Riesz transforms for Dunkl transform

Volume 19, n° 1 (2012), p. 247-262.

<http://ambp.cedram.org/item?id=AMBP_2012__19_1_247_0>
Riesz transforms for Dunkl transform

BECHIR AMRI
MOHAMED SIFI

Abstract

In this paper we obtain the L^p-boundedness of Riesz transforms for the Dunkl transform for all $1 < p < \infty$.

1. Introduction

On the Euclidean space \mathbb{R}^N, $N \geq 1$, the ordinary Riesz transform R_j, $j = 1, \ldots, N$ is defined as the multiplier operator

$$\hat{R}_j(f)(\xi) = -i \frac{\xi_j}{\|\xi\|} \hat{f}(\xi).$$

(1.1)

It can also be defined by the principal value of the singular integral

$$R_j(f)(x) = d_0 \lim_{\varepsilon \to 0} \int_{\|x-y\| > \varepsilon} \frac{x_j - y_j}{\|x-y\|} f(y) dy$$

where $d_0 = 2^N \frac{\Gamma(N+1)}{\sqrt{\pi}}$. It follows from the general theory of singular integrals that Riesz transforms are bounded on $L^p(\mathbb{R}^N, dx)$ for all $1 < p < \infty$. What is done in this paper is to extend this result to the context of Dunkl theory where a similar operator is already defined.

Dunkl theory generalizes classical Fourier analysis on \mathbb{R}^N. It started twenty years ago with Dunkl’s seminal work [3] and was further developed by several mathematicians. See for instance the surveys [5, 6, 7, 9] and the

Keywords: Dunkl transforms, Riesz Transforms, Singular integrals.
Math. classification: 17B22, 32A55, 43A32, 42A45.
references cited therein. The study of the L^p-boundedness of Riesz transforms for Dunkl transform on \mathbb{R}^N goes back to the work of S. Thangavelu and Y. Xu [10] where they established boundedness result only in a very special case of $N = 1$. It has been noted in [10] that the difficulty arises in the application of the classical L^p-theory of Caldéron-Zygmund, since Riesz transforms are singular integral operators. In this paper we describe how this theory can be adapted in Dunkl setting and gives an L^p-result for Riesz transforms for all $1 < p < \infty$. More precisely, through the fundamental result of M. Rösler [6] for the Dunkl translation of radial functions, we reformulate a Hörmander type condition for singular integral operators. The Riesz kernel is given by acting Dunkl operator on Dunkl translation of radial function.

This paper is organized as follows. In Section 2 we present some definitions and fundamental results from Dunkl’s analysis. The Section 3 is devoted to proving L^p-boundedness of Riesz transforms. As applications, we will prove a generalized Riesz and Sobolev inequalities. Throughout this paper C denotes a constant which can vary from line to line.

Acknowledgments. The authors are partially supported by the project DGRST 04/UR/15-02 and the cooperation programs PHC Utique / CMCU 07G 1501 and 10G 1503.

2. Preliminaries

In this section we collect notations and definitions and recall some basic facts. We refer to [5, 3, 6, 7, 9].

Let $G \subset O(\mathbb{R}^N)$ be a finite reflection group associated to a reduced root system R and $k : R \to [0, +\infty)$ be a G-invariant function (called multiplicity function). Let R_+ be a positive root subsystem. We shall assume that R is normalized in the sense that $\|\alpha\|^2 = \langle \alpha, \alpha \rangle = 2$ for all $\alpha \in R$, where $\langle \cdot, \cdot \rangle$ is the standard Euclidean scalar product on \mathbb{R}^N.

The Dunkl operators T_{ξ}, $\xi \in \mathbb{R}^N$ are the following k–deformations of directional derivatives ∂_ξ by difference operators:

$$T_{\xi}f(x) = \partial_\xi f(x) + \sum_{\alpha \in R_+} k(\alpha) \langle \alpha, \xi \rangle \frac{f(x) - f(\sigma_{\alpha}x)}{\langle \alpha, x \rangle}, \quad x \in \mathbb{R}^N$$
Riesz transforms for Dunkl transform

where \(\sigma_\alpha \) denotes the reflection with respect to the hyperplane orthogonal to \(\alpha \). For the standard basis vectors of \(\mathbb{R}^N \), we simply write \(T_j = T_{e_j} \).

The operators \(\partial_\xi \) and \(T_\xi \) are intertwined by a Laplace–type operator

\[
V_k f(x) = \int_{\mathbb{R}^N} f(y) \, d\mu_x(y),
\]

associated to a family of compactly supported probability measures

\[
\{ \mu_x \mid x \in \mathbb{R}^N \}.
\]

Specifically, \(\mu_x \) is supported in the the convex hull \(\text{co}(G \cdot x) \).

For every \(\lambda \in \mathbb{C}^N \), the simultaneous eigenfunction problem,

\[
T_\xi f = \langle \lambda, \xi \rangle f, \quad \xi \in \mathbb{R}^N
\]

has a unique solution \(f(x) = E_k(\lambda, x) \) such that \(E_k(\lambda, 0) = 1 \), which is given by

\[
E_k(\lambda, x) = V_k(e^{\langle \lambda, \cdot \rangle})(x) = \int_{\mathbb{R}^N} e^{\langle \lambda, y \rangle} \, d\mu_x(y), \quad x \in \mathbb{R}^N.
\]

Furthermore \(\lambda \mapsto E_k(\lambda, x) \) extends to a holomorphic function on \(\mathbb{C}^N \).

Let \(m_k \) be the measure on \(\mathbb{R}^N \), given by

\[
dm_k(x) = \prod_{\alpha \in \mathbb{R}_+} |\langle \alpha, x \rangle|^{2k(\alpha)} \, dx.
\]

For \(f \in L^1(m_k) \) (the Lebesgue space with respect to the measure \(m_k \)) the Dunkl transform is defined by

\[
\mathcal{F}_k(f)(\xi) = \frac{1}{c_k} \int_{\mathbb{R}^N} f(x) \, E_k(-i \xi, x) \, dm_k(x), \quad c_k = \int_{\mathbb{R}^N} e^{-\frac{|x|^2}{2}} \, dm_k(x).
\]

This new transform shares many analogous properties of the Fourier transform.

(i) The Dunkl transform is a topological automorphism of \(\mathcal{S}(\mathbb{R}^N) \) (Schwartz space).

(ii) (Plancherel Theorem) The Dunkl transform extends to an isometric automorphism of \(L^2(m_k) \).

(iii) (Inversion formula) For every \(f \in L^1(m_k) \) such that \(\mathcal{F}_k f \in L^1(m_k) \), we have

\[
f(x) = \mathcal{F}_k^2 f(-x), \quad x \in \mathbb{R}^N.
\]
B. Amri & M. Sifi

(iv) For all $\xi \in \mathbb{R}^N$ and $f \in \mathcal{S}(\mathbb{R}^N)$
\[F_k(T_\xi(f))(x) = \langle i\xi, x \rangle F_k(f)(x), \quad x \in \mathbb{R}^N. \]
(2.1)

Let $x \in \mathbb{R}^N$, the Dunkl translation operator τ_x is defined on $L^2(m_k)$ by,
\[F_k(\tau_x(f))(y) = E_k(ix,y)F_kf(y), \quad y \in \mathbb{R}^N. \]
(2.2)

If f is a continuous radial function in $L^2(m_k)$ with $f(y) = \tilde{f}(\|y\|)$, then
\[\tau_x(f)(y) = \int_{\mathbb{R}^N} \tilde{f}(\sqrt{\|x\|^2 + \|y\|^2 + 2 < y, \eta >})d\mu_x(\eta). \]
(2.3)

This formula is first proved by M. Rösler [6] for $f \in \mathcal{S}(\mathbb{R}^N)$ and recently is extended to continuous functions by F. and H. Dai Wang [2].

We collect below some useful facts :

(i) For all $x, y \in \mathbb{R}^N$,
\[\tau_x(f)(y) = \tau_y(f)(x). \]
(2.4)

(ii) For all $x, \xi \in \mathbb{R}^N$ and $f \in \mathcal{S}(\mathbb{R}^N)$,
\[T_\xi \tau_x(f) = \tau_x T_\xi(f). \]
(2.5)

(iii) For all $x \in \mathbb{R}^N$ and $f, g \in L^2(m_k)$,
\[\int_{\mathbb{R}^N} \tau_x(f)(-y)g(y)dm_k(y) = \int_{\mathbb{R}^N} f(y)\tau_x g(-y)dm_k(y). \]
(2.6)

(iv) For all $x \in \mathbb{R}^N$ and $1 \leq p \leq 2$, the operator τ_x can be extended to all radial functions f in $L^p(m_k)$ and the following holds
\[\|\tau_x(f)\|_{p,k} \leq \|f\|_{p,k}. \]
(2.7)

$\|\cdot\|_{p,k}$ is the usual norm of $L^p(m_k)$.

3. Riesz transforms for the Dunkl transform.

In Dunkl setting the Riesz transforms (see [10]) are the operators \mathcal{R}_j, $j = 1...N$ defined on $L^2(m_k)$ by
\[\mathcal{R}_j(f)(x) = d_k \lim_{\varepsilon \to 0} \int_{|y|>\varepsilon} \tau_x(f)(-y) \frac{y_j}{\|y\|^{p_k}}dm_k(y), \quad x \in \mathbb{R}^N. \]
250
where

\[d_k = 2^{p_k - \frac{1}{2}} \frac{\Gamma\left(\frac{p_k}{2}\right)}{\sqrt{\pi}}; \quad p_k = 2\gamma_k + N + 1 \quad \text{and} \quad \gamma_k = \sum_{\alpha \in \mathbb{R}_+} k(\alpha). \]

It has been proved by S. Thangavelu and Y. Xu [10], that \(R_j \) is a multiplier operator given by

\[\mathcal{F}_k(R_j(f))(\xi) = -i \frac{\xi_j}{\|\xi\|} \mathcal{F}_k(f)(\xi), \quad f \in \mathcal{S}(\mathbb{R}^N), \quad \xi \in \mathbb{R}^N, \quad (3.1) \]

The authors state that if \(N = 1 \) and \(2\gamma_k \in \mathbb{N} \) the operator \(R_j \) is bounded on \(L^p(m_k) \), \(1 < p < \infty \). In [1] this result is improved by removing \(2\gamma_k \in \mathbb{N} \), where Riesz transform is called Hilbert transform. If \(\gamma_k = 0 \) \((k = 0)\), this operator coincides with the usual Riesz transform \(R_j \) given by (1.1). Our interest is to prove the boundedness of this operator for \(N \geq 2 \) and \(k \geq 0 \). To do this, we invoke the theory of singular integrals. Our basic is the following,

Theorem 3.1. Let \(\mathcal{K} \) be a measurable function on \(\mathbb{R}^N \times \mathbb{R}^N \setminus \{(x, g.x); \ x \in \mathbb{R}^N, \ g \in G\} \) and \(S \) be a bounded operator from \(L^2(m_k) \) into itself, associated with a kernel \(\mathcal{K} \) in the sense that

\[S(f)(x) = \int_{\mathbb{R}^N} \mathcal{K}(x, y)f(y)dm_k(y), \quad (3.2) \]

for all compactly supported function \(f \) in \(L^2(m_k) \) and for a.e \(x \in \mathbb{R}^N \) satisfying \(g.x \notin \text{supp}(f) \), for all \(g \in G \). If \(\mathcal{K} \) satisfies

\[\int_{\min_{g \in G} \|g.x-y\|>2\|y-y_0\|} |\mathcal{K}(x, y) - \mathcal{K}(x, y_0)|dm_k(x) \leq C, \quad y, y_0 \in \mathbb{R}^N, \quad (3.3) \]

then \(S \) extends to a bounded operator from \(L^p(m_k) \) into itself for all \(1 < p \leq 2 \).

Proof. We first note that \((\mathbb{R}^N, m_k)\) is a space of homogenous type, that is, there is a fixed constant \(C > 0 \) such that

\[m_k(B(x, 2r)) \leq C m_k(B(x, r)), \quad \forall \ x \in \mathbb{R}^N, \ r > 0 \quad (3.4) \]

where \(B(x, r) \) is the closed ball of radius \(r \) centered at \(x \) (see [8], Ch 1). Then we can adapt to our context the classical technic which consist to show that \(S \) is weak type \((1,1)\) and conclude by Marcinkiewicz interpolation theorem.
In fact, the Calderón-Zygmund decomposition says that for all \(f \in L^1(m_k) \cap L^2(m_k) \) and \(\lambda > 0 \), there exist a decomposition of \(f \), \(f = h + b \) with \(b = \sum_j b_j \) and a sequence of balls \((B(y_j, r_j))_j = (B_j)_j\) such that for some constant \(C \), depending only on the multiplicity function \(k \)

\[
\begin{align*}
(\text{i}) & \quad \|h\|_{\infty} \leq C\lambda; \\
(\text{ii}) & \quad \text{supp}(b_j) \subset B_j; \\
(\text{iii}) & \quad \int_{B_j} b_j(x)dm_k(x) = 0; \\
(\text{iv}) & \quad \|b_j\|_{1,k} \leq C \lambda m_k(B_j); \\
(\text{v}) & \quad \sum_j m_k(B_j) \leq C \frac{\|f\|_{1,k}}{\lambda}.
\end{align*}
\]

The proof consists in showing the following inequality hold for \(w = h \) and \(w = b \):

\[
\rho_{\lambda}(S(w)) = m_k \left(\{ x \in \mathbb{R}^N; |S(w)(x)| > \frac{\lambda}{2} \} \right) \leq C \frac{\|f\|_{1,k}}{\lambda}. \tag{3.5}
\]

By using the \(L^2 \)-boundedness of \(S \) we get

\[
\rho_{\lambda}(S(h)) \leq \frac{4}{\lambda^2} \int_{\mathbb{R}^N} |S(h)(x)|^2dm_k(x) \leq \frac{C}{\lambda^2} \int_{\mathbb{R}^N} |h(x)|^2dm_k(x). \tag{3.6}
\]

From (i) and (v),

\[
\int_{\cup B_j} |h(x)|^2dm_k(x) \leq C \lambda^2 \mu_k(\cup B_j) \leq C \lambda \|f\|_{1,k}. \tag{3.7}
\]

Since on \((\cup B_j)^c\), \(f(x) = h(x) \), then

\[
\int_{(\cup B_j)^c} |h(x)|^2dm_k(x) \leq C \lambda \|f\|_{1,k}. \tag{3.8}
\]

From (3.6), (3.7) and (3.8), the inequality (3.5) is satisfied for \(h \).

Next we turn to the inequality (3.5) for the function \(b \). Consider

\[
B_j^* = B(y_j, 2r_j); \quad \text{and} \quad Q_j^* = \bigcup_{g \in G} g.B_j^*.
\]

252
Then
\[\rho_\lambda(S(b)) \leq m_k\left(\bigcup_j Q^*_j \right) + m_k \{ x \in \left(\bigcup_j Q^*_j \right)^c ; |S(b)(x)| > \frac{\lambda}{2} \}. \]

Now by (3.4) and (v)
\[m_k\left(\bigcup_j Q^*_j \right) \leq |G| \sum_j m_k(B^*_j) \leq C \sum_j m_k(B_j) \leq C \frac{\|f\|_{1,k}}{\lambda}. \]

Furthermore if \(x \notin Q^*_j \), we have
\[\min_{g \in G} \| g.x - y_j \| > 2\|y - y_j\|, \quad y \in B_j. \]

Thus, from (3.2), (iii), (ii), (3.3), (iv) and (v)
\[\int_{(\bigcup_j Q^*_j)^c} |S(b)(x)| dm_k(x) \]
\[\leq \sum_j \int_{Q^*_j} |S(b_j)(x)| dm_k(x) \]
\[= \sum_j \int_{Q^*_j} \int_{\mathbb{R}^N} |K(x, y)b_j(y)dm_k(y)| dm_k(x) \]
\[= \sum_j \int_{Q^*_j} \int_{\mathbb{R}^N} b_j(y) |K(x, y) - K(x, y_j)| dm_k(y) dm_k(x) \]
\[\leq \sum_j \int_{\mathbb{R}^N} |b_j(y)| \int_{Q^*_j} |K(x, y) - K(x, y_j)| dm_k(x) dm_k(y) \]
\[\leq \sum_j \int_{\mathbb{R}^N} |b_j(y)| \int_{\min_{g \in G} \|g.x - y_j\| > 2\|y - y_j\|} |K(x, y) - K(x, y_j)| dm_k(x) dm_k(y) \]
\[\leq C \sum_j \|b_j\|_{1,k} \]
\[\leq C \|f\|_{1,k}. \]

Therefore,
\[m_k \{ x \in \left(\bigcup_j Q^*_j \right)^c ; |S(b)(x)| > \frac{\lambda}{2} \} \]
\[\leq \frac{2}{\lambda} \int_{(\bigcup_j Q^*_j)^c} |S(b)(x)| dm_k(x) \leq C \frac{\|f\|_{1,k}}{\lambda}. \]
This achieves the proof of (3.5) for b. □

Now, we will give an integral representation for the Riesz transform \mathcal{R}_j. For this end, we put for $x, y \in \mathbb{R}^N$ and $\eta \in \text{co}(G.x)$

$$A(x, y, \eta) = \sqrt{\|x\|^2 + \|y\|^2 - 2 < y, \eta >} = \sqrt{\|y - \eta\|^2 + \|x\|^2 - \|\eta\|^2}.$$

It is easy to check that

$$\min_{g \in G} \|g.x - y\| \leq A(x, y, \eta) \leq \max_{g \in G} \|g.x - y\|. \quad (3.9)$$

The following inequalities are clear

$$\left| \frac{\partial \ell}{\partial y_r}(x, y, \eta) \right| \leq C A^s(x, y, \eta),$$

$$\left| \frac{\partial^2 \ell}{\partial y_r \partial y_s}(x, y, \eta) \right| \leq C A^{s-2}(x, y, \eta) \quad (3.10)$$

and for $\alpha \in \mathbb{R}_+$,

$$\left| \frac{\partial \ell}{\partial y_r}(x, \sigma \alpha.y, \eta) \right| \leq C A^{s-1}(x, \sigma \alpha.y, \eta),$$

$$\left| \frac{\partial^2 \ell}{\partial y_r \partial y_s}(x, \sigma \alpha.y, \eta) \right| \leq C A^{s-2}(x, \sigma \alpha.y, \eta), \quad (3.11)$$

where $r, s = 1, \ldots, N$ and $\ell \in \mathbb{R}$.

Let us set

$$\mathcal{K}_j^{(1)}(x, y) = \int_{\mathbb{R}^N} \frac{\eta_j - y_j}{A^{pk}(x, y, \eta)} d\mu_x(\eta)$$

$$\mathcal{K}_j^{(\alpha)}(x, y) = \frac{1}{y, \alpha} \int_{\mathbb{R}^N} \left[\frac{1}{A^{pk-2}(x, y, \eta)} - \frac{1}{A^{pk-2}(x, \sigma \alpha.y, \eta)} \right] d\mu_x(\eta),$$

$$\mathcal{K}_j(x, y) = d_k \left\{ \mathcal{K}_j^{(1)}(x, y) + \sum_{\alpha \in \mathbb{R}_+} \frac{k(\alpha)\alpha_j}{pk - 2} \mathcal{K}_j^{(\alpha)}(x, y) \right\},$$

where $\alpha \in \mathbb{R}_+$.

Proposition 3.2. If $f \in L^2(m_k)$ with compact support, then for all $x \in \mathbb{R}^N$ satisfying $g.x \notin \text{supp}(f)$ for all $g \in G$, we have

$$\mathcal{R}_j(f)(x) = \int_{\mathbb{R}^N} \mathcal{K}_j(x, y) f(y) dm_k(y).$$
Proof. Let \(f \in L^2(m_k) \) be a compact supported function and \(x \in \mathbb{R}^N \), such that \(g.x \notin \text{supp}(f) \) for all \(g \in G \). For \(0 < \varepsilon < \min_{g \in G} \min_{y \in \text{supp}(f)} |g.x - y| \) and \(n \in \mathbb{N} \), we consider \(\tilde{\varphi}_{n,\varepsilon} \) a \(C^\infty \)-function on \(\mathbb{R} \), such that:

- \(\tilde{\varphi}_{n,\varepsilon} \) is odd .
- \(\tilde{\varphi}_{n,\varepsilon} \) is supported in \(\{ t \in \mathbb{R}; \varepsilon \leq |t| \leq n+1 \} \).
- \(\tilde{\varphi}_{n,\varepsilon} = 1 \) in \(\{ t \in \mathbb{R}; \varepsilon + \frac{1}{n} \leq t \leq n \} \).
- \(|\tilde{\varphi}_{n,\varepsilon}| \leq 1 \).

Let \(\tilde{\varphi}_{n,\varepsilon}(t) = \int_{-\infty}^{t} \tilde{\varphi}_{n,\varepsilon}(u) \frac{du}{|u|^{p-1}} \) and \(\phi_{n,\varepsilon}(y) = \tilde{\varphi}_{n,\varepsilon}(|y|) \), for \(t \in \mathbb{R} \) and \(y \in \mathbb{R}^N \). Clearly, \(\phi_{n,\varepsilon} \) is a \(C^\infty \) radial function supported in the ball \(B(0, n+1) \) and

\[\lim_{n \to +\infty} \tilde{\varphi}_{n,\varepsilon}(|y|) = 1, \quad \forall \, y \in \mathbb{R}^N, \, |y| > \varepsilon. \]

The dominated convergence theorem, (2.5) and (2.6) yield

\[
\int_{|y| > \varepsilon} \tau_x(f)(-y) \frac{y_j}{|y|^{p_k}} d\mu_k(y) = \lim_{n \to \infty} \int_{\mathbb{R}^N} \tau_x(f)(-y) \frac{y_j}{|y|^{p_k}} \tilde{\varphi}_{n,\varepsilon}(|y|) d\mu_k(y) = \lim_{n \to \infty} \int_{\mathbb{R}^N} \tau_x(f)(-y)T_j(\phi_{n,\varepsilon})(y) d\mu_k(y) = \lim_{n \to \infty} \int_{\mathbb{R}^N} f(y)T_j\tau_x(\phi_{n,\varepsilon})(-y) d\mu_k(y).
\]

Now we have

\[
T_j\tau_x(\phi_{n,\varepsilon})(-y) = \int_{\mathbb{R}^N} (\eta_j - y_j)\tilde{\varphi}_{n,\varepsilon}(A(x, y, \eta)) \frac{A^p(x, y, \eta)}{A^p_k(x, y, \eta)} d\mu_x(\eta) + \sum_{\alpha \in \mathbb{R}_+} k(\alpha) \alpha_j \int_{\mathbb{R}^N} \tilde{\varphi}_{n,\varepsilon}(A(x, \sigma\alpha y, \eta)) - \tilde{\varphi}_{n,\varepsilon}(A(x, y, \eta)) < y, \alpha > d\mu_x(\eta),
\]

255
where from (3.9)

\[\varepsilon < A(x, y, \eta) ; \quad \varepsilon < A(x, \sigma, y, \eta), \quad y \in \text{supp}(f), \quad \eta \in \text{co}(G.x). \]

Then with the aid of dominated convergence theorem

\[\lim_{n \to \infty} T_j \tau_x(\phi_n, \varepsilon)(-y) = \frac{1}{d_k} K_j(x, y), \]

and

\[d_k \int_{\|y\| \geq \varepsilon} \tau_x(f)(-y) \frac{y_j}{\|y\|^p} dm_k(y) = \int_{\mathbb{R}^N} K_j(x, y) f(y) dm_k(y). \]

Letting \(\varepsilon \to 0 \), it follows that

\[\mathcal{R}_j(f)(x) = \int_{\mathbb{R}^N} K_j(x, y) f(y) dm_k(y), \]

which proves the result. \(\square \)

Now, we are able to state our main result.

Theorem 3.3. The Riesz transform \(\mathcal{R}_j \), \(j = 1 \ldots N \), is a bounded operator from \(L^p(m_k) \) into itself, for all \(1 < p < \infty \).

Proof. Clearly, from (3.1) and Plancherel’s theorem \(\mathcal{R}_j \) is bounded from \(L^2(m_k) \) into itself, with adjoint operator \(\mathcal{R}_j^* = -\mathcal{R}_j \). Thus, via duality it’s enough to consider the range \(1 < p \leq 2 \) and apply Theorem 3.1. In view of Proposition 3.2 it only remains to show that \(K_j \) satisfies condition (3.3).

Let \(y, y_0 \in \mathbb{R}^N, y \neq y_0 \) and \(x \in \mathbb{R}^N \), such that

\[\min_{g \in G} \|g.x - y\| > 2\|y - y_0\|. \quad (3.12) \]

By mean value theorem,
\[
|K_j^{(1)}(x, y) - K_j^{(1)}(x, y_0)| = \left| \sum_{i=0}^{N} (y_i - (y_0)_i) \int_{0}^{1} \frac{\partial K_j^{(1)}}{\partial y_i}(x, y_t) \, dt \right|
= \left| \sum_{i=0}^{N} (y_i - (y_0)_i) \int_{0}^{1} \int_{\mathbb{R}^N} \left(\frac{\delta_{i,j}}{Ap_k(x, y_t, \eta)} + \frac{p_k((y_t)_i - \eta_i)(\eta_j - (y_t)_j)}{Ap_k+2(x, y_t, \eta)} \right) \, d\mu_x(\eta) \right|
\leq C \|y - y_0\| \int_{0}^{1} \int_{\mathbb{R}^N} \frac{1}{Ap_k(x, y_t, \eta)} \, d\mu_x(\eta) dt.
\]

where \(y_t = y_0 + t(y - y_0) \) and \(\delta_{i,j} \) is the Kronecker symbol.

In view of (3.9) and (3.12), we obtain
\[
\|y - y_0\| < A(x, y_t, \eta), \quad \eta \in co(G.x).
\]

Therefore,
\[
|K_j^{(1)}(x, y) - K_j^{(1)}(x, y_0)|
\leq C \|y - y_0\| \int_{0}^{1} \int_{\mathbb{R}^N} \frac{1}{\left(\|y - y_0\|^2 + A^2(x, y_t, \eta) \right)^{\frac{p_k}{2}}} \, d\mu_x(\eta) dt.
\]

where \(\psi \) is the function defined by
\[
\psi(z) = \frac{1}{\left(\|y - y_0\|^2 + \|z\|^2 \right)^{\frac{p_k}{2}}}, \quad z \in \mathbb{R}^N.
\]

Using Fubini’s theorem, (2.4) and (2.7), we get
\[
\int_{\min_{\eta \in G} \|g.x - y\| > 2\|y - y_0\|} |K_j^{(1)}(x, y) - K_j^{(1)}(x, y_0)| dm_k(x)
\leq C \|y - y_0\| \int_{0}^{1} \int_{\mathbb{R}^N} \tau_{-y_t}(\psi)(x) dm_k(x) \, dt
\leq C \|y - y_0\| \int_{\mathbb{R}^N} \psi(z) dm_k(z) = C \int_{\mathbb{R}^N} \frac{du}{(1 + u^2)^{\frac{p_k}{2}}} = C'.
\]

257
This established the condition (3.3) for $K^{(1)}_j$.

To deal with $K^{(a)}_j, \alpha \in R_+, \text{we put for } x, y \in \mathbb{R}^N, \eta \in co(G.x)$ and $t \in [0, 1]$

\[
U(x, y, \eta) = A^{2p_k-4}(x, y, \eta), \quad V_\alpha(x, y, \eta) = A^{p_k-2}A_\alpha^{p_k-2}(A^{p_k-2} + A_\alpha^{p_k-2}), \\
h_{\alpha, t}(y) = y + t(\sigma_\alpha y - y) = y - t < y, \alpha>
\]

By mean value theorem we have

\[
K^{(a)}_j(x, y) = \int_{\mathbb{R}^N} \frac{1}{< y, \alpha>} \frac{U(x, \sigma_\alpha y, \eta) - U(x, y, \eta)}{V_\alpha(x, y, \eta)} d\mu_x(\eta)
\]

\[
= - \int_{\mathbb{R}^N} \int_0^1 \frac{\partial \alpha U(x, h_{\alpha, t}(\cdot), \eta)}{V_\alpha(x, y, \eta)} dt d\mu_x(\eta)
\]

and

\[
K^{(a)}_j(x, y) - K^{(a)}_j(x, y_0)
\]

\[
= \int_{\mathbb{R}^N} \int_0^1 \int_0^1 \partial_y - y_0 \left(\frac{\partial \alpha U(x, h_{\alpha, t}(\cdot), \eta)}{V_\alpha(x, \cdot, \eta)} \right) (y_\theta) d\theta dt d\mu_x(\eta). \tag{3.13}
\]

Here the derivations are taken with respect to the variable y.

To simplify, let us denote by

\[
A = A(x, y_\theta, \eta); \quad A_\alpha = A(x, \sigma_\alpha y_\theta, \eta)
\]

Then using (3.10) and the fact

\[
\|\eta - h_{\alpha, t}(y_\theta)\| \leq \max(\|\eta - y_\theta\|, \|\eta - \sigma_\alpha(y_\theta)\|)
\]

we obtain

\[
\left| \frac{\partial U}{\partial y_r}(x, h_{\alpha, t}(y_\theta), \eta) \right| \leq C\left(A^{2p_k-5} + A_\alpha^{2p_k-5} \right)
\]

\[
\left| \frac{\partial^2 U}{\partial y_r \partial y_s}(x, h_{\alpha, t}(y_\theta), \eta) \right| \leq C\left(A^{2p_k-6} + A_\alpha^{2p_k-6} \right), \quad r, s = 1, \ldots, N.
\]

This gives us the following estimates

\[
\left| \partial \alpha U(x, h_{\alpha, t}(y_\theta), \eta) \right| \leq C\left(A^{2p_k-5} + A_\alpha^{2p_k-5} \right), \tag{3.14}
\]
\[\left| \partial_{y - y_0} \left(\partial_{\alpha} U(x, h_{\alpha, \cdot}(\cdot), \eta) \right)(y_0) \right| \leq C \| y - y_0 \| \left(A^{2p_k - 6} + A^{2p_k - 6}_\alpha \right). \] (3.15)

By (3.10) and (3.11), we also have
\[\left| \frac{\partial V_\alpha}{\partial y_r}((x, y_\theta, \eta)) \right| \leq CA^{p_k - 3}A^{p_k - 3}_\alpha(A^{p_k - 2} + A^{p_k - 2}_\alpha)(A + A_\alpha). \]

The elementary inequality \(\frac{u + v}{u^\ell + v^\ell} \leq \frac{3}{u^{\ell - 1} + v^{\ell - 1}}, \ u, v > 0, \ \ell \geq 1, \) leads to
\[\left| \frac{\partial_{y - y_0} V_\alpha(x, y_\theta, \eta)}{V_\alpha^2(x, y_\theta, \eta)} \right| \leq C \| y - y_0 \| \frac{A_\alpha + A}{A^{p_k - 1}A^{p_k - 1}_\alpha(A^{p_k - 2} + A^{p_k - 2}_\alpha)} \]
\[\leq C \| y - y_0 \| \frac{1}{A^{p_k - 1}A^{p_k - 1}_\alpha(A^{p_k - 3} + A^{p_k - 3}_\alpha)}. \] (3.16)

Now (3.14), (3.15) and (3.16) yield
\[\left| \partial_{y - y_0} \left(\frac{\partial_{\alpha} U(x, h_{\alpha, \cdot}(\cdot), \eta)}{V_\alpha(x, \cdot, \eta)} \right)(y_0) \right| \]
\[\leq C \| y - y_0 \| \left(\frac{A^{2p_k - 6} + A^{2p_k - 6}_\alpha}{A^{p_k - 2}A^{p_k - 2}_\alpha(A^{p_k - 2} + A^{p_k - 2}_\alpha)} \right) \]
\[+ C \| y - y_0 \| \left(\frac{A^{2p_k - 5} + A^{2p_k - 5}_\alpha}{A^{p_k - 1}A^{p_k - 1}_\alpha(A^{p_k - 3} + A^{p_k - 3}_\alpha)} \right) \]
\[\leq C \| y - y_0 \| \left(\frac{1}{A^2A^{p_k - 2}_\alpha} + \frac{1}{A^{p_k - 2}A^2_\alpha} \right) \]
\[+ C \| y - y_0 \| \left(\frac{1}{A^2A^{p_k - 1}_\alpha} + \frac{1}{A^{p_k - 1}A_\alpha} \right) \]
\[\leq C \| y - y_0 \| \left(\frac{1}{A^{p_k}} + \frac{1}{A^{p_k}_\alpha} \right) \]

where in the last equality we have used the fact that \(\frac{1}{u^\ell + v^\ell} \leq \frac{1}{u^{\ell - 1} + v^{\ell - 1}}, \ u, v > 0 \) and \(\ell \geq 1. \)
Thus, in view of (3.13),
\[|K_j^{(\alpha)}(x, y) - K_j^{(\alpha)}(x, y_0)| \]
\[\leq C \|y - y_0\| \int_0^1 \int_{\mathbb{R}^N} \left[\frac{1}{A^p_k(x, y_\theta, \eta)} + \frac{1}{A^p_k(x, \sigma_\alpha y_\theta, \eta)} \right] d\mu_x(\eta) d\theta. \]

Then by the same argument as for $K_j^{(1)}$ we obtain
\[\int_{\min_{g \in G} \|g.x - y\| > 2\|y - y_0\|} |K_j^{(2)}(x, y) - K_j^{(2)}(x, y_0)| dm_k(x) \leq C, \]
which established the condition (3.3) for the kernel $K_j^{(\alpha)}$ and furnishes the proof.

As applications, we will prove a generalized Riesz and Sobolev inequalities

Corollary 3.4 (Generalized Riesz inequalities). For all $1 < p < \infty$ there exists a constant C_p such that
\[\|T_rT_s(f)\|_{k,p} \leq C_p \|\Delta_k f\|_{k,p}, \quad \text{for all } f \in \mathcal{S}(\mathbb{R}^N), \quad (3.17) \]
where Δ_k is the Dunkl laplacian: $\Delta_k f = \sum_{r=1}^N T_r^2(f)$

Proof. From (2.1) and (3.1) one can see that
\[T_rT_s(f) = \mathcal{R}_r\mathcal{R}_s(-\Delta_k)(f), \quad r, s = 1...N, \quad f \in \mathcal{S}(\mathbb{R}^N). \]
Then (3.17) is concluded by Theorem 3.3.

Corollary 3.5 (Generalized Sobolev inequality). For all $1 < p \leq q < 2\gamma(k) + N$ with $\frac{1}{q} = \frac{1}{p} - \frac{1}{2\gamma(k) + N}$, we have
\[\|f\|_{q,k} \leq C_{p,q} \|\nabla_k f\|_{p,k} \quad (3.18) \]
for all $f \in \mathcal{S}(\mathbb{R}^N)$. Here $\nabla_k f = (T_1 f, ..., T_N f)$ and $|\nabla_k f| = \left(\sum_{r=1}^N |T_r f|^2 \right)^{1/2}$.

260
Proof. For all \(f \in \mathcal{S}(\mathbb{R}^N) \), we write
\[
\mathcal{F}_k(f)(\xi) = \frac{1}{\|\xi\|} \sum_{r=1}^{N} \frac{-i\xi_r}{\|\xi\|} \left(i\xi_r \mathcal{F}_k(f)(\xi) \right)
\]
\[
= \frac{1}{\|\xi\|} \sum_{r=1}^{d} \frac{-i\xi_r}{\|\xi\|} \left(\mathcal{F}_k(T_rf)(\xi) \right).
\]
This yields to the following identity
\[
f = I_k^1 \left(\sum_{j=1}^{N} \mathcal{R}_j(T_jf) \right),
\]
where
\[
I_k^\beta(f)(x) = (d_k^\beta)^{-1} \int_{\mathbb{R}^N} \frac{\tau_y f(x)}{\|y\|^{2\gamma(k)+N-\beta}} dm_k(y),
\]
here
\[
d_k^\beta = 2^{-\gamma(k)-N/2+\beta} \frac{\Gamma(\frac{\beta}{2})}{\Gamma(\gamma(k) + \frac{N-\beta}{2})}.
\]
Theorem 1.1 of [4] asserts that \(I_k^\beta \) a bounded operator from \(L^p(m_k) \) to \(L^q(m_k) \). Then (3.18) follows from Theorem 3.3. \(\square \)

References

[1] B. AMRI, A. GASMI & M. SIFI – “Linear and bilinear multiplier operators for the dunkl transform”, Mediterranean Journal of Mathematics 7 (2010), p. 503–521.

[2] F. DAI & H. WANG – “A transference theorem for the dunkl transform and its applications”, Journal of Functional Analysis 258 (2010), p. 4052–4074.

[3] C. F. DUNKL – “Differential–difference operators associated to reflection groups”, Trans. Amer. Math. 311 (1989), p. 167–183.

[4] S. HASSANI, S. MUSTAPHA & M. SIFI – “Riesz potentials and fractional maximal function for the dunkl transform”, J. Lie Theory 19 (2009, no. 4), p. 725–734.

[5] M. DE JEU – “The dunkl transform”, Invent. Math. 113 (1993), p. 147–162.
[6] M. Rosler – “Dunkl operators: theory and applications, in orthogonal polynomials and special functions (leuven, 2002), \(\mathbb{R}^n \)”, Lect. Notes Math. 1817 (2003), p. 93–135.

[7] ……, “A positive radial product formula for the dunkl kernel”, Trans. Amer. Math. Soc. 355 (2003), p. 2413–2438.

[8] E. M. Stein – Harmonic analysis: Reals-variable methods, orthogonality and oscillatory integrals, PrincetonS, New Jersey, 1993.

[9] S. Thangavelu & Y. Xu – “Convolution operator and maximal function for dunkl transform”, J. Anal. Math. 97 (2005), p. 25–55.

[10] ……, “Riesz transforms and riesz potentials for the dunkl transform”, J. Comp. and Appl. Math. 199 (2007), p. 181–195.