Advances in epigenetic therapeutics with focus on solid tumors

Ning Jin1, Tiffany L. George1, Gregory A. Otterson1, Claire Verschraegen1, Haitao Wen1,2, David Carbone1, James Herman3, Erin M. Bertino1* and Kai He1*

Abstract
Epigenetic (“above genetics”) modifications can alter the gene expression without altering the DNA sequence. Aberrant epigenetic regulations in cancer include DNA methylation, histone methylation, histone acetylation, non-coding RNA, and mRNA methylation. Epigenetic-targeted agents have demonstrated clinical activities in hematological malignancies and therapeutic potential in solid tumors. In this review, we describe mechanisms of various epigenetic modifications, discuss the Food and Drug Administration-approved epigenetic agents, and focus on the current clinical investigations of novel epigenetic monotherapies and combination therapies in solid tumors.

Keywords: Epigenetic, Therapeutics, Therapies, Cancer, Methylation, Acetylation, Reprogramming

Background
Carcinogenesis is a complex process that involves both genetic and epigenetic changes, leading to the transformation of normal cells into malignant cells. The aberrant genetic and epigenetic alterations are the hallmark of cancer. Epigenetic modifications are responsible for cellular plasticity, differentiation and reprogramming without altering the underlying DNA sequence of the organism [1]. Normal cell development depends on regulated transcription of critical proteins, and individual cells within specific tissues and organs maintain their unique biological functions based on heritable and evolutionary differences in the DNA packaging. Histone proteins (two copies of histones H2A, H2B, H3 and H4) wrap around 147 base pairs of DNA to form a nucleosome. Nucleosomes are further compacted by additional proteins to form chromatin. Epigenetic modifications, including acetylation and methylation (histone marks), can alter DNA accessibility and chromatin structure and regulate gene transcription activation or silencing. Acetylated histones are less compact, thereby enabling gene transcription by making the DNA more accessible to RNA polymerase and the transcriptional machinery. On the other end, methylated histones can be either repressive or activating, depending on the site and degree of methylation. Methylation of histone H3 at lysine 4, 36 and 79 is generally considered as an activation mark, whereas methylations on histone H3 lysine 9, 27 are linked to transcriptional repression [2]. In general, enzymes that add acetyl or methyl groups to the histone or DNA are referred to as “writers”, whereas enzymes that remove histone marks are called “erasers”. Proteins that recognize histone and DNA modifications are the chromatin “readers” [1].

The complex balance of normal and abnormal epigenetic regulation is an area of intense interest in cancer research, including therapeutic development in cancer [3]. This article will illustrate aberrant changes in DNA methylation, histone acetylation and histone methylation (summarized in Fig. 1) in cancer, discuss the epigenetic agents in both hematological malignancies and solid tumors, and highlight the recent novel combination...
strategies, such as with immune checkpoint inhibitors and hormonal therapies, in solid tumors.

Main text

Therapeutics targeting the cancer epigenome

Therapeutics targeting the cancer epigenome can be...
grouped into two major categories: broad spectrum reprogrammers and narrow spectrum reprogrammers [4]. An argument can be made for the potential effectiveness of both broad and targeted epigenetic therapies. Broad-spectrum reprogrammers include the inhibitors of DNA methyltransferase (DNMT), histone deacetylase (HDAC) and the bromomain and extra-terminal motif proteins (BETs). These drugs cause genome-wide cancer-specific gene expression alterations. In contrast, narrow spectrum epigenetic modifying agents targeting lysine-specific histone demethylase 1 (LSD1), enhancer of zeste homolog 2 (EZH2), DOT1-like histone lysine methyltransferase (DOT1L), to achieve precise inhibition of epigenetic regulatory proteins.

Broad spectrum reprogrammers

DNMT (DNA methyltransferase—“writer”) inhibitors

DNA methylation affects the transcription of genes without altering the DNA sequence. In eukaryotic DNA, cytosine is methylated and then converted into 5-methylcytosine by DNMTs [5]. Hypermethylation of specific regions, such as the CpG islands of tumor suppressor genes, plays an important role in carcinogenesis for many types of cancers [6–8]. There are 3 primary DNMTs—DNMT1, DNMT3A and DNMT3B [9–11]. DNMT1 is predominantly involved in maintaining the preexistent methylation pattern during DNA replication. DNMT3A and DNMT3B are involved in facilitating de novo DNA methylations at loci that were previously unmethylated [12]. Tumorigenesis often involves an interplay among all 3 DNMTs [13–16]. DNMT inhibitors act as cytidine analogs and induce loss of DNA methylation. There are two main classes of hypomethylating agents, the nucleoside analogs (such as 5-azacytidine that incorporates into DNA and RNA and 5-aza-2′-deoxycytidine, or decitabine, that incorporates into DNA) and the anti-sense DNA methyltransferase inhibitors (such as MG98) that do not require incorporation into DNA. The ability of azacitidine to be incorporated into DNA and RNA can lead to broad biological effects in resting and dividing cells [17]. DNMT inhibitors have shown to be particularly effective in targeting DNA methylation in leukemic cells [18, 19].

HDAC (histone deacetylase—“eraser”) inhibitors

Histone modification occurs via acetylation of lysine residues. Two families of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs), operate in an opposing manner. HATs acetylate lysines within the amino-terminal tails of histone proteins, resulting in relaxation of chromatin structure and facilitating gene activation. Conversely, HDACs remove acetyl groups from hyperacetylated histones and make the chromatin condensed and transcriptionally silent. There are four classes of HDAC enzymes based on their structures and functions: class I (HDAC 1–3 and 8), IIa (HDAC 4, 5, 7, 9), IIb (HDAC 6, 10), III (Sir-2-related—SIRT1-7) and IV (HDAC 11) [20, 21]. Class I HDAC proteins are mainly localized in the nucleus, whereas class II HDACs are expressed in a more tissue-restricted manner [22]. Sharing significant homology with both Class I and Class II HDACs, class IV HDAC does not possess a nuclear localization signal and its function is largely unknown [23]. HDACs are key elements in the regulation of gene expression, differentiation and development, and the maintenance of cellular homeostasis. HDAC inhibition causes global gene upregulation (potential oncosuppressors) and leads to arrest of tumor cell growth, apoptosis and anti-angiogenesis [24, 25]. In addition, HDAC facilitates the binding of elongation factors to acetylated promoters and enhancers for efficient elongation. Therefore, HDAC inhibitors block gene elongation and inhibit gene expression, especially in highly expressed genes (oncogenes) [26]. Many HDAC inhibitors are non-specific and can be used to inhibit multiple isoforms of HDACs.

BET (bromomain and extra-terminal motif proteins—“reader”) inhibitors

BET proteins are known to recognize acetylated lysine in chromatin [27]. The BET family of proteins include BRD2, BRD3, BRD4, and the testes-specific BRDT [28, 29]. Bromodomains can specifically bind acetylated lysine residues of histone proteins, and are involved with histone modifications, chromatin remodeling and transcriptional activation via recruitment of other proteins [30, 31]. BRD2 and BRD3 facilitate the passage of RNA Pol II to elongate the DNA transcripts through hyperacetylated nucleosomes [32]. BRD4 enhances the recruitment of positive transcription elongation factor b (P-TEFb), leading to the release of Pol II from a pause in transcription elongation in the promoter-proximal region [33]. In particular, aberrant BRD4 expression contributes to carcinogenesis by mediating hyperacetylation of the chromatin associated with cell proliferation-promoting genes [34]. Suppression of BRD4 led to anti-leukemic effects in acute myeloid leukemia (AML) mouse models and revealed a potential epigenetic target for AML [35]. In addition, BRD4 and BET proteins also regulate enhancer (a short region of DNA that can be bound by transcription factors to enhance the transcription of a particular gene) function and, in particular, large clusters of enhancers (super-enhancers), which drive oncogene expression, such as BCL-2 and c-MYC [36, 37]. Interestingly, the pathogenic fusion product of NUT (nuclear protein in testis) with BRD4 or BRD3 (BRD4-NUT or BRD3-NUT) causes NUT midline carcinoma (NMC), which is a rare but
poorly differentiated and highly aggressive cancer of the squamous cell lineage that arises in midline structures [38]. BET bromodomain blockade using small-molecule inhibitors leads to selective repression of the transcriptional network driven by c-MYC [39].

METTL3 (methyltransferase like-3—“writer”) inhibitors

In addition to the epigenetic modifications on either DNA or histones, methylation is also observed in eukaryotic RNAs, including messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA), etc. Methylation modification impacts RNA processing, nuclear export, translation initiation and degradation [40]. In particular, N6-methyladenosine (m6A) modification of mRNA is most abundant, which occurs in two consensus sequence motifs including G(m6A)C primarily and A(m6A)C to a lesser extent [41, 42]. m6A is installed by a multiprotein writer complex that consists of methyltransferase-like protein 3 (METTL3), methyltransferase-like protein 14 (METTL14) and other accessory subunits. m6A modification is reversible and it can be erased by ALKBH5 (alkB homolog 5) [43] and FTO (fat-mass and obesity associated protein) proteins (Fig. 1) [44]. In addition, METTL3 and METTL14 are also identified as key actors of adenosine methylation of miRNAs [45, 46], whereas FTO is recognized as a key actor of adenosine demethylation of miRNAs [47]. m6A reader proteins can specifically bind to m6A transcripts and regulate the metabolism of mRNA [48]. For example, YTHDF2 (YTH domain family 2) binds to m6A in mRNA and targets mRNA degradation, whereas YTHDF1, YTHDF3, and eukaryotic initiation factor 3 (eIF3) promote translation of mRNA transcripts [49]. METTL3 has been found to be upregulated with increased m6A levels in cancer compared with those in normal tissues, suggesting a potential oncogenic role in different cancer types including AML, renal cell carcinoma, non-small cell lung cancer (NSCLC) and gastric cancer [50–53]. The studies show that loss of either METTL14 or METTL3 in AML cell lines and primary leukemic blasts lead to induction of differentiation [50, 54]. In addition, METTL3 has been associated with multiple cell signaling pathways, including tumorigenesis, proliferation, invasion, migration, cell cycle, differentiation and cell viability [55]. Currently, multiple METTL3 inhibitors are under investigation in both AML and solid tumors, with pending clinical trials in the near future [56].

Besides the role of METTL3 in m6A modification on mRNAs and miRNAs, recent study suggested that DNMT3A methylates miRNA at cytosine residues and inhibits the formation of miRNA/mRNA duplex, leading to the loss of their repressive function in gene expression [57]. Therefore, using demethylating agent to block miRNA methylation may broaden its therapeutic potentials.

Narrowed spectrum reprogrammers

LSD1 (histone demethylase—“eraser”) inhibitors

LSD1 (lysine-specific histone demethylase 1, also known as KDM1A) is the first discovered histone lysine demethylase with the ability to erase the mono-methyl and di-methyl chromatin marks on histone H3, predominantly at lysines 4 and 9 (H3K4 and H3K9) [58–60]. It can also demethylate non-histone proteins, including DNMT1 and TP53 [59]. Moreover, LSD1 is a multifunctional subunit of both repressive and activating histone-modifying complexes and can therefore act as both a transcriptional repressor or activator in a context-dependent manner [61]. LSD1 regulates the balance between self-renewal and differentiation of stem cells, and LSD1 inhibition in mixed lineage leukemia (MLL)-rearranged leukemia has been shown to downregulate expression of some leukemia-associated genes and cause apoptosis and cell differentiation [62]. In addition, LSD1 is overexpressed in various solid tumors including prostate, breast, lung and colorectal cancers, and neuroblastoma [63–67]. Pharmacological inhibition of LSD1 leads to inhibition of proliferation, differentiation, invasion, and migration in vitro and in vivo [68]. Thus, LSD1 inhibitors might be promising potential therapeutic options in a variety of cancers. Recently, it has been demonstrated that the effects of LSD1 inhibitors are particularly robust for small cell lung cancer (SCLC) through promotion of differentiation of tumor-enriched stem-like cells [69].

EZH2 (histone methyltransferase—“writer”) inhibitors

Several families of histone methyltransferases (HMT) that catalyze the methylation of specific lysine residues in histones H3 and H4 have been identified [70]. Unlike other histone modifications, which simply specify active or repressed chromatin states, histone lysine methylations confer active or repressive transcription depending on their positions and methylation states [71]. EZH2 (enhancer of zeste homolog 2), a histone methyltransferase and a catalytic component of polycomb repressive complex 2 (PRC2), catalyzes tri-methylation of histone H3 at lysine 27 (H3K27me3) to promote transcription silencing [72, 73]. Through modulating critical gene expression, EZH2 promotes cell survival, proliferation, epithelial-to-mesenchymal transition (EMT), invasion, and drug resistance of cancer cells [74]. EZH2 is activated by mutations (gain-of-function) in lymphoma [75], and EZH2 overexpression is associated with aggressiveness and worse clinical outcome in several solid tumors, including prostate, breast, bladder, and endometrial cancers, and melanoma [76–78]. The use of an EZH2
inhibitor demonstrated selective killing effect in cell lines carrying EZH2 activating mutations [79]. Several studies also identified a PRC2-independent function of EZH2 in transcriptional activation, involving transcription of androgen receptor (AR), estrogen receptor (ER) and Wnt signaling [80–83]).

DOT1L (histone methyltransferase—“writer”) inhibitors

Disruptor of telomeric silencing 1 (DOT1) is a novel class of HMT that was first identified to dysregulate gene silencing near telomeres in yeast [84]. DOT1-like (DOT1L) is the only known methyltransferase that deposits mono-, di-, and trimethyl marks on histone H3 lysine 79 (H3K79) in mammals. It participates in the regulation of transcription, differentiation and proliferation of normal cells. DOT1L has been shown to be critical for transformation by MLL fusion proteins in AML [85, 86]. Preclinical models demonstrate that MLL-driven leukemia is particularly sensitive to inhibition of DOT1L activity, and DOT1L inhibitors have been shown to specifically reduce H3K79 methylation marks and expression of MLL-fusions target genes in leukemic cells [87]. In addition, a recent study demonstrated the role of DOT1L in breast cancers that do not harbor a MLL translocation. DOT1L plays an important role in the initiation and progression of breast cancer by targeting the gene expression of EMT-promoting factors, suggesting DOT1L to be a therapeutic target for aggressive breast cancer [88]. While the pre-clinical studies showed promising activity of DOT1L inhibitors, the phase I study of DOT1L inhibitor, pinometostat, in adult and pediatric patients with relapsed or refractory leukemia demonstrated limited clinical response [89, 90].

IDH (isocitrate dehydrogenase) inhibitors

Mutations in genes encoding enzymes of the tricarboxylic acid (TCA) cycle can disrupt cell metabolism and alter the epigenetic landscape. For example, IDH1/2 enzymes metabolize isocitrate to α-ketoglutarate (α-KG) in the TCA cycle. α-KG serves as a co-factor for α-KG-dependent dioxygenases, including the ten-eleven translocation (TET) family of DNA demethylases and Jumonji family of histone demethylases. TET family of DNA methylases act on methylated DNA sequences, convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which will ultimately remove methyl groups and ensure the correct DNA methylation in the cell [91]. IDH1/2 mutations are found in several cancer types, including AML, gliomas, chondrosarcoma and intrahepatic cholangiocarcinoma [92, 93]. IDH mutations (gain-of-function) result in further processing of α-KG to 2-hydroxyglutarate (2-HG). This leads to the production of “oncometabolite” 2-HG, which inhibits TET family of DNA demethylases and Jumonji family of histone demethylases [94] and promotes tumorigenesis [95]. Accumulation of 2-HG in leukemic cells leads to increased DNA and histone methylation and results in blocked cell differentiation [96, 97]. Several small molecule inhibitors of both IDH1 and IDH2 have demonstrated reduction of 2-HG levels and differentiation of leukemic cells that carry the specific IDH mutations [98–100]. These effects also correlate with global changes in DNA methylation/histone modification state, suggesting that the phenotypic effects are, to some extent, secondary to rewiring transcriptional programs in the leukemic cells [101].

The aforementioned RNA demethylases, FTO and ALKBH5 which demethylate m6A, are α-KG-dependent dioxygenases [102–104]. m6A destabilizes transcripts and controls expression of key transcription factors in hematopoietic stem cells (HSCs) and human embryonic stem cells (ESCs) [105]. 2-HG suppresses FTO activity in leukemia cells, leading to decreased expression of the lineage transcription factor CCAAT enhancer binding protein α (C/EBPα) that enforces normal HSC quiescence and myeloid differentiation [106]. Therefore, the inhibition of IDH may lead to the changes in metabolic activities in TCA cycle such as α-KG and 2-HG, coordinating the cell fate in HSCs and ESCs.

Epigenetic drugs for cancer treatment: approved or in clinical trials

Approved epigenetic therapies

To date, the FDA-approved epigenetic agents are mostly limited in treating hematologic malignancies. Two DNMT inhibitors are approved for the treatment of myelodysplastic syndrome (MDS)—azacitidine and decitabine. Clinical trials with azacitidine and its deoxycytidine derivative, decitabine, demonstrated that 15% or more of the patients with AML or intermediate to high-risk MDS showed improvement in blood cell counts and survival [107, 108]. Several HDAC inhibitors are approved for the treatment of hematologic malignancies, including belinostat for peripheral T cell lymphoma (PTCL), panobinostat for multiple myeloma, vorinostat for cutaneous T cell lymphoma (CTCL) and romidepsin for both CTCL and PTCL. IDH inhibitors, enasidenib andivosidenib, have been approved for relapsed or refractory AML with IDH mutations [109–111]. EZH2 inhibitor, Tazemetostat, has been approved for patients with relapsed or refractory follicular lymphoma (R/R FL) with EZH2 mutation and who have received at least 2 prior systemic therapies, and for adult patients with R/R FL who have no satisfactory alternative treatment options [112].
Clinical trials are ongoing in solid tumors with agents from multiple drug classes. In January 2020, tazemetostat has been granted accelerated approval by FDA in treating epithelioid sarcoma, for which we will discuss later in this article [113]. These FDA-approved agents are summarized in Table 1.

Monotherapies in solid tumors

Historically, the first generation DNMT inhibitors (azacytidine and decitabine) showed limited activity in solid tumor, in part due to their toxicity. Biomarker studies demonstrated evidence of DNA methylation changes associated with drug administration; however, the responses were short-lived and treatment resistance developed early [114–117]. A phase I study of decitabine was conducted in patients with stage IV lung cancer, esophageal cancer, and malignant pleural mesothelioma. No objective response was observed and severe toxicities occurred. Grade 4 neutropenia was observed in 43% (15 out of 35) of the patients and grade 3 hepatotoxicity were seen in two patients with extensive liver metastases [118].

The second-generation DNMT inhibitors, such as guadecitabine (SGI-110), have been undergoing investigation. Guadecitabine is a novel hypomethylating prodrug of decitabine with a prolonged half-life. This novel compound is an oligonucleotide consisting of decitabine linked through a phosphodiester bond to the endogenous nucleoside deoxyguanosine. The dinucleotide configuration provides protection from drug clearance [119]. Guadecitabine [119] has been demonstrated to be safe and well tolerated as a single agent, with evidence of promising activity in heavily pretreated MDS and AML patients [120]. A phase II trial of SGI-110 monotherapy in patients with HCC who progressed on sorafenib (NCT01752933) was completed. The single agent SGI-110 demonstrated disappointing PFS in this trial.

Similar to DNMT inhibitors, HDAC inhibitors have shown limited single agent activity, and responses have been rare in solid tumors [121, 122]. A phase II study of vorinostat in relapsed non-small cell lung cancer (NSCLC) showed no objective response in 14 evaluable patients, and severe toxicities were reported including neutropenia, lymphopenia, fatigue and pulmonary embolisms [123]. A phase III trial of vorinostat as second-line monotherapy in advanced mesothelioma was conducted in patients who had previously received chemotherapy, and it showed that single agent vorinostat did not improve overall survival (OS) compared with placebo [124]. Representative recent clinical trials of single agent DNMT inhibitors and HDAC inhibitors in solid tumors are summarized in Table 2.

Epigenetic therapeutics	Target	Date of approval	Approved indication	Reference
DNMTi				
Azacitidine (Vidaza)	DNMT-1 inhibition	5/2004	MDS	[172–174]
Decitabine (Dacogen)	DNMT-1 inhibition	5/2006	MDS	[175]
HDACi				
Vorinostat (Zolinza)	Class I and II HDACs	10/2006	Progressive, persistent, or recurrent CTCL disease on or following two systemic therapies	[176, 177]
Romidepsin (Istodax)	Class I HDACs primarily	11/2009	CTCL after at least one prior systemic therapy	[178, 179]
Belinostat (Beleodaq)	Class I, II and IV HDACs	7/2014	Relapsed or refractory PTCL	[180]
Panobinostat (Farydak)	Class I, II and IV HDACs	2/2015	MM (in combination with bortezomib and dexamethasone) after at least two prior regimens, including bortezomib and an immunomodulatory agent	[181]
IDH mutation inhibitor				
Enasidenib (Idhifa)	IDH2 mutant enzyme	8/2017	Relapsed or refractory AML with an IDH2 mutation	[109]
Ivosidenib (Tibsovo)	IDH1 mutant enzyme	7/2018	Relapsed or refractory AML with an IDH1 mutation	[110, 111]
EZH2 inhibitor				
Tazemetostat (Tazverik)	EZH2 inhibition	6/2020	Relapsed or refractory (R/R) FL with EZH2 mutation and who have received at least 2 prior systemic therapies, and for adult patients with R/R FL who have no satisfactory alternative treatment options	[113]
		1/2020	Metastatic or locally advanced epithelioid sarcoma not eligible for complete resection	[112]

CTCL cutaneous T-Cell lymphoma, DNMT-1 DNA demethyltransferase-1, DNMTi DNA methyltransferase inhibitor, FDA US Food and Drug Administration, FL follicular lymphoma, HDACi histone deacetylase inhibitor, IDH isocitrate dehydrogenase, MDS myelodysplastic syndrome, MM multiple myeloma, PTCL peripheral T-cell lymphoma, CTCL cutaneous T-cell lymphoma
Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
DNMT inhibitors			
CC-486 (oral form of azacitidine)	Locally advanced or metastatic NPC	Phase II trial	NCT02269943 Completed 4/2017
		Enrollment: 36 patients	
		Results: ORR 12%; median PFS and OS were 4.7 and 18.0 months, respectively. CC-486 as monotherapy did not show sufficient clinical activity in this patient population. The most common grade 3/4 TEAEs were neutropenia (33%) and febrile neutropenia (11%) [182]	
Guadecitabine (SGI-110)	Advanced HCC	Phase II trial	NCT01752933 Completed 9/2015
		Enrollment: 52 patients	
		Results: DCR 25% and 24.4%, median duration of response 262 days and 144 days, median PFS 55 days and 82.5 days, median OS 294 days and 245 days in the 60 mg/m2 group and 45 mg/m2 group, respectively. The most common being febrile neutropenia in both groups (25% vs. 11%) [183]	
ASTX727 (cedazuridine and decitabine)	Recurrent or progressive non-enhancing IDH mutant gliomas	Phase I trial	NCT03922555 Recruiting
		Enrollment: 18 patients	
		Results: pending	
HDAC Inhibitors			
Entinostat (SNDX-275, MS-275)	Relapsed or refractory abdominal neuroendocrine tumors	Phase II trial	NCT03211988 Recruiting
		Planned enrollment: 40 patients	
		Results: N/A	
Mocetinostat (MGCD0103)	Locally advanced or metastatic urothelial carcinoma	Phase II trial	NCT02236195 Completed 7/2016
		Enrollment: 17 patients	
		Results: Eligible patients received oral mocetinostat at a dose of 70 mg thrice weekly (T/W) escalating to 90 mg T/W in 28-day cycles in a planned 3-stage study. Single agent mocetinostat was not efficacious in this setting and significant toxicities impacted drug exposure and possibly contributed to modest clinical activity in these pretreated patients [184]	
Panobinostat (LBH589)	Locally recurrent or metastatic HER2-negative breast cancer	Phase II trial	NCT00777049 Completed 4/2015
		Enrollment: 54 patients	
		Results: In HR+ group (n = 33) there were 1 PR, 13 SD, 14 PD and 5 missing data; most common SAE was thrombocytopenia (12.5%). In HR-group (n = 21) there was 1 CR, 4 SD, 14 PD, 2 missing data; most common SAE was constipation (10%)	
	Metastatic medullary thyroid cancer and radioactive iodine resistant differentiated thyroid cancer	Phase II trial	NCT01013597 Completed 2/2016
		Enrollment: 13 patients	
		Results: Patients received LBH589 20 mg by mouth three times weekly for 28-day cycles. No responses seen, median time to progression 3.6 months, median OS 18.4 months (5.8 to NA). Most common toxicities were lymphopenia, thrombocytopenia and fatigue (8 patients each). There were 3 deaths "not otherwise specified"	
To further explore the efficacy of epigenetic mono-
therapy, newer epigenetic agents have been investigated
beyond HDAC and DNMT inhibitors, targeting more
specific patient population with a narrowed spectrum
epigenetic modulation. Among them, tazemetostat is
the first FDA-approved epigenetic therapy in the solid
tumor, epithelioid sarcoma [112]. ES is a rare soft tis-
sue sarcoma that is characterized by the loss of expres-
sion in INI1/SNF5/SMARCB1. SMARCB1 (SWI/SNF
related, matrix associated, actin dependent regulator of
chromatin, subfamily b, member 1), a subunit of SWI/
SNF (SWItch/Sucrose Non-Fermentable) chromatin
remodeling complex, can repress EZH2 transcription
[125]. The loss of INI1 function leads to elevated expres-
sion and recruitment of EZH2 to target genes, resulting
in the upregulation of several oncogenic signaling path-
ways [126]. The accelerated approval of tazemetostat was
based on the results of a single arm cohort in patients
with metastatic or locally advanced ES who are not eligi-
bale for complete resection (NCT02601950). Nine out of
sixty two patients with INI1-negative ES (15%) had par-
tial response (PR) and six out of those nine patients (67%)
had a duration of response lasting 6 months or longer.
Tazemetostat was generally well tolerated [127] in the
study.

In addition, early phase studies demonstrated BET
inhibitors had clinical activities in patients with NMC.
NMC is a rare and aggressive squamous cancer, which
is commonly driven by the BRD4-NUT or BRD3-NUT
fusion oncoprotein. A phase Ib study of birabresib

Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
Metastatic melanoma	Phase I trial	Enrollment: 16 patients	NCT01065467, Completed 3/2017
	Results: 6 patients were treated on Arm A (oral panobinostat 30 mg daily on MWF) and 10 patients were enrolled to Arm B (oral panobinostat 30 mg three times a week every other week) with 9 patients treated DLT in arm A included clinically significant thrombocytopenia requiring dose interruption. Among all 15 treated patients, ORR was 0% and DCR was 27%. Panobinostat monotherapy was not active in melanoma and there was a high toxicity rate [185]		
Valproic acid (VPA)	Uveal melanoma	Phase II trial	NCT02068586, Recruiting
	Planned enrollment: 150 patients		
	Results: N/A		
Advanced thyroid cancers of follicular origin	Phase II trial	Enrollment: 13 patients	NCT01182285, Completed 4/2016
	Results: No responses were seen and 6 patients had PD. Zero of 10 patients had increased radioiodine uptake at their tumor sites. Valproic acid did not increase radioiodine uptake and did not have anticancer activity in patients with advanced, radioiodine-negative thyroid cancer of follicular cell origin [186]		
Vorinostat (SAHA)	Locally advanced, recurrent or metastatic adenoid cystic carcinoma	Phase II trial	NCT01175980, Completed 6/2018
	Enrollment: 30 patients		
	Results: Stable disease was the best response in 27 patients. Median PFS and stable disease duration were both 11.4 months and median OS has not been reached. Grade 3 AEs that occurred in more than 1 patient included lymphopenia (n = 5), hypertension (n = 3), oral pain (n = 2), thromboembolic event (n = 2) and fatigue (n = 2). Eleven patients required dose reduction due to drug related AEs [187]		

Only select studies within the past 5 years have been included due to extent of clinical trials

AE adverse events, CRC colorectal cancer, CRPC castrate-resistant prostate cancer, DCR disease control rate, DNMT DNA methyltransferase, HCC hepatocellular carcinoma, HDAC histone deacetylase, HR hormone receptor, ITT intention-to-treat, NPC nasopharyngeal carcinoma, NSCLC non-small cell lung cancer, ORR objective response rate, OS overall survival, PD progressive disease, PFS progression-free survival, PR partial response, SAE serious adverse event, SCLC small cell lung cancer, SD stable disease, TEAE treatment-emergent adverse event
(MK-8628/OTX015) was conducted in patients with NMC. Three out of ten patients (30%) with NMC had a PR with duration of response of 1.4 to 8.4 months [128]. In another phase I study of molibresib (GSK525762), out of nineteen NMC patients, four (21%) achieved either confirmed or unconfirmed PR and eight patients (42%) had stable disease as best response [129]. These results have demonstrated that targeting BRD4-NUT and BRD3-NUT with BET inhibitors resulted in strong antitumor activity in this rare patient population.

Another new epigenetic agent targeting a specific genetic defect in epigenetic pathways has been investigated. The phase III ClarIDHy trial (NCT02989857) evaluated the IDH1 inhibitor ivosidenib in 185 previously treated patients with IDH1-mutated advanced cholangiocarcinoma.ivosidenib improved PFS from 1.4 months with placebo to 2.7 months (hazard ratio [HR] = 0.37; P < 0.001). Although the objective response rate was low (2.4%), clinical benefit was observed with stable disease (SD) in 50.8% of patients. Median OS was 10.8 months with ivosidenib versus 9.7 months with placebo (HR = 0.69; P = 0.06), including 57% of patients who crossed over from placebo group [130]. As a side note, the benefit of IDH1 inhibitors in patients with chondrosarcoma is controversial [131, 132], in part due to the different histological subtype with various disease aggressiveness and clinical outcome [133].

Summarized clinical trials investigating novel epigenetic drugs (single agent) in solid tumors are listed in Table 3.

Combination therapies in solid tumors

Due to the limited efficacy of epigenetic monotherapy as described previously, and the complexity of epigenetic modification in cancer, many trials are investigating combination therapies in solid tumors. Recent clinical trials include epigenetic modifier combinations as well as combinations of epigenetic agents with cytotoxic chemotherapy, hormonal therapies, and immune checkpoint inhibitors (ICIs).

Combination of DNMT inhibitors and HDAC inhibitors

Preclinical studies demonstrated that DNMT inhibitor enhances apoptosis in cancer cells induced by HDAC inhibitors, suggesting the potential synergism of DNMT in combination with HDAC inhibitors [134]. A phase I/II trial of azacitidine and entinostat in NSCLC yielded some promising results with durable responses [135]. This trial included heavily pre-treated patients who had received a median of three prior therapies. Clinical efficacy was observed with one complete response (CR) for 14 month duration, one PR for eight month duration, and ten patients with SD lasting at least 12 weeks. One of these patients had stable disease for 18 months and another for 14 months. The prolonged clinical benefit in certain patients in this trial prompted a correlative biomarker study to predict treatment response. The study collected and examined the promotor methylation status in circulating DNA from patient plasma collected before therapy (day 0) and after 1 cycle of therapy (day 29). Of these, ten out of 26 patients demonstrated a decrease in methylation during the first four weeks of treatment compared to their baseline. There was a higher response rate and improvement in overall survival in the patients with methylation changes (“methylation signature”–positive) compared to patients without methylation change (“methylation signature”–negative). The median OS and PFS were 10.42 months for the methylation signature-positive cohort versus 6.54 months for the methylation signature-negative (P = 0.035). This suggests a potential role of epigenetic therapy in NSCLC, and the important role of biomarkers to predict response and benefit in patients.

Epigenetic therapy with cytotoxic chemotherapy

Preclinical studies suggested that DNMT and HDAC inhibitors have the greatest efficacy when combined with chemotherapy in an attempt to re-sensitize cancers to the standard cytotoxic agents [136, 137]. Acquired resistance to the chemotherapy agents might be reversed when combined with DNMT and/or HDAC inhibitors, especially in ovarian cancers [138]. A phase I trial of low-dose decitabine combined with carboplatin was conducted in patients with recurrent platinum-resistant ovarian cancer. The low dose decitabine was tolerated and demonstrated biological activity in DNA hypomethylation. However, the clinical benefit was modest [139].

Another phase II randomized study compared guadecitabine in combination with carboplatin against second-line chemotherapy in patients with platinum-resistant ovarian cancer. It does not meet the primary endpoint and there is no difference in either median PFS or OS between the two groups [140, 141]. Similarly, in a phase I trial in patients with metastatic colorectal cancer who were exposed to irinotecan previously, guadecitabine in combination with irinotecan showed modest clinical activity with stable disease as the best response [142]. As a note, the challenge in epigenetic agents in combination with cytotoxic chemotherapies include the side effects of additive toxicities needing dose reduction of epigenetic agents. In addition, the chemotherapies cause G1/S cell cycle arrest, which may interfere with incorporation of hypomethylating agents into the DNA and RNA.
Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
IDH inhibitors			
Enasidenib (AG-221)	Advanced solid tumors, AITL	Phase I/II trial Enrollment: 21 patients Results: None available	NCT02273739 Completed 6/2016
Ivosidenib (AG-120)	Advanced solid tumors, including cholangiocarcinoma, chondrosarcoma, and glioma	Phase I trial Planned enrollment: 170 patients Results: Ivosidenib demonstrated good oral exposure and a long half-life. Ivosidenib 500 mg once daily was an appropriate dose irrespective of intrinsic and extrinsic factors, including patient/disease characteristics and concomitant administration of weak CYP3A4 inhibitors/inducers. Persistent plasma 2-HG inhibition was observed in IDH1-mutant cholangiocarcinoma and chondrosarcoma [188]	NCT02073994 Active, not recruiting
Glioma			
Ivosidenib (AG-120)	Glioma	Phase I trial Enrollment: 49 patients Results: In cohort 1 (patients randomized 2:2:1 to AG-120 500 mg daily, AG-881 50 mg daily, or no treatment for 4 weeks preoperatively), AG-120 and AG-881 were CNS penetrant and lowered 2-HG compared to untreated samples. Cohort 2 is open and will evaluate AG-120 250 mg twice daily and AG-881 10 mg daily [189]	NCT03343197 Active, not recruiting
Advanced cholangiocarcinoma	Phase III trial Planned enrollment: 186 patients Results: Ivosidenib resulted in significant improvement in PFS and favorable OS trend versus placebo in IDH1-mutated advanced cholangiocarcinoma [130]	NCT02989857 Active, not recruiting	
BET Inhibitors			
AZD5153	Solid tumors, lymphomas	Phase I trial Planned enrollment: 60 patients Results: AZD5153 monotherapy appeared to be safe and tolerated at doses up to 30 mg once daily and 15 mg twice daily. Linear increase in PK was observed [190]	NCT03205176 Not recruiting
Birabresib (OTX015, MK-8628)	Selected advanced solid tumors, including NMC, NSCLC, CRPC	Phase 1b trial Enrollment: 47 patients Results: The RP2D of birabresib was 80 mg once daily with continuous dosing. Clinical activity was observed in NMC (3 of 10 patients had PR). Birabresib has dose-proportional exposure based on PK analysis and a favorable safety profile [128]	NCT02259114 Completed 3/2017
Selected advanced solid tumors	Phase 1a trial Enrollment: 13 patients Summary: Dose escalation trial of MK-8628 in TNBC (1 patient), CRPC (9 patients), or NMC (3 patients)	NCT02698176 Terminated due to futility	
GBM	Selected advanced solid tumors, hematologic malignancies	Phase I/II trial Enrollment: 12 patients Summary: Dose escalation and expansion cohort study to evaluate single-agent MK-8628 in recurrent GBM after failing standard front-line therapy	NCT02296476 Terminated due to futility
BMS-986158	Selected advanced solid tumors, hematologic malignancies	Phase I/II trial: Planned enrollment: 417 patients Results: N/A	NCT02419417 Recruiting
INCB054329	Advanced malignancies	Phase I/II trial Enrollment: 69 patients Summary: Open-label dose escalation and expansion study of INCB054329	NCT02431260 Terminated due to PK variability
Table 3 (continued)

Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
INCB057643	Advanced malignancies	Phase I/II trial Enrollment: 136 patients Summary: Open-label, dose escalation and dose expansion study of INCB057643 as monotherapy and in combination with standard-of-care agents in patients with advanced malignancies	NCT02711137 Terminated due to safety issues
Molibresib (GSK525762)	NMC, other solid tumors	Phase I/II trial Enrollment: 196 patients Results: RP2D was selected as 80 mg once daily. The most frequent treatment-related AEs of any grade were thrombocytopenia (51%), gastrointestinal events (22–42%), anemia (22%) and fatigue (20%). Among 19 patients with NUT carcinoma-4 achieved either confirmed or unconfirmed PR, 8 had SD as best response and 4 were progression-free for >6 months [191]	NCT01587703 Completed
RO6870810	Advanced solid tumors	Phase I trial Enrollment: 52 patients Results: None available	NCT01987362 Completed 10/2017
ZEN003694	Metastatic CRPC	Phase I trial Enrollment: 44 patients Results: None available	NCT02705469 Completed 10/2017
EzH2 Inhibitors	Advanced solid tumors, B-cell lymphomas	Phase I/II trial Planned enrollment: 28 patients Results: None available	NCT03028103 Active, not recruiting
Tazemetostat (EPZ-6438)	Advanced solid tumors, B-cell lymphomas	Phase I/II trial Planned enrollment: 420 patients Results: 64 patients [21 with B-cell non-Hodgkin lymphoma (NHL) and 43 with advanced solid tumors] received doses of tazemetostat. No treatment-related deaths occurred; 7 (11%) patients had non-treatment-related deaths (1 at 200 mg twice daily, 4 at 400 mg twice daily and 2 at 1600 mg twice daily). The RP2D was determined to be 800 mg twice daily. Durable objective responses, including CR, were observed in 8/21 (38%) patients with B-cell NHL and 2/43 (5%) patients with solid tumors. Tazemetostat showed a favorable safety profile and anti-tumor activity in patients with refractory B-cell NHL and advanced solid tumors. Phase 2 is ongoing [191]	NCT01897571 Active, not recruiting
	Mesothelioma	Phase II trial Enrollment: 74 patients Results: Efficacy was assessed in 61 patients with deficient BRCA1 associated protein 1 (BAP1). Primary endpoint was met with 31 (51%) patients achieving disease control at 12 weeks and 15 patients sustained disease control at 24 weeks. Most frequent AEs of any grade include fatigue (32%), decreased appetite (28%), dyspnea (28%), and nausea (27%). Tazemetostat monotherapy had favorable toxicity profile and showed promising antitumor activity with confirmed responses and durable disease control in malignant mesothelioma [192]	NCT02860286 Completed 5/2019
Table 3 (continued)

Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
INI1-negative tumors, relapsed/refractory synovial sarcoma	Phase II trial	Planned enrollment: 250 patients	NCT02601950 Recruiting
		Results: 62 INI1-negative epithelioid sarcoma patients were enrolled and treated with tazemetostat 800 mg BID. ORR 15% (1.6% CR, 13% PR). There were 9/62 (15%) confirmed PR, with ORR 15% and DCR 26%. Median OS was 82.4 weeks. Most common AEs include fatigue (24/62; 39%), nausea (35%) and cancer pain (32%). Grade ≥ 3 TEAEs in ≥ 2 pts included anemia (6%) and decreased weight (3%). There were no drug-related deaths and a low discontinuation rate (1.7%). Tazemetostat was generally well tolerated and showed durable clinical response [127]. On January 23, 2020, FDA granted accelerated approval to tazemetostat (EZH2) for the treatment of adults and pediatric patients > 16 years old with metastatic or locally advanced epithelioid sarcoma who were not eligible for complete resection [107]	
LSD1 Inhibitors			
INCB059872	Relapsed or refractory Ewing sarcoma	Phase Ib trial	NCT03514407 Terminated
	Planned enrollment: 21 patients		
Advanced malignancies	Phase I/II trial	Planned enrollment: 215 patients	NCT02712905 Terminated
	Planned enrollment: 21 patients		
Seclidemstat (SP-2577)	Advanced solid tumors	Phase I trial	NCT03895684 Recruiting
	Planned enrollment: 50 patients		
Relapsed or refractory Ewing sarcoma	Phase I trial	Planned enrollment: 50 patients	NCT03600649 Recruiting
	Planned enrollment: 50 patients		

AE adverse events, AITL angioimmunoblastic T-cell lymphoma, ALK anaplastic lymphoma kinase, AML acute myeloid leukemia, BET bromodomain and extra-terminal, CR complete response, CRC colorectal cancer, CRPC castrate-resistant prostate cancer, DLT dose-limiting toxicities, ER estrogen receptor, EZH2 enhancer of zeste homologue 2, GBM glioblastoma multiforme, HMT histone methyltransferase, IDH isocitrate dehydrogenase, IDO-1 indoleamine 2,3-dioxygenase, INI1 integrase interactor or INI1/SNF5/SMARCB1, LSD1 lysine-specific demethylase 1A, MDS myelodysplastic syndrome, MTD maximum tolerated dose, NSCLC non-small cell lung cancer, NMC nuclear protein in testis (NUT) midline carcinoma, PK/PD pharmacokinetics/pharmacodynamics, RP2D recommended phase 2 dose, SCLC small cell lung cancer, TNBC triple-negative breast cancer

Epigenetic therapy with immune checkpoint inhibitors

ICIs have recently changed the cancer treatment landscape in many types of cancers. The combination of epigenetic agents with ICIs is an area of investigation in a variety of solid tumors [143]. In the clinical trial involving 45 patients with advanced-stage NSCLC who were treated with azacitidine and entinostat, five patients who had disease progression during the trial were subsequently enrolled in trials of anti-PD-1 therapy [135]. Three of the five patients achieved an objective response and the other two had SD for 24 weeks before disease progression. This clinical observation has led to pre-clinical research to understand the mechanism of epigenetic therapies in modulating immune responses. Treatment of tumor cells with DNMT inhibitors can induce the transcription of endogenous retrovirus (ERVs), which are normally silenced in most somatic tissues [144]. The reactivation of ERVs result in the formation of cytoplasmic double-stranded RNAs [145, 146], the cognate ligand of the retinoic acid inducible gene I (RIG-I)-like receptors (RLR), including RIG-I and melanoma differentiation associated gene 5 (MDA5) [147]. Activation of the RLR family (innate immune sensors) initiates signaling cascades leading to the production of type I and III interferons, which elicit an antitumor immune response (viral mimicry) by activation of CD8+ T cells [148, 149]. Also, epigenetic therapy can lead to the re-expression of tumor antigens, such as cancer testis antigens (CTAs) and melanoma-associated antigen 1 (MAGE1), increasing immunogenicity [150–152]. Therefore, both pre-clinical and clinical studies suggests that these epigenetic therapies might augment antitumor immune response through
various mechanisms, enhancing tumor antigen expression and infiltration of cytotoxic T cells, and reversing T cell exhaustion with a concurrent increase in the abundance of effector and/or memory T cells, among others [153]. These observations are being translated into clinical trials that focus on the combination of ICIs with epigenetic drugs in a variety of solid tumors.

A phase I/ Ib trial of pembrolizumab plus oral vorinostat (HDAC inhibitor) has been completed in patients with advanced/metastatic NSCLC [154]. Thirty-three patients were treated, including thirteen in phase I and twenty in phase Ib. In phase I, both ICI-naïve and ICI-pretreated patients were enrolled to determine dose-limiting toxicities (DLTs). No DLTs were observed, and the recommended phase II dose was pembrolizumab 200 mg and vorinostat 400 mg/day. The most common adverse events of any grade included fatigue (33%) and nausea/vomiting (27%). Among those 6 ICI-naïve patients, there was 1 case (16.7%) of confirmed PR, 4 cases (66.7%) of SD, and 1 case (16.7%) of PD. Of 24 ICI-pretreated patients evaluable for response, there were 3 cases with (13%) PR (1 confirmed), 11 cases with (46%) SD and 10 cases (42%) with progressive disease (PD). The results suggested the combined therapy of pembrolizumab and vorinostat is feasible with a manageable safety profile and active in both ICI-naïve and -exposed NSCLC patients. The presence of CD8+ T-cell in tumor stroma in pre-treatment samples, not CD8+ T-cell in tumor bed, was associated with treatment benefit. In addition, on-treatment biopsies showed the increase in CD8+ T cells in the stroma was correlated with clinical benefit (with SD or PR for a period of ≥ 24 weeks). It would be crucial to investigate whether the combination is better than ICI alone in ICI-naïve patients in the front line setting and/or if the combination is superior to the standard of care in ICI-exposed patients in the later line treatment setting. An ongoing randomized phase 2 trial is examining pembrolizumab +/- vorinostat in ICI-naïve advanced/metastatic NSCLC patients (NCT02638090).

Similarly, a phase II study is investigating azacitidine and entinostat with concurrent nivolumab in patients with metastatic NSCLC, in both ICI-naïve and ICI-resistant patient populations (NCT01928576) and a phase I study is investigating pembrolizumab in combination with guadecitabine and mocetinostat for patients with advanced lung cancer who progressed on prior ICIs (NCT03220477). These on-going trials include correlative studies to evaluate induced viral mimicry, interferon induction, and T cell function phenotypes [153].

The newer epigenetic agents in combination with ICIs are also under investigation. A phase I/II trial is evaluating a BET inhibitor, INCB057643, in combination with pembrolizumab and epacadostat (indoleamine 2, 3-dioxygenase or IDO-1 inhibitor) in patients with advanced or metastatic solid tumors (NCT02959437). Additionally, trials of EZH2 inhibitors in combination with ipilimumab (CTLA-4 inhibitor) or pembrolizumab are recruiting the patients with advanced solid tumors (NCT03525795 and NCT03854474).

Epigenetic therapy with other anticancer therapies

New approaches combining epigenetic agents with other anticancer therapies, including hormonal therapy, have been explored as an approach to overcome treatment resistance. In the phase II study ENCORE301, entinostat was added to exemestane (steroidal aromatase inhibitor [AI]) in patients with hormone receptor (HR)-positive advanced breast cancer with disease progression after prior non-steroidal AI. The study demonstrated a significant improvement in PFS (HR = 0.73; p = 0.06) and also in OS (HR = 0.59; p = 0.036). The combination was well tolerated, with neutropenia (13%) and fatigue (11%) being the most frequent grade 3 or 4 toxicities in entinostat-treated patients [155]. Therefore, entinostat, when added to exemestane, was designated by the FDA as breakthrough therapy for postmenopausal women with HR-positive advanced breast cancer whose disease has progressed after nonsteroidal AI therapy. Based on the ENCORE301 study, a phase III trial (E2112) is ongoing to investigate entinostat versus placebo in combination with exemestane in patients with locally advanced or metastatic breast cancer who have experienced disease progression after a non-steroidal AI [156].

Everolimus, a sirolimus (formerly called rapamycin) derivative, inhibits phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is one of the mechanisms of endocrine resistance in HR-positive breast cancer [157, 158]. In preclinical studies, the use of everolimus in combination with aromatase inhibitors results in synergistic inhibition of the proliferation and induction of apoptosis [159]. The BOLERO-2 trial showed that everolimus in combination with exemestane improved PFS compared to exemestane alone in post-menopausal women with advanced HR+/Her2-negative breast cancer [160]. However, recent data suggested that the combination of exemestane and everolimus did not yield a durable clinical response, indicating a need for alternative combinations and therapeutic strategies [161]. The pre-clinical studies showed that resistance to everolimus was mediated by overexpression of MYC in ER-positive cancers, which can be reversed by BET inhibitors [162]. Also, a combination of BET inhibitor with fulvestrant (ER degrader) showed long-lasting antitumor effect in a tamoxifen (selective ER modulator)-resistant breast cancer xenograft mouse model [163].
Similarly, the combination of BET inhibitors with AR antagonists is able to subvert resistance in castrate-resistant prostate cancer (CRPC) in preclinical experiments [164]. Other studies combining BET and PARP inhibition show mitotic catastrophe (cell death related to premature entry of cells into mitosis) with induction of apoptosis, causing synergistic effect in suppressing BRCA1/2 wild-type ovarian cancer. This study also suggests that BET inhibitors re-sensitize PARP-inhibitor-resistant BRCA mutant epithelial ovarian cancer cells to PARP inhibition [165]. DNMT inhibitors create a “BRCAness” phenotype through downregulating expression of key homologous recombination and nonhomologous end-joining (NHEJ) genes, and promote synergism with PARP inhibitors in the setting of BRCA-proficient NSCLC in animal models. These preclinical data support the expansion of therapeutic studies of PARP inhibitors and various epigenetic agents in patients with BRCA-proficient cancer [166].

There are also ongoing clinical trials with BET inhibitors in combination with PARP inhibitors, ER antagonists, and AR antagonists. A phase I trial is accruing patients to investigate AZD5153 in combination with olaparib for platinum-resistant/refractory ovarian cancer. Other accruing studies include a phase II trial of ZEN003694 in combination with talazoparib in TNBC (NCT03901469); a phase I/II trial to test GSK525762 in combination with fulvestrant in advanced HR-positive breast cancer (NCT02964507); and a phase Ib study combining GSK525762 with abiraterone or enzalutamide in advanced CRPC (NCT03150056). In addition, several early phase trials are investigating EZH2 inhibitors in combination with enzalutamide or abiraterone in metastatic CRPC, given the synergistic effect of EZH2 inhibitors in combination with AR antagonists.

Ongoing clinical trials of combination therapies of epigenetic drugs with chemotherapy or other agents including ICIs in solid tumors are listed in Table 4.

Conclusions

The development of epigenetic therapeutics has promise for cancer treatment, particularly with advancements in hematologic malignancies. In solid tumors, only one epigenetic agent (EZH2 inhibitor, tazemetostat) has been approved (ES). It is not fully understood why solid tumors are not as sensitive to epigenetic agents, even though there is profound aberrant epigenetic alterations in solid tumors. There may be a critical difference in cellular differentiation and epigenetic plasticity between solid tumors and hematological malignancies. Solid tumors arise from a more terminally differentiated state, which may be intrinsically more resistant to epigenetic reprogramming. In contrast, hematopoietic lineages are precisely controlled by epigenetic modulation. It is understandable that epigenetic agents demonstrated robust clinical activity in hematological malignancies in which cell differentiation is a key biological feature. The alternative explanation could be that altered epigenetic modulation may occur early in oncogenesis, however, it is not the “driver” event that controls the tumor cell proliferation and survival [167]. In the era of precision oncology, the broad impact of epigenetic treatment is both promising in “reprogramming” solid tumor epigenetic dysfunction, as well as challenging in targeting particular epigenetic driving events. In recent years, the further development of next generation of broad spectrum agents and the emerging narrow spectrum agents as potential targeted epigenetic therapy have provided the new opportunities for solid tumor therapy. The approval of an epigenetic agent (EZH2 inhibitor, tazemetostat) in treatment of a rare soft tissue malignancy, epithelioid sarcoma, is a solid step towards the future breakthrough in the mechanism based solid tumor epigenetic treatment.

Various HDAC and DNMT inhibitors have been tested for treatment of both hematologic malignancies and solid tumors. Primary and secondary resistance to these therapies are common [168, 169]. No clear clinical benefits have been observed as yet in solid tumors. The limited antitumor activity with DNMT and HDAC inhibitors as monotherapy in solid tumors may also be related to either the short half-lives of the S phase-specific drugs with low incorporation into DNA [115] or due to a lack of specificity. Combination therapies with dual DNMT and HDAC inhibitors are explored in clinical trials; the therapeutic rationale is that densely methylated DNA is usually accompanied by deacetylated histone (transcriptionally repressive) [170]. However, most of the dual-agent epigenetic therapy trials did not result in an obvious clinical benefit, except the observation of durable responses in select NSCLC patients [135].

Potential novel therapies are being investigated to target new epigenetic modulation, such as IDH mutation inhibition and LSD1 inhibition, in both hematologic and solid malignancies. Many of these agents are targeting specific genetic defects in epigenetic pathways. Ivosidenib showed improved PFS in patients with cholangiocarcinoma harboring IDH1 mutation [130]. Pre-clinical studies suggest targeted epigenetic therapy may be effective in specific patient subsets, such as LSD1 inhibitors in the treatment for SCLC [69]. Early phase studies demonstrated BET inhibitors had activities in NMC, which is driven by BET fusion proteins. Most recently, METTL3 inhibitors and other agents targeting RNA epigenetics are emerging as potential cancer therapies with pending clinical trials.
Combination of epigenetic drugs in solid tumors	Cancer type(s)	Trial details	Trial identifier/status
Combination of epigenetic agents			
Azacitidine (DNMTi) + entinostat (HDACi)	Advanced breast cancer	Phase II trial	NCT01349959 \(\text{Active, not recruiting}\)
		Enrollment: 58 patients	
		Results: Combination therapy was well tolerated but primary endpoint (ORR) was not met [193]	
Azacitidine + entinostat	Recurrent advanced NSCLC	Phase III/II	NCT00387465 \(\text{Completed 11/2014}\)
		Enrollment: 94 patients	
		Results: Combined low-dose azacitidine and entinostat was well tolerated and resulted in objective, durable responses in pretreated patients with recurrent advanced NSCLC. Median survival in the entire cohort was 6.4 months [135]	
CC-486 + romidepsin (HDACi)	Advanced solid tumors, HPV + NPC, HPV+ cervical cancer, liposarcoma	Phase I trial	NCT01537744 \(\text{Completed 9/2016}\)
		Enrollment: 18 patients	
		Results: Although the recommended combination was tolerable, no significant antitumor activity was observed [194]	
Azacitidine + vorinostat (HDACi)	Locally recurrent and metastatic NPC and nasal natural killer T-cell lymphoma	Phase I trial	NCT00336063 \(\text{Active, not recruiting}\)
		Enrollment: 18 patients	
		Results: Eleven patients were treated at 3 dose levels. This combination appeared tolerable at dose level 3 (azacitidine 25 mg/m² + vorinostat 100 mg twice daily). DLTs include grade 4 thrombocytopenia, grade 3 nausea, vomiting and fatigue and grade 5 hepatic failure, and worsening of pre-existing Sweet’s Syndrome. Common grade 1/2 AEs were fatigue (73%), cough (64%), anorexia (55%) and injection site reaction (45%). One minor response was seen and 5 patients had prolonged stable disease (> 16 weeks) [195]	
Combination with Chemotherapy or Other Agents			
Azacitidine + capecitabine and oxaliplatin	Metastatic CRC	Phase I/II trial	NCT01193517 \(\text{Completed 11/2016}\)
		Enrollment: 26 patients	
		Results: Fifteen patients in phase I and 11 in phase II were evaluable. No DLTs observed. Combination azacitidine, capecitabine and oxaliplatin was well tolerated with high rates of SD in CIMP-high patients but no objective responses seen [196]	
Azacitidine + nab-paclitaxel	Advanced or metastatic solid tumors, including HER2-negative breast cancer	Phase I/II trial	NCT00748553 \(\text{Completed 10/2015}\)
		Enrollment: 30 patients	
		Results: In the phase I cohort (16 patients, with at least one prior therapy). Response rate was 61.3%. In the phase II cohort (14 patients without prior therapy). ORR 53.8% and PFS data not collected. Most common AEs were leukopenia (43.33%), nausea (36.67%), fatigue (60%) and neuropathy (46.67%) [197]	
Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
----------	----------------	---------------	-------------------------
CC-486 + nab-paclitaxel	Advanced NSCLC	Phase II trial	NCT02250326
		Enrollment: 240 patients	Active, not recruiting
		Results: Median PFS 3.2 months vs. 2.2 months, DCR 65.4% (CR/PR 13.6%) vs. 67.5% (CR/PR 16.3%) and median OS 8.1 months vs. 17.0 months for nab-paclitaxel + CC-486 arm vs. nab-paclitaxel only arm. Grade 3 or higher TEAEs occurred at 40.5% in the combination arm and 31.6% in the nab-paclitaxel alone arm. There was no survival benefit from the addition of CC-486 to nab-paclitaxel [198]	
Decitabine + temozolomide	Metastatic melanoma	Phase III trial	NCT00715793
		Enrollment: 39 patients	Completed 8/2015
		Results: ORR 18%, DCR 61%, median PFS 3.4 months, median OS 12.4 months and 1-year OS rate 56%. DLT was neutropenia in 6 patients. Common non-hematologic toxicities were fatigue and nausea. The combination of decitabine and temozolomide was safe and suggested possible superiority over the historical 1-year OS rate [199]	
Decitabine + tetrahydrouridine/THU-DAC	Advanced pancreatic cancer	Phase I trial	NCT02847000
		Enrollment: 13 patients	Completed 10/2017
		Results: Eight patients underwent evaluation scans at 8 weeks with SD in 1 patient and PD in 7. Common reasons for treatment discontinuation were PD (n = 6), physician discretion (n = 3) and AEs (n = 2). THU-DAC was deemed to be safe [200]	
Guadecitabine/SGI-110 (DNMTi) + carboplatin	Recurrent ovarian cancer	Phase II trial	NCT01696032
		Enrollment: 120 patients	Completed 8/2016
		Results: Overall response rate 16% in guadecitabine + carboplatin (G+C) arm versus 8% in the TC (treatment of choice) arm. The study did not meet its primary endpoint as the median PFS was not statistically different between arms (16.3 weeks vs. 9.1 weeks in the G+C and TC groups). However, the 6-month PFS rate was significantly higher in the G+C group. There was no difference between the two arms in OS [140]	
Guadecitabine + cisplatin	Refractory germ cell tumor	Phase I trial	NCT02429466
		Planned enrollment: 14 patients	Completed
		Results: MTD was guadecitabine 30 mg/m² × 5 days and cisplatin 100 mg/m² (with growth factor support). DLT was neutropenic fever. Most common toxicities were neutropenia (82% any grade), thrombocytopenia (42%), anemia (33%), neutropenic fever (8%) and diarrhea (8%). There were 2/14 CR lasting > 6 months, 2 PR and 1 SD. ORR 28.5%. Guadecitabine + cisplatin at MTD showed promising antitumor activity in this refractory germ cell population [201]	
Table 4 (continued)

Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
Guadecitabine + irinotecan	Metastatic CRC	Phase II trial	NCT01896856 Completed 8/2019
		Enrollment: 118 patients	
		Results: 22 patients were treated across four dose levels. DLTs were neutropenic fever, biliary drain infection, colonic obstruction and severe dehydration. Most common toxicities were neutropenia (82% any grade, 77% grade 3/4), neutropenic fever (23%), leukopenia (73% any grade, 50% grade 3/4) and injection site reactions (64% total, 0% Grade 3/4). 12/17 evaluable patients had SD as best response [202]	
Belinostat + cisplatin and etoposide	SCLC and other cancers of neuroendocrine origin	Phase I trial	NCT00926640 Completed 4/2018
		Enrollment: 28 patients	
		Results: Hematologic toxicities were most common. Objective responses were seen in 11 (39%) of 28 patients; 13/28 (46%) had SD and 4 (14%) had PD. Among patients with neuroendocrine tumors, including SCLC, 7 (47%) of 15 patients achieved PR, 7 (47%) had SD and 1 (7%) had PD. There were no CR. The combination was safe, although some patients were more susceptible to AEs, and showed clinical activity in SCLC and other neuroendocrine cancers [203]	
Mocetinostat (HDACi) + gemcitabine	Metastatic leiomyosarcoma	Phase II trial	NCT02303262 Completed 12/2016
		Enrollment: 20 patients	
		Results: Best responses included 1 PR and 12 SD in 18 evaluable patients. Median duration of response 2 months and median PFS 2 months. Although mocetinostat can be safely combined with gemcitabine in this population, the study could not demonstrate that mocetinostat can reverse chemoresistance in patients with previously established gemcitabine-resistant leiomyosarcoma [204]	
Panobinostat + bevacizumab	Recurrent high grade glioma	Phase II trial	NCT00859222 Completed 12/2015
		Enrollment: 51 patients	
		Results: Although reasonably well tolerated, adding panobinostat to bevacizumab did not significantly improve 6-month PFS compared with historical controls of bevacizumab monotherapy in either cohort [205, 206]	
Vorinostat + sorafenib	Advanced HCC	Phase I trial	NCT01075113 Completed 7/2019
		Enrollment: 16 patients	
		Results: Although some patients had durable disease control, the addition of vorinostat to sorafenib led to toxicities in most patients [207]	
Vorinostat + capecitabine and cisplatin	Metastatic or recurrent gastric cancer	Phase II trial	NCT01045538 Completed 4/2016
		Enrollment: 45 patients	
		Results: ORR 42%, median PFS 5.9 months, 6-month PFS rate 44.4% and median OS 12.7 months. Did not meet primary end point (6-month PFS rate) and more AEs were observed in comparison with historical data from fluoropyrimidine–platinum doublet regimens [208]	
Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
--	--	--------------------------------	-------------------------
ZEN003694 + enzalutamide	Metastatic CRPC	Phase Ib/Ila trial	NCT02711956 Completed
		Planned enrollment: 75 patients	
		Results: The most common	
		treatment-related AEs of any	
		grade included transient	
		photophobia (66%), nausea	
		(40%), fatigue (31%),	
		decreased appetite (22%)	
		and dysgeusia (16%).	
		The overall median time to	
		progression was 44.4 weeks	
		(similar in subgroups with	
		prior abiraterone or	
		enzalutamide resistance) and	
		durable responses were	
		observed. ZEN003694 in	
		combination with enzalutamide	
		had acceptable toxicity	
		profile and promising activity	
		in metastatic CRPC refractory	
		to enzalutamide or abiraterone [209]	
Molibresib/GSK525762 (BET inhibitor) + ful-	Advanced breast cancer	Phase I/II trial	NCT02964507 Active, not recruiting
vestrant		Planned enrollment: 294	
		patients	
		Results: N/A	
Molibresib + abiraterone or enzalutamide	CRPC	Phase Ia trial	NCT03150056 Active, not recruiting
		Planned enrollment: 130	
		patients	
		Results: N/A	
Combination with Immune Checkpoint Inhibitor (IC)			
Decitabine + durvalumab and tremelimumab	Recurrent and/or metastatic HNSCC	Phase I/II trial	NCT03019003 Recruiting
		Planned enrollment: 59	
		patients	
		Results: N/A	
Azacitidine + pembrolizumab	Advanced pancreatic cancer	Phase II trial	NCT03264404 Recruiting
		Planned enrollment: 31	
		patients	
		Results: N/A	
Azacitidine + pembrolizumab	Metastatic CRC (microsatellite stable, MSS)	Phase II trial	NCT02260440 Completed 9/2017
		Enrollment: 31 patients	
		Results: ORR was 3% (1/30).	
		Median PFS was 2.1 months	
		and median OS was 6.2 months	
		Treatment-related AEs were	
		reported in 63% of patients	
		but most were grade 1/2 (96%).	
		Azacitidine + pembrolizumab demonstrated	
		tolerable safety profile but	
		minimal antitumor activity in	
		MSS metastatic CRC [210]	
CC-486 + pembrolizumab	Metastatic NSCLC	Phase II trial	NCT02546986 Active, not recruiting
		Enrollment: 100 patients	
		Results: PFS 2.9 months	
		versus 4.0 months, DCR 25.5%	
		versus 38.8%; OS 11.9 months	
		versus NA for azacitidine +	
		pembrolizumab arm versus	
		placebo + pembrolizumab arm.	
		For the azacitidine +	
		pembrolizumab arm, 49% of	
		patients experienced any	
		grade 3/4 TAE related to study drug (vs. 20.4%) [211]	
CC-486 + pembrolizumab	Platinum-resistant epithelial ovarian, fallopian	Phase II trial	NCT02900560 Active, not recruiting
	tube or primary peritoneal cancer	Enrollment: 34 patients	
		Results: None available	
Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
----------	----------------	---------------	-------------------------
CC-486 + pembrolizumab	Metastatic melanoma	Phase II trial; Planned enrollment: 71 patients	NCT02816021 (Recruiting)
THU-DAC + pembrolizumab	Unresectable locally advanced or metastatic NSCLC and esophageal carcinomas	Phase II trial; Planned enrollment: 85 patients	NCT03233724 (Recruiting)
Decitabine + pembrolizumab (followed by standard neoadjuvant chemotherapy)	Locally advanced HER2-negative breast cancer	Phase II trial; Planned enrollment: 32 patients	NCT02957968 (Recruiting)
Guadecitabine + durvalumab	Advanced RCC	Phase I/II trial; Planned enrollment: 58 patients	NCT03308396 (Recruiting)
Guadecitabine + durvalumab and tremelimumab	Extensive-stage SCLC	Phase I trial; Enrollment: 2 patients	NCT03085849 (Completed 11/2018)
Guadecitabine + durvalumab	Advanced HCC, pancreatic adenocarcinoma, cholangiocarcinoma	Phase I/II trial; Planned enrollment: 90 patients	NCT03257761 (Recruiting)
Guadecitabine + pembrolizumab	Recurrent ovarian, primary peritoneal, or fallopian tube cancer	Phase II trial; Enrollment: 35 patients	NCT02901899 (Active, not recruiting)
Guadecitabine + atezolizumab	Recurrent/advanced urothelial carcinoma	Phase II trial; Planned enrollment: 53 patients	NCT03179943 (Active, not recruiting)
Entinostat + atezolizumab	Advanced TNBC	Phase II/III trial; Planned enrollment: 81 patients	NCT02708680 (Status unknown)
Entinostat + avelumab	Advanced epithelial ovarian cancer	Phase II/III trial; Enrollment: 140 patients	NCT02915523 (Active, not recruiting)
Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
----------	----------------	---------------	-------------------------
Entinostat + pembrolizumab	Advanced metastatic or recurrent NSCLC, melanoma, MMR-proficient CRC	Phase Ib/II trial	NCT02437136
	Planned enrollment: 202 patients		Status unknown
	Results: 76 patients with NSCLC who progressed on prior anti-PD/PD-L1 therapy had been enrolled (72 evaluable for response). ORR 10%, which did not meet pre-specified target, but may represent clinically meaningful activity. Responses were independent of baseline PD-L1 expression. Median duration of response was 5.3 months and median PFS 2.8 months. An additional 50% of patients achieved disease stabilization. Most patients tolerated the therapy well [212]		
Entinostat + ipilimumab and nivolumab	Metastatic or unresectable HER2-negative breast cancer	Phase I trial	NCT02453620
	Enrollment: 45 patients		Active, not recruiting
	Results: None available		
Entinostat + bevacizumab and atezolizumab	Advanced RCC	Phase II trial	NCT03024437
	Planned enrollment: 62 patients		Recruiting
	Results: N/A		
Entinostat + nivolumab	Unresectable or metastatic cholangiocarcinoma and pancreatic adenocarcinoma	Phase II trial	NCT03250273
	Planned enrollment: 54 patients		Recruiting
	Results: N/A		
Entinostat + nivolumab and ipilimumab	Metastatic RCC	Phase II trial	NCT03552380
	Planned enrollment: 53 patients		Active, not recruiting
	Results: N/A		
Mocetinostat (HDACi) + guadecitabine and pembrolizumab	NSCLC	Phase I/II trial	NCT03220477
	Planned enrollment: 40 patients		Recruiting
	Results: N/A		
Mocetinostat + ipilimumab and nivolumab	Melanoma	Phase Ib trial	NCT03565406
	Planned enrollment: 12 patients		Terminated
	Results: N/A		
Panobinostat + ipilimumab	Unresectable stage III/IV melanoma	Phase I trial	NCT02032810
	Enrollment: 17 patients		Active, not recruiting
	Results: Three patients had previous anti-PD1 therapy. Response rate was 12% (2 PR) with 35% SD. Median PFS 2.23 months (95% CI, 1.57—5.8) and median OS 20.97 months (95% CI, 8.97—NR). At tolerated doses, the addition of panobinostat does not appear to increase response to ipilimumab in advanced melanoma [213]		
Romidepsin + pembrolizumab±azacitidine	Advanced MSS CRC	Phase I trial	NCT02512172
	Enrollment: 27 patients		Active, not recruiting
	Results: None available		
Agent(s)	Cancer type(s)	Trial details	Trial identifier/status
----------	----------------	---------------	-------------------------
Vorinostat + pembrolizumab	Stage IV NSCLC	Phase II trial	NCT02638090 Recruiting
		Planned enrollment: 100 patients	
Vorinostat + pembrolizumab	Recurrent metastatic HNSCC or salivary gland cancer	Phase II trial	NCT02538510 Active, not recruiting
		Enrollment: 50 patients	
		Results: There were 25 patients with HNSCC (52% were p16+ oropharynx) and 25 with salivary gland cancers (SGC). Most common AEs were renal insufficiency (14%), fatigue (12%) and nausea (6%). There were 3 deaths on study. HNSCC group had 0 CR, 8 PR, and 5 SD while SGC group had 0 CR, 4 PR, and 14 SD. This combination demonstrated activity in HNSCC, with fewer responses in SGC [214]	
Vorinostat + pembrolizumab	Advanced renal or urothelial cell carcinoma	Phase II trial	NCT02619253 Active, not recruiting
		Planned enrollment: 57 patients	
INCB057643 (BET inhibitor) + pembrolizumab and epacadostat (IDO1 inhibitor)	Advanced solid tumors, including stage IIIB or stage IV NSCLC, stage IV microsatellite-stable CRC, HNSCC, urothelial carcinoma, and melanoma	Phase II trial	NCT02959437 Completed
		Enrollment: 70 patients	
		Azacitidine + pembrolizumab is assessed in group A; INCB057643 + Pembrolizumab + Epacadostat is assessed in group B; INCB059872 + Pembrolizumab + Epacadostat is assessed in group C	
Tazemetostat (EZH2 inhibitor) + pembrolizumab	Advanced urothelial carcinoma	Phase II trial	NCT03854474 Recruiting
		Planned enrollment: 30 patients	
INCB059872 (LSD1 inhibitor) + epacadostat and pembrolizumab	Advanced solid tumors, including stage IIIB or stage IV NSCLC, stage IV microsatellite-stable CRC, HNSCC, urothelial carcinoma, and melanoma	Phase II trial	NCT02959437 Active, not recruiting
		Enrollment: 70 patients	
		Results: N/A	

Only select studies within the past 5 years have been included due to extent of clinical trials.

AE, adverse event; BET, bromodomain and extra-terminal; CIMP, CpG island methylator phenotype; CR, complete response; CRC, colorectal cancer; CRPC, castrate-resistant prostate cancer; DCR, disease control rate; DLT, dose-limiting toxicities; DNMTi, DNA methyltransferase inhibitor; EZH2, enhancer of zeste homologue 2; GBM, glioblastoma multiforme; HCC, hepatocellular carcinoma; HDACi, histone deacetylase inhibitor; HER2, human epidermal growth factor receptor 2; HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; IDH, isocitrate dehydrogenase; IDO-1, indoleamine 2,3-dioxygenase; ITT, intention-to-treat; LSD1, lysine-specific demethylase 1A; MMR, mismatch-repair; MSS, microsatellite stable; MTD, maximum tolerated dose; NPC, nasopharyngeal carcinoma; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; RCC, renal cell carcinoma; RP2D, recommended phase 2 dose; SAE, serious adverse event; SCLC, small cell lung cancer; SD, stable disease; SGC, salivary gland cancer; TEAE, treatment-emergent adverse events; TNBC, triple-negative breast cancer.
The exciting finding that epigenetic agents are able to modulate tumor microenvironment has been a focus of epigenetic research. The combination of these “reprogramming” effects with other approved or novel therapies are being extensively explored. One of the current focuses is the combined epigenetic and immune therapy. It may be speculated that epigenetic agents have a significant “reprogramming” activity in immune cell components in addition to cancer cell component. There are many ongoing clinical trials evaluating the combination of the epigenetic agents with ICI in solid tumors. DNMT, HDAC, and other epigenetic inhibitors may enhance the response to and/or reverse the resistance to ICIs, if these agents can modulate key components of the tumor microenvironment including tumor cells, stromal cells, and innate and/or adaptive immune cells.

Beyond the scope of the current review, there are also important implications of epigenetic biomarkers in cancer screening, diagnosis, prognosis, and prediction to treatment. The development in the epigenetic biomarkers field are addressed in other reviews, including this one by Berdasco et al. [171].

In summary, epigenetic drugs represent “genomic medicines” that do not require existing DNA mutations. Given the wide diversity of solid tumors, epigenetic therapy is attractive because of the potential to target and modify the cancer genome functions. It is likely that cancer cells exploit epigenetic modulation to activate cellular pathways in cancer cell survival, including drug resistance and immune surveillance. Thus, epigenetic agents may have great therapeutic potential in the future under the right contexts. It will be essential to continue fundamental research to better identify the underlying mechanism and to translate these findings into clinical trial of newer epigenetic agents and optimize combinatorial approaches with exploration of predictive biomarkers in solid tumors.

Abbreviations
2-HG: 2-Hydroxylglutarate; ScAC: S- Carboxylcytosine; SFC: S-Formylcytosine; SmHC: S- Hydroxymethylcytosine; SmC: S- Methylcytosine; ALKBH5: AlkB homolog 5; AML: Acute myeloid leukemia; AR: Androgen receptor; BCL-2: B cell lymphoma 2; BET: Bromodomain and extra-terminal motif proteins; BRD: Bromodomain; c-MYC: Cellular myelocytomatosis gene; CR: Complete response; CTCL: Cutaneous T cell lymphoma; DNA: Deoxyribonucleic acid; DNMT: DNA methyltransferase; DOT1L: DOT1-like histone lysine methyltransferase; elf3: Eukaryotic initiation factor 3; ER: Estrogen receptor; ES: Epithelioid sarcoma; EZH2: Enhancer of zeste homolog 2; FTO: Fat-mass and obesity associated protein; GSK525762: Sarcoma; EZH: Enhancer of zeste homolog 5; MLL: Mixed-lineage lymphoma; NMC: NUT midline carcinoma; NSCLC: Non-small cell lung cancer; NUT: Nuclear protein in testis; OS: Overall survival; PR: Partial response; PRC2: Polycomb repressive complex 2; PTCL: Peripheral T cell lymphoma; P-TEFb: Positive transcription elongation factor b; R/R FL: Relapsed/refractory follicular lymphoma; RNA: Ribonucleic acid; SCLC: Small cell lung cancer; SD: Stable disease; SGI-110: Guadecitabine; SIRT: Sir-2 related; SMARCB1/INI: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b; member 1; SWI/SNF: Switch/Sucrose non-fermentable; TCA: Tricarboxylic acid; TET: Ten-eleven translocation; TP53: Tumor protein 53; YTHDF: YTH domain family; α-KG: α-Ketoglutarate.

Acknowledgements
We thank Dr. Ryan Johnson for assistance with figure preparation and proof-reading of the manuscript.

Authors’ contributions
NI was responsible for conceptualization, figure generation, and manuscript drafting. TG was responsible for table generation and manuscript drafting. EB and KH were responsible for conceptualization and coordination. All authors were responsible for reviewing, editing, and approving the final manuscript. All authors read and approved the final manuscript.

Availability of data and materials
Not applicable.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
2 Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA. 3 Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Received: 28 December 2020 Accepted: 4 April 2021

Published online: 20 April 2021

References
1. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.
2. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6(11):838–49.
3. Verschraegen CF, Stein G. Methylation, Methionine and Metaphors. In: Srivastava R, Maksymowicz W, Lopaczynski W, editors. Lost In Translation: Barriers To Incentives For Translational Research In Medical Sciences. 1st ed: World Scientific; 2014. p. 21–43.
4. Jones PA, Issa JP. Sustaining the research for cancer epigenetic therapy. Nat Rev Genet. 2015;17(10):630–41.
5. Cheng X, Blumenenthal RM. Mammalian DNA methyltransferases: a structural perspective. Structure. 2008;16(3):341–50.
6. McGrath J, Troyer P. Targeting histone lysine methylation in cancer. Pharmacol Ther. 2015;150:1–22.
7. Gagek CD, Chen ES, Calcagni DQ, Wniesiuk F, Burbano RR, Smith MA. Epigenetic mechanisms in gastric cancer. Epigenomics. 2012;4(3):279–94.
8. Saghafinia S, Mina M, Raggi N, Hanahan D, Cirello G. Pan-cancer landscape of aberrant DNA methylation across human tumors. Cell Rep. 2018;25(4):1066–80 e8.
10. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

11. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

12. Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236(1):87–95.

13. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

14. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):349–63.

15. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404(6781):1003–7.

16. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416(6888):552–6.

17. Hollenbach PW, Nguyen AN, Brady H, Williams M, Ying Y, Richard N, et al. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS ONE. 2010;5(2):e9001.

18. Wilson VL, Jones PA, Momparler RL. Inhibition of DNA methylation in L1210 leukemic cells by 5-aza-2-deoxycytidine as a possible mechanism of chemotherapeutic action. Cancer Res. 1983;43(8):3493–6.

19. Momparler RL, Bouchard J, Onetto N, Rivard GE. 5-aza-2′-deoxycytidine presses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 2000;60(18):5165–70.

20. Hernando X, Sánchez L,分辨率 and chromosome locations of the human DNMT3 gene family. Gene. 2009;439(1):1–6.

21. Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol Oncol. 2014;8(3):673–91.

22. Morris MJ, Monteggia LM. Unique functional roles for class I and class II histone deacetylases in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2012;6(6):579–89.

23. Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2008;582(1):5–13.

24. Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem. 2007;282(18):13141–5.

25. Li Z, Tang J, Huang W, Wang F, Li P, Qin C, et al. The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget. 2017;8(56):66.

26. Liu T, Yang S, Liu J, Xu S, Cheng Y, Shen B, et al. Dysregulated N6-methyladenosine methyltransferase writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol. 2020;235(11):5486–92.

27. Zheng G, Dzialant K, Liu Y, Verma S, Huang C-M, Li C, et al. ALKBHS is a mammalian RNA demethylase that impacts RNA metabolism and mouse germline. Mol Cell. 2013;49(1):1–16.

28. Taniguchi Y. The bromodomain and extra-terminal domain (BET) family. Functional anatomy of BET paralogous proteins. Int J Mol Sci. 2016;17(11):1–66.

29. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sisson EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukemia. Nature. 2011;478(7370):524–8.

30. Loven J, Hoek HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2015;163(2):320–34.

31. Dawson MA, Gudgin EJ, Horton SJ, Giudopolous G, Meduri E, Robson S, et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia. 2014;28(2):311–20.

32. French CA, Myoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003;63(2):304–7.

33. Delmore JE, Issa JC, Lemieux ME, Rahal PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904–17.

34. Pan Y, Ma P, Liu Y, Li W, Shu Y. Multiple functions of m6A RNA methylation in cancer. J Hematol Oncol. 2018;11(1):48.

35. Wei CM, Moss B. Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry. 1977;16(8):1672–6.

36. Wei CM, Gershonowitz A, Moss B. S-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry. 1976;15(2):397–401.

37. Zheng G, Dzialant K, Liu Y, Verma S, Huang C-M, Li C, et al. ALKBHS is a mammalian RNA demethylase that impacts RNA metabolism and mouse germline. Mol Cell. 2013;49(1):1–16.

38. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nucleolar RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.

39. Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519(7544):482–5.

40. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-(methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65(2):529–43.

41. Berulava T, Rahmann S, Rademacher K, Klein-Hitpass L, Horstemke B. N6-adenosine methylation in mRNAs. PLoS ONE. 2015;10(2):e0118438.

42. Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science. 2018;363(6409):1346–9.

43. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–200.

44. Wu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23(11):1369–76.

45. Xu J, Zhang Y, Mao Y, Mou J, Zhao X, Jia Q, et al. MRN-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochim Biophys Res Commun. 2017;482(4):582–9.

46. Li X, Tang J, Huang W, Wang F, Li P, Qin C, et al. The M6A methyltransferase METTL3 acting as a tumor suppressor in renal cell carcinoma. Oncotarget. 2017;8(56):66.

47. Liu T, Yang S, Liu J, Xu S, Cheng Y, Shen B, et al. Dysregulated N6-methyladenosine methyltransferase writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol. 2020;235(1):548–62.

48. Wang H, Huang H, Wu H, Qin X, Zhao BS, Dong L, et al. METTL4 inhibits hematopoietic stem/progenitor differentiation and promotes leukemia genesis via mRNA m6A modification. Cell Stem Cell. 2018;22(2):191–205.e9.

49. Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, et al. Multiple functions and mechanisms underlying the role of METTL3 in human cancers. Front Oncol. 2019;9:66.

50. Cully M. Chemical inhibitors make their RNA epigenetic mark. Nat Rev Drug Discov. 2019;18(12):892–4.

51. Chery M, Etchecoveny A, Jacques C, Pacaud R, Boghoss-Cartoon G, Aubry M, et al. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19(1):36.

52. Shi Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet. 2007;8(1):18–29.

53. Shi Y, Lan F, Matson C, Mulligan P, Whetstone JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.
60. Hosseini A, Minucci S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics. 2017;9(8):1123–42.
61. Rudolph T, Beuch S, Reuter G. Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin. Biol Chem. 2013;394(8):1019–28.
62. Feng Z, Yao Y, Zhou C, Chen F, Wu F, Wei L, et al. Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia. J Hematol Oncol. 2016;9:24.
63. Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettert R, et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive cancer biology. Carcinogenesis. 2010;31(3):512–20.
64. Ding J, Zhang ZM, Xia Y, Liao QQ, Pan Y, Liu S, et al. LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer. Br J Cancer. 2013;109(4):1004–1003.
65. Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain 2 predict risk of prostate cancer recurrence. Cancer Res. 2006;66(23):11341–7.
66. Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X, et al. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS ONE. 2012;7(4):e35065.
67. Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R, et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastomas. Mol Cell Biol. 2003;23(16):6055–67.
68. Zheng YC, Yu B, Chen ZS, Liu L, Liu HM. TCF: privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy. Epigenomics. 2016;8(5):651–66.
69. Mohammad HP, Smitheman KN, Kamat CD, Soong D, Fedorowicz KE, Van Aller GS, et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell. 2015;28(1):57–69.
70. Kourzandes T. Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002;12(2):198–209.
71. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation and a half LIM domain protein 2 predict risk of prostate cancer recurrence. PLoS ONE. 2012;7(4):e35065.
72. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nat Rev Genet. 2011;12(8):509–21.
73. Gan L, Yang Y, Li Q, Feng Y, Liu T, Guo W. Epigenetic regulation of cancer progression: current status and beyond. Semin Cancer Biol. 2018;51:198–210.
74. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with MLL-rearrangements. Blood. 2010;116(21):4144–50.
75. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is required for the development of eosinophils and mast cells and has modest clinical activity in adult acute leukemia. Blood. 2018;131(4):2661–9.
76. Shukla N, Wetzner C, O’Brien MM, Silverman LB, Brown P, Cooper TM, et al. Identification of high-copy disruptors of telomeric silencing in acute myeloid leukemia. Cancer Res. 2015;75(6):1370–9.
77. Gallipoli P, Huntly BJ. Novel epigenetic therapies in hematological malignancies: current status and beyond. Semin Cancer Biol. 2018;51:188–201.
78. Gerken T, Girard CA, Tung Y-C, Webby CJ, Saudek V, Hewitson KS, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2010;469(7303):343–9.
79. Xu C, Liu K, Tempel W, Demetriades M, Schofield CJ, et al. Structures of (R)-2-hydroxynicotinate reveal the binding mode used by the human ALKBH5 demethylase. Acta Crystallogr. 2018;74(1):172–80.
80. Lu C, Ward PS, Kapoor GS, Rohde D, Turcan S, Abdel-Wahab O, et al. Mutant IDH1 mutation impairs histone demethylation and has modest activity in acute myeloid leukemia. Nature. 2012;483(7390):749–83.
81. Turcan S, Rohde D, Geenka A, Walsh LA, Fang Y, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83.
82. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Drummers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxynicotinate. Nature. 2009;462(7274):739–44.
83. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Ish A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylator phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):535–67.
84. Loizou S, Jo SY, Granowicz EM, Mallard T, Thomas D, Hess JL. Requirement for DOT1L inhibitor pinometostat to maintain the glioma hypermethylator phenotype. Nature. 2015;517(7537):120–6.
85. Chang MJ, Wu H, Achille NJ, Reisenauer MR, Chou CW, Zeleznik-Arce S, et al. DOT1L: a new therapeutic target for aggressive breast cancer. Can Res. 2015;75(6):1035–45.
106. Balko JC, Finley LWS. Metabolic coordination of cell fate by α-ketoglutarate-dependent dioxygenases. Trends Cell Biol. 2021;31(1):24–36.

107. Fenaux P, Muffi GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

108. Lubbert M, Suciu S, Hagemeyer A, Ruter B, Platzerbecker U, Giagounidis A, et al. Decitabine improves progression-free survival in older high-risk MDS patients with multiple autosomal monosomies: results of a subgroup analysis of the randomized phase III study 06011 of the EORTC Leukaemia Cooperative Group and German MDS Study Group. Ann Hematol. 2016;95(2):191–9.

109. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Altman JK, et al. Easidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.

110. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(5):3754–64.

111. Roboz GJ, DiNardo CD, Stein EM, de Botton S, Mims AS, Prince GT, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood. 2020;135(7):463–71.

112. FDA approves first treatment option specifically for patients with epithelial sarcoma, a rare soft tissue cancer [press release]. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-option-specifically-patients-epithelial-sarcoma-rare-soft-tissue. Accessed 23 January 2020.

113. FDA granted accelerated approval to tazemetostat for follicular lymphoma [press release]. https://www.fda.gov/drugs/fda-granted-accelerated-approval-tazemetostat-follicular-lymphoma#:~:text=On%20June%2018%2C%20the%20Food%20and%20Drug%20Administration%20announced%20that%20tazemetostat%20has%20been%20granted%20accelerated%20approval%20for%20the%20treatment%20and%20who%20have%20progressed%20on%20previous%20chemotherapy%20(VANTAGE-014)%3A%20a%20phase%20III%20study%20of%20molibresib%20(GSK525762)%2C%20a%20bromodomain%20and%20extra-terminal%20domain%20protein%20inhibitor%2C%20in%20NUT%20carcinoma%20and%20other%20solid%20tumors. Accessed 20 January 2020.

114. Weis AJ, Metter GE, Nealon TF, Keenan JP, Ramirez G, Swaminathan A, et al. Phase II study of S-azaacitidine in solid tumors. Cancer Treat Rep. 1977;61(1):55–8.

115. Stewart DJ, Issa JP, Kurzrock R, Nunez MI, Jelinek J, Hong D, et al. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res. 2009;15(1):3881–8.

116. Samolowski WE, Leachman SA, Wade M, Cassidy P, Porter-Gill P, Busby L, et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol. 2005;23(17):3897–905.

117. Aparicio A, Eads CA, Leong LA, Laird PW, Newman EM, Synold TW, et al. Phase II study of 5-azacitidine in solid tumors. Cancer Treat Rep. 1987;71(2):347–51.

118. Schrum DS, Fischette RM, Nguyen DM, Zhao M, Li X, Kunst TF, et al. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res. 2006;12(19):5777–85.

119. Griffiths EA, Choy G, Redkar S, Taverna P, Azab M, Karpf AR. SGI-110: DNA methyltransferase inhibitor oncolytic. Drugs Future. 2013;38(8):535–43.

120. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.
145. Chiappinelli KB, Strissel PL, Desrichard A, Liu H, Henke C, Akman B, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviral. Cell. 2015;162(5):794–86.

146. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162(2):961–73.

147. Yan N, Chen ZJ. Intrinsic antiviral immunity. Nat Immunol. 2012;13(3):214–22.

148. Heninger E, Krueger TE, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol. 2015;6:29.

149. Karpf AR. A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy. Epigenetics. 2006;1(3):116–20.

150. Weber J, Salgaller M, Samid D, Johnson R, Herlyn M, Lassman N, et al. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2'-deoxycytidine. Cancer Res. 1994;54(7):1766–71.

151. Karpf, Jones DA. Reactivating the expression of methylated silenced genes in human cancer. Oncogene. 2002;21(35):5496–503.

152. Karpf AR, Peterson PW, Rawlins JT, Dalley BK, Yang Q, Albertsen H, et al. Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci USA. 1999;96(24):14007–12.

153. Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 2020;17(2):75–90.

154. Gray JE, Saltos AN, Tanvetyanon T, Haura EB, Creelan BC, Antonia SJ, et al. Phase I/II study of panobezolzumub plus vorinostat in advanced/metastatic non-small cell lung cancer. Clin Cancer Res. 2019;25(19):5305–19.

155. Yardley DA, Saltos AN, Tanvetyanon T, Haura EB, Creelan BC, Antonia SJ, et al. Phase I/II study of panobezolzumub plus vorinostat in advanced/metastatic non-small cell lung cancer. Clin Cancer Res. 2019;25(19):5305–19.

156. Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O'Reilly T, Evans DB, et al. Dual BET bromodomain inhibitors enhance efficacy and increase incidence of objective responses in models of breast cancer. Clin Cancer Res. 2020;16(2):798–808.

157. Bihani T, Ezell SA, Ladd B, Grosskurth SE, Mazzola AM, Pietras M, et al. Resistance to vorinostat in tumors of follicular cell origin. Clin Endocrinol. 2017;86(1):128–33.

158. Pielerclub RL, Frye R, Turner M, Wright J, Allen SL, Kirschbaum MH, et al. Phase II multitrial study of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25(21):3109–15.

159. Davie M, Talpur R, Ni X, Zhang C, Hazarkia R, Kelly C, et al. Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (ICTCL). Blood. 2006;108(1):794–803.

160. O'Connor OA, Horwitz S, Massiti T, Hoof AV, Brown P, Doorduin J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the Pivotal Phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33(23):2492–9.

161. Asangani IA, Wilder-Romans K, Dommeti VL, Krishnamurthy PM, Apel IJ, Escara-Wilke J, et al. BET bromodomain inhibitors enhance efficacy and increase incidence of objective responses in models of breast cancer. Clin Cancer Res. 2020;16(2):798–808.

162. Bihani T, Ezell SA, Ladd B, Grosskurth SE, Mazzola AM, Pietras M, et al. Resistance to vorinostat in tumors of follicular cell origin. Clin Endocrinol. 2017;86(1):128–33.

163. Bihani T, Ezell SA, Ladd B, Grosskurth SE, Mazzola AM, Pietras M, et al. Resistance to vorinostat in tumors of follicular cell origin. Clin Endocrinol. 2017;86(1):128–33.

164. Bihani T, Ezell SA, Ladd B, Grosskurth SE, Mazzola AM, Pietras M, et al. Resistance to vorinostat in tumors of follicular cell origin. Clin Endocrinol. 2017;86(1):128–33.

165. Bihani T, Ezell SA, Ladd B, Grosskurth SE, Mazzola AM, Pietras M, et al. Resistance to vorinostat in tumors of follicular cell origin. Clin Endocrinol. 2017;86(1):128–33.

166. Bihani T, Ezell SA, Ladd B, Grosskurth SE, Mazzola AM, Pietras M, et al. Resistance to vorinostat in tumors of follicular cell origin. Clin Endocrinol. 2017;86(1):128–33.

167. Mohammad HR, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019;25(3):403–8.

168. Qin T, Casotto R, El Ahlbo S, Jelinek J, Wang X, Si J, et al. Mechanisms of resistance to decitabine in the myelodysplastic syndrome: PLoS ONE. 2011;6(8):e23372.

169. Prebet T, Gore SD, Esterni B, Gardin C, Itzykson R, Thepot S, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29(24):3322–7.

170. Eden S, Hashimshony T, Keshet I, Cedar H. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 2012;9(8):555–3.

171. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Abkust M, Diferioso J, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794–803.

172. Olsens EA, Kim YH, Kuzel TM, Pacheco TR, Foss PM, Parker S, et al. Phase II multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25(21):3109–15.

173. Vigil CE, Martin-Santos T, Garcia-Manero G, Safety and efficacy of azacitidine in multiple myeloma. Drug Des Devel Ther. 2010;4:221–9.

174. Therapeutic study in patients with hormone receptor-positive advanced breast cancer: NPJ Breast Cancer. 2018;4(1):11.

175. Burstein HN. Novel agents and future directions for refractory breast cancer. Semin Oncol. 2011;38(5):517–24.

176. Johnston S. Clinical efforts to combine endocrine agents with targeted therapies against epidermal growth factor receptor/human epidermal growth factor receptor 2 and Mammalian target of rapamycin in breast cancer. Clin Canc Res. 2006;12(3):1061s-s1068.

177. Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O'Reilly T, Evans DB, et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005;11(4):5319–28.

178. Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-refractory—positive advanced breast cancer. N Engl J Med. 2011;366(6):520–9.

179. Piccart M, Hortobagyi GN, Campone M, Pritchard KL, Lebrun F, Itti Y, et al. Everolimus plus exemestane for hormone-refractory, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLETO-2. Ann Oncol. 2014;25(2):2357–62.

180. Bihani T, Ezell SA, Ladd B, Grosskurth SE, Mazzaoli AM, Pietras M, et al. Resistance to everolimus driven by epigenetic regulation of MYC in ER+ breast cancers. Oncotarget. 2015;6(6):4207–20.

181. Feng G, Zhang Z, Shea MJ, Creggton CJ, Coarfa C, Hilsenbeck SG, et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 2012;22(7):809–19.

182. Asangani IA, Wilder-Romans K, Dommert VL, Krishnamurthy PM, Apel IJ, Escara-Wilke J, et al. BET bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol Cell Res. 2016;41(4):324–31.

183. Karakashian S, Zhu H, Yokoyama Y, Zhao B, Fatkhuuddin N, Kossenkov AV, et al. BET Bromodomain inhibition synergizes with PARP inhibitor in epithelial ovarian cancer. Cell Rep. 2017;21(2):3398–405.

184. Abbotts R, Toper MJ, Biondi C, Fontaine D, Goswami R, Stojanovic L, et al. DNA methyltransferase inhibitors induce a BRCAness phenotype that sensitizes NSCLC to PARP inhibitor and ionizing radiation. Proc Natl Acad Sci USA. 2019;116(45):22609–18.
inhibitor of mutant IDH1, in patients with advanced solid tumors. Invest New Drugs. 2020;38(2):433–44.

189. Mellinghoff IK, Cloughesy TF, Wen PY, Taylor JW, Maher EA, Arrillaga I, et al. A phase I, open label, periporative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

190. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

191. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

192. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

193. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

194. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

195. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

196. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

197. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.

198. Wang JS-Z, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, et al. Piha-Paul SA, Hann CL, French CA, Cousin S, Braña I, Cassier PA, et al. Phase I, open label, perioperative study of AG-120 and AG-881 in recurrent IDH1 mutant, low-grade glioma: Results from cohort 1. J Clin Oncol. 2019;37(15_suppl):2003.