Subgroup analysis of Japanese patients in a phase 3 study of lenvatinib in radioiodine-refractory differentiated thyroid cancer

Naomi Kiyota,1 Martin Schlumberger,2 Kei Muro,3 Yuichi Ando,4 Shunji Takahashi,5 Yasukazu Kawai,6 Lori Wirth,7 Bruce Robinson,8 Steven Sherman,9 Takuya Suzuki,10 Katsuki Fujino,11 Anubha Gupta,12 Seiichi Hayato13 and Makoto Tahara14

1Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan; 2Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris-Sud, Villejuif, France; 3Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan; 4Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan; 5Department of Medical Oncology, Cancer Institute Hospital of JFCR, Tokyo, Japan; 6Department of Hematology and Oncology, Fukui Prefectural Hospital, Fukui, Japan; 7Department of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; 8Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; 9Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA; 10Oncology Clinical Development, Eisai Co., Ltd, Tokyo, Japan; 11Japan Biostatistics, Eisai Co., Ltd, Tokyo, Japan; 12Clinical Pharmacology, Eisai Ltd, Hatfield, UK; 13Clinical Pharmacology, Eisai Co., Ltd, Tokyo, Japan; 14Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan

Key words
Japanese patients, lenvatinib, progression-free survival, thyroid cancer, treatment efficacy

Correspondence
Naomi Kiyota, Department of Medical Oncology and Hematology, Kobe University Hospital, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo, Japan.
Tel: +81-78-382-5820; Fax: +81-78-382-5821; E-mail: nkiyota@med.kobe-u.ac.jp

Funding Information
Eisai Inc.

Received July 28, 2015; Revised September 16, 2015; Accepted September 18, 2015

Cancer Sci 106 (2015) 1714–1721
doi: 10.1111/cas.12826

Lenvatinib significantly prolonged progression-free survival (PFS) versus placebo in patients with radioiodine-refractory differentiated thyroid cancer (RR-DTC) in the phase 3 Study of (E7080) Lenvatinib in Differentiated Cancer of the Thyroid (SELECT) trial. This subanalysis evaluated the efficacy and safety of lenvatinib in Japanese patients who participated in SELECT. Outcomes for Japanese patients (lenvatinib, n = 30; placebo, n = 10) were assessed in relationship to the SELECT population (lenvatinib, n = 261; placebo, n = 131). The primary endpoint was PFS; secondary endpoints included overall survival, overall response rate, and safety. Lenvatinib PFS benefit was shown in Japanese patients (median PFS: lenvatinib, 16.5 months; placebo, 3.7 months), although significance was not reached, presumably due to sample size (hazard ratio, 0.39; 95% confidence interval, 0.10–1.57; P = 0.067). Overall response rates were 63.3% and 0% for lenvatinib and placebo, respectively. No significant difference was found in overall survival. The lenvatinib safety profile was similar between the Japanese and overall SELECT population, except for higher incidences of hypertension (any grade: Japanese, 87%; overall, 68%; grade ≥3: Japanese, 80%; overall, 42%), palmar–plantar erythrodysesthesia syndrome (any grade: Japanese, 70%; overall, 32%; grade ≥3: Japanese, 3%; overall, 3%), and proteinuria (any grade: Japanese, 63%; overall, 31%; grade ≥3: Japanese, 20%; overall, 10%). Japanese patients had more dose reductions (Japanese, 90%; overall, 67.8%), but fewer discontinuations due to adverse events (Japanese, 3.3%; overall, 14.2%). There was no difference in lenvatinib exposure between the Japanese and overall SELECT populations after adjusting for body weight. In Japanese patients with radioiodine-refractory differentiated thyroid cancer, lenvatinib showed similar clinical outcomes to the overall SELECT population. Some differences in adverse event frequencies and dose modifications were observed. Clinical trial registration no.: NCT01321554.

The majority of patients with DTC can be successfully treated with surgical resection followed by radioiodine ablation.(1) However, approximately 5% of patients with DTC show aggressive metastatic disease that does not respond to radioiodine therapy.(2) Patients with RR-DTC typically have a poor prognosis, with a 10-year survival rate of approximately 10%. (3) Until recently, treatment options for patients with RR-DTC were limited. Newer treatment strategies have focused on molecules that inhibit multiple angiogenic pathways involved in the development and progression of tumors.(4) This strategy may circumvent compensatory mechanisms that upregulate other angiogenic pathways when a single pathway is blocked.(4) Additionally, clinical evidence has shown that tumor growth and maintenance extends beyond angiogenesis.(4,5)

In thyroid cancer, the variable expression of fibroblast growth factor receptors 1–4 has been associated with tumor development and aggressiveness.(6,7) Recently, two targeted multikinase inhibitors have demonstrated efficacy for the treatment of RR-DTC in phase 3 clinical trials. Sorafenib, an inhibitor of vascular endothelial growth factor receptors 1–3, platelet-derived growth factor receptor β, Raf-1, RET, and BRAF, was approved in Canada, the European Union, Japan, and by the FDA for treatment of locally recurrent or metastatic, progressive RR-DTC.(8) More recently, lenvatinib (E7080), an orally active inhibitor of...
the VEGF receptors 1–3, fibroblast growth factor receptors 1–4, platelet-derived growth factor receptor α, RET, and KIT signaling pathways.\(^{9,10,11}\) was approved in the USA and European Union for the treatment of RR-DTC and in Japan for the treatment of unresectable thyroid cancer. These approvals are based on results from the randomized, phase 3 SELECT trial.\(^{12}\) In SELECT, lenvatinib was shown to significantly prolong median PFS by 14.7 months (lenvatinib, 18.3 months; placebo, 3.6 months; HR, 0.21; \(P < 0.001\)) and improve the ORR (64.8% vs. 1.5%) compared with placebo.\(^{12}\) The phase 3 studies for both sorafenib and lenvatinib included Japanese patients as a subset of particular interest in light of the observed differences in efficacy and safety between the Japanese and overall study populations in studies of other targeted therapies.\(^{13,14}\) Therefore, the aim of the present study was to evaluate the efficacy and safety of lenvatinib in the subset of Japanese patients that participated in the SELECT trial and to evaluate these results in context with the overall study population.

Materials and Methods

Patients. A total of 40 Japanese patients with RR-DTC from the randomized, phase 3 SELECT trial were included in this analysis (total, 392 patients in SELECT). Eligible patients had measurable, pathologically confirmed DTC, evidence of radioiodine-refractory (RR) disease, and independently reviewed radiologic evidence of disease progression within the previous 13 months.\(^{12}\) Radioiodine-refractory disease was defined by the presence of at least one of the following: at least one measurable lesion without iodine uptake on any radioiodine scan; at least one measurable lesion that had progressed per Response Evaluation Criteria in Solid Tumors version 1.1 within 12 months of radioiodine therapy, despite radioiodine avidity at time of treatment; or cumulative activity of \(^{131}\)I >600 mCi. Eligible patients were randomized 2:1 to receive oral lenvatinib (24 mg once daily) or placebo in 28-day cycles. Adverse events and laboratory abnormalities were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. All patients provided written informed consent, and the protocol was approved by all relevant institutional review bodies. This study was carried out in accordance with the Declaration of Helsinki and local laws. Further details on the SELECT study design have been previously published.\(^{12}\)

Pharmacokinetic analyses. To investigate lenvatinib pharmacokinetics in SELECT patients from Japan, a model-based population PK analysis was examined. Lenvatinib plasma concentration data from 260 patients in the SELECT study were pooled with data from eight phase 1 studies in healthy subjects, four phase 1 studies in subjects with solid tumors, and two phase 2 studies in subjects with thyroid cancer. One subject from the SELECT study was not included as dates and times of doses associated with PK samples were missing. This analysis was therefore carried out on 10 265 lenvatinib plasma concentrations obtained from a total of 779 subjects. Of these 779 subjects, 91 were Japanese, and 30 were Japanese patients from SELECT. The models were developed using NONMEM version 7.2.0 (ICON Development Solutions, Ellicott City, MD, USA) interfaced with PDxPop 5.0 (ICON Development Solutions). Final PK model-derived individual clearance values were used to calculate lenvatinib exposure AUC as AUC = dose (mg) × 1000 × relative bioavailability / individual clearance. Lenvatinib AUC results for the subjects in SELECT are presented here.

Statistical analysis. The PFS and OS rates were estimated and plotted using the Kaplan–Meier method and compared using the stratified log–rank test for the primary analysis on the intention-to-treat population. The HR (expressed as lenvatinib/placebo) and CIs were estimated using a stratified Cox proportional hazards model. Overall survival was reported as both unadjusted and adjusted for a potential cross-over bias using the rank-preserving structural failure time model. For ORR analysis, the \(P\)-value and OR were calculated using Cochran–Mantel–Haenszel tests.

Results

Patients. Of 392 patients randomized to treatment in SELECT, 40 evaluable patients were enrolled in Japan (lenvatinib, \(n = 30\); placebo, \(n = 10\)). All randomized patients (2:1, lenvatinib: placebo) enrolled in SELECT received at least one dose of treatment; therefore, all were included in both the efficacy

Characteristic	Lenvatinib	Placebo	Lenvatinib	Placebo
	(\(n = 30\))	(\(n = 10\))	(\(n = 261\))	(\(n = 131\))
Median age, years (range)	65.5 (33–83)	65.0 (50–77)	64.0 (27–89)	61.0 (21–81)
Women, n (%)	19 (63.3)	8 (80.0)	136 (52.1)	56 (42.7)
Median weight, kg (range)	54.3 (32.6–74.6)	54.6 (31.0–87.0)	73.3 (33–155)	74.0 (31–165)
ECOG PS, n (%)	1 (3.3)	0	13 (5.0)	2 (1.5)
0–1	29 (96.7)	10 (100.0)	248 (95.0)	129 (98.5)
2–3	1 (3.3)	0	13 (5.0)	2 (1.5)
Prior VEGF-targeted therapy, n (%)	27 (90.0)	9 (90.0)	195 (74.7)	104 (79.4)
1	3 (10.0)	1 (10.0)	66 (25.3)	27 (20.6)
Histology (investigator-assessed)	22 (73.7)	3 (30.0)	132 (50.6)	68 (51.9)
Papillary	4 (13.3)	4 (13.3)	101 (38.7)	44 (33.6)
Poorly differentiated	4 (13.3)	4 (13.3)	101 (38.7)	44 (33.6)

ECOG PS, Eastern Cooperative Oncology Group performance status; SELECT, Study of (E7080) Lenvatinib in Differentiated Cancer of the Thyroid; VEGF, vascular endothelial growth factor factor.
(intention-to-treat population) and safety analyses. One patient was excluded from the PK analysis due to missing data. The demographic and baseline characteristics of patients from Japan and the overall study population are summarized in Table 1. Japanese patients were similar to the overall SELECT population in terms of age and baseline Eastern Cooperative

Table 2. Summary of efficacy measures of the intention-to-treat population of Japanese patients with radioiodine-refractory differentiated thyroid cancer treated with lenvatinib

Outcome	Lenvatinib (n = 30)	Placebo (n = 10)	Statistic
PFS			
Months, median (95% CI)	16.5 (7.4–NE)	3.7 (1.6–9.1)	0.39 (0.10–1.57)*
Rates, % (95% CI)			
6 months	70.0 (50.3–83.1)	31.7 (4.9–64.7)	
12 months	62.8 (42.9–77.4)	15.9 (0.8–49.6)	
18 months	48.5 (25.5–68.1)	15.9 (0.8–49.6)	
24 months	NE (NE–NE)	NE (NE–NE)	
OS (RPSFT adjusted)			
Months, median (95% CI)	20.4 (14.2–NE)	NE (4.9–NE)	1.03 (0.20 to >99.9)**
Rates, % (95% CI)			
6 months	93.3 (75.9–98.3)	90.0 (47.3–98.5)	
12 months	73.3 (53.7–85.7)	77.1 (34.5–93.9)	
18 months	60.1 (39.0–76.0)	77.1 (34.5–93.9)	
24 months	48.1 (21.7–70.4)	NE (NE–NE)	
ORR† n (%)	19 (63.3)	0 (0.0)	11.64 (1.68–80.82)***
CR, n (%)	0 (0.0)	0 (0.0)	
PR, n (%)	19 (63.3)	0 (0.0)	
SD, n (%)	8 (26.7)	6 (60.0)	
Durable SD ≥23 weeks, n (%)	6 (20.0)	3 (30.0)	
PD, n (%)	3 (10.0)	3 (30.0)	
NE + unknown, n (%)	0 (0.0)	1 (10.0)	
DCR‡ n (%)	27 (90.0)	6 (60.0)	6.24 (0.92–42.48)****
CR, n (%)	25 (83.3)	3 (30.0)	5.68 (0.90–35.92)*****
Time to objective response, months, median (95% CI)	1.9 (1.7–5.6)	–	
Duration of objective response, months, median (95% CI)	16.6 (14.6–NE)	–	

†Tumor response was measured according to RECIST by independent centralized radiologic review. ‡Disease control rate (DCR) = complete response (CR) + partial response (PR) + stable disease (SD). §Clinical benefit rate (CBR) = CR + PR + durable SD. –, not applicable; CI, confidence interval; HR, hazard ratio; NE, not estimable (not reached); OR, odds ratio; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors version 1.1; RPSFT, rank-preserving structural failure time. *P = 0.067; **P = 0.971; ***P = 0.0004; ****P = 0.029; *****P = 0.002.

Fig. 1. Progression-free survival rates of overall patients with radioiodine-refractory differentiated thyroid cancer and the Japanese subgroup who participated in the Study of (E7080) Lenvatinib in Differentiated Cancer of the Thyroid (SELECT) trial. Kaplan–Meier estimate of progression-free survival in patients treated with lenvatinib (Japanese, n = 30; overall, n = 261) or placebo (Japanese, n = 10; overall, n = 131). CI, confidence interval; HR, hazard ratio; NE, not estimable.
Oncology Group performance status. However, the Japanese subset had a higher proportion of females (Japanese, 67.5%; overall, 49.0%) and lower median body weight (for lenvatinib and placebo arms, respectively: Japanese, 54.3 kg and 54.6 kg; overall, 73.3 kg and 74.0 kg) than those of the overall study population, and a higher proportion of patients in Japan (for lenvatinib and placebo arms, respectively: Japanese, 90% and 90%; overall, 75% and 79%) were naive to VEGF-targeted therapy. With regard to histology, a higher proportion of Japanese patients randomized to lenvatinib had well-differentiated papillary tumors (73.7%) compared with the placebo group (30.0%) or the overall study population (lenvatinib, 50.6%; placebo, 51.9%).

Efficacy. At the time of data cut-off for the primary analysis (15 November 2013), 14 (46.7%) lenvatinib-treated and 6 (60.0%) placebo-treated patients from Japan had experienced disease progression. Progression-free survival was substantially prolonged with lenvatinib versus placebo (HR, 0.39; 95% CI, 0.10–1.57); however, this effect was not statistically significant ($P = 0.067$; Fig. 1, Table 2). Median PFS was 16.5 months (95% CI, 7.4–not estimable) in the lenvatinib arm and 3.7 months (95% CI, 1.6–9.1) in the placebo arm. The 6-month PFS rates were 70.0% and 31.7% for the lenvatinib and placebo arms, respectively (Table 2). These outcomes were consistent with those observed in the overall study population (Fig. 1).

At the time of data cut-off, 12 (40%) lenvatinib-treated and 3 (30%) placebo-treated patients from Japan had died. The difference in OS between treatment arms was not statistically significant in either the unadjusted OS analysis (HR, 2.25; 95% CI, 0.50–10.09; $P = 0.277$; data not shown) or in the analysis adjusting for a potential bias from the cross-over study design (rank-preserving structural failure time-adjusted HR, 1.03; 95% CI, 0.20 to 99.9; $P = 0.971$; Fig. 2a, Table 2). These results are consistent with the estimated OS in SELECT, especially considering the small number of events in the subset of Japanese patients (Fig. 2a).

Lenvatinib showed statistically significant and clinically meaningful improvements in ORR, disease control rate, and clinical benefit rate compared with placebo in the subset of Japanese patients (Table 2). Best overall responses in patients were categorized as complete response (CR), partial response (PR), stable disease (SD), progressive disease (PD), or not estimable (NE). CI, confidence interval.
considered treatment-related by the investigator. One lenvatinib-treated patient from Japan experienced a fatal TEAE (hepatic failure due to disease progression) that was considered not related to lenvatinib treatment by the investigator. The five most common treatment-related TEAEs (any grade) in Japanese patients from SELECT were hypertension (86.7%), PPES (70.0%), proteinuria (63.3%), fatigue⁄asthenia (60.0%), and diarrhea (60.0%; Table 3). In non-Japanese patients from SELECT, these were hypertension (65.4%), PPES (26.8%), proteinuria (26.8%), fatigue⁄asthenia (58.9%), and diarrhea (59.3%). Grade 3 PPES was reported in 3.3% of lenvatinib-treated patients. The most common treatment-related grade ≥3 TEAEs in the lenvatinib arm were hypertension (80.0%; all grade 3), proteinuria (20.0%), fatigue⁄asthenia (13.3%), decreased appetite (13.3%), and thrombocytopenia (6.7%). No patient in the placebo group reported a treatment-related grade ≥3 TEAE.

The lenvatinib dose was reduced or interrupted due to AEs in 90.0% and 80.0% of patients, respectively (Table 3). In the placebo arm, dose reduction or interruption due to AEs occurred in 30.0% and 30.0% of patients, respectively. Adverse events that resulted in dose modifications in the placebo arm included increased amylase, parotitis, pneumonia, upper respiratory tract inflammation, prolonged electrocardiogram QT, thrombocytopenia, constipation, fatigue, and herpes zoster (all one case each). The median time to first dose reduction in the lenvatinib arm was 0.9 months (95% CI, 0.5–1.5). Lenvatinib treatment was discontinued due to AEs in one (3.3%) patient (Table 3). The median duration of treatment was 14.3 months (range, 0.5–25.4 months) with lenvatinib and 3.4 months (range, 1.6–23.8 months) with placebo.

Pharmacokinetic assessments. Lenvatinib exposure appeared to be higher in Japanese patients compared with non-Japanese patients from the overall study population (Fig. 3a, left). An analysis of lenvatinib clearance and exposure in relation to body weight, however, indicated that patients with lower body weight tended to have lower lenvatinib clearance and higher lenvatinib exposure (Fig. 3b). Correspondingly, there was no

Table 3. Summary of adverse events in Japanese patients (safety population) with radioiodine-refractory differentiated thyroid cancer treated with lenvatinib

Adverse events, n (%)	Japan	Overall SELECT(12)
	Lenvatinib (n = 30)	Placebo (n = 10)
	Lenvatinib (n = 261)	Placebo (n = 131)
Any TEAE	30 (100.0)	9 (90.0)
Any TRAE	30 (100.0)	6 (60.0)
Grade ≥3 TRAE	28 (93.3)	1 (10.0)
Serious AE	13 (43.0)	0 (0.0)
Treatment-related	7 (23.3)	0 (0.0)
Fatal TEAE	1 (3.0)	0 (0.0)
Treatment-related	0 (0.0)	0 (0.0)

Patient events, n (%)	Japan	Overall SELECT(12)
	Lenvatinib (n = 30)	Placebo (n = 10)
	Lenvatinib (n = 261)	Placebo (n = 131)
Dose reduction due to TEAE	27 (90.0)	3 (30.0)
Dose interruption due to TEAE	24 (80.0)	3 (30.0)
TEAE-related treatment discontinuation	1 (3.3)	0 (0.0)

TRAEs (≥20% all grades), %	Any Grade	Grade ≥3
Hypertension	86.7	80.0
Palmar–plantar erythrodysesthesia syndrome	70.0	3.3
Proteinuria	63.3	20.0
Fatigue⁄asthenia	60.0	20.0
Diarrhea	60.0	10.0
Decreased appetite	56.7	13.3
Stomatitis	50.0	0.0
Thrombocytopenia	46.7	6.7
Nausea	43.3	0.0
Peripheral edema	40.0	0.0
Vomiting	36.7	0.0
Decreased weight	33.3	3.3
Increased blood-thyroid-stimulating hormone level	30.0	0.0
Dysphonia	26.7	0.0
Arthralgia	26.7	0.0
Constipation	23.3	0.0
Hypoalbuminemia	20.0	0.0
Back pain	20.0	0.0
Dysgeusia	20.0	0.0
Epistaxis	20.0	0.0
Headache	13.3	0.0

AE, adverse event; SELECT, Study of (E7080) Lenvatinib in Differentiated Cancer of the Thyroid; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event.

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
difference in lenvatinib exposure in Japanese patients compared with non-Japanese patients after adjustment for body weight (Fig. 3a, right).

Discussion
This is the first analysis of Japanese patients with RR-DTC treated with lenvatinib in the phase 3 SELECT trial, and the first SELECT subgroup analysis based on race. Lenvatinib efficacy outcomes in patients from Japan were generally similar to those observed in the overall study population. Japanese patients treated with lenvatinib had prolonged PFS compared with placebo (median, 16.5 vs. 3.7 months); however, the PFS results in this subgroup analysis did not reach statistical significance, due to the reduced statistical power associated with the small sample size. Lenvatinib did show a statistically significant and clinically meaningful improvement in ORR within the Japanese subgroup (63.3% compared with 0% for placebo), which was consistent with results in the overall study population (lenvatinib ORR, 64.8%).

Median time to response in the lenvatinib arm was also similar for the Japanese subgroup (1.9 months) and the overall study population (2.0 months), which was the time of the first tumor assessment.

Although the small subgroup size limits definite conclusions, a few general observations can be made. The baseline characteristics of patients from Japan were generally similar to that of the overall study population, with a few important exceptions. Lenvatinib-treated patients from Japan tended to have lower body weight (median, 54 kg) than that of the overall study population (median, ~73 kg), and a higher proportion of Japanese patients were naive to VEGF-targeted therapy. Additionally, there was a higher proportion of papillary thyroid cancer in the Japanese subgroup. Regardless, the efficacy of lenvatinib was remarkably similar in the Japanese subgroup.

The safety profile of lenvatinib among patients from Japan was also similar to that observed in the overall SELECT study population, with a few notable differences in the incidences of several AEs. With respect to the overall study population, Japanese patients treated with lenvatinib had a higher incidence of treatment-related hypertension (any grade: Japanese, 87%; overall, 68%; grade ≥3: Japanese, 80%; overall, 42%), PPES (any grade: Japanese, 70%; overall, 32%; grade ≥3: Japanese, 3%; overall, 3%) and proteinuria (any grade: Japanese, 63%; overall, 31%; grade ≥3: Japanese, 20%; overall, 10%).

When compared with non-Japanese patients from SELECT (hypertension, any grade: 65%; grade ≥3: 4%; PPES, any grade: 27%; grade ≥3: 4%; proteinuria, any grade: 27%; grade ≥3: 9%), the higher incidences of these AEs among Japanese patients is still evident. In studies of sunitinib and axitinib, an increased incidence of hypertension, stomatitis, PPES, and grade ≥3 hematological AEs has been observed in Asian patients. The frequency and severity of diarrhea (any grade, 43% vs. 34%; grade ≥3, 2% vs. 1%) and proteinuria (any grade, 27%; grade ≥3: 4%; proteinuria, any grade: 27%; grade ≥3: 9%) in Japanese patients was also studied in patients with renal cell carcinoma treated with sorafenib.

Hypertension and proteinuria are known class-effects of VEGF-targeted therapies, whereas PPES was the most frequent AE associated with sorafenib treatment in patients with RR-DTC. Pharmacokinetic assessments showed no clear differences in exposure to lenvatinib among Japanese patients and non-Japanese patients or the overall study popula-

Fig. 3. Pharmacokinetic assessments evaluating lenvatinib exposure in Japanese patients versus the overall study population with radioiodine-refractory differentiated thyroid cancer who participated in the Study of (E7080) Lenvatinib in Differentiated Cancer of the Thyroid (SELECT) trial. (a) Scatterplot of model-predicted lenvatinib clearance and exposure versus body weight in Japanese patients (n = 30) versus the remainder of the overall study population (n = 230). (b) Relationship between model-predicted lenvatinib exposure and Japanese race. Lenvatinib exposure was evaluated in Japanese patients (n = 30) versus the remainder of the overall study population (non-Japanese patients [n = 230]). AUC, area under the curve.
tion after normalizing for dose and body weight. This is consistent with findings reported for other multikinase inhibitors.(17,24) We investigated whether the difference in body weight between Japanese patients and the overall SELECT study population resulted in differences in exposure to lenvatinib, and therefore could possibly explain the observed differences in safety profile. In this study, Japanese patients had increased exposure which was confounded by lower body weight; this could partially contribute to the observed higher incidences of certain AEs in Japanese patients, including hypertension and PDES. However, increased exposure and body weight alone are unlikely to fully explain the observed differences in the incidence of certain AEs between the two populations. Further investigation of interindividual variation in lenvatinib PKs is therefore warranted, and is underway.

Differences in AE management, specifically treatment dose modifications, were also observed in the Japanese subgroup. Patients from Japan had higher rates of dose reductions in both treatment arms than the overall study population (lenvatinib arm: Japanese, 90.0%; overall SELECT, 67.8%; placebo arm: Japanese, 30.0%; overall SELECT, 5%).(12) Lenvatinib dose reductions also occurred earlier during the course of treatment in the Japanese subgroup (median, 0.9 months to the first dose reduction, and 3.0 months in the overall population). However, treatment discontinuations due to AEs occurred less frequently in Japanese lenvatinib-treated patients (3.3% vs. 14.2%)(12) indicating that toxicities were managed effectively in this subgroup. Additionally, the median duration of treatment was similar between Japanese patients and the overall study population (14.3 and 13.8 months, respectively),(12) with corresponding clinical efficacy. Therefore, these results suggest that the starting dose of 24 mg lenvatinib was feasible in Japanese patients as well as in the overall study population, when AEs are appropriately managed.

In summary, this analysis indicated a generally similar efficacy and safety profile for lenvatinib in Japanese patients from the overall SELECT study population, although the small number of patients from Japan limited the statistical power needed to make more robust conclusions. The data also suggest that possible regional differences in AE frequencies and dose modifications exist.

Acknowledgments

The authors thank all the patients and their families, as well as all the investigators and their teams who participated in this study. This study was funded by Eisai Inc. Editorial assistance was provided by Oxford PharmaGenesis Inc. and was funded by Eisai Inc.

Disclosure Statement

Naomi Kiyota, Lori Wirth, Bruce Robinson, and Makoto Tahara received research funding and speaker honoraria, Martin Schlumberger and Shunji Takahashi received grants and personal fees, Yuichi Ando and Steven Sherman received speaker honoraria, all from Eisai Inc. Takuya Suzuki, Katsuji Fujino, Anubha Gupta, and Seichi Hayato are employees of Eisai Inc. Kei Muro and Yasukazu Kawai have no conflicts of interest.

Abbreviations

Abbreviation	Description
AE	adverse event
AUC	area under the curve
CI	confidence interval
DTC	differentiated thyroid cancer
HR	hazard ratio
OR	odds ratio
ORR	overall response rate
OS	overall survival
PFS	progression-free survival
PK	pharmacokinetic
PDES	palmar-plantar erythrodysesthesia syndrome
RR-DTC	radiodine-refractory differentiated thyroid cancer
SELECT	Study of (E7080) Lenvatinib in Differentiated Cancer of the Thyroid
TEAEs	treatment-emergent adverse events
VEGF	vascular endothelial growth factor

References

1 Sciuto R, Romano L, Rea S, Marandino F, Sperduti I, Maini CL. Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann Oncol 2009; 20: 1728–35.
2 Busaidy NL, Cabanillas ME. Differentiated thyroid cancer: management of patients with radiodine nonresponsive disease. J Thyroid Res 2012; 2012: 618983.
3 Durante C, Haddy N, Baudin E et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radiodine therapy. J Clin Endocrinol Metab 2006; 91: 2892–9.
4 Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008; 8: 592–603.
5 Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15: 232–9.
6 Boe laert K, McCabe CJ, Tannahill LA et al. Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer. J Clin Endocrinol Metab 2003; 88: 2341–7.
7 St Bernard R, Zheng L, Liu W, Winer D, Asa SL, Ezzat S. Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology 2005; 146: 1145–53.
8 Brose MS, Nutting CM, Jarrath B et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384: 319–28.
9 Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 2008; 14: 5459–65.
10 Matsui J, Yamamoto Y, Funahashi Y et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 2008; 122: 664–71.
11 Okamoto K, Kodama K, Takase K et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett 2013; 340: 97–103.
12 Schlumberger M, Tahara M, Wirth LJ et al. Lenvatinib versus placebo in radiodine-refractory thyroid cancer. N Engl J Med 2015; 372: 621–30.
13 Ohtsu A, Shah MA, Van Cutsem E et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 2011; 29: 3968–76.
14 Sawaki A, Ohashi Y, Omuro Y et al. Efficacy of trastuzumab in Japanese patients with HER2-positive advanced gastric or gastroesophageal junction cancer: a subgroup analysis of the Trastuzumab for Gastric Cancer (ToGA) study. Gastric Cancer 2012; 15: 313–22.
15 Hong MH, Kim HS, Kim C et al. Treatment outcomes of sunifilum treatment in advanced renal cell carcinoma patients: a single cancer center experience in Korea. Cancer Res Treat 2009; 41: 67–72.
16 Ueda T, Uemura H, Togoh Y et al. Efficacy and safety of axitinib versus sorafenib in metastatic renal cell carcinoma: subgroup analysis of Japanese patients from the global randomized Phase 3 AXIS trial. Jpn J Clin Oncol 2013; 43: 616–28.
17 Uemura H, Shinohara N, Yuasa T et al. A phase II study of sunitinib in Japanese patients with metastatic renal cell carcinoma: insights into the treatment, efficacy and safety. Jpn J Clin Oncol 2010; 40: 194–202.

18 Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356: 125–34.

19 Akaza H, Tsukamoto T, Murai M, Nakajima K, Naito S. Phase II study to investigate the efficacy, safety, and pharmacokinetics of sorafenib in Japanese patients with advanced renal cell carcinoma. Jpn J Clin Oncol 2007; 37: 755–62.

20 Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 2006; 42: 3127–39.

21 Keizer RJ, Gupta A, Mac Gillavry MR et al. A model of hypertension and proteinuria in cancer patients treated with the anti-angiogenic drug E7080. J Pharmacokinet Pharmacodyn 2010; 37: 347–63.

22 Keizer RJ, Gupta A, Shumaker R, Beijnen JH, Schellens JH, Huitema AD. Model-based treatment optimization of a novel VEGFR inhibitor. Br J Clin Pharmacol 2012; 74: 315–26.

23 Shen CT, Qiu ZL, Luo QY. Sorafenib in the treatment of radioiodine-refractory differentiated thyroid cancer: a meta-analysis. Endocr Relat Cancer 2014; 21: 253–61.

24 Pithavala YK, Tortorici M, Toh M et al. Effect of rifampin on the pharmacokinetics of Axitinib (AG-013736) in Japanese and Caucasian healthy volunteers. Cancer Chemother Pharmacol 2010; 65: 563–70.