Measurement of the cross section for $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ and evidence of the decay $\psi(3770) \rightarrow \Lambda\bar{\Lambda}$
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
43 Shanxi Normal University, Linfen 041004, People’s Republic of China
44 Shanxi University, Taiyuan 030006, People’s Republic of China
45 Sichuan University, Chengdu 610064, People’s Republic of China
46 Soochow University, Suzhou 215006, People’s Republic of China
47 South China Normal University, Guangzhou 51006, People’s Republic of China
48 Southeast University, Nanjing 211100, People’s Republic of China
49 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
50 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
51 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
52 Tsinghua University, Beijing 100084, People’s Republic of China
53 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
54 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
55 University of Groningen, NL-9747 AA Groningen, The Netherlands
56 University of Hawaii, Honolulu, Hawaii 96822, USA
57 University of Jinan, Jinan 250022, People’s Republic of China
58 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
59 University of Minnesota, Minneapolis, Minnesota 55455, USA
60 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
61 University of Oxford, Keble Rd, Oxford, UK OX13RH
62 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
63 University of Science and Technology of China, Hefei 230026, People’s Republic of China
64 University of South China, Hengyang 421001, People’s Republic of China
65 University of the Punjab, Lahore-54590, Pakistan
66 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, 1-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
67 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
68 Wuhan University, Wuhan 430072, People’s Republic of China
69 Xinyang Normal University, Xinyang 464000, People’s Republic of China
70 Zhejiang University, Hangzhou 310027, People’s Republic of China
71 Zhengzhou University, Zhengzhou 450001, People’s Republic of China

a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC “Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
gh Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA
 hij Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
i Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
j Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 51006, China
k Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
Two-body baryonic decays of vector ($J^{PC} = 1^{--}$) charmonium(-like) resonances provide a testing ground of predictions from quantum chromodynamics [1, 2]. The $\psi(3770)$ vector meson is believed to be a conventional $c\bar{c}$ state located above the open-charm threshold and is expected to decay into a $D\bar{D}$ meson pair with a branching fraction of at least 99% [3]. However, the decay modes to light quark systems would be considerably enhanced if the $\psi(3770)$ would include gluonic or light quark and antiquark constituents [4]. In 2003, the BES collaboration observed the first non-$D\bar{D}$ decay of $\psi(3770)$ into $J/\psi\pi^+\pi^-$ [5, 6]. Subsequently, the CLEO collaboration confirmed the observation and found more non-$D\bar{D}$ decays of $\psi(3770)$ [7-9] and the first decay into light-quark hadrons $\psi(3770) \rightarrow \phi\eta$ [10].

The production of light quark baryon-antibaryon ($B\bar{B}$) final states leads to relatively simple topologies. In an early study, the BESIII collaboration found evidence for the interference effect in $e^+e^- \rightarrow p\bar{p}$ in the vicinity of $\psi(3770)$ [11]. However, the data did not allow to uncover the mechanism of $\psi(3770)$ charmless decays. Thus, the experimental study of $e^+e^- \rightarrow B\bar{B}$ will be a good search-ground for clarifying the nature of the charmless decays and even non-$D\bar{D}$ decays of $\psi(3770)$ [12-14].

In the past two decades, several vector states were observed at energies between 3.7 and 4.7 GeV at various e^+e^- colliders. Four charmonium(-like) states predicted by potential models [1] $\psi(3770)$, $\psi(4040)$, $\psi(4160)$ and $\psi(4415)$ have been observed as enhancements in the inclusive hadronic cross section [15, 16]. In addition, new states such as $Y(4230)$, $Y(4260)$, $Y(4360)$, $X(4390)$, and $Y(4660)$, were reported using the initial state radiation (ISR) processes $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^- J/\psi(3686)$ at the BABAR [17-20] and Belle [21-25] experiments, or in energy-scan experiments at the CLEO-c [26] and BESIII [27-32] experiments. Up to now, no evidence for decay modes into light-quark baryon–antibaryon pairs of these charmonium(-like) states has been found. The overpopulation of vector charmonium(-like) resonances with respect to predictions from potential models, and the difficulty in describing the properties of these states make them attractive candidates for exotic states [33]. In addition, knowledge of the vector charmonium(-like) coupling to the $B\bar{B}$ final states is crucial for understanding the electromagnetic structure of the baryons. In Refs. [34, 35], the timelike electromagnetic form factors for the ground-state octet baryons were determined based on the CLEO-c data. They assumed that the branching fractions of $\psi(3770)$ to the $B\bar{B}$ final states scale with the decay widths into a pair of electrons (electronic decay widths) when comparing to the $\psi(3686)$ state, e.g., one estimates a negligible branching fraction $B(\psi(3770) \rightarrow \Lambda\Lambda) \approx 5 \times 10^{-7}$.

In this paper, we present a measurement of the Born cross section for the $e^+e^- \rightarrow \Lambda\Lambda$ process using data corresponding to a total integrated luminosity of 20.0 fb$^{-1}$ [36-38] collected at center-of-mass (c.m.) energies \sqrt{s} between 3.51 and 4.60 GeV with the BESIII detector [39, 40] at the BEPCII collider [41]. We extract the Λ effective form factor and report an evidence of the $\psi(3770) \rightarrow \Lambda\Lambda$ process by fitting the $e^+e^- \rightarrow \Lambda\Lambda$ dressed cross section.

Candidates for $e^+e^- \rightarrow \Lambda\Lambda$ events are reconstructed using the $\Lambda \rightarrow p\pi^-$ and $\Lambda \rightarrow \bar{p}\pi^+$ decay modes. The detection efficiency is determined by Monte Carlo (MC) simulations. A sample of 100,000 events is simulated for each of the 33 c.m. energy points. The production process is simulated by the kKMC generator [42, 43] that includes corrections for ISR effects. The Λ and Λ decays are handled by the EVTGEN [44, 45] program. The response of the BESIII detector is modeled with MC simulations using a framework based on GEANT4 [46, 47].

Tracks of charged particles are reconstructed in the multi-layer drift chamber with a helical fit requiring a good quality [48]. These tracks should be within $|\cos \theta| < 0.93$, where θ is the polar angle with respect to the e^+ beam direction. Events with two successfully reconstructed negatively charged and two positively charged particles are kept for further analysis.

To reconstruct $\Lambda(\bar{\Lambda})$ candidates, we apply a secondary vertex fit [49] to all pairs of positive and negative charged particles. The corresponding χ^2 value is required to be less than 500. The track combination with minimum $|M_{p\pi^-} - m_\Lambda|^2 + |M_{\bar{p}\pi^+} - m_\Lambda|^2$ is selected, where $M_{p\pi^-}$ ($M_{\bar{p}\pi^+}$) is the invariant mass of the $p\pi^-$ ($\bar{p}\pi^+$) pair, and m_Λ is the world-average Λ mass value from the Particle Data Group (PDG) [15]. To further suppress background from non-Λ processes, the Λ decay length is required to be larger than zero, where the observed negative decay lengths are caused by the limited detector resolution. Here the misreconstruction
ratio for a particle is found to be less than 1% based on the study of MC simulation.

To further suppress the background and to improve the mass resolution, a four-constraint (4C) kinematic fit imposing energy-momentum conservation is applied for the $\Lambda(\bar{\Lambda})$ hypothesis. The $\chi_2^{(4)}$ of the fit is required to be less than 200, which can improve the resolutions of signals significantly in addition to suppressing backgrounds for a soft π^0 and radiated photons event. Figure 1 shows the distribution of $M_{\gamma\gamma}$ versus $M_{\gamma\gamma}^+$ of the accepted candidates from all data samples. Clear peaks around the Λ known mass can be discerned. The invariant mass $M_{\gamma\gamma}$ is required to be within 5 MeV/c^2 of the known $\Lambda(\bar{\Lambda})$ mass (signal region marked by S). After applying the above selection criteria, the survived background events are mainly from non-$\Lambda(\bar{\Lambda})$ events, such as $e^+e^- \rightarrow \pi^+\pi^- p\bar{p}$. The background yield in the signal region is estimated using four sideband regions B_i, where $i = 1, 2, 3, 4$, each with the same area as the signal region. The regions are shown in Fig. 1, and the exact ranges are given in the Supplemental Material [36]. The signal yield $N_{\rm obs}$ for $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ events at each energy point can then be extracted by subtracting the number of events in the sideband regions from the number of events in the signal region, N_S: $N_{\rm obs} = N_S - \frac{1}{4} \sum_{i=1}^{4} N_{B_i}$, and they are listed in Table I.

The ISR corrected (“dressed”) cross section $\sigma^{d\tau}$ for the process $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ is defined as

$$\sigma^{d\tau}(s) = \frac{N_{\rm obs}}{L(1 + \delta)c B(\Lambda \rightarrow p\pi^-)}$$

where L is the integrated luminosity at given c.m. energy \sqrt{s}, $(1 + \delta)$ is the ISR correction factor [43, 50], c is the detection efficiency, and the branching fraction $B(\Lambda \rightarrow p\pi^-) = (63.9 \pm 0.5)\%$ is taken from PDG. The ISR correction factor is obtained using the calculation described in Ref. [51], where the dressed cross sections are adopted as initial input and are iterated to obtain stable result. The dressed cross section is related to the Born cross section via the vacuum polarization factor $\frac{1}{1 - \Pi^2}$ [52] as $\sigma^{d\tau} = \sigma^B / (1 - \Pi^2)$ (further details are provided in the Supplemental Material [36]).

Systematic uncertainties on the cross section measurement mainly come from the luminosity measurement, the Λ reconstruction, the 4C kinematic fit, the branching fraction for the decay $\Lambda \rightarrow p\pi^-$, the line-shape description, and the physical model dependence. The uncertainty due to the vacuum polarization is negligible. The integrated luminosity is measured by $e^+e^- \rightarrow (\gamma)e^+e^-$ events with a similar method to Ref. [37] with an uncertainty of 1.0%. The systematic uncertainty of the $\Lambda(\bar{\Lambda})$ reconstruction incorporating the tracking, the mass window of $\Lambda(\bar{\Lambda})$, and the decay length of $\Lambda(\bar{\Lambda})$ is studied using a control sample of $\psi(3686) \rightarrow \Lambda\bar{\Lambda}$ decay (~ 20000 events) with the same method as introduced in Refs. [53–59]. The signal MC sample is simulated using a DIY model [44] implementing the joint angular distribution from Refs. [60, 61]. The efficiency difference between data and MC simulation is found to be 0.5% for the Λ reconstruction and 1.5% for the $\bar{\Lambda}$ reconstruction. The uncertainty from the 4C kinematic fit is studied using the control sample of $\psi(3686) \rightarrow \Lambda\bar{\Lambda}$ decays with and without performing a 4C kinematic fit. The relative change of 1.0% is assigned as the systematic uncertainty. The uncertainty of the branching fraction for $\Lambda \rightarrow p\pi^-$ from the PDG [15] is 0.8%, and is propagated to the final result. The uncertainty from the line-shape description is estimated with an alternative input cross section line shape based on a simple power-law function. The change of the efficiency, 2.6%, is taken as the systematic uncertainty. The uncertainty due to the physical model dependence is estimated to be 2.5% by comparing the efficiencies between phase space and the DIY model incorporating the Λ transverse polarization and spin correlation based on the control sample of $\psi(3770) \rightarrow \Lambda\bar{\Lambda}$ decays. Assuming all sources are independent, the total systematic uncertainty on the cross section measurement is determined to be 4.3% by adding these sources in quadrature. The correlations for the different points are negligible due to the limited statistics.

The extracted Born cross sections at each energy point are listed in Table I and shown in Fig. 2(top) together with the CLEO-c results at 3.770 and 4.160 GeV [34, 35]. Our results are significantly lower than those of CLEO-c at both energy points. Figure 2 (bottom) shows the extracted energy dependence of the Λ effective form factor $G_{\text{eff}}(s)$ defined as [63]

$$G_{\text{eff}}(s) = \frac{3s\sigma\beta}{2\pi\alpha^2\epsilon(2\tau + 1)}$$

where α is the fine-structure constant, $\beta = \sqrt{(\tau - 1)/\tau}$ is the Λ velocity and $\tau = s/(4m^2_{\Lambda})$.

The dressed cross section for the continuum $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ process is expected to have an asymptotic power-law behavior $\propto s^{-n}$ with the exponent $n \approx 10$ [63–65]. A least-χ^2 fit including statistical and systematic uncertainties to the power-law distribution describes the data points reasonably well, as

![Figure 1: Distribution of $M_{\gamma\gamma}$ versus $M_{\gamma\gamma}^+$ of the accepted candidates from all data samples, where the red box shows the signal region, the green boxes denote the selected sideband regions.](image-url)
shown with the dashed line in Fig. 3. The fitted value of the exponent n is not close to 10 within the uncertainty of 1σ, as shown in the column “Fit I” in Table II. A fit with the coherent sum of the power-law function and a Breit-Wigner (BW) function

$$\sigma^{dI}(s) = \sqrt{\sigma_0} \left(\frac{M}{\sqrt{s}} \right)^n + e^{i\phi} \text{BW}(s) \right)^2 \quad (3)$$

is applied, where M is the $\psi(3770)$ mass, σ_0 is the value of the continuum cross section at $\psi(3770)$ and ϕ is the relative phase between the continuum and the resonance. The BW function is

$$\text{BW}(s) = \frac{\sqrt{\sigma_0} M \Gamma}{s - M^2 + i M \Gamma} \quad \text{with} \quad \sigma_0 = \frac{12\pi (hc)^2 \Gamma_{ee} B \Gamma M^2}{\Gamma M^2}, \quad (4)$$

where Γ and Γ_{ee} are the total and the electronic width of the $\psi(3770)$ resonance, respectively, and B denotes the branching fraction to $\Lambda \bar{\Lambda}$. The solid line in Fig. 3 and the column "Fit II" in Table II shows the result of the fit with two solutions, where the mass and width of $\psi(3770)$ are fixed according to the PDG values [15], and σ_0, n, ϕ and σ_ψ parameters are free. The improvement of the χ^2 value gives a significance of 4.6–4.9σ for the hypothesis with the $\psi(3770)$ resonance including the systematic uncertainty. The correlation coefficient between the resonance cross section σ_ψ and the phase ϕ is almost equal to one. In the Fit II, two solutions are expected according to mathematical calculation [66, 67], but fits give the consistent results within the uncertainty of 1σ due to statistics limitation. Figure 4 shows the contour of B and ϕ on the distribution of χ^2 values for each set of parameters. Our results can be summarized by giving 90% C.L. intervals $24 < \sigma_\psi < 1800$ fb and $2.4 \times 10^{-6} < B < 1.8 \times 10^{-4}$. This represents the first evidence of the decay $\psi(3770) \rightarrow \Lambda \bar{\Lambda}$. This result is larger by at least an order of magnitude than the prediction based on a scaling from the electronic branching fraction value. This implies, that the $\psi(3770)$ resonance needs to be considered when interpreting the CLEO-c data. Note that the systematic uncertainties due to beam energy, mass and width of the $\psi(3770)$ resonance have been considered by varying the known value within one standard deviation, and they turn out to be negligible.

Finally, we have included an additional charmonium(-like) state (i.e. $\psi(4040)$, $\psi(4160)$, $Y(4260)$, or $\psi(4145)$) in the fit, one at a time. It turns out that the exponent and significance for the $\psi(3770)$ state are consistent with a single reso-
The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Research and Development Program of China under Contracts No. 2020YFA0406400 and No. 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts No. 11625523, No. 11635010, No. 11735014, No. 11822506, No. 11835012, No. 11875115, No. 11905236, No. 11935015, No. 11935016, No. 11935018, No. 11961141012, No. 12022510, No. 12035009, No. 12035013, No. 12047501, No. 12075107, and No. 1206131003; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts No. U1732263, and No. U1832207; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; Fundamental Research Funds for the Central Universities under Grant No. Izujhy-2021-sp24; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation program under Contract No. Marie Sklodowska-Curie Grant Agreement No. 894790; German Research Foundation DFG under Contract No. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development under Contract No. DPT2006-K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts No. DH140054, and No. DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts No. DE-FG02-05ER41374, No. DE-SC-0012069.

ACKNOWLEDGEMENT

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Research and Development Program of China under Contracts No. 2020YFA0406400 and No. 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts No. 11625523, No. 11635010, No. 11735014, No. 11822506, No. 11835012, No. 11875115, No. 11905236, No. 11935015, No. 11935016, No. 11935018, No. 11961141012, No. 12022510, No. 12035009, No. 12035013, No. 12047501, No. 12075107, and No. 1206131003; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts No. U1732263, and No. U1832207; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; Fundamental Research Funds for the Central Universities under Grant No. Izujhy-2021-sp24; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation program under Contract No. Marie Sklodowska-Curie Grant Agreement No. 894790; German Research Foundation DFG under Contract No. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development under Contract No. DPT2006-K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts No. DH140054, and No. DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts No. DE-FG02-05ER41374, No. DE-SC-0012069.

TABLE II. Results of the fit to the dressed cross section for the $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ process. The fitting procedure includes both statistical and systematic uncertainties except for the c.m. energy calibration. B is the branching fraction of the decay $\psi(3770) \rightarrow \Lambda\bar{\Lambda}$ measured assuming $\mathcal{B}_{ee} = 9.7 \times 10^{-3}$, the central value of the world average [15], and $\Gamma_{ee} = \mathcal{B}_{\psi(3770)}\Gamma_{ee} = (261.2 \pm 21.3) \text{ eV}$.

Parameter	Fit I	Fit II
σ_0 (fb)	379 ± 22	320^{+340}_{-340}
n	8.8 ± 0.4	8.2 ± 0.6
ϕ (°)	-183^{+40}_{-37}	240^{+37}_{-132}
σ_ϕ (fb)	0(fixed)	240^{+120}_{-130}
χ^2/ndof	62.0/31	34.6/29
B ($\times 10^{-6}$)	$2.4^{+1.4}_{-1.9}$	$14.4^{+2.7}_{-2.9}$

[1] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[2] R. A. Briceno et al., Chin. Phys. C 40, 042001 (2016).
[3] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 17, 3090 (1978).
