New Insight regarding *Legionella* Non-Pneumophila Species Identification: Comparison between the Traditional *mip* Gene Classification Scheme and a Newly Proposed Scheme Targeting the *rpoB* Gene

Maria Rosaria Pascale, a Silvano Salaris, a Marta Mazzotta, a Luna Girolamini, a Giulia Fregni Serpini, b Laura Manni, b Antonella Grottola, b Sandra Cristino a

aDepartment of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
bRegional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy

Maria Rosaria Pascale and Silvano Salaris contributed equally to this article. Author order was determined in order of increasing seniority.

ABSTRACT The identification of *Legionella* non-pneumophila species (non-Lp) in clinical and environmental samples is based on the *mip* gene, although several studies suggest its limitations and the need to expand the classification scheme to include other genes. In this study, the development of a new classification scheme targeting the *rpoB* gene is proposed to obtain a more reliable identification of 135 *Legionella* environmental isolates. All isolates were sequenced for the *mip* and *rpoB* genes, and the results were compared to study the discriminatory power of the proposed *rpoB* scheme. Complete concordance between the *mip* and *rpoB* results based on genomic percent identity was found for 121/135 (89.6%) isolates; in contrast, discordance was found for 14/135 (10.4%) isolates. Additionally, due to the lack of reference values for the *rpoB* gene, inter- and intraspecies variation intervals were calculated based on a pairwise identity matrix that was built using the entire *rpoB* gene (~4,107 bp) and a partial region (329 bp) to better evaluate the genomic identity obtained. The interspecies variation interval found here (4.9% to 26.7%) was then proposed as a useful sequence-based classification scheme for the identification of unknown non-Lp isolates. The results suggest that using both the *mip* and *rpoB* genes makes it possible to correctly discriminate between several species, allowing possible new species to be identified, as confirmed by preliminary whole-genome sequencing analyses performed on our isolates. Therefore, starting from a valid and reliable identification approach, the simultaneous use of *mip* and *rpoB* associated with other genes, as it occurs with the sequence-based typing (SBT) scheme developed for *Legionella pneumophila*, could support the development of multilocus sequence typing to improve the knowledge and discovery of *Legionella* species subtypes.

IMPORTANCE *Legionella* spp. are a widely spread bacteria that cause a fatal form of pneumonia. While traditional laboratory techniques have provided valuable systems for *Legionella pneumophila* identification, the amplification of the *mip* gene has been recognized as the only useful tool for *Legionella* non-pneumophila species identification both in clinical and environmental samples. Several studies focused on the *mip* gene classification scheme showed its limitations and the need to improve the classification scheme, including other genes. Our study provides significant advantages on *Legionella* identification, providing a reproducible new *rpoB* gene classification scheme that seems to be more accurate than *mip* gene sequencing, bringing out greater genetic variation on *Legionella* species. In addition, the combined use of both the *mip* and *rpoB* genes allowed us to identify presumed new *Legionella* species, improving epidemiological investigations and acquiring new understanding on *Legionella* fields.
Legionella spp. have been described as the causative agent of legionellosis in humans. The term refers to two main form of diseases, Legionnaires’ disease, a severe multisystem disease involving pneumonia, and Pontiac fever, a nonpneumonic form, acute, self-limiting influenza-like illness. Additionally, extrapulmonary (e.g., sinusitis, hip wound infection, and prosthetic valve endocarditis) and asymptomatic forms are reported (1–3). The Legionella genus includes Gram-negative aerobic bacteria widely found in both natural and artificial aquatic environments, where they can multiply inside free-living amoebae, protozoa, and biofilms, exploiting them as a source of nourishment and protection (4–6).

Currently, 66 Legionella species have been identified to date, and about half of them are linked with human infection, and some species contain more than one serogroup (7, 8). The most studied species is Legionella pneumophila (Lp), which comprises 16 serogroups; the majority of cases, clusters, and outbreaks are attributable to serogroup 1 (Sg1). Other Legionella non-pneumophila species (non-Lp) are less studied and less commonly associated with human disease; thus, they remain undiagnosed due to limits of current diagnostic methods, which are more specific and sensitive for Lp. Indeed, the commonly used diagnostic method is the detection of a urinary antigen that is more sensitive for Lp Sg1 and does not permit the detection of Lp non-Sg1 or other Legionella species (9).

Among non-Lp species, Legionella longbeachae is the leading cause of infection in Australia and New Zealand, and potting soil mixes are considered the main source of infection (8, 10). Legionella anisa, in addition to being isolated with Lp, is associated with several cases of legionellosis and coinfection (11–16), while Legionella rubrilucens was isolated from pneumonia patients coinfected with Lp (17).

Considering the broad distribution of Legionella and the high incidence of disease, environmental Legionella surveillance is an important activity for preventing legionellosis (18). Monitoring of several water sources (water distribution systems, cooling towers, fountains, spas, etc.) remains the main approach to prevent infection and to perform a fast identification of clusters and outbreaks that occur in community, hospital, and travel settings. Therefore, the possibility of rapidly identifying Legionella spp. with highly specific and sensitive methods represents one of the most important objectives for the control and prevention of Legionella.

Over time, numerous methods have been developed for the detection, identification, and typing of Legionella spp. both in clinical and environmental samples. The culture of clinical and environmental samples is the gold standard for Legionella detection, and the subcultivation of isolated colonies on buffered charcoal yeast extract (BCYE) without L-cysteine (L-cys) is the first step to discriminate Legionella from other bacteria. Serological methods, such as the agglutination test, the direct fluorescent antibody (DFA) test, and indirect immunofluorescence assay (IFA), are mostly used for discrimination between non-Lp species and Lp serogroups (19, 20). Although these methods are commonly used, each of them shows different sensitivity and specificity and various error ranges; the culture technique is time consuming, technically difficult, and requires a long incubation time. However, serological methods lead to the occurrence of false-negative results and cross-reaction between species, limiting their specificity (1, 21).

To overcome these limitations, more rapid and precise identification of Legionella spp. can be provided by sequence analyses, which, as simple tools, can reduce the time needed for Legionella isolate identification with improved sensitivity and specificity (22, 23). Currently, the gold standard for Legionella spp. typing is based on the approaches developed by the European Working Group for Legionella Infection (EWGLI) that are represented by a sequence-based typing (SBT) approach for clinical
and environmental Lp strains (24, 25) and a database based on macrophage infectivity potentiator (mip) gene sequencing for non-Lp isolates (26, 27). Currently, while for clinical and environmental Lp strains, a multilocus typing scheme has been developed by the EWGLI, represented by a SBT approach (24, 25), regarding the non-Lp isolates, identification is still based only on mip gene sequencing (26, 27), and no recognized and standardized typing approach was developed. Regarding the identification of Legionella species, several genetic markers have been proposed, including 16S rRNA, which was subsequently replaced by the mip gene, as this gene can overcome the limitations of intraspecies heterogeneity in the 16S rRNA gene (28). However, some species and some environmental isolates could not be confidently discriminated by the mip scheme, such as L. geestiana or European wild strain LC4381 (29).

Another gene that is widely used for bacterial identification is the rpoB gene. This gene encodes a subunit of DNA-dependent RNA polymerase, and mutations in its sequence are known to cause rifampicin resistance. rpoB DNAs comprise a highly conserved region throughout bacteria that may be used for bacterial classification (30). It can identify enteric bacteria, Mycobacterium, spirochetes, and Legionella species, including some causative agents of Legionnaires’ disease (30, 31). Regarding the identification of non-Lp, the nucleotide variation of rpoB is able to differentiate these species better than 16S rRNA and mip in some cases (31). The partial rpoB sequence (300 bp) can guarantee the genotypic classification of Lp and blue-white autofluorescent species (31). This region can distinctly differentiate species that share high similarities in their 16S rRNA gene sequences and that cannot be analyzed successfully by mip (26, 31). Thus, rpoB analysis could clearly differentiate among Legionella spp.

Although rpoB has higher intraspecies variability, it is widely used for bacterial identification, and it is considered, in some cases, to be the best approach, such as for non-tuberculous mycobacteria (NTM) and Acinetobacter. This marker is not sufficient for Legionella classification, especially for non-Lp, although different studies have already suggested combining rpoB with the mip gene to identify these species more accurately (32–34). In addition, in the scientific literature, there are reference values for mip gene analysis that can be used to determine the inter- and intraspecies nucleotide variation; however, for rpoB, there are no works that establish reference intervals (26), and this limits the application of the rpoB gene as a marker in the classification scheme.

In the present study, 135 Legionella spp. strains recovered from environmental communities were analyzed for rpoB gene sequencing, and the results obtained were compared with a mip gene sequencing identification scheme to study the discriminatory power of rpoB sequences and establish an inter- and intraspecies variation interval to improve the use of the rpoB gene as a target for non-Lp identification.

RESULTS

All 135 isolates showed positive growth on BCYE cys+ and negative growth on BCYE cys− and tryptone soy agar (TSA) with 5% sheep blood agar. Moreover, the agglutination for Legionella species antisera test displayed positive results for 34/135 isolates (25.2%) and ambiguous results for 10/135 (7.4%) isolates; in contrast, most isolates (91/135 [67.4%]) showed negative results for the agglutination test. All of them were then submitted for gene amplification as previously described.

mip and rpoB sequencing results. All isolates (135/135 [100%]) were identified by mip and rpoB sequencing analysis at the species level as follows: L. anisa 51/135 (37.7%), L. rubrilucens 26/135 (19.2%), L. taurinensis 22/135 (16.3%), and L. nautarum 15/135 (11.1%). The remaining isolates were represented by L. feeleii 7/135 (5.2%), L. londiniensis 7/135 (5.2%), L. quateirensis 4/135 (3.0%), L. quinlivanii 1/135 (0.7%), and L. steelei 1/135 (0.7%). The positive control was confirmed to belong to L. pneumophila.

Regarding the percentage of genomic identity, complete concordance between mip and rpoB results was found in 121/135 (89.6%) isolates; in contrast, discordance was returned for 14/135 (10.4%) isolates. In particular, it is possible to evaluate the number of isolates displaying concordance between the mip and rpoB results, including 49/135
belonging to *L. anisa*, 26/135 belonging to *L. rubrilucens*, 15/135 belonging to *L. nautarum*, 7/135 belonging to *L. londiniensis*, 22/135 belonging to *L. taurinensis*, and 1/135 belonging to *L. steelei*.

The results obtained by *mip* and *rpoB* gene sequencing and their ranges of matches compared to the reference strains are shown in Table 1, where the 14 isolates with a discrepancy in the nucleotide identity percentage for *mip*, *rpoB*, or both genes are highlighted in bold. Regarding *mip* gene identification, compared with the respective reference strains, our isolates showed a nucleotide identity interval of 98.2% to 100%, with the exception of two *L. anisa* isolates and one *L. quinlivanii* isolate with nucleotide identities of 96.7% and 96.2%, respectively. However, the *rpoB* gene results showed a nucleotide identity interval of 95.1% to 100%, except for two isolates of *L. anisa* and four isolates of *L. quateirensis*, which were identical to each other with nucleotide identity percentages of 92.4% and 94.5%, respectively. Moreover, for the seven isolates identified by the *mip* gene as *L. feeleii* (98.2%), a discrepancy with the *rpoB* gene identity results was found, showing a percentage of identity of 95.4% for six isolates and 95.1% for one isolate.

To obtain a reliable identification scheme for the *rpoB* gene in our isolates, it was important to determine the specific intra- and interspecies variation intervals, as has been done for the *mip* sequence-based classification scheme created by Ratcliff et al. (26). Therefore, our attention was focused mainly on the 14 isolates previously described as having higher discrepancies in nucleotide identity percentage.

Table 1: Comparison of *mip* and *rpoB* gene sequence results for match percentage (%), number of mismatches (mm), and interspecies identity and variation percentage with the respective reference strains

No. of isolates	Reference strain	*mip* gene nucleotide identity (%)	Interspecies identity interval	Interspecies variation interval
			69.5–96.4%	3.6–30.5%
n = 51	ATCC 35292	n = 48	100.0%; 0 mm; 0%	96.7%; 20 mm; 3.3%
			n = 2	99.8%; 1 mm; 0.2%
			n = 1	
L. anisa				
n = 26	ATCC 35304	100.0%; 0 mm; 0%		
L. rubrilucens				
n = 22	NCTC 13314	100.0%; 0 mm; 0%		
L. taurinensis				
n = 15	ATCC 49506	100.0%; 0 mm; 0%		
L. nautarum				
n = 7	ATCC 35072	98.2%; 11 mm; 1.8%		
L. feeleii				
n = 7	ATCC 49505	100.0%; 0 mm; 0%		
L. londiniensis				
n = 4	ATCC 49507	98.2%; 11 mm; 1.8%		
L. quateirensis				
n = 1	ATCC 43830	96.2%; 23 mm; 3.8%		
L. quinlivanii				
n = 1	ATCC BAA2169	99.8%; 1 mm; 0.2%		
L. steelei				
Positive control	ATCC 33152	99.0%; 6 mm; 1.0%		

No. of isolates	Reference strain	*rpoB* gene nucleotide identity (%)	Interspecies identity interval	Interspecies variation interval
			73.3–95.1%	4.9–26.7%
n = 48	100.0%; 0 mm; 0%	n = 48	92.4%; 25 mm; 7.6%	
			n = 1	99.4%; 2 mm; 0.6%
			n = 1	100.0%; 0 mm; 0%
n = 21	100.0%; 0 mm; 0%		97.3%; 9 mm; 2.7%	
n = 1	100.0%; 0 mm; 0%		100.0%; 0 mm; 0%	
n = 6	95.4%; 15 mm; 4.6%	n = 1	95.1%; 16 mm; 4.9%	
n = 1	100.0%; 0 mm; 0%		100.0%; 0 mm; 0%	
n = 1	94.5%; 18 mm; 5.5%		95.7%; 14 mm; 4.3%	
n = 1	100.0%; 0 mm; 0%		100.0%; 0 mm; 0%	
n = 1	98.8%; 4 mm; 1.2%			

Reference 26.

*Based on the 329-bp matrix of the type strain (Fig. 2a and b).
A pairwise identity matrix for the entire length of the rpoB gene based on 53 reference strains downloaded from NCBI, with a gene size from 4,101 to 4,143 bp, was built (Fig. 1a and b). The matrix returned an interspecies pairwise identity interval of 72.7% to 95.0%. Therefore, the obtained interspecies variation interval was between 5.0% and 27.3%. The calculated intraspecies identity interval was 95.1% to 100%, resulting in an intraspecies variation interval between 0% and 4.9%, which permits the classification of unknown isolates as belonging to the same species.

A second matrix was built considering only a 329-bp region of the rpoB gene (Fig. 2a and b) that was suggested by Ko et al. (31). The matrix returned an interspecies pairwise identity interval of 73.3% to 95.1%. The interspecies variation interval was between 4.9% and 26.7%. The calculated intraspecies identity interval was 95.1% to 100%, resulting in an intraspecies variation interval between 0% and 4.9%, which permits the classification of unknown isolates as belonging to the same species.

On the basis of the intra- and interspecies intervals calculated from the 329-bp rpoB gene region identity matrix, we analyzed the results for 14 isolates that showed discrepancies in mip and rpoB gene identification. The two L. anisa isolates determined according to the gold standard mip gene classification scheme were correctly identified; in contrast, the percentage of identity found for rpoB with respect to the reference strains (92.4%) did not fall within the intraspecies identity interval (lower cutoff at 95.1%), thus suggesting the possibility that the strains belong to different species. The
same considerations can be applied to the four *L. quateirensis* isolates, which showed a percentage of identity for the *rpoB* gene of 94.5%.

The identity values of seven strains of *L. feeleii* and one isolate of *L. quinlivanii*, determined according to the *mip* gene classification scheme, showed borderline results with the *rpoB* classification scheme based on the observed cutoff values of 95.1% to 95.4% for the presumptive *L. feeleii* and 95.7% for *L. quinlivanii*. These findings provide further evidence of their misidentification and the necessity of further investigation.

Moreover, Table 2 reports the nucleotide and amino acid differences in the wild strains with respect to the corresponding reference strains. Interestingly, it is possible to note that all the wild strains presented nucleotide differences in both genes. Despite the *rpoB* gene being characterized as having greater genetic variability (number of DNA mismatches), the deduced amino acid sequences of the *mip* gene showed a higher number of amino acid substitutions. It is important to emphasize that all 14 isolates focused on in our study showed few amino acid substitutions in the *mip* gene, from 1 to 3; in contrast, regarding the *rpoB* gene, only five amino acid substitutions were reported in *L. taurinensis*.

Figures 3 and 4 display the relationship between all 135 isolates used in the study and the corresponding reference strains for the *mip* and *rpoB* genes, respectively. The dendrogram built using the *mip* and *rpoB* gene sequences regrouped all isolates into 10 clades corresponding to a specific *Legionella* species. In the *mip* gene dendrogram, no relevant differences were found, with the exception of two isolates of *L. anisa* (MR 54 and MR 97) that were separated from the corresponding main branch, suggesting a possible misidentification of these isolates. In contrast, the dendrogram built using the *rpoB* gene showed the same 10 clades but with a higher genetic distance between wild types and the reference strains.
Legionella species	GenBank accession no.	Culture collection and type strain	Legionella isolate ID	mip and rpoB sequence identification	No. of DNA and AA mismatches
L. anisa	LNXS01000032.1	ATCC 35292 and WA-316-C3	MR 1–5, MR 7–9, MR 16, MR 18, MR 21, MR 31–33, MR 39–53, MR 65, MR 86–92, MR 98–99, MR 111–112, MR 115–121	L. anisa	0 0 0 DNA 0 AA
L. feelei	NZ_LBHKO1000054.1	ATCC 35072 and ATCC 35072	MR 69–73, MR 104	L. feelei	1 0 2 0 DNA 1 AA
L. londiniensis	LNYK01000008.1	ATCC 49505 and ATCC 49505	MR 57, MR 95–96, MR 100–103	L. londiniensis	0 0 0 DNA 0 AA
L. nautarum	LNYO01000023.1	ATCC 49506 and ATCC 49506	MR 11, MR 84, MR 105–110, MR 126–131, MR 133	L. nautarum	0 0 0 DNA 0 AA
L. quaterensis	LNYR01000011.1	ATCC 49507 and ATCC 49507	MR 66–68, MR 85	L. quaterensis	11 2 18 0 DNA 1 AA
L. quinlivanii	LNYO10000014.1	ATCC 43830 and CDC 1442-AUS-E	MR 36	L. quinlivanii	23 3 14 0 DNA 1 AA
L. rubrilucens	LNYT01000018.1	ATCC 35304 and WA-270A-C2	MR 15, MR 17, MR 19–20, MR 22–25, MR 35–35, MR 61–64, MR 74–83, MR 122, MR 124	L. rubrilucens	0 0 0 DNA 0 AA
L. steelei	LNYO10000006.1	ATCC BAA2169 and IMVS3376	MR 10	L. steelei	1 1 0 0 DNA 1 AA
L. taurinensis	UGOZ01000001.1	NCTC 13314 and NCTC13314	MR 12, MR 14, MR 26–30, MR 37–38, MR 55–56, MR 58–60, MR 93–94, MR 113–114, MR 125, MR 132, MR 134	L. taurinensis	0 0 0 DNA 0 AA
L. pneumophila	NC_002942.5	ATCC 33152 and Philadelphia 1	MR 13	L. pneumophila	0 0 9 5 DNA 0 AA

TABLE 2 Legionella species found during environmental surveillance with the number of nucleotide (DNA) and amino acid (AA) differences from the type strain in the mip and rpoB genes.
Figures 5 and 6 show detailed results for mip and rpoB genetic discrepancies between the 14 wild strains and their reference strains used in this study. The rpoB dendrogram showed that in the main clade of L. anisa, two isolates (MR 54 and MR 97) were different from others based on the mip gene dendrogram that was previously described. Moreover, in the L. feeleii clade, one isolate (MR 123) is separated from the main clade, and one isolate belonging to L. quinlivanii (MR 36) and four isolates belonging to L. quateirensis (MR 66, MR 67, MR 68, and MR 85) present differences from the corresponding reference strains ATCC 43830 and ATCC 49507, respectively.

DISCUSSION

Several studies have compared molecular methods to detect Legionella spp. in environmental and clinical samples, and it is well known that the amplification and sequencing of some genes for the direct detection and identification of bacteria can be simple, convenient, and specific in their differentiation of bacterial species. The use
PCR methods in Legionella identification and typing, thanks to their species-specific capability, has increased the power to detect and identify species, reducing the time and cost compared to culture and antibody approaches as well as improving the sensitivity and specificity of identification, especially for clinical approaches.

Currently, non-Lp species have been mostly identified by only the mip gene, although several studies have shown that no single system is perfect and that other target genes need to be investigated (27). The use of a particular region of the rpoB gene was already tested to determine phylogenetic relationships as well as the identification scheme for enteric bacteria, Mycobacterium, Bartonella, and other microorganisms (30, 35, 36). Ko et al. have already shown that a partial region of rpoB is able to discriminate subspecies of Lp and several non-Lp species that have not been differentiated using the mip sequence classification scheme (37).

FIG 4 Analysis of the relationship among all 135 isolates and the respective type strain for the rpoB gene. Asterisks highlight the L. anisa isolates that diverge from the main branch. Reference strains are in bold.
Many of the studies regarding the amplification of \textit{rpoB} for \textit{Legionella} spp. identification are exclusively focused on \textit{\textit{Lp}}, limiting the knowledge about the presence, distribution, and evolution of non-\textit{Lp} species in the environment (37–39). This study showed the steps needed to build a new classification scheme using the \textit{rpoB} gene and its application to a great number of non-\textit{Lp} isolates (\(n = 135\)) distributed in both nosocomial and community environments. The results obtained were compared with the gold standard \textit{mip} gene classification scheme already developed by Ratcliff et al. (26) and still in use by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for \textit{Legionella} Infections (ESGLI). Our results confirmed, in agreement with previous studies, that both \textit{mip} and \textit{rpoB} are able to discriminate among \textit{Legionella} species, considering that our isolates (89.6\%) showed complete concordance between the two classification schemes.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{phylogenetic_dendrogram.png}
\caption{Phylogenetic dendrogram of \textit{mip} \textit{Legionella} sequences. Type strains versus wild strain isolates are in bold.}
\end{figure}
It is important to note that in some cases, there was no concordance between the *mip* and *rpoB* results, as there was a low percentage of genomic identity with respect to the reference strains for 14 isolates. In detail, our results suggest that sequencing using only *rpoB* is able to detect relevant genetic differences between the wild-type and the reference strains, which would otherwise be undetected using only the *mip* approach (e.g., *L. feeleii*, *L. anisa*, *L. quinlivanii*, and *L. quateirensis*). This result is especially interesting given that *L. quateirensis* and *L. anisa* showed a variability percentage for the *rpoB* gene outside the intraspecies interval of variation found here (0 to 4.8%); *L. feeleii* and *L. quinlivanii* had values very close to the variation cutoff, suggesting that the identification scheme using only one gene limits the discovery and study of species variation and sometimes limits discrimination between different species.

FIG 6 Phylogenetic dendrogram of *rpoB Legionella* sequences. Type strains versus wild strain isolates are in bold.
species. In line with previous results, all the dendrogram representations show that there is lower genetic diversity in the *mip* gene between and within the clades; in contrast, the diversity in *rpoB* appears to be greater, leading to the identification of several isolates that showed evident differences from their respective clade or reference strain (e.g., *L. anisa*, *L. feeleii*, etc.). The results obtained using the *rpoB* gene seem to be useful for the identification of non-*Lp* species, and the results obtained permit the construction of the first *rpoB* gene classification scheme in the scientific literature.

Thanks to the matrices described above, we built pairwise identity intervals that allowed us to classify our unknown sequences based on comparisons with reference strains. The comparison carried out using the values obtained here seems reliable, and we propose that they be used in a classification scheme. For strains whose similarity percentages are very close to the cutoff values, further in-depth analyses are recommended. Based on the intervals of variation derived from the pairwise identity matrices, the discriminatory power of the 329-bp target region for the non-*Lp* species appears to be as reliable as that of the entire gene.

The comparison between the two matrices shows that the variability in the entire gene is greater than that in the selected region, suggesting that the analysis of a larger portion of the genome could increase the discriminatory power; therefore, approaches using new sequencing strategies, such as whole-genome sequencing (WGS), could contribute to better clarifying the identification of our isolates. This approach has already been applied to the four isolates of *L. quateirensis* described here. The average nucleotide identity (ANI) analysis, performed comparing their entire genome and the *L. quateirensis* type strain, showed pairwise values below the similarity threshold fixed to 95%, validating the hypothesis that the four strains belong to a presumptive new *Legionella* species (40).

In terms of the number of DNA and amino acid mismatches, most variability in the number of amino acid substitutions was observed in the *mip* gene, as all reported isolates showed discrepancies regarding the identification scheme based on the *mip* and *rpoB* genes. The role of the *mip* gene is widely documented; it is involved in the ability of *L. pneumophila* to replicate in eukaryotic cells and environmental amoebae (41). The substitutions found could interfere with pathways influenced by *mip*, as documented for *Lp* as well as for some non-*Lp* species (42–44).

It is possible to observe that the *rpoB* gene displayed a high number of DNA mismatches with a low number of amino acid variations. This result could be explained by the fact that *rpoB* is a housekeeping gene and that the alteration in the amino acid sequence could interfere with rifampicin resistance, as already demonstrated in other bacteria (e.g., *Mycobacterium tuberculosis*) and in a few *Legionella* species (39, 45). Therefore, the five amino acid mismatches found in *L. taurinensis* indicate the need to study the role of these variations in terms of protein function. Further investigations on *in silico* protein modeling and structural prediction other than biochemical functionality studies might contribute to better clarifying the role of these amino acid alterations and their evolution in *Legionella* species.

Although the non-*Lp* classification scheme using single-gene identification, such as the *mip* gene, is widely used and approved, the identification scheme for *Legionella* requires an update, such as introducing several patterns from various genes so as to increase the power of identification and improve phylogenetic studies. Especially for routine clinical and environmental laboratories where the whole-genome approach is expansive and laborious, the introduction of an easy, less expensive, and more sensitive scheme of identification could avoid errors in species characterization. Moreover, the proposed identification scheme could represent the first step toward acquiring information on different characteristics of isolates, such as changes in and development of antibiotics or disinfectant resistance, avoiding the failure of routine tests (e.g., urinary antigen test, serological and antibody-based assays), inadequate antibiotic treatments in human infection contest (e.g., rifampicin, fluoroquinolone, macrolides), and disinfection treatment. If a discrepancy is observed in this first step, then a more advanced technology, such as WGS, can be applied. This combined strategy represents an improved screening approach for *Legionella* isolate identification.
MATERIALS AND METHODS

The isolates involved in this study come from Leg{\textit{ionella}} environmental surveillance programs of several communities commonly associated with the risk of Leg{\textit{ionella}} infections, including hospitals, companies, and communities (e.g., hotels, private apartments).

Leg{\textit{ionella}} culture and isolate selection. The Leg{\textit{ionella}} culture technique was based on ISO 11731:2017 (20). The hot- and cold-water samples were sampled following the Italian National Unification and European Committee (UNI EN ISO 19458:2006 (46) and Italian guidelines (19).

Different aliquots (from 0.2 to 0.1 mL) of the untreated, filtered, heated, and acid-treated samples were seeded on plates of the selective medium glycine-vancomycin-polyoxymyxin B-cycloheximide (GVPC) (Thermo Fisher Scientific, Diagnostic, Ltd., Basingstoke, UK) and incubated at 35 ± 2°C with 2.5% CO$_2$ for a maximum of 15 days. Leg{\textit{ionella}} growth was evaluated every 2 or 3 days.

To confirm the presence of the Leg{\textit{ionella}} genus, suspected colonies were subcultured on buffered charcoal yeast extract (BCYE) agar with (cys) and without (cys) L-cysteine (L-cys) supplementation (Thermo Fisher Scientific, Diagnostic, Ltd., Basingstoke, UK). Moreover, as a negative control, the same isolates were spread on tryptone soy agar (TSA) with 5% sheep blood agar (Thermo Fisher Scientific, Diagnostic, Ltd., Basingstoke, UK) and incubated under the same conditions previously described, as Leg{\textit{ionella}} is not able to grow on this medium. Only the colonies that grew on BCYE cys$^-$ agar were considered for the next steps of the study.

Serological and biochemical typing. The predicted Leg{\textit{ionella}} colonies were then identified using the Leg{\textit{ionella}} latex agglutination test (Leg{\textit{ionella}} latex test kit, Thermo Fisher Scientific, Diagnostic, Ltd., Basingstoke, UK), which is able to distinguish between Lp and non-Lp. In particular, among Lp, it is possible to identify serogroup 1 (Sg1) from Sg2 to Sg14, while among non-Lp, it is possible to recognize only some non-Lp, such as L. anisa, L. bazemani 1 and 2, Leg{\textit{ionella}} garmanii, L. longbeachae 1 and 2, L. dumoffi, and L. jordanis. A total of 134 strains of non-Lp and 1 strain of Lp that was previously typed by sequence-based typing (SBT) and included as a positive control were selected for the study.

Identification of Leg{\textit{ionella}} spp. by mip and rpoB gene sequencing. The DNA of each strain was extracted using the InstaGene purification matrix (Bio-Rad, Hercules, CA), and DNA concentrations were determined using a Qubit fluorometer (Thermo Fisher Scientific, Paisley, UK). PCR analysis for all non-Lp isolates was performed to determine the gene sequences of mip and rpoB as described by Ratcliff et al. (26) and Ko et al. (31), respectively.

mip gene amplification was performed using degenerate primers and modified by M13 tailing to avoid noise in the DNA sequence (47). mip gene amplification was performed in a 50-μL reaction mixture containing DreamTaq Green PCR master mix 2× (Thermo Fisher Diagnostics, Basingstoke, UK) and 40 pmol of each primer; 100 ng of the DNA extracted from the presumptive colonies was added as the template. The mip amplicons were sequenced using tagged M13 forward and reverse primers (mip-S95R-M13R caggaaacagtatgaccCATATGCAAGACCTGAGGGAAC and mip-74F-M13F tgaataaagcagccgacgtGCTGCAACCG AGTCCAC) to obtain complete coverage of the region of interest (47). Amplification was performed in a thermocycler under the following conditions: predenaturation for 3 min at 96°C, then 35 cycles consisting of 1 min at 94°C for denaturation, 2 min at 58°C for annealing, and 2 min at 72°C for extension, followed by a final extension at 72°C for 5 min. The reaction mixtures were then held at 4°C.

rpoB gene amplification was performed as described by Ko et al. (31). Gene amplification was performed in a 50-μL reaction volume containing 100 ng of template DNA, 40 pmol of each primer (RL1 5′-GATGATATCGATCAYCTDGG-3′; RL2 5′-TTTCVGGCGTTTCAATNGGAC-3′), 1 U of Taq polymerase, and a PCR mixture consisting of PCR buffer 10×, 1.5 mM MgCl$_2$, and 250 μM deoxynucleoside triphosphates (dNTPs). The thermal cycles consisted of 35 cycles, and each cycle consisted of 30 s at 94°C for denaturation, 30 s at 55°C for annealing, and 30 s at 72°C for extension, followed by a final extension at 72°C for 10 min. PCR products were visualized by electrophoresis on a 2% agarose gel and stained with ethidium bromide. Following purification, DNA was sequenced using BigDye chemistry and analyzed on an ABI PRISM 3100 genetic analyzer (Applied Biosystems, Foster City, CA). Raw sequencing data were assembled using CLC Main Workbench 7.6.4 software.

The mip sequences were compared to sequences deposited in the Leg{\textit{ionella}} mip gene sequence database using a similarity analysis tool. EWGLI has established an accessible web database (http://bioinformatics.phe.org.uk/cgi-bin/Legionella/mip/mip_id.cgi) that contains sequence data from described species and allows for the identification of non-Lp species. Species-level identification was performed on the basis of a similarity score of 98 to 100% compared to the sequences in the database (27) and considering the intra- and interspecies intervals of variation previously described by Ratcliff et al. (26).

The rpoB sequences were compared to type strain sequences deposited in NCBI from several culture collections, including the American Type Culture Collection (ATCC), National Collection of Type Cultures, Central Public Health Laboratory (NCTC), NITE Biological Research Center, National Institute of Technology and Evaluation (NBRC), and Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSM). According to Adékambi et al. and Ko et al., the cutoff used for rpoB gene sequence-based identification was fixed at a 94 to 95% similarity percentage using an rpoB gene fragment of 300 to 600 bp (31, 48).

Elaboration of matrices for the rpoB gene: definition of the intra- and interspecies intervals of variation. Leg{\textit{ionella}} type strains (n = 53) retrieved from the NCBI, were used to determine the ranges of the intra- and interspecies intervals of variation for the rpoB gene, resulting in a pairwise identity matrix for the entire gene with a length from 4,101 to 4,143 bp (Fig. 1a and b) and for the 329-bp selected region (Fig. 2a and b), corresponding to the amplicon suggested by Ko et al. (31). The list of type strains used in the study is reported in Table 3.

The matrices were built using the multiple sequence comparison by log-expectation (MUSCLE) program (49) in Geneious Prime 2021.1.1 (https://www.geneious.com), retaining the default settings. The
developed matrices permitted us to obtain a minimum and a maximum value of variation to establish intra- and interspecies intervals of divergence for the identification of the environmental isolates used in the present study. In detail, our 135 isolates were considered wild strains, and an in-house numbering scheme was used to label them (MR 1 to MR 135) (Table 4).

Phylogenetic and allelic diversity analysis. To estimate the relationship among the *Legionella* isolates involved in the study, a multiple sequence alignment (MSA) and a phylogenetic tree were performed
TABLE 4 GenBank accession numbers and ID labels of the *Legionella* wild strains used in this study

Legionella isolate ID	Legionella isolates	GenBank accession no.	mip	rpoB
MR1	*L. anisa*	MW021138	MZ367042	
MR2	*L. anisa*	MW052865	MZ367043	
MR3	*L. anisa*	MW052867	MZ367044	
MR4	*L. anisa*	MW052869	MZ367045	
MR5	*L. anisa*	MW052981	MZ367046	
MR6	*L. anisa*	MW052872	MZ367047	
MR7	*L. anisa*	MW052874	MZ367048	
MR8	*L. anisa*	MW052875	MZ367049	
MR9	*L. anisa*	MW052995	MZ367050	
MR10	*L. steelei*	MW052877	MZ367051	
MR11	*L. nautarum*	MW052931	MZ367052	
MR12	*L. taurinensis*	MW052925	MZ367053	
MR13	*L. taurinensis*	MW052973	MZ367054	
MR14	*L. rubrilucens*	MW052882	MZ367055	
MR15	*L. rubrilucens*	MW052886	MZ367056	
MR16	*L. anisa*	MW052879	MZ367057	
MR17	*L. rubrilucens*	MW052895	MZ367058	
MR18	*L. anisa*	MW052881	MZ367059	
MR19	*L. rubrilucens*	MW052929	MZ367060	
MR20	*L. rubrilucens*	MW052927	MZ367061	
MR21	*L. anisa*	MW052885	MZ367062	
MR22	*L. rubrilucens*	MW052914	MZ367063	
MR23	*L. rubrilucens*	MW052919	MZ367064	
MR24	*L. rubrilucens*	MW052890	MZ367065	
MR25	*L. rubrilucens*	MW052893	MZ367066	
MR26	*L. taurinensis*	MW052897	MZ367067	
MR27	*L. taurinensis*	MW052901	MZ367068	
MR28	*L. taurinensis*	MW052905	MZ367069	
MR29	*L. taurinensis*	MW052908	MZ367070	
MR30	*L. taurinensis*	MW052912	MZ367071	
MR31	*L. anisa*	MW052891	MZ367072	
MR32	*L. anisa*	MW052883	MZ367073	
MR33	*L. anisa*	MW052894	MZ367074	
MR34	*L. rubrilucens*	MW052917	MZ367075	
MR35	*L. rubrilucens*	MW052921	MZ367076	
MR36	*L. quinlivanii*	MW052923	MZ367077	
MR37	*L. taurinensis*	MW052870	MZ367078	
MR38	*L. taurinensis*	MW052873	MZ367079	
MR39	*L. anisa*	MW052898	MZ367080	
MR40	*L. anisa*	MW052876	MZ367081	
MR41	*L. anisa*	MW052880	MZ367082	
MR42	*L. anisa*	MW052887	MZ367083	
MR43	*L. anisa*	MW052902	MZ367084	
MR44	*L. anisa*	MW052863	MZ367085	
MR45	*L. anisa*	MW052866	MZ367086	
MR46	*L. anisa*	MW052868	MZ367087	
MR47	*L. anisa*	MW052871	MZ367088	
MR48	*L. anisa*	MW052982	MZ367089	
MR49	*L. anisa*	MW052983	MZ367090	
MR50	*L. anisa*	MW052984	MZ367091	
MR51	*L. anisa*	MW052985	MZ367092	
MR52	*L. anisa*	MW052906	MZ367093	
MR53	*L. anisa*	MW052909	MZ367094	
MR54	*L. anisa*	MW052913	MZ367095	
MR55	*L. taurinensis*	MW052888	MZ367096	
MR56	*L. taurinensis*	MW052878	MZ367097	
MR57	*L. londiniensis*	MW052907	MZ367098	
MR58	*L. taurinensis*	MW052910	MZ367099	
MR59	*L. taurinensis*	MW052915	MZ367100	
MR60	*L. taurinensis*	MW052920	MZ367101	

(Continued on next page)
Legionella isolate ID	Legionella isolates	GenBank accession no.
MR61	L. rubrilucens	MW052889 MZ367102
MR62	L. rubrilucens	MW052892 MZ367103
MR63	L. rubrilucens	MW052896 MZ367104
MR64	L. rubrilucens	MW052900 MZ367105
MR65	L. anisa	MW052904 MZ367106
MR66	L. quateirensis	MW052978 MZ367107
MR67	L. quateirensis	MW052911 MZ367108
MR68	L. quateirensis	MW052916 MZ367109
MR69	L. feeleii	MW052922 MZ367110
MR70	L. feeleii	MW052924 MZ367111
MR71	L. feeleii	MW052926 MZ367112
MR72	L. feeleii	MW052928 MZ367113
MR73	L. feeleii	MW052930 MZ367114
MR74	L. rubrilucens	MW052933 MZ367115
MR75	L. rubrilucens	MW052934 MZ367116
MR76	L. rubrilucens	MW052935 MZ367117
MR77	L. rubrilucens	MW052936 MZ367118
MR78	L. rubrilucens	MW052937 MZ367119
MR79	L. rubrilucens	MW052938 MZ367120
MR80	L. rubrilucens	MW052939 MZ367121
MR81	L. rubrilucens	MW052940 MZ367122
MR82	L. rubrilucens	MW052941 MZ367123
MR83	L. rubrilucens	MW052942 MZ367124
MR84	L. nautarum	MW052944 MZ367125
MR85	L. quateirensis	MW052945 MZ367126
MR86	L. anisa	MW052946 MZ367127
MR87	L. anisa	MW052947 MZ367128
MR88	L. anisa	MW052948 MZ367129
MR89	L. anisa	MW052949 MZ367130
MR90	L. anisa	MW052950 MZ367131
MR91	L. anisa	MW052951 MZ367132
MR92	L. anisa	MW052952 MZ367133
MR93	L. taurinensis	MW052954 MZ367134
MR94	L. taurinensis	MW052955 MZ367135
MR95	L. londiniensis	MW052976 MZ367136
MR96	L. londiniensis	MW052977 MZ367137
MR97	L. anisa	MW052995 MZ367138
MR98	L. anisa	MW052998 MZ367139
MR99	L. anisa	MW052999 MZ367140
MR100	L. londiniensis	MW052960 MZ367141
MR101	L. londiniensis	MW052962 MZ367142
MR102	L. londiniensis	MW052961 MZ367143
MR103	L. londiniensis	MW052962 MZ367144
MR104	L. feeleii	MW052963 MZ367145
MR105	L. nautarum	MW052964 MZ367146
MR106	L. nautarum	MW052965 MZ367147
MR107	L. nautarum	MW052966 MZ367148
MR108	L. nautarum	MW052967 MZ367149
MR109	L. nautarum	MW052968 MZ367150
MR110	L. nautarum	MW052969 MZ367151
MR111	L. anisa	MW052986 MZ367152
MR112	L. anisa	MW052987 MZ367153
MR113	L. taurinensis	MW052972 MZ367154
MR114	L. taurinensis	MW052971 MZ367155
MR115	L. anisa	MW052991 MZ367156
MR116	L. anisa	MW052993 MZ367157
MR117	L. anisa	MW052990 MZ367158
MR118	L. anisa	MW052994 MZ367159
MR119	L. anisa	MW052988 MZ367160
MR120	L. anisa	MW052989 MZ367161
MR121	L. anisa	MW052992 MZ367162

(Continued on next page)
on the mip and rpoB gene sequences. For each taxon identified as previously described, the reference mip and rpoB gene sequences of the corresponding type strains from several culture collections were retrieved and added to the analysis (Table 3). When required, manual editing was performed on the sequences, trimming them to the same length as the reference sequence. The nucleotide sequences were aligned by the MUSCLE program. The obtained MSA was passed to FastTree (50), a tool for inferring approximate maximum likelihood phylogenetic trees. FastTree uses Jukes-Cantor as a genetic distance model and the Shimodaira-Hasegawa test to estimate the reliability of each split in the tree (51). Branch lengths were transformed to be equal, as in a cladogram. Branch labels display the substitutions per site. Both MUSCLE and FastTree were performed in Geneious Prime 2021.1.1 (https://www.geneious.com), retaining the default settings.

Data availability. The GenBank accession numbers of sequences generated during this study are listed in Table 4.

ACKNOWLEDGMENTS

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

S.C., S.S., and M.R.P. conceived and designed the experiments and wrote the paper. M.M. and L.G. performed sample collection and the experiments. S.S. performed the commercial, or not-for-pro

REFERENCES

1. Mercante JW, Winchell JM. 2015. Current and emerging Legionella diagnostic for laboratory and outbreak investigations. Clin Microbiol Rev 28: 95–133. https://doi.org/10.1128/CMR.00029-14.
2. Cunha BA, Burillo A, Bouza E. 2016. Legionnaires’ disease. Lancet 387: 376–385. https://doi.org/10.1016/S0140-6736(15)60078-2.
3. Mondino S, Schmidt S, Rolando M, Escoll P, Gomez-Valero L, Buchrieser C. 2020. Legionnaires’ disease: state of the art knowledge of pathogenesis mechanisms of Legionella. Annu Rev Pathol 15:439–466. https://doi.org/10.1146/annurev-pathmedchis-012419-032742.
4. Diereden BM. 2008. Legionella spp. and Legionnaires’ disease. J Infect 56:1–12. https://doi.org/10.1016/j.jinf.2007.09.010.
5. Rowbotham TJ. 1980. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33: 1179–1183. https://doi.org/10.1136/jcp.33.12.1179.
6. Fields BS. 1996. The molecular ecology of legionellae. Trends Microbiol 4: 286–290. https://doi.org/10.1016/0966-842X(96)00414-X.
7. Parte AC, Carbasse JS, Meier-Kolthoff JP, Reimer LC, Göker M. 2020. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. https://doi.org/10.1099/ijsem.0.004332.
8. Muder RR, Yu VL. 2002. Infection due to Legionella species other than L. pneumophila. Clin Infect Dis 35:990–998. https://doi.org/10.1086/342884.
9. Pierre DM, Baron J, Yu VL, Stout JE. 2017. Diagnostic testing for Legionnaires’ disease. Ann Clin Microbiol Antimicrob 16:59. https://doi.org/10.1186/s12941-017-0229-6.
10. Whiley H, Bentham R. 2011. Legionella longbeachae and legionellosis. Emerg Infect Dis 17:579–583. https://doi.org/10.3201/eid1704.100446.
11. Vaccaro L, Iziquierdo F, Magnet A, Hurtado C, Salinas MA, Gomes TS, Angulo S, Salos S, Pelaez J, Tejeda MI, Alhambra A, Gómez C, Enríquez A, Estrada E, Fenoy S, Del Aguila C. 2016. First case of Legionnaire’s disease caused by Legionella anisa in Spain and the limitations on the diagnosis of Legionella non-pneumophila infections. PLoS One 11:e0159726. https://doi.org/10.1371/journal.pone.0159726.
12. van der Mee-Marquet N, Domelier AS, Arnault L, Bloc D, Laudat P, Hartemann P, Quentin R. 2006. Legionella anisa, a possible indicator of water contamination by Legionella pneumophila. J Clin Microbiol 44: 56–59. https://doi.org/10.1128/JCM.44.1.56-59.2006.
13. Compain F, Bruneval P, Jarraud S, Perrot S, Aubert S, Napoly V, Ramahefasolo A, Mainardi JL, Podgajen I. 2015. Chronic endocarditis due to Legionella anisa: a first case difficult to diagnose. New Microbes New Infect 8:113–115. https://doi.org/10.1016/j.nmni.2015.10.003.
14. Head BM, Trajtman A, Bernard K, Burdz T, Vélez L, Herrera M, Rueda ZV, Keyvan Y. 2019. Legionella co-infection in HIV-associated pneumonia. Diagn Microbiol Infect Dis 95:71–76. https://doi.org/10.1016/j.diagmicrobio.2019.03.005.
15. Fallon RJ, Stack BH. 1990. Legionnaires’ disease due to Legionella anisa. J Infect 20:227–229. https://doi.org/10.1016/0163-4453(90)91144-3.
16. Fensetersheid MD, Miller M, Diggins C, Liska S, Detwiler L, Werner SB, Lindquist D, Thacker WL, Benson RF. 1990. Outbreak of Pontiac fever...
due to *Legionella anii*. Lancet 336:35–37. https://doi.org/10.1016/S0140-6736(00)91532-F.

17. Matsui M, Fujii SI, Shiroiwa R, Amemura-Maekawa K, Chang B, Kura F, Yamauchi K. 2010. Isolation of *Legionella rubriurescens* from a pneumonia patient co-infected with *Legionella pneumophila*. J Med Microbiol 59: 1242–1246. https://doi.org/10.1099/jmm.0.016089-0.

18. Rota MC, Caporali MG, Bella A, Scatturo M, Giannetti S, Ricci ML. 2019. Annual report of legionellosis in Italy—2018, p 7–13. In Notiziario dell’Istituto Superiore di Sanità, vol 32, Istituto Superiore di Sanità, Rome, Italy.

19. Superior Institute of Health. 2015. Italian guidelines for prevention and control of legionellosis, p 1–144. In Proceedings of the Conferenza Stato-Regioni, Ministry of Health, Rome, Italy.

20. International Organization for Standardization. May 2017. Water quality — enumeration of *Legionella*. ISO 11731:2017. ISO, Geneva, Switzerland. https://www.iso.org/standard/61782.html. Accessed July, 2021.

21. Delgado-Viscogliosi P, Simonat T, Parent V, Marchand G, Dobbelaere M, Pierlot E, Pierzo V, Menard-Szeczeba F, Gaudard-Ferveur E, Delabre K, Delattre JM. 2005. Rapid method for enumeration of viable *Legionella pneumophila* and other *Legionella* spp. in water. Appl Environ Microbiol 71:4086–4096. https://doi.org/10.1128/AEM.71.7.4086-4096.2005.

22. Ratcliff RM. 2013. Sequence-based identification of *Legionella*. Methods Mol Biol 954:57–72. https://doi.org/10.1007/978-1-62703-161-5_3.

23. Waterkeyn GW, Barelle C, Wendumink KG. 2001. Legionella and community-acquired pneumonia: a review of current diagnostic tests from a clinician’s viewpoint. Am J Med 110:41–48. https://doi.org/10.1016/S0002-9343(00)00624-0.

24. Gaia V, Fry NK, Afshar B, Lück P, Meugnier H, Etienne J, Peduzzi R, Harrison T. 2013. Sequence-based identification of the *Legionella* spp. isolated during environmental surveillance in artificial water systems. Microbiol Resour Announc 10:00307-21. https://doi.org/10.1128/MRA.00307-21.

25. Ratzow S, Gaia V, Hellbig JH, Fry NK, Lück PC. 2007. Addition of *neua*, the gene encoding N-acetylmuramidase cytidylyl transferase, increases the discriminative ability of the consensus sequence-based scheme for typing *Legionella pneumophila* serogroup 1 strains. J Clin Microbiol 45:1965–1968. https://doi.org/10.1128/JCM.00261-07.

26. Ratcliff RM, Lanser JA, Manning PA, Heuzenroeder MW. 1998. Sequence-based classification scheme for the genus *Legionella* targeting the *mip* gene. J Clin Microbiol 36:1560–1567. https://doi.org/10.1128/JCM.36.8.1560-1567.1998.

27. Fry NK, Afshar B, Bellamy W, Underwood AP, Ratcliff RM, Harrison TG, European Working Group for Legionella Infections. 2007. Identification of *Legionella* spp. by 19 European reference laboratories: results of the Euro-Legionnaire Working Group for Legionella Infections External Quality Assessment Scheme using DNA sequencing of the macrophage infectivity potentiation gene and dedicated online tools. Clin Microbiol Infect 13: 1119–1124. https://doi.org/10.1111/j.1365-2958.2007.01808.x.

28. Dahllof I, Sundqvist V, Vuento A, Hällgren S, Landin-Wijk E, Pettersson K, Wahlström S, Hallander S, Strom A. 2008. Prevention and control of legionellosis in a hospital setting using real-time PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 46:3635–3643. https://doi.org/10.1128/JCM.00494-08.

29. Ko KS, Lee HK, Park MY, Park MS, Lee KH, Woo SY, Yun YJ, Kook YH. 2002. Application of RNA polymerase gene (*rpoB*) and DotA gene (*dotA*) sequences. J Bacteriol 184:2123–2130. https://doi.org/10.1128/JB.184.7.2123-2130.2002.

30. Ko KS, Hong SK, Lee KH, Lee HK, Park MY, Miyamoto H, Kook YH. 2003. Detection and identification of *Legionella pneumophila* by PCR-restriction fragment length polymorphism analysis of the RNA polymerase gene (*rpoB*). J Microbiol Methods 54:325–337. https://doi.org/10.1016/S0167-7012(03)00065-4.

31. Nielsen K, Hindersson P, Holby N, Bangsorg JM. 2002. Sequencing of the *rpoB* gene in *Legionella pneumophila* and characterization of mutations associated with rifampin resistance in the *Legionellaceae*. Antimicrob Agents Chemother 46:2679–2683. https://doi.org/10.1128/AAC.46.11.2679-2683.2002.

32. Girolamini L, Salari S, Orsini M, Pascale MR, Mazzotta M, Grotiola A, Cristino S. 2021. Draft genome sequences of *Legionella* presumptive novel species isolated during environmental surveillance in artificial water systems. Microbiol Resour Announc 10:00254-19. https://doi.org/10.1128/MRA.00254-19.

33. Shevchuk O, Jäger J, Steinert M. 2011. Virulence properties of the *Legionella pneumophila* cell envelope. Front Microbiol 2:174. https://doi.org/10.3389/fmicb.2011.00074.

34. Ciapiello NT, Eisenstein BI, Mody CH, Engleberg NC. 1990. A mutation in the *mip* gene results in an attenuation of *Legionella pneumophila* virulence. J Infect Dis 162:121–126. https://doi.org/10.1093/infdis/162.1.121.

35. Rasch J, Ünal CM, Klages A, Karsli Ü, Heinshohn N, Brouwer RMHJ, Richter M, Dellermann A, Steinert M. 2019. Peptydyl-prolyl-cis-trans-isomerases Mip and Pib of *Legionella pneumophila* contribute to surface translocation, growth at suboptimal temperature, and infection. Infect Immun 87: e00393-17. https://doi.org/10.1128/IAI.00393-17.

36. Debroy S, Dao J, Söderberg M, Rossier O, Ciapiello NT. 2006. *Legionella pneumophila* type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci USA 103:19146–19151. https://doi.org/10.1073/pnas.0608279103.

37. Cumming JM, Segal MR. 2004. Few amino acid positions in *rpoB* sequences associated with most of the rifampin resistance in *Mycobacterium tuberculosis*. BMC Bioinformatics 5:137. https://doi.org/10.1186/1471-2105-5-137.

38. Uni EN. 2006. Water quality—sampling for microbiological analysis. EN ISO 19458. Uni EN, Geneva, Switzerland. http://store.unimi.it/catalogue/en-iso-19458-2006. Accessed July 2021.

39. Montiassistente, Fry NK, Afshar B, Paleopoulou-Foxley C, Naik FC, Harrison TG. 2012. Application of *Legionella pneumophila*-specific quantitative real-time PCR combined with direct amplification and sequence-based typing in the diagnosis and epidemiological investigation of Legionnaires’ disease. Eur J Clin Microbiol Infect Dis 31:2017–2028. https://doi.org/10.1007/s10096-011-1535-0.

40. Adékambi T, Trancour M, Raoult D. 2009. The *rpoB* gene as a tool for clinical microbiologists. Trends Microbiol 17:37–45. https://doi.org/10.1016/j.tim.2008.09.008.

41. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh430.

42. Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26: 1641–1650. https://doi.org/10.1093/molbev/msp077.

43. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syp010.