Differences in the composition, source, and stability of suspended particulate matter and sediment organic matter in Hulun Lake, China

Wenwen Wang1 · Junyi Chen2,3 · Shuhang Wang2,3 · Wei Li1

Abstract

The occurrence, migration, transformation, and stability of sediment (SOM) and suspended particulate (SPOM) organic matters have important effects on the environmental behaviors of carbon, nitrogen, phosphorus, and other pollutants in a water environment. The content, composition, fluorescence characteristics, source, and stability of SOM and SPOM in Hulun Lake, a typical lake in cold and arid region of China, were compared by sequential extraction, three-dimensional fluorescence spectroscopy, parallel factor technique, carbon–nitrogen ratio, and stable carbon isotope. Contents of SOM and SPOM in north and west were higher than those in east and south. The average content of SPOM (24.70 ± 4.63 g/kg) was slightly higher than that of SOM (23.04 ± 10.27 g/kg), but the difference was not significant. Humin was the dominant component in SOM and SPOM, accounting for 73.7% and 61.2%, respectively. Humus was the main fluorescence component of water-extractable organic matter in SOM and SPOM, accounting for 79.9% and 70.4%, respectively, of the total fluorescence intensity. SOM and SPOM were derived from terrestrial sources with a relative contribution rate of about 70%. SPOM was more influenced by autochthonous sources and had a significantly lower humification degree and stability than SOM. Effects of climate changes on migration, transformation, stability, and bioavailability of organic matters and endogenous pollutants closely related to organic matters in lakes of cold and arid regions should be paid attention in the future.

Keywords Lake in a cold and arid area · Hulun Lake · Sediment organic matter (SOM) · Suspended particulate organic matter (SPOM) · Composition · Source · Stability

Introduction

Organic matter exists widely in all kinds of water environments and is one of the important chemical components in a water environment. Organic matter participates in the material circulation of the aquatic environmental food web and affects the occurrence, migration, transformation, cycle, and biological availability, and toxicity of water environment pollutants, including nitrogen, phosphorus, heavy metals, and toxic and harmful organic pollutants (Guo et al. 2020; Shah et al. 2021; Slukovskii et al. 2020; Yao et al. 2020). Organic matters in a lake water environment have complex and diverse compositions and structures and can be divided into dissolved (DOM), suspended particulate (SPOM), and sediment (SOM) organic matters in accordance with different attached media (Chen et al. 2021; Verdugo et al. 2004). The mutual transformation among DOM, SPOM, and SOM can be realized through physical, chemical, and biological actions (He et al. 2016; Toosi et al. 2014). In this process, the contaminants bound to the organic matters will migrate and transform, and the environmental characteristics will be changed, which have great influences on water environmental quality and ecological health (Kurek et al. 2021; Tang et al. 2021). The stabilities of SOM and SPOM make an important contribution to the occurrence of DOM and carbon burial in the lake (Chmiel et al. 2016; Li et al. 2019; Wang et al. 2021b). However, studies comparing the occurrence and stability of
SPOM and SOM in lakes and the changes and mechanism of migration, transformation, occurrence, and bioavailability of biogenic elements and pollutants during the migration and transformation processes among SOM, SPOM, and DOM are few.

The lake ecosystem in cold and arid regions is fragile because of its special geographical location and basin climate. This ecosystem is minimally affected by human activities and sensitive to climate change, human interference, and environmental change (Li et al. 2021; Ma et al. 2013; Song et al. 2020; Zhang et al. 2015). Therefore, once the human interference intensity increases or the climate and environment change significantly, the water ecological environment of lakes in the cold and arid region may be seriously and irreversibly damaged. The occurrence, migration, transformation, and sedimentary evolution of organic matters in lakes are bound to change. Thus, the cold and arid regions are ideal study areas for observing the burial, migration, and transformation behaviors and the influencing factors of lake carbon. However, historical data and research of lake organic matters in cold and arid regions are insufficient. Hence, a systematic, comprehensive, and in-depth understanding of the occurrence, transformation and transport, deposition, and evolution of organic matters in lakes in cold and arid regions as well as the response process and mechanism to climate change and water environment change are lacking, which remarkably restricts the protection and management of lake water environment in cold and arid regions, and relevant research should be carried out.

The Hulun Lake is a typical lake in the Inner Mongolia–Xinjiang Lake region located in the cold and arid region of China and is the largest lake in north China (Xie et al. 2021). Hulun Lake plays an irreplaceable role in adjusting regional climate, conserving water resources, preventing desertification, protecting biodiversity, and maintaining the ecological balance of Hulunbuir Grassland and the ecological security of northern China (Liu and Yue 2017). The natural grassland area is as high as 20,132.69 km², among which the natural grassland area is as high as 20,132.69 km², accounting for 81% of the total area of the basin (Wang et al. 2021a).

Sediment and suspended particle sample collection

Twelve surface sediment and suspended particle samples were collected from Hulun Lake in July 2019 (Fig. 1). The main factors to be considered in the sampling point layout are as follows: sampling points should be evenly distributed in the lake district and cover the local routine detection points as far as possible, which has a good representation of the whole investigation area. Due to the influence of weather, wind, and waves during actual sampling, some point positions were adjusted according to the actual situation. At each sampling point, 40 L of the overlying water sample 0.5 m away from the water surface was collected in a clean plastic bucket. After being transported back to the laboratory, water was filtered by a glass fiber filter membrane (GF/F, φ = 47 mm, Whatman, UK), which was burned at 450 °C for 3 h in advance. After the filter membrane was freeze-dried, suspended particle samples were obtained and stored in a clean sample bag. Surface sediment samples were collected using the Beeker cylindrical sampler (NL, φ = 12 cm, Eijkelkamp, 04.23; SA, the Netherlands) and stored in clean polythene sampling bags in the dark. Sediment samples were freeze-dried after being transported back to the laboratory and sifted through a sieve (100 mesh, 0.149 mm). The prepared sediment samples were stored in clean polythene bags.

Experimental methods

C/N

Sample pretreatment before total organic carbon (TOC) analysis. An appropriate amount of sediment or suspended particle samples was weighed and placed into a centrifuge tube and added with 20 mL HCl (3 mol/L) to react fully for the removal of inorganic carbon. Samples were washed with ultrapure water to neutral, freeze-dried, ground, and passed through a 100-mesh (0.15 mm) nylon sieve. Pretreated samples were stored in clean polythene bags.
Sample pretreatment before total organic nitrogen (TON) analysis (Zhang et al. 2018). An appropriate amount of sediment or suspended particle samples was weighed into a centrifuge tube and added with sufficient amounts of 2 mol/L KCl and 0.5 mol/L HCl to react fully for the removal of inorganic nitrogen. Samples were washed with ultrapure water to neutral, ground, freeze-dried, and passed through a 100-mesh (0.15 mm) nylon sieve. Pretreated samples were stored in clean polythene bags.

The contents of TOC and TON were determined using the Elementar (elementar vario MACRO cube, Elementar Analysensysteme GmbH, Germany). C/N was the ratio of TOC to TON.

Sequential extraction of organic matter components The chemical components of SOM and SPOM included water-extracted organic matter (WEOM), humic acid (HA), fulvic acid (FA), and humin (HM), and the contents of each component were determined using the sequential extraction method (Zhang et al. 2017) as shown in Fig. 2.

After measuring the dissolved organic carbon (DOC) concentration in WEOM, FA, and HA extracts by using an automatic total organic carbon tester (TOC-V, SHIMADZU, Japan), the contents of WEOM, FA, and HA in sediments and suspended particles were further calculated in accordance with the mass of the sediments. The HM content (g/kg) was the difference between the TOC content and the total contents of WEOM, FA, and HA.

EEM data of WEOM The WEOM extract in the “Sequential extraction of organic matter components” section was subjected to ultraviolet–visible (UV–VIS) spectrophotometry (D5000, hash, USA) at the wavelength range of 200–700 nm (1 nm intervals, medium speed). Ultrapure water was used for the baseline correction of absorbance measurements. A fluorescence analyzer (Hitachi, F7000, Japan) was used to scan the fluorescence spectrum of WEOM to obtain the EEM data. A 150 W xenon lamp was used as the excitation source, and the PMT voltage was set to 400 V. The excitation (λ_{Ex}) and emission (λ_{Em}) wavelengths were set to 210–450 and 250–530 nm, respectively, and the wavelength increment, slit width, and scanning speed were set to 2 nm, 10 nm, and 12,000 nm/min, respectively. The calibration methods of EMM data and the determination of fluorescence components by the PARAFAC technology were performed by referring to the methods of Wang et al. (2018). The fluorescence intensities (F_{max}) of individual components were used to represent their relative concentrations in the extract, and the total fluorescence intensity (F_t) of WEOM was the sum of all components. F_t was calculated using Eq. (1):

$$F_t = \sum_{i=1}^{n} F_{\text{max}(n)}$$

where n is the number of the fluorescence components of WEOM in SOM or SPOM, and $F_{\text{max}(n)}$, (R.U.) is the relative intensity of the nth component of WEOM in SOM or SPOM.
The humification index (HIX) is the ratio of the peak area in the λ_{Em} range of 435–480 nm to the peak area in the λ_{Em} range of 300–345 nm at λ_{Ex} of 255 nm (Huguet et al. 2009).

$\delta^{13}C$ The sediment and suspended particle samples were pretreated by adding HCl (3 mol/L) to react fully for the removal of inorganic carbon. A proper amount of pretreated sample and 2–3 g CuO wire were placed into a quartz tube that was preheated at 850 °C for 2 h in a muffle furnace. The tube was then welded, sealed in a high-vacuum system, and burned at 850 °C for 5 h in a muffle furnace, and the CO$_2$ was purified in a vacuum system (Liang et al. 2014). The $\delta^{13}C$ was analyzed using an isotope mass spectrometer (MAT252, Finnigan Mat, Germany) with the Pee Dee Belemnite of Cretaceous in South Carolina, USA, as the standard, and the analytical error was 0.2‰. The $\delta^{13}C$ values were calculated using Eq. (2):

$$\delta^{13}C = \left(\frac{R_{13}}{R_{12}} - 1 \right) \times 1000\%,$$

(2)

where R_{13} is the ratio of natural abundance of 13C to 12C of the sample, and R_{12} is the ratio of natural abundance of 13C to 12C of the standard.

Relative contribution of organic matter sources The relative contribution rates of terrestrial and autochthonous sources for SOM and SPOM were calculated using end-member mixing models through the following equations (Wang et al. 2021a):

$$C = C_T + C_A,$$

(3)

$$N = N_T + N_A,$$

(4)

$$R_T = C_T/N_T, \text{ and}$$

(5)

$$R_A = C_A/N_A,$$

(6)

where C is the TOC content in sample; C_T and C_A are the TOC contents from terrestrial and autochthonous sources, respectively, in the sample; N is the TON content of sediment or suspended particle sample; N_T is the TON content of terrestrial organic matters in the sample; N_A is the TON content of autochthonous matters in the sample; R_T is the C/N value of terrestrial organic matters; and R_A is the C/N value of autochthonous organic matters.

The values of $N_T, N_A, C_T,$ and C_A were calculated by Eqs. (3)–(6):

$$N_T = (C - R_A \times N)/(R_T - R_A),$$

(7)

$$N_A = (C - R_T \times N)/(R_A - R_T),$$

(8)

$$C_T = R_T (C - R_A \times N)/(R_A - R_T), \text{ and}$$

(9)

$$C_A = R_A (C - R_T \times N)/(R_A - R_T).$$

(10)

$N_T, N_A, C_T,$ and C_A were calculated by substituting the values of $R_A, R_T, C,$ and N into Eqs. (7)–(10), and the relative contribution rates of terrestrial and autochthonous sources were calculated by Eqs. (11) and (12):

$$P_T = C_T/C, \text{ and}$$

(11)

$$P_A = C_A/C.$$

(12)

P_T and P_A are the relative contribution rates of terrestrial and autochthonous sources, respectively.
P_T and P_A based on $\delta^{13}C$ were calculated using Eqs. (13) and (14) (Koszelnik et al. 2018):

$$\delta^{13}C = \delta^{13}C_T \times P_T + \delta^{13}C_A \times P_A, \quad \text{and}$$

$$P_T + P_A = 1.$$

$\delta^{13}C_T$ is the $\delta^{13}C$ value of terrestrial organic matters in sample, and $\delta^{13}C_A$ is the $\delta^{13}C$ value of autochthonous organic matters in sample.

Statistical analysis

Three parallel analyses were performed for all measured indices, and test results were expressed as the average value of three parallel analyses (error range of the results of the three analyses < 5%).

The distribution map of sampling sites was drawn using the ArcGIS 10.2. Figures about the contents, composition, fluorescence intensity, and fluorescence components of the WEOM of SOM and SPOM and the C/N and $\delta^{13}C$ values of sediment and suspended particle samples were created using the Surfer 14.0 software.

The minimum, maximum, mean, and standard deviations of the analytical indices were determined using the SPSS 19.0 software. The correlation and significance analyses between two data sets were performed using the Pearson correlation coefficient method and ANOVA, respectively, in the SPSS 19.0 software.

Results and discussion

Contents and compositions of SOM and SPOM in Hulun Lake

The contents of SOM and SPOM in Hulun Lake were characterized using the TOC concentrations in suspended particles and sediments, respectively. SOM and SPOM contents range from 4.79 to 34.95 g/kg (mean = 23.04 ± 10.27 g/kg) and from 16.19 to 31.49 g/kg (24.70 ± 4.63 g/kg), respectively (Fig. 3). The average content of SPOM was slightly higher than that of SOM, but the difference was not significant ($P > 0.05$).

The contents of SOM and SPOM in the north and west were higher than those in the east and south. The spatial distribution characteristics of SOM and SPOM in Hulun Lake were affected by the land use around the lake, dominant wind direction, and sediment particle size distribution. The grass shoreline in the northwest of Hulun Lake is 150 km long (Song et al. 2011), and animal husbandry is developed. In addition, the perennial prevailing wind in the basin is northwest wind, which leads to a large amount of hay, animal manure, or soil from the semiarid grassland in the northwest into the lake followed by the surface runoff formed by wind or rainfall. According to statistics, the annual amount of hay into the Hulun Lake is about 3348 t (frozen period: 1580 t, nonfrozen period: 1768 t) (Zhang et al. 2019b). The decomposition and settlement of hay can introduce a large amount of dissolved and particulate organic matters. While the east bank of Hulun Lake is the lakeside dune zone, the organic matter input is less than that of the west lake. In addition, the sediments in southeastern part are sandy sediments with large particle size, whereas the sediments in the northwestern part are silts with small particle size. Most organic matters (more than 85%) are distributed in fine particles, and the lowest proportion is distributed in coarse particles (Shang et al. 2013). The median grain size (D_{50}) of surface sediments in Hulun Lake was significantly negatively correlated with TOC content ($D_{50} = -2.7197 \times \text{TOC} + 104.38$, $R^2 = 0.6505$, $P < 0.01$). Hence, the SOM contents in the north and west lake areas with small sediment particle size were higher than those in the east and south lake areas with large sediment particle size.

Hulun Lake is a shallow lake with a wide lake surface and an average water depth of 5.7 m. Under the disturbance of wind and waves, the sediment resuspension is also one source for SPOM (Ao et al. 2020; Liu et al. 2019b). Thus, the spatial distribution of SPOM is also affected by the SOM distribution.
SOM and SPOM consist of four chemical components, i.e., WEOM, HA, FA, and HM. Among these components, WEOM is a soluble and active component in SOM and SPOM in water, and has the highest bioavailability and the lowest proportion (Li et al. 2018; Ni et al. 2021; Zhang et al. 2021). The WEOM had mean values of 0.63 ± 0.35 and 1.49 ± 0.50 g/kg, and took 3.0% and 6.0% of SOM and SPOM, respectively. HM is not soluble in acid or alkali and is difficult to be decomposed (Pham et al. 2021; Zhang et al. 2019a). HM is the most stable form of SOM and SPOM, and accounted for 73.7% and 61.2% of the total amount of SOM and SPOM, respectively. FA and HA can be dissolved in acid or alkali, and their stabilities are between those of WEOM and HM. FA accounted for 9.2% and 18.1% of the total amounts of SOM and SPOM, respectively. HA accounted for 14.2% and 14.8% of the total amounts of SOM and SPOM, respectively. The relative ratios of the components (WEOM:FA:HA:HM) in SOM and SPOM were 1.0:3.6:4.5:27.4 and 1.0:2.9:2.3:10.3, respectively. HM was the dominant component of SOM and SPOM in Hulun Lake (Table 1).

Fluorescence components of WEOM in SPOM and SOM in Hulun Lake

WEOM takes the smallest proportion in SOM and SPOM but is the most active component and is most easily used by microorganisms. WEOM contains different fluorescence components with different characteristics in structure, humification degrees, and sources (Derrien et al. 2019; Han et al. 2021; Liu et al. 2019a). Therefore, further analysis of the fluorescence composition of WEOM can further understand the composition, source, and biodegradability of SOM and SPOM. The WEOM fluorescence spectra of SOM and SPOM in Hulun Lake reflected humus- and protein-like fluorescence peaks. The three-dimensional fluorescence spectra of EEM were analyzed using the PARAFAC, and 4 and 3 fluorescence components with single-emission wavelength were determined. As shown in Table 2, the four fluorescence components of WEOM in SOM included 1 terrigenous fulvic acid-like component C1, 2 terrigenous humic acid-like components C2 and C3, and 1 tryptophan-like component C4 formed by biodegradation. The three fluorescence components of WEOM in SPOM included fulvic acid-like component C1', terrigenous humic acid-like component C2', and tryptophan-like component C3'.

The total fluorescence intensity of WEOM in SOM (F_r-SOM) ranged from 0.87 R.U. to 5.45 R.U. (mean = 2.74 ± 1.33 R.U.), and humus-like components (C1+C2+C3) took 79.9% of F_r-SOM (Fig. 4a). The total fluorescence intensity of WEOM in SPOM (F_r-SPOM) ranged from 1.60 R.U. to 4.68 R.U. (mean = 3.64 ± 0.88 R.U.), and humus-like components (C1'+C2') took 70.4% of F_r-SPOM (Fig. 4b). Humus-like components were the dominant fluorescence components for WEOM in SOM and SPOM. Results of the “Contents and compositions of SOM and SPOM in Hulun Lake” section also showed that HM was the dominant component of SOM and SPOM. It can be inferred from the component composition that SOM and SPOM might be mainly influenced by terrestrial inputs, for the main component of terrestrial organic matter is humic-like materials. In addition, the proportion of humus-like components in SOM was slightly higher than that in SPOM, indicating that the higher humification degree of SOM than that of SPOM.

Sources of SPOM and SOM in Hulun Lake

The organic matter carriers from different sources have different ranges of C/N and $\delta^{13}C$ and are conservative in the physical mixing process (Yu et al. 2010). The combination of C/N and $\delta^{13}C$ can effectively distinguish the source of organic matter (Pan et al. 2019; Yu et al. 2010). The C/N values of aquatic phytoplankton range from 4 to 10 (Meyers 1994), and the $\delta^{13}C$ values usually range from −42 to −24‰ (Liu et al. 2021). The C/N of most terrestrial higher plants is > 20 (Meyers 1994), and the C/N and $\delta^{13}C$ values of C3 plants range from 20 to 80 and from −32 to −22‰, respectively (Kendall et al. 2001; Ogrinc et al. 2008). The values of C/N and $\delta^{13}C$ for C4 plants generally range from 40 to 80 and −16 to −9‰, respectively (Kendall et al. 2001). The C/N values of organic matters from terrestrial soils range from 8 to 15 (Ogrinc et al. 2008), and their $\delta^{13}C$ values are similar to those of terrestrial plants. C/N is less than 8, indicating large lake aquatic biomass, high primary productivity, and high proportion of autochthonous sources. The C/N is between 8 and 15, indicating that SOM and SPOM are influenced by terrestrial and autochthonous sources. C/N is greater than 15, indicating that SOM and SPOM come from terrestrial input. The C/N ranges of surface sediments and suspended particles in Hulun Lake were 8.37–15.39 (mean = 12.21 ± 2.01) and 7.53–15.20

Organic matter	Component	Min (g/kg)	Max (g/kg)	Mean (g/kg)
SOM	WEOM	0.15	1.34	0.63 ± 0.35
	FA	0.32	3.87	2.28 ± 1.31
	HA	1.24	5.32	2.83 ± 1.38
	HM	2.89	26.73	17.31 ± 7.81
SPOM	WEOM	0.45	2.28	1.49 ± 0.50
	FA	1.72	5.61	4.37 ± 0.98
	HA	1.77	5.40	3.50 ± 1.08
	HM	7.32	22.33	15.33 ± 4.36

Min minimum value, Max maximum value.
The organic matters in a lake water environment exist in forms of DOM, SOM, and SPOM, which can transform into one another through physical and chemical processes, such as adsorption–desorption, dissolution, condensation, redox, photochemistry, and biological processes of phytoplankton and large and medium-sized aquatic plants and microorganisms (He et al. 2016; Wu et al. 2008) (Fig. 6). The stabilities of SOM and SPOM directly affect the migration and transformation of organic matters and pollutants and the environmental toxicities of the pollutants in different media in the lake water environment (Hu et al. 2019; Lipczynska-Kochany 2018; Miller et al. 2020). Relatively stable SOM and SPOM are not easy to biodegrade, which is conducive to carbon deposition and accumulation, and the risk of release and biotoxicity of the pollutants combined with them are relatively small. By contrast, poor stabilities of SOM and SPOM are not conducive to the deposition and accumulation of carbon, and the ecological risks of combined pollutants are relatively high. Therefore, evaluating the stabilities of SOM and SPOM is important in lake water environment protection. The stabilities of SOM and SPOM were evaluated on the basis of source, composition. The percentage of HA in humus acid (PQ value), and HIX value of organic matters.

SOM and SPOM in Hulun Lake came from terrestrial sources, and the contribution rate of terrigenous source was about 70%. Organic matters from terrigenous sources are humus-like matters, and the humification degrees are high. In terms of composition, the predominant component of SOM and SPOM in Hulun Lake was HM, which is difficult to degrade. HM accounted for 73.7% and 61.2% of the total amount of SOM and SPOM, respectively, and its maximum values could reach 81.9% and 80.9%, respectively. However, WEOM accounted for only 3.0% and 6.0% of the total amount of SOM and SPOM, respectively. In addition, the fluorescence components of WEOM were humus-like components, which had a large molecular weight and were relatively difficult to degrade, whereas tryptophane-like components with small molecular weight and easy to biodegrade accounted for less than 30%. The results of the composition survey were in good agreement with the results of source identification. HIX can also reflect the humification degree of WEOM. HIX < 4 indicates low humification degree of WEOM, and HIX of 4–10 means the strong humification degree of WEOM.

Stabilities of SPOM and SOM in Hulun Lake

The relative contributions of terrestrial (P\textsubscript{t}) and autochthonous (P\textsubscript{a}) sources were estimated using two end-member mixing models based on C/N and \(\delta^{13}C\) of SOM and SPOM, respectively, to further analyze the relative contributions of autochthonous and terrestrial sources to SOM and SPOM in Hulun Lake (Table 3). The P\textsubscript{t} values of SOM and SPOM estimated by C/N were 70.7% ± 13.4% and 67.2% ± 18.8%, respectively, and the Pa values of SOM and SPOM were 29.3% ± 13.4% and 32.8% ± 18.8%, respectively. The P\textsubscript{t} values of SOM and SPOM estimated by \(\delta^{13}C\) were 73.8% ± 10.3% and 68.9% ± 9.3%, respectively, and the Pa values of SOM and SPOM were 26.2% ± 10.3% and 31.1% ± 9.3%, respectively. The estimation results of the two methods were basically consistent, and SPOM was relatively more affected by autochthonous sources than SOM, and this finding was consistent with the results of preliminary judgment. These results might be because samples were collected in July when the cyanobacterial bloom occurred in Hulun Lake area in summer. During the sampling period, the chlorophyll a concentration ranged from 4.37 to 60.56 mg/m3 (mean = 18.39 mg/m3). Therefore, planktonic algae contribute a certain amount of SPOM as a part of suspended particles.

Table 2 WEOM components of SOM and SPOM in Hulun Lake

Organic matter	Component	\(E_{\text{max}}\) (nm)	\(E_{\text{max}}\) (nm)	Description
SOM	C1	238	410	Fulvic acid-like fluorescence
	C2	276	490	Humic acid-like fluorescence
	C3	252,362	454	Humic acid-like fluorescence
	C4	220,276	340	Tryptophan-like fluorescence
SPOM	C1'	244	434	Fulvic acid-like fluorescence
	C2'	272, 368	480	Humic acid-like fluorescence
	C3'	224, 276	346	Tryptophan-like fluorescence

\(E_{\text{max}}\): maximum excitation wavelength, \(E_{\text{max}}\): maximum emission wavelength, C1 component 1 of SOM, C2 component 2 of SOM, C3 component 3 of SOM, C4 component 4 of SOM, C1’ component 1 of SPOM, C2’ component 2 of SPOM, C3’ component 3 of SPOM.
that WEOM is difficult to be biodegraded (Huguet et al. 2009). The HIX values for WEOM in SOM and SPOM of Hulun Lake ranged from 4.21 to 8.54 (mean = 6.40) and from 4.07 to 7.40 (mean = 6.09), respectively. The HIX values were all in the range of 4 to 10, indicating that the WEOM in SOM and SPOM of Hulun Lake had a strong humification degree and were difficult to be biodegraded. Compared with those of Taihu Lake, with the same area

Table 3 Relative contributions of terrestrial (P_t) and autochthonous (P_a) sources of SOM and SPOM in Hulun Lake

Item	Calculated by C/N	Calculated by $\delta^{13}C$					
	C/N	P_t (%)	P_a (%)	$\delta^{13}C$ (%)	P_t (%)	P_a (%)	
SOM	Min	8.37	12.8	40.5	-27.78	14.3	55.6
	Max	15.39	59.5	87.2	-26.25	44.4	85.7
	Mean	12.21 ± 2.01	29.3 ± 13.4	70.7 ± 13.4	-27.18 ± 0.52	26.2 ± 10.3	73.8 ± 10.3
SPOM	Min	7.53	10.6	34.8	-27.20	17.5	59.4
	Max	15.20	65.2	89.4	-26.10	40.6	82.5
	Mean	11.33 ± 2.55	32.8 ± 18.8	67.2 ± 18.8	-26.57 ± 0.43	31.1 ± 9.3	68.9 ± 9.3
and eutrophication level as Hulun Lake, the \(HIX \) values of WEOM in SOM and SPOM of Hulun Lake were significantly \((P < 0.05) \) higher (Wang et al. 2018), indicating significantly higher humification degrees (Table 4).

The \(PQ \) value can also be used to characterize the stabilities of SOM and SPOM (Bulosan-Atendoza et al. 2005; Satisha and Devarajan 2005; Yang et al. 2019; Zhang et al. 2020). A high \(PQ \) value results in complete humification process of organic matters, stable organic matters, accumulation of organic matters in sediments and suspended particles, and low contribution to the carbon cycle. By contrast, a low \(PQ \) value results in poor stability of organic matters, recycling of organic carbon, and increased contribution to the carbon cycle. \(PQ \) values were calculated using Eq. (15):

\[
PQ = \frac{HA}{(WEOM + HA + FA)}.
\]

The \(PQ \) values of SOM and SPOM in Hulun Lake ranged from 0.29 to 0.76 \((\text{mean} = 0.52 \pm 0.13)\) and from 0.22 to 0.46 \((0.37 \pm 0.07)\), respectively. The \(PQ \) values of SPOM were significantly lower than those of SOM \((P < 0.01)\). The comprehensive evaluation results of source, component, and \(HIX \) and \(PQ \) values showed that the stability of SPOM in Hulun Lake was significantly lower than that of SOM \((P < 0.01)\). As one of the important forms of organic matters in the lake water environment, SPOM plays an important role in carbon cycle and pollutant migration and transformation in the lake (He et al. 2021a, b; Hu et al. 2019; Lehmann et al. 2004). Compared with SOM, SPOM is more likely to be transported in water bodies. For shallow lakes, under the effects of wind disturbance and hydrodynamic force, the

![Diagram of lake environment](image)

Table 4 Humification index (\(HIX \)) values of WEOM in SOM and SPOM of Hulun and Taihu Lakes

Lake	\(HIX \)	Min	Max	Mean	SD
Hulun Lake	SOM	4.21	8.54	6.40	1.29
	SPOM	4.07	7.40	6.09	0.85
Taihu Lake	SOM	2.37	3.68	3.02	0.08
	SPOM	2.81	5.32	4.04	0.15

Min minimum value, Max maximum value, SD standard deviation.
frequency of migration and transformation between SPOM, DOM, and SOM is increased, and the mechanism is complex. The results of this study indicated that the stability of SPOM in Hulun Lake was much lower than that of SOM, which might be because algae was one of the important sources of SPOM during the cyanobacterial outbreak in July. The main components of algal organic matters are protein-like substances with low humification degree and high bioavailability (Lee et al. 2016; Nicolau et al. 2015; Villacorte et al. 2013). In recent years, the climate of Hulun Lake shows a trend of warming and drying, and bloom outbreaks have become normal in summer (Bao et al. 2021; Chen et al. 2012). With increasing temperature, the area of the bloom increases, and the duration of the bloom is prolonged, which may contribute to SPOM. Studies showed that the release effects of SOM and SPOM were enhanced, and stabilities deteriorate with increasing temperature (Gudasz et al. 2010; Lipczynska-Kochany 2018). This finding may be a common phenomenon in other lakes located in cold and arid regions. Therefore, studies on the occurrence characteristics of organic matters in different media, and the migration and transformation of organic matters and endogenous pollutants, which are closely related to the environmental behavior of the organic matters, in different types of lakes in China especially for the lakes in cold and arid regions under climate change are important for lake environmental protection. Moreover, these areas should be further studied in the future.

Conclusion

The occurrence, sources, and stabilities of SOM and SPOM in Hulun Lake were investigated and compared. Results showed that SOM and SPOM were different in content, chemical composition, fluorescence composition of WEOM, source, and stability. The average content of SPOM in Hulun Lake was slightly higher than that of SOM, but no significant difference was observed \((P > 0.05)\). The contents of SOM and SPOM showed a spatial distribution, i.e., higher in the north and west than in the east and south, due to the influences of land use, dominant wind direction, and sediment grain size distribution. SOM and SPOM were mainly came from terrestrial sources, with a relative contribution rate of about 70%. The terrestrial input led HM to be the dominant component of SOM and SPOM. The average proportion of HM in SOM (73.7%) was higher than that in SPOM (61.2%) for SOM was more affected by terrestrial source than SPOM. WEOM proportion in SPOM was higher than that in SOM, and the humus-like component to be the dominant fluorescence component of WEOM in SOM and SPOM.

The SOM and SPOM in Hulun Lake had stronger humification degrees than those in Taihu Lake and were not easy to be biodegraded. Moreover, the stability of SPOM was much lower than that of SOM, which might be affected by the cyanobacterial bloom in summer. In recent years, the climate of Hulun Lake showed a trend of warming and drying, and the normal occurrence of cyanobacterial bloom might have a remarkable influence on the stability of SOM and SPOM. In the future, the studies on the occurrence, migration, and transformation characteristics and stability of organic matters and endogenous pollutants in different media in lake water environment in cold and arid regions under climate change should be strengthened.

Acknowledgements The authors thank the participants in this study for their time and useful insights.

Author contribution Wenwen Wang collected and analyzed samples and was a major contributor in writing the manuscript. Junyi Chen collected and analyzed the samples. Shuhang Wang formulated the sampling and experimental schemes. Wei Li checked the quality of the paper. All authors read and approved the final manuscript.

Funding This work was supported by the National Key Research and Development Program of China (Program No. 2018YFE0196000).

Data availability The datasets used and/or analyzed in the study are available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interest.

References

Ao W, Dou HS, Yu CC, Wang WL, Wang ZL, Wang Q, Lu L, Zhou XJ, Han RM, Zou CX (2020) The ice cover shapes the spatial and temporal characteristics of water quality in Hulun Lake during winter. Water Supply 20:2589–2602. https://doi.org/10.2166/ws.2020.166

Bao H, Wang G, Yao Y, Peng Z, Dou H, Jiang G (2021) Warming-driven shifts in ecological control of fish communities in a large northern Chinese lake over 66 years. Sci Total Environ 770:144722. https://doi.org/10.1016/j.scitotenv.2020.144722

Bulusan-Atendidio SA, Suzuki T, Fujitake N, Otsuka H (2005) Effect of Fe, Mn or Al compounds on humification of three types of plant residues during thermal incubation. Soil Science and Plant Nutrition 51:925–933. https://doi.org/10.1111/j.1747-0675.2005.tb00130.x

Chen D, Ke Z, Tan Y (2021) Distribution of C/N/P stoichiometry in suspended particulate matter and surface sediment in a bay under serious anthropogenic influence: Daya Bay, China. Environ Sci Pollut Res 28:29177–29187. https://doi.org/10.1007/s11356-021-12812-1

Chen X, Chuai X, Yang L, Zhao H (2012) Climatic warming and overgrazing induced the high concentration of organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China. Sci Total Environ 431:332–338. https://doi.org/10.1016/j.scitotenv.2012.05.052
Chmiel HE, Kokic J, Denfeld BA, Einarsdottir K, Wallin MB, Koehler B, Isidorova A, Bastviken D, Ferland M-E, Sobek S (2016) The role of sediments in the carbon budget of a small boreal lake. Limnol Oceanogr 61:1814–1825. https://doi.org/10.1002/lno.10336

Derrien M, Shin K-H, Hur J (2019) Assessment on applicability of common source tracking tools for particulate organic matter in controlled end member mixing experiments. Sci Total Environ 666:187–196. https://doi.org/10.1016/j.scitotenv.2019.02.258

Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–481. https://doi.org/10.1038/nature09186

Guo M, Li X, Song C, Liu G, Zhou Y (2020) Photo-induced phosphate release during sediment resuspension in shallow lakes: a potential positive feedback mechanism of eutrophication. Environ Pollut 258:113679. https://doi.org/10.1016/j.scitotenv.2021.08.277

Han LL, Wang YH, Xu YP, Wang YS, Zheng YL, Wu JQ (2021) Water- and base-extractable organic matter in sediments from lower Yangtze river-estuary-east china sea continuum: insight into accumulation of organic carbon in the river-dominated margin. Front Mar Sci 8:617241. https://doi.org/10.3389/fmars.2021.617241

He W, Chen M, Schlautman MA, Hur J (2016) Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: a review. Sci Total Environ 551–552:415–428. https://doi.org/10.1016/j.scitotenv.2016.02.031

He Y, Song K, Yang C, He W, Li Y, Xu F (2021a) Geographical location and water depth are important driving factors for the differences of suspended particulate organic matter (SPOM) in lake environment across nationwide scale: evidences from n-alkane fingerprints. Sci Total Environ 752:142948. https://doi.org/10.1016/j.scitotenv.2020.142948

He Y, Song K, Yang C, Li Y, He W, Xu F (2021b) Suspended particulate matter (SPM)-bound polycyclic aromatic hydrocarbons (PAHs) in lakes and reservoirs across a large geographical scale. Sci Total Environ 752:142863. https://doi.org/10.1016/j.scitotenv.2020.142863

Hu B, Wang P, Wang C, Qian J, Bao T, Shi Y (2019) Investigating spectroscopic and copper-binding characteristics of organic matter derived from sediments and suspended particles using EEM-PARAFAC combined with two-dimensional fluorescence/FTIR correlation analyses. Chemosphere 219:45–53. https://doi.org/10.1016/j.chemosphere.2018.11.113

Huguet A, Vacher L, Relexans S, Saubasus S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002

Kendall C, Silva SR, Kelly VJ (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol Process 15:1301–1346. https://doi.org/10.1002/hyp.216

Kozselnik P, Gruca-Rokosz R, Bartoszek L (2018) An isotopic model for the origin of autochthonous organic matter contained in the bottom sediments of a reservoir. Int J Sedim Res 33:285–293. https://doi.org/10.1002/ijsr.2017.10.002

Kurek MR, Harir M, Shukle JT, Schroth AW, Schmitt-Kopplin P, Druschel GK (2021) Seasonal transformations of dissolved organic matter and organic phosphorus in a polyminic basin: Implications for redox-driven eutrophication. Chem Geol 573:120212. https://doi.org/10.1016/j.chemgeo.2021.120212

Lee Y, Lee B, Hur J, Min JO, Ha SY, Ra K, Kim KT, Shin KH (2016) Biodegradability of algal-derived organic matter in a large artificial lake by using stable isotope tracers. Environ Sci Pollut Res 23:8358–8366. https://doi.org/10.1007/s11356-016-6046-1

Lehmann MF, Bernasconi SM, Barbieri A, Simona M, McKenzie JA (2004) Intermannual variation of the isotopic composition of sedimenting organic carbon and nitrogen in Lake Lugano: a long-term sediment trap study. Limnol Oceanogr 49:839–849. https://doi.org/10.4319/lo.2004.49.3.0839

Li R, Tan H, Zhang L, Wang S, Wang Y, Yu K (2018) The implications of water extractable organic matter (WEOM) on the sorption of typical parent, alkyl and N/O/S-containing polycyclic aromatic hydrocarbons (PAHs) by microplastics. Ecotoxicol Environ Saf 156:176–182. https://doi.org/10.1016/j.ecoenv.2018.03.021

Li S, Chen J, Xiang J, Pan Y, Huang Z, Wu Y (2019) Water level changes of Hulun Lake in Inner Mongolia derived from Jason satellite data. J vis Commun Image Represent 58:565–575. https://doi.org/10.1016/j.jvcir.2018.12.031

Li Y, Hu L, Zhao Y, Wang H, Huang X, Chen G, Leppanen JJ, Fondana L, Ren L, Shi Z, Liu B, Zhao H (2021) Meltwater-driven water-level fluctuations of Bosten Lake in arid China over the past 2,000 years. Geophys Res Lett 48:2020GL099988. https://doi.org/10.1029/2020GL099988

Liang Y, Xiao HY, Liu XZ, Li WH, Xiong J (2014) Identifying provenance of inorganic nitrogen and organic matter in different ecotype lakes using δ13C and δ15N. J Lake Sci 26:691–697. https://doi.org/10.18307/2014.0506

Lipczynska-Kochany E (2018) Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ 640–641:1548–1565. https://doi.org/10.1016/j.scitotenv.2018.05.376

Liu C, Li Z, Berge AA, Zeng G, Xiao H, Liu L, Wang D, Peng H (2019a) Chemical characterization and source identification of organic matter in eroded sediments: role of land use and erosion intensity. Chem Geol 506:97–112. https://doi.org/10.1016/j.chemgeo.2018.12.040

Liu D, Duan H, Yu S, Shen M, Xue K (2019b) Human-induced eutrophication dominates the bio-optical compositions of suspended particles in shallow lakes: Implications for remote sensing. Sci Total Environ 667:112–123. https://doi.org/10.1016/j.scitotenv.2019.02.366

Liu J, Yan T, Shen Z (2021) Sources, transformations of suspended particulate organic matter and their linkage with landscape patterns in the urbanized Beiyun river Watershed of Beijing. China Science of the Total Environment 791:148309. https://doi.org/10.1016/j.scitotenv.2021.148309

Liu Y, Yue H (2017) Estimating the fluctuation of Lake Hulun, China, during 1975–2015 from satellite altimetry data. Environ Monit Assess 189:630. https://doi.org/10.1007/s10661-017-6346-z

Liu WW, Yao X, Shao KQ, Zhang BH, Gao G (2019) Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in Lake Taihu, China. Environ Sci Pollut Res 26:4027–4040. https://doi.org/10.1007/s11356-018-3873-2

Ma L, Wu J, Abuduwaifi J (2013) Climate and environmental changes over the past 150 years inferred from the sediments of Chaiwopu Lake, central Tianshan Mountains, northwest China. Int J Earth Sci 102:959–967. https://doi.org/10.1007/s00531-012-0838-4

Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. https://doi.org/10.1016/0009-2541(94)90059-0

Miller CB, Parsons MB, Jamieson HE, Ardakani OH, Gregory BRB, Galloway JM (2020) Influence of late-Holocene climate change on the solid-phase speciation and long-term stability of arsenic in sub-Arctic lake sediments. Sci Total Environ 709:136115. https://doi.org/10.1016/j.scitotenv.2019.136115

Ni Z, Xiao M, Luo J, Zhang H, Zheng L, Wang G, Wang S (2021) Molecular insights into water-extractable organic phosphorus from lake sediment and its environmental implications. Chem Eng J 416:129004. https://doi.org/10.1016/j.cej.2021.129004

Nicolaou R, Leloup M, Lachassagne D, Pinault E, Feuillade-Cathalauf G (2015) Matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization. Talanta 136:102–107. https://doi.org/10.1016/j.talanta.2015.01.011

Ogrinc N, Markovics R, Kanduc T, Walter LM, Hamilton SK (2008) Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the River Danube. Appl Geochem 23:3685–3698. https://doi.org/10.1016/j.apgeochem.2008.09.003

Pan Z, Gao QF, Dong SL, Wang F, Li HD, Zhao K, Jiang XY (2019) Effects of abalone (Haliotis discus hannai Ino) and kelp (Saccarina japonica) mariculture on sources, distribution, and preservation of sedimentary organic carbon in Allian Bay, China: Identified by coupling stable isotopes δ13C and δ15N with C/N ratio analyses. Mar Pollut Bull 141:387–397. https://doi.org/10.1016/j.marpolbul.2019.02.053

Pham DM, Kasai T, Yamaura M, Katayama A (2021) Humin: No longer inactive natural organic matter. Chemosphere 269:126897. https://doi.org/10.1016/j.chemosphere.2020.126897

Satisha GC, Devarajan L (2005) Humic substances and their complexation with phosphorus and calcium during composting of pressmud and other biodegradables. Commun Soil Sci Plant Anal 36:805–818. https://doi.org/10.1081/css-200049454

Shah RA, Achyuthan H, Krishnan H, Lone AM, Saaj S, Ali A, Lone SA, Malik MS, Dash C (2021) Heavy metal concentration and ecological risk assessment in surface sediments of Dal Lake, Kashmir Valley. Western Himalaya Arabian J Geosci 14:187. https://doi.org/10.1007/s12517-021-06504-w

Shang J, Chen J, Shen Z, Wang Y, Ruan A (2013) Effects of varying estuarine conditions on the sorption of phenanthrene to sediment particles of Yangtze Estuary. Mar Pollut Bull 76:139–145. https://doi.org/10.1016/j.marpolbul.2013.09.015

Slukovskii Z, Medvedev M, Siroezhko E (2020) The environmental geochemistry of recent sediments of small lakes in southwest of Karelia, Russia. Environ Eng Manag J 19:1043–1055

Song G, Wang H, Shi L (2020) Climate evolution since 9.32 cal ka BP in Keluke Lake, northeastern Qaidam Basin China. J Arid Environ 178:104149. https://doi.org/10.1016/j.jaridenv.2020.104149

Song WJ, He J, Gao JM, LC W, Wang W, Fan MD, Zhang JZ (2011) Characteristics of organic carbon distribution in the sediment of Hulunhu Lake, China. J Agro-Environment 30:2336–2340

Tang Y, Ding S, Wu Y, Chen M, Li C, Yi Q, Ma X, Zhang M (2021) Mechanism of cobalt migration in lake sediments during algae blooms. J Soils Sediments. https://doi.org/10.1007/s11368-021-02917-y

Toosi ER, Schmidt JP, Castellano MJ (2014) Soil temperature is an important regulatory control on dissolved organic carbon supply and uptake of soil solution nitrate. Eur J Soil Biol 61:68–71. https://doi.org/10.1016/j.ejsoil.2014.01.003

Verdugo P, Allredge AL, Azam F, Kirchman DL, Passow U, Santchi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85. https://doi.org/10.1016/j.marchem.2004.06.017

Villacorte LO, Ekowati Y, Winters H, Amy GL, Schippers JC, Kennedy MD (2013) Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: a membrane treatment perspective. Desalin Water Treat 51:1021–1033. https://doi.org/10.1080/19443994.2012.699359

Wang WW, Wang SH, Jiang X, Zheng BH, Zhao L, Zhang B, Chen JY (2018) Differences in fluorescence characteristics and biodegradability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihe Lake, China. Environ Sci Pollut Res 25:12648–12662. https://doi.org/10.1007/s11356-017-1127-3

Wang WW, Zheng BH, Jiang X, Chen JY, Wang SH (2020) Characteristics and source of dissolved organic matter in Lake Hulun, a large shallow eutrophic steppe lake in Northern China. Water 12:953. https://doi.org/10.3390/w12040953

Wang WW, Chen JY, Jiang X, Li H, Wang SH (2021) Release effect of surface sediment organic matters in Lake Hulun. Res Environ Sci 34:812–823. https://doi.org/10.13198/jiss.1001-6929.2021.02.03

Wang YR, Feng MH, Wang JH, Chen XF, Chen XC, Du X, Xun F, Ngwena BT (2021) Algal blooms modulate organic matter remineralization in freshwater sediments: a new insight on priming effect. Sci Total Environ 784:147087. https://doi.org/10.1016/j.scitotenv.2021.147087

Wu FC, Wang LY, Li W, Zhang RF, Yu PQ, Liao HQ, Bai YC, Guo JY, Wang J (2008) Natural organic matter and its significance in terrestrial surface environment. J Lake Sci 20:1–12. https://doi.org/10.13078/2008.0101

Xie RF, Sun DY, Sun L, Zhang NN, Zhang JW, Zang SY (2021) Sediment record of heavy metals over the last 150 years in Northeast China: implications for regional anthropogenic activities. Ecotoxicology. https://doi.org/10.1007/s10646-021-02350-4

Yang YN, Wang LL, Zhang YF, Li LB, Shi XY, Liu XT, Ren XD, Dou S (2019) Transformation of corn stalk residue to humus-like substances during solid-state fermentation. Sustainability 11:6771. https://doi.org/10.3390/su110106771

Yao Z, Yang L, Song N, Wang C, Jiang H (2020) Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake. Environ Sci Pollut Res 27:25899–25907. https://doi.org/10.1007/s11356-019-06793-5

Yu FL, Zong YQ, Lloyd JM, Huang QG, Leng MJ, Kendrick C, Lamb AL, Yim WWS (2010) Bulk organic delta C-13 and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuar Coast Shelf Sci 87:618–630. https://doi.org/10.1016/j.ecss.2010.02.018

Zhang B, Wang SH, Jinag X, Huang XF, Wang WW (2017) Sequential extractions and fluorescence spectroscopy characterization of organic matter in the Lake Sediment. Acta Sci Circum 37:2987–2888

Zhang D, Dang H, Li Z, Zhang C (2019a) Redox characteristics of humins and their coupling with potential PCB dechlorinators in southern Yellow Sea sediments. Environ Pollut 252:296–304. https://doi.org/10.1016/j.envpol.2019.05.121

Zhang FJ, Xue B, Yao SC (2018) Organic carbon burial and its driving mechanism in the sediment of Lake Hulun, north-eastern Inner Mongolia, since the mid-Holocene. J Lake Sci 30:234–244. https://doi.org/10.18307/2018.0123

Zhang FJ, Xue B, Yao SC (2019) Spatiotemporal pattern of inorganic carbon sequestration in Lake Hulun since 1850. J Lake Sci 31:1770–1782. https://doi.org/10.18307/2019.0617

Zhang H, Zhang Y, Kong Z, Yang Z, Li Y, Tarasov PE (2015) Late Holocene climate change and anthropogenic activities in north Xinjiang: evidence from a peatland archive, the Caotanhu wetland. Holocene 25:323–332. https://doi.org/10.1177/0959683614558646

Zhang P, Cao C, Wang YH, Yu K, Liu C, He C, Shi Q, Wang JJ (2021) Chemodiversity of water-extractable organic matter in sediment columns of a polluted urban river in South China. Sci Total Environ 777:146127. https://doi.org/10.1016/j.scitotenv.2021.146127

Zhang YF, Dou S, Hamzba B, Ye SF, Zhang DD (2020) Mechanisms of three fungal types on humic-like substances formation during solid-state fermentation of corn straw. Int J Agric Biol 23:970–976. https://doi.org/10.17957/jiab/15.1377

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.