Mutual Fund Performance and Flows during the COVID-19 Crisis

Ľuboš Pástor
Booth School of Business, University of Chicago, NBER, CEPR, and the National Bank of Slovakia

M. Blair Vorsatz*
Booth School of Business, University of Chicago

August 2020

Abstract

We present a comprehensive analysis of the performance and flows of U.S. actively managed equity mutual funds during the 2020 COVID-19 crisis. We find that most active funds underperform passive benchmarks during the crisis, contradicting a popular hypothesis. Funds with high sustainability ratings perform well, as do funds with high star ratings. Fund outflows surpass precrisis trends, but not dramatically. Investors favor funds that apply exclusion criteria and funds with high sustainability ratings, especially environmental ones. Our finding that investors remain focused on sustainability during this major crisis suggests they view sustainability as a necessity rather than a luxury good. (JEL G01, G11, G12, G14, G23)

*We are grateful to Ali Hortacsu, Jeff Pontiff, Luke Taylor, Alexander Wagner, and Yao Zeng for helpful comments and to the Booth School of Business at the University of Chicago for research support. The views in this paper are those of the authors, not the institutions they are affiliated with. Send correspondence to M. Blair Vorsatz, mvorsatz@chicagobooth.edu.
Active equity mutual funds are well known to have underperformed passive benchmarks, net of fees.\footnote{See Jensen (1968), Elton et al. (1993), Malkiel (1995), Gruber (1996), Carhart (1997), Wermers (2000), Pástor and Stambaugh (2002), and Fama and French (2010), among others.} Despite its long-lasting underperformance, the active management industry remains large, managing tens of trillions of dollars. The existence of a large underperforming industry appears puzzling because an alternative—passive funds—is easily available to investors.

One popular hypothesis is that investors are willing to tolerate this underperformance because active funds outperform in periods that are particularly important to investors. This hypothesis was first formulated by Moskowitz (2000), who asked whether mutual funds provide a hedge against recessions. Later, Glode (2011) formalized this hypothesis by building a model in which a fund manager generates active returns that depend on the state of the economy. In equilibrium, the manager chooses to work harder in periods when investors’ marginal utility of consumption is higher because investors are willing to pay for this insurance. If active funds deliver high returns in periods when investors need them the most then these funds’ unconditional performance understates the funds’ true abilities.

We test this hypothesis by analyzing the performance of active mutual funds during the COVID-19 crisis of 2020. This crisis is particularly suitable for the task at hand for two reasons. First, it has led to an unprecedented output contraction and the fastest increase in unemployment on record. Investors surely want to hedge against such a severe crisis. Second, active managers have an opportunity to perform well during this crisis because the crisis has created unusually large price dislocations in financial markets. In the equity market, the S&P 500 index experienced its steepest descent in living memory, losing 34% of its value in the 5-week period between February 19 and March 23, 2020, before bouncing back by over 30% by the end of April. The sharp response of equity markets to COVID-19 is analyzed in a growing number of studies.\footnote{For evidence at the aggregate stock market level, see, for example, Alfaro et al. (2020), Baker et al. (forthcoming), and Gormsen and Koljen (forthcoming). For cross-sectional evidence, see Bretschger, Hsu, and Tamoni (2020), Ding et al. (2020), Fahlenbrach, Rageth, and Stulz (2020), Gerding, Martin, and Nagler (2020), Glossner et al. (2020), Pagano, Wagner, and Zechner (2020), and Ramelli and Wagner (forthcoming), among others.} In the bond market, liquidity evaporated in March 2020, not only for corporate bonds (e.g., Kargar et al. 2020; O’Hara and Zhou 2020) but also for the usually liquid Treasuries (e.g., Schrimpf, Shin, and Sushko 2020). Until liquidity improved following the interventions from the Federal Reserve, its temporary shortage created massive market disruptions. For example, in the corporate bond market, bonds traded at large discounts to credit default swaps, and exchange-traded funds traded at large discounts to net asset values (Haddad, Moreira, and Muir 2020). In addition, the Treasury market witnessed significant
mispricing between bonds and bond futures (Schrimpf, Shin, and Sushko 2020). These price
dislocations are due to a combination of factors including record-high volatility and traders
working from home. Under the hypothesis that active funds outperform during recessions,
they should find it particularly easy to outperform when markets are rife with mispricing.

Contrary to this hypothesis, we find that active funds underperform their passive bench-
marks during the COVID-19 crisis. We define the crisis period as the 10-week period between
February 20 and April 30, 2020. We choose February 20 as the starting date because the
stock market peaked on February 19 before its rapid descent. We choose April 30 as the
ending date because it is a month-end by which the market largely rebounded, and also
because it puts the market bottom on March 23 roughly in the middle of the crisis period.
The 10-week crisis period is thus roughly evenly split between the crash and the recovery.
Our evidence is based on daily returns of U.S. active equity mutual funds.

The underperformance of active funds is particularly strong when measured relative to
the S&P 500 benchmark. We find that 74.2% of active funds—about three quarters—
derperform the S&P 500 during the COVID-19 crisis. The average fund underperformance is
-5.6% ($t = -5.37$) during the 10-week period, or -29.1% on an annualized basis.

While the S&P 500 is the most popular benchmark among U.S. equity funds, it is not
appropriate for all funds given its large-cap focus. We consider three types of benchmarks
that are tailored to each fund’s investment style: Morningstar-designated FTSE/Russell
benchmarks, fund-designated prospectus benchmarks, and factor-model benchmarks. We
find that active funds also underperform these fund-specific benchmarks, although by nar-
rower margins. For example, 57.6% of funds underperform their FTSE/Russell benchmarks
and 54.2% of funds underperform their prospectus benchmarks. The average fund under-
performance relative to the FTSE/Russell benchmark is -2.1% ($t = -3.90$) during the crisis
period, or -11% on an annualized basis. Relative to the prospectus benchmark, the average
underperformance is -1.5% ($t = -2.49$) during the crisis, or -7.7% annualized.

Besides benchmark-adjusted fund returns, we also examine factor-adjusted returns by
computing fund alphas relative to five different factor models. All five alphas are significantly
negative on average during the crisis period, ranging from -7.6% annualized ($t = -3.25$) for
the six-factor model that includes the five factors of Fama and French (2015) plus momentum,
to -29.1% annualized ($t = -7.02$) for the CAPM. The fraction of funds with negative alphas
ranges from 60.4% for the four-factor Carhart (1997) model to a stunning 80.2% for the
CAPM. Active fund performance during the crisis is substantially worse than before the
crisis. In short, active funds perform poorly during the COVID-19 crisis.
Prior tests of the same hypothesis arrive at a different conclusion. Moskowitz (2000) shows that active funds’ returns from 1975 to 1994 are higher during recessions by 6% per year, on average. Kosowski (2011) analyzes the period from 1962 to 2005 and finds that mutual fund alphas in recessions exceed those in expansions by 3% to 5% per year, on average. Glode (2011) reports that funds with poor unconditional performance generate countercyclical risk-adjusted returns in 1980 through 2005. Kacperczyk, van Nieuwerburgh, and Veldkamp (2016) find that fund alphas are 1.6% to 4.6% per year higher in recessions over the 1980–2005 period. Unlike our study, all of these studies examine periods in which recessions are substantially milder than the COVID-19 crisis.

While active funds as a whole underperform, their performance during the COVID-19 crisis exhibits substantial heterogeneity. One of the strongest predictors of performance is the sustainability rating from Morningstar. Morningstar assigns between one and five sustainability “globes” to each fund, with more globes denoting higher sustainability. We find that funds with more globes as of January 31, 2020, have higher benchmark-adjusted returns between February 20 and April 30, 2020. Remarkably, the relation is monotonic across the globe categories: five-globe funds outperform four-globe funds, which in turn outperform three-globe funds, etc. High-globe funds (those with four or five globes) significantly outperform the remaining funds within the same investment style by 14.2% per year ($t = 4.85$) in terms of FTSE/Russell benchmark-adjusted returns. This result is driven largely by environmental sustainability. Sustainability ratings predict fund returns regardless of whether we control for funds’ industry exposure.

Our findings linking fund performance to sustainability resemble those of Nofsinger and Varma (2014), who find that socially responsible mutual funds tend to outperform during market crises. Their sample of 240 U.S. domestic equity mutual funds covers the period of 2000 through 2011, which includes two recessions (2001 and 2007–2009). We examine only one recession (2020) but many more funds. Another related study, Albuquerque et al. (2020), finds that U.S. firms with high environmental and social ratings earn comparatively high stock returns in the first quarter of 2020. Ding et al. (2020) report a similar finding based on corporate social responsibility ratings of firms in 56 countries. Our fund-level evidence complements their stock-level evidence in highlighting the role of sustainability during the COVID-19 crisis. The model of Pástor, Stambaugh, and Taylor (forthcoming) implies that “green” assets (those with high sustainability ratings) have lower expected returns than “brown” assets (those with low sustainability ratings), but green assets can nonetheless outperform brown assets in periods during which investors’ tastes are shifting.

These findings echo those based on the 2008–2009 recession. Lins, Servaes, and Tamayo (2017) show that U.S. firms with higher environmental and social ratings perform better during that recession.
toward green assets or customers’ tastes are shifting toward green products. Such a shift in tastes appears to have started before the COVID-19 crisis and, judging by our evidence as well as that of Albuquerque et al. (2020) and Ding et al. (2020), it continued through the crisis.

Besides sustainability ratings, another strong predictor of fund performance during the COVID-19 crisis is the fund’s star rating from Morningstar. Star ratings assigned as of January 31, 2020, predict performance between February 20 and April 30, 2020, positively and significantly. Similar to Morningstar globes, the relation is monotonic: five-star funds outperform four-star funds, which outperform three-star funds, etc. One additional star is associated with an increase in performance of 5.78% per year ($t = 2.84$) in terms of FTSE/Russell benchmark-adjusted returns. That is, a five-star fund outperforms a one-star fund of the same style by about 23% per year, on average.

Finally, we find that growth funds outperform value funds. This finding is at most partly driven by the strong performance of the growth style during the crisis because we measure fund performance net of the fund’s style. In other words, growth funds beat value funds on a style-adjusted basis. This result is strong when the style adjustment is performed through a factor model, but it is insignificant when the adjustment is based on the style benchmark. The mixed nature of this evidence suggests roles for both active management and the superior performance of the growth style in explaining the different performance of growth and value funds during the crisis. Growth funds beat value funds not only during the crisis but also in the 4 months preceding the crisis. However, neither the sustainability ratings nor the star ratings predict fund performance in the precrisis period.

In addition to fund performance, we analyze capital flows in and out of active mutual funds. During the COVID-19 crisis, active funds experience steady outflows of about 1.3% of assets under management. These outflows are rapid during the market crash and they continue, albeit at a slower pace, during the market rebound after March 23, 2020. The outflows are faster than their long-term trend, but the difference is not dramatic.

Fund flows vary substantially across funds. Similar to performance, crisis period flows are predictable by funds’ precrisis sustainability ratings. Flows are near-monotonic across the five globe categories, with five-globe funds having the largest net flows and one-globe funds having the lowest flows between February 20 and April 30, 2020. In particular, one-globe funds suffer outflows of 2.6% of assets under management over the 10-week period, whereas five-globe funds’ net flows are roughly zero. This difference, which is statistically significant, is driven especially by environmental concerns. Furthermore, funds that apply exclusion
criteria in their investment process receive net inflows during the crisis, whereas funds that do not apply exclusions experience outflows. As is well known, mutual fund investors came to favor sustainability-oriented funds in the 2010s (e.g., Bialkowski and Starks 2016; Hartzmark and Sussman 2019). We find that this precrisis trend toward sustainability continues during the COVID-19 crisis.

A popular perspective in traditional neoclassical economics is that sustainability issues, such as environmental quality, are “luxury goods” that are likely to be of concern only to those whose more basic needs for food, housing, and survival are adequately met (e.g., Baumol and Oates 1979). This perspective predicts that interest in sustainability should subside during a major economic and health crisis. In contrast, we find that investors retain their commitment to sustainability during the COVID-19 crisis. This finding suggests that investors have come to view sustainability as a necessity rather than a luxury good.

We also conduct additional tests whose results are less conclusive. For example, we find no significant difference between active and passive funds in terms of their sustainability-performance or sustainability-flow relations. We find that institutional funds perform better than retail funds during the crisis based on benchmark-adjusted performance, but the opposite is true based on alphas, and the institutional-retail performance gap is insignificant within investment styles. Institutional funds have larger outflows than retail funds during the crisis, but only after we apply a battery of controls. There is no significant difference between institutional and retail flows with respect to sustainability.

The performance hypothesis rejected by our evidence—that active funds outperform in recessions—is not the only possible explanation for why active management remains popular despite its poor track record. Gruber (1996) suggests that some investors suboptimally rely on active management because they are influenced by advertising, brokers, institutional arrangements, or tax considerations. Pástor and Stambaugh (2012) argue that a large active management industry can be rationalized if investors believe that active managers face decreasing returns to scale. In their model, rational investors respond to past underperformance of active funds by withdrawing money, which improves those funds’ future performance to the point where investors are indifferent between investing actively or passively.

Our focus on crisis period fund performance is also related to the literature on time-varying fund manager skill. Ferson and Schadt (1996) make an important early contribution.

4 An example of this common view is the controversial “Summers memo” from 1991, in which the World Bank’s Chief Economist suggests that the Bank should be encouraging more migration of dirty industries to the least-developed countries. One of the reasons given in the memo is that “the demand for a clean environment for aesthetic and health reasons is likely to have very high income elasticity.” (“Let them eat pollution,” The Economist, February 8, 1992.)
More recently, Kacperczyk, van Nieuwerburgh, and Veldkamp (2016) develop a model of optimal attention allocation over the business cycle. In their model, fund managers allocate more attention to idiosyncratic shocks in expansions and aggregate shocks in recessions. Similarly, Kacperczyk, van Nieuwerburgh, and Veldkamp (2014) find that fund managers exhibit better stock picking in expansions and better market timing in recessions. We do not attempt to separate stock selection from market timing during the COVID-19 crisis because such an exercise would require time series of fund holdings, which are widely available only on a quarterly basis. Data availability also limits our ability to test the hypothesis that the profit opportunities created by COVID-19 lead active funds to trade more, improving their future performance (Pástor, Stambaugh, and Taylor 2017). Whether funds increase their turnover in 2020, and whether this turnover causes better future fund performance, remains to be seen because the turnover data from the SEC are only annual.

While we examine the performance and flows of equity mutual funds, Falato, Goldstein, and Hortacsu (2020) analyze the flows of corporate bond funds during the COVID-19 crisis. They find that those funds suffer outflows much larger than the outflows from equity funds that we document here. They also argue that outflows from bond funds contribute to fire sales, especially by funds holding illiquid bonds. We look for fire sales by focusing on the flows of small-cap equity funds, which hold relatively illiquid stocks. Our evidence points in the direction of fire sales, but it is weak statistically. Ma, Xiao, and Zeng (2020) also analyze fixed-income mutual funds, focusing on their response to redemptions in March 2020.

1. Data

We use daily data from Morningstar Direct covering the period from January 1, 2017, to April 30, 2020. Our original sample covers 4,292 U.S. actively managed equity mutual funds, although we primarily focus on the 3,626 funds with at least one nonmissing net return between February 20 and April 30, 2020. The latter sample represents $4.9 trillion of total net assets (TNA) as of January 31, 2020.

Our fund universe is largely constructed following Pástor, Stambaugh, and Taylor (2015), with two main differences. First, we also include international and sector equity funds domiciled in the United States. Second, we do not require funds to appear in both CRSP and Morningstar; we use only Morningstar data. As in Pástor, Stambaugh, and Taylor (2015), we use the Morningstar FundID variable to aggregate share classes to the fund level.\footnote{Many funds have multiple share classes that are tied to the same pool of assets but have different fee structures. Since different share classes of the same fund have the same Morningstar FundID value, we can...}
We use keywords in the Morningstar Category variable and the prospectus benchmark to exclude bond funds, money market funds, real estate funds, target retirement funds, and other nonequity funds. We also exclude funds identified by Morningstar as passive index funds and funds whose name contains the word “index.” In our baseline results, we also use a fund size filter to include only funds with at least $15 million of TNA on January 31, 2020. Elton, Gruber, and Blake (2001), among many others, recommend excluding the smallest funds. The size filter is particularly relevant for fund flows because modest dollar flows can translate into extreme percentage flows for the smallest funds. This subsample covers 2,764 funds and $4.891 trillion of TNA.

Throughout our analysis, we use funds’ returns net of the expense ratio because our goal is to measure the return delivered to clients after fees. Despite being fresh (we downloaded data through April 30, 2020, in May 2020), the data appear to be free of salient errors. For example, none of our sample’s 2,692,799 fund-level daily net return observations are below -90% and only one is larger than 100%. We adjust fund returns for daily benchmark returns, also obtained from Morningstar, and for daily factor returns, which we obtain from Ken French’s data library along with the risk-free rate.

We rely on three main Morningstar categorization variables throughout our analysis: the Morningstar Category, the Morningstar Institutional Category, and the Global Category. Our full sample of 3,626 funds contains 39 Global Categories, 52 Morningstar Categories, and 93 Morningstar Institutional Categories. Each of these variables classifies a fund based on its investment style, sector, and geographical orientation. The Global Categories are the coarsest classification system and are used by Morningstar as groupings within which sustainability can be ranked. These categories include U.S. equity investment styles, such as small-cap, mid-cap, and large-cap growth, value, and blend, U.S. equity sectors such as energy, health care, and technology, as well as international categories, such as Asia equity and Latin America equity (for the full list of the 39 Global Categories, see the Internet Appendix, which is available on the authors’ websites). We use the Global Categories for style fixed effects. The Morningstar Category variable is built on the 3-by-3 style box of size tilts (large-cap vs. small-cap) and growth versus value style tilts. We use this variable to follow Pásstor, Stambaugh, and Taylor (2015) in their classification of funds into equity and nonequity categories. Morningstar uses these groupings to rank performance in terms of star ratings. Last, the Morningstar Institutional Category variable is built on an extended

use the FundID variable to aggregate the share classes up to the fund level. Specifically, we compute a fund’s TNA by summing TNA across the fund’s share classes and setting the fund-level variable to missing if TNA are missing for any of the share classes on that date. The fund’s net returns, net expense ratio, and turnover ratio are averaged (lag-asset-weighted) across all share classes with nonmissing values.
version of the 3-by-3 style box with size tilts, including micro-cap and giant, and style tilts, including deep value and high growth. We use this finest classification system for clustering our standard errors. While this is conservative relative to the more standard treatment of clustering at the fund level, we believe this appropriately accounts for how the health crisis shock may generate residual correlation among funds with similar strategies. For further details about our data construction, see the Internet Appendix.

2. Fund Performance

Figure 1 offers a preliminary look at the performance of active funds during the COVID-19 crisis, along with the performance of the most popular passive benchmark: the S&P 500 index. We normalize the levels of both the S&P 500 and each fund’s net asset value to 100 as of February 19, 2020. For each day \(t \) after February 19, we compute the price indices for each fund as well as the S&P 500 by compounding the corresponding daily returns:

\[
F_t = 100 \left(1 + r^F_1 \right) \left(1 + r^F_2 \right) \cdots \left(1 + r^F_t \right),
\]

\[
B_t = 100 \left(1 + r^B_1 \right) \left(1 + r^B_2 \right) \cdots \left(1 + r^B_t \right),
\]

where \(F_t \) is the fund price index, \(B_t \) is the price index for the passive benchmark, \(r^F_t \) is the fund’s net return on day \(t \), and \(r^B_t \) is the benchmark return. Figure 1 plots both \(B_t \) and the average value of \(F_t \) across all funds. The figure also plots a 95% confidence interval around average \(F_t \). Standard errors are clustered by the Morningstar Institutional Category, both here and in all subsequent figures reporting confidence intervals.

Computing \(F_t \) in Equation (1) requires all of the fund’s daily returns starting February 20 through day \(t \). Any gap in the fund’s return series, however short, would necessitate the fund’s deletion from the average calculation. To avoid deleting too many funds, we replace any missing returns by the average return across all funds with the same FTSE/Russell benchmark on the same day, thus preserving the average level of performance across funds. We only replace missing returns for which there exists a nonmissing return later in the fund’s history by April 30. That is, we do not replace any missing returns at the end of a fund’s history because funds that stop reporting returns to Morningstar may no longer be alive. Altogether, we replace 19,124 missing returns, which account for 13.9% of our sample. We apply this “patch” not only in Figure 1 but also in Figures 2 through 8.\(^6\) We do not replace missing returns in Tables 1 through 6, because the analysis undergirding those tables does not require funds to have continuous return series.

\(^6\) All figures look virtually identical if we replace missing returns by the returns of the fund’s FTSE/Russell benchmark on the same day, not by average fund returns.
Figure 1 shows that the S&P 500 loses 34% of its value between February 19 and March 23, before gaining 30% by April 30, 2020. The average active fund performs similarly, but it significantly underperforms the S&P 500 during the crisis. The April 30 price index levels are 86.01 for the S&P 500 but only 82.45 for the average active fund.

Given its focus on large-cap stocks, the S&P 500 is not the most appropriate benchmark for every fund. Several large-cap technology stocks performed well during the crisis, making the S&P 500 difficult to beat. We thus compare each fund’s returns also to the returns of two benchmarks tailored to the fund’s investment style: the prospectus benchmark and the FTSE/Russell benchmark. The prospectus benchmark is chosen by the fund itself (with some potential for strategic choice, as discussed by Sensoy, 2009), whereas the FTSE/Russell benchmark is assigned to each fund by Morningstar based on the fund’s holdings.

Figure 2 compares fund performance to the FTSE/Russell benchmark (panel A), the prospectus benchmark (panel B), and the S&P 500 (panel C). Unlike Figure 1, which plots index levels, Figure 2 plots the cumulative performance of the average active fund relative to the benchmark. Specifically, at each date \(t \) after February 19, 2020, the figure plots the average value of \(\log(F_t) - \log(B_t) \), where \(F_t \) and \(B_t \) are defined in Equations (1) and (2).

Figure 2 shows that active funds significantly underperform their benchmarks, on average. As of April 30, 2020, the average underperformance over the 10-week period is 1.53% relative to the FTSE/Russell benchmark, 0.94% relative to the prospectus benchmark, and 4.77% relative to the S&P 500. This underperformance is highly statistically significant in panel C, and marginally significant in panels A and B. Moreover, Figure 2 underestimates the actual underperformance due to a mild survivorship bias because average \(F_t \) can only be computed across funds that have survived through time \(t \). During the 10-week period, 22 funds drop out of our sample, so their returns are excluded from the plot as of April 30.

Table 1 reports average benchmark-adjusted fund performance in a way that is immune to the survivorship bias. For each fund, live or dead, we take all of the fund’s available daily returns in the given time period and subtract the same days’ returns on the corresponding benchmark. The first three columns of panel A of Table 1 report the annualized averages of those benchmark-adjusted returns. The average fund underperforms its FTSE/Russell benchmark during the crisis by 11.02% per year, with a \(t \)-statistic of \(-3.90\). Average underperformance relative to the prospectus benchmark is 7.70% per year (\(t = -2.49 \)). The average fund underperforms the S&P 500 by a whopping 29.12% per year (\(t = -5.37 \)). In addition to these equal-weighted averages, Table 1 reports the average performance weighted by funds’ TNA in panel B. For all three benchmarks, the average crisis period underperformance in
Panel B is even more negative than in panel A. For example, the value-weighted average underperformance relative to the FTSE/Russell benchmark is 24.30% per year ($t = -3.03$), more than double the equal-weighted average.

The remaining columns of panels A and B of Table 1 report average fund alphas from five multifactor models: the capital asset pricing model (CAPM), the three-factor model of Fama and French (1993), the four-factor model of Carhart (1997), the five-factor model of Fama and French (2015), and a six-factor model that includes those five factors plus momentum. For a fund’s alpha to be included in the average, the fund must have at least 15 nonmissing net returns for the time period of interest. All five alphas are significantly negative during the crisis period. The equal-weighted average alphas in panel A range from -7.62% per year ($t = -3.25$) for the six-factor model to -29.11% per year ($t = -7.02$) for the CAPM, and the value-weighted average alphas in panel B are only slightly less negative.

Table 1 reports average performance not only during the full 10-week crisis period but also during both subperiods, the first of which captures the market crash and the second the recovery. Funds clearly underperform during the crash subperiod. Their average crash period performance ranges from -7.91% ($t = -1.54$) to -80.94% ($t = -8.33$) per year across the 16 relevant values (eight columns times two panels in the table). Among these 16 negative values, 12 are statistically significant. Performance during the recovery subperiod is mixed, with underperformance based on the Δ’s (i.e., relative to passive benchmarks) but outperformance based on the α’s (i.e., relative to factor models).

In the precrisis period (October 1, 2019, to January 31, 2020), the average performance ranges from -5.18% ($t = -3.85$) to 2.24% ($t = 1.11$) per year across the 16 relevant values, 12 of which are significantly negative. Importantly, for each of the 16 metrics, the average precrisis performance is better than the average crisis period performance, with the difference ranging from 2.5% to 33.8% per year. For example, while the equal-weighted average underperformance relative to the S&P 500 is -2.91% per year ($t = -1.66$) before the crisis, this underperformance is 10 times larger, -29.12% ($t = -5.37$), during the crisis. Fund performance is clearly worse during the crisis than before the crisis.\(^7\)

Panel C of Table 1 shows that 57.6% of funds underperform their FTSE/Russell benchmarks during the crisis. Additionally, 54.2% of funds underperform prospectus benchmarks, and 74.2% of funds—almost three quarters—underperform the S&P 500. More than 80% of funds have negative CAPM alphas during the crisis period. The fraction of funds with negative alphas ranges from 60.4% to 80.2% across the five models. Regardless of how we

\(^7\)This is a difference-in-differences-type comparison, where one difference is between the fund and its benchmark and the other difference is between the crisis period and the precrisis period.
look at the data, we see active funds underperforming during the crisis.

Institutional investors are often viewed as more sophisticated than retail investors. To see whether this feature translates into better performance, we divide funds into three groups—institutional, retail, and neither—by using Morningstar’s share-class-level institutional indicator. For each fund, we sum the January 31, 2020, TNA across all of the fund’s institutional share classes, and we do the same for retail share classes. We label a fund “institutional” if the institutional fraction of its TNA exceeds two-thirds. A fund is “retail” if the retail fraction of its TNA exceeds two-thirds. The rest of the funds are neither.

When we reconstruct Table 1 for institutional and retail funds separately, we find that their relative performance during the crisis depends on the performance measure: institutional funds perform better based on ∆’s whereas retail funds do better based on alphas. Institutional funds roughly match their FTSE/Russell and prospectus benchmarks (i.e., their ∆’s are indistinguishable from zero), whereas retail funds underperform their benchmarks by a wide margin. The alphas, on the other hand, are higher (i.e., less negative) for retail funds. The same message emerges from a cross-sectional regression of fund performance on the institutional indicator. The institutional-retail performance differential becomes insignificant, for both ∆’s and alphas, when we add style fixed effects in the same way as we do later in Table 2. In short, the evidence is inconclusive. See the Internet Appendix for details.

2.1. Sustainability

We find that funds with higher sustainability ratings perform better during the crisis. For each fund, Morningstar evaluates how well the fund’s holdings perform on ESG issues relative to the fund’s peer group (i.e., Morningstar Global Category). Morningstar uses company-level ESG scores from Sustainalytics to determine each fund’s asset-weighted average unmanaged ESG risk exposure. Then, within each peer group, these scores are fitted to an approximate normal distribution to award 1, 2, 3, 4, or 5 sustainability globes to each fund.8 Funds with 5 globes are the most sustainable, and funds with 1 globe are the least sustainable. We find that funds with more globes perform better during the crisis.

Figure 3 graphs the distributions of cumulative returns during the crisis across funds with different sustainability ratings, which are assigned as of January 2020. We collect funds in two groups: funds with 4 or 5 globes (“high sustainability”) and funds with 1 or 2 globes (“low sustainability”). Panel A shows the distributions of cumulative total fund

8Within each peer group, the top 10% of funds receive 5 globes; the next 22.5% receive 4 globes; the next 35% receive 3 globes; the next 22.5% receive 2 globes; and the bottom 10% receive 1 globe.
returns, and panel B shows cumulative benchmark-adjusted returns, which are adjusted using FTSE/Russell benchmarks. Specifically, panel A shows \(\log(F_t) \), where \(F_t \) is in Equation (1) and \(t \) corresponds to April 30, 2020, and panel B shows \(\log(F_t) - \log(B_t) \), where \(B_t \) is in Equation (2) for the fund’s FTSE/Russell benchmark. Both panels clearly show that more sustainable funds perform better in the crisis.

Figure 4 presents the sustainability result from a perspective similar to Figure 2, plotting cumulative fund performance relative to the benchmark, or \(\log(F_t) - \log(B_t) \). We consider the same three benchmarks as before: FTSE/Russell (panels A and B), prospectus (panels C and D), and the S&P 500 (panels E and F). In the left panels (A, C, and E), we plot the average cumulative performance differences for each of the five globe groups. In the right panels (B, D, and F), we report 95% confidence intervals for high-sustainability funds (4 or 5 globes) and low-sustainability funds (1 or 2 globes).

Remarkably, Figure 4 shows a monotonic relation between benchmark-adjusted fund performance and sustainability globes: five-globe funds outperform four-globe funds, which outperform three-globe funds, which in turn outperform two-globe funds, which beat one-globe funds. This monotonicity is present for all three benchmarks. The performance difference between high-sustainability funds and low-sustainability funds is marginally statistically significant. The significance is stronger in the subsequent regression analysis in Table 2.

Given the important role of sustainability in determining fund performance, we investigate which dimensions of sustainability—E, S, or G—matter the most during the crisis. After sorting funds by their individual E, S, and G scores from Morningstar, we separate funds into two groups, “greener” (top 30%) and “brownier” (bottom 30%), for each of the three scores. We do the same for the composite historical sustainability score, based on which Morningstar assigns globes to each fund.\(^9\) We perform the greener-versus-browner comparisons in Figure 5, whose four panels are analogous to panel B of Figure 4, except that sustainability globes are replaced by the four metrics described above. In all four panels, we benchmark funds against FTSE/Russell.

Figure 5 shows that funds with high sustainability scores outperform those with low scores. This result from panel A is not surprising, given the prior results from Figure 4. More interesting, funds with high environmental (E) scores outperform those with low E scores (panel B), whereas funds with high social (S) scores underperform those with low S scores (panel C). According to panel D, funds’ governance (G) scores have no effect on performance. To make the figure easy to read, we do not show confidence intervals, but

\(^9\)A fund’s individual E, S, and G scores do not simply sum to the fund’s historical sustainability score. There does not appear to be a simple direct mapping between the two sets of scores.
we do show them in the Internet Appendix. Only the pattern in panel B is statistically significant.

2.1.1. Regression analysis.

Figures 3 through 5 demonstrate that more sustainable funds perform better during the crisis. We further examine this result by conducting regression analysis, with two benefits. First, regressions allow us to see whether the result survives the inclusion of many control variables. Second, we remove the slight survivorship bias discussed earlier.

Table 2 analyzes the determinants of crisis period fund performance in cross-sectional regressions with large numbers of controls. Panel A focuses on benchmark-adjusted performance, using FTSE/Russell benchmarks. Panel B considers factor-adjusted performance, using the four-factor Carhart (1997) model. The right-hand-side variables include indicators for sustainability, exclusions, and the growth investment style, as well as the Morningstar star rating. Fund and industry controls are described below. All regressions include style fixed effects, where style is measured at the level of the Morningstar Global Category. As a result, the relevant comparisons are across funds within the same investment style.

Table 2 confirms that funds with higher sustainability ratings perform better during the crisis. As before, we define high-sustainability funds as those with 4 or 5 globes. Column 1 of the table includes no controls other than style fixed effects. In column 1 of panel A, the slope on the high-sustainability indicator is 14.21 \((t = 4.85)\), indicating that high-sustainability funds outperform the remaining funds within the same style by 14.21% per year during the crisis. The high-sustainability indicator is also highly significant in column 1 of panel B \((t = 4.25)\), where fund returns are factor-adjusted rather than benchmark-adjusted. Sustainability thus remains a significant determinant of performance even after style fixed effects are included. This is not surprising, given our prior results, because both sustainability ratings and fund returns are style adjusted, though in slightly different ways: sustainability ratings by Morningstar, with respect to the Morningstar Global Category, and returns by us, with respect to the fund’s FTSE/Russell benchmark.

More interesting, sustainability remains significantly associated with fund performance after the inclusion of fund and industry controls. Fund controls include the log of fund age, the log of the fund’s TNA, fund turnover, expense ratio, cash position, the Morningstar medal rating, and market beta (in panel B only, as there is no beta estimation in panel A). Industry controls are the fund’s net investment position, as a percentage of TNA, in industries such as energy, health care, and technology (for the full list of the 11 industries,
see the Internet Appendix). As controls are added, the slope on the high-sustainability indicator decreases, but it remains both statistically and economically significant even when all controls are included: 9.76 \((t = 2.60) \) in panel A and 3.47 \((t = 3.15) \) in panel B. In summary, we find that funds with high sustainability ratings perform better during the crisis.

In reaching this conclusion, we control for funds’ industry exposure in two ways. In addition to the industry controls described in the previous paragraph, we include fixed effects for Global Categories, which include not only investment styles, such as large-cap value, but also U.S. equity sectors, such as technology, energy, and health care. We report the estimated coefficients for both the industry controls and the fixed effects in the Internet Appendix. None of those coefficients is reliably positive or negative across all specifications.

A subset of funds employs exclusions in their investment process. These funds exclude from their portfolios stocks of firms such as tobacco producers or gun manufacturers, whose business they object to on moral, political, or other grounds. Exclusions represent one possible approach to sustainability, one that discards the opportunities to engage with the firm as well as to benefit from the potential mispricing of the firm’s stock. 107 of our funds employ exclusions, representing 3.9\% of our TNA-screened sample.

Table 2 shows that funds that employ exclusions outperform same-style funds that do not employ exclusions by 8.61\% per year \((t = 3.26) \) in terms of benchmark-adjusted returns. However, this result weakens, and eventually loses significance, after adding enough control variables. The result does not obtain on a factor-adjusted basis; if anything, it goes the other way (panel B). The exclusion aspect of sustainability therefore does not have a robust association with fund performance during the crisis.

2.1.2. The sustainability-performance relation.

Do sustainable funds outperform thanks to their managers’ superior active management skills, or simply due to the superior performance of sustainable stocks? To answer this question, we bring passive index funds into the analysis. We classify a fund as passive if Morningstar designates it as such or if its name includes the word “index.” After applying our TNA and missing return screens, we have 266 passive funds in our sample. We augment the right-hand-side variables in Table 2 by adding an index-fund indicator as well as its interactions with the sustainability variables (globs and exclusions). As we show in the Internet Appendix, the estimated coefficients for the interaction terms tend to be negative, indicating a weaker sustainability-performance relation for passive funds, but none of those coefficients is statistically significant. The sustainability-performance relation thus appears
to be present not only for active funds but also for mutual funds more generally.10

One potential source of the sustainability-performance relation is that firm-level sustainability initiatives may be related to firm quality. If firms with stronger fundamentals disproportionately engage in sustainability activities, these firms could outperform during the crisis due to their fundamentals rather than sustainability. More sustainable funds could then outperform because they hold stocks of higher-quality firms. We explore this hypothesis in two ways. First, we proxy for the quality of a fund’s holdings by the fund-level return on assets (ROA). Morningstar computes each fund’s ROA as an approximate median of the firm-level ROAs of the fund’s holdings. When we add a control for ROA to the regressions in Table 2, we find that ROA is insignificant whereas the sustainability coefficients are barely affected by its inclusion. Second, we replace the four-factor alpha in panel B of Table 2 with the alphas from the five- and six-factor models that include the profitability factor. The fund’s loading on this factor may pick up quality to some extent. The results are very similar to those in panel B of Table 2. Either way, controlling for firm quality as proxied by profitability does not alter the significance of the sustainability-performance relation. Whether the relation survives other proxies for firm quality, such as customer loyalty (Albuquerque et al. 2020), can be examined in future work.

2.2. Star ratings

Besides sustainability, the most important determinant of active fund performance during the crisis is the fund’s star rating as of January 31, 2020. To calculate star ratings, Morningstar computes each fund’s risk-adjusted performance over the prior 3, 5, and 10 years relative to the fund’s peer group. Averaging across the three periods, Morningstar awards 1, 2, 3, 4, or 5 stars to each fund, with 5 stars going to the best-performing funds.11 We find that funds with higher star ratings perform better during the crisis.

Figure 6 depicts the distributions of cumulative returns during the crisis across funds with different star ratings, similar to Figure 3. We collect funds in two groups: funds with 4 or 5

10Anecdotal evidence of a sustainability-performance relation among passive funds is obtained by comparing the returns of the S&P 500 index to those of the S&P 500 ESG index. The latter index comprises 310 companies in the S&P 500 that meet certain sustainability criteria. During the crisis period, the S&P 500 ESG outperforms the S&P 500 by 0.72%, or 3.74% annualized. This passive-return difference is smaller than the differences reported earlier in Table 2 for active funds.

11As with the sustainability globes, within each peer group, the top 10% of funds receive 5 stars; the next 22.5% receive 4 stars; the next 35% receive 3 stars; the next 22.5% receive 2 stars; and the bottom 10% receive 1 star. A fund must have at least 3 years of performance to be considered for a rating, and depending on its age, a combination of 3-, 5-, and 10-year performance measures are averaged to construct the fund’s raw performance score.
stars ("high") and funds with 1 or 2 stars ("low"). Panel A shows the distributions of cumulative total fund returns, and panel B shows cumulative returns adjusted for FTSE/Russell benchmark returns. Both panels clearly show that funds with more stars perform better during the crisis.

Figure 7 shows the same result from a different perspective. Similar to the layouts from Figures 2 and 4, Figure 7 plots cumulative benchmark-adjusted fund performance for groups of funds with different star ratings. The relation between benchmark-adjusted performance and star ratings is monotonic across the five star groups, with five-star funds performing the best and one-star funds performing the worst. This striking monotonicity is observed for all three benchmarks. The figure also shows that five-star funds outperform one-star funds by a significant margin for all three benchmarks.

Table 2 confirms the important role of the star rating in our regression setting with controls and style fixed effects. The star rating significantly predicts both benchmark-adjusted and factor-adjusted returns, with t-statistics ranging from 2.42 to 3.50 in panel A and from 2.79 to 5.92 in panel B. This is a surprising result. It is not clear a priori why Morningstar star ratings, which are computed before the crisis from historical risk-adjusted returns, should have such strong predictive power for fund performance during the crisis. The result is significant not only statistically but also economically. For example, the slope coefficient of 5.78 in column 3 of panel A indicates that one extra star is associated with a higher crisis period benchmark-adjusted return of 5.78% per year. Therefore, a five-star fund outperforms a one-star fund of the same style by four times that amount, 23.1% per year, on average.

2.3. Value versus growth

Sustainability and stars are the most robust predictors of active fund performance during the crisis. Next in line, though less robust, is the value/growth investment style. We find that growth funds tend to outperform value funds. Importantly, we are not saying that the growth style outperforms the value style during the crisis; that fact is well known (e.g., HML’s crisis period return is \(-18\%\)). What we are saying is that growth funds deliver higher returns than value funds on a style-adjusted basis.

To decide which funds follow the value and growth investment styles, we use the equity style box variable from Morningstar. We define value funds as funds classified as large-cap value, mid-cap value, or small-cap value. We define growth funds as funds classified as large-cap growth, mid-cap growth, or small-cap growth.
Figure 8 shows that growth funds outperform value funds, on average, for all three benchmarks. The outperformance is statistically significant when measured against the S&P 500 and prospectus benchmarks, but not against the FTSE/Russell benchmarks.

Table 2 finds the same outperformance in our regression setting with controls and style fixed effects. In panel B, where fund performance is factor-adjusted, the indicator variable for the growth tilt is always positive and significant, with t-statistics exceeding 3.7. For example, using the estimate from column 4, growth funds outperform nongrowth funds by 10.62% per year ($t = 5.58$) during the crisis. In panel A, the estimated slopes on the growth indicator are similar in magnitude to those in panel B but their statistical significance is weaker, with t-statistics ranging from 0.75 to 2.35 across the four specifications.

Table 3 is the counterpart of Table 2 estimated over the precrisis period. The growth indicator enters with a positive sign in all eight specifications, just like in Table 2, but it is significant only in half of them. More important, neither the sustainability globe indicator nor the star rating predicts fund performance in the precrisis period. The predictive power of these variables thus appears to be specific to the crisis period. The same message is conveyed by the figures in the Internet Appendix that extend our time-series plots to the period from October 2019 to April 2020. These plots show the predictive power of globes and stars kicking in around the beginning of the crisis in February 2020. The plots also show fund performance deteriorating sharply after February 2020, consistent with Table 1.

2.4. Robustness

Our main results are robust to a variety of methodological modifications. As noted earlier, our sample is restricted to active equity funds with at least 15 million in TNA as of January 31, 2020. However, we show in the Internet Appendix that the results from Table 1 are extremely similar even if we do not impose this size screen.

Another screen that is commonly imposed on mutual fund samples is an age screen. Researchers often exclude young funds because of a concern about the incubation bias (Evans 2010). This bias can appear if researchers analyze historical fund data with a delay that would allow the bias to creep in. There is no such delay here because we constructed our fund sample in May 2020, shortly after the end of our sample period; therefore, the bias is not a concern in our study. Nonetheless, we show in the Internet Appendix that our main results are robust to this age screen.

12These comparisons between Tables 2 and 3 are difference-in-difference-in-differences comparisons: one difference is between the fund and its benchmark, another difference is between funds with different numbers of globes (or stars), and the final difference is between the crisis and precrisis periods.
are extremely similar also when we exclude funds less than 2 years old from the sample.

Our tables report evidence based on simple returns. Our plots of cumulative performance are based on log (i.e., continuously compounded) returns because those returns cumulate over time in a tractable manner. This distinction is immaterial: our main table results are very similar if we replace simple returns by log returns, as we show in the Internet Appendix.

To remove the effects of investment style, we include style fixed effects in our regressions. Nonetheless, we show in the Internet Appendix that the regression results from Table 2 are similar if style fixed effects are excluded. The Internet Appendix also reports subperiod results for Table 2 and its variations, dividing the full crisis period into the crash period (February 20 to March 23, 2020) and the recovery period (March 24 to April 30, 2020).

Recall that Figure 3 shows the distributions of crisis period returns across two groups of funds, those with high sustainability ratings (4 or 5 globes) and low sustainability ratings (1 or 2 globes). In the Internet Appendix, we present analogous plots showing three distributions corresponding to funds with 1, 3, and 5 globes, and also five distributions, one for each possible number of globes. Those plots are more cluttered, but they convey the same message as Figure 3, namely, that more sustainable funds perform better in the crisis.

Similarly, Figure 6 shows the distributions of returns across funds with high star ratings (4 or 5 stars) and low star ratings (1 or 2 stars). In the Internet Appendix, we present analogous plots showing three distributions corresponding to funds with 1, 3, and 5 stars, and also five distributions, one for each possible number of stars. Again, those plots convey the same message as Figure 6: funds with more stars perform better during the crisis.

3. Fund Flows

Our key measure for assessing fund flows is the cumulative net fund flow percentage. Daily net fund flows, in dollars, are computed following Barber, Huang, and Odean (2016) as

\[FD_{i,t} = TNA_{i,t} - (1 + R_{i,t})TNA_{i,t-1}, \]

where \(TNA_{i,t} \) is the total net assets of fund \(i \) on date \(t \) and \(R_{i,t} \) is the net return of fund \(i \) on date \(t \). To convert the dollar values of net fund flows into a cumulative percentage, we accumulate the values of \(FD_{i,t} \) across the time period of interest and divide by the TNA of fund \(i \) on the day before the period of interest begins. Given the sensitivity of the cumulative net flow percentage to missing values, we restrict consideration to funds with
entirely nonmissing daily net fund flows.13

Figure 9 shows the time series of cumulative net fund flows into active equity mutual funds, both in dollar terms and in percentage terms. Panel A shows that active funds experience outflows during the COVID-19 crisis of about $43 billion, or 1.3% of assets under management. The pace of outflows is fairly rapid during the market crash between February 20 and March 23, 2020. Outflows continue, at a slower pace, during the market recovery. Panel B shows that between January 2017 and April 2020, active funds experience outflows of about 5% per year as a fraction of their initial assets. These steady outflows reflect the well-known ongoing trend toward passive investment management. Year 2020 does not stand out relative to prior years. Crisis period outflows are somewhat faster than precrisis outflows, but they largely extend their long-term trend.

Table 4 adds more detail. Column 1 of panel A shows that aggregate net outflows in the precrisis period, -1.43%, exceed the outflows during the crisis period, -1.32%. However, the crisis period is only 10 weeks long, whereas the precrisis period is 17.5 weeks long (October 1, 2019, to January 31, 2020). On a per-week basis, crisis period outflows are larger than precrisis period outflows (0.132\% vs. 0.082\% per week). In fact, both crash period outflows, -0.91%, and recovery period outflows, -0.60%, exceed precrisis period outflows on a per-week basis (they are 0.182\% and 0.120\% per week, respectively). However, this ordering disappears when we focus on equal-weighted average flows in panel B rather than on aggregate flows. Overall, our reading of Table 4 is similar to that of Figure 9: crisis period outflows are substantial, but not dramatic, compared to their long-term trends. This evidence for equity mutual funds is in sharp contrast to that for corporate bond mutual funds. According to Falato, Goldstein, and Hortacsu (2020), between February and March 2020, the average corporate bond fund experienced cumulative outflows of about 9\% of assets, a percentage much larger than the outflows we document for equity funds.

3.1. Sustainability

We find that funds with higher sustainability ratings (i.e., more Morningstar globes) receive larger net flows during the crisis. Figure 10 plots cumulative net fund flows across funds with different globe ratings over the February 20 to April 30, 2020, time period. Panel A plots aggregate cumulative flows for each globe category, which we compute as total cumulative net flows into that category divided by that category’s total net assets on February 19, 2020.

13In our baseline fund size filtered sample, we retain 2,082 funds (75.3\%) over the full February 20 to April 30, 2020, time period, 2,137 funds (77.3\%) over the February 20 to March 23, 2020, time period, and 2,219 funds (80.3\%) over the March 24 to April 30, 2020, time period.
The panel shows a near-monotonic relation between those ratings and net fund flows, with five-globe funds having the largest flows (0.14%, per Table 4) and one-globe funds the lowest flows (−2.74%). Panel B focuses on the five-globe and one-globe categories. It plots average fund-level cumulative flows across all funds in the given category, scaled as a percentage of the fund’s February 19, 2020, TNA, along with the 95% confidence intervals. The panel shows that five-globe funds receive significantly larger net flows than one-globe funds. In short, investors favor sustainable funds when moving their money during the crisis.

Figure 11 shows a similar pattern based on a different measure of sustainability: an indicator of whether the fund employs exclusions in its investment process. Funds that do not employ exclusions, which account for the vast majority of funds, experience net outflows during the crisis. However, funds that do employ exclusions experience net inflows, and the difference between the two groups is statistically significant.

Figure 12 unpacks sustainability into its E, S, and G dimensions. As before, we separate funds into high-E, low-E, high-S, low-S, high-G and low-G, where the high (low) group always denotes the top (bottom) 30% of funds. Figure 12 shows that cumulative aggregate net flows during the crisis are larger for high-E funds than for low-E funds. Low-E funds experience substantial outflows of 2.7% of assets, whereas the outflows from high-E funds are only 0.3%. Net flows are also larger for high-G funds than for low-G funds: low-G funds have outflows of 2.0% whereas high-G funds’ outflows are only 1.0%. High-S funds actually experience larger outflows than low-S funds, but the difference between the two categories’ total flows is relatively small, only 0.7%, and the average outflow is in fact slightly larger for the low-S category. The effect of sustainability on fund flows thus seems driven by E and, to a lesser extent, G. Investors seem to have retained their focus on environmental issues even during the health crisis of 2020.

Table 5 reports results from cross-sectional regressions of crisis period net fund flows on the sustainability variables as well as style fixed effects and a large number of fund and industry controls. These controls include past fund performance, as we explain later in Section 3.2. The sustainability variables remain significant even with all of these controls. The exclusions variable is the most robust, with t-statistics ranging from 2.50 to 4.02 across the seven different specifications. The indicator for high-E (i.e., green) funds is also generally significant, with t-statistics ranging from 1.89 to 3.09. The five-globe indicator is significant when included on its own as well as in several other specifications, but it loses significance when the exclusions indicator is included. Overall, these results indicate that investors favor sustainable funds while reallocating money during the pandemic of 2020.14

14 As we did for fund performance, we also consider specifications without style fixed effects. The results
To see whether this preference for sustainability is unique to active funds, we once again bring passive funds into the analysis. We augment the right-hand-side variables in Table 5 by adding an index-fund indicator as well as its interactions with the sustainability variables (globes, exclusions, E, S, and G). As we show in the Internet Appendix, the estimated coefficients for the interaction terms are essentially zero, indicating no significant difference between active and passive funds in the strength of the sustainability-flow relation. Investors seem to favor sustainable funds regardless of whether they are active or passive.15

Investors’ preference for sustainable funds is not specific to the COVID-19 crisis. One way to see this is presented in Table 6, which is the counterpart of Table 5 estimated over the precrisis period. The results in Tables 5 and 6 are quite similar. The slope coefficient for the five-globe indicator enters even more strongly in Table 6, with uniform significance and magnitudes roughly double those reported in Table 5. The slope coefficient for the exclusion indicator enters more strongly in Table 5, but it is always positive and often significant also in Table 6. The environmental indicator is similarly significant in both tables.

We also consider the difference between the net flows of the five-globe and one-globe funds. When computed based on aggregate flows, this difference is slightly larger during the crisis than before the crisis (2.88% vs. 2.43%, respectively; see panel A of Table 4). Based on average flows, however, the same difference is larger during the precrisis period (2.93% vs. 6.55%; see panel B of Table 4). Similar conclusions apply to the flow difference between the funds with and without investment exclusions; when computed based on aggregate flows, this difference is larger during the crisis, but based on average flows, it is larger before the crisis. The long-term plots of fund flow patterns in the Internet Appendix convey a similar message. The plots reveal no structural breaks around the beginning of the crisis. Investors thus prefer sustainable funds both before and during the COVID-19 crisis. Based on some metrics, this preference is stronger during the crisis, but based on others, it is stronger before the crisis. What matters for our conclusions is that investors retain their preference for sustainability even in the face of a large economic and health crisis.

15 Related evidence is reported by Ferriani and Natoli (2020), who analyze flows into global equity large-cap funds, active and passive combined, and find that investors favor funds with low ESG risk scores.
3.2. Other determinants of fund flows

Figure 13 plots cumulative net fund flows for funds with different star ratings as of January 31, 2020. Panel A shows a monotonic flow-star relation, with higher-star funds receiving higher net flows. Panel B shows that the differences in average cumulative net flows are statistically significant: five-star funds receive significantly larger average net flows than three-star funds, whose average flows are significantly larger than those of one-star funds. The positive flow-star relation is highly significant also after controlling for style fixed effects and the other controls (see Table 5). This relation is not surprising, however, because Morningstar constructs its star ratings based on historical fund returns, which are well known to have predictive power for fund flows.

Given their design, star ratings essentially perform the role of catch-all controls for past fund returns in Table 5. We also consider other controls for past fund performance, but we find them to be less powerful. In the Internet Appendix, we add eight different past-performance controls—the eight measures from Table 1—to the regressions in Table 5. While all eight measures enter positively, only two of them are statistically significant (the Δ’s relative to the prospectus and FTSE/Russell benchmarks), and even they are far less significant than the star rating. Most important, the addition of the eight controls has very little effect on the sustainability-related coefficients in Table 5.

The crisis period inflows into sustainable funds could in principle be caused by the superior performance of those funds during the crisis. To examine this conjecture, we construct the analog of Table 5 for recovery period flows (i.e., flows in the second half of the crisis) and add controls for crash period performance (i.e., performance in the first half of the crisis). We find that the sustainability-related coefficients remain positive and significant even after controlling for crash period performance. See the Internet Appendix for details.

Figure 14 shows that growth funds receive significantly larger net flows than value funds. This relation holds largely at the style level because it vanishes when we run regressions that include style fixed effects. We include the growth indicator variable among the fund-level controls in Table 5, but we suppress it because it is never statistically significant.

We examine the differences in flows between institutional and retail funds, which we define in Section 2. We add an institutional-fund indicator to the regressions in Table 5, both by itself and interacted with the sustainability indicators. We find that institutional funds have more outflows than retail funds during the crisis, but only in the presence of controls, especially the star rating. However, we find no significant difference between institutional
and retail flows with respect to sustainability. See the Internet Appendix for details.

3.3. Flow-induced fire sales

It is well known that funds facing large outflows are sometimes forced to sell their holdings at a discount. For example, Edelen (1999) finds that liquidity-motivated trading caused by mutual fund flows negatively affects fund performance. Coval and Stafford (2007) find that stock sales by funds experiencing large outflows depress those stocks’ prices. Therefore, the capital outflows observed during the COVID-19 crisis (Figure 9) could potentially contribute to the poor performance of mutual funds documented in Section 2.

Falato, Goldstein, and Hortacsu (2020) show that the vulnerability to fire sales helps explain outflows from corporate bond funds during the COVID-19 crisis. For example, when they split funds based on the levels of liquidity of their holdings, they find that funds holding less liquid bonds suffer more severe outflows. We conduct a similar exercise for equity funds: as small-cap stocks are well known to be rather illiquid, we test whether small-cap funds suffer more severe outflows than other funds. We do so without running any new regressions. We simply examine Table 5’s estimated fixed effects on the two most relevant Morningstar Global Categories: U.S. equity small-cap and global equity mid/small-cap. These fixed effects are suppressed in Table 5, but we show in the Internet Appendix that 81% of them (21 out of 26 coefficients) are negative. Almost all of them are statistically insignificant, though, indicating that the evidence of larger outflows from small-cap funds is weak at best.

We also look for fire sales by regressing a fund’s daily performance on the fund’s cumulative net flow over 3 days: the same day and the 2 preceding days. If outflows today trigger fire sales today or in the following 2 days (future sales could result, e.g., from the fund replenishing its cash position), fund performance should be depressed on those days, producing a positive regression slope. The estimated slope is indeed positive, but it is significant across all specifications only when we measure fund performance relative to the S&P 500. If we use FTSE/Russell or prospectus benchmarks instead, the slope’s significance vanishes after enough controls are added to the regression. In an additional test, we interact flows with a small-cap indicator. The estimated slope on the interaction term is typically positive, hinting at a stronger performance-flow relation for small-cap funds, but it is never statistically significant. The Internet Appendix houses these results.

To summarize, our evidence points in the direction of fire sales, but it is not statistically

16Glossner et al. (2020) analyze changes in the holdings of institutional investors during Q1 2020. They observe no portfolio shifts toward stocks of firms with high environmental and social scores.
reliable. It makes sense for the evidence of fire sales to be weaker in equity markets than in corporate bond markets, for two reasons. First, equities are generally more liquid than corporate bonds. Second, as noted earlier, capital outflows from equity funds during the COVID-19 crisis are not nearly as large as those from corporate bond funds.

4. Conclusions

We analyze the performance and flows of U.S. active equity mutual funds during the COVID-19 crisis. We find that most active funds underperform passive benchmarks, contradicting the hypothesis that active funds outperform in recessions. This underperformance is particularly large when measured against the S&P 500 index, but it is observed also relative to style benchmarks. Funds with higher sustainability ratings and higher star ratings perform better. When reallocating capital, investors favor funds with high sustainability ratings and funds that apply exclusion criteria. That investors retain their focus on sustainability during a major crisis indicates that they view sustainability as a necessity, not a luxury.

While this paper appears to be the first to analyze the performance and flows of equity mutual funds during the COVID-19 crisis, it leaves plenty of room for future research. For example, the performance of fixed income funds deserves a careful investigation. So do the sources of active equity funds’ underperformance during the crisis. It also would be useful to extend our work to deepen our understanding of the dependence of investors’ demand for sustainability on economic conditions.
Table 1
Fund performance

This table describes active equity mutual funds' performance against both benchmarks and factor models. Panel A reports equal-weighted averages across funds of estimated deltas and alphas, all reported in annualized percentage terms. The deltas are average differences between the fund's net returns and its benchmark returns. The benchmarks are the FTSE/Russell benchmark, the prospectus benchmark, and the S&P 500. The alphas are estimated intercepts from the regressions of excess net fund returns on factor returns described in the text. Panel B reports the value-weighted averages of estimated deltas and alphas, weighted by each fund's TNA. Panel C reports the fraction of funds that underperform (i.e., have a negative delta or alpha). The time periods are crisis (February 20 to April 30, 2020); crash (February 20 to March 23, 2020); recovery (March 24 to April 30, 2020); and precrisis (October 1, 2019, to January 31, 2020). Standard errors are clustered by the Morningstar Institutional Category. *t*-statistics are in brackets.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	ΔFTSE/RusBench	ΔProsBench	ΔSkP500Bench	αCAPM	αFF3	αCar4	αFF5	αFF5+Mom
A. Average fund performance (%)								
Crisis	-11.02	-7.70	-29.12	-29.11	-11.30	-7.84	-9.90	-7.62
	[-3.90]	[-2.49]	[-5.37]	[-7.02]	[-5.16]	[-3.22]	[-4.51]	[-3.25]
Crash	-7.91	-8.19	-64.31	-80.94	-37.75	-38.98	-49.84	-51.11
	[-1.54]	[-1.33]	[-4.77]	[-8.33]	[-4.25]	[-3.90]	[-5.91]	[-5.77]
Recovery	-12.68	-7.55	-5.81	8.47	17.49	20.76	18.75	22.83
	[-3.94]	[-2.13]	[-1.14]	[1.46]	[2.83]	[4.12]	[3.00]	[4.42]
Precrisis	-2.38	-1.43	-2.91	-5.18	-3.16	-3.05	-2.72	-2.67
	[-3.45]	[-2.37]	[-1.66]	[-3.85]	[-4.17]	[-3.50]	[-3.16]	[-2.84]
B. Value-weighted average fund performance (%)								
Crisis	-24.30	-22.42	-33.00	-20.46	-8.33	-7.05	-6.97	-6.04
	[-3.03]	[-2.96]	[-4.41]	[-3.23]	[-2.96]	[-2.27]	[-2.42]	[-1.79]
Crash	-16.45	-11.06	-67.81	-58.43	-33.22	-33.62	-41.46	-42.51
	[-1.49]	[-1.19]	[-5.31]	[-4.19]	[-3.60]	[-3.61]	[-4.04]	[-4.18]
Recovery	-22.87	-19.47	-11.02	2.51	9.17	11.31	10.53	13.67
	[-2.41]	[-2.03]	[-1.50]	[0.74]	[2.55]	[3.25]	[2.86]	[3.92]
Precrisis	0.23	2.24	0.75	-4.98	-3.82	-3.77	-3.56	-3.54
	[0.11]	[1.11]	[0.19]	[-2.89]	[-7.69]	[-6.95]	[-5.38]	[-5.36]
C. Fraction of funds underperforming (%)								
Crisis	57.59	54.17	74.24	80.15	69.66	60.35	67.80	60.43
Crash	51.62	48.57	63.48	83.79	78.57	80.01	80.65	81.41
Recovery	55.73	55.64	55.77	53.09	39.53	34.79	40.08	34.28
Precrisis	64.13	60.55	67.14	71.18	73.50	71.94	70.05	69.63

25
Table 2
Determinants of fund performance during the crisis

The table reports slope coefficients estimated from regressions of fund performance in February 20 to April 30, 2020, on fund characteristics and controls. In panel A, the dependent variable is FTSE/Russell-benchmark-adjusted performance; in panel B, it is the Carhart four-factor alpha. Both performance measures are estimated using simple returns and expressed in annualized percentage terms. Global category fixed effects are based on the Morningstar Global Category variable. Fund-level controls include the log of the fund’s age in days, the log of the fund’s January 31, 2020, TNA, turnover ratio as of January 2020, net expense ratio as of January 2020, net cash position (as a percentage of TNA) as of January 2020, Morningstar medal rating as of January 2020, and, in panel B only, market beta estimated from the October 1, 2019, to January 31, 2020, period. Industry controls include the fund’s net position as a percentage of TNA in basic materials, communication services, consumer cyclical, consumer defensive, energy, financial services, health care, industrials, real estate, technology, and utilities. Standard errors are clustered by the Morningstar Institutional Category. t-statistics are in brackets.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
A. Benchmark-adjusted performance							
(4 or 5 sustainability globes)	14.21	11.51	8.61	9.76			
(4 or 5 sustainability globes)		[4.85]	[3.22]	[2.26]	[2.60]		
(Employs exclusions)	8.61	5.47	2.03	2.79			
(Employs exclusions)		[3.26]	[2.44]	[1.05]	[1.24]		
Star Rating	5.78	5.12	7.00	6.49			
Star Rating		[2.84]	[2.42]	[3.50]	[3.41]		
(Growth tilt)	12.43	7.24	9.39	5.15			
(Growth tilt)		[2.35]	[1.16]	[1.70]	[0.75]		
Global category FE	Yes						
Fund-level controls	No	No	No	No	No	Yes	Yes
Industry controls	No	No	No	No	No	No	Yes
Observations	2,494	2,561	2,286	2,561	2,251	1,632	1,604
Adjusted R²	.06	.05	.06	.06	.12	.15	

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
B. Factor-adjusted performance							
(4 or 5 Sustainability globes)	5.59	2.67	3.04	3.47			
(4 or 5 Sustainability globes)		[4.25]	[2.39]	[2.55]	[3.15]		
(Employs exclusions)	−0.89	−2.61	−3.46	−3.16			
(Employs exclusions)		[−0.50]	[−1.52]	[−2.12]	[−2.19]		
Star rating	3.15	2.51	3.25	3.13			
Star rating		[3.35]	[2.79]	[5.92]	[5.42]		
(Growth tilt)	10.62	7.53	7.51	7.77			
(Growth tilt)		[5.58]	[4.09]	[3.74]	[4.10]		
Global category FE	Yes						
Fund-level controls	No	No	No	No	No	Yes	Yes
Industry controls	No	No	No	No	No	No	Yes
Observations	2,233	2,363	2,104	2,363	2,020	1,522	1,494
Adjusted R²	.10	.12	.11	.12	.10	.42	.46
Table 3
Determinants of fund performance before the crisis

The table reports slope coefficients estimated from regressions of fund performance in October 1, 2019, to January 31, 2020, on fund characteristics and controls. In panel A, the dependent variable is FTSE/Russell-benchmark-adjusted performance; in panel B, it is the Carhart four-factor alpha. Both performance measures are estimated using simple returns and expressed in annualized percentage terms. Global category fixed effects are based on the Morningstar Global Category variable. Fund-level controls include the log of the fund’s age in days, the log of the fund’s September 30, 2019, TNA, turnover ratio as of September 2019, net expense ratio as of September 2019, net cash position (as a percentage of TNA) as of September 2019, Morningstar medal rating as of September 2019, and, in panel B only, market beta estimated from the June 1 to September 30, 2019, period. Industry controls include the fund’s net position as a percentage of TNA in basic materials, communication services, consumer cyclical, consumer defensive, energy, financial services, health care, industrials, real estate, technology, and utilities. Standard errors are clustered by the Morningstar Institutional Category. *t*-statistics are in brackets.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
A. Benchmark-adjusted performance								
I(4 or 5 sustainability globes)	−0.51	−1.99	−0.97	−2.58	[−0.40]	[−1.25]	[−0.44]	[−1.29]
I(Employs exclusions)	−2.17	−0.81	−1.63	−1.59	[−2.32]	[−0.73]	[−1.62]	[−1.54]
Star rating	0.65	0.51	0.90	0.63	[0.96]	[0.72]	[1.03]	[0.70]
I(Growth tilt)	5.69	6.29	6.35	3.90	[3.96]	[3.68]	[3.06]	[1.37]
Global category FE	Yes							
Fund-level controls	No	No	No	No	No	Yes	Yes	
Industry controls	No	No	No	No	No	No	Yes	
Observations	2,515	2,601	2,313	2,601	2,262	1,614	1,586	
Adjusted R²	.06	.06	.07	.07	.08	.12	.16	
B. Factor-adjusted performance								
I(4 or 5 sustainability globes)	−0.11	−0.29	−0.17	−0.36	[−0.32]	[−0.73]	[−0.41]	[−0.75]
I(Employs exclusions)	−0.79	−0.38	−1.20	−1.26	[−1.11]	[−0.50]	[−1.89]	[−1.97]
Star rating	0.19	0.14	−0.06	−0.22	[0.77]	[0.54]	[−0.29]	[−1.12]
I(Growth tilt)	0.55	0.67	1.11	0.91	[1.44]	[1.24]	[2.12]	[1.63]
Global category FE	Yes							
Fund-level controls	No	No	No	No	No	Yes	Yes	
Industry controls	No	No	No	No	No	No	Yes	
Observations	2,227	2,377	2,105	2,377	2,005	1,494	1,466	
Adjusted R²	.48	.46	.49	.46	.50	.46	.49	

27
Table 4
Fund flows

This table describes active equity mutual funds’ net flows both in aggregate and for several sustainability-based subsamples. Panel A reports aggregate net fund flows, that is the sums of net flows over the given period divided by the sum of TNA at the start of the period, in percentage terms. The table reports flows for all funds, funds with high (five globes) and low (one globe) sustainability ratings, and funds that do and do not use exclusion criteria in their investment process. Panel B reports simple averages of net fund flow percentages across funds. The net flow percentages are constructed by summing the daily net fund flows over the period and dividing by the fund’s TNA at the start of the period. The flow percentages are winsorized at the 2.5% and 97.5% levels before estimating the simple average. The time periods are: crisis (February 20 to April 30, 2020); crash (February 20 to March 23, 2020); recovery (March 24 to April 30, 2020); and precrisis (October 1, 2019, to January 31, 2020). Standard errors are clustered by the Morningstar Institutional Category. t-statistics are in brackets.

	(1)	(2)	(3)	(4)	(5)
	All funds	5 globes	1 globe	Present	Absent
A. Aggregate net fund flows (%)					
Crisis	-1.32	0.14	-2.74	1.21	-1.40
Crash	-0.91	-0.60	-1.12	0.15	-0.94
Recovery	-0.60	1.06	-2.57	1.59	-0.66
Precrisis	-1.43	0.20	-2.23	-1.75	-1.44
B. Average net fund flows (%)					
Crisis	-1.25	0.62	-2.31	1.90	-1.42
Crash	-1.12	-0.46	-1.81	0.67	-1.21
Recovery	-0.76	0.85	-1.60	1.26	-0.82
Precrisis	-2.53	2.49	-4.06	1.06	-2.59
Table 5

Determinants of fund flows during the crisis

The table reports slope coefficients estimated from regressions of net fund flows in February 20 to April 30, 2020, on fund characteristics and controls. A fund’s net flow is expressed as a percentage of the fund’s February 19, 2020, TNA. Flows are winsorized at the 2.5% and 97.5% levels. Global category fixed effects are based on the Morningstar Global Category variable. Fund-level controls include an indicator for a growth tilt, the log of the fund’s age in days, the log of the fund’s January 31, 2020, TNA, turnover ratio as of January 2020, net expense ratio as of January 2020, net cash position (as a percentage of TNA) as of January 2020, Morningstar medal rating as of January 2020, and market beta estimated from the October 1, 2019, to January 31, 2020, period. Industry controls include the fund’s net position as a percentage of TNA in basic materials, communication services, consumer cyclical, consumer defensive, energy, financial services, health care, industrials, real estate, technology, and utilities. Standard errors are clustered by the Morningstar Institutional Category. *t*-statistics are in brackets.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
I(5 Sustainability globes)	1.76	0.92	1.36	1.44	0.70	1.16	1.22					
	[3.19]	[1.82]	[2.23]	[2.32]	[1.23]	[1.77]	[1.82]					
I(Employes exclusions)	2.84	2.61	2.70	2.75	2.69	2.95	3.11					
	[3.37]	[3.09]	[2.50]	[2.53]	[4.02]	[3.46]	[3.43]					
I(Greener E)	1.67	1.02	1.04	1.91								
	[3.09]	[2.08]	[1.89]	[2.72]								
I(Greener S)	-0.48	-0.43	-0.39	-0.88								
	[-0.93]	[-0.83]	[-0.64]	[-1.22]								
I(Greener G)	0.76	0.63	1.00	1.26								
	[1.39]	[1.09]	[1.31]	[1.69]								
Star rating	1.83	1.78	1.90	1.82	1.76	1.89	1.70	1.38	1.49			
	[7.49]	[6.04]	[6.00]	[7.51]	[6.04]	[5.96]	[5.77]	[3.91]	[4.01]			
Global category FE	Yes											
Fund-level controls	No	No	Yes	Yes	No	No	Yes	No	Yes	No	Yes	Yes
Industry controls	No	No	No	Yes	No	No	Yes	No	Yes	No	Yes	Yes
Observations	2,082	1,863	1,434	1,390	2,082	1,863	1,434	1,390	1,503	1,348	1,037	1,020
Adjusted R²	.02	.08	.11	.11	.02	.09	.11	.11	.01	.08	.10	.11
Table 6
Determinants of fund flows before the crisis

The table reports slope coefficients estimated from regressions of net fund flows in October 1, 2019, to January 31, 2020, on fund characteristics and controls. A fund’s net flow is expressed as a percentage of the fund’s September 30, 2019, TNA. Flows are winsorized at the 2.5% and 97.5% levels. Global category fixed effects are based on the Morningstar Global Category variable. Fund-level controls include an indicator for a growth tilt, the log of the fund’s age in days, the log of the fund’s September 30, 2019, TNA, turnover ratio as of September 2019, net expense ratio as of September 2019, net cash position (as a percentage of TNA) as of September 2019, Morningstar medal rating as of September 2019, and market beta estimated from the June 1 to September 30, 2019, period. Industry controls include the fund’s net position as a percentage of TNA in basic materials, communication services, consumer cyclical, consumer defensive, energy, financial services, health care, industrials, real estate, technology, and utilities. Standard errors are clustered by the Morningstar Institutional Category. *t*-statistics are in brackets.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
I(5 sustainability globes)	3.58	2.13	2.28	2.67	1.92	2.16	2.56					
	[3.45]	[2.52]	[2.26]	[2.37]	[2.22]	[2.15]	[2.26]					
I(Employing exclusions)	2.54	2.53	1.90	1.81	2.85	2.23	2.23					
	[2.20]	[2.42]	[1.48]	[1.41]	[2.25]	[1.42]	[1.43]					
I(Greener E)					2.28	1.42	2.68	3.91				
					[2.51]	[1.69]	[2.57]	[3.26]				
I(Greener S)					-0.48	0.06	0.29	-0.41				
					[-0.52]	[0.07]	[0.28]	[-0.39]				
I(Greener G)					0.38	0.05	-0.69	-0.35				
					[0.58]	[0.08]	[-0.93]	[-0.42]				
Star rating	3.12	2.96	3.08	3.11	2.96	3.08	3.07	2.91	2.86			
	[13.83]	[8.60]	[9.04]	[13.64]	[8.45]	[8.86]	[12.02]	[7.26]	[7.17]			
Global category FE	Yes											
Fund-level controls	No	No	Yes									
Industry controls	No	No	Yes									
Observations	2,066	1,832	1,388	1,346	2,066	1,832	1,388	1,346	1,507	1,335	1,005	988
Adjusted R²	.02	.13	.14	.15	.02	.13	.14	.15	.01	.13	.15	.15
Figure 1. Average fund performance versus the S&P 500 during the crisis
This figure plots the performance of the average active equity mutual fund against the S&P 500 from February 20 through April 30, 2020. Both price indices are initialized at 100 on February 19, 2020, and computed by compounding daily returns. The fund average is computed by adding the average difference between the fund price index and the S&P 500 price index to the S&P 500 price index. Standard errors are estimated for this difference and are clustered by the Morningstar Institutional Category. Confidence intervals (95%) are plotted in red.
Figure 2. Average benchmark-adjusted fund performance
This figure plots the cumulative compound performance of the average active equity mutual fund from February 20 through April 30, 2020, relative to three benchmarks: the Morningstar-designated FTSE/Russell benchmark (panel A), the prospectus benchmark (panel B), and the S&P 500 (panel C). Relative performance is measured by \(\log(F_t) - \log(B_t) \), where \(F_t \) and \(B_t \) are the cumulative compounded daily returns of the average fund and the benchmark, respectively. Standard errors are estimated for this difference and are clustered by the Morningstar Institutional Category. Confidence intervals (95%) are plotted in red.
Figure 3. Cumulative return densities across sustainability ratings
This figure plots densities of funds’ cumulative returns from February 20 to April 30, 2020, for two categories of sustainability: high (four or five Morningstar globes) and low (one or two globes), both assigned as of January 2020. In panel A, the cumulative returns are unadjusted, given by $\log(F_t)$, where $F_t = (1 + r_{F1})(1 + r_{F2})\ldots(1 + r_{Ft})$ is the fund’s cumulative total return. In panel B, the cumulative returns are benchmark-adjusted, given by $\log(F_t) - \log(B_t)$, where B_t is the cumulative total return of the fund’s FTSE/Russell benchmark.
Figure 4. Benchmark-adjusted fund performance: Sustainability ratings
This figure plots the cumulative compound performance in February 20 through April 30, 2020, for fund categories with different numbers of Morningstar sustainability globes assigned as of January 2020. “High sustainability” denotes funds with 4 or 5 globes, whereas “low sustainability” denotes funds with 1 or 2 globes. Performance is measured relative to the FTSE/Russell benchmark (panels A and B), the prospectus benchmark (panels C and D), and the S&P 500 (panels E and F). Relative performance is measured by log$(F_t) - \log(B_t)$, where F_t and B_t are the cumulative compounded daily returns of the average fund and the benchmark, respectively. Confidence intervals (95%) are shown in the right panels. Standard errors are estimated for this difference and are clustered by the Morningstar Institutional Category.
Figure 5. Benchmark-adjusted fund performance: Sustainability components

This figure plots the cumulative compound performance in February 20 through April 30, 2020, for fund categories with different Morningstar sustainability scores. These scores represent historical portfolio sustainability scores (panel A), environmental scores (panel B), social scores (panel C), and governance scores (panel D). For each of the four scores, the top 30% most sustainable funds are labeled as “greener,” and the bottom 30% of funds are labeled “browner.” Performance is measured relative to the FTSE/Russell benchmark by \(\log(F_t) - \log(B_t) \), where \(F_t \) and \(B_t \) are the cumulative compounded daily returns of the average fund and the benchmark, respectively.
Figure 6. Cumulative return densities across star ratings
This figure plots densities of funds’ cumulative returns from February 20 to April 30, 2020, for two categories of star ratings: high (four or five Morningstar stars) and low (one or two stars), both assigned as of January 2020. In panel A, the cumulative returns are unadjusted, given by $\log(F_t)$, where $F_t = (1 + r_{F1})(1 + r_{F2}) \ldots (1 + r_{Ft})$ is the fund’s cumulative total return. In panel B, the cumulative returns are benchmark-adjusted, given by $\log(F_t) - \log(B_t)$, where B_t is the cumulative total return of the fund’s FTSE/Russell benchmark.
Figure 7. Benchmark-adjusted fund performance: Star ratings
This figure plots the cumulative compound performance in February 20 through April 30, 2020, for fund categories with different numbers of Morningstar stars assigned as of January 2020. Performance is measured relative to the FTSE/Russell benchmark (panels A and B), the prospectus benchmark (panels C and D), and the S&P 500 (panels E and F). Relative performance is measured by \(\log(F_t) - \log(B_t) \), where \(F_t \) and \(B_t \) are the cumulative compounded daily returns of the average fund and the benchmark, respectively. Confidence intervals (95%) are shown in the right panels. Standard errors are estimated for this difference and are clustered by the Morningstar Institutional Category.
Figure 8. Benchmark-adjusted fund performance: Growth versus value funds
This figure plots the cumulative compound performance in February 20 through April 30, 2020, for growth versus value funds, as determined by the Morningstar equity style box. Performance is measured relative to the FTSE/Russell benchmark (panel A), the prospectus benchmark (panel B), and the S&P 500 (panel C). Relative performance is measured by \(\log(F_t) - \log(B_t) \), where \(F_t \) and \(B_t \) are the cumulative compounded daily returns of the average fund and the benchmark, respectively. Standard errors are estimated for this difference and are clustered by the Morningstar Institutional Category. Confidence intervals (95%) are shown.
Figure 9. Aggregate net fund flows
This figure plots aggregate net flows into active equity mutual funds during the crisis period (panel A) and over the past 3 years (panel B). Specifically, panel A plots total cumulative net fund flows (in both US$ billions and as a percentage of February 19, 2020, aggregate TNA) over the February 20 to April 30, 2020, period. Panel B covers the January 4, 2017, to April 30, 2020, period, and it expresses flows as a percentage of January 3, 2017, TNA.
Figure 10. Fund flows and sustainability ratings
This figure plots net fund flows over the February 20 to April 30, 2020, period for categories of funds sorted by Morningstar sustainability ratings. Panel A plots aggregate cumulative net flows for each of the five globe categories. Flows are aggregated within each category and accumulated over time, then scaled by the category’s TNA on February 19, 2020. Panel B plots the average across funds of cumulative net flows as a percentage of the fund’s February 19, 2020, TNA, for the five- and one-globe categories only. Unlike that in panel A, the sample in panel B is restricted to funds with at least $15 million of TNA as of January 31, 2020, and the net fund flow percentage is winsorized at the 2.5% and 97.5% levels. Panel B also plots 95% confidence intervals, with standard errors clustered by the Morningstar Institutional Category.
Figure 11. Fund flows and exclusions
This figure plots net fund flows over the February 20 to April 30, 2020, period for two categories of funds: those that do and do not employ exclusions in their investment process. Panel A plots aggregate cumulative net flows for both categories. Flows are aggregated within each category and accumulated over time, then scaled by the category’s TNA on February 19, 2020. Panel B plots the average across funds of cumulative net flows as a percentage of the fund’s February 19, 2020, TNA, for both categories. Unlike that in panel A, the sample in panel B is restricted to funds with at least $15 million of TNA as of January 31, 2020, and the net fund flow percentage is winsorized at the 2.5% and 97.5% levels. Panel B also plots 95% confidence intervals, with standard errors clustered by the Morningstar Institutional Category.
Figure 12. Fund flows and ESG scores
This figure plots net fund flows over the February 20 to April 30, 2020, period for funds in the top 30% (“high”) and bottom 30% (“low”) of environmental, social, and governance sustainability scores. The left panels plot aggregate cumulative net flows for the high and low E, S, and G categories. Flows are aggregated within each category and accumulated over time, then scaled by the category’s TNA on February 19, 2020. The right panels plot the average across funds of cumulative net flows as a percentage of the fund’s February 19, 2020, TNA, for both the high and low categories. Unlike that in the left panels, the samples in the right panels are restricted to funds with at least $15 million of TNA as of January 31, 2020, and the net fund flow percentage is winsorized at the 2.5% and 97.5% levels.
Figure 13. Fund flows and star ratings
This figure plots net fund flows over the February 20 to April 30, 2020, period for categories of funds sorted by Morningstar star ratings. Panel A plots aggregate cumulative net flows for each of the five star categories. Flows are aggregated within each category and accumulated over time, then scaled by the category’s TNA on February 19, 2020. Panel B plots the average across funds of cumulative net flows as a percentage of the fund’s February 19, 2020, TNA, for the 5-, 3-, and 1-star categories only. Unlike that in panel A, the sample in panel B is restricted to funds with at least $15 million of TNA as of January 31, 2020, and the net fund flow percentage is winsorized at the 2.5% and 97.5% levels. Panel B also plots 95% confidence intervals, with standard errors clustered by the Morningstar Institutional Category.
Figure 14. Fund flows and growth versus value funds
This figure plots net fund flows over the February 20 to April 30, 2020, period for growth versus value funds, as determined by the Morningstar equity style box. Panel A plots aggregate cumulative net flows for both categories. Flows are aggregated within each category and accumulated over time, then scaled by the category’s TNA on February 19, 2020. Panel B plots the average across funds of cumulative net flows as a percentage of the fund’s February 19, 2020, TNA, for both categories. Unlike that in panel A, the sample in panel B is restricted to funds with at least $15 million of TNA as of January 31, 2020, and the net fund flow percentage is winsorized at the 2.5% and 97.5% levels. Panel B also plots 95% confidence intervals, with standard errors clustered by the Morningstar Institutional Category.
References

Albuquerque, R. A., Y. Koskinen, S. Yang, and C. Zhang. 2020. Resiliency of environmental and social stocks: An analysis of the exogenous COVID-19 market crash. Review of Corporate Finance Studies. Advance Access published July 7, 2020, 10.1093/rcfs/cfaa011.

Alfaro, L., A. Chari, A. N. Greenland, and P. K. Schott. 2020. Aggregate and firm-level stock returns during pandemics, in real time. Working Paper, Harvard University.

Baker, S. R., N. Bloom, S. J. Davis, K. Kost, M. Sammon, and T. Viratyosin. Forthcoming. The unprecedented stock market reaction to COVID-19. Review of Asset Pricing Studies.

Barber, B. M., X. Huang, and T. Odean. 2016. Which factors matter to investors? Evidence from mutual fund flows. Review of Financial Studies 29:2600–2642.

Baumol, W. J., and W. E. Oates. 1979. Economics, environmental policy, and quality of life. Inglewood Cliffs, NJ: Prentice-Hall.

Bialkowski, J., and L. T. Starks. 2016. SRI funds: Investor demand, exogenous shocks and ESG profiles. Working Paper.

Bretscher, L., A. Hsu, and A. Tamoni. 2020. The supply channel of uncertainty shocks and the cross-section of returns: Evidence from the COVID-19 crisis. Working Paper, LBS.

Carhart, M. M. 1997. On persistence in mutual fund performance. Journal of Finance 52:57–82.

Coval, J., and E. Stafford. 2007. Asset fire sales (and purchases) in equity markets. Journal of Financial Economics 86:479–512.

Ding, W., R. Levine, C. Lin, and W. Xie. 2020. Corporate immunity to the COVID-19 pandemic. Working Paper, University of Hong Kong.

Edelen, R. M. 1999. Investor flows and the assessed performance of open-end mutual funds. Journal of Financial Economics 53:439–66.

Elton, E. J., M. J. Gruber, S. Das, and M. Hlavka. 1993. Efficiency with costly information: A reinterpretation of evidence from managed portfolios. Review of Financial Studies 6:1–22.

Elton, E. J., M. J. Gruber, and C. R. Blake. 2001. A first look at the accuracy of the CRSP mutual fund database and a comparison of the CRSP and Morningstar mutual fund databases. Journal of Finance 56:2415–30.

Evans, R. 2010. Mutual fund incubation. Journal of Finance 65:1581–611.

Fama, E. F., and K. R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33:3–56.
——. 2010. Luck versus skill in the cross section of mutual fund returns, *Journal of Finance* 65:1915–47.

——. 2015. A five-factor asset pricing model. *Journal of Financial Economics* 116:1–22.

Fahlenbrach, R., K. Rageth, and R. M. Stulz. 2020. How valuable is financial flexibility when revenue stops? Evidence from the Covid-19 crisis. Working Paper, Swiss Finance Institute.

Falato, A., I. Goldstein, and A. Hortacsu. 2020. Financial fragility in the COVID-19 crisis: The case of investment funds in corporate bond markets. Working Paper, Federal Reserve Board.

Ferriani, F., and F. Natoli. 2020. ESG risks in times of COVID-19. Bank of Italy’s Covid-19 note.

Ferson, W. E., and R. W. Schadt. 1996. Measuring fund strategy and performance in changing economic conditions. *Journal of Finance* 51:425–61.

Gerding, F., T. Martin, and F. Nagler. 2020. The value of fiscal capacity in the face of a rare disaster. Working Paper, Bocconi University.

Glode, V. 2011. Why mutual funds “underperform.” *Journal of Financial Economics* 99:546–59.

Glossner, S., P. Matos, S. Ramelli, and A. F. Wagner. 2020. Where do institutional investors seek shelter when disaster strikes? Evidence from COVID-19. Working Paper, University of Virginia.

Gormsen, N. J., and R. S. J. Koijen. Forthcoming. Coronavirus: Impact on stock prices and growth expectations. *Review of Asset Pricing Studies*.

Gruber, M. J. 1996. Another puzzle: The growth in actively managed mutual funds. *Journal of Finance* 51:783–810.

Haddad, V., A. Moreira, and T. Muir. 2020. When selling becomes viral: Disruptions in debt markets in the COVID-19 crisis and the Fed’s response. Working Paper, UCLA.

Hartzmark, S. M., and A. B. Sussman. 2019. Do investors value sustainability? A natural experiment examining ranking and fund flows. *Journal of Finance* 74:2789–837.

Jensen, M. C. 1968. The performance of mutual funds in the period 1945–1964. *Journal of Finance* 23:389–416.

Kacperczyk, M., S. Van Nieuwerburgh, and L. Veldkamp. 2014. Time-varying fund manager skill. *Journal of Finance* 69:1455–84.
Kargar, M., B. T. Lester, D. Lindsay, S. Liu, and P.-O. Weill. 2020. Corporate bond liquidity during the COVID-19 crisis. Working Paper, University of Illinois.

Kosowski, R. 2011. Do mutual funds perform when it matters most to investors? US mutual fund performance and risk in recessions and expansions. *Quarterly Journal of Finance* 1:607–64.

Lins, K. V., H. Servaes, and A. Tamayo. 2017. Social capital, trust, and firm performance: The value of corporate social responsibility during the financial crisis, *Journal of Finance* 72:1785–824.

Ma, Y., K. Xiao, and Y. Zeng. 2020. Mutual fund liquidity transformation and reverse flight to liquidity. Working Paper, Columbia University.

Malkiel, B. G. 1995. Returns from investing in equity mutual funds 1971 to 1991. *Journal of Finance* 50:549–72.

Moskowitz, T. J. 2000. Mutual fund performance: An empirical decomposition into stock-picking talent, style, transactions costs, and expenses: Discussion, *Journal of Finance* 55:1695–703.

Nofsinger, J., and A. Varma. 2014. Socially responsible funds and market crises, *Journal of Banking and Finance* 48:180–93.

O’Hara, M., and X. A. Zhou. 2020. Anatomy of a liquidity crisis: Corporate bonds in the COVID-19 crisis. Working Paper, Cornell University.

Pagano, M., C. Wagner, and J. Zechner. 2020. Disaster resilience and asset prices. Working Paper, University of Naples Federico II.

Pástor, L., and R. F. Stambaugh. 2002. Mutual fund performance and seemingly unrelated assets. *Journal of Financial Economics* 63:315–49.

———. 2012. On the size of the active management industry. *Journal of Political Economy* 120:740–81.

Pástor, L., R. F. Stambaugh, and L. A. Taylor. 2015, Scale and skill in active management. *Journal of Financial Economics* 116:23–45.

———. 2017. Do funds make more when they trade more? *Journal of Finance* 72:1483–528.

———. Forthcoming. Sustainable investing in equilibrium. *Journal of Financial Economics.*

Ramelli, S., and A. F. Wagner. 2020. Feverish stock price reactions to COVID-19. *Review of Corporate Finance Studies.* Advance Access published July 7, 2020, 10.1093/rcfs/cfaa012.
Schrimpf, A., H. S. Shin, and V. Sushko. 2020. Leverage and margin spirals in fixed income markets during the COVID-19 crisis. Working paper, BIS.

Sensoy, B. 2009. Performance evaluation and self-designated benchmark indexes in the mutual fund industry. *Journal of Financial Economics* 92:25–39.

Wermers, R. 2000. Mutual fund performance: An empirical decomposition into stock-picking talent, style, transactions costs, and expenses. *Journal of Finance* 55:1655–95.