Safety of the long-term use of proton pump inhibitors

Alan BR Thomson, Michel D Sauve, Narmin Kassam, Holly Kamitakahara

Use of PPIs. Long-term use of PPIs does not lead to vitamin B12 deficiencies, except possibly in the elderly, or in persons with Zollinger-Ellison Syndrome who are on high doses of PPI for prolonged periods of time. There is no convincingly proven data that PPIs increase the risk of Clostridium difficile-associated diarrhea in persons in the community. The discontinuation of PPIs may result in rebound symptoms requiring further and even continuous PPI use for suppression of symptoms. As with all medications, the key is to use PPIs only when clearly indicated, and to reassess continued use so that long-term therapy is used judiciously. Thus, in summary, the PPIs are a safe class of medications to use long-term in persons in whom there is a clear need for the maintenance of extensive acid inhibition.

Key words: Acid inhibition; Drug safety; Osteoporosis; Pneumonia; Enteric infections

Peers reviewer: Frank I Tovey, OBE, ChM, FRCS, Honorary Research Fellow, Department of Surgery, University College London, London, United Kingdom

© 2010 Baishideng. All rights reserved.

INTRODUCTION

The risk of minor adverse effects from proton pump inhibitors (PPIs) is low, approximately 1%-3%, with rates of withdrawal from clinical research studies being 1%-2%, with no significant differences noted between the PPIs. The risk of symptomatic adverse effects with the PPIs is low as well. In pooled data from published trials involving 2812 patients, omeprazole was
reported as causing headache (2.4%), diarrhea (1.9%), nausea (0.9%), and rash (1.1%), a profile similar to that of cimetidine and ranitidine\(^5\). In a prospective follow-up study of 5669 patients on lansoprazole, the most common reported adverse effects were diarrhea (4.1%), headache (2.9%), and nausea (2.6%). A similar profile has been reported for pantoprazole; diarrhea, 1.5%; headache, 1.3%; dizziness, 0.7%; pruritus, 0.5%; rash, 0.4%;\(^9\); and nausea, 0.015%. Compiled data from 3556 patients taking rabeprazole for up to one year demonstrated that the most common adverse effect was headache with an incidence (2.4%) similar to placebo (3.1%).

Serious adverse events are rare, with case reports of interstitial nephritis with omeprazole, hepatitis with omeprazole and lansoprazole\(^10\)-\(^15\), and disputed visual disturbances with pantoprazole and omeprazole\(^1\),\(^3\),\(^4\). An anticipated physiological effect of acid suppression with PPIs is an elevated serum gastrin concentration, which occurs with all PPIs. Gastrin elevation may be higher with omeprazole than with pantoprazole, and higher with lansoprazole than with omeprazole\(^1\),\(^5\)-\(^7\), and higher with rabeprazole than with omeprazole\(^8\). This variation in PPI-associated elevation of gastrin concentration is not clinically relevant.

Some persons with dyspeptic conditions such as gastroesophageal reflux disease (GERD) may need to be maintained long-term on PPIs. For this reason, we have reviewed the literature on possible long-term adverse effects of PPIs. Narrative or qualitative reviews, when compared to their systematic review cousins, trade off depth in favor of breadth. After all, reviews can be comprehensive and primary, or narrow in scope and heavily guarded against various biases. Narrative reviews remain, despite a heavy battering by hordes of high quality randomized controlled trials and mathematically endowed structured reviews, on their pedestal as a premier venue for medical educators and historians. This review fits in that important tradition, and purports to fill a need for a comprehensive review on the safety of long-term use of PPIs. Mulkow published criteria for minimizing bias in narrative reviews\(^9\). Deeks summed up these as being rigorous, informative, comprehensive, and explicit\(^9\). Collins and Fauser, in their editorial, enforced the view of the importance of “balancing the strengths of systemic and narrative reviews”\(^2\). To achieve this balance and complement a primarily journalistic approach, a search of PubMed, Google Scholar and UpToDate for articles published since 1999 on the topic of “PPI” and “safety” (and related MESH terms) was conducted to identify English language meta-analysis, publications in one of the top biomedical journals in this field (NEJM, Annals, Lancet, JAMA, American Journal of Gastroenterology, Gastroenterology, American Journal of Gastroenterology, Alimentary Pharmacology and therapeutics, Drugs, BMJ) as well as major North American and European guidelines. Checklists have been proposed for systematic and qualitative research\(^2\),\(^2\), aiding in the review. We present this information on the long-term safety of PPIs with a series of questions, a summary of the literature, and our proposed answer.

THE USE OF PPIs IS NOT ASSOCIATED WITH AN ALTERATION OF GASTRIC HISTOLOGY

In Helicobacter pylori (\(H.\) pylori) negative persons PPIs do not worsen pre-existing gastritis\(^2\),\(^3\),\(^2\), and may even improve pre-existing gastritis\(^2\). PPIs do not cause atrophic gastritis\(^2\).

In contrast, in \(H.\) pylori positive persons, \(H.\) pylori is associated with antral or body acute or chronic gastritis, atrophy and metaplasia\(^2\). \(H.\) pylori-associated chronic gastritis may progress to gastric atrophy, intestinal metaplasia, and gastric cancer\(^2\),\(^3\),\(^4\),\(^5\), or may not\(^6\). \(H.\) pylori and PPIs may cause progression or acceleration from gastric antrum-predominant chronic gastritis to body-predominant chronic gastritis, and it is controversial whether gastric body-predominant atrophic gastritis (gastric atrophy) is a risk factor for gastric cancer\(^3\). \(H.\) pylori eradication may cause regression of gastric atrophy or intestinal metaplasia\(^2\),\(^2\),\(^2\),\(^2\),\(^2\),\(^2\),\(^2\),\(^2\),\(^2\) or may not\(^6\),\(^6\),\(^6\).

Thus, the long-term use of PPIs has not been convincingly proven to cause or accelerate the progression of pre-existing chronic gastritis, corpus gastric atrophy or intestinal metaplasia.

PHYSIOLOGICAL HYPERGASTRINEMIA DOES NOT CAUSE GASTRIC CARCINOIDS OR CANCER

\(H.\) pylori infection (without use of PPIs) itself increases serum gastrin concentration\(^7\).

PPIs modestly increase serum gastrin concentration in persons who are \(H.\) pylori-negative or positive\(^8\). While PPIs may increase apoptosis\(^9\), PPIs do not increase risk of gastric or esophageal cancer\(^8\).

It is controversial whether the hypergastrinemia associated with the use of PPIs increase enterochromaffin-like (ECL) cell numbers, as well as linear or micronodular hyperplasia - Yes\(^\) in \(H.\) pylori positive persons\(^2\),\(^10\), and No\(^2\),\(^2\) in \(H.\) pylori positive persons\(^2\),\(^10\). Hypergastrinemia associated with Zollinger-Ellison Syndrome (ZES), rarely is associated with an increase in ECL cell growth or ECL carcinoid\(^3\). Furthermore, there is only one published report in world literature of a ZES patient treated with PPIs for associated gastric hypersecretion, who developed gastric cancer\(^2\). This is probably a chance association.

Thus, mild/modest hypergastrinemia is a physiological response to a reduction in acid secretion due to any cause. The long-term use of PPIs has not been convincingly proven to cause ECL cell hyperplasia or carcinoid tumors. Even when hypergastrinemia is marked and prolonged (such as with ZES or MEN-1), gastric carcinoids are rare.

THE USE OF PPIs IS ASSOCIATED WITH THE DEVELOPMENT OF FUNDIC GLAND POLYPS

PPI use is associated with parietal cell hyperplasia, and an
up to fourfold increased incidence of fundic gland polyps (FGP)[60-62]. FGP also occur in the presence of
\textit{H. pylori} infection, likely incidentally[63,64]. Eradication of \textit{H. pylori} or stopping long-term use of PPIs is associated with regression of FGP[63,65-66]. FGP in sporadic cases is rarely associated with dysplasia, but never gastric adenocarcinoma[67]. Dysplasia may occur in 25\%–44\% of gastric polyps in persons with familial adenomatous polyposis.

In summary, PPI use is associated with the development of FGP. FGP occur in the presence or absence of \textit{H. pylori} infection. The eradication of \textit{H. pylori} or stopping PPI with regression of FGP. FGP may rarely become dysplastic, but almost exclusively this rare event is seen in persons with familial adenomatous polyposis.

PPIs may mask the symptoms of gastric cancer (GC), heal malignant gastric ulcers, or shorten survival in the patient with GC.

PPIs may mask the symptoms or heal early GC, but there is no data on the effect of PPIs on rates of survival[68]. H2RA’s may[69] or may not[70] actually produce longer survival in patients with GC.

BIOAVAILABILITY OR METABOLISM OF A FEW OTHER DRUGS

PPIs reduce gastric acid, and thereby reduce the bioavailability of drugs requiring intragastric acidity to maximize their absorption and bioavailability[51]. Examples of such drugs would include ketoconazole, itraconazole and indinavir[71], and may reduce the effects of locally acting drugs such as sulfaflaxate.

PPIs may alter the intestinal first pass metabolism or the hepatic clearance of some drugs, and thereby modify their pharmacodynamics[72]. They have no effect on n-acetyltransfer or xanthine oxidase activities[73], and may show a rare class action effect on vitamin K antagonists[74]. PPIs have a low drug interaction through phase I / II effects[75,76], and may differ in their possibility of causing drug interactions. Omeprazole and lansoprazole have a high affinity for CYP2C19 and CYP3A4 but these cytochromes contribute little to rabeprazole metabolism. Pantoprazole is completely metabolized by these cytochrome enzymes, but it uniquely has no drug interactions with a wide range of drugs[77-79]. PPIs, with the exception of pantoprazole, have been associated with reduced effectiveness of clopidogrel and a resulting 40\% increased risk of coronary stent occlusions[79]. There is no consensus yet on how to manage this[80].

Thus, PPIs have an effect in common with all acid lowering therapy to reduce the absorption of acid-dependent medications. The metabolism of PPIs by hepatic cytochrome enzymes varies significantly between drugs.

THE USE OF PPIs AND DEFICIENCIES IN IRON AND VITAMIN B12

Iron

PPIs reduce gastric acidity, and in patients treated long-term with high dose PPIs duodenal absorption of organic and non-organic iron may be reduced[81]. This effect however is small, and PPIs are not associated with an increased risk of latent iron deficiency or iron deficiency[82].

Vitamin B12

PPIs reduce gastric acidity, which is necessary to activate pepsinogen to pepsin to release vitamin B12 from B12-containing foods. PPIs used short-term may minimally reduce the absorption of protein-bound B12 in food[83-85]. In elderly patients who may already have gastric atrophy (possibly from \textit{H. pylori} infection), PPIs used long-term may reduce serum vitamin B12 concentrations[86-88]. Five out of six studies have shown that PPIs used long-term in non-elderly patients do not reduce serum vitamin B12 concentrations, and therefore body B12 stores[88-89].

In ZES patients treated long-term with high dose PPIs, the serum concentration of vitamin B12 may be reduced[89]. And yet, in cystic fibrosis (CF) children with reduced secretion of pancreatic bicarbonate and increased duodenal acidity, there is no reduction in the intestinal absorption of B12[89].

Thus, long-term use of PPIs does not lead to vitamin B12 deficiencies, except possibly in the elderly or in persons with ZES who are on high doses of PPI for prolonged periods of time[89,90].

RISK OF OSTOPENIA, OSTEOPOROSIS AND WITH BONE METABOLISM

PPIs alter osteoclastic vacuolar mechanisms which may reduce bone absorption[87], and thereby actually reduce the risk of OP. PPIs have no known adverse effect on vitamin D absorption or metabolism.

What is the link between PPI use and metabolic bone disease? There is a highly variable effect of acid suppression on calcium absorption[80,89]. In persons with achlorhydria due to pernicious anemia, Ca2+ absorption is normal or reduced[80,81]. The real question is whether PPI use is associated with an increased risk of osteoporosis/ostopenia, and more importantly with bone fractures. In case controlled studies, PPI use long-term is associated with an increased risk of bone fractures, and this increased risk depends on the duration and dose of chronic use of the PPI[90] (e.g Manitoba Population Health Research Data Repository[103]).

Use of PPI ≥ 5 years can increase the risk of osteoporotic fractures by 1.62-fold (95\% CI: 1.02-2.58). Other studies confirm that use of PPI ≥ 7 years increases the risk of osteoporotic hip fractures by 4.55-fold (95\% CI: 1.68-12.29) and PPI use for 6-12 mo has been reported to be associated with an increased risk of osteoporotic hip and spine fractures[103-109]. Osteoporotic fractures of the hip and spine may be associated with many factors, which must be carefully taken into account in any case-controlled study which suggests a new association, such as the use of PPIs. However, case control studies on the risk of OP may be criticized on a methodological basis, such as the lack of appropriate stratification of the risk of other
factors known to be associated with an increased risk of OR104. The Canadian Association of Gastroenterology (CAG) position paper suggests that “current data would not support particular care in prescribing PPI therapy due to concern about risk of hip fracture”105.

COMMUNITY ACQUIRED NOSOCOMIAL PNEUMONIA

What is the physiological background to speculate that PPIs might result in pulmonary complications? PPI use is associated with increased intragastric aerobic bacteria, and with the production of acetaldehyde from alcohol108. The increased bacterial colonization of the stomach observed with PPI users may be associated with pulmonary micro-aspiration and lung colonization109,110. In addition, it is postulated that secretions from the oropharynx may pass by micro-aspiration into the lower lung airways111. Furthermore, lung colonization may occur as a result of mechanisms other than micro-aspiration of gastric contents, because different organisms may grow from cultures of gastric juice and from bronchoalveolar lavage112.

From the clinical perspective, the risk of community acquired pneumonia (CAP) is 0.6 per 100 person years. In persons on PPIs, the odds ratio (OR) is 1.89 (95% CI: 1.36-2.62) for current PPI use and 1.5 (95% CI: 1.3-1.7) for past PPI use (95% CI: 0.9-1.6, and 0.8-1.3, respectively)113.

In the short-term, PPI use increases the risk of CAP use of PPI for 2 d, OR = 6.53 (95% CI: 3.95-10.80); for 7 d, OR = 3.79 (95% CI: 2.65-5.42); for 14 d, OR = 3.21 (95% CI: 2.46-4.18); but long-term use of PPIs does not increase the risk of CAP114, and furthermore meta-analyses have shown that there is no significant association between PPIs and CAP115.

In contrast, PPIs do not increase the risk of hospital acquired (nosocomial) pneumonia (NP). In fact, there is a reduced risk of NP in patients with nasogastric tubes on a PPI116. For ventilated pediatric patients in ICU, there is no increased risk of NP117,118.

Thus, short-term PPI use increases the risk of CAP, but PPI use does not increase the risk of hospital acquired pneumonia.

CLOSTRIDIUM DIFFICILE-ASSOCIATED PNEUMONIA

There are numerous risk factors for CDAD (use of antibiotics, age, contact with an infected patient or healthcare worker, crowding, lack of cleanliness, post-pyloric tube feeding, patient immunosuppression)120. These factors must be taken into account for the attribution of risk, e.g. before assigning a possible role to a new factor, such as PPIs. Some observational studies show an association between PPI use and risk of CDAD121-123. For example, for PPI use and CDAD in chronic renal failure patients, the AOR is 5.7 (95% CI: 1.3-39.1) (P = 0.02)123. In meta-analyses of studies of CDAD and PPIs, the AOR is 1.96 (95% CI: 1.28-3.00). Some of these reports involve a hypervirulent strain of *C. difficile*, and after correcting for other factors such as antibiotic use, there is no association with PPIs134. The bottom line is that there is no convincingly proven data that PPIs increase the risk of CDAD134,135.

SMALL BOWEL CONTAMINATION SYNDROME AND ENTERIC INFECTIONS

It is thought that PPIs have a minor effect on altering the intestinal bacterial microbiota136. Observational studies have suggested that PPIs may137 or may not138 increase risk of enteric infections.

Thus, PPIs do not have a convincingly proven adverse effect on the enteric microbiota, and if such an effect does exist, there is no proven clinically important adverse effect139,140.

The use and subsequent withdrawal of PPIs may be associated with an exaggeration of, or new onset of, acid-related symptoms. PPIs are a medication that is generously prescribed for a variety of symptoms that are thought, and not necessarily confirmed, to be acid-induced. One reason for this is the relatively low number of adverse effects that have been shown in the short- or long-term. One study suggests that symptoms that commence following the discontinuation of PPIs due to rebound acid hypersecretion may be as troublesome as the symptoms that the PPIs were being used to treat in the first place141. Because of these rebound symptoms, there may be a need for further and continuous PPI use. As with all medications, the key is to use PPIs only when clearly indicated, and to reassess continued use so that long-term therapy is used judiciously.

The risk of false-negative urea breath tests (UBT) for the diagnosis of an *H. pylori* infection is lower for pantoprazole142,143. While it is recommended that acid suppression therapy should be discontinued prior to a UBT, the false-negative effect is lower for pantoprazole.

The biological plausibility is poor for the possibility that PPI use is associated with an increased risk of colorectal cancer or adenomatous polyps, and there is no clinical data to suggest this possibility.

REFERENCES

1. Spencer CM, Faulds D. Lansoprazole. A reappraisal of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy in acid-related disorders. *Drugs* 1994; 48: 404-430
2. Besancon M, Simon A, Sachs G, Shin JM. Sites of reaction of the gastric H,K-ATPase with extracytoplasmic thiol reagents. *J Biol Chem* 1997; 272: 22438-22446
3. Langtry HD, Wilde MI. Lansoprazole. An update of its pharmacological properties and clinical efficacy in the management of acid-related disorders. *Drugs* 1997; 54: 473-500
4. Laine L, Ahnen D, McClain C, Solcia E, Walsh JH. Review article: potential gastrointestinal effects of long-term acid suppression with proton pump inhibitors. *Aliment Pharmacol Ther* 2000; 14: 651-668
5. Fitton A, Wiseman L. Pantoprazole. A review of its phar-
macological properties and therapeutic use in acid-related disorders. Drugs 1996; 51: 460-482

6 Wilde MI, McTavish D. Omeprazole. An update of its pharmacology and therapeutic use in acid-related disorders. Drugs 1994; 48: 91-132

7 Benet LZ. Zech K. Pharmacokinetics—a relevant factor for the choice of a drug? Aliment Pharmacol Ther 1994; 8 Suppl 1: 25-32

8 Tucker GT. The interaction of proton pump inhibitors with cytochromes P450. Aliment Pharmacol Ther 1994; 8 Suppl 1: 33-38

9 Unge P, Andersson T. Drug interactions with proton pump inhibitors. Drug Saf 1997; 16: 171-179

10 Kourey SJ, Stone CK, La Charlie DD. Omeprazole and the development of acute hepatitis. Eur J Emerg Med 1998; 5: 467-469

11 Viana de Miguel C, Alvarez Garcia M, Sanchez Sanchez A, Carvajal Garcia-Pando A. Lansoprazole-induced hepatitis. Med Clin (Barc) 1997; 108: 599

12 Yip D, Kovac S, Jardine M, Horvath J, Findlay M. Omeprazole-induced intestinal neoplasia. J Clin Gastroenterol 1997; 25: 450-452

13 Schönhöfer PS, Werner B, Tröger U. Ocular damage associated with proton pump inhibitors. BMJ 1997; 314: 1805

14 Garcia Rodriguez LA, Mannino S, Wallander MA, Lindblom B. A cohort study of the ocular safety of anti-ulcer drugs. Br J Clin Pharmacol 1996; 42: 213-216

15 Bruley des Varannes S, Levy P, Lartigue S, Dellatolas F. Correlation of Helicobacter pylori colonization in the antrum and corpus during long-term omeprazole therapy: results of a randomised controlled trial. J Clin Gastroenterol 1999; 117: 319-326

16 Kuipers EJ, Lyterlinde AM, Pena AS, Rosendraal R, Pal G, Nels GF, Festen HP, Meuwissen SG. Long-term sequelae of Helicobacter pylori gastritis. Lancet 1995; 345: 1525-1528

17 Klinkenberg-Knol EC, Nels F, Dent J, Snel P, Mitchell B, Prichard P, Lloyd D, Navu N, Frame MH, Román J, Wulan A. Long-term omeprazole treatment in resistant gastro-esophageal reflux disease: efficacy, safety, and influence on gastric mucosa. Gastroenterology 2000; 118: 661-669

18 Moayyedi P, Wason C, Peacock W, Wulan A, Bardhan K, Axon AT, Dixon MF. Changing patterns of Helicobacter pylori gastritis in long-standing acid suppression. Helicobacter 2000; 5: 206-214

19 Hirschowitz BI. Pernicious anemia and stomach cancer. Scand J Gastroenterol 2001; 36: 896

20 Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Mashiba H, Sasaki N, Taniyama K. Changes in Helicobacter pylori-induced gastritis in the antrum and corpus during long-term acid-suppressive treatment in Japan. Aliment Pharmacol Ther 2000; 14: 1345-1352

21 Ohkusa T, Fujiki K, Takashimizu I, Kumagai J, Tanizawa T, Eishi Y, Yokoyama T, Watanabe M. Improvement in atrophic gastritis and intestinal metaplasia in patients in whom Helicobacter pylori was eradicated. Ann Intern Med 2001; 134: 380-386

22 Kuipers EJ, Nels GF, Klinkenberg-Knol EC, Snel P, Goldfain D, Kolkman JJ, Festen HP, Dent J, Zeitoun P, Hauv N, Lamm M, Wulan A. Cure of Helicobacter pylori infection in patients with reflux oesophagitis treated with long term omeprazole reverses gastritis without exacerbation of reflux disease: results of a randomised controlled trial. Gut 2004; 53: 12-20

23 Kuipers EJ. Proton pump inhibitors and Helicobacter pylori gastritis: friends or foes? Basic Clin Pharmacol Toxicol 2006; 99: 187-194

24 Malferttheiner P, Megraud F, O’Morain C, Bazzoli F, El-Omar E, Graham D, Hunt R, Rokkas T, Vakil N, Kuipers EJ. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut 2007; 56: 772-781

25 Robinson M. Drugs, bugs, and esophageal pH profiles. Yale J Biol Med 1999; 72: 169-172

26 Stolte M, Meining A, Schmitz JM, Alexandridis T, Seifert E. Changes in Helicobacter pylori-induced gastritis in the antrum and corpus during 12 months of treatment with omeprazole and lansoprazole in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther 1998; 12: 247-253

27 McColl KE, Murray LS, Gillen D. Omeprazole and accelerated onset of atrophic gastritis. Gastroenterology 2000; 118: 239

28 McColl KE. Helicobacter pylori infection and long term proton pump inhibitor therapy. Gut 2004; 53: 5-7

29 Gillen D, McColl KE. Problems associated with the clinical use of proton pump inhibitors. Pharmacol Toxicol 2001; 89: 281-286

30 Singh P, Indaram A, Greenberg R, Visvalingam V, Bank S. Long-term omeprazole therapy for reflux oesophagitis: follow-up in serum gastrin levels,EC cell hyperplasia and neoplasia. World J Gastroenterol 2000; 6: 789-792

31 Geboes K, Dekker W, Mulder CJ, Nusteling K. Long-term lansoprazole treatment for gastro-oesophageal reflux disease: clinical efficacy and influence on gastric mucosa.
Dockray GJ. Clinical endocrinology and metabolism. Gastroenterology 2003; 124: 1363-1387.

Batra DN,-Colin-Jones D, Hartz S, Langman M, Logan RF, Mant J, Murphy M, Paterson KR, Rossell R, Thomas S, Vessey M. Mortality study of 18,000 patients treated with omeprazole. Gut 2003; 52: 942-946.

Crane SJ, Locke GR 3rd, Harmsen WS, Diehl NN, Zirnismeister AR, Melton LJ 3rd, Romero Y, Talley NJ. Subsite-specific risk factors for esophageal and gastric adenocarcinoma. Am J Gastroenterol 2007; 102: 1596-1602.

La Vecchia C, Tavani A. A review of epidemiological studies on cancer in relation to the use of anti-ulcer drugs. Eur J Cancer Prev 2002; 11: 117-123.

Socol E, Fiocca R, Huvu N, Dalvagå A, Carlsson R. Gastric endocrine cells and gastritis in patients receiving long-term omeprazole treatment. Digestion 1992; 51 Suppl 1: 82-92.

Lamberts R, Creutzfeldt W, Strüber HG, Brunner G, Scolia E. Long-term omeprazole therapy in peptic ulcer disease: gastric, endocrine cell growth, and gastritis. Gastroenterology 1993; 104: 1536-1570.

Klinkenberg-Knol EC, Festen HP, Meuwissen SG. Pharmacological management of gastro-oesophageal reflux disease. Drugs 1995; 49: 695-710.

Merchant SH, Vanderlagt T, Lathrop S, Amin MB. Sporadic duodenal bulb gastrin-cell tumors: association with Helicobacter pylori pylori gastritis and long-term use of proton pump inhibitors. Am J Surg Pathol 2006; 30: 1581-1587.

Creutzfeldt W, Lamberts R, Stöckmann F, Brunner G. Quantitative studies of gastric endocrine cells in patients receiving long-term treatment with omeprazole. Scand J Gastroenterol Suppl 1989; 166: 122-128; discussion 138-139.

Pashankar DS, Israel DM, Jevon GP, Buchan AM. Effect of long-term omeprazole treatment on antral G and D cells in children. J Pediatr Gastroenterol Nutr 2001; 33: 537-542.

Genta RM, Rindi G, Fiocca R, Magner DJ, D’Amico D, Levine E. Effects of 6-12 months of esomeprazole treatment on the gastric mucosa. Am J Gastroenterol 2003; 98: 1257-1265.

Jensen RT. Consequences of long-term proton pump blockade: insights from studies of patients with gastrinomas. Basic Clin Pharmacol Toxicol 2006; 98: 4-19.

el-Zimaitis HM, Jackson FW, Graham DY. Fundic gland polyps developing during omeprazole therapy. Am J Gastroenterol 1997; 92: 1858-1860.

Raghunath AS, O’Morain C, McLaughlin RC. Review article: the long-term use of proton-pump inhibitors. Aliment Pharmacol Ther 2005; 22 Suppl 1: 55-63.

Jalving M, Koornstra JJ, Wesseling L, Boezen HM, De Jong S, Kleibeuker JH. Increased risk of fundic gland polyps during long-term proton pump inhibitor therapy. Aliment Pharmacol Ther 2006; 24: 1341-1348.

Wu TT, Kornacki S, Rashid A, Yardley JH, Hamilton SR. Dysplasia and dysregulation of proliferation in foveolar and surface epithelia of fundic gland polyps from patients with familial adenomatous polyposis. J Surg Oncol 1998; 22: 293-298.
82 Koop H, Bachem MG. Serum iron, ferritin, and vitamin B12 during prolonged omeprazole therapy. J Clin Gastroenterol 1992; 14: 288-292
83 Marcuard SP, Albeznaz L, Khazanie PG. Omeprazole therapy causes malabsorption of cyanocobalamin (vitamin B12). Ann Intern Med 1994; 120: 211-215
84 Saltzman JR, Kemp JA, Golner BB, Pedrosa MC, Dallal GE, Russell RM. Effect of hypochlorhydria due to omeprazole treatment or atrophic gastritis on protein-bound vitamin B12 absorption. J Am Coll Nutr 1994; 13: 584-591
85 Schenk BE, Festen HP, Kuipers EJ, Klinkenberg-Knol EC, Meuwissen SG. Effects of short- and long-term treatment with omeprazole on the absorption and serum levels of cobalamin. Aliment Pharmacol Ther 1996; 10: 541-545
86 Kapadia C. Cobalamin (Vitamin B12) deficiency: is it a problem for our aging population and is the problem compounded by drugs that inhibit gastric acid secretion? J Clin Gastroenterol 2000; 30: 4-6
87 Woters M, Ströhle A, Hahn A. Cobalamin: a critical vitamin in the elderly. Presse Med 2004; 39: 1256-1266
88 den Elzen WP, Groeneveld Y, de Ruijter W, Souverijn JH, Yapicioglu H, Yilmaz HL. Occurrence of osteoporosis. Calcif Tissue Int 2006; 79: 76-83
89 Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD. Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ 2008; 179: 319-326
90 Geller JL, Adams JS. Proton pump inhibitor therapy and hip fracture risk. JAMA 2007; 297: 1429-1430
91 Vestergaard P, Reijmarnark L, Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int 2006; 79: 76-83
92 Laine L. Proton pump inhibitors and bone fractures. Am J Gastroenterol 2009; 104 Suppl 2: S21-S26
93 Moayyedi P, Cranny A. Hip fracture and proton pump inhibitor therapy: balancing the evidence for benefit and harm. Am J Gastroenterol 2008; 103: 2428-2431
94 Väkeväinen S, Tillonen J, Salaspuro M, Jousimies-Somer H, Nuutinen H, Färkkilä M. Hypochlorhydria induced by a proton pump inhibitor leads to intragastric microbial production of acetaldehyde from ethanol. Aliment Pharmacol Ther 2010; 14: 1511-1518
95 Laheij RJ, Sturkenboom MC, Hassing RJ, Dieleman J, Stricker BH, Janssen JB. Risk of community-acquired pneumonia and use of gastric acid-suppressive drugs. JAMA 2004; 292: 1955-1960
96 Theisen J, Nehra D, Citron D, Johannson J, Hagen JA, Crookes PF, DeMeester SR, Brenner CG, DeMeester TR, Peters JH. Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. J Gastrointest Surg 2000; 4: 50-54
97 Simms HH, DeMaria E, McDonald L, Peterson D, Robinson A, Burchard KW. Role of gastric colonization in the development of pneumonia in critically ill trauma patients: results of a prospective randomized trial. J Trauma 1991; 31: 531-536; discussion 536-537
98 Martinez-Pellus AE, Merino P, Bru M, Conejero R, Seller G, Muñoz C, Fuentes T, González G, Alvarez B. Can selective digestive decontamination avoid the endotoxemia and cytokine activation promoted by cardiopulmonary bypass? Crit Care Med 1993; 21: 1684-1691
99 Gulmez SE, Holm A, Frederiksen H, Jensen TG, Pedersen C, Hallas J. Use of proton pump inhibitors and the risk of community-acquired pneumonia: a population-based case-control study. Arch Intern Med 2007; 167: 950-955
100 Sarkar M, Hennessy S, Yang YX. Proton-pump inhibitor use and the risk for community-acquired pneumonia. Ann Intern Med 2008; 149: 391-398
101 Sultan N, Nazareno J, Gregor J. Association between proton pump inhibitors and respiratory infections: a systematic review and meta-analysis of clinical trials. Can J Gastroenterol 2008; 22: 761-766
102 Yamanaka Y, Mammo T, Kita T, Kishi Y. A study of 13 patients with gastric tube in place after esophageal resection: use of omeprazole to decrease gastric acidity and volume. J Clin Anesth 2001; 13: 570-573
103 Yıldızdas D, Yapicioglu H, Yılmaz HL. Occurrence of ventilator-associated pneumonia in mechanically ventilated pediatric intensive care patients during stress ulcer prophylaxis with sucralfate, ranitidine, and omeprazole. J Crit Care 2002; 17: 240-245
104 Levy MJ, Seelig CB, Robinson NJ, Ranney JE. Comparison of omeprazole and ranitidine for stress ulcer prophylaxis. Dig Dis Sci 1997; 42: 1255-1259 author reply 1249-1240
105 Kantorova I, Svoboda P, Scheer P, Doubek J, Rehorkova D, Bosakova H, Ochmann H. Stress ulcer prophylaxis in critically ill patients: a randomized controlled trial. Hepatogastroenterology 2004; 51: 757-761
106 Fordtran JS. Colitis due to Clostridium difficile toxins: underdiagnosed, highly virulent, and nosocomial. Proc (Bayl Univ Med Cent) 2006; 19: 3-12
107 Hauben M, Horn S, Reich L, Younis M. Association between gastric acid suppressants and Clostridium difficile...
Thomson ABR et al. Long-term safety of PPIs

...colitis and community-acquired pneumonia: analysis using pharmacovigilance tools. *Int J Infect Dis* 2007; 11: 417-422

Leonard J, Marshall JK, Moayyedi P. Systematic review of the risk of enteric infection in patients taking acid suppression. *Am J Gastroenterol* 2007; 102: 2047-2056; quiz 2057

Dubberke ER, Reske KA, Yan Y, Olsen MA, McDonald LC, Fraser VJ. Clostridium difficile-associated disease in a setting of endemicity: identification of novel risk factors. *Clin Infect Dis* 2007; 45: 1543-1549

Kazakova SV, Ware K, Baughman B, Bilukha O, Paradis A, Sears S, Thompson A, Jensen B, Wiggs L, Bessette J, Martin J, Clukey J, Gensheimer K, Killgore G, McDonald LC. A hospital outbreak of diarrhea due to an emerging epidemic strain of Clostridium difficile. *Arch Intern Med* 2006; 166: 2518-2524

Cunningham R, Dale B, Undy B, Gaunt N. Proton pump inhibitors as a risk factor for Clostridium difficile diarrhoea. *J Hosp Infect* 2003; 54: 243-245

Yearsley KA, Gilby LJ, Ramadas AV, Kubiac EM, Fone DL, Allison MC. Proton pump inhibitor therapy is a risk factor for Clostridium difficile-associated diarrhoea. *Aliment Pharmacol Ther* 2006; 24: 613-619

Peled N, Pitlik S, Samra Z, Kazakov A, Bloch Y, Bihara J. Predicting Clostridium difficile toxin in hospitalized patients with antibiotic-associated diarrhea. *Infect Control Hosp Epidemiol* 2007; 28: 377-381

Dial S, Alrasadi K, Manoukian C, Huang A, Menzies D. Risk of Clostridium difficile diarrhoea among hospital inpatients prescribed proton pump inhibitors: cohort and case-control studies. *CMAJ* 2004; 171: 33-38

Al-Tureihl FI, Hassoun A, Wolf-Klein G, Isenberg H. Albuterol, length of stay, and proton pump inhibitors: key factors in Clostridium difficile-associated disease in nursing home patients. *J Am Med Dir Assoc* 2005; 6: 105-108

Beauchesne M, Williamson D, Parente F. Different effects of short-term omeprazole, lansoprazole or pantoprazole on the accuracy of the (13)C-urea breath test. *Aliment Pharmacol Ther* 2007; 26: 1340-1344

Akhtar AJ, Shaheen M. Increasing incidence of clostridium difficile-associated diarrhea in African-American and Hispanic patients: association with the use of proton pump inhibitor therapy. *J Natl Med Assoc* 2007; 99: 500-504

Aseeer M, Schroeder T, Kramer J, Zackula R. Gastric acid suppression by proton pump inhibitors as a risk factor for Clostridium difficile-associated diarrhea in hospitalized patients. *Am J Gastroenterol* 2008; 103: 2308-2313

Pépin J, Saheb N, Coulombe MA, Alary ME, Corriveau MP, Authier S, Leblanc M, Rivard G, Bettez M, Primeau V, Nguyen M, Jacob CE, Lanthier L. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. *Clin Infect Dis* 2005; 41: 1254-1260

Dial S, Delaney JA, Barkun AN, Suissa S. Use of gastric acid-suppressive agents and the risk of community-acquired Clostridium difficile-associated disease. *JAMA* 2005; 294: 2989-2995

Williams C, McColl KE. Review article: proton pump inhibitors and bacterial overgrowth. *Aliment Pharmacol Ther* 2006; 23: 3-10

Elphick DA, Chew TS, Higham SE, Bird N, Ahmad A, Sanders DS. Small bowel bacterial overgrowth in asymptomatic older people: can it be diagnosed earlier? *Gerontology* 2005; 51: 396-401

Garcia Rodriguez LA, Ruigómez A. Gastric acid, acid-suppressing drugs, and bacterial gastroenteritis: how much of a risk? *Epidemiology* 1997; 8: 571-574

Dial MS. Proton pump inhibitor use and enteric infections. *Am J Gastroenterol* 2009; 104 Suppl 2: S10-S16

Vakil N. Acid inhibition and infections outside the gastrointestinal tract. *Am J Gastroenterol* 2009; 104 Suppl 2: S17-S20

Reimer C, Söndergaard B, Hilsted L, Bytzer P. Proton-pump inhibitor therapy induces acid-related symptoms in healthy volunteers after withdrawal of therapy. *Gastroenterology* 2009; 137: 80-87, 87 e1

Levine A, Shevah O, Shabat-Sehayek V, Aeed H, Boaz M, Moss SF, Niv Y, Avni Y, Shirin H. Masking of 13C urea breath test by proton pump inhibitors is dependent on type of medication: comparison between omeprazole, pantoprazole, lansoprazole and esomeprazole. *Aliment Pharmacol Ther* 2004; 20: 117-122

Parente F, Sainaghi M, Sangaletti O, Imbesi V, Macroni G, Anderloni A, Bianchi Porro G. Different effects of short-term omeprazole, lansoprazole or pantoprazole on the accuracy of the (13)C-urea breath test. *Aliment Pharmacol Ther* 2002; 16: 553-557

S-Editor Tian L. L-Editor O'Neill M. E-Editor Lin YP