Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Spatiotemporal variability of COVID-19 pandemic in relation to air pollution, climate and socioeconomic factors in Pakistan

Khalid Mehmood a, Yansong Bao b, c, *, Muhammad Mohsin Abrar d, George P. Petropoulos e, Saifullah f, Ahmad Soban g, Shah Saud h, Zalan Alam Khan i, Shah Masud Khan j, Shah Fahad k, l, **

a School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
b Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science & Technology, Nanjing 210044, China
c School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
d National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
e Department of Geography, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17671, Athens, Greece
f Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
g Department of Horticulture, Northeast Agriculture University, Harbin, China
h Department of Civil Engineering, COMSATS University, Abbottabad, 22030, Pakistan
i Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
j Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, 21120, Pakistan
k Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China

* Corresponding author. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science & Technology, Nanjing 210044, China.
** Corresponding author. Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China.
E-mail addresses: ysbao@nuist.edu.cn (Y. Bao), shah_fahad80@yahoo.com, shahfahad@uoswabi.edu.pk (S. Fahad).

https://doi.org/10.1016/j.chemosphere.2021.129584
© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Primary cases of pneumonia of unidentifiable sources were reported in Wuhan, Hubei province, China late December 2019. Researchers, however, later identified the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as responsible for this disease in January 2020. The novel coronavirus shows a 70% genomic sequence similarity with SARS-CoV-1 (Briz-Redón and Serrano-Aroca, 2020; Cohen and Normile, 2020). Coronavirus disease, also labeled as COVID-19, is the fifth largest pandemic after the Spanish Flu pandemic, which was started in the year 1918. COVID-19 spread from China to several other countries by human-to-human transmission and mostly affects the respiratory system (Liu et al., 2020; Waris et al., 2020).

Based on the high rate of transmission, COVID-19 was affecting a large population in a short period, and thus World Health Organization (WHO) declared SARS-CoV-2 as a Public Health Emergency of International Concern (PHEIC) on 30th January 2020 (Sohrabi et al., 2020; WHO, 2020a). Interestingly, the number of new cases increased 13 times more quickly in other parts of the world as compared to the number of new cases inside China during February 2020. COVID-19 rapid spread has resulted in the pandemic infection of more than 7,15,81,5,32 confirmed cases with 16,18,374 deaths in 208 countries by December 15, 2020 (WHO, 2020b; Zhou et al., 2020). Owing to its rapid spread, WHO on the 11th of March, 2020 declared it as a pandemic (Javed et al., 2020).

The recent spread of COVID-19 infection has caused serious acute respiratory syndrome coronavirus (SARS-CoV) and other severe respiratory illnesses (Huang et al., 2020; Xu et al., 2020). Commonly associated symptoms are fever, cough, fatigue, partial or complete loss of smell and taste, and myalgia at the start of infections (Huang et al., 2020). Evidence suggest that the transmission of COVID-19 from one person to another person is happening through direct contact or droplets (Chan et al., 2020; Lai et al., 2020; Li et al., 2020). For example, a recent study (Wang et al., 2020) reported that person-to-person hospital-associated transmission of COVID-19 was suspected in 41% of patients. According to the WHO officials, there is mounting evidence that the coronavirus can be transmitted by tiny particles suspended in the air. Studies by epidemiologists and scientists have clearly shown that viruses are unconstrained during coughing, talking, and exhalation in micro-droplets tiny enough to suspend in the air for some time sufficient to exacerbate the risk of exposure at a distance more than 1–2 m from an infected person (Lindsay et al., 2010; Morawska and Milton, 2020; Yan et al., 2018).

Similar to other parts of the world, Pakistan has been badly hit by this Pandemic and the first case was documented on February 26, 2020, in Pakistan. It is assumed that the rapid increase in the reported COVID-19 cases was due to the mass movement of people to and from two pandemic hit neighboring countries namely Iran and China. Implementation measures (to minimize the spread of virus transmission) such as wearing the mask, physical distancing, and handwashing, further fueled the number of COVID-19 cases, etc. As of December 15, 2020, there were about 1,98,482 totally confirmed COVID-19 cases in Pakistan with 53,253, 1,28,673, 35,203, 17,796, 7,771/4,799 cases in Sindh, Khyber Pakhtunkhwa (KP), Punjab, Islamabad, Baluchistan, Azad Jammu and Kashmir (AJK)/Gilgit Baltistan (GB), respectively (MNHS, 2020).

Considering its global threat, the transmission factors of COVID-19 should be made explicit. Based on the studies, it is estimated that the serial interval and incubation period depend on the early epidemics in China (Backer et al., 2020; Li et al., 2020). The sequential interval is the period between the symptom start of the following cases; the incubation duration is the spell from infection to the onset of the symptoms. These are key epidemiological factors that give essential insight to deduce the transmission perspective and estimate the quarantine duration (Nishiura et al., 2020).

Since the onset of this pandemic, intensive efforts are being put forward worldwide to develop a vaccine with limited side effects. The development of a safe and effective vaccine, COVAX (led by WHO, GAVI, and CEPI) will ease the impartial access and distribution of these vaccines to protect people over the world. (WHO, 2020b). Presently, more than 50 COVID-19 vaccine candidates are in trial phases. Recently, Pfizer and BioNTech have found a similar mRNA vaccine against COVID-19 and also reported excellent results on 16 November, with an efficacy of 95% (BBC, 2020). However, the distribution of these vaccines is still a challenge due to its cost, transportation, and storage issues.

Ecological parameters may induce the development of contagious infection outbreaks through altering the host vulnerability and the existence phase of viruses in vitro condition (Zhang et al., 2015). Recent studies suggested that respirable suspended particle pollutants (PM$_{2.5}$), humidity, temperature, and wind speed were strongly linked with the epidemic of the severe acute respiratory syndrome (SARS) (Mehmood et al., 2020a, 2020b; Shi et al., 2020). The atmospheric factors such as humidity, temperature, or solar irradiation perform inversely to COVID-19 survival. For instance, some recent studies show that COVID-19 transmission is favored by cold and dry weather conditions (Casanova et al., 2010; Ghosh et al., 2020a). Regarding COVID-19 pandemic transmission, Huang et al. (2020) found that the COVID-19 is facilitated in the temperature range from 5 to 15 °C. Another study showed that both temperature and relative humidity factors perform reasonably well for the model prediction of infections and alert in advance to minimize the risk of future COVID-19 pandemic (Huang et al., 2020). However, there is no conclusive evidence of how the climatic factors and air pollution influence COVID-19 transmission. Meanwhile, numerous studies focused on the global contribution of climatic factors on COVID-19 transmission over the world with different methods. It can be seen in several studies from China (Shi et al., 2020; Xie and Zhu, 2020) USA (Bashir et al., 2020), Norway, Germany (F. F. Wu et al., 2020a), Brazil, Mexico (Biktasheva, 2020), Turkey and many others around
the world (Ghosh et al., 2020b; Sobral et al., 2020) are not clear on COVID-19 distribution with climatic factors and the WHO emphasized that new findings are urgently required to quantitatively estimate how climatic conditions and respirable particle pollutant (PM$_{2.5}$) influence the spread of COVID-19.

The ambient particulate matter could play a significant role in the transmission of disease-causing agents. A great deal of literature shows a strong association of fine particles with the incidence of several respiratory health ailments, especially chronic obstructive pulmonary disease (COPD) and asthma (Mehmood et al., 2020a; Góral et al., 2016). Poor air quality led to an increase in SARS-related deaths as well as a rise in influenza cases in many parts of the world (Landguth et al., 2020). Generally, there are several indicators such as economic, demographic, population, and travel are supposed to be contributing factors to the incidence of developing infectious diseases (Bhadra et al., 2017). Recently, Raza et al. (2020) developed cities are also play a key role in the widespread of epidemic diseases (Buliva et al., 2017). Recently, Raza et al. (2020) found that a relationship between meteorological indicators and the COVID-19 pandemic in Pakistan. However, this study did not take into account the air pollution especially respirable particle pollutant (PM$_{2.5}$), and socioeconomic factors include population density which has a significant role in the spread of COVID-19. Looking at these factors, the present study was planned to investigate the association among COVID-19, respirable suspended particle pollutant (PM$_{2.5}$), meteorological, and socioeconomic factors.

The present study aims at investigating how the COVID-19 pandemic distributed in three metropolitan cities: Karachi, Lahore, and Peshawar) cities representing three provinces Sindh, Punjab, and KPK, respectively. In each provincial city, the climate, air pollution, and socioeconomic are crucial factors, hence, climatic data, particularly temperature (°F), wind speed (m/s), humidity (%), dew point (%), and pressure (Hg) and air pollution include respirable particle pollutant (PM$_{2.5}$) (μg/m$^3$) and socioeconomic cover population density (per km$^2$) indicators were selected to realize the impact on the transmission of COVID-19 in Pakistan. This work employs a Generalized Linear Model (GLM) using the Poisson log function to explore the relationship among covariate climatic factors, PM$_{2.5}$, and COVID-19 cases. This study also utilizes the simple linear regression ($R^2$) model to analyze the relationship of population density with COVID-19 distribution at the provincial level. Furthermore, grey relational analysis (GRA) is implemented for the provincial city Lahore to study the changes in COVID-19 cases concerning PM$_{2.5}$ concentration.

2. Material and methods

2.1. Experimental setup

The COVID-19 was declared as a pandemic by WHO and since the reporting of the 1st case in China, it has resulted in severe losses to socio-economic sectors and caused millions of deaths all over the world including Pakistan (WHO, 2020b). The daily confirmed COVID-19 cases in three out of four provinces and Islamabad city of Pakistan from June 1 to July 31, 2020, were selected as the target period. During this pandemic period, the maximum number of COVID-19 cases and deaths were reported in these provinces of Pakistan. The sum of confirmed COVID-19 cases and deaths were reported in these provinces of Pakistan. The data on PM$_{2.5}$ (24 h) (μg/m$^3$) having particulate matter < 2.5 μm in aerodynamic diameter were collected from the US consulate offices at Lahore, Karachi, Peshawar, and Islamabad (Fig. 1). The climatic factors included temperature (°F), wind speed (m/s), humidity (%), dew point (%), and pressure (Hg) were collected from the website (https://www.wunderground.com/).

2.2. Datasets & models

This study utilized the GLM, GRA, and Pearson correlation (r) analysis to investigate the complex relationships among PM$_{2.5}$ and climatic conditions because these aspects are still yet to be confirmed due to the emergence of several new COVID-19 strains. The GLM is flexible generalization characteristics with ordinary linear regression, which allows for different variables having error distribution than a normal distribution. This model, equipped with a link function, helps to understand the magnitude of variance for each observation to forecast value. The standard mathematical expression of a GLM is shown in Equations (1) and (2), and link, and the mean function were estimated through Equations (3) and (4).

\[
y_i | b \sim \text{Distr} (\mu, \frac{\sigma^2}{w_i})
\]

\[
g(\mu) = Xb + Zb + \delta
\]

\[
Xb = \ln(\mu)
\]

\[
\mu = \exp(Xb)
\]

where “y” represents the response vector, and “x” indicates ith element. The “b” is the random-effects vector. The “Distr” is a definite conditional distribution of y given b. The “μ” shows the conditional mean of y given b, and $\mu_i$ is its ith element. The “σ” is the dispersion parameter and “w” is the effective observation weight vector, while the “w_i” is the weight for observation “i”. Hence, COVID-19 cases were selected as dependent variables. Covariate includes PM$_{2.5}$ (μg/m$^3$), temperature (°F), wind speed (m/s), relative humidity (%), dew point (%), and pressure (Hg) and Poisson distribution and link function utilized logarithm function.

This study employed (GRA) to understand the uncertainty problems under the limited information and discrete data particularly for those having disengaged characteristics. It provides a data quantity and quality ranged from black through grey to white. (Liu et al., 2017; Pai et al., 2013). So, uncertainty always occurs due to grade and ranks as one place in the middle, or between the extremities, or in the grey area. Then, the GRA approach gives a clear set of information about system classification. Also, GRA can be employed to establish the relationships between various sequences of information and its coefficients can be applied to estimate the sequence of information which disturbs the system considerably (Javed and Liu, 2018). Equation (5) was used to determine the GRA.

\[
y(j) = \frac{\Delta x_{\text{min}} + \xi \cdot \Delta x_{\text{max}}}{\Delta j} + \xi \cdot \Delta x_{\text{max}}
\]

where “i” is the “j” value in the “ΔIi” difference data series. “ξ” is called the distinguishing coefficient (ξ = 0.5).

Pearson’s correlation coefficient (r) was also calculated using Equation (6):

\[
x_{xy} = \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x)} \cdot \sqrt{\text{var}(y)}}
\]

Where cov(x, y) is the sample covariance of x and y; var(x) is the sample variance of x; and var(y) is the sample variance of y.

Also, this study aims to analyze the population density to
Fig. 1. Locations of PM$_{2.5}$ concentrations data sites at Lahore, Karachi, Peshawar and Islamabad US consulates offices and COVID-19 cases distributions in Pakistan February 26 to June 30, 2020 (Sources: http://covid.gov.pk/stats/pakistan; Pakistan air quality monitoring US-EPA https://aqicn.org/).

Table 1
Descriptive analysis for daily COVID-19 cases, PM$_{2.5}$ concentrations, and climatic factors in Punjab (Lahore), Sindh (Karachi) Khyber Pakhtunkhwa (KPK) (Peshawar) and Islamabad from June 1 to July 31, 2020.

|          | PM$_{2.5}$ conc. ($\mu$g m$^{-3}$) | Temperature ($^\circ$C) | Dew point (%) | Humidity (%) | Wind speed (m/s) | Pressure (Hg) | COVID-19 Cases |
|----------|-----------------------------------|-------------------------|---------------|--------------|-----------------|---------------|----------------|
| Lahore   | Mean 124.7             | 88.8                  | 72.7          | 61.0         | 9.2             | 28.8          | 1070.9         |
|          | Std. Deviation 29.9    | 4.9                   | 4.1           | 11.1         | 2.7             | 0.2           | 747.1          |
|          | Range 123.0            | 20.8                  | 15.7          | 45.0         | 12.5            | 1.2           | 2585.0         |
|          | Minimum 49.0           | 78.2                  | 63.4          | 36.7         | 4.5             | 27.8          | 116.0          |
|          | Maximum 172.0          | 99.0                  | 79.1          | 81.7         | 17.0            | 29.0          | 2705.0         |
|          | Percentiles 25         | 103.5                 | 84.9          | 70.9         | 53.9            | 6.9           | 287.0          |
|          | 50 129.5               | 88.7                  | 74.0          | 61.4         | 8.8             | 28.8          | 893.0          |
|          | 75 148.0               | 92.3                  | 75.7          | 70.2         | 10.8            | 28.8          | 1647.0         |
| Karachi  | Mean 70.6              | 90.4                  | 75.6          | 63.1         | 11.3            | 29.3          | 1502.7         |
|          | Std. Deviation 12.6    | 1.4                   | 1.5           | 5.0          | 3.0             | 0.7           | 666.8          |
|          | Range 49.0             | 8.1                   | 7.8           | 26.7         | 12.9            | 4.8           | 2768.0         |
|          | Minimum 49.0           | 85.3                  | 71.9          | 53.2         | 6.0             | 24.8          | 270.0          |
|          | Maximum 98.0           | 93.4                  | 79.7          | 79.9         | 18.9            | 29.6          | 3038.0         |
|          | Percentiles 25         | 60.8                  | 89.6          | 74.8          | 59.9           | 9.2           | 29.4           |
|          | 50 70.0                | 90.5                  | 75.4          | 62.1         | 11.0            | 29.4          | 1468.0         |
|          | 75 82.3                | 91.3                  | 76.7          | 65.8         | 12.9            | 29.5          | 2135.0         |
| Peshawar | Mean 118.0             | 89.8                  | 67.2          | 48.8         | 9.6             | 19.2          | 388.1          |
|          | Std. Deviation 21.9    | 3.9                   | 5.1           | 8.3          | 2.2             | 9.6           | 197.0          |
|          | Range 106.0            | 19.4                  | 21.6          | 36.3         | 8.2             | 28.6          | 937.0          |
|          | Minimum 62.0           | 79.2                  | 56.3          | 30.6         | 5.9             | 0.0           | 98.0           |
|          | Maximum 168.0          | 98.6                  | 77.9          | 66.9         | 14.1            | 28.6          | 1035.0         |
|          | Percentiles 25         | 106.0                 | 87.7          | 63.0          | 42.5            | 7.9           | 218.5          |
|          | 50 118.0               | 89.7                  | 67.4          | 48.5         | 9.8             | 22.1          | 371.0          |
|          | 75 134.0               | 92.5                  | 71.2          | 55.9         | 11.2            | 27.9          | 531.5          |
| Islamabad| Mean 94.2              | 67.5                  | 64.3          | 4.4          | 1015.4          | 199.3         |                 |
|          | Std. Deviation 16.4    | 5.5                   | 8.3           | 1.8          | 4.9             | 49.9          |                 |
|          | Range 95.0             | 24.8                  | 33.4          | 9.4          | 24.9            | 752.0         |                 |
|          | Minimum 51.0           | 56.5                  | 52.5          | 1.6          | 998.6           | 19.0          |                 |
|          | Maximum 146.0          | 81.4                  | 85.8          | 11.0         | 1032.5          | 771.0         |                 |
|          | Percentiles 25         | 83.0                  | 58.2          | 3.0          | 1013.5          | 59.0          |                 |
|          | 50 94.0                | 67.4                  | 62.7          | 4.0          | 1015.9          | 117.0         |                 |
|          | 75 104.5               | 71.7                  | 68.9          | 5.2          | 1018.6          | 305.5         |                 |
explore whether any correlation between COVID-19 cases in Pakistan with population density exists or not and if yes, we will consider modeling between the COVID-19 cases in Pakistan (dependent variables) with population density (independent variable). For this, we adopted the population density for Punjab, Sindh, KPK and Islamabad are 445.01 km², 392.05 km², 360.93 km², 906 km² respectively. This study also utilized a simple linear regression model (Schneider et al., 2010) to demonstrate the impact of population density (per sq km) on the number of cases of COVID-19 cases as shown in Equation (7):

\[ Y = B + aX \]  

where “Y” is the dependent variable that denotes the number of cases of COVID-19, and X is the independent variable that represents population density “B” is the constant.

3. Results and discussion

3.1. Temporal distribution of daily COVID-19 cases, PM2.5 concentrations, and climatic factors across major cities/provincials

Table 1 summarizes the descriptive analysis of daily COVID-19 confirmed cases, PM2.5, and climatic factors. This study investigated 1,92,819 COVID-19 confirmed cases (around 3,160 cases each day) in three Pakistani provincial cities from June 01 to July 30, 2020. Fig. 2 shows the trend of total COVID-19 cases in Punjab, Sindh, KPK, and Islamabad. It indicated a rapid increase in the total COVID-19 cases from June 1, 2020, to July 30, 2020, in Punjab, KPK, and Islamabad except for June 21 to June 25 in Sindh. As can be observed COVID-19 cases decrease due to the implementation of certain community measures. Afterward, COVID-19 cases were increased at a decreasing rate. It is evident that the total COVID-19 cases were higher in Sindh followed by Punjab, KPK, and Islamabad. Overall, the average COVID-19 cases per day in Punjab, Sindh, KPK, and Islamabad were 1,071, 1,503, and 199, respectively. However, it can be seen that the Punjab and Sindh provinces were mostly affected by the COVID-19.

The PM2.5 concentration changed significantly during the selected period with (IQR) of 60.75 µg/m³ (25 percentile), 70 µg/m³ (50 percentile), 82.25 µg/m³ (75 percentile) for the three provincial cities of Pakistan. The mean minimum PM2.5 concentrations were recorded more for Karachi (70.6 µg/m³) followed by Islamabad (94.2 µg/m³), Peshawar (118.0 µg/m³) and Lahore (124.7 µg/m³). Climatic factors i.e., temperature, humidity, wind speed, dew point and pressure ranged from 56 °F to 99 °F, 30%~85%, 1.5 m/s to 18.9 m/s, 56.3% to 79.7%, and 7.1 to 40.29 Hg, respectively.

Average temperature was higher in Karachi (90.4 °F) followed by Peshawar (89.8 °F), Lahore (88.8 °F), and Islamabad (67.5 °F).
Average dew point for Karachi, Lahore, and Peshawar was found 72.7%, 75.6%, and 67.2% respectively. The dew point data for Islamabad was unavailable. Average higher humidity was noted for Islamabad (64.3%), Karachi (63.1%), Lahore (61.0%), and Peshawar (48.8%). Wind speed obtained (11.3 m/s), (9.6 m/s), (9.2 m/s), and (4.4 m/s) for Karachi, Peshawar, Lahore, and Islamabad, respectively. Finally, the average maximum pressure was seen (1015.4 Hg) for Islamabad, (29.3 Hg) for Karachi (28.8 Hg) for Lahore, and (19.2 Hg) for Peshawar.

Fig. 3 illustrated the time series distribution of daily COVID-19 cases, PM2.5, and climatic factors in Lahore (Punjab). The epidemic curve of COVID-19 daily new cases reached a peak (June 11) during the target study period, with 2705 active cases. The COVID-19 cases with PM2.5 and wind speed show a good trend from June 1 to June 19, and June 1 to June 28, respectively, and the same trend was recorded for humidity, especially from June 1 to June 13. However, temperature, pressure, and showed an inverse trend with COVID-19 daily cases.

The GLM offers the dependent variable having non-normal distribution. The GLM results suggested that COVID-19 cases have a significant relationship with PM2.5 and climatic factors at p < 0.05 against this hypothesis except for Lahore in the case of humidity (p = 0.175) (Table 2). The Std error values ranged from 0.00 to 0.035 for Lahore, while for Karachi these varied from 0.002 to 0.319. This model provides useful information to understand the complex relationship among different covariates and it is expected to solve the complex relationship for future studies.

The experimental data have been normalized for both PM2.5 and COVID-19 cases for Lahore using grey relational generations. Lahore city is selected because it has badly affected during the study period. Table 3 shows that the result being utilized for optimizing the multi-responses and it is transformed into a single grade. This analysis indicates the complex relationship between COVID-19 and PM2.5 at different time intervals and how the COVID-19 cases were changed with PM2.5 concentration during the target period. The normalized data set have been used further to calculate grey relational coefficients. Next, GRG has been determined from the results of grey relational coefficients.

### Table 2
Generalized Linear Model (GLM) parameters estimates for Lahore Karachi, Peshawar and Islamabad.

| Parameter | B     | Std. Error | 95% Wald Confidence Interval | df   | Sig. |
|-----------|-------|------------|-------------------------------|------|------|
|           | Lower | Upper      |                               |      |      |
| Lahore    |       |            |                               |      |      |
| (Intercept) | 22.628 | 1.492 | 19.703 to 25.553 | 1.000 | 0.000 |
| PM2.5 Conc (µg/m³) | 0.004 | 0.000 | 0.003 to 0.005 | 1.000 | 0.000 |
| Temperature (°F) | 0.095 | 0.019 | 0.085 to 0.123 | 1.000 | 0.000 |
| Dew point ( % ) | -0.258 | 0.021 | -0.299 to -0.218 | 1.000 | 0.000 |
| Humidity ( % ) | 0.013 | 0.009 | -0.006 to 0.031 | 1.000 | 0.175 |
| Wind speed (m/s) | 0.017 | 0.004 | 0.011 to 0.024 | 1.000 | 0.000 |
| Pressure (Hg) | -0.241 | 0.035 | -0.310 to -0.172 | 1.000 | 0.000 |
| Karachi |       |            |                               |      |      |
| (Intercept) | -573.10 | 10.736 | -594.149 to -552.0 | 1.000 | 0.000 |
| PM2.5 Conc. | -0.013 | 0.002 | -0.016 to -0.010 | 1.000 | 0.000 |
| Temperature | -0.611 | 0.067 | -0.743 to -0.479 | 1.000 | 0.000 |
| Dew point | 0.949 | 0.066 | 0.819 to 1.078 | 1.000 | 0.000 |
| Humidity | -0.265 | 0.031 | -0.326 to -0.205 | 1.000 | 0.000 |
| Wind speed | 0.311 | 0.006 | 0.299 to 0.323 | 1.000 | 0.000 |
| Pressure | 19.504 | 0.319 | 18.880 to 20.129 | 1.000 | 0.000 |
| Peshawar |       |            |                               |      |      |
| (Intercept) | 10.441 | 0.021 | 10.400 to 10.483 | 1.000 | 0.000 |
| PM2.5 Conc. | 0.002 | 0.000 | 0.002 to 0.002 | 1.000 | 0.000 |
| Temperature | -0.025 | 0.000 | -0.026 to -0.024 | 1.000 | 0.000 |
| Dew point | -0.035 | 0.000 | -0.035 to -0.034 | 1.000 | 0.000 |
| Humidity | -0.008 | 0.000 | -0.009 to -0.008 | 1.000 | 0.000 |
| Wind speed | 0.016 | 0.000 | 0.015 to 0.016 | 1.000 | 0.000 |
| Pressure | 0.003 | 0.000 | 0.003 to 0.003 | 1.000 | 0.000 |
| Islamabad |       |            |                               |      |      |
| (Intercept) | 10.441 | 0.021 | 10.400 to 10.483 | 1.000 | 0.000 |
| PM2.5 Conc. | 0.002 | 0.000 | 0.002 to 0.002 | 1.000 | 0.000 |
| Temperature | -0.025 | 0.000 | -0.026 to -0.024 | 1.000 | 0.000 |
| Dew point | -0.035 | 0.000 | -0.035 to -0.034 | 1.000 | 0.000 |
| Humidity | -0.008 | 0.000 | -0.009 to -0.008 | 1.000 | 0.000 |
| Wind speed | 0.016 | 0.000 | 0.015 to 0.016 | 1.000 | 0.000 |
| Pressure | 0.003 | 0.000 | 0.003 to 0.003 | 1.000 | 0.000 |

Dependent Variable: COVID-19 Cases; Model: (Intercept); Covariates: PM2.5 Conc. Temperature, Dew point, Humidity, Wind speed, Pressure a. Fixed at the displayed value p < 0.05.
imply that humidity has played an important role in the transmission of COVID-19 in Islamabad. The humidity showed a significant impact on COVID-19 spread (Chen et al., 2020). In China, humidity significantly influenced the diffusion of COVID-19 (Wang et al., 2020). Sajadi et al., 2020) also mentioned the nexus between humidity and respiratory viruses. Likewise, humidity, there is some correlation that existed between COVID-19 cases and wind. The present study results suggest that wind speed provides a favorable environment for COVID-19 spread in Islamabad and these results show good agreement with the findings of Rendana (2020).

![Image of correlation analysis](https://example.com/image)

**Table 3**

Pearson Correlation analysis ($r$) of COVID-19 cases with PM$_{2.5}$ concentration and climatic factors.

| Location   | PM$_{2.5}$ (µg/m$^3$) | Temperature ($^\circ$C) | Dew point (%) | Humidity (%) | Wind speed (m/s) | Pressure (Hg) | COVID-19 cases |
|------------|------------------------|-------------------------|---------------|--------------|-----------------|--------------|----------------|
| Lahore     | PM$_{2.5}$ conc.       | 1                       |               |              |                 |              |                |
|            | Temperature            | 0.480**                 | 1.00          |              |                 |              |                |
|            | Dew point              | -0.14                   | 0.09          | 1.00         |                 |              |                |
|            | Humidity               | -0.482**                | -0.743**      | 0.591**      | 1.00            |              |                |
|            | Wind speed             | 0.00                    | -0.387**      | 0.15         | 0.422**         | 1.00         |                |
|            | Pressure               | -0.09                   | -0.15         | -0.01        | 0.09            | -0.07        | 1.00           |
|            | COVID-19 Cases         | 0.24                    | 0.10          | -0.513**     | -0.401*         | -0.04        | -0.33          |
| Peshawar   | PM$_{2.5}$ conc.       | 1.00                    |               |              |                 |              |                |
|            | Temperature            | 0.14                    | 1.00          |              |                 |              |                |
|            | Dew point              | 0.10                    | 0.28          | 1.00         |                 |              |                |
|            | Humidity               | -0.03                   | -0.38         | 0.77         | 1.00            |              |                |
|            | Wind speed             | 0.26                    | -0.38         | 0.25         | 0.46            | 1.00         |                |
|            | Pressure               | -0.09                   | -0.55         | 0.02         | 0.37            | 0.21         | 1.00           |
|            | COVID-19 Cases         | 0.08                    | -0.26         | -0.57        | -0.37           | -0.04        | 0.07           |
| Karachi    | PM$_{2.5}$ conc.       | 1.00                    |               |              |                 |              |                |
|            | Temperature            | 0.23                    | 1.00          |              |                 |              |                |
|            | Dew point              | -0.44                   | -0.43         | 1.00         |                 |              |                |
|            | Humidity               | -0.37                   | -0.84         | 0.83         | 1.00            |              |                |
|            | Wind speed             | -0.13                   | -0.05         | 0.04         | -0.05           | 1.00         |                |
|            | Pressure               | 0.06                    | -0.05         | -0.07        | -0.01           | 0.10         | 1.00           |
|            | COVID-19 Cases         | -0.27                   | -0.34         | 0.12         | 0.30            | 0.09         | 0.02           |
| Islamabad | PM$_{2.5}$ conc.       | 1.00                    |               |              |                 |              |                |
|            | Temperature            | 0.1704                  | 1             |              |                 |              |                |
|            | Humidity               | -0.114                  | -0.7          | 1            |                 |              |                |
|            | Wind speed             | 0.0844                  | -0.43         | 0.46         | 1               |              |                |
|            | Pressure               | 0.1666                  | 0.26          | -0.3         | -0.442          | 1            |                |
|            | COVID-19 Cases         | -0.162                  | -0.56         | 0.39         | 0.3815          | -0.53        | 1              |

**Fig. 4.** Correlation analysis ($r$) analysis daily COVID-19 confirmed cases, PM$_{2.5}$ concentrations, and climatic factors in Lahore, Karachi, Peshawar and Islamabad.
Table 4 shows the degree of correlation between COVID-19 cases and PM2.5 concerning grey relational grade (GRD) and ranks. The mean GRD was 0.675 during the study period which indicates that there is a good correlation exist between COVID-19 cases and PM2.5. The grade helps to categorize the changes in between COVID-19 cases and PM2.5 (Table 4).

The COVID-19 pandemic has produced an enormous health and economic burden over the world. In this retrospective study, the relationship between COVID-19 cases and PM2.5 and climatic factors were investigated. These findings suggested a significantly varied effect of PM2.5 and climatic factors over confirmed COVID-19 cases in different cities of Pakistan. The GLM model results and time-series distribution emphasized that the impact of PM2.5 and climatic factors should be considered when estimating the infection by COVID-19.

The results are consistent with the other studies (Frontera et al., 2020; Zhu et al., 2020), which showed a significant association between PM2.5 and COVID-19 infection across 120 cities in China.
Moreover, these study results are also in line with the hypothesis put forward by Frontera et al. (2020), who stated that a pollutant-rich atmosphere may promote indirect viral diffusion, besides, to directly (individual to individual) and may be conducive for the risk of infection spread. It was noted that a 10 μg m⁻³ increase in pollution concentration led to a statistically significant increase in daily counts of the confirmed symptomatic Corona-positive cases. Similarly, (Wu et al. (2020) found an increase of 1 μg m⁻³ of PM₂.₅ corresponding to a 15% increase in COVID-19 deaths. Several recent studies indicated that COVID-19 cases increased with increasing levels of PM₂.₅ (Conticini et al., 2020; Zhu et al., 2020). Overall, mixed correlations are existing across Lahore, Karachi, Peshawar, and Islamabad that could be attributed to varied climatic conditions, and COVID-19 data were gathered at the province level.

The R² value indicates that the relationship between COVID-19 and population density was moderate (Fig. 5) which suggests that COVID-19 cases are higher in those cities where population density is more. From the current study analysis, it could be deduced that the COVID-19 cases are not only affected by climate and air pollution factors but also influenced by geographical landscapes, economic conditions, demographic disease variations, genetic factors, health care system, number of testing and age differences, etc. However, there is no fundamental direct and explicit method of catching different possible dependent factors. More investigation on these characteristics is obligatory to address the stated issues.

However, numerous limitations should not be overlooked. Firstly, there are few imperative factors that may affect the distribution of the COVID-19 cases including community interventions, health care system, etc. So, these should be observed in future studies. Secondly, the retrospective time-series design was employed in current study, which might have ecological fallacy up to some extent. Thirdly, besides, it is challenging to gather PM₂.₅ and climate factors data at a discrete level. The current study depicted that PM₂.₅ might affect the COVID-19 cases across major cities of Pakistan and other cities with similar climatic conditions in the region, warranting further detailed studies over a large area.

4. Concluding remarks

To the best of our knowledge, this is the first study that examined the complex relationship of PM₂.₅ and climate factors on the COVID-19 cases in major cities/provinces of Pakistan. The results indicate that the daily COVID-19 is positively associated with PM₂.₅ and some climatic factors. it implies that climate is an important factor in determining the incidence rate of COVID-19 in Pakistan. Overall, there are mixed correlations found in Lahore, Karachi, Peshawar, and Islamabad. In summary, our findings suggest the PM₂.₅ concentrations may be one of the important factors affecting the COVID-19 cases across cities/provinces of Pakistan. The findings reported herein motivate the implementation of additional studies to explore why in some cities/provinces of Pakistan, and more widely in the world, the virus spread is different. This approach that excerpts information from the residuals can assist to quantitatively institute if the changes in climate and air pollution factors contributing to weakening the virus spread in different cities/provincial areas safe by the virus. Those results can endorse further studies in other regions of the world also testing other air pollution-related factors especially sulfuric dioxide, nitrogen dioxide, and tropospheric ozone, etc. It is also imperative to emphasized that both the climate and air-pollution parameters are additional key factors affecting the COVID-19 pandemic transmission. However, their effect is still marginal, so all the epidemiological research direction should not be ignored and have the major role. The methodological framework adopted here can be a good paradigm to explore other unidentified factors. Further, this study will help both epidemiologists, environmentalists, meteorologists, and medical doctors to understand the changing pattern of new different COVID-19 strains under different climatic conditions.

Funding

This study was supported by the National Key Research and Development Program of China (2017YFC1501704, 2018YFC1407200, 2016YFA0600703); National Natural Science Foundation of China (1975046).

Availability of data and materials

The datasets generated (PM₂.₅ concentrations and COVID-19 cases data) during and/or analysed during the current study are available in the (Pakistan air quality monitoring US-EPA (https://aqicn.org/), National Institute of Health, Pakistan (http://www.nih.org.pk/; http://covid.gov.pk/).

Ethical approval

The COVID-19 positive case data are obtained through public health department announcements and are directly recorded by public and anonymous patient data. Therefore, an ethical endorsement is not mandatory.

CRediT authorship contribution statement

Khalid Mehmood: Conceptualization, Methodology, Investigation, Writing - original draft, Data curation, Visualization, Writing - review & editing. Yansong Bao: Supervision, Conceptualization, Validation, Writing - review & editing. George P. Petropoulos: Investigation, Writing - review & editing. Muhammad Moheen Abrar: Investigation, Software, Writing - review & editing. Zalan Alam Khan: Investigation, Writing - review & editing. Shah Saud: Investigation, Software, Writing - review & editing. Saifullah: Investigation, Software, Writing - review & editing. Ahmad Soban: Investigation, Software, Writing - review & editing. Shah Masud Khan: Investigation, Software, Writing - review & editing. Shah Fahad: Investigation, Methodology, Validation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

**Acknowledgments**

We thank all the government of Pakistan institutions for accessing the data for COVID-19 cases, and US-Consulate offices for resrpirable suspended particle pollutant (PM2.5) concentrations data in major cities of Pakistan. Also, we would like to thank Nanjing University of Information Science & Technology for its computational resources.

**References**

Backer, J.A., Klinkenberg, D., Wallinga, J. 2020. Incubation Period of 2019 Novel Coronavirus (2019-nCoV) Infections Among Travellers from Wuhan, China. 28 January 2020. Eurosurveillance. https://doi.org/10.15072/1607-7917.ESS2020.25.5.2000062.

Bashir, M.F., Ma, B., Bilal, Komal, B., Bashir, M.A., Tan, D., Bashir, M. 2020. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138835.

BBC. 2020. Covid-19: Pfizer/BioNTech Vaccine Judged Safe for Use in UK. BBC News https://doi.org/10.1016/j.scitotenv.2020.138441.

Lam, T.T.Y., Wu, J.T., Gao, G.F., Cowling, B.J., Yang, B., Leung, G.M., Feng, Z., 2020. Early transmission dynamics in wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2005136.

Lindsey, W.C., Blachere, F.M., Thewlis, R.E., Vishnu, A., Davis, K.A., Cao, G., Palmer, J.E., Clark, K.E., Fisher, M.A., Khakoo, R., Beechold, D.H., 2010. Measurements of airborne influenza virus in aerosol particles from human coughs. PloS One. https://doi.org/10.1371/journal.pone.0015100.

Li, J., Zhou, J., Yao, J., Zhang, X., Li, L., Xu, X., He, X., Wang, B., Fu, S., Niou, T., Yan, J., Shi, Y., Ren, X., Niu, J., Zhu, W., Li, S., Luo, B., Zhang, K. 2020. Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138313.

Liu, S., Yang, Y., Forrest, J. 2017. Grey Data Analysis. Methods, Models and Applications (Singapore).

Mehmood, K., Safiullah, Iqbal, M., Abrar, M.M., 2020a. Exposure to PM2.5 particles increase the incidence of coronavirus disease 2019 (COVID-19) in Pakistan. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138513.

Morawska, L., Milton, D.K., 2020. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa939.

Nishiura, H., Linton, N.M., Akhmetzhanov, A.R., 2020. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. https://doi.org/10.1016/j.ijid.2020.02.090.

Pai, T.Y., Hanaki, K., Chiou, R.J., 2013. Forecasting hourly roadside particulate matter in taipei county of taiwan based on first-order and one-variable grey model. Clean. https://doi.org/10.1002/cnen.201004002.

Raza Ahmad, H., Sardar, M.F., Maqsood, M.A., Ur Rehman, M.Z., Zhu, C.I., Li, H. 2020. Integrated risk assessment of potentially toxic elements and particle pollution in urban road dust of megacity of Pakistan. Hum. Ecol. Risk Assess. https://doi.org/10.1080/10807039.2019.1611415.

Rendana, M., 2020. Impact of the wind conditions on COVID-19 pandemic: a new insight for direction of the spread of the virus. Urban Clim. https://doi.org/10.1016/j.uclim.2020.100680.

Sajadi, M.M., Habibzadeh, P., Vintzi, A., Shokouhi, S., Miralles-Wilhelm, F., Amoroso, A., 2020. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw. Open. https://doi.org/10.1001/jamanetworkopen.2020.11834.

Schneider, A., Hommel, G., Blettner, M., 2010. Linear regression analysis: part 14 of a series for medical students. Dtsch. Arztebl. Int. https://doi.org/10.3238/arztebl.2010.0776.

Shi, P., Dong, Y., Yan, H., Zhao, C., Li, X., Liu, W., He, M., Tang, S., Xi, S., 2020. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.13852.

Sobral, M.F.F., Duarte, G.B., da Penha Sobral, A.L.G., Marinho, M.L.M., de Souza Melo, A., 2020. Association between climate variables and global transmission of SARS-CoV-2. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138957.

Sohrabi, C., Alsaif, Z., O'Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Ilosifidis, C., Agha, R., 2020. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. https://doi.org/10.1016/j.ijsu.2020.02.034.

Wang, J., Tang, K., Feng, K., Lv, W., 2020. High temperature and high humidity reduce the transmission of COVID-19. SSRN Electron. J. https://doi.org/10.2139/ssrn.351796.

Watz, A., Atta, U.K., Ali, M., Asmat, A., Baset, A., 2020. COVID-19 outbreak: current status, challenges, and future progress, challenges, and WHO initiatives. Front. Public Heal. https://doi.org/10.3389/fpubh.2017.00276.

Xu, R., Wang, S., Li, Z., Li, F., Jiang, H., Li, Y., Zhang, Z., Hu, B., Wu, T., Cai, J.P., Cheng, V.C.C., Chen, H., Hui, C.K.M., Yuen, K.Y., 2020. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. https://doi.org/10.1016/s0140-6736(20)30154-9.

Yuan, S., Hu, Y., Xu, M., Zhao, Y., Zhang, B., Tian, F., Zhuo, X., 2020. Roles of meteorological conditions in COVID-19 transmission on a worldwide scale. PLoS One. https://doi.org/10.1371/journal.pone.0237108.

Zhu, C.I., Li, H. 2020. Integrated risk assessment of potentially toxic elements and particle pollution in urban road dust of megacity of Pakistan. Hum. Ecol. Risk Assess. https://doi.org/10.1080/10807039.2019.1611415.

K. Mehmood, Y. Bao, M.M. Abrar et al. Chemosphere 271 (2021) 129584

Morawska, L., Milton, D.K., 2020. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa939.

Nishiura, H., Linton, N.M., Akhmetzhanov, A.R., 2020. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. https://doi.org/10.1016/j.ijid.2020.02.090.
sectional study. Sci. Adv. https://doi.org/10.1101/2020.04.05.20054502.
Xie, J., Zhu, Y., 2020. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138201.
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., Wang, F.S., 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. https://doi.org/10.1016/S2213-2600(20)30076-X.
Yan, J., Grantham, M., Pantelic, J., De Mesquita, P.J.B., Albert, B., Liu, F., Ehrman, S., Milton, D.K., 2018. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1716561115.
Zhang, R., Wang, G., Guo, S., Zamora, M.L., Ying, Q., Lin, Y., Wang, W., Hu, M., Wang, Y., 2015. Formation of urban fine particulate matter. Chem. Rev. https://doi.org/10.1021/acs.chemrev.5b00067.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, X., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., Cao, B., 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. https://doi.org/10.1016/S0140-6736(20)30566-3.
Zhu, Y., Xie, J., Huang, F., Cao, L., 2020. Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138704.
Zoran, M.A., Savastru, R.S., Savastru, D.M., Tautan, M.N., 2020. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan. Italy. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139825.