Emergence of B.1.524(G) SARS-CoV-2 in Malaysia during the third COVID-19 epidemic wave

Kim-Kee Tan1, Jia-Yi Tan1, Jo-Ern Wong1, Boon-Teong Teoh1, Vunjia Tiong1, Juraina Abd-Jamil1, Siti-Sarah Nor'e1, Chee-Sieng Khor1, Jefree Johari1, Che-Norainon Yaacob1, Mulya-Mustika-Sari Zulkifli2, AsmaAnati CheMatSeri1, Nur-Hidayana Mahfodz1, Noor Syahida Azizan1 & Sazaly AbuBakar1,2*

The COVID-19 pandemic first emerged in Malaysia in Jan 2020. As of 12th Sept 2021, 1,979,698 COVID-19 cases that occurred over three major epidemic waves were confirmed. The virus contributing to the three epidemic waves has not been well-studied. We sequenced the genome of 22 SARS-CoV-2 strains detected in Malaysia during the second and the ongoing third wave of the COVID-19 epidemic. Detailed phylogenetic and genetic variation analyses of the SARS-CoV-2 isolate genomes were performed using these newly determined sequences and all other available sequences. Results from the analyses suggested multiple independent introductions of SARS-CoV-2 into Malaysia. A new B.1.524(G) lineage with S-D614G mutation was detected in Sabah, East Malaysia and Selangor, Peninsular Malaysia on 7th October 2020 and 14th October 2020, respectively. This new B.1.524(G) group was not the direct descendant of any of the previously detected lineages. The new B.1.524(G) carried a set of genetic variations, including A701V (position variant frequency = 0.0007) in Spike protein and a novel G114T mutation at the 5'UTR. The biological importance of the specific mutations remained unknown. The sequential appearance of the mutations, however, suggests that the spread of the new B.1.524(G) lineages likely begun in Sabah and then spread to Selangor. The findings presented here support the importance of SARS-CoV-2 full genome sequencing as a tool to establish an epidemiological link between cases or clusters of COVID-19 worldwide.

Abbreviations
COVID-19 Coronavirus disease 2019
ISPs Ion SphereParticles
MOHE Ministry of Higher Education
MOSTI Ministry of Science, Technology, and Innovation
NGS Next-generation sequencing
PGM Personal genome machine
rRT-PCR Real-time reverse-transcription polymerase chain reaction
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
TIDREC Tropical Infectious Diseases Research and Education Centre
UM Universiti Malaya

The World Health Organization declared a newly emerged novel severe pneumonia of unknown etiology that spread out from Hubei Province, China as a pandemic disease named COVID-19 on 11th March 20201. To date, over 222 million COVID-19 cases with more than 4.5 million deaths were reported2. The etiologic agent causing the pandemic is a novel beta coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which was initially named as the 2019 novel coronavirus (2019-nCoV)3. It is a single-stranded positive-sense RNA virus, with a genome of 29.9 kb in length4. Genetically, the SARS-CoV-2, together with severe acute respiratory
syndrome coronavirus-1 (SARS-CoV-1) and the SARS-CoV-related bat’s viruses, formed the sarbecovirus subgenus under the family Coronaviridae. At the beginning of the pandemic, much effort was devoted towards determining the probable origin of the SARS-CoV-2. The high genome sequence similarity between SARS-CoV-2 with coronaviruses recovered in bats and pangolins, suggests its potential natural zoonotic origin. Given the massive global transmission of the virus and rapid increment of the total number of SARS-CoV-2 genome sequences in the public databases, there has been growing interest and extensive studies exploring the genome information to facilitate the understanding of the spatiotemporal characteristics of the virus transmission within and across different continents and populations. SARS-CoV-2 rapidly diverges into several lineages with genetic variations spanning the genome, supporting specific genomics sites evolving under positive selection. Hence, continuous monitoring of the genetic variations is critical and crucial to detect and track the emergence of mutations that could have a potential impact on virus pathogenicity, diagnostic test accuracy, vaccine efficacy and the elucidation of SARS-CoV-2 evolution pattern.

The first four cases of COVID-19 in Malaysia were reported on 25th January 2020 from visiting Chinese nationals. This marked the beginning of the first wave of the COVID-19 pandemic which lasted until the end of February 2020 with at least 10 days of zero cases recorded. During the first wave, almost all the cases were associated with prior travel or contact with someone who has been to China. In early March 2020 an outbreak amongst at least 16,000 attendees of a religious gathering in Kuala Lumpur, fuelled a nationwide spread of the infection and this triggered the second wave of the pandemic with over 100 daily cases reported. To contain the spread, the country implemented a nationwide Movement Control Order (MCO) on 18th March 2020. During the MCO, Malaysians were barred from traveling overseas, and inter-and intra-state travel was restricted to only those providing critical services. At the same time, the operation of all educational institutions, government agencies, and non-essential businesses temporarily ceased. These strict control strategies successfully contained the spread of SARS-CoV-2 and flattened the COVID-19 epidemic curve in Malaysia. However, the operation of all educational institutions, government agencies, and non-essential businesses temporarily ceased. These strict control strategies successfully contained the spread of SARS-CoV-2 and flattened the COVID-19 epidemic curve in Malaysia.

In Malaysia, the first four cases of COVID-19 were confirmed on 25 January 2020. The first cluster of cases was of Malaysian nationals and was linked to a religious gathering. Malaysia entered the recovery phase on 10th June 2020. The daily number of COVID-19 cases remained relatively low (< 20) during the first wave. However, during the first wave, almost all the cases were associated with prior travel or contact with someone who has been to China. In early March 2020 an outbreak amongst at least 16,000 attendees of a religious gathering in Kuala Lumpur, fuelled a nationwide spread of the infection and this triggered the second wave of the pandemic with over 100 daily cases reported. To contain the spread, the country implemented a nationwide Movement Control Order (MCO) on 18th March 2020. During the MCO, Malaysians were barred from traveling overseas, and inter-and intra-state travel was restricted to only those providing critical services. At the same time, the operation of all educational institutions, government agencies, and non-essential businesses temporarily ceased. These strict control strategies successfully contained the spread of SARS-CoV-2 and flattened the COVID-19 epidemic curve in Malaysia. However, the number of cases continues to escalate reaching over 19,000 daily positive cases as of 12th Sept 2021. As of 12th Sept 2021, there were 1,979,698 confirmed COVID-19 cases in Malaysia. Despite the high number of cases not much has been reported on the SARS-CoV-2 strains and the elucidation of SARS-CoV-2 evolution pattern.

Hence, continuous monitoring of the genetic variations is critical and crucial to detect and track the emergence of mutations that could have a potential impact on virus pathogenicity, diagnostic test accuracy, vaccine efficacy and the elucidation of SARS-CoV-2 evolution pattern.

The first four cases of COVID-19 in Malaysia were reported on 25th January 2020. The first cluster of cases was of Malaysian nationals and was linked to a religious gathering. Malaysia entered the recovery phase on 10th June 2020. The daily number of COVID-19 cases remained relatively low (< 20) during the first wave. However, during the first wave, almost all the cases were associated with prior travel or contact with someone who has been to China. In early March 2020 an outbreak amongst at least 16,000 attendees of a religious gathering in Kuala Lumpur, fuelled a nationwide spread of the infection and this triggered the second wave of the pandemic with over 100 daily cases reported. To contain the spread, the country implemented a nationwide Movement Control Order (MCO) on 18th March 2020. During the MCO, Malaysians were barred from traveling overseas, and inter-and intra-state travel was restricted to only those providing critical services. At the same time, the operation of all educational institutions, government agencies, and non-essential businesses temporarily ceased. These strict control strategies successfully contained the spread of SARS-CoV-2 and flattened the COVID-19 epidemic curve in Malaysia. However, the number of cases continues to escalate reaching over 19,000 daily positive cases as of 12th Sept 2021. As of 12th Sept 2021, there were 1,979,698 confirmed COVID-19 cases in Malaysia. Despite the high number of cases not much has been reported on the SARS-CoV-2 strains and the elucidation of SARS-CoV-2 evolution pattern.

Materials and methods

Ethics statement. The study was approved and the need for informed consent was waived by the Medical Ethics Committee of the University Malaya Medical Centre (MREC ID no.: 20201228-9626). All methods were performed following all the relevant guidelines and regulations.

Virus strains. The Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya (UM), is one of the research centers that participated in the Ministry of Science, Technology, and Innovation (MOSTI)-Ministry of Higher Education (MOHE) COVID-19 testing initiative. The SARS-CoV-2 samples used in the current study originated from samples tested positive by Real-time qRT-PCR during the diagnostic processes. RNA material received was anonymous without any identifier linked to the sample. The sample collection represented a random subset of the circulating SARS-CoV-2 strains during the period between April to May 2020 (second COVID-19 epidemic wave) and October 2020 (third COVID-19 epidemic wave).

Sample preparation, genome sequencing, and assembly. All laboratory activities involving the COVID-19 testing were conducted following biosafety practices designed for COVID-19 testing in a bioccontainment level II (BSL-2) laboratory. The amplicon libraries encompassing the SARS-CoV-2 full genome were prepared using the Ion AmpliSeq™ SARS-CoV-2 Research Panel (Ion Torrent, Thermo Scientific) with minor modification as previously described. Briefly, the cDNA was generated using Superscript® IV Reverse Transcriptase (Invitrogen, Thermo Scientific). The generated cDNAs were subjected to SARS-CoV-2 full genome amplification using two primer pools of the Ion AmpliSeq™ SARS-CoV-2 Research Panel, according to the...
manufacturer's recommendation amplification protocol. The adaptors and barcodes were ligated to the pooled amplicon libraries using Ion AmpliSeq™ Library Kit Plus (Ion Torrent, Thermo Scientific). The barcode-ligated amplicon libraries were subjected to another round of amplification and clean-up processes prior to sequencing template preparation. The sequencing template was prepared using Ion PGM™ Hi-Q™ View OT2 Kit, and the full genome sequencing was performed using the Ion Personal Genome Machine (PGM) with 550 flows. The generated reads were mapped to SARS-CoV-2 reference strains, Wuhan-Hu-1 (GenBank accession number: MN908947). The level of sequence coverage on the target genome regions was performed using coverageAnalysis v5.12.0.0, as implemented in Torrent Suite™ Software 5.12. Genome assembly was conducted using the IRMAreport v1.2.1.0 (Ion Torrent, Thermo Scientific).

Multiple sequence alignment, variant calling, and parsimony sites analysis of SARS-CoV-2. The SARS-CoV-2 sequences generated in this study, along with genome sequences of other Malaysian SARS-CoV-2 retrieved from the GISAID, were aligned to Wuhan-Hu-1 (MN908947.3). The informative variant sites were retrieved from the multiple sequence alignment (MSA) of this Malaysian SARS-CoV-2 using MEGA X30. The frequency of identified mutation variants globally was observed using mutation list listed in COVID CoV Genetics (COVID CG, https://covidcg.org/), China National Center for Bioinformation (CNCB)—2019 Novel Coronavirus Resource (2019nCoVR; https://bigd.big.ac.cn/ncov/)31, and CoV-GLUE (http://cov-glue.cvr.gla.ac.uk/)32.

Clade/lineage assignment of Malaysian SARS-CoV-2. The clade/lineage assignment of the Malaysia SARS-CoV-2 was determined based on two major databases or SARS-CoV-2 nomenclatures previously proposed33. The SARS-CoV-2 clade of the newly sequenced Malaysia SARS-CoV-2 strains was first assigned based on the marker variants retrieved from GISAID on 6 November 20209. The more detailed SARS-CoV-2 lineage was assigned by the Phylogetic Assignment of Named Global Outbreak LINEages (PANGOLIN) tool (Version 2.1.7, 2021-01-20, https://pangolin.cog-uk.io/).

Phylogenetic analysis of Malaysian SARS-CoV-2. The near-complete genome sequences (66–29,674) were extracted from the MSA of the Malaysia SARS-CoV-2. Sequences with low coverage and gaps were removed from the analysis. The resulting datasets consisting of 106 Malaysia SARS-CoV-2 strains were used for the phylogenetic tree reconstruction (Supplementary Table 1). The phylogeny of Malaysia SARS-CoV-2 was estimated using the Bayesian Markov Chain Monte Carlo (MCMC) approach, as implemented in BEAST 2.6.43. The Generalised Time-Reversible model with the invariant site (GTR+I) was selected using the Akaikie Information Criterion (AIC) as implemented in jModel Test 2.1.449. The analysis was performed under a strict molecular clock model with an MCMC chain length of 20 million samplings every 2,000 generations. The resulting MCMC trace file was analyzed and visualized using Tracer Version 1.738. The maximum clade credibility (MCC) tree was produced using TreeAnnotator 2.3.237 and visualized using FigTree V1.4.448.

Results

Genome structure, geographical distribution and clade assignment of SARS-CoV-2 strains. In the current study, 22 complete and near-complete genome sequences of SARS-CoV-2 strains detected in Malaysia were generated (Table 1). The genome sequences encompassing at least from positions 26 at the 5’-untranslated region (5’UTR) to 29,847 at the 3’-untranslated region (3’UTR) according to the nucleotide position of the Wuhan-Hu-1 genome sequence (MN908947.3). All SARS-CoV-2 complete genome sequences (16 out of 22) in this study possessed a similar genome structure with the reference sequence, Wuhan-Hu-1 with no insertion or deletion detected within the positions that ranged from nucleotide 26 to 29,847. Among these 22 genome sequences, 12 were detected between April to May 2020, representing circulating SARS-CoV-2 strains during the second wave of the COVID-19 epidemic in Malaysia. Most of the second wave's SARS-CoV-2 strains were detected in Selangor, a state in Peninsular Malaysia. Only 1 sample, 4Apr20-3-Hu/2020, was detected from Negri Sembilan, a neighboring state to Selangor (Table 1). While the other ten SARS-CoV-2 strains were detected from Sabah and Selangor, representing a subset of circulating strains detected during the initial phase of the third COVID-19 epidemic wave.

The clade/lineage of SARS-CoV-2 strains was assigned based on the GISAID clade and PANGOLIN Lineage assignments. Currently, there are seven GISAID assigned SARS-CoV-2 clades based on a list of ten genetic markers (Table 1 and Supplementary Table 2). Samples that did not cluster under these seven major GISAID clades will be denoted as others (O). Based on the GISAID clade assignment, the samples detected during early April 2020 (4Apr20-3-Hu/2020 and 5Apr20-64-Hu/2020), and all samples detected in October 2020 (third epidemic wave) denoted clade G (Table 1), possessed genetic variations at C241T, C3037T, and A23403G. Using the Pangolin COVID-19 Lineage Assigner, these clade G strains belonged to the same lineage, B.1.524 (Table 1). Samples obtained on 21 April 2020 and 2 May 2020 did not cluster under any of the seven major GISAID clades, hence, denoted as O. All samples obtained on 21 April 2020 carried two nucleotide changes C241T and G11803T, while sample obtained on 2 May 2020 (2May20-132-Hu/2020) only possessed G11803T. Based on the Pangolin, all samples detected on 21 April 2020, denoted as lineage B.6.1 and sample detected on 2 May 2020 sample was assigned under B.6.6.

Phylogenetic relationships and molecular signature of Malaysian SARS-CoV-2. The phylogenetic relationships of SARS-CoV-2, detected in Malaysia, were examined using a phylogenetic tree reconstructed using near-complete genome sequences ranging from nucleotide 66 to 29,674. The tree consisted of 106 SARS-CoV-2 strains (16 generated from this study and 90 retrieved from GISAID) detected between 28 January 2020
and 14 October 2020. For a better illustration of the circulation of different SARS-CoV-2 clades/lineages in Malaysia, we investigated and reported the relationships of SARS-CoV-2 in accordance with the three COVID-19 epidemic waves. The first COVID-19 epidemic wave in Malaysia started on 24 January 2020 and ended on 16 February. The second COVID-19 epidemic wave started on 27 February with no clear indication of the end date before the third COVID-19 epidemic wave announcement on 8 October. The Religious Gathering Cluster, the major contributor of the second COVID-19 epidemic wave, ended on 8 July, and the cases remained relatively low before the emergence and spread linked to clusters in Kedah and Sabah. Therefore, to ease the explanation, we suggested a period between 27 February to 8 July as the second COVID-19 epidemic wave and 9 July to 7 October as the pre-emergence phase of the third epidemic wave of COVID-19 in Malaysia.

First COVID-19 epidemic wave in Malaysia (25 January 2020–16 February 2020). Our phylogenetic analysis showed that SARS-CoV-2 strains of both SARS-CoV-2 lineages, lineage A and lineage B, were detected in COVID-19 patients during the first COVID-19 epidemic wave (Fig. 1). The lineage A (GISAID clade S) consisted of two strains, the hCoV-19/Malaysia/IMR WC119/2020 and the hCoV-19/Malaysia/MKAK-CL-2020-6430/2020, detected on 30 January 2020 and 4 February, respectively. Besides the GISAID clade S-specific genetic markers, C8782T and T28144C, there were no other shared mutations between these two samples. Despite lineage A still actively circulating in other parts of the world, no other lineage A strains were reported

No	Reference genome	Location	Epidemic wave	PANGOLIN Lineage	GISAID Clade	Genetic markers for GISAID clade assignment
1	4Apr20-3-Hu/2020	Negeri Sembilan	2	B.1	G	T T G
2	5Apr20-64-Hu/2020	Selangor	2	B.1.250	G	T T G
3	21Apr20-101-Hu/2020	Selangor	2	B.6.1	O	T T T
4	21Apr20-106-Hu/2020	Selangor	2	B.6.1	O	T T T
5	21Apr20-128-Hu/2020	Selangor	2	B.6.1	O	T T T
6	21Apr20-136-Hu/2020	Selangor	2	B.6.1	O	T T T
7	21Apr20-209-Hu/2020	Selangor	2	B.6.1	O	T T T
8	21Apr20-211-Hu/2020	Selangor	2	B.6.1	O	T T T
9	21Apr20-224-Hu/2020	Selangor	2	B.6.1	O	T T T
10	21Apr20-232-Hu/2020	Selangor	2	B.6.1	O	T T T
11	21Apr20-236-Hu/2020	Selangor	2	B.6.1	O	T T T
12	2May20-132-Hu/2020	Selangor	2	B.6.6	O	T T T
13	7Nov20-45-Hu/2020	Sabah	3	B.1.524	G	T T G
14	7Oct20-83-Hu/2020	Sabah	3	B.1.524	G	T T G
15	7Oct20-135-Hu/2020	Sabah	3	B.1.524	G	T T G
16	7Oct20-152-Hu/2020	Sabah	3	B.1.524	G	T T G
17	7Oct20-193-Hu/2020	Sabah	3	B.1.524	G	T T G
18	14Oct20-136-Hu/2020	Selangor	3	B.1.524	G	T T G
19	14Oct20-158-Hu/2020	Selangor	3	B.1.524	G	T T G
20	14Oct20-183-Hu/2020	Selangor	3	B.1.524	G	T T G
21	14Oct20-210-Hu/2020	Selangor	3	B.1.524	G	T T G
22	14Oct20-219-Hu/2020	Selangor	3	B.1.524	G	T T G

Table 1. Clade and lineage assignments of SARS-CoV-2 strains.
in Malaysia after the first wave. The lineage B (GISAID Clade L) was closely related to the first sequenced SARS-CoV-2 strain, Wuhan-Hu-1 (Fig. 1). Malaysia’s lineage B(L) strains detected between 6 to 12 February clustered closely to form a distinct subgroup. These strains shared two missense mutations, the C1758T which encoded for amino acid substitution of alanine to valine at position 318 of nsp2, and the C10604T encoded for amino acid substitution proline with serine at position 184 of nsp5 (Table 2). These mutations, however, were not observed in other B(L) strains detected after the first wave, consistent with epidemiological data that early introduction of SARS-CoV-2 during the first wave was successfully contained. We looked into the time of emergence of these mutations (https://bigd.big.ac.cn/ncov/); the first strain which carried the C1064T (nsp5-P184S) was reported in hCoV-19/Beijing/BJ53/2020 detected on 24 January 2020 from Beijing, while the first strain that carried both C1758T/C10064T was hCoV-19/Malaysia/MKAK-CL-2020–7554/2020 detected in Malaysia on 6 February 2020.

Figure 1. Maximum clade credibility (MCC) tree of SARS-CoV-2 isolated in Malaysia. The phylogenetic tree was constructed using the near-complete genome of SARS-CoV-2 strains (position 66–29674). The major circulating lineages in Malaysia and their respective molecular signatures were shown.
Genetic variation	Lineage/Clade	Effect	Reference	Mutant	Number of isolates with mutations (Any type of mutations)	Number of isolates with the specific mutation	Position variant frequency
C3782T	A(S)	Synonymous	S	nsp4-76S	4209	4401	0.0375
T28144C		Missense	L	ORF8-L84S	4204	4402	0.0374
C1758T	B(L)	Missense	A	nsp2-A318V	401	396	0.0036
C10604T	B.12(L)	Synonymous	L	nsp6-260L	88	101	0.0008
C11752T		Missense	F	nsp14-F357L	637	51	0.0057
C19176A							
C241T	B.1(G)	Synonymous	L	nsp14-280L	100,656	103,714	0.8965
C3037T	B.1.1(GR)	Synonymous	L	nsp3-106F	101,561	104,625	0.9045
C14408T		Missense	P	nsp12-P323L	101,424	104,458	0.9033
A23403G		Missense	D	D614G	101,615	104,674	0.905
G28881A	B.1(GH)	Missense	R	N-R203K	42,724	43,788	0.3805
G28882A	B.1.160(GH)	Missense	G	N-G204R	42,530	43,599	0.3789
G28883C							
C18677T	B.1.1(GR)	Synonymous	L	nsp14-280L	6140	6210	0.0547
G25563T		Missense	Q	ORF3a-Q37H	26,880	27,738	0.2394
G25429T	B.1(G)	Missense	V	ORF3a-V13L	994	994	0.0089
C6312T							
C8637T		Missense	T	nsp3-T1198I	1127	80	0.01
A10124G		Missense	T	nsp4-T281	13	7	0.0001
C17518T	B.1.524(G)	Missense	T	nsp5-T24A	6	6	0.0001
C21516T		Synonymous	N	nsp16-858N	101	100	0.0009
C2162A		Synonymous	T	nsp16-S20T	114	10	0.001
C23664T		Missense	A	S-A701V	74	77	0.0007
A28133T		Synonymous	T	ORF8-80T	173	183	0.0015
C28854T		Missense	S	N-S194L	5558	5585	0.0495
G970T	B.1.624(G)	Missense	E	nsp2-E55D	40	1	0.0004
G114T	B.1.524(G)	Synonymous	Y	nsp3-1050Y	115	113	0.0001
C58699	B.1.524(G)	Synonymous	Y	nsp7-33V	73	66	0.0007
C21365T		Missense	P	nsp16-P236L	33	30	0.0003
A29426G		Missense	R	N-R385G	2	1	0
G11083T	B.2(V)	Missense	L	nsp6-L37F	7972	7938	0.071
C14805T	B.6(O)	Synonymous	Y	nsp12-455Y	3295	3389	0.0293
G26144T	B.6(O)	Missense	G	ORF3a-G251V	2467	2520	0.022
C6312A		Missense	T	nsp3-T1198K	1127	1052	0.01
C13730T		Missense	A	nsp12-A97V	1200	1202	0.0107
C23929T		Synonymous	Y	S-789Y	1022	1052	0.0091
C28311T		Missense	P	N-P38L	1275	1319	0.0114
T7621C							
C21658T		Synonymous	F	S-32F	91	70	0.0008
C24616G		Missense	I	S-11018M	23	0	0.0002
C25549T		Missense	L	ORF3a-L53F	322	318	0.0029
C21622T		Missense	T	S-T22I	74	63	0.0007
G1467A	B.6(O)	Missense	G	nsp2-G221D	7	7	0.0001
C13329T	B.6(O)	Missense	T	nsp10-T102I	113	113	0.001
C20823T		Synonymous	N	nsp16-55N	–	–	–
C26607T		Missense	L	M-L29F	–	–	–
A29086T		Synonymous	T	N-271T	–	–	–
C29218T		Synonymous	F	N-215F	86	75	0.0008
C401T	B.6(O)	Missense	L	nsp1-L46F	21	15	0.0002
Continued							
Second COVID-19 epidemic wave in Malaysia (27 February–8 July 2020). The majority of the samples (93 out of 106) used in this study were obtained during the second COVID-19 epidemic wave (Fig. 1). All the samples clustered under lineage B. Our phylogenetic analyses showed that the samples were segregated into two major groups before they were delineated into multiple sub-lineages. The first group clustered closely with B(L) strains detected during the first COVID-19 epidemic phase (Fig. 1), representing strains assigned as lineages B(L), B.1(GH, GR), and B.12(L). The second group represented previously assigned strains under lineage B(V) and B.6(O).

B(L)/B.1(G,H,G,H,GR)-associated subgroups. The B/V1/B.12 group consisted of strains detected between 25 February to 14 October 2020 (Fig. 1). On the phylogenetic tree, the strains segregated into two major sub-groups consisting of strains assigned under B/B.12 and B.1. The B/B.12 subgroup was further delineated into groups which corresponded to lineage B.12 and lineage B. These B/B.12 strains, however, were all assigned as clade L, under GISAID except hCoV-19-Malaysia/9886/2020(B.6(O)). Malaysia’s lineage B.12 consisted of two strains, the hCoV-19/Malaysia/6359/2020 and hCoV-19/Malaysia/IMR WC1177/2020. These B.12(L) strains contained two genetic variations, C11752T and C19170A (Fig. 1 and Table 2). These two mutations were first reported in hCoV-19/Japan/PG-0015/2020 (EPI_ISL_479799), a strain detected from Hokkaido, Japan, on 20 January 2020. This was consistent with our analysis that the Most Recent Common Ancestor (MRCA) of these Malaysia’s B.12 strains could have dated back to 21 January 2020 (95% HPD: 12 February–25 February 2020). These two linked mutations were common genetic traits for strains detected in Hokkaido, Japan, from January to March 2020, suggesting the possible Japan-origin of Malaysia’s B.12 strains. Unlike the B.12 subgroup, the other second wave’s strains clustered under lineage B did not have any common genetic variation, indicating they could have been imported independently from different sources.

The second subgroup was a group of lineage B.1 strains and their descendants, comprising the strains detected between 21 March to 14 October 2020 (second and third COVID-19 epidemic waves, Fig. 1). All strains clustered under this group, including those sequenced in the current study, possessed the three GISAID clade G genetic markers, C241T, C3037T, and A23403G with an additional mutation C14408T. The C14408T is a common mutation used to define B.1 in the Pangolin system, and it is also used to define a haplogroup A2a4 (another SARS-CoV-2 clustering system)10. The C14408T and A23403G were missense mutations (Table 2). The strains that fell within this B.1-associated lineage carried this S-D614G amino acid substitution. The strains that possessed all four mutations (C241T-C3037T-C14408T-A23403T) were actively circulating, especially in Europe (https://bigd.big.ac.cn/ncov/) before its first documented detection in Malaysia in late March, 2020 (Fig. 1). Our data showed that this B.1-associated lineage further segregated into four subgroups, representing strains of B.1.1.X(GR), B.1(GH), and B.1(G), and B.1.524(G) groups. Strains that possessed additional three genetic markers G28881A, G28882A, and G28883C, clustered under clade GH, strains which possessed G25563T was assigned as clade GR, and the strains that presented without these additional genetic variations remained as Clade G. Malaysia’s B.1.1.X(GR) group comprised six strains detected between 21 March to 29 May 2020. There was no additional mutations shared among this group besides the clade-specific mutations. Malaysia’s GH group comprised two strains, hCoV-19/Malaysia/MGI-G873/2020, detected on 7 April 2020, and hCoV-19/Malaysia/IMR WC94764/2020, detected on 29 May 2020. Both strains shared an additional genetic variation, C18877T, a synonymous mutation. The assigned B.1(G) strains segregated into two distinct subgroups. The first subgroup consisted of two strains sequenced in this study, hCoV-19/Malaysia/4Apr20-3-Hu/2020 detected from Negeri Sembilan on 4 April 2020 and hCoV-19/Malaysia/5Apr20-64-Hu/2020 detected in Selangor on 5 April 2020. An additional shared genetic variation, G25429T encoded for an amino acid substitution of proline at position 13 of the ORF3a (ORF3a-V13L), was observed. These two spatially separated ORF3a-L13-bearing B.1(G) strains could have descended from a common ancestor carrying the 25429 T mutation. The mutation at this position is relatively rare, with a variation frequency of less than 0.01 (Table 2).

B.2(V)/B.6(O) subgroups. The second major group was B/B.6 lineage (Fig. 1). All strains within this B.2/B.6 lineage shared genetic variation G11083T, encoded for amino acid changes from leucine to phenylalanine at position 37 of nsp6 in ORF1ab. It was a common mutation detected in strains circulating in China in January 2020; the earliest isolates with this mutation dated back to 17 January 2020 (https://bigd.big.ac.cn/ncov/). These T11803-bearing strains segregated into two groups corresponding to lineage B(clade V) and lineage B.6 (No specific GISAID clade was assigned, denoted as O, referring to others).
Two B(V) strains were detected in Malaysia on 31 March and 2 April 2020 (Fig. 1). In addition to the T11803, both strains possessed additional two nucleotide variations, C14805T and G26144T. The G11083T and G26144T were genetic markers for the assignment of GISAID Clade V. While the C14805T was an additional genetic trait present in this group. The C14805T was a synonymous mutation that was not originally present in China during the early spread of the virus, suggesting this mutation could have accumulated in the SARS-CoV-2 gene pool outside of China. These three linked mutations, however, were detected in strains detected in England and Korea beginning at the end of Jan and early Feb 2020, indicating the widespread distribution of the ancestor strains (https://covidcg.org/). There was no B(V) strain detected in Malaysia after 2 April 2020.

The B.6 (O)-associated lineage formed the largest group of Malaysia’s SARS-CoV-2 phylogenetic tree, comprised of strains detected from 4 March to 4 June 2020. The SARS-CoV-2 strains sequenced in this study (21 April–2 May 2020) clustered within this subgroup. All B.6 strains within this group contained four additional genetic variations; C6312A, C13730T, C23929T, and C28311T in addition to G11083T mutation. These five mutations were probably linked mutations as these mutations were detected simultaneously in strains recovered from different countries in March 2020 (https://bigd.big.ac.cn/ncov/). These A6312A-T11083-T13730-T23929-T28311-bearing strains were segregated into multiple distinct subgroups with the presence of several unique genetic traits. Sequential accumulation of these mutations could have reflected the transmission path of SARS-CoV-2 in the local community. For example, the B.6.1(O) subgroup was also characterized by a mutation, T7621C. This T7621C mutation was a synonymous mutation detected in 29 strains, mainly from Malaysia and Brunei (https://bigd.big.ac.cn/ncov/variant/annotation/variant/7612), suggesting that this is a unique mutation that occurred in this region and could have originated from a single origin. These C7621-bearing strains were further delineated into two groups differentiated by an additional mutation, C25549T. Our samples obtained in mid-Apr 2020 clustered within the C7621-C25549T-groups, with additional mutations detected in some of the samples. Most of these samples were detected from individuals with travel histories to Indonesia and India. There was, however, no distinct spatial clustering of the samples. Samples’ collection time for the C25549-bearing and T25549-bearing groups, however, overlapped, indicating at least two independent and simultaneous transmission chains. Within B.6(O), another group with the additional mutation, C19524T; was observed; subsequently, an additional C6210A and then C2508A was detected in a subset of this group (B.6.6(O)). The B.6.6(O) comprised of samples linked to the identified Seri Petaling Gathering Cluster[41]. The T19524 and T19524T-A6210 strains were also detected in neighboring countries including Singapore, Thailand, and Australia (https://bigd.big.ac.cn/ncov/) but not the T19524-A6210-A2508 strains, suggesting the C2508A could be a mutation that accumulated in the SARS-CoV-2 gene pool during the second COVID-19 epidemic wave in Malaysia.

Table 3. List of mutations in SARS-CoV-2 strains detected in Malaysia in October 2020.

Isolates	Nucleotide position
	114 241 970 3037 5869 6312 8637 10,124 11,941 14,408 17,518 21,365 21,516 21,622 23,403 23,664 28,133 28,854 29,426 29,751
Wuhan- Hu-1 MN908947	G C G C G C C C A C C C C C A A C A C A G
MY14OC20-136-Hu/2020	T T T T T T G T T T T A G T T T G T
MY14OC20-158-Hu/2020	T T T T T T G T T T T A G T T T G T
MY14OC20-183-Hu/2020	T T T T T T G T T T T A G T T T G T
MY14OC20-210-Hu/2020	T T T T T T G T T T T A G T T T G T
MY14OC20-219-Hu/2020	T T T T T T G T T T T A G T T T T
MY7Oct20-45-Hu/2020	T T T T T T G T T T T A G T T T T
MY7Oct20-83-Hu/2020	T T T T T T G T T T T A G T T T T
MY7OC20-135-Hu/2020	T T T T T T G T T T T A G T T T T
MY7Oct20-152-Hu/2020	T T T T T T G T T T T A G T T T T
MY7Oct20-193-Hu/2020	T T T T T T G T T T T A G T T T T

Third COVID-19 epidemic wave in Malaysia (from 8 October). Our phylogenetic results showed that all samples detected in Oct 2020 (Sabah and Selangor strains) clustered together within lineage B.1.524(G). Although these third epidemic wave strains clustered closely with strains detected in early April (hCoV-19/Malaysia/4Apr20–3-Hu/2020 and hCoV-19/Malaysia/5Apr20–64-Hu/2020), the genetic analysis showed that the Oct 2020 strains were not a direct descendant of April's B.1(G) group. This is because the genetic trait (T25429) was not observed in the genome of the October 2020's strains. Sequence analysis showed a common ancestor
of B.1.524 lineage (T241-T3037-T14408-G23403), with the acquisition of nine mutations (C6312T, C8637T,
A10124G, C17518T, C21516T, C21622A, C23664T, A28133T, and C28854T) that could have seeded transmission
centers of the two closely related groups in Sabah and Selangor (Tables 2 and 3). The newly emerged B.1.524(G)
strains were likely the descendants of the same MRCA strain, with the MRCA and could have dated back to
11 August 2020 (95% HPD: 4 July–15 September 2020). All nine of these potent wave genetic variations reported
herein were reported in the open reading frame (ORF) region of the genome. Among the nine variations, six
(C6312T, C8637T, A10124G, C17518T, C23664T, and C28854T) caused amino acid substitutions (npS-T1198I,
npS-T28I, npS-T24A, npS-L428F, S-A701V, and N-S194L). The 288,854 within nucleocapsid gene was a more
common mutation site, with a frequency of nearly 0.05, compared to the other eight sites (<0.01; Table 2).

To understand the relationships between the Sabah and Selangor subgroups, we retrieved all the genetic
variations detected in Sabah and Selangor strains (Table 3). The G970T variation that caused an amino acid
substitution at E55D in npS2 (npS2-E55D) was a unique genetic variation present in all Sabah strains except
for hCoV-19/Malaysia/7Oct20-83-Hu/2020. This suggested that the 7Oct20-83-Hu/2020 (G970-bearing strain)
could have represented the ancestral group before the acquisition of the T970 mutation. The resulting amino
acid substitution, npS2-E55D was a rare mutation currently only detected in one strain globally (https://bigd.
big.ac.cn/ncov/variation/annotation/variant/970). On the other hand, all Selangor strains detected in Oct 2020
except for 14OCT20-219-Hu/2020 possessed five additional genetic variations (Table 3). Based on our epidemi-
ological data, all the Selangor strains detected in Oct except MY.14OCT20-219-Hu/2020 were likely linked. The
MY.14OCT20-219-Hu/2020 lacked G114T, C1941T, and A29426G but possessed different mutations (C4423T
and C16376T; Table 3), likely pointing to the presence of another transmission chain. Out of the five genetic
variations, one was identified in the 5′UTR regions (G114T), three located within ORF1ab (C5869T, C11941T,
and C21365T), and one in the N gene (A29426G). The C21365T caused an amino acid substitution of Proline
for Leucine at position 236 in nsp16 of the ORF1ab (nsp16-P236L), while A29426G caused the substitution of
arginine for glycine at position 385 in N (N-R385G). All five mutations occurred at the sites with low variation
frequency (<0.001). The G114T mutation at SUTR detected in Selangor strains, was a novel mutation reported
for the first time in our study.

Discussion

Overall, our findings suggest that there was no sustained transmission of a single SARS-CoV-2 lineage in Malay-
sia. The initial introductions of SARS-CoV-2 during the first epidemic wave and early of the second wave could
have been represented as Stage 1 COVID-19 transmission42, where only imported cases, with no localized com-
munity transmission, were recorded43. Hence, the slower evolutionary rate of SARS-CoV-2 showed
community transmission, were recorded18. It was evidenced by the absence of similar virus strain or descendant line-
ages detected during analysis. The findings ascribed the targeted border control measures, rapid contact tracing,
and isolation during the early phase of the COVID-19 epidemic was effective in containing the SARS-CoV-2
spread during the period between late Jan to Feb 2020. Substantial local transmission of COVID-19 in Malaysia,
and documented immiants into Sabah, Malaysia. Epidemiological investigation suggests that many reported
clusters in Peninsular Malaysia, including in Selangor, originated from Sabah as a result of the massive domestic
travel prior to the implementation of the travel restrictions. So far, the B.1.524(G) strains have been detected
in Singapore and Australia. We do not know if these strains were imported from Malaysia or a similar source
where the Malaysia strains originate.
Conclusion
The phylogenetic and genetic variation study of the SARS-CoV-2 detected in Malaysia showed the emergence of B.1.524(G) group in Oct 2020. This B.1.524(G) served as one of the prevailing circulating lineages for the ongoing localized transmission during the third COVID-19 epidemic. This B.1.524(G) is a new group that did not resemble any of the S-G614 strains previously introduced into Malaysia. Unique genetic variations observed in this new B.1.524(G) suggests it originated from a group of actively circulating sub-lineages that probably remained unsampled. Sequencing of more isolates from different clusters would reveal if this B.1.524(G) is the major contributor to the third wave COVID-19 epidemic. It will also allow for a better understanding of the evolutionary pattern of SARS-CoV-2 in Malaysia. The findings presented were also highlight the potential use of sequencing data as a complementary tool to establish an epidemiological link between cases or clusters.

References
1. World Health Organization. (2020).
2. World Health Organization. COVID-19 Weekly Epidemiology Update, Edition 56, published 7 September 2021, https://www. who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---7-september-2021> (2021).
3. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. https://doi.org/10.1038/s41586-020-2008-3 (2020).
4. Rito, T., Richards, M. B., Pala, M., Correia-Neves, M. & Soares, P. A. Phylogeography of 27,000 SARS-CoV-2 genomes: Europe as the major source of the COVID-19 pandemic. Microorganisms https://doi.org/10.3390/microorganisms8111678 (2020).
5. Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395, 565–574. https://doi.org/10.1016/S0140-6736(20)30351-8 (2020).
6. Zhang, T., Wu, Q. & Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1578. https://doi.org/10.1016/j.cub.2020.03.063 (2020).
7. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data–from vision to reality.
8. Zhang, T., Wu, Q. & Zhang, Z. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014–1018. https://doi.org/10.1126/science.abo831 (2020).
9. Gomez-Carballa, A., Bello, X., Pardo-Seco, J., Martinon-Torres, F. & Salas, A. Mapping genome variation of SARS-CoV-2 worldwide highlights the impact of COVID-19 super-spreaders. Genome Res. 30, 1434–1448. https://doi.org/10.1101/gr.266221.120 (2020).
10. Gomez-Carballa, A., Bello, X., Pardo-Seco, J., Martinon-Torres, F. & Salas, A. The emergence of SARS-CoV-2 in Europe and North America. Science 370, 564–570. https://doi.org/10.1126/ science.abc8169 (2020).
11. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. https://doi.org/10.1038/s41586-020-1227-7 (2020).
12. Tang, X. et al. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. (2020).
13. Wu, F., Rito, T., Richards, M. B., Pala, M., Correia-Neves, M. & Soares, P. A. Phylogeography of 27,000 SARS-CoV-2 genomes: Europe as the major source of the COVID-19 pandemic. Microorganisms https://doi.org/10.3390/microorganisms8111678 (2020).
14. Korber, B. et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell https://doi.org/10.1016/j.cell.2020.06.043 (2020).
15. Vanaerschot, M. & et al. Identification of a polymorphism in the N gene of SARS-CoV-2 that adversely impacts detection by a widely-used RT-PCR assay. bioRxiv (2020).
16. Baum, A. et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014–1018. https://doi.org/10.1126/science.abo831 (2020).
17. New Strait Times. [Breaking] 3 coronavirus cases confirmed in Johor baru on 25 Jan 2020, https://www.nst.com.my/news/nation/2020/01/559563/breaking-3-coronavirus-cases-confirmed-johor-baru> (2020).
18. Ministry of Health Malaysia. Kenyataan Akhbar KPK 25 Februari 2020 – Situasi Terkini Jangkitan Coronavirus Disease 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2020/02/25/kenyataan-akhbar-kpk-25-februari-2020-situasi-terkini-jangitan-coronavirus-disease-2019-covid-19-di-malaysia> (2020).
19. Ministry of Health Malaysia. Kenyataan Akhbar KPK 29 Februari 2020 – Situasi Semasa Jangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2020/02/29/kenyataan-akhbar-kpk-29-februari-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia> (2020).
20. Ministry of Health Malaysia. Kenyataan Akhbar YBMK 17 Mac 2020 – Situasi Semasa Jangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2020/03/17/kenyataan-akhbar-ybmk-17-mac-2020-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia> (2020).
21. Ministry of Health Malaysia. Kenyataan Akhbar KPK 9 Jun 2020 – Situasi Semasa Jangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2020/06/09/kenyataan-akhbar-kpk-9-jun-2020-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia> (2020).
22. Ministry of Health Malaysia. Kenyataan Akhbar KPK 8 Julai 2020 – Situasi Semasa Jangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2020/07/08/kenyataan-akhbar-kpk-8-julai-2020-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia> (2020).
23. Ministry of Health Malaysia. Kenyataan Akhbar KPK 28 September 2020 – Situasi Semasa Jangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2020/09/28/kenyataan-akhbar-kpk-28-september-2020-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia> (2020).
24. Ministry of Health Malaysia. Kenyataan Akhbar KPK 28 September 2020 – Situasi Semasa Jangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2020/09/28/kenyataan-akhbar-kpk-28-september-2020-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia> (2020).
25. Ministry of Health Malaysia. Kenyataan Akhbar KPK 12 September 2021 – Situasi Semasa Jangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2021/09/12/kenyataan-akhbar-kpk-12-september-2021-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia> (2021).
26. The Star. Vaccination to begin Feb 24, <https://www.thestar.com.my/news/nation/2021/02/22/vaccination-to-begin-feb-24> (22 February 2021).
27. Ministry of Health Malaysia. Kenyataan Akhbar KPK 12 September 2021 – Situasi Semasa Jangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatan.com/2021/09/12/kenyataan-akhbar-kpk-12-september-2021-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia> (2021).
28. Ser, H.-L. et al. Genomic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains isolated in Malaysia. Progr. Microbiol. Mol. Biol. 3, 2 (2020).

Received: 8 March 2021; Accepted: 18 October 2021
Published online: 11 November 2021
29. Tan, K. K. et al. Multiplex Sequencing of SARS-CoV-2 genome directly from clinical samples using the Ion Personal Genome Machine (PGM). *Trop. Biomed.* **38**, 283–288. https://doi.org/10.47665/th.38.3.069 (2021).
30. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
31. Members, N. G. D. C. et al. Database resources of the national genomics data center in 2020. *Nucleic Acids Res.* **48**, D24–D33. https://doi.org/10.1093/nar/gkj913 (2019).
32. Singer, J., Gifford, R., Cotten, M. & Robertson, D. CoV-GLUE: a web application for tracking SARS-CoV-2 genomic variation. (2020).
33. Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. *Nat. Microbiol.* **5**, 1403–1407. https://doi.org/10.1038/s41564-020-0770-3 (2020).
34. Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. *PLoS Comput. Biol.* **10**, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
35. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. *Nat. Methods* **9**, 772. https://doi.org/10.1038/nmeth.2109 (2012).
36. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. *Syst. Biol.* **67**, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).
37. Helfrich, P., Rieb, E., Abrami, G., Lücking, A. & Mehler, A. in *Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)* (2012).
38. Rambaut, A. (2012).
39. Ministry of Health Malaysia. K nasquet Anikbor KPK 4 Mac 2020 – SituasiSemasaJangkitan Penyakit Coronavirus 2019 (COVID-19) di Malaysia, <https://kpkesihatam.com/2020/03/04/kennasyata-anikbar-kpk-4-mac-2020-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia/> (2020).
40. Bernama. Health DG: Malaysia entering 3rd wave of Covid-19 pandemic, <https://www.nst.com.my/news/nation/2020/10/630761/health-dg-malaysia-entering-3rd-wave-covid-19-pandemic> (2020).
41. Chong, Y. M. et al. Complete genome sequences of SARS-CoV-2 strains detected in Malaysia. *Microbiol. Resource Announc.* **9**, 2 (2020).
42. World Health Organization. Holistic response strategies for COVID-19 on 24 Apr 2020. (2020).
43. New Strait Times. Ministry of Health DG: Malaysia entering 3rd wave of Covid-19 pandemic, <https://www.nst.com.my/news/nation/2020/10/630761/health-dg-malaysia-entering-3rd-wave-covid-19-pandemic> (2020).
44. van Dorp, L. et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. *Infection, Genetics and Evolution*, 104351 (2020).
45. Organization, W. H. Coronavirus disease 2019 (COVID-19) situation report: Weekly report for the week ending 20 September 2020, Malaysia. (2020).

Acknowledgements

We are part of the COVID-19 research and testing team at Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya (UM). We are grateful to all the staff from TIDREC involved in the COVID-19 testing, members, and staff from the Malaysia Ministry of Science, Technology, and Innovation (MOSTI)-Ministry of Higher Education (MOHE) COVID-19 testing initiative and Malaysia Ministry of Health who involved the sample collection and logistics. We gratefully acknowledge all the authors, Submitting and Originating laboratories from Global Initial on Sharing All Influenza Data (http://www.gisaid.org/) for making the sequences available for use in our study (Supplementary Table 3).

Author contributions

K.K.T., J.Y.T., J.E.W., B.T.T., V.T., J.A.J., S.S.N., K.C.S., J.J., C.N.Y., M.M.S., A.A.C., N.H.M., N.S.A. performed the experiments; K.K.T. analyzed the data; J.Y.T., J.E.W. assisted in manuscript writing, S.A.B. and K.K.T. conceived and designed the study, interpreted the data, and wrote the paper. All authors have read and approved the final manuscript.

Funding

This study was supported in parts by the Ministry of Higher Education, Malaysia (www.mohe.gov.my), the funding under Fundamental Research Grant Scheme: FRGS-MRSA/1/2018/SKK08/UM/01/1 (MO012-2017) and the funding for niche area research under the Higher Institution Centre of Excellence (HICoE) program (MO002-2019), Ministry of Science, Technology and Innovation, Malaysia (www.mosti.gov.my), the special funding for COVID-19 testing (UM.0000877/KW.J.AK), and University of Malaya (www.um.edu.my; University Malaya RU grant: RU005-2020). The funders had no role in study design, data collection and analysis, decision to publish, or manuscript preparation.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-01223-4.

Correspondence and requests for materials should be addressed to S.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
