The information loss problem: an analogue gravity perspective

Stefano Liberati,1,2,3 Giovanni Tricella,1,2,3 and Andrea Trombettoni1,2

1 SISSA - International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy.
2 INFN Sezione di Trieste, via Valerio 2, Trieste, Italy.
3 IFPU - Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy.

E-mail: liberati@sissa.it, gtricell@sissa.it, andreatr@sissa.it

Abstract. Analogue gravity can be used to reproduce the phenomenology of quantum field theory in curved spacetime and in particular phenomena such as cosmological particle creation and Hawking radiation. In black hole physics, taking into account the backreaction of such effects on the metric requires an extension to semiclassical gravity and leads to an apparent inconsistency in the theory: the black hole evaporation induces a breakdown of the unitary quantum evolution leading to the so called information loss problem. Here we show that analogue gravity can provide an interesting perspective on the resolution of this problem, albeit the backreaction in analogue systems is not described by semiclassical Einstein equations. In particular, by looking at the simpler problem of cosmological particle creation, we show, in the context of Bose–Einstein condensates analogue gravity, that the emerging analogue geometry and quasi-particles have correlations due to the quantum nature of the atomic degrees of freedom underlying the emergent spacetime. The quantum evolution is, of course, always unitary, but on the whole Hilbert space, which cannot be exactly factorised \textit{a posteriori} in geometry and quasi-particle components. In analogy, in a black hole evaporation one should expect a continuous process creating correlations between the Hawking quanta and the microscopic quantum degrees of freedom of spacetime, implying so that only a full quantum gravity treatment would be able to resolve the information loss problem by proving the unitary evolution on the full Hilbert space.
1. Introduction

Albeit being discovered more than 40 years ago, Hawking radiation is still at the center of much work in theoretical physics due to its puzzling features and its prominent role in connecting general relativity, quantum field theory and thermodynamics. Among the new themes stimulated by Hawking’s discovery, two have emerged as most pressing: the so called transplanckian problem and the information loss problem.

The transplanckian problem stems from the fact that infrared Hawking quanta observed at late times at infinity seems to require the extension of relativistic quantum field theories in curved spacetime well within the UV completion of the theory, *i.e.* the Hawking calculation seems to require a strong assumption about the structure of the theory at the Planck scale and beyond.

It was mainly with this open issue in mind that in 1981 Unruh introduced the idea to simulate in condensed matter systems black holes spacetime and the dynamics of fields above them [1]. Such analogue models of gravity are provided by several condensed-matter/optical systems in which the excitations propagate in an effectively relativistic fashion on an emergent pseudo-Riemannian geometry induced by the medium. Indeed,
analogue gravity have played a pivotal role in the past years by providing a test bench for many open issues in quantum field theory in curved spacetime and in demonstrating the robustness of Hawking radiation and cosmological primordial spectrum of perturbations stemming from inflation against possible UV completions of the theory (see e.g. [2] for a comprehensive review). More recently, the same models have offered a valuable framework within which current ideas about the emergence of spacetime and its dynamics could be discussed via convenient toy models [3, 4, 5, 6].

Among the various analogue systems, a preeminent role has been played by Bose–Einstein condensates (BEC) because these are macroscopic quantum systems whose phonons/quasi-particle excitations can be meaningfully treated quantum mechanically. Hence they can be used to fully simulate the above mentioned quantum phenomena [7, 8, 9] and also as an experimental test bench of these ideas [10, 11, 12, 13].

In what follows, we shall argue that these systems can not only reproduce Hawking radiation and address the transplanckian problem, but they can also provide a precious insight into the information loss problem. For gravitational black holes, the latter seems to be a direct consequence of the backreaction of Hawking radiation, leading to the decrease of the black hole mass and of the region enclosed by the horizon. The natural endpoint of such process into a complete evaporation of the object leads to a thermal bath over a flat spacetime which appears to be incompatible with a unitary evolution of the quantum fields from the initial state to the final one. 1

Of course, the BEC system at the fundamental level cannot violate unitary evolution. However, it is easy to see that one can conceive analogue black holes provided with singular regions for the emergent spacetime where the description of quasi-particles propagating on an analogue geometry fails. 2 In such cases, despite the full dynamics being unitary, it seems that a trace over the quasi-particle falling in these “analogue singularities” would be necessary, so leading to an apparent loss of unitarity from the analogue system point of view. The scope of the present investigation is to see how such unitarity evolution is preserved on the full Hilbert space.

However, in addressing the information loss problem in gravity, the spacetime geometry and the quantum fields are implicitly assumed to be separated sectors of the Hilbert space. In the BEC analogue this assumption is reflected in the approximation that the quantum nature of the operator $\hat{a}_{k=0}$, creating particles in the background condensate, can be neglected. Therefore, in standard analogue gravity a description of the quantum evolution on the full Hilbert space seems precluded.

Nonetheless, it is possible to retain the quantum nature of the condensate operator as well as to describe their possible correlations with quasi-particles within an improved Bogoliubov description, namely the number-conserving approach [20]. Remarkably, we

1 We are not considering here alternative solutions such as long-living remnants, as these are as well problematic in other ways [14, 15, 16, 17, 18], or they imply deviations from the black hole structure at macroscopic scale, see e.g., [19].

2 For example, one can describe flows characterized by regions where the hydrodynamical approximation fails even without necessarily having loss of atoms from the systems.
shall show that the analogue gravity framework can be extended also in this context. Using the simpler setting of a cosmological particle creation we shall describe how this entails the continuous generation of correlations between the condensate atoms and the quasi-particles. Such correlations are responsible for (and in turn consequence of) the non factorisability of the Hilbert space and are assuring in any circumstances the unitary evolution of the full system. The lesson to be drawn is that in gravitational systems only a full quantum gravity description could account for the mixing between gravitational and matter quantum degrees of freedom and resolve in this way the apparent paradoxes posed by black hole evaporation in quantum field theory on curved spacetime.

The paper is organised as follows. In Section 2 we briefly recall the analogue gravity model for a non-relativistic BEC in mean-field approximation. In Section 3 we review the time-dependent orbitals formalism and how it is employed in the general characterisation of condensates and in the description of the dynamics. In Section 4 we introduce the number-conserving formalism. In Section 5 we discuss the conditions under which we can obtain an analogue gravity model in this general case. Finally, we analyse in Section 6 how in analogue gravity the quasi-particle dynamics affects the condensate and in Section 7 how the condensate and the excited part of the full state are entangled, showing that the unitarity of the evolution is a feature of the system considered in its entirety. Section 8 is devoted to a discussion of the obtained results and of the perspectives opened by our findings.

2. Analogue gravity

In this Section we briefly review how to realise a setup for analogue gravity [2] with BEC in the Bogoliubov approximation, with a bosonic low-energy (non-relativistic) atomic system. In particular, we consider the simplest case, where the interaction potential is given by a local 2-body interaction. The Hamiltonian operator, the equation of motion and commutation relations in second quantization formalism are as usual

\[H = \int \! dx \left[\phi^\dagger (x) \left(-\frac{\nabla^2}{2m} \phi (x) \right) + \frac{\lambda}{2} \phi^\dagger (x) \phi^\dagger (x) \phi (x) \phi (x) \right] , \]

\[i\partial_t \phi (x) = [\phi (x), H] = -\frac{\nabla^2}{2m} \phi (x) + \lambda \phi^\dagger (x) \phi (x) \phi (x) , \]

\[[\phi (x), \phi^\dagger (y)] = \delta (x - y) . \]

We drop for notational convenience the time dependence of the bosonic field operator \(\phi \), and for simplicity we omit the hat notation for the operators. Moreover, \(m \) is the atomic mass and the interaction strength \(\lambda \), proportional to the scattering length [20], could be taken as time-dependent. We also set \(\hbar = 1. \)

In the Bogoliubov approximation [20] [21], the field operator is split into two contributions: a classical mean-field and a quantum fluctuation field (with vanishing expectation value)

\[\phi (x) = \langle \phi (x) \rangle + \delta \phi (x) , \]
The information loss problem: an analogue gravity perspective

\[
[\delta \phi(x), \delta \phi^\dagger(y)] = \delta(x-y).
\] (5)

The exact equations for the dynamics of these objects could be obtained from the full Eq. (2), but two approximations ought to be considered

\[
i\partial_t \langle \phi \rangle = -\frac{\nabla^2}{2m} \langle \phi \rangle + \lambda \langle \phi^\dagger \phi \phi \rangle \approx -\frac{\nabla^2}{2m} \langle \phi \rangle + \frac{\lambda}{2} \langle \phi \rangle \langle \phi \rangle \langle \phi \rangle,
\] (6)

\[
i\partial_t \delta \phi = -\frac{\nabla^2}{2m} \delta \phi + \lambda \langle \phi^\dagger \phi - \langle \phi^\dagger \phi \rangle \rangle \approx -\frac{\nabla^2}{2m} \langle \phi \rangle + \frac{2\lambda}{2m} \langle \phi \rangle \delta \phi + \lambda \langle \phi \rangle^2 \delta \phi^\dagger.
\] (7)

(the bar denoting complex conjugation). The first equation is the Gross-Pitaevskii equation, and we refer to the second as the Bogoliubov-de Gennes (operator) equation. The mean-field term represents the condensate wavefunction, and the approximation in Eq. (6) is to remove from the evolution the backreaction of the fluctuation on the condensate. The second approximation is to drop all the non-linear terms (of order higher than \(\delta \phi\)) from Eq. (7) which then should be diagonalised to solve the time evolution.

A setup for analogue gravity with this kind of systems is obtained by studying the quantum fluctuations of the phase of the condensate. To do so, it is better to rewrite the mean-field and the fluctuations in terms of number density and phase, in the so-called Madelung representation:

\[
\langle \phi \rangle = \rho_0^{1/2} e^{i\theta_0},
\] (8)

\[
\delta \phi = \rho_0^{1/2} e^{i\theta_0} \left(\frac{\rho_1}{2\rho_0} + i\theta_1 \right),
\] (9)

\[
[\theta_1(x), \rho_1(y)] = -i\delta(x-y).
\] (10)

From the Gross-Pitaevskii equation we obtain two equations for the real classical fields \(\theta_0\) and \(\rho_0\):

\[
\partial_t \rho_0 = -\frac{1}{m} \nabla \left(\rho_0 \nabla \theta_0 \right),
\] (11)

\[
\partial_t \theta_0 = -\lambda \rho_0 + \frac{1}{2m} \rho_0^{-1/2} \left(\nabla^2 \rho_0^{1/2} \right) - \frac{1}{2m} \left(\nabla \theta_0 \right) \left(\nabla \theta_0 \right).
\] (12)

These are the quantum Euler equations for the superfluid. Eq. (11) can be easily interpreted as a continuity equation for the density of the condensate, while Eq. (12) is the Bernoulli equation for the phase of the superfluid, which generates the potential flow: the superfluid has velocity \((\nabla \theta_0) / m\). From the Bogoliubov-de Gennes equation we obtain two equations for the real quantum fields \(\theta_1\) and \(\rho_1\):

\[
\partial_t \rho_1 = -\frac{1}{m} \nabla \left(\rho_1 \nabla \theta_0 + \rho_0 \nabla \theta_1 \right),
\] (13)

\[
\partial_t \theta_1 = -\left(\lambda \rho_0 + \frac{1}{4m} \nabla \left(\rho_0^{-1} \nabla \rho_0 \right) \right) \frac{\rho_1}{\rho_0} + \frac{1}{4m} \nabla \left(\rho_0^{-1} \nabla \rho_1 \right) - \frac{1}{m} \left(\nabla \theta_0 \right) \left(\nabla \theta_1 \right).
\] (14)

If in Eq. (14) the “quantum pressure” term \(\nabla \left(\rho_0^{-1} \nabla \rho_1 \right) / 4m\) is negligible, as usually assumed, by substitution we obtain

\[
\rho_1 = -\frac{\rho_0}{\lambda \rho_0 + \frac{1}{4m} \nabla \left(\rho_0^{-1} \nabla \rho_0 \right)} \left(\partial_t \theta_1 + \frac{1}{m} \left(\nabla \theta_0 \right) \left(\nabla \theta_1 \right) \right),
\] (15)
The information loss problem: an analogue gravity perspective

\[0 = \partial_t \left(\frac{\rho_0}{\lambda \rho_0 + \frac{1}{4m} \nabla (\rho_0^{-1} \nabla \rho_0)} \left((\partial_t \theta_1) + \frac{1}{m} (\nabla \theta_0)(\nabla \theta_1) \right) \right) + \nabla \left(\frac{\rho_0}{\lambda \rho_0 + \frac{1}{4m} \nabla (\rho_0^{-1} \nabla \rho_0)} \frac{1}{m} (\nabla \theta_0) \left((\partial_t \theta_1) + \frac{1}{m} (\nabla \theta_0)(\nabla \theta_1) \right) - \frac{\rho_0}{m} (\nabla \theta_1) \right) \]

with Eq. (16) being a Klein-Gordon equation for the field \(\theta_1 \). Eq. (16) can be written in the form

\[\frac{1}{\sqrt{-g}} \partial^\mu \left(\sqrt{-g} g^{\mu
u} \partial_\nu \theta_1 \right) = 0 , \]

where the prefactor \(1/\sqrt{-g} \) has been multiplied away. This equation describes an analogue system for a scalar field in curved spacetime as the quantum field \(\theta_1 \) propagates on a curved geometry with a metric given by

\[\tilde{\lambda} = \lambda + \frac{1}{4m} \rho_0^{-1} \nabla (\rho_0^{-1} \nabla \rho_0) , \]
\[v_i = \frac{1}{m} (\nabla \theta_0)_i , \]
\[\sqrt{-g} = \sqrt{\frac{\rho_0^3}{m^3 \lambda}} , \]
\[g_{tt} = -\sqrt{\frac{\rho_0}{m \lambda}} \left(\frac{\tilde{\lambda} \rho_0}{m} - v^2 \right) , \]
\[g_{ij} = \sqrt{\frac{\rho_0}{m \lambda}} \delta_{ij} , \]
\[g_{ti} = -\sqrt{\frac{\rho_0}{m \lambda}} v_i . \]

If the condensate is homogeneous the superfluid velocity vanishes, the coupling is homogeneous in space \((\tilde{\lambda} = \lambda) \), the number density \(\rho_0 \) is constant in time and the only relevant behaviour of the condensate wavefunction is in the time-dependent phase \(\theta_0 \). Furthermore, in this case there is also no need to neglect the quantum pressure term in Eq. (14), as it will be handled easily after Fourier-transforming and it will simply introduce a modified dispersion relation — directly derived from the Bogoliubov spectrum.

If the condensate has an initial uniform number density but is not homogeneous — meaning that the initial phase depends on the position — the evolution will introduce inhomogeneities in the density \(\rho_0 \) as described by the continuity equation Eq. (11), and the initial configuration will be deformed in time. However, as long as \(\nabla^2 \theta_0 \) is small, also the variations of \(\rho_0 \) are small as well: while there is not a non-trivial stationary analogue metric, the scale of the inhomogeneities will define a timescale for which one could safely assume stationarity. Furthermore, the presence of an external potential \(V_{\text{ext}}(x) \) in the Hamiltonian via a term of the form \(\int dx V_{\text{ext}}(x) \phi_0^\dagger(x) \phi(x) \) would play a role in the dynamical equation for \(\theta_0 \), leaving invariant those for \(\rho_0, \rho_1 \) and \(\theta_1 \).
3. Time-dependent natural orbitals

The mean-field approximation presented in the previous Section is a solid and consistent formulation for studying weakly interacting BEC [22]. It requires, however, that the quantum state has peculiar features which need to be taken into account. In analogue gravity these assumptions are tacitly considered, but since they play a crucial role for our treatment we present a discussion of them in some detail to lay down the ground and the formalism in view of next Sections.

As it is well known [22], the mean-field approximation, consisting in substituting the operator $\phi(x)$ with its expectation value $\langle \phi(x) \rangle$, is strictly valid when the state considered is coherent, meaning it is an eigenstate of the atomic field operator ϕ:

$$\phi(x) |\text{coh}\rangle = \langle \phi(x) \rangle |\text{coh}\rangle .$$

(24)

For states satisfying this equation, the Gross-Pitaevskii equation (6) is exact (while Eq. (7) is still a linearised approximation). We remind that the coherent states $|\text{coh}\rangle$ are not eigenstates of the number operator, but they are rather quantum superpositions of states with different number of atoms. This is necessary because ϕ is an operator that — in the non relativistic limit — destroys a particle. We also observe that the notion of coherent state is valid instantaneously, but it may be in general not preserved along the evolution in presence of an interaction.

The redefinition of the field operator as in Eq. (4) provides a description where the physical degrees of freedom are concealed: the new degrees of freedom are not the excited atoms, but the quantized fluctuations over a coherent state. Formally this is a simple and totally legit redefinition, but for our discussion we stress that the quanta created by the operator $\delta\phi$ do not have a direct interpretation as atoms.

Given the above discussion, it is useful to remember that coherent states are not the only states to express the condensation, i.e. the fact that a macroscopic number of particles occupies the same state. As it is stated in the Penrose-Onsager criterion for off-diagonal long-range order [23, 24], the condensation phenomenon is best defined considering the properties of the 2-point correlation functions.

The 2-point correlation function is the expectation value on the quantum state of an operator composed of the creation of a particle in a position x after the destruction of a particle in a different position y: $\langle \phi^\dagger(y) \phi(x) \rangle$. Since by definition the 2-point correlation function is Hermitian, $\langle \phi^\dagger(y) \phi(x) \rangle = \langle \phi^\dagger(x) \phi(y) \rangle$, it can always be diagonalised as

$$\langle \phi^\dagger(x) \phi(y) \rangle = \sum_I \langle N_I \rangle f_I^\dagger(x) f_I(y) ,$$

(25)

with

$$\int dx f_I^\dagger(x) f_J(x) = \delta_{IJ} .$$

(26)

The orthonormal functions f_I, eigenfunctions of the 2-point correlation function, are known as the natural orbitals, and define a complete basis for the 1-particle Hilbert
space. In the case of a time-dependent Hamiltonian (or during the dynamics) they are in turn time-dependent. As for the field operator, to simplify the notation we are not going to always write explicitly the time dependence of the f_I.

The eigenvalues $\langle N_I \rangle$ are the occupation numbers of these wavefunctions. The sum of these eigenvalues gives the total number of particles in the state (or the mean value, in the case of superposition of quantum states with different number of particles):

$$\langle N \rangle = \sum_I \langle N_I \rangle .$$ \hspace{1cm} (27)

The time-dependent orbitals define creation and destruction operators and consequently the relative number operators (having as expectation values the eigenvalues of the 2-point correlation function):

$$a_I = \int dx f_I(x) \phi(x) ,$$ \hspace{1cm} (28)

$$\left[a_I, a_J^\dagger\right] = \delta_{IJ} ,$$ \hspace{1cm} (29)

$$\left[a_I, a_J\right] = 0 ,$$ \hspace{1cm} (30)

$$N_I = a_I^\dagger a_I .$$ \hspace{1cm} (31)

The state is called “condensate” \cite{23} when one of these occupation numbers is macroscopic (comparable with the total number of particles) and the others are small when compared to it.

In the weakly interacting limit, the condensed fraction $\langle N_0 \rangle / \langle N \rangle$ is approximately equal to 1, and the depletion factor $\sum_{I \neq 0} \langle N_I \rangle / \langle N \rangle$ is negligible. This requirement is satisfied by coherent states which define perfect condensates since the 2-point correlation functions is exactly a product of the mean-field and its conjugate:

$$\langle \text{coh} | \phi^\dagger(x) \phi(y) | \text{coh} \rangle = \langle \phi(x) \rangle \langle \phi(y) \rangle ,$$ \hspace{1cm} (32)

with

$$f_0(x) = \langle N_0 \rangle^{-1/2} \langle \phi(x) \rangle ,$$ \hspace{1cm} (33)

$$\langle N_0 \rangle = \int dy \langle \phi(y) \rangle \langle \phi(y) \rangle ,$$ \hspace{1cm} (34)

$$\langle N_{I \neq 0} \rangle = 0 .$$ \hspace{1cm} (35)

Therefore, in this case, the set of time-dependent orbitals is given by the proper normalisation of the mean-field function with a completion that is the basis for the subspace of the Hilbert space orthogonal to the mean-field. The latter set can be redefined arbitrarily, as the only non-vanishing eigenvalue of the 2-point correlation function is the one relative to mean-field function. The fact that there is a non-vanishing macroscopic eigenvalue implies that there is total condensation, i.e. $\langle N_0 \rangle / \langle N \rangle = 1$.

3.1. Time-dependent orbitals formalism

It is important to understand how we can study the condensate state even if we are not considering coherent states and how the description is related to the mean-field
approximation. In this framework, we shall see that the mean-field approximation is not a strictly necessary theoretical requirement for analogue gravity.

With respect to the basis of time-dependent orbitals and their creation and destruction operators, we can introduce a new expression for the atomic field operator, projecting it on the sectors of the Hilbert space as

$$\phi(x) = \phi_0(x) + \phi_1(x) = f_0(x) a_0 + \sum_I f_I(x) a_I$$

$$= f_0(x) \left(\int \mathrm{d}y f_0(y) \phi(y) \right) + \sum_{I \neq 0} f_I(x) \left(\int \mathrm{d}y f_I(y) \phi(y) \right). \quad (36)$$

The two parts of the atomic field operator so defined are related to the previous mean-field $\langle \phi \rangle$ and quantum fluctuation $\delta \phi$ expressions given in Section 2. One has now the commutation relation

$$\left[\phi_0(x), \phi_0^\dagger(y) \right] = f_0(x) \bar{f}_0(y) = O(V^{-1}), \quad (37)$$

where V denotes the volume of the system. Observe that while the commutator (37) does not vanish identically, it is negligible in the limit of large V.

In the formalism (36), the condensed part of the field is described by the operator ϕ_0 and by the orbital producing it through projection, the 1-particle wave function f_0. The dynamics of the function f_0, the 1-particle wave function that best describes the collective behaviour of the condensate, can be extracted by using the relations

$$\langle \phi^\dagger(x) \phi(y) \rangle = \sum_I \langle N_I \rangle f_I(x) f_I(y), \quad (38)$$

$$\langle a_k^\dagger a_J, H \rangle = i \partial_t \langle N_J \rangle \delta_{J,K} + i \left(\langle N_K \rangle - \langle N_I \rangle \right) \left(\int \mathrm{d}x f_I(x) f_K(x) \right), \quad (39)$$

and the evolution of the condensate 1-particle wave function

$$i \partial_t f_0(x) = \left(\int \mathrm{d}y f_0(y) \left(i \partial_t f_0(y) \right) \right) f_0(x) + \sum_{I \neq 0} \left(\int \mathrm{d}y f_0(y) \left(i \partial_t f_I(y) \right) \right) f_I(x)$$

$$= \left(\int \mathrm{d}y f_0(y) \left(i \partial_t f_0(y) \right) \right) f_0(x) + \sum_{I \neq 0} \frac{1}{\langle N_0 \rangle - \langle N_I \rangle} \left[a_k^\dagger a_I, H \right] f_I(x)$$

$$= -\frac{i}{2} \frac{\partial_t \langle N_0 \rangle}{\langle N_0 \rangle} f_0(x) + \left(-\frac{\nabla^2}{2m} f_0(x) \right) + \frac{1}{\langle N_0 \rangle} \left[a_0^\dagger [\phi(x), V] \right] +$$

$$+ \sum_{I \neq 0} \frac{\langle N_I \rangle \langle a_0^\dagger a_I, V \rangle + \langle N_0 \rangle \langle a_0^\dagger V_a I \rangle}{\langle N_0 \rangle (\langle N_0 \rangle - \langle N_I \rangle)} f_I(x) \quad (40)$$

(we assumed at any time $\langle N_0 \rangle \neq \langle N_{I \neq 0} \rangle$). The above equation is valid for a condensate when the dynamics is driven by a Hamiltonian operator composed of a kinetic term and a generic potential V, but we are interested in the case of Eq. (11). Furthermore, $f_0(x)$ can be redefined through an overall phase transformation, $f_0(x) \rightarrow e^{i\Theta} f_0(x)$ with any arbitrary time-dependent real function Θ. We have chosen the overall phase to satisfy
the final expression Eq. (40), as it is the easiest to compare with the Gross-Pitaevskii equation (3).

3.2. Connection with the Gross-Pitaevskii equation

In this Section we discuss the relation between the function f_0 — the eigenfunction of the 2-point correlation function with macroscopic eigenvalue — and the solution of the Gross-Pitaevskii equation, approximating the mean-field function for quasi-coherent states. In particular, we aim at comparing the equations describing their dynamics, detailing under which approximations they show the same behaviour. This discussion provides a preliminary technical basis for the study of the effect of the quantum correlations between the background condensate and the quasi-particles, which are present when the quantum nature of the condensate field operator is retained and it is not just approximated by a number, as done when performing the standard Bogoliubov approximation. We refer to [21] for a review on the Bogoliubov approximation in weakly imperfect Bose gases and to [25] for a presentation of rigorous results on the condensation properties of dilute bosons.

The Gross-Pitaveskii equation Eq. (6) is an approximated equation for the mean-field dynamics. It holds when the backreaction of the fluctuations $\delta \phi$ on the condensate — described by a coherent state — is negligible. This equation includes a notion of number conservation, meaning that the approximation of the interaction term implies that the spatial integral of the squared norm of the solution of the equation is conserved

$$\langle \phi^\dagger (x) \phi (x) \phi (x) \rangle \approx \langle \phi (x) \rangle \langle \phi (x) \rangle \langle \phi (x) \rangle$$

$$i \partial_t \int \! dx \langle \phi (x) \rangle \langle \phi (x) \rangle = 0 .$$

This depends on the fact that only the leading term of the interaction is included in the equation. Therefore we can compare the Gross-Pitaveskii equation for the mean-field with the equation for $\langle N_0 \rangle^{1/2} f_0 (x)$ approximated to leading order, i.e. $\langle \phi (x) \rangle$ should be compared to the function $f_0 (x)$ under the approximation that there is no depletion from the condensate. If we consider the approximations

$$\langle a_0^\dagger [\phi (x), V] \rangle \approx \lambda \langle N_0 \rangle^2 f_0 (x) f_0 (x) f_0 (x) ,$$

$$i \partial_t \langle N_0 \rangle = \left\langle \left[a_0^\dagger a_0 , V \right] \right\rangle \approx 0 ,$$

$$\sum_{I \neq 0} \frac{\langle N_I \rangle \langle a_0^\dagger [a_I , V] \rangle + \langle N_0 \rangle \langle [a_0^\dagger , V] a_I \rangle}{\langle N_0 \rangle - \langle N_I \rangle} f_I (x) \approx 0 ,$$

we obtain that $\langle N_0 \rangle^{1/2} f_0 (x)$ satisfies the Gross-Pitaveskii equation.

The approximation in Eq. (43) is easily justified, since we are retaining only the leading order of the expectation value $\left\langle a_0^\dagger [\phi , V] \right\rangle$, and neglecting the others which
depend on the operators ϕ_1 and ϕ_1^\dagger and are of order smaller than $\langle N_0 \rangle^2$. The second equation Eq. (44) is derived from the previous one as a direct consequence, since the depletion of N_0 comes from the subleading terms $\langle a_0^\dagger \phi_1^\dagger a_0 \rangle$ and $\langle a_0^\dagger a_0^\dagger \phi_1 \phi_1 \rangle$. The first of these two terms is of order $\langle N_0 \rangle$, having its main contributions from separated diagrams — $\langle a_0^\dagger \phi_1^\dagger a_0 \rangle \approx \langle N_0 \rangle \langle \phi_1^\dagger \phi_1 \rangle$ — and the second is of the same order due to the dynamics. The other terms are even more suppressed, as can be argued considering that they contain an odd number of operators ϕ_1. Taking their time derivatives, we observe that they arise from the second order in the interaction, making these terms negligible in the regime of weak interaction. The terms $\langle a_0^\dagger a_0^\dagger a_0^\dagger \phi_1 \phi_1 \rangle$ are also sub-leading with respect to those producing the depletion, since the contributions coming from separated diagrams vanish by definition, and the remaining fully connected diagrams describe the correlation between small operators, acquiring relevance only while the many-body quantum state is mixed by the depletion of the condensate:

$$\langle a_0^\dagger a_0^\dagger a_0^\dagger \phi_1 \phi_1 \rangle = \langle a_0^\dagger \phi_1 \phi_1 \rangle = \delta_{k_1+k_2+k_3+k_4} \langle a_{k_1}^\dagger a_{k_2}^\dagger a_{k_3} a_{k_4} \rangle \ .$$

(46)

Using the same arguments we can assume the approximation in Eq. (45) to hold, as the denominator of order $\langle N_0 \rangle$ is sufficient to suppress the terms in the numerator, which are negligible with respect to the leading term in Eq. (43).

The leading terms in Eq. (45) do not affect the depletion of N_0, but they may be of the same order. They depend on the expectation value

$$\langle a_0^\dagger [a_I, V] \rangle \approx \lambda \left(\int dx \bar{f}_I(x) \bar{f}_0(x) f_0(x) f_0(x) \right) \langle N_0 \rangle^2 .$$

(47)

Therefore these mixed terms — with two ladder operators relative one to the condensed state and one to an excited state — are completely negligible when the integral $\int \bar{f}_I f_0 f_0 f_0$ is sufficiently small. This happens when the condensed 1-particle state is approximately $f_0 \approx V^{-1/2} e^{i \theta_0}$, i.e. when the atom number density of the condensate is approximately homogeneous.

Moreover, in many cases of interest, it often holds that the terms in the LHS of Eq. (45) vanish identically: if the quantum state is an eigenstate of a conserved charge — e.g. total momentum or total angular momentum — the orbitals must be labeled with a specific value of charge. The relative ladder operators act by adding or removing from the state such charge, and for any expectation value not to vanish the charges must cancel out. In the case of homogeneity of the condensate and translational invariance of the Hamiltonian, this statement regards the conservation of momentum. In particular, if the state is invariant under translations, we have

$$\langle a_{k_1}^\dagger a_{k_2}^\dagger a_{k_3} a_{k_4} \rangle = \delta_{k_1+k_2+k_3+k_4} \langle a_{k_1}^\dagger a_{k_2}^\dagger a_{k_3} a_{k_4} \rangle ,$$

(48)

$$\langle a_0^\dagger a_0^\dagger a_0 a_k \rangle = 0$$

(49)

(for $k \neq 0$).

In conclusion, we obtain that for a condensate with a quasi-homogeneous density a good approximation for the dynamics of the function $\langle N_0 \rangle^{1/2} f_0$, the rescaled 1-particle
The information loss problem: an analogue gravity perspective

wavefunction macroscopically occupied by the condensate, is provided by
\[i\partial_t \left(\langle N_0 \rangle^{1/2} f_0 (x) \right) = -\frac{\nabla^2}{2m} \left(\langle N_0 \rangle^{1/2} f_0 (x) \right) + \lambda \langle N_0 \rangle^{3/2} \overline{f_0} (x) f_0 (x) f_0 (x) + \lambda \langle N_0 \rangle^{-1} \left(\langle a_0^\dagger \phi_1 (x) \phi_1^\dagger (x) a_0 \rangle + \langle a_0^\dagger \phi_1 (x) \phi_1 (x) a_0 \rangle \right) \left(\langle N_0 \rangle^{1/2} f_0 (x) \right) + \lambda \langle N_0 \rangle^{-1} \langle a_0^\dagger \phi_1 (x) a_0^\dagger \phi_1 (x) \rangle \left(\langle N_0 \rangle^{1/2} \overline{f_0} (x) \right) + O \left(\lambda \langle N_0 \rangle^{1/2} V^{-3/2} \right). \] (50)

This equation is equivalent to the Gross-Pitaveskii equation Eq. (6) when we consider only the leading terms, i.e. the first line of Eq. (51). If we also consider the remaining lines of the Eq. (50), i.e. if we include the effect of the depletion, we obtain an equation which should be compared to the equation for the mean-field function up to the terms quadratic in the operators \(\delta \phi \). The two equations are analogous when making the identification
\[\langle N_0 \rangle^{1/2} f_0 \sim \langle \phi \rangle, \] (51)
\[\langle \phi_0^\dagger \phi_1^\dagger \phi_1 \phi_0 \rangle \sim \overline{\langle \phi \rangle} \langle \phi \rangle \langle \delta \phi^\dagger \delta \phi \rangle, \] (52)
\[\langle \phi_0^\dagger \phi_0 \phi_1 \phi_1 \rangle \sim \overline{\langle \phi \rangle} \langle \phi \rangle \langle \delta \phi \delta \phi \rangle. \] (53)

The possible ambiguities in comparing the two equations come from the arbitrariness in fixing the over-all time-dependent phases of the functions \(f_0 \) and \(\langle \phi \rangle \), and from the fact that the commutation relations for the operators \(\phi_1 \) and the operators \(\delta \phi \) differ from each other by a term going as \(\overline{f_0} f_0 \), as seen in Eq. (37). This causes an apparent difference when comparing the two terms
\[\lambda \langle N_0 \rangle^{-1} \left(\langle a_0^\dagger \phi_1 (x) \phi_1^\dagger (x) a_0 \rangle + \langle a_0^\dagger \phi_1 (x) \phi_1 (x) a_0 \rangle \right) \left(\langle N_0 \rangle^{1/2} f_0 (x) \right) \sim 2\lambda \langle \delta \phi^\dagger (x) \delta \phi (x) \rangle \langle \phi (x) \rangle. \] (54)

However the difference can be reabsorbed — manipulating the RHS — in a term which only affects the overall phase of the mean-field, not the superfluid velocity.

The equation for the depletion can be easily derived for the number-conserving approach and compared to the result in the Bogoliubov approach. As we have seen, the dynamical equation for \(f_0 \) contains the information for the time derivative of its occupation number. Projecting the derivative along the function itself and taking the imaginary part, one gets
\[\frac{1}{2} i\partial_t \langle N_0 \rangle = \frac{1}{2} \langle \left[a_0^\dagger a_0, V \right] \rangle = i \text{Im} \left(\int dx \left(\langle N_0 \rangle^{1/2} f_0 (x) \right) i\partial_t \left(\langle N_0 \rangle^{1/2} f_0 (x) \right) \right) \approx \frac{\lambda}{2} \left(\int dx \left(\phi_0^\dagger (x) \phi_0^\dagger (x) \phi_1 (x) \phi_1 (x) \right) - \langle \phi_1^\dagger (x) \phi_1^\dagger (x) \phi_0 (x) \phi_0 (x) \rangle \right). \] (55)

We can now compare this equation to the one for the depletion in mean-field description
\[\frac{1}{2} i\partial_t N = \frac{1}{2} i\partial_t \left(\int dx \langle \phi (x) \rangle \langle \phi (x) \rangle \right) \]
The information loss problem: an analogue gravity perspective

\[i \text{Im} \left(\int \langle \phi(x) \rangle i \partial_t \langle \phi(x) \rangle \right) \]
\[\approx \frac{\lambda}{2} \left(\int \langle \phi(x) \rangle \langle \delta \phi(x) \rangle \langle \delta \phi(x) \rangle - \langle \phi(x) \rangle \langle \phi(x) \rangle \langle \delta \phi^\dagger(x) \delta \phi^\dagger(x) \rangle \right). \]

(56)

The two expressions are consistent with each other

\[\left\langle \phi_0^\dagger(x) \phi_0^\dagger(x) \phi_1(x) \phi_1(x) \right\rangle \sim \langle \phi(x) \rangle \langle \phi(x) \rangle \langle \delta \phi(x) \rangle \langle \delta \phi(x) \rangle. \]

(57)

For coherent states one expects to find equivalence between \(\delta \phi \) and \(\phi_1 \). To do so we need to review the number-conserving formalism, that can provide the same description used for analogue gravity in the general case, \textit{e.g.} when there is a condensed state with features different from those of coherent states.

4. Number-conserving formalism

Within the mean-field framework, the splitting of the field obtained by translating the field operator \(\phi \) by the mean-field function produces the new field \(\delta \phi \). This redefinition of the field also induces a corresponding one of the Fock space which to a certain extent hides the physical atom degrees of freedom, since the field \(\delta \phi \) describes the quantum fluctuations over the mean-field.

Analogue gravity is defined considering this field and its Hermitian conjugate, properly combined, to study the fluctuation of phase. The fact that \(\delta \phi \) is obtained by translation provides this field with canonical commutation relation. The mean-field description for condensates holds for coherent states and is a good approximation for quasi-coherent states.

When we consider states with fixed number of atoms, therefore not coherent states, it is better to consider different operators to study the fluctuations. One can do it following the intuition that the fluctuation represents a shift of a single atom from the condensate to the excited fraction and vice versa. Our main reason here to proceed this way is that we are forced to retain the quantum nature of the condensate. We therefore want to adopt the established formalism of number-conserving ladder operators (see \textit{e.g.} [20]) to obtain a different expression for the Bogoliubov-de Gennes equation, studying the excitations of the condensate in these terms. We can adapt this discussion to the time-dependent orbitals.

An important remark is that the qualitative point of introducing the number-conserving approach is conceptually separated from the fact that higher-order terms are anyway neglected by doing Bogoliubov approximations [20, 26]. Indeed, even going beyond the latter, including terms with three or four quasi-particle operators, one has anyway the problem that neglecting the commutation relations for \(a_0 \) no quantum correlations between the quasi-particles and the condensate are still present. Including such terms, in a growing level of accuracy (and complexity), the main difference would be that the true quasi-particles of the systems do no longer coincide with the Bogoliubov ones. From a practical point of view, this makes clearly a (possibly) huge
quantitative difference for the energy spectrum, correlations between quasi-particles, transport properties and observables. Nevertheless this does not touch at heart that the quantum nature of the condensate is not retained. A discussion of the terms one can include beyond Bogoliubov approximation, and the resulting hierarchy of approximations, is presented in [26]. Here our point is rather of principle, i.e. the investigation of the consequences of retaining the operator nature of a_0. Therefore we basically stick to the standard Bogoliubov approximation, improved via the introduction of number-conserving operators.

If we consider the ladder operators a_I, satisfying by definition the relations in Eq. (29)-(30), and keep as reference the state a_0 for the condensate, it is a straightforward procedure to define the number-conserving operators $\alpha_I \neq 0$, one for each excited wavefunction, according to the relations

$$\alpha_I = N_0^{-1/2} a_0^\dagger a_I,$$

$$[\alpha_I, \alpha_J^\dagger] = \delta_{IJ} \quad \forall I, J \neq 0, \quad (58)$$

$$[\alpha_I, \alpha_J] = 0 \quad \forall I, J \neq 0. \quad (59)$$

The degree relative to the condensate is absorbed into the definition, from the hypothesis of number conservation. These relations hold for $I, J \neq 0$, and obviously there is no number-conserving ladder operator relative to the condensed state. The operators α_I are not a complete set of operators to describe the whole Fock space, but they span any subspace of given number of total atoms. To move from one another it would be necessary to include the operator a_0.

This restriction to a subspace of the Fock space is analogous to what is implicitly done in the mean-field approximation, where one considers the subspace of states which are coherent with respect to the action of the destruction operator associated to the mean-field function.

In this setup we need to relate the excited part described by ϕ_1 to the usual translated field $\delta \phi$, and obtain an equation for its dynamics related to the Bogoliubov-de Gennes equation. To do so we need to study the linearisation of the dynamics of the operator ϕ_1, combined with the proper operator providing the number conservation

$$N_0^{-1/2} a_0^\dagger \phi_1 = N_0^{-1/2} a_0^\dagger (\phi - \phi_0) = \sum_{I \neq 0} f_I \alpha_I. \quad (61)$$

As long as the approximations needed to write a closed dynamical equation for ϕ_1 are compatible with those approximations under which the equation for the dynamics of f_0 resembles the Gross-Pitaevskii equation — i.e. as long as the time derivative of the operators α_I can be written as a combination of the α_I themselves — we can expect to have a setup for analogue gravity.

Therefore we consider the order of magnitude of the various contributions to the time derivative of $\left(N_0^{-1/2} a_0^\dagger \phi_1 \right)$. We have already discussed the time evolution of the function f_0: from the latter it depends the evolution of the operator a_0, since it is the
projection along f_0 of the full field operator ϕ. At first we observe that the variation in time of N_0 must be of smaller order, both for the definition of condensation and because of the approximations considered in the previous section

$$i\partial_t N_0 = i\partial_t \left(\int dx dy f_0(x) \bar{f}_0(y) \phi^\dagger(x) \phi(y) \right)$$

$$= \left[a_0^\dagger a_0, V \right] + \sum_{I \neq 0} \frac{1}{\langle N_0 \rangle - \langle N_I \rangle} \left(\left\langle \left[a_0^\dagger a_I, V \right] \right\rangle a_I^\dagger a_0 + \left\langle \left[a_I^\dagger a_0, V \right] \right\rangle a_I^\dagger a_I \right). \quad (62)$$

The second term is negligible due to the prefactor $\langle a_I^\dagger a_0, V \rangle$. Moreover, since $\langle a_I^\dagger a_0 \rangle$ is vanishing, the dominant term is the first, which has contributions of at most the order of the depletion factor.

The same can be argued for both the operators a_0 and $N_0^{-1/2}$: their derivative do not provide leading terms when we consider the derivative of the composite operator $\left(N_0^{-1/2} a_0^\dagger \phi_1 \right)$, only the derivative of the last operator ϕ_1 being relevant. At leading order, we have

$$i\partial_t \left(N_0^{-1/2} a_0^\dagger \phi_1 \right) \approx i \left(N_0^{-1/2} a_0^\dagger \right) \left(\partial_t \phi_1 \right). \quad (63)$$

We therefore have to analyse the properties of $\partial_t \phi$, considering the expectation values between the orthogonal components ϕ_0 and ϕ_1 and their time derivatives:

$$\left\langle \phi_0^\dagger (y) \left(i\partial_t \phi_0(x) \right) \right\rangle = \left(\langle N_0 \rangle^{1/2} \bar{f}_0(y) \right) i\partial_t \left(\langle N_0 \rangle^{1/2} f_0(x) \right), \quad (64)$$

$$\left\langle \phi_1^\dagger (y) \left(i\partial_t \phi_1(x) \right) \right\rangle = -\sum_{I \neq 0} \bar{f}_0(y) f_I(x) \frac{\langle N_I \rangle \left\langle a_0^\dagger [a_I, V] \right\rangle + \langle N_0 \rangle \left\langle [a_0, V] a_I \right\rangle}{\langle N_0 \rangle - \langle N_I \rangle}$$

$$= -\left\langle \left(i\partial_t \phi_0^\dagger(y) \right) \phi_1(x) \right\rangle, \quad (65)$$

$$\left\langle \phi_1^\dagger (y) \left(i\partial_t \phi_1(x) \right) \right\rangle = \left\langle \phi_1^\dagger(y) \left(-\frac{\nabla^2}{2m} \phi_1(x) \right) \right\rangle + \left\langle \phi_1^\dagger(y) [\phi_1(x), V] \right\rangle$$

$$-\sum_{I \neq 0} \bar{f}_I(y) f_0(x) \frac{\langle N_I \rangle \left\langle [a_I^\dagger a_0, V] \right\rangle}{\langle N_0 \rangle - \langle N_I \rangle}. \quad (66)$$

The first equation shows that the function $\langle N_0 \rangle^{1/2} f_0(x)$ assumes the same role of the solution of Gross-Pitaevskii equation in the mean-field description. As long as the expectation value $\left\langle \left[a_0^\dagger a_I, V \right] \right\rangle$ is negligible, we have that the mixed term described by the second equation is also negligible — as it can be said for the last term in the third equation — so that the excited part ϕ_1 can be considered to evolve separately from ϕ_0 in first approximation. Leading contributions from $\left\langle \phi_1^\dagger [\phi_1, V] \right\rangle$ must be those quadratic in the operators ϕ_1 and ϕ_1^\dagger, and therefore the third equation can be approximated as

$$\left\langle \phi_1^\dagger i\partial_t \phi_1 \right\rangle \approx \left\langle \phi_1^\dagger \left(-\frac{\nabla^2}{2m} \phi_1 + 2\lambda \phi_0^\dagger \phi_0 \phi_1 + \lambda \phi_1^\dagger \phi_0 \phi_0 \right) \right\rangle. \quad (67)$$

This equation can be compared to the Bogoliubov-de Gennes equation. If we rewrite it in terms of the number-conserving operators, and we consider the fact that the terms
mixing the derivative of \(\phi_1 \) with \(\phi_0 \) are negligible, we can write an effective linearised equation for \(N_0^{-1/2} a_0^\dagger \phi_1 \):

\[
i\partial_t \left(N_0^{-1/2} a_0^\dagger \phi_1 (x) \right) \approx -\frac{\nabla^2}{2m} \left(N_0^{-1/2} a_0^\dagger \phi_1 (x) \right) + 2\lambda \rho_0 (x) \left(N_0^{-1/2} a_0^\dagger \phi_1 (x) \right) \\
+ \lambda \rho_0 (x) e^{2i\theta_0(x)} \left(\phi_1^\dagger (x) a_0 N_0^{-1/2} \right).
\] (68)

In this equation we use the functions \(\rho_0 \) and \(\theta_0 \) which are obtained from the condensed wavefunction, by writing it as \(\langle N_0 \rangle^{1/2} f_0 = \rho_0^{1/2} e^{i\theta_0} \). One can effectively assume the condensed function to be the solution of the Gross-Pitaevskii equation, as the first corrections will be of a lower power of \(\langle N_0 \rangle \) (and include a backreaction from this equation itself).

Assuming that \(\rho_0 \) is, at first approximation, homogeneous implies that the term \(\left[a_0^\dagger a_1^\dagger, V \right] \) is negligible. If \(\rho_0 \) and \(\theta_0 \) are ultimately the same as those obtained from the Gross-Pitaevskii equation, the same equation that holds for the operator \(\delta \phi \) can be assumed to hold for the operator \(N_0^{-1/2} a_0^\dagger \phi_1 \). The solution for the mean-field description of the condensate is therefore a general feature of the system in studying the quantum perturbation of the condensate, not strictly reserved to coherent states.

While having strongly related dynamical equations, the substantial difference between the operators \(\delta \phi \) of Eq. (4) and \(N_0^{-1/2} a_0^\dagger \phi_1 \) is that the number-conserving operator does not satisfy the canonical commutation relations with its Hermitian conjugate, as we have extracted the degree of freedom relative to the condensed state:

\[
\left[\phi_1 (x), \phi_1^\dagger (y) \right] = \delta (x,y) - f_0 (x) \overline{f_0} (y).
\] (69)

While this does not imply a significant obstruction, one must remind that the field \(\phi_1 \) should never be treated as a canonical quantum field. What has to be done, instead, is considering its components with respect to the basis of time-dependent orbitals. Each mode of the projection \(\phi_1 \) behaves as if it is a mode of a canonical scalar quantum field in a curved spacetime. Keeping this in mind we can safely retrieve analogue gravity.

5. Analogue gravity with atom number conservation

In the previous Section we discussed the equivalent of the Bogoliubov-de Gennes equation in a number-conserving framework. Our aim in the present Section is to extend this description to analogue gravity.

The field operators required for analogue gravity will differ from those relative to the mean-field description, and they should be defined considering that we have by construction removed the contribution from the condensed 1-particle state \(f_0 \). The dynamical equation for the excited part in the number-conserving formalism Eq. (68) appears to be the same as for the case of coherent states (as in Eq. (7)), but instead of the field \(\delta \phi \) one has \(N_0^{-1/2} a_0^\dagger \phi_1 \), where we remind that \(N_0 = a_0^\dagger a_0 \).

Using the Madelung representation, we may redefine the real functions \(\rho_0 \) and \(\theta_0 \) from the condensed wavefunction \(f_0 \) and the expectation value \(\langle N_0 \rangle \). Approximating at
The information loss problem: an analogue gravity perspective

The leading order, we can obtain their dynamics as in the quantum Euler equations (11)–(12)

\[\langle N_0 \rangle^{1/2} f_0 = \rho_0 e^{i\theta_0}. \] (70)

These functions enter in the definition of the quantum operators \(\theta_1 \) and \(\rho_1 \), which take a different expression from the usual Madelung representation when we employ the set of number-conserving ladder operators

\[\theta_1 = -\frac{i}{2} \langle N_0 \rangle^{-1/2} \sum_{I \neq 0} \left(\frac{f_I}{f_0} N_0^{-1/2} a_I^\dagger - \frac{f_I}{f_0} a_I^\dagger a_0 N_0^{-1/2} \right) \]

\[= \frac{i}{2} \left(\frac{N_0^{-1/2} \phi_0^\dagger \phi_1 - \phi_0^\dagger \phi_0 N_0^{-1/2}}{\langle N_0 \rangle^{1/2} \frac{f_I}{f_0}} \right), \] (71)

\[\rho_1 = \langle N_0 \rangle^{1/2} \sum_{I \neq 0} \left(f_0 f_I N_0^{-1/2} a_I^\dagger - f_0 f_I a_I^\dagger a_0 N_0^{-1/2} \right) = \]

\[= \langle N_0 \rangle^{1/2} \left(N_0^{-1/2} \phi_0^\dagger \phi_1 + \phi_0^\dagger \phi_0 N_0^{-1/2} \right). \] (72)

From equations (71) and (72) we observe that the structure of the operators \(\theta_1 \) and \(\rho_1 \) consists of a superposition of modes, each dependent on a different eigenfunction \(f_I \) of the 2-point correlation function, with a sum over the index \(I \neq 0 \).

The new fields \(\theta_1 \) and \(\rho_1 \) do not satisfy the canonical commutation relations since the condensed wavefunction \(f_0 \) is treated separately by definition. However, these operators could be analysed mode-by-mode, and therefore be compared in full extent to the modes of quantum fields in curved spacetime to which they are analogous. Their modes satisfy the relations

\[[\theta_I, \rho_J] = -i f_I f_J \delta_{IJ} \quad \forall I, J \neq 0. \] (73)

Eq. (73) is a basis-dependent expression which can in general be found for the fields of interest. In the simplest case of homogeneous density of the condensate \(\rho_0 \), this commutation relations reduce to \(-i \delta_{IJ}\), and the Fourier transform provides the tools to push the description to full extent where the indices labelling the functions are the momenta \(k \).

The equations for analogue gravity are found under the usual assumptions regarding the quantum pressure, i.e. the space gradients of the atom densities are assumed to be small. When considering homogeneous condensates this requirement is of course satisfied. In non-homogeneous condensates we require

\[\nabla \left(\rho_0^{-1} \nabla \rho_0 \right) \ll 4m\lambda \rho_0, \] (74)

\[\nabla \left(\rho_0^{-1} \nabla \rho_1 \right) \ll 4m\lambda \rho_1. \] (75)

Making the first assumption (74), the effective coupling constant \(\tilde{\lambda} \) is a global feature of the system with no space dependence. This means that all the inhomogeneities of the system are encoded in the velocity of the superfluid, the gradient of the phase of the condensate. As stated before, the continuity equation can induce inhomogeneities in the
density if there are initial inhomogeneities in the phase, but for sufficiently short intervals of time the assumption is satisfied. Another effect of the first assumption (74) is that the term \(\int \rho f f_0 f_0 f_0 f_0 f_0 \) is negligible. The more \(\rho_0 \) is homogeneous, the closer this integral is to vanishing, making the description more consistent. The second assumption (75) is a general requirement in analogue gravity, needed to have local Lorentz symmetry, and therefore a proper Klein-Gordon equation for the field \(\theta_1 \). When \(\rho_0 \) is homogeneous this approximation means considering only small momenta, for which we have the usual dispersion relation.

Under these assumptions, the usual equations for analogue gravity are obtained

\[
\rho_1 = -\frac{1}{\lambda} \left((\partial_t \theta_1) + \frac{1}{m} (\nabla \theta_0) (\nabla \theta_1) \right), \tag{76}
\]

\[
(\partial_t \rho_1) = -\frac{1}{m} \nabla \left(\rho_1 (\nabla \theta_0) + \rho_0 (\nabla \theta_1) \right) \tag{77}
\]

\[
\Downarrow
0 = \partial_t \left(-\frac{1}{\lambda} (\partial_t \theta_1) - \frac{\delta_{ij}}{m\lambda} (\nabla_j \theta_0) (\nabla_i \theta_1) \right)
+ \nabla_j \left(-\frac{\delta_{ij}}{m\lambda} (\nabla_j \theta_0) (\partial_t \theta_1) + \frac{\delta_{ij} \rho_0}{m} - \frac{1}{\lambda} \frac{\delta_{ij} \delta_{jm}}{m} (\nabla_l \theta_0) (\nabla_m \theta_0) (\partial_t \theta_1) \right) \tag{78}
\]

so that \(\theta_1 \) is the analogue of a scalar massless field in curved spacetime. However, the operator \(\theta_1 \) is intrinsically unable to provide an exact full description of a massless field since it is missing the mode \(f_0 \). Therefore, the operator \(\theta_1 \) is best handled when considering the propagation of its constituent modes, and relating them to those of the massless field.

The viability of this description as a good analogue gravity setup is ensured, ultimately, by the fact that the modes of \(\theta_1 \), i.e. the operators describing the excited part of the atomic field, have a closed dynamics. The most important feature in the effective dynamics of the number-conserving operators \(N^{-1/2}_0 a_0^\dagger a_I \), as described in equation Eq. (68), is that its time derivative can be written as a composition of the same set of number operators, and this enables the analogue model.

In the following we are going to stick to the case of an homogenous condensate, which is arguably the most studied case in analogue gravity. The description is enormously simplified by the fact that the gradient of the condensed wavefunction vanishes, since \(f_0 = V^{-1/2} \), meaning that the condensed state is fully described by the state of null momentum \(k = 0 \). In a homogeneous BEC all the time-dependent orbitals are labeled by the momenta they carry, and at every moment in time we can apply the same Fourier transform to transform the differential equations in the space of coordinates to algebraic equations in the space of momenta. We expect that the number-conserving treatment of the inhomogenous condensate follows along the same lines, albeit being technically more complicated.
6. Simulating cosmology in number-conserving analogue gravity

With an homogeneous condensate we can simulate a cosmology with a scale factor changing in time — as long as we can control and modify in time the strength of the 2-body interaction \(\lambda \) — and we can verify the prediction of quantum field theory in curved spacetime that in an expanding universe one should observe a cosmological particle creation. In this setup there is no ambiguity in approximating the mixed term of the interaction potential, as discussed in the Subsection 3.2.

To further proceed, we apply the usual transformation to pass from the Bogoliubov description of the atomic system to the setup of analogue gravity, and we then proceed considering number-conserving operators. It is convenient to adopt a compact notation for the condensate wavefunction and its approximated dynamics, as discussed previously in equations (11)–(12) and in Eq. (70)

\[
f_0 (x) \langle N_0 \rangle^{1/2} \equiv \phi_0 = \rho_0 e^{i \theta_0},
\]
\[
\partial_t \rho_0 = 0,
\]
\[
\partial_t \theta_0 = -\lambda \rho_0 .
\]

To study the excitations described by the operator \(\theta_1 (x) \) we need the basis of time-dependent orbitals, which in the case of a homogeneous condensate is given by the plane waves, the set of orthonormal functions which define the Fourier transform and are labeled by the momenta. By Fourier transforming the operator \(\phi_1 (x) \), orthogonal to the condensate wavefunction, we have

\[
\delta \phi_k \equiv \int \frac{dx}{\sqrt{V}} e^{-i k x} N_0^{-1/2} a_0^\dagger \phi_1 (x)
\]
\[
= \int \frac{dx}{\sqrt{V}} e^{-i k x} N_0^{-1/2} a_0^\dagger \sum_{q \neq 0} e^{i q x} \sqrt{V} a_q
\]
\[
= N_0^{-1/2} a_0^\dagger a_k,
\]
\[
\left[\delta \phi_k, \delta \phi_{k'}^\dagger \right] = \delta_{k,k'} \quad \forall k, k' \neq 0 .
\]

Notice that with the notation of (58), \(\delta \phi_k \) would be just \(\alpha_k \) and one sees the dependence on the condensate operator \(a_0 \).

Following the same approach discussed in the Sec. 5, we define \(\theta_k \) and \(\rho_k \). These number-conserving operators are labeled with a non-vanishing momentum and act in the atomic Fock space, in a superposition of two operations, extracting momentum \(k \) from the state or introducing momentum \(-k \) to it. All the following relations are defined for \(k, k' \neq 0 \)

\[
\theta_k = -\frac{i}{2} \left(\frac{\delta \phi_k}{\phi_0} - \frac{\delta \phi_{-k}^\dagger}{\phi_0} \right),
\]
\[
\rho_k = \rho_0 \left(\frac{\delta \phi_k}{\phi_0} + \frac{\delta \phi_{-k}^\dagger}{\phi_0} \right),
\]
\[
[\theta_k, \rho_{k'}] = -i \left[\delta \phi_k, \delta \phi_{-k'}^\dagger \right] = -i \delta_{k,-k'} .
\]
The information loss problem: an analogue gravity perspective

\[\langle \delta \phi_k^\dagger(t) \delta \phi_{k'}(t) \rangle = \delta_{k,k'} \langle N_k \rangle. \] (87)

Again we remark that these definitions of \(\theta_k \) and \(\rho_k \) do not provide, through an inverse Fourier transform of these operators, a couple of conjugate real fields \(\theta_1(x) \) and \(\rho_1(x) \) with the usual commutation relations as in Eq. (10), because they are not relative to a set of functions that form a complete basis of the 1-particle Hilbert space, as the mode \(k = 0 \) is not included. But these operators, describing each mode with \(k \neq 0 \), can be studied separately and they show the same behaviour of the components of a quantum field in curved spacetime: the commutation relations in Eq. (86) are the same as those that are satisfied by the components of a quantum scalar field.

From the Bogoliubov-de Gennes equation (68) we get the two coupled dynamical equations for \(\theta_k \) and \(\rho_k \)

\[\partial_t \theta_k = -\frac{1}{2} \left(\frac{k^2}{2m} + 2\lambda \rho_0 \right) \frac{\rho_k}{\rho_0}, \] (88)

\[\partial_t \frac{\rho_k}{\rho_0} = \frac{k^2}{m} \theta_k. \] (89)

Combining these gives the analogue Klein-Gordon equation for each mode \(k \neq 0 \)

\[\partial_t \left(-\frac{1}{\lambda \rho_0 + \frac{k^2}{4m}} (\partial_i \theta_k) \right) = \frac{k^2}{m} \theta_k. \] (90)

In this equation the term due to quantum pressure is retained for convenience, since the homogeneity of the condensed state makes it easy to maintain it in the description. It modifies the dispersion relation and breaks Lorentz symmetry, but the usual expression is found in the limit \(\frac{k^2}{2m} \ll 2\lambda \rho_0 \).

When the quantum pressure is neglected, the analogue metric tensor is

\[g_{\mu\nu} dx^\mu dx^\nu = \sqrt{\frac{\rho_0}{m \lambda}} \left(-\frac{\lambda \rho_0}{m} dt^2 + \delta_{ij} dx^i dx^j \right). \] (91)

This metric tensor is clearly analogous to that of a cosmological spacetime, where the evolution is given by the time dependence of the coupling constant \(\lambda \). This low-momenta limit is the regime in which we are mostly interested, because when these conditions are realised the quasi-particles, the excitations of the field \(\theta_k \), behave most similarly to particles in a curved spacetime with local Lorentz symmetry.

6.1. Cosmological particle production

We now consider a setup for which the coupling constant varies from an initial value \(\lambda \) to a final value \(\lambda' \) through a transient phase. \(\lambda \) is assumed asymptotically constant for both \(t \rightarrow \pm \infty \). This setup has been studied in the Bogoliubov approximation in [9, 27, 28, 29, 30] and can be experimentally realised with \(\text{e.g.} \) via Feshbach resonance. For one-dimensional Bose gases, where significant corrections to the Bogoliubov approximation are expected far from the weakly interacting limit, a study of the large time evolution of correlations was presented in [31]. Here our aim is to study the effect of the variation of the coupling constant in the number-conserving framework.
There will be particle creation and the field in general takes the expression
\[
\theta_k(t) = \frac{1}{\mathcal{N}_k(t)} \left(e^{-i\Omega_k(t)} c_k + e^{i\Omega_k(t)} c_k^\dagger \right),
\]
where the operators \(c_k \) are the creation and destruction operators for the quasi-particles at \(t \to -\infty \). For the time \(t \to +\infty \) there will be a new set of operators \(c' \)
\[
\theta_k(t \to -\infty) = \frac{1}{\mathcal{N}_k} \left(e^{-i\omega_k t} c_k + e^{i\omega_k t} c_k^\dagger \right),
\]
\[
\theta_k(t \to +\infty) = \frac{1}{\mathcal{N}_k} \left(e^{-i\omega_k' t} c_k' + e^{i\omega_k' t} c_k'^\dagger \right).
\]
From these equations, in accordance with Eq. (88), we obtain
\[
\rho_k = -\frac{2\rho_0}{\frac{k^2}{2m} + 2\lambda \rho_0} \partial_t \theta_k
\]
and the two following asymptotic expressions for \(\rho_k \):
\[
\rho_k(t \to -\infty) = \frac{2i\omega_k \rho_0}{\frac{k^2}{2m} + 2\lambda \rho_0} \frac{1}{\mathcal{N}_k} \left(e^{-i\omega_k t} c_k - e^{i\omega_k t} c_k^\dagger \right),
\]
\[
\rho_k(t \to +\infty) = \frac{2i\omega'_k \rho_0}{\frac{k^2}{2m} + 2\lambda' \rho_0} \frac{1}{\mathcal{N}_k} \left(e^{-i\omega'_k t} c_k' - e^{i\omega'_k t} c_k'^\dagger \right).
\]
With the previous expressions for \(\theta_k \) and \(\rho_k \) and imposing the commutation relations in Eq. (88), we retrieve the energy spectrum
\[
\omega_k = \sqrt{\frac{k^2}{2m} \left(\frac{k^2}{2m} + 2\lambda \rho_0 \right)}
\]
as expected and the (time-dependent) normalization prefactor \(\mathcal{N} \):
\[
\mathcal{N}_k = \sqrt{4\rho_0 \sqrt{\frac{k^2}{2m} + 2\lambda \rho_0}}.
\]
The expected commutation relations for the operators \(c \) and \(c' \) are found (again not including the mode \(k = 0 \)):
\[
0 = \left[c_k, c_{k'} \right] = \left[c_k', c_{k'}' \right],
\]
\[
\delta_{k,k'} = \left[c_k, c_{k'}^\dagger \right] = \left[c_k', c_{k'}'^\dagger \right].
\]
It is found
\[
c_k' = \cosh \Theta_k c_k + \sinh \Theta_k e^{i\varphi_k} c_k^\dagger
\]
with
\[
\cosh \Theta_k = \cosh \Theta_{-k},
\]
\[
\sinh \Theta_k e^{i\varphi_k} = \sinh \Theta_{-k} e^{i\varphi_{-k}}.
\]
The initial state in which we are interested is the vacuum of quasi-particles, so that each quasi-particle destruction operators \(c_k \) annihilates the initial state \(\sim 3 \)
\[
c_k |\text{in}\rangle \equiv 0 \quad \forall k \neq 0.
\]
3 To make contact with the standard Bogoliubov approximation, if there one denotes by \(\gamma_k \) the quasi-particles one has that the \(\gamma_k \) are a combination of the atom operators \(a_k, a_{-k} \) of the form
\[
\gamma_k = u_k a_k + v_k a_{-k}^\dagger \quad [20].
\]
Correspondingly, in the number-conserving formalism the quasi-particle operators \(c_k \) are a combination of the atom operators \(\delta \phi_k \equiv a_k, \delta \phi_{-k} \equiv a_{-k} \).
To realise this initial condition we should impose constraints, in principle, on every correlation function. We focus on the 2-point correlation functions $\langle \delta \phi^\dagger \delta \phi \rangle$ and $\langle \delta \phi \delta \phi \rangle$. In particular, the first of the two determines the number of atoms with momentum k in the initial state:

$$\langle \delta \phi^\dagger_k \delta \phi_k \rangle = \langle a^\dagger_k a_0 N_0^{-1} a^\dagger_0 a_k \rangle = \langle a^\dagger_k a_k \rangle = \langle N_k \rangle.$$ (105)

In order for the state to be condensed with respect to the state with momentum 0, it must be that $\langle N_k \rangle \ll \langle N_0 \rangle = \rho_0 V$. When the vacuum condition Eq. (104) holds, the 2-point correlation functions can be easily evaluated to be:

$$\langle \delta \phi^\dagger_k \delta \phi_{k'} \rangle = \left(\frac{1}{2} \frac{k^2}{2m} + \frac{\lambda \rho_0}{\sqrt{\frac{k^2}{2m} \left(\frac{k^2}{2m} + 2\lambda \rho_0 \right)}} - \frac{1}{2} \right) \delta_{k,k'}$$

$$\approx \frac{1}{4} \frac{2\lambda \rho_0}{k^2/2m} \delta_{k,k'},$$ (106)

$$\langle \delta \phi_{-k} \delta \phi_{k'} \rangle = -e^{2i\theta_0} \frac{2\lambda \rho_0}{4 \sqrt{\frac{k^2}{2m} \left(\frac{k^2}{2m} + 2\lambda \rho_0 \right)}} \delta_{k,k'}$$

$$\approx -e^{2i\theta_0} \langle \delta \phi^\dagger_k \delta \phi_{k'} \rangle,$$ (107)

where in the last line we have used $\frac{k^2}{2m} \ll 2\lambda \rho_0$, the limit in which the quasi-particles propagate in accordance with the analogue metric Eq. (91), and one has to keep into account that the phase of the condensate is time dependent and consequently the last correlator is oscillating.

We now see that the conditions of condensation $\langle N_k \rangle \ll \langle N_0 \rangle$ and of low-momenta translate into

$$\frac{2\lambda \rho_0}{16 \langle N_0 \rangle^2} \ll \frac{k^2}{2m} \ll 2\lambda \rho_0.$$ (108)

The range of momenta that should be considered is therefore set by the number of condensate atoms, the physical dimension of the atomic system and the strength of the 2-body interaction.

The operators θ_k satisfying Eq. (90) — describing the excitations of quasi-particles over a BEC — are analogous to the components of a scalar quantum field in a cosmological spacetime. In particular, if we consider a cosmological metric given in the usual form

$$g_{\mu \nu} dx^\mu dx^\nu = -d\tau^2 + a^2 \delta_{ij} dx^i dx^j,$$ (109)

the analogy is realised for a specific relation between the coupling $\lambda (t)$ and the scale factor $a (\tau)$, which then induces the relation between the laboratory time t and the cosmological time τ. These relations are given by

$$a (\tau (t)) = \left(\frac{\rho}{m \lambda (t)} \right)^{1/4} \frac{1}{C},$$ (110)

$$d\tau = \frac{\rho}{ma (\tau (t)) C^2} dt,$$ (111)
for an arbitrary constant C.

In cosmology, the evolution of the scale factor leads to the production of particles by cosmological particle creation, as implied by the Bogoliubov transformation relating the operators which, at early and late times, create and destroy the quanta we recognise as particles. The same happens for the quasi-particles over the condensate, as discussed in Sec. (5), because the coupling λ is time-dependent and the definition itself of quasi-particles changes from initial to final time. The ladder operators associated to these quasi-particles are related to each other by the Bogoliubov transformation introduced in Eq. (101), fully defined by the parameters Θ_k and φ_k (which must also satisfy Eq. (102) and Eq. (103)).

6.2. Scattering operator

The exact expressions of Θ_k and φ_k depend on the behaviour of $\lambda(t)$, which is a function of the cosmological scale parameter and is therefore different for each cosmological model. They can in general be evaluated with the well established methods used in quantum field theory in curved spacetimes [32]. In general it is found that $\cosh \Theta_k > 1$, as the value $\cosh \Theta_k = 1$ (i.e. $\sinh \Theta_k = 0$) is restricted to the case in which λ is a constant for the whole evolution, and the analogue spacetime is simply flat.

The unitary operator describing the evolution from initial to final time is $U(t_{out}, t_{in})$; when $t_{out} \rightarrow +\infty$ and $t_{in} \rightarrow -\infty$, the operator U, is the scattering operator S. This is exactly the operator acting on the quasi-particles, defining the Bogoliubov transformation in which we are interested

$$c'_k = S^\dagger_c c_k S.$$ (112)

The behavior of c'_k, describing the quasi-particles at late times, can therefore be understood from the behaviour of the initial quasi-particle operators c_k when the expression of the scattering operator is known. In particular the phenomenon of cosmological particle creation is quantified considering the difference between the expectation value of the number operator of quasi-particles with given momentum at early times and the expectation values of the number operator of quasi-particles of same momentum at late times.

Consider as initial state the vacuum of quasi-particles at early times, satisfying the condition Eq. (104). It is analogue to a Minkowski vacuum, and the evolution of the coupling $\lambda(t)$ induces a change in the definition of quasi-particles. We find that, of course, the state is not a vacuum with respect to the final quasi-particles c'. It is

$$S^\dagger c^\dagger_k c_k S = c'^\dagger_k c'_k = \left(\cosh \Theta_k c^\dagger_k + \sinh \Theta_k e^{-i\varphi_k} c_{-k} \right) \left(\cosh \Theta_k c_k + \sinh \Theta_k e^{i\varphi_k} c^\dagger_{-k} \right)$$ (113)

and

$$\langle C^\dagger S^\dagger c^\dagger_k c_k S \rangle = \sinh^2 \Theta_k \langle c_{-k} c^\dagger_{-k} \rangle = \sinh^2 \Theta_k > 0.$$ (114)

We are interested in the impact that the evolution of the quasi-particles have on the atoms. The system is fully characterised by the initial conditions and the Bogoliubov
transformation: we have the initial occupation numbers, the range of momenta which we should consider and the relation between initial and final quasi-particles.

What is most significant is that the quasi-particle dynamics affects the occupation number of the atoms. Considering that for t sufficiently large we are already in the final regime, the field takes the following values:

$$\delta \phi_k (t \to -\infty) = i \rho_0^{1/2} e^{i \theta_0(t)} \frac{1}{N_k} \left((\mathcal{F}_k + 1) e^{-i \omega_k t} c_k - (\mathcal{F}_k - 1) e^{i \omega_k t} c_{-k}^{\dagger} \right)$$

(115)

$$\delta \phi_k (t \to +\infty) = i \rho_0^{1/2} e^{i \theta_0(t)} \frac{1}{N'_k} \left((\mathcal{F}'_k + 1) e^{-i \omega'_{k} t} c'_k - (\mathcal{F}'_k - 1) e^{i \omega'_{k} t} c'_{-k}^{\dagger} \right)$$

(116)

where $\mathcal{F}_k \equiv \frac{\omega_k}{2m + 2\lambda \rho_0}$ and $\mathcal{F}'_k \equiv \frac{\omega'_k}{2m + 2\lambda' \rho_0}$, with $\omega_k = \sqrt{\frac{k^2}{2m} + 2\lambda \rho_0}$.

One finds

$$\langle \delta \phi_k^{\dagger} (t) \delta \phi_k (t) \rangle = \frac{k^2}{2m} + \lambda \rho_0 \cosh (2 \Theta_k) - \frac{1}{2} \frac{\lambda' \rho_0 \sinh (2 \Theta_k)}{2\omega'_k} \cos (2 \omega'_{k} t - \varphi_k) .$$

(118)

In Eq. (118) the last term is oscillating symmetrically around 0 — meaning that the atoms will leave and rejoin the condensate periodically in time — while the first two are stationary.

An increase in the value of the coupling λ has therefore deep consequences. It appears explicitly in the prefactor and more importantly it affects the hyperbolic functions $\cosh \Theta_k > 1$, which implies that the mean value is larger than the initial one, differing from the equilibrium value corresponding to the vacuum of quasi-particles.

This result is significant because it explicitly shows that the quasi-particle dynamics influences the underlying structure of atomic particles. Even assuming that the backreaction of the quasi-particles on the condensate is negligible for the dynamics of the quasi-particles themselves, the mechanism of extraction of atoms from the condensate fraction is effective and increases the depletion (as also found in the standard Bogoliubov approach). This extraction mechanism can be evaluated in terms of operators describing the quasi-particles, that can be defined $a \ posteriori$, without notion of the operators describing the atoms.

The fact that analogue gravity can be reproduced in condensates independently from the use of coherent states enhances the validity of the discussion. It is not strictly necessary that we have a coherent state to simulate the effects of curvature with quasi-particles, but in the more general case of condensation, the condensed wavefunction provides a support for the propagation of quasi-particles. From an analogue gravity point of view, its intrinsic role is that of the seed for the emergence of the analogue scalar field.

7. Squeezing and quantum state structure

The Bogoliubov transformation in Eq. (101) leading to the quasi-particle production describes the action of the scattering operator on the ladder operators, relating the operators at early and late times. The linearity of this transformation is obtained by
the linearity of the dynamical equation for the quasi-particles, which is particularly simple in the case of homogeneous condensate.

The scattering operator S is unitary by definition, as it is easily checked by its action on the operators c_k. Its full expression can be found from the Bogoliubov transformation, finding the generators of the transformation when the arguments of the hyperbolic functions, the parameters Θ_k, are infinitesimal:

$$S^\dagger c_k S = c'_k = \cosh \Theta_k c_k + \sinh \Theta_k e^{i\varphi_k} c^\dagger_{-k}.$$ \hspace{1cm} (119)

It follows

$$S = \exp \left(\frac{1}{2} \sum_{k \neq 0} \left(-e^{-i\varphi_k} c_k c_{-k} + e^{i\varphi_k} c^\dagger_k c^\dagger_{-k} \right) \Theta_k \right).$$ \hspace{1cm} (120)

The scattering operator is particularly simple, and takes the peculiar expression that is required for producing squeezed states. This is the general functional expression which is found in cosmological particle creation and in its analogue gravity counterparts, whether they are realised in the usual Bogoliubov framework or in its number-conserving reformulation. As discussed previously, the number-conserving formalism is more general, reproduces the usual case when the state is an eigenstate of the destruction operator a_0, and includes the notion that the excitations of the condensate move condensate atoms to the excited part.

The expression in Eq. (120) has been found under the hypothesis that the mean value of the operator N_0 is macroscopically larger than the other occupation numbers. Instead of using the quasi-particle ladder operators, S can be rewritten easily in terms of the atom operators. In particular, we remind that the time-independent operators c_k depend on the condensate operator a_0 and can be defined as compositions of number-conserving atom operators $\delta \phi_k (t)$ and $\delta \phi^\dagger_{-k} (t)$ defined in Eq. (82). At any time there will be a transformation from a set of operators to the other. It is significant that the operators c_k commute with the operators $N_0^{-1/2} a_0^\dagger$ and $a_0 N_0^{-1/2}$, which are therefore conserved in time (as long as the linearised dynamics for $\delta \phi_k$ is a good approximation)

$$\left[\phi_1 (x), N_0^{-1/2} (t) a_0^\dagger (t) \right] = 0,$$ \hspace{1cm} (121)

$$\left[c_k, N_0^{-1/2} (t) a_0^\dagger (t) \right] = 0,$$ \hspace{1cm} (122)

$$\left[S, N_0^{-1/2} (t) a_0^\dagger (t) \right] = 0.$$ \hspace{1cm} (123)

The operator S cannot have other terms apart for those in Eq. (120), even if it is defined for its action on the operators c_k, and therefore on a set of functions which is not a complete basis of the 1-particle Hilbert space. Nevertheless the notion of number conservation implies its action on the condensate and on the operator a_0.

One could investigate whether it is possible to consider a more general expression with additional terms depending only on a_0 and a_0^\dagger, i.e. assuming the scattering operator
The information loss problem: an analogue gravity perspective

to be

\[S = \exp \left(\frac{1}{2} \sum_{k \neq 0} \left(Z_k c_k c_{-k} + c_k^\dagger c_{-k}^\dagger Z_{-k}^\dagger \right) + G_0 \right), \]

(124)

where we could assume that the coefficients of the quasi-particle operators are themselves depending on only \(a_0 \) and \(a_0^\dagger \), and so \(G_0 \). But the requirement that \(S \) commutes with the total number of atoms \(N \) implies that so do its generators, and therefore \(Z \) and \(G_0 \) must be functionally dependent on \(N_0 \), and not on \(a_0 \) and \(a_0^\dagger \) separately, since they do not conserve the total number. Therefore it must hold

\[0 = \left[\left(\frac{1}{2} \sum_{k \neq 0} \left(Z_k c_k c_{-k} + c_k^\dagger c_{-k}^\dagger Z_{-k}^\dagger \right) + G_0 \right), N \right]. \]

(125)

The only expressions in agreement with the linearised dynamical equation for \(\delta \phi \) imply that \(Z \) and \(G_0 \) are multiple of the identity, otherwise they would modify the evolution of the operators \(\delta \phi_k = N_0^{-1/2} a_0^\dagger a_I \), as they do not commute with \(N_0 \). This means that that corrections to the scattering operator are possible only involving higher-order corrections (in terms of \(\delta \phi \)).

The fact that the operator \(S \) as in Eq. \((120)\) is the only number-conserving operator satisfying the dynamics is remarkable because it emphasises that the production of quasi-particles is a phenomenon which holds only in terms of excitations of atoms from the condensate to the excited part, with the number of transferred atoms evaluated in the previous subsection. The expression of the scattering operator shows that the analogue gravity system produces states in which the final state presents squeezed quasi-particle states, but the occurrence of this feature in the emergent dynamics happens only introducing correlations in the condensate, with each quanta of the analogue field \(\theta_1 \) entangling atoms in the condensate with atoms in the excited part.

The quasi-particle scattering operator obtained in the number-conserving framework is functionally equivalent to that in the usual Bogoliubov description, and the difference between the two appears when considering the atom operators, depending on whether \(a_0 \) is treated for its quantum nature or it is replaced with the number \(\langle N_0^{1/2} \rangle \). This reflects that the dynamical equations are functionally the same when the expectation value \(\langle N_0 \rangle \) is macroscopically large.

There are no requirements on the initial density matrix of the state, and it is not relevant whether the state is a coherent superposition of infinite states with different number of atoms or it is a pure state with a fixed number of atoms in the same 1-particle state. The quasi-particle description holds the same and it provides the same predictions. This is useful for implementing analogue gravity systems, but also a strong hint in interpreting the problem of information loss. When producing quasi-particles in analogue gravity one can, in first approximation, reconstruct the initial expectation values of the excited states, and push the description to include the backreaction on the condensate. What we are intrinsically unable to do is reconstruct the entirety of the initial atom quantum state, \textit{i.e.} how the condensate is composed.
We know that in analogue gravity the evolution is unitary; the final state is uniquely determined by the initial state. Knowing all the properties of the final state we could reconstruct the initial state, and yet the intrinsic inability to infer all the properties of the condensate atoms from the excited part shows that one needs to access the full correlation properties of the condensate atoms with the quasi-particles to fully appreciate (and retrieve) the unitarity of the evolution.

7.1. Correlations

In the previous Section we made the standard choice of considering as initial state the quasi-particle vacuum. To characterise it with respect to the atomic degrees of freedom, the quasi-particle ladders operators have to be expressed as compositions of the number-conserving atomic operators, manipulating Eq. (84) and Eq. (92).

By definition, at any time, both sets of operators satisfy the canonical commutation relations (87) and (100) \(\forall k, k' \neq 0 \). Therefore, it must exist a Bogoliubov transformation linking the quasi-particle and the number-conserving operators which will in general be written as

\[
 c_k = e^{-i\omega_k} \cosh \Lambda_k \delta \phi_k + e^{i\beta_k} \sinh \Lambda_k \delta \phi_{-k}^\dagger ,
\]

(126)

The transformation is defined through a set of functions \(\Lambda_k \), constant in the stationary case, and the phases \(\alpha_k \) and \(\beta_k \), inheriting their time dependence from the atomic operators. These functions can be obtained from Eq. (84) and Eq. (92):

\[
cosh \Lambda_k = \left(\frac{\omega_k + \left(\frac{k^2}{2m} + 2\lambda \rho_0 \right)}{4\omega_k} \right) \frac{\mathcal{N}_k}{\phi_0} .
\]

(127)

If the coupling changes in time, the quasi-particle operators during the transient are defined knowing the solutions of the Klein-Gordon equation. With the Bogoliubov transformation of Eq. (126), it is possible to find the quasi-particle vacuum-state \(|\emptyset\rangle_{qp} \) in terms of the atomic degrees of freedom

\[
 |\emptyset\rangle_{qp} = \prod_k e^{-\frac{1}{2} e^{i(\alpha_k + \beta_k)} \tanh \Lambda_k \delta \phi_k \delta \phi_{-k}^\dagger} \cosh \Lambda_k |\emptyset\rangle_{a} , \quad (128)
\]

where \(|\emptyset\rangle_{a} \) should be interpreted as the vacuum of excited atoms.

From Eq. (128) it is clear that, in the basis of atom occupation number, the quasi-particle vacuum is a complicated superposition of states with different number of atoms in the condensed 1-particle state (and a corresponding number of coupled excited atoms, in pairs of opposite momenta). Every correlation function is therefore dependent on the entanglement of this many-body atomic state.

This feature is enhanced by the dynamics, as can be observed from the scattering operator in Eq. (120) relating early and late times. The scattering operator acts moving...
The information loss problem: an analogue gravity perspective

The creation of more pairs modifies further the superposition of the entangled atomic states depending on the total number of atoms and the initial number of excited atoms.

We can observe this from the action of the condensed state ladder operator, which does not commute with the creation of coupled quasi-particles \(c_k^\dagger c_{-k}^\dagger \), which is described by the combination of the operators \(\delta\phi_k^\dagger\delta\phi_{-k} \). The ladder operator \(a_0^\dagger \) commutes with the first, but not with the others:

\[
\begin{align*}
\left(\delta\phi_k^\dagger\delta\phi_k \right) a_0^\dagger &= a_0^\dagger \left(\delta\phi_k^\dagger\delta\phi_k \right), \\
\left(\delta\phi_k^\dagger\delta\phi_{-k}^\dagger \right)^n a_0^\dagger &= a_0^\dagger \left(\delta\phi_k^\dagger\delta\phi_{-k}^\dagger \right)^n \left(\frac{N_0 + 1}{N_0 + 1 - 2n} \right)^{1/2}, \\
\left(\delta\phi_k\delta\phi_{-k} \right)^n a_0^\dagger &= a_0^\dagger \left(\delta\phi_k\delta\phi_{-k} \right)^n \left(\frac{N_0 + 1}{N_0 + 1 + 2n} \right)^{1/2}.
\end{align*}
\]

The operators \(a_0 \) and \(a_0^\dagger \) do not commute with the number-conserving atomic ladder operators, and therefore the creation of couples and the correlation functions, up to any order, will present corrections of order \(1/N \) to the values that could be expected in the usual Bogoliubov description. Such corrections appear in correlation functions between quasi-particle operators and for correlations between quasi-particles and condensate atoms. This is equivalent to saying that a condensed state, which is generally not coherent, will present deviations from the expected correlation functions predicted by the Bogoliubov theory due to both the interaction and the features of the initial state itself (through contributions coming from connected diagrams).

7.2. Entanglement structure in number-conserving formalism

Within the Bogoliubov description discussed in Section 3, the mean-field approximation for the condensate is most adequate for states close to coherence, thus allowing a separate analysis for the mean-field. The field operator is split in the mean-field function \(\langle \phi \rangle \) and the fluctuation operator \(\delta\phi \) which is assumed not to affect the mean-field through backreaction. Therefore the states in this picture can be written as

\[
|\langle \phi \rangle\rangle_{mf} \otimes |\delta\phi,\delta\phi^\dagger\rangle_{a B}.
\]

meaning that the state belongs to the product of two Hilbert spaces: the mean-field defined on one and the fluctuations on the other, with \(\delta\phi \) and \(\delta\phi^\dagger \) ladder operators acting only on the second. The Bogoliubov transformation from atom operators to quasi-particles allows to rewrite the state as shown in Eq. (128). The transformation only affects its second part

\[
|\langle N \rangle\rangle_{mf} \otimes |\emptyset\rangle_{qp B} = |\langle N \rangle\rangle_{mf} \otimes \sum_{lr} a_{lr} |l, r\rangle_{a B}.
\]

With such transformation the condensed part of the state is kept separate from the superposition of coupled atoms (which here are denoted \(l \) and \(r \) for brevity) forming the
excited part, a separation which is maintained during the evolution in the Bogoliubov description. Also the Bogoliubov transformation from early-times quasi-particles to late-times quasi-particles affects only the second part

$$|\langle N \rangle_{mf} \otimes \sum_{lr} a_{lr} |l, r\rangle_{a \text{Bog}} \Rightarrow |\langle N \rangle_{mf} \otimes \sum_{lr} a'_{lr} |l, r\rangle_{a \text{Bog}} . \quad (134)$$

In the number-conserving framework there is not such a splitting of the Fock space, and there is no separation between the two parts of the state. In this case the best approximation for the quasi–particle vacuum is given by a superposition of coupled excitations of the atom operators, but the total number of atoms cannot be factored out:

$$|N; \emptyset\rangle_{qp} \approx \sum_{lr} a_{lr} |N - l - r, l, r\rangle_a . \quad (135)$$

The term in the RHS is a superposition of states with N total atoms, of which $N - l - r$ are in the condensed 1-particle state and the others occupy excited atomic states and are coupled with each other analogously to the previous Eq. (133) (the difference being the truncation of the sum, required for a sufficiently large number of excited atoms, implying a different normalization).

The evolution does not split the Hilbert space, and the final state will be a different superposition of atomic states

$$\sum_{lr} a_{lr} |N, l, r\rangle_a \Rightarrow \sum_{lr} a'_{lr} \left(1 + O \left(N^{-1}\right)\right) |N - l - r, l, r\rangle_a . \quad (136)$$

We remark that in the RHS the final state must include corrections of order $1/N$ with respect to the Bogoliubov prediction, due to the fully quantum behaviour of the condensate ladder operators. These are small corrections, but we expect that the difference from the Bogoliubov prediction will be relevant when considering many-point correlation functions.

Moreover, these corrections remark the fact that states with different number of atoms in the condensate are transformed differently. If we consider a superposition of states of the type in Eq. (135) with different total atom numbers so to reproduce the state in Eq. (133), therefore replicating the splitting of the state, we would find that the evolution produces a final state with a different structure, because every state in the superposition evolves differently. Therefore, also assuming that the initial state could be written as

$$\sum_N \frac{e^{-N/2}}{\sqrt{N!}} |N; \emptyset\rangle_{qp} \approx |\langle N \rangle_{mf} \otimes \emptyset\rangle_{qp \text{Boq}} , \quad (137)$$

anyway the final state would unavoidably have different features

$$\sum_N \frac{e^{-N/2}}{\sqrt{N!}} \sum_{lr} a'_{lr} \left(1 + O \left(N^{-1}\right)\right) |N - l - r, l, r\rangle_a \neq |\langle N \rangle_{mf} \otimes \sum_{lr} a'_{lr} |l, r\rangle_{a \text{Bog}} . \quad (138)$$

We remark that our point is qualitative. Indeed it is true that also in the weakly interacting limit the contribution coming from the interaction of Bogoliubov quasi-particles may be quantitatively larger than the $O \left(N^{-1}\right)$ term in Eq. (138). However,
even if one treats the operator a_0 as a number disregarding its quantum nature, then one cannot have the above discussed entanglement. In that case, the Hilbert space does not have a sector associated to the condensed part and no correlation between the condensate and the quasi-particles is present. To have them one has to keep the quantum nature of a_0, and its contribution to the Hilbert space.

Alternatively, let us suppose to have an interacting theory of bosons for which no interactions between quasi-particles are present (one could devise and engineer similar models). Even in that case one would have a qualitative difference (and the absence or presence of the entanglement structure here discussed) if one retains or not the quantum nature of a_0 and its contribution to the Hilbert space. Of course one could always argue that in principle the coupling between the quantum gravity and the matter degrees of freedom may be such to preserve the factorisation of an initial state. This is certainly possible in principle, but it would require a surprisingly high degree of fine tuning at the level of the fundamental theory.

In conclusion, in the Bogoliubov description the state is split in two sectors, and the total density matrix is therefore a product of two contributions, of which the one relative to the mean-field can be traced away without affecting the other. The number-conserving picture shows instead that unavoidably the excited part of the system cannot be manipulated without affecting the condensate. Tracing away the quantum degrees of freedom of the condensate would imply a loss of information even without tracing away part of the couples created by analogous curved spacetime dynamics. In other words, when one considers the full Hilbert space and the full dynamics, the final state ρ_{fin} is obtained by an unitary evolution. But now, unlike the usual Bogoliubov treatment, one can trace out in ρ_{fin} the condensate degrees of freedom of the Hilbert space, an operation that we may denote by “Tr$_0[\cdots]$. So

$$\rho_{\text{fin}}^{\text{reduced}} = \text{Tr}_0[\rho_{\text{fin}}] \quad (139)$$

is not pure, as a consequence of the presence of the correlations. So one has $\text{Tr}[\rho_{\text{fin}}^{\text{reduced}}] = 1$, at variance with $\text{Tr}[(\rho_{\text{fin}}^{\text{reduced}})^2] \neq 1$. The entanglement between condensate and excited part is an unavoidable feature of the evolution of these states.

8. Discussion and conclusions

The general aim of analogue gravity is to reproduce the phenomenology of quantum field theory on curved spacetime with laboratory-viable systems. In this framework, the geometry is given by a metric tensor assumed to be a classical tensor field without quantum degrees of freedom, implying that geometry and matter — the two elements of the system — are decoupled, i.e. the fields belong to distinct Hilbert spaces.

The usual formulation of analogue gravity in Bose-Einstein condensates reproduces this feature. In the analogy between the quasi-particle excitations on the condensate and those of scalar quantum fields in curved spacetime, the curvature is simulated by the effective acoustic metric derived from the classical condensate wavefunction. The
condensate wavefunction itself does not belong to the Fock space of the excitations, instead it is a distinct classical function.

Moreover, analogue gravity with Bose-Einstein condensates is usually formulated assuming a coherent initial state, with a formally well defined mean-field function identified with the condensate wavefunction. The excited part is described by operators obtained translating the atom field by the mean-field function and linearising its dynamics; the quasi-particles studied in analogue gravity emerge from the resulting Bogoliubov-de Gennes equations.\footnote{Moreover, let us notice that the relation between several quantum gravity scenarios and analogue gravity in Bose-Einstein condensates appears to be even stronger than expected, as in many of these models a classical spacetime is recovered by considering an expectation value of the geometrical quantum degrees of freedom over a global coherent state the same way that the analogue metric is introduced by taking the expectation value of the field on a coherent ground state (see e.g. \cite{33, 34}).} The mean-field drives the evolution of the quasi-particles, which have a negligible backreaction on the condensate, and can be assumed to evolve independently, in accordance with the Gross-Pitaevskii equation. Neglecting the quantum nature of the operator creating particles in the condensate one has anyway a unitary dynamics occurring in the Hilbert space of non-condensed atoms (or, equivalently, of the quasi-particles).

However, one could still expect an information loss problem to arise whenever simulating an analogue black hole system entailing the complete loss of the ingoing Hawking partners, \textit{e.g.} by having a flow with a region where the hydrodynamical description at the base of the standard analogue gravity formalism fails. The point is that the Bogoliubov theory is not exact as much as quantum field theory in curved spacetime is not a full description of quantum gravitational and matter degrees of freedom.

Within the number-conserving formalism, analogue gravity provides the possibility to develop a more complete description in which one is forced to retain the quantum nature of the operator creating particles in the condensate. While this is not \textit{per se} a quantum gravity analogue (in the sense that it cannot reproduce the full dynamical equations of the quantum system), it does provide a proxy for monitoring the possible development of entanglement between gravitational and matter degrees of freedom.

It has already been conjectured in quantum gravity that degrees of freedom hidden from the classical spacetime description, but correlated to matter fields, are necessary to maintain unitarity in the global evolution and prevent the information loss \cite{35}. In order to address the question of whether particle production induces entanglement between gravitation and matter degrees of freedom, we have carefully investigated the number-conserving formalism and studied the simpler process of cosmological particle production in analogue gravity, realised by varying the coupling constant from an initial value to a final one. We verified that one has a structure of quasi-particles, whose operators now depend on the operator a_0 destroying a particle in the natural orbital associated to the largest, macroscopic eigenvalue of the 1-point correlation functions.

We have shown that also in the number-conserving formalism one can define a
unitary scattering operator, and thus the Bogoliubov transformation from early-times to late-times quasi-particles. The scattering operator provided in (120) not only shows the nature of quasi-particle creation as a squeezing process of the initial quasi-particle vacuum, but also that the evolution process as a whole is unitary precisely because it entangles the quasi-particles with the condensate atoms constituting the geometry over which the former propagate.

The correlation between the quasi-particles and the condensate atoms is a general feature, it is not realised just in a regime of high energies — analogous to the late stages of a black hole evaporation process or to sudden cosmological expansion — but it happens during all the evolution \(N\), albeit they are suppressed in the number of atoms, \(N\), relevant for the system and are hence generally negligible. When describing the full Fock space there is not unitarity breaking, and the purity of the state is preserved: it is not retrieved at late times, nor it is spoiled in the transient of the evolution. Nonetheless, such a state after particle production will not factorise into the product of two states — a condensate (geometrical) and quasi-particle (matter) one — but, as we have seen, it will be necessarily an entangled state. This implies, as we have discussed at the end of the previous Section, that an observer unable to access the condensate (geometrical) quantum degrees of freedom would define a reduced density matrix (obtained by tracing over the latter) which would no more be compatible with an unitary evolution.

In practice, in cases such as the cosmological particle creation, where the phenomenon happens on the whole spacetime, \(N\) is the (large) number of atoms in the whole condensate and hence the correlations between the substratum and the quasi-particles are negligible. Hence, the number-conserving formalism or the Bogoliubov one in this case may be practically equivalent. In the black hole case a finite region of spacetime is associated to the particle creation, hence \(N\) is not only finite but decreases as a consequence of the evaporation making the correlators between geometry and Hawking quanta more and more non-negligible in the limit in which one simulates a black hole at late stages of its evaporation. This implies that tracing over the quantum geometry degrees of freedom could lead to non-negligible violation of unitary even for regular black hole geometries (\(i.e.\) for geometries without inner singularities, see \(e.g.\) \[36, 37, 38\]).

The Bogoliubov limit corresponds to taking the quantum degrees of freedom of the geometry as classical. This is not \(per\ se\) a unitarity violating operation, as it is equivalent to effectively recover the factorisation of the above mentioned state. Indeed the squeezing operator so recovered (which corresponds to the one describing particle creation on a classical spacetime) is unitarity preserving. However, the two descriptions are no longer practically equivalent when a region of quantum gravitational evolution is somehow simulated. In this case, having the possibility of tracking the quantum degrees of freedom underlying the background enables to describe the full evolution, while in the analogue of quantum field theory in curved spacetime a trace over the

5 Indeed, the transplanckian problem in black hole radiation may suggest that Hawking quanta might always probe the fundamental degrees of freedom of the underlying the geometry.
The information loss problem: an analogue gravity perspective

ingoming Hawking quanta is necessary with the usual problematic implications for the preservation of unitary evolution.

In the analogue gravity picture, the above alternatives would correspond to the fact that the number-conserving evolution can keep track of the establishment of correlations between the atoms and the quasi-particles that cannot be accounted for in the standard Bogoliubov framework. Hence, this analogy naturally leads to the conjecture that a full quantum gravitational description of a black hole creation and evaporation would leave not just a thermal bath on a Minkowski spacetime but rather a highly entangled state between gravitational and matter quantum degrees of freedom corresponding to the same classical geometry. A very complex state, but nonetheless a state that can be obtained from the initial one (for gravity and matter) via a unitary evolution.

In conclusion, the here presented investigation strongly suggests that the problems of unitarity breaking and information loss encountered in quantum field theory on curved spacetimes can only be addressed in a full quantum gravity description able to keep track of the correlations between quantum matter fields and geometrical quantum degrees of freedom developed via particle creation from the vacuum; these degrees of freedom are normally concealed by the assumption of a classical spacetime, but underlay it in any quantum gravity scenario.

Acknowledgments

Discussions with R. Parentani, M. Visser and S. Weinfurtner are gratefully acknowledged.

References

[1] W.G. Unruh. Experimental black hole evaporation. Phys. Rev. Lett., 46:1351–1353, 1981.
[2] Carlos Barceló, Stefano Liberati, and Matt Visser. Analogue gravity. Living Rev. Rel., 8:12, 2005, gr-qc/0505065.
[3] Matt Visser, Carlos Barceló, and Stefano Liberati. Analog models of and for gravity. Gen. Rel. Grav., 34:1719–1734, 2002, gr-qc/0111111.
[4] Florian Girelli, Stefano Liberati, and Lorenzo Sindoni. Gravitational dynamics in Bose Einstein condensates. Phys. Rev., D78:084013, 2008, 0807.4910.
[5] Stefano Finazzi, Stefano Liberati, and Lorenzo Sindoni. Cosmological Constant: A Lesson from Bose-Einstein Condensates. Phys. Rev. Lett., 108:071101, 2012, 1103.4841.
[6] Alessio Belenchia, Stefano Liberati, and Arif Mohd. Emergent gravitational dynamics in a relativistic Bose-Einstein condensate. Phys. Rev., D90(10):104015, 2014, 1407.7896.
[7] L.J. Garay, J.R. Anglin, J.I. Cirac, and P. Zoller. Black holes in Bose-Einstein condensates. Phys. Rev. Lett., 85:4643–4647, 2000, gr-qc/0002015.
[8] L.J. Garay, J.R. Anglin, J.I. Cirac, and P. Zoller. Sonic black holes in dilute Bose-Einstein condensates. Phys. Rev., A63:023611, 2001, gr-qc/0005131.
[9] Carlos Barceló, Stefano Liberati, and Matt Visser. Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions. Phys. Rev., A68:053613, 2003, cond-mat/0307491.

6 With the possible exception of the enucleation of a disconnected baby universe which would lead to a sort of trivial information loss.
The information loss problem: an analogue gravity perspective

[10] O. Lahav, A. Itah, A. Blumkin, C. Gordon, and J. Steinhauer. Realization of a sonic black hole analogue in a Bose-Einstein condensate. Phys. Rev. Lett., 105:240401, 2010, 0906.1337.

[11] Jeff Steinhauer. Measuring the entanglement of analogue Hawking radiation by the density-density correlation function. Phys. Rev., D92(2):024043, 2015, 1504.06583.

[12] Jeff Steinhauer. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nature Phys., 12:959, 2016, 1510.00621.

[13] Juan Ramón Muñoz de Nova, Katrine Golubkov, Victor I. Kolobov, and Jeff Steinhauer. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature, 569(7758):688–691, 2019, 1809.00913.

[14] Steven B. Giddings. Comments on information loss and remnants. Phys. Rev., D49:4078–4088, 1994, hep-th/9310101.

[15] Steven B. Giddings. Constraints on black hole remnants. Phys. Rev., D49:947–957, 1994, hep-th/9304027.

[16] Leonard Susskind. Trouble for remnants. 1995, hep-th/9501106.

[17] Pisin Chen, Yen Chin Ong, and Dong-han Yeom. Black Hole Remnants and the Information Loss Paradox. Phys. Rept., 603:1–45, 2015, 1412.8366.

[18] Sabine Hossenfelder and Lee Smolin. Conservative solutions to the black hole information problem. Phys. Rev., D81:064009, 2010, 0901.3156.

[19] Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully. Black holes: complementarity or firewalls? Journal of High Energy Physics, 2013(2):62, Feb 2013.

[20] C.J. Pethick and H. Smith. Bose–Einstein condensation in dilute gases, volume 9780521846516. 2008. cited By 2323.

[21] Piyush Jain, Silke Weinfurtner, Matt Visser, and C. W. Gardiner. Analog model of a friedmann-robertson-walker universe in bose-einstein condensates: Application of the classical field method. Phys. Rev. A, 76:033616, Sep 2007.

[22] I. Carusotto, R. Balbinot, A. Fabbri, and A. Recati. Density correlations and analog dynamical casimir emission of bogoliubov phonons in modulated atomic bose-einstein condensates. The European Physical Journal D, 56(3):391–404, Feb 2010.

[23] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 1984.
[34] Steffen Gielen, Daniele Oriti, and Lorenzo Sindoni. Homogeneous cosmologies as group field theory condensates. *JHEP*, 06:013, 2014, 1311.1238.

[35] Alejandro Perez. No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. *Class. Quant. Grav.*, 32(8):084001, 2015, 1410.7062.

[36] Valeri P. Frolov and G. A. Vilkovisky. Spherically Symmetric Collapse in Quantum Gravity. *Phys. Lett.*, 106B:307–313, 1981.

[37] Sean A. Hayward. Formation and evaporation of regular black holes. *Phys. Rev. Lett.*, 96:031103, 2006, gr-qc/0506126.

[38] Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati, Costantino Pacilio, and Matt Visser. On the viability of regular black holes. *JHEP*, 07:023, 2018, 1805.02675.