Titania-Ceria surfactant assisted sol-gel synthesis and characterization

A. TORRES-ROMERO | IMMM UMSNH | abigailtorresromero2014@gmail.com
M. CAJERO-JUÁREZ | IIAF UMSNH | euconotre@gmail.com
M. E. CONTRERAS-GARCÍA | IMMM UMSNH | cajeromarco@hotmail.com

Abstract
The nanoparticles of titanium dioxide are important in a wide range of applications such as catalysis, environmental remediation and solar energy conversion. While cerium oxide is a rare-earth oxide material used in the fields of photoluminescence, photosensitive material to UV radiation. Furthermore, research on the synthesis of nanoparticles of titanium dioxide has given rise to different methods such as sol-gel, in solid states, hydrothermal processes, among others. The process of solid state synthesis is most often used for the technical production of ceramic materials, while the sol-gel has gained much popularity in recent decades. These methods, microemulsion reverse micelles technique, is one of the most versatile allowing control of particle properties such as size distribution, morphology and surface area. In this work, titania-ceria nanoparticles in anatase phase were synthesized by sol-gel method assisted by microemulsion reverse micelle using titanium butoxide and cerium nitrate hexahydrate as the precursors. The sample was thermally treated at 600 °C at a rate of 3 °C min⁻¹. The residence time of the sample at this temperature was 2 hrs. TEM and XRD analysis were used to characterize the samples obtained. According to the results, the obtained nanoparticles present spherical morphology and have a size distribution of 5 nm for CeO₂, 9.5 for TiO₂ and 14, 17 and 20 nm for the doped TiO₂ with 5, 10 and 15% CeO₂, respectively. The results indicate that the CeO₂ was incorporated into the network of titania.

Keywords: nanoparticles, titania, ceria, microemulsion, sol-gel.

1. Introduction
Nanomaterials based on metal oxides exhibit remarkable physical and chemical properties that enable the development of novel nanodevices that can be used in different physical, biological, biomedical and pharmaceutical applications [1-7]. The surface of these nanostructures is crucial for these applications. These nanostructures excel in catalytic applications because of the presence of surface defects that act as active sites for adsorption of reactive molecules [6]. These defects present in the nanoparticles, especially cerium dioxide and titanium, increase the active surface area that favors the union of a large variety of ligands on its surface [8]. Although so far the use of nanoparticles of titania and cerium in the biomedical and therapeutic area has been carried out separately and not mixed [3-7], it is possible to hardness the power possessed by lanthanide ions with electronic configuration 4f, as cerium, which when entering the network of the titania acts as an electronic trap [9-10], which could increase the number of molecules captured on its surface, which will be extremely useful for increasing the binding of drugs in nanoparticles of titania and improve its efficiency as a nanocarrier.

Furthermore, research on the synthesis of these nanomaterials has given rise to different methods such as sol-gel, solid, chemical vapor deposition, hydrothermal processes, among others. The process of solid state synthesis is most often used for the production of technical ceramic materials, while the sol-gel has gained much popularity in recent decades [3]. These methods microemulsion technique reverse micelles is one of the most versatile allowing control of particle properties such as size distribution, morphology and surface area [5]. The reverse micelles are used as a micro-heterogeneous medium for generating nanoparticles, where microwaves surfactant provide a similar effect to a cage which influences the particle nucleation, growth and agglomeration. The scale of these nanoreactors size is in the range 2 to 10 nm. This is a dynamic system on a micellar level. Micelles collide with each other and quickly share their content, which is essential for carrying out chemical reactions [11].

In this work a combined method for synthesis of TiO₂ nanoparticles doped CeO₂, for use as drug delivery systems described. Using Tween-20 as surfactant, as cosurfactant methanol, toluene as continuous phase and titanium butoxide and cerium nitrate as precursors.

2. Materials and methods
All reagents used in this study were of analytical grade, Ti(OC₂H₅)₄ (98%, Aldrich), Ce(NO₃)₃·6H₂O (99.8%, Merck), C₂H₅OH (99.5%, Merck), CH₃OH (99.8%, Merck), C₅H₁₀N₂O₆ (Merck) and deionized water (Merck).

2.1 Nanoparticles synthesis
TiO₂, CeO₂ and TiO₂-CeO₂ nanoparticles were synthesized by sol-gel method assisted by a surfactant. The precursor Ce(NO₃)₃·6H₂O was dissolved in 2 mL of deionized water (0, 5, 10 and 15 mol%), then slowly added to an organic phase.
Tween-20/methanol/toluene in a v/v ratio of 6/1/10 mL and was at a temperature of 60 °C for 10 min, then added drop by drop the titanium butoxide (in the following proportions: 100, 95, 90 and 85 mol%) while preserving the conditions of temperature and agitation for 40 min. The resulting suspension remained standing at room temperature protected from light for 12 hrs. The synthesis of nanoparticles becomes evident that is possible to observe the separation of the microemulsion into two layers. The upper layer is recovered and subjected to drying at 100 °C in an oven for 24 hrs, the resulting powder sample was heat treated at 600 °C at a rate of 3 °C / min1. The residence time of the sample at this temperature was 2 hrs.

2.2 Characterization
The structural and chemical characterization of the nanoparticles was made from powder samples obtained in the synthesis. The samples were prepared in the form of dilutions of varied concentration (according to the analysis technique), and powders obtained from the heat treatment. The characterization techniques that were used were: X-ray diffraction, XRD and conventional and high resolution transmission electron microscopy, TEM and HRTEM.

3. Results and discussion
3.1 Nanoparticles synthesis
The synthesis process from the hydrolysis reaction of titanium butoxide and the insertion of cerium nitrate into the micelles formed by Tween-20 and methanol under acidic conditions (pH 5) was manifested by the separation of the microemulsion in two layers upon completion of 40 minutes of reaction. The upper layer consists of the organic phase containing the non-agglomerated nanoparticles and the lower layer is treated with the inorganic phase [12].

In Fig. 1, the diffraction patterns of the single TiO₂ (a) and doped with (b) 5%, (c) 10% and (d) 15% CeO₂ powders are shown. In the four diffraction patterns only the reflections corresponding to the anatase phase of titanium dioxide (JCPDS # 01-071-1166) could be identified; while in the three doped titania patterns, the Bragg peaks corresponding to the doping species, CeO₂, were not observed, suggesting the incorporation of CeO₂ in the TiO₂ network. It can also be observed in these three diffraction patterns that, as the CeO₂ percentage increases.

The average crystallite size (TC) for the four systems studied was determined by the Debye-Scherrer formula, the results of the measurements are shown in Fig. 2. When comparing these results with the simple nanoparticles obtained by this same method, it can be seen that when doping the TiO₂ nanoparticles with CeO₂, the average grain size increases, however as the percentage of dopant increases the size of crystallite decreases, this may be due to the segregation of the dopant cations at the grain boundary may prevent the growth of nanocrystallite in the nanoparticles [2, 13-14]. Another possible cause is that the Ce⁺ ion absorbed in the titania network decreases the free surface energy of the particles, which inhibits the process of aggregation of the nanoparticles [2, 15].

The microstructural effect of spreading in the peaks is the presence of residual stresses in the material due to the inclusion of the cerium atoms in the titania network, causing a deformation of its crystalline planes. In this particular case the effect is presented at the microscopic level, causing a widening of the diffraction profile with respect to the original position of the standard pattern diffraction peaks [9-10]. The evaluation of the microtensions was carried out from the displacement of the crystalline plane (101) of the titania, because they suffer a variation in the interplanar distances caused by the internal residual forces, the results of the estimations are shown in the Fig. 2.

From the measurements of the crystallite size and microtension in the diffraction patterns of the powders of simple titania and ceria doped, represented in Fig. 2, it is possible to affirm that for the case of simple TiO₂, the increase in the maximum width a half peak (FWHM), is only provoked by the decrease in crystallite size; whereas for the powders of doped titania, it is mainly due to the microdeformations caused in their crystalline planes when the ceria atoms are incorporated and the decrease
of the crystallite size is possibly the result of an increase in the percentage of dopant incorporated in their network. This effect is more noticeable in the system doped with 15% of ceria because when using higher percentages of CeO₂, the greater the tension provoked in the network that of the titania.

The crystallographic data of the phase identified in the pattern of Fig. 1a (TiO₂; JCPDS # 01-073-1764) were used as crystalline model from the obtained diffraction patterns. In Fig. 3, it is seen that as the dopant percentage increases, CeO₂, the Ti factor occupying factor in the unit cell decreases, this suggests that the cerium atoms are incorporated in the titania network by displacing these Atoms.

Fig. 3 Factor atomic occupation of simple and TiO₂, doped 5%, 10% and 15% CeO₂

Fig. 4 shows a high-resolution image, accompanied by its corresponding Fast Fourier Transform (FFT), taken from the TiO₂ sample. The selected nanoparticle has a size which is about 8.5 nm, in which an interplanar distance of about 0.343 nm, corresponding to the plane (101) of the tetragonal cubic structure of TiO₂, could be measured. Likewise, in their respective FFT, the periodic arrangement of the points makes evident the crystalline character of the particle.

Fig. 4 High resolution micrograph of a nanoparticle showing an interplanar distance of 0.343 nm.

Fig. 5a corresponds to a high resolution image of the doped sample, where spheroidal nanoparticles with a diameter of 20 nm are observed, which is in agreement with the crystallite size estimated from the main intensity in the pattern i.e. the doping at low percentages of CeO₂ increases the size of crystallite and thus the particle diameter; it can be thought that the main reason for this growth is because the radius of the cerium atom is more large than the Ti⁺ and to enter in low percentages causes that the nanoparticles increase their size. While in Fig. 5b, a nanoparticle with an approximate size of 22 nm is observed, in which an interplanar distance of approximately 2.48 Å, corresponding to the plane (101) of the tetragonal cubic structure of TiO₂. This reinforces the observations in the diffraction patterns, which suggests the incorporation of CeO₂ in the TiO₂ network [16-18].

Fig. 6a and 6b shows clear field micrographs at a magnification of 690,000×, taken in different areas of the doped titania sample with 15% CeO₂, where it is observed that the nanoparticles have average diameters of 14 nm. As can be seen in the micrographs, the particle size decreases with increasing dopant percentage, suggesting that the cerium ion upon incorporation into the titania network slows the growth of the nanoparticles.

Fig. 6 Brightfield TEM micrographs with a magnification of 690,000×, in which a group of spheroidal TiO₂ nanoparticles doped 15% CeO₂ is observed.

Fig. 7 Light field micrographs with a magnification of 99,000×, obtained by TEM.

Fig. 7a and 7b correspond to clear-field micrographs taken from a CeO₂ sample, in which spheroidal nanoparticles with an average size of 5 nm (indicated by arrows) are observed. These
results indicate that using the proposed methodology can be obtained CeO₂ nanoparticle, and suggesting that during the joint process of synthesis and doping both types of nanoparticles, however, because the CeO₂ nuclei are smaller, due to the low concentration of reagent, gives a secondary nucleation, where the nanoparticles of TiO₂ are formed [12, 19].

4. Conclusions

The conditions for the synthesis of nanoparticles of TiO₂ doped with ceria were established by the inverse micelles method, emphasizing the surfactant handling and the formation of suspensions in which the material is synthesized.

By the microemulsion method of reverse micelles, nanoparticles of anatase phase titanias and titania doped with ceria of spheroidal shape were obtained with an average diameter of 9.5, 14 and 20 nm, respectively. This suggests that in the interior of the micelles there is a greater availability of water to carry out the hydrolysis and dopant insertion reaction in the TiO₂ nanoparticles, which favors the nucleation stage, so it is probable that increase the number of nuclei produced thereby forming smaller particles.

5. Acknowledgments

This research was funded by CIC UMSNH (Universidad Michoacana de San Nicolás de Hidalgo, México) and CONACYT (Consejo Nacional de Ciencia y Tecnología, México). A. Torres-Romero received a doctoral grant from CONACYT.

References

[1] Osakam, G. – Nellore, A. – Penn, R. L. – Searson, P. C. (2003): The growth kinetics of TiO₂ nanoparticles from titanium (IV) alkoxide at high water/ titanium ratio. The Journal of Physical Chemistry B, 107(8), 1734-1738. https://doi.org/10.1021/jp021237f
[2] Xu, J. – Ao, Y. – Fu, D. (2009): A novel Ce, C-codoped TiO₂ nanoparticles and its photocatalytic activity under visible light. Applied Surface Science, 256(3), 884-888. https://doi.org/10.1016/j.apsusc.2009.08.079
[3] Sithisang, Onthakan – Komarneni, Sridhar – Tantirungrotecha, Jonggoel – Dong Noh, Young – Li, Huilui – Yin, Shu – Tsai, Tsegiu – Katsuki, Hiroaki (2012): Microwave-hydrothermal synthesis of extremely high specific surface area anatase for decomposing NOₓ. Ceramics International, Vol 38, No 8, pp. 6099-6105. https://doi.org/10.1016/j.ceramint.2012.04.037
[4] Sugimoto, Tadao – Zhou, Xingping – Muramatsu, Atsushi (2003): Synthesis of uniform anatase TiO₂ nanoparticles by gel–sol method: 3. Formation process and size control. Journal of Colloid and Interface Science, 259(1), 43-52. https://doi.org/10.1016/S0021-9797(03)00036-5
[5] Hirai, T. – Sato, H. – Komasawa, I. (1993): Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide. Industrial & Engineering Chemistry Research, 32(12), 3014-3019. https://doi.org/10.1021/ie00024a009
[6] Noguer, C. (1996): Physics and chemistry at oxide surfaces. Cambridge University Press.
[7] Kung, H. H. (1989): Transition metal oxides: surface chemistry and catalysis (Vol. 45). Elsevier.
[8] Erdem, B. – Hunsicker, R. A. – Simmons, G. W. – Sudol, E. D. – Dimonie, V. L. – El-Aasser, M. S. (2001): XPS and FTIR surface characterization of TiO₂ particles used in polymer encapsulation. Langmuir, 17 (9), 2664-2669. https://doi.org/10.1021/la0015213
[9] Stengl, V. – Bakardjiev, S. – Murafa, N. (2009): Preparation and photocatalytic activity of rare earth doped TiO₂ nanoparticles. Materials Chemistry and Physics, 114(1), 217-226. https://doi.org/10.1016/j.matchemphys.2008.09.025
[10] El-Baby, Z. M. – Ismael, A. A. – Mohamed, R. M. (2009): Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). Journal of Hazardous Materials, 166(1), 138-143. https://doi.org/10.1016/j.jhazmat.2008.11.022
[11] Koswani, R. K. – Ghodke, H. – Sarkar, D. – Kilar, K. C. – Srivinasa, R. S. (2010): Room temperature synthesis of titanium dioxide nanoparticles of different phases in water oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369(1), 75-81. https://doi.org/10.1016/j.colsurfa.2010.08.001
[12] Patil, S. – Kuriy, S. C. – Seal, S. – Vanfleet, R. (2002): Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating. Journal of Nanoparticle Research, 4(5), 433-438. https://doi.org/10.1023/A:1021696107498
[13] Jin, Y. – Zha, Y. – Yang, X. – Wei, C. – Li, C. (2007): Fabrication and characterization of cerium-doped titania inverse opal by sol–gel method. Materials Chemistry and Physics, 106(2), 209-214. https://doi.org/10.1016/j.matchemphys.2007.05.047
[14] Marimuthu, T. – Anandhan, N. – Rajendran, S. – Mummooothy, M. – Vidyha, M. (2014): Studies on pure and Ce doped TiO₂ thin films prepared by sol-gel technique. International Journal of ChemTech Research, Vol 6, No.13, pp 5309-5314, November 2014
[15] Tong, T. – Zhang, J. – Yuan, B. – Chen, E. – He, D. – Anpo, M. (2007): Preparation of Ce–TiO₂, catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. Journal of colloid and interface science, 315(1), 382-388. https://doi.org/10.1016/j.jcis.2007.06.051
[16] Liu, Z. – Guo, B. – Hong, L. – Jiang, H. (2005): Preparation and characterization of cerium oxide doped TiO₂ nanoparticles. Journal of Physics and Chemistry of Solids, 66(1), 161-167. https://doi.org/10.1016/j.jpcs.2004.09.002
[17] Xiao, J. – Peng, T. – Li, R. – Peng, Z. – Yan, C. (2006): Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles. Journal of Solid State Chemistry, 179(4), 1161-1170. https://doi.org/10.1016/j.jssc.2006.01.008
[18] Chaisuk, C. – Wehataranawe, A. – Prempiyawat, S. – Netiphat, S. – Shotipruk, A. – Mekawandumrong, O. (2011): Preparation and characterization of CeO₂/TiO₂ nanoparticles by flame spray pyrolysis. Ceramics International, 37(5), 1459-1463. https://doi.org/10.1016/j.ceramint.2010.11.018
[19] Wheeler, D. W. – Khan, I. (2014): A Raman spectroscopy study of cerium oxide in a cerium–5wt% lanthanum alloy. Vibrational Spectroscopy, 70, 200-206. https://doi.org/10.1016/j.vibspect.2013.12.006

Réf: Torres-Romero, A. – Cajero-Juárez, M. – Contreras-García, M. E.: Titania-Ceria surfactant assisted sol-gel synthesis and characterization. Építőanyag – Journal of Silicate Based and Composite Materials, Vol 69, No. 1 (2017), 8–11. p. http://dx.doi.org/10.14382/epitoanyag-jbscm.2017.2

Szol-gél eljárás jelleggazetességei titániumoxid és cériumoxid alapanyag szintezésével

Titániumoxid-nano-részecskék fontos szerepet töltenek be a katalizisben és más tevékenységekben, sok újabb más területtel együtt. A cériumoxid egy ritkaoldfém vegyület, amelyet elsősorban fotolumineszcens anyagként, fényérzékeny anyagok előállítása során hasznosítanak. Napjaiban a szol-gél eljárás egy népszerű módszer mezopór anyagok előállítására. A cikk bemutatja a zöldlakkal és nitrádban reaktált cériumoxid és titániumoxid-elemesú anyagok előállítására. A cikk bemutatja a zöldlakkal és nitrádban reaktált cériumoxid és titániumoxid-elemesú anyagok előállítására. A cikk bemutatja a zöldlakkal és nitrádban reaktált cériumoxid és titániumoxid-elemesú anyagok előállítására. A cikk bemutatja a zöldlakkal és nitrádban reaktált cériumoxid és titániumoxid-elemesú anyagok előállítására.