Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications

Carlos Martinez-Boubeta¹, Konstantinos Simeonidis², Antonios Makridis², Makis Angelakeris³, Oscar Iglesias⁴, Pablo Guardia⁵, Andreu Cabot¹,³, Lluís Yedra¹, Projekt Estradeé, Francesca Peiró¹, Zineb Saghi⁷, Paul A. Midgley⁷, Iván Conde-Leborán⁸, David Serantes⁸ & Daniel Baldomir⁸

¹Departament d’Electronica and IN2UB, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain, ²Department of Mechanical Engineering, University of Thessaly, 38334 Volos, Greece, ³Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece, ⁴Department de Física Fonamental and Institute IN2UB, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain, ⁵IREC, Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Spain, ⁶TEM-MAT, CICT-Universitat de Barcelona, Solé i Sabaris 1, 08028 Barcelona, Spain, ⁷Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom, ⁸Instituto de Investigaciónes Tecnológicas, and Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.

Consider an assembly of single-domain particles with uniaxial anisotropy, coupled to each other by the magnetic dipole-dipole interaction. Such interactions can be tuned by adjusting the size, the magnetization, and the volume fraction of the particles. Even in the superparamagnetic regime, the collective magnetic behavior will differ from that of isolated particles. A potentially interesting area where this effect may find applications is biomedicine. An example of the latter is the optimized design for multicore particles achieving enhanced transverse relaxivities for magnetic resonance imaging. Yet magnetic nanoparticle suspensions have gained an important role in cancer treatment with AC hyperthermia. In synergy with chemotherapy or radiotherapy, selective targeting and localized heating of tumor cells can be tuned, leading to modalities with shorter time regimes even with a lower dosage. Indeed, the efficiency of this type of radio-frequency thermotherapy has been demonstrated on several types of cancers including brain tumor, prostate cancer, and invasive breast carcinoma. Although encouraging results on palliative care indicate that even non-optimized particles with the appropriate size distribution can deliver adequate heating power if present in sufficiently high concentrations, concerns have been raised regarding the toxicity for cancer-directed therapy. In order to minimize the potential side effects arising during the clinical treatments, the quantity of nanoparticles administered needs to be as small as possible but still retaining the desired effect (see Supplementary Information). For this purpose, to reach the therapeutic temperature with minimal particle concentration in tissue, the magnetic nanoparticles should exhibit high inductive specific absorption rate (SAR).

This quantity depends on the nanoparticles’ properties, such as mean size, saturation magnetization (\(M_s\)) and magnetic anisotropy (\(K\)), but also on the alternating magnetic field amplitude (\(H_{max}\)) and frequency (\(f\)). In previous work, heating has been predicted for superparamagnetic nanoparticles within a model in which SAR primarily depends on magnetic spin relaxation processes. It was shown that the crossover between Néel and Brown regimes of relaxation depends on the anisotropy constant and particle volume, thus defining, for each
frequency, a narrow range of K and size values for optimal SAR. Furthermore, note that the aforementioned model is suitable to calculate SAR only for very small nanoparticles in the diluted regime at low magnetic fields10, whereas for clinical applications the relative influence among particles cannot be neglected (different results indicate that the nanoparticles are generally agglomerated in \textit{in vitro} and \textit{in vivo} experiments). For instance, results for dense systems have shown that dipolar interactions not only affect the susceptibility11,13, but also the blocking temperature transition14, and the motion of particles in solution15. Hence, the selection of the most advantageous materials for clinical hyperthermia treatment is still a matter of debate6.

Previously, the tuning of the magnetocrystalline anisotropy and its influence on magnetic heating efficiency has been issued by Lee \textit{et al.}16 in exchange-coupled nanoparticles. Note that K can also be controlled by changing the nanoparticle shape. Yet, another interesting option to improve the heat generation from magnetic nanoparticles could be to explore single domain particles displaying slow magnetic fields10, whereas for clinical applications the relative frequency, a narrow range of K and size values for optimal SAR.

The dependence of the SAR on the mean particle size 30,31. Based in our know-how in the size and shape control of iron oxides, here we demonstrate that cubic nanoparticles possess some having a mean diameter of the magnetite crystals of about 40 nm in order to account for thermal contributions to the energy barrier for magnetization reversal. Theses sizes were deliberately selected so that the particles safely reside within single magnetic domain range22,33. On the one hand, by performing systematic AC magnetic measurements in aqueous solution, we demonstrate that, the SAR is strongly related not only to the shape, the volume and the concentration of particles, but it might as well be influenced by their aggregation into chains. On the other hand, the analysis of the numerical calculated hysteresis loops allows for the correlation of their magneto-structural properties, the influence of anisotropies, and dipolar interactions, with hyperthermia measurements.

Results

Figure 1 shows the transmission electron microscopy (TEM) view of representative aggregates of cube-shaped iron oxide particles (see Supplementary Fig. S1 for a TEM image of the spherical particles). The difference in contrast within the image is because the different crystallographic orientations of individual particles with respect to the electron beam. In this regard, there is no apparent contrast variation within each nanoparticle, thus pointing to the fact that particles are completely oxidized during synthesis14,35. A high-resolution (HRTEM) image clearly attests to the monocristalline structure with a lattice fringe of 0.24 nm characteristic of (222) planes of the spinel. As can be seen in Fig. 1b (inset), the cubes organize themselves into chains with sharing flat faces of the \{100\} type.

We used electron tomography to generate a 3D illustration of the self-assembly of nanoparticles (see Fig. 2), similar to that described in biogenic magnetosomes. The faceted cubic particles are reconstructed separately in Fig. 2c (see Supplementary Movie S1 and Fig. S2 online for details). It should be noted here, that van der Waals attractions are expected to be weak in our nanoparticle solutions due to the thick surfactant layers (the decanoic acid CH$_3$(CH$_2$)$_{17}$COOH has a carbon chain length of 1.4 nm). The thermodgravimetric analysis (TGA) was employed to verify the coating structure of the nanoparticles. The experimental values of weight losses (see Supplementary Fig. S4) are in reasonable agreement with the theoretical estimation assuming that the surfactant forms a close-packed monolayer on the nanoparticles36. Thus, the formation of such chain-like aggregates is favored because the energy of the magnetic dipole-dipole interaction is presumably larger than the thermal energy, and the van de Waals or electrostatic interactions within the solution37.

A simple way of visualizing the consequences of these dipole interactions is to look at the magnetic response. Field and temperature-dependent magnetic measurements were performed on the dried crystalline powder using a superconducting quantum interference device (SQUID) magnetometer. Noteworthy, the remanent magnetization (M_R) values (see Fig. 3, and Supplementary Fig. S5 for hysteresis loops of the spherical particles) are well below the 0.5 M_S expected for magnetically independent uniaxial Stoner-Wohlfarth nanoparticles, thus signifying non-negligible dipolar interactions between the particles. The 40 nm cubic particles are ferromagnetic at room temperature with a saturation magnetization value up to 89 Am2/Kg, and coercive field of 5.5 mT. The smaller the particles, the smaller the magnetization of the sample is, probably because of the appearance of cation vacancies and surface spin canting on decreasing the particle size38-40. Hysteresis loops also indicate a reduction in coercivity as the mean particle size is decreased, and an increase of both M_S and H_C as the temperature is reduced from 300 K (Fig. 3b).

Importantly, data suggest that the 20 nm particles at room temperature are in the transition regime between superparamagnetism and a blocked state. Both observations are consistent with a lowering of the energy barrier for magnetization reversal that leads to faster relaxation by thermal fluctuations41. The effect of temperature upon the magnetic anisotropy is a topic for over 50 years42. We have evaluated the effective anisotropy constant from the law of approach to magnetic saturation (see the Supplementary
Information for details). The parameters of these particles are summarized in Table S1. Remarkably, the K_{eff} can be modulated by varying the size and shape of the nanocrystals, with values above those for bulk $\mathrm{Fe}_3\mathrm{O}_4$ (about 11 kJ/m3) or γ-$\mathrm{Fe}_2\mathrm{O}_3$ (13 kJ/m3) at room temperature. We deem cubic particles exhibit higher anisotropy values than that for spheres due to shape contribution. Note that the sphere has the smallest surface area among all surfaces enclosing a given volume. It is therefore not surprising that we find an increased anisotropy in the case of cubic particles, compared to the spherical ones. The problem, however, might be more complicated because of the possible smaller crystallinity of the spherical particles compared to cubes.44,45 It is known that surface anisotropy is linked to well-defined lattice planes46, being the spherical entities formed by different nanofacets while the cubic particles have fairly flat planes.

The temperature dependence of zero-field-cooled and field cooled (ZFC-FC) magnetization curves establishes further differences between the nanomagnetic features of the isolated particles and the collective system due to the variations in the magnetostatic interactions.47 For example, FC curves (see Fig. S6) reach a plateau in contrast to the

Figure 1 | TEM images. Iron-oxide nanocubes (a) with average edge length of 20 ± 4 nm; inset reveals 2D self-assembly arrangements. (b) Corresponding TEM micrograph of 40 nm nanocubes. As can be seen in the larger area view, the particles organize themselves in different chain-like configurations. (c) High-resolution observation of crystal structure revealing (222) fringes of the inverse spinel iron oxide. Inset exhibits the FFT spectrum.

Figure 2 | Tomography. 3D reconstruction of cuboctahedral shape particles, from images obtained at different tilt angles relative to the electron beam, after 40 iterations (see Methods). (a) Nanocube cluster. Neighboring nanocubes have [100] surfaces face to face separated by a distance above 2 nm due to hydrocarbon ligands. (b) Single nanocube in its original context. (c) Illustration of small deviations from perfect cubic symmetry.
random non-interacting particle system, which points out to a strong interaction between particles. The details and the mechanisms behind the power loss of particles in such a collective intricate behavior are not sufficiently understood yet. Indeed we find significant changes in the hyperthermia response depending on size, the shape of nanoparticles and concentration, which do not follow the linear response theory. Figure 4 presents the influence of particle concentration on the heat production for 20 nm and 40 nm iron oxide nanocubes in aqueous dimethyl sulfoxide (DMSO) solutions. Obviously, the available AC field-intensities probe only losses from minor hysteresis loops for the 40 nm sample (see inset in Fig. 3a), thus explaining the smaller SAR values compared to the 20 nm case. We observe also that SAR decreases with increasing concentration in both cases and that, as expected, it increases in a non-linear way with the maximum applied field for all the studied samples.

To provide insights into the experimental parameters that dictate the pronounced dependence of SAR on concentration and particle shape, we performed Monte Carlo simulations (see Fig. 5b). Our analysis is based on the macrospin approximation that considers each particle as a classical Heisenberg spin with an effective anisotropy, which can differ from the bulk first-order anisotropy constant since it includes surface anisotropy contributions. Some representative simulated hysteresis loops are shown also in the Supplementary Information (see Fig. S9). Calculations endorse the statements of the previous paragraphs: a widely negative influence of dipole-dipole interactions on the heating power for an increasing particle concentration, and the greater hysteresis area for the nanocubes. In view of these observations, it is unambiguous that cubic particles exhibit higher anisotropy energy values than that for spheres. Although pioneering reports have revealed the imperative contribution of surface anisotropy to the magnetic properties of fine cubic particles, its role is still an issue of controversy. In order to gain some insight on the peculiarities of the experimental magnetic behavior presented in the previous section, we have conducted a MC simulation study of individual spherical and cubic nanoparticles in which the magnetic ions forming the particle are considered at the atomistic level of detail. We observe that the area of the hysteresis loop of the cubic particle is bigger than that of the spherical one (see Fig. 6), implying also a higher SAR as observed experimentally. Notice that the difference in areas stems from qualitative loop shape differences around the coercive and closure field points that can be traced back to the different reversal processes of the surface spins (see Supplementary Fig. S11 and S12).

Discussion

A nice survey of literature, and comparison of experimental and calculated SAR values for several nanoparticles types as a function
of the magnetic field frequency (range of 300 kHz–1.1 MHz and with an amplitude up to 31 mT) can be seen in Ref. 10 and 17. While commonly available iron oxide ferrofluids show SAR about 100 W/g\(^3\), in a few special cases experimental values in excess of 500 W/g\(^3\) and up to about 1 kW/g were found for magnetosomes\(^{15,24}\). Attention should be paid to the fact that the values are among the highest recorded for iron oxide nanocrystals. Naively, magnetic losses scale approximately with \(M \cdot H_C\)\(^5\) given that \(H_C \approx 0.5H_A\) within the Stoner-Wohlfarth model, being \(H_A = 2K/M_S\) the characteristic anisotropy field of the particles (see Supplementary Information). Thus, the increased anisotropy in the case of cubic particles explains the higher SAR compared to the spherical ones.

The results reported in the present study also reveal that, in addition to the surface magnetic anisotropy energy, particle concentration plays a crucial role in tailoring the heating efficiency independently of the particle geometry, as demonstrated in Fig. 4. Reasonably, an increase in concentration corresponds to a decrease in the mean interparticle separation and gives rise to a notable increase in the dipolar interparticle interactions. The role that dipolar interactions might have in SAR is not completely understood at present\(^{25}\), and recent experimental studies have reported either an increase or decrease of SAR with interactions\(^{12,16,54–57}\). Overall, results suggest a widely negative influence of dipole-dipole interactions on the heating power of nanoparticles, still a clear correlation between the magnetic anisotropy of the particles and their hysteresis loop is observed and may lead to an increase in magnetic hyperthermia efficiency\(^5\).

Additionally, the different geometrical arrangement of nanoparticles in suspensions may play some role in explaining the increase of SAR for nanocubes compared to spherical particles. For instance, our observation of nanocubes chain formation even in the absence of a magnetic field (Fig. 2) suggests the existence of strongly anisotropic dipolar forces mediating nanoparticle attachment\(^5\). We are not aiming to relate chain formation to concentration increase, but we argue that, since nanocubes are more prone to chaining, they would display higher SAR values compared to the spherical particles. In this regard, a rigorous computation of the magnetostatic energy of chains of identical, uniformly magnetized particles of arbitrary shape can be found in Phatak et al.\(^{59}\); it is shown that the face-to-face configuration in nanocubes allows for significantly more favorable chain formation than the case for spherical entities. Obviously, a transient long nanoparticle chain could also form by the application of an alternating magnetic field\(^{14}\), still the self-assembly of colloidal crystals into ordered superstructures depends critically on the shape (and size) of the nanocrystal building blocks\(^37\). Note that, interestingly, straight chains made of cubes will have an axial magnetization state as the lowest in energy, while it is unlikely that a chain of 20 nm iron-oxide nanospheres will be observed experimentally\(^60\). It is worth mentioning the hydrodynamic diameters measured by dynamic light scattering (see supplemental Fig. S3). Results suggest that 20 nm cuboids self-aggregate in aqueous solution, and the average number of particles per chain is roughly 10, confirming the formation of agglomerates in these samples while the nanospheres stay dispersed.

Thus, we speculated that the capacity of cuboids to self-assemble spontaneously can be used to tailor the heating capabilities. To further cross check this view, we have computed the evolution of the hysteresis as a function of the number of particles \(N\) within a chain. We will focus now on the influence of interparticle dipole interactions in a chain arrangement as displayed in Fig. 7. Our simulations predict that the area of hysteresis loop increases (and therefore of the
of a single particle, where H_{A} nanoparticles of different length (values of N indicated), and the limit case

Synthesis. Iron oxide nanocubes were prepared by heating a solution of iron(III) acetylacetonate (Fe(acac)3), dodecanolic acid and dibenzylether. This method takes the advantage of the discernible separation of nucleation and growth stages caused by the intermediate formation of iron(III) dodecanate complex as discussed in detail in a previous publication14. Briefly, size can be tuned over a wide range (15 nm to 180 nm) by adjusting the ratio of the reactants. Nanocubes of 40 nm were synthesized by mixing 0.5 g (1 mmol) of Fe(acac)3, 0.53 g (1 mmol) of Fe(acac)3, and 0.688 g (4 mmol) of dodecanolic acid in 25 mL of dibenzylether. After a short vacuum step at 60°C (30 minutes), the solution temperature was first raised up to 200°C with a constant rate of 2.6°C/min, and kept at this temperature for 2 h under an argon flow and with stirring. In a second step, the solution was heated to reflux temperature with a heating rate of 6°C/min. After 1 h, the solution was cooled down and acetonitrile was added.

Nanoparticles were then collected by centrifugation at 8000 rpm and redispersed in chloroform. This procedure was repeated at least two times in order to get rid of the excess of surfactant. Nanocubes of 40 nm were synthesized by decreasing the heating rate, during the second step, down to 1.7°C/min. In the synthetic procedure for the production of 20 nm (diameter) spinel nanorods, 3 mmol Fe(CO)3 were added at 100°C in 10 mL diocetylphosphate in the presence of 12 mmole oleic acid. The mixture was kept at reflux for 3 h at 290°C and then cooled to room temperature. Ethanol was added to yield a black precipitate, which was then separated by centrifugation. The supernatant was discarded and the particles were redispersed in hexane. Given that the resulting magnetic nanoparticles were hydrophobic, the powders were further dissolved in a mixture of dimethyl sulfoxide (DMSO) and water (1:1). DMSO is a naturally derived, inexpensive, non-toxic solvent and pharmaceutical agent that has been demonstrated to be a well-tolerated excipient in the management of cancer pain. Furthermore, DMSO has chemical properties which facilitate its absorption into and distribution throughout biological systems by all routes of administration, thus its compatibility in future applications is guaranteed.

Computational details. The simulations were performed both at the atomic level and under the so-called macropore approximation, in order to investigate the single-particle properties in relation to shape and anisotropy, and the role of magnetic dipolar interactions, respectively. First, we used the Monte Carlo (MC) method with the standard Metropolis algorithm. The physical model employed for our numerical simulations considers a perfectly monodisperse system of single-domain magnetic particles with a uniaxial magnetic anisotropy. Though, it should be pointed out that the anisotropy field H_A of the particle may also be the energy barrier of the particles, t = k_{B}/2K, since spherical nanoparticles could also form chains).

SAR with the length of the chain. Further, the thermal stability gained by creating arrays is an advantage when exploiting hysteresis losses (inset Fig. 7). These observations indicate a promising way to increase the hyperthermia performance by assembling cubic particles in elongated chains. This finding is in remarkably good agreement with the results observed for magnetosomes by Alphandery et al.63. Disorientation of the assembly would lead to a considerable decrease in the hysteresis loop area and to very different heating properties. Example of the later is the decrease on the heating efficiency of separate magnetosomes compared with those of magnetosomes arranged in chains23,24. Independently of the formation of chains and its positive effects on SAR, a concentration increase may lead to the coalescence of chains leading to cluster formation and a decrease in SAR. However, we stress that even in this case, the higher SAR of cubes can be accounted for their increased surface anisotropy with respect to spheres.

To conclude, our data and analysis indicate that ferrimagnetic nanocubes with an edge length about 20 nm exhibit superior magnetic heating efficiency compared to spherical particles of similar sizes. The oriented attachment of magnetic nanoparticles biomimicking magnetostatic bacteria, and the beneficial role of surface anisotropy, are recognized as important mechanisms for the development of magnetic hyperthermia for cancer treatment. We foresee such quantification of nanoparticles interaction and understandings of the magnetization reversal are also important for the design of magnetic nanomaterials for other biomedical applications.

Methods

Characterization. Iron oxide particles were characterized by transmission electron microscopy (TEM) using a JESC JEM-2100 (200 keV) for high resolution (HR) TEM, and a field-emission gun scanning transmission electron microscopy (FEG) TEM FEI Tecnai F20-G2 (200 kV) equipped with a high-angle annular dark-field detector STEM-HAADF for three-dimensional (3D) electron tomography. The samples were prepared by dropping on solution of nanoparticles onto a carbon coated copper grid. The 3D structure of nanoparticles, as well as that of the assembled chain, is reconstructed from a tilt series (angle of −64° ≤ θ ≤ 64° at an increment of 4°) of 2D projections, using the simultaneous iterative reconstruction technique (SIRT). In order to determine the apparent hydrodynamic diameter, dynamic light scattering (DLS) analysis was carried out using Malvern Instruments Hydro 2000MU accessory. Thermogravimetric analysis (TGA) was carried out with a TGA-SDTA 851/SE/1100 Mettler Toledo device up to 700°C, by heating the sample under an argon/nitrogen flow at a heating rate of 10°C/min. The residual weight accounts for the mass of iron-oxide nanoparticles in the ferrofluid. Quasi-static magnetic characterization was carried out in a superconducting quantum interference device (SQUID) Quantum Design MPMS XL-7T magnetometer. M(H) hysteresis loops were measured at different temperature (5 K and 300 K) by applying field up to 5 Tesla. Magnetization zero field cooled (ZFC) measurements were performed upon warming with an applied magnetic field of 5 mT after cooling the samples in zero applied field. The field cooled (FC) curves were obtained by measuring at stepwise-decreasing temperatures in the same small applied field. AC magnetic hyperthermia experiments were performed using a 23 mm diameter three-turn induction coil powered by a 4.5 kW AC field generator. While frequency was kept constant at 765 kHz, the amplitude of the applied magnetic field was tuned from 15 up to 30 mT. The amplitude of the alternating magnetic field was estimated using a pick-up coil connected to an oscilloscope. Temperature was monitored by using an OMEGA CuCo4Sb2-based fiber optic probe immersed in a test tube containing 2 mL of solution. Three different iron-oxide concentrations (0.5, 1.0 and 2.0 mg/mL) were exposed to the alternating magnetic field for 900 seconds. Specific absorption rate (SAR) values were estimated by subtracting the solvent background signal and the heat losses to the environment. Further details on the hyperthermia capabilities of these particles under safe clinical conditions (H_{max} ≤ 5 × 10^4 Oe, m, and intracellular uptake trials, can be found in a recent publication64.)
order to account for deviations in the positions of the crystals from the chain axis, thus
resembling the results obtained by electron holography on magnetosomes*.1

1. Butter, K., Bomans, P. H., Frederick, P. M., Vroege, G. J. & Philipse, A. P. Direct
observation of dipolar chains in iron ferrofluids by cryogenic electron
microscopy. *Natur. Mater.* 2, 88–91 (2003).

2. Majetic, S. A., Wen, T., & Booth, R. A. Functional magnetic nanoparticle
assemblies: formation, collective behavior, and future directions. *ACS Nano* 5,
6081–6084 (2011).

3. Yoon, T.-J., Lee, H., Hsiao, S., Hilderbrand, S. A. & Weissleder, R. Multicore
assemblies potenti-ate magnetic properties of biomagnetic nanoparticles. *Adv.
Mater.* 23, 4793–4799 (2011).

4. Abbasi, A. Z. et al. Magnetic capsules for NMR imaging: effect of magnetic
nanoparticles spatial distribution and aggregation. *J. Phys. Chem. B* 115,
6257–6264 (2011).

5. Mayer Haufl, K. et al. Efficacy and safety of intratumoral thermotherapy using
magnetic iron-oxide nanoparticles combined with external beam radiotherapy on
patients with recurrent glioblastoma multiforme. *J. Neurooncol.* 103, 317 (2011).

6. Kumar, C. S. S. R. & Mohammad, F. Magnetic nanomaterials for hyperthermia-
based therapy and controlled drug delivery. *Adv. Drug Deliver. Rev.* 63, 789–808
(2011).

7. Jordan, A. et al. Inductive heating of ferrimagnetic particles and magnetic fluids:
physical evaluation of their potential for hyperthermia. *Int. J. Hyperthermia* 9,
51–68 (1993).

8. Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. *J.
Magn. Magn. Mater.* 252, 370–374 (2002).

9. Fortin, J.-P. et al. Size-sorted anionic iron oxide nanomagnets as colloidal
mediators for magnetic hyperthermia. *J. Am. Chem. Soc.* 129, 2628–2635 (2007).

10. Urtizberea, A., Natividad, E., Arizaga, A., Castro, M. & Mediano, A. Specific
assemblies potentiate magnetic properties of ultrafine ferromagnetic particles.
Phys. Rev. Lett. 84, 167–170 (2000).

11. Wang, A., Li, J. & Gao, R. Structural force arising from magnetic interactions
in polydisperse ferrofluids. *Appl. Phys. Lett.* 94, 212501 (2009).

12. Urtizberea, A., Natividad, E., Arizaga, A., Castro, M. & Mediano, A. Specific
absorption rates and magnetic properties of ferrofluids with interaction effects at
low concentrations. *J. Phys. Chem. C* 114, 4916–4922 (2010).

13. García-Otero, J., Porto, M., Rivas, J. & Bunde, A. Influence of dipolar interaction
on magnetic properties of ultrafine ferromagnetic particles. *Phys. Rev. Lett.* 84,
167–170 (2000).

14. De Las Cuevas, G., Faruado, J. & Camacho, J. Low-gradient magnetophoresis
through field-induced reversible aggregation. *J. Phys. Chem. C* 112, 945–950
(2008).

15. Lee, J.-H. et al. Exchange-coupled magnetic nanoparticles for efficient heat
induction. *Nature Nanotech.* 6, 418 (2011).

16. Lacroix, L.-M. et al. Magnetic hyperthermia in single-domain monodisperse FeCo
nanoparticles: evidence for Stoner-Wohlfarth behavior and large losses. *J. Appl.
Phys.* 105, 023911 (2009).

17. Fortin, J.-P., Gazeau, F. & Wilhelm, C. Intracellular heating of living cells through
Néel relaxation of magnetic nanoparticles. *Eur. Biophys.* J. 37, 223–228 (2008).

18. Mehdoua, B. et al. Optimal size of nanoparticles for magnetic hyperthermia: a
combined theoretical and experimental study. *Adv. Funct. Mater.* 21, 4573–4581
(2011).

19. Usov, N. A. Low frequency hysteresis loops of superparamagnetic iron oxide
nanoparticles with uniaxial anisotropy. *IEEE Trans. Magn.* 43, 1539–1547 (2007).

20. Larbi, H., Guizani, R., Mejri, H., Kerdjoudj, S., El przec, A., Zemmour, A., Bouayed,
M. & Sahnoun, A. Exchange-coupled magnetic nanoparticles for efficient
heat induction. *Nature Nanotech.* 6, 418 (2011).

21. Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of PtFe nanorod
growth in solution. *Science* 336, 1011–1014 (2012).

22. Martinez-Bouleta, C. et al. Critical radius for exchange bias in naturally oxidized
Fe nanoparticles. *Phys. Rev. B* 74, 054430 (2006).

23. Sánchez, J. et al. Quantitative spatial magnetization distribution in iron oxide
cubes and nanospheres by polarized small-angle neutron scattering. *New J.
Phys.* 14, 013025 (2012).

24. Noh, S.-H. et al. Nanoscale Magnetism Control via Surface and Exchange
Anisotropy for Optimized Ferrimagnetic Hysteresis. *Nano Lett.* 12, 3716–3721
(2012).

25. Walker, M., Mayo, P. L., O’Grady, K., Charles, S. W. & Chantrell, R. W. The
magnetic properties of single-domain particles with cubic anisotropy. *I.
Hysteresis loops. J. Phys.: Condens. Matter.* 5, 2779–2792 (1993).

26. Néel, L. Classical theory of the temperature dependence of magnetic anisotropy
energy. *Phys. Rev.* 96, 1335–1337 (1954).

27. Brown, W. C. et al. Theory of the approach to magnetic saturation. *Phys. Rev.* 58,
734–743 (1940).

28. Chen, G. & Pabapethy, A. C. et al. Interparticle interactions in magnetic core/shell
magnetite/superparamagnetic FeCo nanoparticles. *Adv. Mater.* 20, 4746–4750
(2008).

29. Duerksen, J. et al. Influence of dipolar interactions on hyperthermia properties of
ferromagnetic nanoparticles. *J. Appl. Phys.* 108, 073918 (2010).

30. Haase, C. C. & Nowak, U. Role of dipole-dipole interactions for hyperthermia
heating of magnetic nanoparticle ensembles. *Phys. Rev. B* 85, 054435 (2012).

31. Snoeck, E. et al. Magnetic configurations of 30 nm iron nanocubes studied by
electron holography. *IEEE Trans. Magn.* 48, 4293–4298 (2008).

32. Chiesa, S. et al. Element-specific magnetic hysteresis of individual 18 nm Fe
cubes. *Nano Lett.* 11, 1710–1715 (2011).

33. Bae, K. H. et al. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide
nanocubes for magnetically modulated cancer therapy. *ACS Nano* 6,
5266–5273 (2012).

34. Burrows, F. et al. Energy losses in interacting fine-particle magnetic composites.
J. Phys. D: Appl. Phys. 43, 474010 (2010).

35. Dennis, C. L. et al. Nearly complete regression of tumors via collective behavior of
magnetic nanoparticles in hyperthermia. *Nanotechnology* 20, 395103 (2009).

36. Pei-Fei Redondo, Y. et al. Influence of colloidal parameters on the specific
power absorption of PAA-coated magnetic nanoparticles. *Nanoscale Research
Letters* 6, 383 (2011).

37. Khot, V. M., Salunke, A. B., Thorat, N. D., Phadatare, M. R. & Pawar, S. H.
Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for
hyperthermia applications. *J. Magn. Magn. Mater.* 332, 48–51 (2013).

38. Gudoshnikov, S. A., Liubimov, B. Y. & Usov, N. A. Hysteresis losses in a dense
magnetization in close-packed magnetic nanoparticle assemblies. *AIP Advances* 2,
012143 (2012).

39. Martinez-Bouleta, C. et al. Adjustable Hyperthermia Response of Self-Assembled
ferromagnetic Fe-MgO Core−Shell Nanoparticles by tuning Dipole−Dipole
Interactions. *Adv. Funct. Mater.* 22, 3737–3744, (2012).

40. Phatak, C., Pokhrel, R., Beleggia, M. & De Grael, M. On the magnetostatics of
cubes of magnetic nanoparticles. *J. Magn. Magn. Mater.* 323, 2912–2922 (2011).

41. Søvndal, M. W. & Coray, R. M. Self-assembly of flux-closure polygons from
magnetite nanocubes. *J. Phys. Chem. C* 12302–2325 (2012).

42. Alphandery, E. et al. Assemblies of aligned magnetotactic bacteria and extracted
magnetosomes: what is the main factor responsible for the magnetic anisotropy?
ACS Nano 3, 1539–1547 (2009).
62. Guardia, P., Pérez-Juste, J., Labarta, A., Batlle, X. & Liz-Marzán, L. M. Heating rate influence on the synthesis of iron oxide nanoparticles. The case of decanoic acid. *Chem. Commun.* **46**, 6108–6110 (2010).

63. Hoang, B. X. *et al.* Dimethyl sulfoxide as an excitatory modulator and its possible role in cancer pain management. *Inflamm. Allergy Drug Targets* **9**, 306–312 (2010).

64. Hergt, R., Dutz, S. & Röder, M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. *J. Phys.: Condens. Matter* **20**, 385214 (2008).

65. Dunin-Borkowski, R. E. *et al.* Magnetic microstructure of magnetotactic bacteria by electron holography. *Science* **282**, 1868–1870 (1998).

Acknowledgments

This work was co-financed by the Spanish MAT2009-08667, MAT2009-08165 and SAF2011-25707 projects. C.M. Boubeta and A. Cabot were supported by the Spanish Government under the ‘Ramón y Cajal’ Fellowship program. J. Conde-Leborán was supported by the FPI Spanish program. K. Simeonidis acknowledges “Education and Lifelong Learning” Operational Program funded by EU-European Social Fund (ESF) and GSRT. Z. Saghí and P.A. Midgley acknowledge financial support from the European Union within the Framework 6 program under a contract for an Integrated Infrastructure Initiative, Reference 026019 ESTEEM. P.A. Midgley also acknowledges financial support from the European Research Council, Reference 291522-3DIMAGE. O. Iglesias acknowledges funding from the European Union FEDER funds (“Una manera de hacer Europa”) and Catalan DIUE through Project 2009SGR856. He also acknowledges CESCA and CEPBA under coordination of C4 for supercomputer facilities. We would like to thank A. Matsakidou and Prof. V. Kioseoglou from Laboratory of Food Chemistry and Technology (AUTh) for the DLS measurements, and also the Centro de Supercomputación de Galicia (CESGA) for the computational facilities.

Author contributions

C.M.B. suggested the study. C.M.B., M.A. and D.B. led the project. P.G. and K.S. fabricated the samples and performed the TGA and SQUID measurements. L.Y., S.E., F.P., Z.S. and P.A.M. led the collection and the analysis of the electron microscopy images and 3D tomography. I.C.L., D.S. and O.I. performed and interpreted the Monte Carlo simulations. K.S. and A.M. were responsible for the hyperthermia measurements. C.M.B., K.S., M.A., O.I., D.S. wrote the manuscript with substantive feedback from A.C., S.E. and D.B.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Martinez-Boubeta, C. *et al.* Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications. *Sci. Rep.* **3**, 1652; DOI:10.1038/srep01652 (2013).