On the Alpha Activity of Natural Tungsten Isotopes

F.A. Danevich, A.Sh. Georgadze, V.V. Kobychev, S.S. Nagorny, A.S. Nikolaiko, O.A. Ponkratenko, V.I. Tretyak, S.Yu. Zdesenko, Yu.G. Zdesenko

Institute for Nuclear Research, MSP 03680 Kiev, Ukraine

P.G. Bizzeti, T.F. Fazzini, P.R. Maurenzig

Dipartimento di Fisica, Università di Firenze and INFN, I-50019 Firenze, Italy

Abstract

The indication for the α decay of ^{180}W with a half-life $T_{1/2}^\alpha = 1.1^{+0.4}_{-0.3}(\text{stat}) \pm 0.3(\text{syst}) \times 10^{18}$ yr has been observed for the first time with the help of the super-low background $^{116}\text{CdWO}_4$ crystal scintillators. In conservative approach the lower limit on half-life of ^{180}W has been established as $T_{1/2}^\alpha(^{180}\text{W}) \geq 0.7 \times 10^{18}$ yr at 90% C.L. Besides, new $T_{1/2}^\alpha$ bounds were set for α decay of ^{182}W, ^{183}W, ^{184}W and ^{186}W at the level of 10^{20} yr.

PACS number(s): 23.60.+e; 29.40.Mc

Keywords: alpha decay, ^{180}W, ^{182}W, ^{183}W, ^{184}W, ^{186}W, CdWO_4 crystal scintillator.

1 INTRODUCTION

Alpha decay is allowed energetically for the five naturally occurring isotopes of tungsten [1], but it was never observed up to now. The α activity of tungsten with α particle energy of about 3 MeV and half-life $T_{1/2} = 2.2 \times 10^{17}$ yr (where δ is the relative abundance of isotope) was declared in an early experiment with nuclear emulsion technique [2]. Because Q_α value for all natural tungsten nuclides, except ^{180}W, is less than 2 MeV, the result of ref. [2] could be attributed to α decay of ^{180}W ($\delta \approx 0.12\%$ [3]) with $T_{1/2} = 2.6 \times 10^{14}$ yr. However, this observation was ruled out in the work [4], where the cadmium tungstate (CdWO_4) crystal scintillator (mass of 20.9 g) was used as a source and detector of α decay events simultaneously. After 193 h of measurements the limit $T_{1/2} \geq 1.0 \times 10^{15}$ yr was established [4]. A similar restriction ($T_{1/2} \geq 9.0 \times 10^{14}$ yr) was also obtained in experiment (66.7 h of exposition) with ionization counter (1200 cm2 in area) and thin (83 μg/cm2) sample of W (with total mass of 79 mg) enriched in ^{180}W to 6.95% [5].

These bounds were improved only recently in the measurements with two scintillators: CdWO_4 (mass of 452 g, running time of 433 h), and $^{116}\text{CdWO}_4$ enriched in ^{116}Cd to 83% (91.5 g, 951 h) [6]. The limits on the half-lives for α decay of different W isotopes were set in the range of $\approx 10^{17}$–10^{19} yr (see Table).

In this paper the new results of Kiev-Firenze experiment (2975 h of exposition) on α decay of natural tungsten isotopes are described (the preliminary analysis of the 975 h data was presented in [9]). They were obtained with the help of the super-low background spectrometer [10] based on enriched $^{116}\text{CdWO}_4$ crystal scintillators. The sensitivity of this apparatus to measure α activity was enhanced substantially in comparison with our previous work [6] mainly due to the developed technique of pulse-shape analysis of the data, which allows us to distinguish events caused by α particles from those by γ rays (β particles).

1 Current address: INFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi (AQ), Italy
2 Corresponding author. E-mail address: zdesenko@kinr.kiev.ua
Table 1: Theoretical and experimental half-lives (or limits at 90% C.L.) for α decay of natural W isotopes obtained in present work. The uncertainties of calculated $T_{1/2}$ values are related with uncertainties of the Q_{α}. The most stringent previous experimental bounds [6] are cited for comparison.

Isotope, abundance	Q_{α}, MeV [1]	Calculated based on [7]	Calculated based on [8]	Experimental present work	$T_{1/2}$, yr	
180W	2.516(5)	8.3$^{+1.3}_{-1.5}$×1017	2.0$^{+0.4}_{-0.3}$×1018	1.1$^{+0.9}_{-0.5}$×1018	$\geq 0.7\times10^{18}$	$\geq 7.4\times10^{16}$
0.12(1)%						
182W	1.774(3)	3.0$^{+0.9}_{-0.5}$×1032	1.4$^{+0.3}_{-0.2}$×1034	$\geq 1.7\times10^{20}$	$\geq 8.3\times10^{18}$	
26.50(16)%						
183W	1.682(3)		$> 5.7^{+1.3}_{-1.0}$×1038	$\geq 0.8\times10^{20}$	$\geq 1.9\times10^{18}$	
14.31(4)%						
184W	1.659(3)	3.8$^{+0.9}_{-0.6}$×1035	2.6$^{+0.5}_{-0.3}$×1036	$\geq 1.8\times10^{20}$	$\geq 4.0\times10^{18}$	
30.64(2)%						
186W	1.123(7)	8.7$^{+1.2}_{-1.0}$×1035	2.0$^{+0.4}_{-0.3}$×1037	$\geq 1.7\times10^{20}$	$\geq 6.5\times10^{18}$	
28.43(19)%						

2 EXPERIMENT AND DATA ANALYSIS

2.1 Experimental set-up

The set-up, used in our study, was originally devoted to the search for the neutrinoless double beta decay of 116Cd [10]. The 2β decay experiment is carried out by the INR (Kiev)3 in the Solotvina Underground Laboratory (allocated in a salt mine 430 m underground [11]) and results were published elsewhere [10, 12]. The high purity 116CdWO$_4$ crystal scintillators, enriched in 116Cd to 83%, were developed and grown for the search [12]. Their light output is \approx30–35% of NaI(Tl). The fluorescence peak emission is at 480 nm with principal decay time of \approx14 μs [13]. The CdWO$_4$ refractive index equals 2.3. The density of crystal is 7.9 g/cm3, and material is non-hygrosopic and chemically inert. In the apparatus (see for details [10]) four 116CdWO$_4$ crystals (total mass 330 g) are exploited. They are viewed by a low background 5” EMI phototube (PMT) with RbCs photocathode through light-guide \otimes10×55 cm, which is glued of two parts: quartz (25 cm) and plastic scintillator (Bicron BC-412, 30 cm). The enriched 116CdWO$_4$ crystals are surrounded by an active shield made of 15 natural CdWO$_4$ crystals of large volume with total mass of 20.6 kg. These are viewed by a PMT through an active plastic light-guide \otimes17×49 cm. The whole CdWO$_4$ array is situated within an additional active shield made of plastic scintillator 40×40×95 cm, thus, together with both active light-guides, a complete 4π active shield of the main (116CdWO$_4$) detector is provided.

The outer passive shield consists of high purity copper (3 – 6 cm), lead (22.5 – 30 cm) and polyethylene (16 cm). Two plastic scintillators (120×130×3 cm) are installed above the passive shield and are used as cosmic muon veto counters. The set-up is carefully isolated against environment radon penetration. All materials for the installation were previously tested and

3From 1998 by the Kiev-Firenze collaboration [10].
selected for low radioactive impurities in order to reduce their contributions to background.

An event-by-event data acquisition system records the amplitude, arrival time, additional tags (the coincidence between different detectors) and pulse shape (in 2048 channels with 50 ns channel’s width) of the \(^{116}\text{CdWO}_4\) detector in the energy range of 0.08 – 5 MeV.

The energy scale and resolution of the spectrometer were determined with the \(^\gamma\) sources \(^{22}\text{Na}, 40\text{K}, 60\text{Co}, 137\text{Cs}, 207\text{Bi}, 226\text{Ra}, 232\text{Th}\) and \(^{241}\text{Am}\). The energy dependence of the resolution in the energy interval 60 – 2615 keV is expressed as follows: FWHM\(_\gamma\) = \(-44 + \sqrt{2800 + 23.4 \cdot E_\gamma}\), where energy \(E_\gamma\) and FWHM\(_\gamma\) are in keV. For instance, energy resolutions of 33.7\%, 13.5\%, 11.5\% and 8.0\% were measured for \(^\gamma\) lines with the energies of 60, 662, 1064 and 2615 keV, respectively. The routine calibration was carried out with a \(^{207}\text{Bi}\) (weekly) and \(^{232}\text{Th}\) (monthly) \(^\gamma\) sources. The dead time of the spectrometer and data acquisition was permanently controlled with the help of a light emitting diode optically connected to the main PMT (typical value was about 14\%).

Due to active and passive shields, and as a result of the time-amplitude [10] and pulse-shape analysis of the data [13], the background rate of \(^{116}\text{CdWO}_4\) detectors in the energy region 2 – 3.2 MeV (0\(\nu\)2\(\beta\) decay energy of \(^{116}\text{Cd}\) is 2.8 MeV) was reduced to 0.04 counts/yr·kg·keV. It is the lowest background which has ever been reached with crystal scintillators.

2.2 Response of the \(^{116}\text{CdWO}_4\) detector to \(\alpha\) particles

It is well known that relative ratio of the \(\text{CdWO}_4\) scintillation light output for \(\alpha\) and \(\beta\) particles with the same energies (so-called \(\alpha/\beta\) ratio\(^4\)) depends on the energy of the absorbed particles [6]. Because we are looking for the \(\alpha\) decay of W isotopes, such a dependence must be precisely measured in the \(\alpha\) energy range of 1 – 3 MeV (see Table). Unfortunately, among nuclides from U/Th families there are no \(\alpha\) emitters with such energies (the lowest available \(\alpha\) energy is 4.0 MeV from \(^{232}\text{Th}\)). To overcome this problem, a special method of calibration was developed, in which a collimated beam of \(\alpha\) particles from \(^{241}\text{Am}\) source was passed through a thin absorber with known thickness, thus the energy of \(\alpha\) particles after absorber can be calculated precisely.

Furthermore, it was measured with the help of a surface-barrier semiconductor detector. The dimensions of the collimator are \(\varnothing 0.75 \times 2\) mm, and thickness of a single mylar film absorber is 0.65 mg/cm\(^2\). By using this technique and different sets of absorbers, \(\alpha\) particles with energies of 0.46, 2.07, 3.04, 3.88, 4.58, and 5.25 MeV were obtained, which allows us to calibrate our detector in the energy range of interest.

It is also known that the light output of crystal scintillators may depend on the direction of \(\alpha\) irradiation relative to the crystal axes [14]. To study this effect for \(\text{CdWO}_4\), \(^{116}\text{CdWO}_4\) and \(\text{CaWO}_4\) crystals, they were irradiated by \(\alpha\) particles in three directions perpendicular to the \((010), (001)\) and \((100)\) crystal planes\(^5\), and three experimental dependences of the \(\alpha/\beta\) ratio (corresponding to three mentioned directions) as a function of \(\alpha\) particle energy were derived from measurements. However, in a real crystal the amplitude of a light signal depends also on the point, from which scintillation light is emitted (so-called nonuniformity of light

\(^4\)The detector energy scale is measured with \(\gamma\) sources, thus the notation “\(\alpha/\gamma\) ratio” could be more adequate. However, because \(\gamma\) rays interact with matter by means of the energy transfer to electrons, in present paper we are using traditional notation “\(\alpha/\beta\) ratio”.

\(^5\)In the \(^{116}\text{CdWO}_4\) crystal \((010)\) plane is perpendicular to the cylinder axis, so for the \((010)\) direction \(\alpha\) source was placed on the top of crystal (in the center of the flat circle surface). For the \((001)\) and \((100)\) directions crystal was irradiated in the middle of cylindrical surface.
collection). The latter can distort the anticipated effect of crystal’s orientation, and hence, should be properly taken into account. With this aim, the light propagation in the CaWO$_4$ scintillator, for which the effect of crystal orientation was not observed, was simulated with the help of the GEANT3.21 package [15] for the light emitting points on the top and side surfaces of the crystals (with dimensions $20 \times 20 \times 11$ and $40 \times 34 \times 23$ mm), as well as for those uniformly distributed inside the crystal. It was found that results of simulations are in a good agreement with experiment. Then, the same simulations were performed for the 116CdWO$_4$ crystal ($\varnothing 32 \times 19$ mm), and results of each calibration measurement with this crystal were corrected by using simulated distributions of the light collection for α particles emitted from the corresponding point. So, values of the α/β ratio for the direction 1 was multiplied by a factor of 0.85, while for the direction 2 and 3 – by a factor of 1.08. As an example, such corrected dependences of the α/β ratio versus the energy and direction of α particles are shown in Fig. 1 for enriched 116CdWO$_4$ crystal ($\varnothing 32 \times 19$ mm).

![Figure 1: The dependence of the α/β ratio on energy and direction of incident α particles measured with the enriched 116CdWO$_4$ scintillator ($\varnothing 32 \times 19$ mm). The crystal was irradiated by external α source in directions perpendicular to (010), (001) and (100) crystal planes (dir. 1, 2 and 3, respectively). Besides, internal α peaks of 224Ra, 220Rn, 216Po and 212Po from the intrinsic contamination of the 116CdWO$_4$ crystal were used (see text). Solid lines represent the fit of α/β ratio dependence. In the insert the behaviour of α/β ratio measured with CdWO$_4$ scintillator ($\varnothing 25 \times 0.9$ mm) in the direction 1 is shown.](image)

In addition to the measurements with the external source, the α peaks from the intrinsic trace contamination of the 116CdWO$_4$ crystals by nuclides from Th chain were also used for
determination of the α/β ratio. These peaks were selected from the background by using the time-amplitude analysis [10, 16]. For instance, the following sequence of α decays from the 232Th family was searched for and observed: 224Ra ($Q_\alpha = 5.79$ MeV, $T_{1/2} = 3.66$ d) \rightarrow 220Rn ($Q_\alpha = 6.40$ MeV, $T_{1/2} = 55.6$ s) \rightarrow 216Po ($Q_\alpha = 6.91$ MeV, $T_{1/2} = 0.145$ s) \rightarrow 212Pb. The obtained α peaks (α nature of events was confirmed by a pulse-shape analysis described below), as well as the distributions of the time intervals between events are in a good agreement with those expected for α particles of 224Ra, 220Rn and 216Po (see Fig. 2). On this basis the activity of 228Th in 116CdWO$_4$ crystals was determined as 39(2) μBq/kg6. Moreover, the α peak of 212Po (the daughter of the 212Bi) was reconstructed with the help of the front edge analysis of the scintillation signals. The energy and time distributions of the sequence of β decay of 212Bi and α decay of 212Po, selected from the background, are presented in Fig. 3 (a, b and c), while typical example of such an event is shown in Fig. 3d.

Figure 2: The α peaks of 224Ra, 220Rn, 216Po selected by the time-amplitude analysis from background data accumulated during 14745 h with the 116CdWO$_4$ detector. In the inserts the time distributions between the first and second (and between second and third) events together with exponential fits are presented. Obtained half-lives of 220Rn and 216Po (61_{-8}^{+10} s and $0.144(8)$ s, respectively) are in a good agreement with the table values: $55.6(1)$ s and $0.145(2)$ s [21].

The values of the α/β ratio, derived with the internal α peaks, and their fit are depicted in Fig. 1. Fit yields for the energy range $2.0 - 8.8$ MeV: $\alpha/\beta = 0.083(9) + 0.0168(13) \cdot E_\alpha$, where

6The same technique was applied to the sequence of decays from the 235U and 238U families. Activity of $5.5(14)$ μBq/kg for 227Ac (235U family) and limit ≤ 5 μBq/kg for 226Ra (238U family) in the 116CdWO$_4$ crystals were set.
E_α is in MeV.\(^7\) Because in measurements with internal sources the effect of crystal’s orientation is averaged, such an extrapolation of the fit into the energy region 2.0 – 5.5 MeV is reasonable and it was also proved by the behaviour of the α/β ratios measured with external sources (see Fig. 1). At the same time, in the α energy interval of 0.5 – 2.0 MeV we find that α/β ratio is decreased with the energy. It was also confirmed by the measurement with the thin (Ø25 × 0.9 mm) CdWO\(_4\) crystal scintillator (see insert in Fig. 1). Similar behaviour (fall with energy in the 10 – 100 keV energy region) of relative scintillation efficiency for Ca and F recoil nuclei in CaF\(_2\)(Eu) scintillator was reported in [18]. Thus, for 0.5 – 2.0 MeV energy range we obtain: $\alpha/\beta = 0.15(3) - 0.015(8) \cdot E_\alpha$, where E_α is in MeV.

The calibration data were also used to determine the energy resolution of the detector for α particles: $\text{FWHM}_\alpha(\text{keV}) = 33 + 0.247E_\gamma^\alpha$, where E_γ^α is the energy of α particles in γ scale expressed in keV.

\(^7\)The growth of the α/β ratio with α particles energy has been earlier observed for cadmium tungstate [6] and other scintillators [14, 16, 17].
2.3 Pulse-shape analysis

The pulse-shape analysis of CdWO₄ scintillation signals was developed on the basis of the optimal digital filter [19], and clear discrimination between γ rays (electrons\(^8\)) and α particles was achieved [13]. The pulse shape of cadmium tungstate scintillators can be described as:

\[f(t) = \frac{\sum A_i}{\tau_i} \cdot (e^{-t/\tau_i} - e^{-t/	au_0}), \]

where \(A_i\) are amplitudes and \(\tau_i\) are decay constants for different light emission components, \(\tau_0\) is the integration constant of electronics (≈ 0.18 μs). To provide an analytic description of the α or γ signals, the pulse shape resulting from the average of a large number of individual events has been fitted with the sum of three (for α particles) or two (for γ-s) exponents, giving the reference pulse shapes \(\bar{T}_\alpha(t)\) and \(\bar{T}_\gamma(t)\) (see for details ref. [13]). For the enriched crystals (used in the experiment) the following values were obtained:

- \(A_1^α = 80.9, \tau_1^α = 12.7 \mu s, A_2^α = 13.4, \tau_2^α = 3.3 \mu s, A_3^α = 5.7, \tau_3^α = 0.96 \mu s\) for ≈5 MeV α particles and
- \(A_1^γ = 94.2, \tau_1^γ = 13.6 \mu s, A_2^γ = 5.6, \tau_2^γ = 2.1 \mu s\) for ≈1 MeV γ quanta.

In the data processing the digital filter was applied to each experimental signal \(f(t)\) with aim to obtain the numerical characteristic of its shape defined as \(SI\) (shape indicator): \(SI = \frac{\sum f(t_k) \times P(t_k)}{\sum f(t_k)}\), where the sum is over time channels \(k\), starting from the origin of signal and up to 50 μs, \(f(t_k)\) is the digitized amplitude (at the time \(t_k\)) of a given signal. The weight function \(P(t)\) is defined as:

\[P(t) = \frac{\{\bar{T}_\alpha(t) - \bar{T}_\gamma(t)\}}{\{\bar{T}_\alpha(t) + \bar{T}_\gamma(t)\}}. \]

The \(SI\) distributions measured with different α and γ sources (see some examples in Fig. 4) are well described by Gaussian functions, whose standard deviations \(\sigma(SI_α)\) and \(\sigma(SI_γ)\) depend on energy: \(\sigma(SI_α) = 0.3 + 0.7 \times 10^{-3} E_α^2 + 1700/E_α^3\) for α particles, and \(\sigma(SI_γ) = 1.51 - 0.23 \times 10^{-3} E_γ + 402/E_γ\) for γ quanta, where \(E_α\) and \(E_γ\) are in keV. As it is seen from Fig. 4, electrons (γ rays) and α particles are clearly distinguished for the energies above 0.6 MeV (\(E_α \approx 3\) MeV), while pulse shape discrimination ability of CdWO₄ scintillator is worsening at lower energies. Nevertheless, it is also visible from Fig. 4a that even 2 MeV α particles (\(E_γ^α \approx 0.3\) MeV) can be separated from γ background with reasonable accuracy. For instance, with requirement that ≈87% of α particles must be registered we will get about 13% of γ events as background (see Fig. 4a).

The dependence of the pulse shape on energy and direction of α particles measured with the enriched \(^{116}\text{Cd}\)WO₄ crystal scintillator (∅32×19 mm) is presented in Fig. 5. In the energy range of 0.5 – 7.0 MeV the average dependence of the shape indicator on the energy can be approximated by the function: \(SI_ α = 29.5 - 0.195 \times 10^{-2} E_α^γ\), where \(E_α^γ\) is in keV.

For γ quanta the energy dependence of the shape indicator was measured with γ sources in the energy range of 0.04 – 3.2 MeV: \(SI_γ = 18.4 - 0.117 \times 10^{-2} E_γ + 0.54 \times 10^{-6} E_γ^2\), where \(E_γ\) is in keV.

Besides, a digital filter for the pulses of the plastic scintillator light guide was developed and clear separation was obtained for the pure events in the plastic and cadmium tungstate scintillators. It allows us to discriminate plastic pulses in more complicated cases, when they are overlapped with the signals of \(^{116}\text{Cd}\)WO₄ crystals. The use of this filter leads to some loss of the registration efficiency for the events in the \(^{116}\text{Cd}\)WO₄ detector (of the order of ≈5%), which, however, can be correctly taken into account on the basis of calibration measurements.

\(^8\)Because γ rays interact with matter by means of the energy transfer to electron, it was assumed and experimentally proved with β particles from the decay of internal \(^{113}\text{Cd}\) that pulse shapes for electrons and γ's are the same.
Figure 4: The examples of the shape indicator distributions measured by the enriched 116CdWO$_4$ crystal scintillator ($\varnothing 32 \times 19$ mm) with α particles and γ rays with the different energies: (a) $E_\gamma = 0.2-0.4$ MeV, $E_\alpha = 2.07$ MeV; (b) $E_\gamma = 0.5-0.7$ MeV, $E_\alpha = 3.04$ MeV; (c) $E_\gamma = 0.8-1.0$ MeV, $E_\alpha = 3.88$ MeV; (d) $E_\gamma = 1.2-1.4$ MeV, $E_\alpha = 5.25$ MeV.

3 RESULTS AND DISCUSSION

3.1 Background interpretation

The background spectra of ($\gamma + \beta$) and α events measured by four 116CdWO$_4$ crystals (330 g, exposition 2975 h) are depicted in Fig. 6.

The $\gamma(\beta)$ spectrum shown in Fig. 6 was built by selecting the following interval of SI values: $SI_\gamma - 2.4\sigma_\gamma < SI < SI_\gamma + 2.4\sigma_\gamma$, which contains 98% of $\gamma(\beta)$ events. In the low energy region the background of the 116CdWO$_4$ detector is caused mainly by the fourth-forbidden β decay of 113Cd ($T_{1/2} = 7.7 \times 10^{15}$ yr [20], $Q_\beta = 316$ keV [21]) which is present in the enriched crystal with abundance of $\delta \approx 2\%$. The distribution above ≈ 350 keV is described by a trace contamination of the enriched and shield crystals by 40K, 137Cs, 113mCd, two neutrino double beta decay of 116Cd with $T_{1/2} = 2.6 \times 10^{19}$ yr [10], and external γ rays.

The energy spectrum of α particles (Fig. 6) was obtained by selection of events with the following values of shape indicator: $SI_\gamma + 4\sigma_\gamma < SI < SI_\alpha + 2.4\sigma_\alpha$. Under such restrictions the efficiency of the pulse-shape analysis (η_{PSA}) depends on the energy of α particles. For example, for α peak of 180W this efficiency equals 49.5%, while additional use of the filter for the plastic pulses discrimination decreases this value down to 47%.
Figure 5: The dependence of the shape indicator on the energy and the direction of incident α particles measured with the enriched 116CdWO$_4$ crystal scintillator. The α peaks of 224Ra, 220Rn and 216Po were selected by the time-amplitude analysis of background data.

Taking into account the fact that secular equilibrium in crystal scintillators is usually broken, the distribution of the α events is well reproduced by the model (see insert in Fig. 6), which includes α decays from 232Th and 238U families. For illustration, the results of the pulse-shape analysis of the data (for energy above 350 keV) are presented in Fig. 7 as three-dimensional distribution of the background events versus energy and shape indicator. In this plot one can see clearly separated population of the α events, which belong to U/Th families. The total α activity associated with the peak in the energy region 400–1500 keV is 1.40(10) mBq/kg. However, because of a poor energy resolution for α particles and uncertainty of the α/β ratio, we give only limits on the activity of nuclides from uranium and thorium families in the 116CdWO$_4$ scintillators received from the fit of the spectrum in the range 400–1500 keV: 232Th \leq 0.15 mBq/kg, 238U (234U) \leq 0.6 mBq/kg, 230Th \leq 0.5 mBq/kg, 210Pb \leq 0.4 mBq/kg.

The low energy part of the α spectrum (below 200 keV) can be explained by the PMT noise, residual γ(β) background, γ or β events in the 116CdWO$_4$ scintillators with small admixture of the plastic light guide pulses (which were not discriminated by the pulse-shape analysis), decays of Th and U daughter α nuclides located inside defects or inclusions of the crystals (in that case alpha particles can lose a part of their energy without scintillation light emission), etc.

Lastly, a small peak is visible in the α spectrum of Fig. 6 at the energy around 300 keV. Since the 2.46 MeV α peak of 180W is expected at 307 ± 24 keV (with FWHM = 110 keV),
Figure 6: Energy distributions of $\gamma(\beta)$ and α events, which were selected by the pulse shape analysis from the data of 116CdWO$_4$ crystals (330 g) measured during 2975 h. In the insert, α spectrum is depicted together with the model, which includes α decays from 232Th and 238U families. The total α activity in the 116CdWO$_4$ crystals is 1.40(10) mBq/kg.

and because the position of α peak of 232Th (with the lowest α energy of 4.0 MeV among all α emitters from U/Th families) must be at \approx600 keV, it is unlikely that this small peak can be attributed to origin other than α decay of 180W. However, because a platinum crucible was used for the growth of our crystals, we analyze the possible imitation of the effect by α activity of 190Pt (abundance of 190Pt is 0.014% [3], $T_{1/2} = 6.5 \times 10^{11}$ yr, $E_\alpha = 3164(15)$ keV [21] or 435 ± 30 keV in γ scale). Calculation shows that the detected peak can be caused by platinum pollution (homogeneously spread in the volume of the 116CdWO$_4$ scintillators) at the level of \approx 3 ppm. To estimate the actual platinum contamination in cadmium tungstate crystals, the results of previous low background measurements performed by the Milano-Kiev collaboration with the CdWO$_4$ crystal\(^9\) of 58 g [22] were considered. This experiment has been carried out in the Gran Sasso Underground Laboratory, and CdWO$_4$ crystal was used as a low temperature (\approx25 mK) bolometer. Energy resolution (FWHM) of the detector was equal to 5 keV at 2.6 MeV. No events were registered in the energy region of 3100 – 3300 keV during 340 h, which allows us to set bound on the 190Pt activity. In accordance with [23, 24] it yields 1.3 counts as limit for number of events, which can be excluded with 68% C.L., hence one can set a bound for platinum concentration in cadmium tungstate crystal as 1.2 ppm. Besides, two samples of CdWO$_4$ crystal with dimensions $1.5 \times 1.5 \times 0.1$ cm were searched (with the help of the electron microscope) for

\(^9\)This crystal was produced in the same apparatus as enriched ones.
inclusions, whose elemental composition is different from that of CdWO\textsubscript{4}. With this aim flat surface (2 cm2) of each sample was scanned, and if such an inclusion was observed, the electron beam was concentrated on it and the emitted X rays were analyzed with a crystal spectrometer (energy resolution is better than 0.1 eV) tuned on a characteristic platinum X rays. For any observed inclusions (with diameters in the range 2–30 µm) no emission of platinum X rays was found. It results in conclusion that limit (95\% C.L.) on platinum concentration in CdWO\textsubscript{4} crystal is lower than 0.1 ppm (or 0.03 ppm) for Pt inclusions with diameters less than 5 µm (or 3 µm). Similar analysis performed with the small sample (≈3 cm in diameter) of the enriched 116CdWO\textsubscript{4} crystal gives even more stringent restrictions10: 0.07 ppm (or 0.02 ppm).

Therefore, one can conclude that all bounds obtained for homogeneous Pt contaminations in the CdWO\textsubscript{4} crystals are well below the level of 3 ppm, at which α peak of 180W could be imitated. Moreover, it is also known that in crystals, which were grown in platinum crucible, Pt is not distributed homogeneously, but it is present in form of precipitates with size around 20 µm [25], hence a broad energy distribution instead of an α peak would be observed. The latter was proved by our Monte Carlo simulation of the 190Pt α decays in CdWO\textsubscript{4} crystal with the help of the GEANT and event generator DECAY4 [26]. It gives that effect of 180W α activity could be imitated by 190Pt alpha decays only in the case of platinum particles of 2–3 µm size, with Pt average concentration in the crystals at the level of 4 – 6 ppm, which is much larger

10Due to larger scanned area and better spatial resolution of the electron microscope used in this case.
than our experimental limits.

Nevertheless, because it is impossible to exclude (at least in principle) some other explanations of the 300 keV peak in the background spectrum, we can treat our experimental result only as the first indication for the possible α decay of 180W. Obviously, final confirmation of its existence would be obtained with the help of CdWO$_4$ crystals enriched/depleted in 180W. However, it is clear that preparation and performance of such a measurement would require a strong additional efforts and perhaps a long time.

3.2 Alpha activity of 180W and other tungsten isotopes

Assuming that observed peak at the energy around 300 keV is really caused by α decay of 180W, let us estimate its half-life. With this aim the experimental α spectrum in the energy region of interest was fitted by a Gaussian distribution (FWHM = 110 keV), which represents the effect, and by the background model. The latter was built up as a sum of the α peak of 232Th and exponential function. Position and area of the searched peak, the thorium α peak area, and constants of the exponent were taken as free parameters of the fit procedure, which was performed in the energy region (140±20) – (510±30) keV. The best fit (χ^2/n.d.f. = 0.52) achieved in the interval 140 – 520 keV (see Fig. 8) gives the area of the searched peak $S = 64 \pm 26$ counts and its position at 326±15 keV. Therefore, measured energy of 180W alpha particles is 2580 ± 290 keV, which is in a reasonable agreement with the theoretical value $E_\alpha = 2460$ keV.

Taking into account number of 180W nuclei in the crystals (6.57×10^{20}) and the total efficiency (47%), we get the corresponding half-life value: $T_{1/2}^{^{180}W} = 1.1^{+0.8}_{-0.4}$ (stat) ± 0.3 (syst) $\times 10^{18}$ yr. The systematic error is related mainly with an uncertainty of the background model.

In more conservative approach we use results of our fit in order to set the upper limit on half-life of 180W: $\text{lim} T_{1/2}^{^{180}W} \geq 0.7 \times 10^{18}$ yr at 90% C.L.\(^{11}\)

In addition, since there are no structural features in the experimental α spectrum, which could indicate an α activity of other tungsten isotopes, half-life bounds for these processes were estimated. The numbers of candidate nuclei in the detector with mass of 330 g are: 182W – 1.45×1023, 183W – 7.83×1022, 184W – 1.08×1023, 186W – 1.56×1023. The position of α peak in the γ equivalent scale, the expected peak width and the efficiency of the pulse-shape analysis are: 182W ($E_\alpha^\gamma = 215\pm57$ keV; FWHM$_\alpha = 86$ keV; $\eta_{PSA} = 35\%$), 183W ($E_\alpha^\gamma = 206\pm54$ keV; FWHM$_\alpha = 83$ keV; $\eta_{PSA} = 34\%$), 184W ($E_\alpha^\gamma = 204\pm53$ keV; FWHM$_\alpha = 83$ keV; $\eta_{PSA} = 34\%$), 186W ($E_\alpha^\gamma = 147\pm34$ keV; FWHM$_\alpha = 69$ keV; $\eta_{PSA} = 28\%$). Fitting the experimental α spectrum by sum of expected peak and background model (exponential function plus α peaks of 180W and 232Th) we get the following half-life limits (at 90% C.L.):

\begin{align*}
T_{1/2}^{^{182}W} &\geq 1.7 \times 10^{20} \text{ yr}, & T_{1/2}^{^{183}W} &\geq 0.8 \times 10^{20} \text{ yr}, \\
T_{1/2}^{^{184}W} &\geq 1.8 \times 10^{20} \text{ yr}, & T_{1/2}^{^{186}W} &\geq 1.7 \times 10^{20} \text{ yr}.
\end{align*}

The obtained experimental results for α activity of naturally occurring tungsten isotopes are summarized in Table.11

\(^{11}\)Similar bound $T_{1/2}^{\alpha} \geq 1 \times 10^{18}$ yr at 90% C.L. can be extracted from the mentioned measurements (340 h) with the CdWO$_4$ crystal of 58 g used as a low temperature bolometer [22], where no events were observed within the energy interval 2516±30 keV.
3.3 Comparison with theory

To our knowledge, there is only one theoretical work, based on the microscopical approach, in which the half-life for α decay of 180W was calculated [27]. It takes into account the systematic behaviour of the reduced α widths of even-even nuclei with numbers of neutrons and protons $N \geq 84, Z \leq 84$ and penetration factors obtained from realistic cluster wave functions. The derived result is: $T_{1/2}^\alpha = 7.5 \times 10^{17}$ yr and uncertainty of this value is estimated as less than a factor of 3 [27]. For other tungsten isotopes theoretical predictions are absent.

We have calculated the half-lives of all W isotopes for α decay, first, with the help of the cluster model [7], which was very successful in describing the α decays of even-even nuclei. For example, it reproduces the $T_{1/2}^\alpha$ values mainly within a factor of 2 for a wide range of nuclides (from 106Te to 264Hs) and for $T_{1/2}^\alpha$ from 10^{-7} s to 10^{16} yr. Because α decays of natural W isotopes (except 183W) occur without changes in nuclear spin and parity, we have chosen a set of 17 nuclides (from 144Nd to 248Cm) with $T_{1/2}^\alpha > 10^5$ yr [28], whose α decays also proceed without changes in nuclear spin and parity. While comparing a theory with an experiment, it is practical to use the value of the deviation $\chi = \max(R, 1/R)$, where $R = T_{1/2}^{th}/T_{1/2}^{exp}$. For the chosen set of nuclides the cluster model [7] gives a quite reasonable average value of $\chi = 1.9$. Then, half-lives for W isotopes were calculated with the help of the cluster model [7] and obtained results are listed in Table (given uncertainties are related only with uncertainties of

Figure 8: Fragment of the α spectrum measured with 116CdWO$_4$ detector during 2975 h together with the fitting curve (solid line). The α peak of 180W with area of 64 counts corresponds to half-life 1.1×10^{18} yr.
Q_α). In particular, $T_{1/2}^{(180\text{W})} = 8.3 \times 10^{17}$ yr, that is very close to the value of 7.5×10^{17} yr derived in [27].

Semiempirical relationships are often more effective in the prediction of $T_{1/2}^{\alpha}$ than microscopically based calculations. We found in the literature [8, 29, 30, 31, 32, 33, 34, 35, 36, 37] 18 semiempirical formulae which can be used for our purpose. All of them were also tested with the same set of 17 nuclides with $T_{1/2}^{\alpha} > 10^5$ yr. The best result (average deviation of the calculated values from experiment $\chi = 1.9$) was found for the relationship of [8] based on phenomenological fission theory of α decay and valid not only for even-even but also for odd-even, even-odd and odd-odd nuclei. The values of $T_{1/2}^{\alpha}$ obtained in such approach for W isotopes are given in Table, where uncertainties are caused, as in the previous case, by uncertainties of Q_α. For the ^{183}W decay it was also taken into account that change in parity will additionally suppress the decay rate as compared with that of [8]. For ^{180}W our result $T_{1/2}^{\alpha} = 2.0 \times 10^{18}$ yr is also close to that of [27].

Thus, we can conclude that half-life value ($T_{1/2}^{\alpha} = 1.1^{+0.3}_{-0.5} \times 10^{18}$ yr) for possible α decay of ^{180}W (indication for which is observed in present work) is in a good agreement with the theoretical predictions: $T_{1/2}^{\alpha} = 0.75 \times 10^{18}$ yr (microscopic approach [27]), and calculated here on the basis of semiempirical formula [8] and cluster model [7] as $T_{1/2}^{\alpha} = 2.0 \times 10^{18}$ yr and $T_{1/2}^{\alpha} = 0.83 \times 10^{18}$ yr, correspondingly.

4 CONCLUSIONS

In the present work the pulse shape and α/β ratio of the CdWO$_4$ crystal scintillators have been studied for three directions of the collimated beam of α particles relatively to the main crystal axes in the energy range of $0.5 - 5.2$ MeV. The dependences of α/β ratio and pulse shape on the direction of α irradiation have been found and measured.

By using the super-low background $^{116}\text{CdWO}_4$ crystal scintillators, the indication for the α decay of natural tungsten isotope ^{180}W was observed for the first time. The measured half-life $T_{1/2}^{\alpha} = 1.1^{+0.3}_{-0.5} \times 10^{18}$ yr is close to the theoretical predictions, and it would be the most rare α decay ever observed in nature. More conservatively our result can be treated as the lower limit on half-life of ^{180}W: $\lim T_{1/2}^{\alpha}(^{180}\text{W}) \geq 0.7 \times 10^{18}$ yr at 90% C.L. Besides, new $T_{1/2}$ bounds have been set for α decay of ^{182}W, ^{183}W, ^{184}W and ^{186}W at the level of $(0.8 - 1.8) \times 10^{20}$ yr. All these limits are higher than those obtained in previous work [6] and are the most stringent bounds on $T_{1/2}$ for any α decaying nuclides.

To confirm existence of α activity of ^{180}W, we are preparing measurements with other tungsten containing crystal scintillators: CdWO$_4$ (whose scintillation characteristics are better than those of currently used crystals), CaWO$_4$, and ZnWO$_4$. Observation of the α decay of ^{180}W could be also checked with these crystals as bolometers [22, 38] and, apparently, sensitivity of such experiments would be enhanced by using crystals enriched/depleted in ^{180}W.

5 Acknowledgments

The authors would like to thank Dr. Filippo Olmi for the electron microscope measurements of the platinum contaminations in the CdWO$_4$ crystal and Dr. Mykola Petrenko for the similar measurements performed with the enriched $^{116}\text{CdWO}_4$ crystal.
References

[1] G. Audi, A.H. Wapstra, Nucl. Phys. A 595 (1995) 409.
[2] W. Porschen, W. Riezler, Z. Naturforsch. 8a (1953) 502; 11a (1956) 143.
[3] K.J.R. Rosman, P.D.P. Taylor, Pure and Appl. Chem. 70 (1998) 217.
[4] G.B. Beard, W.H. Kelly, Nucl. Phys. 16 (1960) 591.
[5] R.D. Macfarlane, T.P. Kohman, Phys. Rev. 121 (1961) 1758.
[6] A.Sh. Georgadze et al., JETP Lett. 61 (1995) 882.
[7] B. Buck, A.C. Merchant, S.M. Perez, J. Phys. G 17 (1991) 1223.
[8] D.N. Poenaru, M. Ivascu, J. Physique 44 (1983) 791.
[9] P.G. Bizzeti et al., Proc. 51 Meeting on Nucl. Spectroscopy and Nucl. Structure, Sarov, Russia, Sept. 3–8, 2001, Bull. Russ. Acad. Sci., Ser. Phys. 66 (2002) 630 (in Russian).
[10] F.A. Danevich et al., Phys. Rev. C 62 (2000) 045501; P.G. Bizzeti et al., Nucl. Phys. B (Proc. Suppl.) 110 (2002) 389.
[11] Yu.G. Zdesenko et al., Proc. 2nd Int. Symp. Underground Physics, Baksan Valley, USSR, August 17–19, 1987. – Moscow, Nauka, 1988, p. 291.
[12] F.A. Danevich et al., Phys. Lett. B 344 (1995) 72.
[13] T. Fazzini et al., Nucl. Instr. Meth. A 410 (1998) 213.
[14] J.B. Birks, *Theory and Practice of Scintillation Counting*, Pergamon, New York, 1967.
[15] GEANT, CERN Program Library Long Write-up W5013, CERN, 1994.
[16] F.A. Danevich et al., Nucl. Phys. A 694 (2001) 375.
[17] J.C. Barton, J.A. Edgington, Nucl. Instr. Meth. A 443 (2000) 277.
[18] D.R. Tovey et al., Phys. Lett. B 433 (1998) 150.
[19] E. Gatti, F. De Martini, Nuclear Electronics 2, IAEA, Vienna, 1962, p. 265.
[20] F.A. Danevich et al., Phys. At. Nucl. 59 (1996) 1.
[21] *Table of isotopes*, ed. by R.B. Firestone et al., 8th ed., John Wiley & Sons, New York, 1996.
[22] A. Alessandrello et al., Nucl. Instr. Meth. A 344 (1994) 243; Nucl. Phys. B (Proc. Suppl.) 35 (1994) 394.
[23] D.E. Groom et al., Eur. Phys. J. C 15 (2000) 1.
[24] G.J. Feldman, R.D. Cousins, Phys. Rev. D 57 (1998) 3873.
[25] B.C. Grabmaier, IEEE Trans. Nucl. Sci. NS-31, No. 1 (1984) 372.
[26] O.A. Ponkratenko et al., Phys. At. Nucl. 63 (2000) 1282.
[27] B. Al-Bataina, J. Janecke, Phys. Rev. C 37 (1988) 1667.
[28] National Nuclear Data Center, BNL, USA; www.nndc.bnl.gov/ndc/nudat.
[29] D.N. Poenaru et al., At. Data Nucl. Data Tables 34 (1986) 423.
[30] P.O. Froman, Mat. Fys. Sk. Dan. Vid. Selsk. 1 (1957) 3.
[31] A.H. Wapstra et al., in Nuclear Spectroscopy Tables, 1959.
[32] R. Taagepera, M. Nurmia, Ann. Acad. Sci. Fenn. Ser. A 78 (1961).
[33] V.E. Viola, jr., G.T. Seaborg, J. Inorg. Nucl. Chem. 28 (1966) 741.
[34] K.A. Keller, H. Munzel, Z. Phys. 255 (1972) 419.
[35] P. Hornshoj et al., Nucl. Phys. A 230 (1974) 365.
[36] B.A. Brown, Phys. Rev. C 46 (1992) 811.
[37] P. Moller et al., At. Data Nucl. Data Tables 66 (1997) 131.
[38] M. Sisti et al., Nucl. Instr. Meth. A 444 (2000) 312.