A Note On Cover-Free Families

Mehdi Azadimotlagh

Department of Mathematics
Kharazmi University, 50 Taleghani Avenue, 15618, Tehran, Iran
std_m.azadim@khu.ac.ir

Abstract

Let \(N((r, w; d), t) \) denote the minimum number of points in a \((r, w; d)\)-cover-free family having \(t \) blocks. Hajiabolhassan and Moazami (2012) \cite{6} showed that the Hadamard conjecture is equivalent to confirm \(N((1, 1; d), 4d - 1) = 4d - 1 \). Hence, it is a challenging and interesting problem to determine the exact value of \(N((r, w; d), t) \). In this paper, we determine the exact value of \(N((r, w; d), t) \) for every \(r, w \), where \(r + w \leq t \) and some \(d \).

Key words: Cover-free families, Biclique covering number

Subjclass: 05B40.

1 Introduction

A family of sets is called an \((r, w)\)-cover-free family (or \((r, w)\)-CFF) if no intersection of \(r \) sets of the family are covered by a union of any other \(w \) sets of the family. Cover-free families were first described by Kautz and Singleton (1964) to investigate superimposed binary codes \cite{7}. Erdos et al. \cite{3} introduced the \((1, r)\)-cover-free family as a generalization of Sperner family. Stinson et al. \cite{10} considered cover-free families as group testing. Mitchell and Piper \cite{8} considered a key distribution pattern which appears to be equivalent to the notion of cover-free family. For another application and discussion of cover-free families, (see, for example, \cite{1, 4, 5, 6, 9, 11, 13}). Stinson and Wei \cite{11} have introduced a generalization of cover-free families as follows.

Definition 1. Let \(d, n, t, r, \) and \(w \) be positive integers and \(B = \{B_1, \ldots, B_t\} \) be a collection of subsets of a set \(X \), where \(|X| = n \). Each element of the collection \(B \) is called a block and the elements of \(X \) are called points. The pair \((X, B)\) is called an \((r, w; d)\)-CFF \((n, t)\) if for any two sets of indices \(L, M \subseteq [t] \) such that \(L \cap M = \emptyset, |L| = r, \) and \(|M| = w \), we have

\[
|\left(\bigcap_{l \in L} B_l \right) \setminus \left(\bigcup_{m \in M} B_m \right) | \geq d.
\]

Let \(N((r, w; d), t) \) denote the minimum number of points of \(X \) in an \((r, w; d)\)-CFF having \(t \) blocks.

As was shown by Engel \cite{2}, determining the optimal value for a cover-free family is NP-hard. Also, Hajiabolhassan and Moazami \cite{6} showed that the existence of Hadamard matrices results from the existence of some cover-free families and vice versa. A Hadamard matrix of order \(n \) is an \(n \times n \) matrix \(H \) with entries \(+1\) and \(-1\), such that \(HH^T = nI_n \).
Theorem A. [6] Let d be a positive integer, then $N((1,1;d),4d-1) = 4d-1$ if and only if there exists a Hadamard matrix of order $4d$.

It is proved that if H is a Hadamard matrix of order n, then $n = 1$, $n = 2$, or $n = 4d$ whenever d is a positive integer [12]. It was conjectured by Jacques Hadamard (1893) that there exists a Hadamard matrix of every order $4d$ whenever d is a positive integer. Actually Hajiabolhassan and Moazami showed that the Hadamard conjecture is equivalent to confirm $N((1,1;d),4d-1) = 4d-1$. Thus the problem of determining the exact value of the parameter $N((r,w;d),t)$, even for special values of r, w, d, and t is a challenging and interesting problem. In this paper, we determine the exact value of $N((r,w;d),t)$ for every r, w, where $r + w \leq t$ and some d.

2 Cover-Free Family

In this section, we restrict our attention to determine the exact value of $N((r,w;d),t)$ for every value of r, w, and t, where $r + w \leq t$, and some special value of d. In this regard, we need to use some notation and theorem as follows. A biclique of G is a complete bipartite subgraph of G. The d-biclique covering (resp. partition) number $bc_d(G)$ (resp. $bp_d(G)$) of a graph G is the minimum number of bicliques of G such that every edge of G belongs to at least (resp. exactly) d of these bicliques. Hajiabolhassan and Moazami [6] showed that the existence of an $(r,w;d)$-cover-free family is equivalent to the existence of d-biclique cover of bi-intersection graph. The bi-intersection graph $I_t(r,w)$ is a bipartite graph whose vertices are all w- and r-subsets of a t-element set, where a w-subset is adjacent to an r-subset if and only if their intersection is empty.

Theorem B. [6] Let r, w, d and t, be positive integers, where $t \geq r + w$. It holds that $N((r,w;d),t) = bc_d(I_t(r,w))$.

Theorem 1. Let r, w, and t be positive integers, where $t \geq r + w$. Also, assume that the function $\binom{t}{r} \binom{t-x}{w}$ is maximized for $x = t'$. If $d = \binom{t-r-w}{v-r}$, then

$$N((r,w;d),t) = bc_d(I_t(r,w)) = bp_d(I_t(r,w)) = \binom{t}{t'}.$$

Proof. Set $t'' = \binom{t}{r'}$. First, we show that $I_t(r,w)$ can be covered by t'' bicliques such that every edge of $I_t(r,w)$ is covered by exactly d bicliques. Denote the vertex set of $I_t(r,w)$ by bipartition (X,Y) in which $X = \binom{[t]}{r}$ and $Y = \binom{[t]}{w}$. Suppose that A is a t'-subset of $[t]$ and A^c is the complement of the set A in $[t]$. Denote the number of these pairs by t''. Now, for every t'-subset A_j of $[t]$, where $1 \leq j \leq t''$, construct the biclique G_j with the vertex set (X_j,Y_j), where $X_j = \binom{A_j}{r}$ and $Y_j = \binom{A^c_j}{w}$. Let UV be an arbitrary edge of $I_t(r,w)$, where $|U| = r$ and $|V| = w$. In view of the definition of G_j, UV is covered by every G_j with vertex set (X_j,Y_j), where U is a vertex of X_j and V is a vertex of Y_j. Thus every edge of $I_t(r,w)$ is covered by at least d bicliques. One can see that

$$\sum_{j=1}^{t''} |E(G_j)| = \binom{t}{t'} \binom{t'}{r} \binom{t-t'}{w} \quad \& \quad |E(I_t(r,w))| = \binom{t}{r} \binom{t-r}{w}.$$
Now, it is simple to check that
\[
\sum_{j=1}^{t''} |E(G_j)| = d|E(I_t(r, w))|.
\]
Thus every edge of \(I_t(r, w) \) is covered by exactly \(d \) bicliques. Note that we have actually proved that
\[
bp_d(I_t(r, w)) \leq t''.
\] (1)

Conversely, one can see that
\[
bp_d(I_t(r, w)) \geq bc_d(I_t(r, w)) \geq \frac{d|E(I_t(r, w))|}{B(I_t(r, w))}.
\]

Also, In view of the definition of \(t' \), we have
\[
\frac{d|E(I_t(r, w))|}{B(I_t(r, w))} = \binom{t-r-w}{t-r} \binom{t-w}{t-r} \binom{t-w}{t-r-w} = \binom{t}{t'} = t''.
\]

Hence,
\[
bp_d(I_t(r, w)) \geq bc_d(I_t(r, w)) \geq t''.
\] (2)

From (1) and (2), we conclude
\[
bp_d(I_t(r, w)) = bc_d(I_t(r, w)) = t''.
\]

By Theorem B,
\[
N((r, w; d), t) = bc_d(I_t(r, w)),
\]
this completes the proof.

Acknowledgments: This paper is a part of Mehdi Azadi Motlagh’s Ph.D. Thesis. The author would like to express his deepest gratitude to Professor Hossein Hajiabolhassan for his invaluable comments and discussion.

References

[1] M. Azadimotlagh and F. Moazami. A generalization of \((2, w; d)\)-cover free families. *Ars Combinatoria*, to appear.

[2] Konrad Engel. Interval packing and covering in the boolean lattice. *Combinatorics, Probability and Computing*, 5:373–384, 12 1996.

[3] P. Erdős, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the union of two others. *J. Combin. Theory Ser. A*, 33(2):158–166, 1982.

[4] Zoltán Füredi. On \(r \)-cover-free families. *J. Combin. Theory Ser. A*, 73(1):172–173, 1996.
[5] Hossein Hajiabolhassan and Farokhlagha Moazami. Secure frameproof codes through biclique covers. *Discrete Math. Theor. Comput. Sci.*, 14(2):261–270, 2012.

[6] Hossein Hajiabolhassan and Farokhlagha Moazami. Some new bounds for cover-free families through biclique covers. *Discrete Mathematics*, 312(24):3626 – 3635, 2012.

[7] W. Kautz and R. Singleton. Nonrandom binary superimposed codes. *Information Theory, IEEE Transactions on*, 10(4):363–377, Oct 1964.

[8] Chris J. Mitchell and Fred C. Piper. Key storage in secure networks. *Discrete Applied Mathematics*, 21(3):215 – 228, 1988.

[9] Miklós Ruszinkó. On the upper bound of the size of the r-cover-free families. *J. Combin. Theory Ser. A*, 66(2):302–310, 1994.

[10] D.R. Stinson, Tran van Trung, and R. Wei. Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. *Journal of Statistical Planning and Inference*, 86(2):595 – 617, 2000.

[11] D.R. Stinson and R. Wei. Generalized cover-free families. *Discrete Mathematics*, 279(13):463 – 477, 2004.

[12] J.H. van Lint and R.M. Wilson. *A Course in Combinatorics*. Cambridge University Press, 2001.

[13] R. Wei. On cover-free families. *manuscript.*, 2006.