Electroweak baryogenesis in the exceptional supersymmetric standard model

Wei Chao

Amherst Center for Fundamental Interactions,
Department of Physics, University of Massachusetts-Amherst,
Amherst, MA 01003, U.S.A.

E-mail: chao@physics.umass.edu

Received December 9, 2014
Revised May 31, 2015
Accepted August 3, 2015
Published August 28, 2015

Abstract. We study electroweak baryogenesis in the E_6 inspired exceptional supersymmetric standard model (E_6SSM). The relaxation coefficients driven by singlinos and the new gaugino as well as the transport equation of the Higgs supermultiplet number density in the E_6SSM are calculated. Our numerical simulation shows that both CP-violating source terms from singlinos and the new gaugino can solely give rise to a correct baryon asymmetry of the Universe via the electroweak baryogenesis mechanism.

Keywords: baryon asymmetry, particle physics - cosmology connection

ArXiv ePrint: 1411.5575
1 Introduction

The origin of the baryon asymmetry of the Universe (BAU) is one of the longstanding problems in particle physics and cosmology. Combining the WMAP seven year results [1] with those from CMB and large scale structure measurements one has

\[Y_B \equiv \frac{\rho_B}{s} = (8.82 \pm 0.23) \times 10^{-11} \] (1.1)

where \(\rho_B \) is the baryon number density, \(s \) is the entropy density of the Universe. The recent results obtained by the Planck satellite are consistent, giving \(Y_B = (8.59 \pm 0.11) \times 10^{-11} \) [2].

Assuming that the Universe was matter-antimatter symmetric at its birth, it is reasonable to suppose that interactions involving elementary particles generated the BAU during the subsequent cosmological evolution. To generate the observed BAU, three Sakharov criteria [3] must be satisfied in the early Universe: (1) baryon number violation; (2) C and CP violation; (3) a departure from the thermal equilibrium (assuming exact CPT invariance). These requirements are realizable, though doing so requires physics beyond the Standard Model (SM). To that end, theorists have proposed a variety of baryogenesis scenarios whose realization spans the breadth of cosmic history. Electroweak baryogenesis (EWBG) [4–11] is one of the most attractive and promising such scenarios, and it is generally the most testable with a combination of searches for new degrees of freedom at the LHC and low-energy tests of CP invariance.

Successful EWBG requires a first order electroweak phase transition and sufficiently effective CP violation during the transition. Neither requirement is satisfied in the SM. One simple extension of the SM that may allow them to be satisfied is the two Higgs doublet model (2HDM) (for a recent review, see ref. [12]). The minimal supersymmetric standard model (MSSM), as a typical type-II 2HDM, is an attractive framework for EWBG and other new physics, since it can provide elegant explanations for questions that can not be accommodated in the SM. In the MSSM, the light stop scenario is necessary for successful baryogenesis. But the Higgs mass discovered by the CERN LHC [13–16] as well as Higgs decay rates put strong constraint on the parameter space of the light stop, which allows one to exclude the EWBG in the MSSM at quite high confidence level [17].\(^1\)

Possible ways out are considering extensions of the MSSM, of which the Next to Minimal Supersymmetric Standard Model (NMSSM) [21] is attractive since it provides solution to the \(\mu \) problem and naturally accommodates a 125 GeV SM Higgs. Constraints on the parameter space of the model from the non-observation of permanent electric dipole moments (EDMs)

\(^1\)For more precise statements of the EWBG in the MSSM, see ref. [17] for detail.
of neutron, Mercury, Thallium, deuteron and Radium as well as the parameter space available for singlino driven electroweak baryogenesis were studied in ref. [22–24]. In this paper we study the electroweak baryogenesis in the exceptional supersymmetric extension to the SM [25], \(E_6 \)SSM, which is a string theory inspired supersymmetric model based on an \(E_6 \) grand unification (GUT) group. \(E_6 \)SSM also accommodates a 125 GeV Higgs [33] and can dynamically generate the \(\mu \) term. The Higgs sector of the \(E_6 \)SSM contains 9 Higgs supermultiplets. As a result, it can naturally derive a strongly first order EWPT. The chargino sector in the \(E_6 \)SSM, although extended compared with the MSSM case, gives no extra contribution to the CP-violating source term as required by the EWBG mechanism. The neutralino sector in the \(E_6 \)SSM is greatly enlarged compared with the MSSM and NMSSM cases. We calculate in the section III the relaxation coefficients driven by singlinos and the new gaugino in the neutralino sector. The transport equation of the Higgs supermultiplet number density is solved using analytical approximation. Our numerical simulation shows that CP violation sources from the new gaugino and singlinos in the neutralino sector may solely give rise to a baryon asymmetric Universe via the EWBG, without conflicting with the EDM constraints.

The paper is organized as follows: in section II we give a brief introduction to the \(E_6 \)SSM. Section III is devoted to the investigation of EWBG induced by the neutralino sector of the \(E_6 \)SSM. We summarize in section IV.

2 \(E_6 \)SSM

The \(E_6 \)SSM, which originates from an \(E_6 \) GUT or string theory in extra dimensions, involves a unique choice for the extra Abelian gauge group namely \(U(1)_N \). To ensure anomaly cancellation, the particle content of the \(E_6 \)SSM includes three complete fundamental 27 representations of \(E_6 \), which decompose under the \(SU(5) \times U(1)_N \) subgroup as follows.

\[
27 \rightarrow \left(10, \frac{1}{\sqrt{40}} \right) \oplus \left(5, \frac{2}{\sqrt{40}} \right) \oplus \left(\bar{5}, -\frac{3}{\sqrt{40}} \right) \oplus \left(\bar{5}, -\frac{2}{\sqrt{40}} \right) \oplus \left(1, \frac{5}{\sqrt{40}} \right) \oplus \left(1, 0 \right) \tag{2.1}
\]

where the first and second quantities in the brackets are the \(SU(5) \) representation and \(U(1)_N \) charge respectively. The first two terms on the right side of eq. (2.1) contain all the matter contents, the third and fourth terms contain the pair of Higgs doublets as well as diquarks with electric charges \(-1/3 \) ad +1/3, respectively. Scalar singlet, the third generation of which breaks the \(U(1)_N \) gauge symmetry spontaneously, is contained in the fifth term. Right handed neutrinos is associated with the last term.

In \(E_6 \) models the renormalizable superpotential comes from \(27 \times 27 \times 27 \) decomposition of the \(E_6 \) fundamental representation. The superpotential, that respects to \(SU(3)_C \times SU(2)_L \times U(1)_Y \), can be written as [25, 26]

\[
W_0 = \lambda_{ijk} S_i H^u_j H^d_k + \kappa_{ijk} S_i D_j D_k + Y_{ij}^N N_i H^u_j L_k \\
+ Y_{ij}^u u_i H^u_j Q_k + Y_{ij}^d d_i H^d_j Q_k + Y_{ij}^e e_i H^u_j L_k \\
W_1 = g_{ijk} D_i Q_j Q_k + g_{ijk} D_i d_j u_k \tag{2.2}
\]

where we have assumed that exotic quark \(D_i \) are diquarks, which carry a twice large baryon number than the ordinary quark fields, and can decay into the SM quarks via interactions in (2.3). \(D_i \) and \(D_i \) can also be leptoquarks, in which case superpotential in (2.3) will be replaced with Yukawa interactions between \(D_i \), lepton and quark superfields.
In the E\textsubscript{6}SSM the neutralino sector is extended to include eight additional neutral components: \(\tilde{S}^i, \tilde{H}^u_1, \tilde{H}^d_1 \) and \(\tilde{B}' \), where \(i = 1, 2, 3 \) and \(\alpha = 1, 2 \). The neutralino mass matrix can be written as

\[
M_{\text{E}_{6}\text{SSM}}^N = \begin{pmatrix}
M_{\text{USSM}}^N & B_2 & B_1 \\
B_2^T & A_{22} & A_{21} \\
B_1^T & A_{21}^T & A_{11}
\end{pmatrix}
\]

(2.4)

in the basis

\[
\begin{pmatrix}
\tilde{B} & \tilde{W}^3 & \tilde{H}^3_d & \tilde{H}^3_u & \tilde{S} & \tilde{B}' & \tilde{H}^2_d & \tilde{H}^2_u & \tilde{S}^2 & \tilde{H}^1_d & \tilde{H}^1_u & \tilde{S}_1
\end{pmatrix}.
\]

(2.5)

The submatrix \(M_{\text{USSM}}^N \) is the neutralino mass matrix in the USSM. Expressions of other submatrices can be found in [27]. We refer to [25–33] for studies of low energy phenomenologies of the E\textsubscript{6}SSM.

The light Higgs boson mass can be written as

\[
m^2_h = \frac{\lambda_{23}^2}{2} v^2 \sin^2 2\beta + M_Z^2 \cos^2 2\beta + \frac{M_{Z'}^2}{4} \left(1 + \frac{1}{4} \cos 2\beta \right)^2 + \Delta m^2_h
\]

(2.6)

where \(\tan \beta = v_2/v_1 \) is the ratio between the VEVs of the two Higgs doublets, the first three terms on the right-hand side of eq. (2.6) are the tree level contribution to the Higgs mass, which come from the \(F \)–term contributions of the singlet and the \(D \)–term contributions associated with the \(Z \) and \(Z' \). \(\Delta m^2_h \) represents loop effects. One may conclude that the E\textsubscript{6}SSM model permits lower stop mass than either MSSM or NMSSM, which leads to lower fine-tuning in the E\textsubscript{6}SSM.

On the other hand a low stop mass helps to trigger the first order electroweak phase transition (EWPT) [18–20]. In addition, the triscalar interaction, \(S_3 H^3_u \cdot H^3_d \), also contributes a tree level barrier to the effective potential. So it is easy to get a first order EWPT in E\textsubscript{6}SSM. In the following, we suppose to have the first order EWPT and directly study the EWBG effects, leaving the systematic study of the EWPT in E\textsubscript{6}SSM in a longer paper.

3 Electroweak baryogenesis

In the EWBG scenario, three Sakharov conditions are realized in the following way [4, 34, 35]: first, the scalar sector of the E\textsubscript{6}SSM gives rise to a strongly first order electroweak phase transition, which provides a departure from thermal equilibrium at temperature \(T \sim 100 \text{ GeV} \). During the EWPT, bubbles of broken electroweak symmetry nucleate and expand in a background of unbroken symmetry, filling the Universe to complete the phase transition. Second, CP-asymmetry charge density is produced by the CP-violating interactions of the Higgsinos at the walls of the expanding bubbles, where the Higgs vacuum expectation value is space-time dependent. This CP-asymmetry diffuses ahead of the advancing bubble and is converted into a net density of left-handed fermions, through inelastic interaction in the plasma. Third, baryon number is violated by the sphaleron processes. The presence of nonzero \(n_L \) biases the sphaleron processes, resulting in the production of the baryon asymmetry.

Ordinary quantum field theory is not appropriate for treating the microscopic dynamics of the electroweak phase transition, since the non-adiabatic evolution of states and the presence of degeneracies in the spectrum break the zero-temperature equilibrium relation between the in- and out-states. We derive the source terms in the quantum transport equation
based on the closed time path formulation of non-equilibrium quantum field theory \cite{43,44}. The equations governing the space-time dependence of number densities of a given spaces can be written as \cite{36-39}

\[
\frac{\partial n}{\partial t} + \nabla \cdot j(x) = - \int d^3 z \int_{-\infty}^{x_0} dz^0 \text{Tr} \left[\Sigma^\Delta(x,z)S^< (x,z) - S^>(x,z)\Sigma^< (x,z) \right. \\
\left. + S^<(x,z)\Sigma^> (x,z) - \Sigma^<(x,z)S^> (x,z) \right]
\]

(3.1)

where self energy $\Sigma^{<,>}$ encode all the information about particle interactions.

The rephasing invariant combinations in the E_nSSM relevant to electroweak baryogenesis can be written as $\phi_{\lambda_{ijk}} + \phi_{\Lambda_{\lambda_{ijk}}}$, ϕ_{M_1}, ϕ_{M_2} and $\phi_{M_1'}$, where $\Lambda_{\lambda_{ijk}}$ are couplings of trilinear interactions $S_i H_{uk} H_{di}$ in the soft supersymmetry breaking lagrangian. M_1, M_2 and M_1' are the mass of bino, wino, and the new gaugino respectively. For simplicity we set $A_{\lambda_{ijk}}$ to be real in our calculation. We define the four component spinors as

\[
\begin{align*}
\Psi^{H^+}_i &= \begin{pmatrix} \bar{H}^+_u \\ \bar{H}^+_d \end{pmatrix}, & \Psi^{W_0}_i &= \begin{pmatrix} \bar{W}_3 \\ \bar{W}_3 \end{pmatrix}, & \Psi^{W^+}_i &= \begin{pmatrix} \bar{W}^+_W \\ \bar{W}^+_W \end{pmatrix}, & \Psi^{B}_i &= \begin{pmatrix} \bar{B} \\ \bar{B} \end{pmatrix} \\
\Psi^{H^0}_i &= \begin{pmatrix} -\bar{H}^0_u \\ \bar{H}^0_d \end{pmatrix}, & \Psi^{\bar{S}}_i &= \begin{pmatrix} \bar{S} \\ \bar{S} \end{pmatrix}.
\end{align*}
\]

(3.2)

The Higgsino-gaugino-VEV interactions can be written as

\[
\mathcal{L}^{\text{int}} = -g_2 \bar{\Psi}_i^{H^+} \left(v_d P_L + v_u e^{i\phi} P_R \right) \Psi_i^{W^+} - \frac{1}{\sqrt{2}} \bar{\Psi}_i^{H^0} \left(v_d P_L + v_u P_R e^{i\phi} \right) (g_2 \Psi_i^{W_0} - g_1 \Psi_i^B) \\
+ \bar{\Psi}_i^{B} \left\{ \lambda_{j3} v_u P_L e^{i \arg \lambda_{j3i} - i \arg \lambda_{j3i}} - |\lambda_{j3i}| v_d P_R e^{i \arg (\lambda_{j3i} + \arg \lambda_{j3i})} \right\} \Psi_i^{\bar{S}} \\
- \sqrt{2} g_N \bar{\Psi}_i^{H^0} \left(e^{-i \phi_{M_1} / 2} v_d Q_N^u P_L - e^{i \phi_{M_1} / 2} v_u Q_N^u P_R \right) \Psi_i^{\bar{S}}
\]

(3.3)

where $\phi = \arg \lambda_{33}$ and $\phi_{M_1} = \arg M_1$, Q_N^u and Q_N^d are charges of H_{ui} and H_{di} under the U(1)$_N$. The first two terms are the same as those in the MSSM, the third term is the interactions between Higgsinos and singlino, the last term is the interaction of the third generation Higgsino with the new gaugino.

We ignore the wall curvature in our analysis so all relevant functions depend on the variable $\bar{z} = z + v_w t$, where v_w is the wall velocity; $\bar{z} < 0, > 0$ correspond to the unbroken and broken phases, respectively. Working in the closed time path formulation and under the “vev-insertion” approximation \cite{36-39}, we compute the CP-violating source induced by singlino and the new gaugino mediated processes ($H \rightarrow \bar{S} \rightarrow H$ and $\bar{H} \rightarrow B' \rightarrow H$),

\[
S_{CPV}^S = -2 \sum_{i,j=1}^{3} |\lambda_{ij3} \lambda_{i3j}| \sin[\arg(\lambda_{ij3}) + \arg(\lambda_{i3j}) - \arg(\lambda_{j3j})]|v^2 \beta |m_{\bar{S}}| m_{\bar{H}_i}|
\]

\[
\times \int k^2 dk \frac{1}{\pi^2 \omega_{\bar{S}} \omega_{\bar{H}_i}} \text{Im} \left\{ \frac{n(\varepsilon_{\bar{S}}) - n(\varepsilon^*_{\bar{H}_i})}{(\varepsilon_{\bar{S}} - \varepsilon^*_{\bar{H}_i})^2} - \frac{n(\varepsilon_{\bar{S}}) + n(\varepsilon^*_{\bar{H}_i})}{(\varepsilon_{\bar{S}} + \varepsilon^*_{\bar{H}_i})^2} \right\}
\]

(3.4)

\[
S_{CPV}^{B'} = -\frac{3}{5} g_1^2 \sin[\arg(\lambda_{333} m_{\bar{Z}'})]|v^2 \beta |m_{\bar{Z}'}| |m_{\bar{H}_5}|
\]

\[
\times \int k^2 dk \frac{1}{\pi^2 \omega_{\bar{Z}'} \omega_{\bar{H}_5}} \text{Im} \left\{ \frac{n(\varepsilon_{\bar{Z}'}) - n(\varepsilon^*_{\bar{H}_5})}{(\varepsilon_{\bar{Z}'} - \varepsilon^*_{\bar{H}_5})^2} - \frac{n(\varepsilon_{\bar{Z}'}) + n(\varepsilon^*_{\bar{H}_5})}{(\varepsilon_{\bar{Z}'} + \varepsilon^*_{\bar{H}_5})^2} \right\}
\]

(3.5)
where \(n(x) = 1/(\exp(x) + 1) \), being the fermion distribution function; \(\varepsilon_{\tilde{H}, S} = \omega_{\tilde{H}, S} - i\Gamma_{\tilde{H}, S} \) are complex poles of the spectral function with \(\omega_{\tilde{H}, S}^2 = k^2 + m_{\tilde{H}, S}^2 \), where \(m_{\tilde{H}, S} \) and \(\Gamma_{\tilde{H}, S} \) are the thermal masses and thermal rates of \(\tilde{H} \) and \(S \), respectively. Before proceeding, we note that the VEV insertion approximation used in obtaining eqs. (3.4), (3.5) is likely to lead to an overly large baryon asymmetry by at least a factor of a few, though a definitive quantitative treatment of the CPV fermion sources remains an open problem. The results quoted here, thus, provide a conservative basis for restrictions on the EWBG-viable parameter space. For a detailed discussion of the theoretical issues associated with the computation of the CPV source terms, see ref. [4] and references therein. The thermal mass of the singlinos and the new gaugino can be written as

\[
m^2_{\tilde{S}_i} \approx \left(\frac{5}{64} g_N^2 + \sum_{jk} \frac{1}{32} |\lambda_{ijk}|^2 \right) T^2 ,
\]

(3.6)

\[
m^2_{\tilde{\mu}_j} \approx M^2_{\tilde{\mu}_j} + \frac{27}{32} g_N^2 T^2 ,
\]

(3.7)

where \(g_N \) is the gauge coupling of the U(1) \(N \). Notice that CP violating source term in (3.4) is is closely related to Debye masses of singlino.

The CP-conserving terms can be written as \(S^\text{CP}_{\tilde{H}_j} = \sum_i (\Gamma_{\tilde{H}_j} (\mu_{\tilde{S}_i} + \mu_{\tilde{H}_j}) + \Gamma_{\tilde{H}_j}^\text{S} (\mu_{\tilde{S}_i} - \mu_{\tilde{H}_j})) \), where

\[
\Gamma_{\tilde{H}_j}^\pm = \frac{1}{T} \int \frac{k^2 dk}{2\pi^2 \omega_{\tilde{H}_j} \omega_{\tilde{S}_i}} \text{Im} \left\{ \left[(\varepsilon_{\tilde{S}_i} \varepsilon_{\tilde{H}_j}^* - k^2) C_A + M_{\tilde{S}_i} M_{\tilde{H}_j} C_B \right] \frac{h(\varepsilon_{\tilde{S}_i}) \mp h(\varepsilon_{\tilde{H}_j}^*)}{\varepsilon_{\tilde{S}_i} - \varepsilon_{\tilde{H}_j}^*} + \left[(\varepsilon_{\tilde{S}_i} \varepsilon_{\tilde{H}_j} + k^2) C_A + M_{\tilde{S}_i} M_{\tilde{H}_j} C_B \right] \frac{h(\varepsilon_{\tilde{S}_i}) \mp h(\varepsilon_{\tilde{H}_j})}{\varepsilon_{\tilde{S}_i} + \varepsilon_{\tilde{H}_j}} \right\}
\]

(3.8)

with \(C_A = 2|\lambda_{ij3} \lambda_{3j}| v^2 \) and \(C_B = 2|\lambda_{ij3} \lambda_{33j}| \cos[\arg(\lambda_{ij3}) + \arg(\lambda_{33j}) - \arg(\lambda_{3ij})] v^2 \sin 2\beta \).

It is straightforward to obtain the corresponding source term mediated by the new gaugino by making the following replacements: \(\lambda_{ij3} \to g' \tan^{-1} \beta Q_d \), \(\lambda_{33j} \to g' \tan \beta Q_u \), \(\omega_{\tilde{S}_i} \to \omega_{\tilde{\mu}_j} \), and \(M_{\tilde{S}_i} \to M_{\tilde{\mu}_j} \). We assume no net density of gauginos and singlino, thereby setting \(\mu_{\tilde{S}_i} = \mu_{\tilde{\mu}_j} = 0 \) and giving

\[
S^\text{CP}_H = -\Gamma_h \mu_{\tilde{H}}
\]

(3.9)

where \(\Gamma_{\tilde{H}} = \Gamma_{\tilde{H}}^- - \Gamma_{\tilde{H}}^+ \).

We now derive the Boltzmann equations. We assume there are approximate chemical equilibriums between the SM particles and their superpartners, as well as between different members of left-handed fermion doublets. In this case, one obtains transport equations for densities associated with different members of supermultiplet. Since all light quarks are mainly produced by strong sphaleron processes and all quarks have similar diffusion constants, baryon number conservation on time scales shorter that the inverse electroweak sphaleron rate implies the approximate constraints \(q_{1L} = q_{2L} = -2u_R = -2d_R = -2s_R = -2c_R = -2b_R \equiv -2b = 2(Q + T) \). We define the number density for Higgs supermultiplet as

\[
H \equiv \sum_{i=1}^{3} \left(n_{H_{hi}^+} + n_{H_{hi}^0} - n_{H_{hi}^0} - n_{H_{hi}^+} + n_{\tilde{H}_{hi}^+} - n_{\tilde{H}_{hi}^0} - n_{\tilde{H}_{hi}^0} - n_{\tilde{H}_{hi}^0} \right),
\]

(3.10)
\[
\begin{array}{|c|c|c|c|c|}
\hline
T & 100 \text{ GeV} & \Delta \beta & 0.01 & D_Q \ 6/T \\
v(T) & 125 \text{ GeV} & v_w & 0.2 & D_H \ 100/T \\
L_w & 0.25/T & \tan \beta & 10 & A_t \ 300 \\
\hline
\end{array}
\]

Table 1. Input parameters at the benchmark point.

The transport equation of the Higgs supermultiplet number density can be written as

\[
\partial^\mu H_\mu = -\Gamma_h \frac{H}{k_H} - \Gamma_Y \left(\frac{Q}{k_Q} + \frac{H}{k_H} - \frac{T}{k_Y} \right) + S^{\text{CPV}} + \sum_i S^{\text{CPV}}_i
\]

(3.11)

where \(\partial^\mu = v_w \frac{d}{dz} - D_a \frac{d^2}{dz^2}\) in the planar bubble wall approximation with \(D_a\) the diffusion constant. \(n_i\) and \(k_i\) is the number density and the statistical factor of particle \(i\). The coefficient \(\Gamma_Y\) denotes the interaction rate arising from top quark, which can be written as \(\Gamma_Y = 6|y_t|^2 I_F(m_{\tilde{t}_L}, m_{\tilde{t}_R}, m_h)\). We refer the reader to [39] for the general form of \(I_F\).

The CP-conserving scattering rates of Higgsinos with the background Higgs field within the bubble.

The transport equation of the Higgs supermultiplet number density produced by CP-violating interactions at the wall of the expanding bubbles may be transported into a net density of left handed fermions via the inelastic scattering. By taking appropriate linear combinations of transport equations of the Higgs, the third generation left-handed quark doublet and right-handed top quark supermultiplets, we only need to solve a single equation for \(H\). Lastly, the BAU is given by

\[
n_B = -\frac{3\Gamma_{ws}}{2D_Q\lambda_{+}} \int_{-\infty}^{\frac{-L_w}{2}} dz n_L(z)e^{-\lambda_{-}z}
\]

(3.12)

with \(\lambda_{\pm} = \frac{1}{2D_Q}(v_w \pm \sqrt{v_w^2 + 4D_QR})\), where \(R \sim 2 \times 10^{-3}\) GeV is the inverse washout rate for the electroweak sphaleron transitions.

The computation of \(n_B/s\) relies upon many other numerical inputs; our choices are listed in table 1. The bubble wall velocity \(v_w\), thickness \(L_w\), profile parameters \(\Delta \beta\) and \(v(T)\) describe the dynamics of the expanding bubbles during the EWPT, at the temperature \(T\). We take the Higgs profile to be

\[
v(z) \simeq \frac{1}{2} v(T) \left\{ 1 + \tanh \left(2\alpha \frac{z}{L_w} \right) \right\},
\]

(3.13)

\[
\beta(z) \simeq \beta_0(T) - \frac{1}{2} \delta \beta \left\{ 1 - \tanh \left(2\alpha \frac{z}{L_w} \right) \right\},
\]

(3.14)

following ref. [40–42]. The sphaleron rates are \(\Gamma_{ws} = 6\kappa_{ws}^4 T\) and \(\Gamma_{ss} = 6\kappa_{ss}^4 T^8\), where \(\kappa_{ws} = 22 \pm 2\) and \(\kappa_{ss} = O(1)\).

For simplification, we assume only \(\lambda_{333}\) contains a complex phase. We show in the left (right) panel of figure 1, \(Y_B/Y_{\text{obs}}\), where \(Y_{\text{obs}}\) is the observed value given in eq. (1.1), as the function of \(\delta N\) (\(\lambda_{333}\)), by setting \(\lambda_{333} = (g_N) = 0.1\), other initial inputs are given in table 1. The solid, dashed and dotted lines correspond to \(\phi = \pi/8, \pi/4,\) and \(\pi/2\), respectively. Obviously the observed baryon asymmetry can be obtained by these two CP-violating sources separately. To study the relative contribution of \(\tilde{Z}'\) and \(\tilde{s}_3\) to the baryon asymmetry, we show contours of \(Y_B/Y_{\text{obs}}\) in the \(\phi - g_N\) plane (figure 2 (a)) and in the \(\phi - \lambda_{333}\) plane (figure 2 (b)).
Figure 1. Y_B/Y_{obs} as the function of g_N (left panel) and λ_{333} (right panel) by setting $\phi = \pi/8$ (solid), $\pi/4$ (dashed) and $\pi/2$ (dotted) respectively. We have set $M_{\tilde{Z}} = 400$ GeV and $M_{\tilde{H}_3} = 350$ GeV.

Figure 2. Contours of Y_B/Y_{obs} in the $\phi - g_N$ (a), $\phi - \lambda_{333}$ (b) and $\lambda_{333} - g_N$ (c) planes. We have set $M_{\tilde{Z}} = 400$ GeV and $M_{\tilde{H}_3} = 350$ GeV. Contours in the plots from the left to the right correspond to $Y_B/Y_{\text{obs}} = 1, 2, 3, 4, 5$ for (a), $Y_B/Y_{\text{obs}} = 0.1, 0.5, 1, 2, 3$ for (b) and $Y_B/Y_{\text{obs}} = 10, 5, 1, 0.1$ for (c).

plane (figure 2 (b)). Contours from left to right correspond to $Y_B/Y_{\text{obs}} = 1, 2, 3, 4, 5$ (figure 2 (a)) and $Y_B/Y_{\text{obs}} = 0.1, 0.5, 1, 2, 3$ (figure 2 (b)) respectively. We show contours of Y_B/Y_{obs} in the $g_N - \lambda_{333}$ plane by assuming $\phi = \pi/4$ in the figure 2 (c). Notice that the new gaugino induced CP-violating source is more effective to give rise to a sizable baryon asymmetry. This is because we set a narrower mass splitting between $M_{\tilde{H}_3}$ and $M_{\tilde{Z}}$ than that between $M_{\tilde{H}_3}$ and $M_{\tilde{S}_3}$ when carrying out numerical calculation. We show in the left (right) panel of figure 3 Y_B/Y_{obs} as the function of $M_{\tilde{H}_3}^0$ ($M_{\tilde{Z}}$) by assuming $M_{\tilde{Z}}$ ($M_{\tilde{H}_3}) = 400$ GeV and $g_N = \lambda_{333} = 0.5$. The solid dashed and dotted lines correspond to $\phi = \pi/8, \pi/4, \pi/2$ respectively. It is obvious that there is a resonant enhancement to the production of the baryon asymmetry when $M_{\tilde{H}_3} = M_{\tilde{Z}}$.

Finally let us consider constraints on the CP phases of the neutralino mass matrix from the non-observation of the electric dipole moments for neutrons and the electron. These CP-violating phases may contribute to EDMs via the $H^+ W^-$ or $W^+ W^-$ mediated graphs. If the CP phase relevant to the EWBG is Arg($\mu M_2 b^*$), where M_2 is gaugino parameter and b is the Higgs sector soft mass, one needs the first two generation sfermions to be heavier than ~ 10 TeV and $M_A \geq 1$ TeV [17, 45, 46] to suppress the one-loop or two-loop contributions to
Figure 3. Y_N/Y_{obs} as the function of $M_{\tilde{H}_3}$ (left panel) and $M_{\tilde{Z}'}$, where the solid, dashed and dotted lines correspond to $\phi = \pi/8$, $\pi/4$ and $\pi/2$ respectively. We set $M_{\tilde{Z}'} = 400$ GeV on the left panel and $M_{\tilde{H}_3} = 400$ GeV on the right panel.

the EDMs. It was observed in ref. [47] that the CP-violating phase from the bino-Higgsino sector may account for successful baryogenesis without inducing EDM constraints. This observation weaken the correlation between the electroweak baryogenesis and EDMs. For our case, we only focus on the EWBG triggered by the CP-violating phases from the singlino-Higgsino sector and the new bino-Higgsino sector, thus constraint on the squark masses, chargino masses and the CP-odd Higgs mass can be relaxed. It was found [22, 23] that the maximal CP phase ϕ is still compatible with the current EDM constraints in the NMSSM if sfermion masses are taken to be heavier than 1 TeV. The same argument can be applied to our model. Here we assume the first two generation sfermion masses and the CP-odd Higgs mass to be heavier than 2 TeV and 1 TeV respectively for safety, and leave the systematic study of constraints of EDMs in the E_6SSM to another project.

4 Conclusion

MSSM has difficulty in explaining both electroweak baryogenesis and 125 GeV Higgs. Possible extensions to the MSSM accounting these two problems were well studied recently. In this paper, we studied electroweak baryogenesis in the E_6 inspired supersymmetric standard model, which contains at least two more CP-violating source terms in the neutralino sector compared with the MSSM case. New CP-violating source terms as well as transport equations of the Higgs supermultiplet were calculated analytically and numerically. Our results show that CP-violating sources from singlinos and the new gaugino can give rise to a successful electroweak baryogenesis respectively. It should be mentioned that we only studied the adequate condition for a successful baryogenesis in the E_6SSM. A systematic study of the EDMs constraint to the E_6SSM, which is important and necessary but beyond the reach of this paper, will be shown in an another paper.

Acknowledgments

This work was supported in part by DOE Grant DE-SC0011095.
References

[1] WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, *Astrophys. J. Suppl.* **192** (2011) 18 [arXiv:1001.4538] [insPIRE].

[2] PLANCK collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, *Astron. Astrophys.* **571** (2014) A16 [arXiv:1303.5076] [insPIRE].

[3] A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, *Pisma Zh. Eksp. Teor. Fiz.* **5** (1967) 32 [JETP Lett. **5** (1967) 24] [Sov. Phys. Usp. **34** (1991) 392] [Usp. Fiz. Nauk **161** (1991) 61] [insPIRE].

[4] D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, *New J. Phys.* **14** (2012) 125003 [arXiv:1206.2942] [insPIRE].

[5] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, *Ann. Rev. Nucl. Part. Sci.* **43** (1993) 27 [hep-ph/9302210] [insPIRE].

[6] M. Trodden, Electroweak baryogenesis, *Rev. Mod. Phys.* **71** (1999) 1463 [hep-ph/9803479] [insPIRE].

[7] A. Riotto, Theories of baryogenesis, [hep-ph/9807454] [insPIRE].

[8] A. Riotto and M. Trodden, Recent progress in baryogenesis, *Ann. Rev. Nucl. Part. Sci.* **49** (1999) 35 [hep-ph/9901362] [insPIRE].

[9] M. Quiros, Finite temperature field theory and phase transitions, [hep-ph/9901312] [insPIRE].

[10] M. Dine and A. Kusenko, The origin of the matter-antimatter asymmetry, *Rev. Mod. Phys.* **76** (2003) 1 [hep-ph/0303065] [insPIRE].

[11] J.M. Cline, Baryogenesis, [hep-ph/0609145] [insPIRE].

[12] G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, *Phys. Rept.* **516** (2012) 1 [arXiv:1106.0034] [insPIRE].

[13] ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, *Phys. Lett.* **B 716** (2012) 1 [arXiv:1207.7214] [insPIRE].

[14] ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, *Phys. Lett.* **B 726** (2013) 88 [Erratum ibid. **B 734** (2014) 406] [arXiv:1307.1427] [insPIRE].

[15] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, *Phys. Lett.* **B 716** (2012) 30 [arXiv:1207.7235] [insPIRE].

[16] CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at√s = 7 and 8 TeV, *JHEP* **06** (2013) 081 [arXiv:1303.4571] [insPIRE].

[17] D. Curtin, P. Jaiswal and P. Meade, Excluding electroweak baryogenesis in the MSSM, *JHEP* **08** (2012) 005 [arXiv:1203.2932] [insPIRE].

[18] M. Carena, M. Quirós and C.E.M. Wagner, Opening the window for electroweak baryogenesis, *Phys. Lett.* **B 380** (1996) 81 [hep-ph/9603420] [insPIRE].

[19] M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, *Nucl. Phys.* **B 535** (1998) 423 [hep-lat/9804019] [insPIRE].

[20] J.R. Espinosa, Dominant two loop corrections to the MSSM finite temperature effective potential, *Nucl. Phys.* **B 475** (1996) 273 [hep-ph/9604320] [insPIRE].

[21] U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, *Phys. Rept.* **496** (2010) 1 [arXiv:0910.1785] [insPIRE].
[22] K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, *Higgs mediated EDMs in the next-to-MSSM: an application to electroweak baryogenesis*, Phys. Rev. D 84 (2011) 015002 [arXiv:1102.5679] [INSPIRE].

[23] K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, *Singlino-driven electroweak baryogenesis in the next-to-MSSM*, Phys. Lett. B 710 (2012) 188 [arXiv:1201.3781] [INSPIRE].

[24] E. Senaha, *Z′-ino-driven electroweak baryogenesis in the UMSSM*, Phys. Rev. D 88 (2013) 055014 [arXiv:1308.3389] [INSPIRE].

[25] S.F. King, S. Moretti and R. Nevzorov, *Theory and phenomenology of an exceptional supersymmetric standard model*, Phys. Rev. D 73 (2006) 035009 [hep-ph/0510419] [INSPIRE].

[26] S.F. King, S. Moretti and R. Nevzorov, *Exceptional supersymmetric standard model*, Phys. Lett. B 634 (2006) 278 [hep-ph/0511256] [INSPIRE].

[27] J.P. Hall, *Phenomenological aspects of the E6 SSM*, arXiv:1201.5488 [INSPIRE].

[28] J. Kalinowski, S.F. King and J.P. Roberts, *Neutralino dark matter in the USSM*, JHEP 01 (2009) 066 [arXiv:0811.2204] [INSPIRE].

[29] P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, *The constrained exceptional supersymmetric standard model*, Phys. Rev. D 80 (2009) 035009 [arXiv:0904.2169] [INSPIRE].

[30] P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, *Predictions of the constrained exceptional supersymmetric standard model*, Phys. Lett. B 681 (2009) 448 [arXiv:0901.1192] [INSPIRE].

[31] S.F. King, R. Luo, D.J. Miller and R. Nevzorov, *Leptogenesis in the exceptional supersymmetric standard model: flavour dependent lepton asymmetries*, JHEP 12 (2008) 042 [arXiv:0806.0330] [INSPIRE].

[32] P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, *Constrained exceptional supersymmetric standard model with a Higgs near 125 GeV*, Phys. Rev. D 86 (2012) 095003 [arXiv:1206.5028] [INSPIRE].

[33] P. Athron, M. Binjounaid and S.F. King, *Fine tuning in the constrained exceptional supersymmetric standard model*, Phys. Rev. D 87 (2013) 115023 [arXiv:1302.5291] [INSPIRE].

[34] W. Chao and M.J. Ramsey-Musolf, *Electroweak baryogenesis, electric dipole moments and Higgs diphoton decays*, JHEP 10 (2014) 180 [arXiv:1406.0517] [INSPIRE].

[35] D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, *Lepton-mediated electroweak baryogenesis*, Phys. Rev. D 81 (2010) 063506 [arXiv:0905.4509] [INSPIRE].

[36] A. Riotto, *The more relaxed supersymmetric electroweak baryogenesis*, Phys. Rev. D 58 (1998) 095009 [hep-ph/9803357] [INSPIRE].

[37] C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, *Resonant relaxation in electroweak baryogenesis*, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].

[38] D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, *Supergauge interactions and electroweak baryogenesis*, JHEP 12 (2009) 067 [arXiv:0908.2187] [INSPIRE].

[39] V. Cirigliano, M.J. Ramsey-Musolf, S. Tulin and C. Lee, *Yukawa and tri-scalar processes in electroweak baryogenesis*, Phys. Rev. D 73 (2006) 115009 [hep-ph/0603058] [INSPIRE].

[40] J.M. Moreno, M. Quiros and M. Seco, *Bubbles in the supersymmetric standard model*, Nucl. Phys. B 526 (1998) 489 [hep-ph/9801272] [INSPIRE].

[41] M. Carena, J.M. Moreno, M. Quiros, M. Seco and C.E.M. Wagner, *Supersymmetric CP-violating currents and electroweak baryogenesis*, Nucl. Phys. B 599 (2001) 158 [hep-ph/0011055] [INSPIRE].
[42] M. Carena, M. Quirós, A. Riotto, I. Vilja and C.E.M. Wagner, *Electroweak baryogenesis and low-energy supersymmetry*, *Nucl. Phys. B* 503 (1997) 387 [hep-ph/9702409] [inSPIRE].

[43] J.S. Schwinger, *Brownian motion of a quantum oscillator*, *J. Math. Phys.* 2 (1961) 407 [inSPIRE].

[44] K.-C. Chou, Z.-B. Su, B.-L. Hao and L. Yu, *Equilibrium and nonequilibrium formalisms made unified*, *Phys. Rept.* 118 (1985) 1 [inSPIRE].

[45] V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, *MSSM baryogenesis and electric dipole moments: an update on the phenomenology*, *JHEP* 01 (2010) 002 [arXiv:0910.4589] [inSPIRE].

[46] M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, *The baryogenesis window in the MSSM*, *Nucl. Phys. B* 812 (2009) 243 [arXiv:0809.3760] [inSPIRE].

[47] Y. Li, S. Profumo and M. Ramsey-Musolf, *Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments*, *Phys. Lett. B* 673 (2009) 95 [arXiv:0811.1987] [inSPIRE].