New proof of a Theorem on k-hypertournament losing scores

S. Pirzada and Zhou Guofei

1Department of Mathematics, University of Kashmir, Srinagar-190006, India
Email: sdpirzada@yahoo.co.in

Department of Mathematics, Nanjing University, Nanjing, P.R.China
Email: gfzhou@nju.edu.cn
AMS Subject Classification: 05C

Abstract. In this paper, we give a new and short proof of a Theorem on k-hypertournament losing scores due to Zhou et al. [7].

1. Introduction

An edge of a graph is a pair of vertices and an edge of a hypergraph is a subset of the vertex set, consisting of at least two vertices. An edge in a hypergraph consisting of k vertices is called a k-edge, and a hypergraph all of whose edges are k-edges is called a k-hypergraph.

A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the hyperedge. In other words, given two non-negative integers n and k with \(n \geq k > 1 \), a k-hypertournament on n vertices is a pair \((V, A)\), where V is a set of vertices with \(|V| = n\) and A is a set of k-tuples of vertices, called arcs, such that any k-subset S of V, A contains exactly one of the \(k! \) k-tuples whose entries belong to S. If \(n < k \), \(A = \emptyset \) and this type of hypertournament is called a null-hypertournament. Clearly, a 2-hypertournament is simply a tournament.

Let \(e = (v_1, v_2, ..., v_k) \) be an arc in a k-hypertournament H. Then \(e(v_i, v_j) \) represents the arc obtained from \(e \) by interchanging \(v_i \) and \(v_j \).

The following result due to Landau [4] characterizes the score sequences in tournaments.

Theorem 1. A sequence of non-negative integers \([s_1, s_2, ..., s_n]\) in non-decreasing order is a score sequence of some tournament if and only if

\[
\sum_{i=1}^{j} s_i \geq \binom{j}{2}, \quad 1 \leq j \leq n,
\]
Now, there exist several proofs of Landau's theorem and a survey of these can be found in Reid [5]. There are stronger inequalities on the scores in tournaments which are due to Brualdi and Shen [1].

Instead of scores of vertices in a tournament, Zhou et al. [7] considered scores and losing scores of vertices in a k-hypertournament, and derived a result analogous to Landau’s theorem [4]. The score \(s(v_i) \) or \(s_i \) of a vertex \(v_i \) is the number of arcs containing \(v_i \) and in which \(v_i \) is not the last element, and the losing score \(r(v_i) \) or \(r_i \) of a vertex \(v_i \) is the number of arcs containing \(v_i \) and in which \(v_i \) is the last element. The score sequence (losing score sequence) is formed by listing the scores (losing scores) in non-decreasing order.

For two integers \(p \) and \(q \), \(\binom{p}{q} = \frac{p!}{q!(p-q)!} \) and \(\binom{p}{q} = 0 \) if \(p < q \).

The following characterization of losing score sequence in k-hypertournaments are due to Zhou et al. [7].

Theorem 2. Given two non-negative integers \(n \) and \(k \) with \(n \geq k > 1 \), a non-decreasing sequence \(R = [r_1, r_2, ..., r_n] \) of non-negative integers is a losing score sequence of some k-hypertournament if and only if for each \(j \),

\[
\sum_{i=1}^{j} r_i \geq \binom{j}{k},
\]

with equality when \(j = n \).

Koh and Ree [3] have given a different proof of Theorem 2. Some more results on scores of k-hypertournaments can be found in [2, 6]. The following is the new and short proof of Theorem 2.

Proof. The necessity part is obvious.

We prove sufficiency by contradiction. Assume all sequences of non-negative integers in non-decreasing order of length fewer than \(n \), satisfying conditions (1) be the losing score sequences. Let \(n \) be the smallest length and \(r_1 \) be the smallest possible with that choice of \(n \) such that \(R = [r_1, r_2, ..., r_n] \) is not a losing score sequence.

Consider two cases, (a) equality in (1) holds for some \(j < n \), and (b) each inequality in (1) is strict for all \(j < n \).

Case (a). Assume \(j \ (j < n) \) is the smallest such that

\[
\sum_{i=1}^{j} r_i \geq \binom{j}{k}.
\]

By the minimality of \(n \), the sequence \([r_1, r_2, ..., r_j] \) is the losing score sequence of some k-hypertournament \(H_1 \). Also,
\[
\sum_{i=1}^{m} \left[r_{j+i} - \left(\frac{1}{m} \right) \sum_{i=1}^{k-1} \binom{j}{i} \left(\binom{n-j}{k-i} \right) \right]
= \sum_{i=1}^{m+j} r_i - \left(\frac{j}{k} \right) - \sum_{i=1}^{k-1} \binom{j}{i} \left(\binom{n-j}{k-i} \right)
\geq \left(\frac{m+j}{k} \right) - \left(\frac{j}{k} \right) - \sum_{i=1}^{k-1} \binom{j}{i} \left(\binom{n-j}{k-i} \right)
= \binom{m}{k}.
\]

for each \(m, 1 \leq m \leq n-j \), with equality when \(m = n-j \).

Let \(\frac{1}{m} \sum_{i=1}^{k-1} \binom{j}{i} \left(\binom{n-j}{k-i} \right) = \alpha \). Therefore, by the minimality of \(n \), the sequence \([r_{k+1} - \alpha, r_{k+2} - \alpha, ..., r_n - \alpha]\) is the losing score sequence of some \(k \)-hypertournament \(H_2 \). Taking disjoint union of \(H_1 \) and \(H_2 \), and adding all \(m \alpha \) arcs between \(H_1 \) and \(H_2 \) such that each arc among \(m \alpha \) has the last entry in \(H_2 \) and each vertex of \(H_2 \) gets equal shares from these \(m \alpha \) last entries, we obtain a \(k \)-hypertournament with losing score sequence \(R \), which is a contradiction.

Case (b). Let each inequality in (1) is strict when \(j < n \), and in particular \(r_1 > 0 \). Then the sequence \([r_1 - 1, r_2, ..., r_n + 1]\) satisfies (1), and therefore by minimality of \(r_1 \), is the losing score sequence of some \(k \)-hypertournament \(H \), a contradiction. Let \(x \) and \(y \) be the vertices respectively with losing scores \(r_{n+1} \) and \(r_{1-1} \). If there is an arc \(e \) containing both \(x \) and \(y \) with \(y \) as the last element in \(e \), let \(e' = (x, y) \). Clearly, \((H-e) \cup e' \) is the \(k \)-hypertournament with losing score sequence \(R \), again a contradiction. If not, since \(r(x) > r(y) \) there exist two arcs of the form \(e_1 = (w_1, w_2, ..., w_{l-1}, u, w_l, ..., w_{k-1}) \) and \(e_2 = (w'_1, w'_2, ..., w'_{l-1}, v) \), where \((w'_1, w'_2, ..., w'_{k-1}) \) is a permutation of \((w_1, w_2, ..., w_{k-1}) \), \(x \notin \{w_1, w_2, ..., w_{k-1}\} \) and \(y \notin \{w_1, w_2, ..., w_{k-1}\} \). Then, clearly \(R \) is the losing score sequence of the \(k \)-hypertournament \((H-\langle e_1 \cup e_2 \rangle) \cup \langle e'_1 \cup e'_2 \rangle \) where \(e'_1 = (u, w_{k-1}) \), \(e'_2 = (w'_1, v) \) and \(t \) is the integer with \(w'_t = w_{k-1} \). This again contradicts the hypothesis. Hence, the result follows.

References

[1] R.A. Brualdi and J. Shen, Landau’s inequalities for tournament scores and a short proof of a Theorem on transitive sub-tournaments, J. Graph Theory 38 (2001) 244-254.

[2] Y. Koh and S. Ree, Score sequences of hypertournament matrices, J. Korea Soc. Math. Educ. Ser. B: Pure and Appl. Math. 8 (2) (2001) 185-191.
[3] Y. Koh and S. Ree, On k-hypertournament matrices, Linear Algebra and its Applications 373 (2003) 183-195.

[4] H. G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.

[5] K.B. Reid, Tournaments, scores, kings, generalizations and special topics, Cong. Num.115 (1996) 171-211.

[6] C. Wang and G. Zhou, Note on the degree sequences of k-hypertournaments, Discrete Mathematics, Preprint.

[7] G. Zhou, T. Yao and K. Zhang, On score sequences of k-hypertournaments, European J. Combin. 21 (8) (2000) 993-1000.