Experimental and Numerical Study on Modified Vertical Axis Wind Turbine

A. Abraham Eben Andrews a*, Karthick.P a, A. Allan Jeraled b, Anuroop.K a, Chidanand. G a

aDepartment of Mechanical Engineering, Hindustan Institute of Technology and Science, Hindustan University, Chennai, TamilNadu, India.

bMarg Institute of Design and Architecture Swarnabhoomi, MARG Swarnabhoomi, Velur Village Cheyyur post, Kanchipuram Dt, Tamilnadu, India.

Corresponding author: abrahamebenandrews@gmail.com

Abstract: Wind energy is very important in the development of sustainable energy with the growing focus on renewable energy; interest in design of wind turbines has also been expanding. In today’s market, the horizontal axis turbine is the most common type in use; Experimental data of this research is to compare the CFD Analysis with the Experimental Data of hybrid Modified vertical axis wind turbine. The graphical data based on the parameters such as Velocity, Power Coefficient, Tip Speed Ratio Vs Power Coefficient and Wind Velocity Vs Power Coefficient, which are discussed in this research. The Savonius turbine (Lift Turbine) was attach with the Gorlov turbine (Drag driven turbine) for the self-starting of the hybrid-modified turbine. Here the design, construction and testing of vertical axis wind turbine with three blades, starting solely from low energy of the wind. The velocities such as 5, 7, 9 and 11 m/s are tested in CFD Analysis for checking from which maximum power can be extracted so it can be used in desert area.

1. Introduction

In present days renewable energy is motivated to use due to the increase in environmental problems mainly focusing on the global warming, windenergy plays a vital role in the renewable energy In India renewable fuel requires many technological improvements [1]. Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT) are the classifications of wind turbine. In many countries for medium-to-large scale Energy generations Horizontal axis wind Turbine is used and it is not recognized as a viable option to harness the energy of the wind in urban areas, where the wind is less intense, much more chaotic and turbulent. Vertical axis Wind Turbine are suggested for large scale deployment as a better choice for cities areas because of their good performance even in weak and unstable wind[2]. To generate the Lift aerodynamic bodies like airfoil required in darries type wind turbine. So darries is costlier than Savonius type wind turbines. Savonius Vertical axis wind turbine was named after its inventor Siguard. J. Savonius [3]. The performance analysis of Savonius turbine is done by analysing the importance of its geometrical parameters like overlap ratio, aspect ratio, gap ratio and shape parameters [4].

Vertical axis wind turbine as shown in Figs. 1 combines the working principle of Drag and Lift type vertical axis wind turbine the solid model of this turbine is created in ANSYS Fluent workbench [11] and CFD analysis is carried out the suitable design is fabricated and tested in
The raw data measured during the open environment test on this wind turbine are wind speed (V), rotational speed of the rotor shaft and load applied on the dynamometer. These data are processed and presented as per the wind turbine research community approach also provides the aerodynamics performance of the Wind Turbine in terms of dimensionless parameter as coefficient of power (Cp) and coefficient of torque (CT). Further to disclose the influence of tip speed ratio (TSR) on aerodynamic performance, the variations of TSR with Cp and CT at different wind velocities [9]. Rotor showed its peak performance at an overlap of 0.16.

Sukanta Roy and Ujjwal Saha [4] tested modified Bach type vertical axis wind turbine design and the results were compared with normal types. Kamoji et al [5] studied the torque formation in negative way in simple Savonius rotors and found that simple 90 degree twist can overcome this with a helical Savonius rotors. Damak [6] tested helical Savonius rotors with 180° twist in a wind tunnel to determine aspect ratio. Sukanta Roy and Ujjwal Saha [7] tested the modified Savonius in a wind tunnel and the new design shows good performance. Khandakar Niaz Morshed et al. [8] analysed three bladed Savonius rotor by numerically and experimentally to predict overlap ratio is optimum. The authors found that overlap ratio of 0.2 suits the hydroturbine. Muscoloa and Rezia Molfinob [10] developed a new blade design named Broznius rotors.

2. Design of Wind Turbine

2.1 Selection of Wind Turbine

As there are many types of vertical axis turbines with various efficiencies, life time and cost. Gorlov turbine has been selected from the following table based on the following parameters [12].

Type (VAWT)	H ROTOR	TURBY	GORLOV
Swept Area (m2)	Darrieus	Darrieus	Darrieus
Cut-in wind speed (m/s)	3.9	4	5
Cut-out wind speed (m/s)	N/A	14	26
Rotor Diameter (m)	2.7	1.9	3.1
Weight (kg)	135	136	N/A
Expected Lifetime (years)	20	20	25
Annual energy production (kWh/yr)	2000-4000	N/A	4197 @ 5 m/s, 7000 @ 7 m/s
Rated power (kW)	1.7	2.5	6.5
Total height (m)	7.9/12.5/18.6	6	13

2.2 Selection of Blade Angle and No of Blades

Number of blade selected is 3 and at an angle taken is 58.37 degree [13]. The table show the values of slodity ration of both the blades in their same angle (58.37 degree) approximately same.
Table 2 Various Parameters of Turbine

Φ (degree)	N	H (m)	D (m)	C (m)	Σ
43.68	3	0.75	0.75	0.15	0.191
51.85	3	0.8	0.6	0.15	0.239
58.37	3	0.85	0.5	0.15	0.286
47.5	3	0.8	0.7	0.15	0.205
51.85	4	0.75	0.75	0.12	0.204
59.5	4	0.8	0.6	0.12	0.255
65.2	4	0.85	0.5	0.12	0.306
55.5	4	0.8	0.7	0.12	0.218

2.3 Wind Turbine Design Parameters
The wind turbine parameters considered in the design process are:

For Gorlov Turbine:
- Height of Turbine, \(H = 0.8 \) m, Diameter of Turbine, \(D = 0.5 \) m
- No. of Blades, \(N = 3 \)
- Chord Length, \(C = 0.15 \) m
- Density of Air, \(\rho = 1.225 \text{ kg/m}^3 \)
- Swept Area, \(A = D \times H = 0.8 \times 0.5 = 0.4 \text{ m}^2 \)
- Solidity, \(\sigma = \frac{NC}{2\pi r} = \frac{(3 \times 0.15)}{(2 \times 3.14 \times 0.25)} = 0.2864 \)
- Aspect Ratio = \(\frac{H}{D} = 0.5 \div 0.8 = 1.666 \)

For Savonius Turbine:
- Height of Turbine, \(H = 0.25 \) m, Diameter of Turbine, \(D = 0.5 \) m
- Diameter of Blade, \(d = 0.3 \) m
- Eccentricity, \(e = 0.1 \) m
- Aspect Ratio = \(H \div D = 0.5 \)

3. Construction of Wind Turbine
A shaft of length 1800 mm is taken and it has been converted into a stepped shaft from one end of length 250 mm and a diameter of 20 mm is kept and the next 300 mm length is made into 25 mm diameter and from the other end a length of 250 mm is made into a diameter of 25 mm the rest of the shaft is kept at 30 mm diameter. Hybrid turbine made out of fibre-reinforced material so it is light in weight and can be made to rotate [14]. Height of the Savonius turbine is 250 mm since it is used only for self-starting and the height of the Gorlov is 800 mm, diameter of both the turbine is 500 mm and the no of blades used is 3 in Gorlov turbine because of the construction becomes simpler and the cost factor and also the solidity ratio can be managed. The helical blade in Gorlov kept at 120-degree angle between the starting and ending point of the blade. Is mounted on stand and placed in front of Axial Flow Turbine (wind tunnel)[17].
3.1 Specifications of Axial Flow Turbine

Height = 1m
Minimum Speed = 400rpm
Maximum Speed = 982rpm
Discharge = 11m/s

4. CFD Analysis of Hybrid Vertical Axis Turbine

4.1 Simulation Properties & Conditions

Table 3 Conditions for CFD Analysis
Time scheme
Material
Properties of Fluid
Density:
Kinematic viscosity:
Compressibility:
Cell zone conditions
Continuum type 1:
Continuum type 2:
Blade rotational velocity
Blade rotational direction
Boundary Conditions
Inlet Velocity
Atmospheric pressure
Turbine
Wall
4.2 Domain Details and Approach

The turbine is modeled in a generic domain to match the wind tunnel testing conditions in Fig 3. The length and width of the domain is 15m and 6m, and the height of the domain is approximately 12 times of the rotor [18].

Fig. 3 CFD domains Configuration

4.3 Torque Variation for Velocities

Fig. 4 Torque variation for velocities at 5m/s

Fig. 5 Torque variation for velocities at 7m/s
This graph indicates the torque produced at varies angle of contact of the wind on the blade in fig 4, 5, 6, 7. Yellow line on the graph shows the Savonius torque, the graph goes from top to bottom due to the shape Savonius turbine [16]. The Gorlov has 3 blades in it each blade gives a particular torque red line represents blade 1, green line represents the blade 2 and blue line represent blade 3. When the wind hits the blade 1, its observed that red line reaches the peak value. Similarly, when the wind hits the blade 2 and 3 it reaches its own peak value in the graph. These values of the peak are taken after leaving for few angles, so that it attains the constant values of the torque.

4.4 Pressure Variation of Turbine
Pressure contour represents the pressure values at various point on the turbine. Here the observation shows higher zone to lower zone of pressure (we know that the flow of fluid takes place when there is a pressure difference) red zone indicates the higher pressure and blue line indicates the lower pressure. for Savonius is shown in fig 8 and Gorlov is shown in fig 9 So the wind flows from higher pressure zone to lower pressure zone so the turbine start to rotate the turbine.
4.5 Velocity Variation of Turbine

Velocity stream line shows in fig 12 how the wind transmits its energy into the turbine for it to rotate[15]. Stream line shown in diagram, close observation gives the information that before hitting on the blades it has lost the kinetic energy while hitting on the blade and it is converted into the pressure energy. This will make the turbine to rotate there by the exit wind will have some loss in kinetic energy.

FOR 9 m/s

Torque = 1.358488 N-m (From Graph)

Speed N = 200 rpm

Angular velocity, $\omega = \frac{2\pi N}{60} = 20.9439$ rad/s

Tip Speed Ratio, TSR = $\frac{\omega r}{v} = 1.1635$

$P_{in} = 0.5\rho A v^3 = 234.419$ watt

$P_{out} = T \times \omega = 28.4520$ watt

$C_p = \frac{P_{out}}{P_{in}} = 0.1213$
Fig. 13 Wind Velocity Vs Power Coefficient

Fig. 14 Tip Speed Ratio Vs Power Coefficient

Fig 13 represents when the wind velocity increases the coefficient of power increases gradually and it reaches maximum and wind velocity further increases the coefficient of power decreases. This shows that at particular velocity only we can attain maximum coefficient of power and Fig 14 represents when the tip speed ratio increases the coefficient of power increases gradually and it reaches maximum and tip speed ratio further increases the coefficient of power decreases. This shows that at particular velocity only we can attain maximum coefficient of power.

5. Experimental Analysis

Calculation for 9 m/s

Torque = 0.07418 N-m (From Readings); Speed N = 201
Angular velocity, \(\omega = \frac{2\pi N}{60} = 21.04 \) rad/s
Tip Speed Ratio, \(TSR = \frac{\omega r}{v} = 1.1693 \)
Pin = 0.5\(\rho AV^3 \) = 234.419 watt
Pout = \(T \times \omega \) = 1.56074 watt, \(\frac{C_p}{Pin} = 0.0066 \)

The above graph represents when the wind velocity increases the coefficient of power increases gradually and it reaches maximum and wind velocity further increases the coefficient of power.
decreases. This shows that at particular velocity only we can attain maximum coefficient of power. The above graph represents when the tip speed ratio increases the coefficient of power decreases gradually. This shows that at particular velocity only we can attain maximum coefficient of power.

5.1 Comparison of CFD and Experimental Analysis

![Wind Velocity Vs Power Coefficient](image1)

![Wind Velocity vs Power Coefficient](image2)

Table 4 Comparison of Power Coefficient

Wind Velocity	CFD’s Power Coefficient	Experimental Power Coefficient
7 m/s	0.1001	0.00566
9 m/s	0.1213	0.00666
11 m/s	0.121	0.00525

Reasons for the Difference in Power Coefficient
1. In Experimental Analysis many losses to be considered such as
 - Frictional loss
 - Mechanical loss
 - Environmental loss
2. In CFD Analysis the turbine runs with some boundary conditions where friction and other mechanical losses are neglected.
3. The difference in power coefficient depends on manufacturing of blade (aerofoil).
4. Blower efficiency and losses.

6. Conclusion and recommendation
The various results observed in experimental and Numerical study, which is based on various parameters such as speed, torque, velocity and coefficient of power. The values obtained are as follows:
Table 5 Observed Results

	Experimental	Numerical
Speed	215 rpm	200 rpm
Torque	0.07418 N-m	1.358488 N-m
Velocity	9 m/s	9 m/s
Power Coefficient	0.00666	0.1213

The various coefficient of power obtained from the graphs, the analysis reveals that the velocity at 9m/s gives more efficient power for the particular design so this kind of turbines can be used in desert area.

References
[1] Eduardo José Novaes Menezes, Alex Maurício Araújo, Nadège Sophie Bouchonneau da Silva, A review on wind turbine control and its associated methods, Journal of Cleaner Production 174 (2018) 945-953

[2] Rakesh Kumar, Kaamran Raahemifar, Alan S. Fung, A critical review of vertical axis wind turbines for urban applications, Renewable and Sustainable Energy Reviews 89 (2018) 281–291

[3] J. Kumbernuss, J. Chen, H.X. Yang, L. Lu. Investigation into the relationship of the overlap ratio and shift angle of double stage three bladed vertical axis wind turbine (VAWT), 107-108 (2012) 57-75.

[4] Sukanta Roy, Ujjwal K. Saha. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine, Applied Energy 137 (2015) 117–125.

[5] M.A. Kamoji, S.B. Kedare, S.V. Prabhu. Performance tests on helical Savonius rotors, Renewable Energy 34 (2009) 521–529.

[6] A. Damak, Z. Driss, M.S. Abid. Experimental investigation of helical Savonius rotor with a twist of 180, Renewable Energy 52 (2013) 136-142.

[7] Sukanta Roy, Ujjwal K. Saha. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine, Applied Energy 137 (2015) 117–125.

[8] Khandakar Niaz Morshed, Mosfequr Rahman, Gustavo Molina and Mahbub Ahmed, Wind tunnel testing and numerical simulation on aerodynamic performance of a three-bladed Savonius wind turbine, International Journal of Energy and Environmental Engineering 4 (2013)18. 556 Mechanical Engineering Design

[9] Sarathkumar R, Micha Premkumar T, Seralathan S, Mohan T, Numerical Investigation of Modified Bach Type Vertical Axis Wind Turbine, Applied Mechanics and Materials ISSN: 1662-7482, Vol. 852, pp 551-557
[10] Giovanni Gerardo Muscoloa, ReziaMolfinob, From Savonius to Bronzinus: a comparison among vertical wind turbines, Energy Procedia 50 (2014) 10-18.

[11] ANSYS Training guide – ANSYS customer portal

[12] Josh Anderson, Bronwyn Hughes, Celestine Johnson, Nick Stelzenmuller, Leonardo Sutanto, Brett Taylor, design and manufacture of a cross flow helical tidal Turbine, June 14 2011

[13] Craig Stouta, Sheikh Islama and et al, Efficiency Improvement of Vertical Axis Wind Turbines with an Upstream Deflector, Energy proedia 118 (2017)141-148

[14] MeltemAltinKaratas, Hasan G okkaya, A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials, Defence Technology (2018) 1-9

[15] Tong Zhou, Dietmar Rempfer. Numerical study of detailed flow field and performance of Savonius wind turbines, Renewable Energy 51 (2013) 373-381.

[16] M.H. Nasef, W.A. El-Askary, A.A. AbdEL-hamid, H.E. Gad, Evaluation of Savonius rotor performance: Static and dynamic studies. J. Wind Eng. Ind. Aerodyn.123 (2013)1-11.

[17] Wei-Cheng Wang, Wen Tong Chong, Tien-Hsin Chao, Performance analysis of a cross-axis wind turbine from wind tunnel experiments, 174 (2018) 312–329

[18] John Kaiser Calautitn, Ben Richard Hughes Data in Brief 7 (2016)216-220.