Protective Effect of Aerobic Exercise on the Nasal Mucosa of Rats Against the Histopathologic Changes in Cigarette Smoke Exposure

Özlem Akkoca, MD1, Ceren Ersoz Unlu, MD2, Ilkan Tatar, MD3, Mustafa Fevzi Sargon, MD4, Dilara Zeybek, MD5, and Serpil Oguztuzun, PhD6

Abstract

Introduction: Smoking is a public health problem that has been proven to have adverse effects on human health. Aerobic exercise has positive effects on the human body, especially on the respiratory system. Objective: The aim of this experimental animal model study was to determine whether regular aerobic exercise has a protective effect against the harmful effects of cigarette smoke on the nasal mucosa of rats. Methods: A total of 24 male Wistar albino rats were randomly separated into 3 groups of 8: group 1 (cigarette smoking), group 2 (cigarette smoking and exercise), and group 3 (control group). At the end of the experiment period, histopathological (light and electron microscopy) and immunohistochemical (GSTA 1, CYP1A1, and CYP2E1) evaluations were made of the nasal mucosa of the animals. Results: Goblet cell loss and basal membrane thickening were significantly lower in group 2 and group 3 compared to group 1. In the electron microscope evaluation, the inflammatory expressions of the goblet cells were observed in a very small area in group 2. In group 1, these were distributed over large areas between the mucosal cells. There was seen to be significant swelling of the mitochondria in group 1 compared to the other groups. No statistically significant difference was determined between the groups with respect to GSTA1, CYP2E1, and CYP1A1 scores (P > .05). Conclusion: The results of this study showed that regular aerobic exercise has a protective effect against the harmful effects of smoking on the nasal mucosa of rats.

Keywords
smoke, exercise, nasal mucosa, inflammation

Introduction

Despite development of many methods for stopping smoking and widespread public awareness of this subject, it remains a significant public health problem, and smoking rates are increasing.1 Cigarette smoke has been proven to cause serious damage to the respiratory system, not only from blood circulation but also directly from the inhaler pathways, which may cause diseases such as heart attacks, strokes, cardiovascular disease, chronic obstructive pulmonary disease, and emphysema.2

Cigarette smoke is formed from approximately 7000 chemical components known to be potentially carcinogenic.2,3 Respiratory tract diseases are the result of the first reaction of these toxic substances found in cigarette smoke with the cells and tissues of the respiratory tract.4 As cigarette smoke can
cause many diseases from infection to cancer, it is known to be a significant cause of morbidity and mortality in terms of public health.\(^5\) The most effective means of preventing these harmful effects created by cigarettes is to remain distanced from cigarettes and smoke. However, when this is not possible, some protective precautions should be taken. In this context, regular aerobic exercise, N-acetyl-L-cysteine, vitamin C, \(\beta\)-carotene, and lycopene have been reported to have a protective effect against cigarette smoke.\(^6\)\(^8\)

Although many studies have researched the effect of cigarette smoke on the bronchoalveolar system, there are insufficient studies that have evaluated the effects on nasal mucosa.\(^9\)\(^10\) The nasal mucosa is the first part of the respiratory tract exposed to irritant substances such as infectious agents, dust, and smoke.\(^4\) Therefore, it is of great importance to examine in detail the harmful effects of smoking on the nasal mucosa. Moreover, there are no studies investigating the effect on the nasal mucosa of methods that may reduce the harmful effects of smoking, such as regular aerobic exercise. The aim of this experimental animal study was to determine through histopathological evaluation and immunohistochemical analysis whether regular aerobic exercise has a protective effect against the harmful effects of cigarette smoke on the nasal mucosa.

Materials and Methods

Experimental Material and Animal Care

Approval for this experimental study was granted by the local ethics committee (Prot. no:16.08.2016-436). All procedures complied with experimental ethical principles and animal protection laws. The study included a total of 24 male Wistar albino rats, aged 10 to 12 weeks, each weighing approximately 250 g. The animals were anesthetized with ketamine hydrochloride (50 mg/kg, intramuscular). They were kept in a room with a humidity of 60% under a 12-hour light–dark cycle with controlled temperature of 20°C ± 2°C, with ad libitum access to food and water.

Experimental Design and Animal Groups

The rats were randomly divided into 3 groups of 8 rats. The study protocol was developed with reference to previous experimental animal studies that had investigated the effects of smoking and exercise.\(^11\)\(^12\) Group 1 rats were exposed to the equivalent of smoke from 15 cigarettes in an isolated cigarette smoke cabin for 30 minutes twice a day, 5 days a week, for 3 months. Group 2 rats were exposed to cigarette smoke at the same rates as the smoking group and were also forced to run at an average speed of 18 m/min on a treadmill (4-path treadmill for rats) for approximately 40 minutes a day, 5 days a week, for 3 months. Group 3 served as the control group and was not administered any treatment. At the end of the 3-month experimental period, the rats were killed. The nasal mucosa samples of all groups were taken from the same nasal septum region. Histopathological and immunohistochemical evaluations were conducted by specialists who were blinded to the experimental groups.

Light Microscopy

Nasal mucosa tissues were removed and fixed in 10% buffered formalin, then dehydrated through graded alcohols, and embedded in paraffin blocks. Sections of 5-μm thickness were cut and then stained with hematoxylin and eosin (H&E), PAS-Alcian blue, and Masson trichrome according to the standard protocols. The specimens were examined using a light microscope (Leica DM6000B; Leica, Wetzlar, Germany) with a digital camera (DC490; Leica) and evaluated according to changes in the type of the epithelium, loss of cilia and goblet cells, and the presence of edema, congestion, and inflammation. Each specimen was scored from 0 to 3 according to the findings, as absent = 0, mild = 1, moderate = 2, and severe = 3. The mean value of the scores was used for statistical analysis.

Electron Microscopy

For transmission electron microscopic examination, the nasal mucosa of the rats was dissected and sectioned. The sections were fixed in 2.5% glutaraldehyde for 48 to 72 hours, postfixed with 1% osmium tetroxide in phosphate buffer (pH 7.4) for 2 hours, dehydrated in increasing concentrations of alcohol, washed with propylene oxide, and then embedded in epoxy resin embedding media. Semi-thin sections of approximately 2 mm in thickness and ultrathin sections of approximately 60 nm in thickness were cut with a glass knife and an ultramicrotome (LKB-Produkter AB, Bromma, Sweden). The semi-thin sections were stained with methylene blue and examined under a light microscope (Nikon Optiphot; Nikon Corporation, Tokyo, Japan). Following this examination, the tissue blocks were trimmed, and ultrathin sections were obtained using the same ultramicrotome and then stained with uranyl acetate and lead citrate. Following staining, the ultrathin sections were examined using a transmission electron microscope (JEM-1200EX; Jeol Ltd, Tokyo, Japan).

Immunohistochemical Staining

Tissues were fixed in 10% buffered formalin and embedded in paraffin blocks. Sections were cut in 4-μm thickness, and 1 section was stained with H&E to observe the tissue morphology. For immunohistochemistry evaluations, endogenous peroxidase activity was blocked by incubating the sections in 1% hydrogen peroxide (vol/vol) in methanol for 10 minutes at room temperature (RT). The sections were subsequently washed in distilled water for 5 minutes, and antigen retrieval was performed for 3 minutes using 0.01 M citrate buffer (pH 6.0) in a domestic pressure cooker. After washing in distilled water, the sections were transferred in 0.05 M Tris-HCl (pH 7.6) containing 0.15 M sodium chloride (Tris-buffered saline [TBS]). The sections were incubated at RT for 10 minutes with super block [SHP125 (ScyTek Laboratories, USA)] and then incubated with primary antibody for 1 hour at RT. After washing in TBS, the sections were incubated with secondary antibody for 1 hour at RT. After washing in TBS, the sections were incubated with streptavidin–horseradish peroxidase complex for 50 minutes at RT. After washing in TBS, the sections were incubated with 0.05% diaminobenzidine (DAB) for 5 minutes. The sections were then washed, counterstained with hematoxylin, dehydrated, and mounted.
A value of Wallis variance analysis was used for continuous variables. compare categorical variables in the 3 groups. Kruskal-
features with goblet cells withi n pseudostratified ciliated
lium, the infiltration was less in the epithelium. The mean
ination was observed both in the lamina propria and in the epithe-
lymphocyte and neutrophil infiltration was also observed. The
 infiltration were observed in the lamina propria. Intraepithelial
activity. Moderate congestion and severe inflammatory cell
ere congestion were observed, and in some areas, the blood
basal membrane was 2.359-
mean thickness of basa l membrane was 1.383 μm. The arrangement and organi-
zation of collagen fibers in the lamina propria was detected to be similar in all groups under Masson trichrome
staining (Figure 1).

Goblet cell loss was determined to be at a statistically sig-
ificantly lower level in group 2 and group 3 compared to
group 1 (P < .05). The levels of inflammation and vascular
congestion were statistically significantly lower in group 3 than in
group 1 and group 2 (P < .05). The levels of cilia loss were
statistically significantly lower in group 3 than in group 1
(P < .05) and were lower in group 2 than in group 1 but not at
a statistically significant level (P > .05; Table 1). The thick-
ess of the basal membrane was significantly greater in group 1
than in both group 2 and group 3 rats (P < .01; Table 2).

Expression Profiles of GSTA1, CYP1A1, and CYP2E1
No statistically significant difference was determined between
groups 1, 2, and 3 with respect to the GSTA1, CYP1A1, and
CYP2E1 scores (P > .05; Table 3).

Transmission Electron Microscopy
In group 1, vacuoles were observed inside the cytoplasm of
nasal mucosa cells. The inflammatory secretions of the goblet
cells were distributed in large areas between the nasal mucosal
cells. Swelling of the mitochondria was a prominent finding in
this group. The other organelles and cell nuclei were observed
to be normal ultrastructurally.

In group 2, vacuoles inside the cytoplasm of nasal mucosa
cells were observed to be smaller in size than in group 1.
Pathological changes in the mitochondria were also less prom-
inant than in group 1. Inflammatory secretions of the goblet
cells were observed at a small amount in a very few areas. The
other organelles and cell nuclei were normal ultrastructurally
(Figure 2).

In group 3, the ultrastructure of the nasal mucosa was
observed to be normal. The nuclei of the mucosal cells con-
tained euchromatin more dominantly. The nuclear membranes
were normal ultrastructurally. The cytoplasm of the mucosal
cells was observed to be rich in organelles, which was a normal
finding of the cell. The goblet cells were also normal ultra-
structurally. The mitochondria, which are the first organelles
affected in stress conditions, were also normal ultrastructurally.
The nasal mucosal cells contained many secretory granules.

Discussion
Two important results emerged from this study: (1) the nega-
tive effects of smoking were evident on the nasal mucosa and
(2) regular aerobic exercise diminishes some of the negative
effects of smoking on the nasal mucosa. This study is one of
only a few studies showing that smoking triggers all inflam-
matory and carcinogenetic events on the nasal mucosa and
disrupts the mucociliary functions of the nasal mucosa. The nasal respiratory epithelium is basically formed of ciliary cells, goblet cells, striated cells, and basal cells. Irritants such as cigarette smoke cause an impairment in nasal physiology by creating hyperactivity in ciliary cells and causing the loss of goblet cells. In a previous study conducted on rats, it was reported that mucous hypersecretion could be determined within a short period, such as 4 weeks. Increased secretion in the seromucinous glands is known to have a protective purpose by washing the nasal mucosa. However, this increase in secretion also creates a predisposition for inflammatory events as it forms mucous stasis at the same time. The fact that mucus hypersecretion, which has a protective role in the early period after smoking exposure, actually triggers inflammatory events in the nasal mucosa from the nasal cavity toward the nasopharynx by disrupting this protective property and increasing inflammation, cigarette smoke has an important role in the development of inflammatory diseases such as asthma and chronic rhinosinusitis. The results of the current study support the studies of cigarette smoke by Paul et al and Trombitas et al, showing a significant level of loss of ciliary cells, which are known to have a protective effect against infectious diseases.

Nasal septum and sinus mucosa have different histopathological features. Therefore, they may exhibit different histopathological behavior in different pathological conditions. The nasal mucosa is thicker than the sinus mucosa and contains more goblet cells. In this study, nasal septum mucosa was obtained in all patients in order to provide standardization between the groups due to this feature of the sinus mucosa and easy sampling.

Cilia are organelles found in almost all cells of the human body, especially in the respiratory tract. With the effect of mucosal secretions and cilia, nasal mucociliary clearance is a protective property that is effective in the elimination of dust particles and foreign bodies in the nasal mucosa from the nasal cavity toward the nasopharynx. By disrupting this protective property and increasing inflammation, cigarette smoke has an important role in the development of inflammatory diseases such as asthma and chronic rhinosinusitis. The results of the current study support the studies of cigarette smoke by Paul et al and Trombitas et al, showing a significant level of loss of ciliary cells, which are known to have a protective effect against infectious diseases.

Figure 1. Different light microscopic appearance of nasal mucosa in groups. (A) Group 3; (B) group 1; (C) group 2 (I: hematoxylin–eosin X400; II: PAS-Alcian blue X1000; III: Masson trichrome X400). Stratified squamous epithelium in group 1. Severe neutrophil and lymphocyte infiltration in lamina propria and epithelium both in group 1 and group 2 (white arrows). Goblet cells filled with secretion in group 1 and group 2. Thicker basement membrane in group 1 (black arrow).
The results of the study demonstrated that regular aerobic exercise partially improved the negative effects of smoking in rats by reducing goblet cell loss and basal membrane thickness. Regular aerobic exercise has been proven to have positive effects on the brain and cardiac and respiratory systems.6 In addition, there are known to be changes during exercise such as vasoconstriction of nasal mucosa, increasing ala nasi muscle activity, increased nasal air flow, and hyperventilation. One of the systems in the body showing the greatest change during exercise is the respiratory system. Important changes are seen in the nose, which has the greatest resistance in the respiratory tract during exercise.18,19 In a previous study, it was reported that exercise increased mucociliary clearance in smokers and thus reduced the development of infection. However, no histopathological effect was reported in that study.20 Although there are many studies showing that the effects of cigarette smoke on lung tissue can be prevented by regular aerobic exercise, there is no study evaluating the effect on the nasal mucosa, which is in the entry to the airways.21-23 To the best of our knowledge, this is the first experimental animal study in the literature to demonstrate that regular aerobic exercise can prevent the harmful effects of smoking on the nasal mucosa. The light and electron microscopy findings of the current study show that cigarette smoke increased activity in the secretion cells present in the nasal mucosa, with subsequent widespread mucous pooling formed as a result of the excessive secretion. It has been proven that regular aerobic exercise reduces secretion hyperactivity and has a protective effect against infections. There are many studies in the literature investigating the effects of exercise on rhinitis and reporting different results.24-27

Cigarette smoke is also known to cause malignancies with intracellular organ damage.7 Prevention of exposure to cigarette smoke is the most effective way to prevent both infectious and malignant diseases. However, since this is not always possible, it is important to find other methods to reduce the harmful effects of smoking. Previous studies examining this subject have reported N-acetyl-L-cysteine, vitamin C, β-carotene, and lycopene to have a protective effect against cigarette smoke.7,8 Similarly, in the current study, regular aerobic exercise has a protective effect against the harmful effects of smoking on the nasal mucosa.

In previous histopathological studies, cigarette smoke has been reported to cause histopathological findings such as basal membrane thickening, proliferation, and irregularities around tumor cells.28 Basal membrane thickening is known to be a pathological condition caused by carcinogenic agents in addition to irritants such as smoke.29 In the literature, there are studies showing that smoking can cause nasal cancer as well as lung cancer.30,31 In the cigarette smoking group of the current study, there were some significant reactive changes secondary to inflammation, and in some areas, there were multiple layers of squamous epithelium in place of the respiratory epithelium and this had caused mitosis in the epithelium in addition to a significant degree of basal membrane thickening. However, with regular aerobic

Table 1. Comparison of Ciliary Loss, Goblet Loss, Vascular Congestion, and Inflammation Scores of Rats in the 3 Groups.

Findings	Group 1 (n, %)	Group 2 (n, %)	Group 3 (n, %)	Test Statistic	P*
Ciliary loss					
None	0 (0)	2 (25)	7 (87.5)	\(\chi^2 = 17.844 \) .001	
<5%	1 (12.5)	4 (50)	1 (12.5)		
5%-20%	2 (25)	0 (0)	0 (0)		
>20%	5 (62.5)	2 (25)	0 (0)		
Goblet loss					
None	0 (0)	3 (37.5)	7 (87.5)	\(\chi^2 = 18.979 \) .000	
<5%	1 (12.5)	4 (50)	1 (12.5)		
5%-20%	2 (25)	1 (12.5)	0 (0)		
>20%	5 (62.5)	0 (0)	0 (0)		
Vascular congestion					
None	1 (12.5)	0 (0)	5 (62.5)	\(\chi^2 = 12.915 \) .021	
Mild	0 (0)	3 (37.5)	2 (25)		
Moderate	4 (50)	3 (37.5)	1 (12.5)		
Severe	3 (37.5)	2 (25)	0 (0)		
Inflammation					
None	0 (0)	0 (0)	3 (37.5)	\(\chi^2 = 11.333 \) .039	
Mild	0 (0)	1 (12.5)	3 (3.5)		
Moderate	4 (50)	2 (25)	1 (12.5)		
Severe	4 (50)	5 (62.5)	1 (12.5)		

*Fisher exact test.

Table 2. Comparison of BM Thickness of the 3 Groups.

	Group 1 (Mean, SD)	Group 2 (Mean, SD)	Group 3 (Mean, SD)	Test Statistic	P*
BM thickness	2.31 (0.58)	1.56 (0.15)	1.40 (0.28)	14.415	.001

Abbreviations: BM, basement membrane; SD, standard deviation.

Table 3. Comparison of GSTA1, CYP2E1, and CYP1A1 Scores of Rats in the 3 Groups.

	Group 1 (n, %)	Group 2 (n, %)	Group 3 (n, %)	Test Statistic	P*
GSTA1					
Severe	3 (37.5)	2 (25)	1 (12.5)	\(\chi^2 = 5.405 \) .205	
Moderate	4 (50)	3 (37.5)	5 (62.5)		
Mild	0 (0)	1 (12.5)	8 (100)		
None	1 (12.5)	0 (0)	0 (0)		
CYP2E1					
Severe	0 (0)	1 (12.5)	0 (0)	\(\chi^2 = 5.811 \) .146	
Moderate	2 (25)	3 (37.5)	2 (25)		
Mild	5 (62.5)	4 (50)	1 (12.5)		
None	2 (25)	0 (0)	0 (0)		
CYP1A1					
Severe	3 (37.5)	5 (62.5)	1 (12.5)		
Moderate	1 (12.5)	0 (0)	0 (0)		
Mild	0 (0)	1 (12.5)	2 (25)		

Abbreviations: CYP1A1, cytochrome P450 family 1 subfamily A polypeptide 1; CYP2E1, cytochrome P450 family 2 subfamily E polypeptide 1; GSTA1, glutathione S transferase alpha 1; KW, Kruskal-Wallis variance analysis.

*Fisher exact test.
exercise, the basal membrane thickening was found to have significantly decreased. Therefore, the results of this study demonstrate that regular aerobic exercise may not only reduce infection but also reduce the risk of malignancy by preventing the histopathological changes created by cigarettes.

Greiser et al reported that cigarettes are a significant risk factor for nasal carcinomas. It was stated that the reason that stopping smoking significantly reduced the risk of malignancy developing was associated with an increase in physical activity that occurred together with stopping smoking. Similarly, in the current study, there were seen to be positive effects of regular aerobic exercise on the prevention of infection and the development of carcinoma, despite the continuation of smoking.

GSTs protect cells against toxic agents and form a defense mechanism against carcinogenesis created by chemicals. Cigarette smoke has been shown to induce cytochrome P450 activity in the liver and other tissues. Expression of CYP and changes in CYP activity cause an increase in oxidative stress and are risk factors for cancer development. It has also been reported that cigarette smoke causes a reduction in antioxidant enzymes such as glutathione peroxidase and superoxide dismutase. It was reported in a previous study that CYP2E1 is expressed in nasal mucosa in addition to the liver, lungs, kidneys, and other organs. Another study stated that cigarette smoke increased expression of these enzymes in the liver and lungs, but there was not the same effect in nasal mucosa.

Chronic exposure to cigarette smoke is known to cause an increase in nasal cavity cancers. The results of the current study did not show that CYP1A1, CYP2E1, and GSTA1 enzymes were expressed in nasal mucosa with cigarette smoke in a 3-month period. On the premise of the information that chronic cigarette smoke exposure leads to malignancies, it can be considered that a longer period of exposure is needed for these enzymes to be expressed in the nose. The most important limitation of the study is the low number of subjects, as it was an experimental study with a rat model. In addition, the absence of an exercise control group is another limitation of the study in terms of the inability to evaluate the positive effects of exercise on the normal mucosa. Therefore, further studies are needed to support or disprove these results.

Conclusion

The results of this study demonstrated that aerobic exercise had a protective effect against the histopathological changes induced by cigarettes on the nasal mucosa of rats.

Acknowledgments

The authors declared no conflict of interest and received no financial support for the study.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Özlem Akkoca https://orcid.org/0000-0002-1030-3692

Mustafa Fevzi Sargon https://orcid.org/0000-0001-6360-6008

References

1. Lan MY, Ho CY, Lee TC, Yang AH. Cigarette smoke extract induces cytotoxicity on human nasal epithelial cells. *Am J Rhinol*. 2007;21(2):218-223.

2. Park EJ, Park YJ, Lee SJ, Lee K, Yoon C. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. *Toxicol Lett*. 2019;303:55-66.
3. Raza H, John A, Nemmar A. Short-term effects of nose-only cigarette smoke exposure on glutathione redox homeostasis, cytochrome P450 1A1/2 and respiratory enzyme activities in mice tissues. *Cell Physiol Biochem.* 2013;31(4-5):683-692.

4. Donnez L, Turky M, Aktekin M, Senol Y. The incidence of smoking and risk factors for smoking initiation in medical faculty students: cohort study. *BMC Public Health.* 2006;6:128.

5. Comer DM, Elborn JS, Ennis M. Inflammatory and cytotoxic effects of acrolein, nicotine, acetaldehyde and cigarette smoke extract on human nasal epithelial cells. *BMC Pulm Med.* 2014;14:32.

6. Madani A, Alack K, Richter MJ, Krüger K. Immune-regulating effects of exercise on cigarette smoke-induced inflammation. *J Inflamm Res.* 2018;11:155-167.

7. Budzianowska A, Budzianowski J. Protection against tobacco smoke–compounds and substances of natural origin. *Przegl Lek.* 2015;72(3):148-151.

8. Ghosh A, Ganguly S, Dey N, et al. Causation of cigarette smoke-induced emphysema by p-benzoquinone and its prevention by vitamin C. *Am J Respir Cell Mol Biol.* 2015;52(3):315-322.

9. Lakkaku B, Maram R, Munirajan AK, Pathapati RM, Visveswara SB, Lakkaku BV. Functional PstI/RsaI polymorphisms in the CYP2E1 gene among south Indian populations. *Asian Pac J Cancer Prev.* 2013;14(1):179-182.

10. Maier H, Dietz A, Zielinski D, Jünemann KH, Heller WD. Risk factors for squamous epithelial carcinoma of the mouth, the oropharynx, the hypopharynx and the larynx. *Disch Med Wochenschr.* 1990;115(22):843-850.

11. Trombitas V, Nagy A, Berce C, Tabaran F, Albu S. Effect of cigarette smoke on wound healing of the septal mucosa of the rat. *Biomed Res Int.* 2016;2016(5):1-11.

12. Sheppard RL, Swift JM, Hall A, Mahon RT. The influence of CO2 and exercise on hypoxic hypoxia induced pulmonary edema in rats. *Front Physiol.* 2018;9:130. doi:10.3389/fphys.2018.00130.

13. Xiao J, Wang K, Feng YL, Chen XR, Xu D, Zhang MK. Role of extracellular signal-regulated kinase 1/2 in cigarette smoke-induced mucus hypersecretion in a rat model. *Clin Med J (Engl).* 2011;124(20):3327-3333.

14. Pagliuca G, Rosato C, Martellucci S, et al. Cytologic and functional alterations of nasal mucosa in smokers: temporary or permanent damage? *Otolaryngol Head Neck Surg.* 2015;152(4):740-745.

15. Elwany S, Saeed YH, Talaat I. Effects of passive smoking on adult nasal respiratory mucosa. *J Laryngol Otol.* 2013;127(10):977-981.

16. Norlander T, Westrin KM, Stierna P. The inflammatory response of the sinus and nasal mucosa during sinusitis: implications for research and therapy. *Acta Otolaryngol Suppl.* 1994;515:38-44.

17. Paul B, Menon SS, Vasthare R, Balakrishnan R, Acharya S. Effect of bidi smoking on nasal mucociliary clearance: a comparative study. *J Laryngol Otol.* 2018;132(12):1-6.

18. Fonseca MT, Vogeels RL, Pinto KM. Evaluation of nasal volume by acoustic rhinometry before and after physical exercise. *Am J Rhinol.* 2006;20(3):269-273.

19. Fonseca MT, Machado JA, Pereira SA, Pinto KM, Vogeels RL. Effects of physical exercise in nasal volume. *Braz J Otorhinolaryngol.* 2006;72(2):256-260.

20. Ramos EM, Vanderlei LC, Ito JT, et al. Acute mucociliary clearance response to aerobic exercise in smokers. *Respir Care.* 2015;60(11):1575-1584.

21. Tesi RT, de Souza PS, Dos Santos GP, et al. Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice. *Int J Chron Obstruct Pulm Dis.* 2016;11(1):603-610.

22. Menegali BT, Nesí RT, Souza PS, et al. The effects of physical exercise on the cigarette smoke-induced pulmonary oxidative response. *Palm Pharmacol Ther.* 2009;22(6):567-573. doi:10.1016/j.pupt.2009.08.003.

23. Toledo-Arruda AC, Vieira RP, Guarnier FA, et al. Time-course effects of aerobic physical training in the prevention of cigarette smoke-induced COPD. *J Appl Physiol.* (1985). 2017;123(3):674-683.

24. Thomas S, Wolfarth B, Wittmer C, Nowak D, Radon KG2LEN-Olympic, study-Team. Self-reported asthma and allergies in top athletes compared to the general population – results of the German part of the GA2LEN-Olympic study 2008. *Allergy Asthma Clin Immunol.* 2010;6(1):31.

25. Katelaris CH, Carrozzo FM, Burke TV, Byth K. Patterns of allergic reactivity and disease in Olympic athletes. *Clin J Sport Med.* 2006;16(5):401-405.

26. Alaranta A, Alaranta H, Heliovaara M, Alha P, Palmu P, Helenius I. Allergic rhinitis and pharmacological management in elite athletes. *Med Sci Sports Exerc.* 2005;37(5):707-711.

27. Weiler JM, Layton T, Hunt M. Asthma in United States Olympic athletes who participated in the 1996 Summer Games. *J Allergy Clin Immunol.* 1998;102(5):722-726.

28. Kirihara Y, Haratake J, Horie A. Clinicopathological and immunohistochemical study of basal cell carcinoma with reference to the features of basement membrane. *J Dermatol.* 1992;19(3):161-169.

29. Işık AC, Yardımcı S, Guven C, Avunduk MC, Civelek S. Morphologic alteration induced by short-term smoke exposure in rats. *ORL Otorhinolaryngol Relat Spec.* 2007;69(1):13-17.

30. Mauderly JL, Gigliotti AP, Barr EB, et al. Chronic inhalation for nasal cancer. *ORL Otorhinolaryngol Relat Spec.* 2000;62(1):60-110.

31. Talmi YP, Wolf M, Horowitz Z, Bedrin L, Kronenberg J, Pfeffer MR. Smoking-induced squamous-cell cancer of the nose. *Arch Environ Health.* 2002;57(5):422-424.

32. Moon IJ, Lee DY, Suh MW, et al. Cigarette smoking increases the risk of recurrence for sinonasal inverted papilloma. *Am J Rhinol Allergy.* 2010;24(5):325-329.

33. Greiser EM, Greiser KH, Ahrens W, et al. Risk factors for nasal malignancies in German men: the South-German Nasal Cancer study. *BMC Cancer.* 2012;12:506.

34. Aceto A, Di Ilio C, Angelucci S, Longo V, Gervasi PG, Federici G. Glutathione transferases in human nasal mucosa. *Arch Toxicol.* 1989;63(6):427-431.

35. Wardlaw SA, Nikula KJ, Kracko DA, Finch GL, Thornton-Manning JR, Dahl AR. Effect of cigarette smoke on CYP1A1, CYP1A2 and CYP2B1/2 of nasal mucosae in F344 rats. *Carcinogenesis.* 1998;19(4):655-662.