Original research

Proton pump inhibitors and risk of gastric cancer: population-based cohort study

Devin Abrahimi, Emily Gibson McDonald, Mireille E Schnitzer, Alan N Barkun, Samy Suissa, Laurent Azoulay

ABSTRACT

Objective To determine whether new users of proton pump inhibitors (PPIs) are at an increased risk of gastric cancer compared with new users of histamine-2 receptor antagonists (H2RAs).

Design Using the UK Clinical Practice Research Datalink, we conducted a population-based cohort study using a new-user active comparator design. From 1 January 1990 to 30 April 2018, we identified 973 281 new users of PPIs and 193 306 new users of H2RAs. Cox proportional hazards models were fit to estimate HRs and 95% CIs of gastric cancer, and the number needed to harm was estimated using the Kaplan-Meier method. The models were weighted using standardised mortality ratio weights using calendar time-specific propensity scores. Secondary analyses assessed duration and dose–response associations.

Results After a median follow-up of 5.0 years, the use of PPIs was associated with a 45% increased risk of gastric cancer compared with the use of H2RAs (HR 1.45, 95% CI 1.06 to 1.98). The number needed to harm was 2121 and 1191 for five and 10 years after treatment initiation, respectively. The HRs increased with cumulative duration, cumulative omeprazole equivalents and time since treatment initiation. The results were consistent across several sensitivity analyses.

Conclusion The findings of this large population-based cohort study indicate that the use of PPIs is associated with an increased risk of gastric cancer compared with the use of H2RAs, although the absolute risk remains low.

INTRODUCTION

Acid suppressant drugs, which include proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs), are commonly prescribed to manage the symptoms of several gastric conditions.\(^\text{1-4}\) In recent years, PPIs have become increasingly popular,\(^\text{4}\) in part due to their superior acid suppression and their perceived safety profile.\(^\text{5,6}\) However, although controversial, there is some evidence that the use of PPIs may be associated with several adverse gastrointestinal-related health outcomes, including *Clostridium difficile* infection, enteric colonisation with multidrug-resistant organisms and gastric cancer.\(^\text{7-16}\)

A possible association between PPI use and gastric cancer is biologically plausible, as PPIs are known to cause hypergastrinaemia, which may induce hyperplasia.\(^\text{21,22}\) To date, several observational studies have examined the association between PPI use and gastric cancer incidence, all of which have reported elevated relative risks ranging from 1.06 to 3.61, aside from one null study (HR 1.01, 95% CI 0.88 to 1.16).\(^\text{9-20}\) However, these studies had significant methodological shortcomings, which may have exaggerated their findings. The majority of studies compared PPI users to the general population, which likely introduced confounding by indication, while other studies introduced conclusion-altering time-related biases, such as immortal-time bias and time-window bias.\(^\text{23-25}\)

Given that PPIs are one of the most commonly prescribed drug classes worldwide, and uncertainties relating to their association with gastric cancer remain, we conducted a large population-based cohort study to determine whether patients newly treated with PPIs are at an increased risk of gastric cancer compared with patients newly treated with H2RAs.

Significance of this study

What is already known on this subject?

- Previous observational studies suggest that the use of proton pump inhibitors is associated with an increased risk of gastric cancer, a disease with poor survival.
- However, all previous studies were limited by important methodological shortcomings, which may lead to an exaggeration of the reported risk between the use of proton pump inhibitors and gastric cancer.

What are the new findings?

- The use of proton pump inhibitors is associated with a 45% increased risk of gastric cancer compared with the use of histamine-2 receptor antagonists.
- Gastric cancer risk increased with cumulative duration of use, cumulative omeprazole equivalents, and time since treatment initiation.

How might it impact on clinical practice in the foreseeable future?

- In light of the overuse of proton pump inhibitors, physicians should regularly reassess the necessity of ongoing treatment.
Data source
This study was conducted using the UK Clinical Practice Research Datalink (CPRD). The CPRD is a large primary care database shown to be well representative of the general UK population, which contains the complete records of more than 15 million patients. Recorded data includes patient characteristics, medical diagnoses, prescriptions and lifestyle characteristics. Cancer diagnoses have been previously validated, with positive predictive values for gastro-oesophageal cancers as high as 96%.28–31

Study population
We used a new-user, active comparator design where patients newly treated with PPIs were compared with patients newly treated with H2RAs. This active comparator was chosen to minimise confounding by indication, given that H2RAs are used for similar indications as PPIs. Cohort entry was defined as the date of the first prescription of either a PPI or an H2RA during the study period (identified using British National Formulary codes, online supplemental tables 1 and 2), from 1 January 1990 (first full year of PPI and H2RA availability) through 30 April 2018. At cohort entry, all patients were required to be at least 40 years old and have at least 1 year of medical information in the CPRD; the latter was necessary to identify new PPI and H2RA users. We excluded patients for whom a PPI and an H2RA were prescribed concomitantly at cohort entry, anyone with a history of gastric cancer (ie, to exclude prevalent cases), rare inherited cancer syndromes (Lynch syndrome, familial adenomatous polyposis, Li-Fraumeni syndrome or Peutz-Jeghers syndrome),32 or Zollinger-Ellison syndrome (online supplemental figure 1). Finally, the cohort was restricted to patients with at least 1 year of follow-up after cohort entry (ie, 1-year lag period) to allow for a latency time-window and minimise detection bias and reverse causality.33

Exposure definition
All patients were followed starting 1 year after cohort entry until an incident diagnosis of gastric cancer (identified using Read codes (online supplemental table 3), 1 year after switching between the study drug classes (ie, switch from PPI to H2RA or vice versa to account for the 1-year lag period, with person-time during the lag period attributed to initial exposure), death from any cause, end of registration with the general practice, or end of the study period (30 April 2019), whichever occurred first. Patients were considered continuously exposed from cohort entry, regardless of treatment termination, as this exposure definition aligns with the hypothesised biological mechanism (ie, an irreversible effect of PPIs on gastric cancer development that persists even after treatment discontinuation).

Potential confounders
We considered a wide range of potential confounders, all measured on or before cohort entry. These included demographic
Table 1 Baseline characteristics of PPI and H2RA users before and after weighting

Characteristic	Before weighting	After weighting*				
	PPI	H2RA	ASD	PPI	H2RA	ASD
Total	973 281	198 306	972 083	973 281	972 083	
Age (mean, SD)	60.4 (13.0)	60.4 (13.1)	0.00	60.4 (13.0)	60.4 (28.9)	0.00
Male	438 592 (45.1)	85 505 (43.1)	0.04	438 592 (45.1)	436 521 (44.9)	0.00
Alcohol-related disorders	55 957 (5.8)	7912 (4.0)	0.08	55 957 (5.8)	56 352 (5.8)	0.00
Smoking status						
Current	260 166 (26.7)	50 856 (25.7)	0.03	260 166 (26.7)	259 094 (26.7)	0.00
Former	141 467 (14.5)	20 490 (10.3)	0.13	141 467 (14.5)	142 286 (14.6)	0.00
Never	538 106 (55.3)	100 006 (50.4)	0.10	538 106 (55.3)	537 236 (55.3)	0.00
Missing	33 542 (3.5)	26 954 (13.6)	0.37	33 542 (3.5)	33 467 (3.4)	0.00
Body mass index						
<25 kg/m²	361 873 (37.2)	67 314 (33.9)	0.07	361 873 (37.2)	362 379 (37.3)	0.00
25–29.9 kg/m²	326 240 (33.5)	58 226 (29.4)	0.09	326 240 (33.5)	325 379 (33.5)	0.00
≥30 kg/m²	177 306 (18.2)	27 732 (14.0)	0.12	177 306 (18.2)	176 823 (18.2)	0.00
Missing	107 862 (11.1)	45 034 (22.7)	0.31	107 862 (11.1)	107 502 (11.1)	0.00
Atrial fibrillation	34 778 (3.6)	6037 (3.0)	0.03	34 778 (3.6)	35 576 (3.7)	0.00
Anaemia	89 930 (9.2)	14 860 (7.5)	0.06	89 930 (9.2)	90 836 (9.3)	0.00
Cancer	81 000 (8.3)	13 416 (6.8)	0.06	81 000 (8.3)	82 457 (8.5)	0.01
Congestive heart failure	21 292 (2.2)	6372 (3.2)	0.06	21 292 (2.2)	21 920 (2.3)	0.00
Gastrointestinal bleeding	32 113 (3.3)	7586 (3.8)	0.03	32 113 (3.3)	33 737 (3.5)	0.01
Venous thromboembolism	44 121 (4.5)	7944 (4.0)	0.03	44 121 (4.5)	44 645 (4.6)	0.00
Chronic kidney disease	54 247 (5.6)	4044 (2.0)	0.19	54 247 (5.6)	55 217 (5.7)	0.00
Stroke	49 495 (5.1)	10 105 (5.1)	0.00	49 495 (5.1)	50 673 (5.2)	0.01
Hernia	32 113 (3.3)	7586 (3.8)	0.03	32 113 (3.3)	33 737 (3.5)	0.01
Gastrointestinal bleeding	85 760 (8.8)	13 108 (6.6)	0.08	85 760 (8.8)	85 927 (8.8)	0.00
Dialysis	794 (0.1)	304 (0.2)	0.02	794 (0.1)	907 (0.1)	0.00
Gastric surgery	2678 (0.3)	645 (0.3)	0.01	2678 (0.3)	2854 (0.3)	0.00
Barrett’s oesophagus	2928 (0.3)	79 (0.0)	0.06	2928 (0.3)	3627 (0.4)	0.01
Helicobacter pylori infection	20 440 (2.1)	982 (0.3)	0.14	20 440 (2.1)	20 935 (2.2)	0.00
Gastro-esophageal reflux disease	86 985 (8.9)	17 461 (8.8)	0.00	86 985 (8.9)	90 581 (9.3)	0.01
Peptic ulcer disease	29 338 (3.0)	8623 (4.4)	0.07	29 338 (3.0)	29 795 (3.1)	0.00
Dyspepsia	169 147 (17.4)	60 869 (30.7)	0.32	169 147 (17.4)	175 000 (17.8)	0.01
Gastitis	41 343 (4.3)	11 094 (5.6)	0.06	41 343 (4.3)	42 142 (4.3)	0.00
Stomach pain	273 864 (28.1)	58 350 (29.4)	0.03	273 864 (28.1)	277 333 (28.6)	0.01
Metformin	56 972 (5.9)	6286 (3.2)	0.13	56 972 (5.9)	57 053 (5.9)	0.00
Non-steroidal anti-inflammatory drugs	692 208 (71.1)	123 534 (62.3)	0.19	692 208 (71.1)	689 062 (70.9)	0.01
Antiplatelets	231 359 (23.8)	37 483 (18.9)	0.12	231 359 (23.8)	232 216 (23.9)	0.00
Dual antiplatelets	67 206 (6.9)	9164 (4.6)	0.10	67 206 (6.9)	68 440 (7.0)	0.01
Cyclooxygenase-2 inhibitors	82 509 (8.5)	8622 (4.4)	0.17	82 509 (8.5)	82 734 (8.5)	0.00
and lifestyle variables, such as age (modelled as a continuous variable using a cubic spline model to account for a possible non-linear relation with the outcome), sex, alcohol-related disorders (alcohol dependency, alcoholic cirrhosis of the liver, alcoholic hepatitis, hepatic failure), smoking status, and body mass index. The potential confounders also included comorbidities, such as atrial fibrillation, anaemia, cancer (excluding non-melanoma skin cancer), congestive heart failure, gastric metaplasia, hypercholesterolaemia, hypertension, venous thromboembolism, chronic kidney disease, stroke, hernia, gastrointestinal bleeding, dialysis and gastric surgery. We considered approved indications for acid suppressant drug use (Barrett’s oesophagus, Helicobacter pylori infection (identified by either a diagnosis or a prescription for triple therapy), gastro-oesophageal reflux disease, peptic ulcer disease, dyspepsia) and off-label indications (gastritis or duodenitis and stomach pain). We considered each indication separately, as there are some variations in the guidelines by indication. Finally, we included the use of the following drugs: metformin, non-steroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 (COX-2) inhibitors, which have been associated with a decreased risk of gastric cancer, antiplatelets, dual antiplatelets, selective serotonin reuptake inhibitors (SSRIs), anticoagulants and steroids, which may cause bleeding, and synthetic prostaglandin analogues, which are older drugs used to manage gastric conditions. The aforementioned variables were selected based on a thorough review of the literature, which identified variables meeting the traditional definition of a confounder, measures of general health status and opportunities for interaction with healthcare providers (which may increase detection).

Statistical analysis

The models were weighted using standardised mortality ratio weights estimated using calendar time-specific propensity scores. The propensity scores were estimated using logistic regression as the predicted probability of receiving a PPI versus an H2RA conditional on the covariates listed above and within 5-year calendar year bands of cohort entry (1990–1994, 1995–1999, 2000–2004, 2005–2009, 2010–2018). Calendar year bands were used to account for temporal changes in acid suppressant drug prescribing, changes in gastric cancer incidence, heterogeneity in covariate definitions during the study period. Calendar-time specific propensity scores may result in better confounding control compared with a single propensity score model. Patients in non-overlapping regions of the propensity score distributions were trimmed.

Using the propensity scores, patients exposed to PPIs were given a weight of 1, while patients exposed to H2RAs were given a weight of the odds of the treatment probability (propensity score / (1-propensity score)). This upweights the comparator patients (ie, H2RA users) to represent the treated population (ie, PPI users). Covariate balance was assessed before and after weighting using standardised differences, with differences of less than 0.10 indicative of good balance.

We calculated crude incidence rates of gastric cancer with 95% CIs, based on the Poisson distribution, and constructed weighted Kaplan-Meier curves to compare the cumulative incidence of gastric cancer for PPI and H2RA users. The pseudocumulation created by weighting should balance the study covariates outlined above so that cumulative incidence of gastric cancer can be compared between PPI and H2RA users. Cox proportional hazards models were fit to estimate weighted HRs of gastric cancer with 95% CIs using robust variance estimators. We also

Table 1

Characteristic	Before weighting	After weighting*	
	PPI	H2RA	ASD
Prostaglandin analogues	1564 (0.2)	1101 (0.6)	0.07
Selective serotonin reuptake inhibitors	216 (2.2)	197 (22.2)	0.20
Anticoagulants	37 (0.4)	461 (3.9)	0.06
Steroids	155 (0.48)	048 (15.9)	0.06
Year of cohort entry			
1990–1994	7839 (0.8)	33 809 (17.1)	0.59
1995–1999	36 611 (3.8)	50 456 (25.4)	0.65
2000–2004	148 408 (15.3)	62 201 (31.4)	0.39
2005–2009	327 938 (33.7)	30 027 (15.1)	0.44
2010–2018	452 485 (46.5)	21 813 (11.0)	0.85

Before weighting: counts (percentages), unless otherwise stated; after weighting: count, rounded to the nearest whole number, (percentages), unless otherwise stated.

*Pseudopopulation created by applying standardised mortality ratio weights from calendar time-specific propensity scores.

ASD, absolute standardised difference; H2RA, histamine-2 receptor antagonist; PPI, proton pump inhibitor.
calculated the number needed to harm at five and 10 years of follow-up using the Kaplan-Meier method.44

Secondary analyses
We performed four prespecified secondary analyses. The first set of analyses modelled PPI use as a time-varying variable, updated at each person-day of follow-up, to determine whether the association varies by cumulative duration of use, cumulative omeprazole equivalents, and time since treatment initiation. The cumulative duration was defined by summing the durations of each PPI prescription from cohort entry until the time of the risk set. To account for the different potencies of PPI types, we converted all PPI prescriptions to omeprazole equivalents using the WHO defined daily dose (online supplemental table 4).45 Cumulative omeprazole equivalents were then calculated by summing the dose of each prescription from cohort entry until the time of each event-defining risk set. Finally, time since treatment initiation was defined as the time between the cohort entry until the time of the risk set. HRs for these secondary exposures were estimated according to predefined categories, and cumulative duration and dose were also modelled flexibly using restricted cubic spline models.44 Second, we assessed the possibility of a drug-specific effect by stratifying the analyses by individual PPI molecules (esomeprazole, lansoprazole, omeprazole, pantoprazole, rabeprazole or combinations). Third, we investigated possible effect measure modification by age and sex by including an interaction term in the model between exposure status and these variables. Finally, we calculated stratified HRs according to approved indications at baseline and within strata of the year of cohort entry.

Sensitivity analyses
We conducted six sensitivity analyses to assess the robustness of our findings. First, given uncertainties related to the optimal length of the latency time window, we repeated the primary analysis by increasing the exposure lag period to three, five and 10 years. Second, to assess the impact of informative censoring, we did not censor patients who switched from PPIs to H2RAs and vice versa (ie, analogous to an intention-to-treat exposure definition whereby patients are considered continuously exposed to their cohort entry drug until the end of follow-up). Third, as an alternative method to investigate the impact of informative censoring, we combined the standardised mortality ratio weights with stabilised inverse probability of censoring weights to account for the competing risk of death (online supplemental method 1).46 Fourth, as certain H2RAs (such as ranitidine), have recently been found to be contaminated with N-nitrosodimethylamine (NDMA), a probable carcinogen,49 we repeated the analysis with follow-up truncated on 31 December 2017, which is before the time NDMA contaminants were found.49 Fifth, to investigate the impact of residual confounding, we repeated the primary analysis using the high-dimensional propensity score (HD-PS) approach to reweigh our study population (online supplemental method 2).46 We considered all predefined covariates listed above, along with 200 empirically selected covariates from the HD-PS algorithm for this analysis. Finally, we conducted a post hoc sensitivity analysis to address the potential impact of residual confounding using the approach proposed by Ding and VanderWeele (online supplemental method 3).51 All analyses were conducted with SAS V.9.4 (SAS Institute) and R (R Foundation for Statistical Computing, Vienna, Austria).

Patient and public involvement
We did not include patients as study participants as our study involved the use of secondary data. Patients were not involved in the design or implementation of the study. We do not plan to involve patients in the dissemination of results, nor will we disseminate results directly to patients.

RESULTS
The cohort included 973 281 new PPI users and 198 306 new H2RAs users (figure 1). These exposure groups were followed for a median (Q1, Q3) duration of 5.1 (2.7, 8.4) and 4.2 (1.9, 8.3) years, respectively, including the 1-year lag period. There were 1166 incident gastric cancer events in the PPI cohort, which generated a crude incidence rate of 23.9 (95% CI 22.5 to 25.3) per 100 000 person-years. In the H2RA cohort, there were 244 incident gastric cancer events, which generated a crude incidence rate of 25.8 (95% CI 22.6 to 29.2) per 100 000 person-years.

Table 1 shows the baseline characteristics of the PPI and H2RA exposure groups. Before weighting, PPI users were more likely to be obese, have a prior diagnosis of hypercholesterolaemia, chronic kidney disease, and H. pylori infection, but were less likely to have dyspepsia compared with H2RA users. PPI users were also more likely to have been prescribed NSAIDs, COX-2 inhibitors and SSRIs. Overall, most H2RA users entered the cohort earlier in the study period, while most PPI users entered later in the study period. After weighting, PPI users and H2RA users were well balanced on all study covariates (standardised differences below 0.10). During the follow-up period, H2RA users were more likely to have been censored due to a switch to a PPI than PPI users to a switch to H2RAs (56.2% vs 7.9%, respectively).

Table 2 shows the results of the primary and secondary analyses. While the crude HR was below the null value (HR: 0.92), the use of PPIs was associated with an increased risk of gastric cancer after adjusting for calendar year strata (HR: 1.34, 95% CI 1.14 to 1.57). In the fully adjusted model, the use of PPIs was associated with a 45% increased risk of gastric cancer, compared with the use of H2RAs (HR: 1.45, 95% CI 1.06 to 1.98). Similarly, PPI users had a higher cumulative incidence of gastric cancer than H2RA users. The weighted cumulative incidence curves diverged after two years of follow-up (or years after treatment initiation) (figure 2). The number needed to harm was 2121 and 1191 after five and 10 years after treatment initiation, respectively.

In secondary analyses, the HRs increased with cumulative duration of use, cumulative omeprazole equivalents, and time since treatment initiation (table 2). These patterns were consistent in the restricted cubic spline models (online supplemental figures 2 and 3). The median (Q1, Q3) cumulative duration of PPI use was 139 days but was variable by indication, ranging from 130 (36, 715) days for H. pylori infection to 3.0 (1.3, 6.0) years for Barrett’s oesophagus. The median (Q1, Q3) cumulative duration for H2RA users was 55 (30, 159) days, with minimal variation between the median value across the indications (range 30–92 days).

All PPI molecules were associated with elevated HRs for gastric cancer (ranging from 1.19 to 1.48; online supplemental table 5). While the point estimates increased with age (online supplemental table 6), and females had a slightly higher HR than males (online supplemental table 7) the CIs for these analyses were overlapping, which suggests no effect measure modification by age or sex. HRs were elevated among patients with gastro-oesophageal disease (HR 1.38, 95% CI 0.59 to 3.22) and peptic ulcer disease (HR 1.53, 95% CI 0.49 to 4.92) (online supplemental table 8). When stratifying by calendar year strata, there was some heterogeneity in the HRs (ranging from 0.87 to 2.55), though the CIs...
Stomach

Figure 2 Weighted Kaplan-Meier curve illustrating the cumulative incidence of gastric cancer in patients newly prescribed proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RA). Follow-up starts 1 year after cohort entry. Curves are weighted using standardised mortality ratio weights: PPI patients are given a weight of 1, while H2RA patients are upweighted by the odds of the treatment probability.

for all strata were largely overlapping (online supplemental table 9).

Figure 3 summarises the results of the primary and sensitivity analyses (shown in detail in online supplemental tables 10–14). Overall, the findings were highly consistent with those of the primary analysis, with HRs ranging between 1.26 for the intention-to-treat analysis and 2.21 for the 10-year lagged analysis. Based on a post hoc analysis, an unmeasured confounder would need to be strongly related to both the exposure and outcome to nullify the observed association (online supplemental table 15).

DISCUSSION

Principal findings

In this large population-based cohort study, we observed that new users of PPIs are at a 45% increased risk of gastric cancer (HR 1.45, 95% CI 1.06 to 1.98) compared with new users of H2RAs, with a number needed to harm of 2121 and 1191 for five and 10 years after treatment initiation, respectively (figure 4). In secondary analyses, the risk increased with cumulative duration of use, cumulative omeprazole equivalents, and time since treatment initiation. The results remained highly consistent across several sensitivity analyses that addressed different sources of bias.

Comparison with previous studies

The findings of this study are in line with those of several previous observational studies, with previous estimates ranging from 1.01 to 3.61,9–20 including one study conducted using the same database.16 However, our study used an active comparator and was explicitly designed to assess the comparative safety of PPIs versus H2RAs. This is a clinically relevant question that was not addressed by previous studies. Indeed, other studies may have overestimated the risk of PPIs on gastric cancer incidence by comparing PPI users to the general population,9–19 given that patients with gastric conditions are already at an increased risk of

| Table 2 Crude and adjusted HRs for the association between the use of PPIs and gastric cancer compared with the use of H2RAs |
|-----------|----------------|----------------|----------------|----------------|
| H2RAs (n=198 306) | 244 | 947 418 | 25.8 (22.6 to 29.2) | 1.00 | 1.00 (reference) | 1.00 (reference) |
| PPIs (n=973 281) | 1166 | 4 887 771 | 23.9 (22.5 to 25.3) | 0.92 | 1.34 (1.14 to 1.57) | 1.45 (1.06 to 1.98) |
| Cumulative duration of proton pump inhibitors | | | | | | |
| <2 years | 861 | 3 830 738 | 22.5 (21.0 to 24.0) | 0.82 | 1.21 (1.03 to 1.42) | 1.33 (0.96 to 1.83) |
| 2–3.9 years | 140 | 518 719 | 27.0 (22.7 to 31.8) | 1.16 | 1.65 (1.31 to 2.07) | 1.88 (1.33 to 2.65) |
| ≥4 years | 165 | 538 314 | 30.7 (26.2 to 35.7) | 1.47 | 2.09 (1.67 to 2.62) | 2.40 (1.68 to 3.45) |
| Cumulative omeprazole dose equivalents | | | | | | |
| <14 600 mg | 886 | 3 933 697 | 22.5 (21.1 to 24.1) | 0.83 | 1.22 (1.04 to 1.43) | 1.33 (0.97 to 1.83) |
| 14 600–28 199 mg | 147 | 502 892 | 29.2 (24.7 to 34.4) | 1.27 | 1.81 (1.45 to 2.26) | 2.05 (1.46 to 2.89) |
| ≥29 200 mg | 143 | 451 182 | 29.5 (24.7 to 34.9) | 1.39 | 2.03 (1.60 to 2.58) | 2.34 (1.62 to 3.37) |
| Time since proton pump inhibitor initiation | | | | | | |
| <2 years | 293 | 892 171 | 32.8 (29.2 to 36.8) | 0.94 | 1.63 (1.17 to 2.29) | 1.25 (0.69 to 2.28) |
| 2–3.9 years | 334 | 1 404 884 | 23.8 (21.3 to 26.5) | 0.81 | 1.24 (0.92 to 1.67) | 1.32 (0.79 to 2.19) |
| ≥4 years | 539 | 2 590 716 | 20.8 (19.1 to 22.6) | 0.98 | 1.26 (1.01 to 1.56) | 1.82 (1.09 to 3.02) |

*Crude incidence rate per 100 000 person-years.
†Weighted using standardised mortality ratio weights.
H2RA, histamine-2 receptor antagonist; PPI, proton pump inhibitor.
gastric cancer. Thus, our study represents an important addition by minimising potential confounding by indication through the use of an active comparator. Beyond this, there were other significant limitations in previous studies, such as the inclusion of prevalent users, which may have introduced survival bias and confounding, important time-related biases such as immortal-time bias and time-window bias, and failure to account for cancer latency. In this context, these conclusion-altering biases can lead to spurious and exaggerated associations, limiting the conclusions drawn from previous studies. We attempted to address these limitations through careful study design and numerous sensitivity analyses.

An association between PPI use and gastric cancer is biologically plausible and may be mediated by several different factors. PPIs are known to cause hypergastrinaemia (elevated secretion of gastrin from G-cells), as gastrin secretion is inhibited by acidity. Gastrin is considered a potent growth factor, which may induce hyperplasia. Second, long-term PPI use may lead to changes in the gut microbiome, including reduced microbial diversity. Changes to the gut microbiota have been shown to contribute to an increased risk of gastric cancer. Third, although disputed, chronic suppression of acid secretion by PPIs may be associated with atrophic gastritis (chronic inflammation of the stomach mucous membrane), which is one of the main precursors to gastric cancer; although not all studies have reported this association. Taken together, these factors may contribute to gastric cancer development among PPI users. Finally, given that H2RAs decrease acid suppression by blocking the effects of histamine only, they are less effective than PPIs, and are associated with lower gastrin levels (ie, less likely to induce hypergastrinaemia). Thus, from a theoretical biological perspective, H2RAs are less likely to be associated with an increased risk of gastric cancer than PPIs.

Strengths and limitations of this study
This study has several strengths. First, to our knowledge, this is the largest study with the longest follow-up period conducted to date. Given the number of gastric events observed in our cohort, this study was sufficiently powered to address the long-term safety of PPIs and assess the risk among important subgroups, including by duration of use. Second, we restricted the cohort to new drug users, eliminating biases associated with the inclusion of prevalent users. Third, the comparator group consisted of patients prescribed H2RAs, an active comparator that likely minimised confounding by indication. Moreover, the use of propensity score-weighted methods ensured an excellent balance of all baseline confounders. Finally, our results remained highly consistent across several sensitivity analyses.

PPIs and Gastric Cancer

PPI	n = 973,281
1990 - 2019	
Median follow-up: 5.1 years	
1,166 gastric cancer events	IR = 23.9 per 100,000 person-years

H2RA	n = 198,306
Median follow-up: 4.2 years	
244 gastric cancer events	IR = 25.8 per 100,000 person-years

Compared with H2RAs, PPIs are associated with a 45% increased risk of gastric cancer

NNH @ 5 years: 2,121
NNH @ 10 years: 1,191
This study also has some limitations. First, prescriptions in the CPRD are written by general practitioners and not specialists, which may lead to some exposure misclassification. However, in the UK, general practitioners are responsible for the long-term care of most chronic conditions, including gastric disorders; thus, we expect this misclassification to have been minimal. Similarly, it was not possible to directly assess treatment adherence, although this possible source of exposure misclassification is unlikely to be differential between the exposure groups. Second, PPIs and H2RAs are available over the counter in the UK, potentially leading to some missing prescription information. However, there is a financial incentive for patients requiring long-term PPI or H2RA use to receive prescriptions from their general practitioner rather than purchasing drugs over the counter. Third, it was not possible to stratify on the gastric cancer type (cardia vs non-cardia) as this information is not consistently recorded in the CPRD. Fourth, some secondary confounders, including race and ethnicity. Moreover, there may be some residual confounding from imperfectly captured covariates, like H. pylori infection, which is not routinely tested for by general practitioners. Reassuringly, results from the HD-PS model, which considered an additional 200 empirically selected covariates, which may be proxies for unknown or unmeasured confounders, were highly consistent with the primary analysis. Moreover, given the strength of the observed association, a post-hoc analysis showed that any unmeasured confounder would need to be strongly associated with both the exposure and outcome to nullify the observed results.

In summary, the results of this large real-world study suggest that patients newly treated with PPIs may be at an increased risk of gastric cancer compared with patients newly treated with H2RAs, although the absolute risk remains low. While PPIs have established clinical benefits when used according to evidence-based guidelines, this study highlights the need for physicians to regularly reassess the necessity of ongoing treatment. This is especially important in patients who are prescribed PPIs in the long term and for patients without an evidence-based indication for use.

Acknowledgements DA is the recipient of a Varian Canada Graduate Scholarship from the Canadian Institutes of Health Research. EGM holds a Chercheur-Boursier award from the Fonds de Recherche du Québec-Santé. MES holds a New Investigator Salary Award from the Canadian Institutes of Health Research and is the recipient of the Canadian Institutes of Health Research Canada Research Chair. Tier 2. SS is the recipient of the Distinguished James McGill Professorship award. LA holds a Chercheur-Boursier Senior Award from the Fonds de Recherche du Québec-Santé and is the recipient of a William Dawson Scholar Award from McGill University.

Contributors All authors conceived and designed the study. LA acquired the data. DA and LA did the statistical analyses. MES and SS provided statistical expertise. All authors analysed and interpreted the data. EGM and ANB provided clinical expertise. DA wrote the manuscript, and all authors critically revised the manuscript. All authors approved the final version of the manuscript and agree to be accountable for the accuracy of the work. LA supervised the study and is the guarantor.

Funding Foundation Scheme grant from the Canadian Institutes of Health Research (FDN-143328).

Competing interests SS participated in advisory meetings or as a guest speaker for Astara Biotherapeutics, Boehringer-Ingelheim, Bristol-Myers-Squibb, Merck and Pfizer, all unrelated to this study. LA served as a consultant for Janssen and Pfizer for work unrelated to this study. The other authors have no financial relationships with any organisations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.

Patient consent for publication Not required.

Ethics approval The study protocol was approved by the Independent Scientific Advisory Committee of the CPRD (protocol number 20_076) and by the Research Ethics Board of the Jewish General Hospital.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement No data are available. No additional data available.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs Alan N Barkun http://orcid.org/0000-0002-1798-5526 Samy Suisse http://orcid.org/0000-0002-1281-5296 Laurent Azoulay http://orcid.org/0000-0001-5162-3556

REFERENCES
1. Tosetti C, Nannini L. Use of proton pump inhibitors in general practice. World J Gastroenterol 2017;8:180–5.
2. Nehra AK, Alexander JA, Loftus CG, et al. Proton pump inhibitors: review of emerging concerns. Mayo Clin Proc 2018;93:240–6.
3. Luo H, Fan Q, Xiao S, et al. Changes in proton pump inhibitor prescribing trend over the past decade and pharmacists’ effect on prescribing practice at a tertiary hospital. BMC Health Serv Res 2018;18:537.
4. Abrahami D, McDonald EG, Schnitzer M, et al. Trends in acid suppressant drug prescriptions in primary care in the UK: a population-based cross-sectional study. BMJ Open 2020;10:e041529.
5. Farrell R, Potte K, Thompson V, et al. Deprescribing proton pump inhibitors: evidence-based clinical practice guideline. Can Fam Physician 2017;63:354–6.
6. Strand DS, Kim D, Peura DA. 25 years of proton pump inhibitors: a comprehensive review. Gut Liver 2017;11:27–37.
7. McDonald EG, Milligan J, Fenrette C, et al. Continuous proton pump inhibitor therapy and the associated risk of recurrent Clostridium difficile infection. JAMA Intern Med 2015;175:784–91.
8. Willems RPL, van Dijk K, Ket JCE, et al. Evaluation of the association between gastric acid suppression and risk of intestinal colonization with multidrug-resistant microorganisms: a systematic review and meta-analysis. JAMA Intern Med 2020;180:561–71.
9. Peng Y-C, Huang L-R, Lin C-L, et al. Association between proton pump inhibitors use and risk of gastric cancer in patients with GERD. Gut 2019;68:374–8.
10. Lai S-W, Lai H-C, Lin C-L, et al. Proton pump inhibition and risk of gastric cancer in a case-control study. Gut 2019;68:765–7.
11. Cheung KS, Chan EW, Wong AYS, et al. Long-term proton pump inhibitors and risk of gastric cancer development after treatment for Helicobacter pylori: a population-based study. Gut 2018;67:28–35.
12. Niikura R, Hayakawa Y, Hirata Y, et al. Long-term proton pump inhibitor use is a risk factor of gastric cancer after treatment for Helicobacter pylori: a retrospective cohort analysis. Gut 2018;67:1908–10.
13. Brusselers N, Wahlin K, Engstrand L, et al. Maintenance therapy with proton pump inhibitors and risk of gastric cancer: a nationwide population-based cohort study in Sweden. BMJ Open 2017;7:e017739. doi:10.1136/bmjopen-2017-017739.
14. Poulsen AH, Christiansen S, McLaughlin JK, et al. Proton pump inhibitors and risk of gastric cancer: a population-based cohort study. Br J Cancer 2009;100:1563–7.
15. Tamim H, Duranceau A, Chen L-Q, et al. Association between use of acid-suppressive drugs and risk of gastric cancer. A nested case-control study. Drug Saf 2008;31:675–84.
16. García Rodríguez LA, Lagergren J, Lindblad M. Gastric acid suppression and risk of oesophageal and gastric adenocarcinoma: a nested case control study in the UK. Gut 2006;55:1538–44.
17. Liu R, McNemar U, Chon W, et al. Use of proton pump inhibitors and histamine-2 receptor antagonists and risk of gastric cancer in two population-based studies. Br J Cancer 2020;123:307–15.
18. Lee JK, Merchant SA, Schneider IL, et al. Proton pump inhibitor use and risk of colorectal, liver, and pancreatic cancers in a community-based population. Am J Gastroenterol 2020;115:706–15.
19. Seo SI, Park CH, You SC, et al. Association between proton pump inhibitor use and gastric cancer: a population-based cohort study using two different types of nationwide databases in Korea. Gut 2021;70:2066–75.
