A Commentary on Statistical Assessment of Violence Recidivism Risk

Peter B. IMREY and A. Philip DAWID

Increasing integration and availability of data on large groups of persons has been accompanied by proliferation of statistical and other algorithmic prediction tools in banking, insurance, marketing, medicine, and other fields (see, e.g., Steyerberg 2009a, b). Controversy may ensue when such tools are introduced to fields traditionally reliant on individual clinical evaluations. Such controversy has arisen about "actuarial" assessments of violence recidivism risk, that is, the probability that someone found to have committed a violent act will commit another during a specified period. Recently, Hart, Michie, and Cooke (2007a) and subsequent papers from these authors in several reputable journals have claimed to demonstrate that statistical assessments of such risks are inherently too imprecise to be useful, using arguments that would seem to apply to statistical risk prediction quite broadly. This commentary examines these arguments from a technical statistical perspective, and finds them seriously mistaken in many particulars. They should play no role in reasoned discussions of violence recidivism risk assessment.

KEY WORDS: Actuarial risk assessment; Dangerousness; Evidence law; Forensic psychology; Prediction models; Risk intervals; Sentencing policy.

1. INTRODUCTION

The prospect of violence is a substantial consideration for legal decisions on bail, sentencing, parole, preventive confinement, and liability of mental health professionals. Courts receive information on a person’s propensity to commit violence from expert testimony. Experts vary in how they approach this task, with some emphasizing subjective clinical judgment and others preferring more standardized methods. Structured risk assessments that integrate selected sociodemographic, personal history, and psychometric characteristics of the individual, and whose results have been statistically associated with future violence in follow-up studies of groups, have thus come into common use. Among these, “actuarial risk assessment instruments” (ARAI) produce numerical estimates of a probability of violent behavior that are analogous, in their development and interpretation, to predicted probabilities by which insurers “rate” clients and price policies for losses from automotive accident, theft, extreme weather, disease, or death (Yang, Wong, and Coid 2010).

Controversies about the respective values of clinical expertise and explicit decision rules are chronic in many fields, including forensic risk assessment. However, recent discussions of violence recidivism (Hart, Michie, and Cooke 2007a, henceforth HMC; Cooke and Michie 2010 with erratum Cooke and Michie 2009, Cooke and Michie 2011, 2012, henceforth respectively CM1, CM2, CM3, and CM1-3 collectively, and Hart and Cooke 2013; henceforth HC) are exceptional in challenging actuarial risk prediction on technical statistical grounds, turning the usual discourse on its head. CoHaMi (employed to jointly reference these when addressing their common threads) use illustrative data and simulations derived from five ARAIs (the Violence Risk Appraisal Guide (VRAG, Quinsey et al. 2006), Psychopathy Checklist Revised (PCL-R, Hare 2003), Static-99 (Hanson and Thornton 1999), the Risk Matrix 2000 (Thornton 2007), and a new ARAI based on the Sexual Violence Risk-20 instrument (SVR-20, Boer et al. 1997) to contest the utility of ARAI-based risk predictions of violence recidivism generally. Their critique, following closely on the heels of a caution by prominent statisticians against overinterpretation of survival time predictions for individual medical patients (Henderson and Keiding 2005), contends that (i) ARAI-based risk assessments are unreliable due to misclassification errors in risk category assignments (CM1), and (ii) statistical confidence intervals and prediction intervals for “group and individual risk estimates” are inevitably, inherently, too wide for such instruments to be useful (HMC, CM1-3, HC). Objections have been raised to these claims (Harris et al. 2008, 2015; Mossman and Sellke 2007; Hanson and Howard 2010; Sceem and Monahan 2011; Scurich and John 2012; Mossman 2015), but these objections have for the most part been rejected (Hart, Michie, and Cooke 2007b, 2008, CM1-3, HC), with the continuing and frequently cited exchange providing fuel for further criticism of statistical risk assessment in the forensic psychology and legal communities (e.g., Coyle 2011; Starr 2014).

While the gravity and potential societal impact of legal decisions influenced by recidivism risk prediction are high, the technical arguments raised in this context might also be applied, at least in principle, to predictions that inform medical prognostic and clinical decisions, geological explorations for oil and natural gas, insurance rating, marketing, loan rating, and athletic management and coaching strategies. If the critique is valid, its ramifications thus extend into many areas of biomedical, public health, and behavioral and other scientific investigation, and to standards of practice in several professions, including applied statistics. This adds urgency to the need for clarification.
Our purpose here is to identify crucial technical errors in HMC’s, CM1-3’s, and HC’s technical statistical arguments. Some aspects and consequences of these errors have been raised by or are implicit in previous commentaries, and one point has been partially conceded in Hart, Michie, and Cooke (2007b) et sequelae. Moreover, the controversy first fueled by HMC and CM1-3 has largely stimulated the recent Special Issue: Methodological Issues in Measuring and Interpreting the Predictive Validity of Violence Risk Assessments of the journal Behavioral Sciences and the Law, in which HC is accompanied by much instructive and useful discussion of both technical and philosophical aspects of risk assessment. Nevertheless, while this special issue and accumulating citations of these articles reflect the seriousness with which HMC’s and CM1-3’s claims have been received by some forensic psychologists, psychiatrists, and jurists, the core statistical misconceptions and misapplications of conventional formulas underlying their claims have yet to be directly addressed. Explicit refutation is desirable to forestall such mistakes from seeding further unproductive argumentation in this and other areas where similar statistical tools have been found useful.

The current commentary is thus most specifically pertinent to forensic psychologists, psychiatrists, lawyers, and judges, for whom violence recidivism risk assessments contribute to clinical recommendations and legal decisions. The conceptual discussion of the nature of risk, and statistical inferences about risk, should also be useful to others concerned with public policy and/or professional practice in circumstances requiring case-by-case judgments of prospects for other human behaviors, illnesses, or misadventures. Since statistical training in case-oriented disciplines may be minimal, the exposition assumes no statistical background. However, comprehending the fallacies involved requires understanding some basic statistical technical concepts, which are presented with minimal mathematical notation. Statistically knowledgeable readers, who may wish only to skim such sections, should find this a disturbing case study, and may benefit from the painstaking conceptual and terminological delineation of alternative meanings of “risk.” These seem conflated in usage no less often by statisticians than by others, at the price of much confusion. For a thorough discussion of the variety of conceptions of the term individual risk, see Dawid (2015).

This article takes no position on the proper role of ARAIs in recidivism risk assessment. The hope is simply to clear specious statistical arguments from the discourse, so discussions of ARAIs and recidivism risk prediction are more usefully directed. The exposition throughout refers to specific contexts or examples, usually from criminal cases, to illustrate and make abstract points more concrete. No arguments herein are specific to the civil or criminal context in which ARAIs might be used, or to their use in predicting risk of recidivism as distinguished from risk of initial violence, provided that use of any particular ARAI conforms to the basic conditions of its development.

We focus on the specific meanings and uses of terms, formulas, and computer simulations by HMC, CM1-3, and HC. Consistent with this focus, remarks are confined to frequentist statistical inference, because the methods applied controversially by HMC, CM1-3, and HC derive from frequentist assumptions, as do the properties predominantly claimed to justify more established uses of these methods. It is thus most straightforward to address the problematic issues on the specific turf where they arise. For purposes more general than this article, a Bayesian perspective has much to offer; see, for example, Donaldson and Wollert (2008), Scurich and John (2012), Harris and Rice (2013), and Mossman (2015).

Section 2.1 describes HMC’s Table 1 of recidivism proportions and associated intervals for nine risk strata, and the conclusions HMC draw from them. The technical bases of frequentist probabilistic risk prediction (Section 2.2) and statistical intervals (Section 2.3) are then described and related to such data in a tutorial, nonmathematical, style. It is necessary to define, albeit informally, general terms such as “population” and “sample,” “parameter” and “statistic,” “risk” and “individual risk,” “estimation” and “prediction,” rather than leaving such definitions implicit. While this may seem pedantic to statistician readers, such specificity is needed to cut through the semantic confusion. Section 3 describes the technical fallacies on which CoHaMi’s statistical objections to ARAI-based risk assessment rely. Readers already well-versed in statistical methods generally, and prediction modeling specifically, can examine the core technical critique directly in Sections 3.1 and 3.3. Section 4 reflects on the underlying misperception that has fueled this controversy, identifies more legitimate grounds for questioning the legal use of ARAIs, and points toward more appropriate empirical approaches for evaluating their performance.

2. DEFINING TERMS

2.1 Data and Context

Table 1, derived from Table 1 of HMC, exhibits the type of data from which, in principle, ARAI-based risk prediction might proceed. Six hundred eighteen violent offenders, of whom 192 (31.6%) committed a further violent act in ensuing unconfined periods averaging 6.8 years, were classified according to their scores on an actuarial instrument, the Violence Risk Appraisal Guide (VRAG). The table subdivides these offenders into categories of increasing VRAG score, which is both theoretically and empirically correlated—the latter easily seen by scanning down the test score categories in Table 1—with an increasing proportion of recidivists.

The general idea is then to use a new offender’s VRAG score to assess his or her risk of violence if left unconfined and...
observed over a future period of similar length to that used to classify the sample. The numerical assessment itself might be the proportion of recidivists within the same test score category (row) of Table 1, or an alternative “smoothed” value derived from a statistical model, and which thus incorporates information from offenders in other VRAG categories, filtered through assumptions of that model. Proponents of ARAI-based risk prediction argue that such numerical values can meaningfully aid legal decision-making about this offender.

However, Table 1 of HMC also includes, for each row, 95% confidence intervals for what are described as “group and individual risks,” obtained by substituting different quantities into confidence intervals for what are described as “group and individual risks.” Based on overlaps between the former intervals for different rows, HMC claim that the data support only three rather than nine “reasonably distinct group estimates of risk: low (categories 1–4), moderate (categories 5–7), and high (categories 8–9).” The usefulness of even these three categories is then discounted, on the basis that the widths of the 95% intervals for “individual risks” within each risk category demonstrate that “At the individual level, the margins of error were so high as to render the test results virtually meaningless.” Data from 1086 patients stratified by Static-99 scores into seven categories are similarly examined with conclusions that, even with data from almost twice the number of cases, the “Static-99 yielded only two distinct group estimates of risk: low (categories 0–3) and high (categories 4–6+),” with widths of intervals for individual risks comparable to those for the VRAG categories. CM1-3 and HC base similar critiques of ARAIs on widths of statistical intervals for individual risks obtained from real or simulated recidivism data.

To appraise this disagreement about the meaningfulness of distinctions between the nine VRAG categories in Table 1, for which the proportions of recidivists increase steadily from 0 to 100%, requires (i) first, establishing the framework within which statistical terms such as group and individual risks, risk estimates, and confidence intervals have established, consensus meanings, and then (ii) considering the extent to which CoHaMi’s applications of them to violence recidivism risk respect these meanings.

2.2 Statistical Inference

Methods of frequentist statistical inference, such as invoked by CoHaMi, assume that data available for statistical analysis, such as the 618 joint observations of VRAG category and recidivism outcome summarized in Table 1, constitute one possible realization of a data acquisition process that might well have generated different results from a sample space of other possibilities. The sample space itself reflects an underlying mechanism that determines which among the possibilities in the sample space is revealed to us. The mechanism itself may be transparent as, for instance, in coin flipping, dial spinning, selection of lots, or shuffling and dealing of labeled cards, or opaque to us, as in particle physics at the extreme micro-level, and most mysteries of human life at the macro-level. But its behavior is describable by a probability measure which ascribes numbers between 0 and 1 inclusive, called probabilities, to many types of characteristics the data may exhibit.

These probabilities are mathematical generalizations of proportions, that is, relative frequencies or fractions of times the data exhibit a characteristic, among all possibilities in the sample space. For most purposes, including recidivism risk prediction, thinking of them as simple proportions works well, provided one keeps in mind that probabilities represent and reflect, through the sample space, aspects of the underlying universe and data acquisition process, rather than of the specific data, that is, “sample,” observed in a particular instance from that population and process. Any given sample provides us with only one of many—often an infinite number—of the possible partial views of the underlying universe we might have observed. In such a context, frequentist statistical inference consists of methods for systematically using the data we observe to make statements about the underlying population and process that have ascertainable probabilities—interpreted as long-run relative frequencies—of being correct. The probability that such an inferential statement is correct is a property of the method used to create the statement, coupled with any assumptions about the population and the probability measure that the method incorporates.

Quite commonly, we wish to make such statements about numerical summaries of the population, for instance, the average value of a measurement, or a proportion with some property (e.g., female), and the statements we make are based upon its counterpart value or another numerical summary of the sample. The terms parameter and statistic denote any such numerical summaries of, respectively, a population or a sample. A confidence interval is a particular type of statement made about a parameter, based on one or more statistics from a sample. The confidence interval statement claims to place either a lower limit, an upper limit, or both on the value of the parameter. Its confidence coefficient is the probability, or relative frequency, with which these limits are asserted to be correct. The concepts of parameter and statistic are both distinct from any single observation, or datum, in the sample. A prediction interval is a statement analogous to a confidence interval, but that places limits on a datum that will subsequently be observed rather than on a parameter. Just as the confidence interval limits are based on data observed from sampling the population that the target parameter describes, the prediction interval limits are based on previously observed data from sampling the population from which the new datum will also be produced, usually by the same process that will produce it. The linkage of an inferential statement to data from the population and process targeted for inference is crucial to the validity of all statistical inference.

The manner in which these concepts apply to the problem of violence recidivism has been largely left implicit by the recent disputants. But the following frequentist framework seems compatible with the views of all contributors to the current controversy. Within a conceptual population of present and future violent offenders (possibly further delineated by type of offense and sociodemographic characteristics), people differ in
their genetic and environmental influences, physical and mental attributes, and particular experiences. From time to time, circumstances arise with potential to provoke a violent response. The frequencies and strengths of such circumstances vary from person to person, to an extent in relation to their individual characteristics, and to an extent due to pure happenstance. Whether an individual responds violently to any particular such provocation may depend on specifics of the event, both large and small, including state of health on that day, presence and degree of intoxication, and whether there is a weapon immediately at hand when the provocation occurs. Because of these factors, whether or not a violent offender reoffends within a given period is to some extent random, meaning that we can imagine circumstances in which a known reoffender might not have done so, and in which an offender who avoided repeating would instead have been sufficiently provoked to commit further violence (Appelbaum 2011).

One way to model such a situation, conceptually and mathematically, is to presume (i) that individuals possess different psychological thresholds for responding with violent aggression to provocative or inciting stimuli, so stimuli whose strengths exceed an individual’s threshold will elicit a violent response, and other stimuli will not; (ii) that these thresholds fluctuate over time for each individual around a latent mean value, indicative of that person’s general resistance to violence; and (iii) that provocations of varying numbers and strengths (whether external such as insults, perceived threatening behaviors, or actual physical attacks, or internal such as mental disturbances due to illness or drugs) follow some form of a random distribution over time, possibly dependent on the individual’s demographic characteristics and aspects of his or her environment. “Latent” here means an inherent property or measure of the individual that cannot be directly observed, but is reflected indirectly in observable evidence, for example, criminal behavior. Within such a framework, an observation of violence recidivism or restraint on the part of a given person during a specified period may be viewed as one realization from among many alternative “life scenarios,” in which provocations of randomly varying strengths encounter violence resistance thresholds that themselves fluctuate randomly, but largely within ranges differing from person to person.

Although precise agreement on all aspects is not necessary, this or some analogous conceptual model is needed to give meaning to the concept of individual risk as distinct from group risk, and to consider estimation or prediction of “individual risk” using frequentist statistical methods. While one may conceptually “individualize” ideas such as risk by successively considering groups of individuals specified by increasingly narrow restrictions, such individualization does not fully accommodate individual uniqueness which assumes, by definition, that members of any group—no matter how narrowly defined—are distinguishable. We now consider more specifically the concept of “risk,” and the implications of distinguishing individuals from groups in its application to statistical inference.

2.3 Outcomes and Risks

We employ “outcome” to denote an individual’s experience or avoidance of a specified event. This term is used similarly to “fate” and “destiny” in literature, when these refer to “what actually happens to someone” or “where someone ends up,” without mythological or religious connotations of inevitability. In statistical usage, “risk” is the probability of an undesirable outcome. From a frequentist perspective, this is defined relative to an appropriate (conceptually infinitely large) population of similar cases, and interpreted as either (i) the limit approached by the fraction of a sample from that population for whom the event occurs, as that sample is continually enlarged, or (ii) the fraction of times the event occurs within a sample of fixed size, averaged over repeated random samples of that size from the population. One can also define group risk similarly in population subgroups distinguished by specified values or ranges of particular characteristics.

To accommodate individual uniqueness, a model for occurrences of undesired events such as described in Section 2.2 would associate individual risks, distinct from those of others, with each specific person. While such individual risks need not be individually observed or even observable, they jointly constitute group risk which, by the preceding definition, becomes equivalently the arithmetic mean of its members’ individual risks, or the average individual risk from the process of randomly sampling a member. In other words, the group risk is just the average individual risk of a random member. If we use $R_{i(G)}$ as shorthand for the risk of the ith member of group G, then we may use $R_G = \text{average}_{i(G)} R_{i(G)}$ to denote the “group risk” for G.

Risks inherently characterize the outcome tendencies of groups or individuals they describe, but are themselves by definition latent. Under certain conditions they can be viewed as parameters, and estimated or predicted from properly collected data. But they cannot be fully determined by outcomes of a particular person or of a sample of G’s members, since each member’s outcome can vary consistent with his or her individual risk $R_{i(G)}$. As a consequence of this, and of differences in the memberships of possible samples, the fraction of a sample experiencing or exhibiting any outcome event varies from one sample to another.

For example, males 40–49 years of age in the reader’s city might constitute a population, in which occurrence of freedom from heart attack in the next 5 years might constitute an outcome. Particular men in this population would be more or less prone to heart attack due to their specific ages, genetic endowments, blood pressures, blood lipid profiles, disease histories, lifestyle characteristics such as cigarette smoking, and unknown, unmeasured other factors. These would contribute to each man’s, individual, unobservable heart attack risk. When a population’s members are equally likely to be included in a sample, then the sample fraction experiencing a stipulated outcome event is an appropriate statistical guess, technically a point estimate, of the average of the population’s individual risks, that is at the population’s group risk R_G. This guess also may contribute to formation of a confidence interval for R_G. Such a statistical estimate obtained from a sample of a group, say \hat{R}_G, estimating R_G, is also commonly denoted by risk, while maintaining its distinction from the underlying and still unknown parameter. The method of calculating \hat{R}_G, in this case simply averaging the sample, is called an estimator; the estimate is the value the estimator takes when applied to a particular sample. Of course, the group average risk R_G might understate the individual risk
of a longterm smoker with high blood pressure, family history of heart disease, and other possibly unmeasured attributes, and overstate that of others without those attributes.

Similarly, the proportion $\hat{R}_G = 35\%$ of recidivists in the sample of 116 VRAG Category 5 offenders shown in Table 1 is a sample risk that might be used to estimate the recidivism risk R_G of the general population of VRAG Category 5 offenders that the sample is intended to represent. This sample risk $\hat{R}_G = 35\%$ and its unknown target R_G should not be conflated. Another sample of 116 offenders would very likely yield a different fraction \hat{R}_G—as perhaps would the same selection of individual members if observed at another time or under slightly different circumstances, for example, if an original offense were detected a few months later, in which case a subsequent event might go undetected or not occur. R_G is an (assumed) stable but unobserved fraction describing the population of past, present, and future offenders from which the samples come.

The distinctions between group risk R_G and individual risks $R_i(G)$, their respective estimates \hat{R}_G and $\hat{R}_i(G)$, and the outcome for an individual group member, say $Y_i(G)$, are critically important. It is particularly necessary to recognize the difference between what might be called individualized risks and individual risks. By the former is meant the group risk for a class of persons sharing similar relevant characteristics to the person of interest, such as the score category or even specific score on the VRAG or STATIC-99. An estimate \hat{R}_G of the group risk R_G for such a collection of individuals might be judged a more justifiable guess at the individual risk of each member of such a restricted, homogeneous group than would be an estimate of the group recidivism risk from a more heterogeneous group of individuals. If so, an estimate \hat{R}_G of the group risk of a collection of similar individuals might rationally be applied uniformly to predict the individual risks of any additional members of the group who come to the legal system’s attention and for whom no further relevant information is known. The production of such individualized risk predictions is what ARAIs actually do. The word “predict” is used here rather than “estimate” because the guess at an individual’s risk is not based on a sample of recidivism outcome data from that individual, in the manner that \hat{R}_G for R_G is based on a sample of recidivism outcome data from members of G. No data on recidivism from the new individual, on which a statistical estimate of $R_i(G)$ might be based, have been observed. The individualized guess, that is, prediction, of violence recidivism risk is based upon specified characteristics of the new individual and the relation of these characteristics to recidivism in the larger, more heterogeneous, class of persons used to construct the ARAI. The individualized risk predictions of ARAIs are identical for members of groups sharing the same set of relevant characteristics, and even for those with different sets of such characteristics that combine to produce the same ARAI score, or scores in the same ARAI category.

But they are not individual in the sense that persons are unique, and may have different underlying risks $R_i(G)$, even if it is reasonable to predict these individual risks by the same individualized estimate \hat{R}_G from the same group G of persons with similar characteristics. This point is essential to understanding the root fallacy in HMC, CM1-3’s, and HC’s treatments of confidence intervals for individual risks. The statistical intervals that may legitimately be used for bracketing individualized risk predictions and individual risks themselves are different, and the latter require information or assumptions not needed to obtain the former. Specifically, data must be available or assumptions must be made about how individual risks vary from one another, from member to member within the groups from which individualized risk predictions are formed.

As will be noted below, it is not entirely clear what Co-HaMi mean by the term “individual risk,” or that this is used consistently in their papers. HCM obtain their intervals for individual risks by adapting an established formula for confidence intervals for group risks of the aggregated risk score strata in their Tables 1 and 2 (and our Tables 2 and 3). These are risk estimates individualized only to the ARAI score ranges defining the respective strata. CM1, CM3, and HC obtain logistic regression-based intervals corresponding more narrowly to individuals sharing a single, specified ARAI score. However, CM1 obtain their intervals by adapting the prediction interval for a new Gaussian observation from a linear regression, and argue that their intervals do not narrow with increasing sample size, strongly suggesting that their intent is to provide a range for truly individual risks. In contrast, HC’s individual risk intervals are true confidence intervals for group risk of those with a specific ARAI score. These most certainly do narrow with increasing sample size, and hence are appropriate for specifying the precision of risk estimates narrowly individualized to the group sharing a specific ARAI score, but not for clarifying the range of individual risks within such a group. Moreover, as will be shown, both HMC and CM1’s adaptations of conventional

VRAG score category	Logistic regression intervals		
	95% Wilson interval (from HMC)		
	95%	80%	
1	0.00–0.26	0.02–0.06	0.03–0.05
2	0.04–0.17	0.05–0.10	0.05–0.09
3	0.07–0.20	0.09–0.16	0.10–0.14
4	0.11–0.25	0.16–0.24	0.17–0.22
5	0.27–0.44	0.27–0.35	0.28–0.34
6	0.34–0.54	0.40–0.51	0.42–0.49
7	0.44–0.66	0.53–0.67	0.56–0.65
8	0.58–0.88	0.66–0.80	0.68–0.78
9	0.70–1.00	0.76–0.89	0.79–0.88

STATIC-99 score category	Logistic regression intervals		
	95% Wilson interval (From HMC)		
	95%	80%	
0	0.08–0.21	0.05–0.10	0.06–0.09
1	0.04–0.12	0.09–0.14	0.10–0.13
2	0.12–0.22	0.14–0.19	0.14–0.18
3	0.14–0.25	0.20–0.26	0.21–0.25
4	0.30–0.43	0.28–0.35	0.29–0.33
5	0.31–0.50	0.37–0.46	0.38–0.44
6+	0.43–0.60	0.46–0.58	0.48–0.56
formulas are mathematically erroneous, while HC misinterpret the standard logistic regression confidence intervals they obtain.

Clear discrimination between estimating or predicting any of the types of risk described above, and predicting ultimate outcomes \(Y_{iG}\) themselves, is also fundamental to understanding the rhetorical muddle in discussions of recidivism risk assessment. The outcomes \(Y_{iG}\) are random occurrences that can only be anticipated, that is, predicted, even if individual risks \(R_{iG}\) are precisely known a priori. For instance, we know a priori that the “risk” of tails on a coin flip is 50%, but are totally incapable of predicting the outcome of each individual flip. If, however, the event in question were attempted murder within the next week, we would presumably at least consider preventive or protective action, despite this inability to predict whether an attempt will actually occur that week, and even if the probability of 50% were not known a priori, but estimated or predicted with some margin of error. This highlights a fundamental problem of risk prediction. The real desired target of prediction is not the risk, which is a latent intermediate, but the outcome event itself, which can only be predicted with high accuracy under two conditions: (i) when chance, including the influence of unobservable predictors, plays little role in determining an individual’s outcome, and thus the \(R_{iG}\) are close to 0 or 1, and (ii) when these \(R_{iG}\) can themselves be accurately predicted, so that person \(i\) for whom \(R_{iG}\) is close to 0 may be accurately distinguished from person \(i’\) for whom \(R_{i’G}\) is close to 1.

Nevertheless, prediction need not be highly accurate at the individual level for major collective benefit to accrue. The viability of insurance stems specifically from the juxtaposition of the limitations of individual risk prognostications with the contrasting accuracy of group risks from sufficiently large assemblages of purchasers. The former motivates the purchaser, while the latter makes the insurers’ business model reliably profitable, rendering them sufficiently stable to merit purchasers’ confidence. The resulting insulation of individuals and businesses from catastrophic loss benefits economic security and increases confidence, supporting economic growth. Millions of individuals, identified solely by age and whose specific risks cannot be distinguished, undergo periodic medical screening for cancer, from annual skin checks and Pap smears, to colonoscopies once a decade. Other millions take a daily tablet of an aspirin, statin, antihypertensive, or other drug for secondary prevention of cardiovascular events. These methods to counter threats to health indisputably benefit many, though it is impossible to know with high accuracy which among many individuals with heterogeneous biologies and lifestyles have been most at risk, and specifically whose lives have been saved or prolonged.

Short-term weather forecasting benefits safety of transport and recreation in maritime areas and the ability to plan travel and avoid physical risk for the general public, even though individual predictions of local path and timing of storm systems are highly fallible. Mossman (2015) makes this point in more detail, using an extended example presented from a predominantly Bayesian perspective.

2.4 Statistical Intervals

Confidence intervals were invoked in Section 2.1 to frame and motivate our discussion, and the widths of confidence intervals and prediction intervals are at the core of the current controversy. Formally a confidence interval, sometimes also called an interval estimate, is a range constructed from a sample with a predetermined probability of encompassing a targeted population parameter. The predetermined probability is the “confidence coefficient,” for which oft-used conventional values are 90% and 95%. Such intervals may be bounded by two statistics from the sample, or by one statistic and a fixed maximum or minimum possible value for the parameter. For instance, risks must be between 0 and 1, so “one-sided” intervals bounded below by 0 or above by 1, or two-sided intervals entirely within these boundaries, may be useful for different purposes. A confidence interval is valid if the confidence coefficient truly describes the fraction of times the interval will include its target parameter. Such validity is a product of the construction of the interval, that is, the determination of its boundaries, by simple algebraic manipulation of a probability statement. Usually this statement is about a corresponding estimator, that is, sample statistic, as described in Section 2.2. The originating probability statement might give a range in which a function of the estimator will fall for 95% of samples, with the boundaries of that range expressed in terms of the target parameter, for instance, \(\mu - 2 \leq \bar{x} \leq \mu + 2\), where \(\mu\) is the population mean, a parameter, and \(\bar{x}\) is the sample mean, an estimator of the parameter \(\mu\). Simple algebra then converts this inequality to \(\bar{x} - 2 \leq \mu \leq \bar{x} + 2\), after which substitution of the value of \(\bar{x}\), that is, the estimate, from the observed sample gives numerical values to the interval’s ends. If the original inequality is true with probability 95%, then so is the equivalent new version. The probability statement and hence expression of confidence refer to the proportion of samples for which the process of interval construction achieves its objective, and hence for which an inequality with random endpoints is true. The example says no more than that, if the mean of a sample is known to fall within two units of the population mean for 95% of samples, then whenever that occurs, that is, in 95% of samples, the range formed by moving two units up or down from the sample mean will include the population mean. Construction of confidence intervals in practice is more complex, but follows similarly simple logic.

A prediction interval is similar to a confidence interval in also being a range whose boundaries are random and determined from a sample of data through a probability statement. But the target of a prediction interval is not a fixed, unknown parameter characterizing the population, but rather the value of a random outcome of the sampling process. This may be either an unobservable, hence latent, variable or “effect” that describes or governs an aspect of the sample, or an additional datum not yet observed. The confidence coefficient of a prediction interval refers to the fraction of times the interval will capture its target, whether such a latent effect or a “next” data value. Since the “next” value will be a random manifestation of the same process that produced the data from which the prediction interval is obtained, as that process continues to generate additional observed data values, a 95% prediction interval may also be interpreted as an interval designed to encompass 95% of such subsequent values. Because of this, widths of prediction intervals for additional observations directly portray the extent of variation between individual sample points, in contrast to confidence intervals, whose widths reflect only variability of
the summary estimators on which they are based, and thus narrow in inverse proportion to the square root of the size of the contributing sample. Thus, for instance, quadrupling the size of a sample may roughly halve the width of an associated confidence interval, but leave that of a prediction interval virtually unaffected.

3. RECIDIVISM RISK INTERVALS

With the background above, we now take up CoHaMi’s statistical points against ARAIs, specifically in turn.

3.1 Intervals for Group Risks

CoHaMi stress that decision-making relying on ARAI-guided recidivism risk assessments is compromised by statistical unreliability in the estimation of group risks \(R_G \) by within-group recidivism proportions \(\hat{R}_G \). The argument rests on two grounds:

1. that 95% confidence intervals for group risks in ARAI score strata, using Wilson’s method for interval estimation of single proportions (HMC, Wilson 1927) or intervals based upon logistic regression (CM1, HC), are wide and overlapping, generating very few genuinely distinguishable risk categories; and
2. that classification error, that is, potentially fluctuating placement of individuals into ARAI score strata due to variability in ARAI responses, adds further imprecision, by randomly varying the already imprecise ARAI-based group risk estimate \(\hat{R}_G \) with which an individual defendant is associated (CM1).

Both points are literally true: the 95% Wilson confidence intervals do overlap, and assignment of individuals to ARAI-based risk strata can vary due to error or other sources of variability in an ARAI risk score. But their contexts and implications have been seriously misunderstood.

The interpretation of these phenomena is at issue, because ARAI score-based risk categories and group risks are arbitrary, instrumental entities, not fundamental targets of interest in their own right. The choice of a particular categorization is a consequence of the distribution of risk scores for the particular instrument and the desire for easily communicated operational guidelines or policies. The group risks associated with each stratum do not describe fixed, underlying population subgroups who reside in their corresponding risk strata; rather, individuals are classified into risk strata based on responses to ARAIs which, as CM1 stress, are themselves variable. The probabilistic process from which the risk estimates are obtained incorporates two stages. In the first, individuals who enter the legal system due to commission of a violent act are deemed eligible for ARAI-based risk classification and administered the instrument. Based on the result, each is classified into a risk score category. In the second stage, each person’s subsequent outcome is observed and used to estimate group risk for that person’s risk score category, presuming that those thus far observed constitute an equally weighted random sample of all those who fall in the risk score category. Chance thus plays a role in determining both the categorization and the outcome. Note that this process does not assume that individuals arise from underlying “true” risk categories which their ARAI scores imperfectly reflect, although some ARAIs may be compatible with such an assumption. Rather, the meaning of the risk categories used for prediction derives directly and only from single observed and impermanent responses of individuals to the ARAI. The group risk parameter \(R_G \), which the observed risk \(\hat{R}_G \) estimates in such a situation is then the long-run fraction who return to violence among those whose scores on their diagnostic ARAI administrations fall in the relevant risk score category, regardless of the fraction of these who may have been in some sense misclassified due to misreporting or other types of error.

Although it seems attractive to estimate such risks precisely, the justification for this intuition is weak. Such an \(R_G \) need not be the individual risk \(R_i(G) \) of any single member of its ARAI score stratum, nor does it characterize the average risk of any uniquely identifiable subgroup of violent offenders, since the membership of each risk stratum is not inherent to the members but arises to some extent randomly. Rather, it is a statistical property of the assessment process. Moreover, even if known precisely, the collection of \(R_G \) for all ARAI-based risk score strata is insufficient to describe the effectiveness of a risk assessment procedure without the additional knowledge of the frequencies with which offenders fall into each of the respective categories. And even were both these types of information known with perfect accuracy, further mathematical manipulation would be required to obtain simple measures of prediction model benefit that reflect the influence of a risk prediction and management policy on actual outcomes, for example, the fraction of recidivist violence that could be prevented by incarcerating offenders above a stipulated ARAI threshold. Note that the evaluation and validation of prediction model performance has been the subject of extensive statistical research, yielding numerous direct methods unrecognized by and superseding these authors’ confidence interval approach (Harrell, Lee, and Mark 1996; Harrell 2001; Pepe 2004; Steyerberg 2009a; Zhou, Obuchowski, and McClish 2011).

If focus on variability of the \(\hat{R}_G \) and their linkage to individuals is nevertheless considered important, however, the objections (1) and (2) above are both readily seen to be misleading. Regarding (2), variability in assessment and reporting of the characteristics contributing to an ARAI, and hence in ARAI scores and classifications based upon them, is as present in the examinations used to construct and validate an ARAI algorithm as in applications of ARAIs to subsequent offenders. Associations of ARAI scores and score categories with subsequent recidivism are based on data subject to measurement and misclassification error, fallible as these data may have been. If some idealized form of the ARAI from which such variability could be removed were to become available, such associations would likely become stronger. But, for now, while such variability must be acknowledged, its impact cannot be regarded as a previously unrecognized defect superimposed upon the ARAI from outside and degrading its performance relative to prior expectations. The effects of such variability are already reflected in data such as in HMC’s Tables 1 and 2. Moreover, the existence of such variability and misclassification in itself is no issue, since measurement and diagnostic variability pervade virtually all aspects of clinical medicine and psychology that have been closely examined. CM1’s basic point that ARAI classifications can vary applies as well to virtually all other clinical classifications and judgments.
That the explicit quantitative nature of ARAI-based assessments allows explicit analysis and worrisome conjectures about the effects of measurement variability and misclassification is a virtue rather than a defect of ARAIs, and does not suggest that more qualitative alternatives less subject to explicit analysis are in any sense superior.

With respect to the precision of individualized risk estimates for ARAI score categories, narrower confidence intervals than those found wanting by these authors are readily available from the current data. Such intervals might be further narrowed by incorporating larger samples, without need to question the general enterprise of ARAI-aided risk assessment. For instance, HMC take an unusually conservative approach to interval estimation for circumstances where expectation and evidence both strongly support monotonic (steadily increasing) R_C with increasing ARAI scores. Their conservatism takes two forms: the determination of each interval in isolation from the information about trend provided by data from other risk categories, and the high 95% confidence coefficient required for each separate interval rather than, perhaps, for an underlying trend parameter.

Figure 1 illustrates this conservatism in the more intuitive and technically simpler case of a physical relationship where a response is in reality entirely determined by a predictor in a manner expressible as a straight line on a graph. Suppose, however, that the response is observed with random measurement errors (Panel (a)), so that the precise straight line underlying the data, superimposed in Panel (b), is indiscernible within the cloud of data points. Insofar as possible, one would like to infer this line from the data. Panels (c) through (f) show four methods of doing so: (c) predicts the response from the overall mean response in the data, ignoring the predictor; (d), analogous to HMC’s approach, splits the predictor’s range into intervals, and predicts as in (c) but separately within each interval; (e) and (f) use the statistical technique of simple linear regression, separately within each interval (e), and then globally using all the data (f).

The squared differences between the heights of the true line and the respective predictions on such plots, averaged over the predictor values represented by the data points, is a standard measure of prediction accuracy called the mean square error (MSE). Its square root, the RMSE, represents the error on the original data scale. These are shown in the Figure 1 caption. The 93% reduction in MSE and corresponding 69% reduction in RMSE from (d) to (f) stem from using all information in the data, rather than just local averages as analogous to HMC’s approach to the VRAG and STATIC-99 data.

CoHaMi argued that logistic regression modeling is the proper source of inference from ARAI data. In this spirit, Figures 2(a) and 2(b) summarize fits of simple logistic regression models respectively to HMC’s Tables 1 and 2, presuming equal spacing of the ARAI categories on the usual logistic regression scale. Each figure plots R_C on the y-axis against the sequence numbers of the ARAI risk categories, from low to high risk.

Tables 2 and 3, respectively, compare the VRAG and STATIC-99 95% confidence intervals shown in these figures with those of HMC, showing considerable narrowing and reduced overlap of intervals from both sources. By HMC’s criterion, there are five distinguishable risk categories for VRAG and four for STATIC-99, as compared to three and two, respectively, found by HMC. Note that our use of HMC’s categorization in these models for comparability tends to underestimate the predictive power and precision that would be obtainable from models using the exact VRAG and STATIC-99 scores.

The criterion that risk score categories be distinguished by wholly disjoint 95% confidence intervals is the second form of conservatism noted above. This decidedly stringent approach produces wider intervals than would be required, for instance, to formally test the hypothesis of equal group risk between two ARAI score categories. Although comparison of two proportions is a more technically complex and harder situation to summarize, a sense of the magnitude of this conservatism can be gained by considering the technically simpler task of comparing means of two populations where the data arise from normal distributions with the same known standard deviation. In that setting, CoHaMi’s approach requires doubling the sample size needed to detect a true difference of any given magnitude with the same probability as the z-test, the commonly accepted approach, based on comparing the standardized difference in means to the standard normal distribution and using the conventional $\alpha = 5\%$ level. So, it requires studying 200 patients using CoHaMi’s method to demonstrate what otherwise could be shown with 100 patients using a standard z-test and the conventional 5% statistical significance criterion, the underlying reason being that CoHaMi’s approach conducts the underlying statistical hypothesis test at the $\alpha = 0.6\%$ level of statistical significance rather than the conventional $\alpha = 5\%$ level (see Appendix A.1). Another way of putting it is that, in this example, for hypothesis testing purposes CoHaMi’s approach has the effect of halving the existing sample size.

Many would consider it reasonable to relax these intervals to a less stringent 80% confidence level. (Note that the conventional use of 95% intervals stems from the perpetuation of a “convenient” choice by R.A. Fisher in using confidence intervals for a different purpose (Fisher 1925, p. 47).) Hence, Tables 2 and 3 also include 80% confidence intervals. These show no overlapping categories other than a 0.2% overlap at the boundary of the two lowest VRAG categories, the bottom one containing only 11 offenders. See Appendix A.2 for SAS 9.3 code for Figure 2 and the logistic regression intervals in Tables 2 and 3.

Any Wilson or logistic regression-based confidence interval, whether pertaining to an ARAI score category or raw ARAI score, can for any chosen confidence coefficient be narrowed by enlarging the sample from which it is inferred. A given interval will not invariably be narrowed by expansion of any possible sample, but such narrowing is likely and mathematically inevitable with sufficient enlargement. Thus, intervals based on enough data will eventually fail to overlap unless they narrow to the same overall risk R_C. While the latter is possible in principle, the available data exhibit very highly statistically significant trends toward increased recidivism with increasing VRAG and Static-99 score categories, specifically $P < 0.0001$ for both logistic regression models above. The relationships of these ARAIs to violence recidivism in each existing dataset would have to be remarkably nonrepresentative of the corresponding relationships in the populations and environments from which they stem for such neighboring confidence intervals to so converge.
3.2 Intervals for Individual Risks

In parallel with the confidence intervals for group risk, HMC present 95% confidence intervals for individual risks of members of each of the nine VRAG categories based on what is described as an ad hoc use of Wilson’s confidence interval formula. HMC interpret these intervals as meaning that “Given an individual with an ARAI score in this particular category, we can state with 95% certainty that the probability he will recidivate lies between the upper and lower limit.” The stated justification for this use of Wilson’s confidence interval formula is as a heuristic approximation to logistic regression results. In response to criticism of such use of Wilson’s formula (Mossman and Sellke 2007; Hart, Michie, and Cooke 2007b), CM1 provides intervals based on a different formula, claimed to be directly based on logistic regression. In this section, we first address why neither valid confidence intervals nor valid prediction intervals for truly individual risk can ever, in principle, be obtained from data such as used by CoHaMi, using any method. We then indicate, in Section 3.3, specifically the respects in which the formulas used by HMC and CM1 have been mathematically misapplied, as well as how HC have misconstrued and misinterpreted intervals for individualized group risk as pertaining to truly individual risk. We start with an anecdote to provide some intuition into the technical argument.

A couple have Sunday dinner at a restaurant in the new neighborhood to which they’ve just moved. It’s their first visit to this restaurant, which features steak and fish. He orders steak, she orders fish, and both love their dinners. During dessert, the restaurant owner visits their table. They tell him they’re new to the area, but expect to return for Sunday dinner weekly. The owner volunteers to reserve a particularly good-looking steak for the man, and his freshest fish for the woman, every Sunday. Is this sensible? Do their one Sunday’s menu choices justify a belief that women eat fish more than men, or this woman more than this man, or that their choices will persist from week to week? No more than heads on a flip of one coin, and tails on a flip of another, imply that either coin is biased. This Sunday’s choices establish that he sometimes eats steak, and she...
Recall that confidence intervals and any other form of frequentist statistical inference proceed, by definition, from probability statements about recidivism that has been observed in samples of offenders who are first classified into strata on the basis of the ARAI scores. They pertain to individuals whose ARAI scores place them in the corresponding group. HMC create a Wilson confidence interval for group risk for each such stratum from a single row of Table 1, that is, using data from that stratum. The logistic regression approach above makes an assumption about the form of the relationship between the group risks and the score strata, allowing a mathematical stitching together of information from the different strata to produce narrower intervals. Both types of intervals arise from standard methods of interval estimation, which data from the process of ascertaining a sample of offenders from a defined population, classifying the offenders using the ARAI, and monitoring these offenders for recidivism, are used to form confidence intervals for parameters R_G of the process which generated those data. Statistical inference is justified by this basic relationship: data from a process are used for inference about that process, as described in Section 2.2.

These group intervals estimate the mean latent risk R_G among all offenders classified into the same risk stratum. If all individuals in such a stratum were to have identical risk by virtue of their stratum membership, then “individual risk” would have no meaning distinct from the stratum’s group risk. But clearly CoHaMi, in distinguishing individual from individualized group risks of their corresponding ARAI score strata, are trying to go further in targeting and attempting to describe the variation of individual offenders among those in the same ARAI score stratum.

How might one distinguish different levels of risk, say $R_{i(G)}$, for otherwise presumptively similar individual members of the same group G identified by an index i (which might represent simply their order in a list)? This is relatively easy, at least conceptually, when the risk pertains to episodic events for which the individual is repeatedly observed, and when risk is stable across observations. In health care, new dental caries, migraine headaches, epileptic seizures, multiple sclerosis relapses, and incontinence episodes are events for which individuals might be repeatedly observed over discrete periods, with accumulation of the fractions of such periods during which an event of concern occurs. High-risk individuals experience events in more periods than those at low risk and, in periods when the disease process is stable, prognosis may be estimated from past experience. In such circumstances, the individual becomes a system from which data are observed, and a person’s risk is inferable from data on that person’s own experiences. The target of inference is a parameter of the process generating a single person’s data, and inference is made from that single person’s data to the unique individual risk parameter from which that person’s data arose. We emphasize that data and inferential target remain linked, but now within a single person rather than a single ARAI score stratum.

Assumptions about distributions of risk across individuals, and relationships among the experiences through which the underlying risks of different persons play out, may also be used to stitch together such clusters of intra-person observations (technically, “repeated measures” data) across groups of persons from one or many ARAI strata. For instance, in a “mixed effects logistic regression model,” counts of periods in which pertinent
events are observed from each of a set of individuals, each of whom has been classified into one of several strata and observed for multiple periods, are assumed to each arise from a process behaving like independent flips of a weighted coin, with the process in one individual unaffected by that in any other. A similar assumption as in logistic regression is made about the relationship of risk to ARAI score stratum, and a simple function of risk is assumed to vary randomly across individuals within each score stratum according to a normal (Gaussian) probability law, the well-known “bell-shaped curve.” This overall framework, including sampling of individuals, classification into strata, the numerical scale and Gaussian nature of variation from one individual to another within the same stratum, and the relationship of risk to stratum, allows estimation from a sample of this process of (i) inter-stratum risk trends, (ii) means and variances of the normal distributions underlying intra-stratum individual variation, and (iii) prediction intervals for individual risks.

CM1’s and HC’s attempted confidence intervals for individual risks are analogous to this latter aspect of modeling repeated measures binary data using mixed logistic regression (Fitzmaurice et al. 2008; Molenberghs and Verbeke 2005; Vonesh 2012), but differ in that elements of the preceding formulation are absent. These missing elements are: (a) recidivism outcome data from offenders from whom individual risk intervals are desired, (b) repeated recidivism outcome data from any individuals, and (c) assumptions or information about variation of individual risk among offenders within risk strata or with identical risk scores. Absence of these elements makes it impossible to create statistical confidence or prediction intervals for individual risk, in principle, by any methods within the realm of frequentist statistical inference.

Here is why. To reiterate, frequentist inference means inference from data generated by a process about aspects of that same process. These aspects may be parameters that describe and govern the process, with confidence interval estimation being one type of statistical inference about such parameters. They may also be random results of the process that have yet to be observed, or have already occurred but are unobservable directly but indirectly inferable through subsequent data. Prediction intervals are a form of statistical inference about such latent variables or future observations. In any case, logically, unless one observes data on the recidivism process specifically from a new offender (a), statistical inference about that new offender’s individual risk must be based on assumptions linking the new offender to a population/process from which recidivist outcome data are available to serve as the source of inference. Assumptions and/or data on the distribution of individual risk within that population/process (c) are also needed, to show how data from others can actually inform prediction of the new offender’s individual recidivism risk. Since CoHaMi neither articulate nor refer to such assumptions, the needed information for their individual intervals can only have been data-based: obtained from data on variation of individual risks among offenders sharing a common risk stratum, whose recidivism outcomes have been observed.

This, however, is impossible. The data used by CM1 consist of PCL-R score and a single binary recidivism outcome, reconviction with prison sentence for violence, for each of 255 offenders. Data such as these, where a binary outcome is measured only once on each individual, provide no information to distinguish variation among individual risks from random variation of outcomes among those whose outcomes are not inevitable, that is, for whom 0 < \(R_{ij} < 1 \). An example makes this clear. Consider a sample of size two, from either of two scenarios, where the population consists of a single very large stratum within which either (A) all individuals have risk \(R_{ij} = 60\% \), or (B) each individual’s outcome is inevitable: 60% are inexecrably destined to recidivate, that is have \(R_{ij} = 100\% \), while the other 40% are either incapacitated or totally resistant to violence, and will never do so, that is have \(R_{ij} = 0 \). These scenarios describe diametrically opposed individual risk profiles. In (A), all individuals have exactly the same propensity to recidivate \(R_{ij} \), and there is great uncertainty about each individual’s outcome. Another way of describing this is that all variation in outcomes arises from chance variation in the experiences of each individual rather than from differences between individuals. In (B), on the other hand, the \(R_{ij} \) vary dramatically, and all variation in outcomes arises from which individuals are included in a particular sample.

Now suppose also that, in each scenario, members are chosen with equal probabilities, with each choice of a member of either population made independently of the others, and the recidivism outcomes of each sampled member then observed. In (A), the two members chosen will have identical 60% risks, and the probabilities of two, one, and zero recidivists among them are easily seen to, respectively, be \(0.6 \times 0.6 = 0.36 \), \(0.6 \times 0.4 + 0.4 \times 0.6 = 0.48 \), and \(0.4 \times 0.4 = 0.16 \). In (B), each member’s outcome is predetermined, but the probabilities that the sample will contain two, one, or no members destined to be recidivists will have the same values as above, by the identical numerical calculations. Whether the random component in the sampling process and attributable entirely to variation among essentially inevitable individual destinies, or in the outcome process and attributable entirely to random experiences and responses unique to each observation, and independent of the individual, has no effect on the distribution of possible observations. Since the probabilities of possible samples are totally insensitive to whether the data arise from a distribution of distinct predetermined outcomes—the most extreme case of highly individual risks—or from a single value of risk shared by all individuals in common, the data cannot inform a choice between the two scenarios, and thus provide no information about distribution of individual risks.

Put another way, without repeated measurement there can be no observable basis for differentiating between these two diametrically opposite characterizations of individual risks. While truly individual risk may remain an instrumentally useful mental construct in situations, attempting to actually estimate such risks, when they have no real world manifestations, seems a fruitless exercise in reification.

This example is essentially totally generalizable. Information pertaining to variation in individual risks of binary outcomes is obtainable only from data on repeated observations of multiple individuals, and not from single observations on each, no matter how many individuals may provide them. If, in Scenario (A), we were to make five repeated observations on each of 10 individuals, the extreme variation in individual risks would be evident from the total consistency of responses within each of the
individuals sampled. On the other hand, five repeated observations on 10 individuals in Scenario (B) would likely show mixed results in most or all subjects, following a pattern of variability compatible with results of flipping the same 60–40 weighted coin five times, counting the numbers of heads and tails, and repeating this entire process nine additional times. Such results are easily explained without requiring variation of individual risks from the overall group risk. It is only the clustering of like results among individuals, rather than the actual results themselves, that provides information about the presence and extent of truly individual risks. If data are not collected in such a way that the extent of such clustering is observed or observable, then statistical inference about individual risk is not possible from those data.

The nature of the repeated observations required to apply formal statistical inference techniques to estimate a truly individual risk, that is, risk conceived of as idiosyncratic and potentially divergent from any patterns observable in others, is conveyed by reference to Mulvey et al. (2006) and Odgers et al. (2009). These researchers conducted separate weekly behavioral interviews with each member of a sample of 132 mentally ill individuals at high risk for frequent involvement, as well as “collateral informants” of each. The interviews revisited the past week’s events in eight domains of life, including violence and involvement in the mental health treatment and legal systems, whenever possible at the daily level. Formal statistical methods might be applied to data of this sort to distinguish between individuals in the same ARAI risk category who nevertheless, for reasons not captured by the ARAI and perhaps not systematically ascertainable, have differed and hence might be expected to differ in the future in the frequency of violent behavior. Note that this kind of statistical inference, as all statistical inference, requires data from the system or process at which inference is directed. Here the systems and processes are the specific individuals involved. However, this type of sampling of individual behavior is clearly not applicable to the circumstances in which ARAIs are needed and employed. We will return to the general implications of this point in Section 4.

3.3 Misadventures in Individual Risk Estimation From Actuarial Data

The VRAG and Static-99 data from which HMC derive individual intervals based on Wilson’s method, the RM2000/S data from which CM3 make a slightly weaker claim based on logistic regression, each contain only single recidivism outcomes on which CM1 derive individual intervals based on Wilson’s method, the RM2000/S data from which CM3 make a slightly weaker claim based on a logistic regression sequence of intervals generated similarly, and the PCL-R data from which HMC derive individual intervals based on Wilson’s confidence interval formula. From HMC, the intervals, from HMC and CM3 after correcting CM3’s last-digit misprint, are correctly described by both papers as pertaining to group risk, which we have called “Observable” to further indicate that such data are easily explained without requiring variation of individual risks shown in Tables 2 and 3.

The relationship of \(z_{a/2} \) to the confidence coefficient, that is, the chance that the interval will include its target parameter, is based upon one of the oldest and most consequential results of probability theory, Laplace’s central limit theorem. This mathematical approximation theorem describes the random behavior of counts and proportions resulting from \(n \) independent, identically distributed coin flips—or any other phenomenon that may be modeled by them—as the number of flips \(n \) increases. Laplace’s central limit theorem itself, and hence this probability statement validating the use of Wilson intervals, depends entirely on the binomial probability measure governing such counts and proportions may be approximated by a normal probability distribution as \(n \) increases, implies a probability statement about the random behavior of observed risks \(\hat{\theta} = \theta \) in circumstances compatible with the assumptions under which it was mathematically derived. HMC use \(\alpha = 0.05 \), for which \(z_{a/2} = 1.96 \), to obtain the 95% intervals for group risks shown in Tables 2 and 3.

To show HMC’s and CM3’s use of (1), Table 4’s first two rows adjoin material from HMC Table 2, based on a sample of offenders scoring 0 on the Static-99, with material from the middle column of CM3 Table 1.1, based on an RM2000/S medium risk sample. The percentages of reoffenders are each 13% within rounding error. The intervals, from HMC and CM3 after correcting CM3’s last-digit misprint, are correctly described by both papers as pertaining to group risk, which we have called “individualized”; using a reference group from the offender’s ARAI risk score category calibrates risk to offender characteristics captured by the ARAI, although the risk is estimated from recidivism data of others. The next row shows, from a hypothetical 100,000 offenders of whom 13% also reoffend, how a large sample can increase the precision with which such an individualized risk is assessed, by narrowing the confidence interval to any desired degree. The rightmost column distinguishes this sample’s hypothetical nature from the actuality of the prior rows, using the term “Observable” to further indicate that such a large offender sample, if it were practical to obtain, could
Table 4. Values of 95% confidence interval bounds from Wilson’s formula (1), for several real and hypothetical sampling scenarios with \(\hat{\theta} = 13\% \) reoffending

Source	Size	Yes	No	95% CI (%)	Ontological Class
Hanson and Thornton (1999), Table 5, via HMC	107	14	93	8–21	Observed
Thornton (2007), Table 7, via CM3	167	22	145	9–19	Observed
Imrey/Dawid	100,000	13,000	87,000	12.8–13.2	Observable
CM3	50	6.5	43.5	6–25	Fictitious
CM3	10	1.3	8.7	3–44	Fictitious
CM3	5	0.65	4.35	2–56	Fictitious
HMC and CM3	1	0.13	0.87	0–84	Fictitious

actually yield 13,000 reoffenders and validly generate the narrow 12.8%–13.2% interval.

HMC and CM3 invoke hypothetical scenarios, with successively smaller actuarial samples exhibiting the same 13% observed proportion reoffending, to make this argument in reverse. To demonstrate that confidence intervals widen as sample size declines, intervals are obtained by holding \(\hat{\theta} = 13\% \) constant in (1), while successively inserting \(n = 50, 10, 5, \) and finally \(n = 1 \). These scenarios and intervals, at the bottom of Table 4, are termed “Fictitious” as they require splitting persons and their actions into recidivist and nonrecidivist portions, not metaphorically or psychically but physically—as in a dream or horror film of a disembodied arm beating a lover, while the rest of the attacker—a 13% recidivist—reads the morning paper over coffee. Nevertheless, HMC interpret the interval for \(\hat{\text{Ri}} \) the attacker, which is the confidence interval for individual risk, our \(\hat{\theta} \), the technical error here is of the same nature as occurring in HMC’s construction of the Wilson-like intervals: a

Parenthetically, in addition, serial recidivism data on one or more individuals would likely exhibit dependence patterns, with observations close in time more associated than those further separated. If so, Wilson’s formula would not be appropriate even for use with serial data on one or more individuals.

3.3.2 Individual Intervals From Logistic Regression Formulas. CoHaMi argue that the Wilson-based intervals adequately approximate more formally correct intervals available from logistic regression models for raw ARAI data. CM1 base these intervals on standard prediction interval bounds from linear regression (Cooke and Michie 2010, 2009),

\[
B_0 + B_1 x_{n+1} \pm t_n \sqrt{\hat{\sigma}^2 \left(1 + \frac{1}{n} \right) + \frac{(x_{n+1} - \bar{x})^2}{S(X)}}.
\]

which they convert into probabilities using the logistic transformation (CM1),

\[
\Pr(\text{event}) = \frac{1}{1 + e^{-Z}}.
\]

In Equation (2), \(B_0 \) and \(B_1 \) respectively represent the estimated slope and intercept from a standard simple linear regression model based on \(n \) observations; \(\bar{x} \) is the average in the sample of the single predictor \(X \), here the ARAI risk score; \(S(X) \) is the “corrected sum of squares” \(\sum_{i=1}^{n}(x_i - \bar{x})^2 \) of this predictor, that is, of these ARAI scores; \(\hat{\sigma} \) is the estimated standard deviation of individual outcomes of those with the same value of the predictor \(X \) around the mean response (height of the regression line) for that specific value \(x \) of the predictor, that is, specific ARAI score; and \(t_n \), which also must depend on \(\alpha \) and is generally indexed as \(t_{n,1-\alpha/2} \), plays an analogous role to \(Z_{1-\alpha/2} \) in Equation (1) (Student 1908). Writing \(Z = B_0 + B_1 x_i, \) CM1 explain this material correctly, but then err in claiming “We have a linear regression of \(Z \) on \(x \) so the equation for the CI for \(Z \) is the same as the linear regression case,” thereby justifying construction of claimed confidence intervals for individual risks obtained through Equation (3). Although the context is different, the technical error here is of the same nature as occurred in HMC’s construction of the Wilson-like intervals: a
failure to recognize the dependence of statistical formulas on their probabilistic bases.

Specifically, in simple linear regression \(Z = B_0 + B_1x \) is the estimated mean of continuous observations sharing a stipulated value of a predictor, and which vary around their average for that value according to a normal (Gaussian) distribution with mean 0 and a common standard deviation, \(\sigma \), across all values of the predictor. Under this model, individual observations sharing a given predictor value may themselves take any numerical value whatsoever. It is then perfectly reasonable to develop a confidence interval for the mean at a given predictor value, or a prediction interval for an unknown continuous observation, which may in principle take any value in that interval or even outside it. However, the model presumes that average values of any individuals with the same predictor value are identical; thus, there is no distinction between group means and individual means. Such a distinction can be introduced, and the model elaborated to accommodate it, but only in the context of repeated measurements of individuals. As noted above, without such repeated measurements there is no information to distinguish within- from between-individual variation, and hence no information from which to infer the existence of individual means distinct from group means, nor of individual risks beyond their individualization based on the differing ARAI values represented by \(x \).

In logistic regression, on the other hand, \(Z \) represents the logarithm of the odds \(O = \text{Risk}/(1 - \text{Risk}) \) of occurrence of a binary event, which can only occur or not occur. There is no continuous distribution of data values around either \(Z \) or the logistic regression line obtained by plotting (3) against the predictor value, here the precise ARAI score, \(x \). Outcomes are binary with values 0 and 1, their means being the probabilities estimated by substituting \(Z \) into Equation (3), but with standard deviations functionally dependent upon and determined entirely by these means. The parameter \(\sigma \) and its estimate as represented by the symbol \(\hat{\sigma} \) in Equation (3) have no meaning in this context, because variability is not constant and depends on the value of \(x \), the ARAI score. Equation (2), while highly useful for linear regression, does not provide a valid confidence interval in the logistic regression setting because its probabilistic justification is absent in logistic regression, where the use of intervals to predict individual dichotomous classifications is also fundamentally misconceived. Although values \(z_{1-\alpha/2} \) analogous to, and usually approximately equal to, \(t_{n,1-\alpha/2} \), do indeed appear in correct formulations of confidence intervals from logistic regression models, the manner of and justification for their use differ from CM1’s, and the intervals for which they are used do not target individual risks (Hosmer and Lemeshow 2000). As with HMC’s Wilson-like intervals, CM1’s claimed logistic regression intervals for individual risks lack foundation in statistical science.

Finally, we consider HC, to whom a debt of gratitude is owed for publishing, in their Table 2, the specific code in the language of the Stata/SE statistical software package with which their “individual risk estimates and margins of error” were obtained. HC use a dataset consisting of 90 Canadian subjects convicted of sexually-related crimes and followed for an average of 4.2 years, of whom 16 were categorized as having “failed” by virtue of an additional “investigation, charge, or conviction for a sexual offense or sexually motivated offense.” Logistic regression was used to fit this dichotomous outcome to scores on four domains of the SVR-20. Subjects were then scored by the results of this fitting procedure, and partitioned into the highest third and lowest two-thirds. Confidence intervals were then obtained for the risks \(R_G \) of each group, from the corresponding observed risks \(\hat{R}_G \), using a conventional, approximate method:

\[
\hat{R}_G \pm z_{1-\alpha/2} \sqrt{\frac{\hat{R}_G(1 - \hat{R}_G)}{n}}.
\]

These were noted to be wide but only barely overlap, and HC recognize that these widths could be narrowed and overlap avoided by forming the model from a larger group of subjects. This suggests the uncontroversial point that ARAIs, to provide reliable estimates of group risks, should be constructed with much larger samples than 90 subjects. Although the categories within which group risks are described were formed using a logistic regression modeling process, HC’s method of estimating group risk by the simple observed proportion is a common approach that is not itself based on either Wilson’s formula or logistic regression.

HC then examine “individual risk estimates and margins of error.” The published StATA/IC code shows that their risk estimates are the predicted individualized risks for specific ARAI scores, and that these and the associated error margins were produced as were the lines corresponding to predicted probabilities and their 95% confidence intervals portrayed in Figure 2 above, though using different data and a different software package. These intervals must thus be interpreted as plausible ranges for the group risks of collections of individuals sharing a particular ARAI score, and not as intervals expected to encompass any given fraction of true individual risks, if these were to vary within such a group. That they are wide, as HC note, is hardly surprising however, because they are derived from fitting a four-variable logistic regression model to data from 90 subjects including only 16 recidivists, in contrast to the VRAG data on 618 subjects including 192 recidivists, and the STATIC-99 data on 1086 subjects including 272 recidivists, analyzed by HMC and revisited above. That ARAIs based on few offenders can give unreliable results is indisputable, but this does not constitute a critique of the ARAI project. Concern would be warranted, as CM1 express, if individualized intervals obtained in this or a similar manner could not be narrowed, and hence ARAI-based individualized risk estimates made more precise, by incorporating data from more offenders in their production. To resolve the question of whether such logistic regression-based individualized intervals as HC’s narrow with increasing sample size, one may rerun the STATA/IC code after appending the characters “[fweight = 10]” to HC’s first line of code, labeled as Step 1 in their Table 2, and then rerun using [fweight = 100], [fweight = 1000], etc. These tell STATA to first expand the sample by a factor of 10 to be more in line with the preceding VRAG and STATIC-99 data, and to then expand it further. Harris, Lowenkamp, and Hilton (2015, especially Figure 2), which came to our attention after acceptance of the current paper, also illustrates this point empirically using varying-size samples from a large data set extracted from the US probation database system.

3.4 Why Risk Intervals?

As touched on early in Section 3.1, there are other conceptual reasons to question assessing ARAI validity by comparing
confidence or prediction intervals for risks, even confidence intervals for group risks of ARAI categories. Categories and their group risks are convenient summaries to help the legal system classify individuals for dispositive purposes, but are arbitrarily defined and only partially reflect scientific validity. Moreover, pairwise comparisons of categories ignore the order of the score ranges that define the categories, the arbitrariness of the boundaries, and the locations of the scores of individuals within these ranges.

Indeed, comparisons of category risks may have quite different interpretations and implications depending on how scores in a given sample are distributed between and within the categories. Risks of categories with few offenders will not be distinguishable from those of other categories, regardless of how distant they may be and how strong a trend is observed in the full sample. If a category populated largely with scores toward its lower end is compared with a higher category dominated by scores toward its higher end, the intra-category risk difference will be exaggerated, but diminished if the relative positions of sampled scores within these categories were reversed, making confidence intervals more likely to overlap.

So while confidence intervals for ARAI category group risks do reflect the ARAI validity to a degree, they also strongly reflect both the sample sizes of each category, and the placement of individuals along the scale of the ARAI within each category, neither at all pertinent to such validity. There is an extensive literature on statistical methods for describing and validating prediction and risk models, from which several references were quoted above. Much of this literature, for which references were noted in Section 3.1, is based on signal detection theory, with which CoHaMi have serious disagreements (Cooke and Michie 2012). Contested aspects of other approaches do not, however, excuse the fundamental limitations of group risk comparisons based on confidence interval overlaps.

4. SUMMARY AND CONCLUSIONS

In the frequentist tradition of statistical inference from which CoHaMi attempt to draw, individual risk is an unobservable latent probability, to which the recidivism outcome is linked as the realization of an underlying random process. In the absence of further assumptions, frequentist inference about the risk of a specific individual can only be made by observing outcomes of that specific individual’s unimpeded underlying random process, repeatedly. This is neither possible nor desirable for assessing violence recidivism. So assumptions must be made. If individual risks were to vary deterministically with combinations of known, discrete, measurable factors, then persons might be grouped by combinations of these factors into internally homogeneous strata, with members of each sharing the same individual risk, but these shared risks varying among strata. Such circumstances would allow statistical inference about a specific individual’s risk from observations of a series of outcomes of others with the same combination of determining factors, and thus in the same risk stratum. Moreover, a model for how risk varies among some but not all combinations of determining factors might be interpolated or extrapolated, with outcomes from some strata used to estimate risks for other strata for which members’ outcomes are unavailable, assuming the model applies. Individual risk in such circumstances would be synonymous with the group risk of the individual’s risk stratum.

This is the situation ARAIs emulate. But in reality some risk determinants and correlates will always be unknown, unmeasurable or imperfectly measured, or vary continuously. Individual risks may be expected to be more homogeneous within a risk stratum than in the general population, but will vary to some degree. Without repeated observations of outcomes, or further knowledge or assumptions about how this remaining variation arises, frequentist inference about specific latent individual risks, or even their spread, is impossible because the sampling behavior of data depends exclusively on the underlying population or stratum’s mean (i.e., group) risk, regardless of the risk homogeneity or diversity of its members (Section 3.2).

More explicitly, actuarial risks are mean risks, defined based on strata and/or models and applied to a new offender using outcome data from other members of the same stratum or with similar model score. Although initiated by an ARAI-based index of an individual’s specific characteristics, the index’s components, their relative weights, and the actuarial risk itself stem entirely from the recidivism experience of the ARAI’s reference group. Such risks are thus better termed individualized rather than individual. Whether broadly or narrowly individualized, which depends on the ARAI components and how finely their distributions are partitioned to form strata, actuarial risks are all group risks.

While individualized (actuarial) risks are produced by a process of sampling and observation of a reference group that is observable and amenable to statistical treatment, such treatment does not and is not capable of describing variation between latent risks conceptually unique to individuals. The issue is that individual risks are exceptionally variable, or statistical intervals of any sort inherently too wide, or statistical methods lacking. It is that no relevant data are available to address the question as framed. If the target of inference is individual risk distinct from what is captured by the components of a comprehensive ARAI, then the individual’s ARAI data are irrelevant to the question as framed. Unless outcome data are available from the individual, there are no relevant data on the target of inference from which statistical inference might proceed. Statistical inference is excluded essentially tautologically, by definition.

Much confusion about individual risk assessment is thus of semantic origin, due to a subject/object mixup. Phrases such as “her risk” are conveniently brief. But by placing ownership of risk with the offender on whom it is projected rather than the reference group from which it was derived, such phrasing conflates the concepts of individualized risk, derived from an external group and projected onto the subject, and latent individual risk intrinsic to the subject herself. This invites confusion between statistically assessable variability in the ARAI production process and variability of conceptual, latent quantities, intrinsic to individuals, for which relevant data are unavailable and hence statistical assessment inapplicable.

This is the trap into which Cooke, Hart, and Michie have stumbled. What troubles them is the inability of ARAI’s to narrowly statistically bound the latent, unobserved individual risk that an individual, with all the idiosyncrasies of human
variation, may harbor. Their papers repeatedly stress imprecision of ARAI-based risk attributions to individual offenders, believed inherent in ARAIs, as a primary reason for abandoning the ARAI approach. Indeed, if tight statistical intervals for truly individual risks are considered essential, then actuarial and all other risk assessment must be abandoned because there is no conceivable way to provide them. But this whole project misconceives the nature of actuarial risk estimation and the source of its espoused benefits. In principle, precise estimation of individual risk is not needed for ARAIs, or any other risk assessment method, to provide great benefit. If groups of individuals with high and low propensities for violence recidivism can be distinguished, and courts act upon such distinctions, recidivism will decline to the extent that groups most prone to violence are incapacitated, and infringements upon those least so prone are minimized. And both society and offenders will be better served even if we cannot be sure, based on tight statistical intervals, from precisely which individual offenders this betterment derives.

CoHaMi’s technical statistical arguments against actuarial risk estimation are simply fallacious. Specifically, HMC’s Wilson-based individual risk intervals, and CM1’s alternative intervals from misapplication of a linear regression prediction interval formula to logistic regression, direct statistically improper computations toward an unachievable goal. These intervals are meaningless. HC’s individual margins of error are confidence intervals for the group risks of offenders with specific values of the ARAI they have constructed for the purpose of their article. Their widths, and those of HMC’s Wilson-based and CM1’s logistic regression based group intervals, can be arbitrarily narrowed by increasing the sizes of the samples on which they are based. While these widths might be used to argue that ARAIs should be developed or at least validated using larger samples than have been used, such a criticism would apply only to how ARAIs have been implemented, and casts no shadow on the validity of the ARAI approach to providing assistance to courts.

Although CoHaMi’s critique based on individual risks is invalid, the notion of individual risk itself need not be discarded. Statistical estimation of individual risks for outcomes such as migraine headaches or epileptic seizures is realistic. In other circumstances, the philosophically minded might legitimately debate the ontological status of a latent individual risk that can neither be estimated nor corroborated from data. But whether ab initio clinical judgments, or clinically generated modifications to individualized actuarial base risks, can mitigate violence recidivism more effectively and fairly than well-individualized, precisely estimated actuarial risks alone, is an empirical question not resolvable by philosophical or methodological considerations or dogmatic argumentation. We would not expect many to aver that knowledge of physical incapacity or a brain lesion must always be disregarded in favor of statistical risk assessment blind to such information, or that correlates of subsequent violence deserve no consideration in the face of a half century of literature, covering many areas of human health and behavior, showing statistical predictions in other fields have commonly matched or outperformed expert clinical judgments (Meehl 1954; Grove et al. 2000; Grove 2005), perhaps because humans are internally wired to impute narrative to data we encounter, and are prone to overdo it (Kahneman 2011).

Approaches might be compared empirically, but this requires great care. Anecdotal comparison is perilous. Case histories where clinical judgment appears superior to statistical classification are apt to become evident ex post facto more frequently than those where clinical judgment has failed. Any benefits of statistical classification may well be distributed anonymously, although society and individuals are no less benefited despite this anonymity. On the other hand, short of controlled experimentation it may be extremely difficult to design statistical comparisons insulated from bias and confounding, while social experimentation is expensive and may be impractical. A recent meta-analysis of empirical evaluations of ARAIs found considerable heterogeneity and overall mixed results, but did not assess or screen for study quality (Fazel et al. 2012). Further meta-analysis by these authors suggests this literature exhibits authorship bias, and criticizes ARAI developers for not disclosing their interests when authoring evaluation studies (Singh, Grann, and Fazel 2013).

Democratic societies frequently subordinate utilitarian considerations to social values, so prediction accuracy is not the sole legitimate criterion for choice of risk assessment approach. Thus, heavy reliance on ARAIs can be questioned on other grounds. We note several (see Slobogin 2012 for a general comparative review of risk assessment approaches). Individualized risk framed as a statistical property of a reference group may seem less appropriate than clinically-formulated individual risks to resolving particular cases. Statistical assessments have the potential to embed discriminatory practice in computer code (Starr 2014). ARAIs provide individualized risk assessments, but such individualizations and the assessments they produce are not unique. Different instruments may in principle disagree on their classifications of individuals. Objective reasons to choose one instrument over another in such circumstances may not be at hand.

Specific ARAIs may be open to statistical criticisms based on methods used in their development. Confidence intervals for group risks formed from the same data used to choose and weight ARAI components will tend to be narrower than intervals formed more appropriately using data from a new sample. Small samples may yield less precise intervals for individualized risks than seem advisable to inform the consequential decisions for which they are used.

Even a validated nondiscriminatory ARAI, with clear superiority to clinical judgment in its original context, is subject to the same questions of external validity that arise in all generalizations of population research findings. Additional substantiation may be warranted for application to subjects in socioeconomic environments, communities, and cultures substantially different from where the instrument was developed, for instance in older vs. younger or highly rural vs. urban communities. Risk assessments may “age-out” over time and thus require “refreshment,” as the overall incidence of violence rises or falls due to general influences on the culture and specific changes affecting violence-prone strata such as young males.

The relative weights to give such varied considerations are properly functions of social policy, not statistical inference. We conclude that while proponents and detractors of ARAIs may have cogent arguments to debate and for policymakers to weigh,
CoHaMi’s specious statistical demonstrations are not among them.

APPENDIX A: TECHNICAL APPENDIX

A.1 Hypothesis Testing by Confidence Interval Overlap

Here we document our illustration in Section 3.1 that comparison of group risks or other means based on whether their respective confidence intervals do or do not overlap employs a more stringent criterion of statistical significance than the conventional 5% level hypothesis test of their difference. The illustration is based on the simple situation of testing for the difference in means of two samples of the same size \(n \), drawn from normal distributions with the same known variance \(\sigma^2 \). In this setting, the 95% confidence interval for each sample mean has half-width of \(\frac{z_{0.975} \sigma}{\sqrt{n}} = 1.96 \frac{\sigma}{\sqrt{n}} \) in either direction from the corresponding sample mean, where \(z_{0.975} \) is the value exceeding 97.5% of random observations from a standard normal \((N(0,1))\) probability distribution. Thus, the two intervals will be disjoint precisely when the sample means differ by more than \(2 \times \frac{1.96 \sigma}{\sqrt{n}} = 3.92 \frac{\sigma}{\sqrt{n}} \).

The \(z \)-test comparing two means from normal distributions with equal known variance \(\sigma^2 \) rejects the null hypothesis when the absolute difference between the two means exceeds 1.96 times the pooled standard error of the difference in means, which itself is \(\frac{\sigma}{\sqrt{n}} \). Hence, the \(z \)-test rejects the null hypothesis when the difference between the two means exceeds \(\frac{1.96 \sigma}{\sqrt{n}} = 2.77 \frac{\sigma}{\sqrt{n}} \), as compared to \(\frac{3.92 \sigma}{\sqrt{n}} \) for the requirement that the separate intervals do not overlap. The probability that the two sample means will differ by more than \(\frac{3.92 \sigma}{\sqrt{n}} \) is the probability that a random observation from a standard normal \((N(0,1))\) distribution will exceed \(\frac{\sigma}{\sqrt{n}} (1.414) = 3.92/1.414 = 2.77 \), or 0.0056, or approximately 0.6%. Viewing the requirement of nonoverlapping intervals as a test criterion, this means that the test is conducted with the probability of a false positive result, that is, a statistical Type I error, of \(\alpha = 0.6% \) in contrast to the conventional \(\alpha = 5.0% \).

One may thus legitimately ask what sacrifice in statistical power or sample size requirement comes with this increased stringency of evidence required to establish differences between two groups? The difference in means is used as the measure of statistical signal for both the conventional test and the test based on nonoverlapping intervals. Since the ratio of this criterion to its standard deviation has the same standard normal distribution for any sample size, the probability characteristics of the nonoverlapping interval test, including Type I error and statistical power, may be converted to those of the standard test by increasing the sample size enough to shrink the standard error by the ratio \(2.77/3.92 = 0.7066 \) of the differences needed to declare statistical significance by the two tests. Since the standard error varies inversely to the square root of the sample size, this requires multiplying the sample size by a factor of \(1/0.7066^2 = 2.003 \), that is, essentially doubling the sample size.

A.2. SAS 9.3 Code for Tables 2, 3, and Figure 2

```
VRAG DATA;
data VRAG;
  input Category Total Recidivists @@;
datalines;
  1 11 0 2 71 6 3 101 12 4 111 19 5 116 41 6 96 42 7 74 41 8 29 22 9
  9 9;
  
STATIC-99 DATA;
data STATIC99;
  input Category Total Recidivists @@;
```

LOGISTIC MODEL FOR VRAG DATA

```
proc logistic descending data=VRAG;
  label Category='VRAG Score Stratrum';
  FIT MODEL;
  model Recidivists/Total=Category;
  calculate 95% LOGISTIC REGRESSION INTERVALS;
  output out=pre_VRAG_95 preprobs=(i) lower=Lower_CL_95 upper=Upper_CL_95/alpha=0.05;
  plot figure 1(a):
  effectplot/predlabel='VRAG-Based Individualized Risk Estimate';
  run;
  proc logistic descending data=VRAG;
  label Category='VRAG Score Stratrum';
  model Recidivists/Total=Category;
  calculate 80% LOGISTIC REGRESSION INTERVALS;
  output out=pre_VRAG_80 preprobs=(i) lower=Lower_CL_80 upper=Upper_CL_80/alpha=0.2;
  run;
  print logistic regression intervals for table 2;
  proc print data=pre_VRAG_95;
  var Category Lower_CL_95 Upper_CL_95;
  proc print data=pre_VRAG_80;
  var Category Lower_CL_80 Upper_CL_80;
  run;
```

REFERENCES

Imrey and Dawid: Statistical Assessment of Violence Recidivism Risk 41
Fazel, S., Singh, S. P., Doll, H., and Grann, M. (2012), “Use of Risk Assessment Instruments to Predict Violence and Antisocial Behaviour in 73 Samples Involving 24 827 People: Systematic Review and Meta-Analysis,” British Medical Journal, 345, e4692. [40]

Fisher, R. A. (1925), Statistical Methods for Research Workers, Edinburgh: Oliver and Boyd. [32]

Fitzmaurice, G., Davidian, M., Verbeke, G., and Molenberghs, G. (2008), Longitudinal Data Analysis, New York: CRC Press. [35]

Grove, W. M. (2005), “Clinical Versus Statistical Prediction: The Contribution of Paul E. Meehl,” Journal of Clinical Psychology, 61, 1233–1243. [40]

Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., and Nelson, C. (2000), “Clinical Versus Mechanical Prediction: A Meta-Analysis,” Psychological Assessment, 12, 19–30. [40]

Hanson, K. R., and Howard, P. D. (2010), “Individual Confidence Intervals Do Not Inform Decision-Makers About the Accuracy of Risk Assessment Evaluations,” Law and Human Behavior, 34, 275–281. [25]

Hanson, R. K., and Thornton, D. M. (1999), Static 99: Improving Actuarial Violence Risk Assessment Instruments to Predict Violence and Antisocial Behaviour in 73 Samples Involving 24 827 People: Systematic Review and Meta-Analysis,” Journal of the American Academy of Psychiatry and the Law, 23, 93–102. [25,26,30]

Hansen, R. K., and Thornton, D. M. (1999), Static 99: Improving Actuarial Violence Risk Assessment Instruments to Predict Violence and Antisocial Behaviour in 73 Samples Involving 24 827 People: Systematic Review and Meta-Analysis,” Journal of the American Academy of Psychiatry and the Law, 23, 93–102. [25,26,30]

Harrington, K., and Howard, P. D. (2010), “Individual Confidence Intervals Do Not Inform Decision-Makers About the Accuracy of Risk Assessment Evaluations,” Journal of the American Academy of Psychiatry and the Law, 38, 893–897. [25]

Harrell, F. E. (2001), Regression Modeling Strategies, With Applications to Linear Models, Logistic Regression, and Survival Analysis, New York: Springer-Verlag. [31]

Harrell, F. E., Lee, K. L., and Mark, D. B. (1996), “Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors,” Statistics in Medicine, 15, 361–387. [31]

Hart, S. D., and Cooke, D. J. (2013), “Another Look at the (Im-)Precision of Individual Risk Estimates Made Using Actuarial Risk Assessment Instruments,” Behavioral Sciences and the Law, 31, 81–102. [25]

Harris, G. T., Lowenkamp, C. T., and Hilton, N. Z. (2015), “Evidence for Risk Estimate Precision: Implications for Individual Risk Communication,” Behavioral Sciences and the Law, 33, 111–27. [38]

Harris, G. T., and Rice, M. E. (2013), “Bayes and Base Rates: What is an Informative Prior for Actuarial Violence Risk Assessment?” Behavioral Sciences and the Law, 31, 103–124. [26]

Harris, G. T., Rice, M. E., and Quinsey, V. L. (2008), “Shall Evidence-Based Risk Assessment be Abandoned?” British Journal of Psychiatry, 192, 154 . [25]

Henderson, R., and Keiding, N. (2005), “Individual Survival Time Prediction Using Statistical Models,” Journal of Medical Ethics, 31, 703–706. [25]

Hosmer, D. W., and Lemeshow, S. (2000), Sections 1.4 (pps. 17-21) and 3.1-3.4 (pps. 47-64), in Applied Logistic Regression, New York: Wiley. [38]

Kahneman, D. (2011), “Part III. Overconfidence,” in Thinking, Fast and Slow, Farrar, Straus and Giroux, New York. [40]

Meehl, P. (1954), Clinical vs. Statistical Prediction: A Theoretical Analysis and a Review of the Evidence, Minneapolis: University of Minnesota Press. [40]

Molenberghs, G., and Verbeke, G. (2005), Models for Discrete Longitudinal Data. New York: Springer-Verlag. [35]

Mossman, D. (2015), “From Group Data to Useful Probabilities: The Relevance of Actuarial Risk Assessment in Individual Instances,” Journal of the American Academy of Psychiatry and the Law, 43, 93–102. [25,26,30]

Mossman, D., and Sellke, T. (2007), Letter to the Editor: “Avoiding Errors About ‘Margins of Error’,” British Journal of Psychiatry, 191, 561. [25,33]

Mulvey, E. P., Ogles, C. L., Skeem, J., Gardner, W., Schubert, C., and Lidz, C. W. (2006), “ Substance Use and Community Violence: A Test of the Relation at the Daily Level,” Journal of Consulting and Clinical Psychology, 74, 743–754. [36]

Odgers, C. L., Mulvey, E. P., Skeem, J., Gardner, W., Lidz, C. W., and Schubert, C. (2009), “Capturing the Ebb and Flow of Psychiatric Symptoms With Dynamical Systems Models,” American Journal of Psychiatry, 166, 575–582. [36]

Pepe, M. (2004), The Statistical Evaluation of Medical Tests for Classification and Prediction, Oxford: Oxford University Press. [31]

Quinsey, V. L., Harris, G. T., Rice, M. E., and Cormier, C. A. (2006), Violent Offenders: Appraising and Managing Risk (2nd ed.), Washington, DC: American Psychological Association. [25]

Scurich, N., and John, R. S. (2012), “A Bayesian Approach to the Group Versus Individual Prediction Controversy in Actuarial Risk Assessment,” Law and Human Behavior, 36, 237–246. [25,26]

Singh, J. P., Grann, M., and Fazel, S. (2013), “Authorship Bias in Violence Risk Assessment? A Systematic Review and Meta-Analysis,” PLoS One, 8, e72484. [40]

Skeem, J. L., and Monahan, J. (2011), “Current Directions in Violence Risk Assessment,” Current Directions in Psychological Science, 20, 38–42. [25]

Slobogin, C. (2012), “Risk Assessment,” in The Oxford Handbook of Sentencing and Corrections, eds. J. Petersilia, and J. R. Reitz, New York: Oxford University Press, chapter 8, pp. 196–214. [40]

Starr, S. (2014), “Evidence-Based Sentencing and the Scientific Rationalization of Discrimination,” Stanford Law Review, 66, 803–872 [25,40]

Steyerberg, E. W. (2009a), Clinical Prediction Models. A Practical Approach to Development, Validation, and Updating, New York: Springer-Verlag. [25,31]

——— (2009b), “Prediction Rules and Modeling,” in Encyclopedia of Medical Decision Making (vol. 2), ed. M. W. Kattan, Thousand Oaks, CA: Sage, pp. 893–897. [25]

Student (1908), “The Probable Error of a Mean,” Biometrika, 6, 1–25. [37]

Thornton, D. S. (2007), Scoring Guide For Risk Matrix 2000.9/SVC. Unpublished document, available at http://www.birmingham.ac.uk/Documents/college-les/psych/RM2000scoringinstructions.pdf, accessed April 26, 2015. [25,37]

Vonesh, E. F. (2012), Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS, New York: Springer-Verlag. [35]

Wilson, E. B. (1927), “Probable Inference, the Law of Succession, and Statistical Inference,” Journal of the American Statistical Association, 22, 209–212. [27,31]

Yang, M., Wong, S. C. P., and Coid, J. (2010), “The Efficacy of Violence Risk Estimate Precision: Implications for Individual Risk Communication,” Biometrika, 97, 561–562. [25,31]