Influence of the postoperative inflammatory response on cognitive decline in elderly patients undergoing on-pump cardiac surgery: a controlled, prospective observational study

Endre Nemeth 1*, Katalin Vig 2, Kristof Racz 1, Kinga B. Koritsanszky 1, Klara I. Ronkay 1, Fumiko P. Hamvas 1, Csaba Borbély 3, Ajandek Eory 4, Bela Merkely 2 and Janos Gal 1

Abstract

Background: The role of non-infective inflammatory response (IR) in the aetiology of postoperative cognitive dysfunction (POCD) is still controversial. The aim of this controlled, prospective observational study was to assess the possible relationship between the grade of IR, defined by procalcitonin (PCT) changes, and development of POCD related to cardiac surgery.

Methods: Forty-two patients, who were ≥ 60 years of age and scheduled for elective cardiac surgery, were separated into the low inflammatory (LIR) and high inflammatory (HIR) response groups based on their PCT levels measured on the first postoperative day. A matched normative control group of 32 subjects was recruited from primary care practice. The PCT and C-reactive protein (CRP) levels were monitored daily during the first five postoperative days. The cognitive function and mood state were preoperatively tested with a set of five neurocognitive tests and two mood inventories and at the seventh postoperative day. The Reliable Change Index modified for practice (RCIp) using data from normative controls was applied to determine the significant decline in test performance.

Results: The LIR (n = 20) and HIR (n = 22) groups differed significantly in the PCT (p < 0.001) but not in the CRP time courses. The incidence of POCD at the first postoperative week was 35.7% in the cohort. The LIR and HIR groups did not vary in the RCIp Z scores of neurocognitive tests and frequencies of POCD (7 vs 8 cases, respectively, p > 0.05). Additionally, there was no difference in the mood states, anxiety levels and perioperative parameters known to influence the development of POCD.

Conclusions: In this study, the magnitude of the non-infective inflammatory response generated by on-pump cardiac surgery did not influence the development of POCD in the early postoperative period in elderly patients.

Keywords: Cardiac surgery, Cardiopulmonary bypass, Procalcitonin, C-reactive protein, Postoperative cognitive dysfunction, Reliable Change Index
Background
Postoperative cognitive dysfunction (POCD) is known to be an important complication of cardiac and non-cardiac surgeries with marked consequences for the quality of life, work ability and intermediate-term mortality [1–4]. POCD can be characterized by a combined or specific impairment of the working memory, executive function, attention or psychomotor speed [2, 5]. The manifestation of POCD seems to be independent of age; however, it varies among age groups in both the incidence and course [5, 6]. While young and middle-aged patients experience transient cognitive decline, which recovers within a short period, the rate of POCD is up to 50% higher in elderly patients for whom the symptoms are persistent from weeks to months [5–7]. Despite the relevant amount of data published in this field in the last two decades, the explicit incidence of POCD remains debated [8]. This is due to methodological diversities in the definition of POCD or the neurocognitive tests and statistical analyses used [1, 8–10]. Hence, the interpretations of predictors and risk factors of POCD are also unclear for the same reasons. However, advanced age and the extent of surgical trauma are the most established of all investigated factors [5, 11].

The exact pathogenesis of POCD is unknown. Nevertheless, it can be supposed that POCD is a result of interactions between preoperative (patient-related), perioperative and hospital-associated factors [2, 5]. There is a strong evidence that inflammation plays a key role in the development of cognitive decline and dementia in the elderly. Elevated C-reactive protein (CRP) and interleukin-6 (IL-6) were found to be predictors of these in the general population [12–15]. The potential causative factors of POCD, surgical trauma generated inflammatory response and blood-brain barrier (BBB) disruption have been the subject of several clinical investigations in cardiac and non-cardiac surgeries in the past [5, 16, 17]. These studies confirmed a definite inflammatory response and BBB injury after cardiac surgery in both animal and human investigations [5, 16–18]. However, the direct relationship between inflammatory response and POCD remains controversial [2, 19].

Procalcitonin (PCT) is a widely used biomarker in the diagnosis and antibiotic treatment of sepsis and its quantification has become the part of clinical practice in this field in the last 15 years [20, 21]. Nonetheless, PCT has also been described to be an appropriate indicator of non-infective postoperative inflammatory response [22–24], and it may have prognostic value for some complications related to cardiac surgery [24–26].

The aim of this controlled, prospective observational study was to assess the association between different grades of postoperative inflammatory response characterized by levels of PCT and the frequency of POCD after on-pump cardiac surgery.

Methods
Subjects
Patients who were aged ≥60 years and scheduled for elective on-pump cardiac surgery were enrolled in the cardiac surgery group. To create an age-matched, normative control group, subjects aged ≥60 years were recruited from primary care practice. The exclusion criteria in the cardiac surgery group, as well as in the normative controls, were significant dementia (Mini Mental State Examination score < 24), a history of cerebrovascular disease, intracranial pathology or psychiatric disease, regular treatment with benzodiazepines or anti-inflammatory drugs (e.g., steroids or non-steroids), elevated baseline PCT or CRP levels, severe left ventricle dysfunction (ejection fraction < 35%) or any kind of organ failure. Surgery or hospitalization within the last 12 months was an additional exclusion criterion in the control group.

Anaesthetic procedure
Anaesthesia was performed using a midazolam bolus 0.05 mg/kg intravenously (IV), sufentanil bolus 0.5 μg/kg IV, propofol bolus 1 mg/kg IV, or atracurium bolus 0.5 mg/kg IV for induction and then propofol 3–5 mg/kg/h continuous IV and sufentanil boluses for maintenance of anaesthesia, including the cardiopulmonary bypass (CPB) period. Intraoperative monitoring of patients was based on anaesthesia standards extended with arterial blood pressure, central venous pressure, nasopharyngeal temperature and a bispectral index (BIS, Covidien LLC, Mansfield, MA USA) monitor. The depth of anaesthesia was controlled in range 45–60 of BIS for the entire surgery. CPB was provided by a roller-pump (MAQUET HL 20, MAQUET GmbH & Co. KG, Rastatt, Germany) and membrane oxygenator (MAQUET Quadrox, MAQUET GmbH & Co. KG, Rastatt, Germany). The components of CPB prime were 1200 mL of Ringer lactate, 100 mL of mannitol, and 60 mL of sodium bicarbonate 8.4%. The non-pulsatile flow rate of CPB was maintained in the range of 2.2–2.4 L/min/m². The mean arterial blood pressure (MAP) was controlled with noradrenaline or glyceryl trinitrate to retain the target MAP of 60–80 mmHg during CPB. Clinical management of anaesthesia and CPB was based on institutional standards, including the temperature, metabolic targets (α-stat acid-base management) and transfusion triggers.

Continuous propofol IV infusion was administered as postoperative sedation during the mechanical ventilation period in the intensive care unit (ICU). Postoperative analgesia consisted of morphine sulphate IV boluses
adjusted to the patients’ requirements and 1 g of para-
cetamol IV infusion (every 6 h as needed). The treat-
ment of study patients in the ICU and cardiothoracic
surgical ward did not involve benzodiazepine.

Neuropsychological assessment
The assessment of neurocognitive functions was per-
formed on the day before surgery and the seventh post-
operative day in the cardiac surgery group by the
following test battery: Mini Mental State Examination
(MMSE; dementia screening); Trail Making Tests A
and B (TMA and TMB, respectively; executive func-
tions: organized visual search, planning, attention, set
shifting, cognitive flexibility, and divided attention);
Digit Symbol Test (DS; attention, psychomotor speed,
coding task, and visual short-term memory); Stroop
Colour and Word Test (cognitive flexibility and control,
as well as resistance to interference). The Beck Depres-
sion Inventory (BDI; validated in native language [27])
and State-Trait Anxiety Inventory (STAI; validated in native
language [28]) were used to examine mood states and
anxiety levels at the same time points as the neurocogni-
tive assessment. BDI was only performed preoperatively.
Subjects in the normative control group were examined
and retested after a time interval of 7 days with the same
test battery and protocol. All tests were performed in a
specified room separated from the cardiothoracic surgical
ward and evaluated by one clinical psychologist who was
blinded to the inflammatory status of the patients.

After the collection of test-retest data for each individual,
the within-subject change in the performance on neuro-
cognitive tests was measured using the Reliable Change
Index modified for practice (RCIp) [29]:

\[
\text{RCIp Z score} = \frac{(X_2 - X_1) - \text{Practice effect}}{SE_{\text{diff}}} \tag{1}
\]

\[
SE_{\text{diff}} = \sqrt{[2(SE_m)^2]} \tag{2}
\]

\[
SE_m = SD_1 \sqrt{1 - r_{xx}} \tag{3}
\]

where \(r_{xx} \) is test-retest reliability coefficient, \(SD_1 \) is the
standard deviation of the baseline score (normative
controls), \(SE_m \) is the standard error of measurement
(normative controls), \(SE_{\text{diff}} \) is the standard error of the
difference (normative controls) [29], \(X_2 \) is the postopera-
tive test score and \(X_1 \) is the preoperative test score
(cardiac surgery patients). The practice effect was com-
pared by changes in the mean scores over the test-
retest time interval (normative controls). A significant
change was considered for an RCIp Z score \(\geq 1.96 \)
(\(\alpha = 0.05 \)) in all neurocognitive tests, including the
MMSE. POCD was defined by a significant decline in
\(\geq 2 \) scores difference in the MMSE was used to specify the
threshold of significance in the comparison of baseline
cognitions in the three groups [30, 31]. MMSE scores
between 28 and 30 were considered normal cognition,
and the range of 24–27 was considered mild cognitive
impairment [32].

Measurement of inflammatory markers
Venous blood was collected to measure the PCT and
CRP levels at the following six pre-specified time
points: before the operation and then every 24 h
during the first five postoperative days. Blood samples
were analysed using the electrochemiluminescence im-
unoassay (Elecsys BRAHMS PCT, Roche Diagnostics
GmbH, Mannheim, Germany) and particle enhanced
turbidimetric assay (COBAS INTEGRA C-Reactive
Protein Latex, Roche Diagnostics GmbH, Mannheim,
Germany) techniques to quantify the PCT and CRP
levels, respectively. Concentrations greater than
0.5 \(\mu \)g/L PCT and 5.0 mg/L CRP were considered ele-
vated levels according to their normal values. The
inflammatory response was defined as “low” for
PCT \(\leq 0.5 \) \(\mu \)g/L or “high” for PCT > 0.5 \(\mu \)g/L mea-
sured on the first postoperative day (POD).

Statistical analysis
Continuous variables were analysed with the Shapi-
ro-Wilk test for normality. Descriptive statistics are pre-
- sented as the mean ± standard deviation for normally
distributed data and the median (interquartile range) for
non-normally distributed data. The unpaired \(t \) test and
Mann-Whitney \(U \) test were used for comparisons of
group means or medians. The differences in observed
frequencies were determined by the \(\chi^2 \) test and Fischer’s
exact test. Relationships between variables were assessed
using the Spearman correlation test. To justify the sam-
ple size of this study, we calculated the statistical power
of the difference between the two inflammatory re-
sponses post hoc, which was 0.7. Statistical significance
was defined at \(p < 0.05 \) by all tests. Analysis was per-
formed with IBM® SPSS Statistics version 23.0 (IBM®
Armonk, NY, USA).

Results
Seventy-four elderly patients with a mean age of 68 ± 6 years
were recruited in the study. The details of patient character-
istics and perioperative parameters can be seen in Table 1
and Table 2. The normative controls (\(n = 32 \)) and patients
in the cardiac surgery group (\(n = 42 \)) were similar in base-
line characteristics, including the age, gender and education
(Table 1). Test-retest data of the normative controls used to
calculate the RCIp Z scores are summarized in Table 3. We
found strong test-retest reliability with reliability coeffi-
cients between 0.60 and 0.84. One of five cognitive tests
(i.e., TMB) was not sensitive to practice.
Table 1 Baseline neurocognitive and social characteristics of the study population and normative control group

	Normative controls (n = 32)	Study subjects (n = 42)
Age (year)	68 ± 7	69 ± 6
Gender (n) F / M	18 / 14	20 / 22
Education (year)	14 (9–16)	12 (11–12)
MMSE (score)	29 (28–30)	28 (27–28)

Data are presented as the mean ± standard deviation, median (interquartile range) and number of patients.

a unpaired *t* test

b χ² test and Fischer’s exact test

a Mann-Whitney U test, F female, M male, and MMSE Mini Mental State Examination. There is no significant difference between normative controls and study subjects regarding age, gender and education

b Based on the a priori criterion of a significant difference in MMSE scores (i.e., ≥ 2 scores [30, 31]), the median MMSE scores do not differ in the normative controls and study subjects. Additionally, there is no difference in the baseline cognition between the two groups.

Based on the a priori definition, cardiac surgery patients were separated into the low inflammatory response (LIR, n = 20) and high inflammatory response (HIR, n = 22) groups. While the PCT peaked at a level of 7.71 (3.90–21.52) mg/L on POD1 and then returned to 0.87 (0.48–2.50) mg/L by POD5 in the HIR group, it remained within the normal range (PCT ≤ 0.5 mg/L) with a maximum value of 0.18 (0.11–0.26) mg/L in the LIR group throughout the postoperative period (Fig. 1a). CRP reached its highest serum levels between POD2 and POD3 in both the LIR and HIR groups (166.5 (154.6–210.7) mg/L vs 138.1 (115.5–187.6) mg/L, *p* = 0.05, respectively) and did not show significant differences between the two groups during the first five postoperative days (Fig. 1b). The white blood cell (WBC) count had a significantly higher peak value on POD1 in the HIR group compared to the LIR group: 15.0 (11.9–19.5) G/L vs 12.8 (10.8–14.5) G/L, *p* = 0.012, respectively (Fig. 1c), and it showed a strong correlation with the PCT level on the first postoperative day in the HIR group (*r* = 0.67, *p* = 0.001). We did not find a correlation between the peak PCT and peak CRP values in either the HIR or LIR group (*r* = 0.10, *p* = 0.67 and *r* = −0.42, *p* = 0.06, respectively). There were no differences between the LIR and HIR groups in the preoperative statin use, complexity of cardiac surgery, aorta cross-clamp time and CPB time (Table 2).

Seventy-four percent of cardiac surgical patients (n = 31) had a significantly decreased performance in at least one cognitive test according to their RCIp Z scores 1 week after surgery. Cognitive flexibility and control were the most vulnerable tasks to cardiac surgery, as demonstrated by the Stroop word-colour task results. Additionally, 38.1% of patients (n = 16) had a significant decline in this test. Based on the a priori definition of the POCD (i.e., a significant decline at least in two neurocognitive tests), 15 of 42 patients (35.7%) met the criteria of POCD. The RCIp Z scores of each neurocognitive test were similar in the two inflammatory response groups (Fig. 2). Hence, the frequencies of POCD in the LIR group did not vary from that in the HIR group.

Table 2 Patient characteristics and perioperative clinical data in the low and high inflammatory response groups

	LIR group n = 20	HIR group n = 22
Preoperative parameters		
Age (year)	68 ± 6	69 ± 7
Gender (n) F / M	9 / 11	11 / 11
Body mass index (kg/m²)	29.4 (24.7–33.0)	27.2 (25.4–28.8)
Education (year)	11 (11–12)	12 (11–12)
BDI (score)	9 (5.3–14.3)	8.0 (5.0–10.0)
STAI-state (score)	41.9 ± 10.3	41.2 ± 11.4
EuroSCORE (%)	3.9 (2.8–5.7)	4.3 (2.7–7.6)
HTN (n)	15	14
DM (n)	5	6
CAD (n)	8	9
PVD (n)	3	2
COPD (n)	3	4
Left ventricle EF (%)	55 (55–67)	55 (50–60)
Creatinine (µmol/L)	74.3 ± 12.6	84.0 ± 21.9
Antihypertensives (n)	15	14
Statin use (n)	11	5
Antiplatelet drug (n)	11	6
Type of surgery		
CABG (n)	6	5
Single valve (n)	11	13
Combined (n)	3	4
Intraoperative parameters		
Aorta cross-clamp time (minute)	67 ± 22	64 ± 20
CPB time (minute)	92 ± 23	91 ± 22
Rewarming time (minute)	18 (14–22)	17 (10–21)
CPB temperature (°C)	35.0 (34.7–35.4)	35.2 (34.7–35.5)
Operation time (minute)	193 ± 27	181 ± 41
Bispectral index²	44.3 ± 6.0	43.1 ± 5.6
Propofol (mg/kg/h)	4.1 ± 1.5	4.3 ± 1.3
Sufentanyl (µg/kg/h)²	0.27 (0.2–0.35)	0.28 (0.21–0.3)

The results are presented as the mean ± standard deviation, median (interquartile range) and number of patients

a unpaired *t* test

b χ² test and Fischer’s exact test

a Mann-Whitney U test. LIR low inflammatory response, HIR high inflammatory response, F female, M male, BDI Beck Depression Inventory, STAI State-Trait Anxiety Inventory, HTN hypertension, DM diabetes mellitus, CAD coronary artery disease, PVD peripheral vascular disease, COPD chronic obstructive pulmonary disease, EF ejection fraction, CABG coronary artery bypass graft, and CPB cardiopulmonary bypass. There are no significant differences between the two groups regarding all parameters listed in this table.

Severity of cardiac surgical patients (n = 31) had a significantly decreased performance in at least one cognitive test according to their RCIp Z scores 1 week after surgery. Cognitive flexibility and control were the most vulnerable tasks to cardiac surgery, as demonstrated by the Stroop word-colour task results. Additionally, 38.1% of patients (n = 16) had a significant decline in this test. Based on the a priori definition of the POCD (i.e., a significant decline at least in two neurocognitive tests), 15 of 42 patients (35.7%) met the criteria of POCD. The RCIp Z scores of each neurocognitive test were similar in the two inflammatory response groups (Fig. 2). Hence, the frequencies of POCD in the LIR group did not vary from that in the HIR group.
observed at the first postoperative week (7 cases vs 8 cases, respectively). We did not find differences between the LIR and HIR groups in the preoperative BDI scores; pre- and postoperative levels of anxiety; and intraoperative parameters, including the CPB time, body temperature on-CPB, rewarming time on-CPB, operation time, BIS values, propofol and sufentanyl requirements (Table 2).

This study was designed to explore whether the grade of the inflammatory response in the perioperative period [2]. However, our comparative analysis did not show differences in DM and PVD between the LIR and HIR groups. These results are similar to the findings of previous studies [36, 45], supporting that an evolving complex inflammatory response to stimuli of CPB surgery is primarily determined by the individual reactivity of cytokines and the proinflammatory-anti-inflammatory balance. In the present study, we found a completely different behaviour of the CRP level compared to PCT. The results published elsewhere show that CRP increases after cardiac surgery irrespective of the extent of the surgery or presence of SIRS [24, 26]. This fact makes the interpretation of the CRP time course

Table 3: Statistical parameters of the Reliable Change Index modified for practice measured in normative controls

Cognitive test	\(r_{xx} \)	\(PE \)	\(SE_{diff} \)
MMSE	0.66	0.5***	0.9
TMA	0.71	-7.6**	14.0
TMB	0.60	-9.0	29.1
DS	0.81	2.5*	6.1
Stroop W	0.66	1.6***	5.7
Stroop C	0.84	3.0***	4.8
Stroop CW	0.80	5.1***	5.2

\(r_{xx} \) test-retest reliability coefficient, \(PE \) practice effect, and \(SE_{diff} \) standard error of the difference. The significance of PE was tested using paired t test. * \(p < 0.05; \) ** \(p < 0.01; \) *** \(p < 0.001; \) MMSE Mini Mental State Examination, TMA Trail Making Test A, TMB Trail Making Test B, DS Digit Symbol test, Stroop W Stroop word task, Stroop C Stroop colour task and Stroop CW Stroop colour-word task.
Fig. 1 (See legend on next page.)
uncertain. Our results agree with these findings because the peak CRP did not correlate with peak PCT, and it was markedly elevated in all subjects of the cohort and did not vary between the LIR and HIR groups during the postoperative period. Interestingly, the WBC count did correlate with PCT rather than with CRP in the HIR group. Hence, our data confirm that PCT follow-up is appropriate to discriminate the grade of the non-infective inflammatory response related to cardiac surgery.

Role of the inflammatory response in the development of POCD after cardiac surgery

The occurrence of POCD was 35.7% in this study based on RCIP analysis [29] of neurocognitive tests and the definition of decline in at least two tests. Instead of frequently used fixed cut-off methods (i.e., 20% or 1–2 SD change) [8, 29], we applied RCIP involving the age-matched healthy non-surgical control group to determine the incidence of POCD. RCIP employs statistical change criteria—corrected for measurement error and mean practice effect—to estimate the valid change of performance on a neurocognitive test [8, 29, 46]. There are only a few comparable publications in the literature that apply statistical change criteria methods in a cardiac surgery setting [29, 47–49]. The observed POCD incidence in our elderly group of patients is in line with their findings (36 vs 33–43%, respectively), which supports the conclusion of a recent investigation of Raymond et al. [29] Analyses that use statistical change criteria can considerably contribute to valid estimation of POCD as they minimize the risk of both overestimation and underestimation of decline in the test performance [8, 29].

![Fig. 1 Changes in the procalcitonin (a), C-reactive protein (b) and white blood cell count (c) levels during the postoperative period. A continuous line demonstrates low inflammatory response (LIR) and a dotted line shows the high inflammatory response (HIR) group. Spots and error bars represent the medians and 95% confidence intervals. Significant differences between the LIR and HIR groups are demonstrated with asterisks: *p < 0.001, Mann-Whitney U test](See figure on previous page.)

![Fig. 2 RCIP Z scores of neurocognitive tests. Z score means are demonstrated with a blank bar in the low inflammatory response group and striped bar in the high inflammatory response group. Error bars represent the standard error of the mean. The limit of the significant decline in performance is indicated by a continuous line at RCIP Z score of −1.96. None of the neurocognitive tests showed a significant decline at the group level. The RCIP Z scores were similar in the two inflammatory response groups, except the Stroop word task, based on the Mann-Whitney U test. Significant differences between the LIR and HIR groups are demonstrated with asterisks: *p < 0.05. MMSE = Mini Mental State Examination; TMA = Trail Making Test A; TMB = Trail Making Test B; DS = Digit Symbol test; Stroop W = Stroop word task; Stroop C = Stroop colour task and Stroop CW = Stroop colour-word task](See figure on previous page.)
The main result of this study was that a direct relationship has not been revealed between the degree of PCT elevation and decline in any neurocognitive test or early POCD. The secondary analysis of our data validated this result as perioperative mood states, and predisposing factors of POCD [2, 6, 47, 50] were similar in the two inflammatory response groups defined by the PCT levels (Tables 2 and 4). Furthermore, we did not observe postoperative complications that affect cognitive function. Numerous investigations have focused on the link between proinflammatory cytokines and cognitive dysfunction related to cardiac surgery in the last two decades [2, 17]. Using animal models, Cibelli et al. [51] and Terrando et al. [52] described a potential link between systemic and hippocampal inflammation through the TNF-α, IL-1β and NF-κB pathways, and the impairment of memory as a consequence of the former processes. Jungwirth et al. also confirmed significant cerebral expression of NF-κB in the hippocampus after CPB surgery in a high-quality randomized controlled animal study; however, it was not associated with the neurocognitive outcome [53]. Clinical trials applying arbitrary cut-off criteria for POCD definition in either the cardiac or non-cardiac surgery setting concluded conflicting results on the relationship between pro-inflammatory cytokines and POCD [54–56]. In a recent investigation of elective coronary artery bypass patients, Hudetz et al. demonstrated that short- and medium-term cognitive dysfunction was related to elevated postoperative IL-6 and CRP levels [57]. Their results were based on the POCD definition involving data from the normative population and Z score [57]. By contrast, most recently published large randomized clinical trials have conflicting results on the incidence of POCD or postoperative delirium when they used pharmacological anti-inflammatory treatment (i.e., dexamethasone or methylprednisolone) during non-cardiac and cardiac surgery [19, 58, 59]. This result might strengthen earlier assumptions that factors other than the grade of the inflammatory response play key role in the pathogenesis of POCD [53, 56]. Our results support this concept because we could clearly demonstrate that the incidence of POCD measured in this study does not depend on the magnitude of the inflammatory response.

Limitations

Our investigation has several limitations. First, the study was conducted in a single centre, which influenced the sample size over the study period. The description of the postoperative inflammatory response was based on the PCT, CRP and WBC count measurements, and we did not involve pro-inflammatory cytokines in the analysis for further specifications. Our study did not strictly adhere to the Statement of Consensus on Assessment of Neurobehavioural Outcomes after Cardiac Surgery [60] in terms of the applied neurocognitive tests. This study was designed for the short interval outcome measure that aimed to assess the early changes in cognitive function after cardiac surgery, which restricts the interpretation of our results. Considering the post hoc statistical power of this observational study, our presented results are preliminary results, while these data are not confirmed by further investigations.

Conclusions

Despite the significant difference in the magnitude of the non-infective inflammatory response induced by CPB surgery, the incidence of POCD was similar in the LIR and HIR groups of our elderly patients when POCD was measured in a strict methodological framework. The role of the inflammatory response in the pathogenesis of POCD needs to be cleared by further investigations.

Abbreviations

BBB: Blood-brain barrier; BDI: Beck Depression Inventory; CPB: Cardiopulmonary bypass; CRP: C-reactive protein; DM: Diabetes mellitus; DS: Digit Symbol Test; HIR: High inflammatory response; ICU: Intensive Care Unit; IL-6: Interleukin-6; IV: Intravenously; LIR: Low inflammatory response; Map: Mean arterial pressure; MMSE: Mini Mental State Examination; PCT: Procalcitonin; POCD: Postoperative cognitive dysfunction; POD: Postoperative day; PVD: Peripheral vascular disease; RCIp: Reliable Change Index modified for practice; rM: Test-retest reliability coefficient; SD: Standard deviation; SE_{eff}: Standard error of the difference; SE_{m}: Standard error of measurement; SIRS: Systemic inflammatory response syndrome; STAI: State-trait anxiety inventory; TMA: Trail-Making A; TMB: Trail-Making B; WBC: White blood cell.

Table 4 Postoperative outcome parameters in the low and high inflammatory response groups

Parameter	LIR group (n = 20)	HIR group (n = 22)
Ventilation time (hour)^a	5.3 (4.4–8.3)	5.7 (3.3–7.9)
Transfused patients (n)^b	6	6
PRC (unit)^a	0 (0)	0 (0–1)
Respiratory failure (n)^b	3	2
New onset AF (n)^b	5	4
Acute kidney injury (n)^b	2	5
STAI-state (score)^c	36.7 ± 8.8	38.2 ± 8.1
POCD (n)^b	7	8
Length-of-ICU-stay (hour)^a	24 (24–46)	23 (22–60)
Length-of-hospital-stay (day)^a	10 (8–17)	11 (9–13)
In-hospital death (n)	0	0

Data are presented as the median (interquartile range), number of patients and mean ± standard deviation

^aMann-Whitney U test

^bunpaired t test; LIR low inflammatory response, HIR high inflammatory response, PRC packed red cells, AF atrial fibrillation, STAI State-Trait Anxiety Inventory, POCD postoperative cognitive dysfunction, and ICU intensive care unit. There are no significant differences between the two groups regarding all parameters listed in this table.
Acknowledgements
None.

Funding
None.

Availability of data and materials
The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
All authors have made substantial contributions to the conception and design of the study, EN, KV, KR, KBK, KIR, FPH, CB and AE participated in the acquisition, analysis and interpretation of data. All authors have been involved in the drafting and review of the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
This study was conducted in accordance with the Declaration of Helsinki and approved by the Regional and Institutional Committee of Science and Research Ethics, Semmelweis University, Budapest, Hungary. Number of ethical approval: No: 99/2012. Date of approval: 13.09.2012. Written informed consent was obtained from all participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Anaesthesia and Intensive Therapy, Semmelweis University, P.O.B. 2, Budapest H-1428, Hungary. 2Heart and Vascular Centre, Semmelweis University, P.O.B. 2, Budapest H-1428, Hungary. 3National Institute of Neuroscience, Amerikai Street 57, Budapest H-1145, Hungary. 4Department of Family Medicine, Semmelweis University, P.O.B. 2, Budapest H-1428, Hungary.

Received: 6 April 2017 Accepted: 22 August 2017

References
1. Newman MF, Mathew JP, Grocott HP, Mackensen GB, Monk T, Welsh-Bohmer KA, Blumenthal JA, Laskowitz DT, Mark DB. Central nervous system injury associated with cardiac surgery. Lancet. 2006;368(9536):694–703.
2. van Harten AE, Scheeren TWL, Abaloom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anesth Analg. 2012;6(7):280–93.
3. Mashour GA, Woodrum DT, Avidan MS. Neurological complications of surgery and anaesthesia. Br J Anaesth. 2015;114(2):194–203.
4. Kastan S, Geriets T, Schwarcz NP, Yenigun M, Schoenburg M, Tanislav C, Juenemann M. The relevance of postoperative cognitive decline in daily living: results of a 1-year follow-up. J Cardiothorac Vasc Anesth. 2016;30(2):297–303.
5. Krenk L, Rasmussen LS, Kehlet H. New insights into the pathophysiology of injury associated with cardiac surgery. Lancet. 2006;368(9536):694–703.
6. Monk TG, Weldon BC, Garvan CW, Dede DE, Van Der Aa MT, Heilman KM, Gravenstein JS. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18–30.
7. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, Mark DB, Rees JG, Blumenthal JA. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344(6):395–402.
8. Uysal S, Reich DL. Neurocognitive outcomes of cardiac surgery. J Cardiothorac Vasc Anesth. 2013;27(5):958–71.
9. Rasmussen LS. Postoperative cognitive dysfunction: incidence and prevention. Best Pract Res Clin Anaesthesiol. 2006;20(2):315–30.
10. Rudolph JL, Schreiber KA, Culley DJ, McGlinchey RE, Crosby G, Levitsky S, Marcantonio ER. Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiol Scand. 2010;54(6):665–77.
11. Stemmetz J, Rasmussen LS. Peri-operative cognitive dysfunction and protection. Anaesthesia. 2016;71:58–63.
12. Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59(3):371–8.
13. Kuo HK, Yen CJ, Chang CH, Kuo CK, Chen JH, Sorond F. Relation of C-reactive protein to stroke, cognitive disorders, and depression in the general population: systematic review and meta-analysis. Lancet Neurol. 2005;4(6):371–80.
14. Tegeler C, O’Sullivan JL, Bucholtz N, Goldeck D, Pawelec G, Steinhaug-Thiessen E, Demuth I. The inflammatory markers CRP, IL-6, and IL-10 are associated with cognitive function data from the Berlin aging study II. Neurobiol Aging. 2016;38:112–7.
15. Simine MJ, Tan ZS. The role of inflammation in the pathogenesis of delirium and dementia in older adults: a review. CNS Neurosci Ther. 2011;17(5):506–13.
16. Merino IG, Latour LL, Tso A, Lee KY, Kang DW, Davis LA, Lazar RM, Honvath KA, Conos PJ, Warach S. Blood-brain barrier disruption after cardiac surgery. Am J Neuroanatol. 2013;34(3):518–23.
17. Peng L, Xu L, Quyang W. Role of peripheral inflammatory markers in Postoperative Cognitive Dysfunction (POCD): A meta-analysis. PLoS ONE. 2013;8(11):e79624.
18. Reinsfelt B, Ricksten SE, Zetterberg H, Boren K, Freden-Lindqvist J, Westerlund A. Cerebrospinal fluid markers of brain injury, inflammation, and blood-brain barrier dysfunction in cardiac surgery. Ann Thorac Surg. 2012;94(2):549–55.
19. Ottens TH, Sauër AMC, Peelen LW, De Groot WJ, Bijlsrooge MP, Bredie JL, Buhe WF, Dielemann JM, Van Dijk D, Van Herwerden LA, et al. Effects of desmethylsone on cognitive decline after cardiac surgery: a randomized clinical trial. Anesthesiology. 2014;121(3):492–500.
20. Wacker C, Pirmo A, Brunhoff KM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13(5):426–35.
21. de Jong E, van Oers JA, Biehuizen A, Vos P, Vermeijen WJ, Haes LE, Loef BG, Dorrans T, van Melsen GC, Rutters YC, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16(7):819–27.
22. Aouafi A, Pitzou V, Blanc P, Bouvier H, Bastien O, Charni P, Roussou R, Evans R, Lehot JI. Effect of cardiopulmonary bypass on serum procalcitonin and C-reactive protein concentrations. Br J Anaesth. 1999;83(4):602–7.
23. Kerbaul F, Giorgi R, Oddozer C, Collart F, Guidon C, Lejeune PJ, Villacorta J, Gouin F. High concentrations of N-BNP are related to non-infectious severe SIRS associated with cardiovascular dysfunction occurring after off-pump coronary artery surgery. Br J Anaesth. 2004;93(5):639–44.
24. Sponholz C, Sakr Y, Reinhart K, Brunhoff K. Diagnostic value and prognostic implications of serum procalcitonin after cardiac surgery: A systematic review of the literature. Crit Care. 2006;10(5):R145.
25. Dörge H, Schöndube FA, Dörge P, Seipelt R, Voss M, Messmer BJ. Procalcitonin is a valuable prognostic marker in cardiac surgery but not specific for infection. Thorac Cardiovasc Surg. 2003;51(3):322–6.
26. Meisner M, Rauschmayer C, Schmidt J, Feyrer R, Csekevari R, Bredle D, Tschalkowsky K. Early increase of procalcitonin after cardiovascular surgery in patients with postoperative complications. Intensive Care Med. 2002;28(8):1094–102.
27. Kopp M, Foris N. A szorongás kognitív viselkedésterápia. Budapest: Végegen Kiadó; 1993.
28. Sipos K, Sipos M. The development and validation of the Hungarian form of the STAI. In: Spielberger CD, Diaz-Guerrero R, editors. Cross-cultural anxiety. Washington: Hemisphere Publishing Corporation; 1978. p. 51–61.
29. Raymond PD, Hinton-Bayte AD, Radel M, Ray MJ, Marsh NA. Assessment of statistical change criteria used to define significant change in neuropsychological test performance following cardiac surgery. Eur J Cardiothorac Surg. 2006;29(1):182–8.
30. Stein J, Luppa M, Maier W, Wagner M, Wolfgrubner S, Scherer M, Köhler M, Eisele M, Weyerer S, Werle J, et al. Assessing cognitive changes in the elderly: reliable change indices for the mini-mental state examination. Acta Psychiatr Scand. 2012;126(3):208–18.
31. Meineke M, Applegate RL, II, Rasmussen T, Anderson D, Azer S, MehdiZadeh A, Kim A, Allard M. Cognitive dysfunction following sevoflurane versus sevoflurane general anesthesia in elderly patients: A randomized controlled trial. 6. Med Gas Res. 2014;4(1):6.

32. Chapman KR, Bing-Canar H, Alosco ML, Steineberg EG, Martin B, Chaisson C, Kowal N, Tripodi Y, Stern RA. Mini-Mental State Examination and Logical Memory scores for entry into Alzheimer’s disease trials. Alzheimers Res Ther. 2016;8(1):19.

33. Laffey JG, Boylan JF, Cheng DCH. The systemic inflammatory response to cardiac surgery. Anesthesiology. 2002;97(1):215–52.

34. Parolini A, Camera M, Alamanni F, Ma D, Monaco C, Feldmann M, Takata M, Brilla G, Cibelli M, Fidalgo AR, Terrando N. Investigation of neuroinflammation in elderly patients. 52. Terrando N, Eriksson LI, Radel M, Ray MJ, Hinton-Bayre AD, Marsh N. Investigation of neuroinflammation and cognitive decline. Ann Neurol. 2011;70(6):986–95.

35. Li YC, Xi CH, An YF, Dong WH, Zhou M. Perioperative inflammatory response and protein S-100B concentrations: Relationship with postoperative cognitive dysfunction in elderly patients. Acta Anaesthesiol Scand. 2012;66(5):595–600.

36. Nemeth et al. BMC Anesthesiology – neuroinflammation and cognitive decline. Ann Neurol. 2011;70(6):986–95.

37. Wang JF, Bian JJ, Wan XJ, Zhu KM, Lu AD. Association between inflammatory biomarkers and neurocognitive dysfunction following coronary bypass surgery: a one-month follow-up. Ann Thorac Surg. 2007;84(3):823–8.

38. Kellel S, Jmel W, Jarraya A, Abdenader M, Frihka I, Karouia A. The role of procalcitonin and N-terminal pro-B-type natriuretic peptide in predicting outcome after cardiac surgery. Perfusion. 2012;27(6):504–11.

39. Warren OJ, Smith AJ, Alexiou C, Rogers PLB, Jawad N, Vincent C, Darzi AW, Athanasiou T. The inflammatory response to cardiopulmonary bypass: part 1-anti-inflammatory mechanisms of pathogenesis. J Cardiothorac Vasc Anesth. 2009;23(2):384–93.

40. Morgan C, Zappitelli M, Gill P. Statin prophylaxis and inflammatory mediators following cardiopulmonary bypass: A systematic review. Crit Care. 2009;13(6):R180.

41. Delannoy B, Guye ML, Slaiman DH, Lehot JJ, Cannesson M. Effect of cardiopulmonary bypass on activated partial thromboplastin time waveform analysis, serum procalcitonin and C-reactive protein concentrations. Crit Care. 2009;13(6):R185.

42. Dunn KR, Lee JN, Song SA, Oh SH, Lee JY, Shin JH, Kim HR. Serial changes in serum procalcitonin, interleukin-6, and C-reactive protein levels according to non-specific surgical stimulation. Clin Chim Acta. 2002;323(1–2):217–29.

43. Warren OJ, Smith AJ, Alexiou C, Rogers PLB, Jawad N, Vincent C, Darzi AW, Athanasiou T. The inflammatory response to cardiopulmonary bypass: part 2-anti-inflammatory therapeutic strategies. J Cardiothorac Vasc Anesth. 2009;23(3):384–93.

44. Morgan C, Zappitelli M, Gill P. Statin prophylaxis and inflammatory mediators following cardiopulmonary bypass: A systematic review. Crit Care. 2009;13(6):R165.

45. Sayed S, Idriss NK, Sayeed HG, Ashry AA, Rafat DM, Mohamed AO, Blenn AD. Effects of propofol and isoflurane on haemodynamics and the inflammatory response in cardiopulmonary bypass surgery. Br J Biomed Sci. 2015;72(3):93–101.

46. Roth-Isigkeit A, Hasselbach L, Ocklitz E, Brückner S, Ros A, Gehring H, Nalbandian M, Fage RL, Charo IF, Akassoglou K, Maze M. Resolving postoperative inflammatory responses enhances memory scores for entry into Alzheimer’s disease trials. Alzheimers Res Ther. 2016;8(1):19.

47. Kneebone AC, Andrew MJ, Baker RA, Knight JL. Neuropsychologic changes after coronary artery bypass graft operations. Ann Thorac Surg. 1998;65(5):1320–6.

48. Rapini RA, Rapini P, Rapini P. The impact of cardiopulmonary bypass on systemic interleukin-6 release, cerebral nuclear factor-kappa B expression, and neurocognitive outcome in rats. Anesth Analg. 2010;110(2):312–20.

49. Li YC, Xi CH, An YF, Dong WH, Zhou M. Perioperative inflammatory response and protein S-100B concentrations: Relationship with postoperative cognitive dysfunction in elderly patients. Acta Anaesthesiol Scand. 2012;66(5):595–600.

50. Ramlawi B, Rudolph JL, Mieno S, Feng J, Boodhwani M, Khabbaz K, Levkoff SE, Marcantonio ER, Bianchi C, Selfke FW. C-reactive protein and inflammatory response associated to neurocognitive decline following cardiac surgery. Surgery. 2006;140(2):221–6.

51. Westaby S, Saatvedt K, White S, Katsumata T, Van Oeveren W, Halligan PW. Is there a relationship between cognitive dysfunction and systemic inflammatory response after cardiopulmonary bypass? Ann Thorac Surg. 2001;71(2):667–72.

52. Hudetz JA, Gandhi SD, Isqbal Z, Patterson KM, Pagel PS. Elevated postoperative inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery. J Anesth. 2011;25(1):1–9.

53. Jungwirth B, Eckel B, Blobner M, Kellerkumm K, Kochs EF, Mackensen GB. The impact of cardiopulmonary bypass on systemic interleukin-6 release, cerebral nuclear factor-kappa B expression, and neurocognitive outcome in rats. Anesth Analg. 2010;110(2):312–20.

54. Stroobant V, Vingerhoets G. Depression, anxiety, and neuropsychological performance in coronary artery bypass graft patients: a follow-up study. Psychosomatics. 2008;49(4):326–31.

55. Robert AR, Erdi M, Torino M, Ma D, Monaco C, Feldmann M, Takata M, Lever L, Nanchalal H, Furseolov MS, et al. Role of interleukin-1B in postoperative cognitive dysfunction. Ann Neurol. 2010;68(3):360–8.

56. Terrando N, Eriksson LI, Kuyi Ryu J, Yang T, Monaco C, Feldmann M, Jonsson Fagerlund M, Charo IF, Akassoglou K, Maze M. Resolving postoperative neuroinflammation and cognitive decline: Ann Neurol. 2011;70(6):986–95.

57.提交您的下一份手稿至BioMed Central，我们将为您提供以下帮助：
• 及时审稿
• 我们的筛选工具帮助您找到最相关的期刊
• 我们提供便捷的在线提交
• 提供24小时客户服务
• 便于您的研究发表

将您的手稿提交至www.biomedcentral.com/submit