Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications

Bokun Wang
Department of Computer Science and Engineering
Texas A&M University
College Station, TX 77843, USA

Tianbao Yang
Department of Computer Science and Engineering
Texas A&M University
College Station, TX 77843, USA

Abstract
This paper studies stochastic optimization for a sum of compositional functions, where the inner-level function of each summand is coupled with the corresponding summation index. We refer to this family of problems as finite-sum coupled compositional optimization (FCCO). It has broad applications in machine learning for optimizing non-convex or convex compositional measures/objectives such as average precision (AP), \(p\)-norm push, listwise ranking losses, neighborhood component analysis (NCA), deep survival analysis, deep latent variable models, etc., which deserves finer analysis. Yet, existing algorithms and analyses are restricted in one or other aspects. The contribution of this paper is to provide a comprehensive convergence analysis of a simple stochastic algorithm for both non-convex and convex objectives. Our key result is the improved oracle complexity with the parallel speed-up by using the moving-average based estimator with mini-batching. Our theoretical analysis also exhibits new insights for improving the practical implementation by sampling the batches of equal size for the outer and inner levels. Numerical experiments on AP maximization, NCA and \(p\)-norm push corroborate some aspects of the theory.

1. Introduction
A fundamental problem in machine learning (ML) that has been studied extensively is the empirical risk minimization (ERM), whose objective is a sum of individual losses on training examples, i.e.,

\[
\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \quad F(\mathbf{w}) := \frac{1}{n} \sum_{\mathbf{z}_i \in \mathcal{D}} \ell(\mathbf{w}; \mathbf{z}_i),
\]

* This is an extended version of our earlier proceeding’s version in ICML’22. In this version, we make two updates. First, we add an improved convergence result of the objective gap in Theorem 6 regarding the strongly convex objective. Second, we correct a statement of Theorem 3 in previous version (Theorem 5 in this version). In present proof of Theorem 5, which is the same as previous version, we can only plugin any fixed primal dual variables that are independent of the randomness of the algorithm. Hence, Theorem 5 is only for the convergence of the weak primal-dual gap. This is similar to prior work Song et al. (2021) on algorithms with stochastic dual coordinate updates.
† Most work was done when the authors were at The University of Iowa.
where \(\mathbf{w} \) and \(\Omega \) denotes the model parameter and its domain \((\Omega \subseteq \mathbb{R}^d) \), \(\mathbf{D} \) denotes the training set of \(n \) examples, and \(\mathbf{z}_i \) denotes an individual data. However, ERM may hide the complexity of individual loss and gradient computation in many interesting measures/objectives. Instead, in this paper we study a new family of problems that aims to optimize the following compositional objective:

\[
\min_{\mathbf{w} \in \Omega} F(\mathbf{w}), \quad F(\mathbf{w}) := \frac{1}{n} \sum_{\mathbf{z}_i \in \mathbf{D}} f_i(g(\mathbf{w}; \mathbf{z}_i, \mathbf{S}_i)),
\]

where \(g : \Omega \to \mathbb{R}^{d'} \), \(f_i : \mathbb{R} \to \mathbb{R} \), and \(\mathbf{S}_i \) denotes another (finite or infinite \(^2\)) set of examples that could be either dependent or independent of \(\mathbf{z}_i \). We give an example for each case: 1) In the bipartite ranking problem, \(\mathbf{D} \) represents the positive data while \(\mathbf{S}_i = \mathbf{S}_i \) represents the negative data; 2) In the robust learning problem (e.g. the invariant logistic regression in Hu et al. 2020), \(\mathbf{D} \) represents the training data set while \(\mathbf{S}_i \) denotes the set of perturbed observations for data \(\mathbf{z}_i \in \mathbf{D} \), where \(\mathbf{S}_i \) depends on \(\mathbf{z}_i \). We are particularly interested in the case that set \(\mathbf{S}_i \) is infinite or contains a large number of items, and assume that an unbiased stochastic estimators of \(g \) and \(\nabla g \) can be computed via sampling from \(\mathbf{S}_i \). We refer to (1) as finite-sum coupled compositional optimization (FCCO) and its objective as finite-sum coupled compositional risk (FCCR), where for each data \(\mathbf{z}_i \) the risk \(f_i(g(\mathbf{w}; \mathbf{z}_i, \mathbf{S}_i)) \) is of a compositional form such that \(g \) couples each \(\mathbf{z}_i \) and items in \(\mathbf{S}_i \). It is notable that \(f_i \) could be stochastic or has a finite-sum structure that depends on a large set of items. For simplicity of presentation and discussion, we focus on the case that \(f_i \) is a simple deterministic function whose value and gradient can be easily computed, which covers many interesting objectives of interest. The algorithms and analysis can be extended to the case that \(\{f_i, \nabla f_i\} \) are estimated by their unbiased stochastic versions using random samples (discussed in Appendix G).

Applications of FCCO. The Average Precision (AP) maximization problem studied in Qi et al. (2021) is an example of FCCO. Nevertheless, we notice that the application of FCCO is much broader than the AP maximization, including but are not limited to \(p \)-norm push optimization (Rudin, 2009), listwise ranking objectives (Cao et al., 2007; Xia et al., 2008) (e.g. ListNet, ListMLE, NDCG), neighborhood component analysis (NCA) (Goldberger et al., 2004), deep survival analysis (Katzman et al., 2018), deep latent variable models (Guu et al., 2020), etc. We postpone the details of some of these problems to Section 5 and 6. We would like to emphasize that efficient stochastic algorithms for these problems are lacking or under-developed when the involved set \(\mathbf{S}_i \) is big and/or the predictive model is nonconvex.

In this paper, we propose the Stochastic Optimization of the X objectives listed in Sections 5 and 6 (SOX) and establish its convergence guarantees for several classes of functions.

2. Related Work

In this section, we connect the FCCO problem to Conditional Stochastic Optimization (CSO) and Stochastic Compositional Optimization (SCO) in the literature and discuss the

1. \(\mathcal{R} \) refers to the \(d' \)-dimensional codomain of \(g \) \((d' \geq 1) \).
2. If \(\mathbf{S}_i \) is a finite set, we define \(g(\mathbf{w}; \mathbf{z}_i, \mathbf{S}_i) = \frac{1}{|\mathbf{S}_i|} \sum_{\xi_i \in \mathbf{S}_i} g(\mathbf{w}; \mathbf{z}_i, \xi_i) \); If \(\mathbf{S}_i \) is an infinite set, we define \(g(\mathbf{w}; \mathbf{z}_i, \mathbf{S}_i) = \mathbb{E}[g(\mathbf{w}; \mathbf{z}_i, \xi_i) | \mathbf{z}_i] \), where \(\xi_i \in \mathbf{S}_i \).
limitations of existing algorithms for FCCO. Then, we position SOX in previous studies and list our contributions.

2.1 Conditional Stochastic Optimization (CSO)

The most straightforward approach to solve the FCCO problem in (1) is to compute the gradient \(\nabla F(w) = \frac{1}{n} \sum_{z_i \in D} \nabla g(w; z_i, S_i) \nabla f_i(g(w; z_i, S_i)) \) and then use the gradient descent method. However, it can be seen that computing the gradient \(\nabla F(w) \) is very expensive, if not infeasible, when \(|D|\) or \(|S_i|\) is large. Thus, a natural idea is to sample mini-batches \(B_1 \subset D \) and \(B_{i,2} \subset S_i \) and compute a stochastic gradient of the form

\[
v = \frac{1}{|B_1|} \sum_{z_i \in B_1} \nabla g(w; z_i, B_{i,2}) \nabla f_i(g(w; z_i, B_{i,2}))
\]

and update the parameter as \(w \leftarrow w - \eta v \), where \(g(w; z_i, B_{i,2}) := \frac{1}{|B_{i,2}|} \sum_{\xi_{ij} \in B_{i,2}} g(w; z_i, \xi_{ij}) \). The resulting algorithm is named as biased stochastic gradient descent (BSGD) in Hu et al. (2020) and the convergence guarantees of BSGD under different assumptions are established. Actually, Hu et al. (2020) study the more general problem \(\mathbb{E}_{\xi} f_{\xi}(g_{\xi}(w; \xi)) \), which is referred to as conditional stochastic optimization (CSO) and show that BSGD has the optimal oracle complexity for the general CSO problem. The FCCO problem can be mapped to the CSO problem by \(z_i = \xi, \zeta \in S_i \) and the only difference between these two is the finite-sum structure of the outer-level function in FCCO. Unfortunately, BSGD requires unrealistically large batch sizes to ensure the convergence from the theoretical perspective (Please refer to columns 5 and 6 of Table 1). As a comparison, our approach explicitly exploits the finite support of the outer level and leads to improved oracle complexity with mini-batch sizes \(|B_1| = O(1), |B_{i,2}| = O(1)| \).

2.2 Stochastic Compositional Optimization (SCO)

A closely related class of problems: stochastic compositional optimization (SCO) has been extensively studied in the literature. In particular, the SCO problem with the finite support in the outer level is in the form of \(F(w) = \frac{1}{n} \sum_{z_i \in D} f_i(g(w; S_i)) \), where \(S \) might be finite or not. The difference between FCCO and SCO is that the inner function \(g(w; S) \) in SCO does not depend on \(z_i \) of the outer summation. The SCGD algorithm (Wang et al., 2017) is a seminal work in this field, which tracks the unknown \(g(w; S) \) with an auxiliary variable \(u_t \) that is updated by the exponential moving average \(u \leftarrow (1 - \gamma) u + \gamma g(w; B_2), \gamma \in (0, 1) \) based on an unbiased stochastic estimator \(g(w; B_2) \) of \(g(w; S) \), which circumvents the unrealistically large batch size required by the sample average approximation approach. For example, we can sample a mini-batch \(B_2 \subset S \) and compute \(g(w; B_2) := \frac{1}{|B_2|} \sum_{\xi_{ij} \in B_2} g(w; \xi_{ij}) \). Then, the stochastic estimator of \(\nabla F(w) \) can be computed as \(v_t = \frac{1}{|B_2|} \sum_{z_i \in B_1} \nabla g(w; B_2) \nabla f_i(u) \). More recently, the NASA algorithm (Ghadimi et al., 2020) modifies the SCGD algorithm by adding the exponential moving average (i.e., the momentum) to the gradient estimator, i.e., \(v \leftarrow (1 - \beta) v + \beta \frac{1}{|B_1|} \sum_{z_i \in B_1} \nabla g(w; B_2) \nabla f_i(u), \beta \in (0, 1) \), which improves upon the convergence rates of SCGD. When \(f_i \) is convex and monotone (\(d' = 1 \)) and \(g \) is convex, Zhang and Lan (2020) provide a more involved analysis for the two-batch SCGD\(^3\) in its

3. In the original SCGD algorithm (Wang et al., 2017), they use the same batch \(B_2 \) to update \(u \) by \(g(w; B_2) \) and to compute the gradient estimator by \(\nabla g(w; B_2) \). In the work of Zhang and Lan (2020), they analyze the two-batch version SCGD which uses independent batches \(B_2 \) and \(B'_2 \) for \(g(w; B_2) \) and \(\nabla g(w; B'_2) \).
Table 1: Summary of iteration complexity of different methods for different problems. “NC” means non-convexity of F, “C” means convexity of F; “SC” means strongly convex and “PL” means Polyak-Lojasiewicz condition. Iteration complexity is the number of iterations to reduce the quantities (NC: $\mathbb{E}\|\nabla F(w)\|$; C: $\mathbb{E}[F(w) - F(w^*)]$; SC (PL): $\mathbb{E}\|w - w^*\|^2$) below ϵ. “N/A” means not applicable or not available. For the complexity of our method, we omit constants that are independent of n or the batch sizes. * denotes that additional assumptions (bounded Ω, convex and monotone f) are needed and the the rate is for a weaker optimality measure. † assumes a stronger SC condition, which is imposed on a stochastic function instead of the original objective. We suppose $B_1 = |B_1^t|$ and $B_2 = |B_2^t|$ for simplicity. ◦ denotes that the bound is only for strongly convex FCCO problems (see Section 4 in Appendix).

| Method | NC | C | SC (PL) | Outer Batch Size $|B_1|$ | Inner Batch Size $|B_2|$ | Parallel Speed-up |
|---------------------------|---------|----------|---------|--------------------------|--------------------------|-------------------|
| BSGD (Hu et al., 2020) | $O(\epsilon^{-4})$ | $O(\epsilon^{-2})$ | $O(\mu^{-2}\epsilon^{-1})$† | 1 | 1 | N/A |
| SOAP (Qi et al., 2021) | $O(n\epsilon^{-3})$ | - | - | 1 | 1 | N/A |
| MOAP (Wang et al., 2021) | $O(n\epsilon^{-4})$ | - | - | B_1 | 1 | Partial |
| SOX/SOX-boost (this work) | $O(n\epsilon^{-4})$ | $O(n\epsilon^{-2})$ | $O(n\epsilon^{-3})$ | B_1 | B_1 | Yes |
| SOX ($\beta = 1$) (this work) | $O(n\epsilon^{-4})$ | - | - | B_1 | B_1 | Partial |

primal-dual equivalent form and derive the optimal rate for a special class of problems that inner function is convex while the outer function is convex and monotone.

SCO reformulation of FCCO. Given the union data set $S = S_1 \cup \cdots S_i \cdots \cup S_n$, we can define $g(w; S) = [g(w; z_1, S_1)^\top, \ldots, g(w; z_n, S_n)^\top]_1 \in \mathbb{R}^{d'}$ and $f_i(\cdot) := f_i(I_i \cdot)$, $I_i := [0_{d'\times d'}, \ldots, I_{d'\times d'}, \ldots, 0_{d'\times d'}] \in \mathbb{R}^{d'\times nd'}$ (the i-th block in I_i is the identity matrix while the others are zeros), the FCCO problem $F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(g(w; z_i, S_i))$ can be reformulated as an SCO problem $F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(g(w; S))$ such that the existing algorithms for the SCO problem can be directly applied to our FCCO problem. Unfortunately, applying SCGD and NASA on the FCCO problem via the SCO reformulation need n oracles for the inner function $g(w; S)$ (one oracle for each $g(w; z_i, S_i)$) and update all n components of u at any time step t even if we only sample one data point $z_i \in D$ in the outer level, which could be expensive or even infeasible.

Apart from adopting the rather naïve SCO reformulation, we can also alter the algorithm according to the special structure of FCCO. SCGD and NASA algorithms could be better tailored for the FCCO problem if it selectively samples $B_{1,2}$ and selectively updates those coordinates u_i for those sampled $z_i \in B_1$ at each time step, instead of sampling $B_{1,2}$ for all

The two-batch version with independent B_2, B_1' is definitely less efficient, but it considerably simplifies the analysis.
\(z_i \in D\) and update all \(n\) coordinates of \(u = [u_1^\top, \ldots, u_n^\top]^\top\). Formally, the update rule of \(u = [u_1^\top, \ldots, u_n^\top]^\top\) can be expressed as

\[
 u_i \leftarrow \begin{cases}
 (1 - \gamma)u_i + \gamma g(w; z_i, B_{i,2}), & i \in B_1 \\
 u_i, & i \notin B_1.
 \end{cases}
\]

The update rule above has been exploited by some recent works (e.g. SOAP in Qi et al., 2021) to solve the average precision (AP) maximization problem, which is a special case of FCCO. However, the convergence guarantees of these algorithms are only established for smooth nonconvex problem and do not enjoy the parallel speed-up by mini-batching. In this work, we build convergence theory for a broader spectrum of problems and show the parallel speed-up effect. Moreover, we resolve several issues of existing approaches from the algorithmic and theoretical perspectives (See Table 1 and Section 3.1 for details).

2.3 Our Contributions

Our contributions can be summarized as follows.

- On the convex and nonconvex problems, our SOX algorithm can guarantee the convergence but does not suffer from some limitations in previous methods such as the unrealistically large batch of BSGD (Hu et al., 2020), the two independent batches for oracles of the inner level in SCGD (Zhang and Lan, 2020), and the possibly inefficient/unstable update rule in MOAP (Wang et al., 2021).
- On the smooth nonconvex problem, SOX has an improved rate compared to SOAP and enjoys a better dependence on \(|B_{i,2}|\) compared to MOAP.
- Beyond the smooth nonconvex problem, we also establish the convergence guarantees of SOX for problems that \(F\) is convex/strongly convex/PL, which are better than BSGD in terms of oracle complexity.
- Moreover, we carefully analyze how mini-batching in the inner and outer levels improve the worst-case convergence guarantees of SOX in terms of iteration complexity, i.e., the parallel speed-up effect. The theoretical insights are numerically verified in our experiments.

3. Algorithm and Convergence Analysis

Notations. For machine learning applications, we let \(D = \{z_1, \ldots, z_n\}\) denote a set of training examples for general purpose, let \(w \in \Omega\) denote the model parameter (e.g., the weights of a deep neural network). Denote by \(h_w(z)\) a prediction score of the model on the data \(z\). A function \(f\) is Lipchitz continuous on the domain \(\Omega\) if there exists \(C > 0\) such that \(\|f(w) - f(w')\| \leq C\|w - w'\|\) for any \(w, w' \in \Omega\), and is smooth if its gradient is Lipchitz continuous. A function \(F\) is convex if it satisfies \(F(w) \geq F(w') + \nabla F(w')^\top (w - w')\) for all \(w, w' \in \Omega\), is \(\mu\)-strongly convex if there exists \(\mu > 0\) such that \(F(w) \geq F(w') + \nabla F(w')^\top (w - w') + \frac{\mu}{2}\|w - w'\|^2\) for all \(w, w' \in \Omega\). A smooth function \(F\) is said to satisfy \(\mu\)-PL condition if there exists \(\mu > 0\) such that \(\|\nabla F(w)\|^2 \geq \mu(F(w) - \min_w F(w))\), \(w \in \Omega\).

We make the following assumptions throughout the paper4.

4. The result in Theorem 5 does not need \(g_i\) to be smooth.
Algorithm 1 SOX($w^0, u^0, v^0, \eta, \beta, \gamma, T$)

1: for $t = 1, \ldots, T$ do
2: Draw a batch of samples $B^t_1 \subset D$
3: if $z_i \in B^t_1$ then
4: Update the estimator of function value $g_i(w^t)$
5: $u_i^t = (1 - \gamma)u_i^{t-1} + \gamma g_i(w^t; z_i, B^t_{i,2})$
6: end if
7: Update the estimator of gradient $\nabla F(w^t)$ by
8: $v^t = (1 - \beta)v^{t-1} + \beta \frac{1}{|B^t_1|} \sum_{z_i \in B^t_1} \nabla g_i(w^t; z_i, B^t_{i,2}) \nabla f_i(u_i^{t-1})$
9: end for

Assumption 1 We assume that (i) $f_i(\cdot)$ is differentiable, L_f-smooth and C_f-Lipschitz continuous; (ii) $g_i(\cdot; z_i, S_i)$ is differentiable, L_g-smooth and C_g-Lipschitz continuous for any $z_i \in D$; (iii) F is lower bounded by F^*.

Remark: If the assumption above is satisfied, it is easy to verify that $F(w)$ is L_F-smooth, where $L_F := C_f L_g + C_g^2 L_f$ (see Lemma 4.2 in Zhang and Xiao 2021). The assumption that f_i is smooth and Lipschitz continuous seems to be strong. However, the image of g_i is bounded on domain Ω in many applications (otherwise there might be a numerical issue), hence f_i is smooth and Lipschitz continuous in a bounded domain is enough for our results.

3.1 A Better Stochastic Algorithm for FCCO

We follow the idea of tailoring SCGD/NASA to solve the FCCO problem by selective sampling and selective update as described in Section 2.2. Next, we thoroughly discuss the relation of our SOX algorithm to the existing algorithms SOAP and MOAP for the FCCO problem.

SOAP algorithm (Qi et al., 2021) combines (2) with the gradient step $w \leftarrow w - \eta v$, $v \leftarrow \frac{1}{|B^t_1|} \sum_{z_i \in B^t_1} \nabla g(w; z_i, B^t_{i,2}) \nabla f_i(u_i)$. Wang et al. (2021) attempted to do the same adaptation for NASA (Ghadimi et al., 2020) by an algorithm called MOAP, which applies the uniform random sparsification (Wangni et al., 2018) or the uniform randomized block coordinate sampling (Nesterov, 2012) to the whole $g(w)$ and derives the improved rate compared to SOAP. To be specific, the update rule of $u = [u_1, \ldots, u_n]^\top$ in MOAP is

\[
u_i \left\{ \begin{array}{ll} (1 - \gamma)u_i + \frac{\eta}{|B^t_1|} g_i(w; z_i, B^t_{i,2}), & i \in B^t_1 \\ (1 - \gamma)u_i, & i \notin B^t_1. \end{array} \right. \quad (3)
\]

It is worth mentioning that the convergence guarantees for SOAP and MOAP are only established for the smooth nonconvex problems. Besides, SOAP and MOAP are only analyzed
The recursion for the variance of inner function value estimation

Definition 1

We aim to find the approximate stationary points.

In this subsection, we present the convergence analysis for the smooth nonconvex problems.

3.2 Improved Rate for the Nonconvex Problems

In this subsection, we present the convergence analysis for the smooth nonconvex problems. We will highlight the key differences from the previous analysis. We use the following assumption, which is also used in previous works (Qi et al., 2021; Wang et al., 2021).

Assumption 2 We assume that $\E[\|g(w; z_i, \xi_i) - g(w; z_i, S_i)\|^2 \mid z_i] \leq \sigma^2$ and $\E[\|\nabla g(w; z_i, \xi_i) - \nabla g(w; z_i, S_i)\|^2 \mid z_i] \leq \zeta^2$ for any w, $z_i \in D$, and $\xi_i \in S_i$.

We aim to find the approximate stationary points.

Definition 1 w is an ϵ-stationary point if $\|\nabla F(w)\| \leq \epsilon$.

The recursion for the variance of inner function value estimation $\Xi_t := \frac{1}{n} \|u^t - g(w^t; S)\|^2$ is crucial for our analysis.

Lemma 2 If $\gamma \leq 1/5$, function value variance $\Xi_t := \frac{1}{n} \|u^t - g(w^t; S)\|^2$ can be bounded as

$$
\E[\Xi_{t+1}] \leq \left(1 - \frac{\gamma B_1}{4n}\right) \E[\Xi_t] + \frac{5\eta^2 C^2_{\Xi} \E[\|v^t\|^2]}{\gamma B_1} + \frac{2\gamma^2 \sigma^2 B_1}{n B_2} - \frac{1}{4n} \E[\sum_{z_i \in B_i} \|u^t - u^{t+1}\|^2].
$$
Instead of sampling a singleton \(B^t_i = \{i_t\} \) at each iteration and bounding \(\sum_t \| u^t_{i_t} - g(w^t; z_{i_t}, S_{i_t}) \|^2 \) for \(z_{i_t} \) in Qi et al. (2021)\(^5\), Lemma 2 bounds \(\sum_t \| u^t - g(w^t; S) \|^2 \) that includes all coordinates of \(u^t \) at each iteration. To build the recursion, we consider a strongly convex minimization problem \(\min u^t \frac{1}{2} \| u - g(w^t; S) \|^2 \) that is equivalent to

\[
\min_{u=[u_1, \ldots, u_n]^\top} \frac{1}{2} \sum_{z_i \in D} \| u_i - g(w^t; z_i, S_i) \|^2.
\]

(4)

Then, the step 4 in SOX can be viewed as stochastic block coordinate descent algorithm applied to (4), i.e.,

\[
u^t_i = \begin{cases}
 u^{t-1}_i - \gamma \left(u^{t-1}_i - g(w^t; z_i, B^t_{i,2}) \right), & \text{if } z_i \in B^t_1 \\
 u^t_i, & \text{if } z_i \notin B^t_1,
\end{cases}
\]

(5)

where \(u^{t-1}_i - g(w^t; z_i, B^t_{i,2}) \) is the stochastic gradient of the \(i \)-th coordinate in the objective (4). This enables us to use the proof technique of stochastic block coordinate descent methods to build the recursion of \(\Xi_t \) and derive the improved rate compared to previous works listed in Table 1.

By combining the lemma above with Lemma 8 and Lemma 9 in the supplement, we prove the convergence to find an \(\epsilon \)-stationary point, as stated in the following theorem.

Theorem 3 Under Assumption 1 and 2, SOX (Algorithm 1) with \(\beta = O(\min\{B_1, B_2\} \epsilon^2) \), \(\gamma = O(B_2 \epsilon^2) \), \(\eta = \min \left\{ \frac{\beta}{\sqrt{L_F}}, \frac{\gamma B_1}{30 L_F n C g} \right\} \) can find an \(\epsilon \)-stationary point in

\[
T = O \left(\max \left\{ \frac{n}{B_1 B_2 \epsilon^4}, \frac{1}{\min\{B_1, B_2\} \epsilon^4} \right\} \right)
\]

iterations.

Remark: The above theory suggests that given a budget on the mini-batch size \(B_1 + B_2 = B \), the best value of \(B_1 \) is \(B_1 = B/2 \). We will verify this result in experiments.

3.3 Improved Rate for (Strongly) Convex Problems

In this subsection, we prove improved rates for SOX for convex and strongly convex objectives compared to previous work BSGD (Hu et al., 2020). One might directly analyze SOX with different decreasing step sizes for convex and strongly convex objectives separately as in Hu et al. (2020). However, to our knowledge, this strategy does not yield an optimal rate for strongly convex functions. To address this challenge, we provide a unified algorithmic framework for both convex and strongly convex functions and derive the improved rates. The idea is to use the stagewise framework given in Algorithm 2 to boost the convergence. Our strategy is to prove an improved rate for an objective that satisfies a \(\mu \)-PL condition \(\| \nabla F(w) \|^2 \geq \mu (F(w) - F(w^*)) \), where \(w^* \) is a global minimum. Then, we use this result to derive the improved rates for (strongly) convex objectives.

5. Please refer to the comments above (27) in Wang et al. (2021) for the issue of bounding \(\sum_t \| u^t_{i_t} - g(w^t; z_{i_t}, S_{i_t}) \|^2 \).
Algorithm 2 SOX-boost(w_1, u_1, v_1, K)
1: for epochs $k = 1, \ldots, K$ do
2: Update w, u, v by SOX($w^k, u^k, v^k, \eta_k, \beta_k, \gamma_k, T_k$)
3: Update $\eta_k, \beta_k, \gamma_k, T_k$ according to Theorem 4
4: end for

Theorem 4 Assume F satisfying the PL condition, by setting $\epsilon_k = O(1/2^{k-1})$, $\beta_k = O(\eta_k)$, $\gamma_k = O(\eta_k/B_k)$, $T_k = O(1/\epsilon_k)$, and $K = \log(1/\epsilon)$, SOX-boost ensures that $\mathbb{E}[F(w^K) - F(w^*)] \leq \epsilon$, which implies a total iteration complexity of $T = O(\max(n/B_1B_2\epsilon, 1/\epsilon))$.

Specific values of the parameters in Theorem 4 can be found in Theorem 13 in the appendix. The result above directly implies the improved complexity for μ-strongly convex functions, as it automatically satisfies the PL condition. For a convex function, we use a common trick to make it strongly convex by constructing $\hat{F}(w) = F(w) + \frac{\mu}{2} \|w\|^2$, then we use SOX-boost to optimize $\hat{F}(w)$ with a small μ. Its convergence is summarized by the following corollary.

Corollary 1 Assume F is convex, by setting $\mu = O(\epsilon)$, $\eta_k, \gamma_k, \beta_k, T_k$ according to Theorem 4, then after $K = \log(1/\epsilon)$-stages SOX-boost for optimizing \hat{F} ensures that $\mathbb{E}[\hat{F}(w^K) - \min_w \hat{F}(w)] \leq \epsilon$, which implies a total iteration complexity of $T = O(\max(n/B_1B_2\epsilon, 1/\epsilon))$ for ensuring $\mathbb{E}[F(w^K) - F(w^*)] \leq \epsilon$.

Remark: The above result implies an complexity of $T = O(\max(n/B_1B_2^{1/\tau}, 1/\epsilon))$ for a convex function.

3.4 Optimal Rate for A Class of Convex Problems

In this section, we consider a class of FCCO problems on a closed, non-empty, and convex domain Ω and $d' = 1$. For simplicity, we denote $g(w; z_i, S_i)$ by $g_i(w)$ and its stochastic estimator $g(w; z_i, \xi_i)$ by $g_i(w; \xi_i)$ in this section. We additionally make the assumption below.

Assumption 3 Assume that $d' = 1$, f_i is monotonically increasing and convex, while g_i is convex. The domain Ω is bounded such that $\max_{w \in \Omega} \|w - w^*\| \leq C_\Omega$ and $\max_{w \in \Omega} \|g_i(w; z_i, \xi_i)\| \leq D_g$ for any i and r.v. ξ_i.

This FCCO can be reformulated as a saddle point problem.

$$
\min_{w \in \Omega} \max_{\pi_1 \in \Pi_1} \max_{\pi_2 \in \Pi_2} \mathcal{L}(w, \pi_1, \pi_2),
$$

where

$$
\mathcal{L}(w, \pi_1, \pi_2) = \frac{1}{n} \sum_{z_i \in \Omega} \mathcal{L}_i(w, \pi_{i,1}, \pi_{i,2}),
$$

$\mathcal{L}_i(w, \pi_{i,1}, \pi_{i,2}) = \langle \pi_{i,1} \mathcal{L}_{i,1}(w, \pi_{i,2}), \pi_{i,2} \rangle$, and $\mathcal{L}_{i,1}(w, \pi_{i,1}, \pi_{i,2}) = \pi_{i,1}\mathcal{L}_{i,2}(w, \pi_{i,2}) - f_i^*(\pi_{i,1})$ and $\mathcal{L}_{i,2}(w, \pi_{i,2}) = \langle \pi_{i,2}, w \rangle - g_i^*(\pi_{i,2})$. Here $f_i^*(\cdot)$ and $g_i^*(\cdot)$ are the convex conjugates of f_i and g_i, respectively. We analyze the SOX algorithm with $\beta = 1$, $\gamma = \frac{1}{1+\tau}$ ($\tau > 0$) and the projection onto Ω, which is equivalent to
the following primal-dual update formula:

\[\pi_{i,1}^{t+1} = \arg\max_{\pi_{i,1}} \frac{1}{\tau} \sum_{i \in B_{1}^{t}} \pi_{i,1} L_{i,2}(w^{t}, \pi_{i,2}(B_{1}^{t})) - f_{i}^{*}(\pi_{i,1}) + \frac{\eta}{2} \| w - w^{t} \|^{2}, \]

where \(\pi_{i,2}(B_{1}^{t}) \) is a stochastic estimation of \(\pi_{i,2} \) based on the mini-batch \(B_{i,2} \) and \(D_{f}(x, y) := f(y) - f(x) - \langle \nabla f(x), y - x \rangle \) is the Bregman divergence. We define that \(D_{f}^{*}(\pi_{1}, \pi_{1}^{t}) := \sum_{z_{i} \in \mathcal{D}} D_{f}^{*}(\pi_{1}, \pi_{1}^{t}) \) for any \(\pi_{1}, \pi_{1}^{t} \in \Pi_{1} \). Note that (6) is equivalent to \(\pi_{i,2}^{t+1} = \nabla g_{i}(w^{t}) \).

Besides, for \(z_{i} \in B_{1}^{t} \) and \(\pi_{i,1}^{t} = \nabla f_{i}(u_{i}^{t}) \) we have

\[\pi_{i,1}^{t+1} = \arg\min_{\pi_{i,1}} \frac{1}{\tau} \sum_{i \in B_{1}^{t}} \pi_{i,1} L_{i,2}(w^{t}, \pi_{i,2}(B_{1}^{t})) + f_{i}^{*}(\pi_{i,1}) + \frac{\eta}{2} \| w - w^{t} \|^{2}, \]

The last equation above is due to \(g_{i}(w^{t}; B_{1}^{t}) = L_{i,2}(w^{t}, \pi_{i,2}(B_{1}^{t})) \) and \(f_{i}(u_{i}^{t}) = \pi_{i,1}^{t} u_{i}^{t} - f_{i}^{*}(\pi_{i,1}) \). Then, we can conclude that \(\pi_{i,2}^{t+1} = \nabla f_{i}(u_{i}^{t+1}) \) if we define \(u_{i}^{t+1} = (1 - \gamma)f_{i}(u_{i}^{t}) + \gamma g_{i}(w^{t}; B_{1}^{t}) \) and \(\gamma = \frac{1}{1 + \tau} \).

On this class of convex problems, we can establish an improved rate for SOX in the order of \(O(1/\epsilon^{2}) \), which is optimal in terms of \(\epsilon \) (but might not be optimal in terms of \(n \)). The analysis is inspired by Zhang and Lan (2020), which provide the optimal complexity for the traditional SCO problems. We extend their analysis to handle the selective sampling/update to accommodate the FCCO problem. Moreover, our analysis also gets rid of one drawback of Zhang and Lan (2020) that needs two independent batches to estimate \(g_{i}(w) \) and \(\nabla g_{i}(w) \), which is achieved by cancelling the highlighted terms in Lemma 17 and Lemma 18.

Theorem 5 Assume \(f_{i} \) is monotone, convex, smooth and Lipschitz-continuous while \(g_{i} \) is convex and Lipschitz-continuous. SOX with \(\eta = O(\min(\min\{B_{1}, B_{2}\} \epsilon, \frac{B_{1} \epsilon}{n})) \), \(\gamma = O(B_{2} \epsilon), \beta = 1, \bar{w}^{T} = \sum_{t} w^{t}/T, \bar{\pi}_{1}^{T} = \sum_{t} \pi_{1}/T, \bar{\pi}_{2}^{T} = \sum_{t} \pi_{2}/T \) ensures that \(\max_{w, \pi_{1}, \pi_{2}} \mathbb{E}[L(w^{T}, \pi_{1}, \pi_{2}) - L(w, \bar{\pi}_{1}^{T}, \bar{\pi}_{2}^{T})] \leq \epsilon \) after \(O(\max(\frac{n}{B_{1} \epsilon^{2}}, \frac{n}{B_{1} B_{2} \epsilon^{2}}, \frac{1}{\min(B_{1}, B_{2}) \epsilon})) \) iterations.

Remark 6 The complexity of \(O(1/\epsilon^{2}) \) matches the best for convex problems without additional assumptions Agarwal et al. (2009). However, the convergence bound on the primal-dual gap \(\max_{w, \pi_{1}, \pi_{2}} \mathbb{E}[L(w^{T}, \pi_{1}, \pi_{2}) - L(w, \bar{\pi}_{1}^{T}, \bar{\pi}_{2}^{T})] \) is weaker than that of the duality gap \(\mathbb{E}[\max_{w, \pi_{1}, \pi_{2}} L(w^{T}, \pi_{1}, \pi_{2}) - L(w, \bar{\pi}_{1}^{T}, \bar{\pi}_{2}^{T})] \). Similar results were proved in Song et al. (2021) for stochastic algorithms with stochastic dual coordinate updates. Please refer to Appendix E for more discussions.

Next, we show an improved rate for variance convergence when the objective function is strongly convex.
4. Improved Rate of Convergence for Strongly Convex Problems

In this section, we consider a class of regularized FCCO

$$\min_{w \in \Omega} F(w), \quad F(w) := F(w) + R(w),$$

where $F(w) := \frac{1}{n} \sum z_i \in D f_i(g(w; z_i; S_i))$, $f_i : \mathbb{R} \to \mathbb{R}$ and the domain Ω is closed, non-empty, and convex. For simplicity, we denote $g(w; z_i; S_i)$ by $g_i(w)$ and its stochastic estimator $g(w; z_i; \xi_i)$ by $g_i(w; \xi_i)$ in this section. We additionally make the assumption below.

Assumption 4 R is μ strongly-convex, L_R-smooth and C_R-Lipschitz continuous on Ω.

By the Fenchel conjugation, this problem can be reformulated as a saddle point problem.

$$\min_{w \in \Omega} \max_{\pi \in \Pi} \mathcal{L}(w, \pi), \quad \mathcal{L}(w, \pi) = \Phi(w, \pi) - f^*(\pi) + R(w),$$

where f_i^* is the convex conjugate of f_i, $f^*(\pi) = \frac{1}{n} \sum z_i \in D f_i^*(\pi_i)$, $\Phi(w, \pi) = \frac{1}{n} \sum z_i \in D \pi_1 g_i(w)$.

Theorem 7 Under Assumptions 2, 4, SOX with $\eta_t = O(\mu(t + 1))$, $\gamma_t = \frac{1}{t+1}$, $\tau_t = O\left(\frac{B^2}{n}\right)$, $\beta_t = \beta = 1$ ensures that $\max \{\mathbb{E}[F(w^T) - F(w^*)]\}, \mathbb{E}[\|w^T - w^*\|_2^2] \leq \epsilon$ after $\tilde{O}\left(\frac{n}{\mu^2 \beta^2}\right)$ iterations. Moreover, $\max_{w, \pi} \mathbb{E}[\mathcal{L}(w^T, \pi) - \mathcal{L}(w, \pi^T)] \leq \epsilon$ after $\tilde{O}\left(\frac{n}{\mu^2 \beta^2}\right)$ iterations, where $w^T = \sum_{t=0}^{T-1} w^t/T$, $\pi^T = \sum_{t=0}^{T-1} \pi^t/T$.

5. Experiments

In this section, we provide some experimental results to verify some aspects of our theory and compare SOX with other baselines for three applications: deep average precision (AP) maximization, p-norm push optimization with concentration at the top, and neighborhood component analysis (NCA).

5.1 Deep AP Maximization

AP maximization in the form of FCCO has been considered in Qi et al. (2021); Wang et al. (2021). For a binary classification problem, let S_+, S_- denote the set of positive and negative examples, respectively, $S = S_+ \cup S_-$ denote the set of all examples. A smooth surrogate objective for maximizing AP can be formulated as:

$$F(w) = -\frac{1}{|S_+|} \sum_{x_i \in S_+} \ell(h_w(x) - h_w(x_i)),$$

where $\ell(\cdot)$ is a surrogate function that penalizes large input. It is a special case of FCCR by defining $g_i(w) = [\sum_{x_i \in S_+} \ell(h_w(x) - h_w(x_i)), \sum_{x_i \in S} \ell(h_w(x) - h_w(x_i))]$ and $f(g_i(w)) = -\frac{|g_i(w)|_1}{|g_i(w)|_2}$.

Setting. We conduct experiments on two image datasets, namely CIFAR-10, CIFAR-100. We use the dataloader provided in the released code of Qi et al. (2021), which constructs the imbalanced versions of binarized CIFAR-10 and CIFAR-100. We consider two tasks:
Figure 2: Results of AP maximization on the CIFAR-10 and CIFAR-100 data sets.
training ResNet18 on the CIFAR-10 data set and training ResNet34 on the CIFAR-100 data set. We follow the same procedure as in Qi et al. (2021) that first pre-trains the network by optimizing a cross-entropy loss and then fine-tunes all layers with the randomly initialized classification layer. We also use the same squared hinge loss as in Qi et al. (2021). We aim to answer the following four questions related to our theory:

Q1: Given a batch size B, what is the best value for B_1 and B_2?
Q2: Is there parallel speed-up by increasing the total batch size $B = B_1 + B_2$?
Q3: What is the best value of γ?
Q4: Does SOX converge faster than SOAP (SGD-style) and MOAP? In all experiments, we tune the initial learning rate in a range 10^{-4} to 10^{-1} to achieve the best validation error, and decrease the learning rate at 50% and 75% of total epochs. The experiments are performed on a node of a cluster with single GeForce RTX 2080 Ti GPU. We tune the value of γ and fix $\beta = 0.1$ (same as the default value 0.9 of gradient momentum).

- To answer Q1, we fix the total batch size B as 64 and vary B_1 in the range {4, 8, 16, 32}. The curves of training losses are shown in Figure 2(a) and (e) on the two datasets. We can see that when $B_1 = 32 = B/2$ SOX has the fastest convergence in terms of number of iterations. This is consistent with our convergence theory.

- To answer Q2, we fix $B_1 = B_2$ and vary B in the range {32, 64, 128, 256}. The curves of training losses are shown in Figure 2(b) and (f) on the two datasets. We can see that the iteration complexity of SOX decreases as B increases, which is also consistent with our convergence theory.

- To answer Q3, we fix $B_1 = B_2 = B/2 = 32$ and run SOX with different values of γ. We can see that $\gamma = 1$ does not give the best result, which means the naive mini-batch estimation of $g_i(w)$ is worse than the moving average estimator with a proper value of γ. Moreover, we also observe that the best value of γ depends on the task: $\gamma = 0.1, 0.5$ give the fastest convergence on training ResNet18 with CIFAR-10 and ResNet34 with CIFAR-100, respectively.

- The Figure 2 (d) and (h) answer Q4, which indicates that SOX converges faster than MOAP, which is faster than SOAP (SGD-style) and BSGD. The curves of average precision

Dataset: CIFAR-10	MOAP	BSGD	SOAP	SOX
Test AP (↑)	0.763 ± 0.001	0.762 ± 0.001	0.762 ± 0.001	**0.765 ± 0.001**
#Epoch (↓)	13.0 ± 4.3	15.7 ± 1.9	15.7 ± 1.9	**7.0 ± 3.3**
Dataset: CIFAR-100	------	------	------	-----
Test AP (↑)	0.584 ± 0.010	0.582 ± 0.005	0.575 ± 0.017	**0.597 ± 0.012**
#Epoch (↓)	17.0 ± 1.6	**3.7 ± 0.9**	11.7 ± 6.6	5.0 ± 2.8

on the training data can be found in Figure 4 of the Appendix. We also report the test AP of SOX with baselines on CIFAR-10 and CIFAR-100 datasets in Table 2. Note that the CIFAR-
10 and CIFAR-100 test datasets are balanced while our training datasets are imbalanced. Thus, there might be a distribution shift between the training and test datasets. To prevent overfitting, algorithms are early stopped when the validation loss reaches the minimum. The results indicate that SOX converges to a better solution using an overall fewer number of epochs.

5.2 p-norm Push with Concentration at the Top

In the bipartite ranking problem, the p-norm push objective (Rudin, 2009) can be defined as

$$F(w) = \frac{1}{|S_-|} \sum_{z_i \in S_-} \left(\frac{1}{|S_+|} \sum_{z_j \in S_+} \ell(h_w(z_j) - h_w(z_i)) \right)^p,$$

where $p > 1$ and $\ell(\cdot)$ is similar as above. We can cast this function into FCCR by defining $D = S_+$, $S_i = S_-$, $g_i(w) = \frac{1}{|S_+|} \sum_{z_j \in S_+} \ell(h_w(z_j) - h_w(z_i))$ that couples each positive example z_i with all negative samples, $f(g) = g^p$. Note that f is monotonically increasing and convex while g_i is convex given that ℓ is convex. Rudin (2009) only provide a boosting-style p-norm push algorithm (BS-PnP), which is not scalable because it processes all $|S_+|$ positive and $|S_-|$ negative instances at each iteration. We compare SOX with the BS-PnP,

Algorithms	BS-PnP	BSGD	SOX
Test Loss (↓)	0.778 ± 0.018	0.625 ± 0.018	**0.516 ± 0.003**
Time (s) (↓)	6043.90 ± 0.08	4.20 ± 0.08	4.62 ± 0.10

Table 3: Comparison among SOX and the baselines BS-PnP, BSGD for optimizing p-norm Push for learning a linear model.

Algorithms	BS-PnP	BSGD	SOX
Test Loss (↓)	0.268 ± 0.001	0.202 ± 0.001	**0.128 ± 0.002**
Time (s) (↓)	648.06 ± 0.04	4.02 ± 0.04	4.15 ± 0.06

and the baselines BSGD (Hu et al., 2020). Besides, SOAP (Qi et al., 2021) and MOAP (Wang et al., 2021), which were originally designed for the AP maximization, can also be applied to the p-norm push problem. Following Rudin (2009), we choose $\ell(\cdot)$ to be the exponential function. We conduct our experiment on two LibSVM datasets: covtype and ijcnn1. For both datasets, we randomly choose 90% of the data for training and the rest of data is for testing. For this experiment, we learn a linear ranking function $h_w(x) = \langle w, x \rangle$ and $p = 4$. For each algorithm, we run it with 5 different random seeds and report the average test loss with standard deviation. Besides, we also report the running time. For the stochastic
5.3 Neighborhood Component Analysis

Neighborhood Component Analysis (NCA) was proposed in Goldberger et al. (2004) for learning a Mahalanobis distance measure. Given a set of data points $D = \{x_1, \ldots, x_n\}$, where each data x_i has a class label y_i. The objective of NCA is defined as

$$F(A) = -\sum_{x_i \in D} \frac{\sum_{x_j \in C_i} \exp(-\|Ax_i - Ax_j\|^2)}{\sum_{x_j \in S_i} \exp(-\|Ax_i - Ax_j\|^2)},$$

(8)

where $C_i = \{x_j \in D : y_j = y_i\}$ and $S_i = D \setminus \{x_i\}$. We can map the above objective as an FCCR by defining $g_i(A) = \frac{\sum_{x_j \in C_i} \exp(-\|Ax_i - Ax_j\|^2)}{\sum_{x_j \in S_i} \exp(-\|Ax_i - Ax_j\|^2)}$ and $f(g_i(A)) = -\frac{g_i(A)}{[g_i(A)]^2}$. The problem (8) can be solved by the gradient descent method. However, the exact gradient computation could be expensive or even infeasible when $|D|$ is large. A widely used stochastic algorithm is to sample a mini-batch $B \subseteq D$ and replace C_i and S_i by $C_i \cap B$ and $S_i \cap B$, respectively, which is equivalent to the BSGD algorithm (Hu et al., 2020). Besides, SOAP (Qi et al., 2021), MOAP (Wang et al., 2021) and our SOX algorithm are also applicable to (8).

The experiment is performed on three datasets: sensorless, usps, and mnist from the LibSVM (Chang and Lin, 2011). For each dataset, we randomly choose 90% of the data for training and the rest as test data. Each algorithm is executed for 5 runs with different random seeds. We report the average test loss with standard deviation. For all algorithms, we choose batch size to be 64. As shown in Figure 3, our SOX method outperforms previous methods on those datasets.

6. More Applications of SOX

In this section, we present more applications of the proposed algorithm in machine learning, and highlight the potential of the proposed algorithm in addressing their computational
challenges. Providing experimental results of these applications is beyond the scope of this paper.

Listwise Ranking Objectives/Measures. In learning to rank (LTR), we are given a set of queries \(\mathcal{Q} = \{ q_1, \ldots, q_n \} \). For each query, a set of items with relevance scores are provided \(\mathcal{S}_q = \{ (x^q_1, y^q_1), \ldots, (x^q_n, y^q_n) \} \), where \(x^q_i \) denotes the input data, and \(y^q_i \in \mathbb{R}^+ \) denotes its a relevance score with \(y^q_i = 0 \) meaning irrelevant. For LTR, there are many listwise objectives and measures that can be formulated as FCCR, e.g., ListNet (Cao et al., 2007), ListMLE (Xia et al., 2008), NDCG (Wang et al., 2013). Due to the limited space, we only consider that of ListNet. The objective function of ListNet can be defined by a cross-entropy loss between two probabilities of list of scores:

\[
F(w) = -\sum_q \sum_{x^q_i \in \mathcal{S}_q} P(y^q_i) \log \frac{\exp(h_w(x^q_i; q))}{\sum_{x \in \mathcal{S}_q} \exp(h_w(x; q))},
\]

where \(h_w(x^q_i; q) \) denotes the prediction score of the item \(x^q_i \) with respect to the query \(q \). \(P(y^q_i) \) denotes a probability for a relevance score \(y^q_i \) (e.g., \(P(y^q_i) \propto y^q_i \)). We can map the above function into FCCR, where \(g(w; x^q_i, \mathcal{S}_q) = \frac{1}{|\mathcal{S}_q|} \sum_{x \in \mathcal{S}_q} \exp(h_w(x; q) - h_w(x^q_i; q)) \) and \(f(g) = \log(g) \), \(D = \{(q, x^q_i) : P(y^q_i) > 0\} \). The original paper of ListNet uses a gradient method for optimizing the above objective, which has a complexity of \(O(|\mathcal{Q}||\mathcal{S}_q|) \) and is inefficient when \(\mathcal{S}_q \) contains a large number of items.

Deep Survival Analysis (DSA). The survival analysis in medicine is to explore and understand the relationships between patients’ covariates (e.g., clinical and genetic features) and the effectiveness of various treatment options. Using the Cox model for modeling the hazard function, the negative log-likelihood can be written as (Katzman et al., 2018):

\[
F(w) = \frac{1}{n} \sum_{i:E_i=1} \log \left(\sum_{j \in S(T_i)} \exp(h_w(x_j) - h_w(x_i)) \right),
\]

where \(x_i \) denote the input feature of a patient, \(h_w(x_i) \) denotes the risk value predicted by the network, \(E_i = 1 \) denotes an observable event of interest (e.g., death), \(T_i \) denotes the time interval between the time in which the baseline data was collected and the time of the event occurring, and \(S(t) = \{ i : T_i \geq t \} \) denotes the set of patients still at risk of failure at time \(t \). This is similar to the objective of ListMLE. The proposed algorithm is appropriate when both \(\{ i : E_i = 1 \} \) and \(S(T_i) \) are large.

Deep Latent Variable Models (DLVM). Latent variable models refer to a family of generative models that use latent variables to model the observed data, where we consider the supervised learning setting. In particular, given a set of observed data \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\} \), we model the probability of \(\Pr(y|x) \) by introducing a discrete latent variable \(z \), i.e., \(\Pr(y|x) = \sum_{z \in \mathcal{Z}} \Pr(y|x, z) \Pr(z|x) \), where \(\mathcal{Z} \) denotes the support set of the latent variable \(z \) and both \(\Pr(y|x, z) \) and \(\Pr(z|x) \) could be parameterized by a deep neural network. Then by minimizing negative log-likelihood of observed data, we have the objective function \(F(w) = -\sum_{(x_i,y_i) \in \mathcal{D}} \log \sum_{z \in \mathcal{Z}} \Pr(y_i|z, x_i) \Pr(z|x_i) \). When \(\mathcal{Z} \) is a large set, evaluating the inner sum is expensive. While the above problem is traditionally solved by EM-type algorithms, a stochastic algorithm based on backpropagation is used more often in modern deep learning. We consider an application in NLP for retrieve-and-predict language...
model pre-training (Guu et al., 2020). In particular, x_i denotes an masked input sentence, y denotes masked tokens, z denotes a document from a large corpus Z (e.g., wikipedia). In Guu et al. (2020), $\Pr(z|x_i) = \frac{\exp(E(x)\top E(z))}{\sum_{z' \in Z} \exp(E(x)\top E(z'))}$, where $E(\cdot)$ is a document embedding network, and $\Pr(y|x,z)$ is computed by a masked language model that a joint embedding x,z is used to make the prediction. Hence, we can write $F(w)$ as

$$F(w) = -\sum_{i=1}^{n} \log \sum_{z \in Z} \Pr(y_i|z, x_i) \exp(E(x_i)\top E(z)) + \sum_{i=1}^{n} \log(\sum_{z' \in Z} \exp(E(x_i)\top E(z'))).$$

Note that both terms in the above is a special case of FCCR. The proposed algorithm gives an efficient way to solve this problem when Z is very large. Guu et al. (2020) address the challenge by approximating the inner summation by summing over the top k documents with highest probability under $\Pr(z|x)$, which is retrieved by using maximum inner product search with a running time and storage space that scale sub-linearly with the number of documents. In contrast, SOX has a complexity independent of the number of documents per-iteration, which depends on the batch size.

Softmax Functions. One might notice that in the considered problems ListNet, ListMLE, NCA, DSA, DLVM, a common function that causes the difficulty in optimization is the softmax function in the form $\frac{\exp(h(x_i))}{\sum_{x \in \mathcal{X}} \exp(h(x))}$ for a target item x_i out of a large number items in \mathcal{X}. This also occurs in NLP pre-training methods that predicts masked tokens out of billions/trillions of tokens (Borgeaud et al., 2022). Taking the logarithmic of the softmax function gives the coupled compositional form $\log \sum_{x' \in \mathcal{X}} \exp(h(x) - h(x_i))$, and summing over all items gives the considered FCCR.

Acknowledgements

We thank anonymous reviewers and Yao Yao (UIowa) for spotting several mistakes in the proof and Gang Li (UIowa) for discussing the experiments on p-norm push optimization. This work is partially supported by NSF Grant 2110545, NSF Career Award 1844403.
A. Omitted Experimental Results

A.1 AP Maximization

We provide the curves of training loss in Figure 2. Here we also present the curves of training average precision.

Figure 4: Training average precision curves of AP maximization on the CIFAR-10 and CIFAR-100 data sets.

A.2 Minimizing p-norm Push

Table 4 and Figure 5 (c)&(f) show that SOX consistently outperforms BS-PnP/BSGD/MOAP in terms of p-norm push loss on the test data. SOX has better performance than SOAP on the covtype data while match its performance on ijcnn1.
Table 4: Comparison among SOX and the baselines BS-PnP, BSGD for optimizing p-norm Push for learning a linear model.

Algorithms	BS-PnP	BSGD	SOAP	MOAP	SOX
Test Loss (↓)	0.778 ± 0.018	0.523 ± 0.004	0.559 ± 0.011	**0.516 ± 0.003**	
Time (s) (↓)	6043.90 ± 4.20	4.32 ± 0.15	4.89 ± 0.06	4.62 ± 0.10	

Algorithms	BS-PnP	BSGD	SOAP	MOAP	SOX
Test Loss (↓)	0.268 ± 0.001	**0.128 ± 0.002**	0.147 ± 0.001	**0.128 ± 0.002**	
Time (s) (↓)	648.06 ± 4.02	4.04 ± 0.11	4.42 ± 0.05	4.15 ± 0.06	

Figure 5: Test loss curves of the p-norm push optimization task.

Besides, we also empirically verify other aspects of the theory. In Figure 5 (a)&(d), we show that the iteration complexity of SOX decreases when B increases; In Figure 5 (b)&(e), we show the effect of moving-average based estimation: $\gamma = 1$ is not the best choice.
B. Proof of Theorem 3

Lemma 8 (Lemma 2 in Li et al. 2021) Consider a sequence $w^{t+1} = w^t - \eta v^t$ and the L_F-smooth function F and the step size $\eta L_F \leq 1/2$.

$$F(w^{t+1}) \leq F(w^t) + \frac{\eta}{2} \Delta^t - \frac{\eta}{2} \| \nabla F(w^t) \|^2 - \frac{\eta}{4} \| v^t \|^2,$$

(9)

where $\Delta^t := \| v^t - \nabla F(w^t) \|^2$.

We build a recursion for the gradient variance $\Delta^t := \| v^t - \nabla F(w^t) \|^2$ by proving the following lemma.

Lemma 9 If $\beta \leq \frac{2}{\eta}$, the gradient variance $\Delta^t := \| v^t - \nabla F(w^t) \|^2$ can be bounded as

$$E[\Delta^{t+1}] \leq (1 - \beta)E[\Delta^t] + \frac{2L_F^2 \eta^2 E[\| v^t \|^2]}{\beta} + \frac{3L_F^2 C_F^2}{n} E \left[\sum_{i \in B^t_1} \| u_i^{t+1} - u_i^t \|^2 \right] + \frac{2 \beta^2 C_F^2 (\zeta^2 + C_g^2)}{\min\{B_1, B_2\}} + 5\beta L_F^2 C_F^2 E[\Xi_{t+1}],$$

(10)

where $E = \frac{1}{n} \| u^t - g(w^t; S) \|^2$, $u^t = [u_1^t, \ldots, u_n^t]^T$, $g(w^t; S) = [g(w^t; z_1, S_1), \ldots, g(w^t; z_n, S_n)]^T$.

Proof The proof technique follows similarly as that in (Ghadimi et al., 2020). We define that $\Delta^t := \| v^t - \nabla F(w^t) \|^2$ and $G(w^{t+1}) = \frac{1}{B^t_1} \sum_{i \in B^t_1} \nabla g(w^{t+1}; z_i, B^{t+1}_{i,2}) \nabla f(u_i^t)$. Based on the rule of update $v^{t+1} = (1 - \beta)v^t + \beta G(w^{t+1})$, we have

$$\Delta^{t+1} = \| v^{t+1} - \nabla F(w^{t+1}) \|^2 = \left\| (1 - \beta)v^t + \beta \frac{1}{B^t_1} \sum_{i \in B^t_1} \nabla g(w^{t+1}; z_i, B^{t+1}_{i,2}) \nabla f(u_i^t) - \nabla F(w^{t+1}) \right\|^2$$

$$= \| 1 \| + 2 + 3 + 4 \|^2,$$

where $1, 2, 3, 4$ are defined as

$$1 = (1 - \beta)(v^t - \nabla F(w^t)), \quad 2 = (1 - \beta)(\nabla F(w^t) - \nabla F(w^{t+1})),$$

$$3 = \beta \frac{1}{B^t_1} \sum_{i \in B^t_1} \left(\nabla g(w^{t+1}; z_i, B^{t+1}_{i,2}) \nabla f(u_i^t) - \nabla g(w^{t+1}; z_i, B^{t+1}_{i,2}) \nabla f(g(w^{t+1}; z_i, S_i)) \right),$$

$$4 = \beta \left(\frac{1}{B^t_1} \sum_{i \in B^t_1} \nabla g(w^{t+1}; z_i, B^{t+1}_{i,2}) \nabla f(g(w^{t+1}; z_i, S_i)) - \nabla F(w^{t+1}) \right).$$

Note that $E_t [(1, 4)] = E_t [(2, 3)] = 0$. Then, the Young’s inequality for products implies that

$$E_t \left[\| 1 \|^2 + \| 2 \|^2 + E_t \left[\| 3 \|^2 \right] + E_t \left[\| 4 \|^2 \right] + 2(1, 2) + 2E_t [(1, 3)] + 2E_t [(2, 3)] + 2E_t [(3, 4)] \right] \leq (1 + \beta) \| 1 \|^2 + 2 \left(1 + \frac{1}{\beta} \right) \| 2 \|^2 + \frac{2 + 3\beta}{\beta} E_t \left[\| 3 \|^2 \right] + 2E_t \left[\| 4 \|^2 \right].$$
Besides, we have

\[
(1 + \beta) \|v\|^2 = (1 + \beta)(1 - \beta)^2 \|v - \nabla F(w)\|^2 \leq (1 - \beta) \|v - \nabla F(w)\|^2,
\]

\[
2 \left(1 + \frac{1}{\beta}\right) \|v\|^2 = 2 \left(1 + \frac{1}{\beta}\right)(1 - \beta)^2 \|\nabla F(w)\|^2 - \left(\nabla F(w) - \nabla F(w^{t+1})\right)^2 \leq \frac{2L^2\eta^2}{\beta} \|v\|^2,
\]

\[
\frac{2 + 3\beta}{\beta} \|u\|^2 = \frac{2 + 3\beta}{\beta} \sum_{z_i \in B_1^{t+1}} \left\|\nabla g(w^{t+1}; z_i, B_1^{t+1})\right\|^2 \left\|\nabla f(u^t_i) - \nabla f(g(w^{t+1}; z_i, S_i))\right\|^2
\leq \frac{(2 + 3\beta)\beta L^2_f}{B_1} \sum_{z_i \in B_1^{t+1}} \left\|\nabla g(w^{t+1}; z_i, B_1^{t+1})\right\|^2 \left\|u^t_i - g(w^{t+1}; z_i, S_i)\right\|^2.
\]

Consider that \(w^{t+1} \) and \(u^t_i \) do not depend on either \(B_1^{t+1} \) or \(B_1^{t,2} \).

\[
(2 + 3\beta)\beta L^2_f \mathbb{E}_t \left[\frac{1}{B_1} \sum_{z_i \in B_1^{t+1}} \left\|\nabla g(w^{t+1}; z_i, B_1^{t+1})\right\|^2 \left\|u^t_i - g(w^{t+1}; z_i, S_i)\right\|^2 \right]
\leq (2 + 3\beta)\beta L^2_f C_1^2 \mathbb{E}_t \left[\frac{1}{B_1} \sum_{z_i \in B_1^{t+1}} \left\|u^t_i - g(w^{t+1}; z_i, S_i)\right\|^2 \right]
\leq \frac{(2 + 3\beta)(1 + \delta)\beta L^2_f C_1^2}{n} \mathbb{E}_t \left[\frac{1}{n} \sum_{z_i \in \mathcal{D}} \left\|u^{t+1}_i - g(w^{t+1}; z_i, S_i)\right\|^2 \right]
+ \frac{(2 + 3\beta)(1 + 1/\delta)\beta L^2_f C_1^2}{n} \mathbb{E}_t \left[\frac{1}{n} \sum_{z_i \in \mathcal{D}} \left\|u^{t+1}_i - u^t_i\right\|^2 \right],
\]

where \(C_1^2 := C_0^2 + \zeta^2/B \) and \(\delta > 0 \) is a constant to be determined later. Note that we have \(u^{t+1}_i = u^t_i \) for all \(i \not\in B_1 \).
If $\beta \leq \frac{2}{7}$ and $\delta = \frac{3\beta}{7}$, we have $(2 + 3\beta)(1 + \delta) \leq 5\beta$ and $(2 + 3\beta)(1 + 1/\delta) \leq 3$.

$$
\mathbb{E} \left[\frac{2 + 3\beta}{\beta} \| \Theta \|^2 \right] \leq 5\beta L^2 C_1^2 \mathbb{E} [\Xi_{t+1}] + \frac{3L^2 C_1^2}{n} \mathbb{E} \left[\sum_{z_i \in B_1^t} \| u_i^{t+1} - u_i^t \|^2 \right].
$$

Next, we upper bound the term $\mathbb{E}_t [\| \Theta \|^2]$.

$$
\mathbb{E}_t [\| \Theta \|^2] \\
= \beta^2 \mathbb{E}_t \left[\left\| \frac{1}{B_1} \sum_{z_i \in B_1^t} \nabla g(w_{t+1}; z_i; B_{i,2}^t) \nabla f(g(w_{t+1}; z_i; S_i)) - \frac{1}{n} \sum_{z_i \in D} \nabla g(w_{t+1}; z_i, S_i) \nabla f(g(w_{t+1}; z_i, S_i)) \right\|^2 \right] \\
= \beta^2 \mathbb{E}_t \left[\left\| \frac{1}{B_1} \sum_{z_i \in B_1^t} \nabla g(w_{t+1}; z_i; B_{i,2}^t) \nabla f(g(w_{t+1}; z_i; S_i)) - \beta \frac{1}{B_1} \sum_{z_i \in B_1^t} \nabla g(w_{t+1}; z_i, S_i) \nabla f(g(w_{t+1}; z_i, S_i)) \right\|^2 \right] \\
+ \beta^2 \mathbb{E}_t \left[\left\| \frac{1}{B_1} \sum_{z_i \in B_1^t} \nabla g(w_{t+1}; z_i, S_i) \nabla f(g(w_{t+1}; z_i, S_i)) - \frac{1}{n} \sum_{z_i \in D} \nabla g(w_{t+1}; z_i, S_i) \nabla f(g(w_{t+1}; z_i, S_i)) \right\|^2 \right] \\
\leq \frac{\beta^2 C_f^2 (\zeta^2 + C_g^2)}{\min\{B_1, B_2\}}.
$$

\[\blacksquare \]

B.1 Proof of Lemma 2

Based on Algorithm 1, the update rule of u_i is

$$
u_i^{t+1} = \begin{cases}
(1 - \gamma)u_i^t + \gamma g(w_{t+1}; z_i, B_{i,2}^t) & z_i \in B_{i,2}^t \\
u_i^t & z_i \notin B_{i,2}^t.
\end{cases}
$$

We can re-write it into the equivalent expression below.

$$
u_i^{t+1} = \begin{cases}
\gamma \left(u_i^t - g(w_{t+1}; z_i, B_{i,2}^t) \right) & z_i \in B_{i,2}^t \\
u_i^t & z_i \notin B_{i,2}^t.
\end{cases}
$$

Let us define $\phi_t(u) = \frac{1}{2} \| u - g(w_t) \|^2 = \frac{1}{2} \sum_{z_i \in D} \| u_i - g(w_t; z_i, S_i) \|^2$, which is a 1-strongly convex function. Then, the update rule (5) can be viewed as one step of the stochastic block coordinate descent algorithm (Algorithm 2 in Dang and Lan 2015) for minimizing $\phi_{t+1}(u)$, where the Bregman divergence is associated with the quadratic function. We follow the
analysis of Dang and Lan (2015).

\[
\phi_{t+1}(u^{t+1}) = \frac{1}{2} \|u^{t+1} - g(w^{t+1})\|^2 = \frac{1}{2} \|u^t - g(w^{t+1})\|^2 + \langle u^t - g(w^{t+1}), u^{t+1} - u^t \rangle + \frac{1}{2} \|u^{t+1} - u^t\|^2 \\
= \frac{1}{2} \|u^t - g(w^{t+1})\|^2 + \sum_{z_i \in \mathcal{B}_1^t} \langle u^t_i - g(w^{t+1}; z_i, B_i^{t+1}), u_i^{t+1} - u_i^t \rangle + \frac{1}{2} \sum_{z_i \in \mathcal{B}_1^t} \|u_i^{t+1} - u_i^t\|^2 \\
+ \sum_{z_i \in \mathcal{B}_1^t} \langle g(w_{t+1}; z_i, B_i^{t+1}) - g(w_{t+1}; z_i, S_i), u_i^{t+1} - u_i^t \rangle.
\]

Note that \(u^t_i - g(w^{t+1}; z_i, B_i^{t+1}) = (u^t_i - u_i^{t+1})/\gamma \) and \(2(b - a, a - c) \leq \|b - c\|^2 - \|a - b\|^2 - \|a - c\|^2 \).

\[
\sum_{z_i \in \mathcal{B}_1^t} \langle u^t_i - g(w^{t+1}; z_i, B_i^{t+1}), u_i^{t+1} - u_i^t \rangle \\
= \sum_{z_i \in \mathcal{B}_1^t} \langle u^t_i - g(w^{t+1}; z_i, B_i^{t+1}), g(w^{t+1}; z_i, S_i) - u_i^t \rangle + \sum_{z_i \in \mathcal{B}_1^t} \langle u^t_i - g(w^{t+1}; z_i, B_i^{t+1}), u_i^{t+1} - g(w^{t+1}; z_i, S_i) \rangle \\
= \sum_{z_i \in \mathcal{B}_1^t} \langle u^t_i - g(w^{t+1}; z_i, B_i^{t+1}), g(w^{t+1}; z_i, S_i) - u_i^t \rangle + \frac{1}{\gamma} \sum_{z_i \in \mathcal{B}_1^t} \langle u_i^t - u_i^{t+1}, u_i^{t+1} - g(w^{t+1}; z_i, S_i) \rangle \\
\leq \sum_{z_i \in \mathcal{B}_1^t} \langle u^t_i - g(w^{t+1}; z_i, B_i^{t+1}), g(w^{t+1}; z_i, S_i) - u_i^t \rangle \\
+ \frac{1}{2\gamma} \sum_{z_i \in \mathcal{B}_1^t} \left(\|u^t_i - g(w^{t+1}; z_i, S_i)\|^2 - \|u_i^{t+1} - u_i^t\|^2 - \|u_i^{t+1} - g(w^{t+1}; z_i, S_i)\|^2 \right).
\]

If \(\gamma < \frac{1}{2} \), we have

\[
- \frac{1}{2} \left(\frac{1}{\gamma} - 1 - \frac{\gamma + 1}{4\gamma} \right) \sum_{z_i \in \mathcal{B}_1^t} \|u_i^{t+1} - u_i^t\|^2 + \sum_{z_i \in \mathcal{B}_1^t} \langle g(w^{t+1}; z_i, B_i^{t+1}) - g(w^{t+1}; z_i, S_i), u_i^{t+1} - u_i^t \rangle \\
\leq - \frac{1}{4\gamma} \sum_{z_i \in \mathcal{B}_1^t} \|u_i^{t+1} - u_i^t\|^2 + \gamma \sum_{z_i \in \mathcal{B}_1^t} \|g(w^{t+1}; z_i, B_i^{t+1}) - g(w^{t+1}; z_i, S_i)\|^2 + \frac{1}{4\gamma} \sum_{z_i \in \mathcal{B}_1^t} \|u_i^{t+1} - u_i^t\|^2 \\
= \gamma \sum_{z_i \in \mathcal{B}_1^t} \|g(w^{t+1}; z_i, B_i^{t+1}) - g(w^{t+1}; z_i, S_i)\|^2.
\]

Then, we have

\[
\frac{1}{2} \|u^{t+1} - g(w^{t+1})\|^2 \leq \frac{1}{2} \|u^t - g(w^{t+1})\|^2 + \frac{1}{2\gamma} \sum_{z_i \in \mathcal{B}_1^t} \|u^t_i - g(w^{t+1}; z_i, S_i)\|^2 \\
- \frac{1}{2\gamma} \sum_{z_i \in \mathcal{B}_1^t} \|u_i^{t+1} - g(w^{t+1}; z_i, S_i)\|^2 + \gamma \sum_{z_i \in \mathcal{B}_1^t} \|g(w^{t+1}; z_i, B_i^{t+1}) - g(w^{t+1}; z_i, S_i)\|^2 \\
- \frac{(\gamma + 1)}{8\gamma} \sum_{z_i \in \mathcal{B}_1^t} \|u_i^{t+1} - u_i^t\|^2 + \sum_{z_i \in \mathcal{B}_1^t} \langle u^t_i - g(w^{t+1}; z_i, B_i^{t+1}), g(w^{t+1}; z_i, S_i) - u_i^t \rangle.
\]
Note that \(\frac{1}{2\gamma} \sum_{i \in B_t^1} \| u_i^t - g(w^{t+1}; z_i, S_t) \|^2 = \frac{1}{2\gamma} \sum_{i \in B_t^1} \| u_i^{t+1} - g(w^{t+1}; z_i, S_t) \|^2 \) based on Algorithm 1, which implies that

\[
\frac{1}{2\gamma} \sum_{z_i \in B_t^1} \left(\| u_i^t - g(w^{t+1}; z_i, S_t) \|^2 - \| u_i^{t+1} - g(w^{t+1}; z_i, S_t) \|^2 \right) = \frac{1}{2\gamma} \left(\| u^t - g(w^t) \|^2 - \| u^{t+1} - g(w^t) \|^2 \right).
\]

Besides, we also have

\[
\mathbb{E}_t \left[\sum_{z_i \in B_t^{i+1}} \left(u_i^t - g(w^{t+1}; z_i, B_t^{i+1}, g(w^{t+1}; z_i, S_t) - u_i^t \right) \right] = \frac{B_t}{n} \sum_{z_i \in \mathcal{D}} (u_i^t - g(w^{t+1}; z_i, S_t) - u_i^t) = -\frac{B_t}{n} \| u_i^t - g(w^{t+1}; z_i, S_t) \|^2.
\]

Then, we can obtain

\[
\frac{\gamma + 1}{2} \mathbb{E} \left[\| u^{t+1} - g(w^{t+1}) \|^2 \right] \leq \frac{\gamma (1 - \frac{B_t}{n})}{2} + \frac{1}{\gamma + 1} \mathbb{E} \left[\| u^t - g(w^{t+1}) \|^2 \right] + \frac{\gamma^2 B_t \sigma^2}{B^2} - \frac{(\gamma + 1)}{8} \sum_{z_i \in B_t^1} \| u_i^{t+1} - u_i^t \|^2.
\]

Further divide \(\frac{\gamma + 1}{2} \) and take full expectation on both sides

\[
\mathbb{E} \left[\| u^{t+1} - g(w^{t+1}) \|^2 \right] \leq \frac{\gamma (1 - \frac{B_t}{n})}{2} + \frac{1}{\gamma + 1} \mathbb{E} \left[\| u^t - g(w^{t+1}) \|^2 \right] + \frac{2}{1 + \gamma} \frac{\gamma^2 \sigma^2 B_t}{B^2} - \frac{1}{4} \mathbb{E} \left[\sum_{z_i \in B_t^1} \| u_i^{t+1} - u_i^t \|^2 \right].
\]

Note that \(\frac{\gamma (1 - \frac{B_t}{n})}{\gamma + 1} = 1 - \frac{\gamma B_t}{(\gamma + 1)n} \leq 1 - \frac{\gamma B_t}{2n} \) and \(\frac{1}{\gamma + 1} \leq 1 \) for \(\gamma \in (0, 1] \). Besides, we have

\[
\| u^t - g(w^{t+1}) \|^2 \leq \frac{1}{\gamma + 1} \| u^t - g(w^t) \|^2 + \frac{4n}{\gamma B_t} \| g(w^{t+1}) - g(w^t) \|^2 \]

due to Young’s inequality and

\[
\| g(w^t) - g(w^{t+1}) \|^2 \leq n C_g^2 \| w^{t+1} - w^t \|^2 = n \eta^2 C_g^2 \| v^t \|^2.
\]

\[
\mathbb{E} [\Xi_{t+1}] = \mathbb{E} \left[\frac{1}{n} \| u^{t+1} - g(w^{t+1}) \|^2 \right]
\]

\[
\leq \left(1 - \frac{\gamma B_t}{2n} \right) \mathbb{E} \left[\frac{1}{n} \| u^t - g(w^{t+1}) \|^2 \right] + \frac{2\gamma^2 \sigma^2 B_t}{n B^2} - \frac{1}{4n} \mathbb{E} \left[\sum_{z_i \in B_t^1} \| u_i^{t+1} - u_i^t \|^2 \right]
\]

\[
\leq \left(1 - \frac{\gamma B_t}{4n} \right) \mathbb{E} \left[\frac{1}{n} \| u^t - g(w^t) \|^2 \right] + \frac{5 n C_g^2 \mathbb{E}}{\gamma B_t} \left[\| w^{t+1} - w^t \|^2 \right] + \frac{2\gamma^2 \sigma^2 B_t}{n B^2} - \frac{1}{4n} \mathbb{E} \left[\sum_{z_i \in B_t^1} \| u_i^{t+1} - u_i^t \|^2 \right]
\]

\[
\leq \left(1 - \frac{\gamma B_t}{4n} \right) \mathbb{E} [\Xi_t] + \frac{5 n \eta^2 C_g^2 \mathbb{E}}{\gamma B_t} \| v^t \|^2 + \frac{2\gamma^2 \sigma^2 B_t}{n B^2} - \frac{1}{4n} \mathbb{E} \left[\sum_{z_i \in B_t^1} \| u_i^{t+1} - u_i^t \|^2 \right].
\]
B.2 Proof of Theorem 3

Based on Lemma 8, Lemma 9, and Lemma 2, we have

\[
\begin{align*}
\mathbb{E}[F(w^{t+1}) - F^*] &\leq \mathbb{E}[F(w^t) - F^*] + \frac{\eta}{2} \mathbb{E} [\Delta_t] - \frac{\eta}{2} \mathbb{E} \left[\left\| \nabla F(w^t) \right\|^2 \right] - \frac{\eta}{2} \mathbb{E} \left[\left\| v^t \right\|^2 \right], \quad (11) \\
\mathbb{E}[\Delta_{t+1}] &\leq (1 - \beta) \mathbb{E}[\Delta_t] + \frac{2L_F^2 \eta^2}{\beta} \mathbb{E} \left[\left\| v^t \right\|^2 \right] + 5\beta L_j^2 C_i^2 \mathbb{E}[\Xi_{t+1}] + \frac{2\beta^2 C_i^2 (\zeta^2 + C_g^2)}{\min\{B_1, B_2\}} \quad (12) \\
\mathbb{E}[\Xi_{t+1}] &\leq \left(1 - \frac{\gamma B_1}{4n} \right) \mathbb{E}[\Xi_t] + \frac{5n \eta^2 C_i^2}{\gamma B_1} \mathbb{E} \left[\left\| v^t \right\|^2 \right] + \frac{2\gamma^2 \sigma^2 B_1}{n B_2} - \frac{1}{4n} \mathbb{E} \left[\sum_{x_i \in \mathcal{B}_1^i} \left\| u_{i,t+1} - u_{i,t} \right\|^2 \right] - \frac{\eta}{2} \mathbb{E} \left[\left\| \nabla F(w^t) \right\|^2 \right]. \quad (13)
\end{align*}
\]

Summing (11), \(\frac{\eta}{\beta} \times (12) \), and \(\frac{20L_F^2 C_i^2 n \eta}{\gamma B_1} \times (13) \) leads to

\[
\begin{align*}
\mathbb{E}[F(w^{t+1}) - F^* + \frac{\eta}{\beta} \Delta_{t+1} + \frac{20L_F^2 C_i^2 n \eta}{\gamma B_1} \left(1 - \frac{\gamma B_1}{4n} \right) \Xi_{t+1}] &\leq \mathbb{E}[F(w^t) - F^* + \frac{\eta}{\beta} \left(1 - \frac{\beta}{2} \right) \Delta_t + \frac{20L_F^2 C_i^2 n \eta}{\gamma B_1} \left(1 - \frac{\gamma B_1}{4n} \right) \Xi_t] \\
&- L_j^2 C_i^2 \eta \left(\frac{5n}{\gamma B_1} - \frac{3}{\beta} \right) \mathbb{E} \left[\frac{1}{n} \sum_{x_i \in \mathcal{B}_1^i} \left\| u_{i,t} - u_{i,t-1} \right\|^2 \right] - \frac{\eta}{2} \mathbb{E} \left[\left\| \nabla F(w^t) \right\|^2 \right] \\
&- \eta \left(\frac{1}{4} - \frac{2L_F^2 \eta^2}{\beta^2} - \frac{100L_j^2 n^2 C_i^2 \eta^2 C_g^2}{\gamma^2 B_1^2} \right) \mathbb{E} \left[\left\| v^t \right\|^2 \right] + \frac{2\beta^2 C_j^2 (\zeta^2 + C_g^2)}{\min\{B_2, B_1\}} + \frac{4\eta \gamma L_j^2 C_i^2 \sigma^2}{B_2}.
\end{align*}
\]

If \(\gamma \leq \frac{5n}{3B_1^2} \beta \), we have \(\frac{5n}{\gamma B_1} - \frac{3}{\beta} \geq 0 \). Set \(\beta = \min \left\{ \frac{\min\{B_1, B_2\} \sigma^2}{12C_j^2 (C_g^2 + C_g^2), \frac{1}{2}} \right\}, \gamma = \min \left\{ \frac{B_2 \sigma^2}{240L_j^2 C_i^2 \sigma^2}, \frac{1}{5}, \frac{5n}{3B_1^2} \beta \right\} \), and \(\eta = \min \left\{ \frac{\beta}{4L_j}, \frac{\gamma B_1}{20L_j^2 C_i^2 \sigma^2}, \frac{\gamma B_1}{4n} \Xi_t \right\} \). Define the Lyapunov function as \(\Phi_t := F(w^t) - F^* + \frac{\eta}{\beta} \Delta_t + \frac{20L_F^2 C_i^2 n \eta}{\gamma B_1} \left(1 - \frac{\gamma B_1}{4n} \right) \Xi_t \). If we initialize \(u^1 \) and \(v^1 \) as \(u_i^1 = g_i(w^1; B_{i,2}) \) for \(z_i \in \mathcal{B}_1^i \) and \(v^1 = 0 \), we have \(\mathbb{E}[\Delta_t] \leq C_j^2 C_i^2 \) and \(\mathbb{E}[\Xi_t] \leq \frac{\sigma^2}{B_2} \). Then,

\[
\begin{align*}
\frac{1}{T} \sum_{t=1}^T \mathbb{E} \left[\left\| \nabla F(w^t) \right\|^2 \right] &\leq \frac{2\Delta_\Phi}{\eta T} + \frac{4\beta C_j^2 (\zeta^2 + C_g^2)}{\min\{B_1, B_2\}} + \frac{80\gamma L_j^2 C_i^2 \sigma^2}{B_2}, \quad (14)
\end{align*}
\]

where we define \(\Delta_\Phi := \Delta_F + \frac{1}{4L_j} C_j^2 C_i^2 + \frac{2L_F C_i \sigma^2}{5C_g^2 B_2} \geq \mathbb{E}[\Phi_t] \). After

\[
T = \frac{6A_1}{c^2} \max \left\{ \frac{48C_j^2 (C_i^2 + C_g^2) L_j}{\min\{B_1, B_2\} \sigma^2}, \frac{7200nL_j^2 C_i^2 \sigma^2}{B_1 B_2^2}, \frac{150L_j^2 C_i C_g}{B_1^2}, \frac{216L_j C_i C_g C_j^2 (\zeta^2 + C_g^2)}{\min\{B_1, B_2\} \sigma^2} \right\}
\]

iterations, we have

\[
\frac{1}{T} \sum_{t=1}^T \mathbb{E} \left[\left\| \nabla F(w^t) \right\|^2 \right] \leq c^2.
\]
C. Proof of Theorem 4

Lemma 10 Under assumptions 1, 2 and the μ-PL of F, the k-th epoch of applying Algorithm 2 leads to

$$\mathbb{E}[\Gamma_{k+1}] \leq \frac{\mathbb{E}[\Gamma_k]}{\mu^2 \eta T_k} + \frac{\mathbb{E}[\Delta_k]}{\mu^2 \beta T_k} + \frac{20nL_f^2 C_2^2 \mathbb{E}[\Xi_k]}{B_1 \mu^2 \gamma T_k} + \frac{\beta_k C_2^2}{\mu \min\{B_1, B_2\}} + \frac{\gamma_k C_2^2}{\mu B_2}, \tag{15}$$

where $\Gamma_k := F(w^k) - F(w^*)$, $C_2^2 := C_g^2 + \zeta^2 / B_2$, $C_2^2 := 2C_f^2(\zeta^2 + C_g^2)$, $C_2^2 := 40L_f^2 C_2^2 \sigma^2$.

Proof Since F is μ-PL, we have $F(w) - F(w^*) \leq \frac{1}{2\mu} \|\nabla F(w)\|^2$. We define $\Gamma_k := F(w^k) - F(w^*)$, $\Delta_k := \|\nabla F(w^k)\|^2$ and $\Xi_k := \frac{1}{n} \|u^k - g(w^k)\|^2$. Applying PL condition and Theorem 3 to one epoch of SOX-boost leads to $\mathbb{E}[\Gamma_{k+1}] \leq \frac{1}{2\mu} \mathbb{E}\left[\|\nabla F(w^{k+1})\|^2\right]$ and

$$\frac{1}{2\mu} \mathbb{E}\left[\|\nabla F(w^{k+1})\|^2\right] \leq \frac{1}{4\mu T_k} \sum_{t=1}^{T_k} \mathbb{E}\left[\|\nabla F(w^t)\|^2\right] \leq \frac{\mathbb{E}[\Gamma_k]}{\mu^2 \eta T_k} + \frac{\mathbb{E}[\Delta_k]}{\mu^2 \beta T_k} + \frac{20nL_f^2 C_2^2 \mathbb{E}[\Xi_k]}{\mu \min\{B_1, B_2\}} + \frac{\beta_k C_2^2}{\mu \min\{B_1, B_2\}} + \frac{\gamma_k C_2^2}{\mu B_2},$$

where we define $C_2^2 := 2C_f^2(\zeta^2 + C_g^2)$, $C_2^2 := 40L_f^2 C_2^2 \sigma^2$.

Lemma 11 Under assumptions 1, 2, the k-th epoch of Algorithm 2 leads to

$$\mathbb{E}[\Delta_{k+1} + C_5 \Xi_{k+1}] \leq \frac{\mathbb{E}[6\Gamma_k + 10C_4 \Delta_k + 7C_4 C_5 \Xi_k]}{\eta T_k} + \frac{10 \eta \beta C_2^2}{C_4 \min\{B_1, B_2\}} + \frac{80nC_2^2 \beta k}{3B_1 B_2 C_4},$$

where $\beta_k \leq \min\left\{\frac{3B_1}{50n}, \frac{2}{7}\right\}$, $\gamma_k = \frac{10n}{3B_1} \beta_k$, $\eta_k = \beta_k C_4$, $C_4 := \min\{1/4L_F, 1/9L_f C_1 C_g\}$, $C_5 := 12L_f^2 C_2^2$.

Proof Applying Lemma 9 to single iteration in any epoch of SOX-boost with $\beta_k \leq \frac{2}{7}$ leads to

$$\mathbb{E}[\Delta_{t+1}] \leq (1 - \beta_k) \mathbb{E}[\Delta_t] + \frac{4L_f^2 \eta \beta}{\beta} \mathbb{E}[\Delta_t] + \frac{4L_f^2 \eta \beta}{\beta} \mathbb{E}\left[\|\nabla F(w^t)\|^2\right]$$

$$+ \frac{5 \beta_k^2 L_f^2 C_2^2}{\min\{B_1, B_2\}} \mathbb{E}[\Xi_t] + \frac{2 \beta_k^2 C_f^2(\zeta^2 + C_g^2)}{n} \mathbb{E}\left[\sum_{z_i \in B_t^2} \|u_i^{t+1} - u_i^t\|^2\right].$$

Applying Lemma 2 to one iteration in any epoch of SOX-boost with $\gamma_k \leq \frac{1}{5}$ leads to

$$\mathbb{E}[\Xi_{t+1}] \leq (1 - \frac{\gamma_k B_1}{4n}) \mathbb{E}[\Xi_t] + \frac{10n \gamma_k C_2^2 \mathbb{E}[\Delta_t]}{\gamma_k B_1} + \frac{10n \gamma_k C_2^2 \mathbb{E}[\|\nabla F(w^t)\|^2]}{\gamma_k B_1} + \frac{2 \gamma_k^2 C_2^2 B}{n \beta_2} - \frac{1}{4n} \mathbb{E}\left[\sum_{z_i \in B_t^2} \|u_i^{t+1} - u_i^t\|^2\right].$$
The following holds by summing up $\mathbb{E}[\Delta_{t+1}]$ and $\frac{40L_j^2C_1^2n\beta_k}{\gamma_kB_1} \times \mathbb{E}[\Xi_{t+1}]$ and noticing $\left(1 - \frac{\gamma_kB_1}{8n}\right)^2$.

$$
\mathbb{E}\left[\Delta_{t+1} + \frac{40L_j^2C_1^2n\beta_k}{\gamma_kB_1} \Xi_{t+1}\right] \\
\leq \mathbb{E}\left[\left(1 - \frac{4L_j^2\eta_k^2}{\beta_k} + \frac{400n^2\eta_k^2\beta_kC_2^2L_j^2C_1^2}{\gamma_k^2B_1^2}\right)\Delta_t + \frac{40L_j^2C_1^2n\beta_k}{\gamma_kB_1} \left(1 - \frac{\gamma_kB_1}{8n}\right)\Xi_t\right] \\
+ \left(4L_j^2\eta_k^2 + \frac{400n^2\eta_k^2\beta_kC_2^2L_j^2C_1^2}{\gamma_k^2B_1^2}\right)\mathbb{E}\left[\|\nabla F(w^t)\|^2\right] + \frac{2\beta_k^2C_1^2(C^2 + C_2^2)}{\min\{B_1, B_2\}} \\
+ \frac{80\gamma_k\beta L_j^2C_1^2\sigma^2}{B_2} - L_j^2C_1^2 \left(\frac{10n\beta_k}{\gamma_kB_1} - 3\right) \mathbb{E}\left[\frac{1}{n} \sum_{i \in B_1^t} \|u_{i+1}^{t+1} - u_i^t\|^2\right]
$$

If we set $\gamma_k \leq \frac{10n}{3B_1}\beta_k$, $\eta_k \leq \frac{\beta_k}{4L_j}$ and $\eta_k \leq \frac{\gamma_kB_1}{30L_jnC_1C_g}$,

$$
1 - \frac{4L_j^2\eta_k^2}{\beta_k} + \frac{400n^2\eta_k^2\beta_kC_2^2L_j^2C_1^2}{\gamma_k^2B_1^2} \leq 1 - \beta_k + \frac{\beta_k}{4} + \frac{4\beta_k}{9} \leq 1 - \frac{\beta_k}{4}.
$$

If $\beta_k \leq \min\left\{\frac{3B_1}{50n}, \frac{\beta_k}{2}\right\}$, we can set $\gamma_k = \frac{10n}{3B_1}\beta_k$ and $\eta_k = \beta_kC_4$, where $C_4 := \min\{1/4L_j, 1/9L_jC_1C_g\}$.

Then, $1 - \frac{\gamma_kB_1}{8n} = 1 - \frac{5\beta_k}{12} \leq 1 - \frac{\beta_k}{4}$. Besides, we define $C_5 := \frac{40L_j^2C_1^2n\beta_k}{\gamma_kB_1} = 12L_j^2C_1^2$.

$$
\mathbb{E}[\Delta_{t+1} + C_5\Xi_{t+1}] \leq \left(1 - \frac{\beta_k}{4}\right) \mathbb{E}[\Delta_t + C_5\Xi_t] + \frac{3\beta_k}{4} \mathbb{E}\left[\|\nabla F(w^t)\|^2\right] + \frac{2\beta_k^2C_1^2(C^2 + C_2^2)}{\min\{B_1, B_2\}} + \frac{2\gamma_k\beta L_j^2C_1^2}{B_2}.
$$

Telescoping the equation above from 1 to T_k iterations in epoch k leads to

$$
\mathbb{E}[\Delta_{k+1} + C_5\Xi_{k+1}] = \mathbb{E}\left[\frac{1}{T_k} \sum_{t=0}^{T_k} \Delta_{t+1} + C_5 \frac{1}{T_k} \sum_{t=0}^{T_k} \Xi_{t+1}\right] \\
\leq \frac{4C_1\mathbb{E}[\Delta_k + C_5\Xi_k]}{\eta_kT_k} + 3 \frac{1}{T_k} \sum_{t=1}^{T_k} \mathbb{E}\left[\|\nabla F(w^t)\|^2\right] + \frac{4\beta_kC_1^2}{\min\{B_1, B_2\}} + \frac{20nC_2^2\eta_k}{3B_1B_2C_4}.
$$

Applying (14), we can further derive that

$$
\mathbb{E}[\Delta_{k+1} + C_5\Xi_{k+1}] \leq \frac{\mathbb{E}[6\Gamma_k + 10C_4\Delta_k + 7C_4C_5\Xi_k]}{\eta_kT_k} + \frac{10\eta_kC_2^2}{C_4\min\{B_1, B_2\}} + \frac{80nC_2^2\eta_k}{3B_1B_2C_4}.
$$

\textbf{Lemma 12} If we set $\eta_k = \min\left\{\frac{\mu C_4 \min\{B_1, B_2\}}{6C_2^2}, \frac{\min\{B_1, B_2\}}{60C_2^2}, \frac{1}{\mu C_4 B_1 B_2 \varepsilon_k}, \frac{B_2 B_2 C_1 \varepsilon_k}{20nC_2^2}, \frac{3B_1 C_4}{50n}, \frac{2C_4}{7}\right\}$

and $T_k = \max\left\{\frac{12}{\eta_k}, \frac{96C_4}{C_4^2}\right\}$, $\gamma_k = \frac{10m\eta_k}{3B_4C_1}$, $\beta_k = \eta_k \frac{\beta_k}{C_4}$, we can conclude that $\mathbb{E}[\Gamma_k] \leq \varepsilon_k$ and $\mathbb{E}[\Delta_k + C_5\Xi_k] \leq \frac{\varepsilon_k}{C_4}$, where $\varepsilon_1 = \max\left\{\Delta_F, C_4(C_2^2C_9^2 + C_5\sigma^2/B_2)\right\}$ and $\varepsilon_k = \varepsilon_1/2^{k-1}$ for $k \geq 1.$
Theorem 13 (Detailed Version of Theorem 4) Under assumptions 1, 2 and the \(\mu\)-PL of \(F\), SOX-boost (Algorithm 2) can find an \(w\) satisfying that \(\mathbb{E}[F(w) - F(w^*)]\leq 2\varepsilon\) after

\[
T = C_{1/\mu} \max \left\{ \frac{6C_2^2}{\mu C_4 \min\{B_1, B_2\} \varepsilon}, \frac{60C_3^2}{20C_3^2}, \frac{20nC_3^2}{200nC_3^2}, \frac{50 \log(\varepsilon/\varepsilon)}{3B_1 C_4}, \frac{7 \log(\varepsilon/\varepsilon)}{2C_4} \right\}
\]

iterations, where \(C_{1/\mu} = \max \left\{ \frac{12}{\mu}, 96C_4 \right\}\).

Proof According to Lemma 12, the total number of iterations to achieve target accuracy \(\mathbb{E}[\Gamma_k] \leq \varepsilon\) can be represented as:

\[
T = \sum_{k=1}^{\log(\varepsilon/\varepsilon)} T_k
\]

\[
= C_{1/\mu} \max \left\{ \frac{6C_2^2}{\mu C_4 \min\{B_1, B_2\} \varepsilon}, \frac{60C_3^2}{20C_3^2}, \frac{20nC_3^2}{200nC_3^2}, \frac{50 \log(\varepsilon/\varepsilon)}{3B_1 C_4}, \frac{7 \log(\varepsilon/\varepsilon)}{2C_4} \right\},
\]

where \(C_{1/\mu} = \max \left\{ \frac{12}{\mu}, 96C_4 \right\}\).
Lemma 15

Proof [Proof of Corollary 1] Suppose that w^* is a minimum of F and \hat{w}^* is the minimum of the strongly convexified \hat{F}. If $E \left[\hat{F}(w) - \hat{F}(\hat{w}^*) \right] \leq \epsilon$, we have

$$E[F(w)] \leq E[\hat{F}(w)] \leq \hat{F}(\hat{w}^*) + \epsilon \leq \hat{F}(w^*) + \epsilon = F(w^*) + \frac{\lambda}{2} \|w^*\|^2 + \epsilon.$$

Thus, if the minimum w^* of F is in a bounded domain $\|w^*\| \leq C_\ast$ and we choose $\lambda = \frac{2\epsilon}{C_\ast}$, we also have $E[F(w) - F(w^*)] \leq 2\epsilon$.

D. Proof of Theorem 5

First, we state some technical lemmas.

D.1 Technical Lemmas

For any iteration t, we can define $y^t = (w^t; \pi_{1,1}^{t+1}, \pi_{2,1}^{t+1})$ and $\pi_{1,1}^{t+1} = [\pi_{1,1,1}^{t+1}, \ldots, \pi_{n,1}^{t+1}]^\top$, $\pi_{2,1}^{t+1} = [\pi_{1,2,1}^{t+1}, \ldots, \pi_{n,2}^{t+1}]^\top$, where $\pi_{i,1}^{t+1} = \nabla f(\pi_{i,1}^{t+1})$ and $\pi_{i,2}^{t+1} = \nabla g_i(w_i)$. We can define the gap $Q(y^t, y)$ as

$$Q(y^t, y) = \mathcal{L}(w^t, \pi_1, \pi_2) - \mathcal{L}(w, \pi_1^{t+1}, \pi_2^{t+1}) = \frac{1}{n} \sum_{y_i \in D} \left(\mathcal{L}_{i,1}(w^t, \pi_{i,1}^{t+1}, \pi_{i,2}^{t+1}) - \mathcal{L}_{i,1}(w, \pi_{i,1}^{t+1}, \pi_{i,2}^{t+1}) \right).$$

The following lemmas are needed.

Lemma 14 For any $\pi_{i,1}$ such that $\pi_{i,1} = \nabla f_i(u_i)$ for some bounded u_i, then there exists C_{f_*} such that $|f_i^*(\pi_{i,1})| \leq C_{f_*}$.

Proof Due to the definition of convex conjugate, we have $f_i(u_i) + f_i^*(\pi_{i,1}) = \pi_{i,1}u_i$. Due to that $\pi_{i,1}$ and u_i are bounded and $f_i(u_i)$ is bounded due to its Lipchitz continuity. As a result, $f_i^*(\pi_{i,1})$ is bounded by some constant C_{f_*}.

Lemma 15 For any $\pi \in \Pi$ and the sequences $\{\pi_1^t\}$ and π_1^t defined as $\pi_1^t = \arg \min_{\pi_1} \langle \hat{g}(w^t; B_2) - g(w^t), \pi_1 \rangle + \tau \mathcal{D}_f(\pi_1^t, \pi_1)$, $\pi_1^{t+1} = \arg \min_{\pi_1} \langle \hat{g}(w^t; B_2) - g(w^t), \pi_1 \rangle + \tau \mathcal{D}_f(\pi_1^t, \pi_1)$, we have

$$\langle \hat{g}(w^t; B_2) - g(w^t), \pi_1 - \pi_1^t \rangle \geq \tau' \left(\mathcal{D}_f(\pi_1^{t+1}, \pi_1) - \mathcal{D}_f(\pi_1^t, \pi_1) \right) - \frac{L_f}{2\tau} \left\| \hat{g}(w^t; B_2) - g(w^t; B_2) \right\|^2.$$

Proof The proof of this lemma is almost the same to that of Lemma 4 in Juditsky et al. (2011). Due to the three-point inequality (Lemma 1 in Zhang and Lan 2020), we have:

$$\mathcal{D}_f(\pi_1^{t+1}, \pi_1) \geq \mathcal{D}_f(\pi_1^{t+1}, \pi_1^{t+1}) - \frac{1}{\tau} \langle \hat{g}(w^t; B_2) - g(w^t), \pi_1^{t+1} - \pi_1^t \rangle + \mathcal{D}_f(\pi_1^t, \pi_1), \tag{16}$$

$$\mathcal{D}_f(\pi_1^{t+1}, \pi_1) \leq \mathcal{D}_f(\pi_1^t, \pi_1) + \frac{1}{\tau} \langle \hat{g}(w^t; B_2) - g(w^t), \pi_1 - \pi_1^{t+1} \rangle - \mathcal{D}_f(\pi_1^t, \pi_1^{t+1}), \tag{17}$$

29
where π_1 could be any $\pi_1 \in \Pi_1$. The last term on the R.H.S. of (17) can be upper bounded by (16).

\[
D_{f^*}(\tilde{\pi}_1^{t+1}, \pi_1) \leq D_{f^*}(\bar{\pi}_1, \pi_1) + \frac{1}{\tau} \langle g(w^t; B^2_1) - g(w^t), \pi_1 - \bar{\pi}_1 \rangle \\
+ \frac{1}{\tau} \langle \hat{g}(w^t; B^2_1) - \hat{g}(w^t; B^2_1), \bar{\pi}_1 - \bar{\pi}_1^{t+1} \rangle - D_{f^*}(\bar{\pi}_1, \pi_1) - D_{f^*}(\bar{\pi}_1^{t+1}, \pi_1)
\]

Considering the strong convexity, we have

\[
D_{f^*}(\tilde{\pi}_1^{t+1}, \pi_1) \leq D_{f^*}(\bar{\pi}_1, \pi_1) + \frac{1}{\tau} \langle g(w^t; B^2_1) - g(w^t), \pi_1 - \bar{\pi}_1 \rangle \\
+ \frac{1}{\tau} \langle \hat{g}(w^t; B^2_1) - \hat{g}(w^t; B^2_1), \bar{\pi}_1 - \bar{\pi}_1^{t+1} \rangle - \frac{1}{2L_f} \| \bar{\pi}_1 - \bar{\pi}_1 \|^2 - \frac{1}{2L_f} \| \bar{\pi}_1 - \bar{\pi}_1^{t+1} \|^2
\]

Based on the Young’s inequality, we further have

\[
\frac{1}{\tau} \langle \hat{g}(w^t; B^2_1) - \hat{g}(w^t; B^2_1), \pi_1 - \bar{\pi}_1 \rangle \leq \frac{L_f}{2(\tau')} \| \hat{g}(w^t; B^2_1) - \hat{g}(w^t; B^2_1) \|^2 + \frac{1}{2L_f} \| \bar{\pi}_1 - \bar{\pi}_1^{t+1} \|^2.
\]

Re-arranging the terms leads to

\[
\langle \hat{g}(w^t; B^2_1) - g(w^t), \pi_1 - \bar{\pi}_1 \rangle \geq \tau' (D_{f^*}(\tilde{\pi}_1^{t+1}, \pi_1) - D_{f^*}(\bar{\pi}_1, \pi_1)) - \frac{L_f}{2\tau'} \| \hat{g}(w^t; B^2_1) - \hat{g}(w^t; B^2_1) \|^2.
\]

We can decompose $Q_t(y^t, y)$ into three terms

\[
Q_{i,2}(y^t, y) = L_{i,1}(w^t, \pi_{i,1}, \pi_{i,2}) - L_{i,1}(w^t, \pi_{i,1}, \pi_{i,2}^{t+1}) \\
= \pi_{i,1} \left(\langle \pi_{i,2}, w^t \rangle - g^*_i(\pi_{i,2}) - \langle \pi_{i,2}^{t+1}, w^t \rangle + g^*_i(\pi_{i,2}^{t+1}) \right),
\]

\[
Q_{i,1}(y^t, y) = L_{i,1}(w^t, \pi_{i,1}, \pi_{i,2}^{t+1}) - L_{i,2}(w^t, \pi_{i,1}, \pi_{i,2}^{t+1}) \\
= \pi_{i,1} L_{i,2}(w^t, \pi_{i,2}^{t+1}) - f^*(\pi_{i,1}) - \pi_{i,1}^{t+1} L_{i,2}(w^t, \pi_{i,2}^{t+1}) + f^*(\pi_{i,1}^{t+1}),
\]

\[
Q_{i,0}(y^t, y) = L_{i,1}(w^t, \pi_{i,1}, \pi_{i,2}^{t+1}) - L_{i,1}(w; \pi_{i,1}, \pi_{i,2}^{t+1}) = \pi_{i,1}^{t+1}(\pi_{i,2}^{t+1}, w^t - w).
\]

We upper bound these terms one by one by the following lemmas.

Lemma 16 We have $Q_{i,2}(y^t, y) \leq 0$ for any $z_i \in D$ and any $t = 0, \ldots, T - 1$.

Proof Since f is Lipschitz-continuous, convex and monotonically increasing, we have

\[
0 \leq \pi_{i,1} \leq C_f. \quad \text{Besides,} \quad \langle \pi_{i,2}, w^t \rangle - g^*_i(\pi_{i,2}) \leq \langle \pi_{i,2}^{t+1}, w^t \rangle - g^*_i(\pi_{i,2}^{t+1}) \text{ due to} \pi_{i,2}^{t+1} = \arg \max_{\pi_{i,2}} T_{\pi_{i,2}} \pi_{i,2}^T w^t - g^*_i(\pi_{i,2}). \quad \text{We can conclude that} \quad Q_{i,2}(y^t, y) \leq 0.
\]

Lemma 17 For any valid $y = (w, \pi_1, \pi_2)$, the term $\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} Q_{i,1}(y^t, y) \right]$ can be upper bounded as

\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} Q_{i,1}(y^t, y) \right] \leq \frac{2n(C_fC_2\Omega + C_f)}{B_1} + \frac{n\eta CT}{B_1} + \frac{\tau n L_f C_1^2 C_2^2}{B_1} + \frac{L_f T \sigma^2}{\tau B_2} + \frac{B_1 TL_f \sigma^2}{n\tau B_2} - \frac{\tau}{2B_1} \mathbb{E} \left[\sum_{t=0}^{T-1} D_{f^*}(\pi_1^t, \pi_1^{t+1}) \right].
\]
Proof We define that $\mathbf{f}^*(\pi_1) := \sum_{z_i \in \mathcal{D}} f_i^*(\pi_{i,1})$ for any $\pi_1 \in \Pi_1$,

$$
\phi(w^t, \pi_1) := -\sum_{z_i \in \mathcal{D}} \pi_{i,1} \mathcal{L}^i_2(w^t; \pi_{i,1}^{t+1}) = -\sum_{z_i \in \mathcal{D}} \pi_{i,1} g_i(w^t), \quad h(w^t, \pi_1) := \phi(w^t, \pi_1) + \sum_{z_i \in \mathcal{D}} f_i^*(\pi_{i,1}).
$$

Due to the update of rule of $\pi_{i,1}^{t+1} (\pi_{i,1}^{t+1} = \pi_{i,1}^t$ for $i \notin B_1^t$) and the convexity, we have

$$
h(w^t, \pi_1^{t+1}) = \phi(w^t, \pi_1^t) + (\phi(w^t, \pi_1^{t+1}) - \phi(w^t, \pi_1^t)) + \mathbf{f}^*(\pi_1^{t+1})
\leq \phi(w^t, \pi_1^t) - \sum_{z_i \in B_1^t} g_i(w^t; B_1^{t+1})(\pi_{i,1}^{t+1} - \pi_{i,1}^t) + \sum_{z_i \in B_1^{t+1}} f_i^*(\pi_{i,1}^{t+1}) + \sum_{z_i \notin B_1^{t+1}} f_i^*(\pi_{i,1}^{t+1})
\leq \sum_{z_i \in B_1^t} (g_i(w^t; B_1^{t+1}) - g_i(w^t))(\pi_{i,1}^{t+1} - \pi_{i,1}^t)
$$

Applying the three-point inequality (e.g. Lemma 1 of Zhang and Lan 2020) leads to

$$
-\pi_{i,1}^{t+1} g_i(w^t; B_1^{t+1}) + f_i^*(\pi_{i,1}^{t+1}) + \tau D f_i^*(\pi_{i,1}^{t+1}, \pi_{i,1}) + \tau D f_i^*(\pi_{i,1}^t, \pi_{i,1})
\leq -\pi_{i,1} g_i(w^t; B_1^{t+1}) + f_i^*(\pi_{i,1}) + \tau D f_i^*(\pi_{i,1}, \pi_{i,1}) - \tau D f_i^*(\pi_{i,1}, \pi_{i,1}) + \tau D f_i^*(\pi_{i,1}, \pi_{i,1}).
$$

Add $\pi_{i,1} g_i(w^t; B_1^{t+1})$ on both sides and re-arrange the terms. For $z_i \in B_1^t$, we have

$$
- g_i(w^t; B_1^{t+1})(\pi_{i,1}^{t+1} - \pi_{i,1}^t) + f_i^*(\pi_{i,1}^{t+1})
\leq - g_i(w^t; B_1^{t+1})(\pi_{i,1}^t - \pi_{i,1}^t) + f_i^*(\pi_{i,1}) + \tau D f_i^*(\pi_{i,1}, \pi_{i,1}) - \tau D f_i^*(\pi_{i,1}, \pi_{i,1}).
$$

The \mathbf{f}^* term can be upper bounded by summing the inequality above over all $z_i \in B_1^t$. Besides, note that $\pi_{i,1}^{t+1} = \pi_{i,1}^t$ for $z_i \notin B_1^t$ such that $\sum_{z_i \notin B_1^t} f_i^*(\pi_{i,1}^{t+1}) = \sum_{z_i \notin B_1^t} f_i^*(\pi_{i,1}^t)$.

Based on the $\frac{1}{L_f}$-strong convexity of $f^*(\pi_{i,1})$, the \odot term for $z_i \in B_1^t$ can be bounded as

$$
(g_i(w^t; B_1^{t+1}) - g_i(w^t))(\pi_{i,1}^{t+1} - \pi_{i,1}^t) \leq \frac{L_f}{\tau} \|g_i(w^t; B_1^{t+1}) - g_i(w^t)\|^2 + \frac{\tau}{4 L_f} \|\pi_{i,1}^{t+1} - \pi_{i,1}^t\|^2
\leq \frac{L_f}{\tau} \|g_i(w^t; B_1^{t+1}) - g_i(w^t)\|^2 + \frac{\tau}{2} D f_i^*(\pi_{i,1}, \pi_{i,1}^{t+1}).
$$
Taking the upper bound of \(\bigodot\) into consideration leads to

\[
\begin{aligned}
& h(w^t, \pi_1^{t+1}) \leq \phi(w^t, \pi_1^t) - \sum_{z_i \in B_1^t} g_i(w^t; B_1^t, B_1^t, \pi_1, \pi_1^t) + \sum_{z_i \notin B_1^t} f_i^t(\pi_1^t) + \sum_{z_i \notin B_1^t} f_i^t(\pi_1^t) \\
& \quad - \frac{\tau}{2} \sum_{z_i \in B_1^t} D_{f_1}(\pi_1^t, \pi_1^{t+1}) + \tau \sum_{z_i \in B_1^t} D_{f_1}(\pi_1^t, \pi_1^t) - \tau \sum_{z_i \in B_1^t} D_{f_1}(\pi_1^{t+1}, \pi_1^t) \\
& \quad + \frac{L_f}{\tau} \sum_{i \in B_1^t} \|g_i(w^t; B_1^t, \pi_1^t) - g_i(w^t)\|^2.
\end{aligned}
\]

Define that \(\hat{g}(w^t; B_2^t) = \sum_{z_i \in B_1^t} \frac{n}{B_1} g_i(w^t; B_1^t, \pi_1)\) and \(g(w^t) = \sum_{z_i \in B_1^t} g_i(w^t)\), where \(e_i \in \mathbb{R}^n\) is the indicator vector that only the \(i\)-th element is 1 while the others are 0. Note that \(E[\hat{g}(w^t; B_2^t)] = g(w^t)\). Then, \(\bigodot\) can be decomposed as

\[
\bigodot = -\frac{B_1}{n} \sum_{z_i \in B_1^t} \frac{n}{B_1} g_i(w^t; B_1^t, \pi_1^t) - \pi_1^t
\]

\[
= -\frac{B_1}{n} \langle g(w^t), \pi_1 - \pi_1^t \rangle - \frac{B_1}{n} \langle g(w^t), \pi_1 - \pi_1^t \rangle
\]

\[
= -\frac{B_1}{n} \langle g(w^t), \pi_1 - \pi_1^t \rangle - \frac{B_1}{n} \langle g(w^t), \pi_1 - \pi_1^t \rangle - \frac{B_1}{n} \langle g(w^t), \pi_1 - \pi_1^t \rangle
\]

\[
= -\frac{B_1}{n} \langle g(w^t), \pi_1 - \pi_1^t \rangle - \frac{B_1}{n} \langle g(w^t), \pi_1 - \pi_1^t \rangle - \frac{B_1}{n} \langle g(w^t), \pi_1 - \pi_1^t \rangle
\]

\[
\bigodot = \frac{\tau}{2} \sum_{z_i \in B_1^t} D_{f_1}(\pi_1^t, \pi_1^{t+1}) + \tau \sum_{z_i \in B_1^t} D_{f_1}(\pi_1^t, \pi_1^t) - \tau \sum_{z_i \in B_1^t} D_{f_1}(\pi_1^{t+1}, \pi_1^t)
\]

where \(\pi_1^t\) is defined as

\[
\pi_1^t = \arg\min_{\pi_1} \langle g(w^t), \pi_1 - \pi_1^t \rangle + \tau D_{f}(\pi_1^{t+1}, \pi_1)
\]

\[
\pi_1^{t+1} = \arg\min_{\pi_1} \langle g(w^t), \pi_1 - \pi_1^t \rangle + \tau D_{f}(\pi_1^{t+1}, \pi_1)
\]

where \(\tau > 0\), \(B_2^t\) is a “virtual batch” (never sampled in the algorithm) that is independent of but has the same size as \(B_2^t\). Based on Lemma 15, \(\bigodot\) can be lower bounded as

\[
\langle g(w^t; B_2^t) - g(w^t), \pi_1 - \pi_1^t \rangle \geq -\tau D_f(\pi_1^t, \pi_1) + \tau D_f(\pi_1^{t+1}, \pi_1) - \frac{L_f}{\tau} \|g(w^t; B_2^t) - g(w^t; B_2^t)\|^2.
\]

Thus, taking the expectation of the equation above w.r.t. the randomness in iteration \(t\) leads to

\[
E_t \left[\frac{B_1}{n} \langle g(w^t; B_2^t) - g(w^t), \pi_1 - \pi_1^t \rangle \right] \geq \frac{\tau B_1}{n} (-E_t [D_{f}(\pi_1^t, \pi_1)] + E_t [D_{f}(\pi_1^{t+1}, \pi_1)]) - \frac{B_1 \sigma^2 L_f}{\tau^2 B_2}.
\]

Note that \(E_t [\pi_1^t] = E_t [\langle g(w^t; B_2^t) - g(w^t), \pi_1^t - \pi_1^t \rangle] = 0\) since both \(\pi_1^t\) and \(\pi_1^t\) are independent of \(B_2^t\). Besides, we have \(\bigodot = \sum_{z_i \in B_1^t} D_{f_1}(\pi_1^t, \pi_1^t) - \sum_{z_i \in B_1^t} D_{f_1}(\pi_1^{t+1}, \pi_1^t) = \)
\[
\sum_{z_i \in D} D_{f^*}(\pi_{i,1}^t, \pi_{i,1}) - \sum_{z_i \in D} D_{f^*}(\pi_{i,1}^{t+1}, \pi_{i,1}) = D_{f^*}(\pi_{i,1}^t, \pi_{i,1}) - D_{f^*}(\pi_{i,1}^{t+1}, \pi_{i,1}) \text{ and } \sum_{z_i \in B_1} D_{f^*}(\pi_{i,1}^t, \pi_{i,1}^{t+1}) = D_{f^*}(\pi_{i,1}^t, \pi_{i,1}^{t+1}) \text{ because } \pi_{i,1}^t = \pi_{i,1} \text{ for } i \notin B_1.
\]

\[
E_t[h(w^t, \pi_{i,1}^{t+1})] \leq \phi(w^t, \pi_{i,1}^t) + \left(1 - \frac{B_1}{n}\right) f^*(\pi_{i,1}^t) + \frac{B_1(E_t[\phi(w^t, \pi_{i,1})] - \phi(w^t, \pi_{i,1})]}{n} + \frac{B_1}{n} E_t[f^*(\pi_{i,1}^t)]
\]

\[
- \frac{\tau}{2} E_t[D_{f^*}(\pi_{i,1}^t, \pi_{i,1}^{t+1})] + \frac{\tau B_1}{n} (E_t[D_{f^*}(\pi_{i,1}^t, \pi_{i,1})] - E_t[D_{f^*}(\pi_{i,1}^{t+1}, \pi_{i,1})]) + \frac{n L f^2}{\tau B_2}
\]

\[
+ \tau E_t[D_{f^*}(\pi_{i,1}^t, \pi_{i,1})] - \tau E_t[D_{f^*}(\pi_{i,1}^{t+1}, \pi_{i,1})] + \frac{L f B_1 \sigma^2}{\tau B_2}.
\]

Subtract \(E_t[h(w^t, \pi_{i,1})]\) from both sides and use the tower property of conditional expectation.

\[
E[h(w^t, \pi_{i,1}^{t+1}) - h(w^t, \pi_{i,1})] \leq \left(1 - \frac{B_1}{n}\right) E[h(w^t, \pi_{i,1}) - h(w^t, \pi_{i,1})] + \tau E[D_{f^*}(\pi_{i,1}^t, \pi_{i,1}) - D_{f^*}(\pi_{i,1}^{t+1}, \pi_{i,1})]
\]

\[
- \frac{\tau}{2} E[D_{f^*}(\pi_{i,1}^t, \pi_{i,1}^{t+1})] + \frac{\tau B_1}{n} (E[D_{f^*}(\pi_{i,1}^t, \pi_{i,1})] - E[D_{f^*}(\pi_{i,1}^{t+1}, \pi_{i,1})])
\]

\[
+ \frac{n L f \sigma^2}{\tau B_2} + \tau E[D_{f^*}(\pi_{i,1}^t, \pi_{i,1})] - \tau E[D_{f^*}(\pi_{i,1}^{t+1}, \pi_{i,1})] + \frac{L f B_1 \sigma^2}{\tau B_2}.
\]

Let \(\Delta^t = h(w^t, \pi_{i,1}^{t+1}) - h(w^t, \pi_{i,1})\). Thus,

\[
E[h(w^t, \pi_{i,1}^t) - h(w^t, \pi_{i,1}) - \Delta^{t-1}] = E[h(w^t, \pi_{i,1}^t) - h(w^t, \pi_{i,1}) - h(w^{t-1}, \pi_{i,1}) + h(w^{t-1}, \pi_{i,1})]
\]

\[
= E\left[\sum_{z_i \in D} (\pi_{i,1} - \pi_{i,1}^{t+1}) (g_i(w^t) - g_i(w^{t-1})) \right] \leq n C_f C_g \eta E[\|w^t - w^{t-1}\|] \leq n \eta C_f C_g \sqrt{C_f^2 (C_g^2 + \zeta^2 / B_2)}.
\]

We define \(C = C_f C_g \sqrt{C_f^2 (C_g^2 + \zeta^2 / B_2)}\). Do the telescoping sum for \(t = 1, \ldots, T\).

\[
E\left[\sum_{t=0}^{T-1} \frac{B_1}{n} \Delta^t \right] \leq (\Delta^0 - \Delta^T) + n \eta CT + \tau D_{f^*}(\pi_{i,1}^0, \pi_{i,1}) - \frac{\tau}{2} \sum_{t=0}^{T-1} D_{f^*}(\pi_{i,1}^{t+1})
\]

\[
+ \frac{L f B_1 \sigma^2 T}{\tau B_2} + \frac{B_1 T L f \sigma^2}{\tau B_2} + \frac{\tau B_1}{n} D_{f^*}(\pi_{i,1}^0, \pi_{i,1}).
\]

Consider that \(\frac{1}{n} \sum_{z_i \in D} Q_{i,1}(y^t, y^t) = \frac{1}{n} (h(w^t, \pi_{i,1}^{t+1}) - h(w^t, \pi_{i,1})) = \Delta^t / \eta \).

\[
\sum_{t=0}^{T-1} E\left[\frac{1}{n} \sum_{z_i \in D} Q_{i,1}(y^t, y) \right] \leq \frac{\Delta^0 - \Delta^T}{B_1} + \frac{n \eta CT}{B_1} + \frac{\tau D_{f^*}(\pi_{i,1}^0, \pi_{i,1})}{B_1} + \frac{L f T \sigma^2}{\tau B_2} + \frac{TL f \sigma^2}{\tau B_2}
\]

\[
+ \frac{\tau D_{f^*}(\pi_{i,1}^0, \pi_{i,1})}{n} - \frac{\tau}{2 B_1} \sum_{t=0}^{T-1} D_{f^*}(\pi_{i,1}^{t+1}).
\]

33
Based on the definition of \(\text{Proof} \) Lemma 18, we have

\[
\Delta^0 - \Delta^T = h(w^0, \pi_1^0) - h(w^0, \pi_1) - h(w^T, \pi_1^{T+1}) + h(w^T, \pi_1)
\]

\[
= - \sum_{z_i \in D} (\pi_{i,1}^0 - \pi_{i,1})g_i(w^0) - \sum_{z_i \in D} (\pi_{i,1} - \pi_{i,1}^{T+1})g_i(w^T) + \sum_{z_i \in D} f_i^*(\pi_{i,1}^0) - \sum_{z_i \in D} f_i^*(\pi_{i,1}^{T+1})
\]

\[
\leq 2nC_fC_gC_\Theta + 2nC_f^*.
\]

On the other hand, if we set \(\pi_{i,1}^0 = \nabla f(u_i^0) \) and \(u_i^0 = g_i(w^0) \), we have \(D_f^*(\pi_{i,1}^0, \pi_{i,1}) = D_f^* (\nabla f(u_i^0), \nabla f(g_i(\bar{w}))) = D_f(u_i^0, g_i(\bar{w})) \leq \frac{L_f}{2} \| u_i^0 - g_i(\bar{w}) \|^2 \leq \frac{L_fC_f^2C_g^2}{2} \) such that \(D_f^*(\pi_0, \pi_1) = \sum_{z_i \in D} D_f^*(\pi_{i,1}^0, \pi_{i,1}) \leq \frac{nL_fC_f^2C_g^2}{2}. \) The proof concludes by setting \(\tau' = \frac{n_\tau}{B_1} > 1. \]

Lemma 18 We have

\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} Q_{i,0}(y^t, y) \right] \leq \frac{T C_f^2 C_g^2}{n \eta} + \frac{T C_g^2 (C^2 + C_g^2)}{n \eta \min\{B_1, B_2\}} + \frac{\eta C_g^2}{2} + \frac{T \tau'}{B_1} \mathbb{E} \left[\sum_{t=0}^{T-1} D_f^*(\pi_{i,1}^{t+1}, \pi_{i,1}^{t+1}) \right] + \frac{B_1 L_f C_f^2 C_g^2 T}{n \tau'}.
\]

Proof Based on the definition of \(Q_{i,0}(y^t, y) \), we can derive that

\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} Q_{i,0}(y^t, y) \right] = \sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} (\pi_{i,1}^{t+1} - \pi_{i,1}^{t+1}, w^t - w) \right]
\]

\[
= \sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} (\pi_{i,1}^{t+1} - \pi_{i,1}^{t+1}, w^t - w) \right] + \sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} (\pi_{i,1}^{t+1} - \pi_{i,1}^{t+1}, w^t - w^t) \right]
\]

\[
+ \sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} (\pi_{i,1}^{t+1} - \pi_{i,1}^{t+1}, w^t - w^t) \right].
\]

The second term on the right hand side of (19) can be upper bounded by

\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in D} (\pi_{i,1}^{t+1} - \pi_{i,1}^{t+1}, w^t - w^t) \right] \leq \mathbb{E} \left[\sum_{t=0}^{T-1} \left(\frac{C_g^2 C_f^2}{\eta} + \frac{\eta}{4} \| w^t - w^t \|^2 \right) \right].
\]
The first term on the right hand side of (19) can be upper bounded by
\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in \mathcal{D}} \langle \pi_{i,1}^t \pi_{i,2}^t, w^{t+1} - w \rangle \right] = \sum_{t=0}^{T-1} \mathbb{E} \left[\left(\frac{1}{n} \sum_{z_i \in \mathcal{D}} \pi_{i,1}^t \pi_{i,2}^t - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_{i,1}^t \pi_{i,2}^t (B_{i,2}^t), w^{t+1} - w \right) \right]
\]
\[
+ \sum_{t=0}^{T-1} \mathbb{E} \left[\langle \frac{1}{B_1} \sum_{i \in B_1^t} \pi_{i,1}^t \pi_{i,2}^t (B_{i,2}^t), w^{t+1} - w \rangle \right].
\]
\[
= \sum_{t=0}^{T-1} \mathbb{E} \left[\left(\frac{1}{n} \sum_{z_i \in \mathcal{D}} \pi_{i,1}^t \pi_{i,2}^t - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_{i,1}^t \pi_{i,2}^t (B_{i,2}^t), w^{t+1} - w \right) \right]
\]
\[
+ \sum_{t=0}^{T-1} \mathbb{E} \left[\langle \frac{1}{B_1} \sum_{i \in B_1^t} \pi_{i,1}^t \pi_{i,2}^t (B_{i,2}^t), w^{t+1} - w \rangle \right].
\]

The last equality above uses \(\mathbb{E} \left[\left(\frac{1}{n} \sum_{z_i \in \mathcal{D}} \pi_{i,1}^t \pi_{i,2}^t - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_{i,1}^t \pi_{i,2}^t (B_{i,2}^t), w^t - w \right) \right] = 0. \)
Moreover,
\[
\mathbb{E} \left[\left(\frac{1}{n} \sum_{z_i \in \mathcal{D}} \pi_{i,1}^t \pi_{i,2}^t - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_{i,1}^t \pi_{i,2}^t (B_{i,2}^t), w^{t+1} - w \right) \right] \leq \frac{C_f^2 (\zeta^2 + C_g^2)}{\eta \min \{B_1, B_2\}} + \frac{\eta}{4} \|w^{t+1} - w^t\|^2.
\]
(20)

According to the three-point inequality (Lemma 1 in Zhang and Lan 2020), we have
\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\langle \frac{1}{B_1} \sum_{i \in B_1^t} \pi_{i,1}^t \pi_{i,2}^t (B_{i,2}^t), w^{t+1} - w \rangle \right] \leq \frac{\eta}{2} \|w^t - w\|^2 - \frac{\eta}{2} \|w^{t+1} - w\|^2 - \frac{\eta}{2} \|w^t - w^{t+1}\|^2.
\]
(21)

Besides, the third term on the R.H.S. of (19) can be upper bounded as follows based on the Young’s inequality with a constant \(\rho > 0. \)
\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in \mathcal{D}} \langle (\pi_{i,1}^{t+1} - \pi_{i,1}^t) \pi_{i,2}^t, w^{t+1} - w \rangle \right] \leq \sum_{t=0}^{T-1} \mathbb{E} \left[\frac{C_f^2 \rho}{2n} \sum_{z_i \in \mathcal{D}} \|\pi_{i,1}^{t+1} - \pi_{i,1}^t\|^2 + \frac{\|w^{t+1} - w\|^2}{2\rho} \right]
\]
\[
\leq \sum_{t=0}^{T-1} \mathbb{E} \left[\frac{L_f C_g^2 \rho}{n} \mathbf{D}_{f^*} (\pi_{i,1}^t, \pi_{i,1}^{t+1}) + \frac{\|w^{t+1} - w\|^2}{2\rho} \right],
\]
where the last inequality is due to \(L_f \)-smoothness of \(f. \) Choose \(\rho = \frac{n \tau}{2B_1 L_f C_g^2}. \) Besides, we also have \(\|w^{t+1} - w\|^2 \leq C_\Omega^2. \)
\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in \mathcal{D}} \langle (\pi_{i,1}^{t+1} - \pi_{i,1}^t) \pi_{i,2}^t, w^{t+1} - w \rangle \right] \leq \frac{\tau}{2B_1} \mathbb{E} \left[\sum_{t=0}^{T-1} \mathbf{D}_{f^*} (\pi_{i,1}^t, \pi_{i,1}^{t+1}) \right] + \frac{B_1 L_f C_g^2 C_\Omega^2 T}{n \tau}.
\]
(22)
Plugging (20), (21), and (22) into (19) leads to
\[
\sum_{t=0}^{T-1} \mathbb{E} \left[\frac{1}{n} \sum_{z_i \in \mathcal{D}} Q_{i,0}(y^t, y) \right] \leq \frac{TC_f C_g^2}{\eta} + \frac{TC_f^2 (\zeta^2 + C_g^2)}{\eta \min\{B_1, B_2\}} + \frac{C_D^2}{2\eta}
\]
\[
+ \frac{\tau}{2B_1} \mathbb{E} \left[\sum_{t=0}^{T-1} D_{f^t}(\pi_{i,1}^t, \pi_{i,1}^{t+1}) \right] + \frac{B_1 L_f C_g^2 C_D^2 T}{n \tau}.
\]

D.2 Proof of Theorem 5

Proof Based on Lemma 16, Lemma 17, and Lemma 18, we have
\[
\mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T-1} Q(y^t, y) \right] \leq \frac{2n(C_f C_g C_{\Omega} + C_f^2)}{B_1 T} + \frac{nC}{\eta B_1} + \frac{\tau n L_f C_g^2 C_{\Omega}^2}{B_1 T} + \frac{L_f g^2}{\tau B_2} + \frac{B_1}{n \tau B_2} + \frac{C_f^2 C_g^2}{\eta} + \frac{C_f^2 (\zeta^2 + C_g^2)}{\eta \min\{B_1, B_2\}}
\]
\[
+ \frac{\eta C_{\Omega}^2}{2T} + \frac{B_1 L_f C_g^2 C_{\Omega}^2}{n \tau},
\]
where \(F(\tilde{w}^T) = \mathcal{L}(\mathbf{w}^T, \pi_1, \pi_2) \), \(\tilde{w}^T = \frac{1}{T} \sum_{t=0}^{T-1} w^t \) and \(\mathcal{L}_{i,1}(\mathbf{w}, \pi_{i,1}, \pi_{i,2}) \leq f(g_i(\mathbf{w})) \) such that we have \(\frac{1}{n} \sum_{z_i \in \mathcal{D}} \mathcal{L}_{i,1}(\mathbf{w}, \pi_{i,1}, \pi_{i,2}) \leq \frac{1}{n} \sum_{z_i \in \mathcal{D}} f(g_i(\mathbf{w})) = F(\mathbf{w}) \).

Thus, to ensure that \(\max_y \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T-1} Q(y^t, y) \right] \leq \epsilon \), we can make
\[
\eta = \max \left\{ \frac{9nC}{B_1 \epsilon}, \frac{9C_f^2 C_g^2}{\epsilon}, \frac{9C_f^2 (\zeta^2 + C_g^2)}{\epsilon}, \frac{9L_f g^2}{B_2 \epsilon}, \frac{9B_1}{\min\{B_1, B_2\} \epsilon}, \frac{9B_1 L_f C_g^2 C_{\Omega}^2}{n \epsilon} \right\},
\]
\[
\tau = \max \left\{ \frac{9L_f g^2}{B_2 \epsilon}, \frac{9B_1}{\min\{B_1, B_2\} \epsilon}, \frac{9B_1 L_f C_g^2 C_{\Omega}^2}{n \epsilon} \right\},
\]
\[
T = \max \left\{ \frac{18n(C_f C_g C_{\Omega} + C_f^2)}{B_1 \epsilon}, \frac{81n L_f C_g^2 C_{\Omega}^2}{B_1 B_2 \epsilon^2}, \frac{81n L_f C_g^2 C_{\Omega}^2}{B_2 \epsilon^2}, \frac{81L_f C_g^2 C_{\Omega}^2}{\epsilon^2}, \frac{81n C_{\Omega}^2}{B_2 \epsilon^2}, \frac{81C_{\Omega}^2}{2B_1 \epsilon^2}, \frac{81C_{\Omega}^2}{2n \epsilon^2}, \frac{81C_{\Omega}^2 (\zeta^2 + C_g^2)}{2 \min\{B_1, B_2\} \epsilon^2} \right\}.
\]

E. The Challenge of Deriving Strong Duality Gap

In (18) of Lemma 17, we used the equation for any \(\pi_{i,1} \)
\[
\mathbb{E} \left[\sum_{z_i \in B_1} f^*(\pi_{i,1}) \right] = \left(1 - \frac{B_1}{n} \right) \mathbb{E} \left[\sum_{z_i \in \mathcal{D}} f^*(\pi_{i,1}) \right],
\]
which meant to take expectation on the sampled mini-batch B^t_i. To derive the upper bound of duality gap $\mathbb{E}[\max_{w, x_1, x_2}(L(w^T, x_1, x_2) - L(w, \pi^{T}, \pi^{T}_2))]$, we plugged in $\pi_{i, 1} = \pi^{T}_{t, 1}$, $\pi^{*}_{i, 1} := \arg\max_{\pi_{i, 1}}(\pi_{i, 1}, L, \pi^{T}_2) - f^{*}(\pi_{i, 1})$. However, $\pi^{*}_{i, 1}$ is not a valid value to plug in because $\pi^{*}_{i, 1}$ also depends on B^t_i. Thus, the conclusion in Lemma 10 and Theorem 3 of our previous version are weakened. To be specific, we can only derive an upper bound for $\max_{w, x_1, x_2} \mathbb{E}[L(w^T, x_1, x_2) - L(w, \pi^{T}, \pi^{T}_2)]$, which is weaker than the duality gap (see Example 1 in Alcaoglu et al. (2022)). Unlike the duality gap, the upper bound on $\max_{w, x_1, x_2} \mathbb{E}[L(w^T, x_1, x_2) - L(w, \pi^{T}, \pi^{T}_2)]$ does not necessarily imply the bound for primal objective gap $\mathbb{E}[F(w^T) - F(w^*)]$.

F. Proof of Theorem 7

Lemma 19 Under Assumptions 2, 3, 4, it is satisfied that

$$\mathbb{E}[Q_1(z^t, z)] \leq \left(1 - \frac{B_i}{n}\right) \mathbb{E}[Q_1(z^{t-1}, z)] + \frac{C_1}{\tau_{t-1}} + \frac{L_f B_i \sigma^2}{\tau_{t-1} B_2} + \left(\tau_t + 1 - \frac{B_i}{n}\right) \mathbb{E}[D(\pi^t, \pi)] - \mathbb{E}[D(\pi^{t+1}, \pi)] - \frac{1}{n} \mathbb{E}[D(\pi^t, \pi^{t+1})],$$

where $z^t := (w^t, \pi^{T})$, $z := (w, \pi)$ (independent of the randomness in the algorithm), $Q_1(z^t, z) := \mathcal{L}(w^t, \pi) - \mathcal{L}(w^t, \pi^{T})$, $D(\pi, \pi') := \sum_{w_i \in D} D_f(\pi_i, \pi'_i)$ for any π, π', $C_1 := 2C_f C_g(C_f \sqrt{C^2_g + \zeta^2} + C_R)$.

Proof We define $h(w, \pi) = -\sum_{z_i \in D} \pi_i g_i(w) + \sum_{z_i \in D} f_i^*(\pi_i)$. Due to the update of rule of $\pi^{T}_t (\pi^{T+1}_t = \pi^{T}_t)$ for $i \notin B^t_i$, we have

$$h(w^t, \pi^{T+1}) = -\sum_{z_i \in D} \pi^t_i g_i(w^t) - \sum_{z_i \in D} (\pi^{T+1}_i - \pi^t_i) g_i(w) + \sum_{z_i \in D} f_i^*(\pi^{T+1}_i)$$

$$= -\sum_{z_i \in D} \pi^t_i g_i(w^t) - \sum_{z_i \in D} (\pi^{T+1}_i - \pi^t_i) g_i(w^t, B^t_{i, 2}) + \sum_{z_i \in D} f_i^*(\pi^{T+1}_i)$$

$$= \sum_{i \notin B^t_i} (g_i(w^t, B^t_{i, 2}) - g_i(w^t))(\pi^{T+1}_i - \pi^t_i). \tag{23}$$

We define that $\pi^{T+1}_i := \arg\max_{\pi_i} \left\{ \pi_i g_i(w^t; B^t_{i, 2}) - f_i^*(\pi_i) - \tau_l D_f(\pi^t_i, \pi_i) \right\}$, $\forall z_i \in D$. Note that $\pi^{T+1}_i = \pi^{T+1}_i$ when $z_i \in B^t_i$. Applying Lemma 3.8 in Lan (2020) leads to

$$(\pi - \pi^{T+1}_i) g_i(w^t; B^t_{i, 2}) + f_i^*(\pi^{T+1}_i) - f_i^*(\pi_i) \leq \tau_l D_f(\pi^t_i, \pi_i) - (\tau_t + 1) D_f(\pi^{T+1}_i, \pi_i) \leq \tau_l D_f(\pi^t_i, \pi_i) - \tau_l D_f(\pi^{T+1}_i, \pi_i).$$

Add $\pi^{T+1}_i g_i(w^t; B^t_{i, 2})$ on both sides and rearrange the terms. For $z_i \in D$, we have

$$-\pi^{T+1}_i - \pi^{T+1}_i g_i(w^t; B^t_{i, 2}) + f_i^*(\pi^{T+1}_i)$$

$$\leq -\pi_i g_i(w^t; B^t_{i, 2}) + f_i^*(\pi_i) + \tau_l D_f(\pi^t_i, \pi_i) - (\tau_t + 1) D_f(\pi^{T+1}_i, \pi_i) - \tau_l D_f(\pi^{T+1}_i, \pi_i). \tag{24}$$
Since \bar{x}_{i+1} is independent of \mathcal{B}_1, taking conditional expectation on \mathcal{B}_1 leads to

$$E[D_{f_i}(\bar{x}_{i+1}, x_i) | \mathcal{F}_t] = \frac{B_1}{n} E[D_{f_i}(\bar{x}_{i+1}, x_i) | \mathcal{F}_t] + \left(1 - \frac{B_1}{n}\right) D_{f_i}(x_i, x_i),$$

$$E[D_{f_i}(\bar{x}_{i+1}, x_i) | \mathcal{F}_t] = \frac{B_1}{n} E[D_{f_i}(\bar{x}_{i}, x_i) | \mathcal{F}_t],$$

$$E[x_i^{i+1} | \mathcal{F}_t] = \frac{B_1}{n} E[x_i^{i+1} | \mathcal{F}_t] + \left(1 - \frac{B_1}{n}\right) x_i,$n

$$E[f_i^*(x_i^{i+1}) | \mathcal{F}_t] = \frac{B_1}{n} E[f_i^*(x_i^{i+1}) | \mathcal{F}_t] + \left(1 - \frac{B_1}{n}\right) f_i^*(x_i).$$

We define $D(\pi, \pi') := \sum_{z_i \in D} D_{f_i}(x_i, x_i)$. By multiply both sides of (24) by $\frac{B_1}{n}$ and plug the above in, we can bound $E[\mathfrak{F} | \mathcal{F}_t]$ by

$$E[\mathfrak{F} | \mathcal{F}_t] = - \sum_{z_i \in D} \frac{E}{(x_i^{i+1} - x_i^i) g_i(w^t; B_i^t)} | \mathcal{F}_t] + \sum_{z_i \in D} E [f_i^*(x_i^{i+1}) | \mathcal{F}_t]$$

$$\leq \left(1 - \frac{B_1}{n}\right) \sum_{z_i \in D} f_i^*(x_i^{i+1}) - \frac{B_1}{n} \sum_{z_i \in D} \frac{E}{(x_i - x_i^i) g_i(w^t; B_i^t)} | \mathcal{F}_t] + \frac{B_1}{n} \sum_{z_i \in D} f_i^*(x_i)$$

$$+ \left(x_i - x_i^{i+1}\right) D(\pi^i, \pi) - (x_i - x_i^i)\left[\right] - \tau_i E\left[\mathcal{F}_t\right].$$

Combine (23) and the equation above.

$$E\left[\mathfrak{F} | \mathcal{F}_t\right]$$

$$= - \sum_{z_i \in D} \frac{E}{x_i^{i+1} g_i(w^t) + \left(1 - \frac{B_1}{n}\right) \sum_{z_i \in D} x_i^{i+1} - \frac{B_1}{n} \sum_{z_i \in D} (x_i - x_i^i) g_i(w^t) + \frac{B_1}{n} \sum_{z_i \in D} f_i^*(x_i)$$

$$+ \left(x_i - x_i^{i+1}\right) D(\pi^i, \pi) - (x_i - x_i^i)\left[\right] - \tau_i E\left[\mathcal{F}_t\right] + \frac{E}{\sum_{z_i \in D} (g_i(w^t; B_i^t) - g_i(w^t))(x_i^{i+1} - x_i^i) | \mathcal{F}_t\right].$$

Based on the $\frac{1}{L_f}$-strong convexity of $f_i^*(x_i)$, the \otimes term for $z_i \in B_i$ can be bounded as

$$\otimes \leq \frac{L_f}{\tau_i} E\left[\sum_{z_i \in D} \left\|g_i(w^t; B_i^t) - g_i(w^t)\right\|^2 | \mathcal{F}_t\right] + \frac{\tau_i}{4L_f} E\left[\sum_{z_i \in D} \left\|x_i^{i+1} - x_i^i\right\|^2 | \mathcal{F}_t\right]$$

$$\leq \frac{L_f B_1 \sigma^2}{\tau_i B_2} + \frac{\tau_i}{2} E\left[\sum_{z_i \in D} D_{f_i}(x_i, x_i) | \mathcal{F}_t\right].$$
Taking the fact \(\sum_{z_i \in \mathcal{D}} D_i^*(\pi_i, \pi_i^{t+1}) = D(\pi^t, \pi^{t+1}) \) (due to the update formula of the dual variable) and the upper bound of \(\oplus \) into consideration leads to

\[
\mathbb{E} \left[h(\mathbf{w}^t, \pi^{t+1}) \mid \mathcal{F}_t \right] = \sum_{z_i \in \mathcal{D}} \pi_i^t g_i(\mathbf{w}^t) + \left(1 - \frac{B_i}{n} \right) \sum_{z_i \in \mathcal{D}} f_i^*(\pi_i^t) - \frac{B_1}{n} \sum_{z_i \in \mathcal{D}} (\pi_i - \pi_i^t) g_i(\mathbf{w}^t) + \frac{B_1}{n} \sum_{z_i \in \mathcal{D}} f_i^*(\pi_i) + \frac{L_f B_1 \sigma^2}{\tau_1 B_2} + \left(\tau_t + 1 - \frac{B_1}{n} \right) D(\pi^t, \pi) - (\tau_t + 1) \mathbb{E} \left[D(\pi^{t+1}, \pi) \mid \mathcal{F}_t \right] - \frac{\tau_t}{2} \mathbb{E} \left[D(\pi^t, \pi^{t+1}) \mid \mathcal{F}_t \right].
\]

Note that \((1 - \frac{B_i}{n}) (- \sum_{z_i \in \mathcal{D}} \pi_i^t g_i(\mathbf{w}^t) + \sum_{z_i \in \mathcal{D}} f_i^*(\pi_i^t)) + \frac{B_1}{n} (- \sum_{z_i \in \mathcal{D}} g_i(\mathbf{w}^t) \pi_i + \sum_{z_i \in \mathcal{D}} f_i^*(\pi_i)) - h(\mathbf{w}^t, \pi) = (1 - \frac{B_i}{n}) (h(\mathbf{w}^t, \pi) - h(\mathbf{w}^t, \pi)) \). Then, subtract \(h(\mathbf{w}^t, \pi) \) from both sides of (25) and use the tower property of conditional expectation.

\[
\mathbb{E} \left[h(\mathbf{w}^t, \pi^{t+1}) - h(\mathbf{w}^t, \pi) \right] \leq \left(1 - \frac{B_i}{n} \right) \mathbb{E} \left[h(\mathbf{w}^{t-1}, \pi^t) - h(\mathbf{w}^{t-1}, \pi) \right] + \mathbb{E} \left[\sum_{z_i \in \mathcal{D}} (\pi_i - \pi_i^t) (g_i(\mathbf{w}^t) - g_i(\mathbf{w}^{t-1})) \right] + \left(\tau_t + 1 - \frac{B_1}{n} \right) \mathbb{E} \left[D(\pi^t, \pi) \right] - (\tau_t + 1) \mathbb{E} \left[D(\pi^{t+1}, \pi) \right] - \frac{\tau_t}{2} \mathbb{E} \left[D(\pi^t, \pi^{t+1}) \right] + \frac{L_f B_1 \sigma^2}{\tau_1 B_2}.
\]

Note that \(\mathbf{w}^t = \arg \min_{\mathbf{x} \in \mathcal{X}} \left\{ \frac{1}{B_1} \sum_{i \in \mathcal{B}_i^{-1}} \pi_i^{-1} \nabla g_i(\mathbf{w}^{t-1}; \mathcal{B}_i^{-1}) \cdot \mathbf{x} + R(\mathbf{w}) + \eta_{t-1} \| \mathbf{w} - \mathbf{w}^{t-1} \|_2^2 \right\} \). The optimality condition implies that

\[
\frac{1}{B_1} \sum_{i \in \mathcal{B}_i^{-1}} \pi_i^{-1} \nabla g_i(\mathbf{w}^{t-1}; \mathcal{B}_i^{-1}) + \nabla R(\mathbf{w}^t) + \eta_{t-1} (\mathbf{w}^t - \mathbf{w}^{t-1}), \mathbf{w}^t - \mathbf{w} \right) \leq 0, \quad \forall \mathbf{w} \in \Omega.
\]

Plug in \(\mathbf{w} = \mathbf{w}^{t-1} \) and re-arrange the terms,

\[
\eta_{t-1} \| \mathbf{w}^t - \mathbf{w}^{t-1} \|_2^2 \leq \left(\frac{1}{B_1} \sum_{i \in \mathcal{B}_i^{-1}} \pi_i^{-1} \nabla g_i(\mathbf{w}^{t-1}; \mathcal{B}_i^{-1}) + \nabla R(\mathbf{w}^t), \mathbf{w}^{t-1} - \mathbf{w}^t \right) \leq \left\| \frac{1}{B_1} \sum_{i \in \mathcal{B}_i^{-1}} \pi_i^{-1} \nabla g_i(\mathbf{w}^{t-1}; \mathcal{B}_i^{-1}) + \nabla R(\mathbf{w}^t) \right\|_2 \| \mathbf{w}^{t-1} - \mathbf{w}^t \|_2.
\]

Then, we have

\[
\mathbb{E} \left[\| \mathbf{w}^t - \mathbf{w}^{t-1} \|_2 \mid \mathcal{F}_{t-1} \right] \leq \frac{1}{\eta_{t-1}} \mathbb{E} \left[\left\| \frac{1}{B_1} \sum_{i \in \mathcal{B}_i^{-1}} \pi_i^{-1} \nabla g_i(\mathbf{w}^{t-1}; \mathcal{B}_i^{-1}) + \nabla R(\mathbf{w}^t) \right\|_2 \mid \mathcal{F}_{t-1} \right] \leq \frac{1}{\eta_{t-1}} (C_f \sqrt{C_g^2 + \zeta^2} + C_R) \]

39
Then, we can bound the \heartsuit term as

$$
\heartsuit \leq \sum_{z_i \in D} \mathbb{E}[(|\pi_i| + |\pi_i^t|)|g_i(w^t) - g_i(w^{t-1})|] \leq 2nC_fC_g\mathbb{E}[||w^t - w^{t-1}||_2]
$$

$$
\leq \frac{2nC_fC_g(C_f\sqrt{C_g^2 + \zeta^2} + C_R)}{\eta_{t-1}}.
$$

Define $C_1 := 2C_fC_g(C_f\sqrt{C_g^2 + \zeta^2} + C_R)$, $z^t := (w^t, \pi^{t+1})$, $z := (w, \pi)$, and $Q_1(z^t, z) := \mathcal{L}(w^t, \pi) - \mathcal{L}(w^t, \pi^{t+1}) = \frac{1}{n} \sum_{z_i \in D} (\pi_i g_i(w^t) - f_i^*(\pi_i)) - \frac{1}{n} \sum_{z_i \in D} (\pi_i^{t+1} g_i(w^t) - f_i^*(\pi_i^{t+1})) = \frac{1}{n}(h(w^t, \pi^{t+1}) - h(w^t, \pi))$. Then,

$$
\mathbb{E}[Q_1(z^t, z)] \leq \left(1 - \frac{B_1}{n}\right)\mathbb{E}[Q_1(z^{t-1}, z)] + \frac{C_1}{\eta_{t-1}} + \frac{L_fB_1\sigma^2}{\tau_nB_2} + \left(\tau_t + 1 - \frac{B_1}{n}\right)\frac{1}{n}\mathbb{E}[D(\pi^t, \pi)] - \left(\tau_t + 1\right)\frac{1}{n}\mathbb{E}[D(\pi^{t+1}, \pi)] - \frac{\tau_t}{2}\frac{1}{n}\mathbb{E}[D(\pi^t, \pi^{t+1})].
$$

Lemma 20 Under Assumptions 2, 3, 4, it is satisfied that

$$
\mathbb{E}[Q_0(z^t, z^*)] \leq \frac{\eta_t}{2} \mathbb{E}[||w^t - w^*||^2_2] - \frac{\eta_t + \mu}{2} \mathbb{E}[||w^{t+1} - w^*||^2_2] - \left(\frac{\eta_t}{8} - \frac{L_R}{2}\right) \mathbb{E}[||w^{t+1} - w^{t}||^2_2]
$$

$$
+ \frac{2C_f^2(C_g^2 + \zeta^2)}{\eta_t \min\{B_1, B_2\}} + \frac{L_fC_g^2\rho_t}{n} \mathbb{E}[D(\pi^t, \pi^{t+1})] + \frac{C_1^2}{2\rho_t} + \frac{2(C_f^2C_g^2 + C_2^2)}{\eta_t},
$$

where $Q_0(z^t, z^*) := \mathcal{L}(w^t, \pi^{t+1}) - \mathcal{L}(w^*, \pi^{t+1})$, $\rho_t > 0$.

Proof Applying Lemma 3.8 in Lan (2020) leads to

$$
\langle \frac{1}{B_1} \sum_{i \in B_1^t} \pi_i^t \nabla g_i(w^t; B_i^t), w^{t+1} - w^* \rangle + R(w^{t+1}) - R(w^*)
$$

$$
\leq \eta_t \frac{1}{2} ||w^t - w^*||^2_2 - \eta_t + \frac{\mu}{2} \frac{||w^{t+1} - w^*||^2_2}{2} - \frac{\eta_t}{2} \frac{||w^t - w^{t+1}||^2_2}{2}.
$$

Define $Q_0(z^t, z^*) := \mathcal{L}(w^t, \pi^{t+1}) - \mathcal{L}(w^*, \pi^{t+1}) = \frac{1}{n} \sum_{i=1}^n \pi_i^{t+1} (g_i(w^t) - g_i(w^*)) + R(w^t) - R(w^*)$. By the convexity $g_i(w^t) - g(w^t) \geq \langle \nabla g_i(w^t), w^* - w^t \rangle$ and the monotonicity of f_i (i.e. $\pi_i^t \geq 0$) (or otherwise the linearity of g_i), we have

$$
\frac{1}{n} \sum_{i=1}^n \pi_i^{t+1} (g_i(w^t) - g_i(w^*)) \leq \frac{1}{n} \sum_{i=1}^n \pi_i^{t+1} \nabla g_i(w^t), w^t - w^*).
$$
Then, $Q_0(z^t, z^*)$ can be bounded as

\[
Q_0(z^t, z^*) \leq \left(\frac{1}{n} \sum_{i=1}^{n} \pi_i^{t+1} \nabla g_i(w^t), w^t - w^* \right) + R(w^t) - R(w^*)
\]

\[
= \left(\frac{1}{n} \sum_{i=1}^{n} \pi_i^{t+1} \nabla g_i(w^t), w^{t+1} - w^* \right) + \left(\frac{1}{n} \sum_{i=1}^{n} \pi_i^{t+1} \nabla g_i(w^t), w^t - w^{t+1} \right) + R(w^t) - R(w^*)
\]

\[
= \left(\frac{1}{n} \sum_{i=1}^{n} \pi_i^{t+1} \nabla g_i(w^t), w^{t+1} - w^* \right) + R(w^{t+1}) - R(w^*) + \left(\frac{1}{n} \sum_{i=1}^{n} (\pi_i^{t+1} - \pi_i^t) \nabla g_i(w^t), w^{t+1} - w^* \right)
\]

\[
+ \frac{1}{n} \sum_{i=1}^{n} \pi_i^{t+1} \nabla g_i(w^t), w^t - w^{t+1} \right) + R(w^t) - R(w^{t+1}). \tag{26}
\]

The \star term can be handled as

\[
\star = \left(\frac{1}{B_1} \sum_{i \in B_1^t} \pi_i^t \nabla g_i(w^t; B_i^t), w^{t+1} - w^* \right) + R(w^{t+1}) - R(w^*)
\]

\[
+ \left(\frac{1}{n} \sum_{i=1}^{n} \pi_i^t \nabla g_i(w^t) - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_i^t \nabla g_i(w^t; B_i^t), w^{t+1} - w^* \right)
\]

\[
+ \left(\frac{1}{n} \sum_{i=1}^{n} \pi_i^t \nabla g_i(w^t) - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_i^t \nabla g_i(w^t; B_i^t), w^t - w^* \right).
\]

Note that $\mathbb{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} \pi_i^t \nabla g_i(w^t) - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_i^t \nabla g_i(w^t; B_i^t), w^t - w^* \right) | \mathcal{F}_t\right] = 0$ and

\[
\mathbb{E} \left[\left(\frac{1}{n} \sum_{i=1}^{n} \pi_i^t \nabla g_i(w^t) - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_i^t \nabla g_i(w^t; B_i^t), w^{t+1} - w^* \right) | \mathcal{F}_t \right]
\]

\[
\leq \frac{1}{\eta_t} \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \pi_i^t \nabla g_i(w^t) - \frac{1}{B_1} \sum_{i \in B_1^t} \pi_i^t \nabla g_i(w^t; B_i^t) \right\|_2^2 | \mathcal{F}_t \right] + \frac{\eta_t}{4} \mathbb{E} \left[\| w^t - w^{t+1} \|_2^2 | \mathcal{F}_t \right]
\]

\[
\leq \frac{2C_g^2 (C_g^2 + \zeta^2)}{\eta_t \min\{B_1, B_2\}} + \frac{\eta_t}{8} \mathbb{E} \left[\| w^t - w^{t+1} \|_2^2 | \mathcal{F}_t \right].
\]

Based on the Young’s inequality with a constant $\rho_t > 0$, the \star term can be upper bounded as

\[
\langle \frac{1}{n} \sum_{i=1}^{n} (\pi_i^{t+1} - \pi_i^t) \nabla g_i(w^t), w^{t+1} - w^* \rangle \leq \frac{1}{n} \sum_{i=1}^{n} C_g \| \pi_i^{t+1} - \pi_i^t \|_2 \| w^{t+1} - w^* \|_2
\]

\[
\leq \frac{C_g^2 \rho_t}{2n} \sum_{i=1}^{n} \| \pi_i^{t+1} - \pi_i^t \|_2^2 + \frac{\| w^{t+1} - w^* \|_2^2}{2\rho_t} \leq \frac{L_f C_g^2 \rho_t}{n} \mathbf{D}(y^t, \pi^{t+1}) + \frac{C_g^2}{2\rho_t}.
\]
We bound the \(\blacklozenge \) and \(\blacksquare \) terms by

\[
\blacklozenge \leq \frac{2C^2}{\eta_t} + \frac{\eta_t}{\eta_t} \| w^t - w^{t+1} \|^2,
\]

\[
\blacksquare \leq \langle \nabla R(w^{t+1}), w^t - w^{t+1} \rangle + \frac{L_R}{2} \| w^t - w^{t+1} \|^2 \leq \frac{2C^2}{\eta_t} + \left(\frac{\eta_t}{\eta_t} + \frac{L_R}{2} \right) \| w^t - w^{t+1} \|^2.
\]

Plug the upper bounds of \(\blacklozenge, \ \blacksquare, \ \blacklozenge, \ \blacksquare \) into (26) and use the tower property of conditional expectation.

\[
E[Q_0(z^t, z^*)] \leq \frac{\eta_t}{2} E[\| w^t - w^* \|^2] - \frac{\eta_t + \mu}{2} E[\| w^{t+1} - w^* \|^2] - \left(\frac{\eta_t}{\eta_t} - \frac{L_R}{2} \right) E[\| w^t - w^{t+1} \|^2] + \frac{2C^2 (C^2_g + C^2_R)}{\eta_t \min\{B_1, B_2\}} + \frac{L_f C_g^2 \rho_1}{n} E[D(y^t, \pi^{t+1})] + \frac{C^2}{2 \rho_t} \frac{2 (C^2_g C^2 + C^2_R)}{\eta_t}.
\]

Next, we are ready to present the proof of Theorem 7.

Proof We define \(C_2 := \frac{2C^2 (C^2_g + C^2_R)}{\min\{B_1, B_2\}} + 2(C^2 C^2_g + C^2_R) \) and set \(\eta_t \geq 4L_R \). By Lemma 20 and Lemma 19, we have

\[
E[Q_0(z^t, z^*)] \leq \frac{\eta_t}{2} E[\| w^t - w^* \|^2] - \frac{\eta_t + \mu}{2} E[\| w^{t+1} - w^* \|^2] - \left(\frac{\eta_t}{\eta_t} - \frac{L_R}{2} \right) E[\| w^t - w^{t+1} \|^2] + \frac{2C^2 (C^2_g + C^2_R)}{\eta_t \min\{B_1, B_2\}} + \frac{L_f C_g^2 \rho_1}{n} E[D(y^t, \pi^{t+1})] + \frac{C^2}{2 \rho_t} \frac{2 (C^2_g C^2 + C^2_R)}{\eta_t},
\]

\[
E[Q_1(z^{t-1}, z^*)] \leq \frac{n \eta_t}{2} E[Q_1(z^{t-1}, z^*)] - \frac{\eta_t + \mu}{2} E[\| w^t - w^* \|^2] + \frac{nC_1}{\eta_t} \frac{B_1}{B_2} + \frac{L_f C_g^2 \rho_0}{n} E[D(y^t, \pi^{t+1})] + \frac{C^2}{2 \rho_t} \frac{2 (C^2_g C^2 + C^2_R)}{\eta_t},
\]

Sum the first equation from 0 to \(T - 1 \) and the second equation from 1 to \(T \). Consider that \(Q(z^t, z^*) = Q_1(z^t, z^*) + Q_0(z^t, z^*) = L(w^t, \hat{\pi}^t) - L(w^*, \pi^{t+1}) \geq 0 \) and \(E[D(\pi, \pi^t)] \geq 0 \).

\[
\sum_{t=0}^{T-1} E[Q(z^t, z^*)] + \frac{\eta_t - (\eta_t + \mu)}{2} E[\| w^t - w^* \|^2] + (\tau_t + 1) \frac{B_1}{B_2} E[D(\pi^{t+1}, \hat{\pi}^t)] \leq \frac{\eta_t}{2} E[\| w^0 - w^* \|^2] + \sum_{t=1}^{T-1} \left(\frac{\eta_t}{2} - \frac{\eta_t + \mu}{2} \right) E[\| w^t - w^* \|^2] + C_2 \sum_{t=0}^{T-1} \frac{1}{\eta_t} + \frac{L_f C_g^2 \rho_0}{n} E[D(\pi^0, \pi^1)]
\]

\[
+ \frac{C^2}{2 \rho_t} \sum_{t=0}^{T-1} \frac{1}{\rho_t} + \frac{n \eta_t}{2} E[Q_1(z^0, z^*) - Q_1(z^T, z^*)] + \frac{nC_1}{\eta_t} \frac{B_1}{B_2} + \frac{L_f C_g^2 \rho_0}{n} E[D(\pi^t, \pi^{t+1})] + \frac{C^2}{2 \rho_t} \frac{2 (C^2_g C^2 + C^2_R)}{\eta_t},
\]

\[
+ \sum_{t=2}^{T-1} \left(\frac{L_f C_g^2 \rho_t}{n} - \frac{\tau_t}{2B_1} \right) E[D(\pi^t, \pi^{t+1})] + \left(\tau_t + 1 - \frac{B_1}{n} \right) \frac{1}{B_1} E[D(\pi^1, \hat{\pi}^*)]
\]

\[
+ \frac{1}{B_1} \sum_{t=2}^{T-1} \left(\tau_t - \frac{B_1}{n} - \tau_{t-1} \right) E[D(\pi^t, \hat{\pi}^*)].
\]
We choose $\rho_t = \frac{n}{2B_1 L_f C_g^2} \tau_t$, $\eta_t = (t + 1) \mu$, $\tau_t = \frac{B_1}{n} (t + 1)$.

\[
\begin{align*}
&\sum_{t=0}^{T-1} \mathbb{E}[Q(z^*_t, z^*)] + \frac{(T+1)\mu}{2} \mathbb{E}[\|w^T - w^*\|_2^2] + (T+1) \frac{1}{n} \mathbb{E}[|D(\pi^{T+1}, \pi^*)|] \\
&\leq \frac{\mu}{2} \mathbb{E}[\|w^0 - w^*\|_2^2] + \frac{L_f C_g^2}{2 n L_f C_g} \mathbb{E}[|D(\pi^0, \pi^1)|] + \left(1 + \frac{B_1}{n}\right) \frac{1}{B_1} \mathbb{E}[|D(\pi^1, \pi^*)|] \\
&\quad + \left(C_2 + \frac{n C_1}{B_1}\right) \sum_{t=0}^{T-1} \frac{1}{\mu(t+1)} + C_2^2 L_f C_g^2 \sum_{t=0}^{T-1} \frac{1}{t+1} + \frac{n L_f \sigma^2}{B_1 B_2} \sum_{t=1}^{T} \frac{1}{t+1} \\
&\quad + \frac{n \mathbb{E}[Q_1(z^0, z^*) - Q_1(z^T, z^*)]}{B_1}.
\end{align*}
\]

If we set $u_i^0 = g_i(w^0; B_{i,2}^0)$ and $\pi_i^0 = \nabla f_i(u_i^0)$, we have $\pi^1 = \pi^0$. Define $G_0 := \frac{1}{n} \sum_{i=1}^{n} g_i(w^0)$ and $C_3 := 2(C_f C_g C_\Omega + C_f G_0 + C_f^2)$. Note that

\[
\frac{n(Q_1(z^0, z^*) - Q_1(z^T, z^*))}{B_1} = \frac{1}{B_1} \sum_{i=1}^{n} \left((\pi_i^1 - \pi_i^*) g_i(w^0) + (\pi_i^* - \pi_i^{T+1}) g_i(w^T) - f_i^*(\pi_i^1) + f_i^*(\pi_i^{T+1})\right) \leq \frac{n C_3}{B_1},
\]

\[
D_f(\pi_i^1, \pi_i^*) = D_f(\nabla f_i(u_i^0), \nabla f_i(g_i(w^0))) = D_f(u_i^0, g_i(w^*)) \leq \frac{L_f}{2} \|u_i^0 - g_i(w^*)\|^2.
\]

Thus, $\mathbb{E}[|D(\pi^0, \pi^*)|] = \frac{L_f}{2} \sum_{i=1}^{n} \mathbb{E}\left[\|g_i(w^T; B_{i,2}^0) - g_i(w^*)\|^2\right] \leq \frac{n C_4}{2}$, where we define $C_4 := L_f (\sigma^2 / B_2 + C_2^2 C_\Omega^2)$. We have

\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[Q(z^*_t, z^*)] = \mu C_\Omega^2 \frac{2T}{T} + \frac{n C_4}{B_1 T} + \left(C_2 + \frac{n C_1}{B_1}\right) \frac{\log T}{\mu T} + C_2^2 L_f C_g^2 \frac{\log T}{T} \\
+ \frac{n L_f \sigma^2 \log T}{B_1 B_2} + \frac{n C_3}{B_1 T} = \mathcal{O} \left(\frac{n \log T}{B_1 \mu T}\right),
\]

\[
\mathbb{E}[\|w^T - w^*\|_2^2] \leq \frac{C_\Omega^2}{T+1} + \frac{2 n C_4}{\mu B_1 (T+1)} + \frac{2}{C_2 + \frac{n C_1}{B_1}} \frac{\log T}{\mu^2 (T+1)} + 2 C_2^2 L_f C_g^2 \frac{\log T}{\mu (T+1)} \\
+ \frac{2 n L_f \sigma^2 \log T}{B_1 B_2 \mu (T+1)} + \frac{2 n C_3}{B_1 B_2 \mu (T+1)} = \mathcal{O} \left(\frac{n \log T}{B_1 \mu^2 (T+1)}\right).
\]

Thus, for $w^T = \frac{1}{T} \sum_{t=0}^{T-1} w^T$, $\pi^T = \frac{1}{T} \sum_{t=0}^{T-1} \pi^{t+1}$ we have

\[
F(w^T) - F(w^*) \leq Q(z^T, z^*) + \frac{L_f C_g^2}{2} \|w^T - w^*\|_2^2
\]

Note that $Q(z^T, z^*) = \mathcal{L}(w^T, \pi^*) - \mathcal{L}(w^*, \pi^T) \leq \frac{1}{T} \sum_{t=0}^{T-1} \left(\mathcal{L}(w^T, \pi^*) - \mathcal{L}(w^*, \pi^{t+1})\right) = \frac{1}{T} \sum_{t=0}^{T-1} Q(z^t, z^*)$ since $\mathcal{L}(x, y)$ is convex-concave. Besides, Jensen’s inequality implies that

\[
\mathbb{E}[\|w^T - w^*\|_2^2] \leq \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|w^T - w^*\|_2^2] = \frac{1}{T} \sum_{t=0}^{T-1} \mathcal{O} \left(\frac{n \log t}{B_1 \mu^2 (t+1)}\right) \leq \mathcal{O} \left(\frac{n (\log T)^2}{B_1 \mu^2 T}\right).
\]

43
Then, we have that $\mathbb{E}[F(\mathbf{w}^T) - F(\mathbf{w}^*)] \leq O\left(\frac{\log(T)^2}{B_1 \mu^2 T}\right)$.

G. Extensions for a More general Class of Problems

In this section, we briefly discuss the extension when f_i is also a stochastic function such that we can only get an unbiased estimate of its gradient, which has an application in MAML. To this end, we assume a stochastic oracle of f_i that given any $g(\cdot)$ returns $\nabla f_i(g(\cdot); \iota)$ such that $\mathbb{E}[\nabla f_i(g(\cdot); \iota) = \nabla f_i(g)$, $\mathbb{E}[\|\nabla f_i(g(\cdot); \iota) - \nabla f_i(g(\cdot))\|^2] \leq \chi^2$. We can extend our results for the smooth nonconvex problems by the modifications as follows: First, we need to assume that $\nabla f_i(\cdot; \iota)$ is Lipschitz-continuous; Second, the $\frac{2\beta^2 C_2^2 (C_2^2 + C_2^2)}{\min\{B_1, B_2\}}$ term in Lemma 9 should be replaced by $\frac{2\beta^2 (\chi^2 C_2^2 + (C_2^2 + \chi^2/B_3))(C_2^2 + C_2^2)}{\min\{B_1, B_2, B_3\}}$, where B_3 is the batch size for sampling ι. Note that Lemma 2 remains the same and Theorem 3 does not change (up to a constant factor).
References

Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep Ravikumar. Information-theoretic lower bounds on the oracle complexity of convex optimization. *Advances in Neural Information Processing Systems*, 22, 2009.

Ahmet Alacaoglu, Volkan Cevher, and Stephen J Wright. On the complexity of a practical primal-dual coordinate method. *arXiv preprint arXiv:2201.07684*, 2022.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Improving language models by retrieving from trillions of tokens, 2022.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise approach to listwise approach. In *Proceedings of the 24th international conference on Machine learning*, pages 129–136, 2007.

C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. *TIST*, 2(3):27, 2011.

Cong D Dang and Guanghui Lan. Stochastic block mirror descent methods for nonsmooth and stochastic optimization. *SIAM Journal on Optimization*, 25(2):856–881, 2015.

S. Ghadimi, Andrzei Ruszczy’nski, and Mengdi Wang. A single timescale stochastic approximation method for nested stochastic optimization. *SIAM J. Optim.*, 30:960–979, 2020.

Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov. Neighbourhood components analysis. *Advances in neural information processing systems*, 17, 2004.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Retrieval augmented language model pre-training. In *Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event*, volume 119 of *Proceedings of Machine Learning Research*, pages 3929–3938. PMLR, 2020. URL http://proceedings.mlr.press/v119/guu20a.html.

Yifan Hu, Siqi Zhang, Xin Chen, and Niao He. Biased stochastic first-order methods for conditional stochastic optimization and applications in meta learning. *Advances in Neural Information Processing Systems*, 33, 2020.

Anatoli Juditsky, Arkadi Nemirovski, Claire Tauvel, et al. Solving variational inequalities with stochastic mirror-prox algorithm. *Stochastic Systems*, 1(1):17–58, 2011.
Jared Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval Kluger. Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network. *BMC Medical Research Methodology*, volume 18, 06 2018.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with compressed gradients. *arXiv preprint arXiv:1806.06573*, 2018.

Guanghui Lan. *First-order and stochastic optimization methods for machine learning*, volume 1. Springer, 2020.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal probabilistic gradient estimator for nonconvex optimization. In *International Conference on Machine Learning*, pages 6286–6295. PMLR, 2021.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. *SIAM Journal on Optimization*, 22(2):341–362, 2012.

Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tianbao Yang. Stochastic optimization of areas under precision-recall curves with provable convergence. *Advances in Neural Information Processing Systems*, 34, 2021.

C. Rudin. The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. *Journal of Machine Learning Research*, 10(Oct):2233–2271, 2009.

Chaobing Song, Stephen J. Wright, and Jelena Diakonikolas. Variance reduction via primal-dual accelerated dual averaging for nonsmooth convex finite-sums. In Marina Meila and Tong Zhang, editors, *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pages 9824–9834. PMLR, 2021. URL http://proceedings.mlr.press/v139/song21d.html.

Guanghui Wang, Ming Yang, Lijun Zhang, and Tianbao Yang. Momentum accelerates the convergence of stochastic auprc maximization. *arXiv preprint arXiv:2107.01173*, 2021.

Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions. *Mathematical Programming*, 161(1-2):419–449, 2017.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. A theoretical analysis of ndcg ranking measures. In *Proceedings of the 26th annual conference on learning theory (COLT 2013)*, volume 8, page 6. Citeseer, 2013.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient distributed optimization. *Advances in Neural Information Processing Systems*, 31, 2018.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning to rank: theory and algorithm. In *Proceedings of the 25th international conference on Machine learning*, pages 1192–1199, 2008.
Junyu Zhang and Lin Xiao. Multilevel composite stochastic optimization via nested variance reduction. *SIAM Journal on Optimization*, 31(2):1131–1157, 2021.

Zhe Zhang and Guanghui Lan. Optimal algorithms for convex nested stochastic composite optimization. *arXiv preprint arXiv:2011.10076*, 2020.