Boundary-Aware Segmentation Network for Mobile and Web Applications

Xuebin Qin, Deng-Ping Fan, Chenyang Huang, Cyril Diagne, Zichen Zhang, Adrià Cabeza Sant’Anna, Albert Suárez, Martin Jaggersand, and Ling Shao, Fellow, IEEE

Abstract—Although deep models have greatly improved the accuracy and robustness of image segmentation, obtaining segmentation results with highly accurate boundaries and fine structures is still a challenging problem. In this paper, we propose a simple yet powerful Boundary-Aware Segmentation Network (BASNet), which comprises a predict-refine architecture and a hybrid loss, for highly accurate image segmentation. The predict-refine architecture consists of a densely supervised encoder-decoder network and a residual refinement module, which are respectively used to predict and refine a segmentation probability map. The hybrid loss is a combination of the binary cross entropy, structural similarity and intersection-over-union losses, which guide the network to learn three-level (i.e., pixel-, patch- and map-level) hierarchy representations. We evaluate our BASNet on two reverse tasks including salient object segmentation, camouflaged object segmentation, showing that it achieves very competitive performance with sharp segmentation boundaries. Importantly, BASNet runs at over 70 fps on a single GPU which benefits many potential real applications. Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is integrated with augmented reality for “COPYING” and “PASTING” real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal. Both applications have already drawn huge amount of attention and have important real-world impacts. The code and two applications will be publicly available at: https://github.com/NathanUA/BASNet

Index Terms—Boundary-aware segmentation, predict-refine architecture, salient object, camouflaged object

1 INTRODUCTION

Image segmentation has been studied over many decades using conventional methods, and in the past few years using deep learning. Several different conventional approaches, such as interactive methods, active contour (level-set methods), graph-theoretic approaches, perceptual grouping methods and so on, have been studied for image segmentation over the past decades. Yet automatic methods fail where boundaries are complex. Interactive methods let humans resolve the complex cases. Interactive methods, [99], [114], [8], [91], are usually able to produce accurate and robust results, but with significant time costs. Active contour [82], [48], [118], [6], [7], [124], graph-theoretic [20], [16], [101], [100], [112], and perceptual grouping [47], [21], [23], [21], [37], [22], [88], methods require almost no human interventions so that they are faster than interactive methods. However, they are relatively less robust.

In recent years, to achieve accurate, robust and fast performance, many deep learning models [77] have been developed for image segmentation. Semantic image segmentation [70], [40] is one of the most popular topics, which aims at labeling every pixel in an image, with one of the several predefined class labels. It has been widely used in many applications, such as scene understanding [65], [145], autonomous driving [28], [15], etc. The targets in these applications are usually large in size, so most existing methods focus on achieving robustness performance with high regional accuracy. Less attention has been paid to the high spatial accuracy of boundaries and fine structures. However, many other applications, e.g. image segmentation/editing [90], [46], [31], [91] and manipulation [43], [76], visual tracking [57], [89], [93], vision guided robot hand manipulation [88] and so on, require highly accurate object boundaries and fine structures.

There are two main challenges in accurate image segmentation: Firstly, large-scale features play important roles in classifying pixels since they can provide more semantic information compared with local features. However, large-scale features are usually obtained from deep low-resolution feature maps or by large size kernels and the spatial resolution is sacrificed. Simple upsampling of the low-resolution feature maps to high resolution is not able to recover the fine structures [70]. Thus, many encoder-decoder architectures [98] have been developed for segmenting edges or thin structures. Their skip connections and gradual upsampling operations play important roles in recovering the high resolution probability maps. Additionally, different cascaded
or iterative architectures [125], [115], [18], [113] have been introduced to further improve the segmentation accuracy by gradually refining the coarse predictions, which sometimes leads to complicated network architectures and computational bottleneck. **Secondly**, most of the image segmentation models use cross entropy (CE) loss to supervise the training process. CE loss usually gives greater penalties on these seriously erroneous predictions (e.g. predict “1” as “0.1” or predict “0” as “0.9”). Therefore, deep models trained with CE loss compromise andes prefer to predict “hard” samples with a non-committed “0.5”. In image segmentation tasks, the boundary pixels of targets are usually the hard samples, so this will lead to blurry boundaries in predicted segmentation probability maps. Other losses, such as intersection-over-union (IoU) loss [96], [75], [80], F-score loss [141] and Dice-score loss [27], have also been introduced to image segmentation tasks for handling biased training sets. These are sometimes able to achieve higher (regional) evaluation metrics, e.g. IoU, F-score, since their optimization targets are consistent with these metrics. However, they are not specifically designed for capturing fine structures and often produce “biased” results, which tend to emphasize the large structures while neglecting fine details.

To address the above issues, we propose a novel but simple **Boundary-Aware Segmentation Network (BASNet)**, which consists of a predict-refine network and a hybrid loss, for highly accurate image segmentation. The predict-refine architecture is designed to predict and refine the predicted probability maps sequentially. It consists of a U-Net-like [98] deeply supervised [56], [123] “heavy” encoder-decoder network and a residual refinement module with “light” encoder-decoder structure. The “heavy” encoder-decoder network transfers the input image to a segmentation probability map, while the “light” refinement module refines the predicted map by learning the residuals between the coarse map and ground truth (GT). In contrast to [85], [43], [18], which iteratively use refinement modules on saliency predictions or intermediate feature maps at multiple scales, our refinement module is used only once on the original scale of the segmentation maps. Overall, our predict-refine architecture is concise and easy to use. The hybrid loss combines the binary cross entropy (BCE) [17], structural similarity (SSIM) [172] and IoU losses [25], to supervise the training process in a three-level hierarchy: pixel-, patch- and map-level. Instead of using explicit boundary loss (NLDF+ [22], C2S [61], BANet[104]), we implicitly inject the goal of accurate boundary prediction in the hybrid loss, contemplating that it may help reduce spurious error from cross propagating the information learned from the boundaries and other regions on the image (see Fig. [1]).

In addition to proposing novel segmentation techniques, developing novel segmentation applications also plays a very important role in advancing the segmentation field. Therefore, we developed two novel BASNet-based applications: **AR COPY & PASTE** and **OBJECT CUT**. AR COPY & PASTE is a mobile app built upon our BASNet model and the Augmented Reality techniques. By using cellphones, it provides a novel interactive user experience where users can “COPY” the real-world targets and “PASTE” them into desktop software. Specifically, AR COPY & PASTE allows users to take a photo of an object using a mobile device. Then the background removed object returned by our remote BASNet server will be shown in the camera view. In this view, the “COPIED” object is overlapped with real scene video stream. Users can move and target the mobile camera at a specific position on the desktop screen. Then tapping the screen of the mobile device will trigger the “PASTE” operation, which transmits the object from the mobile device to the software opened in the desktop. Meanwhile, **OBJECT CUT** provides a web-based service for automatic image background removal based on our BASNet model. An image can be uploaded from a local machine or through an URL. This application greatly facilitates the background removal for users who have no image editing experience or software. The main contributions can be summarized as:

- **We develop a novel boundary-aware image segmentation network, BASNet, which consists of a deeply supervised encoder-decoder and a residual refinement module, and a novel hybrid loss that fuses BCE, SSIM, and IoU to supervise the training process of accurate image segmentation on three levels: pixel-level, patch-level and map-level.**

- **We conduct thorough evaluations of the proposed method including a comparison with 25 state-of-the-art (SOTA) methods on six widely used public salient object segmentation datasets, a comparison with 16 models on the SOC (Salient Object in Clutter) dataset and a comparison with 13 camouflaged object detection (COD) models on three public COD datasets. BASNet achieves very competitive performance in terms of regional evaluation metrics, while outperforms other models in terms of boundary evaluation metrics.**

- **We develop two (close to) commercial applications, AR COPY & PASTE and OBJECT CUT, based on our BASNet. These two applications further demonstrate the simplicity, effectiveness and efficiency of our model.**

Compared with the CVPR version [25] of this work, the following extensions are made. First, deeper theoretical explanations of the hybrid loss design are added. Second, more comprehensive and thorough experiments on different datasets, including salient objects in clutter (SOC) and COD, are included. Third, two (close to) commercial applications, AR COPY & PASTE and OBJECT CUT, are developed.
2 RELATED WORKS

2.1 Traditional Image Segmentation Approaches

Watershed [108], graph cut [52], [53], active contour [82], perceptual grouping [92] as well as the interactive methods based on these approaches mainly rely on well-designed handcrafted features, objective functions and optimization algorithms. Watershed and graph cut approaches segment images based on the regional pixel similarities, so they are less effective in segmenting very fine structures and achieving smooth and accurate segmentation boundaries. Active contour and perceptual grouping methods can be considered as boundary based approaches. Active contour methods represent the 2D segmentation contour by the level set of a 3D function. Instead of directly evolving the 2D contour, this group of approaches evolves the 3D function to find the optimal segmentation contour, which avoids complicated 2D contour splitting and merging issues. Perceptual grouping methods segment images by selecting and grouping subsets of the detected edge fragments or line segments from given images to formulate closed or open contours of the targets to be segmented. However, although these methods are able to produce relatively accurate boundaries, they are very sensitive to noise and local minima, which usually leads to less robust and unreliable performance.

2.2 Patch-wise Deep Models

To improve the robustness and accuracy, deep learning methods have been widely introduced to image segmentation [67]. Early deep methods use existing image classification networks as feature extractors and formulate the image segmentation tasks as patch-wise image pixel (super-pixel) [58], [69], [109], [142], [60] classification problems. These models greatly improve the segmentation robustness in some tasks due to the strong fitting capability of deep neural networks. However, they are still not able to produce high spatial accuracy, let alone segmenting fine structures. The main reason is probably that the pixels in patch-wise models are classified independently based on the local features inside each patch and larger-scale spatial contexts are not used.

2.3 FCN and its Variants

With the development of fully convolutional network (FCN) [70], deep convolutional neural networks have become a standard solution for image segmentation problems. Large number of deep convolutional models [77] have been proposed for image segmentation. FCN adapts classification backbones, such as VGG [102], GoogleNet [105], ResNet [35] and DenseNet [40], by discarding the fully connected layers and directly upsampling the output features of certain convolutional layers with specific scales to build a fully convolutional image segmentation model. However, the direct upsampling from low resolution fails in capturing accurate structures. Therefore, The DeepLab family [10], [11], [12] replaces the pooling operations by atrous convolutions to avoid degrading the feature map resolution. Besides, they also introduce a densely connected Conditional Random Field (CRF) to improve the segmentation results. However, applying atrous convolutions on high-resolution maps leads to larger memory costs and CRF usually yields noisy segmentation boundaries. Holistically Edge Detection (HED) [123], RCF [29] and CASENet [130] are proposed to directly segment edges by making full use of the features from both the shallow and deep stages of the image classification backbones. Besides, many variants [39], [50], [37] of FCN have been proposed for salient object detection (binary-class image segmentation) [115]. Most of these works are focusing on either developing novel multi-scale feature aggregation strategies or designing new multi-scale feature extraction modules. Zhang et al. (Amulet) [136] developed a generic framework for aggregating multi-level convolutional features of the VGG backbone. Inspired by HED [123], Hou et al. (DSS+) [35] introduced short connections to the skip-layer structures of HED to better use the deep layer features. Chen et al. (RAS) [13] developed a reverse attention model to iteratively refine the side-outputs from a HED-like architecture. Zhang et al. (LFR) [135] designed a symmetrical fully convolutional network which takes images and their reflection as inputs to learn the saliency features from the complementary input spaces. Instead of passing the information with single direction (deep to shallow or shallow to deep), Zhang et al. (BMPM) [133] proposed to have the information passed between the shallow and deep layers by a controlled bi-directional passing module.

2.4 Encoder-decoder Architectures

Rather than directly upsampling features from deep layers of the backbones, SegNet [3] and U-Net [98] employ encoder-decoder like structures to gradually up-sample the deep low-resolution feature maps. Combined with skip connections, they are able to recover more details. One of the main characteristics of these models is the symmetrical downsampling and upsampling operations. To reduce the checkerboard artifacts in the prediction, Zhang et al. (UCF) [137] reformulated the dropout and developed a hybrid module for the upsampling operation. To better use the features extracted by backbones, Liu et al. (PoolNet) [65] constructed the decoder part using their newly developed feature aggregation, pyramid pooling and global guidance modules. In addition, stacked HourglassNet [31], CU-UNet [106], UNet++ [146] and U^2-Net [94] further explore diverse ways of improving the encoder-decoder architectures by cascaded or nested stacking.

2.5 Deep Recurrent Models

Recent techniques have been widely applied in image segmentation models. Kuen et al. [51] proposed to achieve the completely segmented results by sequentially segmenting image sub-regions using a recurrent framework. Liu et al. (PiCANetR) [68] deployed a bidirectional LSTM along the row and column of the feature maps respectively to generate the pixel-wise attention maps for salient object detection. Hu et al. (SAC-Net) [38] developed similar strategies to [68] to capture spatial attenuation context for image segmentation. Zhang et al. (PAGRN) [139] proposed to transfer global information from deep to shallower layers via a multipath recurrent connection. Wang et al. (RFCN) [111] built a cascaded network by stacking multiple encoder-decoders
to recurrently correcting the prediction errors of the previous stages. Instead of iteratively refining the segmentation results [111], Hu et al. (RADF+) [59] recurrently aggregated and refined multi-layer deep features to achieve accurate segmentation results. However, due to the serial connections between each recurrent step, models using the “recurrent” techniques are relatively less efficient in terms of time costs.

2.6 Deep Coarse-to-Fine Models

This group of models aims at improving the segmentation results by gradually refining the coarse predictions. Lin et al. (RefineNet) [63] developed a multi-path refinement segmentation network, which uses long-range residual connections to exploit the information along the down-sampling process. Liu et al. (DHSNet) [67] proposed a hierarchical recurrent convolutional neural network (HRCNN), which hierarchically and progressively refines the segmentation results in a coarse-to-fine manner. Wang et al. (SRM) [113] developed a multi-stage framework for segmentation map refinement, in which each stage takes the input image and the segmentation maps (lower resolution) from the last stage to produce higher-resolution results. Deng et al. (R^3Net+) [18] proposed to alternatively refine the segmentation results based on the shallow, high-resolution and deep low-resolution feature maps. Wang et al. (DGRL) [115] developed a global-to-local framework which first localizes the to-be-segmented targets globally and then refines these targets using a local boundary refinement module. The coarse to fine models reduce the probability of overfitting and show promising improvements in accuracy.

2.7 Boundary-assisted Deep Models

Region and boundaries are mutually determined. Therefore, many models introduce boundary information to assist segmentation. Luo et al. (NLDF) [72] proposed to supervise a 4 × 5 grid structure adapted from VGG-16 by fusing the cross entropy and the boundary IoU inspired by Mumford-Shah [79]. Li et al. (C2S) [61] tried to recover the local saliency segmentation from segmented contours. Su et al. (BANet) [104] developed a boundary-aware segmentation network with three separate streams: a boundary localization stream, an interior perception stream and a transition compensation stream for boundary, region and boundary/region transition prediction, respectively. Zhao et al. (EGNet) [140] proposed an edge guidance network for salient object segmentation by explicitly modeling and fusing complementary region and boundary information. Most of models in this category explicitly use boundary information as either an additional supervision loss or a assisting prediction stream for inferring the region segments.

In this paper, we propose a simple predict-refine architecture which takes advantage of both the encoder-decoder architecture and the coarse-to-fine strategy. Besides, instead of explicitly using boundary loss or additional boundary prediction streams, we design a simple hybrid loss which implicitly describes the dissimilarity between the segmentation prediction and the ground truth at three levels: pixel-, patch- and map-level. The predict-refine architecture together with the hybrid loss provides a simple yet powerful solution for image segmentation and some close to commercial applications.
3 Methodology

3.1 Overview

Our BASNet architecture consists of two modules as shown in Fig. 2. The prediction module is a U-Net-like densely supervised Encoder-Decoder network [98], which learns to predict segmentation probability maps from input images. The multi-scale Residual Refinement Module (RRM) refines the resulting map of the prediction module by learning the residuals between the coarse map and the GT.

3.2 Prediction Module

Share same spirit of U-Net [98] and SegNet [3], we design our segmentation prediction module as an encoder-decoder fashion, since this kind of architectures is able to capture high-level global contexts and low-level details at the same time. To reduce over-fitting, the last layer of each decoder stage is supervised by the GT, inspired by HED [123] (see Fig. 2). The encoder has an input convolutional layer and six stages comprised of basic res-blocks. The input convolutional layer and the first four stages are adopted from ResNet-34 [35]. The difference is that our input layer has 64 convolutional filters with a size of 3×3 and stride of 1 rather than a size of 7×7 and stride of 2. Additionally, there is no pooling operation after the input layer. This means that the feature maps before the second stage have the same spatial resolution as the input image. This is different from the original ResNet-34, which has a quarter of the resolution in the first feature map. This adaptation enables the network to obtain higher resolution feature maps in earlier layers, while decreasing the overall receptive fields. To achieve the same receptive field as ResNet-34 [35], we add two more stages after the fourth stage of ResNet-34. Both stages consist of three basic res-blocks with 512 filters after a non-overlapping max pooling layer of size 2. To further capture global information, we add a bridge stage between the encoder and decoder. It consists of three convolutional layers with 512 dilated (dilation=2) 3×3 filters. Each of these convolutional layers is followed by a batch normalization function [32] and a ReLU activation function [32].

Our decoder is almost symmetrical to the encoder. Each stage consists of three convolution layers followed by a batch normalization and a ReLU activation function. The input of each stage is the concatenated feature maps of the up-sampled output from its previous stage and its corresponding stage in the encoder. To achieve the side-output maps, the multi-channel output of the bridge stage and each decoder stage is fed to a plain 3×3 convolution layer followed by a bilinear upsampling and a sigmoid function. Therefore, given an input image, our prediction module produces seven segmentation probability maps in the training process. Although every predicted map is up-sampled to the same size with the input image, the last one has the highest accuracy and hence is taken as the final output of the prediction module. This output is passed to the refinement module.

3.3 Residual Refinement Module

Refinement Modules (RMs) [43, 18] are usually designed as a residual block [129] that refines the coarse segmentation maps S_{coarse} by learning the residuals S_{residual} between the coarse maps and the GT, as

$$S_{\text{refined}} = S_{\text{coarse}} + S_{\text{residual}}.$$

Before introducing our refinement module, the term “coarse” has to be determined. Here, “coarse” includes two aspects. One is blurry and noisy boundaries (see the one-dimension illustration in Fig. 3(b)). The other one is the unevenly predicted regional probabilities (see Fig. 3(c)). As shown in Fig. 3(d), real predicted coarse maps usually contain both coarse cases.

The residual refinement module based on local context (RRM_LC), Fig. 4(a) was originally designed for boundary refinement [83]. Since its receptive field is small, Islam et al. [43] and Deng et al. [18] iteratively or recurrently used it for refining segmentation probability maps on different scales. Wang et al. [113] adopted the pyramid pooling module from [43], in which three-scale pyramid pooling features are concatenated. To avoid losing details caused by pooling operations, RRM_MS (Fig. 4(b)) uses convolutions with different kernel sizes and dilations [129, 133] to capture multi-scale contexts. However, these modules are shallow thus hard to capture high-level information for refinement.

To refine inaccuracies in coarse segmentation maps of image regions and boundaries, we develop a novel residual refinement module. Our RRM employs the residual encoder-decoder architecture, RRM_Ours (see Figs. 2 and 4(c)), in which the main architecture is similar but simpler than our prediction module. It contains an input layer, an encoder, a bridge, a decoder and an output layer. Different from the prediction module, both the encoder and decoder have four stages. Each stage only has one convolutional layer. Each layer has 64 filters of size 3×3 followed by a batch normalization and a ReLU activation function. The bridge stage also has a convolutional layer with 64 filters of size 3×3 followed by a batch normalization and ReLU activation. Non-overlapping max pooling is used for downsampling...
in the encoder and bilinear interpolation is utilized for upsampling in the decoder. The output of this RM module is used as the final generating segmentation results of BASNet.

3.4 Hybrid Loss

Our training loss is defined as the summation over all outputs:

$$\mathcal{L} = \sum_{k=1}^{K} \alpha_k \ell^{(k)},$$

where $\ell^{(k)}$ is the loss of the k-th side output, K denotes the total number of the outputs and α_k is the weight of each loss. As described in Sec. 3.2 and Sec. 3.3, our segmentation model is deeply supervised with eight outputs, i.e., $K = 8$, including seven outputs from the prediction module and one output from the refinement module.

To obtain high quality regional segmentation and clear boundaries, we propose to define $\ell^{(k)}$ as a hybrid loss:

$$\ell^{(k)} = \ell^{(k)}_{bce} + \ell^{(k)}_{ssim} + \ell^{(k)}_{iou},$$

where $\ell^{(k)}_{bce}$, $\ell^{(k)}_{ssim}$, and $\ell^{(k)}_{iou}$ denote BCE loss [17], SSIM loss [17] and IoU loss [75], respectively.

BCE [17] loss is the most widely used loss in binary classification and segmentation. It is defined as:

$$\ell_{bce} = - \sum_{(r,c)} [G(r,c) \log(S(r,c)) + (1-G(r,c)) \log(1-S(r,c))],$$

where $G(r,c) \in \{0,1\}$ is the GT label of the pixel (r,c) and $S(r,c)$ is the predicted probability of segmented object.

SSIM [17] was originally devised for image quality assessment. It captures the structural information in an image. Hence, we integrated it into our training loss to learn the structural information of the GT. Let $x = \{x_j : j = 1, \ldots, N^2\}$ and $y = \{y_j : j = 1, \ldots, N^2\}$ be the pixel values of two corresponding patches (size: $N \times N$) cropped from the predicted probability map S and the binary GT mask G, respectively. The SSIM of x and y is defined as:

$$\ell_{ssim} = 1 - \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

where μ_x, μ_y and σ_x, σ_y are the mean and standard deviations of x and y respectively, σ_{xy} is covariance, $C_1 = 0.01^2$ and $C_2 = 0.03^2$ are used to avoid dividing by 0.

IoU was originally proposed for measuring the similarity between two sets [44] and has become a standard evaluation measure for object detection and segmentation. Recently, it has been used as a training loss [96], [75]. To ensure its differentiability, we adopted the IoU loss used in [75]:

$$\ell_{iou} = 1 - \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} S(r,c)G(r,c)}{\sum_{i=1}^{N} \sum_{j=1}^{N} [S(r,c)+G(r,c)−S(r,c)G(r,c)]}$$

where $G(r,c) \in \{0,1\}$ is the GT label of the pixel (r,c) and $S(r,c)$ is the predicted probability of segmented object.

Fig. 5 illustrated the impact of each of the three losses. Fig. 5(a) and (b) are the input image and its ground truth segmentation mask. It is worth noting that the probability maps in Fig. 5 are generated by fitting a single pair of image and its ground truth (GT) mask. Hence, after a certain number of iterations, all the losses are able to produce perfect results due to over-fitting. Here, we ignore the final fitting results and aim to observe the different characteristics and problems of these losses in the fitting process. The (c), (d), (e) and (f) columns show changes of the intermediate probability maps as the training progresses.

The BCE loss is computed pixel-wise. It does not consider the labels of the neighborhood and it weights both the foreground and background pixels equally. This helps with the convergence on all pixels and guarantee a relatively good local optima. Since significantly erroneous predictions (predicting 0 as 0.9 or predicting 1 as 0.1) produce large BCE loss, the models trained with BCE loss suppress these errors by giving prediction values around 0.5 around the boundaries, which often leads to blurred boundaries and fine structures, as we can see from the second row of column (c), where the contour of the whole foreground region is blurring, and the third row, in which the cable below the backpack is with low probability values.

The SSIM loss is a patch-level measure, which considers a local neighborhood of each pixel. It assigns higher weights to pixels located in the transitional buffer regions between foregrounds and backgrounds, e.g., boundaries, fine structures, so that the loss is higher around the boundary, even when the predicted probabilities on the boundary and the rest of the foreground are the same. It is worth noting that the loss for the foreground region is similar or sometimes even higher than the foreground region. However, the background loss does not contribute to the training until the prediction of background pixel becomes very close to the GT, where the loss drops rapidly from one to zero. Because μ_y, σ_{xy}, $\mu_x\mu_y$ and σ_y^2 in the SSIM loss (Equ. 5) are all zeros in the background regions, so the SSIM loss can be approximated by:

$$\ell_{ssim}^{bg} = 1 - \frac{C_1C_2}{(\mu_x^2 + C_1)(\sigma_x^2 + C_2)}.$$

Since $C_1 = 0.01^2$ and $C_2 = 0.03^2$, only if the prediction x is close to zero, the SSIM loss (Equ. 5) will become the dominant term. The second and third rows of column (d) in Fig. 5 illustrate that the model trained with the SSIM loss is able to predict correct results on the foreground region and boundaries while neglecting the background accuracy in the beginning of the training process. This characteristic of the SSIM loss helps the optimization to focus on the boundary and foreground region. As the training progresses, the SSIM loss for the foreground is reduced and the background
loss becomes the dominant term. This is helpful since the prediction typically goes close to zero only late in the training process, where BCE loss becomes flat. The SSIM loss ensures that there is still enough gradient to drive the learning process. Hence, the background prediction looks cleaner since the probability is pushed to zero.

The IoU is a map-level measure. Larger areas contribute more to the IoU, so models trained with IoU loss emphasize more on the large foreground regions and are thus able to produce relatively homogeneous and more confident (whiter) probabilities for these regions. However, these models often produce false negatives on fine structures. As shown in the column (e) of Fig. 5, the human head in the second row and the backpack cord in both the second and third rows are missing.

To take advantage of the above three losses, we combine them together to formulate the hybrid loss. BCE is used to maintain a smooth gradient for all pixels, while IoU is employed to put more focus on the foreground. SSIM is used to encourage the prediction to respect the structure of the original image, by employing a larger loss near the boundaries, as well as further push the backgrounds predictions to zero.

4 Experiments

In this paper, we are focusing on improving the spatial accuracy of segmentation results. Therefore, experiments are conducted on two reverse binary class image segmentation tasks: salient object segmentation [110] and camouflaged object segmentation [25]. Salient object segmentation is a popular task in computer vision, which aims at segmenting the salient regions against their backgrounds. In this task, the targets are usually with high contrast against their backgrounds. However, camouflaged object segmentation is the most challenging one because the camouflaged objects usually have similar appearance to their backgrounds, which means they are difficult to be perceived and segmented. In addition, many of the camouflaged objects have very complex structures and boundaries.

4.1 Implementation and Setting

We implement our network using the publicly available Pytorch 1.4.0 [84]. An 16-core PC with an AMD Threadripper 2950x 3.5 GHz CPU (with 64GB 3000 MHz RAM,) and an RTX Titan GPU (with 24GB memory) is used for both training and testing. During training, each image is first resized to 320×320 and randomly cropped to 288×288. Some of the encoder parameters are initialized from the ResNet-34 model [35]. Other convolutional layers are initialized by Xavier [30]. We use the Adam optimizer [49] to train our network and its hyperparameters are set to the default values, where the initial learning rate lr=1e-4, betas=(0.9, 0.999), eps=1e-8, weight_decay=0. We train the network until the loss converges, without using the validation set. The training loss converges after 400k iterations with a batch size of eight and the whole training process takes about 110 hours. During testing, the input image is resized to 320×320 and fed into the network to obtain its segmentation probability map. Then, the probability map (320×320) is resized back to the original size of the input image. Both resizing processes use bilinear interpolation. The inference for a 320×320 image only takes 0.015s (70 fps, different from that reported in our CVPR version [98], in which IO time is included).

4.2 Evaluation Metrics

Five measures are used to evaluate the performance of the proposed model. (1) Weighted F-measure F^w_β [24] gives a comprehensive and balanced evaluation on both precision and recall, which is able to better leverage the interpolation, dependency and equal-importance flaw. (2) Relax boundary F-measure F^r_β [19] is adopted to quantitatively evaluate the boundary quality of the predicted maps. (3) Mean absolute error M [86] reflects the average per-pixel difference between the probability map and the GT. (4) Mean structural measure S_α [22] quantizes the structural similarity between the predicted probability map and the GT mask. (5) Mean enhanced-alignment measure F^e_ϕ [23] takes both global and local similarity into consideration. Evaluation code: https://github.com/DengPingFan/CODToolbox.

4.3 Experiments on Salient Object Segmentation

4.3.1 Datasets

For salient object segmentation task, we train our network using the DUTS-TR [110] dataset, which has 10553 images. Before training, the dataset is augmented by horizontal flipping to 21106 images. For salient object segmentation tasks, we evaluate our method on six commonly used salient object segmentation benchmark datasets: SOD [78], ECSSD [127], DUT-OMRON [128], PASCAL-S [62], HKUIS [58], DUT-TE [110]. DUT-OMRON has 5,168 images with one or multiple objects. The majority of these objects are structurally complex. PASCAL-S was originally

3. The camouflaged object segmentation task use the same augmentation strategies.
created for semantic image segmentation and consists of 850 challenging images. DUTS is a relatively large salient object segmentation dataset. It has two subsets: DUTS-TR and DUTS-TE. There are 10,553 images in DUTS-TR for training and 5,019 images in DUTS-TE for testing. In our experiments, DUTS-TR is used for training the model for salient object segmentation. HKU-IS contains 4,447 images, many of which contain multiple foreground objects. ECSSD contains 1,000 semantically meaningful images. However, the structures of the foreground objects in these images are complex. SOD contains 300 very challenging images. These images have either single complicated large foreground objects which overlap with the image boundaries or multiple salient objects with low contrast.

4.3.2 Ablation Study

In this section, we validate the effectiveness of each key component in our model. The ablation study is divided into two parts: an architecture ablation and loss ablation. For simplicity, the ablation experiments are conducted on the ECSSD dataset. The same hyper-parameters to that described in Sec. 4.1 are used here.

Ablation	Configurations	\(F_I^m \)	\(F_0^m \)	\(M \)	\(S_0 \)	\(E_s^m \)
Arch.	U-Net + \(\ell_b \)	0.827	0.669	0.864	0.867	0.897
	\(\text{ED} \) + \(\ell_b \)	0.871	0.786	0.908	0.923	
	\(\text{EDS} \) + \(\ell_b \)	0.891	0.819	0.920	0.935	
	\(\text{EDS+RRM} \) + \(\ell_b \)	0.900	0.804	0.915	0.935	
	\(\text{EDS+RRM} \) + \(\ell_s \)	0.890	0.816	0.919	0.934	
Loss	\(\text{EDS} \) + \(\ell_b \)	0.891	0.819	0.920	0.935	
	\(\text{EDS+RRM} \) + \(\ell_b \)	0.900	0.827	0.923	0.943	
	\(\text{EDS+RRM} \) + \(\ell_s \)	0.902	0.820	0.937	0.944	
	\(\text{Ours} \) + \(\ell_b \)	0.909	0.832	0.921	0.947	
	\(\text{Ours} \) + \(\ell_s \)	0.904	0.835	0.921	0.947	
	\(\text{Ours} \) + \(\ell_b \)	0.912	0.840	0.925	0.947	

Architecture

To demonstrate the effectiveness of our BASNet, we report quantitative comparison results of our model against other related architectures. We take U-Net [98] as our baseline network. Then we start with our proposed encoder-decoder network and progressively extend it with dense side output supervision and different residual refinement modules, including RRM_LC, RRM_MS and
TABLE 2. Comparison of the proposed method and 25 other methods on three salient object segmentation datasets: DUT-OMRON, DUTS-TE and HKU-IS. ↑ and ↓ indicate the higher the score the better and the lower the score the better, respectively. “*” indicates results post-processed by CRF. Bold font denotes the best performance.

Models	DUT-OMRON [122]	DUTS-TE [107]	HKU-IS [81]		
MDF [119]	0.562	0.486	0.142	0.724	0.799
UCF-RCV17	0.573	0.48	0.12	0.761	0.761
Amulet [136]	0.626	0.528	0.089	0.841	0.794
NLDF [138]	0.651	0.514	0.088	0.877	0.877
DSS [139]	0.697	0.599	0.063	0.831	0.831
LFC [140]	0.647	0.508	0.103	0.798	0.798
C2S [141]	0.672	0.565	0.107	0.820	0.820
RAS [138]	0.695	0.615	0.062	0.844	0.844
RDF [137]	0.723	0.579	0.051	0.857	0.857
PAR [136]	0.620	0.582	0.083	0.825	0.825
BMPM-RCV18	0.681	0.612	0.064	0.889	0.889
FICAnet [142]	0.691	0.663	0.086	0.833	0.833
MDF [119]	0.681	0.615	0.062	0.844	0.844
AFNet [143]	0.717	0.635	0.057	0.826	0.826
MSW-RCV19	0.522	0.369	0.109	0.736	0.736
R’Net [144]	0.728	0.599	0.181	0.853	0.853
CapSal-RCV19	0.482	0.396	0.101	0.674	0.674
SSMR [136]	0.688	0.523	0.069	0.808	0.808
DGM [145]	0.697	0.582	0.063	0.810	0.810
CPD-RCV18	0.719	0.671	0.056	0.825	0.825
PoolNet-RCV19	0.729	0.675	0.056	0.836	0.836
BANet [146]	0.720	0.679	0.056	0.838	0.838
EGNet-RCV19	0.718	0.629	0.057	0.822	0.822
MinNet-RCV19	0.719	0.649	0.057	0.826	0.826
GateNet-RCV19	0.703	0.620	0.061	0.810	0.810
BASNet (Ours)	0.760	0.703	0.039	0.841	0.841

RRM Ours. The top part of Table 1 [1] and the first row of Fig. 6 illustrate the qualitative and quantitative results of the architecture ablation study, respectively. As we can see, our BASNet architecture achieves the best performance among all configurations.

Loss: To demonstrate the effectiveness of our proposed fusion loss, we conduct a set of experiments over different losses based on our BASNet architecture. The results in Table 1 indicate that the proposed hybrid ℓ_{loss} loss greatly improves the performance, especially in terms of the boundary quality. It is clear that our hybrid loss achieves superior qualitative results, as shown in the second row of Fig. 6 [1].

4.3.3 Comparison with State-of-the-Arts

We compare our method with 25 state-of-the-art models, including MDF [119], UCF [137], Amulet [136], NLDF [72], DSS [139], LFR [135], C2S [31], RAS [13], RADF [39], PAGRN [138], BMPM [133], PiCaNet [68], MLMS [119], AFNet [26], MSWS [131], R3-Net [18], Capsal [134], SRM [113], DGLR [115], PoolNet [120], BANet [104], EGNet [140], MinNet [53] and GateNet [144], on the salient object segmentation task. For fair comparison, we either use the segmentation maps released by the authors or run our publicly available models with their default settings.

Quantitative Evaluation: Tables 2 and 3 provide quantitative comparisons on six salient object segmentation datasets. Our BASNet outperforms other models on the DUT-OMRON, DUTS-TE, HKU-IS, ECSSD and SOD datasets in terms of nearly all metrics, except for the M measures on DUT-OMRON and DUTS-TE and the S_m on SOD. On the PASCAL-S dataset, MinNet performs the best in terms of three metrics: F_p, MAE and E_0. It is worth noting...
Fig. 8. Qualitative comparison on typical samples from the SOC dataset. Images from top to bottom are from attributes SO (Small Object), OV (Out-of-View), OC (Occlusion) and SC (Shape Complexity) respectively.

Fig. 9. Failure cases on salient object segmentation datasets.

that BASNet achieves the highest relax boundary F-measure F_b^β on all of the six datasets, which indicates its strong capability in capturing boundaries and fine structures.

Qualitative Evaluation: Fig. 7 shows the qualitative comparison between our BASNet and 5 other typical models. As we can see, our BASNet is able to handle different challenging cases, such as small target with relatively low contrast (1st row), large object with complicated boundaries (2nd row), object with hollow structures (3rd row) and target with very fine structures (4th row). The third and fourth row of Fig. 7 show inspiring results, in which the segmentation maps predicted by our BASNet contain more details than the GT. These details reveals the possible inconsistency between the labels of training and testing datasets. Although detecting of these details usually leads to the deterioration of the quantitative evaluation scores of our model, it is more practically useful than good scores.

4.3.4 Failure Cases

Fig. 9 shows three typical failure cases of our BASNet on SOD datasets. For instance, the model sometimes fails in very complicated scenarios, in which there seems no salient objects, as show in the first row of Fig. 9. The second row gives an exemplary failure case of “saliency confusing”, where the scene contains multiple independent “salient” targets, But only one of them is labeled. Our BASNet sometimes fails in these cases due to the lack of the ability of recognizing the tiny saliency differences between multiple connected targets. The recent uncertainty model [132] may be one of the solutions.

4.3.5 Attribute-base Analysis

In addition to the most frequently used salient object segmentation datasets, we also test our model on another dataset, SOC [24]. The SOC dataset contains complicated scenarios, which are more challenging than those in the previous six SOD datasets. Besides, the SOC dataset categorizes images into nine different groups including AC (Appearance Change), BO (Big Object), CL (Clutter), HO (Heterogeneous Object), MB (Motion Blur), OC (Occlusion), OV (Out-of-View), SC (Shape Complexity), and SO (Small Object), according to their attributes. We train our BASNet on both DUTS-TR and the training set (1,800 images with salient objects) of SOC dataset [24] and evaluate their performance on the testing set of SOC-Sal. There are totally 600 images with salient objects in the testing set. Each image may be categorized into one or multiple attributes (e.g. AC and BO).

Quantitative Evaluation: Tab. 4 illustrates a comparison between our BASNet and 16 other state-of-the-art models, including Amulet [136], DSS [36], NLDF [72], C2S-Net [61], SRM [113], R3Net [18], BMPM [133], DGRL [115], PiCaNet-R (PiC(R)) [65], RANet [14], ANet [25], CPD [121], PoolNet [66], EGNet [140], BANet [104] and SCRN [122] in terms of attribute-based performance. As we can see, our BASNet achieves obvious improvements against the existing methods. Particularly, our BASNet advances the boundary measure F_b^β by large margins (over 5% and sometimes over 10%) on different attributes.

Qualitative Evaluation: Fig. 8 provides a qualitative comparison of our BASNet and other baseline models. As we can see, BASNet is able to handle different challenges,
including small objects (1st row), out-of-view objects (2nd row), occluded targets (3rd row) and objects with complicated shapes (4th row).

4.4 Experiments on Camouflaged Object Segmentation

To further evaluate the performance of the proposed BASENet, we also tested it on the camouflaged object segmentation (COS) task [26, 53, 25]. Compared with salient object segmentation, COS is a relatively newer and more challenging task. Because the contrast between the camouflaged targets and their backgrounds is sometimes extremely low. Besides, the targets usually have similar color and texture to their backgrounds. In addition, their shape or structure of these targets can sometimes be very complex.

4.4.1 Datasets

We test our model on the CHAMELEON [103], CAMO-Test [54] and COD10K-Test datasets [25]. CHAMELEON [103] contains 76 images taken by independent photographers. These images are marked as good examples of camouflaged animals by the photographers. CAMO [54] contains both camouflaged and non-camouflaged subsets. We use the camouflaged subset, which comprises two further subsets: CAMO-Train (1,000 images) and CAMO-Test (250 images). COD10K [25] is currently the largest camouflaged object detection dataset. It comprises 10,000 images of 78 object categories in various natural scenes. There are 5,066 images densely labeled with accurate (matting-level) binary masks. COD10K consists of 3,040 images for training (COD10K-Train) and 2,026 images for testing (COD10K-Test). For fair
TABLE 5. Comparison of the proposed method and 13 other methods on three camouflaged object segmentation datasets: CHAMELEON, CAMO-Test and COD10K-Test. ↑ and ↓ indicate the higher score the better and the lower the score the better, respectively. Bold font indicates the best performance.

Baseline Models	CHAMELEON [103]	CAMO-Test [51]	COD10K-Test [25]												
	F\textbeta	M	S\textalpha	E\textphi	F\textbeta	M	S\textalpha	E\textphi	F\textbeta	M	S\textalpha	E\textphi			
FPNCVPR17	0.791	0.246	0.105	0.794	0.794	0.483	0.224	0.131	0.604	0.67	0.411	0.193	0.105	0.697	0.692
MaskRCNNCVPR17	0.518	0.128	0.099	0.643	0.778	0.430	0.117	0.151	0.574	0.715	0.402	0.110	0.081	0.613	0.748
PSpNetCVPR17	0.555	0.207	0.085	0.773	0.756	0.455	0.191	0.139	0.663	0.659	0.377	0.166	0.080	0.678	0.681
UNet++ICCV19	0.901	0.246	0.094	0.695	0.763	0.592	0.252	0.149	0.599	0.654	0.350	0.195	0.086	0.623	0.674
PiCANetCVPR18	0.536	0.200	0.084	0.769	0.749	0.356	0.166	0.155	0.609	0.584	0.322	0.173	0.083	0.649	0.643
MSRCNCVPR19	0.443	0.074	0.091	0.667	0.658	0.454	0.128	0.133	0.618	0.669	0.419	0.101	0.073	0.641	0.706
PFANetCVPR19	0.375	0.086	0.139	0.679	0.648	0.391	0.150	0.169	0.595	0.622	0.286	0.107	0.118	0.636	0.618
HTCCVPR2019	0.204	0.071	0.129	0.517	0.489	0.174	0.076	0.172	0.477	0.442	0.221	0.099	0.088	0.548	0.520
PoolNetCVPR2019	0.555	0.151	0.079	0.777	0.779	0.496	0.155	0.128	0.703	0.698	0.416	0.126	0.077	0.705	0.713
ANet-SRMCVPR19	-	-	-	-	-	0.484	0.217	0.126	0.682	0.686	-	-	-	-	-
CPDCVPR2019	0.706	0.383	0.052	0.853	0.868	0.350	0.306	0.115	0.726	0.730	0.508	0.286	0.059	0.747	0.771
EGNetCV19	0.702	0.299	0.050	0.848	0.871	0.383	0.264	0.104	0.732	0.768	0.509	0.209	0.056	0.737	0.779
SInetCVPR20	0.740	0.410	0.044	0.869	0.893	0.606	0.334	0.100	0.752	0.722	0.551	0.311	0.051	0.771	0.809
BASNet (Ours)	0.806	0.650	0.022	0.914	0.934	0.846	0.420	0.096	0.706	0.796	0.677	0.546	0.038	0.802	0.855

Fig. 10. Failure cases on camouflaged object segmentation task. The first row shows the typical false negative artifacts. The second row illustrates the false positive phenomenon.

4.4.2 Comparison with State-of-the-Arts

To validate the performance of the proposed BASNet on the camouflaged object segmentation task, we compared BASNet against 13 state-of-the-art models, including FPN [64], MaskRCNN [33], PSPNet [139], UNet++ [145], PiCANet [68], MSRCN [11], PFANet [43], HTC [9], PoolNet [66], ANet-SRM [54], CPD [121], EGNet [140] and SInet [25]. For fair comparison, the results of different models are either provided by the authors or obtained by re-training the model with the default settings with same training data.

Quantitative Evaluation: The quantitative evaluation results are illustrated in Table 5. As we can see that our BASNet achieves the best performance in nearly all metrics with great advantages. SInet is the second best model. EGNet and CPD are competitive with each other and can be ranked as the third and fourth best. Our BASNet improves the weighted F-measure $F\textbeta$ with large margins (12.6%, 4.0% and 12.6% on CHAMELEON, CAMO-Test and COD10K-Test respectively). Particularly, our BASNet outperforms the second best model SInet by 24.0%, 8.6% and 23.5% in terms of the relax boundary F-measure Fb on CHAMELEON, CAMO-Test and COD10K-Test datasets. This reveals the effectiveness and accuracy of our BASNet in capturing boundaries and fine structures. In terms of the M, our BASNet reduces the metric by 50.0%, 4.0% and 25.5% on the three datasets, respectively. For the structure measures, $S\textalpha$, the improvements of our BASNet against the second best model are also significant (4.5% and 3.1% on CHAMELEON and COD10K-Test datasets) but there is a 0.3% $S\alpha$ decrease on CAMO-Test. Compared with SInet, $E\textphi$↑ takes both local and global structure similarity into consideration. As we can see, our BASNet achieves even greater improvements (6.1%, 2.4% and 4.6% on the three datasets, respectively) against the second best model in $E\textphi$↑ than in $S\alpha$↑.

Qualitative Evaluation: Qualitative comparisons against several of the baseline models are illustrated in Fig. 11. As we can see, our BASNet (the 3rd column) is able to handle different types of challenging camouflaged cases including complex foreground targets with low contrast (the 1st row), targets with very thin foreground structures (the 2nd and 5th row), targets occluded by fine objects (the 3rd row), targets with complicated boundaries (the 4th row), targets with extremely complex hollow structures (the 5th row), multiple objects with low contrast (the 6th row), etc. Compared with the results of other models, the results of our BASNet demonstrates its excellent abilities of perceiving fine structures and complicated boundaries, which also explains why our BASNet is able to achieve such high boundary evaluation scores Fb↑ on camouflage object segmentation datasets (see Table 5).

4.4.3 Failure Cases

Although our BASNet outperforms other camouflaged object segmentation (COS) models and rarely produces completely incorrect results, there are still some false negative (the 1st row in Figure 10) and false positive predictions (the 2nd row in Fig. 11) in many of the COS cases. It is worth noting that other models usually have the same or even worse results on these challenging cases. Although these failure cases may not have a huge impact on evaluation metrics, they will somehow limit the applications and degrade the user experiences.

5 APPLICATIONS

Thanks to the high accuracy, fast speed and simple architecture of our network, we developed two real-world applications based on BASNet: AR COPY & PASTE and OBJECT CUT. These two applications further demonstrate the effectiveness and efficiency of our BASNet.
5.1 Application I: AR COPY & PASTE

Introduced in HCI by Larry Tesler in the early 70s \cite{107}, cut/copy-paste has become essential to many applications of modern computing. In this section, we explore how BASNet can be used to apply this principle to the mobile phone camera and seamlessly transfer visual elements between the physical space and the digital space. AR COPY & PASTE is a prototype that we built upon our BASNet to conveniently capture real-world items using the camera of a mobile phone (e.g. objects, people, drawings, schematics, etc), automatically remove the background, and insert the result in an editing software on the computer by pointing the camera at it, as shown in Fig. 12. Specifically, AR COPY & PASTE first removes the background of the photo and only shows the foreground salient target on the mobile phone screen. Then users can “paste” the segmented target by moving the cellphone to point the mobile camera at a specific location of a document opened on a computer. The whole process of AR COPY & PASTE makes it seem like the real-world target is “copied” and “pasted” into a document, which provides a novel and inspiring interactive experience. A demonstration video \footnote{https://twitter.com/cyrildiagne/status/1256916982764646402} of the prototype has been released along with the source code \footnote{https://github.com/cyrildiagne/ar-cutpaste}. Both have received world-wide attention (millions of views for the video, tens of thousands of Github stars for the source code). Hundreds of thousands of people have subscribed to the private beta.

5.1.1 Workflow of AR COPY & PASTE

From the perspective of users, our AR COPY & PASTE only consists of two main steps: “copy” and “paste”, as shown in Fig. 12 (1) Copy. The first step consists in pointing the mobile camera at a subject and tapping the screen to take a picture. BASNet is then used to hide all the pixels that are not part of the main foreground subject. The remaining pixels keep floating on top of the camera and provide a preview of the paste result. Compared to other methods like image segmentation \cite{77}, BASNet can produce very accurate segmentation results with sharp and high-quality boundaries, which is essential in many image composition workflows. (2) Paste. The second step consists of pointing the mobile phone at a specific location on the computer screen and tapping to “paste” the “copied” subject. SIFT \cite{71} (implemented in OpenCV \cite{4}) is used to find the corresponding computer screen coordinates targeted by the center of the mobile phone camera. The image containing the background removed target is finally imported in an
TABLE 6. Number of operations of different methods for image capturing and masking out.

Methods	Number of steps (on mobile)	Number of steps (on desktop)
Cross-platform		
(Android v11 and macOS v10.15)	6	5
① Take a photo,		
② Tap the thumbnail,		
③ Tap share,		
④ Tap more,		
⑤ Select Bluetooth,		
⑥ Tap the destination on a device.		
Constructor-specific		
(iOS v13 and macOS v10.15)	5	5
① Take a photo,		
② Tap the thumbnail,		
③ Tap share,		
④ Tap “AirDrop”,		
⑤ Tap the destination on a device.		
AR COPY & PASTE (Ours)	2	0
① Take a photo,		
② Tap toward the destination software.		

Fig. 13. Schematic of the AR COPY & PASTE flow.

Fig. 14. Overall pipeline of the AR COPY & PASTE.

image editing software at the computed screen coordinates to create the final composition.

Fig. 15. Sample results given by the OBJECT CUT API: the first row shows the input images and the second row shows the background removed results.

5.1.2 Implementation Details

Fig. 14 illustrates the overall implementation pipeline of the AR COPY & PASTE prototype, which consists of three main parts: Kubernetes cluster, mobile application and desktop application. The AR COPY & PASTE prototype was built using our BASNet model trained on DUTS-TR [110]. To make sure that it runs smoothly on mobile device, it has been wrapped as an HTTP service/container image so that it can be deployed easily on remote GPUs using Kubernetes [7]. Hence, photos taken by mobile devices in AR COPY & PASTE are sent to the remote server to obtain their segmentation masks. The desktop application is a python HTTP server which takes three files from the mobile application as input (original picture, BASNet mask, photo of the screen) and runs SIFT feature matching and perspective transformation based on the photo of the screen and the screenshot to determine the destination coordinates. Finally, the desktop application is responsible for sending javascript commands to desktop apps like Photoshop in order to import the image into the document at the right position.

5.1.3 Comparison with Other Methods

Our AR COPY & PASTE prototype applies BASNet in a novel human-computer-interaction setting, which makes the process easier and faster than other methods (two operations for our method versus 10 or 11 operations for other methods). Table 6 illustrates examples of typical user flow.

6. https://github.com/cyrildiagne/basnet-http
7. https://github.com/kubernetes/kubernetes
8. https://www.photoshop.com/en
to clip and import an object from a mobile devices to an
desktop image editing software, such as Adobe Photoshop.
As we can see, our prototype greatly reduces the numbers
of operations and simplifies the process. Besides, our AR
COPY & PASTE allows users to delegate some of the lower-
level decisions (how visible each pixel should be), and
focus on the higher-level objectives (how do they want the
object to look). Removing these tasks lowers the barrier to
entry (there is no need to learn how to paint masks in an
image editing software), saves a significant amount of time,
and ultimately leads to better end results by removing the
cognitive load of the low-level tasks [3].

5.2 Application II: OBJECT CUT

OBJECT CUT is an online image background removal ser-
vice that uses BASNet. Removing the background from
an image is a common operation in the daily work of
professional photographers and image editors. This process
is usually a repeatable and manual task that requires a lot
of effort and time. However, thanks to BASNet, one of the
most robust and fastest performing deep learning models
for image segmentation, OBJECT CUT was able to turn
it into an easy and automatic process. The program was
built as an API to make it as easy as possible to integrate.
APIs, also known as Application Programming Interfaces,
are already commonly used to integrate different types of
solutions to improve systems without actually knowing
what is happening inside. For instance, RESTful APIs are
a standard in the software engineering field for designing
and specifying APIs. Making it substantially easier to adapt
desired APIs to specific workflows.

Our system is based on three well-distinguished parts,
as shown in Fig. 16: 1) the API Handler, responsible for
receiving and validating clients requests, downloading and
preprocessing input images and sending those to the model;
2) BASNet, responsible for performing salient object detec-
tion. 3) Once the output from the network is generated,
the postprocessing module applies an unsharp masking
algorithm and morphological operations to improve the
quality of the output. Afterward, OBJECT CUT uploads the
cropped image to the Google Cloud Storage and returns its
public URL to the client. This is structured as-is in order
to isolate different parts, such as the BASNet component,
removing all the API parameter validations as well as image
download and upload processes, as much as possible. In this
scenario, OBJECT CUT maximizes the operations running
on the BASNet thread. The whole stack from the API is
running under Docker containers, all managed by the cloud
native application proxy called Traefik. The usage of Traefik
here allows us to have a production-ready deployment
making easy, from the containers’ perspective, to commun-
icate with other processes. In addition, we have a Load
Balancer system in place to enable each of the components
to scale more easily. The source code for this pipeline
can be found under the OBJECT CUT GitHub repository:
https://github.com/AlbertSuarez/object-cut

To ensure easy integration, it is publicly available at
RapidAPI, the biggest API marketplace in the world, and it
has been effectively utilized by people and companies from
86 different countries around the globe, including China,
United States, Canada, India, Spain, Russia, etc. OBJECT
CUT was born to power up the designing and image editing
process for the people who work with images daily.
Integrating the OBJECT CUT API removes the necessity of
understanding the complex inner workings behind it and
automates the process of removing the background from
images in a matter of seconds. See examples in Fig. [15]

6 Conclusion

In this paper, we proposed a novel end-to-end boundary-
aware model, BASNet, and a hybrid fusion loss for accurate
image segmentation. The proposed BASNet is a predict-
refine architecture, which consists of two components: a pre-
diction network and a refinement module. Combined with
the hybrid loss, BASNet is able to capture both large-scale
and fine structures, e.g. thin regions, holes, and produce
segmentation probability maps with highly accurate bound-
aries. Experimental results on six salient object segmentation
datasets, one salient object in clutter dataset and three
camouflaged object segmentation datasets demonstrate that
our model achieves very competitive performance in terms
of both region-based and boundary-aware measures against
other models. Additionally, the proposed network architec-
ture is modular. It can be easily extended or adapted to
other tasks by replacing either the prediction network or
the refinement module. The two (close to) commercial ap-
plications, AR COPY & PASTE and OBJECT CUT, based on
our BASNet not only prove the effectiveness and efficiency
of our model but also provide two practical tools for reduc-
ing the workload in real-world production scenarios. The
world-wide impacts of these two applications indicates the
huge demand for highly accurate segmentation approaches,
which motivates us to explore more accurate and reliable
segmentation models.

References

[1] Amir A Amini, Terry E Weymouth, and Ramesh C Jain. Using dy-
namic programming for solving variational problems in vision.
TPAMI, (9):855–867, 1990.
[2] Arnon Amir and Michael Lindenbaum. A generic grouping
algorithm and its quantitative analysis. TPAMI, (20):168–185,
1998.
[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Seg-
net: A deep convolutional encoder-decoder architecture for im-
age segmentation. TPAMI, (12):2481–2495, 2017.
[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.
[5] Shan Carter and Michael Nielsen. Using artificial intelligence to
augment human intelligence. Distill, 2(12):e9, 2017.
[6] Vicent Caselles, Francine Catté, Toméu Coll, and Françoise Dibos.
A geometric model for active contours in image processing.
Numerische Mathematik, 66(1):31, 1993.

9. https://rapidapi.com/objectcut.api/api/background-removal
Ling Shao is currently the CEO and the Chief Scientist of the Inception Institute of Artificial Intelligence, Abu Dhabi, United Arab Emirates. He is also the Executive Vice President and a Provost of the Mohamed bin Zayed University of Artificial Intelligence. His current research interests include computer vision, machine learning, and medical imaging. Dr. Shao is a fellow of IAPR, IET, and BCS. He is an Associate Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING, the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, and several other top journals.