Direct photon-hadron correlation measurement and a way towards photon-triggered jets at RHIC

Nihar Ranjan Sahoo (For the STAR Collaboration)
Cyclotron Institute, Texas A&M University, USA
E-mail: nihar@rcf.rhic.bnl.gov

Abstract. We report the results of γ_{dir}- and π^0–hadron azimuthal correlations as a measure of the away-side jet-like correlated yields in central Au+Au and p+p collisions at $\sqrt{s_{NN}} = 200$ GeV in the STAR experiment. The charged-hadron per-trigger yields at mid-rapidity with respect to high-p_T γ_{dir} and π^0 in central Au+Au collisions are compared with p+p collisions. Within uncertainties, the same $z_T(p_{\text{assoc}}^T/p_{\text{trig}}^T)$ dependence of the suppression is observed for γ_{dir}- and π^0- triggers. The results are compared with energy-loss model predictions. The γ–jet measurements can provide further understanding on the redistribution of in-medium energy loss. Ongoing γ–jet studies in the STAR experiment are also discussed.

1. Introduction
The azimuthal correlation of charged hadrons with respect to a direct-photon (γ_{dir}) trigger was proposed as a promising probe to study the mechanisms of parton energy loss [1]. Since a γ_{dir}-trigger escapes without interacting with the medium, it approximates the initial energy of the recoil parton, which is subject to medium modifications. The recoil parton of a γ_{dir} trigger is a quark in leading-order QCD processes, whereas that of a high-p_T π^0 trigger can be a quark or a gluon. In addition, a coincidence measurement of π^0 is biased to have been produced near the surface of the medium, while that of a γ_{dir} does not suffer from the same bias [2, 3]. Hence the comparison between the suppression of per-trigger away-side associated yields of γ_{dir} to those of π^0 triggers should exhibit differences due to both the color-factor dependence and the path-length dependence of energy loss.

2. STAR detectors and experimental techniques
The data were taken by the Solenoidal Tracker at RHIC (STAR) experiment in 2011 and 2009 for Au+Au and p+p collisions at $\sqrt{s_{NN}} = 200$ GeV, respectively. The Time Projection Chamber (TPC) is the main charged-particle tracking detector providing track information for the charged hadrons with $|\eta| < 1.0$ [4]. Events having a cluster with transverse energy $E_T > 8$ GeV, with $|\eta| \leq 0.9$, are selected for this analysis in the Barrel Electromagnetic Calorimeter (BEMC) [5]. The associated charged particles are selected in range 1.2 GeV/$c < p_{\text{assoc}}^T < 20$ GeV/c. In order to distinguish a π^0, which at high p_T predominately decays to two photons with a small opening angle, from a single-photon cluster, a transverse shower-shape analysis is performed. A detailed discussion about the transverse shower profile (TSP) method and experimental techniques used in this analysis can be found in Ref. [6, 7].
Figure 1. (Color online.) Left panel: The z_T dependence of π^0-hadron yield for Au+Au at 0-12% centrality (filled symbols) and $p+p$ (open symbols) collisions at $\sqrt{s_{NN}} = 200$ GeV. Right panel: The z_T dependence of γ_{dir}-hadron yield for Au+Au at 0-12% centrality (filled diamonds) and $p+p$ (open diamonds) collisions [6]. Vertical lines represent statistical errors, and the vertical extent of the boxes represents systematic uncertainties.

3. Results: γ_{dir} and π^0-hadron azimuthal correlation
The integrated away-side and near-side charged-hadron yields per π^0 trigger, $D(z_T)$, are plotted as a function of z_T, both for Au+Au (0-12% centrality) and $p+p$ collisions, in the left panel of Fig. 1. The away-side $D(z_T)$ for γ_{dir} triggers as a function of z_T for central Au+Au and minimum-bias $p+p$ collisions is shown in the right panel of Fig 1. Yields of the away-side associated charged hadrons are suppressed, in Au+Au relative to $p+p$, at all z_T except in the low z_T region both for γ_{dir} and π^0 trigger. On the other hand, no suppression is observed on the near-side in Au+Au, relative to $p+p$ collisions, due to the surface bias imposed by triggering on a high-p_T π^0. In order to quantify the medium modification for γ_{dir} and π^0-triggered recoil jet production as a function of z_T, the ratio defined as $I_{AA}^{\gamma_{\text{dir}}} = \frac{D(z_T)^{\gamma_{\text{dir}},\text{Au+Au}}}{D(z_T)^{\gamma_{\text{dir}},p+p}}$, of the per-trigger conditional yields in Au+Au to those in $p+p$ collisions is calculated.

Figure 2. (Color online.) The $I_{AA}^{\gamma_{\text{dir}}}$ for γ_{dir} (red squares) and $I_{AA}^{\pi^0}$ for π^0 (blue circles) triggers are plotted as a function of z_T. The points for $I_{AA}^{\gamma_{\text{dir}}}$ are shifted by +0.03 in z_T for visibility. The vertical line and shaded boxes represent statistical and systematic errors, respectively [6]. The curves represent theoretical model predictions [3, 8, 9, 10].
Figure 3. (Color online.) The values of $I_{AA}^{\gamma_{\text{dir}}}$ are plotted as a function of p_T^{trig} (left panel) and p_T^{assoc} (right panel) [6]. The vertical line and shaded boxes represent statistical and systematic errors, respectively. The curves represent theoretical model predictions [3, 8, 9].

Figure 2 shows the away-side medium modification factor for π^0 triggers ($I_{AA}^{\pi^0}$) and γ_{dir} triggers ($I_{AA}^{\gamma_{\text{dir}}}$), as a function of z_T. $I_{AA}^{\pi^0}$ and $I_{AA}^{\gamma_{\text{dir}}}$ show similar suppression within uncertainties. At low z_T ($0.1 < z_T < 0.2$), both $I_{AA}^{\pi^0}$ and $I_{AA}^{\gamma_{\text{dir}}}$ show an indication of less suppression than at higher z_T. This observation is not significant in the z_T-dependence of I_{AA} because the uncertainties in the lowest z_T bin are large. However, when I_{AA} is plotted vs. p_T^{assoc} (in Figure 3), the conclusion is supported with somewhat more significance. At high z_T, both $I_{AA}^{\pi^0}$ and $I_{AA}^{\gamma_{\text{dir}}}$ show a factor $\sim 3 - 5$ suppression. The ZOWW calculation also predicts $I_{AA}^{\gamma_{\text{dir}}}$ as a function of p_T^{trig} to be approximately flat in this range [3]. The YaJEM model predicts that at low $z_T = 0.2$, $I_{AA}^{\gamma_{\text{dir}}} = 1$ and rises above unity even at lower z_T, although at lower triggered p_T range 9-12 GeV/c.

The values of $I_{AA}^{\gamma_{\text{dir}}}$ are plotted as function of p_T^{assoc} in Fig. 3. It shows that the low-p_T^{assoc} hadrons on the away-side are not as suppressed as those at high p_T^{assoc}. Both model predictions shown [3, 8], which do not include the redistribution of lost energy, are in agreement with the data. $I_{AA}^{\gamma_{\text{dir}}}$ shows no sensitivity as a function of p_T^{trig}, for
0.3 < z_T < 0.4, indicating that away-side parton energy loss is not sensitive to the initial energy of the parton in the range of 8-20 GeV/c.

4. Simulation study on γ + jet

We have performed a feasibility study for γ + jet measurement in the kinematic acceptance for the STAR detector system using PYTHIA simulations. The γ-triggered events are generated within 15 < p_T^{trig} < 20 GeV/c and all tracks are selected within 0.2 < p_T^{track} < 20 GeV/c. Recoil full (including all charged and neutral particles) jets are reconstructed using the anti-k_T algorithm [11, 12] for a jet resolution parameter of R = 0.8. Recoil jets are selected within |Δφ − π| < π/4, where |Δφ| is the difference between triggered γ_{dir} and reconstructed jet azimuth. The uncorrelated reconstructed full jets (UE) are selected within 0.2 < p_T^{track} < 20 GeV/c.

Recoil full (including all charged and neutral particles) jets are reconstructed using the anti-k_T algorithm [11, 12] for a jet resolution parameter of R = 0.8. Recoil jets are selected within |Δφ − π| < π/4, where |Δφ| is the difference between triggered γ_{dir} and reconstructed jet azimuth. The uncorrelated reconstructed full jets (UE) are selected within 0.2 < p_T^{track} < 20 GeV/c. The estimated background energy density (ρ) scaled by jet area (A) is subtracted from each reconstructed jet’s raw transverse momentum, and the corrected value, p_T^{Rec,jet} − ρA, is shown in Fig. 4. Similar analyses with respect to hadronic trigger objects are discussed in Refs [13, 14]. The triggered recoil jet peak, within 15 < p_T^{Rec,jet} − ρA < 20 GeV/c, can be seen around triggered p_T^{trig} of γ. In the STAR experiment, similar measurements for charged and full jets reconstruction using TPC and BEMC detectors is underway within wider acceptance in |η| < 1 and full azimuth.

5. Summary and outlook

Within experimental uncertainty, both I^{0}_{AA} and I^{γ_{dir}}_{AA} show similar levels of suppression with the expected differences due to the color-factor effect and the path-length dependence of in-medium energy loss not manifesting themselves. At high z_T(p_{assoc}^{T}), I^{γ_{dir}}_{AA} shows high suppression than at low z_T(p_{assoc}^{T}). There is no trigger-energy dependence observed in the suppression of γ_{dir}-triggered yields, suggesting little dependence for energy loss on the initial parton energy, in the range of p_T^{trig} = 8-20 GeV/c. A semi-inclusive study of jets correlated with high-p_T γ is underway in the STAR experiment to explore more on the jet energy loss in the medium created at RHIC.

References

[1] X.-N. Wang, Z. Huang, and I. Sarcevic, Phys. Rev. Lett. 77, 231 (1996).
[2] T. Renk, Phys. Rev. C 74 (2006) 034906.
[3] H. Zhang, J.F. Owens, E. Wang, X.-N. Wang, Phys. Rev. Lett. 103 (2009) 032302.
[4] M. Anderson et al., Nucl. Instrum. Methods A 499 (2003) 659.
[5] M. Beddo et al., Nucl. Instrum. Methods A 499 (2003) 725.
[6] L. Adamczyk et al. (STAR Collaboration), Phys. Lett. B 760 (2016) 689.
[7] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 82, 034909 (2010).
[8] G.-Y. Qin, J. Ruppert, C. Gale, S. Jeon, G.D. Moore, Phys. Rev. C 80 (2009) 054909.
[9] X.-F. Chen, C. Greiner, E. Wang, X.-N. Wang, Z. Xu, Phys. Rev. C 81 (2010) 064908.
[10] T. Renk, Phys. Rev. C 80, 014901 (2009).
[11] M. Cacciari, G. P. Salam, G. Soyez, JHEP 04, 063 (2008).
[12] M. Cacciari, G. P. Salam, G. Soyez, JHEP 04, 005 (2008).
[13] J. Adam, et al. (ALICE Collaboration), JHEP 09 (2015) 170.
[14] P. M. Jacobs and A. Schmah (for the STAR Collaboration), arXiv:1512.08784 [nucl-ex].