SKEW MONOIDALES in SPAN

Jim Andrianopoulos

March 29, 2016

Abstract

This article consists of an interesting characterisation of a skew monoidal in the monoidal bicategory \(\text{Span} \). After discussing the shift or decalage functor on simplicial sets we characterise these skew monoidales as categories \(C \) together with a functor \(R: \text{Dec}(C) \to C \) which satisfies two conditions and give an example where the unit of the skew monoidal is not of a restricted type.

1 Introduction

A general classification of skew monoidales in a monoidal bicategory in terms of simplicial maps from the Catalan simplicial set into the nerve of the monoidal bicategory is shown in [3].

We will consider a skew monoidal in the particular monoidal bicategory \(\text{Span} \) to examine a question arising from [8].

Since their introduction by Bénabou in [2], \(\text{Span} \) and the \(\text{Span} \) construction are ubiquitous in higher category theory. This is mainly due to the fact that a category can be regarded as a monad in the bicategory of spans \(\text{Span} \), and various generalisations. However, what interests us is \(\text{Span} \) not just as a bicategory but as a monoidal bicategory made monoidal using the cartesian product of sets. Skew monoidales (= skew pseudomonoids) were defined by Lack and Street in [8], where they also show that quantum categories are skew monoidal objects, with a certain unit, in an appropriate monoidal bicategory. This contains as a special case the fact that categories are equivalently skew monoidales \(C \) in the monoidal bicategory \(\text{Span} \) with tensor product given by

\[
C \times C \xrightarrow{(s,t)} E \xrightarrow{1} C
\]

for some set \(E \), and where the unit is assumed to be of the form

\[
I \xleftarrow{1} C \xrightarrow{1} C;
\]
where \(I \) is a terminal object in \(\text{Set} \). We characterise skew monoidales in \(\text{Span} \) without any restrictions on the unit of the skew monoidale. This means that the tensor product for the skew monoidale \(C \) is given by
\[
C \times C \xrightarrow{(s,r)} E \xrightarrow{t} C
\]
for some set \(E \), and where the unit has the form
\[
I \xleftarrow{U} \xrightarrow{j} C.
\]

This characterisation follows some lengthy but not difficult calculations, which are made easier using the concrete form a pullback takes in \(\text{Set} \). We recover the fact in [8], that categories are equivalently skew monoidales in \(\text{Span} \) with a unit of a certain restricted type. Section 5.2 collects the extra structure obtained from a skew monoidale in the form of a functor \(R \) with some interesting properties. We finish the article with a simple example of a skew monoidale (actually just a monoidale) in \(\text{Span} \) whose unit is not of the restricted type previously considered.

\section{Skew Monoidales}

Instead of defining a skew monoidale in a general monoidal bicategory we define them in a Gray monoid. So in what follows we write as if \(B \) is a 2-category.

Let \(B \) be a Gray monoid; see [4] for an explicit definition. Note that for 1-cells \(f : A \rightarrow A' \) and \(g : B \rightarrow B' \) in a Gray monoid, the only structural 2-cells are the invertible 2-cells of the form
\[
\begin{array}{ccc}
A \otimes B & \xrightarrow{1 \otimes g} & A \otimes B' \\
\downarrow{f \otimes 1} & \cong & \downarrow{f \otimes 1} \\
A' \otimes B & \xrightarrow{1 \otimes g} & A' \otimes B'
\end{array}
\]
or tensors and composites thereof. In this section we denote them with the symbol \(\cong \) as above. These 2-cells satisfy some axioms which we do not list. We write \(I \) for the unit object of the Gray monoid.

A \textit{skew monoidal} structure on an object \(A \) in \(B \) consists of morphisms \(p : A \otimes A \rightarrow A \) and \(j : I \rightarrow A \) in \(B \), respectively called the \textit{tensor product} and \textit{unit}, equipped with the following 2-cells, denoted by \(\alpha \), \(\lambda \) and \(\rho \), respectively called the \textit{associativity}, \textit{left unit} and \textit{right unit constraints}
\[
\begin{array}{ccc}
A \otimes A \otimes A & \xrightarrow{1 \otimes p} & A \otimes A \\
p \otimes 1 & \xrightarrow{\alpha} & p \\
A \otimes A & \xrightarrow{p} & A
\end{array}
\]
subject to the following five axioms

An object A of B equipped with such a skew monoidal structure is called a skew monoidal object in B.
A skew monoidale in the cartesian monoidal 2-category \textbf{Cat} of categories, functors and natural transformations is a skew monoidal category.

3 Span as a Monoidal Bicategory

In this chapter we are interested in the case where \mathcal{B} is Span. We first remind the reader of some details of Span.

The objects of Span are those of \textbf{Set}; so $A, B, C \ldots$ are sets. We denote the terminal object in \textbf{Set} by 1 and the unique arrow into it by $!$.

An arrow $r: A \rightarrow B$ is a span $r = (f, R, g)$ in Set, as in (a), where composition of these arrows is by pullback (pullback along g and h), as in (b), and the identity arrow is the span (c) below.

A 2-cell from (w, R, x) to (f, S, g) is a map $\tau: R \rightarrow S$ in \textbf{Set} such that the following commutes.

As \textbf{Set} is a category with finite products as well as pullbacks (in the presence of a terminal object, finite products can be obtained as a special case of pullbacks) then the bicategory Span has a monoidal product on it induced by the cartesian product of sets.

To calculate a left whiskering, such as in the following diagram (on the left), we first form the pullbacks of f and w along v, then we use the fact that $f\tau = w$ and $v1 = v$ to construct
4 Notation and Calculations

The motivation for this section is from [8] where skew monoidales in Span with a unit of the form $(!, C, 1): 1 \rightarrow C$ are shown to be equivalent to categories. Here we give a characterisation of a general skew monoidale in Span.

Consider a skew monoidale in Span with underlying object the set C.

The 1-cells of a Skew Monoidal:

The tensor $p: C \times C \rightarrow C$ has the form

$$E_{(s,r)} \xrightarrow{\tau} C \times C \xrightarrow{\tau} C$$

So for $f \in E$ we will record this data as $s(f) \xrightarrow{f} t(f)$ and $r(f) \in C$.

The unit $j: 1 \rightarrow C$ has the form

$$U \xleftarrow{!} 1 \xrightarrow{j} C$$

So for $u \in U$ we will record this data as $j(u) \in C$.

Given a skew monoidale, with its unit having the restricted form $(!, C, 1): 1 \rightarrow C$, it will become evident when dealing with the general case below, that this forces the first span to be of the form $C \times C \xleftarrow{(s,t)} E \xrightarrow{\tau} C$, and that it defines a category with E as its set of arrows. Conversely, given a category $C = (C_1, C_0, 1, s, t, \circ)$, we construct the following two spans: $C_0 \times C_0 \xleftarrow{(s,t)} C_1 \xrightarrow{\tau} C_0$, and $1 \xleftarrow{!} C_0 \xrightarrow{1} C_0$. The 2-cell structure making this category into a skew monoidale comes from the composition and identity arrows of the category, with the skewness arising from the non-symmetric nature of the first span.
The 2-cells of a Skew Monoidale:

What is now required is a long and often repetitive calculation with, when we include the equations between the 2-cells, sixteen pullback constructions in \textbf{Set}; so we will present enough of it to introduce and justify the supporting notation that will form our input for a further characterisation.

For the 2-cell \(\lambda: p(j \times 1) \Rightarrow 1 \) we need to consider the following composite

\[
\begin{array}{c}
U \times C \\
\downarrow \downarrow \\
C \times C \\
\downarrow \downarrow \\
C
\end{array}
\xrightarrow{(s,r)}
\begin{array}{c}
E \\
\downarrow \downarrow \\
C
\end{array}
\]

First we need to form the following pullback

\[
\begin{array}{ccc}
P & \xrightarrow{q} & E \\
\downarrow p & & \downarrow s \\
U & \xrightarrow{j} & C
\end{array}
\]

then the required composite is

\[
\begin{array}{c}
P \\
\downarrow \downarrow \\
C
\end{array}
\xrightarrow{(p,rq)}
\begin{array}{c}
U \times C \\
\downarrow \downarrow \\
C \times C \\
\downarrow \downarrow \\
C
\end{array}
\xrightarrow{(s,r)}
\begin{array}{c}
E \\
\downarrow \downarrow \\
C
\end{array}
\]

so we finally have for the 2-cell \(\lambda \), a function which we also denote by \(\lambda \), such that the following diagram commutes,

\[
\begin{array}{c}
P \\
\downarrow rq \\
C
\end{array}
\xrightarrow{tq}
\begin{array}{c}
C
\end{array}
\]

it can only exist if \(rq = tq \) and is then given as a morphism in \textbf{Set} by the common value

\[
\text{rq} = \text{tq}. \tag{7}
\]

As we are in \textbf{Set} we can write \(P \) as \(P = \{(u, f)| u \in U, f \in E, \quad j(u) = s(f)\} \) with \(p(u, f) = u \) and \(q(u, f) = f \) as the projections. With our notation, the elements in \(P \) look like \(j(u) \xrightarrow{f} y \).
We can now record the effect of λ as: $j(u) \xrightarrow{f} y \overset{\lambda}{\longrightarrow} y = r(f)$. Thus the existence of λ implies that if $j(u) \xrightarrow{f} y$ then $y = r(f)$, and the map itself sends $(u, j(u) \xrightarrow{f} y)$ to y.

In the case of a category (that is, the case where U is C and the unit is of the form $1 \xleftarrow{1} C \rightarrow C$) then $P = E = C_1$ and $j = 1$ forces $r = t$, so λ is just t.

For the 2-cell $\rho: 1 \implies p(1 \times j)$ we first need to construct the following pullback

\[
\begin{array}{ccc}
B & \xrightarrow{k} & E \\
\downarrow{m} & & \downarrow{r} \\
U & \xrightarrow{j} & C
\end{array}
\]

In the diagram below

\[
\begin{array}{ccc}
C & \xrightarrow{1} & B \\
\downarrow{(1,\psi)} & & \downarrow{\phi} \\
C \times U & \xrightarrow{(s, m)} & E \\
\downarrow{\text{proj}_1} & & \downarrow{(s, r)} \\
C & \xrightarrow{1} & C
\end{array}
\]

the square is the pullback involved in the composite $p(1 \times j)$, so to give $\rho: 1 \implies p(1 \times j)$ is equivalently to give $\phi: C \rightarrow E$ and $\psi: C \rightarrow U$ satisfying $t\phi = 1$, $s\phi = 1$, and $r\phi = j\psi$. We record for later use that

\[r\phi = j\psi.\]

As we are in \textbf{Set}, $B = \{(u, f) | u \in U, f \in E, j(u) = r(f)\}$ with $m(u, f) = u$ and $k(u, f) = f$ as the projections. With respect to our notation, the elements in B look like $(j(u) = r(f), x \xrightarrow{f} y)$ so we record the effect of ϕ as

\[x \in C \overset{\phi}{\longrightarrow} (x \xrightarrow{\phi_x} x)\]

then $\psi_x \in U$ satisfies $j(\psi_x) = r(\phi_x)$.

Note that in the case of a category then $B = E = C_1$ and so ρ is just the identity.

For the 2-cell $\alpha: p(p \times 1) \implies p(1 \times p)$ we need the following two pullbacks

\[
\begin{array}{ccc}
X & \xrightarrow{l} & E \\
\downarrow{h} & & \downarrow{s} \\
E & \xrightarrow{t} & C
\end{array}
\quad
\begin{array}{ccc}
Y & \xrightarrow{y} & E \\
\downarrow{e} & & \downarrow{r} \\
E & \xrightarrow{t} & C
\end{array}
\]
The objects X and Y will appear as the vertex of the spans $p(p \times 1)$ and $p(1 \times p)$, respectively.

In the diagram below

\[\begin{array}{ccc}
 & X & \\
 \alpha & \downarrow \delta & \downarrow t \gamma \delta \\
 C \times C \times C & Y & E \\
 \downarrow 1 \times t \gamma & \downarrow y & \downarrow t \gamma \\
 C \times C & C & C \\
 \end{array} \]

the square is the pullback involved in the composite $p(1 \times p)$, so to give $\alpha: p(p \times 1) \to p(1 \times p)$ is equivalently to give $\tau: X \to E$ and $\delta: X \to E$ satisfying $t \delta = tl$, $s \delta = sh$, $s \tau = rh$, $r \tau = rl$, and $r \delta = t \tau$.

As we are in \textbf{Set}, $X = \{(f, g) | f, g \in E; t(f) = s(g)\}$ with $l(f, g) = g$ and $h(f, g) = f$ as the projections. Similarly, $Y = \{(f, g) | f, g \in E; t(f) = r(g)\}$ with $y(f, g) = g$ and $e(f, g) = f$ as its projections. So with respect to our notation, elements of X look like $x \overset{f}{\to} y \overset{g}{\to} z$ and elements of Y look like $(x \overset{f}{\to} r(g), y \overset{g}{\to} z)$ with $r(f), r(g) \in C$ and we record the effect of δ as

\[x \overset{f}{\to} y \overset{g}{\to} z \overset{\delta}{\to} x \overset{gf}{\to} z \]

and τ as

\[x \overset{f}{\to} y \overset{g}{\to} z \overset{\tau}{\to} r(f) \overset{gf}{\to} r(gf) \]

with $r(gf) = r(g)$ in C.

Note that δ gives us a map from x to z which we have called gf. We want to interpret the set E as a set of arrows and gf as a composite (with ϕ_x as an identity), indeed, that this is the composite in a category will be shown below. The map τ gives us a map from $r(f)$ to $r(gf)$ which we have called gf. This map will form the basis of our characterisation for the resulting “extra” structure given on the category.

We now consider the equations between the 2-cells and just do one calculation to give the reader an indication of how the final relations are obtained. Consider the left-hand side of
equation (1) and the whiskering

\[
C \times C \times C \times C \xrightarrow{p \times 1 \times 1} C \times C \times C \xrightarrow{p \times 1} C \times C
\]

\[
1 \times p \quad \quad \alpha \quad \quad p \quad \quad p
\]

\[
C \times C \quad \quad C \times C
\]

For this we need to compose

First form the pullbacks

\[
Q \xrightarrow{\mu} Y
\]

\[
W \xrightarrow{w} X
\]

\[
x \xrightarrow{i} E
\]

\[
x \xrightarrow{i} E
\]

then we have the following pullbacks

\[
Q \xrightarrow{\mu} Y
\]

\[
W \xrightarrow{w} X
\]

\[
E \times C \times C \xrightarrow{t \times 1 \times 1} C \times C \times C
\]

\[
E \times C \times C \xrightarrow{t \times 1 \times 1} C \times C \times C
\]

and so form

\[
E \times C \times C \xrightarrow{t \times 1 \times 1} C \times C \times C
\]

\[
E \times C \times C \xrightarrow{t \times 1 \times 1} C \times C \times C
\]

As before, to give the map

\[
p(p \times 1)/(p \times 1 \times 1) \xrightarrow{\alpha(p \times 1 \times 1)} p(1 \times p)/(p \times 1 \times 1)
\]
lently to give $\gamma: W \rightarrow E$ and $\epsilon: W \rightarrow Y$ as in the diagram below.

```
\begin{center}
\begin{tikzpicture}
  \node (W) at (0,0) {$W$};
  \node (X) at (4,0) {$X$};
  \node (Y) at (2,-2) {$Y$};
  \node (E) at (0,-2) {$E$};
  \node (C) at (-2,-2) {$C$};
  \draw[->] (W) to node {$\gamma=hh'$} (X);
  \draw[->] (W) to node {$\epsilon$} (Y);
  \draw[->] (W) to node {$\tau=\tau_{w}\epsilon$} (E);
  \draw[->] (W) to node {$\tau_{w}=\epsilon\epsilon$} (C);
  \draw[->] (X) to node {$d$} (Y);
  \draw[->] (X) to node {$\tau_{w}$} (E);
  \draw[->] (X) to node {$\tau_{w}$} (C);
  \draw[->] (Y) to node {$e$} (E);
  \draw[->] (Y) to node {$\epsilon$} (C);
  \draw[->] (E) to node {$h$} (C);
  \draw[->] (E) to node {$l$} (Y);
  \draw[->] (E) to node {$s$} (X);
  \draw[->] (E) to node {$r$} (W);
  \draw[->] (C) to node {$t$} (W);
  \draw[->] (C) to node {$a$} (X);
  \draw[->] (C) to node {$b$} (Y);
  \draw[->] (C) to node {$c$} (E);
  \draw[->] (C) to node {$d$} (C);
\end{tikzpicture}
\end{center}
```

From this diagram we have $\gamma = hh'$ and $\epsilon = (\tau, \delta)w = (\tau_{w}, \delta_{w})$. Now writing these as functions into just the set E we recall the previous pullbacks we had constructed and consider the following diagram

```
\begin{center}
\begin{tikzpicture}
  \node (W) at (0,0) {$W$};
  \node (X) at (4,0) {$X$};
  \node (Y) at (2,-2) {$Y$};
  \node (E) at (0,-2) {$E$};
  \node (C) at (-2,-2) {$C$};
  \draw[->] (W) to node {$\gamma=hh'$} (X);
  \draw[->] (W) to node {$\epsilon$} (Y);
  \draw[->] (W) to node {$\tau_{w}=\epsilon\epsilon$} (E);
  \draw[->] (W) to node {$\tau_{w}$} (C);
  \draw[->] (X) to node {$d$} (Y);
  \draw[->] (X) to node {$\tau_{w}$} (E);
  \draw[->] (X) to node {$\tau_{w}$} (C);
  \draw[->] (Y) to node {$e$} (E);
  \draw[->] (Y) to node {$\epsilon$} (C);
  \draw[->] (E) to node {$h$} (C);
  \draw[->] (E) to node {$l$} (Y);
  \draw[->] (E) to node {$s$} (X);
  \draw[->] (E) to node {$r$} (W);
  \draw[->] (C) to node {$t$} (W);
  \draw[->] (C) to node {$a$} (X);
  \draw[->] (C) to node {$b$} (Y);
  \draw[->] (C) to node {$c$} (E);
  \draw[->] (C) to node {$d$} (C);
\end{tikzpicture}
\end{center}
```

From this diagram we have $\gamma = hh'$, $ye = y(\tau_{w}, \delta_{w}) = \delta_{w}$ and $\epsilon = e(\tau_{w}, \delta_{w}) = \tau_{w}$.

As we are in \textbf{Set}, $W = \{(x_1, x_2)\mid x_1, x_2 \in X; l(x_1) = h(x_2)\}$ with projections $h'(x_1, x_2) = x_1$ and $w(x_1, x_2) = x_2$. Similarly, $Q = \{(x, z)\mid x \in X, z \in Y; l(x) = y(z)\}$ with projections $y'(x, z) = x$ and $l'(x, z) = z$. So with respect to our notation, the elements of the set W look like $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{k} d$ with $r(f)$, $r(g)$, $r(k) \in C$ and the elements of Q look like $(a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{k} r(g))$ with $r(f)$, $r(g)$ and $r(k) \in C$. So the 2-cell under consideration gives for $W \rightarrow Q$ that

\[
\begin{aligned}
 a \xrightarrow{f} b &\xrightarrow{g} c \xrightarrow{k} d \\
 (a \xrightarrow{f} b \xrightarrow{k} r(k), b \xrightarrow{k} d) &\xrightarrow{r(g)} (r(g), r(k) \xrightarrow{k} r(k))
\end{aligned}
\]
Now observe that the two sides of the cube 1 act as in the diagram below,

\[
\begin{array}{c}
\xymatrix{\text{\(p(\alpha \otimes 1)\)}} & (gf, g^f, h) \ar[rr]^-{\alpha(1 \otimes p \otimes 1)} \ar[dr]_p & & (gf, h g^f, h(gf)) \\
(f, g, h) \ar[ur]^{\alpha(p \otimes 1 \otimes 1)} \ar[d]_{\alpha(p \otimes 1 \otimes 1)} & & ((h g^f)^g f, h g^f, h(gf)) \\
(f, h^g, h g) \ar[ur]^{\alpha(1 \otimes 1 \otimes p)} & & (h^g, (h g)^f, (h g) f) \\
\end{array}
\]

so the cube commutes if and only if the two expressions in the lower right corner agree; in other words, if the following equations, \(h^g = (h g^f)^g f\), \((h g)^f = h g^f\), and \((h g) f = h(g f)\) hold, for a composable triple of arrows. The remaining four equations are analyzed similarly, and the results summarized below.

Summary: We summarize all the calculations with respect to a skew monoidale into the notation introduced earlier to get:

For the 1-cell \(p: C \times C \longrightarrow C\) with vertex \(E\): For \(f \in E\), \(x \xrightarrow{f} y\) for \(x, y \in C\) and \(r(f) \in C\).

For the 1-cell \(j: 1 \longrightarrow C\) with vertex \(U\): For \(u \in U\) that \(j(u) \in C\).

For the 2-cell \(\lambda\): if \(j(u) \xrightarrow{f} y\) then \(y = r(f)\) in \(C\).

For the 2-cell \(\rho\): for \(x \in C\) we have \(x \xrightarrow{\phi_x} x\) in \(E\) and \(\psi_x \in U\) with \(j(\psi_x) = r(\phi_x)\).

For the 2-cell \(\alpha\): if \(x \xrightarrow{f} y \xrightarrow{g} z\) then \(r(f) \xrightarrow{g^f} r(g f)\) and \(x \xrightarrow{g^f} z\) are both in \(E\) with \(r(g^f) = r(g)\).

For the equation between the 2-cells involving \((\lambda, \rho)\): For \(j(u) \in C\) we have \(\psi j(u) = u\), that is, \(\psi j = 1\).

For the equation between the 2-cells involving \((\rho, \alpha)\): For \(x \xrightarrow{f} y\) we have \(\psi y = \psi r(f)\), \(\phi_y f = f\), and \(\phi_y = \phi_r\).

For the equation between the 2-cells involving \((\lambda, \alpha)\): For \(j(u) \xrightarrow{f} y \xrightarrow{g} z\) we have \(g^f = g\).

For the equation between the 2-cells involving \((\rho, \alpha, \lambda)\): For \(x \xrightarrow{f} y\) we have \(f \phi_x = f\).

For the equation between the 2-cells involving \((\alpha, \alpha)\) (the pentagon):

For \(x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} a\) we have \((h g) f = h(g f)\), \((h g)^f = h g f\), and \(h^g = (h g^f)^g f\).

We conclude that we can now safely rename \(\phi_x\) as \(1_x\) and change our notation for \(x \xrightarrow{f} y\) to an arrow \(x \xrightarrow{f} y\) and with the condition that \((h g) f = h(g f)\) obtain a category with some
extra structure consisting of:

(a) for each morphism f an object $r(f)$.

(b) a set U with a function j from U to the set of objects.

(c) for each composable pair $x \xrightarrow{f} y \xrightarrow{g} z$ a map $r(f) \xrightarrow{g^f} r(gf)$ with $r(gf) = r(g)$.

(d) for each object c an element $\psi_c \in U$.

satisfying the following

\begin{align*}
\text{For } u \in U & \quad \text{that } \psi_j(u) = u. \quad (10) \\
\text{For } x \in C & \quad \text{that } r(1_x) = j\psi. \quad (11) \\
\text{For } j(u) \xrightarrow{f} y \xrightarrow{g} z & \quad \text{that } g^f = g. \quad (12) \\
\text{For } x \xrightarrow{f} y, r(f) \in C & \quad \text{that } 1^f_y = 1_{r(f)}. \quad (13) \\
\text{For } x \xrightarrow{f} y, r(f) \in C & \quad \text{that } \psi_y = \psi_{r(f)}. \quad (14) \\
\text{For } x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} a & \quad \text{that } (hg)^f = h^g g^f. \quad (15) \\
\text{For } x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} a & \quad \text{that } h^g = (h^g) g^f. \quad (16)
\end{align*}

Before we consider these equations again, we notice that from (10) j is already injective.

Lemma 4.1. If j is surjective then $r = t$.

Proof. If j is surjective then by (6) q is also surjective. Since $rq = tq$ by (7), we can conclude that $r = t$. \qed

So with the assumption that j is surjective we see that a skew monoidal in Span is precisely a category. The extra structure given by τ and the map g^f reduces to $g^f = g$ for all $f, g \in E$ by (12). This recovers the result in [8] where the skew monoidal in Span assumed the unit was of the form

\[
\begin{array}{c}
1 \\
\downarrow \quad \downarrow \\
1 & \rightarrow \quad \rightarrow \\
\downarrow & \\
\rightarrow C & \\
\end{array}
\]

5 A Characterisation

5.1 Coslice Category

In this subsection we use the notation of [9] to denote the coslice category or undercategory of a category, which we now define.
Let C be a category and x an object of C, then the coslice category denoted by $(x \downarrow C)$ has objects the arrows of C with source x, that is, $x \xrightarrow{f} y$ which we sometimes denote by the pairs (f, y); and arrows those $g: (f, y) \to (f', z)$ where $y \xrightarrow{g} z$ is an arrow of C such that $f' = gf$, which we usually denote as $(f, y) \xrightarrow{g} (gf, z)$. It is useful sometimes to write these arrows as the following triangles

\[
\begin{array}{ccc}
x & \xrightarrow{f} & y \\
\downarrow{g} & & \downarrow{g} \\
gf & \xrightarrow{gf} & z
\end{array}
\]

There is an evident functor $\text{Cod}_x: (x \downarrow C) \to C$ defined on objects by $x \xrightarrow{y} y$ and on arrows by $(f, y) \xrightarrow{g} (gf, z) \mapsto y \xrightarrow{g} z$.

Note: Let A and B be categories and x an object of A. For a functor $T: A \to B$ there is an induced functor $(x \downarrow A) \xrightarrow{(x \downarrow T)} (Tx \downarrow B)$ sending an object $x \xrightarrow{y} y$ to $Tx \xrightarrow{Ty} Ty$ and an arrow

\[
\begin{array}{ccc}
x & \xrightarrow{f} & y \\
\downarrow{g} & & \downarrow{g} \\
gf & \xrightarrow{gf} & z
\end{array} \mapsto \begin{array}{ccc}
Tx & \xrightarrow{Tf} & Ty \\
\downarrow{Tg} & & \downarrow{Tg} \\
T(gf) & \xrightarrow{T(gf)} & Tz
\end{array}
\]

Let C be a category and $f: x \to y$ be an object of $(x \downarrow C)$; we remind the reader of the coslice category $(f \downarrow (x \downarrow C))$. This category has as its objects the morphisms in $(x \downarrow C)$ starting at f denoted by $f \xrightarrow{g} gf$ and as its morphisms the commuting triangles between its objects which we denote by

\[
\begin{array}{ccc}
f & \xrightarrow{hg} & hgf \\
g & \xrightarrow{g} & hgf \\
gf & \xrightarrow{hgf} & hgf
\end{array}
\]

we sometimes denote them by $g \xrightarrow{h} hg$.

The functor $(f \downarrow \text{Cod}_x): (f \downarrow (x \downarrow C)) \to (y \downarrow C)$ is invertible; it sends an object $f \xrightarrow{g} gf$ to g and a morphism

\[
\begin{array}{ccc}
f & \xrightarrow{hg} & hgf \\
g & \xrightarrow{g} & hgf \\
gf & \xrightarrow{hgf} & hgf
\end{array} \mapsto \begin{array}{ccc}
\text{Cod}(f) & \xrightarrow{hg} & \text{Cod}(hgf) \\
g & \xrightarrow{g} & \text{Cod}(hgf) \\
\text{Cod}(gf) & \xrightarrow{hgf} & \text{Cod}(hgf)
\end{array}
\]
5.2 The Functor R_x

From the previous sections we have seen that a skew monoidale C in Span gives rise to a category \mathcal{C} with some extra structure via the function g^f and equations (10) - (16). In this section we use some of these equations to obtain a functor from a coslice category of \mathcal{C} to \mathcal{C} and relate the remaining equations to this functor.

For $x \in \mathcal{C}$ we use equations (13) and (15) to define a functor $R_x : (x \downarrow \mathcal{C}) \rightarrow \mathcal{C}$ sending an object $x \xrightarrow{f} y$ to $r(f)$ and an arrow $(f, y) \xrightarrow{g} (gf, z)$ to $r(f) \xrightarrow{g^f} r(gf)$. When it is clear in context we write that on the objects $R_x(f) = r(f)$ and on the arrows $R_x(g) = g^f$.

We check that we do have a functor.

We have by definition that $R_x(hg) = (hg)^f$ and $R_x(h)R_x(g) = h^{gf}g^f$ and by (15) these agree so that R_x preserves composition. Similarly by (13), R_x preserves identities and so is a functor.

We now express equation (16) in terms of the functor R_x. However for the benefit of the reader we will explicitly describe the functor $(f \downarrow R_x f) : (f \downarrow (x \downarrow \mathcal{C})) \rightarrow (R_x f \downarrow \mathcal{C})$ which is defined on objects by $f \xrightarrow{g} gf \mapsto r(f) \xrightarrow{g^f} r(gf)$ and on arrows by

$$
\begin{array}{ccc}
\begin{array}{ccc}
f & \xrightarrow{g} & gf \\
\downarrow{g} & & \downarrow{h} \\
hg & & hg \ \\
\end{array}
& \mapsto & \begin{array}{ccc}
r(f) & \xrightarrow{g^f} & r(gf) \\
\downarrow{g^f} & & \downarrow{hg^f} = (hg)^f \\
\end{array}
\end{array}
$$

The above remark allows us to conclude that equation (16) asserts that the following diagram commutes (it agrees on objects since $r(g^f) = r(g)$).

$$
\begin{array}{ccc}
(y \downarrow \mathcal{C}) & \xrightarrow{R_y} & \mathcal{C} \\
(f \downarrow \text{Cod}_x) & \downarrow{R_{R_x f}} & \downarrow{R_{R_x f}} \\
(f \downarrow (x \downarrow \mathcal{C})) & \xrightarrow{(f \downarrow R_x f)} & (R_x f \downarrow \mathcal{C})
\end{array}
$$

In the following section we consider the remaining structure involving U, j, and ψ.

14
5.3 The Function E

We define a function E on the set of objects of the category \mathcal{C} by $E(x) = r(1_x)$. Using (13) and $r(g') = r(g)$ (for a composable pair of morphisms), we note that if $x \xrightarrow{f} y$ then $E(r(f)) = E(y)$. Taking $f = 1_x$ we find that $E(E(x)) = E(r(1_x)) = E(x)$, so E is idempotent.

From equation (10), $\psi j = 1$, and equation (11), $j \psi_x = r(1_x)$, we can define U, j, and ψ as a splitting of E. So in terms of the functor R_x we have $E(x) = R_x(1_x)$ for each object x in the category \mathcal{C}. With this notation, equation (14) then asserts that the following diagram commutes on the objects of the respective categories:

\[
\begin{array}{ccc}
\text{Ob}(x \downarrow \mathcal{C}) & \xrightarrow{R_x} & \text{Ob}(\mathcal{C}) \\
\text{Cod} & \downarrow & \\
\text{Ob}(\mathcal{C}) & \xrightarrow{E} & \text{Ob}(\mathcal{C})
\end{array}
\]

Following an object $x \xrightarrow{f} y$ of $(x \downarrow \mathcal{C})$ around (18) then asserts in terms of the functor R_x that $R_y(1_y) = R_{R_x f}(1_{R_x f})$ and as R_x is a functor we also have $R_{R_x f}(1_{R_x f}) = R_{R_x f}(R_x(1_y))$.

However if we follow the object $y \xrightarrow{1_y} y$ of $(y \downarrow \mathcal{C})$ around (17) (really we follow $f \xrightarrow{1_y} 1_y f$ of $(f \downarrow (x \downarrow \mathcal{C}))$ around (17)) we get that $R_y(1_y) = R_{R_x f}(R_x(1_y))$. So we have shown:

Lemma 5.1. If (17) holds then so does (18).

We now consider the remaining equation (12) in terms of the functor R_x. It is the statement that if for $j(u) \xrightarrow{f} y \xrightarrow{g} z$ then $g' = g$.

As $\psi j = 1$ it can be shown that $x = j \psi x$ if and only if there exist a u such that $x = j u$. So for the u where $x = j u$ then $x = E(x) = R_x(1_x)$ (We could now define U to be those x for which $x = R_x(1_x)$). So we conclude that (12) is the statement that if $x = R_x(1_x)$ then $R_x = \text{Cod}_x$.

Conclusion: A skew monoidale C in Span amounts to a category \mathcal{C} with

(a) a functor $R_x : (x \downarrow \mathcal{C}) \rightarrow \mathcal{C}$ for each x in \mathcal{C}.

(b) if $x = R_x(1_x)$ then $R_x = \text{Cod}_x$.

(c) R_x satisfies (17), that is, for an arrow $x \xrightarrow{f} y$ in \mathcal{C} the following commutes

\[
\begin{array}{ccc}
(y \downarrow \mathcal{C}) & \xrightarrow{R_y} & \mathcal{C} \\
(f \downarrow \text{Cod}_x) & \xrightarrow{R_{R_x f}} & (R_x f \downarrow \mathcal{C})
\end{array}
\]
Note: For each $x \in C$, the case when $j = 1$ (equivalently, j is surjective) corresponds to $R_x = \text{Cod}_x$.

5.4 The Simplicial category and the Decalage Functor

We recall some standard facts about the simplex category Δ, before using it in our characterisation. There are many references for this section we use [9] and [5].

The simplicial category Δ has as objects the finite ordinals $n = \{0, 1, \ldots, n - 1\}$ and morphisms the order-preserving functions $\xi : m \to n$ with composition that of functions; the composite of order preserving functions is again order preserving. We note that the ordinal numbers 0 and 1 are respectively, initial and terminal objects in Δ.

If $0 \leq i \leq n$, we write $\delta_i : n \to n+1$ for the injective order-preserving function where $\delta_i(k)$ is equal to k if $k < i$ and $k + 1$ otherwise (thus its image omits i). Similarly, if $0 \leq i \leq n - 1$, we write $\sigma_i : n+1 \to n$ for the order-preserving surjective function where $\sigma_i(k)$ is equal to k if $k \leq i$ and $k - 1$ otherwise (thus $\sigma_i(i) = \sigma_i(i+1)$, that is, it repeats i). We call these maps coface and codegeneracy maps respectively and they satisfy the well known simplicial identities which allow for a presentation of Δ with the δ_i and σ_i as its generators and the simplicial identities as its relations. Moreover, Δ has a strict (non-symmetric) monoidal structure $(\Delta, +, 0)$ given by ordinal addition $+: \Delta \times \Delta \to \Delta$, defined on ordinals as the ordered sum and on arrows by placing them "side by side". So in terms of the presentation we have that $1_m + \delta_i = \delta_{m+i}$, $1_m + \sigma_i = \sigma_{m+i}$, $\delta_i + 1_m = \delta_i$, and $\sigma_i + 1_m = \sigma_i$ where 1_m denotes the identity on m; see [9].

A simplicial set is a contravariant functor from Δ to Set. The category Simp of simplicial sets and simplicial maps between them is defined to be the functor category $[\Delta^{\text{op}}, \text{Set}]$. For a functor $S : \Delta^{\text{op}} \to \text{Set}$ we write S_n for $S(n)$. It can be shown that the data for a simplicial set can be specified by the sets S_n and maps $d_i : S_n \to S_{n-1}$ and $s_i : S_n \to S_{n+1}$ where for $0 \leq i \leq n$ we define d_i as $S\delta_i$ and s_i as $S\sigma_i$. We call these face and degeneracy maps and they satisfy relations dual to those in Δ.

For a simplicial set S we consider the shift or (left) decalage functor $\text{Dec} : \text{Simp} \to \text{Simp}$ which removes the 0-th face and degeneracy maps, shifts dimension so that $(\text{Dec}(S))_n = S_{n+1}$ and shifts indices on the remaining face and degeneracy maps down by 1 so that $d_i : (\text{Dec}(S))_n \to (\text{Dec}(S))_{n-1}$ is $d_{i+1} : S_{n+1} \to S_n$ and $s_i : (\text{Dec}(S))_n \to (\text{Dec}(S))_{n+1}$ is $s_{i+1} : S_{n+1} \to S_{n+2}$.

16
Given a simplicial set S as in the diagram

\[S: \quad \cdots S_n \longrightarrow S_{n-1} \longrightarrow \cdots S_1 \longrightarrow S_0 \]

The decalage $\text{Dec}(S)$ of S is the simplicial set

\[\text{Dec}(S): \quad \cdots S_{n+1} \longrightarrow S_n \longrightarrow \cdots S_3 \longrightarrow S_2 \longrightarrow S_1 \]

There is a simplicial map $\text{Dec}(S) \to S$ given (in degree n) by the original face map that was discarded $d_0: S_{n+1} \to S_n$; we write this map as $d_0: \text{Dec}(S) \to S$. The above explicit description of the left decalage construction has a right version and left and right versions for the case of augmented simplicial sets.

There is a comonad underlying the decalage functor which we briefly describe. Since 1 is terminal in Δ, the arrows $\delta_0: 0 \to 1$ and $\sigma_0: 2 \to 1$ form the "universal" monoid $(1, \sigma_0, \delta_0)$ in Δ. Moreover, there is a monad on Δ with endofunctor part $- + 1: \Delta \to \Delta$, multiplication $- + \sigma_0$, and unit $- + \delta_0$. Now, by reversing the order of each ordinal, Δ^{op} contains the universal comonoid 1, and as a result we can form a comonad $- + 1: \Delta^{op} \to \Delta^{op}$ dual to the previous construction. This induces by precomposition with the above comonad a comonad on Simp whose underlying endofunctor is $\text{Dec}: \text{Simp} \to \text{Simp}$. The counit of the comonad Dec is $d_0: S_{n+1} \to S_n$.

Given a category C we can form the nerve $N(C)$ of C, it is the well known simplicial set where the face and degeneracy maps are those given in [9] and where

$N(C)_0 = \text{set of objects in } C$

$N(C)_1 = \text{set of morphisms in } C$

$N(C)_2 = \text{set of composable pairs of morphisms in } C$

\vdots

$N(C)_n = \text{set of composable } n\text{-tuples of morphisms in } C$.

With the above discussion in mind we see that if C is a category then so is $\text{Dec}(C)$ where
\[\text{Dec}(C)_0 = \text{set of morphisms in } C \]
\[\text{Dec}(C)_1 = \text{set of composable pairs of morphisms in } C \]
\[\vdots \]
\[\text{Dec}(C)_n = \text{set of composable } (n+1)\text{-tuples of morphisms in } C. \]

Recall that in the category \textbf{Cat} of small categories and functors, the coproduct of a family of categories is their disjoint union. For \(I \) a set and \((C_i)_{i \in I}\) a family of objects in \textbf{Cat} we write \(\coprod_{i \in I} C_i \) for the coproduct of the family \((C_i)_{i \in I}\). Now with this notation and from the functors \(\text{Cod} \) we can form a functor from \(\coprod_{x \in C} (x \downarrow C) \) to \(C \), which we denote by \(\text{Cod} \).

Having described above what the functor \(\text{Dec} \) does on objects of \textbf{Cat} we notice for a category \(C \), that \(\text{Dec}(C) = \coprod_{x \in C} (x \downarrow C) \). So to complete this (brief) description of \(\text{Dec} \) as an endofunctor from \textbf{Cat} we need to describe what it does on arrows of \textbf{Cat}.

Let \(F : X \to C \) be a functor where \(X \) and \(C \) are categories. As we need a functor from a coproduct in \textbf{Cat}, it is sufficient, for each \(x \in X \), to specify a functor from \((x \downarrow X) \) to \(\text{Dec}(C) \) where \(\text{Dec}(C) = \coprod_{c \in C} (c \downarrow C) \). We define the functor \(\text{Dec}(F)_x : (x \downarrow X) \to \text{Dec}(C) \) by the following composite

\[(x \downarrow X) \xrightarrow{(x \downarrow F)} (F(x) \downarrow C) \xrightarrow{\text{inclusion}} \text{Dec}(C) \]

Thus we have a functor \(\text{Dec}(F) : \text{Dec}(X) \to \text{Dec}(C) \).

We complete this description of \(\text{Dec} \) as an endofunctor on \textbf{Cat} with the observation that \(\text{Cod} : \text{Dec}(C) \to C \) is the map \(d_0 : \text{Dec}(C) \to C \) and note that any coslice category can be extracted from \(\text{Dec}(C) \) using this \(d_0 \).

Using these constructions we can rewrite the previous description of a skew monoidale in \textbf{Span} as:

Conclusion: A skew monoidale \(C \) in \textbf{Span} amounts to a category \(\mathcal{C} \) with

(a) a functor \(R : \text{Dec}(\mathcal{C}) \to \mathcal{C} \), where

(b) \(R \) makes the following diagram commute

\[\begin{array}{ccc}
\text{Dec}(\mathcal{C}) & \xrightarrow{R} & \mathcal{C} \\
\text{Dec(Cod)} \downarrow & & \downarrow R \\
\text{Dec(Dec(\mathcal{C}))} & \xrightarrow{\text{Dec}(R)} & \text{Dec(\mathcal{C})}
\end{array} \]

(c) such that, if \(x = R(1_x) \) then \(R_x = \text{Cod}_x \).

Note that when starting with just a category then \(R = \text{Cod} \).
6 An Example

In this section we denote by \((M, \mu, \eta)\) or just \(M\) a monoid in the monoidal category \((\text{Set}, \times, 1)\) where the tensor product is the cartesian product \(\times\) and \(1 = \{\star\}\) denotes a one point set as its unit. Here the two arrows \(\mu\) and \(\eta\) in \(\text{Set}\) satisfy the usual equations (see [9]). For \(\mu: M \times M \to M\) and for \(a, b \in M\) we write \(\mu(a, b) = a \cdot b\) and write for \(\eta(\{\star\}) = 1_M\), we sometimes just write \(\eta(\{\star\}) = 1\) where it should be clear in context what \(1\) represents.

We recall the embedding \((-)_*: \text{Set} \to \text{Span}\) which is the identity on objects and assigns to the morphism \(f: A \to B\) the following span

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{1_A} & \nearrow{\pi_2} \\
A & \to & M \\
\end{array}
\]

In fact, this is a strong monoidal pseudofunctor and as a consequence sends monoids in \(\text{Set}\) to monoidales in \(\text{Span}\). We can therefore consider a monoid \((M, \mu, \eta)\) in \(\text{Set}\) as a (skew) monoidale in \(\text{Span}\).

The 1-cell \(p: C \times C \to C\) for a skew monoidale in \(\text{Span}\) is given by

\[
\begin{array}{ccc}
M \times M & \xrightarrow{\mu} & M \\
\downarrow{(\pi_1, \pi_2)} & \nearrow{\mu} \\
M \times M & \to & M \\
\end{array}
\]

where \(\pi_i: M \times M \to M\) is defined by \(\pi_i(m_1, m_2) = m_i\) for \(i=1,2\) and \(m_1, m_2 \in M\).

The 1-cell \(j: 1 \to C\) for a skew monoidale in \(\text{Span}\) is given by

\[
\begin{array}{ccc}
1 & \xrightarrow{1} & \eta \\
\downarrow{1} & \nearrow{\eta} \\
1 & \to & M \\
\end{array}
\]

With these choices for \(p\) and \(j\), the 2-cell \(\rho: 1 \Rightarrow p(1 \times j)\) for this skew monoidale is given by
the following diagram

and the 2-cell $\alpha: p(p \times 1) \Rightarrow p(1 \times p)$ is given by

where $\pi_{23}: M \times M \times M \rightarrow M \times M$ is defined as $\pi_{23}(m_1, m_2, m_3) = (m_2, m_3)$. We will now describe the resulting monoidale in terms of the characterisation of skew monoidales in Span given in the previous sections.

So with these choices for p and j, M is a category whose objects are the elements of the set M and whose arrows are the pairs $(a, b) \in M \times M$ with source $\pi_1(a, b) = a$ and target $\mu(a, b) = a.b$ which we represent as $a \xrightarrow{b} a.b$. The composition of arrows in M and the functor R: $\text{Dec}(M) \rightarrow M$ are both defined by the 2-cell $\alpha: p(p \times 1) \Rightarrow p(1 \times p)$. The composition of arrows in M is then given by $(a, b, c) \xrightarrow{1 \times \mu} (a, b, c)$ for $(a, b, c) \in M \times M \times M$ and so the composite $a \xrightarrow{b} a.b \xrightarrow{c} (a.b).c$ is given by $a \xrightarrow{b.c} a.(b.c)$.

For the functor R: $\text{Dec}(M) \rightarrow M$ and the p and j chosen from M we have on the objects of $\text{Dec}(M)$ that $R((a, b)) = \pi_2(a, b) = b$ or $R(a \xrightarrow{b} a.b) = b$ and on the arrows of $\text{Dec}(M)$ we have that $R((a, b, c)) = \pi_{23}(a, b, c) = (b, c)$ or $R(a \xrightarrow{b} a.b \xrightarrow{c} (a.b).c) = b \xrightarrow{c} b.c$.

The identity arrow for the category M exists via the 2-cell $\rho: 1 \Rightarrow p(1 \times j)$ and is represented as $a \xrightarrow{1} a.1 = a$.

Remark 6.1. The monoids in \textbf{Set} constitute a category \textbf{Mon} and the above example defines the object part of a functor T: $\textbf{Mon} \rightarrow \textbf{Cat}$. For a morphism of monoids $f: (M, \mu, \eta) \rightarrow (M', \mu', \eta')$ the induced functor $TM \rightarrow TM'$ sends an object m to fm and a morphism (m, n) to (fm, fn).

-
Remark 6.2. Considering a category as a partial monoid and using the notation of [9] we can generalize the above example; we can instead start with a (small) category C where O, A and $A \times_O A$ respectively denotes the sets of objects, arrows and composable arrows of C.

The tensor for a monoidale in Span is given by

\[
\begin{array}{ccc}
A \times_O A & \xrightarrow{\text{comp}} & A \\
\xrightarrow{(\pi_1, \pi_2)} A \times A & \xrightarrow{\text{comp}} & A
\end{array}
\]

The unit for that monoidale in Span is given by

\[
\begin{array}{ccc}
O & \xrightarrow{id} & A \\
\xrightarrow{!} 1 & \xrightarrow{id} & A
\end{array}
\]

Remark 6.3. The following observations are due to Joachim Kock who has noted that for the example starting with a monoid M the above construction of a (skew) monoidale is just the category $\text{Dec}(M)$ and the functor $T : \text{Mon} \rightarrow \text{Cat}$ is the restriction of the functor $\text{Dec} : \text{Cat} \rightarrow \text{Cat}$. Similarly, the example starting with a category C, the corresponding construction of a (skew) monoidale is $\text{Dec}(C)$. Now starting with a category C we consider the category $D = \text{Dec}(C)$ so now using our previous notation $D_0 = C_1$, $D_1 = C_2$ and so on. The extra structure required on this category D to be considered as a skew monoidale in Span is a functor $R : \text{Dec}(D) \rightarrow D$ which amongst other conditions agrees with the counit d_0 (that is with $\text{Cod} : \text{Dec}(D) \rightarrow D$) on the objects U in D but now since $D = \text{Dec}(C)$ this d_0 from D is d_1 from C. Now a natural choice for the functor R would be $\text{Dec}(d_0)$ where d_0 from C and to define U, (which are the objects x in D for which $x = R_x(1_x)$ and since $C_1 = D_0$ we can use $\text{Dec}(s_0)$ where $s_0 : C_0 \rightarrow C_1$ is from C, previously omitted by Dec. Hence, for the above examples, the extra face map R is available naturally resulting in the monoidale being non-skew.

Remark 6.4. The following is a non-trivial example given by Stephen Lack at a talk to the Australian Category Seminar [7]. Batanin and Markl in [1] define a strict operadic category as a category \mathcal{C} equipped with a cardinality functor into sFSet, the skeletal category of finite sets, where each connected component of \mathcal{C} has a chosen terminal object. One of the axioms for a strict operadic category requires the existence of a family of functors from a slice category of \mathcal{C} into \mathcal{C}, for the chosen terminal object this is required to be the domain functor. Lack has shown that strict operadic categories are equivalent to left normal skew monoidales in $\text{Span}([\mathbb{N}, \text{Set}])$. Here \mathbb{N} denotes the set of natural numbers, seen as a discrete category, and the functor category $[\mathbb{N}, \text{Set}]$ is given a monoidal structure via Day’s convolution.
Acknowledgements:

I wish to thank my supervisor, Stephen Lack, whose patience and guidance made possible the writing of this article and Joachim Kock for his comments.

References

[1] M. Batanin and M. Markl. Operadic categories and duoidal Deligne’s conjecture. arXiv:1404.3886v2 (2014).

[2] J. Bénabou. Introduction to bicategories. Reports of the Midwest Category Seminar. LNM Vol. 47 (1967) 1–77.

[3] Mitchell Buckley, Richard Garner, Stephen Lack and Ross Street. Skew monoidal categories and the Catalan simplicial set. arXiv:1307.0265v1 (2013) preprint.

[4] Brian J. Day and Ross Street. Monoidal bicategories and Hopf algebroids. Advances in Math., 129 (1997) 99–157.

[5] John W. Duskin. Simplicial matrices and the nerves of weak n-Categories I: Nerves of Bicategories. Theory and Applications of Categories 9(10) (2002) 198–308.

[6] Robert Gordon, A. John Power and Ross Street. Coherence for tricategories. Memoirs of the American Mathematical Society, 117 no. 558 (1995) vi+81 pp.

[7] Stephen Lack. Skew aspects of operads. Talk in the Australian Category Seminar. (2 April 2014).

[8] Stephen Lack and Ross Street. skew monoidales, skew warpings and quantum categories. Theory and Applications of Categories, 26:385–402, 2012.

[9] Saunders Mac Lane. Categories for the working mathematician. Graduate Texts in Mathematics 5 (Springer-Verlag, 1971).