Modeling Investigation of Concurrent-flow Chemical Extraction Process

Miaomiao Nie a, Jing Tan a *, Wen-Sheng Deng a and Yue-Feng Su b

a School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
b School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
*tanjing@bit.edu.cn

Abstract. In this study, modeling investigation of mass transfer in concurrent-flow chemical extraction process is carried out. Continuum Model is used to describe mass transfer process. Concentration curves in organic droplet and aqueous liquid film are firstly calculated and rate-limiting step is determined to be mass transfer of solute in aqueous phase. Mass transfer performance in aqueous phase is further calculated. Volumetric mass transfer coefficient and volumetric mass transfer coefficient during mass transfer time before solute concentration decreases to 5%, are calculated for evaluating mass transfer characteristics. The effect of organic droplet size is studied. The result demonstrates that increase in aqueous/organic volume ratio significantly decreases mass transfer performance, decrease in droplet size enhances mass transfer process through both reducing mass transfer resistance and increasing contacting area.

1. Introduction

Solvent extraction (liquid-liquid extraction) is known as a process for separating compounds based on the solubility difference between two immiscible liquids (usually a water phase and an organic solvent phase).[1] Solvent extraction can be divided into physical extraction and chemical extraction[2]. Physical extraction only contains physical process, such as polarity difference between two solvents while chemical extraction contains chemical reactions, which might provide more significant distribution of solute. Due to high separation efficiency, extraction process containing reversible chemical reactions is catching more and more attention from researchers and is applied in wastewater treatment[3], pharmaceutical industry[4] and nuclear fuel treatment[5]. In extraction process with chemical reactions, there is usually an extractant (E) contained in organic solvent, which coordinates with the solute (S) in aqueous phase. When the organic solvent and aqueous solution contacts, a hydrophobic compounds generates (Equation 1).

\[
[S]_{aq} + [E]_{org} \leftrightarrow [A.E]_{org}
\] (1)

In extraction process with chemical reactions, the rate-limiting step is usually the mass transfer, because fast or even instant reactions are usually selected. On the other hand, in extraction process with chemical reactions, distribution coefficient is usually higher than 10 or even higher than 50 due to the presence of chemical reactions. Therefore, the water/organic phase ratio is also usually higher 10:1.
or even 50:1. High water/organic phase ratio leads to slow mass transfer of solutes in aqueous phase, which is caused by decreased interface area and increased mass transfer resistance in aqueous phase. Understanding of mass transfer mechanism is helpful for process intensification of extraction process with chemical reactions.

Since the last decades, microsized liquid-liquid systems were applied in solvent extraction processes and have caught much attention from researchers. In microsized liquid-liquid systems, microsized droplets were generated by dispersion medium, such as microchannel devices [6] and microfiltration membrane [7]. Experimental results demonstrate that solvent extraction process is significantly intensified when microsized liquid-liquid systems were generated. [7, 8] The mechanism that how the decrease in droplets affects liquid-liquid mass transfer process is still need further understanding. Better understanding of mass transfer mechanism as well as prediction of mass transfer characteristics of liquid-liquid systems with different droplet size are important for designing extraction processes with chemical reactions.

In this study, a physical model is presented for understanding mass transfer mechanism in extraction process with chemical reactions. The effect of droplet size on mass transfer coefficients is then calculated.

2. A general model

Figure 1(a) shows a schematic diagram of organic-droplet-in-water system. After the organic phase was dispersed into droplets, the liquid-liquid system flows along the flowing channel concurrently. The relative velocity of organic droplets to continuous water phase is low and therefore, the organic-droplet-in-water system can be divided into a large number of mass transfer units. As shown in Figure 1(b), in each mass transfer unit, an organic droplet and a liquid film (aqueous phase) are contained. In each mass transfer unit, mass transfer of solute (S) in aqueous phase and extractant (E) in organic phase take place independently, which could be calculated according to Continuum Model, based on mass balance.

![Figure 1. Schematic diagram of (a) flowing system in concurrent extraction process; (b) mass transfer unit; (c) mass transfer in organic droplets; (d) mass transfer in aqueous liquid film.](image)

2.1. Assumptions

Before calculation, the following assumptions are made:

a) The dispersed organic droplets are in the middle of mass transfer unit and uniform. Averaged-droplet-diameter, d_{org}, is used in modeling.

b) The thickness of aqueous liquid films are uniform and averaged-liquid-film-thickness, L_{aq}, is used in modeling, which is calculated according to d_{org} and organic/aqueous flow rate ratio, $F_{\text{org}}/F_{\text{aq}}$.

c) d_{org} and L_{aq} are both constant during contacting period, where average values before and after contacting period are applied and therefore coalescence of organic droplets can be ignored.
d) During contacting period, both organic droplets and aqueous liquid films are stagnant, and therefore, only effects of diffusion of solute in aqueous phase and extractant in organic phase are considered, respectively.

e) Reaction as Equation (1) takes place between solute in aqueous phase and extractant in organic phase, intrinsic dynamics of which is fast enough for consuming solute (S) as soon as it reaches droplet-liquid-film interface.

f) In each mass transfer unit, only process of mass transfer through interface between organic droplet and aqueous liquid film around it is considered, while process of mass transfer though outer surface of aqueous liquid film to adjacent mass transfer units is not taken into account, by considering uniformity of mass transfer units.

Based on Assumption a)-f), in each isolated mass transfer unit, mass transfer of solute in aqueous phase and extractant in organic phase can be calculated, respectively.

2.2. Mass transfer in the organic droplets

Mass transfer of extractant in the organic droplet in mass transfer unit can be calculated according to the Continuum Model in spherical coordinate, as Equation (2) (Figure 1(c)).

\[
\frac{\partial C_{E_{-org}}}{\partial t} = D_{E_{-org}} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C_{E_{-org}}}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial C_{E_{-org}}}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 C_{E_{-org}}}{\partial \phi^2} \right] \tag{2}
\]

in which \(C_{E_{-org}} \) is extractant concentration in the organic droplet in mol/m\(^3\); \(D_{E_{-org}} \) is diffusion coefficient of extractant in organic phase in m\(^2\)/s; \(t \) is contacting time in s.

Equation (2) can be simplified as Equation (3) due to the symmetry of assumed mass transfer unit.

\[
\frac{\partial C_{E_{-org}}}{\partial t} = D_{E_{-org}} \left(\frac{\partial^2 C_{E_{-org}}}{\partial r^2} + \frac{2}{r} \frac{\partial C_{E_{-org}}}{\partial r} \right) \tag{3}
\]

I.C. \(t = 0, 0 \leq r \leq R_{org}, C = C_{E_{-org},0} \)

B.C. \(r = 0, \forall t, \frac{\partial C_{E_{-org}}}{\partial r} = 0 \)

\(r = R_{org}, \forall t, C_{E_{-org}} = 0 \)

in which \(C_{E_{-org},0} \) is initial extractant concentration in organic droplet in mol/m\(^3\).

Equation (3) is solved as Equation (4), in which instantaneous concentration profiles is calculated.

\[
C_{E_{-org}} = \sum_{k=1}^{\infty} 2C_{E_{-org},0} (-1)^{k-1} \frac{k \pi}{R_{org}} \frac{R_{org}}{R_{org}} \exp \left\{ - \left(\frac{k \pi}{R_{org}} \right)^2 D_{E_{-org}} t \right\} \tag{4}
\]

According to Fick’s First Law, mass transfer rate through the outer surface of organic droplet can be calculated as Equation (5).

\[
N_{E_{-org}}(t) = 8 \pi R_{org} D_{E_{-org}} C_{E_{-org}} \sum_{k=1}^{\infty} \exp \left\{ - \left(\frac{k \pi}{R_{org}} \right)^2 D_{E_{-org}} t \right\} \tag{5}
\]
2.3. Mass transfer in aqueous liquid film

For simplifying calculation, aqueous liquid film surrounding is approximately spread to be an infinite plate. In this case, mass transfer of solute in aqueous liquid film in mass transfer unit can be calculated according to the Continuum Model, as Equation (6) (Figure 1(d)).

\[
\frac{\partial C_{\text{aq}}}{\partial t} = D_{\text{aq}} \left(\frac{\partial^2 C_{\text{aq}}}{\partial x^2} + \frac{\partial^2 C_{\text{aq}}}{\partial y^2} + \frac{\partial^2 C_{\text{aq}}}{\partial z^2} \right)
\]

(6)

in which \(C_{\text{aq}}\) is solute concentration in aqueous liquid film in mol/m\(^3\); \(D_{\text{aq}}\) is diffusion coefficient of solute in aqueous phase in m\(^2\)/s.

Equation (6) can be simplified as Equation (7) due to symmetry of assumed mass transfer unit.

\[
\frac{\partial C_{\text{aq}}}{\partial t} = D_{\text{aq}} \frac{\partial^2 C_{\text{aq}}}{\partial z^2}
\]

\(I.C.\ t = 0, 0 \leq z \leq L_{\text{aq}}, C_{\text{aq}} = C_{\text{aq},0}\)

\(B.C.\ z = 0, \forall t, \frac{\partial C_{\text{aq}}}{\partial z} = 0\)

\(z = L_{\text{aq}}, \forall t, C_{\text{aq}} = 0\)

(7)

in which \(C_{\text{aq},0}\) is initial solute concentration in aqueous liquid film in mol/m\(^3\).

Equation (7) is solved as Equation (8), in which instantaneous concentration profiles is calculated.

\[
C_{\text{aq}} = \sum_{k=0}^{\infty} \frac{2C_{\text{aq},0}(-1)^k}{\mu_k L_{\text{aq}}} \cos(\mu_k z) \exp(-\mu_k^2 D_{\text{aq}} t)
\]

(8)

in which

\[
\mu_k = \frac{2k + 1}{2L_{\text{aq}}} \pi
\]

(9)

According to Fick’s First Law, mass transfer flux through interface between organic droplet and aqueous liquid film can be calculated as Equation (10).

\[
N_{\text{aq}}(t) = \frac{8 \pi R_{\text{org}}^2 D_{\text{aq}} C_{\text{aq},0}}{L_{\text{aq}}} \sum_{k=0}^{\infty} \exp(-\mu_k^2 D_{\text{aq}} t)
\]

(10)

in which \(N_{\text{aq}}\) is instantaneous mass transfer rate of solute in aqueous liquid film in mol/s.

3. Modeling results and discussion

3.1. Comparison of mass transfer performance in organic droplet and aqueous liquid film

Firstly, mass transfer performance in organic droplet and aqueous liquid film are calculated, respectively, for determining the rate-limiting step in concurrent-flow chemical extraction. The decrease in concentration of extractant in organic droplet and solute in aqueous liquid film are determined respectively by assuming all substrate is consumed instantaneously as it reaches liquid-liquid interface. When chemical extraction is carried out, \(F_{\text{org}}/F_{\text{aq}}\) is usually higher than 10 because of high distribution coefficient. Thus, results under operating conditions of \(F_{\text{org}}/F_{\text{aq}} = 10, 20, 40, 80\) and 160 are calculated. Also, droplets size affects mass transfer characteristics significantly, thus, situation
with droplet radius of 100 μm and 1 mm are calculated, respectively, as shown in Figure 2(a) and (b). During the calculation in this section, $D_{E_{\text{org}}}$ and $D_{E_{\text{aq}}}$ are both set as 1×10^{-9} m2/s, considering the similarity of solute and extractant in liquids.

As shown in Figure 2 and 3, at the same droplet size, the curve of $C_{E_{\text{org}}} / C_{E_{\text{org}},0}$ is significantly steeper than curves of $C_{E_{\text{aq}}} / C_{E_{\text{aq}},0}$. For instance, contacting time for $C_{E_{\text{aq}}} / C_{E_{\text{aq}},0}$ to reach 5% in aqueous phase when $F_{\text{org}}/F_{\text{aq}}=10:1$ is about 50 times longer than contacting time for $C_{E_{\text{org}}} / C_{E_{\text{org}},0}$ to reach 5% in organic phase and even longer at higher $F_{\text{org}}/F_{\text{aq}}$ value. This result indicates concurrent-flow chemical extraction process is limited by mass transfer of solute in aqueous phase. Comparison among curves with different $F_{\text{org}}/F_{\text{aq}}$ values at the same droplet size demonstrate that $C_{E_{\text{aq}}} / C_{E_{\text{aq}},0}$ curves become flatter as the increase in $F_{\text{org}}/F_{\text{aq}}$ value, indicating weakening in mass transfer characteristics. Comparison among curves with different droplet size at the same $F_{\text{org}}/F_{\text{aq}}$ value indicates significant intensification in mass transfer performance caused by the decrease in droplet size, which is in coincidence with experimental results in literatures [7, 8].

![Figure 2. Comparison of concentration curve in organic droplet and aqueous liquid film with droplet radium 100 μm](image)

![Figure 3. Comparison of concentration curve in organic droplet and aqueous liquid film with droplet radium 100 μm](image)

3.2. Influence of droplet dispersion size on mass transfer characteristics in aqueous liquid film

As shown in Section 3.1, current-flow chemical extraction process is limited by mass transfer of solute in aqueous phase. Thus, modeling of mass transfer performance in aqueous liquid film is conducted for better understanding of process intensification caused by decreasing dispersion size. Mass transfer coefficients as well as specific surface area are calculated for evaluating mass transfer characteristics in different systems. The volumetric mass transfer coefficient during mass transfer process before $C_{E_{\text{aq}}} / C_{E_{\text{aq}},0}$ reaching 5%, $k_{W} a$, is determined as Equation (11).

$$k_{W} a = \frac{(C_{E_{\text{aq}},0} - C_{E_{\text{aq}},1})}{t_{1} \cdot \Delta C_{E_{\text{aq}}}}$$ \hspace{1cm} (11)

in which $C_{E_{\text{aq}},1}$ is solute concentration in aqueous phase after mass transfer in mol/m3; t_{1} is mass transfer time for solute concentration to reach $C_{E_{\text{aq}},1}$ in s; $\Delta C_{E_{\text{aq}}}$ is the logarithmic mean concentration difference during mass transfer process in mol/m3.

Mass transfer coefficient during mass transfer process before $C_{E_{\text{aq}}} / C_{E_{\text{aq}},0}$ reaching 5%, k_{W}, is determined as $k_{W} = k_{W} a / a$, in which a is specific surface area of dispersed system in m$^{-1}$.
As shown in Figure 4 and 5, at different F_{org}/F_{aq} value, both k_w and k_wa increase significantly as decrease in organic droplet size, in which the $k_wa \sim R_{org}$ curve is significantly steeper than the $k_w \sim R_{org}$ curve. This result indicates that realization of microdispersion intensifies extraction process by both decreasing mass transfer resistance as well as increasing mass transfer area. The modeling result also demonstrates significant increase in mass transfer resistance as the increase in phase ratio.

Figure 4. Influence of droplet radius on k_wa in aqueous phase.

Figure 5. Influence of droplet radius on k_w in aqueous phase.

4. Conclusion

In this study, modeling investigation of mass transfer in concurrent-flow chemical extraction process is conducted using the Continuum Model. The rate-limiting step is firstly determined by calculating concentration curves in organic droplet and aqueous liquid film, respectively. Mass transfer characteristics in aqueous liquid film is calculated further, which is evaluated by volumetric mass transfer coefficient and mass transfer coefficient during mass transfer time before solute concentration decreases to 5% of initial concentration. Influence of organic droplet size is studied. The result demonstrates the increase in aqueous/organic volume ratio significantly decreases mass transfer performance, the decrease in droplet size enhances mass transfer process through both reducing mass transfer resistance and increasing contacting area.

Acknowledgments

The authors gratefully acknowledge the support of National Natural Science Foundation of China (21878019, 51472032, 21573017, U1664255) and Beijing Natural Science Foundation (2182063).

References

[1] S. X. Lu, Z. T. Mi, L. Wang, Y. Q. Wang, Z. H. Zhu and S. B 2005 Fu Experimental investigation and simulation of gas-liquid-liquid reactive extraction process for the production of hydrogen peroxide, Chem. Eng. Sci. 60 6298-306

[2] King, C.J 1987 Handbook of Separation Process Technology John Wiley & Sons (New York)

[3] Urasaki N and Wong CP 1999 Separation of low molecular siloxanes for electronic application by liquid-liquid extraction IEEE Trans Electron Packag Manufact. 22 295–8

[4] Goklen KE and Hatton TA 1987 Liquid-liquid extraction of low molecular-weight proteins by selective solubilization in reversed micelles Sep Sci Technol. 22 831–41

[5] Pai SA, Lohithakshan KV, Mithapara PD and Aggarwal SK 2000 Solvent extraction of uranium(VI), plutonium(VI) and americium-(III) with HTTA/HPMBP using mono- and bi-functional neutral donors: synergism and thermodynamics J Radioanal Nucl Ch. 245 623–8
[6] H. Hotokezaka, M. Tokeshi, M. Harada, T. Kitamori and Y. Ikeda 2005 System for high-level radioactive waste using microchannel chip - Extraction behavior of metal ions from aqueous phase to organic phase in microchannel *Prog. Nucl. Energ.* 47 439-47

[7] J. H. Xu, G.S. Luo, G.G. Chen and B. Tan 2005 Mass transfer performance and two-phase flow characteristic in membrane dispersion mini-extractor *J. Membrane. Sci.* 249 75-81

[8] A. Muto, M. Maruta, T. Bhaskar and Y. Sakata 2004 Extraction properties of a Y-pattern microchannel reactor with a settler *Kagaku Kogaku Ronbun* 30 159-63