs in being poorly associated with polysomes, if at all (Fig. 4A, quartile 4). By contrast, EVD is the sole LTR/Copia element within quartile 4, in which it is one of the most strongly polysome-associated elements that concurrently spawn 21-22-nt siRNAs. Furthermore, when the two EVD isoforms are considered separately, shGAG emerges as a clear outlier by being associated with polysomes to the same extent as protein-coding mRNAs, (Fig. 4A, quartile 4, inlay). flGAG-POL, by contrast, displays low polysome association albeit higher than most degenerated LTR/Gypsy elements populating quartile 4. In summary, shGAG, compared to flGAG-POL, is both vastly overrepresented on polysomes (Oberlin et al, 2017) and is the major, if not unique source of EVD-derived siRNAs (Fig. 1, S1, Fig. 3). This analysis suggests, therefore, that translation is the step stimulated by splicing-coupled PCPA of shGAG, upon which RDR6 is recruited specifically onto this mRNA isoform.

Splicing-coupled PCPA promotes selective translation and PTGS initiation from shGAG-like mRNA isoforms
To test if differential translation due to splicing-coupled PCPA indeed underlies siRNA production from shGAG as opposed to flGAG-POL, we used GFP-EVD\textsubscript{int/ter}-GUS, from which the two EVD RNA isoforms and associated siRNA production/activity patterns are recapitulated (Fig.2). Of the shGAG-like shGFP- and flGAG-POL-like flGFP-GUS-mRNAs, only the former produced a detectable protein under the form of free GFP (Fig.S4C-D) despite accumulation of both mRNAs (Fig.2A, Fig.S4A). Free GFP levels were increased in the rdr6 background (Fig.S4C), coinciding with increased shGFP- but unchanged flGFP-GUS- mRNA levels (Fig.2B). The lack of detectable GFP-GUS fusion protein – the expected product of flGFP-GUS– in either WT or rdr6 backgrounds (Fig.2D, Fig.S4C-D) was not due to intrinsically poor translatability. Indeed, GFP-GUS was the sole protein detected in independent lines undergoing RDR6-dependent PTGS of 35S:GFP-GUS, a construct identical to 35S:GFP-EVD\textsubscript{int/ter}-GUS, save the shGAG intron and PCPA signal (Fig.5A-B). As expected, the GFP-GUS fusion protein and GFP-GUS mRNA levels were strongly enhanced in the rdr6 versus WT background (Fig.5A-B). Yet, in contrast to GFP-EVD\textsubscript{int/ter}-GUS, from which siRNAs are restricted to shGFP, the siRNAs from GFP-GUS encompassed both the GFP and GUS sequences (Fig.5A). These results therefore indicate that splicing-coupled PCPA promotes selective translation of, and PTGS initiation from, shGAG-like as opposed to flGAG-POL-like mRNA isoforms.

Intron retention causes selective nuclear seclusion of flGAG-POL-like mRNAs

What mechanism linked to splicing-coupled PCPA might underpin the differential translation of shGAG-like versus flGAG-POL-like mRNAs? Noteworthy, splicing generally enhances mRNA nuclear export and translation (Valencia et al, 2008; Sørensen et al, 2017). Conversely, polyadenylated, unspliced mRNAs are retained in
the nucleus in Arabidopsis and only exported to the cytoplasm upon splicing (Jia et al., 2020). Moreover, 5' splice motifs and U1 snRNP binding promote chromatin tethering of long non-coding RNAs in animal cells (Lee et al., 2015; Yin et al., 2020). We thus tested if intron-retention might promote nuclear sequestration of the unspliced flGFP-GUS and flGAG-POL or if, conversely, splicing might favor export of shGFP and shGAG to the cytoplasm, thereby selectively promoting their translation. We performed nucleo-cytosolic fractionation (Fig.5C) to analyze the relative distributions of EVD-derived RNA isoforms produced in 3S:EVD_{wt} or 35S:GFP-EVD_{intr/ter-GUS} plants, using spliced/unspliced isoform-specific PCR amplification. Additionally, unspliced isoforms were selectively analyzed using qPCR primer sets designed to amplify sequences located near the 3' end of flGAG-POL or flGFP-GUS, and absent from shGAG and shGFP (Fig.1A, Fig.2A). A similar approach was used to differentiate the unspliced versus spliced ACTIN mRNA (Fig.S5D). Finally, the nuclear-only snoRNA U5 (Fig.5C) was used as a control to assess the quality of nuclear enrichments. To optimize accumulation of both types of RNA isoforms, the experiments were all conducted in the PTGS-deficient rdr6 background.

The analysis revealed strikingly distinct nucleo-cytosolic distribution patterns for the full-length versus short spliced mRNAs from both systems. Indeed, while the spliced shGFP and shGAG were found predominantly in the cytosol (Fig.5C), flGAG-POL and flGFP-GUS were strongly enriched in nuclear fractions (Fig.5C, Fig.S5D). To validate that nuclear unspliced full-length transcripts are bona fide poly(A)⁺ mRNAs as opposed to nascent transcripts or splicing intermediates, cDNA from the same RNA samples was synthesized using exclusively oligo-dT to capture polyadenylated RNAs only. This approach generated comparable results (Fig.5D), indicating that nuclear full-length transcripts are properly terminated mRNAs. Corresponding results were
obtained in epi15 F11 plants displaying endogenous EVD reactivation (Fig.S5E-F).

Collectively, these findings suggest that the unique splicing behavior of EVD – which is recapitulated in GFP-EVD_{inter-GUS} – not only allows production of the GAG-encoding shGAG subgenomic mRNA, but simultaneously promotes nuclear retention of flGAG-POL. This is likely contributing to the disproportionate translation of shGAG over flGAG-POL, although we do not exclude the involvement of other processes.

Under these premises, splicing-coupled PCPA likely predisposes shGAG, as opposed to flGAG-POL, to one or several co-translational processes which, in turn, signal(s) RDR6 recruitment.

Saturation of co-translational mRNA decay unlikely triggers shGAG siRNA production

In plants and fungi, decapping coupled to 5'->3' exonucleolytic activity operated by cytosolic XRN proteins regulate the intrinsic half-life of most actively translated transcripts by degrading decapped mRNAs after the last translating ribosome (Kastenmayer & Green, 2000; Hu et al, 2009; Pelechano et al, 2015; Yu et al, 2016).

Of the three Arabidopsis XRNs, XRN2 and XRN3 are nuclear, whereas XRN4 is cytosolic and, hence, mediates co-translational mRNA decay (Gregory et al, 2008; Kurihara, 2017; Yu et al, 2016). Remarkably, transcripts undergoing improper decapping and/or XRN4-mediated exonucleolysis constitute competing substrates for RDR6 in Arabidopsis (Gazzani, 2004; Gy et al, 2007a; Gregory et al, 2008; Moreno et al, 2013; Martínez de Alba et al, 2015) (Fig.6A). For instance, loss-of-RDR6 function suppresses the lethality of decapping mutants by preventing production of undesirable siRNAs from hundreds of endogenous mRNAs (Martínez de Alba et al, 2015). Conversely, loss of XRN4 activity enhances RDR6-dependent PTGS (Gy et al, 2007a;
These observations strongly suggest that RDR6-dependent PTGS takes over co-translational mRNA decay when this process becomes saturated by highly abundant and/or highly translated mRNAs.

Likewise, we reasoned that intense translation might overwhelm XRN4-mediated co-translational decay of shGAG and thereby concurrently promote RDR6 action (Fig.6A). This would predict an accumulation of RNA degradation fragments (reflecting XRN4 activity) coinciding with siRNA accumulation. PARE (parallel amplification of RNA ends) and related methods map mostly XRN4 products associated with co-translational decay as well as non-translational RNA cleavage events, e.g. miRNA-mediated slicing of non-coding RNAs (Gregory et al, 2008; Schon et al, 2018). We therefore conducted nanoPARE analyses, which capture both capped and uncapped RNA fragments (Schon et al, 2018), in ddm1 vs WT Arabidopsis (Fig.S6A). Simultaneously, mRNA-seq (i.e. SMART-seq2) was conducted on the same RNA to monitor gene expression (Schon et al, 2018). Analysis of TAS1c, which undergoes miR173-mediated slicing, confirmed that the ensuing 3’ RNA cleavage fragment, a common substrate of XRN4 (Schon et al, 2018), was readily detected in both backgrounds, despite spawning vast amounts of RDR6-dependent siRNAs (Fig.6B). Analyzing EVD upon its reactivation in ddm1 revealed a low level of RNA degradation fragments spanning the entirety of EVD despite the siRNAs being exclusively derived from shGAG. Had RNA degradation contributed to siRNA biogenesis, these species would be expected to be distributed along the entirety of EVD, encompassing both shGAG and flGAG-POL. Inspection of the housekeeping ACT2 locus revealed a similar ORF-spanning degradation pattern, albeit at substantially higher levels (~10-folds), presumably reflecting the higher transcript abundance. However, ACT2 does not spawn siRNAs (Fig. 6B). These observations therefore reveal no overt correlation
between abundance of RNA degradation products, siRNA production and/or polysome association.

The above results did not formally exclude the possibility that at least some EVD-associated degradation products identified by nanoPARE might contribute to siRNA biogenesis via competing RDR6 vs XRN4 activities. This would be genetically diagnosed by an increased accumulation of shGAG siRNAs in xrn4 in contrast to their loss in rdr6 (Gy et al, 2007a; Gregory et al, 2008). To test this idea without the potential complication of EVD overexpression artificially saturating XRN4 activity in 35S:EVD_{wt}, we introgressed the xrn4 null-mutation into epi15 at the early F8 inbred generation, when PTGS of EVD is commonly initiated (Mari Ordóñez et al, 2013). As negative controls, we used loss-of-function alleles of nuclear XRN2 and XRN3, which, by not contributing to co-translational mRNA decay, should not influence siRNA production. Finally, the rdr6 mutation was introgressed in parallel, to prevent shGAG siRNA biogenesis. We analyzed two-to-three independent lineages with WT versus homozygous mutant backgrounds isolated from segregating F2s. However, neither xrn4 nor xrn2/xrn3 differed from the WT background with regard to EVD expression, copy number, or shGAG siRNA levels (Fig.6C-E, Fig.S6B-G). In contrast, EVD expression and copy numbers were increased in rdr6, coinciding with reduced shGAG siRNA levels (Fig.6F-H). We conclude from these collective results that saturation of XRN4-dependent co-translational mRNA decay (Fig.6A) is unlikely to underlie shGAG siRNA production. siRNAs are, instead, abruptly spawned from the middle up to the 3' end of shGAG, as if their production coincided with a discrete co-translational event (Fig.6A). A similar rationale should apply to the discrete shGFP-centric siRNA pattern spawned from GFP-EVD_{int тер-GUS} (Fig.2C).
The initiation of RDR6 activity coincides with isolated and intense ribosome stalling events

To overcome the caveat of EVD cell-specific expression (Marí Ordóñez et al., 2013) and simultaneously investigate which co-translational event(s) might trigger the siRNA patterns in both shGAG and shGFP, we generated RIBO-seq datasets (Ingolia et al., 2009) from 35S:EVD$_{wt}$ and 35S:GFP-EVD$_{int/ter}$-GUS. This resulted in high-quality ribosome footprints (RFPs) displaying the characteristic triplet periodicity (Fig.S7). We found that EVD RFPs in the 35S:EVD$_{wt}$ background map near-exclusively onto shGAG, underscoring its preferential translation (Fig.4A, 7A). However, a strong and isolated footprint peak was detected near the middle of the shGAG ORF (Fig.7A), suggesting intense ribosome stalling at this position. This stalling peak was also found within the shGAG coding sequence of endogenous EVD in one public ddm1 RIBO-seq library (Kim et al., 2021) (Fig.S8A). By specifying codon occupancy of ribosome P-sites – the sites of peptidyl transfer activity – reflecting the codon dwell time, we found that >35% of shGAG translating ribosomes are located on two consecutive codons (pos.148-149) coinciding with this peak (Fig.7B). Having normalized these proportions to ORF lengths, we compared them to those of actively translated Arabidopsis mRNAs. To exclude artefacts from transcripts with low coverage, we restricted our analysis to the most abundant mRNA isoforms with coverage available for more than 70% of ORFs, as described (Sabi & Tuller, 2015). We found that shGAG ranks among the top 4.01 and 2.77 % (in WT and rdr6 backgrounds respectively) of Arabidopsis transcripts displaying the most intense stalling events (Fig.7C). Remarkably, overlaying siRNAs and codon coverage intensity revealed that the intense stalling position coincides nearly exactly with the 5' starting point of the RDR6-dependent EVD
siRNA pattern (Fig. 7D). Stalling is likely causal, not a consequence of RDR6 recruitment, because it also occurs in the *rdr6* background (Fig. 7A).

To explore further a possible link between discrete, intense ribosome stalling and RDR6 recruitment, RFPs were conducted in the 35S:GFP-EVD*int/ter*-GUS background. As seen above for *shGAG* versus *flGAG-POL* in the EVD context, the analysis confirmed the vastly disproportional translation of *shGFP* versus *flGFP-GUS* (Fig. S8B). It also identified a major stalling site only in the *shGFP* ORF (whose detection was enhanced in the *rdr6* background) in which two prominently covered and consecutive codons (pos. 235-236) accounted for ~40% of footprints (Fig. S8C).

Similarly to *shGAG*, *shGFP* ranked among the top 3.21 to 4.14% Arabidopsis transcripts displaying the most intense stalling events (Fig. S8D). Furthermore, this stalling site was located between major peaks of *shGFP* siRNAs, in this case, in both the 5’ and 3’ directions within *GFP-EVD*_{int/ter}-GUS (Fig. S8E).

A recent model advocates a possible link between suboptimal codon usage and PTGS initiation in plants (Kim *et al.*, 2021). However, overlaying the Arabidopsis codon adaptation index with the codon coverage of ribosomes on *shGAG* and *shGFP* did not reveal any overt correlation between ribosome stalling and codon suboptimality (Fig. S9). The cited study showed that codon optimization in a region corresponding, surprisingly, to the *shGAG* 3’UTR enhanced translation of a linked luciferase ORF (Kim *et al.*, 2021). Yet, our analysis shows that neither CG nor CG3 content (CG content on the 3rd codon position) overtly influences ribosome association along *shGAG* or *shGFP*, let alone the intense stalling event detected on either mRNA (Fig. S10). Two consecutive codons at the stalling site identified on *shGAG* code for proline and glycine (Fig. S9A) and, interestingly, single prolines and/or glycines at P-sites correlate with ribosome stalling in animals and fungi (Artieri & Fraser, 2014; Sabi
& Tuller, 2015; Zhao et al, 2021). By contrast, the >45% codon occupancy on shGFP occurs on unrelated, consecutive glutamate and leucine codons (Fig.S9B). In addition to the identity of some codons, secondary RNA structures have been correlated with ribosome stalling (Doma & Parker, 2006; Yan et al, 2015; Bao et al, 2020), including G-quadruplexes (Song et al, 2016; Fay et al, 2017). In particular, sites of “ribothrypsis” – a ribosome stalling-induced process recently described in metazoans – are positively correlated with such occurrences within ORFs (Ibrahim et al, 2018). By forming secondary structures, G-quadruplexes are thought to act as “roadblocks” hampering proper ribosome progression during elongation (Song et al, 2016). While G-quadruplex scoring along the shGAG and shGFP mRNA did reveal potential hot spots of such motifs, they were localized far upstream or downstream of each identified ribosome stalling site (Fig.S9). Overall, EVD and GFP-EVD\textsubscript{int/ter}-GUS transcripts display similar behavior, whereby RDR6-dependent production of shGAG- or shGFP-only siRNAs coincides with highly localized and unusually intense ribosome stalling events. While stalling events have likely distinct causes for each transcript, they nonetheless appear to stimulate co-translational processing of RNA intermediates that, in turn, serve as RDR6 substrates.

Ribosome stalling correlates with production of 5’-hydroxy 3’-cleavage fragments that possibly serve as RDR6 substrates

As described above, nanoPARE in ddm1 did not reveal any discrete RNA products with 5’ ends mapping consistently at, or near, the stalling site in shGAG. We also failed to detect such products using classic 5’ RACE (Llave et al, 2002). Noteworthy, this technique relies on a 5’ monophosphate (5’P) for RNA ligation of 5’ adaptors (Silber
et al., 1972; Wang & Fang, 2015). Intriguingly, 5'P was reported to be absent from various 3' cleavage RNA fragments produced co-translationally in budding yeast, including upon ribosome stalling (Peach et al., 2015; Navickas et al., 2020). A lack of 5'P is also strongly suspected for the 3' cleavage products of ribothrypsis (Ibrahim et al., 2018). Since siRNA production from EVD initiates just downstream of the major stalling site (codons 148-149), we thus considered the possibility that discrete 3' cleavage RNA fragments devoid of a 5'P – and thus akin to the 5'OH RNA associated with the above-mentioned processes (Peach et al., 2015; Navickas et al., 2020; Ibrahim et al., 2018; D’Orazio et al., 2019) – might constitute RDR6 templates (Fig.7E).

To explore such a connection and simultaneously characterize and map the 5' ends of putative shGAG 3' cleavage fragments, we used the RtcB RNA ligase. RtcB contributes to tRNAs splicing by ligating RNAs with 3'P ends (or 2',3'-cyclic phosphate) to 5'OH ends, and was used previously to map co-translational RNA cleavage fragments in yeast (Desai & Raines, 2012; Peach et al., 2015). A 5' RNA adaptor with a 3'P end was therefore RtcB-ligated to total RNA extracted from plants expressing 35S:EVD or non-transgenic controls, both in the rdr6 background. Use of rdr6 prevented conversion of potential RDR6 templates into dsRNA as well as the accumulation of confounding cleavage fragments potentially caused by the ensuing secondary siRNAs. The ligated RNA was then subjected to reverse transcription using EVD-specific primers surrounding the major stalling site (Fig. 7F; Region #1), amplified through PCR, and cloned following standard RACE procedures. Based on the EVD ribosome footprint profile (Fig. 7B), we also investigated two additional regions more covered with ribosomes than expected (Fig. 7F; Regions #2 & 3). Only region #1 yielded detectable amplification products within the expected size range. Nonetheless,
gel excision within the anticipated size ranges followed by cloning was performed for
all regions in all genotypes (Fig. S10A-C). Sanger sequencing revealed that 30 out of
36 fragments cloned from region #1 displayed 5’OH ends consistently mapping at
nucleotides 447-448, strikingly defining the intense ribosome stalling site on shGAG
(Fig. 7F, S10D) from which siRNA production is initiated (Fig. 7D). By contrast, the
clones obtained from regions #2 and #3 were either devoid of EVD sequences or
empty. These results are consistent with the notion that the intense ribosome stalling
event correlates with breakage of the shGAG RNA, and that the ensuing 5’OH
fragments serve as templates for RDR6 to initiate dsRNA production and downstream
siRNA processing. Given that XRNs require a 5-P for their 5’->3’ exonucleolytic
activities (Stevens, 2001; Schon et al, 2018), this could explain the insensitivity of
shGAG-derived siRNA accumulation to any xrn mutation and to xrn4 in particular
(Fig.6). Being linked to 3’ cleavage fragments inaccessible to the competing activity of
XRN4, ribosome stalling might thus optimize the recruitment of RDR6 on shGAG for
PTGS initiation. We note that nanoPARE, while being indiscriminative of RNA 5’-ends
(including 5’OH) requires a 3’ polyA tail to generate cDNA. Thus, the fact that the
technique failed to detect the shGAG 5’OH cleavage fragments could indicate that
they are indeed mostly poly(A)-. Preliminary PAGE-based analyses as conducted for
the 3’ ends of ribothrypsis products in mammalian cells (Ibrahim et al. 2018) suggested
that discrete shGAG-derived 3’ cleavage fragments are found in the poly(A)- fraction
isolated from 35S:EVD in the rdr6 background (Fig.S11A). Lack-of-poly(A) could
further optimize RDR6 recruitment because the enzyme is inhibited in vitro by
3’ adenosine stretches (Baeg et al, 2017).

DISCUSSION
Translation as an initiator of PTGS and epigenetic silencing

Protein synthesis is commonly merely seen as a target of PTGS by reducing the amount of available RNA and/or interfering with translation. Our study identifies translation also as a trigger of PTGS. This became evident after epigenetic reactivation of EVD, from which splicing-coupled PCPA generates separate RNA isoforms from a single transcription unit. Of the two, the shorter subgenomic shGAG RNA undergoes disproportionate translation over flGAG-POL as an indispensable feature of Ty1/Copia biology because this likely provides the stochiometric protein balance necessary for efficient amplification and mobilization of the element. This process, however, concomitantly stimulates RDR6 activity. shGAG translation efficacy per se is within the range of moderately translated Arabidopsis mRNAs and is unlikely to explain this effect, nor do GAG expression or abundance. Rather, an exceptionally intense and highly discrete ribosome stalling event predisposes shGAG to RDR6-dependent PTGS. Our data also suggest how intron-retention in combination with active splicing accounts for the mostly nuclear versus cytosolic localization of flGAG-POL versus shGAG, respectively. Their asymmetrical subcellular distribution concurrently rationalizes (i) the disproportionate translation efficacies of each mRNA, (ii) the shGAG-centric distribution of translation-dependent EVD-derived siRNAs and, consequently, (iii) the contrasted sensitivity of each isoform to cytosolic PTGS.

Splicing-coupled PCPA probably underlies most, if not all, of features i-iii because they were recapitulated with the GFP-EVDint/ter-GUS construct containing the shGAG intron and proximal PCPA signal (Fig.2, S4 and 5). Since splicing-coupled PCPA is at the very core of the Ty1/Copia genome expression strategy (Oberlin et al, 2017), the process described here for EVD is likely to be broadly applicable.
Being mostly nuclear, \textit{flGAG-POL}, the template for RT required for mobilization, is neither a potent trigger nor a target of PTGS, likely explaining why increasing amounts of \textit{shGAG} siRNAs have little impact on \textit{EVD}'s genomic proliferation over successive epi15 inbred generations (Mari Ordóñez \textit{et al}, 2013). Previously attributed to GAG-mediated protection of \textit{flGAG-POL} as part of VLPs (Mari Ordóñez \textit{et al}, 2013), we now consider \textit{flGAG-POL} nuclear retention as an additional and perhaps major contributor to this shielding effect. The ensuing rise in \textit{EVD} genomic copies causes increasing levels of RDR6-dependent \textit{shGAG} dsRNA over generations. We previously suggested that these levels eventually saturate DCL4/DCL2 activities in the highly cell-specific expression domain of \textit{EVD}, acting as a prerequisite to DCL3 recruitment and RdDM, ultimately causing LTR methylation and TGS of all \textit{EVD} copies (Mari Ordóñez \textit{et al}, 2013). This proposed saturation-coupled PTGS-to-TGS switch invariably occurs in epi15 and other \textit{EVD}-reactivating epiRILs when the \textit{EVD} copy number reaches 40-50 (Mari Ordóñez \textit{et al}, 2013), causing only sporadic and minor developmental defects even in advanced generations (Mari Ordóñez \textit{et al}, 2013; Mirouze \textit{et al}, 2009; Quadrana \textit{et al}, 2016). By contrast, \textit{EVD} copy number increases well beyond 80 in \textit{rdr6} mutants already in F2s (Fig.6H) displaying loss-of-fertility (Fig.S11B) likely solely ascribable to enhanced \textit{EVD} proliferation. These data attests to a central role for RDR6 in controlling \textit{EVD}'s mobilization and perhaps that of other autonomous TEs, at the level of translation. At least in the multi-generational context of epi15, our results also establish a \textit{hitherto} unrecognized role for translation as an initiator of not only PTGS, but also, ultimately, of epigenetic silencing and TGS.

\textbf{Translation-dependent silencing as a sensor for de novo invading, foreign genetic elements}
The vast majority of *ddm1*-reactivated TEs that spawn RDR6-dependent siRNAs is composed of *LTR/Gypsy* elements (Fig.4), which is the family most prominently associated with easiRNA production (Creasey *et al.*, 2014; Borges *et al.*, 2018). Arabidopsis *LTR/Gypsy* elements generally display significantly shorter-than-full-length ORFs as compared to the other main classes of Arabidopsis TEs, including the *LTR/Copia* family to which *EVD* belongs (Oberlin *et al.*, 2017) (Fig.4C). Although they likely constitute, therefore, degenerated transcription units, a substantial fraction of such *LTR/Gypsy* is nonetheless highly expressed as a possible source of abundant aberrant RNAs (Fig.4B). Thus, alternatively or concurrently to easiRNA production, some of these *LTR/Gypsy* remnants might also enter the RDR6 pathway by saturating RQC either co-transcriptionally or post-transcriptionally. While this process possibly underlies a previously documented expression-dependent form of innate TE silencing (Panda *et al.*, 2016; Fultz & Slotkin, 2017), such loci might in turn autonomously produce siRNAs and become sources of identity-based silencing. Regardless, the combined action of all these silencing pathways likely explains why most siRNA-generating TEs in *ddm1* do not actively engage translation, as evidenced by their conspicuous underrepresentation on polysomes (Fig.4A; quartile 4) (Oberlin *et al.*, 2017). In fact, siRNA-generating TEs are equally or even less polysome-associated than are non-coding RNAs (Fig.4A), indicating that there is no general correlation between siRNA production and translation. Conversely, numerous TEs are translated, yet do not spawn siRNAs (Fig.4A). These data contradict recent claims advocating a general correlation between siRNA production and translation based on the untested premise that most siRNA-generating TEs are translated (Kim *et al.*, 2021), whereas they are, in fact, absent from polysomes (Oberlin *et al.*, 2017) (Fig.4A). Based on our experimental findings we argue, on the contrary, that the process of “translation-
dependent silencing” (TdS) described here is an attribute of only a handful of evolutionary young TEs. These chiefly include EVD, which concurrently undergoes productive translation (mostly of shGAG) and spawns RDR6-dependent siRNAs (Figs.1, 4 and S1).

EVD is among the few autonomously transposing LTR/TEs in the Arabidopsis Col-0 genome (Mirouze et al, 2009; Tsukahara et al, 2010; Gilly et al, 2014; Reinders et al, 2009a) and, as such, is unlikely controlled by identity-based mechanisms. TdS might enable the plant to detect its activity as the first line of defense against de novo invasions, for instance upon horizontal transfer of active TEs. TdS may likewise underpin silencing triggered upon experimental transfer of “exogenous” TEs between species separated by millions of years of evolution (Hirochika et al, 2000; Fultz & Slotkin, 2017). Viruses divert a substantial fraction of the host translational apparatus to their highly compact and TE-like genomic and subgenomic RNAs (GAO, 2003; Dreher & Miller, 2006; Sztuba-Solińska et al, 2011), which might also predispose them to TdS. In all these circumstances, a key feature of TdS is an innate ability to detect transcripts by virtue of their foreign – as opposed to aberrant – nature, independently of any sequence homology to the host genome. We propose that foreignness is perceived by anomalies manifested during active translation, which likely include abnormal ribosome stalling, as discussed below.

Possible cause(s) of ribosome stalling

Our findings raise the key question of what molecular signal(s) might cause the unusually intense stalling events observed in the shGAG and shGFP ORFs that possibly activate TdS. While studies of ribosome stalling in plants are very scarce, suboptimal codon usage has been widely considered as one of its possible causes.
(Rocha, 2004; Quax et al, 2015). Indeed, extensive stretches of rare codons trigger ribosome stalling and RNA degradation when artificially engineered in reporter mRNAs (Li et al, 2006; Yang et al, 2019; Park & Subramaniam, 2019). However, it has been noted that this rarely applies to endogenous mRNAs, where non-optimal codons are common and play roles in translation regulation (Hanson & Coller, 2018; Carneiro et al, 2019). Accordingly, recent in-depth analyses in animals and fungi indicate that codon usage per se is not predictive of stalling on endogenous mRNAs, and that other factors might modulate ribosome dwell times (Gardin et al, 2014; Dana & Tuller, 2014; Rodnina, 2016; Zhang et al, 2017; Wu et al, 2019). shGAG and shGFP are devoid of rare codons among other inspected features, suggesting that no universal sequence/structure feature might underpin the stalling events correlating with TdS. Rather, mRNA-intrinsic and variable features, or combinations thereof, might be involved. mRNA-extrinsic features could also contribute to intense and discrete stalling in shGAG via trans-interactions involving specific RNA sequence-motifs and RNA-binding proteins (RBP), a circumstance that can hinder ribosome progression (Babitzke et al, 2009; Iwakawa & Tomari, 2015; Zhang et al, 2017). The action of AGO-miRNA complexes could illustrate how RBPs may, under some circumstances, elicit TdS, for instance during the intricate biogenesis of TAS3 trans-acting (ta)siRNAs (Hou et al, 2016; Xia et al, 2017). We note that a recent model proposed by Kim and coworkers (Kim et al, 2021) contends that PTGS via RDR6 might be caused by a multitude of presumptive translation stalling events. These were allegedly ascribed to pervasive suboptimal codons and low content in CG and CG3 along the ORFs of certain mRNAs, including TE-derived RNAs. However, this interpretation is not compatible with the highly discrete nature of the stalling events experimentally
detected in our study and the noticeable absence from polysomes of the TE RNAs used to build this model, EVD excepted (Fig.4A).

Possible mechanism(s) of TdS

Intense stalling is usually resolved on the protein side by ubiquitin-mediated proteolysis (Joazeiro, 2019). On the RNA side, it is released by translation-decoupled RNA degradation related to, albeit distinct from, co-translational decay (Ikeuchi et al, 2018). One such process is XRN-mediated exonucleolysis operating in dedicated processing (P) bodies (Maldonado-Bonilla, 2014), yet 5’OH mRNA fragments are not directly accessible to XRN action, which requires 5-P **termini** (Stevens, 2001). In budding yeast, the Trl1 kinase progressively phosphorylates these fragments to license their degradation by XRNs (Navickas et al, 2020), a process also likely occurring during ribothrypsis in mammalian cells (D’Orazio et al, 2019). Alternatively, or additively, the mouse and fission yeast DXO/Rai1, which removes incomplete 5’-mRNA caps, catalyzes the removal of 5’OH ends, exposing 5’P for subsequent 5’->3’ exoribonuclease activity (Doamekpor et al, 2020). An Arabidopsis DXO1 catalytic mutant for cap surveillance also displays such an activity in vitro, although it shows higher affinity for 5’P substrates (Doamekpor et al, 2020). Whether AtDXO1 antagonizes TdS in vivo will have to be further investigated.

In contrast to RNAi-deficient budding yeast or RNAi-proficient mammalian cells, plants display RDR activities (Stein et al, 2003; Drinnenberg et al, 2009). We suggest that in these organisms, 5’OH **termini** would not only disqualify XRN4 action, but concurrently optimize that of RDR6, which is known to compete with XRN4 for substrates, including those evading co-translational decay (Gy et al, 2007b; Gregory
et al, 2008). Incidentally, 5’-P-termi

et al, 2009), potentially explaining, for similar reasons, why decapping Arabidopsis

5’-P-termi are also generated during mRNA decapping (Hu

5’-P-termi are also generated during mRNA decapping (Hu

mutants are hypersensitive to RDR6 (Martínez de Alba et al, 2015). RDR6 action in

TdS is possibly further facilitated by the striking physical proximity of P-bodies – where

unresolved 5’OH RNA fragments should primarily accumulate – with the so-called

“siRNA bodies” (Martínez de Alba et al, 2015). RDR6 and co-factors congregate in

these bodies for tasiRNA processing, which, we suggest, are also the sites of shGAG

siRNA biogenesis. We emphasize that converting the 5’OH- RNA fragments into
dsRNA would lead to siRNA production accompanied by limited exonucleolytic
degratability of RNA. Widespread RNA degradation intermediates spanning entire
transcriptional units were recently proposed to represent RDR6 substrates for
translation-coupled PTGS including in the case of EVD (Kim et al, 2021). This model,
however, does not explain the discrete siRNA pattern observed exclusively on shGAG
yet not flGAG-POL. It neither explains why highly abundant, ORF-spanning RNA
degradation products, such as those derived from ACT2, do not correlate with siRNA
production.

Capped but poly(A)- 5’ RNA fragments are expected to be concurrently
produced during the RNA breakage process, that should also be amenable to RDR6
activity. Yet, only a small siRNA peak is detected just upstream of the intense stalling
site on shGAG. Unlike the XRN4-protected 5’OH 3’ fragments, however, these
5’ fragments would be a priori devoid of features preventing their SKI2-mediated
exosomal 3’-5’ degradation, which indeed can outcompete RDR6 action (Zhang et al,
2015; Branscheid et al, 2015). Differential competition between SKI2-mediated
degradation versus RDR6 activity, as previously reported for some miRNA targets
(Branscheid et al, 2015), might explain why the siRNAs pattern from shGFP spans
both the 5’ and 3’ sequences surrounding the identified stalling site whereas these are only located 3’ to the shGAG stalling site of (Fig.7D, S8E). In principle, RDR6 could also pick up a multitude of RNA cleavage fragments predictably produced via siRNA-guided cleavage of shGAG by AGO1/AGO2-RISCs. However, RISC-mediated slicing produces 5’P termini (Martinez & Tuschl, 2004), which would qualify these RNAs as XRN4-, as opposed to RDR6-, substrates, therefore unlikely contributing prominently to shGAG siRNA production. A final, outstanding aspect of TdS pertains to the mechanism whereby 5’OH fragments are generated. In budding yeast, the metal-independent endonuclease Cue2 was recently shown to cleave, within the colliding ribosome’s A site, mRNAs undergoing stalling-induced no-go decay, which generates 5’OH 3’ RNA fragments (D’Orazio et al, 2019). The mammalian homolog, N4BP2, which additionally contains a polynucleotide kinase domain, might directly couple endonucleolysis with the 5’P-dependent XRN-licensing step evoked above (D’Orazio et al, 2019). We failed, however, to identify a plant Cue2/ N4BP2 ortholog. We suggest that other mechanisms might underlie what we therefore conservatively refer to as “translation-linked mRNA breakage” here. EVD or reporters derived thereof (e.g. GFP-EVDint/ter-GUS) might provide a paradigm to elucidate, via biochemistry and forward genetics, the mechanisms of TdS in plants.

Among other processes, transient ribosome stalling is a normal and favorable feature of translation enabling proper folding of nascent peptides (Rodnina, 2016). Accordingly, many mechanisms exist to resolve such instances (Buskirk & Green, 2017) including ribothrypsis in mammalian cells, which appears to be a widespread component of ordinary translation (Ibrahim et al, 2018). Like ribothrypsis, the process described here might have eluded characterization for years because its products have 5’OH and possible 3’ poly(A)-termini inaccessible to standard RNA sequencing.
procedures. However, while its initiation strongly resembles that of mammalian
ribothrypsis, TdS is unlikely to be ubiquitous in plants, since the aforementioned RNA
products, by directly engaging RDR6 for amplified siRNA production, would promote
degradation of the entire mRNA pool independently of its stalled or even merely
translated status. While this would be highly detrimental as a common form of
endogenous gene regulation, the process seems particularly well-suited to eliminate
highly proliferating foreign RNAs such as those of viruses and TEs. We suspect that
TdS might also represent a yet unexplored trigger for PTGS of transgenes encoding,
in particular, non-plant ORFs with suboptimal translation features.

Author contributions:

A.M.O., S.O., and O.V. conceived and designed the study. S.O. and A.M.O. performed
most experiments. R.R. cloned and sequenced the EVD 5’OH ends, M.T. and V.B.B.
investigated EVD copy number in rdr6 and RNA isoform distribution in cyto-nuclear
fractions. M.A.S., A.P. and M.N. performed nanoPARE. L.L. conducted seed counting.
S.O. and M.A.S performed computer analyses. S.O. and M.T performed statistical
analyses. A.M.O., S.O., and O.V. analyzed the data and wrote the manuscript.

Acknowledgements:

We thank members of the Voinnet and Mari-Ordóñez labs and colleagues for critical
reading of the manuscript and for discussions. This work was supported by a core
grant attributed to OV by the ETH-Zürich that covered the largest part of this study,
including the PhD studentships of S.O. and A.M.O. under the Life Science Zürich
Graduate School program. Part of the work was also supported by the NCCR RNA &
Disease funded by the Swiss National Science Foundation.
Competing interests:

The authors declare no competing interests.
REFERENCES

Allshire RC & Madhani HD (2018) Ten principles of heterochromatin formation and function. *Nature Reviews Molecular Cell Biology* **19**: 229–244

Artieri CG & Fraser HB (2014) Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. *Genome Research* **24**: 2011–2021

Babitzke P, Baker CS & Romeo T (2009) Regulation of translation initiation by RNA binding proteins. *Annu Rev Microbiol* **63**: 27–44

Baeg K, Iwakawa H-O & Tomari Y (2017) The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. *Nat Plants* **3**: 17036–4

Bao C, Loerch S, Ling C, Korostelev AA, Grigorieff N & Ermolenko DN (2020) mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. *eLife* **9**: 186–192

Borges F, Parent J-S, Van Ex F, Wolff P, Martínez G, Köhler C & Martienssen RA (2018) Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. *Nat Genet* **50**: 2216–2228

Branscheid A, Marchais A, Schott G, Lange H, Gagliardi D, Andersen SU, Voinnet O & Brodersen P (2015) SKI2 mediates degradation of RISC 5’-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis. *Nucleic Acids Research*: gkv1014

Brodersen P & Voinnet O (2006) The diversity of RNA silencing pathways in plants. *Trends in Genetics* **22**: 268–280

Buskirk AR & Green R (2017) Ribosome pausing, arrest and rescue in bacteria and eukaryotes. *Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci.* **372**: 1–9

Carneiro RL, Requião RD, Rossetto S, Domitrovic T & Palhano FL (2019) Codon stabilization coefficient as a metric to gain insights into mRNA stability and codon bias and their relationships with translation. *Nucleic Acids Research* **47**: 2216–2228

Civáň P, Švec M & Hauptvogel P (2011) On the Coevolution of Transposable Elements and Plant Genomes. *Journal of Botany* **2011**: 1–9

Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC & Martienssen RA (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. *Nature* **508**: 411–415
D’Orazio KN, Wu CC-C, Sinha N, Loll-Krippleber R, Brown GW & Green R (2019) The endonuclease
Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. eLife 8:

Dalakouras A, Lauter A, Bassler A, Krczal G & Wassenegger M (2019) Transient expression of intron-
containing transgenes generates non-spliced aberrant pre-mRNAs that are processed into siRNAs.
Planta 249: 457–468

Dana A & Tuller T (2014) The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids
Research 42: 9171–9181

Desai KK & Raines RT (2012) tRNA ligase catalyzes the GTP-dependent ligation of RNA with 3’-
phosphate and 5’-hydroxyl termini. Biochemistry 51: 1333–1335

Doamekpor SK, Gozdek A, Kwasnik A, Kufel J & Tong L (2020) A novel 5’-hydroxyl dinucleotide
hydrolase activity for the DXO/Rai1 family of enzymes. Nucleic Acids Research 48: 349–358

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & Gingeras TR
(2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21

Doma MK & Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation
elongation. Nature 440: 561–564

Doma MK & Parker R (2007) RNA quality control in eukaryotes. Cell 131: 660–668

Dreher TW & Miller WA (2006) Translational control in positive strand RNA plant viruses. Virology 344:
185–197

Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR & Bartel DP (2009) RNAi in
budding yeast. Science 326: 544–550

Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR III,
Bartel DP & Madhani HD (2013) Stalled Spliceosomes Are a Signal for RNAi-Mediated Genome
Defense. Cell 152: 957–968

Fay MM, Lyons SM & Ivanov P (2017) RNA G-Quadruplexes in Biology: Principles and Molecular
Mechanisms. J. Mol. Biol. 429: 2127–2147

Fedoroff NV (2012) Transposable Elements, Epigenetics, and Genome Evolution. Science 338: 758–
767

Fultz D & Slotkin RK (2017) Exogenous Transposable Elements Circumvent Identity-Based Silencing,
Permitting the Dissection of Expression-Dependent Silencing. THE PLANT CELL ONLINE 29:
360–376
Gao X (2003) Translational recoding signals between gag and pol in diverse LTR retrotransposons. *RNA* **9**: 1422–1430

Gardin J, Yeasmin R, Yurovsky A, Cai Y, Skiena S & Futcher B (2014) Measurement of average decoding rates of the 61 sense codons in vivo. *eLife* **3**.

Gazzani S (2004) A Link Between mRNA Turnover and RNA Interference in Arabidopsis. *Science* **306**: 1046–1048

Gilly A, Etcheverry M, Madoui M-A, Guy J, Quadrana L, Alberti A, Martin A, Heitkam T, Engelen S, Labadie K, Le Pen J, Wincker P, Colot V & Aury J-M (2014) TE-Tracker: systematic identification of transposition events through whole-genome resequencing. *BMC Bioinformatics* **15**: 377

Gregory BD, O’Malley RC, Lister R, Uri MA, Tonti-Filippini J, Chen H, Millar AH & Ecker JR (2008) A Link between RNA Metabolism and Silencing Affecting Arabidopsis Development. *Developmental Cell* **14**: 854–866

Gy I, Gascioli V, Laressergues D, Morel J-B, Gombert J, Proux F, Proux C, Vaucheret H & Mallory AC (2007a) Arabidopsis FIERY1, XRN2, and XRN3 Are Endogenous RNA Silencing Suppressors. *Plant Cell* **19**: 3451–3461

Hahne F & Ivanek R (2016) Visualizing Genomic Data Using Gviz and Bioconductor. *Methods Mol. Biol.* **1418**: 335–351

Hanson G & Coller J (2018) Codon optimality, bias and usage in translation and mRNA decay. *Nature Reviews Molecular Cell Biology* **19**: 20–30

Herr AJ, Molnar A, Jones A & Baulcombe DC (2006) Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. *Proceedings of the National Academy of Sciences* **103**: 14994–15001

Hirochika H, Okamoto H & Kakutani T (2000) Silencing of retrotransposons in arabidopsis and reactivation by the ddm1 mutation. *Plant Cell* **12**: 357–368

Hou CY, Lee WC, Chou HC, Chen AP, Chou SJ & Chen H-M (2016) Global Analysis of Truncated RNA Ends Reveals New Insights into Ribosome Stalling in Plants. *Plant Cell* **28**: 2398–2416

Hu W, Sweet TJ, Chamnongpol S, Baker KE & Coller J (2009) Co-translational mRNA decay in *Saccharomyces cerevisiae*. *Nature* **461**: 225–229

Huang CRL, Burns KH & Boeke JD (2012) Active Transposition in Genomes. *Annu Rev Genet* **46**: 651–675
Ibrahim F, Maragkakis M, Alexiou P & Mourelatos Z (2018) Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome-phased mRNA endonucleolysis. Nature structural & molecular biology 25: 302–310

Ikeuchi K, Izawa T & Inada T (2018) Recent Progress on the Molecular Mechanism of Quality Controls Induced by Ribosome Stalling. Front Genet 9: 743

Ingolia NT, Ghaemmaghami S, Newman JRS & Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218–223

Iwakawa H-O & Tomari Y (2015) The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends in Cell Biology 25: 651–665

Jia J, Long Y, Zhang H, Li Z, Liu Z, Zhao Y, Lu D, Jin X, Deng X, Xia R, Cao X & Zhai J (2020) Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat Plants 6: 780–788

Joazeiro CAP (2019) Mechanisms and functions of ribosome-associated protein quality control. Nature Reviews Molecular Cell Biology 20: 368–383

Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML & Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163: 1109–1122

Kastenmayer JP & Green PJ (2000) Novel features of the XRN-family in Arabidopsis: Evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 97: 13985–13990

Khanduja JS, Calvo IA, Joh RI, Hill IT & Motamedi M (2016) Nuclear Noncoding RNAs and Genome Stability. Molecular Cell 63: 7–20

Kim EY, Wang L, Lei Z, Li H, Fan W & Cho J (2021) Ribosome stalling and SGS3 phase separation prime the epigenetic silencing of transposons. Nat Plants 7: 303–309

Kurhara Y (2017) Activity and roles of Arabidopsis thaliana XRN family exoribonucleases in noncoding RNA pathways. J Plant Res 130: 25–31

Langmead B & Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Meth 9: 357–359

Lauria F, Tebaldi T, Bernabò P, Groen EJN, Gillingwater TH & Viero G (2018) riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLoS Comp Biol 14: e1006169
Lee ES, Akef A, Mahadevan K & Palazzo AF (2015) The consensus 5’ splice site motif inhibits mRNA nuclear export. *PLoS ONE* **10**: e0122743

Lee SC, Ernst E, Berube B, Borges F, Parent J-S, Ledon P, Schorn A & Martienssen RA (2020) Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. *Genome Research* **30**: 576–588

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078–2079

Li X, Hirano R, Tagami H & Aiba H (2006) Protein tagging at rare codons is caused by tmRNA action at the 3’ end of nonstop mRNA generated in response to ribosome stalling. *RNA* **12**: 248–255

Liao Y, Smyth GK & Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. *Nucleic Acids Research* **41**: e108

Llave C, Xie Z, Kasschau KD & Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. *Science* **297**: 2053–2056

Love MI, Huber W & Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**: 550–21

Luo Z & Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. *Plant Cell* **19**: 943–958

Maldonado-Bonilla LD (2014) Composition and function of P bodies in Arabidopsis thaliana. *Front. Plant Sci.* **5**: 201

Marí Ordóñez A, Marchais A, Etcheverry M, Martin A, Colot V & Voinnet O (2013) Reconstructing de novo silencing of an active plant retrotransposon. *Nat Genet* **45**: 1029–1039

Martinez J & Tuschi T (2004) RISC is a 5’ phosphomonoester-producing RNA endonuclease. *Genes Dev.* **18**: 975–980

Martinez de Alba AE, Moreno AB, Gabriel M, Mallory AC, Christ A, Bounon R, Balzergue S, Aubourg S, Gautheret D, Crespi MD, Vaucheret H & Maizel A (2015) In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs. *Nucleic Acids Research* **43**: 2902–2913
Page	Authors	Title	Journal	Year	DOI/Link
903	Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J & Mathieu O	Selective epigenetic control of retrotransposition in Arabidopsis.	*Nature*	2009	461:427–430
906	Moreno AB, Martínez de Alba AE, Bardou F, Crespi MD, Vaucheret H, Maizel A & Mallory AC	Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants.	*Nucleic Acids Research*	2013	41:4699–4708 Available at: http://www.nar.oxfordjournals.org/cgi/doi/10.1093/nar/gkt152
910	Navickas A, Chamois S, Saint-Fort R, Henri J, Torchet C & Benard L	No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5′-OH ends phosphorylated by Trl1.	*Nature communications*	2020	11:122–11
913	Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C, Thomas EN & Slotkin RK	The Initiation of Epigenetic Silencing of Active Transposable Elements Is Triggered by RDR6 and 21-22 Nucleotide Small Interfering RNAs.	*Plant Physiology*	2013	162:116–131
916	Oberlin S, Sarazin A, Chevalier C, Voinnet O & Mari Ordóñez A	A genome-wide transcriptome and translatome analysis of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty1/Copia retroelements.	*Genome Research*	2017	27:1549–1562
919	Panda K, Ji L, Neumann DA, Daron J, Schmitz RJ & Slotkin RK	Full-length autonomous transposable elements are preferentially targeted by expression-dependent forms of RNA-directed DNA methylation.	*Genome Biol*	2016	17:170–19
922	Parent J-S, Jauvion V, Bouché N, Beclin C, Hachet M, Zytnicki M & Vaucheret H	Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes.	*Nucleic Acids Research*	2015	43:8464–8475
926	Park H & Subramaniam AR	Inverted translational control of eukaryotic gene expression by ribosome collisions.	*Plos Biol*	2019	17:e3000396
928	Peach SE, York K & Hesselberth JR	Global analysis of RNA cleavage by 5′-hydroxyl RNA sequencing.	*Nucleic Acids Research*	2015	43:gkv536–e108
930	Pelechano V, Wei W & Steinmetz LM	Widespread Co-translational RNA Decay Reveals Ribosome Dynamics.	*Cell*	2015	161:1400–1412
Peragine A, Yoshikawa M, Wu G, Albrecht HL & Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18: 2368–2379

Popa A, Lebrigand K, Paquet A, Nottet N, Robbe-Sermonet K, Waldmann R & Barbry P (2016) RiboProfiling: a Bioconductor package for standard Ribo-seq pipeline processing. F1000Research 5: 1309

Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA & Colot V (2016) The Arabidopsis thaliana mobilome and its impact at the species level. eLife 5:

Quax TEF, Claassens NJ, Söll D & van der Oost J (2015) Codon Bias as a Means to Fine-Tune Gene Expression. Molecular Cell 59: 149–161

Quinlan AR & Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842

Reinders J, Wulf BBH, Mirouze M, Marí Ordóñez A, Dapp M, Rozhon W, Bucher E, Theiler G & Paszkowski J (2009a) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23: 939–950

Rocha EPC (2004) Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Research 14: 2279–2286

Rodnina MV (2016) The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 25: 1390–1406

Sabi R & Tuller T (2015) A comparative genomics study on the effect of individual amino acids on ribosome stalling. BMC Genomics 16 Suppl 10: S5–12

Sarazin A & Voinnet O (2014) Exploring new models of easiRNA biogenesis. Nat Genet 46: 530–531

Saze H, Scheid OM & Paszkowski J (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34: 65–69

Schon MA, Kellner MJ, Plotnikova A, Hofmann F & Nodine MD (2018) NanoPARE: parallel analysis of RNA 5’ ends from low-input RNA. Genome Research 28: 1931–1942

Silber R, Malathi VG & Hurwitz J (1972) Purification and properties of bacteriophage T4-induced RNA ligase. Proc. Natl. Acad. Sci. U.S.A. 69: 3009–3013

Song J, Perreault J-P, Topisirovic I & Richard S (2016) RNA G-quadruplexes and their potential regulatory roles in translation. Translation (Austin) 4: e1244031
Stein P, Svoboda P, Anger M & Schultz RM (2003) RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA 9: 187–192

Stevens A (2001) 5'-exoribonuclease 1: Xrn1. Methods in enzymology 342: 251–259

Sztuba-Solinska J, Stollar V & Bujarski JJ (2011) Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 412: 245–255

Sørensen BB, Ehrnsberger HF, Esposito S, Pfab A, Bruckmann A, Hauptmann J, Meister G, Merkl R, Schubert T, Längst G, Melzer M, Grasser M & Grasser KD (2017) The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events. Plant Mol Biol 93: 283–298

Šurbanovski N, Brilli M, Moser M & Si-Ammour A (2016) A highly specific microRNA-mediated mechanism silences LTR retrotransposons of strawberry. The Plant Journal 85: 70–82

Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF, Voinnet O, Wincker P, Esteller M & Colot V (2009) A Role for RNAi in the Selective Correction of DNA Methylation Defects. Science 323: 1600–1604

Thran M, Link K & Sonnewald U (2012) The Arabidopsis DCP2 gene is required for proper mRNA turnover and prevents transgene silencing in Arabidopsis. The Plant Journal 72: 368–377

Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A & Kakutani T (2010) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461: 423–426

Valencia P, Dias AP & Reed R (2008) Splicing promotes rapid and efficient mRNA export in mammalian cells. Proceedings of the National Academy of Sciences 105: 3386–3391

Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP & Crete P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Molecular cell 16: 69–79

Vitte C & Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc. Natl. Acad. Sci. U.S.A. 103: 17638–17643

Vitte C & Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110: 91–107

Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6: 206–220
Vongs A, Kakutani T, Martienssen R & Richards E (1993) Arabidopsis thaliana DNA methylation mutants. *Science* **260**: 1926–1928

Wang C & Fang J (2015) RLM-RACE, PPM-RACE, and qRT-PCR: an integrated strategy to accurately validate miRNA target genes. *Methods Mol. Biol.* **1296**: 175–186

Wickham H ggplot2 - Elegant Graphics for Data Analysis. *Springer*.

Wu CC-C, Zinshteyn B, Wehner KA & Green R (2019) High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress. *Molecular Cell* **73**: 959–970.e5

Xia R, Xu J & Meyers BC (2017) The Emergence, Evolution, and Diversification of the miR390-TAS3-ARF Pathway in Land Plants. *Plant Cell* **29**: 1232–1247

Yan S, Wen J-D, Bustamante C & Tinoco I (2015) Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. *Cell* **160**: 870–881

Yang Q, Yu C-H, Zhao F, Dang Y, Wu C, Xie P, Sachs MS & Liu Y (2019) eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. *Nucleic Acids Research* **47**: 9243–9258

Yin Y, Lu JY, Zhang X, Shao W, Xu Y, Li P, Hong Y, Cui L, Shan G, Tian B, Zhang QC & Shen X (2020) U1 snRNP regulates chromatin retention of noncoding RNAs. *Nature* **580**: 147–150

Yu X, Willmann MR, Anderson SJ & Gregory BD (2016) Genome-Wide Mapping of Uncapped and Cleaved Transcripts Reveals a Role for the Nuclear mRNA Cap-Binding Complex in Cotranslational RNA Decay in Arabidopsis. *Plant Cell* **28**: 2385–2397

Zemach A, Kim MY, Hsieh P-H, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL & Zilberman D (2013) The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. *Cell* **153**: 193–205

Zhang S, Hu H, Zhou J, He X, Jiang T & Zeng J (2017) Analysis of Ribosome Stalling and Translation Elongation Dynamics by Deep Learning. *Cell Syst* **5**: 212–220.e6

Zhang X, Zhu Y, Liu X, Hong X, Xu Y, Zhu P, Shen Y, Wu H, Ji Y, Wen X, Zhang C, Zhao Q, Wang Y, Lu J & Guo H (2015) Plant biology. Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. *Science* **348**: 120–123

Zhao T, Chen Y-M, Li Y, Wang J, Chen S, Gao N & Qian W (2021) Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. *Genome Biol* **22**: 16–35
Material and methods:

Plant material and growth conditions

Plants were grown in a growth chamber on soil at 22°C for two weeks in a 12h/12h light cycle and then transferred to a 16h/8h light cycle and pools of three to five plants were sampled for inflorescence tissue. Mutant genotypes *met1*-3, *dcl1*-11, *ddm1*-2 (seventh inbred generation), *hyl1*-2, *rdr6*-12, *xrn2*-2, *xrn3*-3, *xrn4*-3 plants are all derived from the Col-0 ecotype (Vongs et al, 1993; Peragine et al, 2004; Vazquez et al, 2004; Gy et al, 2007b). Genotyping primers are described in Suppl. Table 1. *met1*-derived epiRIL#15 plants (epi15) were described previously (Reinders et al, 2009b; Oberlin et al, 2017). 35S:*EVDwt, 35S:*EVDmU1, 35S:*EVDΔi, 35S:*GFP-GUS and 35S:*GFP-EVDint/ter-GUS overexpression lines were previously depicted (Marí Ordóñez et al, 2013; Oberlin et al, 2017).

Constructs and Plasmids:

All constructs are available from addgene (www.addgene.org): 35S:*EVDwt (#167119), 35S:*EVDmU1 (#167121), 35S:*EVDΔi (#167120), 35S:*GFP-GUS (#167122) and 35S:*GFP-EVDint/ter-GUS (#167123) (Marí Ordóñez et al, 2013; Oberlin et al, 2017).

Cyto-nuclear fractionations:

For each sample, twice 250 mg of 3 week-old seedlings grown in ½ strength (2.2 g/L) Murashige and Skoog medium (#M0231,Duchefa Biochemie) were ground to fine powder in liquid nitrogen and homogenized in 575 μL of lysis buffer (10 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.15% IGEPAL (CA-630, Merk) and 1x cOmplete protease inhibitor cocktail (Roche)). Lysates were gently mixed and incubated on ice for 10 min.
before being filtered through one layer of Miracloth. 400μL from each lysate were
recovered and one set aside as Total. The second set of cell lysate were gently
overlaid on top of 1 mL of cold sucrose buffer (10 mM Tris-HCl pH 7.4, 150 mM NaCl,
24% sucrose and 1x cOmplete EDTA-free protease inhibitor cocktail (#04693159001,
Roche)) in protein low binding 1.5 mL tubes (LoBind, Eppendorf) by slowly pipetting
against the side of the tube. Samples were centrifuged at 3500x, g for 10 min. to
separate nuclei (pellet) from cytoplasm (supernatant). Cytoplasmic fractions were
cleared by centrifugation at 14000x g for 1 min. in a new tube and the resulting
supernatant set aside. Nuclear pellets were rinsed by inverting the tube 3-5 times
without disturbing the pellet with 1 mL of 1X PBS, 0.5mM EDTA. Nuclei were spin for
15 s. at 1300x g before gently removing the wash solution. Nuclei pellets were
resuspended by pipetting in 200 μL of nuclear lysis buffer (10 mM Tris-HCl pH 7.4,
300 mM NaCl, 7.5 mM MgCl₂, 0.2 mM EDTA pH8, 1M Urea, 1% IGEPAL and 1x
cOmplete protease inhibitor cocktail). For isolation of total RNA and protein from the
different fractions, samples were mixed 1 volume of acid PCI
(Phenol/Chloroform/Isoamyl-alcohol, #X985 Carl Roth). In addition, nuclear fractions
were further homogenized after addition of PCI by passing the sample through a 21-
gauge needle with a 1 mL syringe. All steps were carried on ice or centrifuged at 4°C.
Buffers were freshly prepared in advance and chilled on ice before use.

Nucleic acid and protein extractions

RNA was extracted from frozen and ground tissue with TRIzol reagent (#93289,
Sigma) and precipitated with 1x vol. of cold isopropanol. For RNA extraction from cyto-
nuclear fractionations, 20 μg of glycogen (#R0551, ThermoFisher) and 0.1x vol. of
sodium acetate 3M pH5.2 were mixed with recovered aqueous phases after PCI
before RNA precipitation with 1x vol. of cold isopropanol. DNA was extracted using
the DNeasy Plant Mini Kit (#69204, Qiagen) according to manufacturer’s guidelines.
Protein of frozen and ground tissue was homogenized in extraction buffer (0.7 M
sucrose, 0.5 M Tris-HCl, pH 8, 5 mM EDTA, pH 8, 0.1 M NaCl, 2% β-mercaptoethanol)
and cOmplete EDTA-free protease inhibitor cocktail (#04693159001, Roche). Water-
saturated and Tris-buffered phenol (pH 8) was added to an equal volume and samples
were agitated for 5 min. Phases were separated by 30 min centrifugation (12,000g at
4 °C). Proteins were precipitated from the phenol phase (including those from PCI) by
the addition of 5 volumes of 0.1 M ammonium acetate in methanol. Precipitated
proteins were collected by centrifugation for 30 min (12,000g at 4 °C), washed twice
with ammonium acetate in methanol and resuspended in resuspension buffer (3%
SDS, 62.3 mM Tris-HCl, pH 8, 10% glycerol).

RNA and protein blot analysis

For high molecular weight RNA analysis, 5-10µg of total RNA was separated on a
1.2% agarose MOPS-buffered gel with 2.2 M formaldehyde. RNA was partially
hydrolyzed on gel with 5x gel volumes of 0.05N NaOH for 20 min. Gel was washed
twice for 20 min. with 20X SSC, transferred overnight by capillarity to a HyBond-NX
membrane (#RPN303, GE Healthcare) and UV-crosslinked for fixation. For high
molecular weight RNA analysis by PAGE, 1-40µg of RNA (total, poly(A)+ or poly(A)-)
were separated on a denaturing 4% polyacrylamide-urea gel, transferred to a HyBond-
NX membrane by electroblotting and UV-crosslinked. For low molecular weight RNA
analysis, 10-40µg of total RNA was separated on a denaturing 17.5% polyacrylamide-
urea gel, transferred to a HyBond-NX membrane by electroblotting and chemically
crosslinked (Pall and Hamilton 2008). Probes from PCR products were radiolabeled
using the Prime-a-Gene kit (#U1100, Promega) in the presence of [α-32P]-dCTP (Hartmann Analytic) and oligo probes were radiolabeled by incubation of PNK (#EK0031, Thermo) in the presence of [γ-32P]-ATP. Membranes were hybridized with these probes in PerfectHyb hybridization buffer (#H7033, Sigma) and detected on a Typhoon FLA 9500 (GE Healthcare) laser scanner. Oligonucleotides used for probe generation are listed in (Supplementary table 1).

Proteins were separated on SDS-polyacrylamide gels, transferred to Immobilon-P PVDF membranes (#IPVH00010, Millipore) by electroblotting and incubated with antibodies in 1X PBS with 0.1% Tween-20 and 5% nonfat dried milk. After incubation with HRP-conjugated secondary goat antibody against rabbit or rat primary antibodies (Sigma), detection was performed with the Clarity Max Western ECL substrate (#1705062, BIO-RAD) on a ChemiDoc Touch imaging system (BIO-RAD). Affinity-purified antibodies were used at the specified dilutions: GAG (1:2’000 (Oberlin et al. 2017)), GFP (1:5’000 Chromotek #3H9-100), GUS (1:1’000 Sigma Aldrich #G5545), H3 (1:10000 Abcam #ab1791), UGPase (1:2000 Agrisera #AS5 086). Protein loading was confirmed by Coomassie staining of membranes.

Quantitative PCR

RNA was treated with DNasel (#EN0521, Thermo Scientific) and cDNA was subsequently synthesized with the Maxima First-Strand cDNA Synthesis Kit (#K1641, Thermo Scientific), or RevertAid cDNA Synthesis Kit with Oligo(dT) (#K1612, Thermo Scientific). qPCRs were run on a LightCycler480 II (Roche) or a QuantStudio5 (Applied Biosystems) machine with the SYBR FAST qPCR Kit (KAPA Biosystems). Ct values were determined by the 2nd derivative max method of minimally two technical
replicates for each biological replicate. Relative expression values were computed as ratios of Ct values between targets of interest and ACT2 and/or GAPC reference mRNA unless otherwise indicated. EVD copy numbers were determined by direct qPCR on genomic DNA, comparing relative EVD and ACT2 levels, normalized by their inherent copy numbers of two and one in WT plants, respectively. Oligonucleotides used are listed in Supplementary table 1.

Separation of polyadenylated mRNA

Isolation of poly(A)+ from non-poly(A) RNA was performed from 75 ug of Trizol-extracted total RNA from floral buds, using the DynabeadsTM mRNA Purification Kit (Ambion Cat#.61006) following the manufacturer’s instructions. Non-polyA RNA was precipitated from the DynabeadsTM-unbound fraction and resuspended in the same volume (200 uL) as the poly(A)+ RNA fraction. Efficiency of the separation was confirmed by running aliquots of each fraction on a 1% agarose gel to monitor efficient depletion of rRNA in poly(A)+ fractions before downstream analysis.

Cloning and mapping of 5’OH-ends:

Non-canonical cleavage sites in EVADE transcript were mapped by a modified 5’ RACE method. Total RNA isolated from a pool of 2-3 weeks old plants extracted by standard protocols (See nucleic acid extraction section) were taken for RNA ligations after DNase I treatment ((#EN0521, Thermo scientific). RNA adapters with a 5’ inverted dT modification (See Supplementary Table 1) were ligated to the DNase-treated RNA by T4 RNA ligase 1 (#M0204S, New England Biolabs) to render the canonical cleavage products not available for subsequent ligation reaction. To map the cleavage products with a 5’ hydroxyl group, the RNA was subsequently ligated to
an RNA adapter with a 3’ phosphate group by RtcB ligase (#M0458S, New England Biolabs). The ligated RNA was converted to cDNA with RevertAid first strand cDNA synthesis kit (#K1612, Thermo scientific) and a primer specific to the EVADE transcript (Supplementary Table 1). The cDNA was amplified by nested PCR by using primers from the adapter RNA and primers located ~100 nucleotides downstream of each stalling site (all adaptor and primers sequences can be found in Suppl. Table 1). The PCR products were separated on an agarose gel and the DNA fragments were extracted from the gel by GeneJET gel extraction kit (#K0691, ThermoFisher scientific). The DNA fragments were cloned in pJET1.2 vectors by using CloneJET PCR cloning kit (#K1232, ThermoFisher scientific) and ~50 colonies were screened for each potential cleavage site by Sanger sequencing technology.

Small RNA sequencing

Small RNA sequencing of 35S:EVDwt and 35S:GFP-EVD_{int/ter}-GUS was performed as follows. Total RNA was resolved on a 17.5% polyacrylamide-urea gel and sizes between 18 - 30 nt were excised, eluted overnight in elution buffer (20mM Tris–HCl (pH 7.9), 1 mM EDTA, 400 mM ammonium acetate, 0.5% (w/v) SDS) and collected by precipitation with equal volumes of isopropanol. RNA was quantified using the Qubit™ RNA HS Assay Kit (Thermo Scientific) and subsequently cloned using the Small RNA-Seq Library Prep Kit (Lexogen). Sequencing was performed on an Illumina HiSeq 4000 machine.

RIBO-seq

For RIBO-seq libraries frozen inflorescence tissue was ground in digestion buffer (100 mM Tris·HCl (pH 8), 40 mM KCl, 20 mM MgCl₂, 2% (v/v) polyoxyethylene (10) tridecyl
ether, 1% (v/v) de-oxycholic acid, 1 mM DTT, 10 unit/mL DNase I (Thermo Scientific),
100 μg/mL cycloheximide. Precleared solutions were incubated with 650 U RNase I
(Ambion) for 45 min at 25°C. Nuclease digestion was stopped by the addition of 10 μl
SUPERase In RNase Inhibitor (Ambion). Resulting monosomes were purified by
ultracentrifugation of the lysate on a sucrose cushion (1 M sucrose, 20 mM HEPES
(pH 7.6), 100 mM KCl, 5 mM MgCl₂, 10 μg/ml cycloheximide, 10 units/ml RiboLock
(Thermo Scientific) and cOmplete protease inhibitor cocktail (Roche) for 4 hours at
250'000 g in 4°C. RNA was extracted using the TRIzol RNA extraction described
above and treated with 10 U PNK (Thermo Scientific) for 30 min. Ribosomal RNA
depletion was performed using the RiboMinus Plant Kit (Thermo Scientific) and
libraries were generated as above, except that the 25 - 32 nt RNA fraction was excised
from the denaturing polyacrylamide gel prior to RNA ligation.

nanoPARE
NanoPARE library preparation and analysis was performed following the protocol from
Schon et al. 2018 (Schon et al., 2018). Briefly, 10ng of total RNA was isolated from
inflorescences. Two biological replicates each of Col-0 and ddm1-2 were used for
reverse transcription. After 9 cycles of PCR pre-amplification, 5ng aliquots of cDNA
were separately tagmented and amplified using either standard Smart-seq2 Tn5
primers or 5’-end enrichment primers. The resulting Smart-seq2 and nanoPARE
libraries were sequenced on an Illumina HiSeq 2500 using paired-end 50bp reads and
single-end 50bp reads, respectively.

Seed counting
Plants germinated and grown in parallel under the same conditions were individually covered with paper bags before the maturation of siliques and harvested upon ripening. Total amount of seeds from each plant was counted twice with a C3 High Sensitive Seed Counter (Elmor).

Data Analysis

Analysis of sRNA sequencing is based on the following workflow. Reads were trimmed using bbduk (BBTools: sourceforge.net/projects/bbmap/, version 38.41; ktrim=r k=23 mink=11 hdist=1) mapped against the TAIR10 Arabidopsis genome with STAR (Dobin et al, 2013) (version 2.5.2a; --outFilterMismatchNoverLmax 0.05 --outFilterMatchNmin 16 --outFilterScoreMinOverLread 0 --alignIntronMax 500 --alignIntronMin 50 -- outFilterMultimapNmax 50), quantified using Rsubread (Liao et al, 2013) (version 1.20.6; allowMultiOverlap=T, largestOverlap= T, isPairedEnd=F, strandSpecific=1, countMultiMappingReads=T, fraction = T) and differential analysis using DESeq2 (Love et al, 2014) (version 1.10.1). Reads were split in different lengths with Samtools (Li et al, 2009) (version 0.1.19) and locus coverage amongst those read length was visualized using BEDtools (Quinlan & Hall, 2010) (version 2.15.0) and R cran (version 3.2.5).

RIBO-seq libraries were analyzed as follows. Reads were trimmed of adapter sequences with bbduk as above. Reads mapping to rRNA loci using Bowtie2 (Langmead & Salzberg, 2012) (version 2.2.1; -k 1 -x) were discarded from further analysis. Subsequent mapping and quantification were performed as for the sRNA sequencing analysis using STAR (Dobin et al, 2013) and Rsubread (Liao et al, 2013) as above, but reads were mapped to both Arabidopsis genome and transcriptome...
sequences. Quality control of the RIBO-seq libraries was performed with the riboWaltz
(Lauria et al, 2018) (version 1.1.0) package. P-site occupancies were estimated using
the RiboProfiling (Popa et al, 2016) (version 1.0.3) package based on 5’ read offsets
determined by the coverage profile around start codons dependent on read lengths.
Codon occupancies were compiled for all three possible frames to generate a single
codon occupancy score. A ribosomal stalling score at each codon position was defined
as the ratio of observed over expected counts, where the expectation was the mean
of occupancy counts over the entire transcript. To improve quality of the assessment,
only the most translated isoform per gene and only isoforms with a minimal read
coverage of 70% were considered. Codon dwell time was estimated as the mean value
of log-normalized codon occupancies per individual transcript and codon usage was
estimated from the subset of genes considered translated. Stop codons and stop
codons containing di-codons were excluded from the analysis. Data were visualized
using R cran and the packages Gviz (Hahne & Ivanek, 2016) and ggplot2 (Wickham).

Data Access
Sequencing data generated in this study are accessible on the Gene Expression
Omnibus (GEO) under the accession number GSE167484. Data from previous studies
including sRNA sequencing in ddm1 & ddm1 rdr6, ddm1 & ddm1 dcl1, isoform specific
sequencing data of total and polysome associated mRNA in TE de-repressed
backgrounds are found under the accession numbers GSE41755 (Nuthikattu et al,
2013), GSE52952 (Creasey et al, 2014), GSE93584 (Oberlin et al, 2017) and
PRJNA598331 (Kim et al, 2021). Every other raw data used in this study (including
raw image files, qPCR data, Sanger sequencing traces,...) has been deposited in
Zenodo (www.zenodo.org) under the DOI: 10.5281/zenodo.4751668.
Figure 1. **EVD shGAG is both a trigger and a target of RDR6-dependent but miRNA-independent siRNAs.**

(A) **EVD flGAG-POL** and spliced shGAG mRNAs are distinguishable using specific PCR primer sets (arrows) for quantification and northern analysis. (35S) Cauliflower Mosaic Virus 35S promoter, (Pr) protease, (IN) integrase, (RT-RNase) reverse-transcriptase-RNase; red squares: stop codons. (B) siRNA-seq reads profile of EVD expressed from 35S:EVD_{WT} in WT (black) or rdr6 (red). (RPM) reads per million. Positions are indicated in nucleotides (nt) from the start of the 35S sequence. Dashed vertical lines: shGAG and GAG-POL 3' ends. (C) Northern analysis of EVD RNA isoforms using a probe for the GAG region or for ACTIN2 (ACT2) as a loading control. (D) qPCR quantification of shGAG and flGAG-POL normalized to ACT2 and to GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE C SUBUNIT (GAPC) levels. qPCR was performed on n=3 biological replicates; bars: standard error. (**) = p-value < 0.01 (two-sided t-test between indicated values). (E) Western analysis of GAG and RDR6 with Coomassie (coom.) staining as a loading control. (F-G) siRNA-seq profiles from EVD de-repressed in the ddm1 (F) or ddm1 dcl1 (G) backgrounds. Different siRNA size categories are stacked. Nomenclature as in (B).
Figure 2. The EVD intron and terminator suffice to initiate PTGS.

(A) The 35S:GFP-EVD_{int}/ter-GUS fusion was made by introducing the EVD intron and proximal shGAG terminator between the GFP and GUS coding sequence. Like EVD, it spawns full length unspliced and short spliced mRNAs. Red squares: stop codons. (B) Expression levels of shGFP (spliced) and GFP-EVD_{int}/ter-GUS (unspliced) transcripts, relative to ACT2 and AT4G26410 (RHIP1), in the WT or rdr6 background. qPCR was performed on three biological replicates and error bars represent the standard error on. (*) = p-value < 0.05 (two-sided t-test against corresponding controls). (C) sRNA-seq profile mapped on the genomic 35S:GFP-EVD_{int}/ter-GUS locus. (RPM) Reads per million. Positions indicated in nucleotides (nt) from the start of the 35S sequence. Dashed vertical lines: shGFP and GFP-GUS 3’ ends. (D) Low molecular weight RNA analysis of the GFP- and GUS-spanning regions. tasiRNA255 is a control for the rdr6 mutation and miR159 provides a loading control.
Figure 3. Impact of splicing and premature termination on EVD silencing.

(A-C) Constructs and isoforms transcribed from 35S:EVDwt (A), 35S:EVDΔintron (B) and 35S:EVDmU1 (C). Probes for northern analysis of GAG exon 1 (GAG-ex1), intron (GAG-in), exon2 (GAG-ex2) and the POL region are depicted with black lines.

(D) Relative expression levels of spliced and unspliced transcripts in the three EVD constructs relative to ACT2. qPCR was performed on three biological replicates and error bars represent the standard error. (ns.) = non-significant, (*) = p-value < 0.05, (**) = p-value < 0.01, (two-sided t-test between indicated samples/targets). (E) High and low molecular-weight RNA analysis of EVD GAG (GAG-ex1) and EVD intron (GAG-in) in two independent T1 bulks from each indicated line. The filled arrows on the right hand-side or with an asterisk on the blots correspond to the transcripts depicted in (A-C). ACT2: loading control for mRNAs; tasiR255, miR173 and U6: loading controls for sRNAs. Hybridizations for GAG-ex2 and POL probes are found in Supp. Fig.5A. (F) Western analysis of the GAG protein with Coomassie (coom.) staining as a loading control.
Figure 4. Expression, but not translation, is associated with RDR6 activity on most ddm1-reactivated TEs except EVD. (A) Scatter plot comparing polysome association score (defined as fold-change between abundance in polysome libraries vs. total RNA) and RDR6-dependent siRNA levels of TEs found de-repressed in ddm1 (brief description of RDR6 dependency). Quartiles of siRNA levels are confined by gray vertical lines. For comparison and reference, polysome association and RDR6-dependent siRNA levels of protein coding and non-coding transcripts are displayed as boxplots. Copia93 elements: EVD (AT5G17125) + ATR (AT1G34967), are circled. Inlet: Polysome association score of TEs in quartile 4, EVD mRNA isoforms are displayed separately. (B) Boxplots of RNA expression levels of TEs in ddm1 from the quartiles in (A). In all panels: (***p < 0.001, (Wilcoxon rank-sum test against labelled controls or protein coding gene cohort). (C) ORF length of Ty1/Copia and Ty3/Gypsy elements expressed in ddm1 relative to their genomic length.
Figure 5. Splicing promotes translation and siRNA biogenesis from short-spliced mRNAs by influencing nucleocytoplasmic distribution of RNA isoforms. (A) Comparison of RNA isoforms and sRNA patterns generated by 35S:GFP-GUS and 35S:GFP-EVDint/ter-GUS. High and low molecular-weight RNA analysis using a GFP or GUS probe in two independent transgenic lines from each construct in the WT or rdr6 background. mRNA isoforms are indicated with arrows and correspond to the transcripts depicted in Fig. 2A. EtBr staining of the agarose gel and miR171 probe serve as loading control for mRNAs and sRNAs, respectively. (B) Western analysis of the translation products from GFP and GFP-GUS transcripts. Coomassie (coom.) staining as a loading control. (C) Nucleo-cytoplasmic distribution of 35S:EVD and 35S:GFP-EVDint/ter-GUS RNA isoforms in rdr6 relative to that of ACT2 analyzed by qPCR. RNA extracted from Total, nuclear (Nucl) and cytoplasmic (Cyto) fractions was reverse transcribed with random hexamers and oligo(dT). snoRNA U5 is shown as a nuclear-only RNA control. (D) Same as in (C) but using exclusively oligo(dT) to reverse transcribe poly(A)+ RNAs. Both in (C) and (D), qPCR was performed on n=3 biological replicates; bars: standard error. (*) = p-value < 0.05, (**) = p-value < 0.01 (two-sided t-test between indicated samples).
Figure 6. XRN4-mediated co-translational mRNA decay does not influence siRNA production from shGAG.

(A) During co-translational decay, mRNA turnover is initiated by decapping of actively translated mRNAs. This exposes 5’ monophosphate (5’PO4) groups required for the 5'-->3' exonucleolytic activity of XRNes. As evidenced by the RDR6-dependent production of siRNAs from dozens of endogenous loci in decapping and xrn4 mutants of Arabidopsis, plant mRNAs engaged in co-translational decay can become substrates for siRNA biogenesis if they are not degraded by, or their levels saturated, this process. While depicted here, for simplicity, as a co-translational event, RDR6 action onto such mRNA likely occurs in specialized “siRNA bodies” adjacent to P-bodies (B) EVD, ACT2 and TAS1c capped and uncapped 5’ ends from nanoPARE and Smart-seq2 libraries along 20-21 nt siRNA in WT and ddm1. (C-E) EVD genomic proliferation in homozygous xrn4 mutant and WT backgrounds in F2 plants from a cross between xrn4 and epi15 exhibiting active EVD mobilization. (C) SRNA blot analysis using an anti-GAG probe. (D) Relative expression levels of shGAG and flGAG-POL normalized to ACT2 and to AT4G26410 levels. (E) EVD genomic copy number quantification by qPCR. qPCR analysis was performed on three biological replicates for controls and the three independent WT and mutant F2 lines displayed in B. (F-H) Same as (C-E) but with the rdr6 versus WT epi15 backgrounds. Analysis was performed in the two independent WT and mutant F2 lines displayed in E. In all qPCR panels: error bars display standard errors. (ns.) = non-significant, (*) = p-value < 0.05, (**) = p-value < 0.01 (two-sided t-test between indicated samples)
Figure 7

(A) RIBO-seq coverage profiles from 35S:EVD in WT or rdr6. RPM: Reads per million. (B) Ribosomal footprints on shGAG in rdr6 displaying codon occupancy at P-sites to calculate codon coverage. The coverage observed at each codon position was divided by the expected mean coverage along the entire GAG coding sequence. (C) Maximal individual codon coverage over the expected coverage for all translated transcripts of Arabidopsis. Vertical lines indicate the strength of stalling sites of shGAG in the WT or rdr6 background. Percentages specify the proportion of transcripts with more pronounced stalling events than shGAG. (D) Overlay between 35S:EVD siRNAs (red) and RIBO-seq profiles (black) in the WT background. (E) Schematic representation of putative ribosome stalling-linked mRNA breakage generating 5’OH ends. Lack of 5’PO4 prevents XRN 5’->3’ exonucleolytic activity (see Fig.6A), granting the RNA to be used as template by RDR6. (F) Overlap between ribosomal footprints and mapping of 5’OH ends from 35S:EVD in rdr6 cloned through RtbC ligation. Regions investigated are highlighted in grey. 5’OH ends were only successfully cloned from region #1. Alignment of sequenced clones to EVD is displayed in Fig.S9.