Unexpectedly enhanced α-particle preformation in 48Ti probed by the $(p, p\alpha)$ reaction

Yasutaka Taniguchi,1,2,* Kazuki Yoshida,3,2 Yohei Chiba,4,5,2 Yoshiko Kanada-En’yo,6,2 Masaaki Kimura,7,8,2 and Kazuyuki Ogata2,4,5

1Department of Information Engineering, National Institute of Technology (KOSEN), Kagawa College, Mitoyo, Kagawa 769-1192, Japan
2Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
3Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
4Department of Physics, Osaka City University, Osaka 558-8585, Japan
5Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan
6Department of Physics, Kyoto University, Kyoto 606-8502, Japan
7Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
8Nuclear Reaction Data Centre, Hokkaido University, Sapporo 060-0810, Japan

(Dated: January 14, 2021)

The formation of α particle on nuclear surface has been a fundamental problem since the early age of nuclear physics. It strongly affects the α decay lifetime of heavy and superheavy elements, level scheme of light nuclei, and the synthesis of the elements in stars. However, the α-particle formation in medium-mass nuclei has been poorly known despite its importance. Here, based on the 48Ti$(p, p\alpha)^{44}$Ca reaction analysis, we report that the α-particle formation in a medium-mass nucleus 48Ti is much stronger than that expected from a mean-field approximation, and the estimated average distance between α particle and the residue is as large as 4.5 fm. This new result poses a challenge of describing four nucleon correlations by microscopic nuclear models.

—Introduction. Since Gamow explained the α decay as the quantum tunneling of α particle out of an atomic nucleus [1], the formation of α particle in nuclei has been a fundamental subject for understanding the structure and decay of nuclei [2–5]. It has been considered that α particles are formed at a low-density nuclear surface with a certain probability, which is called the preformation factor or the α-particle preformation probability. It determines the lifetime of heavy and superheavy nuclei, and its empirical values have often been estimated from the α decay lifetime. For instance, the very short lifetime of 108Xe and 104Te were recently measured [6, 7], and the enhancement of the α-particle preformation probability beyond proton-rich nucleus 105Sn has been discussed [8–10].

It is also well known that the α-particle preformation manifests itself in light nuclei as α clustering [11, 12] and is closely related to the synthesis of elements in stars [13, 14]. Because it exhibits the unique excitation spectra, α clustering has been identified in many light nuclei [15, 16]. Compared to heavy or light mass nuclei, the α-particle preformation in medium-mass nuclei has been poorly known. Generally, it is believed that α-particle preformation is hindered in medium-mass nuclei because of the largely negative α-decay Q-values. The deep binding energies of these nuclei also lead to the dominance of the mean-field dynamics over the four nucleon correlation preventing α-particle formation. However, such hindrance of α-particle preformation has never been quantitatively confirmed by experiment due to the lack of reliable measure for the α-particle preformation.

The proton-induced α-knockout reaction $(p, p\alpha)$ has been expected as the sensitive probe for the α-particle preformation [17–21]. Due to the strong absorption effect, the α particle kicked by the projectile proton cannot get out from the interior of the target nucleus. Consequently, the reaction is only sensitive to the α particles formed on the surface of the target nucleus. Several experiments have been conducted to measure the α-particle preformation probability in light-medium mass nuclei. Carey et al. reported a systematic measurement of the $(p, p\alpha)$ reactions with various target nuclei from 16O to 66Zn [19]. However, due to the lack of quantitative analysis, the absolute value of the α-particle preformation probabilities deduced from the cross sections have large uncertainty.

Recently, it has been shown that the distorted wave impulse approximation (DWIA) with reliable optical potentials realizes an accurate description of the $(p, p\alpha)$ reaction [22]. Taking well-known light-mass α clustered nucleus 20Ne as an example, it was demonstrated that the α-particle preformation probability is quantitatively evaluated. The new analysis showed that the α-particle preformation probability of 20Ne is smaller than that estimated by Carey et al. by a factor of two. Among the nuclei studied by Carey et al., 48Ti is the only one except for 20Ne, for which the optical potentials between a proton, α particle, the residue (44Ca), and the target nucleus (48Ti) have already been known accurately [23–25]. Furthermore, the residue 44Ca is a magic stable nucleus as an inert core, and hence, the enhancement of the α-particle preformation can be expected. Therefore, the DWIA analysis of the 48Ti$(p, p\alpha)^{44}$Ca reaction must shed new insight into the α-particle preformation in medium-mass nuclei.

—DWIA framework. The DWIA framework [22, 26–
28] has been adopted to describe the $^{48}\text{Ti}(p, p\alpha)^{44}\text{Ca}$ reaction. Within the factorization approximation, the triple differential cross section is given as,

$$
\frac{d^3\sigma}{dT \Omega_{p} \Omega_{\alpha}} = C_0 F_{\text{kin}} \frac{d\sigma_{p\alpha}}{d\Omega_{p\alpha}} |T|^2, \tag{1}
$$

where T_p, Ω_p, and Ω_α are the kinetic energy of the emitted proton, the solid angles of the proton and α particles, respectively. $C_0 F_{\text{kin}}$ is the kinematical factor, and $d\sigma_{p\alpha}/d\Omega_{p\alpha}$ is the $p\alpha$ differential cross section at the $p\alpha$ relative momentum of the (p,α) reaction kinematics. The detail of this approximation is given in Refs. [26, 27], and confirmed [26]. The reduced transition matrix element T is defined as,

$$
T = \int d^3 R F(R)y(R)Y_{00}(\hat{R}), \tag{2}
$$

$$
F(R) = \chi_p^{(-)}(R)\chi_{\alpha}^{(-)}(R)\chi_{\alpha}^{(+)}(R)e^{-ik_0 R/2}, \tag{3}
$$

where k_0 is the momentum of the incident proton. Equation (2) shows the sensitivity of the cross section to the α-particle preformation because it depends on the probability amplitude of the α-particle preformation $y(R)$. The other ingredients of the analysis are the optical potentials for the $p^{48}\text{Ti}$, $p^{44}\text{Ca}$, and $\alpha^{44}\text{Ca}$ scattering, which are used to describe the distorted waves $\chi_p^{(+)}(R)$ and $\chi_{\alpha}^{(-)}(R)$; the superscripts (+) and (−) indicate outgoing and incoming boundary conditions, respectively. It was shown that the use of the accurate optical potentials is essential for the precise description of the cross sections and the evaluation of α-particle preformation. In the present work, the EDAD1 optical potential [24, 25] with Dirac phenomenology has been adopted to the $p^{48}\text{Ti}$ and $p^{44}\text{Ca}$ distorted waves. This potential reproduces the proton-nucleus elastic scattering with various stable targets from ^{12}C to ^{208}Pb in a wide energy range from 20 MeV to 1 GeV. For the $\alpha^{44}\text{Ca}$ distorted wave, we applied the optical potential proposed by Delbar et al. [23], which reproduces the elastic differential cross sections from 24.1 to 100 MeV very accurately. All these optical potentials cover the required energy range for the analysis of the $^{48}\text{Ti}(p, p\alpha)^{44}\text{Ca}$ reaction.

The α-particle preformation probability

The probability amplitude for α-particle preformation, called the reduced width amplitude (RWA), is defined as,

$$
y(R) = \sqrt{\frac{48!}{4!44!}} \langle \delta(r-R)\Phi_\alpha\Phi_{\text{Ca}}Y_{00}(\hat{r}) | \Phi_{\text{T1}} \rangle / R^2, \tag{4}
$$

where Φ_α, Φ_{Ca}, and Φ_{T1} denote the ground state wave functions of the α particle, the residue (^{44}Ca), and the target nucleus (^{48}Ti), respectively. In this work, the α is assumed to have a $(0s)^3$ configuration, and the wave functions of ^{44}Ca and ^{48}Ti are described by using the antisymmetrized molecular dynamics (AMD) [29–31]. The parity-projected AMD wave function is given as,

$$
\Psi = (1 + P_z)/2 \times A \{ \varphi_1 \varphi_2 ... \varphi_A \}, \tag{5}
$$

$$
\varphi_i = \prod_{\sigma=x,y,z} \exp \left\{ -\nu_\sigma (r_\sigma - Z_\sigma)^2 \right\} \times \langle \alpha_i | \uparrow \rangle + \beta_i | \downarrow \rangle \times (|p\rangle \text{ or } |n\rangle), \tag{6}
$$

where P_z is the parity operator, A is the antisymmetrizer and φ_i is the nucleon wave packet. The centroid of a nucleon wave packet is a complex vector Z_i, in which the real (imaginary) part describes the mean position (momentum) of a nucleon. The parameters of the model wave function are the centroids Z_i, the spin directions α_i and β_i, and the Gaussian widths ν_x, ν_y, and ν_z. The wave function of ^{44}Ca is calculated within the mean-field approximation, i.e., the parameters are optimized to minimize the intrinsic energy $E = \langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle$. Here, the Hamiltonian consists of the nucleon kinetic energies, the effective nucleon-nucleon interaction, and the Coulomb interaction. As an effective nucleon-nucleon interaction, we have used Gogny D1S density functional [32] that reasonably reproduces the fundamental nuclear properties. After the energy minimization, the ^{44}Ca wave function is projected to $J^\pi = 0^+$ to calculate the RWA [Eq. (4)] using the Laplace expansion method [33].

The wave function of ^{48}Ti is also calculated in the same manner. The obtained wave function, i.e., the mean-field solution for ^{48}Ti, is shown in Fig. 1 (a). It has an almost spherical shape and does not clearly show the α-particle preformation. Indeed, the RWA calculated from this mean-field solution [Fig. 2 (a)] has only a small peak at $R = 4.8$ fm, and as discussed later, it is too small to reproduce the observed cross section. Therefore, we artificially generate the test wave functions of ^{48}Ti that exhibit prominent α-particle preformation. For this purpose, we introduce an approximate inter-nuclear distance.
FIG. 2. (a) The RWA calculated from the wave functions shown in Fig. 1. (b) The TMD of the $^{48}\text{Ti}(p, p\alpha)^{44}\text{Ca}$ reaction at $T_p = 63$ MeV. The TMD obtained from the mean-field solution and the $d = 3.0$ fm wave function are multiplied by a factor of 10 and 5, respectively. The arrow indicates the sum of the charge radii of α and ^{44}Ca, which approximately corresponds to the nuclear surface.

$$d \left[34, 35 \right],$$

where the first and second terms correspond to the center-of-mass of α and ^{44}Ca, respectively. We perform the energy variation with the constraint on the value of d and obtain the wave functions which mimic the α-particle preformation with various inter-nuclear distance as shown in Fig. 1 (b)–(f). The RWAs calculated from these wave functions shown in Fig. 2 (a) have prominent peaks that become higher and move outward with the increase of d. Note that the RWAs are strongly suppressed in the interior of the residual nucleus ($R \lesssim 5$ fm) due to the Pauli principle. Consequently, the peak position is not necessarily the same as the value of d.

—Results and Discussions. Figure 3 shows the triple differential cross sections of the $^{48}\text{Ti}(p, p\alpha)^{44}\text{Ca}$ reaction obtained by the DWIA calculations using the RWAs shown in Fig. 2 (a) compared with the experiment [19]. The incident proton energy, the emitted angles of proton and α are set to $E_p = 101.5$ MeV, $\theta_p = -70.0^\circ$ and $\theta_\alpha = 45.0^\circ$, respectively.

FIG. 3. Triple differential cross section of the $^{48}\text{Ti}(p, p\alpha)^{44}\text{Ca}$ reaction obtained by the DWIA calculations using the RWAs shown in Fig. 2 (a) compared with the experiment [19]. The incident proton energy, the emitted angles of proton and α are set to $E_p = 101.5$ MeV, $\theta_p = -70.0^\circ$ and $\theta_\alpha = 45.0^\circ$, respectively.

FIG. 4. (a) Binding energy (b) charge radii, and (c) E2 transition matrix of ^{44}Ti calculated from the mean-field solution and $\alpha + ^{44}\text{Ca}$ wave functions in comparison with the experimental data [36–38]. The binding energy is given relative to the $\alpha + ^{44}\text{Ca}$ decay threshold.
To estimate the degree of α-particle preformation, we have also tested the RWAs obtained from the $\alpha + ^{44}$Ca wave functions with various inter-nuclear distances. Figure 3 shows that these RWAs yield much larger cross sections than the mean-field solution, and the cross section increases by approximately one order of magnitude for every 1 fm increase of the inter-nuclear distance. It is found that the RWA obtained from the $\alpha + ^{44}$Ca wave function with $d = 4.5$ fm gives the most plausible description of the observed cross section. The peripherality of the $(p, p\alpha)$ reaction is confirmed from the real part of the transition matrix density (TMD) [27] that is defined as,

$$\delta(R) = \hat{T}^* \int d\hat{R} R^2 F(R)g(R)Y_{00}(\hat{R}). \quad (8)$$

Note that the integral of TMD over the distance is equal to the square of the transition matrix T, and hence, $\delta(R)$ gives a hint at which distance R the reaction takes places. As shown in Fig. 2 (b), TMD is negligible in the interior region ($R \lesssim 5$ fm) due to the strong absorption of an α particle and small RWA. It explains why the cross section with the mean-field solution is smaller in order of magnitude than that with the $\alpha + ^{44}$Ca wave functions. We also note that the peak position ($T_p \sim 63$ MeV) and width of the cross section are approximately determined by the kinematical condition (recoil-less condition for the residue 44Ca) and the momentum distribution of the RWA, respectively.

Although the $\alpha + ^{44}$Ca wave function with $d = 4.5$ fm gives the best result for the 48Ti$(p, p\alpha)^{44}$Ca reaction, its validity should be verified from different perspectives. Firstly, it must be noted that the binding energies of the $\alpha + ^{44}$Ca wave functions are much smaller than that of the mean-field solution because of the artificial constraint imposed on the inter-nuclear distance [Eq. (7)]. Figure 4 (a) shows that the binding energy of the $\alpha + ^{44}$Ca wave function rapidly decreases as the inter-nuclear distance increases. At $d = 4.5$ fm, it underestimates the experimental value [36] by approximately 10 MeV and yields the positive Q-value of the α decay, whereas the mean-field solution gives reasonable binding energy and Q-value. Panels (b) and (c) show the charge radius and the reduced matrix elements for the E2 transition from the ground state to the 2^+_1 state, respectively. As expected, both the charge radius and E2 transition matrix elements increase with the inter-nuclear distance. Although the $\alpha + ^{44}$Ca wave function gives reasonable values at $d = 2.0$–2.5 fm, it overestimates the observed values [37, 38] at $d = 4.5$ fm. In short, the $\alpha + ^{44}$Ca wave function can describe the 48Ti$(p, p\alpha)^{44}$Ca reaction, but it fails to reproduce the fundamental structural properties. On the contrary, the mean-field solution offers a better description of the energy, radius, and E2 transition but fails in the α knockout reaction. From these results, we can deduce that the ground state wave function should be an admixture of the mean-field solution and the $\alpha + ^{44}$Ca type wave functions. The mean-field solution should be the dominant component of the ground state due to its large binding energy, but the contamination of the $\alpha + ^{44}$Ca wave function is indispensable to explain the observed large α knockout cross section.

—Summary. The 48Ti$(p, p\alpha)^{44}$Ca reaction has been studied to investigate the α-particle preformation in a medium-mass nucleus 48Ti. The DWIA analysis using accurate optical potentials offers a reliable and quantitative description of the α-knockout reaction, and it has revealed that the α-particle preformation in 48Ti is unexpectedly enhanced. It has been shown that the mean-field solution underestimates the cross section in orders of magnitude, and one must assume the $\alpha + ^{44}$Ca wave function whose the inter-nuclear distance is as large as $d = 4.5$ fm to reproduce the observed cross section. However, the $\alpha + ^{44}$Ca wave function fails to explain other basic properties of 48Ti, which are reasonably described by the mean-field approximation. Hence, we conclude that the ground state is an admixture of the mean-field and $\alpha + ^{44}$Ca configurations. This new insight requests the systematic analysis of the $(p, p\alpha)$ reactions to reveal the universality of the α-particle preformation and poses a challenge to the microscopic nuclear models for describing α-particle preformation in medium-mass nuclei.

ACKNOWLEDGMENTS

This work was supported by the COREnet program at the RCNP, Osaka University, the Hattori Hokokai Foundation Grant-in-Aid for Technological and Engineering Research, and JSPS KAKENHI Grant Nos. JP16K05352, JP18H05407, JP18K03617, and JP20K14475. Numerical calculations were performed using Oakforest-PACS at the Center for Computational Sciences, University of Tsukuba, and XC40 at Yukawa Institute for Theoretical Physics, Kyoto University.

[1] G. Gamow, Zur Quantentheorie des Atomkernes, Zeitschrift für Physik 51, 204 (1928).
[2] H. J. Mang, Alpha Decay, Annual Review of Nuclear Science 14, 1 (1964).
[3] D. F. Jackson and M. Rhoades-Brown, Theories of alpha-decay, Annals of Physics 105, 151 (1977).
[4] R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion, Microscopic theory of cluster radioactivity, Physics Report 294, 265 (1998).
[5] C. Qi, R. Liotta, and R. Wyss, Recent developments in radioactive charged-particle emissions and related phenomena, Progress in Particle and Nuclear Physics 105, 214 (2019).
[6] K. Auranen, D. Seweryniak, M. Albers, A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, C. J. Chiara, P. Copp, H. M. David, D. T. Doherty, J. Harker, C. R. Hoffman, R. V. Janssens, T. L. Khoo, S. A. Kuvín, T. Lauritsen, G. Lotay, A. M. Rogers, J. Sethi, C. Scholey, R. Talwar, W. B. Walters, P. J. Woods, and S. Zhu, Superallowed α Decay to Doubly Magic Sn 100, Physical Review Letters 121, 182501 (2018).

[7] Y. Xiao, S. Go, R. Grzywacz, R. Orlandi, A. N. Andreyev, M. Asai, M. A. Bentley, G. De Angelis, C. J. Gross, P. Hausladen, K. Hirose, S. Hofmann, H. Ikezoe, D. G. Jenkins, B. Kindler, R. Léguillon, B. Lommel, H. Makii, C. Mazzocchi, K. Nishio, P. Parkhurst, S. V. Paulauskas, C. M. Petracek, K. P. Rykaczewski, T. K. Sato, J. Smallcombe, A. Toyoshima, K. Tsukada, K. Vaigner, and R. Wadsworth, Search for α decay of Te 104 with a novel recoil-decay scintillation detector, Physical Review C 100, 034315 (2019).

[8] R. M. Clark, A. O. Macchiavelli, H. L. Crawford, P. Fallon, D. Rudolph, A. Sárkany-Roth, C. M. Campbell, M. Cromaz, C. Morse, and C. Santamaria, Enhancement of α-particle formation near Sn 100, Physical Review C 101, 034313 (2020).

[9] F. Mercier, J. Zhao, R. D. Lasserri, J. P. Ebran, E. Khan, T. Niksíč, and D. Vretenar, Microscopic description of the self-conjugate Xe 108 and Te 104 α-decay chain MICROSCOPICAL DESCRIPTION OF THE SELF-CONJUGATE α DECAY CHAINS F. MERCIER et al., Physical Review C 102, 011301(R) (2020).

[10] S. Yang, C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, and B. Zhou, α decay to a doubly magic core in the quartetting wave function approach, Physical Review C 101, 024316 (2020).

[11] K. Ikeda, N. Takigawa, and H. Horiuchi, The Systematic Structure-Change into the Molecule-like Structures in the Self-Conjugate 4N Nuclei, Progress of Theoretical Physics Supplement E68, 464 (1968).

[12] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus (Vieweg+Teubner Verlag, Wiesbaden, 1977).

[13] E. G. Adelberger, S. M. Austin, J. N. Bahcall, A. B. Balantekin, G. Bogart, L. S. Brown, L. Buchmann, F. E. Cecil, A. E. Champagne, L. De Braeckeleer, C. A. Duba, S. R. Elliott, S. J. Freedman, M. Gai, G. Goldring, C. R. Gould, A. Gruzinov, W. C. Haxton, K. M. Heeger, E. Henley, C. W. Johnson, M. Kamionkowski, R. W. Kavanagh, S. E. Koonin, K. Kubodera, K. Langanke, S. Turck-Chièze, and J. F. Wilkerson, Solar fusion cross sections beyond the solar models, Reviews of Modern Physics 70, 1265 (1998).

[14] P. Descouvemont and D. Baye, The R-matrix theory, Reports on Progress in Physics 73, 036301 (2010).

[15] Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kato, Y. Suzuki, and E. Uegaki, Chapter II. Comprehensive Study of Alpha-Nuclei, Progress of Theoretical Physics Supplement 68, 29 (1980).

[16] R. Bijker and F. Iachello, Cluster structure of light nuclei, Progress in Particle and Nuclear Physics 110, 103735 (2020).

[17] P. G. Roos, N. S. Chant, A. A. Cowley, D. A. Goldberg, H. D. Holmgren, and R. Woody, Absolute spectroscopic factors from the (p, pα) reaction at 100 MeV on 1p-shell nuclei, Physical Review C 15, 69 (1977).

[18] A. Nadasen, N. S. Chant, P. G. Roos, T. A. Carey, R. Cowen, C. Samanta, and J. Wesick, Non-coplanar (p, pα) and (p, d He3) reactions on Be9 at 101.5 MeV, Physical Review C 22, 1394 (1980).

[19] T. A. Carey, P. G. Roos, N. S. Chant, A. Nadasen, and H. L. Chen, Alpha-particle spectroscopic strengths using the (p,pα) reaction at 101.5 MeV, Physical Review C 29, 1273 (1984).

[20] T. Yoshimura, A. Okihana, R. E. Warner, N. S. Chant, P. G. Roos, C. Samanta, S. Kakigi, N. Koori, M. Fujiwara, N. Matsuoka, K. Tamura, E. Kubo, and K. Ushiro, Alpha spectroscopic factors for 6Li, 7Li, 9Be and 12C from the (p\rightarrow pa) reaction at 296 MeV, Nuclear Physics A 641, 3 (1998).

[21] J. Mabiala, A. A. Cowley, S. V. Förtsc, E. Z. Buthelezi, R. Neveling, F. D. Smit, G. F. Steyn, and J. J. van Zyl, Analyzing power and cross section distributions of the C(12,p, pα)Be8 cluster knockout reaction at an incident energy of 100 MeV, Physical Review C 79, 054612 (2009).

[22] K. Yoshida, Y. Chiba, M. Kimura, Y. Taniguchi, Y. Kanada-En’yo, and K. Ogata, Quantitative description of the Ne 20 (p, pα) O 16 reaction as a means of probing the surface α amplitude, Physical Review C 100, 044601 (2019).

[23] T. Delbar, G. Grégoire, G. Paic, R. Ceuleneer, F. Michel, R. Vanderpoorten, A. Budzanowski, H. Dabrowski, L. Freindl, K. Grotowski, S. Mieck, R. Planeta, A. Strzalkowski, and K. A. Eberhard, Elastic and inelastic scattering of alpha particles from Ca40,44 over a broad range of energies and angles, Physical Review C 18, 1237 (1978).

[24] S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L. Mercer, Global Dirac optical potentials for elastic proton scattering from heavy nuclei, Physical Review C 41, 2737 (1990).

[25] E. D. Cooper, S. Hama, B. C. Clark, and R. L. Mercer, Global Dirac phenomenology for proton-nucleus elastic scattering, Physical Review C 47, 297 (1993).

[26] K. Yoshida, K. Minomo, and K. Ogata, Investigating α clustering on the surface of Sn 120 via the (p, pα) reaction, and the validity of the factorization approximation, Physical Review C 94, 044604 (2016).

[27] T. Wakasa, K. Ogata, and T. Noro, Proton-induced knockout reactions with polarized and unpolarized beams, Progress in Particle and Nuclear Physics 96, 32 (2017).

[28] K. Yoshida, K. Ogata, and Y. Kanada-En’yo, Investigation of α clustering with knockout reactions, Physical Review C 98, 024614 (2018).

[29] Y. Kanada-En’yo, M. Kimura, and H. Horiuchi, Antisymmetrized Molecular Dynamics: a new insight into the structure of nuclei, Comptes Rendus Physique 4, 497 (2003).

[30] Y. Kanada-En’yo, M. Kimura, and A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena, Progress of Theoretical and Experimental Physics 2012, 1A202 (2012).

[31] M. Kimura, T. Suhara, and Y. Kanada-En’yo, Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei, The European Physical Journal A 52, 373 (2016).

[32] J. Berger, M. Girod, and D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission,
[33] Y. Chiba and M. Kimura, Laplace expansion method for the calculation of the reduced-width amplitudes, Progress of Theoretical and Experimental Physics 2017, 053D01 (2017).

[34] Y. Taniguchi, M. Kimura, and H. Horiuchi, New Constraint of Clustering for AMD and Its Application to the Study of the 2 -12C Structure of 20Ne, Progress of Theoretical Physics 112, 475 (2004).

[35] Y. Taniguchi and M. Kimura, 12C+16O molecular resonances at deep sub-barrier energy, Physics Letters B 800, 135086 (2020).

[36] W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (I). Evaluation of input data; And adjustment procedures, Chinese Physics C 41, 030002 (2017).

[37] I. Angeli and K. P. Marinova, Table of experimental nuclear ground state charge radii: An update, Atomic Data and Nuclear Data Tables 99, 69 (2013).

[38] T. W. Burrows, Nuclear Data Sheets for A = 48, Nuclear Data Sheets 107, 1747 (2006).