A study on the effect of exacerbations on the quality of life of patients with chronic obstructive pulmonary disease

K Pushpavalli1,*, V N Vamsi Krishna1, U Christine1, M Siva Ganga.1

1. Department of Pharmacy Practice, Aditya College of Pharmacy, Surampalem, Andhra Pradesh, India. Tel.: 6303010913

A R T I C L E I N F O

Article history:
Received 17.09.2020
Accepted 05.12.2020
Published 15.12.2020

* Corresponding Author:
K Pushpavalli
pushpavallikotha@gmail.com

https://doi.org/10.37022/wjcmpvr.i.161

Produced By
South Asian Academic Publications

A B S T R A C T

Aim: The main aim of this study is to evaluate the effect of exacerbations on the quality of life of the patients with chronic obstructive pulmonary disease. Materials and Methods: Patients of both the genders and with an age of above 18 years of patients who were diagnosed with COPD were included in this prospective study. Modified British Medical Research Council (m-MRC) Dyspnoea Scale was used to establish functional impairment due to shortness of breath in the study participants. Saint George's Respiratory Questionnaire (SGRQ) was also used to assess the patient’s overall health and quality of life-based on self-report. Results: Among the 110 study participants, 87.3% were males and 12.7% were females. It was observed that majority of the patients were in the age group 51-60 years (43.6%). The most frequently observed co-morbidities were hypertension (22.7%) followed by diabetes mellitus (19.1%). Most of the patients were observed to be with m-MRC grade-3 (42.7%) followed by m-MRC garde-2 (39.1%). The SGRQ score was observed to be increased with increase in the frequency of exacerbations. Conclusion: Clinical Pharmacist should take the responsibility in providing effective evidence based therapeutic recommendations for the better management and well-being of the COPD patients.

Keywords: Chronic obstructive pulmonary disease; exacerbations; hypertension.

I N T R O D U C T I O N

Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening chronic lung disease that gradually constricts the airways causing difficulty in breathing. In Indians, the prevalence of COPD is 5% in males and 3.2% in females who are over the age of 35 years [1, 2]. However, co-morbidities such as hypertension, diabetes mellitus and anaemia may highly increase the severity of COPD that decreases the possibility of complete health restoration. Co-morbidities not only contribute to increased exacerbations but also limit the quality of life that leads to higher risks of mortality [3]. The prevalence of co-morbidities in COPD patients is usually higher and this significantly decreases the health status and quality of life of COPD patients [4]. The term exacerbations in reference to COPD can be defined as the worsening of existing COPD conditions including its signs and symptoms. Exacerbations can rapidly increase the severity of the disease which may cause life-threatening situations [5–7]. The main aim of this study is to evaluate the effect of exacerbations on the quality of life of the patients with chronic obstructive pulmonary disease.

M A T E R I A L S A N D M E T H O D S

This was a prospective study conducted for a period of six months in the department of Respiratory Medicine at GSL General Hospital, Rajahmundry. Patients of both the genders and with an age of above 18 years of patients who were diagnosed with COPD were included in this study. Non-smokers, ex-smokers with smoking history of <10 pack years and patients with inflammatory diseases other than COPD were excluded from this study. Patient data was collected from a previously designed data collection form.

In this study, the Modified British Medical Research Council (m-MRC) Dyspnoea Scale was used to establish functional impairment due to shortness of breath. According to this scale, the dyspnoea can be categorized into Grade 0, 1, 2, 3 and 4. Individuals with grade-0 dyspnoea may get breathlessness with strenuous exercise, individuals with grade-1 dyspnoea may get short of breath when hurrying on level ground or walking up a slight hill, individuals with grade-2 dyspnoea may walk slower than the individuals of same age on the level because of breathlessness when walking at their own pace on the level, grade-3 dyspnoea may get when an individual stops for breath after walking about 100m or after a few minutes on the level and individuals with grade-4 dyspnoea may feel
too breathlessness to leave the house or even when dressing or undressing. Saint George's Respiratory Questionnaire (SGRQ) was also used to assess the patient's overall health and quality of life-based on self-report. Score ranges from 0 to 100, with higher scores indicating more limitations. In this study, the number of exacerbations per patient was compared to SGRQ score for evaluation [8–10].

RESULTS
A total of 110 patients were included in this study. Among them 87.3% were males and 12.7% were females. Table 1 represents the age wise categorization of the patients included in the study. About 5.5% of the patients were in the age group 21-30 years, 11.8% were in the age group 31-40 years, 24.5% of the patients were in the age group 41-50 years, 43.6% were in the age group 51-60 years and 14.6% were in the age group 61-70 years.

Table 2: Age wise categorization of the study participants

Age in years	Frequency (%)
21-30	6 (5.5)
31-40	13 (11.8)
41-50	27 (24.5)
51-60	48 (43.6)
61-70	16 (14.6)
Total	110 (100)

Table 3 represents the categorization of the study participants based on their level of exacerbations. About 33.6% of the patients were observed with greater than or equal to 4 exacerbations, 21.9% were observed with 3 exacerbations, again 33.6% were observed with 2 exacerbations and about 10.9% were observed with a single exacerbation.

Table 2: Categorization of the study participants based on their level of exacerbations

Exacerbation levels	Frequency (%)
1	12 (10.9)
2	37 (33.6)
3	24 (21.9)
≥4	37 (33.6)
Total	110 (100)

Table 3 represents the categorization of the COPD patients based on their co-morbidities. Majority of the patients were observed with hypertension (22.7%) followed by diabetes mellitus (19.1%) in this study.

Table 3: Categorization of the COPD patients based on their co-morbidities

Co-morbidities	Frequency (%)
Hypertension	25 (22.7)
Diabetes mellitus	21 (19.1)
Anaemia	4 (3.6)
Anaemia + Hypertension	9 (8.2)
Anaemia + Diabetes mellitus	7 (6.4)
Hypertension + Diabetes mellitus	21 (19.1)
Anaemia + sleep apnoea	3 (2.7)
Diabetes mellitus + CKD	6 (5.5)
Diabetes mellitus + Ulcer	3 (2.7)
Hypertension + Heart failure	4 (3.6)
Hypertension + CKD	7 (6.4)
Total	110 (100)

Table 4 represents the categorization of the study participants based on the grade of dyspnoea as per the m-MRC dyspnoea scale.

Table 4: Categorization of the study participants based on the grade of dyspnoea

m-MRC grade	Frequency (%)
1	10 (9.1)
2	43 (39.1)
3	47 (42.7)
4	10 (9.1)
Total	110 (100)

Table 3 represents the categorization of the COPD patients based on their co-morbidities. Majority of the patients were observed with hypertension (22.7%) followed by diabetes mellitus (19.1%) in this study.

Table 4 represents the categorization of the study participants based on the grade of dyspnoea as per the m-MRC dyspnoea scale. About 9.1% of the patients were observed with Grade-1 dyspnoea, 39.1% were observed with Grade-2 dyspnoea, 42.7% were observed with Grade-3 dyspnoea and again 9.1% were observed with Grade-4 dyspnoea.

Table 5 represents the association of SGRQ score with the number of exacerbations among the COPD patients. Among the 12 patients with single exacerbation, 7 patients were observed with a SGRQ score ranges from 21-30 and 5 patients were observed with a SGRQ score ranges from 31-40. The mean SGRQ value was found to be 28.41 (±5.72) among these patients with single exacerbation. Among the 37 patients with two exacerbations, 3 were observed with a SGRQ score ranges from 31-40 and 34 patients were observed with a SGRQ score ranges from 41-50. The mean SGRQ value was found to be 50.47 (±2.77) among these patients with two exacerbations.

DISCUSSION
This study was conducted to evaluate the effect of exacerbations on the quality of life of the patients with chronic obstructive pulmonary disease. COPD is common in older adults and it intensifies gradually after several years [11]. As the age increases there is progressive diminishment in homeostasis resulting in increased risk of disease [12]. Among the 110 study participants, 87.3% were males and 12.7% were females. It was observed that majority of the patients were in the age group 51-60 years (43.6%). This result was similar to the study done by Wig KL et al. [13]. Smoking is the confounding factor which causes inflammation in COPD patients. It damages the air sacs, airways and lining of the lungs. In this study, the cigarette smokers were found to be 68.2% and beedi smokers were 31.8%.

Co-morbidities were considered during the evaluation process and the most frequently observed co-morbidities were...
CONCLUSION

Exacerbations can impact the quality of life of the COPD patients. According to the m-MRC dyspnoea scale, the functional impairment due to the shortness of breath in majority of the study participants was observed to be grade-3 followed by grade-2. Based on the SGRQ, the score of the SGRQ was observed to be increased in frequency of exacerbations. Clinical Pharmacist should take the responsibility in providing effective evidence based therapeutic recommendations for the better management and well-being of the COPD patients.

Acknowledgement

The authors would like to thank all the study participants and the staff of GSL General Hospital. We would like to express our sincere gratitude to our clinical guide, Dr. Somanath Das and our professor, Mr. Amith Kumar for their valuable support and guidance.

Conflicts of interest

Nil

Source Of Funding

None

REFERENCES

1) Frank TL, Hazell ML, Linehan MF, Morris JA, Frank PL. The estimated prevalence of chronic obstructive pulmonary disease in a general practice population. *Primary Care Respiratory Journal*. 2007;16(3):169–177. Available from: https://dx.doi.org/10.3132/pcri.2007.00028.

2) Molen TVD. Co morbidities of COPD in primary care: frequency, relation to COPD, and treatment consequences. *Prim Care Respir J*. 2010;19:326–334.

3) Garcia-Sagredo P, Morales L, Carmona M. Co-morbidity in patients with chronic obstructive pulmonary disease in family practice: a cross sectional study. *BMJ Fam Pract*. 2013;14:11.

4) Tashkin D, Murawilles M, Price D, Metzdorf N, Kupas K, Celli B. Rate of Comorbidities During the 4-Year UPLIFT Trial in COPD: A Post Hoc Analysis. *Chest*. 2014;146(67A). Available from: https://dx.doi.org/10.1378/chest.1992742.

5) Garg R, Pandey S, Saut S, Gaur P. Chronic Obstructive Pulmonary Disease with Anemia as Comorbidity in North Indian Population. *Indian Journal of Chest*. 1992;68(2):319-321.

6) Fumagalli G, Fabiani F, Forte S, Napolitano M, Balzano G, Bonini M, et al. INDAco project: COPD and link between co morbidities, lung function and inhalation therapy. 2015.

7) Negro RDD, Tognella S, Tosatto R, Dioni M, Turo R Donner C. Costs of chronic obstructive pulmonary disease (COPD) in Italy: The SIRIO study (Social Impact of Respiratory Integrated Outcomes). *Respiratory Medicine*. 2008;102(1):92–101. Available from: https://dx.doi.org/10.1016/j.rmed.2007.08.001.

8) Sivri NA, Senn O, Brack T, Brutsche MH, Frey M, Irani S, et al. Impact of comorbidities on physical activity in COPD. *Respir Physiol Neurobiol*. 2015;20(3):413–418. Available from: https://dx.doi.org/10.1016/j.respy.2014.12.006.

9) Trinkmann F, Saur J, Borggreve M, Akin I. Cardiovascular Comorbidities in Chronic Obstructive Pulmonary Disease (COPD)—Current Considerations for Clinical Practice. *Journal of Clinical Medicine*. 2019;8:69–69. Available from: https://dx.doi.org/10.3390/jcm8010069.

10) Stratov V, Patkova D. Co-morbidities of COPD in Bulgarian patients-Prevalence and association with severity and inflammation. *Ches t*. 2018;16(1):102–109.

11) Camiciottoli G, Bigazzi F, Magni C, Boni V, Diotti S, Bartolucci M, et al. Prevalence of comorbidities according to predominant phenotype and severity of chronic obstructive pulmonary disease. *International Journal of Chronic Obstructive Pulmonary Disease*. 2016;11:2229–2236. Available from: https://dx.doi.org/10.2147/copd.s11724.

12) Global obstructive lung disease. NHLBI WHO report. NIH publication, NO.2701. 2019.

13) Wig KL, Guleika KS. Certain clinical and epidemiological aspects of chronic bronchitis as seen in Northern India. *Indian Journal of Chest Diseases*. 1964;16:183–194.

14) Altose MD. Assessment and management of breathlessness. *Int j res med*. 1985;22:88–92.

15) Mullerova H, St. George’s Respiratory Questionnaire Score Predicts Outcomes in Patients with COPD: Analysis of Individual Patient data in the COPD Biomarkers Qualification Consortium Database. *Journal of COPD foundation*.2017(2):141–149.