This paper is a continuation of \cite{4}, in which we introduced a reduction of the Toda lattice hierarchy (in the limit of infinitesimal lattice spacing), called the equivariant Toda lattice, by imposing the constraints

\[(\delta_1 - \bar{\delta}_1)L = \nu \partial L, \quad (\delta_1 - \bar{\delta}_1)\bar{L} = \nu \partial \bar{L} \]

on the Lax operators \(L \) and \(\bar{L} \). This reduction is a deformation of the Toda chain, which is the reduction corresponding to the constraint \(L = \bar{L} \).

Seeking an integrable system which would describe the Gromov-Witten invariants of \(\mathbb{C}P^1 \), Eguchi and Yang \cite{2} studied the Toda chain. They conjectured the existence in the limit of infinitesimal lattice spacing of an additional hierarchy of commuting flows: these flows were constructed independently by the author \cite{3} and Zhang \cite{10} using homological perturbation theory, and shown to be bihamiltonian. Recently, Carlet, Dubrovin and Zhang \cite{1} have shown that these additional flows may be described by Lax equations involving the logarithm of the Lax operator \(L \), as conjectured by Eguchi and Yang.

In this paper, borrowing the ideas of Carlet et al., we prove that the equivariant Toda lattice has a Hamiltonian structure which is a deformation of the first Hamiltonian structure of the Toda chain. (We were however unable to find a bihamiltonian structure.)

Acknowledgements. This paper was inspired by discussions with B. Dubrovin and Y. Zhang at the meeting on Frobenius manifolds at the Max-Planck-Institut für Mathematik, Bonn, and the author thanks C. Hertling, Yu. Manin and M. Marcolli for the invitation to participate. The author is partially supported by the NSF under grant DMS-0072508.

1. Notation

In this section, we recall some of the terminology of \cite{4}. All of the commutative algebras which we consider carry an involution \(p \mapsto \bar{p} \). By a differential algebra, we mean a commutative algebra with derivation \(\partial \) such that

\[\partial \bar{p} = \bar{\partial p}. \]

If \(\mathcal{A} \) is a differential algebra and \(S \) is a set, the free differential algebra \(\mathcal{A}\{S\} \) generated by \(S \) is the polynomial algebra

\[\mathcal{A}[\partial^n x, \partial^n \bar{x} | x \in S, n \geq 0], \]
with differential $\partial(\partial^n x) = \partial^{n+1} x$. An evolutionary derivation δ of a differential algebra \mathcal{A} is a derivation such that $[\partial, \delta] = 0$.

Let \mathcal{A} be a differential algebra over \mathbb{Q}_ε, and let $q \in \mathcal{A}$ be a regular element (that is, having no zero-divisors) such that $\bar{q} = q$. The localization $q^{-1}\mathcal{A}$ of \mathcal{A} is a differential algebra, with differential $\partial(q^{-1}) = -q^{-2}\partial q$. Let $\Phi_{\pm}(\mathcal{A}, q)$ be the associative algebras of difference operators

$$
\Phi_+(\mathcal{A}, q) = \left\{ \sum_{k=-\infty}^{\infty} p_k \Lambda^k \mid p_k \in q^{-1} \mathcal{A}, p_k = 0 \text{ for } k \ll 0 \right\},
$$

$$
\Phi_- (\mathcal{A}, q) = \left\{ \sum_{k=-\infty}^{\infty} p_k \Lambda^k \mid p_k \in \mathcal{A}, p_k = 0 \text{ for } k \gg 0 \right\},
$$

with product

$$
\sum_i a_i \Lambda^i \cdot \sum_j b_j \Lambda^j = \sum_k \left(\sum_{i+j=k} \left(E^{-j/2} a_i \right) \left(E^{i/2} b_j \right) \right) \Lambda^k.
$$

Note that $\Phi_-(\mathcal{A}, q)$ is in fact independent of q.

Let $A \mapsto A_{\pm}$ be the projections from on $\Phi_{\pm}(\mathcal{A}, q)$ defined by the formulas

$$
\left(\sum_{k=-\infty}^{\infty} p_k \Lambda^k \right)_+ = \sum_{k=0}^{\infty} p_k \Lambda^k, \quad \left(\sum_{k=-\infty}^{\infty} p_k \Lambda^k \right)_- = \sum_{k=-\infty}^{\infty} p_k \Lambda^k.
$$

We see that $A = A_- + A_+$. Define the residue $\text{res} : \Phi_{\pm}(\mathcal{A}, q) \to \mathcal{A}$ by the formula

$$
\text{res} \left(\sum_{k=-\infty}^{\infty} p_k \Lambda^k \right) = p_0.
$$

For $k \in \mathbb{Z}$, let $[k]$ be the isomorphism of \mathcal{A}

$$
[k] = \frac{E^{k/2} - E^{-k/2}}{E^{1/2} - E^{-1/2}} = \sum_{j=1}^{k} E^{(k+1)/2-j} = k + O(\varepsilon^2).
$$

Define $q^{[k]}$ by the recursion

$$
q^{[k+1]} = E^k q \cdot E^{-1/2} q^{[k]},
$$

with initial condition $q^{[0]} = 1$. The involution

$$
A = \sum_{k=-\infty}^{\infty} p_k \Lambda^k \mapsto \bar{A} = \sum_{k=1}^{\infty} \bar{p}_k q^{[k]} \Lambda^{-k} + \bar{p}_0 + \sum_{k=1}^{\infty} \bar{p}_{-k} q^{-[k]} \Lambda^k,
$$

defines an anti-isomorphism between the algebras $\Phi_+(\mathcal{A}, q)$ and $\Phi_-(\mathcal{A}, q)$.

2
2. The dressing operator of the Toda lattice

Let \mathcal{B} be the free differential algebra $\mathbb{Q}_\varepsilon \{ q, w_k \mid k > 0 \}/(q - \bar{q})$, and let W be the universal dressing operator of the Toda lattice

$$W = 1 + \sum_{k=1}^{\infty} w_k \Lambda^{-k} \in \Phi_-(\mathcal{B}, q).$$

The coefficients $w_k^* \in \mathcal{B}$ of W^{-1},

$$W^{-1} = 1 + \sum_{k=1}^{\infty} w_k^* \Lambda^{-k},$$

are characterized by the recursion

$$w_k^* = -w_k - \sum_{j=1}^{k-1} \left(E^{(k-j)/2} w_j \right) \left(E^{-j/2} w_{k-j}^* \right),$$

obtained by extracting the coefficient of Λ^{-k} in the equation $WW^{-1} = I$.

The Lax operator of the Toda lattice is the difference operator

$$L = W \Lambda W^{-1} = \Lambda + \sum_{k=1}^{\infty} a_k \Lambda^{-k+1} \in \Phi_-(\mathcal{B}, q).$$

Since $a_k + \varepsilon \nabla w_k$ lies in the differential ideal (w_1, \ldots, w_{k-1}) for all $k > 0$, we see that the sequence of elements a_k of \mathcal{B} defines an embedding of differential algebras

$$\mathcal{A} = \mathbb{Q}_\varepsilon \{ q, a_k \mid k > 0 \}/(q - \bar{q}) \hookrightarrow \mathcal{B}.$$

The conjugate Lax operator \tilde{L} is

$$\tilde{L} = W^{-1}(q \Lambda^{-1}) W = q \Lambda^{-1} + \sum_{k=1}^{\infty} \tilde{a}_k q^{-[k-1]} \Lambda^{k-1}. $$

Let $B_n = \varepsilon^{-1} L_n^+$ and $C_n = -\varepsilon^{-1} \tilde{L}_n^-$. We define evolutionary derivations $(\delta_n, \bar{\delta}_n \mid n > 0)$ of \mathcal{B} by the formulas

(2) \quad $\varepsilon \delta_n W + L_n^W = \varepsilon \bar{\delta}_n W + \tilde{L}_n^- W = 0.$

These derivations are called the flows of the Toda lattice. The action of the derivations δ_n and $\bar{\delta}_n$ on \mathcal{B} restricts to an action on \mathcal{A} such that the derivatives of the Lax operator L are given by the Lax equations $\delta_n L = [B_n, L]$ and $\bar{\delta}_n L = -[C_n, L]$. These flows on \mathcal{B} commute, by the Zakharov-Shabat equations

$$\delta_m B_n - \delta_n B_m = [B_m, B_n], \quad \delta_m C_n - \bar{\delta}_n B_m = [B_m, C_n], \quad \bar{\delta}_m C_n - \bar{\delta}_n C_m = [C_m, C_n],$$

and δ_n is indeed the conjugate derivation to $\bar{\delta}_n$.

3
Let $\log(L) = W \log(\Lambda) W^{-1}$, where $\log(\Lambda)$ is a formal symbol for the operator $\varepsilon \partial$: namely, we have the commutation relation

$$\left[\log(\Lambda), f\right] = \varepsilon \partial f, \quad f \in \Phi_-(\mathcal{A}, q).$$

Define ℓ to be the difference operator

$$\ell = \log(\Lambda) - \log(L) = \varepsilon(\partial W)W^{-1}$$

$$= \varepsilon \left(\partial w_k + \sum_{j=1}^{k-1} \left(E^{(k-j)/2} \partial w_j \right) \left(E^{-j/2} w_{k-j}^* \right) \right).$$

The following is a result of Carlet, Dubrovin and Zhang [1]. (They work in the context of the Toda chain, so they assume that $a_k = 0$, $k > 2$.)

Proposition 2.1. The difference operator ℓ is an element of $\Phi_-(\mathcal{A}, q)$.

Proof. Write

$$\ell = \sum_{k=1}^{\infty} b_k \Lambda^{-k} \in \Phi_-(\mathcal{B}, q).$$

We show that $b_k \in \mathcal{A}$ for all $k > 0$, by induction on k.

Define elements $p_k(n)$ of \mathcal{A} by the formula

$$L^n = \sum_{k=-\infty}^{\infty} p_k(n) \Lambda^k.$$

We have

$$\varepsilon \partial L = \varepsilon \partial(W \Lambda W^{-1}) = \varepsilon(\partial W) W^{-1} - \varepsilon W \Lambda W^{-1}(\partial W) W^{-1} = [\ell, L],$$

hence for each $n > 0$, $\varepsilon \partial L^n = [\ell, L^n]$. Applying the linear map $\text{res} : \Phi_-(\mathcal{A}, q) \rightarrow \mathcal{A}$, we obtain the equation

$$\nabla \left([n] b_n + \sum_{k=1}^{n-1} [k] (b_k p_k(n)) + P_0(n) \right) = 0. \quad (3)$$

Denote by $\alpha : \mathcal{A} \rightarrow \mathbb{Q}_\varepsilon$ the homomorphism which sends the generators $\{q, a_k, \bar{a}_k\}$ of \mathcal{A} to 0. Since $\alpha \cdot \partial = 0$, we see that $\alpha(\partial W) = 0$, and hence $\alpha(\ell) = 0$. Thus, the constant of integration in (3) vanishes, and we obtain the recursive formula

$$b_n = -\frac{1}{[n]} \sum_{k=1}^{n-1} [k] (b_k p_k(n)) + P_0(n) \quad (4)$$

for the coefficients b_k, showing that they are elements of \mathcal{A}. \qed
3. Fractional powers of the Lax operator

In this section, we study the fractional powers of the Lax operator L; this may be compared with the parallel construction for the KP hierarchy due to Khesin and Zakharevich [5]. The study of these fractional powers is closely related to the operator ℓ introduced in the last section.

Let s be a complex number. The fractional power L^s of the Lax operator L is defined by means of the dressing operator:

$$L^s = W \Lambda^s W^{-1} = \Lambda^s + \sum_{k=1}^{\infty} a_k(s) \Lambda^{s-k} \in \Phi_{-}(B, q).$$

The coefficient $a_k(s)$ is given by the explicit formula

$$a_k(s) = E^{-s/2}w_k + \sum_{j=1}^{k-1} \left(E^{(k-j-s)/2}w_j \right) \left(E^{(s-j)/2}w_{k-j} \right) + E^{s/2}w_k^*.$$

In particular, $a_k(0) = 0$ and $a_k(1) = a_k$. Differentiating the definition (5) of L^s with respect to s and setting $s = 0$, we obtain the formula

$$\frac{dL^s}{ds} \bigg|_{s=0} = -\ell,$$

showing that $a'_k(0) = -b_k$. The following proposition is proved by extending this differential equation to all values s.

Proposition 3.1. The coefficient $a_{k,i}(s)$ in the expansion

$$a_k(s) = \sum_{i=0}^{\infty} \varepsilon^i a_{k,i}(s)$$

is a polynomial in s of degree $i + 1$ with coefficients in the differential algebra

$$\mathbb{Q}\{q, a_k \mid k > 0\}/(q - \bar{q}).$$

Proof. By its definition, the fractional power L^s satisfies the differential equation

$$\frac{dL^s}{ds} = -\frac{1}{2} \left(L^s \ell + \ell L^s \right).$$

Taking the coefficient of Λ^{s-k} on both sides, we obtain the differential equation

$$\frac{da_k(s)}{ds} = -\frac{1}{2} \sum_{j=1}^{k-1} \left(E^{(s-j)/2}b_{k-j} E^{(k-j)/2}a_j(s) + E^{(j-s)/2}b_{k-j} E^{(j-k)/2}a_j(s) \right),$$

where we interpret $a_0(s)$ as 1. By an application of Proposition 2.1, the result follows. □
4. Perturbation theory

Let $\Omega(\mathcal{A})$ be the vector space of Kähler differentials of the commutative \mathbb{Q}_ε-algebra \mathcal{A}; this is a free module over \mathcal{A} with basis $\{dq, da_k, d\bar{a}_k \mid k > 0\}$. The differential $d : \mathcal{A} \to \Omega(\mathcal{A})$ extends to a morphism

$$d : \Phi_-(\mathcal{A}, q) \to \Phi_-(\mathcal{A}, q) \otimes_\mathcal{A} \Omega(\mathcal{A}).$$

The goal of this section is the calculation of the differentials dL^s and $d\ell$ in terms of the fundamental differential

$$dL = \sum_{k=1}^{\infty} da_k \Lambda^{-k+1}.$$

A basic formula of perturbation theory (Kumar [6]) says that for $f(z)$ an analytic function of z,

$$df(L) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)!} \text{ad}(L)^k(f^{(k+1)}(L)dL).$$

For $f(z) = z^s$, this becomes

$$dL^s = \sum_{k=0}^{\infty} (-1)^k \binom{s}{k+1} \text{ad}(L)^k(L^{s-k-1}dL). \tag{7}$$

We will now prove this formula directly.

For s a natural number n, the right-hand side of (7) is a finite sum, and the formula is then easily proved by induction on n: we have

$$d(L^{n+1}) = dL^n \cdot L + L^n \cdot dL = \sum_{k=0}^{n-1} (-1)^k \binom{n}{k+1} \text{ad}(L)^k(L^{n-k-1}dL) \cdot L + L^n \cdot dL$$

$$= \sum_{k=0}^{n-1} (-1)^k \binom{n}{k+1} \left(\text{ad}(L)^k(L^{n-k}dL) - \text{ad}(L)^{k+1}(L^{n-k-1}dL)\right) + L^n \cdot dL$$

$$= \sum_{k=0}^{n} (-1)^k \left(\binom{n}{k} + \binom{n}{k+1}\right) \text{ad}(L)^k(L^{n-k}dL) = \sum_{k=0}^{n} (-1)^k \binom{n+1}{k+1} \text{ad}(L)^k(L^{n-k}dL).$$

By analytic continuation, (7) holds for all values of s. Indeed, the right-hand side is convergent in the ε-adic topology, since the operation $\text{ad}(L)$ may be split into two terms: $\text{ad}(\Lambda + a_1) = O(\varepsilon)$, and

$$\sum_{k=2}^{\infty} \text{ad}(a_k \Lambda^{-k+1}) = O(\Lambda^{-1}).$$

It only remains to observe that by Theorem 3.1, the coefficient of ε^i in $da_{k,i}(s)$ is polynomial in s.

6
It is now straightforward to calculate \(d\ell \): taking the derivative of (7) with respect to \(s \) and setting \(s = 0 \), we see that

\[
(8) \quad d\ell = -\sum_{k=0}^{\infty} \frac{1}{k+1} \text{ad}(L)^k(L^{-k-1}dL).
\]

5. The equivariant Toda lattice and \(\ell \)

In this section, we denote the element \(a_1 \in A \) by \(v \). Let \(K \) be the difference operator

\[
K = L_+ + \bar{L}_- = \Lambda + v + q\Lambda^{-1} \in \Phi_+(A, q) \cap \Phi_-(A, q).
\]

In \[4\], we defined the equivariant Toda lattice by the constraints

\[
(9) \quad \varepsilon^{-1}[K, L] = \nu\partial L, \quad \varepsilon^{-1}[K, \bar{L}] = \nu\partial \bar{L},
\]
or equivalently, the constraints (9). We showed that the differential algebra associated to the equivariant Toda lattice is isomorphic to

\[
\tilde{A} = Q_{\varepsilon, \nu}[z_k, \bar{z}_k \mid k > 0] \{q, v, \bar{v}\} / (\nu\partial q - \nabla(v - \bar{v})),
\]
where \(Q_{\varepsilon, \nu} = Q_{\varepsilon}[\nu] \), and the constants of motion \(z_k \) are the images of the elements

\[
p_{-1}(k) - qp_1(k) - \nu Pp_0(k) \in A
\]
under the natural quotient map from \(A \) to \(\tilde{A} \).

Let \(e \) be the derivation \(\partial_v + \partial_{\bar{v}} \) of \(\tilde{A} \); then \(e(K) = 1 \) and

\[
(10) \quad \left(L - \nu + \sum_{k=1}^{\infty} z_k L^{-k}\right)e(L) = L.
\]

Theorem 5.1. The constraint (9) defining the equivariant Toda lattice is equivalent to the identity

\[
(11) \quad K = L + \nu\ell - \sum_{k=1}^{\infty} \frac{z_k}{k} L^{-k}.
\]
The vanishing of the constants \(z_k \) is equivalent to the constraint

\[
(12) \quad (\delta_1 - \bar{\delta}_1)W = \nu\partial W,
\]
or equivalently, the equation \((\delta_1 - \bar{\delta}_1) = \nu\partial \) on the differential algebra \(B \).

Proof. Written in terms of \(\ell \), (9) becomes

\[
[K - \nu\ell, L] = 0.
\]
This is equivalent to the statement that

\[
K - \nu\ell \in Q_{\varepsilon, \nu}((L^{-1})).
\]
It is not hard to see that
\[K - \nu \ell - L = \sum_{k=1}^{\infty} y_k L^{-k} \in \mathbb{Q}_{\epsilon, \nu}[L^{-1}]; \]
the constant term vanishes since, by definition, \(\text{res}(K) \) and \(\text{res}(L) \) equal \(\nu \), while \(\text{res}(\ell) = 0 \).

It remains to identify the constants \(y_k \). If \(\delta \) is an evolutionary derivation of the differential algebra \(\tilde{A} \), (8) implies that
\[\delta \ell = -\sum_{k=0}^{\infty} \frac{1}{k+1} \text{ad}(L)^k(L^{-k-1}\delta L). \]
In particular, since \(L \) commutes with \(e(L) \), we see that \(e(\ell) = -L^{-1}e(L) \). Likewise, \(e(L^{-k}) = -kL^{-k-1} \). Applying the derivation \(e \) to both sides of (13), we see that
\[1 = e(K) = e(L) \left(1 - \nu L^{-1} - \sum_{k=1}^{\infty} k y_k L^{-k-1} \right). \]
It follows from (10) that \(y_k = -z_k/k \).

We have
\[(K - L - \nu \ell)W = (L_+ + \tilde{L}_-)W - \varepsilon \nu \partial W \]
\[= -L_- W + \tilde{L}_- W - \varepsilon \nu \partial W = \varepsilon (\delta_1 - \tilde{\delta}_1 - \nu \partial)W. \]
Thus, the vanishing of the constants \(z_k \) in (11) is equivalent to the constraint (12). \(\square \)

In [4], we conjectured that the equivariant Gromov-Witten invariants of \(\mathbb{C}P^1 \) are described by the equivariant Toda lattice with \(z_k = 0, \ k > 0 \). The results of this section show that this is true. By the work of Okounkov and Pandharipande, the equivariant Gromov-Witten invariants of \(\mathbb{C}P^1 \) are associated with a \(\tau \)-function of the Toda lattice which satisfies \((\delta_1 - \tilde{\delta}_1)\tau = \nu \partial \tau \). The dressing operator \(W \) corresponding to this \(\tau \)-function is given by the formula
\[W = \tau^{-1} \exp \left(-\sum_{n=1}^{\infty} \frac{\delta_n}{n!} \right) \tau; \]
it follows that \(W \) satisfies the equation \((\delta_1 - \tilde{\delta}_1)W = \nu \partial W \).

The other part of the conjecture of [4], relating the equivariant Gromov-Witten flows of \(\mathbb{C}P^1 \) to the flows of the equivariant Toda lattice, is established by Okounkov and Pandharipande. Namely, if \(\partial_k = \partial_{k,Q} \) and \(\tilde{\partial}_k = \partial_{k,Q} - \nu \partial_{k,P} \), then
\[\sum_{k=0}^{\infty} z^{k+1} \partial_k = \sum_{n=1}^{\infty} \frac{z^n \delta_n}{(1+z\nu)(2+z\nu)\ldots(n+z\nu)}, \]
\[\sum_{k=0}^{\infty} z^{k+1} \tilde{\partial}_k = \sum_{n=1}^{\infty} \frac{z^n \tilde{\delta}_n}{(1-z\nu)(2-z\nu)\ldots(n-z\nu)}. \]
In particular, we see that the descendent flows $\partial_{k,P}$ of the puncture operator P are given in the non-equivariant limit by the formula

$$
\partial_{k,P} = \lim_{\nu \to 0} \left(\frac{1}{(k+1)!} \nu^{-1}(\delta_{k+1} - \bar{\delta}_{k+1}) - \frac{1}{k!} c_k (\delta_k + \bar{\delta}_k) \right),
$$

where c_k is the harmonic number $c_k = 1 + \frac{1}{2} + \cdots + \frac{1}{k}$.

6. Hamiltonian structure

In this section, we use Theorem 5.1 to show that the equivariant Toda lattice has a Hamiltonian structure.

Denote by \mathcal{R} the quotient $\tilde{A}/\partial \tilde{A}$, and denote by $f \mapsto \int f \, dx$ the quotient map from \tilde{A} to \mathcal{R}. The idea which this notation is intended to represent is that an element of \tilde{A} is a density f, whose associated functional $\int f \, dx$ is obtained by integration with respect to the space variable x.

Denote by Res the trace on $\Phi^{-}(\tilde{A}, q)$ with values in \mathcal{R} given by the formula

$$
\text{Res} \left(\sum_{k=-\infty}^{\infty} f_k \Lambda^k \right) = \int f_0 \, dx.
$$

Clearly, this map vanishes on total derivatives; to see that it vanishes on commutators, we use the formula

$$
\text{Res} \left[\sum_i a_i \Lambda^i, \sum_j b_j \Lambda^j \right] = \nabla \sum_k [k](a_k b_{-k}).
$$

There is a unique linear map

$$
\text{Res} : \Phi^{-}(\tilde{A}, q) \otimes_{\tilde{A}} \Omega(\tilde{A}) \to \Omega(\tilde{A})/\partial \Omega(\tilde{A})
$$

such that $d \text{Res}(A) = \text{Res}(dA)$.

Associated to the equivariant Toda lattice, we have the basic sequence of functionals

$$
h_n = \frac{1}{n+1} \text{Res}(L^{n+1}), \quad n \geq 0,
$$

with differentials $dh_n = \text{Res}(L^n dL)$. In calculating h_n, the following lemma is convenient.

Lemma 6.1.

$$
p_0(n + 1) = \sum_{k=0}^{n} [k + 1](a_{k+1} p_k(n))
$$

Proof. Applying the operator res to the equations $L^{n+1} = L \cdot L^n$ and $L^{n+1} = L^n \cdot L$, we see that

$$
p_0(n + 1) = E^{1/2} p_{-1}(n) + \sum_{k=0}^{\infty} E^{-k/2} (a_{k+1} p_k(n)),
$$

$$
p_0(n + 1) = E^{-1/2} p_{-1}(n) + \sum_{k=0}^{\infty} E^{k/2} (a_{k+1} p_k(n)).
$$
Taking \(E^{1/2} \) times the second of these equations minus \(E^{-1/2} \) times the first, we see that

\[
\nabla p_0(n + 1) = \nabla \sum_{k=0}^{n} [k + 1](a_{k+1} p_k(n)),
\]

and hence, that

\[
p_0(n + 1) = \sum_{k=0}^{n} [k + 1](a_{k+1} p_k(n)) + \alpha(p_0(n + 1)).
\]

This proves the lemma, since \(\alpha(p_0(n + 1)) = 0. \)

\[\square\]

Corollary 6.2.

\[
h_n = \sum_{k=0}^{n} \frac{k+1}{n+1} f(a_{k+1} p_k(n)) \, dx
\]

For example, using the formulas \(a_2 = q + \nu P v + z_1 \) and

\[
a_3 = \nu(P(\frac{1}{4}[2]v^2 + q) - \frac{1}{2}v[2]P v) + \nu^2 P v - z_1 v + \frac{1}{2}z_2,
\]

we see that

\[
h_0 = \int v \, dx,
\]

\[
h_1 = \int \left(\frac{1}{2}v^2 + a_2 \right) \, dx = \int \left(\frac{1}{2}v^2 + q + \nu v + z_1 \right) \, dx,
\]

\[
h_2 = \int \left(\frac{1}{3}v p_0(2) + \frac{2}{3}(a_2 p_1(2)) + a_3 \right) \, dx
\]

\[
= \int \left(\frac{1}{3}v(\nu v^2 + [2]a_2) + \frac{2}{3}(a_2 [2]v) + \nu(\frac{1}{2}v^2 + q - \frac{1}{2}v[2]P v) + \nu^2 v - z_1 v + \frac{1}{2}z_2 \right) \, dx
\]

\[
= \int \left(\frac{1}{3}v^3 + v[2]q + \nu(\frac{1}{2}v^2 + q + \frac{1}{2}v[2]P v) + \nu^2 v + z_1 v + \frac{1}{2}z_2 \right) \, dx.
\]

Proposition 6.3. We have \(\text{Res}(L^n \, dK) = dH_n, \) where

\[
H_n = h_n - \nu h_{n-1} + \sum_{k=1}^{n-1} z_k h_{n-k-1}.
\]

Proof. From (11), (7) and (8), we see that

\[
dK = dL + \nu d\ell - \sum_{j=1}^{\infty} \frac{z_j}{j} dL^{-j}
\]

\[
= dL + \sum_{k=0}^{\infty} (k + 1)^{-1} \text{ad}(L)^k \left(-\nu + \sum_{j=1}^{\infty} \binom{j+k}{k} z_j L^{-j} \right) L^{-k-1} \, dL.
\]

Multiplying by \(L^n \) and applying Res, all of the terms with \(k > 0 \) drop out, and we obtain

\[
\text{Res}(L^n \, dK) = \text{Res} \left(\left(L - \nu + \sum_{j=1}^{\infty} z_j L^{-j} \right) L^{n-1} \, dL \right),
\]

which equals \(dH_n. \)

\[\square\]

Let \(\delta_v \) and \(\delta_u \) be the variational derivatives with respect to \(v \) and \(u = \log(q). \)
Corollary 6.4. We have \(\delta_v H_n = p_0(n) \), \(\delta_u H_n = q p_1(n) \), \(\delta_v \bar{H}_n = \bar{p}_0(n) \) and
\[
\delta_u \bar{H}_n = q \bar{p}_1(n) - \nu \bar{p}_0(n).
\]

Proof. The formulas for \(\delta_v H_n \) and \(\delta_u H_n \) follow since \(dK = dv + q du \Lambda^{-1} \). The formulas for \(\delta_v \bar{H}_n \) and \(\delta_u \bar{H}_n \) now follow by taking conjugates, bearing in mind that \(\bar{v} = v - \nu p u \).

For example, we have
\[
H_0 = h_0 = \int v \, dx,
\]
\[
H_1 = h_1 - \nu h_0 = \int (\frac{1}{2} v^2 + q + z_1) \, dx,
\]
\[
H_2 = h_2 - \nu h_1 + \bar{z}_1 h_0 = \int (\frac{1}{2} v^3 + v [2] q + \frac{1}{2} \nu v [2] p v + 2 z_1 v - \nu z_1 + \frac{1}{2} \bar{z}_2) \, dx.
\]

It is now easy to show that the equivariant Toda lattice is Hamiltonian. Applying \(\text{res} \) to the equation \([K, L^n] = \nu \partial L^n \), we see that
\[
\nabla p_{-1}(n) = \nabla (q p_1(n)) + \nu \partial p_0(n).
\]

It follows that \(\delta_n v = \nabla p_{-1}(n) = \nabla (q p_1(n)) + \nu \partial p_0(n) \). In conjunction with the formula \(\delta_n u = \nabla p_0(n) \), we conclude that
\[
\delta_n \begin{bmatrix} v \\ u \end{bmatrix} = \begin{bmatrix} \nu \partial & \nabla \\ \nabla & 0 \end{bmatrix} \begin{bmatrix} \delta_v H_n \\ \delta_u H_n \end{bmatrix}.
\]

Since \(\bar{\delta}_n v = \nabla (q \bar{p}_1(n)) \) and \(\bar{\delta}_n u = \nabla \bar{p}_0(n) \), we also conclude that
\[
\bar{\delta}_n \begin{bmatrix} v \\ u \end{bmatrix} = \begin{bmatrix} \nu \partial & \nabla \\ \nabla & 0 \end{bmatrix} \begin{bmatrix} \delta_v \bar{H}_n \\ \delta_u \bar{H}_n \end{bmatrix}.
\]

In other words, the equivariant Toda lattice is Hamiltonian with respect to the Hamiltonian structure
\[
\{v(x), v(y)\} = \nu \partial \delta(x - y), \quad \{v(x), u(y)\} = \nabla_x \delta(x - y), \quad \{u(x), u(y)\} = 0.
\]

The relationship between the equivariant Toda lattice (with \(z_k = 0 \), \(k > 0 \)) and the equivariant Gromov-Witten invariants of \(\mathbb{CP}^1 \) leads to a new proof of the Toda conjecture for the (non-equivariant) Gromov-Witten invariants of \(\mathbb{CP}^1 \). (See [3] for a discussion of this conjecture and further references.) We see that the descendent flow \(\partial_{k,Q} \) is the limit of the flow \(\frac{1}{(k+1)!} \delta_{k+1} \) as \(\nu \to 0 \), and hence has Hamiltonian
\[
\frac{1}{(k+1)!} \lim_{\nu \to 0} h_{k+1}.
\]

Likewise, by ([4]), the descendent flow \(\partial_{k,P} \) is the limit of the flow
\[
\frac{1}{(k+1)!} \nu^{-1} (\delta_{k+1} - \bar{\delta}_{k+1}) - \frac{1}{k!} c_k (\delta_k + \bar{k})
\]
as \(\nu \to 0 \), and hence has Hamiltonian
\[
\lim_{\nu \to 0} \left(\frac{1}{(k+1)!} \nu^{-1} (H_{k+1} - \bar{H}_{k+1}) - \frac{1}{k!} c_k (H_k + \bar{H}_k) \right).
\]
Let ℓ_0 equal the limit as $\nu \to 0$ of ℓ. Since $L = K - \nu \ell = K - \nu \ell_0 + O(\nu^2)$ and

$$\bar{L} = \bar{K} + \nu \bar{\ell} = K + \nu(\ell_0 - \mathcal{P}u) + O(\nu^2),$$

we have

$$\nu^{-1}(H_{k+1} - \bar{H}_{k+1}) = \nu^{-1} \frac{1}{k+2} \text{Res}(L^{k+2} - \bar{L}^{k+2}) - \frac{1}{k+1} \text{Res}(L^{k+1} - \bar{L}^{k+1}) = \text{Res}(K^{k+1}(\mathcal{P}u - 2\ell_0)).$$

It follows that $\partial_{k,P}$ has Hamiltonian $\nu^{-1} \frac{1}{(k+1)!} \text{Res}(K^{k+1}(\mathcal{P}u - 2(\ell_0 + c_k)))$. An equivalent formula was conjectured by Eguchi and Yang \cite{2} and proved by Carlet, Dubrovin and Zhang \cite{1}.

References

\[1\] G. Carlet, B. Dubrovin and Y. Zhang, to appear.
\[2\] T. Eguchi and S.-K. Yang, *The topological $\mathbb{C}\mathbb{P}^1$ model and the large-N matrix integral*. Modern Phys. Lett. A 9 (1994), 2893–2902. \(\text{hep-th/9407134}\)
\[3\] E. Getzler, *The Toda conjecture*. In “Symplectic geometry and mirror symmetry (KIAS, Seoul, 2000),” eds. K. Fukaya et al., World Scientific, Singapore, 2001, pp. 51–79. \(\text{math.AG/0108108}\)
\[4\] E. Getzler, *The equivariant Toda lattice, I*. \(\text{math.AG/0207027}\)
\[5\] B. Khesin and I. Zakharevich, *Poisson-Lie group of pseudodifferential symbols and fractional KP-KdV hierarchies*. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 621–626. \(\text{hep-th/9311215}\)
\[6\] K. Kumar, *Expansion of a function of noncommuting operators*. J. Math. Phys. 6 (1965), 1923–1927.
\[7\] A. Okounkov and R. Pandharipande, *The equivariant Gromov-Witten theory of \mathbb{P}^1*. \(\text{math.AG/0207233}\)
\[8\] R. Pandharipande, *The Toda equations and the Gromov-Witten theory of the Riemann sphere*. Lett. Math. Phys. 53 (2000), 59–74. \(\text{math.AG/9912166}\)
\[9\] R. Pandharipande, private communication (2000).
\[10\] Y. Zhang, *On the $\mathbb{C}\mathbb{P}^1$ topological sigma model and the Toda lattice hierarchy*. J. Geom. Phys. 40 (2002), 215–232.

Department of Mathematics, Northwestern University, Evanston, IL, 60208, USA