A comparative feasibility study of organic and conventional vegetable farming in Central Java, Indonesia

I A Fachrista1, Irham2, Masyhuri3 and A Suryantini3

1Bangka Belitung Assessment Institute for Agricultural Technology, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jakarta, Indonesia.
2Department of Magister Agribusiness Management, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
3Department of Socio-Economics of Agriculture, Faculty of Agriculture, Universitas Gadjah Mada, 55281, Yogyakarta

E-mail: innafachrista@pertanian.go.id; fachrista@yahoo.com

Abstract. The objective of this study is to compare the feasibility of organic and conventional vegetable farming. The research was conducted from February to August 2018 in Getasan Regency, Central Java, Indonesia. The survey involved 120 vegetable farmers; 60 organic farmers, and 60 conventional farmers. The data were analyzed by financial analysis. The t-test was used to determine the difference between the feasibility of organic and conventional vegetable farming. The results showed that organic vegetable farmers receive higher revenues, incomes, and benefit than conventional farmers. Organic vegetable farming also more feasible than conventional vegetable farming.

1. Introduction
Based on the Indonesian National Standard (SNI) 6729: 2016, organic is a labeling term which stating that a product has been produced in accordance with organic agriculture standards. Organic agriculture is the production of agricultural products using minimal external inputs and does not use synthetic fertilizers and pesticides [1]. Organic farming emphasizes the use of management practices which use input from within, with the consideration that local conditions require locally adapted systems [2,3]. The objective of organic agriculture is to optimize the productivity of organisms in soil, plants, animals, and humans, which depend on one another [1].

The development of organic agriculture in Indonesia is due to changes in the lifestyle of the people who are starting to pay attention to the importance of health. People have started to change their consumption of food with organic products [4]. Business and organic farming also experience growth every year. The number of producers of organic products, one of which is vegetables, is increasing and increasingly diverse. Based on data from Aliansi Organis Indonesia (the Indonesian Organic Alliance), the land area for organic vegetables in Indonesia in 2018 reached 122.01 ha [5].

Organic farming is considered to increase farmers’ income. Several studies stated that organic farming is profitable [6,7] and feasible to cultivate [7–9]. Organic farming has a higher feasibility rate than farming which does not apply organic principles [4,10]. Farming feasibility studies that compare organic vegetable farming and those that do not apply the principles of organic farming (conventional
farming) are still limited. Research related to the feasibility of organic farming is important as reference material for the development of organic agriculture. The objective of this study is to compare the financial feasibility of organic vegetable farming and conventional vegetable farming.

2. Methods

2.1. Study area
The research location was chosen purposively, which was in Getasan District, Semarang Regency, Central Java, Indonesia. Two villages were selected, which were Kopeng village and Batur village (figure. 1), with the consideration that these two locations were locations for organic farming development.

![Study area map](image)

Figure 1. Study area.

2.2. Survey
The survey was conducted from February to August 2018. The survey involved 120 vegetable farmers as respondents consisting of 60 organic vegetable farmers and 60 conventional vegetable farmers. Respondents were selected randomly. The survey was conducted with a questionnaire guide. The questionnaire was filled out regarding 1) farmer and farm characteristics, 2) farming revenues, and 3) farming costs. This study calculates revenues and costs for all types of vegetables cultivated by farmers during the past year.

2.3. Data Analysis
Data were analyzed using financial analysis and t-test. Farming feasibility analyzes used by several researchers included revenue cost ratio (RCR) and benefit-cost ratio (BCR) [7,11–15]. Farming can be feasible if 1) farming revenues > break-even point (BEP) of farm revenue; 2) value of revenue/total cost (R/C ratio) > 1; and 3) value of benefit/total cost (π/C ratio) > prevailing interest rates [16,17]. Based on this, the feasibility level used in this study is formulated as follows:

1. Break-even point of farm revenue (BEP$_R$)

$$\text{BEP}_R = \frac{\text{FC}}{1 - \frac{\text{VC}}{\text{R}}}$$ (1)
2. R/C ratio

\[\frac{R}{C} \text{ ratio} = \frac{R}{C} = \frac{P \times Q}{VC + FC} \] \hspace{1cm} (2)

3. \(\pi/C\) ratio

\[\frac{\pi}{C} \text{ ratio} = \frac{\pi}{C} = \frac{\pi}{VC + FC} = \frac{I-UD}{VC + FC} = \frac{R-TC-UD}{VC + FC} \] \hspace{1cm} (3)

Where:

- BEPR = break even point of farm revenue
- R = total revenue (IDR)
- P = price of vegetable (IDR)
- Q = quantity of vegetable (kg)
- C = total cost (IDR)
- VC = total variable cost (IDR)
- FC = total fixed cost (IDR)
- \(\pi\) = benefit (IDR)
- I = income (IDR)
- UD = family labor cost (IDR)

The t-test was used to determine the feasibility of organic and conventional vegetable farming. The t-test was used with the SPSS program. The hypothesis used is as follows:

Ho; means that the average feasibility level of organic vegetable farming is smaller or equal to the average feasibility level of conventional vegetables.

Ha; means that the average feasibility level of organic vegetable farming is higher than the average feasibility level of conventional vegetable farming.

Hypothesis testing criterion is we would reject Ho if t-statistic > t-table.

3. Results and discussion

3.1. Characteristics of organic and conventional vegetable farmers

Table 1 shows the characteristics of organic and conventional vegetable farmers including age and education. The majority of organic and conventional vegetable farmers are in productive age, meaning that organic vegetable farmers have the physical ability to cultivate vegetables for a living. The education side shows that organic vegetable farmers have a higher education than conventional vegetable farmers. The knowledge possessed by farmers is influenced by the level of education taken [18]. Farmers will be able to absorb and apply various new technologies in farming which can increase farmers’ income.

Characteristics	Organic	Conventional	Difference	t-test
Age (years)	44.82	45.87	-1.05	-0.59
Education (years)	7.90	6.42	1.48 *	1.78
Farming experience (years)	21.75	24.65	-2.90 *	2.10
Area (ha)	2085.00	2188.92	103.92	-0.54

* Significant at level 1%, t-table (\(\alpha = 10\%), df = 108) = 1.29
Conventional vegetable farmers have much longer experience farming vegetables than organic vegetable farmers. Farmers who are more experienced in cultivating vegetables will have better abilities in cultivating vegetables such as knowing pests and diseases that attack vegetable crops and how to control these pests and diseases. Meanwhile, less experienced farmers will easily receive information related to vegetable technology [19]. Table 1 also shows the characteristics of organic and conventional vegetable farming. The average land ownership is 0.20 - 0.22 ha, meaning that vegetable farming is performed by small scale farmers.

3.2. Revenues and costs of organic and conventional vegetable farming

Organic and conventional vegetable farmers produce vegetables sustainably in one year. The commodity of vegetables planted varies and differs between farmers. The revenue structure and costs of organic and conventional vegetable farming are presented in table 2. The revenue of organic vegetable farmers is higher than and significant compared to conventional vegetable farmers. The difference between organic and conventional vegetable farmers' revenue is IDR13 million per 2500 m² per year. Organic vegetable farmers receive a higher revenue than conventional vegetable farmers due to higher product prices and some products which have a high selling value, such as cherry tomatoes and asparagus. This result is in line with some research which states that organic vegetable farmers receive a higher revenue than farmers who do not apply organic because the amount of production and prices received are higher than conventional vegetable farmers [7,20].

Table 2. Revenue and cost of organic and conventional vegetable farming (in IDR.000 per 2500 m²/year).

	Organic	Conventional	Difference a	t-count
Revenue	36768.58	23703.18	13065.40	5.097
Total cost	10837.03	7362.41	3474.62	2.690
Variable cost:				
Seed	1780.37	1500.53	279.84	1.620
Organic fertilizers	3923.46	1157.93	2765.52	3.029
Chemical fertilizers	0.00	1377.07	-1377.07	-9.316
Organic pesticides	401.55	0.00	401.55	12.645
Chemical pesticides	0.00	831.27	-831.27	-5.993
Hired labor	1884.93	1232.36	652.57	1.628
Fixed cost	2846.72	1263.25	1583.48	7.854
Income	25931.54	16340.77	9590.78	4.276
Benefit:				
Family labor	4707.63	4601.25	106.38	-0.134
Benefit	21223.92	11739.52	9484.40	4.270

*a t-test for differences in the mean of two group
*** Significant at level 1%, t-table (α = 1%, df = 108) = 2.36
** Significant at level 5%, t-table (α = 5%, df = 108) = 1.66
* Significant at level 10%, t-table (α = 10%, df = 108) = 1.29

The cash variable costs incurred by vegetable farmers consist of seeds, fertilizers, pesticides and labor costs outside the family (table 2). Table 2 shows that the highest cash variable cost incurred by organic vegetable farmers is the cost of fertilizer. Organic vegetable farmers spend quite a lot on the
purchase of organic fertilizers. Organic vegetable farmers claim that they provide organic fertilizers to increase soil fertility and organic fertilizers which can also maintain soil moisture. The smallest proportion of variable costs is pesticides, because farmers mix their biological pesticides, for instance from empon-empon, to control pests and diseases that attack vegetable crops. Furthermore, if the attack by pests and diseases is still below the threshold of attack, it is enough for farmers to control mechanically.

The two biggest cash variable costs incurred by conventional vegetable farmers, respectively, are seeds and chemical fertilizers. Conventional vegetable farmers spend money to buy seeds which are relatively more expensive because they have higher productivity. Conventional vegetable farmers also use more chemical fertilizers, such as NPK, Urea, KCL, compared to the use of organic fertilizers. Based on interviews with farmers, if the vegetables are not given sufficient chemical fertilizers, the production results are not optimal.

The fixed cash costs incurred by conventional and organic vegetable farmers include depreciation of shade, irrigation and equipment used for growing vegetables. The results of the analysis in Table 2 show that the fixed cash costs incurred by organic farmers are significantly higher than conventional vegetable farmers. Organic vegetable farmers are bound by cooperation contracts, so they must maintain the production of the vegetables they produce. Based on the results of interviews with organic farmers, they built shelters or screen houses to protect vegetable crops due to frequent extreme rains and made irrigation in the form of irrigation systems for watering and water reservoirs as provisions. Farmers consider this screen house and irrigation to reduce the risk of crop failure due to frequent extreme weather.

Table 2 also shows the differences in income and benefits from conventional and organic vegetable farming. Organic farmers have a higher expenditure, but the revenue they get is greater than conventional vegetable farmers, so they have a higher benefit than conventional vegetable farmers. The results of this study are in line with some research which states that organic farmers have higher benefit than conventional vegetable farmers [10,20,21,22]. He further stated that the difference in farming benefits is influenced by land area, seed price, product selling price, and labor wages [22].

3.3. Feasibility of organic and conventional vegetable farming

The feasibility of farming used in this study was assessed based on BEP of farm revenue, R/C ratio and π/C ratio. The results of the feasibility analysis of organic and conventional farming are presented in Table 3 showing that 1) farm revenue is greater than the BEP of farm revenue, 2) R/C ratio> 1, and 3) The value of π/C ratio)> 11.2% (interest rate applies), which means that organic and conventional vegetable farming is feasible to be cultivated. The results of this study are in line with some research which states that organic and conventional vegetable farming is feasible [7,9,10,21,23].

Feasibility	Organic	Conventional	Difference	t-test			
BEPr b	2846725	1237165	1263725	855850	158347	***	7.854
R/C ratio	3.62	1.68	3.54	0.84	0.08	0.04	0.404
π/C ratio	237	156	217	91	20	1.119	

a t-test for differences in the mean of two groups
b in IDR. 000 per 2500 m²/year
*** Significant at level 1%, t-table (α = 1%, df = 108) = 2.36

Table 3 also shows a comparison of the feasibility analysis between organic and conventional farming. This study state that organic farming is more feasible than conventional farming, although it is not statistically significant.
4. Conclusion
Organic vegetable farmers receive higher revenues, incomes, and benefit than conventional farmers. Organic vegetable farming also more feasible than conventional vegetable farming.

Acknowledgments
I am all gratitude to the Indonesian Agency for Agricultural Research and Development Ministry of Agriculture and all parties who have provided information to complete this article.

References
[1] National Standardization Agency of Indonesia 2016 SNI 6729:2016 Sistem Pertanian Organik Berkelanjutan. Jakarta 15-54
[2] IFOAM 2012 Organic agriculture: A strategy for climate change adaptation (Germany: International Federation of Organic Agriculture Movements)
[3] IFOAM 2009 Organic agriculture a guide to climate change and food security (Germany: DOSSIER International Federation of Organic Agriculture Movements)
[4] Mayrowani H 2012 Pengembangan pertanian organik di Indonesia (The development of organic agriculture in Indonesia) Forum Penelit. Agro Ekon. 30 91–108
[5] Aliansi Organis Indonesia 2018 Statistik Pertanian Organik Indonesia 2019 vol 51, ed A R Firman and W David (Bogor: Aliansi Organis Indonesia)
[6] Rahmawati D A 2012 Upaya peningkatan pendapatan petani melalui penggunaan pupuk organik (The effort of increasing farmers income through the use of organic fertilizer) (Universitas Brawijaya)
[7] Setiawati N K P, Suamba I ketut and Wulandira 2015 Analisis Pendapatan Usahatani Padi Bersertifikat Organik (analysis of certified organic rice farming income) E-Journal Agribisnis dan Agrowisata (Journal Agribus. Agritourism) 4 355–64
[8] Ghaisani A S 2017 Analisis kinerja dan strategi pengembangan usahatani sayuran organik di kota Bandar Lampung (Bandar Lampung: Fakultas Pertanian)
[9] Mantende F S, Mapatoba M and Muis A 2017 Financial Feasibility Analysis of Organic Vegetable Farming at CV. Rahayu in Village of Sidera Sub-District of Sigi Biromaru Regency of Sigi Agric. Sci. J. 4 8–15
[10] Widyanti S and Yuliati N 2007 Kajian ekonomi usahatani padi organik di Desa Sumberngepoh Kecamatan Lawang Kabupaten Malang J. Sos. Ekon. Pertan. 1 1–7
[11] Budiman K, Ila Prihantini C, Hasbiadi and Masitah 2020 Financial Analysis of Annual Plant-Cocoa Intercropping Farming at Kolaka Regency IOP Conf. Ser. Earth Environ. Sci. 518 012024
[12] Edis\'on E 2020 Financial feasibility study of smallholder oil palm in Muaro Jambi District, Jambi IOP Conf. Ser. Earth Environ. Sci. 583 012012
[13] Fauziyah E, Suhendra E and Manurung G S 2020 Farmer’s socio-economic characteristics and financial feasibility analysis of three pepper (Piper nigrum L.) farming patterns in Southeast Sulawesi IOP Conf. Ser. Earth Environ. Sci. 533 012021
[14] Ningsih K, Saktiyah H, Felani H, Dwijasri R and Asmara R 2020 Economic Valuation for Organic Farming of Dragon Fruit: Cost-Benefit Analysis Approach IOP Conf. Ser. Earth Environ. Sci. 469 012082
[15] Putri E R M, Riska Astari I G A and Wahyuningsih N 2020 Rainfall forecasting with climate change detection and its pattern relationship to rice production J. Phys. Conf. Ser. 1490 012023
[16] Suratihia K 2020 Ilmu Usahatani ed S R Annisa (Jakarta)
[17] Darwis K 2017 Ilmu Usahatani: Teori dan Penerapan ed M A Ruslin (Jakarta)
[18] Fachrista I A, Irham, Masyhuri and Suryantini A 2019 Livelihood resilience of vegetable farmers: Efficacy of organic farming in dealing with climate change in Java, Indonesia Appl. Ecol. Environ. Res. 17 11209–32
[19] Fachrista I A, Irham, Masyhuri and Suryanti A 2019 Perception of climate change and barriers to adaptation among organic vegetable farmers in Central Java, Indonesia EurAsian J. Biosci. 13 1727–35

[20] Paat M 2012 Income analysis of anorganic pakcoy farming in Tomohon Cocos

[21] Vebriyanti Made; Effendy, Effendy D A 2018 Analisis komparatif produksi dan pendapatan usahatani bawang merah organik dan non organik di Desa Oloboju Kecamatan Sigi Biromaru Kabupaten Sigi (Analysis of comparative production and income farm on organic and non-organic In Oloboju Village Sigi Biroma Agrol. J. Ilmu-ilmu Pertan. 259–64

[22] Susianti, Rustam and Rauf A 2013 Analysis of factors affecting income farming of sweet corn (Case Study : To Sidera Village Sigi Biromaru District, Sigi Regency) Agrotekbis 1 1 500–8

[23] Fauzi 2016 Analisis perbandingan biaya dan pendapatan pengguna pupuk organik dan anorganik pada usahatani padi sawah irigasi di Desa Rambah Tengah Hilir Kecamatan Rambah Kabupaten Rokan Hulu (Comparison analysis of cost and revenue of organic and inorganic fertilizer users in rice farming in the village of Rambah Tengah Hilir District Rambah Rokan Hulu Regency) on r J. Ilm. Mhs. Fak. Pertan. 1-9