Vibronic order and emergent magnetism in cubic d^1 double perovskites

Naoya Iwahara 1,* and Liviu F. Chibotaru 2,†

1Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
2Theory of Nanomaterials Group, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

DOI: 10.1103/PhysRevB.107.L220404

Introduction. In Mott insulators, spin-orbit entanglement is a source of nontrivial magnetism. The anisotropic exchange interaction induced by strong spin-orbit coupling in heavy transition metal compounds has been intensively employed to realize the Kitaev spin liquid phase $[1,2]$. When the total angular momentum on metal sites amounts to $J_{\text{eff}} > 1/2$, the magnetic interaction is not only anisotropic but also multipo- lar. A well-known example of magnetic multipolar systems is a family of geometrically frustrated $4d^1$ double perovskites with $J_{\text{eff}} = 3/2$ (Fig. 1) characterized by unusual order $[3–20]$ and glassy phases $[21–26]$. The origin of the ordered phases in these systems is still puzzling. These compounds exhibit either canted ferromagnetic (FM110) or antiferromagnetic (AFM) phases. However, conventional spin-orbit theories predict the main features of the FM110 phase, while showing discrepancies with experiment, particularly, in the following two cases $[11,13]$. (1) A high-resolution x-ray scattering study on single-crystalline Ba$_2$MgReO$_6$ revealed the coexistence of antiferro $(x^2–y^2$ (rhombic deformations on sites) and ferro z^2 (tetragonal elongations on sites) quadrupole orders in the high-temperature phase $[13]$. (2) A family of tantalum compounds, A_2Ta$_6$X$_8$ ($A = $Rb, Cs; $X = $Cl, Br), exhibits AFM order that accompanies ferro z^2 quadrupole order of tetragonal compression type $[11,15]$. However, conventional spin-orbit theories do not predict quadrupole orders which would match the observed structural distortions $[27–29]$. In the d^1 double perovskites, the vibronic coupling at each metal site gives rise to dynamic Jahn-Teller (JT) effect resulting in spin-orbit-lattice entanglement on sites $[30]$. Indeed, the ab initio calculations for molybdenum and osmium double perovskites proved that the $J_{\text{eff}} = 3/2$ states are strongly coupled to the JT-active modes $[30,31]$. The resulting dynamic JT stabilization is much larger than the magnetic interaction quantified by the Curie-Weiss constants, indicating that the dynamic JT effect persists in these crystals given the lack of common atoms for different metal octahedra $[Fig. 1(a)]$. The dynamic JT effect smears out the structural anisotropy, explaining why many d^1 double perovskites are cubic $[5,18,19,21,22,24,26]$, while under external field the ground states show slight localization at a JT deformed geometry $[30]$. Despite the importance of the dynamical JT effect in d^1 double perovskites, it was still not properly treated for the description of the magnetic phases in these compounds.

In this work, we extend the vibronic treatment of individual metal sites over the cooperative effect of joint spin-orbit and dynamic Jahn-Teller interactions in a family of cubic d^1 double perovskites. We found that elastic and exchange couplings between entangled spin-orbit vibronic states on metal sites give rise to rich phases of coexisting magnetic and vibronic orders.

Microscopic model for the d^1 compounds. In d^1 double perovskites, the metal octahedra form a face-centered-cubic (fcc) lattice $[Fig. 1(a)]$. In each d^1 octahedron, the d orbitals split into the e_g doublet and t_{2g} triplet and an electron occupies the t_{2g} orbitals in the low-energy states. The microscopic model for the t_{2g} electrons comprises intrasite bielectronic, spin-orbit and Jahn-Teller, and intersite electron transfer and elastic interactions:

$$\hat{H} = \sum_{i} (\hat{H}_U^{\uppertag{1}} + \hat{H}_SO^{\uppertag{1}} + \hat{H}_JT^{\uppertag{1}}) + \sum_{i<j} (\hat{H}_t^{ij} + \hat{H}_v^{ij}) \tag{1}$$

The Coulomb and electron transfer interactions are

$$\hat{H}_U^{\uppertag{1}} = \sum_{\gamma} U^{\gamma} \hat{n}_{\gamma(\uparrow)} \hat{n}_{\gamma(\downarrow)} + \sum_{\gamma<\gamma'} \sum_{\sigma \sigma'} \left[\frac{(U – 2J_H)}{2} \hat{n}_{\gamma(\sigma)} \hat{n}_{\gamma'(\sigma')} + J_H \hat{n}_{\gamma(\sigma)} \hat{\tilde{a}}_{\gamma(\sigma)}^{\dagger} \hat{\tilde{a}}_{\gamma'(\sigma')}^{\dagger} \hat{\tilde{a}}_{\gamma'(\sigma')} \hat{\tilde{a}}_{\gamma(\sigma)} \right] + \sum_{\gamma \neq \gamma'} \sum_{\gamma' \neq \gamma''} \sum_{\sigma \sigma'} \left[J_H \hat{\tilde{a}}_{\gamma(\sigma)}^{\dagger} \hat{\tilde{a}}_{\gamma'(\sigma')}^{\dagger} \hat{\tilde{a}}_{\gamma'(\sigma')} \hat{\tilde{a}}_{\gamma(\sigma)} + J_H \hat{n}_{\gamma(\sigma)} \hat{\tilde{a}}_{\gamma(\sigma)}^{\dagger} \hat{\tilde{a}}_{\gamma'(\sigma')}^{\dagger} \hat{\tilde{a}}_{\gamma'(\sigma')} \hat{\tilde{a}}_{\gamma(\sigma)} \right] \tag{2}$$

$$\hat{H}_t^{ij} = \sum_{\gamma \gamma'} \sum_{\sigma \sigma'} \sum_{\gamma''} \left(\hat{\tilde{a}}_{\gamma(\sigma)}^{\dagger} \hat{\tilde{a}}_{\gamma'(\sigma')} \hat{\tilde{a}}_{\gamma'(\sigma')} \hat{\tilde{a}}_{\gamma(\sigma)} - \hat{\tilde{a}}_{\gamma'(\sigma')}^{\dagger} \hat{\tilde{a}}_{\gamma'(\sigma')} \hat{\tilde{a}}_{\gamma(\sigma)}^{\dagger} \hat{\tilde{a}}_{\gamma(\sigma)} \right) \tag{3}$$

*naoya.iwahara@gmail.com
†liviu.chibotaru@kuleuven.be
where $\gamma \,(=yz, zx, xy)$ are three t_{2g} orbitals at each site i, U and J_H are the Coulomb and Hund coupling parameters, respectively, and t_{ij}^γ is the electron transfer parameter between orbitals γ and γ'. We assume that U/\hbar is sufficiently large for the development of the Mott insulating phase.

The spin-orbit coupling at each metal site can be expressed via the effective orbital angular momentum $\hat{l} = 1$ of the t_{2g} shell (Sec. 7.1.1 in Ref. [32]) as follows:

$$\hat{H}_{SO}^i = \lambda \hat{l} \cdot \hat{s}^i.$$

(4)

It stabilizes $J_{\alpha\beta} = 3/2 (\Gamma_8)$ at each site for $\lambda > 0$ [Fig. 1(b), Sec. 7.1.2 in Ref. [32]].

The t_{2g} orbitals also interact with the JT active E_g vibrations of the octahedron (Sec. 3.3.2 in Ref. [33]):

$$\hat{H}_{JT}^i = \sum_{\alpha} \frac{\hbar \omega}{2} (p_{a\alpha}^2 + q_{a\alpha}^2) + \hbar \omega q_{z\alpha},$$

(5)

where q_{α} and p_{α} ($\alpha = z^2, x^2 - y^2$) are dimensionless normal coordinates for the JT active modes and conjugate momentum, respectively, $(q_i^2)_{z\alpha}$ is the symmetrized quadratic polynomial of q_{α}, ω is the frequency of the JT active mode, $g = 0$ and $g_{ij} > 0$ are the dimensionless linear and quadratic vibronic coupling parameters, respectively, \hat{P}_{α}^i is the projection operator into the α orbital on site i, and “cycl” indicates cyclic permutations of x, y, z and $q_{\alpha}, q_{z\alpha} > 0$ (cyclic) corresponds to tetragonal elongation (compression) of the octahedron [Fig. 1(c)]. The adiabatic potential energy surface (APES) from Eq. (5) consists of three independent paraboloids (Fig. 3.6 in Ref. [33]). Each paraboloid corresponds to one t_{2g} orbital and has a minimum with tetragonal compression normal to the plane of this orbital.

Finally, the JT active vibrations on neighbor sites interact through the elastic coupling:

$$\hat{H}_{ vib}^{ij} = (q_{z\alpha}, q_{z\alpha} - y^2) \sum_{\alpha} (q_{z\alpha}, q_{z\alpha} - y^2) \hat{D}_{\alpha}^{ij}(\theta) \hat{D}_{\alpha}^{ij}(\theta)^T.$$

(6)

The strongest is the on-site Coulomb interaction ($U \approx 3$ eV [5,34]), followed by spin-orbit coupling ($\lambda \approx 0.25-0.35$ eV for $5d^{1}$ ions [11,30]), and then Jahn-Teller ($\hbar \omega T \approx 50$ meV [30]) and electron transfer ($t \approx 50$ meV [5]) interactions. The intersite elastic interaction of JT active vibrations is about one order of magnitude smaller than their frequency, $\hbar \omega \approx 50$ meV.

We treat the intrasite interactions exactly and the intersite interactions perturbatively following the standard way for correlated insulators. We reduce \hat{H}_U and \hat{H}_T to the spin-orbital superexchange interaction for the description of the low-energy phenomena within the Mott insulating phase. The magnitude of the exchange interaction parameter, $J \approx t^2/\hbar \approx 1$ meV, is consistent with the experimental estimates from the Curie-Weiss constants $J \approx \delta/\kappa$, where $\delta = 12$ is the number of the nearest-neighbor sites. The exchange interaction is by two orders of magnitude smaller than the intrasite interactions and is comparable to the intersite elastic interaction. Below, we describe the interactions in descending order of the energy scale.

Local spin-orbital-lattice entangled states. The octahedral symmetry of each d^1 site enables the persistence of the JT effect in strong spin-orbit coupled states. The spin-orbit Γ_8 quartet splits into two Kramers doublets by JT deformations [Fig. 1(c), Sec. 3.3.3 in Ref. [33]]: under tetragonal compression along an axis $\gamma = (x, y, z)$, the lower energy Kramers pair contains a dominant contribution from the t_{2g} orbital lying in the plane perpendicular to the γ axis.

The nature of the JT coupling within the Γ_8 quartet becomes transparent by introducing pseudo orbital and pseudospin. Because of the relation $\Gamma_8 = \Gamma_3 \otimes \Gamma_6$, we can represent the Γ_8 multiplet via a direct product of e (Γ_3) “pseudo orbital” $\tilde{\tau}$ and Γ_6 “pseudospin” $\tilde{\sigma}$ ($\tilde{\tau} = \tilde{\sigma} = 1$) [28,35]: $| \Gamma_8, \tilde{\tau} = \tilde{\sigma} = 1 \rangle = \pm | \tilde{\tau}_x = \frac{1}{2}, \tilde{\sigma} = \mp \frac{1}{2} \rangle$ and $| \Gamma_6, \tilde{\tau} = \tilde{\sigma} = 1 \rangle = \pm | \tilde{\tau}_z = \frac{1}{2}, \tilde{\sigma}_z = \pm \frac{1}{2} \rangle$. $\tilde{\tau}_\alpha$ is an electric z^2 ($x^2 - y^2$) quadrupole moment operator. Within this representation, the JT coupling term in Eq. (5) reads as

$$-\hbar \omega q_{z\alpha} + \eta (q_{z\alpha})_z \tilde{\tau}_z + (q_{z\alpha} - y^2)\eta (q_{z\alpha} - y^2)\tilde{\tau}_\alpha.$$

(7)

The pseudo-JT coupling between spin-orbit multiplets and the anharmonicity effects vary the magnitude of the warping of the APES [Figs. 1(b) and 1(c)].

The local quantum states are of vibronic type characterized by spin-orbit and lattice entanglement [30]. We start with three localized states around the minima of the APES with $\gamma = (x, y, z)$ compression, $| \Phi_\gamma \rangle$ [Fig. 1(c)]. A localized state $| \Phi_\gamma \rangle$ is the direct product of the pseudo orbital state $\cos \phi_\gamma \tilde{\tau}_x = -\frac{1}{2}$ and $\sin \phi_\gamma \tilde{\tau}_z = \frac{1}{2}$ and the ground vibrational state at the minimum, where $\phi_\gamma = -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}$ for $\gamma = (x, y, z)$, respectively. The kinetic energy term in Eq. (5) promotes the delocalization over other minima (Sec. 4.3.3 in Ref. [33]). Then the vibronic states are linear combinations of $| \Phi_\gamma \rangle$’s and two ground states are E type,

$$| z^2 \rangle = \frac{1}{\sqrt{6}} (2| \Phi_+ \rangle - | \Phi_- \rangle - | \Phi_y \rangle),$$

$$| x^2 - y^2 \rangle = \frac{1}{\sqrt{2}} (| \Phi_+ \rangle - | \Phi_- \rangle),$$

(8)

and one excited state of A type,

$$| A \rangle = \frac{1}{\sqrt{3}} (| \Phi_+ \rangle + | \Phi_- \rangle + | \Phi_y \rangle),$$

(9)

defining a one-site Hamiltonian,

$$\hat{H}_0 = \Delta \hat{\eta}_\Lambda.$$

(10)
where \(\hat{P}_A = \langle A \rangle \langle A \rangle \) and \(\Delta \) is the gap between them [Fig. 1(b)]. We emphasize that the order of these vibronic states is predetermined by the geometric phase [36] and does not depend on the computational methods (see Sec. 4.3 in Ref. [33]) and weak interactions such as higher-order vibronic coupling, pseudo-JT coupling, and anharmonic terms (see Ref. [30]).

Vibronic quadrupole moment. The vibronic states on the \(d^1 \) sites are correlated via intersite interactions acting on spin, orbital, and lattice degrees of freedom, underlying ordered phases of vibronic states [30]. To characterize the phases, vibronic quadrupole operators are further introduced \(\hat{Q}_i \). We define \(\hat{T}_y \) by the projection of the electric quadrupole moments, \(\bar{T}_y \), into the vibronic states, Eqs. (8) and (9):

\[
\hat{T}_y = \hat{P}
\]

(11)

within the space of these vibronic states, the normal coordinates are proportional to \(\bar{T}_y \). By the same procedure, we get

\[
q_{i, \alpha}^2 (x, y, z) \rightarrow \hat{P} q_{i, \alpha}^2 (x, y, z) \hat{P} = -g \hat{T}_z (\alpha).
\]

(12)

Thus the vibronic quadrupole moments enable a unified treatment of pseudo orbital and lattice degrees of freedom.

From Eq. (12), the thermal average of \(\bar{T}_y \) is related to the deformation of the system. When \(T_y = \langle T_y \rangle > 0 \), the system is tetragonally compressed (elongated) along the \(c \) axis. Similarly, \(T_y > 0 \) indicates the \(-x^2 + y^2 \) deformation within the ab plane.

Elastic quadrupole interaction. For nearest neighbor sites \(i, j \) on the xy plane, we can write on symmetry reasons:

\[
D_{ij}^i (\theta) = d_0 (\cos \theta \sigma_0 + \sin \theta \sigma_2).
\]

(13)

Here \(\sigma_0 \) is the two-dimensional identity matrix and \(\sigma_2 \) is the \(z \) component of the Pauli matrix.

The spin-orbit-lattice entangled states on the \(d^1 \) sites respond to the intersite elastic coupling. Projecting \(q_0 \) as in Eq. (12), \(\hat{H}_{\text{vib}} \) reduces to a vibronic quadrupole interaction:

\[
\hat{H}_{\text{vib}}^i (\theta) = \left(\hat{T}_z^i, \hat{T}_z^j \right) D^i (\theta) \left(\hat{T}_z^j, \hat{T}_z^i \right)^T,
\]

(14)

with \(D^i = g_0^2 D_{ij}^i \) and \(d = g_0^2 d_0 \). The present vibronic quadrupole model has the same mathematical form as the electric quadrupole model in Ref. [37], while being of a completely different origin.

The vibronic quadrupole interaction (14) with local vibronic Hamiltonian (10) shows various ferro- (FQ) and antiferro- (AFQ) vibronic quadrupole orders [Fig. 2(a)]. We first analyze the limiting case of \(\Delta \rightarrow +\infty \) (\(d/\Delta > 0 \)). To derive the ground state, we employ the four-sublattice mean-field theory as in Refs. [27,29,37]. The \(T_y \) and \(T_x \) moments form the type-I AFM-like AFQ and FQ001 orders for \(0 < \theta < \pi - \tan^{-1} 2 \) and \(\pi + \tan^{-1} 2 < \theta < 2\pi \), respectively [Figs. 2(b) and 2(d)]. The FQ order of \(T_x \) (\(\theta > 0, \pi/2 < \theta < \pi \)) arises for the other range of \(\theta \) [Fig. 2(c)].

Reducing \(\Delta \) (\(d/\Delta > 0 \)), several phases emerge [Fig. 2(a)].

FQ phase remains for almost the same range of \(\theta \). The AFQ also persists, while, for small \(\theta \lesssim \pi/5 \), a new phase (zxy\(\bar{z} \)) develops [Fig. 2(e)]. The FQ001 is fully quenched for

\[
d/\Delta \gtrsim 0.05 \text{ and a phase } (zxy\bar{z}) \text{ [Fig. 2(f)] resembling } zxy\bar{z} \text{ arises.}
\]

In the AFQ phase with finite \(\Delta \), ferro \(T_y \) order (\(T_y < 0 \), \(c/a > 1 \)) develops also. When \(\Delta \) is finite, \(\hat{H}_{\text{vib}} \) hybridizes the fully localized ground vibronic states and the excited one, giving rise to a tiny localization of the ground mean-field states around the minima of the APES. This localization makes \(\bar{T}_y \) nonzero.

Spin-orbital superexchange. The pseudospin and vibronic quadrupole moments on \(d^1 \) sites are correlated via spin-orbital superexchange interaction. In a \(xy \) (\(vz \), \(zx \)) plane of the fcc lattice, the dominant electron transfer occurs between the nearest \(xy \) (\(vz \), \(zx \)) orbitals. We consider only the dominant electron transfer as in Ref. [28]. Regarding the electron transfer interaction as a perturbation to the on-site Coulomb interaction, and applying the second-order perturbation theory, we obtain the spin-orbital superexchange model. Then, projecting the exchange coupling into the \(\Gamma_8 \) multiplets [28], we finally get

\[
\hat{H}_{\text{ex}}^i = F_i^j \hat{s}_i^j \hat{s}_j^i + \bar{\hat{g}} K_{ij} \hat{s}_i^j + \bar{\hat{g}} \hat{O}_{ij}.
\]

(15)

For a pair \(i, j \) in an xy plane,

\[
F_i^j = \frac{16}{5} (2 r_2 + r_3 \left(\hat{t}_z - \frac{1}{2} \right) \left(\hat{t}_z - \frac{1}{2} \right)),
\]

(16)

\[
\hat{K}_{ij}^i \text{ takes a diagonal matrix form with}
\]

\[
\hat{K}_{ij}^i = \frac{4}{3} \sqrt{3} (r_1 - r_2) \left[\hat{t}_z^i \left(\hat{t}_z - \frac{1}{2} \right) + \left(\hat{t}_z - \frac{1}{2} \right) \hat{t}_z^j \right],
\]

(17)

\[
\hat{K}_{ij}^j = -\hat{K}_{ij}^i,
\]

\[
\hat{O}_{ij}^i = \frac{2}{9} (r_1 - r_2) (2 - \hat{t}_z^i - \hat{t}_z^j - 4 \hat{t}_z^i \hat{t}_z^j),
\]

(18)
The mean-field phase of the FM110-type or a two-sublattice ferromagnetic-type (FM001) model, Eq. (15). Projecting the vibronic states, the electric quadrupole interaction takes the same form as \hat{H}_{vib} (14) with fixed $\theta = 0.587\pi$. Figure 3(a) shows that the electric quadrupole interaction does not qualitatively change the FM110 phase for arbitrary strength of the interaction.

Finite temperature vibronic order. Let us now analyze the temperature evolutions of the FM110 and AFM-FQ phases. For $d > d_v$, in both phases, the specific heat C_v shows two phase transitions at T_m and T_q ($T_m < T_q$) [Figs. 4(a) and 4(c)]. The order parameters indicate that the transitions at T_m and T_q correspond to the magnetic and vibronic quadrupole transitions, respectively [Figs. 4(b) and 4(d)]. At these transitions, the entropy gains the contributions (k_Bln2 each) from the magnetic and the ground vibronic degrees of freedom, respectively [Figs. 4(a) and 4(c)]. Decreasing d, T_q approaches T_m and, below d_v, the two transitions merge.

The presence or absence of the vibronic quadrupole transition depends on the strength of the correlation between \hat{s} and $\hat{\bar{T}}$ via \hat{H}_{ex} [see the first and second terms in Eq. (19)]. When \hat{H}_{vib} is dominant ($d > d_v$), $\hat{\bar{T}}$‘s are almost independent from \hat{s}. Under this situation, T_q (or T_m/T_q) and T become larger as d increases. When \hat{H}_{ex} is dominant ($d < d_v$), the pseudospin and vibronic states are strongly correlated and only one transition appears.

Finally, we note that the ferro T_q order in the FM110 phase persists above T_m ($d > d_v$) [Fig. 4(b)]. The ferro T_q order originates from the hybridization of the i and z vibronic states by \hat{H}_{vib} [Fig. 1(b)] as in the AFQ phase [Fig. 2(c)].

Vibronic order in materials. Our spin-vibronic orders are consistent with the ordered phases of the $5d^1$ double perovskites, particularly, the high-temperature quadrupole phase of Ba$_2$MgReO$_6$ and the AFM phase of A$_2$TaX$_6$.

The theoretical quadrupole phase above T_m of the FM110 phase [Figs. 4(a) and 4(b)] explains the experimental data of...
dospins. The FM110 and AFM-FQ phases have two sublattices, catcate vibronic quadrupole moments and the black lines pseu-
also in line with the experimental data of Ba\textsubscript{2}CaReO\textsubscript{6}.

In (a), (c), the blue solid and red dotted lines indicate thermodynamic quantities in the FM110 and AFM-FQ phases.

In the rhenium compound, the ferro and antiferro quadrupole orders coexist between $T_m = 18$ K and $T^\theta = 33$ K, which agrees with our calculation [Fig. 4(b)]. The specific heat of the single-crystalline sample does not show a clear peak [12], which agrees with the present simulation [Fig. 4(a)].

In similar FM110 compounds such as Ba\textsubscript{2}NaOsO\textsubscript{6} and Ba\textsubscript{2}ZnReO\textsubscript{6}, the T^θ moment has not been experimentally detected, which does not contradict our theory. As mentioned above, T^θ / T_m and T^θ / T_m increase as \hat{H}_{vib} becomes stronger. Indeed, T^θ / T_m's are about 1.3 for Ba\textsubscript{2}NaOsO\textsubscript{6} [10] and 1.4 for Ba\textsubscript{2}ZnReO\textsubscript{6} [18], and smaller than $T^\theta / T_m \approx 1.8$ for Ba\textsubscript{2}MgReO\textsubscript{6}, indicating that \hat{H}_{vib}'s (and T^θ) of the former compounds are weaker than that of the latter. T^θ of the former could be too small to experimentally detect with currently available methods.

Our AFM-FQ phase [Figs. 3(a) and 3(c)] captures the low-temperature ordered phases of A_2TaX_6. Lowering T from the room temperature, the tantalum compounds undergo tetragonal compression at $T^\theta (c/a < 1, T^\theta > 0)$, continuing through the Néel transition [11,15,20], which agrees with the temperature evolution of our AFM-FQ phase [Fig. 4(d)]. At these transitions, the specific heat of single-crystalline Cs\textsubscript{2}TaCl\textsubscript{6} shows sharp peaks [20], which is consistent with our calculation [Fig. 4(c)]. The AFM-FQ phase is also in line with the experimental data of Ba\textsubscript{2}CaReO\textsubscript{6} [4,16].

The AFM-FQ phase could appear in cubic Ba\textsubscript{2}LiOsO\textsubscript{6} too. Although the presence of the T^θ quadrupole order has not been reported yet [3,6,18], the magnitude of T^θ could be too small to experimentally detect because of weak \hat{H}_{vib}, as in isostructural and isoelectronic Ba\textsubscript{2}NaOsO\textsubscript{6}. Recent NMR data (the temperature evolution of $1/T^\theta$) show a bump just above T_m [19]. As discussed in the literature, the data might imply the presence of quadrupole transition.

Furthermore, the FM110-to-AFM transition resolves why similar 5d^1 double perovskites exhibit FM110 and AFM phases. Isoelectronic and isostructural Ba\textsubscript{2}NaOsO\textsubscript{6} and Ba\textsubscript{2}LiOsO\textsubscript{6} show FM110 and AFM phases, respectively. The nature of the phase of Ba\textsubscript{2}CdReO\textsubscript{6} is under debate as to whether it is FM110 [14] or AFM [18]. We propose that these systems are close to the border of the FM110 and AFM phases in the phase diagram [Fig. 3(a)]: by slightly varying θ in \hat{H}_{vib}, phase transition between them could occur. The elastic coupling varies by changing nonmagnetic alkali ions in the osmium compounds and via a small change in, e.g., crystal anisotropy and the density of defects of different samples of the rhenium compound.

\textbf{Conclusion.} We developed a microscopic vibronic approach that concomitantly treats the competing spin-orbit and vibronic interactions in cubic d^1 double perovskites. We found that the magnetic order coexists with the vibronic order characterized by ferro/antiferro arrangement of vibronic quadrupole moments on sites. The present theory allows for the rationalization of the mechanism of puzzling phases in the $5d^1$ double perovskites: the high-temperature quadrupole orders above the magnetic transition of FM110 phase in rhenium compounds and the antiferromagnetic phase with tetragonal compression in tantalum compounds.

The vibronic quadrupole order can be detected by resonant x-ray scattering. Since the vibronic quadrupole moments, Eq. (11), respond to all external fields acting on the orbitals, high-resolution resonant elastic/inelastic x-ray scattering (REXS/RIXS) measurements used to probe orbital orders [38–40] will be indispensable to study vibronic order too. A fingerprint of the vibronic order will appear as the anisotropy of the atomic scattering factors in REXS spectra and in the low-energy vibronic excitation bands in RIXS spectra.

The unquenched orbital-lattice entanglement could exist in a large class of metal compounds. The proposed approach is applicable to systems with orbital (quasi)degeneracy on sites since the orbital-lattice entanglement could persist in low-symmetric systems with moderate orbital energy splitting. The dynamic vibronic order assumes the forma-

\textbf{Acknowledgments.} This work was partly supported by the Okura Kazuchika memorial foundation and a Grant-in-Aid for Scientific Research (Grant No. 22K03507) from the Japan Society for the Promotion of Science.
D. Hirai, Z. Hiroi, Possible quadrupole order in tetragonal Ba2CdReO6 and chemical trend in the ground states of 5d1 double perovskites, Phys. Rev. B 107, L220404 (2023).

[1] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Spin-orbit physics giving rise to novel phases in correlated systems: Iridates and related materials, Annu. Rev. Condens. Matter Phys. 7, 195 (2016).

[2] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler, Concept and realization of Kitaev quantum spin liquids, Nat. Rev. Phys. 1, 264 (2019).

[3] K. E. Stitzer, M. D. Smith, and H.-C. zur Loye, Crystal growth of Ba2MgOsO6 (M = Li, Na) from reactive hydroxide fluxes, Solid State Sci. 4, 311 (2002).

[4] K. Yamamura, M. Wakeshima, and Y. Hinatsu, Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M = W, Re, Os), J. Solid State Chem. 179, 605 (2006).

[5] A. S. Erickson, S. Misra, G. J. Miller, R. R. Gupta, Z. Schlesinger, W. A. Harrison, J. M. Kim, and I. R. Fisher, Ferromagnetism in the Mott Insulator Ba2NaOsO6, Phys. Rev. Lett. 99, 016404 (2007).

[6] A. J. Steele, P. J. Baker, T. Lancaster, F. L. Pratt, I. Franke, S. Ghannadzadeh, P. A. Goddard, W. Hayes, D. Prabhakaran, and S. J. Blundell, Low-moment magnetism in the double perovskites Ba2MgOsO6 (M = Li, Na), Phys. Rev. B 84, 144416 (2011).

[7] C. A. Marjerrison, C. M. Thompson, G. Sala, D. D. Maharaj, E. Kermarrec, Y. Cai, A. M. Halls, M. N. Wilson, T. J. S. Munsie, G. E. Granroth, R. Flacau, J. E. Greedan, B. D. Gaulin, and G. M. Luke, Cubic Re6+ (5d1) double perovskites, Ba2MgReO6, Ba2ZnReO6, and Ba2Y2/3ReO6: Magnetism, heat capacity, μSR, and neutron scattering studies and comparison with theory, Inorg. Chem. 55, 10701 (2016).

[8] L. Lu, M. Song, W. Liu, A. P. Reyes, P. Kuhns, H. O. Lee, I. R. Fisher, and V. F. Mitrović, Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions, Nat. Commun. 8, 14407 (2017).

[9] W. Liu, R. Cong, E. Garcia, A. Reyes, H. Lee, I. Fisher, and V. Mitrović, Phase diagram of Ba2NaOsO6, a Mott insulator with strong spin orbit interactions, Phys. B: Condens. Matter 536, 863 (2018).

[10] K. Willa, R. Willa, U. Welp, I. R. Fisher, A. Rydh, W.-K. Kwok, and Z. Islam, Phase transition preceding magnetic long-range order in the double perovskite Ba2NaOsO6, Phys. Rev. B 100, 041108(R) (2019).

[11] H. Ishikawa, T. Takayama, R. K. Kremer, J. Nuss, R. Dinnebier, K. Kitagawa, K. Ishii, and H. Takagi, Ordering of hidden multipoles in spin-orbit entangled 5d3/2 Ta chlorides, Phys. Rev. B 100, 045142 (2019).

[12] D. Hirai and Z. Hiroi, Successive symmetry breaking in a J_eff = 3/2 quartet in the spin-orbit coupled insulator Ba2MgReO6, J. Phys. Soc. Jpn. 88, 064712 (2019).

[13] D. Hirai, H. Sagayama, S. Gao, H. Ohsumi, G. Chen, T.-h. Arima, and Z. Hiroi, Detection of multipolar orders in the spin-orbit-coupled 5d Mott insulator Ba2MgReO6, Phys. Rev. Res. 2, 022063(R) (2020).

[14] D. Hirai and Z. Hiroi, Possible quadrupole order in tetragonal Ba2CdReO6 and chemical trend in the ground states of 5d1 double perovskites, J. Phys.: Condens. Matter 33, 135603 (2021).

[15] H. Ishikawa, T. Tajima, A. Matsuo, and K. Kindo, Ligand dependent magnetism of the J_eff = 3/2 Mott insulator Cs2MX6 (M = Ta, Nb, X = Br, Cl), J. Phys.: Condens. Matter 33, 125802 (2021).

[16] H. Ishikawa, D. Hirai, A. Ikeda, M. Gen, T. Yajima, A. Matsuo, Y. H. Matsuda, Z. Hiroi, and K. Kindo, Phase transition in the 5d1 double perovskite Ba2CaReO6 induced by high magnetic field, Phys. Rev. B 104, 174422 (2021).

[17] H. Arima, Y. Oshita, D. Hirai, Z. Hiroi, and K. Matsubayashi, Interplay between quadrupolar and magnetic interactions in 5d1 double perovskite Ba2MgReO6 under pressure, J. Phys. Soc. Jpn. 91, 013702 (2022).

[18] V. da Cruz Pinha Barbosa, J. Xiong, P. M. Tran, M. A. McGuire, J. Yan, M. T. Warren, R. V. Aguilar, W. Zhang, M. Randeria, N. Trivedi, D. Haskel, and P. M. Woodward, The impact of structural distortions on the magnetism of double perovskites containing 5d1 transition-metal ions, Chem. Mater. 34, 1098 (2022).

[19] R. Cong, Magnetic and structural properties of 5d osmate double perovskites probed by nuclear magnetic resonance, Ph.D. thesis, Brown University, 2022.

[20] A. Mansourí Tehrani, J.-R. Soh, J. Pásztorová, M. E. Merkel, I. Živković, H. M. Rønnow, and N. A. Spaldin, Charge multipole correlations and order in Cs2TaCl6, Phys. Rev. Res. 5, L012010 (2023).

[21] E. J. Cussen, D. R. Lynham, and J. Rogers, Magnetic order arising from structural distortion: Structure and magnetic properties of Ba2LnMoO6, Chem. Mater. 18, 2855 (2006).

[22] T. Aharen, J. E. Greedan, C. A. Bridges, A. A. Aczel, J. Rodriguez, G. MacDougall, G. M. Luke, T. Imai, V. K. Michaelis, S. Kroeker, H. Zhou, C. R. Wiebe, and L. M. D. Cranswick, Magnetic properties of the geometrically frustrated 5 = 4 antiferromagnets, La2LiMoO6 and Ba2YMoO6, with the B-site ordered double perovskite structure: Evidence for a collective spin-singlet ground state, Phys. Rev. B 81, 224409 (2010).

[23] M. A. de Vries, A. C. Mclaughlin, and J. W. G. Bos, Valence Bond Glass on an fcc Lattice in the Double Perovskite Ba2YMoO6, Phys. Rev. Lett. 104, 177202 (2010).

[24] F. C. Coomer and E. J. Cussen, Structural and magnetic properties of Ba2LuMoO6: A valence bond glass, J. Phys.: Condens. Matter 25, 082202 (2013).

[25] S. Lee, W. Lee, W. Guohua, J. Ma, H. Zhou, M. Lee, E. S. Choi, and K.-Y. Choi, Experimental evidence for a valence-bond glass in the 5d1 double perovskite Ba2YWO6, Phys. Rev. B 103, 224430 (2021).

[26] O. H. Mustonen, H. N. Mutch, H. C. Walker, P. J. Baker, F. C. Coomer, R. S. Perry, C. Pughe, G. B. G. Stenning, C. Liu, S. E. Dutton, and E. J. Cussen, Valence bond glass state in the 4d1 antiferromagnet Ba2-LaMoO6, npj Quantum Mater. 7, 74 (2022).

[27] G. Chen, R. Pereira, and L. Balents, Exotic phases induced by strong spin-orbit coupling in double perovskites, Phys. Rev. B 82, 174440 (2010).

[28] J. Romhániy, L. Balents, and G. Jackeli, Spin-Orbit Dimers and Noncollinear Phases in d1 Cubic Double Perovskites, Phys. Rev. Lett. 118, 217202 (2017).

[29] C. Svoboda, W. Zhang, M. Randeria, and N. Trivedi, Orbital order drives magnetic order in 5d1 and 5d2 double perovskite Mott insulators, Phys. Rev. B 104, 024437 (2021).

[30] N. Iwahara, V. Vieru, and L. F. Chibotaru, Spin-orbital-lattice entangled states in cubic d1 double perovskites, Phys. Rev. B 98, 075138 (2018).
[31] L. Xu, N. A. Bogdanov, A. Princep, P. Fulde, J. van den Brink, and L. Hozoi, Covalency and vibronic couplings make a non-magnetic $j = 3/2$ ion magnetic, npj Quantum Mater. 1, 16029 (2016).

[32] S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York, 1970).

[33] I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals (Springer-Verlag, Berlin, Heidelberg, 1989).

[34] D. F. Mosca, H. Schnait, L. Celiberti, M. Aichhorn, and C. Franchini, The Mott transition in the 5d1 compound Ba$_2$NaOsO$_6$: A DFT+DMFT study with PAW non-collinear projectors, arXiv:2303.16560.

[35] W. M. H. Natori, E. C. Andrade, E. Miranda, and R. G. Pereira, Chiral Spin-Orbital Liquids with Nodal Lines, Phys. Rev. Lett. 117, 017204 (2016).

[36] F. S. Ham, Berry’s Geometrical Phase and the Sequence of States in the Jahn-Teller Effect, Phys. Rev. Lett. 58, 725 (1987).

[37] H. Tsunetsugu, T. Ishitobi, and K. Hattori, Quadrupole orders on the fcc lattice, J. Phys. Soc. Jpn. 90, 043701 (2021).

[38] S. Ishihara and S. Maekawa, Resonant x-ray scattering in manganites: Study of the orbital degree of freedom, Rep. Prog. Phys. 65, 561 (2002).

[39] M. Fabrizio, M. Altarelli, and M. Benfatto, X-Ray Resonant Scattering as a Direct Probe of Orbital Ordering in Transition-Metal Oxides, Phys. Rev. Lett. 80, 3400 (1998).

[40] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Resonant inelastic x-ray scattering studies of elementary excitations, Rev. Mod. Phys. 83, 705 (2011).

Corrections: Equations (16), (17), and (19) and the text below Eq. (19) contained errors and have been fixed. The letter ϕ in the caption to Figure 4 has been changed to θ.

L220404-7