FISSION CYCLING IN A SUPERNOVA R-PROCESS

J. Beun
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202

G. C. McLaughlin
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202

R. Surman
Department of Physics, Union College, Schenectady, NY 12308

W. R. Hix
Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6374

ABSTRACT

Recent halo star abundance observations exhibit an important feature of consequence to the r-process: the presence of a main r-process between the second and third peaks which is consistent among halo stars. We explore fission cycling and steady-β flow as the driving mechanisms behind this feature. The presence of fission cycling during the r-process can account for nucleosynthesis yields between the second and third peaks, whereas the presence of steady-β flow can account for consistent r-process patterns, robust under small variations in astrophysical conditions. We employ the neutrino-driven wind of the core-collapse supernova to examine fission cycling and steady-β flow in the r-process. As the traditional neutrino-driven wind model does not produce the required very neutron-rich conditions for these mechanisms, we examine changes to the neutrino physics necessary for fission cycling to occur in the neutrino-driven wind environment, and we explore under what conditions steady-β flow is obtained.

Subject headings: nuclear reactions, nucleosynthesis, abundances — neutrinos

1. INTRODUCTION

The production of neutron-capture elements early in the universe is recorded in the abundances of Galactic halo stars. The two mechanisms responsible for generating most neutron-capture elements are the r-process and the s-process, with the r-process generating about half of the nuclides with $A \gtrsim 100$ (Burbridge et al. 1957; Cameron 1957; Meyer 1994). The observed r-process abundance distribution in metal-poor halo stars diverges above and below $Z \approx 58$ into two distinct patterns (McWilliam et al. 1993; Sneyden et al. 1996; McWilliam 1998; Burris et al. 2000; Westin et al. 2000; Cavarel et al. 2001; Hill et al. 2002; Cowan et al. 2002; Sneyden et al. 2003; Honda et al. 2004; Christlieb et al. 2004; Frebel et al. 2007). These patterns are defined by their consistency with the solar and halo star r-process abundances. The low r-process pattern ($Z \lesssim 58$) is not consistent with either the solar r-process abundances or among individual halo stars. However, the high abundance ($58 \lesssim Z \lesssim 76$) pattern, known as the main r-process, is very consistent among both the available halo star data and the solar system r-process abundances (Cowan et al. 2006; Arnould et al. 2007). We suggest the existence of a main r-process implies that a robust mechanism is producing elements from the second ($A \approx 130$) through the third ($A \approx 195$) r-process peak region (Beun et al. 2006; Martínez-Pinedo et al. 2006).

While there has been success in observing the abundance fingerprints of the r-process, determining the astrophysical production site(s) remains an open question (Meyer 1989; Meyer et al. 1992; Woosley et al. 1994; Thielemann et al. 2001; Rosswog et al. 2003; Goriely et al. 2003). A promising candidate site for the r-process is the neutrino-driven wind of the post-bounce core-collapse supernova, as the amount of r-process material ejected can account for the Galactic abundances (Woosley et al. 1994; Wanajo et al. 2001). Also, the frequency of the core-collapse supernova event is sufficiently rapid to produce r-process material early in the universe, in accordance with the r-process abundances observed in very metal-poor stars (Argast et al. 2004). However, traditional models of the neutrino-driven wind do not quite yield an r-process due to the low free neutron abundance at the r-process epoch (Hoffman et al. 1997; Thompson et al. 2001).

The r-process requires a neutron-to-seed ratio of $R \gtrsim 100$ for production of the heaviest, $A \approx 195$, peak (Meyer 1994). Uncertainties in the wind model may be responsible for this shortcoming as R is related to both the entropy, S, and the dynamical timescale, τ, and both are sensitive to the the proto-neutron star physics, see e.g. Qian (2003): an increase of S and a decrease of τ both lead to a higher initial neutron-to-seed ratio, R (Hoffman et al. 1997). These changes would likely require a compact and/or massive proto-neutron star (Qian & Woosley 1996; Thompson et al. 2001; Cardall & Fuller 1997; Otsuki et al. 2000; Wanajo et al. 2001). Additional studies have looked to a prompt supernova explosion mechanism for producing the neutron-rich...
conditions necessary for the r-process (Sumiyoshi et al. 2001; Wanao et al. 2003), although the physical realization of a prompt explosion scenario remains uncertain (Bruenn 1989a,b).

An avenue that has been suggested for generating a suitable neutron-to-seed ratio is a shocked wind solution. A supersonic wind expansion, reducing seed formation during the α-particle formation epoch, is followed by a deceleration at late times (Arcones et al. 2006; Thompson et al. 2001) which allows the remaining free neutrons to be fully reincorporated into the r-process. Recent r-process models in this supersonic outflow scenario can reproduce the solar system abundances, but require an artificially high neutron-to-proton ratio (Wanao 2007). Alternate wind solutions generated solely by magnetic fields or acoustic waves, e.g. (Burrows et al. 2007; Metzger et al. 2007), also do not appear to produce a high enough neutron-to-seed ratio for an r-process. Given these difficulties, alternative sites remain viable candidates, including neutron star mergers (Rosswog et al. 2003) and gamma ray bursts (Surman & McLaughlin 2004; Surman et al. 2006).

In the neutrino-driven wind environment, charged-current neutrino reactions on both nucleons and nuclei determine the neutron-to-seed ratio for the r-process. The relevant neutrino interactions on nucleons are

\[\nu_e + n \rightarrow p + e^{-}, \]
\[\bar{\nu}_e + p \rightarrow n + e^{+}. \]

For example, when electron anti-neutrino capture creating neutrons, Eqn. 1 is favored over electron neutrino capture creating protons, Eqn. 2 a higher neutron-to-proton ratio results. These reactions are sensitive to the hardness of the electron neutrino and anti-neutrino spectra, which we parameterize by the effective electron neutrino and anti-neutrino temperature, T_{ν_e} and $T_{\bar{\nu}_e}$, the electron neutrino and anti-neutrino luminosity, L_{ν_e} and $L_{\bar{\nu}_e}$, and the distance from the center of the proto-neutron star. An analytic form of these neutrino-nucleon capture rates is found in McLaughlin et al. (1996). Neutrino-nucleon reactions are responsible for the “alpha” effect, a critical detriment to the r-process in the presence of a high electron neutrino flux during the α-particle formation epoch (Fowler & Meyer 1995; McLaughlin et al. 1996; Meyer et al. 1998). There have been several physical modifications proposed to reduce the efficacy of the “alpha” effect; for instance, a fast outflow wind (Hoffman et al. 1995) or active-sterile neutrino oscillations (McLaughlin et al. 1998; Fetter et al. 2003; Beun et al. 2006) lead to a successful r-process. Both mechanisms reduce the capture of free neutrons by electron neutrinos during the α-particle formation epoch, allowing for a successful r-process.

When classifying the neutron richness of the r-process, we employ the electron fraction:

\[Y_e = \frac{N_p}{N_p + N_n}, \]

where N_n and N_p are the total neutron and proton number densities including both free nucleons and those in nuclei. The neutron-to-proton ratio may be taken as N_n/N_p. Environments with a low electron fraction have the high free neutron densities necessary to drive the rapid capture of neutrons onto seed nuclei, generating increasingly heavier nuclides by atomic weight, A. During the r-process, these nuclei capture neutrons, become increasingly beta unstable, and undergo β-decay to proceed to a larger atomic number, Z. After β-decay, the nuclide can again capture neutrons and the cycle repeats. As the supply of free neutrons dwindles, the nuclides decay back to β-stability. The union of rapid neutron capture and β-decay results in an abundance pattern distinguished by large peak features at $A \approx 80$, 130 and, 195, the first, second, and third peaks respectively. These peaks correspond to the closed shell nuclei with slow β-decay rates, creating “waiting points”, causing material to accumulate at these points.

Abundances of the second and third r-process peaks, and the intermediate nuclei between them, are defined by the nuclear properties of the r-process under conditions where both steady β-flow and fission cycling persist (Seeger et al. 1965). Fission cycling occurs for sufficiently neutron-rich conditions where the r-process extends to nuclides that can decay through fission channels. Fission impacts the r-process by terminating the path near the trans-uranium region. This termination results in material returning to the $A \approx 130$ peak (Panov et al. 2005). If neutron-rich conditions persist, these fission products effectively become new seed nuclei for the r-process, facilitating steady β-flow.

Once a sufficient supply of both neutrons and seed nuclei are available, steady-β flow correlates the r-process abundances to their inverse β-decay rates, see e.g. Cowan et al. (1991) for further discussion. The individual abundances in N along an isotopic chain are determined by (n,γ) (γ,n) equilibrium. These correlated abundances span two or more of the closed-shell regions, and when occurring between the second, $A \approx 130$, and third, $A \approx 195$, r-process peaks, are a set of isotopic chains between $58 \lesssim Z \lesssim 76$. The Z of the last chain is determined by fission. The first and last chains are linked as material leaving the last chain becomes the seed nuclides for the first chain through fission cycling. The rate change of the total abundance of an isotopic chain, $Y(Z)$, is the difference between material entering and exiting the chain by β-decay:

\[\dot{Y}(Z) = \sum_A Y(Z - 1, A) \lambda_\beta(Z - 1, A) \]
\[- \sum_A Y(Z) \lambda_\beta(Z, A). \]

Above, the individual abundances of an isotopic chain are $Y(Z,A)$, and the individual β-decay rates are $\lambda_\beta(Z,A)$. If both $(n,\gamma) \equiv (\gamma,n)$ equilibrium and re-population of the seed nuclei persist, the flow of material between isotopic chains reaches a steady-state configuration and the abundances and β-decay rates of each isotopic chain are inversely related as:

\[\sum_A Y(Z, A) \lambda_\beta(Z, A) = \text{const}. \]
the neutrino physics, independent of a physical generator, that lead to environments where fission cycling and steady-β flow mechanisms are present in the neutrino-driven wind. In section 2 we describe the details of our calculation in the neutrino-driven wind. In section 3 we describe how fission cycling influences the r-process. Section 4 describes how steady-β flow leads to a robust r-process pattern. In section 5 we detail how the neutrino spectrum influences the r-process environment. In section 6 we summarize the results.

2. DESCRIPTION OF NUCLEOSYNTHESIS MODELING

The neutrino-driven wind forms several seconds post-core bounce in the core-collapse supernova environment, and a one-dimensional wind model is often employed to describe the abundance composition of the isotropic outflow [Woosley et al. 1994; Duncan et al. 1986]. Two-dimensional wind models have been employed previously; however, these calculations do not self-consistently account for neutrino interactions, necessitating the use of an artificial Y_e [Fryer et al. 2000]. Here we follow the same wind parameterization as Beun et al. (2006). Unless otherwise noted, our calculations use an entropy per baryon of $s/k = 100$, an outflow timescale of $\tau = 0.3$ s, an initial density of $\rho_0 \approx 1.7 \times 10^9$ g/cm3, and an initial radius of $r_\odot \approx 0.1$, in units of 10^7 cm.

We track the abundance composition of a mass element, following ejection from the proton-neutron star, using three coupled reaction networks. The element is initially in Nuclear Statistical Equilibrium (NSE), and we follow it using a NSE network (McLaughlin et al. 1999) until α-particles begin to form, $T_\alpha \approx 10$, where T_α is in units of 10^9 K. Next, we track the mass element throughout α-particle formation with an intermediate network calculation (Hix & Thielemann 1999) that includes strong and electromagnetic rates tabulated by Rauscher & Thielemann (2000). We have added electron-capture, positron-capture, neutrino-capture, and anti-neutrino-capture rates from McLaughlin & Fuller (1995) to both networks. As material reaches the r-process epoch, $T_\beta \approx 2.5$, we use an r-process network (Surman & Engel 2001; Surman et al. 1997) that handles the relevant reactions of β-decay, β-delayed neutron emission, neutron capture, and photo-disintegration, and we include charged-current neutrino interactions. We use β-decay rates and neutron separations from Möller et al. (1997), neutron capture rates from Rauscher & Thielemann (2001), and neutrino-capture rates from McLaughlin & Fuller (1995). A complete description of the network calculation can be found in Beun et al. (2006).

3. FISSION CYCLING

Fission decay joins β-decay, neutron capture, and photo-dissociation as a primary reaction channel for r-process nuclides near the trans-uranium region, as previously mentioned. Nuclei that undergo fission provide a termination point for the r-process by preventing the production of heavier nuclides past this region. After the nuclide undergoes fission, it fragments into smaller nuclides that rejoin the r-process in the $A \approx 130$ region. This leads to fission cycling, with the fission daughter products acting as seed nuclei for the r-process.

A knowledge of both the location of fission and the resultant distribution of fission fragments are necessary for detailed calculations of the r-process in very neutron-rich environments. Treatments of fission in the r-process (Cowan et al. 1987; Rauscher et al. 1994; Cowan et al. 1999; Freiburghaus et al. 1999) have been limited to largely phenomenological methods since there are few measurements of the fission properties for neutron-rich heavy nuclides. This current study is concerned with the general effects of fission on the r-process. We employ β-delayed fission probabilities from Hilf et al. (1976) which are relevant to our mass model and astrophysical conditions. We indirectly include the effects of neutron-induced fission, as no complete and consistent set of neutron-induced rates is available, by employing a spontaneous fission region for $A \gtrsim 270$, where all of the nuclides instantaneously fission, following previous treatments described in Panov & Thielemann (2004). We implement fission by depopulating the parent fission nuclide into its appropriate daughter nuclides at the end of each timestep in our network code. The effects of neutrino-induced fission are small and are not included (Kolbe et al. 2004; Terasawa et al. 2004). We employ phenomenological fission distributions, following previous studies described in Panov & Thielemann (2004), to elucidate the primary effects fission cycling has on the r-process pattern. We also include fission-induced neutron emission when noted, implementing a piecewise linear fit of the values from Kelic et al. (2005). We treat the emitted neutrons as becoming immediately thermalized with the surrounding medium.

As the fission material is re-incorporated in the $A \approx 130$ peak, this material experiences “waiting points” and accumulates here as β-decay is necessary for material to move from one isotopic (Z) chain to the next (Z + 1) chain. The material is initially compacted together in atomic mass space, A, and then disperses through β-decay. Note that some material remains in each peak region during the fission cycling process as β-decay does not fully deplete each peak.

To examine the accumulation of material during this β-decay dispersion process, we compare abundances in the second and third r-process peaks,

$$R_{\text{peak}} = \frac{\sum_{A=190}^{200} Y(A)}{\sum_{A=125}^{135} Y(A)}.$$ \hspace{1cm} (6)

Figure 4 demonstrates R_{peak} for a range of Y_e. The Y_e is from the start of the r-process epoch. Each point represents an individual nucleosynthesis outcome resulting from a unique choice of electron neutrino and anti-neutrino luminosities in the neutrino-driven wind. The left-most portion ($Y_e \gtrsim 0.3$) of Fig. 4 where R_{peak} is zero, denotes where final r-process abundances extend from the second peak and up to the rare earth region. The first bump, at $Y_e \approx 0.3$, denotes patterns where the heaviest r-process nuclides occupy the third peak and have partially left the second peak. Once past this bump, the heaviest r-process nuclides are beyond the third peak and have reached the fission region, and re-incorporate into the second peak.

The behavior of fission under very neutron-rich condi-
The equilibrium value of R_{peak} (Eqn. 5) resulting from a symmetric fission distribution for two different outflow timescales, $\tau = 0.1$ s (circles) and $\tau = 0.3$ s (squares), is shown for a variety of electron fractions, Y_e. For very neutron-rich conditions, $Y_e \lesssim 0.1$, a consistent r-process pattern forms between the second, ~ 130, and third, $A \approx 195$, peak region. Fission cycling during the r-process links the second and third peaks, as material that captures out of the third peak reaches the fission regime. The resulting fission daughter products then rejoin the r-process at the second peak.

The equilibrium R_{peak}, due to fission cycling, appears as the straight region of the curve in Fig. 1 for $Y_e \lesssim 0.1$, and does not change significantly for variations in Y_e. This is depicted in Fig. 1 as the equilibrium peak ratio is not strongly affected by choice of the outflow timescale. Here, this stability is demonstrated for the wind outflow timescales of $\tau = 0.1$ s and $\tau = 0.3$ s.

The equilibrium value of R_{peak} is sensitive to properties of the fission model. In particular, it is sensitive to the specific location within the second peak to which fission returns material, as the presence of waiting points here dictate the flow and accumulation of material. Material deposited at or below closed-shell nuclei flow to a waiting point, and remain in this peak region longer than material deposited above the closed-shell nuclei. The accumulation of material in the $A \approx 130$ peak leads to smaller values of R_{peak}. Material arriving above the closed-shell bypasses the waiting point and continues flowing to heavier regions, leading to larger values of R_{peak}.

In Fig. 2 we show specific examples of the consequences to R_{peak} resulting from different fission daughter product distributions. We consider cases of fission daughter product distributions with both symmetric and asymmetric modes. Symmetric distributions have daughter nuclides that are close in both charge, Z, and mass, A. These distributions deposit more material at or below the closed-shell nuclides and have a smaller equilibrium R_{peak}, shown as circles in Fig. 2. Asymmetric distributions have daughter product distributions whose charge and mass are separated proportionally by a scaling factor, resulting in one daughter being larger in both A and Z than the other. This leads to more material being deposited above the closed-shell nuclides and a higher equilibrium R_{peak}, shown as diamonds in Fig. 2. When neutrons are emitted during the course of fission, fewer daughter products lie above the close-shell nuclei, lowering the equilibrium R_{peak} from the asymmetric case, shown as squares in Fig. 2. Detailed knowledge of both the fission location and daughter product distributions is required to fully model the r-process abundances in very neutron-rich environments.

The change in abundance of the various r-process peaks during fission cycling, as depicted in Fig. 1 and 2, can be phenomenologically described by the effective rate of material entering and exiting the major peak regions. The effect of fission cycling on the peak abundances is modeled by approximating the flow of fission material below the peak, symmetric fission (circles), have a lower equilibrium R_{peak} and cycle less material through the peak region.

Fission-induced neutron emission deposits additional material below the closed-shell nuclides, lowering R_{peak}, and is shown above for asymmetric fission (squares).

$$\dot{Y}_{130} = -\Gamma_{130}(t)Y_{130} + f\Gamma_{195}(t)Y_{195} \quad (8)$$

$$\dot{Y}_{\text{Earth}} = -\Gamma_{\text{Earth}}(t)Y_{\text{Earth}} + \Gamma_{130}(t)Y_{130} \quad (9)$$
+ (2 - f)\Gamma_{195}(t)Y_{195}
\dot{Y}_{195} = -\Gamma_{195}(t)Y_{195} + \Gamma_{Earth}(t)Y_{Earth} \tag{10}
\]

where Y is the abundance of each peak and Γ is the rate of decay leaving a region, with the subscripts corresponding to the $A \approx 130$, rare earth, and $A \approx 195$ peaks. Here f is the distribution of fission daughter products between the $A \approx 130$ and rare earth regions. For purposes of illustrating the toy model, we take all fission products as arriving to the $A \approx 130$ region, $f = 2$. The equilibrium (steady β-flow) behavior of fission cycling is depicted in the far right-hand region of Fig. 1. For discussion of solutions for long-time fission cycling see Seeger et al. 1965.

The transient region prior to steady β-flow equilibrium is dependent on the flow (decay rate) of material leaving each peak region, Γ_{130}, Γ_{Earth}, and Γ_{195}. The effective flow out of a region is determined by the β-decay rate of each isotopic chain, as material is in $(n, \gamma) \Rightarrow (\gamma, n)$ equilibrium during this fission cycling phase. Additionally, this outflow is determined by the population of nuclides within a peak, since the individual β-decay rate changes from nuclide to nuclide. As a consequence, various nuclides are populated while material is flowing through each peak, leading to changes in the effective flow out of each peak. For example, the effective flow rate in the $A \approx 130$ peak slows as the closed shell nuclides, with slow β-decay rates, are populated. We employ our phenomenological model to highlight the change in the effective flow rate in Fig. 3 for the $A \approx 130$ peak region with a $Y_e = 0.05$ at the start of the r-process. Here, the fluctuation in the decay rates of a peak corresponds to the changing of individual nuclide abundances. The movement of material within a peak is demonstrated by the corresponding change of the weighted atomic number, Z_r. As the conditions in Fig. 3 are very neutron-rich, sufficient for steady β-flow, the right-most portion depicts a straight line for both the effective flow rate and Z, since steady β-flow leads to isotopic chain abundances determined by the β-decay rate of each chain.

4. STEADY BETA FLOW

As discussed in Sec. 1, the abundances of the r-process become fully determined under conditions where both fission cycling and steady β-flow occur. We now examine consequences to the final r-process abundances resulting from steady β-flow. In Fig. 4, the steady-β flow condition, Eqn. 5 is tested and fulfilled for very neutron-rich conditions in the neutrino-driven wind, appearing as a straight line between the second and third peaks of the r-process, the main r-process region. For less neutron-rich conditions, steady-β flow does not obtain as there are not enough free neutrons to sustain re-population of the seed nuclei by fission cycling.

A set of typical abundances resulting from steady-β flow, occurring for very neutron-rich conditions in the neutrino-driven wind, are depicted in Fig. 5. The individual Y_e’s are produced by a unique choice of initial neutrino and anti-neutrino luminosities, in the same manner as Fig. 1. Our abundance patterns reproduce the general peak structure of the main r-process between the second and third peaks and is robust over a wide range of conditions in the neutrino-driven wind, directly resulting from the pairing of both fission cycling and steady β-flow. Improvement to a nuclide by nuclide abundance com-

![Fig. 3](image-url) — Under very neutron-rich conditions the effective decay rate of the peaks oscillate until equilibrating at the steady β-flow rate. The abundance weighted atomic number, $Z = \sum_{Z=45}^{60} Z \frac{Y(Z)}{\sum_{Z=45}^{60} Y(Z)}$, (dashes) is plotted with the abundance weighted β-decay rate, $\Gamma = \sum_{Z=45}^{60} \Gamma_\beta(Z) \frac{Y(Z)}{\sum_{Z=45}^{60} Y(Z)}$, of an isotopic chain (solid) for the second, $A \approx 130$, peak region, versus time, t. The oscillation of the decay rates in the peak regions are due to the changing population of different nuclides during the course of fission cycling. To elucidate abundance changes between isotopic chains, the data above results from our phenomenological model, Eqn. 8, under conditions with an $Y_e = 0.05$ at the start of the r-process epoch ($T_b \approx 2.5$).

![Fig. 4](image-url) — We plot the steady β-flow condition, $\sum_{Z} Y(Z,A)\lambda_\beta(Z,A)$, versus atomic number, Z, for two different Y_e‘s in the neutrino-driven wind. For the case with an $Y_e = 0.1$ at the start of the r-process epoch, conditions are sufficiently neutron-rich for steady β-flow, marked by a straight line. The case with $Y_e = 0.3$ is not neutron-rich enough for steady β-flow to obtain.
5. INFLUENCE OF NEUTRINOS ON THE ELECTRON FRACTION

After neutrinos extricate material from the surface of the proto-neutron star, the newly released material is composed entirely of free nucleons. Although we dynamically calculate the Y_e in our models, it is pedagogically useful to examine the electron fraction through the approximation of weak equilibrium. Since neutrino and anti-neutrino rates dominate electron and positron capture, the initial weak equilibrium $Y_e^{(0)}$ is

$$Y_e^{(0)} \approx \frac{1}{1 + \lambda_{\nu_e}/\lambda_{\bar{\nu}_e}}. \quad (11)$$

The rates of electron neutrino capture on neutrons and electron anti-neutrino capture on protons are λ_{ν_e} and $\lambda_{\bar{\nu}_e}$ respectively. An increase in the electron anti-neutrino capture rate, achievable by either boosting the electron anti-neutrino flux or hardening the electron anti-neutrino spectra, will tend to decrease Y_e, while an increase in the neutrino capture rate will tend to increase Y_e.

Farther away from the proto-neutron star, as material in the expansion continues to cool, α-particles form and contribute to the weak equilibrium Y_e approximation,

$$Y_e \approx Y_e^{(0)} + \left(\frac{1}{2} - Y_e^{(0)} \right) X_\alpha. \quad (12)$$

Here, X_α represents the mass fraction of α-particles.

The formation of α-particles is enhanced in the presence of a strong electron neutrino flux, as electron neutrinos capturing on free neutrons create new effective proton seeds for α-particle formation. These effective seeds quickly capture additional neutrons which continues to drive the Y_e to $1/2$. The depletion of neutrons from both neutrino capture and α-particle formation is known as the alpha effect, and this alpha effect must be removed for neutron-rich conditions to obtain for the r-process.

We look to neutrino luminosities and spectral properties for the removal of the alpha effect. Since weak equilibrium does not fully obtain in the neutrino-driven wind, we use the following procedure to calculate Y_e instead of the weak equilibrium approximation described above. Starting from a prospective set of neutrino effective temperatures and luminosities, we adjust the initial Fermi-Dirac neutrino spectrum. Then we self-consistently account for both the evolution of the updated neutrino spectrum in the neutrino-driven wind and the relevant changes to the abundance.

In Fig. 6, the luminosity of the electron neutrinos is 10^{51} ergs s$^{-1}$ and the electron anti-neutrino luminosities are significantly reduced compared to traditional r-process models, electron capture and positron capture become...
The neutrino luminosities are \(L_\nu \) where \(Y_e \) and leads to neutron-rich conditions. These early positron pairs are important, as they are here, these rates \(\alpha \)"en"'s effect equally binds protons and neutrons into \(\alpha \) particles which drives the electron fraction to \(Y_e \approx 1/2 \) and prevents an \(r \)-process. Regions of \(Y_e \) before \(\alpha \)-particle formation \((T_\nu \approx 9.4) \). Fig. 6(a) initially appear favorable to the \(r \)-process; however, the \(\alpha \)"en"s effect has pushed \(Y_e \) near 1/2 by the start of the \(r \)-process epoch \((T_\nu \approx 2.5) \), Fig. 6(b). The effective electron neutrino and anti-neutrino temperatures, \(T_\nu \) and \(T_{\bar{\nu}} \) are in units of MeV. The electron neutrino luminosity is \(L_\nu = 1 \times 10^{51} \) ergs \(s^{-1} \) and the electron anti-neutrino luminosity is \(L_{\bar{\nu}} = 1.3 \times 10^{51} \) ergs \(s^{-1} \). Important and influence the electron fraction, \(Y_e \approx 1/[1 + (\lambda_\nu + \lambda_\bar{\nu})/(\lambda_\nu + \lambda_\bar{\nu})] \), (13)

where \(\lambda_\nu \) and \(\lambda_\bar{\nu} \) are the electron and positron rates respectively.\(\text{McLaughlin et al. 1996} \). When electron-positron pairs are important, as they are here, these rates tend to increase the \(Y_e \) and begin influencing the \(Y_e \) when the neutrino luminosities are \(L_\nu, L_{\bar{\nu}} \lesssim 10^{50} \) ergs \(s^{-1} \) and \(T_\nu, T_{\bar{\nu}} \lesssim 5 \times 10^{50} \) ergs \(s^{-1} \). For wind solutions where neutrinos are less prevalent, a weak equilibrium \(Y_e \) dictated by electron and positron capture would not be sufficiently neutron-rich for the \(r \)-process.

For reductions in the electron neutrino luminosity relative to the traditional wind model, but not in the electron anti-neutrino luminosity, a very large variety of \(Y_e \)'s result, \(0.1 \lesssim Y_e \lesssim 0.8 \), as shown in Fig. 7(a). Similar to the case with effective neutrino temperatures, lowering the electron neutrino luminosity, \(L_\nu \), decreases the \(Y_e \) and leads to neutron-rich conditions. These early \(Y_e \)'s from the changed rates in Eqn. 1 and Eqn. 2 are again consistent with the weak equilibrium values. For all of Fig. 7(a) we take the effective electron neutrino temperature to be \(T_{\nu e} = 3.5 \) MeV and the electron anti-neutrino temperature as \(T_{\bar{\nu}} = 4.5 \) MeV.

Near the \(r \)-process epoch, \(T_\nu \approx 2.5 \), changes to the neutrino luminosities continue to produce a large spread of \(Y_e \)’s, as depicted in Fig. 7(b). A successful \(r \)-process can occur for reductions to the electron neutrino luminosity of \(L_\nu \lesssim 2.3 \times 10^{50} \) ergs \(s^{-1} \). For these decreased electron neutrino luminosities, the depletion of free neutrons by the alpha effect is diminished as fewer new protons are made available through Eqn. 1. The neutrino luminosities that lead to a successful \(r \)-process are shown by all three shaded regions in Fig. 8.

We note that neutron-rich conditions beyond the minimum required to produce an \(r \)-process occur in our study of the neutrino luminosities. In fact, order of magnitude reductions of \(L_\nu \) lead to conditions where fission cycling can occur in the \(r \)-process. For a \(\tau = 0.3 \) s wind
timescale, $Y_e \lesssim 0.17$ are sufficient to lead to fission cycling, depicted in the medium and dark blue regions of Fig. 3. Conditions even more neutron-rich, $Y_e \lesssim 0.1$, lead to a steady flow solution within fission cycling, as described in Sec. 2, reproducing the general features of the halo star data and providing an intriguing solution for the realization of a main r-process. This scenario is shown in Fig. 8 as the dark blue region. The necessary large reductions to the $L_{\nu e}$ could be a consequence of either active-sterile neutrino oscillations (Beun et al. 2006) or other new physics.

6. CONCLUSIONS

In the neutrino-driven wind, fission cycling during r-process nucleosynthesis occurs for low electron fractions, and when combined with steady β-flow, reproduces the basic features of the main r-process. During fission cycling, material effectively captures out of the third peak and returns to the second peak by fission processes, linking the second and third peaks, and creating a main r-process. For $0.1 \lesssim Y_e \lesssim 0.3$, these abundance patterns retain some dependence on the initial Y_e.

At even lower electron fractions, $Y_e \lesssim 0.1$, steady-β flow occurs during the r-process and the abundance patterns produced are consistent with small changes to the astrophysical conditions. Steady-β flow is a consequence of the presence of both fission cycling and $(n, \gamma) \Rightarrow (\gamma, n)$ equilibrium. Fission cycling creates seed nuclei at the second peak, and $(n, \gamma) \Rightarrow (\gamma, n)$ equilibrium determines the r-process path. After $(n, \gamma) \Rightarrow (\gamma, n)$ equilibrium fixes the path, β-decay between the isotopic chains equilibrate as the first and last chains are connected by fission. This produces an abundance pattern which is not sensitive to the exact initial Y_e. The steady-β flow abundances strongly depend on the details of fission.

As the final r-process abundance pattern is very sensitive to the details of fission, see Fig. 2 it is paramount to improve our understanding of which heavy nuclides participate in fission during the r-process and to develop a more precise determination of the daughter products that result. The presence of fission in the r-process may provide a termination point for the r-process, furthering the understanding of which heavy nuclides play a role in the r-process. Under neutron-rich conditions, the distribution of fission daughter products influences the shape of the r-process. If the r-process occurs in very neutron-rich environments, the fission daughter product distribution also determines the starting isotopic chain of steady-β flow, impacting the region where steady-β flow abundances form and may be important to the understanding of the formation of a main r-process.

Low Y_e's at the r-process epoch are not found in the traditional neutrino-driven wind. Before the onset of alpha particle formation, a large range of electron neutrino and anti-neutrino effective temperatures and luminosities would yield low Y_e environments. The electron fraction is driven to $Y_e \approx 1/2$ as alpha particle formation binds protons and neutrons in equal numbers. Changes to the effective temperatures in the ranges of 0.5 MeV $< T_{\nu} < 4$ MeV for electron neutrinos and 3 MeV $< T_{\bar{\nu}} < 7$ MeV for electron anti-neutrinos result in environments with an “alpha” effect and do not yield a main r-process. Given the physics discussed in this paper, realization of the main r-process in a conventional neutrino-driven wind is a challenge. However, it can occur with a reduction in the electron neutrino capture rate while the electron anti-neutrino capture rate remains unchanged. Future studies on the details of neutrinos, particularly in the post-core bounce supernova environment, as well as physics beyond the standard model, would benefit the understanding of an r-process in the neutrino-driven wind.

This work was partially supported by the Department of Energy under contracts DE-FG05-05ER41398 (RS) and DE-FG02-02ER41216 (GCM). This work was partially supported by the United States National Science Foundation under contract PHY-0244783 (WRH). Oak Ridge National Laboratory (WRH) is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-000R22725. We acknowledge useful discussions with Gabriel Martine-Pinedo and Fredrich-Karl Thielemann.

REFERENCES

Arcones, A., Janka, H.-T., & Scheck, L. 2006
Ar gast, D., Samland, M., Thielemann, F. K., & Qian, Y. Z. 2004, ASTRON.ASTROPHYS., 416, 997
Arnould, M., Goriely, S., & Takahashi, K. 2007, ArXiv e-prints, 705
Beun, J., McLaughlin, G. C., Surman, R., & Hix, W. R. 2006, Phys. Rev. D, 73, 093007
Beun, J., McLaughlin, G. C., Surman, R., & Hix, W. R. 2006, PoS, NIC-IX, 140
Brenn, S. W. 1989a, ApJ, 340, 955
—. 1989b, ApJ, 341, 385
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. 1957, Reviews of Modern Physics, 29, 547
Burris, D. L., Pilachowski, C. A., Armandroff, T. E., Sneden, C., Cowan, J. J., & Hix, W. R. 2000, ApJ, 544, 302

![Fig. 8.](image-url)
