A review of coccidiosis in South American camelids

J. P. Dubey

Received: 15 March 2018 / Accepted: 23 April 2018 / Published online: 26 May 2018

Abstract

Camelids (llamas, alpacas, vicuñas, guanacos) are important for the economy of South America and Eimeria infections are important as cause of mortality in camelids. Of the five most prevalent species of Eimeria in South American camelids, Eimeria macusaniensis, Eimeria lamae, Eimeria alpacae, Eimeria punoensis, and Eimeria ivitaensis, E. macusaniensis is considered the most pathogenic. There is considerable confusion concerning the endogenous developmental stages of Eimeria spp. in camelids. Many papers on camelid coccidiosis were published in local Peruvian journals, not easily accessible to wider audience. The objective of the present paper is to summarize information on history, validity of Eimeria species, life cycle, pathogenicity, prevalence, epidemiology, diagnosis, and control of coccidiosis in camelids.

Keywords Vicuñas (Lama vicugna) · Llamas (Lama glama) · Alpaca (Lama pacos) · Guanacos (Lama guanicoe) · Eimeria species

Introduction

The South American camelids consist of four species—llamas (Lama glama), alpacas (Lama pacos), guanacos (Lama guanicoe), and vicuñas (Lama vicugna); their generic nomenclature is controversial. I have used the genus Lama for all four species. Traditionally, they are distributed at high altitudes (3600–5400 m) in South America where they are source of meat, hide, fiber, transport and their feces are used for fuel and fertilizer (Díaz et al. 2016). In many countries, such as the USA, they are reared for recreation and the commercial product is a live animal. Coccidiosis is an important cause of mortality in llamas and alpacas. There are many uncertainties concerning the life cycle of Eimeria species in camelids and early literature from Peru is in local journals, not easily accessible. The object of this review is to summarize information on coccidiosis in camelids.

Species of Eimeria in camelids

There are five common species of Eimeria in South American camelids (Table 1). They are morphologically so different in size and shape that species can be identified without the need of sporulation (Fig. 1). Of these, E. macusaniensis and E. ivitaensis are one of the largest among species of Eimeria in general (Levine 1973).

The sporulation time differs among these Eimeria species. Eimeria macusaniensis oocysts take longer time to sporulate, perhaps related to the thickness of the oocyst wall. Temperature of incubation can also affect sporulation; E. macusaniensis oocysts sporulated in 9 days at 30 °C, in 21 days at 18–25 °C but oocysts did not sporulate at 6–7 °C (Rohbeck 2006).

History

Eimeria macusaniensis oocysts are morphologically and biologically distinctive, resembling watermelon seed or a cut avocado; its oocysts are up to 107 μm long, have a very thick wall, and prepatent period is > 30 days. Examination of coprolites and llama mummies dating about 10,000 years (Holocene period) in Patagonia, Argentina found E. macusaniensis and E. ivitaensis oocysts (Martinson et al. 2003; Fugassa et al. 2008, 2010; Velázquez et al. 2014; Taglioretti et al. 2014,
shape and sizes of these oocysts were remarkably preserved (Fugassa et al. 2008). Similar findings are reported for coprolites from Chile dating to Pre-Inca Hispanic Contact Period (de Souza et al. 2018).

Although coccidia have been recognized for more than two centuries (Levine 1973), little attention was paid to coccidia in camelids. Yakimoff (1934) in Leningrad, Russia first reported *Eimeria* infection in feces of one of the five llama fecal samples sent to him by Professor Iwanoff; nothing was said who collected samples and the locality. Yakimoff (1934) named the parasite, *Eimeria peruviana*, n.sp. The oocysts were 27.9–37.5 × 18–22 μm with 10.5–15.0 × 7.5 μm sporocysts, some oocysts had a micropyle but others did not. No other details were given. It appears that there was a mix up with other feces sent by Iwanoff because *E. peruviana* has not been found subsequently. Because there are no archived specimens, this question cannot be resolved retrospectively. I consider it *nommen nudum/species enquirende*.

As per Guerrero (1967a), *Eimeria* infections were reported in alpacas in Peru by Arnao (1951), Chávez (1959), Chávez and Guerrero (1960), Chávez (1965), and Vásquez et al. (1965); these papers were published in local journals or in conference proceedings and are no longer available because the files have been discarded (personal communication from Dr. Guillermo Leguía to me, January 10, 2018). As per Guerrero (1967a), Arnao (1951) first reported *Eimeria* sp. in feces of alpacas, and Chávez (1959) found *Eimeria* oocysts in 17% of 2109 fecal samples. Chávez and Guerrero (1960) found *Eimeria* in the intestine of an alpaca and in feces of 14% of 300 alpacas (Chávez and Guerrero 1960). Vásquez et al. (1965) reported *Eimeria* oocysts in the intestine of llamas in Peru.

Carlos Antonio Guerrero (1967a, b) from Peru came to the University of Illinois, Urbana, Illinois, USA, and under the supervision of Professor Norman D. Levine, formally described and named the three species of *Eimeria*, *E. alpacae*, *E. punoensis*, and *E. lamae*. The samples had been collected from the rectum of 12 alpacas from an alpaca farm in Peru, mixed with 2.5% potassium dichromate or 10% formalin and sent to USA. Apparently, most oocysts had sporulated during transit thus, in the original published paper there was no description of unsporulated oocysts (Guerrero 1967b). However, unsporulated oocysts of *E. alpacae* and *E. punoensis* (but not *E. lamae*) were described in his thesis (Guerrero 1967a). After completing his graduate studies, Guerrero returned to Peru and together with Hernandez and Alva reported severe coccidiosis in a 5-month-old alpaca; the alpaca was in poor nutritional condition and had died a day before necropsy (Guerrero et al. 1967). It had mixed infection of *E. lamae*, *E. alpacae*, *E. punoensis*, and an unnamed *Eimeria* species. They also reported schizonts, gamonts, and oocysts in histological sections; the stages found were arbitrarily assigned to four species of *Eimeria*. Four years later, Guerrero et al. (1971) described and named *Eimeria macusaniensis*.

Guerrero et al. (1970b) also first reported on experimental infection of *E. lamae* in alpaca. Two alpacas were fed 100 oocysts (6 months-old alpaca #1) or 100,000 oocysts (4 months old alpaca #2). Both excreted *E. lamae* oocysts 10 days (alpaca #2) or 16 days (alpaca #1) later. Alpaca #2 developed diarrhea and died day 15 post inoculation (p.i.). Small schizonts (not

Table 1 Common species of *Eimeria* in South American camelids

Character	*E. macusaniensis*	*E. lamae*	*E. alpacae*	*E. punoensis*	*E. i vitae nis*
Oocyst shape	Ovoid, piriform	Ellipsoidal, ovoid	Ellipsoidal, ovoid	Ellipsoidal, ovoid	Ellipsoidal
Size	81–107 × 61–80	30–40 × 21–30	22–26 × 18–21	17–22 × 14–18	83.5–98.6 × 49.3–59.1
Mean	93.6 × 67.4	35.6 × 24.5	24.1 × 19.6	19.9 × 16.4	88.8 × 51.8
Wall thickness	8.3–11.4	1.4–1.8	1.2–1.6	0.8–1.1	4.0–4.5
Micropylar cap	2–5 high, 9–14 wide	1.5–2.2 high, 8.8–11.4 wide	0.7–1.3 high, 4.4–7.5 wide	0.4–0.8 high, 3.5–5.5 wide	
Sporocyst shape	Elongate	Elongate, ovoid	Elongate, ovoid	Elongate	
Size range	33–40 × 16–20	13–16 × 8–10	10–13 × 7–8	8–11 × 5–7	32.6–40.8 × 11.9–13.6
Mean	36.3 × 18.3	15.2 × 8.5	11.0 × 6.8	9.2 × 6.1	35.4 × 13.1
Stieda body	Faint	Present	Faint	Faint	Not described
Original host	*Lama pacos*	*Lama pacos*	*Lama pacos*	*Lama pacos*	*Lama pacos*
Reference	Guerrero et al. (1971)	Guerrero (1967a, b)	Guerrero (1967a, b)	Guerrero (1967a, b)	Leguía and Casas (1998)

References

1. Fugassa et al. 2008.
2. Figures in bold are from oocysts in *Lama glama* (Schrey et al. 1991).
3. Absent in original description of *Leguía glama* (Schrey et al. 1991).
illustrated) were found in the duodenum, and numerous gamonts and oocysts were found throughout the small intestine at necropsy.

Three decades later, Leguia and Casas (1998) described the fifth species of *Eimeria*, *E. ivitaensis* (Table 1).

Prevalence of *Eimeria* species oocysts in feces

Prevalence data in llamas (Table 2), alpacas (Table 3), guanacos (Table 4) and vicuñas (Table 5) indicate these camelids are commonly infected with *Eimeria* species. The data from North America and South America camelids are grouped together but the patterns of infections might be different in these continents. In general, *E. lamae* was the most prevalent and *E. ivitaensis* was the least prevalent. Infections were most common in nursing animals. Up to 90% of cria under 2 months of age were found infected (Guerrero et al. 1971). It is noteworthy, that despite excretion of as many as 411,600 oocysts per gram of feces (opg), all vicuñas were asymptomatic (Cafrune et al. 2014).
Table 2 Prevalence of *Eimeria* in *Llama* (*Lama glama*)

Country, region	No. tested	No. positive (%)	*Eimeria* species	Remarks	Reference
Argentina					
Jujuy	478	233 (48.7)	*E. macusaniensis* in all, mixed with *E. ivitaensis* in 2	1 llama with mixed *E. macusaniensis* and *E. ivitaensis* had diarrhea	Cafrune et al. (2009)
Salta	48	17 (35.4)	*E. macusaniensis* in 17		
Catamarca	100	65 (65)	*E. macusaniensis* in all, mixed with *E. ivitaensis* in 2		
Switzerland	293 farms	(68)	*E. macusaniensis*	Only herd prevalence stated.	Hertzberg and Kohler (2006)
USA					
Oregon	189 adults	69 (37)	*E. alpacae* (27%), *E. macusaniensis* (1%), *E. punoensis* (17%), *E. lamae* (9%), *E. alpacae* (52%), *E. macusaniensis* 0, *E. punoensis* (40%), *E. lamae* (32%),	1 species in 58%, 2 species in 38%, 3 species in 4% in adults.	Rickard and Bishop (1998)
Catamarca	100	65 (65)	*E. macusaniensis* in all, mixed with *E. ivitaensis* in 2	In crias, 47% contained 2 species, 30% had 3 species, 23% had 1 species. All animals were healthy.	Guerrero et al. (1999)
Switzerland	293 from 38 farms	(68)	*E. macusaniensis*	Only herd prevalence stated.	Hertzberg and Kohler (2006)
USA					
Oregon	189 adults	69 (37)	*E. alpacae* (27%), *E. macusaniensis* (1%), *E. punoensis* (17%), *E. lamae* (9%), *E. alpacae* (52%), *E. macusaniensis* 0, *E. punoensis* (40%), *E. lamae* (32%),	1 species in 58%, 2 species in 38%, 3 species in 4% in adults.	Rickard and Bishop (1998)
Catamarca	100	65 (65)	*E. macusaniensis* in all, mixed with *E. ivitaensis* in 2	In crias, 47% contained 2 species, 30% had 3 species, 23% had 1 species. All animals were healthy.	Guerrero et al. (1999)
Switzerland	293 from 38 farms	(68)	*E. macusaniensis*	Only herd prevalence stated.	Hertzberg and Kohler (2006)
USA					
Oregon	189 adults	69 (37)	*E. alpacae* (27%), *E. macusaniensis* (1%), *E. punoensis* (17%), *E. lamae* (9%), *E. alpacae* (52%), *E. macusaniensis* 0, *E. punoensis* (40%), *E. lamae* (32%),	1 species in 58%, 2 species in 38%, 3 species in 4% in adults.	Rickard and Bishop (1998)
Catamarca	100	65 (65)	*E. macusaniensis* in all, mixed with *E. ivitaensis* in 2	In crias, 47% contained 2 species, 30% had 3 species, 23% had 1 species. All animals were healthy.	Guerrero et al. (1999)
Switzerland	293 from 38 farms	(68)	*E. macusaniensis*	Only herd prevalence stated.	Hertzberg and Kohler (2006)
USA					
Oregon	189 adults	69 (37)	*E. alpacae* (27%), *E. macusaniensis* (1%), *E. punoensis* (17%), *E. lamae* (9%), *E. alpacae* (52%), *E. macusaniensis* 0, *E. punoensis* (40%), *E. lamae* (32%),	1 species in 58%, 2 species in 38%, 3 species in 4% in adults.	Rickard and Bishop (1998)
Catamarca	100	65 (65)	*E. macusaniensis* in all, mixed with *E. ivitaensis* in 2	In crias, 47% contained 2 species, 30% had 3 species, 23% had 1 species. All animals were healthy.	Guerrero et al. (1999)
Switzerland	293 from 38 farms	(68)	*E. macusaniensis*	Only herd prevalence stated.	Hertzberg and Kohler (2006)
USA					
Oregon	189 adults	69 (37)	*E. alpacae* (27%), *E. macusaniensis* (1%), *E. punoensis* (17%), *E. lamae* (9%), *E. alpacae* (52%), *E. macusaniensis* 0, *E. punoensis* (40%), *E. lamae* (32%),	1 species in 58%, 2 species in 38%, 3 species in 4% in adults.	Rickard and Bishop (1998)
Catamarca	100	65 (65)	*E. macusaniensis* in all, mixed with *E. ivitaensis* in 2	In crias, 47% contained 2 species, 30% had 3 species, 23% had 1 species. All animals were healthy.	Guerrero et al. (1999)
Switzerland	293 from 38 farms	(68)	*E. macusaniensis*	Only herd prevalence stated.	Hertzberg and Kohler (2006)

Table 3 Prevalence of *Eimeria* in alpacas (*Lama pacos*)

Country-region	No. tested	No. positive (%)	*Eimeria* species %	Remarks	Reference
Japan			*E. lamae* 1.9, *E. macusaniensis* 7.5, *E. punoensis* and/or *E. alpacae* 69.8	53 of 390 alpacas from 1 farm tested	Hyuga and Matsumoto (2016)
New Zealand			*E. macusaniensis*	5 farms were surveyed	Rawdon et al. (2006)
Peru			*E. macusaniensis*	90% of 2 months-old alpacas were positive with an oocyst burden of 1016 oocysts per gram of feces	Guerrero et al. (1970a)
Southern Peru			*E. macusaniensis*	22 herds surveyed	Cordero Ramirez et al. (2011)
Puno			*E. macusaniensis*	<90 days old healthy cria, infection with multiple species was common	Rodriguez et al. (2012)
Puno	350	224 (64.3)	*E. lamae* 91, *E. macusaniensis* 35, *E. punoensis* 78, *E. alpacae* 87, *E. ivitaensis* 13	Unweaned alpacas 2 from 23 herds	Diaz et al. (2016)
Switzerland	72	Not stated	*E. macusaniensis*	Present in 68% of farms, no individual animal data	Hertzberg and Kohler (2006)
UK	Not stated	Not stated	*E. ivitaensis*	Present in 2 herds. Zinc sulfate sp. gr. 1.36 used for flotation	Twomey et al. (2010)
USA-10 states	115	8 (7.0)	*E. macusaniensis*	Two farms. Cesium chlorite sp.gr. 1.4 used for flotation	Jarvinen (1999)
Maryland	61	14 (26.2)	*E. macusaniensis*	Only herd prevalence stated.	Hertzberg and Kohler (2006)
Clinical infections

Little is known of camelid coccidiosis in the wild (Leguía 1991; Mamani Paredes et al. 2009; Cafrune et al. 2014). However, *Eimeria* infections can be pathogenic in camelids dependent on age, concurrent infections, environmental conditions, stress of captivity and transportation, and nutrition in general (Díaz et al. 2016). Some of these factors have been investigated.

Reports of clinical coccidiosis in camelids are summarized in Table 6. Except for a report of coccidiosis in a captive guanaco from the USA (Hodgin et al. 1984), all clinical reports were in llamas and alpacas.

Among reports summarized in Table 6, a comprehensive investigation of causes of mortality was performed on 15 llamas, and 34 alpacas submitted to the Oregon Diagnostic Laboratory, Oregon State University hospital during 2002–2006 (Cebra et al. 2007). The following is the most important information from this paper:

(a) *E. macusaniensis* infections were diagnosed in 49 camelids 3 weeks to 18 years old. The clinical signs were weight loss, lethargy, and diarrhea. Of these, 10 llamas and 9 alpacas were examined at necropsy.

(b) Feces or intestinal contents of 42 camelids were examined by flotation; *E. macusaniensis* oocysts were not found in 17 but *E. macusaniensis*-associated enteritis was confirmed histologically. The other *Eimeria* oocysts identified were: *E. lamae* and *E. alpacae*.

Table 4 Prevalence of *Eimeria* in guanaco (*Lama guanicoe*)

Country-region	No. tested	No. positive (%)	*Eimeria* species	Remarks	Reference
Argentina					
Salta	4	1 (25.0)	*E. macusaniensis*	Semi captive	Cafrune et al. (2009)
Mendoza, San Juan	35	Not stated	*E. macusaniensis*, *Eimeria* sp.	Wild guanaco surveyed. Only published as abstract	Borghi et al. (2004)
Patagonia	12	10 (80.3)	*E. macusaniensis* in 9, *Eimeria* spp. in 10	Mortality due to starvation in wild population. Feces were from animals necropsied	Beldomenico et al. (2003)
Chile	15	6 (40.0)	*E. macusaniensis*	Semi captive	Correa et al. (2012)
Magallanes					
Peru	132	43 (33.3)	*E. punoensis* 21.2%, *E. alpacae* 13.6%, *E. lamae* 4.5%, *E. macusaniensis* 15.9%	Wild population	Castillo et al. (2008)
9 districts					
USA-10 states	27	2 (7.4)	*E. macusaniensis*		Jarvinen (1999)

Table 5 Prevalence of *Eimeria* in vicuñas (*Lama vicugna*)

Country-region	No. tested	No. positive (%)	*Eimeria* species	Remarks	Reference
Argentina					
Jujuy	81 juveniles, 154 adults	81 (100.0), 143 (92.8)	*E. punoensis* (100%), *E. alpacae* (85.1%), *E. lamae* (48.1%), *E. macusaniensis* (82.7%), *E. vitataeniis* (3.7%)	Born and raised at an experimental station. Prevalences were higher in May versus November, 2011. All were asymptomatic. Mixed infections were common	Cafrune et al. (2014)
Bolivia	25 adults, 7 juveniles	22 (88), 7 (100)	*E. alpacae* 88%, *E. punoensis* 80.0%, *E. lamae* 12%, and *E. macusaniensis* 8%	Wild population	Beltrán-Saavedra et al. (2011)
Apolobamba					
Peru	39 Adults	15 (41.0)	*E. punoensis*/*E. lamae*	Wild population, opg (<48)	Bouts et al. (2003)
Country	Host	Eimeria spp.	Main findings	Reference	
--------------	-----------	--------------	---	-----------------------------------	
Australia	Alpaca	E. macusaniensis	A 10-year-old alpaca died suddenly without prior clinical signs. Severe, necrotic enteritis with massive parasitization of small intestine. No evidence for clostridial or other toxins. Oocysts in feces were 80–82 × 50–52 μm and sporocysts were 34 × 18 μm.	Lenghaus et al. (2004)	
Germany	Llama	E. macusaniensis	Thirteen of 16 one to three year-old llamas developed diarrhea and died within 2 months after a long distance travel from northern Germany to Bavaria. Enteritis associated with E. macusaniensis was found in three llamas necropsied.	Hänichen et al. (1994)	
New Zealand	Alpaca	E. macusaniensis	A 10-year-old female alpaca diagnosed with histologically confirmed ulcerative coccidial enteritis affecting ileum and rare parasitism in duodenum. Endogenous stages (schizonts, gamonts, oocysts) were present in histological sections. Oocysts were seen antemortem and the alpaca had been treated with an unspecified anticoccidial drug.	Rawdon et al. (2006)	
Peru	Puno	Eimeria spp.	Heavy coccidiosis in a 5-month-old alpaca. Schizonts and gamonts of E. lamae and E. ivitaensis found in histological sections.	Guerrero et al. (1967)	
Southern	Alpacas	E. macusaniensis	Twelve 25–35-day-old alpacas that died suddenly (n = 4) and 8 with diarrhea were necropsied and studied histologically. Macroscopic and microscopic lesions were seen in jejunum and ileum. Necrosis, fusion and blunting of villi were associated with schizonts and gamonts, and oocysts.	Rosadio and Ameghino (1994)	
IVITA, La	Alpaca	E. macusaniensis, E. lamae, E. punoensis, E. ivitaensis	Investigations of causes of diarrhea in 48 newborn alpacas found entrotoxemia in 30, colibacillosis in 7, and Eimeria in 11; E. macusaniensis in 4, E. macusaniensis and E. punoensis in 7, and E. lamae in 4. Authors mentioned finding E. macusaniensis stages in small intestine, cecum, and colon. Intracellular stages of E. ivitaensis were reported in crypts of jejunum and ileum for the first time.	Palacios et al. (2005)	
Marangani,	Alpaca	E. macusaniensis, E. ivitaensis	Sudden onset of diarrhea, emaciation, and death in seven 4–5-month-old alpacas from one herd. Enteritis was the main finding. E. macusaniensis stages were found in jejunum, ileum, cecum, and ascending colon whereas E. ivitaensis stages were restricted to jejunum and ileum. Schizonts, gamonts, and oocysts were identified for both species; schizonts of E. ivitaensis caused more damage than schizonts of E. macusaniensis. Microgamonts of both species appeared similar but gamonts were different; the wall forming bodies of E. ivitaensis were small and basophilic whereas those of E. macusaniensis were large and eosinophilic.	Palacios et al. (2004,2006)	
Arequipa, Puno, Cusco	Alpaca	E. macusaniensis	Histological evaluation of 108 cases of Clostridium-induced enterotoxemia in 2–8-week-old alpacas revealed (a). E. macusaniensis in 33 (30.5%), (b) massive infection in 3 of 31 alpacas less than 2 weeks old; 2 of these were only 10 days old. (c) infections observed even in well managed herd. (d) severe lesions in jejunum and ileum in crypts.	Rosadio et al. (2010)	
Silli, Cusco	Alpaca	Eimeria sp.	Causes of diarrhea in an outbreak involving 50 1- to 5-week-old alpacas were investigated. 80% had Eimeria spp. infections; alone in 19, and in combinations with other agents in 21 alpacas. Illustrations from a 21-day-old alpacas show heavy coccidial infections, different from E. macusaniensis.	Rojas et al. (2016)	
UK	Alpaca	Oocysts of E. macusaniensis, E. lamae, and E. alpace in feces	The index case, a 16-month-old alpaca, was found dead with a short period of restlessness. Histologic examination revealed acute, necrotic enteritis with Clostridium perfringens toxemia. Lesions associated E. macusaniensis stages.	Schock et al. (2007)	
Table 6 (continued)

Country	Host	Eimeria spp.	Main findings	Reference

54 additional cases of coccidiosis recorded; 40 confirmed, 9 suggestive, and 5 incidental. Most cases were in adults. Of the 26 with established diagnosis, 10 were associated with *E. macusaniensis*, 7 with *E. punoensis*, 1 with *E. alpacae*, 1 with *E. lamae*; mixed *Eimeria* spp. in 7.

USA

Michigan Guanaco *E. macusaniensis* 3-month-old female guanaco from Detroit Zoological Park died of acute illness with leptospiral nephritis and hepatitis. The animal had abdominal pain. At necropsy a 60 cm section of jejunum was congested. Histologically, it had subacute enteritis with gamonts and oocysts of *E. macusaniensis*; feces were not available for oocyst identification. Hodgins et al. (1984)

Wyoming Llama *E. macusaniensis* 3-year-old female llama died after short illness associated with enterotoxemia. Asexual and sexual stages reported in ileum. *E. macusaniensis* oocysts found in feces. Schrey et al. (1991)

Missouri Alpaca or llama not distinguished *Eimeria* sp. 2 alpacas with weight loss and hypoproteinemia. Both had been vaccinated against *C. perfringens*. First alpaca 10-year-old diagnosed antemortem with *E. macusaniensis* based on jejunal biopsy died 5 days despite of treatment with sulfadimethoxine. The alpaca had chronic weight loss. Cociddial stages found in jejunum and ileum. The second animal died after diarrheal episode. Necropsy revealed *Eimeria* stages in jejunum and ileum but no oocysts in feces. Chigerwe et al. (2007)

New York Alpaca *E. macusaniensis* Two-year-old female alpaca with abdominal pain, hypoproteinemia. Ultrasound examination revealed thickened loop of small intestine with collapsed lumen. Histological examination of biopsied small intestinal area revealed severe parasitism with *E. macusaniensis* stages. The alpaca recovered after sulfadimethoxine treatment. Oocysts of two species of *Eimeria* were present in feces, predominantly *E. punoensis*. Johnson et al. (2009)

Oregon 15 llamas, 34 alpacas *E. macusaniensis* See text for details. Cebra et al. (2003)

Illinois 1 llama *E. macusaniensis* Weight loss. Gametogony described in detail. Dubey et al. (2007)

Table 7 Pathogens identified in feces of neonatal alpacas with diarrhea

Source	No.	Age (days)	Year	Percent of samples	Reference
Oregon, USA	45	10–210	1999–2002	NS 42 9	Cebra et al. (2003)
Ohio, USA	59	4–120	1999–2004	0 6.9 25.9	Whitehead et al. (2006)
Puno, Peru	48	newborn	2002–2003	77 4.1	Palacios et al. (2005)
Cusco, Peru	50	7–35	January–February, 2010	34 40 20	Rojas et al. (2016)

a Oregon State University Veterinary Diagnostic Laboratory, Corvallis, Oregon, USA
b Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
c Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
d Instituto Veterinario de Investigaciones Tropicales y de Altura (IVITA), Cuzco, Peru
NS = not stated
f Of the 37 cases of bacterial infection, 30 were due to enterotoxemia
g 4 cases of *Eimeria macusaniensis* and enterotoxemia, 7 mixed infection with *E. macusaniensis* and *E. punoensis*, and 4 cases due to *E. lamae*.
Multiple sections of intestines were available for histological examination in 29 of 34 cases of *E. macusaniensis*. *Eimeria macusaniensis* lesions were most severe in jejunum and ileum. Meronts, macro and micro-gamonts, and oocysts were reported in histological sections; the identification of species was based on large size of wall-forming bodies in developing gamonts and oocysts found.

Early gamonts, but no mature gamonts, were detected in 13 camelids in whose feces oocysts were not demonstrable. Most interesting information was obtained from outbreaks of coccidiosis in 15 camelids on four farms. One outbreak occurred in a group of alpacas, 20 days after being introduced to new premises that had been vacant for 6 months. Six additional alpacas became ill within

Table 8 Experimental infections of camelids with *Eimeria* species

Host species (no.)	*Eimeria* species	No. of oocysts	Prepatent period in days	Reference
Llama (4)	*E. alpaca* 25%,	10,000–2 llamas,	*E. alpaca* 16–18,	Foreyt and Lagerquist (1992)
	E. punoensis 75%	50,000, 2 llamas	*E. punoensis* 10	
Llama (4)	*E. macusaniensis* Guanaco	500–5000	36–41	Jarvinen (2008)
Llama (3)	*E. macusaniensis* Alpaca	1000	33, 34	
Llama (6)	*E. macusaniensis* Llama and alpaca	20,000–100,000	32–36	Rohbeck (2006)
Alpaca (4)	*E. macusaniensis* Alpaca and llama	20,000	31 or 35	Cebra et al. (2012)

* Source of infection is in bold

(c) Multiple sections of intestines were available for histological examination in 29 of 34 cases of *E. macusaniensis*. *Eimeria macusaniensis* lesions were most severe in jejunum and ileum. Meronts, macro and micro-gamonts, and oocysts were reported in histological sections; the identification of species was based on large size of wall-forming bodies in developing gamonts and oocysts found.

(d) Early gamonts, but no mature gamonts, were detected in 13 camelids in whose feces oocysts were not demonstrable.

(e) Most interesting information was obtained from outbreaks of coccidiosis in 15 camelids on four farms. One outbreak occurred in a group of alpacas, 20 days after being introduced to new premises that had been vacant for 6 months. Six additional alpacas became ill within

![Fig. 2](https://example.com/fig2.png) Proliferative enteritis in ileum of an alpaca. This animal had concurrent *Salmonella* infection. Courtesy of Prof. Robert Bildfell, Oregon State University, Corvallis, USA
13 days; four of these died and were necropsied. *Eimeria macusaniensis* was diagnosed histologically. *Eimeria macusaniensis* oocysts were detected in feces of five alpacas 37 days after move to the new premises; these alpacas had diarrhea. The resident alpacas moved to the same pasture at the same time remained healthy.

(f) This investigation concluded that *E. macusaniensis*-associated coccidiosis is a common cause of illness in camels of all ages in Oregon.

Concurrent infections and other causes of mortality

During a retrospective study of 3766 alpacas that had died between 1998 and 2000 in three production centers in Peru,
parasitic disease accounted for 3.0%; 51.7% of deaths were attributed to infectious causes (Mamani Paredes et al. 2009). Among the parasitic diseases, coccidiosis was found in 25.4%. Thus, coccidiosis was recognized as cause of mortality only in few alpacas. However, a critical evaluation of etiology was lacking in this investigation.

Neonatal diarrhea is a common problem in raising livestock and diagnosis is problematic because of multiple etiology. Examples of pathogens found in cases of neonatal diarrhea in camelids are shown in Table 7. Despite all referred pathogens that can cause diarrhea, their relative importance is difficult to determine. An unusually severe outbreak of diarrhea was investigated in an alpaca herd in Silli, Cusco, Peru (Table 7). Of 50 affected alpacas, 6 died and 44 were euthanized; all were examined at necropsy (Rojas et al. 2016). Histologically, 44 of 50 alpacas had enteritis and 80% had *Eimeria* sp. infections. It is uncertain whether the diagnosis of *Eimeria* infections was based solely on fecal testing or histology. One illustration (Fig. 3 of Rojas et al. 2016) of small intestine shows heavy coccidiosis with small-sized *Eimeria* but there was no mention of species involved or description of parasitic stages (my attempts to obtain more information about endogenous stages were unsuccessful).

In an enquiry of causes of neonatal deaths in young alpacas (2–4 months old) from three alpaca centers in Peru, histological sections of intestine of 108 alpacas considered to have died from enterotoxemia were examined for evidence of *E. macusaniensis* infection. Only sections of intestines from grossly visible lesions were examined. Most (*n* = 103) sections were from the ileum with only five from jejunum. *Eimeria macusaniensis* developmental stages were detected in 33 alpacas. Of the 31 alpacas with available ages, three were 2 weeks old; two were only 10 days old (Rosadio et al. 2010). These findings indicate that alpacas can become infected on the day of birth because the minimum prepatent period of any camelid *Eimeria* is 10 days (Table 8).

Coinfection of coccidiosis and enterotoxemia were associated with mortality in newborn alpacas in another report (Palacios et al. 2005, Table 7).

Stress

Housing in close quarters and poor nutrition are some of the complicating factors in coccidiosis. Stress of transportation and change of ownership/location can
predispose camelids to coccidiosis. Shows, sales, and movement for breeding, and the management in the new farm can cause stress. In one instance, 30 llamas developed clinical coccidiosis after being transported to

Fig. 6 Gamonts and oocysts of *Eimeria macusaniensis* in sections of small intestine of llama. A Note intracellular gamonts. (a) Early macrogamont with PAS-positive (amylopectin granules) around the central nucleus, and small-sized wall forming bodies (WFB, arrowheads). (b) More advanced macrogamont with WFB (arrowheads). (c) Immature microgamont with many nuclei. PAS-counter stained with hematoxylin.

B Macrogamont with different sized WFB (arrow, arrowhead). Hematoxylin and eosin stain. C Microgamont with numerous nuclei arranged at the periphery (arrows) or centrally (arrowheads). D An intracellular oocyst. Note, sporont filling the interior of the oocyst, thick oocyst wall (arrow), truncated anterior micropylar end, and thick parasitophorous vacuole (arrowheads). Hematoxylin and eosin stain.
a new farm (Cebra et al. 2007). Adult alpacas have developed fatal coccidiosis within 5 weeks after transportation to a new farm (Chigerwe et al. 2007; Johnson et al. 2009).

Diagnosis

Antemortem

Lethargy, diarrhea, abdominal distention, anorexia, weight loss, constipation, and colic have been reported in camelids with uncomplicated coccidiosis (Costarella and Anderson 1999; Cebra et al. 2007; Johnson et al. 2009). Coccidiosis should be suspected with these signs in camelids. Additionally, several camelids suffering from coccidiosis died suddenly (Rosadio and Ameghino 1994; Lenghaus et al. 2004; Palacios et al. 2006; Schock et al. 2007). It should be noted that diarrhea is an inconsistent finding, especially in adult camelids (Cebra et al. 2014).

Fecal examination

The detection of oocysts in feces can help diagnosis. Although most coccidian oocysts float in sugar or salt solutions with specific gravity (sp. gr.) of 1.28, E. macusaniensis oocysts are large and heavy and do not float well in these solutions (Cebra and Stang 2008). Solutions of sp. gr. > 1.28 are recommended for floatation of this Eimeria species. Super saturated sugar solution (sp. gr. 1.33, Johnson et al. 2009), saturated zinc sulfate solution (sp.gr. 1.36, Twomey et al. 2010), Cesium chloride solution (sp. gr. 1.4, Trout et al. 2008) or mixed salt solutions (zinc chloride 105 g, NaCl 20 g, water to 100 ml, sp. gr. 1.59, Cafrune et al. 2009) are some examples of flotation solutions. The sedimentation methods used for trematode ova are as effective as the flotation method (Robbeck 2006). The number of oocysts detected does not correlate with clinical signs (Foreyt and Lagerquist 1992; Costarella and Anderson 1999; Beldomenico et al. 2003; Cebra et al. 2007; Jarvinen, 2008; Foreyt and Lagerquist 1992; Robbeck 2006; Cafrune et al. 2014). Some cases of coccidiosis may be missed because of the development of clinical signs before oocysts are excreted in feces (prepatent phase). To alleviate this problem, Cebra et al. (2012) developed a polymerase chain reaction (PCR) test for E. macusaniensis and E. lamae diagnosis. In experimentally infected alpacas, oocyst DNA was detectible up to 7 days before oocyst detection in feces. The internal transcribed primers (ITS) were species-specific without cross detection of E. macusaniensis and E. lamae. Finding Eimeria oocyst DNA, 7 days before prepatent period is intriguing.

Biopsy and ultrasound examination

Ultrasound examination results revealing local distention and increased thickness of small intestine, particularly of ileum, may provide suggestive diagnosis (Costarella and Anderson 1999; Cebra et al. 2007; Johnson et al. 2009). Smears made from biopsied material can reveal the parasitic stages (Cebra et al. 2007). However, histological examination is needed to evaluate lesions (Cebra et al. 2007; Chigerwe et al. 2007; Johnson et al. 2009).

Other laboratory testing results

Hypoproteinemia and hypoalbuminemia are the most consistent finding (Cebra et al. 2007). Hyponatremia is also relatively common, and a rare finding in camelids without some form of enteritis.

Post mortem diagnosis

Gross lesions are most common in ileum, although any region of small intestine, cecum and colon may be affected (Rosadio and Ameghino 1994; Palacios et al. 2006; Cebra et al. 2007; Johnson et al. 2009). Mucosal thickening, congestion, plaques and severe hemorrhagic enteritis may be seen in primary lesions (Figs. 2 and 3). Secondary bacterial infection can lead to severe necrotic enteritis (Cebra et al. 2007; Schock et al. 2007; Johnson et al. 2009; Rosadio et al. 2010). The bowel may also appear grossly normal, even with severe infection.

Microscopically, there is hyperplasia, non-suppurative enteritis, depending on concurrent infections (Figs. 4 and 5). Blunting, fusion, and necrosis of villi, particularly at the tips have been reported (Rosadio and Ameghino 1994; Johnson et al. 2009). Although developmental stages of camelid Eimeria occur in the mucosal epithelium and lamina propria, occasionally Eimeria and associated changes have been noted in the tunica muscularis mucosae (Johnson et al. 2009).

The detection of developing stages of coccidia can establish diagnosis of coccidiosis (Fig. 6). As stated earlier, of the five most prevalent species of Eimeria in camelids, E. macusaniensis has been most commonly identified in lesions. Its oocysts are distinctive, and it has large-sized gamonts (Figs. 4, 5, and 6). Its schizont stage is unknown (Dubey 2018). In few cases, E. ivitaeensis has been associated with clinical coccidiosis in alpacas in Peru (Palacios et al. 2006) and the United States (Cebra et al. 2014; Cebra 2015).

Eimeria lamae is another pathogenic species. It is reported to develop in surface epithelium versus in crypts parasitized by E. macusaniensis and E. ivitaeensis (Guerrero et al. 1967); I have not found description of endogenous stages.
Experimental infections

In addition to experimental infections of two alpacas in Peru by Guerrero et al. (1970a) already discussed, results of four other experiments are summarized in Table 8. Main observations from experiments in Table 8 are:

(a) Minimum prepatent periods were: 31 days for E. macusaniensis, 16 days for E. lamae, and 10 days for E. ponoensis (Table 8).
(b) Inoculated camelids generally remained asymptomatic despite excreting as many as 10,305 opg; peak oocyst excretion for E. lamae, and E. ponoensis was during the second week of inoculation (Foreyt and Lagerquist 1992). However, 2 of 5 llama crias fed 20,000 E. macusaniensis oocysts had pulpy or watery or bloody diarrhea 3–10 or 9–16 days p.i. (Rohbeck 2006).
(c) Eimeria macusaniensis was cross transmissible between guanaco, alpaca, and llama.
(d) Eimeria macusaniensis oocysts survived for 84 months, the longest period of any known Eimeria species (Jarvinen 2008).
(e) Eimeria macusaniensis was mildly immunogenic because llamas excreted E. macusaniensis oocysts after re-inoculation; in challenged llamas the prepatent period was longer (37–40 days versus 32–36 days after primary infection), patency was shorter (39–43 days versus 20–23 days after challenge) and fewer oocysts were excreted after challenge (Rohbeck 2006).

Treatment

There are no anti-coccidial drugs approved specifically for camelids. Benzene acetonitrile compounds (ponazuril, diclazuril, toltrazuril), sulfonamides, and amprolium have been used to treat or prevent coccidiosis in camelids (Cebra et al. 2007, 2014; Ballweber 2009; Thomas and Morgan 2013; Franz et al. 2015).

Efficacy of various drugs for treating clinical coccidiosis is unknown. None of anticoccidials have any measurable effect on late stages of gamonts and oocysts that have been confirmed in histological sections of intestines in cases associated with E. macusaniensis. There is need to investigate unknown endogenous stages of camelid coccidia. It appears that heavy parasitization of E. macusaniensis in crypts of ileum predisposes camels to other enteric pathogens, particularly Clostridium perfringens toxemia. There are no anti-coccidial drugs specifically approved for use in camelids.

Conclusion and prospective

It is evident from the above review that coccidiosis can be serious in captive camelids. Under free range/wild environment in South America, camelids can excrete numerous oocysts in feces without showing clinical signs. The pathogenesis of fatal coccidiosis is not fully understood, because even adult camelids can die suddenly, and animals can develop clinical signs long before oocysts are detected in feces. Whether there are differences in biology of Eimeria species in camelids in North America and South America needs further investigation. Among the five valid species of South American camelid Eimeria, E. macusaniensis appears to be most pathogenic. Only gamonts and oocysts have been confirmed in histological sections of intestines in cases associated with E. macusaniensis. There is need to investigate unknown endogenous stages of camelid coccidia. It appears that heavy parasitization of E. macusaniensis in crypts of ileum predisposes camelids to other enteric pathogens, particularly Clostridium perfringens toxemia. There are no anti-coccidial drugs specifically approved for use in camelids.

Acknowledgements: I would like to thank Drs. R.J. Bildfell, C. Bauer, M. M. Cafrune, C. K. Cebra, A. Daugschies, P. Diaz, G. Leguía, G. A. Perkins, and R. H. Rosadio who supplied specimens and advice. I also thank Camilla Cezar, Fernando Murata, Oliver Kwok, Andressa Ferreira da Silva, and Shiv Kumar Verma in my laboratory for assistance in preparation of this review.

References

*a cited by Guerrero (1967a,b)
*a Arnao M (1951) Parásitos identificados en el Instituto Nacional de Biología Animal. Rev Int Nac Biol Ani, Lima 2:78–80
Ballweber LR (2009) Ecto- and endoparasites of new world camelids. Vet Clin N Am Food Anim Pract 25:295–310
Beldomenico PM, Uhart M, Bono MF, Marull C, Baldi R, Peralta JL (2003) Internal parasites of free-ranging guanacos from Patagonia. Vet Parasitol 118:71–77

anned by Franke et al. (2010)
Beltrán-Saavedra LF, Nallar-Gutiérrez R, Ayala G, Limachi JM, Gonzalez-Rojas JL (2011) Estudio sanitario de vicuñas en silvestria del Área Natural de Manejo Integrado Nacional Apolobamba, Bolivia. Ecol Bolivia 46:14–27

Borghi ED, Araoz C, Jofré C, Duarte A, Mera y Sierra RL (2004) Gastrointestinal parasites of guanacos (Lama guanicoe) of Midwest Argentina (Mendoza and San Juan). Biocell 28:185

Bouts T, Fox MT, Scheres G, Chávez A (2003) Identification of gastrointestinal nematodes and coccidia in wild vicunas (Lama vicugna) in Pampa Galeras, Peru. In: Erkrankungen der Zootiere: Verhandlungsbericht des 41 Internationalen Symposiums über die Erkrankungen der Zoo- und Wildtiere, Rome, Italy, 28 May - 1 June, pp 101–105. Symposiums

Cafrune MM, Marin RE, Rigalt FA, Romero SR, Aguirre DH (2009) Predilection of Eimeria macusaniensis and Eimeria ivitaensis in South American cameldids of Northwestern Argentina. Vet Parasitol 162:338–341

Cafrune MM, Romero SR, Aguirre DH (2014) Prevalence and abundance of Eimeria spp. infection in captive vicuñas (Vicugna vicugna) from the Argentinean Andean Altiplano. Small Rumin Res 120:130–154

Castillo DH, Chávez VA, Hoecs RD, Casas AE, Rosadio AR, Wheeler JC (2008) Contribución al estudio del parasitismo gastrointestinal en guanacos (Lama guanicoe casiquisili). Rev Inv Vet Perú 19:168–175

Cebra CK (2015) North American experience with coccidiosis in New World cameldids. Proc. VII Congresso Mundial em camélidos. Sudamericanos. Puno-Peru 2015. 5 pages. Published by Universidad Nacional del Altiplano

Cebra CK, Stang BV (2008) Comparison of methods to detect gastrointestinal parasites in llamas and alpacas. J Am Vet Med Assoc 232:733–741

Cebra CK, Mattson DE, Baker RJ, Sonn RJ, Dearing PL (2003) Potential pathogens in feces from unweaned llamas and alpacas with diarrhea. J Am Vet Med Assoc 223:1806–1808

Cebra CK, Valentine BA, Schlipf JW, Bildtll RJ, McKenzie E, Watt LH, Heidel JR, Cooper BJ, Löhr CV, Bird KE, Saulen MS, Fincham AM (2007) Eimeria macusaniensis infection in 15 llamas and 34 alpacas. J Am Vet Med Assoc 230:94–100

Cebra CK, Stang BV, Smith CC (2012) Development of a nested polymerase chain reaction assay for the detection of Eimeria macusaniensis in cameld feces. Am J Vet Res 73:13–18

Cebra CK, Anderson D, Tibary A, Van Saun R, Johnson LW (2014) Parasitic gastroenteritis. In: Llama and Alpaca Care, Medicine, Surgery, Reproduction, Nutrition, and Health Care, 1st edn. Saunders Elsevier, Saint Louis, pp 501–512

Chávez CE (1959) Enfermedades parasitarias de las alpacas. An Primer Ciclo Conf Med Vet Lima

Chávez CE (1965) Parasites and parasitic diseases of Lamas pacos (alpacas) in Perú. Univ. San Marcos, Lima

Chávez CE, Guerrero CA (1966) Parasitos de las alpacas. An Primer Cong Nac Med Vet Lima 40–41

Chigerwe M, Middleton JR, Williams F, Tyler JW, Kreeger JM (2007) Atypical coccidiosis in South American cameldids. J Vet Diagn Invest 19:122–125

Cordero Ramirez A, Huancá López W, Díaz Fernández P, López Sánchez CM, Panadero Fontián R, Fernández Rodriguez G, Lago N, Morrono Pelayo P, Diez Baños P (2011) Infection by gastrointestinal parasites in alpacas (Lama pacos) from Southern Perú. XII Congresso Ibérico Parasitolagia. Zaragoza 5-8 July 2011

Correa L, Zapata B, Soto-Gamboa M (2012) Gastrointestinal and blood parasite determination in the guanaco (Lama guanicoe) under semi-captivity conditions. Trop Anim Health Prod 44:11–15

Costarella CE, Anderson DE (1999) Ileoceccolic intussusception in a one-month-old llama. J Am Vet Med Assoc 214:1672–1673

de Souza MV, da Silva LGR, Silva-Pinto V, Mendez-Quiros P, Chaves SAM, Íñiguez AM (2018) New paleoparasitological investigations from the pre-Inca to Hispanic contact period in northern Chile. Acta Trop 178:290–296

Díaz P, Panadero R, Lópe P, Cordero A, Pérez-Creo A, López CM, Fernández G, Diez-Baños P, Morroondo P (2016) Prevalence and risk factors associated to Eimeria spp. infection in unweaned alpacas (Vicugna pacos) from southern Peru. Acta Parasitol 61:74–78

Dubey JP (2018) Gametogony of Eimeria macusaniensis Guerrero, Hernandez, Bazalar and Alba, 1971 in llama (Lama glama). Parasitology in press: https://doi.org/10.1017/S0033000418000483

Foreyt WJ, Lagerquist J (1992) Experimental infections of Eimeria alpaca and Eimeria punoensis in llamas (Lama glama). J Parasitol 78:906–909

Franz S, Wittek T, Joachim A, Himney B, Dadak AM (2015) Llamas and alpacas in Europe: Endoparasites of the digestive tract and their pharmacotherapeutical control. Vet J 204:255–262

Fugassa MH, Sardeilla NH, Tagliconti V, Reinhard KJ, Araújo A (2008) Eimeriid oocysts from archaeological samples in Patagonia, Argentina. J Parasitol 94:1418–1420

Fugassa MH, Beltrame MO, Sardella NH, Civalero MT, Aschero C (2010) Paleoparasitological results from coprolites dated at the Pleistocene-Holocene transition as source of paleoeological evidence in Patagonia. J Arch Sci 37:880–884

Guerrero CA (1967a) Coccidia (Protozoa: Eimeriidae) of the alpaca (Lama pacos). Master’s thesis. University of Illinois, Urbana, Illinois, pp 1–49

Guerrero CA (1967b) Coccidia (Protozoa: Eimeriidae) of the alpaca (Lama pacos). J Protozool 14:613–616

Guerrero CA, Hernandez DJ, Alva MJ (1967) Coccidiosis in alpacas. Rev Méd Vét 21:59–68

Guerrero CA, Alva J, Leguia G, Bazalar H (1970a) Prevalence of coccidias (Protozoa: Eimeriidae) in alpacas, Llama pacos. Boletín Experatorio Instituto Veterinario de Investigaciones Tropicales y Altura 4:84–90

Guerrero CA, Alva J, Bazalar H, Tabacelli L (1970b) Infección experimental de alpacas con Eimeria lamae. Boletín Experatorio Instituto Veterinario de Investigaciones Tropicales y Altura 4:79–83

Guerrero CA, Hernandez J, Bazalar H, Alva J (1971) Eimeria macusaniensis n. sp. (Protozoa: Eimeriidae) of the alpaca (Lama pacos). J Protozool 18:162–163

Hännichen T, Wiesner H, Göbel E (1994): Zur Pathologie, Diagnostik und Therapie der Kokzidiose bei Wiederkaeuern im Zoo. Verhandlungsber. Erkr. Zootiere 36: 375–380

Hertzberg H, Kohler L (2006) Prevalence and significance of gastrointestinal helminths and protozoa in south American cameldids in Switzerland. Berl Münch Tierärztl Wochenschr 119:291–294

Hodgin C, Schillhorn van Veen TW, Fayer R, Richter N (1984) Leptospirosis and coccidial infection in a guanaco. J Am Vet Med Assoc 185:1442–1444

Hyuga A, Matsumoto J (2016) A survey of gastrointestinal parasites of alpacas (Vicugna pacos) in Japan. J Vet Med Sci 78:719–721

Jarvinen JA (1999) Prevalence of Eimeria macusaniensis (Apicoplexa: Eimeriidae) in midwestern Llama spp. J Parasitol 85:373–376

Jarvinen JA (2008) Infection of llamas with stored Eimeria macusaniensis oocysts obtained from guanaco and alpaca feces. J Parasitol 94:969–972

Johnson AL, Stewart JE, Perkins GA (2009) Diagnosis and treatment of Eimeria macusaniensis in an adult alpaca with signs of colic. Vet J 179:465–467

Leguia G (1991) The epidemiology and economic impact of llama parasites. Parasitol Today 7:54–56

Leguia PG, Casas AE (1998) Eimeria ivitaensis n. sp (Protozoea: Eimeriidae) en alpacas (Lama pacos), Revista Peruana de Parasitologia 13:59–61

Lenghaus C, O’Callaghan MG, Rogers C (2004) Coccidiosis and sudden death in an adult alpaca (Lama pacos). Aust Vet J 82:711–712
Levine ND (1973) Protozoan parasites of domestic animals and of man. Burgess Publishing Company, Minneapolis, pp 1–406

Mamani Paredes J, Condemayta Condemayta Z, Calle Charaja L (2009) Causas de mortalidad de alpacas en tres principales centros de producción ubicados en puna seca y humeda del departamento de Puno. Revista electrónica de Veterinaria 10: http://www.veterinaria.org.revistas.redvet/n080809/080904.pdf

Martinson E, Reinhard KJ, Buikstra JE, de la Cruz KD (2003) Pathoecology of Chiribaya parasitism. Mem Inst Oswaldo Cruz 98:195–205

Palacios EC, Tabacchi NL, Chavera CA, López UT, Santillán AG, Sandoval ChN, Pezo CD, Perales CR (2004) Eimeriosis en crías de alpacas: estudio anatómo histopatológico Rev Inv Vet Perú 15: 174–178

Palacios EC, Perales CR, Chavera CA, López UT (2005) Caracterización anatómo-histopatológica de enteropatías causantes de mortalidad en crías de alpaca. Rev Inv Vet Perú 16:34–40

Palacios CA, Perales RA, Chavera AE, Lopez MT, Braga WU, Moro M (2006) Eimeria macusaniensis and Eimeria ivitaensis co-infection in fatal cases of diarrhoea in young alpacas (Lama pacos) in Peru. Vet Rec 158:344–345

Rawdon T, McFadden A, King C, Mitchell V, Howell M (2006) Clinical findings and risk factors associated with the first report of Eimeria macusaniensis in New Zealand alpacas. Theatr Surv 33:11–15

Rickard LG, Bishop JK (1988) Prevalence of Eimeria spp. (Apicomplexa: Eimeriidae) in Oregon llamas. J Protozool 35:335–336

Rodriguez HA, Casas AE, Luna EL, Gavidia ChC, Zanabria HV, Rosadio AR (2012) Eimeriosis in crías de alpacas: prevalencia y factores de riesgo Rev Inv Vet Perú 23:289–298

Rohbeck S (2006) Parasitosen des Verdauungstraks und der Atemwege bei Neuweltkameliden: Untersuchungen zu ihrer Epidemiologie und Bekämpfung in einer südhesischen Herde sowie zur Biologie von Eimeria macusaniensis. Justus Liebig University Giessen. Dr. med vet thesis, pp 1–131

Rojas M, Manchego A, Rocha CB, Fornells LA, Silva RC, Mendes GS, Dias HG, Sandoval N, Pezo D, Santos N (2016) Outbreak of diarrhoea among preweanling alpacas (Vicugna pacos) in the southern Peruvian highland. J Infect Dev Ctries 10:269–274

Rosadio RH, Ameghino EF (1994) Coccidial infections in neonatal Peruvian alpacas. Vet Rec 135:459–460

Rosadio R, Londoñe P, Pérez D, Castillo H, Veliz A, Llanco L, Yaya K, Maturrano L (2010) Eimeria macusaniensis associated lesions in neonate alpacas dying from enterotoxemia. Vet Parasitol 168:116–120

Schock A, Bidewell CA, Duff JP, Scholes SF, Higgins RJ (2007) Coccidiosis in British alpacas (Vicugna pacos). Vet Rec 160:805–806

Schrey CF, Abbott TA, Stewart VA, Marquardt WC (1991) Coccidia of the llama, Lama glama, in Colorado and Wyoming. Vet Parasitol 40: 21–28

Taglioretti V, Sardella NH, Fugassa MH (2014) Morphometric analysis of modern faeces as a tool to identify artiodactyls’ coprolites. Quat Int 352:64–67

Taglioretti V, Fugassa MH, Sardella NH (2015) Parasitic diversity found in coprolites of camelids during the Holocene. Parasitol Res 114: 2459–2464

Thomas SM, Morgan ER (2013) Effect on performance of weanling alpacas following treatments against gastro-intestinal parasites. Vet Parasitol 198:244–249

Trout JM, Santin M, Fayer R (2008) Detection of assemblage A, Giardia duodenalis and Eimeria spp. in alpacas on two Maryland farms. Vet Parasitol 153:203–208

Twomey DF, Allen K, Bell S, Evans C, Thomas S (2010) Eimeria ivitaensis in British alpacas. Vet Rec 167:797–798

*Vásquez M, Marchinares C, Rojas J (1965) Relación de Enfermedades Parasitarias y Parásitos Identificados en las Diferentes Regiones del Perú (de Noviembre de 1960 a Diciembre de 1963). Ministerio de Agricultura S. I. P. A

Velázquez NJ, Burry LS, Fugassa MH, Civalero MT, Aschero CA (2014) Palynological analysis of camelid coprolites: seasonality in the use of the site Cerro Casa de Piedra 7 (Santa Cruz, Argentina). Quat Sci Rev 83:143–156

Whitehead CE, Anderson DE (2006) Neonatal diarrhea in llamas and alpacas. Small Rumin Res 61:207–215

Yakimoff WL (1934) Two new species of Coccidia: Eimeria trifftt n. sp. of the eland (Orias canna), and Eimeria peruviana n. sp. of the llama (Lama glama). Parasitology 26:510–511