Hadron-quark phase transition in asymmetric matter with boson condensation

Rafael Cavagnoli,1, 2 Constança Providência,2 and Debora P. Menezes1
1 Departamento de Física - CFM - Universidade Federal de Santa Catarina,
Florianópolis - 88.040 - 900 - Brazil
2 Centro de Física Teórica, Departamento de Física,
Universidade de Coimbra, P-3004-516 Coimbra, Portugal

In the present work we study the hadron-quark phase transition with boson condensation in asymmetric matter by investigating the binodal surface and extending it to finite temperature in order to mimic the QCD phase diagram. We consider a system with two conserved charges (isospin and baryon densities) using the Gibbs’ criteria for phase equilibrium. In order to obtain these conditions we use two different models for the two possible phases, namely the non-linear Walecka model (NLWM) for the hadron matter (also including hyperons) and the MIT bag model for the quark phase. It is shown that the phase transition is very sensitive to the density dependence of the equation of state and the symmetry energy. For isospin asymmetry of 0.2 and a mixed phase with a fraction of 20% of quarks, a transition density in the interval $2\rho_0 < \rho_t < 4\rho_0$ was obtained for temperatures $30 < T < 65$ MeV.

PACS numbers: 21.65.-f, 25.75.Nq, 05.70.Fh, 12.38.Mh

I. INTRODUCTION

Since some decades ago just after the discovery of asymptotic freedom of QCD [1] the possibility of the existence of a new state of matter in high energy physics is under consideration, namely, a color deconfined phase of quarks and gluons, the so-called quark-gluon plasma (QGP) [2]. The main goal of the heavy-ion collision experiments at ultra-relativistic energies is to create, under controlled conditions, and understand the properties of this new state of matter. This opens a new field of study in strong interaction physics.

Many experiments have been proposed and accelerators built in the search for the QGP at different energies at SIS/GSI, AGS/BNL, SPS/CERN, RHIC/BNL and LHC/CERN to look for some signs and signatures of the production of the QGP that subsequently hadronizes [3]. The study of particle production in ion collisions contribute to the understanding of the conditions under which the quark-gluon plasma may be produced and also to determine the equations of state (EoS) of strongly interacting matter.

In hydrodynamical models the system which arises from a high-energy collision (fireball) reaches an approximately local thermal equilibrium (thermalization) and expands evolving collectively up to the point when the mean free path of the created and interacting particles becomes large enough for the particles to escape from the fluid, i.e., the interactions among the particles of the system cease because the system has reached the freeze out point. The approximately local thermalization is considered due to detailed computations of the expansion stage that takes much longer than the typical scattering times [4]. Although, non-equilibrium processes are also important for the dynamics, equilibrium processes are a quite good approximation to be used in theoretical models, and are a reasonable first approximation at freeze-out. Some authors consider both the temperature at which the inelastic collisions cease (chemical freeze-out) and the elastic collisions cease (kinetic freeze-out) [5].

In the end of the eighties of the last century the existence of the (chiral) critical end point (CEP) in the QCD phase diagram was suggested [6, 7] and since then its properties have been extensively studied [8]. Although, most lattice QCD calculations indicate the existence of the CEP for $\mu_B > 160$ MeV [9–11], its exact location is not well known since it depends, for example, on the mass of the strange quark. The CEP separates second-order transition at high temperatures (or even a smooth cross-over) from the first-order transition at high chemical potentials in the QCD phase diagram. Studying this intermediate region is a hard task since perturbation theory cannot be applied to QCD at this regime and additionally at finite chemical potential the usual lattice approach fails. Moreover, new techniques have been proposed to study lattice QCD at finite T and μ [12]. On the other hand the lattice QCD simulations of different groups disagree with each other on the location of the critical end point.

Subsequently in the late nineties a hypothesis arose [13] that the onset of the deconfinement phase transition was located between the top AGS and SPS energies. The CERN energy scan program of the NA49 experiment at SPS has given signs of a phase change at $E_{lab} \sim 30$ A–GeV particularly from the horn-like peak in the K^+ / π^- ratio [14]. Furthermore, the hadronic freeze-out estimated for different colliding energies [15] shows a maximum at $\sqrt{s_{NN}} = 4 + 4$ GeV, which can be reached for a fixed-target bombarding energy of 20–30 A–GeV at the baryonic chemical potential region $\mu_B = 400 – 500$ MeV. In addition, hydrodynamical calculations [16, 17] of phase trajectories during collisions, in the QCD phase diagram, indicate that for $E_{lab} \sim 30$ A–GeV ($\sqrt{s_{NN}} \sim 8$ GeV) the trajectory goes near the CEP.

Since then, the interest on the intermediate energies
in heavy-ion collisions at intermediate energies. In addition, the presence of bosons can modify the isospin of the hadron phase. Also, at low temperatures these features depend strongly on the nuclear symmetry energy. The different ion beams used in collision experiments present different numbers of neutrons (N) and protons (Z). It is also interesting to study the isospin effects on the transition to a mixed phase of hadrons and quarks. We can define the asymmetry parameter (isospin ratio) of a nucleus (or the hadron phase) as \(\alpha \equiv (N-Z)/(N+Z) \), such that, \(\alpha \) runs from 0 (symmetric matter) to 1 (pure neutron matter). From table II one sees some ions used in nucleus-nucleus collisions and the respective asymmetry parameter of each system. Systems with isospin ratios \(0 \leq \alpha \leq 0.23 \) are up to now experimentally accessible in ion collisions and the case \(\alpha = 1.0 \) corresponds to neutron matter which is relevant in some astrophysical applications.

We study the phase transition from hadrons to a quark-gluon plasma in asymmetric matter using a two-phase model, analyzing the features that depend on the isospin and may be relevant in a phenomenological description of heavy-ion collisions [22–25].

It is interesting to investigate asymmetric systems since in the liquid-gas phase transition of nuclear matter the asymmetric case shows different properties from the symmetric one [22, 26, 27]. It is shown that the transition of an asymmetric system is of second order (continuous) rather than the first order (discontinuous) transition in symmetric systems [22–25].

Hence, an interesting task is to investigate the isospin effect on the hadron-quark phase transition at lower temperatures and densities higher than the saturation density of the normal nuclear matter, that can be probed in heavy-ion collisions at intermediate energies. In addition, the presence of bosons can modify the isospin of the hadron phase. Also, at low temperatures these features depend strongly on the nuclear symmetry energy. On the other hand, at higher temperatures the inclusion of bosons shows an interesting feature due to the onset of a boson condensate in asymmetric systems if we consider an approximately local thermal equilibrium.

\(\sqrt{s_{NN}} \) (GeV)	\(E_{lab} \) (A-GeV)	FAIR/GSI	NICA/JINR
2.0	34		(← planned facilities)

TABLE I: Ion beam top energies in some collision experiments.

\(\sqrt{s_{NN}} \) (GeV)	\(E_{lab} \) (A-GeV)
2.7	4.2
5.6	17.3
200	5400

\(\sqrt{s_{NN}} \) (GeV)	\(E_{lab} \) (A-GeV)
4.2	14.6
500	158
3.4	2.1 \times 10^4
600	1.6 \times 10^7

TABLE II: Some ions used in collision experiments and the respective asymmetry parameter (\(\alpha \)) of the system.

This approach is useful for providing a qualitative orientation on the features that arise when a phase transition from hadrons to quarks takes place and two conserved charges are considered, i.e. at finite baryon density and isospin.

As already mentioned, the problem we investigate in the present paper has already been studied in previous works [23–25] within different perspectives, based
on different parametrizations and containing different ingredients. In [23] the hadronic phase is given by one parametrization of the non-linear Walecka model, the quark phase is calculated with the MIT bag model for one specific value of the bag constant and pions are included. In [24, 25] a mixed phase of hadrons and quarks is particularly emphasized and the influence of the symmetry energy on the phase transition investigated. In [25] neither bosons nor gluons were considered and the quark phase was described within the MIT bag model, and in [24] two quark different models have been used: the MIT bag model (with and without gluons) and the color dielectric quark model. In these works five different parametrizations of the non-linear Walecka model are considered and one of them includes the \(\delta \) mesons. All these models have a quite high value of the symmetry energy slope, namely \(85 < L < 103 \) MeV, and therefore they have a quite hard symmetry energy at intermediate densities, the densities of interest for the present work.

In the present work we consider seven different parametrizations of the non-linear Walecka model, which span a large variety of EOS: they include hard and soft EOS with hard and soft symmetry energies at intermediate densities. This will allow us the see the effect of both the isoscalar and the isovector interaction on the phase transition. For the quark model we have considered the MIT bag model with various values of the bag constant and with gluons. The bag constant was chosen in accordance with heavy-ion collision data. In the hadronic phase we have studied the effect of including two kinds of bosons, pions and kaons. This more complete picture allows us to discuss various aspects of the phase transition at finite temperature which were not discussed before.

The remainder of this article is organized as follows: In section II we present the formalism used in this work. In section III the mixed phase features are presented and in section IV we show the numerical results and discussion. Finally, in section V we summarize the results and give a brief concluding discussion.

II. THE FORMALISM

In the present section we present the equations of state (EoS) for the hadron phase and for the quark phase used in this work and their respective definitions. Bosons are included using a meson-exchange type Lagrangian that couples the bosons to meson fields and the possibility of a boson condensate is also presented.

A. Quark phase: quarks \(u, d \) (+ gluons)

Quark matter has been extensively described by the MIT bag model [28]. In its simplest form, the quarks are considered to be free inside a Bag and the thermodynamic properties are derived from the Fermi gas model in two limits: \(T = 0, m_q \neq 0 \) and \(T \neq 0, m_q = 0 \). The energy density, the pressure and the quark density are respectively given by:

\[
E_q = 3 \times 2 \sum_{q=u,d} \int \frac{d^3p}{(2\pi)^3} \sqrt{p^2 + m_q^2} \left(f_{q^+} + f_{q^-} \right) + B, \tag{2.1}
\]

\[
P_q = \frac{1}{\pi^2} \sum_q \int dp \frac{p^4}{\sqrt{p^2 + m_q^2}} \left(f_{q^+} + f_{q^-} \right) - B, \tag{2.2}
\]

\[
n_q = 3 \times 2 \int \frac{d^3p}{(2\pi)^3} \left(f_{q^+} - f_{q^-} \right), \tag{2.3}
\]

\[
f_{q^\pm} = \frac{1}{1 + e^{(E_q^\pm - \mu_q)/T}}, \tag{2.4}
\]

where 3 stands for the number of colors, 2 for the spin degeneracy, \(m_q \) for the quark masses, \(B \) represents the bag pressure and \(f_{q^\pm} \) the distribution functions for the quarks and anti-quarks, \(\epsilon_q = \sqrt{p_q^2 + m_q^2} \), \(\pm \mu_q \) being the chemical potential for quarks and anti-quarks of type \(q \),

\[
\mu_u = \frac{2\mu_p - \mu_n}{3}, \quad \mu_d = \frac{2\mu_n - \mu_p}{3}. \tag{2.5}
\]

The quark density is

\[
n_q = n_u + n_d, \tag{2.6}
\]

and the “quark baryon density” is given by:

\[
n_B = \frac{n_u + n_d}{3}. \tag{2.7}
\]

The thermodynamic potential per unit volume of the MIT bag model (two-flavor case) and the corresponding equations of state (EoS) [23, 29] for massless quarks and a Bose gas of gluons of degeneracy \(\gamma_g = 2 \times 8 \) with the lowest-order gluon interaction (\(\alpha_s \)) is
\[\frac{\Omega_{QGP}}{V} = -\frac{\pi^4}{45} T^4 \left(8 + \frac{21}{4} N_f \right) - \frac{1}{2} \sum_{q=u,d} \left(T^2 \mu_q^2 + \frac{\mu_q^4}{2\pi^2} \right) + \frac{2\pi}{9} \alpha_s \left[T^4 \left(3 + \frac{5}{4} N_f \right) + \frac{9}{2} \sum_{q=u,d} \left(\frac{T^2 \mu_q^2}{\pi^2} + \frac{\mu_q^4}{2\pi^2} \right) \right] + B , \]

from where we can obtain the pressure \(P_{QGP} = -\Omega_{QGP}/V \) the energy density and the quark number density:

\[P_{QGP} = \frac{8\pi^2}{45} T^4 \left(1 - \frac{15\alpha_s}{4\pi} \right) + \sum_q \left[\frac{7}{60} \pi^2 T^4 \left(1 - \frac{50\alpha_s}{21\pi} \right) + \left(\frac{1}{2} T^2 \mu_q^2 + \frac{1}{4\pi^2} \mu_q^4 \right) \left(1 - \frac{2\alpha_s}{\pi} \right) \right] - B , \]

\[\epsilon_{QGP} = 3P_{QGP} + 4B ; \quad n_q = \sum_q \left(T^2 \mu_q + \frac{\mu_q^3}{\pi^2} \right) \left(1 - \frac{2\alpha_s}{\pi} \right) . \]

The strong coupling \(\alpha_s \) is taken as a constant in the present work (\(\alpha_s = 0.349 \)) and \(N_f \) stands for the number of flavors (\(N_f = 2, \) quarks \(u \) and \(d \)).

B. Hadron phase: nucleons (+ hyperons)

The equations of state of asymmetric matter within the framework of the relativistic non-linear Walecka model (NLWM) \cite{30} are presented next. In this model the nucleons are coupled to neutral scalar \(\sigma \), isoscalar-vector \(\omega^\mu \) and isovector-vector \(\bar{\rho}^\mu \) meson fields. The Lagrangian density reads

\[\mathcal{L}_B = \bar{\psi} \left[\gamma_\mu \left(i\partial^\mu - g_{\omega j} \omega^\mu - g_{\bar{\rho} j} \bar{\rho}^\mu \right) - m_j^* \right] \psi + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{1}{3!} k \sigma^3 - \frac{1}{4!} \lambda \sigma^4 \\
- \frac{1}{4} \Omega_{\mu\nu} R^{\mu\nu} - \frac{1}{2} m_{\omega j}^2 \omega^\mu \omega^\nu + \frac{1}{4!} \xi \sigma^4 (\omega^\mu \omega^\nu)^2 \\
- \frac{1}{4} \bar{R}_{\mu\nu} \cdot \bar{R}^{\mu\nu} + \frac{1}{2} m_{\bar{\rho} j}^2 \bar{\rho}^\mu \cdot \bar{\rho}^\nu \\
+ \Lambda_\sigma (g_{\rho j}^2 \bar{\rho}^\mu \cdot \bar{\rho}^\nu)(g_{\omega j}^2 \omega^\mu \omega^\nu) , \] (2.11)

where \(m_j^* = m_j - g_{\sigma j} \sigma \) is the baryon effective mass, \(\Omega_{\mu\nu} = \partial_\mu \omega_\nu - \partial_\nu \omega_\mu \), \(ar{R}_{\mu\nu} = \partial_\mu \bar{\rho}_\nu - \partial_\nu \bar{\rho}_\mu - g_\rho (\bar{\rho}_\mu \times \bar{\rho}_\nu) \), \(g_\nu \) is the coupling constants of mesons \(i = \sigma, \omega, \rho \) with baryon \(j \), and \(m_i \) is the mass of meson \(i \). The couplings \(k \) (\(k = 2M_N g_\rho^2 b \)) and \(\lambda \) (\(\lambda = 6 g_\rho^4 c \)) are the weights of the non-linear scalar terms and \(\bar{\rho} \) is the isospin operator. This Lagrangian includes an isoscalar-isovector mixing term \(\Lambda_\sigma (g_{\rho j}^2 \bar{\rho}^\mu \cdot \bar{\rho}^\nu)(g_{\omega j}^2 \omega^\mu \omega^\nu) \) as presented in \cite{31} which plays an important role in high densities. It can also be extended to include all the hyperons from the baryon octet.

Within the relativistic mean field (RMF) framework the thermodynamic potential per unit volume corresponding to the Lagrangian density \(2.11 \) is
and $f_{Fj\pm}$ is the Fermi distribution for the baryon (+) and anti-baryon (-) j:

$$f_{Fj\pm} = \frac{1}{e^{\beta(E_j + \nu_j)} + 1}. \quad (2.17)$$

C. Hadron phase: bosons (pions + kaons)

It is possible to include the boson fields using terms from the chiral perturbation theory [33]. In the present work we prefer to use a meson-exchange type Lagrangian that couples the bosons to meson fields. For simplicity we apply the same approach to the kaons and pions. The Lagrangian density in the minimal coupling scheme [34–39] is given by:

$$\mathcal{L}_b = D^\mu \Phi^* D_\mu \Phi - m_b^* m_b \Phi^* \Phi, \quad (2.18)$$

where the covariant derivative is:

$$D_\mu = \partial_\mu + iX_\mu, \quad (2.19)$$

and the boson effective mass, $m_b^* = m_b - g_{\sigma b} \sigma$. The boson field can then represent either the kaons or pions (particles and anti-particles):

$$\Phi \equiv (K^+, K^0) \quad (2.21)$$

or

$$\Phi \equiv (\pi^-, \pi^0) \quad (2.22)$$

The isospin third-component to the bosons is given by

$$\tau_{b3} = \begin{cases} +1, & \pi^+ \\ 0, & \pi^0 \\ -1, & \pi^- \end{cases}, \quad (2.23)$$

or

$$\Phi^\star = \Phi, \quad (2.24)$$

In order to obtain the boson thermodynamic potential it is also possible to perform a similar calculation as carried out in reference [39] with the respective modifications in the covariant derivative (2.19).

As the neutral pion is its own anti-particle we need to set $X_\mu = 0 \quad (g_{\pi\mu\nu} = g_{\rho\pi\sigma} = 0)$, and if required $m^*_{\rho\sigma} = m_{\rho\sigma}$, then $g_{\rho\sigma\pi\nu} = 0$ to achieve the correct thermodynamical features of these uncharged particles. In this case, the Lagrangian (2.18) takes up its simplest form and $\Phi^\star = \Phi$. In particular, π^0 results completely decoupled from the other particles and its population is that of a boson gas at temperature T and $\mu_{\pi\nu} = 0$.

In the Appendix we show the calculation of the bosonic EoS:

$$P_b = \zeta^2 \left[(\mu_b - X_0)^2 - m_b^4 \right] - T \int \frac{d^3p}{(2\pi)^3} \left\{ \ln \left[1 - e^{-\beta(\omega^+ - \mu)} \right] + \ln \left[1 - e^{-\beta(\omega^- + \mu)} \right] \right\}, \quad (2.24)$$

$$E_b = \zeta^2 \left[m_b^4 + \mu_b^2 - X_0^2 \right] + \int \frac{d^3p}{(2\pi)^3} \left\{ \omega^+ f_{B+} + \omega^- f_{B-} \right\}, \quad (2.25)$$

$$n_b = 2\zeta^2 (\mu_b - X_0) + \int \frac{d^3p}{(2\pi)^3} \left\{ f_{B+} - f_{B-} \right\}, \quad (2.26)$$

where the Bose distribution for particles (f_{B+}) and anti-particles (f_{B-}) appears naturally in the EoS and read:

$$f_{B\pm} = \frac{1}{e^{\beta(\epsilon_b^\pm + \mu_b)} - 1} = \frac{1}{e^{\beta(\epsilon_b^\pm + X_0 + \mu_b)} - 1} = \frac{1}{e^{\beta(\epsilon_b^\pm + \nu_b)} - 1}, \quad (2.27)$$

with $\epsilon_b^\pm = \sqrt{p^2 + m_b^2}$, and hence we define the boson effective chemical potential as

$$\nu_b \equiv \mu_b - X_0. \quad (2.28)$$

From equation (2.26) one notes two contributions in the boson density and we can define them as the “condensate” and “thermal” ones

$$n_b = n_b^c(\zeta) + n_b^T(T), \quad (2.29)$$
and the entropy density is given by \(s_b = \beta (P_b + \mathcal{E}_b - \mu_b n_b) \). The order parameter \(\zeta \) can be obtained through the minimization of the thermodynamic potential.

D. Hadron phase equations

The thermodynamic potential of the hadron phase (HP) including both the baryons and the bosons, is given by

\[
\Omega_{HP} = \Omega_B + \Omega_b
\]

where \(\Omega_B \) is given by (2.12) and \(\Omega_b \) by (A19). By minimizing the thermodynamic potential \(\Omega_{HP} \) with respect to the meson fields \(\sigma, \omega \) and \(\rho \), and also with respect to the order parameter \(\zeta \), within the mean-field approximation \((\sigma \to \langle \sigma \rangle = \sigma_0 \); \(\omega \mu \to \langle \omega \mu \rangle = \delta_{\mu 0} \omega_0 \); \(\rho_\mu \to \langle \rho_\mu \rangle = \delta_{\mu 0} \delta^{j_3} \rho_{03} = \delta_{\mu 0} \delta^{j_3} \rho_{03} \)), we obtain the equations for the hadron phase:

\[
m_\sigma^2 \sigma_0 = \frac{k}{2} \sigma_0^2 - \frac{\lambda}{6} \sigma_0^3 + \sum_j g_{\sigma j} n_j^2 + \sum_b g_{\sigma b} (n_b^c + n_b^e),
\]

\[
m_\omega^2 \omega_0 = -\frac{\xi}{6} \omega_0^3 + \sum_j g_{\omega j} n_j + \sum_b g_{\omega b} n_b - 2 \Lambda_\nu g_\nu g_\omega \rho_{03} \omega_0,
\]

\[
m_\rho^2 \rho_{03} = \sum_j g_{\rho j} \tau_j n_j + \sum_b g_{\rho b} \tau_b n_b - 2 \Lambda_\nu g_\nu g_\omega \omega_0 \rho_{03},
\]

and

\[
\zeta \left[\mu_b - \omega_b^+ (0) \right] \left[\mu_b + \omega_b^- (0) \right] = 0,
\]

where

\[
n_j^* = \int \frac{d^3p}{(2\pi)^3} \frac{m_j^*}{E_j} (f_{F+} + f_{F-}),
\]

is the baryon scalar density of particle \(j \), and the respective baryon density

\[
n_j = \frac{2}{(2\pi)^3} \int d^3p (f_{F+} - f_{F-}).
\]

The “boson scalar density” for the boson \(b \) is given by

\[
n_b^* = \int \frac{d^3p}{(2\pi)^3} \frac{m_b^*}{E_b} (f_{B+} + f_{B-}),
\]

and the boson density is given by (2.26).

From the last equation of (2.32) we obtain the conditions for the possibility of a boson condensate \((\zeta = 0, \text{no condensate})\), resulting

\[
\mu_b = \omega_b^+ (p = 0) \quad \text{or} \quad \mu_b = -\omega_b^- (p = 0),
\]

depending on the signal of \(\mu_b \) (either positive or negative). Thus

\[
\mu_b = m_b^* + X_0 \quad \text{or} \quad \mu_b = -(m_b^* - X_0),
\]

and

\[
\mu_b - X_0 = m_b^* \quad \text{or} \quad \mu_b - X_0 = -m_b^*,
\]

such that the condition for the onset of the condensate state is

\[
\nu_b \to m_b^* \quad \text{or} \quad \nu_b \to -m_b^*.
\]

According to (2.24) and (2.39) the condensate (zero momentum state) does not contribute to the pressure of the system as expected. When the condensate is not present, \(\zeta = 0 \).

III. THE MIXED PHASE

In the following, three situations for the phase coexistence are discussed in detail: A) hadron matter constituted of nucleons and quark matter constituted of quarks \(u \) and \(d \), B) hadron matter constituted of nucleons and pions and quark matter constituted of quarks \(u \) and \(d \), and C) hadron matter constituted of nucleons, hyperons, pions and kaons with zero net strangeness and quark matter constituted of quarks \(u \) and \(d \).

A. A. Nucleons and quarks

According to the Gibbs’ conditions [21] for the phase coexistence the chemical potentials, temperatures and pressures have to be identical in both phases (\(H = \) hadron phase; \(Q = \) quark phase):

\[
\mu_u^H = \mu_u^Q, \quad \mu_d^H = \mu_d^Q, \quad T^H = T^Q,
\]

\[
P^H(\mu_u^H, \mu_d^H, T) = P^Q(\mu_u^Q, \mu_d^Q, T).
\]

The conservation of the isospin \((n_3)\) and baryon densities \((n_B)\) are also required, so that in terms of these two
charges \cite{22} and including the mixed phase we can write
\[P^H(n_B^H, n_3^H, T) = P^Q(n_B^Q, n_3^Q, T), \]
\[\mu_B^H(n_B^H, n_3^H, T) = \mu_B^Q(n_B^Q, n_3^Q, T), \]
\[\mu_3^H(n_B^H, n_3^H, T) = \mu_3^Q(n_B^Q, n_3^Q, T), \] (3.2)
where for the hadron phase
\[n_B^H = n_p + n_n ; \quad n_3^H = \frac{n_p - n_n}{2}, \] (3.3)
\[\mu_B^H = \frac{1}{2}(\mu_p + \mu_n) ; \quad \mu_3^H = \mu_p - \mu_n, \]
and for the quark phase
\[n_B^Q = \frac{1}{3}(n_u + n_d) ; \quad n_3^Q = \frac{n_u - n_d}{2}, \] (3.4)
\[\mu_B^Q = \frac{3}{2}(\mu_u + \mu_d) ; \quad \mu_3^Q = \mu_u - \mu_d, \]
and \(\chi \) represents the fraction of quarks in the mixed phase. The asymmetry parameter, \(\alpha \) (isospin ratio) of the nuclei was defined as
\[\alpha \equiv \frac{N - Z}{N + Z} = \frac{n_n - n_p}{n_B}, \] (3.5)
and the asymmetry parameter of the hadron and quark phases can be defined by:
\[\alpha^H \equiv -2 \frac{n_3^H}{n_B}; \quad \alpha^Q \equiv -2 \frac{n_3^Q}{n_B}, \] (3.6)
hence
\[\alpha^H = \frac{n_n - n_p}{n_n + n_p} ; \quad \alpha^Q = \frac{3n_d - n_u}{n_d + n_u}, \] (3.7)
such that \(0 \leq \alpha^H \leq 1 \) (just nucleons case) and the quark one \(0 \leq \alpha^Q \leq 3 \).

B. Nucleons, pions and quarks

When bosons are present the isospin density of the hadron phase is modified according to (2.31) and \(\alpha^H \) can be greater than 1. The isospin density of the hadron phase with \(\pi^- \) becomes
\[n_3^H = \frac{n_p - n_n}{2} - n_\pi, \] (3.8)
where \(n_\pi = n_\pi^+ + n_\pi^- \) and we assume \(g_{pN} = g_p = g_\pi \).

In order to obtain the simplest thermodynamic features for the pions we set \(g_{p\pi} = 0 \) and for simplicity \(g_{\pi\pi} = 0 \) so that in this case \(m_\pi^* = m_\pi \). The in-medium (s-wave) Bose effective pion energy is
\[\omega_{\pi^-}(p = 0) = m_\pi - g_\pi \rho_{03}, \] (3.9)
and the pion chemical potentials and the effective \(\pi^- \) chemical potential
\[\mu_{\pi^-} = \mu_n - \mu_p, \quad \mu_{\pi^+} = -\mu_{\pi^-}, \] (3.10)
\[\mu_{\pi^0} = 0, \quad \nu_{\pi^-} = \mu_{\pi^-} + g_\pi \rho_{03}. \] (3.11)
As \(\mu_n > \mu_p \) then \(\mu_{\pi^-} > 0 \) and according to (2.39) the onset of the pion (\(\pi^- \)) condensation takes place when
\[\nu_{\pi^-} \to m_\pi, \] (3.12)
and the EoS for the hadronic phase
\[P_H = P_B + P_\pi ; \quad \mathcal{E}_H = \mathcal{E}_B + \mathcal{E}_\pi, \] (3.13)
where \(P_\pi \) and \(\mathcal{E}_\pi \) are given by (2.24) and (2.25) and we have also included the neutral pions as a free Bose gas.

C. The baryon octet, pions, kaons and quarks

At this stage we have included in the hadron phase all baryons of the baryon octet and in order to keep the strangeness conservation as \(\sum_i S_i = 0 \) in both phases we also have included the \(K^- \) meson in the hadron phase. For the Gibbs’ conditions (3.1) we need to add: \(\mu_B^H = \mu_B^Q \), so that we can write the chemical potential as \(\mu_i = B_i \mu_B + I_{3i} \mu_3 + S_i \mu_S \), where \(B_i, I_{3i} \) and \(S_i \) are the baryonic, isospin and strangeness quantum numbers of particle \(i \).

The equations for the baryons and bosons are already presented in this work. For the kaons we set \(g_{pK} = g_p, g_{pK} = 0 \) and also \(g_{qK} = 0 \) so that \(m_K^- = m_K \) as for the pions. We are aware that this choice is very naive. It was done in order to explore the isospin degree of freedom. In a future work a more realistic parametrization of the kaon-meson coupling will be used which will allow us to discuss the strangeness degree of freedom more completely.

IV. RESULTS

First of all it is important to present some features of the MIT bag model. Figure 1 shows a qualitative overview of the MIT bag model in a simple case when
For the hadronic phase we use the parameter sets presented in table III, where we give the symmetric nuclear matter properties at saturation density as well as the parameters of the models. In Figs. 2 (a) and (b) the pressure of symmetric nuclear matter and the symmetry energy, respectively, are plotted for a large range of densities. In Fig. 2 (a) we also include the experimental constraints obtained from collective flow data in heavy-ion collisions [46]. We have considered a wide range of models frequently used to study stellar matter or finite nuclei. Even though some of them do not satisfy the constraints determined in [46], as a whole these sets of models allows us to understand the influence of a hard/soft equation of state (EOS) and a hard/soft symmetry energy of the hadron matter-quark matter phase transition.

Let us first describe some hadron-quark matter systems at zero and finite temperature, including the deconfined phase transition, through isothermal processes. We first discuss the effects of pions and gluons on the phase transition. For this discussion we take NL3 to describe the hadronic matter, however the main conclusions do not depend on the nuclear model considered.

In Figs. 3 (a) and (b) we show slices of the binodal surface indicating the two-dimensional phase-coexistence boundary in \{P,T,\alpha\} space, at \(T = 30\) MeV. For each temperature, the binodal section is divided into two branches. One branch describes the system in the hadron phase, while the other branch describes the quark-gluon phase. In both figures the role of the pions and gluons is presented. Fig. 3 (a) shows a system with no gluons for two cases with and without the pions. The blue curves represent a system with no pions. The gluons have a very strong effect on the critical point, corresponding to a maximum in the pressure, when both phases coexist for \(\alpha = 0\). The presence of gluons increases the critical pressure almost by 100\%. The role of the pions is better seen in Fig. 3 (b) (red lines). The asymmetry parameter of the hadron phase increases due to the presence of the pions which increase the isospin interaction. In equilibrium, the pressures in both phases must be equal according to the Gibbs’ conditions. When pions are present these conditions still hold. We observe a slight increase of the pressure of the quark-gluon phase for \(\alpha > 3\), following the hadronic pressure increase.
At finite temperature pions are present as a Bose gas and their presence as a condensate state at low enough temperatures is also possible. The presence of a pion gas and a pion condensate changes the pressure at low densities according to Fig. 4 by increasing the absolute value of the ρ meson field (i.e., the isospin interaction) since the condensate itself does not contribute to the pressure of the system as a boson gas. The lowest pressures of the binodal occur for the largest values of the asymmetry parameter α (1 for the hadronic phase without pions).

When gluons are included in the quark phase the densities reached by the system at the binodal surface increase slightly in both phases such that the onset of the pion condensation takes place at a slightly higher density: $2.87n_0$ instead of $2.18n_0$ at $T = 30$ MeV according to Fig. 5, when an isothermal process is analyzed. Therefore, the presence of gluons shifts the phase transition to a quark-gluon plasma to larger densities.

The onset of the pion condensation according to the eq. (2.39) [or similarly eq. (2.36)] is clearly seen in Fig. 6 where we plot the pion mass m_π, pion chemical potential μ_π, pion effective chemical potential ν_π and pion frequency at $p = 0$, $\omega^+_\pi(p = 0)$. The pion condensation occurs for the lower densities when the conditions (2.39) or (2.36) are satisfied.

In Fig. 7 we show the binodal slices at different temperatures and for the bag constant 190 MeV. The enclosed area becomes smaller with increasing temperature and

![Graphs showing EoS for symmetric matter and different models.](image)

FIG. 2: EoS for symmetric matter and different models. (a) Pressure as a function of the baryon number density. The enclosed area represents experimental data according to [46]. (b) The symmetry energy as a function of the baryon number density.

Parameter	FSU [32]	TM1 [41]	TM1\(\omega\rho\) [42]	NL\(\rho\) [43]	NL3 [44]	GM1 [45]	GM3 [45]
n_0 (fm\(^{-3}\))	0.148	0.145	0.145	0.160	0.148	0.153	0.153
K (MeV)	230	281	281	240	271.76	300	240
m^*/m	0.62	0.643	0.643	0.75	0.60	0.70	0.78
m (MeV)	939	938	938	939	939	938	938
$-B/A$ (MeV)	16.3	16.3	16.3	16.0	16.299	16.3	16.3
ε_{sym} (MeV)	32.6	36.9	31.9	30.5	37.4	32.5	32.5
L (MeV)	61	110	55	85	118	94	90

TABLE III: Parameter sets used in this work and corresponding saturation properties.
The pressure at $\alpha = 0$ decreases when the temperature increases. The two branches merge into a single line when the system reaches the critical temperature at zero chemical potential and density. The critical temperature (T_c) of the phase transition is ~ 150 MeV for the bag constant $B^{1/4} = 190$ MeV. For larger values of B we obtain a larger pressures at the same temperature and the other way round for smaller values. The results shown in the figure are consistent with the ones found in ref. [23] although here the NL3 parameter set has been used. The calculation includes both pions and gluons.

Next we discuss the inclusion of strangeness. The population of particles at $T = 50$ MeV can be seen in Fig. 8 for two cases: (a) a simple system of protons, p, neutrons, n, and pions, π^-, in the hadron phase, and (b) including the hyperons of the baryon octet and K^+ mesons in the hadron phase. In both cases the total strangeness of the system is zero, therefore, we just have quarks u and d in the quark phase. Fig. 8 (a) shows an increase of pions at low baryon densities, which plays an important role in the isospin density of the system. Most of the pions below $2.6n_0$ are in a zero momentum state (i.e., a pion condensate). The same pattern can be seen in Fig. 8 (b) on pions and nucleons, indicating that strange particles are not important in these conditions at that temperature but they do appear at higher densities. We do not see kaon condensation, just a pion condensate as in the first case. It is important to analyse how sensitive are the above results to the choice of the kaon-meson interaction. Work in this direction will be done in the near future.
We conclude that the different behaviors seen for the zero temperature case and where the pressure is plotted as a function of density for cold symmetric nuclear matter. At finite temperature a similar trend is obtained except that the maximum densities reached are smaller.

We now discuss the effect of the density dependence of the EOS on the binodal surfaces. In Fig. 9 (a) one sees a comparison of the hadron phase-quark phase binodal sections among the different parameter sets listed in Table III for the zero temperature case and $B^{1/4} = 160$ MeV. Qualitatively all the curves behave in the same way. The difference lies in the pressures and the densities reached by the different systems which is explicitly shown in Fig. 5. The y-axis we plot the pion mass, chemical potential, effective chemical potential and frequency at $p = 0$.

We have not included a curve for FSU because due to its softness no phase transition was obtained at reasonable densities. The behavior at large densities can be adjusted by changing the value of the parameter χ which multiplies the forth power of the ω-meson term in the Lagrangian density. A larger value gives a softer EOS at large densities. We have reduced the value of χ and for $\chi = 0.03$ we could get convergence at reasonable densities. This coincides with the large density behavior of the new parametrization proposed in [49], that corrects the behavior of FSU at large densities which predicted too small maximum star masses and too large star radii.

The density dependence of the energy density does not affect the binodal surface of symmetric nuclear matter but it certainly has an effect if we consider asymmetric matter. We investigate the phase transition at intermediate energies using a convenient choice of different parametrizations of the NLWM in order to explore different compressibilities at large densities as well as an asysoft and asyhard EOS. We take into account the parameter sets: NL3, hard EoS and symmetry energy; NLρ, intermediate behavior both in the isoscalar and isovector channel; TM1, soft EoS at high densities and hard symmetry energy and TM1$\omega\rho$, with a soft symmetry energy.

In order to discuss the effect of isospin asymmetry on the binodal sections, we allow the temperature to change with fixed asymmetry parameter, and compare the predictions of the different models. Figs. 11 (a) and (b) show, for NL3 and NLρ, the binodal sections in $\{n_B, T, \alpha\}$ space and the projection of several branches at different α onto the (n_B, T) plane (HP = hadron phase; QP = quark phase). In other words Figs. 11 (a) and (b) show the QCD phase diagram with different asymmetries, $\alpha = 0$, 0.2, 0.4, 0.6, 0.8, and 1.0, from the right (I) to the left (II) in the two phases. From now on, in order not to reach too high densities in the hadron phase we exclude the gluons from the system. This does not affect the comparison between models and may give rise to a maximum 20% underestimation of the transition density.

In Fig. 11 (a) we have considered $B^{1/4} = 190$ MeV together with the models NL3 and NLρ. The properties...
of the EoS are clearly reflected on these results: for NL3 the transition occurs for smaller densities due to its very large compressibility at large densities. It is also this high value of the compressibility that dilutes in part the effect of the asymmetry parameter. NLρ has a much softer EOS and symmetry energy and, therefore, the curves obtained for a fixed asymmetry span a larger range of densities. In summary, the hadron-quark phase transition is favored when the asymmetry of the system is increased.

We are interested in discussing the phase transition at intermediate temperatures and high densities and, for this reason, we consider smaller bag pressures according to Fig. 1. We set $B^{1/4} = 160$ MeV in order to reach a specific range of temperature and densities, which is presented in Figs. 12 (a) and (c) and also in Fig. 13 (a). The asymmetries experimentally available up to now according to table II are in the range $0 - 0.23$.

Since NL3 is too hard and does not satisfy most of the constraints imposed by experimental and observational measurements [47] we consider in the following TM1 with and without a $\omega\rho$ non linear term which allows us to discuss a asy-soft and a asy-hard EoS. We also take into account the NLρ parametrization in order to compared with the results already obtained in [24].

In Fig. 12 we compare TM1 and TM1-$\omega\rho$. This allows us to discuss the effect of density dependence of the symmetry energy on the phase transition since the isoscalar channel is kept fixed. The main effect of a softer symmetry energy is to shift the binodal sections for larger values of the asymmetry parameter to larger densities. A harder symmetry energy allows the occurrence of the hadron-quark phase transition at smaller densities, and
therefore, easier to reach with heavy ion collisions at intermediate energies. Similar conclusion were drawn in [25] where the effect of the δ-meson on the phase transition was discussed: the δ-meson gives rise to a harder symmetry energy at large densities favoring the hadron-quark phase transition.

In Fig. 13 (a) we show for the same bag constant the binodal sections obtained with NLρ. It is seen that due to a softer EoS at intermediate densities the binodal sections occur at larger densities when compared with TM1. The effect of the bag constant is clear if we compare Fig. 11 (b) with $B^{1/4} = 190$ MeV with Fig. 13 (a). A larger B shifts the phase transition to much larger densities, showing that in order to obtain a good estimation it is essential to choose an adequate value of B.

We show in Figs. 12 (b) and (d) and Fig. 13 (b) a part of Figs. 12 (a) and (c) and also Fig. 13 (a), corresponding to $\alpha = 0.2$. We also include curves corresponding to the mixed phase with the quark concentrations $\chi = 0.2$ and 0.5 which correspond to 20% and 50% of quarks in the mixed phase. One sees the indication of an interesting region where the phase transition probably occurs and can be probed by intermediate energy heavy-ion collisions. This region is located in the range $n_B = 2 - 4 n_0$ and $T = 50 - 65$ MeV and can reached by the new planned facilities (NICA) at JINR/ Dubna [18] and (FAIR) at GSI/Darmstadt [19] that will start operations in the next few years.

The density behavior at intermediate/high densities defines the transition region. For instance, models TM1 and TM1ρ would favor the detection of a quark phase more than NLρ.

V. SUMMARY

We have presented a study of the deconfinement phase transition from hadronic matter to a quark-gluon plasma, which could be formed in heavy-ion collisions. Calculations at finite temperature with a simple two-phase model and the inclusion of pion and kaon condensation were done in order to describe this type of system. We have studied the effect of the density dependence of the EoS on the phase transition choosing a convenient set of parametrizations of the NLWM. We have considered both hard and soft EoS at intermediate densities as well as models with asyhard and asysoft symmetry energies. We have also considered the effect of gluons on the quark phase. For the quark phase we have used the MIT bag model and chose the bag constant according to a parametrization of the freeze-out curve deduced from particle multiplicities in heavy-ion collisions [15]; for deconfinement phase transition at $T \sim 50 - 60$ and $\rho \sim 2 - 6 \rho_0$, the bag constant $B^{1/4} \sim 160$ MeV was used.
An important result is the difference between the phase diagram for a symmetric system and that for asymmetric matter as observed in liquid-gas phase transition. Usually, the onset of the phase transition takes place at lower baryon densities and temperatures in more asymmetric systems. This can be probed by means of neutron-rich nuclei in heavy-ion collisions. Moreover, the density at which the phase transition occurs is sensitive to the density dependence of the EoS at intermediate densities. A hard EoS gives rise to a transition at lower densities. The density dependence of the symmetry energy also affects the transition when asymmetric matter is considered. The phase transition is favored for asymmetric nuclear matter, and even more for an asyhard symmetry energy.

Both thermal pions and pion condensation have been included in the calculation. They mainly play a role at low densities, large isospin asymmetries and large temperatures. We have considered that the pions couple to the nucleons through the ρ-meson [23]. Using an equivalent parametrization for the kaon-meson coupling, which maybe too naive since it only takes into account the isospin interaction, we have verified that the effect of including strangeness in the hadron phase was negligible for a system with an overall strangeness equal to zero. This can be generalized to finite strangeness when it becomes possible to prepare heavy-ion collisions with hypernuclei. It remains to be investigated how sensitive are the results to the pion and kaon interaction.

The results obtained for the phase transition are very sensitive to the EOS. Both the isoscalar and isovector interactions have an effect on the transition density. According to the effective models used in this work there exists a region in the parameter space where the phase
transition probably occurs and can be probed by heavy-ion collisions at intermediate energies. This region is located in the range \(n_B = 2 - 4 n_0 \) and \(T = 30 - 65 \text{ MeV} \) and can be reached by the new planned facilities (NICA) at JINR/Dubna [18] and (FAIR) at GSI/Darmstadt [19] that will start operations in the next few years. We have obtained a larger \(T \) interval, extending to lower temperatures, for the same densities obtained in \([23,24]\). We have noticed that models with a soft EOS and soft symmetry energy such as FSU do not predict a hadron-quark phase transition at densities that could be attained in the laboratory.

We have verified that models with a soft EOS and soft symmetry energy such as FSU do not predict a hadron-quark phase transition at densities that could be attained in the laboratory.

A more complete system with all baryons of the baryonic octet and strange mesons, as well as interacting pions and kaons, and using interactions constrained by experimental measurements, is under investigation in order to get more systematic results.

ACKNOWLEDGMENTS

This work was partially supported by CNPq (Brazil) and CAPES(Brazil)/FCT(Portugal) under project 232/09 and by FCT (Portugal) under the grants PTDC/FIS/64707/2006 and CERN/FP/109316/2009. R. C. is grateful for the warm hospitality at Centro de Física Computacional/FCTUC.

Appendix A

The boson thermodynamic potential

Using the Lagrangian density in the minimal coupling scheme \([34–39]\)

\[
\mathcal{L}_b = D^*_\mu \Phi^* D^\mu \Phi - m_b^2 \Phi^* \Phi , \tag{A1}
\]

it is possible to obtain the respective thermodynamic potential and the EoS of the boson fields. It is convenient to transform \(\Phi \) into real and imaginary parts using two real fields, \(\phi_1(x, t) \) and \(\phi_2(x, t) \) such that

\[
\Phi = \frac{1}{\sqrt{2}}(\phi_1 + i \phi_2) , \quad \Phi^* = \frac{1}{\sqrt{2}}(\phi_1 - i \phi_2) . \tag{A2}
\]

The conjugate momenta are

\[
\pi_1 = \frac{\partial \mathcal{L}_b}{\partial (\partial_0 \phi_1)} = \partial_0 \phi_1 - X_0 \phi_2 , \tag{A3}
\]

\[
\pi_2 = \frac{\partial \mathcal{L}_b}{\partial (\partial_0 \phi_2)} = \partial_0 \phi_2 + X_0 \phi_1 ,
\]

and the corresponding Hamiltonian density of the boson field, \(\mathcal{H}_b = \pi_1 \partial_0 \phi_1 + \pi_2 \partial_0 \phi_2 - \mathcal{L}_b \) such that the four-current and its zero component are

\[
j_\mu = i \left[\Phi^* (D_\mu \Phi) - (D_\mu^* \Phi^*) \Phi \right] , \tag{A4}
\]

\[
j_0 = \phi_2 \pi_1 - \phi_1 \pi_2 . \tag{A5}
\]

For the neutral pions we just have \(\pi = \frac{\partial \mathcal{L}_b}{\partial (\partial_0 \phi)} = \partial_0 \phi \) and \(\Phi = \frac{\phi}{\sqrt{2}} \), such that \(\Phi^* = \Phi \) and \(j_\mu = 0 \). Now we can write the Hamiltonian density

\[
\mathcal{H}_\Phi = \frac{1}{2} \left(\pi_1 \phi_2^* + \phi_1^* \pi_2 \right) .
\]
\[\mathcal{H}_b = \frac{1}{2} \pi_1^2 + \frac{1}{2} \pi_2^2 + \pi_1 (X_0 \phi_2) - \pi_2 (X_0 \phi_1) + \frac{1}{2} (\nabla \phi_1)^2 + \frac{1}{2} (\nabla \phi_2)^2 + (\partial_t \phi_2)X_i \phi_1 - (\partial_i \phi_1)X_i \phi_2 + \frac{1}{2} (X_i \phi_1)^2 + \frac{1}{2} (X_i \phi_2)^2 + \frac{m_b^2}{2} (\phi_1^2 + \phi_2^2) , \]

where \(i = 1, 2, 3 \), and the partition function in the grand canonical ensemble as a functional integral is given by

\[Z_b = \int [d\phi_1] [d\phi_2] \exp \left\{ \int_0^\beta d\tau \int d^3 x \left\{ \frac{1}{2} \left[\frac{\partial \phi_1}{\partial t} - i(\mu_b - X_0) \phi_1 \right]^2 - \frac{1}{2} \left[\frac{\partial \phi_2}{\partial t} + i(\mu_b - X_0) \phi_2 \right]^2 - \frac{1}{2} (\nabla \phi_1)^2 - \frac{1}{2} (\nabla \phi_2)^2 + (\partial_t \phi_1)X_i \phi_2 - (\partial_t \phi_2)X_i \phi_1 \right\} \right\} , \]

where \(\mu_b \) is the boson chemical potential associated with the conserved charge \(Q = \int d^3 x j_0(x) \). Here “periodic” means that the integration over the field is constrained in the imaginary time variable \(\tau = i t \) so that \(\phi_k(x, 0) = \phi_k(x, \beta) \), and where \(\beta = 1/T \). The neutral pion Hamiltonian is \(\mathcal{H}_{\pi0} = \frac{1}{2} \pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m_{\pi0} \phi^2 \) which has the form of that of a neutral scalar field, so that it can be used within the relativistic mean field approach, as it is known that the pion pseudoscalar interaction term vanishes in the mean field level. After some algebra the integration over momenta can be done and the result is

\[Z_b = N^2 \int [d\phi_1] [d\phi_2] \exp \left\{ \frac{1}{2} \int_0^\beta d\tau \int d^3 x \left\{ \phi_1 \left[\frac{\partial^2}{\partial \tau^2} + \nabla^2 - m_b^2 + (\mu_b - X_0)^2 \right] \phi_1 \phi_2 \right\} \right\} \]

where \(N \) is a normalization factor. In the mean field approach \(\langle X_i \rangle = 0 \). Integrating (A8) by parts, and taking into account the periodicity of \(\phi_1 \) and \(\phi_2 \), the result is

\[Z_b = N^2 \int [d\phi_1] [d\phi_2] \exp \left\{ \phi_2 \left[\frac{\partial^2}{\partial \tau^2} + \nabla^2 - m_b^2 + (\mu_b - X_0)^2 \right] \phi_1 \phi_2 + 2i(\mu_b - X_0) \left[\phi_2 \left(\frac{\partial \phi_1}{\partial \tau} \right) - \phi_1 \left(\frac{\partial \phi_2}{\partial \tau} \right) \right] \right\} \]

The fields can be expanded in Fourier series as

\[\phi_1(x, \tau) = \sqrt{2} \zeta \cos(\theta) + \left(\frac{\beta}{V} \right)^{1/2} \sum_n \sum_p e^{i(p \cdot x + \omega_n \tau)} \phi_{1,n}(p) , \]

\[\phi_2(x, \tau) = \sqrt{2} \zeta \sin(\theta) + \left(\frac{\beta}{V} \right)^{1/2} \sum_n \sum_p e^{i(p \cdot x + \omega_n \tau)} \phi_{2,n}(p) , \]

where the Matsubara frequency is \(\omega_n = 2\pi n T \), due to the constraint of periodicity of the fields, such that \(\phi_k(x, \beta) = \phi_k(x, 0) \) for all \(x \). The normalization factors of (A10) can be chosen so that each Fourier amplitude is dimensionless. The infrared character of the field is carried out by \(\zeta \) and \(\theta \), so that, \(\phi_{1,0}(p = 0) = \phi_{2,0}(p = 0) = 0 \) which allows some particles to reside in the \(n = 0, p = 0 \) state, i.e., a possibility of a condensation of the bosons into the zero-momentum
state ("s-wave" condensation). Using (A10) in (A9), and noting that \(\phi_{-n}(-p) = \phi_n(p) \) because \(\phi_1(x, \tau) \) and \(\phi_2(x, \tau) \) are real fields, we have

\[
Z_b = N^2 \left[\prod_n \prod_p \int d\phi_{1,n}(p) d\phi_{2,n}(p) \right] e^S,
\]

where

\[
S = \beta V \zeta^2 \left[(\mu_b - X_0)^2 - m_b^* \right] - \frac{1}{2} \sum_n \sum_p \left[\phi_{1,-n}(-p), \phi_{2,-n}(-p) \right] D \left[\phi_{1,n}(p) \right] \left[\phi_{2,n}(p) \right],
\]

and

\[
D = \beta^2 \begin{bmatrix}
\omega_n^2 + p^2 + m_b^* - (\mu_b - X_0)^2 & -2(\mu_b - X_0)\omega_n \\
2(\mu_b - X_0)\omega_n & \omega_n^2 + p^2 + m_b^* - (\mu_b - X_0)^2
\end{bmatrix}.
\]

As the thermodynamic potential is given by \(\Omega = -(1/\beta) \ln(Z) \), we can perform the integrals in (A11) and write

\[
\ln(Z_b) = \beta V \zeta^2 \left[(\mu_b - X_0)^2 - m_b^* \right] + \ln \left[(\det D)^{-\frac{1}{2}} \right].
\]

The multiplication of \(Z_b \) by any constant is irrelevant since it does not change the thermodynamics of the system. The second term of (A14) is given by

\[
-\frac{1}{2} \ln (\det D) = -\frac{1}{2} \ln \left\{ \prod_n \prod_p \beta^4 \left[(\omega_n^2 + p^2 + m_b^* - (\mu_b - X_0)^2)^2 + 4(\mu_b - X_0)^2 \omega_n^2 \right] \right\}
\]

\[
= -\frac{1}{2} \ln \left\{ \prod_n \beta^2 \left[\omega_n^2 + (\omega^+ - \mu_b)^2 \right] \right\} - \frac{1}{2} \ln \left\{ \prod_n \beta^2 \left[\omega_n^2 + (\omega^- + \mu_b)^2 \right] \right\},
\]

so that (A14) can be written as

\[
\ln(Z_b) = \beta V \zeta^2 \left[(\mu_b - X_0)^2 - m_b^* \right] - \frac{1}{2} \sum_n \ln \left\{ \beta^2 \left[\omega_n^2 + (\omega^+ - \mu_b)^2 \right] \right\} - \frac{1}{2} \sum_n \ln \left\{ \beta^2 \left[\omega_n^2 + (\omega^- + \mu_b)^2 \right] \right\},
\]

and in the continuum limit, neglecting the zero-point energy contribution, due to the mean field approach, the result is

\[
\ln(Z_b) = \beta V \zeta^2 \left[(\mu_b - X_0)^2 - m_b^* \right] - V \int \frac{d^3 p}{(2\pi)^3} \left\{ \ln \left[1 - e^{-\beta(\omega^+ - \mu)} \right] + \ln \left[1 - e^{-\beta(\omega^- + \mu)} \right] \right\},
\]

where

\[
\omega^\pm(p) = \sqrt{p^2 + m_b^*} \pm X_0,
\]

is the effective Bose energy, such that the thermodynamic potential for the bosons is given by

\[
\frac{\Omega_b}{V} = -\frac{\ln(Z_b)}{\beta V} = \zeta^2 \left[m_b^* - (\mu_b - X_0)^2 \right] + T \int \frac{d^3 p}{(2\pi)^3} \left\{ \ln \left[1 - e^{-\beta(\omega^+ - \mu)} \right] + \ln \left[1 - e^{-\beta(\omega^- + \mu)} \right] \right\}.
\]

[1] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
[2] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1973).
