Low Radioactivity Argon for Dark Matter and Rare Event Searches

Brianne R. Hackett, Ph.D.
for the DarkSide Collaboration
Postdoctoral Researcher
DarkSide-50

• located at Gran Sasso National Laboratory (LNGS)

• dual-phase Liquid Argon TPC
 ▪ contained within liquid scintillator veto (LSV)
 ▪ the LSV is contained within a Water Cherenkov detector

• TPC filled with 50kg of Argon
 ▪ first filled with atmospheric argon (data taking began in 2013) → P. Agnes et al. (DarkSide Collaboration) Phys Lett B. 743, 456, 2015.
 ▪ 2nd fill with argon sourced from underground (taking data with UAr since 2015) → P. Agnes et al. (DarkSide Collaboration). Phys. Rev. D 93, 081101(R), 2016. and P. Agnes et al. (DarkSide Collaboration) Phys Rev D 98, 102006, 2018.

for more information on DarkSide-50 see
P.Agnes talk: Latest Result from DarkSide-50 Experiment at LNGS (Wednesday, July 29)
DarkSide-50 Underground Argon

in the atmosphere: ^{39}Ar activity of 1 Bq/kg

DS-50 measured ^{39}Ar specific activity of 0.73 ± 0.10 mBq/kg

residual ^{39}Ar likely from air infiltration during extraction

(P. Agnes, et al. (DarkSide collaboration) Phys. Rev. D 93, 081101(R) (2016))
Experiments Requiring Low-Radioactivity Argon
("The Low-Radioactivity Underground Argon Workshop: A workshop synopsis" arXiv:1901.10108 (2019))

• DarkSide-20k and ARGO
 ▪ WIMP Dark Matter search
 ▪ Argon is primary WIMP target
 ▪ Argon related background: 39Ar decay
 ▪ Masses required:
 ✓ DarkSide-20k – 50 tons
 ✓ ARGO – 300-500 tons

• COHERENT
 ▪ Coherent elastic ν-nucleus scattering
 ▪ Argon is primary neutrino target
 ▪ Argon related background: 39Ar
 ▪ Masses required:
 ✓ SNS/COHERENT – 1 ton
 ✓ CAPTAIN-MILLS – 10 tons

• LEGEND
 ▪ Neutrinoless double beta decay
 ▪ Argon shield surrounding HPGe detectors
 ▪ Argon related background: 42K decay (42Ar daughter)
 ▪ Mass required:
 ✓ 6(10 tons)

• DUNE
 ▪ Low-energy neutrino program
 ▪ Argon is primary neutrino target
 ▪ Ar related backgrounds: 42Ar, 39Ar, and 42K
 ▪ Mass potentially needed:
 ✓ 17 ktons/module

slide from Henning Back at LRT 2019
DarkSide-20k

• the next generation in the DarkSide program

• will be located at Gran Sasso National Laboratory (LNGS)

• dual-phase Liquid Argon TPC

• will require 50ton of Underground Argon

for more information on DarkSide-20k see
L. Rignanese talk: DarkSide-20k and the Direct Dark Matter Search with Liquid Argon (Tuesday, July 28)
\[^{39}\text{Ar}}\text{ Production}\]

- in the atmosphere: \(^{39}\text{Ar}\) produced from cosmic ray interactions primarily from \(^{40}\text{Ar}\)

- \(^{39}\text{Ar}\) activity in atmosphere: 1Bq/kg – represents large background for Dark Matter Experiments

- underground \(^{39}\text{Ar}\) produced from neutron interactions with \(^{39}\text{K}\)

Reaction	Estimated \(^{39}\text{Ar}\) Production rate [atoms/kg/day]	Fraction of total AAr [%]
\(^{40}\text{Ar}(n, 2n)^{39}\text{Ar} + \) \(^{40}\text{Ar}(n, \alpha)^{39}\text{Cl}\)	\(759 \pm 122\)	72.3
\(^{40}\text{Ar}(\gamma, n)^{39}\text{Cl}\)	\(172 \pm 19\)	16.4
\(^{40}\text{Ar}(\gamma, n)^{39}\text{Ar}\)	\(89 \pm 19\)	8.5
\(^{40}\text{Ar}(\gamma, p)^{39}\text{Cl}\)	\(23.8 \pm 8.7\)	2.3
\(^{40}\text{Ar}(p, 2p)^{39}\text{Cl}\)	<0.1	<0.01
\(^{40}\text{Ar}(p, p^n)^{39}\text{Ar}\)	\(3.6 \pm 2.2\)	0.3
\(^{38}\text{Ar}(n, \gamma)^{39}\text{Ar}\)	\(<0.1 (\text{UAr})\)	-
Total	\(1048 \pm 126\)	100

\[(O. \ Šrámek, et al., Geochimica et Cosmochimica Acta 196 (2017) 370)\]

Saldanha et al. *Cosmogenic production of 39Ar and 37Ar in argon*. United States. doi:10.1103/PhysRevC.100.024608.
Where to find Underground Argon?

- 2009: location found for argon low in 39Ar
- Southwest Colorado CO$_2$ wells
- 400ppm Argon in CO$_2$
- this site is currently the only known/proven source for argon low in 39Ar (Where else can low-39Ar in argon be found?)

- for DS-50
 - UAr extracted at a plant in Colorado
 - shipped to Fermi National Accelerator Laboratory in Illinois, USA for purification
 - UAr production averaged 140g/day

but DS-20k and any future/planned argon experiments will need much more UAr and at a faster rate...

(S.M.V. Gilfillan, Geochim. et Cosmochim. Acta 72 (2008) 1174–1198)
From the wells to the detector

Step 1:
Extract argon from CO₂ wells with designated plant, **Urania**

Step 2:
Ship UAr to Sardinia, Italy for chemical purification, **Aria**

Step 3:
Ship purified UAr to **LNGS** for insertion into DS-20k

Quality Assurance:
small portion of UAr sent to **DArT** for ³⁹Ar measurement
(What is the ingrowth of ³⁹Ar during flight?)
Urania

- will be located next to the previous location in Colorado, USA
- will extract UAr from same source as DS-50
- extraction and chemical purification plant to be built by Polaris
- capable of extracting UAr at rate of 300 kg/day with 99.99% purity

Brianne R. Hackett, ICHEP, July 2020
Future Urania Location

photo courtesy of Henning Back
• cryogenic isotopic distillation plant
• being installed in a mine shaft at CarboSulcis, S.p.A. in Nuraxi-Figus (SU), Italy
• 350m tall distillation column
• designed to reduce ^{39}Ar isotopic fraction in UAr by factor 10 per pass
• production rate of several kg/day

paper forthcoming
Aria – for DS-20k

- UAr from Urania will arrive at Aria with 99.99% purity
- at the time scale needed for DS-20k, Aria will provide chemical purification
- will use for chemical purification at rate of 1000 kg/day
- argon recovery will be close to 100%

Marino Simeone, LRUUA workshop, 2018
DArT

- located at Canfranc Underground Laboratory, Spain
- housed within the 1 tonne ArDM experiment
- single-phase LAr detector with active volume ~1L
- setup capable of measuring UAr to AAr 39Ar depletion factors of the order of 1000 with 10% precision
- will be able to measure the 39Ar content not only for DS-20k, but for future argon experiments as well

C.E.Aalseth et al. “Design and construction of a new detector to measure ultra-low radioactive-isotope contamination in argon.” Journal of Instrumentation, Volume 15, February 2020.
Thank you