Efficacy of Olanzapine 5 mg versus 10 mg for the Prophylaxis of Chemotherapy-Induced Nausea and Vomiting in Patients Receiving High Emetic Risk Chemotherapy without Neurokinin-1 Receptor Antagonist

Sitthi Sukauichai1*, Chaninun Ketkaew2, Naparat Othaganont2, Pichayapa Pichaya3, Pimonwan Promsuwan3

Abstract

Objective: To compare the efficacy and safety of two different dosage levels of olanzapine for the prevention of chemotherapy-induced nausea and vomiting (CINV) in patients receiving high emetic risk chemotherapy. Methods: This study was a randomized, double-blind, controlled trial designed to show non-inferiority in the efficacy of olanzapine 5 mg compared to 10 mg in patients treated with high dose cisplatin or doxorubicin/cyclophosphamide. Non-inferiority was defined as a lower margin of the 95% confidence interval (95% CI) that not lower than the margin set at -25%. Result: A total of 140 patients were randomized to 5 mg group (n=70) or 10 mg group (n=70) of olanzapine. The complete response (CR) rate in the overall phase of olanzapine 5 and 10 mg was 58.6% v 62.9% (95%CI: -20.4, 11.8). The CR rate comparison between olanzapine 5 and 10 mg was 81.4% v 74.3% (95%CI: -6.6, 20.8) and 66.7% v 76.1% (95%CI: -23.5, 6.3) for the acute and delayed phase, respectively. No nausea rates in acute, delayed and overall phase were 70.0% v 68.6% (95%CI: -13.8, 16.6), 45.7% v 48.6% (95%CI: -19.4, 13.6) and 43.5% v 47.9% (95%CI: -19.2, 13.6). The rate of adverse events (AE) including somnolence were not different between the 5 and 10 mg groups. Conclusion: The two dosage levels of olanzapine were not different in terms of the efficacy and AE in the prophylaxis of CINV. Keywords: Olanzapine- chemotherapy-induced nausea and vomiting- high emetic risk chemotherapy

Introduction

Chemotherapy-induced nausea and vomiting (CINV) is one of the worst side effects for patients receiving chemotherapy. In the absence of an anti-emesis, more than 90 percent of patients receiving highly emetogenic chemotherapy (HEC) including high-dose cisplatin or doxorubicin/cyclophosphamide (AC) experience vomiting (Roila et al., 2016; National Comprehensive Cancer Network, 2020). The mechanism of CINV involves multiple neurotransmitters and receptors in the gastrointestinal tract and central nervous system including dopamine with the dopamine receptor, 5-hydroxytryptamine (5-HT) with the 5-HT receptor, and substance P with the neurokinin-1 receptor. Several anti-emetic medications have been developed and approved for CINV prophylaxis and treatment including dexamethasone, 5-hydroxytryptamine type 3 receptor antagonist (5-HT3 RA), neurokinin-1 receptor antagonist (NK-1 RA), and most recently olanzapine (Hesketh, 2008; Rojas and Slusher, 2012). Olanzapine is approved as an antipsychotic agent. Additionally, it exerts an antiemetic property by blocking major neurotransmitters related to vomiting induced by chemotherapy, particularly dopamine at dopaminergic (D2) receptor and 5-HT at 5-HT type 2c and 3 receptors (Navari, 2014). Previously, 10 mg of olanzapine plus triplet-regimen (dexamethasone, 5-HT3 RA and NK-1 RA) has been a standard of care for prevention of CINV in patients receiving HEC (Navari et al., 2016). However, this dosage of olanzapine has led to increased somnolence in many patients. Later studies have also suggested that 5mg of olanzapine plus triplet-regimen showed comparable efficacy with lower incidence of somnolence (Yanai et al., 2018; Hashimoto et al., 2020). Both 5 and 10 mg of olanzapine combined with triplet-regimen are recommended for the prevention of CINV in patients receiving HEC (National Comprehensive Cancer Network, 2020).

1Division of Chemotherapy, Chonburi Cancer Hospital, Chonburi, Thailand. 2Division of Pharmacy, Chonburi Cancer Hospital, Chonburi, Thailand. 3Division of Nursing, Chonburi Cancer Hospital, Chonburi, Thailand. *For Correspondence: maxstmdcu@yahoo.com
Network, 2020).

NK-1 RA has not always been used because of the low adherence to practice guidelines and reimbursement problems in some countries (Yu et al., 2015; Ithimakin et al., 2020; Aapro et al., 2021). Previous studies conducted in patients receiving HEC which omitted the use of NK-1 RA and added 10 mg of olanzapine to the doublet-regimen (dexamethasone and 5-HT3 RA) showed promising outcomes as an optional antiemetic regimen (Tienchaiananda et al., 2019; Vimolchalao et al., 2020). Results did show that 10 mg of olanzapine was associated with more sleepiness and undesirable appetite than placebo (Tienchaiananda et al., 2019; Vimolchalao et al., 2020).

The purpose of this study was to investigate non-inferiority in the antiemetic efficacy of 5 mg olanzapine compared to a 10 mg dose and to measure any changes in treatment side effects. To stay consistent with day-to-day practice in Thailand, olanzapine was combined with a doublet regimen (dexamethasone and ondansetron) in patients receiving HEC without NK-1 RA.

Materials and Methods

Eligibility Criteria

Criteria for study enrollment were patients 18-years and older with Eastern Oncology Cooperative Group (ECOG) performance status from 0 to 2 who were scheduled to receive the first cycle of either AC (doxorubicin 60 mg/m2 combined with cyclophosphamide 600 mg/m2) or cisplatin ≥ 70 mg/m2. Cisplatin was administered intravenously for one day and allowed to be given concurrently with other chemotherapy including fluorouracil, etoposide, or radiation. Patients receiving cisplatin were admitted in the hospital for 120 hours after administration for intravenous hydration and observation. All patients were chemotherapy-naive, diagnosed with histologically-confirmed solid tumor and had adequate organ function (including normal bone marrow function, aminotransferase <100 U/L, total bilirubin <2 mg/dL, creatinine clearance >60 ml/min). The exclusion criteria included pregnant or breast-feeding, bilirubin <2 mg/dL, creatinine clearance >60 ml/min).

The record form was submitted either by mail, at the next hospital/physician visit or prior to discharge from the hospital. The record form consisted of a visual analog scale of nausea, time when vomiting, time of using rescue drugs, and somnolence score. On day 5, the participant was asked to fill out a record form to determine the non-inferiority in the efficacy of olanzapine 5 mg and 10 mg combined with ondansetron and dexamethasone in HEC at Chonburi Cancer Hospital between June 2020 and February 2021. Eligible patients were randomized to each arm at a 1:1 ratio by computer-generated mixed blocks of 2, 4, 6, and 8 allocation schedules. Randomized patients were stratified by chemotherapy regimens receiving either cisplatin (≥70mg/m2) or AC regimen. All patients were followed for 5 days. The 5 mg and 10 mg tablets of olanzapine were encapsulated in indistinguishable sachets by a pharmacist who was blinded to the randomization sequence.

All patients gave written informed consent to participate in this study. This study was registered in the Thai Clinical Trials Registry (number TCTR20200708006).

Study Design

This randomized, double-blind (patients and physicians), active treatment-controlled trial aimed to determine the non-inferiority in the efficacy of olanzapine 5 mg and 10 mg combined with ondansetron and dexamethasone in HEC at Chonburi Cancer Hospital. The primary outcome was complete response (CR) defined as no emesis and no use of rescue treatment in overall phase (0-120 hours after chemotherapy). Secondary outcomes were CR in acute phase (0-24 hours after chemotherapy), CR in delayed phase (24-120 hours after chemotherapy), and no nausea (visual analog scale equals 0) in acute, delayed and overall phases. Time to treatment failure was defined as time from receiving chemotherapy to time of the first vomiting or receipt of the first-dose of rescue treatment, whichever occurred first.

All participants were asked to fill out a record form on days 1 to 5 (0-120 hour after chemotherapy) daily. The record form consisted of a visual analog scale of nausea, time when vomiting, time of using rescue drugs, and somnolence score. On day 5, the participant was asked to record adverse events (AE) assessed by common toxicity criteria for adverse events version 5 (National Cancer Institute, 2017). The researcher telephoned or visited patients daily to remind them to complete the form daily. The record form was submitted either by mail, at the next hospital/physician visit or prior to discharge from the hospital.

Statistical Analysis

The primary objective of this study was to show non-inferiority of 5 mg of olanzapine to 10 mg of olanzapine of CR in overall phase. In the previous study (Navari et al., 2011; Tienchaiananda et al., 2019; Ithimakin et al., 2020; Vimolchalao et al., 2020), olanzapine 10 mg combined with doublet-regimen without NK-1 RA showed a CR ranging from 50 to 77 percent in the overall phase. The sample size was calculated based on the assumption that 5 mg and 10 mg of olanzapine group would achieve an overall phase CR of 63% and 68%, respectively. Based
Results

Patients

Between June 17, 2020 and Feb 9, 2021, 140 eligible participants were randomly assigned to receive olanzapine 5 mg (70 patients) or 10 mg (70 patients) (Figure 1).

Baseline characteristics did not show any statistical differences between groups (Table 1). A majority of the participants (60%) were females diagnosed with breast cancer receiving AC. Mean dose of cisplatin in both groups was comparable.

Primary Outcome

There was non-inferiority in the CR for overall phase of 5 mg group compared to 10 mg group of olanzapine (58.6% vs 62.9%, 95%CI (-20.4, 11.8)) (Figure 2).

Secondary Outcome

The CR of 5 mg group of olanzapine was non-inferior to 10 mg group of olanzapine for acute phase and delayed phase (Figure 2). No nausea rates of 5 mg olanzapine group showed non-inferiority to the 10 mg olanzapine group for the acute, delayed and overall phases (Table 2).

Other Outcomes

The no rescue treatment rate was 71.4% in both 5 mg and 10 mg olanzapine group, p = 1.00. Mean number of rescue times was 3.35 (3.03) and 2.37 (1.57) in the 5 mg and 10 mg olanzapine groups, p = 0.41, respectively. The no vomiting rate of 69.6% in 5 mg was comparable to the rate of 77.1% in 10 mg group, p = 0.25. Mean number of vomiting times of 4.30 (5.59) was not significantly different to the 2.35 (1.76) in the 5 mg and 10 mg group, p = 0.39, respectively.

Mean time to treatment failure for olanzapine 5 mg was 84.81 min (46.6) which was not significantly different than the 10 mg result of 86.65 min (47.8) (p = 0.77) (Figure 3).

Mean visual analog scale of nausea on days 1 to 5 comparing the 5 mg versus 10 mg group were: Day 1: 0.84 (1.80) v 1.46 (2.65), p = 0.35; Day 2: 1.46 (2.65) v 0.87 (1.73), p = 0.12; Day 3: 1.56 (2.49) v 0.95 (1.58), p = 0.08; Day 4: 1.00 (1.83) v 1.07 (1.77), p = 0.81; and Day 5: 0.86 (1.50) v 0.82 (1.42), p = 0.87 in 5 mg versus 10 mg group of olanzapine, respectively.

Adverse Events

No difference in AE was found between groups (Table 3). The most frequent grade 3 AE including acute kidney
dysfunction in cisplatin regimen requiring hospitalization and febrile neutropenia in AC regimen showed no difference between groups. Grade 4 AE was found in two participants. One patient in the 5 mg group had severe hyponatremia (serum sodium 115 mg/deciliter) and the other patient in the 10 mg group had thrombocytopenia leading to gastrointestinal bleeding. One participant in the olanzapine 10 mg arm discontinued olanzapine due to severe muscle rigidity.

Mean appetite scores on days 0 to 5 comparing the 5 mg versus 10 mg group were not significantly different: Day 0 (baseline): 0.37 (0.97) v 0.92 (1.99), p = 0.05; Day 1: 1.15 (2.08) v 1.61 (2.32), p = 0.21; Day 2: 1.43 (2.38) v 1.44 (2.16), p = 0.98; Day 3: 1.64 (2.48) v 1.68 (2.51), p = 0.92; Day 4: 1.58 (2.34) v 1.86 (2.47), p = 0.48; and Day 5: 1.58 (2.34) v 1.86 (2.47), p = 0.48 in 5 mg versus 10 mg group of olanzapine, respectively.

Mean somnolence scores of both groups showed no difference from day 1 through day 5 (Table 4).

Discussion

This study was the first randomized, double-blind, controlled study which showed that olanzapine 5 mg combined with doublet-regimen (dexamethasone and 5-HT3 RA) showed non-inferiority in efficacy compared to olanzapine 10 mg combined with doublet-regimen.
for the prophylaxis of CINV in patients receiving HEC in every phase (acute, delayed and overall) for both CR and nausea prevention. The outcome of previous studies investigating olanzapine-containing regimen in HEC are summarized in Appendix (Table Suppl 1).

Doublet-regimen plus olanzapine 10 mg has been shown to significantly improve both CR and nausea prevention in patients receiving HEC when doublet-regimen with placebo was used as a control (Tienchaiananda et al., 2019; Vimolchalao et al., 2020). In addition, a recent systematic review which studied the addition of olanzapine to doublet-regimen for the prevention of CINV in high and moderate emetogenic chemotherapy indicated that the efficacy of olanzapine 5 mg was not different from 10 mg in subgroup analysis (Zhou et al., 2020).

Combined with triplet-regimen, olanzapine 10 mg significantly improved both CR and nausea prevention compared to placebo in patients receiving HEC, either high dose cisplatin or AC regimen (Navari et al., 2016; Yeo et al., 2020). However, olanzapine 10 mg led to more somnolence. Later studies were conducted using a lower dose of olanzapine. Hashimoto et al. showed that 5 mg of olanzapine significantly improved CR when comparing to placebo (Hashimoto et al., 2020). Yanai et al. also found that the efficacy of 5 mg and 10 mg olanzapine in controlling CINV showed no difference (Yanai et al.,

Table 3. Comparison of Adverse Events between 5 and 10 mg Olanzapine Groups

Adverse events	Olanzapine group	5 mg (n = 70), n (%)	10 mg (n = 70), n (%)					
	Any	1	2	≥3	Any	1	2	≥3
Somnolence	49 (70)	40 (57)	9 (13)	0	39 (56)	27 (39)	12 (17)	0
Dysguesia	44 (63)	41 (59)	3 (4)	0	34 (49)	28 (40)	6 (9)	0
Dry mouth	43 (61)	43 (61)	0	0	40 (57)	37 (53)	3 (4)	0
Hiccups	40 (57)	38 (54)	2 (3)	0	31 (44)	30 (43)	1 (1)	0
Anorexia	40 (57)	35 (50)	5 (7)	0	29 (41)	21 (30)	8 (11)	0
Nausea	36 (51)	30 (43)	6 (9)	0	32 (46)	25 (36)	7 (10)	0
Constipation	35 (50)	33 (47)	2 (3)	0	38 (54)	36 (51)	2 (3)	0
Insomnia	35 (50)	30 (43)	4 (6)	1 (1)	30 (43)	23 (33)	6 (9)	1 (1)
Vomiting	18 (26)	13 (19)	5 (7)	0	11 (16)	9 (13)	2 (3)	0
Diarrhea	6 (9)	5 (7)	1 (1)	0	8 (11)	7 (10)	1 (1)	0
AKI	4 (6)	-	-	4 (6)	4 (6)	-	-	4 (6)
Muscle rigidity	3 (4)	3 (4)	0	0	5 (7)	4 (6)	0	1 (1)
FN	2 (3)	-	-	2 (3)	3 (4)	-	-	3 (4)
Thrombocytopenia	0	0	0	0	1 (1)	0	0	1 (1)
Hyponatremia	1 (1)	0	0	1 (1)	0	0	0	0

Abbreviations: AKI, acute kidney injury; FN, febrile neutropenia
Table 4. Somnolence Score Compared between 5 and 10 mg of Olanzapine

Somnolence (mean VAS)	Olanzapine group	P	
Day 0 (baseline)	1.10 (1.73)	1.54 (2.01)	0.16
Day 1	2.32 (2.57)	3.32 (3.29)	0.05
Day 2	2.62 (2.84)	2.76 (2.54)	0.75
Day 3	2.62 (2.66)	2.69 (2.57)	0.87
Day 4	2.37 (2.43)	2.43 (2.35)	0.57
Day 5	2.03 (1.94)	1.94 (2.15)	0.92

Abbreviations: VAS, visual analog scale

In summary, olanzapine 5 mg plus dexamethasone and ondansetron showed non-inferiority in efficacy compared to olanzapine 10 mg in the prophylaxis of CINV in patients receiving high dose cisplatin (≥70mg/m²) and AC regimens. There was also no difference found in AE between the two dosages.

Author Contribution Statement

Conception and design: all authors; Provision of study material or patients: Naparat Othaganont; Collection and assemble of data: Pichayapa Pichaya, Pimovan Promsuwan; Data analysis and interpretation: Sithi Sukauichai, Chaninun Ketkaew; Manuscript writing: all authors; Final approval of manuscript: all authors; Accountable for all aspects of the work: all authors.

Acknowledgements

The authors gratefully thank Dr. Wanlop Jaidee (Burapha University, Chonburi, Thailand) for providing his suggestion on statistical analysis and Dr. Michael Ullman for providing edits to the manuscript. We appreciate and thank the patients who participated in this study as well as physicians, nurses, pharmacists, and other staff for their support.

Funding Statement

This research received no external funding.

Ethical Declaration

This study was approved by the Ethics Committee of Chonburi Cancer Hospital (number 14/2020, 12 June 2020) based on the Declaration of Helsinki and Good Clinical Practice.

Study Registration

This study was registered in the Thai Clinical Trials Registry (number TCTR20200708006).

Availability of data

The data of the study is available upon request.

Conflict of Interest

The authors declare no conflict of interest.

References

Aapro M, Scotté F, Escobar Y, et al (2021). Practice Patterns for Prevention of Chemotherapy-Induced Nausea and Vomiting and Antiemetic Guideline Adherence Based on Real-World Prescribing Data. Oncologist, 25, 1-10.

Chiu L, Chiu N, Chow R, et al (2016). Olanzapine for the prophylaxis and rescue of chemotherapy-induced nausea and vomiting (CINV): a retrospective study. Ann Palliat Med, 5, 172-8.

Hashimoto H, Abe M, Tokuyama O, et al (2020). Olanzapine 5 mg plus standard antiemetic therapy for the prevention of chemotherapy-induced nausea and vomiting (J-FORCE): a multicenter, randomized, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 21, 242-9.

Hesketh PJ (2008). Chemotherapy-Induced Nausea and Vomiting. N Engl J Med, 358, 2482-94.

Ithimakin S, Theeratrakul P, Laocharoenkiat A, et al (2020). Randomized, double-blind, placebo-controlled study of aprepitant versus two dosages of olanzapine with ondansetron plus dexamethasone for prevention of chemotherapy-induced nausea and vomiting in patients receiving high-emetogenic chemotherapy. Supp Care Cancer, 28, 5335-42.

National Cancer Institute (2017). Common Terminology Criteria
Olanzapine 5 mg vs 10 mg for the Prophylaxis of CINV

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.