On the Asymptotic Behavior of Ring Q-homeomorphisms with Respect to P-modulus

Ruslan Salimov and Bogdan Klishchuk

Abstract. We study the behavior at infinity of ring Q-homeomorphisms with respect to p-modulus for $p > n$.

Mathematics Subject Classification (2010). 30C65.

Keywords. Ring Q-homeomorphisms, p-modulus of a family of curves, quasiconformal mappings, condenser, p-capacity of a condenser.

1. Introduction

Let us recall some definitions, see [1]. Let Γ be a family of curves γ in \mathbb{R}^n, $n \geq 2$. A Borel measurable function $\rho : \mathbb{R}^n \to [0, \infty]$ is called admissible for Γ, (abbr. $\rho \in \text{adm } \Gamma$), if

$$\int_{\gamma} \rho(x) \, ds \geq 1$$

for any curve $\gamma \in \Gamma$. Let $p \in (1, \infty)$.

The quantity

$$M_p(\Gamma) = \inf_{\rho \in \text{adm } \Gamma} \int_{\mathbb{R}^n} \rho^p(x) \, dm(x)$$

is called p-modulus of the family Γ.

For arbitrary sets E, F and G of \mathbb{R}^n we denote by $\Delta(E, F, G)$ a set of all continuous curves $\gamma : [a, b] \to \mathbb{R}^n$ that connect E and F in G, i.e., such that $\gamma(a) \in E$, $\gamma(b) \in F$ and $\gamma(t) \in G$ for $a < t < b$.

Let D be a domain in \mathbb{R}^n, $n \geq 2$, $x_0 \in D$ and $d_0 = \text{dist}(x_0, \partial D)$. Set

$$A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\},$$

$$S_i = S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}, \quad i = 1, 2.$$
Let a function \(Q : D \to [0, \infty] \) be Lebesgue measurable. We say that a homeomorphism \(f : D \to \mathbb{R}^n \) is ring \(Q \)-homeomorphism with respect to \(p \)-modulus at \(x_0 \in D \) if the relation

\[
M_p(\Delta(fS_1, fS_2, fD)) \leq \int_A Q(x) \eta^p(|x - x_0|) \, dm(x)
\]

holds for any ring \(A = A(x_0, r_1, r_2) \), \(0 < r_1 < r_2 < d_0 \), \(d_0 = \text{dist}(x_0, \partial D) \), and for any measurable function \(\eta : (r_1, r_2) \to [0, \infty] \) such that

\[
\int_{r_1}^{r_2} \eta(r) \, dr = 1.
\]

The theory of \(Q \)-homeomorphisms for \(p = n \) was studied in works [2]–[6], for \(1 < p < n \) in works [7]–[14] and for \(p > n \) in works [15]–[19].

Denote by \(\omega_{n-1} \) the area of the unit sphere \(S^{n-1} = \{ x \in \mathbb{R}^n : |x| = 1 \} \) in \(\mathbb{R}^n \) and by \(q_{x_0}(r) = \frac{1}{\omega_{n-1} r^{n-1}} \int_{S(x_0, r)} Q(x) \, dA \) the integral mean over the sphere \(S(x_0, r) = \{ x \in \mathbb{R}^n : |x - x_0| = r \} \), here \(dA \) is the element of the surface area.

Now we formulate a criterion which guarantees for a homeomorphism to be the ring \(Q \)-homeomorphisms with respect to \(p \)-modulus for \(p > 1 \) in \(\mathbb{R}^n, n \geq 2 \).

Proposition 1. Let \(D \) be a domain in \(\mathbb{R}^n, n \geq 2 \), and let \(Q : D \to [0, \infty] \) be a Lebesgue measurable function such that \(q_{x_0}(r) \neq \infty \) for a.e. \(r \in (0, d_0) \), \(d_0 = \text{dist}(x_0, \partial D) \). A homeomorphism \(f : D \to \mathbb{R}^n \) is ring \(Q \)-homeomorphism with respect to \(p \)-modulus at a point \(x_0 \in D \) if and only if the quantity

\[
M_p(\Delta(fS_1, fS_2, fA)) \leq \frac{\omega_{n-1}}{\left(\int_{r_1}^{r_2} \frac{dr}{\omega_{n-1} r^{n-1} q_{x_0}^{p-1}(r)} \right)^{p-1}}
\]

holds for any \(0 < r_1 < r_2 < d_0 \) (see [12], Theorem 2.3).

Following the paper [21], a pair \(\mathcal{E} = (A, C) \) where \(A \subset \mathbb{R}^n \) is an open set and \(C \) is a nonempty compact set contained in \(A \), is called condenser. We say that a condenser \(\mathcal{E} = (A, C) \) lies in a domain \(D \) if \(A \subset D \). Clearly, if \(f : D \to \mathbb{R}^n \) is a homeomorphism and \(\mathcal{E} = (A, C) \) is a condenser in \(D \) then \((fA, fC)\) is also condenser in \(fD \). Further, we denote \(f\mathcal{E} = (fA, fC) \).

Let \(\mathcal{E} = (A, C) \) be a condenser. Denote by \(C_0(A) \) a set of continuous functions \(u : A \to \mathbb{R}^1 \) with compact support. Let \(W_0(\mathcal{E}) = W_0(A, C) \) be a family of nonnegative functions \(u : A \to \mathbb{R}^1 \) such that 1) \(u \in C_0(A) \), 2) \(u(x) \geq 1 \) for \(x \in C \) and 3) \(u \) belongs to the class ACL and
On the Asymptotic Behavior of Ring Q-homeomorphisms with Respect to P-modulus

\[|\nabla u| = \left(\sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i} \right)^2 \right)^{\frac{1}{2}}. \]

For \(p \geq 1 \) the quantity

\[\text{cap}_p \mathcal{E} = \text{cap}_p (A, C) = \inf_{u \in W_0(E)} \int_A |\nabla u|^p \, dm(x) \]

is called \(p \)-capacity of the condenser \(\mathcal{E} \). It is known that for \(p > 1 \)

\[\text{cap}_p \mathcal{E} = M_p(\Delta(\partial A, \partial C; A \setminus C)), \]

see in ([22], Theorem 1). For \(p > n \) the inequality

\[\text{cap}_p (A, C) \geq n \Omega_n^\frac{p}{p-n} \left(\frac{p-n}{p-1} \right)^{p-1} \left[m^{\frac{p-n}{p-1}}(A) - m^{\frac{p-n}{p-1}}(C) \right]^{1-p} \]

(1.2)

holds where \(\Omega_n \) is a volume of the unit ball in \(\mathbb{R}^n \) (see, e.g., the inequality 8.7 in [23]).

2. Main results

Now we consider the main result of our paper on the behavior at infinity of ring Q-homeomorphisms with respect to \(p \)-modulus for \(p > n \). The case \(p = n \) was studied in the work [20]. Let

\[L(x_0, f, R) = \sup_{|x-x_0| \leq R} |f(x) - f(x_0)|. \]

Theorem 2.1 (Main Theorem). Suppose that \(f : \mathbb{R}^n \to \mathbb{R}^n \) is a ring Q-homeomorphism with respect to \(p \)-modulus at a point \(x_0 \) with \(p > n \) where \(x_0 \) is some point in \(\mathbb{R}^n \) and for some numbers \(r_0 > 0, K > 0 \) the condition

\[q_{x_0}(t) \leq K t^\alpha \]

(2.1)

holds for a.e. \(t \in [r_0, +\infty) \). If \(\alpha \in [0, p-n) \) then

\[\lim_{R \to \infty} \frac{L(x_0, f, R)}{R^{\frac{n-n-\alpha}{p-n}}} \geq K^{\frac{1}{n-p}} \left(\frac{p-n}{p-n-\alpha} \right)^{\frac{p-1}{p-n}} > 0. \]

If \(\alpha = p-n \) then

\[\lim_{R \to \infty} \frac{L(x_0, f, R)}{(\ln R)^{\frac{p-1}{p-n}}} \geq K^{\frac{1}{n-p}} \left(\frac{p-n}{p-1} \right)^{\frac{p-1}{p-n}} > 0. \]
Proof. Consider a condenser $\mathcal{E} = (A, C)$ in \mathbb{R}^n, where $A = \{ x \in \mathbb{R}^n : |x - x_0| < R \}$, $C = \{ x \in \mathbb{R}^n : |x - x_0| \leq r_0 \}$, $0 < R < r_0 < \infty$. Then $f\mathcal{E} = (fA, fC)$ is a ringlike condenser in \mathbb{R}^n and by (1.1) we have equality

$$\text{cap}_p f\mathcal{E} = M_p (\Delta (\partial fA, \partial fC; f(A \setminus C))).$$

Due to the inequality (1.2)

$$\text{cap}_p (fA, fC) \geq n \Omega_n \left(\frac{p - n}{p - 1} \right)^{p-1} \left[m^{\frac{p-n}{p-1}}(fA) - m^{\frac{p-n}{p-1}}(fC) \right]^{1-p},$$

we obtain

$$\text{cap}_p (fA, fC) \geq n \Omega_n \left(\frac{p - n}{p - 1} \right)^{p-1} \left[m(fA) \frac{n-p}{n} \right]. \quad (2.2)$$

On the other hand, by Proposition 1, one gets

$$\text{cap}_p (fA, fC) \leq \omega_{n-1} \left(\int_{r_0}^{R} \frac{dt}{t^{\frac{n-1}{p-1}} q^{\frac{n}{p-1}}(t)} \right)^{p-1}. \quad (2.3)$$

Combining the inequalities (2.2) and (2.3), we obtain

$$n \Omega_n \left(\frac{p - n}{p - 1} \right)^{p-1} \left[m(fA) \frac{n-p}{n} \right] \leq \omega_{n-1} \left(\int_{r_0}^{R} \frac{dt}{t^{\frac{n-1}{p-1}} q^{\frac{n}{p-1}}(t)} \right)^{p-1}. \quad (2.4)$$

Due to $\omega_{n-1} = n \Omega_n$, the last inequality can be rewritten as

$$\Omega_n^{\frac{p}{n-1}} \left(\frac{p - n}{p - 1} \right)^{p-1} \left[m(fA) \frac{n-p}{n} \right] \leq \left(\int_{r_0}^{R} \frac{dt}{t^{\frac{n-1}{p-1}} q^{\frac{n}{p-1}}(t)} \right)^{1-p}. \quad (2.4)$$

Consider a case when $\alpha \in [0, p - n)$. Then from the condition (2.1) the estimate

$$\Omega_n^{\frac{p}{n-1}} \left(\frac{p - n}{p - 1} \right)^{p-1} \left[m(fA) \frac{n-p}{n} \right] \leq K \left(\frac{p - n - \alpha}{p - 1} \right)^{p-1} \left(R^{\frac{p-n-\alpha}{p-1}} - r_0^{\frac{p-n-\alpha}{p-1}} \right)^{1-p}$$

holds. Therefore

$$m(fB(x_0, R)) \geq \Omega_n K^{\frac{n}{n-p}} \left(\frac{p - n}{p - n - \alpha} \right)^{\frac{(p-1)n}{p-n}} \left(R^{\frac{p-n-\alpha}{p-1}} - r_0^{\frac{p-n-\alpha}{p-1}} \right)^{\frac{n(p-1)}{p-n}}. \quad (2.5)$$

Due to

$$m(fB(x_0, R)) \leq \Omega_n L^n(x_0, f, R), \quad (2.6)$$

from the inequality (2.5) we have

$$\Omega_n \left[\frac{(p-n-\alpha)^{n(p-1)}}{(p-n)^{n(p-1)}} \right]^{\frac{n}{n-p}} \left(R^{\frac{p-n-\alpha}{p-1}} - r_0^{\frac{p-n-\alpha}{p-1}} \right)^{1-p} \leq K \left(\frac{p - n - \alpha}{p - 1} \right)^{p-1} \left(R^{\frac{p-n-\alpha}{p-1}} - r_0^{\frac{p-n-\alpha}{p-1}} \right)^{1-p}.$$
On the Asymptotic Behavior of Ring Q-homeomorphisms with Respect to P-modulus

\[L(x_0, f, R) \geq K^{\frac{1}{n-p}} \left(\frac{p-n}{p-n-\alpha} \right)^{\frac{p-1}{p-n}} \left(\frac{R^{\frac{n-\alpha}{p-n}}}{p-n-\alpha} - r_0^{\frac{n-\alpha}{p-n}} \right)^{\frac{p-1}{p-n}}. \]

Dividing the last inequality by \(R^{\frac{n-\alpha}{p-n}} \) and taking the lower limit for \(R \to \infty \), we conclude

\[\lim_{R \to \infty} \frac{L(x_0, f, R)}{R^{\frac{n-\alpha}{p-n}}} \geq K^{\frac{1}{n-p}} \left(\frac{p-n}{p-n-\alpha} \right)^{\frac{p-1}{p-n}}. \]

Now we consider a case when \(\alpha = p-n \). Then from (2.4) we get

\[\Omega_n^{\frac{n}{p-1}} \left(\frac{p-n}{p-1} \right)^{p-1} [m(fA)]^{\frac{n}{p-n}} \leq K \left(\frac{\ln R}{r_0} \right)^{1-p}. \]

Therefore

\[m(fB(x_0, R)) \geq \Omega_n K^{\frac{n}{n-p}} \left(\frac{p-n}{p-1} \right)^{\frac{n(p-1)}{p-n}} \left(\frac{\ln R}{r_0} \right)^{\frac{n(p-1)}{p-n}}. \]

Due to the estimate (2.6) we obtain

\[L(x_0, f, R) \geq K^{\frac{1}{n-p}} \left(\frac{p-n}{p-1} \right)^{\frac{p-1}{p-n}} \left(\frac{\ln R}{r_0} \right)^{\frac{p-1}{p-n}}. \]

Finally, dividing the last inequality by \((\ln R)^{\frac{p-1}{p-n}} \) and taking the lower limit for \(R \to \infty \), we conclude

\[\lim_{R \to \infty} \frac{L(x_0, f, R)}{(\ln R)^{\frac{p-1}{p-n}}} \geq K^{\frac{1}{n-p}} \left(\frac{p-n}{p-1} \right)^{\frac{p-1}{p-n}}. \]

This completes the proof of Main Theorem. \(\square \)

Let us consider some examples.

Example 2.1. Let \(f_1 : \mathbb{R}^n \to \mathbb{R}^n \), where

\[f_1(x) = \begin{cases} K^{\frac{1}{n-p}} \left(\frac{p-n}{p-n-\alpha} \right)^{\frac{p-1}{p-n}} \frac{x}{|x|} & , x \neq 0 \\ 0 , & x = 0 \end{cases} \]

It can be easily seen that \[\lim_{x \to \infty} \frac{|f(x)|}{|x|^{\frac{p-n}{p-n-\alpha}}} = K^{\frac{1}{n-p}} \left(\frac{p-n}{p-n-\alpha} \right)^{\frac{p-1}{p-n}}. \]

Let us show that the mapping \(f_1 \) is a ring \(Q \)-homeomorphism with respect to \(p \)-modulus with the function \(Q(x) = K |x|^\alpha \) at the point \(x_0 = 0 \). Clearly, \(q_{x_0}(t) = K t^\alpha \).

Consider a ring \(A(0, r_1, r_2), 0 < r_1 < r_2 < \infty \). Note that the mapping \(f_1 \) maps the ring \(A(0, r_1, r_2) \) onto the ring \(A(0, \tilde{r}_1, \tilde{r}_2) \), where

\[\tilde{r}_i = K^{\frac{1}{n-p}} \left(\frac{p-n}{p-n-\alpha} \right)^{\frac{p-1}{p-n}} r_i^{\frac{n-\alpha}{p-n}}, \quad i = 1, 2. \]
Denote by Γ a set of all curves that join the spheres $S(0, r_1)$ and $S(0, r_2)$ in the ring $A(0, r_1, r_2)$. Then one can calculate p-modulus of the family of curves $f_1\Gamma$ in implicit form:

$$M_p(f_1\Gamma) = \omega_{n-1} \left(\frac{p-n}{p-1} \right)^{p-1} \left(\frac{p-n}{\tilde{r}_2^{p-1} - \tilde{r}_1^{p-1}} \right)^{1-p}$$

(see, e.g., the relation (2) in [24]). Substituting in the above equality the values \tilde{r}_1 and \tilde{r}_2, defined above, one gets

$$M_p(f_1\Gamma) = \omega_{n-1} K \left(\frac{p-n-\alpha}{p-1} \right)^{p-1} \left(\frac{p-n-\alpha}{r_2^{p-1} - r_1^{p-1}} \right)^{1-p}.$$

Note that the last equality can be written by

$$M_p(f_1\Gamma) = \omega_{n-1} \left(\frac{\tilde{r}_2}{\int_{r_1}^{r_2} dt} \right)^{p-1},$$

where $q_{x_0}(t) = K t^\alpha$.

Hence, by Proposition 1, the homeomorphism f_1 is a ring Q-homeomorphism with respect to p-modulus for $p > n$ with the function $Q(x) = K |x|^\alpha$ at the point $x_0 = 0$.

Example 2.2. Let $\alpha = p - n$ and $f_2 : \mathbb{R}^n \to \mathbb{R}^n$, where

$$f_2(x) = \begin{cases}
K^{\frac{1}{p-1}} \left(\frac{p-n}{p-1} \right)^{\frac{p-1}{p-n}} (\ln |x|)^{\frac{p-1}{p-n}} \frac{x}{|x|}, & x \neq 0 \\
0, & x = 0.
\end{cases}$$

It can be easily seen that $\lim_{x \to \infty} \frac{|f(x)|}{(\ln |x|)^{\frac{p-n}{p-1}}} = K^{\frac{1}{p-1}} \left(\frac{p-n}{p-1} \right)^{\frac{p-1}{p-n}}$. By analogy with Example 2.1, we can show that the mapping f_2 is a ring Q-homeomorphism with respect to p-modulus with the function $Q(x) = K |x|^{p-n}$.

Remark 2.1. Examples 2.1 and 2.2 show that the estimates in Main Theorem are exact, i.e. are attained on the above mappings.

This work was supported by the budget program “Support of the development of priority trends of scientific researches” (KPKVK 6541230).

References

[1] J. Väisälä, *Lectures on n-dimensional quasiconformal mappings*. Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971.

[2] V. I. Ryazanov, E. A. Sevost’yanov, *Equicontinuous classes of ring Q-homeomorphisms*. Siberian Mathematical Journal 48:6 (2007), 1093–1105.

[3] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, *Q-homeomorphisms*. Complex analysis and dynamical systems Contemp. Math. 364 (2004), Amer. Math. Soc., Providence, RI, 193–203.

[4] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, *On Q-homeomorphisms*. Ann.Acad. Sci. Fenn. Math. 30:1 (2005), 49–69.
On the Asymptotic Behavior of Ring Q-homeomorphisms with Respect to P-modulus

[5] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, *Moduli in modern mapping theory*. Springer Math. Monogr., New York, 2009.

[6] R. Salimov, *ACL and differentiability of a generalization of quasiconformal maps*. Izvestiya: Mathematics 72:5 (2008), 977–984.

[7] A. Golberg, *Differential properties of (α, Q)-homeomorphisms*. Further Progress in Analysis, Proc. 6th ISAAC Congr (2009), 218–228.

[8] A. Golberg, *Integrally quasiconformal mappings in space*. Transactions of Institute of Mathematics, the NAS of Ukraine 7:2 (2010), 53–64.

[9] A. Golberg, R. Salimov, *Logarithmic Holder continuity of ring homeomorphisms with controlled p-module*. Complex Variables and Elliptic Equations 59:1 (2014), 91–98.

[10] A. Golberg, R. Salimov, E. Sevost’yanov, *Distortion estimates under mappings with controlled p-module*. Ann. Univ. Bucharest, Ser. Math 5 (LXIII) (2014), P. 95–114.

[11] R. Salimov, *On finitely Lipschitz space mappings*. Siberian Elecronic Mathematical Reports 8 (2011), 284–295.

[12] R. Salimov, *Estimation of the measure of the image of the ball*. Siberian Mathematical Journal 53:4 (2012), 920–930.

[13] R. Salimov, *To a theory of ring Q-homeomorphisms with respect to a p-modulus*. Ukrainian Mathematical Bulletin 10:3 (2013), 379–396.

[14] R. Salimov, *One property of ring Q-homeomorphisms with respect to a p-module*. Ukrainian Mathematical Journal 65:5 (2013), 728–733.

[15] R. Salimov, B. Klishchuk, *The extremal problem for the area of an image of a disc*. // Reports of the NAS of Ukraine 10 (2016), 22–27.

[16] B. Klishchuk, R. Salimov, *Lower bounds for the area of the image of a circle*. Ufa Mathematical Journal 9:2 (2017), 55–61.

[17] R. Salimov, B. Klishchuk, *Extremal problem for the area of the image of a disk*. Zapiski Nauchnykh Seminarov POMI 456 (2017), 160–171.

[18] R. Salimov, B. Klishchuk, *An extremal problem for the volume functional*. Matematychni Studii 50:1 (2018), 36–43.

[19] B. Klishchuk, R. Salimov, *Lower bounds for the volume of the image of a ball*. Ukrainian Mathematical Journal 71:6 (2019), 774–785.

[20] R. Salimov, E. Smolovaya, *On the order of growth of ring Q-homeomorphisms at infinity*. Ukrainian Mathematical Journal 62:6 (2010), 829–836.

[21] O. Martio, S. Rickman, and J. Väisälä, *Definitions for quasiregular mappings*. Ann. Acad. Sci. Fenn. Ser. A1. Math. 448 (1969), 1–40.

[22] V. A. Shlyk, *The equality between p-capacity and p-modulus*. Siberian Mathematical Journal 34:6 (1993), 216–221.

[23] V. Maz’ya, *Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces*. Contemp. Math. 338 (2003), 307–340.

[24] F. W. Gehring, *Lipschitz mappings and the p-capacity of ring in n-space*. Advances in the theory of Riemann surfaces (Proc. Conf. Stonybrook, N.Y., 1969), Ann. of Math. Studies 66 (1971), 175–193.

Ruslan Salimov
01024, Ukraine
Kiev-4,
3, Tereschenkivska st.
e-mail: ruslan.salimov1@gmail.com
Bogdan Klishchuk
01024, Ukraine
Kiev-4,
3, Tereschenkivska st.
e-mail: kban1988@gmail.com