Somatic mutations in GLI3 and OFD1 involved in sonic hedgehog signaling cause hypothalamic hamartoma

Hirotomo Saitsu1,2,a, Masaki Sonoda3,a, Takefumi Higashijima3, Hiroshi Shirozu3, Hiroshi Masuda3, Jun Tohyama4, Mitsuhito Kato5, Mitsuko Nakashima1, Yoshinori Tsurusaki6, Takeshi Mizuguchi1, Satoko Miyatake1, Noriko Miyake1, Shigeki Kameyama3 & Naomichi Matsumoto1

1Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
2Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
3Department of Functional Neurosurgery, Epilepsy Center, Nishi-Niigata Chuo National Hospital, Niigata 950-2085, Japan
4Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Niigata 950-2085, Japan
5Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
6Clinical Research Institute, Kanagawa Children’s Medical Center, Yokohama 232-8555, Japan

Correspondence
Hirotomo Saitsu, Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan. Tel: +81-53-435-2325; Fax: +81-53-435-2327; E-mail: hsaitsu@hama-med.ac.jp
Naomichi Matsumoto, Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan. Tel: +81-45-787-2604; Fax: +81-45-786-5219; E-mail: naomat@yokohama-cu.ac.jp

Funding Information
This work was supported in part by a research grant from the Ministry of Health, Labour and Welfare of Japan; a grant for Research on Measures for Intractable Diseases (14525125); a grant for Comprehensive Research on Disability Health and Welfare (13802019); the Strategic Research Program for Brain Science (SRPBS) (11105137) and Practical Research Project for Rare/Intractable Diseases (27280301), and a grant for Initiative on Rare and Undiagnosed Diseases in Pediatrics (IRUD-P) (15gk0110012h0101) from Japan Agency for Medical Research and Development; a Grant-in-Aid for Scientific Research on Innovative Areas (Transcription Cycle) (24118007) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Grants-in-Aid for Scientific Research (C) (26461549, 15K10367), (B) (25293085, 25293235) and (A) (13313587), challenging Exploratory Research (26670505) from the Japan Society for the Promotion of Science; the fund for Creation of Innovation Centers for Advanced Interdisciplinary Research Areas

Abstract

Objective: Hypothalamic hamartoma (HH) is a congenital anomalous brain tumor. Although most HHs are found without any other systemic features, HH is observed in syndromic disorders such as Pallister–Hall syndrome (PHS) and oral-facial-digital syndrome (OFD). Here, we explore the possible involvement of somatic mutations in HH. Methods: We analyzed paired blood and hamartoma samples from 18 individuals, including three with digital anomalies, by whole-exome sequencing. Detected somatic mutations were validated by Sanger sequencing and deep sequencing of target amplicons. The effect of GLI3 mutations on its transcriptional properties was evaluated by luciferase assays using reporters containing eight copies of the GLI-binding site and a mutated control sequence disrupting GLI binding. Results: We found hamartoma-specific somatic truncation mutations in GLI3 and OFD1, known regulators of sonic hedgehog (Shh) signaling, in two and three individuals, respectively. Deep sequencing of amplicons covering the mutations showed mutant allele rates of 7–54%. Somatic mutations in OFD1 at Xp22 were found only in male individuals. Potential pathogenic somatic mutations in UBR5 and ZNF263 were also identified in each individual. Germline nonsense mutations in GLI3 and OFD1 were identified in each individual with PHS and OFD type I in our series, respectively. The truncated GLI3 showed stronger repressor activity than the wild-type protein. We did not detect somatic mutations in the remaining 9 individuals. Interpretation: Our data indicate that a spectrum of human disorders can be caused by lesion-specific somatic mutations, and suggest that impaired Shh signaling is one of the pathomechanisms of HH.
Introduction

Hypothalamic hamartoma (HH) is a congenital anomalous brain tumor associated with drug-resistant epilepsy, gelastic seizures, cognitive deficits, behavioral abnormalities, and precocious puberty.\(^1\)\(^2\) HH has intrinsic epileptogenesis;\(^3\)\(^4\) thus, elucidating the pathological basis of HH development would facilitate understanding for its epileptogenesis. Although most HHs are diagnosed without any other systemic features, HH is often observed as one of the clinical features of different dysmorphic syndromes including Pallister–Hall syndrome (PHS) and oral-facial-digital syndrome (OFD) types I and VI; syndromes that have overlapping phenotypes such as HH and polydactyly.\(^5\)\(^6\)\(^7\) Truncation mutations in \(\text{GLI3}\)\(^8\)\(^9\)\(^10\) a transcription factor that modulates Shh signaling are known to cause PHS.\(^5\)\(^6\)\(^8\)\(^9\)\(^10\) Full-length GLI3 functions as a transcriptional activator in the presence of Shh, and is cleaved to form a repressor in the absence of Shh.\(^11\) GLI3 mutations in PHS patients are accumulated in the middle third of the gene,\(^5\)\(^8\)\(^9\)\(^10\) suggesting that mutant GLI3 would function as a constitutive repressor. Severe truncation mutations in \(\text{OFD1}\) are found in OFD type I, which is an X-linked dominant disorder with male lethality.\(^12\)\(^13\) OFD1 encodes a centrosomal/basal body protein that localizes to the base of primary cilia.\(^14\)\(^15\) The primary cilium is required for Shh signaling,\(^17\) and Ofd1-deficient male mice showed reduced expression of the Shh target genes \(\text{Ptc1}\) and \(\text{Gli1}\).\(^18\) Therefore, HH is found in two disorders that have \(\text{GLI3}\) and \(\text{OFD1}\) mutations, both of which appear to reduce Shh signaling. Autosomal recessive mutations in \(\text{C5orf42}\), an uncharacterized protein consisting of 3,198-amino acids, have been reported to cause OFD type VI.\(^19\)

Somatic mutation has recently been shown to be one of the underlying causes for the phenotypic variation in genetic diseases.\(^20\)\(^21\) For example, germline and somatic mutations in genes involved in PI3K-AKT3-mTOR pathway cause a spectrum of megalencephaly related disorders.\(^22\)\(^23\) In HH, somatic chromosomal abnormalities involving the \(\text{GLI3}\) locus and a somatic \(\text{GLI3}\) mutation have been reported,\(^24\)\(^25\) suggesting that somatic mutations are important factors in HH. In this study, we found hamartoma-specific truncation mutations in \(\text{GLI3}\) and \(\text{OFD1}\) in two and three individuals, respectively, suggesting that impaired Shh signaling by germline and somatic mutations can cause a spectrum of human disorders related to HH.

Subjects and Methods

Subjects

Biopsy specimens of HH and peripheral blood leukocytes were obtained from 18 individuals who underwent stereotactic radiofrequency thermocoagulation.\(^26\) Clinical features of the 18 individuals, including three cases with digital anomalies, are summarized in Table 1. All participants underwent clinical evaluations for the presence of congenital anomalies; HH and other brain malformations were evaluated by brain magnetic resonance imaging (MRI). Subjects or their families provided us with written informed consent for participation in this study. The Institutional Review Boards of Yokohama City University and Nishi-Niigata Chuo National Hospital approved this study. Biopsy specimens were immediately frozen in a deep freezer. Nail and hair root samples were obtained from 4 individuals with somatic \(\text{GLI3}\) and \(\text{OFD1}\) mutations (9355, 10743, 12118, and 12618).

DNA extraction and whole-exome sequencing

Genomic DNA of peripheral blood leukocytes was extracted using QuickGene-610L (Fujifilm, Tokyo, Japan)
according to the manufacturer’s instructions. Genomic DNA from biopsy specimens was extracted by sodium dodecyl sulfate-based lysis solution with proteinase K followed by phenol-chloroform extraction. DNA from nails and hair roots was isolated using a DNA extraction kit (ISOHAIR, Nippon Gene, Tokyo, Japan). Ethanol precipitation was performed with Ethachinmate (Nippon Gene). In 140814, whole-genomic amplification using the Illumina GenomiPhi V2 DNA Amplification Kit (GE Healthcare, Buckinghamshire, UK) was performed because of the low amount of genomic DNA, and the combined DNA (700 ng genomic DNA and 500 ng amplified DNA) was used for whole-exome sequencing. DNA was captured using a SureSelect Human All Exon V5 Kit (Agilent Technologies, Santa Clara, CA) and sequenced on an Illumina HiSeq 2500 (Illumina, San Diego, CA) with 101 bp paired-end reads. Read bases below the Phred quality score of 20 were trimmed from the 3’ end of reads. Cleaned reads were aligned to the human reference genome sequence (UCSC hg19, NCBI build 37) using Novoalign (Novocraft Technologies, Petaling Jaya, Malaysia). Variant calling for germline variants of blood DNA were performed as previously described using GATK UnifiedGenotyper, and mutations in three genes responsible for syndromic HH were screened (GLI3 in PHS, OFD1 in OFD type I, and C5orf42 in OFD type VI). Somatic mutation calling using paired data

Paired exome sequence data (hamartoma and blood) in 16 individuals without germline mutations of GLI3, OFD1, and C5orf42 were analyzed to detect somatic mutations in hamartoma. For this purpose, we first analyzed by GATK UnifiedGenotyper to screen high-prevalence somatic mutations after exclusion of likely false positive variant calls that met following criteria: variants

Table 1. Summary of the clinical features and genetic data for 18 individuals with hypothalamic hamartoma.

Individual	Sex	Digit anomaly	Oral anomaly	Maximum diameter of HH (mm)	Other brain anomalies	Mean read depth (Blood/Tumor)	UnifiedGenotyper	Germline Mutation	Somatic Mutation	Mutect/Varscan2
8505	F	–	–	18	–	188/150				
8931	M	–	–	16	–	190/136				
8972	F	Polysyndactyly in bil. H and Ft	Multiple frenula	22	–	91/–	GLI3	–	–	
9355	M	–	–	14	–	192/152		OFD1		
9877	M	–	–	17	–	210/179				
10104	F	–	–	34	Subependymal PH, pachygyria lissencephaly, cyst in HH	142/171				
10283	M	–	–	19	–	143/145				OFD1
10658	M	–	–	17	–	152/135				
10743	M	–	–	13	–	161/135	GLI3			
10875	F	–	N.D.	21	–	145/137		UBR5		
11392	M	–	N.D.	22	–	162/142				
12118	M	Polydactyly in bil. Ft	N.D.	10	Multiple arachnoid cysts in posterior cranial fossa	78/69		OFD1		
12574	F	–	–	30	–	163/150				
12618	M	–	–	30	–	213/174	GLI3			
12676	M	–	–	19	–	206/142				
12698	F	–	–	15	ACC, MTS	87/96	ZNF263			
13066	F	–	–	28	–	78/85				
14024	F	Syndactyly in bil. H, duplicated hallux	Lobulated tongue, cleft lower lip	25	ACC, heterotopias, Multiple interhemispheric cysts, Dandy–Walker malformation	72/–	OFD1			

N.D., not described; F, female; M, male; HH, Hypothalamic Hamartoma; bil., bilateral; H, Hands; Ft, Feet; PH, periventricular heterotopias; MTS, Molar tooth sign; ACC, agenesis of corpus callosum.
registered in dbSNP 137, except for clinically associated single nucleotide polymorphisms (flagged), variants registered in Exome Variant Server or our 575 in-house control exomes, variants located on segmental duplication, or synonymous variants. After obtaining four candidate genes (GLI3, OFD1, UBR5, ZNF263), paired data were further analyzed by MuTect29 and VarScan 2,30 and was searched for possible low-prevalence mutations in the four candidate genes. Common somatic single-nucleotide variants called by two programs were considered as candidates. Somatic frameshift insertion/deletion variants were only called by VarScan 2. Candidate variants were manually inspected by Integrative Genomics Viewer software.

Validation of mutations
Candidate germline and somatic mutations extracted from exome sequence data were validated by polymerase chain reaction (PCR) encompassing the mutations followed by Sanger sequencing. GLI3 and OFD1 somatic variants were also validated by deep sequencing of PCR amplicons using DNA extracted from hamartoma, blood, nail, and hair root samples (as a template) except for 10283, in which nail and hair root samples were unavailable. Sequencing libraries were prepared using the Nextera DNA Library Prep Kit (Illumina) and sequenced on a MiSeq (Illumina) with 150 bp paired-end reads. Trimming and alignment of reads were performed as described above. Allele count was performed with UnifiedGenotyper. PCR conditions and primer sequences are shown in Table S1.

Expression vectors
A full-length human GLI3 cDNA clone (amino acids 1–1580, clone ID: pFIKE1055) was purchased from Kazusa DNA Research Institute. Site-directed mutagenesis was performed using a KOD-Plus Mutagenesis kit (Toyobo, Osaka, Japan) according to the manufacturer’s protocol to generate two GLI3 mutants: c.3172C>T (p.Arg1058*) and c.2326_2329dup (p. His777Argfs*25) and 100 ng of 8×GliBS-pGL3-Δ51 or 8×mis3’GliBS-pGL3-Δ51 reporter vector. For a control experiment, parental pCIG and pCIG-ζ1-pectrin35 were used instead of GLI3 expression vectors. 5 ng of Renilla luciferase vector (pRL-SV40, Promega, Madison, WI) was also cotransfected to normalize for transfection efficiency. DNA transfection was performed with Lipofectamine 3000 (Invitrogen, Carlsbad, CA). The cells were lysed 24 h after transfection by passive lysis buffer (Promega), and luciferase activity was measured with GloMax 20/20 (Promega). All luciferase experiments were performed in triplicates, and transfections were performed in duplicates. Statistical analyses were performed by nonrepeated Measures analysis of variance (ANOVA) followed by Student–Newman–Keuls test.

Results
Identification of germline and somatic GLI3 and OFD1 mutations in individuals with hypothalamic hamartoma
A flow chart of our analysis is illustrated in Figure 1. We initially screened for germline mutations in three genes responsible for syndromic HH (GLI3 in PHS, OFD1 in OFD type I, and C5orf42 in OFD type V1)5,13,19 with blood leukocyte DNA, and identified de novo GLI3 and OFD1 mutations in two individuals with digital and oral anomalies (a GLI3 mutation in 8990 and an OFD1 mutation in 14024, Table 1 and Fig 2A and B). Consistent with previous reports,5,8,10,12,13 individuals 8990 and 14024 were diagnosed with PHS and OFD type I, respectively, with characteristic brain MRI findings such as agenesis of corpus callosum, multiple interhemispheric cysts, subcortical heterotopias, and Dandy–Walker malformation in 1402436 (Fig 2C and D). Exome sequencing of hamartoma DNA samples was performed for the remaining 16 individuals, and somatic mutations were examined with GATK UnifiedGenotyper.28 We detected six high-prevalence somatic mutations in four genes including GLI3 and OFD1 with mutant allele ratios that ranged from 15 to 32% in exome data (Table 1). Somatic GLI3 and OFD1 mutations were all truncating, and those in UBR5 and ZNF263 were missense mutations predicted to be deleterious by online databases (Table S2). All the identified mutations were validated by Sanger sequencing.

H. Saitsu et al.
Somatic OFD1 Mutations and Hypothalamic Hamartoma

Published by Wiley Periodicals, Inc on behalf of American Neurological Association
Somatic OFD1 Mutations and Hypothalamic Hamartoma

H. Saitsu

10 paired blood-hamartoma samples (three with digital anomalies)
- Exome sequencing of 18 blood DNA samples
- Screening mutations in three genes of syndromic HH GLI3 in PHS, OFD1 in OFD type I, C5orf62 in OFD type VI

A GLI3 and an OFD1 mutation in two cases with digital anomalies
- Exome sequencing of 16 hamartoma DNA samples
- Screening high-prevalence somatic variants by UnifiedGenotyp

2 somatic GLI3 mutations
- 2 somatic OFD1 mutations (one with digital anomaly)
- 2 other candidate genes (UBR5, ZNF263)

Screening low-prevalence somatic variants by Mutect/VarScan 2 in four screening genes

1 somatic OFD1 mutations
- Candidate GLI3 and OFD1 somatic variants-targeted amplicon sequencing using hamartoma, blood, nail and hair root samples (except for 10283)

A total of 2 somatic GLI3 and 3 somatic OFD1 mutations

Figure 1. Experimental flow chart for detecting somatic mutations in individuals with hypothalamic hamartoma. The flow of analysis in this study is outlined.

(Fig. 2A, B and data not shown). These findings prompted us to further investigate low-prevalence somatic mutations that could be detected by MuTect29 and VarScan 230 in the four candidate genes. This analysis identified an additional somatic OFD1 mutation in another individual (10283). All somatic GLI3 and OFD1 mutations were validated by deep sequencing of target amplicons showing mutant allele rates of 7–54% in hamartoma DNA (Table 2). Somatic truncation mutations in GLI3 were identified in two individuals (10743 and 12618) with no digital and oral anomalies, further supporting involvement of somatic GLI3 mutations in sporadic HH.24,25 Somatic truncation mutations in OFD1 were identified exclusively in three male individuals. While two individuals (9355 and 10283) presented no anomalies, one individual (12118) had multiple arachnoid cysts in the brain (Fig 2E and F) and polydactyly in both feet that had been previously corrected by plastic surgery. These features suggested that somatic mutations might be found in tissues other than HH. To test this hypothesis, especially in the ectodermal lineage, DNA extracted from blood leukocytes (lateral plate mesoderm), and nails and hair roots (surface ectoderm)37 were analyzed by deep sequencing of target amplicons in the four individuals with somatic GLI3 and OFD1 mutations (Table 2). However, somatic mutations were not detected in these tissues (threshold was set to 1%), suggesting that these somatic mutations might have occurred after differentiation of the neural tube.37 Comparison of the maximum size (diameter) of HH in GLI3 and OFD1 mutation-positive cases (n = 7) and negative cases (n = 11) showed no statistical difference.

Mutant GLI3 showed stronger repressor activity than the wild-type protein

The two somatic GLI3 truncation mutations were located in the middle third of the gene as previously reported in the PHS patients,5,6,10 suggesting that the mutated GLI3 may function as constitutive repressors. To examine the transcriptional properties of mutant GLI3, we performed luciferase assays using reporters that contained eight copies of the GLI-binding site of the floor plate enhancer of HNF3β (8 × 3′GliBS) and a mutated control sequence that disrupts GLI binding (8 × mis3′GliBS)33. Comparing the fold increase in luciferase activity from the 8 × mis3′GliBS-reporter (no binding of GLI3) to the 8 × 3′GliBS-reporter (binding of GLI3) correlates with the degree of suppressor activity of GLI3. Wild-type GLI3 showed a 6-fold increase in 8 × mis3′GliBS-reporter expression in C3H10T1/2 cells, a cell line known to respond to Shh signals,38 while two control vectors (pCIG and pCIG-Nspt-spectrin) showed only twofold background increase, demonstrating that GLI3 suppresses transcription of the reporter constructs (Fig 2G). This finding is consistent with a previous report using Shh-responsive MN570 cells.33 As expected, the two truncated GLI3 mutants showed robust increases in 8 × mis3′GliBS-reporter expression (14-fold), indicating stronger repressor activity than wild-type GLI3 (P < 0.01).

Discussion

It has been suggested that OFD1 mutations that truncate the protein before Asn630 are embryonic lethal in males and cause OFD type I in females.16,39 All the identified mutations caused truncations prior to Asn630 (Fig 2B, dashed line). Because somatic OFD1 truncation mutations were exclusively identified in male individuals, OFD1 function must be severely impaired in all cells possessing the mutation, suggesting that an absence of OFD1 activity is required for hamartoma formation. Ofd1-deficient male mice have reduced expression of Shh target genes in their neural tubes,18 indicating that OFD1 is essential for appropriate Shh signaling. Interestingly, both Ofd1-deficient neurons and limb mesenchyme showed increased levels of full-length and reduced levels of cleaved Gli3 proteins.40,41 However, defective Shh signaling was demonstrated by downregulation of the Shh target genes Ptch1 and Gli1 in Ofd1-deficient limb buds.40 These data suggest that abnormal GLI3 processing caused by Ofd1...
Figure 2. Germline and somatic mutations in GLI3 and oral-facial-digital syndrome (OFD1). Schematic representation of (A) GLI3 and (B) OFD1 proteins and the identified mutations. (A) Repressor domain, zinc-finger DNA binding domain (ZNF), transcription activation domains 1 and 2 (TA1 and TA2) of GLI3 are shown. Consistent with previous reports, one germline and two somatic truncation mutations in GLI3 were located in the middle third of GLI3 (667–1161aa, dashed box). (B) Three coiled coil domains and a LIS1 homology domain (LisH) of OFD1 are shown (UniProtKB, O75665). Truncation mutations in OFD1 prior to Asn630 have been reported to cause OFD type I in females and embryonic lethality in males. All the identified mutations caused truncations prior to Asn630 (dashed line). Somatic mutations are colored blue with mutant allele frequency (mutant allele reads/total reads) examined by deep sequencing of target amplicons. All somatic mutations were detected by Sanger sequencing, except for 10283. (C) Coronal and (D) transverse T1-weighted images of 14024, and (E, F) coronal T1-weighted images of 12118. 14024 with a germline OFD1 mutation, showed hypothalamic hamartoma (HH) (white arrowheads), multiple interhemispheric cysts (asterisk), interhemispheric fluid collection, subcortical heterotopias (red arrows), and agenesis of corpus callosum, whereas 12118 with a somatic OFD1 mutation showed HH and an arachnoid cyst in posterior cranial fossa (black arrowheads). (G) Luciferase assays in C3H10T1/2 cells. Fold increase in luciferase activity comparing 8 x mis3 GLI3-reporter to 8 x 3 GLI3-reporter that correlates with the degree of transcriptional suppression of GLI3 protein is shown. Wild-type GLI3 suppresses transcription of the reporter construct compared with two control vectors (pCIG and pCIG-sll-spectrin). Two mutant GLI3 alleles (His777Argfs∗2S and Arg1058∗) showed stronger repressor activity than wild type. *P < 0.01 by nonrepeated Measures ANOVA followed by Student-Newman-Keuls test. Error bars, S.D.

Defects led to a reduction in Gli3 activator, resulting in downregulation of the Shh target genes. We demonstrated in vitro that the GLI3 mutants identified in hamartoma samples can act as stronger repressor compared with wild type. Another report has also suggested that mutant GLI3 protein from PHS can repress target gene expression in vitro. These in vitro experiments and findings of Ofd1-deficient mice suggest that somatic GLI3 and OFD1 mutations are likely to cause impaired Shh signaling, which may lead to HH formation.

It remains unknown how a hamartoma is formed in the hypothalamus. Gli3 mutant mice (Gli3699, encoding 699 amino acids followed by 21 additional residues) mimicking human GLI3 alleles that cause PHS were proposed as a model of PHS. However, unlike humans, heterozygous Gli3699 mice only showed postaxial forelimb polydactyly at low frequencies (6%), and homozygous mutant mice did not show HH or pituitary dysplasia, though imperfect anus, epiglottis and larynx defects, and digital anomalies were observed. Therefore, this mouse model cannot elucidate the pathomechanism of HH formation. However, HH can be found in several human disorders; in addition to PHS and OFD, giant diencephalic hamartomas and other midline brain and facial malformations observed in five fetuses have been proposed as a new syndrome in humans. The development of the diencephalon may be different in humans and mice: thus establishing a HH model in humans, for example, utilizing induced pluripotent stem cells may be required.

UBR5 encodes an E3 ubiquitin ligase, and somatic truncation mutations in UBR5 have been reported in mantle cell lymphoma. ZNF293 is an uncharacterized gene that may play an important role as a transcriptional repressor (UniProtKB, O14978). Because somatic mis-sense UBR5 and ZNF263 mutations were only identified in a single case, the pathological significance of these mutations are currently unknown.

De novo mutations can occur at any time in the life of a cell. De novo mutations in GLI3 and OFD1 occurring in the gamete of one parent, at fertilization or immediately after fertilization cause HH along with other systemic features. Mutations occurring after neural tube differentiation cause sporadic HH, revealing that different timing of de novo mutations can cause a spectrum of human disorders. Although we did not detect somatic mutations in the nails and hair roots of individual 12118, he showed other brain and digital anomalies, raising the possibility that somatic mutations may be found in these tissues.

In conclusion, somatic GLI3 and OFD1 mutations were identified in HH, suggesting that impaired Shh signaling by germline and somatic mutations can cause a spectrum of human disorders related to HH.

Acknowledgments

We thank patients and their families for their participation in this study. We also thank Nobuko Watanabe and Mai Sato for their excellent technical assistance. This work is supported in part by a research grant from the Ministry of Health, Labour and Welfare of Japan; a grant for Research on Measures for Intractable Diseases (14525125); a grant for Comprehensive Research on Disability Health and Welfare (13802019); the Strategic Research Program for Brain Science (SRPBS) (11105137) and Practical Research Project for Rare/Intractable Diseases (27280301), and a grant for Initiative on Rare and Undiagnosed Diseases in Pediatrics (IRUD-P) (15gk0110012 h0101) from Japan Agency for Medical Research and Development; a Grant-in-Aid for Scientific Research on Innovative Areas (Transcription Cycle) (24118007) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Grants-in-Aid for Scientific Research (C) (26461549, 15K10367), (B) (25293085, 25293235) and (A) (13313587), challenging Exploratory Research (26670505) from the Japan Society for the Promotion of Science; the fund for Creation of
Individual	Germline mutation	Somatic mutation	Sanger Validation	Whole-exome sequencing	Variant-targeted amplicon sequencing (Validation)
	GLI3				
8990	c.3324C>T	p.(Tyr1108*)	de novo	Yes	–
9355	OFD1	c.710dup	p.(Tyr238Valfs*2)	Yes	7/15 (4.32%); 72/142 (33.6%)
10283	OFD1	c.1183G>T	p.(Glu395*)	Not visible	6/62 (9.77%); 0/67 (0.0%); 33/257 (12.8%)
10743	GLI3	c.3172C>T	p.(Arg1058*)	Yes	74/176 (29.6%); 0/249 (0.4%); 30056/44135 (40.5%)
11087	UBR5	c.8084C>T	p.(Ser2695Phe)	Yes	20/93 (17.7%); 0/127 (0.0%); – – – –
11283	OFD1	c.1168_1171del	p.(Asn390Glnfs*10)	Yes	18/29 (31.6%); 0/39 (0.0%); 71037/59153 (54.6%)
11315	GLI3	c.2326_2329dup	p.(His777Argfs*25)	Yes	24/63 (27.6%); 0/98 (0.0%); 49095/126117 (28.0%)
11352	ZNF263	c.1936C>T	p.(Arg646Trp)	Yes	19/109 (17.7%); 0/109 (0.0%); – – – –
12126	OFD1	c.1570C>T	p.(Gln524*)	de novo	11/7 (61.1%); – – – – – – – – –

Percent of mutant allele was calculated by mutant allele reads/(mutant allele reads + reference allele reads).

The high background error rates in these samples were caused by nongenomic poly(A) sequences.

1Percent of mutant allele was calculated by mutant allele reads/(mutant allele reads + reference allele reads).

2The high background error rates in these samples were caused by neighboring poly(A) sequences.

Table 2. Summary of mutant allele ratios of detected germline and somatic mutations in GLI3 and OFD1.
Somatic OFD1 Mutations and Hypothalamic Hamartoma

H. Saitsu et al.

Innovation Centers for Advanced Interdisciplinary Research Areas Program in the Project for Developing Innovation Systems (11105305) from the Japan Science and Technology Agency; and the Takeda Science Foundation.

Author Contributions

H. Saitsu, S.K., and N. Matsumoto designed and directed the study. H. Saitsu, M.S., T.H., and N. Matsumoto wrote the manuscript. M.S., T.H., H. Shirozu, H.M., J.T., and S.K. collected samples and provided the subjects’ clinical information. H. Saitsu, M.K. M.N., Y.T., T.M., S.M., and N. Miyake performed whole-exome sequencing, Sanger sequencing and deep sequencing. H. Saitsu performed luciferase assay.

Conflict of Interest

The authors have no potential conflicts of interest in connection with this manuscript.

References

1. Berkovic SF, Andermann F, Melanson D, et al. Hypothalamic hamartomas and ictal laughter: evolution of a characteristic epileptic syndrome and diagnostic value of magnetic resonance imaging. Ann Neurol 1988;23:429–439.
2. Kerrigan JF, Ng YT, Chung S, Rekate HL. The hypothalamic hamartoma: a model of subcortical epileptogenesis and encephalopathy. Semin Pediatr Neurol 2005;12:119–131.
3. Wu J, Xu L, Kim DY, et al. Electrophysiological properties of human hypothalamic hamartomas. Ann Neurol 2005;58:371–382.
4. Fenoglio KA, Wu J, Kim do Y, et al. Hypothalamic hamartoma: basic mechanisms of intrinsic epileptogenesis. Semin Pediatr Neurol 2007;14:51–59.
5. Johnston JJ, Olivos-Glander I, Killoran C, et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 2005;76:609–622.
6. Del Giudice E, Macc a M, Imperati F, et al. CNS involvement in OFD1 syndrome: a clinical, molecular, and neuroimaging study. Orphanet J Rare Dis 2014;9:74.
7. Darmency-Stamboul V, Burglen L, Lopez E, et al. Detailed clinical, genetic and neuroimaging characterization of OFD VI syndrome. Eur J Med Genet 2013;56:301–308.
8. Johnston JJ, Sapp JC, Turner JT, et al. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat 2010;31:1142–1154.
9. Kang S, Graham JM Jr, Olney AH, Biesecker LG. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 1997;15:266–268.
10. Demurger F, Ichkou A, Mougu-Zerelli S, et al. New insights into genotype-phenotype correlation for GLI3 mutations. Eur J Hum Genet 2015;23:92–102.
11. Ruiz i Altaba A, Palma V, Dahmane N. Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 2002;3:24–33.
12. Macca M, Franco B. The molecular basis of oral-facial-digital syndrome, type I. Am J Med Genet C Semin Med Genet 2009;151C:318–325.
13. Ferrante M, Giorgio G, Feather SA, et al. Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 2001;68:569–576.
14. Romio L, Wright V, Price K, et al. OFD1, the gene mutated in oral-facial-digital syndrome type I, is expressed in the metanephros and in human embryonic renal mesenchymal cells. J Am Soc Nephrol 2003;14:680–689.
15. Giorgio G, Alfieri M, Prattichizzo C, et al. Functional characterization of the OFD1 protein reveals a nuclear localization and physical interaction with subunits of a chromatin remodeling complex. Mol Biol Cell 2007;18:4397–4404.
16. Coene KL, Roepman R, Doherty D, et al. OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. Am J Hum Genet 2009;85:465–481.
17. Quinlan RJ, Tobin JL, Beales PL. Modeling ciliopathies: primary cilia in development and disease. Curr Top Dev Biol 2008;84:249–310.
18. Ferrante M, Zullo A, Barra A, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 2006;38:112–117.
19. Lopez E, Thauvin-Robinet C, Reversade B, et al. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet 2014;133:367–377.
20. Campbell IM, Shaw CA, Stankiewicz P, Lupski JR. Somatic mosaicisms: implications for disease and transmission genetics. Trends Genet 2015;31:382–392.
21. Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science 2013;341:1237758.
22. Lee JH, Huynh M, Silhavy JL, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 2012;44:941–945.
23. Riviere JB, Mirzaa GM, O’Roak BJ, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012;44:934–940.
24. Craig DW, Itty A, Panganiban C, et al. Identification of somatic chromosomal abnormalities in hypothalamic hamartoma tissue at the GLI3 locus. Am J Hum Genet 2008;82:366–374.
25. Wallace RH, Freeman JL, Shouri MR, et al. Somatic mutations in GLI3 can cause hypothalamic...
26. Kameyama S, Shirozu H, Masuda H, et al. MRI-guided stereotactic radiofrequency thermocoagulation for 100 hypothalamic hamartomas. J Neurosurg 2015;20:1–10.
27. Saito H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013;45:445–449, 9e1.
28. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491–498.
29. Giubulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013;31:213–219.
30. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568–576.
31. Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991;108:193–199.
32. Megason SG, McMahon AP. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 2002;129:2087–2098.
33. Sasaki H, Hui C, Nakafuku M, Kondoh H. A binding site for Gli proteins is essential for HNF-3β floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 1997;124:1313–1322.
34. Saito H, Komada M, Suzuki M, et al. Expression of the mouse Fgf15 gene is directly initiated by Sonic hedgehog signaling in the diencephalon and midbrain. Dev Dyn 2005;232:282–292.
35. Saito H, Tohyama J, Kumada T, et al. Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am J Hum Genet 2010;86:881–891.
36. Azukizawa T, Yamamoto M, Narumiya S, Takano T. Orale-facial-digital syndrome type 1 with hypothalamic hamartoma and Dandy-Walker malformation. Pediatr Neurol 2013;48:329–332.
37. Gilbert SF. Developmental biology. 8th ed. Sunderland, MA: Sinauer Associates, 2006.
38. Nakamura T, Aikawa T, Iwamoto-Enomoto M, et al. Induction of osteogenic differentiation by hedgehog proteins. Biochem Biophys Res Commun 1997;237:465–469.
39. Rakkolainen A, Ala-Mello S, Kristo P, et al. Four novel mutations in the OFD1 (Csrorf5) gene in Finnish patients with oral-facial-digital syndrome 1. J Med Genet 2002;39:292–296.
40. Bimonte S, De Angelis A, Quagliata L, et al. Odf1 is required in limb bud patterning and endochondral bone development. Dev Biol 2011;349:179–191.
41. Liu YP, Tsai IC, Morleo M, et al. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J Clin Invest 2014;124:2059–2070.
42. Shin SH, Kogerman P, Lindstrom E, et al. GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization. Proc Natl Acad Sci USA 1999;96:2880–2884.
43. Bose J, Grotewold L, Ruther U. Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 2002;11:1129–1135.
44. Guimiot F, Marcorelles P, Aboura A, et al. Giant diencephalic hamartoma and related anomalies: a newly recognized entity distinct from the Pallister-Hall syndrome. Am J Med Genet A 2009;149A:1108–1115.
45. Meissner B, Kridel R, Lim RS, et al. The E3 ubiquitin ligase UBR5 is recurrently mutated in mantle cell lymphoma. Blood 2013;121:3161–3164.