Current strategic limitations of phylogenetic tools badly impact the inference of an evolutionary tree

Shamantha Nasika, Ashish Runthala*

Email: ashish.runthala@gmail.com

Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram

Abstract: For drawing an evolutionary relationship among several protein sequences, the phylogenetic tree is usually constructed through maximum likelihood-based algorithms. To improve the accuracy of these methodologies, many parameters like bootstrap methods, correlation coefficient and residue-substitution models are presumably over-ranked to derive biologically credible relationships. Although the accuracy of protein sequence alignment and the substitution matrix are preliminary constraints to define the biological accuracy of the overlapped sequences/residues, the alignment is not iteratively optimized through the statistical testing of residue-substitution models. The study majorly highlights the potential pitfalls that significantly affect the accuracy of an evolutionary protocol. It emphasizes the need for a more accurate scrutiny of the entire phylogenetic methodology. The need of iterative optimizations is illustrated to construct a biologically credible and not mathematically optimal tree for a sequence dataset.

Keywords: Phylogenetic tree, substitution model, IQ-Tree, bootstrap, log-likelihood, IToL

Introduction

An evolutionary relationship is usually drawn to screen the sequence/functional similarity among the protein sequences (Chan 1989; Kamjula et al. 2020; Keeling et al. 1998; Sharma et
al. 2018; T. Lanisˇnik Rizˇner 2001). On the basis of mutual sequence similarity, the phylogenetic tree is constructed as the schematic depiction of the evolutionary connection between the species of different origins, and evolutionary distance/relatedness is assessed through several non-absolute scores including branch length, maximum likelihood score, and topology.

To draw the evolutionary relationships, a sequence profile or multiple sequence alignment (MSA) is usually constructed through several protocols, viz. MAFFT, MUSCLE, Kalign, TCoffee, Clustal-Omega and PROMALS3D(Di Tommaso et al. 2011; Edgar 2004; Kazutaka Katoh 2002; Lassmann and Sonnhammer 2005; Pei and Grishin 2014; Sievers et al. 2011). Multiple sequence comparison by log-expectation (MUSCLE; https://www.ebi.ac.uk/Tools/msa/muscle/) and multiple alignments using fast fourier transform (MAFFT; https://www.ebi.ac.uk/Tools/msa/mafft/) protocols are better than ClustalW and quickly align hundreds of sequences within seconds (Edgar 2004; Kazutaka Katoh 2002). Kalign alignment is also a very fast MSA tool which is applicable for large alignments. It uses WU-Manber string-matching algorithm to quickly align the sequences (Kazutaka Katoh 2002; Lassmann and Sonnhammer 2005). However, the profile multiple alignment with predicted local structures and topological constraints (PROMALS3D) proficiently aligns sequences/structures on the basis of sequence profiles, predicted secondary structures and structural constraints (http://prodata.swmed.edu/promals3d/promals3d.php). In contrast to these servers, Clustal-Omega is capable of aligning numerous sequences on the basis of a guide tree (Sievers et al. 2011) and hidden markov model (HMM) profiles (Sievers and Higgins 2018). Residue substitution matrix is used to align the sequences, and is deployed by the phylogeny protocol for deriving the evolutionary relationships. Phylogeny is routinely derived through
nine different substitution matrices, viz. Dayhoff (Winona C. Barker 1978), JJT, BLOSUM62, WAG, PMB, DCMut (Kosiol and Goldman 2005), JTTDCmut (Kosiol and Goldman 2005), LG (Le and Gascuel 2008), and VT (Alva et al. 2016).

On the basis of sequence alignment, evolutionary relationship is usually drawn through several tools including a tree and reticulogram reconstruction (T-REX), MEGA5, PhyML, randomized axelerated maximum likelihood (RAxML), NGPhylogeny.fr and IQTree. PhyML uses the maximum likelihood method along with bootstrap and other parameters (Guindon et al. 2005). While T-REX deploys maximum likelihood/parsimony methods (Boc et al. 2012), MEGA5 and NGPhylogeny.fr offer a customizable platform (Hall 2013; Lemoine et al. 2019). However, the RAxML protocol is routinely used for large sequence datasets (Stamatakis 2014). In comparison to these strategies, IQTree (Nguyen et al. 2015) offers a highly customizable protocol to build even the complex trees more accurately. The method uses the ultrafast bootstrap algorithm and saves the runtime through statistical scoring, and is significantly faster than RAxML and PhyML (Hoang et al. 2018; Minh et al. 2013).

Evolutionary analysis has been extensively used for various research projects since 1883, and until December 18, 2019, 207863 articles are published, ~1540 articles every year (BROOKS 1883; Xuan et al. 2019). Almost all phylogenetic algorithms are maximally dependent on the aforementioned parameters and the impact of a biologically inaccurate sequence alignment and an incompatible residue substitution matrix is greatly disregarded. Most of these methods deploy a default substitution/alignment protocol for every sequence dataset (Boc et al. 2012; Guindon et al. 2005; Hall 2013; Lemoine et al. 2019; Nguyen et al. 2015; Stamatakis 2014), and do not train the dataset over available options. Moreover, no previous study has simultaneous assessed the quantified the negative impact of an incorrect substitution matrix,
alignment protocol and the depth of a sequence dataset over the accuracy of a phylogenetic tree. By providing a comprehensive assessment of all the alignments and substitution models over an evolutionary tree, the study proves the importance of well-trained substitution model and biologically correct alignment. To aid the construction of a more accurate evolutionary server, the study defines the vital constraints for a heuristic and iterative tailoring of input data. It will aid us extract the closest template structures for consistently predicting the near-native protein models over the conventional protocols (Ashish and Shibasish 2013; Runthala 2012; Runthala 2015; Runthala 2020; Runthala and Chowdhury 2014; Runthala and Chowdhury 2016; Runthala and Chowdhury 2019), and will allow us extract a more-accurate functional relationship among the candidate sequences for various research domains (Amrein et al. 2019; Anil Kumar Jamithireddy 2020; Ashish Runthala 2011; Phulara et al. 2020).

Materials and methods

Building the sequence dataset and evaluating the sequence identity

For rigorously doing the evolutionary analysis though several parameters and to save the computational time, the families with less than 1000 sequences are prioritized. As the accuracy of a phylogeny protocol is strongly dependent on the number of sequences and the sequence length, three non-redundant datasets 1-3, containing 36, 109 and 712 sequences, are orderly derived from three randomly-selected families PF18258, PF18760 and PF00074 (Figure 1). As simulating the sequence datasets on basis of various constraints might lead to a biased perturbation of their individual and mutual diversity, the three arbitrarily defined datasets should be robustly accurate and more fruitful for the study. As sequence identity is an important basis of evolutionarily clustering the sequences for estimating their sequence divergence, the
mutual identity matrix is computed for each of these datasets through the Clustal-omega protocol (Sievers et al. 2011).

Figure 1: Flowchart representation of the methodology deploying the construction of three varied sequence datasets and the evolutionary analysis of their several alignments through diverse substitution models.

Construction of phylogenetic trees

The constructed sequence datasets are aligned through Clustal-Omega, Kalign, MAFFT, MUSCLE, TCoffee and Promals3D, and the HMM-based Clustal-Omega (*ClustalI*), Kalign (*Kalign1*), MAFFT (*MAFFT1*), MUSCLE (*MUSCLE1*) and TCoffee (*TCoffee1*) protocols
(Alva et al. 2016) to screen the more accurate alignment on the basis of phylogenetic tree. For the computational limit of 2500-character length of an input alignment, TCoffee protocol for both EBI and HHpred servers could not be deployed to align the set2 and set3 datasets. Likewise, for the sequence-strength limit of 500 entries, the MUSCLE alignment of EBI server is excluded for set3. A set of nine substitution models viz. Dayhoff (Winona C. Barker 1978), JJT, BLOSUM62, WAG, PMB, DCMut (Kosiol et al. 2006; Kosiol and Goldman 2005), JTTDCmut (Kosiol et al. 2006; Kosiol and Goldman 2005), LG(Le and Gascuel 2008), and VT (Alva et al. 2016) are likewise screened to decipher the more compatible matrix for a sequence dataset.

To quickly construct the evolutionary tree through an ultrafast bootstrap methodology on the basis of a customized protocol, the IQ-Tree server is used (Nguyen et al. 2015). The maximum likelihood based phenetic analysis parametrically estimates the evolutionary tree through several features including branch length, nucleotide composition bias and corrected distances between taxa (Nabhan and Sarkar 2012). As the theoretical probability is dependent on the observed data and not the experimental results, the correlation coefficient is further evaluated to find more accurate phylogenetic solutions (Bruce Rannala 1996; Kensche et al. 2008; Nunes et al. 2015). For each of the constructed sequence alignments, the evolutionary trees are derived through IQTree at the correlation coefficient of 0.9. As bootstrapping assesses the robustness of a phylogenetic solution (Felsenstein 1985), a quick 1000-bootstrap run is deployed to decipher the biologically-feasible substitution matrix and alignment protocol for each of the sequence datasets.
Evolutionary analysis

The maximum-likelihood based tree is assessed through log-likelihood, total tree length and the total internal branch length score. Evaluating the evolutionary trees, constructed through every alignment on basis of all the deployed substitution models, the most-accurate tree is defined to be the one with the lowest log-likelihood score. The mutually synchronous behavior of the other two scores is subsequently evaluated for a considered set of alignment and substitution model, as an attempt to showcase the current pitfalls of these measures and to screen a more accurate assessment protocol for all the datasets. The evolutionary trees are lastly visualized through iTOL (https://itol.embl.de/) for rationalizing the differences across various subfamilies (Sagulenko et al. 2018).

Results and Discussion

Building the sequence dataset

Despite purging the redundant hits, the datasets 1-3 orderly encompass 36, 109 and 712 sequences within the length range of 96-484, 84-4427 and 50-570 and encode a total of 6807, 150301 and 827623 residues respectively. It substantially increases the sequence space of these sets and only a few algorithms are found capable of building their alignments.

Unfortunately, no substitution matrix consistently yields the most accurate and biologically reasonable alignments for all sequence datasets (Kemena and Notredame 2009), and as an attempt to draw a more accurate evolutionary relationship, most of the phylogeny protocols use the bootstrap methodology (Huson and Bryant 2006). Although presently taken to be key score for finding the best evolutionary model for a sequence dataset, the log-likelihood score may not always select the most-accurate tree always and it should be strengthened with added measures
to make the analysis more accurate. An evolutionarily closer sequence, often sharing a higher sequence identity, should have a smaller branch length, and this should strengthen the approximation of the log-likelihood metric (Parks and Goldman 2014). While the datasets 1, 2 and 3 show a sequence identity within the range of 0-99.52, 0-97.97 and 0-99.53 respectively, the average sequence identity is orderly found to be of 27.452±21.586, 16.742±7.815 and 29.137±12.759, and it suggests a higher evolutionary divergence among the set2 sequences.

Evolutionary analysis for three datasets

The maximum-likelihood based phylogenetic tree is constructed through the ultrafast bootstrap methodology of IQTree to save computational resources and time (Nguyen et al. 2015). The number of free parameters (branch + model parameters) for the three sets in all the alignments is orderly found to be 88, 234, 1440. For the defined sequence sets and all of their constructed trees, the assessment is done through the log-likelihood score (Chatzou et al. 2016; Parks and Goldman 2014), total tree length (Nguyen et al. 2015), and the sum of the internal branch lengths (Chang et al. 2014).

Correlating the maximum, minimum, average and standard deviation scores for the 13 constructed Clustal-OMEGA, MUSCLE, KALIGN, MAFFT, TCOFFEE1, ESPRESSO TCOFFEE, MCOFFEE, PSI TCOFFEE, MUSCLE1, Clustal1, MAFFT1, KALIGN1 and PROMALS3D alignments against the 9 substitution models, viz. BLOSUM62, Dayhoff, JTT, JTT DCMut, LG, PMB, VT, WAG, DCMut for set1, it is observed that the total tree length and total internal branch length follow a similar scoring pattern, as expected (Figure 2). However, the scoring undulation for the log-likelihood score is found quite different, and it falls in line with the recent publication (Sievers and Higgins 2018). A similar trend is observed for the set2
and set3 datasets. The residue substitution scores are plotted for the constructed alignments (Figure 3), wherein the X and Y axis orderly refers to substitution matrices and alignment protocols. For sets1-3, the total internal branch length and total tree length are found lowest for BLOSUM62 for the Clustal alignment in contrast to the highest respective scores shown by DCMut matrix for the PROMALS3D alignment. It indicates that the structure-based sequence alignment should not be directly deployed for a study, unless explicitly evaluated for the selected dataset. Hence, to derive a more accurate evolutionary relationship, the biologically correct sequence alignment and residue substitution model should be used (Pearson 2013a).

Figure 2: Maximum, minimum, average and standard deviation scoring undulations for (A) Log-likelihood score (B) total tree length (C) total internal branch length for the deployed substitution models (blue) and alignments (red) for the 36-sequence set1.
Figure 3: Scoring alterations of the total tree length and internal branch length of the three sequence datasets set1-set3 for the phylogenetic trees constructed through the alignments on the basis of the selected substitution models.

Finding the top-ranked alignments and substitution models

For a protein sequence dataset, the evolutionary trees are drawn on the basis of 9 substitution matrices and 13 sequence alignments for sets 1-3 respectively, and assessed through the log-likelihood, total tree-length and total internal branch-length scores. The evolutionary likelihood of a phylogenetic tree is majorly assessed through three scoring measures viz. log-likelihood (Nikoh et al. 1994), total tree length and total internal tree length (Nikoh et al. 1994), and a solution with the lowest score is expected to be an optimal one. Among the 279 evolutionary trees, the top-ranked phylogenetic solutions, yielded by the best alignments (Table I) and the more accurate substitution models (Table II), are evaluated for the lower and upper limits of the three scores. The parameters are likewise evaluated for the overall average scores for each
alignment protocol and substitution model, and the consistently correct alignment (Table III) and the substitution model (Table IV) are screened.

	Log-likelihood	Total tree length	Total internal tree length
	Alignment protocol (Substitution model)	Alignment protocol (Substitution model)	Alignment protocol (Substitution model)
Set1	Lowest	9.453	5.289
	MUSCLE (LG)	Kalign1 (PMB)	Kalign1 (PMB)
	Highest	20.227	12.423
	Kalign1 (WAG)	MUSCLE (LG)	PROMALS3D (Dayhoff)
Set2	Lowest	48.06	11.301
	MUSCLE (Dayhoff)	Kalign1 (PMB)	Kalign1 (PMB)
	Highest	272.449	62.593
	Kalign1 (LG)	MUSCLE (DCMut)	PROMALS3D (LG)
Set3	Lowest	129.367	51.48
	PROMALS3D (LG)	Kalign1 (VT)	Kalign1 (PMB)
	Highest	202.405	84.51
	MUSCLE1 (JTT)	PROMALS3D (Dayhoff)	PROMALS3D (DCMut)

Table 1: Lower and upper limit of the log-likelihood, total tree length and total internal tree length scores for the evolutionary tree of the top-ranked alignments, screened from the pool built through various substitution models of the three datasets.

A lower score indicates a better solution.
Dataset	Lowest	Highest
Set3	-128789.188	-120287.515
	PROMALS3D (LG)	MUSCLE1 (JTT)

Table 2: Lower and upper limit of the log-likelihood, total tree length and total internal tree length scores for the evolutionary tree constructed through the top-ranked substitution models for the three datasets. A lower score indicates a better solution.

Dataset	Log-likelihood	Total tree length	Total internal tree length
Set1	Lowest	Highest	
	-11800.865±51.083	10.066±0.435	5.712±0.303
	MUSCLE	Kalign1	Kalign1
	Highest		
	-8986.079±7685.013	18.366±1.539	10.978±1.511
	PSI TCoffee	MUSCLE	PROMALS3D
Set2	Lowest	Highest	
	-390685.369±628.278	51.254±2.24	12.113±0.515
	MUSCLE	Kalign1	Kalign1
	Highest		
	-285276.218±2031.102	229.908±38.641	52.41±7.867
	Kalign1	MUSCLE	PROMALS3D
Set3	Lowest	Highest	
	-127100.2±914.485	179.305±7.585	77.491±3.421
	MUSCLE1	MUSCLE1	MUSCLE1
	Highest		
	-121429.103±1105.85	190.593±9.087	80.327±3.580
	PROMALS3D	PROMALS3D	PROMALS3D

Table 3: Lowest and highest average score of the log-likelihood, total tree length and total internal tree length scores for the evolutionary tree top-ranked alignments of the three datasets. A lower score indicates a better solution.
Table 4: Lowest and highest average score of the log-likelihood, total tree length and total internal tree length scores for the evolutionary tree constructed through the top-ranked substitution models for the three datasets. A lower score indicates a better solution.

Set	Parameters	Log-likelihood	Total tree length	Total internal branch length
1	Lowest	-11376.241±487.047	13.072±1.637	7.861±0.973
	Highest	-9474.36±6320.371	15.418±2.271	9.513±1.54
2	Lowest	-358941.659±29511.738	112.637±39.248	30.21±9.284
	Highest	-357079.167±31845.036	155.081±67.738	41.579±15.52
3	Lowest	-120369.906±4838.96	159.124±14.712	65.974±7.549
	Highest	-117866.669±5195.16	175.996±18.798	70.992±8.940

Table 5: Top-ranked alignment-substitution model protocols for the three datasets for the three assessment measures: Log-likelihood, total tree length and total internal branch length. The failure to yield the consistently correct evolutionary model for any sequence dataset is indicated.
Ranking the evolutionary trees to find the top-ranked alignment protocols for the three sets, it is observed that the MUSCLE, MUSCLE and PROMALS3D show the lowest log-likelihood score of -11898.259, -391294.242 and -128789.18 against the respective scores of -9982.515, -281093.705 and -120287.51 for the Kalign1, Kalign1 and MUSCLE1 alignments. Assessing with the minimal tree length and internal tree length measure, Kalign1, Kalign1 and PROMALS3D and Kalign1, Kalign1 and MUSCLE1 alignments are orderly found to construct better trees for sets 1-3, against the respective solutions of MUSCLE, MUSCLE and MUSCLE1, and PROMALS3D, PROMALS3D and PROMALS3D (Edgar 2004; Pei et al. 2008). For the 9 low-scoring evolutionary trees for sets 1-3 for all the scoring measures, KAlign1, MUSCLE, MUSCLE1 and PROMALS3D are orderly found to yield the best solutions for 4, 2, 2 and 1 cases, and PMB, LG, JTT, Dayhoff models are found to yield the best solution for 5,1, 1, 1 and 1 cases (Arenas 2015; Pei and Grishin 2014).

Evaluating the set1-set3 trees with log-likelihood and as per the substitution models, LG, Dayhoff and BLOSUM62 are found to yield more accurate solutions through MUSCLE, MUSCLE and PROMALS3D alignments, against the respective worst trees formed by VT, LG and JTT models for the Kalign1 alignments (Pei and Grishin 2014). For the lowest tree length and internal tree length scores for sets 1-3, Kalign1 consistently yields the best trees through PMB, PMB and BLOSUM62 matrices, against the respective worst trees formed by LG, DCMut and Dayhoff, and Dayhoff, DCMut and Dayhoff substitution models through MUSCLE, MUSCLE and PROMALS3D, and PROMALS3D, MUSCLE and MUSCLE1 alignments. However, screening the top-ranked 9 trees on the basis of the substitution models,
PMB, BLOSUM62, LG, Dayhoff, DCMut based solutions are found the best for 4, 2, 1 and 1 cases, although 7 KAalign1 and 2 MUSCLE alignments are only found to build these 9 trees. Amongst the 18 evolutionary trees constructed for various sequence alignments and substitution models of the three sets, MUSCLE, MUSCLE1, Kalign1 and PROMALS3D protocols are observed to consistently yield more accurate trees for 4, 1, 11 and 2 cases for various substitution models viz. LG, PMB, Dayhoff, JTT and BLOSUM62. Hence, the alignment and substitution matrix protocols are statistically evaluated to find the consistently correct evaluation measure (Pei and Grishin 2014). Screening the best alignment protocols on the basis of the average statistics of the three measures, Kalign1, MUSCLE1 and MUSCLE protocols are found to yield the best trees for the 4, 3 and 2 cases, and MUSCLE1 yields the consistently correct evolutionary relationships for set3 for all scoring parameters. However, for sets 1 and 2, MUSCLE is found to yield the best log-likelihood trees and Kalign1 is found to build the trees with the lowest total tree length and internal tree length scores. Further, the standard deviation score for these three protocols is respectively found within the percentage range of 4.251 - 5.304. Conversely, the Kalign1 alignment is found to show the worst tree with the highest log-likelihood score for VT, LG and BLOSUM62 matrices for sets 1-3, and likewise is the case for MUSCLE and PROMALS3D for the tree-length based scores. A similar analysis of the substitution measures likewise unfolds another complicacy. It is observed that PMB, LG, Dayhoff and BLOSUM62 yield the best trees for 5, 2, 1 and 1 cases, with PMB model consistently being more accurate for the tree-length based measure. As per the total tree-length measure, the PMB matrix is found to be the best for all the three datasets (Philippe et al. 2011; Shalini Veerassamy 2003). For the internal tree length, BLOSUM62 and PMB matrix yield the best tree for set1 and sets 2 and 3, and for log-likelihood, LG and Dayhoff
models aid the construction of sets 1 and 3, and set 2 respectively. Further, the standard deviation against mean is found within the percentage range of 4.02 - 34.84 for the LG and PMB matrices for the log-likelihood and total tree length score for sets 3 and 2 respectively. The analysis proves that both alignment protocol and substitution matrix are equally responsible for the construction of a biologically meaningful evolutionary tree (Jordan and Goldman 2012), and it indicates that the accuracy of an evolutionary protocol is highly dependent on the correct combination of these two protocols (Chang et al. 2014). Hence, the huge set of 270 (set 1-117, set 2-81, and set 3-72) phylogenetic trees are reanalyzed to decipher the top-ranked pairs of sequence alignment and the substitution models, and to find their consistently correct algorithmic set (Table V).

The analysis unleashes several intriguing features. MUSCLE alignment is found successful only for the smaller sequence datasets 1 and 2 (Deorowicz et al. 2016). The MUSCLE alignment, along with the LG and Dayhoff matrices, is found to yield the tree with the lowest log-likelihood score for 92.307% and 55.556% cases for the sets 1 and 2 respectively. For 270 constructed trees (92.307%), the MUSCLE alignment is found to work well with only the LG and Dayhoff substitution matrices for sequences shorter than 500 residues for the log-likelihood measure (Pearson 2013b), although for the distance based measure, the PMB matrix yields a more accurate tree through the -Kalign1 alignment (Nuin et al. 2006). However, the evolutionary trees constructed through it are maximally found better for the log-likelihood measure only, and its application is therefore not well-suited for drawing a robustly accurate phylogenetic relationship in view of the rapidly growing sequence data (Salichos et al. 2014). Further, PMB-Kalign1 protocol is found to yield the tree with the lowest tree length scores for 10 of the 13 set 1 trees (76.923%) and 7 of the 9 set 2 (77.778%) trees. However, for 712-
sequence set3, the PMB matrix yields the tree with the lowest tree-length score for the PROMALS3D and MUSCLE1 alignments for set2 and set3 respectively. Although, PMB substitution matrix is found to consistently construct more accurate trees with the lowest total tree length score for all the sequence datasets, it is found incompatible to handle the diverse datasets with varying size and length (Stamatakis 2014). A substantial divergence is observed in the tree-topology of the top-ranked tree against the sub-optimal solutions (Shukla et al. 2019). It implies that there is a specific biological upper limit for each alignment protocol to derive the meaningful results of the overlapping residues, and is in line with the earlier study (C S Troy 2001). Evaluating the trees for the location of various branches, it could be concluded that an accurate alignment is mandatory to draw the best-possible evolutionary relationship, as has been recently shown (Georgios A Pavlopoulos 2010). A significant disparity is found for all the trees for all the scoring parameters (Hall 2013), and selection of the best tree is further hereby shown to be difficult, especially for bigger dataset (Nguyen et al. 2015).

As an attempt to build more accurate evolutionary trees, the protocols including RaxML iteratively construct the alignments with a guide tree (Stamatakis 2014). Further, the “phylogeny-aware” tools like PRANK (Ari Löytynoja 2005) and PAGAN (Löytynoja et al. 2012) presume such guide-trees as the true trees to ensure that the constructed alignments are evolutionarily correct, and are thus termed as the post-tree analysis methods. Although the interdependence of MSA and inference of a phylogeny tree has been described in these methods, the best combination of alignment method and substitution matrix has not been greatly excavated for assessments.
Required strategic improvement over the existing protocols

The sequence alignments are usually constructed through several methodologies, and are substantially different for the number and placement of gaps, and as incorrect gaps lead to an inaccurate evolutionary tree, the alignments have always been iteratively constructed to find the best possible alignment and to derive the optimal phylogenetic solution (Blackburne and Whelan 2013; Fernández-Baca et al. 2004; Landan and Graur 2007; Sievers et al. 2013; T Heath Ogden 2006). Likewise, the substation models are usually deployed to derive the evolutionary relationship among proteins, and different models have been tried for constructing a more accurate tree (Duchene et al. 2016; Hoff et al. 2016; Shapiro et al. 2006). However, for a sequence dataset, the phylogeny servers never iteratively optimize the evolutionary tree to save their processing time and computational resource. As demonstrated by our study, the biological significance of alignments/substitution models should be simultaneously tested through iterative assessments to construct the best evolutionary model for a sequence dataset. The study showcases a strategy to circumvent the potential pitfalls of the evolutionary algorithm. It will allow us consistently construct an evolutionary correct model for a sequence dataset and will subsequently improve the prediction accuracy of several different types of biological studies, be it a sequence characterization (Guder and Krishna 2019; Kalyani et al. 2019; Mallu et al. 2019; Satyanarayana et al. 2017; Somavarapu et al. 2017; Vemuri et al. 2019) or proteomic study (Jaswanthi et al. 2019; Rao et al. 2017; Samara Shekar Reddy et al. 2019; Srideepthi et al. 2017).
Strategic steps to assess and achieve biological accuracy of alignment and phylogeny

As recently shown by an evolutionary analysis of the foldIV transaminases with experimentally solved structures (Pavkov-Keller et al. 2016), all the four subfamilies, viz. l-branched chain aminotransferases (BCATs), d-amino acid aminotransferases (D-ATAs), (R)-selective transaminases (RATA) and 4-amino-4-deoxychorismate lyases (ADCL), are found to be clustered into different clades (Francesco G. Mutti 2011; Percudani and Peracchi 2009). However, the phylogenetic protocol failed to accurately classify two functionally characterized RATA sequences CpuTA1 and MgiTA1, sharing a 49% sequence identity and containing conserved amino acids for both RATA and ADCL (Pavkov-Keller et al. 2016). It thus shows the need of functional investigation of the input sequences before constructing their biologically meaningful tree. Accurate establishment and quantification of homology through various substitution model/alignment algorithms is proven to be the key feature to accurately align the sequences and generate the meaningful phylogenetic trees. Moreover, evolutionary biologists should thus construct the consensus tree, as implemented by IQ-Tree server (Nguyen et al. 2015), and investigate the chance of shrouded negative factors through iterative assessments.

Conclusion

Evolutionary trees have long been deployed for several research methodologies. Here, we have focused on constructing an improved phylogenetic tree for a sequence dataset. The constructed set of 270 (set1-117, set2-81, set3-72) phylogenetic trees for the 36-sequence, 109-sequence and 712-sequence datasets illustrates that the accuracy of an evolutionary study is significantly determined by the compatibility of the sequence alignment and the residue substitution model,
and is not simply governed by the usually parameterized bootstrap and minimum correlation coefficient features. The best complementary set of biologically closest alignment and the substitution model is observed to yield the most-accurate evolutionary tree. Assessing the resultant phylogeny solutions on the basis of log-likelihood and minimal internal branch length, the study streamlines the methodology and opens avenues to design the robustly accurate phylogeny protocol. The study also lays a benchmark for the development of a protocol to synergistically deploy the assessment measures and consistently derive a more accurate evolutionary solution for all datasets.

References

Alva V, Nam SZ, Soding J, Lupas AN (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44:W410-415 doi:10.1093/nar/gkw348

Amrein BA, Runthala A, Kamerlin SCL (2019) In Silico-Directed Evolution Using CADEE. Methods Mol Biol 1851:381-415 doi:10.1007/978-1-4939-8736-8_22

Anil Kumar Jamithireddy AR, Balasubramaniam Gopal (2020) Evaluation of specificity determinants in mycobacterium tuberculosis σ/anti-σ factor interactions. Biochemical and Biophysical Research Communications 521:900-906 doi:10.1016/j.bbrc.2019.10.198

Arenas M (2015) Trends in substitution models of molecular evolution. Frontiers in Genetics 6:319 doi:10.3389/fgene.2015.00319

Ari Löytynoja NG (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences 102:6 doi:10.1073/pnas.0409137102

Ashish R, Shibasish C (2013) Protein Structure Prediction: Are We There Yet? In: Tuan Pham LJ (ed) Knowledge-Based Systems in Biomedicine. vol SCI450. Springer, Berlin, Heidelberg, pp 79–115. doi:10.1007/978-3-642-33015-5_4

Ashish Runthala AT, Dhiraj Sharma, Mahaveer Singh (2011) PHYLOGENETIC SELECTION GUIDED SACCHAROMYCES CEREVISIAE S288C GLUCOSE FERMENTATION MODELING. International Journal of Bioinformatics Research 3:178-184

Blackburne BP, Whelan S (2013) Class of multiple sequence alignment algorithm affects genomic analysis. Mol Biol Evol 30:642-653 doi:10.1093/molbev/mss256

Boc A, Diallo AB, Makarenkov V (2012) T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Research 40:W573-579 doi:10.1093/nar/gks485

BROOKS WK (1883) The phylogeny of the higher crustacea. Science 2:4 doi:10.1126/science.ns-2.46.790

Bruce Rannala ZY (1996) Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution 43:8 doi:10.1007/BF02338839

C S Troy DEM, J F Bailey, D A Magee, R T Loftus, P Cunningham, A T Chamberlain, B C Sykes, D G Bradley (2001) Genetic evidence for Near-Eastern origins of European cattle. Nature 410:4 doi:10.1038/35074088

Chan L (1989) The Apolipoprotein Multigene Family: Structure, Expression, Evolution, and Molecular Genetics. Klinische Wochenschrift 67:13
Chang JM, Di Tommaso P, Notredame C (2014) TCS: a new multiple sequence alignment reliability measure to estimate alignment accuracy and improve phylogenetic tree reconstruction Molecular Biology and Evolution 31:1625-1637 doi:10.1093/molbev/msu117

Chatzou M, Magis C, Chang JM, Kemena C, Bussotti G, Erb I, Notredame C (2016) Multiple sequence alignment modeling: methods and applications Briefings in Bioinformatics 17:1009-1023 doi:10.1093/bib/bbv099

Deorowicz S, Debudaj-Grabsz A, Gudys A (2016) FAMSA: Fast and accurate multiple sequence alignment of huge protein families Scientific Reports 6:33964 doi:10.1038/srep33964

Di Tommaso P et al. (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension Nucleic Acids Research 39:W13-17 doi:10.1093/bib/bv245

Duchene S, Di Giallonardo F, Holmes EC (2016) Substitution Model Adequacy and Assessing the Reliability of Estimates of Virus Evolutionary Rates and Time Scales Mol Biol Evol 33:255-267 doi:10.1093/molbev/msv207

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Research 32:1792-1797 doi:10.1093/nar/gkh340

Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap Evolution 39:9 doi:10.1111/j.1558-5646.1985.tb00420.x

Fernández-Baca D, Seppäläinen T, Slutzki G (2004) Parametric multiple sequence alignment and phylogeny construction Journal of Discrete Algorithms 2:271-287 doi:10.1016/s1570-8667(03)00078-9

Francesco G. Mutti CSF, Desiree Pressnitz, Johann H. Sattler, Wolfgang Kroutil (2011) Stereoselectivity of Four (R)-Selective Transaminases for the Asymmetric Amination of Ketones Advanced Synthesis & Catalysis 353:7 doi:10.1002/adsc.201100558

Georgios A Pavlopoulos TGS, Adriano Barbosa-Silva, Reinhard Schneider (2010) A reference guide for tree analysis and visualization Biodata Mining 3:1

Guder DG, Krishna MSR (2019) Isolation and Characterization of Potential Cellulose Degrading Bacteria from Sheep Rumen Journal of Pure and Applied Microbiology 13:1831-1839 doi:10.22207/jpam.13.3.60

Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online--a web server for fast maximum likelihood-based phylogenetic inference Nucleic Acids Research 33:W557-559 doi:10.1093/nar/gki352

Hall BG (2013) Building phylogenetic trees from molecular data with MEGA Mol Biol Evol 30:1229-1235 doi:10.1093/molbev/msr012

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the Ultrafast Bootstrap Approximation Molecular Biology and Evolution 35:518-522 doi:10.1093/molbev/msx281

Hoff M, Orf S, Riehm B, Darriba D, Stamatakis A (2016) Does the choice of nucleotide substitution models matter topologically? BMC Bioinformatics 17:143 doi:10.1186/s12859-016-0985-x

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies Molecular Biology and Evolution 23:254-267 doi:10.1093/molbev/msj030

Jaswanthi N, Krishna MSR, Sahitya UL, Suneetha P (2019) Apoplast proteomic analysis reveals drought stress-responsive protein datasets in chilli (Capsicum annuum L.) Data in Brief 25 doi:10.1016/j.dib.2019.104041

Jordan G, Goldman N (2012) The effects of alignment error and alignment filtering on the sitewise detection of positive selection Mol Biol Evol 29:1125-1139 doi:10.1093/molbev/msr272

Kalyani BS, Krishna PS, Sreenivasulu K (2019) Screening and identification of novel isolate Streptomyces sp., NLKPB45 from Nellore costal region for its biomedical applications Saudi J Biol Sci 26:1655-1660 doi:10.1016/j.sjbs.2018.08.027
Kanjula V, Kanneganti A, Metla R, Nidamanuri K, Idupulapati S, Runthala A (2020) Decoding the vital segments in human ATP-dependent RNA helicase Bioinformation 16:160-170 doi:10.6026/97320630016160

Kazutaka Katoh KM, Kei-ichi Kuma, Takashi Miyata (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform Nucleic Acids Research 30:8

Keeling PJ, Fast NM, McFadden GI (1998) Evolutionary relationship between translation initiation factor eIF-2gamma and selenocysteine-specific elongation factor SELB: change of function in translation factors Journal of Molecular Evolution 47:649-655 doi:10.1007/pl00006422

Kemené C, Notredame C (2009) Upcoming challenges for multiple sequence alignment methods in the high-throughput era Bioinformatics 25:2455-2465 doi:10.1093/bioinformatics/btp452

Kensche PR, van Noort V, Dutilh BE, Huynen MA (2008) Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution Journal of Royal Society Interface 5:151-170 doi:10.1098/rsif.2007.1047

Kosiol C, Bofkin L, Whelan S (2006) Phylogenetics by likelihood: evolutionary modeling as a tool for understanding the genome Journal of Biomedical Informatics 39:51-61 doi:10.1016/j.jbi.2005.08.003

Kosiol C, Goldman N (2005) Different versions of the Dayhoff rate matrix Molecular Biology and Evolution 22:193-199 doi:10.1093/molbev/msi005

Lassmann T, Sonnhammer EL (2005) Kalign--an accurate and fast multiple sequence alignment algorithm BMC Bioinformatics 6:298 doi:10.1186/1471-2105-6-298

Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix Molecular Biology and Evolution 25:1307-1320 doi:10.1093/molbev/msn067

Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, Gascuel O (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists Nucleic Acids Research 47:W260-W265 doi:10.1093/nar/gkz303

Loytynoja A, Vilella AJ, Goldman N (2012) Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm Bioinformatics 28:1684-1691 doi:10.1093/bioinformatics/bts198

Mallu MR, Dronavalli N, Nannapaneni S, Kamarapu A, Vemula S (2019) Detection and Characterization of Cry1ac in BT Cotton Hybrids of MECH 162 and RCH2 Research Journal of Pharmacy and Technology 12 doi:10.5958/0974-360x.2019.01015.1

Minh BQ, Nguyen MA, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap Mol Biol Evol 30:1188-1195 doi:10.1093/molbev/mst024

Nabhan AR, Sarkar IN (2012) The impact of taxon sampling on phylogenetic inference: a review of two decades of controversy Brief Bioinform 13:122-134 doi:10.1093/bib/bbr014

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies Molecular Biology and Evolution 32:268-274 doi:10.1093/molbev/msu300

Nikoh N, Hayase N, Iwabe N, Kuma K, Miyata T (1994) Phylogenetic relationship of the kingdoms Animalia, Plantae, and Fungi, inferred from 23 different protein species Molecular Biology and Evolution 11:762-768 doi:10.1093/oxfordjournals.molbev.a040156

Nuin PA, Wang Z, Tillier ER (2006) The accuracy of several multiple sequence alignment programs for proteins BMC Bioinformatics 7:471 doi:10.1186/1471-2105-7-471

Nunes LA, Turvey ST, Rosindell J (2015) The price of conserving avian phylogenetic diversity: a global prioritization approach Philosophical Transactions of the Royal Society B 370:20140004 doi:10.1098/rstb.2014.0004

Parks SL, Goldman N (2014) Maximum likelihood inference of small trees in the presence of long branches Systematic Biology 63:798-811 doi:10.1093/sysbio/syu044
Pavkov-Keller T et al. (2016) Discovery and structural characterisation of new fold type IV-transaminases exemplify the diversity of this enzyme fold Scientific Reports 6 doi:10.1038/srep38183
Pearson WR (2013a) An Introduction to Sequence Similarity (“Homology”) Searching Current Protocols in Bioinformatics 42:3:1.1-3.1.8 doi:10.1002/0471250953.bi0301s42
Pearson WR (2013b) Selecting the Right Similarity-Scoring Matrix Curr Protoc Bioinformatics 43:3 5 1-3 5 9 doi:10.1002/0471250953.bi0305s43
Pei J, Grishin NV (2014) PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information Methods in Molecular Biology 1079:263-271 doi:10.1007/978-1-62703-646-7_17
Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments Nucleic Acids Research 36:2295-2300 doi:10.1093/nar/gkn072
Percudani R, Peracchi A (2009) The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families BMC Bioinformatics 10:273 doi:10.1186/1471-2105-10-273
Philippe H, Brinkmann H, Lavrov DV, Littlewood DT, Manuel M, Worheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough PLoS Biology 9:e1000602 doi:10.1371/journal.pbio.1000602
Phulara SC, Rajput VS, Mazumdar B, Runthala A (2020) Metabolic and Enzyme Engineering for the Microbial Production of Anticancer Terpenoids. In: ‘Essentials of Cancer Genomic, Computational Approaches and Precision Medicine’, pp 237-259. doi:10.1007/978-981-15-1067-0_10
Rao DK et al. (2017) Distribution of CYP2C8 and CYP2C9 amino acid substitution alleles in South Indian diabetes patients: A genotypic and computational protein phenotype study Clin Exp Pharmacol Physiol 44:1171-1179 doi:10.1111/1440-1681.12810
Runthala A (2012) Protein structure prediction: challenging targets for CASP10 Journal of Biomolecular Structure and Dynamics 30:607-615 doi:10.1080/07391102.2012.687526
Runthala A (2015) Refinement and Improvement of Template Based Protein Modelling Algorithms. BITS Pilani
Runthala A (2020) Probabilistic divergence of a TBM methodology from the ideal protocol BioRxiv doi:10.1101/2020.07.05.160937
Runthala A, Chowdhury S Iterative Optimal TM_Score and Z_Score Guided Sampling Significantly Improves Model Topology. In: International MultiConference of Engineers and Computer Scientists, Hong Kong, March 12 - 14 2014. International Association of Engineers. doi:10.13140/2.1.4584.5443
Runthala A, Chowdhury S (2016) Unsolved Problems of Ambient Computationally Intelligent TBM Algorithms. In: Hybrid Soft Computing Approaches. Studies in Computational Intelligence. pp 75-105. doi:10.1007/978-81-322-2544-7_3
Runthala A, Chowdhury S (2019) Refined template selection and combination algorithm significantly improves template-based modeling accuracy J Bioinform Comput Biol 17:1950006 doi:10.1142/S0219720019500069
Sagulenko P, Puller V, Neher RA (2018) TreeTime: Maximum-likelihood phylodynamic analysis Virus Evolution 4:ve042 doi:10.1093/ve/ve042
Salichos L, Stamatakis A, Rokas A (2014) Novel information theory-based measures for quantifying incongruence among phylogenetic trees Molecular Biology and Evolution 31:1261-1271 doi:10.1093/molbev/msu061
Samara Shekar Reddy S, Singh B, John Peter A, Venkateswar Rao T (2019) Genetic transformation of indica rice varieties involving Am-SOD gene for improved abiotic stress tolerance Saudi J Biol Sci 26:294-300 doi:10.1016/j.sjbs.2017.06.009
Satyanarayana SD, Msr K, Pindi PK (2017) A strategic approach for isolation and identification of plant growth promoting rhizobial strains from bhadradchalam forest area with respect to soybean (Glycine max) International Journal of Pharma and Bio Sciences 8 doi:10.22376/ipbs.2017.8.2.b401-408
Shalini Veerassamy AS, Elisabeth RM Tillier (2003) A Transition Probability Model for Amino Acid Substitutions from Blocks Journal of Computational Biology 10:14 doi:10.1089/106652703322756195

Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences Mol Biol Evol 23:7-9 doi:10.1093/molbev/msj021

Sharma A, Rani S, Goel M (2018) Navigating the structure-function-evolutionary relationship of CsaA chaperone in archaea Crit Rev Microbiol 44:274-289 doi:10.1080/1040841X.2017.1357535

Shukla AK, Tripathi D, Reddy BR, Chandramohan D (2019) A study on metaheuristics approaches for gene selection in microarray data: algorithms, applications and open challenges Evolutionary Intelligence 13:309-329 doi:10.1007/s12065-019-00306-6

Sievers F, Dineen D, Wilm A, Higgins DG (2013) Making automated multiple alignments of very large numbers of protein sequences Bioinformatics 29:989-995 doi:10.1093/bioinformatics/btt093

Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences Protein Science 27:135-145 doi:10.1002/pro.3290

Sievers F et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega Molecular Systems Biology 7:539 doi:10.1038/msb.2011.75

Somavarapu S, Vemula S, Reddy IB (2017) Extraction, purification and characterization of a novel cysteine protease from the latex of plant Vallaris solanacea Journal of Plant Biochemistry and Biotechnology doi:10.1007/s13562-017-0429-3

Srideepthi R, Lakshmisahitya U, Peddakasim D, Suneetha P, Krishna M (2017) Morphological, Pathological and Molecular Diversity of Colletotrichum capsici inciting Fruit Rot in Chilli (Capsicum annuum L.) Research Journal of Biotechnology 12:8

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies Bioinformatics 30:1312–1313 doi:10.1093/bioinformatics/btu033

T. Heath Ogden MSR (2006) Multiple sequence alignment accuracy and phylogenetic inference Systematic Biology 55:15 doi:10.1080/10635150500541730

T. Laniš‘nik Riz’ver JS, J. Adamski (2001) 17b-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus: structural and functional aspects Chemico-Biological Interactions 130–132:11

Vemuri PK, Yarlagadda DV, Tatineni J (2019) Characterization of Sesamum indicum proteins and its immunogenic activity Drug Invention Today 11:5

Winona C. Barker LKK, Margaret O. Dayhoff (1978) A Comprehensive Examination of Protein Sequences for Evidence of Internal Gene Duplication Journal of Molecular Evolution 10:17

Xuan Y et al. (2019) Molecular phylogeny of mulberries reconstructed from ITS and two cpDNA sequences PeerJ 7:e8158 doi:10.7717/peerj.8158