A Review on Land-use and Land-change with Machine Learning Algorithm

D Gupta¹, D Sethi², R Bathija³

¹,²Department of Electronics and Communication, JECRC University, Jaipur, India
³Department of Electronics and Communication, JECRC College, Jaipur, India

¹devshgupta1603@gmail.com

Abstract. A significant proportion of the planet's ground environment has changed with ground use and land-related shifts, exacerbated by both human behavior and natural feedback. Anthropogenic activities have dramatically altered natural ecosystems, in particular in areas greatly affected by population growth and climate change such as Eastern Africa. For environmental protection and successful water management practices, it is important to be aware of the trends in land use & land cover (LULC). This study centered on developments in LULC patterns in Climate Modelling, remote sensing, and field data combined to identify positive feedback circuits or negative ones using remote sensing techniques and geographic information systems (GIS). Furthermore, its findings include statements that focus on policies that display the impacts and levels of LULC transformation and the dissemination of these improvements in time and space as a central element in the current methods for environmental control of changes and the management of natural resources.

Keywords: SVM, CNN, LULC, remote sensing, Spatial Transformation, Pixel-based change detection

1. Introduction

The transition from land use to land (LULC) has become a central and important feature of modern environmental change monitoring strategies and natural resource management [1]. Humans are causing climate changes to the Earth, which are resulting in fewer emissions for the biosphere. LULC and its programmers have been used to address human beings’ physical, economic, cultural, and spiritual needs, and have experienced major improvements over the last 20 years. As part of the same, reductions in various vital resources such as water, soil, and plants that Western countries have undergone have contributed to decreased desirability and greater monoculture. Women, professionals, historians. Advanced natural resource research specialists use LULC experience to detect trends in natural capital, which requires natural capital changes in growth rates [2]. An awareness of land dynamics will help us gain a deeper understanding of the land. There have been several studies that have proved that improving the landscape level of land use and land cover (LULC) is enormously important for many purposes, including hydrology, agriculture, forestry, climate, geology, and
ecology. Study on the shift of lumen diameters has also gained scientists' attention and momentum as well [3]. Most environmentalists conclude that the massive pollution of humans everywhere they go would lead to the imbalance of the atmosphere as well as to the consequences related to Climate Change (Global Warming).

2. Techniques for land use and land cover change

The use of geographical records, such as latitude and longitude, to map and identify areas of soil for which land cover and land use have been modified. Satellite-based Remote Sensing has revolutionized the study of land use and change over long periods because it has the potential of delivering synoptic information for land use and change over a given region at a given time. Being able to successfully explain how much soil is used or how much land is populated by various types of vegetation is helpful [5]. Geographical information systems allow me to construct a series of spatial fixes that correlate to the construction that drives the development. Remote sensing of environments can offer a lot of data on numerous physical features of the environment and can also provide data on whether changes in the landscape take place. It is a concept that defines the structure, distribution, and volume of changes, such as surface forms, boundary changes, and patterns at the time of transformation [6-9].

2.1 Digital change-based detection

2.1.1 Spatial Resolution

Due to its excellent time-frequency [10], computational digital format, synoptic vision, and a wider variety of spatial and spectral resolves, remote sensing data has been one of the key sources of shift detection studies. If we like 3 super spectral or SAR images or more, have the picture converted into greyscale images. When looking at spectral changes, a variety of factors, such as geographical, spectral, radiometric, time limits, atmospheric, and soil moisture areas may influence the detection of optical changes shown in Fig.1. The limiting factors are (a) geographical, spectral, radiometric resolution, (b) temporal limits, atmospheric conditions (c), and soil moisture conditions. [11]

![Figure 1. Flow Diagram of Spatial Resolution](image)

2.1.2 Spectral resolution

Although the shift-identification is a very important aspect of the identification of eruptions, more requirements need to be followed, such as visualizing multi-temporal images comprising high spatial and spectral resolution scopes; the requirement for accurate synchronizing of the radiometric and atmospheric conditions; and the set of the same spatial and spectral resolution images [13]. Crop diversity changes in the past can be calculated by the appearance or absence or showing the positions of the changes, the gradual trend of land cover changes throughout the long-term scheme, and the potential of adding precision by more changes in the landscape over time. Combining data sets from
time-lapse images from several cameras, scientists were able to assess land use and discover trends for different species over time. Fig. 2 shows its flow process. Limitation: (a) there is not complete calibration of radiometric and atmospheric data, (b) the overlap between the data groups is troublesome, and, (c) it is very difficult to detect medium-scale vesicles to smaller vesicles [14].

Figure 2. Flow Diagram of Spectral Resolution

2.1.3 Radiometric change detection:

There are a variety of different approaches that can be taken to spectral analysis, from basic approaches such as band differentiation (a fundamental principle concerning the imaging capability of the image is an extensively sampled serial scan) to the advanced method (shown in Fig. 3) of using the vegetation indices [15]. He also defined the several slightly different ways in which variable sorting can be done to manage the aggregation of spectral groupings of THMs as a function of the scan acquisition date. The details of the distinctions between importance (detections) can be either a matter of simple binary changes (i.e., shift versus no change, such as image distinction, image rationing, etc.) or a thing of extensive changes (i.e., from time to time, as it is the case for comparisons after classification). This study aims to categorize change detection techniques into three categories based on image processing at pixel, function, and object-level by categorization scheme and are also classified by learning strategies in soft-computing approaches to detect change [16-18]. A Pixel is a numerical value for each band of an image or a simplified view of the contrast within that particular band of a particular image.

Figure 3. Flow Diagram of Radiometric change detection

2.2 Pixel level change detection techniques

Image pixels are a unit of measurement used in the image processing industry to define how much anything has moved by considering the spatial location of it. Different algorithms were built over time
to render medical images in more detail. These are usually reduced in detail for lower resolution imaging. VHR image data is usually skewed due to different problems, (i.e., It is geo-referenced inaccurately, it has a wider variety of range of reflectance for each class, and it has very complex qualities when obtained – i.e., calibration issues) (e.g., sensing geometry, shading effect, and illumination angle). They used four different automatic image processing methods, most widely used to isolate post-classification and image ratio [16]. Deriving an image from a captured image is achieved by imaging by the pixel, then by erasing individual pixels bit by bit from the original image. In certain situations, a pixel can leap in one direction 18 times, and some cases can provide the condition where the pixel jumps up or down 17 times. Using traditional values of the newest image as a reference, a threshold value can be used to measure changes from the old to the current image, to determine how effective is the new-image recognition (see Fig. 4). To get the most precise estimate of how the threshold value corresponds to the halving of the exposure period, we took a close look at the change from pixel value to pixel value over time shown in Fig.4. These are the constraints on a) Errors in georeferencing, b) high difference in reflectance between grades, c) different acquisition features, and d) errors during the void inspection [17].

Figure 4. Pixel level change detection techniques

2.3 Image Regression

This method shows that a normal distribution exists between pixel values between 2.5 and 5 times in the same area. Because most of the pixels did not shift over the two years, the value is considered the same. The subject image (or its original value) is converted to the reference plate (the original image) through the least square regression through gain and offset (see Fig. 5). For the many other groups of images in the library, this transformation is performed similarly. It is a time-consuming method that delays the pace of classification [18].

Figure 5. Flow diagram Of Image regression
2.4 Artificial Neural Network

Neural Network is an algorithm that is non-parametrically supervised. It estimates the properties of data according to the training data shown in Fig. 6. The spectral data of the change time is the input used to train the neural network. A Back-propagation algorithm is also used to train the neural network model of multi-layer perceptrons. Neuro Network includes: (a) the hidden/back layer in ANN, Neuro Network is not well known; (b) the amount of training the data is important for network designing, and (c) Neuro Network functionality is not popular in image processing software [19-22].

![Figure 6. Flow Diagram Artificial Neural Network](image)

2.5 Support Vector Machine

The Data Distribution is not known to be [22] and the data sets are not displayed to avoid disclosing further information about the data. The machine learning algorithm is capable of learning small datasets for testing and is also able to do very high accuracy while handling larger data sets. The concept behind neural networks is that of interaction rules that are provided in memory links that are computed through dynamic associations between artificial neurons/elements. Neural networks can perform all kinds of tasks (shown in Fig. 7), but they have some drawbacks. The best use of neural networks is for text applications because their functionality can be translated to the text as well by the aforementioned [23].

![Figure 7. Flow Diagram Support Vector Machine](image)

2.6 Decision Tree

Provided the classification of results, the decision tree algorithm is not parametric on data distribution or independence theory. Such algorithms create a structure of a flow chart in which every node tests several attribute values, every branch outputs a test result, and the tree leaves are classes or unit distributions. The classification of Decision tree-like nodes using the value of attributes that do the node classification is based on the value of the attributes. Assigning all data into classes, such as binary or multiclass, is mathematically [24] a need to do when making improvements to already categorized text. (see Fig.8)
2.7 Fuzzy change detection

Smoothness is a mathematical methodology that uses the form of the curve to tell a tale about the variability between the classes and the measurable characteristics within the same class. Fuzzy reasoning results are not distinct and seamless; they are more likely and are confounded (see Fig. 9). The membership function takes elements closer to the membership function as probabilities rise. The $P(E|B)$ of the new class is the higher the likelihood of the new class, the closer the elements are to the class. The class is mostly membered. It takes into account the similarities following in the classification of the results [25].

2.8 Multi-sensor data fusion

For change detection, the multispectral image pixels are believed to be represented in multi-temporal spectral mixture analysis in terms of the sub-pixel proportions of pure spectral components that are related to surface constituents in a scene [26]. The technique addresses the heightened dimensionality problem that comes from higher spectral resolution. In a mixing model, synthetic particles can be mixed linearly with their constituent spectra weighted by the percent ground share. Using the Solans Vila & Barbosa Human Eye algorithm, it is important to have the accuracy of the measurements which come from a geometrically accurate location in the field for the dark-adapted visual response (end members), or in a laboratory for the spectral resolution. It can be extended to the increased dimensionality. A time-based calculation technique is used to resolve the dimensionality problem (see Fig. 10).
3. Principal component analysis (PCA)

PCA is a way of working out what's in the data by converting the new data into a mathematically centered on the Principal Translation Axis, which avoids overlapping data. PCA generates an autocorrelated matrix by connecting covariable variables, equivalent to a correlation matrix that shows the correlation among variables [27]. The resulting matrix consists of the variables from decreasing values, and the main vectors are sorted as the majority of the variance in data is represented by the first variable. The key variables of the data set should then be uncorrelated variables describing the most important original information. The index is a three-dimensional device, made up of measures of luminosity, greenness, and humidity. It has a comprehensive (see detailed Fig. 11) map of the fields that are changing and of the thresholds used to define these changes.

![Figure 11. Flow Diagram Principal component analysis (PCA)](image)

3.1 Change Vector Analysis

In the process of doing this, we have to first take multiple parallel slices, then a matrix of image samples will be generated. Before the revolution of the optical instruments, the conventional principle of vector analysis is based on the multi-temporal couples of spectral measurements, and the spectral transformation and appropriate magnitudes are the old parameters of a threshold. In spectral band metrics, pixel values are vectors instead of scalar values. The shift vectors are determined by subtracting pixel-sensitive vectors, much as in image differentiation. The map of the velocity vs. altitude was plotted to measure how the velocity shifted over time [28-30]. The two main reasons for vector shift analysis are (a) pixels are not as reliant on each other because the image sizes are predetermined, and (b) lots of pixels are required for the programmer to analyze. Any error in this technique can result in inaccuracy (see Fig 12).

![Figure 12. Flow Diagram Change Vector Analysis](image)
3.2 Texture analysis-based change detection

This is a supercomputer-like technique that allows many image bands to be processed simultaneously. In the standard principle of vector analysis, the portion of the continuum that was measured is maintained by several time measurements, the size difference between a new and existent spectral sub-unit is the estimate of the threshold. In spectral band metrics, pixel values are vectors instead of scalar values. The shift vectors are determined by subtracting pixel-sensitive vectors, much as in image differentiation. The map of the velocity vs. altitude was plotted to measure how the velocity shifted over time. The two main reasons for transformation are calculated by matching the interpretations back with the textual meanings of the text. [30]

3.3 Object-Based Change Detection

The researchers [34-36] are concentrating on the description of images, class-artifacts, multi-temporal artifacts, and variations of the three. According to a study, replicated images were segmented with modifications based on the color of the object, its scale, and the other pertinent information. The study concluded that not only was the algorithm able to distinguish between different artifacts, it also effectively distinguished between two types of images: those with regular versus average color or texture or those that were blurred (e.g., image texture and geometry). The algorithm analyses a hash function to detect the rate at which meaningful items change from grey to grey. Connectivity analysis is used to remove objects from the master image, which are then compared to objects in a second image to see if there is a resemblance between the objects. To validate the same algorithm as the [31] algorithm, an approach called was used to define the relationship between two object-boundary pixels. It is said that the greatest benefit of this kind of segmentation is that because objects are derived by segmentation, algorithms are simple to implement and require direct object comparison to detect a shift. (see Fig. 13)

![Figure 13. Flow Diagram Object-Based Change Detection](image)

4. Hybrid Change Detection

Hybrid-shift recognition algorithms can make use of object recognition as well as pixel recognition. After the object matcher worked to return the object to the database, it then went on to find the best match (matched to the nearest object) through wider sets. This research didn't look solely at the variations between the two items. Instead, this study looked at both the Landsat Thematic Mapper (TM) and Landsat Improved Thematic Matter to measure the shift between both (ETM). He uses vector support systems and advanced methods to achieve an object-based classification. He contrasts the land use vector data and some objects to classify improvements. Correlation, grouping,
particularity, and correlations jointly associated with each other through wavelets, all of which function together to represent a pattern, can all be represented as counting numbers, colors, and groups of letters. In the following, the area was segmented into artifacts [32] only by eliminating all of its surfaces when changes took place. Soft computing techniques for changing detection Soft computing is a mixture of modeling methodologies that make real-life solutions that are not mathematically modellable or too difficult to model. Soft computing, as it is called, uses techniques like pointless logic, evolutionary computation, and neural networks to achieve its goals.

Table 1 Analysis of Different Techniques

Author / Year	Worked on	Tool	Result / Accuracy
Zhang et.al 2000	Unsupervised Classification	Unsupervised Classification	Classification of images, using remote sensing and geographic Information system tools with 88 Percentage.
Rundquist et.al 2001	Supervised classification	Supervised classification	Image classification, with the help of remote sensing and geographic information system software with 90 Percentage.
Lu et.al 2004.	Fuzzy classification	Fuzzy classification	Image classification, with the help of RS /GIS software with 84 Percentage.
Sudhira et.al 2004	The spatiotemporal analysis of LC dynamics	Spatial-temporal	Emphasis on population development/sprawl and rural land loss with 90 Percentage.
EEA 2006	Urban and rural growth fight for the same land	GIS-based	Cities expansion has typically taken place on former agricultural use with 91 Percentage.
Dewan et.al 2009	Multi-temporal RS datasets	Neural Network	Sustainable landscape Arti. Neural Networking and management. With 87 Percentage.
Huang et.al 2009	Several cities rise rapidly on their outskirts	Land stat	Transforming the surrounding rural areas into dense industrial and commercial ones with 89 Percentage.

4.1 Self-organising feature map network (SOFM)

This network has been planned to be very advanced with complex architecture. The job is to complete a small number of inputs and to assemble them into input patterns of relevant sizes, as in a neural network. This is done by the input neurons, which capture each mapped contact as an input, and the output neurons, which capture a pixel-by-pixel discrepancy. More comprehensive research will be conducted for the conversion of multi-sensor images and the use of multiple sensor data to use image recognition and pixel-based shift detection techniques [33] for the study of these modern multi-target
capabilities. More advanced shift detection technology is required to identify minor shifts in textual elements in a frame. Some of these cameras can detect shifts in photo content, but there is not yet a proper mathematical model to integrate this information.

Table 2 Analysis of Different Techniques

Author /Year	Worked on	Tool	Result/ Accuracy
Murgante and Danese 2011.	Rising rural demand as a result of land leasing and the disappearance of some traditional roles outside the cities.	Pressure	With 87 Percentage.
Boori et.al 2014	Analyzed land-use related disruptions using a variety of RS and GIS techniques	GIS	With 89 Percentage.
Rawat and Kumar 2015	To map out the status of land use/cover of one of the development blocks	Segmentation	With 88 Percentage.
Turner et.al. 2001; Butt et.al 2015	Variation in land use/cover in a watershed can affect groundwater quality and source	Watershed	Higher surface runoff decreased groundwater recharge and application of chemicals by 90 Percentage.
Abdulhakim Mohamed Abdi 2017	Used Sentinel-2 Multispectral Instrument	SVM	Support vector machines and random forests are widely used in the remote sensing community for the use of mono-temporal vs. multitemporal imagery in land cover and land-use classification. with 91 Percentage.
Scott et.al 2019	Multiscale LU RS images and designed CNN structures	CNN	Multi-view CNN model achieved with 98.5 percentage.

4.2 Proposed Advanced computational data processing algorithms

Deep learning, smart agents, and human-computer interface (HCI) converge to provide unique goods. The study of the multiple processes in this field is a good way to explore natural processes and anthropogenic activities that promote land use. Neuroparalytic and the Cybernetics experiments. The region with the study area was close investigated, and over the past four decades, substantial data were analyzed using uncontrolled classification and satellite imagery, which shows to have set up a natural, unaltered landscape [34]. For certain land-use classification activities, neural networks (NNs) were increasingly used, but they are still under scrutiny by the science community for their supremacy. This
research will aim to analyze the efficiency of CNN land classification approaches and to recognize changes in land use (LU). Eight CNN-based Transmitted Models for LU Scene Classification on Remote Sensing Data were extensively checked with three pretrained Alex Net, Google Net, and VGGNet CNN models [35-36].

5. Conclusion

With remote sensing images from various sensors acting as a basis, remote sensing-based measurement and mapping of the evolving design on LULCs in the Wami River basin taking prominence, and the same thing accomplishing contributions in both upstream and downstream transition. By observing the evolution of land distribution (and distribution of economic spheres) over time, it would be possible to define the general stages of the land distribution process. A comprehensive study on the transformation dynamics of military organizations and locations will provide advice to the military in its preparation, management, and security. However, the use of high-resolution multispectral satellite imagery will offer more information throughout the enhancement of the field. Although the images are not flawless, the device needs to use the method of minimizing the effects of a small flaw, by decreasing "salt and pepper" noise, by adding background correlations and information on the form of the product, by reducing the shading effects and geometric variations of the sensor viewing which will create better results than the pixel viewing. The recently created applications in this area provide new horizons for future computing. Back in the 1980s and 1990s, technical advances led to applications reaching beyond traditional boundaries, which then led to the growth of new companies, which in turn became organizations that are dependent upon remote sensing technology for further growth.

References

[1] Rawat, J. S., Biswas, V., & Kumar, M. (2013). Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 16(1), 111-117.
[2] Kumari, M., Das, A., Sharma, R., & Saskia, S. (2014). Change detection analysis using multi-temporal satellite data of Poba reserve forest, Assam, and Arunachal Pradesh. International Journal of Geomatics and Geosciences, 4(3), 517-525.
[3] Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., & Xu, J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global environmental change, 11(4), 261-269.
[4] Birhane, E., Ashfare, H., Fenta, A. A., Hishe, H., Gebremedhin, M. A., & Solomon, N. (2019). Land use land cover changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia. Remote Sensing Applications: Society and Environment, 13, 61-68.
[5] Sankhala, S., & Singh, B. (2014). Evaluation of urban sprawl and land use land cover change using remote sensing and GIS techniques: a case study of Jaipur City, India. International Journal of Emerging Technology and Advanced Engineering, 4(1), 66-72.
[6] Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land-use change detection with GIS and remote sensing techniques in Daqahliya governorate Egypt. International Journal of Sustainable Built Environment, 4(1), 117-124.
[7] Chomitz, K. M., & Kumari, K. (1998). The domestic benefits of tropical forests: a critical
review. *The World Bank Research Observer, 13*(1), 13-35.

[8] Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees? *Agriculture, ecosystems & environment, 104*(1), 185-228.

[9] Cheruto, M. C., Kauti, M. K., Kisangau, D. P., & Kariuki, P. C. (2016). Assessment of land use and land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya.

[10] Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., ... & Snyder, P. K. (2005). Global consequences of land use. *Science, 309*(5734), 570-574.

[11] Minale, A. S. (2013). Retrospective analysis of land cover and use dynamics in Gilgel Abay Watershed by using GIS and remote sensing techniques, North-western Ethiopia. *International Journal of Geosciences, 4*(07), 1003.

[12] Meesha, T. W., Tripathi, S. K., & Khari, D. (2016). Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Modelling Earth Systems and *Environment, 2*(4), 1-12.

[13] Adeel, M. (2010). Methodology for identifying urban growth potential using land use and population data: A case study of Islamabad Zone IV. *Procedia Environmental Sciences, 2*, 32-41.

[14] Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. *The Egyptian Journal of Remote Sensing and Space Science, 18*(1), 77-84.

[15] Weng, Q. (2001). Remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. *International journal of remote sensing, 22*(10), 1999-2014.

[16] Hassan, Z., Shabbir, R., Ahmad, S. S., Malik, A. H., Aziz, N., Butt, A., & Erum, S. (2016). Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan. *SpringerPlus, 5*(1), 812.

[17] Liang, S., Fang, H., Morisette, J. T., Chen, M., Shuey, C. J., Walthall, C. L., & Daughtry, C. S. (2002). Atmospheric correction of Landsat ETM+ land surface imagery. II. Validation and applications. *IEEE transactions on Geoscience and Remote Sensing, 40*(12), 2736-2746.

[18] Ayele, G. T., Demessie, S. S., Mengistu, K. T., Tilahun, S. A., & Melesse, A. M. (2016). Multitemporal land use/land cover change detection for the Batena Watershed, Rift Valley Lakes Basin, Ethiopia. In *Landscape Dynamics, Soils and Hydrological Processes in Varied Climates* (pp. 51-72).

[19] Lambin, E. F. (2001). Global land-use and land-cover change: what have we learned so far?. *Global Change News, 46*, 27-30.

[20] Bewket, W. (2002). Land cover dynamics since the 1950s in Chemoga watershed, Blue Nile basin, Ethiopia. *Mountain research and development, 22*(3), 263-269.

[21] Gimblett, H. R. (2005, December). Modeling Human-Landscape Interactions in Spatially Complex Settings: Where are we and where are we going. In *MODSIM 2005 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand*.

[22] Alemayehu, F., Taha, N., Nyssen, J., Girma, A., Zenebe, A., Behailu, M., & Poesen, J. (2009). The impacts of watershed management on land use and land cover dynamics in Eastern Tigray (Ethiopia). *Resources, Conservation and Recycling, 53*(4), 192-198.

[23] Tiwari, M. K., & Saxena, A. (2011). Change detection of land use/land cover pattern in and
around Mandideep and Obedullaganj area, using remote sensing and GIS. *International Journal of Technology and Engineering System*, 2(3), 398-402.

[24] Bakr, N., Weindorf, D. C., Bahnassy, M. H., Marei, S. M., & El-Badawi, M. M. (2010). Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. *Applied Geography*, 30(4), 592-605.

[25] Abd El-Kawy, O. R., Rød, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. *Applied Geography*, 31(2), 483-494.

[26] G Maseko FE Lindsay SN Gowan, J. (2000). Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations. *International Journal of Remote Sensing*, 21(18), 3473-3486.

[27] EEA (European Environment Agency) (2006) - Urban sprawl in Europe: The ignored challenge. EEA Report No. 10/2006, Copenhagen, Denmark.

[28] Abdi, A. M. (2020). Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. *GIScience & Remote Sensing*, 57(1), 1-20.

[29] Dewan, M. Z., Galloway, A. E., Kawashima, N., Dewynngaert, J. K., Babb, J. S., Formenti, S. C., & Demaria, S. (2009). Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti–CTLA-4 antibody. *Clinical Cancer Research*, 15(17), 5379-5388.

[30] Fichera, C. R., Modica, G., & Pollino, M. (2012). Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. *European Journal of Remote Sensing*, 45(1), 1-18.

[31] Sudhira, H.S., Ramachandra, T.V. and Jagadish, K.S. (2004) Urban sprawl: metrics, dynamics and modeling using GIS, *International Journal of Applied Earth Observation and Geo-Information*, 5(1):29–39.

[32] Huang, B., Zhang, L., & Wu, B. (2009). Spatiotemporal analysis of rural-urban land conversion. *International Journal of Geographical Information Science*, 23(3), 379-398.

[33] Suwalka, I., & Agrawal, N. (2018). An improved unsupervised mapping technique using AMSOM for neurodegenerative disease detection. *International Journal of Computational Systems Engineering*, 4(2-3), 185-194.

[34] Rawat, J. S., Kumar, M., & Pathak, R. N. (2013). Spatio-temporal dynamics of Almora town area, India. *Inter. J. Adv. Rem. Sens. GIS*, 2(1), 425-432.

[35] Fichera, C. R., Modica, G., & Pollino, M. (2013). Integration of Satellite Remote Sensing Techniques and Landscape Metrics to Characterize Land Cover Change and Dynamics. In *Geographic Information Analysis for Sustainable Development and Economic Planning: New Technologies* (pp. 228-244). IGI Global.

[36] Yalew, S. G., Mul, M. L., Van Griensven, A., Teferi, E., Priess, J., Schweitzer, C., & van Der Zaag, P. (2016). Land-use change modelling in the Upper Blue Nile Basin. *Environments*, 3(3), 21.