PROJECTIVE CURVATURE TENSOR WITH RESPECT TO ZAMKOVVOY CONNECTION IN LORENTZIAN PARA-SASAKIAN MANIFOLDS

ABHIJIT MANDAL¹, ASHOKE DAS²

¹Raiganj Surendranath Mahavidyalaya, Raiganj, Uttar Dinajpur, West Bengal, India,
Email: abhijit4791@gmail.com
²Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India,
Email: ashoke.avik@gmail.com

Abstract. The purpose of the present paper is to study some properties of Projective curvature tensor with respect to Zamkovoy connection in Lorentzian Para Sasakian manifold (briefly, LP-Sasakian manifold). We obtain some results on Lorentzian Para-Sasakian manifold with the help of Zamkovoy connection and Projective curvature tensor. Moreover, we study the LP-Sasakian manifold satisfying $P^*(\xi, U)\circ W^*_0 = 0$ and $P^*(\xi, U)\circ W^*_2 = 0$, where P^*, W^*_0 and W^*_2 are Projective curvature tensor, W_0—curvature tensor and W_2—curvature tensor with respect to Zamkovoy connection respectively.

Key words and Phrases: LP-Sasakian manifolds, Zamkovoy Connection, Projective Curvature tensor

1. Introduction

In 1989, K. Matsumoto [7] first introduced the notion of Lorentzian Para-Sasakian manifolds. Also, in 1992, I. Mihai and R. Rosca [8] introduced independently the notion of Lorentzian Para Sasakian manifolds (briefly, LP-Sasakian Manifolds) in classical analysis. In an n—dimensional metric manifold the signature of the metric tensor is the number of positive and negative eigenvalues of the metric. If the metric has s positive eigenvalues and t negative eigenvalues then the signature of the metric is (s, t). For a non-degerate metric tensor $s + t = n$. A Lorentzian manifold is a special case of a semi Riemannian manifold, in which...
the signature of the metric is $(1, n - 1)$ or $(n - 1, 1)$. And the metric g is called here a Lorentzian metric, which is named after the physicist Hendrik Lorentz. The LP-Sasakian manifold was further studied by several authors. We cite ([3], [9]) and their references.

The notion of Projective curvature tensor was first introduced by K. Yano and S. Bochner [13] in 1953. This curvature tensor was further studied by U. C. De and J. Sengupta [4], S. Ghosh [5]. If there exists a one-one mapping between each co-ordinate neighbourhood of a manifold M to a domain of \mathbb{R}^n such that any geodesic of M corresponds to a straight line in \mathbb{R}^n, then the manifold M is said to be locally projectively flat. Due to [4], the Projective curvature tensor P of rank four for an n-dimensional Riemannian Manifold M is given by

$$P(X, Y, Z, V) = R(X, Y, Z, V) - \frac{1}{n - 1} \left[S(Y, Z) g(X, V) - S(X, Z) g(Y, V) \right]$$

(1)

for all $X, Y, V \in \chi(M)$, set of all vector fields of the manifold M, where P denotes the Projective curvature tensor of type $(0, 4)$ and R denotes the Riemannian curvature tensor of type $(0, 4)$ defined by

$$P(X, Y, Z, V) = g(P(X, Y) Z, V)$$

(2)

$$R(X, Y, Z, V) = g(R(X, Y) Z, V)$$

(3)

where R is the Riemannian curvature tensor of type $(0, 3)$, P is the Projective curvature tensor of type $(0, 3)$ and S denotes the Ricci tensor of type $(0, 2)$.

In 2008, the notion of Zamkovoy connection on para contact manifold was introduced by S. Zamkovoy [14]. Zamkovoy connection was defined as a canonical paracontact connection whose torsion is the obstruction of paracontact manifold to be a para sasakian manifold. This connection was further studied by many researcher. For instance, we see ([2], [1], [6]). For an n-dimensional almost contact metric manifold M equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a $(1, 1)$ tensor field ϕ, a vector field ξ, a 1-form η and a Riemannian metric g, the Zamkovoy connection (∇^*) in terms of Levi-Civita connection (∇) is given by

$$\nabla^*_X Y = \nabla_X Y + (\nabla_X \eta)(Y) \xi - \eta(Y) \nabla_X \xi + \eta(X) \phi Y$$

(4)

for all $X, Y \in \chi(M)$.

In a LP-Sasakian manifold M of dimension $(n > 2)$, the Projective curvature tensor P, W_0 Curvature tensor [10], W_2—Curvature tensor [12] with respect to the Levi-Civita connection are given by

$$P(X, Y) Z = R(X, Y) Z - \frac{1}{n - 1} \left[S(Y, Z) X - S(X, Z) Y \right]$$

(5)

$$W_0(X, Y) Z = R(X, Y) Z - \frac{1}{n - 1} \left[S(Y, Z) X - g(X, Z) QY \right]$$

(6)

$$W_2(X, Y) Z = R(X, Y) Z - \frac{1}{n - 1} \left[g(Y, Z) QX - g(X, Z) QY \right]$$

(7)
The Projective curvature tensor, W_0-Curvature tensor and W_2-Curvature tensor with respect to the Zamkovoy connection are given by,

$$P^\ast (X,Y) Z = R^\ast (X,Y) Z - \frac{1}{n-1} [S^\ast (Y,Z) X - S^\ast (X,Z) Y]$$ (8)

$$W_0^\ast (X,Y) Z = R^\ast (X,Y) Z - \frac{1}{n-1} [S^\ast (Y,Z) X - g(X,Z) Q^\ast Y]$$ (9)

$$W_2^\ast (X,Y) Z = R^\ast (X,Y) Z - \frac{1}{n-1} [g(Y,Z) Q^\ast X - g(X,Z) Q^\ast Y]$$ (10)

where R^\ast, S^\ast and Q^\ast are Riemannian curvature tensor, Ricci tensor and Ricci operator with respect to Zamkovoy connection ∇^\ast respectively.

Definition 1.1. An n-dimensional LP -Sasakian manifold M is said to be generalized η–Einstein manifold if the Ricci tensor of type (0,2) is of the form

$$S(Y,Z) = k_1 g(Y,Z) + k_2 \eta(Y) \eta(Z) + k_3 \omega(Y,Z)$$ (11)

for all $Y,Z \in \chi(M)$, set of all vector fields of the manifold M and k_1, k_2 and k_3 are scalars and ω is a 2-form.

Definition 1.2. An n-dimensional LP-Sasakian manifold M is said to be Projectively flat if $P(X,Y) Z = 0$ for all $X,Y,Z \in \chi(M)$.

Definition 1.3. An n-dimensional LP-Sasakian manifold M is said to be ξ– Projectively flat if $P(X,Y) \xi = 0$ for all $X,Y,Z \in \chi(M)$.

This paper is structured as follows: after introduction, a short description of LP-Sasakian manifold is given in section (2). In section (3), we have discussed LP-Sasakian manifold admitting Zamkovoy connection ∇^\ast and obtain curvature tensor R^\ast, Ricci tensor S^\ast, Scalar curvature tensor r^\ast, in LP-Sasakian manifold. Section (4) contains Projectively flat LP-Sasakian manifold with respect to the connection ∇^\ast. In section (5) we have discussed Locally Projectively ϕ–symmetric LP-Sasakian manifold M with respect to ∇^\ast. In section (6) we have discussed a LP-Sasakian manifold satisfying $P^\ast (\xi,U) \circ W_0^\ast = 0$. In section (7) we have discussed a LP-Sasakian manifold satisfying $P^\ast (\xi,U) \circ W_2^\ast = 0$.

2. Preliminaries

An n-dimensional differentiable manifold is called a LP-Sasakian manifold if it admits a $(1,1)$ tensor field ϕ, a vector field ξ, a 1-form η and a Lorentzian metric g which satisfies

$$\phi Y = Y + \eta(Y) \xi, \eta(\xi) = -1, \eta(\phi X) = 0, \phi \xi = 0$$ (12)

$$g(\phi X, \phi Y) = g(X,Y) + \eta(X)\eta(Y)$$ (13)

$$g(X,\phi Y) = g(\phi X,Y), \eta(Y) = g(Y,\xi)$$ (14)

$$\nabla_X \xi = \phi X, \quad g(X,\xi) = \eta(X)$$ (15)

$$\langle \nabla_X \phi \rangle Y = g(X,Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi$$ (16)

$\forall X,Y \in \chi(M)$
where \(\nabla \) denotes the operator of covariant differentiation with respect to the Lorentzian metric \(g \).

Let us introduced a symmetric \((0, 2)\) tensor field \(\omega \) such that \(\omega (X, Y) = g(X, \phi Y) \). Also, since the vector field \(\eta \) is closed in LP- Sasakian manifold, we have

\[
(\nabla_X \eta) Y = \omega (X, Y), \omega (X, \xi) = 0, \forall X, Y \in \chi (M)
\]

(17)

In LP- Sasakian manifold, the following relations also hold:

\[
\begin{align*}
\eta (R(X, Y) Z) &= g(Y, Z) \eta (X) - g(X, Z) \eta (Y) \\
R(X, Y) \xi &= \eta (Y) X - \eta (X) Y \\
R(\xi, Y) Z &= g(Y, Z) \xi - \eta (Z) Y \\
R(\xi, Y) \xi &= \eta (Y) \xi + Y \\
S(X, \xi) &= (n - 1) \eta (X) \\
S(\phi X, \phi Y) &= S(X, Y) + (n - 1) \eta (X) \eta (Y)
\end{align*}
\]

(18)

(19)

(20)

(21)

(22)

(23)

\[Q\xi = (n - 1) \xi, Q\phi = \phi Q, S(X, Y) = g(QX, Y), S^2(X, Y) = S(QX, Y) \]

(24)

3. Some Properties of LP-Sasakian Manifolds with Respect to Zamkovoy Connection

Using (15) and (17) in (4), we get

\[
\nabla^*_X Y = \nabla_X Y + g(X, \phi Y) \xi - \eta (Y) \phi X + \eta (X) \phi Y
\]

(25)

with torsion tensor

\[
T^* (X, Y) = 2 [\eta (X) \phi Y - \eta (Y) \phi X]
\]

(26)

In view of (4) and (17), we have

\[
(\nabla_X g)(Y, Z) = -2g(Y, \phi Z) \eta (X)
\]

(27)

Putting \(Y = \xi \) in (25)

\[
\nabla^*_X \xi = 2\phi X
\]

(28)

Using (14), (15) and (16) in (25), we obtain

\[
\begin{align*}
\nabla_X (\phi Y) &= \phi (\nabla_X Y) + 2g(X, Y) \xi + \eta (Y) X + \eta (X) \eta (Y) \xi \\
\nabla_X g(Y, Z) &= g(\nabla_X Y, Z) + (Y, \nabla_X Z)
\end{align*}
\]

(29)

(30)

\[
\begin{align*}
\nabla_X g(Y, \phi Z) &= g(\nabla_X Y, \phi Z) + g(Y, \phi \nabla_X Z) + g(X, Z) \eta (Y) + g(X, Y) \eta (Z) + 2\eta (X) \eta (Y) \eta (Z)
\end{align*}
\]

(31)
In view of (25), (29), (30) and (31), we have

\[
\nabla_X^* \nabla_Y^* Z = \nabla_X \nabla_Y Z + g(X, \phi \nabla_Y Z) \xi - \eta(\nabla_Y Z) \phi X + \eta(X) \phi \nabla_Y Z
\]

\[
+ g(\nabla_Y Z, \phi Z) \xi + g(Y, \phi \nabla_X Z) \xi + g(X, Z) \eta(Y) \xi
\]

\[
+ g(X, Y) \eta(Z) \xi + 2 \eta(X) \eta(Y) \eta(Z) \xi + 2g(Y, \phi Z) \phi X
\]

\[
- g(X, \phi Z) \phi Y - \eta(\nabla_X Z) \phi Y - \phi(\nabla_Y Z) \eta(Z) - 2g(X, Y) \eta(Z) \xi - \eta(Y) \eta(Z) \xi - \eta(X) \eta(Z) \xi - 4\eta(Y) \eta(Z) \xi
\]

\[
+ g(X, \phi Z) \phi Z + \eta(\nabla_Y Z) \phi Z + \phi(\nabla_Y Z) \eta(X) + 2g(X, Z) \eta(Y) \xi + \eta(Y) \eta(Z) \xi + \eta(X) \eta(Y) \eta(Z) \xi (32)
\]

Interchanging \(X\) and \(Y\)

\[
\nabla_Y^* \nabla_X^* Z = \nabla_Y \nabla_X Z + g(Y, \phi \nabla_X Z) \xi - \eta(\nabla_X Z) \phi Y + \eta(Y) \phi \nabla_X Z
\]

\[
+ g(\nabla_X Z, \phi Z) \xi + g(X, \phi \nabla_Y Z) \xi + g(Y, Z) \eta(X) \xi
\]

\[
+ g(X, Y) \eta(Z) \xi + 2 \eta(Y) \eta(X) \eta(Z) \xi + 2g(X, \phi Z) \phi Y
\]

\[
- g(Y, \phi Z) \phi X - \eta(\nabla_Y Z) \phi X - \phi(\nabla_X Z) \eta(Z) - 2g(Y, X) \eta(Z) \xi - \eta(X) \eta(Z) \xi - \eta(Y) \eta(Z) \xi - 4\eta(Y) \eta(Z) \xi
\]

\[
+ g(Y, \phi Z) \phi Z + \eta(\nabla_X Z) \phi Z + \phi(\nabla_X Z) \eta(X) + 2g(Y, Z) \eta(X) \xi + \eta(X) \eta(Y) \eta(Z) \xi + 4\eta(Y) \eta(X) \eta(Z) \xi (33)
\]

Also we have

\[
\nabla_{[X,Y]}^* Z = \nabla_{[X,Y]}^* Z + g(\nabla_X Y, \phi Z) \xi - g(\nabla_Y X, \phi Z) \xi - \eta(Z) \phi \nabla_X Y
\]

\[
+ \eta(Z) \phi \nabla_Y X + \eta(\nabla_Y X) \phi Z - \eta(\nabla_X Y) \phi Z (34)
\]

Let \(R^*\) be the Riemannian curvature tensor with respect to Zamkovoy connection and it is defined as

\[
R^*(X, Y) Z = \nabla_X^* \nabla_Y^* Z - \nabla_Y^* \nabla_X^* Z - \nabla_{[X,Y]}^* Z (35)
\]

Using (25), (32), (33) and (34) in (35), we get

\[
R^*(X, Y) Z = R(X, Y) Z + 3g(X, Z) \eta(Y) \xi - 3g(Y, Z) \eta(X) \xi + 3g(Y, \phi Z) \phi X
\]

\[
- 3g(X, \phi Z) \phi Y - \eta(X) \eta(Z) Y + \eta(Y) \eta(Z) X (36)
\]

Consequently one can easily bring out the followings:

\[
\text{S}^*(Y, Z) = S(Y, Z) + (n - 1) \eta(Y) \eta(Z) + 3\psi g(Y, \phi Z) (37)
\]

\[
\text{S}^*(\xi, Z) = S^*(Z, \xi) = 0 (38)
\]

\[
\text{Q}^* Y = QY + (n - 1) \eta(Y) \xi + 3\psi \phi Y (39)
\]

\[
\text{Q}^* \xi = 0 (40)
\]

\[
r^* = r - n + 1 + 3\psi^2 (41)
\]
\[R^* (X,Y) \xi = 0 \] (42)
\[R^* (\xi,Y) Z = 4g(\phi Y, \phi Z) \xi \] (43)
\[R^* (X,\xi) Z = -4g(\phi X, \phi Z) \xi \] (44)

for all \(X,Y,Z \in \chi(M) \), where \(\psi = \text{trace} (\phi) \)

Thus we can state the followings:

Proposition 3.1. Let \(M \) be an \(n \)-dimensional LP-Sasakian manifold admitting Zamkovoy connection \(\nabla^* \), then

(i) The curvature tensor \(R^* \) of \(\nabla^* \) is given by (36)
(ii) The Ricci tensor \(S^* \) of \(\nabla^* \) is given by (37)
(iii) The scalar curvature \(r^* \) of \(\nabla^* \) is given by (41)
(iv) The Ricci tensor \(S^* \) of \(\nabla^* \) is symmetric.
(v) \(R^* \) satisfies: \(R^* (X,Y) Z + R^* (Y,Z) X + R^* (Z,X) Y = 0 \).

4. **Projectively flat LP-Sasakian manifold with respect to the Zamkovoy connection**

Theorem 4.1. If an \(n \)-dimensional LP-Sasakian manifold \(M \) is Projectively flat with respect to Zamkovoy connection, then it is a generalized \(\eta \)-Einstein manifold.

Proof. In view of (8), (36) and (37), the Projective curvature tensor \(P^* \) with respect to the Zamkovoy connection \(\nabla^* \) on a LP-Sasakian manifold \(M \) of dimension \((n > 2) \) takes the form

\[
P^* (X,Y) Z = R (X,Y) Z + 3g(X,Z) \eta(Y) \xi - 3g(Y,Z) \eta(X) \xi + 3g(Y,\phi Z) \phi X
- 3g(X,\phi Z) \phi Y - \eta(X) \eta(Z) Y + \eta(Y) \eta(Z) X
- \frac{1}{n-1} [S(Y,Z) X + (n-1) \eta(Y) \eta(Z) X + 3\psi g(Y,\phi Z) X]
+ \frac{1}{n-1} [S(X,Z) Y + (n-1) \eta(X) \eta(Z) Y + 3\psi g(X,\phi Z) Y] \tag{45}
\]

Let \(M \) be projectively flat with respect to Zamkovoy connection, then from (45), we get

\[
R (X,Y) Z = -3g(X,Z) \eta(Y) \xi + 3g(Y,Z) \eta(X) \xi - 3g(Y,\phi Z) \phi X
+ 3g(X,\phi Z) \phi Y + \eta(X) \eta(Z) Y - \eta(Y) \eta(Z) X
+ \frac{1}{n-1} [S(Y,Z) X + (n-1) \eta(Y) \eta(Z) X + 3\psi g(Y,\phi Z) X]
- \frac{1}{n-1} [S(X,Z) Y + (n-1) \eta(X) \eta(Z) Y + 3\psi g(X,\phi Z) Y] \tag{46}
\]
Taking inner product of (46) with a vector field V, we have

$$
R(X, Y, Z, V) = -3g(X, Z) \eta(Y) \eta(V) + 3g(Y, Z) \eta(X) \eta(V) - 3g(Y, \phi Z) g(\phi X, V)
$$

$$
+ 3g(X, \phi Z) g(\phi Y, V) + \eta(X) \eta(Z) g(Y, V) - \eta(Y) \eta(Z) g(X, V)
$$

$$
+ \frac{1}{n-1} \left[S(Y, Z) + (n-1) \eta(Y) \eta(Z) + 3\psi g(Y, \phi Z) \right] g(X, V)
$$

$$
- \frac{1}{n-1} \left[S(X, Z) + (n-1) \eta(X) \eta(Z) + 3\psi g(X, \phi Z) \right] g(Y, V)
$$

(47)

Setting $X = V = \xi$ and using (12), (22) in (47), we get

$$
S(Y, Z) = 4(n-1) g(Y, Z) + 3(n-1) \eta(Y) \eta(Z) - 3\psi \omega(Y, Z)
$$

where $\omega(Y, Z) = g(\phi Y, Z)$.

which shows that M is an η–Einstein manifold. Hence the theorem is proved.

□

Corollary 4.2. An n– dimensional LP-Sasakian manifold M is ξ– Projectively flat with respect to Zamkovoy connection iff it is so with respect to Levi-Civita connection.

Proof. Using (5) in (45), we get

$$
P^\ast(X, Y) Z = P(X, Y) Z + 3g(X, Z) \eta(Y) \xi - 3g(Y, Z) \eta(X) \xi
$$

$$
+ 3g(Y, \phi Z) \phi X - 3g(X, \phi Z) \phi Y
$$

$$
- \frac{3\psi}{n-1} \left[g(Y, \phi Z) X + g(X, \phi Z) Y \right]
$$

(48)

Setting $Z = \xi$ in (48), we get

$$
P^\ast(X, Y) \xi = P(X, Y) \xi
$$

Therefore, M is ξ–Projectively flat with respect to Zamkovoy connection iff it is so with respect to Levi-Civita connection.

□

5. Locally Projectively ϕ–symmetric LP-Sasakian manifolds with respect to Zamkovoy connection

In 1977, Takahashi [11] first studied the concept of locally ϕ-symmetry on Sasakian manifold. In this section we consider a locally projectively ϕ-symmetric LP-Sasakian manifolds with respect to the connection ∇^\ast.

Definition 5.1. An n–dimensional LP-Sasakian manifold M is said to be locally projectively ϕ-symmetric with respect to Zamkovoy connection ∇^\ast if the projective curvature tensor P^\ast with respect to the connection ∇^\ast satisfies

$$
\phi^2 (\nabla^\ast_W P^\ast)(X, Y) Z = 0
$$

(49)

where X, Y, Z and W are horizontal vector fields on M, i.e X, Y, Z and W are orthonormal to ξ on the manifold M.
Theorem 5.2. An \(n \)-dimensional LP-Sasakian manifold \(M \) \((n > 3) \) is locally projectively \(\phi \)-symmetric with respect to Zamkovoy connection if and only if it is so with respect to the Levi-Civita connection, provided \(\text{trace} (\phi) = 0 \).

Proof. In view of (25), we have

\[
(\nabla^* \phi^* \nabla) (X, Y) Z = (\nabla^* \phi^* \nabla) (X, Y) Z + g(W, \phi \phi^* (X, Y) Z) \xi
- \eta (\phi^* (X, Y) Z) \phi W + \eta(W) \phi \phi^* (X, Y) Z
\] (50)

Taking covariant differentiation of (48) in the direction of \(W \) and considering \(\text{trace} (\phi) = 0 \), we obtain

\[
(\nabla^* \phi^* \nabla) (X, Y) Z = (\nabla \phi^* \nabla) (X, Y) Z
+ 3 [g(X, Z) g(W, \phi Y) - g(Y, Z) g(W, \phi X)] \xi
+ 3 [g(W, Z) \eta(Y) + g(Y, W) \eta(Z) + 2 \eta(W) \eta(Y) \eta(Z)] \phi X
+ 3 g(Y, \phi Z) [g(W, X) \xi + \eta(X) W + 2 \eta(W) \eta(X) \xi]
- 3 [g(W, Z) \eta(X) + g(X, W) \eta(Z) + 2 \eta(W) \eta(X) \eta(Z)] \phi Y
- 3 g(X, \phi Z) [g(W, Y) \xi + \eta(Y) W + 2 \eta(W) \eta(Y) \xi]
\] (51)

In view of (12), (18) and (45), we obtain

\[\eta (\phi^* (X, Y) Z) = g(Y, Z) \eta(X) - g(X, Z) \eta(Y) - 3 g(X, Z) \eta(Y) + 3 g(Y, Z) \eta(X)\]

\[- \frac{1}{n-1} [S(Y, Z) + (n-1) \eta(Y) \eta(Z) + 3 \psi g(Y, \phi Z)] \eta(X) \]

\[+ \frac{1}{n-1} [S(X, Z) + (n-1) \eta(X) \eta(Z) + 3 \psi g(X, \phi Z)] \eta(Y) \] (52)

Using (51) and (52) in (50), we get

\[
(\nabla^* \phi^* \nabla) (X, Y) Z = (\nabla W \phi^* \nabla) (X, Y) Z + 3 [g(X, Z) g(W, \phi Y) - g(Y, Z) g(W, \phi X)] \xi
+ 3 [g(W, Z) \eta(Y) + g(Y, W) \eta(Z) + 2 \eta(W) \eta(Y) \eta(Z)] \phi X
+ 3 g(Y, \phi Z) [g(W, X) \xi + \eta(X) W + 2 \eta(W) \eta(X) \xi]
- 3 [g(W, Z) \eta(X) + g(X, W) \eta(Z) + 2 \eta(W) \eta(X) \eta(Z)] \phi Y
- 3 g(X, \phi Z) [g(W, Y) \xi + \eta(Y) W + 2 \eta(W) \eta(Y) \xi]
+ g(W, \phi \phi^* (X, Y) Z) \xi - g(Y, Z) \eta(X) \phi W + g(X, Z) \eta(Y) \phi W
+ 3 g(Y, Z) \eta(Y) \phi W - 3 g(Y, Z) \eta(X) \phi W
+ \frac{1}{n-1} [S(Y, Z) + (n-1) \eta(Y) \eta(Z) + 3 \psi g(Y, \phi Z)] \eta(X) \phi W
- \frac{1}{n-1} [S(X, Z) + (n-1) \eta(X) \eta(Z) + 3 \psi g(X, \phi Z)] \eta(Y) \phi W
+ \phi P(X, Y) Z \eta(W) + 3 g(Y, \phi Z) X \eta(W) - 3 g(X, \phi Z) Y \eta(W)
+ 3 g(Y, \phi Z) \eta(X) \eta(W) \xi - 3 g(X, \phi Z) \eta(Y) \eta(W) \xi \] (53)

Applying \(\phi^2 \) on both sides of (53) and using (12), we obtain

\[
\phi^2 (\nabla^* \phi^* \nabla) (X, Y) Z = \phi^2 (\nabla \phi^* \nabla) (X, Y) Z
\] (54)
where \(X, Y, Z, W \) are horizontal vector fields and \(\text{trace}(\phi) = 0 \). Hence the theorem is proved. \(\square \)

6. LP-SASAKIAN MANIFOLD SATISFYING \(P^* (\xi, U) \circ W_0^* = 0 \)

Theorem 6.1. In an \(n \)-dimensional \((n > 3)\) LP-Sasakian manifold \(M \) admitting Zamkovoy connection \(\nabla^* \), if the condition \(P^* (\xi, U) \circ W_0^* = 0 \) holds, then the equation

\[
S^2 (X, Y) = 4(n - 1) S (X, Y) - 6\psi S (\phi X, Y) + 12(n - 1) \psi g (X, \phi Y) - 9\psi^2 g (X, Y) + 3(n - 1)^2 - 9\psi^2 \eta (X) \eta (Y)
\]

is satisfied on the manifold \(M \), for all \(X, Y \in \chi (M) \).

Proof. It can be easily seen from (8) and (9), that

\[
P^* (\xi, U) X = 4g (\phi U, \phi X) \xi - \frac{1}{n - 1} S^* (U, X) \xi \tag{55}
\]

\[
P^* (\xi, Y) \xi = 0, P^* (\xi, \xi) Y = 0, P^* (X, Y) \xi = 0 \tag{56}
\]

\[
W_0^* (X, Y) \xi = \frac{1}{n - 1} \eta (X) Q^* Y, W_0^* (\xi, Y) \xi = - \frac{1}{n - 1} Q^* Y \tag{57}
\]

Let us consider a LP-Sasakian manifold \(M \) satisfying the condition

\[
(P^* (\xi, U) \circ W_0^*) (X, Y) Z = 0.
\]

Then we have

\[
0 = P^* (\xi, U) W_0^* (X, Y) Z - W_0^* (P^* (\xi, U) X, Y) Z - W_0^* (X, P^* (\xi, U) Y) Z - W_0^* (X, Y) P^* (\xi, U) Z \tag{58}
\]

Replacing \(Z \) by \(\xi \) in (58), we get

\[
0 = P^* (\xi, U) W_0^* (X, Y) \xi - W_0^* (P^* (\xi, U) X, Y) \xi - W_0^* (X, P^* (\xi, U) Y) \xi - W_0^* (X, Y) P^* (\xi, U) \xi \tag{59}
\]

Using (55), (56) and (57) in (59), we have

\[
0 = 4S^* (\phi U, \phi Y) \eta (X) \xi - \frac{1}{n - 1} S^* (U, Q^* Y) \eta (X) \xi + 4g (\phi U, \phi X) Q^* Y - \frac{1}{n - 1} S^* (U, X) Q^* Y \tag{60}
\]

The inner product of the equation (60) with vector field \(V \) gives

\[
0 = 4S^* (\phi U, \phi Y) \eta (X) \eta (V) - \frac{1}{n - 1} S^* (U, Q^* Y) \eta (X) \eta (V) + 4g (\phi U, \phi X) S^* (Y, V) - \frac{1}{n - 1} S^* (U, X) S^* (Y, V) \tag{61}
\]

Let \(\{ e_i \} (1 \leq i \leq n) \) be an orthonormal basis of the tangent space at any point of the manifold \(M \). Setting \(U = V = e_i \) and taking summation over \(i (1 \leq i \leq n) \) and using (23), (24), (37), (38) and (39) in (61), we get
\[S^2(X,Y) = 4(n-1)S(X,Y) - 6\psi S(\phi X,Y) + 12(n-1)\psi g(X,\phi Y) \\
-9\psi^2 g(X,Y) + \left[3(n-1)^2 - 9\psi^2\right] \eta(X) \eta(Y) \] (62)

Hence the theorem is proved. \(\square\)

7. LP-Sasakian manifold satisfying \(P^*(\xi, U) \circ W^*_2 = 0\)

Theorem 7.1. In an \(n\)-dimensional LP-Sasakain manifold \(M\) of dimension \((n > 3)\) if the condition \(P^*(\xi, U) \circ W^*_2 = 0\) holds, then the equation

\[S^2(X,Z) = 4(n-1)S(X,Z) - 6\psi S(\phi X,\phi Z) + 12(n-1)\psi g(X,\phi Z) \\
-9\psi^2 g(X,Z) + \left[3(n-1)^2 - 9\psi^2\right] \eta(X) \eta(Z) \] (63)

is satisfied on \(M\), for all \(X, Z \in \chi(M)\).

Proof. Let us consider a LP- Sasakian manifold \(M\) satisfying the condition

\[(P^*(\xi, U) \circ W^*_2) (X,Y) Z = 0 \] (64)

Then we have

\[
0 = P^*(\xi, U) W^*_2 (X,Y) Z - W^*_2 (P^*(\xi, U) X,Y) Z \\
- W^*_2 (X, P^*(\xi, U) Y) Z - W^*_2 (X,Y) P^*(\xi, U) Z
\] (65)

Replacing \(Y\) by \(\xi\) in (64), we get

\[
0 = P^*(\xi, U) W^*_2 (X,\xi) Z - W^*_2 (P^*(\xi, U) X,\xi) Z \\
- W^*_2 (X, P^*(\xi, U) \xi) Z - W^*_2 (X,\xi) P^*(\xi, U) Z
\] (66)

It is seen that

\[
W^*_2 (X,\xi) Z = -4g(\phi X,\phi Z) \xi - \frac{1}{n-1} \eta(Z) Q^*_X \] (66)

\[
W^*_2 (\xi,\xi) Z = 0, W^*_2 (X,\xi) \xi = \frac{1}{n-1} Q^*_X \] (67)

Using (55), (56), (66) and (67) in (65), we get

\[
0 = \eta(Z) 4g(\phi U,\phi Q^*_X) \xi - \frac{1}{n-1} \eta(Z) S^*(U,Q^*_X) \xi \\
4g(\phi U,\phi Z) Q^*_X - \frac{1}{n-1} S^*(U,Z) Q^*_X \] (68)

The inner product of the equation (68) with vector field \(V\) gives

\[
0 = \left[4S^*(\phi U,\phi X) - \frac{1}{n-1} S^*(U,Q^*_X) \right] \eta(Z) \eta(V) \\
+ \left[4g(\phi U,\phi Z) - \frac{1}{n-1} S^*(U,Z) \right] S^*(X,V) \] (69)
Let \(\{e_i\} (1 \leq i \leq n) \) be an orthonormal basis of the tangent space at any point of the manifold \(M \). Setting \(U = V = e_i \) and taking summation over \(i (1 \leq i \leq n) \) and using (23), (24), (37), (38) and (39) in (69), we get

\[
0 = 4(n-1)S(X,Z) - 6\psi S(X,\phi Z) + 12(n-1)\psi g(X,\phi Z) - 9\psi^2 g(X,Z) - S^2(X,Z) \tag{70}
\]

Using (36) in (70), we have

\[
S^2(X,Z) = 4(n-1)S(X,Z) - 6\psi S(X,\phi Z) + 12(n-1)\psi g(X,\phi Z) - 9\psi^2 g(X,Z) - S^2(X,Z) \tag{71}
\]

Hence the theorem is proved. \(\square \)

Acknowledgement. The authors would like to thank the referee for their valuable suggestions to improve the paper.

REFERENCES

[1] Biswas, A. and Baishya, K. K., "Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection", Bulletin of the Transilvania University of Brasov, 12(2) (2020) 233-246.

[2] Blaga, A. M., "Canonical connection on Para Kenmotsu manifold", Novi Sad J. Math, Vol 45, No.2 (2015) 131-142.

[3] De, U. C. and Matsumoto, K. and Shaikh, A. A., "On Lorentzian para-Sasakian manifolds", Rendiconti del Seminario Matematico di Messina, Serie II, Suplemento al n. 3(1999) , 149-158.

[4] De, U. C. and Sengupta, J., "On a Type of SemiSymmetric Metric Connection on an almost-contact metric connection", Facta Universitatis Ser. Math. Inform. 16(2001) 87-96.

[5] Ghosh, S., "On a class of \((k,\mu) \)-contact manifolds", Bull. Cal. Math. Soc. 102 (2010), 219-226.

[6] Mandal, A. and Das, A., "On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection", Adv. Math. Sci. J, 9(2020), no.10, 8929-8940.

[7] Matsumoto, K., "On Lorentzian paracontact manifolds", Bull. of Yamagata Univ., Nat. Sci.12 (1989), p151-156.

[8] Mihai, I. and Rosca, R., "On Lorentzian P-Sasakian manifolds, Classical Analysis", World Scientific Publi. (1992), 155-169.

[9] Ozgur, C., "\(\varphi \)-Conformally flat Lorentzian para Saskian manifolds", Radovi Matematichki,Vol(12). (2003), p99-106.

[10] Pokhariyal, G. P. and Mishra, R. S., "Curvature tensors and their relativistic significance", Yokohama Math. J., 18(1970), 105-108.

[11] Takahashi, T., "Sasakian \(\phi \)-symmetric spaces", Tohoku Mathematical Journal, Second Series, vol. 29, no.1 (1977), pp. 91–113.

[12] Tripathi, M. M. and Gupta, P., "On curvature tensor in K-contact manifold and Sasakian manifold", International Electronic Journal of Mathematics, V-04, (2011), p32-47.

[13] Yano, K. and Bochner, S., "Curvature and Betti numbers", Annals of Mathematics Studies 32, Princeton University Press (1955).

[14] Zamkovoy, S., "Canonical connections on paracontact manifolds", Ann. Global Anal. Geom. 36(1)(2008), 37-60.