Aliphatic and eudesmalolide esters extracted from the roots of *Inula racemosa* Hook

Maria Khan, S.R. Mir, Abuzar Ali, Mohammad Yusuf, Mohammed Ali
Department of Pharmacognosy and Phytochemistry, Phytochemistry Research Laboratory, 1Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India

Submitted: 26-05-2013 Revised: 15-06-2013 Published: 07-02-2014

ABSTRACT

Background: Phytochemical investigation of hydroalcoholic extract of the root of *Inula racemosa* Hook. **Materials and Methods:** Open silica gel column chromatographic techniques with different solvent systems was used for isolation of aliphatic and eudesmalolide esters from hydroalcoholic extract of the root of *Inula racemosa*. The structure elucidation of the compounds was done on the basis of spectral data analysis, chemical reactions and comparison with literature data. **Results:** Phytochemical investigation of the hydroalcoholic extract of the root of *Inula racemosa* Hook. f. led to the isolation of (5z, 13z)-n-decanyl-n-docos-5, 13-dienoate, a new fatty acid ester, two new sesquiterpenic ester identified as 15-[(13z, 18z, 20z’)-n-tricos-13, 18, 20-trienyl]-eudesmal-4 (11) 6, 12 (13)-trien-8,14-olide-15-oate and 15-[(16z), (21z)-n- tetracos-16’, 21’-dienyl]-eudesmal-4 (11) 6, 12 (13)-trien-8, 14-olide-15-oate, two new eudesmanolide ester i.e. 15-[(16z)-n-monadec-16’-enyl]-eudesmal-4 (11) 6, 12 (13)-trien-8,14-olide-15-oate and 15-[(16z)-n-tetracos-16’-enyl]-endesmal-4 (11) 6, 12 (13)-trien-8,14-olide-15-oate along with the known compound n-Hexadecanyl n-docosanoate. **Conclusion:** Five new phytoconstituents were identified along with one known compound as aliphatic and eudesmalolide esters from the hydroalcoholic extract of the root of *Inula racemosa*, as mentioned above.

Key words: Aliphatic esters, eudesmalolide esters, *Inula racemosa*, phytoconstituents, root extract

INTRODUCTION

Inula racemosa Hook. f. commonly known as ‘Pushkarmoola’ of family Asteraceae, with its diverse active components, has been utilized as a therapeutic, since time immemorial in both organized (Ayurveda, Unani) and unorganized (folk, tribal, native) form.[1] The roots of *I. racemosa* have been used as folk medicine in East Asia and Europe.[2] Native Americans used this plant for the treatment of tuberculosis.[3] The alantolactone obtained from roots of *I. racemosa* enhances insulin sensitivity, thus proves beneficial in fat reduction.[4] Roots of *I. racemosa* are also useful in treating pulmonary and cardiovascular disorders.[5] The chemical profiling of the plant roots have shown the presence of alantolactones and isoolantolactones, sitisterol, daucosterol, inunolide, aplotexene, phenylacetonitrite and isoinuxal.[6]

The characteristic components of the genus *Inula* are sesquiterpenes, such as eudesmanes, germacrane, guaianes and bis-sesquiterpenes. Recently, much attention has been paid to *Inula* species due to their diverse biological activities.[7,8]

During further phytochemical investigation, a new fatty acid ester, two new sesquiterpenic esters and two new eudesmanolide esters were isolated along with known compounds like n-Hexadecanyl n-docosanoate. Herein, we reported the isolation and elucidation of the two new sesquiterpenic esters and two new eudesmanolide esters along with a new fatty acid ester.

MATERIALS AND METHODS

General procedure

Melting points were determined on Perfit melting point apparatus and are uncorrected. Fourier transform infrared spectroscopy (FTIR): Jasco FT/IR-5000; UV: Lambda Bio 20 Spectrophotometer, MeOH; 1H-NMR (400 MHz):
Khan, et al.: Esters extracted from roots of Inula racemosa

Advance DRY 400, Bruker spectrosyn, CDCl₃, ¹³C NMR (75 MHz); Advance DRY 100, Bruker spectrosyn, CDCl₃ with TMS as an internal standard; MS: FAB ionization on JEOL-JMS-DX 303; GC: silica gel (Qualigens), 60-120 mesh; TLC: Silica gel G (Qualigens). Spots were visualized by exposure to iodine vapours, UV radiation and by the use of spraying reagents.

Plant material
The root of I. racemosa was collected from the local market of Khari Baoli, Delhi one week before commencing the extraction procedure and identified by Dr. M. P. Sharma, taxonomist, Department of Botany, Faculty of Science, Jamia Hamdard (Hamdard University). A voucher specimen No. PRD/JH/09/18 is deposited in the herbarium of the Faculty of Pharmacy, Jamia Hamdard, New Delhi.

Extraction and isolation
The air-dried root (3 kg) of I. racemosa were coarsely powdered, defatted with petroleum ether and then exhaustively extracted in a Soxhlet apparatus with 90\% hydro-methanolic mixture for 72h. The extract was concentrated under reduced pressure to obtain dark brown viscous mass, small portion of the extract was analyzed chemically to determine the presence of different chemical constituents. The viscous dark brown mass was adsorbed on silica gel (60-120 mesh) after being dissolved in little quantity of methanol for preparation of slurry. The slurry (255 g) was air dried and chromatographed over silica gel column packed in petroleum ether. The column was eluted successively using solvent mixtures e.g., starting with pure petroleum ether, successive mixtures of petroleum ether and chloroform (9:1, 3:1, 1:1 and 1:3), pure chloroform and finally mixture of chloroform and methanol (99:1, 97:3, 95:5, 93:7, 91:9) were used to run the column. Various fractions were collected separately and matched by TLC to check homogeneity. Similar fractions (having same \(R_f \) values) were combined and crystallized. The isolated compounds were recrystallized to get pure compounds.

RESULT AND DISCUSSION

Result

IR-1 (n-Decanyl docosdienoate)
Elution of the column with petroleum ether gave colorless amorphous powder of IR-1, recrystallized from acetone-methanol (1:1), 78mg (0.035\% yield), \(R_f \): 0.62 (petroleum ether), m.p: 75°C.

UV \(\lambda_{max} \) (MeOH): 206nm (log \(\varepsilon \) 4.3).

IR \(\gamma_{max} \) (KBr): 2927, 2856, 1718, 1460, 1378, 1172, 993, 911cm⁻¹.

\(^{1}H\)-NMR (CDCl₃): \(\delta \) 5.79 (1H, m, \(w_{1/2} = 14.3 \) Hz, H-5), 5.04 (1H, m, \(w_{1/2} = 17.6 \) Hz, H-6), 4.96 (1H, m, \(w_{1/2} = 13.6 \) Hz, H-13), 4.91 (1H, m, \(w_{1/2} = 14.1 \) Hz, H-14), 4.52 (1H, ddd, \(J = 5.2, 3.6, 10.0 \) Hz, H-1'a), 4.30 (1H, ddd, \(j = 5.2, 5.2, 10.0 \) Hz, H-1'b), 2.31 (2H, \(t, J = 7.6 \) Hz, H₂-2), 2.05 (2H, m, H₂-4), 2.03 (2H, m, H₂-7), 1.76 (2H, m, H₂-12), 1.63 (2H, m, H₂-15), 1.56 (2H, m, CH₂), 1.51 (2H, m, CH₂), 1.36 (8H, brs, 4×CH₂), 1.24 (20H, brs, 10×CH₂), 0.94 (3H, t, \(J = 7.2 \) Hz, Me-22), 0.87 (3H, t, \(J = 7.2 \) Hz, Me-22).

\(^{13}C \)-NMR (CDCl₃): \(\delta \) 171.26 (C-1), 138.75 (C-5), 137.81 (C-6), 119.23 (C-13), 114.47 (C-14), 62.41 (C-1'), 33.78 (CH₂), 33.67 (CH₂), 33.53 (CH₂), 31.93 (CH₂), 29.69 (7×CH₂), 29.36 (CH₂), 29.02 (CH₂), 28.95 (CH₂), 28.89 (CH₂), 28.78 (CH₂), 28.72 (CH₂), 28.70 (CH₂), 28.68 (CH₂), 28.62 (CH₂), 28.55 (CH₂), 28.49 (CH₂), 24.55 (CH₂), 22.69 (CH₂), 14.35 (Me-10'), 10.17 (Me-16').

+ive ESI MS m/z relative intensities: 476 [M⁺](C₃₂H₆₀O₂) (7.8), 363 (22.3), 337 (29.8), 335 (6.8), 319 (8.9), 249 (7.2) [Figure 1].

IR-2 (n-Hexadecanyl behenate)
Elution of the column with petroleum ether-chloroform (3:1) afforded colorless amorphous powder of IR-2, re-crystallized from chloroform-methanol (1:1), 62 mg (0.027\% yield), \(R_f \): 0.5 (petroleum ether-chloroform, 3:1), m.p: 78°C.

UV \(\lambda_{max} \) (MeOH): 206 nm (log \(\varepsilon \) 3.1).

IR \(\gamma_{max} \) (KBr): 2997, 2855, 1734, 1457, 1379, 1255, 1173, 725 cm⁻¹.

\(^{1}H\)-NMR (CDCl₃): \(\delta \) 4.24 (1H, m, H-1'a), 4.09 (1H, ddd, \(J = 6.4, 6.0, 10.0 \) Hz, H-1'b), 2.29 (2H, \(t, J = 7.2 \) Hz, H-2), 2.02 (2H, m, CH₂), 1.81 (2H, m, CH₂), 1.59 (6H, brs, 3×CH₂), 1.44 (2H, m, CH₂), 1.27 (8H, brs, 4×CH₂), 1.23 (46H, brs, 23×CH₂), 0.86 (3H, t, \(J = 5.6 \) Hz, Me-22), 0.82 (3H, t, \(J = 6.5 \) Hz, Me-1'C').

\(^{13}C \)-NMR (CDCl₃): \(\delta \) 174.39 (C-1), 63.16 (C-1'), 51.42 (C-2), 41.86 (CH₂), 41.11 (CH₂), 36.83 (CH₂), 35.93 (CH₂), 34.12 (CH₂), 31.91 (CH₂), 29.75 (10×CH₂), 29.67 (7×CH₂), 29.58 (CH₂), 29.43 (CH₂), 29.34(CH₂), 29.24 (CH₂), 29.14 (CH₂), 29.07 (CH₂), 27.10 (CH₂), 24.71 (CH₂), 22.67 (CH₂), 14.10 (Me-22), 11.97 (Me-16').

+ive ESI MS m/z relative intensities: 564 [M⁺](C₃₈H₇₆O₂) (7.8), 323 (46.2), 339 (72.6), 241 (34.2), 225 (87.9) [Figure 2].

![Figure 1: Structure of IR-1 (n-decanyl docosdienoate)](image-url)
IR-3 (15-tricostrienyl eudesmalolide)

Elution of the column with the petroleum ether-chloroform (1:1) yielded colorless crystals of IR-3 recrystallized from acetone and methanol (1:1), 70 mg (0.031% yield), \(R_f \): 0.6 (Chloroform-methanol), mp: 104-105°C.

UV \(\lambda_{max} \) (MeOH): 207, 278, 375nm (log\(e \): 4.5, 1.6, 3.2).

IR \(\gamma_{max} \) (KBr): 2993, 2842, 1765, 1742, 1640, 1411, 1235, 1050, 922, 778cm\(^{-1}\).

\(^1\)H-NMR (CDCl\(_3\)): \(\delta \) 6.20 (1H, d, \(J = 3.5 \) Hz, H-6), 5.21 (1H, brs, H\(_2\)-11a), 5.03 (1H, brs, H\(_2\)-11b), 4.86 (1H, brs, H\(_2\)-13b), 4.80 (1H, brs, H\(_2\)-13b), 3.93 (1H, dd, \(J = 9.5, 9.0 \) Hz, H-8\(\delta \)), 2.49 (1H, d, \(J = 3.5 \) Hz, H-5\(\delta \)), 2.75 (1H, m, H\(_2\)-1a), 1.68 (1H, m, H\(_2\)-1b), 2.19 (2H, m, H\(_2\)-2), 2.02 (1H, dd, \(J = 6, 7.5 \) Hz, H\(_2\)-3\(\delta \)), 1.93 (1H, dd, \(J = 4, 10.1 \) Hz, H\(_2\)-3\(\delta \)), 2.23 (2H, d, \(J = 9.5 \) Hz, H-9), 5.36 (2H, m, \(\omega_{1/2} = 5.5 \) Hz, H-13\(\gamma \)), H-14), 5.34 (2H, m, \(\omega_{1/2} = 5.6 \) Hz, H-18\(\gamma \)), H-19\(\gamma \)), 5.25 (2H, m, \(\omega_{1/2} = 5.5 \) Hz, H-20\(\gamma \)), H-21\(\gamma \)), 4.16 (2H, t, \(J = 7.5 \) Hz, H-1\(\gamma \)), 2.78 (2H, m, H\(_2\)-15\(\gamma \)), 2.47 (2H, m, H\(_2\)-17\(\gamma \)), 2.16 (2H, m, H\(_2\)-12\(\gamma \)), 1.60 (4H, m, 2CH\(_2\)), 1.29 (4H, brs, 2CH\(_2\)), 1.24 (12H, brs, 6 × CH\(_2\)), 0.83 (3H, t, 7.5 Hz, Me-23\(\gamma \)).

\(^13\)C-NMR (CDCl\(_3\)): \(\delta \) 126.2 (C-1), 31.93 (C-2), 41.01 (C-3), 139.77 (C-4), 52.04 (C-5), 120.20 (C-6), 149.23 (C-7), 85.26 (C-8), 36.28 (C-9), 37.63 (C-10), 109.62 (C-11), 151.24 (C-12), 112.63 (C-13), 170.29 (C-14), 168.46 (C-15), 62.10 (C-1\(\gamma \)), 31.53 (C-2\(\gamma \)), 30.94 (C-3\(\gamma \)), 30.91 (C-4\(\gamma \)), 29.70 (C-5\(\gamma \)), 29.60 (C-6\(\gamma \)), 29.49 (C-7\(\gamma \)), 29.27 (C-8\(\gamma \)), 29.16 (C-9\(\gamma \)), 29.16 (C-10\(\gamma \)), 27.20 (C-11\(\gamma \)), 47.67 (C-12\(\gamma \)), 114.21 (C-13\(\gamma \)), 127.12 (C-14\(\gamma \)), 45.33 (C-15\(\gamma \)), 25.63 (C-16\(\gamma \)), 33.77 (C-17\(\gamma \)), 127.91 (C-18\(\gamma \)), 131.96 (C-19\(\gamma \)), 139.11 (C-20\(\gamma \)), 127.91 (C-17\(\gamma \)), 22.57 (C-18\(\gamma \)), 14.07 (C-19\(\gamma \)).

+ive ESI MS m/z relative intensities: 524 [M]\(^+\) (C\(_{22}\)H\(_{42}\)O\(_4\)) (4.8), 281 (9.1), 252 (39.8), 243 (3.6) [Figure 4].

IR-5 (15-Tetracosdienyl eudesmalolide)

Elution of the column with petroleum ether-chloroform (1:3) afforded light brown crystals of IR-5, recrystallized from acetone and methanol (1:1), 85mg (0.037% yield), \(R_f \): 0.6 (Chloroform-methanol, 3:2), mp: 120-125°C.

UV \(\lambda_{max} \) (MeOH): 207, 375nm (log\(e \): 4.1, 2.2).

IR-4 (15-nonadecenyl eudesmalolide)

Elution of the column with petroleum ether-chloroform (1:1) gave pale yellow crystals of IR-4, recrystallized from acetone-methanol (1:1), 85mg (0.037% yield), \(R_f \): 0.65 (Chloroform-methanol, 3:2), mp: 120-125°C.

UV \(\lambda_{max} \) (MeOH): 207, 375nm (log\(e \): 4.1, 2.2).

IR \(\gamma_{max} \) (KBr): 2928, 2841, 1765, 1735, 1638, 1455, 1383, 1258, 1051, 779 cm\(^{-1}\).

\(^1\)H-NMR (CDCl\(_3\)): \(\delta \) 6.21 (1H, d, \(J = 3.6 \) Hz, H-6), 5.26 (1H, brs, H\(_2\)-13a), 5.06 (1H, brs, H\(_2\)-13b), 4.86 (1H, brs, H\(_2\)-11a), 4.76 (1H, brs, H\(_2\)-11b), 3.95 (1H, t, \(J = 9.5 \) Hz, H-8\(\beta \)), 2.79 (1H, m, H\(_2\)-1a), 2.75 (1H, m, H\(_2\)-1b), 2.49 (1H, d, \(J = 3.6 \) Hz, H-5\(\beta \)), 2.26 (2H, d, \(J = 9.5 \) Hz, H-9), 2.23 (1H, m, H\(_2\)-2a), 2.16 (1H, m, H\(_2\)-2b), 2.05 (1H, dd, \(J = 6.5, 14.0 \) Hz, H\(_2\)-3a), 2.01 (1H, dd, \(J = 6.5, 5.5 \) Hz, H\(_2\)-3b), 5.35 (1H, m, \(\omega_{1/2} = 5.5 \) Hz, H-16\(\gamma \)), 5.32 (1H, m, \(\omega_{1/2} = 5.5 \) Hz, H-17\(\gamma \)), 4.14 (2H, t, \(J = 4.8 \) Hz, H-17\(\gamma \)), 2.86 (2H, m, H\(_2\)-15\(\gamma \)), 2.44 (2H, m, H\(_2\)-18\(\gamma \)), 1.86 (2H, m, CH\(_2\)), 1.72 (2H, m, CH\(_2\)), 1.62 (2H, m, CH\(_2\)), 1.59 (2H, m, CH\(_2\)), 1.52 (2H, m, CH\(_2\)), 1.29 (6H, brs, 3 × CH\(_3\)), 1.24 (12H, brs, 6 × CH\(_2\)), 0.83 (3H, t, \(J = 6.5 \) Hz, Me-19\(\gamma \)).

+ive ESI MS m/z relative intensities: 524 [M]\(^+\) (C\(_{34}\)H\(_{68}\)O\(_4\)) (4.8), 281 (9.1), 252 (39.8), 243 (3.6) [Figure 4].

Figure 2: Structure of IR-2 (n-hexadecanyl behenate)

Figure 3: Structure of IR-3 (15-tricosterienyl eudesmalolide)

Figure 4: Structure of IR-4 (15-nonadecenyl eudesmalolide)
UV λ_{max} (MeOH): 208, 375 nm (log ε 4.7, 4.2).

IR γ_{max} (KBr): 2928, 2855, 1764, 1720, 1645, 1455, 1381, 1259, 1123, 898 cm⁻¹.

1H-NMR (CDCl₃): δ 6.20 (1H, d, J = 3.8 Hz, H-6), 5.05 (1H, brs, H-13a), 4.89 (1H, brs, H-13b), 4.69 (1H, brs, H-11b), 3.95 (1H, t, J = 9.5 Hz, H-9α), 2.75 (1H, m, H-1a), 1.68 (1H, m, H-1b), 2.18 (1H, m, H-2a), 2.15 (1H, m, H-1b), 2.02 (1H, dd, J = 5.5, 7.7 Hz, H-3α), 1.95 (1H, dd, J = 5.5, 5 Hz, H-3β), 2.29 (2H, d, J = 9.5 Hz, H-5b), 2.48 (1H, d, J = 3.5 Hz, H-5f), 5.33 (1H, m, w_{1/2} = 6.5 Hz, H-16), 5.17 (1H, m, w_{1/2} = 7.2 Hz, H-17), 4.12 (1H, t, J = 7.6 Hz, H-11), 2.63 (2H, m, H-15a), 2.45 (2H, m, H-18), 1.73 (2H, m, CH₂), 1.68 (2H, m, CH₂), 1.55 (2H, m, CH₂), 1.40 (2H, m, CH₂), 1.78 (5H, brs, 10 CH₂), 1.24 (18H, brs, 19 CH₂), 0.85 (3H, t, J = 7 Hz, Me-24').

13C-NMR (CDCl₃): δ 32.48 (C-1), 31.76 (C-2), 41.86 (C-3), 139.64 (C-4), 52.41 (C-5), 119.89 (C-6), 149.95 (C-7), 83.41 (C-8), 37.62 (C-9), 36.83 (C-10), 109.58 (C-11), 151.68 (C-12), 112.25 (C-13), 173.16 (C-14), 170.24 (C-15), 66.03 (C-1'), 31.62 (C-2', 130.20 (C-16'), 130.04 (C-17'), 125.05 (C-21'), 128.28 (C-22'), 31.34 (CH₃), 47.11 (C-15'), 46.92 (C-18'), 44.78 (C-20'), 29.86 (4 × CH₂), 29.83 (CH₃), 29.76 (CH₃), 29.50 (CH₂), 28.61 (CH₃), 28.53 (CH₃), 27.10 (CH₂), 25.98 (CH₂), 25.52 (CH₂), 24.94 (CH₂), 22.86 (CH₃), 14.05 (Me-24').

+ive ESI MS m/z relative intensities: 594 [M]+(C₃₉H₆₀O₄) (6.8), 351 (5.2), 252 (57.6), 242 (3.2) [Figure 6].

DISCUSSION

Compound IR-1, named n-decanyl docosadienenolide, was obtained as a colorless crystalline mass from petroleum ether eluent. Its IR spectrum showed distinct absorption bands for ester group (1718 cm⁻¹), unsaturation (1640 cm⁻¹) and long aliphatic chain (728 cm⁻¹). On the basis of mass and 13C-NMR spectra, the molecular ion peak of IR-1 was determined at m/z 476 consistent to the molecular formula.
of a fatty acid ester, C_{32}H_{60}O_{2}. The ion peaks arising at m/z 319 [M-C_{10}H_{21}] and 319 [M-OCH_{3}C_{10}H_{21}] indicated that n-docosadienoic acid was esterified with n-decanol. The ion peaks generated at m/z 363 [C_{14}H_{29}C_{13}], 337 [C_{12}H_{21}C_{3}], and 249 [C_{4}C_{3}C_{3}] assigned to the C-10’ and C-16’ primary methyl protons respectively. The 13C-NMR spectrum displayed a molecular ion peak at m/z 564 and methyl carbons at δ 14.10 (C-22) and 11.97 (C-16). The absence of any signal beyond δ 4.24 in the 1H-NMR spectrum and between δ 174.39-63.16 supported saturated nature of the molecule. On the basis of these results, the structure of IR-2 has been characterized as n-Hexadecanyl n-docosanoate.

Compound IR-3, named 15-tricosterienyl eudesmolide, was obtained from petroleum ether-chloroform (1:1) eluent. Its IR spectrum showed characteristic absorption bands for lactone ring (1765 cm^{-1}), ester groups (1742 cm^{-1}), unsaturation (1640 cm^{-1}) and long aliphatic chain (778 cm^{-1}). On the basis of mass and 13C-NMR spectra, the molecular ion peak was determined at m/z 576 corresponding to a sesquiterpenic ester C_{28}H_{48}O_{4}. The ion peaks arising at m/z 333 [C_{23}C_{15}O-C], O (CH_{2})_{12}-CH = CH-(CH_{2})_{5}(CH = CH)_{2}C_{2}H_{5}+ and 243 [M-333]+ indicated that the sesquiterpenic acid was esterified with C_{23} alcohol. The ion fragments forming at m/z 304 [333-C_{10}H_{11}], 252 [333-(CH = CH)C_{10}H_{11}], 184 [C_{12}C_{13}C_{5}C_{5}O], O (CH_{2})_{12}+ and 149 [333-184] indicated the location of the arylaic linkages at C-13’, C-18’ and C-20’. The 1H-NMR spectrum of IR-3 exhibited a one proton doublet at δ 4.86 and 4.80 assigned to vinyl protons and to exocyclic methylene H-11 and H-13, respectively. A one proton double doublet at δ 3.95 (J = 9.5, 9.0 Hz) and a one proton doublet at δ 2.49 (J = 3.5 Hz) were attributed to oxygenated methine H-8β and methine H-5α protons, respectively suggesting olide ring in the molecule. Three two proton multiplets at δ 5.36 (w_{1/2} = 5.5 Hz), 5.34 (w_{1/2} = 5.6 Hz) and 5.25 (J = 5.5 Hz) were cis oriented vinylic protons of the aliphatic chain. A two proton triplet at δ 4.16 (J = 7.5 Hz) was assigned to oxygenated methylene H-1’ protons. A three proton triplet at δ 0.83 (J = 7.5 Hz) was due to terminal C-23’ primary methyl protons. The remaining methylene protons appeared from δ 2.78 to 1.24.

The 13C-NMR spectrum displayed signals for lactone carbon at δ 168.46 (C-14) oxygenated methine carbon at δ 62.10 (C-1’), aryllic carbons from δ 151.24 to 109.62 and methine carbons between δ 52.04-22.58. A two proton triplet at δ 14.09 (C-13) was assigned to oxygenated methylene H-1’ protons. A three proton triplet at δ 0.83 (J = 7.5 Hz) was due to terminal C-23’ primary methyl protons. The remaining methylene protons appeared from δ 2.78 to 1.24.

Compound IR-4, designated as 15-nonadecenyl eudesmalolide, was obtained as a pale yellow crystalline...
mass from petroleum ether-chloroform (1:1) eluant. Its IR spectrum displayed distinct absorption bands for γ-lactone (1765 cm\(^{-1}\)), ester linkage (1735 cm\(^{-1}\)), unsaturation (1638 cm\(^{-1}\)) and long aliphatic chain (779 cm\(^{-1}\)). On the basis of mass and \(^{13}\)C-NMR spectra the molecular ion peak of IR-4 was established at m/z 524 consistent to the molecular formula of a sesquiterpenic ester C\(_{41}\)H\(_{60}\)O\(_4\). The ion peaks arising at m/z 243 [C\(_{15}\)-O fission]\(^{+}\) and 281 [M-243, O (CH\(_{2}\))\(_{15}\)CH = CH\(_{2}\)]\(^{+}\) indicated that n-nonadecenyl alcohol was esterified with a sesquiterpenic acid. Expulsion of ethyl group from the mass unit 281 produced an ion fragment at m/z 281 suggesting the existence of the vinylic linkage at C-16’ position. The \(^{1}\)H-NMR spectrum of IR-4 displayed signals similar to compound IR-3 indicating exocyclic methylene groups at C-4 and C-12, one vinylic linkage at C-6, an olefin ring at C-8 (14) position and carboxylate methylene groups at C-4 and C-12, one vinylic linkage at C-16’ position. The \(^{13}\)C-NMR spectrum of IR-4 showed signals for the sesquiterpenic unit similar to compound IR-3 indicating exocyclic methylene carbons between C-15 and C-12, olefinic carbons at C-6, 12 (13)-trien-8, 14-olide-15-oate. This is a new sesquiterpenic ester.

The \(^{1}\)H-NMR and \(^{13}\)C-NMR spectral data of the sesquiterpenic unit of IR-5 was similar to that of IR-3. A two proton triplet at \(\delta\) 3.65 (J = 5.6 Hz) was assigned to oxygenated methylene H\(_{2}-1’\) protons. Four one-proton multiplets at \(\delta\) 5.48, 5.36, 5.31 and 5.20 with corresponding half widths of 5.6 Hz, 5.8 Hz, 5.5 Hz and 5.6 Hz were ascribed to the cis-oriented vinylic H-21’, H-16’, H-17’ and H-22’, respectively. A three proton triplet at \(\delta\) 0.86 (J = 6.8 Hz) was due to C-2H’ primary methyl protons. The remaining methine and methylene protons resonated from \(\delta\) 2.84 to 1.29. The \(^{13}\)C-NMR spectrum displayed signals oxygenated carbon at 66.03 (C-1’), vinylic carbons at \(\delta\) 130.20 (C-16’), 130.04 (C-17’), 125.05 (C-21’) and 128.28 (C-22’), methyl carbon at \(\delta\) 14.05 (C-24) together with signals for eudesmalolide.

The \(^{1}\)H-NMR and \(^{13}\)C-NMR spectral values of the sesquiterpenic unit were compared with reported data of eudesmane-type sesquiterpenoids.\(^{12-14}\) On the basis of these results the structure of IR-5 has been characterized as 15-[(16’z), (21’z)-n-tetracos-16’, 21’-dienyl]-eudesmal-4 (11) 6, 12 (13)-trien-8, 14-olide-15-oate. This is a new sesquiterpenic ester.

Compound IR-6, named 15-tetracosylenyl eudesmalolide, was obtained as a pale yellow crystalline product from chloroform eluents. Its IR spectrum showed characteristic absorption bands for γ-lactone (1764cm\(^{-1}\)), ester function (1720cm\(^{-1}\)) and Unsaturation (1645cm\(^{-1}\)). On the basis of mass and \(^{13}\)C-NMR spectra, the molecular ion peak of IR-6 was determined at m/z 594 corresponding to the molecular formula of a sesquiterpenic ester C\(_{41}\)H\(_{62}\)O\(_4\). The ion peaks arising at m/z 243 and 351 [C\(_{15}\)-OCH\(_{2}\)]\(^{+}\) fission suggested that a sesquiterpenic acid was esterified with C\(_{24}\) alcohol. The ion frequent arising at m/z 252 [C\(_{17}\)-C\(_{18}\) fission], O (CH\(_{2}\))\(_{15}\)CH = CH\(_{2}\)]\(^{+}\) indicated the location of the vinylic linkage at C-16’. The \(^{1}\)H-NMR signals of the eudesmalolide unit of IR-6 were similar to that of IR-3 suggesting identical sesquiterpenic unit in IR-3 and IR-6. Two one proton multiplets at \(\delta\) 5.33 (w1/2 = 6.5 Hz) and 5.17 (w1/2 = 7.2 Hz) were assigned to cis-oriented vinylic H-16’ and H-17’, respectively. A two proton triplet at \(\delta\) (w1/2 = 6.7 Hz) was assigned to oxygenated methylene H\(_{2}-1’\). A three proton triplet at \(\delta\) 0.85 (J = 7 Hz) was accounted to the terminal C-24 primary methyl protons. The \(^{13}\)C-NMR spectrum of IR-6 showed signals for vinylic carbons at \(\delta\) 130.19 (C-16’) and 113.63 (C-17’), oxygenated methylene carbons between \(\delta\) 14.12 (C-24’) along with the carbon signals of the sesquiterpenic unit similar to that of IR-3. The \(^{1}\)H and \(^{13}\)C-NMR spectral data of IR-6 were compared with the reported data of eudesmalolide compounds.\(^{12-14}\) On the basis of these evidences the structure of IR-6 has been established.
as 15-[(16′Z)-n-tetracos-16′-enyl]-endesmal-4 (11), 6, 12 (13)-trien-8,14-olide-15-oate. This is a new eudesmalolide.

CONCLUSION

On the basis of the above-stated evidences, the structure of IR-1 has been elucidated as (5z, 13z)-n-decanyl-n-docos-5, 13-dienoate. This is a new fatty acid ester. Earlier (5E, 13E)-docosadienoic acid from *Hybanthus enneaspermus* whole plant has been identified.

Also on the basis of these results the structure of IR-2 has been characterized as n-Hexadecanoyl n-docosanoate and the structure of IR-3 has been formulated as 15-[(13z, 18′z, 20′z)-n-tricos-13, 18, 20-trienyl]-eudesmal-4 (11), 6, 12 (13)-trien-8, 14-olide-15-oate. This is a new sesquiterpenic ester.

The structure of IR-4 as according to the above discussed results has been elucidated as 15-[(16z)-n-monadec-16′-enyl]-eudesmal-4 (11), 6, 12 (13)-trien-8, 14-olide-15-oate. This is a new eudesmanolide ester and IR-5 has been characterized as 15-[(16′z), (21′z)-n-tetracos-16′, 21′-dienyl]-eudesmal-4 (11) 6, 12 (13)-trien-8, 14-olide-15-oate. This is a new sesquiterpenic ester.

On the basis of the evidences provided the structure of IR-6 has been established as 15-[(16′z)-n-tetracos-16′-enyl]-eudesmal-4 (11), 6, 12 (13)-trien-8, 14-olide-15-oate. This is a new eudesmalolide.

These compounds have a lot of scope to be studied further and their effects on the living system in relation to the medicinal properties of *I. racemosa* already known.

ACKNOWLEDGMENT

Author, Maria Khan, acknowledges the financial assistance rendered by University Grants Commission (UGC), Government of India as a Research Fellow.

REFERENCES

1. Anonymous; The Wealth of India. Vol. 6. A Dictionary of Indian Raw materials and Industrial products. New Delhi: Publication and Information Directorate; 1992, p. 425-9.
2. Okuda T. Encyclopaedia of natural medicine. Hirokqur, Tokyo, Japan: Hirokawa Publishing company. 1986. p. 16.
3. Moerman DE. Medicinal plants of native America. Vol. 19, no. 2. University of Michigan, Ann Arbor, Museum of Anthropology, Technical Report; 1986, p. 910-3.
4. Tripathi YB, Chattunvedi P. Assessment of endocrine response of *Inula racemosa* in relation to glucose homeostasis in rats. Indian J Exp Biol 1995;33:686-9.
5. Miller AL. Botanical influences on cardiovascular disease. Altern Med Rev 1998;3:422-31.
6. Kalsi S, Goyal R, Talwar KK, Chhabra BR. Stereo structures of two biologically active sesquiterpenic lactones from *Inula racemosa*. Phytochemistry 1989;28:2093-6.
7. Zhao YM, Zhang ML, Shi QW, Kyota H. Chemical constituents of the plants in genus *Inula*. Chem Biodivers 2008;3:371-4.
8. Qin JJ, Jin HZ, Fu JJ, Hu JJ, Wang Y, Yan SK, et al. Bioactive dimeric sesquiterpenes from *Inula japonica* thunb. Bioorg Med Chem Lett 2009;19:710-3.
9. Anand T, Gokulakrishnan K. Phytochemical analysis of *Hybanthus enneaspermus* using UV, FTIR and GC-MS. Int org Sci Res J Pharm Res. 2012;2:520-5.
10. Erhan SM, Kleiman R, Isbell TA. Estolides from Meadow foam oil fatty acid and other monounsaturated fatty acids. J Am Oil Chem Soc 1993;70:461-6.
11. Aitzetmuller K. An unsaturated fatty acid pattern in *Eranthis* seed oil. Lipids 1996;31:201-5.
12. Ali M. Techniques in Terpenoid Identification. Delhi: Birla Publications; 2001. p. 155-67.
13. Oliveira FC, Ferreira MJ, Nunez CV, Rodriguez GV, Emerenciano VP. 13C NMR spectroscopy of eudesmane sesquiterpenes. Prog Nucl Magn Reson Spectrosc 2000;37:1-45.
14. Zhao Yu, Yue JM, He YN, Lin ZW, Sun HD. Eleven new eudesmane derivatives from Laggera pterodonta. J Nat Prod 1997;60:545-9.

Source of Support: Nil, Conflict of Interest: None declared.