Thermodynamic pressure for massless QCD and the trace anomaly

H. Arthur Weldon

Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia, 26506-6315

(Dated: November 11, 2022)

From statistical mechanics the trace of the thermal average of any energy-momentum tensor is
\[\langle T^\mu_\mu \rangle = T^0 T / \partial T - 4 P. \]

The renormalization group formula
\[\langle T^\mu_\mu \rangle = \beta(g_M) \partial P / \partial \mu M \]

for QCD with massless fermions requires the pressure to have the structure

\[P = T^4 \sum_{n=0}^{\infty} \phi_n(g_M) \left(\frac{g_M}{4\pi T} \right)^n, \]

where the factor 4\pi is for later convenience. The functions \(\phi_n(g_M) \) for \(n \geq 1 \) may be calculated from \(\phi_0(g_M) \) using the recursion relation

\[n \phi_n(g_M) = -\beta(g_M) \phi_{n-1} / \partial g_M. \]

This is checked against known perturbation theory results by using the terms of order \((g_M)^1, (g_M)^3, (g_M)^4 \) in \(\phi_0(g_M) \) to obtain the known terms of order \((g_M)^1, (g_M)^3, (g_M)^6 \) in \(\phi_2(g_M) \). The above series may be summed and gives the same result as choosing \(M = 4\pi T \), viz. \(T^4 \phi_0(g_M T^3) \).

I. INTRODUCTION

For a symmetric energy-momentum tensor \(T^\mu_\nu \) the dilatation current \(S^\mu = T^{\mu\lambda\beta\alpha} x_\lambda x_\beta \) and the four conformal currents \(K^\alpha \) are conserved if the energy-momentum tensor is traceless:

\[\partial_\mu S^\mu = T^\mu_\mu, \]

\[\partial_\mu K^{\mu\lambda} = -2T^{\mu\lambda}. \]

The classical energy-momentum tensor for QCD with massless fermions is traceless but quantum corrections introduce a renormalization scale that spoils the conservation of scale and conformal currents and renders the trace nonzero.

The trace of the thermally averaged energy-momentum tensor is \(\langle T^\mu_\mu \rangle = u - 3P \) where \(u = \langle T^0_0 \rangle \) is the energy density and \(P = -\sum_{j=1}^3 \langle T^j_j \rangle / 3 \) is the pressure. The relation

\[\exp(\beta P V) = Z = \text{Tr}\{e^{-\beta H}\} \]

between the pressure and the partition function implies that

\[\frac{\partial}{\partial \beta} (\beta P) = -\frac{\langle H \rangle}{V} = -u, \]

or equivalently

\[T \frac{\partial P}{\partial T} = u + P. \]

The trace of the energy-momentum tensor becomes

\[\langle T^\mu_\mu \rangle = u - 3P = T \frac{\partial P}{\partial T} - 4P. \]

For non-Abelian gauge fields with massless fermions the pressure has the form

\[P = T^4 \Phi(g_M, M/T), \]

where \(M \) is the renormalization scale. From (1) the trace of the energy-momentum tensor is

\[\langle T^\mu_\mu \rangle = T^5 \frac{\partial \Phi}{\partial T}. \]

One would expect the calculation of \(\Phi \) to be primary and the trace anomaly only an afterthought. However with the theorem of Drummond, Horgan, Landshoff, and Rebhan that

\[\langle T^\mu_\mu \rangle = \beta(g_M) \frac{\partial P}{\partial g_M}, \]

the anomaly becomes predictive in that the combination of (3) and (4) gives

\[T \frac{\partial \Phi}{\partial T} = \beta(g_M) \frac{\partial \Phi}{\partial g_M}, \]

which is Eq. (3.11) of Drummond et al.

Note that (3) is similar to the zero temperature operator identity \(T^\mu_\mu = \beta(g_M) \partial \mathcal{L} / \partial g_M \).

Sec. II shows how Eq. (3) ensures that \(P \) is independent of the renormalization scale \(M \) and requires \(P \) to have the structure shown in the abstract. Sec. III tests the recursion relation using known results for \(\phi_0(g_M) \) from perturbation theory to calculate the three known terms in \(\phi_2(g_M) \) and the only known term of \(\phi_2(g_M) \) and illustrates how to improve perturbation theory.

II. STRUCTURE OF P

1. Independence of the renormalization scale \(M \)

As indicated in Eq (2) the renormalization scale appears in \(\Phi \) through \(g_M \) and through \(r = M/T \). The full
\(M \) derivative of \(\Phi \) is
\[
M \frac{d\Phi}{dM} = M \frac{d\Phi}{dM} \frac{\partial \Phi}{\partial g_M} \bigg|_r + M \frac{dr}{dM} \frac{\partial \Phi}{\partial T} \bigg|_{g_M}.
\] (6)

In the first term use \(M \frac{d\Phi}{dM} = \beta(g_M) \); in the second, \(M \frac{dr}{dM} = r \) and \(r \frac{\partial \Phi}{\partial r} = -T \frac{\partial \Phi}{\partial T} \) so that
\[
M \frac{d\Phi}{dM} = \beta(g_M) \frac{\partial \Phi}{\partial g_M} \bigg|_r - T \frac{\partial \Phi}{\partial T} \bigg|_{g_M} = 0
\] (7)
after using Eq (5).

Comment: One can reverse the argument and derive the anomaly relation (3) of Drummond et al. by starting with the assertion that \(P \) is a physical quantity and must therefore be independent of the renormalization scale.

2. Origin of \([\ln(M/T)]\)^n

Since \(\Phi(g_M, M/T) \) is independent of \(M \) it must be only a function of \(T/\Lambda_{QCD} \). It is convenient to consider \(\Phi \) as a function of \(u = \ln(M/\Lambda_{QCD}) \), where \(\xi \) is some constant
\[
\Phi(g_M, T/M) = \phi_0(\ln(T/\Lambda_{QCD})),
\] (8)
and to introduce variables
\[
\begin{align*}
 u &= \ln(M/\Lambda_{QCD}) \\
 v &= \ln(M/\xi T).
\end{align*}
\] (9)
The running coupling is a function of \(u \) determined by \(\beta(g_M) = d\phi_M/du; \Phi \) is a function of \(u - v \):
\[
\Phi(g_M, M/T) = \phi_0(u - v) = \sum_{n=0}^{\infty} (-1)^n \frac{d^n\phi_0(u)}{du^n} v^n.
\] (10)
after at Taylor series expansion. The definition
\[
\phi_n(g_M) = \frac{(-1)^n \frac{d^n\phi_0(g_M)}{du^n}}{n!}
\] (11)
allows the series to be written
\[
\Phi(g_M, M/T) = \sum_{n=0}^{\infty} \phi_n(g_M) \left[\ln \left(\frac{M}{\xi T} \right) \right]^n.
\] (12)
The recursion relation \(n \phi_n(g_M) = -d\phi_{n-1}/du \), which follows from (11), may be expressed as
\[
\phi_n(g_M) = -\frac{1}{n} \beta(g_M) \frac{d\phi_{n-1}}{dg_M} \quad (n \geq 1).
\] (13)
One can confirm directly that the series (12) satisfies \(d\Phi/dM = 0 \).

Comment: If \(\xi \) is changed to \(\xi' \) then
\[
\ln \left(\frac{M}{\xi T} \right) = \ln \left(\frac{M}{\xi' T} \right) + \ln \left(\frac{\xi'}{\xi} \right).
\] (14)
The binomial theorem allow the series (12) to be expressed in terms of powers of \(\ln(M/\xi'T) \) with modified functions \(\phi'_n(g_M) \).

Comment: From \(u - 3P = T^3 \frac{\partial \Phi}{\partial T} \) it follows that the energy density and entropy density are
\[
\begin{align*}
 u &= T^4 [3 \Phi + T \frac{\partial \Phi}{\partial T}] \\
 s &= T^4 [4 \Phi + T \frac{\partial \Phi}{\partial T}].
\end{align*}
\] (15)

III. RESULTS FROM PERTURBATION THEORY

The \(O(g_M^3) \) term in \(P \) was calculated by Shuryak [3]; the \(O(g_M^4) \) term by Kapusta [4]; to this order there was no \(\ln(M/T) \). The \(O(g_M^4) \) term was calculated by Arnold and Zhai [5]; the \(O(g_M^5) \) by Zhai and Kastening [6]; in both cases \(\ln(M/T) \) appeared. The same result was obtained by Braaten and Nieto [7] using hard thermal loop resummation.

At \(O(g_M^5) \) nonperturbative magnetic screening effects arise [8–10]. Kajantie et al. [11] were able to calculate the \(O(g_M^5) \) perturbative terms and found both \(\ln(M/T) \) and \(\ln^2(M/T) \). A convenient reference that discusses all the results is Sec. 8.4 of Kapusta and Gale [12].

A. Checks against known results

For comparison with the published results from perturbation theory it is convenient to insert a prefactor in the the series expression for the pressure and choose \(\xi = 4\pi \):
\[
P = \frac{\pi^2 d_A}{9} T^4 \sum_{n=0}^{\infty} \phi_n(g_M) \left[\ln \left(\frac{M}{4\pi T} \right) \right]^n,
\] (17)
where \(d_A \) is the dimension of the adjoint representation. With the order \((g_M)^2, (g_M)^3, \) and \((g_M)^4 \) terms of \(\phi_0(g_M) \) the recursion relation (13) gives the first three terms of \(\phi_1(g_M) \) and the first term of \(\phi_2(g_M) \). Using the notation \(\phi_n^{(k)}(g_M) \) for the \(O(g_M^k) \) term in \(\phi_n(g_M) \) the necessary inputs are
\[
\begin{align*}
\phi_0^{(2)}(g_M) &= -\left(\frac{g_M}{4\pi} \right)^2 (C_A + \frac{5}{2} S_F) \\
\phi_0^{(3)}(g_M) &= \left(\frac{g_M}{4\pi} \right)^3 (C_A + S_F)^{3/2} / 16 \sqrt{3} \\
\phi_0^{(4)}(g_M) &= \left(\frac{g_M}{4\pi} \right)^4 \left\{ 48 C_A (C_A + S_F) \ln W + R \right\},
\end{align*}
\]
where \(W = (g_M/2\pi)^3\sqrt{(C_A + S_F)/3} \) and
\[
R = C_A^2 R_1 + C_A S_F R_2 + S_F^2 R_3 + S_F R_4,
\] (18)
The coefficients \(R_j \) are given in [3, 12] in terms of Riemann zeta functions and the Euler constant. For later
comparison with \([11]\) it is convenient to employ the approximate numerical values:
\[
R_1 = 79.2626 \quad R_2 = 18.9212 \quad R_3 = -0.6914 \quad R_4 = 9.6145. \tag{19}
\]
The standard notation \([12]\) for SU(N) with \(n_f\) fermions in the fundamental representation is \(d_A = N^2 - 1, C_A = N, d_F = N n_f, S_F = n_f/2, S_{2F} = (N^2 - 1) n_f/4 N\). The first two terms in the beta function are
\[
\beta(g_M) = -\beta_0 g_M^3 - \beta_1 g_M^5 + \ldots
\]
\[
\beta_0 = \left(\frac{11}{3} C_A - \frac{4}{3} S_F \right)/(4\pi)^2
\]
\[
\beta_1 = \left(\frac{34}{3} C_A^2 - \frac{20}{3} C_A S_F - 4 S_{2F} \right)/(4\pi)^2. \tag{20}
\]
The predictions of the recursion relation \([13]\) are
\begin{align*}
A. \quad & \phi_1^{(4)}(g_M) = \beta_0 g_M^3 \frac{d}{dg_M} \phi_0^{(2)}(g_M) \\
B. \quad & \phi_1^{(5)}(g_M) = \beta_0 g_M^3 \frac{d}{dg_M} \phi_0^{(3)}(g_M) \\
C. \quad & \phi_1^{(6)}(g_M) = \beta_0 g_M^3 \frac{d}{dg_M} \phi_0^{(4)}(g_M) + \beta_1 g_M^5 \frac{d}{dg_M} \phi_0^{(2)}(g_M) \\
D. \quad & \phi_2^{(6)}(g_M) = \frac{1}{2} \beta_0 g_M^3 \frac{d}{dg_M} \phi_1^{(4)}(g_M). \tag{21}
\end{align*}

The result for A,
\[
\phi_1^{(4)}(g_M) = \left(\frac{g_M}{4\pi} \right)^4 \left\{ -C_A \frac{22}{3} - C_A S_F \frac{47}{3} + S_F^2 \frac{20}{3} \right\}, \tag{22}
\]
agrees with \([5, 6, 11]\).

The result for B,
\[
\phi_1^{(5)}(g_M) = \left(\frac{g_M}{4\pi} \right)^5 \left(\frac{C_A + S_F}{3} \right)^{1/2} \times \left(C_A^2 176 + C_A S_F 112 - S_F^2 64 \right). \tag{23}
\]
agrees with \([6, 7, 11]\).

The result for C is
\begin{align*}
\phi_1^{(6)}(g_M) &= 4 \left(\frac{g_M}{4\pi} \right)^6 \left\{ \left(\frac{11}{3} C_A - \frac{4}{3} S_F \right) R \\
&+ \left(C_A + \frac{5}{2} S_F \right) \left(-\frac{17}{3} C_A + \frac{10}{3} C_A S_F + S_{2F} \right) \\
&+ \left(\frac{11}{3} C_A - \frac{4}{3} S_F \right) C_A (C_A + S_F) (12 + 48 \ln W) \right\} \tag{24}
\end{align*}

To compare this with \([11]\) it is necessary to evaluate \([24]\) for SU(3):
\begin{align*}
\phi_1^{(6)}(g_M) &= 4 \left(\frac{g_M}{4\pi} \right)^6 \left\{ 432 (11 - \frac{2}{3} n_f) (1 + \frac{1}{6} n_f) \ln W \\
&+ 1035 + \frac{325}{4} n_f - \frac{49}{12} n_f^2 + \left(11 - \frac{2}{3} n_f \right) R \right\}. \tag{25}
\end{align*}

Substituting the numerical values of \(R\) gives the final result
\[
\phi_1^{(6)}(g_M) = 4 \left(\frac{g_M}{4\pi} \right)^6 \left\{ 432 (11 - \frac{2}{3} n_f) (1 + \frac{1}{6} n_f) \ln W \\
&+ 8882 - 11.6186 n_f - 29.1767 n_f^2 + 0.1152 n_f^3 \right\}. \tag{26}
\]

In \([11]\) the \(O(g_M^6)\) results are expressed in terms of \((\alpha M/\pi)^3\) and \(\ln(M/2\pi T)\). When \([11]\) is reexpressed in terms of \((g_M/4\pi)^6\) and \(\ln(M/4\pi T)\) it agrees completely with Eq. \([26]\).

The final calculation D gives
\[
\phi_2^{(6)}(g_M) = - \left(\frac{g_M}{4\pi} \right)^6 4 \left(C_A + \frac{5}{2} S_F \right) \left(\frac{11}{3} C_A - \frac{4}{3} S_F \right)^2. \tag{27}
\]

For SU(3) with \(n_f\) multiplets of fermions
\[
\phi_2^{(6)}(g_M) = - \left(\frac{g_M}{4\pi} \right)^6 1452 (1 + \frac{5}{12} n_f) (1 - \frac{2}{33} n_f)^2, \tag{28}
\]
which is exactly the same as \([11]\).

B. Improving perturbation theory

At order \((g_M)^6\) nonperturbative effects appear in \(\phi_0^{(6)}(g_M)\) but not in \(\phi_1^{(6)}(g_M)\) or \(\phi_2^{(6)}(g_M)\) calculated above. The argument of Linde \([8, 9, 12]\) shows that certain diagrams that appear to be of order \((g_M)^k\) with \(k > 6\) are so infrared sensitive that nonperturbative magnetic shielding will render them of order \((g_M)^6\). Thus \(\phi_0^{(6)}(g_M)\) receives contributions from diagrams with infinitely many loops. Nevertheless \(\phi_0(g_M)\) is still a series of the form
\[
\phi_0(g_M) = \sum_{k=0}^{\infty} \phi_0^{(k)}(g_M). \tag{29}
\]

The \(k = 1\) term vanishes; the \(k = 2\) term is the first to depend on \(g_M\). Because the beta function begins with \((g_M)^3\) the recursion relation \([13]\) implies that \(\phi_0^{(k)}(g_M)\) will generate terms of order \((g_M)^{3k}\) for the \(k\) loop contributions. The series \([17]\) for \(P\) may be considered a double series:
\[
P = \frac{\pi^2 d_A}{9} T^4 \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \phi_0^{(2n+k)}(g_M) \ln \left(\frac{M}{4\pi T} \right)^n. \tag{30}
\]

Perturbative calculations through order \((g_M)^5\) determine \(\phi_0^{(2n+k)}(g_M)\) for \(2n + k \leq 5\):
\[
P_{[n]}^{(k \leq 5)} = \frac{\pi^2 d_A}{9} T^4 \sum_{k=0}^{5} \sum_{n=0}^{\infty} \phi_0^{(2n+k)}(g_M) \ln \left(\frac{M}{4\pi T} \right)^n. \tag{31}
\]

The difference between \(P_{[n]}^{(k \leq 5)}\) and \(P_{[n]}^{(k \leq 4)}\) is not small \([6, 7, 13]\).
There is no need to terminate the sum over \(n \); one can easily compute the full sum
\[
P^{(k \leq 5)} = \frac{\pi^2 d_A T^4}{9} \sum_{k=0}^{5} \sum_{n=0}^{\infty} \phi_n^{(2n+k)}(g_M) \left[\ln \left(\frac{M}{4\pi T} \right) \right]^n.
\]
(32)
The input is of the form
\[
\phi_0^{(k)}(g_M) = \left(\frac{g_M}{4\pi} \right)^k \left\{ A_k + B_k \ln \left\{ \frac{g_M}{2\pi} \sqrt{(C_A + S_F)/3} \right\} \right\},
\]
(33)
where \(A_1 = 0 \) and \(B_4 \) is the only nonzero \(B_k \) for \(k \leq 5 \). As before, define \(u = \ln(M/\Lambda_{QCD}) \). At large \(M \), one can use \((g_M)^2 = [\beta_0 u]^{-1}\) and the parametrization
\[
\phi_0^{(k)}(g_M) = \frac{1}{u^{k/2}} (a_k + b_k \ln u).
\]
(34)
The \(n \)'th order derivatives of \(\phi_0(g_M) \) required by Eq. (11) give
\[
\phi_n^{(2n+k)}(g_M) = \frac{1}{u^{k/2+n}} [a_k S_n - 2 \frac{dS_n}{dk} b_k + S_n b_k \ln u]
\]
(35)
\[S_n = \frac{\Gamma(n+k/2)}{n! \Gamma(k/2)}.
\]
With \(v = \ln(M/4\pi T) \) Eq. (10) requires the sum
\[
\sum_{n=0}^{\infty} S_n \left(\frac{v}{u} \right)^n.
\]
(36)
By the ratio test this sum converges for \(|v/u| < 1 \), which is satisfied provided \(M > \sqrt{4\pi T \Lambda_{QCD}} \) and \(4\pi T > \Lambda_{QCD} \). The result is
\[
\sum_{n=0}^{\infty} S_n \left(\frac{v}{u} \right)^n = \left[1 - \frac{v}{u} \right]^{-k/2}
\]
(37)
Applying \(d/dk \) as required in (35) gives
\[
P^{(k \leq 5)} = \frac{\pi^2 d_A T^4}{9} \sum_{k=0}^{5} \left(\frac{g_4 T}{4\pi} \right)^k \left\{ A_k + B_k \ln \left[\frac{g_4 T}{2\pi} \sqrt{(C_A + S_F)/3} \right] \right\};
\]
(39)
or more concisely
\[
P^{(k \leq 5)} = \frac{\pi^2 d_A T^4}{9} \sum_{k=0}^{5} \phi_0^{(k)}(g_M) \bigg|_{\mu = 4\pi T}.
\]
(40)
In short, convergence of the infinite sum on \(n \) in (30) is automatic; whether a finite number of \(\phi_0^{(k)}(g_M) \) in the series for \(P^{(k \leq 5)} \) for \(\phi_0(g_M) \) is a good approximation, i.e. whether perturbation theory is reliable, is an open question [13].

[1] S. Coleman and R. Jackiw, Why Dilation Generators Do Not Generate Dilations, Ann. Phys. 67, 552 (1971).
[2] I.T. Drummond, R.R. Horgan, P.V. Landshoff, and A. Rebhan, QCD Pressure and the trace anomaly, Phys. Lett. B 460, 197 (1999).
[3] E.V. Shuryak, “Quark-gluon plasma and hadronic production of leptons, photons, and psions,” Phys. Lett. 78B, 150 (1978).
[4] J.I. Kapusta, Quantum Chromodynamics at High Temperature, Nucl. Phys. B148, 461 (1979).
[5] P. Arnold and C. Zhai, Three-loop free energy for pure gauge QCD, Phys. Rev. D 50, 7603 (1994); Three-loop free energy for high-temperature QED and QCD with fermions, Phys. Rev. D 51, 1906 (1995).
[6] C. Zhai and B. Kastening, Free energy of hot gauge theories with fermions through \(g^6 \), Phys. Rev. D 52, 7232 (1995).
[7] E. Braaten and A. Nieto, On the Convergence of Perturbative QCD at High Temperature, Phys. Rev. Lett. 76, 1417 (1996); Free energy of QCD at high temperature, Phys. Rev. D 53, 3421 (1996).
[8] A.D. Linde, Infrared problems in the thermodynamics of the Yang-Mills gas, Phys. Lett. B 67, 289 (1980).
[9] D.J. Gross, R.D. Pisarski, and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53, 43 (1981).
[10] I.T. Drummond, R.R. Horgan, P.V. Landshoff, and A. Rebhan, Eliminating infrared divergences in the pressure, Phys. Lett. B 398, 326 (1997).
[11] K. Kajantie, M. Laine, K. Rummukainen, Y. Schröder, Pressure of hot QCD up to \(g^6 \ln(1/g) \), Phys. Rev. D 67, 105008 (2003).
[12] J.I. Kapusta and C. Gale, “Finite Temperature Field Theory Principles and Applications,” 2nd ed, Cambridge Univ. Press, Cambridge, UK, 2006.
[13] E. Braaten, Thermodynamics of Hot QCD, Nucl. Phys. A702, 13 (2002).