Clinical Significance of Skin Autofluorescence in Elderly Patients With Long-Standing Persistent Atrial Fibrillation

Takashi Hitsumoto

Abstract

Background: Recent clinical studies have demonstrated the importance of skin autofluorescence as a cardiovascular risk factor. However, data regarding the relationship between skin autofluorescence and atrial fibrillation are limited. The aim of this study was to clarify the clinical significance of skin autofluorescence in elderly patients with long-standing persistent atrial fibrillation.

Methods: This cross-sectional study enrolled 112 elderly patients with long-standing persistent atrial fibrillation who were treated medically (46 men and 66 women; mean age, 81 ± 9 years). The association between skin autofluorescence and various clinical parameters was examined.

Results: Significant relationships were observed between skin autofluorescence and CHADS2 score (r = 0.53, P < 0.001), high-sensitivity cardiac troponin T level (r = 0.43, P < 0.001), reactive oxygen metabolite levels (r = 0.52, P < 0.001), and whole blood passage time (r = 0.45, P < 0.001). Furthermore, multiple regression analyses showed that these clinical parameters were independent variables when skin autofluorescence was used as a subordinate factor. Receiver-operating characteristic curve analysis indicated that the risk values of skin autofluorescence as a cardiovascular risk factor. How skin autofluorescence for high CHADS2 scores (≥ 2) or elevated high-sensitivity cardiac troponin T levels (> 0.014ng/mL) were 2.6 arbitrary units (AU) and 2.7 AU, respectively.

Conclusions: The findings of this study indicated that skin autofluorescence is significantly associated with other diseases such as ischemic stroke and heart failure [1]. In recent years, the prevalence of atrial fibrillation has increased because of a concomitant increase in life expectancy [2]. Treatment via an electrophysiologic catheter ablation procedure can be performed for selected patients with atrial fibrillation [3], which may achieve a complete cure in some. Catheter ablation is particularly useful in patients with paroxysmal atrial fibrillation, but less so in those with persistent atrial fibrillation [4, 5]. In addition, elderly patients with persistent atrial fibrillation are less likely to receive the procedure for various reasons such as duration of atrial fibrillation, symptoms, activities of daily practice, patient refusal, and limited procedural benefit.

Advanced glycation end products (AGEs) and receptors of AGEs play an important role in the pathophysiology of cardiovascular disease [6, 7]. Among the methods used to evaluate AGEs, skin autofluorescence is known to be a simple and reliable marker of AGEs in vivo, and recent clinical studies have indicated that skin autofluorescence is significantly associated with cardiovascular disease [8-10]. However, data regarding the relationship between skin autofluorescence and atrial fibrillation are limited. This cross-sectional study attempted to clarify the clinical significance of skin autofluorescence in elderly patients with long-standing persistent atrial fibrillation.

Materials and Methods

Patients

In this study, 112 elderly outpatients (age ≥ 65 years) with long-standing persistent atrial fibrillation who were being treated medically at the Hitsumoto Medical Clinic, Yamaguchi, Japan were enrolled between January 2017 and December 2018. Long-standing persistent atrial fibrillation (presence of atrial fibrillation for ≥1 year after initiation of rhythm control treatment) is defined by the 2010 Guidelines for the Management of Atrial Fibrillation of the European Society of Cardiology [11]. The patients included 46 (41%) men and 66 (59%) women. The mean patient age was 81 ± 9 years. The study was approved by the Institutional Review Board of the Hitsumoto Medical Clinic (approval number 2017-01) and was conducted in compliance with the Declaration of Helsinki. All patients provided informed consent.

Measurement of skin autofluorescence

Skin autofluorescence was measured using a commercial de-
Skin Autofluorescence and Atrial Fibrillation

Cardiol Res. 2019;10(3):181-187

Discussion

This study aimed to clarify the clinical significance of skin autofluorescence in elderly patients with long-standing persistent atrial fibrillation. The results showed an independent association between skin autofluorescence and CHADS2 score, whole blood passage time, hs-cTnT level, and d-ROMs test. In addition, the receiver-operating characteristic curve analysis indicated that the skin autofluorescence values associated with high CHADS2 scores and elevated hs-cTnT levels in this study population were > 2.6 AU and > 2.7 AU, respectively.

The CHADS2 score is a well-known predictor of ischemic stroke in patients with atrial fibrillation [15, 22]. Therefore, the
independent association between skin autofluorescence and the CHADS_2 score in this study suggests that increased skin autofluorescence is closely associated with ischemic stroke in elderly patients with long-standing persistent atrial fibrillation; consequently, treatment directed at decreasing AGEs may prevent ischemic stroke by improving blood rheology.

Recent clinical studies have shown the clinical importance of hs-cTnT levels as a prognostic factor in patients with atrial fibrillation [23, 33]. In addition, hs-cTnT is used as a biomarker to clinically evaluate the severity of myocardial injury. Hofmann et al found a significant relationship between AGE-modified cardiac tissue collagen and skin autofluorescence [34]. They also showed that the AGE level found at the volar side of the forearm seemed to reflect the degree of AGE accumulation in cardiomyocytes. In addition, basic science studies have indicated that AGEs cause impaired blood rheology by mechanisms such as leukocyte-endothelial interaction, activation of platelet aggregation, and increased levels of plasminogen activator inhibitor-1 [30-32]. Therefore, the independent association between skin autofluorescence and whole blood passage time in this study can be explained by hypothesizing that AGEs play an important role in impairing blood rheology in elderly patients with long-standing persistent atrial fibrillation; consequently, treatment directed at decreasing AGEs may prevent ischemic stroke by improving blood rheology.

Table 1. Patient Characteristics

Parameter	Value
n (male/female)	112 (46/66)
Age (years)	81 ± 9
Skin autofluorescence (AU)	2.8 ± 0.5
CHADS_2 score	3 ± 2
Body mass index (kg/m\^2)	22.6 ± 3.5
Current smoker, n (%)	14 (13)
Hypertension, n (%)	75 (67)
Systolic blood pressure (mm Hg)	131 ± 11
Diastolic blood pressure (mm Hg)	76 ± 9
Dyslipidemia, n (%)	76 (68)
Total cholesterol (mg/dL)	218 ± 41
LDL cholesterol (mg/dL)	137 ± 37
Triglyceride (mg/dL)	127 ± 66
HDL cholesterol (mg/dL)	55 ± 15
Diabetes mellitus, n (%)	30 (27)
Fasting blood glucose (mg/dL)	104 ± 32
Hemoglobin A_1c (%)	5.9 ± 0.6
IVSTd (mm)	9.7 ± 2.2
LVDd (mm)	51.5 ± 5.9
LVEF (%)	64.4 ± 12.2
LAD (mm)	46.9 ± 6.8
eGFR (mL/min/1.73m\^2 _)	51.8 ± 19.1
Log-BNP (pg/mL)	2.3 ± 0.4
Log-hs-cTnT (ng/mL)	-1.8 ± 0.4
d-ROMs test (U. CARR)	325 ± 82
WBPT (s)	59.5 ± 18.3
Medication	
RAS inhibitor, n (%)	61 (55)
β blocker, n (%)	23 (21)
Diuretics, n (%)	31 (28)
Statin, n (%)	35 (31)
Warfarin/DOAC, n (%)	33 (29)/79 (71)

Continuous values are mean ± SD. AU: arbitrary units; LDL: low-density lipoprotein; HDL: high-density lipoprotein; IVSTd: interventricular septal thickness at end-diastole; LVDd: left ventricular end-diastolic diameter; LVEF: left ventricular ejection fraction; LAD: left atrial dimension; eGFR: estimated glomerular filtration rate; BNP: brain natriuretic peptide; hs-cTnT: high sensitivity cardiac troponin T; d-ROMs: derivatives of reactive oxygen metabolites; WBPT: whole blood passage time; RAS: renin-angiotensin system; DOAC: direct oral anticoagulant.
shown a close association between AGEs or receptors of AGEs and oxidative stress in the heart and arterial vessels [24, 39, 40]. The results of this study also indicated that the d-ROMs test as an *in vivo* marker of oxidative stress is an important factor for skin autofluorescence. A previous study reported that increased activity of the renin-angiotensin system caused increased oxidative stress or AGE production, and the use of an angiotensin receptor blocker decreased both oxidative stress and receptors of AGEs [41]. This study showed a significantly negative association between angiotensin receptor blocker use and skin autofluorescence, even though angiotensin receptor blocker use was not selected in the multivariate model. Therefore, we have started to intervene by prescribing an angiotensin receptor blocker for patients with high skin autofluorescence; consequently, we expect a reduction in cardiovascular events, including ischemic stroke or heart failure, in elderly patients with long-standing persistent atrial fibrillation.

This study clarified the clinical usefulness of assessing skin autofluorescence to detect a high CHADS₂ score ≥ 2 or an elevated hs-cTnT level > 0.014 ng/mL, which are associated with cardiovascular events such as ischemic stroke, heart failure, and coronary artery disease in patients with atrial fibrillation according to previous reports. The receiver-operating characteristic curve analysis indicated that skin autofluorescence values > 2.6 AU and > 2.7 AU are the optimal cutoff points to identify a high CHADS₂ score and an elevated hs-cTnT level, respectively. Therefore, this study indicated that maintaining skin autofluorescence values ≤ 2.6 AU or ≤ 2.7 AU in elderly patients with long-standing persistent atrial fibrillation may decrease cardiovascular events. Genevieve et al performed a study regarding the association between skin autofluorescence and HbA1c levels in patients with diabetes mellitus, and reported that skin autofluorescence was significantly associated with the means of the last five and 10 HbA1c values [42]. In addition, Isami et al reported that lifestyle habits such as physical activity, nonsmoking, adequate sleep, low mental stress level, eating breakfast, and abstaining from sugary foods were independently associated with lower skin autofluorescence [43]. Therefore, it appears that long-term adequate blood glucose control and good lifestyle habits are important to maintain lower skin autofluorescence as early as possible.

Limitations

This study has several limitations. First, the various medical treatments may have affected the study results. Second, skin autofluorescence was measured in only Japanese patients; previous studies have indicated that skin autofluorescence varies according to race [44, 45]. Therefore, the cutoff values for skin autofluorescence found in this study may not apply to non-Japanese populations. Finally, the study design was a single-center cross-sectional study, and the sample size was relatively small. Additional prospective studies, including evaluations...
of interventional therapies, are required to clarify the clinical significance of skin autofluorescence in elderly patients with long-standing persistent atrial fibrillation.

Conclusions

In conclusion, the findings of this study showed that skin autofluorescence may be a prognostic factor in elderly patients with long-standing persistent atrial fibrillation. The risk value of skin autofluorescence was considered as 2.6 AU or 2.7 AU. Further prospective studies that include the evaluation of therapies are required to validate the results of this study.

Table 2. Relationship Between Skin Autofluorescence and Various Clinical Parameters

	r	P value
Sex (female = 0, male = 1)	-0.14	0.139
Body mass index	-0.13	0.183
Current smoker (no = 0, yes = 1)	0.24	0.009
Systolic blood pressure	0.02	0.852
Diastolic blood pressure	-0.03	0.732
Dyslipidemia (no = 0, yes = 1)	0.02	0.852
Total cholesterol	0.02	0.837
LDL cholesterol	0.01	0.924
Triglyceride	0.05	0.582
HDL cholesterol	-0.12	0.190
Fasting blood glucose	0.06	0.566
Hemoglobin A1c	0.24	0.012
IVSTd	0.02	0.861
LVDd	0.08	0.319
LVEF	0.11	0.251
LAD	0.19	0.051
eGFR	-0.37	< 0.001
Log-BNP	0.32	< 0.001
Log-hs-cTnT	0.43	< 0.001
d-ROMs test	0.52	< 0.001
WBPT	0.45	< 0.001
RAS inhibitor (no = 0, yes = 1)	-0.16	0.048
β blocker (no = 0, yes = 1)	0.14	0.137
Diuretics (no = 0, yes = 1)	0.18	0.062
Statin (no = 0, yes = 1)	0.09	0.351
Anticoagulant (warfarin = 0, DOAC = 1)	-0.04	0.965

r expressed correlation coefficient. LDL: low-density lipoprotein; HDL: high-density lipoprotein; IVSTd: interventricular septal thickness at end-diastole; LVDd: left ventricular end-diastolic diameter; LVEF: left ventricular ejection fraction; LAD: left atrial dimension; eGFR: estimated glomerular filtration rate; BNP: brain natriuretic peptide; hs-cTnT: high sensitivity cardiac troponin T; IVSTd: interventricular septal thickness at end-diastole; d-ROMs: derivatives of reactive oxygen metabolites; WBPT: whole blood passage time; RAS: renin-angiotensin system; DOAC: direct oral anticoagulant.

Table 3. Multiple Regression Analysis for Skin Autofluorescence

Explanatory factor	β	P value
CHADS2 score	0.33	< 0.001
WBPT	0.25	0.002
d-ROMs test	0.21	0.019
Log-hs-cTnT	0.19	0.020

R² = 0.47. WBPT: whole blood passage time; d-ROMs: derivatives of reactive oxygen metabolites; hs-cTnT: high sensitivity cardiac troponin T; β: standardized regression coefficient; R²: coefficient of determination.

Figure 3. Receiver-operating characteristic curve analysis for the detection of high CHADS2 scores or elevated hs-cTnT levels based on skin autofluorescence. The maximum Youden’s index indicated that skin autofluorescence values > 2.6 AU and > 2.7 AU are the optimal cutoff points to identify high CHADS2 scores (≥ 2) or elevated hs-cTnT levels (> 0.014 ng/mL), respectively. (a) CHADS2 score. (b) hs-cTnT levels. AF: autofluorescence; AU: arbitrary unit; hs-cTnT: high-sensitivity cardiac troponin T; AUC: area under the curve.
Acknowledgments

The author is grateful to the individuals who participated in this study.

Financial Disclosure

None to declare.

Conflict of Interest

None to declare.

Informed Consent

All patients provided informed consent.

Author Contributions

The author was involved in preparing the study design as well as in the acquisition, analysis, and interpretation of data.

References

1. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113(5):359-364.
2. Akao M, Chun YH, Wada H, Esato M, Hashimoto T, Abe M, Hasegawa K, et al. Current status of clinical background of patients with atrial fibrillation in a community-based survey: the Fushimi AF Registry. J Cardiol. 2013;61(4):260-266.
3. Haissaguerre M, Jais P, Shah DC, Garrigue S, Takahashi A, Lavergne T, Hocini M, et al. Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation. 2000;101(12):1409-1417.
4. Tilz RR, Rillig A, Thum AM, Arya A, Wohlmuth P, Metzner A, Mathew S, et al. Catheter ablation of longstanding persistent atrial fibrillation: 5-year outcomes of the Hamburg Sequential Ablation Strategy. J Am Coll Cardiol. 2012;60(19):1921-1929.
5. Gaita F, Caponi D, Scaglione M, Montefusco A, Corleto A, Di Monte F, Coin D, et al. Long-term clinical results of 2 different ablation strategies in patients with paroxysmal and persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2008;1(4):269-275.
6. Yamagishi S, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced glycation end-products: a molecular target for vascular complications in diabetes. Mol Med. 2015;21(Suppl 1):S32-40.
7. Koike S, Yano S, Tanaka S, Sheikh AM, Nagai A, Sugi-moto T. Advanced glycation end-products induce apoptosis of vascular smooth muscle cells: a mechanism for vascular calcification. Int J Mol Sci. 2016;17(9):1567.
8. Schmidt AM. Skin autofluorescence, 5-year mortality, and cardiovascular events in peripheral arterial disease: all that glitters is surely not gold. Arterioscler Thromb Vasc Biol. 2014;34(4):697-699.
9. Furuya F, Shimura H, Takahashi K, Akiyama D, Motosugi A, Ikegishi Y, Haraguchi K, et al. Skin autofluorescence is a predictor of cardiovascular disease in chronic kidney disease patients. Ther Apher Dial. 2015;19(1):40-44.
10. Hitsumoto T. Clinical Significance of Skin Autofluorescence in Patients With Type 2 Diabetes Mellitus With Chronic Heart Failure. Cardiol Res. 2018;9(2):83-89.
11. Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, Van Gelder IC, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace. 2010;12(10):1360-1420.
12. Meerwaldt R, Hartog JW, Graaff R, Huisman RJ, Links TP, den Hollander NC, Thorpe SR, et al. Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical manifestation of diabetic neuropathy. J Am Soc Nephrol. 2005;16(12):3687-3693.
13. Masterson TD, Gilbert-Diamond D, Lansigan RK, Kim SJ, Schifferbein JE, Emond JA. Measurement of external food cue responsiveness in preschool-age children: Preliminary evidence for the use of the external food cue responsiveness scale. Appetite. 2019;139:119-126.
14. Meerwaldt R, Graaff R, Oomen PHN, Links TP, Jager JJ, Alderson NL, Thorpe SR, et al. Simple non-invasive assessment of advanced glycation end-product accumulation. Diabetologia. 2004;47(7):1324-1330.
15. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285(22):2864-2870.
16. Imai E, Horio M, Nitta K, Yamagata K, Iseki K, Hara S, Ura N, et al. Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. Clin Exp Nephrol. 2007;11(1):41-50.
17. Mingels A, Jacobs L, Michielsen E, Swaenengen J, Wodzig W, van Dieijen-Visser M. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem. 2009;55(1):101-108.
18. Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, Incandela L, Barsotti A, et al. A simple test to monitor oxidative stress. Int Angiol. 1999;18(2):127-130.
19. Kikuchi Y, Sato K, Mizuguchi Y. Modified cell-flow microscope in the behavior of blood cells. Microvasc Res. 1994;47(1):126-139.
20. Hitsumoto T. Clinical impact of hemorheology on subclinical myocardial injury in patients with hypertension. J Clin Med Res. 2018;10(12):928-935.
21. Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology. 2005;16(1):73-81.

22. Suzuki S, Yamashita T, Okumura K, Atarashi H, Akao M, Ogawa H, Inoue H. Incidence of ischemic stroke in Japanese patients with atrial fibrillation not receiving anticoagulation therapy—pooled analysis of the Shinken Database, J-RHYTHM Registry, and Fushimi AF Registry. Circ J. 2015;79(2):432-438.

23. Stoyanov KM, Giannitsis E, Biener M, Mueller-Hengsen M, Arens K, Katus HA, Vafaie M. Prognostic value of elevated high-sensitivity cardiac troponin T in patients admitted to an emergency department with atrial fibrillation. Europace. 2018;20(4):582-588.

24. Yamagishi S, Imaiizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des. 2005;11(18):2279-2299.

25. Chang JS, Wendt T, Qu W, Kong L, Zou YS, Schmidt AM, Yan SF. Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ Res. 2008;102(8):905-913.

26. Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1999;143(6):1699-1712.

27. Hitumoto T. Impact of Hemorheology Assessed by the Microchannel Method on Pulsatility Index of the Common Carotid Artery in Patients With Type 2 Diabetes Mellitus. J Clin Med Res. 2017;9(7):579-585.

28. Siostrozonek P, Koppensteiner R, Gossinger H, Zhangeneh M, Heinz G, Kreiner G, Stumpflofer A, et al. Hemodynamic and hemorheologic determinants of left atrial spontaneous echo contrast and thrombus formation in patients with idiopathic dilated cardiomyopathy. Am Heart J. 1993;125(2 Pt 1):430-434.

29. Leithauser B, Jung F, Park JW. Rheological and hemostasiological aspects of thrombus formation in the left atrial appendage in atrial fibrillation? A new strategy for prevention of cardioembolic stroke. Clin Hemorheol Microcirc. 2010;45(2-4):311-323.

30. Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, Remuzzi A, et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Invest. 1998;101(9):1905-1915.

31. Hasegawa Y, Suehiro A, Higasa S, Namba M, Kakishita E. Enhancing effect of advanced glycation end products on serotonin-induced platelet aggregation in patients with diabetes mellitus. Thromb Res. 2002;107(6):319-323.

32. Fishman SL, Sonmez H, Basman C, Singh V, Postsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018;24(1):59.

33. Hijazi Z, Siegbahn A, Andersson U, Lindahl B, Granger CB, Alexander JH, Atar D, et al. Comparison of cardiac troponins I and T measured with high-sensitivity methods for evaluation of prognosis in atrial fibrillation: an ARISTOTLE substudy. Clin Chem. 2015;61(2):368-378.

34. Hofmann B, Jacobs K, Navarrete Santos A, Wienke A, Silber RE, Simm A. Relationship between cardiac tissue glycination and skin autofluorescence in patients with coronary artery disease. Diabetes Metab. 2015;41(5):410-415.

35. Ma H, Li SY, Xu P, Babcock SA, Dolenek EK, Brownlee M, Li J, et al. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med. 2009;13(8B):1751-1764.

36. Buccigarelli LG, Ananthakrishnan R, Hawke YC, Kaneko M, Song F, Sell DR, Strauch C, et al. RAGE and modulation of ischemic injury in the diabetic myocardium. Diabetes. 2008;57(7):1941-1951.

37. Samman Tahhan A, Sandesara PB, Hayek SS, Alkhoder A, Chivukula K, Hammadah M, Mohamed-Kelli H, et al. Association between oxidative stress and atrial fibrillation. Heart Rhythm. 2017;14(12):1849-1855.

38. Korantzopoulos P, Letsas K, Fragakis N, Tse G, Liu T. Oxidative stress and atrial fibrillation: an update. Free Radic Res. 2018;52(11-12):1199-1209.

39. Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev. 2014;19(1):49-63.

40. Yu Y, Wang L, Delguste F, Durand A, Guibaud A, Rousselin C, Schmidt AM, et al. Advanced glycation endproducts receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway. Free Radic Biol Med. 2017;112:397-410.

41. Yamagishi S, Nakamura K, Matsui T. Potential utility of telmisartan, an angiotensin II type 1 receptor blocker with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity for the treatment of cardiometabolic disorders. Curr Mol Med. 2007;7(5):463-469.

42. Genevieve M, Vivot A, Gonzalez C, Raffaitin C, Barber-Gameau P, Gin H, Rigailleau V. Skin autofluorescence is associated with past glycemic control and complications in type 1 diabetes mellitus. Diabetes Metab. 2013;39(4):349-354.

43. Isami F, West BJ, Nakamura K, Matsui T. Potential utility of telmisartan, an angiotensin II type 1 receptor blocker with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity for the treatment of cardiometabolic disorders. Curr Mol Med. 2007;7(5):463-469.

44. Simon Klenovics K, Kollarova R, Hodosy J, Celec P, Sebekova K. Reference values of skin autofluorescence as a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1999;125(2 Pt 1):430-434.

45. Ahmad MS, Kimhofer T, Ahmad S, AlAma MN, Mosli HH, Hindawi SI, Mook-Kanamori DO, et al. Ethnicity and skin autofluorescence-based risk-engines for cardiovascular disease and diabetes mellitus. PLoS One. 2017;12(9):e0185175.