Impacts of root pruning intensity and direction on the phytoremediation of moderately Cd-polluted soil by Celosia argentea

Youjun Tanga, Tian Ganb, Min Caoc, Jinnuo Songa, Dan Chena, and Jie Luoa

aCollege of Resources and Environment, Yangtze University, Wuhan, China; bSchool of Civil Engineering, Shandong University, Jinan, China; cUniversity of Leicester, Leicester, UK

ABSTRACT
Root pruning can impact the physiological functions of various plants, which influence phytoremediation. A series of root pruning treatments with different combinations of direction (two-side pruning and four-side pruning) and intensity (10, 25, and 33\% pruning) were performed on \textit{Celosia argentea} L. All two-side pruning treatments, regardless of intensity, decreased the dry biomass of the \textit{C. argentea} roots at the end of the experiment relative to that of the control. However, the two-side-10\% and two-side-25\% pruning treatments stimulated the growth rate of the plant leaves significantly by 58.6 and 41.4\%, respectively, relative to that of the control, and even offset the weight loss of the plant roots. Contrastingly, the two-side-33\% pruning treatment reduced the biomass yield of leaves by 24.1\%. For the four-side pruning treatments, the low intensity increased the dry weight of both the plant roots and leaves, while both decreased under high-intensity root pruning. The dry weight, Cd content, pigment level, and photosynthetic efficiency in the four-side-10\% treatment were higher than those in the other treatments during the experiment. This study indicates that root pruning with a suitable combination of direction and intensity can positively influence the Cd removal ability of \textit{C. argentea}.

NOVELTY STATEMENT
Our study suggests that a suitable root pruning pattern can significantly increase the phytoremediation effect of Celosia argentea L. Compared with chemical and biological regulation including plant hormone application, chemical reagent spraying, and endophytes inoculation which might introduce unpredictable risks into the ecological system, root pruning can be considered as an environmentally friendly physical trigger to modulate physiological features and to induce advantages in plants. This finding can be extrapolated into the real-world easily since root pruning is an established, convenient, and feasible method. We believe readers would be interested in this method.

INTRODUCTION

With the development of society and the expanding population, a large amount of contaminants have been discharged into various environmental media (Miao et al. 2017; Zeng et al. 2019a). Among various contaminants, the emission of Cd has gained extensive attention in China because the last national soil quality survey that covered more than 90\% of China’s territory showed that \~7\% of the survey soils are polluted by Cd to different degrees (Wang et al. 2018b). Severe environmental issues can be induced by the accumulation of Cd in soil and water, and the metal can endanger human health via the food web owing to its high bioavailability and biological toxicity (Rezapour et al. 2019).

Some physical and chemical remediation techniques, such as covering, chemical washing, \textit{in situ} stabilization, biochar application, and electrokinetic remediation (Otto\textit{sen et al. 2007}; Park et al. 2016; Shen et al. 2018) have been developed to treat metal-polluted fields. These methods can remediate heavily polluted sites with a small area in a short time period but are not qualified for low to moderately contaminated fields with a large area owing to their high cost. In addition, conventional soil remediation techniques generally cause negative impacts on the soil structure, fertility, and ecological system, and can even result in irreversible damage to the soil, thereby decreasing the area of farmland.

Phytoremediation, which involves the use of green plants and associated microorganisms to decrease the bioavailability and toxicity of pollutants in different environmental media or to remove them from various substrates, is regarded as a potential candidate to remediate metal-contaminated soils (Luo et al. 2016; Eisazadeh et al. 2019). This plant-based soil remediation method generally contains four subcategories, namely phytoextraction, phytostabilization, phytofiltration, and phytoevaporation (Ma et al. 2011).

Qu et al. (2013) suggested that the expenditure of phytoremediation using a hyperaccumulator is \~$400–800 \text{ha}^{-1} \cdot \text{y}^{-1}$ based on the labor cost and the price...
in China. Although this cost is lower than that of conventional physical and chemical methods by several orders of magnitude, it is still too expensive considering the contaminated soil area. Unfortunately, the efficiency of phytoremediation is significantly lower than that of traditional methods, and it will take centuries for plants, even hyperaccumulators, to decontaminate excessive pollutants in soil (Luo et al. 2019b). According to the remediation mechanism of phytoextraction, the biomass yield and metal extraction ability of plants are the decisive factors determining the success and the duration of the decontamination process. Therefore, a series of supplementary means, i.e., chelator application (Wang et al. 2018a), plant growth-promoting rhizobacteria inoculation (Rasouli-Sadaghiani et al. 2019), transgene introduction (Das et al. 2016), electric field addition (Cameselle and Gouveia 2019), and magnetic field pretreatment (Luo et al. 2019a), have been exploited to increase the dry weight and metal uptake capacity of various plants. However, these means generally result in some secondary problems, such as pollutant leaching, high energy consumption, and species invasion. Therefore, economical and feasible supplementary means that can be conducted in a real-scale field should be developed.

Root pruning is a common agronomic management practice. The application of this practice can remove the apical dominance that impedes the development of lateral roots, thereby increasing the biomass yield, water use efficiency, and nutrient uptake capacity of plants (Valdés-Rodríguez and Pérez-Váquez 2019). However, there are conflicting results from previous studies regarding the impacts of root cutting of different plants. Generalized statements are not accurate because multiple factors can influence the responses of plants to root pruning. Physiological responses depend on the type of species, pruning deposition, pruning time, pruning size, and pruning intensity. For example, low pruning intensity results in high root vigor in *Ricinus communis* L.; contrastingly, the severity of root pruning increases the root-ability of *Pyrus communis* L. Moreover, suitable pruning practices can disrupt the physiological equilibrium of plants and change the hormone levels in their tissues. Feng et al. (2018) reported that the content of indole-3-acetic acid, which is a type of plant hormone that stimulates the growth rate of plants, increased in *Platycladias orientalis* L. Franco roots when the taproots were removed. In addition, the loss of roots is inevitable during the transplanting process, which is an important procedure of phytoremediation because the integrity of the roots could be damaged to varying degrees when excavating the cultivated plants from the soil.

C. argentea is a native Chinese plant belonging to the Amaranthaceae family. This ornamental plant is grown throughout China, and can even survive in extreme environments, i.e., mining areas (Shen et al. 2017). Liu et al. (2018) reported that more than 80% of Cd extracted by *C. argentea* was accumulated in its above-ground parts. This indicates that the species can provide great potential for phytoextraction of metal-polluted soils without species invasion.

The physiological responses of *C. argentea* to root pruning have rarely been reported. Therefore, it is necessary to determine the impacts of agronomic practices on the phytoremediation effect of the ornamental plant because agronomic practices that do not induce ecological risks are enforceable and economical in the real world. The major objectives of the current study were to evaluate the impacts of root pruning treatments with different directions and intensities on (1) the biomass yield of plant tissues, (2) the photosynthesis efficiency and transpiration rate of *C. argentea*, and (3) the Cd uptake capacity and phytoremediation effect of the species.

Materials and methods

Collection and preparation of soil

Soils treated in the current experiment were sampled from Guiyu (Longitude E 116.31–116.40° and Latitude N 23.29–23.41°), a town that has been involved in electronic waste dismantling and recycling businesses for ~40 years. The prevailing wind is north-easterly in winter and south-westerly in summer. The soil in Guiyu is a typical Ferric Acrisol, principally acidic (pH 5.2–6.9), CEC of 12.7 cmol kg⁻¹, and TOC of 17.9 g kg⁻¹. The air, water, soil, and crops in this town have been found to be seriously polluted with metals, polybrominated diphenylethers, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and other toxic compounds (Li et al. 2011). Traditional agricultural activities, including rice and vegetable cultivation, fish farming, and poultry rearing, are still performed in areas surrounding the dismantling regions (Xu et al. 2013). Previous studies verified that the dismantling and recycling business has already caused detrimental effects on local residents, especially pregnant women and children (Kim et al. 2019; Zeng et al. 2019b). Therefore, it is necessary to remediate metal-polluted soil in the town, particularly in residential quarters. Because weeds can grow spontaneously in residential quarters, phytoremediation can be applied to decontaminate soil in these areas.

Considering the different geological backgrounds, soil types, and terrain in the study area (Luo et al. 2017), 200 soils (0–20 cm) were collected using a 200 × 200 m plot to produce synthetical data representing the overall features of the region. After being air-dried, the gathered soils were sieved using 2 mm meshes to remove foreign materials. The sieved soils were blended to generate a composite substrate. To ensure the homogeneity of the substrate in the experiment, the composite soil underwent several mixing, moistening, and drying procedures. Twenty soils were sampled randomly in the blended soil after each mixing cycle to analyze the content of Cd. Homogenization was considered to be achieved after the third blending cycle, which manifested as a low variable coefficient (<15%) of Cd. The homogeneous soil was divided into 35 aliquots of 6 kg, and each was filled to a height of 16 cm in prepared cylindrical containers with a height of 20 cm and a bottom diameter of 20 cm for further treatment.

Soil pH, organic matter, and exchangeable cations were analyzed at the beginning of the experiment. For pH analysis, the prepared soil was mixed with deionized water at a

Materials and methods

Collection and preparation of soil

Soils treated in the current experiment were sampled from Guiyu (Longitude E 116.31–116.40° and Latitude N 23.29–23.41°), a town that has been involved in electronic waste dismantling and recycling businesses for ~40 years. The prevailing wind is north-easterly in winter and south-westerly in summer. The soil in Guiyu is a typical Ferric Acrisol, principally acidic (pH 5.2–6.9), CEC of 12.7 cmol kg⁻¹, and TOC of 17.9 g kg⁻¹. The air, water, soil, and crops in this town have been found to be seriously polluted with metals, polybrominated diphenylethers, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and other toxic compounds (Li et al. 2011). Traditional agricultural activities, including rice and vegetable cultivation, fish farming, and poultry rearing, are still performed in areas surrounding the dismantling regions (Xu et al. 2013). Previous studies verified that the dismantling and recycling business has already caused detrimental effects on local residents, especially pregnant women and children (Kim et al. 2019; Zeng et al. 2019b). Therefore, it is necessary to remediate metal-polluted soil in the town, particularly in residential quarters. Because weeds can grow spontaneously in residential quarters, phytoremediation can be applied to decontaminate soil in these areas.

Considering the different geological backgrounds, soil types, and terrain in the study area (Luo et al. 2017), 200 soils (0–20 cm) were collected using a 200 × 200 m plot to produce synthetical data representing the overall features of the region. After being air-dried, the gathered soils were sieved using 2 mm meshes to remove foreign materials. The sieved soils were blended to generate a composite substrate. To ensure the homogeneity of the substrate in the experiment, the composite soil underwent several mixing, moistening, and drying procedures. Twenty soils were sampled randomly in the blended soil after each mixing cycle to analyze the content of Cd. Homogenization was considered to be achieved after the third blending cycle, which manifested as a low variable coefficient (<15%) of Cd. The homogeneous soil was divided into 35 aliquots of 6 kg, and each was filled to a height of 16 cm in prepared cylindrical containers with a height of 20 cm and a bottom diameter of 20 cm for further treatment.

Soil pH, organic matter, and exchangeable cations were analyzed at the beginning of the experiment. For pH analysis, the prepared soil was mixed with deionized water at a
ratio of 1:2.5 (w/v), and a pH meter (HI98160, Hanna Instruments, USA) was used to read the pH in the dispersion. For the organic matter measurement, a mixture of 20 mL of concentrated sulfuric acid and 10 mL of potassium dichromate (0.8 mol L⁻¹) was applied to dissolve 100 mg of soil. After cooling, the suspension was shaken at 100 rpm for 30 min and then heated for 10 min. A mixed solution of 200 mL of deionized water and 10 mL of phosphoric acid was used to dilute the suspension, and ammonium ferric sulfate was added to titrate dichromate in the suspension (Zhang et al. 2016). For the exchangeable cation determination, 4 g of prepared soil was mixed with 33 mL of sodium acetate (1 mol L⁻¹). After ion extraction, ammonium acetate (1 mol L⁻¹) was applied to replace the sodium ions.

Experimental design

Healthy *C. argentea* seeds with no visible defects were provided by the Guyue landscaping company. After being sterilized using hydrogen peroxide (10%), the seeds were grown in the sand at room temperature according to the methods suggested by Pan et al. (2019). Germinated seedlings were cultivated in clean sand until two pairs of true leaves were developed, and plants with similar morphology were chosen for the root pruning treatments. One *C. argentea* seedling was transplanted into the center of the container filled with soil for 50-day cultivation in a greenhouse (photoperiod, 16/8 h, daytime/night; temperature, 26 °C; photosynthetic photon flux density, 300 μmol m⁻² s⁻¹). The experiment was arranged in a randomized complete block design with a slight (10%), moderate (25%), and severe (33%) root pruning treatments. Seven treatments with five replications each, as follows: (1) the control (without root pruning); (2) two-side-10% treatment (cutting 10% of the roots from both sides of each plant; ~5% from each side); (3) two-side-25% treatment (cutting 25.0% of the roots from both sides of each plant; ~12.5% from each side); (4) two-side-33% treatment (cutting 33.0% of the roots from both sides of each plant; ~16.5% from each side); (5) four-side-10% treatment (cutting 10.0% of the roots from four sides of each plant; ~2.5% from each side); (6) four-side-25% treatment (cutting 25% of the roots from four sides of each plant; ~6.5% from each side); and (7) four-side-33% treatment (cutting 33.0% of the roots from four sides of each plant; ~8.2% from each side). Distilled water was applied in the tray under running water, then with deionized water under sonication (10 min) to completely eliminate attached materials, and finally with calcium chloride (5 mMol L⁻¹; 10 min) to clean the adsorbed metals. The leaves were cleaned with tap water to remove the surface dust and then immersed in Na₂EDTA (10 mM; 10 min) to eliminate adsorbed metals. Deionized water was used to remove the residual calcium chloride and Na₂EDTA from the plant tissues. The cleaned plants were lyophilized at −80 °C.

Cd measurement

The prepared samples were ground onto 74 μm meshes, and the powder was dissolved in aqua regia according to the method suggested by Chamba et al. (2017). After being diluted using deionized water, the digestion was filtered through an OE67 Whatman membrane. The concentration of Cd in the supernatant was analyzed using an inductively coupled plasma mass spectrometer (Agilent 7700, Agilent Technologies, Santa Clara, CA, USA). Soil (GBW07410) and plant (GBW10012) standard references were analyzed to ensure the quality of the analysis. A drift monitoring solution was also utilized to control the signal drift of the apparatus.

Pigment measurement

The concentrations of chlorophyll and carotenoid in the plant leaves were analyzed according to the method suggested by Lichtenthaler (1987). In brief, the cut fresh leaves were homogenized in 80% acetone. The homogenate was centrifuged at 8,000 × g for 20 min in the dark at a temperature of 4 °C. The extracts were measured with a UV-Vis spectrophotometer (UV mini 1240, Shimadzu, Japan) to determine the chlorophyll and carotenoid concentrations, which were calculated from the visible absorbances of 470, 645, and 663 nm (Lichtenthaler 1987).

Lipid peroxidation and electrolyte leakage assay

For evaluation of lipid peroxidation according to the malondialdehyde (MDA) concentration, the plant leaves were homogenized in trichloroacetic acid according to Iqbal et al. (2019). The absorbance of the solution was determined at 450, 532, and 600 nm. The concentration of MDA was calculated using the equation described by Iqbal et al. (2019).

For the electrolyte leakage (EL) analysis, the plant leaves were cut into ~4 mm² pieces and immersed in 8 mL of deionized water for 120 min of heating (32 °C) in a water bath. The initial electrical conductivity (EC₁) of the supernatant was measured using an electrical conductivity meter. The supernatant was then heated for 20 min (120 °C) for electrolyte release. The electrical conductivity (EC₂) of the supernatant was determined again using the same instrument, and the EL was calculated according to the equation suggested by Wang et al. (2017), as follows:

\[EL = \frac{EC_1 - EC_2}{EC_1} \]
Statistical analysis

To evaluate the significant effect of pruning intensity and direction and their interaction on the dry weight, transpiration rate, photosynthetic efficiency, pigment content, and stress injury of *C. argentea*, a two-way analysis of variance was performed using pruning intensity (three levels: 10, 25, and 33%) and pruning direction (two levels: two-side and four-side) as fixed factors. Before the ANOVA, the Shapiro–Wilks test for normality and Levene’s test for homogeneity of variance was conducted. The mean values were compared using the protected Fisher’s least significant difference test at 0.05 confidence using SPSS 15.0.

Bioaccumulation factors (BCFs), transfer factors (TFs), and accumulation factors (AFs) were calculated according to Beiyuan et al. (2017) to evaluate the ability of *C. argentea* to extract, translocate, and decontaminate contaminants, as follows:

\[
\text{BCF} = \frac{\text{Cd content in plant tissues}}{\text{Cd content in substrate}} \\
\text{TF} = \frac{\text{Cd content in aerial parts}}{\text{Cd content in below-ground parts}} \\
\text{AF} = \text{Cd content in plant tissue} \times \text{corresponding dry weight of tissue}
\]

Results

Soil characteristics

The soil pH values at the beginning of the experiment were 6.06 ± 0.38. After the experiment, the pH values decreased by 3.3, 3.3, 8.2, 1.6, 9.8, 8.2, and 3.3% in the control, two-side-10%, two-side-25%, two-side-33%, four-side-10%, four-side-25%, and four-side-33% treatments, respectively (Table 1). Although the pH values among all the root pruning treatments were not statistically significant, the four-side treatments tended to generate lower pH values than the control and two-side treatments. At the end of the experiment, the organic matter content in the soil increased by 5.3, 6.2, 5.7, 2.3, 7.7, 6.3, and 4.9% in the control, two-side-10%, two-side-25%, two-side-33%, four-side-10%, four-side-25%, and four-side-33% treatments, respectively, compared with the initial content (Table 1). The organic matter content did not vary significantly among all treatments. At the beginning of the experiment, the content of exchangeable cations in the soil was 13.6 ± 3.9 cmolc kg⁻¹, and the value decreased by 2.9% in the control at the termination of the treatment. In addition, the values were reduced by 4.1, 3.3, 1.7, 6.6, 5.2, and 3.5%, respectively, in the corresponding root pruning treatments (Table 1). Perveen et al. (2014) reported that *C. argentea* roots secrete organic acids, such as protocatechuic acid, caffeic acid, genetic acid, and gallic acid, and acidize its rhizosphere soil. Wang et al. (2018c) suggested that root cutting enhances the root activity of *Zea mays* L., and thus stimulated the species to secrete more organic matter, thereby supporting the results of this study. Although there were no statistically significant differences in pH and exchangeable cations under any of the treatments, the four-side pruning treatments, regardless of intensity, generated greater impacts on the soil characteristics relative to those of the two-side treatments.

The initial soil Cd content ranged from 2.9 to 4.2 mg kg⁻¹ with an average of 3.5 mg kg⁻¹. The variable coefficient of Cd was 14.3%, thereby indicating the homogeneous distribution of Cd in the composite soil. The concentrations of Cd severely exceeded the statutory limit of Cd (0.3 mg kg⁻¹) established by the Ministry of Environmental Protection of China for farmland. The concentrations of Cd were only analyzed at the beginning of the experiment because the duration of phytoremediation was not sufficient for *C. argentea* to alter the pseudo-total Cd content in the soil. A well-known Cd hyperaccumulator, *Noccaea caerulescens* (formerly *Thlaspi caerulescens* J. & C. Presl), failed to change the soil pseudo-total Cd content in 132 d treatments (Martínez-Alcalá et al. 2016).

Biomass production

The lowest dry weight of *C. argentea* roots was observed in the two-side-33% treatment, which decreased significantly by 47.9% compared with that in the control, and was successively higher in the four-side-33%, two-side-25%, four-side-25%, two-side-10%, control, and four-side-10% treatments (Figure 1). Although only slightly, the four-side-10% treatment increased the dry weight of the plant roots relative to that of the control during the experiment. Contrastingly, all the root pruning treatments, except for the two-side-33% treatment, increased the biomass yield of the leaves and even offset the weight loss of the roots induced by pruning. The highest dry weight of plant leaves was obtained in the four-side-10% treatment, which increased the value significantly by 113.8% compared with that of the control (Figure 1). The results exhibited that both pruning intensity and direction can impact the biomass yield of the species, but pruning direction is the main factor as it has more influences on plant dry weight. The four-side treatments alleviated the detrimental effects of the severity of root pruning on plant growth, as manifested in the higher dry weight of the plant roots and leaves in the four-side treatments than in the corresponding two-side treatments.

Table 1. Variations in soil pH, organic matter content, and exchangeable cations under different treatments.

Treatment	Soil pH	Organic matter (g kg⁻¹)	Exchangeable cations cmolc kg⁻¹
Initial	6.06 ± 0.38	20.9 ± 1.6a	13.6 ± 3.9a
Control	5.86 ± 0.43a	22.0 ± 2.9a	13.2 ± 2.1a
2–10%	5.86 ± 0.40a	22.2 ± 3.3a	13.0 ± 2.7a
2–25%	5.56 ± 0.38a	22.1 ± 2.7a	13.1 ± 2.2a
2–33%	5.96 ± 0.51a	21.4 ± 3.0a	13.4 ± 3.0a
4–10%	5.47 ± 0.42a	22.5 ± 2.5a	12.7 ± 1.6a
4–25%	5.56 ± 0.53a	22.2 ± 3.6a	12.9 ± 2.5a
4–33%	5.86 ± 0.57a	21.9 ± 2.4a	13.1 ± 2.5a

Different letters represent significant differences in soil pH, organic matter, and exchangeable cations (*p < 0.05*) determined by Fisher’s LSD post-hoc tests under different pruning treatments.
Photosynthesis efficiency and pigment level

The transpiration rate of *C. argentea* did not vary significantly among the treatments, except for the two-side-33% treatment, during phytoremediation. The highest transpiration rate of 3.9 mmol H₂O·m⁻²·s⁻¹ was recorded in the four-side-10% treatment and was successively lower in the four-side-25%, two-side-10%, two-side-25%, control, four-side-33%, and two-side-33% treatments (Figure 2). The results exhibited a general trend that low to moderate pruning stimulated the transpiration rate of the species, and severe pruning inhibited it. Although the suitable pruning direction did not further enhance the beneficial effect induced by low to moderate root pruning, it alleviated the detrimental impact caused by severe pruning to some extent. Regarding photosynthesis efficiency, a similar variation trend with transpiration rate was found in all the root pruning treatments. The quotient of photosynthesis efficiency and transpiration rate is the water use efficiency of the species (Larchevêque et al. 2011). In contrast to the variation tendency of the photosynthesis efficiency and transpiration rate, the highest water use efficiency was observed in the two-side-33% treatment and was successively lower in the two-side-10%, four-side-33%, control, two-side-25%, four-side-25%, and four-side-10% treatments (Figure 2). In the two-side-25%, four-side-10%, and four-side-25% treatments, the transpiration rate reduced more quickly than the photosynthetic efficiency, leading to the increase of water use efficiency. That is, pruning intensity is the main factor influencing the variations in transpiration rate, while the direction is the main factor controlling the water use efficiency of the species.

Chlorophyll and carotenoid can be used as biological indicators to reflect the level of external stresses (Shiri et al. 2015). In the present study, the highest chlorophyll content in the plant leaves was observed in the four-side-10% treatment. Except for that in the four-side-10% treatment, no statistically significant differences in chlorophyll concentrations were recorded among the treatments (Figure 3). Compared with the control, only the two-side-33% treatment showed a slightly lower chlorophyll level. The results indicate that the root pruning treatments conducted in the present study generally tend to increase the content of chlorophyll, although not significantly. The severity of root pruning, regardless of direction, induced detrimental effects on the synthesis of carotenoid, as manifested in the significantly lower carotenoid content in the plant leaves in the two-side-33% and four-side-33% treatments compared with that in the control (Figure 3). Therefore, pruning intensity, other than pruning direction, is the main factor affecting concentrations of chlorophyll and carotenoid.

Cd concentration and oxidative damage

The concentrations of Cd were significantly lower in the plant roots than in the leaves (Figure 4). Compared with that of the control, the two-side-33% and four-side-33% treatments had significantly lower Cd contents in the *C. argentea* roots, and other treatments had similar root Cd concentrations. Significantly lower root Cd concentrations were observed in the case of intense root pruning treatments regardless of direction relative to the corresponding low and moderate concentrations.
moderate pruning strategies. In addition, the root Cd content in the four-side-33% treatment was significantly higher than that in the two-side-33% treatment. The results indicate that root pruning generally tends to reduce the Cd content in the below-ground parts of the species, and a suitable cutting direction can alleviate the negative effect, especially under severe root damage. For the plant leaves, the highest content of Cd was observed in the four-side-10% treatment, followed by that in the four-side-25%, two-side-10%, two-side-25%, four-side-33%, and two-side-33% treatments. Compared with that in the control, the Cd concentrations in the leaves were significantly higher in the four-side-10% and four-side-25% treatments. The four-side treatments had higher leaf Cd contents than the corresponding two-side treatments; moreover, the four-side pruning increased the leaf Cd content back to a normal level under severe root damage. Pruning intensity, as the main factor, has more influence on Cd content in both plant roots and shoots more than pruning direction does, while their interactions influenced the accumulation of Cd in plant shoots more significantly than the individual factors. The results indicate that except for the unsuitable pruning treatment, which might cause irreversible damage to the root system, root pruning can increase the content of Cd in the plant leaves. Furthermore, the combination of intensity and direction can further promote the individual positive impacts, and a suitable cutting direction can fully offset the detrimental impact on the Cd uptake and accumulation ability of the species induced by severe root damage.

The highest BCF values of Cd in the plant roots were observed in the four-side-10% treatment, and were successively lower in the four-side-25%, control, two-side-25%, two-side-10%, four-side-33%, and two-side-33% treatments (Table 2), thereby indicating that root pruning generally tends to decrease the root BCF values of Cd. In contrast, all the pruning treatments, except for the two-side-33% treatment, had higher leaf BCF values than the control. In addition, the BCFs of Cd in the leaves were significantly higher than those in the roots.

The TF values of Cd in *C. argentea* were 4.3, 6.7, 5.6, 6.2, 6.5, 6.5, and 6.9, respectively, in the control, two-side-10%, two-side-25%, two-side-33%, four-side-10%, four-side-25%, and four-side-33% treatments. All the values were higher than 1, thereby indicating that the species tends to transfer more extracted Cd from its below-ground parts to its aerial tissues. As shown in Table 2, the TF values increased with the increase in cutting sides and intensity, and the combination of these two factors further improved the positive impact resulting from the individual factors, as manifested by the highest TF in the four-side-33% treatment.
The levels of MDA and EL were calculated to evaluate the membrane lipid peroxidation and integrity in the current study. None of the root pruning treatments exhibited regular impacts on both factors (Figure 5). No statistically significant MDA and EL contents among all the treatments were observed, thereby indicating that root pruning may not result in oxidative damage to *C. argentea*.

Decontamination effect

AFs were calculated to estimate the time required for *C. argentea* to eliminate excessive Cd in the soil. The difference between the determined Cd content in the substrate (3.7 mg kg\(^{-1}\)) and its corresponding statutory limit (0.3 mg kg\(^{-1}\)) multiplied by the weight of the soil in each container (6 kg) was regarded as the excess that needed to be eliminated. The excess amount of Cd divided by the AF value was the necessary harvesting cycling in each treatment.

The AF values of Cd in the different root pruning treatments were 21.4, 43.8, 36.5, 12.9, 74.1, 56.2, and 31.6 mg per plant in the control, two-side-10%, two-side-25%, two-side-33%, four-side-10%, four-side-25%, and four-side-33% treatments (Table 2), respectively. Relative to that of the control, the AF values of the two-side-10%, two-side-25%, four-side-10%, four-side-25%, and four-side-33% treatments increased by 104.5, 70.8, 246.5, 162.8, and 47.8%, respectively, and that of the two-side-33% treatment decreased by 39.5%. This result indicates that severe root cutting with two pruning directions reduced the phytoremediation effect of *C. argentea* by simultaneously decreasing its biomass production and Cd uptake capacity. In addition, a suitable pruning direction can alleviate the detrimental effect, as manifested in the higher AF value in the four-side-33% treatment than that in the control.

It would take 159, 78, 93, 262, 46, 61, and 108 planting cycles using *C. argentea* to reduce the initial Cd content of 3.7 mg kg\(^{-1}\) to an acceptable level in the control, two-side-10%, two-side-25%, two-side-33%, four-side-10%, four-side-25%, and four-side-33% treatments, respectively.

According to the results, the four-side-10% treatment was the optimal method in the current study.

Discussion

Effects of root pruning on biomass yield of plants

The effects of pruning size, pruning location, pruning intensity, and pruning time on the growth status of various plants have been fully discussed in previous works, but conflicting phenomena dominate the previous works in terms of the impacts of this agronomic practice. Generalized rules are difficult to establish because multiple factors may influence physiological responses. For instance, two *Acer* species, namely *Acer palmatum* L. and *Acer negundo* L., showed significantly different growth responses to different pruning intensities. Specifically, root pruning resulted in negative impacts on the above-ground growth of *A. palmatum* but did not influence the growth of *A. negundo* (Benson et al. 2019). For the same species, the dry weight and root plasticity of *Glycine max* L. were increased by root pruning, with the increase being proportional to the extent of root pruning (FanellO et al. 2020). These studies indicate the complexity of the impacts of root pruning on plant growth.

Although the physiological responses of various plants to root pruning were different, almost all previous studies verified that root pruning, except for excessive pruning, which induced irrecoverable damage to the plant roots, can significantly stimulate the emergence of new roots at the incision site, thereby increasing the vitality and absorption area of the root system and extracting and translocating more nutrients from the soil to its aerial parts (Feng et al. 2018; Gao et al. 2018; Miller and Graves 2019). A greater number of lateral roots emerged in the four-side treatments compared with that in the two-side treatments because there were more incisions in the former, which explained why the species in the four-side pruning treatments, regardless of intensity, could produce greater root and leaf biomass than those in the two-side pruning treatments.

Although the responses of *C. argentea* have rarely been reported, a similar study with another plant in the *Poaceae*
family can support the result of this work indirectly. For instance, Aldahadha et al. (2012) found that moderate root damage can result in a negative effect on the water relations of Triticum aestivum cv. Janz, thereby reducing transpiration rate and shoot dry weight of the species, could explain why the two-side-33% root pruning treatment inhibited the growth status of C. argentea roots and leaves.

Responses of plant pigment levels and transpiration rate to root pruning

Root pruning can increase the level of plant hormones in plant roots and shoots, which can why slight and moderate root cutting can improve the photosynthesis efficiency and pigment level of C. argentea at a molecular level. For instance, Wang et al. (2018c) found that root cutting increased the concentrations of cytokinin, abscisic acid, and zeatin riboside in lateral roots, xylem saps, and shoots of Z. mays. They studied the relationship between the leaf hormone levels and morphology of the plant roots and revealed that the newly emerged roots from incisions with a large amount of meristem served as a cytokinin-generating area, and the loss of deep roots impeded the production of cytokinin. The enhanced level of plant hormones can indirectly increase the photosynthesis efficiency and transpiration rate of the species by stimulating the synthesis of chlorophyll and carotenoid in the plant leaves.

In addition, Feng et al. (2018) evaluated the influences of root pruning on the root morphology, physiology, and anatomy of P. orientalis seedlings, and found that the total root length, root surface area, average root diameter, and the number of root tips of the plants subjected to root pruning were higher than those of the non-root pruned seedlings. They reported that well-structured roots are conducive to increasing the nutrient absorption and photosynthetic rate of the species. This explains why 10 and 25% root cutting, regardless of direction, in the current study improved the transpiration rate and pigment concentration of C. argentea. Moreover, Benson et al. (2019) reported that the severity of root pruning caused A. palmatum to lose 70% of its aerial tissues because the species redistributed more photoassimilates to the roots to restore the damage resulting from root cutting. Moreover, Jing et al. (2018) suggested that the below-ground and aerial parts of Populus × euramericana cv. ‘Neva’ can communicate through signaling molecules, which results in a reduction in the transpiration rate in leaves when the roots are partially pruned. These results explain why the transpiration rate of C. argentea in the two-side-33% treatment was significantly lower than other treatments.

In contrast to the transpiration rate and photosynthesis efficiency, it was observed that the severity of the root pruning treatments, regardless of direction, increased the water use efficiency of C. argentea. This might have been because the root pruning treatment produced a stronger impact on transpiration than on photosynthesis. The transpiration rate is more dependent on the stomatal conductance compared with photosynthesis (Kumari et al. 2013); thus, partial stomatal closure caused by intense root pruning can improve the water use efficiency of the species.

Influences of root pruning on Cd accumulation and oxidative damage

Overall, the root pruning treatments generally decreased the Cd content in the plant roots but increased the content in the leaves in the present study. According to previous studies, the agronomic practice can increase the concentrations of specific nutrient elements in plant tissues via three pathways, which can be used to explain the variation in Cd content observed in this experiment. First, the application of moderate root pruning resulted in the significantly higher contents of organic acids and amino acids in the rhizosphere soil of Populus × euramericana compared with those of the control, slight, and intense cutting groups, thereby lowering the pH in the soil and consequently mobilizing the soil Cd (Jing et al. 2017). Second, root cutting promoted the development of lateral roots from the incisions and increased the productivity of the plant roots, thereby resulting in the high absorption area of the root system and enhancing the metal uptake capacity of the species (Lordan et al. 2019). Finally, the current study proved that slight and moderate root pruning can enhance the transpiration rate and photosynthetic efficiency of C. argentea, and verified that the transpiration rate of plants is one of the most important determining factors for phytoextraction (Bagheri et al. 2019; Luo et al. 2019c). In addition, severe root pruning can result in irrecoverable damage to the plant roots, thereby decreasing the metal uptake ability of the species, which explained the low Cd contents in the roots and leaves of C. argentea observed in the present study. Based on the variation trends of BCFs and TFs in the plant tissues, root pruning was conducive to accelerating the extraction rate and translocation rate of Cd in C. argentea; the translocation rate increased faster than the extraction rate, so the TFs increased.

Whether root pruning can cause stress injuries, such as lipid peroxidation and EL has rarely been discussed in previous studies. In this phytoremediation period, none of the root pruning treatments varied the levels of MDA and EL in the plant leaves. Compared with the control, the four-side-10% and four-side-25% treatments can drive more Cd into the aerial parts of C. argentea, which may induce oxidative damage to the plant tissues. However, the four-side-10% and four-side-25% treatments had similar levels of MDA and EL in the plant leaves compared with the control. We hypothesize that a suitable pruning direction can alleviate the oxidative damage caused by the increased content of Cd. More precise experiments should be designed in the future to reveal the relationships among root pruning, stress injury, and antioxidant enzyme activity.

Feasibility of root pruning on Cd phytoremediation

To ensure food security, the Chinese government strictly bans the growing of ornamental plants in arable land, although a significantly higher economic benefit can be
The treatment-induced irreversible damage to the root system. However, a suitable cutting direction can alleviate the negative influences caused by the severe pruning to some extent. The proposed results provide useful information on remediating Cd-polluted soils and may apply to real scale fields since root pruning can be easily and economically performed. The relationships among metal accumulation, oxidative stress, and root pruning were not fully revealed. This is a limitation of this study, and further related experiments are required to overcome this limitation. In addition, based on often unrealistic extrapolations of results obtained from pot treatments, too enthusiastic explanations have been made concerning the possibilities of Cd remediation, indicating that up-scaling of pot findings to regional evaluations should be done with caution.

Funding

The authors thank the National Natural Science Foundation of China (Project No. 21876014) for financial support to carry out this study.

References

Aldahadha AM, Warwick NWM, Backhouse D. 2012. Effects of pythium irregular and root pruning on water-use efficiency of hydroponically grown wheat under PEG-induced drought. J Phytophys. 160(7-8): 397–403. doi:10.1111/j.1439-0434.2012.01917.x.

Bagherti M, Al-Jabery K, Wunsch DC, Burken JG. 2019. A deeper look at plant uptake of environmental contaminants using intelligent approaches. Sci Total Environ. 651(Pt 1):561–569. doi:10.1016/j.scitotenv.2018.09.048.

Beijuan J, Awad YM, Beckers F, Tsang DCW, Ok YS, Rinklebe J. 2017. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere. 178:110–118. doi:10.1016/j.chemosphere.2017.03.022.

Benson AR, Morgenroth J, Koerser AK. 2019. The effects of root pruning on growth and physiology of two Acer species in New Zealand. Urban Forestry and Urban Greening. 38:64–73. doi:10.1016/j.ufug.2018.11.006.

Cameselle C, Gouveia S. 2019. Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazard Mater. 361:95–102. doi:10.1016/j.jhazmat.2018.08.062.

Chamba I, Rosado D, Kalinhoff C, Thangaswamy S, Sánchez-Rodríguez A, Gazquez MJ. 2017. *Erato polyphillioides* – a novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation. Chemosphere. 188:633–641. doi:10.1016/j.chemosphere.2017.08.160.

Das N, Bhattacharya S, Maiti MK. 2016. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTPI is promising for phytoremediation. Plant Physiol Biochem. 105:297–309. doi:10.1016/j.plaphy.2016.04.049.

Eisazadeh S, Asadi Kapourchal S, Homaei M, Noorhosseini SA, Damalas CA. 2019. Chive (*Allium schoenoprasum* L.) response as a phytoextraction plant in cadmium-contaminated soils. Environ Sci Pollut Res Int. 26(1):152–160. doi:10.1007/s11356-018-3545-2.

Fanello DD, Kelly SJ, Bartoli CG, Cano MG, Martinez Alonso S, Guiamet JJ. 2020. Plasticity of root growth and respiratory activity: root responses to above-ground senescence, fruit removal or partial root pruning in soybean. Plant Sci. 290:110296–110299. doi:10.1016/j.plantsci.2019.110296.

Feng Z, Yang X, Liang Y, Kong H, Hui D, Zhao J, Guo E, Fan B. 2018. Improvements in the root morphology, physiology, and

Conclusions

This study found that all root pruning treatments, except for the two-side-33%, increased the phytoremediation effect of *C. argentea* through enhancing both the biomass generation and Cd uptake capacity of the species. Slight and moderate pruning intensities regardless of direction increased the transpiration rate of *C. argentea* and consequently translocate more Cd to the aerial parts of the species. Severe root pruning reduced the phytoremediation effect of *C. argentea* because of its limitation. This is a limitation of this study, and further related experiments are required to overcome this limitation. In addition, based on often unrealistic extrapolations of results obtained from pot treatments, too enthusiastic explanations have been made concerning the possibilities of Cd remediation, indicating that up-scaling of pot findings to regional evaluations should be done with caution.

The authors thank the National Natural Science Foundation of China (Project No. 21876014) for financial support to carry out this study.

Conclusions

This study found that all root pruning treatments, except for the two-side-33%, increased the phytoremediation effect of *C. argentea* through enhancing both the biomass generation and Cd uptake capacity of the species. Slight and moderate pruning intensities regardless of direction increased the transpiration rate of *C. argentea* and consequently translocate more Cd to the aerial parts of the species. Severe root pruning reduced the phytoremediation effect of *C. argentea* because of its limitation. This is a limitation of this study, and further related experiments are required to overcome this limitation. In addition, based on often unrealistic extrapolations of results obtained from pot treatments, too enthusiastic explanations have been made concerning the possibilities of Cd remediation, indicating that up-scaling of pot findings to regional evaluations should be done with caution.
anatomy of *Platyclus orientalis* seedlings from air-root pruning. Horts. 53(12):1750–1756. doi:10.1027/HORTSCI13375-18.

Gao K, Zhu TX, Xun T, Lin W, Yang G. 2018. The influence of root-cutting radius on tuber yield and fuel characteristics of *Helianthus tuberosus* L. in a semi-arid area. Ind Crops Prod. 115:202–207. doi:10.1016/j.indcrop.2018.01.075.

Guo B, Liang Y, Fu Q, Ding N, Liu C, Lin Y, Li H, Li N. 2012. Cadmium stabilization with nursery stocks through transplantation: a new approach to phytoremediation. J Hazard Mater. 199–200: 233–239. doi:10.1016/j.jhazmat.2011.11.001.

Iqbal A, Mushraq MU, Khan AHA, Nawaz I, Yousaf S, Zeshan, Iqbal M. 2019. Influence of *Pseudomonas japonica* and organic amendments on the growth and metal tolerance of *Celosia argentea* L. Environ Sci Pollut Res. 27:24671–24685. doi:10.1007/s11356-019-06181-z.

Jing DW, Liu FC, Wang MY, Ma HL, Du ZY, Ma BY, Dong YF. 2017. Effects of root pruning on the phycosemchemical properties and microbial activities of poplar rhizosphere soil. PLOS One. 12(11): e0187685–17. doi:10.1371/journal.pone.0187685.

Jing DW, Du ZY, Wang MY, Wang QH, Ma HL, Liu FC, Ma BY, Dong YF. 2018. Regulatory effects of root pruning on leaf nutrients, photosynthesis, and growth of trees in a closed-canopy poplar plantation. PLOS One. 13(5):e0197515. doi:10.1371/journal.pone.0197515.

Kim S, Xu X, Zhang Y, Zheng X, Liu R, Dietrich K, Reponen T, Ho S. m, Xie C, Sucharew H, et al. 2019. Metal concentrations in pregnant women and neonates from informal electronic waste recycling. J Expo Sci Environ Epidemiol. 29(3):406–415. doi:10.1038/s41370-019-0054-9.

Kumari S, Agrawal M, Tiwari S. 2013. Impact of elevated CO2 and elevated O3 on *Beta vulgaris* L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut. 174:279–288. doi:10.1016/j.envpol.2012.11.021.

Larchevêque M, Maurel M, Desrochers A, Larocque GR. 2011. How does drought tolerance compare between two improved hybrids of balsam poplar and an unimproved native species? Tree Physiol. 31(3):240–249. doi:10.1093/treephys/trp011.

Li JH, Duan HB, Shi PX. 2011. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis. Waste Manage Res. 29:727–738.

Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382.

Liu J, Mo L, Zhang X, Yao S, Wang Y. 2018. Simultaneous hyperaccumulation of cadmium and manganese in *Celosia argentea* Linn. Int J Phytorem. 20(11):1106–1112. doi:10.1007/s10344-018-0838-z.

Lordan J, Vilardell P, Torres E, Alegre S, As Martínez-Alcalí J, Bernal MP, de la Fuente C, Gonzar D, Clemente R. 2016. Changes in the heavy metal solubility of two contaminated soils after heavy metals phytoextraction with *Noccaea caerulescens*. Ecol Eng. 89:56–63. doi:10.1016/j.ecoleng.2015.11.055.

Miao Y, Guo J, Liu S, Liu H, Zhang G, Yan Y, He J. 2017. Relay transport of aerosols to Beijing-Tianjin-Hebei region by multi-scale atmospheric circulations. Atmos Environ. 165:35–45. doi:10.1016/j.atmosenv.2017.06.032.

Miller BM, Graves WR. 2019. Root pruning and auxin alter root morphology of hickorys. Horts. 54(9):1517–1520. doi:10.21273/HORTSCI14026-19.

Ottosen LM, Pedersen AJ, Hansen HK, Ribeiro AB. 2007. Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method. Electrochim Acta. 52(10):3420–3426. doi:10.1016/j.electacta.2006.06.048.

Pan G, Zhang H, Liu W, Liu P. 2019. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding manganese tolerance in the herb *Macleaya cordata* (papaveraceae). Ecotoxicol Environ Saf. 181:455–462. doi:10.1016/j.ecoenv.2019.06.040.

Park JH, Ok YS, Kim SH, Cho JS, Heo JS, Delaune RD, Seo DC. 2016. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere. 142:77–83. doi:10.1016/j.chemosphere.2015.05.093.

Perveen S, Yousaf M, Zahoor AF, Rasool N, Jabber A. 2014. Extraction, isolation, and identification of various environmental friendly components from cock’s comb (*Celosia argentea*) leaves for allelopathic potential. Toxicol Environ Chem. 96(10):1523–1534. doi:10.1080/027227284.2015.1034157.

Qu G, Tong Y, Gao P, Zhao Z, Song X, Ji P. 2013. Phytoremediation potential of *Solanum nigrum* L. under different cultivation protocols. Bull Environ Contam Toxicol. 91(3):306–309. doi:10.1007/s00128-013-1046-z.

Rasouli-Sadaghiani MH, Barin M, Khodaverdiloo H, Moghaddam SS, Damalas CA, Kamzelamiliou S. 2019. Arbuscular mycorrhizal fungi and rhizobacteria promote growth of Russian knapweed (*Acroptilon repens*) in a Cd-contaminated soil. J Plant Growth Regul. 38(1):231–239. doi:10.1007/s12474-019-00619-z.

Shen Z, Hou D, Zhao B, Xu W, Ok YS, Bolan NS, Alessi DS. 2018. Metal concentrations in pregnant women and neonates from informal electronic waste recycling. J Hazard Mater. 383:121115–121116. doi:10.1016/j.jhazmat.2019.121115.

Shen Z, Hou D, Zhao B, Xu W, Ok YS, Bolan NS, Alessi DS. 2018. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Sci Total Environ. 619–620:185–193. doi:10.1016/j.scitotenv.2017.11.038.

Shen Z, Wang Y, Chen Y, Zhang Z. 2017. Transfer of heavy metals from the polluted rhizosphere soil to *Cassia litter* L. in copper mine tailings. Hortic Environ Biotechnol. 58(1):93–100. doi:10.21273/atvb-msec.2017.134. doi:10.1007/s13580-017-0077-5.

Shiri M, Rabbi M, Abdelly C, Amrani AE. 2015. The halophytic model plant *Thellungiella salsuginea* exhibited increased tolerance to phenanthrene-induced stress in comparison with the glycophytic one *Arabidopsis thaliana*; application for phytoremediation. Ecol Eng. 74:125–134. doi:10.1016/j.ecoleng.2014.09.123.

Valdés-Rodríguez OA, Pérez-Vázquez A. 2019. Seedling characteristics of three oily species before and after root pruning and transplant. Plants. 8(8):258–219. doi:10.3390/plants8080258.

Wang X, Bai J, Wang J, Le S, Wang M, Zhao Y. 2018b. Variations in cadmium accumulation and distribution among different oilseed
rape cultivars in Chengdu Plain in China. Environ Sci Pollut Res Int. 26(4):3415–3427. doi:10.1007/s11356-018-3857-2.

Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J. 2017. Exogenous calcium enhances the photosystem II photochemistry response in salt stressed tall fescue. Front Plant Sci. 8:2032–2012. doi:10.3389/fpls.2017.02032.

Wang XL, Qin RR, Sun RH, Wang JJ, Hou XG, Qi L, Shi J, Li XL, Zhang YF, Dong PH, et al. 2018c. No post-drought compensatory growth of corns with root cutting based on cytokinin induced by roots. Agric Water Manage. 205:9–20. doi:10.1016/j.agwat.2018.04.035.

Wang J, Zhu Q, Shan Y, Wang Y, Song X, Lei X. 2018a. A comparative study on the efficiency of biodegradable EDDS and micro-electric field on the promotion of the phytoextraction by Commelina communis L. in Cu-contaminated soils. Geoderma. 314:1–7. doi:10.1016/j.geoderma.2017.10.057.

Xu P, Tao B, Li N, Qi L, Ren Y, Zhou Z, Zhang L, Liu A, Huang Y. 2013. Levels, profiles and source identification of PCDD/Fs in farmland soils of Guiyu, China. Chemosphere. 91(6):824–831. doi:10.1016/j.chemosphere.2013.01.068.

Zeng S, Ma J, Yang Y, Zhang S, Liu GJ, Chen F. 2019a. Spatial assessment of farmland soil pollution and its potential human health risks in China. Sci Total Environ. 687:642–653. doi:10.1016/j.scitotenv.2019.05.291.

Zeng X, Xu X, Qin Q, Ye K, Wu W, Huo X. 2019b. Heavy metal exposure has adverse effects on the growth and development of preschool children. Environ Geochem Health. 41(1):309–321. doi:10.1007/s10653-018-0114-z.

Zhang P, Chen X, Wei T, Yang Z, Jia Z, Yang B, Han Q, Ren X. 2016. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res. 160:65–72. doi:10.1016/j.still.2016.02.006.