Representation theory of logics: a categorial approach

Darllan Conceição Pinto *
Hugo Luiz Mariano †

December 2013

Abstract

The major concern in the study of categories of logics is to describe condition for preservation, under the a method of combination of logics, of meta-logical properties. Our complementary approach to this field is study the "global" aspects of categories of logics in the vein of the categories $\mathcal{S}_s, \mathcal{L}_s, \mathcal{A}_s$ studied in [AFLM3]. All these categories have good properties however the category of logics \mathcal{L} does not allow a good treatment of the "identity problem" for logics ([Bez]): for instance, the presentations of "classical logics" (e.g., in the signature $\{\neg, \vee\}$ and $\{\neg', \rightarrow'\}$) are not \mathcal{L}-isomorphic. In this work, we sketch a possible way to overcome this "defect" (and others) by a mathematical device: a representation theory of logics obtained from category theoretic aspects on (Blok-Pigozzi) algebraizable logics. In this setting we propose the study of (left and right) "Morita equivalence" of logics and variants. We introduce the concepts of logics (left/right)-(stably)-Morita-equivalent and show that the presentations of classical logics are stably Morita equivalent but classical logics and intuitionist logics are not stably-Morita-equivalent: they are only stably-Morita-adjointly related.

1 Introduction

In the 1990’s rise many methods of combinations of logics ([CC3]). They appear in dual aspects: as processes of decomposition or analysis of logics (e.g., the “Possible Translation Semantics” of W. Carnielli, [Car]) or as a processes of composition or synthesis of logics (e.g., the ”Fibrings” of D. Gabbay, [Ga]). This was the main motivation of categories of logics. The major concern in the study of categories of logics (CLE-UNICAMP, IST-Lisboa) is to describe condition for preservation, under the combination method, of meta-logical properties ([CCCSS], [ZSS]). Our complementary approach to this field is study the "global" aspects of categories of logics ([AFLM1], [AFLM2], [AFLM3], [MaMe]).

The initial steps on "global" approach to categories of logics are given in the sequence of papers [AFLM1], [AFLM2] and [AFLM3]: they present very simple but too strict notions of logics and morphisms, with "good" categorical properties ([AR]) but unsatisfactory treatment of the "identity problem" of logics ([Bez]). More flexible notions of morphisms between logics are considered in [FC], [BCC1], [BCC2], [CG]: this alternative notion allows better approach to the identity problem however has many categorial ”defects”. A "refinement" of those ideas is provided in [MaMe]: are considered categories of logics satisfying simultaneously certain natural conditions: (i) represent the major part of logical systems; (ii) have good categorical properties; (iii) allow a natural notion of algebraizable logical system ([BP], [Cze]); (iv) allow satisfactory treatment of the "identity problem" of logics.

In the present work we present and alternative approach to overcome the problems above through a mathematical device: a representation theory of logics obtained from category theoretic aspects on (Blok-Pigozzi) algebraizable logics:

Motivation 1: analogy: logics \leftrightarrow rings

- "Representation theory of rings”:
 - $R \in \text{obj}(\text{Ring}) \leadsto R - \text{Mod}$ (respec., $\text{Mod} - R \in \text{CAT}$);
 - (left/right) Morita equivalence of rings:
 $R \equiv R' \iff R - \text{Mod} \simeq R' - \text{Mod}$ (respec., $\text{Mod} - R \simeq \text{Mod} - R'$).
- "Representation theory of propositional logics”:
 - $l \in \text{obj}(\text{Log}) \leadsto l - \text{Mod}$ (respec., $\text{Mod} - l$): diagrams of categories and functors (respec.: diagrams of categories, functors and natural transformations);

*Instituto de Matemática e Estatística, University of São Paulo, Brazil. Emails: darllan.math@hotmail.com, hugomar@ime.usp.br
\†Research supported by FAPESP, under the Thematic Project LOGCONS: Logical consequence, reasoning and computation (number 2010/51038-0).
− (left/right) Morita equivalence of logics and variants;
− left and right are conceptually and technically distincts.

Motivation 2: analogy: logics −→ topology
 • "Algebraic Topology": (objects: topological spaces or logics)
 − define a general theory of "mathematical invariants" to measure the degree of distinctions of arbitrary logics;
 − develop general methods of calculation of "invariants" (in some sense);
 − introduce new forms of comparation of objects.

2 Preliminaries

2.1 Categories of Signatures and Categories of Logics

If we want define and study categories of logics, we must provide answers to the two natural questions: (i) how to represent a logical system? (ii) what are the relevant notions de morphisms? ([CC1], [CC2], [CCRS], [SSC]). In the following we adopt a simple –and syntactical– approach to this theme.

2.1. \(S_s \), the category of signature and (strict or simple) signature morphisms:
A (propositional, finitary) signature is a sequence of pairwise disjoint sets \(\Sigma = (\Sigma_n)_{n \in \mathbb{N}} \). In what follows, \(X = \{x_0, x_1, \ldots, x_n, \ldots\} \) will denote a fixed enumerable set (written in a fixed order). Denote \(F(\Sigma) \) (respectively \(F(\Sigma)[\eta] \)).

2.2. \(S_s \simeq \text{Set}^{\mathbb{N}} \), is a finitely locally presentable category and the fp signatures are the "finite support" signatures.

Recall:
(i) locally presentable (= accessible + complete/cocomplete) ([AR], [MP]);
(ii) a category is \(\kappa \)-accessible if it has \(\kappa \)-filtered colimits and a set of \(\kappa \)-presentable objects such that every object is a \(\kappa \)-filtered colimit of these objects.

2.3. \(L_s \), the category of (strict) logics over \(S_s \):
A logic is a pair \((\Sigma, \Gamma) \), where \(\Sigma \) is a signature and \(\Gamma \) is a tarskian consequence operator. A \(L_s \)-morphism, \(f : (\Sigma, \Gamma) \to (\Sigma', \Gamma') \), is a (strict) signature morphism \(f \in S_s(\Sigma, \Sigma') \) such that \(f : F(\Sigma) \to F(\Sigma') \) is a \((\Gamma, \Gamma') \)-translation: \(\Gamma \vdash \psi \Rightarrow \hat{f}[\Gamma] \vdash' \hat{f}(\psi) \), for all \(\Gamma \cup \{\psi\} \subseteq F(\Sigma) \) (i.e., it is "continuous").

2.4. \(L_s \) is a \(\omega \)-locally presentable category and the fp logics are given by a finite set of "axioms" and "inference rules" over a fp signature.

2.5. \(A_s \), the category (strict) of BP-algebraizable logics (see [BP]):
 • objects: logic \(l = (\Sigma, \Gamma) \), that has some algebraizing pair \((\delta \equiv \epsilon, \Delta) \);
 • morphisms: \(f : l \to l' : f \in L_s(l, l') \) and "preserves algebraizing pair" (well defined).

Recall that:
\[
\{\delta, \epsilon : r < s\} \subseteq F(\Sigma)[1];
\{\Delta : u < v\} \subseteq F(\Sigma)[2];
\]
\[
((\delta \equiv \epsilon, \Delta)) \text{ satisfies conditions (i) and (ii) (and/or conditions (i)' and (ii)' below, with } \Gamma \cup \Theta \cup \{\psi, \varphi, \zeta, \eta, \theta\} \subseteq F(\Sigma):
\]
\[
(i) \Gamma \vdash \varphi \Rightarrow (\delta(\psi) \equiv \epsilon(\psi)) : \psi \in \Gamma \vdash K (\delta(\varphi) \equiv \epsilon(\varphi));
(ii) (\varphi \equiv \psi) \vdash K (\delta(\varphi \Delta \psi) \equiv \epsilon(\varphi \Delta \psi));
(iii) \zeta \equiv K (\varphi \equiv \psi) \Rightarrow (\Delta(\eta) \in \Theta) \vdash \varphi \Delta \psi;
(iv) \theta \vdash K (\delta(\varphi) \Delta(\varphi)).
\]

2.6. Functors:
 • Forgetful functors: \(U : A \to L_s; \quad U' : A \to S_s \);
 • If \(f \in A(l_0, l_1) \) and \(K' \subseteq \Sigma' - \text{Str} \) is the quasivariety equivalent algebraic semantic of \(l_1 \), then \(f^* : \Sigma^1 - \text{Str} \to \Sigma^0 - \text{Str} \) \((M_1 \mapsto (M_1)^f)\) restricts to \(f^* : K^1 \to K^0 \).
2.7. Limits and colimits in A_s:
U creates products over "bounded" diagrams. U' creates colimits over non empty diagrams. U creates filtered colimits, moreover if $(l, (\gamma_i)_{i \in (I, \leq)})$ is a colimit cocone, then given $M \in \Sigma - \text{Str}$, $M \in K \iff M^n \in K_i$, $\forall i \in I$. □

2.8. A_s is a finitely accessible category (but not complete/cocomplete). Moreover $U : A \to L_s$ is a ω-accessible functor. □

2.9. Remote algebrization revisited (LFIs):
- $F_l : X_i \to Y_i$, $i = 0, 1$, accessible functors $(F_0 \to F_1)$ is an accessible category;
- accessible categories have a small weakly initial family;

Proposition: For each $l \in \text{Obj}(L_s)$, there is a small family of L_s-morphisms $(\eta_i : l \to U(l_i))_{i \in I}$ such that for each $l' \in \text{Obj}(A)$ and $f \in L_s(l, U(l'))$, there are $i \in I$ and $f_i \in A(l_i, l')$ such that $U(f_i) \circ \eta_i = f$.

Corollary: A weak universal property of $\eta : l \to \prod_{i \in I} U(l_i)$.

Questions: Describe conditions on l such that:
- $\{l_i : i \in I\} \subseteq (A)_{fp}$.
- $\{l_i : i \in I\}$ be bounded and $U(\prod_{i \in I} l_i) \cong \prod_{i \in I} U(l_i)$.
- we can replace \exists by $\exists!$.

Then the ingredients are "canonical" ($I \cong I'$, $l_i \cong l_{i'}$) and allows us to define "the algebraizable spectrum of the logic l'" (analogy with rings: $R \in \text{Obj}(cRing_1) \sim (\alpha : R \to \text{Frac}(R/P))_{P \in \text{Spec}(R)}$).

2.10. But it does not allow a good treatment of the "identity problem" for logics: for instance, the presentations of "classical logics" (e.g., in the signature $\{\neg, \vee\}$ and $\{\neg', \to\}$) are not L_s-isomorphic.

In this work, we sketch a possible way to overcome this "defect", by a mathematical device.

2.11. **Other categories of logics**

- L_f: logical translations with "flexible" signature morphisms $c_n \in \Sigma_n \Rightarrow \varphi'_n \in F(\Sigma')[n]$ ([FC])
- QL_f: "quotient" category: $f \sim g$ iff $\tilde{f}(\varphi) \vdash f^l \varphi$.

The logics l and l' are equipollent ([CG]) if l and l' are QL_f-isomorphic.

- $L'_f \subseteq L_f$: "congruential" logics: $\varphi_0 \vdash \psi_0, \ldots, \varphi_{n-1} \vdash \psi_{n-1} \Rightarrow c_n(\varphi_0, \ldots, \varphi_{n-1}) \equiv c_n(\psi_0, \ldots, \psi_{n-1})$.

The inclusion functor $L'_f \hookrightarrow L_f$ has a left adjoint.

- $Lind(A_f) \subseteq A_f$: "Lindenbaum algebraizable" logics: $\varphi \vdash \psi \iff \varphi \Delta \psi$ (well defined).

$Lind(A_f) \subseteq L'_f$ and the inclusion functor $Lind(A_f) \hookrightarrow A_f$ has a left adjoint.

- Qc'_f (or simply Q'_f): "good" category of logics: represents the major part of logics; has good categorial properties (is an accessible category complete/cocomplete); solves the identity problem for the presentations of classical logic interns of isomorphism; allows a good notion of algebraizable logic ([MaMe]). □

2.12. **Dense morphism**

- $f : l \to l' \in L_f$ is dense iff $\forall \varphi_n \in F(\Sigma')[n] \exists \varphi_n \in F(\Sigma)[n]$ such that $\varphi_n \vdash \varphi'_n \vdash \tilde{f}(\varphi_n)$.
- $f : l \to l'$ is a L-epimorphism (= surjective at each level $n \in \mathbb{N}$), thus it is a dense L-morphism.
- $l' \in L'_f \Rightarrow f$ is dense iff $\forall c'_n \in \Sigma'_n \exists \varphi_n \in F(\Sigma)[n]$ such that $c'_n(x_0, \ldots, x_{n-1}) \vdash \varphi_n$.

2.13. Q_c'-isos: For $h \in L'_f(l, l')$, are equivalent:

- $[h] \in Q'_f(l, l')$ is Q_c'-isomorphism;
- h is a dense morphism and h is a conservative translation (i.e., $\Gamma \vdash \psi \iff \tilde{h}(\Gamma) \vdash \tilde{h}(\psi)$, for all $\Gamma \cup \{\psi\} \subseteq F(\Sigma)$). □

2.14. **Quotient categories of (Lindenbaum) algebraizable logics**

$QLind(A_f) \hookrightarrow QA_f$:

- closed under directed colimits
- reflective subcategory
- both have non-empty colimits

□
2.2 Algebraizable Logics and Categories

2.15. Recall that in the theory of Blok-Pigozzi, to each algebraizable logic \(a = (\Sigma, \vdash) \) is canonically associated a unique quasivariety \(QV(a) \) in the same signature \(\Theta \) (its "algebraic codification").

Lemma 2.16. The inclusion functor has a left adjoint \((L, I) : QV \hookrightarrow \alpha - Str\) given by \(M \mapsto M/\theta_M \) where \(\theta_M \) is the least \(\Sigma \)-congruence in \(M \) such that \(M/\theta_M \in QV \). Moreover, the unity of the adjunction \((L, I)\) has components \((q_M)_M \in \Sigma - Str\), where \(q_M : M \to M/\theta_M \) is the quotient homomorphism.

Remark 2.17. The (forgetful) functor \((QV \overset{\iota}{\to} \Sigma - Str \overset{U}{\to} \text{Set})\) has the (free) functor \((\text{Set} \overset{F}{\to} \Sigma - Str \overset{L}{\to} QV)\), \(Y \to F(Y)/\theta_{F(Y)} \), as left adjoint. Moreover, if \(\sigma_Y : Y \to U \circ F(Y) \) is the \(Y \)-component of the unity of the adjunction \((F, U)\), then \((Y \overset{\iota}{\to} U F (Y)) \) := \(\sigma_Y \circ U F (Y) \) \(U (q_{F(Y)}) \) \(U I L F (Y) \) is the \(Y \)-component of the adjunction \((L \circ F, U \circ I)\).

Theorem 2.18. Let \(h \in A_f(a, a') \), then the induced functor \(h^* : \Sigma' - Str \to \Sigma - Str \) \((M' \mapsto (M')^h)\), "commutes over \(Set" \) (i.e., \(U \circ h^* = U' \)) and has the following additional properties:
(a) it has restriction \(h^*|_\Sigma : QV(a') \to QV(a) \) (i.e. \(I \circ h^*|_\Sigma = h^* \circ I' \));
(b) there is a natural epimorphism \(h : L \circ h^* \to h^* \circ L' \), that restricts to \(L \circ h^* \circ I' = h^* \circ L' \circ I' \)

Good representation theory of \(\text{Lind}(A_f) \)

Proposition 2.19. Let \(g_0, g_1 : I \to a \in L_f, \) with \(a \in \text{Lind}(A_f) \).
(a) \(g_0 \) is dense \(\Rightarrow g^*|_\Sigma : QV(a) \to \Sigma - str \) is full, faithful and injective on objects.
(b) \(\{g_0, g_1\} \in Q_f \Rightarrow g_0^* = g_1^* : QV(a) \to \Sigma - str \).

Proposition 2.20. Let \(a = (\Sigma, \vdash) \) be a Lindenbaum algebraizable then:
(a) \(F(\Sigma)/\Delta = F(\Sigma)/\vdash \) is a \(\Sigma \)-structure.
(b) \(F(\Sigma)/\Delta \in QV(a) \).
(c) \(F(\Sigma)/\Delta \) is the free \(QV(a) \)-object over the set \(X = \{x_0, \ldots, x_n, \ldots\} \).

Proposition 2.21. Let \(a \) and \(a' \) be Lindenbaum algebraizable logics. If \(a \overset{\text{isomorphism}}{\sim} a' \) is a pair of inverse \(\text{QLind}(A_f) \)-isomorphisms (i.e., are \(\text{Q}^*_f \)-isomorphisms that preserve algebraizing pair) then: \(QV(a) \overset{h^*}{\sim} QV(a') \) is an isomorphism of categories.
Lemma 2.22. Let $\Sigma, \Sigma' \in \text{Obj}(S_f)$. Consider $H : \Sigma' \to \text{Str} \to \Sigma \to \text{Str}$ a functor that "commutes over Set" (i.e. $U \circ H = U'$) and, for each set Y, let $\eta_H(Y) : F(Y) \to H(F'(Y))$ be the unique Σ-morphism such that $(Y \xrightarrow{a} U'F(Y))$ \[UHF(Y) = (Y \xrightarrow{a} U'F(Y)). \]

Then:
(a) For each set Y and each $\psi \in F(Y)$, $\text{Var}(\eta_H(Y)(\psi)) \subseteq \text{Var}(\psi)$;
(b) If H is an isomorphism of categories, then $\eta_H(Y)$ "preserves variables" (i.e., $\forall \psi \in F(Y)$, $\text{Var}(\eta_H(Y)(\psi)) = \text{Var}(\psi)$) and H preserves (strictly) products and substructures.
(c) If H is an isomorphism of categories, then $\eta_H(Y)$ is an isomorphism of change of bases.

2.23. Let $\Sigma, \Sigma' \in \text{Obj}(S_f)$. Let $H : \Sigma' \to \text{Str} \to \Sigma \to \text{Str}$ be a "signature" functor, i.e. a functor satisfying (s1), (s2), (s3):
(s1) H "commutes over Set";
(s2) η_H "preserves variables";
(s3) H preserves (strictly) products and substructures.

Denote S_f^\dagger the subcategory of the category of diagrams (i.e., the category whose objects are categories and the arrows are change of base morphisms (i.e., some pairs (functors, natural transformations)), given by all the categories Σ and morphisms (H, η_H) where H is a signature functor.

Let $a, a' \in \text{Obj}(Lind(A_f))$. Let $H : \Sigma' \to \Sigma \to \text{Str}$ be a "Lindenbaum" functor, i.e. a signature functor also satisfying (1), (2), (3):
(1) H has a (unique) restriction to the quasivarieties $\Sigma \vdash QV(a') \to QV(a)$
(2) $\bar{m}_H(\Sigma) \vdash \Delta'$
(3) $\bar{m}_H(\delta) = \bar{m}_H(\varepsilon) \vdash QV(a) \vdash \delta' = \varepsilon'$.

Let $a, a' \in \text{Obj}(Lind(A_f))$ and $H : \Sigma' \to \Sigma \to \text{Str}$ be a "Lindenbaum" functor. For each set Y, let $\tilde{\eta}_H(Y) : LF(Y) \to H \vdash (L'F'(Y))$ be the unique $QV(a)$-morphism such that $Y \xrightarrow{\tilde{\eta}_H(Y)} UHF(Y) = \tilde{\eta}_H(Y)$.

Denote $Lind(A_f)^\dagger$ the subcategory of the category of diagrams, given by all the subcategories $QV(a) \vdash \Sigma - \text{str}$ and morphisms $(H, \tilde{\eta}_H)$ where H is a Lindenbaum functor.

Theorem 2.24.
(a) The categories S_f and S_f^\dagger are anti-isomorphic. More precisely, given $\Sigma, \Sigma' \in S_f$, the mappings $h \in S_f(\Sigma, \Sigma') \to (h^*, \eta_h) \in S_f(\Sigma' - \text{str}, \Sigma - \text{str})^\dagger$ and $(H, \eta_H) \in S_f(\Sigma' - \text{str}, \Sigma - \text{str})^\dagger \xrightarrow{m_H} m_H \in S_f(\Sigma, \Sigma')$ are inverse bijections.
(b) The pair of inverse anti-isomorphisms above restricts to a pair of inverse anti-isomorphisms between the categories $\text{Lind}(A_f)$ and $\text{Lind}(A_f)^\dagger$.

Moreover, the inverse isomorphisms establish a correspondence:
(c) If $h \in \text{Lind}(A_f)(a, a')$ and $H \in \text{Lind}(A_f)^\dagger$ are in correspondence, then also are in correspondence the equivalence class $\{h' \in \text{Lind}(A_f)(a, a') : [h] = [h'] \in Q\text{Lind}(A_f)(a, a')\}$ and the equivalence class $\{H' \in \text{Lind}(A_f)^\dagger : H' \vdash H \vdash H\} = [\tilde{\eta}_H, \tilde{\eta}_H] = \eta_H$.

(d) If $h \in \text{Lind}(A_f)(a, a')$ and $H \in \text{Lind}(A_f)^\dagger$ are in correspondence, then $[h]$ is a $Q\text{Lind}(A_f)$-isomorphism (i.e., h is an equivalence of logics) $\iff (H, \tilde{\eta}_H)$ is an isomorphism of change of bases.

3 Representation Theory of Logics

3.1 General Logics and Categories

Let $U : L_s \to \text{Lind}(A_s)$ denote the forgetful functor.

- **Objects:** To each logic $l = (\Sigma, \vdash)$, are associated two pairs (left and right) of data:
 (I) two comma categories (over $\text{Lind}(A_s)$):
 - $(l \to U)$, the "left algebrizable spectrum of l'" (analysis process);
 - $(U \to l)$, the "right algebrizable spectrum of l'" (synthesis process).
(II) two diagrams (left and right "representation diagram"):

- $l\text{-}\text{Mod} \iff (l \rightarrow U, I)$;
- $\text{Mod-}l \iff (U \rightarrow l, L)$.

$l\text{-}\text{Mod} : (l \rightarrow U)^{op} \rightarrow (\Sigma - \text{str} \leftarrow \text{CAT})$

$(a_0, f_0) \rightarrow (\Sigma - \text{str} \overset{h_0^{\Sigma}}{\leftarrow} \overset{QV(a_0)}{QV})$

$(a_0, f_0) \overset{h}{\rightarrow} (a_1, f_1) \rightarrow ((QV(a_1), f_1^* \uparrow I_1) \overset{h^*_1}{\rightarrow} (QV(a_0), f_0^* \uparrow I_0))$

$QV_{\alpha_0} \overset{h^*_1}{\rightarrow} QV_{\alpha_1}$

$l - \text{Mod}$

$\Sigma - \text{str}_1$

$\alpha_0 - \text{str}$

$\alpha_1 - \text{str}$

$\overset{h^*}{\rightarrow}$

$\overset{f_0}{\leftarrow} \quad \overset{f_1}{\rightarrow}$

$\overset{\text{Mod-}l}{\rightarrow} (U \rightarrow l) \rightarrow (2 - \text{CAT} \leftarrow \Sigma - \text{str})$

$(a_0, f_0) \rightarrow (QV(a_0) \overset{L_{0f_0}^{\Sigma}}{\leftarrow} \Sigma - \text{str})$

$(a_0, f_0) \overset{h}{\rightarrow} (a_1, f_1) \rightarrow ((QV(a_0), L_0f_0^* \uparrow) \overset{h^*_1}{\rightarrow} (QV(a_1), L_1f_1^* \uparrow))$

$QV_{\alpha_0} \overset{h^*_1}{\rightarrow} QV_{\alpha_1}$

$\text{Mod-}l$

$\overset{L_0}{\rightarrow} \uparrow \quad \overset{L_1}{\rightarrow}$

$\Sigma - \text{str}_1$

$\alpha_0 - \text{str}$

$\alpha_1 - \text{str}$

$\overset{h^*}{\rightarrow}$

$\overset{f_0^* \uparrow}{\leftarrow} \quad \overset{f_1^* \uparrow}{\rightarrow}$

$L_{0f_0}^{\Sigma} \overset{h^*_1 \rightarrow L_1f_1^*}{\overset{h^* \uparrow L_1}{{\Leftrightarrow}}} \quad \text{where} \quad L_0h^* \overset{\delta}{\Rightarrow} h^* \uparrow L_1$

Since: \(L_0h^* \overset{\delta}{\Rightarrow} h^* \uparrow L_1g^* \overset{h_{\Sigma}^*}{\Rightarrow} h^* \uparrow g^* \uparrow L_2 = L_0(gh)^* \overset{\delta}{\Rightarrow} (gh)^* \uparrow L_2\)

then: \(L_0f_0^* \overset{h^*_1 \rightarrow L_1f_1^*}{\overset{h^* \uparrow L_1}{\Rightarrow}} \overset{h^*_1 \rightarrow g^* \uparrow L_2f_2^*}{\Rightarrow} (gh)^* \uparrow L_2f_2^*\)

- **Arrows:** Morphisms between logics $t : l \rightarrow l'$ induce two pairs (left and right) of data:

 (I) a left/right "spectral" functor:
 \(l \rightarrow U\) $\overset{t_0}{\rightleftharpoons} (l' \rightarrow U)$;
 \((U \rightarrow l)\) $\overset{l_0}{\rightleftharpoons} (U \rightarrow l')$.
(II) a left/right "representation diagram" morphism:

\[(l\text{-}\text{Mod}) \xymatrix{ QV_c \ar[r]^h \ar[dr]_{f_1 I_0} & QV_a_1 \ar[d]_{f_1 I_1} \\ & \Sigma'_\text{str} \ar[r]_{t'} & \Sigma_{\text{str}} } \quad (l'\text{-}\text{Mod}) \xymatrix{ QV_a_1 \ar[r]^{h^*} & QV_c \ar[dr]_{f_1 I_0} \\ & \Sigma_{\text{str}} \ar[r]_{t} & \Sigma'_\text{str} } \]

\[(l\text{-}\text{Mod}) \xymatrix{ QV_c \ar[r]^h \ar[dr]_{f_1 I_0} & QV_a_1 \ar[d]_{f_1 I_1} \\ & \Sigma'_\text{str} \ar[r]_{t'} & \Sigma_{\text{str}} } \quad (l'\text{-}\text{Mod}) \xymatrix{ QV_a_1 \ar[r]^{h^*} & QV_c \ar[dr]_{f_1 I_0} \\ & \Sigma_{\text{str}} \ar[r]_{t} & \Sigma'_\text{str} } \]

3.1. The category of all left modules: LM

- Objects: a left module for a logic \(l\), i.e. the functor \(\text{left}(l) : (l \to U)^\text{op} \xymatrix{ l\text{-}\text{Mod}} \Sigma - \text{str} \ar@{<->}[r] \text{CAT} \ar@{<->}[l] \text{CAT} \)
- Arrows: a pair \((B, \tau) : \text{left}(l') \to \text{left}(l)\), where \(B : (l' \to U) \to (l \to U)\) is a "change of bases" functor, and \(\tau : \text{left}(l') \Rightarrow \text{left}(l) \circ B\) is a natural transformation with the additional compatibility condition:
 for each \((a'_0, f'_0), (a'_1, f'_1) \in (l' \to U) \Rightarrow \text{Proj}(\tau(a'_0, f'_0)) = \text{Proj}(\tau(a'_1, f'_1)) : \Sigma' - \text{str} \to \Sigma - \text{str} \]

\[
\begin{array}{c}
QV\text{cod}(f'_1) \ar[r] & QV\text{cod}(B(f'_1)) \\
\downarrow \tau(f'_1) & \downarrow B(f'_1)^* \\
\Sigma' - \text{str} & \Sigma - \text{str} \\
\downarrow f'_0 & \downarrow \tau(f'_0) \\
QV\text{cod}(f'_0) & QV\text{cod}(B(f'_0))
\end{array}
\]

Proposition 3.2.

(a) \(t : l \xymatrix{ l' \ar[r]^\cong & l' \in \mathcal{L}_s \Rightarrow (- \circ t, (t^*, \text{id})) : \text{left}(l') \xymatrix{ \cong \ar[r] & \text{left}(l) \in \text{LM} } \)

(b) \(\text{can}_l : l \to l^{(c)}\) induces a LM-isomorphism: \(\text{left}(l^{(c)}) \xymatrix{ \cong \ar[r] & \text{left}(l) } \)

3.2 Morita equivalence of logics and variants

- (left/right) Morita equivalence of rings: an equivalence relation coarser than isomorphism
 (Ex.: For rings, \(R \cong \text{Mat}_{n \times n}(R)\))

Definition 3.3. The logics \(l\) and \(l'\) are left Morita equivalent when:

(a) Let \(S \in (l \to U)\). \(S\) is called generic if \(S^{\text{op}} \leftrightarrow (l \to U)^{\text{op}} \xymatrix{ l\text{-}\text{Mod}} \Sigma - \text{str} \) is "relatively cofinal" (in the image...)

(b) The logics \(l\) and \(l'\) are left Morita equivalent when there are:
 - generic subcategories \(S \leftrightarrow (l \to U)\) and \(S' \leftrightarrow (l' \to U)\);
 - functors \(B : S' \to S\) and \(B' : S \to S'\);
 - "natural comparations": \((T, \tau)\) and \((T', \tau')\)
 - \(T : \Sigma' - \text{str} \to \Sigma - \text{str}\) is a functor and for each \((a'_0, f'_0) \in S', \tau_{T'} : QV\text{cod}(f') \cong QV\text{cod}(B(f'))\) is an isomorphism of categories such that \(B(f')^* \circ \tau_{T'} = T \circ f'^*\) and for each \((a'_0, f'_0) \cong (a'_1, f'_1) \in S'\)
 - analogous conditions for \((T', \tau')\)
Theorem 3.4. If l and l' are left Morita equivalent. In particular:
(a) If $l \equiv l'$, then l and l' are left Morita equivalent.
(b) l and $l^{(e)}$ are left Morita equivalent.

Theorem 3.5. If l and l' are equipollent, then they are left Morita equivalent.

Lemma 3.6. Let $l \equiv l'$ be a Q_f-isomorphism. Then:
(a) For each Lindenbaum algebraizale logic $\alpha' = (\alpha', \vdash')$ and any dense L_s-morphism $f' : l' \rightarrow a'$, consider:
- $\alpha = (\Sigma_n/\equiv_n)_{n \in \mathbb{N}}$, where $c_n \equiv_n a_n$ iff $\check{f}(c_n) = \check{f}(a_n)$;
- $f = \text{ quo }$;
- h be the unique S_f-morphism such that $h \circ f = f' \bullet t$ in S_f (thus $h \circ f = f' \circ t$)
- $a = (\alpha, h^*(\vdash_{a'}))$.
Then:
- a is a Lindenbaum algebraizale logic;
- $h : a \rightarrow a'$ is a L_f-morphism preserves algebraizale pair and is an weak equivalence i.e. it induces a Q_f-isomorphism;
- $f : l \rightarrow a$ is a L_s-epimorphism (= surjective at each level $n \in \mathbb{N}$), thus it is a dense L_s-morphism.
(b) If $a_0' = (\alpha_0', \vdash_{10}'), a_1' = (\alpha_1', \vdash_{11}')$ are Lindenbaum algebraizale logic; $f_0' : l' \rightarrow a_0', f_1' : l' \rightarrow a_1'$ are dense L_s-morphisms and $g' : a_0' \rightarrow a_1'$ is a L_s-morphism such that $g'f_0' = f_1'$, then:
- there is a unique S_s-morphism $g : a_0 \rightarrow a_1$ such that $gf_0 = f_1$; Moreover:
- $h_1g = g'h_0$;
- g is a A_s-morphism.

Definition 3.7. The logics l and l' are left-stably Morita equivalent when:
- there are functors: $\Sigma' - \text{str} \xrightarrow{F} \Sigma - \text{str}$;
- there are functors: $\text{colim}_{f \in (l' \rightarrow U)} QV\text{cod}(f') \xrightarrow{E} \text{colim}_{f \in (l \rightarrow U)} QV\text{cod}(f)$; such that:
- E and E' are quasi-inverse equivalence functors;
- the diagram below commutes:
Proposition 3.8. \(l \) and \(l' \) are left Morita equivalent \(\Rightarrow \) \(l \) and \(l' \) are left-stably Morita equivalent. □

Corollary 3.9. left\((l) \cong \text{left}(l') \Rightarrow \) \(l \) and \(l' \) are left-stably Morita equivalent. □

Proposition 3.10. \(a \cong a' \in Q\text{Lind}(A_f) \Rightarrow \) \(a \) and \(a' \) are left stably Morita equivalent. □

Corollary 3.11. The presentations of classical logics are left stably Morita equivalent.

\[
\begin{array}{ccc}
\neg, \rightarrow - \text{str} & \xleftarrow{\text{incl}} & BA(\neg, \rightarrow) \cong \text{colim} \ QV(\text{cod}(f)) \\
\iota^* & \downarrow & \iota^* \\
\neg', \lor - \text{str} & \xleftarrow{\text{incl}'} & BA(\neg', \lor) \cong \text{colim} \ QV(\text{cod}(f')) \\
\end{array}
\]

Proposition 3.12. Concerning the relations between Classical logics and Intuitionist logics:

(a) They are not stably-Morita-equivalent.

(b) But they are only stably-Morita-adjointly related:
\(L : HA \rightarrow BA : H \rightarrow H/F_H, \) where \(F_H = \{ a \leftrightarrow \neg
\neg a : a \in H \} \)

\[
\begin{array}{ccc}
\neg, \lor, \land, \rightarrow - \text{str} & \xleftarrow{\text{incl}} & HA \cong \text{colim} \ QV(\text{cod}(f)) \\
\text{id} & \downarrow & \text{id} \\
\neg, \lor, \land, \rightarrow - \text{str} & \xleftarrow{\text{incl}'} & BA \cong \text{colim} \ QV(\text{cod}(f')) \\
\end{array}
\]

4 Final Remarks and Future Works

- Present the adequate definitions ”on the right side” that allow get basic results analogous to ”left side”. Note that the considerations ”on left” and ”on right” are distincts conceptually (”left” is adequate for analysis of logics; ”right” is related to synthesis process) and technically (a 2-categorial aspect is needed ”on right”).
- Describe necessary/sufficient conditions for Morita equivalence of logics (and variants).
- Induce new (functorial) morphisms between logics from the representation diagrams left\((l) \) and right\((l) \).
- Analise categories of fractions of categories of logics.
- Define a general theory of ”mathematical invariants” to measure the degree of distinctions of arbitrary logics and develope general methods of calculation of invariants (in some sense).
- Understand new notions of identity of logics.
- Describe similar construction on alternative base categories ([MaMe]). (Example: the study of LFI by Possible Translations Semantics.)

References

[AFLM1] P. Arndt, R. A. Freire, O. O. Luciano, H. L. Mariano, Fibring and Sheaves, Proceedings of IICAI-05, Special Session at the 2nd Indian International Conference on Artificial Intelligence, Pune, India, (2005), 1679-1698.

[AFLM2] P. Arndt, R. A. Freire, O. O. Luciano, H. L. Mariano, On the category of algebraizable logics, CLE e-Prints 6(1) (2006), 24 pages.

[AFLM3] P. Arndt, R. A. Freire, O. O. Luciano, H. L. Mariano, A global glance on categories in Logic, Logica Universalis 1 (2007), 3-39.

[AR] J. Adámek, J. Rosický, Locally Presentable and Accessible Categories, Lecture Notes Series of the LMS 189, Cambridge University Press, Cambridge, Great Britain, 1994.
