Title: Regional biomechanical imaging of liver cancer cells

Abstract: Liver cancer is one of the leading cancers, especially in developing countries. Understanding the biomechanical properties of the liver cancer cells can not only help to elucidate the mechanisms behind the cancer progression, but also provide important information for diagnosis and treatment. At the cellular level, we used well-established atomic force microscopy (AFM) techniques to characterize the heterogeneity of mechanical properties of two different types of human liver cancer cells and a normal liver cell. Stiffness maps with a resolution of 128x128 were acquired for each cell. The distributions of the indentation moduli of the cells showed significant differences between cancerous cells and healthy controls. Significantly, the variability was even greater amongst different types of cancerous cells. Fitting of the histogram of the effective moduli using a normal distribution function showed the Bel7402 cells were stiffer than the normal cells while HepG2 cells were softer. Morphological analysis of the cell structures also showed a higher cytoskeleton content among the cancerous cells. Results provided a foundation for applying knowledge of cell stiffness heterogeneity to search for tissue-level, early-stage indicators of liver cancer.
Regional biomechanical imaging of liver cancer cells

Weiwei Pei¹#, Jiayao Chen²#, Chao Wang⁴, Suhao Qiu⁵, Jianfeng Zeng², Mingyuan Gao², Bin Zhou³, Dan Li³, Michael S. Sacks⁶, Lin Han⁴, Hong Shan³*, Wentao Hu¹*, Guangmin Zhou¹*, Yuan Feng⁵*

¹School of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, China

²Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, China

³Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China

⁴School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA

⁵Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

⁶Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering & Sciences, the University of Texas at Austin, TX 78712, USA

#Contributed Equally

To be submitted to: Acta Biomaterialia

Current: October 14, 2018

Original Article

Address for correspondence:

Wentao Hu, Ph.D.
Guangmin Zhou, Ph.D.,
Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, China

Hong Shan, Ph.D.
Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
Yuan Feng, Ph.D.
Shanghai Jiao Tong University, School of Biomedical Engineering, Institute for Medical Imaging Technology, Shanghai, 200240, China
Email: fengyuan@sjtu.edu.cn
Tel: +86-18625085336
Abstract
Liver cancer is one of the leading cancers, especially in developing countries. Understanding the biomechanical properties of the liver cancer cells can not only help to elucidate the mechanisms behind the cancer progression, but also provide important information for diagnosis and treatment. At the cellular level, we used well-established atomic force microscopy (AFM) techniques to characterize the heterogeneity of mechanical properties of two different types of human liver cancer cells and a normal liver cell. Stiffness maps with a resolution of 128x128 were acquired for each cell. The distributions of the indentation moduli of the cells showed significant differences between cancerous cells and healthy controls. Significantly, the variability was even greater amongst different types of cancerous cells. Fitting of the histogram of the effective moduli using a normal distribution function showed the Bel7402 cells were stiffer than the normal cells while HepG2 cells were softer. Morphological analysis of the cell structures also showed a higher cytoskeleton content among the cancerous cells. Results provided a foundation for applying knowledge of cell stiffness heterogeneity to search for tissue-level, early-stage indicators of liver cancer.

Keywords: biomechanics; AFM; indentation; liver cancer; cell stiffness
1 Introduction

Liver cancer is one of the most fast growing cancer forms in terms of new incidents and death cases (Siegel et al., 2016). It is known that cells can sense mechanical forces and deformations and transduce into biological response (Ji and Bao et al., 2011; Shakiba et al., 2017; Shakiba et al., 2017; Claudia, 2014; Moeendarbary and Harris, 2014). Biomechanical properties of cancer cells have shown to be closely related with cancer pathology and metastasis state abnormalities (Suresh et al., 2005, 2007). It is also found that the biomechanical changes were correlated with the cell-cell communications (Nataliia et al., 2016) and microenvironment (Xinyi et al., 2014; Genin et al., 2017). Understanding the biomechanical properties of tumor cells can not only help to elucidate the mechanisms behind disease progression, but also provide important information for cancer diagnosis and treatment (Lee and Lim, 2007; Discher et al., 2009; Babaei et al., 2016).

Many methods have been used to measure the mechanical properties of individual cells, such as atomic force microscopy (AFM), micropipette aspiration, optical tweezer, etc. (Calzado-Martín et al., 2016; Han et al., 2017). Among these methods, AFM-based nanoindentation is one of the most widely used modality to measure the cellular structures (Weafer et al., 2015; Reynolds and McGarry, 2015) and probe the mechanical properties of living cells (Lekka, 2016; Dufrene et al., 2017; Zheng et al., 2016). It has been used to measure micro-scale structures of cells (Lekka, 2016; Guz et al., 2014; Li et al., 2017; Li et al., 2008) and microorganisms (Zheng et al., 2016), as well as macro-scale structures such as cartilage tissue (McLeod et al., 2013; Park et al., 2004) and brain tissue (Elkin et al., 2011). In this study, we used AFM to characterize the mechanical properties of liver cancer cells. Although many studies have investigated the mechanical properties of tumor cells (Calzado-Martín et al., 2016; Lekka, 2016; Li et al., 2008; Stylianou, Stylianopoulos, 2016), few studies have investigated the mechanical properties of liver cancer cells. Wu et al. (2000) was among the first to investigate the
viscoelastic properties of hepatocytes and hepatocellular carcinoma (HCC) cells using micropipette techniques. Using AFM nanoindentation, Grady et al. (2016) also investigated the elastic properties of the HUH-7 (HCC) cells.

At the tissue level, studies characterizing the mechanical properties of soft tissues have highlighted the heterogeneity of many tissues (Prange and Margulies, 2002; Feng et al., 2013). For example, Plodinec et al. (2012) used AFM to characterize the distribution of the mechanical properties at the tissue level as a biomarker for breast cancer diagnosis. At the cellular level, cells have complex surface structures containing a variety of components such as lipid and protein. In addition, beneath the plasma membrane, cytoskeleton of the cell is also a heterogeneous meshwork. Therefore, the mechanical properties of cells are essentially heterogeneous. Guo et al. (2012) studied the distributions of elastic parameters to characterize the cell properties. Hecht et al. (2015) mapped out the viscoelastic properties of cells with a resolution of 50 × 50 and a pixel resolution of 640–950 nm. For higher resolution mapping of effective modulus, Smolyakov et al. (2016) imaged elastic moduli of bacteria samples with a resolution up to 128×128 for a region of interest about 1.5× 1.5 μm². Although differences in mechanical properties between healthy and cancerous tissue have long been studied as biomarkers of various cancers, a feature that has not yet been exploited is mechanical heterogeneity.

In this study, we used AFM nanoindentation method to investigate the biomechanical properties of both liver cancer cells and normal liver cells. Mechanical heterogeneity properties were mapped out with a fine resolution. Distribution features of the effective modulus were compared between the cancerous and normal cells. Results provided biomechanical properties for potential application in liver cancer diagnosis and prognosis.
2 Materials and methods

2.1 Cell preparation

Hepatoma cells including Bel-7402, HepG2 and human normal liver cell line L02 were purchased from Shanghai Cell Bank of Chinese Academy of Sciences. Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA), 1% penicillin sodium and 100 μg/mL streptomycin, at 37°C in 5% CO2 in a humidified incubator (Thermo Scientific, Asheville, NC, USA). Normal and hepatoma cell cultures were both maintained in FBS medium under the same conditions. The cells were cultured until tightly adhered to the micropatterned glass-bottom culture dishes. Cells were grown to 10%-20% of their confluency before tests. The 60-mm cell culture dishes were mounted on the sample stage of the AFM. All scanning and measurements were performed on proliferating viable cells maintained to room temperature in Phosphate Buffer Saline (PBS) within 1–2 hours after removal of growth medium and rinse for three times by PBS.

2.2 AFM-nanoindentation

Indentation tests were performed using a combined atomic microscope with an inverted optical microscope (BioScope Resolve Atomic Force Microscope) at room temperature. Probes with a nominal spring constant of 0.10 N/m are chosen for the experiment (MLCT type E tip, Bruker Co. Ltd., Billerica, MA, USA). We used the Peak Force Quantitative Nanomechanical Mapping in fluid to measure the indentation responses at each testing point. The measurements were carried out with cells submerged within PBS in a liquid testing mode (Figure 1). A field of view (FOV) of 50×50 μm² was selected for mapping the elastic moduli of the cell with an image resolution of 128x128.

Hertz and Sneddon models were the most used method for characterizing cell properties (Li et al., 2017; Cappella et al., 2005). In this study, the indentation depth is more than 10 times larger than that of the tip radius, therefore the Sneddon model was adopted (Guo et al., 2012).
The four sided pyramid AFM problem was usually modeled by pyramid [38], and the effective modulus could be estimated by

\[E = \frac{\pi (1 - \nu^2) F}{2 \tan(\alpha) \delta^2} \]

where \(F \) is the indentation force, \(\delta \) is the corresponding indentation displacement, \(\alpha \) is the semi-included angle of the pyramid tip, and \(\nu \) is the Poisson’s ratio. We used \(\nu = 0.5 \) since the cells could be treated as incompressible (Babaei et al., 2016; Guo et al., 2012; Lekka et al., 2012).

The modulus map was estimated for each of the 16,384 indentation points using the force-displacement curve acquired. To reduce the substrate effect due to the model assumption of a semi-infinite space, we selected the top region (above the half of the cell height) of the cell covering the nucleus and major cell contents for analysis. This selection guarantees that the thickness of the sample is more than 50 times of the tip radius.

Based on the modulus images, histogram of the probability distribution function was fitted with a normal distribution. The mean value \(\mu \) and the standard deviation \(\sigma \) of the distribution with their 95% confidence intervals were estimated for each cell. The average values of \(\mu \) and \(\sigma \) were also compared with respect to the regions acquired from the 3 Bel7402 cells, 3 HepG2 cells, 2 Hepa1-6 cells, and 3 normal liver cells. To see the differences of effective modulus between each cell type, the measured indentation points for each cell were grouped together for student’s t-tests at a significance level of 5%.
Figure 1. (a) Illustration of nanoindentation of cancer cells using AFM. The measurements were carried out with live cells submerged within PBS solution. (b) A microscope image showing a typical measurement of liver cancer cell with a MLCT E-type probe.

2.3 Confocal microscopy

To observe the microstructure of each cell, samples in the glass-bottom dishes were fixed with freshly prepared 4% formaldehyde (Sinopharm Chemical Reagent Co. Ltd.) in PBS for 10 min at room temperature. After fixation, we washed samples with PBS for three times and added 0.1% Triton X-100 (Sigma Aldrich Co. Ltd., Shanghai) in PBS with 1% bovine serum albumin (MesGen, Shanghai Hongsheng biotechnology Co. Ltd) to each for 5 min. After this permeabilization, fluorescein–phalloidin solution (MesGen MF8203, Shanghai Hongsheng Biotechnology Co. Ltd) was applied for 20 min at room temperature inside a covered container during the incubation. The samples were subsequently washed with PBS for three times. We followed the protocol recommended in the product Hoechst 33342 (Sigma Aldrich Co. Ltd, Shanghai) for the cell nucleus staining. Confocal images were taken using a laser scanning confocal microscope (Olympus FV1200, Japan).

3 Results

Typical height images of the four types of cells showed that cancerous cells were about 2-3 times larger than the normal liver cells (Figure 2). In addition, we also observed the morphological differences between the cell shapes where the cancerous cells have branches of tentacles stretching out of the cell bodies. Typical force-displacement curves of the nanoindentation from different cells showed different effective modulus, where from stiff to soft were Bel7402, L02, and HepG2 cells.

The effective moduli were mapped out with respect to approximately upper 50% height of each cell (Figure 4). We observed that Bel7402 and HepG2 cells had higher moduli than that of
L02 cells. Analysis of the probability density function (PDF) of the effective modulus distribution showed significant differences between each cell (Figure 5). For cancerous cells, the mean effective moduli of the Bel7402 were significantly higher than that of HepG2. The L02 cells appeared to have a large standard deviation of effective modulus with a relatively higher value than HepG2 cells. The estimated effective modulus distribution parameters for each cell were summarized in Table 1. The maximum and minimum mean elastic moduli were 0.256 and 0.030 for Bel7402 and HepG2 cells, respectively. The maximum and minimum standard deviation values of the elastic moduli were also observed for Bel7402 and HepG2 cells, which are 0.731 and 0.014, respectively. Ranking from maximum to minimum values of the overall average moduli, we observed an order of Bel7402, L02, and HepG2. One-way ANOVA analysis showed that the mean elastic moduli were significantly different between the three cells but no significant differences were observed for the standard deviation values.

Confocal images of the cells showed that the Bel7402 cells have relatively larger cytoskeleton structures. We analyzed the cytoskeleton ratio of the cells with respect to the whole cell in terms of the areas (Figure 7). The mean ratios were 0.42±0.11, 0.39±0.11, and 0.07±0.03 for Bel7402, HepG2, and L02 cells, respectively. The only significant differences were found between the normal cells and the cancerous cells (student t-test, p<0.05).

![Figure 2](image-url)
Figure 2. Typical height images of (a) Bel-7402, (b) HepG2, and (c) L02. The image FOV was 50×50μm².
Figure 3. Comparison of typical indentation force-displacement curves between the three different cell types. The experiment curves were fitted with Sneddon model of Eq. (1). The distinguishable curves of the four cells showed stiffness differences between the cells.
Figure 4. Height images (a-c) and the corresponding modulus map (d-e) for Bel7402, HepG2, and L02 cells, respectively. The corresponding elastic moduli above the half height of the cells were selected for analysis. The field of view for each image is 50×50μm².

Figure 5. The estimated probability distribution function (PDF) of the effective modulus distribution for (a) Bel7402, (b) HepG2, and (c) L02 cells. A normal distribution function was fitted to each histogram.
Table 1. Estimated normal distribution parameters for each cell and the corresponding 95% confidence intervals for the parameters. μ and σ are the mean and standard deviation values for the normal distribution.

	μ (kPa)	σ (kPa)	Average μ (kPa)
Bel7402	0.256±0.003	0.053±0.002	
	0.105±0.001	0.039±8.40×10^{-4}	0.154
	0.162±0.003	0.05±0.002	
	0.130±8.60×10^{-4}	0.025±6.09×10^{-4}	
	0.131±0.001	0.033±9.80×10^{-4}	
	0.139±0.004	0.731±0.002	
HepG2	0.030±9.22×10^{-4}	0.021±6.52×10^{-4}	
	0.041±7.83×10^{-4}	0.014±5.54×10^{-4}	0.063
	0.058±9.31×10^{-4}	0.049±6.59×10^{-4}	
	0.092±0.001	0.023±8.26×10^{-4}	
	0.094±8.13×10^{-4}	0.021±5.75×10^{-4}	
	0.060±9.31×10^{-4}	0.020±6.59×10^{-4}	
L02	0.165±0.002	0.050±0.002	
	0.379±0.005	0.079±0.003	
	0.144±0.003	0.043±0.002	
	0.181±0.002	0.042±0.002	0.174
	0.067±0.004	0.067±0.003	
	0.109±0.006	0.089±0.004	
Figure 6. Confocal images of (a) Bel7402, (b) HepG2, and (c) L02 cells. Although the sizes of the cells were similar between each type, the cytoskeleton structures were different among these cells.

Figure 7. Illustration of the cell boundaries (white line), nucleus (yellow region), and the cytoskeleton (blue lines) for (a) Bel7402, (b) HepG2, and (c) L02 cells. The structures were extracted based on the confocal images of Figure 7.

4 Discussion

In this study, we investigated the effective modulus and its heterogeneity of liver cancer cells. Using AFM nanoindentation techniques, we observed that, the cancerous cells and the normal cells had significant different distribution of the effective modulus in the cellular level. Significant differences of the mean modulus were also found between the four types of cells. Analysis of the cellular structure shed lights on the mechanical behaviors.
4.1 Experimental measurement

Although many studies have used AFM nanoindentation to investigate the effective modulus of cancerous cells, limited data were available for liver cancer cells (Lekka, 2016; Hayashi and Iwata, 2015). In addition, most of investigations focused on the overall mechanical response of the cancerous cells, using a spherical bead indenter or pyramid indenter with respect to selected points on the cell (Lim et al., 2006). In this study, we provided a detailed mapping of the effective modulus of two different types of liver cancer cells. Unlike cells such as pancreatic beta cells that demonstrated strong adhesion effects during indentation, we did not notice significant adhesion effects for all the cancerous and normal liver cells (Zhu et al., 2016). We found that the effective modulus of the liver cancer cells ranged from 0.03-0.26 kPa, similar to that of the cancerous breast epithelial cells (Li et al., 2008). Grady et al. (2016) found the median Young’s modulus of the HUH-7 cells was 0.3 kPa, which is similar to the effective modulus of Bel7402 cells we measured.

4.2 Influences of morphological structure

It has been know that the cellular structure such as cytoskeleton contributed to the mechanical properties of cells (Wang et al.). Using gastrointestinal tumor and malaria cells, Suresh et al. (2005) found that the effective modulus of cells increased or decreased due to membrane or cytoskeleton reorganization. It was also found that mechanical properties of the cells also depend on the level of cancer transformation. With a low level of transformation, cells were softer than that with a higher level of transformation (Efremov et al., 2014). In this study, we observed that different types of liver cancer cells had significant different effective moduli and the heterogeneous properties. However, by comparing the estimated structure ratio of the cytoskeleton, we found no significant differences between the cancer cells. This indicates that the morphological structure of the cells may not be the main contributor to the mechanical
properties of the cells, rather the properties of the structure such as the cytoskeleton or membrane could play a major role.

Sun et al. (2016) and Wu et al. (2016) found that differences in cell cytoskeleton (F-actin) were accompanied with changes in the cell migration ability and Young’s modulus. Studies have shown that disruption of microtubule dynamics could affect cancer cell effectiveness (Moeendarbary and Harris, 2014; Grady et al., 2016). Both Grady et al. (2016) and Wu et al. (2000) found that upon removal of cytoskeleton structures, the elastic properties of the HCC cells decreased. Although we did not notice a significant difference in the volume ratio of cytoskeletons between the cancerous cells, a significant lower composition of cytoskeleton was observed for the normal liver cells. Besides, it has been found that Bel7402 cells have higher migration and invasive capacity than HepG2 cells (Chen et al., 2013). We postulate that a higher volume ratio of the cytoskeleton structure could contribute to higher migration ability among the tested cancerous cells.

4.3 Correlation between the tissue and cellular level

Using AFM, the measured effective modulus can be used to distinguish normal and cancerous breast cancer cells (Li et al., 2008; Corbin et al., 2015). For most cancerous cells, the effective modulus was lower than the corresponding normal cells (Lekka, 2016). Li et al. (2008) are among the first to investigate the mechanical properties of breast cancer cells and observed significantly lower apparent Young’s modulus of the Malignant (MCF-7) breast cells than that of the non-malignant (MCF-10A) counterparts. We observed that while HepG2 and Hepa1-6 cells were softer than the normal liver cells. However, no significant differences were observed between the Bel7402 and normal liver cells. This type-dependent properties were similar to that of the cervix cancer cells, where CRL2614 cells were stiffer (Zhao et al., 2015) and primary cancer cells were softer (Iyer et al., 2009). Therefore, we showed that cancerous
cells were not necessarily softer than normal cells, but depend on the specific categories and phenotypes.

In vivo characterization of the mechanical properties of liver cancer tissue showed that the cancerous tissues were stiffer than that of the normal tissues (Hennedige et al., 2016; Venkatesh et al., 2008). Similar stiffening behavior in the tissue level were also observed for other cancers such as breast cancer (Ramião et al., 2016). The stiffer behavior at the tissue level were different from that at the cellular level, where we found that only Bel7402 cells were stiffer than the normal liver cells. The differences of the mechanical properties in the cellular and tissue level revealed that besides the mechanical properties of the cells, structures such as extra cellular matrix (ECM) play an important role in the tissue level behavior. In fact, studies have already pointed out that rigid tumors were stiffer than normal tissues because of a stiffer ECM (Huang and Ingber). However, cancerous cells that were either stiffer or softer than the normal cells indicated a variation of the roles of ECM in affecting the tissue level mechanics. This provided new clues in understanding the mechanotransduction of cancer cells (Huang, Ingber; Humphrey et al., 2014; Iskratsch et al., 2014; Mouw et al., 2014).

4.4 Limitations and future studies

In this study, we only mapped out the effective properties of live cancer cells. However, elastic properties cannot represent the full mechanical characteristics of cancer cells, since viscoelastic behaviors have been observed for many different types of cells (Rother et al., 2014). Future studies involve finding a way to map out the viscoelastic properties of a live cell within a reasonable time frame. In addition, we will investigate the structural and mechanical properties of the ECM of liver cancer tissues.
5 Conclusions

In this study, we used AFM nanoindentation to characterize the mechanical properties of cancerous and normal liver cells. Elastic moduli with a refined resolution were acquired and analyzed. Distinct effective moduli and its distributions were found for each cell type, while significant differences of the effective moduli were found between cell types. The Bel7402 cells had the highest magnitude of effective modulus while HepG2 had the lowest moduli. Although the dispersion of the elastic moduli was different for each cell, no significant difference was found. Analysis of the morphological structure showed a significantly lower volume ratio of the normal liver cells than the cancerous cells. The results provided helpful hints for understanding the cellular behavior of liver cancer cells as well as the indications for understanding the mechanical differences between cellular and tissue levels.

6 Acknowledgement

Funding is provided by grant 61503267 (YF) from National Natural Science Foundation, grant 16KJB460018 (YF) from Jiangsu Province, grant K511701515 (YF) from Scientific Research Foundation for the Returned Overseas Chinese Scholars and by grant 2015J007 (HS) from Zhuhai medical and health science and technology program, State Education Ministry. Support from Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) is also acknowledged.

7 Conflict of Interest statement

None of the authors has a conflict of interest that could influence the work described in this manuscript.

8 References

Babaei B, Davarian A, Lee S-L, Pryse KM, McConnaughey WB, Elson EL, et al. Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen. Acta Biomaterialia 2016;37:28-37.
Calzado-Martín A, Encinar M, Tamayo J, Calleja M, San Paulo A. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy. ACS Nano 2016;10:3365-74.

Cappella B, Kaliappan SK, Sturmi H. Using AFM Force–Distance Curves To Study the Glass-to-Rubber Transition of Amorphous Polymers and Their Elastic–Plastic Properties as a Function of Temperature. Macromolecules 2005;38:1874-81.

Chen L, Li M, Li Q, Wang CJ, Xie SQ. DKK1 promotes hepatocellular carcinoma cell migration and invasion through beta-catenin/MMP7 signaling pathway. Molecular cancer 2013;12.

Claudia Tanja M. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. Reports on Progress in Physics 2014;77:076602.

Corbin EA, Kong F, Lim CT, King WP, Bashir R. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab Chip 2015;15:839-47.

Discher D, Dong C, Fredberg JJ, Guilak F, Ingber D, Janney P, et al. Biomechanics: cell research and applications for the next decade. Ann Biomed Eng 2009;37:847-59.

Dufrene YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nano 2017;12:295-307.

Efremov YM, Lomakina ME, Bagrov DV, Makhnovskiy PI, Alexandrova AY, Kirpichnikov MP, et al. Mechanical properties of fibroblasts depend on level of cancer transformation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2014;1843:1013-9.

Elkin BS, Ilankovan AI, Morrison B. A Detailed Viscoelastic Characterization of the P17 and Adult Rat Brain. Journal of Neurotrauma 2011;28:2235-44.

Feng Y, Okamoto RJ, Namani R, Genin GM, Bayly PV. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J Mech Behav Biomed 2013;23:117-32.

Genin GM, Shenoy VB, Peng GCY, Buehler MJ. Integrated Multiscale Biomaterials Experiment and Modeling. ACS Biomaterials Science & Engineering 2017;3:2628-32.

Grady ME, Composto RJ, Eckmann DM. Cell elasticity with altered cytoskeletal architectures across multiple cell types. J Mech Behav Biomed 2016;61:197-207.

Guo Q, Xia Y, Sandig M, Yang J. Characterization of cell elasticity correlated with cell morphology by atomic force microscope. J Biomech 2012;45:304-9.

Guz N, Dokukin M, Kalaparthi V, Sokolov I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 2014;107:564-75.

Han B, Nia HT, Wang C, Chandrasekaran P, Li Q, Chery DR, et al. AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering. ACS Biomaterials Science & Engineering 2017;3:2033-49.

Hayashi K, Iwata M. Stiffness of cancer cells measured with an AFM indentation method. J Mech Behav Biomed 2015;49:105-11.

Hecht FM, Rheinlaender J, Schierbaum N, Goldmann WH, Fabry B, Schaffer TE. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. Soft Matter 2015;11:4584-91.

Hennedige TP, Hallinan J, Leung FP, Teo LLS, Iyer S, Wang G, et al. Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions. Eur Radiol 2016;26:398-406.

Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development. Cancer Cell;8:175-6.

Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nature reviews Molecular cell biology 2014;15:802-12.
Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape - the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 2014;15:825-33.

Iyer S, Gaikwad RM, Subba-Rao V, Woodworth CD, Sokolov I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nature nanotechnology 2009;4:389-93.

JI B, Bao G. Cell and molecular biomechanics: perspectives and challenges. Acta Mechanica Solida Sinica 2011;24:27-51.

Lee GYH, Lim CT. Biomechanics approaches to studying human diseases. Trends in Biotechnology 2007;25:111-8.

Lekka M. Discrimination Between Normal and Cancerous Cells Using AFM. BioNanoScience 2016;6:65-80.

McLeod MA, Wilusz RE, Guilak F. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy. J Biomech 2013;46:586-92.

Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2014;6:371-88.

Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 2014;15:771-85.

Natalia VG, Sapan JP, Maxim ED, Bayard C, Igor S. AFM study shows prominent physical changes in elasticity and pericellular layer in human acute leukemic cells due to inadequate cell–cell communication. Nanotechnology 2016;27:494005.

Park S, Costa KD, Ateshian GA. Microscale frictional response of bovine articular cartilage from atomic force microscopy. J Biomech 2004;37:1679-87.

Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, et al. The nanomechanical signature of breast cancer. Nature nanotechnology 2012;7:757-65.

Prange MT, Margulies SS. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng 2002;124:244-52.

Ramião NG, Martins PS, Rynkevic R, Fernandes AA, Barroso M, Santos DC. Biomechanical properties of breast tissue, a state-of-the-art review. Biomech Model Mechanobiol 2016;15:1307-23.

Reynolds NH, McGarry JP. Single cell active force generation under dynamic loading – Part II: Active modelling insights. Acta Biomaterialia 2015;27:251-63.

Rother J, Nöding H, Mey I, Janshoff A. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biology 2014;4.

Shakiba D, Babaei B, Saadat F, Thomopulos S, Genin GM. The fibrous cellular microenvironment, and how cells make sense of a tangled web. Proc Natl Acad Sci U S A 2017;114:5772-4.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: A Cancer Journal for Clinicians 2016;66:7-30.
Smolyakov G, Formosa-Dague C, Severac C, Duval RE, Dague E. High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 2016;85:8-14.

Stylianou A, Stylianopoulos T. Atomic Force Microscopy Probing of Cancer Cells and Tumor Microenvironment Components. BioNanoScience 2016;6:33-46.

Sun J, Luo Q, Liu L, Zhang B, Shi Y, Ju Y, et al. Biomechanical profile of cancer stem-like cells derived from MHCC97H cell lines. Journal of biomechanics 2016;49:45-52.

Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, et al. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia 2005;1:15-30.

Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomaterialia 2007;3:413-38.

Venkatesh SK, Yin M, Glockner JF, Takahashi N, Araoz PA, Talwalkar JA, et al. MR Elastography of Liver Tumors: Preliminary Results. American Journal of Roentgenology 2008;190:1534-40.

Wang Y, Botvinick El Fau - Zhao Y, Zhao Y Fau - Berns MW, Berns Mw Fau - Usami S, Usami S Fau - Tsien Ry, Tsien Ry Fau - Chien S, et al. Visualizing the mechanical activation of Src.

Weafer PP, Reynolds NH, Jarvis SP, McGarry JP. Single cell active force generation under dynamic loading – Part I: AFM experiments. Acta Biomaterialia 2015;27:236-50.

Wu L, Wang X, Liu Q, Wingnang Leung A, Wang P, Xu C. Sinoporphyrin sodium mediated photodynamic therapy inhibits the migration associated with collapse of F-actin filaments cytoskeleton in MDA-MB-231 cells. Photodiagnosis and photodynamic therapy 2016;13:58-65.

Wu ZZ, Zhang G, Long M, Wang HB, Song GB, Cai SX. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Biomechanics 2000;37:279-90.

Xinyi G, Keith B, Karin S, Martin G. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells. New J Phys 2014;16:105002.

Zhao X, Zhong Y, Ye T, Wang D, Mao B. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy. Nanoscale research letters 2015;10:482.

Zheng W, Yang H, Xuan G, Dai L, Hu Y, Hu S, et al. Longitudinal Study of the Effects of Environmental pH on the Mechanical Properties of Aspergillus niger. ACS Biomaterials Science & Engineering 2016.

Zhu X, Siamantouras E, Liu KK, Liu X. Determination of work of adhesion of biological cell under AFM bead indentation. J Mech Behav Biomed 2016;56:77-86.
It is known that the biomechanical properties of cells are closely related to malignancy, migration, and development. Studies have shown that biomechanical properties in the cellular level could be used to identify different breast cancer cells. However, little is known about the nanomechanical properties of liver cancer cells. In addition, whether the structure morphology and mechanical phenotype of liver cancer cells are related is still unknown. In this study, biomechanical properties and structure morphology of different liver cancer cells were measured and compared using atomic force microscopy (AFM). Results provided a comprehensive map of the biomechanical properties of the liver cancer cells that are helpful for identifying biomechanical biomarkers in translational applications. Morphological analysis in the subcellular level also indicated that stiffness of the cells were closely related with the cytoskeleton structure.
Declaration of Interest Statement

Title: Regional biomechanical imaging of liver cancer cells

Authors: Weiwei Pei, Jiayao Chen, Chao Wang, Suhao Qiu, Jianfeng Zeng, Mingyuan Gao, Bin Zhou, Dan Li, Michael S. Sacks, Lin Han, Hong Shan, Wentao Hu, Guangmin Zhou, Yuan Feng

None of the authors has a conflict of interest that could influence the work described in this manuscript.

Yuan Feng, on behalf of the authors

Yuan (Aaron) Feng, Ph.D., P.E.
Associate Professor
Institute for Medical Imaging Technology
School of Biomedical Engineering
Shanghai Jiao Tong University
fengyuan@sjtu.edu.cn