Ultrassonografia axilar e punção aspirativa por agulha fina no estadiamento linfonodal axilar pré-operatório em pacientes com câncer de mama invasivo*

Axillary ultrasound and fine-needle aspiration in preoperative staging of axillary lymph nodes in patients with invasive breast cancer

Rafael Dahmer Rocha1, André Ricardo Girardi2, Renata Reis Pinto3, Viviane Aguilera Rolim de Freitas4

Resumo

Objetivo: Propor um algoritmo de quando a punção aspirativa por agulha fina guiada por ultrassonografia (PAAF-US) deve ser utilizada no estadiamento linfonodal axilar pré-operatório em pacientes com câncer de mama invasivo.

Materiais e Métodos: Estudo prospectivo conduzido no Instituto Nacional de Cancer. Participaram da amostra 100 pacientes do sexo feminino portadoras de câncer de mama que foram direcionadas para estadiamento axilar por meio de PAAF-US.

Resultados: A sensibilidade geral da PAAF-US foi estabelecida em 79,4%. O valor preditivo positivo foi calculado em 100% e o valor preditivo negativo, em 69,5%. A sensibilidade da PAAF-US para linfonodos com características ultrassonográficas normais foi 0%, ao passo que para os indeterminados foi 80% e para os suspeitos foi 90,5%. Na avaliação de tumores de mama invasivos estádios T1, T2 e T3, as sensibilidades foram 69,6%, 83,7% e 100%, respectivamente. A realização da PAAF-US conseguiu evitar a biópsia do linfonodo sentinel em 54% dos casos.

Conclusão: A ultrassonografia axilar deve estar inclusa no estadiamento pré-operatório de todas as pacientes com câncer de mama invasivo. A adição da PAAF-US nos linfonodos com características morfológicas suspeitas de malignidade pode evitar mais de 50% das linfadenectomias sentinelas, proporcionando abreviação importante do intervalo de tempo até a terapêutica definitiva.

Unitermos: Ultrassonografia; Punção aspirativa por agulha fina; Linfonodo axilar; Câncer de mama.

Abstract

Objective: To propose an algorithm to determine the necessity for ultrasonography-guided fine-needle aspiration (US-FNA) in preoperative axillary lymph node staging of patients with invasive breast cancer.

Materials and Methods: Prospective study developed at National Cancer Institute. The study sample included 100 female patients with breast cancer referred for axillary staging by US-FNA.

Results: The overall US-FNA sensitivity was set at 79.4%. The positive predictive value was calculated to be 100%, and the negative predictive value, 69.5%. The US-FNA sensitivity for lymph nodes with normal sonographic features was 0%, while for indeterminate lymph nodes it was 80% and, for suspicious lymph nodes, 90,5%. In the assessment of invasive breast tumors stages T1, T2 and T3, the sensitivity was respectively 69.6%, 83.7% and 100%. US-FNA could avoid sentinel node biopsy in 54% of cases.

Conclusion: Axillary ultrasonography should be included in the preoperative staging of all patients with invasive breast cancer. The addition of US-FNA in cases of lymph nodes suspicious for malignancy may prevent more than 50% of sentinel lymphadenectomies, significantly shortening the time interval to definitive therapy.

Keywords: Ultrasound; Fine-needle aspiration; Axillary lymph node; Breast cancer.

INTRODUÇÃO

A neoplasia maligna da mama é a principal causa de morte por câncer em mulheres no mundo. O advento de novas técnicas possibilitou o diagnóstico de lesões em fases precoces e tratamentos mais conservadores. Atualmente, o diagnóstico histopatológico do câncer de mama é realizado de forma mínimamente invasiva, sempre que possível por meio de biópsias percutâneas guiadas por imagens1. A avaliação do estadiamento linfonodal axilar, por sua vez, constitui um dos indicadores prognósticos mais relevantes em pacientes com câncer de mama(2–8), visto que a axila é receptora de aproximadamente 95% da drenagem linfática mamária(9,10).

1. Médico Radiologista, Aperfeiçoando em Radiologia Intervencionista no Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.
2. Médico Radiologista, Aperfeiçoando em Radiologia Geral na Med Imagem – Real e Benemérita Sociedade Portuguesa de Beneficência, São Paulo, SP, Brasil.
3. Médica Mastologista do Hospital do Câncer III – Instituto Nacional de Câncer/Ministério da Saúde (INCA/MS), Rio de Janeiro, RJ, Brasil.
4. Médica Radiologista do Hospital do Câncer III – Instituto Nacional de Câncer/Ministério da Saúde (INCA/MS), Rio de Janeiro, RJ, Brasil.

Recebido para publicação em 17/11/2014. Aceito, após revisão, em 23/4/2015.

Endereço para correspondência: Dr. Rafael Dahmer Rocha, Rua Nelson Gama de Oliveira, 739, ap. 62A, Vila Andrade. São Paulo, SP, Brasil, 05734-150. E-mail: rafaeldrocha@gmail.com.
considerado, há muitos anos, o método “padrão ouro” no diagnóstico e tratamento das metástases linfonodais.

Na última década, outros procedimentos têm sido empregados na predição da positividade linfonodal axilar, como, por exemplo, a biópsia do linfonodo sentinel e a punção aspirativa por agulha fina guiada por ultrassonografia (PAAF-US). Primeiramente praticada por Krag et al. em 1993, a técnica de biópsia do linfonodo sentinel mostrou-se equivalente ao esvaziamento axilar, com expressiva redução dos índices de morbidade. A linfadenectomia sentinel, embora esteja associada a uma menor morbidade do que o esvaziamento axilar, é um procedimento igualmente invasivo, moroso e com possíveis complicações. Por outro lado, a PAAF-US surge como uma opção de rápida execução, com índices muito baixos de complicações. Em casos de pacientes com resultados positivos na PAAF-US, a biópsia do linfonodo sentinel pode ser omitida e a paciente pode ser encaminhada diretamente para esvaziamento axilar ou, ainda, para quimioterapia (QT) neoadjuvante.

Apesar das potenciais vantagens da PAAF-US sobre a linfadenectomia sentinel, algumas instituições não têm adotado a PAAF-US de forma rotineira para o estadiamento axilar inicial em câncer de mama. Alguns autores a recomendam apenas em tumores primários maiores que 1,0 cm. Uma justificativa alegada é que os sinais de comprometimento linfonodal axilar em tumores primários de mama invasivos de tamanhos inferiores a 1,0 cm seriam menos definidos.

O objetivo do presente estudo é propor um algoritmo de quando a PAAF-US deve ser utilizada no estadiamento linfonodal axilar pré-operatório em pacientes com câncer de mama invasivo.

MATERIAIS E MÉTODOS

Desenho do estudo

Após aprovação do Comitê de Ética, o estudo foi conduzido no Serviço de Radiologia Mamária do Hospital do Câncer III – Instituto Nacional de Câncer (INCA). Participaram da amostra pacientes do sexo feminino portadoras de câncer de mama invasivo confirmado por exame histopatológico – seja mediante biópsia percutânea ou rotineira para o estadiamento axilar inicial em câncer de mama.

As pacientes foram encaminhadas por médicos mastologistas e radiologistas da referida instituição, nas situações em que havia dúvida de comprometimento linfonodal no exame clínico (linfonodos aumentados, mas não aderidos), ou então, presença de alteração morfológica linfonodal suspeita em algum exame de imagem – mamografia, US ou ressonância magnética.

Os seguintes critérios foram utilizados para exclusão da amostra: tumores multifocais ou multicêntricos; pacientes com antecedentes de tratamento cirúrgico, quimioterápico ou radioterápico para o respectivo câncer; pacientes que não foram submetidas a avaliação cirúrgica posteriormente (linfadenectomia sentinel ou esvaziamento axilar); e pacientes cuja análise citopatológica sugeriu metástase linfonodal de subtipo histopatológico diferente do mamário.

No período de janeiro de 2011 a agosto de 2013, foram selecionadas, prospectivamente, as 100 primeiras pacientes que preencheram os critérios supramencionados. Todas as pacientes foram submetidas à avaliação ultrassonográfica da axila ipsilateral ao câncer, com caracterização morfológica dos linfonodos e realização da PAAF em um mesmo momento.

Os resultados citopatológicos foram comparados aos dos histopatológicos, obtidos por avaliação da linfadenectomia sentinel ou do esvaziamento axilar, considerados como “padrão ouro”. As pacientes com resultados citopatológicos negativos ou insuficientes submeteram-se, primeiramente, à linfadenectomia sentinel, por meio de injeção periapopilar de radiofármaco. As pacientes com citopatologia positiva prosseguiriam diretamente para o esvaziamento axilar ou QT neoadjuvante. As análises citopatológicas foram realizadas por três médicos patologistas com ao menos cinco anos de experiência.

Seleção e caracterização do linfonodo à US

As PAAF-USs foram realizadas por dois dos autores (R.D.R. e R.R.P.) com ao menos dois anos de experiência neste procedimento. Utilizando-se transdutor linear de alta frequência (11 MHz) e aparelho GE Logic E9, procurou-se identificar os linfonodos com alterações morfológicas, e assim o aspirado era obtido de apenas um deles, de acordo com os seguintes critérios decrescentes de suspeição: a) linfonodo com hilo ausente; b) linfonodo com espessamento cortical ≥ 3 mm e hilo excêntrico (periférico); c) linfonodo com qualquer área de espessamento cortical ≥ 3 mm e hilo central. A espessura do córtex linfonodal era sempre mensurada em sua porção mais espessa. Os linfonodos “a” e “b” foram categorizados como suspeitos, enquanto os linfonodos “c” foram categorizados como indeterminados. Na ausência das alteração morfológicas supracitadas, a PAAF-US era realizada do linfonodo morfológicamente normal identificado ao nível axilar mais inferior. Nas Figuras 1 e 2 exemplificam-se alguns linfonodos de cada categoria da classificação morfológica ultrassonográfica utilizada.

Procedimento da PAAF

Inicialmente, explicava-se à paciente o motivo e a técnica do procedimento, os riscos e benefícios, a existência de técnicas opcionais, e então era obtido o consentimento informado. Prosseguia-se com a antissepsia da região axilar e anestesia da pele com cerca de 3 mL de lidocaína a 2%. A punção era realizada com agulha de 21-gauge conectada a uma seringa de 10 mL. Para a obtenção do material citológico, movia-se a agulha em várias direções (em leque), mantendo...
Figura 1. Cortes ultrassonográficos demonstrando alguns linfonodos classificados morfologicamente como normais (A–C) e indeterminados (D–I). Linfonodos normais apresentam, caracteristicamente, hilo gorduroso central (asterisco) e espessura cortical ≤ 3 mm difusamente. Os linfonodos indeterminados apresentam hilo central, porém alguma área com espessura cortical > 3 mm (entre setas). Os linfonodos A–C tiveram resultados histopatológicos negativos, enquanto os linfonodos D–I foram positivos.

Figura 2. Cortes ultrassonográficos demonstrando alguns linfonodos classificados morfologicamente como suspeitos. Os linfonodos A–D apresentam espessamento cortical acentuado, determinando substituição e marginalização do hilo gorduroso (asteriscos). Em casos mais avançados alguns linfonodos podem apresentar ausência total de seu hilo (E,F).
um vácuo que era desfeito antes da remoção da agulha. Nos linfonodos com espessamento cortical focal buscou-se fazer o aspirado, preferencialmente, da região alterada (Figura 1G). Uma imagem ultrassonográfica era adquirida mostrando a ponta da agulha dentro do alvo (Figura 2F). Obtinham-se aspirados suficientes para confeccionar duas lâminas, as quais eram fixadas com etanol 95,6%, sendo posteriormente encaminhadas para análise citológica.

Análises estatísticas

Para os procedimentos de PAAF-US, assim como para a US axilar isolada, foram calculadas as taxas de sensibilidade, especificidade, valor preditivo positivo, valor preditivo negativo e acurácia. Avaliaram-se, ainda, as sensibilidades da PAAF-US de acordo com a morfologia linfonodal à US axilar e com o tamanho do tumor primário (estágio T). Os fatores associados ao comprometimento linfonodal axilar e ao aumento da sensibilidade da PAAF-US também foram estimados. Finalmente, foi estabelecida a porcentagem de linfadenectomias sentinelas evitadas nas pacientes da amostra. O programa utilizado para tais análises foi o Epi Info 7®.

Na estimativa das variáveis de risco associadas a positividade linfonodal axilar e sensibilidade da PAAF-US, os seguintes fatores foram considerados para análise de regressão logística univariada: idade; hilo ausente ou excêntrico; espessamento cortical > 3 mm; estádio ≥ T2; diâmetro longitudinal ≥ 2,0 cm; diâmetro transverso ≥ 1,0 cm; relação diâmetro longitudinal/transverso < 1,5; positividade do receptor de estrogênio; positividade do receptor de progesterona; positividade do receptor de progesterona; positividade do receptorHer-2. Em seguida, apenas as variáveis com valores de p < 0,1 foram incluídas na análise multivariada. A estimativa de risco das variáveis foi expressa em odds ratio (OR), com intervalo de confiança de 95% (IC 95%). O valor de p < 0,05 foi considerado como estatisticamente significante.

RESULTADOS

Os dados demográficos e as características tumorais da amostra estão explanados na Tabela 1. A idade média das pacientes foi 53,7 anos (intervalo de 27 a 86). O carcinoma ductal foi o tipo histológico mais prevalente, identificado em 80% dos casos. A medida tumoral mais frequente, estabelecida por revisão das imagens mamográficas ou aferição ultrassonográfica no mesmo tempo da PAAF-US, foi entre 2,0 e 5,0 cm (estágio T2). Somente 3% das pacientes apresentaram tumores maiores que 5,0 cm (T3). Excluídas as pacientes que foram submetidas a QT neoadjuvante, a média de tempo entre a PAAF-US e a cirurgia foi 65 dias (intervalo de 18 a 185).

Desempenho da PAAF-US e sua correlação com as características morfológicas dos linfonodos e tamanho do tumor primário

A positividade tumoral histopatológica dos linfonodos da amostra foi 68%. Em 18 casos (29% das axilas compro-

Tabela 1—Dados demográficos e características tumorais de 100 pacientes submetidas a PAAF-US.

Características	Porcentagem de pacientes
Idade média (variação da idade)	53,7 anos (27–86 anos)
Lateralidade do câncer	
Mama esquerda	58%
Mama direita	42%
Tipo histológico tumor	
Ductal	80%
Lobular	3%
Misto	9%
Outros	8%
Estágio T radiológico	
T1	37%
T2	60%
T3	3%
Estágio T patológico	
T0 (não identificado)	6%
T1	41%
T2	49%
T3	4%
Estágio N patológico	
0	38%
1	30%
2	17%
3	15%
Quimioterapia neo-adjuvante	14%
Positividade do receptor de estrogênio	80%
Positividade do receptor de progesterona	71%
Positividade do receptor Her-2	15%

metidas) havia apenas 1 linfonodo com resultado positivo no esvaziamento axilar. O fluxograma das pacientes submetidas à PAAF-US está representado na Figura 3.

Os resultados da PAAF-US foram considerados positivos em 54 pacientes (54%), negativos em 38 (38%) e insuficientes em 8 (8%). Para fins estatísticos, as amostras insuficientes foram agrupadas às negativas, visto que não evitaram a abordagem da linfadenectomia sentinel.

A sensibilidade total da PAAF-US na amostra foi estabelecida em 79,4% (54/68). A sensibilidade da PAAF-US para linfonodos considerados normais foi 0% (0/6), ao passo que para os indeterminados foi 80% (16/20) e para os suspeitos foi 90,5% (38/42). Na Tabela 2 pode-se observar a sensibilidade da PAAF-US de acordo com as características morfológicas linfonodais e o tamanho do tumor primário (estágio T da classificação TNM). Quando considerados os linfonodos indeterminados e suspeitos em um mesmo grupo (“alterados”), a sensibilidade da PAAF-US foi calculada em 87,1% (54/62).

Não foi identificado nenhum resultado falso-positivo da PAAF-US, caracterizando a taxa de especificidade e o valor preditivo positivo em 100%. Por outro lado, a PAAF-US demonstrou 14 resultados falso-negativos, determinando um valor preditivo negativo de 69,5%. Destes, 10 pacientes (71,4%) apresentavam apenas de 1 a 3 linfonodos comprometidos (estadiamento linfonodal N1a). Pôde-se observar, ainda, que em 5 casos (35,7%) houve unicamente microme-
tástases linfonodais (< 2 mm). A acurácia da PAAF-US foi avaliada em 86%.

A QT neoadjuvante foi instituída em 14 (25,9%) das 54 pacientes com resultados citopatológicos positivos. Não foi realizada nenhuma QT neoadjuvante em pacientes com PAAF negativa. Dez pacientes (71,4%) tiveram laudos histopatológicos relatando linfonodos com sinais de resposta à QT (fibrose, esclerose, hialinização, infiltrado linfoplasmocitário), dos quais 6 (42,8%) foram considerados como resposta completa, ou seja, sem evidência de comprometimento tumoral. Observou-se também que a QT neoadjuvante foi eficiente em regredir o estadiamento tumoral (T) em 64,2% dos casos (9/14), com duas respostas completas. Todos os 6 casos com resposta linfonodal completa à QT neoadjuvante apresentaram ótima resposta na lesão primária.

Os valores da sensibilidade da PAAF-US em tumores com estadiamento T1, T2 e T3 foram 69,6%, 83,7% e 100%, respectivamente.

Fatores associados a malignidade e aumento da sensibilidade da PAAF-US

Na regressão logística e análise multivariada, os seguintes fatores de risco estiveram associados ao comprometimento linfonodal: presença de espessamento cortical > 3 mm (OR = 3,9; IC 95%: 1,13–13,3; p = 0,03); hilo ausente ou excêntrico (OR = 9,23; IC 95%: 1,76–48,3; p = 0,008). O diâmetro transverso ≥ 1,0 cm foi o único fator associado a um aumento da sensibilidade da PAAF-US na amostra (OR = 5,68; IC 95%: 1,08–29,8; p = 0,04).

Figura 3. Fluxograma das pacientes submetidas à ultrassonografia axilar e punção aspirativa por agulha fina (PAAF) linfonodal, de acordo com sua caracterização morfológica e correlação com resultado histopatológico (HP).

Tabela 2—Sensibilidade da PAAF-US de acordo com as características morfológicas linfonodais e o tamanho do tumor primário.

Linfonodos	T1a	T1b	T1c	T1	T2	T3	Total
Normais	0%	0%	0%	0%	0%	—	0%
Indeterminados	100%	0%	66,6%	75,0%	78,6%	100%	80,0%
Suspeitos	50%	100%	100%	92,8%	89,2%	—	90,5%
Total	66,6%	100%	66,6%	69,6%	83,7%	100%	79,4%

Rocha RD et al. / US e PAAF de linfonodo axilar no câncer de mama invasivo
US axilar isolada

A sensibilidade da US axilar isolada foi 91,2% (62/68), apresentando valor preditivo positivo de 80,5% (62/77). A especificidade foi 53,1% (17/32) e o valor preditivo negativo foi 73,9% (17/23). A acurácia da US axilar isolada foi avaliada em 79% (79/100).

Linfonodos sentinelas evitados

A realização da PAAF-US conseguiu evitar a biópsia do linfonodo sentinel em 54% das pacientes da amostra. Ao serem analisadas apenas as funções aspirativas de pacientes com linfonodos alterados (suspeitos ou indeterminados), possibilitou-se evitar a avaliação dos linfonodos sentinelas em 70,1% das vezes (54/77).

DISCUSSÃO

A literatura radiológica brasileira vem, recentemente, mostrando interesse na avaliação ultrassonográfica dos linfonodos axilares(16), bem como em estabelecer se o método da PAAF é eficaz em predizer o acometimento linfonodal em pacientes com câncer de mama(19). Embora a utilização da US axilar associada à PAAF seja capaz de evitar grande parcela das biópsias de linfonodos sentinelas, ainda não há consenso de quando ela deve ser indicada. Entre os principais questionamentos sobre o tema destaca-se a dificuldade em se definir se a US axilar deve ser realizada em todas as pacientes com tumor mamário invasivo ou se há um tamanho tumoral mínimo para sua recomendação. Muitos autores apoiam a utilização da US axilar para todas as pacientes com câncer de mama, independentemente do tamanho tumoral(4,20–23). Por outro lado, Mainiero et al.(13) e de Kanter et al.(24) recomendam a US axilar apenas para tumores maiores que 1,0 cm.

O presente estudo mostrou que a sensibilidade da PAAF-US aumentou de forma diretamente proporcional ao tamanho do tumor primário, em concordância com o demonstrado por Koelliker et al.(4), Mainiero et al.(13) e Somasundar et al.(16). A taxa de positividade linfonodal encontrada em pacientes com tumores estádio T1 (< 2,0 cm) foi 62,1%, enquanto para os subgrupos T1a e T1b (< 1,0 cm) foi 35,7%. Observou-se também que 71,5% das pacientes com tumores menores que 1,0 cm apresentavam linfonodos morfologicamente alterados, sendo a sensibilidade da PAAF-US calculada em 80% neste subgrupo. Ainda que apenas 10–30% das pacientes com tumores menores que 2,0 cm apresentem envolvimento axilar(25–27), os resultados acima constatados sugerem que os fatores mais importantes para a previsão de malignidade e positividade da PAAF-US são as alterações morfológicas linfonodais, independentemente do tamanho do tumor primário. É necessário um estudo de amostragem maior nesta população (estádio T1), uma vez que vem sendo discutida a necessidade de esvaziamento axilar em pacientes com carcinoma invasivo mesmo quando a linfadenectomia sentinel é positiva neste subgrupo específico(28).

Outra indagação envolve se a PAAF-US deve ser feita em todos os linfonodos, invariavelmente se apresentarem alterações morfológicas ou não. Alguns autores recomendam a utilização da PAAF-US de forma rotineira na abordagem inicial(20,29). No presente estudo não se obteve nenhum resultado de PAAF-US positiva em linfonodos morfologicamente normais. Constatou-se, ainda, que em 6 dos 14 resultados falso-negativos não havia nenhum linfonodo morfologicamente alterado na US. Encontraram-se, unicamente, micrometástases linfonodais em 35,7% dos casos falso-negativos, taxa semelhante à de outros estudos(4,7,10,20,30).

Ao se avaliav os possíveis preditores de malignidade, constatou-se que os achados ultrassonográficos demonstrando espressamento cortical maior que 3 mm (especialmente ≥ 6 mm) e alteração no hilo gorduroso apresentaram forte associação com malignidade, em concordância com outros trabalhos(4,21,31). Segundo Deurloo et al.(21) e Mainiero(32), o espressamento cortical focal maior que 3 mm é o melhor indicador de malignidade. A ausência de hilo gorduroso parece ser o fator preditivo mais específico para malignidade, embora seja um achado tardio(6,32). Na presente amostra, em 23 casos de linfonodos com hilo ausente, apenas 1 mostrou-se negativo na histologia (valor preditivo positivo de 95,6%), o qual sugeriu o diagnóstico de histoplasmose.

Outros fatores preditivos de malignidade já foram descritos por alguns autores, como a hipoecogenicidade do córtex e a ausência de fluxo central no linfonodo com a utilização do Doppler(4), fatores estes não avaliados no presente estudo. A lobulação ou assimetria hipoecogênica do córtex mesmo quando menor que 3 mm, também já foi citado como sinal precoce de malignidade(13,33), ainda que não tenha sido identificada em nenhum dos 100 casos do estudo. Por outro lado, o tamanho linfonodal também não tem provado ser um critério útil para distinguir linfonodos normais dos anormais(4,7,9,24,33). Entretanto, a avaliação preliminar deste estudo mostrou que o diâmetro transverso linfonodal ≥ 1 cm foi o único fator que apontou aumentar a sensibilidade da PAAF-US. Provavelmente, estes resultados refletem o fato de que em linfonodos comprometidos de menores tamanhos houve maior dificuldade em se realizar a PAAF-US da região alterada, ou então, as alterações eram tão precoces que não determinavam distorção da morfologia tumoral.

Uma limitação do presente estudo foi a forma de seleção das pacientes submetidas à PAAF-US, visto que foram incluídas apenas as com alguma suspeita clínica ou radiológica de comprometimento axilar. A forma adotada de seleção das pacientes pode ter sido responsável pelas altas taxas de prevalência de malignidade tumoral axilar (68%). Apenas disso, não acreditamos que a inclusão de pacientes sem suspeita clínica ou radiológica possa alterar a sensibilidade da PAAF-US, uma vez que o presente estudo sugere que apenas linfonodos alterados devem ser submetidos à avaliação citopatológica.

CONCLUSÃO

A decisão sobre quais pacientes devem realizar US axilar ainda permanece indefinida. As alterações morfológicas
linfonodais são um dos principais fatores preditores de malignidade, sendo a US o método preferível para sua avaliação, em virtude do baixo custo, fácil acessibilidade e boa reprodutibilidade. Diante dos resultados encontrados, propõe-se que a US axilar deve estar inclusa no estadiamento pré-operatório de todas as pacientes com câncer de mama invasivo e que sejam candidatas a biópsia do linfonodo sentinel, independentemente do tamanho tumoral e da avaliação clínica da axila. Dessa forma, possibilita-se otimizar a detecção de envolvimento axilar tumoral. Para maximizar a positividade da PAAF-US, aconselha-se realizá-la somente nas pacientes com linfonodos morfologicamente alterados.

A Figura 4 mostra um algoritmo recomendado pelos autores deste estudo. Os resultados confirmam que a adição da PAAF à US em um mesmo tempo pode evitar mais de 50% das linfadenectomias sentinelas, com mínima incidência de complicações e, muito provavelmente, redução importante no custo e no intervalo de tempo até a adoção da terapêutica definitiva.

REFERÊNCIAS

1. Rocha RD, Pinto RR, Tavares DPBA, et al. Step-by-step of ultrasound-guided core-needle biopsy of the breast: review and technique. Radiol Bras. 2013;46:234–41.
2. Purushotham AD, Upponi S, Klevesath MB, et al. Morbidity after sentinel lymph node biopsy in primary breast cancer: results from a randomized controlled trial. J Clin Oncol. 2005;23:4312–21.
3. Cox CE, Salud CJ, Cantor A, et al. Learning curves for breast cancer sentinel lymph node mapping based on surgical volume analysis. J Am Coll Surg. 2001;193:593–600.
4. Koelliker SL, Chung MA, Mainiero MB, et al. Axillary lymph nodes: US-guided fine-needle aspiration for initial staging of breast cancer – correlation with primary tumor size. Radiology. 2008;246:81–9.
5. Alvarez S, Añorbe E, Alcorta P, et al. Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. AJR Am J Roentgenol. 2006;186:1342–8.
6. Moore A, Hester M, Nam MW, et al. Distinct lymph nodal sonographic characteristics in breast cancer patients at high risk for axillary metastases correlate with the final axillary stage. Br J Radiol. 2008;81:630–6.
7. Krishnamurthy S, Sniege N, Bedi DG, et al. Role of ultrasound-guided fine-needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma. Cancer. 2002;95:982–8.
8. Holwitt DM, Swatske ME, Gillanders WE, et al. Scientific Presentation Award: The combination of axillary ultrasound and ultrasound-guided biopsy is an accurate predictor of axillary stage in clinically node-negative breast cancer patients. Am J Surg. 2008;196:477–82.
9. Jung J, Park H, Park J, et al. Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer. ANZ J Surg. 2010;80:271–5.
10. Gillissen F, Oostenbroek R, Storm R, et al. Prevention of futile sentinel node procedures in breast cancer: ultrasonography of the axilla and fine-needle aspiration are obligatory. Eur J Surg Oncol. 2008;34:497–500.
localization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol. 1993;2:335–9.

12. Giuliano AE, Han SH. Local and regional control in breast cancer: role of sentinel node biopsy. Adv Surg. 2011;45:101–16.

13. Mainiero MB, Cinelli CM, Koelliker SL, et al. Axillary ultrasound and fine-needle aspiration in the preoperative evaluation of the breast cancer patient: an algorithm based on tumor size and lymph node appearance. AJR Am J Roentgenol. 2010;195:1261–7.

14. Park SH, Kim MJ, Park BW, et al. Impact of preoperative ultrasonography and fine-needle aspiration of axillary lymph nodes on surgical management of primary breast cancer. Ann Surg Oncol. 2001;18:738–44.

15. Oruwari JU, Chung MA, Koelliker S, et al. Axillary staging using ultrasound-guided fine needle aspiration biopsy in locally advanced breast cancer. Am J Surg. 2002;184:307–9.

16. Somasundar P, Gass J, Steinhoff M, et al. Role of ultrasound-guided axillary fine-needle aspiration in the management of invasive breast cancer. Am J Surg. 2006;192:458–61.

17. Singletary SE, Connolly JL. Breast cancer staging: working with the sixth edition of the AJCC Cancer Staging Manual. CA Cancer J Clin. 2006;56:37–47.

18. Pinheiro DJPC, Elias S, Nazário ACP. Axillary lymph nodes in breast cancer patients: sonographic evaluation. Radiol Bras. 2014;47:240–4.

19. Pessoa EC, Rodrigues JRP, Pessoa CPKC, et al. Punção aspirativa de linfonodo axilar guiada pela ultrassonografia é eficaz como método de predição de acometimento linfonodal em pacientes com câncer de mama? Rev Bras Ginecol Obstet. 2014;36:118–23.

20. Deurloo EE, Tanis PJ, Gilhuijs KG, et al. Reduction in the number of sentinel lymph node procedures by preoperative ultrasonography of the axilla in breast cancer patients. Eur J Cancer. 2003;39:170–4.

21. van Rijk MC, Deurloo EE, Nieweg OE, et al. Ultrasonography of sentinel lymph nodes before axillary node biopsy: a prospective controlled trial. Eur J Cancer. 2003;39:1068–73.

22. Krishnamurthy S. Current applications and future prospects of fine-needle aspiration biopsy of locoregional lymph nodes in the management of breast cancer. Cancer. 2009;117:451–62.