Epidemiologic factors that predict long-term survival following a diagnosis of epithelial ovarian cancer

Shana J Kim1,2, Barry Rosen3,4, Isabel Fan5, Anna Ivanova1,6, John R McLaughlin5,7, Harvey Risch8, Steven A Narod1,6 and Joanne Kotsopoulos*,1,2,6

1Women’s College Research Institute, Women’s College Hospital, 76 Grenville, Toronto, ON, Canada; 2Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; 3Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, Canada; 4Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Toronto, 610 University Avenue, Toronto, ON, Canada; 5Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 600 University Avenue, Toronto, ON, Canada; 6Dalla Lana School of Public Health, University of Toronto, 155 College Street, Health Science Building, Toronto, ON, Canada; 7Public Health Ontario, Toronto, ON, Canada and 8Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College Street, New Haven, CT, USA

Background: Various epidemiologic factors have been shown to influence the risk of ovarian cancer development. Given the high fatality associated with this disease, it is of interest to evaluate the association of prediagnostic hormonal, reproductive, and lifestyle exposures with ovarian cancer-specific survival.

Methods: We included 1421 patients with invasive epithelial ovarian cancer diagnosed in Ontario, Canada. Clinical information was obtained from medical records and prediagnostic exposure information was collected by telephone interview. Survival status was determined by linkage to the Ontario Cancer Registry. Proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for ovarian cancer-specific mortality associated with each exposure. Analyses were stratified by histologic subtype to further investigate the associations of risk factors on ovarian cancer-specific mortality.

Results: After a mean follow-up of 9.48 years (range 0.59–20.32 years), 655 (46%) women had died of ovarian cancer. Parity (ever) was associated with a significant 29% decreased mortality risk compared with nulliparity (HR = 0.71; 95% CI 0.54–0.93; P = 0.01). There was a borderline significant association between ever use of oestrogen-containing hormone replacement therapy (HRT) and mortality (HR = 0.79; 95% CI 0.62–1.01; P = 0.06). A history of cigarette smoking was associated with a significant 25% increased risk of death compared with never smoking (HR = 1.25; 95% CI 1.01–1.54; P = 0.04). Women with a greater cumulative number of ovulatory cycles had a significantly decreased risk of ovarian cancer-specific death (HR = 0.63; 95% CI 0.43–0.94; P = 0.02). Increasing BMI (kg m−2) 5 years before diagnosis was associated with an increased risk of death (HR = 1.17; 95% CI 1.07–1.28; P = 0.0007). Other hormonal or lifestyle factors were not significantly associated with ovarian cancer-specific mortality.

Conclusions: Parity, ovulatory cycles, smoking, and BMI may affect survival following the diagnosis of ovarian cancer. Whether or not oestrogen-containing HRT use is beneficial for survival requires further evaluation.

*Correspondence: Dr J Kotsopoulos; E-mail: joanne.kotsopoulos@wchospital.ca

Received 14 November 2016; revised 19 January 2017; accepted 23 January 2017; published online 16 February 2017

© 2017 Cancer Research UK. All rights reserved 0007–0920/17
Cancer of the ovary is the most fatal gynaecologic malignancy and is the fifth leading cause of cancer related death among women in Canada and the United States (Sopik et al., 2013). Although the pathogenesis of ovarian cancer is not clearly understood, proposed mechanisms include the ‘incessant ovulation hypothesis,’ whereby factors that suppress or interrupt ovulation protect against ovarian cancer (Fathalla, 1971; Ness et al., 2000; Fleming et al., 2006). Other proposed mechanisms of ovarian cancer carcinogenesis include stimulation by hormonal exposures, inflammation mechanisms, and retrograde transportation of endogenous or exogenous carcinogens through the fallopian tubes (Cramer et al., 1982; Cramer and Xu, 1995; Risch, 1998; Ness and Cottreau, 1999; Shan and Liu, 2009). These hypotheses are supported by epidemiologic findings of ovarian cancer risk reduction with events that interrupt or suppress ovulation (e.g., pregnancy and oral contraceptive use; Whittetmore et al., 1992; Danforth et al., 2007; Beral et al., 2008; Luan et al., 2013), reduce inflammation (e.g., aspirin or non-aspirin NSAID use, tubal ligation; Trabert et al., 2014), whereas exposures that increase inflammation (e.g., endometriosis; Pearce et al., 2012; Terry et al., 2013) or hormonal exposure (e.g., exogenous hormone use) are associated with an increased risk (Zhou et al., 2008).

The prognosis of ovarian cancer is poor with a mean 5-year survival of 45% and 15–25% among stage III/IV patients (Sopik et al., 2015). Clinical factors that influence survival include stage at detection, volume of disease, success in optimal debulking, histologic subtype, tumour grade, and response to chemotherapy (Barakat et al., 2009; du Bois et al., 2009; Chang and Bristow, 2012). The influence of additional lifestyle factors such as body mass index (BMI) have been inconsistent as some evidence suggests higher BMI is associated with adverse prognosis and increased ovarian cancer mortality (Poole et al., 2016); however, these findings contrast previous reports of no association between body size and ovarian cancer survival (Kotsopoulos et al., 2012; Zhou et al., 2014). In a recent previous study, we found that the most important prognostic factor was the absence of residual tumour following primary debulking surgery, irrespective of other tumour characteristics (Kotsopoulos et al., 2016). Given that the mortality associated with ovarian cancer has changed little in recent years, it is of interest to evaluate whether or not epidemiologic factors associated with risk of ovarian cancer may also influence outcome from this fatal disease.

Various studies have evaluated roles of hormonal, reproductive, and lifestyle factors on the prognosis of ovarian cancer; however, findings have been inconclusive and many analyses were limited by a small number of patients, relatively short follow-up periods, and other methodologic concerns (recently reviewed in Poole et al., 2016). Using a large sample of patients with ovarian cancer, many followed for a decade or more, we evaluated the association between prediagnostic epidemiologic factors and long-term ovarian cancer-specific mortality.

MATERIALS AND METHODS

Study population. The current study uses information from a large series of unselected ovarian cancer patients diagnosed in Ontario, Canada. Detailed information about the study design and data collection has been previously published (Zhang et al., 2011; McLaughlin et al., 2013; Narod et al., 2013). Briefly, all residents between the ages of 20 and 79 years with diagnoses of new invasive epithelial ovarian cancer from January 1995 to December 1999 and from January 2002 to December 2004 were identified through the Ontario Cancer Registry (OCR) (Zhang et al., 2011; McLaughlin et al., 2013; Narod et al., 2013). Of the 3168 initially eligible patients, genetic testing was performed on 1421 (45%), as previously described, and these are the subjects included in the present study (Zhang et al., 2011). The mean time between date of diagnosis and date of genetic testing was 1.83 years. All of the women provided written informed consent and the study was approved by the institutional review boards of the University of Toronto and Yale University.

Pathology review and outcome data. For each patient, the investigators reviewed pathology records to determine eligibility and tumour histology. Medical records were reviewed to obtain information about clinical staging, treatments received, and treatment outcomes. Extent of residual disease following primary debulking surgery was coded as ‘yes’ (presence of any residual disease) or ‘no’ (zero residual disease). Survival status was determined both by periodic chart review at local hospitals and computerised linkage to the records of the OCR that provides information on fact, date, and cause of death. The OCR, which began in 1964, contains highly complete information on cancer incidence, mortality, and survival in Ontario. We used vital status and cause of death obtained from a linkage performed with data in the OCR on 1 May 2015. For the purpose of this analysis, cause of death was coded as ovarian cancer or other.

Assessment of epidemiologic risk factors and covariates. Information on known and suspected ovarian cancer risk factors and demographic information was collected by telephone interview with a standardised-script questionnaire. Specifically, detailed data were obtained for age at menarche, age at menopause, parity, breastfeeding (number of months), oral contraceptives use, oestrogen-containing hormone replacement therapy (HRT), infertility treatment, smoking history, tubal ligation, intrauterine device (IUD) use, family history of breast or ovarian cancer, and endometriosis. The cumulative number of ovulatory cycles for each woman was estimated using the following equations: (1) if premenopausal: ovulatory cycles = 12 × (current age – age at menarche – years of oral contraceptive use – (parity × 0.77) – years of breastfeeding); (2) if postmenopausal, current age was replaced with age at menopause (surgical or natural). Participants also reported their current weight and height, height and weight at age 21 years, and weight 5 years before their diagnosis. Body mass index at various ages was calculated in units of kg m⁻² using the reported current height. To avoid the influence of disease status on body weight, we calculated BMI (n = 1316) in units of kg m⁻² using reported current height but weight 5 years in the past. The mean number of months elapsed from date of diagnosis to the date of interview was 22.0 months (range 0.1–79 months).

Statistical analysis. Differences between clinical, demographic, and other characteristics were compared according to cause of death at the end of follow-up using the χ² test or t-test, as appropriate. The primary outcome in this analysis was ovarian cancer-specific survival defined as the duration from the date of diagnosis until the date of death from ovarian cancer. Survival was censored at death from another cause or 1 May 2015, the most recent limit of available death-certificate information (if patient was still alive). We performed a left-truncated survival analysis to account for the time elapsed between the date of diagnosis and the date of ascertainment (i.e., enrolment for genetic testing). This method of adjustment has been previously shown to reduce the extent of survivorship bias present in the current study population (Narod et al., 2013). Proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) associated with the epidemiologic risk factors. The base model (model 1) was adjusted for age at diagnosis (continuous), histologic subtype (serous, mucinous, endometrioid, clear cell, and other (mixed histology and epithelial not otherwise specified)), and stage (I, II, III, IV). Twenty-seven patients had missing information on tumour stage, and thus the total number of ovarian cancer cases in model 1 was 1394. Model 2 adjusted for the covariates in model 1.
as well as for residual disease status (yes or no), in which 588 participants had missing information, and thus the total number of ovarian cancer cases in model 2 was 833. Each exposure variable of interest was added to the models one at a time. Proportional hazards assumptions were assessed with Schoenfeld and Martingale residuals (Allison, 1995). The statistical significance of interaction terms between histologic subtypes and various exposures were determined using the likelihood ratio test. Stratified analyses were conducted for significant interaction terms to further investigate the role of histological subtype on various exposures. Analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC, USA) and all P-values are two sided.

RESULTS

Characteristics of the 1421 women diagnosed with invasive epithelial ovarian cancer are displayed in Table 1 by cause of death. An average of 9.48 years (range 0.59–20.32 years) of follow-up elapsed. Women who died of ovarian cancer had a shorter mean follow-up period, were older on average, and more likely to be diagnosed with serous, stage III, or stage IV tumours compared with women who did not die of ovarian cancer (P < 0.0001). Among women with information on the extent of residual disease following primary debulking surgery (n = 833; 59%), those who died of ovarian cancer were more likely to have residual disease compared with patients who were still alive (P < 0.0001). With respect to reproductive and hormonal exposures, women who died of ovarian cancer during the follow-up period were less likely to have used oral contraceptives, more likely to have used HRT, had higher mean parity, and higher mean number of ovulatory cycles compared with participants who did not die of ovarian cancer (P < 0.0004). Women who died of ovarian cancer were more likely to have a history of cigarette smoking, a higher BMI 5 years before diagnosis, and were more likely to carry an inherited mutation (P < 0.0001). The associations between various lifestyle and family history characteristics and ovarian cancer survival are displayed in Table 2. Table 2 summarises the HRs and 95% CIs for ovarian cancer-specific survival by various reproductive and hormonal factors. Model 1 adjusted for age, tumour histology, and grade (n = 1394) and model 2 was further adjusted for residual disease status (n = 833). Parity was associated with decreased ovarian cancer-specific mortality compared with nulliparity (HRModel 1 = 0.82; 95% CI 0.66–1.02; P = 0.07) and reached significance after further adjusting for residual disease (HRModel 2 = 0.71; 95% CI 0.54–0.93; P = 0.01). In the same way, after additionally adjusting for residual disease, women with a greater cumulative number of ovulatory cycles had a significantly decreased risk of death from ovarian cancer (> 439.42 cycles vs ≤ 322.28 cycles HRModel 2 = 0.63; 95% CI 0.43–0.94; P = 0.02). No significant associations between the other reproductive or hormonal characteristics and mortality were observed in this cohort of ovarian cancer patients.

Associations between various lifestyle and family history characteristics and ovarian cancer survival are displayed in Table 3. Women who reported a history of cigarette smoking had increased ovarian cancer-specific mortality compared with never smokers (HRModel 1 = 1.16; 95% CI 0.99–1.36; P = 0.08) and this association was stronger in the model that further adjusted for residual disease status (HRModel 2 = 1.25; 95% CI 1.01–1.54; P = 0.04). Moreover, increasing BMI 5 years before diagnosis by 5-unit increments was associated with an increased risk for ovarian cancer-specific mortality, both in model 1 (HRModel 1 = 1.11; 95% CI 1.03–1.19; P = 0.006) and model 2 (HRModel 2 = 1.17; 95% CI 1.07–1.28; P = 0.0007). Similarly, obesity (BMI ≥ 30 kg m⁻²) 5 years before diagnosis was associated with an increased risk for ovarian cancer-specific mortality after additionally adjusting for residual disease (HRModel 2 = 1.34; 95% CI 1.02–1.76; P = 0.04).

Analyses were stratified by histologic subtype to further investigate the associations of risk factors on distinct subtypes, although these analyses were limited by the small number of cases in the subgroups and we did not adjust for residual disease status. The impact of smoking on death was stronger for women with a mucinous tumour (HR = 2.52; 95% CI 1.01–6.33; P = 0.05) vs a serous (HR = 1.12; 95% CI 0.92–1.36; P = 0.28) or an endometrioid

Table 1. Baseline characteristics of study population by ovarian cancer-specific survival

Characteristic	Did not die of OC, n = 655	Died of OC, n = 655	P-value
Follow-up (years), mean (s.d.)	12.90 (5.38)	5.48 (3.58)	< 0.0001
Age at diagnosis, mean (s.d.)	54.86 (11.62)	59.84 (11.02)	< 0.0001
Tumour characteristics			
Histology, n (%)			< 0.0001
Serous	329 (43.0%)	454 (69.3%)	
Mucinous	90 (11.8%)	25 (3.8%)	
Endometrioid	218 (28.5%)	80 (12.2%)	
Clear cell	70 (9.1%)	25 (3.8%)	
Other	59 (7.7%)	71 (10.8%)	
Stage, n (%)			< 0.0001
I	225 (29.8%)	29 (4.6%)	
II	165 (21.8%)	82 (12.9%)	
III	297 (39.3%)	402 (63.0%)	
IV	69 (9.1%)	125 (19.6%)	
Residual disease, n (%)			< 0.0001
No residual disease	208 (28.5%)	92 (22.8%)	
Residual disease	221 (31.5%)	312 (77.2%)	

Table 2. Reproductive/hormonal factors

Reproductive/hormonal factors	Did not die of OC, n = 655	Died of OC, n = 655	P-value
Oral contraceptive use (ever), n (%)	438 (60.5%)	314 (52.3%)	0.003
Duration of oral contraceptive use (years), mean (s.d.)	2.96 (4.23)	2.62 (4.22)	0.18
Oestrogen HRT use, n (%)	162 (22.3%)	163 (27.3%)	0.04
Tamoxifen use (ever), n (%)	4 (1.5%)	4 (2.3%)	0.72
Infertility (female only), n (%)	29 (4.0%)	17 (2.9%)	0.39
Fertility treatment (ever), n (%)	22 (3.1%)	17 (2.8%)	0.82
Endometriosis, n (%)	39 (5.4%)	33 (5.6%)	0.93
Parity, mean (s.d.)^a	2.45 (1.26)	2.71 (1.42)	0.002
Age at first birth, mean (s.d.)^a	24.73 (4.87)	24.55 (4.76)	0.56
Breastfed (ever), n (%)	341 (58.8%)	275 (57.5%)	0.68
Duration of breastfeeding (months), mean (s.d.)	6.33 (11.78)	7.17 (13.57)	0.29
Age at menarche, mean (s.d.)	12.90 (1.52)	12.98 (1.58)	0.32
Age at natural menopause, mean (s.d.)	49.75 (4.10)	49.27 (4.02)	0.12
IUD use (ever), n (%)	111 (15.4%)	100 (16.8%)	0.50
Tubal ligation, n (%)	158 (21.8%)	151 (25.2%)	0.15
Number of ovulatory cycles, mean (s.d.)	379.90 (109.20)	396.1 (113.20)	0.03

Table 3. Lifestyle factors/family history characteristics

Lifestyle factors/family history characteristics	Did not die of OC, n = 655	Died of OC, n = 655	P-value
Smoking (ever), n (%)	333 (45.9%)	316 (52.7%)	0.01
BMI 5 years before diagnosis, mean (s.d.)	25.62 (5.28)	26.24 (5.72)	0.04
BRCA1/2 mutation, n (%)	75 (9.8%)	102 (15.6%)	0.001
First-degree relatives with early breast cancer, n (%)	138 (18.4%)	128 (20.2%)	0.39
First-degree relatives with ovarian cancer, n (%)	52 (6.9%)	52 (8.2%)	0.36

Abbreviations: BMI = body mass index; HRT = hormone replacement therapy; IUD = intrauterine device; OC = ovarian cancer.

^aFertility treatment included one or more of Clomid, Serophene, Pergonal, Metrodlin, Profasil, Lupron, Leuprolide, or other fertility medication.

^bAmong parous women only.

^cAge at first birth based on year of birth, not exact date because of data limitations.
Table 2. Association between reproductive and hormonal exposures and ovarian cancer-specific survival

Epidemiologic factors and ovarian cancer prognosis	OC deaths/HR model 1b OC deaths/HR model 2d	95% CI P-value	95% CI P-value	
Age at diagnosis	638/1394 1.25 1.17, 1.35 <0.0001	404/833 1.19	1.09, 1.31 0.0002	
Histology				
Serous	439/758 1.00 Ref.	Ref. 146/301 1.00 Ref.		
Mucinous	25/115 0.50 0.33, 0.76 0.001	20/67 1.26 0.90, 1.76 0.18		
Endometrioid	80/298 0.58 0.45, 0.75 <0.0001	45/164 1.16 0.66, 2.01 0.61		
Clear cell	24/94 0.62 0.41, 0.95 0.03	17/50 0.85 0.55, 1.32 0.48		
Other	70/129 0.87 0.67, 1.12 0.27	42/84 1.34 0.75, 2.40 0.33		
Stage				
I	29/254 1.00 Ref.	Ref. 18/173 1.00 Ref.		
II	82/247 2.82 1.84, 4.33 <0.0001	59/142 4.09 2.37, 7.04 <0.0001		
III	402/699 6.38 4.28, 9.51 <0.0001	288/455 8.73 5.18, 14.72 <0.0001		
IV	125/194 9.17 5.95, 14.13 <0.0001	39/63 11.44 6.23, 21.02 <0.0001		
Tumour characteristics				
Residual disease				
No	92/300 1.00 Ref.	Ref. 92/300 1.00 Ref.		
Yes	312/533 1.64 1.28, 2.11	0.0001	312/533 1.64 1.28, 2.11	0.0001
Reproductive/hormonal factors				
Age at menarche (years), continuous	585/1297 1.02 0.96, 1.07 0.58	369/762 1.04 0.97, 1.11 0.30		
Age at menarche (years) ≤12	219/489 1.00 Ref.	Ref. 146/301 1.00 Ref.		
13	179/409 0.97 0.79, 1.18 0.74	109/231 1.00 0.77, 1.29 0.98		
14	100/221 0.91 0.72, 1.16 0.44	60/123 1.03 0.83, 1.56 0.44		
>14	87/178 1.10 0.85, 1.41 0.47	54/107 1.13 0.83, 1.56 0.44		
Parity, continuous	465/1037 1.04 0.97, 1.11 0.26	289/611 1.04 0.95, 1.13 0.41		
Parity				
1	73/190 1.00 Ref.	Ref. 52/111 1.00 Ref.		
2	178/407 1.19 0.90, 1.56 0.22	108/244 0.92 0.66, 1.28 0.61		
3	214/440 1.13 0.86, 1.49 0.37	129/256 0.96 0.69, 1.34 0.82		
Parity, never/ever				
Nulliparous	99/218 1.00 Ref.	Ref. 64/126 1.00 Ref.		
Parous	487/1084 0.82 0.66, 1.02 0.07	305/638 0.71 0.54, 0.93 0.01		
Age at first birth (years), continuous	408/909 1.00 0.98, 1.02 0.94	250/520 1.01 0.98, 1.03 0.70		
Age at first birth				
<20	54/117 1.00 Ref.	Ref. 33/68 1.00 Ref.		
20–30	306/685 0.90 0.67, 1.20 0.45	187/387 0.96 0.66, 1.40 0.84		
30	48/107 0.99 0.67, 1.46 0.94	30/65 1.02 0.62, 1.68 0.94		
Breastfed				
Never	197/434 1.00 Ref.	Ref. 124/256 1.00 Ref.		
Ever	268/603 1.07 0.89, 1.28 0.49	165/355 0.96 0.76, 1.21 0.71		
Duration of breastfeeding (months), continuous	465/1037 1.00 1.00, 1.01 0.50	285/605 1.01 1.00, 1.01 0.27		
Duration of breastfeeding (months)				
0	192/427 1.00 Ref.	Ref. 121/252 1.00 Ref.		
1–6	122/286 1.03 0.82, 1.30 0.78	82/180 0.91 0.68, 1.20 0.50		
>6	144/313 1.11 0.90, 1.38 0.34	82/173 1.04 0.79, 1.38 0.77		
Oral contraceptive use				
Never	284/568 1.00 Ref.	Ref. 167/328 1.00 Ref.		
Ever	302/732 1.00 0.83, 1.20 0.99	203/437 1.16 0.92, 1.47 0.20		
Duration of oral contraceptive use (years), continuous	482/1096 1.00 0.98, 1.02 0.99	308/648 1.02 0.99, 1.04 0.27		
Duration of oral contraceptive use (years)				
0	268/570 1.00 Ref.	Ref. 164/336 1.00 Ref.		
1–5	119/307 1.00 0.80, 1.25 0.98	79/185 1.06 0.81, 1.41 0.66		
>5	96/219 1.08 0.84, 1.38 0.55	65/127 1.23 0.91, 1.67 0.18		
Oestrogen HRT				
Never	424/977 1.00 Ref.	Ref. 280/577 1.00 Ref.		
Ever	160/322 0.90 0.75, 1.09 0.28	89/187 0.79 0.62, 1.01 0.06		
Tamoxifen use				
Never	164/414 1.00 Ref.	Ref. 82/183 1.00 Ref.		
Ever	3/7 2.54 0.77, 8.38 0.13	3/4 3.57 0.99, 12.93 0.05		
Fertility treatment				
Never	570/1258 1.00 Ref.	Ref. 359/741 1.00 Ref.		
Ever	16/38 0.89 0.54, 1.47 0.64	11/20 1.24 0.67, 2.29 0.50		
Endometriosis				
No	551/1219 1.00 Ref.	Ref. 349/716 1.00 Ref.		
Yes	31/70 1.27 0.88, 1.83 0.21	17/38 1.10 0.67, 1.81 0.71		
important confounders, particularly residual disease status. The
on ovarian cancer-specific survival, and did not adjust for
evolution, and lifestyle factors for ovarian cancer. Many of the early
published literature on the prognostic associations of reproductive,
are associated with better prognosis, whereas higher BMI and a history of
smoking had a significant adverse effect. No other reproductive
factors associations varied by histologic subtype.

DISCUSSION

The goal of the current study was to evaluate associations between
reproductive, hormonal, and lifestyle factors before diagnosis of
epithelial ovarian cancer on survival among 1394 women. After
accounting for known clinical prognostic factors (i.e., age, tumour
histology, grade, and presence of residual disease), we observed
that parity and greater number of ovulatory cycles were associated
with better prognosis, whereas higher BMI and a history of
smoking had a significant adverse effect. No other reproductive
and hormonal factors were significantly associated with outcome,
although we observed a borderline decreased risk of death with use of
oestrogen-containing HRT. Some of the associations varied by
histologic subtype, although our stratified analyses were limited by
small numbers in the subgroups. Collectively, these findings
suggest that although various exposures may be associated with
ovarian cancer development (e.g., oral contraceptive use), the
majority of these have little impact on long-term ovarian cancer
outcomes.

Poole et al (2016) recently conducted an extensive review of the
published literature on the prognostic associations of reproductive,
and lifestyle factors for ovarian cancer. Many of the early
studies included small numbers of cases, did not have information
on ovarian cancer-specific survival, and did not adjust for
important confounders, particularly residual disease status. The
authors of the review concluded that overall the data were sparse,
and whereas reproductive or hormonal factors were likely not
strong predictors of outcome, body size was among the most
studied and represented a lifestyle factor that may favourably
influence prognosis. Since this review, one additional work
evaluated the association of reproductive and hormonal factors
on survival, in data from the New England Case-Control Study of
Ovarian Cancer that included prediagnostic information on 1649
ovarian cancer patients and 911 all-cause deaths and reported
improved survival for endometriosis and for HRT use (Shafrir et al,
2016).

In the current study, parity per se (but not increasing parity or
age at first birth) was associated with better prognosis in contrast
to most previous studies that have generally shown no significant
association between parity and survival (Besovic et al, 2015; Poole
et al, 2016; Shafrir et al, 2016). Recent observational studies have
shown that parity is associated with decreased risk of type I
tumours (i.e., low-grade subtypes; Fortner et al, 2015) as well as
with less aggressive subtypes (i.e., survived \(\geq 3 \) years; Poole et al,
2013). Thus, parity may be associated with the development of
less aggressive subtypes and, subsequently, better outcome. However,
because of our small sample size in stratified analyses, whether or
not parity has an association with survival after tumour
characteristics have been considered uncertain.

Although of borderline significance, we also observed a survival
benefit with ever use of oestrogen-containing HRT. We did not
have specific information on combined HRT regimens (i.e.,
oestrogen and progesterone). Eight published observational studies
have examined HRT use before diagnosis and survival. These
studies ranged in size from 72 to 1649 patients, with only 3 studies
adjusting for residual disease in their analysis (Poole et al, 2016;
Shafrir et al, 2016). Findings have been inconclusive. In the largest
of these studies, Shafrir et al (2016) reported a significant survival
advantage among women with \(\geq 5 \) years of HRT use before
diagnosis (HR for \(\geq 5 \) years vs never use = 0.79; 95% CI 0.55–0.90).
The authors did not distinguish between types of hormonal
preparations. In an analysis of the EPIC study (\(n = 1025 \) cases/511

Table 2. (Continued)
OC deaths/ \(n^a \)

Age at natural menopause (years, continuous)
≤ 47
> 47–50
> 50–52
> 52
Menopausal status at diagnosis
Premenopausal
Postmenopausal
Tubal ligation
Never
Ever
Number of ovulatory cycles
< 322.28
> 322.28–389.52
> 389.52–439.42
> 439.42

Abbreviations: CI = confidence interval; HR = hazard ratio; HRT = hormone replacement therapy; IUD = intrauterine device; OC = ovarian cancer; ref. = reference value.

*There was a total of \(n = 1394 \) in model 1 because 27 participants had missing information on tumour stage.

**Adjusted for age at diagnosis (continuous), histology (serous, mucinous, endometrioid, clear cell, other), and stage I, II, III, IV.

*There were a total of \(n = 833 \) in model 2 because 588 participants had missing information on residual disease after debulking surgery.

*Adjusted for model 1 and residual disease (no residual disease, any residual disease).

*Among parous women only.

(HR = 0.92; 95% CI 0.58–1.45; \(P = 0.71 \)) tumour. The interaction
was not statistically significant (\(P \)-interaction = 0.13). Increasing
BMI (per 5-unit increase) was associated with increased mortality
for women diagnosed with a serous (HR = 1.09; 95% CI 1.00–1.19;
\(P = 0.05 \)) and endometrioid (HR = 1.18; 95% CI 0.98–1.43;
\(P = 0.09 \)) tumour, but was not significantly associated with death
among women with a mucinous tumour (HR = 1.14; 95% CI 0.72–
1.81; \(P = 0.56 \)) (\(P \)-interaction = 0.02). None of the other risk
factors associations varied by histologic subtype.
Epidemiologic factors and ovarian cancer prognosis

HRT (HR for significant survival benefit among women with long-term use of ovulatory cycles and an inflated risk estimate (Moorman et al. (La Vecchia, 2016). In addition, we did not have information on use) have consistently been shown to reduce risk of ovarian cancer with increasing ovulatory years or cycles (Nagle 2002). Furthermore, others have generally shown no association or hormonal exposures and mortality (Poole et al., 2016; Shafrir et al., 2016). In line with the published literature to date, we found no significant associations between any of the other prediagnostic reproductive or hormonal exposures and mortality (Poole et al., 2016; Shafrir et al., 2016).

Smoking is a risk factor for mucinous ovarian cancer (Wentzensen et al., 2016). In the current study, we observed that women who reported a history of smoking (at least 100 cigarettes in their lifetime) had a significant 25% increased risk of ovarian cancer death compared with women who never smoked ($P = 0.04$). The effect was stronger among women diagnosed with a mucinous tumour. Five studies have reported on smoking and ovarian cancer survival (range 130–676 cases) (Poole et al., 2016). Collectively, the data suggest that recent or current smoking is associated with worse prognosis representing an important modifiable lifestyle factor that negatively affects outcome.

In the current study, increasing BMI was associated with a worse outcome, and the relationship was stronger among women with a serous or endometrioid tumour. These findings are in line with the majority of the published literature that have reported significant and adverse associations of adiposity with ovarian cancer prognosis (Poole et al., 2016), but the literature remains inconstant. Several reasons that may account for these discrepancies include small sample size, adjustment for important confounding factors such as residual disease, and the issue of assessing body size. Furthermore, our findings contrast our previous report of no association between body size and ovarian cancer survival within the same study population (Kotsopoulos et al., 2012). This latter discrepancy may be because of the shorter follow-up period in our earlier publication (7.4 vs 9.5 years).

Achieving no residual disease at surgical resection is likely the most important predictor of long-term survival (Chang et al., 2015). Among the patients in this study, we have recently published that women with no residual disease following primary debulking surgery experience significantly superior survival compared with patients with residual disease (Kotsopoulos et al., 2016). These observations support the notion that survival is optimised when residual disease is minimised through complete resection and chemotherapy (Narod, 2015).

The strengths and limitations of this study need to be considered. Despite the large number of unselected ovarian cancer patients, we were not sufficiently powered to conduct analyses stratified by histologic subtype for each exposure of interest. We did not consider comorbidities; however, we and others have shown that women with a diagnosis of ovarian cancer are likely to die of their disease. In our cohort, > 80% of deaths were attributed to ovarian cancer (Kotsopoulos et al., 2015).
In summary, our findings confirm that parity is associated with improved ovarian cancer survival, whereas BMI and smoking is associated with decreased survival. Whether or not postdiagnostic changes in exposures or lifestyle factors similarly affect survival is not known. Despite the well-described aetiologic roles of various hormonal and reproductive exposures on ovarian cancer risk, we observed no significant prognostic associations for the majority of these exposures. The findings from this study reiterate that once a woman is diagnosed with ovarian cancer, surgical debulking to achieve no residual disease likely has the most impact on her long-term survival.

ACKNOWLEDGEMENTS

Joanne Kotsopoulos is the recipient of a Cancer Care Ontario Research Chair in Population Studies and a Canadian Cancer Society Career Development Award in Prevention. Steven Narod is the recipient of a Canada Research Chair tier I. This study was supported by US National Institutes of Health Grants R01-CA063678 (Narod) and R01-CA063682 (Risch).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Allison P (1995) Survival Analysis using SAS: A Practical Guide. SAS Institute Inc.: Cary, NC, USA.

Barakat RR, Berchuck A, Markman M, Randall ME (2009) Principles and Practice of Gynecologic Oncology. Lippincott Williams and Wilkins: Baltimore, MD, USA.

Beral V, Doll R, Hermon C, Peto R, Reeves G (2008) Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23 257 women with ovarian cancer and 87 303 controls. Lancet 371: 303–314.

Besevic J, Gunter MJ, Fortner RT, Tsilidis KK, Weiderpass E, Onland-Moret NC, Barakat RR, Berchuck A, Markman M, Randall ME (2015) Reproductive factors and epithelial ovarian cancer survival in the EPIC cohort study. Br J Cancer 113: 1622–1631.

Chang SJ, Bristow RE (2012) Evolution of surgical treatment paradigms for advanced-stage ovarian cancer: redefining ‘optimal’ residual disease. Gynecol Oncol 125: 483–492.

Chang SJ, Bristow RE, Chi DS, Cliby WA (2015) Role of aggressive surgical cytoreduction in advanced ovarian cancer. J Gynecol Oncol 26: 336–342.

Collaborative Group on Epidemiological Studies of Ovarian Cancer Berdal V, Gaiteskell K, Hermon C, Moser K, Reeves G, Peto R (2015) Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet 385: 1833–1842.

Cramer DW, Welch WR, Scully RE, Wojtczokski CA (1982) Ovarian cancer and talc: a case-control study. Cancer 50: 372–376.

Cramer DW, Xu H (1995) Epidemiologic evidence for uterine growth factors in the pathogenesis of ovarian cancer. Ann Epidemiol 5: 310–314.

Danforth KN, Tworoger SS, Hecht JL, Rosner BA, Colditz GA, Hankinson SE (2007) A prospective study of postmenopausal hormone use and ovarian cancer risk. Br J Cancer 96: 151–156.

du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J (2009) Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer 115: 1234–1244.

Fathalla MF (1971) Incessant ovulation—a factor in ovarian neoplasia? Lancet 2: 163.

Fleming JS, Beauchie CR, Haviv I, Chenevix-Trench G, Tan OI (2006) Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol Cell Endocrinol 247: 4–21.

Fortner RT, Ose J, Merritt MA, Schock H, Tjonneland A, Hansen L, Overvad K, Dossus L, Clavel-Chapelon F, Baglietto L, Boeing H, Trichopoulou A, Benetu V, Lagiou P, Agnoli C, Mattiello A, Masala G, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Onland-Moret NC, Peeters PH, Weiderpass E, Torhild Grav I, Duell EJ, Larrañaga N, Ardanza E, Sanchez MJ, Chirlaque MD, Brandstedt J, Ihdal A, Lundin E, Wareham NJ, Khaw KT, Travis RC, Rinaldi S, Romieu I, Riboli E, Verdecchia MA (2015) Reproductive factors and epithelial ovarian cancer survival in the EPIC cohort study. Br J Cancer 113: 1622–1631.
Ness RB, Grasso JA, Cottreau C, Klapner J, Vergona R, Wheeler JE, Morgan M, Schlesselman JJ (2000) Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer. *Epidemiology* 11: 111–117.

Pearce C, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, Nagle CM, Doherty JA, Cushing-Haugen KL, Wicklund KG, Chang-Claude J, Hein R, Lurie G, Wilkens LR, Carney ME, Goodman MT, Moysich K, Kjaer SK, Hogdall E, Jensen A, Goode EL, Fridley BL, Larson MC, Schildkraut JM, Palmieri RT, Craver DM, Terry KL, Vitonis AF, Titus LJ, Ziegas A, Brewster W, Anton-Culver H, Gentry-Maharaj A, Ramus SJ, Anderson AR, Brueggmann D, Fasching PA, Gayther SA, Huntsman DG, Menon U, Ness RB, Pike MC, Risch H, Wu AH, Berchuck A (2012) Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. *Lancet Oncol* 13: 385–394.

Poole EM, Konstantinopoulos PA, Terry KL (2016) Prognostic implications of reproductive and lifestyle factors in ovarian cancer. *Gynecol Oncol* 142: 574–587.

Poole EM, Merritt MA, Jordan SJ, Yang HP, Hankinson SE, Park Y, Rosner BA, Webb PM, Craver DM, Wentzensen N, Terry KL, Tworoger SS (2013) Hormonal and reproductive risk factors for epithelial ovarian cancer by tumor aggressiveness. *Cancer Epidemiol Biomarkers Prev* 22: 429–437.

Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC (1990) Validity of self-reported waist and hip circumferences in men and women. *Epidemiology* 1: 466–473.

Risch HA (1998) Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. [comment]. *J Natl Cancer Inst* 90: 1774–1786.

Robbins CL, Whiteman MK, Hillis SD, Curtis KM, Mcdonald IA, Wingo PA, Kulkarni A, Marchbanks PA (2009) Influence of reproductive factors on mortality after epithelial ovarian cancer diagnosis. *Cancer Epidemiol Biomarkers Prev* 18: 2035–2041.

Shafrir AL, Babic A, Tamimi RM, Rosner BA, Tworoger SS, Terry KL (2016) Reproductive and hormonal factors in relation to survival and platinum resistance among ovarian cancer cases. *Br J Cancer* 115: 1391–1399.

Shan W, Liu J (2009) Inflammation: a hidden path to breaking the spell of ovarian cancer. *Cell Cycle* 8: 3107–3111.

Sopik V, Iqbal J, Rosen B, Narod SA (2015) Why have ovarian cancer mortality rates declined? Part II. Case-fatality. *Gynecol Oncol* 138: 750–756.

Terry KL, Karageorgi S, Sopik V, Iqbal J, Narod SA, Thabert B, Ness RB, Lo-Ciganic WH, Murphy MA, Goode EL, Poole EM, Brinton LA, Webb PM, Nagle CM, Jordan SJ. Australian Ovarian Cancer Study Group, Australian Cancer Study (Ovarian Cancer)Risch HA, Rossing MA, Doherty JA, Goodman MT, Lurie G, Kjaer SK, Hogdall E, Jensen A, Cramer DW, Terry KL, Vitonis A, Bandera EV, Olson S, King MG, Chandran U, Anton-Culver H, Ziegas A, Menon U, Gayther SA, Ramus SJ, Gentry-Maharaj A, Wu AH, Pearce CL, Pike MC, Berchuck A, Schildkraut JM, Wentzensen N. Ovarian Cancer Association Consortium (2014) Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the Ovarian Cancer Association Consortium *J Natl Cancer Inst* 106: djt431.

Wentzensen N, Poole EM, Trabert B, White E, Arslan AA, Patel AV, Setiawan VW, Visvanathan K, Weiderpass E, Adami HO, Black A, Bernstein L, Brinton LA, Buring J, Butler LM, Chlebowski R, Cramer DW, Wentzensen N, Terry KL, Vitonis A, Bandera EV, Olson S, King MG, Chandran U, Anton-Culver H, Ziegas A, Menon U, Gayther SA, Ramus SJ, Gentry-Maharaj A, Wu AH, Pearce CL, Pike MC, Berchuck A, Schildkraut JM, Wentzensen N. Ovarian Cancer Association Consortium (2014) Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the Ovarian Cancer Association Consortium *J Clin Oncol* 34: 2888–2898.

Whitemore AS, Harris R, Itnyre J (1992) Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. IV. The pathogenesis of epithelial ovarian cancer. Collaborative Ovarian Cancer Group. *Am J Epidemiol* 136: 1212–1220.

Zhang S, Rooyer R, Li S, McLaughlin JR, Rosen B, Risch HA, Fan I, Bradley L, Shaw PA, Narod SA (2011) Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. *Gynecol Oncol* 121: 353–357.

Zhou B, Sun Q, Cong R, Gu H, Tang N, Yang L, Wang B (2008) Hormone replacement therapy and ovarian cancer risk: a meta-analysis. *Gynecol Oncol* 108: 641–651.

Zhou Y, Chlebowski R, Lamont MJ, Bea JW, Qi L, Wallace R, Lavasani S, Walsh BW, Anderson G, Vitolins M, Sarto G, Irwin ML (2014) Body mass index, physical activity, and mortality in women diagnosed with ovarian cancer: results from the Women's Health Initiative. *Gynecol Oncol* 133: 4–10.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.