Introduction

Migraine is not just a bad headache. It is a collection of neurological symptoms which includes a severe recurring intense throbbing pain on one side of the head. It has been seen that one third of migraine attacks in which both sides of the head are attacked. Migraine is a syndrome. we may call it as a collection of symptoms, which arise from a common cause. The syndrome may occur in a complete form with all of the typical symptoms, in a less complete form, with some symptoms, or in specific groupings of symptoms. Migraine may be classified according to the grouping of its symptoms. The symptoms vary widely and migraine is generally misdiagnosed. Migraine is a moving target. Carlos M et al. [1] have studied food allergy mediated by IgG antibodies associated with migraine in adults. They have also mentioned that eighteen percent of women and six percent of the men have migraine. Many years ago, the association of pain and inflammation with definite clinical signs forced the general physician to suspect a connection between the immunological mechanism and headaches or migraine.

Migraine is a painful disease which affects a significant portion of the adult population with a substantial economic burden on the society. Migraine disorder is characterized by recurrent unilateral headaches, which accompanied by nausea, vomiting, photophobia or phonophobia. Julio P et al. [2] have studied IgG-mediated allergy with a new mechanism for migraine attacks and mentioned that with the advancement of neuro imaging and genetic techniques. The pathophysiology of migraine has not been completely filtered and clarified. Sodium cromaglycate exerted a protective effect which provide a food allergy reaction is the main trigger of migraine. Main problem is to accept the dietary hypothesis is the lack of clear scientific explanation of the mechanisms implicated in the advancement of migraine attacks which are precipitated by food. Authors have also observed that mechanisms is an allergy mediated by IgE antibodies. The interaction of a food constituents with a specific IgE antibody would produce a response by activation of component or degranulation of mast cells. Many scientists were

Abstract

In the present work we have used some of the most clinically important and tested techniques Radial immuno diffusion to the study the disease which is Migraine. we have estimated the immunological Parameters. It is very interesting that the levels of IgG are higher in comparison to the healthy person. Statistical methods were applied to test the significance of the data at 0.05 percent level of significance. Regression lines were also made to see the effect of one parameter on the others. A clear cut differentiation was found in the immunological variations. The mean values and standard deviation in normal is found $(17.24 ± 17.69)$ g/l, while in migraineous patients was higher and equal to $(19.59 ± 22.75)$ g/l

Keywords: Migraine; Immunological parameters; Regression lines

Abbreviations: BNP: Pro-Brain Natriuretic Peptide; IgE: Immunoglobulin E
failed to find out the elevated IgE levels or complement activation during migraine attack. Diet sensitive patients are sensitive to several different types of foods. Some findings are suggesting the amine hypothesis, which is a clinical challenge to test tyramine or β-phenyl ethylamine.

Mesar C et al. [3] have studied migraine and immunoglobulin E-mediated hypersensitivity and found that atopic disease may occur frequently in patients with migraine and IgE levels in patients with migraine may be higher than the levels observed during interictal period. Several attacks are associated frequently with higher IgE levels during migraine attacks. Pilarska E et al. [4] have studied anti phospholipid antibodies in children with migraine and reported that the occurrence and the role of anti cardioliq in antibodies in children with migraine. Authors clearly evaluated and found that the higher values of the anti cardioliq antibody in comparison to control group of the children. Schimomura T et al. [5] have studied immunoglobulin Kappa/Lambda ratios in migraine and tension type headache and reported that the serum kappa and lambda levels of immunoglobulins were higher than the control group of persons. The Kappa /Lambda ratios of IgA and IgM in the patients with headache were higher than those in the controls. The total concentrations of all the three immunoglobulins IgA, IgG and IgM were significantly higher in the migrainous patients. Authors have also suggested that immunological system activation might exist. It may be related to the aetiology of tension type headache and migraine.

Blakan S et al. [6] have studied immunoglobulin and complement levels in migraine. Authors have reported that serum levels of IgG, IgA, IgM and c4 of migrainous patients were found to be increased realistically when compared with the control group. Munno I et al. [7] have studied immunological aspects in migraine: increase of IL-10 plasma levels during attack. Authors have reported that monitoring of 23 patients with migraine without aura during a migraine attack. The plasma levels of interleukin (IL-4,IL-5,IL-10) and interferon -gamma were low to undetectable IL-5 and IL-4 levels. A higher IL-10 were found in some patients. Interferon -gamma plasma were not detectable in all patients. Antoni J et al. [8] have studied immunoglobulins and complements in migraine and found that c4 levels were decreased c3 levels were in the normal group. Immunoglobulin levels did not show any statistically significant changes in the patients. IgA levels were lowered in the migrainous patients. These alterations in the patients can lead to the statement that the alternative pathway of complement system may be activated in migraine.

Gazerani P et al. [9] have studied a correlation between migraine, histamine and immunoglobulin e and measured the serum total IgE and histamine levels and reported that serum histamine (mg/ml) in controls were (48.16 ± 2.70) mg/ml and (38.31 ± 3.20) mg/ml in migraine patients. It has been also measured in the case of migraine with allergy group as (159.11 ± 4.60) IU/ml and (303.30 ± 42.50) IU/ml and in the migraine without allergy group (105.01± 8.50) IU/ml and (79.07 ± 2.70) IU/ml. The authors finally concluded that the avoidance of allergic conditions in migraine patients may be a very easy, helpful way for prophylaxis or their treatment. Nattero G et al. [10] have studied serum complement and immunoglobulins in patients with common migraine and found that no complement activation or variation in the immunoglobulin of migraine sufferers during healthy intervals and migraine attacks that in any way support an involvement of the immune system in the pathogenesis of common migraine. Moore TL et al. [11] have studied immunoglobulin, complement and immune complex levels during a migraine attack and found that the value of IgG in migraine patients as (134±00) mg/dl, while in headache free cases it was (139±00) mg/dl. The value of IgM in migraine was estimated(141± 00) mg/dl and in headache free cases was (144±00) mg/dl. The value of IgA in migraine cases was (142± 00) mg/dl and in headache free cases it was (143±00) mg/dl. They have also measured the complements c3 and c4. The value of c3 in migraine patients was (164± 00) mg/dl, while in headache free cases was found (165 ±50) mg/dl. The value of complement c4 in migraine was (26±00) mg/dl and in headache free cases was (27.5±00) mg/dl. They have also estimated immune complexes with frequency of (40±20) µg/ml and it was (36±00) µg/ml in migraine and (36±00) headache free cases.

Dzugan SA et al. [12] have studied and reported that is migraine a consequence of a loss of neurohormonal and metabolic integrity? A new hypothesis. Authors have mentioned that migraine most commonly strikes woman. Each person who suffers from migraine is special and unique. Treatment to individuals is very complex and may be varied. There is no specific single treatment methodology is given in the literature. Recent treatments for migraine include diet changes, stress management, proper sleep, HRT, supplements and prescription drugs. During migraine attack cerebral blood vessels go through a period of constriction and dilation. Imbalance in brain biochemistry may be the cause of this change. Menstrual migraine shows a model that fits perfectly with a neuroendocrine hypothesis which is completely based upon a faulty chronological response of the antinociceptive system. Authors have mentioned the work of [13,14] has studied the effects of hormone imbalances and deficiencies on vasomotor control were significant clinically and hormone treatment was effective in the management of a variety of conditions due to the abnormal blood flow including migraine. Diamond S et al. [15] have studied estrogens exert their influence by modulating sympathetic control of cerebral vasculature.

Migraine attacks occur during menses in sixty percent of woman and appear to be related to the with drawl of estrogen. The fluctuations in estrogen levels associated with migraine produce some biochemical changes in prostaglandins production, prolactin release, and opioid regulation. An elevation of estrogen increase sodium retention which is a case of interstitinal fluid retention and edema. A change of hormone can be primary case of migraine initiation and a changed peripheral nervous system can be useful.
in initiating secondary change of hormonal balance [16]. Have
given an idea regarding this disease and reported that migraine
is a recurrent clinical syndrome characterized by combinations
of neurological, gastro intestinal and autoimmune manifestation.
Migraine is a complex disorder including malfunctions in a few
systems: neurohormonal system which includes feedback loop
mechanism between hypothalamus, pituitary gland which produce
steroid hormones : sympathetic, parasympathetic system ; calcium/ magnesium ions system, pineal gland system and digestive system.
All these changes have a very close interrelationship and each of
them can be a trigger mechanism for migraine.

Uzar E et al. [17] have studied serum cytokine and pro-brain
natriuretic peptide (BNP) levels in patients with migraine. Authors
have given an extensive explanation for migraineous patients, these
patients have higher IL-18, IL-6 levels and pro-BNP and lower IL-
10 levels than healthy individuals. The cytokines may be related to
the pathogenesis of migraine. Tietjen G F [18] reported that role of
the vasculature in patients with migraine is increasing because of
growing evidence that migraine is a risk factor for clinical and
subclinical brain ischaemia, as well as for more widespread
vascular changes. The vasculopathy of migraine is associated with
endothelial dysfunction. It is a disorder of endothelial activation
and impaired vascular reactivity, which is a risk factor of all vascular
events. Lord GDA et al. [19] have been studied immunoglobulins and
complements in migraine and found that elevated immunoglobulin
levels and complement activation suggest a late onset immune
reaction of short duration. Such a mechanism provides an
explanation of many of the features of non prodromal migraine,
platelet release of serotonin, basophil and mast cell degranulation,
increased whole blood histamine during an attack, fluid retention,
increased thrombotic tendency and increased CSF lactate and
GABA.

Pascual J et al. [20] have studied a woman with daily headache
and found that dietary factors must be specifically examined into
migraine patients particularly in those cases with frequent attacks
and no evidence of analgesic abuse or psychiatric comorbidity.
Merrett J et al. [21] have studied food related antibodies in
headache patients and reinvestigated the role of IgE mediated
food allergy in migraine by using a highly sensitive IgE RAST
technique to determine circulating levels of specific IgE to four
foods commonly supposed to trigger migraine. Specific IgG4 levels
were also examined. Authors have also seen that it is responsible
for the late response in some cases of asthma. Arruzone Hernandez
CM et al. [22] have studied food allergy mediated by IgG antibodies
associated with migraine in adults and found that the elimination
diets successfully can control the migraine without the need of
medication. Authors also suggested that need of medications.
Authors also suggested that serum IgG antibodies to common food
should be investigated in patients with migraine.

Rusario D et al. [23] have studied role of gender and serum
immunoglobulin E(IgE) levels on severity of migraine. Authors have
pointed out that migraine headache is a common disorder. Several
studies have revealed that migraine headache is more common in
patients with allergy. Atopy, which is the genetic pre disposition
to develop IgE antibodies to specific allergens, may be associated
with increased frequency of migraine headache. Authors have also
reported that younger age and female sex are contributory factors
as prevalence of both allergic rhinitis and migraine is higher in
these groups. Degrees of allergic sensitization determined the
severity and frequency of headache in those whom allergy is a risk
factor as evidenced by higher levels of IgE. Aydinlar EI et al. [24]
have studied IgG based elimination diet in migraine plus irritable
bowel syndrome and reported that food elimination based on IgG
antibodies in migraine patients who suffers from concomitant
IBS may effectively reduce symptoms from both disorders with
potential savings to the health care system.

It would be have been possible to check whether the IgG
response correlated with diet by a second IgG measurement after
elimination or provocation. The use of a specific diet rather
than an universal migraine diet with simultaneous elimination opf
all known dietary triggers seems to provide a well balanced diet
in terms of safety and nutritional reasons. Some of the authors
[25,26] have put forward their thoughts that migraine is a chronic
neuromuscular disorder, characterized by episodic and disabling
headaches with autoimmune symptoms. There is a growing body
of evidence to suggest that migraine and inflammation are linked,
and often the term neurogenic inflammation is used. Yimaz IA et
al. [27] have reported that epidemiological evidence suggests that
migraine is not only affected to neuovascular involvement but
also other vascular involvements. Some of the authors [27-29]
have reported that physiologic profile of migraine involves the
neurovascular system, and population -based studies have related
migraine with a higher prevalence of cardiovascular risk score
for coronary heart disease. Migraine has been associated with
increased risk of ischemic stroke and ischemic heart disease. The
pro-brain natriuretic peptide (pro-BNP) reflects an integral or risk
factors resulting in the current functional cardiovascular states of
individual patients. Pro-BNP is a cardiac neurohormone specifically
secreted from the ventricles in response to volume expansion and
pressure overload.

Pro-BNP inhibits the sympathetic nervous system and the
activities of several other hormone system, including the rennin-
angiotensin -addosterone system. Tietjen GE [18] studied the role
of vasculature in patients with migraine is increasing because of
growing evidence that migraine is a risk factor for clinical and
subclinical brain ischemia,as well as for nerve more wide spread
vascular changes. The vasculopathy of migraine is associated with
endothelial dysfunction, a disorder of endothelial activation and
impaired vascular reactivity which is a risk factor for all vascular
events. Dalesio D] [30] reported that migraine attack is a complex
process that involves both the cerebral and peripheral structures.
Migraine is under the control of multiple factors: neurogenic,
chemical, metabolic and myogenic. It is generally accepted that migraine is caused by a primary biochemical disorder of the central nervous system involving neurotransmitters, specifically serotonin. The immunological parameters (IgA, IgG, IgM, C₃ & C₄) were quantified by using single radial immunodiffusion method of Mancini et al. [31] using commercially available antibody-agar plates. The plates were standardized with purified immunoglobulins.

Materials and Methods

Blood sample of Migraine patients along with normal healthy control were collected from the Department of Neurology, Safdarjang Hospital, New Delhi-110016 after the approval of ethical committee of the hospital. 10 ml freshly drawn blood from each patient was collected in clean and dry test tube without any anti-coagulant. The test tube was kept for 45 minutes at room temperature (22 ± 2°C) for the formation of clot. Sera of different patients were separated by centrifugation at 1500 r.p.m. upto 15 minutes and were collected in screw capped test tubes.

Results

We have measured the values of immunological parameters of migraine patients and healthy normal control given in Table 1. p value and t value and regressions equations for migraine and controls are given in the Table 2-5.

S.No	Type of samples	Experimental findings Mean ± SD	Diagnosis
1.	C₃	(1.55 ± 1.3) g/l	Migraine
2.	C₄	(1.57 ± 1.71) g/l	Control
3.	IgG	(0.252 ± 0.11) g/l	Migraine
4.	IgM	(0.27 ± 0.44) g/l	Control
5.	IgA	(1.95 ± 2.27) g/l	Migraine

S.N.	Parameter	P value	Two tailed or one tailed	Significant or not significant at P < 0.05
1	IgA	0.061073	One tailed	Not significant
2	IgG	0.1122	One tailed	significant
3	IgM	0.013908	One tailed	Not significant
4	C₃	0.42715	One tailed	Not significant
5	C₄	0.346985	One tailed	Not significant

S.N.	Parameter	t value	Two tailed or one tailed	Significant or not significant at t < 0.05
1	IgA	1.614221	One tailed	Not significant
2	IgG	1.249646	One tailed	significant
3	IgM	2.355692	One tailed	Not significant
4	C₃	0.815806	One tailed	Not significant
5	C₄	0.398674	One tailed	Not significant

S.N.	Regression lines for migraine
1	C₃ = -1.3285819•10⁻² IgA -7.831606037•10⁻³ IgG -1.515137283•10⁻² IgM -1.20547452•10⁻² C₃ + 0.562269946
2	IgA = 1.282348795•10⁻¹ IgG + 3.556121809•10⁻¹ IgM - 1.117464107 C₃ - 0.6120309393C₄ + 1.5625883
3	IgG = -0.4947464032•10⁻¹ IgM + 2.933867999 C₃ - 8.305643753 C₄ + 2.517729723 IgA + 10.87297372
4	IgM = -0.39363697C₃ - 1.593492121•10⁻¹ C₄ + 6.533383965•10⁻¹ IgA + 4.556558811•10⁻¹ IgG + 1.93349447
5	C₄ = 0.449838766C₃ - 1.306711185•10⁻¹ IgA + 1.747678717•10⁻² IgG - 2.364511563•10⁻¹ IgM + 1.94302363
Discussion

In the present work some of the authors pointed out about the food allergy may provoke migraine attack in the patients. We have tried to establishes the relation in the parameters by keeping one parameter as a constant. The immunological parameters are estimated and statistical formulae applied. Regression equations are also made and found that if one immunological parameter is fixed and others are changed, we have to stabilize the other parameters with the help of some modifications in the treatment, which may be given to the patients in the follow up the cases. All the measured levels of the different parameters are lower in comparison to the controls except IgG. Migraine problem is very difficult to rule out due to several factors related to the disease. on the basis of the statistical predictions some modifications are necessary in the management of the migraine.

Acknowledgement

One of the authors (sk) is thankful to Dr PK Gupta, Principal DAV College Muzaffarnagar, UP, India for providing necessary atmosphere to conduct the research.

References

1. Carlos HAM, Mauro EP, Herbert HML (2007) Food allergy mediated by IgG antibodies associated with migraine in adults. Revista, Alergia, Mexico, USA 54(5): 162-168.
2. Julio P, Agustin O (2010) IgG-mediated allergy: A new mechanism for migraine attacks?. Cephalalgia 30(7): 777-779.
3. Mesut C, Sule B, Sedat M, Filkveri AK, sedat M (2012) Migraine and immunoglobulin E-mediated hypersensitivity/Migrane immunoglobulinE aracili hipersensitivite. Arc of Neuro psychiatry 49(2): 129-132.
4. Pilarska E, Lemka M, Bakowska A (2006) Antiphospholipid antibodies in children with migraine. Neuro Med Neurochir 40(4): 291-296.
5. Shimomura T, Araga S, Kowa H, Takahashi K (2006) Immunoglobulin Kappa/lambda ratios in migraine and tension type headache. Psychiatry Neurol 46(3): 721-726.
6. Balkan S, Muthu G, Kumudan A, Yogans S (1992) Immunoglobulin and complement levels in migraine. Mikrobiyal 75(20): 1185-1188.
7. Munn I, Marino R, Bacci A, Cissino M A, Causarano V, et al. (2001) Immunological aspects in migraine: increase of 1L-10 plasma levels during attack. Headache 41(8): 764-767.
8. Antani J, Andrzej K (1983) Immunoglobulins and complement in migraine. Cephalalgia 3(2): 119-123.
9. Gazzaniga P, Pourpak Z, Ahmadzadeh A, Hemmati A, Kazemnejad A (2003) Correlation between migraine, histamine and immunoglobulin e (21): 17-24.
10. Nattero G, Savio L, Alia G, Biale L (1984) Serum complements and immunoglobulins in patients with common migraine. Minerva, Med 75(20): 1185-1188.
11. Moore TL, Ryan RE Jr, Pohl DA, Roodman ST, Ryan RE Jr (2005) Immunoglobulin, complement, and immune complex levels during a migraine attack. The J of Head and face pain 20(1): 9-12.
12. Druzgan SA, Druzgan Konstantine S (2015) Is migraine a consequence of a loss of neurohormonal and metabolic integrity? A new hypothesis. Neuro endocrinology. Letters 36(5): 421-429.
13. Gauschino S, Spinillo A, Sances G, Martignami E (1985) Menstrual migraine old and new. Clin Exp Obstet Gynecol 12: 67-71.
14. Sarrel P M (1990) Ovarian hormones and the circulation. Maturitas 12(3): 287-298.
15. Welch K M, Darlin D, Simkins R T (1984) The role of estrogen in migraine: a review and hypothesis. Cephalalgia 4(2): 277-286.
16. Diamond S, Wennel R (2002) Practical approaches to migraine management. CNS Drugs 16(6): 385-403.
17. Uzar E, Eulyaoglu O, Yucel Y, Ugurcevi K M, Acar A, et al. (2011) Serum cytokine and probrain natriuretic peptides (BNP) levels in patients with migraine. European. Review for Medical and Pharmacological Sciences 15(10): 1111-1116.
18. Tietjen G E (2009) Migraine as a systemic vasculopathy. Cephalalgia 29(9): 987-996.
19. Lord G D, Dukworth J W (1977) Immunoglobulin and complements studies in migraine. Headache The journal of Head and face pain 17(4): 163-168.
20. Pascol J, Leno C (2005) A woman with daily headache. J Headache Pain 6: 91-92.
21. Merrett J, Peatfield R C, Clifford F R, Merrett TG (1983) Food related antibodies in headache patients. Journal of Neurology. Neurosurgery and Psychiatry 46(8): 738-742.
22. Arno was Hernandez CM, Echarvarria PM, Henandez Montiel HL (2007) Food allergy mediated by IgE antibodies associated with migraine in adults. Rev Alergy Mex 54(5): 162-168.
23. Rosario D, Pinto G (2014) Role of gender and serum immunoglobulin E (IgE) levels on severity of migraine. Journal of Clinical and Diagnostic Research 8(2): 57-58.
24. Aynilkar E, Dilkên P, Tiftikci A, Murat S, Muge A (2012) IgE-based elimination diet in migraine Plus iritative bowl syndrome. Headache: The Journal of Head and Face pain 53(3): 514-525.
25. Panconesi A, Bartolozzi ML, Guidi L (2009) Migraine Pain: Reflections against Vasodialation, Journal Headache Pain 10(5): 317-325.

Table 5: Regression equations of the immunological parameters for control are given.

S.N	Regression lines for controls	
1	$C_1 = -1.069983219 \times 10^{-1} \cdot \text{IgA} - 8.501646232 \times 10^{-7} \cdot \text{IgG} + 1.232850397 \times 10^{-1} \cdot C_1$	
2	$\text{IgA} = -2.571470316 \times 10^{-2} \cdot \text{IgG} + 1.289787397 \times 10^{-1} \cdot \text{IgM} + 6.095296208 \times 10^{-1} \cdot C_1 - 4.25327012 \cdot C_1 + 3.155431848$	
3	$\text{IgG} = 8.641532971 \times 10^{-2} \cdot \text{IgM} + 2.2242676019 \cdot C_1 - 1.126481115 \cdot C_1 - 8.568196862 \times 10^{-1} \cdot \text{IgA} + 17.13427846$	
4	$\text{IgM} = 0.712819825 \cdot C_1 + 4.303343386 \cdot C_1 + 1.132577042 \cdot \text{IgA} + 2.277363418 \times 10^{-1} \cdot \text{IgG}$	
5	$C_1 = 3.585367208 \times 10^{-1} \cdot C_1 + 6.713190408 \times 10^{-1} \cdot \text{IgA} + 7.354379858 \times 10^{-3} \cdot \text{IgG} + 8.940548152 \times 10^{-2} \cdot C_1 + 1.39759762$	
26. Yilmaz IA, Ozge A, Erdal M E, Edgûnlû TG, Cakmak SE, Yalin OO (2010) Cytokine polymorphism in patients with migraine: Some suggestive clues of migraine and inflammation. 11(4): 492-497.

27. Kurth T, Gaziano JM, Cook NR, Lagrosino G, Diener HC, Buring JCE (2006) Migraine and Cardiovascular disease in women. JAMA: 283-291.

28. Kurth T, schürks M, Lograscino G, Gaziano J, M, Buring J (2008) Migraine, vascular risk and cardiovascular events in women: Prospective cohort study. BMJ 337:a636.

29. Scher AI, Terwindet GM, Picavet HS, Verschuren WM, Ferrari MD (2005) Cardiovascular risk factors and migraine: The GEM population based study. Neurology 64(4): 614-620.

30. Dálessio DJ (1990) The pathology of migraine. Clin J Pain: 235-239.

31. Mancini G, Carbonara AO, Heremans JF (1965) Immunoochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry pp. 235-254.