Abstract: Rabern recently proved that any graph with \(\omega \geq \frac{3}{4}(\Delta + 1) \) contains a stable set meeting all maximum cliques. We strengthen this result, proving that such a stable set exists for any graph with \(\omega > \frac{3}{4}(\Delta + 1) \). This is tight, i.e. the inequality in the statement must be strict. The proof relies on finding an independent transversal in a graph partitioned into vertex sets of unequal size. © 2010 Wiley Periodicals, Inc. J Graph Theory 67: 300–305, 2011

1. INTRODUCTION AND MOTIVATION

When coloring a graph \(G \), we often desire a stable set \(S \) meeting every maximum clique. For example, finding such a set \(S \) efficiently is the key to coloring perfect graphs in

Contract grant sponsor: NSERC Postdoctoral Fellowship.

Journal of Graph Theory
© 2010 Wiley Periodicals, Inc.
polynomial time [11]. Proving the existence of S has also been very useful in attacking Reed’s ω, Δ, and χ conjecture:

Conjecture 1 (Reed [10]). For any graph G, $\chi(G) \leq \lceil \frac{1}{2}(\Delta(G) + 1 + \omega(G)) \rceil$.

No minimum counterexample G to this conjecture has such a stable set S. For if it did, it would contain a maximal stable set S' meeting every maximum clique, and we would have $\lceil \frac{1}{2}(\Delta(G - S') + 1 + \omega(G - S')) \rceil + 1 \leq \lceil \frac{1}{2}(\Delta(G) + 1 + \omega(G)) \rceil$. Since S' is a stable set, $\chi(G) \leq \chi(G - S') + 1$, contradicting the minimality of G.

Thus such a stable set S is highly desirable when attacking Reed’s conjecture for a hereditary class of graphs. The proof of Reed’s conjecture for line graphs [7] exemplifies the general approach: If the maximum degree and clique number are far apart, a combination of previously known results suffices. If they are not far apart, we can use the structure of line graphs to prove the existence of a stable set S meeting all maximum cliques.

Rabern [9] recently proved that if the maximum degree and clique number are close enough, we need not consider the structure of the graph class at all:

Theorem 2 (Rabern). If a graph G satisfies $\omega(G) \geq \frac{3}{4}(\Delta(G) + 1)$, then G contains a stable set S meeting every maximum clique.

Here we prove the best possible theorem of this type:

Theorem 3. If a graph G satisfies $\omega(G) > \frac{2}{3}(\Delta(G) + 1)$, then G contains a stable set S meeting every maximum clique.

To see that this is best possible, let G_k be the graph obtained by substituting every vertex of a 5-cycle with a clique of size k. Then $\omega(G_k) = 2k = \frac{2}{3}(\Delta(G_k) + 1)$, and no stable set meets every maximum clique. To prove Theorem 3, we apply Rabern’s approach with a stronger final step. Rabern applies Haxell’s theorem [4], which can be stated as follows:

Theorem 4 (Haxell). For a positive integer k, let G be a graph with vertices partitioned into r cliques of size $\geq 2k$. If every vertex has at most k neighbors outside its own clique, then G contains a stable set of size r.

To prove our theorem, we need to deal with a graph that has been partitioned into cliques of unequal size. We use the following extension of Theorem 4:

Theorem 5. For a positive integer k, let G be a graph with vertices partitioned into cliques V_1, \ldots, V_r. If for every i and every $v \in V_i$, v has at most $\min\{k, |V_i| - k\}$ neighbors outside V_i, then G contains a stable set of size r.

Although this is not at all obvious, it is a straightforward consequence of observations made by Aharoni, Berger, and Ziv about the proof of Theorem 4 [1].

\(^1\omega, \Delta, \text{ and } \chi\) denote the clique number, maximum degree, and chromatic number of a graph, respectively.

Journal of Graph Theory DOI 10.1002/jgt
2. HITTING THE MAXIMUM CLIQUES

To prove Theorem 3, we must investigate intersections of maximum cliques. Given a graph G and the set C of maximum cliques in G, we define the *clique graph* $G(C)$ as follows. The vertices of $G(C)$ are the cliques of C, and two vertices of $G(C)$ are adjacent if their corresponding cliques in G intersect. For a connected component $G(C_i)$ of $G(C)$, let $D_i \subseteq V(G)$ and $F_i \subseteq V(G)$ denote the union and the mutual intersection of the cliques of C_i, respectively, i.e. $D_i = \bigcup_{C \in C_i} C$ and $F_i = \bigcap_{C \in C_i} C$.

The proof uses three intermediate results. The first, due to Hajnal [2] (also see [9]), tells us that for each component of $G(C)$, $|D_i| + |F_i|$ is large:

Lemma 6 (Hajnal). Let G be a graph and C_1, \ldots, C_r be a collection of maximum cliques in G. Then

$$\left| \bigcap_{i \leq r} C_i \right| + \left| \bigcup_{i \leq r} C_i \right| \geq 2\omega(G).$$

The second is due to Kostochka [8] (proven in English in [9]). It tells us that if $\omega(G)$ is sufficiently close to $\Delta(G) + 1$, then $|F_i|$ is large:

Lemma 7 (Kostochka). Let G be a graph with $\omega(G) > \frac{2}{3}(\Delta(G) + 1)$ and let C be the set of maximum cliques in G. Then for each connected component $G(C_i)$ of $G(C)$,

$$\left| \bigcap_{C \in C_i} C \right| \geq 2\omega(G) - (\Delta(G) + 1).$$

The third intermediate result is Theorem 5. Combining them to prove Theorem 3 is a simple matter.

Proof of Theorem 3. Let C be the set of maximum cliques of G, and let the connected components of $G(C)$ be $G(C_1), \ldots, G(C_r)$. It suffices to prove the existence of a stable set S in G intersecting each clique F_i.

Lemma 7 tells us that $|F_i| > \frac{1}{3}(\Delta(G) + 1)$. Consider a vertex $v \in F_i$, noting that v is universal in $G[D_i]$. By Lemma 6, we know that $|F_i| + |D_i| > \frac{1}{3}(\Delta(G) + 1)$. Therefore $\Delta(G) + 1 - |D_i| < |F_i| - \frac{1}{3}(\Delta(G) + 1)$, so v has fewer than $|F_i| - \frac{1}{3}(\Delta(G) + 1)$ neighbors in $\bigcup_{j \neq i} F_i$. Furthermore, v certainly has fewer than $\frac{1}{3}(\Delta(G) + 1)$ neighbors in $\bigcup_{j \neq i} F_i$.

Now let H be the subgraph of G induced on $\bigcup_i F_i$, and let $k = \frac{1}{3}(\Delta(G) + 1)$. Clearly the cliques F_1, \ldots, F_r partition $V(H)$. A vertex $v \in F_i$ has at most $\min[k, |F_i| - k]$ neighbors outside F_i. Therefore by Theorem 5, H contains a stable set S of size r. This set S intersects each F_i, and consequently it intersects every clique in C, proving the theorem.

It remains to prove Theorem 5. We do this in the next section.

3. INDEPENDENT TRANSVERSALS WITH LOPSIDED SETS

Suppose we are given a finite graph whose vertices are partitioned into stable sets V_1, \ldots, V_r. An *independent system of representatives* or *ISR* of (V_1, \ldots, V_r) is a stable
set of size \(r \) in \(G \) intersecting each \(V_i \) exactly once. A partial ISR, then, is simply a stable set in \(G \) intersecting no \(V_i \) more than once. ISRs are intimately related to both the strong chromatic number [6] and list colorings [5].

A totally dominating set \(D \) is a set of vertices such that every vertex of \(G \) has a neighbor in \(D \), including the vertices of \(D \). Given \(j \subseteq [m] \), we use \(V_j \) to denote \((V_j | i \in j)\). Given \(X \subseteq V(G) \), we use \(I(X) \) to denote the set of partitions intersected by \(X \), i.e. \(I(X) = \{ i | X \cap V_i \neq \emptyset \} \). For an induced subgraph \(H \) of \(G \), we implicitly consider \(H \) to inherit the partitioning of \(G \).

To prove our lopsided existence condition for ISRs, we use a consequence of Haxell’s proof of Theorem 4 [4] pointed out (and proved explicitly) by Aharoni, Berger, and Ziv [1]. Actually, we prove a slight strengthening of their result:

Lemma 8. Let \(x_1 \) be a vertex in \(V_r \), and suppose \(G[V_{[r-1]}] \) has an ISR. Suppose there is no \(J \subseteq [r-1] \) and \(D \subseteq V_J \cup \{ x_1 \} \) totally dominating \(V_J \cup \{ x_1 \} \) with the following properties:

1. \(D \) is the union of disjoint stable sets \(X \) and \(Y \).
2. \(Y \) is a (not necessarily proper) partial ISR for \(V_J \). Thus \(|Y| \leq |J| \).
3. Every vertex in \(Y \) has exactly one neighbor in \(X \). Thus \(|X| \leq |Y| \).
4. \(X \) contains \(x_1 \).

Then \(G \) has an ISR containing \(x_1 \).

Proof. Let \(G \) be a minimum counterexample; we can assume \(G = G[V_{[r-1]} \cup \{ x_1 \}] \). Furthermore, \(r > 1 \) otherwise the lemma is trivial. Let \(R_1 \) be an ISR of \(G[V_{[r-1]}] \) chosen such that the set \(Y_1' = Y_1 = R_1 \cap N(x_1) \) has minimum size. We know that \(R_1 \) exists because \(G[V_{[r-1]}] \) has at least one ISR, and we know that \(Y_1' \) is nonempty because \(G \) does not have an ISR. Now let \(X_1 = \{ x_1 \} \) and let \(D_1 = X_1 \cup Y_1 \).

We now construct an infinite sequence of partial ISRs \(Y_1 \subset Y_2 \subset \cdots \), which contradicts the fact that \(G \) is finite. Let \(i > 1 \), and suppose we have sets \(\{ R_j, Y_j, X_j \} | 1 \leq j < i \) such that:

- \(X_j \) is a stable set consisting of distinct vertices \(\{ x_1, \ldots, x_j \} \). For \(j > 1 \), \(x_j \) is a vertex in \(G[V_{[r-1]}] \) with no neighbor in \(X_{j-1} \cup Y_{j-1} \).
- \(R_j \) is an ISR of \(G[V_{[r-1]}] \) such that for every \(1 \leq \ell < j \), \(R_j \cap N(x_\ell) = Y_\ell \). Subject to that, \(R_j \) is chosen so that \(Y'_j = R_j \cap N(x_j) \) is minimum. For \(1 \leq j < i \), \(Y'_j \) is nonempty.
- \(Y_j = \bigcup_{i=1}^{j} Y'_j \).

To find \(x_i \), \(Y'_i \), and \(R_i \), we proceed as follows:

1. Let \(x_i \) be any vertex in \(G[V_{[r-1]}] \) with no neighbor in \(X_{i-1} \cup Y_{i-1} \). We know that \(x_i \) exists; otherwise the set \(D_{i-1} = X_{i-1} \cup Y_{i-1} \) would be a total dominating set for \(G[V_{[r-1]}] \), contradicting the fact that \(G \) is a counterexample.
2. Let \(R_i \) be an ISR of \(G[V_{[r-1]}] \) chosen so that for all \(1 \leq j < i \), \(R_i \cap N(x_j) = Y'_j \). Subject to that, choose \(R_i \) so that \(Y'_i = R_i \cap N(x_i) \) is minimum. We know that \(R_i \) exists because \(R_{i-1} \) is a possible candidate for the ISR.
3. It remains to show that \(Y'_i \) is nonempty, i.e. that \(Y_i \neq Y_{i-1} \). Suppose \(Y'_i = \emptyset \). We will show that this contradicts our choice of \(R_i \) for the unique \(j < i \) such that \(x_i \in V_I(Y'_j) \).

Let \(y \) be the unique vertex in \(R_i \cap V_I(x_i) \). Construct \(R'_j \) from \(R_i \) by removing \(y \) and
inserting x_i. Now for every ℓ such that $1 \leq \ell < j$, $R'_j \cap N(x_\ell) = Y'_\ell = R_j \cap N(x_\ell)$. For j, $R'_j \cap N(x_j) = (R_j \cap N(x_j)) \setminus \{y\}$, a contradiction. Thus, Y'_j is nonempty.

4. Set $X_i = X_{i-1} \cup \{x_i\}$ and $Y_i = Y_{i-1} \cup Y'_i$.

This choice of X_i, R_i, and Y_i sets up the conditions so that we can repeat our argument indefinitely for increasing i, a contradiction since G is finite.

The lemma easily implies Theorem 3.5 in [1], and allows us to prove a strengthening of Theorem 5:

Theorem 9. Let k be a positive integer and let G be a graph partitioned into stable sets $(V_1, ..., V_r)$. If for each $i \in [r]$, each vertex in V_i has degree at most $\min\{k, |V_i| - k\}$, then for any vertex v, G has an ISR.

Proof. Suppose G is a minimum counterexample for a given value of k. Clearly we can assume that each V_i has size greater than k, and that $G[V_J]$ has an ISR for all $J \subset [r]$. Take v such that G does not have an ISR containing v; we can assume $v \in V_r$. By Lemma 8, there is some $J \subseteq [r-1]$ and a set $D \subseteq V_J \cup \{v\}$ totally dominating $V_J \cup \{v\}$ such that (i) D is the union of disjoint stable sets X and Y, (ii) Y is a partial ISR of V_J, (iii) $|X| \leq |Y| \leq |J|$, and (iv) $v \in X$.

Since D totally dominates $V_J \cup \{v\}$, the sum of degrees of vertices in D must be greater than the number of vertices in V_J. That is, $\sum_{v \in D} d(v) > \sum_{i \in J} |V_i|$. Clearly $\sum_{v \in X} d(v) \leq k \cdot |J|$ and $\sum_{v \in Y} d(v) \leq \sum_{i \in J} (|V_i| - k)$, so $\sum_{v \in D} d(v) \leq \sum_{i \in J} |V_i|$. Thus D cannot totally dominate $V_J \cup \{v\}$, giving us the contradiction that proves the theorem.

This extends Haxell’s theorem by bounding the difference between the degree of a vertex and the size of its partition. One might hope that bounding the ratio of these by $\frac{1}{2}$ is enough, but it is not: Given V_1 of size four and $V_2, ..., V_5$ of size two, in which each vertex of V_1 dominates one of the smaller sets, there exists no ISR [3]. Lemma 8 cannot imply such a result because in the totally dominating set $D = X \cup Y$, we have no control over the average degree of a vertex in X—it may be k. So while we know that the average degree of a vertex in Y behaves nicely with respect to the average partition size, the same is not necessarily true of X. Thus Theorem 9 gives a lopsided existence condition that is not only a useful consequence of Lemma 8, but also a natural one.

ACKNOWLEDGMENTS

The author is grateful to Landon Rabern and Penny Haxell for helpful discussions, and to Robert Himmelmann for pointing out an error in an earlier version of the article.

REFERENCES

[1] R. Aharoni, E. Berger, and R. Ziv, Independent systems of representatives in weighted graphs, Combinatorica 27(3) (2007), 253–267.

[2] A. Hajnal, A theorem on k-saturated graphs, Canadian J Math 17 (1965), 720–724.

[3] P. E. Haxell, Personal communication.
[4] P. E. Haxell, A condition for matchability in hypergraphs, Gr Combin 11(3) (1995), 245–248.
[5] P. E. Haxell, A note on vertex list colouring, Combin Probab Comput 10(4) (2001), 345–347.
[6] P. E. Haxell, On the strong chromatic number, Combin Probab Comput 13(6) (2004), 857–865.
[7] A. D. King, B. A. Reed, and A. Vetta, An upper bound for the chromatic number of line graphs, Eur J Comb 28(8) (2007), 2182–2187.
[8] A. V. Kostochka, Degree, density, and chromatic number of graphs, Metody Diskret Analiz 35 (1980), 45–70 (in Russian).
[9] L. Rabern, On hitting all maximum cliques with an independent set, J Graph Theory (2010), Arxiv preprint arXiv:0907.3705 v3.
[10] B. A. Reed, ω, Δ, and χ, J Graph Theory 27 (1998), 177–212.
[11] B. A. Reed, A gentle introduction to semi-definite programming, In: Perfect Graphs (J. L. Ramírez Alfonsín, B. A. Reed, Eds.), Chapter 11, Wiley, New York, 2001.