Estimation of the Seismic Damage Potential of RC Frames Using Seismic Parameters

Ali Massumi1 • Maryam Rahmati Selkisari1

Received: 20 February 2022 / Revised: 3 September 2022 / Accepted: 15 October 2022 / Published online: 25 November 2022

© Iran University of Science and Technology 2022

Abstract

This research investigated the relation between the main earthquake parameters by incorporating information about ground motions and the difference in the fundamental period. This difference in the fundamental period is one method of assessing structural damage because it can express potential damage from an earthquake. Three RC (3-, 9- and 12-story) frames have been analyzed under far-fault earthquake records using nonlinear dynamic analysis. Mathematical methods then were applied to assess the correlation between the difference in the fundamental period and the principle seismic parameters of PGA, \(a_{\text{RMS}} \), \(I_a \), \(I_c \), A95, ASI and VSI that have been extracted from the records. The best correlations as calculated by the Pearson correlation coefficient values were between \(I_a \), \(I_c \) and VSI and the difference in the fundamental period. The Pearson coefficients for \(I_a \) and \(I_c \) were between 0.621 and 0.767, which signifies a strong correlation. Regression equations indicated new parameters (\(I_c \)VS) with even higher Pearson coefficients of 0.757–0.782 between every parameter and the difference in the fundamental period. The very strong correlation between the newly achieved parameters and the fundamental period indicates that they are appropriate indices for estimating potential structural damage from an earthquake.

Keywords Seismic parameters • Damage potential • Fundamental period • RC frames • Correlation coefficient • Regression equation

1 Introduction

Assessment of the vulnerability of structures to earthquake motion estimates their efficiency and their ability for use after such an event. It predicts the need for maintenance in the future, as well as of rehabilitation and repair of defects caused by damage. Earthquakes damage structures worldwide every year [1] making the estimation of structural damage from earthquakes a point of focus. The resulting damage indices should evaluate the intensity of damage to structures under earthquake loading [2, 3].

Researchers have emphasized the inter-relationship between seismic parameters and structural damage to determine the best seismic parameters for predicting potential structural damage. Those with a high correlation with damage represent the likelihood of damage to a structure caused by an earthquake. A high value indicates that the earthquake will cause major damage to a reinforced concrete (RC) building.

The difference in the fundamental period is one method used to assess structural damage [4] A large number of parameters have been proposed to characterize a seismic event, but no single ground-motion parameter provides an ideal index for damage. The correlation of some seismic parameters with actual damage has been a complex multiparameter subject of research [5]. Elenas et al. claimed that spectral acceleration and energy parameters are highly correlated with damage [6–8]. Samimifar et al. [9] stated that energy based seismic evaluation is a rational approach for seismic assessment of accumulated earthquake induced damage. Danciu [10] identified the peak ground velocity, Arias intensity and spectral intensity as being related to damage.

Alvanitopoulos et al. studied the correlation between damage indices and ground-motion parameters and
proposed the new parameters of maximum amplitude (AHHT_max) and mean amplitude (AHHT_mean) as seismic parameters that play significant roles in the Hilbert–Huang transform [11]. Nanos emphasized the selection of seismic parameters for vulnerability assessment of mid-rise RC structures and concluded that the energy parameters of earthquakes and the Arias intensity are highly correlated with the damage intensity [12, 13].

Chen and Wei [14] considered the correlation between ground-motion parameters and lining damage indices for mountain tunnels. They found the overall lining damage indices to be highly correlated with velocity-related seismic parameters and poorly correlated with spectral parameters. The correlation between the spectral parameters of an earthquake and damage intensity in 3-story RC frames indicated that the Housner intensity [15], acceleration spectrum intensity, and velocity spectrum intensity showed strong correlations with the Park–Ang index, but a weak correlation with the predominant period [16, 17]. Further, the relationship between the earthquake energy parameters and damage to RC frames indicated that a_{95}, I_a, I_c, and A95 are proper parameters for representing potential damage by an earthquake [18].

The results of Massumi and Gholami [19] indicated that frequency-dependent parameters better predicted the damage criteria compared to time-dependent parameters and that no unique time-dependent parameter could satisfactorily describe the structural damage. Wang et al. [20] discussed the correlation between the earthquake duration and damage measures for gravity dams. Comparison of the correlation between the ground-motion duration and damage measures revealed that the strong motion duration calculated using different definitions had no significant influence on damage measures based on the peak displacement response of the dam, but were positively correlated with accumulated damage measures, such as the local damage index, global damage index, and damage energy dissipation. Diaz et al. [21] proposed a new damage index based on two energy functions. Their new damage index linked damage to the characteristics of seismic action, such as its intensity and duration.

Qiu et al. investigated the correlation between structural damage to high-rise chimneys and spectral-acceleration-based earthquake intensity measures which considered the higher mode and period elongation effects. Three RC high-rise chimneys were established and analyzed under far-field ground-motion records. The results showed that the proposed intensity measure had a high correlation with the structural damage indices, especially with the maximum inter-story drift ratio and maximum roof displacement, and was a suitable parameter for predicting structural damage to high-rise chimneys [22].

Chen and Wang studied multipulse characteristics of near-fault ground motions by an automatic detection procedure, which was conducted using a rough pulse signal. The statistical methods between the multipulse and earthquake parameters, including moment magnitudes, site conditions, rupture distances, and types of fault, were discussed. The results demonstrated that pulse periods, which can be described as the period of the pulse with the largest amount of energy, are almost identical to periods of the first pulse in the time domain. They are related not only to magnitudes but also to the fault type and site conditions [23].

Mase et al. [24] researched the ground-motion parameters and site investigations in northern Thailand during the Tarlay earthquake of 2011. The horizontal to vertical (H/V) spectral ratio was derived from the fast Fourier transform (FFT) of the ambient noise from microtremor measurements. The spectral acceleration ratios were analyzed to determine the possibility of resonance during the earthquake. They concluded that the (north–south) component of the ground motion recorded had the greatest effect for the ground motion during this strong earthquake in northern Thailand. The H/V spectral ratio could properly determine the possibility of resonance during a strong earthquake. The summary of the literature is presented in Table 1.

In the current study, three RC frames were analyzed and subjected to far-fault earthquake records. The Pearson’s correlation coefficient was used to evaluate the strength of the linear inter-relationship between the sets of data [25, 26]. Using the regression equations between the seismic parameters and the fundamental period as the damage index, new parameters are proposed that show considerable correlation with the fundamental period.

2 Seismic Parameters

The parameters of peak ground motion, energy, spectral intensity, and duration have been defined to characterize the seismic event. The main seismic parameters extracted from earthquakes records were selected and have shown a high correlation with the damage intensity in previous studies.

2.1 Earthquake Energy Parameters

Calculation of the input energy of a seismic event produces the energy parameters. These parameters convey information about both the amplitude and duration of seismic motion. Some researchers, such as Danciu [10], have classified these parameters based on the intensity of the
ground-motion parameters. Some of these vital energy parameters selected are as follows:

- **Root mean square of acceleration** (a_{RMS}), which considers the amplitude and frequency content of an earthquake record and is defined as:

$$a_{\text{RMS}} = \left(\frac{1}{T_d} \int_0^{T_d} |a(t)|^2 \, dt \right)^{1/2} = (\lambda_0)^2$$

where T_d is the duration of the earthquake record, $a(t)$ represents acceleration at time t and λ_0 denotes the average intensity.

- **Arias intensity** (I_a), which measures the intensity of the ground motion [27] and represents the total energy at the recording station as:

$$I_a = \frac{\pi}{2g} \int_0^{T_d} a^2(t) \, dt$$

where T_d is the duration of the earthquake record, $a(t)$ indicates acceleration at time t and is similar to velocity.

- **Characteristic intensity** (I_c), which is based on the root mean square of acceleration [28] and is defined as:

$$I_c = (a_{\text{RMS}})^3 \times (T_d)^{1/2}$$

where a_{RMS} represents the root mean square of acceleration and T_d denotes the duration of the earthquake record.

- **A95**, which is the level of acceleration up to 95% of the Arias intensity (Fig. 1) [29].

$$\text{E}_a \text{ is the area bounded by curve } a^2(t) \text{ and the horizontal line at level } A^2, \text{ where } A \text{ is at zero acceleration and area } \text{E}_a$$

gives the Arias intensity. This acceleration level, which gives an $E_a/E_s = 0.05$, is A95.

2.2 Spectral Parameters of Earthquakes

Spectral parameters consider both the characteristics of peak ground motion and frequency content based on the spectral characteristics of a seismic recording. A number of spectral parameters have been proposed by researchers. The acceleration spectrum intensity (ASI) is the area under the acceleration response spectrum for periods of between 0.1 and 0.5 s. This parameter was introduced for concrete dams, which generally have fundamental periods of less than 0.5 s [30]. It is defined as:

![Schematic diagram for calculation of A95](image)

Fig. 1 Schematic diagram for calculation of A95
ASI = \int_{0.1}^{0.5} S_a(\xi = 0.05, T) dT \quad (4)

where \(S_a \) is the acceleration for a damping coefficient of 5% and natural period \(T \).

The velocity spectrum intensity (VSI) is the response spectrum intensity for a damping coefficient of 5% and was proposed for earth and rock fill dams, which generally have fundamental periods of between 0.6 and 2.0 s. It can be calculated as:

\[
\text{VSI} = \int_{0.1}^{2.5} S_v(\xi = 0.05, T) dT \quad (5)
\]

where \(S_v \) is the velocity for a damping coefficient of 5% and natural period \(T \).

2.3 Peak Ground-Motion Parameters

Peak parameters represent the ground-motion amplitude and include the peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD). In this paper, PGA has been used as it is an efficient parameter to represent the potential damage of an earthquake.

3 Evaluation of Damage Intensity

The first attempts to determine the overall damage based on the dynamic characteristics involved changes in the fundamental period or frequency. This index was obtained from testing of laboratory samples of RC elements [31]. Natural frequencies usually decrease with an increase in the structural damage; thus, mathematically, the difference in frequency will have a negative value. This damage index based on frequency difference in the first mode is:

\[
D_G = \frac{\Delta \omega_i}{\omega_0} = \frac{\omega_d - \omega_0}{\omega_0} \quad (6)
\]

where \(\omega_0 \) is the initial frequency of the building and \(\omega_d \) is the frequency of the damaged building.

In order to calculate this index, it is necessary to determine the natural frequencies of the structure. In the current study, differences in the fundamental period were used to assess the damage magnitude in the current study.

4 Earthquake Records

Earthquake records from 125 far-fault earthquakes were selected from the Strong Motion Database [32]. The magnitudes of these earthquakes were between 5.9 and 7.6 on the Richter scale. The details about these earthquakes are shown in Table 2.

5 Structural Modeling and Analysis

The IDARC computer program [33] was used to model the RC frames. A ten-story frame was modeled to confirm the results of the program based on the results of shaking table tests [34]. The program is able to extract response information on selected sub-assemblages and outputs specified by displacement, drift and story shear histories. It uses a generalized fiber model for the generation of moment–curvature envelopes based on cross-sectional data. P-delta effects are included in the step-by-step analysis and single-step correction is applied to control the unbalanced forces during event transition (changes in stiffness during loading and unloading) [35]. The three-parameter Park hysteretic model, which is used for modeling members in IDARC, is shown in Fig. 2.

Figure 3 shows a comparison of the analytical and experimental results in terms of peak acceleration. Figure 4 shows the results in terms of peak displacement. The maximum displacements reported by Cecen [34] are based on the one half of the double amplitude, while the IDARC values are the absolute peak. A comparison of the analytical and experimental results confirmed the verification of the IDARC results. It can be seen that fairly good agreement was obtained using IDARC. The slight difference between the results can relate to the high possibility of error in the experimental results. However, the known history of IDARC and a review of the previous research has confirmed its reliability.

Figures 5, 6 and 7 display schematic models of three RC frames (3-, 9- and 12-story). In all frames, the height and length of each story was 3.2 and 4.0 m, respectively. Tables 3, 4 and 5 provide details of the frame sections. Dead and live loads of 29,700 N/m and 4800 N/m were applied to the beams at all the stories. The concrete was assumed to have a compressive strength of 25 MPa and the steel to have a yield strength of 400 MPa and a modulus of elasticity of 210,000 MPa. The frames have been designed based on ACI provisions [36]. The frames were subjected to the selected records of the earthquakes and nonlinear dynamic analysis was conducted.

6 Analytical Results and Discussion

The correlation between the fundamental periods and seismic parameters which were extracted from the records were calculated after nonlinear dynamic analysis. The
No.	Earthquake	Station	M	PGA (g)	a_{RMS} (g)	I_p (m/s)	I_c (g)	A95 (g)	ASI (g s)	VSI (cm)
1	Taiwan SMART1(5)	25 SMART1 C00	5.9	0.114	0.021	0.134	0.013	0.112	0.125	43.150
2	Taiwan SMART1(5)	25 SMART1 C00	5.9	0.096	0.016	0.081	0.009	0.096	0.113	23.259
3	Taiwan SMART1(5)	27 SMART1 I12	5.9	0.113	0.017	0.129	0.012	0.111	0.127	40.690
4	Taiwan SMART1(5)	28 SMART1 M01	5.9	0.178	0.025	0.232	0.019	0.175	0.186	51.708
5	Taiwan SMART1(5)	29 SMART1 M07	5.9	0.111	0.014	0.104	0.010	0.110	0.114	25.790
6	Taiwan SMART1(5)	29 SMART1 M07	5.9	0.109	0.015	0.109	0.010	0.108	0.096	39.703
7	Taiwan SMART1(5)	30 SMART1 O01	5.9	0.115	0.015	0.109	0.010	0.114	0.116	42.916
8	Whittier Narrows	951 Brea Dam (Downstream)	6	0.163	0.020	0.191	0.016	0.161	0.151	22.209
9	Whittier Narrows	951 Brea Dam (Downstream)	6	0.313	0.030	0.417	0.029	0.312	0.260	45.690
10	Whittier Narrows	14403 LA—116th St School	6	0.294	0.027	0.463	0.029	0.291	0.207	67.493
11	Whittier Narrows	24399 Mt Wilson—CIT Seis Sta	6	0.123	0.015	0.147	0.012	0.121	0.073	15.251
12	Whittier Narrows	90012 Burbank—N Buena Vista	6	0.191	0.026	0.386	0.025	0.187	0.204	41.871
13	Whittier Narrows	90081 Carson—Water St	6	0.104	0.020	0.189	0.016	0.102	0.113	39.820
14	Whittier Narrows	90081 Carson—Water St	6	0.133	0.021	0.202	0.017	0.131	0.085	45.130
15	Whittier Narrows	90091 LA—Saturn St	6	0.099	0.015	0.111	0.011	0.097	0.100	20.242
16	Whittier Narrows	90060 La Crescenta—New York	6	0.134	0.017	0.130	0.012	0.133	0.110	37.106
17	Whittier Narrows	90060 La Crescenta—New York	6	0.141	0.023	0.237	0.019	0.138	0.128	44.874
18	Whittier Narrows	90084 Lakewood—Del Amo Blvd	6	0.277	0.038	0.644	0.040	0.274	0.230	104.200
19	Whittier Narrows	90084 Lakewood—Del Amo Blvd	6	0.178	0.024	0.272	0.021	0.176	0.149	38.602
20	Whittier Narrows	951 Brea Dam (L. Abut)	6	0.118	0.015	0.112	0.011	0.116	0.094	19.904
21	Whittier Narrows	951 Brea Dam (L. Abut)	6	0.149	0.020	0.186	0.015	0.147	0.141	33.818
22	Whittier Narrows	697 Orange Co. Reservoir	6	0.185	0.024	0.260	0.020	0.184	0.192	34.630
23	Coalinga	36177 Parkfield—Vineyard Cany 2E	6.4	0.161	0.025	0.393	0.025	0.158	0.199	80.177
24	Coalinga	46314 Cantua Creek School	6.4	0.227	0.035	0.738	0.041	0.224	0.210	101.736
Table 2 (continued)

No.	Earthquake	Station	M	PGA (g)	a_{RMS} (g)	L_a (m/s)	I_c (g)	A_95 (g)	ASI (g s)	VSI (cm)
25.	Coalinga	46314 Cantua Creek School	6.4	0.281	0.043	1.151	0.057	0.277	0.338	112.487
26.	Coalinga	36456 Parkfield—Fault Zone 14	6.4	0.274	0.038	0.880	0.046	0.270	0.215	141.347
27.	Coalinga	36457 Parkfield—Fault Zone 16	6.4	0.195	0.024	0.363	0.024	0.193	0.172	71.214
28.	Imperial Valley	6617 Cucapah	6.5	0.309	0.041	1.024	0.052	0.305	0.271	128.809
29.	Imperial Valley	5059 El Centro Array #13	6.5	0.117	0.021	0.265	0.019	0.113	0.113	54.499
30.	Imperial Valley	6605 Delta	6.5	0.351	0.046	3.290	0.099	0.336	0.273	163.343
31.	Imperial Valley	6605 Delta	6.5	0.229	0.039	2.397	0.078	0.214	0.236	115.162
32.	San Fernando	24278 Castaic—Old Ridge Route	6.6	0.268	0.045	0.946	0.053	0.263	0.225	90.941
33.	San Fernando	135 LA—Hollywood Stor Lot	6.6	0.210	0.039	0.650	0.040	0.206	0.217	79.199
34.	San Fernando	135 LA—Hollywood Stor Lot	6.6	0.174	0.032	0.447	0.031	0.170	0.157	55.872
35.	San Fernando	126 Lake Hughes #4	6.6	0.192	0.021	0.248	0.018	0.190	0.115	25.478
36.	San Fernando	126 Lake Hughes #4	6.6	0.153	0.019	0.207	0.016	0.151	0.120	36.675
37.	Northridge	24278 Castaic—Old Ridge Route	6.7	0.568	0.067	2.788	0.110	0.561	0.524	212.356
38.	Northridge	24278 Castaic—Old Ridge Route	6.7	0.514	0.072	3.163	0.121	0.505	0.422	254.427
39.	Northridge	24303 LA—Hollywood Stor FF	6.7	0.231	0.039	0.937	0.049	0.225	0.210	96.157
40.	Northridge	24303 LA—Hollywood Stor FF	6.7	0.358	0.057	2.005	0.086	0.350	0.336	114.997
41.	Northridge	90014 Beverly Hills—12520 Mulhol	6.7	0.617	0.090	2.991	0.132	0.609	0.522	135.052
42.	Northridge	90049 Pacific Palisades—Sunset Blvd	6.7	0.197	0.041	0.647	0.041	0.194	0.206	60.364
43.	Northridge	24538 Santa Monica City Hall	6.7	0.370	0.044	1.179	0.058	0.365	0.271	126.349
44.	Northridge	24538 Santa Monica City Hall	6.7	0.883	0.068	2.846	0.112	0.877	0.628	171.943
45.	Northridge	78 Stone Canyon	6.7	0.252	0.040	0.981	0.050	0.245	0.293	99.040
46.	Northridge	78 Stone Canyon	6.7	0.388	0.042	1.065	0.054	0.385	0.332	104.294
47.	Northridge	5081 Topanga—Fire Sta	6.7	0.266	0.047	0.811	0.050	0.261	0.248	45.095
48.	Northridge	90015 LA—Chalon Rd	6.7	0.225	0.036	0.615	0.038	0.223	0.213	80.513
No.	Earthquake	Station	M	PGA (g)	a_{RMS} (g)	I_a (m/s)	I_c	A95 (g)	ASI (g s)	VSI (cm)
-----	--------------------	----------------------------------	-----	---------	---------------	-------------	-------	---------	-----------	----------
49.	Northridge	90015 LA—Chalon Rd	6.7	0.185	0.037	0.647	0.039	0.181	0.183	107.234
50.	Northridge	90016 LA—N Faring Rd	6.7	0.273	0.038	0.667	0.041	0.270	0.194	74.469
51.	Northridge	90016 LA—N Faring Rd	6.7	0.242	0.043	0.845	0.048	0.239	0.212	95.334
52.	Northridge	90017 LA—Wonderland Ave	6.7	0.172	0.021	0.201	0.017	0.171	0.125	50.426
53.	Northridge	90017 LA—Wonderland Ave	6.7	0.112	0.018	0.143	0.013	0.110	0.095	34.293
54.	Northridge	90017 LA—Wonderland Ave	6.7	0.178	0.031	0.448	0.030	0.174	0.187	48.909
55.	Northridge	90054 LA—Centinela St	6.7	0.322	0.046	0.994	0.055	0.319	0.264	117.359
56.	Northridge	90013 Beverly Hills—14145 Mulhol	6.7	0.416	0.082	3.073	0.128	0.408	0.353	266.127
57.	Superstition Hills(A)	5210 Wildlife Liquef. Array	6.7	0.134	0.023	0.253	0.020	0.131	0.127	54.161
58.	Superstition Hills(B)	5052 Plaster City	6.7	0.121	0.030	0.299	0.024	0.119	0.137	52.374
59.	Superstition Hills(B)	5061 Calipatria Fire Station	6.7	0.186	0.043	0.632	0.042	0.183	0.207	87.011
62.	Superstition Hills(B)	5062 Salton Sea Wildlife Refuge	6.7	0.119	0.023	0.177	0.016	0.116	0.097	41.923
63.	Superstition Hills(B)	5062 Salton Sea Wildlife Refuge	6.7	0.167	0.032	0.360	0.028	0.163	0.129	75.229
66.	Spitak, Armenia	12 Gukasian	6.8	0.199	0.030	0.279	0.023	0.196	0.139	84.914
67.	Kobe	12 Gukasian	6.8	0.175	0.031	0.299	0.025	0.172	0.185	58.006
70.	Kobe	Station: 0 Kakogawa	6.9	0.251	0.040	1.031	0.052	0.245	0.229	106.281
71.	Kobe	Station: 0 Kakogawa	6.9	0.345	0.052	1.687	0.075	0.337	0.330	153.574
72.	Loma Prieta	57425 Gilroy Array #7	6.9	0.223	0.036	0.775	0.042	0.219	0.250	61.218
Table 2 (continued)

No.	Earthquake	Station	M	PGA (g)	agMS (g)	Ia (m/s)	Ic	A95 (g)	ASI (g s)	VSI (cm)
73.	Loma Prieta	57425 Gilroy Array #7	6.9	0.318	0.037	0.841	0.045	0.315	0.321	62.428
74.	Loma Prieta	57217 Coyote Lake Dam	6.9	0.484	0.049	1.503	0.069	0.480	0.301	146.233
75.	Loma Prieta	57217 Coyote Lake Dam	6.9	0.151	0.026	0.428	0.027	0.149	0.147	72.943
76.	Loma Prieta	57504 Coyote Lake Dam (Downst)	6.9	0.160	0.024	0.352	0.023	0.157	0.173	55.524
77.	Loma Prieta	57504 Coyote Lake Dam (Downst)	6.9	0.179	0.027	0.464	0.029	0.177	0.192	86.475
78.	Loma Prieta	1652 Anderson Dam (Downstream)	6.9	0.244	0.036	0.797	0.043	0.238	0.249	85.336
79.	Loma Prieta	1652 Anderson Dam (Downstream)	6.9	0.240	0.036	0.801	0.043	0.236	0.215	82.211
80.	Loma Prieta	58223 SF Intern. Airport	6.9	0.329	0.038	0.901	0.047	0.326	0.261	118.259
81.	Loma Prieta	58223 SF Intern. Airport	6.9	0.236	0.037	0.857	0.046	0.232	0.263	103.645
82.	Loma Prieta	1656 Hollister Diff. Array	6.9	0.269	0.036	0.801	0.043	0.265	0.203	159.902
83.	Loma Prieta	1656 Hollister Diff. Array	6.9	0.279	0.041	1.036	0.053	0.278	0.273	136.563
84.	Loma Prieta	1695 Sunnyvale—Colton Ave	6.9	0.207	0.033	0.651	0.037	0.203	0.151	100.940
85.	Loma Prieta	1695 Sunnyvale—Colton Ave	6.9	0.208	0.035	0.755	0.042	0.205	0.217	104.878
86.	Loma Prieta	57066 Agnews State Hospital	6.9	0.172	0.027	0.442	0.028	0.168	0.182	62.067
87.	Loma Prieta	57066 Agnews State Hospital	6.9	0.159	0.025	0.374	0.024	0.156	0.135	76.225
88.	Irpinia, Italy	Bagnoli Irpino	6.9	0.139	0.024	0.338	0.023	0.135	0.112	81.387
89.	Irpinia, Italy	Bagnoli Irpino	6.9	0.202	0.028	0.434	0.028	0.198	0.129	123.055
90.	Irpinia, Italy	Sturno	6.9	0.247	0.044	1.212	0.059	0.242	0.258	134.207
91.	Cape Mendocino	89486 Fortuna—Fortuna Blvd	7.1	0.116	0.020	0.261	0.018	0.114	0.098	76.638
92.	Cape Mendocino	89486 Fortuna—Fortuna Blvd	7.1	0.114	0.019	0.239	0.017	0.111	0.100	70.280
93.	Landers	23 Coolwater	7.3	0.283	0.053	1.215	0.065	0.278	0.334	85.675
94.	Landers	23 Coolwater	7.3	0.417	0.071	2.172	0.100	0.409	0.383	180.009
95.	Landers	12149 Desert Hot Springs	7.3	0.171	0.030	0.707	0.037	0.165	0.167	64.024
96.	Landers	22074 Yermo Fire Station	7.3	0.152	0.032	0.677	0.037	0.147	0.174	94.596
Table 2 (continued)

No.	Earthquake	Station	M	PGA (g)	a_{rms} (g)	I_e (m/s)	I_c	A95 (g)	ASI (g s)	VSI (cm)
97.	Landers	5070 North Palm Springs	7.3	0.135	0.024	0.638	0.032	0.130	0.130	63.777
98.	Landers	5070 North Palm Springs	7.3	0.133	0.025	0.693	0.034	0.125	0.116	78.062
99.	Chi-Chi, Taiwan	CHY034	7.6	0.248	0.022	1.461	0.046	0.243	0.204	173.391
100.	Chi-Chi, Taiwan	CHY034	7.6	0.309	0.024	1.770	0.053	0.301	0.204	194.495
101.	Chi-Chi, Taiwan	CHY036	7.6	0.203	0.034	1.560	0.058	0.196	0.194	122.216
102.	Chi-Chi, Taiwan	CHY036	7.6	0.291	0.037	1.864	0.067	0.281	0.220	178.792
103.	Chi-Chi, Taiwan	CHY092	7.6	0.111	0.020	0.943	0.035	0.105	0.080	106.444
104.	Chi-Chi, Taiwan	CHY092	7.6	0.081	0.015	0.537	0.023	0.077	0.061	76.809
105.	Chi-Chi, Taiwan	CHY104	7.6	0.162	0.025	1.468	0.049	0.153	0.141	149.957
106.	Chi-Chi, Taiwan	TCU107	7.6	0.158	0.031	1.330	0.052	0.151	0.124	158.642
107.	Chi-Chi, Taiwan	TCU107	7.6	0.124	0.029	1.194	0.048	0.115	0.121	142.700
108.	Chi-Chi, Taiwan	TCU040	7.6	0.122	0.019	0.523	0.026	0.118	0.099	67.844
109.	Chi-Chi, Taiwan	TCU040	7.6	0.148	0.022	0.650	0.030	0.142	0.133	78.630
110.	Chi-Chi, Taiwan	TCU042	7.6	0.199	0.026	0.925	0.039	0.191	0.175	99.508
111.	Chi-Chi, Taiwan	TCU042	7.6	0.245	0.029	1.140	0.046	0.237	0.206	103.714
112.	Chi-Chi, Taiwan	TCU111	7.6	0.099	0.023	0.702	0.032	0.094	0.075	88.376
113.	Chi-Chi, Taiwan	TCU111	7.6	0.136	0.025	0.870	0.038	0.129	0.086	105.793
114.	Chi-Chi, Taiwan	TCU141	7.6	0.101	0.017	0.706	0.028	0.094	0.079	85.646
115.	Chi-Chi, Taiwan	TCU141	7.6	0.080	0.015	0.506	0.022	0.076	0.059	84.460
116.	Chi-Chi, Taiwan	TCU038	7.6	0.168	0.027	1.034	0.043	0.159	0.175	103.257
117.	Chi-Chi, Taiwan	TCU038	7.6	0.140	0.023	0.757	0.034	0.136	0.135	75.459
118.	Chi-Chi, Taiwan	Station: TCU047	7.6	0.301	0.032	1.452	0.055	0.292	0.230	159.983
119.	Chi-Chi, Taiwan	CHY002	7.6	0.117	0.018	0.732	0.029	0.111	0.085	98.499
120.	Chi-Chi, Taiwan	CHY002	7.6	0.146	0.019	0.794	0.031	0.138	0.094	84.326
Pearson’s correlation coefficient was used to evaluate the strength of the linear inter-relationship between the sets of variables X and Y as follows:
\[P_{\text{Pearson}} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}, \quad (7) \]

where \(\bar{X} \) and \(\bar{Y} \) represent the mean values of \(X_i \) and \(Y_i \) and \(n \) indicates the number of pairs \((X_i, Y_i) \). The results of for the three RC frames are shown in Figs. 8, 9 and 10.

Based on the results of the Pearson coefficients in Figs. 8, 9 and 10, in all frames, \(I_a, I_c \) and VSI were highly correlated with the fundamental period. All of the parameters selected showed fairly high correlations with the fundamental period in the 3- and 9-story frames. The comparison between the Pearson coefficients in the three frames is shown in Fig. 11.

Figure 11 shows that the Pearson coefficients for the 12-story frame were lower than for the 3- and 9-story frames, although they were similar to those in all the frames. Regression analysis was used to assess the relationship between two or more variables. A nonstandard regression equation is:

\[Y = b_0 + b_1x_1 + b_2x_2 + \cdots + b_rx_r + \varepsilon \quad (8) \]

where \(b_0, b_1, \ldots \) and \(b_r \) are nonstandard regression coefficients and \(\varepsilon \) represents the standard error of regression. A standard regression equation is:

\[Y_z = \beta_1z_1 + \beta_2z_2 + \cdots + \beta_rz_r \quad (9) \]

where \(\beta_1, \beta_2 \) and \(\beta_r \) are the standard regression coefficients. The regression equations between \(I_a, I_c \) and VSI and the fundamental period values were calculated and the results are presented in Tables 6, 7 and 8.

By fitting the regression equation between each parameter and the difference in the fundamental period, relations between them can be obtained by averaging the coefficients between the three frames as follows:

\[dT = 0.6I_a \quad (10) \]
\[dT = 16I_c - 0.2 \quad (11) \]
\[dT = 0.01\text{VSI} - 0.4 \quad (12) \]
where dT represents the difference in the fundamental period.

Standard regression equations between each parameter and the difference in the fundamental period can be obtained for the three frames as follows:

$$dT = 0.7I_a$$ \hspace{1cm} (13)

$$dT = 0.7I_c$$ \hspace{1cm} (14)

$$dT = 0.7\text{VSI}$$ \hspace{1cm} (15)

Standard regression equations only indicate the relative effect of the variables. The standard regression equations between I_a, I_c and VSI and the fundamental period indicated that all three seismic parameters had similar correlations with the fundamental period.

Linear combinations of I_a, I_c and VSI were done to obtain a new parameter showing greater correlation with the fundamental period. The results of are shown in Table 9.

The results in Table 9 indicate that the Pearson correlations between the combined parameter and the fundamental period were greater than the separate correlations between each parameter and the difference in the fundamental period. Therefore, it can be regarded as an efficient parameter for showing the difference in the fundamental period. The regression equations between combined parameters and the difference in the fundamental period were calculated for the three frames and are shown in Tables 10, 11 and 12.

The regression coefficients were not similar for the three frames. Further, either parameter I_a or I_c should be combined with the other parameters. Accordingly, a new parameter was extracted by combining I_c and the VSI parameters. Table 13 lists the correlation results for the combined parameter and the difference in the fundamental period.

Table 3 Details of column and beam sections in 3-story RC frame

Type	$B \times D$ (mm)	Reinforcement	Critical stirrups	Other stirrups
Column1	350 × 350	8 φ18	φ10@150	φ10@200
Column2	300 × 300	8 φ16	φ10@150	φ10@200
Beam1	350 × 350	3 φ20	3 φ16	φ10@80
Beam2	300 × 300	3 φ20	3 φ14	–

Table 4 Details of column and beam sections in 9-story RC frame

Type	$B \times D$ (mm)	Reinforcement	Critical stirrups	Other stirrups
Column1	500 × 500	12 φ22	φ10@150	φ10@200
Column2	450 × 450	12 φ20	φ10@150	φ10@200
Column3	450 × 450	8 φ20	φ10@150	φ10@200
Column4	400 × 400	8 φ20	φ10@150	φ10@200
Column5	400 × 400	8 φ16	φ10@150	φ10@200
Beam1	450 × 500	3 φ22	3 φ22	φ8@100
Beam2	450 × 450	3 φ18	3 φ20	φ8@100
Beam3	400 × 450	3 φ18	3 φ20	φ8@85
Beam4	350 × 400	3 φ18	3 φ16	φ8@85
Beam5	350 × 400	3 φ16	1 φ16	φ8@85

Table 5 Details of column and beam sections in 12-story RC frame

Type	$B \times D$ (mm)	Reinforcement	Critical stirrups	Other stirrups
Column1	600 × 600	16 φ24	φ10@100	φ10@200
Column2	500 × 500	12 φ22	φ10@150	φ10@200
Column3	450 × 450	12 φ20	φ10@150	φ10@200
Column4	450 × 450	8 φ20	φ10@150	φ10@200
Column5	400 × 400	8 φ16	φ10@150	φ10@200
Beam1	600 × 500	4 φ22	4 φ22	φ8@100
Beam2	500 × 450	3 φ22	3 φ22	φ8@85
Beam3	450 × 450	3 φ18	3 φ18	φ8@85
Beam4	450 × 400	3 φ18	3 φ16	φ8@85
Beam5	400 × 350	3 φ18	1 φ16	φ8@85
The results in Table 12 show that the Pearson correlations between the combined parameter and difference in the fundamental period were greater than for the correlation between each parameter and the difference in the fundamental period. The regression equations between the combined parameter and the difference in the fundamental period were calculated for the three frames and the results are presented in Tables 14, 15 and 16.

After averaging the coefficients between the three frames, the relations between the selected seismic parameters and the difference in the fundamental period were as follows:

![Pearson Correlation for 3 Story frame](image1)
![Pearson Correlation for 9 Story frame](image2)
![Pearson Correlation for 12 Story frame](image3)

![Pearson Correlation for 3, 9 & 12 Story frames](image4)

Fig. 8 Pearson coefficient vs. seismic parameters vs. difference in fundamental period in 3-story frame

Fig. 9 Pearson coefficient for seismic parameters vs. difference in fundamental period in 9-story frame

Fig. 10 Pearson coefficient for seismic parameters vs. difference in fundamental period in 12-story frame

Fig. 11 Comparison between Pearson coefficients in three frames
Furthermore, the standard regression equation between the proposed combined parameter and the difference in the fundamental period for the three frames was:

\[dT = 3I_c + 0.01 \text{VSI} - 0.4 \quad (16) \]

Furthermore, the standard regression equation between the proposed combined parameter and the difference in the fundamental period for the three frames was:

\[dT = 0.1I_c + 0.6 \text{VSI} \quad (17) \]

The results indicate that the proposed parameter which is called \(I_c \text{VS} \) correlates highly with the difference in the

Table 6 Regression coefficients between seismic parameters and difference in fundamental period for 3-story frame

Model	Nonstandard coefficients	Standard coefficients		
	\(b \)	Std. error	\(\beta \)	
3 story	(Constant)	0.040	0.053	0.700
	\(I_a \)	0.550	0.051	0.700
	(Constant)	-0.116	0.066	0.696
	\(I_c \)	15.251	1.423	0.696
	(Constant)	-0.310	0.065	0.777
	VSI	0.009	0.001	0.777

Table 7 Regression coefficient between seismic parameters and difference in fundamental period for 9-story frame

Model	Nonstandard coefficients	Standard coefficients		
	\(b \)	Std. error	\(\beta \)	
9 story	(Constant)	-0.041	0.067	0.651
	\(I_a \)	0.603	0.064	0.670
	(Constant)	-0.235	0.080	0.754
	\(I_c \)	17.306	1.737	0.754
	(Constant)	-0.462	0.081	0.754
	VSI	0.010	0.001	0.754

Table 8 Regression coefficient between seismic parameters and difference in fundamental period for 12-story frame

Model	Nonstandard coefficients	Standard coefficients		
	\(b \)	Std. error	\(\beta \)	
12 story	(Constant)	-0.014	0.072	0.612
	\(I_a \)	0.586	0.069	0.612
	(Constant)	-0.188	0.088	0.612
	\(I_c \)	16.447	1.903	0.616
	(Constant)	-0.495	0.081	0.767
	VSI	0.011	0.001	0.767

Table 9 Pearson coefficients between combined parameter and difference in fundamental period

Model	Pearson coefficient
3 story	0.782
9 story	0.766
12 story	0.775
fundamental period. It can be regarded as a valid parameter to represent variations in the fundamental period of RC frames under earthquake loading because the relations between this parameter and the difference in the fundamental period were similar in all three frames.

7 Conclusions

Three RC frames with different numbers of stories were modeled in IDARC and then were subjected to 124 far-fault earthquake records. The seven principle seismic parameters of PGA, a_{RMS}, I_a, I_c, A_95, ASI and VSI then were extracted from the records. After nonlinear dynamic analysis, the damage responses of the frames were identified versus the fundamental period.

Pearson correlation coefficients were used to study the relations between the seismic parameters and the fundamental period of the three frames. The results indicated that the Pearson correlations between I_a, I_c and VSI and the difference in the fundamental period were strong in all
frames and that the selected parameters had fairly high correlations with the fundamental periods in the 3- and 9-story frames.

Regression equations between I_a, I_c and VSI, and the fundamental period were calculated for the three frames and unique equations were achieved by fitting these equations to the frames. A new parameter was achieved by the linear combination of I_c and VSI that demonstrates a high correlation with the difference in the fundamental period. Unique equations were achieved between this new parameter and the difference in the fundamental period that can be regarded as being reliable indicators of the difference in fundamental period under earthquake loading because notable correlation was found between this new parameter and the difference in the fundamental period. The relations for all three frames were similar.

Funding This research did not receive funding by any funding body.

Availability of Data and Material Data and material are available upon request.

Code Availability The developed codes are available upon request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical statements This method is an original effort by the authors and has not been submitted or published elsewhere.

References

1. Comartin C, Brzev S, Naeim F, Greene M, Blondet M, Cherry S, D’Ayala D, Farsi M, Jain SK, Pantelic J, Samant L, Sassu M (2004) A challenge to earthquake engineering professionals. Earthq Spectra 20:1049–1056
2. Williams MS, Sexsmith RG (1995) Seismic damage indices for concrete structures: a state-of-the-art review. Earthq Spectra 11:319–349
3. Rodriguez ME (2017) Damage index for different structural systems subjected to recorded earthquake ground motions. Earthq Spectra 34:773–793 (in press)
4. Massumi A, Moshtagh E (2013) A new damage index for RC buildings based on variations of nonlinear fundamental period. Struct Des Tall Spec Build 22:50–61
5. Musson RMW (2000) Intensity-based seismic risk assessment. Soil Dyn Earthq Eng 20:353–360
6. Elenas A (1996) Characteristic seismic acceleration parameters and their influence on the nonlinear behavior of structures. In: Eleventh world conference on earthquake engineering
7. Elenas A (1997) Interdependency between seismic acceleration parameters and the behaviour of structures. Soil Dyn Earthq Eng 16:317–322
8. Elenas A (2000) Correlation between seismic acceleration parameters and overall structural damage indices of buildings. Soil Dyn Earthq Eng 20:93–100
9. Samimifar M, Massumi A, Moghadam AS (2019) A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems. Struct Eng Mech 70:289–301
10. Danciu L (2006) Development of a system to assess the earthquake damage potential for buildings. PhD thesis, University of Patras
11. Alvanitopoulos PF, Andreadis I, Elenas A (2010) Interdependence between damage indices and ground motion parameters based on Hilbert-Huang transform. Meas Sci Technol 21(2):025101
12. Nanos N (2011) A study on the importance of seismic parameters selection for the vulnerability assessment of mid-rise reinforced concrete structures. PhD thesis, University of Portsmouth
13. Nanos N, Elenas A, Ponterosso P (2008) Correlation of different strong motion duration parameters and damage indicators of reinforced concrete structures. In: The 14th world conference on earthquake engineering, China Earthquake Press, Beijing
14. Chen Z, Wei J (2013) Correlation between ground motion parameters and lining damage indices for mountain tunnels. Nat Hazards 65:1683–1702
15. Housner GW (1959) Behavior of structures during earthquakes. J Eng Mech Div 85(EM4):109–129
16. Rahmati Selkisari M (2015) A study on correlations between seismic parameters and damage intensity in RC frame structures. MSc thesis, Kharazmi University of Tehran
17. Massumi A, Rahmati Selkisari M (2017) Correlations between spectral parameters of earthquakes and damage intensity in different RC frames. J Eng Geol (JEG) 11(3):133–158
18. Rahmati Selkisari M, Massumi A (2014) Comparing correlations between earthquake energy parameters and damage in different height frames. Tabriz, Iran
19. Massumi A, Gholami F (2016) The influence of seismic intensity parameters on structural damage of RC buildings using principal components analysis. Appl Math Model 40(3):2161–2176
20. Wang G, Zhang S, Zhou C, Lu W (2015) Correlation between strong motion durations and damage measures of concrete gravity dams. Soil Dyn Earthq Eng 69:48–162
21. Díaz S, Pujades L, Barbat A, Vargas Y, Hidalgo-Leiva D (2017) Energy damage index based on capacity and response spectra. Eng Struct 152:424–436
22. Qiu Y, Zhou C, Siha A (2020) Correlation between earthquake intensity parameters and damage indices of high-rise RC chimneys. Soil Dyn Earthq Eng 137:106282
23. Chen X, Wang D (2020) Multi-pulse characteristics of near-fault ground motions. Soil Dyn Earthq Eng 137:106275
24. Mase LZ, Likitlersuang S, Tobita T (2020) Ground motion parameters and resonance effect during strong earthquake in Northern Thailand. Geotech Geol Eng 39:2207–2219
25. Spiegel MR (1992) Theory and problems of statistics. McGraw-Hill: Schaum Publishing, London
26. Hauke J, Kossowski T (2011) Comparison of values of Pearson’s and spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae 30(2):87–93
27. Arias A (1970) A Measure of earthquake intensity. In: Hansen R (ed) Seismic design for nuclear power plants. MIT Press, Cambridge, pp 438–483
28. Ang AHS (1990) Reliability bases for seismic safety assessment and design. In: 4th U.S. national conference on earthquake engineering, Palm Springs, California
29. Sarma SK, Yang KS (1987) An evaluation of strong motion records and a new parameter A95. Earthq Eng Struct Dyn 15:119–132
30. Von Thun JL, Roehm LH, Scott GA, Wilson JA (1988) Earthquake ground motions for design and analysis of dams. In: Earthquake engineering and soil dynamics II—recent advances in ground-motion evaluation, ASCE, p 463–481
31. Newmark NM, Rosenblueth E (1974) Fundamentals of earthquake engineering. Prentice Hall, Hoboken
32. Peer N (2014) Database. The pacific earthquake engineering research center. University of California at Berkeley, [Online]
33. Valles RE, Reinhorn AM (2010) IDARC-2D Version 7.0, Inelastic damage analysis of reinforced concrete structures
34. Cecen H (1979) Response of ten story reinforced concrete model frames to simulated earthquakes. PhD diss, University of Illinois at Urbana–Champaign, Urbana
35. Monavari B, Massumi A (2012) Estimating displacement demand in reinforced concrete frames using some failure criteria. Int J Adv Struct Eng 4:1–6
36. ACI Committee (2008) Building code requirements for structural concrete (ACI 318–08) and commentary. American Concrete Institute, Michigan

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.