Theoretical Models of Dark Energy

by Jaewon Yoo
Contents

Int. J. Mod. Phys. D 21, 1230002 (2012) (arxiv: 1212.4726)

01 Motivation
- Observational evidences
- Cosmological constant problem

02 Modified Matter model
- Quintessence, K-essence
- Coupled dark energy and matter, Unified dark energy and matter

03 Modified Gravity model
- $f(R)$ gravity
- DGP model

04 Non Dark Energy model
- Inhomogeneous LTB model
Motivation

- The composition of the universe
 - Dark Energy: ~73%
 - Dark Matter: ~23%
 - Other nonluminous components:
 - Intergalactic gas: 3.6%
 - Neutrinos: 0.1%
 - Supermassive BHs: 0.04%
 - Luminous matter:
 - Stars and luminous gas: 0.4%
 - Radiation: 0.005%

- Supernovae as a standard candle

Let’s see the sky!
Motivation

- Observational evidences on Dark Energy

Figure 1: There is strong evidence for the existence of dark energy. Plotted are $\Omega_m - \Omega_\Lambda$ (left panel) and $\Omega_m - \omega$ (right panel) confidence regions constrained from the observations of SN Ia, CMB and BAO. From Ref. Astrophys.J. 686 (2008) 749(778), [arXiv:0804.4142]

- accelerated expansion of the Universe, when $-1 \leq w < -\frac{1}{3}$
Motivation

- Cosmological constant

\[\Lambda = \text{Einstein’s biggest blunder?!} \]
\[= \text{vacuum energy?} \]

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}. \]

\[S = -\frac{1}{16\pi G} \int d^4x \sqrt{-g} (R + 2\Lambda) + S_M. \]
Motivation

- Cosmological constant problem

Fine-tuning problem

Theoretical expectation:

\[\rho_\Lambda \sim (10^{18} \text{GeV})^4 \sim 2 \times 10^{110} \text{erg/cm}^3 \]

Observation:

\[\rho_\Lambda^{\text{obs}} \leq (10^{-12} \text{GeV})^4 \sim 2 \times 10^{-10} \text{erg/cm}^3 \]

"The worst theoretical prediction in the history of physics!"

Why small?

Coincidence problem

Why now?

Discrepancy: \(10^{120}\)
Modify Matter vs. Modify Gravity

\[G_{\mu\nu} = 8\pi G \ T_{\mu\nu} \]

\[G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \] describes geometry of spacetime
Modified Matter model

- Quintessence

$G_{\mu\nu} = 8\pi G T_{\mu\nu}$

Scalar field (Φ)?

$S = \int d^4x \sqrt{-g} \left[-\frac{1}{16\pi G} R + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right] + S_M.$

$w_Q = \frac{p_Q}{\rho_Q} = \frac{1}{2} \frac{\dot{\phi}^2}{\phi^2} - V(\phi)$

$\frac{1}{2} \frac{\dot{\phi}^2}{\phi^2} + V(\phi)$
Modified Matter model

- K-essence

\[G_{\mu\nu} = 8\pi G T_{\mu\nu} \]

The full action including a k-essence term is given by

\[S = \int d^4x \sqrt{-g} \left[-\frac{1}{16\pi G} R + p(\phi, X) \right] + S_M \]
Modified Matter model

- Coupled dark energy and matter

Modified energy conservation equations

\[\dot{\rho}_m + 3H(\rho_m) = \delta, \]
\[\dot{\rho}_\phi + 3H(\rho_\phi + p_\phi) = -\delta. \]

Finding an appropriate form of the coupling \(\delta \)

\[\delta = \kappa Q \rho_m \dot{\phi}, \]
\[\delta = \alpha H(\rho_m + \rho_\phi), \]

Chameleon mechanism

\[S = \int d^4x \sqrt{-g} \left[-\frac{1}{16\pi G} R + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right] + \int d^4x \mathcal{L}_m(\psi_m^{(f)} g^{(f)}_{\mu\nu}) \]

\[g^{(f)}_{\mu\nu} = e^{2\kappa \beta \phi} g_{\mu\nu}. \]

\[|F| = \frac{GM_1 M_2}{r^2 (1 + 2\beta_1 \beta_2)}, \]

\[G_{eff} = G(1 + 2\beta_1 \beta_2). \]
Modified Matter model

- Unified dark energy and matter

Chaplygin gas

\[p = -\frac{A}{\rho^{\alpha}} \]

\[\rho(t) = \left[A + \frac{B}{a^{3(1+\alpha)}} \right]^{\frac{1}{1+\alpha}} \]

In the early epoch, \(a \ll 1 \), the Chaplygin gas energy density behaves as \(\rho \propto a^{-3} \) which corresponds to the matter dominated Universe. In the late epoch, \(a \gg 1 \), the energy density behaves as \(\rho \approx A^{1/(a+\alpha)} = \text{const.} \) which corresponds to the de Sitter Universe.

Thus the Chaplygin gas behaves as dark matter in the early epoch and dark energy in the later epoch. It explains **both dark sectors in terms of a single component**.
Modified Gravity model

- f(R) gravity

\[G_{\mu\nu} = 8\pi G \, T_{\mu\nu} \]

\[S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} f(R) + \int d^4x \sqrt{-g} \mathcal{L}_M \]

\[w_{DE} \equiv \frac{p_{DE}}{\rho_{DE}} = \frac{2A\dot{H} + 3AH^2}{3AH^2 - 8\pi G \rho_m}. \]

\[G_{eff} \equiv \frac{G}{f_R} \frac{1 - 4mk^2/(a^2 R)}{1 - 3mk^2/(a^2 R)} \cdot m \equiv \frac{Rf_{,RR}}{f_R}. \]
Modified Gravity model

- DGP model

\[G_{\mu\nu} = 8\pi G T_{\mu\nu} \]

5th Dimension!

\[S = -\frac{M_5^3}{2} \int d^5x \sqrt{-g} \bar{R} - \frac{M^2_{pl}}{2} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} \mathcal{L}_m \]

\[\tilde{G}_{AB} \equiv \tilde{R}_{AB} - \frac{1}{2} \tilde{g}_{AB} = 0 \]

\[G_{\mu\nu} - \frac{1}{r_c} (K_{\mu\nu} - K g_{\mu\nu}) = 8\pi G T_{\mu\nu} \]

\[H^2 + \frac{k}{a^2} = \left(\sqrt{\frac{\rho}{3M^2_{pl}} + \frac{1}{4r_c^2} + \frac{\epsilon}{2r_c}} \right)^2 \]
Non Dark Energy model

- Inhomogeneous LTB model

We are living in large underdense void!
Throw away the Friedmann-Lemaître-Robertson-Walker (FLRW) metric!!
(homogeneous and isotropic universe)

\[
\text{Metric for a spherically symmetric inhomogeneous Universe}
\]

\[
\begin{align*}
\text{Einstein equations for the dust dominated LTB Universe} & \\
H_+^2 + 2H_+H_\perp - \frac{\beta}{R^2} - \frac{\beta'}{RR'} &= 8\pi G\rho, \\
6\frac{\ddot{R}}{R} + 2H_\perp^2 - 2\frac{\beta}{R^2} - 2H_\perp H_\perp + \frac{\beta'}{RR'} &= -8\pi G\rho,
\end{align*}
\]
What to do?

- Dark Energy projects

Stage I	Probes	SN Ia
Higher-Z Team	10, 33	
SNLS	34, 35, 39	
ESSENCE	37, 38	
NSF	39, CSP	10, 41
LOSS	42, 43, 44	
SDSS	45, 46, SCP	21, 47, 48, CfA
QUEST Survey	Palomar	

Stage I	CMB	
COBE	52	
TOCO	53	
BOOMERanG	54, Maxima	
WMAP	55	

Stage I	BAO
2dFGRS	56
SDSS	57
6dFGRS	58
WiggleZ	59

Stage I	WL
CFHTLS	60
61	

Stage II	Probes
Pan-STARRS1	62
HST	63
KAIT	64

Stage II	Planck
65, 66	
67, SPT	68
ACT	70

Stage II	SDSS II
71	

Stage II	SDSS III
72, BOSS	73
LAMOST	75, WEAVE
76	

Stage III	DES, HETDEX
81, BigBOSS	85
86, ALPACA, SuMIRe	

Stage III	Pan-STARRS4, ALPACA, ODI

Stage IV	LSST, WFIRST
EPIC	89, 91, LiteBIRD, 92, B-Pol
LSST, SKA, WFIRST, Euclid	95

Table 1: Dark energy projects. Classification is taken from ref. Report of the Dark Energy Task Force, astro-ph /0609591.

Stage I: completed projects that already released data
Stage II: on-going projects
Stage III: intermediate-scale, near-future projects
Stage IV: large-scale, longer-term future projects
What to do?

- Effective Newton's constant G_{eff}
- Eötvös parameter η

From Einstein's biggest blunder to the Nobel Prize in Physics 2011

- Now we are ready to meet the most mysterious cosmological discoveries!
THANK YOU!

M.Sc Jaewon Yoo/ PhD student

Center for Theoretical Astronomy
Korea Astronomy and Space Science Institute (KASI)
University of Science and Technology (UST)

☎ (Tel) +82 42 869 5903
☞ (Email) jwyoo@kasi.re.kr