Cumulative incidence of SARS-CoV-2 infections among adults in Georgia, USA, August-December 2020

Allison T. Chamberlain
Kathleen E. Toomey
Heather Bradley
Eric W. Hall
Mansour Fahimi
Benjamin A. Lopman
Nicole Luisi
Travis Sanchez
Cherie Drenzek
Kayoko Shioda
Aaron J Siegler
Patrick Sean Sullivan

Affiliations:
Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA (Chamberlain, Sullivan, Hall, Sanchez, Luisi, Lopman, Siegler)
Marketing Systems Group, Philadelphia, PA, USA (Fahimi)
Department of Population Health Sciences, Georgia State University School of Public Health, Atlanta, GA, USA (Bradley)
Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA (Shioda)
Georgia Department of Public Health, Atlanta, GA, USA (Toomey, Drenzek)

Key words: COVID-19, SARS-CoV-2, seroprevalance, cumulative incidence, Georgia

Running title: Cumulative incidence of COVID-19 in Georgia

Contact information for corresponding author:

Allison T. Chamberlain, PhD
1518 Clifton Road NE
Room CNR 3047
Atlanta GA, 30322
Email: allison.chamberlain@emory.edu
Phone: 404-727-6159

Alternate corresponding author:
Patrick S. Sullivan, PhD, DVM
1518 Clifton Road NE
Room GCR 468
Atlanta GA, 30322

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Main point: Using data from a probability survey of households in Georgia, USA, we estimated that 1.3 million adults aged ≥18 years experienced SARS-CoV-2 infections by November 16, 2020, of whom 1 in 4 were reported and of whom 0.78% died.
Abstract

Background: Reported COVID-19 cases underestimate the true number of SARS-CoV-2 infections. Data on all infections, including asymptomatic infection, are needed to guide state testing and prevention programs. To minimize biases in estimates from seroprevalence surveys and reported cases, we conducted a state-wide probability survey of Georgia households and estimated cumulative incidence of SARS-CoV-2 infections adjusted for antibody waning.

Methods: From August to December 2020, we mailed kits to self-collect specimens (nasal swabs and blood spots) to a random sample of Georgia addresses. One randomly-selected adult household member completed a survey and returned specimens for virus and antibody testing. We estimated cumulative incidence of SARS-CoV-2 infections adjusted for waning antibodies, reported fraction, and infection fatality ratio (IFR). Differences in seropositivity among demographic, geographic and clinical subgroups were explored with weighted prevalence ratios (PR).

Results: Among 1,370 Georgia adult participants, adjusted cumulative incidence of SARS-CoV-2 was 16.1% (95% credible interval (CrI): 13.5-19.2%) as of November 16, 2020. The reported fraction was 26.6% and IFR was 0.78%. Non-Hispanic Black (PR: 2.03, CI 1.0, 4.1) and Hispanic adults (PR: 1.98, CI 0.74, 5.31) were more likely than non-Hispanic White adults to be seropositive. Seropositivity in metropolitan Atlanta’s Fulton and DeKalb counties was similar to seropositivity elsewhere in Georgia (7.8% vs. 8.8%).

Conclusions: As of mid-November 2020, one in 6 adults in Georgia had been infected with SARS-CoV-2. The scope of the COVID-19 epidemic in Georgia is likely substantially underestimated by reported cases.
Introduction

Like many states in the United States, Georgia has experienced substantial morbidity and mortality due to COVID-19. Comprehensive, unbiased estimates of the extent of SARS-CoV-2 infections in Georgia are challenging because not all people who are infected have symptoms, and not all people who are symptomatic get tested. Although Georgia’s robust testing efforts have diagnosed over one million individuals(1), no scientifically rigorous estimate of how many Georgians have been infected with SARS-CoV-2 exists. Seroprevalence studies conducted from remnant samples in clinical settings (e.g., dialysis centers and other settings in which specimens are collected for routine screening or clinical management) can detect people who have been infected, but such studies can have biased data if they are not representative of the general population and because antibodies can become undetectable over time (“antibody waning”).(2)

For Georgia, ascertaining the total number of people who have been infected has implications for understanding the impact of COVID-19 to date and for reaching herd immunity. Having these data also can support and inform vaccination strategies. We describe findings from the COVIDVu Georgia study, a state-specific seroprevalence survey conducted among a probability-based sample of Georgia households from August to December 2020 to develop a representative estimate of the cumulative incidence of SARS-CoV-2 infection among Georgia’s adult population after adjusting for antibody waning.

Methods

Sampling

Our sampling methods have been previously described as part of the national COVIDVu study.(3) We used a national address-based household sample derived from the USPS Computerized Delivery Sequence File, which contains about 130 million residential addresses and covers all residential delivery points in the US. This sampling frame has been used in numerous health research studies.(4–6) To achieve a total sample of 1,400 responding
households from Georgia, 12,894 addresses were shipped COVIDVu study materials (Figure 1). Analogous to our national study, we oversampled households in census tracts with >50% Black residents and households with surnames likely to represent Hispanic ethnicity to overcome differentially low early response rates by Black and Hispanic persons.\(^4\) We oversampled Fulton and Dekalb counties to facilitate estimation of seroprevalence in the City of Atlanta.

Survey and Laboratory Procedures

One adult ≥18 years in each household listed household members by gender and age, and an adult household member was then randomly selected for participation by the electronic data system. Following an online consent procedure, participants completed a behavioral survey with domains including demographics, comorbidities, and symptoms; the survey instrument has been previously published.\(^3\) Participants self-collected an anterior nares (AN) swab and a dried blood spot (DBS) card, a method we previously validated based on clinician observation of specimen collection and laboratorian assessment of specimen quality.\(^7, 8\) Specimens were returned to a central laboratory with a prepaid mailer.\(^8\) PCR testing of AN swabs used the Thermo EUA Version 2 kit (Thermo Fisher Scientific, Waltham, MA). Antibody testing of DBS specimens used the BioRad Platelia Total Antibody test that targets the nucleocapsid protein (i.e., IgA, IgM, IgG; BioRad, Hercules, California). Testing protocols were validated under CLIA/CAP protocols for the development of Laboratory Developed Tests. Further detail has been previously described, including approaches taken to quantify the direction and magnitude of potential biases associated with antibody waning.\(^3\) Participants in the oversample were provided with a $100 electronic gift card incentive and all other participants were provided with a $40 electronic gift card incentive. The COVIDVu study was approved by the Emory University Institutional Review Board (STUDY00000695).

Sample Weights

We developed three sets of sample weights to allow for estimation of key parameters representing non-institutionalized and housed adults in three areas: Georgia, Fulton/Dekalb...
counties, and all other counties in Georgia. Each set of weights was developed using the same method as previously described. In brief, hierarchical hot deck imputation(9) was performed to ensure no participants were missing data for key variables needed for weighting such as gender, education, race, ethnicity, and marital status that each had less than 3% missingness. Design weights, adjusted with Classification And Regression Tree (CART) analysis for differential non-response, were developed to facilitate population inference. A raking procedure aligned weighted distributions to the observed distributions from the Census along the lines including age, race-ethnicity, education, and income.(10) To address outlier weights, those at the 99th percentile of each side of the distribution were trimmed. Additional detail on the weighting process can be found in our protocol paper.(3)

We estimated weighted seroprevalence and 95% confidence limits of total Ig for the entire sample and by demographic factors and reported pre-existing comorbidities, month of sampling, and symptoms. To identify significant differences in seroprevalence among groups, we estimated prevalence ratios (PRs) and corresponding 95% Wilson Modified confidence intervals (CIs) using weighted logistic regression. All analyses were conducted in SAS v9.4 and SUDAAN.

Georgia SARS-CoV-2 cumulative incidence, IFR, and reported fraction

Given the considerable evidence from population-based surveys that SARS-CoV-2 antibodies wane over time to levels below detection by numerous laboratory tests (11–13), our analysis includes a Bayesian model that accounts for waning.(14) By accounting for (1) the time between infection and seroconversion to detectable antibodies, (2) the time between seroconversion and seroreversion to undetectable antibody test results, and (3) the time from symptom onset to death, the model estimates IFR and cumulative incidence of SARS-CoV-2 based on the Georgia weighted seroprevalence estimate from this study as well as the reported daily counts of COVID-19 associated deaths. The model applies cumulative density functions for the time from seroconversion to seroreversion, estimated by a previous study(14) to adjust...
for antibody waning. Cumulative incidence is calculated from the total number of modeled
infections since the beginning of the epidemic until the median specimen collection date of our
sample (November 16, 2020). This cumulative incidence also serves as the denominator for the
infection fatality ratio (IFR). The ratio of the cases reported to cumulative incidence cases (the
reported fraction) was developed from confirmed PCR+ cases in Georgia as of November 16,
2020 using data for adults ≥18 years from the Georgia Department of Public Health’s public use
dataset.(15)

Results

Study sample

A total of 12,894 household addresses in Georgia were selected and mailed study
materials from July-October 2020 (Figure 1). Of these, 6.4% (n=833) were unable to receive
mail and excluded from the sample. Behavioral surveys were completed by 14.9% (n=1,804)
households. A total of 11.3% (n=1,370) of sampled households completed a behavioral survey
and returned a valid specimen for antibody testing during the study period of August 9-
December 8, 2020 (Table 1). Of participating households, 43% (n=585) were in the
oversampled area of Fulton/Dekalb and 57% (n=785) were from other counties in Georgia.

Serology and PCR results unadjusted for antibody waning

The weighted seroprevalence in Georgia was 8.6% (95% CI: 6.3 - 11.8%), representing
the period prevalence of detectable antibodies for August 9 - December 8, 2020 (Table 2). This
suggests that 687,450 out of 8,113,542 adults in Georgia had prevalent anti-SARS-CoV-2 Ig at
the time they provided a sample. Unweighted, a total of 7.2% of all specimens tested (99/1,370)
were reactive for total Ig.

Associations with prevalence of antibody response

For the state of Georgia, the weighted seroprevalence was two times higher for Black,
non-Hispanic participants than for White, non-Hispanic participants (Table 2). A non-significant
effect of similar magnitude was observed for Hispanic participants relative to White, non-
Hispanic participants. Those reporting cold or flu-like symptoms after January 1, 2020 were nearly 5 times more likely than those without systems to be seropositive. Among those who were seropositive, 66/99 (weighted percent: 75%, 95% CI: 58%-86%) reported cold or flu symptoms since January 1, 2020. There were no observed differences in seroprevalence by education, income, or urbanicity.

For Fulton and DeKalb counties, point estimates of disparities in seroprevalence by race were higher than in the state as a whole, but not statistically significant (Table 3). Antibody prevalence for residents in Fulton and DeKalb counties (7.8%; CI: 5.1, 11.7) was similar to prevalence in other parts of Georgia (8.8%; CI: 6.1, 12.6). Experiencing cold or flu-like systems since the beginning of 2020 was the only variable significantly associated with seropositivity among participants not residing in Fulton or DeKalb (PR=5.2; CI: 2.0, 13.8) (Table 4).

SARS-CoV-2 cumulative incidence

Adjusting estimates for waning detectable antibody levels, the estimated number of cumulative new SARS-CoV-2 infections among Georgian adults was 1,307,518 (95% CrI: 1,081,788-1,541,200) as of November 16, 2020. The cumulative incidence was 16.1% (95% CrI: 13.5-19.2%) (Figure 2). The estimated IFR was 0.78% (95% CrI: 0.66-0.94%). The Georgia Department of Health reported 348,204 COVID-19 cases as of November 16, 2020, indicating that about one-quarter (26.6%; 95% CrI: 22.6%-32.2%) of SARS-CoV-2 infections among adults was reported.

Among specimens tested with PCR, a total of 16/1,529 (1.0%) were positive. Of these 16, 8 (50.0%) were also reactive for total Ig.

Discussion

A statewide probability sample of Georgia households conducted between August and December 2020 allowed for robust estimation of the cumulative incidence of SARS-CoV-2 infection among adults, finding that over 16% of Georgia’s adult population - about one in six - had been infected with the virus as of November 2020. Seroprevalence was highest among
Hispanic and non-Hispanic Black persons, and similar for the Atlanta-metro counties of Fulton and DeKalb compared to the rest of the state.

The data obtained through this household-based, representative survey complement data on reported COVID-19 cases and overcome key limitations associated with data available through traditional state-based COVID-19 surveillance activities and seroprevalence surveys. Because our household sampling strategy was not restricted to individuals experiencing COVID-19 symptoms or seeking SARS-CoV-2 testing, biases associated with testing availability, test-seeking behaviors and the inability to identify asymptomatic individuals were minimal. Additionally, because these data are obtained from a random, representative sample of Georgia residents, the findings can provide reliable inference to all adult Georgia residents. Due to the finding that, as of mid-November 2020, Georgia had only recognized approximately 26% of adults infected with SARS-CoV-2, there is an ongoing need to lower barriers for testing. Our data also validate efforts made thus far in the pandemic response to encourage and invest in frequent, ample testing, despite pushback by lawmakers and certain segments of the general public who may have viewed public health mitigation strategies to have been excessive. (16)

Population-based COVID-19 data at the state level allows for a more nuanced understanding of the continuum of infection, diagnosis and mortality and the relationship of these metrics to programmatic priorities. For example, as of November 16, 2020, Georgia’s estimated case fatality ratio (CFR) was 2.1%. (17) Because the CFR is calculated from diagnosed cases (and practically from reported cases), having an IFR (which includes people who were asymptomatic in the denominator) advances our understanding of how common death is among all people infected with COVID-19, regardless of whether those infections were symptomatic. The result is that the CFR overstates how common death is among all those infected in the state. Our more comprehensive IFR that was estimated around the same time was about about a third of the CFR. Accordingly, SARS-CoV-2 infections may not be as fatal as
had been previously reported; nonetheless, based on the IFR estimated in this study, 1 out of every 130 adult Georgians who are infected with SARS-CoV-2 will die.

Knowing that Georgia went into its winter surge with 16% of the adult population having had a SARS-CoV-2 infection is informative. It provides a reliable “lower bound” on how many adults have been infected, and despite waning antibodies, the proportion infected will only increase. When coupled with increasing data on duration of immunity, these more robust estimates of cumulative SARS-CoV-2 infection can help decision-makers understand how natural immunity contributes to a Georgia-specific herd immunity metric. To that end, data from our study suggest persons over the age of 65 have experienced far less infection than other age groups (and are therefore still susceptible), validating the state’s decision to prioritize that demographic for vaccination first. Our study also found the highest seroprevalence among Hispanic and non-Hispanic Black persons, suggesting that similar findings from diagnosed cases are not the result of biases in testing. These findings should be used to strengthen messaging around why vaccination remains important for these demographic groups despite previous infection, and add urgency to investments in increasing education and reducing barriers to access for Hispanic and Black Georgians.

Although we lack power to examine differences in seroprevalence by other meaningful geographic units (e.g. health district or state region), the results stratified by Fulton/DeKalb versus the rest of the state offer some useful local insights into differences in infection by metropolitan vs. non-metropolitan areas. Fulton and DeKalb comprise all of the City of Atlanta, Georgia’s capital and most populated city. The populations of these two counties comprise 17% of Georgia’s population.(18) Observing that the seroprevalence was similar among residents of those two counties compared to the rest of the state was notable, given that national data show consistently lower diagnosis rates for micropolitan and non-core areas through July 2020, with a switch in the pattern starting in August 2020 such that more infections were reported in less urbanized areas.(19) Thus, our finding of similar seroprevalence levels in urban and rural areas...
of Georgia might represent a combination of more historical infections in urban areas earlier in the year, and a higher concentration of infections in more rural areas during the period of the specimen collection. Infection rates (and subsequently antibody seroprevalence) are also related to risk mitigation behaviors. Although the use of face coverings has always been strongly encouraged across Georgia, the City of Atlanta issued a mask mandate in July 2020. With increasing ecological evidence suggesting the benefits masking can have on reducing community spread of SARS-CoV-2, Atlanta’s mask mandate may have limited the propagation of the virus in Fulton and Dekalb counties, where higher levels of transmission might have been favored by higher population density.

Our study is subject to a number of limitations. While we utilized a representative sampling frame, our response rate was 11.3%, which is low but typical for mailed surveys using address-based sampling frames. The only other two household samples reported were conducted through door to door offer of enrollment (versus mailout enrollment packages in our study) and also had relatively low response rates (23.6 to 23.7%). Our results are likely subject to some degree of differential response bias; we addressed this by oversampling specific groups (e.g., Black and Hispanic households) with lower response rates, and by weighting for non-response of households, a procedure with validity facilitated by the nature of an address-based sampling frame. Importantly, we were only able to address differential non-response using characteristics of the population that were available to us on the frame (e.g., population distributions by race/ethnicity or household income levels). Characteristics that may be associated with COVID-19 risk but not available at the population-level, such as higher general propensity to take risks, were not available for extrapolation to the underlying population from sample data and therefore may contribute to unaddressed selection bias in estimates. Misclassification of antibody status was possible due to waning antibodies, but unlike other studies reported to date, we accounted for these biases through our modeling approach. Our model used an estimated average time of seropositivity from a previous
study conducted for New York City (14). This estimate was generated for an ELISA kit against the SARS-CoV-2 spike protein that detects the total immunoglobulin response (25), which is different from what we used in this study, but this is the only estimate of the timeline of the population-level waning antibody available at this point.

Knowing the true proportion of people who have been previously infected with SARS-CoV-2 is useful both epidemiologically and practically. Past seroprevalence studies from convenience samples and biased samples of residual blood provide important information, but the results are subject to selection biases associated with the sources of specimens. For Georgia, having reliable estimates of the cumulative incidence of SARS-CoV-2 infection among adults allows for more informed decision-making about risk mitigation and vaccination strategies. Data collections will be repeated in March and June of 2021, and results will be examined in an ongoing way as knowledge advances on topics ranging from duration of immunity to implications of antibodies for protection against novel variants.
Funding:

This work was supported by the US National Institute of Allergy and Infectious Diseases (3R01AI143875-02S1), the Center for AIDS Research at Emory University (P30AI050409), and the Robert W. Woodruff Foundation through a grant to the Emory Covid-19 Response Collaborative. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Acknowledgements:

The authors thank Salesforce for its donation of Salesforce.org licenses and system development for the project, and to acknowledge the contributions of development team members Lee Evans, John Thrasher, Stephen Noe, Anurag Jaiswal, Ryan Williams, David Affentranger, and Todd Siegler. They also thank the Kaiser Family Foundation for their design and thoughtful contributions.

Conflicts of interest:

Potential conflicts of interest:

A.C. reports a grant from the Robert W. Woodruff Foundation during the conduct of this study and a paid consultancy with the Fulton County Board of Health, outside the submitted work.

B.L. reports grants and personal fees from Takeda Pharmaceuticals, personal fees from the World Health Organization, outside the submitted work.

M.F. reports consulting fees for providing statistical support during the conduct of this study.

A.S. reports grants from National Institute of Allergy and Infectious Disease, NIAID (3R01AI143875-02S1), a grant from California Department of Health (CDPH), and a grant from the Robert W. Woodruff Foundation, during the conduct of this study.

P.S. and T.S. report grants from the National Institutes of Health during the conduct of the study.

E.H., H.B., K.T., C.D., N.L., and K.S. report no conflicts.
References:

1. Georgia Department of Public Health, COVID-19 Dashboard, (available at https://dph.georgia.gov/).

2. P. G. Choe, C. K. Kang, H. J. Suh, J. Jung, K.-H. Song, J. H. Bang, E. S. Kim, H. B. Kim, S. W. Park, N. J. Kim, W. B. Park, M.-D. Oh, Waning Antibody Responses in Asymptomatic and Symptomatic SARS-CoV-2 Infection. Emerg. Infect. Dis. 27 (2021), doi:10.3201/eid2701.203515.

3. A. J. Siegler, P. S. Sullivan, T. Sanchez, B. Lopman, M. Fahimi, C. Sailey, M. Frankel, R. Rothenberg, C. F. Kelley, H. Bradley, Protocol for a national probability survey using home specimen collection methods to assess prevalence and incidence of SARS-CoV-2 infection and antibody response. Ann. Epidemiol. 49, 50–60 (2020).

4. L. M. LaVange, W. D. Kalsbeek, P. D. Sorlie, L. M. Avilés-Santa, R. C. Kaplan, J. Barnhart, K. Liu, A. Giachello, D. J. Lee, J. Ryan, M. H. Criqui, J. P. Elder, Sample Design and Cohort Selection in the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 20, 642–649 (2010).

5. O. G. Chido-Amajuoyi, R. K. Yu, I. Agaku, S. Shete, Exposure to Court-Ordered Tobacco Industry Antismoking Advertisements Among US Adults. JAMA Netw Open. 2, e196935 (2019).

6. J. Cerel, M. Maple, J. van de Venne, M. Moore, C. Flaherty, M. Brown, Exposure to suicide in the community: Prevalence and correlates in one U.S. state. Public Health Rep. 131, 100–107 (2016).

7. P. S. Sullivan, C. Sailey, J. L. Guest, J. Guarner, C. Kelley, A. J. Siegler, M. Valentine-Graves, L. Gravens, C. del Rio, T. H. Sanchez, Detection of SARS-CoV-2 RNA and Antibodies in Diverse Samples: Protocol to Validate the Sufficiency of Provider-Observed, Home-Collected Blood, Saliva, and Oropharyngeal Samples (Preprint), doi:10.2196/preprints.19054.

8. J. L. Guest, P. S. Sullivan, M. Valentine-Graves, R. Valencia, E. Adam, N. Luisi, M. Nakano, J. Guarner, C. Del Rio, C. Sailey, Z. Goedecke, A. J. Siegler, T. H. Sanchez, Suitability and Sufficiency of Telehealth Clinician-Observed, Participant-Collected Samples for SARS-CoV-2 Testing: The iCollect Cohort Pilot Study. JMIR Public Health Surveill. 6, e19731 (2020).

9. R. R. Andridge, R. J. A. Little, A review of hot deck imputation for survey non-response. Int. Stat. Rev. 78, 40–64 (2010).

10. American Community Survey (ACS), doi:10.4135/9781412963947.n16.

11. National Academies of Sciences, Engineering, Medicine, Rapid Expert Consultations on the COVID-19 Pandemic: March 14, 2020-April 8, 2020 (National Academies Press, 2020).

12. Q.-X. Long, X.-J. Tang, Q.-L. Shi, Q. Li, H.-J. Deng, J. Yuan, J.-L. Hu, W. Xu, Y. Zhang, F.-J. Lv, K. Su, F. Zhang, J. Gong, B. Wu, X.-M. Liu, J.-J. Li, J.-F. Qiu, J. Chen, A.-L. Huang, Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat.
Med. 26, 1200–1204 (2020).

13. W. H. Self, Decline in SARS-CoV-2 Antibodies After Mild Infection Among Frontline Health Care Personnel in a Multistate Hospital Network—12 States, April–August 2020. MMWR Morb. Mortal. Wkly. Rep. 69 (2020) (available at https://www.cdc.gov/mmwr/volumes/69/wr/mm6947a2.htm?ref=theprepping-com).

14. K. Shioda, M. S. Lau, A. N. Kraay, K. N. Nelson, A. J. Siegler, P. S. Sullivan, M. H. Collins, J. S. Weitz, B. A. Lopman, Estimating the cumulative incidence of SARS-CoV-2 infection and the infection fatality ratio in light of waning antibodies. medRxiv (2020), doi:10.1101/2020.11.13.20231266.

15. Georgia Department of Public Health, Georgia COVID-19 Status Report, (available at https://ga-covid19.ondemand.sas.com/docs/ga_covid_data.zip).

16. M. Burke, Georgia state lawmaker removed from House chamber after refusing Covid test. NBC News (2021), (available at https://www.nbcnews.com/news/us-news/georgia-state-lawmaker-removed-house-chamber-after-refusing-covid-test-n1255700).

17. US Historical Data. The COVID Tracking Project, (available at https://covidtracking.com/data/us-daily).

18. United States Census Bureau, QuickFacts: Georgia. Census QuickFacts: Georgia, (available at https://www.census.gov/quickfacts/fact/table/GA,dekalbcountygeorgia,fultoncountygeorgia/PST045219).

19. COVID-19 Stats: COVID-19 Incidence,* by Urban-Rural Classification† - United States, January 22-October 31, 2020§. MMWR Morb. Mortal. Wkly. Rep. 69, 1753 (2020).

20. W. Lyu, G. L. Wehby, Community Use Of Face Masks And COVID-19: Evidence From A Natural Experiment Of State Mandates In The US. Health Aff. 39, 1419–1425 (2020).

21. G. P. Guy Jr, F. C. Lee, G. Sunshine, R. McCord, M. Howard-Williams, L. Kompaniyets, C. Dunphy, M. Gakh, R. Weber, E. Sauber-Schatz, J. D. Omura, G. M. Massetti, CDC COVID-19 Response Team, Mitigation Policy Analysis Unit, CDC Public Health Law Program, Association of State-Issued Mask Mandates and Allowing On-Premises Restaurant Dining with County-Level COVID-19 Case and Death Growth Rates - United States, March 1-December 31, 2020. MMWR Morb. Mortal. Wkly. Rep. 70, 350–354 (2021).

22. Mansour Fahimi, Michael Link, Deborah A. Schwartz, Paul Levy, Ali Mokdad, Tracking Chronic Disease and Risk Behavior Prevalence as Survey Participation Declines: Statistics From the Behavioral Risk Factor Surveillance System and Other National Surveys. Prev. Chronic Dis., 07_0097a (2008).

23. H. M. Biggs, J. B. Harris, L. Breakwell, F. S. Dahlgren, G. R. Abedi, C. M. Szablewski, J. Drobeniuc, N. D. Bustamante, O. Almendares, A. H. Schnall, Z. Gilani, T. Smith, L. Gieraltowski, J. A. Johnson, K. L. Bajema, K. McDavid, I. J. Schafer, V. Sullivan, L. Punkova, A. Tejada-Strop, R. Amiling, C. P. Mattison, M. M. Cortese, S. E. Ford, L. A. Paxton, C. Drenzek, J. E. Tate, CDC Field Surveyor Team, Estimated Community Seroprevalence of SARS-CoV-2 Antibodies - Two Georgia Counties, April 28-May 3, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 965–970 (2020).
24. J. Perreault, T. Tremblay, M.-J. Fournier, M. Drouin, G. Beaudoin-Bussières, J. Prévost, A. Lewin, P. Bégin, A. Finzi, R. Bazin, Waning of SARS-CoV-2 RBD antibodies in longitudinal convalescent plasma samples within 4 months after symptom onset. *Blood*. **136**, 2588–2591 (2020).

25. F. P. Havers, C. Reed, T. Lim, J. M. Montgomery, J. D. Klена, A. J. Hall, A. M. Fry, D. L. Cannon, C.-F. Chiang, A. Gibbons, I. Krapiunaya, M. Morales-Betoule, K. Roguski, M. A. U. Rasheed, B. Freeman, S. Lester, L. Mills, D. S. Carroll, S. M. Owen, J. A. Johnson, V. Semenova, C. Blackmore, D. Blog, S. J. Chai, A. Dunn, J. Hand, S. Jain, S. Lindquist, R. Lynfield, S. Pritchard, T. Sokol, L. Sosa, G. Turabelidze, S. M. Watkins, J. Wiesman, R. W. Williams, S. Yendell, J. Schiffer, N. J. Thornburg, Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020. *JAMA Intern. Med.* (2020), doi:10.1001/jamainternmed.2020.4130.
Figure 1. Consort diagram for a national household probability sample of US households to estimate the cumulative incidence of SARS-CoV-2 infection in Georgia, 2020.

* Consent was required at the household level for household enumeration, and then at the individual level for the randomly selected member of an enumerated household.

* Test results considered invalid for the following reasons: Sample not sufficient to process, processing incomplete (by study protocol), sample collection date outside of range 8/9/20-12/8/20.

* Wave 1 pilot participants were excluded from the Consort, however the analytic sample includes n=1 wave 1 participants that completed the study within the eligible timeframe.
Figure 2. Estimated cumulative incidence of SARS-CoV-2 infection among adults adjusted for waning antibodies and daily seroprevalence, Georgia, 2020.
Table 1. SARS-CoV-2 serology and total immunoglobulin (IgA, IgM, or IgG) viral detection results for a probability sample of 1,370 households and weighted results, compared to the population aged ≥18 years, Georgia, 2020.

Characteristic	Sample	Weighted Sample	GA Population¹
	N	Weighted N	n
Overall	1370	7,981,539	8,113,542
Sex			
Male	523	3,754,083	3,886,408
Female	847	4,227,457	4,227,134
Race/ethnicity			
Hispanic	91	596,425	673,103
Non-Hispanic White	747	4,395,985	4,485,895
Non-Hispanic Black	483	2,502,158	2,558,139
Non-Hispanic Asian	33	333,509	374,149
Non-Hispanic Other	16	153,463	22,256
Age			
18-34 years	313	2,394,183	2,508,449
35-44 years	235	1,393,889	1,380,954
45-54 years	229	1,393,699	1,399,652
55-64 years	272	1,279,288	1,307,533
65+ years	321	1,520,481	1,516,954

*2019 Bridged-Race Estimates (NVSS).

N, total participants. Weighted N: sum of the weights of participants.
Table 2. Unweighted and weighted SARS-CoV-2 antibody prevalence for a probability sample of 1,370 households and weighted results and prevalence ratios for persons aged ≥18 years, Georgia, 2020.

Characteristic	Unweighted		Weighted			PR					
	n	N	%	n	N	%	95% CI	PR	95% CI		
Overall	99	1370	7.23	687,450	7,981,539	8.6	6.3	n/a			
Sex											
Male	39	523	7.46	342,239	3,754,083	9.1	5.4	15.0	reference		
Female	60	847	7.08	345,211	4,227,457	8.2	5.7	11.6	0.90	0.47	1.70
Race/ethnicity											
Hispanic	11	91	12.09	76,221	596,425	12.8	5.8	26.0	1.98	0.74	5.31
Non-Hispanic White	34	747	4.55	283,580	4,395,985	6.5	3.6	11.2	reference		
Non-Hispanic Black	54	483	11.18	327,649	2,502,158	13.1	8.7	19.3	2.03	1.00	4.11
Non-Hispanic Asian	0	33	0.00		333,509	.	.	.	n/a		
Non-Hispanic Other	0	16	0.00		153,463	.	.	.	n/a		
Age											
18-34 years	29	313	9.27	197,654	2,394,183	8.3	4.8	13.8	0.89	0.34	2.35
35-44 years	20	235	8.51	175,628	1,393,889	12.6	5.8	25.2	1.36	0.44	4.15
45-54 years	15	229	6.55	91,647	1,393,699	6.6	3.5	12.0	0.71	0.35	1.99
55-64 years	17	272	6.25	118,766	1,279,288	9.3	4.1	19.5	reference		
65+ years	18	321	5.61	103,757	1,520,481	6.8	3.6	12.7	0.74	0.26	2.09
Urbanicity											
Micropolitan/small-town/rural	6	100	6.00	83,765	944,170	8.9	3.2	22.3	reference		
Metropolitan	93	1,270	7.32	603,686	7,037,370	8.6	6.1	11.9	0.97	0.32	2.91
Education											
High School/GED or less	21	219	9.59	243,356	3,177,708	7.7	4.4	13.0	0.99	0.47	2.09
Education Level	N	Mean Age	SD	Min	Max	Median	IQR				
---	----	----------	----	-----	-----	--------	-----				
Some college/associate's degree	31	7.31		6.7	19.7	1.50	0.71				
Bachelor's degree	28	6.47		4.7	12.7	reference					
Graduate degree	19	6.46		2.8	9.1	0.66	0.30				

Annual Income							
$0 to $24,999	19	7.57		6.0	14.2	0.57	0.20
$25,000 to $49,999	23	7.54		4.6	18.3	1.14	0.46
$50,000 to $99,999	32	7.34		4.8	14.0	reference	
$100,000 to 199,999	22	7.91		6.2	20.8	1.41	0.61
$200,000+	3	3.00		2.9	8.5	0.35	0.09

Health Insurance							
No health insurance	8	5.93		6.0	14.2	0.57	0.20
Medicare/Medicaid/Other government plan	30	7.73		6.7	10.7	0.64	0.34
Private insurance/parent's plan	57	7.43		10.5	15.7	reference	
Don't know	4	5.00		4.9	15.5	0.47	0.12

Comorbidities							
Diabetes	19	11.73		11.8	21.8	1.44	0.68
Heart condition	4	4.21		4.1	13.5	0.45	0.11
Chronic lung disease	8	7.27		5.1	11.1	0.58	0.23
Hypertension	31	8.42		8.3	13.3	0.95	0.51

Symptoms since January 1st							
No symptoms	11	4.15		3.3	6.7	reference	
Cold/Flu	69	12.92		16.1	22.5	4.94	2.17
Any COVID-19 symptom	19	3.33		3.8	8.6	1.15	0.36
Any COVID-19 symptoms in past 30 days	56	6.85		9.3	13.8	1.24	0.65

Month of sample collection							
August/September/October	7	5.88		9.3	23.5	reference	

Note: SD = standard deviation, Min = minimum, Max = maximum, IQR = interquartile range.
| November/December | 92 | 1,251 | 7.35 | 607,887 | 7,127,313 | 8.5 | 6.1 | 11.8 | 0.92 | 0.30 |

1Confidence intervals are calculated using the modified Wilson method.

2Reference group is persons without characteristic

3Symptoms include: cough, itchy eyes, shortness of breath, runny/stuffy nose, fever, headache, chills, diarrhea, muscle pain, sore throat, vomiting, nausea, or loss of taste or smell.
Table 3. Unweighted and weighted SARS-CoV-2 antibody prevalence for a probability sample of 585 households and weighted results and prevalence ratios for persons aged ≥18 years, Fulton/Dekalb counties, 2020.

Characteristic	Unweighted	Weigheded									
	n	N	%	n	N	%	95% CI	PR	95% CI		
Overall	41	585	7.01	108,598	1,401,148	7.8	5.0	11.7	n/a		
Sex											
Male	20	233	8.58	60,454	657,852	9.2	4.9	16.6	reference		
Female	21	352	5.97	48,144	743,296	6.5	3.7	11.0	0.70	0.30	1.63
Race/ethnicity											
Hispanic	4	40	10.00	15,704	91,223	17.2	4.5	48.0	4.20	0.75	23.69
Non-Hispanic White	9	220	4.09	21,810	532,543	4.1	1.6	10.3	reference		
Non-Hispanic Black	28	301	9.30	71,085	656,172	10.8	6.8	16.9	0.88	7.95	
Non-Hispanic Asian	0	16	0.00	.	90,550	0.0	.	.	n/a		
Non-Hispanic Other	0	8	0.00	.	30,660	0.0	.	.	n/a		
Age											
18-34 years	16	148	10.81	37,986	470,185	8.08	3.74	16.57	1.14	0.30	4.33
35-44 years	9	106	8.49	28,777	250,592	11.48	4.83	24.91	1.62	0.40	6.52
45-54 years	5	106	4.72	13,851	243,808	5.68	2.05	14.76	0.80	0.18	3.65
55-64 years	6	103	5.83	14,871	209,603	7.10	2.50	18.55	reference		
65+ years	5	122	4.10	13,113	226,960	5.78	2.24	14.12	0.81	0.19	3.52
Education											
High School/GED or less	9	80	11.25	36,514	371,714	9.82	4.68	19.47	1.15	0.37	3.60
Some college/associate's degree	9	159	5.66	17,599	349,886	5.03	2.11	11.51	0.59	0.17	2.03
Bachelor's degree	13	195	6.67	35,058	411,479	8.52	3.67	18.53	reference		
Graduate degree	10	151	6.62	19,427	268,069	7.25	3.20	15.60	0.85	0.26	2.80
Annual Income	Count	Total	Mean	Median	Std. Dev	Min	Max	Std. Error	95% CI Low	95% CI High	
------------------------	-------	-------	------	--------	----------	-----	-----	-----------	------------	-------------	
$0 to $24,999	11	100	11.00	13.06	6.08	25.83	3.74	1.31	10.74		
$25,000 to $49,999	10	129	7.75	4.15	1.73	9.61	1.19	0.37	3.78		
$50,000 to $99,999	9	187	4.81	3.49	1.66	7.19	reference				
$100,000 to 199,999	9	122	7.38	12.85	6.16	24.86	3.69	1.32	10.33		
$200,000+	2	47	4.26	5.05	1.37	16.89	1.45	0.29	7.14		
Health Insurance											
No health insurance	3	61	4.92	7.77	2.22	23.81	1.51	0.35	6.59		
Medicare/Medicaid/Other government plan	15	149	10.07	12.03	6.48	21.26	2.34	0.97	5.62		
Private insurance/parent's plan	21	335	6.27	5.14	2.77	9.34	reference				
Don't know	2	40	5.00	15.42	3.36	48.89	3.00	0.52	17.32		
Comorbidities											
Diabetes	11	79	13.92	19.62	9.69	35.70	3.12	1.31	7.42		
Heart condition	2	35	5.71	9.43	2.76	27.60	1.23	0.30	5.00		
Chronic lung disease	3	49	6.12	7.27	2.21	21.38	0.93	0.24	3.61		
Hypertension	13	158	8.23	14.16	7.18	26.02	2.48	1.05	5.83		
Symptoms since January 1st											
No symptoms	5	126	3.97	3.32	1.27	8.42	reference				
Cold/Flu	25	218	11.47	12.44	7.15	20.77	3.74	1.19	11.76		
Any COVID-19 symptom	11	241	4.56	5.32	2.40	11.39	1.60	0.44	5.83		
Any COVID-19 symptoms in past 30 days	23	320	7.19	9.12	5.37	15.08	1.48	0.60	3.67		
Month of sample collection											
August/September/October	2	61	3.28	3.77	1.04	12.81	reference				
November/December	39	524	7.44	8.72	5.56	13.41	2.31	0.53	10.1		
Table 4. Unweighted and weighted SARS-CoV-2 antibody prevalence for a probability sample of 785 households and weighted results and prevalence ratios, rest of GA outside of Fulton/Dekalb counties, 2020.

Characteristic	Unweighted					Weighted						PR	95% CI
	n	N	%	n	N	%	95% CI	PR	95% CI				
Overall	58	785	7.39	578,852	6,580,392	8.80	6.06	12.61	n/a				
Sex													
Male	19	290	6.55	281,786	3,096,231	9.10	4.88	16.36	reference				
Female	39	495	7.88	297,067	3,484,161	8.53	5.63	12.70	0.94	0.44	1.98		
Race/ethnicity													
Hispanic	7	51	13.73	60,517	505,202	11.98	4.85	26.64	1.77	0.58	5.40		
Non-Hispanic White	25	527	4.74	261,770	3,863,441	6.78	3.66	12.22	reference				
Non-Hispanic Black	26	182	14.29	256,565	1,845,986	13.90	8.35	22.25	2.05	0.92	4.56		
Non-Hispanic Asian	0	17	0.00	.	242,959	.	.	.	n/a				
Non-Hispanic Other	0	8	0.00	.	122,803	.	.	.	n/a				
Age													
18-34 years	13	165	7.88	159,668	1,923,998	8.30	4.40	15.11	0.85	0.28	2.61		
35-44 years	11	129	8.53	146,850	1,143,296	12.84	5.22	28.28	1.32	0.37	4.79		
45-54 years	10	123	8.13	77,796	1,149,891	6.77	3.31	13.34	0.70	0.22	2.24		
55-64 years	11	169	6.51	103,894	1,069,685	9.71	3.94	22.02	reference				
65+ years	13	199	6.53	90,644	1,293,521	7.01	3.37	14.00	0.72	0.22	2.34		
Education													
High School/GED or less	12	139	8.63	206,842	2,805,994	7.37	3.93	13.40	0.99	0.40	2.41		
Some college/associate's degree	22	265	8.30	264,379	2,064,159	12.81	7.09	22.04	1.71	0.72	4.05		
Bachelor's degree	15	238	6.30	81,773	1,093,627	7.48	3.99	13.58	reference				
Graduate degree	9	143	6.29	25,859	616,612	4.19	1.86	9.20	0.56	0.20	1.60		
Annual Income	$0 to $24,999	8	151	5.30	66,075	1,115,464	5.92	2.54	13.21	0.65	0.23	1.86	
	$25,000 to $49,999	13	176	7.39	130,521	1,259,758	10.36	4.84	20.79	1.14	0.44	2.99	
	$50,000 to $99,999	23	249	9.24	196,453	2,164,383	9.08	5.05	15.79	reference			
	$100,000 to 199,999	13	156	8.33	176,868	1,554,081	11.38	5.30	22.75	1.25	0.48	3.29	
	$200,000+	1	53	1.89	8,935	486,705	1.84	0.32	9.86	0.20	0.03	1.58	
Health Insurance	No health insurance	5	74	6.76	44,906	799,471	5.62	1.91	15.41	0.48	0.14	1.64	
	Medicare/Medicaid/Other government plan	15	239	6.28	97,366	1,715,017	5.68	3.05	10.34	0.49	0.22	1.06	
	Private insurance/parent's plan	36	432	8.33	425,711	3,655,701	11.65	7.34	17.98	reference			
	Don't know	2	40	5.00	10,870	410,203	2.65	0.49	13.11	0.23	0.03	1.52	
Comorbidities	Diabetes	8	83	9.64	73,128	718,648	10.18	4.30	22.22	1.18	0.45	3.10	
	Heart condition	2	60	3.33	24,582	705,015	3.49	0.75	14.81	0.37	0.06	2.16	
	Chronic lung disease	5	61	8.20	17,117	373,879	4.58	1.51	13.02	0.51	0.17	1.53	
	Hypertension	18	210	8.57	113,126	1,601,756	7.06	3.77	12.84	0.75	0.35	1.62	
Symptoms since January 1st	No symptoms	6	139	4.32	42,205	1,297,210	3.25	1.34	7.68	reference			
	Cold/Flu	44	316	13.92	445,590	2,631,780	16.93	11.32	24.56	5.20	1.96	13.82	
	Any COVID-19 symptom	8	330	2.42	91,058	2,651,401	3.43	1.16	9.70	1.06	0.25	4.45	
	Any COVID-19 symptoms in past 30 days	33	498	6.63	382,625	4,081,705	9.37	5.83	14.73	1.19	0.56	2.54	
Month of sample collection	August/September/October	5	58	8.62	69,236	580,404	11.93	3.81	31.67	reference			
	November/December	53	727	7.29	509,616	5,999,988	8.49	5.75	12.37	0.71	0.20	2.49	
