Sp1 Transactivation of the TCL1 Oncogene*

Received for publication, July 17, 2002, and in revised form, November 1, 2002
Published, JBC Papers in Press, November 5, 2002, DOI 10.1074/jbc.M207166200

Samuel W. French‡, Cindy S. Malone§, Rhine R. Shen‡, Mathilde Renard‡, Sarah E. Henson§,
Maurine D. Miner‡, Randolph Wall§§, and Michael A. Teitell¶¶‡‡‡‡

From the ‡Department of Pathology and Laboratory Medicine, the §Department of Microbiology, Immunology,
and Molecular Genetics, ¶Molecular Biology Institute, ¶¶Jonsson Comprehensive Cancer Center,
Department of Pediatrics and *AIDS Institute, David Geffen School of Medicine at UCLA,
Center for the Health Sciences, Los Angeles, California 90095-1732

Cis-regions and trans-factors controlling TCL1 oncogene expression are not known. We identified the functional TCL1 promoter by mapping four transcriptional start sites 24–30 bp downstream of a TATA box. A 424-bp fragment upstream of the major start site showed robust promoter activity comparable with SV40 in both TCL1 expressing and non-expressing cell lines. Additional constructs spanning 10 kb upstream and 20 kb downstream of the start site showed only modest increases in reporter activity indicating that TCL1 expression is primarily controlled by the promoter. Ten putative Sp1-binding sites were identified within 300 bp of the start site, and three of these specifically bound Sp1. A dose-dependent transactivation of the TCL1 promoter with Sp1 addition in Sp1-negative Drosophila SL2 cells was observed, and mutation of the three identified Sp1-binding sites significantly repressed reporter gene expression in 293T cells, confirming a key role for Sp1 in activating the TCL1 promoter in vivo. In TCL1 silent cell lines, CpG DNA methylation was rarely observed at functional Sp1 sites, and methylation of a previously reported 267 restriction site was associated with dense CpG methylation rather than endogenous TCL1 gene silencing. Together, these results indicate that Sp1 mediates transactivation of the TCL1 core promoter and that TCL1 gene silencing is not dependent on mechanisms involving Sp1 and NotI site methylation.

The T-cell leukemia-1 (TCL1) oncogene is expressed mainly but not exclusively at specific stages of lymphocyte development in humans. In normal T-lineage cells, TCL1 expression is restricted to CD3/CD4/CD8 triple-negative immature thymocytes (1). Interestingly, mature peripheral T-cell expansions and clonal malignancies may aberrantly express TCL1 due to characteristic chromosomal translocations and inversions at 14q32.1 (reviewed in Ref. 2). These chromosomal rearrangements reposition T-cell receptor α/β- or β-chain control sequences next to the TCL1 coding region leading to T-cell-specific dysregulation. A tumorigenic role for this aberrant expression has been confirmed from transgenic studies in which TCL1 dysregulation targeted to T-cells mainly in the thymus cause mice to exclusively develop mature peripheral T-cell malignancies (3).

In normal B-lineage cells, TCL1 is expressed from early pro-B bone marrow precursors through mature peripheral B-cell stages of development (1, 4, 5). Terminally differentiated B-cells, such as non-proliferating memory or plasma cells, lack TCL1 expression. TCL1 gene silencing with terminal B-cell maturation has been shown to correlate with the conversion of TCL1-positive B-cells to plasmacytoid cells by growth on CD40L-expressing fibroblasts supplemented with interleukin-4 and interleukin-10 (5). Interestingly, recent studies (4–7) have also linked aberrant TCL1 expression to specific classes of mature B-cell lymphoma. Approximately 30% of diffuse large B-cell lymphomas (DLBCL)4 and about 75% of AIDS-related DLBCL abnormally express TCL1 (4, 5). Evidence that this dysregulation promotes B-cell malignancies has been obtained from transgenic mouse studies in which TCL1 is aberrantly expressed only in B-cells or in both T- and B-cells (8, 13). In this situation, dysregulation strongly favors the development of peripheral B-cell tumors versus T-cell malignancies. The mechanism for induction of both T- and B-cell malignancies is thought to rely on inappropriately strong co-activation of the serine-threonine kinase Akt by excessive TCL1 oncoprotein levels (9–14).

In contrast to known chromosomal rearrangements that cause aberrant expression in mature T-cell tumors, little is known about the mechanism(s) regulating TCL1 expression during development or supporting its aberrant expression in mature B-cell malignancies. The TCL1 promoter and other potential regulatory regions have not been characterized, and there have been no reports of 14q32.1 rearrangements with associated dysregulation of TCL1 for B-cell malignancies, including TCL1-expressing Burkitt lymphomas (BL), B-chronic lymphocytic leukemias (β-CLL), or DLBCL (15). Initial studies by Yuille et al. (15) reported a correlation between the methylation status of two CpG sites within a single NotI site in the putative TCL1 promoter and TCL1 expression levels. Also, treatment of TCL1 non-expressing Jurkat and CEM T-cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-AC) was reported to activate TCL1 expression, suggesting a potential role for epigenetic modifications in TCL1 gene silencing (15). While providing important first clues, further analyses are needed to improve our understanding of the mech-

* This work was supported by the Lymphoma Research Foundation, Amgen/U.C. BioStar Project S98-35, and National Institutes of Health Grants T32CA090912, T32CA009056, CA74929, CA90571, CA85841, GM07185, and GM40185. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§§ To whom correspondence should be addressed: David Geffen School of Medicine at UCLA, Dept. of Pathology and Laboratory Medicine, 675 Charles Young Dr. South, 4-760 MacDonald Research Laboratories, Los Angeles, CA 90095-1732. Tel.: 310-206-6754; Fax: 310-267-0382; E-mail: mteitell@ucla.edu.

1 The abbreviations used are: DLBCL, diffuse large B-cell lymphoma; BL, Burkitt lymphoma; 5-AC, 5-aza-2'-deoxycytidine; EMSA, electrophoretic mobility shift assay; PEL, primary effusion lymphoma; GC, germinal center; EMSA, electrophoretic mobility shift assay; EBV, Epstein-Barr virus.

948 This paper is available on line at http://www.jbc.org

The Journal of Biological Chemistry
© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.
Printed in U.S.A.
anisms regulating TCL1 in expressing and silent cell types during development and in cancer. Here we provide the first detailed functional characterization of the human TCL1 promoter, and we demonstrate a key role for Sp1 in activating TCL1 gene transcription from the core promoter.

EXPERIMENTAL PROCEDURES

Cell Lines and Cell Culture—EBV-immortalized fetal cord blood lymphocyte line 75174 was created, and cell lines were obtained and grown as described (5) except human myeloma AF10 which was provided as a kind gift from M. Kuehl (NCI, National Institutes of Health, Bethesda). 293T fibroblasts, Raji BL, and UC 729-6 B-lymphoblastoid cells were purchased from ATCC. SL2 Drosophila cells (a kind gift from L. Assady, UCLA, Los Angeles) were grown in Schneider’s Drosophila media (Invitrogen) supplemented with 10% fetal bovine serum at room temperature.

S1 Nuclease Protection—Total cellular RNA was isolated from Ramos, 2F7, and RS-1 cells (Qiagen). A complementary oligonucleotide was manufactured that overlapped the presumed transcriptional start site: 5′-ACTCGGCAATGCGCTTCGCGCGCTAAGAAGCAAGAGCGAGGCTCTTCTACGCGCCGCGCCGCGCCGCGCCGCGGTCGTTG3′. A single-stranded oligo-probe was 5′ end-labeled with [γ-32P]ATP and purified by G-50 Sephadex spin column chromatography. A G + A ladder was created using the Maxam-Gilbert sequencing method (16). In brief, 10000 cpm of radiolabeled probe was incubated with 5 μg of salmon sperm DNA and 1 μl of piperidine/formate at 37 °C for 20 min. The reaction was frozen on dry ice and dried to completion in a Speedvac concentrator. 20 μl of deionized water was added, and the reaction was frozen and re-dried as before. 100 μl of 1 μl piperidine was added, and the reaction was incubated at 90 °C for 20 min and dried. 100 μl of deionized water was added, and the reaction was dried. The reaction was resuspended in loading dye and boiled for 3 min before gel loading. S1 nuclease protection was performed as described (16), with some modifications. In brief, 500,000 cpm of radiolabeled probe was hybridized with 50 μg of total RNA at 30 °C overnight. 450 units of S1 nuclease (Promega) was added, and probe digestion was carried out at 30 °C for 2 h. After ethanol precipitation, the reaction was resuspended in loading dye and boiled for 3 min before gel loading.

Cell Lines and Cell Culture—EBV-immortalized fetal cord blood lymphocyte line 75174 was created, and cell lines were obtained and grown as described (5) except human myeloma AF10 which was provided as a kind gift from M. Kuehl (NCI, National Institutes of Health, Bethesda). 293T fibroblasts, Raji BL, and UC 729-6 B-lymphoblastoid cells were purchased from ATCC. SL2 Drosophila cells (a kind gift from L. Assady, UCLA, Los Angeles) were grown in Schneider’s Drosophila media (Invitrogen) supplemented with 10% fetal bovine serum at room temperature.

S1 Nuclease Protection—Total cellular RNA was isolated from Ramos, 2F7, and RS-1 cells (Qiagen). A complementary oligonucleotide was manufactured that overlapped the presumed transcriptional start site: 5′-ACTCGGCAATGCGCTTCGCGCGCTAAGAAGCAAGAGCGAGGCTCTTCTACGCGCCGCGCCGCGCCGCGGTCGTTG3′. A single-stranded oligo-probe was 5′ end-labeled with [γ-32P]ATP and purified by G-50 Sephadex spin column chromatography. A G + A ladder was created using the Maxam-Gilbert sequencing method (16). In brief, 100000 cpm of radiolabeled probe was incubated with 5 μg of salmon sperm DNA and 1 μl of piperidine/formate at 37 °C for 20 min. The reaction was frozen on dry ice and dried to completion in a Speedvac concentrator. 20 μl of deionized water was added, and the reaction was frozen and re-dried as before. 100 μl of 1 μl piperidine was added, and the reaction was incubated at 90 °C for 20 min and dried. 100 μl of deionized water was added, and the reaction was dried. The reaction was resuspended in loading dye and boiled for 3 min before gel loading. S1 nuclease protection was performed as described (16), with some modifications. In brief, 500,000 cpm of radiolabeled probe was hybridized with 50 μg of total RNA at 30 °C overnight. 450 units of S1 nuclease (Promega) was added, and probe digestion was carried out at 30 °C for 2 h. After ethanol precipitation, the reaction was resuspended in loading dye and boiled for 3 min before gel loading.

S1 nuclease protection was performed as described (16), with some modifications. In brief, 500,000 cpm of radiolabeled probe was hybridized with 50 μg of total RNA at 30 °C overnight. 450 units of S1 nuclease (Promega) was added, and probe digestion was carried out at 30 °C for 2 h. After ethanol precipitation, the reaction was resuspended in loading dye and boiled for 3 min before gel loading.
TCL1 Transactivation by Sp1

RESULTS

TCL1 Transcriptional Start Site Determination—A transcription initiation site has been suggested at 41 bp downstream of a putative TATA box based upon the initial reverse transcriptase-PCR cloning of the TCL1 cDNA (1, 15). However, the TCL1 start site has not been experimentally determined, and this position would be inconsistent with known start sites from TCL1-dependent promoters, which are generally 25–30 nucleotides downstream of the first T in the TATA sequence (reviewed in Refs. 23 and 24). Therefore, we used S1 nuclease protection analysis to identify the transcription start site(s) of TCL1 in order to help locate the major promoter for further investigation (Fig. 2). In TCL1 expressing 2F7 and Ramos BL cells, the major site of transcription initiation is a cytosine located 30 nucleotides downstream of the TATA box. There are also three identical minor sites of transcription initiation in these two cell lines. These sites include an adenine at 24 nucleotides, a guanine at 25 nucleotides, and a guanine at 27 nucleotides downstream of the TATA box (summarized in Fig. 1). These sites are consistent with transcription initiation sites in TCL1-dependent promoters. In addition, S1 nuclease protection products were not seen in KS-1 primary effusion lymphoma (PEL) cells, consistent with a lack of TCL1 transcription in this line (5), and no products were observed with a probe incubated with S1 nuclease in the absence of input RNA (data not shown).

TCL1 Promoter Identification—To date, regions suspected to contain TCL1 promoter activity have not been analyzed. We sought to define the TCL1 promoter and began a search just upstream of the TATA box and transcription initiation sites. A genomic fragment was cloned beginning at the ATG translation start site and extending to minus 424 bp from the major transcription start site using the originally reported upstream sequence as a guide for primer design (1). Sequencing of a BL41-derived fragment (and one derived from TC32 Ewing sarcoma cell genomic DNA, data not shown) revealed that the originally reported 5' sequence contains an —60-bp duplication that is not found in clones generated here or in recent data released from GenBank™ (data base entry GI 624960) (1). This fragment was inserted into pGL3-basic, creating p242TCL1-luciferase. Previously it was shown that EBV infection has no effect on endogenous TCL1 expression levels and that EBV-immortalized peripheral blood cells, along with BL lines, express abundant TCL1 (5). Reporter activity in three of these highly expressing B-cell lines (75714, BL41, and 2F7) was 15–35-fold elevated over an empty vector construct, pGL3-basic, that lacks known promoter activity (Fig. 3A). PEL lines silence B-cell-specific gene transcription, including TCL1, and are derived from terminal stages of B-cell differentiation that normally lack TCL1 expression (25–27). In four silent PEL lines (BCBL-1, BC-1, BC-3, and KS-1), the TCL1 reporter gene was expressed 15–45-fold over pGL3-basic. In addition, a 12-fold activation was seen in Jurkat T-cells, which also do not express the endogenous TCL1 gene. These results indicate that the −424 TCL1 gene fragment contains strong promoter activity and lacks functional silencing elements in transient transfection assays in lymphocytes. Furthermore, the level of activity was roughly equivalent to the activity seen with a robust SV40 promoter positive-control construct in all lines examined.

We next performed an extended search for further 5’ sequences affecting TCL1 promoter activity. Overlapping fragments from 191- to 943-bp upstream of the transcription start site were cloned into pGL3-basic and tested for promoter activity. All of the engineered constructs demonstrated robust expression in TCL1-negative BC-3 PEL and 293T fibroblast cells (Fig. 3B). In BC-3 PEL cells, reporter gene activity was essentially equivalent for constructs containing 350–943 bp of 5’ sequence and ranged from 17- to 25-fold stronger than pGL3-basic. This indicates that cis-elements required for activity in transient assays are localized within 350 bp of the transcription start site and that no additional strong enhancer or silencer motifs are within 1 kb upstream. Reporter gene expression in 293T cells was 15–35-fold higher compared with levels seen in BC-3 PEL cells using a similar range of reporter constructs (Fig. 3B). In fact, a 191-bp 5’ fragment showed reporter activity equivalent to that seen with a 424-bp fragment, suggesting that all essential core promoter components are present within the first 200 bp 5’ of the transcription start site. In sum, these findings suggest the TCL1 core promoter region functions in a tissue-nonspecific manner. Similar findings have been reported from the analyses of many other core promoters from tissue-specific genes (28–35).
TCL1 Transactivation by Sp1

Sp1 Binding in the TCL1 Core Promoter—The 350-bp core promoter of TCL1 exhibited robust activity that was not significantly affected by upstream (to 10 kb) or downstream (to 20 kb) elements in expressing versus non-expressing or lymphoid versus non-lymphoid cell types. This indicates that critical regions responsible for expression in transient transfections are present in the core promoter and that the factors driving this expression are broadly expressed in distinct cell types. MatInspector (36) analysis of this 350-bp promoter sequence revealed 5 consensus GC box Sp1 factor-binding motifs

(CCGGCC) that are labeled A, D, E, F, and G in Fig. 1 (1, 37–39). A previous transcription factor-binding site study showed that the core sequence CGCC was sufficient, in multiple sequence contexts, to facilitate Sp1 binding in EMSA (40). Therefore, sites with this core motif are labeled B, C, H, I, and J in Fig. 1, bringing to 10 the total number of putative Sp1-binding sites within the TCL1 core promoter region. Sp1 is a ubiquitous transcription factor (reviewed in Refs. 41 and 42), and its known transactivating function is consistent with a role in driving TCL1 promoter activity in all the cell types examined regardless of endogenous TCL1 expression (Fig. 3, A and B). Supporting this postulate, Western blot analysis shows that the level of Sp1 protein in TCL1-expressing and silent lymphocyte lines is equivalent, which also indicates that changes in the level of Sp1 are not responsible for the tissue-specific expression of TCL1 (Fig. 4).

Double-stranded DNA oligomers of these 10 potential Sp1 sites were tested for binding function by EMSA with nuclear extracts from TCL1-silent BCBL-1 PEL cells and TCL1-expressing Ramos cells (Fig. 5 and data not shown). Three sites, Sp1(D), Sp1(E), and Sp1(F), formed a complex resulting in a band with decreased gel mobility. This complex appears to be specific, as the band was competed away with unlabeled consensus cold Sp1 and self-oligomers. It was not competed away with a nonspecific oligomer that binds another transcription factor (LEF) (43–46). Additionally, Sp1-specific antibody significantly blocked complex formation by preincubation with nuclear extracts, whereas nonspecific IgG antibody had no effect on complex formation (Fig. 5, D and E). Furthermore, Mut-Sp1(D), Mut-Sp1(E), Mut-Sp1(F), and Mut-Sp1(G) oligomers not only failed to generate a reduced mobility band shift but they were also ineffective at inhibiting complex formation with wild-type Sp1(D), Sp1(E), and Sp1(F) probes (Fig. 5 and data not shown). Taken together, the data demonstrate that Sp1 interacts with Sp1(D), Sp1(E), and Sp1(F) sites centrally located within the first 150 bp of the TCL1 core promoter.

Sp1 Transactivates the TCL1 Core Promoter—To confirm that Sp1 can functionally transactivate the TCL1 promoter, co-transfection assays were performed in Sp1-negative Drosophila SL2 cells where the effect of exogenous Sp1 expression can be tested on Sp1-dependent promoters (17). Promoter-less control (pGL3-basic), Sp1-dependent pGL3SV40-luciferase, or p424TCL1-luciferase expressing constructs were transfected into Drosophila cells with varying amounts of human Sp1 generated by a fly-specific Sp1 expression vector (pPp_{Sp1}; Fig. 6A). The level of reporter gene expression detected for each construct in the absence of co-expression of exogenous Sp1 was

Fig. 3. TCL1 promoter activity in TCL1-expressing and non-expressing cell types. A, TCL1-expressing (75714, BL41, and 2F7) and silent (Jurkat, KS-1, BC-1, BC-3, and BCBL-1) lines were transiently transfected with either p424TCL1-luciferase or pGL3SV40-luciferase expression and pGL3-basic (control) constructs and assayed for luciferase activity. White bars display SV40 reporter activity, and black bars show TCL1 reporter activity in comparison to pGL3-basic activity, which was set at 1. Each transfection was normalized to co-transfected Renilla-luciferase vector (pRLSV40-luciferase) to control for transfection efficiency. Error bars denote S.D. from three separate experiments using independently isolated reporter gene DNA. B, DNA fragments from 191 to 943 bp upstream of the major transcription start site do not significantly affect TCL1 reporter activity in TCL1-negative 293T fibroblasts and BC-3 PEL cells. White bars display TRL1 reporter activity in 293T fibroblasts, and black bars display reporter activity in BC-3 PEL cells in comparison to pGL3-basic activity, which was set at 1. Each transfection was normalized to co-transfected pRLSV40-luciferase to control for transfection efficiency. Error bars denote S.D. from at least four separate experiments using independently isolated reporter gene DNA. Scales for fold induction are shown above and below the bar diagram for each cell line.

Fig. 4. Equivalent Sp1 protein levels in TCL1-expressing and silent cell lines. A, Western blot using Sp1 antiserum on cell lysates from TCL1-expressing (UC 729-6, Ramos, BL41, and Raji) and TCL1-silent (Jurkat, BCBL-1, BC-3, and KS-1) B- and T-cell lines. B, Coomasie Brilliant Blue-stained gel indicating equal total protein loading for each cell lysate examined.
Fig. 5. Sp1 binding to 3 of 10 Sp1 sites within the TCL1 promoter. EMSA was performed using BCBL-1 (A–E and G–I) and Ramos (F) nuclear extracts. Radiolabeled or competitor probes Sp1(A) through Sp1(J) and mutant probes Mut Sp1(D) through Mut Sp1(G), corresponding to the boxed Sp1 elements depicted in Fig. 1, along with an Sp1(consensus) sequence probe were investigated. A–C, nonspecific (LIF) and distinct Sp1 cold competitors were used to demonstrate binding specificity. Identical results to those presented in C were also obtained with Sp1(D), Sp1(E), and Sp1(F)-labeled probes (data not shown). D and E, EMSA was performed with radiolabeled Sp1 oligomers and pretreatment of nuclear extracts with Sp1 antiserum or control IgG. Identical results to those presented in E were also obtained with Sp1(E)- and Sp1(F)-labeled probes (data not shown). F, G, and I, Mut-Sp1(D), Mut-Sp1(E), and Mut-Sp1(F) probes cannot compete with radiolabeled Sp1(consensus) or Sp1(E) probes for Sp1 binding. Identical results were obtained with radiolabeled Sp1(D) and Sp1(F) probes (data not shown). H and I, Mut-Sp1(D), Mut-Sp1(E), and Mut-Sp1(F) (data not shown) oligomers do not bind Sp1. Overall, Sp1 consensus and Sp1(D), Sp1(E), and Sp1(F) sequences within the TCL1 core promoter specifically bind Sp1 from TCL1 silent (BCBL-1) and expressing (Ramos) nuclear extracts.

Fig. 6. Sp1-induced expression of the TCL1 core promoter in Drosophila SL2 cells. SL2 cells were transfected with promoter-less pGL3-basic, Sp1-dependent pSV40-luciferase, or p424TCL1-luciferase expression constructs and varying amounts of the pPacSp1 Sp1 expression vector. A, Western analysis of Sp1 level from a representative experiment. The amount of co-transfected pPacSp1 vector is indicated at the top. Arrowheads at the right indicate the Sp1 specific immunoreactive band and a nonspecific (ns), lower molecular weight band. Equal protein was loaded in each lane, followed by confirmation with Coomassie Brilliant Blue gel staining prior to transfer (data not shown). B, dose-dependent induction of TCL1 expression by Sp1. Amount of co-transfected pPacSp1 is indicated at the bottom. The Sp1-dependent pSV40 luciferase-positive control construct exhibited a 150–180-fold induction with Sp1 addition under identical conditions (data not shown). Sp1 was assigned the arbitrary value of 1. The SV40 promoter was induced 150–180-fold (data not shown), whereas the TCL1 promoter was induced 9–21-fold with exogenous Sp1 expression compared with the induction without Sp1 expression (Fig. 6B). Western analysis confirmed dose-dependent expression of exogenous Sp1 with increasing amounts of pPacSp1 in transfected SL2 cells. In addition, reporter constructs containing single, double, or triple mutations engineered into the Sp1(D), Sp1(E), and Sp1(F) sites, along with a control mutation engineered into the non-binding Sp1(G) site, were tested for activity in 293T fibroblast cells (Fig. 7). 293T cells are the optimal cell line for analyzing the effects of Sp1-binding site mutations, because the robust expression of TCL1 reporter constructs in 293T cells (Fig. 3B) would require a strong inhibitory effect from Sp1-binding site mutants to significantly reduce expression. In this context, the occurrence of a statistically significant inhibitory effect would strongly support a powerful role for Sp1 in regulating TCL1 promoter activity. Mutations of the Sp1D, -E, and -F-binding sites resulted in markedly decreased expression of the TCL1 reporter construct (Fig. 7). The amount of expression was reduced in all single site mutants relative to the unmutated reporter construct and further decreased substantially in double and triple mutant constructs (p < 0.01). Importantly, mutation of the Sp1(G)-binding site, which failed to bind Sp1 by EMSA analysis (Fig. 5B), had no effect on TCL1 reporter construct expression (p > 0.05). Together, the data from EMSA analysis, SL2 Drosophila cell studies, and mutant reporter construct investigations in 293T cells strongly indicate that Sp1 transactivating factors and cis-binding sites Sp1(D), Sp1(E), and Sp1(F) play a dominant role in regulating TCL1 core promoter activity.

CpG Methylation Is Not Correlated with TCL1 Silencing—The region from +10 to +300 bp of the TCL1 core promoter contains 33 CpG sites and corresponds to a classical “CpG island” (Fig. 1) (47). Based on differential sensitivity at a single NotI restriction enzyme site in this core promoter, Yuille et al. (15) previously concluded that TCL1 silencing was mediated by CpG methylation. Their finding that TCL1 expression was activated in silenced cells by 5-AC treatment was advanced as further support for this conclusion, although this reactivation experiment does not distinguish between direct and indirect effects resulting from 5-AC treatment. We used genomic bisul-
luciferase to control for transfection efficiency. Each transfection was normalized to co-transfected pRL-SV40 reporter activity in comparison to pGL3-basic activity, which was set at 1. Each transfection was normalized to co-transfected pHSL40-luciferase to control for transfection efficiency. Error bars denote S.D. from at least six separate experiments using independently isolated Student’s t-test or a two-sided t-test (p ≤ .01). Identical results were obtained using similarly mutated and unmethylated p191TCL1-luciferase and p424TCL1-luciferase expression constructs (data not shown).

To determine definitively the methylation status of every cytosine in the TCL1 core promoter of expressing and non-expressing cell types (Fig. 8). As expected, no CpG methylation was detected at any of the 33 potential sites in core promoter clones derived from TCL1-expressing BL line BL1 (Fig. 8). The core promoter clones from five tested cell lines in which TCL1 is silenced showed no, minimal (1 or 2 sites), moderate (5–10 sites), or dense (>50% of sites) CpG methylation. Both unmethylated and CpG-methylated promoter clones were found in 2 of 5 TCL1 silent cell lines (BCBL-1 and Jurkat), consistent with either one unmethylated allele in all cells or a mixture of cells containing both methylated and unmethylated TCL1 alleles. Non-expressing BC-3 cells contained both moderately and heavily CpG-methylated clones, with the moderately CpG-methylated positions all clustering within 50-bp at the 5’ end of the promoter. All of the core promoter clones from the two remaining TCL1 silent cell lines tested, BC-1 and AF10, were either totally unmethylated or contained only minimal (1–2) methylated CpG core promoter sites, indicating that neither allele is methylated in these cells. Because 4 of 5 TCL1 negative cell lines analyzed with bisulfite sequencing contained unmethylated core promoter clones, CpG methylation is not correlated with or directly responsible for TCL1 gene silencing.

Methylation of two CpG sites contained within the previously reported Sp1 sites is depicted by the extent of a horizontal line on the right. A vertical slash indicates a methylated CpG at that position. ‘X’ corresponds to a methylated CpG position contained within Sp1s(D), Sp1s(F), or Sp1s(F) sites within the TCL1 core promoter. A * corresponds to methylated CpG positions within a previously reported Nof1 restriction enzyme site (15).

That CpG methylation within Sp1 sequence motifs does not affect Sp1 factor binding (48–54). In fact, Sp1 sites may be important for maintaining CpG-rich regions in an unmethylated state. Our finding with the TCL1 oncogene is consistent with these combined reports in which methylation of functional Sp1 sites does not play a role in silencing genes. Overall, our results exclude direct TCL1 core promoter methylation as the mechanism responsible for TCL1 gene silencing in the cell lines examined here.

DISCUSSION

In this study we have identified a 424-bp fragment that confers robust TCL1 reporter activity in many TCL1-expressing and silent cell types, indicating that we have localized the TCL1 core promoter. This core promoter directs one major and three minor sites of TCL1 transcription initiation. These mapped sites are longer by 11–17 nucleotides than the start site suggested by Yuille et al. (15), based upon the cloning of the TCL1 cDNA (1). This discrepancy may result from an incomplete or partially degraded 5’ end of the original library-based TCL1 cDNA. We think it unlikely to have occurred from rare intact shorter transcripts based on our sensitive S1 nuclease mapping procedure performed with freshly isolated RNA. This result strongly suggests that TCL1 promoter activity depends on classic TATA-binding proteins and the TATA box (reviewed in Refs. 55 and 56).

We searched extensively both upstream and downstream for cis-acting elements that could affect transcription from the
TCL1 Transactivation by Sp1

TCL1 promoter in **TCL1** silent cell types. We were unable to demonstrate any significant effects on core promoter activity by sequences –10-kb 5’ and 20-kb 3’ of the promoter in transient transfections. This suggests that regulation of expression is mediated through the core promoter rather than through upstream or downstream cis-acting elements. The **TCL1** core promoter contains 10 putative Sp1-binding sites. We confirmed that Sp1 interacts with three of these sites by cold Sp1 oligomer competition assays and by blocking with Sp1 antibody. Exogenously introduced Sp1 in *Drosophila* SL2 cells induced significant reporter gene expression indicating that Sp1 functions *in vivo* to regulate transcription from the **TCL1** core promoter. Furthermore, mutation of these three Sp1 sites, but not a site that did not bind Sp1 using EMSA, substantially inhibited reporter gene expression in 293T cells, reiterating the importance of these specific Sp1 interaction sites in regulating the **TCL1** core promoter.

Sp1 was previously shown to activate transcription from a spectrum of housekeeping, tissue-specific, and cell cycle-related gene promoters (reviewed in Ref. 57). Although Sp1 is ubiquitous and is expressed at equivalent levels in **TCL1**-expressing and silent lymphoid cell types, its function is regulated in several different ways that could explain its involvement with modulation of a tissue-specific promoter such as **TCL1**. Levels of Sp1 have been shown to be cell cycle-dependent and high in the G1 phase of the cell cycle, whereas levels are significantly lower in other cycle stages. Sp1 levels may be reduced and thereby contribute to decreased **TCL1** expression in terminally differentiated, non-dividing B-lineage cells in which **TCL1** expression is extinguished (5). This is in contrast to the cell lines tested here that are all in cycle and demonstrate abundant Sp1 protein. In these cell lines Sp1 does not confer tissue specificity to a transiently transfected **TCL1** reporter construct.

Transcriptional control via Sp1 is also regulated by means other than absolute protein levels. Sp1 has been shown to be glycosylated and phosphorylated which may alter its activity in specific cell types (58, 59). Another level of regulation is through binding site competition with other specific transcription factors, including additional members of the Sp1 protein family. For example, promoters with multiple Sp1-binding sites as seen in the **TCL1** core promoter were repressed by interactions with Sp3 (60, 61). However, Sp3 is also ubiquitous so its detailed role in tissue-specific gene regulation is not clear.

Sp1 induced SV40-mediated transcription by a significantly larger amount than it did **TCL1**-mediated expression in *Drosophila* SL2 cells, yet both promoters showed comparable levels of expression in mammalian cells (Figs. 3 and 5). This implies that, in addition to Sp1, other transcription factors are likely involved in the regulation of the **TCL1** promoter. Interaction of tissue-specific factors with Sp1 has been shown to regulate transcription from tissue-specific promoters through their specific transcription factor-binding sites. Interaction of Puralpha and Sp1 results in enhanced binding of Puralpha to its binding site and increased transcription from the myelin basic protein promoter (62). Also MEF-2 and Sp1 synergistically activate transcription of myoglobin and muscle creatine kinase together through their individual specific binding sites (63). Further analysis for putative tissue-specific transcription factor binding sites will be necessary to characterize completely the **TCL1** promoter.

In other cases, tissue-specific promoter activity was mediated by tissue-specific factors that regulated the interaction of Sp1 with its cognate binding site in the absence of the tissue-specific factor binding to the promoter. For example, peroxisome proliferator-activated receptor-γ blocks expression of thromboxane by binding Sp1 and preventing its binding to an Sp1 site within the thromboxane promoter (64). Also the transcription factors retinoic acid receptor and retinoid X receptor interact with Sp1 to increase its binding to a GC box allowing increased transcription of urokinase plasminogen activator (65). Therefore, **TCL1** promoter activity may be modulated through blocking or enhancing Sp1 interactions with the core promoter Sp1-binding sites via intervention by yet unidentified tissue-specific factors.

Of particular interest is the recent finding that the POZ domain of BCL-6, a B-cell-specific transcriptional repressor, binds directly to Sp1 and blocks its DNA binding activity and subsequent ability to transactivate transcription (66). BCL-6 is expressed in germinal center (GC) B-cells but not by post-GC B-cells (67, 68). Interestingly, **TCL1** expression begins in early B-cell development in the bone marrow, markedly decreases in the GC, and disappears in post-GC B-cells (4, 5). It is possible that the transient expression of BCL-6 in GCs has a role in directing **TCL1** repression through an interaction between the BCL-6 POZ domain and Sp1. This could tip the balance toward binding of Sp3 and Sp4 transcription factors in the **TCL1** core promoter, as has been shown to mediate repression of the ADH5/FDH promoter (69). Also, the POZ domain of BCL-6 interacts with SMRT/N-CoR, mSin3a, B-CoR, and histone deacetylase transcription-inhibitory factors, leading to increased gene repression (70–72). In addition to potentially blocking Sp1 binding and augmenting the binding of inhibitory Sp1 family member proteins, the recruitment of these repressing co-factors may facilitate epigenetic modifications of chromatin structure (e.g. histone deacetylation and DNA methylation) involved in gene silencing. Suggesting against a role for BCL-6 in **TCL1** gene silencing, however, is the observation of high level BCL-6 and **TCL1** co-expression in multiple DLBCLs (5). If BCL-6 normally represses **TCL1** expression, this co-expression argues that the repressive mechanism may be broken in lymphoid cancers.

An association between CpG promoter methylation and **TCL1** gene silencing was not found in studies presented here. Also, the association between gene silencing and methylation of two CpG sites within a single NotI site in the core promoter as reported previously (15) was not confirmed. Instead, an association between alleles with high level CpG methylation and NotI site methylation was demonstrated. Rather than acting as a marker for gene silencing, NotI methylation appears to indicate dense CpG methylation of the core **TCL1** promoter. Because each of the five **TCL1**-negative cell types examined here contained unmethylated or minimally methylated DNA clones, **TCL1** silencing does not appear to be due to promoter methylation. Combined with the results presented here, the prior finding that Jurkat and CEM T-cell lines treated with 5-AC-activated **TCL1** gene expression suggests that inhibition of DNA methyltransferase activity likely affected DNA methylation outside of the **TCL1** core promoter region (15). In fact, the lack of consistent high level CpG methylation in the promoter does not exclude additional mechanisms of epigenetic regulation in the control of **TCL1** gene expression. The identification of tissue- and development-specific factors that may interfere with Sp1 binding, such as BCL-6, along with the resolution of potential epigenetic mechanisms will both be necessary to understand the regulation of **TCL1** expression in lymphocyte development and malignancy.

REFERENCES

1. Virgilio, L., Narducci, M. G., Isobe, M., Billips, L. G., Cooper, M. D., Croce, C. M., and Russo, G. (1994) *Proc. Natl. Acad. Sci. U. S. A.* 91, 12530–12534
2. Teitel, M. (2002) in *Wiley’s Encyclopedia of Molecular Medicine* (Creighton, T. E., ed) pp. 3106–3108, John Wiley & Sons, Inc., New York
3. Virgilio, L., Lazzeri, C., Bichi, R., Nibu, K., Narducci, M. G., Russo, G., Rothstein, J. L., and Croce, C. M. (1996) *Proc. Natl. Acad. Sci. U. S. A.* 93,
Sp1 Transactivation of the TCL1 Oncogene
Samuel W. French, Cindy S. Malone, Rhine R. Shen, Mathilde Renard, Sarah E. Henson, Maurine D. Miner, Randolph Wall and Michael A. Teitell

J. Biol. Chem. 2003, 278:948-955.
doi: 10.1074/jbc.M207166200 originally published online November 5, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M207166200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 71 references, 27 of which can be accessed free at http://www.jbc.org/content/278/2/948.full.html#ref-list-1