From MPI to MPI+OpenACC: Conversion of a legacy FORTRAN PCG solver for the spherical Laplace equation

Ronald M. Caplan, Zoran Mikić, and Jon A. Linker
Predictive Science Inc., 9990 Mesa Rim Road Suite 170, San Diego, CA 92121
caplanr@predsci.com, mikicz@predsci.com, linkerj@predsci.com

Abstract. A real-world example of adding OpenACC to a legacy MPI FORTRAN Preconditioned Conjugate Gradient code is described, and timing results for multi-node multi-GPU runs are shown. The code is used to obtain three-dimensional spherical solutions to the Laplace equation. Its application is finding potential field solutions of the solar corona, a useful tool in space weather modeling. We highlight key tips, strategies, and challenges faced when adding OpenACC, including linking FORTRAN code to the cuSparse library, using CUDA-aware MPI, maintaining portability, and dealing with multi-node, multi-GPU run-time environments. Timing results are shown for the code running with MPI-only (up to 1728 CPU cores) and with MPI+OpenACC (up to 64 NVIDIA P100 GPUs). Performance portability is also addressed, including results using MPI+OpenACC for multi-core x86 CPUs.

1 Introduction

The advent of hardware accelerators has had a significant impact on high-performance computing. Performance normally only available on large super computers can be achieved in-house with a modest number of accelerator cards at a much lower cost. Accelerators also exhibit drastic improvements in power efficiency that allows the expansion of the capabilities of the largest high performance computing (HPC) systems. In some cases, accelerators provide necessary performance that cannot be achieved with standard CPUs.

For software to take advantage of accelerators (or any multi-core system), they must be parallelized. Parallel programming is hard and parallel programming for accelerators is no exception. Originally, the only way to utilize accelerated computing was to write new code using APIs like CUDA [6] and OpenCL [9]. However, for legacy applications, such rewriting can be far too difficult in terms of time, effort, and education of the user base. Additionally, because portability and longevity is of critical concern for large scientific codes, the adoption of accelerated programming had been somewhat slow.

Programming for accelerators through the use of directives has the potential to address many of the above concerns. Since the directives are expressed as comments, a single source code can be used for both accelerated and non-accelerated runs. Ideally, the addition of the directives does not involve the
necessity for changing the current code base (although in practice, some changes are often inevitable).

OpenACC [8] started as a temporary branch of OpenMP [5] to allow the use of accelerator hardware through directives. Since then, it has evolved to be its own independent directive API. Implementers have added the ability to compile OpenACC code to multiple device types (including multiple vendors of GPUs and multi-core CPUs). Its clean and simplified approach to accelerator directives has made it a desirable choice for adding accelerator capability to legacy codes. We note that within the last few years, OpenMP has also added support for accelerators, but we do not explore that option here.

In this paper, we describe adding OpenACC to a legacy scientific code. The application is a FORTRAN MPI code (POT3D) that solves the spherical Laplace equation. It is used to compute potential field (PF) solutions of the Sun’s coronal magnetic field given observations of the surface field. Such solutions are very useful in solar physics and have space weather applications [14, 19, 1, 17]. Our focus will be on using OpenACC to run the code on multiple accelerator devices (specifically, NVIDIA GPUs) but we also explore using it for hybrid MPI+multi-core.

Our motivations/goals for converting POT3D from MPI to MPI+OpenACC are:

1. To efficiently compute solutions in-house using a modest number of GPUs that would normally require the use of a large HPC cluster
2. To compute large solutions more quickly that current HPC resources allow
3. To use less HPC allocation resources (i.e. do an equivalent solve on fewer GPU nodes than CPU nodes)

Although some uses of PF solutions do not necessitate the above improvements, another major motivation is that our 3D thermodynamic magnetohydrodynamic code (MAS [11, 7]) has most of its run-time in equivalent PCG solvers as those found in POT3D. The MAS code is used for very large simulations of the solar corona\footnote{e.g. see \url{www.predsci.com/eclipse} where MAS was used to predict the structure of the corona during the Aug. 21st, 2017 total solar eclipse} and heliosphere, and would greatly benefit from the above goals if they are found successful in POT3D. Thus, adding OpenACC to POT3D can be viewed as a stepping-stone to potentially adding it to MAS.

Due to the legacy nature of the POT3D code, as well as the fact that not all researchers using the code have experience with GPU computing, a major objective is to apply OpenACC to POT3D with as few changes to the code as possible, and in a fully portable manner so that the same source code can be compiled and used on CPUs as before.

The underlying purpose of this paper is to detail our experience and highlight important tips, challenges, solutions, and performance results, in order to provide a resource to help other programmers decide if adding OpenACC is the right direction for their legacy codes and, if so, ease the process.
The outline of the paper is as follows: Sec. 2 describes the original POT3D code. Then, in Sec. 3, we describe (using code examples) important tips, challenges, and solutions in adding OpenACC to POT3D. The performance results using MPI and MPI+OpenACC on CPU and GPU multi-node clusters is shown in Sec. 4. Performance portability is discussed in Sec. 5 and we conclude in Sec. 6.

2 POT3D

POT3D is a FORTRAN code that computes potential field solutions to approximate the solar coronal magnetic field using observed photospheric magnetic fields as a boundary condition. It has been (and continues to be) used for numerous studies of coronal structure and dynamics [10, 16].

2.1 Potential Field Model

A PF is a force-free and current-free magnetic field. Setting the current in Maxwell’s equation ($\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$) to zero ($\mathbf{J} = 0$) leads to solutions of the form $\mathbf{B} = \nabla \Phi$, where Φ is the scalar potential. Combined with the divergence-free condition ($\nabla \cdot \mathbf{B} = 0$), this yields a Laplace equation for Φ:

$$\nabla^2 \Phi = 0.$$ \hspace{1cm} (1)

The lower boundary condition at $r = R_\odot$ (the solar surface) is set based on an observation-derived surface-map of B_r as

$$\left. \frac{\partial \Phi}{\partial r} \right|_{R_\odot} = B_r|_{R_\odot}. \hspace{1cm} (2)$$

Depending on the needs of the application, the upper boundary ($r = R_1$) is set to either a ‘closed wall’ ($B_r|_{R_1} = 0$) or ‘source surface’ ($\Phi|_{R_1} = 0$) condition. The ϕ direction uses a periodic boundary ($\Phi|_{\phi=0} = \Phi|_{\phi=2\pi}$), while polar boundary conditions are set using the average

$$\Phi|_{\theta/\pi} = \frac{1}{2\pi} \int_{\phi=0}^{\phi=2\pi} \Phi|_{\theta/\pi} \pm \epsilon \, d\phi,$$ \hspace{1cm} (3)

where ϵ is based on the grid size. Once Eq. (1) is solved, we set $\mathbf{B} = \nabla \Phi$ to get the magnetic field result.
2.2 Finite-Difference

POT3D uses a globally second-order finite-difference method on a nonuniform logically-rectangular spherical grid [18]. In this scheme, Eq. (1) takes the form

\[
\nabla^2 \Phi_{i,j,k} \approx \frac{1}{\Delta r_i} \left[\Phi_{i+1,j,k} - 2\Phi_{i,j,k} + \Phi_{i-1,j,k} \right] \\
+ \frac{1}{\sin \theta_j} \Delta \theta_j \left[\sin \theta_{i,j+\frac{1}{2}} \Phi_{i,j+1,k} - \sin \theta_{i,j-\frac{1}{2}} \Phi_{i,j-1,k} \right] \\
+ \frac{1}{\sin^2 \theta_j \Delta \phi_k} \left[\Phi_{i,j,k+1} - \Phi_{i,j,k} \right] = 0,
\]

which can be represented in matrix form as

\[
A \Phi = 0. \tag{4}
\]

The matrix \(A \) is stored in the DIA sparse format [2] for the inner grid points, while the boundary conditions are implemented matrix-free.

2.3 Preconditioned Conjugate Gradient

The matrix \(A \) of Eq. (4) is large, symmetric, and sparse. A common method for solving such systems is the Preconditioned Conjugate Gradient (PCG) method [13].

Effective use of the PCG method requires selecting an inexpensive yet efficient preconditioner (PC) [3]. For POT3D, we use two communication-free PCs: 1) A point-Jacobi/diagonal-scaling (PC1) which uses the inverse of the diagonal of \(A \), and 2) A non-overlapping domain decomposition with zero-fill incomplete LU factorization (PC2) [13]. PC1 has a fully vectorizable and inexpensive formulation and application, but it is limited in its effectiveness at reducing iterations. PC2 is much more expensive to formulate and apply (and, when using standard algorithms, is not vectorizable), but can be much more effective. In POT3D, we use both PC1 and PC2 since it is sometimes possible for PC1 to outperform PC2 (e.g., when solving problems requiring very few iterations and/or when using hardware that is very efficient for vectorizable algorithms).

The PCG iterative solver consists of the following main operation types:

- Vector-vector operations (e.g. \(z = a \mathbf{x} + b \mathbf{y} \))
- Inner products (e.g. \(a = \mathbf{x} \cdot \mathbf{y} \))
- Matrix-vector products (e.g. \(\mathbf{y} = A \mathbf{x} \))
- Application of the preconditioner

The vector-vector operations are vectorizable and are expected to run very well on GPUs. The inner products are fairly vectorizable in their local sums, but can create poor parallel scaling between subdomains due to its collective/synchronous nature. The matrix-vector products are also fairly vectorizable. The
application of the preconditioner for PC1 is a simple vector operation. For PC2, the LU matrix is stored in a memory-optimized CSR format [15] for better access patterns, but the triangular solves are done with a standard algorithm [13] which is not vectorizable. For more details on the implementation of PCG in POT3D, see Ref. [4].

2.4 MPI Parallelism

POT3D is parallelized using MPI in a domain decomposition manner. Each MPI rank takes one subsection of the grid (as cubed as possible) and treats it as its own local domain for all operations. The only MPI communication needed are point-to-point messages for the local boundaries in the matrix-vector product, and collective operations for the inner products and polar boundary conditions. Initial and final collectives are also used to decompose the domain and collect the solution for output.

Some MPI scaling issues of the code include the polar boundary conditions of Eq. (3) creating load imbalance due to the implicit synchronization of the polar subdomains, and the global synchronization of the inner products not allowing small load imbalances of the subdomain sizes and/or hardware performance variations to overlap/equalize.

To allow the MPI library to optimize the point-to-point communication as best as possible, the MPI ranks are reordered using a Cartesian topology which mirrors the stencil pattern of the decomposition including the periodicity of the ϕ-direction.

3 MPI to MPI+OpenACC

In this section we describe some key steps in adding OpenACC to POT3D. There are many thorough tutorials and examples for implementing OpenACC including the OpenACC website\(^2\) and Ref. [8]. The scope of this paper is to only focus on a few of the more important and/or not-so-common strategies and challenges that we encountered.

3.1 Unstructured data regions

One of the biggest challenges when using accelerator hardware with its own localized memory (such as GPUs) is efficiently handling data movement. Transferring data between the CPU and GPU is very slow, and can degrade performance to the point of the code becoming unusable. The recent development of unified memory, which allows the run-time environment to efficiently handle the data movement automatically, has potential to alleviate this concern (and also allow for running problems that are larger than the accelerator device’s memory). However, in our experience with POT3D, manually controlling the data movement yielded improved performance versus relying on unified memory.

\(^2\) www.openacc.org
The most efficient way to handle data transfers is to keep the data on the GPU throughout the entire computation as much as possible. In OpenACC this can be accomplished by the use of unstructured data regions. With a simple pragma, one can transfer the data to/from the GPU and utilize it in OpenACC compute constructs using the `present` clause. When the data is needed on the CPU (e.g. for IO), a simple `update` clause can transfer the data back. The following pseudo code illustrates the use of unstructured data regions:

```
Initialize Φ on CPU
! $acc enter data copyin (phi)
Solve system on GPU using device copy of Φ
   with the present clause
! $acc update self (phi)
The result in Φ is now available to the CPU for IO
! $acc exit data delete (phi)
Φ is now cleared out of GPU memory
```

As of this writing, the data clauses in OpenACC can only transfer intrinsic-typed arrays. However with PGI version 17.7, support has been added for automatic deep-copy where an array of a derived type (that could contain a number of arrays, scalars, and other types) can be transfered to the GPU using the OpenACC data clauses. This feature can be extremely useful since many FORTRAN programs frequently utilize derived types.

3.2 The use of Kernels for FORTRAN array-syntax

The prototypical compute region that OpenACC is designed for is a loop construct (such as a `do` loop in FORTRAN or a `for` loop in C). However, FORTRAN’s built-in array syntax is often used in place of explicit `do` loops for its simplicity as well as allowing the compiler to vectorize/optimize easily. POT3D contains many such array-syntax code and it is not desirable to expand these into loops for use with OpenACC.

In order to use OpenACC with these array operations, one can use the `kernels` pragma around the code in question as shown here:

```
!$acc kernels present (x,p,ap,r)
x=x+alphai*p
r=r-alphai*ap
ap=r
!$acc end kernels
```

Using this technique has a couple of drawbacks. For one, this gives full control to the compiler on how it wants to order the underlying loops and attach them to CUDA block dimensions. Sometimes the compiler may not select the most optimized decomposition (in POT3D, we ended up expanding one array notation section into loops due to this). Another drawback, is that using `kernels` in
this manner takes away control from the programmer to be able to specify the topology and lengths of the \texttt{gang}, \texttt{worker}, and \texttt{vector} clauses3.

3.3 Multiple Devices

The use of multiple GPU devices can be quite challenging to implement, especially across a large cluster. One typically needs to use multiple threads or processes to invoke each device.

Fortunately, POT3D’s MPI domain decomposition was implemented in a modular fashion in that the MPI nature of the code is transparent to the developer except in the few subroutines where MPI calls are necessary. Thus, each MPI rank appears to compute on its own sub-domain problem. Because of this, adding multi-GPU capability in the simplest manner possible was surprisingly straight-forward and could be done with minimal changes to the code.

We added a new input parameter (\texttt{ngpus per node}) to the code that indicates the number of GPUs per node, which is then used to set the MPI rank’s device using the OpenACC pragma \texttt{device num}:

\begin{verbatim}
igpu = MODULO (iprocw , ngpus_per_node)
!$acc set device_num (igpu)
\end{verbatim}

All code after the above pragma uses a unique GPU. It is necessary in this case that there is one MPI rank per GPU on a node (or, one could oversubscribe each GPU, but this is more complicated because it requires special driver settings that may or may not be activated on a particular system). It is important to note that the above code assumes linear affinity of the MPI ranks across the cluster. Since we allowed the ranks to be rearranged due to the Cartesian topology (see Sec. 2.4), we had to make sure to use the rank ID from the original \texttt{MPI COMM WORLD} communicator. The assumption of linear affinity could cause portability problems (as HPC systems and libraries could have other affinities by default). A more portable way to achieve the above is to use the shared communicators introduced in MPI-3. These communicators are defined on each node and allows the code to know how many ranks there are in the node, and numbers them linearly. We do not use shared communicators in POT3D out of concern for portability, as the MPI libraries on some of the HPC systems we use are not updated to MPI-3.

3.4 CUDA-aware MPI

The use of multiple devices across the cluster requires that the MPI calls for point-to-point and collective operations transfer data from one GPU to another GPU (which could reside on another node in the cluster). To achieve this without changing the code, we utilize CUDA-aware MPI.

CUDA-aware MPI libraries detect that a pointer given to an MPI call is a GPU device pointer and sets up the GPU memory transfers automatically.3

3This problem may be solved soon as the OpenACC 2.6 draft includes adding the ability to choose the \texttt{gang}, \texttt{worker}, and \texttt{vector} lengths in a \texttt{kernels} region.
How this is done depends on the MPI library’s implementation and the available hardware features (e.g. GPU-Direct, NVLink, etc.). In OpenACC, the `host_data use_device` pragma is used to tell the compiler to use the device version of the pointer in the succeeding subroutine calls (assuming the data has already been transferred to the GPU). For example,

\begin{verbatim}
 !$acc host_data use_device(a0)
 call MPI_Allreduce(MPI_IN_PLACE,a0,n,ntype_real,
 MPI_SUM,comm_phi,ierr)
 !$acc end host_data
\end{verbatim}

Although simple to code, the use of CUDA-aware MPI relies heavily on the HPC system and MPI libraries to be up-to-date and set up properly. We experienced difficulties on two separate HPC systems when trying to use CUDA-aware MPI. In one case the compiler/libraries simply needed an update, while in the other case, an undetected bug was eventually discovered in the CUDA-aware implementation of the MPI library.

3.5 Calling the cuSparse library from FORTRAN

As mentioned in Sec. 2, the application of the PC2 preconditioner as implemented in POT3D is not vectorizable. This severely limits the ability to efficiently compute it on a GPU using OpenACC pragmas (in fact, the resulting code would compute serially on a single GPU thread!). Since running serially on the GPU or transferring the data back and forth to compute it on the CPU are both non-starters in terms of performance, we hesitantly decided to link the code to an external library.

Although linking to libraries is often an excellent idea when needing algorithms that have already been optimized by experts, in our case this is undesirable because it breaks the portability of the code by requiring numerous code changes and additions including multiple build options. One could mitigate the problem with the use of `#ifdef` s, but for legacy codes, changing the look, feel, and installation methods can cause users to opt out of using the new code. For the purposes of this study, we made two branches of POT3D: One branch only supports OpenACC acceleration when using PC1, while the other uses external libraries to support acceleration when using PC2 as well. The first branch remains fully portable, while the second loses portability.

The application of PC2 requires solving two successive triangular sparse matrix equations. Solving triangular matrix equations in a vectorized manner is very difficult. The cuSparse library provided by NVIDIA implements two such algorithms\(^4\), each having their own options and parameters. Although we implemented calls to both algorithms, considering that in our case we did not find noticeable differences in performance between the two, we only use the first algorithm.

\(^4\) See the `csrsv` and `csrsv2` functions described at http://docs.nvidia.com/cuda/cusparse/index.html#cusparsel2-function-reference
The cuSparse library is written in C, and to allow FORTRAN users to use the library directly, FORTRAN wrappers are provided. However, in order to minimize the amount of added code to POT3D as much as possible, we did not use these wrappers, but instead wrote a small C function that calls the cuSparse library. We then call this function from the FORTRAN code. Calling C functions from FORTRAN used to be somewhat difficult as each compiler had its own requirements and syntax. Fortunately, a fully portable method of calling C functions is now part of FORTRAN as of the 2008 standard. A full example can be found on pg. 283 in Ref. [8], but for demonstration purposes, we reproduce some of the code here. The C code we wrote contains the following function which calls the cuSparse LU solvers:

```c
void lusol_cusparse (double* x, double* CSR_LU,
                     int* CSR_I, int* CSR_J, int N, int M){
  cusparseDcsrsv_solve (cusparseHandle,
                       CUSPARSE_OPERATION_NON_TRANSPOSE, N,& one,
                       L_described, CSR_LU, CSR_I, CSR_J, L_analyzed, x,x);
  cusparseDcsrsv_solve (cusparseHandle,
                       CUSPARSE_OPERATION_NON_TRANSPOSE, N,& one,
                       U_described, CSR_LU, CSR_I, CSR_J, U_analyzed, x,x);
  cudaDeviceSynchronize();
}
```

Within the FORTRAN code, an interface is created declaring the FORTRAN subroutine of the same name to be linked to the C code:

```fortran
interface
  subroutine lusol_cusparse (x, CSR_LU, CSR_AI, CSR_AJ, N, M)
    & BIND (C, name = "lusol_cusparse")
    use, intrinsic :: iso_c_binding
    integer (C_INT), value :: N,M
    type (C_PTR), value :: x, CSR_LU, CSR_AI, CSR_AJ
  end subroutine lusol_cusparse
end interface
```

Within the code, this routine can now be called (with variables cast as C-pointers and C-scalars) as follows:

```fortran
! $acc host_data use_device(x, a_csr, a_csr_ja, a_csr_ia)
  call lusol_cusparse(C_LOC(x(1)), C_LOC(a_csr(1)),
                      C_LOC(a_csr_ia(1)),
                      C_LOC(a_csr_ja(1)), cN, cM)
! $acc end host_data
```

where we have once again used the host_data pragma of OpenACC to indicate that the device pointers should be used in the function call.

The above code samples are for applying the PC2 preconditioner. To use the cuSparse calls, we also needed to set up initializations of cuSparse, using global variables in the C code which are then available to successive calls. To minimize code changes to POT3D, we initialize the ILU0 matrix on the CPU and transfer it to the GPU for use in cuSparse.
To build the code, we use `nvcc` to compile the C code which calls cuSparse, and then link the resulting object file to the compilation of POT3D.

3.6 Temporary arrays and scalar access

The unstructured data regions described in Sec. 3.1 work very well for global arrays (or arrays in a module). Often in codes, a temporary array is initialized (statically or dynamically) within a subroutine and only has a local scope. Such arrays can be allocated on the GPU, but they then need to invoke a kernel loop to initialize them (or they can be initialized on the CPU, but then they would need to be transferred to the GPU). In POT3D, in order to avoid having to allocate and initialize temporary arrays on the device over and over again, we chose to modify the code to make those few arrays global in scope.

Another issue involving data movement is that occasionally, only a few (or one) values of an array are needed in a compute loop. Although one can simply transfer the whole array to the device, this creates overhead (since the array could be accessed through cache rather than a register) and in some cases, the array might be quite large. In POT3D, we had an example of a single value of an array (dr(1)) being used in a loop. We chose to define a new scalar value (dr1 = dr(1)) instead of transferring the array in the following kernel:

```plaintext
!$acc kernels present(x, br0)
   x(1:2:ntm1, 2:npm1)=x(2:2:ntm1, 2:npm1)
   & -vmask*br0(2:2:ntm1, 2:npm1)*dr1
!$acc end kernels
```

3.7 Additional considerations

There are other considerations which were of less importance in our case, but may be more relevant to other codes. First, on nested loops, the choice of `gang`, `worker` and `vector` topology and sizes can somewhat affect performance. We chose what seemed reasonable for the GPUs we planned to run on (using examples from Ref. [8] and others). However, we later tried allowing the compiler full freedom to choose the topology and found that this increased the performance (note that the timing results in Sec. 4 do not reflect this change).

Another issue affecting performance is setting the proper compiler flags. While this is obviously compiler dependent, it is important to keep in mind as we were able to obtain a sizable performance gain by simply invoking CUDA 8.0 instead of the default (7.5) in the PGI compiler (version 16.10).

For codes that require frequent data transfers between GPU and CPU, asynchronous data movement and compute regions can help to fill the device pipeline by overlapping computation of different kernels and/or data movement. In POT3D, we do not make much use of asynchronous clauses since the form of the PCG algorithm does not lend itself to communication-computation overlap, and we only transfer data to and from the GPU and CPU at the start and the end of the solve.
3.8 Profiling

To ensure good performance, it is often critical to perform profiling tests. In the case of using OpenACC with GPUs, this is even more important as unwanted/unexpected GPU-CPU memory transfers can drastically reduce performance. In Fig. 1, we show screenshots of profiling (using pgprof) the OpenACC POT3D on a small test case with both PC1 and PC2 preconditioners. The profiling is shown for a single solver iteration of POT3D run on a single NVIDIA GeForce 970 GPU. We see that there are no unexpected GPU-CPU transfers and little overhead. However, in the case of PC2, the cuSparse library’s LU-solvers are much slower than the matrix-vector product. While this is true in the CPU case as well, it is a relatively larger fraction here. One reason why this might be the case is that the algorithms for LU-solves in cuSparse are most efficient for matrices with a large number of non-zeros per row. In a case of a simple 7-point stencil, the solver does not seem to be able to efficiently extract enough parallelism. It is possible that storing the matrices in ELL format [15] may have yielded better results, but this would have required even more code changes to POT3D.

![Fig. 1. Profiling results of one iteration of POT3D’s PCG solver using OpenACC on a single NVIDIA GeForce 970 GPU for PC1 (top) and PC2 (bottom).](image-url)
3.9 Summary of effort and portability

Adding OpenACC to POT3D for PC1 required minimal code changes and the addition of 67 OpenACC pragmas equaling 230 additional lines of code. Compared to POT3D’s original line count (7668), this is only a 3% modification. The resulting code is fully portable in that it can be compiled in the original MPI-only manner for CPUs, or with OpenACC enabled for running on multiple GPU (or other) devices.

For the PC2 preconditioner, the necessity of calling the cuSparse library increased the required amount of modifications to the code. The OpenACC pragmas and additional FORTRAN statements added up to 335 lines of code, while the additional C code used to call cuSparse was another 181 lines. Combined, this equates to a modification of 6.3%. While still small, this is over twice the amount than was required for PC1 alone. More importantly, adding cuSparse broke portability by requiring the cuSparse library (and a new build script) to compile the code, and limiting the OpenACC implementation to NVIDIA GPUs. This lack of portability could be overlooked if the PC2 performs substantially better than PC1 but, as we will show in the next section, this is not the case.

4 Performance Results

In this section we show the performance results for running POT3D with OpenACC. We choose a problem size that is quite large so that we can test the scaling to multiple devices. We emphasize that the results presented here are not necessarily indicative of results one can expect in general, but are rather offered as a single real-world example. Variations in optimizations, algorithm choices, and hardware setups can vary performance (sometimes significantly).

4.1 Test Case

Our test case utilizes the solar surface magnetic field boundary described in Ref. [16], and computes the PF solution with a mesh size of \((N_r \times N_\theta \times N_\phi) = (200 \times 720 \times 1440)\) yielding a total of over 200 million grid cells. Fig. 2 shows the boundary magnetic field and the resulting potential field solution. The solver is computed in double precision and iterated to a relative tolerance of \(10^{-9}\) and takes 19995 and 2563 \(\rightarrow\) 3221 iterations when using PC1 and PC2 respectively (the range of iterations using PC2 is because it becomes less effective as the number of processors increases due to its non-overlapping implementation). For all timings, we subtract off the time spent in IO, but do include the start-up time (such as the ILU0 decomposition). This start-up time is typically negligible in light of the number of iterations in the solve.

For a baseline reference, running the test takes 61576 seconds to compute on a single core of an Intel Xeon E5-1650v4 3.6GHz CPU.
4.2 HPC Resources

To compute the original CPU MPI scaling of POT3D (and using OpenACC compiled to x86 multi-core) we use the Comet supercomputer at the San Diego Supercomputing Center. Comet consists of Xeon E5-2680v3 2.5GHz Haswell (2x12-core sockets) compute nodes linked by Infiniband. The maximum allowed number of CPUs to use in one run (for standard allocations) is 72 nodes (1728 cores). For the MPI CPU runs, we use the Intel 2015.2.164 compiler with the MVAPICH 2.1 MPI library, while for the MPI+OpenACC x86 multi-core runs, we use the PGI 17.5 compiler with the same version of the MVAPICH library.

For testing MPI+OpenACC runs on NVIDIA GPUs we used the PSG cluster at NVIDIA which has 4 Pascal P100 GPUs per node. The code was compiled with the PGI compiler (version 16.10 + CUDA 8.0) and the OpenMPI 1.10.2 MPI library.

4.3 CPU performance with MPI and MPI+OpenACC

The CPU performance results are shown in Fig. 3. For the original MPI runs, the single node scaling of the code is not ideal and we are unclear why this is the case. Some possibilities may be the MPI rank affinity/binding leading to each socket requiring memory from the other, or simply the memory bus becoming saturated (as PCG is a memory-bound algorithm). In contrast, we see that the original MPI code scales very well using multiple nodes up to about 64 nodes where it starts to lose efficiency. This loss of efficiency could be due to a combination of the number of iterations increasing (in the case of PC2) and load imbalance (made worse by the synchronizing nature of the inner products and polar-averaging boundary conditions).

The PC2 preconditioner is clearly much more efficient as it runs up to four times faster than PC1. This should be compared to the reduction of iterations (nearly 10x) which shows the relative increase in computational expense of the PC2’s application versus PC1. We note that using the maximum number of
Fig. 3. CPU timing results for POT3D with MPI and MPI+OpenACC. Left: results within a single compute node. Right: results for multiple nodes.

CPU nodes available yields a computation time on the same order as the IO time (excluded from the timings) which is about as much performance as we can expect for POT3D in its current form.

The MPI+OpenACC on x86 multi-core is not running efficiently. On a single node, the results are not atypical to other codes we have tested using OpenMP. This performance drop compared to the MPI-only code could possibly be due to limits on the parallelization of small loops across single dimensions (such as boundary conditions and MPI send/receive buffers), and/or improper thread affinity and ‘first-touch’ issues with data initialization (which would require creating compute kernels around initializations of the arrays to address). These and other issues make running hybrid MPI+multi-threaded CPU codes efficiently very difficult in general.

For the multi-node MPI+OpenACC runs, we set ACC_NUM_CORES and OMP_NUM_THREADS to 24 and the number of MPI ranks per node to 1. We also tried setting 12 ACC/OMP threads with 2 MPI ranks per node and binding the threads to each socket, but the resulting performance was even worse. The code shows decent scaling at first (although as seen in the single node results, its computation time on one node is twice as slow as the MPI-only run). However,
as the number of nodes increases, the quality of the scaling decreases, and at high number of nodes, the performance stops improving and starts getting worse. The timers in the code indicate that the vast majority of the time in these runs is being spent in the MPI calls (or possibly waiting for synchronizations around them). We are unclear why this is the case since the number of MPI ranks is far reduced compared to running with MPI-only. We speculate that perhaps the OpenMP binding policies set by the HPC system are not interacting with the OpenACC x86 multi-core runtime properly. More research into the details of these runs is necessary in order to accurately diagnose the problem.

4.4 GPU performance with MPI+OpenACC

The GPU performance results using MPI+OpenACC are shown in Fig. 4. We see that the code scales reasonably well (especially considering that the system did not have NVlink). The scaling of the code loses some efficiency when run on many nodes. In such cases, the fact that we compute the PC2 formulation on the CPU before the start of the solver iterations may be affecting the scaling results. We were not able to run the test case on less than 2 nodes due to the very large problem size (the GPUs did not have enough RAM to contain the required arrays). This limitation could be avoided by the use of unified memory, but doing so may hinder performance.

![Fig. 4. GPU timing results for POT3D with MPI+OpenACC for multiple nodes.](image-url)
Interestingly, we see that the PC1 and PC2 preconditioners have almost the same run time (sometimes the PC2 is even slower than PC1) which is indicative of the cuSparse LU-solver not being as relatively efficient for our matrix structure and/or storage format as in the CPU case.

Comparing the GPU timings to the CPU results of Fig. 3 shows that, for this case, a single 4xP100 GPU node is roughly equal in performance to 20 2x12-core Haswell nodes for PC1 and 16 2x12-core Haswell nodes for PC2. Stating this in terms of single compute units, for PC1, one P100 GPU performs similarly to 10 12-core Haswell CPUs and for PC2, one P100 GPU performs similarly to two 12-core Haswell CPUs. Although these results are far less than the peak capabilities of the P100 GPUs, for a memory-bound code containing global collectives, results like these are not atypical.

5 Performance Portability

Performance portability is the idea of having one code base that can be run efficiently on multiple hardware architectures and types. Various attempts at such portability have been proposed and implemented, but none has seemed to gain overwhelming acceptance and demonstrated true efficient portability.

By its focus on expressing the parallelism in computational regions, OpenACC is designed to allow implementations to more easily target different hardware with minimal options in the code (such as conditional pragmas). The PGI implementation of OpenACC targets numerous architectures including NVIDIA GPUs, multi-core x86 and OpenPower systems, and has plans to directly target Intel KNL nodes, as well as ARM and other systems. It used to also support AMD GPUs, but as of version 17.1, this support has been dropped. Other implementations of OpenACC (such as GNU) also plan to target multiple devices.

As the results in Sec. 4 showed, the x86 multi-core implementation of OpenACC performed very poorly with our code/HPC system setup. Perhaps modifying our run-time environment and/or adding initialization kernels could improve on the performance, but even if this is possible, it is unclear how optimizing the code for x86 would affect the GPU performance.

We did not have access to any OpenPower or KNL systems where PGI is installed, so we were unable to test POT3D’s performance portability on these architectures.

Although the OpenACC results for x86 multi-core were not efficient, the OpenACC POT3D does exhibit performance portability as it runs very well using MPI-only on CPUs and with OpenACC on GPUs with the same source code (when using PC1).

6 Summary

We have demonstrated adding OpenACC accelerator support to a legacy FORTRAN MPI PCG solver code. We can now analyze our original goals in light of the results:
1. To efficiently compute solutions in-house using a modest number of GPUs that would normally require the use of a large HPC cluster

From our multi-node GPU results, we found that one P100 GPU was similar in performance to 5 24-core Haswell nodes for PC1 and 1 24-core Haswell node for PC2. Since there are cases where PC1 is more efficient than PC2 (even on the CPU), a single 16-GPU workstation could perform as well as 80 Haswell nodes, which is more than the maximum number of nodes usable for a run on Comet. Even for PC2 runs, having a 16-GPU workstation would be equivalent to 16 Haswell nodes, which is fast enough for computing medium-sized problems quite efficiently.

2. To compute large solutions more quickly than current HPC resources allow

On the NVIDIA PSG cluster, we were able to use up to 16 nodes (a total of 64 P100 GPUs). The run using all 16 nodes was faster than that using the maximum 72 CPU nodes on Comet (for PC1, it was 4 times faster, for PC2 it was marginally faster). Comet recently added new GPU-enabled racks with 4 P100 GPUs per node which will allow us to solve the solutions faster than we can on the CPU nodes.

3. To use less HPC allocation resources (i.e. do an equivalent solve on fewer GPU nodes than CPU nodes)

From the above analysis, if a 4xP100 GPU node had the same allocation cost as a CPU node, then the OpenACC version of POT3D would indeed save a significant amount of allocation time. However, typically HPC systems charge more allocation for more advanced nodes (like the P100 GPU nodes) so the savings in allocation will vary depending on each HPC center’s policies.

In addition to the goals above, it was very important that the resulting code be single-source (portable). For PC1, this was achieved and the OpenACC enhanced code is now part of the main code base. However, PC2 necessitated a break in portability due to the use of the cuSparse library. The performance results in Sec. 4 indicate that for the P100 GPUs, the performance of using PC1 and PC2 are roughly equivalent, in which case having OpenACC on only PC1 is acceptable. This result is reminiscent of computations done in the late 1980s using Cray (and other) vector computers, where the value of incomplete factorization preconditioners versus the improved vector performance of diagonal scaling was discussed in the literature often (e.g. see Ref. [12]). With the advent of GPUs and other large-vector hardware (such as the Intel KNL processor with the AVX512 instruction set), renewed research into alternative vector-friendly preconditioners could be of great value.

Overall, adding OpenACC to POT3D to add multi-GPU capabilities did not involve overly extensive development time, and for PC1 only required a 3% change in the source code. This, combined with the positive GPU performance
results, encourages us to move forward in implementing OpenACC in our global MHD code MAS. The lessons learned in the POT3D implementation will be of great assistance in that venture, and we hope they will also be of assistance to other researchers considering adding accelerated computing to their legacy code using OpenACC.

Acknowledgements

Funding for this work was provided by NASA, NSF, and AFOSR. Computer time on Comet was provided by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant number ACI-1548562. We gratefully acknowledge NVIDIA Corporation for allowing us to utilize their PSG cluster for the P100 GPU runs.

References

1. Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: Improved method for specifying solar wind speed near the sun. In: AIP Conference Proceedings. vol. 679, pp. 190–193. AIP (2003)
2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Tech. rep., Nvidia Technical Report NVR-2008-004, Nvidia Corporation (2008)
3. Benzi, M.: Preconditioning techniques for large linear systems: a survey. Journal of computational Physics 182(2), 418–477 (2002)
4. Caplan, R.M., Mikić, Z., Linker, J.A., Lionello, R.: Advancing parabolic operators in thermodynamic MHD models: Explicit super time-stepping versus implicit schemes with Krylov solvers. Journal of Physics: Conference Series 837(1), 012016 (2017)
5. Chapman, B., Jost, G., Pas, R.v.d.: Using OpenMP: portable shared memory parallel programming. The MIT Press (2008)
6. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Morgan Kaufmann Publishers Inc. (2012)
7. Downs, C., Linker, J.A., Mikić, Z., Riley, P., Schrijver, C.J., Saint-Hilaire, P.: Probing the solar magnetic field with a sun-grazing comet. Science 340(6137), 1196–1199 (2013)
8. Farber, R.: Parallel Programming with OpenACC. Morgan Kaufmann, Elsevier (2016)
9. Kaeli, D.R., Mistry, P., Schaa, D., Zhang, D.P.: Heterogeneous Computing with OpenCL 2.0. Morgan Kaufmann Publishers Inc. (2015)
10. Linker, J.A., Caplan, R.M., Downs, C., Lionello, R., Riley, P., Mikić, Z., Henney, C.J., Arge, C.N., Kim, T., Pogorelov, N.: An empirically driven time-dependent model of the solar wind. In: Journal of Physics: Conference Series. vol. 719, pp. 12012–12023. IOP Publishing (2016)
11. Lionello, R., Linker, J.A., Mikić, Z.: Multispectral emission of the sun during the first whole sun month: Magnetohydrodynamic simulations. The Astrophysical Journal 690(1), 902 (2009)
12. Pini, G., Gambolati, G.: Is a simple diagonal scaling the best preconditioner for conjugate gradients on supercomputers? Advances in Water Resources 13(3), 147–153 (1990)
13. Saad, Y.: Iterative methods for sparse linear systems. Siam (2003)
14. Schatten, K.H.: Prediction of the Coronal Structure for the Solar Eclipse of March 7, 1970. Nature 226, 251 (1970)
15. Smith, B., Zhang, H.: Sparse triangular solves for ilu revisited: data layout crucial to better performance. International Journal of High Performance Computing Applications 25(4), 386–391 (2011)
16. Titov, V., Mikic, Z., Török, T., Linker, J., Panasenco, O.: 2010 august 1-2 sympathetic eruptions. i. magnetic topology of the source-surface background field. The Astrophysical Journal 759(1), 70 (2012)
17. Tóth, G., Van der Holst, B., Huang, Z.: Obtaining potential field solutions with spherical harmonics and finite differences. The Astrophysical Journal 732(2), 102 (2011)
18. Veldman, A., Rinzena, K.: Playing with nonuniform grids. Journal of engineering mathematics 26(1), 119–130 (1992)
19. Wang, Y.M., Sheeley Jr, N.: Solar implications of ulysses interplanetary field measurements. The Astrophysical Journal Letters 447(2), L143 (1995)