Proteomics Analysis of Conditioned Media from Three Breast Cancer Cell Lines

Vathany Kulasingam‡§ and Eleftherios P. Diamandis‡§¶

A “bottom-up” proteomics approach and a two-dimensional (strong cation exchange followed by reversed-phase) LC-MS/MS strategy on a linear ion trap (LTQ) were utilized to identify and compare expressions of extracellular and membrane-bound proteins in the conditioned media of three breast cell lines (MCF-10A, BT474, and MDA-MB-468). Proteomics analysis of the media identified in excess of 600, 500, and 700 proteins in MCF-10A, BT474, and MDA-MB-468, respectively. We successfully identified the internal control proteins, kallikreins 5, 6, and 10 (ranging in concentration from 2 to 50 μg/liter) in MDA-MB-468 conditioned medium as validated by ELISA and confidently identified Her-2/neu in BT474 cells. Subcellular localization was determined based on Genome Ontology terms for all the 1,139 proteins of which 34% were classified as extracellular and membrane-bound. Proteomics analysis of MDA-MB-468 cell lysate demonstrated that only 5% of all identified proteins were extracellular. This confirmed our hypothesis that examining the CM of cell lines, as opposed to the cell lysates, leads to a significant enrichment in secreted proteins. Tissue specificity, functional classifications, and spectral counting were performed. Elafin, a protease inhibitor, identified in the conditioned media of BT474 and MDA-MB-468 and the three kallikreins (KLK5, KLK6, and KLK10) were validated using an immunoassay on various serum and biological samples. Some of the secreted proteins identified have established roles in breast cancer development (cell growth, differentiation, and metastasis) and/or are linked to early onset breast cancer. Our approach to mining for low abundance molecules could identify proteins in various stages of breast cancer development. Many of the identified proteins are potentially useful to investigate as circulating serum breast cancer biomarkers. Molecular & Cellular Proteomics 6:1997–2011, 2007.

Breast cancer is a leading cause of death among women with solid tumors in North America (1). It is a disease of the middle and late ages of life as 75% of breast cancer is diagnosed in women over the age of 50 (2). Although breast cancer is less common at a young age, younger women tend to have a more aggressive form of the disease than older women. The 5-year survival rate is close to 97% when the cancer is confined to the breast (2). However, when breast cancer has metastasized at the time of diagnosis, the 5-year survival rate is ~23%. Gene expression patterns have been used to classify breast tumors into clinically relevant subgroups (luminal A, luminal B, basal, ERBB2-overexpressing, and normal-like) (3, 4). In general, the luminal subtypes are estrogen receptor (ER)1-positive and grow slowly, whereas basal types lack ER and are usually high grade cancers that grow rapidly. Recently the molecular taxonomy has been confirmed by protein expression profiling (5, 6).

Aberrant secretion or shedding of proteins is commonly associated with disease, including cancer. The pathogenic signaling pathways involved during the process of cancer initiation and progression are not confined to the cancer cell itself but are rather extended to the tumor-host interface (7). It is a dynamic environment in which fluctuating information flows between the tumor cells and the normal host tissue. Therefore, it is conceivable that either the tumor itself or its microenvironment could be sources for biomarkers that would ultimately be shed into the serum proteome, allowing for early disease detection (8), monitoring therapeutic efficacy, or understanding the biology of the disease (9). Given that ~20–25% of all cellular proteins are secreted, it is reasonable to hypothesize that proteins or their fragments originating from cancer cells or their microenvironment may eventually enter the circulation (10).

Accordingly one of the best ways to diagnose cancer early or to predict therapeutic response is to use serum or tissue biomarkers. Carcinoembryonic antigen and carbohydrate antigen 15-3 (CA 15-3) are the most commonly used tumor markers for breast cancer. Their levels in serum are related to tumor size and nodal involvement and are recommended for...
monitoring therapy of advanced breast cancer or recurrence but are not suitable for population screening (due to low diagnostic sensitivity and specificity) (11–13). Currently mammography remains the cornerstone of breast cancer screening despite its disadvantages such as high false positive and negative rates, hazardous exposure, and patient discomfort (14, 15). In addition, for women under the age of 40, mammographic screening yields a poor sensitivity of 33% (16, 17).

Recent technological advances in proteomics have opened up new and exciting avenues for the discovery of biomarkers or for characterization of molecules involved in cancer initiation and progression.

A number of different proteomics-based approaches have been utilized to discover and characterize disease-specific molecules. Fluid found within the ductal and lobular system of the breast can be extracted through the nipple using an aspiration device to obtain nipple aspirate fluid (NAF) (18). Non-pregnant and non-lactating women continuously secrete and reabsorb this fluid (19). Because of the complex nature of biological fluids relevant to breast cancer, only a handful of high abundance proteins have been identified in NAF, illustrating the need to find another source to mine for the initial biomarker discovery (20–22).

A number of studies have used a cell culture model system in which the cells were grown in serum-free media to perform proteomics analysis (23–28). The clinical relevance of using a cell culture model to understand biological processes and functions has been examined. Using DNA microarrays, the molecular subtypes of 31 breast cell lines yielded two discriminating clusters corresponding to luminal cell lines and basal/mesenchymal cell lines (29). The basal subtype was further subdivided into Basal A and Basal B; this subdivision was not observed in primary tumors. Also recently, it was found that cell lines display the same heterogeneity in copy number and expression abnormalities as the primary tumors (30).

In this study, we report a shotgun proteomics approach to sample the conditioned media of three human breast cell lines (MCF-10A, BT474, and MDA-MB-468). MCF-10A, a Basal B subtype with intact p53, was derived by spontaneous immortalization of breast epithelial cells from a patient with fibrocystic disease, and it has been used extensively as a normal control in breast cancer studies (31). These cells do not survive when implanted subcutaneously into immunodeficient mice (31). BT474, a luminal subtype obtained from a stage II localized solid tumor, is positive for ER and progesterone receptor (50–60% of all breast cancer cases) (32). This cell line also displays amplification of Her-2/neu or ERBB2 (30% of all breast cancer cases) (33). Her-2/neu is a cell membrane surface-bound tyrosine kinase involved in signal transduction, leading to cell growth and differentiation. Its overexpression is associated with a high risk of relapse and death (33) and is the target of the therapeutic monoclonal antibody Herceptin (34).

Finally MDA-MB-468, a Basal A-like subtype obtained from a pleural effusion of a stage IV patient (35), is ER- and progesterone receptor-negative (15–25% of breast cancer) and phosphatase and tensin homolog-negative (30% of breast cancer) (36, 37).

These cell lines were cultured in serum-free media (SFM) to ensure that the collected conditioned media (CM) contain no other extraneous proteins except for the secreted or shed proteins from the cancer cells. By collecting and concentrating large volumes of CM produced from cell lines representing seminormal (MCF-10A), non-invasive (BT474), and metastatic origins (MDA-MB-468), the secreted and shed proteins would accumulate in the CM, thereby facilitating their identification through MS. Our comparative proteomics analysis of the CM of MCF-10A, BT474, and MDA-MB-468 identified over 600, 500, and 700 proteins, respectively. A large portion of the proteins was present in all three cell lines; however, a significant portion contained proteins that were unique to each of the lines. Among these were our internal control proteins, human kallikreins 5, 6, and 10, that were identified by MS and ELISA in MDA-MB-468 cells at a concentration ranging from 2 to 50 μg/liter. Members of the human kallikrein family (KLKs) have been implicated in the process of carcinogenesis, and the application of kallikreins as biomarkers for diagnosis and prognosis is currently being investigated. Kallikreins are secreted enzymes that encode for trypsin-like or chymotrypsin-like serine proteases (38). Prostate-specific antigen (KLK3), belonging to the family of human tissue kallikreins, and human kallikrein 2 (KLK2) currently have important clinical applications as prostate cancer biomarkers (39). In addition to the control proteins, various proteases, receptors, protease inhibitors, cytokines, and growth factors were identified. Cellular localization, biological function, and Unigene analyses were performed for the shortened list of candidates consisting of extracellular, membrane, and unclassified proteins. A significant degree of overlap was observed among the proteins identified in this study using a cell culture model and other studies using relevant biological fluids such as NAF and tumor interstitial fluid (TIF). The expression of four candidate molecules was examined in biological fluids, tissues, serum, and breast cytosols. Finally spectral counting analysis revealed promising molecules to investigate further for both understanding the disease and as potential biomarkers for breast cancer.

MATERIALS AND METHODS

Cell Lines—The breast epithelial cell line MCF-10A and the breast cancer cell lines BT-474 and MDA-MB-468 were purchased from the American Type Culture Collection (ATCC), Manassas, VA. MCF-10A was maintained in Dulbecco’s modified Eagle’s medium and F-12 medium (DMEM/F12) supplemented with 8% fetal bovine serum, epidermal growth factor (20 ng/ml), hydrocortisone (0.5 μg/ml), cholera toxin (100 ng/ml), and insulin (10 μg/ml). BT-474 and MDA-MB-468 were maintained in phenol red-free RPMI 1640 culture medium supplemented with 8% fetal bovine serum. All cells were cultured in a humidified incubator at 37 °C and 5% CO2 in tissue culture T 75-cm2 flasks.

Cell Culture—Approximately 30 x 10^6 cells were seeded individually into six 175-cm2 tissue culture flasks per cell line. After 2 days, the
RPMI 1640 or DMEM/F-12 media were discarded, and the cells were rinsed twice with 1× PBS. Following this, 30 ml of chemically defined Chinese hamster ovary serum-free medium (Invitrogen) supplemented with glutamine (8 mM) (Invitrogen) were added, and the flasks were incubated for an additional 24 h. The CM were collected and spun down to remove cellular debris. CM were then frozen at −80 °C until further use. A 1-ml aliquot was taken at the time of harvest to measure for total protein (Bradford assay), lactate dehydrogenase (LDH), KLK5, KLK6, and KLK10 via ELISA. The adhered cells were trypsinized and counted using a hemocytometer. This procedure was repeated several times for reproducibility. In addition, 30 ml of the culture media (RPMI 1640 and DMEM/F-12) were subjected to the same conditions as above with no cells added and used for comparison. For the MDA-MB-468 cell lysate experiment, at the end of 24 h in SFM, the adhered cells were lysed using a French press (Thermo Electron) in which the cells are sheared by forcing them through a narrow space. Total protein was measured, and 400 μg of protein from the lysate were added to 60 ml of chemically defined Chinese hamster ovary medium and processed in the same manner as the CM. The cell lysate experiment was performed in duplicate.

Sample Preparation—Two 30-ml CM aliquots were combined (60 ml) for each cell line, creating three biological replicates per cell line, and dialyzed using a 3.5-kDa molecular mass cutoff membrane. The CM were dialyzed in 5 liters of 1 mM ammonium bicarbonate solution and dialyzed using a 3.5-kDa molecular mass cutoff membrane. The cell lysate experiment was performed in duplicate.

Strong Cation Exchange Liquid Chromatography—The trypsin-digested dry sample was resuspended in 120 μl of mobile phase A (0.26 M formic acid in 10% acetonitrile). The sample was directly loaded onto a PolySULFOETHYL A™ column (The Nest Group, Inc.) containing a hydrophilic, anionic polymer (poly-2-sulfobutyl aspartamide). A 200-Å pore size column with a diameter of 5 μm was used. A 1-h fractionation procedure was performed using an HPLC system (Agilent 1100). A linear gradient of 0.26 M formic acid in 10% acetonitrile as the running buffer and 1% ammonium formate added as the elution buffer was used. The eluent was monitored at a wavelength of 280 nm. Forty fractions, 200 μl each, were collected every minute after the start of the elution gradient. These 40 fractions were pooled into eight combined fractions (each pool consisting of five fractions) and lyophilized to ~200 μl.

Mass Spectrometry (LC-MS/MS)—The eight pooled fractions per replicate per cell line were loaded into a ZipTipC18 pipette tip (Millipore; catalogue number ZTCT18S096) and eluted in 4 μl of 68% ACN made up of Buffer A (95% water, 0.1% formic acid, 5% ACN, 0.02% TFA) and Buffer B (90% ACN, 0.1% formic acid, 10% water, 0.02% TFA). 80 μl of Buffer A were added, and 40 μl were injected onto a 2-cm C18 trap column (inner diameter, 200 μm). The peptides were eluted from the trap column onto a resolving 5-cm analytical C18 column (inner diameter, 75 μm) with an 8-μl tip (New Objective). The LC setup was coupled on line to a 2-D linear ion trap (LTQ, Thermo Inc.) mass spectrometer using a nano-ESI source in data-dependent mode. Each pooled fraction was run on a 120-min gradient. The eluted peptides were subjected to MS/MS. DTAs were assigned using the Mascot Daemon (version 2.16) and extract_msn. The parameters for DTA creation were: minimum mass, 300 Da; maximum mass, 4000 Da; automatic precursor charge selection; minimum peaks, 10 per MS/MS scan for acquisition; and minimum scans per group, 1.

Spectral Counting—Using the number of total spectra output from Scaffold, we identified the differentially expressed proteins using spectral counting. Common peptides among proteins were grouped, proteins containing more than 10% of their total spectra from negative control samples were removed, and one Excel file containing total proteins identified and their presence (defined by spectral counts) in the three cell lines was generated. A normalization criterion was applied to normalize the spectral counts so that the values of the total spectral counts per sample were similar. An average of the spectral counts was generated for each cell line (based on the triplicate samples). The sum of the three variances for the cell lines, an indicator of the variance within each cell line, was calculated. The variance of the average spectral counts for each cell line revealed the variability between the cell lines. Analysis of variance (Fisher test) was performed to obtain the ratio of the “between sample variance” to the
within sample variance.” Apparent -fold changes were calculated when possible.

Total Protein Assay and LDH Measurements—Total protein was quantitated in the CM using a Coomassie (Bradford) protein assay reagent (Pierce). All samples were loaded in triplicates on a microtiter plate, and protein concentrations were estimated by reference to absorbances obtained for a series of BSA standard protein dilutions. LDH, an intracellular enzyme that if found in the CM is an indicator of cell death, was measured using an enzymatic assay based on lactate to pyruvate conversion and parallel production of NADH from NAD. The production of NADH was measured by spectrophotometry at 340 mm using an automated method (Roche Applied Science Modular system).

Quantitation of Elafin and KLK5, -6, and -10 by ELISA—Elafin sandwich ELISA kit, purchased from Hycult biotechnology, was used to measure levels of human elafin in serum, pooled biological samples, and pooled tissue lysates. The assay was performed according to the manufacturer’s instructions. The concentration of KLK5, -6, and -10 was quantified with KLK5, -6, or -10-specific non-competitive immunoassays developed in our laboratory (42–44). For more details, see the cited literature.

Biological Samples Examined—The following 10 biological fluids were examined: amniotic fluid, ascites, breast cyst fluid, cerebral spinal fluid, follicular fluid, milk, NAF, urine, saliva, and seminal plasma. Ten samples were combined for each fluid to generate a pooled sample. The following 27 human tissues were examined (the number indicates the number of samples pooled): adrenal, 5; aorta, 3; bladder, 3; bone, 4; colon, 5; esophagus, 4; heart, 5; kidney, 5; liver, 5; lung, 4; lymph node, 3; muscles, 3; pancreas, 5; skin, 4; small intestine, 4; spinal cord, 3; spleen, 5; stomach, 4; thyroid, 3; trachea, 4; ureter, 4; prostate, 4; testis, 4; breast, 4; fallopian tube, 4; uterus, 4; and ovary, 2.

RESULTS

Optimization of Cell Culture—MCF-10A, BT474, and MDA-MB-468 cells were grown in SFM to ensure that the conditioned media contained no other exogenous proteins. Seeding density, incubation time in SFM, volume of media used, type of SFM, and type of tissue culture flasks were all variables that were explored thoroughly to select the most optimal conditions for growth. Refer to “Materials and Methods” for details on the optimal conditions selected for the cell lines. Approximately 20, 33, and 40 × 10⁶ cells were found to be attached and alive at the end of the experiment with 25, 10, and 15 μg of total protein/ml in MCF-10A, BT474, and MDA-MB-468, respectively (Supplemental Fig. 1, A and B). Furthermore to minimize cell death and maximize secreted protein concentration in the CM, LDH levels, which represent the amount of cell death occurring in cell culture, were also measured (Supplemental Fig. 1C). Known amounts of all three types of cells were lysed individually, and their corresponding LDH levels were graphed to create an LDH standard curve (Supplemental Fig. 1D). Using the LDH standard graph, the value of LDH found in the 24-h CM, and the total number of cells alive at the end of harvest, it was estimated that ~6–7% cell death was occurring in the CM of the cells. Finally to demonstrate the accumulation of extracellular proteins in our optimized cell culture model system, our internal control proteins KLK5, KLK6, and KLK10 were quantified in MDA-MB-
468 using ELISAs (Supplemental Fig. 1E). The remaining two cell lines do not secrete any kallikreins unless they are hormonally stimulated. Kallikrein 5 was the most abundant kallikrein expressed in this cell line (50 μg/liter) followed by KLK10 (~3.5 μg/liter) and KLK6 (~2 μg/liter).

Identification of Proteins by Mass Spectrometry—The workflow and experimental design performed in this study are shown in Fig. 1. Approximately 35–40 proteins were identified in the negative control samples, which were made up of the culture media only (Supplemental Table 1A). Many of the proteins in this list originated from fetal bovine serum used to initially culture the cells. These proteins were deleted from the list of total proteins identified in the CM and were not considered further. In MCF-10A, we identified 632 proteins (Fig. 2A). Of these, 459 were identified in all three replicates, yielding a protein identification reproducibility of 73%. Furthermore a total of 505 proteins were identified in BT474 (Fig. 2B). For this cell line, 380 proteins were common to all three replicates (75% reproducibility). Finally 723 proteins were identified in MDA-MB-468 (Fig. 2C) of which 553 were identified in all three replicates (76% reproducibility). In general, using the workflow presented here, we typically achieved technical reproducibility (same sample injected twice into the LTQ) of ~90% (data not shown). The total number of proteins identified per number of unique peptides per cell line is shown in Table I.

No. of peptides identified	MCF-10A	BT474	MDA-MB-468
1	120	124	155
2	172	137	211 (KLK6)
3	95	77	111 (KLK5, -10)
4	63	41 (Her-2/neu)	67
≥5	182	126	179
Total	632	505	723

Identification of Internal Control Proteins in CM by MS—One of the advantages of our approach to biomarker discovery was the presence of endogenous internal control proteins in the CM of MDA-MB-468. We identified KLK5, -6, and -10 in the CM of MDA-MB-468 in all three replicates for this cell line by MS. Supplemental Fig. 2 illustrates the sequences of KLK5, -6, and -10 and the peptides that were successfully identified by MS. Three unique peptides were identified for KLK5, two unique peptides were identified for KLK6, and three unique peptides were identified for KLK10 (Supplemental Fig. 2A–C). Furthermore the BT474 cell line is well characterized to exhibit amplification of Her-2/neu (also known as ERBB2). The Her-2/neu protein consists of a cysteine-rich extracellular ligand binding domain (ECD), a short transmembrane domain, and a cytoplasmic protein-tyrosine kinase domain. ECD/Her-2 can be released by proteolytic cleavage from the full-length Her-2 receptor and detected in serum. In the CM of BT474, we successfully identified receptor tyrosine-protein kinase ERBB2 precursor with four unique peptides (Supplemental Fig. 2D). All of the peptides identified fall into the ECD portion (amino acids 23–652) of this 1255-amino acid protein. However, we did not identify CA 15-3 in the...
conditioned media of the three cell lines by mass spectrometry. To validate this observation, using a commercially available ELISA kit (Elecsys CA 15-3 Immunoassay; Roche Diagnostics GmbH), we measured the levels of this glycoprotein in the same CM of the cell lines. Very little (<3 units/ml) to no CA 15-3 was measured by ELISA in the CM (Supplemental Fig. 3).

Cellular Localization of Identified Proteins—Fig. 2, D-F, display the cellular distribution of proteins identified in the conditioned media of MCF-10A (D), BT474 (E), and MDA-MB-468 (F). 22% of the proteins identified in MCF-10A CM were classified as extracellular and membrane-bound. For BT474 and MDA-MB-468, the percentages were 25 and 28%, respectively. A large portion of proteins identified were classified as intracellular (>50%), whereas 4–5% remained unclassified.

Overlap of Proteins between the Three Cell Lines—The proteins identified among the three cell lines were analyzed for overlapping members (Fig. 3). A significant portion (234 or 20%) of the 1,139 proteins was identified in all three cell lines (Fig. 3A). Fig. 3, B and C, show the overlap among the 175 extracellular proteins and the 211 membrane-bound proteins, respectively. Combined together, extracellular and membrane proteins accounted for 34% of all proteins identified. MDA-MB-468 displayed the greatest number of extracellular and membrane proteins, presumably illustrating that cancer cells secrete and/or express an increased amount of these proteins. In accordance with this postulation, cellular localization analysis of the overlap between BT474 and MDA-MB-468 yielded the greatest percentage (40%) of secreted and membrane proteins (Fig. 3D).

Cell Lysate Proteome—One of the major challenges in the analysis of secreted proteins is distinguishing between proteins that are targeted to the extracellular space versus those that arise as low level contaminants due to cell death during routine cell culture. To address this, we performed a cell lysate proteome experiment to examine whether our approach was enriching for secreted proteins. A total of 716 proteins were identified in MDA-MB-468 cell lysate after removal of the negative control proteins (culture media only). Supplemental Table 3A shows all proteins identified. 87% protein identification reproducibility was observed among the two replicates (Fig. 3E). 5% of the total proteome was classified as extracellular/secreted (Fig. 3F). In the CM of MDA-MB-468, 13% of the total proteins identified were classified as being secreted (Fig. 2F). The internal control secreted proteins, kallikreins 5, 6, and 10, were not identified in the cell lysate. Of the secreted proteins identified in the cell lysate, 30 were also identified in the CM for this cell line, whereas 19 proteins were unique to the lysate. Supplemental Table 3B shows the secreted proteins that were found in both the MDA-MB-468 lysate and CM as well as the extracellular proteins found only in the lysate and CM, respectively.

Tissue-specific Expression and Biological Function Analysis—Unigene analysis of 422 extracellular, membrane-bound, and unclassified proteins (“shortened list of candidates”), using the Expressed Sequence Tag ProfileViewer, was utilized to identify genes that were relatively breast-specific. Of these genes, five were found to be relatively specific to normal and/or cancerous breast (SCGB1D2, SBEM, TFF1, DCD, and CALM5L). Literature mining on these proteins showed that one of the proteins had previously been evaluated in serum of breast cancer patients (trefoil factor 1). As well, using the IPA software, we classified the shortened list of proteins by biological function. The top 15 functions are displayed in Fig. 4A. The top functions were cellular movement followed by cell-to-cell signaling and interaction. Finally these proteins were searched with the Human Plasma Proteome database to decipher whether they have been identified in plasma. 104 of 422 proteins were identified in human plasma.
Comparison of Proteins Identified from CM with Other Publications—Using the ICAT technology, Pawlik et al. (47) quantified tumor-specific proteins in NAF. In total, of the 39 proteins that were differentially expressed in tumor-bearing versus disease-free breasts, six were also found among the 1,139 proteins in our CM. In addition, Varnum et al. (48) identified 64 proteins in NAF using MS of which 15 were previously reported to be altered in patients with breast cancer. From the 64 proteins, 21 were also found in our proteomics study. More importantly, of the 15 proteins previously reported to be altered in serum or tumor from women with breast cancer, 10 were found in our CM proteome. A proteomics study involving MCF-7 targeted membrane-associated breast cancer proteins as potential biomarkers (25). Using 2-D electrophoresis and MS analysis of the protein spots, Canelle et al. (25) identified 98 proteins. Among the 98 proteins, 42 of them were also found in our study. In addition, Celis et al. (49) mined another source of biomarkers through the investigation of TIF that perfuses the breast tumor microenvironment. Given the importance of the tumor-host interface and the increasing appreciation of the role that the microenvironment plays in cancer initiation and progression, we compared our list of proteins identified through a cell culture model system with the proteins excreted by the cells that are within their native cancer microenvironment. The authors identified ~260 proteins using 2-D gel electrophoresis, immunoblotting, and mass spectrometry of which 112 were also identified in our study (43%). Fig. 4B summarizes the overlaps observed among the other publications and the data presented here. Supplemental Table 4 contains all of the proteins identified by us and the four previous studies. Finally, the lung, along with the bone, is one of the most frequent sites of breast cancer metastasis. A set of 54 genes that mediate breast cancer metastasis to the lungs have been identified (50). Given that MDA-MB-468 cells were collected from pleural effusion, we compared the list of proteins identified from MDA-MB-468 conditioned media with the 54 candidate lung metastasis genes. Seven genes were found in the CM of our cell line (KYNU, TNC, ROBO1, FSCN1, MAN1A1, LTBP1, and GSN). Interestingly none of the genes that overlapped between the lung and bone metastasis signatures were identified in MDA-MB-468.

Spectral Counting and Differential Expression of Proteins Identified—An alternative way to decipher protein abundance is to perform multidimensional scaling for all nine experiments (each cell line in triplicate) using spectral counts. Refer to “Materials and Methods” for details on how the analysis was conducted. The Venn diagram in Supplemental Fig. 4 displays the overlaps of proteins among the cell lines based on spectral count analysis and their cellular localization. The top ~100 extracellular and membrane-bound proteins obtained from spectral counting analysis are shown in Table II. The variability within the replicates (within variance) and between the three cell lines (between variance) are highlighted along with the F ratio. Apparent -fold changes were calculated where possible. A numerical value is indicated in places where both cell lines/conditions being examined contain a normalized spectral count greater than zero. In the event of a comparison where one of the conditions/cell lines had a spectral count of zero, an expression is given (e.g. BT \gg MCF; indicating that the spectral count for BT474 was greater than MCF10A). Cells that are gray indicate a negative -fold change, whereas cells that are white indicate a positive (numerical value indicated) or no -fold change (cells are blank). In addition, in the first column displaying the -fold change between BT474/MCF-10A, cells in white highlight the proteins that have a higher spectral count in BT474 compared with MCF-10A, whereas cells in black highlight proteins that have a lower spectral count.
count in BT474 compared with MCF-10A. A similar color coding scheme applies to the other two columns comparing the different cell lines/conditions within each column. Known breast cancer biomarkers such as Her-2/neu are among the top five proteins identified by this unbiased method of analysis. Furthermore, 23 proteins previously associated with cancer (as determined by Ingenuity Biomarkers Comparison Analysis software) were found among the top ∼100 extracellular and membrane proteins including epidermal growth factor receptor and various insulin-like growth factor-binding proteins (IGFBP-2, -3, -5, and -6). Supplemental Table 5 contains all of the 1,062 proteins on which this analysis was performed. In addition, Supplemental Table 6 contains the overlaps of the proteins among the cell lines.

Validation of Elafin and Kallikreins—Proteases and their inhibitors play an important role in cancer metastasis and angiogenesis (51). Elafin, a secreted epithelial proteinase inhibitor, also referred to as skin-derived antileukoproteinase or elastase-specific inhibitor, belongs to the Trappin gene family (52). Elafin has been found to be expressed in normal mammary epithelial cells but is down-regulated in most breast tumor cell lines (53). We identified elafin in BT474 and MDA-MB-468 with the latter having more unique peptides for the protein. Using a commercially available sandwich immunoassay for elafin, we examined a number of different biological samples for its expression. Serum from women with different levels of CA 15-3 was measured. Typically women with CA 15-3 levels of <30 units/ml are considered in the “normal” range (13). Examining sera from women with <30 units/ml, >30 but <100 units/ml, and >100 units/ml CA 15-3 for elafin showed no significant differences among the groups (Fig. 5A). In addition, the median values for elafin in normal and tumor breast cytosols showed that tumor cytosols had higher levels of this inhibitor than normal (Fig. 5B). However, the range in normal breast cytosols among the 15 samples examined varied

Protein name	Fold Change	Fold Change	Fold Change				
Ly6PLAUR-domain-containing protein 3 precursor	membrane	0	BT>MCF	BT>MCF			
Thrombomodulin-1 precursor	extracellular	34	1917	67	4.7	116.8	24.8
MAPK kinase 6	cytoplasm	1	176	67	7.5	116.8	24.8
Tumor-associated calcium signal transducer 2 precursor	cytoplasm, membrane	1	27	99	4.7	116.8	24.8
Receptor tyrosine-protein kinase erbB-2 precursor	membrane	2	81	37	BT>MCF	BT>MCF	
Small breast epithelial mucin precursor	extracellular	6	193	33	BT>MCF	BT>MCF	
Cadherin-13 precursor	membrane	2	47	29	BT>MCF	BT>MCF	
Insulin-like growth factor-binding protein 6 precursor	extracellular	422	108	26	24		
Splice isoform 1 of Tubulin-related protein-1 precursor	extracellular	2	55	24	24		
Splice isoform Long of Laminin gamma-2 chain precursor	extracellular	583	1289	22	BT>MCF	MDA>MCF	
Splice isoform C of Fibulin-1 precursor	extracellular	54	266	19	MDA>MCF	MDA>MCF	
Laminin beta-3 chain precursor	extracellular	22	411	18	BT<MCF	BT<MCF	
Insulin-like growth factor-binding protein 6 precursor	extracellular	4	75	18	MDA>MCF	MDA>MCF	
Insulin-like growth factor-binding protein 2 precursor	extracellular	58	993	17	BT>MCF	MDA>MCF	
Splice isoform APP772 of Amyloid beta A4 protein precursor (Fragment)	extracellular, membrane	388	6094	17	5.4	13.5	2.5
DBI protein	mitochondrion, extracellular, cytoplasm	12	176	14	1.5	<5.0	
Galectin-3-binding protein precursor	extracellular, membrane	157	2138	14	1.1	4.3	4
Cystatin C precursor	extracellular	95	1257	13	3.4	MDA>MCF	BT>MCF
Mito kinase precursor	extracellular	60	736	13	BT>MCF	MDA>MCF	
Insulin-like growth factor-binding protein 3 precursor	extracellular	48	830	13	MDA>MCF	MDA>MCF	
Laminin alpha 3 subunit isoform 1	extracellular	73	879	12	BT<MCF	MDA>MCF	
Hippocalcin-like protein 1	cytoplasm, membrane	1	8	12	BT>MCF	MDA>MCF	
Insulin-like growth factor-binding protein 7 precursor	extracellular	14	150	11	BT>MCF	MDA>MCF	
Splice isoform Long of Sodium/potassium-transporting ATPase 1-1 chain precursor	membrane	4	39	10	MDA>MCF	BT<MCF	
Transforming growth factor-beta-induced protein 103	extracellular	49	497	10	BT<MCF	<16.7	BT<MCF
considerably. The levels of elafin in a variety of pooled biological samples showed that milk contained this protein at 18 μg/liter followed by urine at 7 μg/liter, follicular fluid, and seminal plasma (Fig. 5C). These were biological samples from normal individuals and hence do not correlate to diseased phenotype. Finally we checked the levels of elafin in normal pooled tissue lysates. After correction of total protein content in the samples, colon, small intestine, and ureter contained the highest levels. Among the top 10 expressing tissues, breast was ranked as seventh (Fig. 5D). In addition, using the same sample sets, we measured the levels of kallikrein in normal pooled tissue lysates. After correction of total protein content in the samples, colon, small intestine, and ureter contained the highest levels. Among the top 10 expressing tissues, breast was ranked as seventh (Fig. 5D).

DISCUSSION
In this study, a shotgun proteomics strategy was utilized to sample the conditioned media of three breast cell lines, MCF-10A, BT474, and MDA-MB-468. By searching with both Mascot and X!Tandem, we successfully identified over 1,100 proteins in the CM of all three cell lines combined, which, to our knowledge, is one of the largest repositories of proteins identified for breast cancer. Studies have shown that by combining results from multiple search engines, a better, more confident protein identification is made because different search engines are based on different algorithms and scoring (54, 55). Two different methods of determining relative abundance were used: protein identification and spectral counts. Although spectral counting as an index of protein abundance is appealing, there are a number of different ways to analyze a dataset such as counting the spectra and adjusting by the length of the protein (normalized spectral abundance factor) (56), counting peptides (not individual spectra) and adjusting for the number of tryptic peptides in the protein (protein...
abundance index) (57), calculating a function of protein abundance index called exponentially modified protein abundance index (58), counting 1 if any spectra matched a peptide and assigning 0 otherwise (SASPECT (significant analysis of peptide counts)), or merely counting the spectra. Currently there is no consensus as to which approach to use. In this study, we used both protein identification and spectral counts to determine protein abundance.

We specifically examined MCF-10A, BT474, and MDA-MB-468 because they represent progression phases to breast cancer. We observed a higher cell death in MCF-10A, which was expected because MCF-10A is considered to be a normal breast epithelial cell line that does not have the advantage of growing uncontrollably as do the cancer cell lines in SFM (Supplemental Fig. 1). It was our aim that examining the proteins that are unique to each of the cell lines might shed light into both the pathways leading to breast cancer development and to the discovery of biomarkers for breast cancer. Toward this aim, using the Ingenuity Pathways Analysis, the shortened list of candidates was filtered by extracting only those genes that were identified in literature to be present in human and associated with cancer. Approximately 100 of 422 extracellular and membrane genes were identified to meet this criterion. The top 14 canonical pathways that demonstrated a relationship to the 100 genes filtered as well as known genes linked to breast cancer are highlighted in Fig. 6. Dysregulation of signaling pathways plays an important role in cancer initiation and progression. The proteins identified in this study may be useful for further investigation.

One of the advantages of our high throughput qualitative comparative proteomics analysis was the presence of internal controls in the CM of MDA-MB-468. KLK5 expression, as assessed by quantitative RT-PCR, has been implicated as an independent and unfavorable prognostic marker for breast carcinoma (59). The clinical utility of KLK6 as a breast cancer marker has not been determined, whereas KLK10 levels have been shown to predict response to tamoxifen therapy (60). Based on experience with other currently used biomarkers, the expected concentration of new cancer markers in serum should be in the low μg/liter range. Through our strategy, we

Table II—continued

Splice isoform 1 of Neuronal cell adhesion molecule precursor	membrane	13	52	4	BT>MCF	BT>MDA
Clusterin precursor	extracellular	495	1977	4	-1.8	-4.2
GARS protein	extracellular, cytoplasm	5	18	4	MDA>MCF	BT<MCF
Splice isoform 2 of Beas1 precursor	membrane	9	34	4	BT>MCF	BT<MDA
Matrix precursor	extracellular	236	786	4	MDA>MCF	BT>MCF
Alpha-1-antichymotrypsin precursor	extracellular	159	697	4	BT>MCF	MDA<MDA
Splice isoform 2 of Retinoic acid receptor responder protein 1	membrane	1209	4407	4	46.2	264.3
Elafin precursor	extracellular	63	231	4	BT>MCF	MDA>MCF
Complement component 1, C subcomponent-binding protein, mitochondrial precursor	mitochondrial, membrane	20	73	4	BT<MDA	MDA<MDA
quinolinderivative-OH isoform a	membrane, extracellular	119	420	4	9.1	9.6
Splice isoform 1 of Choline transporter-like protein 2	membrane	9	1	3	MDA>MCF	BT<MCF
Extracellular superoxide dismutase [Cu,Zn] precursor	extracellular	18	61	3	BT>MCF	MDA>MCF
Cystatin SN precursor	cytoplasm, extracellular	190	629	3	BT>MCF	BT<MDA
Insulin-like growth factor-binding protein 4 precursor	extracellular	195	636	3	BT>MCF	MDA>MCF
Lamc-like protein 2	nucleus, cytoplasm, membrane	11	35	3	MDA>MCF	BT<MDA
28 kDa heat- and acid-stable phosphoprotein	extracellular	17	54	3	-1.2	-6.2
CD166 antigen precursor	membrane	146	440	3	44.4	12.6
urokinase plasminogen activator proteoglycan	extracellular	37	112	3	BT<MDA	MDA<MDA
CDNA FLJ14791 fls, clone TBAES2004105, weakly similar to ADAM-TS 6 (Fragment)	extracellular	6	16	3	BT>MCF	BT<MDA
Optional antigen 4 precursor	extracellular	24	69	3	MDA>MCF	BT<MDA
Zinc-alpha-2-glycoprotein precursor	extracellular	2608	7282	3	148.7	255.9
Moein	cytoplasm, cytoskeleton, membrane	121	338	3	BT>MCF	2.7
Splice isoform 1 of Fibrinogen-B	cytoskeleton, membrane	243	670	3	-2.3	-2.2
Calmodulin	cytoplasm, membrane	153	417	3	2.1	-1.7
LISCH protein isoform 2	membrane	46	126	3	BT>MCF	MDA>MCF
Kalikrein-6 precursor	extracellular, cytoplasm	2	4	3	MDA>MCF	BT<MDA
Splice isoform 1 of Complement factor B precursor (Fragment)	extracellular	10	27	3	MDA>MCF	BT<MDA
Neutrophil gelatinase-associated lipocortin precursor	extracellular, cytoplasm	387	971	3	BT>MDA	MDA<MCF
Aldehyde beta	membrane	2	5	3	BT>MCF	BT<MDA
successfully identified all three control proteins by MS, thus supporting the notion that we are enriching for, and surveying deep enough, into the low abundance proteins to mine for other candidate biomarkers for breast cancer. Furthermore the fact that we successfully identified the ECD portion of Her-2/neu in BT474 further supports our hypothesis that candidate biomarkers can be discovered using the CM of breast cancer cell lines. High levels of Her-2 in serum correlate with poor prognosis in patients with breast cancer (61). In 2000, the Food and Drug Administration cleared the serum Her-2/neu test, the first Food and Drug Administration-cleared blood test for measuring circulating levels of Her-2 in the follow-up and monitoring of patients with metastatic breast cancer. The assay, ADVIA Centaur HER-2/neu Assay (Oncogene Science Biomarker Group), is a sandwich immunoassay that uses two monoclonal antibodies that are specific for unique epitopes on the extracellular domain of the Her-2 oncoprotein. The assay has a reference limit of 15 µg/liter with a sensitivity of 0.1 µg/liter (62).

Particular emphasis was placed on extracellular, membrane-bound, and unclassified proteins because these proteins have the highest chance of being found in the circulation.

Fig. 5. Levels of elafin in biological samples. A, serum from women with known CA 15-3 levels was analyzed for elafin expression by ELISA (median values are shown); B, normal and tumor breast cytosols as well as various pooled biological samples (C) and pooled tissues (D) were assayed. The number of samples used to generate a pooled sample is indicated in parentheses. No expression was observed in other biological samples and tissues examined (see “Materials and Methods” for a complete list of all samples surveyed).
and thus serving as cancer biomarkers or as important molecules involved in cancer progression. More than 34% of these proteins were classified as being extracellular and membrane-bound. Among the known and novel proteins released by breast cancer cells, we identified various proteases, receptors, protease inhibitors, and cytokines. All experiments were performed in triplicates with excellent reproducibility between runs. Due to the inherent nature of mass spectrometers, not all peptides were ionized in each run, and consequently, different peptides were selected for ionization and detected. This selective ionization can account for the 75% reproducibility in our biological triplicates. In addition, the various steps during sample preparation, including C18 extraction of the fractions, cannot be dismissed as an important contributing factor to the variations observed. In addition, we validated the ability of elafin to discriminate between normal and tumor breast cytosols. Currently no conclusion can be drawn without examining more cytosols. Although we did not observe circulating biomarker potential in elafin to discriminate normal from diseased individuals, to our knowledge, we are the first to report on the expression of this protein in breast cytosols, biological fluids, and tissue lysates using an immunoassay. Elafin was found to be expressed in normal breast tissue.

Although the objective of this study was to identify secreted and membrane-bound proteins that have the potential to be cleaved and thus found in circulation, the identified proteins included many intracellular proteins, including ones classified by GO as nuclear and cytoplasmic. During the cell culture
process, a portion of the cell population will die, resulting in the release of intracellular proteins into the media. Despite optimizing cell culture conditions to minimize cell death, the identification of intracellular proteins in the CM is inevitable because of the high sensitivity of MS-based techniques utilized in this study. Martin et al. (23) examined the CM of a prostate cancer cell line and found a very similar GO distribution to the one we present here: that more than 50% of the proteins identified were intracellular. Therefore, one of the major challenges in the analysis of secreted proteins is distinguishing between proteins that are targeted to the extracellular space versus those that arise as low level contaminants due to normal cell death in routine cell culture. To address this, we performed a cell lysate proteome experiment to demonstrate conclusively that through our approach we are significantly enriching for secreted proteins. Furthermore a recent study examining the cell lysate proteome of a human mammary epithelial cell line found that 2% of the entire proteome was classified as extracellular, which was consistent with our findings (63).

Recently the analysis of thousands of genes in breast and colorectal cancers has shown that individual tumors can accumulate an average of 90 mutant genes (64). The authors identified 189 previously unknown genes that were mutated at a high frequency. From these genes, six were found in this study (filamin-B, spectrin α chain, gelsolin, extracellular sulfatase SulF-2, neuronal cell adhesion molecule, and polypeptide N-acetylgalactosaminyltransferase 5). Furthermore it is particularly important that many of the proteins identified by other groups using relevant biological fluids such as NAF and TIF were also present in our analysis (see Supplemental Table 8). Many of the proteins identified by Pawlik et al. (47) were highly abundant serum proteins such as albumin, transferrin, and various immunoglobulins, all of which were not identified in our serum-free media. As well, the top biological functions of the candidate molecules appear well suited to cancer initiation and progression such as those involved in cellular movement and cell-to-cell signaling. Finally a large portion of the shortened list of proteins identified was also found in the Human Plasma Proteome database. This finding was not unexpected as it served to highlight the fact that many of the proteins identified in our study had previously been found in plasma. But it also demonstrated that many more proteins have yet to be identified in plasma. There can be a number of reasons why they have not been identified, one of which is the fact that their concentration in plasma is too low to measure by current technologies, and thus other means of initially identifying them and then developing a specific and sensitive immunoassay are critical.

Our group has previously published data on the conditioned media of a prostate cancer cell line, PC3(AR)6, using a roller bottle cell culture method (65). Through this approach, the authors identified 262 proteins in the CM. The workflow presented in the current study has significant differences and improvements compared with our previous work. At the tissue culture step, we cultured three cell lines in triplicate versus only one cell line studied. We also optimized our cell culture conditions (seeding density, incubation time, and volume of media used) to minimize cell death and maximize secreted protein content. Different methods of fractionation of the peptides versus protein fractionation and a more robust and sensitive mass spectrometer were utilized in this study compared with our previous work. Finally the bioinformatics analysis has also been significantly improved upon from before as we used two different search engines and incorporated protein and peptide probability calculations into our final list of proteins. As a result, in the current study, we identified over 1,000 proteins using the conditioned media approach.

Current therapies for advanced cancers are elusive. Novel breast cancer biomarkers that can be effective early in the course of the disease have the potential to reduce morbidity and mortality as well as receive a higher compliance rate by patients for undergoing screening. However, there is a growing consensus that panels of markers may be able to supply the specificity and sensitivity that individual markers lack. A number of studies have demonstrated that this is indeed true. Although a biomarker should be detected in serum using an immunoassay (ELISA), developing such an assay for multiple potential novel biomarkers is very labor-intensive (66). The vast majority of the proteins identified in this study (extracellular, membrane, and unclassified) do not have commercially available ELISA kits. Alternatively to decipher whether the candidates are present in serum, multiple reaction monitoring mass spectrometry technology can be performed. Using the latter technology, it is possible, in a single experiment, to detect and quantify specific peptides (representing specific proteins) in biological fluids of patients with breast cancer to determine whether the protein has biomarker potential. A number of studies have shown the feasibility of such an approach (67–69).

Acknowledgments—We thank Christopher R Smith for expert technical advice and support in mass spectrometry. We are grateful to Adrian Pasculescu, David Nguyen, and Mark Turner (Proteome Software Inc.) for bioinformatics support and Paul Taylor for many helpful discussions relating to this project.

*The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[$] The on-line version of this article (available at http://www.mcponline.org) contains supplemental material.

To whom correspondence should be addressed: Dept. of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario M5G 1X5, Canada. Tel.: 416-586-8443; Fax: 416-58-8628; E-mail: ediamandis@mssinai.on.ca.

REFERENCES
1. van Diest, P. J., van der, W. E., and Baak, J. P. (2004) Prognostic value of proliferation in invasive breast cancer: a review. J. Clin. Pathol. 57, 675–681

Molecular & Cellular Proteomics 6.11 2009
model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658
42. Luo, L. Y., Grass, L., Howarth, D. J., Thibault, P., Ong, H., and Diamandis, E. P. (2001) Immunofluorescent assay of human kallikrein 10 and its identification in biological fluids and tissues. Clin. Chem. 47, 237–248
43. Yousef, G. M., Polymeris, M. E., Grass, L., Soosaipillai, A., Chan, P. C., Scorrilas, A., Borgho, C., Harbeck, N., Schmitt, M., and Diamandis, E. P. (2003) Human kallikrein 5: a potential novel serum biomarker for breast and ovarian cancer. Cancer Res. 63, 3958–3965
44. Diamandis, E. P., Scorrilas, A., Fracchioli, S., Van Gramberen, M., De Bruijn, H., Henrik, A., Soosaipillai, A., Grass, L., Yousef, G. M., Stenman, U. H., Massobrio, M., Van Der Zee, A. G., Vergole, I., and Katsaros, D. (2003) Human kallikrein B (HKB): a new potential serum biomarker for diagnosis and prognosis of ovarian carcinoma. J. Clin. Oncol. 21, 1035–1043
45. Elias, J. E., Haas, W., Faherty, B. K., and Gygi, S. P. (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat. Methods 2, 667–675
46. Pinkas-Kramarski, R., Airon, I., and Yarden, Y. (1997) ErbB receptors and EGF-like ligands: cell lineage determination and oncogenesis through combinatorial signaling. J. Mammary Gland Biol. Neoplasia 2, 97–107
47. Pawlik, T. M., Hawke, D. H., Liu, Y., Krishnamurthy, S., Fritsche, H., Hunt, K. K., and Kuether, H. M. (2006) Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer 6, 68
48. Vannum, S. M., Covington, C. G., Woodbury, R. L., Petrits, K., Kangas, L. J., Abdulla, M. S., Pounds, J. G., Smith, R. D., and Zangar, R. C. (2003) Proteomic characterization of nipple aspirate fluid: identification of potential biomarkers of breast cancer. Breast Cancer Res. Treat. 80, 87–97
49. Celis, J. E., Gromov, P., Cabezon, T., Moreira, J. M., Ambartsouman, N., Sandelin, K., Rank, F., and Gromova, I. (2004) Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol. Cell. Proteomics 3, 327–344
50. Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Oshin, A. B., Gerald, W. L., and Massague, J. (2005) Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524
51. Lotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336
52. Schalkwijk, J., Wiedow, O., and Hirose, S. (1999) The trappin family: proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal four-disulphide core. Biochem. J. 340, 569–577
53. Zhang, M., Zou, Z., Maass, N., and Sager, R. (1995) Differential expression of elafin in human normal mammary epithelial cells and carcinomas is regulated at the transcriptional level. Cancer Res. 55, 2537–2541
54. Searle, B. C., Brundege, J. M., and Turner, M. (2005) Improving sensitivity by combining results from multiple MS/MS search methodologies with the scaffold computer algorithm, in Human Proteome Organization (HUPO), 4th Annual World Congress, Munich, Germany, August 28, 2005, Abstr. WP299, HUPO, Montreal, Quebec, Canada
55. Domon, B., and Aebersold, R. (2006) Challenges and opportunities in proteomics data analysis. Mol. Cell. Proteomics 5, 1921–1926
56. Zybailov, B., Mosley, A. L., Sardiou, M. E., Coleman, M. K., Flores, L., and Washburn, M. P. (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347
57. Rappeiser, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245
58. Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappaport, J., and Mann, M. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 4, 1265–1272
59. Yousef, G. M., Scorrilas, A., Kyriakopoulou, L. G., Rendl, L., Diamandis, M., Ponzio, R., Biglia, N., Gial, M., Roagna, R., diamandis, E. P. (2002) Human kallikrein gene 5 (KLK5) expression by quantitative PCR: an independent indicator of poor prognosis in breast cancer. Clin. Chem. 48, 1241–1250
60. Luo, L. Y., Diamandis, E. P., Look, M. P., Soosaipillai, A. P., and Foeckens, J. A. (2002) Higher expression of human kallikrein 10 in breast cancer tissue predicts tamoxifen resistance. Br. J. Cancer 86, 1790–1796
61. Lupton, A., Ali, S. M., Letzel, K., Demers, L., Chinchilli, V., Engle, L., Harvey, H. A., Brady, N., Nalin, C. M., Dugan, M., Carney, W., and Allard, J. (2002) Elevated serum Her-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J. Clin. Oncol. 20, 1467–1472
62. Esteva, F. J., Valero, V., Booser, D., Guerra, L. T., Murray, J. L., Pusztai, L., Cristofanoliti, M., Arun, B., Esmaeili, B., Fritsche, H. A., Sniege, N., Smith, T. L., and Hortobagyi, G. N. (2002) Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 1800–1808
63. Jacobs, J. M., Mottaz, H. M., Yu, L. R., Anderson, D. J., Moore, R. J., Chen, W. N., Auberry, K. J., Strittmatter, E. F., Monroe, M. E., Thrall, B. D., Camp, D. G., and Smith, R. D. (2004) Multidimensional proteomic analysis of human mammary epithelial cells. J. Proteome Res. 3, 68–75
64. Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lim, J., Barber, T. D., Mandelker, D., Leary, R. J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Mee, P., Markowitz, S. D., Willis, J., Dawson, D., Willson, J. K., Gazdar, A. F., Hargis, J., Wu, L., Liu, C., Parmigiani, G., Park, B. H., Bachman, K. E., Papadopoulos, N., Vogelstein, B., Kinzler, K. W., and Velculescu, V. E. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274
65. Sardana, G., Marshall, J., and Diamandis, E. P. (2007) Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin. Chem. 53, 429–437
66. Zolg, W. (2006) The proteomic search for diagnostic biomarkers: lost in translation? Mol. Cell. Proteomics 5, 1720–1726
67. Anderson, L., and Hunter, C. L. (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics 5, 573–588
68. Anderson, N. L., Anderson, N. G., Haines, L. R., Hardie, D. B., Olafson, R. W., and Pearson, T. W. (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J. Proteome Res. 3, 235–244
69. Barnidge, D. R., Goodmanson, M. K., Klee, G. G., and Muddiman, D. C. (2004) Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-MS/MS using protein cleavage and isotope dilution mass spectrometry. J. Proteome Res. 3, 644–652

Analysis of Breast Cancer Conditioned Media