Cap methyltransferase selective binding and methylation of GpppG-RNA are stimulated by importin-α

Yingxia Wen1,2 and Aaron J. Shatkin1,3

1Center for Advanced Biotechnology and Medicine and 2Graduate Program in Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA

We screened a human cDNA library for proteins that bind mRNA cap methyltransferase (MT) and isolated nuclear transporter importin-α (Impα). This direct association was confirmed by glutathione S-transferase (GST) pulldown, coimmunoprecipitation, and nuclear colocalization. In gel shift assays, MT selectively bound RNA containing 5′-terminal GpppG, and binding was inhibited by GpppG and not by m′GpppC. Impα markedly enhanced MT binding to GpppG-RNA and stimulated MT activity. MT/RNA/Impα complexes were dissociated by importin-β, which also blocked the stimulation of cap methylation by Impα. The presence of RanGTP but not RanGDP prevented these effects of importin-β. These findings indicate that importins can also modulate mRNA biogenesis at the level of cap methylation.

Received September 6, 2000; revised version accepted October 24, 2000.

The 5′-terminal m′GpppN cap, which is formed cotranscriptionally on nascent nuclear pre-mRNAs, is important for subsequent steps in gene expression, including mRNA processing, stability, and translation (Furuchi and Shatkin 2000). Cap formation is catalyzed by the sequential action of RNA 5′-triphosphatase (RT), guanylyltransferase (GT), and methyltransferase (MT) (Shuman 1995). In mammalian cells, RT and GT catalytic activities are present in a bifunctional capping enzyme (CE), whereas MT is separately encoded (Yue et al. 1997; Pillutla et al. 1998; Tsukamoto et al. 1998; Saha et al. 1999). Selective capping of RNA polymerase II (Pol II) products is facilitated by binding of CE via its GT domain to RNA [Wen et al. 1998] and to the Pol II largest subunit C-terminal domain (CTD) after it is phosphorylated (Cho et al. 1997; McCracken et al. 1997; Yue et al. 1997). Interaction with phosphorylated CTD stimulates capping (Ho and Shuman 1999; Wen and Shatkin 1999), which is also enhanced by binding of Pol II elongation factor Spt5 to CE [Wen and Shatkin 1999].

These protein–protein interactions demonstrated a functional linkage between CE and transcription; therefore, we looked for proteins that interact functionally with MT. We isolated importin-α (Impα) and found that it forms complexes with MT and RNA and stimulates selective GpppG-RNA binding and cap methylation by MT. Impα is an adapter that functions together with the importin-β (Impβ) receptor to promote nuclear import of proteins through the nuclear pore complex (Mattaj and Englmeier 1998; Görlich and Kutay 1999; Nakielny and Dreyfuss 1999). The effects on MT RNA binding and cap methylation indicate that importins can also modulate mRNA formation.

Results

MT binds Impα in vitro and in vivo

A human cDNA library screened as described (Wen and Shatkin 1999) with full-length human MT in a yeast two-hybrid system yielded several candidate clones, including four with a perfect sequence match to Impα isoforms Rch1/pendulin/hSRP1α [Weis et al. 1995; Kohler et al. 1999]. Direct association of MT and Impα was demonstrated by glutathione S-transferase (GST) pulldown assays in which 24% of the input Impα specifically bound to purified GST–MT [Fig. 1A]; similar results were obtained with bacterially expressed, affinity-purified proteins by using Western blot analysis (data not shown). The complexes were relatively stable, that is, >60% remained bound after washing with 0.5 M NaCl (data not shown). This interaction was confirmed using input MT and GST–Impα [Fig. 1B].

Consistent with these in vitro binding studies and the yeast two-hybrid results, HeLa S3 cells that were cotransfected with plasmids for the expression of green fluorescent protein (GFP)–Impα and MT–myc fusion proteins contained complexes that were communoprecipitable from cell lysates [Fig. 1C]. In addition, GFP–MT and red fluorescent protein (RFP)–Impα expression produced fusion proteins that colocalized in the nucleus [Fig. 2A–C].

Sequences required for MT/Impα complex formation and nuclear recruitment of MT

The 476-amino acid human MT contains sequences that are conserved in yeast, Caenorhabditis elegans, and Xenopus laevis [Mao et al. 1995; Pillutla et al. 1998; Tsukamoto et al. 1998; Saha et al. 1999; Yokoska et al. 2000], including residues required for S-adenosylmethionine [Adomet] binding [201-L[D/E]GXXG] [Pillutla et al. 1998] and MT catalytic activity [D203, R239, Y289, F291, and F354] [Saha et al. 1999]. More than 80% of the activity was retained by a fragment of human MT consisting of residues 144–476, whereas fragments 1–200 and 201–476 had <10% of the activity of the full-length MT [Fig. 3A]. In contrast to requirements for MT activ-
ity, GST pulldown assays showed that N-terminal sequences are necessary for Impα/H9251 binding, in particular the 96–143 region that is rich in positively charged residues (Fig. 3A). Impα/H9251 contains a large central domain of tandemly repeated armadillo motifs responsible for nuclear localization signal (NLS) recognition, an Impα/H9251-binding (IBB) N-terminal domain, and a C-terminal acidic region (Mattaj and Englmeier 1998; Görlich and Kutay 1999; Nakielny and Dreyfuss 1999). The Impα/H9251-binding domain was not needed for MT binding, and the NLS-binding domain (72–455) was also not sufficient. However, sequences in the acidic region were essential (Fig. 3B). The required residues (456–496) contain many negatively charged amino acids, suggesting that Impα/H9251–MT binding involves electrostatic interactions.

To test whether Impα binding correlates with nuclear entry of MT, HeLa S3 cells were transfected with pEGFP-C1–MT and pCDNA3.1(+)-Impα. Two days later, cell lysates were immunoprecipitated (IP) in RIPA buffer (see Materials and Methods) as indicated, with anti-myc (α-myc) or anti-GFP (α-GFP) antibodies, and immunoblotted with α-GFP or α-myc. (G) GFP only; (G-I) GFP–Impα fusion protein; (m) myc tag only; (M-m) MT–myc fusion protein.

Figure 1. MT/Impα binding. Purified GST and GST–MT (A) or GST–Impα (B) were incubated with [35S]Met-labeled Impα and MT, respectively. Bound proteins were detected by SDS-PAGE followed by autoradiography (Yue et al. 1997; Wen et al. 1998). HeLa S3 cells (C) were transfected with pEGFP-C1–Impα and pCDNA3.1(+)-MT–myc. Two days later, cell lysates were immunoprecipitated (IP) in RIPA buffer (see Materials and Methods) as indicated, with anti-myc (α-myc) or anti-GFP (α-GFP) antibodies, and immunoblotted with α-GFP or α-myc. (G) GFP only; (G-I) GFP–Impα fusion protein; (m) myc tag only; (M-m) MT–myc fusion protein.

MT selectively binds RNA with 5’-terminal GpppG

Previous studies have shown that CE can bind RNA (Wen et al. 1998) in addition to the phosphorylated form of Pol II (Cho et al. 1997; McCracken et al. 1997; Yue et al. 1997). To test whether MT also can directly associate with RNA, we used a gel mobility shift assay with 32P-labeled 32-nucleotide (nt) runoff transcripts containing 5’-terminal GpppG, pppG, or m7GpppG (Furuichi and Shatkin 1994; Buratowski and Chodosh 1996). Complexes detected by decreased RNA mobility were obtained only with the GpppG-ended RNA (Fig. 4A, lanes 1–3). The results were the same with 14-nt runoff transcripts [data not shown]. Analysis of truncation mutants indicated that a region between residues 144 and 200 is required for RNA binding (Fig. 3A). Selective recognition was confirmed by cap analog competition; 1mM GpppG but not m7GpppC almost completely (92%) inhibited MT binding to the GpppG-ended RNA (Fig. 4A, lanes 4–6).

Impα enhances MT specific binding to and modification of RNA

Although MT selectively associated with GpppG-RNA, the complexes were apparently of low affinity, that is, readily detectable at 0.25 µM but not at 0.1 µM MT (Fig. 4B, lanes 2,3). Incubation of the GpppG-ended RNA probe with 1.0 µM Impα resulted in a new complex of decreased mobility and apparently high affinity (Fig. 4B, lane 6). Although not selective for 5′-terminal structure (because RNAs with pppG or m7GpppG ends were similarly bound by Impα, and polyU in excess prevented Impα but not MT binding to GpppG-ended RNA; data not shown), binding required a region within the Impα N-terminal 71 amino acids (Fig. 3B), which is consistent with the presence of many basic residues (Weis et al. 1995). Impα/RNA complexes were detectably shifted by

Figure 2. Localization of MT and Impα fusion proteins. HeLa S3 cells were transfected with pEGFP-C1–MT and pDsRed1-N1–Impα (A–C) or pEGFP-C1–MT [144–476] (D), constructed as recommended by Clontech, and analyzed by fluorescence microscopy.
the presence of MT at a concentration as low as 0.1 µM (Fig. 4B, lane 7) and were supershifted at 0.25 µM or higher levels (Fig. 4B, lanes 8–10). At 1 µM (each) MT and Impβ, binding to GpppG-ended RNA was enhanced 8- to 10-fold (Fig. 4B, lane 10). However, Impβ (1–455) that retained RNA binding (Fig. 4B, lane 19) but not MT binding (Fig. 3B) did not supershift MT/RNA complexes (Fig. 4B, lane 20), suggesting that the Impβ/MT protein interaction was required for the enhancement.

Competition was again obtained with 1mM GpppG and not with m7GpppC, resulting in dissociation of MT from most (89%) of the trimeric complexes and the corresponding appearance of Impβ/RNA complexes (Fig. 4B, lanes 11–13). These results suggest that Impβ promotes specific binding of MT to its substrate GpppN-ended pre-RNAs in the nucleus. To examine further if Impβ stimulates MT catalytic activity by recruiting MT to GpppG-RNA, we added Impβ to an MT reaction mixture. At an Impβ/MT molar ratio of 10:1, MT activity was increased 10-fold, whereas the truncation mutant Impβ (1–455), which did not bind MT, also did not stimulate methylation (Fig. 4C).

**Figure 3.** Regions required for Impβ/MT complex formation, MT activity, and RNA binding in vitro. Purified MT (A) or Impβ (B) and the indicated truncation mutants fused with GST were incubated with [35S]Met-labeled full-length Impβ or MT, and bound proteins were detected by SDS-PAGE and autoradiography. MT activity was tested by incubating the indicated proteins with Adomet and T7 polymerase 32-nt runoff transcripts containing [32P]GpppG-5'-ends, followed by P1 nuclease digestion, TLC, and autoradiography (Yue et al. 1997; Pillutla et al. 1998). RNA binding was measured using GpppG-primed T7 polymerase runoff transcripts labeled with [α-32P]GTP (Furuichi and Shatkin 1994), and nucleoprotein complexes were separated by 4.5% PAGE at 4°C (Buratowski and Chodosh 1996) followed by autoradiography.

**Figure 4.** Impβ enhances MT selective binding to GpppG-RNA and cap methylation, which are both prevented by Impβ. (A) Purified MT was incubated with T7 polymerase 32-nt runoff transcripts labeled with [α-32P]GTP and containing 5'-terminal GpppG, pppG, or m7GpppG (Furuichi and Shatkin 1994) (lanes 1–3, respectively) or 5'-terminal GpppG in the presence of 1mM cap analog, as indicated (lanes 4–6). The MT/RNA complexes were detected as in Fig. 3. (B) MT at 0 (lanes 1, 6), 0.10 (lanes 2, 7), 0.25 (lanes 3, 8), 0.5 (lanes 4, 9), or 1.0 (lanes 5,10) µM was incubated with GpppG-ended radiolabeled T7 polymerase runoff transcripts in the absence (−) or presence (+) of 1.0 µM Impβ. (Lanes 11–13) Samples contained the GpppG-RNA, 1.0 µM (each) Impβ and MT, and 1 mM cap analog as indicated. (Lanes 14–18) Impβ was added at concentrations of 0, 3, 6, 15, 30, 60, or 150 nM (closed triangles) or Impβ (1–455) (closed circles), and MT activity assays were performed as in Fig. 3. (D) 0, 30, 60, 120, or 240 nM Impβ was incubated with 3 nM MT and 30 nM Impβ and assayed as above.
RanGTP but not RanGDP reverses the effects of Impβ

RanGTP in the nucleus dissociates Impβ from Impα, resulting in release of protein cargo (Görlich and Kutay 1999). To assess the possible effects of Ran on MT activity and interactions with importins, we compared the dissociation of Impα/MT/RNA complexes by Impβ in the presence and absence of RanGTP or RanGDP. As shown in Figure 5A, lane 3, most of the supershifted complexes were dissociated into Impα/RNA and MT/RNA complexes by addition of Impβ. This effect of Impβ was prevented by incubation with RanGTP (lane 4) but not RanGDP (lane 5). Like these effects on protein/RNA complex formation, the inhibitory action of Impβ on Impα stimulation of cap methylation (Fig. 5B, columns 2,3) was reversed by RanGTP (column 4). RanGDP had no reversing effect (column 5).

Discussion

MT is essential for the early formation on nuclear pre-mRNAs of m’GpppN caps that modulate key events in gene expression (Shuman 1995; Furuichi and Shatkin 2000). Impα is an adapter protein that cooperates with the receptor Impβ to facilitate nuclear recruitment of NLS-containing proteins (Mattaj and Englmeier 1998; Görlich and Kutay 1999; Nakielny and Dreyfuss 1999). Our results demonstrated cytoplasmic localization of a truncation mutant of MT that was enzymatically active but missing the N-terminal residues required for Impα binding. Surprisingly, the sequences in Impα necessary for binding MT were in the C-terminal acidic region, not in the NLS-binding domain. In addition, three of the putative NLS sequences in MT (57-RRK, 80-KRRK, and 194-KKRR) (Tsukamoto et al. 1998) were not required for Impα binding (Fig. 3A), and simultaneous substitution of alanine at all positions in the fourth (103-KKKRK) had no effect on Impα binding [data not shown]. Although these results suggest that MT/Impα complex formation does not require NLS recognition, additional studies are needed to confirm this point.

MT/Impα complexes were relatively stable as measured by resistance to dissociation by 0.5 M NaCl, implying that the interaction has functional effects in addition to nuclear recruitment of MT. In this regard, we found that MT can directly and selectively recognize transcripts containing 5’-terminal GpppG and that Impα increased this specific binding and stimulated methylation by 10-fold (Fig. 4B,C). Our results suggest that Impβ and RanGTP also can modulate MT function. Although Impβ bound to GST–MT/Impα complexes and did not alter MT/Impα binding [data not shown], its presence prevented both the formation of MT/MT/GpppG-RNA complexes [Fig. 4B] and Impα stimulation of cap methylation [Fig. 4D]. Thus, MT may be transported to the nucleus by Impα/β heterodimers that separate in response to RanGTP, allowing MT/Impα complexes to bind substrate GpppN-ended pre-mRNAs and resulting in increased cap methylation [Fig. 4C; Herold et al. 1998; Mattaj and Englmeier 1998; Görlich and Kutay 1999; Nakielny and Dreyfuss 1999].

In addition to previous findings that linked CE to transcription elements CTD and Spt5, the present results demonstrating Impα stimulation of MT indicate that importin protein transporters play a role in mRNA biogenesis. Pol II transcripts that are decapped are rapidly degraded by 5’ exonuclease(s), and capped but unmethylated pre-mRNAs in the nucleus are similarly at risk of degradation as a result of GT reaction reversibility (Furuichi and Shatkin 2000). Methylation of the N7 position on the cap G prevents pyrophosphate-catalyzed GT back reaction and is critical for mRNA stability. Completion of the cap by methylation is important for mRNA downstream events, including splicing, transport to the cytoplasm, and translation. Assuring that caps are methylated may be accomplished at least in part by an early interaction of MT with Impα, an abundant nuclear transporter that promotes MT selective binding to and methylation of GpppN-ended pre-mRNAs.

Materials and methods

Yeast two-hybrid screen

MT cDNA was cloned in-frame into the GAL4 DNA-binding domain fusion vector pAS2-1. The Y190 yeast strain containing HIS3+ and lacZ reporter genes was first transformed by pAS2-1–MT, then by the Human Fetal Brain Matchmaker cDNA Library in GAL4 activation domain fusion vector pACT2 (Clontech), using the lithium acetate method. Twelve independent His+/lacZ+ colonies were isolated from 5.1 × 10⁵ transfor-
mants as described previously [Wen and Shatkin 1999]. The plasmids from the positive colonies were retested for interaction using Y190 co-transformed with negative control vectors and then identified by DNA sequencing and GenBank database searches.

In vitro translation
Full-length Impc cDNA was amplified from the positive clone that contained the entire open reading frame of Impc by using Advantage-HF polymerase (Clontech) with primers 5'-ATGTCACCAACAGAATGCG-3' and 5'-CTAAAAGTAAAGGTCACCAGG-3'. The polymerase chain reaction (PCR) products were cloned in-frame into [His]6-tagged vector pET28a (Novagen) and GST fusion vector pGET-4T-1 [Pharmacia]. Translational mutants of Impc were generated from full-length Imps by PCR and cloned into vector pET28a. pET28a-Impc and its translational mutants were transcribed and translated in vitro by TNT Quick Coupled Translation/Transcription System (Promega) as described previously [Wen and Shatkin 1999].

Expression and purification of Imps and MT recombinant proteins
pGEX-4T-1-Impc was introduced into BL21(DE3) cells. GST-Impc was expressed in the presence of 0.8 mM IPTG for 4 h at 37°C and purified on glutathione-agarose (Sigma) as described (Wen et al. 1998). The expression of recombinant MT was induced by 0.8 mM IPTG for 17 h at 17°C, and purification was performed as described previously (Pillutla et al. 1999). MT truncation mutants were generated from full-length MT by PCR and cloned into pGEX-4T-1. The expression and purification were performed as described for full-length MT.

Expression and purification of Impβ
Impβ cDNA was isolated from human HeLa Marathon-Ready cDNA (Clontech) with primers 5'-ATGAGGAGTAACATACCCTC-3' and 5'-TCAAGCTTCGTTCTTCAGTTTCC-3'. The PCR products were cloned into pET28a. His-tagged Impβ was expressed in the presence of 0.8 mM IPTG for 4 h at 37°C and purified on Ni-NTA agarose (Qiagen) as described (Wen et al. 1998).

Cloning, expression, purification, and nucleotide loading of Ran
Ran cDNA was isolated from human HeLa Marathon-Ready cDNA, using as primers 5'-GAATTCATGGCTGCGCAGGGAGAG-3' and 5'-CTCGAGTCACAGGTCATCATCCTC-3'. The PCR products were cloned into pGEX-4T-1, and expression and purification were performed as described (Wen et al. 1998). Ran (10µM) was incubated for 30 min on ice with 1.0 mM GTP or GDP in 5 mM EDTA, 20 mM Tris (pH 7.5), 100 mM KCl, 20 mM MgCl₂, as described by Floer and Blobel [1996]. Unbound nucleotide was removed by Chroma Spin+-TE-10 (Clontech).

GST pulldown

These assays were performed as described previously [Wen and Shatkin 1999] in the presence of 0.1, 0.2, or 0.5 M NaCl.

Cosinmunoprecipitation
pEGFP-C1-impb and pcDNA3.1[+]-MT-myc were cotransfected into HeLa S3 cells with Superfect Transfection Reagent (Qiagen). After 48 h, cells were lysed in RIPA buffer (0.1% SDS, 1% Triton X-100, 1% sodium deoxycholate, 150 mM NaCl, 10 mM Tris-HCl at pH 7.4, 1 mM EDTA, 0.5 mM phenylmethylsulfonyl fluoride), immunoprecipitated with anti-myc or anti-GFP antibodies (Santa Cruz Biotechnology), and immunoblotted with anti-GFP or anti-myc antibodies.

Subcellular localization
MT and MT [144–476] were ligated into GFP fusion vector pEGFP-C1, and Impc was cloned into RFP fusion vector pDsRed-N1 [Clontech]. The plasmids were transfected into HeLa cells by SuperFect. After 36 h, cells were fixed by 4% paraformaldehyde in PBS and visualized by fluorescence microscopy.

MT activity
Enzyme activity was measured as described previously (Pillutla et al. 1998).
Shuman, S. 1995. Capping enzyme in eukaryotic mRNA synthesis. Prog. Nucleic Acids Res. Mol. Biol. 50: 101–129.

Tsukamoto, T., Shibagaki, Y., Niikura, Y., and Mizumoto, K. 1998. Cloning and characterization of three human cDNAs encoding mRNA (guanine-7-)-methyltransferase, an mRNA cap methyltransferase. Biochem. Biophys. Res. Commun. 251: 27–34.

Weis, K., Mattaj, I.W., and Lamond, A.I. 1995. Identification of hSRP1a as a functional receptor for nuclear localization sequences. Science 268: 1049–1053.

Wen, Y. and Shatkin, A.J. 1999. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes & Dev. 13: 1774–1779.

Wen, Y., Yue, Z., and Shatkin, A.J. 1998. Mammalian capping enzyme binds RNA and uses protein tyrosine phosphatase mechanism. Proc. Natl. Acad. Sci. 95: 12226–12231.

Yokoska, J., Tsukamoto, T., Miura, K., Shiokawa, K., and Mizumoto, K. 2000. Cloning and characterization of mRNA capping enzyme and mRNA (guanine-7-)-methyltransferase cDNAs from Xenopus laevis. Biochem. Biophys. Res. Commun. 268: 617–624.

Yue, Z., Maldonado, E., Pillutla, R., Cho, H., Reinberg, D., and Shatkin, A.J. 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Natl. Acad. Sci. 94: 12898–12903.