THE MORPHOLOGY OF LOW SURFACE BRIGHTNESS DISK GALAXIES

Stacy S. McGaugh
Department of Astronomy, University of Michigan, Ann Arbor, MI 48109
and
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, England
I: ssm@mail.ast.cam.ac.uk

James M. Schombert
Infrared Processing and Analysis Center
California Institute of Technology, Pasadena, California 91125
I: js@ipac.caltech.edu

and

Gregory D. Bothun
Physics Department, University of Oregon, Eugene, OR 97403
I: nuts@moo.uoregon.edu

Accepted for publication in The Astronomical Journal

1Current address
2Present address: Astrophysics Division, Code SZ, NASA HQ, Washington, D.C., 20546
3Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, which is operated by Associated Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
ABSTRACT

We present $UBVI$ and $H\alpha$ images of a sample of Low Surface Brightness (LSB) disk galaxies. These galaxies are generally late types, if they can be sensibly classified at all. However, they are not dwarfs, being intrinsically large and luminous.

The morphology of LSB galaxies is discussed in terms of the physical interpretation of the Hubble sequence. Galaxies with high contrast relative to the sky background are subject to being more finely typed than those which appear merely as fuzzy blobs on photographic plates. This causes the stages of the Hubble sequence to be nonlinear in the sense that large morphological type distinctions are made between high surface brightness spirals when only small physical differences exist, and small morphological distinctions are made between low surface brightness galaxies even when large physical differences exist.

Many LSB galaxies lack the old red disk conspicuous in higher surface brightness spirals. Their morphology is strikingly similar in all bands from U to I, suggesting fairly homogeneous stellar populations lacking a well developed giant branch. These properties, together with their very blue colors, suggest that LSB galaxies are relatively younger than their high surface brightness counterparts. A few of these LSB galaxies appear to be very young ($\lesssim 1$ Gyr), and as such may represent local examples of protogalaxies.

1. INTRODUCTION

Morphological classification of galaxies represents the earliest form of extragalactic astronomy. Detector technology initially allowed only galaxies of high contrast with respect to the sky background to be catalogued and classified. Selection effects have the potential to be severe in this case. However, in the last few years, a large number of low contrast or Low Surface Brightness (LSB) galaxies have been discovered and cataloged (Schombert & Bothun 1988; Schombert et al. 1992; Impey et al. 1994). In general, LSB galaxies span the same range of physical parameters as galaxies which occupy the conventional Hubble sequence; they are not exclusively low mass dwarf galaxies. Since LSB galaxies are defined as having central surface brightnesses fainter than the darkest night sky, an investigation of their morphological properties may reveal if they form some kind of hidden Hubble sequence. Previous work has firmly established that the physical properties of LSB galaxies are strikingly different from those of the high surface brightness (HSB) spirals which define the Hubble sequence (McGaugh 1992). These differences may provide important clues to the physics underlying morphology.

Morphological classification of galaxies has traditionally been done by visual inspection of galaxy images on B-band photographic plates. This intrinsically non-linear process is difficult to duplicate using linear, digital CCDs. As such, morphological classification may be more difficult and less precise in the digital era (see discussion in van den Bergh, Pierce, & Tully 1990). To assist in the morphological classification of LSB galaxies, in this paper we present images in U, B, V, I, and $H\alpha$ of 22 LSB galaxies. This is not a complete sample in any sense, but does represent the lowest surface brightnesses disk galaxies that can be
extracted from diameter limited field surveys using visual inspection of plate material (e.g., the UGC, Nilson 1973; and the POSS-II LSB list, Schombert et al. 1992). This population of galaxies is very different from “normal” HSB field spirals and LSB dwarfs in clusters (e.g., Impey, Bothun, & Malin 1988; Irwin et al. 1990; Bothun, Impey, & Malin 1991).

In §2 we discuss the morphology of this sample of LSB galaxies, note their similarity to the excess population of faint blue galaxies, and investigate the implications that the physical properties of these galaxies have for the interpretation of the Hubble sequence. We comment on the CCD images of interesting individual LSB galaxies in §3, some of which are potentially young galaxies. Our results are briefly summarized in §4. Throughout the paper, all distance dependent quantities assume $H_0 = 100h\ \text{km}\ \text{s}^{-1}\text{Mpc}^{-1}$ and a Virgo infall velocity of 300 km s$^{-1}$.

2. MORPHOLOGY

2.1 LSB Galaxies

In general, LSB galaxies are late type (Sc and later) spiral and irregular galaxies. The spiral pattern is often incipient or fragmentary and usually faint and difficult to trace (e.g., F530–3, F558–1, F561–1, F568–1, F568–6, F577–V1, UGC 1230, UGC 5709, UGC 6151, UGC 6614, and UGC 9024). The low visibility of the spiral pattern and frequently irregular or amorphous appearance of the disk often result in a dwarf classification, though few of the galaxies discussed here are actually faint enough to formally qualify as such ($M > -16$). Galaxies which do include F415–3 and F611–1, but, for instance, UGC 12695 is twice the size of the Milky Way despite its dwarf irregular appearance. Bulge components are faint or totally undetectable in most cases (e.g., F561–1, UGC 1230, and UGC 6151), but in a significant subset the bulges are bright. These bulges generally have effective radii of 2-3 kpc and are of normal surface brightness. If anything, there is a tendency for the LSB galaxies with prominent bulges to have larger, lower surface brightness disks than the more typical bulgeless LSB galaxies (e.g., F530-3, F568-6, UGC 9024, and especially UGC 6614). Bars are very rare, at least in this B-selected sample. As bars may be dynamical tracers of a previous tidal interaction, their paucity in this sample may be another indication of isolation on small scales (Bothun et al. 1993). There are sometimes lens components in the surface brightness profiles, but it is more common for the profile to be simply exponential with some noise.

The original Hubble sequence ended with type Sc (Hubble 1936). This particular stage encompasses a very wide range of intrinsic galaxy properties, including many LSB galaxies. In fact, most of the highest surface brightness disks which are known (e.g., M101) are Sc galaxies. Still, it became necessary to extend the Hubble sequence to ever later types as progressively better plate material was examined. Interestingly, prior to LSB galaxies being so named, they were predominant members of the new Hubble type, Sd. An excellent nearby example of this is provided by NGC 247. The majority of LSB galaxies fall in the late type bins of this classification scheme (to the extent that they do at all), as might be expected from the nature of the selection effects which act against them (Allen & Shu 1979; McGaugh 1995).
2.2 Faint Blue Galaxies?

As the limits of observation have been pressed ever deeper, a large excess in the numbers counts of galaxies at faint magnitudes has been noted (Tyson 1988; Lilly, Cowie, & Gardner 1991; Colless et al. 1991). McGaugh (1994a) and Ferguson & McGaugh (1995) argued that this could be at least in part due to surface brightness selection effects which act preferentially against LSB galaxies locally. Recently, Griffiths et al. (1994) and Glazebrook et al. (1994) have resolved galaxies in the magnitude range of the excess with HST. They find that the excess is due to peculiar, irregular looking galaxies, many of which do not fit into the traditional classification scheme. In addition, the data set of Wirth, Koo, & Kron (1994) on the high redshift cluster CL0016+16 reveals a significant difference in light concentration index ratio as a function of $g - r$ color: the blue galaxies tend be the ones with the lowest light concentration indices. This is consistent with the hypothesis of Rakos & Schombert (1994) that the Butcher-Oemler (1984) effect is due to the infall and subsequent disruption of late type, LSB galaxies.

This new morphological information provided by the HST observations is consistent with the scenario suggested by McGaugh (1994a), namely, that the $z = 0$ population of LSB disk galaxies have global properties quite similar to the faint blue galaxy population. Indeed, the simulated HST images of Ferguson & McGaugh (1995) predict an excess of edge-on, fuzzy, and irregular objects over what is expected from models based on standard galaxy mixes lacking LSB galaxies. Though the simulations are intentionally extreme, they bear a greater morphological resemblance to actual HST data than does the standard no evolution model, indicating that the nearby objects discussed here may be very similar to what has been considered an enigmatic population of faint blue galaxies. If the local population of LSB galaxies do indeed correspond to that responsible for the excess counts at faint magnitudes, then the redshift distribution of the galaxies classified as peculiar by Glazebrook et al. (1994) should be skewed towards somewhat lower redshift than the normal populations in the same magnitude range. However, the degree of the skew depends on the precise form of the bivariate distribution and the true slope of the faint end of the luminosity function (see Ferguson & McGaugh 1995).

2.3 The Hubble Sequence

The study of galaxies as physical objects is often expressed as an effort to understand the Hubble sequence. Being essentially a matter of appearance, as principally manifested by arm texture and definition, classification along the Hubble sequence of spirals is affected by the surface brightness of a galaxy through the contrast of its features relative to the background. A strong contrast facilitates perception of morphological distinctions, particularly when imaging with a non-linear detector. As a consequence, one might suspect that the Hubble sequence is also nonlinear in the sense that objects with high surface brightness would be more finely typed than others, since it is easier to notice differences in texture at high contrast.

An important original motivation for galaxy morphological typing was the success of stellar spectral typing in establishing the basic physical properties of stars. Though it is well established that mass is the dominant parameter determining a star’s position along the main sequence, consider the steps required to get to it. Observed spectral type is
related to temperature by one nonlinear transformation (one stage in spectral type covers a variable range in temperature, with, for example, F stars covering a small range in temperature). Then there is another nonlinear transformation from temperature to mass (O stars representing a very large linear mass range). These effects lead to an HR diagram which has obvious main sequence discontinuities when plotted in terms of spectral types despite a presumably smooth underlying mass function (Houk & Cowley 1975).

For stars, at least, these effects are well understood. Such cannot be said of the Hubble sequence. The identification of the physical properties underlying it remains elusive. Quantifiable global properties are not well correlated with Hubble type (Boroson 1981; Kennicutt 1981; Bothun 1982; Kent 1985) and objective techniques seem to indicate that all characteristics of an image play a role in classification (Storri-Lombardi et al. 1992). Clearly it is necessary to sort out any nonlinearities in the classification scheme before such trends that do exist can be interpreted physically.

A basic problem, however, is that morphological classification is an inherently non-quantitative process. Despite the many quantitative measurements that can now be made for galaxies, morphological classification still persists as a substitute therefor. For instance, a fundamental property of galaxies which can be quantified is their luminosity profiles. For disk galaxies, these have the form

$$\mu(r) = \mu_0 + 1.086 \frac{r}{\alpha},$$

where μ_0 is the central surface brightness and α is the scale length of the disk. These characterize the luminosity density and the size of a galaxy. If morphological classification is to reflect underlying physics, then the least one should hope for is a positive correlation between measured galaxy structure and morphological type.

One complication is that the observed central surface brightness μ_0 needs to be inclination corrected to obtain the true face on value, μ_c^0. Usually this is done by assuming that the disks are optically thin, so that only edge brightening occurs. This is a dubious assumption, but we retain it for consistency with other published data as it is usually a small correction compared to the range of surface brightness considered here and hence makes no difference to the results. If anything, the assumption of no extinction is more appropriate in these LSB systems which are relatively dust free (McGaugh 1994b).

A link between μ_c^0 and underlying physics was first suggested by Freeman (1970), who found that all spirals had $\mu_c^0 = 21.65 \pm 0.3$ B mag arcsec$^{-2}$. If this were a true physical result, and not due to selection effects, then it would imply that the processes of galaxy formation conspired to always arrive at a particular mass surface density. However, as noted by Schombert et al. (1992), the very existence of disk galaxies with μ_c^0 many standard deviations from the Freeman (1970) result indicates that the surface brightness distribution is not so sharply peaked. The LSB systems under consideration here fall far from the Freeman value, with typical inclination corrected central surface brightnesses of $\mu_c^0 \approx 23.8$ B mag arcsec$^{-2}$ (7σ deviant). Other investigations (McGaugh 1993; de Jong & van der Kruit 1994; Sprayberry 1994; McGaugh et al. 1995), demonstrate that the space density of LSB galaxies is in fact similar to that of Freeman disks (the number of galaxies
with $\mu_0 \approx 23.8$ catalogued by Schombert et al. 1992 is approximately the same as the number of galaxies with $\mu_0 \approx 21.65$. Moreover, the global properties of disk galaxies (e.g., color, rotation velocity, profile shape, HI content) seem to be largely independent of μ_0 (McGaugh 1992).

Figure 1 shows the distribution of disk galaxies in the (μ_0, α) plane. Data are taken from Romanishin, Strom, & Strom (1983), van der Kruit (1987), and McGaugh & Bothun (1994). The data of McGaugh & Bothun (1994) are based on the images presented below. Though some dwarf galaxies with spiral structure do exist (Schombert et al. 1995), here we exclude intrinsically small ($\alpha < 1 \ h^{-1}\text{kpc}$) galaxies since we wish to discuss only those disk galaxies which are comparable in size to the spirals which define the Hubble sequence. As can be seen from Fig. 1, the surface brightness of galaxies is not simply a matter of size or morphological type, as argued by van der Kruit (1987).

Figure 1 is analogous to the HR diagram for stars in the sense that it plots the most fundamental observable properties of the objects under consideration. (Obviously, luminosity could be substituted for either surface brightness or scale length, which would simply amount to a transformation to coordinates delineated by the dotted lines.) Unlike stars, and contrary to the hope of the morphological approach, galaxies do not distinguish themselves much by Hubble type in this diagram (see also de Jong & van der Kruit 1994). The entire plane is occupied below luminosity and surface brightness maxima, with no obvious tendency to congregate into distinct branches as with stars in the HR diagram. Indeed, we should consider it fortunate that one physical parameter is so dominant for stars that variations in others do not hopelessly muddle the main sequence. That there appears to be no main sequence for galaxies suggests that no single parameter dominates. Two would seem to be a minimum, and mass and density make a reasonable pair for beginning to explain the distribution in Fig. 1 (McGaugh 1992; Mo, McGaugh, & Bothun 1994).

Though morphology fails to distinguish galaxies in this fundamental plane, there is a tendency for galaxies of low surface brightness to be classified as late types. However, all Hubble types cover the same range in size. Things morphologically classified as dwarfs are not necessarily small (see also Schneider et al. 1992). Late types do tend to be less luminous owing to their lower surface brightness at a given size. Examples of very large, luminous LSB disks do exist; these tend to be labeled as relatively early types because of their prominent bulges and anemic spiral structure but probably represent a unique and distinct class of galaxies (Schombert et al. 1992; Sprayberry et al. 1994).

Note that disk absolute magnitudes generally do not exceed $M_B = -21$, and that this limit is approached by LSB as well as HSB galaxies. This result probably has the most to do with the physical conditions which are required to produce a spiral galaxy, perhaps indicating the maximum baryonic mass which has had time to cool. Similarly, the Freeman (1970) central surface brightness appears to be the maximum edge of the distribution, perhaps suggesting that denser protogalaxies become ellipticals. Another interesting feature in Fig. 1 is the apparent envelope demarcated by a line running from $\alpha = 3 \ \text{kpc}$ at the faintest surface brightness plotted to $\alpha = 10 \ \text{kpc}$ at the brightest. Though some giant LSB galaxies exist, there does seem to be a slight tendency for larger
disks to be higher in surface brightness. This is suggestive of a bivariate distribution in which there is a modest correlation between size and surface brightness, and which has a sharp decline in the density of galaxies larger than the envelope. This is analogous to the knee of the luminosity function, but is not orthogonal to the surface brightness axis as usually assumed. Put another way, the size distribution becomes steeper for lower surface brightnesses, but also extends to larger sizes. This implies that the luminosity function steepens towards lower surface brightnesses, though presumably with a lower normalization at L^*. Interestingly, such a luminosity function, when combined with a flat luminosity function for HSB galaxies, would have a shape similar to that required to match the observed galaxy counts (Koo, Gronwall, & Bruzual 1993). Unfortunately, it is not possible to say from the present data if this is the case of even if there is a real trend of this sort (see also Ferguson & McGaugh 1995).

Though the Hubble type is loosely related to surface brightness, it is interesting to note that the overlap between types is substantial. This is especially true for early type disks which predominantly occur at high surface brightnesses around the Freeman (1970) value. There is no distinction between S0/Sa, Sb, and to a lesser extent, Sc, galaxies in Fig. 1. This of course means that other characteristics, such as arm texture, play a dominant role in classification. Such details are much less striking in LSB galaxies in spite of the frequency of spiral structure. In fact, surface brightness should be considered as another dimension in a more proper 2-dimensional galaxy classification systems, such as the RDDO system initiated by van den Bergh (1976).

Being based largely on arm texture and the tightness of the wrapping of spiral arms, it is perhaps not surprising that the Hubble sequence does not distinguish μ_0^c and α which are the basic properties of disks. However, disks are not the only component of the luminosity profile, and another aspect which enters the morphological classification is the central concentration of the light, often quantified by the bulge to disk ratio B/D. Simien & de Vaucouleurs (1986) give a detailed formula relating morphological type to mean B/D. However, there is a great deal of scatter in B/D at a given type, much of which is real (Boroson 1981; Bothun 1982; Kent 1985). Low surface brightness galaxies pose particular difficulties in this regard because of their apparent bimodal distribution of bulge sizes. Most LSB galaxies have $B/D < 0.1$, but a significant subset have $B/D \sim 1$ with no obvious transition population. The classification of large bulge LSB spirals by arm texture can not be reconciled with that by B/D. Looking only at the arms, these are late types. But judging by B/D, they are early types.

This may just be a further indication that the Hubble sequence is less fundamental to the nature of galaxies as physical objects than might be hoped. The fact that early type spirals cluster strongly around the Freeman (1970) value, while later types cover a much larger area in this parameter suggests that the high contrast of HSB galaxies allow for fine distinctions in appearance to be made between them. LSB galaxies are lumped into a few late type bins because it is difficult to see anything about them other than that they are fuzzy blobs. This is reminiscent of Messier’s objects which when initially discovered were all faint diffuse blobs, unclassifiable using the imaging capabilities of the time. Thus it appears that the Hubble sequence is indeed nonlinear, providing detailed information over a relatively small portion of the parameter space occupied by galaxies.
where the contrast is the best. There is therefore a tendency to infer big differences in
type from small physical differences when the contrast is high, and little or no difference
in type despite large physical differences when the contrast is poor.

This is amply clear in the football shaped classification diagram of de Vaucouleurs
(1959), which places the most emphasis on early type spirals. While this is an accurate
portrayal of the classification system, the \textit{physical} parameter space continues to expand
towards later types, which exhibit a wide range of properties. LSB galaxies alone cover
a wide range in size as well as surface brightness, and also in color (McGaugh & Bothun
1994; de Blok, van der Hulst, & Bothun 1995), metallicity (McGaugh 1994b), gas content,
and star formation properties (van der Hulst et al. 1987, McGaugh 1992; van der Hulst
et al. 1993). Considering that LSB galaxies are actually quite common, it is important
to understand them as physical objects if we are to decipher the meaning of the Hubble
sequence.

By way of analogy, consider the case of stellar populations. When Baade (1944)
first resolved stars in the bulge of the Andromeda galaxy, he was able to introduce the concept
of stellar populations with the aid of the HR diagram for stars in our own galaxy as an
interpretive tool. Even though only the brightest stars were resolved, knowledge of the
HR diagram allowed assignment of the red bulge stars to a population similar to that of
globular clusters, while the bright blue stars of the disk belonged to a population similar
to that of the solar neighborhood. However, the reverse is not possible — without \textit{a priori}
knowledge of the HR diagram, one could never infer the existence of the main sequence
from Baade’s data. Although some attempts have been made (e.g., Whitmore 1984), there
remains no physically understood equivalent of the HR diagram for galaxies. The Hubble
sequence fails to provide one.

Though it has not succeeded as a tool for understanding galaxies the way the HR
diagram has for stars, the Hubble sequence does have merit. Despite the large amount of
real scatter, there is a clear trend of B/D with type. There are large regions of parameter
space which real galaxies do not occupy (e.g., there are no giant HSB galaxies, cf. Kent
1985; Sprayberry et al. 1994; de Jong & van der Kruit 1994.), and though the scatter again
is large, the boundaries do seem to be delineated by type. Given that there is always a
great deal of scatter in plots involving morphological type, these uninhabited regions of
parameter space and the scatter itself may be telling us more about disk galaxy formation
than any of the weak trends that do exist.

Since the Hubble sequence is essentially one of regularity, varying from early type
galaxies which are smooth in appearance to irregular late types, perhaps the most impor-
tant physical characteristic is the star formation time scale (cf. Kennicutt 1983; Kennicutt,
Tamblyn, & Congdon 1994). Most of the star formation in early type galaxies occurred
long ago, so dynamical processes have had time to regularize the appearance of stochastic
variations in bright star forming sites which are still apparent in late types. These lat-
ter have their star formation histories weighted more towards current epochs (Gallagher,
Hunter, & Tutukov 1984; McGaugh & Bothun 1994). The variation can not be in the
absolute amount of star formation, present or past, as this allows for no variation within
a given type. Perhaps it is better described by the time scale $\tau \sim \dot{M}_o/M$, the current

\[\dot{M}_o/M \]
rate of star formation relative to the total integrated star formation. This in some sense is the inverse of the evolutionary rate, which is rapid for early types and very slow for late types. This would naturally explain the morphology–density (Dressler 1980) and surface brightness–density (Bothun et al. 1993; Mo, McGaugh, & Bothun 1994) relations, because galaxies are expected to form later and evolve more slowly the more isolated their progenitors (see Mo et al. 1994).

3. IMAGES

To give some impression of the galaxies we are discussing, and an idea of the diversity of morphology of LSB disks, we present multicolor CCD images and discuss some interesting individuals. The depth of the CCD images gives rather more information than is available on discovery plates; this can lead to rather different morphological classifications. This is illustrated in Table 1, which compares the types given by the UGC and those determined from the CCD images on the system described by Sandage & Binggeli (1984) as employed by Schombert et al. (1992). Clearly, there is a large uncertainty in type at low surface brightnesses, as classification requires some eyeball interpolation of unseen structures. The UGC classifications have been retained in Fig. 1 since the other data are also photographic, but it is clear that morphological type per se is not very meaningful for LSB galaxies.

Surface photometry and colors are discussed by McGaugh & Bothun (1994), as are details of the broad band observations. The Hα observations, described by McGaugh (1992), provide the targets for H II region spectroscopy (McGaugh 1994b). Like the broad band images, many of the Hα images were obtained with the MDM1 1.3 m telescope. Some of the Hα images were obtained with the KPNO 2.1 m telescope with typically longer exposures. Hence these are considerably deeper, a point which should be kept in mind when comparing the images. They are denoted by “2.1 m” in the figure captions.

All images are presented with north up and east to the left. Unless otherwise noted, each image is 2.4′ on a side. The pixel scale is 0.48″/pixel for the 1.3 m images, and was binned to 0.38″/pixel for the 2.1 m images. Most, though not all, data were obtained under photometric conditions. Images are scaled to have the same contrast relative to the sky so as to reveal morphology; saturation of the grayscale often happens at quite low surface brightness which varies with the surface brightness of the galaxy.

3.1 NGC 7757

This HSB disk galaxy is included for comparison (Fig. 2). An Sc spiral, it is the sort of galaxy most of us probably consider “typical.” Perhaps contrary to appearances, the exposure time and the signal to noise ratio in the sky is less than in the other images. If displayed in such a way as to make the sky value (rather than the contrast relative to the sky) appear similar, all detail would be lost to saturation.

The disk of this galaxy is consumed by star formation with H II regions tracing a prominent spiral pattern. Despite the much higher star formation rate per unit area, this

1 MDM Observatory is operated by the University of Michigan, Dartmouth College, and the Massachusetts Institute of Technology.
galaxy is not as blue as most of the LSB galaxies discussed here. Note the change in morphology with filter as the disk becomes progressively smoother in the red, indicative of an old disk population.

3.2 F415–3

This LSB galaxy has a single prominent H II region near its center and amorphous very low surface brightness plumes extending away from the ends of the major axis of the main body (Fig. 3). The western plume has several knots which are prominent in the blue filters but which are not obviously H II regions. This may be due to weak Hα emission, or a velocity difference which takes the line out of the narrow Hα bandpass.

This relatively small (exponential scale length $\alpha = 1.2 h^{-1} \text{kpc}$) galaxy has a similar appearance in all filters, suggesting a fairly homogeneous population which has not segregated dynamically. The $V - I$ color ($V - I = 0.71$) is remarkably blue. Note the lack of an old red disk. This is a generic property of LSB galaxies, which often lack the diffuse red disks associated with the old disk component in HSB galaxies. This suggests a population with a giant branch which is underdeveloped due to a late commencement of star formation and a low mean age (McGaugh & Bothun 1994). As indicated by their low surface brightness and the sparse sprinkling of H II regions across the disks, both the past and current star formation rate per unit area is low.

3.3 F469–2

This rather large ($\alpha = 2.9 h^{-1} \text{kpc}$) quite LSB ($\mu_0^c = 24.44 B \text{mag arcsec}^{-2}$) galaxy has nonetheless several prominent H II regions embedded in a chaotic looking disk (Fig. 4). This galaxy is also quite blue ($U - B = -0.44$, $B - V = 0.43$, $V - I = 0.94$) with a similar morphology in each filter, again suggesting a youthful population. If anything, the disk (as opposed to the spiral pattern) is less prominent in I, contrary to the case in NGC 7757.

3.4 F530–3

This galaxy looks fairly normal, with a bulge and a two arm spiral pattern (Fig. 5). Nonetheless, it is much lower surface brightness ($\mu_0^c = 23.85 \text{mag arcsec}^{-2}$) than the HSB galaxy to the southeast, which is saturated in these images. This interloper is probably at a different redshift, as it is unusual for large ($\alpha = 3.7 h^{-1} \text{kpc}$ in this case) LSB galaxies to have nearby neighbors (Bothun et al. 1993, Mo et al. 1994).

3.5 F561–1

A typical size ($\alpha = 2.6 h^{-1} \text{kpc}$) disk, this LSB galaxy has a strong, one arm spiral pattern (Fig. 7). Such features are not uncommon in LSB galaxies, suggesting that $m = 1$ spiral modes are possible at low surface densities. Rings and single arms indicate the importance of surface density thresholds (Kennicutt 1989) to the star forming properties of LSB disks (van der Hulst et al. 1993).

3.6 F563–V1

Despite its dwarf morphology, F563–V1 is not particularly small ($\alpha = 1.9 h^{-1} \text{kpc}$) (Fig. 8). It nonetheless appears to have a rather homogeneous stellar population. It is
also one of the most metal poor extragalactic objects known (McGaugh 1994b), again suggestive of a young object.

3.7 F611–1

This is an otherwise amorphous galaxy with a pair of embedded knots of star formation (Fig. 10). These do not dominate the light as is often the case in star bursting blue compact galaxies (BCGs). While BCGs presumably have LSB progenitors (Tyson & Scalo 1988), the galaxies being discussed here are generally to large and bright to be the progenitor population (though see Taylor, Brinks, & Skillman 1993) which probably involves galaxies which are smaller and perhaps even lower surface brightness when not actively forming stars. Nonetheless, F611–1 is similar to BCGs in that it is also quite metal poor \((Z \lesssim 0.1 Z\odot)\). The uniformly distributed light is blue, with \(U - B = -0.24\) and \(B - V = 0.44\). Though not terribly small \((\alpha = 1.5 h^{-1} \text{kpc})\), it is quite low surface brightness \((\mu^c_0 = 24.5 \text{ mag arcsec}^{-2})\).

3.8 UGC 1230

This normal sized \((\alpha = 3 h^{-1} \text{kpc})\) disk is extremely blue, with \(V - I = 0.56\). The galactic redenning is large \((A_B = 0.4, \text{Burstein & Heiles 1984})\), so the color depends on the assumed redenning law. However, the observed \(V - I = 0.72\) is itself remarkably blue for a composite stellar system. The giant branch in this galaxy must be quite feebly populated, indicating a young mean age.

There is a clear, if diffuse, spiral pattern (Fig. 12). The spiral arms are not well traced by H II regions as in NGC 7757 though there are a few scattered about. The pair of knots to the south which are prominent in the I-band are also H II regions. That faint nebular emission is present in these red clusters indicates that star formation has continued in the vicinity long enough for the the first stars formed in the current episode of star formation to evolve to the red supergiant phase.

3.9 UGC 12695

This galaxy has an odd structure, with thick spoke-like structures rather than arms projecting out from the center (Fig. 15). These features are present in all filters, indicating a fairly homogeneous stellar population. There are a number of bright H II regions around the edges of the galaxy. In those to the west, a clear trend of color is present in the sense that the southern clusters are bluer than the northern ones, perhaps indicating the propagation of star formation in this direction. The proximity of a very red and blue cluster in the east may indicate a similar situation. Since these star clusters evolve on short (a few \(\times 10^7\) yr) time scales, and the galaxy as a whole is quite blue \((B - V = 0.37)\), star formation could have propagated across the entire galaxy rather recently. The colors are consistent with an age of only a few \(\times 10^8\) yr (cf. Salzer et al. 1991). The gas mass fraction is quite large and the stellar mass to light ratio is low (McGaugh 1992), also consistent with youth. Thus, UGC 12695 seems to be an example of a large \((\alpha \sim 6 h^{-1} \text{kpc})\) disk which has only recently formed. As such it is as reasonable a candidate “protogalaxy” as any, but has the advantage of being close enough to study in detail.
3.10 *F568–6*

The second example of a giant ($\alpha \approx 16\,h^{-1}\text{kpc}$) low surface brightness disk, F568–6 (Fig. 16) is also known as Malin 2 (Bothun et al. 1990). This is the only LSB galaxy (other than the relatively HSB UGC 5709) known to contain H II regions with metallicities higher than $\sim 0.3Z_\odot$ (McGaugh 1994b). A wide range of metallicities are present, suggestive of a steep abundance gradient, though the paucity of H II regions makes this difficult to determine.

3.11 *UGC 6614*

UGC 6614 (Fig. 17) is comparable in size to Malin 2 ($\alpha \approx 12\,h^{-1}\text{kpc}$). A number of other giant disks are also known (Impey & Bothun 1989, Knezek 1993, Sprayberry et al. 1994), but none approach the prototype Malin 1 in terms of scale length ($\alpha \approx 55\,h^{-1}\text{kpc}$; Bothun et al. 1987). The abundance determinations for the H II regions in UGC 6614 are ambiguous (McGaugh 1994b), but suggest that unlike the majority of LSB galaxies, it could be quite metal rich. Since only the giant LSB galaxies exhibit high abundances, and also tend to have more prominent bulge components, the disks of these galaxies may have been polluted by metal production in the bulges (Koeppen & Arimoto 1990). The disk of U6614 is very low in surface brightness and extends well out of the field of view. As evident from its red integrated colors, the observed light is dominated almost everywhere by the bulge.

3.12 *F577–V1*

F577–V1 is not well described as an exponential disk, but is comparable in size to a galaxy with $\alpha \approx 3\,h^{-1}\text{kpc}$. It is one of the few late type LSB galaxies with a bar (Fig. 18) though such features may be common in early type LSB galaxies (de Blok, private communication). Its outer light profile is dominated by a very blue, actively star forming spiral/ring structure.

3.13 *UGC 9024*

This galaxy has a very low surface brightness disk ($\mu_0 = 24.71\,\text{mag arcsec}^{-2}$) and a fairly normal looking bulge. Its over all color is quite blue ($B - I = 1.18$), as is that of the bulge itself ($B - I = 1.51$). Some hint of spiral structure is apparent in the B image, and is also traced by H II regions in the deep Hα image (Fig. 23). The disk is rather large ($\alpha = 5.6\,h^{-1}\text{kpc}$), and the presence of the bulge suggests that this may be a transition object between normal sized, bulgeless LSB galaxies and the giant cousins of Malin 1. This galaxy represents a kind of discovery limit presented by photographic plate technology as its disk is barely discernible on the original plate material.

3.14 *A Local LSB Galaxy — IC 1613*

Though not part of the sample discussed by McGaugh & Bothun (1994), the local group galaxy IC 1613 provides a good demonstration of how pixel scale, resolution, and detector technology drive morphological classification. Figure 24 shows two images, both taken in the B band but at a different scale. The first image was taken with a re-imaging camera (Aldering and Bothun 1991). The resolution of IC 1613 into clumps is apparent.
and its globally low surface brightness is not easily appreciated. The next image was taking
with the Parking Lot Camera system (Bothun and Thompson 1988), and shows roughly
what IC 1613 would look like if placed at a distance of 10 Mpc.

By the standards of the sample presented in this paper, IC 1613 qualifies quantitatively
as a low surface brightness galaxy. It has a central surface brightness and scale length
determined from these images of \(\mu_0 = 23.59 \pm 0.15 \ B \text{ mag arcsec}^{-2} \) and \(\alpha = 260 \pm 23'' \),
consistent with the values reported by Hodge et al. 1991. For the inclinations \(i = 50^\circ \) given
by Hodge (1978), \(\mu_0 = 23.88 \). At a distance of 725 kpc (Freedman 1988), the physical scale
length is 0.9 kpc and the absolute magnitude is \(M_B = -14.68 \). This is in good agreement
with the value given by Hodge (1978) of \(M_B = -14.63 \). However, only light within a
couple of scale lengths is actually detected; integration of the surface brightness profile
would make the galaxy \(\sim 0.5 \) mag, brighter. The galaxy is probably tidally truncated
so that this is an overestimate, but it does illustrate the need to perform deep surface
photometry to recover all the light of LSB galaxies (McGaugh 1994a; McGaugh & Bothun 1994, de Blok et al. 1995).

IC 1613 is smaller and less luminous than the other galaxies presented here. Unlike
most of the LSB galaxies detected in field surveys like that of Schombert et al. (1992), it
is a true dwarf. Morphologically, however, it is indistinguishable from more distant LSB
galaxies when viewed at a comparable resolution. When imaged like this, it is just another
fuzzy, diffuse member of the LSB galaxy population.

4. CONCLUSIONS

We have presented multicolor CCD images of a sample of low surface brightness disk
galaxies. We summarize our results as the following:

1) LSB galaxies exhibit a wide range of morphologies, commensurate with the large area
they occupy in the size–surface brightness plane.

2) LSB galaxies are generally late types, and vice-versa. The classifications are not
particularly meaningful though, as they fail to distinguish any obvious physical char-
acteristics, with the possible vague exception of galaxy evolutionary rate.

3) Not all LSB galaxies are dwarfs, in spite of their morphological similarity to this class
as a whole. For example, UGC 12695 is twice the size of the Milky Way despite its
dwarf irregular appearance.

4) Hubble type is loosely related to mean surface brightness, however the overlap between
types is substantial. Galaxy classification is strongly dependent on characteristics
such as arm texture and bulge to disk ratio and, thus, is only weakly related to basic
properties of the disk such as \(\mu_0 \) or \(\alpha \).

5) LSB galaxies divide into two types with respect to B/D ratio, most with B/D < 0.1
and a small, but significant subset with B/D \(\approx 1 \). Large bulge LSB spirals have a
contradictory appearance with late-type spiral features, yet large B/D ratio.
The large physical differences between LSB galaxies are not well represented by morphological classification schemes, which tend to assign them only a few vaguely defined types. This suggests that the Hubble sequence is nonlinear in that galaxies with high contrast relative to the sky background are subject to being more finely typed than those which appear merely as fuzzy blobs on photographic plates. Hence the differences between early type (Sa, Sb, and Sc) spirals, though real and seemingly large, are in fact small compared to the entire volume of physical parameter space occupied by disk galaxies.

Many LSB galaxies are morphologically similar to the irregular faint blue galaxies resolved by *HST*. They typically lack the old red disk conspicuous in higher surface brightness spirals. Their appearance does not vary significantly with band from U to I, suggesting fairly homogeneous stellar populations. Together with their blue colors, this suggests that LSB galaxies are relatively young galaxies.
REFERENCES

Aldering, G. S., & Bothun, G. D. 1991, PASP, 103, 1296
Allen, R. J., & Shu, F. H. 1979, ApJ, 227, 67
Baade, W. 1944, ApJ, 100, 137
Boroson, T. 1981, ApJS, 46, 177
Bothun, G. D. 1982, ApJS, 50, 39
Bothun, G. D., Impey, C. D., & Malin, D. F. 1991, ApJ, 376, 404
Bothun, G. D., Impey, C. D., Malin, D. F., & Mould, J. R. 1987, AJ, 94, 23
Bothun, G. D., Schombert, J. M., Impey, C. D., & Schneider, S. E. 1990, ApJ, 360, 427
Bothun, G. D., Schombert, J. M., Impey, C. D., Sprayberry, D., & McGaugh, S. S. 1993, AJ, 106, 548
Bothun, G. D., & Thompson, I. B. 1988, AJ, 96, 877
Burstein, D., & Heiles, C. 1984, ApJS, 54, 33
Butcher, H., & Oemler, A. 1984, ApJ, 285, 426
Colless, M., Ellis, R. S., Taylor, K. & Shaw, G. 1991 MNRAS, 253, 686
de Blok, W. J. G., van der Hulst, J. M., & Bothun, G.D. 1995, submitted
de Jong, R. S., & van der Kruit, P. C. 1994, A&AS, 106, 451
de Vaucouleurs, G. 1959, in Handbuch der Physik, v. 53, Astrophysics IV: Stellar Systems, ed. S. Flügge (Berlin: Springer-Verlag), 275
Dressler, A. 1980, ApJ, 236, 351
Ferguson, H. C., & McGaugh, S. S. 1995, ApJ, in press
Freedman, W. L. 1988, ApJ, 326, 691
Freeman, K. C. 1970, ApJ, 160, 811
Gallagher, J. S. I., Hunter, D. A., & Tutukov, A. V. 1984, ApJ, 284, 544
Glazebrook K., Ellis R. S., Santiago B. X., Elson R. A. W., Griffiths R. E., & Ratnatunga K. 1994, preprint
Griffiths, R. E., Casertano, S., Ratnatunga, K. U., Neuschaefer, L. W., Ellis, R. S., Gilmore, G. F., Glazebrook, K., Santiago, B., Huchra, J. P., Windhorst, R. A., Pascarelle, S. M., Green, R. F., Illingworth, G. D., Koo, D. C., & Tyson, J. A. 1994, ApJ, in press
Hodge, P. W. 1978, ApJS, 37, 145
Hodge, P. W., Smith, T. R., Eskridge, P. B., MacGillivray, H. T., & Beard, S. M. 1991, ApJ, 369, 372
Houk, N., & Cowley, A. P. 1975, University of Michigan Catalogue of Two-Dimensional Spectral Types for the HD Stars, Vol. 1
Hubble, E. P. 1936, The Realm of the Nebulae (New Haven: Yale University Press)
Impey, C. D., & Bothun, G. D. 1989, ApJ, 341, 89
Impey, C. D., Bothun, G. D., & Malin, D. F. 1988, ApJ, 330, 634
Impey, C. D., Sprayberry, D., Bothun, G. D., & Irwin, M. J. 1994, BAAS, 25, 1291
Irwin, M. J., Davies, J. I., Disney, M. J., & Phillipps, S. 1990, MNRAS, 245, 289
Kennicutt, R. C. 1981, AJ, 86, 1847
Kennicutt, R. C. 1983, ApJ, 267, 563
Kennicutt, R. C. 1989, ApJ, 344, 685
Kennicutt, R. C., Tamblyn, P., & Congdon, C. W. 1994, ApJ, 435, 22
Kent, S. 1985, ApJS, 59, 115
Knezek, P. 1993, Ph.D. Thesis, University of Massachusetts
Koeppen, J., & Arimoto, N. 1990, A&A, 240, 22
Koo, D. C., Gronwall, C., & Bruzual, A. G. 1993, ApJ, 415, L21
Lilly, S. J., Cowie, L. L., & Gardner, J. P. 1991, ApJ, 369, 79
McGaugh, S. S. 1992, Ph.D. Thesis, University of Michigan
McGaugh, S. S. 1993, BAAS, 25, 1398
McGaugh, S. S. 1994a, Nature, 367, 538
McGaugh, S. S. 1994b, ApJ, 426, 135
McGaugh, S. S. 1995, in preparation
McGaugh, S. S., & Bothun, G. D. 1994, AJ, 107, 530
McGaugh, S. S., Bothun, G. D., Schombert, J. M. 1995, submitted
Mo, H. J., McGaugh, S. S., & Bothun, G. D. 1994, MNRAS, 267, 129
Rakos, K. D, & Schombert, J. M. 1994, ApJ, in press
Romanishin, W., Strom, K. M., & Strom, S. E. 1983, ApJS, 53, 105
Salzer, J. J., Alighieri, S. D. S., Matteucci, F., Giovanelli, R., & Haynes, M. P. 1991, AJ, 101, 1258
Sandage, A., & Binggeli, B. 1984, AJ, 89, 919
Schneider, S. E., Thuan, T. X., Mangum, J. G., & Miller, J. 1992, ApJS, 81, 5
Schombert, J. M., & Bothun, G. D. 1988, AJ, 95, 1389
Schombert, J. M., Bothun, G. D., Schneider, S. E., & McGaugh, S. S. 1992, AJ, 103, 1107
Schombert, J. M., Pildis, R. A., Eder, J., & Oemler, A. 1995, in preparation
Simien, F., & de Vaucouleurs, G. 1986, ApJ, 302, 564
Sprayberry, D. 1994, Ph.D. thesis, University of Arizona
Sprayberry, D., Impey, C. D., Irwin, M., McMahon, R. G., & Bothun, G. D. 1994, ApJ, in press
Storrie-Lombardi, M. C., Lahav, O., Sodre, L., & Storrie-Lombardi, L. J. 1992, MNRAS, 259, 8P
Taylor, C., Brinks, E., & Skillman, E. D. 1993, AJ, 105, 1
Tyson, J. A. 1988, AJ, 96, 1
Tyson, N. D., & Scalo, J. M. 1988, ApJ, 329, 618
van den Bergh, S. 1976, ApJ, 206, 883
van den Bergh, S., Pierce, M. J., & Tully, R. B. 1990, ApJ, 359, 4
van der Hulst, J. M., Skillman, E. D., Kennicutt, R. C., & Bothun, G. D. 1987, A&A, 177, 63
van der Hulst, J. M., Skillman, E. D., Smith, T. R., Bothun, G. D., McGaugh, S. S., & de Blok, W. J. G. 1993, AJ, 106, 548
van der Kruit, P. C. 1987, A&A, 173, 59
Whitmore, B. C. 1984, ApJ, 278, 61
Wirth, G. D., Koo, D. C., and Kron, R. G. 1994, preprint
FIGURE CAPTIONS

Figure 1. The distribution of disk galaxies in the central surface brightness – exponential scale length plane. Different Hubble types are distinguished with different symbols. The dotted lines are lines of constant luminosity labeled by absolute B magnitude. The solid and dashed horizontal lines represent the Freeman (1970) result $\mu_0 = 21.65 \pm 0.3$ B mag arcsec$^{-2}$. Note that disks of all sizes exist with surface brightnesses many σ below the Freeman (1970) value, and that there is no obvious discontinuity in either surface brightness or size over a range of four magnitudes. Galaxies inhabit the entire (μ_0, α) plane below maxima in each. The Hubble sequence fails to delineate any meaningful relations between these fundamental parameters.

Figure 2. NGC 7757. a) U b) B c) V d) I e) $H\alpha$ f) continuum subtracted $H\alpha$. This HSB spiral is included for comparison purposes. The grayscale is not scaled the same as for the following LSB images; if it were the entire disk would be saturated.

Figure 3. F415–3. a) U b) B c) V d) I e) $H\alpha$ f) continuum subtracted $H\alpha$.

Figure 4. F469–2. a) U b) B c) V d) I e) $H\alpha$ f) continuum subtracted $H\alpha$. The linear streaks result from deferred charge from bright stars in previous exposures.

Figure 5. F530–3. a) U b) B c) V d) I e) $H\alpha$ f) continuum subtracted $H\alpha$.

Figure 6. F558–1. a) U b) B c) V d) I e) 2.1 m $H\alpha$ f) continuum subtracted $H\alpha$. Since the $H\alpha$ images were obtained with a larger telescope than for the previous galaxies and filters, they are rather deeper (see text). A fairly normal looking spiral, the broad band images were unfortunately not obtained under photometric conditions so it is difficult to usefully employ the color information. Despite the imperfect continuum subtraction, there are HII regions confirmed by spectroscopy in the southern arm.

Figure 7. F561–1. a) U b) B c) V d) I e) 2.1 m $H\alpha$ f) continuum subtracted $H\alpha$.

Figure 8. F563–V1. a) U b) B c) V d) I e) 2.1 m $H\alpha$ f) continuum subtracted $H\alpha$. The U band image is not photometric, and this galaxy is rather bluer than seems to be indicated by the low contrast in (a) (de Blok et al. 1995).

Figure 9. F563–V2. a) U b) B c) V d) I e) $H\alpha$ f) continuum subtracted $H\alpha$. This galaxy has two HII regions west of the relatively HSB central bar, and a blue, LSB plume to the northwest.

Figure 10. F611–1. a) U b) B c) V d) I e) $H\alpha$ f) continuum subtracted $H\alpha$.

Figure 11. F746–1. a) U b) B c) V d) I e) $H\alpha$ f) continuum subtracted $H\alpha$. There are a number of star forming regions in this relatively HSB galaxy.

Figure 12. UGC 1230. a) U b) B c) V d) I e) $H\alpha$ f) continuum subtracted $H\alpha$. The various knots are HII regions spanning a wide range of intrinsic $H\alpha$ luminosity and broad band color. For example, compare the blue northeastern knots to the red ones due south of them. Though the $H\alpha$ emission of the southern knots is barely discernible in this image, it was easily detected spectroscopically (McGaugh 1992, 1994b).
Figure 13. UGC 5709. a) U b) B c) V d) I e) 2.1 m Hα f) continuum subtracted Hα. This galaxy is intermediate in surface brightness, and displays the same sort of old red disk seen in HSB galaxies. It is also intermediate in color, being redder than the lower surface brightness disks (McGaugh & Bothun 1994).

Figure 14. UGC 6151. a) U b) B c) V d) I e) 2.1 m Hα f) continuum subtracted Hα. There are quite a few faint H II regions in this irregular LSB spiral.

Figure 15. UGC 12695. a) U b) B c) V d) I e) Hα f) continuum subtracted Hα. Aside from the radial spokes (rather than spiral arms), this galaxy presents a rather chaotic appearance suggestive of recent coalescence. The colors of the H II knots imply rapid evolution and propagation of star formation (see text). The two brightest H II regions each have Hα luminosities requiring ionization by $\sim 10,000$ O stars.

Figure 16. F568–6 = Malin 2. a) U b) B c) V d) I e) 2.1 m Hα. An off band image adequate for continuum subtraction is not available. The B and I images were obtained on a different observing run than the U and V images, the latter being nonphotometric. However, it is useful to intercompare the emission regions visible in the U. The H II regions are predictably bright in this filter, but the oblong structure northwest of the bulge is not. The spectrum of this object is consistent with shock heating (McGaugh 1994b), so it may be a jet associated with the nuclear activity in this giant galaxy (Bothun et al. 1990).

Figure 17. UGC 6614. a) U b) B c) V d) I e) 2.1 m Hα. An off band image adequate for continuum subtraction is not available. The scale of these images is different from the others, being 3.1 rather than 2.4 arcminutes on a side. Spiral structure can be traced to the edge of the frame, and extends well beyond this.

Figure 18. F577–V1. a) U b) B c) V d) I.

Figure 19. F568–1. a) B b) I c) 2.1 m Hα d) continuum subtracted Hα.

Figure 20. F583–5. a) B b) I c) 2.1 m Hα d) continuum subtracted Hα.

Figure 21. F585–3. a) B b) I c) 2.1 m Hα d) continuum subtracted Hα.

Figure 22. UGC 5675. a) B b) I c) 2.1 m Hα d) continuum subtracted Hα.

Figure 23. UGC 9024. a) B b) I c) 2.1 m Hα d) continuum subtracted Hα.

Figure 24. IC 1613. Both images are in the B band. Because IC 1613 is in the local group, these CCD images had to be obtained with reducing optics (see text). a) This image is 15′ on a side with a pixel scale of 3.05″/pixel. The brighter stars are clearly resolved. b) This image is 51′ on a side with a pixel scale of 10.2″/pixel. This is 3.4 times larger than (a), and shows what IC 1613 would look like if unresolved — a typical LSB galaxy.