FINITE-DIMENSIONAL MODULES OF THE RACAH ALGEBRA AND
THE ADDITIVE DAHA OF TYPE \((C_1', C_1)\)

HAU-WEN HUANG

Abstract. Assume that \(\mathbb{F}\) is an algebraically closed field with characteristic zero. The Racah algebra \(\mathbb{R}\) is a unital associative \(\mathbb{F}\)-algebra defined by generators and relations. The generators are \(A, B, C, D\) and the relations state that
\[
[A, B] = [B, C] = [C, A] = 2D
\]
and each of
\[
[A, D] + AC - BA, \quad [B, D] + BA - CB, \quad [C, D] + CB - AC
\]
is central in \(\mathbb{R}\). The universal additive DAHA (double affine Hecke algebra) \(\mathcal{H}\) of type \((C_1', C_1)\) is a unital associative \(\mathbb{F}\)-algebra generated by \(t_0, t_1, t_0', t_1'\) and the relations state that
\[
t_0 + t_1 + t_0' + t_1' = -1
\]
and each of \(t_0^2, t_1^2, t_0'^2, t_1'^2\) is central in \(\mathcal{H}\). Each \(\mathcal{H}\)-module is an \(\mathbb{R}\)-module by pulling back via the injection \(\mathbb{R} \to \mathcal{H}\) given by
\[
A \mapsto \frac{(t_1' + t_0')(t_1' + t_0' + 2)}{4}, \quad B \mapsto \frac{(t_1' + t_0')(t_1 + t_1' + 2)}{4}, \quad C \mapsto \frac{(t_0' + t_1)(t_0' + t_1 + 2)}{4}.
\]
We classify the lattices of \(\mathbb{R}\)-submodules of finite-dimensional irreducible \(\mathcal{H}\)-modules. As a consequence, for any finite-dimensional irreducible \(\mathcal{H}\)-module \(V\), the \(\mathbb{R}\)-module \(V\) is completely reducible if and only if \(t_0\) is diagonalizable on \(V\).

Keywords: additive DAHA, Racah algebra, lattices.

1. Introduction

Throughout this paper, we adopt the following conventions. Assume that \(\mathbb{F}\) is an algebraically closed field with characteristic zero. The bracket \([,\,]\) stands for the commutator and the curly bracket \(\{,\,\}\) stands for the anticommutator.

The Racah algebra \(\mathbb{R}\) is a unital associative \(\mathbb{F}\)-algebra with a presentation given by generators \(A, B, C, D\) and the relations state that
\[
[A, B] = [B, C] = [C, A] = 2D
\]
and each of
\[
[A, D] + AC - BA, \quad [B, D] + BA - CB, \quad [C, D] + CB - AC
\]
is central in \(\mathbb{R}\). The algebra \(\mathbb{R}\) was first appeared in the study of the quantum mechanical coupling of three angular momenta \([28]\) and realized by the intermediate Casimir operators.

The research is supported by the Ministry of Science and Technology of Taiwan under the project MOST 106-2628-M-008-001-MY4.
of \(\mathfrak{su}(1,1)^{\otimes 3}\) and \(\mathfrak{su}(2)^{\otimes 3}\) \cite{11,16}. The Racah algebra was also explored in a broad range of areas including orthogonal polynomials, distance regular graphs, superintegrable models and Leonard triples \cite{6,8,12,14,17,20,23,27,29,31,32}.

In \cite{21} W. Groenevelt introduced an additive analogue of DAHA (double affine Hecke algebra) of type \((C_1^\vee, C_1)\) and used it to study generalized Fourier transforms. The additive DAHA of type \((C_1^\vee, C_1)\) also showed up in the context of Bannai–Ito polynomials \cite{15}. Given four parameters \(k_0, k_1, k_0^\vee, k_1^\vee \in \mathbb{F}\) the algebra has a presentation \cite[Proposition 2.12]{21} given by generators \(t_0, t_1, t_0^\vee, t_1^\vee\) and relations

\[
t_0 + t_1 + t_0^\vee + t_1^\vee = -1, \\
t_0^2 = k_0, \\
t_1^2 = k_1, \\
t_0^\vee = k_0^\vee, \\
t_1^\vee = k_1^\vee.
\]

In this paper we consider its central extension, denoted by \(\mathfrak{H}\), obtained from the above presentation by reinterpreting the four parameters \(k_0, k_1, k_0^\vee, k_1^\vee\) as central elements.

According to the results from \cite[Section 2]{14} and \cite[Proposition 2]{15}, there exists a unique \(\mathbb{F}\)-algebra homomorphism \(\zeta: \mathcal{R} \to \mathfrak{H}\) that sends

\[
A \mapsto \frac{(t_1^\vee + t_0^\vee)(t_1^\vee + t_0^\vee + 2)}{4},
\]

\[
B \mapsto \frac{(t_1 + t_1^\vee)(t_1 + t_1^\vee + 2)}{4},
\]

\[
C \mapsto \frac{(t_0^\vee + t_1)(t_0^\vee + t_1 + 2)}{4}.
\]

Thus each \(\mathfrak{H}\)-module is an \(\mathcal{R}\)-module by pulling back via \(\zeta\). Note that \(\zeta\) is shown to be injective \cite{23} and the classifications of finite-dimensional irreducible \(\mathcal{R}\)-modules and \(\mathfrak{H}\)-modules are given in \cite{5} and \cite{22}, respectively. The purpose of this paper is to classify the lattices of \(\mathcal{R}\)-submodules of finite-dimensional irreducible \(\mathfrak{H}\)-modules.

The paper is organized as follows. In \S 2 we give some preliminaries on \(\mathcal{R}\) and \(\mathfrak{H}\), as well as review the homomorphism from \(\mathcal{R}\) into \(\mathfrak{H}\). In \S 3 we lay the groundwork for the finite-dimensional irreducible \(\mathcal{R}\)-modules and \(\mathfrak{H}\)-modules. In \S 4 we classify the lattices of \(\mathcal{R}\)-submodules of finite-dimensional irreducible \(\mathfrak{H}\)-modules. In \S 5 we end the paper with a summary of the classification and its consequences.

2. The Racah algebra and the universal additive DAHA of type \((C_1^\vee, C_1)\)

Definition 2.1 \cite{2,14,16,28}. The Racah algebra \(\mathcal{R}\) is a unital associative \(\mathbb{F}\)-algebra defined by generators and relations in the following way. The generators are \(A, B, C, D\) and the relations state that

\[
[A, B] = [B, C] = [C, A] = 2D
\]

and each of

\[
[A, D] + AC - BA, \\
[B, D] + BA - CB, \\
[C, D] + CB - AC
\]

commutes with \(A, B, C, D\).

Let

\[
\delta = A + B + C.
\]

Lemma 2.2. (i) The Racah algebra \(\mathcal{R}\) is generated by \(A, B, C\).

(ii) The Racah algebra \(\mathcal{R}\) is generated by \(A, B, \delta\).
(iii) The element δ is central in \mathcal{R}.

Proof. (i): Immediate from (1).

(ii): Since $C = \delta - A - B$ and by (i) the statement (ii) follows.

(iii): By (1) the element δ commutes with each of A, B, C. Hence (iii) follows by (i). □

Definition 2.3 ([15, 21]). The universal additive DAHA (double affine Hecke algebra) \mathcal{H} of type (C^\vee_1, C_1) is a unital associative \mathbb{F}-algebra defined by generators and relations. The generators are $t_0, t_1, t_0^\vee, t_1^\vee$ and the relations state that

$$t_0 + t_1 + t_0^\vee + t_1^\vee = -1$$

and each of $t_0^2, t_1^2, t_0^\vee 2, t_1^\vee 2$ commutes with $t_0, t_1, t_0^\vee, t_1^\vee$.

Recall from [1, 3, 4, 9, 10, 13, 30] that the Bannai–Ito algebra \mathfrak{B}_P is a unital associative \mathbb{F}-algebra generated by X, Y, Z and the relations assert that each of

$$\{X, Y\} - Z, \quad \{Y, Z\} - X, \quad \{Z, X\} - Y$$

is central in \mathfrak{B}_P. By [15, Proposition 2] there exists an \mathbb{F}-algebra isomorphism $\mathcal{H} \rightarrow \mathfrak{B}_P$ that sends

$$
t_0 \mapsto \frac{X + Y + Z}{2} - \frac{1}{4},
$$

$$
t_1 \mapsto \frac{X - Y - Z}{2} - \frac{1}{4},
$$

$$
t_0^\vee \mapsto \frac{Y - Z - X}{2} - \frac{1}{4},
$$

$$
t_1^\vee \mapsto \frac{Z - X - Y}{2} - \frac{1}{4}.
$$

Theorem 2.4 ([14, 23]). There exists a unique \mathbb{F}-algebra homomorphism $\zeta : \mathcal{R} \rightarrow \mathcal{H}$ that sends

$$A \mapsto \frac{(t_1^\vee + t_0^\vee)(t_1^\vee + t_0^\vee + 2)}{4},$$

$$B \mapsto \frac{(t_1 + t_1^\vee)(t_1 + t_1^\vee + 2)}{4},$$

$$C \mapsto \frac{(t_0^\vee + t_1)(t_0^\vee + t_1 + 2)}{4},$$

$$\delta \mapsto \frac{t_0^2 + t_1^2 + t_0^\vee 2 + t_1^\vee 2}{4} - \frac{t_0}{2} - \frac{3}{4}.
$$

By Theorem 2.4 each \mathcal{H}-module is an \mathcal{R}-module by pulling back via ζ.

3. Finite-dimensional irreducible \mathcal{R}-modules and \mathcal{H}-modules

In §3.1 we recall some results on the finite-dimensional irreducible \mathcal{R}-modules from [5]. In §3.2 and §3.3 we rephrase some results on the finite-dimensional irreducible \mathfrak{B}_P-modules from [22] in terms of the \mathcal{H}-modules.
3.1. Finite-dimensional irreducible \mathbb{R}-modules.

Proposition 3.1 ([5]). For any scalars $a, b, c \in \mathbb{F}$ and any integer $d \geq 0$, there exists a $(d + 1)$-dimensional \mathbb{R}-module $R_d(a, b, c)$ satisfying the following conditions (i), (ii):

(i) There exists an \mathbb{F}-basis for $R_d(a, b, c)$ with respect to which the matrices representing A and B are

\[
\begin{pmatrix}
\theta_0 & \theta_1 & 0 \\
1 & \theta_2 & \\
& \ddots & \ddots \\
0 & \cdots & 1 & \theta_d
\end{pmatrix}, \quad \begin{pmatrix}
\varphi_0^* & \varphi_1^* & 0 \\
\theta_1^* & \varphi_2^* & \\
& \ddots & \ddots \\
0 & \cdots & \theta_d^*
\end{pmatrix},
\]

respectively, where

\[
\theta_i = (a + \frac{d}{2} - i)(a + \frac{d}{2} - i + 1) \quad (0 \leq i \leq d),
\]

\[
\theta_i^* = (b + \frac{d}{2} - i)(b + \frac{d}{2} - i + 1) \quad (0 \leq i \leq d),
\]

\[
\varphi_i = i(i - d - 1)(a + b + c + \frac{d}{2} - i + 2)(a + b - c + \frac{d}{2} - i + 1) \quad (1 \leq i \leq d).
\]

(ii) The element δ acts on $R_d(a, b, c)$ as scalar multiplication by

\[
d(\frac{d}{2} + 1) + a(a + 1) + b(b + 1) + c(c + 1).
\]

Proposition 3.2 ([5]). For any scalars $a, b, c \in \mathbb{F}$ and any integer $d \geq 0$, the \mathbb{R}-module $R_d(a, b, c)$ is irreducible if and only if

\[
a + b + c + 1, -a + b + c, a - b + c, a + b - c \not\in \left\{ \frac{d}{2} - i \bigg| i = 1, 2, \ldots, d \right\}.
\]

Theorem 3.3 ([3]). Let $d \geq 0$ denote an integer. If V is a $(d + 1)$-dimensional irreducible \mathbb{R}-module then there exist $a, b, c \in \mathbb{F}$ such that $R_d(a, b, c)$ is isomorphic to V.

3.2. Even-dimensional irreducible \mathbb{F}-modules.

Proposition 3.4 ([22]). For any scalars $a, b, c \in \mathbb{F}$ and any odd integer $d \geq 1$, there exists a $(d + 1)$-dimensional \mathbb{F}-module $E_d(a, b, c)$ that has an \mathbb{F}-basis $\{v_i\}_{i=0}^d$ such that

\[
t_0v_i = \begin{cases}
 i(d - i + 1)v_{i-1} - \frac{d - 2i + 1}{2}v_i & \text{for } i = 2, 4, \ldots, d - 1, \\
 \frac{d - 2i - 1}{2}v_i + v_{i+1} & \text{for } i = 1, 3, \ldots, d - 2,
\end{cases}
\]

\[
t_0v_0 = -\frac{d + 1}{2}v_0, \quad t_0v_d = -\frac{d + 1}{2}v_d,
\]

\[
t_1v_i = \begin{cases}
 i(i - d - 1)v_{i-1} + av_i + v_{i+1} & \text{for } i = 2, 4, \ldots, d - 1, \\
 -av_i & \text{for } i = 1, 3, \ldots, d,
\end{cases}
\]

\[
t_1v_0 = av_0 + v_1,
\]

\[
t_1v_d = av_d + v_{d+1},
\]

\[
t_0^tv_i = \begin{cases}
 bv_i & \text{for } i = 0, 2, \ldots, d - 1, \\
 -\sigma v_i & \text{for } i = 1, 3, \ldots, d - 2,
\end{cases}
\]

\[
t_0^tv_d = -\sigma v_d,
\]

\[
t_0^{t'}v_i = \begin{cases}
 bv_i & \text{for } i = 0, 2, \ldots, d - 1, \\
 -\sigma v_i & \text{for } i = 1, 3, \ldots, d - 2.
\end{cases}
\]
Odd-dimensional irreducible H-modules

3.3. For any scalars $a, b, c \in \mathbb{F}$ and any odd integer $d \geq 1$, the elements $t_0^2, t_1^2, t_0^\vee, t_1^\vee$ act on $E_d(a, b, c)$ as scalar multiplication by $(d+1)^2, a^2, b^2, c^2$ respectively.

Proof. Apply Proposition 3.3 to evaluate the actions of $t_0^2, t_1^2, t_0^\vee, t_1^\vee$ on $E_d(a, b, c)$. \hfill \Box

Proposition 3.6 (22). For any scalars $a, b, c \in \mathbb{F}$ and any odd integer $d \geq 1$, the \mathcal{H}-module $E_d(a, b, c)$ is irreducible if and only if

$$a + b + c, -a + b + c, a - b + c, a + b - c \notin \left\{ \frac{d-1}{2} - i \right\} \text{ for } i = 0, 2, \ldots, d-1.$$

Observe that there exists a unique $\{\pm 1\}^2$-action on \mathcal{H} such that each $(\varepsilon, \varepsilon') \in \{\pm 1\}^2$ acts on \mathcal{H} as an \mathbb{F}-algebra automorphism in the following way:

u	t_0	t_1	t_0^\vee	t_1^\vee
$u^{(1,1)}$	t_0	t_1	t_0^\vee	t_1^\vee
$u^{(1,-1)}$	t_1	t_0	t_1^\vee	t_0^\vee
$u^{(-1,1)}$	t_1^\vee	t_0^\vee	t_0	t_1
$u^{(-1,-1)}$	t_1	t_0	t_1	t_0

Table 1. The $\{\pm 1\}^2$-action on \mathcal{H}

For any $(\varepsilon, \varepsilon') \in \{\pm 1\}^2$, we define

$$E_d(a, b, c)^{(\varepsilon, \varepsilon')}$$

to be the \mathcal{H}-module obtained by pulling back $E_d(a, b, c)$ via $(\varepsilon, \varepsilon')$. Note that the \mathcal{H}-modules $E_d(a, b, c)$ and $E_d(a, b, c)^{(1,1)}$ are identical.

Theorem 3.7 (22). Let $d \geq 1$ denote an odd integer. If V is a $(d+1)$-dimensional irreducible \mathcal{H}-module then there exist $a, b, c \in \mathbb{F}$ and $(\varepsilon, \varepsilon') \in \{\pm 1\}^2$ such that $E_d(a, b, c)^{(\varepsilon, \varepsilon')}$ is isomorphic to V.

3.3. Odd-dimensional irreducible \mathcal{H}-modules.

Proposition 3.8 (22). For any scalars $a, b, c \in \mathbb{F}$ and any even integer $d \geq 0$, there exists a $(d+1)$-dimensional \mathcal{H}-module $O_d(a, b, c)$ that has an \mathbb{F}-basis $\{v_i\}_{i=0}^d$ such that

$$t_0v_i = \begin{cases}
-i(\sigma + i)v_{i-1} + \frac{\sigma + 2i}{2}v_i & \text{for } i = 2, 4, \ldots, d, \\
\frac{\sigma + 2i}{2}v_i + v_{i+1} & \text{for } i = 1, 3, \ldots, d-1, \\
\frac{\sigma}{2}v_0 & \text{for } i = 0.
\end{cases}$$

\[(9) \]

where

$$\sigma = a + b + c - \frac{d+1}{2}, \quad \tau = a + b - c - \frac{d+1}{2}.$$
Theorem 3.11

Lemma 3.9. For any scalars \(a, b, c \in \mathbb{F}\) and any even integer \(d \geq 0\), the elements \(t_0^2, t_1^2, t_0^\vee_2, t_1^\vee_2\) act on \(O_d(a, b, c)\) as scalar multiplication by

\[
\begin{align*}
\left(\frac{a + b + c - d + 1}{2}\right)^2, & \quad \left(\frac{a - b - c - d + 1}{2}\right)^2, \\
\left(\frac{c - a - b - d + 1}{2}\right)^2, & \quad \left(\frac{b - a - c - d + 1}{2}\right)^2,
\end{align*}
\]

respectively.

Proof. Apply Proposition 3.8 to evaluate the actions of \(t_0^2, t_1^2, t_0^\vee_2, t_1^\vee_2\) on \(O_d(a, b, c)\).

Proposition 3.10 \((\text{[22]})\). For any scalars \(a, b, c \in \mathbb{F}\) and any even integer \(d \geq 0\), the \(\mathfrak{H}\)-module \(O_d(a, b, c)\) is irreducible if and only if

\[
a + b + c, a - b - c, -a + b - c, -a - b + c \notin \{d + 1 - \frac{i}{2} \mid i = 2, 4, \ldots, d\}.
\]

Theorem 3.11 \((\text{[22]})\). Let \(d \geq 0\) denote an even integer. If \(V\) is a \((d + 1)\)-dimensional irreducible \(\mathfrak{H}\)-module then there exist \(a, b, c \in \mathbb{F}\) such that \(O_d(a, b, c)\) is isomorphic to \(V\).

4. THE CLASSIFICATION OF LATTICES OF \(\mathbb{R}\)-SUBMODULES OF FINITE-DIMENSIONAL IRREDUCIBLE \(\mathfrak{H}\)-MODULES

In \((\text{[41.1]}\) we investigate the role of \(t_0\) in the \(\mathbb{R}\)-submodules of an \(\mathfrak{H}\)-module. According to Theorems 3.7 and 3.11 it is enough to contemplate the lattices of \(\mathbb{R}\)-submodules of the irreducible \(\mathfrak{H}\)-modules \(E_d(a, b, c)^{(c,e)}\) and \(O_d(a, b, c)\). In \((\text{[41.2]}\) \text{[41.6]} we individually classify those lattices.
4.1. **The eigenspaces of** t_0 **as** \mathbb{R}-modules.

Lemma 4.1. The following equations hold in \mathfrak{H}:

\[
\{t_0 + t_1, [t_1, t_0]\} = 0, \\
\{t_0 + t_0^\vee, [t_0^\vee, t_0]\} = 0, \\
\{t_0 + t_1^\vee, [t_1^\vee, t_0]\} = 0.
\]

Proof. A direct calculation yields that

\[
\{t_0 + t_1, [t_1, t_0]\} = t_1^2 t_0 + t_1 t_0^2 - t_0 t_1 - t_0 t_1^2.
\]

Since t_0^2 and t_1^2 are central in \mathfrak{H} by Definition 2.3, the right-hand side of (10) is zero. By similar arguments the other two equations follow.

By [23, Theorem 6.4] the \mathbb{F}-algebra homomorphism ζ given in Theorem 2.4 is injective. Thus the Racah algebra \mathbb{R} can be considered as a subalgebra of \mathfrak{H}.

Lemma 4.2. The element t_0 is in the centralizer of \mathbb{R} in \mathfrak{H}.

Proof. By Lemma 2.2(i) it suffices to show that t_0 commutes with each of A, B, C. Any elements x, y, z in a ring satisfy

\[
[x y, z] = x [y, z] + [x, z] y.
\]

Applying (11) with $(x, y, z) = (t_0^\vee + t_1^\vee, t_0^\vee + t_1^\vee + 2, t_0)$, the right-hand side of the resulting equation is

\[
(t_0^\vee + t_1^\vee)(t_0^\vee + t_1^\vee + 2, t_0) + [t_0^\vee + t_1^\vee, t_0](t_0^\vee + t_1^\vee + 2)
\]

and the left-hand side is $4[A, t_0]$ by Theorem 2.4. Using (2) yields that (12) is equal to $\{t_0 + t_1, [t_1, t_0]\}$. Combined with Lemma 4.1, we have $[A, t_0] = 0$. By similar arguments, each of $[B, t_0]$ and $[C, t_0]$ is zero. The lemma follows.

Given any \mathfrak{H}-module V and any $\theta \in \mathbb{F}$ we let

\[
V(\theta) = \{v \in V \mid t_0 v = \theta v\}.
\]

Proposition 4.3. If V is an \mathfrak{H}-module then $V(\theta)$ is an \mathbb{R}-submodule of V for any $\theta \in \mathbb{F}$.

Proof. For any $\theta \in \mathbb{F}$ it follows from Lemma 4.1 that $V(\theta)$ is x-invariant for all $x \in \mathbb{R}$.

Proposition 4.4. Let V denote a finite-dimensional irreducible \mathfrak{H}-module. For any irreducible \mathbb{R}-submodule W of V, there exists a scalar $\theta \in \mathbb{F}$ such that $W \subseteq V(\theta)$.

Proof. Recall from Lemma 2.2(iii) that δ is central in \mathbb{R}. Recall from Definition 2.3 that each of $t_0^2, t_1^2, t_0^\vee, t_1^\vee$ is central in \mathfrak{H}. It follows from Schur’s lemma that the action of δ on W and the actions of $t_0^2, t_1^2, t_0^\vee, t_1^\vee$ on V are scalar multiplication. By Theorem 2.4 the element t_0 is an \mathbb{F}-linear combination of $1, \delta, t_0^2, t_1^2, t_0^\vee, t_1^\vee$. Hence t_0 acts on W as scalar multiplication. The proposition follows.
4.2. The lattice of \mathcal{R}-submodules of $E_d(a,b,c)$. Throughout §4.2–§4.5 we adopt the notation from §3.2 and let
\[\rho_i = c^2 - \left(a + b - \frac{d+1}{2} + i \right)^2 \quad \text{for } i = 1,3,\ldots,d. \]

Lemma 4.5. The matrix representing t_0 with respect to the \mathbb{F}-basis

\[v_0, \quad v_d, \quad v_i - iv_{i-1} \quad \text{for } i = 2,4,\ldots,d-1, \quad v_i \quad \text{for } i = 1,3,\ldots,d-2 \]

for $E_d(a,b,c)$ is

\[
\begin{pmatrix}
-\frac{d+1}{2}I_2 & 0 & 0 \\
0 & -\frac{d+1}{2}I_{d-1} & \frac{1}{2}I_{d-1} \\
0 & 0 & \frac{d+1}{2}I_{d-1}
\end{pmatrix}.
\]

Proof. Applying (3) and (4) it is routine to verify the lemma.

Lemma 4.6.
(i) If $d = 1$ then t_0 is diagonalizable on $E_d(a,b,c)$ with exactly one eigenvalue $-\frac{d+1}{2}$.

(ii) If $d \geq 3$ then t_0 is diagonalizable on $E_d(a,b,c)$ with exactly two eigenvalues $\pm \frac{d+1}{2}$.

Proof. Immediate from Lemma 4.5

It follows from Proposition 4.3 that $E_d(a,b,c)(-\frac{d+1}{2})$ is an \mathcal{R}-submodule of $E_d(a,b,c)$. We now go into the \mathcal{R}-modules $E_d(a,b,c)(-\frac{d+1}{2})$ and $E_d(a,b,c)/E_d(a,b,c)(-\frac{d+1}{2})$.

Lemma 4.7. $E_d(a,b,c)(-\frac{d+1}{2})$ is of dimension $\frac{d+3}{2}$ with the \mathbb{F}-basis

\[v_0, \quad v_d, \quad v_i - iv_{i-1} \quad \text{for } i = 2,4,\ldots,d-1. \]

Proof. It is straightforward to verify the lemma by using Lemma 4.5

Lemma 4.8. The actions of A and B on the \mathcal{R}-module $E_d(a,b,c)$ are as follows:

\[
Av_i = \begin{cases}
\theta_i v_i - \frac{1}{2}v_{i+1} + \frac{1}{4}v_{i+2} & \text{for } i = 0,2,\ldots,d-3, \\
\theta_i v_i + \frac{1}{2}v_{i+2} & \text{for } i = 1,3,\ldots,d-2,
\end{cases}
\]

$Av_{d-1} = \theta_{d-1}v_{d-1} - \frac{1}{2}v_d, \quad Av_d = \theta_d v_d$,

\[
Bv_i = \begin{cases}
\theta^*_i v_i + \frac{i(d-i+1)}{4} \rho_{i-1}v_{i-2} & \text{for } i = 2,4,\ldots,d-1, \\
\theta^*_i v_i - \frac{\rho_i}{2}v_{i-1} + \frac{(i-1)(d-i+2)}{4} \rho_i v_{i-2} & \text{for } i = 3,5,\ldots,d,
\end{cases}
\]

$Bv_0 = \theta^*_0 v_0, \quad Bv_1 = \theta^*_1 v_1 - \frac{\rho_1}{2}v_0$,

where

\[
\theta_i = \left(\frac{a}{2} - \frac{d-1}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{a}{2} - \frac{d+3}{4} + \left\lceil \frac{i}{2} \right\rceil \right), \quad (0 \leq i \leq d),
\]

\[
\theta^*_i = \left(\frac{b}{2} - \frac{d-1}{4} + \left\lceil \frac{i}{2} \right\rceil \right) \left(\frac{b}{2} - \frac{d+3}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right), \quad (0 \leq i \leq d).
\]
Proof. Apply Theorem 2.4 and Proposition 3.4 to evaluate the actions of A and B on $E_d(a, b, c)$. □

Lemma 4.9. The matrices representing A and B with respect to the \mathbb{F}-basis

\begin{equation}
\begin{aligned}
(v_0, \quad \frac{1}{2^i}(v_i - iv_{i-1}) \quad \text{for } i = 2, 4, \ldots, d - 1, \quad \frac{(d + 1)}{2d + 1}v_d
\end{aligned}
\end{equation}

for the \mathbb{R}-module $E_d(a, b, c)(-\frac{d+1}{2})$ are

\[
\begin{pmatrix}
\theta_0 & 0 \\
1 & \theta_1 \\
1 & \theta_2 \\
\vdots & \ddots \\
0 & \cdots & 1 & \theta_{\frac{d+1}{2}}
\end{pmatrix},
\begin{pmatrix}
\varphi_0^* & 0 \\
\varphi_1^* & \varphi_2^* \\
\varphi_2^* & \ddots \\
0 & \cdots & \varphi_{\frac{d+1}{2}}^*
\end{pmatrix}
\]

respectively, where

\[
\begin{align*}
\theta_i &= \frac{(2a - d + 4i - 3)(2a - d + 4i + 1)}{16} \quad (0 \leq i \leq \frac{d+1}{2}), \\
\theta_i^* &= \frac{(2b - d + 4i - 3)(2b - d + 4i + 1)}{16} \quad (0 \leq i \leq \frac{d+1}{2}), \\
\varphi_i &= \frac{i(2i - d - 3)(2a + 2b + 2c - d + 4i - 3)(2a + 2b - 2c - d + 4i - 3)}{32} \quad (1 \leq i \leq \frac{d+1}{2}).
\end{align*}
\]

The element δ acts on the \mathbb{R}-module $E_d(a, b, c)(-\frac{d+1}{2})$ as scalar multiplication by

\begin{equation}
\begin{aligned}
\frac{(d+1)(d+5)}{16} + \frac{(a-1)(a+1)}{4} + \frac{(b-1)(b+1)}{4} + \frac{(c-1)(c+1)}{4}.
\end{aligned}
\end{equation}

Proof. By Lemma 4.7 the vectors (14) are an \mathbb{F}-basis for $E_d(a, b, c)(-\frac{d+1}{2})$. Applying Lemma 4.8 a direct calculation yields the matrices representing A and B with respect to (14). By Theorem 2.4 and Lemma 3.5 the element δ acts on $E_d(a, b, c)(-\frac{d+1}{2})$ as scalar multiplication by (15). The lemma follows. □

Proposition 4.10. The \mathbb{R}-module $E_d(a, b, c)(-\frac{d+1}{2})$ is isomorphic to

\[
R_{\frac{d+1}{2}} \left(\frac{-a + 1}{2}, \frac{-b + 1}{2}, \frac{-c + 1}{2}\right).
\]

Moreover the \mathbb{R}-module $E_d(a, b, c)(-\frac{d+1}{2})$ is irreducible provided that the \mathcal{H}-module $E_d(a, b, c)$ is irreducible.

Proof. Set $(a', b', c', d') = (\frac{-a + 1}{2}, \frac{-b + 1}{2}, \frac{-c + 1}{2}, \frac{d+1}{2})$. Comparing Proposition 3.1 with Lemma 4.9 it follows that the \mathbb{R}-module $E_d(a, b, c)(-\frac{d+1}{2})$ is isomorphic to $R_{\frac{d'}{2}}(a', b', c')$. Suppose that the \mathcal{H}-module $E_d(a, b, c)$ is irreducible. Using Proposition 3.6 yields that

\[
a' + b' + c' + 1, -a' + b' + c', a' - b' + c', a' + b' - c' \not\subset \left\{\frac{d'}{2} - i \middle| i = 1, 2, \ldots, d'\right\}.
\]

By Proposition 3.2 the \mathbb{R}-module $R_{\frac{d'}{2}}(a', b', c')$ is irreducible. The proposition follows. □
Lemma 4.11. Suppose that \(d \geq 3 \). Then the matrices representing \(A \) and \(B \) with respect to the \(\mathbb{F} \)-basis

\[
\frac{1}{2i-1}v_i + E_d(a, b, c)(-\frac{d+1}{2}) \quad \text{for } i = 1, 3, \ldots, d - 2
\]

for the \(\mathcal{R} \)-module \(E_d(a, b, c)/E_d(a, b, c)(-\frac{d+1}{2}) \) are

\[
\begin{pmatrix}
\theta_0 & 0 \\
1 & \theta_1 \\
1 & \theta_2 \\
\vdots & \ddots \\
0 & 1 & \theta_{\frac{d+1}{2}}
\end{pmatrix}, \quad \begin{pmatrix}
\theta_0 & \varphi_1 & 0 \\
\theta_1 & \varphi_2 & \ddots \\
0 & \ddots & \ddots \\

\end{pmatrix}
\]

respectively, where

\[
\theta_i = \frac{(2a - d + 4i + 5)(2a - d + 4i + 1)}{16} \quad \text{for } 0 \leq i \leq \frac{d-3}{2},
\]

\[
\varphi_i = \frac{i(2i - d + 1)(2a + 2b + 2c - d + 4i + 1)(2a + 2b - 2c - d + 4i + 1)}{32} \quad \text{for } 1 \leq i \leq \frac{d-3}{2}.
\]

The element \(\delta \) acts on the \(\mathcal{R} \)-module \(E_d(a, b, c)/E_d(a, b, c)(-\frac{d+1}{2}) \) as scalar multiplication by

\[
\frac{(d-3)(d+1)}{16} + \frac{(a-1)(a+1)}{4} + \frac{(b-1)(b+1)}{4} + \frac{(c-1)(c+1)}{4}.
\]

Proof. By Lemma 4.7 the cosets (16) are an \(\mathbb{F} \)-basis for \(E_d(a, b, c)/E_d(a, b, c)(-\frac{d+1}{2}) \). Applying Lemma 4.8 a direct calculation yields the matrices representing \(A \) and \(B \) with respect to (16). By Lemma 4.5 the element \(t_0 \) acts on \(E_d(a, b, c)/E_d(a, b, c)(-\frac{d+1}{2}) \) as scalar multiplication by \(\frac{d+1}{2} \). Combined with Theorem 2.4 and Lemma 3.5 it follows that \(\delta \) acts on \(E_d(a, b, c)/E_d(a, b, c)(-\frac{d+1}{2}) \) as scalar multiplication by (17). The lemma follows. \(\square \)

Proposition 4.12. Suppose that \(d \geq 3 \). Then the \(\mathcal{R} \)-module \(E_d(a, b, c)/E_d(a, b, c)(-\frac{d+1}{2}) \) is isomorphic to

\[
R_{\frac{d+1}{2}} \left(-\frac{a+1}{2}, -\frac{b+1}{2}, -\frac{c+1}{2} \right).
\]

Moreover the \(\mathcal{R} \)-module \(E_d(a, b, c)/E_d(a, b, c)(-\frac{d+1}{2}) \) is irreducible provided that the \(\mathcal{S} \)-module \(E_d(a, b, c) \) is irreducible.

Proof. Set \((a', b', c', d') = (-\frac{a+1}{2}, -\frac{b+1}{2}, -\frac{c+1}{2}, -\frac{d-3}{2}) \). Comparing Proposition 3.1 with Lemma 4.11 the quotient \(\mathcal{R} \)-module \(E_d(a, b, c)/E_d(a, b, c)(-\frac{d+1}{2}) \) is isomorphic to \(R_{d'}(a', b', c') \). Suppose that the \(\mathcal{S} \)-module \(E_d(a, b, c) \) is irreducible. Using Proposition 3.6 yields that

\[
a' + b' + c' + 1, -a' + b' + c', a' - b' + c', a' + b' - c' \not\in \left\{ \frac{d'}{2} - i \left| i = 0, 1, \ldots, d' + 1 \right. \right\}.
\]

By Proposition 3.2 the \(\mathcal{R} \)-module \(R_{d'}(a', b', c') \) is irreducible. The proposition follows. \(\square \)

Theorem 4.13. Assume that the \(\mathcal{S} \)-module \(E_d(a, b, c) \) is irreducible. Then the following hold:
(i) If \(d = 1 \) then the \(\mathbb{R} \)-module \(E_d(a, b, c) \) is irreducible.

(ii) If \(d \geq 3 \) then

\[
\begin{array}{c}
E_d(a, b, c) \\
\downarrow \\
E_d(a, b, c)(-\frac{d+1}{2}) \\
\downarrow \\
E_d(a, b, c)(\frac{d+1}{2}) \\
\downarrow \\
\{0\}
\end{array}
\]

is the lattice of \(\mathbb{R} \)-submodules of \(E_d(a, b, c) \).

Proof. (i): Suppose that \(d = 1 \). Then \(E_d(a, b, c) = E_d(a, b, c)(-\frac{d+1}{2}) \) by Lemma 4.6(i). It follows from Proposition 4.10 that the \(\mathbb{R} \)-module \(E_d(a, b, c) \) is irreducible. The statement (i) follows.

(ii): Suppose that \(d \geq 3 \). Combining Propositions 4.10 and 4.12 yields that

\[
\{0\} \subset E_d(a, b, c)(-\frac{d+1}{2}) \subset E_d(a, b, c)
\]

is a composition series for the \(\mathbb{R} \)-module \(E_d(a, b, c) \). By Proposition 4.13 and Lemma 4.6(ii), \(E_d(a, b, c)(\frac{d+1}{2}) \) is a nonzero \(\mathbb{R} \)-submodule of \(E_d(a, b, c) \). By Jordan–Hölder theorem the sequence

\[
\{0\} \subset E_d(a, b, c)(\frac{d+1}{2}) \subset E_d(a, b, c)
\]

is a composition series for the \(\mathbb{R} \)-module \(E_d(a, b, c) \). It follows from Proposition 4.4 that there is no other irreducible \(\mathbb{R} \)-submodule of \(E_d(a, b, c) \). Hence (18) and (19) are the unique two composition series for the \(\mathbb{R} \)-module \(E_d(a, b, c) \). The statement (ii) follows.

4.3. The lattice of \(\mathbb{R} \)-submodules of \(E_d(a, b, c)\)\(^{(1, -1)}\).

Lemma 4.14. The matrix representing \(t_0 \) with respect to the \(\mathbb{F} \)-basis

\[
v_1, \quad v_{i+1} - i(d - i + 1)v_{i-1} \quad \text{for } i = 2, 4, \ldots, d - 1, \quad v_i \quad \text{for } i = 0, 2, \ldots, d - 1
\]

for \(E_d(a, b, c)\)\(^{(1, -1)}\) is

\[
\begin{pmatrix}
-aI_{\frac{d+1}{2}} & I_{\frac{d+1}{2}} \\
0 & aI_{\frac{d+1}{2}}
\end{pmatrix}.
\]

Proof. By Table 1 the action of \(t_0 \) on \(E_d(a, b, c)\)\(^{(1, -1)}\) corresponds to the action of \(t_1 \) on \(E_d(a, b, c) \). By (5) and (6) it is routine to verify the lemma.

Lemma 4.15. (i) If \(a = 0 \) then \(t_0 \) is not diagonalizable on \(E_d(a, b, c)\)\(^{(1, -1)}\) with exactly one eigenvalue 0.

(ii) If \(a \neq 0 \) then \(t_0 \) is diagonalizable on \(E_d(a, b, c)\)\(^{(1, -1)}\) with exactly two eigenvalues \(\pm a \).

Proof. Immediate from Lemma 4.14.

Lemma 4.16. \(E_d(a, b, c)\)\(^{(1, -1)}\)(\(-a\)) is of dimension \(\frac{d+1}{2} \) with the \(\mathbb{F} \)-basis

\[
v_i \quad \text{for } i = 1, 3, \ldots, d.
\]

Proof. Immediate from Lemma 4.14.
Lemma 4.17. The actions of A and B on the \mathfrak{N}-module $E_d(a, b, c)^{(1, -1)}$ are as follows:

$$Av_i = \begin{cases}
\theta_i v_i - \frac{1}{2} v_{i+1} + \frac{1}{4} v_{i+2} & \text{for } i = 0, 2, \ldots, d - 3, \\
\theta_i v_i + \frac{1}{4} v_{i+2} & \text{for } i = 1, 3, \ldots, d - 2,
\end{cases}$$

$$Av_{d-1} = \theta_{d-1} v_{d-1} - \frac{1}{2} v_d, \quad Av_d = \theta_d v_d,$$

$$Bv_i = \begin{cases}
\theta_i^* v_i + \frac{i (d - i + 1)}{4} v_{i-1} + \frac{i (d - i + 1)}{4} \rho_{i-1} v_{i-2} & \text{for } i = 2, 4, \ldots, d - 1, \\
\theta_i^* v_i + \frac{(i - 1)(d - i + 2)}{4} \rho_{i-2} v_{i-2} & \text{for } i = 3, 5, \ldots, d,
\end{cases}$$

where

$$\theta_i = \left(\frac{a}{2} - \frac{d - 1}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{a}{2} - \frac{d + 3}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \quad (0 \leq i \leq d),$$

$$\theta_i^* = \left(\frac{b}{2} - \frac{d - 3}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{b}{2} - \frac{d + 1}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \quad (0 \leq i \leq d).$$

Proof. By Theorem 2.4 and Table 1 the actions of A and B on $E_d(a, b, c)^{(1, -1)}$ correspond to the actions of

$$\frac{(t_0^\gamma + t_1^\gamma)(t_0^\gamma + t_1^\gamma + 2)}{4}, \quad \frac{(t_0 + t_0^\gamma)(t_0 + t_0^\gamma + 2)}{4}$$
on $E_d(a, b, c)$, respectively. Applying Proposition 3.4 it is routine to verify the lemma. \square

Lemma 4.18. The matrices representing A and B with respect to the \mathbb{F}-basis

$$\frac{1}{2^{i-1}} v_i \quad \text{for } i = 1, 3, \ldots, d$$

for the \mathfrak{N}-module $E_d(a, b, c)^{(1, -1)}(-a)$ are

$$\begin{pmatrix}
\theta_0 & 1 & \theta_1 & 0 \\
1 & \theta_2 & \ddots & \ddots \\
& 0 & \ddots & \ddots \\
0 & \cdots & 1 & \theta_{d-1}
\end{pmatrix}, \quad \begin{pmatrix}
\theta_0^* & \varphi_1 & 0 \\
\varphi_1 & \theta_1^* & \varphi_2 \\
& \ddots & \ddots \\
0 & \ddots & \varphi_{d-1} & \theta_{d-1}^*
\end{pmatrix},$$

respectively, where

$$\theta_i = \frac{(2a - d + 4i + 1)(2a - d + 4i + 5)}{16} \quad (0 \leq i \leq \frac{d-1}{2}),$$

$$\theta_i^* = \frac{(2b - d + 4i - 1)(2b - d + 4i + 3)}{16} \quad (0 \leq i \leq \frac{d-1}{2}),$$

$$\varphi_i = \frac{i(2i - d - 1)(2a + 2b + 2c - d + 4i + 1)(2a + 2b - 2c - d + 4i + 1)}{32} \quad (1 \leq i \leq \frac{d-1}{2}).$$

The element δ acts on the \mathfrak{N}-module $E_d(a, b, c)^{(1, -1)}(-a)$ as scalar multiplication by

$$\frac{(d - 1)(d + 3)}{16} + \frac{a(a + 2)}{4} + \frac{(b - 1)(b + 1)}{4} + \frac{(c - 1)(c + 1)}{4},$$

for $i = 1, 3, \ldots, d$. The elements $\theta_i, \theta_i^*, \varphi_i, \varphi_{i+1}$ are as follows:
Proposition 4.19. The \(\mathcal{R} \)-module \(E_d(a, b, c)^{(1, -1)}(-a) \) is isomorphic to

\[
R_{d+1} \left(-\frac{a}{2} - 1, -\frac{b+1}{2}, -\frac{c+1}{2} \right).
\]

Moreover the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(1, -1)}(-a) \) is irreducible if the \(\mathcal{S} \)-module \(E_d(a, b, c)^{(1, -1)} \) is irreducible.

Proof. Set \((a', b', c', d') = (-\frac{a}{2} - 1, -\frac{b+1}{2}, -\frac{c+1}{2}, \frac{d+1}{2}) \). Comparing Proposition 3.1 with Lemma 4.18 it follows that the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(1, -1)}(-a) \) is isomorphic to \(R_d(a', b', c') \). Suppose that the \(\mathcal{S} \)-module \(E_d(a, b, c)^{(1, -1)} \) is irreducible. Using Proposition 3.6 yields that

\[
a' + b' + c' + 1, a' - b' + c', a' + b' + c' \not\subset \left\{ \frac{d' - i}{2} \mid i = 1, 2, \ldots, d' + 1 \right\}
\]

and

\[
-a' + b' + c' \not\subset \left\{ \frac{d' - i}{2} \mid i = 0, 1, \ldots, d' \right\}.
\]

By Proposition 3.2 the \(\mathcal{R} \)-module \(R_d(a', b', c') \) is irreducible. The proposition follows. \(\square \)

Lemma 4.20. The matrices representing \(A \) and \(B \) with respect to the \(\mathbb{F} \)-basis

\[
\frac{1}{2^i} v_i + E_d(a, b, c)^{(1, -1)}(-a) \quad \text{for } i = 0, 2, \ldots, d - 1
\]

for the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(1, -1)}/E_d(a, b, c)^{(1, -1)}(-a) \) are

\[
\begin{pmatrix}
\theta_0 & \varphi_{1} & 0 \\
1 & \theta_1 & 0 \\
& \ddots & \ddots \\
0 & 1 & \theta_{d+1}/2
\end{pmatrix},
\]

\[
\begin{pmatrix}
\theta_0^* & \varphi_{1} & 0 \\
\theta_1^* & \varphi_{2} & 0 \\
& \ddots & \ddots \\
0 & \theta_{d+1}^*/2 & \varphi_{d+1}/2
\end{pmatrix}
\]

respectively, where

\[
\theta_i = \frac{(2a - d + 4i - 3)(2a - d + 4i + 1)}{16} \quad (0 \leq i \leq \frac{d-1}{2}),
\]

\[
\theta_i^* = \frac{(2b - d + 4i - 1)(2b - d + 4i + 3)}{16} \quad (0 \leq i \leq \frac{d-1}{2}),
\]

\[
\varphi_i = \frac{i(2i - d - 1)(2a + 2b + 2c - d + 4i - 3)(2a + 2b - 2c - d + 4i - 3)}{32} \quad (1 \leq i \leq \frac{d-1}{2}).
\]

The element \(\delta \) acts on the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(1, -1)}/E_d(a, b, c)^{(1, -1)}(-a) \) as scalar multiplication by

\[
\frac{(d - 1)(d + 3)}{16} + \frac{a(a - 2)}{4} + \frac{(b - 1)(b + 1)}{4} + \frac{(c - 1)(c + 1)}{4}.
\]
Proof. By Lemma 4.16 the cosets (22) are an F-basis for $E_d(a, b, c)^{(1,-1)}/E_d(a, b, c)^{(1,-1)}(-a)$. Applying Lemma 4.17 a direct calculation yields the matrices representing A and B with respect to (22). By Lemma 4.14 the element t_0 acts on $E_d(a, b, c)^{(1,-1)}/E_d(a, b, c)^{(1,-1)}(-a)$ as scalar multiplication by a. Combined with Theorem 2.4 and Lemma 3.5 the element δ acts on $E_d(a, b, c)^{(1,-1)}/E_d(a, b, c)^{(1,-1)}(-a)$ as scalar multiplication by (23). The lemma follows. □

Proposition 4.21. The R-module $E_d(a, b, c)^{(1,-1)}/E_d(a, b, c)^{(1,-1)}(-a)$ is isomorphic to

$$R_{d+1}^d \left(\frac{-a}{2}, \frac{b+1}{2}, \frac{-c+1}{2} \right).$$

Moreover the R-module $E_d(a, b, c)^{(1,-1)}/E_d(a, b, c)^{(1,-1)}(-a)$ is irreducible provided that the H-module $E_d(a, b, c)^{(1,-1)}$ is irreducible. Using Proposition 3.6 yields that $$a' + b' + c' + 1', a' - b' + c', a' + b' - c' \not\in \left\{ \frac{d'}{2} - i \bigg| i = 0, 1, \ldots, d' \right\}$$ and $$-a' + b' + c' \not\in \left\{ \frac{d'}{2} - i \bigg| i = 1, 2, \ldots, d' + 1 \right\}.$$

By Proposition 3.2 the R-module $R_d^d(a', b', c')$ is irreducible. The proposition follows. □

Theorem 4.22. Assume that the H-module $E_d(a, b, c)^{(1,-1)}$ is irreducible. Then the following hold:

(i) If $a = 0$ then

$$E_d(a, b, c)^{(1,-1)}$$

$$\left| \begin{array}{c}
E_d(a, b, c)^{(1,-1)}(0) \\
\{0\}
\end{array} \right.$$

is the lattice of R-submodules of $E_d(a, b, c)^{(1,-1)}$.

(ii) If $a \neq 0$ then

$$E_d(a, b, c)^{(1,-1)}$$

$$\left| \begin{array}{c}
E_d(a, b, c)^{(1,-1)}(-a) \\
\{0\}
\end{array} \right|$$

$$\left| \begin{array}{c}
E_d(a, b, c)^{(1,-1)}(a) \\
\{0\}
\end{array} \right.$$

is the lattice of R-submodules of $E_d(a, b, c)^{(1,-1)}$.

Proof. (i): Suppose that \(a = 0 \). Combining Propositions 4.19 and 4.21 yields that
\[
(24) \quad \{0\} \subset E_d(a, b, c)^{(1, -1)}(0) \subset E_d(a, b, c)^{(1, -1)}
\]
is a composition series for the \(\mathbb{R} \)-module \(E_d(a, b, c)^{(1, -1)} \). By Proposition 4.3 and Lemma 4.15 (i) every irreducible \(\mathbb{R} \)-submodule of \(E_d(a, b, c)^{(1, -1)} \) is contained in \(E_d(a, b, c)^{(1, -1)}(0) \). Hence (24) is the unique composition series for the \(\mathbb{R} \)-module \(E_d(a, b, c)^{(1, -1)} \). Therefore (i) follows.

(ii): Similar to the proof of Theorem 4.13 (ii). \(\square \)

4.4. The lattice of \(\mathbb{R} \)-submodules of \(E_d(a, b, c)^{(-1,1)} \).

Lemma 4.23. Assume that the \(\mathfrak{H} \)-module \(E_d(a, b, c)^{(-1,1)} \) is irreducible. Then
\[
(25) \quad \rho_i v_{i-2} - v_i \quad \text{for } i = 2, 4, \ldots, d - 1, \quad \rho_d v_{d-1}, \quad v_i \quad \text{for } i = 1, 3, \ldots, d
\]
form an \(\mathbb{F} \)-basis for \(E_d(a, b, c)^{(-1,1)} \). The matrix representing \(t_0 \) with respect to the \(\mathbb{F} \)-basis (25) for \(E_d(a, b, c)^{(-1,1)} \) is
\[
\begin{pmatrix}
bI_{d+1} & I_{d+1} \\
0 & -bI_{d+1}
\end{pmatrix}.
\]

Proof. It follows from Proposition 3.6 that \(\rho_i \neq 0 \) for all \(i = 1, 3, \ldots, d \). Hence (25) is an \(\mathbb{F} \)-basis for \(E_d(a, b, c)^{(-1,1)} \). By Table 11 the action of \(t_0 \) on \(E_d(a, b, c)^{(-1,1)} \) corresponds to the action of \(t_0^* \) on \(E_d(a, b, c) \). Using (7) and (8) it is routine to verify the lemma. \(\square \)

Lemma 4.24. Assume that the \(\mathfrak{H} \)-module \(E_d(a, b, c)^{(-1,1)} \) is irreducible. Then the following hold:

(i) If \(b = 0 \) then \(t_0 \) is not diagonalizable on \(E_d(a, b, c)^{(-1,1)} \) with exactly one eigenvalue 0.

(ii) If \(b \neq 0 \) then \(t_0 \) is diagonalizable on \(E_d(a, b, c)^{(-1,1)} \) with exactly two eigenvalues \(\pm b \).

Proof. Immediate from Lemma 4.23. \(\square \)

Lemma 4.25. If the \(\mathfrak{H} \)-module \(E_d(a, b, c)^{(-1,1)} \) is irreducible then \(E_d(a, b, c)^{(-1,1)}(b) \) is of dimension \(\frac{d-1}{2} \) with the \(\mathbb{F} \)-basis
\[
v_i \quad \text{for } i = 0, 2, \ldots, d - 1.
\]

Proof. Immediate from Lemma 4.23. \(\square \)

Lemma 4.26. The actions of \(A \) and \(B \) on the \(\mathfrak{H} \)-module \(E_d(a, b, c)^{(-1,1)} \) are as follows:
\[
Av_i = \begin{cases}
\theta_i v_i + \frac{1}{4} v_{i+2} & \text{for } i = 0, 2, \ldots, d - 3, \\
\theta_i v_i + \frac{1}{2} v_{i+1} + \frac{1}{4} v_{i+2} & \text{for } i = 1, 3, \ldots, d - 2,
\end{cases}
Av_{d-1} = \theta_{d-1} v_{d-1}, \quad Av_d = \theta_d v_d,
\]
\[
Bv_i = \begin{cases}
\theta_i^* v_i + \frac{i(d - i + 1)}{4} \rho_{i-1} v_{i-2} & \text{for } i = 2, 4, \ldots, d - 1, \\
\theta_i^* v_i - \rho_i v_{i-1} + \frac{(i-1)(d - i + 2)}{4} \rho_{i-1} v_{i-2} & \text{for } i = 3, 5, \ldots, d,
\end{cases}
Bv_0 = \theta_0^* v_0, \quad Bv_1 = \theta_1^* v_1 - \frac{\rho_1}{2} v_0.
\]
Lemma 4.26. A straightforward calculation yields the matrices representing the actions of \(A \) and \(B \) on \(E_d(a, b, c)^{(1, -1)} \) corresponding to the elements \(\delta \) and \(\varphi \) respectively, where

\[
\theta_i = \left(\frac{a}{2} - \frac{d - 3}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{a}{2} - \frac{d + 1}{4} + \left\lceil \frac{i}{2} \right\rceil \right) (0 \leq i \leq d),
\]

\[
\theta_i^* = \left(\frac{b}{2} - \frac{d - 1}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{b}{2} - \frac{d + 3}{4} + \left\lceil \frac{i}{2} \right\rceil \right) (0 \leq i \leq d).
\]

Proof. By Theorem 2.4 and Table 1, the actions of \(A \) and \(B \) on \(E_d(a, b, c)^{(1, -1)} \) correspond to the elements \(\delta \) and \(\varphi \) respectively, where \(\delta \) acts on \(E_d(a, b, c) \) and \(\varphi \) acts as scalar multiplication by \(\frac{1}{2} \). Applying Proposition 3.4, it is routine to verify the lemma.

Lemma 4.27. Assume that the \(\mathcal{F} \)-module \(E_d(a, b, c)^{(-1,1)} \) is irreducible. Then the matrices representing \(A \) and \(B \) with respect to the \(\mathbb{F} \)-basis

\[
(26) \quad \frac{1}{2^i} v_i \quad \text{for } i = 0, 2, \ldots, d - 1
\]

for the \(\mathbb{R} \)-module \(E_d(a, b, c)^{(-1,1)}(b) \) are

\[
\begin{pmatrix}
\theta_0 & 1 & \theta_2 & \cdots & 0 \\
1 & \theta_1 & \theta_3 & \cdots & \\
0 & 1 & \theta_{d-1} & \cdots & \theta_{d-1}
\end{pmatrix},
\]

\[
\begin{pmatrix}
\theta_0^* & \varphi_1 & \theta_2^* & \cdots & \\
\varphi_1 & \theta_1^* & \varphi_2 & \cdots & \\
\theta_2^* & \varphi_2 & \theta_3^* & \cdots & \\
\vdots & \ddots & \ddots & \ddots & \\
0 & \cdots & \cdots & \varphi_{d-1} & \theta_{d-1}^*
\end{pmatrix}
\]

respectively, where

\[
\theta_i = \frac{(2a - d + 4i - 1)(2a - d + 4i + 3)}{16} (0 \leq i \leq \frac{d-1}{2}),
\]

\[
\theta_i^* = \frac{(2b - d + 4i - 3)(2b - d + 4i + 1)}{16} (0 \leq i \leq \frac{d-1}{2}),
\]

\[
\varphi_i = \frac{i(2i - d - 1)(2a + 2b + 2c + 4i - d - 3)(2a + 2b - 2c + 4i - d - 3)}{32} (1 \leq i \leq \frac{d-1}{2}).
\]

The element \(\delta \) acts on the \(\mathbb{R} \)-module \(E_d(a, b, c)^{(-1,1)}(b) \) as scalar multiplication by

\[
(27) \quad \frac{(d-1)(d+3)}{16} + \frac{(a-1)(a+1)}{4} + \frac{b(b-2)}{4} + \frac{(c-1)(c+1)}{4}.
\]

Proof. By Lemma 4.25, the vectors (26) are a \(\mathbb{F} \)-basis for \(E_d(a, b, c)^{(-1,1)}(b) \). Applying Lemma 4.26, a straightforward calculation yields the matrices representing \(A \) and \(B \) with respect to (26). By Theorem 2.4 and Lemma 3.5, the element \(\delta \) acts on \(E_d(a, b, c)^{(-1,1)}(b) \) as scalar multiplication by (27). The lemma follows.

Proposition 4.28. Assume that the \(\mathcal{F} \)-module \(E_d(a, b, c)^{(-1,1)} \) is irreducible. The \(\mathbb{R} \)-module \(E_d(a, b, c)^{(-1,1)}(b) \) is isomorphic to

\[
R_{\frac{d-1}{2}} \left[\frac{-a + 1}{2}, \frac{-b + c + 1}{2} \right].
\]

Moreover the \(\mathbb{R} \)-module \(E_d(a, b, c)^{(-1,1)}(b) \) is irreducible.
Proof. Set \((a', b', c', d') = (-\frac{a+1}{2}, -\frac{b}{2}, -\frac{c+1}{2}, \frac{d+1}{2})\). Comparing Proposition 3.1 with Lemma 4.27 yields that the \(\mathcal{R}\)-module \(E_d(a, b, c)^{(-1,1)}(b)\) is isomorphic to \(R_d'(a', b', c')\). It follows from Proposition 3.6 that
\[
a' + b' + c' + 1, -a' + b' + c', a' + b' - c' \notin \left\{ \frac{d'}{2} - i \right\}_{i=0,1,\ldots,d'}
\]
and
\[
a' - b' + c' \notin \left\{ \frac{d'}{2} - i \right\}_{i=1,2,\ldots,d'+1}.
\]
By Proposition 3.2 the \(\mathcal{R}\)-module \(R_d'(a', b', c')\) is irreducible. The proposition follows. \(\square\)

Lemma 4.29. Assume that the \(\mathfrak{H}\)-module \(E_d(a, b, c)^{(-1,1)}\) is irreducible. Then the matrices representing \(A\) and \(B\) with respect to the \(\mathcal{F}\)-basis
\[(28) \quad \frac{1}{2^{i-1}}v_i + E_d(a, b, c)^{(-1,1)}(b) \quad \text{for} \ i = 1, 3, \ldots, d
\]
for the \(\mathcal{R}\)-module \(E_d(a, b, c)^{(-1,1)}/E_d(a, b, c)^{(-1,1)}(b)\) are
\[
\begin{pmatrix}
\theta_0 \\ 1 \\
\theta_1 \\ 1 \\
\vdots \\ \theta_{d-1}/2 \\ 1 \\
\end{pmatrix}, \quad \begin{pmatrix}
\theta_0^* \\ \phi_1 \\ \theta_1^* \\ \phi_2 \\ \vdots \\ \theta_{d-1}^*/2 \\ \phi_d-1/2 \\
\end{pmatrix}
\]
respectively, where
\[
\theta_i = \frac{(2a - d + 4i - 1)(2a - d + 4i + 3)}{16} \quad (0 \leq i \leq \frac{d-1}{2}),
\]
\[
\theta_i^* = \frac{(2b - d + 4i + 1)(2b - d + 4i + 5)}{16} \quad (0 \leq i \leq \frac{d-1}{2}),
\]
\[
\phi_i = \frac{i(2i-d-1)(2a + 2b + 2c + 4i - d + 1)(2a + 2b - 2c + 4i - d + 1)}{32} \quad (1 \leq i \leq \frac{d-1}{2}).
\]
The element \(\delta\) acts on the \(\mathcal{R}\)-module \(E_d(a, b, c)^{(-1,1)}/E_d(a, b, c)^{(-1,1)}(b)\) as scalar multiplication by
\[(29) \quad \frac{(d-1)(d+3)}{16} + \frac{(a-1)(a+1)}{4} + \frac{b(b+2)}{4} + \frac{(c-1)(c+1)}{4}.
\]
Proof. By Lemma 4.25 the cosets (28) are an \(\mathcal{F}\)-basis for \(E_d(a, b, c)^{(-1,1)}/E_d(a, b, c)^{(-1,1)}(b)\). Applying Lemma 4.26 we obtain the matrices representing \(A\) and \(B\) with respect to (28). By Lemma 4.23 the element \(v_0\) acts on \(E_d(a, b, c)^{(-1,1)}/E_d(a, b, c)^{(-1,1)}(b)\) as scalar multiplication by \(-b\). Combined with Theorem 2.4 and Lemma 3.5 the element \(\delta\) acts on \(E_d(a, b, c)^{(-1,1)}/E_d(a, b, c)^{(-1,1)}(b)\) as scalar multiplication by (29). The lemma follows. \(\square\)

Proposition 4.30. Assume that the \(\mathfrak{H}\)-module \(E_d(a, b, c)^{(-1,1)}\) is irreducible. The \(\mathcal{R}\)-module \(E_d(a, b, c)^{(-1,1)}/E_d(a, b, c)^{(-1,1)}(b)\) is isomorphic to
\[
R_{d-1}^+ \left(-\frac{a+1}{2}, -\frac{b}{2} - 1, -\frac{c+1}{2} \right).
\]
Moreover the \(\mathcal{R}\)-module \(E_d(a, b, c)^{(-1,1)}/E_d(a, b, c)^{(-1,1)}(b)\) is irreducible.
Proof. Let \((a', b', c', d') = (-\frac{a+1}{2}, -\frac{b}{2} - 1, -\frac{c+1}{2}, \frac{d+1}{2})\). Comparing Proposition 3.1 with Lemma 4.29 yields that the quotient \(\mathcal{R} \)-module \(\mathcal{E}_{d'}(a, b, c)(-1,1) / \mathcal{E}_d(a, b, c)(-1,1)(b) \) is isomorphic to \(\mathcal{E}_d(a', b', c') \). It follows from Proposition 3.6 that

\[
\begin{align*}
 a' + b' + c' + 1, &\quad -a' + b' + c', \\
 a' + b' - c' &\not\in \left\{ \frac{d'}{2} - i \mid i = 1, 2, \ldots, d' + 1 \right\}
\end{align*}
\]

and

\[
 a' - b' + c' \not\in \left\{ \frac{d'}{2} - i \mid i = 0, 1, \ldots, d' \right\}.
\]

By Proposition 3.2 the \(\mathcal{R} \)-module \(\mathcal{R}_{d'}(a', b', c') \) is irreducible. The proposition follows. \(\Box\)

Theorem 4.31. Assume that the \(\mathcal{S}_3 \)-module \(\mathcal{E}_d(a, b, c)(-1,1) \) is irreducible. Then the following hold:

(i) If \(b = 0 \) then

\[
\begin{array}{c}
\mathcal{E}_d(a, b, c)(-1,1) \\
\mathcal{E}_d(a, b, c)(-1,1)(0) \\
\{0\}
\end{array}
\]

is the lattice of \(\mathcal{R} \)-submodules of \(\mathcal{E}_d(a, b, c)(-1,1) \).

(ii) If \(b \neq 0 \) then

\[
\begin{array}{ccc}
\mathcal{E}_d(a, b, c)(-1,1) & \mathcal{E}_d(a, b, c)(-1,1)(-b) & \mathcal{E}_d(a, b, c)(-1,1)(b) \\
\{0\} & \{0\}
\end{array}
\]

is the lattice of \(\mathcal{R} \)-submodules of \(\mathcal{E}_d(a, b, c)(-1,1) \).

Proof. Using the above lemmas and propositions, the result follows by an argument similar to the proof of Theorem 4.22. \(\Box\)

4.5. **The lattice of \(\mathcal{R} \)-submodules of \(\mathcal{E}_d(a, b, c)(-1,-1) \).**

Lemma 4.32. The matrix representing \(t_0 \) with respect to the \(\mathcal{F} \)-basis

\[
v_i + (\tau + i)v_{i-1} \quad \text{for} \quad i = 1, 3, \ldots, d, \quad v_i \quad \text{for} \quad i = 0, 2, \ldots, d - 1
\]

for \(\mathcal{E}_d(a, b, c)(-1,-1) \) is

\[
\begin{pmatrix}
 cI_{d+1} & -I_{d+1} \\
 0 & -cI_{d+1}
\end{pmatrix}.
\]

Proof. By Table 4 the action of \(t_0 \) on \(\mathcal{E}_d(a, b, c)(-1,-1) \) corresponds to the action of \(t_1^\vee \) on \(\mathcal{E}_d(a, b, c) \). Applying (9) it is routine to verify the lemma. \(\Box\)
Lemma 4.33. (i) If \(c = 0 \) then \(t_0 \) is not diagonalizable on \(E_d(a,b,c)^{(-1,-1)} \) with exactly one eigenvalue 0.
(ii) If \(c \neq 0 \) then \(t_0 \) is diagonalizable on \(E_d(a,b,c)^{(-1,-1)} \) with exactly two eigenvalues \(\pm c \).

Proof. Immediate from Lemma 4.32 \(\square \)

Lemma 4.34. \(E_d(a,b,c)^{(-1,-1)}(c) \) is of dimension \(\frac{d+1}{2} \) with the \(\mathbb{F} \)-basis
\[v_i + (\tau + i)v_{i-1} \quad \text{for} \quad i = 1,3, \ldots, d. \]

Proof. Immediate from Lemma 4.32 \(\square \)

Lemma 4.35. The actions of \(A \) and \(B \) on the \(\mathfrak{F} \)-module \(E_d(a,b,c)^{(-1,-1)} \) are as follows:
\[
Av_i = \begin{cases}
\theta_i v_i + \frac{1}{4} v_{i+2} & \text{for } i = 0,2, \ldots, d-3, \\
\theta_i v_i + \frac{1}{2} v_{i+1} + \frac{1}{4} v_{i+2} & \text{for } i = 1,3, \ldots, d-2,
\end{cases}
\]
\[
Av_{d-1} = \theta_d v_{d-1}, \quad Av_d = \theta_d v_d,
\]
\[
Bv_i = \begin{cases}
\theta_i^* v_i + \frac{i(d-i+1)}{4} v_{i-1} + \frac{i(d-i+1)}{4} \rho_{i-1} v_{i-2} & \text{for } i = 2,4, \ldots, d-1, \\
\theta_i^* v_i + \frac{(d-i)(d+i+2)}{4} \rho_i v_{i-2} & \text{for } i = 3,5, \ldots, d,
\end{cases}
\]
\[
Bv_0 = \theta_0^* v_0, \quad Bv_1 = \theta_1^* v_1,
\]
where
\[
\theta_i = \left(\frac{a}{2} - \frac{d-3}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{a}{2} - \frac{d+1}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \quad (0 \leq i \leq d),
\]
\[
\theta_i^* = \left(\frac{b}{2} - \frac{d-3}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{b}{2} - \frac{d+1}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \quad (0 \leq i \leq d).
\]

Proof. By Theorem 2.4 and Table 1 the actions of \(A \) and \(B \) on \(E_d(a,b,c)^{(-1,-1)} \) correspond to the actions of
\[
\frac{(t_0 + t_1)(t_0 + t_1 + 2)}{4}, \quad \frac{(t_0 + t_0^\vee)(t_0 + t_0^\vee + 2)}{4}
\]
on \(E_d(a,b,c) \), respectively. Using Proposition 3.4 it is routine to verify the lemma. \(\square \)

Lemma 4.36. The matrices representing \(A \) and \(B \) with respect to the \(\mathbb{F} \)-basis
\[
\frac{1}{2^{i-1}}(v_i + (\tau + i)v_{i-1}) \quad \text{for} \quad i = 1,3, \ldots, d
\]
for the \(\mathfrak{R} \)-module \(E_d(a,b,c)^{(-1,-1)}(c) \) are
\[
\begin{pmatrix}
\theta_0 & 0 \\
1 & \theta_1 \\
& & \ddots \\
0 & & & & \theta_{d-1}
\end{pmatrix}, \quad \begin{pmatrix}
\theta_0^* & \varphi_1 & 0 \\
\theta_1^* & \varphi_2 & \ddots \\
& & \ddots & \varphi_{d-2} \\
0 & & & & \theta_{d-1}^*
\end{pmatrix}
\]
respectively, where
\[
\theta_i = \frac{(2a - d + 4i - 1)(2a - d + 4i + 3)}{16} \quad (0 \leq i \leq \frac{d-1}{2}),
\]
\[
\theta_i^* = \frac{(2b - d + 4i - 1)(2b - d + 4i + 3)}{16} \quad (0 \leq i \leq \frac{d-1}{2}),
\]
\[
\varphi_i = \frac{i(2i - d - 1)(2a + 2b + 2c - d + 4i - 3)(2a + 2b - 2c - d + 4i + 1)}{32} \quad (1 \leq i \leq \frac{d-1}{2}).
\]
The element \(\delta \) acts on the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)}(c) \) as scalar multiplication by
\[
\frac{(d - 1)(d + 3)}{16} + \frac{(a - 1)(a + 1)}{4} + \frac{(b - 1)(b + 1)}{4} + \frac{c(c - 2)}{4}.
\]

Proof. By Lemma 4.34 the vectors (30) are an \(\mathbb{F} \)-basis for \(E_d(a, b, c)^{(-1,-1)}(c) \). Applying Lemma 4.35 a straightforward calculation yields the matrices representing \(A \) and \(B \) with respect to (30). Using Theorem 2.4 and Lemma 3.5 yields that \(\delta \) acts on \(E_d(a, b, c)^{(-1,-1)}(c) \) as scalar multiplication by (31). The lemma follows. \(\square \)

Proposition 4.37. The \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)}(c) \) is isomorphic to
\[
R_{d+1} \left(- \frac{a + 1}{2}, - \frac{b + 1}{2}, - \frac{c}{2} \right).
\]
Moreover the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)}(c) \) is irreducible if the \(\mathcal{S} \)-module \(E_d(a, b, c)^{(-1,-1)} \) is irreducible.

Proof. Set \((a', b', c', d') = (-\frac{a+1}{2}, -\frac{b+1}{2}, -\frac{c}{2}, \frac{d-1}{2})\). Comparing Proposition 3.1 with Lemma 4.36 it follows that the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)}(c) \) is isomorphic to \(R_{d'}(a', b', c') \). Suppose that the \(\mathcal{S} \)-module \(E_d(a, b, c)^{(-1,-1)} \) is irreducible. Using Proposition 3.6 yields that
\[
a' + b' + c' + 1, -a' + b' + c', a' - b' + c' \not\in \left\{ \frac{d' - i}{2} \right\}_{i=0,1,\ldots,d'}
\]
and
\[
a' + b' - c' \not\in \left\{ \frac{d' - i}{2} \right\}_{i=1,2,\ldots,d'+1}.
\]
By Proposition 3.2 the \(\mathcal{R} \)-module \(R_{d'}(a', b', c') \) is irreducible. The proposition follows. \(\square \)

Lemma 4.38. The matrices representing \(A \) and \(B \) with respect to the \(\mathbb{F} \)-basis
\[
\frac{1}{2i} v_i + E_d(a, b, c)^{(-1,-1)}(c) \quad \text{for } i = 0, 2, \ldots, d - 1
\]
for the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)}(c) / E_d(a, b, c)^{(-1,-1)}(c) \) are
\[
\begin{pmatrix}
\theta_0 & \theta_1 & 0 \\
1 & \theta_1 & \theta_2 \\
0 & \theta_{d+1} & \theta_d \\
\end{pmatrix},
\begin{pmatrix}
\theta_0^* & \varphi_1 \\
\theta_1^* & \varphi_2 \\
\theta_{d+1}^* & \varphi_{d+1} \\
\end{pmatrix}.
\]
respectively, where

\[
\begin{align*}
\theta_i &= \frac{(2a - d + 4i - 1)(2a - d + 4i + 3)}{16} \quad (0 \leq i \leq \frac{d-1}{2}), \\
\theta_i^* &= \frac{(2b - d + 4i - 1)(2b - d + 4i + 3)}{16} \quad (0 \leq i \leq \frac{d-1}{2}), \\
\varphi_i &= \frac{i(2i - d - 1)(2a + 2b + 2c - d + 4i + 1)(2a + 2b - 2c - d + 4i - 3)}{32} \quad (1 \leq i \leq \frac{d-1}{2}).
\end{align*}
\]

The element \(\delta \) acts on the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)} / E_d(a, b, c)^{(-1,-1)}(c) \) as scalar multiplication by

\[
\frac{(d-1)(d+3)}{16} + \frac{(a-1)(a+1)}{4} + \frac{(b-1)(b+1)}{4} + \frac{c(c+2)}{4}.
\]

Proof. By Lemma 4.34 the cosets \(\{\bar{a}\} \) are an \(\mathbb{F} \)-basis for \(E_d(a, b, c)^{(-1,-1)} / E_d(a, b, c)^{(-1,-1)}(c) \). Applying Lemma 4.35 a direct calculation yields the matrices representing \(A \) and \(B \) with respect to \(\{\bar{a}\} \). By Lemma 4.32 the element \(t_{\theta} \) acts on \(E_d(a, b, c)^{(-1,-1)} / E_d(a, b, c)^{(-1,-1)}(c) \) as scalar multiplication by \(-c\). Combined with Theorem 2.41 and Lemma 3.5 the element \(\delta \) acts on \(E_d(a, b, c)^{(-1,-1)} / E_d(a, b, c)^{(-1,-1)}(c) \) as scalar multiplication by \(\varphi_{d-1} \). The lemma follows. \(\square \)

Proposition 4.39. The \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)} / E_d(a, b, c)^{(-1,-1)}(c) \) is isomorphic to

\[
R_{\mathcal{A}^{(2)}} \left(-\frac{a+1}{2}, -\frac{b+1}{2}, \frac{c}{2} - 1 \right).
\]

Moreover the \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)} / E_d(a, b, c)^{(-1,-1)}(c) \) is irreducible provided that the \(\mathcal{S} \)-module \(E_d(a, b, c)^{(-1,-1)} \) is irreducible.

Proof. Let \((a', b', c', d') = (-\frac{a+1}{2}, -\frac{b+1}{2}, \frac{c}{2} - 1, \frac{d-1}{2}) \). Comparing Proposition 3.1 with Lemma 4.38 yields that the quotient \(\mathcal{R} \)-module \(E_d(a, b, c)^{(-1,-1)} / E_d(a, b, c)^{(-1,-1)}(c) \) is isomorphic to \(R_{\mathcal{A}}(a', b', c') \). Suppose that the \(\mathcal{S} \)-module \(E_d(a, b, c)^{(-1,-1)} \) is irreducible. By Proposition 3.6 we have

\[
a' + b' + c' + 1', -a' + b' + c', a' - b' + c' \notin \left\{ \frac{d'}{2} - i \mid i = 1, 2, \ldots, d' + 1 \right\}
\]

and

\[
a' + b' - c' \notin \left\{ \frac{d'}{2} - i \mid i = 0, 1, \ldots, d' \right\}.
\]

Combined with Proposition 3.2 the \(\mathcal{R} \)-module \(R_{\mathcal{A}}(a', b', c') \) is irreducible. The proposition follows. \(\square \)

Theorem 4.40. Assume that the \(\mathcal{S} \)-module \(E_d(a, b, c)^{(-1,-1)} \) is irreducible. Then the following hold:

(i) If \(c = 0 \) then
is the lattice of \mathbb{R}-submodules of $E_d(a, b, c)^{(-1, -1)}$.

(ii) If $c \neq 0$ then

\[
\begin{array}{ccc}
E_d(a, b, c)^{(-1, -1)} & \rightarrow & E_d(a, b, c)^{(-1, -1)}(-c) \\
\downarrow & & \downarrow \\
\{0\} & \rightarrow & \{0\}
\end{array}
\]

is the lattice of \mathbb{R}-submodules of $E_d(a, b, c)^{(-1, -1)}$.

Proof. Using the above lemmas and propositions, the result follows by an argument similar to the proof of Theorem 4.22.

\[\square\]

4.6. The lattice of \mathbb{R}-submodules of $O_d(a, b, c)$. Throughout this subsection we adopt the notation of §3.3.

Lemma 4.41. The matrix representing t_0 with respect to the \mathbb{F}-basis

\[
v_0, \quad v_i - iv_{i-1} \quad \text{for } i = 2, 4, \ldots, d, \quad v_i \quad \text{for } i = 1, 3, \ldots, d - 1
\]

for $O_d(a, b, c)$ is

\[
\begin{pmatrix}
\frac{\sigma^2}{2} & 0 & 0 \\
0 & -\frac{\sigma^2}{2}I_d & I_d \\
0 & 0 & -\frac{\sigma^2}{2}I_d
\end{pmatrix}
\]

Proof. It is straightforward to verify the lemma by using Proposition 3.8.

\[\square\]

Lemma 4.42. (i) If $d = 0$ then t_0 is diagonalizable on $O_d(a, b, c)$ with exactly one eigenvalue $\frac{\sigma}{2}$.

(ii) If $d \geq 2$ and $a + b + c = \frac{d+1}{2}$ then t_0 is not diagonalizable on $O_d(a, b, c)$ with exactly one eigenvalue 0.

(iii) If $d \geq 2$ and $a + b + c \neq \frac{d+1}{2}$ then t_0 is diagonalizable on $O_d(a, b, c)$ with exactly two eigenvalues $\pm \frac{\sigma}{2}$.

Proof. Immediate from Lemma 4.41.

\[\square\]

Lemma 4.43. $O_d(a, b, c)(\frac{\sigma}{2})$ is of dimension $\frac{d}{2} + 1$ with the \mathbb{F}-basis

\[
v_0, \quad v_i - iv_{i-1} \quad \text{for } i = 2, 4, \ldots, d.
\]

Proof. Immediate from Lemma 4.41.

\[\square\]
Lemma 4.44. The actions of A and B on the \mathfrak{N}-module $O_d(a, b, c)$ are as follows:

$$Av_i = \begin{cases}
\theta_i v_i - \frac{1}{4} v_{i+1} + \frac{1}{4} v_{i+2} & \text{for } i = 0, 2, \ldots, d - 2, \\
\theta_i v_i + \frac{1}{4} v_{i+2} & \text{for } i = 1, 3, \ldots, d - 3,
\end{cases}$$

$$Av_{d-1} = \theta_{d-1} v_{d-1}, \quad Av_d = \theta_d v_d.$$

$$Bv_i = \begin{cases}
\theta_i^* v_i + \frac{i(i - d - 2)(\sigma + i)(\tau + i - 1)}{4} v_{i-2} & \text{for } i = 2, 4, \ldots, d, \\
\theta_i^* v_i + \frac{(i - d - 1)(\tau + i)}{2} \left(v_{i-1} + \frac{(i - 1)(\sigma + i - 1)}{2} v_{i-2} \right) & \text{for } i = 3, 5, \ldots, d - 1,
\end{cases}$$

$$Bv_0 = \theta_0^* v_0, \quad Bv_1 = \theta_1^* v_1 - \frac{d(\tau + 1)}{2} v_0.$$

where

$$\theta_i = \left(\frac{a}{2} - \frac{d + 3}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{a}{2} - \frac{d - 1}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \quad (0 \leq i \leq d),$$

$$\theta_i^* = \left(\frac{b}{2} - \frac{d + 3}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \left(\frac{b}{2} - \frac{d - 1}{4} + \left\lfloor \frac{i}{2} \right\rfloor \right) \quad (0 \leq i \leq d).$$

Proof. Apply Theorem 2.4 and Proposition 3.8 to evaluate the actions of A and B on $O_d(a, b, c)$. \qed

Lemma 4.45. The matrices representing A and B with respect to the \mathcal{F}-basis

$$v_0, \quad \frac{1}{2^i} (v_i - iv_{i-1}) \quad \text{for } i = 2, 4, \ldots, d$$

for the \mathcal{R}-module $O_d(a, b, c)(\frac{\mathcal{F}}{}$)

are

$$\begin{pmatrix}
\theta_0 & 0 & 0 & \\
\theta_1 & \theta_2 & 0 & \\
\vdots & \vdots & \ddots & \\
0 & 1 & \theta_4 &
\end{pmatrix}, \quad \begin{pmatrix}
\theta_0^* & \varphi_1 & 0 & \\
\varphi_1 & \theta_2^* & \varphi_2 & \\
\vdots & \vdots & \ddots & \\
0 & \varphi_3 & \varphi_4 &
\end{pmatrix},$$

respectively, where

$$\theta_i = \frac{(2a - d + 4i - 3)(2a - d + 4i + 1)}{16} \quad (0 \leq i \leq \frac{d}{2}),$$

$$\theta_i^* = \frac{(2b - d + 4i - 3)(2b - d + 4i + 1)}{16} \quad (0 \leq i \leq \frac{d}{2}),$$

$$\varphi_i = \frac{i(2i - d - 2)(2a + 2b + 2c - d + 4i - 5)(2a + 2b - 2c - d + 4i - 3)}{32} \quad (1 \leq i \leq \frac{d}{2}).$$

The element δ acts on the \mathcal{R}-module $O_d(a, b, c)(\frac{\mathcal{F}}{)}$ as scalar multiplication by

$$\frac{d(d + 4)}{16} + \frac{(2a - 3)(2a + 1)}{16} + \frac{(2b - 3)(2b + 1)}{16} + \frac{(2c - 3)(2c + 1)}{16}. $$
Proof. By Lemma 4.43 the vectors (34) are an R-basis for \(O_d(a, b, c)(\frac{\sigma}{2}) \). Applying Lemma 4.44 a straightforward calculation yields the matrices representing \(A \) and \(B \) with respect to (34). Applying Theorem 2.4 and Lemma 3.9 yields that \(\delta \) acts on \(O_d(a, b, c)(\frac{\sigma}{2}) \) as scalar multiplication by (35). The lemma follows. \(\square \)

Proposition 4.46. The R-module \(O_d(a, b, c)(\frac{\sigma}{2}) \) is isomorphic to

\[
R_{\frac{\sigma}{2}} \left(\frac{a}{2} - \frac{1}{4}, \frac{b}{2} - \frac{1}{4}, \frac{c}{2} - \frac{1}{4} \right).
\]

Moreover the R-module \(O_d(a, b, c)(\frac{\sigma}{2}) \) is irreducible provided that \(a + b + c \neq \frac{d+1}{2} \) and the \(H \)-module \(O_d(a, b, c) \) is irreducible.

Proof. Set \((a', b', c', d') = \left(-\frac{a}{2} - \frac{1}{4}, -\frac{b}{2} - \frac{1}{4}, -\frac{c}{2} - \frac{1}{4}, \frac{d}{2} - \frac{1}{4} \right) \). Comparing Proposition 3.1 with Lemma 4.47 yields that the \(R \)-module \(O_d(a, b, c)(\frac{\sigma}{2}) \) is isomorphic to \(R_{d'}(a', b', c') \). Suppose that \(a + b + c \neq \frac{d+1}{2} \) and the \(H \)-module \(O_d(a, b, c) \) is irreducible. It follows from Proposition 3.10 that

\[
a' + b' + c' + 1 \not\in \left\{ \frac{d'}{2} - i \bigg| i = 0, 1, \ldots, d' - 1 \right\}
\]

and

\[-a' + b' + c', a' - b' + c', a' + b' - c' \not\in \left\{ \frac{d'}{2} - i \bigg| i = 1, 2, \ldots, d' \right\}.
\]

By the assumption \(a + b + c \neq \frac{d+1}{2} \) we have \(a' + b' + c' + 1 \neq \frac{d'}{2} \). By Proposition 3.2 the R-module \(R_{d'}(a', b', c') \) is irreducible. The proposition follows. \(\square \)

Lemma 4.47. Assume that \(d \geq 2 \). The matrices representing \(A \) and \(B \) with respect to the R-basis

\[
(36) \quad \frac{1}{2^{i-1}} v_i + O_d(a, b, c)(\frac{\sigma}{2}) \quad \text{for } i = 1, 3, \ldots, d - 1
\]

for the \(R \)-module \(O_d(a, b, c)/O_d(a, b, c)(\frac{\sigma}{2}) \) are

\[
\begin{pmatrix}
\theta_0 & 0 \\
1 & \theta_1 \\
\vdots & \ddots \\
0 & \cdots & \cdots & 1 & \theta_{\frac{d}{2}-1}
\end{pmatrix},
\begin{pmatrix}
\theta_0^* & \varphi_1 & 0 \\
\theta_1^* & \varphi_2 & \ddots \\
\vdots & \ddots & \ddots \\
0 & \cdots & \cdots & \varphi_{\frac{d}{2}-1}
\end{pmatrix}
\]

respectively, where

\[
\theta_i = \frac{(2a - d + 4i + 1)(2a - d + 4i + 5)}{16} \quad (0 \leq i \leq \frac{d}{2} - 1),
\]

\[
\theta_i^* = \frac{(2b - d + 4i + 1)(2b - d + 4i + 5)}{16} \quad (0 \leq i \leq \frac{d}{2} - 1),
\]

\[
\varphi_i = \frac{i(2i - d)(2a + 2b + 2c + d + 4i + 3)(2a + 2b - 2c - d + 4i + 1)}{32} \quad (1 \leq i \leq \frac{d}{2} - 1).
\]

The element \(\delta \) acts on \(O_d(a, b, c)/O_d(a, b, c)(\frac{\sigma}{2}) \) as scalar multiplication by

\[
(37) \quad \frac{d^2 - 13}{16} + \frac{a(a + 1)}{4} + \frac{b(b + 1)}{4} + \frac{c(c + 1)}{4}.
\]
Proof. By Lemma 4.43 the cosets (36) are an \mathbb{F}-basis for $O_d(a,b,c)/O_d(a,b,c)(\frac{a}{2})$. Applying Lemma 4.44 a direct calculation yields the matrices representing A and B with respect to (36). By Theorem 2.4 and Lemma 3.9 the element δ acts on $O_d(a,b,c)/O_d(a,b,c)(\frac{a}{2})$ as scalar multiplication by (37). The lemma follows. \hfill \Box

Proposition 4.48. Assume that $d \geq 2$. Then the \mathbb{R}-module $O_d(a,b,c)/O_d(a,b,c)(\frac{a}{2})$ is isomorphic to

$$R_{\frac{d}{2} - 1} \left(\begin{array}{cccc} -a & 3 & b & 3 \\ 4 & -2 & 4 & -2 \\ 2 & 2 & 2 & 2 \\ \end{array} \right).$$

Moreover the \mathbb{R}-module $O_d(a,b,c)/O_d(a,b,c)(\frac{a}{2})$ is irreducible provided that the \mathbb{S}-module $O_d(a,b,c)$ is irreducible.

Proof. Set $(a',b',c',d') = (-\frac{a}{2} - \frac{3}{4}, -\frac{b}{2} - \frac{3}{4}, -\frac{c}{2} - \frac{3}{4}, -\frac{d}{2} - 1)$. Comparing Proposition 3.1 with Lemma 4.47 it follows that the \mathbb{R}-module $O_d(a,b,c)/O_d(a,b,c)(\frac{a}{2})$ is isomorphic to $R_d(a',b',c')$. Suppose that the \mathbb{S}-module $O_d(a,b,c)$ is irreducible. Using Proposition 3.10 yields that

$$a' + b' + c' + 1, -a' + b' + c', a' - b' + c', a' + b' - c' \not\in \left\{ \frac{d'}{2} - i \mid i = 1, 2, \ldots, d' + 1 \right\}.$$

By Proposition 3.2 the \mathbb{R}-module $R_d(a',b',c')$ is irreducible. The proposition follows. \hfill \Box

For the rest of this subsection we let $O_d(a,b,c)(0)'$ denote the \mathbb{F}-subspace of $O_d(a,b,c)(0)$ spanned by

$$v_i - iv_{i-1} \quad \text{for all } i = 2, 4, \ldots, d.$$

Lemma 4.49. Assume that $d \geq 2$ and $a + b + c = \frac{d + 1}{2}$. Then $O_d(a,b,c)(0)'$ is an \mathbb{R}-module and the actions of A, B, δ on $O_d(a,b,c)(0)'$ are as follows: The matrices representing A and B with respect to the \mathbb{F}-basis

$$(38) \quad \frac{1}{2i - 2}(v_i - iv_{i-1}) \quad \text{for } i = 2, 4, \ldots, d$$

for the \mathbb{R}-module $O_d(a,b,c)(0)'$ are

$$\begin{pmatrix} \theta_0 & 0 \\ 1 & \theta_1 \\ \vdots & \vdots \\ 0 & \theta_{\frac{d}{2} - 1} \end{pmatrix}, \quad \begin{pmatrix} \theta_0^* & \varphi_1 \\ \theta_1^* & \varphi_2 \\ \vdots & \vdots \\ \theta_{\frac{d}{2} - 1}^* & \varphi_{\frac{d}{2} - 1} \end{pmatrix}$$

respectively, where

$$\theta_i = \frac{(2a - d + 4i + 1)(2a - d + 4i + 5)}{16} \quad (0 \leq i \leq \frac{d}{2} - 1),$$

$$\theta_i^* = \frac{(2b - d + 4i + 1)(2b - d + 4i + 5)}{16} \quad (0 \leq i \leq \frac{d}{2} - 1),$$

$$\varphi_i = \frac{i(2i - d)(2a + 2b + 2c - d + 4i + 3)(2a + 2b - 2c - d + 4i + 1)}{32} \quad (1 \leq i \leq \frac{d}{2} - 1).$$

The element δ acts on $O_d(a,b,c)(0)'$ as scalar multiplication by

$$(39) \quad \frac{d^2 + 13}{16} + \frac{a(a + 1)}{4} + \frac{b(b + 1)}{4} + \frac{c(c + 1)}{4}.$$
Proof. It follows from Lemma 4.45 that \(O_d(a, b, c)(0)' \) is invariant under \(A \) and \(\delta \); under the assumption \(a + b + c = \frac{d+1}{2} \) it is also invariant under \(B \). Hence \(O_d(a, b, c)(0)' \) is an \(\mathbb{R} \)-module by Lemma 2.2(ii).

By Lemma 4.45 the matrix representing \(A \) with respect to the \(F \)-basis (38) for \(O_d(a, b, c)(0)' \) is as stated. Under the assumption \(a + b + c = \frac{d+1}{2} \) the matrix representing \(B \) with respect to (38) is as stated and the scalars (35) and (39) are identical. The lemma follows. \(\square \)

Proposition 4.50. Assume that \(d \geq 2 \) and \(a + b + c = \frac{d+1}{2} \). Then the \(\mathbb{R} \)-module \(O_d(a, b, c)(0)' \) is isomorphic to

\[
R_{\frac{d}{2}-1} \left(\frac{-a}{2} - \frac{3}{4}, -\frac{3}{2}, -\frac{3}{2}, -\frac{3}{4} \right).
\]

Moreover the \(\mathbb{R} \)-module \(O_d(a, b, c)(0)' \) is irreducible provided that the \(\mathcal{H} \)-module \(O_d(a, b, c) \) is irreducible.

Proof. Similar to the proof of Proposition 4.48. \(\square \)

Theorem 4.51. Assume that the \(\mathcal{H} \)-module \(O_d(a, b, c) \) is irreducible. Then the following hold:

(i) If \(d = 0 \) then the \(\mathbb{R} \)-module \(O_d(a, b, c) \) is irreducible.

(ii) If \(d \geq 2 \) and \(a + b + c = \frac{d+1}{2} \) then

\[
\begin{align*}
O_d(a, b, c) \\
O_d(a, b, c)(0) \\
O_d(a, b, c)(0)' \\
\{0\}
\end{align*}
\]

is the lattice of \(\mathbb{R} \)-submodules of \(O_d(a, b, c) \).

(iii) If \(d \geq 2 \) and \(a + b + c \neq \frac{d+1}{2} \) then

\[
\begin{align*}
O_d(a, b, c) \\
O_d(a, b, c)(-\frac{a}{2}) \\
O_d(a, b, c)(\frac{a}{2}) \\
\{0\}
\end{align*}
\]

is the lattice of \(\mathbb{R} \)-submodules of \(O_d(a, b, c) \).

Proof. (i): If \(d = 0 \) then \(O_d(a, b, c) \) is one-dimensional and hence an irreducible \(\mathbb{R} \)-module.

(ii): Suppose that \(d \geq 2 \) and \(a + b + c = \frac{d+1}{2} \). Since the \(\mathbb{R} \)-submodule \(O_d(a, b, c)(0)' \) of \(O_d(a, b, c) \) is of codimension 1, the quotient \(\mathbb{R} \)-module \(O_d(a, b, c)/O_d(a, b, c)(0)' \) is irreducible. Combined with Propositions 4.48 and 4.50 the sequence

\[
\{0\} \subset O_d(a, b, c)(0)' \subset O_d(a, b, c)(0) \subset O_d(a, b, c)
\]

(40)
is a composition series for the \(\mathbb{R} \)-module \(O_d(a, b, c) \).

By Proposition 4.4 and Lemma 4.14(ii), every irreducible \(\mathbb{R} \)-submodule of \(O_d(a, b, c) \) is contained in \(O_d(a, b, c)(0) \). To see (iii), it remains to show that \(O_d(a, b, c)(0)' \) is the unique irreducible \(\mathbb{R} \)-submodule of \(O_d(a, b, c)(0) \). Suppose on the contrary that \(W \) is an irreducible \(\mathbb{R} \)-submodule \(O_d(a, b, c)(0) \) different from \(O_d(a, b, c)(0)' \). By irreducibility, we have \(O_d(a, b, c)(0)' \cap W = \{0\} \). Since \(O_d(a, b, c)(0)' \) is of codimension 1 in \(O_d(a, b, c) \), it follows that \(W \) is of dimension 1 and

\[
O_d(a, b, c)(0) = O_d(a, b, c)(0)' \oplus W.
\]

Applying Jordan–Hölder theorem to (40) the one-dimensional \(\mathbb{R} \)-module \(W \) is isomorphic to \(O_d(a, b, c)(0)' \) when \(d = 2 \) or \(O_d(a, b, c)(0)/O_d(a, b, c)(0)' \).

First we suppose that \(d = 2 \) and the \(\mathbb{R} \)-module \(W \) is isomorphic to \(O_d(a, b, c)(0)' \). By Lemma 4.45 the eigenvalues of \(A \) in \(O_d(a, b, c)(0)' \) are \(\frac{(2a-5)(2a-1)}{16} \) and \(\frac{(2a-1)(2a+3)}{16} \). By Lemma 4.49 the eigenvalue of \(A \) is \(O_d(a, b, c)(0)' \) is \(\frac{(2a-1)(2a+3)}{16} \). Combined with (41) this implies

\[
(2a - 5)(2a - 1) = (2a - 1)(2a + 3),
\]

Solving (42) for \(a \) yields that \(a = \frac{1}{2} \). By considering the eigenvalues of \(B \) in \(O_d(a, b, c)(0) \) and \(O_d(a, b, c)(0)' \), a similar argument implies \(b = \frac{1}{2} \). Moreover \(c = \frac{1}{2} \) by the assumption \(a + b + c = \frac{d+1}{2} \). Then

\[
a - b - c = -a + b - c = -a - b + c = -\frac{1}{2}.
\]

This leads to a contradiction to the irreducibility of the \(\mathfrak{N} \)-module \(O_d(a, b, c) \) by Proposition 3.10.

Next we suppose that \(W \) is isomorphic to \(O_d(a, b, c)(0)/O_d(a, b, c)(0)' \). By Lemma 4.45 the elements \(A \) and \(B \) act on \(O_d(a, b, c)(0)/O_d(a, b, c)(0)' \) as the scalars \(\frac{(2a-d-3)(2a-d+1)}{16} \) and \(\frac{(2b-d-3)(2b-d+1)}{16} \), respectively. By Lemma 4.45 the \(\frac{(2a-d-3)(2a-d+1)}{16} \)-eigenspace of \(A \) in \(O_d(a, b, c)(0) \) is one-dimensional and hence is equal to \(W \). Consequently \(W \) contains a vector \(w \) in which the coefficient of \(\frac{1}{4}(v_d - dv_{d-1}) \) with respect to the \(\mathbb{F} \)-basis (34) for \(O_d(a, b, c)(0) \) is 1. By Lemma 4.45 the coefficient of \(\frac{1}{4}(v_d - dv_{d-1}) \) in \(Bw \) with respect to (34) is \(\frac{(2b-d-3)(2b-d+1)}{16} \). Since \(w \) is a \(\frac{(2b-d-3)(2b-d+1)}{16} \)-eigenvector of \(B \) it follows that

\[
(2b - d - 3)(2b - d + 1) = (2b + d - 3)(2b + d + 1).
\]

Solving (43) for \(b \) yields that \(b = \frac{1}{2} \). Combined with the assumption \(a + b + c = \frac{d+1}{2} \) we have

\[
-a + b - c = \frac{1 - d}{2}.
\]

This leads to a contradiction to the irreducibility of the \(\mathfrak{N} \)-module \(O_d(a, b, c) \) by Proposition 3.10. We have shown that \(O_d(a, b, c)(0)' \) is the unique irreducible \(\mathbb{R} \)-submodule of \(O_d(a, b, c)(0) \). Therefore (ii) follows.

(iii): Using the above lemmas and propositions, the statement (iii) follows by an argument similar to the proof of Theorem 4.13(ii).

\[\square\]

5. The summary

We summarize the results of 4.2–4.6 as follows:
Theorem 5.1. Let V denote a finite-dimensional irreducible \mathfrak{H}-module. Given any $\theta \in \mathbb{F}$ let $V(\theta)$ denote the null space of $t_0 - \theta$ in V. Then the following hold:

(i) Suppose that t_0 is not diagonalizable on V. Then 0 is the unique eigenvalue of t_0 in V. Moreover the following hold:

(a) If the dimension of V is even then the lattice of \mathbb{R}-submodules of V is as follows:

\[
\begin{array}{c}
V \\
\mid \\
V(0) \\
\mid \\
\{0\}
\end{array}
\]

(b) If the dimension of V is odd then the lattice of \mathbb{R}-submodules of V is as follows:

\[
\begin{array}{c}
V \\
\mid \\
V(0) \\
\mid \\
V(0)' \\
\mid \\
\{0\}
\end{array}
\]

Here $V(0)'$ is the irreducible \mathbb{R}-submodule of $V(0)$ that has codimension 1.

(ii) Suppose that t_0 is diagonalizable on V. Then there are at most two eigenvalues of t_0 in V. Moreover the following hold:

(a) If t_0 has exactly one eigenvalue in V then the \mathbb{R}-module V is irreducible of dimension less than or equal to 2.

(b) If t_0 has exactly two eigenvalues in V then there exists a nonzero scalar $\theta \in \mathbb{F}$ such that $\pm \theta$ are the eigenvalues of t_0 and the lattice of \mathbb{R}-submodules of V is as follows:

\[
\begin{array}{c}
V \\
\mid \\
V(-\theta) \\
\mid \\
V(\theta) \\
\mid \\
\{0\}
\end{array}
\]

As byproducts of Theorem 5.1 we have the following corollaries:

Corollary 5.2. Let V denote a finite-dimensional irreducible \mathfrak{H}-module. If θ is an eigenvalue of t_0 in V then either $V = V(\theta)$ or the \mathbb{R}-module $V/V(\theta)$ is irreducible.

Corollary 5.3. For any finite-dimensional irreducible \mathfrak{H}-module V, the \mathbb{R}-module V is completely reducible if and only if t_0 is diagonalizable on V.

REFERENCES

1. H. De Bie, V. X. Genest, S. Tsujimoto, L. Vinet, and A. Zhedanov, The Bannai–Ito algebra and some applications, Journal of Physics: Conference Series 597 (2015), 012001 (16pp).

2. H. De Bie, V. X. Genest, W. van de Vijver, and L. Vinet, A higher rank Racah algebra and the \mathbb{Z}_2^2 Laplace–Dunkl operator, Journal of Physics A: Mathematical and Theoretical 51 (2017), 025203 (20pp).

3. , Bannai–Ito algebras and the $\mathfrak{osp}(1;2)$ superalgebra, Physical and Mathematical Aspects of Symmetries (Cham) (S. Duarte, JP. Gazeau, S. Faci, T. Micklitz, R. Scherer, and F. Toppan, eds.), Proceedings of the 31st International Colloquium in Group Theoretical Methods in Physics, Springer, 2017, pp. 349–354.

4. H. De Bie, V. X. Genest, and L. Vinet, A Dirac–Dunkl Equation on S^2 and the Bannai–Ito Algebra, Communications in Mathematical Physics 344 (2016), 447–464.

5. S. Bockting-Conrad and H.-W. Huang, Finite-dimensional irreducible modules of the Racah algebra at characteristic zero, in preparation.

6. O.F. Gal’bert, Y. Granovskii, and A. Zhedanov, Dynamical symmetry of anisotropic singular oscillator, Phys. Lett. A 153 (1991), 177–180.

7. S. Gao, Y. Wang, and Bo Hou, The classification of Leonard triples of Racah type, Linear Algebra and its Applications 439 (2013), 1834–1861.

8. V. X. Genest, L. Vinet, and A. Zhedanov, Superintegrability in two dimensions and the Racah–Wilson algebra, Letters in Mathematical Physics 104 (2014), 931–952.

9. , The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere, Journal of Physics A: Mathematical and Theoretical 47 (2014), 205202 (13pp).

10. , The Bannai–Ito polynomials as Racah coefficients of the $\mathfrak{sl}_{1-1}(2)$ algebra, Proceedings of the American Mathematical Society 142 (2014), 1545–1560.

11. , The equitable Racah algebra from three $\mathfrak{su}(1,1)$ algebras, Journal of Physics A: Mathematical and Theoretical 47 (2014), 025203 (12pp).

12. , The Racah algebra and superintegrable models, Journal of Physics: Conference Series 512 (2014), 012011 (15pp).

13. , A Laplace–Dunkl Equation on S^2 and the Bannai–Ito Algebra, Communications in Mathematical Physics 336 (2015), 243–259.

14. V.X. Genest, L. Vinet, and A. Zhedanov, Embeddings of the Racah algebra into the Bannai–Ito algebra, SIGMA 11 (2015), 050, 11 pp.

15. , The non-symmetric Wilson polynomials are the Bannai–Ito polynomials, Proceedings of the American Mathematical Society 144 (2016), 5217–5226.

16. Y. Granovskii and A. Zhedanov, Nature of the symmetry group of the $6j$-symbol, JETP 94 (1988), 49–54.

17. , Exactly solvable problems and their quadratic algebras, DONFTI-89-7 (1989), Preprint.

18. , Quadratic algebra as a ‘hidden’ symmetry of the Hartmann potential, Journal of Physics A: Mathematical and General 24 (1991), 3887–3894.

19. Y. Granovskii, A. Zhedanov, and I. M. Lutsenko, Quadratic algebras and dynamical symmetry of the Schrödinger equation, Soviet Phys. JETP 72 (1991), 205–209, translated from Zh. Eksp. Teoret. Fiz. 99 (1991), no. 2, 369–377 (Russian).

20. , Mutual Integrability, quadratic algebras, and dynamical symmetry, Annals of Physics 217 (1992), 1–20.

21. W. Groenevelt, Fourier transforms related to a root system of rank 1, Transformation Groups 12 (2007), 77–116.

22. H.-W. Huang, Finite-dimensional irreducible modules of Bannai–Ito algebra at characteristic zero, in preparation.

23. , The Racah algebra as a subalgebra of the Bannai–Ito algebra, in preparation.

24. E.G. Kalnins, W. Miller Jr., and G.S. Pogosyan, Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions, J. Math. Phys. 37 (1996), 6439–6467.

25. , Superintegrability on the two-dimensional hyperboloid, J. Math. Phys. 38 (1997), 5416–5433.

26. E.G. Kalnins, W. Miller, and S. Post, Wilson polynomials and the generic superintegrable system on the 2-sphere, J. Phys. A: Math. Theor. 40 (2007), 11525–11538.
27. ______, Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials, SIGMA 9 (2013), 57–84.
28. J.-M. Lévy-Leblond and M. Lévy-Nahas, Symmetrical coupling of three angular momenta, Journal of Mathematical Physics 6 (1965), 1372.
29. H. Liu, Bo Hou, and S. Gao, Leonard triples, the Racah algebra, and some distance-regular graphs of Racah type, Linear Algebra and its Applications 484 (2015), 435–456.
30. S. Tsujimoto, L. Vinet, and A. Zhedanov, Dunkl shift operators and Bannai–Ito polynomials, Advances in Mathematics 229 (2012), 2123–2158.
31. A. Zhedanov, “Hidden symmetry” of Askey–Wilson polynomials, Teoreticheskaya i Matematicheskaya Fizika 89 (1991 (English transl.: Theoretical and Mathematical Physics, 89:1146–1157, 1991)), 190–204.
32. ______, Hidden symmetry algebra and overlap coefficients for two ring-shaped potentials, Journal of Physics A: Mathematical and General 26 (1993), 4633.

HAU-WEN HUANG, DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG-LI 32001 TAIWAN
E-mail address: hauwenh@math.ncu.edu.tw