Generating functions attached to some infinite matrices

Paul Monsky

Brandeis University, Waltham MA 02454-9110, USA. monsky@brandeis.edu

Abstract

Let V be an infinite matrix with rows and columns indexed by the positive integers, and entries in a field F. Suppose that $v_{i,j}$ only depends on $i-j$ and is 0 for $|i-j|$ large. Then V^n is defined for all n, and one has a “generating function” $G = \sum a_{1,1}(V^n)z^n$. Ira Gessel has shown that G is algebraic over $F[z]$. We extend his result, allowing $v_{i,j}$ for fixed $i-j$ to be eventually periodic in i rather than constant. This result and some variants of it that we prove will have applications to Hilbert-Kunz theory.

1 Introduction

Throughout, Λ is a ring with identity element 1. Suppose that $w_{i,j}$, i and j ranging over the positive integers, are in Λ and that $w_{i,j} = 0$ whenever $i-j$ lies outside a fixed finite set. Then W^n is defined for all n, and one gets a generating function $G(W) = \sum a_n z^n$ in $\Lambda[[z]]$, where a_n is the $(1,1)$ entry in the matrix W^n. We shall prove:

Theorem I Suppose that $w_{i,j} = 0$ if $i-j \notin \{-1, 0, 1\}$, and that $w_{i+1,j+1} = w_{i,j}$ unless $i = j = 1$. Suppose further that $\Lambda = M_s(F)$, F a field, so that $G(W)$ may be viewed as an $s \times s$ matrix with entries in $F[[z]]$. Then these matrix entries are algebraic over $F(z)$.

Corollary Let F be a field and $v_{i,j}$, i and j ranging over the positive integers, be in F. Suppose:

(a) $v_{i,j} = 0$ whenever $i-j$ lies outside a fixed finite set.
(b) For fixed r in Z, v_{i+r} is an eventually periodic function of i.

Then if V is the matrix $[v_{i,j}]$, the generating function $G(V)$ is algebraic over $F(z)$.

Proof To derive the corollary we choose s so that:
(1) \(v_{i,j} = 0 \) whenever \(i \leq s \) and \(j > 2s \) or \(j \leq s \) and \(i > 2s \).
(2) \(v_{i+s,j+s} = v_{i,j} \) whenever \(i + j \geq s + 2 \).

We then write the initial \(2s \) by \(2s \) block in \(V \) as \(|D_{\Lambda}| \) with \(A, B, C, D \) in \(M_s(F) \). Our choice of \(s \) tells us that \(V \) is built out of \(s \) by \(s \) blocks, where the blocks along the diagonal are a single \(D \), followed by \(B \)'s, those just below a diagonal block are \(A \)'s, those just above a diagonal block are \(C \)'s, and all other entries are 0. Now let \(\Lambda = M_s(F) \) and \(W = [w_{i,j}] \) where \(w_{i+1,i} = A \), \(w_{i,i+1} = C \), \(w_{1,1} = D \), \(w_{i,j} = B \) for \(i > 1 \), and all other \(w_{i,j} \) are 0. View \(G(W) \) as an \(s \) by \(s \) matrix with entries in \(F[[z]] \). One sees easily that \(G(V) \) is the (1,1) entry in this matrix, and Theorem I applied to \(W \) gives the corollary. \(\square \)

Remark When \(v_{i,j} \) only depends on \(i-j \), the above corollary is due to Gessel. (When the matrix entries of \(V \) are all 0's and 1's the result is contained in Corollary 5.4 of [1]. The restriction on the matrix entries isn't essential in Gessel's proof, as one can use a generating function for walks with weights.)

Our proof of Theorem I is easier than Gessel's proof of his special case of the corollary. The reason for this is that by working over \(\Lambda \) rather than over \(F \) we are able to restrict our study to walks with step-sizes in \(\{-1,0,1\} \). (A complication, fortunately minor, is that the weights must be taken in the non-commutative ring \(\Lambda \).) Our proof is well-adapted to finding an explicit polynomial relation between \(G(V) \) and \(z \); we'll work out a few examples. This paper would not have been possible without Ira Gessel's input. I thank him for showing me tools of the combinatorial trade.

2 Walks and generating functions

Definition 2.1 If \(l \geq 0 \), an ordered \(l+1 \)-tuple \(\alpha = (\alpha_0, \ldots, \alpha_l) \) of integers is a (Motzkin) walk of length \(l = l(\alpha) \) if each of \(\alpha_1 - \alpha_0, \ldots, \alpha_l - \alpha_{l-1} \) is in \(\{-1,0,1\} \).

We say that the start of the walk is \(\alpha_0 \), the finish is \(\alpha_l \), and that \(\alpha \) is a walk from \(\alpha_0 \) to \(\alpha_l \).

Definition 2.2 If \(\alpha \) and \(\beta \) are walks of lengths \(l \) and \(m \), the concatenation \(\alpha \beta \) of \(\alpha \) and \(\beta \) is the walk \((\alpha_0, \ldots, \alpha_l, \alpha_l + (\beta_1 - \beta_0), \ldots, \alpha_l + (\beta_m - \beta_0)) \) of length \(l + m \).

Now let \(\Lambda \) be a ring with identity element 1, and \(A, B, C, D \) lie in \(\Lambda \). To each walk \(\alpha \) we attach weights \(w(\alpha) \) and \(w^*(\alpha) \) in \(\Lambda \):

Definition 2.3 If \(l(\alpha) = 0 \), \(w(\alpha) = w^*(\alpha) = 1 \). If \(l(\alpha) > 0 \), \(w(\alpha) = U_1 \cdots U_l \) where \(U_i = A, B \) or \(C \) according as \(\alpha_i - \alpha_{i-1} \) is \(-1,0,1 \). The definition of
$w^*(\alpha)$ is the same with one change: if $\alpha_i = \alpha_{i-1} = 0$ then $U_i = D$ rather than B.

Evidently $w(\alpha\beta) = w(\alpha)w(\beta)$. Furthermore $w^*(\alpha\beta) = w^*(\alpha)w^*(\beta)$ whenever α and β are walks from 0 to 0.

Definition 2.4 α is “standard” if each $\alpha_i \geq \alpha_l$. Note that a walk from 0 to 0 is standard if and only if each $\alpha_i \geq 0$.

Definition 2.5 α is “primitive” if $l(\alpha) > 0$, $\alpha_0 = \alpha_l$ and no α_i with $0 < i < l$ is α_0. Note that a standard walk from 0 to 0 is primitive if and only if $l(\alpha) > 0$ and each α_i, $0 < i < l$, is > 0.

Definition 2.6

(1) $G(w) = \sum w(\alpha)z^{l(\alpha)}$, the sum extending over all standard walks from 0 to 0. $H(w)$ is the sum extending over all primitive standard walks from 0 to 0.

(2) $G(w^*)$ and $H(w^*)$ are defined similarly, using $w^*(\alpha)$ in place of $w(\alpha)$.

Lemma 2.7 Let $G = G(w)$, $H = H(w)$. Then, in $\Lambda[[z]]$:

(1) $G = 1 + H + H^2 + \cdots$

(2) $H = Bz + CGAz^2$

Proof Every standard walk from 0 to 0 of length > 0 is either primitive or uniquely a concatenation of two or more primitive standard walks from 0 to 0. The multiplicative property of w now gives (1). To prove (2) note that the primitive standard walk $(0,0)$ has $w = B$. And a primitive standard walk from 0 to 0 of length $l > 1$ is a concatenation of $(0,1)$, a standard walk, β, from 0 to 0 of length $l - 2$ and $(0,-1)$. Then $w(\alpha) = Cw(\beta)A$. Since $\alpha \rightarrow \beta$ gives a 1–1 correspondence between primitive standard walks of length l from 0 to 0 and standard walks of length $l - 2$ from 0 to 0, we get the result. □

Corollary 2.8 If $G = G(w)$, then $G - 1 - (BG)z - (CGAG)z^2 = 0$ in $\Lambda[[z]]$.

Proof By (1) of Lemma 2.7, $(1 - H) \cdot G = 1$. Substituting $H = Bz + CGAz^2$ gives the result. □

Theorem 2.9 Suppose that $\Lambda = M_s(F)$, F a field, so that $G(w)$ may be viewed as an s by s matrix with entries in $F[[z]]$. Then these matrix entries, $u_{i,j}$, are algebraic over $F(z)$.

Proof Let $U = |U_{i,j}|$ be an s by s matrix of indeterminates over F, and $p_{i,j}$ be the (i,j) entry in $U - I_s - (BU)z - (CUA)z^2$. The $p_{i,j}$ are degree 2 polynomials in $U_{1,1}, \ldots, U_{s,s}$ with co-efficients in $F[z]$. By Corollary 2.8, $p_{i,j}(u_{1,1}, \ldots, u_{s,s}) = 0$. Now $p_{i,j} = U_{i,j} - \delta_{i,j} - zf_{i,j}(U_{1,1}, \ldots, U_{s,s}, z)$ where the
$f_{i,j}$ are polynomials with co-efficients in F. It follows that the Jacobian matrix of the $p_{i,j}$ with respect to the $U_{i,j}$, evaluated at $(u_{1,1}, \ldots, u_{s,s})$, is congruent to I_{s^2} mod z in the s^2 by s^2 matrix ring over $F[[z]]$, and so is invertible. Thus $(u_{1,1}, \ldots, u_{s,s})$ is an isolated component of the intersection of the hypersurfaces $p_{i,j}(U_{1,1}, \ldots, U_{s,s}) = 0$, and so its co-ordinates, $u_{1,1}, \ldots, u_{s,s}$, are algebraic over $F(z)$. \square

Lemma 2.10 $G(w^*)^{-1} - G(w)^{-1} = (B - D)z$.

Proof The proof of Lemma 2.7 (1) shows that $G(w^*)^{-1} = 1 - H(w^*)$ with $H(w^*)$ as in Definition 2.6. So it suffices to show that $H(w) - H(w^*) = (B - D)z$. Now for a primitive walk α of length > 1 from 0 to 0 one cannot have $\alpha_{i-1} = \alpha_i = 0$, and so $w(\alpha) = w^*(\alpha)$. On the other hand, for the primitive walk $(0,0)$, $w = B$ and $w^* = D$. This gives the lemma. \square

Combining Lemma 2.10 with Theorem 2.9 we get:

Theorem 2.11 If $\Lambda = M_s(F)$ the matrix entries of the s by s matrix $G(w^*)$ are algebraic over $F(z)$.

Now let $W = |w_{i,j}|$ where $w_{i+1,i} = A$, $w_{i,i+1} = C$, $w_{1,1} = D$, $w_{i,i} = B$ for $i > 1$, and all the other $w_{i,j} = 0$. In view of Theorem 2.11 the proof of Theorem I will be complete once we show that $G(W) = G(w^*)$ where w^* is the weight function of Definition 2.3. The key to this is:

Lemma 2.12 For $k \geq 1$ let $u_k^{(n)}$ be $\sum w^*(\alpha)$, the sum extending over all standard walks of length n from $k - 1$ to 0. Then:

1. $u_k^{(0)} = 1$ or 0 according as $k = 1$ or $k > 1$.
2. $u_k^{(n+1)} = Du_k^{(n)} + Cu_k^{(n)}$.
3. If $k > 1$, $u_k^{(n+1)} = Au_{k-1}^{(n)} + Bu_k^{(n)} + Cu_{k+1}^{(n)}$.

Lemma 2.12 has the following immediate corollaries, with the first proved by induction on n.

Corollary 2.13 The first column vector in W^n is $(u_1^{(n)}, u_2^{(n)}, \ldots)$.

Corollary 2.14 The $(1,1)$ co-efficient of W^n is $\sum w^*(\alpha)$, the sum extending over all standard walks of length n from 0 to 0. So $G(W) = G(w^*)$.

It remains to prove Lemma 2.12. (1) is evident. Let α be a standard walk of length n from 0 or 1 to 0. Then $\beta = (0, \alpha_0, \ldots, \alpha_n)$ is a standard walk of length $n + 1$ from 0 to 0, and $w^*(\beta)$ is $Dw^*(\alpha)$ in the first case and $Cw^*(\alpha)$ in the second. Also each standard walk β of length $n + 1$ from 0 to 0 arises in this way from some α; explicitly $\alpha = (\beta_1, \ldots, \beta_n)$. Summing over β we get (2). Similarly, suppose that $k > 1$ and that α is a standard walk of length n
from $k - 2$, $k - 1$ or k to 0. Then $\beta = (k - 1, \alpha_0, \ldots, \alpha_n)$ is a standard walk of length $n + 1$ from $k - 1$ to 0 and $w^*(\beta) = Aw^*(\alpha)$ in the first case, $Bw^*(\alpha)$ in the second, and $Cw^*(\alpha)$ in the third. Also, each standard walk β of length $n + 1$ arises from such an α; explicitly $\alpha = (\beta_1, \ldots, \beta_n)$. Summing over β we get (3), completing the proof. □

Remark 2.15 To calculate the matrix entries of $G(W)$ explicitly as algebraic functions of z by the method of Theorem 2.9 involves solving a system of s^2 quadratic equations in s^2 variables. This isn’t practical when $s > 2$; in the next section we give a different proof of Theorem 2.9 that is often better adapted to explicit calculations.

3 A partial fraction proof of Theorem 2.9

Theorem 3.1 $\sum w(\alpha)x^{\alpha_0}$, the sum extending over all length n walks (not necessarily standard) with finish 0, is the element $(Ax + B + Cx^{-1})^n$ of $\Lambda[x, x^{-1}]$.

Proof Denote the sum by f_n. Since $f_0 = 1$ it’s enough to show that $f_{n+1} = (Ax + B + Cx^{-1})f_n$. Let $v_k^{(n)}$ be the co-efficient of x^k in f_n. Then $v_k^{(n)} = \sum w(\alpha)$, the sum extending over all length n walks from k to 0. The proof of (3) of Lemma 2.12, using all walks rather than all standard walks, shows that $v_k^{(n+1)} = Av_k^{(n)} + Bv_k^{(n)} + Cv_k^{(n)}$ for all k in Z, giving the result. □

Definition 3.2

$M_0(w) = \sum w(\alpha)z^{l(\alpha)}$, the sum extending over all 0 to 0 walks.

$M_{-1}(w)$ is the sum extending over all -1 to 0 (or 0 to 1) walks.

M_1 is the sum extending over all 1 to 0 (or 0 to -1) walks.

We’ll generally omit the w and just write M_0, M_{-1} or M_1.

Corollary 3.3 Suppose that $i = 0$, -1 or 1. Then M_i is the co-efficient of x^i in the element $\sum_0^\infty (Ax + B + Cx^{-1})^n z^n$ of $\Lambda[x, x^{-1}][[z]]$.

Definition 3.4 $J_0 = J_0(w)$ is $\sum w(\alpha)z^{l(\alpha)}$, the sum extending over all primitive 0 to 0 walks.

Theorem 3.5

(1) $M_0 = 1 + J_0 + J_0^2 + \cdots$.

(2) $G(w) = M_0 - M_1M_0^{-1}M_{-1}$.

Proof (1) follows from the multiplicative property of w, as in the proof of Lemma 2.7. So $M_0^{-1} = 1 - J_0$, and (2) asserts that $G(w) = M_0 + M_1J_0M_{-1} - M_1M_{-1}$. If α is a walk from 0 to 0 let $r(\alpha)$ be the number of ways of writing
Suppose now that $\Lambda = M_s(F)$, F a field, so that M_0, M_1 and M_{-1} may be viewed as s by s matrices with entries in $F[[z]]$. Theorem 3.5, (2), will give a new proof of Theorem 2.9 once we show that these matrix entries are algebraic over $F(z)$. The facts about the matrix entries of M_0, M_1 and M_{-1} follow from a standard partial fraction decomposition argument—we’ll give our own version.

The algebraic closure of the field of fractions of $F[[z]]$ is a valued field with value group Q, let Ω be the completion of this field and $\text{ord} : \Omega \to Q \cup \{\infty\}$ be the ord function in Ω. Let Ω' consist of formal power series $\sum_{i=0}^{\infty} a_i x^i$ with $a_i \in \Omega$ and ord $a_i \to \infty$ as $|i| \to \infty$. Ω' has an obvious multiplication and is an overring of $F[x, x^{-1}][[z]]$. l_0, l_1 and l_{-1} are the Ω-linear maps $\Omega' \to \Omega$ taking $\sum a_i x^i$ to a_0, a_1 and a_{-1}. Note that $\overline{F(z)}$, the algebraic closure of $F(z)$, imbeds in Ω.

Lemma 3.6 Suppose $\lambda \in \overline{F(z)}$ with ord $\lambda \neq 0$. Then the element $x - \lambda$ of Ω' is invertible, and for all $k \geq 1$, $(x - \lambda)^{-k} = \sum_{i=0}^{\infty} a_i x^i$ in Ω' with the a_i in $\overline{F(z)}$. In particular, l_0, l_1 and l_{-1} take each $(x - \lambda)^{-k}$ to an element of $\overline{F(z)}$.

Proof If ord $\lambda > 0$, $x - \lambda = x(1 - \lambda x^{-1})$ has inverse $x^{-1}(1 + \lambda x^{-1} + \lambda^2 x^{-2} + \cdots)$, while if ord $\lambda < 0$, $x - \lambda = -\lambda(1 - \lambda^{-1} x)$ has inverse $-\lambda^{-1}(1 + \lambda^{-1} x + \lambda^{-2} x^2 + \cdots)$. □

Lemma 3.7 Let U_1 and U_2 be elements of $F[z, x]$. Suppose that $U_2 \equiv x^s \bmod z$ for some s. Then U_2 has an inverse in $F[x, x^{-1}][[z]]$ and the co-efficients of x^0, x^1 and x^{-1} in the element $U_1 U_2^{-1}$ of $F[x, x^{-1}][[z]]$ all lie in $\overline{F(z)}$.

Proof Write U_2 as $x^s(1 - zp)$ with $p \in F[x, x^{-1}, z]$. Then $x^{-s}(1 + zp + z^2p^2 + \cdots)$ is the desired inverse of U_2. If λ in Ω has ord 0 then $1 - zp(\lambda, \lambda^{-1}, z)$ has ord 0 and cannot be 0. So when we factor U_2 in $\overline{F(z)}[x]$ as $q \cdot \Pi(x - \lambda_i)_{i\in I}$ with q in $F[z]$ and λ_i in $\overline{F(z)}$, no ord (λ_i) can be 0. View $U_1 U_2^{-1}$ as an element of $\overline{F(z)}(x)$. As such it is an $\overline{F(z)}$ linear combination of powers of x and powers of the $(x - \lambda_i)^{-1}$. Since l_0, l_1 and l_{-1} are Ω-linear they are $\overline{F(z)}$-linear. Lemma 3.6 then tells us that $U_1 U_2^{-1}$, viewed as an element of Ω', is mapped by each of l_0, l_1 and l_{-1} to an element of $\overline{F(z)}$. This completes the proof. □
Lemma 3.8 Let A, B and C be in $M_s(F)$ and $u \in F[x, x^{-1}][[z]]$ be an entry in the matrix $(I_s - z(Ax + B +Cx^{-1}))^{-1}$. Then the co-efficients of x^0, x^1 and x^{-1} in u all lie in $F(z)$.

Proof u may be written as U_1/U_2 where U_1 and U_2 are in $F[z, x]$ and $U_2 = \det (xI_s - z(Ax^2 + Bx + C))$. Then $U_2 \equiv x^s \mod z$, and we apply Lemma 3.7.

Corollary 3.9 If $\Lambda = M_s(F)$, F a field, then the matrix entries of M_0, M_1 and M_{-1} are algebraic over $F(z)$. (So by Theorem 3.5 the same is true of the matrix entries of $G(w)$.)

Proof $(I_s - z(Ax + B +Cx^{-1}))^{-1} = \sum_0^\infty (Ax + B +Cx^{-1})^n z^n$, and we combine Lemma 3.8 with Corollary 3.3.

4 Examples

Example 4.1 For i, j positive integers define $v_{i,j}$ by:

1. $v_{i,j} = 1$ if $i - j \in \{-1, 0, 1\}$.
2. $v_{i,j} = 1$ if $j = i + 3$ and i is odd.
3. All other $v_{i,j}$ are 0.

We calculate $G(V)$ where $V = |v_{i,j}|$. If we take $s = 2$, (1) and (2) in the corollary to Theorem I are satisfied, and $D = B = (\frac{1}{1} \frac{1}{1}), A = (\frac{0}{0} \frac{1}{0}), C = (\frac{1}{0} \frac{1}{0})$. Let $G = G(w) = G(w^*)$. G is a 2 by 2 matrix $(\frac{g_1}{g_2} \frac{g_3}{g_4})$ with entries in $F[[z]]$, and $g_1 = G(V)$. By Corollary 2.8, $CGAGz^2 + BGz - G + I_2 = 0$. Two of the four equations this gives are:

\begin{align*}
z^2g_1g_3 + z(g_1 + g_3) - g_3 &= 0 \\
z^2g_3^2 + z(g_1 + g_3) - g_1 + 1 &= 0
\end{align*}

Solving the first equation for g_3 and substituting in the second we find that $G(V) = g_1$ is a root of:

$(z^5 - z^4)x^3 + (3z^4 - 4z^3 + 2z^2)x^2 + (2z^3 - 4z^2 + 3z - 1)x + (z^2 - 2z + 1) = 0$.

Example 4.2 For i, j positive integers define $v_{i,j}$ by:

1. $v_{i,j} = 1$ if $i - j \in \{-1, 0, 1\}$.
2. $v_{i,j} = 1$ if $j = i + 3$ and i is even.
3. All other $v_{i,j}$ are 0.
We calculate $G(V^*)$ where $V^* = |v_{i,j}|$. Since $v_{2,5} = 1$, condition (1) of the corollary to Theorem I is not met when $s = 2$, and we instead take $s = 4$.

Now
\[
D = B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.
\]

Let the entries in the first column of the 4 by 4 matrix $G = G(w)$ be a, b, c and d. Examining the entries in the first column of the matrix equation $G = BGz + CGAGz^2 + I_4$ we see:

\[
\begin{align*}
a &= (a + b)z + 1 \\
b &= (a + b + c)z + bdz^2 \\
c &= (b + c + d)z \\
d &= (c + d)z + d(a + c)z^2
\end{align*}
\]

Using Maple to eliminate b, c, and d from this system we find that $a = G(V^*)$ is a root of:

\[
(z^2) \cdot (z - 1)^3 \cdot (3z^2 + 3z - 2) \cdot x^3 \\
+ (z - 1)^2 \cdot (9z^4 + 6z^3 - 11z^2 + 5z - 1) \cdot x^2 \\
+ (2z - 1) \cdot (5z^4 - 13z^2 + 9z - 2) \cdot x \\
+ (2z - 1)^2 \cdot (z^2 + 2z - 1) = 0.
\]

Example 4.3 For i, j positive integers define $v_{i,j}$ by:

1. $v_{i,j} = 1$ if $i - j \in \{-1, 1\}$.
2. $v_{i,j} = 1$ if $i - j \in \{-3, 3\}$ and $i \equiv 2 \pmod{3}$.
3. All other $v_{i,j}$ are 0.

We calculate $G(V)$ where $V = |v_{i,j}|$. Take $s = 3$. Then:

\[
A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad B = D = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.
\]

The determinant of the matrix $xI_3 - z(Ax^2 + Bx + C)$ is $-x^2(zx^2 + (3z^2 - 1)x + z)$. The splitting field of this polynomial over $F(z)$ is the extension of $F(z)$ generated by $\sqrt{1 - 10z^2 + 9z^4}$. The arguments of section 3 show that M_0, M_1 and M_{-1} have entries in this extension field. It’s not hard to write down these matrices explicitly using the partial-fraction decomposition argument. Theorem 3.5 and a Maple calculation then show that the $(1, 1)$ entry in $G(w)$ is $4/(3 + z^2 + \sqrt{1 - 10z^2 + 9z^4})$. Since $D = B$, $G(w^*) = G(w)$, and this $(1, 1)$ entry is the desired $G(V)$.

8
5 More algebraic generating functions

Definition 5.1 Suppose that $\Lambda = M_s(F)$, F a field, and that A, B, C, D are in Λ. Then $L \subset \mathbb{Q}(z)$ is the extension field of $F(z)$ generated by the matrix entries of the M_0, M_1 and M_{-1} of Definition 3.2.

Remark 5.2 As we’ve seen L contains the matrix entries of $G(w)$ and $G(w^*)$ and is finite over $F(z)$. Indeed the proofs of Lemmas 3.7, 3.8 and Corollary 3.9 show that L is a finite extension field over $F(z)$. One can see a bit more. The above polynomial splits into linear factors in $\Omega[z]$, and one may view its splitting field as a subfield of the valued field Ω. By examining the partial-fraction decomposition one finds that L is fixed elementwise by each automorphism of the splitting field that is the identity on $F(z)$ and permutes the roots that have positive ord among themselves.

The goal of this section is to show that some generating functions related to $G(w)$ also have their matrix entries in L. These results will be used in a sequel to show the algebraicity (under a conjecture) of certain Hilbert-Kunz series and Hilbert-Kunz multiplicities.

Now let $u_k^{(n)}$ be as in Lemma 2.12 where k is a positive integer. By definition, $G^*(w) = \sum u_1^{(n)}z^n$.

Lemma 5.3 $\sum_n u_{k+1}^{(n)}z^n = G(w)(Az)\sum_n u_k^{(n)}z^n$.

Proof A standard walk from k to 0 can be written in just one way as the concatenation of a standard walk from k to k, the walk $(k, k-1)$ and a standard walk from $k-1$ to 0.

Corollary 5.4 Fix $k \geq 1$. The generating function arising from the $(k, 1)$ entries of the matrices W^n has its matrix entries in L.

Proof Corollary 2.13 shows that this generating function is $\sum u_k^{(n)}z^n$, and we use Lemma 5.3 and induction.

Definition 5.5 $G^*_r = \sum \binom{\alpha}{r}w^*(\alpha)z^{(\alpha)}$, the sum extending over all standard walks finishing at 0.

Evidently $G^*_0 = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} u_{k+1}^{(n)}z^n$. By Lemma 5.3, this is

$$(1 + G(w)Az + (G(w)Az)^2 + \cdots)G(w^*).$$

So:

Lemma 5.6 $(1 - G(w)Az)G^*_0 = G(w^*)$.

9
A variant of this is:

Lemma 5.7 \((1 - G(w)Az)G^*_r = G(w)(Az)G^*_r.\)

Proof We introduce new weight functions \(w|t\) and \(w^*|t\) as follows. Replace \(\Lambda, A\) and \(C\) by \(\Lambda[[t]], A(1 + t)\) and \(C(1 + t)^{-1}\), and let \(w|t\) and \(w^*|t\) be the new \(w\) and \(w^*\) that arise. If \(\alpha = (\alpha_0, \ldots, \alpha_l)\) is a walk from \(k\) to \(0\) then there are \(k = \alpha_0\) more steps of size \(-1\) in the walk than there are steps of size \(1\). It follows that \(w|t(\alpha)\) and \(w^*|t(\alpha)\) are \((1 + t)^{\alpha_0}w(\alpha)\) and \((1 + t)^{\alpha_0}w^*(\alpha)\). In particular, \(G(w|t) = G(w)\) and \(G(w^*|t) = G(w^*)\). Applying Lemma 5.6 in this new situation we find:

\[
((1 - G(w)Az) - G(w)Azt) \left(\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} (1 + t)^k u_{i+1}^{(n)} z^n\right) = G(w^*).
\]

In particular, the co-efficient of \(t^{r+1}\) in the left-hand side of the above equation is \(0\). Evaluating this co-efficient we get the lemma. \(\square\)

Theorem 5.8 Let \(a_1, a_2, \ldots\) be elements of \(F\). Suppose there is a polynomial function whose value at \(j\) is \(a_j\) for sufficiently large \(j\). Let \(R_n = \sum_1^{\infty} a_k u_k^{(n)}\). Then all the matrix entries of \(\sum R_n z^n\) lie in \(L\).

Proof Corollary 5.4 shows that the generating function arising from any single \((j, 1)\) entry has matrix entries in \(L\). So we may assume that \(j \to a_j\) is a polynomial function. Since any polynomial function is an \(F\)-linear combination of the functions \(j \to \binom{j-1}{r}\), \(r = 0, 1, 2, \ldots\) we may assume \(a_j = \binom{j-1}{r}\). But then \(\sum R_n z^n\) is \(G^*_r\), and we use Lemmas 5.6, 5.7 and induction. \(\square\)

Corollary 5.9 Suppose \(V = |v_{i,j}|, i, j \geq 1\) is a matrix with entries in \(F\) satisfying:

1. \(v_{i,j} = 0\) whenever \(i \leq s\) and \(j > 2s\) or \(j \leq s\) and \(i > 2s\).
2. \(v_{i+s,j+s} = v_{i,j}\) whenever \(i + j \geq s + 2\).
3. The initial 2s by 2s block in \(V\) is \((P_{AB})\).

Suppose further that \(a_1, a_2, \ldots\) are in \(F\) and that for each \(i, 1 \leq i \leq s\), there is a polynomial function agreeing with \(k \to a_{i+sk}\) for large \(k\). Let \(v_{i}^{(n)}\) be the \((i, 1)\) entry in \(V^n\). Then \(\sum v_{i}^{(n)} a_i z^n\) is in \(L\).

Proof Construct \(W\) as in the proof of the corollary to Theorem I. As the first column of \(W^n\) is \(u_1^{(n)}, u_2^{(n)}, \ldots\) it follows that \(v_{i+sk}^{(n)}\) is just the \((i, 1)\) entry in the \(s\) by \(s\) matrix \(u_{i+1}^{(n)}\). Theorem 5.8 shows that for each \(i\) with \(1 \leq i \leq s\), \(\sum_{k,n} v_{i+sk}^{(n)} a_{i+sk} z^n\) is in \(L\). Summing over \(i\) we get the result. \(\square\)

The following results may seem artificial but they’re convenient for our intended applications to Hilbert-Kunz theory.
Lemma 5.10 Let Y be a finite dimensional vector space over F, $T : Y \rightarrow Y$ and $l : Y \rightarrow F$ linear maps and y_1, y_2, \ldots a sequence in Y. Let V and s be as in Corollary 5.9. Suppose that for each $i, 1 \leq i \leq s$, each co-ordinate of y_{i+s} with respect to a fixed basis of Y is an eventually polynomial function of k. Define $y^{(n)}$ inductively by $y^{(0)} = 0$, $y^{(n+1)} = Ty^{(n)} + \sum v_i^{(n)} y_i$—see Corollary 5.9 for the definition of $v_i^{(n)}$. Then $\sum l(y^{(n)}) z^n$ is in \mathcal{L}.

Proof $(I - zT)\sum y^{(n)} z^n = \sum_i v_i^{(n)} y_i z^{n+1}$. By Corollary 5.9, all the co-ordinates of $(I - zT)\sum y^{(n)} z^n$ with respect to a fixed basis of Y lie in \mathcal{L}. Since $\det (I - zT)$ is a non-zero element of $F(z) \subset \mathcal{L}$, the same is true of the co-ordinates of $\sum y^{(n)} z^n$, giving the lemma. □

Theorem 5.11 Suppose X is a vector space over F, Y is a finite dimensional subspace, $T : X \rightarrow X$ is linear with $T(Y) \subset Y$, and E_1, E_2, \ldots lie in X. Suppose further that $T(E_i) = \sum v_{i,j} E_j + y_j$, where $V = \{v_{i,j}\}$ is as in Lemma 5.10 and y_1, y_2, \ldots is a sequence in Y satisfying the condition of Lemma 5.10. Then if $l : X \rightarrow F$ is linear with each $l(E_i) = 0$, the power series $\sum_{0}^{\infty} l(T^n(E_1)) z^n$ is in \mathcal{L}.

Proof Define $y^{(n)}$ as in Lemma 5.10. Using the identity $\sum_j v_{i,j} v_j^{(n)} = v_i^{(n+1)}$ and induction we find that $T^n(E_1) = \sum v_i^{(n)} E_i + y^{(n)}$. So $l(T^n(E_1)) = l(y^{(n)})$ and we apply Lemma 5.10. □

The following example is closely related to our calculations in [2]. We’ll explain how this and similar examples relate to Hilbert-Kunz theory in a sequel to this paper.

Example 5.12 Suppose δ_1 and δ_2 are a basis of Y, that $y_1 = 6\delta_1$ and that $y_k = (8k - 2)\delta_1 + \delta_2$, $k > 1$. Suppose further that $T(\delta_1) = 16\delta_1$, $T(\delta_2) = 4\delta_1 + 4\delta_2$, $T(E_1) = E_1 + E_2 + y_1$, and that $T(E_k) = E_{k-1} + E_{k+1} + y_k$ for $k > 1$. Suppose $l : X \rightarrow F$ takes δ_1 to 1, and δ_2 and each E_k to 0. We shall calculate the power series $S = \sum l(T^n(E_1)) z^n$ explicitly.

In the above situation, $v_{1,1} = v_{i,i+1} = v_{i+1,i} = 1$ and all other $v_{i,j}$ are 0. So we can take $s = 1$, $A = C = D = 1$ and $B = 0$. Since $s = 1$, $v_{k}^{(n)} = u_{k}^{(n)}$. It follows from this and the definition of the y_k that $\sum_{k,n} v_k^{(n)} y_k z^{n+1} = z(8G_1^* + 6G_0^*) \delta_1 + z(G_0^* - G(w^*)) \delta_2$.

Now the matrix of $T : Y \rightarrow Y$ on the basis (δ_1, δ_2) is $\left[\begin{array}{cc} 16 & -4 \\ 0 & 1 \end{array}\right]$. It follows that the matrix of $I - zT$ is $\left[\begin{array}{cc} 1 - 16z & -4z \\ 0 & 1 - 4z \end{array}\right]$. Since S is the co-efficient of δ_1 in $\sum l(y^{(n)}) z^n = (I - zT)^{-1} \sum_{k,n} v_k^{(n)} y_k z^{n+1}$, the last paragraph shows that $(1 - 16z)(1 - 4z)S = (z - 4z^2)(8G_1^* + 6G_0^*) + 4z^2(G_0^* - G(w^*))$. It only remains to calculate $G(w^*)$, G_0^* and G_1^*.

Lemma 2.7 and Corollary 2.8 show that $H(w) = z^2G(w)$, and $z^2G(w)^2 -$
\[G(w) + 1 = 0. \] So \(G(w) \) and \(H(w) \) are \(\frac{1 - \sqrt{1 - 4z^2}}{2z^2} \) and \(\frac{1 - \sqrt{1 - 4z^2}}{2} \). Lemma 2.10 then shows \(G(w^*) = \frac{1}{2z(1 - 2z)}(-1 + 2z + \sqrt{1 - 4z^2}) \). Making use of Lemmas 5.6 and 5.7 we find that \(G_0^* \) and \(G_1^* \) are \(\frac{1}{1 - 2z} \) and \(\frac{1}{2(1 - 2z)^2}(-1 + 2z + \sqrt{1 - 4z^2}) \). A brief calculation then gives the explicit formula:

\[
(1 - 16z)(1 - 4z)(1 - 2z)^2 S = 4z(1 - 2z)^2 + (2z - 12z^2)\sqrt{1 - 4z^2}.
\]

References

[1] I. Gessel, A factorization for formal Laurent series and lattice path enumeration, J. Combinatorial Theory Ser A 28 (1980), 321–337.

[2] P. Monsky, Rationality of Hilbert-Kunz multiplicities: a likely counterexample, Michigan Math. J. 57 (2008), 605–613.