Identifying Genetic Risk Factors via Sparse Group Lasso with Group Graph Structure

Tao Yang1,2, Paul Thompson3, Sihai Zhao4 and Jieping Ye5

1Arizona State University, Tempe, AZ, USA \quad 2Baidu Research, Sunnyvale, CA, USA
3University of Southern California, Los Angeles, CA, USA
4University of Illinois at Urbana-Champaign, Champaign, IL, USA
5University of Michigan, Ann Arbor, MI, USA

t.yang@baidu.com, pthomp@usc.edu, sdzhao@illinois.edu, jpye@umich.edu

Abstract

Genome-wide association studies (GWA studies or GWAS) investigate the relationships between genetic variants such as single-nucleotide polymorphisms (SNPs) and individual traits. Recently, incorporating biological priors together with machine learning methods in GWA studies has attracted increasing attention. However, in real-world, nucleotide-level bio-priors have not been well-studied to date. Alternatively, studies at gene-level, for example, protein–protein interactions and pathways, are more rigorous and legitimate, and it is potentially beneficial to utilize such gene-level priors in GWAS. In this paper, we proposed a novel two-level structured sparse model, called \textit{Sparse Group Lasso with Group-level Graph structure} (SGLGG), for GWAS. It can be considered as a sparse group Lasso along with a group-level graph Lasso. Essentially, SGLGG penalizes the nucleotide-level sparsity as well as takes advantages of gene-level priors (both gene groups and networks), to identifying phenotype-associated risk SNPs. We employ the alternating direction method of multipliers algorithm to optimize the proposed model. Our experiments on the Alzheimer’s Disease Neuroimaging Initiative whole genome sequence data and neuroimage data demonstrate the effectiveness of SGLGG. As a regression model, it is competitive to the state-of-the-arts sparse models; as a variable selection method, SGLGG is promising for identifying Alzheimer’s disease-related risk SNPs.

1 Introduction

Genetic variation is what makes us all unique. It refers to the diversity in the DNA sequence in human genomes and it may affect how an individual develops a disease or and responds to drugs, vaccines, pathogens, and etc [5, 2]. The most common type of genetic variation is a single-nucleotide polymorphism (SNP)—i.e., a difference in a single nucleotide in the deoxyribonucleic acid (DNA) [13]. In the past decade, genome-wide association studies (GWA studies or GWAS), which aim at revealing the relationships between genetic variants such as SNPs and individual traits, have attracted much attention achieved considerable success [14, 25, 28].

Traditional GWA studies are based on statistical tests. Genetic risk factors are determined by their statistical significance, where a general procedure is to perform a statistical test between each individual SNP and the phenotype under investigation [29, 8, 7]. For example, via meta-analyses, 11 new susceptibility SNPs for Alzheimer’s disease (AD) have been identified [15]; 10 loci that may influence allergic sensitization have been detected [8]. However, such kind of approaches has several limitations. First, it ignores the aggregate effects of multiple SNPs, for example, the epistatic interactions between loci [34, 17]. Second, independent SNP–phenotype testing disregards the SNPs’ structural correlations associated with population genetics (i.e., linkage disequilibrium, LD) and biological relations (e.g. functional relationships between genes) [20].
Later, increasing attention has been focused on Lasso (least absolute shrinkage and selection operator [24]), as an alternative tool for identifying risk SNPs in GWAS [31, 26]. Lasso is a multivariate method that models multiple SNPs simultaneously and highly precarious SNPs (that related to the phenotype under investigation) can be identified through the non-zero components of the model. For example, a previous whole genome association study [31] shows Lasso together with stability selection [19] is promising in detecting risk SNPs associated with Alzheimer’s disease (AD). However, there are two major drawbacks of Lasso: 1) it tends to arbitrary select only one from a set of highly correlated features [10]; 2) it considers all features equally without any further structural assumptions. To address the above issues, utilizing structured sparse models together with different biological priors has aroused growing concern in GWAS, as incorporating such assumptions is favorable for model construction and interpretation [32]. There are several attempts, for example, group Lasso [18], tree Lasso [26], and absolute fused Lasso [30].

It is worth mentioning that all those aforementioned approaches are based on the nucleotide-level biological assumptions (e.g. LD or the consistency of successive SNPs). However, in real-world, at nucleotide-level, neither structural associations, nor functional relationships, nor interaction mechanisms, have been well-studied to date. On the other hand, studies of biological mechanisms are more rigorous and legitimate at gene-level. For example, GeneMANIA [27] is a powerful tool for revealing gene-level biological networks. It integrates a large set of functional association data, including protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. As a consequence, it is potentially beneficial to utilize such gene-level priors in nucleotide-level GWAS studies.

In this paper, we propose a novel two-level structured sparse model, called Sparse Group Lasso with Group-level Graph structure (SGLGG), which a is promising method for identifying significant SNP–phenotype associations. As its name indicates, SGLGG can be considered as a fusion model of a sparse group Lasso [33, 9] and a group-level graph Lasso (a.k.a., graph-guided fused Lasso [6]). Essentially, our proposed model involves two levels of predictors—i.e., the nucleotide-level predictors and the gene-level predictors. And consequently in a GWA study, SGLGG will penalize the following three respects:

1. the gene-level sparsity;
2. the graph structure among gene-level predictors;
3. the nucleotide-level sparsity.

As a result, SGLGG tends to select only a set of causal SNPs within a gene group and limited gene groups among the entire sequence. Meanwhile, it is capable of taking advantages of biological priors (i.e., gene networks) during the gene-level selection. With the graph constraint, highly relevant genes are likely to be chosen simultaneously, and thus SNPs from different gene scopes are potentially able to connect. SGLGG is hard to solve due to its complex sparse-inducing regularizers. To this end, we first transfer the edge constraints among the graph into the matrix form, and then, employ the ADMM (alternating direction method of multipliers [4]) algorithm for optimizing. Experiments have been conducted on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) whole genome sequence (WGS) data and neuroimage data, for both regression tasks and variable selection tasks. Preliminary results show that SGLGG is competitive to the state-of-the-arts sparse models in predicting AD-related imaging phenotypes. In addition, stability selection results demonstrate that SGLGG is promising for identifying risk SNPs associated with Alzheimer’s disease.

2 Our Model: SGLGG

Essentially, we consider a linear prediction model. Given a centered data matrix \(A \in \mathbb{R}^{n \times p} \) with \(n \) observations and \(p \) features, and a corresponding response \(y \in \mathbb{R}^n \). Suppose that \(p \) predictors can be divided into \(K \) non-overlapping groups, with \(p_k \) the number of low-level predictors in group \(k \). Accordingly, we denote \(\mathbf{s} \in \mathbb{R}^p \) be the low-level predictors and \(\mathbf{g} \in \mathbb{R}^K \) be the group-level predictors, respectively. Then, the low-level predictor \(\mathbf{s} \) can be represented as \(\mathbf{s} = [s_1 \ldots s_{p_1} \ldots s_{k_1} \ldots s_{p_{k_1}}] \). We further denote \(\mathbf{G}_s = (\mathbf{M}^T \mathbf{g}) \circ \mathbf{s} = [g_1s_1 \ldots g_1s_{p_1} \ldots g_2s_1g_2 \ldots s_{p_1} \ldots g_2s_{2p_2} \ldots g_k\mathbf{s}_{p_k}] \in \mathbb{R}^p \), where \(\circ \) is the Hadamard
product operator, $M \in \mathbb{R}^{k \times p}$ is a designed mapping matrix\(^1\) and $g_i, i \in [1, k]$ is the i-th element of g. The group-level graph\(^2\) information is described by $G \equiv (s_K, E)$, where $s_K = \{1, 2, \ldots, k\}$ is a set of nodes, and E is the set of edges. In addition, let $w_g \in \mathbb{R}^K$ denote the weight vector corresponding to the group-level predictors, and r_{ij} denote the weight of the edge between node g_i and g_j. Hence, in this paper, we consider the following optimization problem:

$$\min_{g,s} \left\{ \ell(y, G_s) + \lambda_1 \| w_g \circ g \|_1 + \lambda_2 \sum_{(i,j) \in E} \tau(r_{ij})|g_i - \text{sgn}(r_{ij})g_j| + \lambda_3 \| s \|_1 \right\}, \tag{1}$$

where $\ell(\cdot)$ is a convex empirical loss function (e.g., the least squares) and the error is calculated based on G_s—a combination of predictors g and s via M; $\lambda_1, \lambda_2, \lambda_3 \geq 0$; and $\tau(r_{ij})$ represent a general monotonically increasing function weight function that enforces a fusion effect between coefficients g_i and g_j.

In Eq. (1), the first constraint can be considered as a group-level sparsity constraint, the second constraint introduces the group-level graph structure via the fused Lasso, and the third constraint penalizes the low-level sparsity. Hereby, we call Problem (1), the Sparse Group Lasso with Group-level Graph structure. More specifically, in a GAW study, s represents the nucleotide-level predictor, and accordingly, g can be considered as the gene-level predictor. Therefore, an ideal solution to Eq. (1) will lead to the following scenarios: 1) only limited gene groups will be selected among the entire sequence; 2) the group selection is guided by the gene-level biological priors—i.e., relevant genes are more likely to be chosen simultaneously; and 3) only a subset of SNPs will be selected within a selected gene. In other words, the gene-level and nucleotide-level constraints ensure that the most relevant gene groups and SNPs within a gene will be chosen by the model. Meanwhile, the group selection will be affected by the gene-level priors—i.e., some inter-gene SNP–SNP connections could be revealed by the graph constraint.

Furthermore, the graph constraint in Eq. (1) can be reformulated into a matrix form. Denote T be the sparse matrix constructed from the edge set E, where $t_{ij} = t_{ji} = r_{ij}$ if there is an edge between g_i and g_j. Furthermore, for discussion convenience, we ignore the weight vectors in Eq. (1), then SGLGG problem can be simplified as the following matrix form:

$$\min_{y, G_s} \ell(y, G_s) + \lambda_1 \| g \|_1 + \lambda_2 \| Tg \|_1 + \lambda_3 \| s \|_1. \tag{2}$$

3 ADMM for Solving SGLGG

3.1 ADMM basic

Due to the complex sparse-inducing regularizers, unconstrained optimization problem like (1) are sometimes hard to solve directly. Instead, it is possible to reformulate the original unconstrained problem to an equivalent constrained problem. In the sequel, such a problem can be addressed using constrained optimization methods such as the augmented Lagrangian method.

Hereby, we employ the alternating direction method of multipliers (ADMM)\(^3\) algorithm to solve Problem (1). ADMM is a variant of the augmented Lagrangian method. It utilizes dual decomposition and partial updates for the dual variables. Without loss of generality, we consider the following constraint optimization problem:

$$\min_{x,z} f(x) + g(z) \tag{3}$$

$$\text{s.t. } Ax + Bz = c,$$

where f and g are convex, $x \in \mathbb{R}^p$, $z \in \mathbb{R}^q$, $A \in \mathbb{R}^{n \times p}$, $B \in \mathbb{R}^{n \times q}$, and $c \in \mathbb{R}^n$. With ADMM, we first reformulate the above problem (3) as:

$$L_\rho(x, z, \mu) = f(x) + g(z) + \mu^T(Ax + Bz - c) + \frac{\rho}{2} \| Ax + Bz - c \|^2, \tag{4}$$

\(^1M \in \mathbb{R}^{k \times p}\) is a binary matrix, an element $m_{ij} = 1$ if s_j in group g_i.

\(^2\)In this study, we only consider the situation of undirected graph among group-level features.
with \(\mu \) being the augmented Lagrangian multiplier, and \(\rho \) being the non-negative dual update step length. ADMM solves this problem by iteratively minimizing \(L_{\rho}(x, z, \mu) \) over \(x, z \) and \(\mu \), one at a time, until convergence. Consequently, the update rule for ADMM is given by

\[
x^{k+1} := \arg \min_x L_{\rho}(x, z^k, \mu^k),
\]

\[
z^{k+1} := \arg \min_z L_{\rho}(x^{k+1}, z, \mu^k),
\]

\[
\mu^{k+1} := \mu^k + \rho(Ax^{k+1} + Bz^{k+1} - c).
\]

3.2 ADMM for solving SGLGG problem

Suppose \(\ell(\cdot) \) be the least squares loss, then the SGLGG problem presented in (2) can be rewritten as the following constrained form:

\[
\begin{align*}
\min_{g,s,p,q,r} & \frac{1}{2} \|y - Ag_s\|^2 + \lambda_1\|p\|_1 + \lambda_2\|q\|_1 + \lambda_3\|r\|_1 \\
\text{s.t.} & \quad g - p = 0, Tg - q = 0, s - r = 0,
\end{align*}
\]

where \(p, q, r \) are slack variables. We employ ADMM to solve Problem (5). The augmented Lagrangian is

\[
L_{\rho}(g, s, p, q, r, \mu, \nu, \xi) = \frac{1}{2} \|y - Ag_s\|^2 + \lambda_1\|p\|_1 + \lambda_2\|q\|_1 + \lambda_3\|r\|_1 +
\]

\[
\mu^T(g - p) + \nu^T(Tg - q) + \xi^T(s - r) +
\]

\[
\frac{\rho}{2} \|g - p\|^2 + \frac{\rho}{2} \|Tg - q\|^2 + \frac{\rho}{2} \|s - r\|^2,
\]

where \(\mu, \nu, \xi \) are augmented Lagrangian multipliers. Accordingly, in the \((k+1)\)-th iteration, the update rules are as follows:

- **Update \(g \):** \(g^{k+1} \) can be updated by minimizing \(L_{\rho} \) with \(s, p, q, r, \mu, \nu, \xi \) fixed:

\[
g^{k+1} = \arg \min_g \frac{1}{2} \|y - A[(M^T g) \circ s^k]\|^2 + (\mu^k + T^T \nu^k)^T g + \frac{\rho}{2} \|g - p^k\|^2 + \frac{\rho}{2} \|Tg - q^k\|^2
\]

\[
= \arg \min_g \frac{1}{2} \|y - A \text{Diag}(s^k)M^T g\|^2 + [(\mu^k + T^T \nu^k)^T - \rho p^k - \rho T^T q^k]g + \frac{\rho}{2} g^T (I + T^T T)g
\]

\[
= \arg \min_g \frac{1}{2} g^T [(B^k)^T B^k + \rho(I + T^T T)]g - [y^T B^k - (\mu^k + T^T \nu^k)^T + \rho(p^k)^T + \rho(q^k)^T]g
\]

where \(B^k = A \text{Diag}(s^k)M^T \), and \(\text{Diag}(\cdot) \) is an operation that transforms a vector into a square diagonal matrix. The above optimization problem is quadratic, and thus the optimal solution can be obtained by solving the following linear system:

\[
F_g^{k}g^{k+1} = b_g^{k},
\]

where

\[
F_g^{k} = (B^k)^T B^k + \rho(I + T^T T),
\]

\[
b_g^{k} = (B^k)^T y - \mu^k - T^T \nu^k + \rho p^k + \rho T^T q^k.
\]

It is trivial to show that \(F_g^{k} \) is symmetric positive definite (SPD), and thus Eq. (7) can be solved efficiently via the conjugate gradient method [11].
• **Update s**: s^{k+1} can be updated by minimizing L_ρ with $g, p, q, r, \mu, \nu, \xi$ fixed:

\[
\begin{align*}
 s^{k+1} &= \arg\min_s \frac{1}{2} \|y - A([M^T g^{k+1}] \circ s)\|^2 + (\xi^k)^T s + \frac{\rho}{2} \|s - r^k\|^2 \\
 &= \arg\min_s \frac{1}{2} \|y - A \text{Diag}(M^T g^{k+1})s\|^2 + (\xi^k)^T s + \frac{\rho}{2} \|s - r^k\|^2 \\
 &= \arg\min_s \frac{1}{2} s^T [(C^k)^T C^k + \rho I]s - [y^T C^k - (\xi^k)^T + \rho (r^k)^T]s,
\end{align*}
\]

where $C^k = A \text{Diag}(M^T g^{k+1})$. Similar to the update rule of g, the above optimization problem is quadratic, and thus the optimal solution can be obtained by solving the following linear system:

\[
F^k_s s^{k+1} = b^k_s, \quad (8)
\]

where

\[
F^k_s = C^T C + \rho I, \\
b^k_s = C^T y - \xi^k + \rho r^k.
\]

Similarly, since F^k_s is SPD, Eq. \((8)\) can be solved efficiently via the conjugate gradient method.

• **Update p**: Similarly, p^{k+1} can be obtained by solving the following problem:

\[
\begin{align*}
 p^{k+1} &= \arg\min_p \lambda_1 \|p\|_1 + (\mu^k)^T (g^{k+1} - p) + \frac{\rho}{2} \|g^{k+1} - p\|^2 \\
 &= \arg\min_p \lambda_1 \|p\|_1 - (\mu^k)^T p + \frac{\rho}{2} \|g^{k+1} - p\|^2 \\
 &= \arg\min_p \frac{1}{2} \|p - (g^{k+1} + 1/\rho \mu^k)\|^2 + \frac{\lambda_1}{\rho} \|p\|_1
\end{align*}
\]

The above optimization problem has a closed-form solution, known as the soft-thresholding:

\[
p^{k+1} = S_{\lambda/\rho}(g^{k+1} + 1/\rho \mu^k), \quad (9)
\]

where the soft-thresholding operator is defined as:

\[
S_\lambda(x) = \text{sgn}(x) \max(|x| - \lambda, 0).
\]

• **Update q**: Similarly, q^{k+1} can be obtained by solving the following problem:

\[
q^{k+1} = \arg\min_q \lambda_2 \|q\|_1 + (\nu^k)^T (Tg^{k+1} - q) + \frac{\rho}{2} \|Tg^{k+1} - q\|^2.
\]

The closed-form solution of the above problem can be obtained by:

\[
q^{k+1} = S_{\lambda_2/\rho}(Tg^{k+1} + 1/\rho \nu^k). \quad (10)
\]

• **Update r**: Similarly, r^{k+1} can be obtained by solving the following problem:

\[
r^{k+1} = \arg\min_r \lambda_3 \|r\|_1 + (\xi^k)^T (s^{k+1} - r) + \frac{\rho}{2} \|s^{k+1} - r\|^2.
\]

The closed-form solution of the above problem can be obtained by:

\[
r^{k+1} = S_{\lambda_3/\rho}(s^{k+1} + 1/\rho \xi^k). \quad (11)
\]
Update μ, ν, ξ: In the $(k+1)$-th iteration, μ, ν, ξ are updated by:

\[
\mu^{k+1} = \mu^k + \rho (g^{k+1} - p^{k+1}), \\
\nu^{k+1} = \nu^k + \rho (Tg^{k+1} - q^{k+1}), \\
\xi^{k+1} = \xi^k + \rho (s^{k+1} - r^{k+1}).
\]

We summarize the ADMM algorithm for solving the SGLGG Problem (2) in Algorithm 1. Generally, ADMM breaks the original complex optimization problem into a series of smaller subproblems, each of which is then easier to handle. In addition, it is worth mentioning that in practice, it is important to normalize g_i according to its group size.

Algorithm 1 ADMM for the sgLasso gGraph Problem

Input: A, y, E, λ_1, λ_2, λ_3, ρ
Output: g, s

1: Initialization: Initialize g and s, $k \leftarrow 0$.
2: while not converge do
3: Update g^{k+1} according to Eq. (7).
4: Update s^{k+1} according to Eq. (8).
5: Update p^{k+1} according to Eq. (9).
6: Update q^{k+1} according to Eq. (10).
7: Update r^{k+1} according to Eq. (11).
8: Update μ^{k+1}, ν^{k+1} and ξ^{k+1} according to Eqs. respectively. (12), (13) & (14).
9: end while

4 Experiments

To evaluate the performance of the proposed SGLGG approach in GWAS, we conducted a series of experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) whole genome sequence (WGS) data and neuroimage data. Particularly, we focus on two learning tasks: 1) predicting AD-related imaging phenotypes (based on SNPs data); and 2) identifying risk SNPs w.r.t. AD imaging phenotypes.

4.1 Data processing

4.1.1 ADNI WGS data and neuroimaging data

In this study, we adopt the ADNI WGS data set and MRI data for GWAS. More specifically, the following procedures have been employed for processing SNPs data. First, we employ PLINK [22] together with a series of standard quality control constraints for SNPs data preprocessing. Particularly, a SNP will be removed if its minor allele frequency (MAF) $< 5\%$, or missingness $> 5\%$, or deviations from Hardy-Weinberg Equilibrium $P < 5 \times 10^{-7}$. In the sequel, we adopt MaCH [16] for genotype imputation. MaCH is a Markov chain based haplotyper that is capable of resolving long haplotypes or inferring missing genotypes. Eventually, we apply several filters on the imputed data set, including: RSQ (estimated R^2, specific to each SNP) > 0.5, FREQ1 (frequency for reference Allele 1) $> 1\%$ and FREQ1 $< 99\%$. As a consequence, the entire genome data contains 1,319 subjects with 6,566,154 SNPs, in which 155,357 SNPs are from Chromosome 19. For subjects composition, there are 327 healthy controls (HC), 249 AD patients, 41 participants with mild cognitive impairment (MCI), 220 early MCI (EMCI) patients, 419 late MCI (LMCI) patients, and 63 patients with significant memory concerns (SMC).

Volumes of some major influenced brain regions that are related to Alzheimer’s disease, including the hippocampus (HIPP) and the entorhinal cortex (EC), have been chosen as the neuroimaging phenotypes in this study. Those volumes were extracted from subject’s T1 MRI data using Freesurfer [23].
4.1.2 Candidate AD genes

Hereby, we focus on Alzheimer’s disease genetic risk factors (at both gene-level and nucleotide-level) on the 19th chromosome of the human genome. Particularly, at gene-level, ten candidate genes are pre-selected as high AD-risk according to AlzGene [1], including LDLR, GAPDHS, BCAM, PVRL2, TOMM40, APOE, APOC1, APOC4, EXOC3L2, and CD33. Positions of those pre-selected genes are shown in Figure 1.

The above ten genes have been considered as the most strongly associated genes with AD on Chromosome 19 (Chr.19). In AlzGene, top associated genes are ranked based on genetic variants with the best overall HuGENet/Venice grades [12]. Specifically, for genes with identical grades, the ranking is based on their p-values; for genes with identical grades & p-values, the ranking is based on their effect sizes. Basic information on those AD-risk genes is available in Table 1 (top part).

4.1.3 Gene networks

To retrieve gene-level biological priors—i.e., gene networks, we utilized GeneMANIA [27] in our study. Essentially, GeneMANIA is a powerful tool to extract gene networks based on a set of input genes. The network is retrieved from a large set of functional association data, including gene co-expression & co-localization, protein-protein interaction, genetic interaction, shared protein domains, pathway, and etc. GeneMANIA stands for the Multiple Association Network Integration Algorithm. It consists of a linear regression-based algorithm for calculating the functional association network and a label propagation algorithm for predicting gene functions hereafter. In our study, we employ the following two methods to extract gene networks.
Symbol	Assembly	Chr	Location	# of loci
LDLR	GRCh37.p13	19	11200037..11244506	135
GAPDHS	GRCh37.p13	19	36024314..36036221	22
BCAM	GRCh37.p13	19	45312316..45324678	15
PVRL2	GRCh37.p13	19	45349393..45392485	164
TOMM40	GRCh37.p13	19	45394477..45406946	38
APOE	GRCh37.p13	19	45409039..45412650	5
APOC1	GRCh37.p13	19	45417577..45422606	14
APOC4	GRCh37.p13	19	45445495..45448753	7
EXOC3L2	GRCh37.p13	19	45715879..45737469	88
CD33	GRCh37.p13	19	51728335..51743274	16
LDLRAP1	GRCh37.p13	1	25870071..25895377	28
PVRL3	GRCh37.p13	3	11079066..110913017	73
APOA5	GRCh37.p13	11	116660086..116663136	7
APOA1	GRCh37.p13	11	116706467..116708338	5
CRTAM	GRCh37.p13	11	122709255..122743347	75
GAPDH	GRCh37.p13	12	6643585..6647537	10
LIPC	GRCh37.p13	15	58702953..58861073	481
CD226	GRCh37.p13	18	67530192..67624412	149
APOC2	GRCh37.p13	19	45449239..45452822	17
SOD1	GRCh37.p13	21	33031935..33041244	15

1. **Gene network within 10 pre-selected AD-risk genes in Chr.19.**
 Ten aforementioned AD-risk genes on Chromosome 19 are utilized as the input genes for GeneMANIA. For network exploration, we only focus on connections within those ten pre-selected genes. In addition, we adopt the biological process-based method for gene ontology weighting. A visualization of this gene networks is shown in Figure 2 (left).

2. **Extended gene network based on 10 selected Chr19 AD-related genes.**
 Similar to 1, but we allow to introduce ten additional genes for network exploration. This results in totally 20 genes in the graph. A visualization of such a network is shown in Figure 2 (right). Note that, additional genes are selected based on their relations with input genes and thus those genes are not necessary located on Chromosome 19. Additional information of those selected genes is available in Table 1 (bottom part).

 Later, the experimental data sets were generated through those two aforementioned methods. More specifically, we first construct a smaller SNPs data set that consists of SNPs from 10 pre-selected AD-risk genes on Chromosome 19. As a result, such a data set contains 1,381 subjects and 504 SNPs. Next, we generate a larger SNPs data set based on an extended gene network obtained through GeneMANIA—i.e., SNPs from 10 additional genes (as shown in Table 1) are also involved, according to gene-level associations. Accordingly, the larger SNPs data set contains 1,364 SNPs in total from 20 candidate genes.

4.2 Learning task I — Predicting AD-related phenotypes

In the first series of experiments, we evaluate our proposed SGLGG model in a set of regression tasks—i.e., predicting Alzheimer’s disease-related imaging phenotypes. More specifically, SGLGG is compared with a suite of well-known commonly-used (structured) sparse methods, including Lasso, the fused Lasso (FL) and sparse group Lasso (SGL). For SGL and SGLGG, SNPs in the same gene naturally fall into a group. In addition, we compare SGLGG with the absolute fused Lasso (AFL) [30]—a novel learning...
Figure 2: Visualizations of two gene networks. Left: network within 10 pre-selected AD-risk genes on Chr.19; Right: extended gene network based on 10 pre-selected Chr.19 AD-risk genes.

model that penalizes SNPs successive similarities. Four imaging phenotypes including volumes of the left entorhinal cortex (LEH), left hippocampus (LHP), right entorhinal cortex (REH), and right hippocampus (RHP), are used as the responses in this study.

Experiments have been conducted on the two SNPs data sets described in Section 4.1.3. We adopt five-fold cross-validation for each learning task and each sparse model. Comparisons of predictive performance in terms of mean squared error (MSE) of 10 replications are shown in Figure 3 through box plots. In Figure 3, each color represents a modeling method. Labels of the y-axis are named as follows: the first few letters represent a modeling method, the middle three letters indicate the learning task, and the last number (10 or 20) indicate the data set involved.

From Figure 3 we can observe that our proposed SGLGG model is very competitive compared with other (structured) sparse models. With complex sparse-inducing regularizers and complex bio-priors, SGLGG can still provide favorable predictive performance in most of the cases. Meanwhile, such a model has better interpretability than traditional ones, as it incorporated extensive prior knowledge during model learning. Therefore, it is potentially beneficial to address real-world GWA studies through the SGLGG model.

4.3 Learning task II — Identifying AD-risk SNPs

One of the benefits of adopting a sparse model for GWAS is that the most relevant genetic factors can be identified through the non-zero components from the model. Hereby, in the following series of experiments, we compare the variable selection (i.e., SNPs selection) results of different structured sparse methods through stability selection [19]. More specifically, experiments were conducted on the smaller SNPs data set mentioned in Sec 4.1.3. We perform 100 simulations for each learning target. Within each simulation, we first randomly subsample half of the subjects and then perform a modeling method 100 times with different regularization parameters (or pairs of parameters).
Figure 3: Comparison of regression error in terms of MSE of different structured sparse models on candidate AD-risk genes on Chr.19. For y-axis labels: the first few letters represent a modeling method, the middle three letters indicate the learning task, and the last number (10 or 20) indicate the data set involved.
are visualized in Figure 4. Detailed SNPs selection results are available in Appendix 1. In Figure 4, top 50 selected SNPs are marked for each method; each color refers to a modeling method; the x-axis is a compact illustration of gene/SNPs location on Chromosome 19; green bars together with the y-axis indicate the negative logarithmic of P-values of SNPs associated with each learning task.

From Figure 4 we have the following observations:

1. SNPs selected by Lasso and SGL are spread over a large region in the feature sets (i.e., across different genes). However, most SNPs selected by FL, AFL, and our proposed SGLGG model are clustered in a few small regions.

2. SNPs groups identified by SGLGG are different from FL or AFL, where the proposed method tends to select more SNPs within a gene but fewer number of genes in total.

3. Statistical significance in terms of P-value of an SNP selected by SGLGG, may not necessarily be small\(^4\) (see the bottom two sub-figures in Figure 4).

The above observations imply that our proposed SGLGG model sparse selection on both nucleotide-level and gene-level. Within a gene, only the most relevant SNPs will be chosen. The group selection is benefited from gene-level biological prior knowledge—i.e., gene network. Thus, potential inter-gene SNP–SNP connections could be established by SGLGG. In other words, SGLGG is a promising method and has good prospects in revealing the causal SNPs that associated with a phenotype under investigation.

5 Conclusion

In this paper, we proposed a novel two-level structured sparse model—SGLGG—for genome-wide association studies. Essentially, it can be considered as a sparse group Lasso together with a group-level graph-guided fused Lasso. Specifically, SGLGG induces sparsities in both nucleotide-level and gene-level. That is, only the most causal SNPs will be selected within a gene group and only a part of relevant genes will be chosen on the genome. Another benefit of SGLGG is that it also takes advantages of gene-level biological priors during the model construction. Consequently, gene-level bio-priors such as protein–protein interactions and pathways can be utilized to explore inter-gene SNP–SNP connections. To address SGLGG model, we propose an ADMM-based optimization algorithm. Our experiments on the Alzheimer’s disease genome sequence data and neuroimaging data show that SGLGG is very competitive in predict AD-related phenotypes, compared with other state-of-the-arts sparse learning models. Furthermore, stability selection results demonstrate that SGLGG is a promising model for identifying AD-risk SNPs. With the help of gene-level biological priors, SGLGG has good prospects for revealing SNP–SNP interactions among different genes.

Acknowledgement

This work was supported in part by NIH BD2K (Big Data to Knowledge) grants to the KnowENG Center, based at UIUC, and the ENIGMA Center for Worldwide Medicine, Imaging & Genomics, based at USC.

References

[1] L. Bertram, M. B. McQueen, K. Mullin, D. Blacker, and R. E. Tanzi. Systematic meta-analyses of Alzheimer disease genetic association studies: the alzgene database. Nature genetics, 39(1):17–23, 2007.

[2] D. G. Blazer, L. M. Hernandez, et al. Genes, behavior, and the social environment: Moving beyond the nature/nurture debate. National Academies Press, 2006.

\(^4\)A smaller P-value implies higher statistical significance. Since we use the negative logarithm of P-values in Figure 4 statistically significant SNPs will have higher green bars.
[3] K. Bønnelykke, M. C. Matheson, T. H. Pers, R. Granell, D. P. Strachan, A. C. Alves, A. Linneberg, J. A. Curtin, N. M. Warrington, M. Standl, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. *Nature genetics*, 45(8):902–906, 2013.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends® in Machine Learning*, 3(1):1–122, 2011.

[5] B. Carlson. Snps-a shortcut to personalized medicine. *Genetic Engineering & Biotechnology News*, 28(12):12–12, 2008.

[6] X. Chen, S. Kim, Q. Lin, J. G. Carbonell, and E. P. Xing. Graph-structured multi-task regression and an efficient optimization method for general fused lasso. *arXiv preprint arXiv:1005.3579*, 2010.

[7] G. M. Clarke, C. A. Anderson, F. H. Pettersson, L. R. Cardon, A. P. Morris, and K. T. Zondervan. Basic statistical analysis in genetic case-control studies. *Nature protocols*, 6(2):121–133, 2011.

[8] S. L. Edwards, J. Beesley, J. D. French, and A. M. Dunning. Beyond gwass: illuminating the dark road from association to function. *The American Journal of Human Genetics*, 93(5):779–797, 2013.

[9] J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse group lasso. *arXiv preprint arXiv:1001.0736*, 2010.

[10] M. Hebiri and J. Lederer. How correlations influence lasso prediction. *IEEE Transactions on Information Theory*, 59(3):1846–1854, 2013.

[11] M. R. Hestenes and E. Stiefel. *Methods of conjugate gradients for solving linear systems*, volume 49. NBS, 1952.

[12] J. P. Ioannidis, P. Boffetta, J. Little, T. R. O’Brien, A. G. Uitterlinden, P. Vineis, D. J. Balding, A. Chokkalingam, S. M. Dolan, W. D. Flanders, et al. Assessment of cumulative evidence on genetic associations: interim guidelines. *International journal of epidemiology*, 37(1):120–132, 2008.

[13] J. M. Kidd, G. M. Cooper, W. F. Donahue, H. S. Hayden, N. Sampas, T. Graves, N. Hansen, B. Teague, C. Alkan, F. Antonacci, et al. Mapping and sequencing of structural variation from eight human genomes. *Nature*, 453(7191):56, 2008.

[14] A. Korte and A. Farlow. The advantages and limitations of trait analysis with gwass: a review. *Plant methods*, 9(1):29, 2013.

[15] J.-C. Lambert, C. A. Ibrahim-Verbaas, D. Harold, A. C. Naj, R. Sims, C. Bellenguez, G. Jun, A. L. DeStefano, J. C. Bis, G. W. Beecham, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. *Nature genetics*, 45(12):1452–1458, 2013.

[16] Y. Li, C. J. Willer, J. Ding, P. Scheet, and G. R. Abecasis. Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genetic epidemiology*, 34(8):816–834, 2010.

[17] C. Lippert, J. Listgarten, R. I. Davidson, J. Baxter, H. Poon, C. M. Kadie, and D. Heckerman. An exhaustive epistatic snp association analysis on expanded wellcome trust data. *Scientific reports*, 3:1099, 2013.

[18] J. Liu, J. Huang, S. Ma, and K. Wang. Incorporating group correlations in genome-wide association studies using smoothed group lasso. *Biostatistics*, 14(2):205–219, 2013.

[19] N. Meinshausen and P. Bühlmann. Stability selection. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 72(4):417–473, 2010.
[20] B. Mieth, M. Kloft, J. A. Rodríguez, S. Sonnenburg, R. Vobruba, C. Morcillo-Suárez, X. Farré, U. M. Marigorta, E. Fehr, T. Dickhaus, et al. Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies. *Scientific reports*, 6:36671, 2016.

[21] N. Parikh, S. Boyd, et al. Proximal algorithms. *Foundations and Trends® in Optimization*, 1(3):127–239, 2014.

[22] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. De Bakker, M. J. Daly, et al. Plink: a tool set for whole-genome association and population-based linkage analyses. *The American Journal of Human Genetics*, 81(3):559–575, 2007.

[23] M. Reuter, N. J. Schmansky, H. D. Rosas, and B. Fischl. Within-subject template estimation for unbiased longitudinal image analysis. *NeuroImage*, 61(4):1402–1418, 2012.

[24] R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 267–288, 1996.

[25] P. M. Visscher, M. A. Brown, M. I. McCarthy, and J. Yang. Five years of gwas discovery. *The American Journal of Human Genetics*, 90(1):7–24, 2012.

[26] J. Wang, T. Yang, P. Thompson, and J. Ye. Sparse models for imaging genetics. In G. Wu, D. Shen, and M. R. Sabuncu, editors, *Machine Learning and Medical Imaging*, pages 129 – 151. Academic Press, 2016.

[27] D. Warde-Farley, S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Gronios, F. Kazi, C. T. Lopes, et al. The genemania prediction server: biological network integration for gene prioritization and predicting gene function. *Nucleic acids research*, 38(suppl 2):W214–W220, 2010.

[28] D. Welter, J. MacArthur, J. Morales, T. Burdett, P. Hall, H. Junkins, A. Klemm, P. Flicek, T. Manolio, L. Hindorff, et al. The nhgri gwas catalog, a curated resource of snp-trait associations. *Nucleic acids research*, 42(D1):D1001–D1006, 2013.

[29] N. R. Wray, J. Yang, B. J. Hayes, A. L. Price, M. E. Goddard, and P. M. Visscher. Pitfalls of predicting complex traits from snps. *Nature reviews. Genetics*, 14(7):507, 2013.

[30] T. Yang, J. Liu, P. Gong, R. Zhang, X. Shen, and J. Ye. Absolute fused lasso & its application to genome-wide association studies. In *Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 2016. accepted.

[31] T. Yang, J. Wang, Q. Sun, D. P. Hibar, N. Jahanshad, L. Liu, Y. Wang, L. Zhan, P. M. Thompson, and J. Ye. Detecting genetic risk factors for Alzheimer’s disease in whole genome sequence data via lasso screening. In *Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on*, pages 985–989. IEEE, 2015.

[32] J. Ye and J. Liu. Sparse methods for biomedical data. *ACM SIGKDD Explorations Newsletter*, 14(1):4–15, 2012.

[33] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society Series B*, 68:49–67, 2006.

[34] O. Zuk, E. Hechter, S. R. Sunyaev, and E. S. Lander. The mystery of missing heritability: Genetic interactions create phantom heritability. *Proceedings of the National Academy of Sciences*, 109(4):1193–1198, 2012.
Figure 4: Comparison of stability selection results of different structured sparse models on Chromosome 19. Each subfigure refers to an AD-related neuroimaging phenotype, specifically, upper left—LEH; bottom left—LHP; upper right—REH; bottom right—RHP. The x-axis is a compact illustration of gene/SNP positions on Chr.19. The y-axis is the negative logarithm of P-value of SNPs regarding the phenotype under investigation. For each learning task, top 50 selected SNPs of each model are marked out.
Appendix 1: Variable selection results of different learning targets

Table 2: Comparison of top 50 selected SNPs associated with different sparse models and neuroimage targets on the 10 AD-related genes on Chr.19. SNPs are sorted by their positions on the chromosome. Selection results are marked by different colors for different models. The negative logarithm of P-values is shown on the right side of each response. SNPs are ignored if they are not in the top selected list of any traits. Model reference: L—Lasso; fL—fused Lasso; sgL—sparse group Lasso; afL—absolute fused Lasso; our—SGLGG.

Gene	Target	Locus/SNP	LEH	RHP	L	L fL sgL nl our	-log(P)	LEH	RHP	L	L fL sgL nl our	-log(P)
		rs12981050	0.7999	0.7739	0.7319	1.0432	0.8526					
		rs57217136	0.3490	0.4339	0.4390	0.5000	0.0073					
		19:11201988	0.3486	0.4326	0.4326	0.5004	0.0066					
		19:11201914	0.3415	0.4172	0.4172	0.5083	0.0007					
		rs6511720	0.3376	0.4080	0.4080	0.5127	0.0053					
		rs17242367	1.0509	0.6456	0.6456	0.5168	1.1834					
		rs6511721	2.1718	2.0568	2.0568	0.5733	1.8577					
		rs17248769	1.2221	1.4125	1.4125	0.5339	1.0289					
		rs73015033	1.2915	1.4698	1.4698	0.5982	1.0884					
		19:11209669	1.1741	1.4337	1.4337	0.5822	1.0432					
		19:11209577	1.2972	1.4749	1.4749	0.6051	1.0929					
		rs74857287	1.2992	1.4768	1.4768	0.6068	1.0946					
		17:248776	1.3039	1.4794	1.4794	0.6098	1.0980					
		17:248783	1.3586	1.5249	1.5249	0.6629	1.1474					
		rs2228671	1.3720	1.5250	1.5250	0.6861	1.2101					
		rs36996887	0.5588	0.6581	0.6581	0.5592	1.7026					
		rs12983082	0.4876	1.3053	1.3053	0.0132	1.8414					
		10:422256	0.9677	2.0577	2.0577	0.0811	2.7542					
		rs3892116	0.3880	1.4698	1.4698	0.1091	2.4707					
		rs12710260	0.5528	1.5892	1.5892	0.0134	1.8819					
		19:11233683	0.0027	0.1174	0.1174	1.4241	0.0745					
		19:11233684	0.5740	1.9552	1.9552	0.0467	2.1195					
		rs2738445	0.5148	1.8265	1.8265	0.5569	2.7873					
		rs2738446	0.5362	1.9059	1.9059	0.0649	2.0939					
		rs1799898	1.1926	0.7147	0.7147	0.5502	1.9748					
		rs28786710	0.5551	1.8321	1.8321	0.1645	2.0467					
		rs2738448	0.5978	1.8387	1.8387	1.1850	0.0004					
		rs2738449	0.5506	1.8251	1.8251	0.1691	2.0366					
		rs2738450	0.1932	1.5543	1.5543	0.7407	2.6723					
		rs2738445	0.5585	1.8219	1.8219	0.1763	2.0355					
		rs2738452	0.5423	1.8135	1.8135	0.1769	2.0201					
		rs12611153	1.4321	1.6694	1.6694	2.0399	0.7019					
LDLR (58/135)		rs2569550	0.3095	0.2799	0.2799	0.0068	0.2749					
		rs2738449	1.3720	0.7667	0.7667	2.0649	0.6117					
		rs2738455	1.5490	0.7928	0.7928	2.2572	0.4317					
		19:11235247	1.7311	1.4301	1.4301	0.6046	2.3629					
		rs8106324	1.1772	0.9370	0.9370	0.2875	1.9936					
		rs6511724	1.5654	0.0920	0.0920	1.9689	0.2419					
		rs75990161	0.6922	0.7608	0.7608	0.4939	2.2911					
		rs17242586	0.6864	0.7536	0.7536	0.4904	2.2829					
		rs2738457	1.5293	0.8141	0.8141	2.2363	0.4221					
		rs2569539	0.7753	1.6353	1.6353	0.4408	2.1744					
Gene	Target Locus/SNP	LEH	LHP	REH	RHP							
----------	-----------------	-------	-------	-------	-------							
GAPDH	rs14806174	0.2598	1.0513	0.2754	1.1987							
	19:36025093											
	rs56408006	0.9017	0.6562	0.4423	0.3527							
	rs2239942	0.5671	0.6892	0.4964	0.3936							
	rs2927477											
	19:45314324	0.0843	0.6623	0.5233	0.6993							
	rs7249750	2.3677	2.3502	0.5967	2.1090							
	19:45316223	2.4536	2.4857	0.9941	2.1296							
	19:45316330	2.3901	2.3522	0.7109	2.1061							
	rs3810141	2.4601	2.3565	0.7596	2.0953							
	15:15	2.4419	2.3571	0.7608	2.0957							
	rs2968180	2.8309	2.6676	1.7170	1.8398							
	19:111548706	3.1791	2.8135	1.1721	2.4296							
	rs1135062	0.8673	0.3313	0.8898	1.2600							
	rs3669	1.2158	0.6184	1.8555	1.9138							
	19:45313170	1.9457	1.3567	2.7893	1.1368							
	rs28399635	0.6250	0.0072	0.4227	0.4519							
	rs28399637	5.0766	3.2757	4.3394	2.3330							
	rs7026	0.3977	0.9759	0.5455	0.4153							
	rs3810143	0.0588	0.8739	0.3196	0.0028							
	rs2306149	0.1418	0.5509	0.5558	2.3000							
	rs2972560	0.0584	1.2822	0.5123	1.6928							
	rs12974942	0.1161	0.7548	0.5622	0.0219							
	rs2927469	0.0391	1.0026	0.0150	1.5720							
	rs2972559	0.9573	0.2427	2.5134	0.1028							
	rs73050205	0.8887	0.2618	2.5143	0.0707							
	19:453156752	1.4015	1.3564	1.9717	0.1591							
	rs35396326	1.0228	0.1839	2.5206	0.1790							
	rs4803763	0.8644	0.2085	2.5142	0.0689							
	rs4803764	0.8732	0.2084	2.5132	0.0650							
	rs56317818	0.8706	0.2718	2.0255	0.0675							
	rs12462573	0.8266	0.3009	2.5528	0.0374							
	rs2972557	0.5298	3.5104	0.5427	3.9924							
	rs12463239	1.2425	1.6314	0.0343	0.9865							
	rs8112526	1.1821	3.9121	2.0307	3.9007							
	rs3825856	2.0895	3.3686	0.4751	1.7649							
	rs3112439	2.2281	5.5792	3.1366	4.6825							
	rs3112440	2.0872	5.3410	2.8066	4.8694							
	rs117877932	0.2718	0.2294	0.0176	0.8290							
	rs11787589	0.5319	0.0128	0.4105	1.5080							
	rs3852857	0.5299	0.0128	1.9397	1.5292							
	rs395908	1.3252	2.5642	1.3123	1.9397							
	rs4081918	0.5152	0.0067	0.3768	1.5292							
Gene	Target Locus/SNP	LEH	LHP	REH	RHP							
-------	------------------	-----	-----	-----	-----							
		L	L	L	L							
		IL	sgl	all	our							
		-log(P)	-log(P)	-log(P)	-log(P)							
rs79074020	19:453704044	0.5085	0.0178	0.0543	1.9114							
rs519113	19:453723999	1.0236	2.0555	1.2951	0.2052							
rs1167274	rs116723999	0.4626	0.0118	0.2041	3.2749							
rs1167599	rs3108495	0.7313	0.0025	0.2237	1.6589							
rs4112776	rs11673139	0.9638	2.3554	0.3546	0.7190							
19:453759566	rs370705	0.9902	0.0269	0.3512	0.6856							
rs355982	rs11669338	0.9759	2.3138	0.3368	0.6816							
rs19:45379566	rs385982	0.9731	2.3153	0.3374	0.6812							
rs84224078	rs12972156	2.1823	2.1362	4.5319	0.6529							
rs35879138	rs12972970	3.1238	5.6828	2.5423	5.1330							
rs10583749	rs11083749	3.1266	5.6860	2.5450	5.1373							
rs71352237	rs3745150	0.1248	0.7118	0.7168	0.6826							
19:45383091	rs12972970	0.6945	2.0582	0.7033	0.7161							
rs12972970	rs19:45386467	7.2087	11.4767	12.3805	11.2765							
rs34342646	rs12972970	7.4875	13.6346	12.7330	13.2125							
rs283812	rs34342646	7.2167	15.8560	13.8906	13.2320							
rs283814	rs283815	0.5026	1.9275	3.0788	2.8765							
rs283815	rs6587	6.6893	13.1772	11.1796	12.4696							
rs6587	rs79074020	7.4645	16.7899	14.5335	17.6298							
rs184017	rs157580	6.5911	13.5901	11.4050	13.1810							
rs157580	rs2075649	3.9593	7.0721	9.1044	10.2890							
rs2075649	rs2075650	1.0123	2.1800	0.5978	0.7212							
rs2075650	rs157581	7.4179	14.1030	12.8059	13.6907							
rs157581	rs34095326	6.6616	13.5959	11.4630	13.2322							
rs34095326	rs3404554	5.3435	6.1919	9.9105	6.2489							
rs3404554	rs11556505	7.4144	14.0686	12.7886	13.6674							
rs11556505	rs1157582	7.4135	14.0612	12.7845	13.6694							
rs1157582	rs59007384	6.5957	13.5386	11.3573	13.1245							
rs59007384	rs11668327	7.6850	15.1743	12.2690	14.6344							
rs11668327	rs118170342	1.7624	3.1034	2.4722	4.4206							
rs118170342	rs35508738	1.0708	0.1818	1.0092	0.4404							
rs35508738	rs1160984	1.6633	0.2869	1.2824	0.4915							
rs1160984	rs10119	4.1452	9.0879	7.8351	13.0492							
rs10119	APOE	3.6625	5.2200	6.0049	6.9368							
rs404449	rs769446	13.1079	22.4118	16.1028	21.0525							
rs769446	rs760450	2.6047	5.6248	2.0373	3.4191							
rs760450	rs429358	13.5662	25.2546	17.9385	25.0369							
rs429358	rs7412	1.8479	3.0122	3.0474	4.6691							
rs7412	APOE	8.3927	13.3957	10.9990	12.5596							
APOE	19:45417632	8.3749	13.3957	10.9990	12.5596							
19:45417632	rs12691088	3.9666	2.4257	10.5566	14.7969							
rs12691088	rs5117	8.8625	15.8799	11.5395	14.9258							
rs5117	rs3826688	2.1575	3.3487	3.6469	2.9339							
rs3826688	rs73052335	12.3385	20.4728	15.3834	19.9258							
rs73052335	rs3925858	4.8085	7.4208	3.8688	9.8087							
rs3925858	rs150966173	0.9923	2.5309	1.6387	3.3859							
rs150966173	rs12721046	11.2256	19.1327	14.8090	18.4076							
rs12721046	rs12721056	4.1169	7.2385	3.3861	7.9466							
Gene	Target Locus/ SNP	LEH	L HP	R HP								
------------	-----------------------	-----	------	------								
APOC4	rs1064725	2.989	2.0402	3.4059	0.3741							
	rs5157	1.1912	0.3194	0.5001	1.2607							
	rs5158	0.0375	1.5609	0.2380	0.9237							
	rs1132899	1.2890	0.4523	0.7862	1.4671							
	rs5167	1.8347	0.8398	2.8183	0.3801							
CD33	rs12721051	3.8770	2.4115	3.9087	7.5283							
	rs10405194	1.9380	1.4012	1.1092	2.0754							
	rs10413061	1.8433	1.4002	0.1588	1.8926							
	rs10409999	1.7716	0.7414	0.0601	1.4170							
	rs10411314	0.1425	0.3373	1.2363	0.6786							
	rs10410003	1.8636	2.4635	0.6285	1.6887							
	rs10410561	0.9007	0.4738	0.3541	0.1623							
	rs10411743	1.4138	0.0876	0.2857	0.8241							
	rs10412154	1.1222	0.0220	0.0262	0.2408							
	rs10451904	0.0231	0.2934	1.6704	0.1134							
	rs1043626	0.0230	0.2930	1.6707	0.1136							
	rs10499999	0.0228	0.2921	1.6717	0.1143							
	rs10411314	0.0227	0.2912	1.6720	0.1146							
	rs10410003	0.0224	0.2912	1.6706	0.1152							
	rs10410561	0.0208	0.2894	1.6709	0.1160							
	rs10411743	0.0115	0.2775	1.6718	0.1214							
	rs10412154	0.0108	0.2767	1.6720	0.1218							
	rs104528355	0.0100	0.2757	1.6721	0.1223							
	rs104528440	0.0247	0.2412	1.6836	0.1767							
	rs346761	0.0045	0.2752	1.6777	0.1237							
	rs10412164	0.0064	0.2713	1.6725	0.1242							
	rs346772	0.0010	0.2713	1.6720	0.1146							
	rs8109472	0.0045	0.2752	1.6777	0.1237							
	rs346750	0.0045	0.2752	1.6777	0.1237							
	rs12459419	1.3303	0.0207	1.0505	0.1772							
	rs21455069	0.8196	0.0589	0.1466	0.9117							
	rs7245846	0.4353	1.0054	2.1357	1.2773							
	rs1951734857	0.3602	1.1170	2.2803	1.4001							
	rs1951735023	0.7299	0.6667	2.2540	1.2577							
	rs33975022	0.7307	0.6965	2.2902	1.3539							
	rs34813860	0.3801	1.1390	2.4610	1.5210							
	rs1534106	0.3100	1.2263	2.4305	1.5045							
	rs35112940	1.1723	0.7697	2.4305	1.5045							
	rs10409348	0.3210	2.0547	4.0526	2.8524							
	rs146999581	0.2094	0.0579	0.3913	0.1173							
	rs15398939	0.0542	0.9633	1.5430	0.6127							
	rs273653	0.0476	0.9540	1.5763	0.5891							
	rs273652	0.1969	0.5591	3.6421	0.6791							
	rs75773078	1.9834	1.2555	0.0023	0.1933							
	rs1800254	0.5649	0.6272	2.8029	0.0603							