Zaburzenie krążenia pozagałkowego i funkcji układu wzrokowego w przebiegu olbrzymiokomórkowego zapalenia tętnic współistniejącego z druży tarczy nerwu wzrokowego – opis przypadku

Retrobulbar blood flow and visual organ function disturbance in the course of giant cell arteritis coexisting with optic disc drusen – a case report

Monika Modrzejewska¹, Michał Post¹, Marcin Milchert²

¹ Klinika Okulistyki, Pomorski Uniwersytet Medyczny w Szczecinie, Szczecin, Polska
² Klinika Reumatologii i Chorób Wewnętrznych, Pomorski Uniwersytet Medyczny w Szczecinie, Szczecin, Polska

Correspondence: Monika Modrzejewska, Klinika Okulistyki, Pomorski Uniwersytet Medyczny w Szczecinie, ul. Powstańców Wielkopolskich 72, 70-111 Szczecin, e-mail: monika_modrzej@op.pl, tel.: +48 506 600 004

Streszczenie
W pracy przedstawiono zespół objawów okulistycznych związanych z zaburzeniem funkcji układu wzrokowego u 80-letniej pacjentki z olbrzymiokomórkowym zapaleniem tętnic współistniejącym z druży tarczy nerwu wzrokowego. Omówiono trudności diagnostyczne związané z występowaniem podobnych objawów okulistycznych, a także ważną interpretacją wyników badań specjalistycznych (badania perimetryczne – statyczne i kinetyczne, wzrokowe potencjały wywołane wzorcem, skaningowa polarymetria laserowa). Obok badań okulistycznych uwzględniono również istotną rolę badań radiologicznych, ze szczególnym uwzględnieniem ultrasonografii dopplerowskiej kodowanej kolorem w ocenie krążenia pozagałkowego – tętnicy ocznej, tętnicy środkowej siatkówki, tętnic rzęsowych tylnych długich. Właściwa interpretacja wyników otrzymanych badań wydaje się kluczowa dla ustalenia trybu i czasu postępowania leczniczego. U przedstawionej pacjentki wczesne wdrożenie glikokortykosteroidoterapii skutkowało poprawą parametrów przepływu krwi pozagałkowych oraz ustępieniem dolegliwości okulistycznych. Zgodnie ze spostrzeżeniami autorów ubytek pola widzenia w perimetrii kinetycznej i statycznej, zredukowana amplituda fali p100 w badaniu wzrokowych potencjałów wywołanych wzorcem, a także zmniejszenie liczby włókien nerwowych w okolicy tarczy nerwu wzrokowego w badaniu skaningowej polarymetrii laserowej mogą być kryteriami diagnostycznymi w rozpoznawaniu zaburzeń widzenia zarówno w przebiegu olbrzymiokomórkowego zapalenia tętnic, jak i druży tarczy nerwu wzrokowego. Ocena parametrów prędkości przepływu krwi w tętnicach pozagałkowych w badaniu ultrasonograficznym kodowanym kolorem wydaje się najbardziej wartościowym badaniem w diagnostyce różnicowej i monitorowaniu zaburzeń okulistycznych w prezentowanych schorzeniach.
Wstęp

Oblęgiom komórkowe zapalenie tętnic (giant cell arteritis, GCA) jest najczęstszym pierwotnym zapaleniem naczyń. Występuje u osób po 50. roku życia, obejmując procesem chorobowym tętnice o dużym i średnim kalibrze. W GCA najczęstsze objawy okulistyczne związane są z przednią niedokrwienienną neuropią nerwu wzrokowego (anterior ischemic optic neuropathy, AION), z przenikającym zaniedbiением jednooczynnym (amaurosis fugax) i okluzją naczyń siatkówki. Pogorszenie ostrości wzroku oraz ubytki pola widzenia są głównymi skargami zgłaszanymi przez pacjentów w GCA z zajęciem narzędzia wzroku. Podobne objawy mogą występować w przypadku druz, czyli uwypuklonych złośliwych umiejscowionych w regionie tarczy nerwu wzrokowego (nerwu II), które z reguły występują obustronnie (75–85%), u 0,3–2% populacji, częściej niż GCA, stwierdzane w niektórych krajach u 0,03% populacji powyżej 50. roku życia.

W ocenie autorów prezentowany poniżej przypadek jest interesujący z powodu trudności diagnostycznych związanych z występowaniem objawów okulistycznych, które mogły wystąpić zarówno w przebiegu GCA, jak i druz tarczy nerwu wzrokowego (optic nerve disc drusen, ONDD lub optic disc drusen, ODD). Właściwa interpretacja wyników przeprowadzonych badań wydaje się kluczowa dla ustalenia trybu i czasu postępowania leczniczego. Według wiedzy autorów jest to pierwsze doniesienie w literaturze medycznej na temat trudności diagnostycznych związanych z współwystępowaniem GCA i druz okolicy tarczy nerwu II.

Opis pacjenta

U 80-letniej chorej przy współistnieniu cukrzycy typu 2, (diabetes mellitus, DM2), nadciśnienia tętniczego (arterial hypertension, AH), choroby niedokrwiennej serca (coronary artery disease, CAD) i napadowego migotania przedsionków (atrial fibrillation, AF) ustalono rozpoznanie GCA. Chora spełniała wszystkie kryteria klasyfikacji GCA wg Amerykańskiego...

Introduction

Giant cell arteritis (GCA) is the most frequent inflammation of large and medium arteries in individuals after 50 years of life. Anterior ischemic optic neuropathy (AION), amaurosis fugax and retinal vessels occlusion are the most often ophthalmic symptoms in this disorder. Visual acuity deterioration and visual field defects are the common complaints noted by the patients. Similar ophthalmic symptoms can be observed in optic nerve disc drusen (ONDD) – a calcification material localized in optic nerve disc region. Most often they appear bilaterally (75–85%) and their occurrence in population ranges from 0.3 to 2%[1], contrary to the GCA, which frequency reaches up to 0.03% of the population aged over 50 years in some countries[2].

The case presented below is interesting, according to the authors, due to diagnostic difficulties concerning the establishing of the causes for similar visual defects symptoms occurrence, which could have been observed both in GCA and ONDD. Adequate interpretation of results seems to be crucial to establish scheme and timing of treatment. Moreover, there has not been a single publication found on the discussed subject in the available medical browsers.

Patient description

The subject of description is an 80-year-old patient with GCA coexisting with diabetes mellitus (DM2), arterial hypertension (AH), coronary artery disease (CAD) and atrial fibrillation (AF). Patient fulfilled all the GCA classification criteria of American Society of Rheumatology (ACR)[3]: age ≥ 50 years, headaches of a new character, tenderness on palpation of the superficial temporal artery, accelerated ESR above 50 mm/h, predominance of inflammatory infiltration of mononuclear cells in histopathology superficial temporal artery.
Complaints related to limited visual field in the left eye (OS) were the major causes of ophthalmic examination with funduscopy in which optic nerve disc (nerve II) edema and hypertonic angiopathy features were observed (fig. 1). Kinetic (fig. 2 A) and static perimetry (fig. 3 A) tests revealed lowest-temporal and lowest-nasal quadrants defect of visual field. Hyperechogenic foci in ultrasonography B were noted which can correspond to optic nerve disc drusen. Cerebral computed tomography (CCT) did not confirm the increase of intracranial pressure. Due to the high risk of ischemic etiology of the presented symptoms (coexistence of GCA, CAD, DM2), color Doppler ultrasonography (CDU) of internal carotid arteries was performed, where 30% and 20% narrowing of the right and left internal carotid arteries (ICAs) was confirmed, respectively, without significant hemodynamic disturbance. Posterior wall intima-media thickness (IMT) for the right and left ICAs was 0.8 and 0.5 mm, respectively. In CDU of the affected eye (OS), the decrease of systolic and diastolic velocities in the ophthalmic artery, reversal of amplitude spectrum of wave and the increase of intracranial pressure index in CDU were noted (PSV – 22.27 cm/s; EDV – 8.29 cm/s; RI 0.89) (fig. 4 A). Significant lowering of blood flow velocity in central retinal artery (CRA) with PSV 4.31 cm/s, EDV 0.48 cm/s and elevation of resistance index RI 0.72 was measured (fig. 4 B). Similar blood flow velocity parameters were observed in this side in temporal and nasal posterior ciliary artery (TPCA/NPCA) (fig. 4 C, D). In the right eye, which was not affected
Spektrum prędkości przepływu krwi w tętnicach retrobulbarnych chorego oka przed leczeniem i po leczeniu w badaniu kolorowej ultrasonografii dopplerowskiej:

A. tętnica oczna (OA);
B. tętnica środkowa siatkówki (CRA);
C. tętnica rzęska tylna nosowa (NPCA);
D. tętnica rzęska tylna skroniowa (TPCA)

Fig. 4. Blood flow velocity spectrum of retrobulbar arteries in affected eye before and after treatment in CDU: A. ophthalmic artery (OA); B. central retinal artery (CRA); C. nasal posterior ciliary artery (NPCA); D. temporal posterior ciliary artery (TPCA)

by the disease process, the lowering of blood flow velocity parameters and the rise of RI in retrobulbar arteries was also noted. However, those values were less pathological in comparison to the affected eye.

Decreasing number of nerve fibers in the superior quadrant of optic disc was noted bilaterally, OP – 46, OL – 49 (normal range NFI < 30) (fig. 3 B). To assess the function of visual tract, pattern visual evoked potential (PVEP)
Omówienie

Najczęstszymi skargami okulistycznymi zgłaszanymi przez pacjentów z GCA lub z izolowanymi druzami tarczy są ubytki pola widzenia i osłabienie ostrości widzenia. W GCA spadek ostrości wzroku ma charakter nagłego (kilka dni lub tygodni), w przypadku druz występuje rzadziej i jest przejściowy. W przebiegu GCA objawy okulistyczne najczęściej wynikają z zamknięcia tętniczek naczyniowych wiert w tętnicy macierzystej, jak i w tętniczkach rządkowych: w OA PSV – 31.44 cm/s, EDV – 7.69 cm/s, RI – 0.76, w CRA PSV – 8.63 cm/s, EDV – 3.35 cm/s, RI – 0.61 cm/s (ryc. 4 A–D).

W prezentowanym przypadku badanie dopplerowskie okazało się najbardziej czułym wskaźnikiem skuteczności leczenia. W przebiegu terapii GKS wykazano zwiększenie parametrów prędkości przepływu (PSV, EDV) oraz obniżenie wskaźnika RI we wszystkich badanych naczyniach (CRA, OA, TPCA/NPCA). Dotychczas nie przeprowadzono badań dopplerowskich tętnic pozagaśalkowych na dużej populacji pacjentów z GCA. Zgodnie z danymi literaturnymi ograniczeniem wykonania badań dopplerowskich, szczególnie w małych tętniczkach (CRA i PCAs), było utrudnienie oceny prędkości przepływu krwi w PCAs, odpowiedzialnych za główne powikłanie GCA, to jest cechy przedniej neuropatii niedokriewnej (AION)[8,9].

W prezentowanym przypadku obok owamianej choroby reumatycznej oraz współistniejących zaburzeń okulistycznych nie można wykluczyć wpływu innych czynników na interpretację badania dopplerowskiego. Stenozę tętniczy canały mogą wpływać zarówno na wartości PSV/EDV, jak i wskaźnik RI[8]. Obaj przejściowego zaniedzenia jednoocznego (amaurosis fugax), obecny w obu jednostkach test was done revealing reduction of wave amplitude p100 (fig. 2 C).

Systemic glucocorticosteroids therapy (GCS) (intravenous methylprednisolone for 3 days, 500 mg per day) was used in conservative management. Prednisone administered orally (15–20 mg/day) was a continuation of the treatment until beneficial ophthalmologic results were obtained.

After 2-month therapy, in kinetic perimetry regression of visual field defects, that were noted previously, was observed (fig. 2 B). Significant improvement of blood flow velocity parameters in retrobulbar circulation and normal direction of amplitude spectrum both in ophthalmic and in posterior ciliary arteries was presented by CDU (fig. 4 A–D): in OA PSV – 31.44 cm/s, EDV – 7.69 cm/s, RI – 0.76, in CRA PSV – 8.63 cm/s, EDV – 3.35 cm/s, RI – 0.61 cm/s.

Discussion

The ophthalmic complaints most often given by the patients in course of GCA or in isolated ONDD are peripheral narrowing or defect of visual field and weakening of visual acuity. In GCA, lowering of visual acuity is usually sudden (several days or weeks), in drusen it occurs rarely and then it is chronic. In course of GCA ophthalmic symptoms have originated from short posterior ciliary arteries (sPCAs) or their main trunk occlusion leading to ischemia of optic nerve head (AION) in 30–50% GCA and retinal vessels occlusion (< 10% GCA). In case of drusen, decreasing of visual acuity can result directly from their compression on the central retinal artery causing blood flow disturbance in nerve fibers region[4,5].

In the presented case, CDU was the best way to assess retrobulbar circulation impairment and to show the most sensitive index of treatment efficacy of those both ophthalmic disorders. Improvement of blood flow velocity parameters (PSV, EDV) and decreasing of RI in all the examined arteries (CRA, OA and PCA) was observed in course of steroids therapy in both eyes. Until now, there have not been done Doppler examinations on a large group of patients with GCA. It can not be excluded that, according to the references, a limitation of the above-mentioned examination was difficulty in measurements of blood flow parameters in single short posterior ciliary arteries (sPCAs) which are responsible for the main complications of GCA-AION[6,7].

Besides rheumatologic and ophthalmic diseases, other risk factors diagnosed in the patient could have some impact on CDU measurements. Stenosis of carotid arteries or diabetes can affect both blood PSV/EDV and RI[8]. Amaurosis fugax diagnosed in both diseases most often concerns vessel spasm leading to the elevation of RI[9]. It should be emphasized that in CDU optic nerve disc drusen can also be artifacts source of the so-called “flicker effect”[10]. Angiography magnetic resonance which shows
chorobowych, związany jest najczęściej ze skurczem naczyniowym, czego wyrazem jest podwyższone wartości RI(9). Warto podkreślić, iż w niektórych przypadkach druży tarczy nerwu II są źródłem artefaktów, tzw. efektu migotania(10). Uzupełnieniem badania dopplerowskiego może być angiografia rezonansu magnetycznego, która u około 50% pacjentów z GCA wykazuje wzmocnienie kontrastowe ścian tętnic ocznych(11). Badanie TK głowy potwierdzało obecność uwypchnionych druz tarczy oraz wykluczyło podwyższenie ciśnienia wewnętrzczaszkowego. W badaniu tym nie potwierdzono ognisk niedokrwienych w ośrodkowym układzie nerwowym (OUN), które mogą być obecne u 3–4% chorych na GCA, powodując zaburzenia widzenia na poziomie korowym(12).

Glikokortykosteroïdoterapia jest uznana formą leczenia GCA. Krótki czas od rozpoznania do wdrożenia leczenia (około 7 dni) istotnie obniżył ryzyko pogorszenia ostrości wzroku, co jest zgodne z danymi w piśmiennictwie(13). Poprawa ostrości widzenia ma miejsce u 10–15% leczonych osób z GCA, natomiast poprawa ostrości wzroku z jednoczesnym poszerzeniem pola widzenia występuje u 0–5% pacjentów(14). W tym przypadku leczenie GKS nie wpłynęło na zmniejszenie wielkości druz, ale przyczyniło się do poprawy zgaszających subjektwnych i obiektywnych dolegliwości klinicznych.

W opisywanym przypadku ocena pola widzenia była zatem wiarygodnym narzędziem oceny skuteczności terapii GCA.

Zredukowana amplituda fali p100 w badaniu PVEP może potwierdzać zmiany niedokrwienne w regionie drogi wzrokowej. Zmniejszenie liczby włókien nerwowych wykazane GDX mogło mieć związek z bezpośrednim uciskiem druz na aksony nerwu wzrokowego w okolicy tarczy. Otrzymane wyniki specjalistycznych badań okulistycznych potwierdziły ich wagę w ocenie stanu narządu wzroku zarówno u chorych z GCA, jak i z drużami tarczy nerwu wzrokowego.

Podsumowanie
Zawężenie lub ubytki pola widzenia w perimetrii kinetycznej, zredukowana amplituda fali p100 w PVEP oraz zmniejszenie liczby włókien nerwowych w badaniu GDX mogą być istotnymi elementami diagnostycznymi w rozpoznawaniu zaburzeń widzenia zarówno w przebiegu olbrzymiokomórkowego zapalenia tętnic, jak i druz tarczy nerwu wzrokowego. Ocena parametrów prędkości przepływu krwi w tętnicach pozażalowych w badaniu USG kodowanym kolorem jest najbardziej wartościowym badaniem w monitorowaniu zaburzeń okulistycznych w przebiegu prezentowanych chorób.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Glucocorticoids therapy is acknowledged form of GCA treatment. Short time from diagnosis to application of treatment (about 7 days) relevantly decreased risk of visual acuity deterioration, what is in compliance with literature(13). Improvement of visual acuity takes place in about 10–15% of the patients treated for GCA but only in 0–5% of the subjects widening of visual field is additionally noted(14). Glucocorticoids do not decrease the number of ONDD or their clinical presentation. In the described case, evaluation of visual field was a reliable tool for efficacy assessment of GCA therapy.

Moreover, reduced p100 wave amplitude in VEP test can be responsible for ischemic changes confirmed by CCT in CNS visual tract. Additionally reduced number of nerves fibers in the superior quadrant of optic disc in both eyes in GDX examination could have connection with direct drusen compression on optic nerve axons in disc region. Ophthalmic outcomes evidence their important role in evaluation of visual organ condition both in GCA patients as well as in optic nerve disc drusen.

Conclusions

Visual field deficiency in kinetic perimeter, reduced wave amplitude p100 in VEP test as well as decrease in number of optic nerve fibers in optic nerve disc region in GDX exam can be diagnostic features in diagnosis of visual impairment in the course of giant cell arteritis and optic nerve disc drusen. Evaluation of blood flow velocity parameters in retrobulbar arteries in CDU is the most valuable screening in monitoring ophthalmic dysregulation in presented disorders.

Conflict of interest

The authors do not report any financial or personal links with other persons or organizations, which might negatively affect the content of this publication and claim authorship rights to this publication.
Retrobulbar blood flow and visual organ function disturbance in the course of giant cell arteritis coexisting with optic disc drusen – a case report

Piśmiennictwo/References

1. Obuchowska I, Mariak Z: [Visual field defects in the optic disc drusen]. Klin Oczna 2008; 110: 357–360.
2. Lee JL, Naguwa SM, Cheema GS, Gershwin ME: The geo-epidemiology of temporal (giant cell) arteritis. Clin Rev Allergy Immunol 2008; 35: 88–95.
3. Hunder GG, Bloch DA, Michel BA, Stevens MB, Arend WP, Calabrese LH et al.: The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122–1128.
4. Schmidt D, Neß T: Augenbefunde und Differentialdiagnosen bei Renszellarteritis (Arteritis cranialis). Z Rheumatol 2009; 68: 117–123.
5. Modrzewieksa M, Lachowicz E, Karczewicz D: Trudności diagnostyczne w rozpoznaniu jaskry w przypadku współistnienia druz tarczy nerwu wzrokowego i zaburzeń krążenia gałkowego – opis przypadku. Okulistyka 2011; (3): 104–108.
6. Modrzewieksa M, Ostanek L, Bobrowska-Snarska D, Karczewicz D, Wilk G, Brzosko M et al.: Ocular circulation in systemic lupus erythematosus. Med Sci Monit 2009; 15: CR573-CR578.
7. Modrzewieksa M, Bobrowska-Snarska D, Ostanek L, Trzcińska-Butkiewicz B, Brzosko M, Karczewicz D et al.: Zmiany okulistyczne i zaburzenia parametrów krążenia siatkowkowo-naczyniówkowego w zespole antyfosfolipidowym w przebiegu tocznia rumieniowatego układowego – opis przypadku. Ultrasonografia 2007; 7 (31): 94–98.
8. Dimitrova G, Kato S: Color Doppler imaging of retinal diseases. Surv Ophthalmol 2010; 55: 193–214.
9. Chao AC, Hsu HY, Chung CP, Chen YY, Yen MY, Wong WJ et al.: Altered retrobulbar hemodynamics in patients who have transient monocular blindness without carotid stenosis. Stroke 2007; 38: 1377–1379.
10. Ustymowicz A, Obuchowska I, Krejza J, Mariak Z: Limitations of color Doppler sonography in the imaging of ocular vessels. Eur J Ophthalmol 2004; 14: 584–587.
11. Geiger J, Ness T, Uhl M, Lagrèze WA, Vaith P, Langer M et al.: Involvement of the ophthalmic artery in giant cell arteritis visualized by 3T MRI. Rheumatology (Oxford) 2009; 48: 537–541.
12. Hu Z, Yang Q, Yang L, Li J, Tang J, Zhang H: Cerebral infarction due to giant cell arteritis – three case reports. Angiology 2004; 55: 227–231.
13. Hayreh SS, Zimmerman B: Visual deterioration in giant cell arteritis patients while on high doses of corticosteroid therapy. Ophthalmology 2003; 110: 1204–1215.
14. Danesh-Meyer H, Savino PJ, Gamble GG: Poor prognosis of visual outcome after visual loss from giant cell arteritis. Ophthalmology 2005; 112: 1098–1103.