Long range correlations in DNA sequences

A. K. Mohanty and A. V. S. S. Narayana Rao

Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai-400085
*Molecular Biology and Agriculture Division, Bhabha Atomic Research Centre, Mumbai-400085

The so called long range correlation properties of DNA sequences are studied using the variance analyses of the density distribution of a single or a group of nucleotides in a model independent way. This new method which was suggested earlier has been applied to extract slope parameters that characterize the correlation properties for several intron containing and intron less DNA sequences. An important aspect of all the DNA sequences is the properties of complimentarity by virtue of which any two complimentary distributions (like GA is complimentary to TC or G is complimentary to ATC) have identical fluctuations at all scales although their distribution functions need not be identical. Due to this complimentarity, the famous DNA walk representation whose statistical interpretation is still unresolved is shown to be a special case of the present formalism with a density distribution corresponding to a purine or a pyrimidine group. Another interesting aspect of most of the DNA sequences is that the factorial moments as a function of length exceed unity around a region where the variance versus length in a log-log plot shows a bending. This is a pure phenomenological observation which is found for several DNA sequences with a few exception. Therefore, this length scale has been used as an approximate measure to exclude the bending regions from the slope analyses. The asymmetries in the nucleotide contents or the patchy structure as a possible origin of the long range correlations has also been investigated.

PAC(s) 87.14.Gg.87.16.AC,05.10.-a

I. INTRODUCTION

Recently, there has been considerable interest in the finding of long range correlations in genomic DNA sequences [1]. A DNA sequence is a chain of sites, each occupied by either a purine (Adenine and Guanine) or a pyrimidine (Cytocine and Thymine) group. For mathematical modeling, the DNA sequence might be considered as a string of symbols (G, A, T and C) whose correlation structure can be characterized completely by all possible base-base correlation functions or their corresponding power spectra. Different techniques including mutual information functions and power spectra analyses [1], auto correlation [12], DNA walk representation [13-20], wavelet analysis [21,22] and Zipf analysis [23] were used for statistical analyses of DNA sequences. But despite the effort spent, it is still an open question whether the long range correlation properties are different for protein coding (exonic) and non coding (intronic, intergenemic) sequences [24]. One more fundamental ground, there is still continuing debate as to whether the reported long range correlations really mean a lack of independence at long distances or simply reflect the patchiness (bias in nucleotide composition) of DNA sequences. There have been attempts to eliminate local patchiness using methods such as min-max [13], detrended fluctuation analysis (DFA) [24,25] and wavelet analysis [21]. In spite of its success in modeling the long range correlations observed in DNA sequences, as indicated by the power law increase in the variance and the inverse power law spectrum [19], the problem of the correct statistical interpretation of DNA walk is still unresolved and is attracting the attention of an increasing number of investigators. Since approaches based on different models predict different correlation structure, there is no unique measure of the degree of correlation in DNA sequences. Therefore, it is very important to investigate the correlations and extract the power law exponent \(\alpha \) rather in a model independent way so that the interpretation of the data including the theoretical analysis becomes more meaningful. There is another confusion related to this study is the absence of a clear definition of the term ”long range”. Clearly, what is considered to be long is relative to what is considered to be short. To over come some of these problems, recently we have suggested a new method [26] to measure the degree of correlations using the variance analysis of the density distribution of a single or a group of nucleotides. We have also suggested a way to find out an approximate length scale above which all DNA sequences show strong long range correlations irrespective of their intron contents while below this, the correlation is relatively weak. Further, the density distribution which is nearly Gaussian at short distances shows significant deviations from the Gaussian statistics at large distances. In this paper, we present the details of the analyses and also extract the correlation parameter \(\alpha \) for several intron containing and intronless sequences.
II. DENSITY DISTRIBUTION AND FACTORIAL MOMENTS:

In the present method, we build the frequency spectrum of a single or a group of nucleotides by dividing the DNA sequence into many equal intervals of length l. For example, to build a purine spectrum, we compute

$$n = \sum_{i=1}^{l_0+l} u_i$$ \hspace{1cm} (1)

where $u_i = 1$ if the site is occupied by a G or A and $u_i = 0$ otherwise. Ideally, one can divide the entire DNA sequence of length L into m equal intervals of size l ($l = L/m$). The purine or GA spectrum can be built by computing n from all the intervals. Alternatively, n can be computed in any segment between l_0 and $l_0 + l$ and the spectrum (P_n) is built by varying the starting position l_0 from 1, 2, 3 etc uptil L so as to cover the whole sequence. We adopt this second procedure for better statistics. Finally, the standard deviation (SD) of this P_n distribution can be obtained from

$$\sigma^2 = <n^2> - <n>^2$$

which in general will depend on the interval or the window size l.

In addition to the standard deviation σ^2, we also compute the factorial moments F_q’s of P_n. The normalized factorial moments of order q are written as

$$F_q = \frac{f_q}{f_1}$$ \hspace{1cm} (2)

where

$$f_q = \sum_{n=q}^{\infty} P_n n(n-1)....(n-q+1) = \sum_{n=q}^{\infty} \frac{n!}{(n-q)!} P_n$$ \hspace{1cm} (3)

As will be shown later, the factorial moment has the distinct advantage over the normal moments in identifying the genomic sequence from the random one. It may be mentioned here that for random Poisson distribution, the factorial moments for all q’s become unity i.e. for

$$P_n = \frac{a^n e^{-a}}{n!}$$ \hspace{1cm} (4)

the above factor for f_q becomes

$$f_q = \sum_{n=q}^{\infty} \frac{n!}{(n-q)!} \frac{a^n e^{-a}}{n!} = \sum_{n=q}^{\infty} \frac{a^n e^{-a}}{(n-q)!} = \frac{a^q}{m!} = a^q$$ \hspace{1cm} (5)

which gives $F_q=1$.

In this work, we have applied the above factorial moment analysis (generally used to study the fluctuations during a phase transition [27]) to study the dynamical fluctuations present in the DNA sequences.

III. PRINCIPLE OF COMPLIMENTARITY

A general property noticed for all the genomic sequences (of statistically significant length) with a few exceptions is that the distributions of any single or group of nucleotides which has a probability of occurrence p has the same variance σ as that of its complimentary group that has the probability of occurrence $(1-p)$, although both have different distribution functions. This would imply that even a single nucleotide distribution say G distribution will have same variance as that of ATC distribution or a GA distribution will have identical variance as that of TC distribution. Figure [3] shows σ versus l plots for G and GA distributions (solid curves) for two typical sequences of $DROMHC$ (Drosophila Melanogaster, MHC, 22663 bps, 20.5% G, 30.3% A, 25.4% T, 23.8% C) and SC_MIT (yeast

1At short distances, n can be zero due to the non occurrence of a given nucleotide. In such cases, the density spectrum can be built either including or excluding zeroth channel. In this analysis, we include zeroth channel also so that the complementarity is satisfied which is unlike the case when the zeroth channel is excluded. See appendix B for details.
mitochondrial DNA, 9.1% G, 42.2% A, 40.7% T, 8.0% C). As can be seen from the figure, the G and GA distributions have same σ at all scale as that of ATC and TC distributions (filled circles) although the distribution functions of the two complimentary groups need not be identical. The above agreement is exact for most of the DNA sequences (with a few exceptions) as well as for the random sequences. For example, the σ for G and ATC distributions of SC_MIT and E._coli : TN10 (E._coli with a TN10 mobile transposion (9147 bps) at location 22000 bps) show 2% to 3% deviations at all scale depending on the total length of the sequences whereas for other DNA as well as random sequences, this agreement is exact. (This difference is not visible from figure 1 in case of SC_MIT as the deviation is insignificant over a large distance).

FIG. 1. The variance σ versus l for G and GA distributions (solid curves). Top panel is for DROMHC (Drosophila Melanogaster, MHC) while the bottom panel for SC_MIT (yeast mitochondrial DNA). The filled circles are for the complimentary ATC and TC distributions. The curve RW (dotted curve) corresponds to the slope in case of random walk (see text for details). The curves are scaled up appropriately for better clarity.

Within the present formalism, we can also reproduce the result of random walk (RW) model (See appendix for more detail) by assigning $u_i = 1$ for purine group (G and A) and $u_i = -1$ for pyrimidine group (T and C). However, unlike the random walk model of interpreting $+1$ and -1 as the probability of step up and step down, P_n can be considered as the frequency distribution of n which gives the excess or deficit of purines over pyrimidines. The σ versus l as obtained from this assignment has also been shown in figure 1 (see the dotted curves labeled RW) for comparison. It is interesting to note that the RW curves shows a parallel shift with respect to the GA or TC curves indicating that GA or TC distributions and RW model have similar fluctuations at all scale. This is an interesting observations, as we can now use GA or TC distributions as alternatives to the DNA walk representation to study the correlation. The advantage is, since n represents a sum, unlike the DNA walk model, the entire spectrum lies to the positive side of the coordinates which is essential to compute various higher moments like F_q of the distributions.

It is also important to note that although the complimentary distributions have same σ at all scale, the distribution functions need not be exactly identical. Figure 2 shows a typical normalized density distribution functions P_n of two complimentary distributions G and ATC for the above two sequences (SC_MIT and DROMHC) as a function of $n - n_0$ (where n_0 is the average count) at a typical length scale of $l = 150$ (figures in left). The figures to the right shows P_n distributions (x-axis is shifted by 100 for clarity) corresponding to the two purely random sequences having same length and nucleotide contents as that of DROMHC and SC_MIT sequences. It is interesting to note that although σ versus l plots are (nearly) identical i.e., both distributions have same fluctuations at all scales, the distribution functions are not identical. This is an important characteristic of a DNA sequence which is not found in case of a random one.
FIG. 2. The complimentary G and ATC density distributions at a typical distance of $l = 150$ for above two sequences. The curves on the right (shifted by 100 units) shows the corresponding distributions in case of a purely random sequence of appropriate G, A, T and C contents.

IV. EXTRACTION OF SLOPE PARAMETER

The long range correlations are generally studied from the relation $\sigma \sim l^\alpha$ where the parameter α is extracted from the σ versus l plot in the log-log scale. For the case of a completely random sequence, $\alpha \sim 0.5$. The deviation of α from 0.5 indicates presence of long range correlations. We have estimated σ of G, A, T, C and GA distributions for several DNA sequences and found that σ versus l plot in the log-log scale is not linear over the entire length L. Figure 3 shows σ versus l plot (bottom panel) for a typical $E.Coli$ sequence of length $L = 1.2$ Mbps (solid curves) and $L = 30$ Kbps (dotted curves) respectively. The top panel shows the factorial distributions of $q=2$, 3, 4 and 6 for a typical A distributions, although similar plots can be obtained for other nucleotide distributions as well. A general feature of the factorial moments of the DNA sequence with a few exception is that at short distances, $F_q < 1$ for all q's and exceeds unity at some point say at l_q. This behavior is not found in case of a purely random sequence where F_q is always ≤ 1.0. Further, all q's do not cross unity exactly at the same point, l_q being more for higher q values. However, this variation is insignificant over a very large scale if we restrict to some of the lower moments say up to $q = 6$.

From these plots and also from the several other studies, we make following few observations; (i) The σ versus l plot is not linear through out, rather starts bending around some region (say l_c, which could be different for different distributions) indicating a change of slope from α_1 to α_2, (ii) For most of the cases, while α_1 shows weak deviation from 0.5, α_2 deviates significantly from 0.5 and also depends on the sequence length L, (iii) The individual nucleotide distributions may have stronger correlations than any sum like GA and TC distributions or any other combinations.

2We consider only the G, A, T and C distributions to extract the correlation parameters for the individual nuclotides and GA distributions to simulate the results of random walk model.
FIG. 3. (a) The factorial moments F_q versus l for a typical A distributions of *E.Coli* sequence of length 1.2 Mbps. (b) The corresponding slope parameter σ versus l for *E.Coli* of length 1.2 Mbps (solid curves) and of length 30 Kbps (dashed curves). The curves are scaled up appropriately for clarity.

Since σ versus l in the log-log plot starts bending around l_c, we can extract the slope by dividing the entire length into two segments; one for $l < l_c$ and the other one for $l > l_c$. This can be done by examining each case individually. However, we have noticed an approximate correlation between this bending region in σ versus l plot and the cross over points l_q of the corresponding factorial moments i.e. the slope changes around the same region where the factorial moments become unity. This is a pure phenomenological observation which is found for several DNA sequences as listed in tables with a few exceptions which we will discuss below. It may be mentioned here that although, the two complimentary distributions have same fluctuations, both need not have identical factorial moments. Figure 3 shows the plots of F_q versus l for A and GTC distribution for a *LAMCG* sequence. Since both are complimentary, they have identical fluctuations at all scales (hence same bending region), but the cross over regions in F_q plots are different, being higher for ATC distributions (due to large average values n_0 at all scales). While the l_q value of the A distribution shows an approximate correlation with the bending region of σ versus l plot where a possible slope change occurs, the l_q values of GTC distribution has no such correlations. This is true for any complementary distributions of G, A, T and C except for GA and TC distributions since both have nearly same overlapping cross over regions.
FIG. 4. The factorial moments F_q versus l for G and ATC distributions of LAMCG sequence

Therefore, only the l_q values of the G, A, T, C and GA distributions are used as an approximate length scales (l_c). The entire length of the sequence is divided into two parts one for $0 < l < l_{c1}$ and other for $l_{c2} < l < L_{max}$ where l_{c1} and l_{c2} are the minimum and maximum of all the l_c corresponding to G, A, T, C and GA distributions. The $L_{max} = L/30$, i.e. we have at least 30 independent data sets so that the statistical analysis becomes meaningful. Therefore, excluding the region $l_{c1} < l < l_{c2}$, we have extracted α_1 and α_2 since the linearity in these two segments are found to be extremely good for most of the cases. The results are summarized in three tables which covers both intronless and intron containing sequences. The table shows the length of the sequence L used in the analyses, the cross over values l_q (same as l_c), the slope parameters α_1 and α_2 and also the corresponding percentage of the nucleotide contents P. A general observation is that the sequence is weakly correlated at short distance with α_1 which is quite close to 0.5 whereas for $l > l_c$, the correlation is relatively stronger with a larger value of α_2. Now we discuss a few exceptions like in the case of SC_MIT and PODO_T7 (T7 bacteriophage, 39936 bps). Figure 5 shows the factorial moments of a typical G distributions. In both the cases, the factorial moments do not have any cross over point. In case of SC_MIT, the factorial moments are much higher than unity even at small distance and starts decreasing afterwards. The similar behavior is found for C distribution also. However, the A, T and GA distributions do have l_c points. Therefore, using l_{c1} as ~ 36 and $l_{c2} \sim 184$, we estimated α_1 and α_2 for G, A, T, C and GA distributions which are listed in table III. The symbol '−' indicates absence of any critical value. It is interesting to note that α_1 is quite large and in some cases $\alpha_1 > \alpha_2$. On the other hand, the factorial moments of the sequence like PODO_T7 do not reach unity at any scale. The absence of such type of scale has been indicated by the symbol '−' in table III. This type of sequences behave like a pure random one having α values quite close to 0.5. We have listed a few such sequences with exceptions in table III.
Further, we would like to mention here that we have noticed that the factorial moments for many sequences start decreasing at large distances. Also for a few cases, the factorial moments start decreasing even at a very short distances. Consequently, the slope also changes accordingly. However, we would not like to assign any reasons due to lack of enough statistics.

The slope with $\alpha = 0.5$ corresponds to the case of a normal diffusion process of a random Brownian trajectory. The basic idea of a Brownian motion is that of a random walk having a Gaussian distribution probability for the position of the random walker after a time t with the variance (σ^2) proportional to t ($\sigma \sim t^{\alpha}$ where $\alpha = 0.5$). This corresponds to the case of normal diffusion. However, nature shows enough examples of anomalous diffusion characterized by a variance which does not follow a linear growth in time [28]. In such cases either the diffusion is accelerated if $\alpha > 0.5$ or the growth is dispersive if $\alpha < 0.5$. As found in the analyses (see tables I and II), $\alpha_2 > 0.5$ at large distances for most of the sequences irrespective of their intron contents. However, a few sequences as shown in table III, not only peculiar, may also have α which decreases at large distances. In such cases, $\alpha < 0.5$ which may indicate the influence of dispersive dynamics. This aspect needs further investigations. Finally, we would like to add here that α_1 is close to 0.5 for most of the sequences at short distance (see tables I and II). Although, $\alpha = 0.5$ would imply about a random behavior, it can not be told conclusively from the present analyses unless the short distance effects are taken into consideration [29].

V. PATCHY SEQUENCES

In the following, we investigate whether the mosaic character of DNA consisting of patches of different composition can account for apparent long range correlations in DNA sequences [13]. The Chargaff’s second parity rule states that in a single strand $G \approx C$ and $T \approx A$. However, asymmetries in base composition have been observed in many sequences. A quantitative estimate of the GC and AT skews can be obtained from the relation $(G - C)/(G + C)$ (Excess of G nucleotides over C nucleotides) and $(A - T)/(A + T)$ (Excess of A nucleotides over T nucleotides). This is, operationally equivalent to estimating n as defined in Eq.(1) except n now represents the count $(G - C)/(G + C)$ for GC skew and $(A - T)/(A + T)$ for AT skew in a fixed window size of $(L/20)$. We consider $LAMCG$ as an example and plot n (defined appropriately) versus l_0 where the starting position of the sliding window l_0 varies from 1, 2, 3 etc.
upto $L - l$. Figure 6 shows the plots of GC and AT skews as a function of the length for a typical LAMCG sequence. The plots show a change in the direction of the slope with a change in sign of the skew. The quantity and quality of the skew can be assessed from the V or from the inverted-V shape of the curves.

From the above plots, we can identify three well known compositional domains of LAMCG of size 22000 bps (GA contents 0.54), 17000 bps (GA contents 0.47) and 9000 bps (GA contents 0.54). We also consider an artificially generated sequence by joining three random patches of size 22000 bps, 17000 bps and 9000 bps respectively with appropriate G, A, T and C contents. We also consider another heterogeneous sequence generated from E.Coli DNA by a mobile insertion of TN10 at location 22000 bps. The corresponding random patches are of size 22000 bps, 9147 bps and 22000 bps respectively.

Please note the distinction between the random sequence which is generated by joining three random patches of total length L and a pure random one of length L. Although, both the sequence has same percentage of nucleotide contents in the length L, the former is random only patch wise.
Figure 7 shows the F_q versus l plot of a typical C distribution for LAMCG and for an artificially generated sequence (random only patch wise). Interestingly, the factorial moments for both the cases behave similarly. Figure 8 shows a similar $\sigma(l)$ versus l plot both for real and artificially generated (from random patches) sequences. Although, in some cases both agree, in general they are not identical at the individual nucleotide levels particularly at large distances (Note that the scale is highly compressed). This deviation would mean that at large distances, the density distribution functions will have significant discrepancy due to different widths. So at a first look from the σ versus l plot, we can say that the actual DNA sequences and the RANDOM patches need not have identical slopes α (hence the width σ) at large distances for all the nucleotides although they agree in some cases. Even at short distances, although the DNA and the RANDOM sequences have nearly identical width σ, the full shape of the distributions need not be identical. To demonstrate this, we invoke the principle of complimentary which was mentioned before.
FIG. 8. The variance σ versus l for G, A, T, C, and GA distributions. (a) LAMCG and an artificial sequence generated by joining three randomly generated patches of size 22000 bps, 17000 bps and 9000 bps with the same G, A, T and C contents as that of LAMCG. (b) for E.Coli with a TN_{10} mobile transposition (9147 bps) at location 22000 bps. The three random patches are of size 22000 bps, 9147 bps and 22000 bps with appropriate G, A, T and C contents.

Figure 9(a) shows a G and ATC distribution (left most) for a LAMCG sequence at $l = 300$. Notice that although σ versus l plots are identical, i.e. both distributions have same fluctuations at all scales, the distribution functions are not same. Such differences are not found for a real random sequence (right most). The middle figure corresponds to the case of artificially generated random sequence. Although, the artificially generated sequence mimics the real sequence to some extent, it is not fully capable of reproducing the characteristic of a real sequence. Figure 9(b) shows another comparison for a E.Coli :: TN_{10} sequence for A and GTC distributions. This discrepancy will be more prominent at higher l values which the artificially generated sequence can not reproduce.

FIG. 9. The density distribution P_n versus $n - n_0$ (where n_0 is average density) for a real DNA sequence (left most), for an artificially generated sequence (middle) and for a completely random sequence (right most) shown for two complementary distributions. (a) for LAMCG and (b) for E.Coli :: TN_{10}.
VI. DENSITY DISTRIBUTIONS

In [26], we had demonstrated that the density distribution P_n is Gaussian at short distances and starts deviating from it as the distance increases. Figure 10 shows another example where P_n has been plotted for two complimentary distributions at $l = 25, 100$ and 200 respectively. The complimentary distributions are nearly identical at short distance and coincide with the random distributions where as P_n distributions for G, ATC and pure random one are all different at larger distances.

![Graph showing density distribution](image)

FIG. 10. The density distribution P_n versus $n - n_0$ (where n_0 is average density) for LAMCG sequence at $l = 25, 100$ and 200 respectively. The solid and the dashed curves are for G and ATC distributions respectively whereas the dotted curve is for a purely random sequence.

Thus, irrespective of intron contents, most of the sequences follow Gaussian statistics at short distances. However, at large distances, the statistics deviates significantly from the Gaussian nature.

VII. CONCLUSIONS

In conclusion, we have extended our previous work to extract the slope parameter α for several intron containing and intron less DNA sequences. The advantage of the present method is that the variance analysis can be applied to any individual or group of nucleotides. We believe that the individual nucleotides provide a more fundamental measure of the correlation than any combination or group (like the DNA walk representation) where the effects may get reduced or washed out. Another interesting aspect is the (lower) factorial moments of most of the DNA sequences cross unity in a very narrow region in l where the σ versus l plot in the log-log scale also shows a bending. Although, a formal justification to this correlation has not been provided, we have used this scale as an approximate measure to exclude the bending regions from the slope analyses. Based on this scale, we divide the DNA sequence into two segments to extract the slope parameters. It is found that below this scale, the correlation is weak and the DNA statistics is essentially Gaussian while above this all DNA sequences show strong long range correlations irrespective of their intron contents with a significant deviation from the Gaussian behavior. It may be mentioned here that the controversies that exist in this field of research are primarily due to different approaches that are adopted in various models. In this context, our analyses is model independent as it only involves the counting of an individual or a group of nucleotides in a given length to build the density distribution. In this work, we do not advocate for any specific model, although the extracted slope parameters indicate the presence of anomalous diffusion of both enhanced and dispersive nature. Instead, we provide an elegant tool to measure the degree of correlations unambiguously so that the interpretation of the data including theoretical analyses will become more meaningful. This work will also provide further impetus to develop models for the understanding of the DNA dynamics.
TABLE I. Summary of the correlation analysis of intron containing sequences. l_c is the characteristic length scale. α_1 is the slope parameter for $l < l_c$ and α_2 is the slope parameter for $l_c < l < l_{max}$, where l_{min} and l_{max} are the minimum and the maximum of all the l_{c}, $l_{max}=L/30$ where L is the total length of the sequence. The acronym in column 1 is the name of the GenBank. Since the factorial moments for all q do not cross exactly at same point, we have chosen l_c for which F_q for $q = 2, 3, 4$ and 6 approaches unity simultaneously. P denotes percentage of G, A, T and C in the sequence. We have also not fine tuned the cross over point l_c, it is only approximate.

Sequence	L	l_c	α_1	α_2	P	G	A	T	C	GA
Human β-globin	73,308	12	0.640	0.703	20.2	14	14	14	32	
(Chromosomal region)										
HUMHBB										
Adenovirus type 2	35,937	24	0.598	0.862	27.3	12	12	36	132	
(Intron containing)										
ADRCG										
Chicken embryonic MHC	31,111	24	0.614	0.775	22.2	36	14	28	48	
(Gene)										
CHKMYHE										
Human β-cardiac MHC	25,438	16	0.638	0.681	25.9	16	10	10	18	
(Gene)										
HUMBMYP7										
Drosophila melanogaster MHC	22,663	20	0.648	0.820	20.5	20	14	36	156	
(Gene)										
DROMHC										
Chicken c-myb oncogene	8200	14	0.663	0.749	28.4	10	10	12	48	
(Gene)										
CHKMYB15										

12
TABLE II. Same as table I, but for intron less sequences. For E.Coli, \(l_{max} \) is chosen as 120,000 bps. The data is taken from the site http://www.ncbi.nlm.nih.gov.

Sequence	L	\(l_c, \alpha \)	G	A	T	C	GA
E.ColiK12	1200000	\(l_c, \alpha \)	100	32	32	92	684
		\(\alpha_1 \)	0.535	0.542	0.549	0.532	0.529
		\(\alpha_2 \)	0.665	0.639	0.664	0.674	0.614
		\(\alpha_3 \)	0.654	0.654	0.655	0.715	0.563
		P	27.2	23.6	24.2	25.0	50.8
H. Influenzae	240000	\(l_c, \alpha \)	52	48	56	52	214
		\(\alpha_1 \)	0.542	0.552	0.543	0.547	0.543
		\(\alpha_2 \)	0.720	0.712	0.635	0.770	0.709
		P	17.9	31.6	30.7	19.8	49.5
Bacillus subtilis	3840x60	\(l_c, \alpha \)	80	40	22	132	274
		\(\alpha_1 \)	0.538	0.545	0.550	0.508	0.536
		\(\alpha_2 \)	0.815	0.770	0.816	0.779	0.766
		P	24.5	29.5	26.5	19.5	54.0
Mycobacterium tuberculosis	9665x60	\(l_c, \alpha \)	20	64	44	24	136
		\(\alpha_1 \)	0.549	0.535	0.548	0.540	0.542
		\(\alpha_2 \)	0.827	0.681	0.826	0.765	0.791
		P	15.92	34.57	33.73	15.78	50.49
Cyano bacterium	4166x60	\(l_c, \alpha \)	32	40	28	24	304
		\(\alpha_1 \)	0.545	0.532	0.542	0.541	0.535
		\(\alpha_2 \)	0.730	0.678	0.763	0.733	0.587
		P	24.1	26.0	26.0	23.9	50.1
Schizosaccharomyces	19431	\(l_c, \alpha \)	32	60	80	304	160
		\(\alpha_1 \)	0.547	0.561	0.568	0.504	0.543
		\(\alpha_2 \)	0.698	0.690	0.774	0.465	0.773
		P	15.8	33.8	36.1	14.3	49.6
Human Cytomegalovirus	229354	\(l_c, \alpha \)	36	10	10	32	148
Strain AD169		\(\alpha_1 \)	0.582	0.588	0.596	0.581	0.575
HEHCMVCG		\(\alpha_2 \)	0.806	0.799	0.800	0.800	0.682
		P	15.8	33.8	36.1	14.3	49.6
dmal	889x60	\(l_c, \alpha \)	20	12	12	22	68
		\(\alpha_1 \)	0.575	0.628	0.599	0.559	0.60
		\(\alpha_2 \)	0.730	0.782	0.602	0.720	0.596
Chicken nonmusele MHC (cDNA)	7003	\(l_c, \alpha \)	96	72	12	28	64
CHKMYHN		\(\alpha_1 \)	0.573	0.538	0.569	0.554	0.627
		\(\alpha_2 \)	0.722	0.833	0.841	0.601	0.842
		P	27.0	31.2	20.6	21.2	58.2
Bacteriophage \(\lambda \) (Intronless virus)	48,502	\(l_c, \alpha \)	56	36	18	124	168
LAMCG		\(\alpha_1 \)	0.563	0.541	0.598	0.513	0.550
		\(\alpha_2 \)	0.935	0.819	0.911	0.810	0.866
		P	26.4	25.4	24.7	23.5	51.8
Human dystrophin (cDNA)	13,957	\(l_c, \alpha \)	136	56	14	22	128
HUMDYS:M18533		\(\alpha_1 \)	0.530	0.552	0.569	0.552	0.544
		\(\alpha_2 \)	0.738	0.634	0.777	0.720	0.725
		P	22.4	33.0	24.7	19.9	55.4
TABLE III. Same as table II. The symbol ∗ indicates that the factorial moments are larger than unity even at very short distance where as − indicates that the factorial moments do not reach unity.

Sequence	L	l_c, α	G	A	T	C	GA	
SC-MIT	85779	l_c						
Nc-001224		α_1	0.732	0.697	0.680	0.720	0.578	
		α_2	0.698	0.540	0.747	0.508	0.730	
		P	9.1	42.2	40.7	8.0	51.3	
Pichia canadensis	27694	l_c	*	36	64	*	96	
Mitochondrion NC-001762		α_1	0.654	0.688	0.624	0.615	0.620	
		α_2	0.662	0.755	0.784	0.660	0.801	
		P	10.2	41.6	40.2	8.0	51.84	
Ti(Plasmid)	24595	l_c	76	24	32	40	-	
		α_1	0.543	0.564	0.552	0.586	0.508	
		α_2	0.706	0.700	0.676	0.728	0.433	
		P	23.5	26.6	27.5	22.4	50.1	
Bacteriophage T7	39937	l_c	-	116	-	884	1284	-
NC-001604		$\alpha_1 < 116$	0.526	0.571	0.529	0.530	0.530	
		$116 < \alpha_2 < 1330$	0.560	0.587	0.590	0.566	0.551	
		P	25.8	27.2	24.4	22.6	53.0	
Tyorg	196x60	l_c	-	96	-	36	96	
		α_1	0.491	0.560	0.515	0.620	0.587	
		α_2	0.370	0.715	0.514	0.799	0.704	
		P	16.0	35.9	26.7	21.4	51.9	
APPENDIX: RANDOM WALK MODEL

The method of DNA walks, first suggested by Peng et al [13] is based on the rule that the walker either moves up ($u_i = 1$) or down $u_i = -1$ for each step i of the walk. This is the case of a correlated random walk and differs from an uncorrelated walk where the direction of each step is independent of the previous steps. Further they assign $u_i = 1$ if a pyrimidine occurs at the site i whereas $u_i = -1$ if the site contains a purine. The net displacement (y) of the walker after l steps is defined as

$$y(l) = \sum_{i=1}^{l} u(i)$$ \hspace{1cm} (A1)

The standard deviation of the above quantity can be estimated from

$$\sigma^2(l, L) = \frac{1}{L-l} \sum_{l_0=1}^{L-l} (\Delta y(l_0, l) - \bar{\Delta}(l))^2$$ \hspace{1cm} (A2)

where L is the number of nucleotides in the entire sequence and

$$\Delta \bar{y}(l) = \frac{1}{L-l} \sum_{l_0=1}^{L-l} \Delta y(l_0, l)$$ \hspace{1cm} (A3)

where $\Delta y(l_0, l) = y(l_0 + l) - y(l_0)$. It was found [13] that the fluctuations can be approximated by

$$\sigma(l, L) \sim l^\alpha$$ \hspace{1cm} (A4)

where α is the correlation exponents. For α close to 0.5, there is no correlation or only short range correlation in the sequence. If α is significantly different from 0.5, it indicates long range correlations.

APPENDIX: B

In the previous analyses, we account for the non-occurrence of a particular nucleotide. This is operationally equivalent to building the density spectrum P_n including $n = 0$. If the nucleotide compositional asymmetry is quite large like SC_MIT, the occurrence n can be zero for some nucleotides particularly at short distances. Therefore, we can build P_n distribution either including or excluding zeroth channel. The figure B1(a) shows the comparison of σ versus l plot for two complimentary distributions corresponding to a LAMCG sequence both with (top panel where G and ATC distributions have identical slopes at all scales) and without (bottom panel) inclusion of $n = 0$ channel in the P_n spectra. Interestingly, absence of $n = 0$ channel does not satisfy the complimentarity relation particularly at short distances. However, the difference does not exist at larger distances where always $n > 1$. Figure B1(b) shows another example of F_q versus l plot for a typical SC_MIT sequence. The spectrum with exclusion of $n = 0$ channel behaves differently when zeroth channel is included (compare it with figure 5 where F_q versus l has no cross over).
FIG. B1. (a) The variance σ versus l for G (solid curves) and ATC distributions (dotted curves) for LAMCG sequence. Top panel is for distribution for which the complimentarity is preserved while complimentarity is not satisfied in the case of bottom panel particularly at small distances. (b) F_q versus l plot for G distribution of SC/MIT for the case when complimentarity is not preserved. The curves are scaled up appropriately for better clarity.

Since the spectrum behaves differently when zeroth channel is not included, we have analysed the spectrum of three typical sequences listed in the table below. Notice now that while α_2 values are essentially same as before, the α_1 values are quite different. In fact, we have noticed a general trend where α_1 is higher than the previous values although the corresponding density distributions do not deviate significantly from the Gaussian behavior at short distances. However, in the previous analysis, we always include the zeroth channel so that the complimentarity properties is satisfied at all scales. Moreover, we also found a correlation between α and Gaussian statistics, namely the deviation of α from 0.5 also shows a corresponding deviation of P_n distribution from Gaussian behavior. For example, in case of SC/MIT, the α is quite large at a short distance. Accordingly, the P_n distribution also shows strong deviation from the Gaussian statistics. However, this is not necessarily true when complimentarity is not preserved while building the spectrum. At short distances, the deviation of α from 0.5 does not always mean a strong deviation from the Gaussian statistics.

Sequence	L	l_c, α	G	A	T	C	GA
Bacteriophage A	48,502	l_c	56	36	18	124	168
(Intronless virus)		α_1	0.720	0.670	0.740	0.680	0.580
		α_2	0.935	0.819	0.910	0.800	0.860
		P	26.4	25.4	24.7	23.5	51.8
LAMCG	85779	l_c	14	36	40	12	184
		α_1	0.703	0.760	0.750	0.700	0.630
		α_2	0.694	0.540	0.750	0.510	0.730
		P	9.1	42.2	40.7	8.0	51.3
SC-MIT	39937	l_c	-	116	884	1284	-
Nc-001224		$\alpha_1 < 116$	0.560	0.610	0.570	0.570	0.530
		$\alpha_2 < 1330$	0.560	0.587	0.590	0.566	0.551
		P	25.8	27.2	24.4	22.6	53.0
For a review on long range correlation in DNA sequences, see for example, W. Li, Computers Chem, 21, 257 (1997); http://linkage.rockefeller.edu/wli/dna_corr.html.

[2] W. Li, Int. Journal of Bifurcation and Chaos, 2(1), 137 (1992).

[3] W. Li and K. Kaneko, Euro Phys. Lett., 17, 655 (1992).

[4] W. Li, T. Marr and K. Kaneko, Physica D75, 392 (1994).

[5] R. F. Voss, Phys. Rev. Lett., 68, 3805 (1992); Fractals 2, 1 (1994).

[6] S.V. Buldyrev, A. L. Goldberger, S. Havlin, C. K. Peng, M. Simons, F. Sciortino and H. E. Stanley, Phys. Rev. Lett., 71, 1776 (1993).

[7] B. Borstnik, D. Pumpernik, and D. Lukman, Euro phys. Lett., 23, 389 (1993).

[8] X. Lu, Z. Sun, H. Chen, and Y. Li, Phys. Rev. E58, 3578 (1998).

[9] M. de Vieira, Phys. Rev. E60, 5932 (1999).

[10] M. Ya. Azbel, Phys. Rev. Lett., 75, 168 (1995).

[11] H. Herzl, I. Große, Physica A216, 518 (1995).

[12] Liaofu Luo, Weijiang Lee, Lijun Jia, Fengmin Ji, and Lu Tsai, Phys. Rev. E58, 861 (1998).

[13] C. K. Peng, S.V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E. Stanley, Nature (London), 356, 168 (1992).

[14] J. Maddox, Nature (London), 358, 103 (1992).

[15] S. Nee, Nature (London), 357, 450 (1992).

[16] Chatzidimitriou-Dreismann and Larhammar D, Nature (London), 361, 212 (1993).

[17] V. V. Prabhu, and J. M. Claverie, Nature (London), 357, 782 (1992).

[18] S. Karlin and V. Brendel Science, 259, 677 (1993).

[19] H. E. Stanley, S.V. Buldyrev, A. L. Goldberger, Z. D. Goldberg, S. Havlin, R. N. Mantegna, S. M. Ossadnik, C. K. Peng, and M. Simons, Physica A205, 214 (1994).

[20] S.V. Buldyrev, N. V. Dokholyan, A. L. Goldberger, S. Havlin, C. K. Peng, H. E. Stanley and G. M. Viswanathan, Physica A249, 430 (1998).

[21] A. Arnedo, E. Bacry, P. V. Graves and J. F. Muzy, Phys. Rev. Lett., 74, 3293 (1995).

[22] A. Arnedo, Y. D’Aubenton-Carafa, B. Audit, E. Bacry, J. F. Muzy, and C. Thermes, Physica bf A249, 439 (1998).

[23] R. N. Mantegna, S.V. Buldyrev, A. L. Goldberger, S. Havlin, C. K. Peng, M. Simons, and H. E. Stanley, Phys. Rev. Lett., 73, 333 (1994); Phys. Rev. E52, 2939 (1995).

[24] S.V. Buldyrev, A. L. Goldberger, S. V. Havlin, R. N. Mantegna, M. E. Matsa, C. K. Peng, M. Simons, and H. E. Stanley, Phys. Rev. E51, 5084 (1995).

[25] C. K. Peng, S.V. Buldyrev, S. V. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Phys. Rev. E49, 1685 (1994).

[26] A. K. Mohanty, and A. V. S. S. Narayana Rao, Phys. Rev. Lett., 84, 1832 (2000).

[27] A. K. Mohanty, and S. K. Katara, Phys. Rev. Lett., 73, 2672 (1994); Phys. Rev. Lett, 75, 2449 (1995); Phys. Rev. C, C53, 887 (1996).

[28] For a review see, J. Klafter, M. F. Shlesinger and G. Zumofen, Physics Today, 49, 33 (1996); M. F. Shlesinger, J. Klafter and G. Zumofen, Am. J. Phys., 67, 1253 (1999).

[29] Bernaola- Galvan and P. Carpena, (To be published).