TRIGGERED STAR FORMATION BY MASSIVE STARS

HSU-TAI LEE1 and W. P. CHEN1,2

Received 2006 March 2; accepted 2006 November 15

1 Institute of Astronomy, National Central University, 300 Jungda Road, Jungli 32054, Taiwan; wchen@astro.ncu.edu.tw.
2 Department of Physics, National Central University, 300 Jungda Road, Jungli 32054, Taiwan; htlee@asiaa.sinica.edu.tw.

ABSTRACT

We present our diagnosis of the role that massive stars play in the formation of low- and intermediate-mass stars in OB associations (the ω Ori region, Ori OB1, and Lac OB1 associations). We find that the classical T Tauri stars and Herbig Ae/Be stars tend to line up between luminous O stars and bright-rimmed or comet-shaped clouds; the closer to a cloud the progressively younger they are. Our positional and chronological study lends support to the validity of the radiation-driven implosion mechanism, where the Lyman continuum photons from a luminous O star create expanding ionization fronts to evaporate and compress nearby clouds into bright-rimmed or comet-shaped clouds. Implosive pressure then causes dense clumps to collapse, prompting the formation of low-mass stars on the cloud surface (i.e., the bright rim) and intermediate-mass stars somewhat deeper in the cloud. These stars are a signpost of current star formation; no young stars are seen leading the ionization fronts further into the cloud. Young stars in bright-rimmed or comet-shaped clouds are likely to have been formed by triggering, which would result in an age spread of several megayears between the member stars or star groups formed in the sequence.

Subject headings: ISM: clouds — ISM: molecules — stars: formation — stars: pre-main-sequence

1. INTRODUCTION

Most O and B stars are congregated in OB associations (Blaauw 1964) in which young low- (classical T Tauri stars, or CTTSs) and intermediate-mass (Herbig Ae/Be stars, or HAeBe) stellar groups are also found (see the review by Briceno et al. 2006). What is the relationship between the formation of massive stars and that of low-mass stars? Does star formation in an OB association proceed in a bimodal manner for massive and for low-mass stellar groups? If so, which group would form first? It is noted that massive stars have a profound influence on the surrounding molecular clouds. On the one hand, the radiation and energetic wind from a massive star could cause the evaporation of nearby clouds, hence terminating the star formation processes. On the other hand, the massive star could provide “just the touch” needed to prompt the collapse of a molecular cloud that otherwise may not contract and fragment spontaneously. Do massive stars play primarily a destructive or promotional role in star formation in a molecular cloud? Herbig (1962) suggests that low- and intermediate-mass stars form first in an OB association, but soon after massive O stars appear, the cloud is disrupted, which hinders further star formation. Alternatively, Elmegreen & Lada (1977) and Lada (1987) propose that low-mass stars form first out of cloud fragments and are distributed throughout the entire molecular cloud. Once the O stars form, their expanding ionization fronts (I-fronts) then play a constructive role in inciting a sequence of star formation in neighboring molecular clouds.

The triggering of star formation by massive stars appears to take place on different length scales (Elmegreen 1998). The Sco OB2 association might be one example of triggered star formation (de Geus et al. 1989). In this case the Upper Centaurus Lupus sub-group was formed first in the middle of the molecular cloud complex, which then prompted star formation on both sides, eventually becoming the Upper Scorpius and Lower Centaurus Crux associations. Preibisch & Zinnecker (1999, 2006) propose a similar mechanism, but with a series of supernova explosions as the triggering sources. The star formation activities can be sustained as long as stars massive enough are produced in the sequence and there is enough surrounding material. This sequential formation process leads naturally to an age spread among member stars or subgroups (Blaauw 1964), and the stellar aggregates thus formed (out of separate clouds) tend to be sparsely distributed and gravitationally unbound because of the expanding I-fronts or an initially unbound giant molecular cloud (see Clark et al. 2005).

On a smaller scale, the systems of ongoing star formation, such as young stellar jets, evaporated gaseous globules (EGGs) and water masers have been found in the periphery of H II regions (Hester et al. 2004; Hester & Desch 2005). There are two kinds of triggering mechanisms (e.g., Karr & Martin 2003), “collect-and-collapse” and radiation-driven implosion (RDI). In the collect-and-collapse scenario, first proposed by Elmegreen & Lada (1977) and recently demonstrated observationally by Deharveng et al. (2005), Zavagno et al. (2006), and Sanchawala et al. (2006), the expanding I-fronts from an H II region pile up a shell of dense gas and dust, in which clumps fragment and collapse to form the next generation of stars. In the RDI scenario (Bertoldi 1989; Bertoldi & McKee 1990; Hester & Desch 2005; Larosa 1983; Kessler-Deynet & Burkert 2003), the formation sequence begins with photionization of a nearby molecular cloud by a massive star. The shock fronts embracing the surface of the cloud compress the cloud until it reaches the critical density for gravitational collapse resulting in the formation of new stars. The latest star formation, as traced by protostellar cores (Leifloch & Cernicharo 2000) or water masers (Healy et al. 2004), takes place at the compressed layer of a cloud. Hester & Desch (2005) propose a scenario in which an EGG appears when a dense clump is impinged on by the I-fronts. The photoevaporation then erodes the circumstellar disk into a protoplanetary disk, or a “proplyd” (O’Dell et al. 1993). Subsequently formed massive stars can carve out their own cavities to continue the triggering process (Sanchawala et al. 2006). The exposure of the protoplanetary disk in such environments would, in addition to being truncated in size, contain short-lived radio nuclides from the ejecta from one or more nearby supernovae, such as has been observed in meteorites in the solar system.
star-forming region than are the weak-line T Tauri stars (WTTSs). Therefore we select as HAeBe candidates 2MASS point sources with colors redder than the line defined by $(m_J - m_H) - 1.7(m_H - m_K) + 0.450 = 0$; CTTS candidates are selected by the same method described in Paper I, namely, between the two parallel lines, $(m_J - m_H) - 1.7(m_H - m_K) + 0.0976 = 0$ and $(m_J - m_H) - 1.7(m_H - m_K) + 0.450 = 0$, and above the dereddened CTTS locus (Meyer et al. 1997), $(m_J - m_H) - 0.493(m_H - m_K) - 0.439 = 0$.

Table 1 shows the fields in the λ Ori region, Ori OB1, and Lac OB1 studied in this paper, which include seven BRCs, one comet-shaped cloud, and two control regions. In addition to the 2MASS point-source database from which we select our CTTS and HAeBe candidates, we also make use of the H_α emission survey data (Finkbeiner 2003; Gaustad et al. 2001; Dennison et al. 1998; Haffner et al. 2003), $E(B - V)$ reddening (Schlegel et al. 1998), IRAS 100 μm, and CO (Dame et al. 2001) emission to trace, respectively, the distribution of the ionization fronts, cloud extinction, IR radiation, and molecular clouds with respect to the spatial distribution of our young star sample.

2.2. Spectroscopic Observations

The spectra of bright CTTS and HAeBe candidates were taken at the Beijing Astronomical Observatory (BAO) and at the Kitt Peak National Observatory (KPNO). At the BAO, low-dispersion spectra with a dispersion of 200 Å mm$^{-1}$, corresponding to 4.8 Å pixel$^{-1}$, were taken with the 2.16 m optical telescope from 2003 October 31 to November 3, and on 2004 September 5–6. An OMR (Optomechanics Research, Inc.) spectrograph was used with a Tektronix 1024 \times 1024 CCD detector covering 4000–9000 Å. These spectra were used to confirm the young stellar nature (e.g., the H_α and other characteristic emission lines) of the PMS star candidates selected on the basis of the 2MASS colors.

Medium-dispersion spectra for a selected set of sample stars were taken with the KPNO 2.1 m telescope on 2004 January 2–5. The GoldCamera spectrometer, with a Ford 3 $\text{K} \times 1$ K CCD with 15 μm pixels, was used with the grating #26new, giving a dispersion of 1.24 Å pixel$^{-1}$. These medium-dispersion spectra allowed us to identify the lithium absorption at 6708 Å, the spectral signature of a low-mass PMS star.

All the spectroscopic data were processed with the standard NOAO/IRAF packages. After correction for bias and flat-fields, the IRAF package KPNO-SLIT was used to extract and to calibrate the wavelength and flux of each spectrum. To check the legitimacy of our selection criteria, we also observed two control fields, in addition to the star-forming clouds. All the fields included in this study are summarized in Table 1.
TABLE 2
IMAGING OBSERVATIONS

Fields	R.A. (J2000.0)	Decl. (J2000.0)	Filter	Total Exposure Time (s)
B30.............	05 29 51.4	+12 13 58	Hα	5400
B35.............	05 24 40.0	+09 10 40	Hα	5400
Ori East........	05 53 35.6	+01 40 37	Hα	3600
LDN 1616........	05 07 06.0	+03 17 54	Hα	7200
LDN 1634........	05 20 16.0	+05 49 28	Hα	3600
IC 2118........	05 07 44.0	+06 12 35	Hα	2400
LBN 437........	22 34 31.0	+40 37 44	Hα	3600
LBN 437........	22 34 31.0	+40 37 44	[S ii]	7200

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

TABLE 3
CTTS AND CTTS CANDIDATES

Star	2MASS	Emission Line(s)	Li² Observation	Remarks
1.....	J05065464−0320047	H(−50.6), O(−0.6), Ca, He	A K	LkHa 333, Associated with LDN 1616
2.....	J05073016+0610158	H(−92.5), O(−10.8), S(−1.4), Fe, Ca, He	A K	Associated with IC 2118
3.....	J05073060+0610597	H(−23.3), Ca?	A K	Associated with IC 2118
4.....	J0512053+0255523	H(−12.1)	A K	V531 Ori
5.....	J05143126−0256411	H(−210.6), O(−2.5), Fe, Ca, He	N K	Kiso A−0975 16
6.....	J05152683+0632010	H(−0.3)	A K	Hα emission is week, could be a WTTS
7.....	J05162511−0756503	H(−37.7), O(−1.0), Ca, He	A K	
8.....	J05181685−0537300	H(−57.3), O(−2.3), Fe, Ca, He	N K	Kiso A−0975 43
9.....	J05191536−0324126	H(−52.1), Ca, He	A K	Kiso A−0975 45
10.....	J05191549−0204529	H(−10.7), O(−3.6), Ca	A K	
11.....	J05201945−0545559	H(−26.9), Ca, He	A K	Kiso A−0975 52, IRAS 05178−0548, associated with LDN 1634
12.....	J05202573+0547063	H(−100.2), O?, Fe, Ca, He	A K	V534 Ori, associated with LDN 1634
13.....	J05203142+0547248	H(−19.3), Ca, He	A K	StHA 39, associated with LDN 1634
14.....	J05253979−0411020	H(−138.9), Fe, Ca, He	N K	Kiso A−0975 86
15.....	J05262158+1131339	H(−15.4), O(−1.8), Fe, Ca	L B	IRAS 02535+1129
16.....	J05292593+1151576	H(−40.5), Fe, Ca, He	A B K	V649 Ori, associated with B30
17.....	J05300803+1213357	H(−33.6), Ca, He	A B K	GX Ori, IRAS 02527+1211, associated with B30
18.....	J05301313−1208458	H(−5.7), Ca	A B K	
19.....	J05311615+1125312	H(−21.9)	N K	V449 Ori
20.....	J05315128+1216208	H(−127.3), O(−10.2), Fe, Ca	A K	Associated with B30
21.....	J05323207+1044178	H(−96.7), Ca, He	L B	
22.....	J05324305+1212083	H(−13.9), O(−1.3), Ca, He	A B K	V460 Ori, IRAS 05299+1219, associated with B30
23.....	J05330207+1137114	H(−176.8), Fe, Ca, He	L B	
24.....	J05391268+0915522	H(−215.6), Ca, He	L B	
25.....	J05432091+0006071	H(−21.8), O(−0.5), Fe, Ca, He	A B K	V625 Ori, IRAS 05406+0904, associated with B35
26.....	J05440899+0909147	H(−44.5), O(−2.1), Fe, Ca, He	A B K	QR Ori, IRAS 05413+0907, associated with B35
27.....	J05451493+0721223	H(−5.6)	N B K	V661 Ori
28.....	J05452223+0904123	H(−181.9), Ca	A B K	
30.....	J05534090+0138140	H(−29.0), O(−2.7), Ca, He	L B	LkHA 334, IRAS F05510+0137, associated with Ori East
31.....	J05535869+0144094	H(−37.0), Ca, He	L B	LkHA 335, IRAS F05513+0143, associated with Ori East
32.....	J21307066+4321172	H(−174.8), Fe, Ca, He	A B K	V1082 Cyg
33.....	J2139554+4313082	H(−83.6), Ca	L B	
34.....	J21535750+4659443	H(−51.7)	L B	LkHa 256
35.....	J22361978+8006273	H(−63.9), O(−1.8), Ca	L B	Associated with IRAS 22433+3949 group
36.....	J22362779+3954066	H(−18.4)	L B	
37.....	J22370328+4005185	H(−10.3), Ca?, He?	A B K	Associated with IRAS 22433+3949 group
38.....	J22371683+3952260	H(−130.8), O(−4.5), Ca	L B	Associated with IRAS 22433+3949 group
39.....	J23104843+4508511	H(−7.9)	N B K	BM And, associated with GAL 110−13
40.....	J23373847+4824119	H(−19.2)	A B K	BM And, associated with GAL 110−13

² A = absorption, N = no absorption, and L = low spectral resolution in BAO.
4 B = BAO, and K = KPN30.
and imaging observations, we can study the spatial distribution of PMS stars relative to the I-fronts in BRCs.

Tables 3, 4, and 5 list, respectively, the CTTSs (plus some CTTS candidates), HAeBe stars, and non-PMS sources identified from spectroscopic observations. In Table 3, stars 1–31 CTTSs are in Orion and 32–40 CTTSs are in Lacerta. In Table 4, stars 41–48 are HAeBe stars in the Orion region, whereas the others are in the Lacerta region. We derive the Hα, [O i], and [S ii] equivalent widths of the CTTSs. Some of the CTTSs listed in Table 3 do not show lithium absorption, but exhibit other CTTS characteristics, such as the Hα, Ca ii, and/or forbidden [O i] and [S ii] emission line(s) in their spectra. Since most of these spectra show veiling, their Li absorption line might be veiled by continuum radiation. Thus they are included in the CTTS sample (Table 3) even though the Li line is not readily discernible. CTTSs without a Li absorption line are not unusual; recently White & Hillenbrand (2005) also found a lithium-depleted CTTS, St 34, in the Taurus-Auriga T association. Figure 1 presents an example of the spectra of a CTTS and a HAeBe star. No PMS stars were found in any of the two control fields; most of the sources there are either carbon stars or M giants.

Figures 2 and 3 show, respectively, the Trapezium and the λ Ori regions in Orion, with the CTTSs (stars 1–31 in Table 3) and HAeBe stars (stars 41–48 in Table 4) being marked. The boxes mark the fields of the Hα images presented in Figure 4. It is clear that the BRCs are outlined by the Hα emission, and that some PMS stars are spatially close to the I-fronts.

Figure 5 displays the IRAS 100 μm, Hα and CO emission maps of the Lac OB1 association. The PMS stars in Table 3 and Table 4 are again marked. The box indicates the LBN 437 region shown in Figure 6. LBN 437 is a comet-shaped BRC (Olano et al. 1994). The HAeBe star V375 Lac (star 52 in Table 4) associated with this cloud is believed to be the exciting source of the parsec-scale Herbig-Haro outflow HH 398 (McGreavy et al. 2004).

In Paper I it was shown that CTTSs exhibiting continuous or veiled spectra with [O i] and/or [S ii] forbidden lines, originating from jets or winds seen commonly in Class I sources (Kenyon et al. 1998), tend to be redder, which is suggestive of a younger age, than those without. A color-color diagram of the PMS stars in Tables 3 and 4 is plotted as Figure 7; the results agree with our previous work. This correlation extends to HAeBe stars, in that HAeBe stars with forbidden line(s) are mostly located on the upper right of the 2MASS color-color diagram. As an alternative to being younger, a CTTS with forbidden lines could be the result of reduced photoevaporation of the circumstellar disk, e.g., by being away from a luminous star or shielded by a molecular cloud. Only 14 of the 40 CTTSs and 4 of the 13 HAeBe stars in our sample show forbidden line(s) in their spectra. In other words, about one-third of the PMS stars with strong infrared excess exhibit forbidden line(s). Typical CTTS ages are a few Myr (Kenyon & Hartmann 1995), with those with forbidden lines representing an even younger sample, probably no more than a couple Myr old. The [S ii] line is only present in Star 2, a CTTS with a strong infrared excess and strong [O i] (equivalent width >10.5 Å). In our sample of CTTSs there is no correlation between the Hα equivalent widths and the presence of forbidden lines, or between the Hα equivalent widths and the 2MASS colors.

The success rate of spectroscopic confirmation of CTTSs and HAeBe candidates is extremely high for λ Ori, Ori OB1, and Lac OB1. Candidates closely associated with star-forming regions all turned out to be bona fide young stars with essentially no exception, whereas the regions away from molecular clouds are mostly populated by evolved stars (e.g., carbon stars or M giants). The 2MASS database enables us to effectively trace recent star formation on a large scale, without any a priori bias toward prominent H ii or reflection nebulae, which are obvious targets to search for young stellar objects. For example, stars 35–38 in our sample are confirmed to be young stars. They are located away from prominent nebulosity, so it might otherwise be difficult to recognize them as young stars in a targeted survey.

3. STAR FORMATION IN THE ORI OB1 AND LAC OB1 ASSOCIATIONS

Star formation triggered by the RDI mechanism has several characteristics that can be diagnosed observationally: (1) The remnant cloud is extended toward, or pointing to, the massive stars. (2) The young stellar groupings in the region are roughly lined up between the remnant clouds and the luminous star. (3) Stars closer to the cloud, which have formed later in the sequence, are younger in age, with the youngest stars being in the interacting region, i.e., along the bright rim of the cloud. (4) No young stars exist far behind the BRC. In particular, items 3 and 4 are in distinct contrast to the case of spontaneous star formation, which conceivably would not have left such distinguishing temporal and positional signposts.

Star	2MASS	Emission Line(s)	Spectral Type	Observation	Remarks
41...	J05042998–0347142	H	A3e	K	UX Ori, IRAS 05020-0351, associated with LDN 1616
42...	J05113654–0222484	H	A3e	K	
43...	J05305472+1421524	F2e	K		
44...	J05312805+1209102	H, O	A2e	K	HK Ori, IRAS 05286+1207, associated with B30
45...	J05313515+0951553	H	B9e	K	IRAS 05258+0949
46...	J05315724+1117414	H	A0e	B	HD 244604, IRAS 05291+1115
47...	J05353060+1001515	H, O?	B9e	B	V1271 Ori, IRAS 05324+0950
48...	J05390921+0952301	H	F7e	B, K	V506 Ori
49...	J21462666+474454	H, O	B9e	K	
50...	J21514726+461515	H	A9e	K	LR Cyg
51...	J2154039+521559	H	A2e	B	
52...	J22344101+4040045	H, O, S	A2e	K	V375 Lac
53...	J22363511+4000156	H, O	B8e	B	Associated with IRAS 22234+3944 group

* Stars 41–48 and 49–53 are in the Orion and Lacerta regions, respectively.
* a H = Hα, O = [O i] (6300 Å), and S = [S ii] (6717 Å).
* b B = BAO, and K = KPNO.
In Table 6 we summarize the different outcomes of the triggered versus spontaneous star formation processes.

In Paper I we presented evidence supporting the induced star formation in six Orion BRCs, namely B30, B35, Ori East, IC 2118, LDN 1616, and LDN 1634. Here we present further spectroscopic observations of the Orion sources, classified as young star “candidates” in Paper I and extend our sample to include the Lac OB1 region. Combined with the earlier Ori OB1 results, this reinforces the links between massive stars, BRCs, and the formation of low-mass stars. Furthermore, our young star sample now contains not only CTTSs, but also young intermediate-mass stars, rendering a more comprehensive understanding of the origin of stellar masses in an OB association.

3.1. Star-Forming Activities in the Orion Region

3.1.1. IC 2118, LDN 1616, LDN 1634, AND ORI EAST

IC 2118, LDN 1616, and LDN 1634 are three isolated BRCs around the Trapezium to the west of the Orion A. Another BRC, Ori East, can be found to the northeast of the Trapezium. All these BRCs point roughly to the Trapezium and/or the Orion-Eridanus superbubble being the shaping source of these BRCs (Alcalá et al. 2004; Stanke et al. 2002; Kun et al. 2001, 2004).

In this region most CTTSs with forbidden line(s), i.e., those of younger ages, are spatially close to the BRCs, e.g., stars 1, 2, and 30 in relation to LDN 1616, IC 2118, and Ori East, respectively.

Star	2MASS	Spectral Type	Observation	Remarks
54	J05232026+0934432	A0	B, K	TYC 704-1857-1
55	J05285405-0606063	Me	K	Kiso A-0975 119, IRAS 05264-0608
56	J05413010+1418225	C	K	BC 203
57	J05442880+0652019	M	B	
58	J05464207+0643469	Ce	B	IRAS 05440+0642
59	J05480851+0954012	C	K	V638 Ori, IRAS 05453+0953
60	J07325273+2647156	C	K	Object FBS 0729+2609
61	J07457919+2052254	Ce	K	
62	J08231037-0153257	C	K	
63	J08292902+0464241	C	K	FBS 0826+109
64	J08423302+0621195	M	K	
65	J08541870-1200541	Ce	K	IRAS 08519-1149
66	J09111450-092053	Me	K	VV Hya
67	J09333061-2216282	M	B	
68	J09045404+2608434	M	B	
69	J09217939+2617284	Me	B	
70	J09304177+2812340	M	B	DU Vul, IRAS 20285+2802
71	J09311267+2612270	M	B	
72	J09415136+2752525	M	B	IRAS 20397+2742
73	J09532040+2516196	M	B	
74	J09553077+3254065	M	B	
75	J10555284+2640515	M	B	
76	J10405566+2632111	M	B	
77	J1244172+4437134	Ce	B	
78	J12138318+4542469	Ce	K	
79	J12159030+3313596	M	B	
80	J22043239+4216400	BL Lac	K	BL Lac
81	J22055958+3500057	M	B	XX Peg
82	J22070988+2828374	M	B	V392 Peg, IRAS F22048+2813
83	J22075421+4105113	M	B	
84	J22084406+4855248	M	B	
85	J22121336+4646065	C	B	IRAS 22101+4631
86	J22130591+2447203	M	B	
87	J22213857+3335586	C	B	
88	J22261658+4221089	A0	B	
89	J22295650+4546539	C	B	V386 Lac
90	J23230443+4816005	C	K	
91	J23214368+4784038	PN	K	PN G100.0-08.7, IRAS 22296+4732
92	J2451504+5051534	C	B	
93	J2491976+5154487	C	B	
94	J2514566+4921137	C	B	
95	J2521809+3413364	M	B	
96	J22592372+4811589	Me	K	
97	J23023314+4649483	M	B	
98	J23113005+4705255	M	B	
99	J23175960+4645122	M	B	AO And, IRAS 23156+4628

* B-BAO, K-KPNO.
Star 7 is also associated with a remnant molecular cloud (Ogura & Sugitani 1998, their cloud 6).

3.1.2. B30 and B35

B30 and B35 are two BRCs associated with an H\textsc{ii} region excited by the O8 III star \(\lambda\) Ori and surrounded by a ring-shaped molecular cloud (Lang et al. 2000). Duerr et al. (1982) find some 80 H\(\alpha\) stars in the \(\lambda\) Ori region, most of which are distributed as a barlike structure extending from either side of \(\lambda\) Ori to B30 and to B35. Dolan & Mathieu (1999, 2001, 2002) present photometric and spectroscopic studies of the young stellar population in the \(\lambda\) Ori region. They suggested the ring-shaped molecular cloud to be caused by a supernova explosion that terminated recent star formation in the vicinity.

It is likely that \(\lambda\) Ori is the triggering source responsible for the star formation in B30 and B35. It is found that photoevaporative flows (Hester et al. 1996) stream out of the surfaces of them; this is a demonstration of the interaction between a massive star and a molecular cloud (Fig. 3). Here again we see that stars with forbidden lines, i.e., stars 20, 22, and 44 in relation to B30, and stars 25 and 26 to B35, are all physically close to a BRC.
Fig. 4.—Hα images of the Ori OB1 BRCs. The stars in Table 3 are marked. East is to the left, and north to the top. The field of view of each image is ~11′.
Fig. 5.—IRAS 100 µm, Hα, and CO images of the Lac OB1 association using the orientation of the Galactic coordinates, i.e., north is to the top and the Galactic longitude increases to the left. The white plus signs indicate the three late-B stars, HD 222142, HD 222086, and HD 222046, in GAL 110−13 and the cross marks indicate the CTTS candidate in the IRAS 22343+3944 group, 2MASS J22354224+3959566. The other symbols are the same as in Fig. 2.

Fig. 6.—Hα and [S ii] images of LBN 437. Star 52 is associated with the nebulosity HH 398. East is to the left, and north to the top. The field of view of each image is ~11′.
3.2. Star Formation History in Ori OB1 and the λ Ori Region

It is suggested that star formation is triggered by the O stars and/or by the superbubbles in LDN 1616 (Alcalá et al. 2004; Stanke et al. 2002) and in IC 2118 (Kun et al. 2001, 2004). All BRCs in Ori OB1 that show evidence of star formation being triggered by nearby massive stars are found associated with strong IRAS 100 μm and Hα emission (Fig. 4). In every case a sequential process—that PMS stars closer to the triggering stars are older than those closer to the BRCs—can be clearly witnessed (Paper I).

The same phenomena are also seen near λ Ori. Initially, the B30 and B35 clouds might have extended toward λ Ori, perhaps forming a barlike structure. The I-fronts from λ Ori then propagated through the clouds, prompting star formation on both sides, thereby resulting in the lining up of the PMS stars, in an age sequence, between λ Ori and the B30 and B35 clouds.

In Paper I we show that the CTTSs that are spatially close to BRCs are among the brightest, just revealing themselves on the birth line and beginning to descend down the Hayashi tracks. We also find no young stars far behind the I-fronts, i.e., embedded in the BRCs. These photoevaporated clouds typically have low extinction so that any PMS stars cannot have escaped the 2MASS detection. In both Ori OB1 and the λ Ori region, therefore, we see the predomination of triggered star formation, as evinced in the cloud morphology, star grouping orientation, and star formation sequence.

3.3. Star Formation Activities in Lac OB1

The Lac OB1 association, at a distance of ~360 pc (de Zeeuw et al. 1999), is one of the nearest OB associations. Blaauw (1958) divides Lac OB1 into two subgroups, “a” and “b,” on the basis of stellar proper motions and radial velocities. The entire Lac OB1 covers the region of the sky from 90° < l < 110° and −5° < b < −25° (de Zeeuw et al. 1999). Lac OB1b occupies an area with a radius of ~5° centered around (l, b) = (97.0°, −15.5°) and Lac OB1a occupies the remaining area. The Lac OB1b harbors the only O star (O9 V), 10 Lac, in the Lac OB1 association. Our study discusses two regions in Lac OB1 known to have current star-forming activities, LBN 437 and GAL 110−13, a BRC and a comet-shaped cloud, respectively.

3.3.1. LBN 437

LBN 437 is at the edge of an elongated molecular cloud (Olano et al. 1994) and on the border of the H ii region S126 excited by the nearby O star, 10 Lac. Hereafter we call this elongated molecular cloud the “Lac molecular cloud” (Fig. 5). Between 10 Lac and LBN 437 there is a small stellar group (Fig. 8) that includes five CTTSs (stars 35–38 in Table 3, plus the CTTS candidate 2MASS J22354224+3959566). The other symbols are the same as in Fig. 2. East is to the left, and north to the top.

TABLE 6

Parameter	Triggered	Spontaneous
Sequential star formation..........	Yes. PMS stars close to triggering sources are older than those close to BRCs	No PMS stars can be anywhere, including being far behind the surface of a BRC
Stellar distribution...............	PMS stars are located between triggering sources or around surfaces of BRCs with no young stars embedded much behind the I fronts	Low, less than a few percent.
Star formation efficiency.........	High	
22343+3944 group is about 24', which corresponds to ~2.5 pc at 360 pc.

3.3.2. GAL 110–13

GAL 110–13 is an isolated and elongated molecular cloud (Fig. 9) at a distance of ~440 pc (Odenwald et al. 1992). Its head-tail, comet-like shape suggests compression by ram pressure, perhaps as a result of a recent cloud collision (Odenwald et al. 1992). Star formation takes place on the compressed side of GAL 110–13, e.g., the location of the CTTS star 40 (BM And) and the nebula vdB 158 reflecting light from the B9.5V star HD 222142 (Magakian 2003). In addition to HD 222142, there are two other late-B-type stars in the vicinity, HD 222046 and HD 222086. All three B stars and star 40 share common proper motions (Zacharias et al. 2004 data extracted from the Second US Naval Observatory CCD Astrograph Catalog), which are consistent with those of the Lac OB1 groups (ESA 1997), as summarized in Table 7. GAL 110–13 is located near the border of the Lac OB1 association, at a distance not very different from that of Lac OB1. GAL 110–13 was not included as part of Lac OB1 by de Zeeuw et al. (1999), but our analysis suggests that the cloud, together with the young stars associated with it, is likely part of Lac OB1a.

GAL 110–13 is elongated and roughly points toward 10 Lac (see Fig. 5). This implies that Lac OB1b or 10 Lac alone is responsible for shaping the cloud. Either shock fronts from a supernova or ionization fronts from a massive star could have caused the shape of this cloud, as well as the spatial distribution of young stars in GAL 110–13. In the supernova scenario a star in Lac OB1b more massive than 10 Lac exploded, and, assuming that Lac OB1b and 10 Lac are at the same distance from us (i.e., 358 pc), it would take a few hundred thousand years for the supernova shock waves (at a speed of hundreds of km s\(^{-1}\)) to propagate across the 126 pc separation to arrive, compress, and finally prompt the formation of stars within GAL 110–13. Additional evidence in support of this supernova scenario comes from the B5 V star, HD 201910, which is supposed to be a runaway star kicked out from a binary system in Lac OB1b, when one of the component stars became a supernova (Blauw 1961; Gies & Bolton 1986). If this is so, the kinematic timescale of the star, 2.7 Myr, suggests that a supernova explosion occurred some 2.7 Myr ago and the associated shocks subsequently caused GAL 110–13 to develop its present cometary shape.

An alternative explanation is due to compression by ionization fronts from a massive star, which would be a less destructive method for star formation than a supernova explosion (Leffloch et al. 2002). We propose a scenario in which 10 Lac—still in existence now—was born at the edge of the Lac molecular cloud, similar to that presented in Figure 5, but with the cloud originally being more extended toward 10 Lac. Soon after its birth, 10 Lac ionized the surrounding molecular clouds, exposing itself to the intercloud medium. Assuming that most of the UV photons of 10 Lac shortward of the Lyman limit were used to ionize the intercloud medium, then given a typical intercloud material density \(\sim 0.2 \text{ cm}^{-3}\) (Spitzer 1998; Dyson & Williams 1997), the I-fronts would travel the 126 pc distance from 10 Lac to GAL 110–13 in about 2 Myr, a timescale still shorter than the main-sequence lifetime of \(\sim 3.6\) Myr of 10 Lac (Schaerer & de Koter 1997). Regardless of which scenario actually happened, a supernova shock front or an ionization front, Lac OB1b is likely responsible for the creation of GAL 110–13 and the associated stellar group.

3.4. Star Formation History in Lac OB1

In LBN 437, star 52 (V375 Lac) is the only young star located at the edge of the Lac molecular cloud, and interestingly there is no CTTS or HAeBe candidate behind the interaction region. To check whether any PMS stars could have escaped the 2MASS detection limit of \(J = 15\) mag as a result of excessive dust extinction, we created the \(E(B-V)\) map of the Lac molecular cloud (Schlegel et al. 1998) (as done for the BRCs in Ori OB1; see Paper I). It is assumed that the \(J\)-band luminosity of the embedded PMS stars would be the same as those of the visible PMS stars outside the cloud, namely, the IRAS 22343+3944 group. Like other BRCs we have analyzed the overall extinction in the Lac molecular cloud is low, and the probability of nondetection is 0.014. This means that there are indeed no embedded PMS stars and hence no ongoing star formation in the Lac molecular cloud.

The elongated Lac molecular cloud associated with LBN 437 (Fig. 5) may be just the remnant of a molecular cloud, which was

Table 7

Star	Spectral Type	pmRA \(\text{mas yr}^{-1}\)	pmDEC \(\text{mas yr}^{-1}\)	epmRA \(\text{mas yr}^{-1}\)	epmDEC \(\text{mas yr}^{-1}\)	Reference
HD 222142	B9.5 V	0.3	-3.1	0.6	0.6	UCAC2
HD 222086	B9 V	0.5	-2.8	1.0	1.1	UCAC2
HD 222046	B8 Vp	0.4	-2.7	1.0	1.0	UCAC2
Star 40	Continuum	3.4	-7.8	2.7	2.6	UCAC2
Lac OB1a		-0.3	-3.7	Hipparcos
Lac OB1b		-0.5	-4.6	Hipparcos
originally perhaps larger, extending as far as to 10 Lac. On the birth of 10 Lac, its energetic photons evaporated and compressed the cloud, shaping the cloud into a pillar, similar to the case of GAL 110/C013. The IRAS 22343+3944 group and star 52 were then born on the compressed side of the cloud. At least three stars in the IRAS 22343+3944 group exhibit forbidden lines, which is suggestive of their youth. Star 52 is likely even younger because it is the exciting source of an HH outflow. Apparently star 52 is the latest product in the star formation sequence by 10 Lac in this cloud.

Odenwald et al. (1992) derived a 30% star formation efficiency for GAL 110/C013. This is much higher than that of the few percent typical in star-forming regions (White et al. 1995). Extinction is low in GAL 110–13, with an A_I less than 0.48 mag, as estimated from its $E(B-V)$ values, so the cloud is insufficiently dense to hide from our detection any embedded young stars similar to star 40. As in the case for Ori OB1 (Paper I), the BRCs in Lac OB1 also tend to have a relatively low dust extinction. Such a low-density condition is unfavorable for spontaneous, global cloud collapse. Star formation, however, could take place at the interaction layer (the bright rim) of a molecular cloud. A stellar group could form, such as witnessed in the IRAS 22343+3944 and GAL 110–13 groups.

Blaauw (1958, 1964, 1991) derived the ages of Lac OB1a and Lac OB1b, on the basis of stellar proper motions and radial velocities: 16–25 and 12–16 Myr, respectively. Both these ages are too old to be consistent with the existence of 10 Lac (with a lifetime of less than ~3.6 Myr) and the CTTSs (typically aged a few Myr) in the region. Thus Lac OB1a and Lac OB1b could not have formed at the same place and at the same time, because with a typical velocity dispersion of a few kilometers per second for an OB association (de Zeeuw et al. 1999; de Bruijne 1999), the two subgroups could not traverse the distance of 30–80 pc now between them. We propose that both Lac OB1a and Lac OB1b are no more than a few Myr old, and Lac OB1a is younger than Lac OB1b. Figure 10 shows the color-magnitude diagrams reconstructed from de Zeeuw et al. (1999) for the two subgroups. It can be seen that the stars in Lac OB1b form a clear main sequence, whereas those in the subgroup Lac OB1a are widely scattered to the right of the sequence. Some stars in Lac OB1a may well still be in the PMS phase; hence we postulate a younger age for Lac OB1a than for Lac OB1b.

It is possible that Lac OB1b was formed first, after which the expanding I-fronts from Lac OB1b triggered new generations of stars along the Lac molecular cloud, the IRAS 22343+3944 group and star 52. A subsequent supernova or I-front then initiated the formation of stars in Lac OB1a; eventually the “birth wave” reached GAL 110–13.

4. STAR FORMATION IN OB ASSOCIATIONS

Triggered star formation has been suggested to have occurred close to H II regions (Hester et al. 2004; Hester & Desch 2005). Our study finds clear chronological and positional causality of such processes on larger scales. In γ Ori, Ori OB1, and Lac OB1, we see supporting evidence of triggered star formation. The UV photons from an O star create expanding I-fronts, which evaporate and compress nearby molecular clouds, thereby shaping the clouds into BRCs or comet-shaped clouds. The next generation of stars can then form efficiently, perhaps in groups, out of the compressed material. The resulting newly formed stars would...
line up between the massive star and the molecular clouds in a formation and hence age sequence. Stars at least as massive as late Herbig Be types could be formed via this process (see Table 4). These stars would reach the main sequence with even earlier spectral types. Triggered star formation could therefore produce not only low-mass stars, but also intermediate-mass or even massive stars. In our sample, the HAeBe stars and CTTSs seem to be distributed spatially differently relative to a BRC, in the sense that the CTTSs tend to be located near the surface of a BRC, whereas the HAeBe stars appear preferentially to reside deeper in a BRC (e.g., star 44 in B30, star 52 in LBN 437, and star 41 in LDN 1616). What we see in ζ Ori, Ori OB1, and Lac OB1 is in contrast to the scenario proposed by Elmegreen & Lada (1977) and Lada (1987) for which massive stars are formed in shocked cloud layers by triggering, whereas low-mass stars are formed spontaneously via cloud collapse and fragmentation. A global cloud collapse would lead to starboring spreading throughout the cloud, but this was not observed in our study. Instead, no young stars are found embedded in clouds far behind the I-fronts. More than mere “fossil” molecular clouds, the BRCs present convenient snapshots of how star formation must have proceeded in an OB association. When prompted to form, massive stars appear to favor denser environments where photoevaporation is relatively weak. In comparison, when a dense molecular core near the ionization layer (i.e., current cloud surface) collapses, the accretion process has to compete with the mass loss arising from photoevaporation, leading to the formation of less massive stars or even substellar objects (Whitworth & Zinnecker 2004). As the I-fronts progress, the remnant cloud is eventually dispersed, with stars of different masses remaining in the same volume. Low- and intermediate-mass young stars in bright-rimmed or comet-shaped clouds on the border of an OB association are more likely to be formed by triggering. Assuming a shock speed of ~10 km s⁻¹, this would result in an age spread of several Myr between member stars or star groups formed in the sequence. If the velocities of the shocks are higher, as in the case of a supernova explosion, the age spreads would be less.

5. CONCLUSIONS

We first selected CTTSs and HAeBe stars in ζ Ori, Ori OB1, and Lac OB1 based on the 2MASS colors. These PMS stars are then utilized to trace recent star-forming activities. The young stars are found to be lined up in an age sequence between massive stars and comet-shaped clouds or bright-rimmed clouds, with the youngest stars located near the cloud surfaces. There are no PMS stars far behind the I-fronts. These results support the scenario by which the Lyman continuum photons of a luminous O star create expanding I-fronts that would cause the evaporation and compression of nearby clouds to form BRCs or comet-shaped clouds, thereby introducing the birth of low- and intermediate-mass stars. The BRCs provide us with a convenient setting in which to see that the HAeBe stars tend to form in the inner, denser parts of a cloud, whereas the CTTSs are formed near the photoevaporating cloud layers. Young stars in bright-rimmed or comet-shaped clouds near a massive star are likely to have been formed by triggering. Assuming a shock speed of ~10 km s⁻¹, this would result in an age spread of several Myr between member stars or star groups formed in the sequence.

We want to particularly thank Richard F. Green, Director of KPNO, who kindly provided us the director’s discretionary time to accomplish this work. We are also grateful to the staff of the Beijing Astronomical Observatory for their assistance during our observation runs, and to the referee, Hans Zinnecker, for his suggestions helpful in improving the quality of this paper, and to Debbie Nester for help in the language used in this paper. This research makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation (NSF). We also used the Southern H-Alpha Sky Survey Atlas (SHASSA), supported by the NSF. We acknowledge the financial support of grant NSC92-2112-M-008-047 from the National Science Council and 92-N-FA01-1-4-5 from the Ministry of Education of Taiwan.
Sanchawala, K., Chen, W. P., Lee, H. T., Nakajima, Y., Tamura, H., Daisuke, B., Sato, S., & Chu, Y. H. 2006, ApJ, submitted (astro-ph/0603043)
Schaerer, D., & de Koter, A. 1997, A&A, 322, 598
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Spitzer, L. 1998, Physical Processes in the Interstellar Medium (New York: Wiley)
Stanke, T., Smith, M. D., Gredel, R., & Szokoly, G. 2002, A&A, 393, 251
Sugitani, K., Fukui, Y., & Ogura, K. 1991, ApJS, 77, 59
Sugitani, K., & Ogura, K. 1994, ApJS, 92, 163
Whittworth, A. P., & Zinnecker, H. 2004, A&A, 427, 299
White, G. J., Casali, M. M., & Eiroa, C. 1995, A&A, 298, 594
White, R. J., & Hillenbrand, L. A. 2005, ApJ, 621, L65
Zacharias, N., Urban, S. E., Zacharias, M. I., Wycoff, G. L., Hall, D. M., Monet, D. G., & Rafferty, T. J. 2004, AJ, 127, 3043
Zavagno, A., Dharveng, L., Comerón, F., Brand, J., Massi, F., Caplan, J., & Russeil, D. 2006, A&A, 446, 171