BRIEF REPORT

Gastroesophageal manometry and 24-hour double pH monitoring in neonates with birth asphyxia

Mei Sun¹, Wei-Lin Wang², Wei Wang², De-Liang Wen¹, Hui Zhang¹ and Yu-Kun Han¹

¹Pediatric Department, ²Pediatric Surgery Department, Second Clinical College, China Medical University, Shenyang 110003, China
Project supported by the Research Fund of the Ministry of Health of China, No. 96-2-170 (1996)

Correspondence to: Dr. Mei Sun, Pediatric Department, Second Clinical College, China Medical University, Shenyang 110003, China. meis@ihw.com.cn
Telephone: +86-24-23893501 Ext. 6503. Fax: +86-24-23844734
Received 2001-01-08 Accepted 2001-06-20

Subject headings gastroesophageal reflux/physiopathology; asphyxia neonatorum/physiopathology; esophagus; stomach; hydrogen-ion concentration; manometry

Sun M, Wang WL, Wang W, Wen DL, Zhang H, Han YK. Gastroesophageal manometry and 24-hour double pH monitoring in neonates with birth asphyxia. *World J Gastroenterol, 2001;7(5): 695-697*

INTRODUCTION

Birth asphyxia may lead to disturbances of gastroenteric motility of newborn infants¹,². The change of gut pressure and reflux are the major manifestations of the motor disturbance³-⁹. To evaluate the effects of perinatal asphyxia on the gastroenteric motility, gastric and esophageal pressure and double pH were measured in a group of asphyxiated newborns. And, their pathophysiological and anatomical effects on gastroenteric function were discussed.

MATERIALS AND METHODS

Subjects

The neonates admitted to our neonatal intension care unit of the Second Affiliated Hospital, China Medical University from August 1995 to March 1996 were studied. The criterion for asphyxia: Apgar score at birth (1 min) ≤ 7, accompanied with hypoxia, acidosis and other organ damage caused by asphyxia¹⁰. The asphyxia group consisted of 35 asphyxia neonates with a mean age of 3.3 d, gestational age 40 wk, and mean body weight of 3189 g. In the asphyxia group, there were 7 infants with severe asphyxia (1 min Apgar score ≤ 3). The control group included 17 normal infants, who were admitted for intensive care. These infants showed no symptoms of gastroenteric, neurological and respiratory diseases, with a mean age of 5.2 d, mean gestation age of 39.6 wk, and mean body weight of 3371 g. Two groups were fed with same formula.

No prokinetic agent was administrated.

Gastric and esophageal manometry

Multiple channel physiological recorder (RMP-6018, Japan), TP-400 pressure transmitter and Au-601G automatic drawing device were used in this study. The manometry was performed after 3h fasting. By the fluid transformation and synchronous device, the pressure within the stomach, lower esophageal sphincter, body of esophagus and upper esophageal sphincter were measured respectively and the difference between LESP and gastric pressure was calculated. The distance between the nasal cavity and the LES was calculated as well.

Double pH monitoring technique

Crystal antimony double pH microelectrode (diameter 2.1 mm, type 90-0011, Synectics Medical, Sweden) was used in this study. Before each monitoring, pH calibration was performed. The esophageal electrode was introduced to 2 cm above LESP and the distal electrode was advanced 15 cm apart. The infants’ diet and activity were not limited during the test. The beginning and ending of each feeding, occurrence of vomiting and crying were written down. The pH signals were recorded during 24 h in a pocket pH meter. After that, the meter was connected with computer and the results were analyzed with a pH analysis software system (Esophogram 5.550 B3 improved edition, Gastrosoft Inc.).

Monitoring index

The indexes of acid gastroesophageal reflux (GER) (esophageal pH<4): acid reflux index (RI) (percentage of total time pH<4); number of reflux episodes; number of reflux episode >5 min; duration of longest episode pH<4 in minutes; total time of pH<4 in minutes; and clearance time (min/reflux). The indexes of alkaline duodenogastric reflux (gastric pH>4): gastric alkaline index (AI): percentage of total time pH>4; number of gastric alkaline episodes; number of gastric alkaline episode >5 min; duration of longest episode pH>4 in minutes; total time of pH>4 in minutes; and the area under pH>4 curve (pHxmin).

Statistics

The data were expressed as X±Sx. Inter-group comparison was performed with t test. The results were considered statistically significant if P value <0.05.

RESULTS

Esophageal and gastric pressure

The gastric pressure of the study group was higher than that of control group (Table 1). The LESP, difference between LESP and gastric pressure, esophageal body pressure and UESP were lower than those of control group, but the differences were not significant (P>0.05). The gastric pressure of severe asphyxia group was significantly lower than that of mild asphyxia group (P<0.01).

24-h esophageal pH monitoring

The GER parameters of asphyxia group were all higher than those of control group (Table 2). The parameters were also higher than the consulting pathological GER diagnosis standard for the age group of <12 mo, i.e. reflux index > 5%, number of reflux episodes >132, number of episodes over 5 min >1, duration of longest episode of pH<4 >13 minutes, the area under pH<4 curve >51. This pH analysis...
system recommended a Boix-Ochoa value reflecting infant acid gastroesophageal reflux and a value less than 11.99 was considered normal statistically[11]. In our current study, the asphyxia group had an average value of 37.1 whereas 6.4 in the control group.

24-h gastric pH monitoring

The difference in the parameters between the asphyxia and control groups was not statistically significant (P>0.05, Table 3) and with no sensible tendency.

Double pH monitoring in infants with asphyxia of different degree

The acid GER in mild asphyxia group was more severe than that in severe asphyxia group (Tables 2,3). The gastric alkaline parameter was not significantly different between the asphyxia groups of different degree.

Table 1 Esophageal and gastric pressure in asphyxia infants (kPa)

Group	n	Gastric pressure	LESP	LESP-gastric pressure	Esophageal pressure	UESP
Asphyxia	35	0.8±0.07	3.22±0.14	2.33±0.13	-0.33±0.05	2.38±0.13
Mild	28	0.99±0.06	3.32±0.15	2.31±0.14	-0.34±0.05	2.34±0.15
Severe	7	0.49±0.20	2.90±0.33	2.42±0.36	-0.30±0.09	2.55±0.31
Control	17	0.86±0.07	3.37±0.29	2.47±0.29	-0.38±0.06	2.45±0.22

P<0.01, vs mild asphyxia group.

Table 2 24-h esophageal pH monitoring in asphyxia (kase)

Group	n	Acid reflux index	Reflux episodes	Episode>5 min	Duration of longest episode pH<4	Total time pH<4	Area under pH<4 curve	Esoph. clear time
Asphyxia	35	7.1±1.3	137±24	5.9±1.1	24.9±8.0	157±32	187±62	0.95±0.12
Mild	28	8.7±1.5	167±28	7.3±1.3	30.3±9.8	192±37	230±76	1.00±0.12
Severe	7	0.8±0.4	19±9	0.9±0.7	3.4±1.3	19±3	17±9	0.76±0.36
Control	17	1.3±0.5	29±11	0.7±0.5	4.2±1.7	20±10	20±9	0.39±0.09

P<0.05, P<0.01, vs control; P<0.05, P<0.01, vs mild asphyxia.

Table 3 24-h pH monitoring of stomach in asphyxia (kase)

Group	n	Gastric index	Alkaline episodes	Episode>5 min	Duration of longest episode pH>4	Total time pH>4	Area under pH>4 curve
Asphyxia	35	21±6	111±17	10.1±1.7	24±3±59	554±79	113±202
Mild	28	23±7	124±20	10.3±1.8	234±58	558±83	110±188
Severe	7	15±13	56±24	9.3±5.3	281±196	539±230	125±723
Control	17	20±7	80±17	8.7±2.1	388±96	802±124	176±352

DISCUSSION

The pressure measurement of inside gut is a major index reflecting gastroenterol motility. LESP and UESP are important elements to resist GER[12]. Our results showed that gastric pressure in asphyxia group was higher than that of control, LESP, esophageal body pressure and UESP were all lower than those of control group. Though the differences were not significant, it does partly contribute the pathophysiological and anatomical bases for GER[13-16].

GER is a disorder of gastroenterol motility malfunction. Among many inspecting METHODS, continuous 24-h esophageal pH monitoring is regarded as “golden standard” to diagnose and manage GER[17-22]. This study introduced this technique to the digestive tract motility research of asphyxia newborn babies. The acid GER parameters derived from the same age) done by Vandenplas et al[23] with the same technique, which suggests that this method has good stability, reliability and repetition[24].

In children with impaired central nervous system, there is a tendency of more occurrence of GER[25-29]. This is associated with the long-term supine position, uncoordinated or lack swallow movement, impaired function of esophageal movement, abnormal motility of gastric sinus or pylorus duodenum, increased abdominal pressure caused by swallowing too much air, convulsion and effects of some medicine. It has been observed in animal that slight increase of intracranial pressure can cause obvious decrease of LESP[26-27]. Prenatal asphyxia can easily cause temperate or permanent injury of central nervous system, it should be noted that prenatal asphyxia may play an important role in the mechanism of GER.

GER is not all pathological, so it has no feature of all-or-no. There are large laps between physiological and pathological GER[30]. Normal physiological GER occurs when a baby is in a standing position, or in a state of wakening and post meal, whereas the pathological GER occurs when the baby is in supine position, or during sleep and before meal[31]. In our study, the GER in asphyxia patients obviously belong to the pathological GER no matter using Boix-Ochoa Index or other diagnostic standards. So these patients can easily suffer from reflux, vomiting even without feeding, and complications[32-38] such as problems of nutrition and respiratory system.

There is few research of alkaline GER in neonates[36-39]. It is generally regarded that esophageal pH>7 can be called alkaline GER. Because this value is near to the normal esophageal pH (5.0-6.8), the single esophageal pH monitoring can not give an accurate judgment about alkaline GER. But the gastroesophageal continuous double pH monitoring has resolved this problem[39]. It can help analyze the relevance of the changes of gastroesophageal pH and in the meantime it helps understand the pathological bases of the alkaline duodenal GER. However, the gastric alkaline parameter showed
nonsignificant difference between the asphyxia group and normal control, mild and severe asphyxia infants. Furthermore, there was no relevance with the esophageal alkaline reflux.

To our surprise, severe asphyxiated infants showed obviously decreased gastric pressure, slighter acid GER and lower gastric alkaline than that of their mild asphyxia cohort. Combining with the clinical symptoms of feeding difficulty, gastric retention, abdominal distension, and constipation in severe asphyxiated infants, this result suggested that after severe asphyxia, a phenomenon similar with “gastropa resis” in adults, developed in newborn infants due to the multiple factors such as inhibition of central nervous system[16,17] and ischemia-refilling injury.

REFERENCES
1 McCoy HH, Berseth CL. Perinatal asphyxia alters small intestinal motility in term infants. Pediatr Res, 1991;29:108(A)
2 Berseth CL, McCoy HH. Birth asphyxia alters neonatal intestinal motility in term neonates. Pediatrics, 1992;90:669-673
3 Dong M, Wang ZF, Ke MY. The esophageal pH monitoring and the effect of preload in premature infants with gastroesophageal reflux. Chin J Pediatr Gastroenterol, 1996;6(Suppl):1-46
4 Morris FH. Neonatal gastrointestinal motility and enteral feeding. Semin Perinatol, 1991;15:478-481
5 Morris FH, Moore M, Gibson T, West MS. Motility of the small intestine in preterm infants who later have necrotizing enterocolitis. J Pediatr, 1990;117:520-523
6 Berseth CL. Effect of early feeding on maturation of the preterm infant’s small intestine. J Pediatr, 1992;120:974-975
7 Berseth CL, Nordsyke CK. Manometry can predict feeding readiness in preterm infants. Gastroenterology, 1992;103:1523-1526
8 Berseth CL, Nordsyke CK, Valdes MG, Furlow BL, Go VLW. Responses of gastric enteral peptides and motor activity to milk and water feedings in preterm and term infants. Pediatr Res, 1992;31:587-590
9 Koenig WJ, Amarnath RP, Hench V, Berseth CL. Manometrics for preterm and term infants: a new tool for old questions. Pediatrics, 1995;95:203-206
10 Fan SZ. The diagnosis, management for asphyxia neonatorum and its organ injury. Xiuo jifii Jiyu Zazhi, 1995;1:67-72
11 Boix-Ochoa J, Lafuente JM, Gil-Vernet JM. Twenty four hour esophageal pH monitoring in gastroesophageal reflux. J Pediatr Surg, 1980;15:74-78
12 Dent J, Holloway RH, Toouli J, Dodd WS. Mechanisms of lower esophageal sphincter incompetence in patients with symptomatic gastroesophageal reflux. Gut, 1988;29:1020-1028
13 Merlin SL, Dodd WS, Hogan WJ, Arndorfer RC. Mechanisms of gastroesophageal reflux in children. J Pediatr, 1989;74:244-249
14 Kawahara H, Dent J, Davidson G. Mechanisms responsible for gastroesophageal reflux in children. Gastroenterology, 1997;113:399-408
15 Holloway RH, Dent J. Pathophysiology of gastroesophageal reflux. Lower esophageal sphincter dysfunction in gastroesophageal reflux disease. Gastroenterol Clin North Am, 1990;19:517-533
16 Jiang MZ, Shen J, Ou BY, Chen XX, Wang J, Sun MY, Ye RY, Hong WL. Mechanisms of gastroesophageal reflux in neonates. Zhonghua Erke Zazhi, 1997;35:420-423
17 Working Group of the European Society of Pediatric Gastroenterology and Nutrition (ESPGAN). A standardized protocol for the meth- odology of esophageal pH monitoring and interpretation of the data for the diagnosis of gastroesophageal reflux. J Pediatr Gastroenterol Nutr, 1992;14:476-471
18 Vandenplas Y, Derde MP, Piepsz A. Evaluation of reflux episodes during simultaneous esophageal pH monitoring and gastroesophageal reflux scintigraphy in children. J Pediatr Gastroenterol Nutr, 1992;14:256-260
19 Vandenplas Y. Esophageal pH monitoring: methodology, indication and interpretation. Eur J Pediatr Surg, 1991;1:67-72
20 Sutphen JL, Dillard VL. Effect of feeding volume on early postchelal gastroesophageal reflux in infants. J Pediatr Gastroenterol Nutr, 1988;7:185-188
21 Ariagno RL, Kikkert MA, Mirmiran M, Conrad C, Baldwin RB. Cisapride decreases gastroesophageal reflux in preterm infants. Pediatrics, 2001;107:E58
22 Zheng J, Li JY, Zhang Y, Wang W, Liu RX. The diagnostic value of gastric pH monitoring and gastric emptying rate for detecting gastroesophageal reflux. Tianjin Yi Chuan, 1999;27:210-212
23 Vandenplas Y, Sacre-Smits L, Comin R, Sacre S. 24-hour esophageal pH monitoring in 285 asymptomatic infants 0-15 months old. J Pediatr Gastroenterol Nutr, 1987;6:220-224
24 Vandenplas Y, Helven R, Goyvaerts H, Sacre S. Reproducibility of continuous 24 hour esophageal pH monitoring in infants and children. J Pediatr Surg, 1988;23:573-576
25 Masson RT, Harp S, Jackson RJ, Smith SD, Wagner CW. Delayed gastric emptying in neurologically impaired children with gastroesophageal reflux: the role of pyloroplasty. J Pediatr Surg, 1994;29:726-729
26 Halpern LM, Jolley SG, Johnson DG. Gastroesophageal reflux: a significant association with central nervous system disease in children. J Pediatr Surg, 1991;26:171-173
27 Sheyer E, Rothman E, Constantini S, Granot E. Gastroesophageal reflux in infants with hydrocephalus before and after ventriculoperitoneal shunt operation. Pediatr Neurosurg, 1998;29:138-141
28 Ross MN, Haase GM, Reiley TT, Meagher DP. The importance of acid reflux patterns in neurologically damaged children detected by four-channel esophageal pH monitoring. J Pediatr Surg, 1988;23:573-576
29 Pearl RH, Robie DK, Ein SH, Shandling B, Wesson DE, Superina R, McTagg art K, Garcia VF, O’morron JA, Filier RM. Complications of gastroesophageal reflux surgery in neurologically impaired versus neurologically normal children. J Pediatr Surg, 1990;25:1169-1173
30 Vandenplas Y, Goyvaerts H, Sacre S. 24-hour esophageal pH monitoring, as measured by 24-hour pH monitoring, in 509 healthy infants screened for risk of sudden infant death syndrome. Pediatrics, 1991;88:834-840
31 Vandenplas Y, Wolf DD, Deneyer M, Sacre S. Incidence of gastroesophageal reflux in sleep, awake, fasted and postprandial periods in asymptomatic and symptomatic infants. J Pediatric Gastroenterol Nutr, 1988;7:177-180
32 Chen PH, Chang MH, Hsu SC. Gastroesophageal reflux in children with chronic recurrent bronchopulmonary infection. J Pediatric Gastroenterol Nutr, 1991;13:16-22
33 Krishnamoorthy M, Mintz A, Liem T, Applebaum H. Diagnosis and treatment of respiratory symptoms of initially unsuspected gastroesophageal reflux in infants. Am J Pediatr Gastroenterol Nutr, 1994;60:783-785
34 Jiang MZ, Ye RY, Ou BY. 24 hour ambulatory esophageal pH monitoring of gastroesophageal reflux in children. Chin J Pediatr Gastroenterol Nutr, 1996;2(Suppl):122-123
35 Arad-Cohen N, Cohen A, Tiross E. The relationship between gastroesophageal reflux and apnea in infants. J Pediatr, 2000;137:321-326
36 Maltman RA, Newman KD, Parry R, Duffy LF, Randolph JG. Alkaline gastrolesophageal reflux in infants and children. J Pediatr Surg, 1991;26:986-991
37 Vandenplas Y, Loeb H. Alkaline gastroesophageal reflux in infancy. J Pediatric Gastroenterol Nutr, 1991;12:448-452
38 Moutarde O, Foucaud P, Vatier J, Dupont C, Navarro J. Duodenogastric reflux in children: measurement of phospholipids and trypsin in gastric content. J Pediatric Gastroenterol Nutr, 1990;10:327-334
39 Wang W, Ji S, Wang H, Wang W. 24-hour gastroesophageal reflux after esophageal pH monitoring of chemotherapy and alkalization in gastroesophageal reflux. J Pediatric Gastroenterol Nutr, 1987;5:132-136
40 Morris FH, Moore M, Weisbrod NW, West MS. Ontogenetic development of gastrointestinal motility: IV. duodenal contractions in preterm infants. Pediatrics, 1986;78:1106-1113
41 Ravelli AM. Diagnostic and therapeutic approach to vomiting and gastroesoparesis in Children with neurological and neuromuscular handicap. J Pediatric Gastroenterol Nutr, 1997;25(Suppl):34-36

Edited by Ma JY