LIFTING IN FRATTINI COVERS AND A CHARACTERIZATION OF FINITE SOLVABLE GROUPS

ROBERT M. GURALNICK AND PHAM HUU TIEP

Abstract. We prove a lifting theorem for odd Frattini covers of finite groups. Using this, we characterize finite solvable groups as those finite groups which do not contain nontrivial elements x_i, $i = 1, 2, 3$, with $x_1x_2x_3 = 1$ and x_i a p_i-element for distinct primes p_i.

1. Introduction

Let G be a finite group. Suppose that X is a finite group such that $X/F = G$. We say that X is a Frattini cover of G if F is contained in the Frattini subgroup $\Phi(X)$ of X.

Frattini covers have been studied considerably with respect to coverings of curves (and infinite towers of coverings of curves).

Fried [F1, F2] introduced the modular tower problem and has made several interesting conjectures regarding them which generalize the fact that for an elliptic curve defined over a number field, the torsion subgroup defined over the number field is bounded. See [F2, BF, FK, D] for much more about this problem and its motivation and interesting examples. Theorems 1.1 and 2.5 have some interesting consequences for Hurwitz spaces. In particular, it implies the existence of certain Hurwitz spaces for certain Frattini covers related to the modular tower program.

Our first result gives a lifting criterion in Frattini covers.

Theorem 1.1. Let p be an odd prime. Let X be a Frattini cover of $G = X/F$ with F a p-group. Assume that p does not divide the order of the Schur multiplier of G. Let $g_1, \ldots, g_r \in G$ satisfy

(i) $G = \langle g_1, \ldots, g_r \rangle$,
(ii) $g_1 \cdots g_r = 1$, and
(iii) the order of each g_i is coprime to p.

Then, for any $f \in F$, there exist $x_i \in X$, with $x_i F = g_i$, $|x_i| = |g_i|$, such that $x_1 \cdots x_r = f$.

In particular, we can take $f = 1$. This shows that the lifting invariant defined by Fried vanishes in this setting. Furthermore, by a standard compactness argument, we can take X to be the p-universal Frattini cover (see [F2]). More generally, if we drop the

2010 Mathematics Subject Classification. Primary 20D10, 20D06, 20D05; Secondary 14G32, 14H30.

Key words and phrases. Characterizations of finite solvable groups, lifting in Frattini covers.

The authors gratefully acknowledge the support of the NSF (grants DMS-1001962 and DMS-0901241). They are also grateful to M. Fried for helpful comments on the topic of the paper.
assumption that \(p \) does not divide the order of the Schur multiplier, we see that the only obstruction to lifting is lifting to the maximal central Frattini cover (and this is a true obstruction – see the examples in Section 2 and Section 5). See Theorem 2.5 for a more general result which does not assume the condition on the Schur multiplier.

Of course, we can replace \(p \) by any set \(\pi \) of odd primes and let \(F \) be a (necessarily nilpotent) \(\pi \)-group (see Theorem 2.5). We also construct examples to show that Theorem 1.1 fails if \(p = 2 \), see Proposition 6.1.

Using this result and the Thompson classification of the finite simple groups in which every proper subgroup is solvable [T], we obtain the following characterization of finite solvable groups (Barry [B] asked whether this was true).

Theorem 1.2. Let \(G \) be a finite group. Then \(G \) is solvable if and only if \(x_1x_2x_3 \neq 1 \) for all nontrivial \(p_i \)-elements \(x_i \) of \(G \) for distinct primes \(p_i \), \(i = 1, 2, 3 \).

The forward implication is trivial. The reverse implication crucially depends on results of Thompson [T], and Proposition 2.1 which essentially follows from a result of Isaacs [I1]. Thompson proved this result if one considers all triples of nontrivial elements of coprime order using his result on simple groups with all proper subgroups solvable. Kaplan and Levy [KaL] (see also [GL]) proved a variant of the previous result – in their result, \(x_1 \) is a 2-element, \(x_2 \) is a \(p \)-element for some odd prime \(p \) and \(x_3 \) is any nontrivial element whose order is coprime to \(2p \). We actually prove a somewhat stronger result by showing that in Theorem 1.2 it suffices to assume that \(p_1 = 2 \) and \(p_2 \in \{3, 5\} \) (see Theorem 3.4). An even stronger result, Theorem 1.4 characterizing \(p \)-solvable groups, is also obtained (but using the full classification of finite simple groups).

There have been many characterizations of finite solvable groups. We mention a few:

1. Every 2-generated subgroup is solvable [T] (see also [E1]);
2. Every pair of conjugate elements generate a solvable group [G1];
3. The proportion of pairs of elements which generate a solvable group is greater than \(11/30 \) [GW];
4. If \(x, y \in G \), then \(x, y^g \) generate a solvable group for some \(g \in G \) [DG].

See [DG, GL, G2] for more characterizations and other references.

We obtain another characterization of solvable groups by combining our Theorem 3.4 with the proof of [B, Theorem 2]:

Corollary 1.3. Let \(G \) be a finite group. The following are equivalent:

(i) \(G \) is solvable;

(ii) For all distinct primes \(p_i \) and for all Sylow \(p_i \)-subgroups \(P_i \) of \(G \) with \(1 \leq i \leq 3 \), \(|P_1P_2P_3| = |P_1||P_2||P_3| \).

(iii) For all distinct primes \(p_i \) and for all Sylow \(p_i \)-subgroups \(P_i \) of \(G \), where \(1 \leq i \leq 3 \), \(p_1 = 2 \), and \(p_2 \in \{3, 5\} \), \(|P_1P_2P_3| = |P_1||P_2||P_3| \).

Note that Theorem 1.2 (and Theorem 3.4) depends on Thompson’s results but not on the full classification of finite simple groups. In fact, the only results in this paper which depend on the full classification are the ones in §5.
In the next section, we prove Theorem 1.1 and the more general Theorem 2.5. In section 3 we prove Theorem 3.4 (which includes Theorem 1.2). In section 4, we elaborate on the fact that one cannot just take elements of prime order in Theorem 1.2. In section 5, using the full classification of finite simple groups, we characterize the p-solvable finite groups (for $p \geq 3$):

Theorem 1.4. Let p be an odd prime and G be a finite group. Then G is p-solvable if and only if G does not admit a triple of nontrivial elements x, y, z with $xyz = 1$, x a 2-element, y a p-element, and z a q-element for any odd prime $q \neq p$.

In section 6, we give examples to show that Theorem 1.1 fails for $p = 2$. In the final section, using Proposition 2.1, we give a short proof of a theorem of Feit and Tits [FT] about the minimal dimension of a representation of a group which has a section isomorphic to a given simple group.

We use the notation of [Atlas] for various finite simple groups (in particular, $L_n(q)$, $U_n(q)$, $S_{2n}(q)$, and $O^+_n(q)$ stands for $PSL_n(q)$, $PSU_n(q)$, $PSp_{2n}(q)$, and $PO^+_n(q)$, respectively).

2. Lifting

The following statement is a key ingredient in our further considerations. It is essentially a consequence of a result of Isaacs [I1, Theorem 9.1], and it is probably also known to Dade. For the sake of completeness, we give an independent proof of it.

Proposition 2.1. Let G be a finite group and N a non-abelian normal p-subgroup of G for a prime p. Assume that N is minimal among noncentral normal subgroups of G.

(i) If $\varphi \in \text{Irr}(Z(N))$ is nontrivial on $[N, N]$, then φ is fully ramified with respect to $N/Z(N)$, i.e. $\varphi^N = e\theta$ for some $\theta \in \text{Irr}(N)$ and $e^2 = |N/Z(N)|$.

(ii) Assume $p > 2$. Then $G/Z(N)$ splits over $N/Z(N)$. In particular, N is not contained in $\Phi(G)$.

Proof. 1) Observe that since N is non-abelian, N is noncentral in G. Since $1 < Z(N) < N$, the minimality of N implies that $Z(N) \leq Z(G)$, and so $Z(N) = Z(G) \cap N$. Similarly, $|N, N| \leq Z(G)$, whence $|N, N| \leq Z(N)$ and N is nilpotent of class 2. It follows that for all $x, y, z \in N$, $[x, z][y, z] = [xy, z]$. In particular, for all $x \in N$, the set $\{x, n\} := \{[x, n] \mid n \in N\}$ is a subgroup of $[N, N]$. Next we claim that $[x, N] = [N, N]$ for all $x \in N \setminus Z(N)$. Assume the contrary: $X := [x, N] < [N, N]$. Since N has class 2, $Y := \{y \in N \mid [y, N] \leq X\}$ is a subgroup of N containing x and $Z(N)$. Next, $X \leq Z(G)$ is normal in G, hence $Y \triangleleft G$. If $Y = N$, then $[N, N] \leq X$, a contradiction. Therefore $Y < N$, and so $Y \leq Z(G) \cap N = Z(N)$ by minimality of N, again a contradiction.

2) Now we prove (i). By the assumption, $\varphi(z) \neq 1$ for some $z \in [N, N]$. Let $\theta \in \text{Irr}(N)$ be any irreducible constituent of φ^N. We claim that $\theta(x) = 0$ for all $x \in N \setminus Z(N)$. (Indeed, let Θ be a complex representation affording the character θ. By the previous paragraph, there is some $n \in N$ such that $z = x^{-1}n^{-1}xn$. Since $\Theta(z) = \varphi(z)I$, it follows that $\Theta(n)^{-1}\Theta(x)\Theta(n) = \varphi(z)\Theta(x)$. Taking traces, we see that $\theta(x)(\varphi(z) - 1) = 0$ and so
\[\theta(x) = 0 \] by the choice of \(z \). It is well known that in this case \(\varphi \) is fully ramified with respect to \(N/Z(N) \) (cf. [I] Lemma 2.6).

3) From now on, we assume that \(p > 2 \). Let \(M \geq Z(N) \) be chosen such that \(M/Z(N) = \Omega_1(N/Z(N)) \). Then \(Z(G) \cap N = Z(N) < M \leq N \) and \(M < G \). The minimality of \(N \) again implies that \(M = N \), i.e. \(N/Z(N) \) is elementary abelian. Now for any \(x, y \in N \) we have \(x^p \in Z(N) \) and so \([x, y]^p = [x^p, y] = 1 \). Since \([N, N]\) is abelian, it follows that \([N, N]\) is also elementary abelian. As \(p > 2 \), this also implies that \((xy)^p = x^py^p \) for all \(x, y \in N \).

4) Now we pick any nontrivial \(\lambda \in \text{Irr}([N, N]) \). Since \(Z(N) \geq [N, N] \) is abelian, \(\lambda \) extends to \(\varphi \in \text{Irr}(Z(N)) \), which is \(G \)-invariant because \(Z(N) \leq Z(G) \). Let \(K := \text{Ker}(\varphi) \) and let \(P := N/K \); in particular, \(K \leq Z(G) \). We will now show that \(P \cong p_1^{1+2n} \), an extraspecial \(p \)-group of exponent \(p \) of order \(p^{1+2n} \) for some \(n \geq 1 \).

First, \(K \cap [N, N] = \text{Ker}(\lambda) \) has index \(p \) in \([N, N]\) as \([N, N]\) is elementary abelian. Hence \([P, P] = K[N, N]/K \) is cyclic of order \(p \); in particular, \(P \) is non-abelian. Choose \(N_1 \geq Z(N) \) such that \(N_1/K = Z(N/K) \). Then \(N_1 < N \) and \(N_1 < G \). The minimality of \(N \) implies that \(N_1 = Z(N) \). Also, \(\varphi \) is a faithful linear character of \(Z(N)/K = N_1/K \).

We have shown that \(Z(P) = Z(N)/K \) is cyclic.

Next we claim that \(P \) contains noncentral elements of order \(p \). Indeed, fix \(x \in P \) such that \(|x| = \exp(P) = p^s \). Since \(P \) is non-abelian, we can find \(y \notin \langle x, Z(P) \rangle \). Then \(|y| = p^t \) with \(1 \leq t \leq s \) by the choice of \(x \). Also, since \(P/Z(P) \cong N/Z(N) \) is elementary abelian, \(x^p, y^p \in Z(P) \). Now \(x^p \), respectively \(y^p \), is an element in the cyclic group \(Z(P) \), of order \(p^{s-1} \), respectively \(p^{t-1} \), and \(t \leq s \). It follows that there is some integer \(k \) such that \(y^p = x^{kp} \). As shown in 3), we now have \((x^{-k}y)^p = x^{-kp}y^p = 1 \) and \(x^{-k}y \notin Z(P) \), i.e. \(x^{-k}y \) is a noncentral element of order \(p \) in \(P \), as desired.

Let \(N_2 := \{ x \in N \mid x^p \in K \} \). If \(x, y \in N_2 \), then by 3) we have \((xy)^p = x^py^p \in K \) and so \(xy \in N_2 \). Hence \(N_2 < G \). By the previous claim, \(N_2 \) is not contained in \(Z(N) = Z(G) \). The minimality of \(N \) now implies that \(N_2 = N \). We have shown that \(\exp(P) = p \).

Since \(Z(P) \) is cyclic, we also have \(Z(P) \cong C_p \cong [P, P] \), and so \(Z(P) = [P, P] \). But \(P/Z(P) \cong N/Z(N) \) is elementary abelian, hence \(\Phi(P) = Z(P) \). Thus \(P \) is an extraspecial \(p \)-group of exponent \(p \), as stated.

5) It is well known that \(\text{Aut}_1(P) \), the group of all automorphisms of \(P \) which act trivially on \(Z(P) \), is a semidirect product \(IS \), where \(I = \text{Inn}(P) \cong P/Z(P) \) is of order \(p^n \) and \(S \cong \text{Sp}_{2n}(p) \). Now set \(C := C_G(N/K) \) so that \(H := G/C \) embeds in \(\text{Aut}_1(P) \). Since \([N, N] \not\subseteq K \), we have \(Z(N) \leq N \cap C < N \), and so \(N \cap C = Z(N) \) by the minimality of \(N \). Thus \(NC/C \cong N/Z(N) \cong P/Z(P) \cong I \). Now we can certainly write \(H \) as a semidirect product of \(NC/C \) and \(H \cap S \). Let \(U \geq C \) be such that \(U/C = H \cap S \); in particular \(U \cap NC = C \) since \(S \cap I = 1 \). Then \(G = (NC)/U = UN \), and \(U \cap N = (U \cap NC) \cap N = C \cap N = Z(N) \), i.e. \(G/Z(N) \) splits over \(N/Z(N) \).

Suppose now that \(N \leq \Phi(G) \). Then \(G = \Phi(G)U \) implies that \(G = U \), contradicting the fact that \(U \cap N = Z(N) \). \(\square\)
If we consider groups of even order, the previous result fails. For example, there is a non-split extension of an extraspecial 2-group of order 2^{1+2a} by an orthogonal group $O_{2a}(2)$ (if $a \geq 5$).

Lemma 2.2. Let p be a prime and let G be a finite group generated by elements g_1, \ldots, g_r. Assume that either $G = O^p(G)$, or all g_i are p'-elements. Let N be an abelian p'-subgroup of G that is a minimal noncentral normal subgroup of G. Let $C_i := [g_i, N]$. Then $(g_1C_1)(g_2C_2) \cdots (g_rC_r) = (g_1 \cdots g_r)N$. Furthermore, every element of g_iC_i is N-conjugate to g_i and is contained in the coset g_iN.

Proof. Note that, since N is normal and abelian, $C_i = \{[g_i, n] \mid n \in N\}$ and it is a subgroup of N. Clearly, any element of g_iC_i is a conjugate of g_i (by an element of N). It is straightforward to see that

$$(g_1C_1)(g_2C_2) \cdots (g_rC_r) = (g_1 \cdots g_r)D_1 \cdots D_r,$$

where $D_r = C_r, D_{r-1} = C_{r-1}^{g_{r-1}}, \ldots, D_1 = C_1^{g_2 \cdots g_r}$.

Suppose that $[G, N] \neq N$. Then $[G, N]$ is central in G by the minimality of N. If h is any p'-element of G, this implies that $[h^{p^n}, n] = [h, n]^{p^n} = 1$ for all $n \in N$, if $\exp(N) = p^n$. It follows that all p'-elements of G centralize N. By the hypothesis, G is generated by p'-elements, whence G centralizes N, a contradiction. Hence $[G, N] = N$.

Set $M := D_1 \cdots D_r$. Note that $[g_r, N] \leq M$ and so g_r acts trivially on N/M. Also, $[g_r, M] \leq [g_r, N] = D_r \leq M$, and so $M^{g_r} = M$. Hence $C_{r-1} = D_{r-1}^{g_r} \leq M^{g_r-1} = M$, whence g_{r-1} acts trivially on N/M. Continuing in this manner, we see that each g_i acts trivially on N/M. Since $G = \langle g_1, \ldots, g_r \rangle$, it follows that $M \geq [G, N] = N$. The last statement is obvious. \hfill \Box

We can now prove Theorem 1.1.

Proof. Let $G = X/F$ as in the statement. We induct on $|F|$. If $F = 1$, there is nothing to prove. So assume that this is not the case. Observe that $O^p(X) = X$ and so p does not divide $[X/[X, X]]$. Indeed, $X/O^p(X)F \geq O^p(G) = G$, whence $O^p(X) = X$ and so $O^p(X) = X$ since $F = \Phi(X)$.

First assume that $F \leq Z(G)$. Since p is coprime to $[X/[X, X]], F \leq [X, X]$. Thus X is a central extension of G with kernel F contained in $[X, X]$. Hence $F \leftrightarrow \text{Mult}(G)$ by [12] Corollary 11.20. In particular, p divides $|\text{Mult}(G)|$, a contradiction.

Thus F is not central and so we can take $N \leq F$ to be a minimal normal noncentral subgroup of X. By Proposition 2.1(ii), N is abelian.

By the induction hypothesis applied to X/N, we can choose $x_i \in X$ of order coprime to p such that $g_i = x_iF$ and $x_1 \cdots x_r = f^n$ for some $n \in N$. Note that $\langle x_1, \ldots, x_n \rangle = X$. (Otherwise $Y := \langle x_1, \ldots, x_n \rangle = X$ is contained in a maximal subgroup M of X. But $YF = X$ and $F = \Phi(X) \leq M$, so $M = X$, a contradiction.) By Lemma 2.2 applied to X, there exist $y_i \in x_iN$ with y_i conjugate to x_i such that $y_1 \cdots y_r = (x_1 \cdots x_r)^{n-1} = f$. \hfill \Box

Note that Theorem 1.1 can be viewed as a result about branched coverings of Riemann surfaces. Suppose that $f : Y \to \mathbb{P}^1$ is a Galois branched covering of a Riemann surface Y. ...
with Galois group G and all ramification coprime to a given prime $p > 2$. Let $G = X/F$ be a Frattini cover with F a p-group and assume that $F = [X, F]$. Then there exists an unramified F-cover $Z \rightarrow Y$ with $Z \rightarrow \mathbb{P}^1$ Galois.

Bailey and Fried \cite{BF} have shown that if $p = 2$ then lifting to a central Frattini extension is not always possible.

More generally, we cannot remove the condition that the prime p is coprime to $|\text{Mult}(G)|$ in Theorem \ref{thm:1}. We give families of such examples for any prime p.

Example 2.3. Let $G = L_2(q)$ with $q > 3$ an odd prime power and q not a Fermat prime. Let C be a conjugacy class of elements of odd prime power order dividing $(q - 1)/2$ such that $G = \langle x, y \rangle$ with $x, y \in C$ and $z^{-1} = xy \in C^2$ (it is a straightforward computation to see that these exist – see \cite{GM} Lemma 3.14 or \cite{M}). Let $X = \text{SL}_2(q)$, and let D be the conjugacy of elements of odd order which is the lift of C to X. Then we cannot find $u, v \in D$ and $w \in D^{-2}$ with $uvw = 1$ and $X = \langle u, v, w \rangle$. (Indeed, there is some $\alpha \in \mathbb{F}_q^\times$ such that αu, αv, and $\alpha^{-2}w$ all have a one-dimensional fixed point subspace on the natural X-module \mathbb{F}_q^2. Now Scott’s Lemma \cite{S} implies that $\langle \alpha u, \alpha v, \alpha^{-2}w \rangle$ cannot act irreducibly on \mathbb{F}_q^2 and so $\langle u, v, w \rangle \neq X$. See also \cite{GM}).

Example 2.4. Let $G = A_7$, the alternating group on 7 letters. Using the character table of G as given in \cite{Atlas}, one can check that there are elements $x, y, z \in G$ of order 2, 5, and 7, respectively, with $xyz = 1$ and $G = \langle x, y \rangle$. However, if we denote by \hat{x}, \hat{y}, \hat{z} the lifts of the same order of these elements in the central cover $X = 3 \cdot A_7$, then there are no $(u, v, w) \in \hat{x}^X \times \hat{y}^X \times \hat{z}^X$ such that $uvw = 1$, as one can check using the character table of X in \cite{Atlas}.

The previous two examples are given for $p = 2$ and $p = 3$. In §5, using the classification of irreducible groups generated by pseudoreflections, we will give a family of examples for any odd prime p, cf. Example 5.2.

We can prove a version of Theorem \ref{thm:1} where we do allow p to divide the order of the Schur multiplier. Of course, this includes Theorem \ref{thm:1} as a special case (since then $J = F$).

Theorem 2.5. Let X be a Frattini cover of $G = X/F$ with F of odd order. Set $J = [F, X]$. Let $g_1, \ldots, g_r \in G$ satisfy

(i) $G = \langle g_1, \ldots, g_r \rangle$,

(ii) $g_1 \cdots g_r = 1$, and

(iii) the order of each g_i is coprime to $|F|$.

Let $X_i := \{ x_i \in X \mid x_i F = g_i, |x_i| = |g_i| \}$. Then $X_1 \cdots X_r$ is a coset of J in F.

Proof. First assume that $J = 1$, i.e. $F \leq Z(X)$. It follows that there is a unique lift $x_i \in X$ of g_i with $|x_i| = |g_i|$ and $x_i F = g_i$. Then $x_1 \cdots x_r = f \in F$.

Now go back to the general case. Then $F/J \leq Z(X/J)$ and so, as before, g_i has a unique lift to X/J of the same order. It follows that $X_1 \cdots X_r$ is contained in some coset $f J$ of J in F. It remains to show that each element in $f J$ is a product of elements in X_i.
We will induct on $|J|$. Suppose first that J is central in X. Then for any $h \in X$ of order m coprime to $|F|$ and any $w \in F$, we have $1 = [h^m, w] = [h, w]^m$, whence $[h, w] = 1$ and so h centralizes F. In particular, $x_i \in X_i$ centralizes F for $i = 1, \ldots, r$. But $\langle x_1, \ldots, x_r \rangle = X$ since $F \leq \Phi(X)$ and $G = \langle g_1, \ldots, g_r \rangle$. It follows that $F \leq Z(X)$, $J = 1$, and so we are done by the previous case.

Now we may assume that J is not central in X. Let N be a minimal normal noncentral subgroup of X contained in J; in particular, N is a p-group for some prime p dividing $|F|$ and so $p > 2$. By Proposition 2.1, N is abelian. Observe that, if $x_i \in X_i$ and $n \in N$, then $|n^{-1}x_in| = |x_i| = |g_i|$ and $n^{-1}x_inF = x_iF = g_i$, i.e. $n^{-1}x_in \in X_i$. By the induction hypothesis, the statement holds for X/N. Applying Lemma 2.2, we see that the statement holds in X as well.

The coset of J in the previous result can be thought of as the lifting invariant (or obstruction). As Fried has observed, the different lifting invariants give rise to different orbits for the Hurwitz braid group acting on the corresponding Nielsen classes of G, i.e. on

$$\{ (h_1, \ldots, h_r) \mid \langle h_1, \ldots, h_r \rangle = G, \ h_1 \cdots h_r = 1, \ h_i \in g_i^G \}.$$

See [BF, F1] for more details.

3. Solvable Groups

We first need Thompson's result on minimal simple groups [1].

Theorem 3.1. Let G be a finite simple group such that every proper subgroup is solvable. Then G is one of the following groups:

(a) $L_2(p)$ with $p \geq 7$ an odd prime and $p \equiv \pm 2 \pmod{5}$;
(b) $L_2(2^p)$ with p a prime;
(c) $L_2(3^p)$ with p an odd prime;
(d) $Sz(2^p)$ with p an odd prime;
(e) $SL_3(3)$.

We need one more preliminary result.

Lemma 3.2. Let G be a finite group that is not solvable but has the property that every proper subgroup is solvable. Then the solvable radical $R(G)$ of G is $\Phi(G)$, the Frattini subgroup of G; in particular, $R(G)$ is nilpotent. Moreover, $G/R(G)$ is a non-abelian simple group with all proper subgroups being solvable, and every prime divisor of $|R(G)|$ divides $|G/R(G)|$.

Proof. Suppose that $R := R(G)$ is not contained in $\Phi(G)$. Then $G = RM$ for some maximal subgroup M of G. Then M is solvable, whence G/R is solvable and so is G. Of course, $\Phi(G)$ is nilpotent, so $R = \Phi(G)$ is nilpotent. Now G/R has no nontrivial solvable normal subgroups; also, by the hypothesis, it has no proper non-solvable subgroups. Hence G/R is simple non-abelian. Finally, suppose that a prime divisor p of $|R|$ is coprime to $|G/R|$. Since R is nilpotent, $O_p(R) \cong R/O_p(R)$. By the Schur-Zassenhaus Theorem,
$R/O_{p'}(R)$ has a complement $H/O_{p'}(R)$ in $G/O_{p'}(R)$. In this case, H is a proper nonsolvable subgroup of G, a contradiction. \hfill \Box

We next prove Theorem 1.2 in the case that G is quasi-simple.

Lemma 3.3. (i) Let $G = \text{SL}_2(q)$ with $q \geq 4$, respectively $G = \text{Sz}(q)$ with $q \geq 8$, and let p be any odd prime divisor of $|G|$. Then there exist nontrivial elements $x_i \in G$, $1 \leq i \leq 3$, such that $x_1x_2x_3 = 1$, x_1 is a 2-element, x_2 is a p-element, and x_3 is an s-element for some prime $s \neq 2, p$.

(ii) Let G be a finite quasi-simple group with all proper subgroups being solvable. Then there exist nontrivial elements $x_i \in G$, $1 \leq i \leq 3$, such that $x_1x_2x_3 = 1$, x_1 is a 2-element, x_2 and x_3 are p_i-elements, where $p_2 < p_3$ are odd primes and $p_2 \in \{3, 5\}$.

Proof. (i) Recall that the number of triples $(y_1, y_2, y_3) \in G \times G \times G$ with $y_1y_2y_3 = 1$ and $y_i \in x_i^G$ is equal to

\[
\frac{|x_1^G| \cdot |x_2^G| \cdot |x_3^G|}{|G|^2} \sum_{\chi \in \text{Irr}(G)} \frac{\chi(x_1)\chi(x_2)\chi(x_3)}{\chi(1)}.
\]

The character tables for $G = \text{SL}(q)$ and $\text{Sz}(q)$ are well known (and are for example in Chevie [C]). First we consider the case $G = \text{Sz}(q)$ with $q \geq 8$. Then choose x_1 of order 2, x_2 of order p, and x_3 of some prime order s, where $s|(q - 1)$ if $p|(q^2 + 1)$, and $s|(q^2 + 1)$ otherwise.

Next suppose that $G = \text{SL}_2(q)$ with $q = r^f \geq 4$, r a prime.

- Assume $r = 2$ and let $\epsilon = \pm 1$ be chosen such that $p|(q - \epsilon)$. Then we can choose x_1 of order 2, x_2 of order p, and x_3 of some prime order s dividing $q + \epsilon$.

- Next assume that $p = r$. Choose $\epsilon = \pm 1$ such that $q \equiv \epsilon \pmod{4}$; in particular, $(q + \epsilon)/2$ has a prime divisor $s \neq 2, p$. Now we can choose x_1 of order 4 (in a maximal torus $C_{q-\epsilon}$), x_2 of order p, and x_3 of order s (in a maximal torus $C_{q+\epsilon}$).

- Now let $r \neq 2, p$ but $q \equiv \pm 1 \pmod{4p}$. Then there is some $\epsilon = \pm 1$ such that $4|(q - \epsilon)$ and $p|(q + \epsilon)$, and we choose $x_1 \in C_{q-\epsilon}$ of order 4, $x_2 \in C_{q+\epsilon}$ of order p, and x_3 of order $s = r$.

In all the above cases, the principal character 1^G_G of G is the only irreducible character that is nonzero at $x_1, x_2, \text{ and } x_3$ altogether, and so we are done by (I).

Suppose now that $G = \text{SL}_2(q)$ with $q = r^f \geq 5$, $r \neq 2, p$ and $q \equiv \epsilon \pmod{4p}$ for some $\epsilon = \pm 1$. Choose $x_1 \in C_{q-\epsilon}$ of order 4, $x_2 \in C_{q-\epsilon}$ of order p, and x_3 of some prime order s dividing $(q + \epsilon)/2$ (so $s \neq 2, p$). Then there are precisely two irreducible characters of G which are nonzero at all x_i: the principal character 1^G_G, and the Steinberg characters St of degree q, with $|\chi(x_1)\chi(x_2)\chi(x_3)| = 1$. Hence we are done in this case as well.

(ii) It suffices to prove the statement for G, the Schur cover of $G/Z(G)$. Hence we may assume that $G = \text{SL}_2(q)$, $\text{SL}_3(3)$, $\text{Sz}(q)$, or $2^2 \cdot \text{Sz}(8)$ by Theorem 3.1. We will choose $p = 3$ in the first two cases, and $p = 5$ in the last two cases. If $G = \text{SL}_2(q)$ or $\text{Sz}(q)$, then we are done by (i). For $G = \text{SL}_3(3)$, we can choose x_1 of order 2, x_2 of order 3, and x_3
2.2, there are conjugates

contradiction to the fact that

see that

prime order. For example, if

will address possible refinements of Theorem 3.4 in some other

primes, then since every involution in

two elements of prime order in

prime order (with one of the primes equal to 2) can be trivial (other

wise we would have

Let

observed (with a more complicated proof) in [B].

such that

we can choose nontrivial

x

is nilpotent, the minimality of

p

by Lemma 3.2.

2) By Lemma 3.3(ii), \(\Phi(< p \rangle) = 1 \). If not, then the result holds for

G/O_2(G). Thus, we can choose nontrivial

x

are

p

odd primes, \(p_2 \leq p_3 \) and

(3, 5), and

x_1x_2x_3 = y \in O_2(G).) Then

y^{-1}x_1x_2x_3 = 1 \) and

y^{-1}x_1 \) is a 2-element (and is nontrivial since

x_2 \) and

x_3 \) are). This proves the claim.

Proof. Suppose the result is false. Let

G be a minimal counterexample. Thus, every proper subgroup of

G is solvable, and so

G is perfect and

G/\Phi(G) is non-abelian simple by Lemma [3.2]

Thus, since every proper subgroup of

G is solvable, \(G/N = \langle x_1, x_2, x_3 \rangle \) by Thompson’s theorem [1]. Furthermore, since

N \leq \Phi(G), we see that

G = \langle x_1, x_2, x_3 \rangle. Recall that

G is perfect, and so

G = O^{p}(G). Hence by Lemma

2.2 there are conjugates

y_i \) of

x_i \) for

i = 1, 2, 3 such that

y_1y_2y_3 = (x_1x_2x_3)^n = 1, a contradiction to the fact that

G was a counterexample.

The examples of

Sz(8) and

SL_3(2) show that Theorem 3.4 is best possible, in the sense that
one cannot always demand one of the primes to be 3, respectively 5. In §§4, 5 we
will address possible refinements of Theorem 3.4 in some other directions.

4. Prime Order Elements

It is quite easy to see that Theorems 1.2 and 3.4 fail if we insist that the elements have
prime order. For example, if

G \cong \text{SL}_2(q) \) with

q odd and has order divisible by only 3 primes, then since every involution in

G is central, no product of 3 elements of distinct prime order (with one of the primes equal to 2) can be trivial (otherwise we would have two elements of prime order in

G/Z(G) with product being trivial). For

q = 5 this was observed (with a more complicated proof) in [B].

More generally, we point out the following:

Theorem 4.1. Let

G be a finite group. Then there exists a finite group

X with

X/F \cong G such that

F is abelian, \(F \leq \Phi(X) \), and

F contains all elements of prime order in

X.
Proof. Let \(g \in G \) be of prime order \(p \), and let \(D \) be a one-dimensional trivial \(\langle g \rangle \)-module over \(\mathbb{F}_p \). Since \(\dim H^2(\langle g \rangle, D) = 1 \), there exists a finite \(\mathbb{F}_p G \)-module \(W_g \) with an element \(\beta_g \in H^2(G, W_g) \) such that the restriction of \(\beta_g \) to \(\langle g \rangle \) is nonzero in \(H^2(\langle g \rangle, W_g) \). (Just take the induced module for example). By taking direct sums, we see that there exists a finite \(G \)-module \(W \) and an element \(\beta \in H^2(G, W) \) such that the restriction of \(\beta \) to each subgroup of prime order in \(G \) is nonzero. This allows us to construct an exact sequence

\[1 \to W \to E \to G \to 1, \]

where \(W \) contains all elements of prime order in \(E \) (since \(\beta|_C \) is nonzero in \(H^2(C, W) \) for every subgroup of prime order \(C \) of \(G \)).

Now choose \(X \) to be a minimal subgroup of \(E \) that surjects onto \(G \). Clearly \(F := X \cap W \) is abelian and contains all elements of prime order in \(X \). It only remains to show that \(F \leq \Phi(X) \). If not, then we could choose a proper subgroup \(X_0 \) of \(X \) with \(X = X_0 F \) and so \(X_0 \) surjects onto \(G \), contradicting the choice of \(X \). \(\square \)

In particular, given any non-solvable \(G \), the subgroup generated by all elements of prime order in the extension \(X \) specified in Theorem 4.1 is abelian, and so any product of elements in \(X \) of distinct prime orders \(p_i \) has order equal to the product of the primes.

We close by noting that this example (especially for the prime 2) has a nice consequence for the inverse Galois problem. As far as we know, this was first observed by Serre.

Corollary 4.2. If every finite group occurs as a Galois group of a Galois extension \(K \) of \(\mathbb{Q} \), then every finite group occurs as a Galois group over a totally real Galois extension \(K' \) of \(\mathbb{Q} \).

Proof. By Theorem 4.1, there is a finite group \(X \) such that \(G = X/F \) and \(F \) contains all involutions of \(X \) that surjects onto \(G \). Clearly \(F := X \cap W \) is abelian and contains all elements of prime order in \(X \). It only remains to show that \(F \leq \Phi(X) \). If not, then we could choose a proper subgroup \(X_0 \) of \(X \) with \(X = X_0 F \) and so \(X_0 \) surjects onto \(G \), contradicting the choice of \(X \). \(\square \)

5. Finite Groups with \((2,p,q)\)-triples

First we recall a result essentially proved by Gow in [Gow]:

Lemma 5.1. Let \(G \) be a quasisimple Lie-type group of simply connected type, and let \(x, y \in G \) be any two regular semisimple elements. Then \(x^{G} \cdot y^{G} \) contains every noncentral semisimple element of \(G \).

Proof. The proof is essentially given in [Gow]. Let \(p \) be the defining characteristic of \(G \). Observe that \(Z := Z(G) \) is a \(p' \)-group, so \(PZ/Z \subseteq \text{Syl}_p(G/Z) \) when \(P \in \text{Syl}_p(G) \); also, \(C_G/Z(PZ/Z) \) contains a nontrivial \(p' \)-element (cf. [Gow]). Hence \(C_G(P) \) contains a noncentral semisimple element. It follows that if \(g \in G \setminus Z(G) \) is semisimple, then \(p \) divides \(|g^G| \). Next, \(G \) has exactly \(s := |Z| \) \(p \)-blocks of maximal defect \(B_1, \ldots, B_s \), and a
single p-block of defect zero consisting of the Steinberg character St. For any $i = 1, \ldots, s$, there is an irreducible character $\chi_i \in B_i$ of p'-degree, and so the algebraic integer $\omega_{\chi_i}(g) := (\chi_i(g)/\chi_i(1)) \cdot |g^G|$ is divisible by p. This implies that $\omega_{\chi_i}(g) := (\chi_i(g)/\chi_i(1)) \cdot |g^G|$ is divisible by p for every irreducible character $\chi \in B_i$. On the other hand, $|\text{St}(x)| = |\text{St}(y)| = 1$ since x, y are regular semisimple. Thus

$$\sum_{\chi \in \text{Irr}(G)} \frac{\chi(x)\chi(y)\chi(g)}{\chi(1)} \cdot |g^G| = \frac{\text{St}(x)\text{St}(y)\text{St}(g)}{\text{St}(1)} \cdot |g^G| = \pm |G : C_G(g)|_{p'} \neq 0 \pmod{p},$$

whence $g^{-1} \in x^G \cdot y^G$ by (1).

Example 5.2. Let $p > 2$ be a prime, and $m > 1$ be coprime to $2p$. Assume moreover that m does not divide $p - 1$. Let q be a prime with $mp|(q - 1)$, and let $G = SL_p(q)$. For brevity, we will outline the arguments only for $p > 7$.

1) We choose three elements x_i of G as follows:
 (a) x_1 is irreducible on a hyperplane (of the natural $\mathbb{F}_q G$-module $V = \mathbb{F}_q^n$) and has an eigenvalue 1;
 (b) $x_2 = \text{diag}(a, b, \ldots, b)$ where $ab^{p-1} = 1$ with $b \in \mathbb{F}_q^\times$ of order m;
 (c) x_3 is irreducible on a subspace of codimension 2 of V, and has two eigenvalues, 1 and b^{-1}, in \mathbb{F}_q^\times; furthermore it has order coprime to $|x_1|$.

 Note that the orders of x_i, $i = 1, 2, 3$, are all coprime to p and x_1 and x_3 are regular semisimple elements. It is easy to arrange so that $|x_1|$ and $|x_3|$ are coprime (by taking x_1 to have prime order ℓ, a primitive prime divisor of $q^{p-1} - 1$, cf. \[Zs\]).

2) Observe that if y_i is conjugate to x_i with $y_1y_2y_3 = 1$, then $\langle y_1, y_2 \rangle$ acts reducibly on V. This follows by Scott’s Lemma applied to the elements $y_1, b^{-1}y_2, b y_3$.

3) Let $1 \neq d \in \mathbb{F}_q^\times$ be of order p. Then $d \notin \{1, a, b, ab^{1-p}\}$ since $b, a = b^{1-p}$, and $ab^{-1} = b^{-p}$ all have order dividing m. By Lemma 5.1 applied to the classes x_1^G, x_2^G, $(d^{-1}x_3)^G$, there exist u_i conjugate to x_i such that $u_1u_2u_3 = dI$. Let $U = \langle u_1, u_2, u_3 \rangle$. We claim that $U = G$ for any such choice of u_i.

First we see that U acts irreducibly. Since u_1 acts irreducibly on a hyperplane, the only other possibility would be that U preserves a hyperplane or a 1-space. But then there would be a choice of eigenvalues e_i of the u_i with $e_1e_2e_3 = d$. Since $e_1 = 1$, $e_2 \in \{a, b\}$ and $e_3 \in \{1, b^{-1}\}$, $e_1e_2e_3$ is contained in $\{1, a, b, ab^{-1}\}$ and so cannot be equal to d.

Now U is an irreducible group containing pseudoreflections (up to scalar – namely, u_2). Note also that, modulo scalars, U is the normal closure of u_2 in U. (For if $N = \langle u_2^U \rangle$, then, modulo scalars, U/N is generated by u_1N and also by u_3N, and so has order dividing both $|u_1|$ and $|u_3|$, which are coprime.) Thus, U is generated by pseudoreflections of odd order modulo scalars. This implies that U is primitive and tensor-indecomposable, and this also excludes most of the “obvious” examples of pseudoreflection groups. Now the classification of finite pseudoreflection groups (cf. [GS 7.1]) implies that $U = G$.

4) Let $\bar{u}_i \in L_p(q)$ be the image of u_i. Then

$$\bar{u}_1 \bar{u}_2 \bar{u}_3 = 1, \langle \bar{u}_1, \bar{u}_2, \bar{u}_3 \rangle = L_p(q)$$
Gluskerman’s classification of S_3-free simple groups [Gl], together with results of Goldschmidt [Gol], implies that Suzuki groups $Sz(2^{2a+1})$, $a = 1, 2, \ldots$, are the only finite non-abelian simple $3'$-groups. We will need the full classification of finite simple groups to prove the following statement.

Lemma 5.3. Let S be a finite non-abelian simple group. Suppose that every proper subgroup of S is 3-solvable. Then S is either a Suzuki group $Sz(q)$, or one of the groups listed in Theorem 3.1.

Proof. Certainly, $S \not\cong A_n$ for any $n \geq 6$ since A_5 is not 3-solvable. Similarly, one can check using [Atlas] that each of the 26 sporadic simple groups has a section isomorphic to A_5.

Next suppose that S is a finite simple group of Lie type over F_q with $q \geq 4$. If the twisted Lie rank of S is at least 2, then a proper section of S is isomorphic to $L_2(q)$ which is again not 3-solvable. Otherwise $S \cong L_2(q)$, $Sz(q)$, $U_3(q)$, or $^2G_2(q)$. In the first case, it is easy to check that S must then be one of the groups listed in Theorem 3.1. The second case is included in the lemma’s conclusion. The last two cases cannot happen as otherwise S has a section $\cong L_2(q)$. Also observe that $SL_2(3)$ embeds in $^3D_4(q)$.

Finally, suppose that S is a finite simple group of Lie type over F_q with $q = 2, 3$, not isomorphic to $^3D_4(q)$, $L_2(7)$, or $SL_3(3)$. Considering Levi subgroups or subsystem subgroups of S, one readily checks that S has a section isomorphic to A_5 or $L_2(7)$.

Let p, q, r be primes. By a (p, q, r)-triple in a finite group G we mean a triple (x, y, z) of nontrivial elements in G such that x is a p-element, y is a q-element, z is an r-element, and $xyz = 1$. (Note that in fact the order of p, q, r does not matter, since if $xyz = 1$, then $y(x^{-1})z = 1$, etc.) Theorem 3.1 then states that any finite non-solvable group admits either a $(2, 3, p)$-triple (for a prime $p \geq 5$), or a $(2, 5, p)$-triple for a prime $p \geq 7$. Now we can characterize finite groups G for which only the latter can happen. In fact, we can characterize the finite p-solvable groups (with $p > 2$) as precisely the ones which do not admit any $(2, p, q)$-triple for any prime $q \neq 2, p$.

To this end, we first use the classification of finite simple groups to describe the minimal non-p-solvable simple groups.

Lemma 5.4. Let S be a finite non-abelian simple group and $p \geq 5$ a prime with p dividing $|G|$. If every proper subgroup of S is p-solvable, then either $S = L_2(p)$, A_p, or one of the following holds.

(i) $S = L_2(q)$ with $p|(q^2 - 1)$.
(ii) $S = L_n(q)$, $n \geq 3$ is odd, and p divides $q^n - 1$ but not $\prod_{i=1}^{n-1}(q^i - 1)$.
(iii) $S = U_n(q)$, $n \geq 3$ is odd, and p divides $q^n - (-1)^n$ but not $\prod_{i=1}^{n-1}(q^i - (-1)^i)$.
(iv) $S = Sz(q)$.
(v) $S = ^2G_2(q)$, and p divides $q^2 - q + 1$ but not $q^2 - 1$.
(vi) $S = ^2F_4(q)$, $q \geq 8$, and $p|(q^4 - q^2 + 1)$.
(vii) \(S = 3D_4(q) \), and \(p \) divides \(q^4 - q^2 + 1 \) but not \(q^6 - 1 \).
(viii) \(S = E_8(q) \), and \(p \) divides \(q^{30} - 1 \) but not \(\prod_{i=8,14,18,20,24}(q^i - 1) \).
(ix) \((S,p)\) is one of: \((M_{23}, 23)\), \((J_1, 7 \text{ or } 19)\), \((Ly, 37 \text{ or } 67)\), \((J_4, 29 \text{ or } 43)\), \((Fi'_{24}, 29)\), \((BM, 47)\), \((M, 41 \text{ or } 59 \text{ or } 71)\).

Proof. By the assumption, every proper section of \(S \) is \(p \)-solvable. If \(S = A_n \), then \(n = p \) since \(A_{p-1} \) is a \(p' \)-group and \(A_p \) is not \(p \)-solvable. The sporadic simple groups are treated using [Atlas].

Suppose now that \(S \) is a simple group of Lie-type in characteristic \(r \). If \(r = p \geq 5 \), then \(S \) has a section isomorphic to \(L_2(p) \) which is not \(p \)-solvable, whence \(S = L_2(p) \). Now we consider the cases with \(r \neq p \) type-by-type. The cases \(S = L_2(q) \) and \(S = Sz(q) \) are listed in (i) and (iv). Suppose \(S = L_n(q) \) with \(n \geq 3 \), but \(p \mid (q^i - 1) \) for some \(2 \leq i \leq n - 1 \). In particular, if \(n = 3 \) then \(q \geq 4 \) since \(p \geq 5 \). Hence, a proper simple section \(L_{n-1}(q) \) of \(S \) is not \(p \)-solvable, a contradiction. Also, the case \(p \mid (q^n - 1) \) with \(2 \mid n \) is excluded by considering a section \(S_n(q) \) of \(S \). Thus we arrive at (ii). Similarly, we arrive at (iii) if \(S = U_n(q) \) with \(n \geq 3 \). Next suppose that \(S = S_{2n}(q) \) with \(n \geq 2 \). If \(p \mid (q^{2n} - 1) \) then a proper section \(L_2(q^n) \) of \(S \) is not \(p \)-solvable. Otherwise a proper section \(S_{2n-2}(q) \) of \(S \) is not \(p \)-solvable. Similarly, if \(S = O_{2n+1}(q) \) with \(n \geq 3 \), then either \(O^+(2n)(q) \) or \(O^-(2n)(q) \) is not \(p \)-solvable. If \(S = O^+_n(q) \) with \(n \geq 4 \), then either \(O^+_{2n-2}(q) \), or \(O^-_{2n-2}(q) \), or \(L_n(q) \) is not \(p \)-solvable. Suppose \(S = O^-_{2n}(q) \) with \(n \geq 4 \). Then \(S \) has two proper sections isomorphic to \(O^+_{2n-2}(q) \) and \(O^-_{2n-2}(q) \), and another proper section isomorphic to \(U_n(q) \) if \(n \) is odd and \(L_2(q^n) \) if \(n \) is even. At least one of these three sections is not \(p \)-solvable, a contradiction. If \(G = G_2(q) \), then \(p \) cannot divide \(q^2 - 1 \) because of a section \(L_2(q) \), so we arrive at (v). If \(G = G_2(q) \), then either \(L_3(q) \) or \(U_3(q) \) is not \(p \)-solvable. If \(G = 2F_4(q) \), then by considering sections \(S_4(q) \) and \(U_3(q) \) of \(S \) (and \(SL_3(3) \) for \(q = 2 \)) we see that \(p \mid (q^4 - q^2 + 1) \) and \(q \geq 8 \) as in (vi). If \(G = 3D_4(q) \) but \(p \mid (q^6 - 1) \), then a proper section \(L_3(q^2) \) is not \(p \)-solvable. If \(G = F_4(q) \), then a proper section \(O_9(q) \) or \(3D_4(q) \) is not \(p \)-solvable. If \(G = E_6(q) \), then a proper section \(O^+_9(q), L_3(q^3) \), or \(3D_4(q) \) is not \(p \)-solvable. If \(G = 2E_6(q) \), then a proper section \(O^+_9(q), U_3(q^3) \), or \(3D_4(q) \) is not \(p \)-solvable. If \(G = E_7(q) \), then a proper section \(E_6(q), 2E_6(q) \), or \(L_2(q^7) \) is not \(p \)-solvable. If \(G = E_8(q) \) and \(p \mid \prod_{i=8,14,18,20,24}(q^i - 1) \), then a proper section \(E_7(q), U_5(q^2) \), or \(3D_4(q^2) \) is not \(p \)-solvable. (The aforementioned sections of exceptional groups of Lie type come from subgroups of maximal rank described in [LSS].)

\(\square \)

Lemma 5.5. Let \(q < p \) be odd primes. Then there exist \((2, q, p)\)-triples in \(A_p \).

Proof. Write \(p = sq + t \) with \(s \geq 1 \) and \(0 < t < q \). Let \(y \in A_p \) be an element of order \(q \) with \(s \) nontrivial cycles. Let \(O_1, \ldots, O_s \) be the nontrivial orbits of \(y \) and \(O_0 \) the set of all fixed points of \(y \) (acting on \(\{1, 2, \ldots, p\} \)). Take an involution \(x \in S_p \) which is a product of \(s + t - 1 \) transpositions so that \(x \) moves exactly one point \(a_{2i-1} \) of \(O_i \) to \(a_{2i} \in O_{i+1} \) for \(i = 1, \ldots, s - 1 \), and for each \(j \in O_0 \), \(xj \) is not in \(O_0 \) and disjoint from the points \(a_1, \ldots, a_{2s-2} \) (this is possible since \(sq - 2(s - 1) \geq q \geq t \)). For any \(u \in A_p \), let \(\text{ind}(u) \) be the difference between \(p \) and the number of cycles of \(u \), i.e. the codimension of the fixed
point subspace of u on the natural permutation module $V = \mathbb{C}^p$. Then $\text{ind}(x) = s + t - 1$, and $\text{ind}(y) = s(q - 1)$. Note that $s + t - 1$ is even, so $x \in A_p$. By construction (x, y) is a transitive subgroup of A_p. Applying Scott’s Lemma \cite{Scott} to the action of (x, y) on V, we see that

$$\text{ind}(x) + \text{ind}(y) + \text{ind}(xy) \geq 2p - 2.$$

Hence, $\text{ind}(xy) \geq p - 1$, which forces xy to be a p-cycle. Thus, $(x, y, (xy)^{-1})$ is a $(2, q, p)$-triple.

Proposition 5.6. Let G be a finite quasisimple group and $p \geq 5$ a prime. Suppose that every proper subgroup of G is p-solvable but G is not p-solvable. Then G admits a $(2, p, s)$-triple for some odd prime $s \neq p$.

Proof. We apply Lemma 5.4 to $S = G/Z(G)$ and may assume that G is a Schur cover of S.

1) If $S = L_2(p)$, then $G = SL_2(p)$ since $p \geq 5$, and so we are done by Lemma 3.3(i). Suppose $S = A_p$. If $p \neq 7$, then by Lemma 5.5, S admits a $(2, p, q)$-triple, which then lifts to a $(2, p, q)$-triple in $G = 2A_p$ by p. 1) of the proof of Theorem 3.1. Similarly, if $p = 7$, then by Lemma 5.5, S admits a $(2, 3, 7)$-triple, which then lifts to a $(2, 3, 7)$-triple in $G = 2A_7$. The same argument shows that $6 \cdot L_2(9)$ admits a $(2, 3, 5)$-triple, and that $2^2 \cdot Sz(8)$ admits a $(2, p, s)$-triple for any $p \in \{5, 7, 13\}$. The cases $S = L_2(q)$ and $Sz(q)$ now follow from Lemma 3.3(i).

The sporadic groups listed in Lemma 5.4 can certainly be checked using (1) and \cite{Atlas}. But we point out a slightly easier way to check it as follows. Consider the case $S = M$ (so that $G = S$) and let $p \in \{41, 59, 71\}$. Pick a prime $s \in \{41, 59, 71\} \setminus \{p\}$, $x \in S$ of order p, $y \in S$ of order s, and $z \in S$ of order 32. Then $|C_G(x)| = p$, $|C_G(y)| = s$, $|C_G(z)| = 128$; also, if $\chi \in \text{Irr}(G)$ is non-principal then $\chi(1) \geq 196883$. Since $|\text{Irr}(G)| = 194$, it follows that

$$\left| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(x)\chi(y)\overline{\chi(z)}}{\chi(1)} \right| \geq 1 - \frac{193 \cdot \sqrt{59 \cdot 71 \cdot 128}}{196883} > 0,$$

and so a $(2, p, s)$-triple exists. As another example, consider the case $S = F_{4}'_{24}$ (so we may assume $G = 3S$ and $p = 29$). Choosing $x \in G$ of order p, $y \in G$ of order $s = 17$, and $z \in G$ of order $s = 16$, we have $|C_G(x)| = 3p$, $|C_G(y)| = 3s$, $|C_G(z)| = 96$. Now if $\chi \in \text{Irr}(G)$ is non-principal and $\chi(x)\chi(y)\overline{\chi(z)} \neq 0$, then $\chi(1) \geq 249548$. Since $|\text{Irr}(G)| = 260$, it follows that

$$\left| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(x)\chi(y)\overline{\chi(z)}}{\chi(1)} \right| \geq 1 - \frac{259 \cdot \sqrt{87 \cdot 51 \cdot 96}}{249548} > 0.$$

The same argument works for $S = M_{23}$ with $(p, s) = (23, 11)$, $S = J_1$ with $(p, s) = (7, 19)$, $S = Ly$ with $(p, s) = (37, 67)$, $S = J_4$ with $(p, s) = (29, 43)$, and $S = BM$ with $(p, s) = (31, 47)$.

From now on we may assume that S is a simple group of Lie-type in characteristic $r \neq p$ (and not isomorphic to any of the aforementioned simple groups). The last assumption implies that G is a Lie-type group of simply connected type corresponding to S.

14 ROBERT M. GURALNICK AND PHAM HUU TIEP
2) Assume in addition $r \neq 2$, so that we are in the cases (ii), (iii), (v), (vii), or (viii) of Lemma 5.4. In all these cases, the conditions on p imply that a p-element $x \in G$ is regular semisimple (see e.g. [MT] Lemma 2.3] for exceptional groups). Clearly, Sylow subgroups of G cannot be central (since $|S|$ and $|G|$ have same set of prime divisors). Suppose that we can find a regular semisimple s-element $y \in G$, for a suitable prime $s \neq 2, p$. Then we can apply Lemma 5.1 to get a noncentral 2-element $z \in x^G \cdot y^G$, yielding a $(2, p, s)$-triple.

- Suppose $S = L_n(q)$. If $n \geq 5$, or $n = 3$ but q is not a Merseenne prime, then we can choose s to be a primitive prime divisor of $q^{n-1} - 1$. If $n = q = 3$, then $p = 13$ and we are done by Lemma 5.3(i). In the remaining case, $G = SL_3(q)$ and $q = 2^t - 1 \geq 7$ is a Merseenne prime. Then G contains a regular semisimple element y of order 2^t (with eigenvalues $\alpha, \alpha^{-1}, 1$, for some $\alpha \in \mathbb{F}_q^\times$ of order 2^t). Also choose s_1 to be an odd prime divisor of $q - 1 = 2^t - 2$. By Lemma 5.1 $x^G \cdot y^G$ contains a noncentral semisimple s_1-element z, giving rise to a $(2, p, s_1)$-triple.

- Suppose $S = U_n(q)$. If $n \geq 5$, or $n = 3$ but q is not a Fermat prime, then we can choose s to be a primitive prime divisor of $(-q)^{n-1} - 1$. If $n = q = 3$, then $p = 7$. In this case, picking x of class $7A$, y in class $2A$, and z in class $3B$ in the notation of [Atlas], we see that 1_G is the only irreducible character χ of G such that $\chi(x)\chi(y)\chi(z) \neq 0$, whence G admits a $(2, 3, 7)$-triple. In the remaining case, $G = SU_3(q)$ and $q = 2^t + 1 \geq 5$ is a Fermat prime. Then G contains a regular semisimple element y of order 2^t (with eigenvalues $\alpha, \alpha^{-1}, 1$, for some $\alpha \in \mathbb{F}_q^\times$ of order 2^t). Also choose s_1 to be an odd prime divisor of $q + 1 = 2^t + 2$. By Lemma 5.1 $x^G \cdot y^G$ contains a noncentral semisimple s_1-element z, giving rise to a $(2, p, s_1)$-triple.

- Suppose $S = ^3G_2(q)$. Then there exist some $\epsilon = \pm 1$ such that $p|(q + \epsilon \sqrt{3q} + 1)$, and some odd prime $s|(q - \epsilon \sqrt{3q} + 1)$. Now G contains a regular semisimple s-element, and so we are done.

- Suppose $S = ^3D_4(q)$, and let s be a primitive prime divisor of $q^3 - 1$. Then G contains a regular semisimple s-element (of type s_{12} as listed in [DM]), and so we are done.

- Suppose $S = E_8(q)$, and let s be a primitive prime divisor of $q^{24} - 1$. By [MT] Lemma 2.3, G contains a regular semisimple s-element, and so we are done again.

3) Assume now that $r = 2$, so that we are in the cases (ii), (iii), (vi)–(viii) of Lemma 5.4. In all these cases, the conditions on p again imply that a p-element $x \in G$ is regular semisimple.

- Suppose $S = L_n(q)$ or $S = U_n(q)$. Set $\epsilon = 1$ in the SL-case and $\epsilon = -1$ in the SU-case. If in addition $S \neq SL_2(2)$, then we can choose an odd prime s dividing $q^{n-1} - \epsilon^{n-1}$ but not $\prod_{i=1}^{n-2}(q^{i} - \epsilon^i)$. By the choice of s, G contains a regular semisimple s-element y, which is contained in a (unique) maximal torus of type $T_{1,n-1}$ of G, in the notation of [LST]. The same is true for $S = SL_2(2)$ if we choose $s = 3$ and $y \in S$ of order 9. Also, x is contained in a (unique) maximal torus of type T_n. Let $\chi \in \text{Irr}(G)$ be any character of G that is nonzero at both x and y. By Propositions 2.3.1 and 2.3.2 of [LST], the tori T_n and $T_{1,n-1}$ are weakly orthogonal. Hence [LST] Proposition 2.2.2 implies that $\chi \in \text{Irr}(G)$ must be unipotent. Now the proofs of Theorems 2.1 and 2.2 of [MSW] imply that such a unipotent
character χ is either trivial or the Steinberg character St. Since x, y are regular, we also have $|\text{St}(x)| = |\text{St}(y)| = 1$. It follows by (1) that $x^G \cdot y^G \supseteq G \setminus Z(G)$. In particular, we get a noncentral 2-element $z \in x^G \cdot y^G$, yielding a $(2, p, s)$-triple.

- Suppose $S = 3D_4(q)$, and let s be a primitive prime divisor of $q^3 - 1$. Then G contains a regular semisimple s-element y (of type s_{12} as listed in [DM]). Let T_1, respectively T_2, be the unique maximal torus containing x, respectively y. If $\Phi_m(q)$ denotes the mth cyclotomic polynomial in q, then $|T_1| = \Phi_{12}(q)$ and $|T_2| = \Phi_3(q)^2$. The order of the centralizer of any semisimple element in the dual group $G^* \cong G$ is listed in [DM] Tables 1.1, 2.2. Using this, it is easy to see that the centralizer of no nontrivial semisimple element of G^* can have order divisible by both $|T_1|$ and $|T_2|$. Thus the dual tori T_1^* and T_2^* in G^* intersect trivially, and so T_1 and T_2 are weakly orthogonal. By [LST] Proposition 2.2.2, any irreducible character $\chi \in \text{Irr}(G)$ that is nonzero on both x and y must be unipotent. Note that the p-parts of $\Phi_{12}(q)$ and of $|G|$ are the same. Hence, if $\Phi_{12}(q)$ divides $\chi(1)$, then χ has p-defect 0 and so $\chi(x) = 0$. Similarly, if $\Phi_3(q)^2$ divides $\chi(1)$, then χ has s-defect 0 and so $\chi(y) = 0$. Inspecting the list of unipotent characters as given in [Sp], we see that $\chi = 1\text{G}$, St, or the unique unipotent character ρ of degree $q^3(q^3 + 1)/2$. Choosing z to be a unipotent element of class $D_4(a_1)$ of [Sp], we see that $\rho(z) = \text{St}(z) = 0$. It now follows by (1) that $z \in x^G \cdot y^G$, giving rise to a $(2, p, s)$-triple.

- Suppose $S = 2F_4(q)$ with $q > 2$. Then there exist some $\epsilon = \pm 1$ such that $p|(q^2 + q + 1 + \epsilon \sqrt{2q(q + 1)})$, and some primitive prime divisor s of $q^6 - 1$, and G contains a regular semisimple s-element by [MT] Lemma 2.3. In particular,

$$|C_G(x)| = q^2 + q + 1 + \epsilon \sqrt{2q(q + 1)}, \quad |C_G(y)| = q^2 - q + 1.$$

Next, take z to be a regular unipotent element, so that $|C_G(z)| \leq 4q^2$ [LiS]. In particular,

$$|\chi(x)\chi(y)\bar{\chi}(z)| < \sqrt{|C_G(x)| \cdot |C_G(y)| \cdot |C_G(z)|} < (2.7)q^3$$

for any $\chi \in \text{Irr}(G)$. Now G has exactly two irreducible characters of degree $(q^2 - 1)(q^3 + 1)\sqrt{q/2}$, and all other nontrivial irreducible characters have degree at least $q(q^2 - q + 1)(q^2 - q + 1)$, cf. [Lu]. Also, $|\text{Irr}(G)| \leq q^2 + 4q + 17 < (1.8)q^2$ [FG, Table 1]. It now follows by (1) that

$$\left| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(x)\chi(y)\bar{\chi}(z)}{\chi(1)} \right| > 1 - \frac{(1.8)q^2 \cdot (2.7)q^3}{q(q^2 - q + 1)(q^2 - q + 1)} - \frac{(2.7)q^3}{(q^2 - 1)(q^2 + 1)\sqrt{q/2}} > 0,$$

whence $z \in x^G \cdot y^G$, giving rise to a $(2, p, s)$-triple.

- Suppose $S = E_8(q)$, and let s be a primitive prime divisor of $q^{24} - 1$. By [MT] Lemma 2.3, G contains a regular semisimple s-element y. Then $|C_G(x)| = \Phi_m(q)$ with $m \in \{15, 30\}$, and $|C_G(y)| = \Phi_{24}(q)$. Next we choose z to be a regular unipotent element, so that $|C_G(z)| \leq 4q^8$ [LiS]. Now for any nontrivial $\chi \in \text{Irr}(G)$ we have that $\chi(1) > q^{27}(q^2 - 1)$ by the Landazuri-Seitz-Zalesskii bound [LS], and

$$|\chi(x)\chi(y)\bar{\chi}(z)| < \sqrt{|C_G(x)| \cdot |C_G(y)| \cdot |C_G(z)|} < q^{14}.$$
On the other hand, \(|\text{Irr}(G)| < (5.1)q^8\) [FG. Table 1]. It now follows by (1) that
\[
\left| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(x)\chi(y)\overline{\chi}(z)}{\chi(1)} \right| > 1 - \frac{(5.1)q^8 \cdot q^{14}}{q^{27}(q^2 - 1)} > 0,
\]
whence \(z \in x^G \cdot y^G\), giving rise to a \((2, p, s)\)-triple. \(\Box\)

We can now prove Theorem 1.4. We restate the result.

Theorem 5.7. Let \(G\) be a finite group. Then the following statements are equivalent:

(i) \(G\) admits no \((2, p, q)\)-triple for any odd prime \(q \neq p\);

(ii) \(G\) is \(p\)-solvable.

(iii) If \(T\) is a Sylow \(2\)-subgroup of \(G\), \(P\) a Sylow \(p\)-subgroup of \(G\) and \(Q\) a Sylow \(q\)-subgroup of \(G\) (for any prime \(q \neq p\)), then
\(TP \cap Q = 1\).

Proof. 1) Suppose that \(G\) is \(p\)-solvable but admits a \((2, p, q)\)-triple for some prime \(q \neq 2, p\). Choose such a \(G\) of minimal order. Since \(p\) divides \(|G|\) and \(G\) is \(p\)-solvable, \(G\) cannot be simple. Let \(1 < N < G\) be a normal subgroup of \(G\). If \(x, y, z\) all belong to \(N\), then \((x, y, z)\) is a \((2, p, q)\)-triple in \(N\), and so by minimality of \(G\), \(N\) cannot be \(p\)-solvable, contradicting the \(p\)-solvability of \(G\). So at least one of \(x, y, z\) is not contained in \(N\). In this case, since \(xyz = 1\), all of them are outside of \(N\) by order consideration. It follows that \((xN, yN, zN)\) is a \((2, p, q)\)-triple in \(G/N\), and so \(G/N\) is not \(p\)-solvable by minimality, again a contradiction.

2) From now on we will assume that \(G\) is a not \(p\)-solvable and aim to show that \(G\) admits a \((2, p, q)\)-triple for some prime \(q \neq 2, p\). Consider a minimal counterexample \(G\) to this claim, so that \(G\) has a composition factor \(S\) which is not \(p\)-solvable but \(G\) admits no \((2, p, q)\)-triple with \(q \neq 2, p\). The minimality of \(G\) implies that any proper subgroup of \(G\) is \(p\)-solvable and that \(G\) is perfect.

Let \(N\) be any proper normal subgroup of \(G\), in particular, \(N\) is \(p\)-solvable. Suppose in addition that \(N\) is not contained in \(\Phi(G)\). Then \(G = MN\) for a maximal subgroup \(M < G\). Then \(S\) is also a composition factor of \(M\), whence \(M\) is not \(p\)-solvable, a contradiction. Thus every proper normal subgroup of \(G\) is contained in \(\Phi(G)\). It follows that \(G/\Phi(G)\) is simple and so it is isomorphic to \(S\). Since every proper subgroup of \(G\) is \(p\)-solvable, the same holds for \(S\), whence \(S\) is one of the groups listed in Lemma 5.3 if \(p = 3\) and in Lemma 5.4 if \(p \geq 5\).

3) Suppose \(\Phi(G) \leq Z(G)\). Then \(G\) is a quasisimple group with all proper subgroups being \(p\)-solvable.

Assume \(p = 3\). Then \(S \not\cong Sz(q)\) as \(S\) is not 3-solvable, so \(S\) is one of the groups listed in Theorem 3.1. This in turn implies that all proper subgroups of \(S\) are solvable. This is also true for any proper subgroup \(H < G\). (Indeed, in this case \(H\Phi(G) < G\), whence \(H\Phi(G)/\Phi(G) < S\) is solvable and \(\Phi(G)\) is nilpotent.) Now Lemma 3.3 (and its proof) implies that \(G\) admits a \((2, 3, q)\)-triple for some prime \(q \neq 2, 3\), a contradiction.
On the other hand, if \(p \geq 5 \), then according to Proposition 5.6, \(G \) also admits a \((2, p, q)\)-triple for some \(q \neq 2, p \), again a contradiction.

We have shown that \(\Phi(G) > Z(G) \). Furthermore, if \(O_2(G) \neq 1 \), then \(G/O_2(G) \) admits a \((2, p, q)\)-triple for some prime \(q \neq 2, p \) by minimality of \(G \), which can then be lifted to a \((2, p, q)\)-triple in \(G \) (see p.1) of the proof of Theorem 3.4). Thus \(O_2(G) = 1 \).

Let \(N \) be a subgroup of \(\Phi(G) \) that is normal in \(G \) but is not central. Moreover, take \(N \) to be a minimal such subgroup. Then the minimality implies that \(N \) is an \(r \)-group for some prime \(r \), and \(r > 2 \) since \(O_2(G) = 1 \). This in turn implies by Proposition 2.1(ii) that \(N \) is abelian. By the minimality of \(G \), there are some nontrivial elements \(x_i \in G \), \(1 \leq i \leq 3 \), such that \(x_1 \) is a 2-element, \(x_2 \) is a \(p \)-element, \(x_3 \) is a \(q \)-element for some prime \(q \neq 2, p \), and \(x_1x_2x_3 = n \in N \). In particular, the subgroup \(L/N = \langle x_1N, x_2N, x_3N \rangle \) of \(G/N \) admits a \((2, p, q)\)-triple. According to 1), \(L/N \), and so \(L \), is not \(p \)-solvable. Hence \(L = G \). This implies that \(G = \langle x_1, x_2, x_3 \rangle \) since \(N \leq \Phi(G) \). Now arguing as in p. 3) of the proof of Theorem 3.4 and using Lemma 2.2 we see that there are conjugates \(y_i \) of \(x_i \) for \(i = 1, 2, 3 \) such that \(y_1y_2y_3 = (x_1x_2x_3)^n - 1 = 1 \), a contradiction to the fact that \(G \) was a counterexample.

The equivalence of (i) and (iii) is straightforward. \(\square \)

Theorem 1.4 yields the following immediate consequence:

Corollary 5.8. Let \(G \) be a finite group. Then the following statements are equivalent:

(i) \(G \) admits no \((2, 3, p)\)-triple for any prime \(p \geq 5 \);

(ii) \(G \) is 3-solvable;

(iii) Every composition factor of \(G \) is either cyclic or a Suzuki group.

6. Examples with \(p = 2 \)

One of the key steps in proving Theorem 1.1 was Proposition 2.1. As we have observed, Proposition 2.1 fails for \(p = 2 \). Here we produce examples showing that in fact Theorem 1.1 fails for \(p = 2 \) as well.

Let \(E = 2^{1+2n} \) be the extraspecial group of type \(- \) of order \(2^{1+2n} \) for any \(n \geq 5 \). It is well known that there is a non-split extension \(G \) of \(E \) such that \(G/E \cong H := O_{2^n}(2) \). Then \(G \) has a a complex irreducible character \(\varphi \) of degree \(2^n \) which is irreducible and faithful when restricted to \(E \). For \(x \in G \), let \(\tilde{x} := xE \) be the corresponding element of \(H \).

Let \(x_i \in G \) of order \(2^{m_i} + 1 \) be acting on \(E/Z(E) \) with one nontrivial irreducible submodule of dimension \(2n_i \) (and trivial on a complement). It follows by [Gor, p. 372] that:

\[
\varphi(x_i) = -2^{n-n_i}.
\]

Now we show that Theorem 1.1 fails for \(p = 2 \).

Proposition 6.1. In the above notation, choose \(n_1 = 1, n_2 = n - 1, \) and \(n_3 = n \).

(i) If \(y_i \in G \) is such that \(\langle y_i \rangle \) is conjugate to \(\langle x_i \rangle \) for \(i = 1, 2, 3 \), then \(y_1y_2y_3 \neq 1 \).
(ii) There are conjugates \(z_i \in G \) of \(x_i \) such that
\[
\langle \bar{z}_1, \bar{z}_2, \bar{z}_3 \rangle = H = O_n^-(2), \quad \bar{z}_1\bar{z}_2\bar{z}_3 = 1,
\]
but the generating triple \((\bar{z}_1, \bar{z}_2, \bar{z}_3)\) of \(H \) does not lift to any triple \((t_1, t_2, t_3)\) in \(G \) with \(\bar{t}_i = \bar{z}_i \), \(|t_i| = |z_i|\), and \(t_1t_2t_3 = 1 \).

Proof. (i) Note that any generator of \(\langle x_i \rangle \) also fulfills the conditions imposed on \(x_i \). Hence we may assume that \(y_i \in x_i^G \). We use (1) to count the number \(N \) of triples in \(x_1^G \times x_2^G \times x_3^G \) with product 1, and break the sum in (1) into three pieces. The first piece is the sum over the irreducible characters whose kernel contains \(E \). The second piece is the sum over the characters whose kernel is \(Z(E) \) and the third piece is the sum over all faithful characters. Let \(N_1 \) denote the first sum and let \(N_3 \) denote the third sum.

First we note that any character \(\beta \) in the second sum is afforded by an induced module from the stabilizer of a linear character of \(E/Z(E) \). Since \(x_3 \) has no fixed points on \(E/Z(E) \), any such character \(\beta \) vanishes on \(x_3 \). Thus the second sum is 0.

Next, by Gallagher’s theorem [I2, 6.17], the characters in the third sum are precisely those of the form \(\varphi \lambda \) where \(\lambda \) is an irreducible character of \(G/E \) (and they are all distinct for distinct \(\lambda \)). Applying (2), we now see that
\[
N_3 = \frac{\varphi(x_1)\varphi(x_2)\varphi(x_3)}{\varphi(1)} N_1 = -N_1,
\]
whence \(N = 0 \).

(ii) Note that \(\bar{x}_2 \) and \(\bar{x}_3 \) are regular semisimple elements of \(H \). Hence, by Lemma 5.1 there exist \(z_i \in G \) conjugate to \(x_i \) for \(i = 1, 2, 3 \) such that \(\bar{z}_1\bar{z}_2\bar{z}_3 = 1 \). By [GS, 7.1], the elements \(\bar{z}_i \) generate \(H \). Now consider any \(t_i \in z_i E = \bar{z}_i \) with \(|t_i| = |z_i|\). By the Schur-Zassenhaus theorem, \(\langle t_i \rangle \) is conjugate to \(\langle z_i \rangle \) and hence to \(\langle x_i \rangle \). It follows by (i) that \(t_1t_2t_3 \neq 1 \). \(\square \)

Note that one can construct similar examples for odd \(p \) with \(E \) extraspecial of exponent \(p \) of order \(p^{1+2\alpha} \) and \(G/E \cong \text{Sp}_{2\alpha}(p) \). However, in this case the extension is split and so \(G \) is not a Frattini cover.

For the next example, let \(E \) and \(G \) as in the beginning of the section with \(n = 2m \geq 6 \). Also we choose \(m \) such that \(2^{2m} - 1 \) has at least two different primitive prime divisors \(p_1 \) and \(p_2 \). This is possible for instance for \(m = 14 \), with \(p_1 = 29 \) and \(p_2 = 113 \). Also fix a primitive prime divisor \(p_3 \) of \(2^{4m} - 1 \), and choose \(n_1 = n_2 = m \) and \(n_3 = n \). Since \(E/Z(E) \) is a quadratic space of type \(-\), one can check that, for \(i = 1, 2, 3 \), any nontrivial \(p_i \)-element \(x_i \in G \) acts irreducibly on a subspace of dimension \(2n_i \) of \(E/Z(E) \) and trivially on a complement. Arguing exactly as above, we see that there are no conjugates \(y_i \) of \(x_i \) in \(G \) with \(y_1y_2y_3 = 1 \). Thus, there is no \((p_1, p_2, p_3)\)-triple in \(G \), but \(G \) has a composition factor whose order is divisible by \(p_1p_2p_3 \).

We know of no such counterexample with one of the primes being even. We conjecture:

Conjecture 6.2. Let \(q < p \) be odd primes and let \(G \) be a finite group. The following statements are equivalent:
(i) G contains a composition factor whose order is divisible by pq; and
(ii) G contains a $(2, p, q)$-triple.

The same arguments as in the proof of Theorem \[1.3\] show that (ii) implies (i), and that a minimal counterexample to Conjecture \[6.2\] would be a quasisimple group G such that G has no simple sections of order divisible by pq. Moreover, we can assume that $O_2(G) = O_p(G) = O_q(G) = 1$. Note that the result holds for $G = A_n$ by Lemma \[5.3\] and so for the covering groups as well (checking 6Aτ directly).

7. A Short Proof of the Feit-Tits Theorem

Let \mathbb{F} be an algebraically closed field of characteristic $p \geq 0$. If S is a finite non-abelian simple group, let $m_p(S)$ be the smallest positive integer n such that S is a section of some subgroup of $GL_n(\mathbb{F})$. Also, let $d_p(S)$ be the smallest degree of a nontrivial representation of the covering group of S over \mathbb{F} (i.e. the smallest nontrivial degree of a projective representation of S over \mathbb{F}). The following theorem was proved by Feit and Tits in \[FT\] (and it was refined further by Kleidman and Liebeck \[KL\] using the classification of finite simple groups). Here we give a short proof of the Feit-Tits theorem.

Theorem 7.1. Suppose $m_p(S) \neq d_p(S)$ for a finite non-abelian simple group S. Then $p \neq 2$ and $m_p(S) = 2^n(S)$, where $n(S)$ is the smallest positive integer n such that S embeds in $Sp_{2n}(2)$.

Proof. 1) Certainly, $m_p(S) \leq d_p(S)$. Also, suppose that $p \neq 2$ and S embeds in $Sp_{2n}(2)$. Since $GL_{2^n}(\mathbb{F})$ contains a subgroup of the form $(C_4 \cdot 2^{1+2n}) \cdot Sp_{2n}(2)$, we see that $m_p(S) \leq 2^n$. Thus $m_p(S) \leq 2^n(S)$.

Set $m := m_p(S)$ and let $H \leq GL_m(\mathbb{F}) = GL(V)$ where H is a finite group with S a section of H. By passing to a subgroup, we may assume that H surjects onto S and no proper subgroup of H surjects onto S. Now, for any proper normal subgroup N of H, if N is not contained in a maximal subgroup M of G, then $MN = H$ and so $M/(M \cap N) \cong H/N$. By the minimality of H, S is not a composition factor of N, hence it is a composition factor of H/N. It follows that a subgroup of M projects onto S, a contradiction. Thus every proper normal subgroup of H is contained in $\Phi(H)$, and so $H/\Phi(H) \cong S$. It also follows that H is perfect. Since $m_p(S) < d_p(S)$ by the hypothesis, we see that $\Phi(H) > Z(H)$.

2) Clearly, we may assume that H is an irreducible subgroup of $GL(V)$. Now we choose $N \leq \Phi(H)$ to be a noncentral normal subgroup of H of smallest possible order. So N is an r-group for some prime r. If $r = p$, then N acts trivially on V by irreducibility, a contradiction (since $H \leq GL(V)$). Thus $r \neq p$.

If N is abelian, then, since N is not central, m is at least the size of the smallest orbit of H on the set of nontrivial irreducible characters of N by Clifford’s theorem. This implies that some nontrivial homomorphic image H/K of H embeds in S_m. By 1), S is a quotient of H/K, and so $m = m_p(S) \leq m_p(S_m) \leq m - 1$, a contradiction. On the other hand, if $r \neq 2$ then N must be abelian by Proposition \[2.1(ii)\]. Hence $p \neq r = 2$. In particular, we
see that \(O_2(\Phi(H)) \leq Z(H) \) and the only noncentral normal subgroups of \(H \) contained in \(\Phi(H) \) are non-abelian 2-groups.

Let \(M \) be any normal subgroup of \(H \) properly contained in \(N \). Then \(M \) is central by the minimality of \(N \), and so \(M \leq Z(H) \). In particular, \(Z(N) = N \cap Z(H) \) and so it is cyclic by Schur’s lemma. Furthermore, \(Z(N/Z(N)) = N/Z(N) \), and \(N/Z(N) \) is an elementary abelian 2-group. Also, \(H \) acts irreducibly on \(N/Z(N) \), and the commutator map defines an \(H \)-invariant nondegenerate alternating form on \(N/Z(N) \) (with values in \(\Omega_1(Z(N)) \cong C_2 \)). Since \(O_2(\Phi(H)) \leq Z(H) \) acts trivially on \(N/Z(N) \), the irreducibility of \(H \) on \(N/Z(N) \) implies that \(\Phi(H) \) acts trivially on \(N/Z(N) \). Recall that \(S = H/\Phi(H) \) is simple. Now if \(S \) acts trivially on \(N/Z(N) \), then \([H,N] \leq Z(N)\) centralizes \(H \) and so \([H,N] = [[H,H],N] = 1 \) by the Three Subgroups Lemma, a contradiction as \(N \) is not central. Thus \(S \) acts faithfully on \(N/Z(N) \) and so embeds in \(\text{Sp}_{2n}(2) \), where \(|N/Z(N)| = 2^{2n}\). In particular, \(n \geq n(S) \).

Let \(m \varphi \) denote the character of the \(Z(N) \)-module \(V \) (recall \(Z(N) \) acts scalarly and faithfully on \(V \)). Then the restriction of \(\varphi \) to \(1 \neq [N,N] \leq Z(N) \) is nontrivial. By Proposition 2.1(i), there is exactly one irreducible character \(\theta \) of \(N \) lying above \(\varphi \), and \(\theta(1) = 2^n \); also \(\theta \) is \(H \)-invariant. Thus the \(N \)-module \(V \) is a direct sum of \(m/2^n \) copies of a single irreducible \(F N \)-module which affords the character \(\theta \). Let \(\Psi \) denote the representation of \(H \) on \(V \). By Clifford theory, \(\Psi \cong \Theta \otimes \Lambda \), where \(\Theta \) is an irreducible projective representation of \(H \) of dimension \(2^n \) and \(\Lambda \) is an irreducible projective representation of \(H/N \). Now if \(\Lambda \) is nontrivial, then \(m = \dim(V) > \deg(\Lambda) \geq m_\varphi(S) \), a contradiction. Thus \(m = 2^n \). Since \(n \geq n(S) \) and \(m \leq 2^{n(S)} \), we conclude that \(m = 2^{n(S)} \). \(\square \)

References

[Atlas] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ‘An ATLAS of Finite Groups’, Clarendon Press, Oxford, 1985.

[B] M. Barry, On conditions related to nonsolvability, \(\text{http://arxiv.org/abs/1109.4913} \)

[BF] P. Bailey and M. Fried, Hurwitz monodromy, spin separation and higher levels of a modular tower, in: Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 79–220, Proc. Sympos. Pure Math. 70, Amer. Math. Soc., Providence, RI, 2002.

[Ch] M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer, CHEVIE – A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175–210.

[D] P. Dèbes, An introduction to the modular tower program, in: Groupes de Galois arithmétiques et différentiels (Luminy 2004), eds. D. Bertrand and P. Dèbes, 127–144, Séminaires et Congrès 13, Soc. Math. France, Paris, 2006.

[DM] D. I. Deriziotis and G. O. Michler, Character table and blocks of finite simple triality groups \(^3D_4(q) \), Trans. Amer. Math. Soc. 303 (1987), 39–70.

[DG] S. Dolfi, R. Guralnick, M. Herzog, and C. Praeger, A new solvability criterion for finite groups, J. London Math. Soc. (to appear).

[FT] W. Feit and J. Tits, Projective representations of minimum degree of group extensions, Canad. J. Math. 30 (1978), 1092–1102.

[Fl] P. Flavell, Finite groups in which every two elements generate a soluble group, Invent. Math. 121 (1995), 279–285.
[F1] M. Fried, Introduction to modular towers: generalizing dihedral group-modular curve connections, in: Recent developments in the inverse Galois problem (Seattle, WA, 1993), 111–171, *Contemp. Math.* **186**, Amer. Math. Soc., Providence, RI, 1995.

[F2] M. Fried, The main conjecture of modular towers and its higher rank generalization, in: Groupes de Galois arithmétiques et différentiels, 165–233, *Séminaires et Congrès* **13**, Soc. Math. France, Paris, 2006.

[FK] M. Fried and Y. Kopeliovich, Applying modular towers to the inverse Galois problem, in: Geometric Galois actions, 2, 151–175, *London Math. Soc. Lecture Note Ser.* **243**, Cambridge Univ. Press, Cambridge, 1997.

[FG] J. Fulman and R. M. Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups, *Trans. Amer. Math. Soc.* (to appear).

[Gl] G. Glauberman, ‘Factorizations in Local Subgroups of Finite Groups’, Regional Conference Series in Mathematics, No. 33. American Mathematical Society, Providence, R.I., 1977.

[Gol] D. Goldschmidt, 2-fusion in finite groups, *Ann. of Math.* **99** (1974), 70–117.

[Gor] D. Gorenstein, ‘Finite Groups’, Second edition, Chelsea Publishing Co., New York, 1980.

[Gow] R. Gow, Commutators in finite simple groups of Lie type, *Bull. London Math. Soc.* **32** (2000), 311–315.

[G1] S. Guest, A solvable version of the Baer-Suzuki theorem, *Trans. Amer. Math. Soc.* **362** (2010), 5909–5946.

[G2] S. Guest, Further solvable analogues of the Baer-Suzuki theorem and generation of nonsolvable groups, preprint, http://arxiv.org/abs/1012.2480.

[GL] S. Guest and D. Levy, A remark on two solvability criteria of Thompson, *Comm. Alg.* (to appear).

[GM] R. M. Guralnick and G. Malle, Products of conjugacy classes and fixed point spaces, *J. Amer. Math. Soc.* **25** (2012), 77–121.

[GPPS] R. M. Guralnick, T. Pentilla, C. Praeger, and J. Saxl, Linear groups with orders having certain large prime divisors, *Proc. London Math. Soc.* **78** (1999), 167–214.

[GS] R. M. Guralnick and J. Saxl, Generation of finite almost simple groups by conjugates, *J. Algebra* **268** (2003), 519–571.

[GW] R. M. Guralnick and J. S. Wilson, The probability of generating a finite soluble group, *Proc. London Math. Soc.* **81** (2000), 405–427.

[I1] I. M. Isaacs, Characters of solvable and symplectic groups, *Amer. J. Math.* **95** (1973), 594–635.

[I2] I. M. Isaacs, ‘Character Theory of Finite Groups’, Dover, N.Y., 1994.

[KaL] G. Kaplan and D. Levy, Solvability of finite groups via conditions on products of 2-elements, *Bull. Aust. Math. Soc.* **82** (2010), 265–273.

[KL] P. B. Kleidman and M. W. Liebeck, On a theorem of Feit and Tits, *Proc. Amer. Math. Soc.* **107** (1989), 315–322.

[LS] V. Landazuri and G. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, *J. Algebra* **32** (1974), 418–443.

[LST] M. Larsen, A. Shalev, and Pham Huu Tiep, The Waring problem for finite simple groups, *Ann. of Math.* **174** (2011), 1885–1950.

[LSS] M. W. Liebeck, J. Saxl, and G. M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, *Proc. London Math. Soc.* **65** (1992) 297–325.

[LiS] M. W. Liebeck and G. M. Seitz, Nilpotent and unipotent classes in classical groups in bad characteristic, (to appear).

[Lu] F. Lübeck, Smallest degrees of representations of exceptional groups of Lie type, *Comm. Algebra* **29** (2001), 2147–2169.
[M] A. M. Macbeath, Generators of the linear fractional groups, pp. 14–32 in: *Proc. Sympos. Pure Math.*, vol. 12, Houston, Tex., 1967, Amer. Math. Soc., Providence, R.I.

[MSW] G. Malle, J. Saxl, and T. Weigel, Generation of classical groups, *Geom. Dedicata* 49 (1994), 85–116.

[MT] A. Moretó and Pham Huu Tiep, Prime divisors of character degrees, *J. Group Theory* 11 (2008), 341–356.

[S] L. Scott, Matrices and cohomology, *Ann. of Math.* 105 (1977), 473–492.

[Sp] N. Spaltenstein, "Charactères unipotents de $^2D_4(F_q)$," *Comment. Math. Helvetici* 57 (1982), 676–691.

[T] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, *Bull. Amer. Math. Soc.* 74 (1968), 383–437.

[Zs] K. Zsigmondy, Zur Theorie der Potenzreste, *Monath. Math. Phys.* 3 (1892), 265–284.

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA

E-mail address: guralnic@usc.edu

Department of Mathematics, University of Arizona, Tucson, AZ 85721, U. S. A.

E-mail address: tiep@math.arizona.edu