Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Hocher, B., H. Haumann, J. Rahnenführer, C. Reichetzeder, P. Kalk, T. Pfab, O. Tsuprykov, et al. 2016. "Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner." Epigenetics 11 (7): 539-552. doi:10.1080/15592294.2016.1184800. http://dx.doi.org/10.1080/15592294.2016.1184800.
Published Version	doi:10.1080/15592294.2016.1184800
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:27822218
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner

Berthold Hocher, Hannah Haumann, Jan Rahnenführer, Christoph Reichetzeder, Philipp Kalk, Thiemo Pfab, Oleg Tsyprykov, Stefan Winter, Ute Hofmann, Jian Li, Gerhard P. Püschel, Florian Lang, Detlef Schuppan, Matthias Schwaab, and Elke Schaeffeler

Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China;
Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany;
IFBL, Laboratoriumsmedizin Berlin GmbH, Berlin, Germany;
Department of Internal Medicine IV/Nephrology (UKBF), Charité Campus Benjamin Franklin, Berlin, Germany;
Center for Cardiovascular Research, Charité Campus Mitte, Berlin, Germany;
Diaverum Deutschland, Potsdam, Germany;
Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany;
University of Tübingen, Tübingen, Germany;
Institute of Physiology, University of Tübingen, Tübingen, Germany;
Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany;
Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA;
Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany;
Department of Pharmacy and Biochemistry, University Tübingen, Tübingen, Germany

ABSTRACT

Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring’s phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood.

Abbreviations: CML, carboxymethyllysine; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; IUGR, intrauterine growth retardation; LC-MS-MS, liquid chromatography tandem mass spectrometry; MeDIP, methylated DNA immunoprecipitation; miRNA, microRNA; wt, wild type.

Introduction

The ‘fetal origin’ hypothesis proposes that adulthood cardiovascular and metabolic diseases originate through adaptation of the fetus to environmental conditions in early life. It was proposed that an event in a critical early period of life leads to sustained alterations of organ structure and function in response to environmental factors. Such events may result in cardiovascular and metabolic diseases in later life. The classical event resulting in fetal programming is maternal undernutrition during pregnancy. This was first recognized in epidemiological studies and later confirmed in animal experiments. Meanwhile, several other mechanisms caused by environmental conditions in early life leading to lifelong functional and structural alterations have been described, including glucocorticoid exposure of the fetus due to 11β-hydroxysteroid dehydrogenase deficiency of the placenta or a high protein diet during pregnancy. Another mechanism responsible for programming events during intrauterine life might be related to maternal genes affecting the fetal phenotype independently of the fetal DNA-based genome. The first example is described for Drosophila wimp mutation, influencing the offspring’s lethal phenotype, even when the mutation...
is not inherited.8 Our group was the first to translate this to mammals/humans by demonstrating that genetic variation of a maternal gene most likely involved in the control of blood supply to the uterus was associated with a substantial reduction of offspring birth weight without being actually transmitted to the offspring.9,10 Other independent association studies in humans likewise suggest that certain maternal genes may affect the fetal phenotype even without transmission of that particular gene to the fetus.11,12 In other words, a gene of a human individual may influence the physiology of another subject without being present in this particular individual.13 Plausibly, interaction of one organism with the metabolism of another of the same species is seen in mammals mainly during pregnancy, where the placenta serves as interface between both individuals.13

To prove that maternal genes indeed can affect the offspring’s phenotype, as suggested by association studies (see above), we bred female heterozygous endothelial nitric oxide synthase (\textit{eNOS}) knockout mice with male wild type (wt) mice and compared their wild type offspring with offspring from wild type mice. We have chosen \textit{eNOS} knockout mice to test this hypothesis, because \textit{eNOS}—like the genetic variations analyzed in our initial association study in humans9,10—plays a pivotal role in the control of vascular and also placental function,14-17 and heterozygous \textit{eNOS} deficiency has been shown to create an unfavorable intrauterine environment influencing the vascular phenotype in offspring, independently of its genetic transmission.18 We reasoned that the resultant endothelial and vascular dysfunction could also impact central parameters of metabolism as reflected by fatty liver disease. An illustration of the underlying hypothesis of this study is provided in Fig. 1.

Results

\textbf{Phenotype of wt mice born to heterozygous eNOS knockout mothers and wt fathers}

First, we verified that offspring born to heterozygous \textit{eNOS} knockout (\textit{eNOS}+/−) mothers and wt fathers were wild type with respect to \textit{eNOS} expression. Gene and protein expression of \textit{eNOS} and inducible nitric oxide synthase (iNOS) in liver tissue were not altered in male and female wt animals born to \textit{eNOS}+/− mothers (Fig. 2 A, B; Supplementary Table S1).

\textbf{Birth Weight, Growth, and Organ Weight}

Male wt mice born to \textit{eNOS}+/− mothers and wt fathers had a significantly lower birth weight when compared to wt male mice born to wt mothers and wt fathers (1.27 ± 0.05 g vs. 1.47 ± 0.05 g, \textit{P} = 0.004), whereas birth weight of female offspring did not differ significantly [1.26 ± 0.05 g (wt father, \textit{eNOS}+/− mother) vs. 1.35 ± 0.04 g (wt father, wt mother); Supplementary Fig. S1].

Body weight of male offspring of wt fathers and heterozygous \textit{eNOS} knockout mothers remained significantly lower during the first days of life (Supplementary Fig. S2). Thereafter, no significant differences in body weight were noticed (Supplementary Fig. S3). At study end at week 24, male mice born to \textit{eNOS}+/− mothers and wt fathers had a significantly lower body weight when compared to male offspring born to wt mothers and fathers (Supplementary Table S2). Female offspring born to \textit{eNOS}+/− mothers and wt fathers showed significantly higher body weights than controls starting on day 12 after birth and remaining elevated throughout most of life thereafter (Supplementary Figs. S4 and S5, Supplementary Table S2). Heart weight was significantly higher in female offspring born to \textit{eNOS}+/− mothers and wt fathers compared to female wt offspring born to wt mothers and fathers (Supplementary Table S2). Relative lung and kidney weights did not differ significantly (Supplementary Table S2). Relative liver weight was not different in female offspring born to \textit{eNOS}+/− mothers and wt fathers as compared to the control group (Table 1).

\textbf{Blood pressure, heart rate, GFR, and fasting glucose}

Blood pressure and heart rate were similar in all groups. Moreover, glomerular filtration rate (GFR) at study end did not differ significantly between groups. Fasting glucose was numerically lower in wt mice born to heterozygous \textit{eNOS} knockout mothers. This effect was significant, however, only in week 21 (Supplementary Table S2).

\textbf{Characterization of the liver phenotype}

First we assessed the liver morphology. Diameter of liver lobules, liver glycogen concentration, and the connective tissue content were not affected by maternal \textit{eNOS} genotype (Table 1). However, fat content and density of lipid droplets were significantly higher in female wt mice born to \textit{eNOS}+/− mothers and wt fathers compared to wt mice born to wt mothers and wt fathers (\textit{P} < 0.001, see Table 1 and Fig. 3A-C). Examination of lipid droplet size showed a significant increase of droplets in female wt offspring of wt fathers and \textit{eNOS}+/− mothers, but a non-significant decrease in male animals (Fig. 3D, E). The mean area of lipid droplets in these animals was 5.2 \textmu m2, and 5.6% of droplets were bigger than 25 \textmu m2. These numbers were significantly lower in wt female offspring from wt fathers and wt mothers, with 2.1 \textmu m2 and 0.6%, respectively. None of the groups showed any significant lobular inflammation or an increase in the number of CD68-positive cells (macrophages) (Table 1).

To extend characterization of the liver phenotype, selected marker proteins related to oxidative stress and hyperglycemia were analyzed by Western blot. Female but not male wt offspring with \textit{eNOS}+/− mothers and wt fathers had a significantly higher hepatic amount of carboxymethyllysine (CML) (\textit{P} < 0.01, Fig. 4A). Nitrotyrosine-modified proteins were enhanced in female offspring from \textit{eNOS}+/− mother, but failed to attain statistical significance (Fig. 4B).

Moreover, selected substrates of glucose metabolism were analyzed in liver tissue by quantitative LC-MS-MS technology. Fumarate concentration was reduced in male but not female wt offspring born to \textit{eNOS}+/− mothers and wt fathers. Male offspring showed significantly lower concentrations of glucose 6-phosphate and fructose 6-phosphate, whereas hepatic fructose 1,6-bisphosphate content was reduced in female mice (Fig. 4 C-F, Supplementary Table S3). Analysis of liver amino acid concentrations revealed that male but not female wt offspring born to \textit{eNOS}+/− mothers and wt fathers had
significantly lower concentration of several, mainly essential amino acids when compared to offspring born to wt mothers and wt fathers (Table 2).

Mechanisms of phenotypic alteration in wt mice born to eNOS^{−/−} mothers

Characterization of the mouse transcriptome

Genome-wide microarray analyses were performed for pooled liver RNA samples of randomly selected mice (n = 30). This approach was complemented by independent RT-PCR based investigation of mRNA transcripts and miRNAs using samples of the total mouse cohort.

Microarray analysis revealed 11,628 and 12,047 genes differentially expressed between male and female offspring of eNOS^{−/−} and wt mothers, respectively (Fig. 5 A, B). Six genes showed P-values < 0.001 in our analyses. Of these, 5 genes (Amy2a5, Clps, Cpa1, Ctrlb, and 2210010C04 Riken cDNA/trypsinogen 7) showed higher expression in female offspring from eNOS^{−/−} mothers and wt fathers than in female
offspring from wt mothers and wt fathers, with fold changes (FC) ranging from 2.54 to 4. In addition, Csad showed lower expression (FC = 0.4) in male offspring from eNOS+/− mothers and wt fathers than in male offspring from wt mothers and wt fathers. Next, we performed gene set enrichment analyses (GSEA) based on Gene Ontology (GO; genontology.org) terms. Similar to the single gene analyses, more significantly enriched gene sets were detected for female compared to male offspring, where terms with permutation \(P \leq 0.0001 \) were only revealed for female mice (Supplementary Files 1 and 2). In particular, considering the biological process domain of GO the top enriched GO terms (Fig. 6C) in female (correlation coefficient \(= 0.520 \)) mice.

Liver fat ratio correlated significantly with Fitm1 expression (Fig. 6C) in female (correlation coefficient \(= 0.476 \)) mice. However, male, but not female, wt offspring from eNOS+/− mothers and wt fathers expressed significantly more miR-370 (\(P < 0.05 \), Fig. 7A,B) when compared to wt offspring born to wt mothers and wt fathers. Finally, we analyzed the expression levels of selected miRNA implicated in liver metabolism and obesity. For instance, miR-122 and miR-33 regulate hepatic lipid metabolism by influencing the expression of several genes implicated in fatty acid synthesis or oxidation.\(^{19}\) Male, but not female, wt offspring from eNOS+/− mothers and wt fathers expressed significantly more miR-370 (\(P < 0.05 \), Supplementary Table S5) in the total mouse cohort. These discrepancies were most likely

Table 1. Offspring liver weight, morphology, and glycogen content.

	Offspring of both sexes	Male offspring	Female offspring
	WT (F:WT; M:WT)	WT (F:WT; M: eNOS KO)	WT (F:WT; M:WT)
Absolute Liver Weight (g)	35-48	21-22	24-27
Relative Liver Weight (% of body weight)	1.19 ± 0.05	1.56 ± 0.05	4.11 ± 0.08
Lobular Dimension (mm)	4.31 ± 0.06	4.56 ± 0.07	4.32 ± 0.06
Connective Tissue Content (% area)	0.16 ± 0.02	0.07 ± 0.01	0.07 ± 0.0001
Glycogen (mg/g liver)	0.02 ± 0.001	0.12 ± 0.02	0.12 ± 0.02
Fat Content (% area)	14.09 ± 1.02	14.31 ± 1.46	14.93 ± 1.44
Lipid Droplet Density (droplets/mm²)	20.06 ± 2.06	1.85 ± 0.36	2.25 ± 0.37
	2701.0 ± 411.2	13.31 ± 1.46	14.93 ± 1.44
	5014.6 ± 732.9²	17.32 ± 1.83	15.67 ± 2.54
	2537.7 ± 779.2	12.23 ± 0.29	6.92 ± 1.18 +
	1699.3 ± 416.8	2537.7 ± 779.2	2850.8 ± 352.1
	864.1 ± 1.06	1699.3 ± 416.8	7777.3 ± 864.1 +
Number of CD68 Positive Immunocytes (score)	0.31 ± 0.13	0.29 ± 0.18	0.33 ± 0.21
	0.85 ± 0.10	0.57 ± 0.20	0.50 ± 0.19
	6.35 ± 0.14	0.86 ± 0.14	0.83 ± 0.17
	8.85 ± 0.13	0.86 ± 0.14	0.83 ± 0.18

F: Father, M: Mother, WT: wild type, eNOS KO: heterozygous eNOS knockout, \(S P < 0.05 \) vs. WT (F:WT;M:WT), \(P < 0.01 \) vs. WT (F:WT;M:WT), \(+ P < 0.001 \) vs. WT (F:WT;M:WT)
caused by gene expression outliers in single animals, distorting the signals in the pooled samples used for microarrays.

Characterization of epigenetic factors
To investigate if epigenetic mechanisms contributed to phenotypic differences, global DNA methylation levels were determined in liver tissue by LC-MS-MS analysis. Significantly higher content of 5-methylcytosine was found in female and male wt offspring born to eNOS C¡/mothers and wt fathers (Fig. 8A). Correlation of liver fat content with DNA methylation in female and male (Fig. 8B) wt offspring revealed a significant correlation in female mice (correlation coefficient D0.533), whereas in male mice there was no correlation (correlation coefficient D¡0.158). The expression of the Fitm1 gene correlated significantly with total liver DNA methylation in female (correlation coefficient D0.369) but not in male offspring (correlation coefficient D¡0.047) (Fig. 8C). Next, we performed specific DNA methylation of the candidate gene Fitm1 by MeDIP analysis. DNA methylation revealed significant lower methylation of Fitm1 gene exon 1 in female wt offspring of eNOS+¡/mother and wt father (P < 0.05, Fig. 9) compared to wt offspring born to wt mothers. Moreover, DNA methylation of a CpG island of another candidate gene (Cdkn1a) was significantly increased in female wt offspring from eNOS+¡/mothers (P < 0.01, Fig. 10).

Discussion
This study was designed to test the advanced fetal programming hypothesis (Fig. 1) stating that maternal genes may affect the fetal phenotype independently of transmission of the gene to the fetus.6-12 To test this hypothesis, we bred female heterozygous eNOS knockout mice with male wild type mice and compared the phenotype of their wild type offspring to the phenotype of offspring with wild type parents. We have chosen eNOS knockout mice to test this hypothesis because eNOS plays a pivotal role in placental function.14-17 The unfavorable intrauterine environment due to reduced maternal eNOS expression has been shown to induce endothelial dysfunction in the offspring, independently of genetic transmission.18 Therefore, we performed an initial screening to identify organs that are affected by the advanced fetal programming process. This analysis revealed that the liver is, in particular, affected by maternal heterozygous eNOS deficiency in female wild type offspring, whereas other organs, such as kidney and heart, seem to be less affected. In the next step, we performed a detailed analysis using morphological and biochemical techniques as well as liver
metabolomics to get a thorough understanding of the resulting liver phenotype and underlying molecular mechanisms.

Our study revealed that female offspring born to eNOS deficient female mice developed an increased absolute liver weight, liver fat accumulation, and reduced liver concentrations of fructose 1,6-bisphosphate and fumarate (Figs. 3 and 4). Male offspring born to eNOS deficient female mice had a reduced birth weight (Table 1). Liver concentrations of glucose 6-phosphate, fructose 6-phosphate, and fumarate were reduced (Fig. 4). The concentration of various amino acids (for example, tryptophan, valine, leucine, isoleucine, threonine, phenylalanine) was likewise reduced in the liver of male mice born to female eNOS deficient mice (Table 2). In contrast to female offspring, liver fat accumulation was not affected in male offspring (Fig. 3).

The amount of methylated cytosine as percentage of total cytosine was significantly increased in wild type offspring born to female heterozygous eNOS knockout mice (Fig. 8A). Total liver DNA methylation was significantly related to liver fat accumulation in female offspring—the main phenotypic finding in our study (Fig. 8B).

Nitric oxide (NO) is involved in the local regulation of vascular resistance, promotes angiogenesis, and is a potential regulator of placental steroid biosynthesis and glucose uptake.14 Therefore, deficiency of eNOS is related to the development of intrauterine growth retardation (IUGR).20 It may promote the development of hypoxia due to reduced uterine blood flow and placental oxygenation in pregnant mice, thereby restricting nutrient transport capacity and fetal growth.16-17 This

Figure 4. Effects of maternal eNOS deficiency on hepatic protein content and metabolomics in wt offspring. Hepatic content of (A) carboxymethyllysine (CML) and (B) nitrotyrosine (NT) modified proteins (relative expression) as well as (C) fumarate, (D) glucose 6-phosphate, (E) fructose 6-phosphate, and (F) fructose 1,6-bisphosphate concentration (nmol/mg protein) (empty bar, wt father / wt mother; gray bar, wt father / eNOS+/− mother; # P < 0.01 vs. wt father / wt mother; + P < 0.001 vs. wt father / wt mother).
Table 2. Amino acid concentration in offspring liver tissue.

	Offspring of both sexes	Male offspring	Female offspring
	WT (F:WT; M:WT)	WT (F:WT; MeNOS KO)	WT (F:WT; M:WT)
	WT (F:WT; M:WT)	WT (F:WT; MeNOS KO)	WT (F:WT; M:WT)
N	48-50	30-36	21-22
Alanine	38.26 ± 1.42	37.37 ± 1.70	35.89 ± 1.63
Glycine	19.97 ± 0.45	18.73 ± 0.63	20.12 ± 0.64
Urea	18.77 ± 0.64	18.23 ± 0.69	19.28 ± 1.05
Valine	3.50 ± 0.11	3.07 ± 0.12	3.62 ± 0.13
Leucine	4.24 ± 0.14	3.65 ± 0.19	4.57 ± 0.20
Isoleucine	1.90 ± 0.07	1.59 ± 0.07	2.02 ± 0.08
Proline	2.92 ± 0.16	2.70 ± 0.16	2.72 ± 0.15
Methionine	1.31 ± 0.04	1.14 ± 0.06	1.36 ± 0.07
Serine	4.89 ± 0.19	4.42 ± 0.20	5.00 ± 0.26
Threonine	3.11 ± 0.08	2.69 ± 0.13	3.31 ± 0.13
Phenylalanine	1.70 ± 0.05	1.45 ± 0.08	1.82 ± 0.09
Aspartic acid	3.16 ± 0.19	2.92 ± 0.11	2.97 ± 0.11
Cysteine	0.26 ± 0.01	0.25 ± 0.03	0.26 ± 0.01
Glutamic acid	8.63 ± 0.47	8.59 ± 0.51	8.13 ± 0.38
Lysine	7.16 ± 0.35	6.38 ± 0.38	6.96 ± 0.50
Glutamine	23.46 ± 1.16	20.16 ± 1.00	25.65 ± 1.40
Arginine	1.22 ± 0.06	1.25 ± 0.11	1.07 ± 0.06
Histidine	4.50 ± 0.13	3.78 ± 0.14	4.84 ± 0.17
Tyrosine	1.82 ± 0.05	1.60 ± 0.07	1.92 ± 0.08
Tryptophan	0.50 ± 0.01	0.41 ± 0.02	0.49 ± 0.01

Concentration of amino acids expressed as nmol/mg protein. F: Father, M: Mother, WT: Wild type, eNOS KO: heterozygous eNOS knockout. $^*P < 0.05$ vs. WT (F:WT;M:WT), $^{+}P < 0.01$ vs. WT (F:WT;M:WT), $^{+*}P < 0.001$ vs. WT (F:WT;M:WT).

Figure 5. Gene expression in wt offspring. Manhattan plots displaying P-values from differential expression analyses between offspring from wt mothers and wt fathers vs. offspring of eNOS$^{-/-}$ mothers and wt fathers. Analyses were conducted separately in (A) male and (B) female offspring. Genes with $P < 0.001$ are labeled.
hypothesis is supported by earlier studies showing that the unfavorable intrauterine environment due to diminished maternal eNOS expression can promote endothelial dysfunction in the offspring, independently of genetic transmission. Embryonic development is very sensitive to even moderate hypoxia. Hence, maternal heterozygous eNOS expression (A) male and (B) female wt offspring. (C) Correlation of hepatic Fitm1 gene expression and liver fat content (empty bar, wt father/wt mother; gray bar, wt father/eNOS+/- mother; $ P < 0.05$ vs. wt father/wt mother; $\# P < 0.01$ vs. wt father/wt mother; $+ P < 0.001$ vs. wt father/wt mother).
deficiency may be causal, because of the crucial role of eNOS in placental function, which may contribute to fetal tissue hypoxia similar to offspring of mice with complete lack of eNOS (eNOS−/− mice), which develop hypertension, and renal and cardiac dysfunction in adult life.

In view of the support with relatively hypoxygenated blood via the portal vein, the liver is particularly vulnerable during hypoxia, and fatty liver is a common complication, for instance, in obstructive sleep apnea. Decreased oxygen availability triggers the switch from mitochondrial oxidative phosphorylation to anaerobic glycolysis and affects lipid metabolism and accumulation, generally reducing oxygen consumption while maintaining ATP production. Continuous (even mild) placental hypoxia in heterozygous eNOS knockout mothers together with the alterations of placental hormone synthesis due to also mild NO deficiency may lead to epigenetic alterations in growing offspring and increases the sensibility of offspring to metabolic dysfunction in later life, such as the development of a phenotype similar to non-alcoholic fatty liver disease. These alterations of placental microcirculation together with the alteration of placental hormone synthesis might cause alterations in the activity of key enzymes involved in the regulation of DNA methylation. DNA methylation together with other epigenetic mechanisms is a key factor of organ development and differentiation in early life. Thus, any NO-related alterations of this tightly regulated differentiation process during early life might affect organ function in later life. However, it is unclear so far why the offspring liver seems to be particularly vulnerable to these NO effects in the placenta. Moreover, early postnatal mechanisms might play a role as well, since the offspring was not adopted by foster mothers; it is also possible that the observed effects could be due to the postnatal environment.

Figure 8. Global DNA methylation in wt offspring. Liver DNA methylation (in % of methylated to total cytosine residues) in (A) male and female wt offspring as well as correlation of liver DNA methylation with (B) liver fat content (in % of red oil positive area in liver tissue) and (C) hepatic *Fitm1* gene expression in female and male wt offspring (empty bar, wt father / wt mother; gray bar, wt father / *eNOS*+/− mother; $P < 0.05$ vs. wt father / wt mother; #: $P < 0.01$ vs. wt father / wt mother).
(amount or quality of the milk in the heterozygous eNOS knockout mice or way of nursing of heterozygous eNOS knockout mice). Moreover, maternal heterozygous eNOS deficiency might also affect the maturation of the genetically normal oocytes in the maternal ovary (Fig. 1).

We demonstrated differences in total and gene specific DNA methylation, hepatic fat accumulation and expression of distinct candidate genes of wild type offspring born to heterozygous eNOS knockout mothers and wild type fathers and a clear correlation of DNA methylation and hepatic fat accumulation in female offspring (Fig. 8B). Genes involved in hepatic lipid metabolism or mitochondrial activity do not contribute to the observed lipid accumulation in female offspring (Fig. 6B, Supplementary Table S1). Changes of lipid content may also be related to alteration in hepatic lipid accumulation, influx or export.25 Fat storage inducing transmembrane protein (FITM) 1 belongs to a recently identified family of proteins of the endoplasmic reticulum that induce lipid droplet accumulation, while it is not involved in triglyceride biosynthesis. FITM proteins are regulated by PPAR \(\alpha\) and \(\gamma\) and their upregulation leads to accumulation of lipid droplets.26 Fitm1 gene showed altered DNA methylation in the intragenic region of exon 1 in female wild type offspring from eNOSC/\textasciitilde mother, which is in line with the higher level of Fitm1 gene expression in these animals.
(Figs. 6B and 9). Brenet et al.27 showed that not only promoter methylation status, but also DNA methylation of intragenic regions, especially of the first exon, influences gene expression. Otherwise, there is no direct evidence that methylation of this genomic region influences Fitm1 gene expression. The positive correlation between Fitm1 gene expression and DNA methylation in female offspring suggests further effects of DNA methylation, with a possible indirect effect on repressor regions of the Fitm1 gene (Fig. 8B).

Liver Cdkn1a expression was also increased in the wild type offspring from female heterozygous eNOS knockout mice (Fig. 6B), a factor previously described to be upregulated in fatty liver.28,29 Bioinformatic analysis predicted Cdkn1a to be a future epigenetic biomarker for obesity, susceptible for early life changes in promoter methylation, through its implication in cell cycle progression and adipogenesis and the high abundance of CpG islands.30 We found differences in Cdkn1a DNA methylation, but further studies are needed to elucidate how CpG island methylation influences Cdkn1a gene expression.

The observed decrease in Srebflc expression could be due to compensatory regulation to avoid further hepatic fat accumulation. Similarly, Anavi et al.31 found that hepatic Srebflc expression in rats is reduced after infusion of a lipid emulsion.

We also analyzed the expression of miRNA related to lipid homeostasis, but the observed differences did not explain the hepatic phenotype in the offspring. In addition, other epigenetic mechanisms such as histone modification or further alterations in miRNA expression could be involved.34 Thus, epigenetic modifications of yet unknown genes might have caused the observed differences in gene expression.

Fetal programming is a multifactorial process, and minor differences in promoter methylation and expression of a large number of genes may significantly contribute to the observed outcome. This complex scenario and the limitations of current biomedical technologies explain—together with the above-described reasons—why it has been impossible to describe all epigenetic alterations induced by parental genetic or early life parental nutritional stimuli in detail.

Our observations support the advanced fetal programming hypothesis10,35 and propose a non-environmental mechanism of fetal programming driven by altered parental gene function. Maternal, and possibly also paternal, genes may influence the epigenome of maturing sperm, oocyte, and later embryo/fetus and alter the phenotype of the fetus in later life, independently of the fetal genome.35 This hypothesis has major implications: i) It breaks with the classical laws of inheritance. According to classical genetics the phenotype of wild type offspring born to wild type mothers or heterozygous eNOS knockout mice should be identical, but this was not the case. By contrast, our study showed that a parental gene affects the phenotype in the offspring without genetic transmission. ii) It suggests reassessing one of the most important tools currently used to understand gene function: murine transgenic or knockout animal models. Results of this study indicate that genetically manipulated animal models may not only reflect causality between a certain genetic alteration and a resulting phenotype. Altered gene function may additionally induce permanent epigenetic changes, thus impacting the offspring phenotype even without transmittance of the modified maternal or paternal gene.

Material and methods

Breeding protocol

The entire study protocol was approved by the animal welfare comity of the state of Berlin, Germany. We used the eNOS knockout mice36 of the C57BL/6J strain and their wild type (wt) littermate. The breeding procedure is described in Supplementary Fig. S6. Female wt mice were crossed with homozygous male eNOS knockout mice. The resulting female heterozygous eNOS knockout (eNOS^{+/−}) mice were then again crossed with wt male mice. Only wt offspring of this breeding procedure (F2 generation, see Supplementary Fig. S6) entered the study. These mice were compared to wt mice resulting from crossing wt male and wt female mice. Study design and experimental protocols were conducted according to the local institutional guidelines for the care and use of laboratory animals.

Study protocol

Male and female offspring were kept for 24 weeks and analyzed separately. Body weight, length, and abdominal diameter of the
F2 generation were measured daily until day 13; thereafter, body weight was measured daily until day 40 and weekly thereafter until week 20 of the experiment. Blood pressure was measured using the tail cuff method at week 24, as previously described.37 GFR was calculated from urine and plasma creatinine at week 23. Fasting glucose level was determined at study week 13 and 21.

Histology

Liver tissue was stained with hematoxylin eosin to determine lobular dimensions and the extent of lobular inflammation as described in supplementary methods. Red oil staining was done as described elsewhere.38 For further details see Supplementary methods.

Immunohistochemical staining

Liver sections were immunostained for CD68 protein as described in Supplementary material. The number of CD68-positive macrophages in the liver was quantified as described previously.39

Liver glycogen content

Hepatic glycogen content was determined using the amyloglucosidase method, as described previously.40 See Supplementary material for further details.

Western blotting

Immunoblotting of liver proteins was examined as previously described.37,41 For further details see Supplementary methods.

Determination of central carbon metabolites in liver tissue

Metabolite concentrations in liver tissue homogenate were determined by gas chromatography-mass spectrometry (GC-MS) analysis and liquid chromatography-tandem mass spectrometry (LC-MS-MS) as described previously42,43 with minor modifications. Detailed method was described in Supplementary material.

Quantitative real time PCR

Determination of gene expression level with quantitative real time PCR was performed as previously described.44 See Supplementary methods for further details.

MeDIP assay

Immunoprecipitation of methylated genomic DNA (MeDIP assay) was performed as described by Weber et al.45 with minor modifications. Briefly, liver DNA was sonicated and precipitated with antibody against 5-methylcytosine. The amount of methylated DNA was quantified with quantitative real time PCR, comparing the appearance of specific DNA sequence in the precipitated and input DNA. See Supplementary methods for further details.

Microarray gene expression analysis and GSEA

High quality RNA samples from the liver of 9 male and female offspring of wt fathers and wt mothers, as well as 6 male and female wt offspring from wt fathers and eNOS+/− knockout mothers were selected for gene expression profiling. Pooled samples consisting of 3 samples each were analyzed using Affymetrix GeneChip Mouse Gene ST 1.0 arrays (Affymetrix, Santa Clara, CA). Microarray data was pre-processed using the RMA (Robust Multichip average)46 algorithm in Expression Console 1.1 software (Affymetrix). Only genes with signal intensities \(>2^7 = 128\) on minimum 2 out of the 5 arrays with male/female mouse pools were further investigated. Differences in gene expression levels between male and female mice with wt or eNOS+/− mother were analyzed by package limma-3.8.237 of statistical software R-2.13.0 (www.r-project.org). A \(P\)-value < 0.05 was considered to indicate a significant difference. Manhattan plots were used to display \(P\)-values from limma analyses.

Based on the fold changes from limma analyses mentioned above GSEA of GO terms was performed by Bioconductor packageclusterProfiler2.4.248 (www.bioconductor.org) for female as well for male offspring. To be more precise, GSEA was conducted separately for each of the 3 GO domains (biological process, cellular component, and molecular function) using a minimal gene set size of 30 and 9999 permutations. To assign probe set IDs of the Affymetrix array to GO terms for GSEA, packagesclusterProfiler and mogen10sttranscriptcluster.db_8.4.0 were first applied to assign probe set IDs to Entrez IDs (www.ncbi.nlm.nih.gov/gene) and, thereby, to GO terms. If several probe set IDs were present for one Entrez ID, the result (fold change) of the probe set showing the smallest \(P\)-value in limma analysis was used as input for GSEA.

Quantification of total DNA methylation

Five-methyl-\(2^\prime\)-deoxycytidine content was determined by LC-MS-MS analysis (details see Supplementary Material). Briefly, genomic DNA samples were hydrolyzed by treatment with nuclease P1 and alkaline phosphatase. After hydrolysis, 2\(^{'\prime}\)-deoxycytidine and 5-methyl-\(2^\prime\)-deoxycytidine were measured by LC-MS-MS analysis using the respective stable isotope-labeled analogs \([^{15}\text{N}_3]\text{deoxycytidine}\) and 5-\([^{2}\text{H}_3]\text{methyl-deoxycytidine}\) as internal standards. DNA methylation status is given as percentage of 5-methyl-\(2^\prime\)-deoxycytidine content relative to total cytosine residues.

Statistics

Statistical analysis was performed using IBM SPSS statistics, version 19. All values are presented as mean ± SEM unless noticed differently. For all data Mann-Whitney-U test was performed and a \(P\)-value < 0.05 was considered to indicate a significant difference.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.
Acknowledgements
We gratefully acknowledge Monika Elbl, Andrea Jarmuth and Monika Seiler for excellent technical assistance.

Funding
This study was supported by the Deutsche Forschungsgemeinschaft to BH, the chinese National Natural Science Foundation of China (no. 81300557) to JL, and a grant of the Robert Bosch Foundation to MS, SW, UH and ES.

References
1. Barker DJP. The developmental origins of adult disease. J Am Coll Nutr 2004; 23:5885-95S; PMID:15640511; http://dx.doi.org/10.1080/07315724.2004.10719428
2. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008; 359:61-73; PMID:18596274; http://dx.doi.org/10.1056/NEJMra0708473
3. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998; 351:173-7; PMID:9449872; http://dx.doi.org/10.1016/S0140-6736(97)07244-9
4. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int 2001; 59:338-45; PMID:11135076; http://dx.doi.org/10.1046/j.1523-1755.2000.00484.x
5. Seckl JR, Cleasby M, Nyirenda MJ. Glucocorticoids, 11beta-hydroxysteroid dehydrogenase, and fetal programming. Kidney Int 2000; 57:1412-7; PMID:10760076; http://dx.doi.org/10.1046/j.1523-1755.2000.00984.x
6. Aufdenblatten M, Baumann M, Raio L, Dick B, Frey BM, Schneider H, Koster M, Persson P, Ariel I. Intrauterine growth restriction and shallower implantation of placental nitric oxide and pathogenesis of pre-eclampsia. Trends Mol Med 2007; 13:414-21; PMID:17370709; http://dx.doi.org/10.1016/j.molmed.2006.09.004
7. Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, Niu T, Wellemeyer C, Philbin SM. Inhibition of tumor necrosis factor-alpha and interleukin-10 by 11beta-hydroxysteroid dehydrogenase type 1. J Biol Chem 2009; 284:28493-8; PMID:19404165; http://dx.doi.org/10.1074/jbc.M904536200
8. Schissel B, Mylonas I, Hantschmann P, Kuhn C, Schulze S, Kunze S, Friese K, Esche U. Expression of endothelial NO synthase, inducible NO synthase, and estrogen receptors alpha and beta in placental tissue of normal, preclampsia, and intrauterine growth-restricted pregnancies. J Histochet Cytochem 2005; 53:1411-9; PMID:15983116; http://dx.doi.org/10.1093/jhc.gkc240
9. Kaland S, Whiteley KJ, Bainbridge SA, Qu D, Adamson SL. Endothelial NO synthase augments femoplacental blood flow, placental vascularization, and fetal growth in mice. Hypertension 2013; 61:259-66; PMID:23150513; http://dx.doi.org/10.1161/HYPERTENSIONAHA.A11.20196
10. Musso G, Cassader M, Olivetti C, Rosina F, Carbonne G, Gambino R. Association of obstructive sleep apnoea with the presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis. Obes Rev 2013; 14:417-31; PMID:23387384; http://dx.doi.org/10.1111/j.1467-789X.2009.00595.x
11. Goda N, Kanai M. Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 2012; 95:457-63; PMID:22535382; http://dx.doi.org/10.1007/s12185-012-1069-y
12. Thompson LP, Al-Hasan MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006; 290:R125-30; PMID:16675828; http://dx.doi.org/10.1152/ajpgi.00888.2005
13. Petry CJ, Ong KK, Dunger DB. Does the fetal genotype affect maternal physiology during pregnancy? Trends Mol Med 2007; 13:414-21; PMID:17909986; http://dx.doi.org/10.1016/j.molmed.2007.07.007
14. Vatish M, Randeva HS, Grammatopoulos DK. Hormonal regulation of placental nitric oxide and pathogenesis of pre-eclampsia. Trends Mol Med 2006; 12:223-33; PMID:16616640; http://dx.doi.org/10.1016/j.molmed.2006.03.003
15. Skarzynski G, Khamaisi M, Bursztyn M, Mekler J, Lan D, Evdokimov P, Ariel I. Intrauterine growth restriction and shallower implantation site in rats with maternal hyperinsulinemia are associated with altered NOS expression. Placenta 2009; 30:898-906; PMID:19709742; http://dx.doi.org/10.1016/j.placenta.2009.07.014
16. Kusinski LC, Stanley JL, Dilworth MR, Hirt CJ, Andersson IJ, Renshall LJ, Baker BC, Baker PN, Sibley CP, Wareing M, et al. ENOS knockout mouse as a model of fetal growth restriction with an impaired uterine artery function and placental transport phenotype. Am J Physiol Regul Integr Comp Physiol 2012; 303:R86-93; PMID:22525279; http://dx.doi.org/10.1152/ajpregu.00600.2011
17. Kulandavelu S, Whiteley KJ, Qu D, Mu J, Bainbridge SA, Adamson SL. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension 2012; 60:231-8; PMID:22615111; http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.187559
18. Costantine MM, Gulmiiyiah LM, Tamayo E, Hankins GDV, Saade GR, Longo M. Transgenerational effect of fetal programming on vascular phenotype and reactivity in endothelial nitric oxide synthase knockout mouse model. Am J Obstet Gynecol 2008; 199:250.e1-7; PMID:18771972; http://dx.doi.org/10.1016/j.ajog.2008.07.002
19. Moore KJ, Rayner KJ, Suarez Y, Fernandez-Hernando C. The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Ann Rev Nutr 2011; 31:49-63; PMID:21548778; http://dx.doi.org/10.1146/annurev-nutr-081810-080051
20. Schiessl B, Mylonas I, Hantschmann P, Kuhn C, Schulze S, Kunze S, Friese K, Esche U. Expression of endothelial NO synthase, inducible NO synthase, and estrogen receptors alpha and beta in placental tissue of normal, preclampsia, and intrauterine growth-restricted pregnancies. J Histochet Cytochem 2005; 53:1411-9; PMID:15983116; http://dx.doi.org/10.1093/jhc.gkc240
21. Kaland S, Whiteley KJ, Bainbridge SA, Qu D, Adamson SL. Endothelial NO synthase augments femoplacental blood flow, placental vascularization, and fetal growth in mice. Hypertension 2013; 61:259-66; PMID:23150513; http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.20196
22. Musso G, Cassader M, Olivetti C, Rosina F, Carbonne G, Gambino R. Association of obstructive sleep apnoea with the presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis. Obes Rev 2013; 14:417-31; PMID:23387384; http://dx.doi.org/10.1111/j.1467-789X.2009.00595.x
31. Anavi S, Ilan E, Tirosch O, Madar Z. Infusion of a lipid emulsion modulates AMPK and related proteins in rat liver, muscle, and adipose tissues. Obesity (Silver Spring) 2010; 18:1108-15; PMID:20057367; http://dx.doi.org/10.1038/oby.2009.489

32. Mischke M, Pruis MGM, Boekschoten MV, Groen AK, Fitri AR, van de Heijning BJM, Verkade HJ, Müller M, Plisch T, Steegenga WT. Maternal Western-style high fat diet induces sex-specific physiological and molecular changes in two-week-old mouse offspring. PLoS One 2013; 8:e78623; PMID:24223833; http://dx.doi.org/10.1371/journal.pone.0078623

33. Lillycrop KA, Rodford J, Garratt ES, Slater-Jefferies JL, Godfrey KM, Bieghs V, Rensen SS, Dejong CHC, Olde Damink SWM. Liver manipulation during liver surgery in humans is associated with hepatocellular damage and hepatic inflammation. Liver Int 2013; 33:633-41; PMID:24084284; http://dx.doi.org/10.1016/j.lhep.2013.07.015

34. Laker RC, Wlodek ME, Connelly JJ, Yan Z. Epigenetic origins of metabolic disease: The impact of the maternal condition to the offspring epigenome and later health consequences. Food Science and Human Wellness 2013; 2:1-11; PMID:NOT_FOUND; http://dx.doi.org/10.1016/j.fshw.2013.03.002

35. Hocher B. More than genes: the advanced fetal programming hypothesis. J Reprod Immunol 2014; 104:105-8; PMID:24721253; http://dx.doi.org/10.1016/j.jri.2014.03.001

36. Gödecke A, Decking UK, Ding Z, Hirchenhain J, Bidmon HJ, Gödecke S, Schrader J. Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res 1998; 82:186-94; PMID:9468189; http://dx.doi.org/10.1161/01.RES.82.2.186

37. Quaschning T, Voss F, Reille K, Kalk P, Vignon-Zellweger N, Courty C, Fief B, Scheurer J, Schröter J. Analysis of maternal high-lipid, high-fat diet or without folic acid supplementation during pregnancy alters the hepatic transcriptome in adult male rats. Br J Nutr 2010; 103:1711-9; PMID:20211039; http://dx.doi.org/10.1017/S0007114509993795

38. Lillency JM, LaRue R, Ashburn L. Supersaturated solutions of fat stains in dilute isopropanol. J Reprod Immunol 2014; 104-105:8-11; PMID:24721253; http://dx.doi.org/10.1016/j.jri.2014.03.001

39. Chaykovska L, von Websky K, Rahnenführer J, Alter M, Heden S, Fuchs H, Runge F, Klein T, Hocher B. Effects of DPP-4 inhibitors on the heart in a rat model of uremic cardiomyopathy. PLoS One 2011; 6:e27861; PMID:2125632; http://dx.doi.org/10.1371/journal.pone.0027861

40. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübel D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37:853-62; PMID:16007088; http://dx.doi.org/10.1038/ng1598

41. izarra RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31:e15; PMID:12582260; http://dx.doi.org/10.1093/nar/gng015

42. Smyth G. Linma: linear models for microarray data. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer; 2005.

43. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16:284-7; PMID:22455463; http://dx.doi.org/10.1089/omi.2011.0118

44. Chmeliková J, Jeseta M, Sedmiková M, Petř J, Tumová L, Kott T, Lipová P, Jilek F. Nitric oxide synthase isoforms and the effect of their inhibition on meiotic maturation of porcine oocytes. Zygote 2010; 18:235-44; PMID:19979902; http://dx.doi.org/10.1016/j.zygote.2010.02.004

45. Rosselli M, Keller PJ, Dubey RK. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 1998; 4:3-24; PMID:9622410; http://dx.doi.org/10.1093/humupd/4.1.3

46. Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 2015; 72:251-71; PMID:25280482; http://dx.doi.org/10.1007/s00018-014-1739-4

47. Szyf M. The early life environment and the epigenome. Biochim Biophys Acta 2009; 1790:788-85; PMID:19364482; http://dx.doi.org/10.1016/j.bbadis.2009.01.009

48. van den Broek MAJ, Shiri-Sverdlov R, Schreurs JWW, Bloemgen JG, Bieghs V, Rensen SS, Dejong CHC, Olde Damink SWM. Liver manipulation during liver surgery in humans is associated with hepatocellular damage and hepatic inflammation. Liver Int 2013; 33:633-40; PMID:23356550; http://dx.doi.org/10.1111/liv.12051

49. Bergmeyer (Hrsg). Methoden der enzymatischen Analyse. Weinheim/ Bergstr.: Verlag Chemie; 1962.

50. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R Core Team (2016).

51. Toyota M, Suzuki H. Epigenetic drivers of genetic alterations. Adv Genet 2010; 70:309-23; PMID:20920753; http://dx.doi.org/10.1016/ B978-0-12-380866-6.00011-3

52. Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature 1980; 287:560-1; PMID:6999365; http://dx.doi.org/10.1038/287560a0

53. Yu H-L, Dong S, Gao L-F, Li L, Xi Y-D, Ma W-W, Yuan L-H, Xiao R. Global DNA methylation was changed by a maternal high-lipid, high-fat diet during gestation and lactation in male adult mice liver. Br J Nutr 2015; 113:1032-9; PMID:25778733; http://dx.doi.org/10.1017/S0007114515000252

54. Gabory A, Attig L, Junien C. Developmental programming and epigenetics. Am J Clin Nutr 2011; 94:1943S-1952S; PMID:2204916; http://dx.doi.org/10.3945/ajcn.110.00927