Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database

Daniel P. Brink 1 · Krithika Ravi 2 · Gunnar Lidén 2 · Marie F Gorwa-Grauslund 1

Abstract
Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings.

Keywords Lignin · Database · Aromatic metabolism · Catabolic pathways · Bioconversion · Ecological niche

Introduction
Lignin is one of the three main components in lignocellulosic biomass and the most abundant terrestrial aromatic macromolecule and is as such a potentially great source of renewable aromatic compounds (Holladay et al. 2007). It is found in the cell walls of lignocellulosic plants (Fig. 1), where it is intertwined with the other two main polymers (cellulose and hemicellulose), and confers structural strength, impermeability, and water transport in the cell wall (Ayyachamy et al. 2013). The main characteristic traits of the lignin macropolymer are its highly amorphous structure—caused by the high heterogeneity of its aromatic building blocks (in turn directly depending on the plant species) (Gellerstedt and Henriksson 2008; Lewis and Yamamoto 1990; Vanholme et al. 2010)—and its severe recalcitrance to chemical and microbial depolymerization (Ruiz-Dueñas and Martínez 2009). Various types of lignin streams (here called technical lignins) are produced in high amounts in the pulp and paper industry and are today primarily used to generate process steam and electricity by incineration (Li and Takkellapati 2018; Naqvi et al. 2012). These lignin streams are therefore a largely untapped resource for sustainable production of platform chemicals and have the potential to become a key feedstock in a future expanded biorefinery concepts (Beckham et al. 2016).

Microbial lignin degradation in nature has been studied for decades, with the scientific literature stretching back to at least the 1960s and studies on, e.g., Pseudomonas putida (Ornston and Stanier 1966). Due to the high diversity of the lignin heteropolymer, the microbial modes of lignin catabolism are also diverse (Bugg et al. 2011b; Durante-Rodríguez et al. 2018; Fuchs et al. 2011). Lignin degraders are typically bacteria and fungi: among the former, the species mostly belong to the Actinobacteria and Proteobacteria phyla (Bugg et al. 2011b; Tian et al. 2014); as for the fungi, the common degraders are of the white rot fungi, filamentous fungi, and yeast taxa (Durham et al. 1984; Guillén et al. 2005; Martins et al. 2015). Furthermore, the lignin recalcitrance often prevents one single species from fully degrading the lignin polymer, and instead a symbiosis where rot-type fungi and bacteria are
working together is needed to achieve a complete degradation (Cragg et al. 2015; de Boer et al. 2005), thus generating a specific niche (Fig. 1) that selects for a small set of microbial genera.

On the applied side, chemical depolymerization of natural or technical lignins is required to establish a biotechnological value chain from mono- or oligoaromatics. The lignin streams, e.g., from the pulp and paper industry, must be depolymerized.
to yield mono- and oligomeric aromatic compounds (Ragauskas et al. 2014; Zakzeski et al. 2010) that are then fed to suitable microbes (natural or engineered) for bioconversion into value-added products. However, most knowledge on the microbial side of this process comes from natural degraders, and little is currently known about microbial growth and utilization on the cocktail of aromatic compounds found in depolymerized technical lignin. Furthermore, although different lignocellulosic feedstocks (e.g., softwood, hardwood, agricultural residues) are known to contain different amounts and types of aromatic building blocks (Gellerstedt and Henriksen 2008; Ragauskas et al. 2014), it is very challenging to predict the chemical composition of the mixture resulting from a depolymerization process, especially for technical lignins (Abdelaziz et al. 2016). Consequently, it is difficult to a priori select a suitable microbial host until chemical analysis has been performed on the depolymerized (low molecular weight) lignin stream.

The literature on microbial lignin catabolism is vast and combines fundamental microbiology and applied studies that have in particular seen a surge in popularity during the last decade. However, there has been little effort yet to facilitate an overview of the large amount of publications in this field, especially regarding intracellular microbial events. For this reason, we have created a new database named The eLignin Microbial Database (www.elignindatabase.com) for collection of data from scientific literature on the catabolism of lignin and lignin-derived aromatic compound by microorganisms. The eLignin database was launched online in March 2017 and aims to bring together the bibliome of this field in one self-contained searchable platform, and thus fill a gap presently not covered by other online biological databases, as well as to demonstrate the high diversity of this microbial niche (Fig. 1). As the database primarily focuses on intracellular conversion steps, information on extracellular enzymes with lignolytic activities are currently not covered and the readers are redirected to, e.g., the following reviews (Janusz et al. 2017; Sigoillot et al. 2012).

The present minireview will introduce the design philosophy of the eLignin database and present our outcome of the diversity analysis with prime focus on intracellular microbial events. What sets this paper apart from other recent reviews discussing the diversity of microbial lignin degradation (Bugg et al. 2011a; Tian et al. 2014) is that we have been able to use the established content of the database (Table 1) to make pattern recognitions over the indexed publications in eLignin (for instance using relational SQL queries and Python scripts).

Scope and design of the eLignin database

The eLignin database was created because there is, to our knowledge, no currently available database dedicated to microbial lignin catabolism. A literature survey showed that there have been published databases on lignin biochemistry in the past, but they are, at the time of writing, all unavailable and/or discontinued: FOLy, a database on fungal oxidoreductases for lignin catabolism (Levasseur et al. 2008); LD²L, a database similar in scope as eLignin (Arumugam et al. 2014); and an NMR database for lignin structures (Ralph et al. 2004), with the latter not treating microbial catabolism. The objective of eLignin is to collect data on strains of microorganisms (bacteria, yeasts, and fungi) known to degrade and/or catabolize lignin and lignin-derived aromatic compounds. Specifically, the database content includes microorganisms, substrates, pathways, genes, metabolic reactions, and enzymes related to the topic (Table 1). So far, its prime focus has been on collecting data on microbial diversity and intracellular events; however, the database can later be expanded with extracellular enzymes and reactions (such as laccases and peroxidases), as these play an important role in microbial degradation of native lignin and can be applied for enzymatic depolymerization of technical lignins (Bourbonnais et al. 1995; Pardo et al. 2018; Zhao et al. 2016).

In practice, the data in eLignin is retrieved from scientific literature (peer-reviewed articles, reviews, and books), manually curated and supplemented with links to relevant entries in other well-established biological and chemical databases (e.g., GenBank (Benson et al. 2012), KEGG (Kanehisa and Goto 2000), PubChem (Kim et al. 2015), and ChEBI (Hastings et al. 2012)). The initial dataset was collected by performing a systematic literature review according to the Kitchenham protocol (Kitchenham 2004), where 561 articles (title, abstract, and keywords) were screened and analyzed for their inclusion in the database bibliome. Since the eLignin dataset originates from scientific literature, users are encouraged to read the primary references for any data of interest, since there will be aspects of the data that are not indexed or reviewed by eLignin (such as experimental conditions). Due to the nature of the data collection for eLignin (scientific publications), there will be some overlap with other biological databases such as MetaCyc (Caspi et al. 2015), GenBank (Benson et al. 2012), or UniProt (UniProtConsortium 2017), when it comes to information on pathways, genes, and enzymes. As we do not strive to master features that already established databases already do, eLignin entries are annotated with links to specialized databases where possible.

Two major entry points were considered for eLignin: a microorganism- and a substrate-oriented search (Fig. 2). This design choice was made in order to cater to what we foresee are the two most common information needs both in fundamental and applied lignin microbial conversion: (i) What substrates can my microbe of choice breakdown and/or utilize? (ii) What microorganism can I use to consume the lignin and lignin-derived aromatics in my substrate stream? Using these entry points, we will now describe the current
state of the bibliome and use eLignin content to map and discuss the presently known diversity of the lignin microbial niche.

The microbial diversity in the lignin niche, as reported in the eLignin bibliome

Lignocellulose degradation through cellulolytic activity has been found to be distributed in a wide range of genera within the Bacteria, Archaea, Fungi, and Animalia kingdoms (Cragg et al. 2015). However, the known lignin-degrading subset of lignocellulose degraders is so far limited to a few bacterial and fungal phyla (Janusz et al. 2017; Tian et al. 2014). Mineralization of the lignin requires two main steps: (1) breakdown of the lignin macromonomer to yield smaller aromatic compounds and (2) ring fission of the resulting aromatic compounds (Tuor et al. 1995). The first step is carried out by microbes able to secrete extracellular enzymes with lignolytic and/or lignin-modifying activities such as laccases and peroxidases—typically wood-decaying fungi and certain bacterial species (Bugg et al. 2011b; Janusz et al. 2017; Sigoillot et al. 2012) (Fig. 1). The resulting heterogeneous mixture of aromatic breakdown products is then metabolized by the

Table 1 Content of the eLignin database as of the time of writing

Entry	Count
Organisms	261 organisms (171 prokaryotes, 85 eukaryotes, 5 archaea)
Substrates	141
Metabolic pathways	26
Genes	90
Enzymes	59
Reactions	76
Total entries	653
References	330

Please note that these figures are subject to increase over time, as more data and references (both past and newly published scientific literature) are continuously added.

![Schematic overview of the eLignin database](image)

Fig. 2 Schematic overview of the eLignin database. The figure illustrates that eLignin is a microorganism- and substrate-focused database and that every entry type (organism, substrate, gene, enzyme, pathway, reaction) is accessible from each of these point-of-entries.
lignolytic secreters themselves or by other microorganisms in the vicinity capable of aromatic catabolism (Cragg et al. 2015). This leads to the establishment of a microbial niche that favors microbes with matching substrate specificity for the resulting aromatic compounds and with tolerance to the often inhibitory or toxic nature of the aromatics (Diaz et al. 2013; Krell et al. 2012; Schweigert et al. 2001). During catabolism, the aromatic breakdown products are typically shunted through a number of reactions that are collectively referred to as funneling pathways (Harwood and Parales 1996)—or sometimes upper pathways (Linger et al. 2014)—that eventually converge on a couple of conserved ring fission pathways where the aromatic rings are cleaved and the subsequent metabolites enter the central carbon metabolism (Fuchs et al. 2011). Because of these two main steps (depolymerization and ring fission), the lignin microbial niche can be said to contain two main groups of microbes: lignin macropolymer degraders and degraders of lignin-derived aromatic compounds (with the former often being capable of the latter (Nakamura et al. 2012)), from here on referred to as niche subgroups 1 and 2 (Fig. 1). The eLignin database aims to index both, and for the remainder of the minireview, the concept of the lignin microbial niche will be used to refer to all microbes that are capable of degrading lignin and lignin-derived aromatic compounds. Subgroup 2 is of importance for applied studies aiming to, e.g., valorize chemically depolymerized lignin, or to perform in situ bioremediation, and thus, an extra effort has been put on this group in the eLignin database.

Within the applied side of lignin bioconversion, a quick survey of the recent literature shows that a substantial amount of research articles focus on a few commonly used model organisms such as Pseudomonas putida (Linger et al. 2014), Sphingobium sp. (Masai et al. 1999), Rhodococcus jostii (Sainsbury et al. 2013), and Rhodococcus opacus (Kosa and Ragauskaus 2012). Reviews on microbial lignin degradation that often include large tables with important isolates (Abdelaziz et al. 2016; Bugg et al. 2011a; Tian et al. 2014) are seldom listing more than ~50 different microbes. Still, over 250 microorganisms with lignin and lignin-derived aromatic catabolic activity are currently mapped in the eLignin bibliography (Tables 1, 2, and 3), which indicates its usefulness for meta-analysis of the field.

The listed species in the current dataset of eLignin are distributed over 90 different genera, which in turn can be classified into six bacterial phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Spirochaetes) and two fungal phyla (Ascomycota and Basidiomycota) (see Tables 2 and 3). However, the majority of the microbes belong to five of the eight observed phyla: Proteobacteria (114 species/strains), Basidiomycota (58 species/strains), Actinobacteria (31 species/strains), Ascomycota (27 species/strains), and Firmicutes (22 species/strains) (Tables 2 and 3). Evidence of some aromatic-degrading archaea (of the kingdom of Euryarchaeota) is also beginning to emerge (Emerson et al. 1994; Erdogmus et al. 2013; Khemili-Talbi et al. 2015). Overall, the large occurrence of Proteobacteria is noteworthy, and the species of this phylum are indeed enriched in studies of isolates found from lignin-rich environments and selected on growth on lignin and aromatic compounds (Jimenez et al. 2002; Jurková and Wurst 1993; Kuhnigk and Konig 1997; Narbad and Gasson 1998; Overhage et al. 1999; Perestelo et al. 1996; Ravi et al. 2017). Likewise, when the same organisms were analyzed for their origin of isolation, it was clear that a majority originated from soil and from the forest ground layer (Table 4), which is probably the most expected ecosystem for the lignin microbial niche (Cragg et al. 2015; Harwood and Parales 1996) given the abundance of lignocellulose in different states of decay found in there.

The following subsections will discuss the outcome of the analysis of the database content in terms of fungal, bacterial, and archaeal diversity. Also, in order to complement the pure isolate approach of the database, the last subsection will discuss microbial communities.

Fungal diversity

The fungi listed in the database are either of the wood rot-type or yeasts. Wood-decaying, or wood-rot, fungi are found within the Basidiomycota and Ascomycota phyla and can be divided into three different types that all have lignin-modifying activities to various extent: soft-rot, brown-rot, and white-rot fungi (Hatakka 2005; Janusz et al. 2017). Soft-rot fungi tend to prefer hardwood and seem to only weakly affect lignin (Sigoillot et al. 2012), but a few species have been reported to exhibit white-rot–like activity toward the end of the wood decay (Pildain et al. 2005). Brown-rot fungi, which are mainly found in the Basidiomycota phylum, selectively attack hemicellulose and cellulose and leave a modified (e.g., dealkylated, demethoxylated, and/or demethylated) lignin signified by its brown color (hence the name of this group of wood degraders); they are primarily found in softwood ecosystems (Hatakka 2005; Sigoillot et al. 2012). Finally, white-rot fungi can degrade all three main components of lignocellulose, i.e., hemicellulose, cellulose, and lignin, and leave a decayed wood with a bleached color (Blanchette 1984; Eriksson et al. 1980; Sigoillot et al. 2012). White-rots are the only wood-decaying fungi that can completely degrade lignin to CO₂ and H₂O; however, it has been proposed that lignin cannot be used as the sole carbon source by white-rots; rather, the lignin degradation is probably a process that the fungi use to access the cellulose and hemicellulose (ten Have and Teunissen 2001). Like brown-rot fungi, white-rot fungi mostly belong to the Basidiomycota phylum and to a smaller extent to the Ascomycota (Sigoillot et al. 2012).
Table 2: Distribution of bacterial genera in the dataset of known degraders of lignin and/or lignin-derived aromatics index in the eLignin database

Genus (sorted by phylum)	Number of species in eLignin	References
Acidobacteria (Gram stain differs with species)		
Holophaga	1	Bak et al. (1992)
Actinobacteria (Gram-positive)		
Amycolatopsis	1	Sutherland (1986)
Arthrobacter	1	Kerr et al. (1983)
Corynebacterium	1	Qi et al. (2007)
Microbacterium	1	Song (2009), Taylor et al. (2012)
Micrococcus	1	Taylor et al. (2012)
Nocardia	2	Crawford et al. (1973), Kuhnigk and Konig (1997)
Pelobacter	1	Schink and Pfennig (1982)
Rhodococcus	11	Chong et al. (2018), Chung et al. (1994), Eulberg et al. (1997), Henson et al. (2018), Karlson et al. (1993), Kosa and Ragauskas (2012), Sainsbury et al. (2013), Song (2009), Taylor et al. (2012)
Streptomyces	10	Antai and Crawford (1981), Aoyama et al. (2014), Chow et al. (1999), Davis and Sello (2010), Giroux et al. (1988), Ishiyama et al. (2004), Kuhnigk and Konig (1997), Watanabe et al. (2003), Yang et al. (2012), Zeng et al. (2013)
Thermohifida	1	Chang et al. (2014)
Thermomonospora	1	McCarthy and Broda (1984)
Bacteroidetes (Gram-negative)		
Dysgonomonas	1	Duan et al. (2016b)
Sphingobacterium	1	Taylor et al. (2012)
Firmicutes (mostly Gram-positive)		
Acetoanaerobium	1	Duan et al. (2016a)
Acetobacterium	2	Bache and Pfennig (1981), Kaufmann et al. (1998)
Anearninbacillus	1	Raj et al. (2007)
Bacillus	10	Chandra et al. (2007), Huang et al. (2013), Kuhnigk and Konig (1997), Perestelo et al. (1989), Zhu et al. (2017)
Brevibacillus	2	Hoo da et al. (2015, 2018)
Clostridium	2	Daniel et al. (1988), Mechi chi et al. (1999)
Paenibacillus	3	Chandra et al. (2007), Crawford et al. (1979), Mathews et al. (2014)
Papillibacter	1	Defnou n et al. (2000)
Spirochaetes (Gram stain differs with species)		
Treponema	1	Lucey and Leadbetter (2014)
Proteobacteria (Gram-negative)		
Achromobacter	1	Benjamin et al. (2016)
Acinetobacter	7	Delneri et al. (1995), Fischer et al. (2008), González et al. (1993), Kuhnigk and Konig (1997), Maz zoli et al. (2007), Van Dexter and Boopathy (2018), Vasudevan and Mahadevan (1992)
Aeromonas	2	Deschamps et al. (1980), Gupta et al. (2001)
Agrobacterium	1	Parke (1997)
Alcaligenes	1	Kuhnigk and Konig (1997)
Aromatoleum	1	Rabus and Widdel (1995)
Azorarcus	1	Gorny et al. (1992)
Azotobacter	2	Hirose et al. (2013), Groseclose and Ribbons (1981)
Bradyrhizobium	1	Sudhachat et al. (2009)
Burkholderia	7	Hamzah and Al-Baharna (1994), Harazono et al. (2003), Kato et al. (1998), Kuhnigk and Konig (1997), Song (2009), Woo et al. (2014b), Yang et al. (2017)
Citrobacter	3	Chandra and Bharagava (2013), Harazono et al. (2003)
Both brown-rot and white-rot fungi invade the wood cell lumen by hyphal growth and secrete their lignocellolytic enzymes (Kirk and Farrell 1987; Leonowicz et al. 1999). The lignolytic mechanisms of white-rot fungi secretome have been thoroughly studied (Leonowicz et al. 1999; ten Have and Teunissen 2001). The known lignolytic enzymes (e.g., lignin peroxidases, manganese peroxidases, versatile peroxidases, and laccases (Janusz et al. 2017)) work by nonspecific oxidation, and although nucleophilic cleavage can be used for chemical depolymerization of lignin (e.g., in kraft pulping), the highly variable tertiary structure of lignin could explain why no nucleophilic lignolytic enzymes have been described (Hammel and Cullen 2008). The level and patterns of decay vary between different fungal species and the type of wood (Worrall et al. 1997) as well as the state of decay of the wood. Fukasawa and colleagues subjected beech wood in varying levels of decay to different fungal species and were able to demonstrate that the Basidiomycota caused its highest weight loss in nondecayed wood, whereas the assayed Ascomycota caused more weight loss in predecayed wood (Fukasawa et al. 2013).

Table 2 (continued)

Genus (sorted by phylum)	Number of species in eLignin	References
Comamonas	5	Chen et al. (2012c), Kamimura et al. (2010), Kuhnigk and Konig (1997), Ni et al. (2013), Providenti et al. (2006)
Cupriavidus	5	Hughes and Bayly (1983), Perez-Pantoja et al. (2008), Sato et al. (2006), Shi et al. (2013a)
Desulfbacterium	2	Bak and Widdel (1986), Szewczyk and Pfennig (1987)
Enterobacter	5	DeAngelis et al. (2013), Deschamps et al. (1980), Grič-Galić (1985), Yoshida et al. (2010)
Flavimonas	1	Song (2009)
Flavobacterium	1	Hirose et al. (2013)
Klebsiella	4	Hirose et al. (2013), Jones and Cooper (1990), Woo et al. (2014a), Xu et al. (2018)
Marinobacterium	1	González et al. (1997)
Mesorhizobium	1	Tian et al. (2016)
Microbulbiifer	1	González et al. (1997)
Moraxella	1	
Novosphingobium	2	Chen et al. (2012b), Liu et al. (2005)
Oceanimonas	1	Numata and Morisaki (2015)
Ochrobcaturum	6	Hirose et al. (2013), Kuhnigk and Konig (1997), Taylor et al. (2012), Tsegaye et al. (2018), Xu et al. (2018)
Pandoraea	3	Bandounas et al. (2011), Kumar et al. (2015), Shi et al. (2013b)
Pantoea	3	Song (2009), Xiong et al. (2014), Zeida et al. (1998)
Pseudomonas	27	Chapman and Ribbons (1976), Chowdhury et al. (2004), Cronin et al. (1999), Gao et al. (2005), Hirose et al. (2013), Hirose et al. (2018), Iwabuchi et al. (2015), Jimenez et al. (2002), Jurková and Wurst (1993), Kuhnigk and Konig (1997), Li et al. (2010), Mamiuddin and Fakhruddin (2012), Maruyama et al. (2004), Murray et al. (1972), Narbad and Gasson (1998), Nikodem et al. (2003), Ornston and Parke (1976), Overhage et al. (1999), Perestelo et al. (1996), Ravi et al. (2018), Shettigar et al. (2018), Tian et al. (2016), Xu et al. (2018)
Rhizobium	1	Jackson et al. (2017)
Rhodopseudomonas	2	Harwood and Gibson (1988), Salmon et al. (2013)
Sagittula	1	Gonzalez et al. (1997)
Serratia	5	Haq et al. (2016), Perestelo et al. (1990), Rhoads et al. (1995), Tian et al. (2016)
Sinorhizobium	1	MacLean et al. (2006)
Sphingobium	1	Masai et al. (2007)
Sphingomonas	1	Balkwill et al. (1997)
Stenotrophomonas	1	Tian et al. (2016)
Salifuratalea	1	Sperfeld et al. (2018)
Thauera	2	Mechichi et al. (2005), Tschech and Fuchs (1987)
Tohumonas	1	Billings et al. (2015)
Trabusiella	1	Suman et al. (2016)
Genus (sorted by phylum)	Number of species in eLignin	References
--------------------------	-----------------------------	------------
Ascomycota		
Aspergillus	3	Barapatre and Jha (2017), Martins et al. (2015), Yang et al. (2011)
Brettanomyces	1	Edlin et al. (1995)
Candida	7	Fialova et al. (2004), Gerecová et al. (2015), Krug et al. (1985)
Emericella	1	Barapatre and Jha (2017)
Exophiala	1	Middelhoven (1993)
Fusarium	5	Chang et al. (2012), Falcon et al. (1995), Kornilowicz-Kowalska and Rybczyńska (2015), Michielse et al. (2012)
Oudemansiella	1	Fukasawa et al. (2011)
Geotrichum	1	Slaviková and Košiková (2001)
Penicillium	1	Rodriguez et al. (1994)
Pestalotia	1	Falcon et al. (1995)
Petriellidium	1	Eriksson et al. (1984)
Phialophora	1	Eriksson et al. (1984)
Phoma	1	Bi et al. (2016)
Trichoderma	3	Kornilowicz-Kowalska and Rybczyńska (2015), Ryazanova et al. (2015)
Basidiomycota		
Agaricus	1	Saha et al. (2016)
Anthracophyllum	1	Acevedo et al. (2011)
Auricularia	1	Liers et al. (2011)
Bjerkandera	3	Fukasawa et al. (2011), Liers et al. (2011), Saha et al. (2016)
Ceriporiopsis	1	Rüttimann-Johnson et al. (1993)
Cryptococcus	1	Bergauer et al. (2005)
Cyathus	3	Saha et al. (2016), Sethuraman et al. (1999)
Daedalea	1	Arora and Sandhu (1985)
Hymenochaete	1	Saito et al. (2018)
Dichomitus	1	Périé and Gold (1991)
Irpex	2	Saha et al. (2016), Xu et al. (2009)
Leucosporidium	1	Middelhoven (1993)
Marasmius	1	Saito et al. (2018)
Mastigobasidium	1	Bergauer et al. (2005)
Microbotryomycetidae	1	Bergauer et al. (2005)
Mycenae	1	Liers et al. (2011)
Nematoloma	1	Hofrichter et al. (1999)
Phanerochaete	4	Eriksson et al. (1983), Hiratsuka et al. (2005), Saha et al. (2016), Vares et al. (1994)
Phlebia	5	Bi et al. (2016), Liers et al. (2011), Saito et al. (2018), Vares et al. (1994)
Pleurotus	1	Liers et al. (2011)
Polyporus	1	Saha et al. (2016)
Pycnoporus	3	Eggert et al. (1996), Saha et al. (2016)
Rhodosporidium	2	Bergauer et al. (2005), Yaegashi et al. (2017)
Rhodotorula	8	Bergauer et al. (2005), Durham et al. (1984), Gupta et al. (1986), Hainal et al. (2012), Huang et al. (1993), Sampaio (1999)
Rigidopus	1	Saha et al. (2016)
Sporabolomyces	1	Bergauer et al. (2005)
Stropharia	2	Liers et al. (2011), Saito et al. (2018)
Trametes	3	Alexieva et al. (2010), Fukasawa et al. (2011), Knežević et al. (2018)
Trichosporon	4	Middelhoven (1993), Sietmann et al. (2001), Slavíková et al. (2002), Yaguchi et al. (2017)
When it comes to lignin-degrading activity, fungi tend to be more studied than bacteria because of their higher prevalence of lignolytic secretomes (Janusz et al. 2017). However, if the system boundaries are expanded to include the whole lignin aromatic niche, i.e., the species that lack delignification activities but grow on the lignin-derived aromatic compounds (Fig. 1), the ratio between fungi and bacteria could be rather different. In eLignin, which was built on this niche principle, there are about two times as many bacterial isolates listed as fungal ones (Tables 1, 2, and 3). We cannot determine if this is a bias in the literature, comes from the database boundaries (which were initially created with a focus on intracellular events, and not on secreted enzymes), or if the “true” diversity holds less fungal species than bacterial. The number of wood-rotting Basidiomycetes has been estimated to up to 1700 species in North America only, but the number of lignolytic fungi is unknown (Gilbertson 1980; Janusz et al. 2017).

Bacterial diversity

By using the holistic ecological approach to list both degraders of lignin and lignin-derived aromatic compounds, 171 different bacteria distributed over 63 different genera have been indexed in eLignin at the time of writing (Table 2). As mentioned above, three main phyla encompasses the bulk of the dataset (Proteobacteria, Actinobacteria, and Firmicutes), with Proteobacteria dominating the list with its 114 entries (Table 2). Within these Proteobacteria, γ-Proteobacteria was the main class (66 species/strains), followed by β-Proteobacteria (27 species/strains), α-Proteobacteria (18 species/strains), and δ-Proteobacteria (3 species/strains), again highlighting that certain types of microbes are greatly enriched in the eLignin bibliome. It can also be noted that many of the organisms in this particular niche have undergone one or several taxonomical reclassifications since they were first isolated and described (see, e.g., Cupriavidus necator which was previously known as, e.g., Ralstonia eutropha and Wautersia eutropha (Vandamme and Coenye 2004)), meaning that the binomial names in articles from the 1960–1980s may be different from the currently prevailing names. Therefore, the organism entry in the database has, when possible, been harmonized with links to the corresponding entry in the NCBI Taxonomy Database (https://www.ncbi.nlm.nih.gov/taxonomy; Acland et al. 2014).

The Gram stain distribution tends to follow the phyla and, thus, is dominated by Gram-negative bacteria (121 species/strains), with the remainder being Gram-positive (46 species/strains) and unknown/Gram-indeterminate (4 species/strains). This may have implication on studies focusing on, e.g., transport of compounds over membranes (discussed in a separate section below), or when expanding a species’ substrate range by metabolic engineering. In the latter case, the difference in total GC content in the genome that is in general seen between

Origin of isolation	Number of organisms			
	Total	Bacteria	Fungi	Archaea
Aquatic	8	5	1	2
Caves and mines	6	1	5	0
Clinical isolate	6	0	6	0
Compost	5	5	0	0
Forest and wood samples	40	17	23	0
Industrial plants	5	1	2	2
Lab-made derivative	4	4	0	0
Other	2	1	1	0
Pulp and paper mill effluent	16	15	1	0
Sediment	15	15	0	0
Seeds and hulls	2	2	0	0
Soil	92	70	21	1
Termitite gut	22	22	0	0
Unknown or not specified	27	3	24	0
Wastewater sludge	11	10	1	0

The organisms have been sorted in 15 main clusters in order to facilitate the clustering, and the specific details can be found in the database entry for each organism.
Gram-positives and Gram-negatives (Muto and Osawa 1987) will affect the feasibility of heterologous expression if using traditional PCR-based cloning.

Although fungi are known as the main degraders of the lignin macromolecule (as described in the previous subsection), there are a substantial number of studies that describe delignifying bacteria. Tian et al. reviewed the topic and performed phylogeny on 57 lignin-degrading and 463 laccase-encoding prokaryotes that led them to propose that screening for laccases genes may be a good way to detect new lignin-degrading species (Tian et al. 2014). Furthermore, the authors suggest that aromatic metabolism is a prerequisite for but not a proof of lignolytic activity (Tian et al. 2014), which is in line with our division of the lignin bacterial niche into subgroups 1 and 2 that specialize in different aspects of the full lignin catabolism (Fig. 1). The metabolism of the resulting lignin breakdown products, which mainly takes place intracellularly, will be discussed in the “Distribution of metabolic pathways and substrate specificities” section below.

Soil is absolutely the most common origin of isolation mapped in the database (Table 4), which also reflects how popular this environment has been for studies on isolation of lignin and aromatic degraders. Other than soil, termite guts are a main origin of isolation. There seems to be no clear evidence that the termites themselves are able to degrade lignin (instead they live of the hydrolysis products of hemicellulose and cellulose) (Brune and Ohkuma 2010). The lignin barrier is overcome by the termites by a symbiotic relationship with a diverse microbial community, e.g., by exosymbiotic fungi and endosymbiotic gut flora (Maurice and Erdei 2018). Examples of aromatic degrading bacteria isolated from the gut flora include *Proteobacteria* (Harazono et al. 2003; Kuhnigk and Konig 1997; Suman et al. 2016; Tsegaye et al. 2018; Van Dexter and Boopathy 2018), *Actinobacteria* (Chung et al. 1994; Kuhnigk and Konig 1997; Watanabe et al. 2003), and *Firmicutes* (Kuhnigk and Konig 1997), as well as the only *Spirochaetes* entry in the database (Lucey and Leadbetter 2014). Another enrichment reported in Table 4 for bacteria is the isolates from different man-made environments. One example is pulp and paper mill effluents that contain residual lignins and aromatics and have been a source of many isolates (Chandra et al. 2007; Duan et al. 2016b; González et al. 1997; Hooda et al. 2015; Mathews et al. 2014; Nishikawa et al. 1998; Ravi et al. 2018); likewise, sludge from waste water treatment plants has been a source of a number of isolates, some of which are strictly anaerobic (Gorny et al. 1992; Mechichi et al. 1999, 2005; Ni et al. 2013; Traunecker et al. 1991; Tschech and Fuchs 1987).

Anaerobic aromatic degrading bacteria are in a minority compared to the aerobic fission bacteria and were even for a long time believed to be impossible (Kirk and Farrell 1987). However, with recent advances in the field, the molecular biology of these pathways has begun to be understood (Durante-Rodríguez et al. 2018). Some examples found in the database include, e.g., *Pelobacter acidigallici* Ma Gal2 (Schink and Pfennig 1982), *Desulfobacterium phenolicum* Ph01 (Bak and Widdel 1986), *Rhodopseudomonas palustris* CGA001 (Harwood and Gibson 1988), *Clostridium thermoaceticum* ATCC 39073 (Daniel et al. 1988), and *Dysgonomonas* sp. WJDL-Y1 (Duan et al. 2016b); *Holophaga foetida* TMBS4 is also worthy of mention as it is the only observed species in the *Acidobacteria* phylum reported in the database, and it grows anaerobically on a couple of typically lignin-derived aromatics such as ferulic acid and syringic acid (Bak et al. 1992).

Archaeal diversity

Of the three domains in the Woeseian system (Woese et al. 1990), archaea is the most underrepresented in the lignin microbial niche. To our knowledge, there are no reported archaeal single culture isolates with lignolytic capacity at the time of writing. Recently, by enrichment cultures from estuarine sediment, it was possible to infer growth of *Bathyarchaeota* on alkalai lignin by the increase in gene-copy number and the incorporation of inorganic carbon in the archaeal lipids over 11 months (Yu et al. 2018). Likewise, putative laccase genes have been reported in some archaeal species (Ausec et al. 2011; Sharma and Kuhad 2009; Tian et al. 2014). A laccase from *Haloferax volcanii* DS70 has been purified with activity on model compounds such as syringaldazine and ABTS (Uthandi et al. 2010). However, to our understanding, the in vivo lignolytic activity of these putative and purified laccases remains to be assayed.

Five archaeal isolates—classified in niche subgroup 2 (growth on aromatics; Fig. 1)—have so far been indexed in eLignin, all of them being halophiles, i.e., extremophiles that prefer high salt concentration. *Haloferax* sp. D1227 was isolated from soil and grew on benzoic, cinnamic, and phenylpropanoic acid (Emerson et al. 1994). *Haloferax* sp. C-24, *Haloarcula ezmoumoullense* C-46, and *Haloarcucl* sp. D1 were isolated from high-saline samples and grew on, e.g., 4-hydroxybenzoic acid (Erdogmus et al. 2013; Fairley et al. 2002). *Natralba* sp. C21 degraded phenol (Khemili-Talbi et al. 2015). The halophilic nature of these isolates and the lack of known lignolytic activity seem to suggest that they contribute with the degradation of aromatic breakdown products that have ended up in saltwater environments, which could be speculated to be a downstream (or downriver) extension of the lignin microbial niche.

The communities of the lignin microbial niche

Lignin degradation is a community effort and is in itself often a subpart of a lignocellulose-degrading niche (de Boer et al. 2005). Microbial communities—organisms that live and
interact within a contiguous environment (Konopka 2009)—are in a way what we are illustrating by looking at the isolates from the point of the niche subgroups (Fig. 1). It has been proposed that lignin degradation is more rapid with consortia than single isolates due to synergism (Wang et al. 2013). Furthermore, studies on fungal–bacterial interactions in the lignin microbial niche have reported examples of commensalism as well as amensalism between certain species: some bacteria have been reported to promote growth of a white-rot fungi when co-cultivated (Harry-asobara and Kamei 2018), and there is a report showing two different white-rot species outcompeting opportunistic bacteria (Folman et al. 2008). At the moment, consortia are not mapped in eLignin but are nevertheless important for the understanding of the lignin microbiology.

Many studies have reported physiological characterization of a community with unknown or partly known composition, either because it was not possible to isolate single cultures with the desired phenotype—for instance, 99% of the bacteria in soil have been estimated to be unculturable (Pham and Kim 2012)—or because the aim was to study the community effort. Examples include communities capable of degrading lignin (DeAngelis et al. 2011; Wang et al. 2013; Wu and He 2013), syringic acid (Kaiser and Hanselmann 1982; Phelp and Young 1997), resorcinol and catechol (Milligan and Häggblom 1998), coniferyl alcohol (Grbić-Galić 1983), and plant lignin–soil communities (Bennett et al. 2015; Bradley et al. 2007), to name a few. Many of these studies were reported under anaerobic conditions.

Another approach to analyze microbial communities is to consider the makeup of the metagenome as a unique property of a given community (Konopka 2009). 16S rRNA sequencing can be used to taxonomically identify members of a community (González et al. 1996). A common methodology is to divide the results of the 16S rRNA sequencing of a metagenome into operational taxonomic units (OTUs) to attempt to resolve, e.g., phylum level abundances (Moraes et al. 2018); this is similar to what is done here with the eLignin database using single isolates (Tables 2 and 3). In addition to taxonomical metagenomics, Moraes and colleagues reconstructed draft bacterial genomes from a lignin-degrading consortium and could identify conserved domains related to lignin degradation in their metagenome (Moraes et al. 2018).

Distribution of metabolic pathways and substrate specificities

The lignin macromolecule is primarily depolymerized by extracellular enzymes secreted by lignolytic microbes. Due to its heterogeneity, the resulting depolymerization products are commonly a mixture of different mono- and di- and oligoaromatic compounds (Bugg et al. 2011b). This has led to the evolution of a panel of intracellular *funneling pathways*, i.e., metabolic routes that connect substituted aromatic compounds with a ring fission pathway leading to the central carbon metabolism, often (but not always) via acetyl-CoA (Fig. 3). In this section, the eLignin database was used to assess the diversity of substrates and metabolic routes within the lignin microbial niche.

Reported substrate specificities

Similar to how fundamental and applied studies on lignin focus on a few model organisms and specific model compounds, many studies use a few common model aromatic model compounds that represent different funneling pathways (e.g., 4-hydroxybenzoic acid, vanillic acid, ferulic acid, p-coumaric acid, and benzoic acid) to evaluate the physiology of the microbial niche (see, e.g., Fischer et al. 2008; González et al. 1997; Kosa and Ragauskas 2012; Ravi et al. 2017; Vardon et al. 2015). However, from browsing eLignin, there appears to be a much higher substrate diversity in this niche than just these model compounds. This is illustrated in Fig. 4a, showing a meta-analysis of the “most popular” substrates in the eLignin bibliome in terms of the number of different microbes that have been reported in the literature to degrade them. Evidently, the model aromatics are in the top, which both suggest that they indeed are good model compounds for the different funneling pathways and that they have been popular choices for the experimental work that has been published on this topic. In addition, some natural and technical lignins (corn stover, kraft, Klason, and alkaline lignin), “synthetic” oligoaromatics (dehydropolymerisate), and dimers (biphenol, benzylvanillin) are among these top 32 substrates (Fig. 4a). The number of microbes in the database that have been reported to degrade natural and technical lignins and di-/oligoaromatics is presented in Fig. 4b. The results show that fungi are the most prevalent degraders of natural lignins, which is reasonable given the high diversity of lignolytic fungi. The reported technical lignins include chemically modified lignin polymers as well as chemically depolymerized lignin (i.e., a mixture of both high (polymeric) and low molecular weight lignins (mono- and oligomers)) which explains the high number of bacteria that have been reported to grow on technical lignins. Di- and oligoaromatic compounds were primarily reported in *Proteobacteria* in eLignin, but this is likely a literature bias since (model) monoaromatic compounds tend to be more commonly studied within all phyla. Note that there are no *Acidobacteria* or *Spirochaetes* in the eLignin bibliome that have been reported to degrade natural/technical lignins and di-/oligoaromatics.

It is equally important to know the substrates that cannot be used by a given organism, as this will give the limitations of its metabolism. In fact, many isolation papers both list substrates that can and that cannot support growth (for a few examples,
Prediction of funneling pathway distributions

Lignin consists of three primary building blocks known as monolignols that plants produce from the amino acid phenylalanine: sinapyl alcohol (called syringyl, or S, unit when incorporated in the lignin polymer), coniferyl alcohol (guaiacyl unit; G), and p-coumaryl alcohol (p-hydroxyphenyl unit; H). (Vanholme et al. 2010). The ratio of units in the polymer differs depending on the lignin source, with softwood consisting of mainly G units with a small fraction of H units, hardwood having a combination of almost exclusively S and G, and monocots all three (Gellerstedt and Henriksson 2008; Gosselink et al. 2010). Recent reports have also shown that a caffeyl alcohol homopolymer (caffeoyl unit; C) can be found in seed coats of, e.g., vanilla orchard and some cacti species (Barsberg et al. 2018; Chene et al. 2012a). Consequently, the composition of aromatics in the depolymerized lignin will differ greatly between different lignocellulose feedstocks.

Following the S, G, and H types, three main funneling pathways for monoaromatic catabolism have been defined,
based on which of the main lignin units (or derivatives thereof) they catabolize: the sinapyl branch (two methoxy groups), coniferyl branch (one methoxy group), and the \(p \)-coumaryl branch (no methoxy groups) (see Fig. 3). Within eLignin, these branches were further divided into one or more sequential pathways in order to better specify which reactions a
species have been characterized with, i.e., a bacteria with a vanillin degradation pathway will not necessarily have the pathway for ferulic acid, although these pathways are sequential in the coniferyl branch. Microbial aromatic catabolism is also not limited to the S, G, and H funneling branches, meaning that there is a need for naming of other routes as well, including aromatics that are derived from other origins than lignins (e.g., other plant matter). Some examples include the caffeic acid, benzyol, resorcinol, and cresol pathways (Fig. 3). Funneling pathways for di- and oligomeric aromatics, the study of which has started emerging in certain species (Bugg et al. 2011b; Kamimura et al. 2017), is another example of essential catabolic routes.

In a lot of biolome studies, the substrate specificity of a species is presented without going into the intracellular conversion mechanisms nor reporting evidence of a specific funneling pathway. Therefore, in order to be able to use the eLignin dataset to look at pathway diversity, we developed a prediction algorithm to infer funneling branches from reported substrates from the literature. This is possible since many of the funneling branches are linear, e.g., ferulic acid is degraded via vanillin, and any species that have been reported to grow on these compounds and their intermediates can then be theoretically inferred to have the coniferyl branch (Fig. 3). Cinnamic acid is reported to be catabolized by 18 organisms (Fig. 4a), but due to the alternate metabolic routes for its degradation—e.g., via benzoic acid, 3-phenylpropionic acid, or styrene (Chamkha et al. 2001; Défnou et al. 2000; Monisha et al. 2018; Mäkelä et al. 2015)—it was omitted from the prediction model. Also, according to current knowledge, anaerobic aromatic catabolism frequently (but not exclusively) relies on pathways that converge on benzoyl-CoA, that is further subjected to ATP-dependent hydrolysis to open the aromatic ring (Durante-Rodríguez et al. 2018; Fuchs et al. 2011); but since the exact mechanisms are largely unknown for the species in the dataset, all anaerobic microbes have been put in an “anaerobic branch (es)” cluster (Fig. 5).

The result of the theoretical prediction is presented in Fig. 5. The main conclusion is that, of the three main funneling branches (S, G, H), the coniferyl (G) and p-coumaric (H) branches seem by far to be the most abundant in niche 2. This might be correlated to the number of methoxy groups (none in the H unit, one in the G unit, two in the S unit; Fig. 3), as ring fission usually seems to occur after the methoxy groups have been demethylated to hydroxyl groups (Gupta et al. 1986; Nishikawa et al. 1998; Sampao 1999). As the demethylation often requires a cofactor such as tetrahydrofolic acid (Masai et al. 2004) and NADH and FAD (Mallinson et al. 2018), the degradation of methylated aromatics may be limited by the rate of cofactor recycling. Furthermore, it is noteworthy that there is no caffeic acid degrading Actinobacteria yet in the eLignin database, despite the fact that they are the prokaryotic phylum that is commonly the second most abundant for most branches in the dataset (Fig. 5). Another observation is that metabolites of the resorcinol branch (Fig. 3) seem to be degraded by fungi to a larger extent than the other branches according to the current data (Fig. 5). Resorcinols are part of the phenolics in plants and soil humic acids (Burges et al. 1964; Kluge et al. 1990) and do not seem to be derived from lignin per se, which would put this compound within niche subgroup 2.

Predicting organisms that can catabolize a given depolymerization mix

Many lignin valorization studies apply chemical depolymerization since microbial enzymatic breakdown of lignin is a very slow process taking many weeks (Fackler et al. 2006; Hedges et al. 1988; Liers et al. 2011). Therefore, from an applied point-of-view, it would be of interest to run the prediction model “backwards” in order to identify which organism(s) would be likely to grow on the mixture of aromatic monomers resulting from chemical depolymerization. The outcome of the depolymerization is highly dependent on process conditions and lignin source (Sun et al. 2018), and predicting the monomeric yield is beyond the scope of this review. However, the distribution of H, G, and S units in a given lignin might be indicative of the possible monomeric composition in the depolymerisate. Using this assumption, depolymerized softwood lignin would need microbes with funneling pathways for coniferyl- (G) and p-coumaric (H)-derived monomers. Spruce lignosulfonate has for instance been reported to yield vanillin, guaiacol, acetovanillone, and vanillic acid (Pérez and Tuck 2018). Some examples of organisms that can catabolize both vanillic acid and guaiacol include *Amycolatopsis* sp. ATCC 39116 (Pometto III et al. 1981), *Comamonas* sp. B-9 (Chen et al. 2012c), and *Rhodotorula rubra* IFO 889 (Huang et al. 1993). Hardwood depolymerisates would require species that can handle monomers derived from S and G units, and therefore, organisms with the syringyl (S) and coniferyl (G) branches would be needed, such as *Sphingobium* sp. SYK-6 (Katayama et al. 1988), *Acetobacterium woodii* NZV1a16 (Bache and Pfennig 1981), or *Rhizobium* sp. YS-1r (Jackson et al. 2017). Species that seem able to degrade compounds from all the S, G, and H branches, which would be representative of grass lignins, would include *Oceanimonas doudoroffii* JCM21046T (Numata and Morisaki 2015) and *Exophiala jeanselmei* CBS 658.76 (Middelhoven 1993). Please note that these predictions do not take culture and process conditions into account, meaning that some of these species might be better suited for process applications than others.

Transport proteins

Although the chemical structure of many aromatic compounds allow them to passively diffuse through the lipid
bilayers of biological membranes (Engelke et al. 1996), many microorganisms have dedicated transport channels or proteins for aromatic compounds—reviewed, e.g., by Parales and by Kamimura and their colleagues (Kamimura et al. 2017; Parales and Ditty 2017; Parales et al. 2008). In fact, transporter genes are commonly found within the catabolic operons for aromatic acids (Parales et al. 2008) which could suggest that the natural diffusion rate of certain aromatics is too limited for growth on aromatics as a sole carbon source. Transporters are of interest for metabolic engineering purposes, as a part of uptake optimization and/or expansion of the substrate range of a given strain. As more and more of the metabolic pathways for aromatic degradation are now elucidated, there seems to be an emerging effort within the fundamental molecular biology studies on lignin degradation to look into transport proteins. We have begun indexing transport proteins as part of the organism pages in eLignin, and we anticipate that this section will grow as this field expands.

Current knowledge on bacterial aromatic transporters mostly focuses on Gram-negative bacteria which have a cell envelope with two lipid bilayers separated by a periplasmic space: the outer and the inner membrane (Nikaido 2003). Some Gram-negatives have been reported to have substrate-specific diffusion channels for aromatic compounds on the outer membrane (Hearn et al. 2008; Nikaido 2003). Inner membrane transport of aromatic acids seems to be achieved by active transporters and not by diffusion in many species. This may be explained by the fact that these compounds are commonly protonated at neutral pH and—due to the hydrophobic charge—can partition into the membrane and damage the structure (Kamimura et al. 2017; Parales and Ditty 2017). Gram-negative bacteria with reported aromatic transporters include Acinetobacter baylyi ADP1 (Collier et al. 1997; D’Argenio et al. 1999), Bradyrhizobium japonicum USDA110 (Michalska et al. 2012), Klebsiella pneumoniae M5a1 (Xu et al. 2012), Pseudomonas putida KT2440 (Nishikawa et al. 2008) and PRS2000 (Nichols and Harwood 1997), Rhodopseudomonas palustris CGA009 (Giuliani et al. 2011; Michalska et al. 2012), Sinorhizobium meliloti 1024 (Michalska et al. 2012), and Sphingobium sp. SYK-6 (Mori et al. 2018). Gram-positives, on the other hand, only have a single cell membrane in their envelope: the cytoplasmic membrane (Parales and Ditty 2017). There seem to be less studies on Gram-positive than Gram-negative species with regard to aromatic transport. Some examples include Corynebacterium glutamicum ATCC 13032 (Chaudhry et al. 2007; Xu et al. 2006), Lactobacillus plantarum WCFS1 (Reverón et al. 2017), and Rhodococcus jostii RHA1 (Otani et al. 2014). It is also worthwhile to note that in addition to the mechanisms for transport of aromatics into the cell, many species also have efflux pumps in order to cope with the often cytotoxic properties of aromatic compounds (Parales and Ditty 2017).
Ditty (2017), or as a means to excrete detoxified compounds. Ravi and colleagues have for instance described a *Pseudomonas* isolate that excreted vanillyl alcohol during growth on vanillin as a tolerance mechanism to handle excess vanillin that was not catabolized to vanillic acid fast enough, but the mechanism by which vanillyl alcohol was transported out of the cell has not been elucidated yet (Ravi et al. 2018).

Conclusions and outlook

The interest for lignin as an underexploited carbon source has markedly increased during the last two decades, as evidenced by the exponential increase in published papers on lignin valorization (Abejón et al. 2018). In this minireview, we used our recently created resource, the eLignin database, to analyze the diversity of the lignin microbial niche, which we have defined as all microbes that can either degrade lignin or lignin-derived aromatic compounds. It should, however, be kept in mind that the data in eLignin encompasses the diversity in the bibliome, meaning that it reflects what people have reported in the literature. The papers that are indexed in the database concern microbial isolates, i.e., species that were cultivable. It is, therefore, inevitable that this approach does not represent the overall diversity of the lignin microbial niche, as there are many species within the niche community that cannot be detected and sustained with the common isolation methodologies. Although the aim of this minireview is to show the diversity of the niche, it also reveals the diversity and fashions within the scientific community, which may or may not correlate with the biological diversity. We can also conclude that the literature is enriched with physiological characterization, i.e., aromatic substrate specificities of different organisms are rather well known. The molecular biology of specific metabolic routes is, in contrast, less well elucidated, which will be an important next step both for the fundamental understanding of the biology and for the many projects that apply microbes in a value chain for lignin valorization. The prediction algorithm for aromatic pathways presented in this review can hopefully generate new hypotheses on the molecular biology of the niche and pave the way for future studies.

The microbiological aspects of lignin and aromatics degradation have a long history with a vast bibliome, and the need for resources such as the eLignin database will continue to grow as the field expands. In the future, we expect to further implement in eLignin a number of discussed features including improved prediction algorithms, lignolytic communities, and substrates that cannot be converted by a given organism. Economically feasible lignin valorization will require advanced metabolic engineering and thorough knowledge on microbial physiology. In that context, the objective of eLignin is not only to generate new overviews of the field but also to fuel new research ideas and engineering strategies and thus become an operational tool for studies on the microbial aspect of lignin degradation, catabolism, and valorization.

Acknowledgements The authors would like to thank Javier García-Hidalgo for his contributions to the initial data mining performed before the construction of the database.

Availability of data and materials The database is available online at www.elignindatabase.com, with no restrictions on academic or non-academic use. The eLignin Database: Copyright 2016—2019 Daniel Brink, Applied Microbiology, Department of Chemistry, Lund University, Sweden. We welcome contributions to the database; instructions are available at the homepage. All contributions will undergo manual curation.

Authors’ contributions DB designed the study, designed and programmed the database and web interface, performed the data mining, wrote the manuscript, and curated the database content. KR assisted in the data mining and curation. GL and MGG conceived the study and revised the manuscript. All authors read and approved the final manuscript.

Funding This work was financed by the Swedish Foundation for Strategic Research through the grant contract RBP14-0052.

Compliance with ethical standards

Competing interests The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, Sandahl M, Hultberg CP, Turner C, Liden G, Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34(8):1318–1346

Abejón R, Pérez-Acebo H, Clavijo L (2018) Alternatives for chemical and biochemical lignin valorization: hot topics from a bibliometric analysis of the research published during the 2000–2016 period. Processes 6(8):98

Acevedo F, Pizzul L, Castillo MD, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus *Anthracophyllum discolor*. J Hazard Mater 185(1–3):212–219. https://doi.org/10.1016/j.jhazmat.2010.09.020

Acland A, Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bryant SH, Canese K, Church DM (2014) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 42(Database issue):D7

Alexieva Z, Yemendzhiev H, Zlateva P (2010) Cresols utilization by *Trametes versicolor* and substrate interactions in the mixture with phenol. Biodegradation 21(4–5):625–635

Antai SP, Crawford DL (1981) Degradation of softwood, hardwood, and grass lignocelluloses by two *Streptomyces* strains. Appl Environ Microbiol 42(2):378–380
Aoyama A, Yamada K, Suzuki Y, Kato Y, Nagai K, Kurane R (2014) Newly-isolated laccase high productivity Streptomyces sp. grown in cedar powder as the sole carbon source. Int J Waste Resour 4(2):1–5

Arora D, Sandhu D (1985) Laccase production and wood degradation by a white-rot fungus Daedalea flavidula. Enzym Microb Technol 7(8):405–408

Arumugam N, Kalavathi P, Mahalingam P (2014) Lignin database for diversity of lignin degrading microbial enzymes (LD2L). Research in Biotechnology 5(1):13–18

Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 6(10):e25724

Ayayachamy M, Cliffe FE, Coyne JM, Collier J, Tuohy MG (2013) Lignin: untapped biopolymers in biomass conversion technologies. BioMons Convers Biorefin 3(3):255–269

Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130(3):255–261

Bak F, Widdel F (1986) Anaerobic degradation of phenol and phenol derivatives by Desulfbacterium phenolicum sp. nov. Arch Microbiol 146(2):177–180

Bak F, Finster K, Rothfuß F (1992) Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol 157(6):529–534

Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC, Ringelberg DB, Chandler DP, Romine MF, Kennedy DW, Spadoni CM (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Evol Microbiol 47(1):191–201

Bandounas L, Wierckx NJP, de Winde JH, Ruissenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11: Artn 94. doi:https://doi.org/10.1186/1472-6750-11-94

Barapatre A, Jha H (2017) Degradation of alkali lignin by two ascomycetes and free radical scavenging activity of the products. Biocatal Biotransformation 35(4):269–286

Barsberg ST, Lee Y-I, Rasmussen HN (2018) Development of C-lignin derivates by Desulfobacterium phenolicum sp. nov., Sphingomonas aromaticivorans sp. nov., and Sphingomonas stygia sp. nov. Arch Microbiol 43(8):1175–1182

Beckham GT, Johnson CW, Karp EM, Salvachaú Dw, Vardon DR (2016) Novel-Isolated laccase high productivity Biotechnol 43(8):1175–1182

Billings AF, Fortney JL, Hazen TC, Simmons B, Davenport KW, Goodwin L, Ivanova N, Kyrpides NC, Mavromatis K, Woyke T (2015) Genome sequence and description of the anaerobic lignin-degrading bacterium Tomonomas lignolytica sp. nov. Stand Genomic Sci 10(1):106

Blancchette RA (1984) Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol 48(3):647–653

Bourbonnais R, Paice M, Reid I, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isoforms from Trametes versicolor and role of the mediator 2, 2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61(5):1876–1880

Brady KE, Hancock JE, Giardina CP, Pregitzer KS (2007) Soil microbial community responses to altered lignin biosynthesis in Populus tremuloides vary among three distinct soils. Plant Soil 294(1–2):185–201

Bruno A, Ohkuma M (2010) Role of the termite gut microflora in symbiotic digestion. In: Biology of termites: a modern synthesis. Springer, pp 439–475

Bugg TD, Ahmad M, Hardiman EM, Singh R (2011a) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400

Bugg T, Ahmad M, Hardiman EM, Ramhanpour R (2011b) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896. https://doi.org/10.1039/C1np00042j

Burges N, Hurst H, Walkden B (1964) The phenolic constituents of hemic acid and their relation to the lignin of the plant cover. Geochim Cosmochim Acta 28(10–11):1547–1554

Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA (2015) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480

Chamkha M, Garcia J-L, Labat M (2001) Metabolism of cinnamic acids by some Clostridium and emediation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum. Int J Syst Evol Microbiol 51(6):2105–2111

Chandra R, Bhargava RN (2013) Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products. J Environ Biol 34(6):991–999

Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterization and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67(4):839–846. https://doi.org/10.1016/j.chemosphere.2006.10.011

Chang AJ, Fan J, Wen X (2012) Screening of fungi capable of highly selective degradation of lignin in rice straw. Int Biodeterior Biodegrad 72:26–30

Chang Y-C, Choi D, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol 123:429–436

Chapman PJ, Ribbons DW (1976) Metabolism of resorcinolic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacterial 125(3):985–998

Chaudhry MT, Huang Y, Shen X-H, Poetsch A, Jiang C-Y, Liu S-J (2007) Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum. Microbiology 153(3):857–865

Chen F, Tobitamiya H, Hovkan-Frenkel D, Dixon RA, Ralph J (2012a) A polymer of cafteyl alcohol in plant seeds. Proc Natl Acad Sci 109(5):1772–1777

Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, Zhang H (2012b) Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol 123:682–685

Chen YH, Choi LY, Zhu YH, Yang ZH, Zheng Y, Zhang H (2012c) Biodegradation of kraft lignin by a bacterial strain Comamonas sp
coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase. Microbiology 157:2152–2163. https://doi.org/10.1099/mic.0.048215-0

Holladay JE, White JF, Bozell JI, Johnson D (2007) Top value added chemicals from biomass—volume II, results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); National Renewable Energy Laboratory (NREL), Golden, CO (United States)

Hooda R, Bhardwaj NK, Singh P (2015) Screening and identification of ligninolytic bacteria for the treatment of pulp and paper mill effluent. Water Air Soil Pollut 226(9):305

Hooda R, Bhardwaj NK, Singh P (2018) Brevibacillus parabrevis. MTCC 12105: a potential bacterium for pulp and paper effluent degradation. World J Microbiol Biotechnol 34(2):31

Huang Z, Dostal L, Rosazza J (1993) Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J Biol Chem 268(32):23954–23958

Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110(6):1616–1626. https://doi.org/10.1002/bit.24833

Hughes E, Bayly RC (1983) Control of catechol meta-cleavage pathway in Alcaligenes eutrophus. J Bacteriol 154(3):1363–1370

Ishiyama D, Vujaklija D, Davies J (2004) Novel pathway of salicylate degradation by Streptomyces sp. strain WA46. Appl Environ Microbiol 70(3):1297–1306

Iwabuchi N, Takiguchi H, Hamaguchi T, Takihara H, Sunairi M, Matsufuji H (2015) Transformation of lignin-derived aromatics into nonaromatic polymeric substances with fluorescent activities (NAPSFAs) by Pseudomonas sp. ITH-SA-1. ACS Sustain Chem Eng 3(1):2678–2685

Jackson C, Couger M, Prabhakaran M, Ramachandriya K, Canaan P, Fatepure B (2017) Isolation and characterization of Rhizobium sp. strain YS-1r that degrades lignin in plant biomass. J Appl Microbiol 122(4):940–952

Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkośń A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962

Jeffries TW (1981) Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnol Lett 3(5):213–218

Jimenez JJ, Minambres B, Garcia JL, Diaz E (2002) Genomic analysis of fermentation pathway in Trametes gibbosa M5a1. Arch Microbiol 185(4):498–499

Jirková M, Wurst M (1993) Biodegradation of aromatic carboxylic acids by Pseudomonas mira. FEMS Microbiol Lett 111(2–3):245–250

Kaiser J-P, Hanselmann KW (1982) Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch Microbiol 133(3):185–194

Kaminska M, Aoyama T, Yoshida R, Takahashi K, Kasai D, Abe T, Mase M, Katayama Y, Nishikawa S, Murayama A, Yamasaki M, Morohoshi N, Haraguchi T (1988) The metabolism of biphenyl structures in lignin by the soil bacterium (Pseudomonas paucimobilis) SYK-6. FEBS Lett 233(1):129–133

Kato K, Kozaki S, Sakuranaga M (1998) Degradation of lignin compounds by bacteria from termite guts. Biotechnol Lett 20(5):459–462

Katayama Y, Nishikawa S, Murayama A, Yamasaki M, Morohoshi N, Haraguchi T (1988) The metabolism of biphenyl structures in lignin by the soil bacterium (Pseudomonas paucimobilis) SYK-6. FEBS Lett 233(1):129–133

Keller TJ, Kerr RD, Benner R (1983) Isolation of a bacterium capable of degrading peanut hull lignin. Appl Environ Microbiol 46(5):1201–1206

Kemm-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML (2015) Isolation of an extremely halophilic archeon Natratilpha sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 19(6):1109–1120

Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulde A, Han L, He J, He S, Shoemaker BA (2015) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

Kitchenham B (2004) Procedures for performing systematic reviews. Keele, UK, Keele University 33(2004):1–26

Kluge C, Tschech A, Fuchs G (1990) Anaerobic metabolism of resorcylic acids (m-dihydroxybenzoic acids) and resorcinol (1,3-benzenediol) in a fermenting and in a denitrifying bacterium. Arch Microbiol 155(1):68–74

Knežević A, Stajić M, Milovanović I, Vukojević J (2018) Wheat straw degradation by Trametes gibbosa: the effect of calcium ions. Waste Biomass Valorization 9(10):1903–1908

Konopka A (2009) What is microbial community ecology? ISME J 3(11):1223

Kornilowicz-Kowalska T, Rybczynska K (2015) Screening of microscopical fungi and their enzyme activities for decolorization and bioconversion of some aromatic compounds. Int J Environ Sci Technol 12(8):2673–2686

Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleanigous Rhodococcus. Appl Microbiol Biotechnol 93(2):891–900. https://doi.org/10.1007/s00244-011-2995-x

Krell T, Laas J, Guazzaroni ME, Busch A, Silva-Jiménez H, Fillet S, Reyes-Darias JA, Muñoz-Martínez F, Rico-Jiménez M, García-Fontana C (2012) Responses of Pseudomonas putida to toxic aromatic carbon sources. J Biotechnol 160(1–2):25–32

Krug M, Ziegler H, Straube G (1985) Degradation of phenolic compounds by the yeast Candida tropicalis: the microbial degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. J Basic Microbiol 25(3):103–110. https://doi.org/10.1002/jobm.3620250206

Kuhnigk K, König H (1997) Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. J Basic Microbiol 37(3):205–211. https://doi.org/10.1002/jobm.3620370309

Kumar M, Singh J, Singh MK, Singhal A, Thakur IS (2015) Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB. Environ Sci Pollut Res 22(20):15690–15702

Leontowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho N-S, Hofrichter M, Regalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27(2–3):175–185

Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrisstat B, Pontarotti P, Asther M, Record E (2008) FOLy: an integrated database for the classification and functional annotation
of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 45(5): 638–645

Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Biol 41(1):455–496

Li T, Takkellapati S (2018) The current and emerging sources of technical lignins and their applications. Biofuels Bioprod Biorefin 12(5):756–787

Li DH, Yan YL, Ping SZ, Chen M, Zhang W, Li L, Lin WN, Geng LZ, Li T, Takkellapati S (2018) The current and emerging sources of technical lignins and their applications. Biofuels Bioprod Biorefin 12(5):756–787

Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter- colonizing basidiomycetes and ascomycetes grown on beechwood. FEMS Microbiol Ecol 78(1):91–102. https://doi.org/10.1111/j.1574-6941.2011.01144.x

Linger JG, Vardon DR, Guarneri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chopka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Lignin valorization through integrated biological, chemical and functional catalysis. Proc Natl Acad Sci USA 111(33):12013–12018. https://doi.org/10.1073/pnas.1410657111

Liu Z-P, Wang B-J, Liu Y-H, Liu S-J (2005) Novosphingobium tathiense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Sys Evol Microbiol 55(3):1229–1232

Lucey KS, Leadbetter JR (2014) Catechol 2,3-dioxygenase and other catabolite. Appl Microbiol Biotechnol 102(11):4807–4816

Maile S, Meier-Schellersheim M, Schutte A, Lengeler B, Heijnen CJ, Klenk HP, Stahl DA, Woese CR (2006) Comparative transcriptional analysis of the key aromatic degradation operon of the aromatic bacterium Acinetobacter radioresistens P1. Int J Syst Evol Microbiol 56(6):1737–1745.

MacLean AM, MacPherson A, Aneja P, Finan TM (2006) Characterization of the β-ketoadipate pathway in Sinorhizobium meliloti. Appl Environ Microbiol 72(8):5403–5413

Mahariuddin M, Fakhruddin A (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiology 2012

Mäkelä MR, Marinović E, Sasaki M, Minakawa Y, Abe T, Sonoki T, Miyauchi K, Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84(16):1456–1461

Mallinson SJ, Machovina MM, Silveira RL, Garcia-Borràs M, Gallup N, Johnson CW, Allen MD, Skaf MS, Crowley MF, Neidle EL (2018) A promiscuous cytochrome P450 aromatic O-demethylase for lignin degradation. Annu Rev Plant Biol 41(1):455–496

Mansfield SD, Nakamura T, Ichinose H, Wariishi H (2005) Transporting proteins for aromatic compounds derived from lignin: benzoate derivative binding proteins. J Mol Biol 423(4):555–575

McCarthy AJ, Broda P (1984) Screening for lignin-degrading actinomycetes and characterization of their activity against [14C] lignin-labelled wheat lignocellulose. Microbiology 130(11):2905–2913

Mechichi T, Labat M, Patel BK, Woo TH, Thomas P, García J-L (1999) Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylation homoacetogen from an olive mill wastewater treatment digester. Int J Syst Evol Microbiol 49(3):1201–1209

Mechichi T, Patel BK, Sayadi S (2005) Anaerobic degradation of methoxylated aromatic compounds by Clostridium methoxybenzovorans and a nitrate-reducing bacterium Thauera sp. strain Cin3, 4. Int Biodeterior Biodegradation 56(4):224–230

Michalska K, Chang C, Mack JC, Zerbs S, Joachimski A, Collart FR (2012) Characterization of transport proteins for aromatic compounds derived from lignin: benzoate derivative binding proteins. J Mol Biol 423(4):555–575

Mielichse CB, Reijnen L, Olivain C, Alabouvette C, Rep M (2012) Degradation of aromatic compounds through the beta-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. Mol Plant Pathol 13(9):1089–1100. https://doi.org/10.1111/j.1364-3703.2012.00818.x

Miedendorf WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastslike fungi. Antonie Van Leeuwenhoek 63(2):125–144

Milligan PW, Häggblom MM (1998) Biodegradation of resorcinol and catechol by denitrifying enrichment cultures. Environ Toxicol Chem 17(8):1456–1461

Monisha T, Ismail Sab M, Masarbo R, Nayak AS, Karegoudar T (2018) Degradation of cinnamic acid by a newly isolated bacterium Stenotrophomonas sp. TRMK2. 3 Biotech 8(8):368

Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paição DA, Ematsu GC, Ariettci JA, Caldana C, Dixon N (2018) Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol Biofuels 11(1):75

Mori K, Kamimura N, Masai E (2018) Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite. Appl Microbiol Biotechnol 102(11):4807–4816

Murray K, Duggleby CJ, Williams PA, Sala-Trepat JM (1972) The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. Eur J Biochem 28(3):301–310

Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84(16):166–169

Nakamura T, Ichinose H, Warishii H (2012) Flavin-containing monoxygenases from Phanerochaete chrysosporium responsible for fungal metabolism of phenolic compounds. Biodegradation 23(3):333–350. https://doi.org/10.1007/s10532-011-9521-x

Naqvi M, Yan J, Dahlquist E (2012) Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct cauticization. Appl Energy 90(1):24–31
Nichols NN, Harwood CS (1997) PcaK, a high-affinity permease for the

Nishikawa Y, Yasumi Y, Noguchi S, Sakamoto H, Ji-i N (2008) Functional

Narbad A, Gasson MJ (1998) Metabolism of ferulic acid via vanillin
using a novel CoA-dependent pathway in a newly-isolated strain of
Pseudomonas fluorescens. Microbiology 144:1397–1405

Biocatal. J Bacteriol 179(16):5056–5061

Pérez E, Tuck CO (2018) Quantitative analysis of products from lignin
depolymerisation in high-temperature water. Eur Polym J 99:38–48

Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32(5):736–794. https://doi.org/10.1111/j.1574-6976.2008.00122.x

Périé FH, Gold MH (1991) Manganesse regulation of manganese perox-

Pereira AL III, Sutherland JB, Crawford DW (1981) Streptomyces setonii: catabolism of vanillie acid via guaiacol and catechol. Can J Microbiol 27(6):636–638

Phelps C, Young L (1997) Microbial metabolism of the plant phenolic

Pham VH, Kim J (2012) Cultivation of unculturable soil bacteria. Trends

Pham VH, Kim J (2012) Cultivation of unculturable soil bacteria. Trends
Biotechnol 30(9):475–484

Pham VH, Kim J (2012) Cultivation of unculturable soil bacteria. Trends
Biotechnol 30(9):475–484

Pildain M, Novas M, Carmarin C (2005) Evaluation of anamorphic state,

Pommier MA, O’Brien JM, Ruff J, Cook AM, Lambert IB (2006) Metabolism of isovanillate, vanillate, and veratrarte by Comamonas testosteroni strain BR6020. J Bacteriol 188(11):3862–3869

Qi SW, Chaudhry MT, Zhang Y, Meng B, Huang Y, Zhao XK, Poetsch A, Jiang CY, Liu S, Liu SJ (2007) Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1, 6-bisphosphate. Proteomics 7(20):3775–3787

Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and
other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163(2):96–103

Ragusa A, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843

Raj A, Chandra R, Reddy MMK, Purohit HH, Kapley A (2007) Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World J Microbiol Biotechnol 23(6):793–799. https://doi.org/10.1007/s11274-006-9299-x

Ralph SA, Ralph J, Landucci L, Landucci L (2004) NMR database of
 lignin and cell wall model compounds. US Forest Prod Lab, Madison
(http://ars.usda.gov/Services/docs.htm)

Ravi K, García-Hidalgo J, Gorwa-Grauslund MF, Lidén G (2017) Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol 101(12):5059–5070

Ravi K, García-Hidalgo J, Nöbel M, Gorwa-Grauslund MF, Lidén G (2018) Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea. AMB Express 8(1):32

Reverón I, Jiménez N, Curiel JA, Peñas E, de Felipe FL, de las Rivas B, Muñoz R (2017) Differential gene expression on Lactobacillus plantarum WCFS1 in response to phenolic compounds unravels new genes involved in tannin degradation. Appl Environ Microb: AEM. 03387-16

Rhoads TL, Mikell AT Jr, Eley MH (1995) Investigation of the lignin-
degrading activity of Serratia marcescens: biochemical screening and ultrastructural evidence. Can J Microbiol 41(7):592–600

Rodriguez A, Carriero A, Perestelo F, Delafuente G, Milstein O, Falcon MA (1994) Effect of Penicillium chrysogenum on lignin transfor-
amation. Appl Environ Microbiol 60(8):2971–2976
Vanholme R, Demeule B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905
Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8(2):617–628. https://doi.org/10.1039/c4ee03230f
Vares T, Niennamaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of 14C-ring-labelled synthetic lignin by three Phlebia tremellosa strains. Appl Environ Microbiol 60(2):569–575
Vasudevan N, Mahadevan A (1992) Utilization of complex phenolic compounds by Actinobacter sp. Appl Microbiol Biotechnol 37(3):404–407
Wang Y, Liu Q, Yan L, Gao Y, Wang Y, Wang W (2013) A novel lignin degradation bacterial consortium for efficient pulping. Bioresour Technol 139:113–119
Watanabe Y, Shinzato N, Fukatsu T (2003) Isolation of actinomycetes from termites' guts. Biosci Biotechnol Biochem 67(8):1797–1801
Weese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87(12):4576–4579
Woo HL, Ballor NR, Hazen TC, Fortney JL, Simmons B, Davenport KW, Goodwin L, Ivanova N, Kyrpides NC, Mavromatis K (2014a) Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2. Stand Genomic Sci 9(1):19
Woo HL, Utiturk S, Klingeman D, Simmons BA, DeAngelis KM, Brown SD, Hazen TC (2014b) Draft genome sequence of the lignin-degrading Burkholderia sp. strain LIG30, isolated from wet tropical forest soil. Genome Announce 2(3):e00637–e00614
Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignocibolic fungi. Mycologia:199–219
Wu Y-R, He J (2013) Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Bioresour Technol 139:5–12
Xiong X, Liao H, Ma J, Liu X, Zhang L, Shi X, Yang X, Lu X, Zhu Y (2014) Isolation of a rice endophytic bacterium, Pantoaea sp. S d-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol 58(2):123–129
Xu Y, Yan D-Z, Zhou N-Y (2006) Heterologous expression and localization of gentisate transporter Ncg12922 from Corynebacterium glutamicum ATCC 13032. Biochem Biophys Res Commun 346(2):555–561
Xu C, Ma F, Zhang X (2009) Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. J Biosci Bioeng 108(5):372–375
Xu Y, Gao X, Wang S-H, Liu H, Williams PA, Zhou N-Y (2012) MhbT is a specific transporter for 3-hydroxybenzoate uptake by Gram-negative bacteria. Appl Environ Microbiol. 01511-12
Xu Z, Qin L, Cai M, Hua W, Jin M (2018) Biodegradation of Kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ Sci Pollut Res 25(14):14171–14181
Yaegashi J, Kirby J, Ito M, Sun J, Dutta T, Mirsigtahi M, Sundstrom ER, Rodriguez A, Baidoo E, Tanjore D (2017) Rhodospiridium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol Biofuels 10(1):241
Yaguchi A, Robinson A, Mihalesick E, Blenner M (2017) Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous. Microb Cell Factories 16(1):206
Yan Y, Zhou J, Lu H, Yuan Y, Zhao L (2011) Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Biodegradation 22(5):1017–1027
Yang YS, Zhou JT, Lu H, Yuan YL, Zhao LH (2012) Isolation and characterization of Streptomyces spp. strains F-6 and F-7 capable of decomposing alkali lignin. Environ Technol 33(23):2603–2609. https://doi.org/10.1080/09593330.2012.672473
Yang CX, Wang T, Gao LN, Yin HJ, Liu X (2017) Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. J Appl Microbiol 123(6):1447–1460
Yoshida T, Inami Y, Matsui T, Nagasawa T (2010) Regioselective carboxylation of catechol by 3, 4-dihydroxybenzoate decarboxylase of Enterobacter cloacae P. Biotechnol Lett 32(5):701–705
Yu T, Wu W, Liang W, Lever MA, Hinrichs K-U, Wang F (2018) Growth of sediimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci :201718854
Zakzeski J, Brujininex PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599
Zedia M, Wieser M, Yoshida T, Sugio T, Nagasawa T (1998) Purification and characterization of gallic acid decarboxylase from Pantoaea agglomerans T71. Appl Environ Microbiol 64(12):4743–4747
Zeng J, Singh D, Laskar DD, Chen S (2013) Degradation of native wheat straw lignin by Streptomyces virididosporus T7A. Int J Environ Sci Technol 10(1):165–174. https://doi.org/10.1007/s13762-012-0085-z
Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, Yuan JS (2016) Synergistic enzymatic and microbial lignin conversion. Green Chem 18(5):1306–1312
Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian W-J, Yang B (2017) Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol Biofuels 10(1):44

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.