Signatures containing miR-133a identified by large scale miRNA profiling in bladder cancer

CURRENT STATUS: UNDER REVIEW

BMC Urology BMC Series

Shuai Jiang
Zhongshan Hospital Fudan University

Miaojun Zhu
Biovue Technology Co., Ltd

Zhuoyi Xiang
Zhongshan Hospital Fudan University

Fengwu Zhang
Biovue Technology Co., Ltd

Jun Hou
Zhongshan Hospital Fudan University

Hang Wang
Zhongshan Hospital Fudan University

Li Liu
Zhongshan Hospital Fudan University

Hailong Wang
First Dimension BioScience Co., Ltd

Tom Tang
First Dimension BioScience Co., Ltd

Ruoying Tan
Biovue Technology Co., Ltd

Zengxia Li
Fudan University

Jianming Guo guo.jianming@zs-hospital.sh.cn
Zhongshan Hospital Fudan University
Abstract

Background: Identifying bladder cancer-specific miRNA expression signatures by large scale miRNA profiling

Methods: 30 bladder cancer (BC) tissue samples and matched adjacent normal bladder tissue samples from patients with BC were collected and were divided into two groups— a training group and a blind testing group. Expressions of 1900 miRNAs and controls were detected in a BC miRNA pool and in a normal miRNAs pool, respectively. 380 differential expressed miRNAs between the BC miRNA pool and the normal miRNA pool were selected. The primers for detecting the 380 selected miRNAs and controls were used to generate one 384-well panel. This panel was used to profile miRNA expression of each individual sample in the training group and in the blind testing group. Data analysis was performed using a machine learning approach of a support vector machine classifier with a Student's t-test feature selection procedure.

Results: We identified signatures consisting of three or four miRNAs that could distinguish BC from normal controls with an accuracy of 100% in the training model and an accuracy of over 95% in the blind test. All identified signatures contain hsa-miR-133a. We also revealed that the miRNA183-96 cluster and the miR200 cluster are both significantly up-regulated in BC.

Conclusions: The identified signatures containing hsa-miR-133a could be used as biomarkers in the diagnosis and prognosis of BC.

Background

Bladder cancer (BC) is the second most common urological malignancy globally with about 430,000 new cases and 165,000 deaths in 2016 (1-3). In China, BC is the most common cancer in the genitourinary system (4).
The gold standard of BC diagnosis is the combination of cystoscopy and biopsy, however, the procedure is invasive, uncomfortable, and costly (5, 6). Urinary cytology is of high specificity (90%-95%), and relatively low sensitivity (~30%). Some urine-based tests for BC, such as BC antigen, nuclear matrix protein 22 (NMP22, Sysmex Corp., Kobe, Japan), and FISH (UroVysion, Abbott Molecular Inc, Des Plaines, IL, USA), have been approved in the applications of BC diagnosis, but the specificities of these tests are low (60%-80%)(7). The development of BC diagnostic biomarkers with high sensitivity and specificity is required.

Micro RNA (miRNA) regulate gene expression at the post-transcriptional level. (8-10). The accumulating data indicated that miRNAs play important roles in tumorigenesis, metastasis, and drug responsiveness in BC and in other cancers (11-14).

In this study, we have profiled miRNA expression on a large scale in a set of BC tissue samples and adjacent normal bladder tissue samples from patients with BC, and have identified some expression signatures consisting of three or four-miRNA that can distinguish BC from normal controls with high sensitivity and high specificity. All these identified signatures contain hsa-miRNA-133a thus indicating the importance of hsa-miRNA-133a in the tumorigenesis, diagnosis, and prognosis of BC.

Methods

Collection of BC tissue samples:

The tissue samples used in this study were collected in the Department of Urology, Zhongshan Hospital Fudan University from May to November 2016. The BC tissue samples and the matched adjacent normal bladder tissue samples (as normal
controls) from patients with BC were confirmed by pathologists with microscopy. All tissue samples were immediately frozen in liquid nitrogen after being removed from the body and stored at a -80°C freezer for long term storage. The collected tissue samples were divided into two groups: a training group, and a blind test group. The training group contains 19 BC tissue samples and 19 matched adjacent normal bladder tissue samples. The blind testing group contains 11 BC tissue samples and 10 matched adjacent normal bladder tissue samples. A written informed consent was obtained from each patient involved in the study, and the study was approved by the Ethics Committee of Zhongshan Hospital Fudan University (No. B2016-148R). The demographics and clinical features of the patients are listed in Table 1.

miRNA isolation and miRNA pool generation

Total RNA was isolated from < 50 mg of frozen tissue samples with the miRNeasy Mini Kit (Qiagen, 217004) according to the manufacturer’s instructions. A pool of BC miRNA and a pool of normal miRNA were generated by mixing equal amount of each miRNA isolated from the 19 BC tissue samples in the training group and by mixing equal amount of each miRNA isolated from the 19 matched adjacent normal bladder tissue samples in the training group, respectively.

cDNA synthesis:

The purified total RNA was diluted to 125 ng/ml with 0.1x RNA storage buffer (Ambion, USA) containing 0.1% Tween-20 (Sigma, USA). miRNAs were added a poly(A) tail and reverse transcribed into cDNA using Sharpvue miRNA First Strand
Quantitative real-time PCR assay:

The real-time PCR was performed with the synthesized cDNA, Sharpvue 2x Universal qPCR Master Mix (Biovue, Shanghai, China), and SharpvueTM Human miRNA Primer Array (Biovue, Shanghai, China) according to manufacturer's protocol by using ABI 7900HT Fast Real Time PCR System (Applied Biosystems, USA). The real-time PCR reaction was incubated at 95°C for 2 minutes, followed by 3 cycles of 96°C for 5 seconds and 60°C for 1 minute, 37 cycles of 96°C for 5 seconds and 60°C for 30 seconds, and a melting curve was recorded at the end. SYBR dye and Rox dye were used as reporter and reference, respectively.

BC miRNA panel:

Expressions of the BC miRNA pool and the normal miRNA pool were measured with primers for detecting 1900 miRNAs and controls in five 384-well plates. Each plate contains primers for detecting 380 miRNAs, 2 endogenous controls (hsa-7SL-scRNA and has-RNU48), one spiking control (cel-miR-39) and one no template control nuclease free water. We selected 380 differential expressed miRNAs between the BC miRNA pool and the normal miRNA pool, and used the primers for detecting the selected 380 miRNAs and controls to generate one 384-well panel. This 384-well panel was used to profile miRNA expression of each individual sample in the training group and in the blind testing group.

Results

Biomarker selection based on qRT-PCR
The analysis of miRNA expression data from real-time PCR was performed by using R and package e1071 with some modifications as the following: First, set Ct value as 32 to any miRNAs if their measured Ct values were greater than 32. Then, we compared the mean Ct-value of each miRNA between tumor tissue and normal control tissue for 365 microRNAs (15 miRNAs without expression were removed from analysis), 2 endogenous controls. There are many miRNAs with significant Ct value change between BC tissue and normal control tissue (data no shown). We did a T-test for each miRNA, and 70 miRNAs with P-value < 0.001 were shown in Fig. 1. In order to prove there are tumor-related markers and to find out these markers, we trained an SVM model, and predicted 20 other samples. The model was built as the following: a). we produced 66430 new variables by computing the difference between Ct of each miRNAs and got 66796 total variables with the original 366 variables. b). we did a T-test on all these variables and took 2 variables with the greatest P-value and some variables with the smallest P-value. Until we had got 20 candidate miRNAs those variables included. c). for each miRNA subset with markers less than or equal to 12 of the 20 candidate miRNAs, we trained an SVM model with default parameters by function SVM and evaluated the accuracy by 50 times 10-fold cross-validation. d) Then 10 subsets with the best accuracy and AUC were selected and 10 SVMs based on these 10 marker subsets were trained by a total of 38 samples and the stat of 21 blind samples was predicted. They all showed good performances on blind samples with accuracy greater than 0.95. The best one was selected for further analysis.

miRNA expression profiling in BC and normal controls

To identify BC-specific miRNA expression signatures as biomarkers to diagnose BC,
we applied the panel to profile miRNA expression of 38 tissue samples in the training group, including 19 BC tissue samples and 19 matched adjacent normal bladder tissue samples. The 365 dysregulated microRNAs and two endogenous controls in BC tissue samples and in matched adjacent normal bladder tissue samples were presented in the supplemental Table 1. There were 121 microRNAs, including miR-182, miR-431, miR-183, miR-429, and miR-425, etc., with higher expression levels in the BC tissues than in the adjacent normal bladder tissues. In contrast, 245 microRNAs, such as miR-1, miR-133a, miR-133b, miR-125b, miR-143, and miR-145, etc, had lower expression levels in the BC tissues than in the adjacent normal bladder tissues. The aberrant expression levels of miRNAs were summarized in Table 2.

Developing miRNAs expression signatures in the diagnosis of BC

An unpaired T-test ($p < 0.05$) with a Benjamini Hochberg FDR multiple testing correction was used to identify significantly dysregulated miRNAs that distinguish BC from normal controls. Accurate classification of BC patients from normal controls is crucial for successful BC treatment; we investigated the diagnostic value of the miRNA-expression profile in BC patients. Among the checked 70 significant miRNAs (P-value < 0.001) (these miRNAs listed in Table 2 with t-value and p-value), several expression signatures of three or four-miRNAs were developed as predictors of BC from normal controls. These signatures were selected based on a machine learning approach using support vector machine (SVM).

The 10 best groups of miRNA signatures were listed in Table 3. In the group 1, the expression of miR-133a ($\log_2{FC} = 9.258; P < 0.0001$) was significantly down-regulated in BC, and the expression of miR-431 ($\log_2{FC} = -3.268; P < 0.0001$) was
significantly upregulated in BC However, the expression level of miR-4251 ($P > 0.1$) in BC was slightly higher than that in normal controls. The results indicated that the use of an improved comparative Ct method may be an easily approach with potential for general clinical use and without the need for large-scale, high-throughput profiling analyses. The method could be used to develop clinically useful signatures based on tissue biomarkers (Supplemental Fig. 1).

Prediction of BC and control subjects by risk score analysis

To verify the accuracy and specificity of the identified miRNA signatures as BC biomarkers, we further assessed the 3 miRNAs in the former set consisting of 38 samples, including 19 BC tissue samples and 19 matched adjacent normal bladder tissue samples (Fig. 2A). The areas under the ROC curve (AUC) were 1 with 100% sensitivity and 100% specificity, respectively (Fig.2B).

Blind test

To verify the accuracy and specificity of identified miRNA signatures as BC biomarkers, we further tested another 21 samples (including 11 BC tissue samples and 10 adjacent normal bladder tissue samples) in a blind fashion to validate the predictive ability of these miRNA-based signatures in BC diagnosis. The accuracy of the signature consisting of hsa-miR-133a, hsa-miR-431 and hsa-miR-4251 is 95.2% with 100% sensitivity and 90% specificity, respectively (Fig. 3). All 11 BC tissue samples in the blind testing group were predicted correctly. Especially, of these 11 samples, 10 samples were confirmed as stage I BC and 1 sample was confirmed as stage IV BC by pathology and imaging, thus demonstrating the power of the miRNA-based signatures in distinguishing BC from normal controls.
Discussion

In order to find tissue-based BC-specific miRNA signatures, a comparative study was performed using a qRT-PCR array platform to profile 19 BC tissue samples and 19 matched adjacent normal bladder tissue samples from patients with BC. The study revealed that 70 aberrant miRNAs (Table 2), hsa-miR-96, hsa-miR-182, hsa-miR-183, hsa-miR-429, hsa-miR-425, hsa-miR-431 are overexpressed in BC comparing to the normal controls. Among these miRNAs, miR-96, miR-182 and miR-183 are clustered in one locus of chromosome 7 (15). miR-429 belongs to the miR-200 family, which is clustered in the chromosomes 12, we further found that other members (200a/b/c) of miR200 family are also overexpressed in BC compared with normal controls (Supplement Table 1). Both two miRNA clusters are well-known oncogenic miRNA clusters that have been extensively reported to be involved in tumor genesis in ovarian cancer and in other cancers including in BC (16-19).

The ten best groups of miRNAs signatures have been selected to discriminate the BC from the normal controls with 100% sensitivity and 100% specificity, suggesting their potential value for the diagnosis and prognosis of BC (Table 3, Fig. 3). These selected signatures all contain hsa-miR-133a that means hsa-miR-133a may play a key role in discriminating BC from normal controls. The number one signature contains three miRNAs, hsa-miR-133a, hsa-miR-431 and hsa-miR-4251. Hsa-miR-133a was significantly down-regulated and hsa-miR-431 was significantly up-regulated in BC. However, the expression level of hsa-miR-4251 was slightly higher in BC than that in normal controls. Furthermore, these signatures can predict BC with significantly high accuracy over 95% in a blind test. More importantly, these miRNA signatures could effectively distinguish early-stage (25 cases in stage I) BC
from normal controls, suggesting their potential value in the detection of BC at an early stage.

A previous study (20) has reported the expression levels of miR-133a, miR-133b, miR-1, and miR-99a are down-regulated, however, miR-182 is up-regulated in BC. These miRNAs might be involved in the tumorigenesis and deterioration of BC. Our results confirmed the previous findings, and further demonstrated that the powers to distinguish BC from normal control of the selected signatures containing miR-133a are significantly better than that of miR-133a alone (Supplemental Fig.2). The signatures containing miR-133a identified in our study can diagnose BC even at an early stage with high sensitivity and high specificity and could be used as biomarkers in the diagnosis and prognosis of BC.

It has been shown that miR-133a-3p acts as a tumor suppressor in BC. Numerous studies demonstrated that miR-133a inhibits cell proliferation, migration, and invasion in various tumors by targeting to different signaling pathways, such as caspase signaling pathway, insulin/IGF signaling pathway, and EGFR signaling pathway (21-28). The connecting between the importance of miR-133a in tumorigenesis and significant downregulation of miR-133a in BC has shed light on the molecular mechanism of miRNA-133a in the tumorigenesis of BC.

Cystoscopy is the gold standard for diagnosis and surveillance of BC, while the procedure is invasive, uncomfortable and costly. Many potential BC biomarkers, like protein, miRNA, mRNA, DNA methylation, miRNA and miRNA signature have been reported, however, their successful applications in the diagnosis and prognosis of BC have not been demonstrated yet. As reported from other investigators (29, 30), our results also showed that miR-1, miR-133a, miR-133b, miR-143, miR-145, and miR-10b, are downregulated in BC (Supplement Table 1), suggesting a major role of
these tumor suppressor miRNAs in bladder carcinoma. Of all these downregulated miRNAs, the miR-133a is the only one miRNA shown up in all ten best BC diagnosis signatures (Table 3).

miR-133a was one member of the miR-133 family, which was first experimentally characterized in mice (31). miR-133 and miR-1 are clustered in the same chromosomal locus in the human genome (18q11.2) and share the same transcriptional unit, which has shown their essential functions in controlling skeletal muscle proliferation and differentiation (32). Genes encoding miR-133 (miR-133a-1, miR-133a-2 and miR-133b) are transcribed as bicistronic transcripts together with miR-1-2 and miR-1-1. We had analyzed the potential target gene and the function of miR-133a by using www.mirnet.ca. We recognized that there is a correlation between miR-133a and miR-1 by targeting TAGLN2 and LASP1 (30, 33). In agreement with our study, miR-133a has been reported to be down-regulated in BC and in other cancers (30, 34-36). miR-133a seems to function as a tumor suppressor by inhibiting cell proliferation, invasion, migration, and apoptosis (30, 33).

Conclusions

The BC-specific miRNA expression signatures containing miR-133a identified in our study could be used as biomarkers in the diagnosis and prognosis of BC.

Abbreviations

BC: bladder cancer
SVM [Support vector machine]
AUC [Areas under the ROC curve]
Declarations

Consent for publication

Not applicable.

Availability of data and materials

All data generated in this study are included in this article and its supplementary documents.

Ethics Approval and Consent to Participate

The study plan was approved by the ethics committee institute: Zhongshan Hospital Fudan University (Shanghai, China) ethics committee. Approval reference No. B2016-148R

A written informed consent was obtained from each patient involved in the study, respectively.

Competing interests

No potential conflict of interest relevant to this article is reported

Funding

This work was funded by the Project of Shanghai Science and Technology Committee No:17401930400 (S.J.). The funding agency had no role in any aspect of this study. S.J. played a role in study planning and manuscript preparation

Authors' contributions

S.J. and J.G. study planning; S.J, M.Z., Z.X., and F.Z. experiment design and operation; S.J., M.Z., J.H., H.W., L.L. and HL. W. data analysis and result interpretation; S.J, M.Z., Z.X. and F.Z. figure preparation; S.J., M.Z., T.T., J.G., Z.L., R.T., and J.G. manuscript preparation and revision. All authors approved the final version of this manuscript.
Acknowledgements

Not applicable.

References

1. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol 2017 Jan;71(1):96-108.

2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015 Mar;65(2):87-108.

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016 Jan-Feb;66(1):7-30.

4. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016 Mar-Apr;66(2):115-32.

5. Avritscher EB, Cooksley CD, Grossman HB, Sabichi AL, Hamblin L, Dinney CP, et al. Clinical model of lifetime cost of treating bladder cancer and associated complications. Urology 2006 Sep;68(3):549-53.

6. Lotan Y, Svatek RS, Sagalowsky AI. Should we screen for bladder cancer in a high-risk population?: A cost per life-year saved analysis. Cancer 2006 Sep 1;107(5):982-90.

7. Schmitz-Drager BJ, Todenofer T, van Rhijn B, Pesch B, Hudson MA, Chandra A, et al. Considerations on the use of urine markers in the management of patients with low-/intermediate-risk non-muscle invasive bladder cancer. Urol Oncol 2014 Oct;32(7):1061-8.

8. Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of
small inhibitory RNA in mammalian cells. J Biol Chem 2003 Nov 7;278(45):44312-9.

9. Wu L, Belasco JG. Examining the influence of microRNAs on translation efficiency and on mRNA deadenylation and decay. Methods Enzymol 2008;449:373-93.

10. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 2006 Mar 14;103(11):4034-9.

11. Adam L, Wszolek MF, Liu CG, Jing W, Diao L, Zien A, et al. Plasma microRNA profiles for bladder cancer detection. Urol Oncol 2013 Nov;31(8):1701-8.

12. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 2010 Nov-Dec;28(6):655-61.

13. Jiang X, Du L, Wang L, Li J, Liu Y, Zheng G, et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int J Cancer 2015 Feb 15;136(4):854-62.

14. Wu P, Cao Z, Wu S. New Progress of Epigenetic Biomarkers in Urological Cancer. DisMarkers 2016;2016:9864047.

15. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007 Jun 29;129(7):1401-14.

16. Hu X, Macdonald DM, Huettner PC, Feng Z, El Naqa IM, Schwarz JK, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 2009 Sep;114(3):457-64.
17. Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, et al. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol 2012 Oct;228(2):204-15.

18. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 2009 Feb 10;106(6):1814-9.

19. Wang L, Zhu MJ, Ren AM, Wu HF, Han WM, Tan RY, et al. A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer. PLoS One 2014;9(5):e96472.

20. Wei Y, He R, Wu Y, Gan B, Wu P, Qiu X, et al. Comprehensive investigation of aberrant microRNA profiling in bladder cancer tissues. Tumour Biol 2016 Sep;37(9):12555-69.

21. Dong X, Su H, Jiang F, Li H, Shi G, Fan L. miR-133a, directly targeted USP39, suppresses cell proliferation and predicts prognosis of gastric cancer. Oncol Lett 2018 Jun;15(6):8311-8.

22. Li S, Qin X, Li Y, Zhang X, Niu R, Zhang H, et al. MiR-133a suppresses the migration and invasion of esophageal cancer cells by targeting the EMT regulator SOX4. Am J Transl Res 2015;7(8):1390-403.

23. Luo J, Zhou J, Cheng Q, Zhou C, Ding Z. Role of microRNA-133a in epithelial ovarian cancer pathogenesis and progression. Oncol Lett 2014 Apr;7(4):1043-8.

24. Shen Y, Kang A, Wang M. MiR-133a suppressed cell migration and invasion by targeting SOX4 in non-small cell lung cancer. Panminerva Med 2019 May 29.

25. Shi W, Tang T, Li X, Deng S, Li R, Wang Y, et al. Methylation-mediated silencing
of miR-133a-3p promotes breast cancer cell migration and stemness via miR-133a-3p/MAML1/DNMT3A positive feedback loop. J Exp Clin Cancer Res 2019 Oct 28;38(1):429.

26. Sun L, Guo Z, Sun J, Li J, Dong Z, Zhang Y, et al. MiR-133a acts as an anti-oncogene in Hepatocellular carcinoma by inhibiting FOSL2 through TGF-beta/Smad3 signaling pathway. Biomed Pharmacother 2018 Nov;107:168-76.

27. Tang Y, Pan J, Huang S, Peng X, Zou X, Luo Y, et al. Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3K/AKT signaling. J Exp Clin Cancer Res 2018 Jul 18;37(1):160.

28. Zhou K, Yang J, Li X, Chen W. Long non-coding RNA XIST promotes cell proliferation and migration through targeting miR-133a in bladder cancer. Exp Ther Med 2019 Nov;18(5):3475-83.

29. Pignot G, Cizeron-Clairac G, Vacher S, Susini A, Tozlu S, Vieillefond A, et al. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int J Cancer 2013 Jun 1;132(11):2479-91.

30. Yoshino H, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Nishiyama K, et al. The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer 2011 Mar 1;104(5):808-18.

31. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002 Apr 30;12(9):735-9.

32. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006 Feb;38(2):228-33.
33. Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Uchida Y, Kawahara K, et al. Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer. Urol Oncol 2012 Jul-Aug;30(4):434-43.

34. Catto JW, Abbod MF, Wild PJ, Linkens DA, Pilarsky C, Rehman I, et al. The application of artificial intelligence to microarray data: identification of a novel gene signature to identify bladder cancer progression. Eur Urol 2010 Mar;57(3):398-406.

35. Catto JW, Miah S, Owen HC, Bryant H, Myers K, Dudziec E, et al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res 2009 Nov 1;69(21):8472-81.

36. Song T, Xia W, Shao N, Zhang X, Wang C, Wu Y, et al. Differential miRNA expression profiles in bladder urothelial carcinomas. Asian Pac J Cancer Prev 2010;11(4):905-11.

Tables

Table 1: Demographic and Clinical Characteristics of Participants.

Demographic features	Adjacent (n=19)	Cancer (n=19)	Adjacent (n=10)	Validation Cancer (n=11)
Average age (range)	73.0 (47-90)	61.4 (46-77)	66.1 (46-88)	
Gender				
Male	16	9	10	
Female	13	1	1	
pT				
Tis	1	0	0	
Pt1	15	10	10	
Pt2	2	0	0	
Pt3	1	0	0	
Pt4	0	1	1	
pN				
pN0	19	11		
pN+	0	0	0	
pM				
pM0	19	11		
pM+	0	0	0	
Grade				
High Grade	9	5		
Low Grade	10	6		
Multifocality				
Yes	9	4		
No	10	7		

Abbreviation: Tis, Tumor in situ.
Table 2: 70 aberrant miRNAs with P-value < 0.001.

miR name	Mean Cancer ct	Mean Normal ct	Log$_2$ FC	Fold Change	T-value	P-value
hsa-miR-1	31.11	26.06	5.05	33.14	10.0188	6.09E-12
hsa-miR-30a	25.79	22.57	3.21	9.28	9.7216	2.11E-11
hsa-miR-133a	27.60	24.39	3.21	9.26	8.9519	2.00E-10
hsa-miR-143#	28.65	25.03	3.62	12.28	8.4715	4.67E-10
hsa-miR-4328	25.12	21.03	4.09	16.99	8.7692	6.55E-10
hsa-miR-143	24.10	19.72	4.37	20.75	8.1777	1.27E-09
hsa-miR-145	22.99	18.26	4.73	26.46	8.3910	2.74E-09
hsa-miR-376c	28.97	25.37	3.60	12.13	7.9053	3.84E-09
hsa-miR-125b	25.11	20.28	4.82	28.32	8.0892	5.55E-09
hsa-miR-199b-3p	25.03	20.71	4.32	19.97	8.4551	5.84E-09
hsa-miR-100	27.55	22.96	4.59	24.08	7.9632	1.27E-08
hsa-miR-99a	28.15	23.36	4.79	27.71	8.1981	1.28E-08
hsa-miR-497	27.11	24.03	3.08	8.48	7.5693	1.69E-08
hsa-miR-376a	30.03	26.43	3.61	12.17	7.7034	1.90E-08
hsa-miR-199a-5p	26.23	22.07	4.16	17.87	7.3058	2.21E-08
hsa-miR-195	26.30	23.15	3.15	8.86	6.8696	5.41E-08
hsa-miR-154	29.72	26.57	3.15	8.86	7.2751	9.96E-08
hsa-miR-139-5p	28.73	26.55	2.18	4.54	6.6091	1.13E-07
hsa-miR-127-3p	27.45	25.11	2.35	5.09	6.3966	2.33E-07
hsa-miR-150	27.99	24.13	3.86	14.55	6.3678	2.52E-07
hsa-miR-152	28.05	25.07	2.97	7.84	6.7012	2.57E-07
hsa-miR-379	31.49	29.14	2.35	5.11	6.3446	2.63E-07
hsa-miR-140-3p	28.02	25.45	2.57	5.94	6.0036	6.91E-07
hsa-miR-136#	30.24	26.85	3.39	10.45	6.0200	8.19E-07
hsa-miR-377	29.34	25.85	3.49	11.22	6.7306	8.48E-07
hsa-miR-495	30.61	27.90	2.71	6.54	6.3051	9.28E-07
hsa-miR-136	28.45	25.06	3.39	10.49	6.1732	9.73E-07
hsa-miR-101	23.47	21.50	1.97	3.91	5.6021	2.47E-06
hsa-miR-133b	29.08	27.03	2.06	4.16	5.7448	2.57E-06
hsa-miR-337-3p	28.82	26.64	2.18	4.54	5.7657	2.90E-06
hsa-miR-29a	23.15	20.63	2.52	5.72	5.8648	2.91E-06
hsa-miR-574-3p	25.23	23.35	1.88	3.67	5.5423	3.96E-06
hsa-miR-130a	25.99	23.45	2.54	5.81	5.7732	4.45E-06
hsa-miR-342-3p	25.23	23.15	2.08	4.24	5.6557	5.05E-06
hsa-miR-126#	24.90	22.86	2.05	4.13	5.1135	1.24E-05
miRNA	Mean Cancer Ct	Mean Normal Ct	Ct value of miRNA in adjacent normal bladder tissues; Mean Normal Ct = qPCR Ct value of miRNA in adjacent normal bladder tissues; Mean Cancer Ct = qPCR Ct value of miRNA in bladder cancer tissues; FC = fold			
--------------	----------------	----------------	--			
hsa-miR-222	25.34	23.36	1.97 3.92 5.0994 1.58E-05			
hsa-miR-28-3p	26.90	25.61	1.29 2.44 4.7988 2.87E-05			
hsa-miR-365b-3p	25.38	24.10	1.29 2.44 4.8883 3.49E-05			
hsa-miR-27b	24.19	22.41	1.79 3.45 4.7126 3.89E-05			
hsa-let-7c	26.41	24.06	2.35 5.10 4.6752 4.04E-05			
hsa-miR-342-5p	30.97	29.44	1.53 2.88 4.6693 5.39E-05			
hsa-miR-431	25.68	27.39	-1.71 -3.27 -4.4787 8.06E-05			
hsa-miR-320c	24.70	23.21	1.49 2.81 4.5258 8.33E-05			
hsa-miR-182	26.70	28.78	-2.08 -4.22 -4.4854 9.35E-05			
hsa-miR-551b	28.47	25.33	3.14 8.81 4.4619 9.38E-05			
hsa-miR-543	31.08	29.69	1.39 2.61 4.4079 9.56E-05			
hsa-miR-193b	24.15	23.08	1.07 2.10 4.2799 1.39E-04			
hsa-miR-451	24.01	21.90	2.11 4.32 4.2547 1.45E-04			
hsa-miR-1247	23.67	22.36	1.31 2.48 4.2604 1.50E-04			
hsa-miR-140-5p	30.30	28.29	2.01 4.01 4.2463 1.56E-04			
hsa-miR-142-5p	27.09	24.54	2.55 5.87 4.2429 1.56E-04			
hsa-miR-126	23.02	21.17	1.85 3.61 4.1344 2.10E-04			
hsa-miR-10b	26.22	24.68	1.54 2.90 4.1934 2.28E-04			
hsa-miR-369-3p	30.14	28.35	1.80 3.47 4.1931 2.57E-04			
hsa-miR-328	26.89	25.82	1.07 2.10 4.0529 2.64E-04			
hsa-miR-338-3p	28.04	25.79	2.25 4.75 4.0157 2.89E-04			
hsa-miR-183	26.64	28.48	-1.84 -3.57 -3.9608 3.49E-04			
hsa-miR-532-5p	28.10	27.06	1.04 2.06 3.8482 4.68E-04			
hsa-miR-409-3p	29.55	27.97	1.58 2.99 3.8801 5.41E-04			
hsa-miR-24	23.50	21.96	1.54 2.90 3.7752 5.87E-04			
hsa-miR-132	28.07	26.45	1.63 3.09 3.8190 5.97E-04			
hsa-miR-30e#	26.88	25.28	1.60 3.02 3.7311 6.74E-04			
hsa-miR-429	23.52	25.04	-1.51 -2.86 -3.7180 6.81E-04			
hsa-let-7i#	26.96	25.52	1.44 2.70 3.7037 7.65E-04			
hsa-miR-142-3p	25.15	22.34	2.81 7.01 3.6692 7.95E-04			
hsa-miR-221	27.09	25.53	1.56 2.96 3.7036 7.97E-04			
hsa-miR-445/7	27.52	25.90	1.62 3.07 3.6927 8.31E-04			
hsa-miR-186	25.53	24.57	0.96 1.95 3.6399 8.80E-04			
hsa-miR-425	26.33	27.34	-1.01 -2.02 -3.6236 9.07E-04			
hsa-miR-155	29.47	27.46	2.01 4.03 3.6076 9.51E-04			
change; \(\log_2 FC > 0 \) means the expression level is decreased in cancer tissues, \(\log_2 FC < 0 \) means the expression level is increased in cancer tissues.

Table 3: The 10 best selected groups of miRNAs signatures to discriminate BC from normal controls.

miRNA signatures groups	marker1	marker2	marker3	marker4	Accuracy	AUC
1	hsa-miR-133a	hsa-miR-431	hsa-miR-4251	1	1	
2	hsa-miR-133a	hsa-miR-296-3p	hsa-miR-4251	1	1	
3	hsa-miR-133a	hsa-miR-10b	hsa-miR-4251	1	1	
4	hsa-miR-133a	hsa-miR-449b	hsa-miR-484	1	1	
5	hsa-let-133a	hsa-miR-7a#	hsa-miR-431	hsa-miR-4251	1	1
6	hsa-let-133a	hsa-miR-449b	hsa-miR-7a#	hsa-miR-4251	1	1
7	hsa-miR-133a	hsa-miR-449b	hsa-miR-1260	hsa-miR-4251	1	1
8	hsa-miR-133a	hsa-miR-449b	hsa-miR-296-3p	hsa-miR-4251	1	1
9	hsa-miR-133a	hsa-miR-449b	hsa-miR-484	hsa-miR-4251	1	1
10	hsa-miR-133a	hsa-miR-181c#	hsa-miR-326	hsa-miR-4251	1	1
Supplemental File Legends

Additional information in the supporting documents of this article may be found online:

Supplemental Table 1. The expression levels of 365 dysregulated miRNAs and two endogenous controls in the BC tissues compared with those in adjacent normal bladder tissues. Mean Normal Ct = qPCR Ct value of miRNA in adjacent normal bladder tissues; FC = fold change; FC > 0 means expression level is decreased in BC tissues compared with adjacent normal bladder tissues; FC < 0 means expression level is increased in BC tissues compared with in adjacent normal bladder tissues.

Supplemental Fig. 1. Top 24 Expression Profiling of Select each 2 miRNAs ratio between BC (n= 19, red) and adjacent normal bladder tissues (n= 19, blue). The scale at the y-axis represents Ct values normalized to the global mean. Line inside the box: median. The expression levels of miR-182, miR-183, miR-431, miR-429 were significantly up-regulated in BC, and the expression levels of miR-133a, miR-125b, miR-1 were significantly down regulated in BC.

Supplemental Fig. 2. The distributions of predicted scores of miR-133a alone and the 10 best-selected signatures. Column 0 represents the distribution of predicted score of miR-133a alone, columns 1~10 represent the distributions of predicted scores of the 10 best-selected signatures respectively.

Figures
Figure 1

Schematic of dysregulation miRNAs in BC (red). The volcano plot of miRNAs with
A) The performances of the selected signature group one in classifying 19 of BC tissue samples from the BC and normal controls.

Validation of BC miRNA Expression Signature Model 1 in another 21 samples.
Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

supplemental Fig.1.png
supplemental Fig.2.png
Supplemental table 1.docx