The transfer of defined TCR genes into human T cells appears to be a promising new strategy for redirecting T cells against cancer cells. In this approach, TCR genes with specificity for a known tumor antigen are introduced into the T cells of a patient whose tumor expresses the antigen and shares the MHC-restricting allele, and the modified cells are then expanded in vitro and infused back into the patient (1). A recent clinical study demonstrated the feasibility of this strategy (2), but the observed clinical efficacy was limited, in part because of the low avidity of the transduced T cells. Thus, a major challenge is to define means to improve the avidity of T cells transduced with a potentially tumor-reactive TCR, particularly in the context of the generally low affinity of available tumor-reactive TCRs. Besides selecting tumor-reactive TCRs with the highest identifiable affinity (3–5), strategies to increase TCR affinity before transduction (6, 7) or the functional avidity of the resulting TCR-transduced T cells (8, 9) should be explored. In this context, “affinity” will be defined as the strength of binding of one receptor with its ligand, “avidity” as the strength of binding between multiple receptors.

Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain

Jürgen Kuball,1,3,5 Beate Hauptrock,6 Victoria Malina,5 Edite Antunes,5 Ralf-Holger Voss,6 Matthias Wolff,1,2 Roland Strong,2,4 Matthias Theobald,5 and Philip D. Greenberg1,3

Adoptive transfer of T lymphocytes transduced with a T cell receptor (TCR) to impart tumor reactivity has been reported as a potential strategy to redirect immune responses to target cancer cells (Schumacher, T.N. 2002. Nat. Rev. Immunol. 2:512–519). However, the affinity of most TCRs specific for shared tumor antigens that can be isolated is usually low. Thus, strategies to increase the affinity of TCRs or the functional avidity of TCR-transduced T cells might be therapeutically beneficial. Because glycosylation affects the flexibility, movement, and interactions of surface molecules, we tested if selectively removing conserved N-glycosylation sites in the constant regions of TCR α or β chains could increase the functional avidity of T cells transduced with such modified TCRs. We observed enhanced functional avidity and improved recognition of tumor cells by T cells harboring TCR chains with reduced N-glycosylation (ΔTCR) as compared with T cells with wild-type (WT) TCR chains. T cells transduced with WT or ΔTCR chains bound tetramer equivalently at 4°C, but tetramer binding was enhanced at 37°C, predominantly as a result of reduced tetramer dissociation. This suggested a temperature-dependent mechanism such as TCR movement in the cell surface or structural changes of the TCR allowing improved multimerization. This strategy was effective with mouse and human TCRs specific for different antigens and, thus, should be readily translated to TCRs with any specificity.

© 2009 Kuball et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
receptors and their ligands, and “functional avidity” as the sensitivity of a T cell response to a target cell expressing the relevant peptide–MHCs (pMHCs).

Different strategies have been examined to increase the affinity of TCRs used for transduction. TCR phage (7) and yeast (6) displays have been used as formats to express TCR chains and to then generate mutants that can be screened ex vivo for increased affinity. With these approaches, a library of TCR chains can be created generally after random mutation of defined regions, such as CDR3, known to be important in recognition; the library expressed on the surface of the phage or yeast; the expressed mutated TCR chains screened by tetramer binding for increased affinity; and the cDNA encoding the highest affinity chains extracted, characterized, and subsequently used for transduction. Consequently, these display strategies can be very effective but are cumbersome and must be individualized for each TCR. Furthermore, not every TCR can be successfully expressed and modified by these technically challenging display strategies in nonmammalian systems (unpublished data), emphasizing the need for alternative techniques to increase TCR affinity or functional avidity of a T cell.

The functional avidity of a T cell, as reflected by responsiveness to antigen, is modulated by T cell surface O- or N-glycosylation (10, 11), with increased glycosylation of T cell surface proteins associated with an increased activation threshold. This has been reported to contribute to the higher activation thresholds of tolerant T cells (12), aged as compared with young T cells (13, 14), and naive as compared with activated or memory T cells (15, 16), and molecules such as CD43 and CD45 have been reported to be directly involved.

The reciprocal event, decreased glycosylation of surface proteins associated with an increased activation threshold. For example, decreased glycosylation of CD8 during thymic development is associated with increased affinity of CD8 with pMHC and, subsequently, improved signaling (17, 18). Moreover, a general deficiency in B1,6 N-acetylgalcosaminyltransferase V (Mgat5) in mice, an enzyme in the N-glycosylation pathway, mediates increased T cell activity in vitro and results in autoimmune disease in vivo (19). Although deficiency of this N-glycosylation pathway enzyme in mice resulted in reduced N-glycosylation of all proteins, the reduced N-glycosylation of the TCRs appeared to specifically result in increased TCR mobility at the cell surface, enhanced recruitment to the synapse (TCR clustering), improved TCR engagement/down-modulation, and, consequently, enhanced functional avidity of the T cells. To test if selectively reducing N-glycosylation of TCR chains might achieve some of these effects, N-glycosylation of cloned TCR genes was prevented by sequentially deleting before expression N-glycosylation motifs (asparagine–any amino acid–serine/threonine[N-X-S/T]) in the α and/or β chain by changing N to glutamine (Q) by site-directed mutagenesis. The WT and/or modified TCR chains were expressed in hybridomas or human T cells, and TCR expression, tetramer staining, and functional avidity of the T cells was assessed. We demonstrate with several TCRs recognizing different antigens that the removal by point mutation of defined N-glycosylation motifs in the constant domains of TCR chains can increase the functional avidity of T cells transduced with these TCRs, and that this translates into enhanced recognition of tumor cells. As these N-glycosylation sites in the constant domain are conserved in all TCRs, this strategy should be easily translated to TCRs with any specificity.

RESULTS

Selective N-deglycosylation of TCR chains increases functional avidity of TCR-transduced 58α+/β− cells as compared with 58α+/β− cells transduced with WT TCR chains

To determine if reducing N-glycosylation of TCR chains can affect functional T cell avidity, we first analyzed the α and β chain sequence of two mouse (3, 4) and one human (9) TCRs for characteristic N-glycosylation sites (N-X-S/T; see Materials and methods; Fig. 1), as located according to the IMmuNoGeneTics (IMGT) nomenclature (20). N-glycosylation sites were detected in the variable domain of all analyzed α chains but not in the variable domain of any of the tested β chains (Fig. 1). The mouse constant α chain harbors two N-glycosylation sites (c-90 and c-113). Although the location of these N-glycosylation sites are conserved in the human constant α chain (c-90 and c-109), the threonine of the motif is replaced by an equally acceptable serine residue. The human constant α chain also has an additional N-glycosylation site at position c-36. The mouse constant β chain has three N-glycosylation sites, whereas the human constant β chain harbors only a single

![Figure 1. N-glycosylation sites in mouse and human TCR chains.](image)

A TCR specificity restriction origin

Cloned TCR chains	HLA-A*0201	HLA-A*0201	mouse	
va3viβ3	p53	VA3	NVT	NAT
va13-D3viβ6	MDM2	B1	NYS	NKS
va21viβ21	WT1	126-134	HLA-A*0201	human

B

TCR chains	restriction	origin
va3	KVS	NVP
va13-D3	NSF	NVT
va21	DYT	NYS

C

TCR chains	restriction	origin
vβ3	vi3	NVT
vβ6	vi6	NYS

Figure 1. N-glycosylation sites in mouse and human TCR chains. (A) List of the cloned TCR chains investigated. N-glycosylation sites in these (B) TCR α and (C) TCR β chains. Sites harboring the N-glycosylation motif (N-X-S/T) are in bold and are underlined (according to the IMGT nomenclature; reference 20).
N-glycosylation site at position c-85.6, which corresponds to the mouse N-glycosylation site at position c-84.5.

The potential contribution of distinct glycosylation sites within TCR chains to modulating activation after antigen encounter was assessed by modifying WT mouse \(\alpha_3 \)WT and \(\nu_3 \)WT TCR chains isolated from a mouse CD8+ T cell clone that had been derived from a transgenic mouse expressing human HLA-A*0201 (HLA-A2) and was specific for the HLA-A2–restricted p53–derived epitope p53264–272 (4). Furthermore, this TCR is CD8 independent, thus allowing analysis of the role of CD8 in the function of a deglycosylated TCR chain. N-glycosylation of TCR chains was prevented at specific sites (TCR chains with reduced N-glycosylation [\(\Delta TCR \)]) by mutating N of the N-glycosylation motif N-X-S/T to Q at position 84C (\(\alpha_3 \)c,84C) in the variable domain of \(\alpha_3 \) or at position 90 (\(\alpha_3 \)c,90) or 113 (\(\alpha_3 \)c,113) in the constant domain of the \(\alpha \) chain, or at position 1.3 (\(\nu_3 \)c,1.3), 84.5 (\(\nu_3 \)c,84.5), or 116 (\(\nu_3 \)c,116) in the constant domain of the \(\nu_3 \) chain (\(\nu_3 \)c,116; residues noted according to IMGT [20]; Fig. 1). 58α−/− thymoma cells were retrovirally transduced with either the WT \(\alpha \) and \(\beta \) chain or a combination of a WT chain and the corresponding \(\Delta \alpha \) or \(\Delta \beta \) TCR chain, selected with antibiotics, stained with an antibody to the mouse \(\beta \) TCR chain, and analyzed by flow cytometry. Only 58α−/− cells transduced with both \(\alpha_3 \) and \(\nu_3 \) chains expressed the \(\nu_3 \) chain at the cell surface (unpublished data), consistent with the requirement for the assembly of paired heterodimeric TCR chains to achieve surface expression. Despite multiple attempts, we were unable to generate 58α−/− cells expressing the \(\nu_3 \)c,1.3 chain, perhaps because of improper folding of this modified chain, and this modification was therefore not further pursued. After transduction of 58α−/− cells with WT \(\alpha_3 / \nu_3 \)WT chains or all other combinations of \(\Delta \) and WT TCR chains, \(\sim 80\% \) of cells expressed the \(\nu_3 \) TCR, with a mean fluorescence intensity (MFI) of \(\sim 250 \) for \(\nu_3 \) expression (Fig. 2 A; and Fig. S1, available at http://www.jem.org/cgi/content/full/jem.20082487/DC1). Because the \(\alpha \) chain is required for surface expression of this TCR, these results also suggest that the mutations do not affect expression, with equivalent amounts of \(\Delta \) and WT \(\nu_3 \) chains expressed at the cell surface with \(\nu_3 \) chains. Thus, 58α−/− cells transduced with combinations of \(\Delta \) and WT chains exhibited similar efficiencies of expression for pairs of all of the introduced \(\alpha \) and \(\beta \) TCR chains, with the exception of the \(\nu_3 \)c,1.3 chain.

To assess tetramer binding of the different TCR chains, 58α−/− cells mock transduced or transduced with WT only or combinations of WT and \(\Delta TCR \) chains were incubated with the p53264–272 tetramer at 4°C for analysis by flow cytometry of TCR–pMHC interactions in the absence of temperature-dependent mechanisms such as increased membrane fluidity, diffusion rates, and conformational changes. Mock-transduced 58α−/− cells did not bind the p53264–272 tetramer. In contrast, \(\sim 70\% \) of the 58α−/− cells transduced with any of the pairs of TCR chains bound the p53264–272 tetramer, and the MFI of the tetramer-positive populations was \(\sim 40–70 \) for 58α−/− cells expressing WT and \(\Delta TCR \) chains (Fig. 2 B; and Fig. S2, available at http://www.jem.org/cgi/content/full/jem.20082487/DC1). Thus, 58α−/− cells transduced with combinations of \(\Delta TCR \) chains exhibited similar levels of TCR expression as compared with 58α−/− cells transduced with WT TCR chains and exhibited no initial difference in specific tetramer binding.

To assess functional avidity of transduced 58α−/− cells, IL-2 secretion was assessed in response to K562-A2 cells pulsed with titrated amounts of p53264–272 peptide. The peptide concentration required to reach half-maximal IL-2 secretion (EC50) was calculated and transformed to log scale (logEC50). 58α−/− cells expressing \(\nu_3 / \nu_3 \)WT TCR had a logEC50 of \(\sim 6 \pm 0.1 \) M, and 58α−/− cells expressing \(\nu_3 / \nu_3 \)WT had
secretion in response to peptide-loaded K562-A2 cells was also measured for 58αβ T cells transduced with the other mutants (not depicted), and the ΔlogEC50 was calculated (vα3c,84c,c-90,c-113, P = 0.01; vβ3c,84.5,c-116, P = 0.44; vβ3c,84.5,c-116, P = 0.06; vβ3c,84.5,c-116, P = 0.07; vα3c,84c,c-90,c-113/vβ3c,84.5,c-116, P = 0.02; Fig. 2 D). In summary, despite equivalent TCR expression and equivalent binding at 4°C of specific tetramer by 58αβ T cells transduced with WT and ΔTCR, reduced N-glycosylation of TCR chains increased IL-2 secretion of 58αβ T cells after antigen encounter, and was statistically significant (P < 0.05) for 58αβ T cells transduced with vα3c,90 and vα3c,84c,c-90,c-113/vβ3c,84.5,c-116 chains.

Enhanced functional avidity of human T cells transduced with the partially deglycosylated TCR chain vα3c,90 in the absence of the CD8 coreceptor

To determine if the effect of partial TCR chain deglycosylation in human T cells reflected altered interactions with the CD8 coreceptor, human CD4+ and CD8+ T cells were retrovirally transduced with the HLA-A2–restricted p53264–272–specific mouse WT or ΔTCR, as indicated in Materials and methods. We focused our analysis on the vα3c,90/vβ3c,WT ΔTCR chain pair that had the most prominent change in avidity in 58αβ T cells. CD4+ T cells expressing mouse vα3c,WT/vβ3c,WT or vα3c,90/vβ3c,WT TCR chains were sorted for equivalent amounts of vβ3 surface expression and were expanded (both were 99% vβ3 positive; vα3c,WT/vβ3c,WT, MFI of 1,050; vα3c,90/vβ3c,WT, MFI of 1,100; Fig. 3 A). Expression of the vα3 chain could not be monitored directly because of the lack of a commercially available antibody. However, mouse TCR chains are preferentially expressed with each other and not with human endogenous TCR chains (8, 21, 22), and measuring the introduced β chain should be a good general indication of expression of the introduced mouse α chain in these polyclonal populations. Moreover, vα3 expression was indirectly assessed by isolating mRNA from the transduced T cells, reverse transcribing the mRNA into cDNA, analyzing the product with PCR primers detecting the unique CDR3 domain of the TCR α chain, and normalizing to the number of β-actin copies. Equivalent amounts (1:1 ratio) of vα3c,WT and vα3c,90 RNA levels were detected in cells previously selected based on equivalent vβ3 surface expression.

To assess tetramer binding of WT and ΔTCR chain heterodimers in human T cells in the absence of the CD8 coreceptor, transduced CD4+ T cells were incubated with p53264–272 tetramer at 4°C and analyzed by flow cytometry. Tetramer binding of CD4+ T cells transduced with vα3c,WT/vβ3c,WT and vα3c,90/vβ3c,WT TCR chains was almost equivalent (both 97% tetramer positive; vα3c,WT/vβ3c,WT, MFI of 66; vα3c,90/vβ3c,WT, MFI of 57; Fig. 3 B). Functional avidity of the CD4+ T cells transduced with vα3c,WT/vβ3c,WT and vα3c,90/vβ3c,WT TCR chains was then determined by incubating the T cells with T2 cells pulsed with titrated amounts of p53264–272 peptide. Supernatant was harvested 48 h later, IFN-γ secretion was determined by ELISA, and the peptide
concentration inducing half-maximal IFN-γ secretion was determined and transformed to log_{10}EC50. The \(\text{va}_3 \) WT/vβ3 WT-transduced T cells had a log_{10}EC50 for IFN-γ secretion of \(-7.5 \pm 0.1\) M (Fig. 3 C), whereas the \(\text{va}_3 \) WT/vβ3 WT TCR–transduced CD4+ T cells had a log_{10}EC50 of \(-7.9 \pm 0.1\) M (Fig. 3 C).

Again, \(\Delta \text{log}_{10}\text{EC50} \) (0.4) was calculated from two independent assays (\(P = 0.02 \)). Furthermore, as compared with WT TCR–transduced CD4+ T cells, the maximal IFN-γ cytokine secretion was approximately threefold higher for CD4+ T cells transduced with \(\text{va}_3 \) 3-90/vβ3 WT TCR chains (\(\text{va}_3 \) WT/vβ3 WT, 3,258 ± 1,638 pg/ml; \(\text{va}_3 \) 3-90/vβ3 WT, 9,487 ± 382 pg/ml). Thus, despite equivalent amounts of TCR surface expression and tetramer binding by the transduced CD4+ T cells, CD4+ T cells transduced with \(\text{va}_3 \) 3-90/vβ3 WT TCR chains had a greater ability to respond to antigen and produce IFN-γ than CD4+ T cells expressing \(\text{va}_3 \) WT/vβ3 WT chains.

To determine if the observed higher maximal IFN-γ cytokine secretion by \(\text{va}_3 \) 3-90/vβ3 WT compared with \(\text{va}_3 \) WT/vβ3 WT TCR–transduced T cells reflects recruitment of a larger fraction of antigen-specific cells, or more cytokine production from each activated cell, transduced T cells were incubated for 5 h with p53 264-272 or WT1 126-134 control peptide–pulsed (10^5 M) target cells, secretion was blocked with Brefeldin A, and intracellular IFN-γ production was determined by flow cytometry. 11.5% of CD4+ T cells transduced with \(\text{va}_3 \) WT/vβ3 WT and 34.1% of CD4+ T cells transduced with \(\text{va}_3 \) 3-90/vβ3 WT stained positive for IFN-γ (Fig. 3 D). Furthermore, the MFI of IFN-γ–positive cells, an indicator for the mean cytokine production per cell, was 20 for \(\text{va}_3 \) WT/vβ3 WT and 43 for \(\text{va}_3 \) 3-90/vβ3 WT–transduced T cells, suggesting that the difference reflected both recruitment of more cells and production of more cytokine per cell in cells expressing the \(\text{va}_3 \) 3-90/vβ3 WT TCR.

Gain of functional avidity mediated by the \(\text{va}_3 \) 3-90 TCR chain persists in the presence of the CD8 coreceptor

To determine if the presence of the CD8+ coreceptor modifies the observed improvement in functional avidity with ΔTCR chains, CD8+ T cells transduced with either \(\text{va}_3 \) WT/vβ3 WT or \(\text{va}_3 \) 3-90/vβ3 WT were selected for equivalent vβ3 TCR surface expression. To determine \(\alpha \) chain expression in cells sorted for equivalent vβ3 TCR surface expression, mRNA was again isolated from transduced T cells, reverse transcribed into cDNA, amplified by PCR with primers specific for the TCR \(\alpha \) chain and \(\beta \)-actin, and normalized to \(\beta \)-actin copies. Equivalent amounts (1:1 ratio) of \(\text{va}_3 \) WT and \(\text{va}_3 \) 3-90 RNA were detected. Transduced CD8+ T cells selected for equivalent vβ3 TCR surface expression by flow cytometry and controlled for equivalent \(\text{va}_3 \) TCR expression by RT-PCR were incubated for 5 h with p53 264-272 or WT1 126-134 control peptide–pulsed (10^5 M) T2 cells, secretion was blocked with Brefeldin A, and intracellular IFN-γ production was determined by flow cytometry. 42.5% of \(\text{va}_3 \) WT/vβ3 WT–transduced CD8+ T cells produced IFN-γ (MFI of 40), whereas only 27.7% of cells expressing \(\text{va}_3 \) WT/vβ3 WT produced IFN-γ (MFI of 29; Fig. 4 A). Thus, although the presence of the coreceptor CD8 increased the functional avidity of this class I–restricted T cell response, recruitment of T cells and production of cytokine per cell was still further increased in the presence of ΔTCR as compared with WT TCR chains.

To assess the impact of a ΔTCR in transduced T cells on recognition of cells expressing more physiological levels of antigen, mock-transduced T cells and \(\text{va}_3 \) WT/vβ3 WT or \(\text{va}_3 \) WT/vβ3 WT TCR–transduced CD8+ T cells were tested for recognition of the HLA-A2–positive p53-negative cell line Soas2, and the HLA-A2–positive p53-overexpressing tumor cell lines MDAMB231, SW480, and MZ1851RC in a 5-h 51Cr-release assay at a low effector/target ratio of 0.3:1 (Fig. 4 B). No T cell lines lysed the negative control Soas2, and mock-transduced T cells did not lyse any tumor targets. In contrast, the

Figure 4. Analysis of \(\text{va}_3 \) vβ3 TCR–transduced CD8+ T cells.

(A) Intracellular IFN-γ secretion of \(\text{va}_3 \) WT/vβ3 WT and \(\text{va}_3 \) 3-90/vβ3 WT TCR–transduced CD8+ T cells was determined after a 5-h coinubcation with T2 cells pulsed with 10^{-5} M WT1 126-134 or p53 264-272 peptide. (B) Mock (gray bar), \(\text{va}_3 \) WT/vβ3 WT (white bar), and \(\text{va}_3 \) 3-90/vβ3 WT (black bar) TCR–transduced CD8+ T cells were tested for recognition of the HLA-A2-p53− cell line Soas2 and the p53-overexpressing cell lines MDAMB231 (MDAMB), SW480, and MZ1851RC (MZ1851) in a 5-h 51Cr-release assay (t test: *, \(P < 0.05 \); **, \(P < 0.01 \); error bars are SEM). All assays were performed in duplicates. All data are representative of at least two independent experiments.
v\(\alpha_3/v\beta_3\) and v\(\alpha_3/v\beta_3\) TCR–transduced CD8\(^+\) T cells lysed all of the p53-overexpressing cell lines. Greater lysis of tumor targets was achieved with T cells transduced with the \(\Delta\)TCR chains, which was significantly different by a t test from lysis by T cells transduced with WT TCR chains (\(\Delta\)TCR/WT TCR: MZ1851RC, 23%/11%, P < 0.01; MD-AMB231, 26%/14%, P < 0.01; SW480, 55%/30%, P < 0.05).

Thus, substituting v\(\alpha_3\) with v\(\alpha_3,N\) improved lysis of cells that endogenously process and present antigen.

Tetramer binding of T cells transduced with WT and partially deglycosylated TCR chains

Functional avidity of TCR–transduced T cells has been reported to correlate with tetramer binding (9). However, our results with transduced 58\(\alpha,\beta\), CD4\(^+\), and CD8\(^+\) T cells indicated an increase in functional avidity for v\(\alpha_3,v\beta_3\)–transduced cells compared with v\(\alpha_3/v\beta_3\)–transduced cells despite apparently equivalent tetramer binding (Figs. 2–4). Because these tetramer-binding experiments were performed at 4°C, which precludes temperature-dependent events such as increased membrane fluidity and conformational changes, tetramer binding was reanalyzed at 37°C to permit temperature-dependent changes that might influence TCR–pMHC binding (23–25), and the \(K_D\) of the TCR–pMHC interaction was calculated by Scatchard analysis, as indicated in Materials and methods. The v\(\alpha_3/v\beta_3\) and v\(\alpha_3,v\beta_3\)–transduced CD4\(^+\) T cells had a \(K_D\) of 73 and 46 nM, respectively, and the v\(\alpha_3/v\beta_3\) and v\(\alpha_3,v\beta_3\)–transduced CD8\(^+\) T cells had a \(K_D\) of 19 and 15 nM, respectively (Table I and Fig. 5, A and B). Thus, in contrast to tetramer binding at 4°C, analysis at 37°C revealed that v\(\alpha_3,v\beta_3\)–transduced CD4\(^+\) T cells bound tetramer with a lower \(K_D\) than WT receptors, whereas CD8\(^+\) T cells transduced with the v\(\alpha_3,v\beta_3\)–transduced CD8\(^+\) TCR appeared to achieve only a slightly improved \(K_D\) compared with WT TCR–transduced T cells. To more precisely analyze the \(K_D\) changes in CD4\(^+\) and CD8\(^+\) T cells, the \(K_D\) was reanalyzed by determining tetramer association and dissociation rather than the previous Scatchard analysis, which permitted determining the association (\(k_{asso}\)) and dissociation (\(k_{diss}\)) rates. As described in Materials and methods, \(k_{asso}\) was assessed during tetramer association; \(t_{1/2}\) and \(k_{diss}\) were assessed during tetramer dissociation; and \(k_{asso}\) and \(K_D\) were then derived (Table I and Fig. 5, C–F). \(k_{asso}\), the dissociation constant of the pMHC from the TCR, was approximately ninefold longer for CD8\(^+\) and approximately fourfold longer for CD4\(^+\) compared with WT TCRs (CD8\(^+\)v\(\alpha_3/v\beta_3\)–transduced CD4\(^+\) TCR, 0.29 min\(^{-1}\); CD8\(^+\)v\(\alpha_3/v\beta_3\)–transduced CD8\(^+\) TCR, 0.07 min\(^{-1}\)).

TCR internalization of WT and \(\Delta\)TCR in transduced T cells after antigen-specific stimulation

Globally reduced N-glycosylation in T cells has been suggested to improve T cell signaling by improving mobility of the TCR on the cell membrane, thereby enhancing TCR recruitment to the synapse and increasing the frequency of TCR–pMHC interaction, which results in augmented signaling and greater TCR internalization/endocytosis (19). We examined whether depletion of a single N-glycosylation site (p53 264-272 Tet) would improve T cell signaling by improving mobility of the TCR on the cell membrane, thereby enhancing TCR recruitment to the synapse and increasing the frequency of TCR–pMHC interaction, which results in augmented signaling and greater TCR internalization/endocytosis (19).

![Figure 5. Tetramer binding of WT and \(\Delta\)TCR–transduced T cells.](image-url)
motif from a TCR chain can also facilitate this process, and used TCR internalization as the measurable objective end-point. Therefore, $\alpha_3c_{90}/\nu\beta_3_{WT}$ or $\alpha_3c_{WT}/\nu\beta_3_{WT}$ TCR–transduced CD4$^+$ T cells were co-cultured with T2 cells pulsed with 10^{-6} or 10^{-8} M of p53$_{264-272}$ peptide, and surface expression of the introduced TCR β chain was assessed before and at 2, 4, and 6 h after stimulation by flow cytometry. For the comparisons, surface expression of the introduced mouse TCR β chain before antigen encounter was set as 100%, and the surface expression after antigen encounter was calculated as the percentage of total TCR β chain was set as 0%, and the surface expression after antigen encounter was calculated as the percentage of total TCR β chain surface expression before antigen encounter. A maximal 80% down-regulation of the introduced mouse TCR β chain was observed at 10^{-8} M, and 50% TCR β chain down-regulation was observed at 10^{-8} M for both $\alpha_3c_{90}/\nu\beta_3_{WT}$ and $\alpha_3c_{WT}/\nu\beta_3_{WT}$ TCR–transduced CD4$^+$ T cells (Fig. S3, available at http://www.jem.org/cgi/content/full/jem.20082487/DC1). Thus, Δ and WT TCR chains were equivalently internalized after antigen encounter.

Depleting N-glycosylation motifs in the constant domain improves functional avidity of TCR with other specificities in transduced T cells

The enhanced avidity of $\alpha_3c_{90}/\nu\beta_3_{WT}$ as compared with $\alpha_3c_{WT}/\nu\beta_3_{WT}$–transduced T cells could potentially be a unique feature of the p53$_{264-272}$–specific $\alpha_3/\nu\beta_3$ TCR chains. To determine if elimination of N-glycosylation modifications could be of more general use to increase the avidity of T cells transduced with other TCRs, a mouse HLA-A2–restricted TCR with reactivity against the human tumor antigen MDM2$_{51-88}$ ($\alpha_3c_{WT}/\nu\beta_6_{WT}$) was modified at the unique position ν-24 in the variable domain (α_3c_{-24}) or at the positions previously found to be most effective in improving the functional avidity of T cells for the $\alpha_3/\nu\beta_3$ TCR chains: c-90 in the constant domain of the α chain.

Table I. Tetramer-binding avidity (K_D) of TCR-transduced human T lymphocytes

TCR	K_D (determined by Scatchard plot)	Tet association	Tet dissociation (inhibition with W6/32)	k_{on} calculation
	$K_D = -1/slope$	min	min^{-1}	$nM^{-1}min^{-1}$
CD4$^+$ α_3c_{90}	73 (slope: -0.014 ± 0.003)	2.4 ± 0.13	0.29 ± 0.13	0.0007
CD4$^+$ α_3c_{WT}	46 (slope: -0.032 ± 0.011)	5.5 ± 0.13	0.13 ± 0.04	0.0007 ± 0.0001
CD8$^+$ α_3c_{90}	19 (slope: -0.052 ± 0.003)	8.1 ± 0.13	0.26 ± 0.07	0.01 ± 0.01
CD8$^+$ α_3c_{WT}	15 (slope: -0.065 ± 0.008)	7 ± 0.03	0.03 ± 0.01	0.01 ± 0.01
CD8$^+$ α_3c_{90}	14 (slope: -0.074 ± 0.026)	8.3 ± 0.08	0.03 ± 0.01	0.001 ± 0.001
CD8$^+$ α_3c_{WT}	12 (slope: -0.083 ± 0.043)	7.1 ± 0.1	0.01 ± 0.01	0.001 ± 0.001
CD8$^+$ α_2c_{90}	n.d.	n.d.	n.d.	n.d.
CD8$^+$ α_2c_{WT}	n.d.	n.d.	n.d.	n.d.

n.d., not determined because of the loss of tetramer binding at 37°C as compared with 0°C.
(\(\alpha 13-\alpha 3\ 3c-36\)) and c-116 in the constant domain of the \(\beta\) chain (\(\beta 6c-116\) Fig. 1). CD8\(^+\) T cells were retrovirally transduced with vectors encoding for WT or combinations of WT and \(\Delta TCR\) chains. T cells transduced with each of these different pairs of chains exhibited equivalent amount of \(\beta 6\) chain at the cell surface (unpublished data). Transduced T cells were stimulated with K562-A2 cells pulsed with titrated amounts of MDM2\(^{81-88}\) peptide, the number of IFN-\(\gamma\)-secreting cells was determined by an IFN-\(\gamma\)-ELISPOT assay (unpublished data), and \(\Delta \log EC_{50}\) was calculated for CD8\(^+\)-transduced T cells. The results (Fig. 6 A) revealed that removal of the N-glycosylation site in the \(\alpha\) chain at position c-90 significantly increased functional avidity (\(\alpha 13-\alpha 3c-90/\beta 6cWT\), \(\Delta \log EC_{50} = 0.9\) and \(P = 0.02\)). Removal of other N-glycosylation sites also appeared to increase functional avidity, but these changes did not reach statistical significance (\(\alpha 13-\alpha 3c-36/\beta 6WT\), \(\Delta \log EC_{50} = 0.3\) and \(P = 0.55\); \(\alpha 13-\alpha 3c3WT/\beta 6c_{116}\) \(\Delta \log EC_{50} = 0.8\) and \(P = 0.07\); and \(\alpha 13-\alpha 3c-90/\beta 6c_{116}\), \(\Delta \log EC_{50} = 0.3\) and \(P = 0.15\)). As described with the tetramer binding of \(\alpha 3/\beta 3\) TCR–transduced T cells, the \(K_D\) of \(\alpha 13-\alpha 3c3WT/\beta 6WT\) and \(\alpha 13-\alpha 3c-90/\beta 6cWT\) was assessed by Scatchard analysis and by determining tetramer association and dissociation (Table I). As observed for \(\alpha 3/\beta 3\) TCR–transduced T cells, the \(K_D\) was only slightly decreased for \(\Delta TCR\)-transduced T cells when analyzed by Scatchard (\(\alpha 13-\alpha 3c3WT/\beta 6WT\), 14 nM; \(\alpha 13-\alpha 3c-90/\beta 6cWT\), 12 nM). However, the more precise \(K_D\) calculation determined from the tetramer association and dissociation rates revealed an approximately threefold decrease in \(K_D\) for \(\Delta TCR\) as compared with WT TCRs (\(\alpha 13-\alpha 3c3WT/\beta 6WT\), 30 nM; \(\alpha 13-\alpha 3c-90/\beta 6cWT\), 10 nM), consistent with the higher functional avidity of \(\Delta TCR\)– as compared with WT TCR–transduced T cells.

To determine if human TCR chains might also benefit from the removal of N-glycosylation sites, human HLA-A2–restricted TCR chains (\(\alpha 21cWT/\beta 21cWT\)) specific for the tumor antigen epitope WT1\(^{126-134}\) were modified at the unique position v-83 in the variable domain (\(\alpha 21c_{v-83}\)) positions c-36, c-90, and c-109 in the constant domain of the \(\alpha\) chain (\(\alpha 21c_{c-36}\), \(\alpha 21c_{c-90}\), and \(\alpha 21c_{c-109}\)); or position c-85.6 in the \(\beta\) chain (\(\beta 21c_{c-85.6}\)). Human CD8\(^+\) T cells were retrovirally transduced with vectors encoding WT or combinations of WT and \(\Delta TCR\) chains and were selected for equivalent levels of \(\beta 21\) by flow cytometry (unpublished data). To formally assess \(\alpha 21\) expression, mRNA was isolated from transduced CD8\(^+\) T cells, reverse transcribed into cDNA, and analyzed with PCR primers detecting the unique CDR3 domain of the TCR \(\alpha\) chain and normalized to the number of \(\beta\)-actin copies. Equivalent amounts of WT and \(\Delta \alpha 21\) RNA were detected in cells previously selected based on equivalent \(\beta 21\) surface expression. Transduced CD8\(^+\) T cells, controlled for equivalent amounts of introduced \(\alpha \beta\) TCR chains, were stimulated with T2 cells pulsed with WT T1\(^{126-134}\) Peptide (10\(^{-5}\) M), and the number of IFN-\(\gamma\)-producing cells was determined by an intracellular cytokine secretion assay. Cells transduced with \(\alpha 21c_{c-36}/\beta 6WT\) exhibited the greatest activity, with 20.6% of cells producing cytokine as compared with 6.1% for WT TCR–transduced T cells (Fig. 6 B). After transduction with \(\alpha 21c_{v-83}/\beta 21cWT, \alpha 21c_{c-90}/\beta 21cWT, \alpha 21c_{c-109}/\beta 21cWT,\) or \(\alpha 21cWT/\beta 21c_{c-85.6}\), 4.9, 4.3, 8.3, and 8.6% of cells, respectively, produced IFN-\(\gamma\) (unpublished data). Because of the loss of tetramer binding at 37°C as compared with 0°C with these human WT1-specific TCR chains, the \(K_D\) could not be calculated at 37°C (Table I). Thus, in contrast to

Figure 6. Analysis of T cells transduced with TCRs of other specificities. (A) \(\Delta \log EC_{50}\) of WT and \(\Delta \alpha 13-\Delta 3/\Delta \beta 3\) TCR–transduced CD8\(^+\) T cells. Statistical significance was assessed by a t test (*, \(P < 0.05\); error bars are SEM of at least two independent experiments). (B) Intracellular IFN-\(\gamma\) secretion of \(\alpha 21cWT/\beta 21cWT\) and \(\alpha 21c_{c-36}/\beta 21cWT\) TCR–transduced CD8\(^+\) T cells was determined after a 5-h coincubation with T2 cells pulsed with 10\(^{-6}\) M WT T1\(^{126-134}\) peptide. Data are representative of three independent experiments. (C) Mock (white), \(\alpha 21c_{c-85.6}/\beta 21cWT\) (light gray), \(\alpha 13-\alpha 3c3WT/\beta 6WT\) (dark gray), and \(\alpha 21c_{c-36}/\beta 21cWT\) (black)–transduced T cells (from the left to right per cell line) were coincubated with HLA-A2–positive PBMCs, the fibroblast cell line MRC5, and CD34\(^+\) cells pulsed with no peptide or 10\(^{-6}\) M MDM2\(^{81-88}\) as a positive control for the potential to be recognized by a specific TCR cell in this assay, and IFN-\(\gamma\) secretion was measured by an ELISPOT assay. T2 cells were pulsed with no peptide or the relevant peptide (10\(^{-6}\) M) for each TCR–transduced T cell (MDM2\(^{81-88}\) for the mock–transduced T cells). Data are representative of two independent experiments. *, not done.
mouse TCR chains, removal of the N-glycosylation motif in the α chain at the interspecies conserved position c-90 did not improve functional avidity; however, depletion of the c-36 (Fig. 6B) in the human α chain showed an almost 3.4-fold increase in cytokine-secreting cells, indicating that removal of N-glycosylation sites in a human TCR chain can also improve the avidity of TCR-transduced T cells.

Gain of functional avidity mediated by N-deglycosylated TCR chains does not result in self-reactivity

An undesirable effect of an increased avidity of a tumor antigen–specific T cell might be the recognition of normal tissue either by aberrant recognition of self-antigens (26) or recognition of the specifically targeted tumor antigen, such as WT1 (27), p53 (28), or MDM2 (3), because of the physiological expression of the protein at lower levels in normal tissues. To test whether the increased avidity provided by deglycosylation of the human WT1 126-134, mouse p53 264-272, or mouse MDM2 91-98–specific TCR-transduced human T cells has been reported to induce therapeutic responses in nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice without detectable xenoreactivity (5) with the mouse MHC molecules. This has allowed us to test if the physiological levels of WT1 126-134 in any tissue might be recognized by WT1 126-134–specific TCR-transduced human T cells in vivo by transferring the human T cells into NOD/SCID mice bred to express a transgenic HLA-A2 allele (HLA-A2 × NOD/SCID), as well as if aberrant reactivity with normal host proteins presented in the context of HLA-A2 is acquired by the modified TCR. 2 × 10^6 αβ2 WT/vβ21 WT and αβ21 c-36/vβ21 WT TCR–transduced human T cells were selected for equivalent TCR expression as described in earlier experiments, labeled with CFSE, and intravenously injected into HLA-A2 × NOD/SCID or NOD/SCID mice. HLA-A2 × NOD/SCID mice were simultaneously immunized to facilitate engraftment with 10 μg WT1 126-134 peptide or 10 μg of the control A/PR/8/34 influenza matrix protein M1 FluM1 58-66 (33). NOD/SCID mice were immunized only with 10 μg WT1 126-134 peptide. 6 h later, mice received a single subcutaneous injection of 6 × 10^5 IU of rhIL-2 resuspended in incomplete Freund’s adjuvant (34) to enhance in vivo activation, survival, and expansion of the transferred cells. Mice were monitored for overall survival, weight loss, and persistence of the transferred transduced T cells. CD8+ T cells transduced with WT TCR chains were detected by flow cytometry in the peripheral blood of HLA-A2 × NOD/SCID mice immunized with the WT1 126-134 peptide 2 wk after cell transfer (n = 8; mean αβ2 WT/vβ21 WT, 1%; mean αβ21 c-36/vβ21 WT, 3.3%), whereas <0.5% of T cells (below the detection threshold) were detectable at 2 wk in HLA-A2 × NOD/SCID mice immunized with FluM1 58-66 or NOD/SCID control mice immunized with the WT1 peptide but that lack the HLA-A2 allele on host cells required to present the peptide (n = 16), suggesting that antigen-specific proliferation of TCR–transduced T cells was induced by the peptide binding to recipient HLA-A2 in vivo (Fig. S4 A, available at http://www.jem.org/cgi/content/full/jem.20082487/DC1).

In vivo proliferation of T cells after transfer and immunization was confirmed by analyzing the dilution of CFSE in the transferred CD8+ T cells, which was not diluted on day 0 but became diluted after 2 wk in immunized mice expressing HLA-A2 (Fig. S4 B). HLA-A2 × NOD/SCID mice in which proliferation of T cells with WT and mutated TCR chains was observed did not show any clinical sign of autoimmunity after 2 wk and remained healthy through a 4-wk observation period, suggesting no significant toxicity mediated by the transferred T cells. After 4 wk, a time when transferred T cells could no longer be detected in the peripheral blood (unpublished data), the HLA-A2 × NOD/SCID mice were killed, organs (liver, spleen, and lung) were analyzed for histological signs of autoimmune injury, and bone marrow and spleen cells were analyzed by flow cytometry for the presence of CD8+ T cells. No infiltrating human T cells were observed in the liver, lung, and bone marrow, and a normal histological structure of the liver, lung, and spleen were observed in the liver, lung, and bone marrow, and a normal histological structure of the liver, lung, and spleen.
was observed. Transduced T cells were detected in the spleen of mice that received T cells with mutated TCR chains (vα21c-36/vβ21WT, 6.6%) but were below the detection threshold in recipients of T cells with WT TCR chains (vα21WT/vβ21WT, <0.5%; Fig. S4 C). Thus, the increased avidity of T cells transduced with the ΔTCR for targets presenting WT1 resulted in a greater initial expansion in response to in vivo immunization and improved long-term persistence without evidence of toxicity to normal tissues.

DISCUSSION

We observed enhanced functional avidity as reflected by cytokine secretion and lytic capacity after recognition of peptide-loaded targets, and improved recognition of tumor cells by T cells harboring ΔTCR. This was observed with both TCRs that exhibited a high affinity in their WT form (3, 4) and a TCR that initially exhibited a more intermediate affinity (9). Reducing N-glycosylation of TCRs might be directly enhancing the interaction of TCRs with pMHCs and thereby increasing T cell activation. Two models have been proposed to explain how TCR–pMHC interactions result in T cell activation (24, 35). The kinetic proofreading model proposes that the signaling machinery of T cells becomes activated once an activation threshold based on the time of occupancy of the TCR–CD3 cluster by the pMHC is reached, and the alternative model proposes that the agonist pMHC induces a specific conformational change in the TCR–CD3 that affects the quality of signals emanating from the ligated TCR–CD3 complex. In the former model, events such as TCR clustering/multimerization would be anticipated to contribute to the time of occupancy by increasing the number of concurrent interactions, and ΔTCR appendages might enhance T cell activation by facilitating TCR multimerization (24, 35). In the latter model, the requisite conformational changes might be more readily achieved in the context of reduced N-glycosylated appendages on the TCR chains.

Enhanced tetramer staining of ΔTCR– compared with WT TCR–transduced T cells was observed in our studies at 37°C but not 4°C, indicating that temperature-dependent mechanisms are involved in the improved TCR–pMHC interaction. More detailed analysis revealed that tetramer dissociation was significantly prolonged (up to approximately ninefold), whereas tetramer association was stable (36, 37). Thus, the observed improved binding of pMHC complexes and functional avidity of transduced cells was a consequence of the TCR complexes remaining associated for longer periods after binding had occurred rather than a result of binding more quickly. Structural analysis of N-linked oligosaccharide in the constant domain (Fig. 7) excluded that sugars linked to the constant TCR domains directly interact with a pMHC ligand. The slow off rate could therefore reflect either greater clustering/multimerization or the assumption of a conformation after pMHC interaction that binds more avidly, and either event would be expected to be temperature dependent. Moreover, directly enhanced signaling through complexes formed by ΔTCR as compared with WT TCR chains is also suggested by the rather small improvement in tetramer binding at 37°C that was associated with the more impressive improvement in function.

The CD8 complex was not required for mediating the phenotype observed in ΔTCR– as compared with WT TCR–transduced T cells, as indicated by the improved functional avidity detected in CD4+ CD8α-H11002 T cells transduced with a TCR previously demonstrated to be capable of eliciting a CD8-independent signal (4). The lack of a requirement for CD8 is consistent with the structural analysis of the interaction site between CD8 and the TCR–pMHC, which is devoid of carbohydrates (38). Moreover, in cells expressing the CD8

Figure 7. Molecular surface representation of the 2C TCR. Molecular surface representation of the 2C TCR (available from the Protein Data Bank under accession no. 1TCR; reference 52), colored by chain (α, yellow; β, blue) and CDR region (α–CDRs, orange; β–CDRs, purple), showing the location of asparagine residues at N-linked oligosaccharide sites (green). Two views are shown, rotated by 180° around the vertical axis. Ordered N-linked oligosaccharides are shown in the space-filling atom representation, colored by atom type (carbon, gray; nitrogen, blue; oxygen, red) when present in the 2C crystal structure.
coreceptor, the relative improvement in functional avidity as a result of expressing ΔTCR chains did not exceed the relative improvement in CD4⁺CD8⁻ T cells, suggesting that modified interactions of the deglycosylated TCR chain with CD8 were likely not playing a major role in the observed change in functional avidity. Although our analysis of mutated TCRs that are CD8 dependent (mouse, vz13-D3/vβ6; and human, vz21/vβ21) did not reveal that such TCRs become CD8 independent after transduction into CD4⁺ T cells (unpublished data) despite evidence of improved avidity if expressed in CD8⁺ T cells, this more likely reflected the magnitude of change to achieve CD8 independence with these TCRs rather than a dependence on interaction with CD8.

Multiple mechanisms have been proposed to influence the fine tuning of T cell responsiveness, including modulation of glycosylation of the CD8 molecule (18). Although regulation of N-glycosylation has been reported to affect T cell function (39, 40), and T cells in distinct differentiation states exhibit different levels of glycosylation (immature/mature and naive/memory) (15, 16), there has been no direct evidence that altered N-glycosylation of TCR chains is a physiological mechanism to tunereactivity via modulating avidity. For example, activation of naive T cells could result in reduced N-glycosylation of TCR chains that could contribute to the improved functional avidity observed in antigen-experienced T cells. Differentially N-glycosylated TCR complexes have also been observed in mature CD4 as compared with CD8 T cells (41), but the role of such differential N-glycosylation in defined T cell subsets has not yet been investigated.

In summary, we demonstrate that reduced N-glycosylation of TCR chains can improve functional avidity of TCR–transduced T cells in the absence and presence of the coreceptor CD8. We suggest that removal of specific N-glycosylation sites, in particular c-90 in the mouse TCR α chain, allows a temperature-dependent change, such as improved TCR multimerization resulting in a diminished TCR–pMHC interaction, and therefore, more efficient T cell activation. Regardless of the individual mechanisms, this strategy can improve the avidity and potentially the efficacy of TCR–transduced T cells and may therefore prove useful for current efforts to redirect the immune system against cancer cells.

MATERIALS AND METHODS

Peptides, antibodies, multimeric complexes, and cytokines. Peptides p53α21-27, MDM2α9-26, and WT126-134, and the A/PR/8/34 influenza matrix protein M1 FluM116-46 were synthesized by SynPeptide. Anti-human–CD8–FITC/PerCP/PECy5 and anti-human–vβ21–FITC (Beckman Coulter), and anti-μβ/mυβ3/mυβ6TCR–PE/Pcy5 (BD) were commercially obtained. PE-labeled p53α21-27, MDM2α9-26, and WT126-134 tetramer HLA-A2 complexes were synthesized as previously described (42). Capture/detector antibody pairs for use in IL-2 and IFN-γ ELISA analysis were purchased from R&D Systems. IFN-γ ELISPOT was performed with 1D1K and 7B61 capture and detection antibodies (Miltenyi). IL-2 was obtained from Chiron, and αCD3 (ORT3; Muronobab) was obtained from Ortho-Biotech.

Cell lines. The TCR–deficient cell line S8α−β⁻ was provided by B. Malissen (Centre d’Immunologie Marseille-Luminy, Marseille, France). The TAP-deficient HLA–A2–positive cell line T2, and the HLA–A2–positive p53 overexpressing cell lines MDAMB231 (breast cancer) and SW480 (colorectal cancer), were obtained from the American Type Culture Collection, and the cell line MZ1881RC (renal cell cancer) was obtained from B. Seliger (University of Halle, Halle, Germany). The HLA–A2–positive normal fibroblast cell line MRC5 was obtained from the American Type Culture Collection, and PBMCs and CD34⁺ cells were isolated from leukapheresis of HLA–A2–positive healthy donors. The retroviral packaging cell line Phoenix-Ampho was obtained from the American Type Culture Collection. The HLA–A2–positive p53–negative tumor cell line Saos2 (osteosarcoma) was a gift of A. Levine (Princeton University, Princeton, NJ), and the K562-A2 (myeloblastic) cell line was provided by T. Wölfel (University of Mainz, Mainz, Germany).

WT and modified TCR chains, and TCR–transduced T cell lines. p53α21-27–specific (α3/vβ3, mouse) (4), MDM2α9-26–specific (α3-D3/vβ6, mouse) (3), and WT126-134–specific (vβ21/vβ21, human) (9) TCR chains are described in Fig. 1 A. N-glycosylation-sites (N-X-S/T) of α and β TCR chains are indicated in Fig. 1 (B and C) and are depicted according to the international IMGT system (available at http://www.ebi.ac.uk/imgt/cmes/fr/) (20). The prefix “v” was added if the N-glycosylation site was located in the variable domain, and the prefix “c” as added if it was located in the constant domain. To reduce N-glycosylation in TCRs, the N-glycosylation site was changed to Q by site-directed mutagenesis (primers are shown in Table S1, available at http://www.jem.org/cgi/content/full/jem.20082487/DC1). Successful mutagenesis was confirmed by sequencing. This modification has been shown to prevent N-glycosylation of TCR chains (43). The WT126-134 TCRs have been further modified by introducing point mutations in the constant domains of both chains, as previously described to insert cysteines that can form a disulfide bond and improve matched pairing and surface expression (9). T cell transduction with modified and WT TCR chains was performed as previously described (44). In brief, Phoenix-Ampho cells were transsected using a transfection reagent (Fugene; Takara) with vectors containing the TCR chain (pBiuJ, gag-pol, meroT3060), and env (pCALT-GALV) (3). Human PBMCs activated with 30ng/ml αCD3 were transduced twice within 48 h in the presence of 40–100 IU/ml IL-2 and 4 μg/ml polybrene (Sigma-Aldrich) for 1 wk. Polyclonal CD4⁺ and CD8⁺ T cells transduced with α and β TCR chains were sorted based on CD4 or CD8 expression and the level of TCR β chain surface expression and were expanded in vitro using the rapid expansion protocol, as previously described (45).

RT-PCR, flow-cytometry, and T cell assays. Expression of introduced α and β TCR chain was quantified by flow cytometry using antibodies with specificity for the β chain, or by real-time PCR (TaMan; Applied Biosystems) by using primers specific for the unique CDR3 region of the α and β chains. Standard 18S–release (46), intracellular cytokine staining (47), ELISA (48), and IFN-γ ELISPOT assays (33) were performed as previously described. To assess the functional avidity of TCR–transduced cells, the EC50 (the concentration of peptide needed for half maximal cytokine secretion) was calculated and transformed to log EC50 ± SEM. To normalize gain of function for cells with Δ as compared with WT TCR chains, “log change in functional avidity” (log EC50Δ) was calculated by subtracting log EC50 of cells transduced with ΔTCR chains, from log EC50 of cells transduced with WT TCR chains. To assess avidity (ΔEC50) for TCR–pMHC binding, TCR–transduced cells were incubated with varying concentrations of tetramer for 45 min to achieve equilibrium. MFI of tetramer binding was determined by flow cytometry and plotted against the concentration of tetramer used for staining. The avidity (ΔEC50) was derived from the slope by
K₀ = -1/slope (Scatchard plot) (49, 50). To assess tetramer association (kₐ) and dissociation (kₐ₋₀), TCR-transduced cells were incubated with tetramer for 45 min. K₀ was the value of K determined by fitting an exponential association equation to the data, was determined. Then, the excess of HLA class I blocking antibody (1 mg/ml; W6/32 [Abcam] or supernatant from the cell line HB-95 [American Type Culture Collection]) (51) or no blocking antibody was added, and the MFI of tetramer binding after 2, 5, 10, 15, 20, 40, and 60 min was again determined. Only in the presence of the blocking antibody W6/32 did a decrease in the MFI of tetramer binding observed. Furthermore, the number of TCR complexes, as assessed by a vβ-specific monoclonal antibody before and after incubation at 37°C, were identical in WT- and ΔΔTCR-transduced T cells, suggesting no difference in endocytosis of TCR complexes during the time of the dissociation experiment. The times needed for half-maximal inhibition of tetramer binding (t½) and kₐ₋₀, the dissociation rate constant, were determined. Then, kₐ and K₀ were calculated (kₐ = (kₐ₋₀ - kₐ)/ligand concentration; K₀ = kₐ₋₀/kₐ).

Adaptive T cell transfer. NOD/SCID mice were bred to express a transgenic HLA-A2 allele (HLA-A2 × NOD/SCID). Irradiated (150 rad) NOD/SCID or HLA-A2 × NOD/SCID mice were intravenously injected with 2 × 10⁶ WT- and vβ transduced cells. Monoclonal antibody before and after incubation at 37 °C, were identical in WT- and ΔΔTCR-transduced T cells, showing antigen-specific in vivo proliferation of TCR-transduced T cells. Table S1 shows primers used for TCR gene transfer.

Online supplemental material. Fig. S1 shows TCR β chain staining of ΔΔTCR-transduced 58r β β hybridoma cells. Fig. S2 shows tetramer staining of ΔΔTCR-transduced 58r β β hybridoma cells, and Fig. S3 shows TCR internalization after antigen encounter. Fig. S4 shows antigen-specific in vivo proliferation of TCR-transduced T cells. Table S1 shows primers used for situ-directed mutagenesis. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20082487/DC1.

We are grateful to J. Cao, H.N. Nguyen, M. Brokic, Dr. M. Jules, M. Grabowski, Dr. A. Kojbensen, and J.M. Boulier for expert technical contributions. We are grateful to J. Cao, H.N. Nguyen, M. Brkic, Dr. M. Julch, M. Grabowski, Dr. A. Kojbensen, and J.M. Bouler for expert technical contributions. We are grateful to J. Cao, H.N. Nguyen, M. Brkic, Dr. M. Julch, M. Grabowski, Dr. A. Kojbensen, and J.M. Bouler for expert technical contributions.
Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. *J. Immunol.* 163:4342–4348.

24. Alam, S.M., G.M. Davies, C.M. Lin, T. Zal, W. Nasholds, S.C. Jameson, K.A. Hogquist, N.R. Gascoigne, and P.J. Travers. 1999. Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. *Immunity.* 10:227–237.

25. Wilcox, B.E., G.F. Gao, J.R. Wyer, J.E. Ladbury, J.I. Bell, B.K. Jakobsen, and P.A. van der Merve. 1999. TCR binding to peptide-MHC stabilizes a flexible recognition interface. *Immunity.* 10:357–365.

26. Holler, P.D., L.K. Chlewicki, and D.M. Kranz. 2003. TCRs with high affinity for foreign pMHC show self-reactivity. *Nat. Immunol.* 4:55–62.

27. Gao, L., I. Bellantuono, A. Elsasser, S.B. Marley, M.Y. Gordon, J.M. Goldman, and H.J. Stauss. 2000. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. *Blood.* 95:2198–2203.

28. Theobald, M., J. Biggs, J. Hernandez, J. Lustgarten, C. Labadie, and L.A. Sherman. 1997. Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. *J. Exp. Med.* 185:833–841.

29. Buckler, A.J., J. Pellelter, D.A. Haber, T. Glaser, and D.E. Housman. 1991. Isolation, characterization, and expression of the murine Wilm's tumor gene (WT1) during kidney development. *Mol. Cell. Biol.* 11:1707–1712.

30. Fraizer, G.C., P. Patmasiriwat, X. Zhang, and G.F. Saunders. 1995. Expression of the tumor suppressor gene WT1 in both human and mouse bone marrow. *Blood.* 86:4704–4706.

31. Gaiger, A., V. Reeve, M.L. Dist, and M.A. Cheever. 2000. Immunity to WT1 in the animal model and in patients with acute myeloid leukaemia. *Blood.* 96:1480–1489.

32. Tsuboi, A., Y. Oka, H. Ogawa, O.A. Eliseeva, H. Li, K. Kawasaki, K. Anzasa, T. Kishimoto, K. Udaka, and H. Sugiyama. 2000. Cytotoxic T-lymphocyte responses elicited to Wilm’s tumor gene WT1 product by DNA vaccination. *J. Clin. Invest.* 10:195–202.

33. Kuball, J., M. Schuler, F.E. Antunes, W. Herr, M. Neumann, L. Obenauf-Kutner, L. Westreich, C. Huber, T. Wolfel, and M. Theobald. 2002. Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. *Gene Ther.* 9:833–843.

34. Huber, C., N. Bobek, J. Kuball, S. Thaler, S. Hoffarth, C. Huber, M. Theobald, and M. Schuler. 2005. Inhibitors of apoptosis confer resistance to tumour suppressor by adoptively transferred cytotoxic T-lymphocytes in vitro and in vivo. *Cell Death Differ.* 12:317–325.

35. Schamel, W.W., I. Arechaga, R.M. Risueno, H.M. van Santen, P. Cabezas, C. Risco, J.M. Valpuesta, and B. Alarcon. 2005. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. *J. Exp. Med.* 202:493–503.

36. Alam, S.M., P.J. Travers, J.L. Wang, W. Nasholds, S. Redpath, S.C. Jameson, and N.R. Gascoigne. 1996. T-cell receptor-affinity and thymocyte positive selection. *Nature.* 381:636–620.

37. Lyons, D.S., S.A. Lieberman, J. Hampi, J.J. Boniface, Y. Chien, L.J. Berg, and M.M. Davis. 1996. A TCR binds to antigen ligands with lower affinities and faster dissociation rates than to agonists. *Immunity.* 5:53–61.

38. Rudd, P.M., M.R. Wormald, R.L. Stanfield, M. Huang, N. Mattsson, J.A. Speir, J.A. DiGennaro, J.S. Fetrow, R.A. Dwek, and I.A. Wilson. 1999. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. *J. Mol. Biol.* 293:351–366.

39. Lau, K.S., E.A. Partridge, A. Grigorian, C.I. Silvescu, V.N. Reinhold, M. Demetrio, and J.W. Dennis. 2007. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. *Cell.* 129:123–134.

40. Grigorian, A., S.U. Lee, W. Tian, I.J. Chen, G. Gao, R. Mendelhoff, J.W. Dennis, and M. Demetrio. 2007. Control of T-cell-mediated autoimmunity by metabolic flux to N-glycan biosynthesis. *J. Biol. Chem.* 282:20027–20035.

41. Zapata, D.A., W.W. Schamel, P.S. Torres, B. Alarcon, N.E. Rossi, M.N. Navarro, M.L. Tornbo, and J.R. Regueiro. 2004. Biochemical differences in the alphabeta T cell receptor. CD3 surface complex between CD8+ and CD4+ human mature T lymphocytes. *J. Biol. Chem.* 279:24485–24492.

42. Altman, J.D., P.A. Moss, P.J. Goulder, D.H. Barouch, M.G. McHeyzer-Williams, J.I. Bell, A.J. McMichael, and M.M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. *Science.* 274:94–96.

43. Strong, R.K., D.M. Penny, R.M. Feldman, L.P. Weiner, J.J. Boniface, M.M. Davis, and P.J. Bjorkman. 1994. Engineering and expression of a secreted murine TCR with reduced N-linked glycosylation. *J. Immunol.* 153:4111–4121.

44. Voss, R.H., J. Kuball, and M. Theobald. 2005. Designing TCR for cancer immunotherapy. *Methods Mol. Med.* 109:229–256.

45. Riddell, S.R., and P.D. Greenberg. 1990. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. *J. Immunol. Methods.* 128:189–201.

46. Sherman, L.A., S.V. Hesse, M.J. Irwin, D. La Face, and P. Peterson. 1992. Selecting T cell receptors with high affinity for self-MHC by decreasing the contribution of CD8. *Science.* 258:815–818.

47. Ochsenbein, A.F., S.R. Riddell, M. Brown, L. Corey, G.M. Baerlocher, P.M. Landsdorp, and P.D. Greenberg. 2004. CD27 expression promotes long-term survival of functional effector-memory CD8+ cytotoxic T lymphocytes in HIV-infected patients. *J. Exp. Med.* 200:1407–1417.

48. Blank, C., J. Kuball, S. Voelkl, H. Wiendl, B. Becker, B. Walter, O. Majdic, T.F. Gajewski, M. Theobald, R. Andreesen, and A. Mackensen. 2006. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. *Int. J. Cancer.* 119:317–327.

49. Holmberg, K., S. Mariahasan, T. Ohteki, P.S. Ohashi, and N.R. Gascoigne. 2003. TCR binding kinetics measured with MHC class I tetramers reveal a positive selecting peptide with relatively high affinity for TCR. *J. Immunol.* 171:2427–2434.

50. Savage, P.A., J.J. Boniface, and M.M. Davis. 1999. A kinetic basis for T cell receptor repertoire selection during an immune response. *Immunity.* 10:485–492.

51. Konopitzky, R., U. Konig, R.G. Meyer, W. Sommergruber, T. Wolfel, and T. Schweighoffer. 2002. Identification of HLA-A*0201-restricted T cell epitopes derived from the novel overexpressed tumor antigen calcium-activated chloride channel 2. *J. Immunol.* 169:540–547.

52. Garcia, K.C., M. Degano, R.L. Stanfield, A. Brummark, M.R. Jackson, P.A. Peterson, L. Teyton, and I.A. Wilson. 1996. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. *Science.* 274:209–219.