Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues

Francisco Gonzalez, Peter Witzgall & William B. Walker

Insects use chemical signals to find mates, food and oviposition sites. The main chemoreceptor gene families comprise odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). Understanding the evolution of these receptors as well as their function will assist in advancing our knowledge of how chemical stimuli are perceived and may consequently lead to the development of new insect management strategies. Tortricid moths are important pests in horticulture, forestry and agriculture around the globe. Here, we characterize chemoreceptors from the three main gene families of three economically important tortricids, based on male antennal transcriptomes using an RNA-Seq approach. We identified 49 ORs, 11 GRs and 23 IRs in the green budworm moth, Hedya nubiferana; 49 ORs, 12 GRs and 19 IRs in the beech moth, Cydia fagiglandana; and 48 ORs, 11 GRs and 19 IRs in the pea moth, Cydia nigricana. Transcript abundance estimation, phylogenetic relationships and molecular evolution rate comparisons with deorphanized receptors of Cydia pomonella allow us to hypothesize conserved functions and therefore candidate receptors for pheromones and kairomones.

Chemoreception in insects is mediated by receptor proteins specialized in detecting odorants and tastants that convey information about sexual partners, food location, oviposition sites and the presence of threats such as predators and toxins produced by microorganisms1–3. Chemosensory proteins mediate the detection of external stimuli, providing input for downstream processing and behavioral responses through specialized circuits in higher brain centers4–7.

Several molecular actors such as odorant binding proteins (OBPs) and sensory neuron membrane proteins (SNMPs) contribute to the detection of chemical signals8,9. However, chemoreceptor proteins have been widely accepted as the key determinants in insect olfaction and gustation. Volatile compounds are detected by odorant receptors (ORs) embedded in the membranes of dendrites of neurons inside of sensilla, hair-like structures on the antenna. ORs are tuned to a diverse range of odorants from various sources, including host cues, microbial volatiles and conspecific pheromones10. In addition, an ancient and complementary conserved set of olfactory receptors, known as ionotropic receptors (IRs), is tuned mainly to acids and amines11,12. Gustatory receptors (GRs) are proteins present in membranes of neurons inside of organs such as the proboscis, the ovipositor, tarsi and even in the antennae, and are mostly tuned to non-volatile chemicals13.

Insect olfactory receptor repertoires are tuned to chemicals with crucial ecological relevance4. This implies that the ecological niches of insects are reflected by their chemoreceptors. Functional studies with Drosophila melanogaster and Anopheles gambiae have supported this theory; their ORs are mainly tuned to the most abundant chemicals from the hosts of each species: esters and aldehydes in the case of the fruit fly and aromatics in the case of the malaria mosquito14. Consequently, species-specific shifts are revealed in the tuning, responsiveness and sensitivity of insect chemoreceptors. A classic example is observed in moth pheromone receptors, PRs which mediate sexual communication. Closely related taxa often use the same basic set of pheromone components, but differences in the specificity and sensitivity of their PRs towards major and minor components enable them to recognize conspecific individuals15.

In silico studies of putative insect chemoreceptors coupled with their functional characterization facilitates the prediction of behavioral responses of insects towards semiochemicals, opening new possibilities for pest control16.
### Results

### Sequencing and transcriptome assembly.

Through use of an Illumina HiSeq2500 approach, three RNA-seq libraries were generated, from male antennal samples of three tortricid moths. For *H. nubiferana*, transcriptomic assembly produced 107,543 contig gene clusters, while for *C. fagiglandana* and *C. nigricana* 100,279 and 137,083 contig gene clusters were produced respectively (Table 1).

Analysis of the most highly expressed genes in the antennae of each species showed an enriched number of transcripts related to mitochondrial functions (29–54%), and odorant binding proteins (15–36%). Transcripts for other chemosensory, ribosomal and hormonal related proteins were highly abundant in all species (Supplementary Figure S1).

| Species              | Paired reads | Unpaired reads | Contig gene clusters | Transcript sequences | Average contig length (nt) | N50 length (nt) |
|----------------------|--------------|----------------|----------------------|----------------------|---------------------------|-----------------|
| *Hedya nubiferana*   | 70,320,761   | 3,565,915      | 107,543              | 137,391              | 650.61                    | 987             |
| *Cydia fagiglandana* | 77,619,812   | 2,590,143      | 100,279              | 135,453              | 611.89                    | 860             |
| *Cydia nigricana*    | 87,531,484   | 3,520,979      | 137,083              | 151,491              | 540.18                    | 697             |

Table 1. Transcriptomes assembly summary.

### Identification of chemosensory genes and expression.

**Odorant receptors.** Qualitative analysis of the male antennal transcriptomes revealed 49 ORs in *H. nubiferana* (35 full-length ORFs), 49 ORs in *C. fagiglandana* (36 full-length ORFs) and 48 in *C. nigricana* (38 full-length ORFs). These receptors cluster within 11 different clades, according to phylogenetic analysis (Fig. 1; Supplementary Data S1). The three species share at least 34 putatively homologous receptors, including PRs, general ORs and the insect odorant co-receptor (Orco).

A total of 23 predicted sequences cluster within the lepidopteran pheromone receptor clade. Both *Cydia* species share a close ortholog of CpomOR1, while orthologs of CpomOR2, CpomOR6 and CpomOR8 are found in all three species. OR6 is particularly interesting since the amino acid sequence identity between these orthologous receptors ranges between 90–94% (even for HnubOR6, for which the sequence is incomplete), while sequence identity of OR2 and OR8 range between 42.07–61.27 and 45.52–93, respectively.

Molecular evolution rate analyses between selected OR homologs in comparison to Cpom ORs provide evidence of purifying selection for Orco, OR1, OR3 and OR6 (dN/dS < 1; Fig. 2). Further statistical tests (Z-Test of selection) of this hypothesis supported these results for Orco (*p* < 0.0001; *Z* = 4.734), OR1 (*p* < 0.0001; *Z* = 8.417), OR3 (*p* < 0.0001; *Z* = 4.849), and OR8 (*p* < 0.0001; *Z* = 9.058). Alternatively, positive selection was not favoured when presented as alternative hypothesis to the null hypothesis of neutrality for the homologs of Orco (*p* = 1.000; *Z* = −6.139), OR1 (*p* = 1.000; *Z* = −4.187), OR3 (*p* = 1.000; *Z* = −6.414), and OR6 (*p* = 1.000; *Z* = −8.526). Furthermore, no evidence of positive selection was found when the homologs were analyzed at the codon level (Supplementary Table S1).

Quantitative analysis of OR expression shows that for *H. nubiferana*, transcript abundance levels range between 0.58 to 441.88 FPKM, while for *C. fagiglandana* expression levels range between 1.51 to 1768.41 FPKM, and between 16.93 to 985.06 FPKM for *C. nigricana* (Supplementary Table S2). Apart from Orco, the most highly
expressed OR for *C. fagiglandana* and *C. nigricana* is OR6, while the most highly expressed of *H. nubiferana* is OR2.1, followed by OR8.1 (Fig. 3). Some putative non-PRs also show relatively high levels of expression, including HnubOR41, CfagOR64, CnigOR13 and CnigOR20.

Visualization of RT-PCR products derived from samples of antennal RNA provide further evidence for expression of HnubOR8.1, CfagOR6 and CnigOR6 (Fig. 4).

**Gustatory receptors.** A total of 34 sequences were determined to be putative GRs from the species studied, 11 for *H. nubiferana*, 12 for *C. fagiglandana* and 11 for *C. nigricana* (Supplementary Data S1). Only two GR transcripts of the green budworm moth contained complete ORFs based on the presence of start and stop codons, while for the beech moth the number of complete GRs was ten and two in the case of the pea moth. In each species,

---

**Figure 1.** Maximum likelihood tree of candidate ORs of *H. nubiferana* (*Hnub*), *C. fagiglandana* (*Cfag*) and *C. nigricana* (*Cnig*), along with sequences of *C. pomonella* (*Cpom*) and *E. postvittana* (*Epos*). Putative receptors of the Orco clade are colored red; putative receptors of the moth pheromone receptor (PR) clade are colored green. Node support was assessed with 600 bootstrap replicates and values greater than 60% are shown.

**Figure 2.** Maximum likelihood trees of selected *C. pomonella* ORs orthologs. dN/dS values of each ortholog in comparison to the corresponding *C. pomonella* OR are shown between parentheses. Comparison between CpomOR1 and HnubOR2.1 is excluded since the proportion of nucleotides that are different is greater than 75% and hence distance cannot be computed for pairwise analysis.
GRs were identified that cluster in the main subclades of receptors putatively tuned to CO₂, sugars and bitter substances (Fig. 5).

Quantitative analysis of GR transcript expression shows lower levels than observed for ORs. Different ranges of expression were observed across species. For *H. nubiferana*, transcript abundance range between 0.51 to 9.65 FPKM, while for *C. fagiglia*, between 0.63 to 20.58, and 0.74 to 44.53 for *C. nigricana*. The identity of the most highly expressed GR per species also varied, with GR68.2 being the highest for *Hedya* and GR6 the highest for the *Cydia* species (Fig. 6; Supplementary Table 2).

Figure 3. Heat-plot of relative expression values of ORs of *H. nubiferana*, *C. fagiglia*, and *C. nigricana*. Estimation of abundance values determined by read mapping. Black indicates low/no expression, dark colors indicate low/moderate expression, and bright colors indicate moderate/high expression. Color plots represent binary log of FPKM plus one for each gene (Raw data in Supplementary Table S2).
Ionotropic receptors. A total of 61 IRs were identified across the three species of tortricids (Supplementary Data S1). For *H. nubiferana*, 13 out of 23 contain complete ORFs. For *C. fagiglandana*, 13 of 19 present complete ORFs. In the case of *C. nigricana*, the number of complete ORFs is seven out of 19 predicted receptors. All three species contain orthologs for the putative IR co-receptors IR8a, IR25a and IR76b (Fig. 7).

Figure 4. Qualitative visualization of gene expression using antennal cDNA from RNA extracted from male antennae of *H. nubiferana*, *C. fagiglandana* and *C. nigricana*.

Figure 5. Maximum likelihood tree of candidate GRs of *H. nubiferana* (Hnub), *C. fagiglandana* (Cfag) and *C. nigricana* (Cnig), along with *C. pomonella* (Cpom) and *E. postvittana* (Epos). Putative carbon dioxide receptors are highlighted in red; putative sugar receptors are highlighted in purple; the rest are considered putative bitter receptors. Node support was assessed with 600 bootstrap replicates and values greater than 60% are shown.
Transcript abundance analysis showed that, similar to GRs, IR abundance levels were lower than those observed for ORs. For the green budworm moth, abundances ranged between 0.62 to 302.15, while for the beech moth the range was between 0.55 and 259.42 FPKM, and between 1.39 to 160.68 FPKM for the pea moth. In the three species the most highly abundant IRs corresponded to the putative IR co-receptors, followed by IR21a (Fig. 8; Supplementary Table S2).

Discussion

Prediction of chemosensory receptors through RNA-Seq has become a powerful and reliable methodology to unveil the genes involved in insect olfaction and gustation\(^\text{28,39–41}\). We have found a total of 83, 80 and 78 putative chemoreceptors for the green budworm moth \(Hedya\) \(nubiferana\), the beech moth \(Cydia\) \(fagiglandana\) and the pea moth \(C.\) \(nigricana\), respectively. This is the first report of the three main chemoreception gene families of these moths\(^\text{31,42–44}\).

Since the three species studied were field-collected with pheromone-baited traps, we analysed males only. A comparison of male and female antenna, along with larval tissues, will yield a more complete picture of the chemosensory gene sets of these species, as in a recent study of codling moth\(^\text{28}\). However, this does not undermine the validity of our approach of using only male antennae, especially considering that our assembled transcriptomes are qualitatively and quantitatively consistent with what has been observed in other species\(^\text{20,28,45}\).

In the three species studied, transcripts associated with mitochondrial and odorant binding proteins were the most abundant (Supplementary Figure S1), similar to what has been observed in the closest reported tortricid, codling moth, \(C.\) \(pomonella\)\(^\text{28}\).

We found 48 to 49 ORs in the species studied here, which compares to antennal transcriptomes of other tortricids, \(Grapholita\) \(molesta\) B., \(Planotortrix\) \(octo\) D., \(P\). \(excessana\) W., \(Ctenopseustis\) \(obliquana\) W., \(C.\) \(herana\) F. & R.\(^\text{21–23}\). It is likely that more receptors are yet to be found, since other tortricids such as \(Epiphyas\) \(postvitana\) and \(C.\) \(pomonella\) contain larger repertoires\(^\text{28,40}\).

Both phylogenetic and quantitative analysis confirmed that all three species possess receptors that cluster in the main pheromone receptor clade (Figs 1–4). We found six putative PRs in \(Hedya\), ten in \(C.\) \(fagiglandana\) and seven in \(C.\) \(nigricana\). Despite the fact that the PR-clade of lepidopterans is highly divergent\(^\text{46}\), it has been suggested that orthologs in closely related species might have a conserved ability to detect similar or the same pheromone components\(^\text{23}\).

The three species of our study use codlemone acetate as the main pheromone component, and the most highly expressed PR, which is expected to be tuned to the main pheromone\(^\text{47}\), is OR6 for the \(Cydia\) species. We have found that the corresponding ortholog in \(C.\) \(pomonella\), CpomOR6, is tuned to codlemone acetate\(^\text{48}\). Considering the overall similarity of the OR6 homologs in the \(Cydia\) species evaluated (>90%) and their relatively high expression values (Fig. 3), we therefore hypothesize that this is a conserved receptor. Whether HnubOR6 is also tuned to codlemone acetate or towards another pheromone component is yet to be determined. Although its sequence is similar to the CpomOR6 splice variants (87.7–90.6 sequence identity), its expression level does not support its role in detecting the main pheromone component. However, our predicted HnubOR6 does not contain its complete ORF, which decreases its detectability and therefore its proper abundance estimation.

Apart from the OR6 homologs, we also predict a conserved function of the OR1 homologs. CpomOR1 is the most highly expressed PR on male antenna of codling moth and hence predicted to be dedicated to codlemone detection\(^\text{25}\). In the case of the beech moth, we predict CfagOR1 as a putative receptor for codlemone for two reasons: first, because CfagOR1 is closely related to CpomOR1 (79.9% amino acid identity, clustering with a bootstrap support of 85%; Fig. 1), and second because codlemone acts as a synergist for the main pheromone...
component of this species. In the case of the green budworm moth, based on our phylogenetic analysis, we hypothesize a conserved ability to detect codlemone, through its receptor, HnubOR2.1, and to detect other codlemone isomers such as Z,E-codlemone with HnubOR2.2. Finally, for the pea moth, the receptors CnigOR1, 2 and 5 cluster together with CpomOR1, hence we hypothesize may detect other compounds such as codlemone and codlemone aldehyde, (E,E)-8,10-dodecadienal, since these compounds, although not required for attraction or synergism, attract males to field traps.

CpomOR3 has been shown to be tuned to pear ester, which is a codling moth kairomone, encoding host plant finding. HnubOR3 as well as CfagOR3 are close orthologs of CpomOR3 (64.1 and 84.2% amino acid identity, clustering with bootstrap support >99%). Since these two species are attracted to pear ester, HnubOR3 and CfagOR3 may accordingly also be tuned to pear ester or closely related chemicals. That OR3 is conserved in H. nubiferana (Tortricidae, Olethreutini), C. fagiglandana and C. pomonella (Tortricidae, Grapholitini), which are all associated with deciduous trees, but is lacking in C. nigricana (Tortricidae, Grapholitini), feeding on seeds of leguminous plants, seemingly corroborates a role in host finding. Pear ester has, however, only been found in apple and pear, which are hosts of C. pomonella and H. nubiferana, and its ecological significance in C. fagiglandana remains thus unclear.

In brief, our results point towards a putative conserved function of the receptors OR1 and OR6 for the species H. nubiferana, C. fagiglandana, C. nigricana and C. pomonella, for the detection of codlemone and codlemone acetate respectively. In addition, a conserved function of the OR3 homologs in H. nubiferana, C. fagiglandana and C. pomonella as a pear ester receptor is predicted. Molecular evolution estimates support these roles since purifying selection rather than positive selection appears to be the pattern of evolution of these receptors (Fig. 2). Considering Orco as a reference, it is clear that lower numbers of non-synonymous substitutions over synonymous substitutions are correlated to a conserved function, since Orco is the most highly conserved OR and its common function in insects as co-receptor is well established. Therefore, our results support a conserved function among the analyzed orthologs of Cpom PRs. Furthermore, taking into account the difficulty of finding evidence of positive selection by analyzing the entire length of the gene, we also performed a codon-by-codon analysis for each one of these selected orthologous receptors and found yet again no sign of positive selection (Supplementary Table S1), supporting the hypothesis of conserved functions.
Other putative PRs may be tuned to compounds with similar functional groups similar to the ones detected by the codling moth homologs they cluster with, especially considering the high bootstrap support values and high degree of similarity between receptors within these clades. In the case of *Hedya*, the other main pheromone components (Z)- and (E)-8-dodecenyl acetate are likely detected with the PRs HnubOR8.1 and HnubOR8.2. Abundance estimation of HnubOR8 suggests its importance in detection of at least one of the three main pheromone components of *Hedya*. Furthermore, Porcel et al. were able to achieve partial mating disruption of this species with dispensers containing (Z)-8-tetradecenyl acetate, which further indicates the importance of acetate-dedicated PRs in *Hedya*. For the beech moth, other putative PRs such as CfagOR2.1 and 2, OR4, OR5.1 and 2, based on the phylogenetic closeness to CpomOR1 are perhaps able to detect codlemone-related alcohols. Likewise other PRs closely related to CfagOR6 (OR7 and OR8) are hypothesized to be tuned to acetates, such as codlemone acetate isomers or minor acetates such as (Z)-8-dodecenyl acetate, which have shown behavioral and electrophysiological activity, respectively. Regarding the pea moth PRs, CnigOR7, 8 and 9 may possibly detect geometric isomers of codlemone acetate, E, Z, Z,E, and Z,Z, which are strong inhibitors of male attraction, playing a role in reproductive isolation. Strikingly high percentages of sequence similarity between codling moth PRs and homologs of the three species studied, in addition to the high bootstrap support in our phylogenetic analysis indicate putative conserved functions as acetate receptors for PRs phylogenetically close to CpomOR6. PRs detecting acetates are expected in tortricids, since attraction of males of these species is tightly controlled by species-specific ratios of acetates, rather than alcohols. Due to the lack of functional studies in corresponding codling moth homologs, we did not perform molecular evolution rate analyses of these PRs and suggest to functionally characterize them before further hypothesize about their function.

To what degree PRs of different species are specific and sensitive towards common pheromone components still needs to be investigated since it is known that this subclade of receptors is normally under relaxed constraint allowing them to mutate and acquire new species-specific functions. This has been shown in tortricid species from New Zealand. While *C. obliquana* possess a PR (OR7) dedicated to the detection of its pheromone (Z)-8-tetradecenyl acetate, the orthologous receptor in its sibling species *C. herana* is able to detect the same compound in addition to the compound (Z)-7-tetradecenyl acetate, although these compounds are not part of its pheromone blend. Similar results have been observed in heliothine moths, in which orthologous PRs of closely related species have shown overlapping responses towards common pheromone components in some cases and completely different specificity in others.

Generally it is considered that non-pheromonal ORs are far more conserved than PRs. Accordingly, 34 cases of close homology between the studied species were observed (Fig. 2). So far, functional characterization...
of non-pheromonal ORs in codling moth has yielded ligands for only CpomOR19. All three species in our study present a receptor orthologous to CpomOR19 and its amino acid sequence identity percentages range between 64.10% to 86.02%. Considering that conserved responsiveness was observed between C. pomonella and Spodoptera litura and B. OR19 homologs, even when their sequence identity was 58%, we predict that the orthologs in these tortricids are probably tuned to indanones or structurally-related compounds. Although the ecological relevance of those ligands is still unknown, this case exemplifies the potential of functional characterization as guidance for future studies with closely related species.

Regarding gustation, we provide the first GR repertoires of these three species (Figs 5 and 6). Receptors from the three species were spread among putative clades tuned to CO₂ (GR1, 2 and 3), sugars (GR4, 5 and 6) and bitter compounds (GR29, 30, 55, 58, 60, 68). The fact that we only included males and/or low expression might explain why we only found one single putative CO₂, GR in H. nubiferana and C. nigricana, since for most moths at least three GRs are expected. Only one single receptor was found for the “fructose” clade, CfgGR9. The relatively low number of GRs found in each species is expected since this family of receptors is much more abundant in other tissues such as tarsi and ovipositor. It is likely that by examining larvae and females, a larger repertoire of GRs will be identified, as in codling moth. Moth species, such as Bombyx mori L. and Plutella xylostella L., contain on average 69 GRs. However, the total number of GRs is seemingly related to the behavioral ecology of each species. A full GR repertoire of Helicoverpa armigera H., comprising 197 receptors has been reported. Xu et al., showed that this taxa presents an expansion of the bitter receptor family (180 GRs), which has putatively contributed to the habitat adaptation and wide distribution of this polyphagous species. Our study does not allow us to draw conclusions based only on antennal GRs. However, it appears that both Cydia species share more orthologous receptors and higher expression of GR6 than in Hedyia, which is probably related to phylogenetic closeness, rather than to their ecology. Further genomic approaches to unveil the full GR repertoires of these species might reveal differences related to their host range.

In the case of the IR gene family (Figs 7 and 8), the number of predicted antennal IRs range between 19 and 23, similar to what has been observed in C. pomonella and Manduca sexta L. However, it is likely that the total number of IRs per species might be higher. A genomic study in Heliconius butterflies has shown up to 31 IRs, demonstrating that lepidopterans might have larger sets of IR repertoires than expected. Abundance estimation has shown that, as observed in coding moth, in the three species studied the most highly expressed transcripts correspond to the putative IR co-receptors IR8a, IR25a and IR76b, in addition to IR21a, which along with IR25a, seems to be associated to the detection of small changes of temperature in D. melanogaster. Another IR conserved between species is IR41a.1, homologous to IR41a of Drosophila, which along with IR64a and IR76b are reportedly involved in amine sensing. Recently, it has been demonstrated that IRs 25a, 93a and 40a of Drosophila melagonaster are required for humidity sensing. In the studied tortricids we identified IR25a and IR93a homologs, but none for IR40a. However, it is difficult to speculate about putative functions of predicted IRs since most work on this family or receptors has been done in the fruit fly and an efficient in vivo system for heterologous expression of lepidopteran IRs is not yet at hand.

We have carried out a comprehensive analysis of antennal transcriptomes of males from three phylogenetically related species of the family Tortricidae. For the first time, we provide gene sets for putative chemosensory proteins, including pheromone associated proteins allowing us to hypothesize conserved functions based on what we have observed in the functional characterization of receptors of Cydia pomonella. Our results indicate that closely related species might conserve sets of PRs, allowing them to detect not only their main pheromone components but also similar pheromones, enabling species recognition and avoidance of interspecific mating attempts. In addition, homologous and divergent ORs, IRs and GRs provide insights into the ecology and phylogenetic development of these species. These results are also starting points for de-orphanization of receptors. This knowledge will greatly facilitate the further development of insect control with semiochemicals.

Methods

Insect collection and RNA extraction. Male adults of green budworm moth (H. nubiferana), beech moth (C. fagiglandana) and pea moth (C. nigricana) were field collected in traps containing synthetic pheromone blends. Traps with collected adults were taken to the laboratory and kept alive until antennal dissection.

Total RNA was extracted from the antenna of 100–150 individuals per species following Trizol-based extraction protocol and spin column purification with the RNeasy Mini Kit (Qiagen, Venlo, The Netherlands), as previously described. Total RNA was quantified with a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

RNA Sequencing. Total RNA extracted from each species was sent to the National Genomics Infrastructure sequencing facility (Uppsala, Sweden). RNA libraries for sequencing were prepared using TruSeq Stranded mRNA Sample prep kit with 96 dual indexes (Illumina, CA, USA) according with manufacturer’s recommended instructions with the following changes: the protocols were automated by using an Agilent NGS workstation (Agilent, CA, USA) with purification steps. Samples were clustered using cBot and sequenced on a HiSeq2500 (HiSeq Control Software 2.2.8/RTA 1.18.61) with a 2 × 126 setup in RapidHighOutput mode. Bcl to Fastq conversion was performed using bcl2Fastq v1.8.3 from the CASAVA software. Quality scale was Sanger/phred33/ Illumina 1.8 + .

For each species two fq files were produced, one containing all left-pair reads and another containing all right-pair reads. All sequence read files were deposited in our private project account on the UPPMAX server (Uppsala, Sweden).
Bioinformatic pipelines, phylogenetic analyses and gene annotation. Our methodology followed the protocols described in Walker et al. Briefly, previously produced .fq files were subjected to quality control and the reads in which the sequencing adapter information was present were removed. To do this, the software Trinity automatic version 0.32.8, checked and discarded from the 3′ terminal nucleotide and moving in the 5′ direction, each base having a PHRED score lower than 20 until a base with a PHRED score greater or equal to 20 was encountered. From each species, processed reads were then assembled, de novo, into one transcriptome using the software Trinity version r201471. The software cd-hit-est, version 4.5.4–2011–03–07, was used to identify and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences. The assembled transcriptomes were then queried with the most updated ORs, GRs and IRs sequences of and remove redundant sequences that share 98% or greater identity with other sequences.

Quantitative analyses of gene expression. To estimate the expression of detected transcripts in each species, the RSEM software package, version 1.2.12, was used, allowing measurement of transcript abundance estimates as fragments per kilobase of transcript per million mapped reads (FPKM). To classify the identity of the most highly expressed transcripts, the top 50 most expressed sequences were manually extracted from the assembled transcriptome of each species and a blastn query was performed for each one. To represent abundance estimation of each predicted receptor, heatmap plots were produced as described in Walker et al. cDNA and expression via RT-PCR. To qualitatively corroborate the differences in transcript abundance estimated with RSEM for putative PRs of each species, cDNA was synthesized from the same samples of RNA (at 250 ng/μl) sent for sequencing. To produce cDNA, 3.5 μg of antennal RNA of each species was used as input, using the RevertAid H Minus First Strand cDNA synthesis kit (Life Technologies, CA, USA) according to manufacturers recommendations. RT-PCR assays were performed with 1 μl of cDNA, 0.25 μl Dream Taq Polymerase (Life Technologies, CA, USA), 2.5 μl of Dream Taq Buffer, 0.5 μl of 10 mM dNTPs, 18.75 μl of deionized water and 1 μl of each of 10 mM gene specific forward and reverse primers (Supplementary Data S5). As negative control, no cDNA but 1 μl of deionized water was added. For all putative PRs of each species, PCRs were programmed as follows: Initialization 94 °C 2 min; Amplification 31 cycles of 94 °C 30 s, 55 °C 30 s, 72 °C; Final Extension 72 °C 10 min. PCR products were visualized on a 1.5% agarose gel after 1 hour of standard electrophoresis at 100 V and 15 min of staining with standard application Gel Red (Biotium Inc, CA, USA). For each gene, technical replicates were performed in duplicates to verify consistency of amplification.

References
1. Suh, E., Bohbot, J. D. & Zwiebel, L. J. Peripheral olfactory signaling in insects. *Curr. Op. Insect Sci.* 6, 86–92 (2014).
2. Benton, R. Multigene Family Evolution: Perspectives from Insect Chemoreceptors. *Trends Ecol. Evol.* 30, 590–600 (2015).
3. Depetris-Chauvin, A., Galagovsky, D. & Grosjean, Y. Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila. *Front. Ecol. Evol.* 3, 1 (2015).
4. Gaudry, Q., Nagel, K. I. & Wilson, R. I. Smelling on the fly: sensory cues and strategies for olfactory navigation in Drosophila. *Curr. Op. Neurobiol.* 22, 216–222 (2012).
5. Andersson, M. N., Löštödt, C. & Newcomb, R. D. Insect olfaction and the evolution of receptor tuning. *Front. Ecol. Evol* 3, 1–13 (2015).
6. Jeffers, G. S. Pheromone processing in Drosophila. *Curr. Op. Neurobiol.* 34, 149–157 (2015).
7. Auer, T. O. & Benton, R. Sexual circuitry in Drosophila. *Curr. Op. Neurobiol.* 38, 18–26 (2016).
8. Rogers, M. E., Krieger, J. & Vogt, R. G. Antennal SNMPs (sensory neuron membrane proteins) of lepidoptera define a unique family of invertebrate CD36-like proteins. *J. Neurosci.* 49, 47–61 (2001).
9. Pelosi, P., Zhou, J.-J., Ban, L. & Calvello, M. Soluble proteins in insect chemical communication. *CMLS* 63, 1658–1676 (2006).
10. Touflah, K. & Vosshall, L. B. Sensing odors and pheromones with chemosensory receptors. *Ann. Rev. Physiol.* 71, 307–332 (2009).
11. Silbering, A. F. et al. Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. *J. Neurosci.* 31, 13357–13375 (2011).
12. Rytz, R., Croset, V. & Benton, R. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. *Insect Biochem. Mol. Biol.* 43, 888–897 (2013).
13. Montell, C. A taste of the Drosophila gustatory receptors. *Curr. Op. Neurobiol*. 19, 345–353 (2009).
14. Carey, A. F., Wang, G., Su, C.-Y., Zwiebel, L. J. & Carlson, J. R. Odorant reception in the malaria mosquito *Anopheles gambiae*. *Nature* 464, 66–71 (2010).
15. Smadja, C. & Butlin, R. On the scent of speciation: the chemosensory system and its role in premating isolation. *Heredity* 102, 77–97 (2009).
16. Gonzalez, F., Witzgall, P. & Walker III, W. B. Protocol for heterologous expression of insect odorant receptors in Drosophila. *Front. Ecol. Evol*. 4, 24 (2016).
17. Montagné, N., De Fouchier, A., Newcomb, R. D. & Jacquin-Joly, E. Advances in the identification and characterization of olfactory receptors in insects, In Glatz, R. (ed.), *Progress in molecular biology and translational science*, Elsevier, The Netherlands pp. 55–80 (2015).
18. Regier, J. C. et al. A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. *PLoS One* 7, e55574 (2012).
19. Jordan, M. D. et al. Ordon receptor from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. *Chem. Senses* 34, 383–394 (2009).
20. Bengtsson, J. M. et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. *PLoS One* 7, e31620 (2012).
21. Li, G., Du, J., Li, Y. & Wu, J. Identification of Putative Olfactory Genes from the Oriental Fruit Moth *Grapholita molesta* via an Antennal Transcriptome Analysis. *PLoS One* 10, e0142193 (2015).
22. Steinwender, B., Thrimawithana, A. H., Crowhurst, R. N. & Newcomb, R. D. Pheromone receptor evolution in the cryptic leafroller species, *Chenopsectris obliqua* and *C. herana*. *J. Mol. Evol*. 80, 42–56 (2015).
23. Steinwender, B., Thrimawithana, A. H., Crowhurst, R. & Newcomb, R. D. Odorant Receptors of the New Zealand Endemic Leafroller Moth Species Planotortrix octo and *P. excisa*. *PLoS One* 11, e0152147 (2016).
24. Light, D. M. et al. A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, *Cydia pomonella* (L.). *Naturwiss.* 88, 333–338 (2001).
25. Knight, A., Hilton, R. & Light, D. Monitoring codling moth (Lepidoptera: Tortricidae) in apple with blends of ethyl (E, Z)-2, 4-decadienoate and codlemone. *Environ. Entomol.* 34, 598–603 (2005).
26. Bengtsson, I. et al. A predicted sex pheromone receptor of codling moth *Cydia pomonella* detects the plant volatile pea ext. *Front. Ecol. Evol*. 2, 33 (2014).
27. Trona, F. et al. Neural coding merges sex and habitat chemosensory signals in an insect herbivore. *Proc. R. Soc. London Biol. B*, 20130267 (2013).
28. Walker III, W. B., Gonzalez, F., Garczynski, S. F. & Witzgall, P. The chemosensory receptors of codling moth *Cydia pomonella*—expression in larvae and adults. *Sci. Rep.* 6 (2016).
29. Frerot, B., Prievers, E. & Gallois, M. A sex attractant for the green budworm moth, *Hyda nubiferana*. *Z. Naturforch.* 34, 1248–1252 (1979).
30. Roelofs, W. L. & Brown, R. L. Pheromones and evolutionary relationships of Tortricidae. *Anm. Rev. Ecol. System.* 13, 395–422 (1982).
31. Witzgall, P. et al. Sex pheromones and attractants in the Eucomsini and Grapholithini (Lepidoptera, Tortricidae). *Chemoecology* 7, 13–23 (1996).
32. Jósvai, J. K., Koczor, S. & Tóth, M. Traps baited with pear ester and acetic acid attract both sexes of Hedya nubiferana (Lepidoptera: Tortricidae). *Journal of Applied Entomology* 140, 81–90 (2016).
33. Witzgall, P., Stelinski, L., Gut, L. & Thomson, D. Coding moth management and chemical ecology. *Annu. Rev. Entomol.* 53, 503–522 (2008).
34. Suckling, D. & Brockerhoff, E. Invasion biology, ecology, and management of the light brown apple moth (Tortricidae). *Annu. Rev. Entomol.* 55, 285–306 (2010).
35. Knight, A. et al. Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, *Grapholita molesta* (Lepidoptera: Tortricidae). *Bull. Entomol. Res.* 105, 23–31 (2015).
36. Ramday, P. & Benton, R. Evolving olfactory systems on the fly. *Trends Gen.* 26, 307–316 (2010).
37. Jiang, X.-J. et al. Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related Helicoverpa species. *Insect Biochem. Mol. Biol.* 48, 63–74 (2014).
38. Arguello, J. R. et al. Extensive local adaptation within the chemosensory system following *Drosophila melanogaster*’s global expansion. *Nat. Commun.* 7 (2016).
39. Zhang, B. et al. Comparative transcriptome analysis of chemosensory genes in two sister leaf beetles provides insights into chemosensory speciation. *Insect Biochem. Mol. Biol.* 79, 108–118 (2016).
40. Corcoran, J. A., Jordan, M. D., Thrimawithana, A. H., Crowhurst, R. N. & Newcomb, R. D. The peripheral olfactory repertoire of the light brown apple moth, *Epiphyas postvittana*. *PLoS One* 10, e0128596 (2015).
41. Liu, N.-Y., Zhang, T., Ye, Z.-F., Li, F. & Dong, S.-L. Identification and Characterization of Candidate Chemosensory Gene Families from *Spodoptera exigua* Developmental Transcriptomes. *Int. J. Biol. Sci.* 11, 1036 (2015).
42. Porcel, M. et al. Mating disruption of *Splanota ovella* and other apple orchard tarticids using a multispecies reservoir dispenser. *Pest Man. Sci.* 71, 562–570 (2015).
43. Otter, C. d., Cristofaro, A., Voskamp, K. & Rotundo, G. Electrophysiological and behavioural responses of chestnut moths, *Cydia fagiella* and *C. splendana* (Lep., Tortricidae), to sex attractants and odours of host plants. *J. App. Entomol.* 413–421 (1996).
44. Thoming, G. & Norhi, H. R. Olfactory Cues from Different Plant Species in Host Selection by Female Pea Moths. *J. Agric. Food Chem.* 63, 2127–2136 (2015).
45. Jacquin-Joly, E. et al. Candidate chemosensory genes in female antennae of the noctuid moth *Spodoptera littoralis*. *Int J Biol Sci* 8, 1036–1050 (2012).
46. Zhang, D.-D. & Löfstedt, C. Moth pheromone receptors: gene sequences, function, and evolution. *Front. Ecol. Evol*. 3, 105 (2015).
47. Sun, M. et al. Identification and characterization of pheromone receptors and interplay between receptors and pheromone binding proteins in the diamondback moth, *Plutella xylostella*. *PLoS One* 8, e62998 (2013).
48. Cattaneo, A. et al. Candidate pheromone receptors of codling moth *Cydia pomonella* respond to pheromones and kairomones. *Sci Rep* 7, 41105. doi: 10.1038/srep41105.
49. Witzgall, P. et al. Pheromone communication channels in tortricid moths: lower specificity of alcohol vs. acetate geometric isomer blends. *Bull. Entomol. Res* 100, 225–230 (2010).
50. Greenway, A. Sex pheromone of the pea moth, *Cydia nigricana* (F.)(Lepidoptera: Olethreutidae). *J. Chem. Ecol.* 10, 973–982 (1984).
51. Witzgall, P., Bengtsson, M., Ueland, C. R. & Löföqvist, J. Attraction of pea moth *Cydia nigricana* (E.(Lepidoptera: Tortricidae) to female sex pheromone (E, E)-8, 10-dodecadien-1-yl acetate, is inhibited by geometric isomers E, Z, Z, and E, Z, Z. *J. Chem. Ecol.* 19, 1917–1928 (1993).
52. Schmidt, S. et al. Biological activity of ethyl (E, Z)-2, 4-decadienoate on different tortricid species: electrophysiological responses and field tests. *Environ. Entomol.* 36, 1025–1031 (2007).
53. Jones, Walton D. et al. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. *Curr. Biology* 15, 119–121 (2005).
54. Gonzalez, F. et al. A conserved odorant receptor detects the same 1-indanone analogs in a tortricid and a noctuid moth. *Front. Ecol. Evol*. 3, 131 (2015).
55. Wanner, K. & Robertson, H. The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Mol. Biol. 17, 621–629 (2008).
56. You, M. et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 45, 220–225 (2013).
57. Xu, W., Papanicolau, A., Zhang, H.-J. & Anderson, A. Expansion of a bitter taste receptor family in a polyphagous insect herbivore. Sci. Rep. 6 (2016).
58. Koenig, C. et al. A reference gene set for chemosensory receptor genes of Manduca sexta. Insect Biochem. Mol. Biol. 66, 51–63 (2015).
59. van Schooten, B., Jiggins, C. D., Briscoe, A. D. & Papa, R. Genome-wide analysis of ionotrophic receptors provides insight into their evolution in Heliconius butterflies. BMC genomics. 7, 1 (2016).
60. Chen, C. et al. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature 527, 516–520 (2015).
61. Ni, L. et al. The Ionotrophic Receptors IR21a and IR25a mediate cool sensing in Drosophila. eLife. doi: 10.1101/032540 (2015).
62. Ai, M. et al. Ionotopic glutamate receptors IR64a and IR68a form a functional odorant receptor complex in vivo in Drosophila. J. Neurosci. 33, 10741–10749 (2013).
63. Hussain, A. et al. Ionotopic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol. 14, e1002454 (2016).
64. Enjin, A. et al. Humidity Sensing in Drosophila. Curr. Biol. (2016).
65. Lundin, S., Stranneheim, H., Pettersson, E., Klevberg, D. & Lundeberg, J. Increased throughput by parallelization of library preparation for massive sequencing. PLoS One 5, e10029 (2010).
66. Borgström, E., Lundin, S. & Lundeberg, J. Large scale library generation for high throughput sequencing. PLoS One 6, e19119 (2011).
67. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. btu170 (2014).
68. Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotech. 29, 644 (2011).
69. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
70. Artino, P. et al. ExPaSy: SIB bioinformatics resource portal. Nucleic Acids Res. (2012).
71. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
72. Tamura, K. et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
73. Pamilo, P. & Bianchi, No. O. Evolution of the ZfX and ZfY genes: Rates and interdependence between the genes. Mol. Biol. Evol. 10, 271 (1993).
74. Sergei, L. et al. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).
75. Tamura K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
76. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 1 (2011).
77. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
78. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

Acknowledgements

We acknowledge support from Science for Life Laboratory, the National Genomics Infrastructure (NGI), and Uppmax for providing assistance in massive parallel sequencing and computational infrastructure. Financial support for this study comes from Carl Tryggers Stiftelse för Vetenskaplig Forskning, the Linnaeus initiative “Insect Chemical Ecology, Ethology and Evolution (IC-E3)”, Formas Dnr 2011 1370 and the SLU faculty of Landscape Architecture, Horticulture and Crop Production Sciences.

Author Contributions

F.G., W.B.W., P.W.: conceived and designed the experiments. F.G.: dissected tissues and prepared the RNA. W.B.W., F.G.: conducted gene annotations and bioinformatics analyses, analyzed the data and designed figures and tables. F.G.: prepared and submitted sequence files for NCBI deposit. W.B.W., F.G.: performed molecular biology experiments. P.W.: contributed material support. F.G., W.B.W. and P.W.: wrote the manuscript.

Additional Information

Accession codes: Transcriptome raw reads sequence data are available through the NCBI Sequence Read Archive (Accession Numbers: SRX1741573, SRX1957902 and SRX1940816). Chemosensory Receptor sequences identified are available through NCBI: Hedya nubiferana ORs (KY283585-KY283633), GRs (KY283551-KY283561) and IRs (KY283562-KY283584); Cydia fagiglandana ORs (KY283634-KY283682), GRs (KY283683-KY283694) and IRs (KY283695-KY283713); and C. nigricana ORs (KY283714-KY283761), GRs (KY283762-KY283772) and IRs (KY355445-KY325463). All coding protein sequences are available as part of the Supporting Materials.

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Gonzalez, F. et al. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues. Sci. Rep. 7, 41829; doi: 10.1038/srep41829 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017