THE R_∞ PROPERTY FOR NILPOTENT QUOTIENTS OF GENERALIZED SOLVABLE BAUMSLAG-SOLITAR GROUPS

WAGNER C. SGOBBI, DALTON C. SILVA, AND DANIEL VENDRÚSCOLO

Abstract. We say a group G has property R_∞ if the number $R(\varphi)$ of twisted conjugacy classes is infinite for every automorphism φ of G. For such groups, the R_∞-nilpotency degree is the least integer c such that $G/\gamma_{c+1}(G)$ has property R_∞. In this work, we compute the R_∞-nilpotency degree of all Generalized Solvable Baumslag-Solitar groups Γ_n. Moreover, we compute the lower central series of Γ_n, write the nilpotent quotients $\Gamma_{n,c} = \Gamma_n/\gamma_{c+1}(\Gamma_n)$ as semidirect products of finitely generated abelian groups and classify which integer invertible matrices can be extended to automorphisms of $\Gamma_{n,c}$.

1. Introduction

The main task of our paper is to show the following:

Theorem 1 (Theorem 4.4). Let an integer $n \geq 1$ have a prime decomposition with at least two prime numbers involved. Then the R_∞-nilpotency degree of any Generalized Solvable Baumslag-Solitar group Γ_n is infinite.

Let us first define property R_∞ and the R_∞-nilpotency degree and then problematize. An automorphism φ of a group G gives rise to a “twisted conjugacy” equivalence relation on G given by $x \sim_\varphi y \iff \exists z \in G : zx\varphi(z)^{-1} = y$. The number of equivalence classes (or Reidemeister classes, or twisted conjugacy classes) is denoted by $R(\varphi)$, and we say G has property R_∞ if $R(\varphi)$ is infinite for every automorphism φ of G. This twisted conjugacy relation first appeared in a work of K. Reidemeister [12] and has many connections with other areas of mathematics, in particular to fixed point theory (see [8]). We refer the introduction of the paper [3] to a good exhibition of those connections and a discussion of the historical context and development of R_∞, including a list of families of groups with this property. The search of R_∞-groups is still very active. For example, a first proof of R_∞ for the pure Artin braid groups P_n, $n \geq 3$, was published in 2021 [5] and, even more recently, an alternative proof was obtained in [1].

For groups G with property R_∞, the R_∞-nilpotency degree is the least integer c such that the quotient $G/\gamma_{c+1}(G)$ has property R_∞, where $\gamma_k(G)$ are the terms of the lower central series of G, that is, $\gamma_1(G) = G$ and $\gamma_{c+1}(G) = [\gamma_c(G),G]$, for any $c \geq 1$. If none of the quotients have R_∞, we say the R_∞-nilpotency degree of G is infinite. This degree relates to the following problem: it is well known that if G has a characteristic subgroup N (for example, $N = \gamma_k(G)$, $k \geq 1$) such that G/N has R_∞, then G has R_∞. One can ask then...
whether the converse is true, that is, are there groups G whose property R_∞ is still valid for the quotients $G/\gamma_k(G)$? The answer to this question is positive and gives us the more specific motivation for our work, as we will discuss now.

Knowing that the free groups F_n have R_∞ (since they are hyperbolic [9]), the authors K. Dekimpe and D. L. Gonçalves studied property R_∞ for infinitely generated free groups, free nilpotent groups and free solvable groups [2]. They generalized a result of [13], showing that the free nilpotent groups $F_{n,c} = F_n/\gamma_{c+1}(F_n)$, that is, nilpotent quotients of free groups F_n, have property R_∞ if and only if $c \geq 2n$. So, the R_∞-nilpotency degree of free groups F_n is $2n$. This fact is actually what motivated the definition of R_∞-nilpotency degree above, which was first given in [3]. In that work, also motivated by the fact that fundamental groups of hyperbolic surfaces have R_∞ (again by [9]), the same authors studied nilpotent quotients of such surface groups, showing that the R_∞-nilpotency degree c of an orientable surface S_g of genus $g \geq 2$ is $c = 4$ and that, for N_g a connected sum of $g \geq 3$ projective planes, $c = 2(g-1)$. It is worth noticing that a consequence of their research was the discovery of new examples of nilmanifolds on which every self-homotopy equivalence can be deformed into a fixed point free map.

On the non-hyperbolic side, an important example of R_∞ groups are the Baumslag-Solitar groups

$$BS(m,n) = \langle a, t \mid ta^mt^{-1} = a^n \rangle,$$

for m, n integers (see [6]). These are important examples of combinatorial and geometric group theory. In [4], K. Dekimpe and D. L. Gonçalves determined the R_∞-nilpotency degree of $BS(m,n)$:

Theorem 2 (Theorem 5.4 in [4]). Let $0 < m \leq |n|$ with $m \neq n$ and take $d = \gcd(m,n)$. Let p denote the largest integer such that $2^p | 2m/d + 2$. Then, the R_∞-nilpotency degree r of $BS(m,n)$ is given by

- In case $n < 0$ and $n \neq -m$, then $r = 2$.
- In case $n = -m$ then $r = \infty$.
- In case $n = m$ then $r = \infty$.
- In case $n - m = d$, then $r = \infty$.
- In case $n - m = 2d$, then $2 \leq r \leq p + 2$.
- In case $n - m \geq 3d$, then $r = 2$.

In the particular case of the solvable Baumslag-Solitar groups $BS(1,n)$, $n \geq 2$, we have $r = \infty$ for $n = 2$, $r = 4$ for $n = 3$ and $r = 2$ for $n \geq 4$. The investigation of the R_∞-nilpotency degree for generalizations of these groups is therefore natural. The authors comment about the family of Generalized Baumslag-Solitar groups (or GBS groups), which are R_∞ groups. In this paper, we add one more important family to that discussion, namely, the Generalized Solvable Baumslag-Solitar groups Γ_n. Let $n \geq 2$ be an integer with prime decomposition $n = p_1^{y_1} \cdots p_r^{y_r}$, the p_i being pairwise distinct and $y_i > 0$. We consider the Generalized Solvable Baumslag-Solitar group

$$\Gamma_n = \langle a, t_1, \ldots, t_r \mid t_it_j = t_jt_i, \ i \neq j, \ t_iat_i^{-1} = a^{b_i^{y_i}}, \ i = 1, \ldots, r \rangle.$$

In particular, if $n = p^y$ involves only one prime number, then $\Gamma_n = BS(1,n)$ is a solvable Baumslag-Solitar group. We will focus, therefore, in the case of two or more prime numbers in the decomposition of n.

These groups arise mainly in a geometric generalization of the solvable Baumslag-Solitar groups $BS(1,n)$. Consider the group $PSL_2(\mathbb{Z}[1/n])$, which acts on the product of the hyperbolic space H_2 with the product of the Bruhat-Tits trees for $PSL_2(\mathbb{Q}_{p_i})$. The stabilizer of a
point at infinity under this action is the upper triangular subgroup of $PSL_2(\mathbb{Z}[1/n])$, which we are denoting by Γ_n (see [14]). In this paper, however, dealing with the above presentation was enough to establish our results. The Γ_n are also known to be solvable and metabelian groups, fitting in a short exact sequence of the form

$$1 \rightarrow \mathbb{Z} \left[\frac{1}{n} \right] \rightarrow \Gamma_n \rightarrow \mathbb{Z}^r \rightarrow 1.$$

More details about Γ_n can be seen in the paper [14], where J. Taback and P. Wong show property for Γ_n and for any group quasi-isometric to it.

We started dealing with Baumslag-Solitar groups in the first author’s doctoral dissertation. There, one realized that elementary techniques involving the BNS invariant Σ^1 of the groups $BS(1, n)$ could also be applied to Γ_n, leading to an elementary proof of R_∞ to these groups. One can then ask whether other techniques - such as the investigation of nilpotent quotients of $BS(m, n)$ in [14] - can also be adapted to Γ_n. The main question was whether Γ_n would behave more like $BS(1, 2)$ (with infinite R_∞-nilpotency degree) or like $BS(1, n), n \geq 3$ (finite degree cases). As Theorem 1 shows, the groups Γ_n fit in the infinite degree case. We believe this happens because of the large automorphism groups of its nilpotent quotients.

We will denote the nilpotent quotients of Γ_n by

$$\Gamma_{n,c} = \frac{\Gamma_n}{\gamma_{c+1}(\Gamma_n)}$$

for any $c \geq 1$, where γ_{c+1} is the $(c+1)^{th}$ term of the lower central series of Γ_n. We know that $\Gamma_{n,c}$ is a nilpotent group with nilpotency class $\leq c$, for $\gamma_{c+1}(\Gamma_{n,c}) = \gamma_{c+1}(\Gamma_n)(\Gamma_{n,c}) = \gamma_{c+1}(\Gamma_n) = 1$. In this work, the torsion subgroup of a nilpotent group G will be denoted by

$$\tau G = \{ g \in G \mid g^n = 1 \text{ for some } n \geq 1 \}.$$

This work is divided as follows: in section 2, we compute the torsion subgroup and the lower central series of $\Gamma_{n,c}$. Then, in section 3, we use these computations to create an useful isomorphism between $\Gamma_{n,c}$ and a semidirect product of the form $G_{n,c} = \mathbb{Z}_{m^c} \rtimes \mathbb{Z}^r$, for some $m \geq 1$. Finally, in section 4, we classify which matrices in $GL_r(\mathbb{Z})$ can be extended to automorphisms of $\Gamma_{n,c}$ and use the classification to find specific automorphisms with finite Reidemeister numbers in $\Gamma_{n,c}$.

2. TORSION AND LOWER CENTRAL SERIES OF $\Gamma_{n,c}$

We begin by showing the following

Lemma 2.1. Let $m = \gcd(p_1^{y_1} - 1, \ldots, p_r^{y_r} - 1)$. Then $a^{m^k} \in \gamma_{k+1}(\Gamma_n)$ for all $k \geq 1$.

Proof. Induction on k. First, $k = 1$. By using the group relations, note that, for any $1 \leq i \leq r$, $a^{p_{yi}^{r-1}} = t_{i}^{-1} a_{i}^{-1} a_{i}^{-1} = [t_{i}, a] \in \gamma_{2}(\Gamma_n)$. Since this is true for any i and m is an integer combination of the $p_r^{y_i} - 1$, we have $a^{m} \in \gamma_{2}(\Gamma_n)$. Now, suppose the lemma is true for some $k \geq 1$. Then

$$a^{(p_{yi}^{r-1})m^k} = a^{p_{yi}^{r-1}m^k} a^{-m^k} = t_{i} a^{m^k} a_{i}^{m^k} a^{-m^k} = [t_{i}, a^{m^k}] \in \gamma_{k+2}(\Gamma_n).$$

Again, since this is true for any i and m is an integer combination of the $p_r^{y_i} - 1$, we have $a^{m^k} \in \gamma_{k+2}(\Gamma_n)$, as desired. This completes the proof. □

To compute the torsion of the groups $\Gamma_{n,c}$, we need the following standard results:
Proposition 2.2 (see [11]). Let \(k, m, n \geq 1 \) and let \(x, y, z \in G \) be elements of a group \(G \) such that \(x \in \gamma_k(G) \), \(y \in \gamma_m(G) \) and \(z \in \gamma_n(G) \). Then:

a) \(xy = yx \mod \gamma_{k+m}(G) \);

b) \([x, yz] = [x, y][x, z] \mod \gamma_{k+m+n}(G)\);

c) \([xy, z] = [x, z][y, z] \mod \gamma_{k+m+n}(G)\).

Proposition 2.3. (Theorem 5.4) If \(G \) is finitely generated by elements \(x_1, \ldots, x_r \) then, for any \(k \geq 1 \), \(\gamma_k(G)/\gamma_{k+1}(G) \) is abelian and finitely generated by the cosets of the \(k \)-fold commutators \([x_1, \ldots, x_i]\), where \(1 \leq i \leq r \).

By an easy recursive argument, one shows the following:

Lemma 2.4. Let \(G \) be a nilpotent group of class \(\leq c \) and denote \(\gamma_i = \gamma_i(G) \). If the quotients \(\gamma_2/\gamma_3, \ldots, \gamma_c/\gamma_{c+1} \) are finite, then \(\gamma_2 \) is a torsion subgroup of \(G \). \(\square \)

Proposition 2.5. \(\tau \Gamma_{n,c} = \langle \overline{a}, \gamma_2(\Gamma_{n,c}) \rangle \), where \(\overline{a} = a\gamma_{c+1} = a\gamma_{c+1}(\Gamma_n) \in \Gamma_{n,c} \).

Proof. In the case \(c = 1 \) we have \(\Gamma_{n,1} \) is the abelianized group of \(\Gamma_n \), so

\[
\Gamma_{n,1} = \left\{ \overline{a}, \overline{t_1}, \ldots, \overline{t_r} \mid \overline{t_it_j} = \overline{t_jt_i}, \overline{t_it} = \overline{t_i}, \overline{a^{p_i+1}} = 1 \right\} \cong \mathbb{Z}_m \times \mathbb{Z}_r,
\]

where \(m = \gcd(p_1, p_2, \ldots, p_r) - 1 \). So \(\tau \Gamma_{n,1} = \langle \overline{a} \rangle = \langle \overline{a}, \gamma_2(\Gamma_{n,1}) \rangle \), since \(\gamma_2(\Gamma_{n,1}) = 1 \).

Now let us show the proposition in the case \(c \geq 2 \). For \((\overline{a} \in \langle \overline{a} \rangle \), let \(x\gamma_{c+1} \in \tau \Gamma_{n,c} \). This means \(x^k \in \gamma_{c+1} \) for some \(k \geq 1 \). Since \(c \geq 2 \), we have \(x^k \in \gamma_{c+1} \subset \gamma_2 \), so \(x^k \in \tau \Gamma_{n,1} = \langle \overline{a} \rangle \).

Write then \(x = a'g_2 \) for \(l \in \mathbb{Z} \) and \(g_2 \in \gamma_2 = \gamma_2(\Gamma_n) \). This gives \(x\gamma_{c+1} = (a\gamma_{c+1})g_2 \gamma_{c+1} \in \langle \overline{a}, \gamma_2(\Gamma_{n,c}) \rangle \), as we wanted. To show \((\gamma) \), we know that by Lemma 2.4 we get \(\overline{a}^{p_i+1} = 1 \) in \(\Gamma_{n,c} \), so \(\overline{a} \in \tau \Gamma_{n,c} \). So, we just need to show that \(\gamma_2(\Gamma_{n,c}) \) is a torsion subgroup of \(\Gamma_{n,c} \). To do this, we invoke Lemma 2.4, by which we know it is enough to show the quotients

\[
\frac{\gamma_2(\Gamma_{n,c})}{\gamma_3(\Gamma_{n,c})} = \ldots = \frac{\gamma_c(\Gamma_{n,c})}{\gamma_{c+1}(\Gamma_{n,c})}
\]

are all finite. But for every \(2 \leq i \leq c \), by the known Isomorphism Theorem for quotients, we have

\[
\frac{\gamma_i(\Gamma_{n,c})}{\gamma_{i+1}(\Gamma_{n,c})} = \frac{\gamma_i(\Gamma_n)/\gamma_{i+1}(\Gamma_n)}{\gamma_{i+1}(\Gamma_n)/\gamma_{i+1}(\Gamma_n)} \simeq \frac{\gamma_i(\Gamma_n)}{\gamma_{i+1}(\Gamma_n)} = \gamma_i/\gamma_{i+1},
\]

so let us show that \(\gamma_2/\gamma_3, \ldots, \gamma_c/\gamma_{c+1} \) are finite by induction. By Proposition 2.5, we know they are abelian groups, generated by their \(i \)-fold commutator cosets. The group \(\gamma_2/\gamma_3 \) is generated by the elements \([t_i, a] \gamma_3, 1 \leq i \leq r \) and by \([t_i, t_j] \gamma_3 = 1 \gamma_3 = \gamma_3 \), which are trivial. By Proposition 2.2, we get \([t_i, a]^m \gamma_3 = [t_i, a^m] \gamma_3 = \gamma_3 \), since \(a^m \in \gamma_2 \) (Lemma 2.1). So all generators of \(\gamma_2/\gamma_3 \) have torsion. Since it is finitely generated and abelian, it must be a finite group. Finally, suppose by induction that \(\gamma_i/\gamma_{i+1} \) is finite for some \(i \geq 2 \). By Proposition 2.2, \(\gamma_{i+1}/\gamma_{i+2} \) is then generated by the elements of the form \([x, y] \gamma_{i+2} \) with \(x \in \gamma_i \) and \(y \in \Gamma_n \). Since \(\gamma_i/\gamma_{i+1} \) is finite, let \(k = k(x, y) \geq 1 \) such that \(x^k \in \gamma_{i+1} \). Then \([x, y] \gamma_{i+2} = [x^k, y] \gamma_{i+2} = \gamma_{i+2} \). By the same argument we just used, this implies \(\gamma_{i+1}/\gamma_{i+2} \) is finite and completes the proof. \(\square \)

Proposition 2.6. \(\gamma_k(\Gamma_{n,c}) = \left\langle \overline{a}^{p_i-1} \right\rangle \) for all \(k \geq 2 \) and \(c \geq 1 \).

Proof. First, we will show that

\[
\frac{\gamma_k(\Gamma_{n,c})}{\gamma_k(\Gamma_{n,c})} = \left\langle \overline{a}^{p_i-1} \right\rangle \gamma_{k+1}(\Gamma_{n,c}) \right\rangle.
\]
For \(k = 2 \), by Proposition 2.3 \(\frac{\gamma_2(\Gamma_{n,c})}{\gamma_3(\Gamma_{n,c})} \) is generated by the cosets \([\bar{t}_i, \bar{u}]\gamma_3(\Gamma_{n,c})\). Since \([\bar{t}, \bar{u}] = \bar{w}^{m-1}\), we have

\[
\frac{\gamma_2(\Gamma_{n,c})}{\gamma_3(\Gamma_{n,c})} = \left\langle \bar{w}^{m-1}\gamma_3(\Gamma_{n,c}), \ldots, \bar{w}^{m-1}\gamma_3(\Gamma_{n,c}) \right\rangle = \left\langle \bar{w}^{m-1}\gamma_3(\Gamma_{n,c}) \right\rangle
\]

(remember that \(m = \gcd(p_{\gamma i} - 1, \ldots, p_{\gamma r} - 1) \)). Suppose now (1) is true for some \(k \geq 2 \). We know \(\frac{\gamma_{k+1}(\Gamma_{n,c})}{\gamma_{k+2}(\Gamma_{n,c})} \) is generated by the cosets \([x, z]\gamma_{k+2}(\Gamma_{n,c}), \) where \(x \in \gamma_k(\Gamma_{n,c}) \) and \(z \in \Gamma_{n,c} \).

By induction, we can write \(x = \bar{w}^{m k-1} w_{k+1} \) for some \(w_{k+1} \in \gamma_{k+1}(\Gamma_{n,c}) \) and \(\alpha \in \mathbb{Z} \). Then, by using Proposition 2.2 we get

\[
[x, z]\gamma_{k+2}(\Gamma_{n,c}) = [\bar{w}^{m k-1} w_{k+1}, z]\gamma_{k+2}(\Gamma_{n,c})
\]

so the quotient \(\frac{\gamma_{k+1}(\Gamma_{n,c})}{\gamma_{k+2}(\Gamma_{n,c})} \) is actually generated only by the cosets \([\bar{w}^{m k-1}, z]\gamma_{k+2}(\Gamma_{n,c})\). Since \([\bar{u}, \bar{w}]\) is obviously trivial, the quotient group is generated only by the generators \([\bar{u}, \bar{w}]\gamma_{k+2}(\Gamma_{n,c})\).

Since \([\bar{u}, \bar{w}] = \bar{w}^{m k-1} \), we obtain

\[
\frac{\gamma_{k+1}(\Gamma_{n,c})}{\gamma_{k+2}(\Gamma_{n,c})} = \left\langle \bar{w}^{m k-1} w_{k+1}, \ldots, \bar{w}^{m k-1} w_{k+2}, \right\rangle = \left\langle \bar{w}^{m k-1} \gamma_{k+2}(\Gamma_{n,c}) \right\rangle,
\]

where

\[
\beta = \gcd((p_{\gamma i} - 1) m k-1, \ldots, (p_{\gamma r} - 1) m k-1) = m k-1 \gcd(p_{\gamma i} - 1, \ldots, p_{\gamma r} - 1) = m^k
\]

and this shows (1). Now, let us show the proposition. The (\(\supset\)) part is a direct consequence of Lemma 2.1. Let us show (\(\subset\)). In the case \(c < k \), we have \(\gamma_k(\Gamma_{n,c}) = 1 \) \textcolor{red}{
(2)} \(\subset\) \textcolor{red}{
\left\langle \bar{w}^{m k-1} \right\rangle \). Suppose then \(c \geq k \) and let \(x \in \gamma_k(\Gamma_{n,c}) \). Since \(x \gamma_{k+1}(\Gamma_{n,c}) \in \left\langle \bar{w}^{m k-1} \gamma_{k+1}(\Gamma_{n,c}) \right\rangle \) (by (1)), write \(x = \bar{w}^{j k m k-1} x_{k+1} \) for \(j_k \in \mathbb{Z} \) and \(x_{k+1} \in \gamma_{k+1}(\Gamma_{n,c}). \) By using (1) again, we write

\[
x_{k+1} = \bar{w}^{m k m k-1} x_{k+2} \text{ for } j_k \in \mathbb{Z} \text{ and } x_{k+2} \in \gamma_{k+2}(\Gamma_{n,c}).
\]

We can do this recursively to obtain

\[
x = \bar{w}^{j k m k-1} \bar{w}^{j k m k-1+1} \ldots \bar{w}^{j k m k-1+k} x_{k+1}
\]

and the proof is complete.

By Lemma 2.1 and the two propositions above, we get

\textbf{Corollary 2.7.} \(\tau \Gamma_{n,c} = \langle \bar{u} \rangle \) and \(\text{card}(\tau \Gamma_{n,c}) \leq m^c \).

\section{An Isomorphism for \(\Gamma_{n,c} \)}

The next step is to find a presentation to \(\Gamma_{n,c} \), so we will find an isomorphism between \(\Gamma_{n,c} \) and a more known group. We will use the notations from the previous section and will also denote \(\mathbb{Z} m^c = \langle x \mid x^{m^c} = 1 \rangle \) and \(\mathbb{Z}^r = \langle s_1, \ldots, s_r \mid s_i s_j = s_j s_i \rangle \). We define the group

\[
G_{n,c} = \mathbb{Z} m^c \rtimes \mathbb{Z}^r
\]

where the action of \(\mathbb{Z}^r \) on \(\mathbb{Z} m^c \) is given by \(s_i x s_i^{-1} = x^{p_{\gamma i}} \), \(1 \leq i \leq r \).
Observation 3.1. Note first that the actions defined above are all automorphisms of \(\mathbb{Z}_{m^c} \), since \(\gcd(p_i^k, m) = 1 \) (and so \(\gcd(p_i^k, m^c) = 1 \) for any \(c \geq 1 \)). Second, all such automorphisms commute, for \(\mathbb{Z}_{m^c} \) is cyclic. These facts show that there is a well defined homomorphism \(\mathbb{Z}' \to \text{Aut}(\mathbb{Z}_{m^c}) \), so this semidirect product is well defined.

We will show that \(\Gamma_{n,c} \simeq G_{n,c} \). To do this, we need:

Lemma 3.2. \(G_{n,c} \) is nilpotent of class \(\leq c \).

Proof. Since \([s_i, x] = x^{p_i - 1} \in \langle x^m \rangle\) for every \(i \), we have \(\gamma_2(G_{n,c}) \subset \langle x^m \rangle \). Similarly, since \([s_i, x^m] = x^{(p_i^k - 1)m} \in \langle x^m \rangle \) for every \(i \), in particular we have \([s_i, z] \in \langle x^{m^2} \rangle\) for every \(z \in \gamma_2(G_{n,c}) \), so it is easy to see that \(\gamma_3(G_{n,c}) \subset \langle x^{m^2} \rangle \). Recursively, we can show that \(\gamma_k(G_{n,c}) \subset \langle x^{m^{k-1}} \rangle\) for every \(k \geq 2 \). In particular, \(\gamma_{c+1}(G_{n,c}) \subset \langle x^{m^c} \rangle = 1 \), since \(x^{m^c} = 1 \) in \(\mathbb{Z}_{m^c} \). This shows the lemma. \(\square \)

Corollary 3.3. \(\tau G_{n,c} \) is a subgroup of \(G_{n,c} \). Moreover, \(\tau G_{n,c} = \mathbb{Z}_{m^c} = \langle x \rangle \) and so \(\text{card}(\tau G_{n,c}) = m^c \).

Theorem 3.4. \(\Gamma_{n,c} \simeq G_{n,c} \).

Proof. Let \(f : \Gamma_n \to G_{n,c} \) be the map \(f(a) = x = f(t_i) = s_i \). Since \(f(t_i)f(a)f(t_i)^{-1} = s_i x s_i^{-1} = x^{p_i^k} = f(a)^{p_i^k} \), \(f \) is a well defined group homomorphism. Since \(f(\gamma_i(\Gamma_n)) \subset \gamma_i(G_{n,c}) \), \(f \) induces the morphism

\[
f : \Gamma_{n,c} = \frac{\Gamma_n}{\gamma_{c+1}(\Gamma_n)} \to \frac{G_{n,c}}{\gamma_{c+1}(G_{n,c})} = G_{n,c}
\]

given by \(f(\overline{a}) = x \) and \(f(\overline{t_i}) = s_i \). It is obviously surjective. We are just left to show that \(\ker(f) = 1 \), and to do that we will make use of the torsion subgroups. Since \(f(\tau \Gamma_{n,c}) \subset \tau G_{n,c} \) (this is true for any homomorphisms between nilpotent groups), there is the restriction morphism \(f_r : \tau \Gamma_{n,c} \to \tau G_{n,c} \). By Corollaries 2.7 and 3.3 we can actually write \(f_r : \langle \overline{a} \rangle \to \langle x \rangle \). Since \(f_r(\overline{a}) = x \), it is clearly surjective. Now, \(f_r \) is a surjective map from a finite set of \(\leq m^c \) elements (Corollary 2.7) to a finite set with exactly \(m^c \) elements (Corollary 3.3), so we must have \(\text{card}(\langle \overline{a} \rangle) = m^c \) and \(f_r \) an isomorphism. In particular, \(\ker(f_r) = 1 \). We claim that \(\ker(f) \subset \tau \Gamma_{n,c} \). In fact, let \(z \in \ker(f) \). By using the relations in \(\Gamma_n \), we can write

\[
z = \overline{l_1^k_1 \cdots l_r^k_r \alpha_1} \overline{\alpha_1} \overline{\alpha_r} \cdots \overline{\alpha_1}
\]

for \(k_i, l \in \mathbb{Z} \) and \(\alpha_i \geq 0 \). So

\[
1 = f(z) = s_1^{k_1} \cdots s_r^{k_r} s_1^{-\alpha_1} \cdots s_r^{-\alpha_r} x^{l_1} s_1^{\alpha_1} \cdots s_r^{\alpha_r}
\]

Since \(x \in \tau G_{n,c} \subset \Gamma_{n,c} \) we have \(s_1^{-\alpha_1} \cdots s_r^{-\alpha_r} x^{l_1} s_1^{\alpha_1} \cdots s_r^{\alpha_r} \in \tau G_{n,c} = \langle x \rangle \), so \(1 = f(z) = s_1^{k_1} \cdots s_r^{k_r} x^{l' \alpha} \) for some \(l' \in \mathbb{Z} \). By projecting this equality under the natural homomorphism \(G_{n,c} \to \mathbb{Z}' \) we get \(1 = s_1^{k_1} \cdots s_r^{k_r} \), which implies \(k_i = 0 \) for every \(i \). Therefore \(z = \overline{l_1^k_1 \cdots l_r^k_r \alpha_1} \overline{\alpha_1} \overline{\alpha_r} \cdots \overline{\alpha_1} \in \tau G_{n,c} \), since \(\overline{\alpha} \in \tau \Gamma_{n,c} < \Gamma_{n,c} \), which shows the claim. Finally, this gives \(\ker(f) = \ker(f_r) \cap \tau \Gamma_{n,c} = \ker(f_r) = 1 \) and the theorem is proved. \(\square \)

Corollary 3.5. For any \(c \geq 1 \), the nilpotent quotient \(\Gamma_{n,c} \) has the following presentation:

\[
\Gamma_{n,c} = \langle x, s_1, \ldots, s_r \ | \ x^{m^c} = 1, s_is_j = s_js_i, s_is_i^{-1} = x^{p_i^k} \rangle.
\]
4. Reidemeister numbers

Because of the theorem above, from now on we will make the following identifications
\[\Gamma_{n,c} = G_{n,c} = \mathbb{Z}_{m_c} \rtimes \mathbb{Z}^r = \langle x \rangle \rtimes \langle s_1, \ldots, s_r \rangle. \]

It’s also worth remembering that we will restrict us to investigate Reidemeister numbers of \(\Gamma_{n,c} \) only in the case \(r \geq 2 \), for, if \(r = 1 \), then \(\Gamma_n \) is by definition a Baumslag-Solitar group \(BS(1,n) \) and its Reidemeister numbers were studied in \([7]\). Let \(\varphi \in Aut(\Gamma_{n,c}) \). Since \(\varphi(\tau \Gamma_{n,c}) \subset \tau \Gamma_{n,c} \), we have an induced automorphism
\[\overline{\varphi} : \frac{\Gamma_{n,c}}{\tau \Gamma_{n,c}} = \mathbb{Z}^r \to \mathbb{Z}^r = \frac{\Gamma_{n,c}}{\tau \Gamma_{n,c}}. \]

From now on, we will use the usual identification \(Aut(\mathbb{Z}^r) = GL_r(\mathbb{Z}) \) which sees an automorphism of \(\mathbb{Z}^r \) as its (integer invertible) matrix with respect to the coordinates \(s_i \). So, if \(\overline{\varphi}(s_i) = s_1^{a_{i1}} \cdots s_r^{a_{ir}} \), we will identify
\[\overline{\varphi} = (a_{ij})_{ij} = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{rr} \end{bmatrix} = [A_1 \cdots A_r], \quad \text{where} \quad A_i = \begin{bmatrix} a_{ii} \\ \vdots \\ a_{ri} \end{bmatrix} \in \mathbb{Z}^r. \]

Proposition 4.1. If \(\varphi \in Aut(\Gamma_{n,c}) \), the following are equivalent:

1. \(R(\varphi) = \infty \);
2. \(R(\overline{\varphi}) = \infty \);
3. \(\det(\overline{\varphi} - Id) = 0 \);
4. \(\overline{\varphi} \) has 1 as an eigenvalue.

Proof. Items (2), (3) and (4) are well known to be all equivalent. Also, we have an obvious commutative diagram involving the automorphisms \(\varphi, \overline{\varphi} \) and the projection \(\pi : \Gamma_{n,c} \to \mathbb{Z}^r \). Thus, by Lemma 1.1 of \([7]\), it follows that (2) implies (1). So we only have to prove that (1) implies (2).

To simplify the computation, let us use the following notation in this proof: given \(y = (y_1, \ldots, y_r) \in \mathbb{Z}^r \) (either a row or a column vector), we will denote the element \(s_1^{y_1} \cdots s_r^{y_r} \in \Gamma_{n,c} \) by \(S^y \), and the scalar product of \(k \in \mathbb{Z} \) by \(y \) is denoted by \(ky \). With this notation, it turns out that any element of \(\Gamma_{n,c} \) is of the form \(S^y x^\beta \) for some \(y \in \mathbb{Z}^r \) and \(\beta \in \mathbb{Z} \). Suppose then that \(R(\overline{\varphi}) = d < \infty \) and write \(\mathcal{R}(\overline{\varphi}) = \{[v_1], \ldots, [v_d]\} \) for \(v_i \in \mathbb{Z}^r \) or, equivalently, \(\overline{\mathcal{R}(\overline{\varphi})} = \{\overline{v_1}, \ldots, \overline{v_d}\} \) (where \(\overline{v_i} = v_i + \im(\overline{\varphi} - Id) \)). Write \(\varphi(x) = x^\mu \) (for some \(\mu \in \mathbb{Z} \) with \(\gcd(\mu, m^c) = 1 \)) and \(\varphi(s_i) = S^{k_i} x^{\beta_i}, \beta_i \in \mathbb{Z} \). Given that the \(s_i \)-coordinates behave well in the \(\Gamma_{n,c} \), for any \(k = (k_1, \ldots, k_r) \in \mathbb{Z}^r \) and \(l \in \mathbb{Z} \) we have
\[\varphi(S^k x^l) = S^{\overline{\varphi(k)}} x^\theta, \]
for some \(\theta \in \mathbb{Z} \). This implies that, for any \(j \in \mathbb{Z} \) and \(y \in \mathbb{Z}^r \),
\[(S^k_x^l)(S^y x^j) \varphi(S^k_x^l)^{-1} = S^{y+(Id-\overline{\varphi}(k))} x^\theta, \]
for some \(\theta \in \mathbb{Z} \). This means that, if two vectors \(y, y' \in \mathbb{Z}^r \) are such that \(\overline{y} = \overline{y}' \in \im(\overline{\varphi} - Id) \), then every element \(S^y x^j \) is \(\varphi \)-conjugated to some element \(S^{y'} x^\theta \) for some \(0 \leq \theta < m^c \). Since \(\overline{\mathcal{R}(\overline{\varphi})} = \{\overline{v_1}, \ldots, \overline{v_d}\} \), every element \(S^y x^j \) is \(\varphi \)-conjugated to some \(S^{v_i} x^\theta \), \(1 \leq i \leq d, 0 \leq \theta < m^c \), so \(R(\varphi) \leq dm^c < \infty \) and the proposition is proved. \(\square \)
In the rest of the work we will use the following notation: we know that \(\gcd(p_i^{y_i}, m^c) = 1 \). This means that \(p_i^{y_i} \) is an invertible element in the commutative ring \(\mathbb{Z}_{m^c} \) (now thought in the abelian notation \(\mathbb{Z}_{m^c} = \{0, 1, \ldots, m^c - 1\} \)). So, we will naturally denote by \(p_i^{-y_i} \) the inverse element \((p_i^{y_i})^{-1} \in \mathbb{Z}_{m^c} \) and, similarly, we define \(p_i^{-k y_i} \) as \((p_i^{ky_i})^{-1} \) for any \(k \geq 0 \), so it makes sense to write \(p_i^{ky_i} \) for any \(k \in \mathbb{Z} \), thinking of it as an invertible element of the ring \(\mathbb{Z}_{m^c} \). We are saying this to avoid a possible misinterpretation of \(p_i^{-y_i} \) as \(\frac{1}{p_i^{y_i}} \in \mathbb{Q} \), for example. With this notation, it is clear that \(s_i^k x s_i^{-k} = x p_i^{ky_i} \) for any \(k \in \mathbb{Z} \).

Proposition 4.2. \(\Gamma_{n,c} \) has not property \(R_\infty \) if and only if there is \(M = (a_{ij})_{ij} \in \text{GL}_r(\mathbb{Z}) \) such that

- \(\det(M - Id) \neq 0 \);
- for any \(1 \leq i \leq r \),
 \[
 p_1^{a_{1i}y_1} p_2^{a_{2i}y_2} \cdots p_r^{a_{ri}y_r} \equiv p_i^{y_i} \mod m^c. \quad (M, c, i)
 \]

Proof. Suppose first that \(\Gamma_{n,c} \) has not property \(R_\infty \). Let \(\varphi \in \text{Aut}(\Gamma_{n,c}) \) such that \(R(\varphi) < \infty \). Let \(M = \varphi \in \text{GL}_r(\mathbb{Z}) \), and write \(M = (a_{ij})_{ij} \). By Proposition 4.1 we have \(\det(M - Id) \neq 0 \). Since \(\varphi(\tau \Gamma_{n,c}) \subset \tau \Gamma_{n,c} \), we have \(\varphi(x) = x^\mu \) for some \(\mu \in \mathbb{Z} \) such that \(\gcd(\mu, m^c) = 1 \). Let us show that for any \(1 \leq i \leq r \) the equation \((M, c, i) \) holds. For any such \(i \), since \(\varphi \) is a homomorphism of \(\Gamma_{n,c} \) it must satisfy \(\varphi(s_i) \varphi(x) \varphi(s_i)^{-1} = \varphi(x)p_i^{y_i} \), so

\[
 s_1^{a_{1i}} \cdots s_r^{a_{ri}} x^\mu s_r^{-a_{ri}} \cdots s_1^{-a_{1i}} = x^{\mu p_i^{y_i}}
 \]
or, equivalently,

\[
 x^{\mu p_i^{a_{1i}y_1}} \cdots x^{\mu p_i^{a_{ri}y_r}} = x^{\mu p_i^{y_i}}.
 \]

Then \(\mu p_i^{a_{1i}y_1} \cdots p_r^{a_{ri}y_r} \equiv \mu p_i^{y_i} \mod m^c \), and since \(\gcd(\mu, m^c) = 1 \), we have \(p_1^{a_{1i}y_1} \cdots p_r^{a_{ri}y_r} \equiv p_i^{y_i} \mod m^c \), which is exactly \((M, c, i) \). This shows the “if” part. Suppose now that there is such a matrix \(M = (a_{ij})_{ij} \) and let us show \(\Gamma_{n,c} \) has not \(R_\infty \). Define \(\varphi : \Gamma_{n,c} \to \Gamma_{n,c} \) by \(\varphi(x) = x \) and \(\varphi(s_i) = s_1^{a_{1i}} s_2^{a_{2i}} \cdots s_r^{a_{ri}} \). Let us check that \(\varphi \) is a well defined homomorphism:

\[
 \varphi(s_i) \varphi(x) \varphi(s_i)^{-1} = s_1^{a_{1i}} s_2^{a_{2i}} \cdots s_r^{a_{ri}} x^{\mu \cdot a_{ri}} \cdots s_r^{a_{ri}} s_1^{a_{1i}} = x^{\mu p_i^{a_{1i}y_1}} \cdots x^{\mu p_i^{a_{ri}y_r}} = \varphi(x)p_i^{a_{1i}y_1} \cdots p_i^{a_{ri}y_r} = \varphi(x)p_i^{y_i},
 \]

the last equality being true by \((M, c, i) \). Also, since the \(s_i \) commute, we obviously have

\[
 \varphi(s_i) \varphi(s_j) = s_1^{a_{1i}} \cdots s_r^{a_{ri}} s_1^{a_{1j}} \cdots s_r^{a_{rij}} = s_1^{a_{1j}} \cdots s_r^{a_{rij}} s_1^{a_{1i}} \cdots s_r^{a_{ri}} = \varphi(s_j) \varphi(s_i).
 \]

Finally,

\[
 \varphi(x)^m = x^{m^c} = 1,
 \]

so \(\varphi \) is in fact a homomorphism. Let us now construct an inverse homomorphism. Let \(N = M^{-1} \in \text{GL}_r(\mathbb{Z}) \) and write \(N = (b_{ij})_{ij} \). Let us show that, for any \(1 \leq i \leq r \), \(N \) satisfies the equation \((N, c, i) \), that is \(p_1^{b_{1i}y_1} p_2^{b_{2i}y_2} \cdots p_r^{b_{ri}y_r} = p_i^{y_i} \mod m^c \). Since \(MN = Id \), for any \(1 \leq i, j \leq r \) we have

\[
 \sum_{k=1}^r a_{ik} b_{kj} = (MN)_{ij} \equiv Id_{ij} = \delta_{ij},
 \]

where \(\delta_{ij} \) is the Kronecker delta. Fix \(i \). We do the following: for each fixed \(1 \leq j \leq r \), we raise both sides of equation \((M, c, j) \) to the power of \(b_{ji} \) and obtain

\[
 p_1^{a_{1j}b_{1ji}y_1} p_2^{a_{2j}b_{2ji}y_2} \cdots p_r^{a_{rij}b_{rji}y_r} \equiv p_j^{b_{rji}y_j} \mod m^c.
 \]
Now, if we do the product of all the \(r \) equations above (on both sides, of course) and rearrange the left side according to the primes we get

\[
p_{1}^{(a_{11}b_{11}+\cdots+a_{1r}b_{1r})y_{1}}p_{2}^{(a_{21}b_{11}+\cdots+a_{2r}b_{1r})y_{2}}\cdots p_{r}^{(a_{r1}b_{11}+\cdots+a_{r1}b_{1r})y_{r}} \equiv p_{1}^{b_{11}y_{1}}p_{2}^{b_{21}y_{2}}\cdots p_{r}^{b_{r1}y_{r}} \mod m^{c},
\]
or

\[
p_{1}^{(\sum_{k}a_{1k}b_{1k})y_{1}}p_{2}^{(\sum_{k}a_{2k}b_{1k})y_{2}}\cdots p_{r}^{(\sum_{k}a_{rk}b_{1k})y_{r}} \equiv p_{1}^{b_{11}y_{1}}p_{2}^{b_{21}y_{2}}\cdots p_{r}^{b_{r1}y_{r}} \mod m^{c},
\]
or even

\[
\prod_{i=1}^{r}p_{1}^{s_{i1}y_{1}}p_{2}^{s_{21}y_{2}}\cdots p_{r}^{s_{r1}y_{r}} \equiv p_{1}^{b_{11}y_{1}}p_{2}^{b_{21}y_{2}}\cdots p_{r}^{b_{r1}y_{r}} \mod m^{c},
\]

which results in

\[
p_{1}^{y_{1}} \equiv p_{1}^{b_{11}y_{1}}p_{2}^{b_{21}y_{2}}\cdots p_{r}^{b_{r1}y_{r}} \mod m^{c},
\]

which is exactly \((N, c, i)\), as we wanted. Now define \(\psi : \Gamma_{n,c} \to \Gamma_{n,c} \) by \(\psi(x) = x \) and \(\psi(s_{i}) = s_{1}^{b_{i1}}s_{2}^{a_{i2}}\cdots s_{r}^{b_{ri}}. \) As we did with \(\varphi \), the fact that \(N \) satisfies \((N, c, i)\) for all \(i \) gives us that \(\psi \) is a group homomorphism. Of course we have \(\varphi(\psi(x)) = x. \) Also, by the fact that \(MN = Id \), straightforward calculations show that \(\varphi(\psi(s_{i})) = s_{i}. \) Similarly, we show that \(\psi \varphi = Id \) by using that \(NM = Id, \) so \(\varphi \in Aut(\Gamma_{n,c}). \) Since \(\overline{\varphi} = M \) we have \(\det(\overline{\varphi} - Id) = \det(M - Id) \neq 0 \) by hypothesis, so \(R(\varphi) < \infty \) by Proposition 4.1. This completes the proof.

Observation 4.3: Implicit in the proof of Proposition 4.2 above is the classification of all matrices in \(GL_{r}(\mathbb{Z}) \) which can be extended to automorphisms of \(\Gamma_{n,c}. \) In other words, given a matrix \(M = (a_{ij})_{ij} \in GL_{r}(\mathbb{Z}), \) there is an automorphism \(\varphi \) of \(\Gamma_{n,c} \) such that \(\overline{\varphi} = M \) if and only if all equations \((M, c, i)\) are satisfied.

To proceed, we need the following lemma, which can be easily shown by elementary number theory and induction on \(k: \)

Lemma 4.4. Let \(x, m \geq 2. \) If \(x = 1 \mod m, \) then \(x^{m^{k}} = 1 \mod m^{k+1} \) for any \(k \geq 0. \)

Theorem 4.5. Let \(n \geq 2 \) have prime decomposition \(n = p_{1}^{y_{1}}\cdots p_{r}^{y_{r}}, \) the \(p_{i} \) being pairwise distinct and \(y_{i} > 0. \) Suppose \(r \geq 2, \) that is, there are at least two primes involved. Then the nilpotent quotient group \(\Gamma_{n,c} = \Gamma_{n}/\gamma_{c+1}(\Gamma_{n}) \) does not have property \(R_{\infty} \) for any \(c \geq 1. \) In other words, the \(R_{\infty} \)-nilpotency degree of \(\Gamma_{n} \) is infinite.

Proof. Let \(m = \gcd(p_{1}^{y_{1}} - 1, \ldots, p_{r}^{y_{r}} - 1), \) as we have done in this work. If \(m = 1, \) then none of the groups \(\Gamma_{n,c} \) have property \(R_{\infty}. \) This is because \(\Gamma_{n,c} \simeq \mathbb{Z}^{r} \) for any \(c \) in this case (see Theorem 3.4), and we know \(\mathbb{Z}^{r} \) has not \(R_{\infty}. \) So, from now on, suppose \(m \geq 2. \) Of course \(\Gamma_{n,1} \) does not have property \(R_{\infty}, \) for it is a finitely generated abelian group. Now, for any fixed \(c \geq 2, \) we will use Proposition 4.2 that is, for any \(r \geq 2, \) we will find a matrix \(M = (a_{ij})_{ij} \in GL_{r}(\mathbb{Z}) \) with \(\det(M - Id) \neq 0 \) and satisfying equations \((M, c, i)\) for \(1 \leq i \leq r. \) We will look for a particular family of matrices \(M, \) that is,

\[
M = m^{k}N + Id.
\]

Here, \(k \) will be some suitable positive number, \(N = (j_{a\beta})_{a\beta} \) will be some integer \(r \times r \) matrix with determinant 1 and \(m^{k}N = (m^{k}j_{a\beta})_{a\beta} \) is the natural scalar product of a number by a matrix. The first thing to observe is that any such matrix \(M \) satisfies all the equations \((M, c, i)\) for some big enough \(k \geq 1. \) Let us see that. It is easy to see that, for such \(M, \) the equations \((M, c, i)\) become exactly

\[
(p_{1}^{y_{1}m}p_{2}^{y_{2}}\cdots p_{r}^{y_{r}})m^{k} \equiv 1 \mod m^{c}. \quad (M, c, i)
\]

For us to use the previous lemma, the term inside the parenthesis in the above equation must be congruent to 1 modulo \(m, \) so we claim this is true. Since \(m \) divides each number
of the determinant of
with d
Now let $k = c - 1$. By the above lemma we have $(p_1^{i_1}p_2^{i_2} \ldots p_r^{i_r})^m = 1 \mod m^c$, so for every i, equation (M, c, i) is satisfied for such M.

It is then enough for us to find, for any $r \geq 2$, an integer matrix N which makes $\det(M) = 1$ and $\det(M - Id) \neq 0$. Since $M = m^k N + Id$, we have

$$\det(M - Id) = \det(m^k N) = m^r \det(N),$$

so for $\det(M - Id)$ to be non-zero it suffices us to have $\det(N) \neq 0$. We claim therefore that, for any $r \geq 2$, there is a matrix N, such that $\det(N, r) = 1$ and $\det(M, r) = \det(m^k N, r + Id) = 1$.

For any $r \geq 2$, let

$$N_r = \begin{bmatrix}
1 & -(m^k + 2) & m^k + 1 & -(m^k + 1) & \ldots & (-1)^{r-4}(m^k + 1) & (-1)^{r-3}(m^k + 1) \\
1 & -(m^k + 1) & m^k & -m^k & \ldots & (-1)^{r-4}m^k & (-1)^{r-3}m^k \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 0
\end{bmatrix}.$$

By developing the determinant of N_r, using the last column, we get that $\det(N, r) = 1$, since the two submatrices that appear are upper triangular with diagonal entries equal 1. Now, our task is to prove that $\det(M, r) = 1$, where

$$M_r = \begin{bmatrix}
d & -m^k(m^k + 2) & m^k d & -m^k d & \ldots & (-1)^{r-4}m^k d & (-1)^{r-3}m^k d \\
m^k & -m^k d + 1 & m^{2k} & -m^{2k} & \ldots & (-1)^{r-4}m^{2k} & (-1)^{r-3}m^{2k} \\
0 & m^k & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & m^k & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & m^k & 1
\end{bmatrix}$$

with $d = m^k + 1$. We will prove this by induction. The case $r = 2$ is verified by the calculation of the determinant of

$$M_2 = \begin{bmatrix}
m^k + 1 & -m^k(m^k + 2) \\
m^k & -m^k(m^k + 1) + 1
\end{bmatrix}.$$

Now, for $r > 2$, developing the determinant of M_r by the last column gives us:

$$\det(M_r) = (-1)^{r+1}(-1)^{r-3}m^k d m^{k(r-1)} + (-1)^{r+2}(-1)^{r-3}m^{2k} d m^{k(r-2)} + (-1)^{2r} \det(M_{r-1}) = m^{kr} d - m^{kr} d + 1 = 1.$$

This completes the induction step and finishes our proof. □

References

[1] M. Calvez and I. Soroko. Property R_∞ for some spherical and affine Artin-Tits groups Journal of Group Theory, vol. 23, no. 3, 2020, pp. 545 – 562.
[5] K. Dekimpe, D. L. Gonçalves and O. Ocampo. The R_∞ property for pure Artin braid groups, Monatsh Math 195, 15 – 33 (2021).

[6] A. L. Fel’shtyn and D. L. Gonçalves. The Reidemeister number of any automorphism of a Baumslag-Solitar group is infinite, Geometry and dynamics of groups and spaces, 399 – 414, Progr. Math., 265, Birkhäuser, Basel, 2008.

[7] D. L. Gonçalves and P. Wong. Twisted conjugacy classes in nilpotent groups, Journal für die Reine und Angewandte Mathematik, V. 633, 2009, pp. 11 – 27.

[8] B. Jiang, Lectures on Nielsen fixed point theory, Contemporary Mathematics 14 (American Mathematical Society, Providence, RI, 1983) vii+100pp.

[9] G. Levitt and M. Lustig. Most automorphisms of a hyperbolic group have very simple dynamics, Ann. Scient. Éc. Norm. Sup. 33, 507 – 517 (2000).

[10] W. Magnus, A. Karrass and D. Solitar. Combinatorial group theory: Presentation of groups in terms of generators and relations, Dover publications, inc. New York, 1976.

[11] R. Mikhailov and I. B. S. Passi. Lower Central and Dimension Series of Groups, Part of the book series: Lecture Notes in Mathematics (LNM, volume 1952), Springer, 2009.

[12] K. Reidemeister. Automorphismen von Homotopiekettenringen, Math. Ann. 112 (1936) 586 – 593.

[13] V. Roman’kov. Twisted conjugacy classes in nilpotent groups, J. Pure Appl. Algebra, V. 215, N. 4, 2011, 664 – 671.

[14] J. Taback and P. Wong. Twisted conjugacy and quasi-isometry invariance for Generalized Solvable Baumslag-Solitar groups, J. London Math. Soc. (2) 75 (2007) 705 – 717, 2007.

(Wagner C. Sgobbi) DEPARTAMENTO DE MATEMÁTICA - INSTITUTO DE MATEMÁTICA E ESTATÍSTICA - UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 66.281 - CEP 05314-970, SÃO PAULO - SP, BRAZIL
Email address: wagnersgobbi@dm.ufscar.br

(Dalton C. Silva) INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO, 11665-071, CARAGUATATUBA, SP, BRAZIL
Email address: dalton.couto@ifsp.edu.br

(Daniel Vendrúscolo) DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE SÃO CARLOS, RODOVIA WASHINGTON LUIZ, KM 235, SÃO CARLOS 13565-905, BRAZIL
Email address: daniel@dm.ufscar.br