Unstable microhabitats (merocenoses) as specific habitats of Uropodina mites (Acari: Mesostigmata)

Agnieszka Napierała · Jerzy Błoszyk

Abstract Unstable microhabitats (merocenoses)—such as decayed wood, ant hills, bird and mammal nests—constitute an important component of forest (and non-forest) environments. These microhabitats are often inhabited by specific communities of invertebrates and their presence increases the total biodiversity. The primary objective of the present study was to compare communities of Uropodina (Acari: Mesostigmata) inhabiting soil and unstable microhabitats in order to explore the specificity of these communities and their importance in such ecosystems. Uropodine communities inhabiting merocenoses are often predominated by one or two species, which constitute more than 50% of the entire community. Many species occur commonly in particular merocenoses, but are absent or rare in soil and litter, for example, Allodinychus flagelliger, Metagynella carpatica, Oplitis alophora, and Phaulodiaspis borealis. The biology of Uropodina inhabiting unstable microhabitats is modified by the adaptations required for living in such habitats. Mites associated with merocenoses developed special dispersal mechanisms, such as phoresy, which enable them to migrate from disappearing environments. Communities of Uropodina in soil and litter predominately consisted of species which reproduce parthenogenetically (thelytoky), whereas in merocenoses bisexual species prevail.

Keywords Uropodina · Community structure · Soil · Decayed wood · Bird nests · Mammal nests

Introduction

Unstable microhabitats (merocenoses), such as decayed wood, ant hills, bird nests and mammal nests, are often scattered, small and ephemeral. As opposed to soil and litter, merocenoses have different environments in terms of the food, physio-chemical, and microclimatic conditions. Merocenoses are characterized by higher and relatively stable
humidity during the year. Humidity is highly significant for mites from the suborder Uropodina (Acari: Mesotigmata) because mesohigrophilic species constitute the majority of these mites (Athias-Binche and Habersaat 1988; Kristofik et al. 1993; Bloszyk et al. 2001, 2004; Bloszyk and Bajaczyk 1999). Decayed wood, ant hills, bird nests, and mammal nests are important components of natural ecosystems—both forest and non-forest open environments, such as meadows, xerophilous grasses, and peat-bogs. Unstable microhabitats are often inhabited by specific communities of invertebrates, thus increasing the total biodiversity of the environment (Kristofik et al. 1993; Gwiazdowicz et al. 2000; Gwiazdowicz and Sznajdrowski 2000; Bloszyk et al. 2003a; Bajerlein and Bloszyk 2004; Gwiazdowicz and Klemt 2004; Gwiazdowicz and Kmita 2004).

The specific characteristics of merocenoses are favorable only for species with special reproduction and dispersal abilities, enabling them not only to colonize and populate these microhabitats, but also to escape from the vanishing habitat when the food resources become limited, to find a new suitable habitat (Athias-Binche 1984, 1993, 1994; Faasch 1967). Uropodina use representatives of various orders of insects and centipedes as carriers (Masań 2001). The carrier organisms enable the mites to cover distances between merocenoses and find microhabitats with a suitable microclimate and sufficient food resources. Phoretic deutonymphs of Uropodina have a special anal apparatus (pedicel), which enables a mite to stick to the carrier’s body (Athias-Binche 1984; Bloszyk et al. 2006b). The structural complexity of the anal apparatus shows that Uropodina have probably had this ability for a very long time and no other group of mites has adapted to phoresy (Athias-Binche 1984).

Very few studies in the acarological literature adduce data about habitat preferences and assimilation abilities of Uropodina species, both to living in soil and specific merocenoses (Athias-Binche 1979, 1982a, b, 1983; Bloszyk 1992; Hut 1993; Bloszyk 1999; Masań 2001). The scant evidence obtained so far suggests that the biology of these species is modified by adaptation to living in each of these habitats. The observations carried out by Bloszyk et al. in different habitats in Poland have revealed differences in species composition and community structure of mites from the suborder Uropodina. The differences are most evident in the case of unstable microhabitats (Bloszyk 1980, 1983, 1985, 1999; Bloszyk and Olszanowski 1985a, b, 1986; Bloszyk et al. 2003a; Napierała et al. 2009). The reproductive strategies also appear to differ between the two community types (Bloszyk et al. 2004).

The studies on communities in unstable microhabitats help to understand the biology and ecology of uropodine mites, and offer an insight into functioning of such ecosystems. However, most papers published so far are based on rather small data sets and have a local character, which means that they deal with one type of merocenoses. Many papers have been published in local journals and are not in English, which makes them inaccessible for many potential readers (Bloszyk 1985, 1990; Bloszyk and Olszanowski 1985a, b, 1986; Bloszyk and Bajaczyk 1999; Gwiazdowicz et al. 2000, 2005, 2006; Bajerlein and Bloszyk 2004; Gwiazdowicz and Klement 2004; Gwiazdowicz and Kmita 2004; Bloszyk and Gwiazdowicz 2006). The aim of the present study is to compare the communities of Uropodina inhabiting soil and unstable microhabitats to establish the features common for all merocenoses and what makes them different from soil environment. None of the studies published hitherto is based on such a large amount of material, collected during such a long period of time.

The main hypothesis is that in merocenoses there are one or two species that dominate the community, whereas in soil there is no strong dominance of one species. The second hypothesis is that parthenogenetic species prevail in soil, whereas bisexual species dominate in unstable microhabitats, depending on the variation in stability and size of these
environments. The third hypothesis postulated here is that the presence of microhabitats in ecosystems increases the total biodiversity of uropodine fauna in such environments.

Materials and methods

Mite collection and extraction

The material for this study has been collected since 1951 in different parts of Poland (most samples come from Wielkopolska, Poland). Every month between 2001 and 2004 the soil and dead wood samples were collected in three nature reserves—Huby Grzebięskie, Bytyńskie Brzęki, and Brzęki przy Starej Gajówce. They belong to a forest complex at about 25 km west-north-west from Poznań (for a detailed description see Napierała et al. 2009).

The soil was sampled quantitatively (core samples of 30 cm² surface and 10 cm deep) and qualitatively (sieve samples). The mites were also collected from 0.5–0.8 l samples of different types of dead wood (rotten trunks, logs, and stumps). The mites were extracted with Tullgren funnels for ca. 4–6 days (depending on the level of moisture), and preserved in 75 % alcohol. Both permanent and temporary microscope slides were made (mounted in Hoyer’s medium), and the specimens were identified with the keys in Kadite and Petrova (1977), Evans and Till (1979), Karg (1989), Błoszyk (1999), and Mašán (2001). The 16,323 samples were collected and deposited in a soil-fauna database (Natural History Collections, Faculty of Biology AMU, Poznań); 13,996 samples were collected from soil, 978 from dead wood, 238 from tree holes, 233 from mammal nests, 836 from bird nests, and 42 from ant hills.

Data analysis

The zoocenological analysis of Uropodina communities is based on the indices of the dominance and frequency. The following classes were used (Błoszyk 1999):

- **Dominance:** D5, eudominants (>30 %), D4, dominants (15.1–30.0 %), D3, subdominants (7.1–15.0 %), D2, residents (3.0–7.0 %), and D1, subresidents (<3 %).
- **Frequency:** F5, euconstants (>50 %), F4, constants (30.1–50 %), F3, subconstants (15.1–30.0 %), F2, accessory species (5.0–15.0 %), and F1, accidents (<5 %).

The community similarity was calculated by means of the Marczewski-Steinhaus species similarity index: \(MS = c/(a + b - c) \), where \(c \) is the number of species present in both compared communities, and \(a \) and \(b \) stand for the total numbers of species in each community (Magurran 2004).

The differences between the average abundances in the merocenoses and soil were analysed with Kruskal-Wallis ANOVA and Dunn tests. The mean abundances of the selected dominant species of Uropodina in the soil and dead wood in the three nature reserves of Wielkopolska were analysed with Mann-Whitney U tests. All tests were calculated in STATISTICA 6.0 Pl.

Results

The total number of Uropodina collected in the presented material is 74 species (Table 1): 68 species (108,737 specimens) were found in the soil, 51 (19,843 specimens) in dead wood, and 96 (2,617 specimens) in different types of dead wood.
Table 1 List of Uropodina species found in the analysed material

Species	Total	Adult	Juvenile			
		Female	Male	Deutonymph	Protonymph	Larva
Trachytes aegrota (C. L. Koch, 1841)	32,495	18,671	3	10,619	2,414	788
Trachytes irenae (Pecina, 1970)	11,450	3,012	4,501	3,176	588	173
Trachytes lamda (Berlese, 1903)	449	206	7	156	71	9
Trachytes minima (Trägårdh, 1910)	559	285	222	38	9	5
Trachytes montana (Willmann, 1953)	21	20	1			
Trachytes pauperior (Berlese, 1914)	7,683	3,396	31	2,326	1,257	673
Trachytes splendida (Hutu, 1973)	8	4	4			
Polyaspinus cylindricus (Berlese, 1916)	1,345	818		322	133	72
Polyaspinus schweizeri (Hutu, 1976)	11	7	4			
Apionoseius infimus (Berlese, 1887)	1,567	429	345	652	138	3
Polyaspis patavinus (Berlese, 1881)	328	108	71	114	30	5
Polyaspis sansonei (Berlese, 1916)	165	30	33	60	24	18
Uroseius hunzikeri (Schweizer, 1922)	2		2			
Iphidinychus gaieri (Schweizer, 1961)	7	4	2	1		
Discourella modesta (Leonardi, 1889)	335	296	1	28	8	2
Trematurella elegans (Kramer, 1882)	700	263	281	132	18	6
Oodinychus karawaiewi (Berlese, 1903)	8,595	2,595	2,875	1,895	1,139	91
Oodinychus obscurasimilis (Hirschmann et Z.-Nicol, 1961)	432	184	214	25	8	1
Oodinychus ovalis (H. L. Koch, 1839)	21,586	5,997	6,022	4,645	3,760	1,162
Oodinychus spatulifera (Moniez, 1892)	796	373	339	82		2
Iphiduropoda penicillata (Hirschmann et Z.-Nicol, 1961)	35	21	11	3		
Leiodinychus orbicularis (C. L. Koch, 1839)	2,911	998	816	902	171	24
Pseudouropoda calcarata (Hirschmann et Z.-Nicol, 1961)	56	27	21	7	1	
Pseudouropoda structura (Hirschmann et Z.-Nicol, 1961)	5	1	4			
Pseudouropoda tuberosa (Hirschmann et Z.-Nicol, 1961)	14	5	3	4	2	
Pseudouropoda sp.	215	118	36	52	9	
Urodiaspis tecta (Kramer, 1876)	8,989	6,702	1,516	585	186	
Urodiaspis stammeri (Hirschmann et Z.-Nicol, 1969)	461	228	226	4	3	
Urodiaspis pannonica (Willmann, 1952)	1,976	1,252	522	147	55	
Olodiscus kargi (Hirschmann et Z.-Nicol, 1969)	253	144	86	22	1	
Olodiscus minima (Kramer, 1882)	15,585	12,647	56	2,066	563	253
Olodiscus misella (Berlese, 1916)	757	609	133	7	8	
Species	Total	Adult	Juvenile			
---	-------	-------	----------			
		Female	Male	Deutonymph	Protonymph	Larva
Neodiscopoma splendida (Kramer, 1882)	2,741	940	1,241	396	153	11
Cilliba cassidea (Herman, 1804)	208	84	92	25	7	
Cilliba cissideasimilis (Błoszyk, Stachowiak, Halliday 2007)	1,458	471	587	255	105	40
Cilliba erlangensis (Hirschmann et Z.-Nicol, 1969)	104	84	4	16		
Cilliba rafalskii Błoszyk, Stachowiak, Halliday 2007	620	369	122	73	56	
Cilliba selnici (Hirschmann et Z.-Nicol, 1969)	120	50	66	2	2	
Uroobovella fracta (Berlese, 1916)	4	1	3			
Uroobovella marginata (C. L. Koch, 1829)	32	6	8	16	2	
Uroobovella obovata (Canestrini et Berlese, 1884)	145	74	53	18		
Uroobovella pulchella (Berlese, 1904)	3,908	1,687	96	1,241	692	192
Uroobovella pyriformis (Berlese, 1920)	2,618	1,077	879	546	104	12
Uroobovella sp.	23	15	6	2		
Fuscouropoda appendiculata (Berlese, 1910)	8	3	1	4		
Allodinychus flagelliger (Berlese, 1910)	298	64	40	136	56	2
Phaulodiaspis advena (Trägårdh, 1912)	1,063	227	213	509	105	9
Phaulodiaspis borealis (Sellnick, 1940)	3,229	939	763	1,403	118	6
Phaulodiaspis rackei (Oudemans, 1912)	1,483	458	556	377	85	7
Uroplitella conspicua (Berlese, 1903)	22	19	3			
Uroplitella paradoxa (Canestrini et Berlese, 1884)	22	18	4			
Oplitis alophora (Berlese, 1903)	6	4	1			1
Oplitis wasmanni (Kneissl, 1907)	1	1				
Oplitis sp.	5	4	1			
Trachyuropoda coccinea (Michael, 1891)	152	82	58	9	3	
Trachyuropoda poppi (Hirschmann et Z.-Nicol, 1969)	1	1				
Trachyuropoda willmanni (Hirschmann et Z.-Nicol, 1969)	17	2	4	9	2	
Urotachytes formicarius (Lubbock, 1881)	22	7	14	1		
Dinychura cordieri (Berlese, 1916)	509	226	154	94	35	
wood, 34 (3,069 specimens) in tree holes, 30 (7,696 specimens) in mammal nests, 28 (7,741 specimens) in bird nests, and 12 (871 specimens) in ant hills (Table 2).

In the analysed microhabitats, most species (69 % of the whole Polish fauna) occurred in dead wood, whereas the lowest number of species (16 %) was observed in ant hills. The other microhabitats contained similar percentages (38–46) of the Polish fauna of Uropodina (Fig. 1).

The bird nests and dead wood had the highest average number of mites, whereas ant hills had the lowest average number of mites. The most striking similarities in species composition (72 %) were found between the communities in the soil and the communities of Uropodina inhabiting the merocenoses of dead wood. The most distinct communities (29 % similarity) occurred in ant hills (Fig. 2).

Species composition and community structure in analysed merocenoses

The highest frequency of Uropodina (>50 %) was observed in mammal nests, ant hills, and dead wood (Table 3). There were also significant differences in the average abundance of Uropodina in the analysed merocenoses (Table 4). The Uropodine mites were less frequent in bird nests—they have not been found in >85 % of the analysed nests. The highest

Table 1 continued

Species	Total	Adult	Juvenile			
		Female	Male	Deutonymph	Protonymph	Larva
Uropolyaspis hamulifera	20	1	2	15	2	
(Berlese, 1904)						
Discourella (?) baloghi	999	349	336	287	24	3
(Hirschmann et Z.-Nicol, 1969)						
Uropoda italica	4	4				
(Hirschmann et Z.-Nicol, 1969)						
Uropoda orbitcularis	584	62	8	490	24	
(Muller, 1776)						
Uropoda undulata	38	25	12	1		
(Hirschmann et Z.-Nicol, 1969)						
Nenteria breviunguiculata	1,751	416	273	897	152	13
(Willmann, 1949)						
Nenteria florals	2	1	1			
(Karg 1986)						
Nenteria stylifera	53	31	2	8	11	1
(Berlese, 1904)						
Dinychus arcuatus	408	150	185	59	14	
(Trågårdh, 1922)						
Dinychus carinatus	1,009	311	290	302	88	18
(Berlese, 1903)						
Dinychus inermis	339	154	132	42	11	
(C. L. Koch, 1841)						
Dinychus perforatus	3,481	1,120	1,361	785	197	18
(Kramer, 1882)						
Dinychus woelkiei	495	100	122	208	65	
(Hirschmann et Zirngiebl-Nicol, 1969)						
Metagnylla carpatica	163	14	12	131	6	
(Balogh, 1943)						
Protodinychus punctatus	1	1				
(Evans, 1957)						
Total	147,957	69,101	23,794	37,897	13,240	3,925

The material of this document is in a different language than the question which makes it hard to interpret the content. The text seems to be discussing the distribution and abundance of mites across different microhabitats in Poland, focusing on Uropodina and other mite species. The data presented includes counts and percentages of species in various habitats, with notable emphasis on dead wood and ant hills. The text also indicates specific similarities and differences in species composition across these microhabitats.
Table 2 Occurrence of Uropodina in studied microhabitats

Species	Soil	DW	TH	NM	NB	AH	No. of habitats where species was found
T. aegrota	+	+	+	+	+	+	6
Oo. karawaiwei	+	+	+	+	+	+	6
Oo. ovalis	+	+	+	+	+	+	6
Uro. pyriformis	+	+	+	+	+	+	6
Din. perforatus	+	+	+	+	+	+	6
T. irenae	+	+	+	+	+		5
A. infirmus	+	+	+	+	+		5
Po. patavinus	+	+	+	+			5
Tre. elegans	+	+	+	+			5
I. penicillata	+	+	+	+			5
L. orbicularis	+	+	+	+			5
Pseudouropoda sp.	+	+	+	+			5
Ur. tecta	+	+	+	+			5
Ol. minima	+	+	+	+			5
Uro. obovata	+	+	+	+			5
Din. arcutatus	+	+	+	+			5
Din. carinatus	+	+	+	+			5
Din. woelkiei	+	+	+	+			4
Urobovella sp.	+	+	+	+			4
Oo. spatulifera	+	+	+	+			4
T. pauperior	+	+	+	+			4
Ur. pannonica	+	+	+	+			4
P. cylindricus	+	+	+	+			4
Ol. misella	+	+	+	+			4
Ne. splendidia	+	+	+	+			4
Tr. coccinea	+	+	+	+			4
Ps. calcarata	+	+	+	+			4
U. orbicularis	+	+	+	+			4
N. brevianguiculata	+	+	+	+			4
T. montana	+	+	+	+			3
Dis. baloghi	+	+	+				3
Uro. pulchella	+	+	+				3
Po. sansonei	+	+	+				3
Oo. obscurasimilis	+	+	+				3
C. cassideasimilis	+	+	+				3
Dis. modesta	+	+	+				3
D. cordieri	+	+	+				3
Ph. rackei	+	+	+				3
Uro. marginata	+	+	+				3
Din. inermis	+	+	+				3
Urlop. paradoxa	+	+	+				3
T. lamda	+	+					2
The average number of Uropodina (>30 specimens) per sample is in ant hills, dead wood, and mammal nests.

The abundance of three most numerous species, i.e., *Trachytes aegrota*, *Oodinychus ovalis*, and *Oodinychus karawaiewi*, turned out to differ significantly in the analysed environments, but two other highly abundant species—*Urobovella pyriformis* and *Dinychus perforatus*—were distributed evenly (Table 5).
Dead wood

This microenvironment is inhabited by most species of Uropodina: 51 species (Table 2). The most numerous and frequent species was *Oo. ovalis*, the second most numerous species was *Uro. pulchella* (Table 6). These two species constituted about 75 % of the whole community. *Metagynella carpatica* is one of those extremely rare uropodine species in Poland, and it occurred only in dead wood.

Tree holes

In tree holes from different tree species there were 34 species of Uropodina (Table 2). Similarly to dead wood, in the tree holes the most numerous and most frequent species was *Oo. ovalis. Uro. pyriformis* was slightly less numerous and frequent; three species (incl. *Dis. baloghi*) exceeded 55 % of the whole community (Table 6). *Oplitis alophora*, which is another very rare species in Poland, was found only in this microhabitat.
Mammal nests

Most of the analysed material comes from mole nests (*Talpa europea*). Thirty Uropodina species inhabited mammal nests (Table 2). The most frequent and numerous species were two species typical for this microhabitat, *Ph. borealis* and *Ph. rackei*; they constituted ca. 60% of the entire community.

Phaulodiaspis rackei could be also accidentally found in soil.

| Table 3 Frequency and average number of Uropodina in soil and unstable microhabitats |
|--|--------|--------|--------|--------|--------|--------|
| No. of samples | Soil | DW | TH | NM | NB | AH |
| | 13,996 | 978 | 238 | 233 | 836 | 42 |
| Frequency of Uropodina (%) | 41.4 | 50.5 | 44.1 | 61.4 | 14.6 | 57.1 |
| Average no. of specimens per sample | 7.7 | 38.9 | 12.4 | 33.0 | 9.3 | 39.9 |
| 95 % confidence interval | 0.56 | 4.50 | 6.60 | 7.79 | 14.77 | 14.19 |

Soil soil and litter, *DW* dead wood, *TH* tree holes, *NM* mammal nests, *NB* bird nests, *AH* ant hills

| Table 4 Pairwise comparison of average abundance of Uropodina in the analysed merocenoses and soil |
|--|--------|--------|--------|--------|--------|--------|
| Ant hills | Dead wood | Tree holes | Mammal nests | Bird nests |
| Dead wood | ns | | | |
| Tree holes | ns | ** | | |
| Mammal nests | ns | ns | *** | |
| Bird nests | *** | *** | *** | *** |
| Soil | * | *** | ns | *** |

Kruskal–Wallis ranks ANOVA (*H* = 330.94, *df* = 5, *P* < 0.001; *n* = 16,341) followed by Dunn’s test: * 0.01 < *P* < 0.05; ** 0.001 < *P* < 0.01; *** *P* < 0.001; *ns* not significant (*P* > 0.05)

| Table 5 Pairwise comparison of average abundance of the dominant species of Uropodina in soil and the analysed merocenoses |
|--|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Species | 1–2 | 1–3 | 1–4 | 1–5 | 1–6 | 2–3 | 2–4 | 2–5 | 2–6 | 3–4 | 3–5 | 3–6 | 4–5 | 4–6 | 5–6 |
| *T. aegrota* | * | *** | *** | *** | *** | ns | ns | ns | ns | ** | ns | *** | ns | ns |
| *Oo. ovalis* | ns | ns | ns | *** | *** | ns | ns | ns | ns | *** | *** | *** | *** | ** | ns |
| *Oo. karawaiewi* | ns | *** | ns | ns | ns | ns | ns | ns | *** | *** | ** | ns | ns |
| *Uro. pyriformis* | ns | ns | ns | ** | ns |
| *D. perforatus* | ns |

Kruskal–Wallis ranks ANOVA (all species: *df* = 5, *P* < 0.001; *n* = 16,323) followed by Dunn’s test: * 0.01 < *P* < 0.05; ** 0.001 < *P* < 0.01; *** *P* < 0.001; *ns* not significant (*P* > 0.05)

1 soil, 2 ant hills, 3 mammal nests, 4 bird nests, 5 dead wood, 6 tree holes

Mammal nests

Most of the analysed material comes from mole nests (*Talpa europea*). Thirty Uropodina species inhabited mammal nests (Table 2). The most frequent and numerous species were two species typical for this microhabitat, *Ph. borealis* and *Ph. rackei*; they constituted ca. 60% of the entire community. *Phaulodiaspis rackei* could be also accidentally found in soil.
Table 6 Zoocenological analysis of dominance (classes D5-D1) and frequency (F5-F1) of the uropodine communities of the analysed merocenoses (see “Materials and methods” for a description of the classes)

Soil and litter	Dominance	Frequency
D5—eudominants	0	F5—euconstants 0
D4—dominants	T. aegrota—28.89 %	F4—constants T. aegrota—35.63 %
D3—subdominants	Ol. minima—13.20 %	F3—subconstants Ol. minima—26.81 %
T. irenae—10.31 %		Ur. tecta—15.52 %
Oo. ovalis—8.42 %		T. pauperior—15.37 %
Oo. karawaiewi—7.18 %		
D2—residents	T. pauperior—6.99 %	F2—accessory species T. irenae—6.36 %
D1—subresidents	62 species	F1—accidents 61 species

Dead wood	Dominance	Frequency
D5—eudominants	Oo. ovalis—56.38 %	F5—euconstants 0
D4—dominants	Uro. pulchella—18.60 %	F4—constants Oo. ovalis—48.36 %
D3—subdominants	0	F3—subconstants T. aegrota—20.45 %
D2—residents	T. aegrota—3.49 %	F2—accessory species Uro. pulchella—16.87 %
D1—subresidents	48 species	F1—accidents 46 species

Tree holes	Dominance	Frequency
D5—eudominants	0	F5—euconstants 0
D4—dominants	Oo. ovalis—23.66 %	F4—constants Oo. ovalis—39.50 %
D3—subdominants	Uro. pyriformis—22.29 %	F3—subconstants 0
D2—residents	Dis. baloghi—11.65 %	F2—accessory species Uro. pyriformis—13.03 %
D1—subresidents	27 species	F1—accidents 28 species

Mammal nests	Dominance	Frequency
D5—eudominants	Ph. borealis—41.96 %	F5—euconstants 0
D4—dominants	Ph. rackei—18.58 %	F4—constants Ph. borealis—42.92 %
D3—subdominants	Ol. minima—8.71 %	F3—subconstants Ph. rackei—36.48 %
D2—residents	Ph. advena—6.76 %	F2—accessory species N. brevinguiculata—25.75 %
D1—subresidents	24 species	F1—accidents 22 species
Moreover, *N. breviunguiculata, Oo. karawaiewi* and *Ol. minima* were also frequent, but less numerous. *Uros. hunzikeri*, which is a very rare species, was found in the mole nests.

Bird nests

In the nests of almost 30 bird species (Błoszyk et al. 2006a), 28 species of Uropodina were found (Table 2). *L. orbicularis* was preponderant in the community, but also *A. infirmus, Uro. pyriformis*, and *N. breviunguiculata* were quite numerous (Table 6). These four species constituted >87 % of the community. However, the frequency of these species was low and did not exceed 10 %. The species found only in bird nests is *N. floralis*.

Ant hills

In the material from the ant hills (*Formica* s.l.), 12 uropodine species were found (Table 2). The most numerous (80 %) and most frequent (52 %) species was *Oo. spatulifera*. Also *Tr. coccinea* and *Oo. ovalis* occurred apparently frequently (Table 6).

Role of merocenoses in ecosystem biodiversity

Table 7 shows the communities of Uropodina found in mole nests and in the soil samples, on the same meadow, near Jarocin (Wielkopolska). Out of the 11 species found in the mole nests, the two most dominant species (*Ph. rackei* and *Ph. borealis*) were not found in the soil. Moreover, six species from the soil were not found in the nests. The average number of mites per sample volume was 30 times higher in the nests than in the soil. The frequency of all species occurring in both environments was always higher in the mole nests.

Dominance	Frequency
Bird nests	
D5—eudominants	*O. orbicularis*—35.89 %
D4—dominants	*A. infirmus*—18.85 %
	Uro. pyriformis—17.94 %
D3—subdominants	*N. breviunguiculata*—14.40 %
D2—residents	*Al. flagelliger*—3.84 %
	U. orbicularis—3.02 %
D1—subresidents	23 species
Ant hills	
D5—eudominants	*Oo. spatulifera*—79.79 %
D4—dominants	0
D3—subdominants	*Tr. coccinea*—12.51 %
D2—residents	*Din. woelkei*—3.67 %
D1—subresidents	9 species
F1—accidents	7 species

Moreover, *N. breviunguiculata, Oo. karawaiewi* and *Ol. minima* were also frequent, but less numerous. *Uros. hunzikeri*, which is a very rare species, was found in the mole nests.
In the 1,259 samples (407 from dead wood, 852 from soil and litter of horn-beam forests) collected in the three nature reserves in Wielkopolska, 33 species of Uropodina were found: 28 species in dead wood and 20 species in soil and litter (Table 8). Five species of Uropodina could be identified as typical soil species (I. penicillata, O. misella, P. calcarata, U. pannonica, Uro. orbicularis), whereas 13 species (Uro. obovata, A. infrimus, Tre. elegans, Din. arcuatus, L. orbicularis, Tr. coccinea, Pseudouroopoda sp., P. cylindricus, Ps. tuberosa, C. erlangensis, Dis. baloghi, N. breviunguiculata, and N. stylifera) were found only in the material from the dead wood (Table 8). Only 15 species were present in both environments. The mite communities inhabiting dead wood or soil and litter had a different structure of dominancy. In the analysed soil and litter, the most numerous species were T. aegrota and O. minima, whereas in the dead wood Oo. ovalis and Uro. pulchella were more numerous and frequent. In both environments the specimens of these species constituted >50 % of the whole community.

Five out of the seven most numerous species (Oo. ovalis, T. aegrota, O. minima, Uro. pulchella, and U. tecta) in both environments revealed a significant preference for each of the two types of environments (i.e., occurred more numerous; Table 9). The abundance of the uropodine mites in the samples from the dead wood is much (2 times) higher than in the soil samples.

Table 7 Dominancy (D%) and frequency (F%) of Uropodina in mole nests and in soil of one meadow in Jarocin (Wielkopolska)

Species	Nests	Soil				
	Total	D%	F%	Total	D%	F%
Ph. rackei	360	39.52	32.35	29	25.89	10.40
Ph. borealis	302	33.15	44.12	39	34.82	12.00
Ol. minima	68	7.46	35.29	39	34.82	12.00
N. breviunguiculata	54	5.93	11.76	4	3.57	3.20
Oo. ovalis	48	5.27	20.59	1	0.89	0.80
Oo. karawaiewi	27	2.96	26.47	18	16.07	5.60
Din. perforatus	21	2.31	8.22	2	1.79	1.60
Uro. orbicularis	20	2.20	5.87	4	3.57	3.20
Din. carinatus	6	0.66	5.87	1	0.89	0.80
Dis. modesta	4	0.44	5.87	8	7.14	2.40
Ur. tecta	1	0.11	2.94	1	0.89	0.80
Ciliuba rafalskii	2	1.79	0.80	3	2.68	2.40
Din. inermis	1	0.89	0.80	1	0.89	0.80
Ne. splendida	1	0.89	0.80	1	0.89	0.80
Pr. punctatus	1	0.89	0.80	1	0.89	0.80
T. aegrota	1	0.89	0.80	1	0.89	0.80
Ur. pannonica	1	0.89	0.80	1	0.89	0.80
Total	911	59.87	44.12	112	59.87	44.12
Average no. of specimens per sample	26.79	0.90				
No. of samples	34	125				
Table 8 Dominancy (D%) and frequency (F%) of Uropodina in dead wood and soil and litter samples of horn-beam forests from natural reserves in Wielkopolska

Species	Dead wood	Soil and litter				
	Total D%	F%	Total D%	F%		
Oo. ovalis	2,806	71.29	56.51	915	22.25	27.11
Uro. pulchella	235	5.97	11.55	13	0.32	0.94
Ol. minima	203	5.16	14.00	917	22.30	32.04
Din. woelkii	177	4.50	6.39	19	0.46	0.35
T. aegrota	172	4.37	16.71	1,184	21.25	34.39
Din. carinatus	101	2.57	7.13	9	0.22	0.82
Ur. tecta	74	1.88	6.88	874	21.25	38.97
T. pauperior	26	0.66	3.69	61	1.48	2.46
A. infirmus	25	0.64	0.49			
Po. sansonei	18	0.46	1.23	1	0.02	0.12
Uro. obovata	16	0.41	0.98			
Tre. elegans	14	0.36	1.97			
Din. arcuatus	12	0.30	1.47			
Din. perforatus	11	0.28	1.47	3	0.07	0.35
C. rafalskii	9	0.23	0.98	44	1.07	2.00
Din. sp.	8	0.20	0.49	8	0.19	0.82
L. orbicularis	7	0.18	1.23			
C. cassideasimilis	7	0.18	0.74	17	0.41	0.82
Tr. coccinea	4	0.10	0.25			
Pseudouropoda sp.	3	0.08	0.74			
P. cylindrical	1	0.03	0.25			
Ps. tuberosa	1	0.03	0.25			
C. erlangensis	1	0.03	0.25			
Uro. pyriformis	1	0.03	0.25	1	0.02	0.12
D. cordieri	1	0.03	0.25	10	0.24	0.47
Dis. baloghi	1	0.03	0.25			
N. breviunguiculata	1	0.03	0.25			
N. stylifera	1	0.03	0.25			
I. penicillata	1	0.02	0.12			
Ol. misella	2	0.05	0.12			
Ps. calcarata	1	0.02	0.12			
Ur. pannonica	31	0.75	2.35			
Uro. orbicularis	2	0.05	0.12			
Total	3,936	4,113				
Average no. of specimens per sample	9.67	4.83				
No. of samples	407	852				

Bold—dominat species

Discussion

Błoszyk et al. have emphasized many times the specificity of Uropodina communities (Błoszyk and Olszanowski 1986; Błoszyk and Miko 1990; Błoszyk and Athias-Binche
Also other researchers have provided cogent evidence for the specificity of zoocenoses of Uropodina in such microhabitats (e.g. Athias-Binche 1977a, b; Krisťofík et al. 1993; Gwiazdowicz et al. 2000; Gwiazdowicz and Sznajdrowski 2000; Masáň 2001; Gwiazdowicz and Klemt 2004; Gwiazdowicz and Kmita 2004).

The uropodine species found in the soil and litter contain 92 % of all species found in Poland (Napierała 2008). The most characteristic feature of the uropodine mite communities inhabiting unstable microhabitats (such as dead wood, tree holes, mammal and bird nests, and ant hills) is not only their specific species composition but also their dominancy structure. The species composition differed among the merocenoses, more than in the communities occurring in soil and litter of different forest types. In each type of merocenose one or two of the dominant species constituted >50 % of the entire community, and some species were typical for a particular type (Uro. pyriformis, Ph. borealis, Ph. rackei, Oo. spatulifera, and Tr. coccinea). Instead of strong predomination of one species, soil communities often have a group of 4–5 species, which constitute their ‘core’. These are often the same species in each case, i.e., T. aegrota, Ol. minima, Ur. tecta, Oo. ovalis, and Oo. karawaiiewi.

Uropodina species associated with soil and unstable microhabitats differ as to their reproductive strategies (Błoszyk and Olszanowski 1985a, b; Błoszyk 1999; Błoszyk et al. 2004). Communities of Uropodina inhabiting soil and litter are usually predominated by species which reproduce parthenogenetically (thelytoky) (e.g. T. aegrota, Ur. tecta, and Ol. minima), whereas in merocenoses bisexual species prevail (e.g. Oo. ovalis, and Din. woelkei). The only exception is Uro. pulchella, which is one of the most numerous species in dead wood, but it reproduces parthenogenetically (male-to-female ratio 1:15) (Błoszyk et al. 2004). In this case, the number of the males rises proportionally to the increase of the population size (Błoszyk, unpublished data). For most of soil-inhabiting Uropodina (such species as T. aegrota, T. pauperior, T. lamda, Ol. minima, U. orbicularis), males are observed sporadically (Błoszyk and Olszanowski 1985b; Błoszyk 1999; Błoszyk et al. 2004, 2005b).

Uropodina species from soil and unstable microhabitats also have different modes of dispersion. The small size of merocenoses, their inconstancy, isolation and fragmentation compel such species to develop special ways of dispersion which will enable them to leave a disappearing habitat and find a new one. For most uropodine species passive dispersion between microhabitats is phoresy (Athias-Binche 1993, 1994; Błoszyk 1999; Bajerlein and Błoszyk 2004; Bajerlein et al. 2006; Błoszyk et al. 2006b). Soil, which is a more stable and

Table 9

Mean (±SE) abundance of the seven most dominant Uropodina species in soil and dead wood in the three nature reserves of Wielkopolska

Species	Dead wood	Soil and litter	z*	P
T. aegrota	2.46 ± 2.86	3.57 ± 6.15	6.71	<0.001
T. pauperior	1.73 ± 0.70	2.91 ± 4.60	0.35	>0.05
Oo. ovalis	12.20 ± 20.44	3.96 ± 6.51	10.33	<0.001
U. tecta	2.64 ± 3.05	2.98 ± 5.39	7.91	<0.001
Ol. minima	3.56 ± 4.09	3.36 ± 3.71	5.17	<0.001
Uro. pulchella	5.00 ± 5.93	1.63 ± 1.06	3.06	<0.01
D. woelkei	6.81 ± 9.46	6.33 ± 7.51	1.73	>0.05

* Mann–Whitney U test

1998; Błoszyk 1999; Błoszyk and Bajaczyk 1999; Skoracka et al. 2001; Błoszyk et al. 2003a, b, 2005a, 2006a; Bajerlein et al. 2006; Błoszyk and Gwiazdowicz 2006, and Gwiazdowicz et al. 2006). Also other researchers have provided cogent evidence for the specificity of zoocenoses of Uropodina in such microhabitats (e.g. Athias-Binche 1977a, b; Krisťofík et al. 1993; Gwiazdowicz et al. 2000; Gwiazdowicz and Sznajdrowski 2000; Mašán 2001; Gwiazdowicz and Klemt 2004; Gwiazdowicz and Kmita 2004).
homogenous environment, enables existence of a population consisting of clones of the paternal specimens, whereas unstable merocenose requires continual genetic recombination. The very low abundance of Uropodina in soil and problems in finding a sexual partner, force these mites to reproduce parthenogenetically (Błoszyk et al. 2004, 2005b).

The studies on the structure of Uropodina communities in merocenoses are important because they may shed new light on the issues concerning species composition of Uropodina in Europe after the regression of the last glaciation. Furthermore, merocenoses constitute ‘halts’ for the populations of many species, forming stepping stones in their dispersion. It is also possible that many Uropodina species have migrated from the South to the North of Europe because they were carried there by arthropods, birds, and mammals when the glacier regressed, and then they had to inhabit merocenoses. The colonization of soil and litter probably took place much later.

Unstable microhabitats enrich the overall biodiversity of forest and meadow ecosystems. Dead wood is one of the most important components in preserving biological diversity of forest ecosystems (Gutowski et al. 2002). The number of species that form Uropodina communities is proportional to the range and the number of microhabitats in a particular ecosystem. The presence of merocenoses increases the general biodiversity of an ecosystem—not only of Uropodina—therefore, it is important to protect them, e.g. by not removing dead wood from forests, not bricking up tree hollows, and leaving ant hills undisturbed.

Acknowledgments This paper is a result of a project supported from KBN—Research Project NN 304 3400 33, NCN—Research Project N N304 070740 and 2/216/WI/09 AR-UAM).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Athias-Binche F (1977a) Étude quantitative des Uropodides édaphiques de la hêtraie de la Tillaie en forêt be Fontainebleu (Acariens; Anactinotriches). Rev Écol Biol Sol 15(1):67–88
Athias-Binche F (1977b) Étude quantitative des Uropodides (Araneis; Anactinotriches) d’un arbre mort de la hêtraie de la Zassane. 1—Caractères généraux du peuplement. Vie Milieu 27(2):157–175
Athias-Binche F (1979) Effects of some soil features on a Uropodine mite community in the Massane forest (Parenees-Orientales, France). In: Rodriguez JG (ed) Recent advances acarology, vol 1. Academic Press, London, pp 567–573
Athias-Binche F (1982a) Ecologie des Uropodides édaphiques (Arachnides, Parasitoformes) des trois écosystèmes forestiers. 3. Abondance et biomasse des microarthropodes du sol, facteurs du milieu, abondance et distribution spatiale des Uropodides. Vie Milieu 32:47–60
Athias-Binche F (1982b) Ecologie des Uropodides édaphiques (Arachnides: Parasitiformes) des trois écosystèmes forestiers. 4. Abondance, biomasse, distribution verticale, sténo-et eurytopie. Vie Milieu 32:159–170
Athias-Binche F (1983) Écologie des Uropodides édaphiques (Arachnides: Parasitiformes) de trois écosystèmes forestiers. 5. Affinités interspéciﬁques, diversité, structures écologiques et quantitatives des peuplements. Vie Milieu 33:25–34
Athias-Binche F (1984) La phorésie chez les acariens uropodides (Anactinotriches), une stratégie écologique originale. Acta Oecol Oecol Gen 5:119–133
Athias-Binche F (1993) Dispersal in varying environments: the case of phoretic uropodid mites. Can J Zool 71:1793–1798
Athias-Binche F (1994) La phorésie chez les acariens. Aspects adaptatifs et évolutifs. Editions du Castillet, Perpignan, p 178
Athias-Binche F, Habersaat U (1988) An ecological study of Janetiella pyriformis (Berlese, 1920), a phoretic Uropodina from decomposing organic matter (Acari: Anactinotrichida). Mitt Schweiz Entomol Ges 61:377–390

Bajerlein D, Błoszyk J (2004) Phoresy of Uropoda orbicularis (Acari: Mesostigmata) by beetles (Coleoptera) associated with cattle dung in Poland. Eur J Entomol 101:185–188

Bajerlein D, Błoszyk J, Gwiazdowicz D, Ptaszyk J, Halliday RB (2006) Community structure and dispersal of mites (Acari: Mesostigmata) in nests of the white stork (Ciconia ciconia). Biologia Bratyłska 61(5):1–8

Błoszyk J (1980) Rodzaj Trachytes Michael, 1894 (Acari: Mesostigmata) w Polsce. Przegl. Zool 29(2):171–177

Błoszyk J (1983) Uropodina Polski (Acari: Mesostigmata). PhD Dissertation. Adam Mickiewicz University, Poznań

Błoszyk J (1985) Materiały do znajomości roztoczy gniazd kreta (Talpa europaea L.). I. Uropodina (Acari, Mesostigmata). Przegl Zool 29(2):171–177

Błoszyk J (1990) Fauna Uropodina (Acari: Mesostigmata) spróchniałych pni drzew i dziupli w Polsce. Zeszyty Probl. Postepow Nauk Roln. Warszawa 373:217–235

Błoszyk J (1992) Materiały do znajomości akarofauny Roztocza. III. Uropodina (Acari: Mesostigmata). Przegl. Zool 25(20):323–344

Błoszyk J (1999) Geograficzne i ekologiczne zróżnicowanie zgrupowań roztoczy z kohorty Uropodina (Acari: Mesostigmata) w Polsce. I. Uropodina lasów grądowych (Carpinion betuli). Wydawnictwo Kontekst. Poznań 246

Błoszyk J, Athias-Binche F (1998) Survey of European mites of cohort Uropodina. I. Geographical distribution, biology and ecology of Polyaspinus cylindricus Berlese, 1916. Biol Bull Poznań Zool 32:89–102

Błoszyk J, Bajaczyk R (1999) The first record of Phaulodinychus borealis (Sellnick, 1949) phoresy (Acari: Uropodina) associated with fleas (Siphonaptera) in mole nests. In: Soil zoology in Central Europe, pp 13–17

Błoszyk J, Gwiazdowicz DJ (2006) Acarofauna of nests of the White Stork Ciconia ciconia, with special attention to mesostigmatid mites. In: Tryjanowski P, Sparks TH, Jerzak L (eds) The white stork in Poland: studies in biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznań, pp 407–414

Błoszyk J, Miko L (1990) Podna Dauna Pienin. I. Uropodina (Acari: Anactinotrichida). Entomologicke Problemy XX:21–47

Błoszyk J, Olszanowski Z (1985a) Materiały do znajomości roztoczy gniazd i budek lęgowych ptaków. I. Uropodina i Nothroidea (Acari: Mesostigmata et Oribatida). Przegl. Zool 29(1):69–74

Błoszyk J, Olszanowski Z (1985b) Rodzaj Trachytes Michael, 1894 (Acari, Mesostigmata) w Polsce. III. Sporadyczne występowanie samców w populacjach niektórych partenogenetycznych gatunków. Przegl Zool 29(3):313–316

Błoszyk J, Olszanowski Z (1986) Materiały do znajomości fauny roztoczy gniazd i budek lęgowych ptaków. II. Różnice w liczebności i składzie gatunkowym populacji Uropodina (Acari: Anactodotrichida) budek lęgowych na Mierzeji Wiślanej na podstawie dwuletnich obserwacji. Przegl Zool 30(1):63–66

Błoszyk J, Bajerlein D, Skoracka A, Bajaczyk R (2001) Uropoda orbicularis (Muller, 1776) (Acari: Uropodina) as an example of a mite adapted to synanthropic habitats. In: Tayovsky K, Pizl V (eds) Proceedings of 6th CEWSZ, ISB AS CR. 2002: studies on Soil Fauna in Central Europe. Tisk Josef Posekany, Czeskie Budziejowice, pp 7–11

Błoszyk J, Bajaczyk R, Markowicz M, Gulvik M (2003a) Geographical and ecological variability of mites of the suborder Uropodina (Acari: Mesostigmata) in Europe. Biol Lett 40(1):15–35

Błoszyk J, Napierała A, Markowicz-Rucinska M (2003b) Zróżnicowanie zgrupowań Uropodina (Acari: Mesostigmata) wybranych rezerwatów Wielkopolski. Parki nar. Rez przyr 22:285–298

Błoszyk J, Adamski Z, Napierała A, Zawada M (2004) Parthenogenesis as a life strategy among mites from the suborder Uropodina (Acari: Mesostigmata). Can J Zool 82(9):1503–1511

Błoszyk J, Bajerlein D, Gwiazdowicz D, Halliday RB (2005a) Nests of the white stork Ciconia ciconia (L.) as habitat for mesostigmatic mites (Acari: Mesostigmata). Acta Parasitol 50(2):171–175

Błoszyk J, Napierała A, Dylewska M, Bajaczyk R (2005b) Phenomenon of parthenogenesis among mites from suborder Uropodina (Acari: Mesostigmata). Advances in Polish Acarology. SGGW, Warszawa, pp 15–25

Błoszyk J, Bajerlein D, Gwiazdowicz DJ, Halliday RB, Dylewska M (2006a) Uropodina mites communities (Acari: Mesostigmata) in birds’ nests in Poland. Belgian J Zool 136(2):145–153
