Lkb1 Loss Promotes Tumor Progression of **BRAF**\(^{V600E}\)-Induced Lung Adenomas

Elena González-Sánchez¹*, **Juan Martín-Caballero**²*, **Juana María Flores**³, **Javier Hernández-Losa**⁴, **Mª Ángeles Montero**⁵, **Javier Cortés**⁶, **Roso Mares**⁴, **Mariano Barbacid**⁷, **Juan A. Recio**¹*

1 Animal Models and Cancer Laboratory, Anatomy Pathology Department, Vall d’Hebron Institut of Research-Autonomous University of Barcelona (VHIR-UAB) Barcelona, Barcelona, Spain, 2 Animal Laboratory Unit, Biomedical Research Park of Barcelona-Pribb, Barcelona, Spain, 3 Surgery and Medicine Department, Veterinary School, Universidad Complutense de Madrid, Madrid, Spain, 4 Anatomy Pathology Department, Vall d’Hebron Hospital, Barcelona, Spain, 5 Histopathology Department, Royal Brompton and Harefield NHS Trust, London, United Kingdom, 6 Medical Department, Vall d’Hebron Institut of Oncology (VHIO)-Vall d’Hebron Hospital, Barcelona, Spain, 7 Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Madrid, Spain

Abstract

Aberrant activation of MAP kinase signaling pathway and loss of tumor suppressor LKB1 have been implicated in lung cancer development and progression. Although oncogenic KRAS mutations are frequent, BRAF mutations (BRAF\(^{V600E}\)) are found in 3% of human non-small cell lung cancers. Contrary to KRAS mutant tumors, BRAF\(^{V600E}\)-induced tumors are benign adenomas that fail to progress. Interestingly, loss of tumor suppressor LKB1 coexists with KRAS oncogenic mutations and synergizes in tumor formation and progression, however, its cooperation with BRAF\(^{V600E}\) oncogene is unknown. Our results describe a lung cell population in neonates mice where expression of BRAF\(^{V600E}\) leads to lung adenoma development. Importantly, expression of BRAF\(^{V600E}\) concomitant with the loss of only a single-copy of Lkb1, overcomes senescence-like features of BRAF\(^{V600E}\)-mutant adenomas leading malignization to carcinomas. These results posit LKB1 haploinsufficiency as a risk factor for tumor progression of BRAF\(^{V600E}\) mutated lung adenomas in human cancer patients.

Introduction

Lung cancer is the most prevalent cancer in the industrialized world. Non-small-cell lung cancer (NSCLC) subtypes account for approximately 80–85% of all cases of lung cancer, where adenocarcinomas represent approximately 50% of all NSCLC. Despite its prevalence and characteristically high mortality rates the cellular and genetic origins of the disease are not completely understood.

Activation of RAS-RAF-MEK-ERK signaling pathway is implicated in the development of a wide variety of human tumors. Mutational activation of KRAS or BRAF has been detected in ~25% of NSCLCs. While the majority of these, harbor KRAS mutations, activating mutations in BRAF account for 3% of all NSCLCs [1,2,3]. In addition, somatic mutations in genes responsible for RAS pathway activation (i.e. EGF receptor or ERBB2) are detected in ~13% of human lung adenocarcinomas [4].

Several genetically engineered mouse models (GEM) of NSCLC have been generated. Two independent models demonstrate that expression of a mutant form of Ki67 (Ki67\(^{G12D}\) or Ki67\(^{G12V}\)) from its endogenous promoter leads to the development of lung tumors that progress to adenocarcinomas [5,6]. Another model carrying a genetically modified allele of Braf (Braf\(^{CA}\)), which expresses wild type Braf prior to Cre-mediated recombination after which constitutively active BRAF\(^{V600E}\) is expressed, elicited the growth of benign neoplastic adenomas [7]. A striking feature of the BRAF-mutant lung tumors of these animals is that they fail to progress to carcinoma and, instead, exhibit growth arrest and senescence-like features. This senescence-like phenotype could be overcome through concomitant mutation of p53 or p16\(^{INK4A}\)/p19\(^{ARF}\), which allow the tumors to progress to adenocarcinomas [7].

The mechanism behind the phenotypic differences between lung tumors expressing mutational activated KRAS or BRAF is not well understood. The early lesions induced by KRAS\(^{G12D}\) and BRAF\(^{V600E}\) suggest a common cell of origin expressing markers for alveolar type 2 (AT2) cells [8]. Nevertheless, phenotypic differences in later stages of tumor development leave open the possibility that these unique tumor types may have different cells of origin. In fact, several cell populations exhibiting stem-cell properties have been described in distinct anatomical regions of the lung [9,10,11,12].

Tumor suppressor STK11 (LKB1) gene is frequently deleted in lung tumors [13]. Nearly half of the NSCLCs harbor somatic and homozygous inactivating mutations in LKB1 [14], where it loss has been implicated in tumorigenesis and metastasis [3,13]. LKB1 loss has been observed concurrently with KRAS oncogenic mutations in human lung cancer, and animal models have confirmed the synergy of the combined mutations [5]. However
the remaining question is whether LKB1 loss plays a role in BRAFV600E-driven tumors.

Here we show that in the course of modeling malignant melanoma in a inducible tyrosinase promoter transgenic system, activation of BRAFV600E oncogene in 2.5 days old mice by 4-OH-tamoxifen administration, make them susceptible to develop lung adenomas. Interestingly, the senescence-like phenotype of BRAFV600E-induced adenomas could be overcome through concomitant deletion of LKB1 kinase gene allowing them to progress to carcinomas.

Methods

Mouse Strains and 4OHTx Treatment

BrafCA/CA knock-in (mice) has been previously described [7]. Tyr::CreERT2; Lyb2flox/fox mice where obtained from Marcus Rosenberg (Yale University, New Haven, USA). Original Tyr::CreERT2 mice were from Lynda Chin (Dana Farber, Boston, USA). We crossed the Tyr::CreERT2, Lyb2flox/fox strain with BrafCA/CA mice and generated their mendelian-offspring in a mixed genetic background. To identify CRE expressing cells we crossed Tyr::CreERT2; with B6.129X1-Gt(RosA)26Sortm1(EYFP)Cos/1 to obtain Tyr::CreERT2; Rosa26lsl-EYFP. At postnatal day 2.5, mice were treated once with 100 μl (100 mg/ml) of 4OHTx in acetone. CMV-CreT/'; K-RasG12V/G12Vneo tumor samples were obtained from Mariano Barbacid (CNIO, Madrid, Spain). All animal experiments were performed according to a protocol approved by the Institutional Animal Care and Use Committee at Biomedical Research Park of Barcelona (Prrb).

Immunohistochemistry and Immunofluorescence

Paraffin-embedded tumor samples were subjected to immunocytochemistry using recommended standard procedures. Visualization was performed either by using secondary antibodies linked to horseradish-peroxidases or by immunofluorescence. SP-C (FL-197) and p53 (FL-393) antibodies were from Santa Cruz (Santa Cruz, CA, USA). Anti-Cre was from Novus Biological, LTD, (Cambridge, UK) and Abcam Plc, (Cambridge, UK). Anti-CC10 (Uteroglobin) was from Abcam. Anti-p-ERK1/2 (n = 65), as well as Tyr::CreERT2; BrafCA/CA transgene (each 20X field quantified contained between 2500–5000 nucleus; P = 0.0345; Figure 1E).

EYFP Visualization

Tyr::CreERT2; BrafCA/ mice were sacrificed at two, three and five days after treatment with 4OHTx. Tissue samples were fixed in 4% paraformaldehyde for 12 h and then cryoprotected in 30% sucrose in PBS o/n, followed by another incubation in 30% sucrose and 50% of OCT for additional 24 h. Then samples were frozen in OCT. Cryosections from these samples were used and EYFP native fluorescence was detected by microscopy.

Results

Neonatal Activation of BRAFV600E Drives Aberrant Proliferation of Lung Cells

We modeled a genetic engineered mouse to study BRAFV600E and LKB1 cooperation in malignant melanoma. To this end, we used a conditional tyrosinase promoter transgenic system (Tyr::CreERT2) and BrafCA/ mice [7], where BrafCA/ mice express wild type BRAF prior to Cre-mediated recombination, at which time oncogenic BrafV600E is expressed in physiological amounts [7]. After generation of Tyr::CreERT2; BrafCA/ mice, recombination at the Braf locus was achieved by neonatal treatment with 4OH-tamoxifen at postnatal day 2.5 (Figure 1A). During characterization of the mice’s phenotype, the occurrence of lung adenomas in tyrosinase promoter-driven transgenic mice (Tyr::CreERT2; expressing BRAFV600E, and LKB1 mice) prompted a detailed analysis of transgene expression in the lung. Examination of Cre-recombinase expression was performed in two and a half old day wild type (WT) (n = 3) and Tyr::CreERT2; BrafCA/ mice (n = 3) treated with 4OHTx. Transgenic mice showed a nuclear expression of Cre-recombinase (Figure 1B). The same mice were examined three days after 4OHTx treatment, and the activation of the BRAF downstream target ERK1/2 after expression of BrafCA/ was assessed detecting p-ERK1/2 amounts (Figure 1C).

To further confirm the expression of Cre-recombinase in tyrosinase promoter-driven transgenic mice, we generated Tyr::CreERT2; ROSA26lsl-EYFP mice crossing Tyr::CreERT2 mouse to the ROSA26lsl-EYFP. Tyr::CreERT2 and CreERT2; ROSA26lsl-EYFP mice were treated with 4OHTx at two days and a half, and we assessed the presence of EYFP positive cells in the lung three days later (Figure 1D). Indeed, EYFP positive cells were found in the lung of Tyr::CreERT2; ROSA26lsl-EYFP mice. The cellular origins of human lung adenocarcinoma and adenomas have been addressed during the last years. NSCLCs frequently express markers of Clara cells or alveolar type II pneumocytes (ATII) and it has been suggested that they arise from a bronchio-alveolar stem cell population (BASC) [9,16]. To assess the properties of EYFP positive cells, immunohistochemical analyses to detect Clara Cell antigen (CC10) and Surfactant Protein-C (SP-C), a surface marker of ATII pneumocytes, were performed. Staining for CC10 was detected mainly in cells lining the bronchioles and in a few EYFP positive cells (Figure 1D). In contrast, the majority of EYFP positive cells expressed SP-C (Figure 1D), suggesting that they have properties of ATII pneumocytes.

We next examined the functional impact of BrafCA/ transgene and monitored 4OH-tamoxifen-dependent proliferative responses in neonatal lungs of BrafCA/ and control mice. According to the K67 positive cells, BrafV600E expression increased lung cell proliferation index from 48.51% ± 2.389% (n = 8 20X fields from 3 different mice) in 10-days-old WT to 42.56% ± 2.261% (n = 11 20X fields from 3 different mice) in age-matched BrafCA/ mice (each 20X field quantified contained between 2500–5000 nucleus; P = 0.0345; Figure 1E).

Tyr::CreERT2; BrafCA/ Mice Develop Lung Adenomas

Serial histopathological examination of the lungs from Tyr::CreERT2; BrafCA/ transgenic mice was conducted to assess the long-term consequences of sustained BRAFV600E expression in the lung. Careful follow-up and characterization of a large colony of Tyr::CreERT2; BrafCA/ mice and control mice showed that only animals on 4OHTx treatment were prone to lung adenoma development. Twenty percent of Tyr::CreERT2; BrafCA/ and 33% of Tyr::CreERT2; BrafCA/ mice developed papillary adenomas with an average latency of 31.9 weeks (SD ± 15.1 weeks) and 31.1 weeks (SD ± 19.2 weeks) respectively, that were rarely multifocal (Figure 2A, Table 1, Figure 2B and 2C). In contrast, all Tyr::CreERT2; BrafCA/ (n = 65), as well as Tyr::CreERT2; BrafCA/ mice (n = 47) of control cohort remained tumor free (Table 1 and Figure 2D and 2E). To investigate the properties of
BrafCA induced tumors, we performed immunohistochemical analyses of CC10 and SP-C. BrafCA-induced tumors were largely negative for CC10 where staining was only detected in cells lining the bronchioles (Figure 2F and 2G). In contrast, the majority of cells within BrafCA-induced tumors expressed SP-C (Figure 2H and 2I). Furthermore, analysis of the earliest BrafCA-induced lesions revealed them to express SP-C.

Lkb1 Loss Promotes Progression of BRAFV600E–induced Tumors

As previously described, a feature of the BrafCA-induced lung tumors from these animals is that they fail to progress to carcinoma, and instead, exhibited growth arrest and senescence-like features [7,8]. The serine/threonine kinase, LKB1, is a tumor suppressor that has been found mutated in lung cancer concurrently with KRAS mutations [17,18]. Furthermore, LKB1 haploinsufficiency clearly accelerates KRAS-driven lung cancers in mice, where LKB1-deficient tumors demonstrated shorter latency, an expanded histological spectrum (adeno-, squamous and large-cell carcinoma) and more frequent metastasis compared to tumors mutated in Kras lacking p53 or p16 Ink4a/p19 Arf [19]. Therefore, we interrogated whether Lkb1 loss cooperates with oncogenic BRAFV600E in lung tumor development and/or progression. To this end, we crossed Tyr::CreERT2; BrafCA/+ and Tyr::CreERT2; BrafCA/CA mouse strains with Lkb1flox/flox and activated Cre-recombinase at postnatal day 2.5 by topical treatment with 4OHTx. Neonatal inactivation of Lkb1 in Tyr::CreERT2; Lkb1flox/+ or Tyr::CreERT2; Lkb1flox/lox mice did not have any effect in lung tumor development. However, deletion of one or both alleles of Lkb1 in Tyr::CreERT2; BrafCA/CA/+ mice increased tumor frequency from 20% to 32% and 26.7% respectively. This increment in the number of animals developing lung tumors was less pronounced in the case of Tyr::CreERT2; BrafCA/CA/lox mice, where loss of either one or both alleles of Lkb1 slightly increased tumor incidence from 30.7% to 32.4% and 38.6% respectively (Table 2). Concurrent BrafCA activation and loss of Lkb1 led to pronounced bronchiole epithelial hyperplasia (Figure 3A and 3B) followed by the development of papillary adenomas associated to small airways.
Figure 3C and 3D). Notably, this mixed papillary and solid adenomas progressed to malignant adenocarcinomas showing occasionally intra-bronchioles tumor growth (Table 2, Figures 3E–3H). Those adenocarcinomas contained different cell populations. Some cells showed enlarged nuclei displaying prominent nucleoli. There were also atypical cells with nuclear hyperchromasia and contour irregularities, as well as, cells with hyperchromatic fusiform nuclei (Figure 3I). Adenocarcinomas harbored areas of necrosis and showed evidence of vascular and lymphatic invasion. This is noteworthy since we did not detect adenocarcinoma in any

any

Braf^{CA} mice at least prior to 70 week of age. We compared these

Braf^{CA}; Lkb1^{flk^{+/+}} adenocarcinomas with K-Ras^{V12}/LSLG12Vgeo-induced lung tumors [6]. A significant number of adult CMV-Cre^T/; K-Ras^{V12}/LSLG12Vgeo mice developed a broad spectrum of multifocal lesions in lungs, ranging from bronchiolo-epithelial hyperplasias to large papillary adenomas and adenocarcinomas [6] (Figures 3J–3M). Interestingly, and regardless of the presence of Lkb1, we never observed the development of mixed solid and mucinous adenomas and adenocarcinomas in

Tyr::Cre^{ERT2}; Braf^{CA}/ mice as it occurs in CMV-Cre^T/; K-ras^{V12}/ASLG12Vgeo mice (Figure 3N–3P).

Progression of

Braf^{CA}/Lkb1^{flk} mice is Associated to the Loss of Expression of p53, E-Cadherin and SP-C

Unlike K-Ras^{V12}/ASLG12Vgeo-induced lung tumors, Braf^{CA}-driven tumors failed to progress to carcinomas, but exhibited growth arrest and senescence-like features [7,8]. Braf-mutant lung tumor cells grow for approximately 15–20 cell divisions before undergoing senescence-like growth arrest that could be overcome through mutation of p53 or p16^{ink4a}/p19^{Arf} tumor suppressor genes [7,8]. According to Dankort et al. (2007), both, the up-regulation of p16 and the up-regulation of p53 would appear to be important for inducing senescence in tumors [7,8]. This could be a differential

![Figure 2](https://example.com/figure2.png)

Figure 2. Neonatal activation of BRAF^{V600E} in Tyr::Cre^{ERT2}; Braf^{CA}/ mice promotes lung adenomas development. (A) Kaplan-Meier analysis of lung tumor-free survival in untreated and 4OHTx treated Tyr::Cre^{ERT2}; Braf^{CA+} and Tyr::Cre^{ERT2}; Braf^{CA/CA} mice. p-value was calculated by Logrank Test. On the right, percentage of mice developing lung adenomas is shown (Table 1). (B, C) Hematoxylin and eosin staining of histological sections of Tyr::Cre^{ERT2}; Braf^{CA+} bronchiolo-alveolar adenoma or (D, E) normal lung from wild-type mice. Note papillary adenomas and normal lung in higher magnification (C, E). Adenomas stain negative for CC10 (F, G) and positive for SP-C (H, I). Bars 500 μm (B, D and F), 300 μm (C and D) and 100 μm for (G and I).

doi:10.1371/journal.pone.0066933.g002

Table 1. Percentage of mice developing lung adenomas (L. adenomas) or lung adenocarcinomas (L. carcinomas) according to their genotype and treatment (4OHTx).

Genotype	No treatment	4OHTx			
	L. Adenomas		L. Adenomas		L. Carcinomas
Tyr::Cre^{ERT2}; Braf^{CA+}	0/65	3/15 (20%)	0/5		
Tyr::Cre^{ERT2}; Braf^{CA/CA}	0/47	4/12 (33.3%)	0/12		

doi:10.1371/journal.pone.0066933.t001
feature compared to \(\text{K}_{\text{LSG12Vgeo}}^{\text{IL}} \)-induced lung tumors. We investigated the expression amounts of cell cycle, and differentiation markers among Tyr::Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \); \(\text{Kras}^{\text{LSCG12Vgeo}} \) mice \(\text{J, K} \). Higher magnification is showed in \(\text{B, K} \). Papillary adenomas developed in Tyr::Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) (C, D) and mixed papillary and solid adenomas developed in CMV-Cre\(^{\text{ERT2}}\); \(\text{Kras}^{\text{LSG12Vgeo}} \) (L, M). Note C and L tumors in higher magnification \(\text{D, M} \). Tyr::Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) adenocarcinoma \(\text{E} \) showing papillary \(\text{F} \) and solid \(\text{G} \) regions. Tyr::Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) adenocarcinoma showing intra bronchiolar tumor growth (*) \(\text{H} \). Higher magnification showing different cells populations in \(\text{H} \). Atypical cells with nuclear hyperchromasia, and contour irregularities (*), cells showed enlarged nuclei displaying prominent nucleoli (**), and cells with hyperchromatic fusiform nuclei (arrows). CMV-Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) induced adenomas and adenocarcinomas. (N) Detail of solid \(\text{O} \) and mucinous \(\text{P} \) tumors. Dashed-lined squares indicate magnified areas. Bars 800 \(\mu \text{m} \) (A, C, D, J, L and N), 500 \(\mu \text{m} \) (E), 200 \(\mu \text{m} \) (K, M, O and P) and 100 \(\mu \text{m} \) (B, D, F, G and I).

doi:10.1371/journal.pone.0066933.g003

Figure 3. Percentage of mice developing adenomas and adenocarcinomas. Hematoxylin and eosin staining of histological sections showing lung hyperplasia in Tyr::Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) (A, B) and CMV-Cre\(^{\text{ERT2}}\); \(\text{Kras}^{\text{LSG12Vgeo}} \) mice \(\text{J, K} \). Higher magnification is showed in \(\text{B, K} \). Papillary adenomas developed in Tyr::Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) (C, D) and mixed papillary and solid adenomas developed in CMV-Cre\(^{\text{ERT2}}\); \(\text{Kras}^{\text{LSG12Vgeo}} \) (L, M). Note C and L tumors in higher magnification \(\text{D, M} \). Tyr::Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) adenocarcinoma \(\text{E} \) showing papillary \(\text{F} \) and solid \(\text{G} \) regions. Tyr::Cre\(^{\text{ERT2}}\); \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) adenocarcinoma showing intra bronchiolar tumor growth (*) \(\text{H} \). Higher magnification showing different cells populations in \(\text{H} \). Atypical cells with nuclear hyperchromasia, and contour irregularities (*), cells showed enlarged nuclei displaying prominent nucleoli (**), and cells with hyperchromatic fusiform nuclei (arrows). CMV-Cre\(^{\text{ERT2}}\); \(\text{Kras}^{\text{LSG12Vgeo}} \) \(\text{K}_{\text{LSG12Vgeo}}^{\text{IL}} \)-induced adenomas and adenocarcinomas. This characteristic was also observed in \(\text{K}_{\text{LSG12Vgeo}}^{\text{IL}} \) adenomas although, in a less pronounced manner \(\text{Figure 4} \). As expected, Ki67 staining suggested that \(\text{K}_{\text{LSG12Vgeo}}^{\text{IL}} \) and \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) -induced adenocarcinomas had increased cell proliferation rates \(\text{p}<0.0052 \) for \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) vs. \(\text{Braf}^{\text{IL/+}} \) \(\text{Figure 4} \) and \(\text{Figure S1A} \). In agreement with previous data showing that \(\text{Braf}^{\text{CA/+}} \)-induced adenomas had elevated amounts of p19\(^{\text{ARF}} \) [7], \(\text{Braf}^{\text{CA/+}} \) adenomas showed a significant increased amount of nuclear p53 compared with \(\text{K}_{\text{LSG12Vgeo}}^{\text{IL}} \)-induced adenomas. In contrast, \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) and \(\text{K}_{\text{LSG12Vgeo}}^{\text{IL}} \) \(\text{K}_{\text{LSG12Vgeo}}^{\text{IL}} \)-induced adenocarcinomas showed very low expression of p53 \(\text{Figure 4} \) and \(\text{Figure S1B} \). Interestingly, staining of \(\text{Braf}^{\text{CA/+}} \); \(\text{Lkb}^{\text{lox/+/}} \) samples for LKB1 provided evidence for loss of heterozygosity (LOH). The results also showed spontaneous loss of LKB1 expression in some \(\text{K}_{\text{LSG12Vgeo}}^{\text{IL}} \)-induced adenocarcinomas (3 out of 12 tumors) \(\text{Figure 4} \).
confirmed using the Tyr::

The existence of Cre-recombinase expressing cells was genetically

patches at 1.5–2 days after 4OHTx treatment, followed by an

time point we observed Cre-recombinase expressing cells in

this tumors when mouse where topical treated with 4OHTx at 6–8

(2.5 days old). We and other groups have not observed the development of

vated by topical application of 4OHTx in neonate mice (2.5 days

Whether this cell population represents cells from neural crest cell

in more detail. Nevertheless, these results identify a tyrosinase

expression of BRAFV600E under the control of a tyrosinase-

benign lung tumors [7,8]. In this study, we show that conditional

Deregulation of RAS signaling pathway has been identified as

an important event in lung cancer [1,7,8,20]. Activating mutations in BRAF are found in 3% of non-small-cell lung cancers [1,2,3], and mouse models have shown that expressing the mutant form of BRAF (BRAFV600E) in lung epithelium induce the formation of benign lung tumors [7,8]. In this study, we show that conditional expression of BRAFV600E under the control of a tyrosinase-promoter driven transgenic system, induced bronchiole epithelial hyperplasia and adenoma development. These data suggest the existence of a population of lung tumor initiating cells expressing tyrosinase gene in mouse neonate periods. Importantly, loss of only one allele of tumor suppressor Lkb1, frequently mutated in human lung cancer, cooperated with BRAFV600E in tumor development and progression to malignant adenocarcinomas.

We initially observed tyrosinase driven BRAFV600E–induced lung tumor development where Cre-recombinaseERT2 was activated by topical application of 4OHTx in neonate mice (2.5 days old). We and other groups have not observed the development of this tumors when mouse where topical treated with 4OHTx at 6–8 weeks of age (data not shown) [21], suggesting that we were targeting some progenitor cells in immature lungs. Indeed, at this time point we observed Cre-recombinase expressing cells in Ty:CreERT2; Brg+/-/+ mice. As a result of BRAFV600E expression, we also identified increased amounts of p-ERK1/2 in localized patches at 1.5–2 days after 4OHTx treatment, followed by an increased lung cell proliferation index at six days after treatment. The existence of Cre-recombinase expressing cells was genetically confirmed using the Ty::CreERT2; ROSA-td-EYFP mouse. These results are in agreement with a previous report describing tyrosinase RNA transcripts in lung tissue [22] and bring attention to the timing at which Cre-recombinase gene is produced in animal models harboring Ty::CreERT2 construct should be activated. Whether this cell population represents cells from neural crest cell origin, remains an interesting question that should be investigated in more detail. Nevertheless, these results identify a tyrosinase expressing lung cell population in neonate mice where mutation of BRAF led to adenoma development. In this matter, it has previously been suggested that lung adenomas and adenocarcinomas arise from a common bronchio-alveolar stem cell population (BASC). These cells express both, Clara Cell antigen (CC10) and Surfactant Protein-C (SP-C), a surface marker of alveolar type II pneumocytes [9,16]. Previous analysis of the earliest BRAFV600E–induced lung lesions revealed them to express SP-C [7]. In agreement with this, our results show that majority of EYFP positive cells were also positive for surface marker of alveolar type II pneumocytes SP-C three days after 4OHTx treatment. Interestingly, in our model and other studies [7], BRAFV600E-induced tumors were also largely CC10 negative and positive for SP-C, suggesting that they have properties of alveolar type II pneumocytes.

Similarly as observed in skin in vivo in benign nevi, the precursor lesion to melanoma [23], BRAFV600E–lung tumors failed to progress to carcinoma, and instead, exhibited growth arrest and senescence-like features that could be overcome through concurring mutation of tumor suppressors p53 or p16Ink4a/p19ARF, allowing tumors to progress to carcinomas [7]. Several hypotheses have been proposed to explain the differences between BrafV600E and KrasV12–induced tumors, which progress to carcinomas. These include the up-regulation of p16Ink4a via MAPK and the up-regulation of p53 via PI3K attenuation in senescence-like BRAFV600E tumors. Also the effector cell hypothesis, where BRAFV600E and KRASV12 mutations would be targeting unique cell types with differences in replicative potential may explain this observation [8]. In agreement with previous data [7], BRAFV600E–induced adenomas showed higher amounts of nuclear p53 compared to KrasV12–induced adenomas, supporting the senescence-like phenotype of BRAFV600E–induced adenomas. Additionally, while BASC have been postulated as the tumor cell of origin for the KRASV12DP lung tumor model [9,10,16], our results and others [7,8] showed that BRAFV600E target cells and induced tumors were mainly positive for SP-C supporting the effector cell hypothesis.

Several analyses of human tumors have reported that tumor suppressor LKB1 is frequently mutated and inactivated in lung cancer [13,24,25]. LKB1 mutations seem to be more frequent in poorly differentiated adenocarcinomas than in well-differentiated tumors, and mouse models indicate that LKB1 deficiency alone does not cause lung tumors, however synergize with other mutations. In this matter, synergism of Kras activation and Lkb1 deletion has more pronounced effects in tumor development and progression than combination of Kras activation and loss of p53, p16Ink4a or p19ARF tumor suppressors. Additionally, in melanoma it has been shown that oncogenic BRAFV600E suppresses some of the functions of LKB1 as an energy metabolism sensor [26], suggesting that activation of oncogenic BRAFV600E and the loss of LKB1 function/s might collaborate in tumorigenesis. Notably, a single-copy inactivation of Lkb1 allowed BRAFV600E–induced adenomas to progress to adenocarcinomas, where some tumors showed evidence for LOH. Interestingly, we also observed the spontaneous loss of Lkb1 expression in KrasV12LSLGT2;BrafV600E carcinomas supporting the cooperation between the activation of MAPK pathway and the loss of tumor suppressor Lkb1 in lung cancer (Figure 4). Finally, these results indicate that Lkb1 inactivating mutations constitute a risk factor for tumor progression of BRAFV600E mutated lung adenomas in human cancer patients. It would be interesting to investigate the mutational status of Lkb1 in BRAFV600E–mutant lung carcinomas. In this regard, it has recently been described that Lkb1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin [17], suggesting that patients harboring BRAFV600E mutations and Lkb1 deficient could benefit from this therapy.

Discussion

Genotype	No treatment	4OHTx	
Tyr::CreERT2; Braf+/-/+	L. Adenomas	L. Adenomas	L. Carcinomas
Tyr::CreERT2; Braf+/-/+; Lkb1flox/+	0/65	3/15 (20%)	0/15
Tyr::CreERT2; Braf+/-/+; Lkb1flox/+	0/47	4/12 (33.3%)	0/12
Tyr::CreERT2; Braf+/-/+; Lkb1flox/+	0/12	0/30	0/30
Tyr::CreERT2; Braf+/-/+; Lkb1flox/+	0/14	0/16	0/16
Tyr::CreERT2; Braf+/-/+; Lkb1flox/+	0/111	8/25 (32.0%)	1/25 (4.0%)
Tyr::CreERT2; Braf+/-/+; Lkb1flox/+	0/46	15/56 (26.7%)	3/56 (5.3%)
Tyr::CreERT2; Braf+/-/+; Lkb1flox/+	0/56	12/37 (32.4%)	4/37 (10.8%)
Tyr::CreERT2; Braf+/-/+; Lkb1flox/+	0/31	22/57 (38.6%)	4/57 (7.1%)

Table 2. Percentage of mice developing lung adenomas (L. adenomas) or lung adenocarcinomas (L. carcinomas) according to their genotype and treatment (4OHTx).
Figure 4. Immunostaining of histological sections of Tyr::Cre^{ERT2}; Braf^{CA+/+} and CMV-Cre^{T+}; Lkb1^{Cre} and CMV-Cre^{T+}; Kras^{LSLG12Vgeo} adenomas (Kras^{LSLG12Vgeo} 6 months) and Tyr::Cre^{ERT2}; Braf^{CA+/+}; Lkb1^{Cre}/Lkb1^{flox/flox} and CMV-Cre^{T+}; Kras^{LSLG12Vgeo} adenocarcinomas (Kras^{LSLG12Vgeo} 11 months) with CC10, SP-C, E-Cadherin, Ki67, p53 and LKB1 antibodies. (*) indicates airways. Bars 500 µm and 80 µm for magnifications.
doi:10.1371/journal.pone.0066933.g004
In summary, we show evidence for the existence of tyrosinase and SP-C-expressing cells in the lungs of neonate mouse where activation of oncogenic BRAF^{V600E} induces adenoma development. Importantly, concomitant activation of BRAF^{V600E} and loss of copy number of tumor suppressor Lkb1 led to tumor progression. This model serves a system for dissecting the contribution of Lkb1 loss and the activation of MAPK pathway through mutant BRAF in comparison to mutant KRAS. Most importantly, it emphasizes the role of LKB1 in the progression of BRAF^{V600E} mutant lung adenomas.

Supporting Information

Figure S1 Quantification of p53 and Ki67 positive cells in lung tumors. (A) Percentage of Ki67 positive cells. Quantification of eight fields (20×) from three different tumors (Tyr::Cre^{ERT2}; Braf^{CA/+} or Tyr::Cre^{ERT2}; Braf<sup>CA/+</sup::.Lkb1^{V12F}) and six fields (20×) from three different tumors rose in Kras^{LSLG12V/geo} mice (at 6 months and 11 months after KRAS activation) were quantified. (B) Percentage of p53 positive cells. Quantification of ten fields (20×) from three different tumors rose in three different mice Tyr::Cre^{ERT2}; Braf^{CA/+} or Tyr::Cre^{ERT2}; Braf<sup>CA/+</sup::.Lkb1^{V12F} and six fields (20×) from three different tumors rose in Kras^{LSLG12V/geo} mice (at 6 months and 11 months after KRAS activation) were quantified.

Acknowledgments

We thank Stephan Tenbaum for critical reading the manuscript. We also thank Mireia Juan, Sara Capdevila and Begoña Peñalba for their technical assistance in the animal work.

Author Contributions

Conceived and designed the experiments: JAR. Performed the experiments: JAR EGS JMC JMF RM. Analyzed the data: JAR JMC JMF EGS. Contributed reagents/materials/analysis tools: MB. Wrote the paper: JAR.

References

1. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, et al. (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62: 7000–7006.

2. Nasri K, Chen TH, Richards WG, Sugarbaker DJ, Meyerson M (2002) Mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res 62: 7001–7003.

3. Davies H, Biguell GR, Cox C, Stephen P, Edkins S, et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

4. Pao W, Miller V, Zakowski M, Doherty J, Politi J, et al. (2004) EGFR receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101: 13306–13311.

5. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, et al. (2001) Analysis associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101: 13306–13311.

6. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, et al. (2003) Tumor progression. This model serves a system for dissecting the contribution of Lkb1 loss and the activation of MAPK pathway through mutant BRAF in comparison to mutant KRAS. Most importantly, it emphasizes the role of LKB1 in the progression of BRAF^{V600E} mutant lung adenomas.

7. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, et al. (2001) Analysis associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101: 13306–13311.

8. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, et al. (2003) Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4: 111–120.

9. Dankort D, Filenova E, Collado M, Serrano M, Jones K, et al. (2007) A new mouse model to explore the initiation, progression, and therapy of BRAF^{V600E}-induced lung tumors. Genes Dev 21: 379–384.