Elevated serum nitric oxide and hydrogen peroxide levels as potential valuable predictors of herpes zoster

Soheila Nasiri1, Mehdi Hedayati2, Seyed Mohammad Riahi3,4, Reza M Robati1, Marjan Khazan1

1Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Department of Public Health, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
4Department of Epidemiology, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran

ARTICLE INFO

Objective: To evaluate the biomarkers of oxidative stress in herpes zoster patients compared with control subjects. Methods: This study compared the nitric oxide (NO), hydrogen peroxide (H2O2), malondialdehyde, uric acid, and bilirubin levels between 43 herpes zoster patients and 47 age-matched control subjects. The area under the curve of the receiver operating characteristic curve was performed to evaluate the final logistic regression model. Results: The significant differences were observed in the serum levels of NO, H2O2, and malondialdehyde between the case and the control groups (P<0.001). However, no statistical differences were found in both uric acid and bilirubin levels between the groups. Additionally, the raised oxidant biomarkers were strongly associated with increased disease severity (P<0.001). Multiple logistic regression analysis with the highest area under the curve [0.98 (95% CI 0.95-1.00)] and the minimum number of variables showed that high levels of NO (OR 1.24; 95% CI 1.06-1.46; P=0.008) and H2O2 (OR 1.25; 95% CI 1.09-1.43; P=0.001) were associated with herpes zoster. Conclusions: High levels of NO and H2O2 were observed in patients with herpes zoster. Increased NO and H2O2 levels might be associated with herpes zoster, which needs to be confirmed by further studies.

ABSTRACT

1. Introduction

Reactivated latent varicella zoster virus in dorsal root ganglia causes herpes zoster, which is characterized by painful neuralgia and unilateral dermatomal vesicular rash[1,2]. Cell-mediated immunity and increasing age are associated with the pathogenesis and reactivation of varicella zoster virus infection. Therefore, herpes zoster occurs more frequently in people with impaired immunity and those aged over 50 years[1,3]. Recently, it has been confirmed the association of increased oxidants as well as decreased antioxidants with the pathogenesis of many age-related diseases[4-6]. Postherpetic neuralgia, complication of herpes zoster, can cause psychological distress, physical disability, impaired sleep and consequently affect the quality of life[2,7,8]. In addition, diminishing immune system due to deficiencies of antioxidant nutrients may be related to the risk of herpes zoster and postherpetic neuralgia, especially in elderly people[9-10].

Oxidative stress occurs due to either excessive production of reactive nitrogen and/or oxygen species (RNS, ROS) as free radicals...
or reduced antioxidant defense activity or both, leading to oxidative cell damage (such as DNA/protein/lipid oxidation). Both RNS and ROS are chemically reactive molecules, and as a result, they have short half-lives in biological samples; thus, stable free radicals, such as malondialdehyde (MDA), an end product of lipid peroxidation, and hydrogen peroxide (H$_2$O$_2$), which is generated by dismutation of superoxide radicals, were formed and can be measured to assess oxidative stress status[11,12]. Likewise, nitric oxide (NO) generation from L-arginine oxidation can cause lipid and protein oxidation and cell damage; however, NO is harmful only at high concentrations[13].

Cellular redox homeostasis is mainly maintained by the antioxidant defense activity, which is potentially affected by the concentration and function of both endogenous and exogenous antioxidants[14]. Thus, antioxidant nutrient deficiencies may cause cellular redox homeostasis imbalance to induce oxidative stress[15-17]. Uric acid (UA) and bilirubin (BIL) as potential antioxidants can be involved effectively in the neutralization of ROS/RNS and decrease oxidative stress, thereby contributing to disease prevention[18-20]. It has also been reported the vital role of oxidative stress in viral infections, autoimmune skin disorders, degenerative diseases, and aging and its related diseases[4,21-23].

However, no study has assessed the levels of MDA, NO, H$_2$O$_2$, UA, and BIL in the blood of herpes zoster patients though these have been determined in other autoimmune skin diseases[18,24-29]. Consequently, the present study aimed to measure the biomarkers of oxidative stress in herpes zoster patients compared with control subjects.

2. Materials and methods

2.1. Participants

This was a case-control study including 43 adult outpatients [15 men (34.9%), 28 women (65.1%)] aged ≥20 years with symptomatic/acute herpes zoster infections attending the Department of Dermatology of Shohada-e Tajrish Hospital, from June 2016 to June 2017. Cases were screened by serological tests for varicella zoster virus. According to the clinical diagnosis by a dermatologist, patients were recruited within 7 d of rash onset at their first visit. The control group were selected from the other Departments of Shohada-e Tajrish Hospital; the serological test results and clinical criteria of control subjects were checked by physician; and consequently, the control group consisted of 47 age-matched outpatients [18 men (38.3%), 29 women (61.7%)] with history of initial varicella zoster infection (chickenpox) and also without any inflammatory or infectious diseases.

Following were the exclusion criteria: immunosuppression; diabetes; malignancy; liver, kidney, or any chronic diseases; psychiatric disorder; experience of trauma or surgery in the previous month; treatment with steroids and/or immunosuppressive drugs; consumption of any supplements; smoking; pregnancy; lactation. The demographics and clinical data of the study participants were obtained using the preformed demographic and clinical questionnaires at the baseline visit. The informed consent was obtained from all participants, and the study received approval from the Ethics Committee of Shahid Beheshti University of Medical Sciences (Code: IR.SBMU.SRC.REC.1395.24).

The severity of herpes zoster was characterized by the number of skin lesions (papules, vesicles, or crusted vesicles), which were categorized as mild, ≤25 lesions; moderate, 25 to 50 lesions; and severe, ≥50 lesions[30]. Acute stress, as a covariate adjustment in the logistic regression model, was also defined based on the presence of reactions that commonly appear following exposure to stressful or potentially traumatic events within 4 weeks before rash onset[31].

2.2. Biochemical measurement

Fasting whole blood samples (5 mL) were collected the morning after their first visit from both the case and control groups. The serum was rapidly frozen at –80 ℃ until assayed. The measurements of serum oxidant and antioxidant biomarkers were performed using enzymatic colorimetric assay kits (Zellbio Co, Ulm, Germany; Pars Azmoun Co; respectively). The assay sensitivity for MDA, H$_2$O$_2$, NO, UA, and BIL were 0.1 µM, 5 µM, 1 µM, 0.3 mg/dL, and 0.07 mg/dL, respectively. The intra-assay coefficients of MDA, H$_2$O$_2$, NO, UA, and BIL were also less than 5.8%, 3.4%, 3.3%, 1.4%, and 2.8%, respectively.

2.3. Statistical analysis

The Kolmogorov-Smirnov test was used to evaluate the distribution of data that normal distribution was reported as mean±SD and examined using the Student’s t-test and analysis of variance (ANOVA) followed by Dunnett post-hoc test. The correlation was evaluated using the Pearson coefficient. Linear regression analysis was also used to observe relationships between the independent variables. The associations between oxidant biomarkers and herpes zoster were assessed using multiple logistic regression. Furthermore, 95% confidence interval (CI) was performed to measure the association. The final model of logistic regression was evaluated by the goodness of fit test (Hosmer–Lemeshow test) and the receiver operating characteristic (ROC) curves and the area under the curve (AUC). All data were performed using the SPSS software (version 22.0.0; SPSS Inc., Chicago, IL, USA), and P-value < 0.05 was considered statistically significant.
3. Results

In this study, the mean ages of the case and control groups were (65.70±9.72) and (62.87±9.31) years respectively. There were no significant differences in the distributions of age (P=0.163) and sex (P=0.454) between the case and control groups. All cases were confirmed by serological tests. According to the herpes zoster disease severity, the number of mild, moderate, and severe cases were 5 (11.6 %), 28 (65.1%), and 10 (23.3%), respectively.

The serum levels of MDA, NO, and H2O2 in the cases were (20.00±4.37) µM, (30.00±8.67) µM, and (40.00±6.05) µM, respectively. According to the herpes zoster disease severity, the number of mild, moderate, and severe cases confirmed by serological tests. According to the herpes zoster disease severity, substantial differences were found in the levels of all the three oxidants among the patients (Table 2). The mean MDA, NO, and H2O2 levels were (20.00±4.37) µM, (30.00±8.67) µM, and (40.00±6.05) µM, respectively. Statistical significance of P<0.05.

According to the herpes zoster disease severity, substantial differences were found in the levels of all the three oxidants among the patients (Table 2). The mean MDA, NO, and H2O2 levels were observed to be significantly increased with increasing level of disease severity (P<0.001) while the differences in the mean levels of UA and BIL were not significant.

Table 2

Rash severity	MDA (µM)	NO (µM)	UA (mg/dL)	BIL (mg/dL)
Mild (n=5)	4.20±1.33	58.4±4.13	76.8±6.17	78.6±9.67
Moderate (n=28)	5.46±7.88	46.4±16.72	67.6±15.09	62.8±9.64
Severe (n=10)	7.73±0.85	5.84±1.33	6.05±1.20	5.36±0.30

All values represent mean±SD; MDA, malondialdehyde; NO, nitric oxide; H2O2, hydrogen peroxide; UA, uric acid; BIL, bilirubin. *Statistical significance of P<0.05.

Table 3

Model	NO	H2O2	MDA						
	OR	P value	(95% CI)	OR	P value	(95% CI)	OR	P value	(95% CI)
Model 1†	1.24	0.008	(1.06-1.46)	1.25	0.001	(1.09-1.43)	1.00	<0.001	(0.95-1.00)
Model 2	1.20	0.005	(1.06-1.37)	1.18	0.001	(1.07-1.30)	1.00	<0.001	(0.95-1.00)

CI, confidence interval; OR, odds ratio; MDA, malondialdehyde; NO, nitric oxide; H2O2, hydrogen peroxide; *statistical significance of P<0.05; †adjusted for acute stress in the model 1; AUC for the model 1 equal to 0.98 (0.95-1.00).
or potentiate the harmful effects in the virally infected host[35]. In this response[34]; in contrast, another study showed that NO could cause to the control of herpes simplex 1 (HSV-1) infection via the immune Zolini reactions, which leads to enhanced NO production, as has been both immunological host responses and nonspecific inflammatory the multiple roles of NO during viral infections that can modulate zoster patients compared with control subjects. It might be due to study, the level of NO was shown to be significantly higher in herpes H2O2 were significant between the case and the control groups; In this study, differences in the serum levels of MDA, NO, and oxidant biomarkers differed significantly.

The findings of this study indicate the presence of oxidative stress in herpes zoster patients compared with the controls as evidenced by the higher levels of NO, H2O2, and MDA and, though not significant, lower levels of UA and BIL.

NO production, either directly or indirectly, is potentially associated with various diseases; however, its deleterious effect depends on the concentration and the site where it is released[13]. For instance, Zolini et al. reported that NO produced by macrophages contributes to the control of herpes simplex 1 (HSV-1) infection via the immune response[34]; in contrast, another study showed that NO could cause or potentiate the harmful effects in the virally infected host[35]. In this study, the level of NO was shown to be significantly higher in herpes zoster patients compared with control subjects. It might be due to the multiple roles of NO during viral infections that can modulate both immunological host responses and nonspecific inflammatory reactions, which leads to enhanced NO production, as has been shown in other studies[13,35,36]. Additionally, overproduction of H2O2 as one of the main endogenous ROS can occur under disease conditions through several different mechanisms[37]. In accordance, this study found drastically higher levels of H2O2 in the cases than controls, which can possibly be due to the immune responses to viral pathogen through inflammatory pathways and T-cell mediated macrophage activation; however, under oxidative stress condition, excessive H2O2 can lead to cell damage and death and, consequently, contribute to carcinogenesis. Furthermore, the logistic regression showed that the increased H2O2 and NO levels were strongly associated with herpes zoster.

The synergistic effect of H2O2, and NO eventually lead to excessive production and accumulation of RNS/ROS that can potentially trigger cell death processes due to elevated MDA resulted from increased lipid peroxidation[37,38]. In this study, MDA levels were significantly higher in the cases compared with controls. This may be explained by either excessive RNS/ROS production or disruption of the antioxidant defense mechanisms or both of them, which lead to increased MDA formation. This result is confirmed by the strong correlation between the oxidant biomarkers in the case group. This finding concurs with other studies that showed MDA, as a lipid peroxidation indicator, was mainly implicated in the pathogenesis of various diseases[26,29,39].

On the other hand, UA as well as BIL are regarded as scavengers of peroxynitrite and can contribute to preventing lipid peroxidation[19,40]. BIL also protects cells against excess H2O2[41]. Similar to previous studies[42,43], our results showed that the lower level of UA and BIL in herpes zoster patients compared with control subjects, though not significant, might be related to a compensatory response to elevated oxidative stress; the lack of significant difference may be due to the small sample size and needs further clarification.

Moreover, similar to a prior report[26], this study showed that the high NO, H2O2, and MDA levels were associated with rash severity. However, in contrast to another study finding[44], there was no relationship between the disease duration and oxidant levels, which may be because the oxidant levels had changed before the onset of symptoms, although this study has not and cannot show a causal relationship between oxidant levels and pathogenesis of herpes zoster.

The risk of herpes zoster in general population is estimated to be about 20%-30% during their lifetime, reaching 50% in people over 80 years old[45]. Raised oxidative stress may diminish the effectiveness of immune functions and, consequently, enhance the incidence of infections in older populations[3,9,21]. In addition, long-term accumulation of ROS/RNS in the dorsal root ganglion may be responsible for the neuronal damage, thus leading to inflammatory hyperalgesia as well as central and peripheral nerve

4. Discussion

In this study, differences in the serum levels of MDA, NO, and H2O2 were significant between the case and the control groups; the differences in the levels of UA and BIL were not significant between the groups. Additionally, there were statistically significant correlations between MDA, NO, and H2O2 in the case group. According to the severity of herpes zoster, all the mean levels of oxidant biomarkers differed significantly.

The disruption in the balance between free radical production and antioxidant activity can lead to oxidative stress status, which plays a main role in the pathogenesis of viral infection and is also generated by phagocytic cells under inflammatory conditions[32,33]. The relationship between oxidant levels and pathogenesis of herpes zoster was confirmed by the strong correlation between the oxidant biomarkers in the case group. This finding concurs with other studies that showed MDA, as a lipid peroxidation indicator, was mainly implicated in the pathogenesis of various diseases[26,29,39].

On the other hand, UA as well as BIL are regarded as scavengers of peroxynitrite and can contribute to preventing lipid peroxidation[19,40]. BIL also protects cells against excess H2O2[41]. Similar to previous studies[42,43], our results showed that the lower level of UA and BIL in herpes zoster patients compared with control subjects, though not significant, might be related to a compensatory response to elevated oxidative stress; the lack of significant difference may be due to the small sample size and needs further clarification.

Moreover, similar to a prior report[26], this study showed that the high NO, H2O2, and MDA levels were associated with rash severity. However, in contrast to another study finding[44], there was no relationship between the disease duration and oxidant levels, which may be because the oxidant levels had changed before the onset of symptoms, although this study has not and cannot show a causal relationship between oxidant levels and pathogenesis of herpes zoster.

The risk of herpes zoster in general population is estimated to be about 20%-30% during their lifetime, reaching 50% in people over 80 years old[45]. Raised oxidative stress may diminish the effectiveness of immune functions and, consequently, enhance the incidence of infections in older populations[3,9,21]. In addition, long-term accumulation of ROS/RNS in the dorsal root ganglion may be responsible for the neuronal damage, thus leading to inflammatory hyperalgesia as well as central and peripheral nerve

![Figure 2. ROC curves for prediction models to discriminate herpes zoster.](image-url)
injury-induced neuropathic pain\cite{46,47}. Since the risk of herpes zoster and postherpetic neuralgia may be associated with antioxidant micronutrient deficiencies, the increased intake of antioxidant nutrients may support the antioxidant defense activity to counteract the oxidative stress, particularly in elderly individuals\cite{9,48,49}.

The high intake of antioxidants is also related to high plasma concentration of endogenous and exogenous antioxidants which neutralize oxidants\cite{20}. Additionally, enhanced or prolonged free radical levels may cause decreased activity of antioxidant defense systems, leading to the development of diseases and aging. Thus, it has been suggested that antioxidant therapeutic approach along with zoster vaccine may contribute to reduced oxidative stress damage and consequently prevent herpes zoster and subsequent postherpetic neuralgia.

Our study has some limitations. A temporal relationship cannot be established between the exposure and the outcome. Oxidative stress status is associated with nutrient status\cite{9,10} that are mentioned as study design limitations. Food frequency questionnaire was not assessed in the study populations. Additionally, assessment of the oxidative stress state in herpes zoster patients required to evaluate a complete list of oxidative stress biomarkers. More studies are required to make statements on the biomarker changes in postherpetic neuralgia.

In conclusion, an imbalance in oxidative stress due to markedly high serum levels of NO, H$_2$O$_2$, and MDA was found in patients with herpes zoster. Elevated NO and H$_2$O$_2$ might be associated with clinical manifestations of herpes zoster, which needs to be confirmed by further studies.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Acknowledgements

This PhD thesis is supported by Skin Research Center, Shahid Beheshti University of Medical Sciences, and this manuscript is based on PhD thesis (No.9409) of Dr. Marjan Khazan.

References

\begin{enumerate}
\item Saguil A, Kane S, Mercado M, Lauters R. Herpes zoster and postherpetic neuralgia: Prevention and management. Am Fam Physician 2017; 96(10): 656-663.
\item Schmader K. Herpes zoster. Clin Geriatr Med 2016; 32(3): 539-553.
\item Shirane R, Tang H, Hayashi K, Okuno Y, Iso H, Asada H, et al. High serum levels of NO, H$_2$O$_2$, and MDA was found in patients with herpes zoster and postherpetic neuralgia may be associated with antioxidant micronutrient deficiencies, the increased intake of antioxidant nutrients may support the antioxidant defense activity to counteract the oxidative stress, particularly in elderly individuals\cite{9,48,49}.
\item Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016; 2016: 3565127.
\item Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol 2002; 71(1): 16-32.
\item Weber D, Stuetz W, Toussaint O, Debacq-Chainiaux F, Dolle MET, Jansen E, et al. Associations between specific redox biomarkers and age in a large European cohort: The MARK-GE Project. Oxid Med Cell Longev 2017; 2017: 1401452.
\item Johnson RW, Alvarez-Pasquin MJ, Bijl M, Franco E, Guillat J, Clara JG, et al. Herpes zoster epidemiology, management, and disease and economic burden in Europe: A multidisciplinary perspective. Ther Adv Vaccines 2015; 3(4): 109-120.
\item Schmidt-Ott R, Schutter U, Simon J, Nautrup BP, von Krempelhuber A, Gopala K, et al. Incidence and costs of herpes zoster and postherpetic neuralgia in German adults aged 50 years: A prospective study. J Infect 2018; 18(1): 30053-30057.
\item Chen JY, Chang CY, Lin YS, Hu ML. Nutritional factors in herpes zoster, postherpetic neuralgia, and zoster vaccination. Popul Health Manag 2012; 15(6): 391-397.
\item Lesourd B. Nutritional factors and immunological ageing. Proc Nutr Soc 2006; 65(3): 319-325.
\item Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47-95.
\item Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
\item Khazan M, Hdayati M. The role of nitric oxide in health and diseases. Sciner Int J Med Sci 2014; 3(1): 1-10.
\item Poljsak B, Suput D, Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med Cell Longev 2013; 2013: 956792.
\item Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborthy S, et al. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed Res Int 2014; 2014: 761264.
\item Alpert PT. The role of vitamins and minerals on the immune system. HHCMP 2017; 29(3): 199-202.
\item Pae M, Wu D. Nutritional modulation of age-related changes in the immune system and risk of infection. Nutr Res 2017; 41: 14-35.
\item Yousefi M, Rahimi H, Barikbin B, Toossi P, Lotfi S, Hedayati M, et al. Uric acid: A new antioxidant in patients with pneumipgus vulgaris. Indian J Dermatol 2011; 56(3): 278-281.
\item Hatfield GL, Barclay LR. Bilirubin as an antioxidant: kinetic studies of the reaction of bilirubin with peroxy radicals in solution, micelles, and HHCMP 2017; 29(3): 199-202.
\end{enumerate}
