Author disclosures are available with the text of this letter at www.atsjournals.org.

kwok-chiu chang, M.B. B.S., M.Sc.*
The Department of Health
Hong Kong, China

Wing-Wai Yew, M.B. B.S.
The Chinese University of Hong Kong
Hong Kong, China

ORCID ID: 0000-0002-3682-5069 (K.-C.C.).
*Corresponding author (e-mail: kc_chang@dh.gov.hk).

References

1. Ahmad N, Ahuja SD, Akkerman OW, Alffenaar JW, Anderson LF, Baghaei P, et al.; Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment–2017. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet 2018;392:821–834.

2. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2019.

3. Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, et al. Treatment of drug-resistant tuberculosis: an official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med 2019;200:e93–e142.

4. Nyang’wa BT, Berry C, Fielding K, Nunn AJ. Multidrug-resistant tuberculosis. Lancet 2019;394:298–299.

5. Migliori GB, Eker B, Richardson MD, Sotgiu G, Zellweger JP, Skrahina A, et al.; TBNET Study Group. A retrospective TBNET assessment of linezolid safety, tolerability and efficacy in multidrug-resistant tuberculosis. Eur Respir J 2009;34:378–393.

6. Borisov S, Danila E, Maryandycheva A, Dalcolmo M, Miliauskas S, Kuksa L, et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: first global report. Eur Respir J 2019;54:1901522.

7. WHO position statement on the use of delamanid for multidrug-resistant tuberculosis. World Health Organization; 2018. WHO reference number WHO/CDC/TB/2018.1.

8. Nunn AJ, Phillips PPJ, Meredith SK, Chiang CY, Conрадie F, Dalai D, et al.; STREAM Study Collaborators. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med 2019;380:1201–1213.

Copyright © 2020 by the American Thoracic Society

Reply to Chang and Yew

From the Authors:

We appreciate the letter by Drs. Chang and Yew commenting on the Official Guidelines of the American Thoracic Society (ATS)/CDC/European Respiratory Society (ERS)/Infectious Disease Society of America (IDSA) on the treatment of multidrug-resistant tuberculosis (MDR-TB) (1). Three issues are raised in the letter: first, the certainty of the evidence on the use of linezolid and bedaquiline in the management of fluoroquinolone-sensitive and -resistant MDR-TB; second, the risk of resistance to these two drugs with generalized use, suggesting focused use of these drugs in selected patients might limit this hazard and minimize acquisition of resistance and serious adverse events; and third, that with broadening availability of rapid drug susceptibility testing (DST), optimized longer and existing standardized shorter-course regimens still have value.

On the first issue, we concur that the certainty in the evidence is low. However, until such a time when randomized controlled trials in TB therapeutics are adequately funded, conducted, and completed, the propensity score (PS)-matched individual patient data meta-analysis (IPDMA) of a database of more than 12,000 patient records from 25 countries in support of the ATS/CDC/ERS/IDSA guidelines represents the best available evidence base on which to assess drugs for treatment of drug-resistant TB (1, 2). Our PS-matched IPDMA showed consistently that bedaquiline and linezolid improved treatment success and reduced mortality across all patients with drug-resistant TB (with the greatest impact noted in extremely drug-resistant TB). These benefits were substantial, with absolute reductions in mortality of 5–10% with use of bedaquiline or linezolid (2). Sensitivity analyses were also conducted across subgroups of MDR-TB patients with respect to additional resistance to any fluoroquinolone, and the results remained essentially unchanged within subgroups (1, 2). The poten

Page 778

Copyright © 2020 by the American Thoracic Society
shorter-course regimens that include newer oral agents, exclude injectables, and include drugs for which susceptibility is documented or highly likely.

The ATS/CDC/ERS/IDSA guidelines provide guidance for settings in which there is capacity to perform both rapid molecular testing and phenotypic DST, to tailor the regimen based on the drug susceptibility pattern identified, and to manage adverse events caused by drugs, including linezolid and bedaquiline (1, 7, 8). Whereas the newer and more potent drugs provide the opportunity to safely use all-oral regimens, we concur with Drs. Yew and Chang that there is still much more work to do on improving safety and tolerability of MDR-TB treatments as well as the development and scale-up of companion genotypic tools to test and monitor for resistance to our newest agents.

Author disclosures are available with the text of this letter at www.atsjournals.org.

Giovanni Sotgiu, M.D., Ph.D.
University of Sassari
Sassari, Italy

Giovanni Battista Migliori, M.D.
Istituti Clinici Scientifici Maugeri–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
Tradate, Italy

Dick Menzies, M.D., M.Sc.
Research Institute of the McGill University Health Centre
Montreal, Québec, Canada

Sundari Mase, M.D., M.P.H.
Independent Consultant
San Francisco, California

Terence Chorba, M.D., D.Sc.
Centers for Disease Control and Prevention
Atlanta, Georgia

Barbara Seaworth, M.D.
University of Texas Health Science Center
Tyler, Texas

Payam Nahid, M.D., M.P.H.*
University of California San Francisco
San Francisco, California

ORCID IDs: 0000-0002-1600-4474 (G.S.); 0000-0002-2597-574X (G.B.M.); 0000-0001-5363-0637 (S.M.); 0000-0001-7722-0958 (T.C.); 0000-0003-2922-4940 (B.S.); 0000-0003-2811-1311 (P.N.).

*Corresponding author (e-mail: pnahid@ucsf.edu).

Copyright © 2020 by the American Thoracic Society

Cardiovascular and Chronic Obstructive Pulmonary Disease Therapeutics: Two Paths, One Destination?

To the Editor:

Crim and colleagues tested whether vascular stiffness was affected by inhaled long-acting β2-agonist, corticosteroid, or combination therapy in patients with moderate chronic obstructive pulmonary disease (COPD) (1). Baseline arterial pulse wave velocity predicted mortality but was unaffected by therapy (1). The authors conclude that inhaled therapy for COPD appeared unlikely to reduce cardiovascular (CV) risk (1). Although aggressive risk factor modification and smoking cessation are pivotal in addressing CV risk in COPD, optimal use of existing drugs and potential avenues for developing novel therapies deserve further discussion.

For the management of hypertension in COPD, limited contemporary data support the use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and thiazides (2). In an analysis of clinical trials involving more than 12,000 patients with COPD, treatment with roflumilast, a phosphodiesterase-4 inhibitor with a wide range of antiinflammatory actions, was associated with a 35% relative risk reduction in major adverse CV events (nonfatal myocardial infarction, nonfatal stroke, and CV death) independent of age, sex, smoking status, and concomitant COPD treatments (3). These findings warrant further investigation of the potential CV benefits of roflumilast (3). Endothelial activation earlier in life has been associated with the development of arterial stiffness, which can be a marker for the future development of atherosclerotic disease (4).

The ATS/CDC/ERS/IDSA guidelines provide guidance for settings in which there is capacity to perform both rapid molecular testing and phenotypic DST, to tailor the regimen based on the drug susceptibility pattern identified, and to manage adverse events caused by drugs, including linezolid and bedaquiline (1, 7, 8). Whereas the newer and more potent drugs provide the opportunity to safely use all-oral regimens, we concur with Drs. Yew and Chang that there is still much more work to do on improving safety and tolerability of MDR-TB treatments as well as the development and scale-up of companion genotypic tools to test and monitor for resistance to our newest agents.

Author disclosures are available with the text of this letter at www.atsjournals.org.

Giovanni Sotgiu, M.D., Ph.D.
University of Sassari
Sassari, Italy

Giovanni Battista Migliori, M.D.
Istituti Clinici Scientifici Maugeri–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
Tradate, Italy

Dick Menzies, M.D., M.Sc.
Research Institute of the McGill University Health Centre
Montreal, Québec, Canada

Sundari Mase, M.D., M.P.H.
Independent Consultant
San Francisco, California

Terence Chorba, M.D., D.Sc.
Centers for Disease Control and Prevention
Atlanta, Georgia

Barbara Seaworth, M.D.
University of Texas Health Science Center
Tyler, Texas

Payam Nahid, M.D., M.P.H.*
University of California San Francisco
San Francisco, California

ORCID IDs: 0000-0002-1600-4474 (G.S.); 0000-0002-2597-574X (G.B.M.); 0000-0001-5363-0637 (S.M.); 0000-0001-7722-0958 (T.C.); 0000-0003-2922-4940 (B.S.); 0000-0003-2811-1311 (P.N.).

*Corresponding author (e-mail: pnahid@ucsf.edu).

Copyright © 2020 by the American Thoracic Society

Cardiovascular and Chronic Obstructive Pulmonary Disease Therapeutics: Two Paths, One Destination?

To the Editor:

Crim and colleagues tested whether vascular stiffness was affected by inhaled long-acting β2-agonist, corticosteroid, or combination therapy in patients with moderate chronic obstructive pulmonary disease (COPD) (1). Baseline arterial pulse wave velocity predicted mortality but was unaffected by therapy (1). The authors conclude that inhaled therapy for COPD appeared unlikely to reduce cardiovascular (CV) risk (1). Although aggressive risk factor modification and smoking cessation are pivotal in addressing CV risk in COPD, optimal use of existing drugs and potential avenues for developing novel therapies deserve further discussion.

For the management of hypertension in COPD, limited contemporary data support the use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and thiazides (2). In an analysis of clinical trials involving more than 12,000 patients with COPD, treatment with roflumilast, a phosphodiesterase-4 inhibitor with a wide range of antiinflammatory actions, was associated with a 35% relative risk reduction in major adverse CV events (nonfatal myocardial infarction, nonfatal stroke, and CV death) independent of age, sex, smoking status, and concomitant COPD treatments (3). These findings warrant further investigation of the potential CV benefits of roflumilast (3). Endothelial activation earlier in life has been associated with the development of arterial stiffness, which can be a marker for the future development of atherosclerotic disease (4).