Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas

Sanghoon Lee1,3 and Hatice Ulku Osmanbeyoglu1,2,3,4*

Abstract

Background: Invasive lobular breast carcinoma (ILC), the second most prevalent histological subtype of breast cancer, exhibits unique molecular features compared with the more common invasive ductal carcinoma (IDC). While genomic and transcriptomic features of ILC and IDC have been characterized, genome-wide chromatin accessibility pattern differences between ILC and IDC remain largely unexplored.

Methods: Here, we characterized tumor-intrinsic chromatin accessibility differences between ILC and IDC using primary tumors from The Cancer Genome Atlas (TCGA) breast cancer assay for transposase-accessible chromatin with sequencing (ATAC-seq) dataset.

Results: We identified distinct patterns of genome-wide chromatin accessibility in ILC and IDC. Inferred patient-specific transcription factor (TF) motif activities revealed regulatory differences between and within ILC and IDC tumors. EGR1, RUNX3, TP63, STAT6, SOX family, and TEAD family TFs were higher in ILC, while ATF4, PBX3, SPDEF, PITX family, and FOX family TFs were higher in IDC.

Conclusions: This study reveals the distinct epigenomic features of ILC and IDC and the active TFs driving cancer progression that may provide valuable information on patient prognosis.

Keywords: Invasive lobular breast carcinoma, Invasive ductal breast carcinoma, Differential chromatin accessibility landscape, EGR, SOX, TEAD, FOX family transcription factors, Transcriptional regulation

Introduction

Breast cancer, the leading malignancy in women, has molecularly discrete subtypes based on the expression of estrogen receptor alpha (ESR1, also known as ER), progesterone receptor (PGR, also known as PR), and/or the amplification of human epidermal growth factor receptor 2 (ERBB2, also known as HER2). Of the ~200,000 newly diagnosed cases of invasive breast cancer each year, 70% are estrogen receptor-positive (ER+) [1]. More patients die from advanced ER+ breast cancer than all other breast cancer types combined. ER+ breast cancer comprises two main histological subtypes with varying molecular features and clinical behaviors: 85–90% are invasive ductal carcinoma (IDC) and 10–15% are invasive lobular carcinoma (ILC) [2–4]. ILC is predominantly ER+ and PGR-positive but can, rarely, show HER2 protein overexpression. While ILC is initially associated with longer disease-free survival and a better response to adjuvant hormonal therapy than IDC, the long-term prognosis for ILC is worse than IDC; 30% of ILC patients will develop late-onset metastatic disease up to 10 years after the initial diagnosis [5]. In several retrospective studies that compared clinical and pathological responses, ILC
also appeared less responsive to chemotherapy than IDC [6–8].

Although ER+ ILC and IDC tumors are treated clinically as a single disease [9], recent studies have established ER+ ILC as a distinct disease with unique sites of metastasis, frequent presentation of multifocal disease, delayed relapses, and decreased long-term survival compared to ER+ IDC tumors [10–14]. Large-scale studies from The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) have reported genomic and transcriptomic analyses on resected IDC and ILC tumors [15, 16]. The distinguishing feature of ILC is the functional loss of E-cadherin, a protein that mediates epithelial-specific cell–cell adhesion [17]. The loss of E-cadherin expression in CDH1 mutants is associated with phosphatidylinositol 3 kinase (PI3K)/Akt pathway activation and growth factor receptor (GFR) signaling activation including epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) [18, 19]. E-cadherin knockouts of IDC cell lines result in remodeling of transcriptomic membranous systems, greater resemblance to ILCs, and increased sensitivity to IFN-γ-mediated growth inhibition via activation of IRF1 [20].

The National Cancer Institute (NCI) Genomic Data Analysis Network (GDAN) generated assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data for a subset of TCGA samples (404 patients) [21], including ER+ ILC and IDC tumors. ATAC-seq is a transformative technology for mapping the chromatin-accessible loci genome-wide and identifying nucleosome-free positions in regulatory regions. It needs only ~50,000 cells and is simpler than previous methods, such as DNase-seq [22]. Epigenomic changes at the level of chromatin accessibility, potentially linked to distinct differentiation states, might reveal epigenetic reprogramming and developmental origin differences between ER+ ILC and IDC. However, chromatin accessibility landscape differences between ER+ ILC and IDC tumors based on patient samples have not been systematically characterized. Complementing genomic and transcriptomic studies, we mapped the epigenetic heterogeneity in ER+ ILC and IDC with a systematic analysis of chromatin accessibility patterns based on the primary tumor breast cancer TCGA ATAC-seq dataset [23]. We defined the compendium of ~190,000 genomewide cis-regulatory regions in breast cancer ER+ ILC and IDC with 11,762 differentially accessible (DA) peaks between ILC and IDC, which represented 5.98% of total ATAC-seq peaks. EGR1, RUNX3, TP63, STAT6, SOX family, and TEAD family transcription factor (TF) activities were significantly higher in ILC, consistent with their role in the regulation of the extracellular matrix and growth factor signaling pathways, whereas ATF4, PDX3, SPDEF, PITX family, and FOX family TF activities were significantly higher in IDC. The inferred TF activities and context-specific target genes based on ATAC-seq data identified biological pathways that are likely distinct in ER+ ILC vs. IDC. Together, these results provide new insights into ER+ ILC and IDC biology.

Results

Chromatin accessibility differences between ER+ /HER2- ILC and IDC breast cancer

Epigenetic differences at the level of chromatin accessibility, potentially linked to different differentiation states, could distinguish ER+ ILC and IDC tumors. We characterized tumor cell-intrinsic chromatin accessibility patterns using primary ER+ breast cancer ATAC-seq data from TCGA [21]. Using an atlas of 204,728 peaks across all ILC and IDC breast tumors (n = 67) [21], we grouped tumors according to their histological subtypes and hormone receptor status according to their clinical annotation [23] [24]: ER+/HER2- ILCs (n = 13), ER+/ HER2- IDCs (n = 30), and ER+/HER2+ IDCs (n = 7). Principal component analysis (PCA) of peak read counts showed that all these ER+ tumors were clustered closely, the ER+/HER2- or HER2+ IDCs more closely associated, and the ILCs slightly separated (Fig. 1A). In addition, we found three ER+/HER2- IDC samples and one ER+/ HER2+ IDC sample were outliers. We observed similar patterns and the same outliers through PCA of RNA-seq and reverse phase protein array (RPPA) data (Additional file 1: Figure S1A–B). Because there were few ER+/ HER2+ samples, we used ER+/HER2- ILCs (n = 13) and ER+/HER2- IDCs (n = 27) for downstream analyses. Hereafter, we simply denote ILCs vs IDCs omitting ER+/HER2-.

To understand epigenomic landscape differences between ILCs and IDCs, we analyzed differential chromatin accessibility. We found 11,762 DA peaks (absolute log₂ fold change > 1.0 and adjusted p value < 0.05) between ILCs and IDCs, which represented 5.99% of all ATAC-seq peaks (Fig. 1B–C). Among these, 5,124 peaks (2.61%) showed increased accessibility in ILCs and 6,638 peaks (3.38%) showed increased accessibility in IDCs. Most of the DA ATAC-seq peaks were at distal intergenic regions (48.46% for ILCs and 40.79% for IDCs); 36.26% for ILCs and 36.84% for IDCs were at introns; 9.83% for ILCs and 16.64% for IDCs were at promoters; and 3.03% for ILCs and 2.61% showed increased accessibility in ILCs and 6,638 peaks for IDCs. We found three ER+/HER2- IDC samples and one ER+/ HER2+ IDC sample were outliers. We observed similar patterns and the same outliers through PCA of RNA-seq and reverse phase protein array (RPPA) data (Additional file 1: Figure S1A–B). Because there were few ER+/ HER2+ samples, we used ER+/HER2- ILCs (n = 13) and ER+/HER2- IDCs (n = 27) for downstream analyses. Hereafter, we simply denote ILCs vs IDCs omitting ER+/HER2-.

To understand epigenomic landscape differences between ILCs and IDCs, we analyzed differential chromatin accessibility. We found 11,762 DA peaks (absolute log₂ fold change > 1.0 and adjusted p value < 0.05) between ILCs and IDCs, which represented 5.99% of all ATAC-seq peaks (Fig. 1B–C). Among these, 5,124 peaks (2.61%) showed increased accessibility in ILCs and 6,638 peaks (3.38%) showed increased accessibility in IDCs. Most of the DA ATAC-seq peaks were at distal intergenic regions (48.46% for ILCs and 40.79% for IDCs); 36.26% for ILCs and 36.84% for IDCs were at introns; 9.83% for ILCs and 16.64% for IDCs were at promoters; and 3.03% for ILCs and 2.61% showed increased accessibility in ILCs and 6,638 peaks for IDCs.
Fig. 1 Differential chromatin accessibility between ER+/HER2- ILC and ER+/HER2- IDC. A PCA of ATAC-seq signal in all peaks (n = 204,728). All tumors of ER+ were clustered together, but ILC and IDC tumors were slightly separated. The three outliers of ER+/HER2+ IDCs and one outlier of ER+/HER2+ ILCs are annotated in the plot. B Volcano plot of ATAC-seq peaks comparing ILCs (n = 13) to IDCs (n = 27). Significant peaks with differential chromatin accessibility are highlighted in red. The vertical dotted line indicates an absolute log2 fold change of 1.0 and the horizontal dotted line indicates an FDR-corrected p value 0.05 criterion; the DA peaks enriched in ILCs (n = 5,124) vs IDCs (n = 6,638). FDR-corrected p values were obtained using DESeq2. C Hierarchical clustering of the 11,762 DA peaks. The significant DA peaks identified in Fig. 1B were aggregated to 11,762 peaks and represented as chromatin accessibility patterns in ILCs and IDCs. Colors represent log2-transformed peak count data and the z-score row was normalized. D Pie charts show the percentage of DA ATAC-seq peaks (FDR < 0.05) at the promoter, intronic, intergenic, and exonic regions for ILCs versus IDCs. E Enrichment of TF-binding motifs for the subclusters of DA regions of ILCs and IDCs. The top 10 enriched motifs are shown. F Enrichment of PANTHER pathways for subclusters of DA regions of ILCs and IDCs. In the bar plot, the gray line indicates the significance of the PANTHER pathways (hypergeometric test, adjusted p value < 0.05). GREAT was used to identify the PANTHER pathways overrepresented in the DA peaks.
group state (67.5% for ILCs and 40.0% for IDCs); 10.8% for ILCs and 19.9% for IDCs were at the transcriptional activity state; 5.6% for ILCs and 9.8% for IDCs were at the promoter state; and 2.9% for ILCs and 11.6% for IDCs were at the quiescent state (Additional file 1: Figure S2).

We used HOMER motif analysis of DA ATAC-seq peaks to identify key TFs driving the expression differences between IDCs and ILCs [26]. DA sites in ILCs were highly enriched with binding motifs for the Sry-related HMG box (SOX), TEA domain (TEAD), runt-related transcription factor (RUNX) family, and TP63 TFs. In contrast, forkhead box (FOX) family binding motifs (e.g., FOXM1, FOXA1, FOXK1) were enriched in IDC sites (Fig. 1E). Interestingly, SOX family TFs were major predicted motifs in DA promoter peaks enriched in ILCs, but not in DA distal intergenic or intronic peaks (Additional file 1: Figure S3A–C). FOX family TFs were dominant motifs in the DA distal intergenic or intronic peaks enriched in IDCs, but not in the DA promoter peaks (Additional file 1: Figure S3D–F, for complete list see Additional file 2: Tables S1 and S2).

To identify key biological processes that drive oncogenic gene expression differences between IDCs and ILCs, we analyzed the pathways for DA ATAC-seq peaks using the Genomic Regions Enrichment of Annotations Tool (GREAT) [27]. The DA peaks enriched in ILCs and IDCs were associated with different pathways. Oxidative stress response, interleukin signaling, and p53 pathways were overrepresented in ILCs, whereas endothelin signaling, EGF receptor signaling, T cell activation, inflammation, and angiogenesis pathways were overrepresented in IDCs (p value < 0.01) (Fig. 1F). Interestingly, the PI3K pathway was enriched in both ILCs and IDCs. Thus, the epigenomic differences identified distinct TF motif enrichment and biological signatures between ILCs and IDCs.

To correlate alterations in chromatin accessibility with transcriptional output, we integrated ATAC-seq data with RNA-seq data. Consistent with the correlation of global differential accessibility and expression, differential accessibility of individual genes was often associated with significant differential expression (Fig. 2A–B). Genes with the greatest differential accessibility between ILCs and IDCs at their promoter, intronic, and nearby intergenic peaks are shown in Fig. 2B. For example, FAM83A and ERICH5 were significantly more accessible in IDCs, while FAM189A and SSPN were significantly more accessible in ILCs (Fig. 2C). FAM83A is involved in the chemoresistance and stemness of breast cancer through its interaction with the EGFR/PI3K/AKT signaling pathway [28, 29]. FAM189A is down-regulated in breast cancer [30, 31] and SSPN is down-regulated in TNBC [32]. Overall, we identified context-specific features, including accessibility and expression patterns associated with IDCs vs. ILCs.

The coordinated activity of many TFs characterizes ILC and IDC tumors

We inferred sample-specific TF motif activities based on genome-wide chromatin accessibility data using CREMA (Cis-Regulatory Element Motif Activities, see Methods). This allowed us to map chromatin accessibility profiles to a lower-dimensional inferred TF activity space, largely preserving the relationships between samples. Inferred activities of 29 TF motifs were significantly associated with histological subtypes by false discovery rate (FDR)-corrected p value < 0.05 and absolute mean activity difference > 0.035 (Fig. 3A and Additional file 1: Figure S4). We found that Early Growth Response 1 (EGR1) [33], TEAD family (TEAD1, TEAD3, and TEAD4), SOX family, (SOX2, SOX4, and SOX8), and RUNX3_BLC11A TFs had significantly higher activities in ILCs than IDCs (Fig. 3B). Similarly, FOX family (FOXA1, FOXA3, FOXC2, FOXL1, FOXK1, FOXP2, FOXP3, FOXD3, FOXI1, and FOXF1), paired like homeodomain (PITX family) (PITX1 and PITX2), PBX3, and HSF4 had significantly higher activities in IDCs than ILCs (Fig. 3C). Consistently, EGR1 mRNA is upregulated in ILCs [33] and TEAD increases the expression of nuclear Yes-associated protein (YAP), a transcription coactivator playing a role in cell proliferation and invasion in ILCs [34, 35]. However, other TFs have not been studied in the context of ILCs and IDCs. TF activities from the same families were also correlated across samples (Fig. 3D). Overall, these results were consistent with the motif enrichment analysis based on the DA peaks in ILCs vs. IDCs (Fig. 1E).

To determine whether TF activities were associated with protein expression, we compared immunohistochemically
Fig. 2 (See legend on previous page.)
(IHC) stained images for available TFs between ILCs and IDCs obtained from the Human Protein Atlas (HPA) database [36]. The HPA tissue images of breast tumors provide histological subtype but not hormone receptor subtype information. Therefore, we used only ILC ($n=3$) or IDC ($n=4$) images that had ER high/medium staining intensity and HER2 low/not detected staining intensity (Additional file 1: Figure S5). The IHC images demonstrated that EGR1, TEAD4, SOX2, and BCL11A proteins were highly expressed in ILCs, but were not detected in IDCs consistent with the increased TF activities in ILCs. Likewise, the IHC images of FOXA1, FOXA3, ATF4, PITX1, and ZNF35 showed medium or high protein expression in IDCs but were not detected or showed low expression in ILCs. Although the HPA staining images indicated that increased TF activities in ILCs or IDCs were associated with protein expression in the corresponding histological subtypes, a larger cohort is needed to derive stronger conclusions.

We looked for functional evidence of IDC- and ILC-specific TF regulators using published breast cancer genome-wide “dropout” screens using pooled small hairpin RNA (shRNA) libraries [37]. The dataset included three ER$^+$/ILC cell lines and 11 ER$^+$/IDC cell lines (HER2-type data were not available). We ran small interfering RNA (siRNA)/shRNA mixed-effect model (siMEM) for three ER$^+$/ILC cell lines vs. other breast cancer cell lines or for 11 ER$^+$/IDC cell lines vs. others to calculate context-specific essentiality scores for IDC- or ILC-specific TFs. Additional file 1: Table S3 lists the essentiality scores of the TFs in ER$^+$/ILC (15/18 TFs) or ER$^+$/IDC (15/19 TFs) cell lines. We identified RUNX3, SOX4, TEAD3, UBP1, NFIA, and BCL11A as essential for ER$^+$/ILC cell proliferation, and FOXA1 and SPDEF as essential for...
ER+ IDC cell proliferation (FDR < 0.2). RUNX3 inhibits estrogen-dependent proliferation by targeting ERs in breast cancer cell lines and functions as a tumor suppressor, but its role has not been defined [38]. Interestingly, we identified FOXA1 and SPDEF as the top essential TFs for ER+ IDC cells. The original genome-wide shRNA screening also identified FOXA1 and SPDEF as the top luminal/HER2 essential genes out of 975 essential genes [37]. In ER+ breast cancer cell lines, FOXA1 inhibits cell growth by inducing E-cadherin expression and suppressing ER pathway activity, which suggests that FOXA1 can be a favorable prognostic marker in human breast cancer [39–41]. SPDEF expression is also enriched in luminal tumors and promotes luminal differentiation and survival of ER+ cells [42].

Gene sets for IDC- and ILC-specific TFs display coherent functions and are consistent with gene expression changes

Tables 1 and 2 summarize the enriched canonical pathways for the target genes of the TFs associated with ILCs or IDCs. Interestingly, most TFs with high activities in ILCs, including EGR1, HMGA1, NFIX, NIFB, RBPJ, SOX family, TEAD family, TP63, UBP1, and ZFHX3, were associated with genes encoding extracellular matrix (ECM)-associated proteins for structure or remodeling. IDC-specific TFs including ARNT, ATF4, and ZNF35 were associated with PI3K or IL2 signaling mediated by PI3K. We next examined TF target gene expression in IDCs and ILCs using TCGA and METABRIC gene expression data. Figure 4 shows the cumulative distribution of expression changes between ILC- or IDC-specific TF activities for predicted targets based on ATAC-seq data. The TF regulators identified for ILC and IDC were associated with the upregulation of their targets. There was significant upregulation of motif-based targets of TFs based on ATAC-seq relative to all genes in the TCGA and METABRIC tumor data (p value < 1e–3, one-sided Kolmogorov–Smirnov test). Thus, ILCs and IDCs are associated with different TFs, and the TFs regulate target gene expression and biological pathways specific for ILCs versus IDCs.

Discussion

Many studies have examined the distinct molecular features and prognostic outcomes for ILC vs. IDC tumors. We provide here the first comprehensive genome-wide chromatin accessibility landscape analysis of ER+ ILC and IDC using primary breast cancer TCGA ATAC-seq data. We identified a chromatin accessibility signature, TFs, and biological pathways specific to ER+ ILC and IDC tumors. TFs (e.g., EGR1, SOX, and TEAD family) involved in ECM interactions and developmental pathways had higher activity in ILC compared to IDC. The differences in activities of TFs in ILCs vs. IDCs based on chromatin accessibility were also consistent with TF protein expression and upregulation of TF target gene expression.

The altered TF activities associated with these histological subtypes have a direct relationship to the biological presentation of the resulting tumors and their diagnosis. For example, EGR1 can be activated via the MAPK signaling pathway through stimulation by reactive oxygen species [43] consistent with our pathway enrichment analysis in ILCs (Fig. 1F and Table 1). In prostate cancer, EGR1 induces TGFβ1 expression which stimulates tumor tissue growth and angiogenesis [73]. Further, EGR1 contributes to tumor invasion and metastasis in ovarian cancer cells by activating the expression of SNAIL and SLUG which are involved in MAPK signaling pathway and cause E-cadherin transcriptional loss [74]. The TEAD family, specifically TEAD4, has been shown to bind with the oncogenic TF KLF5 and in turn induce transcription of fibroblast growth factor binding protein 1 (FGFBP1), which is promoting cell proliferation through expansion of the fibroblast cell type in TNBC [75]. TEADs interact with transcription coactivator Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), thereby affecting the Hippo pathway that plays a key role in cell proliferation, invasion, and resistance to breast cancer treatment [53, 76]. Lastly, the SOX family TFs are critical regulators of developmental processes and contribute to tumor development and progression. Although SOX-mediated transcription regulation is active in breast cancer [77, 78], no association with histological subtypes was reported. SOX TFs have been shown to act in both an oncogenic capacity and as a tumor suppressor [78]. SOX2 and SOX9 are shown to interact during increased cancer stem cell content and the development of drug resistance. SOX2 increase in association with estrogen reduction reduces the expression of the SOX9. Upregulated SOX2 proteins induce chemoresistance in breast cancer cells and promote their stemness property through the recruitment of regulatory T cells (Tregs) to the tumor microenvironment [79, 80]. SOX9 is known to work downstream of SOX2 to control the luminal progenitor cell content resulting in increased tumor initiation, drug resistance, and poor prognosis [81]. SOX4 is an oncogene that promotes PI3K/Akt signaling, angiogenesis, and resistance to cancer therapies in breast tumors; thus, SOX4 is a biomarker for PI3K-targeted therapy [82, 83]. TP63, a member of the TP53 gene family, is highly expressed in metastatic breast cancer [84].

DA sites in IDCs were highly enriched with ATF4, PBX3, SPDEF, PITX family, and FOX family TF motifs (Fig. 1E and 3A). For example, SPDEF is a protein whose function is dependent on the breast cancer subtype [71].
TF symbol	Pathways associated with TF target genes (top 3)	p value TCGA	p value METABRIC	Relation to breast cancer	Reference
EGR1	Genes encoding, enzymes and their regulators involved in the remodeling of the ECM	$< 1.0E-16$	$< 1.0E-16$	Overexpression induces E-cadherin transcription inhibition	[43]
	Genes encoding secreted soluble factors				
	Genes encoding structural ECM glycoproteins				
HMGA1	E2F transcription factor network	$< 3.4E-03$	$< 1.0E-16$	Overexpression promotes metastasis	[44]
	Genes encoding structural ECM glycoproteins				
	Regulation of Ras family activation				
NF1A	Genes encoding secreted soluble factors	$< 1.0E-16$	$< 1.0E-16$	Interacts to affect chromatin remodeling	[45]
	Ephrin B reverse signaling				
	ErbB receptor signaling network				
NFIX__NFI B	Genes encoding structural ECM glycoproteins	$< 1.0E-16$	$< 1.0E-16$	Upregulated in ER+ tumors and acts as an oncogene	[46]
	Genes encoding secreted soluble factors				
	Genes encoding enzymes and their regulators involved in the remodeling of the ECM				
	Genes encoding structural ECM glycoproteins				
RBPJ	Genes encoding enzymes and their regulators involved in the remodeling of the ECM	$< 7.6E-01$	$< 3.2E-13$	Regulates the NOTCH1 pathway via transcriptional repression resulting in recurrence of tumors	[47]
	Genes encoding structural components of basement membranes				
	GMCSF-mediated signaling events				
RUNX3_ BCL11A	E-cadherin signaling in keratinocytes	$< 1.0E-16$	$< 1.0E-16$	RUNX3 inhibits cell proliferation by targeting ERs. BCL11A highly expressed in TNBC, drives metastasis	[38, 48]
	TCR signaling in naïve CD4+ T cells				
	IL12 signaling mediated by STAT4				
SOX2	Alpha6 beta4 integrin–ligand interactions	$< 2.2E-04$	$< 1.0E-16$	Relates to cancer cell stemness, tumorigenicity, and transcription regulation of the CCND1 gene	[49]
	Ephrin B reverse signaling				
	Genes related to regulation of the actin cytoskeleton				
SOX4	Genes encoding structural ECM glycoproteins	$< 8.4E-03$	$< 1.0E-16$	Regulation of EMT-related genes, increased clonogenicity, angiogenesis, and tumor cell dissemination	[50]
	Signaling events mediated by the Hedgehog family				
	Wnt/beta-catenin Pathway				
SOX8	Signaling events mediated by the Hedgehog family	$< 7.9E-07$	$< 1.0E-16$	Relates to cancer cell stemness in TNBC cells	[51]
	Genes encoding collagen proteins				
	Genes encoding structural ECM glycoproteins				
STAT6	E-cadherin signaling in keratinocytes	$< 2.4E-07$	$< 1.0E-16$	Mediates Interleukin-4 (IL-4) growth inhibition, induction of apoptosis	[52]
	Netrin-mediated signaling events				
	Genes encoding structural components of basement membranes				
TEAD3_ TEAD1	Ensemble of genes encoding ECM-associated proteins including ECM-affiliated proteins, ECM regulators and secreted factors Genes encoding enzymes and their regulators involved in the remodeling of the ECM	$< 1.0E-16$	$< 1.0E-16$	Bind with HIPPO pathway co-activators (YAP, TAZ) creating oncogenic transformation and tumorigenesis	[53]
	AMB2 Integrin signaling				
SPDEF is a tumor suppressor in triple-negative breast cancer (TNBC) inhibiting tumor invasion and decreasing epithelial–mesenchymal transformation (EMT) [85]. In luminal or HER2+ breast cancer, SPDEF is an oncogene [86]. As well FOXA1 proteins enhance hormone-driven ER activity and binding to intergenic regions of DNA in ER+ breast cancer [87]. FOXA1 also inhibits EMT and cell growth by modulating E-cadherin, leading to a better prognosis [39]. Our results suggest that the potential role of these TFs in ILC and IDC merits further investigation.

Conclusions
This study provides the first in-depth characterization of the genome-wide chromatin accessibility landscape of ER+ ILC and IDC primary tumor samples. We identified several differences in the epigenomic profiles between ILC and IDC and highlighted potentially clinically relevant pathways. Our deep analyses of ATAC-seq data generated a global regulatory network with the corresponding TFs in IDC and ILCs that could provide useful clinical insights into the differences between these two histological subtypes.

Methods
Data and preprocessing

TCGA breast cancer data
We downloaded TCGA breast cancer (BRCA) ATAC-seq raw bam files (n=75) and RNA-seq raw fastq.gz files from NCI Genomic Data Commons (GDC) data portal (https://portal.gdc.cancer.gov) [88]. Breast cancer peak calls and bigwig files of ATAC-seq profiles were downloaded from https://gdc.cancer.gov/about-data/publications/ATACseq-AWG. For the hormone receptor subtypes of TCGA BRCA tumors, we followed the clinical annotation data provided by the TCGA ATAC-seq data publication, Supplementary Data 1 [23]. For histological subtypes, we used clinical data provided by Xena Functional Genomics Explorer (https://xenabrowser.net/hub/) TCGA Hub [24]. Sixty-seven tumors have hormone receptor and histological subtype annotations. The reverse phase protein array (RPPA, replicate-base normalization) data was downloaded from TCGA hub.

METABRIC breast cancer data
We downloaded METABRIC microarray data from cBioPortal (https://www.cbioportal.org/study/summary?id=brca_metabric) [89].

ChromHMM reference genomic states
We downloaded the ChromHMM reference genomic states from https://github.com/ernstlab/full_stack_ChromHMM_annotations.

Human protein atlas
The Human Protein Atlas (https://www.proteinatlas.org) is a public resource that extracts information, including images of immunohistochemistry (IHC), protein profiling, and pathologic information, from specimens and

TF symbol	Pathways associated with TF target genes (top 3)	p value TCGA	p value METABRIC	Relation to breast cancer	Reference
TEAD4	Notch-mediated HES/HEY network	<8.2E-07	<1.0E-16	Overexpressed in BC stem cells and correlate with poor survival	[53]
	PDGF-beta signaling pathway				
	Genes encoding structural ECM glycoproteins				
TP63	Genes encoding secreted soluble factors	<1.0E-16	<1.0E-16	Enhances endocrine treatment responses in ER+ tumors	[54]
	Genes encoding structural ECM glycoproteins				
	Genes encoding enzymes and their regulators involved in the remodeling of the ECM				
UBP1	RhoA signaling pathway	<1.0E-16	<1.0E-16	Overexpressed in breast invasive cancer	[55]
	Genes encoding collagen proteins				
	Genes encoding structural ECM glycoproteins				
ZFHX3	Validated targets of C-MYC transcriptional repression	<1.4E-03	<1.0E-16	Promotes proliferation and tumorigenesis in ER+ cells by increasing stemness of cancer cells	[56]
	Genes encoding proteins affiliated structurally or functionally to ECM				
	E-cadherin signaling in keratinocytes				

The p-values are from the Kolmogorov–Smirnov (K–S) test between the target and the background distributions for TCGA and METABRIC datasets.
Table 2
Candidate TF regulators selected at 5% FDR for IDC. Functional annotations were determined from terms overrepresented from the canonical pathway gene sets associated with the candidate regulator.

TF symbol	Pathways associated with TF target genes (top 3)	p value TCGA	p value METABRIC	Relation to breast cancer	References
ARNT	HIF-1-alpha transcription factor network	<2.1E-04	<9.1E-10	Downregulation promotes cancer cell migration and invasion	[57]
	IL2 signaling events mediated by PI3K EPHA2 forward signaling				
ATF4	PI3K Pathway	<1.1E-01	<5.9E-10	Critical regulator of the unfolded protein response (UPR) pathway and is implicated in tumorigenesis	[58, 59]
	Osteopontin-mediated events Validated transcriptional targets of del-taNp63 isoforms				
FOXA1	FOXA1 transcription factor network	<4.7E-10	<5.9E-03	Inhibits cell growth via E-cadherin and suppression of ER pathway activation	[40]
	FOXA2 and FOXA3 transcription factor networks				
	Regulation of CDC42 activity				
FOXA3_	FOXC2	<1.0E-16	<9.8E-04	Induces EMT and cancer cell stemness	[60]
FOXD3_	FOXI1_ FOXF1	<2.2E-16	<5.7E-06	Downregulation associated with lymph node metastasis in IDC. Potential tumor suppressor affecting the cell cycle. Overexpression associated with EMT	[61–64]
FOXJ3	FOXA1 transcription factor network	<1.0E-16	<6.4E-05	Protected motif in chromatin landscape in drug-resistant cancer cells	[65]
FOXK1_	FOXP3	<1.0E-16	<1.8E-05	Promotes cell proliferation, migration, EMT, and invasion	[66]
FOXL1	BMP receptor signaling	<1.0E-16	<2.1E-11	Functions as a tumor suppressor to inhibit cell proliferation and invasion	[67]
	FOXA1 transcription factor network				
	ErbB4 signaling events				
HSF4	Calcineurin-regulated NFAT-dependent transcription in lymphocytes	<1.0E-07	<1.0E-16	Promotes HIF-1α expression and tumor progression	[68]
	Genes encoding structural ECM glycoproteins				
	Plasma membrane estrogen receptor signaling				
PBX3	FOXA1 transcription factor network	<1.7E-06	<1.0E-16	Attenuates response to Letrozole by potentiating breast cancer cell survival and anchorage-independent growth	[69]
	Signaling events mediated by hepatocyte growth factor receptor (c-Met)				
	Regulation of androgen receptor activity				
PITX1	Coregulation of androgen receptor activity	<1.0E-16	<1.0E-16	Tumor suppressor that is regulated by ERα	[70]
	LKB1 signaling events				
	Validated targets of C-MYC transcriptional activation				
PITX2	ErbB4 signaling events	<2.9E-04	<1.0E-16	Hypermethylation of PITX2 promoter reduced expression and induced cancer cell progression	[70]
	Arf6 trafficking events				
	RXR and RAR heterodimerization with other nuclear receptors				
clinical material from cancer patients to determine global protein expression [90]. Here, we compared the protein expression of available TFs in ILC and IDC tissues by IHC image.

Breast cancer cell lines shRNA screen

To identify and validate the TFs essential in ER+ ILC and ER+ IDC cell lines, we accessed the data for whole-genome small hairpin RNA (shRNA) “dropout screens” on three ER+ ILC and 11 ER+ IDC breast cancer cell lines [37] (GSE74702).

Table 2 (continued)

TF symbol	Pathways associated with TF target genes (top 3)	p value TCGA	p value METABRIC	Relation to breast cancer	References
SPDEF	ErbB2/ErbB3 signaling events	<1.3E-01	<1.6E-13	Expression is enriched in luminal tumors and promotes differentiation and survival of ER+ cells	[71]
	Nectin adhesion pathway				
	Hedgehog signaling events mediated by Gli proteins				
ZNF3S	Notch signaling pathway	<1.4E-02	<5.3E-12	Overexpression indicates poor prognosis and lymph node metastasis	[72]
	E-cadherin signaling in the nascent adherens junction				
	IL2 signaling events mediated by PI3K				

The p values are from the Kolmogorov–Smirnov (K–S) test between the target and the background distributions for TCGA and METABRIC datasets.

Fig. 4 Gene sets for candidate ILC- and IDC-specific TFs display coherent functional annotations and consistent expression changes in tumors. A Targets of EGR1, TEAD4, SOX2, and RUNX3_BCL11A, ILC-specific candidate TFs, showed significant upregulation in ILC tumors relative to IDC tumors (p value < 1e−3, one-sided Kolmogorov–Smirnov test) compared to background genes. The upper panel depicts the upregulation of TF target gene expression in TCGA RNA-seq data, and the bottom panel depicts METABRIC microarray data. B Targets of FOXA1, HSF4, PBX3, and PITX1, IDC-specific candidate TFs showed significant upregulation of expression in TCGA and METABRIC data. The background genes were all genes identified in the gene expression dataset after removing low or non-expression genes. The yellow lines are empirical cumulative distribution functions (eCDF) for the target gene log2 fold changes between ILCs and IDCs. The blue lines are CDFs for background gene log2 fold changes between ILCs and IDCs. The p values are from the one-sided Kolmogorov–Smirnov (K–S) test between the target and the background distributions.

Differential peak accessibility

Reads aligning to atlas peak regions (hg19) were counted using the countOverlaps function of the R packages, GenomicAlignments (v1.30) [91] and GenomicRanges (v1.46.1) [91]. To remove the bias created by low count peaks, we filtered 19,364 peaks with mean counts of less than 30 across all samples. Differential accessibility of peaks was calculated using DESeq2 (v1.34.0) [92]. DA peaks were defined as significant if they had an adjusted p value < 0.05 and the magnitude of the DESeq-normalized counts changed by a stringent factor of one or more between ER+HER2- ILC and ER+HER2- IDC. The
significant DA peaks were aggregated and represented in the hierarchical clustering heatmap using the DESeq size-factor-normalized read counts and the “complete” distance metric for the clustering algorithm. We used ChiIPSeeker [93] and clusterProfiler [94] R packages for peak region annotation and visualization of peak coverage over chromosomes.

ATAC-seq peak clustering
For visualization of ER+/HER2- ILC, ER+/HER2- IDC, and ER+/HER2+ IDC tumors by PCA, we used DESeq2 (v1.34.0) [92] to fit multifactorial models to ATAC-seq read counts in peaks. We used all peak counts and generated DESeq2 models including factors for hormone receptor subtypes (ER± and HER2±) and histological classes (ILC vs. IDC). Then, we calculated a variance stabilizing transformation from the DESeq2 model and performed PCA.

De novo TF motif analysis
The HOMER v.4.11.1 utility findMotifsGenome.pl [26] was used to identify the top 10 TF motifs enriched in differential accessible peaks. We set 100-bp-wide regions around the DA peak summits with hg19 as the reference genome. We generated custom background regions with a 150-bp-wide range around the peak summits. The top motifs were reported and compared to the HOMER database of known motifs and then manually curated to restrict them to TFs that are expressed based on RNA-seq data and to similar motifs from TFs belonging to the same family.

Pathway enrichment analysis
We used GREAT (Genomic Regions Enrichment of Annotations Tool, v1.26) to associate the subcluster of the DA peaks with genes and used pathway analysis to identify the functional significance of the DA peaks [27].

TF essentiality analyses in ER+ ILC and ER+ IDC cell lines
We used small interfering RNA (siRNA)/shRNA mixed-effect model (siMEM) [37] to score the screening results of the TFs and identify their significant context-specific essentiality between ER+ILC and ER+IDC from the shRNA screening data. The significantly essential TFs had an FDR q value < 0.2 in the siMEM results. The annotation data for ER subtype and histological types in the breast cancer cell lines are available at https://github.com/neellab/simem.

Cis-regulatory element motif activity analysis
We used the CREMA (Cis-Regulatory Element Motif Activities, https://crema.unibas.ch/) to analyze genome-wide DNA accessibility, calculate TF motif activities, and identify active cis-regulatory elements (CREs). CREMA first identifies all CREs genome-wide that are accessible in at least one sample, quantifies the accessibility of each CRE in each sample, predicts TF-binding sites (TFBSs) for hundreds of TFs in all CREs, and then models the observed accessibilities across samples in terms of these TFBS, inferring the activity of each TF in each sample. A Wilcoxon rank-sum test was used to compare TF activities and assess the association between TF and histological subtypes. Then, the resulting p values were adjusted for multiple hypothesis testing (across TFs). This analysis was visualized with a scatterplot where the x-axis represents mean TF activity difference and the y-axis represents FDR-corrected p value. The significant TF motifs were selected by absolute mean TF activity difference > 0.035 and FDR-corrected p value < 0.05.

The TF targets identified by CREMA are CREs, not genes directly. After identifying TF target CREs, the gene-CRE association probabilities are calculated on the basis of distance to transcription start sites (TSSs) of gene within ±1,000,000 bp, using a weighing function. The weighing function quantifies the prior probability that a CRE will regulate a TSS at distance d and is a mixture of two Lorentzian distributions with length scales 150 bp (corresponding to promoter regions) and 50 Kb (corresponding to enhancer regions). This weighing function is used to weigh log-likelihood score per possible CRE-TSS interaction. The target gene score is a sum of the log-likelihood scores of all CREs associated with the gene weighted with the association probability. Then, the scores were used to predict overrepresented canonical pathways in the TF’s target genes.

Differential gene expression analysis
We ran DESeq2 on the TCGA RNA-seq read count data between ER+/HER2- ILCs (n = 100) and ER+/HER2- IDCs (n = 297), which include all available tumors for hormone receptor and histological subtypes. We used the Limma (v3.48) [95] package to calculate the log2 fold change of differentially expressed genes between ER+/HER2- ILCs (n = 121) and ER+/HER2- IDCs (n = 1,030) for the METABRIC dataset.

We calculated the cumulative distribution of expression changes for the target genes and background genes and ran the Kolmogorov–Smirnov (K-S) statistic to quantify the distance between empirical cumulative distribution function (eCDF) of target genes and cumulative distribution function (CDF) of background genes and determine its significance. We used all 16,537 genes as background genes after removing genes with low mean counts across samples.
Statistical analysis and data visualization

All statistical analyses were performed using R version 4.1.1 (R Foundation for Statistical Computing, Vienna, Austria) [96]. Heatmaps were generated using the R package ComplexHeatmap v2.10.0 [97]. Graphs were generated using the R package ggplot2 v3.3.5 [98]. Genome track images were generated using the IGV (v2.11.1) [99]. P values in multiple comparisons were adjusted using the Benjamini–Hochberg (BH) method.

Abbreviations

ATAC-seq: Assay for transposase-accessible chromatin with sequencing; CDF: Cumulative distribution function; CRE: Cis-regulatory elements; CREMA: Cis-regulatory element motif analysis; DA: Differentially accessible; eCDF: Empirical cumulative distribution function; ECM: Extracellular matrix; EGF: Epidermal growth factor receptor; EGR1: Early growth response 1; EMT: Epithelial–mesenchymal transformation; ERα: Estrogen receptor alpha; FDR: False discovery rate; FOX: Forthekind box; GDAN: Genomic Data Analysis Network; GREAT: Genomic Regions Enrichment of Annotations Tool; H2R2: Human epidermal growth factor receptor 2; HPA: Human protein atlas; IDC: Invasive ductal breast carcinoma; IHC: Immunohistochemistry; ILC: Invasive lobular breast carcinoma; K-S: Kolmogorov–Smirnov; METABRIC: Molecular Taxonomy of Breast Cancer International Consortium; NCI: National Cancer Institute; PCA: Principal component analysis; PISK: Phosphatidylinositol 3 kinase; PR: Progesterone receptor; RPPA: Reverse phase protein array; RUNX: Runt-related transcription factor; shRNA: Small hairpin RNA; siMEM: Small interfering RNA (siRNA)/shRNA mixed-effect model; SOX: Sry-related HMG box; TA2: Transcriptional coactivator with PDZ-binding motif; TCGA: The Cancer Genome Atlas; TEAD: TEA domain; TF: Transcription factor; TNBC: Triple-negative breast carcinoma; Tregs: Regulatory T cells; TSS: Transcription start sites; YAP: Yes-associated protein.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13058-022-01550-y.

Additional file 1. Supplementary Figures and Supplementary Table 3.

Additional file 2. Supplementary Table 1. Enrichment of TF-binding motifs for the subclusters of DA regions of ILCs. & Supplementary Table 2. Enrichment of TF-binding motifs for the subclusters of DA regions of IDCs.

Acknowledgements

The results published here are in whole or part based on the data generated by The Cancer Genome Atlas project established by the NCI and NHGRI (accession number: phs001078.v7.p6). Information about TCGA and the investigators and institutions that constitute the TCGA research network can be found at http://cancergenome.nih.gov/. We thank Steffi Oesterreich, Adrian Lee, Jacqueline Bromberg, Jing Hong Wang, Michael Gatza, Devin Dikec, and Kristi Rothermund for helpful discussions and Mikhail Pachkov and Erik van Nimwegen for their help in CREMA analysis. Data analyses in this research were supported by the University of Pittsburgh Center for Research Computing (CRC) and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation grant OCI-1053575. Specifically, it used the Bridges2 system, which is supported by NSF award ACI-1445606 at the Pittsburgh Supercomputing Center.

Author contributions

S.L. performed all the computational experiments, analyzed results, and helped to write the manuscript. H.U.O. conceived the project, advised on the analysis, and supervised the research and wrote the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by NIH award ROOCA207871. ATAC-seq data analyses in this research were supported by the University of Pittsburgh Center for Research Computing and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation grant OCI-1053575. Specifically, it used the Bridges2 system, which is supported by NSF award ACI-1445606 at the Pittsburgh Supercomputing Center.

Availability of data and materials

This study includes no data or code deposited in external repositories.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA. 2 Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, USA. 3 UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA. 4 Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.

Received: 27 April 2022 Accepted: 25 July 2022

Published online: 29 July 2022

References

1. Clark GM, Osborne CK, McGuire WL. Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol. 1984;2:1102–9.
2. Seekeumar S, Levine KM, Sikora MJ, Chen J, Tasdemir N, Carter D, Dabbs DJ, Meier C, Basudan A, Boone D. Differential regulation and targeting of estrogen receptor α turnover in invasive lobular breast carcinoma. Endocrinology. 2020;161:bqa109.
3. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12:1–12.
4. Li CI, Anderson BO, Daling JR, Moe RE. Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA. 2003;289:1421–4.
5. Sifromos G, Schipper K, Koorman T, Fitzpatrick A, Oesterreich S, Lee AV, Jonkers J, Brunton VG, Christgen M, Iacke C. Atlas of lobular breast cancer models: challenges and strategic directions. Cancers. 2021;13:5396.
6. Tubiana-Hulin M, Brunton D, Lory S, Guinebretiere J, Bouita L, Cohen-Solal C, Cherel P, Rouesse J. Response to neoadjuvant chemotherapy in lobular and ductal breast carcinomas: a retrospective study on 860 patients from one institution. Ann Oncol. 2006;17:1228–33.
7. Coccobiot V, Blondel P, Depypere H, Prait D, Schellhoult V, Silva OE, Hurley J, Serreyen R, Daems K, Van Belle S. Different responses to neoadjuvant chemotherapy for invasive lobular and invasive ductal breast carcinoma. Eur J Surg Oncol (EJSO). 2003;29:361–7.
8. Mouabbi JA, Hassan A, Lim B, Horvathguy GN, Tripathy D, Layman RM. Invasive lobular carcinoma: an understudied emergent subtype of breast cancer. Breast Cancer Res Treat. 2022. https://doi.org/10.1007/s10549-022-06572-w.
9. Adachi Y, Ishiguro J, Kotani H, Hisada T, Ichikawa M, Gondo N, Yoshimura A, Kondo H, Hattori M, Sawaki M. Comparison of clinical outcomes between luminal invasive ductal carcinoma and luminal invasive lobular carcinoma. BMC Cancer. 2016;16:1–9.
10. Cristofanilli M, Gonzalez-Angulo A, Sniege N, Kau S-W, Broglio K, Theriault RL, Valero V, Buzdar AU, Kuerer H, Bucchiol TA. Invasive lobular carcinoma...
classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol. 2005;23:41–8.
11. Charnioudou C, Fehlin H, Albertsson P, Arnesson L-G, Einbiagi Z, Holmberg E, Nordenskjöld A, Nordenskjöld B, Karlsson P, Linderholm B. Survival patterns of invasive lobular and invasive ductal breast cancer in a large population-based cohort with two decades of follow up. The Breast. 2021;59:294–300.
12. Delpech Y, Coutant C, Hsu L, Barranger E, Iwamoto T, Barcenas C, Hortobagyi G, Rozuier R, Esteve F, Pusztai L. Clinical benefit from neoadjuvant chemotherapy in oestrogen receptor-positive invasive ductal and lobular carcinomas. Br J Cancer. 2013;108:285–91.
13. Biglia N, Maggiorotto F, Liberale V, Bounous V, Sgro I, Pecchio S, D’Alonzo M, Porzone R. Clinical-pathologic features, long term-outcome and surgical treatment in a large series of patients with invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC). Eur J Surg Oncol (EJSO). 2013;39:453–60. A comparison of the clinicopathological features, metastasis sites and survival outcomes of invasive lobular, invasive ductal and mixed invasive ductal and lobular breast carcinoma. Eur J Breast Health. 2020;16:22.
14. Du T, Zhu L, Levine KM, Tasdemir N, Lee AF, Vignali DA, Houten BT, Tseng GC, Oesterreich S. Invasive lobular and ductal breast carcinoma differ in immune response, protein translation efficiency and metabolism. Sci Rep. 2018;8:1–11.
15. Cinelli G, gatez MA, Beck AH, Willkerson MD, Rhee SK, Pastor A, Zhang H, Mcelmann L, Yau C, Kandoth C. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–19.
16. Sarrió D, Moreno-Bueno G, Hardisson D, Sánchez-Estévez C, Guo M, Herman JG, Gamallo C, Esteller M, Palacios J. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relations with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer. 2003;106:208–15.
17. Sullivan B, Light T, Vu V, Kapustka A, Nayar PO. A comparison of the clinicopathological features, metastasis sites and survival outcomes of invasive lobular, invasive ductal and mixed invasive ductal and lobular breast carcinoma. Eur J Breast Health. 2020;16:22.
18. Nagle AM, Levine KM, Tasdemir N, Scott JA, Burlbaugh K, Kehm J, Katz TA, Boone DN, Jacobsen BM, Atkinson JM. Loss of E-cadherin Enhances IGF1–IGF1R pathway activation and sensitizes breast cancers to anti-IGF1R/ER inhibitors. Clin Cancer Res. 2018;24:5165–77.
19. Chen F, Ding K, Priedigkeit N, Elangovan A, Levine KM, Carleton N, Savaraiia L, Atkinson JM, Oesterreich S. Invasive lobular and ductal breast cancer differ in immune response, protein translation efficiency and metabolism. Sci Rep. 2018;8:1–11.
20. Ben Ayed-Guerfali D, Dabbèche-Bouricha E, Ayadi W, Charfi S, Khabir A, Sellami-Boudawara T, Kmodad-Gargouri R. Association of FOXA1 and EMT markers (Twist1 and E-cadherin) in breast cancer. Mol Biol Rep. 2019;46:5247–55.
21. Habashey HO, Powe DG, Rakha EA, Ball G, Paish C, Gei JJ, Nicholston RL, Ellis IO. Forkhead-box A1 (FOXA1) expression in breast cancer and its prognostic significance. Eur J Cancer. 2008;44:1541–51.
22. Buchwalter G, Hickey MM, Cromer A, Best SE, Fowler LM, Gunawardane RN, Fishman J, Jeselsohn R, Lim E, Chi D, Xu F. PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells. Cancer Cell. 2013;23:753–67.
23. Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The role of the transcription factor EGR1 in cancer. Front Oncol. 2021;11:775.
24. Wang Y, Yu L, Zheng Y, Guo H. HMGA1 in cancer: cancer classification by location. J Cell Mol Med. 2019;23:2293–302.
25. Fane M, Harris L, Smith AG, Piper M. Nuclear factor one transcription factors as epigenetic regulators in cancer. Int J Cancer. 2017;140:2634–41.
26. Chen H, Yu C, Chen L, Wu Y, Wu D, Wang Z, Song G, Chen L, Hong Y. NFIB functions as an oncogene in estrogen receptor-positive breast cancer and is regulated by miR-205-5p. Oncol Res. 2020;216:153236.
27. Kulic I, Robertson G, Chang L, Baker JH, Lockwood WW, Mok W, Fuller M, Fourmir M, Wong N, Chou V. Loss of the Notch effector RBPj promotes tumorigenesis. J Exp Med. 2015;212:37–52.
28. Seachrist DD, Hanning MM, Ingles NN, Webb BM, Werber-Bonk KL, Yu P, Bebek G, Singh S, Szemere ST, Varadan V. The transcriptional repressor BCL11A promotes breast cancer metastasis. J Biol Chem. 2020;295:11707–19.
29. Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene. 2020;39:78–92.
95. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.
96. Team RC (2013) R: A language and environment for statistical computing.
97. Gu Z; Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.
98. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer.
99. Robinson JT, Thorvaldsdottir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Can Res. 2017;77:e31–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.