The Kibble-Zurek mechanism (KZM) captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking. KZM predicts a universal scaling power law for the defect density which is fully determined by the system’s critical exponents at equilibrium and the quenching rate. We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution, on an open access IBM quantum computer (IBM-Q). We find that for this simple one-qubit model, experimental data validates the central KZM assumption of the adiabatic-impulse approximation for a well isolated qubit. Furthermore, we report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies, separately elucidating the role of crosstalk between qubits and the increasing decoherence effects associated with the quantum circuit depth on the KZM predictions. Our results strongly suggest that increasing circuit depth acts as a decoherence source, producing a rapid deviation of experimental data from theoretical unitary predictions.
offers a unique possibility to experiment with actual few qubit quantum devices in order to carry out a rigorous study of dynamical quantum properties in different settings along the real time-dynamics of quantum hardware. A key feature of merit in the current NISQ regime is the ability to simulate non-equilibrium quantum dynamics. The Kibble-Zurek mechanism (KZM) (Kibble, 1976; Kibble, 1980; Zurek, 1985; Zurek, 1993) is a prominent paradigm to unravel signatures of universal dynamics in the scenario of a finite-rate spontaneous symmetry breaking. The KZM predicts the production of topological defects (kinks, vortices, strings) or in general, non-equilibrium excitations (in both short- and large-ranged interacting systems) in the course of either quantum (Dziarmaga, 2005; Zurek et al., 2005; Acevedo et al., 2014) or classical (Kibble, 1980; Zurek, 1985) phase transitions. The key result of KZM is concerned with the fact that the mean value of density of topological defects scales as a power law of the quench rate. Furthermore, new evidence of scaling in the high-order cumulants has also been recently shown (Del Campo, 2018; Gómez-Ruiz et al., 2020). These theoretical predictions have been observed in various experimental platforms such as Bose Gas (Goo et al., 2021), trapped ions (Cui et al., 2020), quantum annealer (Bando et al., 2020; King et al., 2022), Bose-Einstein Condensate (Damski and Zurek, 2007; Anquez et al., 2016) and Rydberg atoms (Keseling et al., 2019).

Damski et al. (Damski, 2005; Damski and Zurek, 2006; Cucchi et al., 2007) established a close relationship between second order quantum phase transitions and avoided level crossing evolutions, thus establishing the Landau-Zener (LZ) model itself as the simplest paradigmatic scenario for probing KZM (Landau, 1932a; Landau, 1932b; Majorana, 1932; Stückelberg, 1932; Zener and Fowler, 1932). The density of topological defects can be expressed as a transition probability for a two-level system. Therefore, this relationship can be tested in generic single qubit platforms. This relationship has been probed by using optical interferometry (Xu et al., 2014), superconducting qubits (Wang et al., 2014; Gong et al., 2016) and trapped ion systems (Cui et al., 2016).

IBM-Q currently grants access up to 5-qubit quantum machines based on superconducting transmon qubits which are controllable using Qiskit, an open-source software development kit (Aleksandrowicz et al., 2019; Andersson et al., 2020). These machines have been successfully utilized in simulating spin models (Cervera-Lierta, 2018; Rodriguez-Vega et al., 2022), topological fermionic models (Koh et al., 2022), quantum entanglement (Choo et al., 2018; Wang et al., 2018; Cruz et al., 2019; Mooney et al., 2019; Pozzobon and Mazières, 2019), far-from-equilibrium dynamics (Zhukov et al., 2018), non-equilibrium quantum thermodynamics (Gherardini et al., 2021; Solfanelli et al., 2021), open-quantum systems (García-Pérez et al., 2020), among others. One of the future advantages of IBM-Q is the possibility to do simulation of quantum systems beyond the maximum limits of classical computer over a wide range of parameters. In this work, we test the KZM adiabatic-impulse assumption on the simplest, but important case of a single qubit (LZ model), through experiments on the Qiskit (Andersson et al., 2020) simulator and real quantum hardware, establishing the limits required to obtain accurate results in each case. We successfully reproduced the LZ dynamics under a discrete time evolution in current IBM quantum devices which can provide information about dynamics state evolution given that error mitigation procedures were implemented. Additionally, noticeable effects of decoherence are observed and explained by a simple phenomenological model of relaxation and dephasing for open quantum systems. Furthermore, analysis and estimation of the experimental asymptotic probability allows us to verify the universal KZM in a timescale appropriate for an almost closed system under an adiabatic quench regime. In summary, the key achievement of this work has been the validation of a central premise of KZM through a protocol to characterize and obtain an effective time-dependent dynamics on IBM realistic quantum computers. For reaching such goal we performed LZ evolution under different annealing times, maintaining a fixed number of total gates, a basic benchmark procedure on quantum critical phenomena in near term quantum computers.

This paper is organized as follows. A brief review on KZM, the LZ model and its close connection with KZM are presented in Sect. 1. In Sect. 2 we present the experimental platform. The contrast between theoretical predictions and experimental results is collected in Sect. 3. Finally, we summarize the main conclusions in Sect. 4.

1 Theoretical background

1.1 Brief review of the Kibble-Zurek Mechanism

The KZM describes the dynamics of a system across a continuous symmetry breaking second-order phase transition induced by the change of a control parameter λ. When the system is driven through the critical point λ_c both the correlation length ξ and reaction time τ diverge as

$$\xi = \xi_0 |\epsilon|^{-\nu}, \quad \tau = \tau_0 |\epsilon|^{-\nu/2},$$

where, $\epsilon = (\lambda - \lambda_c)/\lambda_c$ marks the separation from the critical point. The spatial and dynamic equilibrium critical exponents are given by ν and z, respectively, while the mesoscopic behavior of the system is contained in the dimensional constants ξ_0 and τ_0. If the quench varies linearly in time, $\epsilon(t) = t/t_q$, where t_q denotes a quench or annealing time scale, the system reaches the critical point at $t = 0$. Therefore, the equivalent effective reaction time diverges as $\epsilon(t) = t/t_q$. This phenomenon is known as critical slowing down and can be used to describe the time evolution across a phase transition as a sequence of three stages. Initially, the system is prepared in the high symmetry
phase from which it evolves within an adiabatic evolution stage. Secondly, the evolution enters an impulse stage in the neighborhood of the phase transition where the system is effectively frozen. Finally, when the system is far away from the critical point, the dynamics are adiabatic again. These three regimes are schematically represented in Figure 1A. The three regions are separated by two points marked as \(-t_{KZM} \) and \(t_{KZM} \), in such a way that the freeze-out occurs at the instant \(t_{KZM} \). The main point of the KZM argument is that the size average or correlation length, \(\xi \), of domains in the broken symmetry phase is set by the equilibrium correlation length evaluated at the freeze-out time. Therefore, the density of excitations resulting from quenches evolution scales as \(\rho \sim \xi^{-D} \) and goes as
\[
\rho_{KZM} \sim \frac{1}{\xi_0^D} \left(\frac{1}{\xi_0} \right)^{\xi_0^D},
\]
where \(D \) is the dimensionality of the system. This result was initially derived in the classical domain (Kibble, 1980; Zurek, 1985) and subsequently extended to quantum systems (Dziarmaga, 2005; Zurek et al., 2005). Additionally, the KZM has also been extended to novel scenarios including long-range interactions (Acevedo et al., 2014; Puebla et al., 2017, 2020), inhomogeneous systems (Collura and Karevski, 2010; Dziarmaga and Rams, 2010; Gómez-Ruiz and del Campo, 2019) and nonlinear quenches (Barankov and Polkovnikov, 2008; Sen et al., 2008).

1.2 Landau-Zener model

Consider a two-level system, with gap \(\Delta \), described by the time-dependent Hamiltonian \((h = 1)\)
\[
\hat{H}(t) = -\frac{\varepsilon(t)}{2} \sigma_x - \Delta \sigma_z.
\]

With \(\sigma_n \) the Pauli matrix along the \(n \in \{x, y, z\} \) direction. We define the \(\text{diabatic} \) states as the Hamiltonian eigenvectors when \(\Delta = 0 \) and consequently eigenvectors for the Pauli operator \(\sigma_z: \sigma_z|0\rangle = +|1\rangle \) and \(\sigma_z|1\rangle = -|0\rangle \). The respective (adiabatic) energy levels are \(E_{\pm} = \mp \varepsilon(t)/2 \). Now, the adiabatic instantaneous eigenvalues \(E_{\pm}(t) \) and eigenstates \(|E_{\pm}(t)\rangle \) are solutions of \(\dot{H}(t)|E_{\pm}(t)\rangle = E_{\pm}(t)|E_{\pm}(t)\rangle \). The instantaneous gap energy is given by \(\Delta E = E_+ - E_- = \sqrt{\varepsilon^2(t) + \Delta^2} \) (for more details see Ref. (Ivakhnenko et al., 2022)). In the main panel of Figure 1B, we depicted the inverse of the energy gap as a function of time while the instantaneous adiabatic eigenvalues are shown as an inset in the Figure 1B. The eigenstates are written as a linear combination of the diabatic states as \(|\psi(t)\rangle = \alpha(t)|0\rangle + \beta(t)|1\rangle \). By solving the corresponding eigenequation in terms of parabolic cylinder functions \(D_n(z) \), and using the substitution \(z = t \exp\{i\pi/4\}/\sqrt{\varepsilon(t)} \), we obtain the transition amplitudes
\[
\alpha(z) = e^{i\pi/4} \left[\delta \chi_1 D_{1,-d}(iz) + \bar{\chi}_2 D_{d}(iz) \right],
\]
\[
\beta(z) = \chi_1 D_{-d}(iz) + \bar{\chi}_2 D_{1,-d}(iz),
\]
where \(\delta = \Delta z/4 \) is the adiabaticity parameter. Moreover, \(\chi_1 \) and \(\chi_2 \) are found from the initial condition at \(z = z_i \) (see the section: Supplementary Data for details of the calculations and derivations):
\[
\begin{align*}
\chi_1 &= e^{i\pi/4} \sqrt{\delta \Delta D_{1,-d}(iz_i)} + \delta \chi_1 D_{1,-d}(iz_i) + \bar{\chi}_2 D_{d}(iz_i) \\
\chi_2 &= e^{-i\pi/4} \sqrt{\delta \Delta D_{1,-d}(iz_i)} + \delta \chi_2 D_{-d}(iz_i) + \bar{\chi}_1 D_{1,-d}(iz_i)
\end{align*}
\]
Notice that, Eqs 4, 5 are valid for any arbitrary initial condition and final time \(t \). For the experimental implementation discussed below, we are interested in studying the system’s evolution from an initial state starting in the anticrossing point at \(t = 0 \). In the

FIGURE 1

Connection between KZM and avoided level crossing in a LZ transition. (A) In a continuous second order phase transition, the reaction time diverges near the critical point. The KZM approximation takes into account the total dynamics divided in three stages (adiabatic, impulse and adiabatic) represented by the graduated yellow–dark red–yellow colors and separated by the freeze out-time \(t_{KZM} \). (B) The inverse of the energy gap in LZ exhibits a similar behavior of the reaction time. However, it is not divergent at the crossing point. Similarly, we divided the LZ dynamics in the same three KZM regimes and separated by the Landau-Zener jump time \(t_{LZ} \). Inset: Avoided level crossing LZ.
1.3 Connection between the KZM and LZ evolution

Here we demonstrate how we can implement a controllable evolution using an IBM-Q quantum simulation, in close analogy to the topological defect formation in KZM. Following the seminal arguments exposed in Ref. (Damski, 2005; Damski and Zurek, 2006), topological defects can be built into the LZ model by being associated to the diabatic states. Consider one of the states, such as \(|0\rangle \), to be a topologically defected phase and \(|1\rangle\) a defect-free phase. For example, in the case of vortices, state \(|0\rangle\) may be an eigenstate of the angular momentum operator \(\hat{L}_z |0\rangle = n|0\rangle \), while \(\hat{L}_z |1\rangle = 0 \). In this scenario, Damski introduces the normalized density of topological defects as the average angular momentum

\[
\rho_{\text{KZM}} = \frac{1}{n} \langle \psi | \hat{L}_z | \psi \rangle = |\langle \psi | 0 \rangle|^2.
\]

Then, a system evolving in time under the LZ model can be used to study transitions between the phases through the probabilities of the diabatic states. The similarity between the reaction time of a second order phase transition and the inverse of energy gap in the LZ Hamiltonian is shown in Figure 1B. In analogy with the KZM, this suggests that the adiabatic-impulse-adiabatic approximation (AI) may be used to estimate the asymptotic probability when the system traverses the avoided level crossing, thus elucidating the link between the KZM and LZ evolution.

We divided the dynamics through the anti-crossing into three stages like the AI scenario for KZM. Without loss of generality, we assume that the system starts at \(t_i \rightarrow -\infty \) from the ground state \(|E_0 \rangle\), and then it evolves to \(t_f \to \infty \). We define a natural time scale given by the inverse of the energy gap

\[
\frac{1}{E(\hat{t}_{1Z}) - E(\hat{t}_{1Z})} = \frac{\eta_1}{t_{1Z}}.
\]

where \(E(t) \) are the adiabatic energy eigenvalues at time \(t = \hat{t}_{1Z} \) and \(\eta \) is a constant. Using Eq. 3, we obtain

\[
\hat{t}_{1Z} = \frac{\Delta}{\kappa} \left(1 + \frac{4}{(\Delta^2 \eta a)^2} \right)^{-1}.
\]

The AI assumes that the evolution wave function \(|\psi(t)\rangle \) of the system satisfies:

- Adiabatic dynamics: from \(t_i = -\infty \) to \(t = \hat{t}_{1Z} \)
 \[|\psi(t)\rangle = e^{i\hat{t}_{1Z}} |E(\hat{t}_{1Z})\rangle. \]

- Impulse dynamics: from \(t = -\hat{t}_{1Z} \) to \(t = \hat{t}_{1Z} \)

\[
|\psi(t)\rangle = e^{i\eta a} |E_{-1}(\hat{t}_{1Z})\rangle.
\]

- Adiabatic dynamics: from \(t = \hat{t}_{1Z} \) to \(t_f = \infty \)
 \[|\langle \psi(t) | E(t) \rangle|^2 = A. \]

Where \(\Phi_1, \Phi_2 \) are global phases, and \(A \) is a constant. Following the AI, Damski in Refs (Damski, 2005; Damski and Zurek, 2006), reported the probability of finding the LZ system in the excited state at \(t_f \approx t_{1Z} \), a calculation we briefly summarize for the sake of completeness in view of our main experimental interest.

From now on, we focus on the LZ dynamics for the evolution starting in the ground state at the anticrossing point. The initial state at \(t = 0 \) is then expressed as \(|E(0)\rangle = (|1\rangle - |0\rangle) / \sqrt{2} \), and consequently the transition probability \(P_{\text{AI}} = |\langle E(\hat{t}_{1Z}) | E(0) \rangle|^2 \) is given by (Damski, 2005; Damski and Zurek, 2006)

\[
P_{\text{AI}} = \frac{1}{2} \left(1 - \frac{1}{\sqrt{1 + 2}} \right) = \frac{1}{2} \left(1 - \frac{2}{(\eta a)^2 + \eta a \sqrt{(\eta a)^2 + 4} + 2} \right).
\]

Where we have fixed the two-level system gap to \(\Delta = 1 \). Additionally, \(\hat{\epsilon} = \epsilon(t_{1Z}) \) is the linear bias at time \(t = \hat{t}_{1Z} \). Expanding Eq. 9 into aseries of \(\sqrt{\eta a} \), we obtained (Damski, 2005; Damski and Zurek, 2006)

\[
P_{\text{AI}} = \frac{1}{2} \left(\frac{\sqrt{\eta a}}{2} + \frac{\eta a}{8} \right)^{1/2} + O(\eta a^2).
\]

which will be relevant for testing the predictions of the universal AI for KZM below.

2 Experimental IBM-Q platform

We implemented our experimental studies in two topologies or processors types. Figure 2A shows the device layout for the IBMQ 5-qubit ibmq_bogota (Falcon r5.11L topology QC1) and ibmq_lima (Falcon r4T topology QC2). The topology of the device determines the possible placement of two-qubit gates. The qubits are furthermore prone to decoherence, thereby requiring several runs of the experiment to make up for statistical errors. We measure the LZ and concomitant KZM relation, for each one of the IBM-Q transmons in QC1 and QC2. Each transmon plays the role of a qubit, evolving with its own dynamics, experimentally showing the effects of decoherence on the hardware. Generally, the physical transmon type qubits of the same machine offer a variety of properties that describe the quality of the qubit, such as thermal relaxation time \(T_1 \), dephasing time \(T_2 \), anharmonicity, and error properties detailed in the section: Supplementary Data, allowing us to

section: Supplementary Data, the formal solutions for this particular initial condition are summarized.
compare the simulation’s performance with different physical parameters. In Figure 2A, the times T_1 and T_2 are depicted for each considered circuit topology at two different dates, illustrating in a graphical way how these times change every time that IBM performed a calibration of every device.

3 Results

3.1 Simulation of the Landau-Zener evolution on IBM-Q

Unitary dynamics. We are interested in the experimental determination, and respective simulation, on a digital open-access IBM-Q of a single qubit evolution under a linearly time-dependent Hamiltonian (LZ problem). At time t_0, a qubit in the processor is initialized in the state $|\psi(t_0)\rangle = U_{\theta}(\theta)/\sqrt{2}$, where $U_{\theta}(\theta) = \cos(\theta/2)I - i\sigma_y \sin(\theta/2)$ is a unitary rotation along the n-axis of $n \in \{x, y, z\}$ with σ_i the usual Pauli matrix along the n-direction. The whole evolution from t_i to t_f is performed by sampling the Hamiltonian at regular intervals $dt = (t_f - t_i)/N_t$, where N_t denotes the number of time steps or the total circuit depth (see blue region in Figure 2B). The equivalent circuit for the experimental IBM-Q realization, and its simulation, is shown in Figure 2B. Assuming an evolution governed by a time-independent Hamiltonian and for small enough intervals of duration dt, the time evolution operator at time $t = N dt$, with $1 \leq N \leq N_t$, can be approximated by

$$U(t, t_f) \approx \prod_{k=0}^{N_t-1} e^{-iH dt}, \tag{11}$$

where $H \approx \tilde{H} (t + k dt)$.

Since we are interested in the evolution from an initial condition where the LZ system is prepared in an equal weight superposition at the anticrossing point, we start by applying the unitary rotation $U_z (-\pi/2)$. The approximate time evolution operator is constructed with general unitary gates. A general unitary single qubit gate describes rotations on the Bloch sphere and is defined by three Euler angles

$$U(\theta, \phi, \lambda) = \begin{pmatrix} \cos(\theta/2) & -e^{i\phi} \sin(\theta/2) \\ e^{i\phi} \sin(\theta/2) & e^{i(\phi+\lambda)} \cos(\theta/2) \end{pmatrix}. \tag{12}$$

IBM-Q devices are equipped with the finite and complete set of {X, Z, U_{\phi, \lambda}, \sqrt{X}, \sqrt{Z}, \sqrt{XZ}} of basis gates on which any quantum circuit must be decomposed into. The general unitary gate can then be expressed using the previous set as $U(\theta, \phi, \lambda) = e^{iU_z(\phi + \pi/2)} \sqrt{X} U_z(\theta + \pi/2) \sqrt{X} U_z(\lambda)$, where $y = (\lambda + \phi + \pi)/2$ is a global phase factor. Using this decomposition, small time progressions as defined in Eq. 11 are simulated and finally the state $|\psi(t_f)\rangle$ is measured.

As already stated, the Landau-Zener dynamics can be exactly solved (see Supplementary Data), thus allowing a direct benchmark
test of the experimental results on a realistic quantum device against exact results. For a LZ evolution at the anticonducting ground state, we obtain the LZ transition probability \(P_{LZ}(t) \) at time \(t \) given as

\[
P_{LZ}(t) = |\chi_1 D_{z\omega}(z) + \chi_2 D_{z\omega}(iz)|^2, \tag{13}
\]

with the amplitudes \(\chi_1 \) and \(\chi_2 \), see Eq. 5, given by:

\[
\chi_1 = \frac{2^{\delta}}{\sqrt{\kappa}} \exp(\pi k) \frac{\sqrt{2k} \Gamma(k) + (1 + i)\Gamma(\frac{1}{2} + k)}{\Gamma(2k)}, \tag{14}
\]

\[
\chi_2 = \frac{\exp(\pi k)}{2^{\delta+1}} \frac{\sqrt{2k} \Gamma(\frac{1}{2} - k) + (1 - i)\sqrt{2k} \Gamma(1 - k)}{\Gamma(1 - 2k)}. \tag{15}
\]

Where \(z \) and \(\delta \) are given in Section 1.2.

Our first aim is to benchmark our LZ experimental results with the above exact theoretical prediction. This is schematically illustrated in Figure 2C where we display the exact result, see Eq. 13, and a hypothetical grid of points representing expected target data with a separation \(dt = (t_f - t_i)/N_t \) being \(N_t \) the total circuit depth. For every experimental data, 5,000 shots have been realized on each quantum circuit, QC1 and QC2. The unit of energy is set by choosing \(\Delta = 1 \) in the LZ Hamiltonian (see Eq. 3). Therefore, in the following, we express energy parameters and time as dimensionless quantities (\(\hbar = 1 \)). Using the quantum circuits QC1 and QC2, we implemented the corresponding gates in all qubits on parallel and we did a sweep of parameters in annealing time \(t_f \) from 0.05 to 2.0. Additionally, for both theoretical and experimental results, the final evolution time \(t_f \) was chosen according to \(t_f = 4 \) for annealing times in the interval \(0.05 \leq t_a \leq 0.17 \) and \(t_f = 10 \) for \(0.17 < t_a \leq 2 \). These particular choices have been supported by the fact that as we are mainly interested in the asymptotic LZ probability transition, a good asymptotic collapse is reached for these parameter regimes. We also represent the experimental results \(P_{LZ}(N) \) as a function of the number of layers in the circuit instead of time. We emphasize that an \(N \)-deep circuit corresponds to a physical qubit interaction time \(t_{int} = 2t_{QX}N \), where \(t_{QX} \) is the gate length property for \(\sqrt{X} \) and it is fixed by IBM-Q as \(t_{QX} = 35.555 \) ns. In Figure 3, we present a contrast of the LZ transition probability for both the theoretical and experimental results. In the panel Figure 3A, we choose the most robust qubit that better reproduced the theoretical \(P_{LZ} \). Specifically, we found that the qubit 3 and 2 for ibmq_bogota and ibmq_lima, respectively, have the best performance. In order to better appreciate the experimental agreement and differences for every single-qubit over QC1 and QC2, we show the LZ transition probability as a function of the number of applied gates in Figure 3B.

In the next subsection, we address the influence of the number of layers in the LZ simulation circuit and the role of decoherence.

Open system dynamics.- The performance of the hardware worsens with an increasing depth of the circuit. The assumption of a closed quantum system rapidly breaks down for qubits with short relaxation (\(T_1 \)) and dephasing (\(T_2 \)) timescales, thus requiring for a theoretical analysis that resorts to a quantum open system approach. The effects of quantum decoherence are noticeable in the measured probability when scaling the number of gates due to the increase in computing times. We model every qubit on IBM-Q as a two-level system coupled to a Markovian bath. The system evolution is described by a continuous map \(\rho_t = e^{\Theta_t} \rho_0 \), \(t \geq 0 \) generated by the Lindbladian \(\mathcal{L}[\rho] = -i[H, \rho] + \sum_j (\mathcal{L}_j \rho \mathcal{L}_j^\dagger - \frac{1}{2} \mathcal{L}_j^\dagger \mathcal{L}_j \rho - \frac{1}{2} \rho \mathcal{L}_j^\dagger \mathcal{L}_j) \) (Breuer and Petruccione, 2007), where, \(H \) is the Hamiltonian and \(\{\mathcal{L}_j\} \) are Lindblad operators that describe the system-bath interactions. Dissipative processes in a superconducting qubit such as relaxation, i.e., transitions from the higher energy level \(|1\rangle \) to ground state \(|0\rangle \), can be described phenomenologically by the operator \(\mathcal{L}_1 = \sqrt{\Gamma} |0\rangle \langle 1| \) and dephasing by rotations around the \(z \) axis \(\mathcal{L}_2 = \sqrt{\gamma/2} \sigma_z \). Additional transitions such as thermal excitations from the ground state \(|0\rangle \) to \(|1\rangle \) may also be considered (Marquardt and Pützmann, 2008), although for a superconducting transmon qubit this process is negligible. The rates \(\Gamma = 1/T_1 \) and \(\gamma = 1/T_2 - 1/2T_1 \) are related to the characteristic times of each physical qubit.

In Figure 4, we establish a contrast between the unitary exact dynamics, numerical Lindblad dynamics (QuTiP) and the experimental results obtained for qubit 4, the noisiest qubit in both quantum machines. QuTiP is an open-source framework for Python that allows for numerical simulations of quantum dynamics of open systems under different solvers (Johansson et al., 2012; Johansson et al., 2013). Specifically, we depicted the Landau-Zener probability as a function of the number of layers in the circuit, \(N \), for two specific annealing times \(t_a = 1 \) (colors green/purple) and \(t_a = 0.1 \) (colors blue/orange). Additionally, we show as an inset the ratio between \(T_2/T_1 \), the bar scale shows the value of this proportion from 0 to 2. Although, ibmq_lima quantum computer has the ratio \(T_2/T_1 \) almost constant, qubit 4 is the most prone to decoherence.

3.2 Simulation of the Kibble-Zurek mechanism on IBM-Q

The main purpose of this work is to validate the adiabatic-impulse approximation of the Kibble-Zurek mechanism through the nonequilibrium dynamics of the Landau-Zener model on IBM-Q. Using Eq. 13 with \(\Delta = 1 \), the asymptotic probability can be exactly calculated as

\[
P_{LZ}(t \to \infty) = \frac{1}{\delta} \exp \left(-\frac{3\pi\delta}{2}\right) |\chi_1|^2. \tag{16}
\]

Expanding the asymptotic probability into series, we obtain (Damski, 2005; Damski and Zurek, 2006)

\[
P_{LZ}(t \to \infty) = \frac{1}{2} \left[\sqrt{\frac{\eta}{4}} T_{a1}^{1/2} + \frac{\sqrt{\eta}}{32} (\pi - \ln(4) \Gamma_{a1}^{1/2}) + O(T_{a1}^{1/2})\right]. \tag{17}
\]

We find the value of \(\eta \) by directly comparing the adiabatic-impulse approximation given by Eq. 10 and the expansion of the LZ asymptotic probability at first-order (\(\eta = \pi/4 \)). However, nontrivial corrections for high-order terms appear. In both main
FIGURE 3
Measurement of LZ probabilities on IBM-Q. In panel (A), we establish a contrast between the exact and experimental results for the LZ transition probability as a function of the number of layers or circuit depth N, and the annealing time t_a. In this panel, all figures share the same color vertical scale. The initial condition, $P_{LZ}(t/\tau = 0) = 0.5$, is represented by a red dashed line. Note that in some region of parameters a probability larger than 0.5 for the experimental results is obtained. In panel (B), the behavior of the LZ probability for every qubit available in each processor is shown, identifying in this way the most isolated (larger decoherence time) qubit in each case. We fixed the maximum number of layers in the circuit as $N_t = 50$.

FIGURE 4
Contrast between close and open quantum dynamics for LZ on IBM-Q. The Landau-Zener transition probability is shown as a function of the number of layers N in the circuit implementation for qubit 4, the noisiest qubit for each QC1 and QC2 quantum circuit. We contrast the theoretical prediction for a close system (unitary dynamics) given by Eq. 13 (dashed line), the decoherent dynamics given by the numerical solution of the Lindblad equation (solid line) and experimental results (symbols). The experimental results clearly depart from the unitary evolution prediction as the number of layers N_t increases in the circuit (see Figure 2B blue region). Additionally, in every panel, we present as inset the ratio between the dephasing time (T_2) and the thermal relaxation time (T_1).
panels of Figures 5A,B, we depict the agreement of the theoretical prediction for the adiabatic-impulse approximation (Eq. 9) and asymptotic Landau-Zener probability (Eq. 16). We note the role of the corrections for large quench times. For finite-time LZ simulations, estimating the asymptotic transition probability becomes challenging and similar to experimental data. To this end, we introduced the Landau-Zener jump-time \(t^* \) as the first zero in the second derivative of the Landau-Zener probability, thus:

\[
\left. \frac{d^2 P_{LZ}(t)}{dt^2} \right|_{t^*} = 0.
\] (18)

In this way, we propose that the estimated finite-time asymptotic Landau-Zener probability can be approximated by the average of all values of \(P_{LZ}(t) \) with \(t \geq t^* \). In the inset of Figure 5B, we display the protocol implemented to calculate the finite-time asymptotic Landau-Zener probability. Therefore, we establish a finite-time error regime depicted in the main panel of Figures 5A,B as error bars using the experimental values of the annealing time. The estimation of the Landau-Zener jump-time \(t^* \) has been implemented uniquely from the theoretical prediction, assuming it will be the same for the experimental data. Note that the adiabatic-impulse approximation and the asymptotic Landau-Zener probability are equivalent in the regime of our experimental data giving confidence in our validation of the KZM on the IBM-Q platform.

For the qubit with the largest decoherence \(T_1 \) and \(T_2 \) times (the best qubit from now on), the experimental data show an excellent agreement with the theoretical predictions for the impulse-adiabatic approximation. For large annealing time \(t_a \), the experimental data has a significant deviation for some qubits in the ibmq_bogota quantum computer. Indeed, the adiabatic-impulse approximation relationship with the Landau-Zener problem assumes a close system’s quantum dynamics. However, since IBM-Q is benchmarked as an open-quantum system, deviations are to be expected.

In order to further testing the KZM adiabatic-impulse approximation, from our experimental data, we rewrite the Eq. 9 in terms of 3 fitting parameters, as

\[
P_{AI}(t_a) \approx x_1 - x_2 \sqrt{1 - \frac{2}{(x_3 t_a)^2 + x_3 t_a \sqrt{(x_3 t_a)^2 + 4} + 2}}.
\] (19)

In Figure 6, we depict the comparison of the fitting parameters \(x_1, x_2 \) and \(x_3 \) for the best qubit at ibmq_bogota and ibmq_lima. The structure of the fitting expression allows us a direct comparison with the theoretical predictions \((x_1^T, x_2^T, x_3^T) \). The first fitting parameter \(x_1 \) provides information about how robust the qubit is to decoherence for fast LZ driving. Note that the
nonetheless, for these results, we used the smallest number of
that these qubits are already highly sensible to decoherence.
Finally, the third parameter
that, our results show deviations due to
times to obtain the asymptotic LZ probability. It is to be expected
time. Consequently, it is necessary to manage large simulation
transition probability has several oscillations as a function of
times. However, large annealing times imply that the LZ
adiabatic-impulse approximation is zero for large annealing
times, \(P_{xiz} = \frac{1}{2} \). Thus, the asymptotic value of the
adiabatic-impulse approximation is zero for large annealing
times. However, large annealing times imply that the LZ
transition probability has several oscillations as a function of
time. Consequently, it is necessary to manage large simulation
times to obtain the asymptotic LZ probability. It is to be expected
that, our results show deviations due to finite simulation time
effects. Finally, the third parameter \(x_2 \) validates the Kibble-Zurek
scaling in the adiabatic-impulse approximation (\(x_2^f = \pi/4 \)). We
found an excellent agreement with the theoretical predictions for
these \(QC_1 \) and \(QC_2 \) robust qubits. Thus, by using the close
relationship between the KZM and the LZ transition probability,
we validated and tested the KZM on IBM-Q. These results can be
part of a sequence of major steps to fully understand the strength
and limitations of time-dependent quantum simulations. It may
provide insights for designing top efficient quantum simulation
protocols for more involved out-of-equilibrium and interacting
Systems.

4 Conclusion

In this work we explored the dynamics of a two level system
under the time-dependent Landau-Zener Hamiltonian on digital
IBM Quantum computers. Time evolution was simulated by
discretization of the time dependent Hamiltonian and application
of subsequent single-qubit unitary gates representing finite time
progressions. We studied the Landau-Zener transition probability as
a function of time by running parallel quantum circuits on 5-qubit
machines ibmq_lima and ibmq_bogota with different topologies.
We find a strong agreement with the theoretical solution of the LZ
problem for robust qubits from both machines. We also considered
the effect of decoherence on an open LZ system, modeling the
dissipation using collapse operators for relaxation and dephasing.
For greater trotterizations of the time evolution operator, increasing
computing time cause noticeable deviations from the theoretical LZ
solution. The numerical solution of the Lindblad master equation
accurately depicts the open system’s relaxation towards the ground
state, supported by the measured probabilities.

The above positive LZ results allowed us to demonstrate the
first simulation on a realistic quantum computer of the universal
Kibble-Zurek mechanism by estimating the asymptotic transition probability obtained from LZ experimental data. Results show excellent agreement for the best qubits
considered in each device and low annealing times. We find
that larger annealing times demand a greater time resolution in
the evolution operator discretization, putting practical limits on
the performance achieved, as it becomes limited by the conflict
between computing depth and decoherence times. However, the
rapid rate of quantum hardware advances may soon change this.
Furthermore, an interesting follow-up research direction would
consist in focusing on richer open quantum platforms, where
KZM has been poorly explored. Thus, using real quantum
hardware to test quantum universal dynamical behaviors, in
both closed and open systems, represent an interesting
extension of the results presented in this work.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
sanhq17/Testing_KZM_IBMQ.

Author contributions

FG-R and LQ initiated and guided the project. SH-Q took the
experimental measurements. FG-R developed numerical
simulations and prepared the figures. All authors contributed
to the analysis of the results and the writing of the manuscript.

Funding

SH-Q, FR, and LQ are thankful for the financial support from
Facultad de Ciencias-UniAndes projects: INV-2021-128-2292, and
INV-2019-84-1841. FG-R acknowledges financial support from
European Commission FET-Open project AVaQus GA 899561.

Acknowledgments

The authors thank to Bogdan Damski for useful comments
and suggestions.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Abbas, A., Andersson, S., Asaf, A., Corcoles, A., Bello, L., Ben-Haim, Y., et al. (2020). Learn quantum computation using Qiskit.

Accredo, O. L., Quiroga, L., Rodríguez, F. J., and Johnson, N. F. (2014). New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions. Phys. Rev. Lett. 112, 030403. doi:10.1103/PhysRevLett.112.030403

Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., et al. (2019). Qiskit: An open-source framework for quantum computing. doi:10.5281/zenodo.2562113

Anquez, M., Robbins, B. A., Bharath, H. M., Boguslawski, M., Hoang, T. M., and Chapman, M. S. (2016). Quantum Kibble-Zurek mechanism in a spin-1 Bose-Einstein condensate. Phys. Rev. Lett. 116, 155301. doi:10.1103/PhysRevLett.116.155301

Arute, F., Arya, K., Babughb, R., Bacon, D., Bardin, J. C., Barnd, R., et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510. doi:10.1038/s41586-019-1666-5

Bando, Y., Sasa, Y., Oshiyama, H., Shibata, N., Oheki, M., Gómez-Ruiz, F. J., et al. (2020). Probing the universality of topological defect formation in a quantum unearlier; Kibble-Zurek mechanism and beyond. Phys. Rev. 2, 033369. doi:10.1103/PhysRevResearch.2.033369

Barankov, R., and Polkovnikov, A. (2008). Optimal nonlinear passage through a quantum critical point. Phys. Rev. Lett. 101, 076401. doi:10.1103/PhysRevLett.101.076401

Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., et al. (2022). Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004. doi:10.1103/RevModPhys.94.015004

Breuer, H. P., and Petruccione, F. (2007). The theory of open quantum systems. Oxford, United Kingdom: Oxford University Press.

Cervera-Lierta, A. (2018). Exact Ising model simulation on a quantum computer. Quantum 2, 114. doi:10.22331/q-2018-12-21-114

Choo, K., von Keysetlingk, C. W., Regnault, N., and Neupert, T. (2018). Measurement of the entanglement spectrum of a symmetry-protected topological state using the IBM quantum computer. Phys. Rev. Lett. 121, 086808. doi:10.1103/PhysRevLett.121.086808

Collura, M., and Karevski, D. (2010). Critical quench dynamics in confined systems. Phys. Rev. Lett. 104, 200601. doi:10.1103/PhysRevLett.104.200601

Cruz, D., Fournier, R., Gremion, F., Jeannerot, A., Komagata, K., Tosic, T., et al. (2019). Qiskit: An open-source framework for the dynamics of open quantum systems. Adv. Quantum Technol.

Deza, M. M., and Dutour, P. (2006). The mathematics of the Kibble-Zurek mechanism. Frontiers in Quantum Science and Technology frontiersin.org 10

Dziarmaga, J. (2005). Dynamics of a quantum phase transition: Exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701. doi:10.1103/PhysRevLett.95.245701

Dziarmaga, J., and Rams, M. M. (2010). Dynamics of an inhomogeneous quantum phase transition. New J. Phys. 12, 055007. doi:10.1088/1367-2630/12/5/055007

García-Pérez, G., Rossi, M. A. C., and Maniscalco, S. (2020). IBM Q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Inf. 6, 1. doi:10.1038/s41534-019-0235-y

Gherardin, S., Belenchia, A., Paternostro, M., and Trombettoni, A. (2021). End-point measurement approach to assess quantum coherence in energy fluctuations. Phys. Rev. A 104, L050203. doi:10.1103/PhysRevA.104.L050203

Gómez-Ruiz, F. J., and del Campo, A. (2019). Universal dynamics of inhomogeneous quantum phase transitions: Suppressing defect formation. Phys. Rev. Lett. 122, 080604. doi:10.1103/PhysRevLett.122.080604

Gómez-Ruiz, F. J., Mayo, J. J., and del Campo, A. (2020). Full counting statistics of topological defects after crossing a phase transition. Phys. Rev. Lett. 124, 240602. doi:10.1103/PhysRevLett.124.240602

Gong, M., Wen, X., Sun, G., Zhang, D. W., Lan, D., Zhou, Y., et al. (2016). Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system. Sci. Rep. 6, 22667. doi:10.1038/srep22667

Goo, J., Lim, Y., and Shin, Y. (2021). Defect saturation in a rapidly quenched Bose gas. Phys. Rev. Lett. 127, 115701. doi:10.1103/PhysRevLett.127.115701

Higuera-Quintero, S., Gómez-Ruiz, F. J., Rodríguez, F., and Quiroga, L. (2022). Repository for “experimental validation of the kibble-zurek mechanism on a digital quantum computer”. This repository will be available at: https://arxiv.org/abs/2208.01050 (Accessed Aug 23, 2022).

IBM-Corporation (2022). Quantum computing IBM. Available at: https://quantum-computing.ibm.com (Accessed 07 27, 2022).

Ivakhnenko, O. V., Shevchenko, S. N., and Nori, F. (2022). Quantum control via fast gates. npj Quantum Inf. 8, 127. doi:10.1038/s41534-022-00796-9

Johansson, A. D., Suzuki, S., Raymond, J., Zucca, A., Lanting, T., Altomare, F., et al. (2019). IBM Q experience as a versatile experimental testbed for simulating open quantum systems. Adv. Quantum Technol.

Keesling, A., Omran, A., Levine, H., Bernien, H., Pichler, H., Choi, S., et al. (2019). A programmable superconducting analog of the Kibble-Zurek mechanism. Nature 568, 207–211. doi:10.1038/s41586-019-1070-1

Kibble, T. W. B. (1980). Some implications of a cosmological phase transition. J. Phys. Gen. 9, 1387–1398. doi:10.1088/0305-4470/9/5/029

Kibble, T. W. B. (1976). Topology of cosmic domains and strings. Nature 262, 618–621. doi:10.1038/262618a0

Kibble, T. W. B. (1980). Topology of cosmic domains and strings. Nature 262, 618–621. doi:10.1038/262618a0

King, A. D., Suzuki, S., Raymond, J., Zucca, A., Lanting, T., Altomare, F., et al. (2022). Coherent quantum annealing in a programmable 2000-qubit ising chain. Nat. Phys. 18, 1398. doi:10.1038/s41567-022-01741-6

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/frqst.2022.1026025/full#supplementary-material

-
Koh, J. M., Tai, T., Phee, Y. H., Ng, W. E., and Lee, C. H. (2022). Stabilizing multiple topological fermions on a quantum computer. npj Quantum Inf. 8, 1. doi:10.1038/s41534-022-00527-1

Landau, L. (1932a). Zur theorie der energieubertragung. Phys. Z. Sowjetunion 1, 88.

Landau, L. (1932b). Zur theorie der energieubertragung II. Phys. Z. Sowjetunion 2, 46.

Majorana, E. (1932). Atomi orientati in campo magnetico variabile. Nuovo Cim. 9, 43–50. 1924-1942. doi:10.1007/BF02960953

Marquardt, F., and Püttmann, A. (2008). Introduction to dissipation and decoherence in quantum systems. Available at: https://arxiv.org/abs/0809.4403. (Accessed 25 Sep 2008).

Mooney, G. J., Hill, C. D., and Hollenberg, L. C. L. (2019). Entanglement in a 20-qubit superconducting quantum computer. Sci. Rep. 9, 13465. doi:10.1038/s41598-019-49805-7

Mooney, G. J., White, G. A. L., Hill, C. D., and Hollenberg, L. C. L. (2021). Whole-device entanglement in a 65-qubit superconducting quantum computer. Adv. Quantum Technol. 4, 2100061. doi:10.1002/qute.202100061

Porzobom, M. B., and Maziero, J. (2019). Preparing tunable Bell-diagonal states on a quantum computer. Quantum Inf. process. 18, 142. doi:10.1007/s11128-019-2264-z

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum 2, 79. doi:10.22331/q-2018-08-06-79

Proctor, T. J., Carignan-Dugas, A., Rudinger, K., Nielsen, E., Blume-Kohout, R., and Young, K. (2019). Direct randomized benchmarking for multiqubit devices. Phys. Rev. Lett. 123, 030503. doi:10.1103/PhysRevLett.123.030503

Puebla, R., Marty, O., and Plenio, M. B. (2019). Quantum Kibble-Zurek physics in long-range transverse-field Ising models. Phys. Rev. A 100, 032115. doi:10.1103/PhysRevA.100.032115

Zhong, H. S., Wang, H., Deng, Y. H., Chen, M. C., Peng, L. C., Luo, Y. H., et al. (2020). Quantum computational advantage using photons. Proc. R. Soc. Lond. Ser. A. Contain. Pap. a Math. Phys. Character 137, 696–702. doi:10.1098/rspa.1902.0165

Zurek, W. H. (1993). Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177–221. doi:10.1016/0370-1573(96)00009-9

Zurek, W. H. (1985). Cosmological experiments in superfluid helium? Nature 317, 505–508. doi:10.1038/317505a0

Zurek, W. H., Dorner, U., and Zoller, P. (2005). Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701. doi:10.1103/PhysRevLett.95.105701