Signature of Fermi arc surface states in Andreev reflection at the WTe$_2$ Weyl semimetal surface

A. Kononov1, O. O. Shvetsov1,2, S. V. Egorov1, A. V. Timonina1, N. N. Kolesnikov1 and E. V. Deviatov1

1 Institute of Solid State Physics of the Russian Academy of Sciences - Chernogolovka, Moscow District, 2 Academician Ossipyan str., 142432 Russia
2 Moscow Institute of Physics and Technology - Institutsky per. 9, Dolgoprudny, 141700 Russia

received 10 April 2018; accepted in final form 28 May 2018
published online 19 June 2018

PACS 74.45.+c - Proximity effects; Andreev reflection; SN and SNS junctions
PACS 73.23.-b - Electronic transport in mesoscopic systems
PACS 73.40.-c - Electronic transport in interface structures

Abstract – We experimentally investigate charge transport through the interface between a niobium superconductor and a three-dimensional WTe$_2$ Weyl semimetal. In addition to classical Andreev reflection, we observe sharp non-periodic subgap resistance resonances. From an analysis of their positions, magnetic field and temperature dependences, we can interpret them as an analog of Tomasch oscillations for transport along the topological surface state across the region of proximity-induced superconductivity at the Nb-WTe$_2$ interface. The observation of distinct geometrical resonances implies a specific transmission direction for carriers, which is a hallmark of the Fermi arc surface states.

Introduction. – The recent interest in Weyl semimetals is mostly connected with topological surface properties [1]. Weyl semimetals are conductors which, like other topological materials [2–5], are characterized by topologically protected conducting surface states. The concept of Weyl semimetals has been extended to type-II materials [1], like MoTe$_2$ and WTe$_2$, where constant energy surfaces are open electron and hole pockets with a Weyl point at their touching. Weyl points are topologically protected and their projections on the surface Brillouin zone are connected by Fermi arc surface states. For these materials, surface states were demonstrated in several experiments [6–8], although their topological nature is still debatable [9,10]. In contrast to the three-dimensional topological insulators [2] described by Z_2 invariant, the Weyl surface states inherit the chiral property of the Chern insulator edge states [1].

Topological materials exhibit non-trivial physics in proximity to a superconductor [11–13]. For a single normal-superconductor (NS) contact, Andreev reflection [14] allows low-energy electron transport from normal metal to superconductor by creating a Cooper pair, so a hole is reflected back to the normal side of the junction [15,16]. The process can be more complicated [17] if Andreev transport goes through an intermediate conductive region, e.g., the topological surface state at the NS interface [18–20]. Also, geometrical resonances are predicted [21,22] within the topological surface state in proximity to a superconductor, analogously to the classical Tomasch [24–27] effect.

Here, we experimentally investigate charge transport through the interface between a niobium superconductor and a three-dimensional WTe$_2$ Weyl semimetal. In addition to classical Andreev reflection, we observe sharp non-periodic subgap resistance resonances. From an analysis of their positions, magnetic field and temperature dependences, we can interpret them as an analog of Tomasch oscillations for transport along the topological surface state across the region of proximity-induced superconductivity at the Nb-WTe$_2$ interface. The observation of distinct geometrical resonances implies a specific transmission direction for carriers, which is a hallmark of the Fermi arc surface states.

Samples and technique. – The WTe$_2$ compound was synthesized from elements by reaction of metal with tellurium vapor in the sealed silica ampule. The WTe$_2$ crystals were grown by the two-stage iodine transport [28], that previously was successfully applied [28,29] for growth of other metal chalcogenides like NbS$_2$ and CrNb$_3$S$_6$.

27004-p1
The WTe$_2$ composition is verified by energy-dispersive X-ray spectroscopy. The X-ray diffraction (Oxford diffraction Gemini-A, MoKα) confirms the Pmn_2_1 orthorhombic single crystal WTe$_2$ with lattice parameters $a = 3.48750(10)$ Å, $b = 6.2672(2)$ Å, and $c = 14.0629(6)$ Å.

A sample sketch is presented in fig. 1. We use dc magnetron sputtering to deposit a 70 nm thick niobium film on the insulating SiO$_2$ substrate. Superconducting leads are formed by the lift-off technique. A WTe$_2$ single crystal ($\approx 0.5 \text{ mm} \times 100 \mu\text{m} \times 0.5 \mu\text{m}$ dimensions) is weakly pressed to the niobium leads pattern, so the planar Nb-WTe$_2$ junctions (with $\approx 10 \times 10 \mu\text{m}^2$ area) are formed at the bottom surface of the WTe$_2$ crystal.

We study electron transport across a single Nb-WTe$_2$ junction in a standard three-point technique, see fig. 1(c): the studied contact is grounded and two other contacts are used for applying current (below 100 μA) and measuring the WTe$_2$ potential. To obtain $dV/dI(V)$ characteristics, the dc current is additionally modulated by a low ac (0.5 μA, 1.2 kHz) component. We measure both, dc (V) and ac ($\sim dV/dI$) components of the WTe$_2$ potential by using a dc voltmeter and a lock-in, respectively. We check that the lock-in signal is independent of the modulation frequency in the 500–2500 Hz range, which is defined by applied ac filters.

To extract features specific to WTe$_2$ Weyl semimetal surface states, the measurements are performed in a dilution refrigerator covering 30 mK–1.2 K temperature range.

We check by standard magnetoresistance measurements that our WTe$_2$ samples demonstrate large, non-saturating positive magnetoresistance $\rho(B) - \rho(B = 0)/\rho(B = 0)$ for our WTe$_2$ samples at 1.2 K in the normal magnetic field (the blue curve), which goes to zero in the parallel one (the red curve), as has been shown for WTe$_2$ Weyl semimetal [30]. The current is parallel to the a-axis of WTe$_2$.

Fig. 1: (Color online) Sketch of the sample with niobium contacts to the bottom surface of a WTe$_2$ crystal. 70 nm thick niobium superconducting leads are formed on the insulating SiO$_2$ substrate. A WTe$_2$ single crystal is weakly pressed to the niobium leads pattern, forming planar Nb-WTe$_2$ junctions with $\approx 10 \times 10 \mu\text{m}^2$ area. Charge transport is investigated in a standard three-point technique: the studied contact (S1) is grounded and two other contacts (S2 and S3) are used for applying current (below 100 μA) and measuring the WTe$_2$ potential. The inset demonstrates large positive magnetoresistance $\rho(B) - \rho(B = 0)/\rho(B = 0)$ for our WTe$_2$ samples at 1.2 K in the normal magnetic field (the blue curve), which goes to zero in the parallel one (the red curve), as has been shown for WTe$_2$ Weyl semimetal [30]. The current is parallel to the a-axis of WTe$_2$.

Experimental results. – Examples of $dV/dI(V)$ characteristics are shown in fig. 2 for two different junctions with different R_N. The obtained $dV/dI(V)$ curves are verified to be independent of the mutual positions of the current/voltage contacts, so they only reflect the transport parameters of the grounded Nb-WTe$_2$ junction.

The main $dV/dI(V)$ behavior is consistent with the standard one [15,16] of a single Andreev junction: every curve demonstrates a clearly defined superconducting gap $\Delta_{N} \approx \pm 1.33 \text{ mV}$ (denoted by dashed lines), which is in a good correspondence with the expected $T_c \approx 9$ K for niobium. Then the subgap resistance exceeds the normal resistance value, so single-particle scattering is significant at the Nb-WTe$_2$ interface, but it is undoubtedly finite, which is only possible due to Andreev reflection [16,19,20]. A transmission of the interface T can be estimated as $\approx 0.73–0.76$ for these junctions, which corresponds to the BTK barrier strength [16] $Z \approx 0.6$. The interface...
scattering is expected, since the sputtered niobium is natively oxidized prior to placing a WTe$_2$ single crystal onto the Nb leads pattern.

Specifics of the WTe$_2$ Weyl semimetal appear as sharp subgap resistance resonances, see figs. 2 and 3, which cannot be expected \[15\] for a single Andreev NS contact. The resonances are suppressed completely above 0.6 K. Since the general behavior of $dV/dI(V)$ curves is not sensitive to temperature much below $T_c = 9$ K, see fig. 2, the resonances can be analyzed in detail by subtracting the high-temperature (0.6 K) monotonous dV/dI curve from the low-temperature (30 mK) one. The result ($\delta(dV/dI(V))$) is shown in fig. 3(b) for the junctions from fig. 2, the positions of the resonances are denoted by dashed lines. They are concentrated strictly within the superconducting gap and dV/dI is a maximum at zero bias for both Nb-WTe$_2$ junctions.

Another possibility is multiple Andreev reflections (MAR) \[15\], but the experimental $dV/dI(V)$ curves for a single Nb-WTe$_2$ SN junction. In general, resonance conditions require particle propagation between two different (SN or NN) interfaces. For a thin WTe$_2$ crystal, it is naturally to think about vertical transport, normal to the Nb-WTe$_2$ interface. In this case, both Tomasch \[24,25\] and MacMillan-Rowell \[31,32\] geometrical resonances could be anticipated, which originate \[24,26,27,31,32\] due to the space restriction in the S or N regions, respectively. However, these geometrical resonances should be observed at energies above the niobium superconducting gap, which contradicts the experimental observations in fig. 2. Also, MacMillan-Rowell oscillations \[23,31,32\] for bulk carriers in the WTe$_2$ crystal are strictly periodic, which is is obviously not the case in fig. 3.

Discussion. – As a result, we observe pronounced subgap $|V| < \Delta_{Nb}$ resonances for well-developed Andreev $dV/dI(V)$ curves for a single Nb-WTe$_2$ SN junction. In general, resonance conditions require particle propagation between two different (SN or NN) interfaces.

Fig. 4: (Color online) (a) Examples of $dV/dI(V)$ characteristics for different magnetic fields at low (30 mK) temperature. The resonances disappear completely above 0.85 T, while the zero-bias dV/dI peak surviving. At higher fields, the $dV/dI(V)$ curve still demonstrates a non-trivial shape, with non-zero first derivative at zero bias. (b) Colormap showing the evolution of $\delta(dV/dI(V))$ with magnetic field. The oscillations’ positions are constant up to their disappearance above 0.85 T. Additional features appear in higher fields.

In contrast to temperature suppression, the zero-bias dV/dI peak survives above 0.85 T, while the resonances disappear completely. Moreover, the $dV/dI(V)$ curve still demonstrates a non-trivial shape even for higher fields, with the non-zero first derivative at zero bias, which also differs from temperature $dV/dI(V)$ suppression. This evolution is shown in fig. 4(b) as $\delta(dV/dI(V))$ colormap. The oscillations’ positions are constant up to their disappearance at 0.85 T, while superconductivity is completely suppressed around 4 T magnetic field in our samples.
Thus, the observed resonances require a relation to surface states at the Nb-WTe$_2$ interface. WTe$_2$ is regarded as a type-II Weyl semimetal [7,30,33] hosting topological Fermi arcs on the (001) surfaces [34], which was demonstrated in several experiments [7,8]. In this case, an analog of Tomasch oscillations is allowed for transport along the topological surface state across the region of proximity-induced superconductivity near the niobium superconducting lead [21,22].

The resonances appear as Fabry-Perot–type transmission resonances for Bogoliubov quasiparticles in a long $l \gg \xi$ single NS junction, ξ is a coherence length. They are situated [21,22] at energies $eV_n = \sqrt{\Delta_{ind}^2 + (\hbar v_F m/2l)^2}$, where $n = 0, 1, 2, \ldots$, v_F is the Fermi velocity. According to this relation, the induced gap Δ_{ind} is reflected by the zero-bias structure [17,18,20] in fig. 3. By fitting the resonance positions, we obtain $\Delta_{ind} \approx 0.1$ meV, the effective junction dimension as $l \approx 2 \mu$m for $v_F \approx 1.5 \cdot 10^6 \text{m/s}$ (from ARPES data [9]).

This value is comparable with the dimensions of the planar Nb-WTe$_2$ junction (below 10 μm), taking in mind that placing WTe$_2$ on top of Nb does not guarantee good contact at all the surface. $l \sim 2 \mu$m is also about the mean free path along the a-axis in WTe$_2$. It much exceeds the coherence length [35,36] $l \gg \xi = (\kappa \times \hbar v_F^2/\pi \Delta_{m})^{1/2} \approx 200$ nm, which is obligatory to observe Tomasch oscillations for transport along the topological surface state [21,22].

The crucial point is that transmission resonances imply a well-defined junction length l. The obtained $dV/dI(V)$ curves are independent of the mutual positions of the current/voltage contacts, so they only reflect the transport near the Nb-WTe$_2$ interface. For the planar NS junction without axial symmetry (it is nearly rectangular in our case), l is different in different directions, which should smear the resonances for trivial surface states, e.g., originating from band bending near the WTe$_2$ surface. On the other hand, Weyl surface states inherit the chiral property of the Chern insulator edge states [1], where the preferable directions are defined by Fermi arcs on a particular crystal surface. In WTe$_2$, the Weyl points are aligned along the b-axis [10] of the crystal, forming preferable directions for surface carriers along the a-axis, see fig. 5. Thus, the observation of sharp subgap resonances is specific for topological transport within the Fermi arc surface states at the Nb-WTe$_2$ interface. Since the resonances are defined by the interference effects, they are obviously suppressed in the magnetic field above 0.85 T, see fig. 4. However, the $dV/dI(V)$ curve evolution in higher fields is unusual for Andreev reflection and requires further investigations.

Conclusion. As a conclusion, we experimentally investigate charge transport through the interface between a niobium superconductor and a three-dimensional WTe$_2$ Weyl semimetal. In addition to classical Andreev reflection, we observe sharp non-periodic subgap resistance resonances. From an analysis of their positions, magnetic field and temperature dependences, we can interpret them as an analog of Tomasch oscillations for transport along the topological surface state across the region of proximity-induced superconductivity at the Nb-WTe$_2$ interface. The observation of distinct geometrical resonances implies a specific transmission direction for carriers, which is a hallmark of the Fermi arc surface states.

We wish to thank V. T. DOLGOPOLOV, V. A. VOLKOV, I. GORNyi, and A. S. MELNIKOV for fruitful discussions, and S. S. KHASANOVA for X-ray sample characterization. We gratefully acknowledge financial support by the RFBR project 16-02-00405 and RAS.

REFERENCES

[1] Armitage N. P., Mele E. J. and Ashvin Vishwanath, Rev. Mod. Phys., 90 (2018) 15001
[2] Hasan M. Z. and Kane C. L., Rev. Mod. Phys., 82 (2010) 3045.
[3] Qi X.-L. and Zhang S.-C., Rev. Mod. Phys., 83 (2011) 1057.
[4] Bansil A., Lin H. and Das T., Rev. Mod. Phys., 88 (2016) 021004.
[5] Chu C.-K., Teo J. C., Schynder A. P. and Ryu S., Rev. Mod. Phys., 88 (2016) 035005.
[6] Deng K., Wan G., Deng P., Zhang K., Ding S., Wang E., Yan M., Huang H., Zhang H., Xu Z., Denlinger J., Fedorov A., Yang H., Duan W., Yao H., Wu Y., Fan S., Zhang H., Chen X. and Zhou S., Nat. Phys., 12 (2016) 11051110.
[7] Wang Ch., Zhang Y., Huang J., Nie S., Liu G., Liang A., Zhang Y., Shen B., Liu J., Hu C., Deng Y., Liu D., Hu Y., He S., Zhao L., Yu L., Hu J., Wei J., Mao Z., Shi Y., Jia X., Zhang F., Zhang S., Yang F., Wang Z., Peng Q., Weng H., Dai X., Fang Z., Xu Z., Chen C. and Zhou X. J., Phys. Rev. B, 94 (2016) 241119.
[8] Wu Y., Mou D., Jo N. H., Sun K., Huang L., Budko S. L., Canfield P. C. and Kaminski A., Phys. Rev. B, 94 (2016) 121113.

[9] Bruno F. Y., Tamai A., Wu Q. S., Cucchi I., Barreteau C., de la Torre A., McKown Walker S., Riccò S., Wang Z., Kim T. K., Hoesch M., Shi M., Plum B. C., Giannini E., Soluyanov A. A. and Baumberger F., Phys. Rev. B, 94 (2016) 121112.

[10] Li P., Wen Y., He X., Xia C., Yu Z., Yang S., Zhu Z., Alshareef H. and Zhang X., Nat. Commun., 8 (2017) 2150.

[11] Hart Sean, Ren Hechen, Wagner Timo, Leubner Philipp, Mihlbauer Mathias, Brne Christoph, Buhmann Hartmut, Molenkamp Laurens W. and Yacoby Amir, Nat. Phys., 10 (2014) 638643.

[12] Pribiag Vlad S., Beukman Arjan J. A., Qu Fanming, Cassidy Maja C., Charpentier Christophe, Wegscheider Werner and Kouwenhoven Leo P., Nat. Nanotechnol., 10 (2015) 593.

[13] Khanna Udit, Mukherjee Dibya Kanti, Kundu Arjit and Rao Sumathi, Phys. Rev. B, 93 (2016) 121409.

[14] Andreev A. F., Sov. Phys. JETP, 19 (1964) 1228.

[15] Tinkham M., Introduction to Superconductivity, 2d edition (McGraw-Hill, New York) 1996.

[16] Rowell J. M. and McMillan W. L., Phys. Rev. Lett., 16 (1966) 453.

[17] Kulik I. O., Sov. Phys. JETP, 30 (1970) 944.

[18] Dubos P., Courtis H., Pannetier B., Wilhelm F. K., Zaikin A. D. and Schönh G., Phys. Rev. B, 63 (2001) 064502.