The computational models of measurement parameters for electromechanical energy systems with the application of neurodiagnostics

K G Potapov, E V Tumakova* and O V Ummanova
Bauman Moscow State Technical University, Moscow 105005, Russia
tumakova_ekaterina91@mail.ru

Abstract. In paper the influence of space weather on the functioning of electromechanical energy systems are considered. The analysis of geomagnetic activity indices is carried out. The impact analysis was carried out using the example of measurement information from Surgut State District Power Station-1 (Russia) and data on the AE index from the archive (Japan).

1. Introduction
In recent years space weather as a complex and not fully researched concept has been attracting increasing interest among scientists around the world in recent years. This interest is due to the continuous technological progress of mankind on the one hand and the increasing accidents at large industrial facilities, the causes of which may be factors caused by space weather, on the other. The main sources of space weather are associated with solar activity. The sources of cosmic weather are electromagnetic radiation from the Sun, energetic particles and solar plasma flows with a magnetic field which cause a variety of physical phenomena in different geospheres (magnetosphere, ionosphere, and Earth's atmosphere). [1]

The influence of space weather on modern technological systems is described in a large number of literature. Thus, the most frequently mentioned event illustrating the impact of space weather on the technosphere is the accident that occurred in March 1989 in the Canadian city of Quebec. Then during a geomagnetic storm, millions of people were left without electricity for 9 hours due to a break in the power grid. [2]

2. Geo-induced currents
One of the consequences of solar activity on the Earth's surface is the occurrence of geo-induced currents (GIC). GIC are induced in extended metal objects located in the ground, such as pipelines, railway rails, cables, etc. [3] in electric networks, GIC cause saturation of transformers, which leads to distortion and an increase in the excitation current. This, in turn, leads to undesirable relay trips, high reactive power consumption, voltage fluctuations, etc., which ultimately leads to a possible shutdown of the entire system or damage to the transformers. [4]

Geo-induced currents are formed during geomagnetic storms which are caused by a space weather parameter such as a solar wind. The solar wind forms charged particles emitted by the sun. It acts as a geomagnetic field creating a magnetosphere around the earth. The magnetosphere is a complex of plasma physics in connection with the ionosphere. During a storm in space weather the
magnetospheric-ionospheric system becomes severely disrupted, containing intense and rapidly changing flows. There is a so-called auroral zone (auroral electric jet) – an electric current in the area of the auroral oval directed to the west at night and in the morning to the east in the evening. And on the earth’s surface variable cosmic currents manifest themselves as perturbations or storms in the geomagnetic field. According to Faraday’s law of induction, a geo-electric field is induced on the Earth’s surface. This geo-electric field creates a GIC in ground-based technological networks. [4]

GIC monitoring is carried out in the electrical networks of many countries. The observed values of amps in the neutrals of power transformers in a year with an average geomagnetic activity reach 100 A or more and in years with high geomagnetic activity can exceed 200 A. [1] According to [5] the largest recorded value of the geo-induced current was 320 A in the transformer neutral (107 A per phase) in Sweden in April 2000.

In recent years research has been conducted to establish a correlation between variations of the geomagnetic field and the value of the GIC. The most powerful disturbances of the geomagnetic field which lead to the excitation of intense GIC in conducting structures occur in the auroral latitudes (the auroral zone). [6] The Auroral zone is a band of latitudes where the most powerful magnetic disturbances and the brightest auroras are registered. The Aurora zone in Russia and Northern Europe mostly passes over the Arctic ocean, without affecting the areas saturated with technology. Because of this, man-made disasters associated with magnetic storms have not been studied in Russia. [7] However, it has recently been found that dangerous GIC values can also be observed at mid- and low latitudes. [6]

3. Geomagnetic activity indexes
A numerical characteristic that reflects geomagnetic disturbances is the various geomagnetic indexes. Existing geomagnetic activity indexes can be divided into three groups. The first group includes local indexes calculated from the data of a single observatory and indicating the value of local geomagnetic disturbance over the territory: C-, K-indexes. The second group includes indexes that characterize geomagnetic activity throughout the Earth. These are the so-called planetary indexes: Kr, ar, Ar, am, Am, aa, Aa. The third group includes indexes that reflect the intensity of magnetic perturbation from a well-defined source: Dst, AE, and PC. Currently, the most common planetary indices are Kr, AE and Dst. From the point of view of GIT research, the AE index is of the greatest interest. This index characterizes the intensity of auroral currents, the so-called "auroral electric jets", which represent the most important part of magnetic disturbances in the planetary scale. The AE index is determined by a network of 12 magnetic observatories in the polar zone with a resolution of 1 minute. The leading organization for calculating the AE index is the World data center in Japan. [8-9]

4. The influence of geomagnetic index AE on the work of cyclic mechanisms on the example of Surgut state district power station-1
In this article the analysis of measurement information was performed to determine the relationship between the functioning of electromechanical systems and geomagnetic disturbances. As initial data we used the measurement information obtained using the phase-chronometric system at Surgut SDPS-1, and the data archive of the index values of the AE World data center in Japan.

It is necessary to make a convolution of the chronograms in order to be able to assess the degree of correlation of the rotation chronogram of the Surgut SDPS-1 turbine with the geomagnetic activity index. The convolution was performed using four parameters: arithmetic mean, median, standard deviation, and span. As a result of this work the following data table (see table 1) is obtained:
№	Mean	Median	Std	R	AE_Index
1	2399992	2399988	457	3353	262
2	2399908	2399982	555	3224	200
3	2399737	2399815	681	4224	200
4	2400577	2400616	705	4417	50
5	2400179	2400176	633	3639	43
6	2400104	2400066	556	3760	44
7	2399954	2400010	563	4136	83
8	2399885	2399889	475	3599	33
9	2399501	2399536	604	4055	86
10	2400035	2400087	646	6627	76
11	2400338	2400333	545	3489	98
12	2400053	2400073	536	3798	147
13	2399607	2399627	620	4058	117
14	2400209	2400247	674	4006	109
15	2400254	2400129	837	4948	152
16	2400210	2400223	506	4142	351
17	2400240	2400243	576	6567	97
18	2400235	2400213	613	3745	135
19	2399877	2399994	714	4086	585
20	2399789	2399860	576	3517	680
21	2399981	2399967	561	3265	346
22	2400007	2399977	477	3466	332
23	2399980	2399994	484	3348	477
24	2400000	2400041	484	3052	740
25	2399950	2399955	516	3702	403
26	2400041	2399988	597	3660	70
27	2400079	2400078	441	3001	415
28	2400053	2400048	412	3108	92
29	2400039	2400000	430	2726	573
30	2399510	2399573	793	3969	352
31	2399874	2399876	553	3491	43
32	2400100	2400071	498	3404	217
33	2400045	2400091	720	4169	470
34	2400059	2400056	459	3239	356
35	2400066	2400096	547	3335	132
36	2399920	2399841	686	4770	53
37	2400162	2400157	577	3544	54
38	2400022	2400052	556	3355	43
39	2399937	2399928	400	3278	58
40	2400468	2400498	543	3538	193
Histograms of the distribution are constructed for each parameter in order to evaluate the law (figure 1 – 5). The knowledge of the distribution law is necessary for the correct selection of criteria for evaluating the degree of correlation.

From the obtained graphs it can be seen that only histograms for the arithmetic mean and median have a distribution close to normal. This means that the Pearson correlation will not work, since it requires a normal distribution for both values under consideration. [10] In this case rank correlation should be applied. In this article nonparametric Spearman and Kendall criteria are applied. [11] Let the significance level $\alpha = 0.05$ be set, then the hypothesis H_0 (the hypothesis of uncorrelated data) will be rejected if the calculation results $p < \alpha$. The calculation results are shown below:
The arithmetic mean:
Spearman correlation coefficient $\text{coef} = -0.139$;
Kendall correlation coefficient $\text{coef} = -0.091$;
Spearman data is uncorrelated $p = 0.394$;
Kendall data is uncorrelated $p = 0.408$.

Median:
Spearman correlation coefficient $\text{coef} = -0.102$;
Kendall correlation coefficient $\text{coef} = -0.072$;
Spearman data is uncorrelated $p = 0.530$;
Kendall data is uncorrelated $p = 0.514$.

Standard deviation:
Spearman correlation coefficient $\text{coef} = -0.177$;
Kendall correlation coefficient $\text{coef} = -0.140$;
Spearman data is uncorrelated $p = 0.273$;
Kendall data is uncorrelated $p = 0.204$.

Range:
Spearman correlation coefficient $\text{coef} = -0.272$;
Kendall correlation coefficient $\text{coef} = -0.188$;
Spearman data is uncorrelated $p = 0.089$;
Kendall data is uncorrelated $p = 0.089$.

At the significance level $\alpha = 0.05$ it can be argued that geomagnetic activity does not affect the operation of cyclic machines as can be seen in the example of Surgut SDPS-1. However, if you change the significance level of α to 0.1, it can be argued that there is a weak negative correlation with the span parameter R, i.e., when the AE index decreases the span of the chronogram increases and, conversely, when the AE index increases the span of the chronogram decreases.

Acknowledgments
This work is supported within the framework of the state task of the Ministry of science and higher education.

References
[1] Kuvshinov A, Vahlnina V, Kuznetsov V, Rybalko T and Zyuzin M *Electricity* vol 5 2015 pp 36-46
[2] Daniel N. Baker [and others] *Severe Space Weather Events — Understanding Societal and Economic Impacts A Workshop Report*. Washington DC. The National Academies Press. 2009
[3] Vakhnina V, Kuvshinov A, Shapovalov V, Chernenko A, Shtyrkov A, Minnegaleev V *World of measurements* vol 9 2014 pp 3-7
[4] Pirjola R [and others]. Amm. GeoForschungsZentrum Potsdam. D-14473, Germany *Effect of space weather on technology infrastructure* 2004 pp 235-256
[5] Pulkkinen A, Pirjola R, Viljanen 2008 *A Space Weather 6*
[6] Vorobyov A, Pilipenko V, Sakharov Ya, Selivanov V *Solar-earth physics* 2019 Т 5 vol 1 pp 48-58
[7] Lazutin L *trv-science.ru (Troitskiy variant)* vol 108 p 10
[8] Description of geomagnetic activity indexes ICSU WORLD DATA SYSTEM
[9] JapaneseGeomagnetic Auroral Electrojet (AE) index (http://wdc.kugi.kyoto-u.ac.jp/aedir/)
[10] Gmuran V *Probability theory and mathematical statistics: a textbook for universities* (Moscow: Higher school) 2004 p 479
[11] Bagdonavicius V, Kruopis J, Nikulin M 2011 *Non-parametric tests for complete data* (ISTE & WILEY: London & Hoboken)