Dynamic method of controlling the traction force driving wheels of vehicle

A V Egorov¹, A V Lysyannikov², Yu F Kaizer³, S V Dorohin³, D U Smirnov⁴, E N Bogdanov⁵, N N Lysyannikova⁵ and A V Kuznetsov⁵

¹ Volga State University of Technology, 424000, Yoshkar-Ola, 3, Lenin Square, Russia
² Siberian Federal University, 660041, Krasnoyarsk, 82/6, Svobodny Avenu, Russia
³ Voronezh State University of Forestry and Technologies Named after G.F. Morozov, 394087, Voronezh, 8, Timiryazeva str., Russia
⁴ Sarov of Physics and Technology Institute of the National Research Nuclear University MEPhI, 607186, Sarov, 6, Dukhova, Russia
⁵ Krasnoyarsk State Agrarian University, 660049, Krasnoyarsk, 2 Kireskogo, Russia

E-mail: kaiser171074@mail.ru

Abstract. The contemporary stage of development of methods and means of control traction force developed on the driving wheels of vehicles is used as one of the diagnostic parameters of the angular acceleration of the drive wheels and the angular acceleration of transmission units, however, scientific and technical studies of the methods take into account the law of generation of mechanical power during one revolution shaft engine vehicle. Also developed methods that are used to control the torque developed by the drive wheels of the vehicle, the acceleration time to a certain speed. At the contemporary stage of development of methods and means, there is an incomplete justification for the use of angular accelerations of transmission units, driving wheels for controlling traction force developed on driving wheels of vehicles, and the non-use of linear accelerations of vehicles for controlling developed traction force. No disadvantages from the above is a dynamic method of controlling traction force the drive wheels of a vehicle, the scientific and technical justification of which is given in this article.

1. Introduction

At the present level of development of methods and means of controlling traction force developed on the driving wheels of vehicles, use as one of the diagnostic parameters the angular accelerations of the driving wheels and the angular accelerations of the transmission units [1-7], however, the scientific and technical substantiation of methods take into account the law of mechanical generation power for one revolution of the engine shaft of the vehicle.

Also developed methods that are used to control the torque developed by the drive wheels of the vehicle, the acceleration time to a certain speed [8].

Thus, at the present stage of development there is an incomplete justification for the use of angular accelerations of transmission units, driving wheels for controlling traction force developed on driving wheels of vehicles, as well as non-use of linear accelerations of vehicles for controlling developed traction force.
2. Development of a dynamic method for controlling traction force the drive wheels of a wheeled vehicle

Consider the kinematic scheme of the rear-wheel drive 4-wheeled vehicle (Figure 1).

![Figure 1. Kinematic scheme of the rear-wheel drive 4-wheeled vehicle: 1 – internal combustion engine; 2 – clutch; 3 – change speed gearbox; 4 – final drive; 5 – final reduction gear.](image)

The determination of the moment of inertia to the axis of rotation of the crankshaft is made under the assumption that the internal combustion engine through the kinematic transmission must report the mechanical energy necessary to drive the four wheels. Each of the wheels has a weight \(m_{wheels} \) and radius \(r_{wheels} \), taking into account the deformation of the tire. On each wheel in the first approximation, accounts for the \(\frac{1}{4} \) weight of the vehicle with the driver \(m_{vehicle} \) and weight of cargo \(m_{cargo} \). In the case of a particular vehicle and its cargo, the ratio may be different.

According to [11], the moment of inertia of the system of rotating loads is the moment of inertia of the system consisting only of elements rotating at an angular velocity of the internal combustion engine shaft \(\omega_{engine} \), but having a reserve of kinetic energy equal to the reserve of kinetic energy of the real system.

From the condition of invariance of the kinetic energy, it follows that for a system consisting of four wheels connected through the gears of the internal combustion engine and rotating at an angular speed \(\omega_{wheels} \), having, taking into account the rolling friction on the surface and sliding friction in the supports, the total moment of inertia \(J_{wheels} \), the speed of the vehicle \(V_{vehicle} = \omega_{wheels} r_{wheels} \), in disregard of the action of air resistance, we obtain
\[J(\omega) = J_{\text{engine}}(\omega) + J_{\text{transmis.}}(\omega) + J_{\Sigma\text{wheels}}(\omega) + (m_{\text{vehicle}} + m_{\text{cargo}})\frac{V_{\text{vehicle}}^2}{2}, \]

where \(J(\omega) \) - the moment of inertia of the transmission units, brought to the axis of rotation of the crankshaft, taking into account mechanical losses; \(J_{\text{engine}}(\omega) \) - the moment of inertia of the moving reciprocating and rotating parts of the engine, brought to the axis of rotation of the crankshaft, taking into account mechanical losses; \(J_{\text{transmis.}}(\omega) \) - the moment of inertia of the transmission units, brought to the axis of rotation of the crankshaft, taking into account mechanical losses; \(J_{\Sigma\text{wheels}}(\omega) \) - the moment of inertia of the wheels of the vehicle, brought to the axis of rotation of the crankshaft of the engine, taking into account mechanical losses.

From here the required reduced moment of inertia of the system is

\[J(\omega) = J_{\text{engine}}(\omega) + J_{\text{transmis.}}(\omega) + J_{\Sigma\text{wheels}}(\omega) + (m_{\text{vehicle}} + m_{\text{cargo}})\frac{V_{\text{vehicle}}^2}{2}. \]

The gear ratio between the internal combustion engine and the drive wheel is equal to the product ratio change speed gearbox \(k_{\text{CSG}} \) ratio final drive \(k_{\text{FD}} \) and, in the case of an final reduction gear, ratio final reduction gear \(k_{\text{FRG}} \).

Then (2) can be represented as

\[J(\omega) = J_{\text{engine}}(\omega) + J_{\text{transmis.}}(\omega) + J_{\Sigma\text{wheels}}(\omega) + \left(\frac{1}{k_{\text{CSG}}k_{\text{FD}}k_{\text{FRG}}} \right) + \left(m_{\text{vehicle}} + m_{\text{cargo}} \right) r_{\text{wheels}}^2, \]

The dependence of the internal combustion engine torque on the rotational speed of the engine crankshaft, expressed through the angular acceleration of the crankshaft and the moment of inertia of the loads rotating and translational motion, is given

\[M(\omega) = J(\omega) \epsilon(\omega) = \left[J_{\text{engine}}(\omega) + J_{\text{transmis.}}(\omega) + \left(\frac{J_{\Sigma\text{wheels}} + (m_{\text{vehicle}} + m_{\text{cargo}}) r_{\text{wheels}}^2}{k_{\text{CSG}}k_{\text{FD}}k_{\text{FRG}}} \right) \right] \epsilon(\omega). \]
\[M(\omega) = \left[J_{\text{engine}}(\omega) + J_{\text{transmis}}(\omega) + \left(\frac{J_{\Sigma_{\text{wheels}}} + m_{\text{vehicle}}r_{\text{wheels}}^2}{k_{\text{CSG}}^2 k_{\text{FG}}^2 k_{\text{FRG}}^2} \right) \right] \varepsilon_1(\omega), \] \tag{5}

where \(\varepsilon_1(\omega) \) - angular acceleration of the crankshaft of the internal combustion engine during acceleration of the vehicle only by the driver.

Calculated torque equation during acceleration of a vehicle with a driver and a cargo when the internal combustion engine is operating according to the external characteristic (when the accelerator is pressed all the way)

\[M(\omega) = \left[J_{\text{engine}}(\omega) + J_{\text{transmis}}(\omega) + \left(\frac{J_{\Sigma_{\text{wheels}}} + (m_{\text{vehicle}} + m_{\text{cargo}})r_{\text{wheels}}^2}{k_{\text{CSG}}^2 k_{\text{FG}}^2 k_{\text{FRG}}^2} \right) \right] \varepsilon_2(\omega), \] \tag{6}

where \(\varepsilon_2(\omega) \) - angular acceleration of the crankshaft of the engine during acceleration of a vehicle with a driver and weight \(m_{\text{cargo}} \).

Equating (5) and (6), we determine the amount

\[J_{\text{engine}}(\omega) + J_{\text{transmis}}(\omega) = \frac{m_{\text{cargo}}r_{\text{wheels}}^2}{k_{\text{CSG}}^2 k_{\text{FG}}^2 k_{\text{FRG}}^2} \cdot \frac{\varepsilon_2(\omega)}{\varepsilon_1(\omega) - \varepsilon_1(\omega)} - \frac{J_{\Sigma_{\text{wheels}}} + m_{\text{vehicle}}r_{\text{wheels}}^2}{k_{\text{CSG}}^2 k_{\text{FG}}^2 k_{\text{FRG}}^2}. \] \tag{7}

Substituting (7) into (5) or (6)

\[M(\omega) = \frac{m_{\text{cargo}}r_{\text{wheels}}^2}{k_{\text{CSG}}^2 k_{\text{FG}}^2 k_{\text{FRG}}^2} \cdot \frac{\varepsilon_1(\omega)\varepsilon_2(\omega)}{\varepsilon_1(\omega) - \varepsilon_2(\omega)}. \] \tag{8}

From (8) determine the traction force developed by the driving wheels:

\[F(\omega) = \frac{M(\omega)}{r_{\text{vehicle}}} = \frac{m_{\text{cargo}}r_{\text{vehicle}}}{k_{\text{CSG}}^2 k_{\text{FG}}^2 k_{\text{FRG}}^2} \cdot \frac{\varepsilon_1(\omega)\varepsilon_2(\omega)}{\varepsilon_1(\omega) - \varepsilon_2(\omega)}. \] \tag{9}

Similarly, the dynamic method of controlling the traction force drive wheels, based on the equality of the traction forces on the drive wheels during acceleration without weight and with weight, can also be solved by analyzing the dynamics of the linear motion of the wheeled vehicle. The scheme of the method implementation is shown in figure 2.

At the initial stage, the vehicle 1, the change in the position of the engine controls of which is carried out according to a certain law, accelerates in a specific gear in a horizontal section without slipping, while the total weight of the vehicle is \(m_{\text{vehicle}} \), and the acceleration of the vehicle is \(a \).

Then on the vehicle 1 is placed a cargo of unknown weight 2 and a vehicle 1, the change in the position of the engine controls of the engine which is carried out according to the same specific law,
accelerates at a particular gear in a loaded state in a horizontal section without slipping when the weight of the cargo m_{cargo}, and the acceleration of the car with the cargo is a_1.

The traction force developed by the driving wheels of the vehicle will be denoted by F.

Assuming in the first approximation that the frictional force of the wheels on the roadway during the first and second acceleration of the vehicle remains unchanged, we write down the projections on the Ox axis acting on the vehicle during the first and second acceleration:

$$F = m_{\text{vehicle}}a,$$ \hspace{1cm} (10)

$$F = (m_{\text{vehicle}} + m_{\text{cargo}})a_1.$$ \hspace{1cm} (11)

Since the first and second acceleration of the vehicle was carried out according to the same definite law of changing the position of the engine controls on one particular gear in a horizontal stretch without slipping, then, respectively, traction force drive wheels developed every time the same.

Equating (10) to (11) we determine the unknown mass m_{vehicle}:

$$m_{\text{vehicle}} = \frac{F}{a},$$ \hspace{1cm} (12)

$$m_{\text{vehicle}} = \frac{F}{a_1} - m_{\text{cargo}}.$$ \hspace{1cm} (13)

Equating (12) to (13) we determine the unknown traction force developed by the driving wheels of the wheeled vehicle F:

$$F = m_{\text{cargo}} \frac{a \cdot a_1}{a - a_1}.$$ \hspace{1cm} (14)

An application for the invention of the Russian Federation [9] has been filed for the considered dynamic method for controlling the traction force of the drive wheels of a motor vehicle.

3. Conclusion

Control traction force of the drive wheels of the vehicle is possible when using the drive motor as the diagnostic indicator of the angular acceleration of the shaft when the vehicle is moving with or without a cargo.
Control of the drive wheels of the vehicle is possible when using as a diagnostic indicator of linear acceleration of the vehicle when driving with a cargo of known mass and without it.

References
[1] Brol S 2013 Application of direct acceleration measurement in powertrain testing International Symposium on Electrodynamic and Mechatronic Systems pp 29–30
[2] Brol S 2013 Progress in application of portable accelerometer based measurement systems in powertrain performance testing performed on road SAE Technical Papers 2 (DOI: 10.4271/2013-01-1433)
[3] Händel P, Enstedt B and Ohlsson M. 2010 Combating the effect of chassis squat in vehicle performance calculations by accelerometer measurements Measurement: Journal of the International Measurement Confederation 43 483–8
[4] Jantos J, Brol S and Mamala J 2007 Problems in assessing road vehicle driveability parameters determined with the aid of accelerometer SAE Technical Papers (DOI: 10.4271/2007-01-1473)
[5] Mamala J J, Brol S and Jantos J 2010 The estimation of the engine power with use of an accelerometer SAE Technical Papers (DOI: 10.4271/2010-01-0929)
[6] Kolator B and Janulin 2018 Methodology for measuring car traction parameters MATEC Web of Conferences 182 (DOI: 10.1051/matecconf/201818202001)
[7] Moriyama S I 2019 Traction force estimator of tracked mobile robot supported by the back-to-back test IEEJ Transactions on Electrical and Electronic Engineering 14 948–53
[8] Krivtsov S N, Syrbakov A P and Korchuganova M A 2016 Measuring of Traction and Speed Characteristics as Well as of Fuel Economy of a Car in Road Conditions IOP Conference Series: Materials Science and Engineering 142 012101
[9] Egorov A V 2018 Dynamic method of control traction force wheeled vehicle Application for the patent of the Russian Federation 2018141956