Circuit-Free General-Purpose Multi-Party Computation via Co-Utilile Unlinkable Outsourcing

Josep Domingo-Ferrer, Fellow, IEEE, and Jesús Manjón

Abstract—Multiparty computation (MPC) consists in several parties engaging in joint computation in such a way that each party’s input and output remain private to that party. Whereas MPC protocols for specific computations have existed since the 1980s, only recently general-purpose compilers have been developed to allow MPC on arbitrary functions. Yet, using today’s MPC compilers requires substantial programming effort and skill on the user’s side, among other things because nearly all compilers translate the code of the computation into a Boolean or arithmetic circuit. In particular, the circuit representation requires unrolling loops and recursive calls, which forces programmers to (often manually) define loop bounds and hardly use recursion. We present an approach allowing MPC on an arbitrary computation expressed as ordinary code with all functionalities that does not need to be translated into a circuit. Our notion of input and output privacy is predicated on unlinkability. Our method leverages co-utilile computation outsourcing using anonymous channels via decentralized reputation, makes a minimalistic use of cryptography and does not require participants to be honest-but-curious: it works as long as participants are rational (self-interested), which may include rationally malicious peers (who become attackers if this is advantageous to them). We present example applications, including e-voting. Our empirical work shows that reputation captures well the behavior of peers and ensures that parties with high reputation obtain correct results.

Index Terms—Multi-party computation, Co-utility, Privacy, Security, Peer-to-peer

1 INTRODUCTION

MULTIPARTY computation (MPC) consists in several parties engaging in joint computation in such a way that each party’s input and output remain private to that party. As phrased in [9], MPC can be viewed as a cryptographic method for providing the functionality of a trusted party—which role would be to accept private inputs from a set of participants, compute a function and return the outputs to the corresponding participants—without the need for mutual trust among participants.

MPC can be used to solve a variety of problems that require using the data of participants without compromising their privacy. Example applications include secure statistical analysis, financial oversight, electronic voting, secure machine learning, auctions, biomedical computations (in particular those involving highly sensitive data, such as genetic information), etc. See [5], [13], [9] for more details and related references on MPC applications.

The most central security properties required in MPC are as follows:

- **Privacy.** No party should learn anything more than its prescribed output. In particular, nothing should be learnt about the other parties’ inputs except what can be derived from the output itself.
- **Correctness.** Each party should receive its prescribed output and this output should be correct.

There are different security models to characterize the assumptions on the adversarial behavior of parties in MPC. In the honest-but-curious model (also called semi-honest), parties are assumed to correctly follow the protocol specification, but they may try to learn other parties’ inputs or outputs. In the malicious model, parties can arbitrarily deviate from the protocol specification. As pointed out in [5], the honest-but-curious model is very weak and it underestimates the power of realistic adversaries in most scenarios. The malicious model, in contrast, is very strong but only a small subset of MPC protocols in the literature can cope with it [6]. In this paper, we focus on a third security model, namely the rational model, in which parties are self-interested: they only deviate from the protocol specification if doing so is more advantageous to them than following the protocol. Thus, this model includes rationally malicious parties, who may become attackers if this is advantageous to them. Hence, the rational model is stronger than honest-but-curious but weaker than malicious (which allows irrationally malicious behavior).

Since the 1980s, when the seminal MPC protocols [16], [7], [11], [2] were proposed, and until very few years ago, practical MPC protocols existed only for specific computations. The appearance of general-purpose compilers enabling MPC for arbitrary functions is a recent breakthrough; see [9] for a state of knowledge on such compilers. Most MPC compilers translate ordinary high-level programming code expressing the computation to be performed into a Boolean or an arithmetic circuit. Once at the circuit level, they use several cryptographic primitives, such as secret sharing, oblivious transfer, garbled circuits and others to generate the MPC protocol for the target computation.
(see [3] for descriptions of such primitives).

As noted in [9], using state-of-the-art compilers requires substantial programming effort and skill on the user’s side, due inter alia to the inherent constraints of the circuit representation. In particular, loops and recursive calls in the original computation code must be unrolled, which forces programmers to (often manually) define loop bounds and hardly use recursion.

In this paper we propose an MPC protocol that has the following distinguishing properties:

- It is general-purpose without making use of circuits; it can work for any computation expressed as ordinary high-level programming code, no matter the depth of its loops, its use of recursion or its complexity.
- It does not rely on the cryptographic primitives usual in MPC; it uses cryptography only to guarantee confidential and authenticated communications.
- It assumes a peer-to-peer (P2P) community is available, where each peer accumulates a reputation in a decentralized and co-utile manner.
- It relies on the notion of co-utile anonymous channel to guarantee that inputs and outputs, although visible to some peers, cannot be linked to their corresponding parties.
- It delivers correct outputs as long as parties are rational.

We illustrate our approach in two example applications, one of them being electronic voting. Our empirical work shows that reputation captures well the behavior of peers and ensures that parties with high reputation obtain correct results.

Section 2 gives some background on co-utility and co-utile decentralized reputation. Section 3 introduces a co-utile protocol suite for MPC. Section 4 discusses how the proposed protocol suite achieves co-utility (and thus is rationally sustainable). Section 5 shows how our protocols satisfy privacy for the inputs and the outputs, and how they make correct computation the best option for rational peers. Section 6 sketches illustrating applications. Section 7 presents experimental results. Finally, Section 8 deals with conclusions and future research.

2 CO-UTILITY AND CO-UTILE DECENTRALIZED REPUTATION

A self-enforcing protocol is co-utile [4] if it results in mutually beneficial collaboration between the participating agents. More specifically, a protocol II is co-utile if and only if the following conditions hold: (i) II is self-enforcing; (ii) the utility derived by each agent participating in II is strictly greater than the utility the agent would derive from not participating; and (iii) there is no alternative protocol II’ giving greater utilities to all agents and strictly greater utility to at least one agent.

The first condition ensures that if participants engage in the protocol, they will not deviate. The second condition is needed to ensure that engaging in the protocol is attractive for everyone. The third condition can be rephrased in game-theoretic terms by saying that the protocol is a Pareto-optimal solution of the underlying game.

In [3], we gave a co-utile adaptation of the EigenTrust decentralized reputation protocol [11]. In addition to co-utility, this protocol has the following attractive properties: decentralization, pseudonymity of peers, low overhead, proper management of new peers (to discourage whitewashing bad reputations as new identities) and resistance to reputation tampering (such as self-promotion or slandering).

The protocol consists in calculating a global reputation for each peer P based on aggregating the local opinions of the peers that have interacted with P. If we represent the local opinions by a matrix \(\ell_{ij} \) where \(\ell_{ij} \) contains the opinion of peer \(P_i \) on peer \(P_j \), the distributed calculation mechanism computes global reputation values that approximate the left principal eigenvector of this matrix. We will use a co-utile decentralized reputation system which can be viewed as a simplified adaptation of that of [3].

3 A CO-UTILE FRAMEWORK FOR MULTI-PARTY COMPUTATION

3.1 Players and security model

The players in our framework are peers in a P2P network as follows:

- **Clients** are the parties that agree on a joint computation to be conducted, and then provide private inputs to it and obtain private outputs from it. The number of clients must be at least 4: with only 2 clients, if a client sees an input or an output that is not hers, she knows it corresponds to the other client; with only 3 clients, unequivocal inferences are still possible, as justified in our privacy analysis of Section 5.1.
- **Workers** perform computations for clients.
- **Forwardees** receive messages from clients and forward them to other forwardees or submit them to workers.
- **Accountability managers** are peers that manage the reputations of other peers in the network. Clients, workers and forwardees all have accountability managers. Each peer \(P \) is assigned \(M \) accountability managers that are (pseudo)randomly determined by hashing the peer’s pseudonym \(P \). In this way, \(P \) cannot choose her accountability managers, which makes the latter more likely to perform their duty impartially and therefore honestly.

In our framework, the inputs provided by clients and the outputs they obtain cannot be unequivocally linked to them, even though such inputs and outputs may be seen by some other peers. Our privacy guarantee is predicated on unlinkability rather than on confidentiality. If inputs or outputs are such that it is not acceptable to disclose them even unlinkably or such that their very values or formats make them linkable to certain clients, then our framework cannot be used.

Clients are publicly known to each other (they are neither anonymous nor pseudonymous), because in general a peer wants to know with whom she is engaging in joint computation. Forwardees, workers and accountability managers are pseudonymous. A client also uses a pseudonym to interact with forwardees, workers and accountability managers; clients do not know each others’ pseudonyms. A peer’s pseudonym \(P_i \) and her public identity \(ID_i \) are related
as $P_i = H(ID_i, nonce_i)$, where $H(\cdot)$ is a one-way hash function and $nonce_i$ is a random number only known to peer ID_i; in this way, the pseudonym P_i does not leak the underlying real identity ID_i, but the link between both can be proven if necessary by revealing $nonce_i$. During a protocol execution, any peer can play any of the above four roles (client, worker, forwardee, accountability manager).

We assume that peers are rational: given appropriate incentives they will honestly fulfill their roles in the protocol, but they may be curious to learn the inputs or outputs of specific clients. We will design protocols so that these rational peers find no incentive to deviate. However, there may be a minority of malicious peers that are irrational, that is, who are ready to deviate from the protocols even if doing so places them in a worse position.

Although we will show how to incentivize rational peers to adhere to our protocols, we cannot guarantee that clients will provide truthful inputs for any arbitrary multi-party computation; this can only be guaranteed if clients are assumed honest or honest-but-curious. For rational clients, input truthfulness depends on the specific MPC to be carried out. In some MPCs, a rational client may find incentives to provide a false input, e.g. if she knows her false input cannot be detected by the others but allows her to be the only client that learns the correct output. However, in other MPCs the rational behavior is to provide correct inputs. Take for example the millionaires’ problem [16]: if millionaire A inputs an amount higher than her actual fortune and the output is that A is richer than the other millionaire B, then A does not learn whether she is really richer or poorer than B; similarly, if A inputs an amount lower than her actual fortune and the output is that A is poorer than B, then A does not learn whether she is really poorer or richer than B.

The main aim of a rational client is to obtain a correct output of the joint computation and to keep her inputs and outputs confidential from the other clients and the other pseudonymous peers. As we will show in the next sections, a client needs to have a high reputation to fulfill the previous aim. The incentive for a rational worker or a rational forwardee to cooperate is to increase her reputation in order to be able to become a successful client. Finally, the incentive for a rational accountability manager is to preserve fairness in the community. More details on the rational behavior of all peers are given in the next sections.

In some applications reputation alone may be deemed an insufficient incentive, for example because working to build up a high reputation entails substantial financial costs in equipment, bandwidth, electricity, etc. To mitigate this shortcoming, reputation can be periodically converted into payments. In fact, rational incentives to correct computation in the form of payments are proposed in [12], where they are implemented by a central “boss”, and in [8], [14], where they are embodied in smart contracts in blockchains. However, unlike in our approach based on reputation only, incentives in these proposals require external payment infrastructures that may not (always) be available or that may themselves be centralized or not rationally sustainable.

3.2 Requirements

At the end of the previous section we have mentioned reputation as the “currency” that incentivizes peers. In order for reputation to be effective, the following requirements need to be fulfilled:

- **Reward.** If a worker correctly performs a certain computation for a client, the worker’s reputation must increase.
- **Punishment.** If a worker incorrectly performs a certain computation for a client, the worker’s reputation must decrease. Similarly, a client that does not follow the protocols as prescribed must be punished with a reputation decrease.
- **Probabilistic reward.** A peer acting as a forwardee for inputs or outputs should be motivated by a nonzero probability of obtaining a reputation increase.
- **Reputation utility.** Having high reputation must be attractive for peers. Specifically, the higher the reputation of a client, the easier it is for the client to retrieve her outputs while preserving her privacy. For a pseudonymous peer, a high reputation is the way to become a successful client.
- **Plausible deniability.** The input contributed by a client should not be unequivocally linkable either to her public identity or to her pseudonym. Similarly, the output obtained by a client should not be unequivocally linkable either to her public identity or to her pseudonym. Hence, a client should be able to plausibly deny that a certain input or output are hers. Our input/output privacy guarantee is thus stronger than mere pseudonymity.

3.3 General-purpose MPC in the honest-but-curious model

For the sake of clarity, we first present a basic version of our protocol suite assuming that all peers are honest-but-curious. In Protocol 1, each client P secretly selects a worker P_w (who does not know who P is). Every worker receives the inputs of all clients in an unlinkable way via the co-utile anonymous channel FWD-CH (Protocol 2). Each client P also sends to her P_w in an unlinkable way via FWD-CH the computation to be performed and an encryption key to be used by P_w to return the results to P via the reverse anonymous channel REV-CH (Protocol 3). The idea of using an anonymous channel for MPC was first proposed in [10]; the novelty here is that we present an anonymous channel that does not depend on any central authority and is rationally sustainable.

3.4 General-purpose MPC in the rational model

In the rational model peers may deviate from their prescribed behavior if they are not properly incentivized. We will add two mechanisms to cope with this problem: (i) redundancy to detect wrong computation or wrong forwarding; (ii) decentralized reputation to reward correct computation and correct forwarding, and punish wrong behavior. The reputations of all peers are public.

In the protocols in this section, we assume the public-key cryptosystem used to encrypt to peers is probabilistic, that is, it uses randomness so that an observer cannot determine whether two ciphertexts correspond to the same cleartext.
Protocol 1: Honest-but-curious General-purpose MPC

1. Clients ID_1, ..., ID_m among the n peers (where m, n are public and 4 ≤ m ≤ n) know each other and agree to jointly perform the computation (O_1, O_2, ..., O_m) = C(I_1, I_2, ..., I_m), where input I_i and output O_i must stay private to ID_i;
2. for i = 1 to m in parallel do
 1. Client ID_i uses her pseudonym P_i;
 2. P_i prunes the code C_i into the part C_i that computes O_i, i.e., O_i = C_i(I_1, I_2, ..., I_m);
 /* In case C_i requires knowledge of which of the inputs is P_i’s, I_i is also embedded in C_i */
 3. P_i randomly and secretly selects a peer P_w_i among the n peers as a worker;
 4. for l = 1 to n do
 1. P_i calls FWD-CH(P_i, I_i||nonce_i, nil, P_l);
 /* P_i sends her private input I_i to all peers P_l via the FWD-CH() anonymous channel, so that in particular P_w_i gets it.
 I_i is appended a random nonce to make it unique. */
 2. P_i calls O_i = FWD-CH(P_i, PK_w_i(K_i), C_i, P_w_i);
 /* P_i sends to P_w_i a key K_i encrypted under P_w_i’s public key and the computation C_i (a peer’s public key may be her pseudonym). Then P_w_i will return O_i symmetrically encrypted under K_i via the reverse channel. */

Also, we assume all messages encrypted under this public-key cryptosystem can be made of the same length, if necessary by padding the cleartext, so that ciphertext length cannot be used by an observer to guess information on the cleartext. Additionally, we assume peers can digitally sign messages.

Protocol 2 is the version of Protocol 1 augmented with redundancy (r different workers are used by each client) and decentralized reputation. In Protocol 2, we use co-utility versions C-FWD-CH (Protocol 6) and C-REV-CH (Protocol 7) of the previous FWD-CH and REV-CH auxiliary protocols. For the rest and unless otherwise stated, the notations are the same as in Protocol 1.

Note 1 (On parameter κ_i). Parameter κ_i is secret to each client P_i. If κ_i >> r, then workers are selected from a large set, which makes it more difficult for P_i’s workers to guess that their client is P_i. On the other hand, too large a κ_i is also risky for P_i, because it can result in choosing workers with reputation much higher than P_i’s (who are likely to refuse working for P_i) or workers with much lower reputation (who may be unreliable).

Note 2 (On sharing workers). A way to reduce the computation and communication of Protocol 2 while still providing redundancy would be for clients to share their workers, rather than each client choosing her own.
Protocol 3: REV-CH\(P_s, E_K(\text{out}), \text{comp}, P_{\text{prev}}\)

/* REV-CH backtracks the hopping path of FWD-CH up to the client */
1 \(P_s\) sends \((E_K(\text{out}), \text{comp})\) to \(P_{\text{prev}}\);
2 if \(P_{\text{prev}}\) knows the key \(K\) then /* \(P_{\text{prev}}\) is the client */
 \(P_{\text{prev}}\) decrypts out; /* out is \(P_{\text{prev}}\)'s private output \(O_{\text{prev}}\) */
4 else
 Let \(P_{\text{prev2}}\) be the peer from whom \(P_{\text{prev}}\) received the FWD-CH message with \(\text{comp}\);
6 \(P_{\text{prev}}\) calls REV-CH\((P_{\text{prev}}, E_K(\text{out}), \text{comp}, P_{\text{prev2}})\). /* \(P_{\text{prev}}\) backtracks to \(P_{\text{prev2}}\) */

Protocol 4: RATIONAL GENERAL-PURPOSE MPC

1 Clients \(ID_1, \ldots, ID_m\) among the \(n\) peers (where \(m, n\) are public and \(4 \leq m \leq n\)) know each other and agree to jointly perform the computation \((O_1, O_2, \ldots, O_m) = C(I_1, I_2, \ldots, I_m)\), where input \(I_i\) and output \(O_i\) must stay private to \(ID_i\);
2 for \(i = 1\) to \(m\) in parallel
3 Client \(ID_i\) uses her pseudonym \(P_i\);
4 \(P_i\) prunes the code \(C\) into the part \(C_i\) that computes \(O_i\), i.e., \(O_i = C_i(I_1, I_2, \ldots, I_m)\);
5 \(P_i\) secretly selects as workers \(r\) peers \(P_{i_1}, \ldots, P_{i_r}\) randomly chosen among the \(\kappa_i > r\) peers with closest reputation to \(g_i\);
6 for \(l = 1\) to \(n\)
7 \(P_i\) calls C-FWD-CH\((P_i, PK_i(\text{Nil})\text{nconc}_i), PK_i(\text{nil}), P_l)\) /* \(P_i\) sends her input to all peers, including \(P_l\)'s workers. \(PK_i\) is encryption under \(P_i\)'s public key. */;
8 for \(k = 1\) to \(r\)
9 \(P_i\) calls \(O_{i,k} = C-FWD-CH(P_i, PK_i(K_i), PK_i(C_i), P_{i_k});\)
10 forall accountability managers \(AM\) of \(P_i\)
11 if \(P_i\) does not show to \(AM\) a reward receipt from the first forwarder then /* Not rewarding the first forwarder is punished */
12 \(AM\) assigns local reputation \(\ell_{AM, i} = 0\) to \(P_i\);
13 Take as \(O_i\) the most frequent value in \(\{O_{i_1}, \ldots, O_{i_r}\}\);
14 for \(k = 1\) to \(r\)
15 if \(O_{i,k} = O_i\) AND \(O_i \neq \text{nil}\) then
16 \(P_i\) assigns \(\ell_{i,i_i} = 1\); /* Majority result is rewarded */
17
18 else
19 \(P_i\) assigns \(\ell_{i,i} = 0\); /* Minority result is punished */
20 Call Protocol 4 to update the public global reputation \(g_i\) of each peer \(P_i\).

Protocol 5: CO-UTILE P2P GLOBAL REPUTATION COMPUTATION

1 for \(i = 1\) to \(n\) do /* EigenTrust-like global reputation */
2 \(P_i\) submits local reputation values \(\{\ell_{ij} : j = 1, \ldots, n\}\) to all \(M\) accountability managers of \(P_i\);
3 forall pupils \(P_d\) of \(P_i\) do
4 \(P_i\) collects local reputation values \(\{\ell_{dj} : j = 1, \ldots, n\}\);
5 \(P_i\) normalizes \(\ell_{dij} = \ell_{dj} / \sum_j \ell_{dj}, j = 1, \ldots, n\);
6 forall pupils \(P_d\) of \(P_i\) do
7 for \(j = 1\) to \(n\) do
8 \(P_i\) queries all the accountability managers of \(P_d\) for \(c_{jd}\);
9 \(k := -1\);
10 repeat
11 \(k := k + 1\);
12 \(P_i\) computes \(g_d^{(k)} = c_{1d}g_1^{(k)} + c_{2d}g_2^{(k)} + \ldots + c_{nd}g_n^{(k)}\);
13 for \(j = 1\) to \(n\) do
14 \(P_i\) sends \(c_{jd}g_d^{(k+1)}\) to all \(M\) accountability managers of \(P_d\);
15 \(P_i\) waits for all accountability managers of \(P_d\) to return \(c_{jd}g_d^{(k+1)}\);
16 until \(|g_d^{(k+1)} - g_d^{(k)}| < \epsilon\); /* Parameter \(\epsilon > 0\) is a small value;

Note 3 (On the flexibility parameter \(\delta\)). In Protocol 4 (C-FWD-CH) a peer \(P_i\) does not discard a message from a peer \(P_j\) as long as \(P_j\)'s reputation \(g_j\) is at least \(g_j - \delta\), where \(\delta\) is a small reputation amount. The value \(\delta\) introduces some flexibility in the interaction and helps new peers (that start with 0 reputation) to earn reputation as first forwarders. A large \(\delta\) is not acceptable from the rational point of view: high-reputation peers have little to gain by accepting messages or computations from peers much below them in reputation (if those low-reputation peers are the clients, they may not reward them).

Note 4 (On function SELECT). In Protocol 4 (C-FWD-CH) function \(P_t = \text{SELECT}(g_s, g_d)\) is used by a peer \(P_s\) to
select a peer P_t as a forwardee towards the worker P_d. There are several ways in which this can be done. However, the rational choice is for P_t to select a forwardee P_d with a sufficient reputation so that P_d does not refuse to compute should P_t directly submit to the worker. Hence, if P_t’s reputation is $g_s \geq g_d - \delta$, P_s can randomly pick any of the peers whose reputation lies in $[g_d - \delta, g_s + \delta]$; any forwardee P_d with reputation at least $g_d - \delta$ does not risk refusal from the worker P_d, but peers P_t with reputation above $g_s + \delta$ will discard P_s’s messages. On the other hand, if $g_s < g_d - \delta$, P_s chooses the peer with the maximum reputation that does not exceed $g_s + \delta$, because any peer with reputation above that value will discard P_s’s message.

\begin{protocol}
\caption{C-FWD-CH(P_s, msg, $Ecomp$, P_d)}
\begin{algorithmic}
\State Parameter $p \in [0, 1]$;
\If{$P_s = P_d$}
\State P_d decrypts $comp = SK_d(Ecomp)$;
\If{$comp = \text{nil}$} /* In this case, msg contains an input */
\State P_d decrypts $I||nonce = SK_d(msg)$;
\Else
\If{P_d has not previously received $nonce$} P_d appends I to $Ilist$;
\Else
\If{$comp = \text{"refuse"}$} /* The worker has refused to compute */
\State P_d assigns $out := \text{nil}$; /* The worker returns no output */
\Else
\State P_d waits until $Ilist$ contains m different inputs;
\State P_d computes $out := \text{comp}(Ilist)$; /* The worker computes */
\EndIf
\State P_d cleans $Ilist$;
\State P_d recovers $K = SK_d(msg)$;
\State P_d calls C-REV-CH(P_d, $E_K(\text{out})$, $Ecomp$, P_{prev});
\EndIf
\State \textbf{if} P_s is the originator of msg \textbf{then} $p_{\text{forward}} = 1$
\State \textbf{else} $p_{\text{forward}} = p$;
\State P_s computes $\text{decision} = \text{Bernoulli}(p_{\text{forward}})$;
\If{$\text{decision} = 1$} /* P_s decides to hop */
\State P_s sends (msg, $Ecomp$) to P_t; /* See Note 4 about function SELECT */;
\If{P_s’s reputation is at least $g_s - \delta$} /* See Note 5 about δ */
\State P_t calls C-FWD-CH(P_t, msg, $Ecomp$, P_d);
\Else
\State P_t discards (msg, $Ecomp$);
\EndIf
\Else
\State P_s directly sends (msg, $Ecomp$) to P_d; /* P_s decides to submit to the worker */;
\State P_d decrypts $comp = SK_d(Ecomp)$;
\If{$comp \neq \text{nil}$ and P_s’s reputation is less than $g_d - \delta$}
\State P_d sets $Ecomp := PK_d(\text{"refuse"})$; /* P_d refuses to compute */
\State P_d calls C-FWD-CH(P_d, msg, $Ecomp$, P_d);
\EndIf
\EndIf
\EndIf
\EndIf
\EndIf
\end{algorithmic}
\end{protocol}

\begin{protocol}
\caption{C-REV-CH(P_s, $E_K(\text{out})$, $Ecomp$, P_{prev})}
\begin{algorithmic}
\State P_s sends ($E_K(\text{out})$, $Ecomp$) to P_{prev};
\If{P_{prev} knows the key K}
\State P_{prev} decrypts out; /* If P_{prev} knows K, then P_{prev} is the client and P_s the first forwardee */;
\State P_{prev} sends $S_{prev}(\text{"P}_{prev}\text{set has }\ell_{prev,s} = 1\text{"})$ to P_s; /* P_{prev} commits to rewarding the first forwardee */
\State P_s forwards $S_{prev}(\text{"P}_{prev}\text{set has }\ell_{prev,s} = 1\text{"})$ to P_{prev}’s AMs;
\State P_{prev}’s AMs set $\ell_{prev,s} = 1$;
\State P_s returns a signed reward receipt $S_s(\text{"P}_s$ acknowledges $\ell_{prev,s} = 1\text{"})$ to P_{prev};
\Else
\State Let P_{prev2} be the peer from whom P_{prev} received the C-FWD-CH message with $Ecomp$;
\State P_{prev} calls C-REV-CH(P_{prev}, $E_K(\text{out})$, $Ecomp$, P_{prev2}).
\EndIf
\State \textbf{Note 5 (On rewarding the first forwardee only).} In Protocol 7 (C-REV-CH) only the first forwardee is rewarded, rather than all forwardees, and only when the computation to be done is not nil. Note that in Step 5 of Protocol 5 the local reputations awarded by a peer are normalized before updating global reputations (this is done to prevent peers from increasing their influence by giving more opinions on other peers). Hence, if all forwardees were rewarded by the client, the reputation increase of each rewarded forwardee would be smaller. Thus, every forwardee would be better off by sending msg directly to the destination peer rather than forwarding it to another forwardee. As a consequence, there would be only one forwardee, who would know that the previous peer is the client who originated msg. This would break the anonymity of the channel. Rewarding only the first forwardee when the computation to be done is not nil avoids this problem and is a sufficient incentive: the forwardees do not see which is the computation to be performed (it is probabilistically encrypted under the worker’s public key) and any forwardee can hope to be the first for a non-nil computation and thus has a reason to collaborate.
\end{protocol}
4 Co-utility analysis

We argue that the framework formed by Protocols 4, 5, 6 and 7 is co-utile, that is, that these protocols will be adhered to by the rational players. We first give a sketch justification and then we analyze in detail the motivation of each of the above player categories to adhere to the protocols they are required to participate in. The sketch is as follows:

- The clients’ goal is to perform a joint computation and obtain their respective correct outputs, while keeping their own inputs and outputs private. For that reason, the clients can be assumed to correctly perform their tasks in Protocols 4, 6 and 7. If a client fails to behave as prescribed (when acting as a client, as a forwardee or as a worker), her reputation will decrease and it will be more difficult for him/her to obtain correct results (see Section 3.2).

- Forwardees have no role in Protocol 4 but they are essential to the operation of the co-utile anonymous channel in Protocol 5 (C-FWD-CH) and Protocol 7 (C-REV-CH). Their incentive is the hope to be rewarded in Protocol 7 with a reputation increase in case they turn out to be the first forwardee.

- Workers are expected to perform the required computation. Then in C-REV-CH they are expected to start the reverse path upstream to return the output. Their incentive to compute correctly is to be rewarded in Protocol 4 if the output they deliver is the majority output among those returned by redundant workers.

- Accountability managers have important roles in Protocols 4, 5 and 7. In our security model (Section 3), peers are assumed to be rational, even if rational attackers are not excluded. Given that peers interact in successive iterations, the interest of rational accountability managers is to favor correct computations, as they may be clients themselves in subsequent computations. On the other hand, the fact that the M accountability managers of every peer are (pseudo)randomly assigned thwart conflicts of interest and facilitates honest management of the peer’s reputation. Furthermore, if necessary, a countermeasure could be added right after Step 5 of Protocol 5 whereby pursuit with local reputation 0 those AMs that provide local reputations for P_j that do not agree with the majority reputation value.

Next, we elaborate on co-utility for each player category.

4.1 Co-utility for clients

In Protocol 4 4 ID_1, . . . , ID_m can be assumed to honestly agree on the joint computation, because jointly computing is their goal. Then at Step 3 they are also interested in switching to their respective pseudonyms P_1, . . . , P_m. If a client used her real identity ID_i in C-FWD-CH it would be trivial for a forwardee P_i to know whether she is the first forwardee (and hence the only forwardee that will be rewarded); in consequence, if P_i was asked to be a forwardee by a pseudonymous peer, P_i’s rational decision would be to decline. In this way, there would be only one forwardee, which would weaken unlinkability for the clients.

Also in Protocol 4 it is rational for the pseudonymous clients to correctly perform steps up to Step 9. This means pruning C into their respective computations, selecting workers, and sending to the workers via the anonymous channel C-FWD-CH first their private inputs and then the pruned computation and the key for receiving encrypted outputs. Note that private inputs are sent in parallel at Step 7 so P_i cannot wait for the other peers to send their private inputs to P_i’s workers and then free-rider without sending P_i’s input to the other peers’ workers. It is in all the clients’ interest to perform honestly, as they want to obtain correct outputs.

In Protocol 6, it is bad for the client P_i originating the message (called P_s inside the protocol) to directly send it to the worker P_k (called P_d inside the protocol), even if only with probability 1 − p, like in the crowds system 15. In that case, from the worker P_k’s viewpoint, the most likely sender of a message is the originating client P_i; indeed, P_i would send it with probability 1 − p, whereas the l-th forwardee would send it only with probability p'(1−p) < 1 − p. Hence, the originating client P_i is interested in looking for a forwardee, and therefore P_i will honestly follow Steps 17 and 18. Further, the client P_i wants, if possible, a forwardee that will not risk refusal by the worker or, if this is not possible, a forwardee with the maximum possible reputation among those that will not discard P_i’s message (see Note 4 for a justification). Since a client P_i will only obtain her output O_i if she finds her own good forwardees and workers (the forwardees and workers of other clients do not take care of O_i), P_i is motivated to maintain a high reputation g_i. An additional motivation for a client P_i to maintain a high reputation is that it allows P_i to randomly choose her first forwardee among a large set of peers that will not refuse the forwardee, which increases unlinkability of successive messages sent by P_i. This ensures honest adherence to Step 20.

In Protocol 7, it is obvious in the interest of P_i (called P_prev inside the protocol) to decrypt her private output when she receives it (Step 3). Further P_i’s best option is to reward the first forwardee by giving her local reputation 1 (Step 3), in order to obtain a reward receipt from the first forwardee (Step 7). This reward receipt is necessary for P_i to escape being punished with 0 local reputation in Step 12 of Protocol 4.

P_i could certainly decide to favor a false first forwardee P’ of her choice, rather than the real first forwardee P. This would still work well for P_1, because P’ would return a signed receipt for the same reasons that P would do it. However, if P_i wants to favor P’, it entails less risk (of being discovered) for P_i to use P’ as a real first forwardee. Thus, there is no rational incentive for clients to favor false first forwardees.

4.2 Co-utility for forwardees

In Protocol 6 there may be two types of forwardees:

1) P_i is a forwardee if she is not the originator of msg. P_i’s incentive to perform her role properly is the hope of being the first forwardee for a non-nil computation and hence be rewarded with a reputation increase. Note that P_s does not know whether she is the first and
whether the computation is non-nil, because the latter is encrypted and timing does not help, given that the C-FWD-CH calls with nil and non-nil computations are interleaved due to the hopping mechanism among forwardees. According to the protocol, P_t must decide between forwarding ($msg, comp$) to some other peer P_t or directly sending ($msg, comp$) to the destination peer P_d who will perform $comp$. Both actions take about the same effort, so it is rational for P_t to make the decision randomly according to the prescribed probabilities (p for forwarding and $1 - p$ for directly sending to P_d). In case of forwarding, P_t’s rational procedure is like the originator’s: use the SELECT function.

2) P_t is the forwardee selected by P_s in case of forwarding. P_t must decide on message acceptance or discarding. The incentive for P_t to accept to deal with a message is the hope to increase her reputation if P_t happens to be the first forwardee for a non-nil computation (which P_t does not know). However, P_t will not accept to deal with a message coming from P_s if the latter’s reputation is too low: it might be a sign that P_s did not “pay” previous first forwardees in Step 3 of Protocol 7 and was therefore punished with reputation decrease in Step 15 of Protocol 4. Thus, the rational decision is for P_t to accept to deal with P_s’s message only if P_s is not too inferior to P_t in reputation, that is, if $g_s \geq g_t - \delta$. Otherwise, in Step 24 P_t discards P_s’s message.

In Protocol 7, forwardees backtrack along the reverse path from the worker to the originator. There are two forwardee roles:

1) In Step 3 P_s is the first forwardee because P_{prev} was the originator under C-FWD-CH. Hence, at Step 5 P_s is obviously interested in forwarding to P_{prev}’s AMs the reward P_s receives from P_{prev}. On the other hand, at Step 7 P_s’s best option is to return the reward receipt to P_{prev}, because P_{prev} could otherwise blacklist P_s and never make P_s a first forwardee in future joint computations.

2) In Step 10 P_{prev} does not know whether she is the first forwardee or not. In the hope of being the first forwardee, P_{prev}’s best option is to forward ($E_K(out), comp$) to the next upstream peer P_{prev2}. If P_{prev2} turns out to be the originator, then P_{prev} will be rewarded as the first forwardee (see previous item).

4.3 Co-utility for workers

In Protocol 7 at Step 5, P_d is the worker to whom the private inputs are sent by the clients. Decrypting and storing these inputs is necessary for P_d to be able to correctly perform the computation at Step 12. The motivation for P_d to return the correct computation result encrypted under the retrieved key K in Step 15 is to receive a reputation reward in Step 16 of Protocol 4 rather than a reputation punishment in Step 18 of that protocol.

In Protocol 7, the worker P_d (called P_s within the protocol) merely sends ($E_K(out), Ecomp$) to the previous peer in the path followed by C-FWD-CH. The worker’s motivation to do this is to earn a reputation reward in Step 16 of Protocol 4.

Note that, workers being peers, they are also likely to be clients at some point. And for a client having a high reputation is the way to easily find forwardees that help preserve the client’s input and output privacy.

4.4 Co-utility for accountability managers

In Protocol 4, the accountability managers punish those clients that do not reward their first forwardee (Step 12). Since they are pseudorandomly chosen, most AMs are rational and thus interested in favoring correct computation; hence, most AMs will discharge their role as described in the protocol.

Protocol 5 is run by all peers in their capacity of accountability managers. Since most AMs are rationally interested in favoring correct computation, they are also interested in correctly updating and maintaining global reputations. Therefore, most AMs can be assumed to run Protocol 5 correctly. For the same reason, all peers will supply local reputations to their AMs at the start of the protocol.

Finally, in Protocol 7, the role of AMs is to reflect the reputation rewards received by the first forwardees. Again, the rational interest of the AMs to preserve the correct operation of the protocol suite allows expecting them to do their job.

The bottom line that allows trusting AMs as a community is that they are pseudorandomly chosen and redundant (each peer has M AMs), coupled with the assumption that a majority of peers (and hence of AMs) is rational. Yet, it might be argued that assuming a majority of rational peers is not the same as assuming a majority of honest peers. If it is feared that a sizeable proportion of AMs might have rational motivations to deviate, additional countermeasures could be set up to punish bad AM behavior. For example, as hinted earlier in the sketch at the beginning of this section, after Step 8 of Protocol 5 P_s could punish with local reputation 0 those AMs that provide local reputations for P_s that do not agree with the majority reputation value. Yet, to avoid complicating pseudocodes, we have refrained from including such optional countermeasures.

5 Privacy and correctness

Here we examine how the protocols satisfy the requirements of Section 3.2 and thereby preserve the confidentiality of the peers’ private inputs and outputs and incentivize correct computation by the peer workers.

5.1 Privacy

In our protocol suite, the privacy of client inputs and outputs is based on the co-utele anonymous channel implemented by protocols C-FWD-CH (downstream) and C-REV-CH (upstream). This channel breaks the link between clients and their inputs and outputs.

We first show that, in general, no collusion of peers can link with certainty an input to the corresponding client. Then we deal with the unlinkability of outputs and we argue that the only collusion that could link an output to the corresponding client is hardly rational. After showing that collusions are improductive or not rational to link outputs, we prove that...
in the absence of collusion a client can plausibly deny that a
certain input is hers and that a certain output is hers.

Proposition 1. If a client P_i’s input I_i is not embedded in
her computation C_i, no collusion of peers can link with
certainty an input to P_i.

Proof: A successful collusion must include at least a
first forwardee (who knows the client’s pseudonym) and
a worker (who computes the client’s output). Under the
assumption of the proposition, client P_i sends her input
only at Step 7 of Protocol 4 via C-FWD-CH. In this call to
C-FWD-CH, P_i does not reward the first forwardee, which
means that the latter does not learn she is the first forwardee.
Hence the worker cannot find a first forwardee that knows
for sure the pseudonym of the client to whom a specific
input corresponds.

Regarding outputs, when a client P_i calls C-FWD-CH
to send the return key and the computation (Step 8 of
Protocol 4), P_i does reward the first forwardee. Therefore,
this first forwardee learns P_i’s pseudonym and could col-
lude with the worker to link the output to the client’s pseudonym. Nonetheless, such a collusion is hardly ration-
ol:

- Peers are pseudonymous: the first forwardee only
knows the worker’s pseudonym and the worker
does not even know the first forwardee’s pseudonym
unless the first forwardee tells the worker. People
tend to collude with those they know, and thus
pseudoynomy is a defense against collusion.
- There is an asymmetry between the worker and the
first forwardee. It is unclear why the worker should
share with the colluding first forwardee the value of
the client’s private output after the first forwardee re-
vals the client’s pseudonym: the worker cannot ver-
ify that the pseudonym actually corresponds to the
client, and even if the worker accepts the pseudonym
as good, it is not the client’s real identity.
- In case a first forwardee or a worker P_i is also a client
herself, colluding to link another client P_i’s output
with P_i’s pseudonym makes P_i’s own output more
easily linkable (linkage possibilities reduce from m
clients to $m - 1$ after a successful collusion).

A final mitigating factor is that, in many joint computations
the outputs are either not private (e.g. the tally in e-voting is
public) or less confidential than the inputs.

Proposition 2. If there is no collusion between the peers, a
client P_i can plausibly deny that a certain private input
is hers and can also plausibly deny that a certain private
output is hers. Hence, client privacy would still hold if
the mapping between the client’s pseudonym P_i and the
client’s real identity ID_i was discovered.

Proof: The privacy guarantee is based on unlinkability
and input/output encryption.

Let us examine whether a worker can link an input to
the corresponding client. By the design of Protocol C-FWD-
CH, a worker P_{j_k} knows that when P_{j_k} receives $PK_{j_k}(I_i)$
from a peer P_j, P is unlikely to be the client P_i to whom
I_i corresponds (a client always chooses to hop if she can).
Yet, since we assume in Protocol 4 that $m \geq 4$, there are at
least 4 clients; hence, even if both P_{j_k} and P happened to be
also clients themselves, P_{j_k} cannot unequivocally determine
which of the remaining clients is P_i. What P_{j_k} can do is
to estimate the probability that $PK_{j_k}(I_i)$ was submitted by
the l-th forwardee as $p^{l-1}(1-p)$, and hence that the
most likely submitter is the first forwardee. Nevertheless, the first
forwardee is chosen by client P_i using the SELECT function,
described in Note 4. If $g_i \geq g_j - \delta$, then P_i chooses the first
forwardee randomly among the set of peers with reputation
in the interval $[g_d - \delta, g_i + \delta]$, and this set depends on
the current reputations and varies over time; hence, as long
as there are several peers with reputations in the previous
interval, even if P_{j_k} received two encrypted inputs from the
same peer in two different successive joint computations,
P_{j_k} cannot infer that both inputs correspond to the same
client. If $g_i < g_d - \delta$, then P_i chooses as a first forwardee
the peer with the maximum reputation that does not exceed
$g_i + \delta$; if reputations do not change between two successive
messages, P_i would choose the same first forwardee for
both messages; yet P_{j_k} cannot be sure that the submitter of
both messages is really the first forwardee, and hence P_d
cannot be sure that both messages were generated by the
same client. Hence, in no case can two different messages
sent by the same client be unequivocally linked, even if
the probability of correctly linking them is lower when
$g_i \geq g_d - \delta$.

On the other hand, the worker P_{j_k} receives the compu-
tation C_i via C-FWD-CH from the same client P_i to whom
output O_i must be returned via C-REV-CH. However, by the
design of C-FWD-CH P_{j_k} receives C_i without learning
who P_i is. Also, by the design of C-REV-CH P_{j_k} returns
the client’s output O_i by hopping upstream via the reverse
path, with no knowledge of P_i’s pseudonym or identity.
Certainly, P_{j_k} could try to identify the client P_i by looking
for which peers P_{j_k} is closest in reputation; however, P_{j_k}
does not know the parameter κ (number of closest peers)
used by P_i in Protocol 4 when choosing her workers.

Consider now linkability by a forwardee P_i. If P_i is a
forwardee of a message from P_{j_k}, in general P_i does not
know whether P_{j_k} originated the message or is merely
forwarding it. The only exception is when P_i is the first
forwardee (because in this case P_i receives a message from
P_{j_k} in Step 8 of Protocol 4). Yet, in this case P_i can only
link the encrypted version of the output (that is, $E_{K(out)}$) to
the client’s identity $I_{P_{j_k}}$.

Lastly, if AM is an accountability manager of a client P_i,
AM only sees the reward receipts from the first forwardees
of that client (see Protocol 4). In no case can AM access the
inputs or the outputs of P_i.

Since no input or output can be unequivocally attributed
to a client by any other peer, plausible deniability by the
client holds.

5.2 Correctness

To ensure correctness, the delivery of correct outputs must be
the best rational option for the non-client peers (for-
wardees and workers). Protocols 4, 6 and 7 are designed
to incentivize this option. Thus, from the discussion on co-
utility for workers and forwardees in Section 4, the following
proposition follows:
Proposition 3. The rational behavior of workers and forwarders in Protocols 4, 6 and 7 is to return correct outputs to the clients.

6 Example Applications

Our framework is totally general and therefore it can accommodate any joint computation with input and output confidentiality. However, for the sake of illustration, we sketch two specific applications.

6.1 Finding differences with the previous and following parties in a ranking or an auction

In this application, each client \(P_i \) gives as private input \(I_i \) her value for a certain magnitude (e.g., wealth or auction bid) and wants as private output \(O_i \) the difference with the previous party in the ranking by that magnitude (e.g., how richer is the next richer client or how much more did the previous party in the ranking by that magnitude (bid) and wants as private output \(O_i \) her value for a certain magnitude (e.g., wealth or auction bid) and wants as private output \(O_i \) the difference with the previous party in the ranking by that magnitude (e.g., how richer is the next richer client or how much more did the next higher bidder offer) and the difference with the following party in the ranking (e.g., how poorer is the next poorer client or how much less did the next lower bidder offer).

In this case, the computation \(C \) consists of ranking all clients and finding the differences between successive clients in the ranking. The pruned computation \(C_i \) of interest for \(P_i \) consists of ranking all clients and finding only the differences between \(P_i \) and its previous client and between \(P_i \) and its following client. Hence, in this application, \(P_i \)’s input \(I_i \) must be embedded in \(C_i \) (yet this is no problem, because the worker running \(C_i \) cannot link \(I_i \) to \(P_i \)).

6.2 Electronic voting

In electronic voting, the clients \(P_1, \ldots, P_m \) are the voters. The private inputs of the clients \(I_1, \ldots, I_m \) are their secret votes. There is only one output \(O \), the tally, which is public. Note the value of a vote does not reveal the identity of the voter, and hence it is safe for clients to send their votes to workers as long as they do it using an anonymous channel.

The computation \(C \) consists of computing the absolute frequencies of all options susceptible of being chosen by voters (e.g., candidates, parties, Yes/No/Blank etc.). In this case \(C_1 = C_2 = \ldots = C_m = C \) and no client input needs to be embedded in \(C \). Rather than each worker returning \(O \) to her client via C-REV-CH, it is simpler for all workers to publish \(O \). If a worker publishes a tally \(O' \) that disagrees with the majority tally, \(O' \) will be discarded (and the worker’s reputation will decrease). In fact, the computational overhead can be strongly reduced with the following simplification: each client chooses only one worker rather than \(r \); in this case, there is a set of only \(m \) workers (rather than \(m \times r \)), but if \(m \geq 4 \), this set is enough to compute \(O \) as the majority output.

It is also interesting to consider the particular case in which all peers are voters/clients. Since all peers are clients and they are rational, correct computation of the common output (tally) interests them. Hence, most peers can be expected to behave honestly in their capacity of workers. As a consequence, reputations are not needed for the correct tally to be majority.

We can generalize the last remark into the following proposition.

Proposition 4. If all peers are rational clients and there is a single common output of the joint computation, Protocols 4, 6 and 7 can be expected to yield a correct output even if all operations related to reputations are suppressed from the protocols.

7 Experimental Results

In this section, we report the results of the experiments with the proposed co-utile framework. We compared with a baseline framework in which there is worker redundancy but no reputation (that is, Protocols 4, 6 and 7 without using reputations to decide on workers, forwarders or clients).

We considered good peers (who honestly do their job) and malicious peers (who do not).

Expected behavior. If the co-utile framework is well designed, good clients (that are good peers) should obtain a higher rate of correct outputs in it than in the baseline framework. Also, in the co-utile framework the rate of correct outputs for good clients should be higher than for bad clients (who are malicious peers). Further, the reputation of the peers should highly and positively correlate with their goodness and with the rate of correct outputs they obtain. The rationale is that peers who perform wrong computations as workers are likely to end up having low reputation, and it is difficult for a peer with low reputation to find (as a client) other peers that are willing to perform a computation for her (as workers) or forward the former peer’s messages (as forwarders).

Experimental setting. We built a P2P network with \(n = 100 \) peers and we let it evolve for 250 iterations; in each iteration, a joint computation was conducted by \(m = 10 \) clients randomly chosen among the 100 peers. Each client gave a numerical value as a private input to the joint computation; the latter consisted of ranking the input values and returning as a private output the rank of the client’s value. We set \(r = 3 \) (three redundant workers per client) and we ran simulations for different proportions of malicious peers. A malicious worker always returned a random output instead of the true output of a computation. In the baseline framework no reputation management was used by peers to choose workers or forwarders, or to decide whether to act as a worker or a forwarder. In the co-utile framework, we gave an initial reputation \(1/n = 0.01 \) to each client and we took \(\delta = 0.002 \).

Figure 1 plots the goodness of each peer (probability of behaving honestly) against her attained reputation after the 250 iterations, for a 20% proportion of malicious peers. It can be seen that both are very highly correlated: all malicious peers (those with probability zero of honest behavior) ended up with reputations between 0.006 and 0.008, whereas all good peers (those with probability 1 of honest behavior) attained higher reputations, between 0.010 and 0.012. Thus reputation captured very well the behavior of peers.

Figure 2 displays the rate of correct outputs as a function of the reputation of clients, both magnitudes accumulated after 250 iterations, for a 20% proportion of malicious peers and \(\delta = 0.002 \). Note that after 250 iterations all peers had been clients. Nearly all the outputs requested by clients with
high reputation were correct, whereas on average less than 50% of the outputs requested by clients with low reputation were correct. This satisfied our expectations on the behavior of the co-utile framework. In fact, as it can be seen in Figure 3, reputation was even more decisive in the last 100 iterations. In these last iterations, all computations requested by peers with high reputation were correct, whereas on average less than 20% of the outputs requested by clients with low reputation were correct. Hence, as soon the system stabilizes, the good peers always obtain correct outputs.

Finally, Figure 4 shows the rate of correct outputs in the baseline and the co-utile frameworks as a function of the proportion of malicious peers, after 250 iterations. No matter the framework, the rate of correct outputs decreases as the proportion of malicious peers increases, which was to be expected. However, in the co-utile framework good clients obtained a much higher rate of correct outputs than bad clients. Furthermore, good clients in the co-utile framework obtained a higher rate of correct outputs than clients in the baseline framework, whereas bad clients in the co-utile framework obtained a much lower rate of correct outputs than clients in the baseline framework. Hence, reputation management in the co-utile framework is useful to discriminate between good and bad clients, which in fact encourages rational behavior: honest behavior turns out to be the best rational option for any peer that wants to become a client.

8 Conclusions and future work

We have presented a peer-to-peer framework for multiparty computation that has the following innovative features: (i) it is general-purpose without making use of circuits, so that it can work for any computation expressed as ordinary high-level programming code, no matter its complexity, loops or recursions; (ii) unequivocal linkability of each party’s inputs is prevented; (iii) if a majority of peers are rational (not necessarily semi-honest), collusion is unattractive and hence, unequivocal linkability of outputs is also prevented; (iv) the rational behavior of peers is to return correct outputs to the client parties.

Future research will be devoted to reducing the overhead caused by worker and accountability manager redundancy while preserving the current privacy and correctness guarantees. Further work will be performed on parameter tuning, and in particular on the value of the initial reputation to be assigned to newcomers.
Fig. 4. Rate of correct outputs in the baseline and the co-utile frameworks for different types of clients, as a function of the proportion of malicious peers.

ACKNOWLEDGMENTS AND DISCLAIMER

Thanks go to Oriol Farràs for comments on a draft of this paper. We acknowledge support from the European Commission (projects H2020-871042 “SoBigData++” and H2020-101006879 “MobiDataLab”), the Government of Catalonia (ICREA Acadèmia Prize to the first author and grant 2017 SGR 705), and the Spanish Government (project RTI2018-095094-B-C21 “Consent”). We are with the UNESCO Chair in Data Privacy, but the views in this paper are our own and not necessarily shared by UNESCO.

REFERENCES

[1] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: 20th Annual ACM Symposium on the Theory of Computing - STOC 1988, pp. 1-10. ACM, 1988.

[2] D. Chaum, C. Crépeau and I. Damgård. Multiparty unconditionally secure protocols. In: 20th Annual ACM Symposium on the Theory of Computing - STOC 1988, pp. 11-19. ACM, 1988.

[3] J. Domingo-Ferrer, O. Farràs, S. Martínez, D. Sánchez and J. Soria-Comas. Self-enforcing protocols via co-utile reputation management. Information Sciences 367-368 (2016) 159-175.

[4] J. Domingo-Ferrer, S. Martínez, D. Sánchez and J. Soria-Comas. Co-utility: self-enforcing protocols for the mutual benefit of participants. Engineering Applications of Artificial Intelligence 59 (2017) 148-158.

[5] D. Evans, V. Kolesnikov and M. Rosulek. A Pragmatic Introduction to Secure Multi-Party Computation. NOW Publishers, 2018.

[6] J. Furukawa and Y. Lindell. Two-thirds honest-majority MPC for malicious adversaries at almost the cost of semi-honest. In: 26th ACM SIGSAC Conference on Computer and Communications Security - CCS 2019, pp. 1557-1571. ACM, 2019.

[7] O. Goldreich, S. Micali and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority. In: 19th Annual ACM Symposium on the Theory of Computing - STOC 1987, pp. 218-229. ACM, 1987.

[8] D. Harz and M. Boman. The scalability of trustless trust. In: Financial Cryptography and Data Security - FC 2018, pp. 279-193. Springer, 2019.

[9] M. Hastings, B. Hemenway, D. Noble and S. Zdancewic. SoK: General purpose compilers for secure multi-party computation. In: IEEE Symposium on Security and Privacy - SP 2019, pp. 1220-1237. IEEE, 2019.

[10] Y. Ishai, E. Kushilevitz, R. Ostrovsky and A. Sahai. Cryptography from anonymity. In: 47th Annual IEEE Symposium on Foundations of Computer Science - FOCS 2006. IEEE, pp. 239-248.

[11] S. D. Kamvar, M. T. Schlosser and H. Garcia-Molina. The EigenTrust algorithm for reputation management in P2P networks. In: 12th International Conference on World Wide Web, pp. 640-651. ACM, 2003.

[12] A. Küçüç. Incentivized outsourced computation resistant to malicious contractors. IEEE Transactions on Dependable and Secure Computing, 14(6) (2015) 633-649.

[13] Y. Lindell. Secure multiparty computation. Communications of the ACM, 64(1) (2021) 86-96.

[14] M. Nabi, S. Avizheh, M. V. Kumaramangalam and R. Safavi-Naini. Game-theoretic analysis of an incentivized verifiable computation system. In Financial Cryptography and Data Security – FC 2019, pp. 50-66. Springer, 2020.

[15] M. K. Reiter and A. D. Rubin. Crowds: anonymity for web transactions. ACM Transactions on Information and System Security 1 (1998) 66-92.

[16] A. C. Yao. Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science - SFCS 1982, pp. 160-164. IEEE, 1982.
Jesús Manjón is a computer engineer with the UNESCO Chair in Data Privacy and the CRISES Research Group at the Department of Computer Engineering and Mathematics at Universitat Rovira i Virgili, Tarragona, Catalonia. He received his B.Sc. in Computer Engineering in 2004 and his M.Sc. in Computer Security in 2008. He has participated in several European and Spanish-funded projects and he is a co-author of several research publications on security and privacy.