ON ELECTROCONVECTION IN POROUS MEDIA

ELIE ABDO AND MIHAELA IGNATOVA

ABSTRACT. We address existence, uniqueness and analyticity of solutions of an electroconvection model in porous media.

1. INTRODUCTION

Electroconvection models describe the evolution of charge distributions in fluids [17]. In the case studied in [12, 18], the fluid occupies a thin region modeled as a two dimensional domain. The charge distribution is carried by the fluid and diffuses due to the parallel component of the electrical field. This results in a nonlocal transport equation for the charge density \(\rho \),

\[
\partial_t \rho + u \cdot \nabla \rho + \Lambda \rho = 0
\]

where \(\Lambda = (-\Delta)^{1/2} \) is the square root of the two dimensional Laplacian. The fluid is incompressible and is forced by electrical forces

\[
F = \rho E
\]

where \(E \) is the parallel component of the electrical field,

\[
E = -\nabla \Phi
\]

with \(\nabla \) the gradient in \(\mathbb{R}^2 \). The relationship between the electrical potential \(\Phi \) and the charge distribution confined to a two dimensional region is

\[
\Phi = \Lambda^{-1} \rho
\]

and we thus have

\[
F = -\rho R \rho
\]

with \(R = \nabla \Lambda^{-1} \) the Riesz transforms. In general, the fluid obeys Navier-Stokes or related equations driven by the forces \(F \). In this paper we consider flow through a porous medium, in which the dominant dissipation mechanism is due not to the viscosity of the fluid, but rather to an effective damping caused by flow through pores. The Stokes operator is then replaced by \(u + \nabla p \). We consider a system in which the fluid equilibrates rapidly and the Reynolds number is low, so that forces are balanced by damping,

\[
u + \nabla p = F.
\]

This balance, together with (5) and the requirement of incompressibility,

\[
\nabla \cdot u = 0,
\]

leads to

\[
u = -\mathbb{P}(\rho R \rho)
\]

Date: today.

Key words: Navier-Stokes Equations, electroconvection, Darcy law.

MSC Classification: 35Q30, 35Q35, 35Q92.
where \mathbb{P} is the Leray-Hodge projector on divergence-free vector fields. In [15], the balance law (8) was used to describe the solvent in a Nernst-Planck-Darcy system of ionic diffusion in 2D and 3D. The electroconvection situation described above leads to the active scalar equation (1) with constitutive law (8), which is the equation we study in this work. The equation is L^∞-critical, and resembles critical SQG [7, 8, 9, 14] except for the constitutive law (8) which in this case is nonlinear and doubly nonlocal. The well known global regularity of critical SQG [4, 16] is not available here. In this paper we show that the equation (1), (8) has global weak solutions. We describe local existence and uniqueness results for strong solutions. We also show that solutions with small initial data in Besov spaces slightly smaller than L^∞ exist globally and are Gevrey regular.

This paper is organized as follows. In section 2, we recall results about Besov spaces and Littlewood-Paley decomposition. In section 3, we prove existence of global in time weak solutions of (1), (8) for initial data in $L^{2+\delta}(\mathbb{R}^2)$ for some $\delta > 0$. If the initial data is in $L^p(\mathbb{R}^2)$ for $p \in (2, \infty]$, then the L^p norm of any solution of (1), (8) remains bounded in time. Section 4 is devoted to the existence of a unique local strong solution under higher regularity assumptions for the initial data. In section 5, we show that a global in time solution in Besov spaces exists provided that the initial data is sufficiently small in Besov spaces that are slightly smaller than $L^\infty(\mathbb{R}^2)$. In section 6 we prove that solutions are Gevrey regular under a smallness condition imposed on the initial data. In section 7, we study the regularity and long time behavior of solutions for small initial data whereas in section 8, we show that Hölder continuity of the charge distribution is a sufficient condition for the smoothness of solutions for arbitrary initial data, a result that is similar to the situation for SQG. In section 9, we treat the periodic case, and we prove that the solution of the problem (1), (8) posed on the two dimensional torus converges exponentially in time to zero. Finally, we consider in section 10 the subcritical Darcy’s law electroconvection, and we show existence of global smooth solutions for arbitrary initial data.

2. Preliminaries

For $f \in S'(\mathbb{R}^2)$, we denote the Fourier transform of f by

$$\mathcal{F}f(\xi) = \widehat{f}(\xi) = \frac{1}{2\pi} \int_{\mathbb{R}^2} f(x)e^{-i\xi \cdot x}dx$$

and its inverse by \mathcal{F}^{-1}.

Let Φ be a nonnegative, nonincreasing, infinitely differentiable, radial function such that $\Phi(r) = 1$ for $r \in \left[0, \frac{1}{2}\right]$ and $\Phi(r) = 0$ for $r \in \left[\frac{5}{8}, \infty\right]$. Let

$$\Psi(r) = \Phi\left(\frac{r}{2}\right) - \Phi(r).$$

For each $j \in \mathbb{Z}$, let

$$\Psi_j(r) = \Psi(2^{-j}r).$$

We have

$$\Phi(|\xi|) + \sum_{j=0}^{\infty} \Psi_j(|\xi|) = 1$$

for all $\xi \in \mathbb{R}^2$ and

$$\sum_{j=-\infty}^{\infty} \Psi_j(|\xi|) = 1.$$
for all $\xi \in \mathbb{R}^2 \setminus \{0\}$. We define the homogeneous dyadic blocks
\[
\Delta_j f(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \Psi_j(|\xi|) \hat{f}(\xi) e^{i\xi \cdot x} d\xi = \mathcal{F}^{-1} \left[\Psi_j(|\cdot|) \hat{f}(\cdot) \right](x)
\] (14)
and the lower frequency cutoff functions
\[
S_j f = \sum_{k \leq j - 1} \Delta_k f.
\]
(15)
We note that the Fourier transform of each dyadic block is compactly supported. More precisely, we have
\[
supp \mathcal{F}(\Delta_j f) \subset 2^j \left[\frac{1}{2}, \frac{5}{4} \right]
\]
(16)
for all $j \in \mathbb{Z}$.

Let $\mathcal{S}'_h(\mathbb{R}^2)$ be the set of all tempered distributions $u \in \mathcal{S}'(\mathbb{R}^2)$ such that
\[
\lim_{j \to -\infty} S_j u = 0
\]
(17)
in $\mathcal{S}'(\mathbb{R}^2)$. For $f \in \mathcal{S}'_h(\mathbb{R}^2)$, we denote the homogeneous Littlewood-Paley decomposition of f by
\[
f = \sum_{j \in \mathbb{Z}} \Delta_j f.
\]
(18)

For $s \in \mathbb{R}$, $1 \leq p, q \leq \infty$, we denote the homogeneous Besov space
\[
\dot{B}^s_{p,q}(\mathbb{R}^2) = \left\{ f \in \mathcal{S}'_h(\mathbb{R}^2) : \|f\|_{\dot{B}^s_{p,q}(\mathbb{R}^2)} < \infty \right\}
\]
where
\[
\|f\|_{\dot{B}^s_{p,q}(\mathbb{R}^2)} = \left(\sum_{j \in \mathbb{Z}} 2^{jsq} \|\Delta_j f\|_{L^p(\mathbb{R}^2)}^q \right)^{1/q}
\]
(19)
and the inhomogeneous Besov space
\[
B^s_{p,q}(\mathbb{R}^2) = \left\{ f \in \mathcal{S}'(\mathbb{R}^2) : \|f\|_{B^s_{p,q}(\mathbb{R}^2)} < \infty \right\}
\]
where
\[
\|f\|_{B^s_{p,q}(\mathbb{R}^2)} = \left(2^{-sq} \|\Delta_{-1} f\|_{L^p(\mathbb{R}^2)}^q + \sum_{j=0}^{\infty} 2^{jsq} \|\Delta_j f\|_{L^p(\mathbb{R}^2)}^q \right)^{1/q}
\]
(20)
with the usual modification when $q = \infty$. Here
\[
\Delta_{-1} f = \frac{1}{2\pi} \int_{\mathbb{R}^2} \Phi(|\xi|) \hat{f}(\xi) e^{i\xi \cdot x} d\xi = \mathcal{F}^{-1} \left[\Phi(|\cdot|) \hat{f}(\cdot) \right](x).
\]
(23)
We note that the definition of the space $\dot{B}^s_{p,q}$ is independent of the function Φ in terms of which the dyadic blocks are defined. Indeed, any other dyadic partition yields an equivalent norm.

If $s > 0$, $1 \leq p, q \leq \infty$, then
\[
B^s_{p,q}(\mathbb{R}^2) = \dot{B}^s_{p,q}(\mathbb{R}^2) \cap L^p(\mathbb{R}^2).
\]
(24)
Moreover, the norms $\|f\|_{\dot{B}^s_{p,q}(\mathbb{R}^2)}$ and $\|f\|_{\dot{B}^s_{p,q}(\mathbb{R}^2)} + \|f\|_{L^p(\mathbb{R}^2)}$ are equivalent.

We also consider the following time dependent homogeneous Besov spaces
\[
L^r(0,T; \dot{B}^s_{p,q}(\mathbb{R}^2)) = \left\{ f(t) \in \mathcal{S}'_h(\mathbb{R}^2) : \|f\|_{L^r(0,T; \dot{B}^s_{p,q}(\mathbb{R}^2))} < \infty \right\}
\]
(25)
and
\[
\tilde{L}^r(0,T; \dot{B}^s_{p,q}(\mathbb{R}^2)) = \left\{ f(t) \in \mathcal{S}'_h(\mathbb{R}^2) : \|f\|_{\tilde{L}^r(0,T; \dot{B}^s_{p,q}(\mathbb{R}^2))} < \infty \right\},
\]
(26)
where
\[\|f\|_{L^r(0,T;B^s_{p,q}(\mathbb{R}^2))} = \left(\sum_{j \in \mathbb{Z}} 2^{jsq} \|\Delta_j f\|_{L^q(0,T;L^p(\mathbb{R}^2))}^q \right)^{1/q}. \]

We recall inequalities that are used in the paper (see for instance [3, 13, 19]).

Proposition 1. Let \(f \in S'_h(\mathbb{R}^2) \).

1. *(Bernstein’s inequality)* Let \(1 \leq p \leq q \leq \infty \). Let \(k \) be a nonnegative integer. Then
 \[\sup_{|\alpha|=k} \left\| \partial^\alpha \Delta_j f \right\|_{L^p(\mathbb{R}^2)} \leq C_k 2^{jk} \left\| \Delta_j f \right\|_{L^p(\mathbb{R}^2)} \]
 \(\text{holds for all } j \in \mathbb{Z}. \)

2. Let \(1 \leq p \leq q \leq \infty \). Then
 \[\|\Delta_j f\|_{L^q(\mathbb{R}^2)} \leq C 2^{2j \left(\frac{1}{p} - \frac{1}{q} \right)} \|\Delta_j f\|_{L^p(\mathbb{R}^2)} \]
 \(\text{holds for all } j \in \mathbb{Z}. \) Moreover, the continuous Besov embedding
 \[\dot{B}^s_{p_1,q_1}(\mathbb{R}^2) \hookrightarrow \dot{B}^{s-2\left(\frac{1}{p_1} - \frac{1}{p_2} \right)}_{p_2,q_2}(\mathbb{R}^2) \]
 \(\text{holds for } 1 \leq p_1 \leq p_2 \leq \infty, 1 \leq q_1 \leq q_2 \leq \infty \) and \(s \in \mathbb{R} \).

3. Let \(1 \leq p \leq \infty, t \geq 0, \alpha > 0 \). Then
 \[\|e^{-t\Lambda^\alpha} \Delta_j f\|_{L^p(\mathbb{R}^2)} \leq C e^{-C t 2^{js\alpha}} \|\Delta_j f\|_{L^p(\mathbb{R}^2)} \]
 \(\text{holds for all } j \in \mathbb{Z}. \) Here \(\Lambda^\alpha \) is the fractional Laplacian of order \(\alpha \) defined as a Fourier multiplier with symbol \(|\xi|^\alpha \).

4. Let \(R = (R_1, R_2) \) be the Riesz transform, i.e., for \(k \in \{1,2\} \), \(R_k = \partial_k \Lambda^{-1} \). For each \(p \in [1,\infty) \), there is a positive constant \(C > 0 \) depending only on \(p \) (independent of \(j \)) such that
 \[\|\Delta_j Rf\|_{L^p(\mathbb{R}^2)} \leq C \|\Delta_j f\|_{L^p(\mathbb{R}^2)} \]
 \(\text{holds for all } j \in \mathbb{Z}. \) Hence, for \(s \in \mathbb{R} \) and \(1 \leq p, q \leq \infty \), \(R \) is bounded from \(\dot{B}^s_{p,q}(\mathbb{R}^2) \) to itself.

The following decomposition formula holds.

Proposition 2. Let \(f, g \in S'_h(\mathbb{R}^2) \). Then
\[\Delta_j (fg) = \sum_{k \geq j-2} \Delta_j (S_{k+1} f \Delta_k g) + \sum_{k \geq j-2} \Delta_j (S_k g \Delta_k f) \]
\[= \sum_{k \geq j-2} \Delta_j (S_{k+1} g \Delta_k f) + \sum_{k \geq j-2} \Delta_j (S_k f \Delta_k g) \]
holds for any \(j \in \mathbb{Z} \).

The proof is based on Bony’s paraproduct, and is presented in Appendix A.
Throughout this paper \(C \) (or \(C_i, i = 1,2,\ldots \)) denotes a positive constant that may change from line to line in the proofs.
3. Existence of Global Weak Solutions

We consider the transport and nonlocal diffusion equation

\[\partial_t \rho + u \cdot \nabla \rho + \Lambda \rho = 0 \]

(33)

in the whole space \(\mathbb{R}^2 \), where

\[u = -P(\rho R \rho). \]

(34)

The initial data are

\[\rho(x, 0) = \rho_0(x). \]

(35)

Here \(P \) is the Leray-Hodge projector, \(\Lambda = (-\Delta)^{\frac{1}{2}} \) is the fractional Laplacian, and \(R = \nabla \Lambda^{-1} \) is the 2D vector of Riesz transforms.

Definition 1. A solution \(\rho \) of the initial value problem (33)–(35) is said to be a weak solution on \([0, T]\) if

\[\rho \in L^\infty(0, T; L^2(\mathbb{R}^2)) \cap L^2(0, T; \dot{H}^{\frac{1}{2}}(\mathbb{R}^2)) \]

(36)

and \(\rho \) obeys

\[(\rho(t), \Phi)_{L^2} - (\rho_0, \Phi)_{L^2} - \int_0^t (\rho, u \cdot \nabla \Phi)_{L^2} ds + \int_0^t (\Lambda^{\frac{1}{2}} \rho, \Lambda^{\frac{1}{2}} \Phi)_{L^2} ds = 0 \]

(37)

for all \(\Phi \in \dot{H}^{\frac{1}{2}}(\mathbb{R}^2) \) and a.e. \(t \in [0, T] \).

For \(\epsilon \in (0, 1] \), let \(J_\epsilon \) be the standard mollifier operator \(J_\epsilon f = J_\epsilon \ast f \), and let \(\rho^\epsilon \) be the solution of

\[\partial_t \rho^\epsilon + \overline{u}^\epsilon \cdot \nabla \rho^\epsilon + \Lambda \rho^\epsilon - \epsilon \Delta \rho^\epsilon = 0 \]

(38)

where

\[\overline{u}^\epsilon = -J_\epsilon P(\rho^\epsilon R \rho^\epsilon) \]

(39)

with smoothed out initial data

\[\rho^\epsilon_0 = J_\epsilon \rho_0 \]

(40)

Remark 1. We note that \(P \) and \(J_\epsilon \) commutes, hence \(\overline{u}^\epsilon \) is divergence free.

Theorem 1. Let \(T > 0 \) be arbitrary. Let \(\rho_0 \in L^2(\mathbb{R}^2) \). Then for each \(\epsilon \in (0, 1] \), the mollified initial value problem (33)–(40) has a solution \(\rho^\epsilon \) on \([0, T]\) satisfying

\[\frac{1}{2} \| \rho^\epsilon(t) \|^2_{L^2} + \int_0^t \| \Lambda^{\frac{1}{2}} \rho^\epsilon(s) \|^2_{L^2} ds \leq \frac{1}{2} \| \rho_0 \|^2_{L^2} \]

(41)

for all \(t \in [0, T] \). Moreover, the sequence \(\{ \rho_1^{1/n} \}_{n=1}^\infty \) has a subsequence that converges strongly in \(L^2(0, T; L^2(\mathbb{R}^2)) \) and weakly in \(L^2(0, T; H^{\frac{1}{2}}(\mathbb{R}^2)) \) to a function \(\rho \) obeying

\[\frac{1}{2} \| \rho(t) \|^2_{L^2} + \int_0^t \| \Lambda^{\frac{1}{2}} \rho(s) \|^2_{L^2} ds \leq \frac{1}{2} \| \rho_0 \|^2_{L^2} \]

(42)

for a.e. \(t \in [0, T] \). If \(\rho_0 \in L^{2+\delta}(\mathbb{R}^2) \) for some \(\delta > 0 \), then \(\rho \) is a weak solution of (33)–(35) on \([0, T]\).

The proof is found in Appendix B.

As a consequence of the Córdoba-Córdoba inequality [11], the \(L^p \) norm of any solution of the equation (33)–(34) is bounded by the \(L^p \) norm of the initial data for any \(p \in (2, \infty) \).
Proposition 3. Let \(p > 2 \) and \(\rho_0 \in L^p(\mathbb{R}^2) \). Suppose \(\rho \) is a smooth solution of \((33)-(35)\) on \([0, T]\). Then
\[
\|\rho(t)\|_{L^p} \leq \|\rho_0\|_{L^p}
\]
holds for all \(t \in [0, T] \). Moreover, if \(\rho_0 \in L^\infty(\mathbb{R}^2) \), then
\[
\|\rho(t)\|_{L^\infty} \leq \|\rho_0\|_{L^\infty}
\]
holds for all \(t \in [0, T] \).

Proof: We multiply \((33)\) by \(\rho |\rho|^{p-2} \) and we integrate in the space variable. We obtain the differential inequality
\[
\frac{d}{dt} \|\rho\|_{L^p} \leq 0.
\]
This gives \((43)\). Letting \(p \to \infty \), we obtain \((44)\).

Remark 2. If \(\rho \) is a smooth solution of \((33)-(35)\) on \([0, T]\) and \(\rho(\cdot, t) \in H^s(\mathbb{R}^2) \) for some \(s > 1 \) and for a.e. \(t \in [0, T] \), then
\[
\|\rho(\cdot, t)\|_{L^\infty} \leq \frac{\|\rho_0\|_{L^\infty}}{1 + C t \|\rho_0\|_{L^\infty}}
\]
for \(t \in [0, T] \) (see \([11]\)). This bound is useful to study the long time behavior of solutions.

4. Existence of Local Strong Solutions

Definition 2. A weak solution \(\rho \) of \((33)-(35)\) is said to be a strong solution on \([0, T]\) if it obeys
\[
\rho \in L^\infty(0, T; \dot{H}^2(\mathbb{R}^2)) \cap L^2(0, T; \dot{H}^{\frac{3}{2}}(\mathbb{R}^2)).
\]

Theorem 2. Let \(\rho_0 \in H^2(\mathbb{R}^2) \). Then there exists \(T_0 > 0 \) depending only on \(\|\rho_0\|_{H^2} \) such that a unique strong solution of the equation \((33)-(34)\) exists on \([0, T_0]\).

The proof is found in Appendix \([13]\).

5. Existence of Global Solutions in Besov Spaces

In this section, we show the existence of a global in time solution in Besov spaces for sufficiently small initial data. The proof uses methods of \([2, 5]\).

Theorem 3. Let \(1 \leq p < \infty \). Let \(\rho_0 \in \dot{B}_{p,1}^{\frac{3}{2}}(\mathbb{R}^2) \) be sufficiently small. We consider the functional space \(E_p \) defined by
\[
E_p = \left\{ f(t) \in \mathcal{S}_h'(\mathbb{R}^2) : \|f\|_{E_p} = \|f\|_{\dot{L}^\infty_t \dot{B}_{p,1}^{\frac{3}{2}}} + \|f\|_{\dot{L}^1_t \dot{B}_{p,1}^{\frac{3}{2}+1}} < \infty \right\}.
\]
Then the equation \((33)-(34)\) has a unique global in time solution \(\rho \in E_p \).

Proof: Let \(\rho^{(0)} = 0 \). For each positive integer \(n \), let \(\rho^{(n)} \) be the solution of
\[
\begin{aligned}
&\partial_t \rho^{(n)} + \Lambda \rho^{(n)} = -u^{(n-1)} \cdot \nabla \rho^{(n-1)}, \\
u^{(n-1)} = \mathbb{P}(\rho^{(n-1)} \cdot R \rho^{(n-1)}), \\
\rho^{(n)}(x, 0) = \rho_0
\end{aligned}
\]
\[(49)\]
posed on \mathbb{R}^2. We write $\rho^{(n)}$ in the integral form,

$$
\rho^{(n)}(t) = e^{-t\Lambda} \rho_0 - \int_0^t e^{-(t-s)\Lambda} \cdot (u^{(n-1)} \rho^{(n-1)})(s) ds
$$

$$
= e^{-t\Lambda} \rho_0 - \mathcal{B}(u^{n-1}, \rho^{n-1})
$$

(50)

where \mathcal{B} is the bilinear form defined by

$$
\mathcal{B}(v, \theta) = \int_0^t e^{-(t-s)\Lambda} \cdot (v \theta)(s) ds.
$$

(51)

Step 1. Fix a positive integer n. We show that

$$
\|\rho^{(n)}\|_{E^p} \leq C_1 \|\rho_0\|_{\tilde{B}^0_{p,1}} + C_2 \|\rho^{(n-1)}\|_{E^p}^3.
$$

(52)

We start by estimating $e^{-t\Lambda} \rho_0$ in E^p. We apply Δ_j and we take the L^p norm. In view of the bound (30), we have

$$
\|e^{-t\Lambda} \Delta_j \rho_0\|_{L^p} \leq C e^{-C - \frac{1}{2} j^2} \|\Delta_j \rho_0\|_{L^p},
$$

(53)

hence

$$
\|e^{-t\Lambda} \rho_0\|_{E^p} = \|e^{-t\Lambda} \rho_0\|_{\tilde{L}^p_{\infty}} + \|e^{-t\Lambda} \rho_0\|_{\tilde{L}^1_{1} \tilde{B}^{2+1}_{p,1}} \leq C \|\rho_0\|_{\tilde{B}^0_{p,1}}.
$$

(54)

Now, we estimate the term $\mathcal{B}(u^{(n-1)}, \rho^{(n-1)})$ in E^p. First, we note that

$$
\|\mathcal{B}(u^{(n-1)}, \rho^{(n-1)})\|_{E^p} \leq C \|u^{(n-1)} \rho^{(n-1)}\|_{\tilde{L}^1_{1} \tilde{B}^{2+1}_{p,1}}.
$$

(55)

Indeed, we apply Δ_j to $\mathcal{B}(u^{(n-1)}, \rho^{(n-1)})$ and we estimate. On one hand,

$$
\|\Delta_j \mathcal{B}(u^{(n-1)}, \rho^{(n-1)})\|_{\tilde{L}^p_{\infty}} \leq C 2^j \left\| \int_0^t e^{c \cdot (t-s)} 2^j \|\Delta_j (u^{(n-1)} \rho^{(n-1)})(s)\|_{L^p} ds \right\|_{L^1_{t}}
$$

\(\leq C 2^j \|\Delta_j (u^{(n-1)} \rho^{(n-1)})(s)\|_{L^1_{t}}
\)

(56)

in view of Bernstein’s inequality (27) and the bound (30). We multiply by $2^j \tilde{B}^2$ and we take the ℓ^1 norm. We obtain the bound

$$
\|\mathcal{B}(u^{(n-1)}, \rho^{(n-1)})\|_{\tilde{L}^1_{1} \tilde{B}^{2+1}_{p,1}} \leq C \|u^{(n-1)} \rho^{(n-1)}\|_{\tilde{L}^1_{1} \tilde{B}^{2+1}_{p,1}}.
$$

(57)

On the other hand,

$$
\|\Delta_j \mathcal{B}(u^{(n-1)}, \rho^{(n-1)})\|_{\tilde{L}^1_{1} \tilde{B}^{2+1}_{p,1}} \leq C \left\| \int_0^t 2^j e^{c \cdot (t-s)} 2^j \|\Delta_j (u^{(n-1)} \rho^{(n-1)})(s)\|_{L^p} ds \right\|_{L^1_{t}}
$$

\(\leq C \int_0^\infty \left(\int_0^\infty 2^j e^{c \cdot (t-s)} 2^j \chi_{[0,t]}(s) dt \right) \|\Delta_j (u^{(n-1)} \rho^{(n-1)})(s)\|_{L^p} ds
\)

\(\leq C \|\Delta_j (u^{(n-1)} \rho^{(n-1)})(s)\|_{L^1_{t} L^p}
\)

(58)

where χ_E denotes the characteristic function of the set E. Multiplying by $2^j \tilde{B}^0_{p,1}$ and taking the ℓ^1 norm yields the bound

$$
\|\mathcal{B}(u^{(n-1)}, \rho^{(n-1)})\|_{\tilde{L}^1_{1} \tilde{B}^{2+1}_{p,1}} \leq C \|u^{(n-1)} \rho^{(n-1)}\|_{\tilde{L}^1_{1} \tilde{B}^{2+1}_{p,1}}.
$$

(59)

Combining (57) and (59), we obtain (55). Accordingly, our next goal is to show that

$$
\|u^{(n-1)} \rho^{(n-1)}\|_{\tilde{L}^1_{1} \tilde{B}^{2+1}_{p,1}} \leq C \|\rho^{(n-1)}\|_{E^p}^3
$$

(60)
which gives (52). In order to establish the bound (60), we use the decomposition (32)

\[\Delta_j(u^{(n-1)}\rho^{(n-1)}) = \sum_{k \geq j-2} \Delta_j(S_k u^{(n-1)} \Delta_k \rho^{(n-1)}) + \sum_{k \geq j-2} \Delta_j(S_{k+1} \rho^{(n-1)} \Delta_k u^{(n-1)}). \]

(61)

We apply the \(L^1 L^p \) norm, we use the bound

\[\| \Delta_j f \|_{L^p} \leq C \| f \|_{L^p} \]

that holds for any \(f \in S'_k \) where \(C \) is a positive universal constant independent of \(j \), and we obtain

\[\| \Delta_j(u^{(n-1)}\rho^{(n-1)}) \|_{L^1 L^p} \leq C \sum_{k \geq j-2} \| S_k u^{(n-1)} \|_{L^m L^\infty} \| \Delta_k \rho^{(n-1)} \|_{L^1 L^p} \]

\[+ C \sum_{k \geq j-2} \| S_{k+1} \rho^{(n-1)} \|_{L^m L^\infty} \| \Delta_k u^{(n-1)} \|_{L^1 L^p}. \]

(63)

In view of Bernstein’s inequality (28), we have

\[\| S_{k+1} \rho^{(n-1)} \|_{L^m L^\infty} \leq \sum_{l \leq k} \| \Delta_l \rho^{(n-1)} \|_{L^m L^\infty} \leq C \sum_{l \leq k} 2^{\frac{l}{p}} \| \Delta_l \rho^{(n-1)} \|_{L^m L^p} \leq C \| \rho^{(n-1)} \|_{L^m \tilde{B}^\frac{2}{p+1}_{p,1}}. \]

(64)

We show below that

\[\| S_k u^{(n-1)} \|_{L^m L^\infty} \leq C \| \rho^{(n-1)} \|_{L^m \tilde{B}^\frac{2}{p+1}_{p,1}} \]

and

\[\| \Delta_k u^{(n-1)} \|_{L^1 L^p} \leq C \| \rho^{(n-1)} \|_{L^m \tilde{B}^\frac{2}{p+1}_{p,1}} \left(\sum_{m \geq k-2} \| \Delta_m \rho^{(n-1)} \|_{L^1 L^p} \right). \]

(66)

Using the bounds (65) and (66), we obtain

\[\| \Delta_j(u^{(n-1)}\rho^{(n-1)}) \|_{L^1 L^p} \leq C \| \rho^{(n-1)} \|_{L^m \tilde{B}^\frac{2}{p+1}_{p,1}} \left\{ \sum_{k \geq j-2} \| \Delta_k \rho^{(n-1)} \|_{L^1 L^p} + \sum_{k \geq j-2} \sum_{m \geq k-2} \| \Delta_m \rho^{(n-1)} \|_{L^1 L^p} \right\} \]

(67)

We multiply (67) by \(2^j \left(\frac{2}{p+1} \right) \) and we take the \(\ell^1 \) norm. In view of Young’s convolution inequality, we have in the first term

\[\sum_{j \in \mathbb{Z}} \sum_{k \geq j-2} 2^j \left(\frac{2}{p+1} \right) \| \Delta_k \rho^{(n-1)} \|_{L^1 L^p} = \sum_{j \in \mathbb{Z}} \sum_{k \geq j-2} 2^{-(k-j)} \left(\frac{2}{p+1} \right) 2^{(k+1)} \| \Delta_k \rho^{(n-1)} \|_{L^1 L^p} \]

\[\leq \left(\sum_{j \geq -2} 2^{-j} \left(\frac{2}{p+1} \right) \right) \left(\sum_{j \in \mathbb{Z}} 2^j \left(\frac{2}{p+1} \right) \| \Delta_j \rho^{(n-1)} \|_{L^1 L^p} \right) \leq C \| \rho^{(n-1)} \|_{L^m \tilde{B}^{\frac{2}{p+1}}_{p,1}}. \]

(68)
For the second summation on the right hand side of (67), we apply Fubini’s theorem and then we estimate as in (68). Thus, we have
\[
\sum_{j \in \mathbb{Z}} \sum_{k \geq j-2} \sum_{m \geq k-2} 2^j \left(\frac{j-1}{2^j} \right) \left\| \Delta_m \rho^{(n-1)} \right\|_{L^1_t L^p_x} \\
= \sum_{j \in \mathbb{Z}} \sum_{k \geq j-4} \sum_{m \geq k-2} 2^{-(m-j)} \left(\frac{j-1}{2^j} \right) 2^m \left(\frac{j-1}{2^j} \right) \left\| \Delta_m \rho^{(n-1)} \right\|_{L^1_t L^p_x} \\
= \sum_{j \in \mathbb{Z}} \sum_{k \geq j-4} (m - j + 5) 2^{-(m-j)} \left(\frac{j-1}{2^j} \right) 2^m \left(\frac{j-1}{2^j} \right) \left\| \Delta_m \rho^{(n-1)} \right\|_{L^1_t L^p_x} \\
\leq C \sum_{j \in \mathbb{Z}} \sum_{k \geq j-4} 2^{-(m-j)} \left(\frac{j-1}{2^j} \right) 2^m \left(\frac{j-1}{2^j} \right) \left\| \Delta_m \rho^{(n-1)} \right\|_{L^1_t L^p_x} \\
+ 5 \sum_{j \in \mathbb{Z}} \sum_{k \geq j-4} 2^{-(m-j)} \left(\frac{j-1}{2^j} \right) 2^m \left(\frac{j-1}{2^j} \right) \left\| \Delta_m \rho^{(n-1)} \right\|_{L^1_t L^p_x} \\
\leq C \left\| \rho^{(n-1)} \right\|_{L^1_t \dot{B}^{\frac{j-1}{2}}_{p,1}}.
\]
(69)
Here, we have used the fact that \(x \frac{2}{x} < C 2^{-\frac{j-1}{2}} \) for all \(x \in \mathbb{R} \). Putting (68) and (69) together, we obtain (60).

We end the proof of Step 1 by showing the estimates (65) and (66). For each \(l \in \mathbb{Z} \), we use again paraproducts to decompose \(\Delta_l(\rho^{(n-1)} R \rho^{(n-1)}) \) as
\[
\Delta_l(\rho^{(n-1)} R \rho^{(n-1)}) = \sum_{m \geq l-2} \Delta_l(S_{m+1} \rho^{(n-1)} \Delta_m \rho^{(n-1)}) + \sum_{m \geq l-2} \Delta_l(S_m \rho^{(n-1)} \Delta_m \rho^{(n-1)}).
\]
(70)
In view of the boundedness of the Riesz transform (31) and the definition of the Leray projector as
\[
\mathbb{P} = I + R \otimes R,
\]
(71)
we bound
\[
\left\| S_k u^{(n-1)} \right\|_{L^\infty_t L^\infty_x} \leq \sum_{l \leq k-1} \left\| \Delta_l u^{(n-1)} \right\|_{L^\infty_t L^\infty_x} \leq C \sum_{l \leq k-1} 2^{l \frac{j-1}{2}} \left\| \Delta_l u^{(n-1)} \right\|_{L^\infty_t L^p_x} \\
\leq C \sum_{l \leq k-1} 2^{l \frac{j-1}{2}} \left\| \Delta_l(\rho^{(n-1)} R \rho^{(n-1)}) \right\|_{L^\infty_t L^p_x}
\]
(72)
for any \(p \in [1, \infty] \) and using the paraproduct decomposition (70), we obtain
\[
\left\| S_k u^{(n-1)} \right\|_{L^1_t L^\infty_x} \leq C \sum_{l \leq k-1} 2^{l \frac{j-1}{2}} \sum_{m \geq l-2} \left\| S_{m+1} \rho^{(n-1)} \right\|_{L^\infty_t L^\infty_x} \left\| \Delta_m \rho^{(n-1)} \right\|_{L^1_t L^p_x} \\
+ C \sum_{l \leq k-1} 2^{l \frac{j-1}{2}} \sum_{m \geq l-2} \left\| S_m \rho^{(n-1)} \right\|_{L^\infty_t L^\infty_x} \left\| \Delta_m \rho^{(n-1)} \right\|_{L^1_t L^p_x}.
\]
(73)
We note that
\[
\left\| S_{m+1} \rho^{(n-1)} \right\|_{L^\infty_t L^\infty_x} \leq C \left\| \rho^{(n-1)} \right\|_{L^\infty_t \dot{B}^{\frac{j-1}{2}}_{p,1}}
\]
(74)
as shown in (64). Moreover, in view of (31), we have
\[
\left\| S_m R \rho^{(n-1)} \right\|_{L^\infty_t L^\infty_x} \leq \sum_{z \geq m-1} \left\| \Delta_z R \rho^{(n-1)} \right\|_{L^\infty_t L^\infty_x} \leq C \sum_{z \geq m-1} 2^{z \frac{j-1}{2}} \left\| \Delta_z R \rho^{(n-1)} \right\|_{L^1_t L^p_x} \\
\leq C \sum_{z \geq m-1} 2^{z \frac{j-1}{2}} \left\| \Delta_z \rho^{(n-1)} \right\|_{L^1_t L^p_x} \leq C \left\| \rho^{(n-1)} \right\|_{L^\infty_t \dot{B}^{\frac{j-1}{2}}_{p,1}}.
\]
(75)
Now we use the assumption that \(p < \infty \) which implies that \(\frac{2}{p} > 0 \) and so we can apply Young’s convolution inequality to obtain

\[
\|S_k(u^{(n-1)}\|_{L^p_t \times\mathbb{R}^d}) \leq C\|\rho^{(n-1)}\|_{L^p_t \times B_{p,1}^\delta} \left(\sum_{l \geq k-1} \sum_{m \geq 2l-2} 2^{l/2} \sum_{m \geq 2l-2} \|\Delta_m \rho^{(n-1)}\|_{L^p_t \times B_{p,1}^\delta} \right)
\]

\[
= C\|\rho^{(n-1)}\|_{L^p_t \times B_{p,1}^\delta} \left(\sum_{l \geq k-1} \sum_{m \geq 2l-2} 2^{(m-l)/2} \sum_{m \geq 2l-2} \|\Delta_m \rho^{(n-1)}\|_{L^p_t \times B_{p,1}^\delta} \right) \leq C\|\rho^{(n-1)}\|_{L^p_t \times B_{p,1}^\delta}^{2}
\]

which proves (65). We proceed to show (66). Using the paraproduct decomposition (70) and the convolution inequality to obtain

\[
\text{for all } \rho.
\]

Therefore, we obtain (78). This ends the proof of Step 1.

Step 2. We show that there exists an \(\epsilon > 0 \) sufficiently small such that if \(C_1\|\rho_0\|_{B_{p,1}^{\frac{2}{p}}} < \epsilon \), then the sequence \(\{\rho^{(n)}\}_{n=1}^\infty \) converges to a unique solution \(\rho \) of (33)–(35) obeying \(\|\rho\|_{E_p} < 2\epsilon \).

First, choose an \(\epsilon > 0 \) such that \(C_2(2\epsilon)^3 < \epsilon \), where \(C_2 \) is the constant in (52), and suppose that \(C_1\|\rho_0\|_{B_{p,1}^{\frac{2}{p}}} < \epsilon \). Then an inductive argument yields

\[
\|\rho^{(n)}\|_{E_p} < 2\epsilon
\]

for all \(n \geq 1 \). Indeed,

\[
\|\rho^{(1)}\|_{E_p} \leq C_1\|\rho_0\|_{B_{p,1}^{\frac{2}{p}}} < \epsilon < 2\epsilon
\]

in view of (52). Suppose that

\[
\|\rho^{(n-1)}\|_{E_p} < 2\epsilon
\]

Then

\[
\|\rho^{(n)}\|_{E_p} < \epsilon + C_2(2\epsilon)^3 < \epsilon + \epsilon = 2\epsilon.
\]

Therefore, we obtain (78)

Now, we show that the sequence \(\{\rho^{(n)}\}_{n=1}^\infty \) is Cauchy. Indeed, the difference \(\rho^{(n)} - \rho^{(n-1)} \) obeys

\[
(\rho^{(n)} - \rho^{(n-1)})(t) = \int_0^t e^{-(t-s)\Delta} \nabla \cdot [u^{(n)}(\rho^{(n)} - \rho^{(n-1)}) - (u^{(n-1)} - u^{(n)})\rho^{(n-1)}] \, ds
\]

\[
= B(u^{(n)}, \rho^{(n)} - \rho^{(n-1)}) - B(u^{(n-1)} - u^{(n)}, \rho^{(n-1)}).
\]

As in Step 1 and using (78), it can be shown that

\[
\|\rho^{(n)} - \rho^{(n-1)}\|_{E_p} \leq \|B(u^{(n)}, \rho^{(n)} - \rho^{(n-1)})\|_{E_p} + \|B(u^{(n-1)} - u^{(n)}, \rho^{(n-1)})\|_{E_p}
\]

\[
\leq C(\epsilon)\|\rho^{(n-1)} - \rho^{(n-2)}\|_{E_p}
\]

where \(C(\epsilon) \) is a constant depending on \(\epsilon \) obeying \(C(\epsilon) < 1 \) for a sufficiently small \(\epsilon \). Therefore, the sequence \(\{\rho^{(n)}\}_{n=1}^\infty \) is Cauchy in \(E_p \) and converges to a solution \(\rho \) of (33)–(35). Uniqueness
follows from a similar estimate to (83). This finishes the proof of Step 2. Therefore the proof of Theorem 3 is complete.

6. ANALYTICITY OF SOLUTIONS IN BESOV SPACES

In this section, we prove that solutions of (33)–(34) are analytic in Besov spaces.

Theorem 4. Let $p \in (1, \infty)$. Let $\alpha \in (0, \frac{1}{4}]$. Let $\rho_0 \in \dot{B}_{p,1}^{\frac{2}{p}}(\mathbb{R}^2)$ be sufficiently small. Then the unique solution $\rho \in E_p$ of (33)–(34), obtained in Theorem 3, obeys $e^{\alpha t \Lambda_1} \rho \in E_p$ for all $t > 0$, where Λ_1 is the Fourier multiplier with symbol $|\xi|_1 = |\xi_1| + |\xi_2|$.

Proof: The main step in the proof is to show that

$$
\rho(t) = e^{-t \Lambda} \rho_0 - \int_0^t e^{-(t-s) \Lambda} \nabla \cdot (u \rho)(s) ds,
$$

then

$$
\|e^{\alpha t \Lambda_1} \rho\|_{E_p} \leq C_3 \|\rho_0\|_{\dot{B}_{p,1}^{\frac{2}{p}}} + C_4 \|e^{\alpha t \Lambda_1} \rho\|_{E_p}^3.
$$

First, we note that the operator $e^{\alpha t \Lambda_1 - \frac{t}{4} \Lambda}$ is a Fourier multiplier that is bounded on L^p spaces for $p \in (1, \infty)$. The proof of this latter statement is similar to the proof of Lemma 2 in [2], and is based on the fact that $e^{\alpha t \Lambda_1 - \frac{t}{4} \Lambda}$ is a Fourier multiplier with symbol

$$
e^{\alpha t (|\xi_1| - \frac{1}{4} t |\xi|)} \leq e^{2 \alpha t (|\xi_1| - \frac{1}{4} t |\xi|)} = e^{-(\frac{1}{4} - 2\alpha)t |\xi|}
$$

which is uniformly bounded by 1 since $\alpha \in (0, \frac{1}{4}]$.

Accordingly, for $j \in \mathbb{Z}$, we have

$$
\|e^{\alpha t \Lambda_1} e^{-t \Lambda} \Delta_j \rho_0\|_{L^p} = \|e^{\alpha t \Lambda_1 - \frac{t}{4} \Lambda} e^{-\frac{t}{4} \Lambda} \Delta_j \rho_0\|_{L^p} \leq C e^{-\alpha t |\xi|} \|\Delta_j \rho_0\|_{L^p}
$$

and so

$$
\|e^{\alpha t \Lambda_1} e^{-t \Lambda} \rho\|_{E_p} \leq C \|\rho_0\|_{\dot{B}_{p,1}^{\frac{2}{p}}}.
$$

Now we estimate

$$
e^{\alpha t \Lambda_1} B(u, \rho) = e^{\alpha t \Lambda_1} \int_0^t e^{-(t-s) \Lambda} \nabla \cdot (u \rho)(s) ds
$$

in E_p. We start by writing $e^{\alpha t \Lambda_1} B(u, \rho)$ as

$$
e^{\alpha t \Lambda_1} B(u, v) = \int_0^t e^{\alpha (t-s) \Lambda_1} e^{-\frac{1}{2} (t-s) \Lambda} e^{-\frac{1}{2} (t-s) \Lambda} e^{\alpha s \Lambda_1} \nabla \cdot (e^{-\alpha s \Lambda_1} \tilde{u} e^{-\alpha s \Lambda_1} \tilde{\rho})(s) ds
$$

where

$$
\tilde{u}(s) = e^{\alpha s \Lambda_1} u(s)
$$

and

$$
\tilde{\rho}(s) = e^{\alpha s \Lambda_1} \rho(s).
$$

Using the uniform boundedness of the operator $e^{\alpha (t-s) \Lambda_1 - \frac{1}{2} (t-s) \Lambda}$ on L^p spaces for $p \in (1, \infty)$, Bernstein’s inequality, and the bound (84), we get

$$
\|e^{\alpha t \Lambda_1} B(u, v)\|_{E_p} \leq C \|e^{\alpha t \Lambda_1} (e^{-\alpha s \Lambda_1} \tilde{u} e^{-\alpha s \Lambda_1} \tilde{\rho})\|_{E_{p,1}}^{\frac{2}{p} + 1}.
$$
Decomposing $\Delta_j \left(e^{-\alpha S_1 \bar{u} e^{-\alpha S_1 \bar{\rho}}} \right)$ as

$$
\Delta_j \left(e^{-\alpha S_1 \bar{u} e^{-\alpha S_1 \bar{\rho}}} \right) = \sum_{k \geq j - 2} \Delta_j \left(\left(e^{-\alpha S_1 S_k \bar{u}} \right) \left(e^{-\alpha S_1 \Delta_k \bar{\rho}} \right) \right) + \sum_{k \geq j - 2} \Delta_j \left(\left(e^{-\alpha S_1 S_{k+1} \bar{\rho}} \right) \left(e^{-\alpha S_1 \Delta_k \bar{\rho}} \right) \right),
$$

we have

$$
\left\| e^{\alpha S_1} \Delta_j \left(e^{-\alpha S_1 \bar{u} e^{-\alpha S_1 \bar{\rho}}} \right) \right\|_{L^1_t L^p} \leq C \sum_{k \geq j - 2} \left\| e^{\alpha S_1} \left(e^{-\alpha S_1 S_k \bar{u}} \right) \left(e^{-\alpha S_1 \Delta_k \bar{\rho}} \right) \right\|_{L^1_t L^p} + C \sum_{k \geq j - 2} \left\| e^{\alpha S_1} \left(e^{-\alpha S_1 S_{k+1} \bar{\rho}} \right) \left(e^{-\alpha S_1 \Delta_k \bar{\rho}} \right) \right\|_{L^1_t L^p}.
$$

(94)

It is shown in [2] that the bilinear operator $B_w(f, g)$ defined by

$$
B_w(f, g) = e^{w_1} \left(e^{-w_1} f e^{-w_1} g \right)
$$

obeys

$$
\left\| B_w(f, g) \right\|_{L^p} \leq C \left\| Z^1_w f Z^2_w g \right\|_{L^p}
$$

where $C > 0$ is a positive constant depending only on p, Z^1_w and Z^2_w are bounded linear operators on L^p for $p \in (1, \infty)$ such that their norms is independent of w. For simplicity, we drop the index w, and we write Z^1 for Z^1_w and Z^2 for Z^2_w.

Consequently,

$$
\left\| e^{\alpha S_1} \Delta_j \left(e^{-\alpha S_1 \bar{u} e^{-\alpha S_1 \bar{\rho}}} \right) \right\|_{L^1_t L^p} \leq C \sum_{k \geq j - 2} \left\| Z^1 S_k \bar{u} Z^2 \Delta_k \bar{\rho} \right\|_{L^1_t L^p} + C \sum_{k \geq j - 2} \left\| Z^1 S_{k+1} \bar{\rho} Z^2 \Delta_k \bar{\rho} \right\|_{L^1_t L^p}.
$$

(95)

Now we proceed as in Step 1 of the proof of Theorem [3]. Indeed,

$$
\left\| Z^1 S_{k+1} \bar{\rho} \right\|_{L^\infty_t L^\infty} \leq \sum_{l \geq k} 2^j \left\| Z^1 \Delta_l \bar{\rho} \right\|_{L^\infty_t L^p} \leq C \sum_{l \geq k} 2^j \left\| \Delta_l \bar{\rho} \right\|_{L^\infty_t L^p} \leq C \left\| \bar{\rho} \right\|_{L^\infty_t B^{\frac{2}{p},1}}.
$$

(99)

If we show that

$$
\left\| \Delta_k \bar{u} \right\|_{L^1_t L^p} \leq C \left\| \bar{\rho} \right\|_{L^\infty_t B^{\frac{2}{p},1}} \left(\sum_{m \geq k - 2} \left\| \Delta_m \bar{\rho} \right\|_{L^1_t L^p} \right),
$$

(100)

and

$$
\left\| Z^1 S_k \bar{\rho} \right\|_{L^\infty_t L^\infty} \leq C \left\| \bar{\rho} \right\|^2_{L^\infty_t B^{\frac{2}{p},1}},
$$

(101)

then the rest follows as in Step 1 of Theorem [3].

Hence, we proceed to prove the bounds (100) and (101). We note that

$$
\bar{u} = e^{\alpha S_1} \bar{u} = e^{\alpha S_1} \bar{\rho} \left(\rho \bar{\rho} \right) = e^{\alpha S_1} \left(e^{-\alpha S_1 \bar{\rho}} \right) \left(e^{-\alpha S_1 \bar{\rho}} \right).
$$

(102)

We decompose $\Delta_l \left(e^{-\alpha S_1 \bar{\rho}} e^{-\alpha S_1 \bar{\rho} R} \right)$ as

$$
\Delta_l \left(e^{-\alpha S_1 \bar{\rho}} e^{-\alpha S_1 \bar{\rho} R} \right) = \sum_{m \geq l - 2} \Delta_l \left(\left(e^{-\alpha S_1 S_{m+1} \bar{\rho}} \right) \left(e^{-\alpha S_1 \Delta_m \bar{\rho}} \right) \right) + \sum_{m \geq l - 2} \Delta_l \left(\left(e^{-\alpha S_1 \Delta_m \bar{\rho}} \right) \left(e^{-\alpha S_1 S_m \bar{\rho}} \right) \right).
$$

(103)
In view of the boundedness of the operators Z^1 and P, we estimate
\[\|Z^1S_k\tilde{u}\|_{L^\infty_tL^\infty_x} \leq C \sum_{l \leq k-1} 2^{l/2} \|\Delta_l\tilde{u}\|_{L^\infty_tL^p_x} \leq C \sum_{l \leq k-1} 2^{l/2} \left\|e^{\alpha\Lambda_1}(e^{-\alpha\Lambda_1}\tilde{\rho}e^{-\alpha\Lambda_1}R\tilde{\rho})\right\|_{L^\infty_tL^p_x} \]
\[\leq C \sum_{l \leq k-1} \sum_{m \geq l-2} 2^{l/2} \|B_{as}(S_{m+1}\tilde{\rho},\Delta_mR\tilde{\rho})\|_{L^\infty_tL^p_x} + C \sum_{l \leq k-1} \sum_{m \geq l-2} 2^{l/2} \|B_{as}(S_mR\tilde{\rho},\Delta_m\tilde{\rho})\|_{L^\infty_tL^p_x} \]
where $B_w(f,g)$ is defined in (96). This implies that
\[\|Z^1S_k\tilde{u}\|_{L^\infty_tL^\infty_x} \leq C \sum_{l \leq k-1} \sum_{m \geq l-2} 2^{l/2} \|(Z^1S_{m+1}\tilde{\rho})(Z^2\Delta_mR\tilde{\rho})\|_{L^\infty_tL^p_x} \]
\[+ C \sum_{l \leq k-1} \sum_{m \geq l-2} 2^{l/2} \|(Z^1S_mR\tilde{\rho})(Z^2\Delta_m\tilde{\rho})\|_{L^\infty_tL^p_x}. \] (104)

Now we proceed as in (75) and (76) and we obtain (101). Finally, we estimate
\[\|\Delta_k\tilde{u}\|_{L^1_tL^p_x} \leq C \|e^{\alpha\Lambda_1}(\tilde{\rho}e^{-\alpha\Lambda_1}R\tilde{\rho})\|_{L^1_tL^p_x} \]
\[\leq C \sum_{m \geq k-2} \|e^{\alpha\Lambda_1}(e^{-\alpha\Lambda_1}S_{m+1}\tilde{\rho})(e^{-\alpha\Lambda_1}\Delta_mR\tilde{\rho})\|_{L^1_tL^p_x} \]
\[+ C \sum_{m \geq k-2} e^{\alpha\Lambda_1}(e^{-\alpha\Lambda_1}S_mR\tilde{\rho})(e^{-\alpha\Lambda_1}\Delta_m\tilde{\rho})\|_{L^1_tL^p_x} \]
\[= C \sum_{m \geq k-2} \|B_{as}(S_{m+1}\tilde{\rho},\Delta_mR\tilde{\rho})\|_{L^1_tL^p_x} + C \sum_{m \geq k-2} \|B_{as}(S_mR\tilde{\rho},\Delta_m\tilde{\rho})\|_{L^1_tL^p_x} \]
\[\leq C \sum_{m \geq k-2} \|Z^1S_{m+1}\tilde{\rho}\|_{L^\infty_tL^\infty_x} \|Z^2\Delta_mR\tilde{\rho}\|_{L^1_tL^p_x} + C \sum_{m \geq k-2} \|Z^1S_mR\tilde{\rho}\|_{L^\infty_tL^\infty_x} \|Z^2\Delta_m\tilde{\rho}\|_{L^1_tL^p_x} \]
\[\leq C \|\tilde{\rho}\|_{L^\infty_t\tilde{\rho}^{1/1}_{p,1}} \left(\sum_{m \geq k-2} \|\Delta_m\tilde{\rho}\|_{L^1_tL^p_x} \right) \] (105)
which proves (100). This ends the proof of Theorem 4.

7. Regularity of Solutions for Small Initial Data

In this section, we study the regularity of solutions of (33)–(35) for small initial data. We use the following lemma:

Lemma 1. Let $j \in \mathbb{Z}$, $t > 0$, $\alpha \in (0,1)$, $c > 0$. Then there is a positive constant $C > 0$ that depends on α but does not dependent of j and t such that the estimate
\[\int_0^t 2^j e^{-c(t-s)^2} s^{-\alpha} ds \leq C t^{-\alpha} \] (106)
holds.

Proof: We split the given integral into the sum
\[\int_0^t 2^j e^{-c(t-s)^2} s^{-\alpha} ds = \int_0^{t/2} 2^j e^{-c(t-s)^2} s^{-\alpha} ds + \int_{t/2}^t 2^j e^{-c(t-s)^2} s^{-\alpha} ds. \] (107)
Using the fact that $2^j e^{-c(t-s)^2} \leq C (t-s)^{-1}$ for all $s \in [0, \frac{t}{2}]$, we estimate
\[\int_0^{t/2} 2^j e^{-c(t-s)^2} s^{-\alpha} ds \leq C \int_0^{t/2} (t-s)^{-1} s^{-\alpha} ds \leq C t^{-1} \int_0^{t/2} s^{-\alpha} ds \leq C \alpha t^{-\alpha}. \] (108)
Using the fact that $s^{-\alpha} \leq 2^\alpha t^{-\alpha}$ for all $s \in \left[\frac{t}{2}, t \right]$, we estimate
\[
\int_{\frac{t}{2}}^{t} 2^j e^{-c(t-s)2^j} s^{-\alpha} ds \leq C_\alpha t^{-\alpha} \int_{\frac{t}{2}}^{t} 2^j e^{-c(t-s)2^j} ds = C_\alpha t^{-\alpha} \left[1 - e^{-2^{j-1}ct} \right] \leq C_\alpha t^{-\alpha}.
\] (109)
Adding (108) and (109), we obtain (106).

Theorem 5. Let $\alpha \in [0, 1), \beta > 0$. Let $\rho_0 \in \dot{B}_{2,1}^{1}(\mathbb{R}^2) \cap \dot{B}_{\infty,\infty}^{\beta-\alpha}(\mathbb{R}^2)$ be sufficiently small. Then there is a positive constant $C > 0$ depending on the initial data such that the unique solution ρ of (33)–(35) satisfies
\[
\sup_{t > 0} t^\alpha \| \rho(t) \|_{\dot{B}_{\infty,\infty}^{\beta}} \leq C.
\] (110)

Proof: We consider the approximating initial value problem (49) whose solution is given by
\[
\rho^{(n)}(t) = e^{-t^{\Lambda}} \rho_0 - \mathcal{B}(u^{(n-1)}, \rho^{(n-1)})
\] (111)
where \mathcal{B} is the bilinear form defined by
\[
\mathcal{B}(v, \theta) = \int_0^t e^{-(t-s)^{\Lambda}} \nabla \cdot (v\theta)(s) ds.
\] (112)
First, we estimate
\[
t^\alpha 2^{j\beta} \| e^{-t^{\Lambda}} \Delta_j \rho_0 \|_{L^\infty} \leq C t^\alpha e^{-ct2^j} 2^{j\beta} \| \Delta_j \rho_0 \|_{L^\infty} \leq C 2^{-j\alpha} 2^{j\beta} \| \Delta_j \rho_0 \|_{L^\infty} \leq C \| \rho_0 \|_{\dot{B}_{\infty,\infty}^{\beta-\alpha}}
\] (113)
in view of (30) and the bound $x^\alpha e^{-x} \leq C$ that holds for all $x \geq 0$. We show that
\[
\sup_{t > 0} \left\{ t^\alpha \| \mathcal{B}(u^{(n-1)}, \rho^{(n-1)})(t) \|_{\dot{B}_{\infty,\infty}^{\beta}} \right\} \leq C \left\{ t^\alpha \| \rho^{(n-1)} \|_{L^p_{t,T} \dot{B}_{p,1}^\beta} + \sup_{t > 0} \left\{ t^\alpha \| \rho^{(n-1)}(t) \|_{\dot{B}_{\infty,\infty}^{\beta}} \right\} \right\}.
\] (114)
We start by applying Δ_j to $\mathcal{B}(u^{(n-1)}, \rho^{(n-1)})$, we use the paraproduct decomposition
\[
\Delta_j(u^{(n-1)}\rho^{(n-1)}) = \sum_{k \geq j-2} \Delta_j(S_k u^{(n-1)} \Delta_k \rho^{(n-1)}) + \sum_{k \geq j-2} \Delta_j(S_{k+1} \rho^{(n-1)} \Delta_k u^{(n-1)}),
\] (115)
and we obtain
\[
\Delta_j \mathcal{B}(u^{(n-1)}, \rho^{(n-1)}) = \mathcal{B}_{1,j}(u^{(n-1)}, \rho^{(n-1)}) + \mathcal{B}_{2,j}(u^{(n-1)}, \rho^{(n-1)})
\] (116)
where
\[
\mathcal{B}_{1,j}(u^{(n-1)}, \rho^{(n-1)}) = \int_0^t e^{-(t-s)^{\Lambda}} \nabla \cdot \left[\sum_{k \geq j-2} \Delta_j(S_k u^{(n-1)} \Delta_k \rho^{(n-1)}) \right](s) ds,
\] (117)
and
\[
\mathcal{B}_{2,j}(u^{(n-1)}, \rho^{(n-1)}) = \int_0^t e^{-(t-s)^{\Lambda}} \nabla \cdot \left[\sum_{k \geq j-2} \Delta_j(S_{k+1} \rho^{(n-1)} \Delta_k u^{(n-1)}) \right](s) ds.
\] (118)
In view of Bernstein’s inequality \([27]\), the bounds \([30]\) and \([65]\), and Lemma \([1]\) we estimate

\[
2^{j\beta} \| B_{1,j} (u^{(n-1)}, \rho^{(n-1)}) \|_{L^\infty} \leq C 2^{j\beta} 2^j \int_0^t e^{-c(t-s)2j} \left[\sum_{k \geq j-2} \| S_k u^{(n-1)} \|_{L^\infty} \| \Delta_k \rho^{(n-1)} \|_{L^\infty} \right] ds
\]

\[
\leq C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha}^2 \left\{ \int_0^t \left(2^j e^{c(t-s)2j} s^{-\alpha} \right) \left[\sum_{k \geq j-2} 2^{-(k-j)\beta} s^{\alpha} 2^{k\beta} \| \Delta_k \rho^{(n-1)} \|_{L^\infty} \right] ds \right\}
\]

\[
\leq C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha}^2 \sup_{t > 0} \left\{ t^{\alpha} \| \rho^{(n-1)} \|_{B_{\infty,\infty}^\beta} \right\} \int_0^t 2^j e^{-c(t-s)2j} s^{-\alpha} ds
\]

\[
\leq C t^{-\alpha} \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha}^2 \sup_{t > 0} \left\{ t^{\alpha} \| \rho^{(n-1)} \|_{B_{\infty,\infty}^\beta} \right\},
\]

hence

\[
t^{\alpha} 2^{j\beta} \| B_{1,j} (u^{(n-1)}, \rho^{(n-1)}) \|_{L^\infty} \leq C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha}^2 \sup_{t > 0} \left\{ t^{\alpha} \| \rho^{(n-1)} \|_{B_{\infty,\infty}^\beta} \right\}.
\]

Now, we estimate \(2^{j\beta} \| B_{2,j} (u^{(n-1)}, \rho^{(n-1)}) \|_{L^\infty}\). We note first that

\[
\sum_{k \geq j-2} s^{\alpha} 2^{j\beta} \| \Delta_k u^{(n-1)} \|_{L^\infty} \leq C \sum_{k \geq j-2} s^{\alpha} 2^{j\beta} \| \Delta_k (\rho^{(n-1)} R \rho^{(n-1)}) \|_{L^\infty}
\]

\[
\leq C \sum_{k \geq j-2} s^{\alpha} 2^{j\beta} \left(\sum_{l \geq k-2} \| S_{l+1} \rho^{(n-1)} \|_{L^\infty} \| \Delta_l R \rho^{(n-1)} \|_{L^\infty} \right)
\]

\[
+ C \sum_{k \geq j-2} s^{\alpha} 2^{j\beta} \left(\sum_{l \geq k-2} \| S_l R \rho^{(n-1)} \|_{L^\infty} \| \Delta_l \rho^{(n-1)} \|_{L^\infty} \right)
\]

\[
\leq C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha} \sum_{k \geq j-2} \sum_{l \geq k-2} 2^{-(l-j)\beta} s^{\alpha} 2^{l\beta} \| \Delta_l \rho^{(n-1)} \|_{L^\infty}
\]

\[
= C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha} \sum_{l \geq j-4} \sum_{k \geq l+2} 2^{-(l-j)\beta} s^{\alpha} 2^{l\beta} \| \Delta_l \rho^{(n-1)} \|_{L^\infty}
\]

\[
= C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha} \sum_{l \geq j-4} (l - j + 5) 2^{-(l-j)\beta} s^{\alpha} 2^{l\beta} \| \Delta_l \rho^{(n-1)} \|_{L^\infty}
\]

\[
\leq C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha} \sup_{t > 0} \left\{ t^{\alpha} \| \rho^{(n-1)} \|_{B_{\infty,\infty}^\beta} \right\}.
\]

Here, we have used the boundedness of the Leray projector in Besov spaces, the paraproduct decomposition \([70]\), the bound \([65]\), Fabini’s theorem, and Young’s convolution inequality. This implies

\[
2^{j\beta} \| B_{2,j} (u^{(n-1)}, \rho^{(n-1)}) \|_{L^\infty} \leq C 2^{j\beta} 2^j \int_0^t e^{-c(t-s)2j} \left[\sum_{k \geq j-2} \| S_k u^{(n-1)} \|_{L^\infty} \| \Delta_k u^{(n-1)} \|_{L^\infty} \right] ds
\]

\[
\leq C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha}^2 \sup_{t > 0} \left\{ t^{\alpha} \| \rho^{(n-1)} \|_{B_{\infty,\infty}^\beta} \right\} \int_0^t 2^j e^{-c(t-s)2j} s^{-\alpha} ds
\]

\[
\leq C t^{-\alpha} \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha}^2 \sup_{t > 0} \left\{ t^{\alpha} \| \rho^{(n-1)} \|_{B_{\infty,\infty}^\beta} \right\},
\]

hence

\[
t^{\alpha} 2^{j\beta} \| B_{2,j} (u^{(n-1)}, \rho^{(n-1)}) \|_{L^\infty} \leq C \| \rho^{(n-1)} \|_{L_t^\infty B_{2,1}^\alpha}^2 \sup_{t > 0} \left\{ t^{\alpha} \| \rho^{(n-1)} \|_{B_{\infty,\infty}^\beta} \right\}.
\]
Putting (120) and (123) together, we obtain (114). Therefore,
\[
\sup_{t>0} t^\alpha \| \rho^{(n)}(t) \|_{B^s_{\infty,\infty}} \leq C_3 \| \rho_0 \|_{B^{\beta-s}_{\infty,\infty}} + C_4 \| \rho^{(n-1)} \|_{L^\infty_t B^1_{2,1}} \sup_{t>0} \left\{ t^\alpha \| \rho^{(n-1)}(t) \|_{B^{\beta}_{\infty,\infty}} \right\}. \tag{124}
\]

Now, we use the smallness of the initial data and we proceed as in Theorem 5. We omit further details.

We recall the following relationship between the inhomogeneous Besov space \(B^s_{\infty,\infty} \) and Hölder spaces:

Remark 3. For \(s \in \mathbb{R}^+ \setminus \mathbb{N} \), the inhomogeneous Besov space \(B^s_{\infty,\infty}(\mathbb{R}^2) \) coincides with the Hölder space \(C^{[s],s-[s]}(\mathbb{R}^2) \) of bounded functions \(f \) whose derivatives of order \(|\alpha| \leq s \) are bounded and satisfy
\[
|\partial^\alpha f(x) - \partial^\alpha f(y)| \leq C |x-y|^{s-[s]} \tag{125}
\]
for \(|x-y| \leq 1 \) (see [3]).

As a consequence, we obtain the following regularity result:

Corollary 1. Let \(s \geq 1 \) be an integer. Let \(\rho_0 \in L^\infty(\mathbb{R}^2) \cap \dot{B}^{1}_{2,1}(\mathbb{R}^2) \cap \dot{B}^{s+1}_{\infty,\infty}(\mathbb{R}^2) \) be sufficiently small. Let \(\rho \) be the unique solution of (33)–(35). Then \(D^\gamma \rho \in L^\infty(\mathbb{R}^2) \) for \(|\gamma| \leq s \), and its \(L^\infty \) norm is uniformly bounded in time. Moreover, for \(|\gamma| \leq s \), \(D^\gamma \rho \) is Hölder continuous with a uniform in time Hölder bound.

Proof: In view of (24), the bound (44), and Theorem 5 applied with \(\alpha = 0 \) and \(\beta = s + \frac{1}{2} \), we have
\[
\| \rho(t) \|_{B^{s+\frac{1}{2}}_{\infty,\infty}} \leq C \left\{ \| \rho_0 \|_{B^{s+\frac{1}{2}}_{\infty,\infty}} + \| \rho(t) \|_{L^\infty} \right\} \leq C \left(1 + \| \rho_0 \|_{L^\infty} \right) \tag{126}
\]
where \(C \) is a constant depending only on the initial data. Remark 3 completes the proof of Corollary 1.

We consider the long time behavior of derivatives of solutions of (33)–(35) for sufficiently small initial data in Besov spaces:

Corollary 2. Let \(s \geq 1 \) be an integer. Let \(\delta \in (0,1) \). Let \(\rho_0 \in L^\infty(\mathbb{R}^2) \cap \dot{B}^{1}_{2,1}(\mathbb{R}^2) \cap \dot{B}^{s+\delta}_{\infty,\infty}(\mathbb{R}^2) \) be sufficiently small. Let \(\rho \) be the unique solution of (33)–(35). Then
\[
\lim_{t \to \infty} \left\{ \| D^\gamma \rho(t) \|_{L^\infty} + \left[D^\gamma \rho(t) \right]_\delta \right\} = 0 \tag{127}
\]
for all \(|\gamma| \leq s \), where
\[
\left[D^\gamma \rho(t) \right]_\delta = \sup_{0<|x-y|\leq1} \frac{|D^\gamma \rho(y) - D^\gamma \rho(x)|}{|x-y|^\delta}. \tag{128}
\]

Proof: We show that \(\rho(\cdot,t) \in H^2(\mathbb{R}^2) \) in order to apply Remark 2. Indeed,
\[
\int_0^\infty \| \rho(t) \|_{\dot{B}^{1}_{2,2}}^2 \, dt \leq C \int_0^\infty \| \rho(t) \|_{\dot{B}^{2}_{2,2}}^2 \, dt = C \int_0^\infty \sum_{j \in \mathbb{Z}} 2^{2j} \| \Delta_j \rho(t) \|_{L^2}^2 \, dt
\]
\[
= C \sum_{j \in \mathbb{Z}} 2^{2j} \| \Delta_j \rho(t) \|_{L^1_t B^2_{1,2}}^2 = C \| \rho \|_{L^1_t \dot{B}^{2}_{2,2}} < \infty \tag{129}
\]
in view of the continuous Besov embedding (29) and the monotone convergence theorem. But \(B^2_{2,2} \) coincides with the Sobolev space \(H^2 \). Thus,
\[
\| \rho(t) \|_{H^2} < \infty \tag{130}
\]
for a.e. \(t \in (0,\infty) \), and so \(\rho(\cdot,t) \in H^2 \) for a.e. \(t \in [0,\infty) \).
In view of Remark 5, Remark 2, and Theorem 5 applied with \(\alpha = \frac{1}{2} \) and \(\beta = s + \delta \), we obtain
\[
\|D^\gamma \rho(t)\|_{L^\infty} + [D^\gamma \rho(t)]_\delta \leq C \|\rho(t)\|_{B^{s+\delta}_{\infty,\infty}}.
\]
\[
\leq C \left\{ \|\rho(t)\|_{B^{s+\delta}_{\infty,\infty}} + \|\rho(t)\|_{L^\infty} \right\} \leq C \left(\frac{1}{\sqrt{t}} + \frac{\|\rho_0\|_{L^\infty}}{1 + Ct\|\rho_0\|_{L^\infty}} \right). \tag{131}
\]
Letting \(t \to \infty \), we obtain (127).

8. Regularity of Solutions for Arbitrary Initial Data

In this section, we prove that any solution of (33–35) is smooth for arbitrary initial data, provided that it satisfies a certain regularity condition.

Theorem 6. Let \(\rho \) be a weak solution of (33–35) on \([0, \infty)\). Let \(0 < t_0 < t < \infty \). If
\[
\rho \in L^\infty([t_0, t]; C^\delta(\mathbb{R}^2)),
\]
for some \(\delta \in (0, 1) \), then
\[
\rho \in C^\infty((t_0, t] \times \mathbb{R}^2). \tag{133}
\]

Proof: We sketch the main ideas. Let us note first that
\[
u \in L^\infty([t_0, t]; C^\delta(\mathbb{R}^2)). \tag{134}
\]
where
\[
u = -\mathbb{P}(\rho R \rho). \tag{135}
\]
Indeed, for any \(s \in [t_0, t] \), we have
\[
\|u(s)\|_{C^\delta} \leq C \|\rho(s) R \rho(s)\|_{C^\delta}
\]
\[
\leq C \|\rho(s)\|_{L^\infty} \|R \rho(s)\|_{L^\infty} + C \|\rho(s)\|_{L^\infty} \|R \rho(s)\|_{C^\delta} + C \|R \rho(s)\|_{L^\infty} \|\rho(s)\|_{C^\delta}
\]
\[
\leq C \|\rho(s)\|_{C^\delta}^2. \tag{136}
\]
in view of the boundedness of the Leray projector and Riesz transforms on the Hölder space \(C^\delta \). Consequently, the Hölder regularity of \(\rho \) imposed in (132) gives (134).

Next, we show that
\[
\rho \in L^\infty([t_0, t]; \dot{B}^{\delta_1}_{p,\infty}(\mathbb{R}^2) \cap C^{\delta_1}(\mathbb{R}^2)) \tag{137}
\]
and
\[
u \in L^\infty([t_0, t]; \dot{B}^{\delta_1}_{p,\infty}(\mathbb{R}^2) \cap C^{\delta_1}(\mathbb{R}^2)) \tag{138}
\]
for any \(p \geq 2 \) and \(\delta_1 = \delta \left(1 - \frac{2}{p}\right) \). Indeed, for any \(s \in [t_0, t] \), we have
\[
\|\rho(s)\|_{\dot{B}^{\delta_1}_{p,\infty}} = \sup_{j \in \mathbb{Z}} \left(2^{\delta_1 j} \|\Delta_j \rho(s)\|_{L^p}\right) \leq \sup_{j \in \mathbb{Z}} \left(2^{\delta_1 j} \|\Delta_j \rho(s)\|_{L^\infty}^{1 - \frac{2}{p}} \|\Delta_j \rho(s)\|_{L^2}^{\frac{2}{p}}\right)
\]
\[
\leq C \left(\|\rho(s)\|_{\dot{B}^{\delta_1}_{p,\infty}}\right)^{1 - \frac{2}{p}} \|\rho(s)\|_{L^2}^{\frac{2}{p}} \leq C \left(\|\rho(s)\|_{C^\delta}\right)^{1 - \frac{2}{p}} \|\rho(s)\|_{L^2}^{\frac{2}{p}}. \tag{139}
\]
and similarly
\[
\|u(s)\|_{\dot{B}^{\delta_1}_{p,\infty}} \leq C \left(\|u(s)\|_{\dot{B}^{\delta_1}_{p,\infty}}\right)^{1 - \frac{2}{p}} \|u(s)\|_{L^2}^{\frac{2}{p}} \leq C \left(\|u(s)\|_{C^\delta}\right)^{1 - \frac{2}{p}} \|\rho(s)\|_{L^2}^{\frac{2}{p}}. \tag{140}
\]
The last inequality holds in view of the boundedness of the Leray projector on \(L^2 \) followed by an application of Hölder’s inequality with exponents 4, 4. The interpolation inequality
\[
\|\rho(s)\|_{L^1} \leq \|\rho(s)\|_{L^\infty}^{1/2} \|\rho(s)\|_{L^2}^{1/2}. \tag{141}
\]
together with (134) and (132) gives (137) and (138).

Now, we proceed as in [10]. We apply Λ_j to (33), we multiply the resulting equation by $p |\Lambda_j \rho|^{p-2} \Lambda_j \rho$, we integrate first in the space variable $x \in \mathbb{R}^2$ and then in time from t_0 to t. We obtain the bound

$$\|\Delta_j \rho(t)\|_{L^p} \leq C e^{-c_2(t-t_0)} \|\Delta_j \rho(t_0)\|_{L^p} + C \int_{t_0}^t e^{-c_2(t-s)} \left(\|\rho(s)\|_{C^1}^2 \|u(s)\|_{B^1_{p,\infty}}^2 + \|u(s)\|_{C^1}^2 \|\rho(s)\|_{B^1_{p,\infty}}^2 \right) ds$$

(142)

(see [10] for details). We multiply by $2^{2\delta_j}$ and we take the ℓ^∞ norm in j. This yields the bound

$$\|\rho(t)\|_{\dot{B}^{2\delta_j}_{p,\infty}} \leq C \sup_{j \in \mathbb{Z}} \left\{ 2^{\delta_j} e^{-c_2(t-t_0)} \|\rho(t_0)\|_{\dot{B}^{\delta_j}_{p,\infty}} \right\} + C \sup_{j \in \mathbb{Z}} \left\{ 1 - e^{-c_2(t-t_0)} \right\} \sup_{s \in [t_0, t]} \left\{ \|\rho(s)\|_{C^1}^2 \|u(s)\|_{B^1_{p,\infty}}^2 + \|u(s)\|_{C^1}^2 \|\rho(s)\|_{B^1_{p,\infty}}^2 \right\}.$$

(143)

Therefore

$$\rho(\cdot, t) \in \dot{B}^{2\delta_j}_{p,\infty}(\mathbb{R}^2).$$

(144)

for any $p \geq 2$. In view of the continuous Besov embedding (29), we have the continuous inclusion

$$\dot{B}^{2\delta_j}_{p,\infty}(\mathbb{R}^2) \hookrightarrow \dot{B}^{\delta_j-\frac{2}{p}}_{\infty,\infty}(\mathbb{R}^2)$$

(145)

for any $p \geq 2$. We choose $p > \frac{2+2\delta}{\delta}$ so that $2\delta_1 - \frac{2}{p} > \delta_1$, hence

$$\rho(\cdot, t) \in \dot{B}^{\delta_2}_{p,\infty}(\mathbb{R}^2) \cap C^{\delta_2}(\mathbb{R}^2)$$

(146)

where $\delta_2 > \delta_1$. We iterate the above process finitely many times and we obtain

$$\rho(\cdot, t) \in C^{\gamma}(\mathbb{R}^2)$$

(147)

for some $\gamma > 1$. This ends the proof of Theorem 6.

9. Periodic Case

In this section, we consider the initial value problem (33)–(35) posed on the torus \mathbb{T}^2 with periodic boundary conditions. We assume the initial data ρ_0 have zero mean. We prove existence and regularity of solutions.

Theorem 7. Let $1 \leq p < \infty$. Let $\rho_0 \in \dot{B}^{\frac{4}{p}}_{p,1}(\mathbb{T}^2)$ be sufficiently small. We consider the functional space E_p defined by

$$E_p(\mathbb{T}^2) = \left\{ f(t) \in \mathcal{D}'(\mathbb{T}^2) : \|f\|_{E_p(\mathbb{T}^2)} = \|f\|_{L^p_{\rho} \dot{B}^{\frac{4}{p}}_{p,1}(\mathbb{T}^2)} + \|f\|_{L^1_{t} \dot{B}^{1+\frac{4}{p}}_{p,1}(\mathbb{T}^2)} < \infty \right\}.$$

(148)

Then (33)–(35) has a unique global in time solution $\rho \in E_p(\mathbb{T}^2)$.

The proof of Theorem 7 follows from the proof of Theorem 3.

In view of the Besov embedding and Theorem 7, we conclude that if $\rho_0 \in \dot{B}^{1}_{2,1}(\mathbb{T}^2)$ is sufficiently small, there is a constant $C > 0$ depending only on the initial data such that the unique solution ρ of (33)–(35) obeys

$$\sup_{t > 0} \|\nabla \rho(t)\|_{L^2(\mathbb{T}^2)} + \int_0^\infty \|\Delta \rho(t)\|_{L^2(\mathbb{T}^2)} dt \leq C.$$

(149)

Using this latter estimate, we end this section by showing that the $L^2(\mathbb{T}^2)$ norm of $\Lambda^{\frac{1}{2}} \rho$ converges exponentially in time to zero.
We use the following uniform Gronwall lemma \[1\]:

Lemma 2. Let \(y(t) \geq 0 \) obey a differential inequality

\[
\frac{d}{dt} y + c_1 y \leq F_1 + F(t)
\]

with initial datum \(y(0) = y_0 \) with \(F_1 \) a nonnegative constant, and \(F(t) \geq 0 \) obeying

\[
\int_0^{t+1} F(s)ds \leq g_0 e^{-c_2 t} + F_2
\]

where \(c_1, c_2, g_0 \) are positive constants and \(F_2 \) is a nonnegative constant. Then

\[
y(t) \leq y_0 e^{-c_1 t} + g_0 e^{c_1 + c_1(t + 1) - c_1 t} + \frac{1}{c_1} F_1 + \frac{1}{1 - e^{-c_1}} F_2
\]

holds with \(c = \min \{c_1, c_2\} \).

Corollary 3. Let \(\rho_0 \in \dot{B}_{2,1}^{1/4}(\mathbb{T}^2) \) be sufficiently small. Then there is a constant \(C > 0 \) depending only on the initial data such that the unique solution \(\rho \) of (33)–(35) obeys

\[
\|\Lambda^{1/2} \rho(t)\|_{L^2(\mathbb{T}^2)}^2 \leq Ce^{-t}
\]

for all \(t \geq 0 \).

Proof: We take the inner product in \(L^2(\mathbb{T}^2) \) of (33) with \(\Lambda \rho \) to obtain

\[
\frac{1}{2} \frac{d}{dt} \|\Lambda^{1/2} \rho(t)\|_{L^2(\mathbb{T}^2)}^2 + \|\Lambda \rho(t)\|_{L^2(\mathbb{T}^2)}^2 = -\int_{\mathbb{T}^2} (u \cdot \nabla \rho) \Lambda \rho dx.
\]

(151)

We estimate the nonlinear term

\[
\left| \int_{\mathbb{T}^2} (u \cdot \nabla \rho) \Lambda \rho dx \right| \leq C \|\rho\|_{\dot{B}^{1/2}_{2,1}(\mathbb{T}^2)} \|\rho\|_{L^4(\mathbb{T}^2)} \|\nabla \rho\|_{L^4(\mathbb{T}^2)} \|\nabla \rho\|_{L^2(\mathbb{T}^2)}
\]

\[
\leq C \|\rho\|_{L^4(\mathbb{T}^2)} \|\nabla \rho\|_{L^4(\mathbb{T}^2)} \|\nabla \rho\|_{L^2(\mathbb{T}^2)}^2
\]

\[
\leq C \|\rho\|_{L^2(\mathbb{T}^2)} \|\nabla \rho\|_{L^2(\mathbb{T}^2)} \|\nabla \rho\|_{L^2(\mathbb{T}^2)} \|\nabla \rho\|_{L^2(\mathbb{T}^2)} \|\Delta \rho\|_{L^2(\mathbb{T}^2)}
\]

(152)

in view of the boundedness of the Leray projector and Riesz transforms on \(L^4(\mathbb{T}^2) \), the continuous embedding \(W^{1,4}(\mathbb{T}^2) \rightarrow L^\infty(\mathbb{T}^2) \), and the Ladyzhenskaya interpolation inequality.

Since \(H^1(\mathbb{T}^2) \) is continuously embedded in \(H^{1/2}(\mathbb{T}^2) \), we have

\[
\|\Lambda^{1/2} \rho\|_{L^2(\mathbb{T}^2)} \leq C \|\Lambda \rho\|_{L^2(\mathbb{T}^2)},
\]

(153)

yielding the differential inequality

\[
\frac{d}{dt} \|\Lambda^{1/2} \rho\|_{L^2(\mathbb{T}^2)} + C_1 \|\Lambda^{1/2} \rho\|_{L^2(\mathbb{T}^2)} \leq C_2 \|\rho\|_{L^2(\mathbb{T}^2)} \|\nabla \rho\|_{L^2(\mathbb{T}^2)} \|\Delta \rho\|_{L^2(\mathbb{T}^2)}.
\]

(154)

We note that

\[
\|\rho(t)\|_{L^2(\mathbb{T}^2)} \leq C \|\rho_0\|_{L^2(\mathbb{T}^2)} e^{-ct}
\]

(155)

for all \(t \geq 0 \). Indeed, we multiply (33) by \(\rho \) and we integrate in the space variable. Then we use the cancellation of the nonlinear term and the continuous embedding of \(H^{1/2}(\mathbb{T}^2) \) in \(L^2(\mathbb{T}^2) \) to obtain

\[
\frac{d}{dt} \|\rho(t)\|_{L^2(\mathbb{T}^2)} + C \|\rho(t)\|_{L^2(\mathbb{T}^2)} \leq 0
\]

(156)

which gives (155).
Now we go back to the differential inequality \((154)\). Using the bounds \((149)\) and \((155)\) together with Lemma 2, we obtain \((150)\).

10. Subcritical Periodic Case

In this section, we consider the subcritical case where the dissipation is given by \(\Lambda^\alpha\) for \(\alpha \in (1, 2]\), that is, we consider the equation

\[
\partial_t \rho + u \cdot \nabla \rho + \Lambda^\alpha \rho = 0
\]

posed on \(\mathbb{T}^2\), where

\[
u = -\mathbb{P}(\rho R \rho).
\]

The initial data are given by

\[
\rho(x, 0) = \rho_0(x)
\]

and have zero mean.

Global weak solutions exist:

Theorem 8. Let \(\alpha \in (1, 2]\). Let \(T > 0\) be arbitrary. Let \(\rho_0 \in L^2(\mathbb{T}^2)\). Then \((157)\)–\((159)\) has a weak solution \(\rho\) on \([0, T]\) obeying

\[
\frac{1}{2} \left\| \rho(t) \right\|^2_{L^2(\mathbb{T}^2)} + \int_0^t \left\| \Lambda^{\frac{\alpha}{2}} \rho(s) \right\|^2_{L^2(\mathbb{T}^2)} ds \leq \frac{1}{2} \left\| \rho_0 \right\|^2_{L^2(\mathbb{T}^2)}
\]

for \(t \in [0, T]\).

The proof is similar to that of Theorem 1 and so we omit the details.

We note that the regularity of the initial data imposed in the critical case \((\alpha = 1)\), namely \(\rho_0 \in L^{2+\delta}\) for some \(\delta > 0\), is not required in the subcritical case in view of the fact that \(\rho\) obeys

\[
\rho \in L^2(0, T; H^{\frac{\alpha}{2}}(\mathbb{T}^2)).
\]

The following proposition is the analogue of Proposition 3.

Proposition 4. Let \(\alpha \in (1, 2]\). Let \(p > 2\) and \(\rho_0 \in L^p(\mathbb{T}^2)\). Suppose \(\rho\) is a smooth solution of \((157)\)–\((159)\) on \([0, T]\). Then

\[
\left\| \rho(t) \right\|_{L^p(\mathbb{T}^2)} \leq \left\| \rho_0 \right\|_{L^p(\mathbb{T}^2)}
\]

holds for all \(t \in [0, T]\). Moreover, if \(\rho_0 \in L^\infty(\mathbb{T}^2)\), then

\[
\left\| \rho(t) \right\|_{L^\infty(\mathbb{T}^2)} \leq \left\| \rho_0 \right\|_{L^\infty(\mathbb{T}^2)}
\]

holds for all \(t \in [0, T]\).

The solution of the initial value problem \((157)\)–\((159)\) with large smooth data are globally regular.

Theorem 9. Let \(\alpha \in (1, 2]\), \(s > 0\). Let \(T > 0\) be arbitrary. Let \(\rho_0 \in H^s(\mathbb{T}^2) \cap L^\infty(\mathbb{T}^2)\). Then there are positive constants \(C_1, C_2\) and \(C_3\) depending only on \(\left\| \rho_0 \right\|_{L^\infty(\mathbb{T}^2)}\) such that the solution of \((157)\)–\((158)\) with initial data \(\rho_0\) exists and satisfies

\[
\left\| \Lambda^s \rho(t) \right\|_{L^2(\mathbb{T}^2)} \leq \left\| \Lambda^s \rho_0 \right\|_{L^2(\mathbb{T}^2)} e^{C_3 t}
\]

and

\[
\int_0^t \left\| \Lambda^{s+\frac{\alpha}{2}} \rho(\tau) \right\|^2_{L^2(\mathbb{T}^2)} d\tau \leq \left\| \Lambda^s \rho_0 \right\|^2_{L^2(\mathbb{T}^2)} + C_2 \left\| \Lambda^s \rho_0 \right\|^2_{L^2(\mathbb{T}^2)} (e^{C_3 t} - 1)
\]

for \(t \in [0, T]\).
Proof: Fix a small $\epsilon \in (0, 1)$ such that $\alpha \geq \epsilon + 1$. We multiply (157) by $\Lambda^{2s}\rho$ and we integrate in the space variable over \mathbb{T}^2. We obtain the equation

$$\frac{1}{2} \frac{d}{dt} \| \Lambda^s \rho \|_{L^2(\mathbb{T}^2)}^2 + \| \Lambda^{s + \frac{\alpha}{2}} \rho \|_{L^2(\mathbb{T}^2)}^2 = - \int_{\mathbb{T}^2} (u \cdot \nabla \rho) \Lambda^{2s} \rho \, dx. \quad (166)$$

We estimate the nonlinear term. Integrating by parts and using Hölder’s inequality, we have

$$\left| \int_{\mathbb{T}^2} (u \cdot \nabla \rho) \Lambda^{2s} \rho \, dx \right| \leq \| \Lambda^{s + \frac{\alpha}{2}} (u \rho) \|_{L^2(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2}} \rho \|_{L^2(\mathbb{T}^2)}.$$

(167)

In view of the commutator estimate

$$\| \Lambda^s (fg) \|_{L^p(\mathbb{T}^2)} \leq C \| g \|_{L^1(\mathbb{T}^2)} \| \Lambda^s f \|_{L^p(\mathbb{T}^2)} + C \| \Lambda^s g \|_{L^p(\mathbb{T}^2)} \| f \|_{L^p(\mathbb{T}^2)} \quad (168)$$

that holds for any mean zero functions $f, g \in C^\infty(\mathbb{T}^2)$, $s > 0$, $p \in (1, \infty)$ with $\frac{1}{p_1} = \frac{1}{p} = \frac{1}{p_3} + \frac{1}{p_4}$, $p_2, p_3 \in (1, \infty)$ (see [9]), we estimate

$$\| \Lambda^{s + \frac{\alpha}{2} + 1} (u \rho) \|_{L^2(\mathbb{T}^2)} \leq C \| u \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2} + 1} \rho \|_{L_\infty^2(\mathbb{T}^2)} + C \| \rho \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2} + 1} u \|_{L^2(\mathbb{T}^2)}. \quad (169)$$

In view of the boundedness of the Riesz transforms (and hence the Leray projector) on $L^p(\mathbb{T}^2)$ for $p \in (1, \infty)$ and Proposition 4, we bound

$$\| u \|_{L^p(\mathbb{T}^2)} \leq \| \rho R \rho \|_{L^p(\mathbb{T}^2)} \leq \| \rho \|_{L^\infty(\mathbb{T}^2)} \| \rho \|_{L^\infty(\mathbb{T}^2)} \leq \| \rho \|_{L^\infty(\mathbb{T}^2)} \leq \| \rho \|_{L^\infty(\mathbb{T}^2)}. \quad (170)$$

By the commutator estimate (168), we have

$$\| \Lambda^{s + \frac{\alpha}{2} + 1} u \|_{L^2(\mathbb{T}^2)} \leq C \| \Lambda^{s + \frac{\alpha}{2} + 1} (\rho R \rho) \|_{L^2(\mathbb{T}^2)} \leq C \| \rho \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2} + 1} R \rho \|_{L^2(\mathbb{T}^2)} + C \| \rho \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2} + 1} \rho \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2} + 1} u \|_{L^2(\mathbb{T}^2)} \quad (171)$$

Hence

$$\| \Lambda^{s + \frac{\alpha}{2} + 1} (u \rho) \|_{L^2(\mathbb{T}^2)} \leq C \| \rho \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2} + 1} \rho \|_{L^\infty(\mathbb{T}^2)} + C \| \rho \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2} + 1} \rho \|_{L^\infty(\mathbb{T}^2)} \quad (172)$$

In view of the continuous Sobolev embedding

$$H^s(\mathbb{T}^2) \hookrightarrow L^{1 + \sigma}(\mathbb{T}^2), \quad (173)$$

we obtain the bound

$$\| \Lambda^{s + \frac{\alpha}{2} + 1} (u \rho) \|_{L^2(\mathbb{T}^2)} \leq C \| \rho \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s + \frac{\alpha}{2} + 1 + \epsilon} \rho \|_{L^2(\mathbb{T}^2)} + C \| \rho \|_{L^\infty(\mathbb{T}^2)} \| \Lambda^{s - \frac{\alpha}{2} + 1} \rho \|_{L^2(\mathbb{T}^2)}. \quad (174)$$

Using the Sobolev interpolation inequality

$$\| \Lambda^{s_1} f \|_{L^2(\mathbb{T}^2)} \leq C \| \Lambda^{s_0} f \|_{L_\sigma^2(\mathbb{T}^2)} \| \Lambda^{s_2} f \|_{L^\sigma(\mathbb{T}^2)} \quad (175)$$

that holds for any mean zero function $f \in H^{s_2}(\mathbb{T}^2)$ and $s_1 = (1 - \sigma)s_0 + \sigma s_2$, $\sigma \in [0, 1]$, we estimate

$$\| \Lambda^{s - \frac{\alpha}{2} + 1} \rho \|_{L^2(\mathbb{T}^2)} \leq C \left(\| \Lambda^s \rho \|_{L^2(\mathbb{T}^2)} \right)^{\frac{2(\alpha - 1)}{\alpha}} \left(\| \Lambda^{s + \frac{\alpha}{2}} \rho \|_{L^2(\mathbb{T}^2)} \right)^{\frac{2}{\alpha} - 1} \quad (176)$$

and

$$\| \Lambda^{s - \frac{\alpha}{2} + 1 + \epsilon} \rho \|_{L^2(\mathbb{T}^2)} \leq C \left(\| \Lambda^s \rho \|_{L^2(\mathbb{T}^2)} \right)^{\frac{2(\alpha - 1 - \epsilon)}{\alpha}} \left(\| \Lambda^{s + \frac{\alpha}{2}} \rho \|_{L^2(\mathbb{T}^2)} \right)^{\frac{2(\epsilon + 1)}{\alpha} - 1} \quad (177)$$
Consequently,
\[
\|\Lambda^{s-\frac{\alpha}{2}+1}(u \rho)\|_{L^2(T^2)} \|\Lambda^{s+\frac{\alpha}{2}} \rho\|_{L^2(T^2)} \\
\leq C \|\rho_0\|_{L^\infty(T^2)}^2 \left(\|\Lambda^s \rho\|_{L^2(T^2)} \right)^\frac{2(\alpha-1)}{\alpha} \left(\|\Lambda^{s+\frac{\alpha}{2}} \rho\|_{L^2(T^2)} \right)^\frac{2(\alpha+1)}{\alpha} \\
+ C \|\rho_0\|_{L^\infty(T^2)}^2 \left(\|\Lambda^s \rho\|_{L^2(T^2)} \right)^\frac{2(\alpha-1)}{\alpha} \left(\|\Lambda^{s+\frac{\alpha}{2}} \rho\|_{L^2(T^2)} \right)^\frac{2}{\alpha} \tag{178}
\]

By Young’s inequality, we end up with
\[
\left| \int_{T^2} (u \cdot \nabla \rho) \Lambda^{2s} \rho \, dx \right| \leq C_{\rho_0} \|\Lambda^s \rho\|_{L^2(T^2)}^2 + \frac{1}{2} \|\Lambda^{s+\frac{\alpha}{2}} \rho\|_{L^2(T^2)}^2 \tag{179}
\]
where C_{ρ_0} is a constant depending on the L^∞ norm of the initial data ρ_0.

Therefore, we obtain the differential inequality,
\[
\frac{d}{dt} \|\Lambda^s \rho\|_{L^2(T^2)}^2 + \|\Lambda^{s+\frac{\alpha}{2}} \rho\|_{L^2(T^2)}^2 \leq 2C_{\rho_0} \|\Lambda^s \rho\|_{L^2(T^2)}^2 \tag{180}
\]
which gives (164) and (165).

We have shown existence of global smooth solutions in the subcritical case, provided that the initial data is smooth enough. No smallness condition is imposed on the size of the initial data. The solutions are also unique. The results obtained hold as well in the whole space \mathbb{R}^2.

11. APPENDIX A

In this appendix, we prove Proposition 2. Let $f, g \in S'_h$. Bony’s paraproduct gives the decomposition
\[
f g = \sum_{j \in \mathbb{Z}} S_{j-1} f \Delta_j g + \sum_{j \in \mathbb{Z}} S_{j-1} g \Delta_j f + \sum_{|j-j'|\leq 1} \Delta_j f \Delta_{j'} g. \tag{181}
\]

We note that
\[
\sum_{|j-j'|\leq 1} \Delta_j f \Delta_{j'} g = \sum_{j \in \mathbb{Z}} \Delta_j f \Delta_j g + \sum_{j \in \mathbb{Z}} \Delta_j f \Delta_{j-1} g + \sum_{j \in \mathbb{Z}} \Delta_j f \Delta_{j+1} g \\
= \sum_{j \in \mathbb{Z}} \Delta_j f \Delta_j g + \sum_{j \in \mathbb{Z}} \Delta_j f \Delta_{j-1} g + \sum_{j \in \mathbb{Z}} \Delta_{j-1} f \Delta_j g \\
= \sum_{j \in \mathbb{Z}} (\Delta_{j-1} f + \Delta_j f) \Delta_j g + \sum_{j \in \mathbb{Z}} \Delta_j f \Delta_{j-1} g. \tag{182}
\]

This implies that
\[
f g = \sum_{j \in \mathbb{Z}} S_{j+1} f \Delta_j g + \sum_{j \in \mathbb{Z}} S_j g \Delta_j f \tag{183}
\]

Now we apply Δ_j. In view of (16), we have
\[
k \leq j - 2 \Rightarrow \Delta_j (S_k g \Delta_k f) = 0 \tag{184}
\]
and
\[
k \leq j - 3 \Rightarrow \Delta_j (S_{k+1} f \Delta_k g) = 0 \tag{185}
\]
Indeed,
\[
\mathcal{F}(\Delta_j(S_kg\Delta_kf))(\xi) = \psi_j(|\xi|)\mathcal{F}(S_kg\Delta_kf)(\xi)
\]
\[
= \psi_j(|\xi|)\left\{ \sum_{l \leq k - 1} \int \psi_l(||\xi - y||)\mathcal{F}g(\xi - y)\psi_k(||y||)\mathcal{F}f(y)dy \right\}
\]
\[
= \psi_j(|\xi|)\left\{ \sum_{\frac{2^k}{4} \leq ||\xi|| \leq \frac{2^{k+1}}{4}} \psi_l(||\xi - y||)\mathcal{F}g(\xi - y)\psi_k(||y||)\mathcal{F}f(y)dy \right\}
\]
\[
= \psi_j(|\xi|)\tilde{\psi}_k(\xi) \tag{186}
\]
where
\[
\tilde{\psi}_k(\xi) = \sum_{l \leq k - 1} \int \psi_l(||\xi - y||)\mathcal{F}g(\xi - y)\psi_k(||y||)\mathcal{F}f(y)dy. \tag{187}
\]
Fix \(l \leq k - 1 \). Let \(y \in \mathbb{R}^2 \) such that \(\frac{2^k}{2} \leq ||y|| \leq \frac{2^{k+1}}{2} \) and \(\psi_l(||\xi - y||) \neq 0 \). This implies that \(||\xi - y|| \leq \frac{2^k}{2} \), thus
\[
||\xi|| \leq ||\xi - y|| + ||y|| \leq \frac{2^k}{2} + \frac{2^{k+1}}{2} \leq 2^{k-15}. \tag{188}
\]
Consequently, if \(||\xi|| > 2^{k-3}15 \), then \(\psi_l(||\xi - y||) = 0 \) for all \(l \leq k - 1 \) and for all \(y \) satisfying \(\frac{2^k}{2} \leq ||y|| \leq \frac{2^{k+1}}{2} \), and so \(\tilde{\psi}_k(\xi) = 0 \). We conclude that the support of \(\tilde{\psi}_k \) is included in the closed ball centered at 0 with radius \(2^{k-3}15 \). But the support of \(\psi_j(\cdot) \) is included in the closed annulus centered at 0 with radii \(\frac{2^j}{2} \) and \(\frac{2^{j+1}}{2} \). Therefore, if \(k + 1 \leq j - 1 \), then \(2^{k-15} < 2^{k+1} \leq 2^{j-1} \) and so
\[
\mathcal{F}(\Delta_j(S_kg\Delta_kf)) = 0 \tag{189}
\]
which gives (184). The property (185) follows from a similar argument. Therefore, we obtain the decomposition
\[
\Delta_j(fg) = \sum_{k \geq j - 2} \Delta_j(S_kg\Delta_kf) + \sum_{k \geq j - 2} \Delta_j(S_kg\Delta_kf). \tag{190}
\]
This ends the proof of Proposition 2.

12. APPENDIX B

Proof of Theorem 1: We take the \(L^2 \) inner product of (38) with \(\rho^\varepsilon \) and we obtain
\[
\frac{1}{2} \frac{d}{dt} \|
\rho^\varepsilon \|_{L^2}^2 + \|
A^{\frac{1}{2}} \rho^\varepsilon \|_{L^2}^2 + \varepsilon \|
\nabla \rho^\varepsilon \|_{L^2}^2 = 0. \tag{191}
\]
Here we used the fact that \(\tilde{\omega}^\varepsilon \) is divergence free, which implies that
\[
(\tilde{\omega}^\varepsilon \cdot \nabla \rho^\varepsilon, \rho^\varepsilon)_{L^2} = 0. \tag{192}
\]
Integrating (191) in time from 0 to \(t \), we obtain (41). Therefore, the family \(\{ \rho^\varepsilon : \varepsilon \in (0, 1] \} \) is uniformly bounded in \(L^2(0, T; H^{\frac{1}{2}}) \). Moreover, we have
\[
| (A\rho^\varepsilon, \Phi)_{L^2} | = | (A^{\frac{1}{2}} \rho^\varepsilon, A^{\frac{1}{2}} \Phi)_{L^2} | \leq \| A^{\frac{1}{2}} \rho^\varepsilon \|_{L^2} \| A^{\frac{1}{2}} \Phi \|_{L^2} \leq C \rho^\varepsilon \| \Phi \|_{H^{\frac{1}{2}}}, \tag{193}
\]
and
\[
| (\tilde{\omega}^\varepsilon \cdot \nabla \rho^\varepsilon, \Phi)_{L^2} | = | (\tilde{\omega}^\varepsilon \rho^\varepsilon, \nabla \Phi)_{L^2} | \leq \| \tilde{\omega}^\varepsilon \rho^\varepsilon \|_{L^2} \| \nabla \Phi \|_{L^\infty} \leq C \rho^\varepsilon \| \Phi \|_{H^{\frac{1}{2}}}, \tag{194}
\]
and
\[
| (\tilde{\omega}^\varepsilon \cdot \nabla \rho^\varepsilon, \Phi)_{L^2} | = | (\tilde{\omega}^\varepsilon \rho^\varepsilon, \nabla \Phi)_{L^2} | \leq \| \tilde{\omega}^\varepsilon \rho^\varepsilon \|_{L^2} \| \nabla \Phi \|_{L^\infty} \leq C \rho^\varepsilon \| \Phi \|_{H^{\frac{1}{2}}} \tag{195}
\]
for all $\Phi \in H^{\frac{5}{2}}$. Here we used the boundedness of the Riesz operator on L^4, and the continuous Sobolev embedding $H^{\frac{5}{2}} \hookrightarrow L^\infty$. Therefore, we obtain the bound
\begin{equation}
\|\vec{u}^e \cdot \nabla \rho^e\|_{H^{\frac{5}{2}}} + \|\Lambda \rho^e\|_{H^{\frac{5}{2}}} + \epsilon \|\Delta \rho^e\|_{H^{\frac{5}{2}}} \leq C\left(\|\rho^e\|_{L^2}^2 + \|\rho^e\|_{L^2} + \|\Lambda^e \rho^e\|_{L^2}\right).
\end{equation}
In view of the continuous embedding $H^{\frac{5}{2}} \hookrightarrow L^4$, we conclude that the family $\{\partial_t \rho^e : \epsilon \in (0, 1]\}$ is uniformly bounded in $L^4(0, T; H^{\frac{5}{2}})$. Now, we note that the inclusion $H^{\frac{5}{2}} \hookrightarrow L^2$ is compact whereas the inclusion $L^2 \hookrightarrow H^{-\frac{5}{2}}$ is continuous. Let ϵ_n be a decreasing sequence in $(0, 1]$ converging to 0. By the Aubin-Lions lemma and (41), the sequence $\{\rho^e_n\}_{n=1}^\infty$ has a subsequence that converges strongly in $L^2(0, T; L^2)$ and weakly in $L^2(0, T; H^{\frac{5}{2}})$ to some function ρ. By the lower semi-continuity of the norms, we obtain (42).

For simplicity of notations, we assume that ρ^e converges to ρ strongly in $L^2(0, T; L^2)$ and weakly in $L^2(0, T; H^{\frac{5}{2}})$. We note that
\begin{equation}
(\rho^e(t), \Phi)_{L^2} - (\rho_0, \Phi)_{L^2} + \int_0^t (\vec{u}^e \cdot \nabla \rho^e, \Phi)_{L^2} ds + \int_0^t (\Lambda^e \rho^e, \Lambda^e \Phi)_{L^2} ds + \epsilon \int_0^t (\nabla \rho^e, \nabla \Phi)_{L^2} ds = 0
\end{equation}
holds for all $\Phi \in H^{\frac{5}{2}}$ and $t \in [0, T]$. Without loss of generality, we may assume that ρ^e converges ρ in L^2 for a.e. $t \in [0, T]$, and so
\begin{equation}
|\rho^e(t), \Phi)_{L^2} - (\rho(t), \Phi)_{L^2}| \leq \|\rho^e - \rho\|_{L^2} \|\Phi\|_{L^2} \to 0
\end{equation}
for all $\Phi \in H^{\frac{5}{2}}$ and a.e. $t \in [0, T]$. By the weak convergence in $L^2(0, T; H^{\frac{5}{2}})$, we obtain
\begin{equation}
\left|\int_0^t (\Lambda^e \rho^e, \Lambda^e \Phi)_{L^2} ds - \int_0^t (\Lambda \rho, \Lambda \Phi)_{L^2} ds\right| \to 0
\end{equation}
for all $\Phi \in H^{\frac{5}{2}}$ and all $t \in [0, T]$. For the nonlinear term, we let $\Phi \in H^{\frac{5}{2}}$, $t \in [0, T]$ and we write
\begin{align*}
\int_0^t (\vec{u}^e \cdot \nabla \rho^e, \Phi)_{L^2} ds - \int_0^t (u \cdot \nabla \rho, \Phi)_{L^2} ds \\
= -\int_0^t ((\rho^e - \rho) u, \nabla \Phi)_{L^2} ds - \int_0^t ((\vec{u}^e - u) \rho^e, \nabla \Phi)_{L^2} ds \\
= I_1 + I_2.
\end{align*}
We note that
\begin{equation}
|I_1| \leq C \|\Phi\|_{H^{\frac{5}{2}}} \int_0^t \|\rho^e\|_{L^4}^2 \|\rho^e - \rho\|_{L^2} ds \to 0
\end{equation}
by the Lebesgue Dominated Convergence theorem. For I_2, we split it as
\begin{align*}
I_2 &= \int_0^t ((J_t \text{P}(\rho(R \rho^e - R \rho)))) \rho^e, \nabla \Phi)_{L^2} ds + \int_0^t ((J_t \text{P}(\rho^e - \rho) R \rho^e)) \rho^e, \nabla \Phi)_{L^2} ds \\
&= I_{2,1} + I_{2,2}.
\end{align*}
In view of the boundedness of the Riesz transform on L^2 and the boundedness of the Leray operator on L^4, we have
\begin{align*}
|I_{2,1}| &\leq C \|\Phi\|_{H^{\frac{5}{2}}} \int_0^t \|\rho^e\|_{L^4} \|\text{P}(\rho(R \rho^e - \rho))\|_{L^{4/3}} ds \\
&\leq C \|\Phi\|_{H^{\frac{5}{2}}} \int_0^t \|\rho^e\|_{L^4} \|\rho^e - \rho\|_{L^2} ds \\
&\leq C \|\Phi\|_{H^{\frac{5}{2}}} \left(\int_0^t \|\rho^e\|_{L^4}^2 ds\right)^{1/2} \left(\int_0^t \|\rho\|_{L^4}^2 \|\rho^e - \rho\|_{L^2}^2 ds\right)^{1/2} \to 0
\end{align*}
by the Lebesgue Dominated Convergence theorem.

We note that we have not yet used the assumption that $\rho_0 \in L^{2+\delta}$. It will be needed to estimate $|I_{2,2}|$. Indeed, we multiply equation (38) by $\rho^\delta |\rho^\delta|$ and we integrate in the space variable. We use the Córdoba-Córdoba inequality [11]

$$\int_{\mathbb{T}^2} |\rho^\delta|^5 (\rho^\delta \Lambda \rho^\delta) dx \geq 0$$

(204) and we obtain the differential inequality

$$\frac{d}{dt} \|\rho^\delta(t)\|_{L^{2+\delta}} \leq 0.$$

(205)

Integrating in time from 0 to t, we end up having the bound

$$\|\rho^\delta(t)\|_{L^{2+\delta}} \leq \|\rho_0\|_{L^{2+\delta}}$$

(206) for all $t \in [0,T]$. As a consequence,

$$|I_{2,2}| \leq C \|\Phi\|_{H^{2+\delta}} \int_0^t \|\rho^\delta\|_{L^4} \|\rho^\delta\|_{L^{2+\delta}} \|\rho^\delta - \rho\|_{L^{2+\delta}} ds$$

$$\leq C \|\Phi\|_{H^{2+\delta}} \|\rho_0\|_{L^{2+\delta}} \int_0^t \|\rho^\delta\|_{L^4} \|\rho^\delta - \rho\|_{L^{2+\delta}} ds$$

$$\leq C \|\Phi\|_{H^{2+\delta}} \|\rho_0\|_{L^{2+\delta}} \left(\int_0^t \|\rho^\delta\|_{L^4}^2 ds \right)^{\frac{1}{2}} \left(\int_0^t \|\rho^\delta - \rho\|_{L^2}^2 ds \right)^{\frac{1}{2}} + C \|\Phi\|_{H^{2+\delta}} \|\rho_0\|_{L^{2+\delta}} \left(\int_0^t \|\rho^\delta\|_{L^4}^2 ds \right)^{\frac{1}{2}} \left(\int_0^t \|\rho^\delta - \rho\|_{L^2}^2 ds \right)^{\frac{1}{2}} \rightarrow 0.$$

(207)

Here we used the interpolation inequality

$$\|f\|_{L^{\frac{8+4\delta}{2+3\delta}}} \leq C \|f\|_{L^4}^{\frac{2\delta}{3}} \|f\|_{L^2}^{\frac{2\delta}{3}}$$

(208) that holds for any $f \in L^4$.

Therefore ρ is a weak solution of (33). This ends the proof of Theorem [11].

13. Appendix C

Proof of Theorem 2: We apply $-\Delta = \Lambda^2$ to (38) and we obtain

$$- \partial_t \Delta \rho^\delta - \vec{u}^\delta \cdot \nabla \Delta \rho^\delta - 2 \nabla \vec{u}^\delta \cdot \nabla \rho^\delta - \Delta \vec{u}^\delta \cdot \nabla \rho^\delta + \Lambda^3 \rho^\delta + \epsilon \Delta \Delta \rho^\delta = 0$$

(209)

We multiply (209) by $-\Delta \rho^\delta$ and we integrate over \mathbb{R}^2. In view of the fact that

$$(\vec{u}^\delta \cdot \nabla \Delta \rho^\delta, \Delta \rho^\delta)_{L^2} = 0,$$

(210)

we obtain

$$\frac{1}{2} \frac{d}{dt} \|\Delta \rho^\delta\|_{L^2}^2 + \|\Lambda^2 \rho^\delta\|_{L^2}^2 + \|\Lambda^3 \rho^\delta\|_{L^2}^2 = -2(\nabla \vec{u}^\delta \cdot \nabla \rho^\delta, \Delta \rho^\delta)_{L^2} - (\Delta \vec{u}^\delta \cdot \nabla \rho^\delta, \Delta \rho^\delta)_{L^2}.$$

(211)

Using the product rule

$$\|fg\|_{H^s} \leq C \|f\|_{H^s} \|g\|_{L^\infty} + C \|g\|_{H^s} \|f\|_{L^\infty}$$

(212)
that holds for any \(f, g \in H^s, s > 0 \), we estimate
\[
\|\nabla \tilde{u}\|_{L^4} \leq C\|\tilde{u}\|_{H^{1/2}} \leq C\|\rho' R \rho'\|_{H^{1/2}} \\
\leq C\|\rho'\|_{L^\infty} \|R \rho'\|_{H^{1/2}} + C\|R \rho'\|_{L^\infty} \|\rho'\|_{H^{1/2}} \\
\leq C\|\rho'\|^2_{H^{1/2}}. \tag{213}
\]
Here, we have used the continuous embedding \(H^{1/2} \hookrightarrow L^4 \), the fact that the Leray projector is bounded on \(H^{1/2} \), and the boundedness of the Riesz transforms as operators from \(H^{1/2} \) into \(L^\infty \). Similarly, we bound
\[
\|\Delta \tilde{u}\|_{L^2} \leq C\|\rho' R \rho'\|_{H^{1/2}} \\
\leq C\|\rho'\|_{L^\infty} \|R \rho'\|_{H^{1/2}} + C\|R \rho'\|_{L^\infty} \|\rho'\|_{H^{1/2}} \\
\leq C\|\rho'\|_{H^{1/2}} \|\rho'\|_{H^{1/2}}. \tag{214}
\]
Consequently,
\[
\frac{1}{2} \frac{d}{dt} \|\Delta \rho'\|_{L^2}^2 + \|\nabla \tilde{u}\|_{L^4}^4 \leq \frac{1}{2} \nabla \tilde{u}\|_{L^4}^4 \|\nabla \rho'\|_{L^4}^2 \|\Delta \rho'\|_{L^2}^2 + \|\nabla \tilde{u}\|_{L^4} \|\nabla \rho'\|_{L^4} \|\Delta \rho'\|_{L^2} \\
\leq C\|\rho'\|^2_{H^{1/2}} \|\rho'\|_{H^{1/2}} \|\Delta \rho'\|_{L^2}. \tag{215}
\]
and by Young’s inequality, we obtain
\[
\frac{d}{dt} \|\Delta \rho'\|_{L^2}^2 + \|\nabla \tilde{u}\|_{L^4}^4 \leq C\|\rho'\|_{L^2}^4 \|\Delta \rho'\|_{L^2}^2 + C\|\rho'\|_{H^{1/2}} \|\rho'\|_{L^2} \|\Delta \rho'\|_{L^2} \\
\leq C(\|\rho'\|_{H^2}^6 + \|\rho'\|_{L^2}^4). \tag{216}
\]
We note that
\[
\|\rho'\|_{H^2} = \| (1 + |\cdot|^2) \mathcal{F}(\rho') (\cdot) \|_{L^2} \leq C\| \mathcal{F} \rho'\|_{L^2} + C\|\Delta \rho'\|_{L^2} \\
= C\|\rho'\|_{L^2} + C\|\Delta \rho'\|_{L^2} \leq C\|\rho_0\|_{L^2} + C\|\Delta \rho'\|_{L^2} \tag{217}
\]
in view of Plancherel’s theorem and the uniform boundedness of \(\rho' \) in \(L^2 \) described by (42). Therefore, we obtain the differential inequality
\[
\frac{d}{dt} \|\Delta \rho'\|_{L^2}^2 + \|\nabla \tilde{u}\|_{L^4}^4 \leq C\|\Delta \rho'\|_{L^2}^6 + C_{\rho_0} \tag{218}
\]
where \(C_{\rho_0} \) is a positive constant depending only on \(\rho_0 \) and some universal constants. This gives a local strong solution.

For uniqueness, suppose that \(\rho_1 \) and \(\rho_2 \) are two strong solutions of (33) on \([0, T_0]\) with the same initial condition. Let \(\rho = \rho_1 - \rho_2 \) and \(u = u_1 - u_2 \). Then \(\rho \) obeys the equation
\[
\partial_t \rho + u \cdot \nabla \rho_1 + u_2 \cdot \nabla \rho + \Lambda \rho = 0 \tag{219}
\]
We take the \(L^2 \) inner product with \(\rho \) and we obtain
\[
\frac{1}{2} \frac{d}{dt} \|\rho\|_{L^2}^2 + \|\nabla \tilde{u}\|_{L^4}^4 = -(u_1 \cdot \nabla \rho_1, \rho)_{L^2}. \tag{220}
\]
In view of the boundedness of the Riesz transforms on \(L^4 \), we have
\[
\|u\|_{L^4} \leq \|\mathbb{P} (\rho R \rho_1)\|_{L^4} + \|\mathbb{P} (\rho_2 R \rho)\|_{L^4} \\
\leq C\|\rho\|_{L^4} \|R \rho_1\|_{L^\infty} + \|\rho_2\|_{L^\infty} \|R \rho\|_{L^4} \\
\leq C\|\rho\|_{L^4} \left(\|\rho_1\|_{H^{1/2}} + \|\rho_2\|_{H^{1/2}} \right). \tag{221}
\]
Hence
\[
\left| (u \cdot \nabla \rho_1, \rho) \right|_{L^2} \leq \|u\|_{L^4} \|\nabla \rho_1\|_{L^4} \|\rho\|_{L^2}
\]
\[
\leq \frac{1}{2} \|\rho\|_{H^{1/2}}^2 + C(\|\rho_1\|_{H^{1/2}}^2 + \|\rho_2\|_{H^{1/2}}^2) \|\rho_1\|_{H^{1/2}} \|\rho\|_{L^2}^2.
\]
(222)

Therefore,
\[
\frac{d}{dt} \|\rho\|_{L^2}^2 \leq K(t) \|\rho\|_{L^2}^2
\]
(223)

where
\[
K(t) = C(\|\rho_1\|_{H^{1/2}}^2 + \|\rho_2\|_{H^{1/2}}^2) \|\rho_1\|_{H^{1/2}} \|\rho\|_{L^2}^2.
\]
(224)

This shows that for each \(t \geq 0 \), \(\rho_1(\cdot, t) = \rho_2(\cdot, t) \) a.e. in \(\mathbb{R}^2 \).

REFERENCES

[1] E. Abdo, M. Ignatova Long time dynamics of a model of electroconvection, Trans. Amer. Math. Soc. 374, 5849–5875 (2021).
[2] H. Bae, A. Biswas, E. Tadmor Analyticity of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 205, no.3, 963–991 (2012).
[3] H. Bahouri, Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations. Springer, Berlin (2011).
[4] L.A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171(3) (2010), 1903–1930.
[5] Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77, 27–50 (1999).
[6] P. Constantin, T. Elgindi, M. Ignatova, V. Vicol, On some electroconvection models, Journal of Nonlinear Science 27, 197–211 (2017).
[7] P. Constantin, M. Ignatova, Critical SQG in bounded domains, M. Ann. PDE, 2, no 8 (2016).
[8] P. Constantin, M. Ignatova, Estimates near the boundary for critical SQG, Ann. PDE 6 (1) (2020).
[9] P. Constantin, A. Tarfulea, V. Vicol, Long time dynamics of forced critical SQG, Communications in Mathematical Physics 335, no. 1, 93–141 (2015).
[10] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 25(6), 1103–1110 (2008).
[11] A. C´ordoba, D. C´ordoba, A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249, 511–528 (2004).
[12] Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, J.R. de Bruyn, Annular electroconvection with shear, Phys. Rev. Lett. 80, 964–967 (1998).
[13] T. Hmidi, S. Keraani, Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math., 214, no. 2, 618–638 (2007).
[14] M. Ignatova, Construction of solutions of the critical SQG equation in bounded domains, Advances in Mathematics, 351, 1000–1023 (2019).
[15] M. Ignatova, J. Shu, Charged Fluids in Porous Media, arXiv:2107.13655 (2021).
[16] A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167(3) (2007), 445–453.
[17] P. Tsai, Z. Daya, S. Morris, Charge transport scaling in turbulent electroconvection, Phys. Rev E 72, 046311-1-12 (2005).
[18] P. Tsai, Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, Direct numerical simulation of supercritical annular electroconvection, Phys. Rev E 76, 1–11 (2007).
[19] H. Tsurumi, Well-posedness and ill-posedness of the stationary Navier-Stokes equations in toroidal Besov spaces, Nonlinearity, Volume 32, Issue 10, 3798–3819 (2019).
DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122
Email address: abdo@temple.edu

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122
Email address: ignatova@temple.edu