Antimicrobial activity of polyphenol-rich fractions from *Sida alba* L. (Malvaceae) against co-trimoxazol-resistant bacteria strains

Kiessoun Konaté1,*, Adama Hilou1, Jacques François Mavoungou2, Alexis Nicaise Lepengué3, Alain Souza4, Nicolas Barro5, Jacques Y Datté6, Bertrand M’Batchi3 and Odile Germaine Nacoulma1

Abstract

Background: The increased resistance of microorganisms to the currently used antimicrobials has led to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials.

Materials and methods: *In vitro* antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from *Sida alba* L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive).

Results: All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on *Enterococcus faecalis* (Gram-positive bacterium) comparatively to the other bacteria strains.

Conclusion: The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of *sida alba* L., alone or in combination with other herbs to treat bacterial infections.

Background

The use of medicinal herbs in traditional system of medicine is a common practice in many cultures around the world especially in African societies. This practice has gained widespread acceptance in developing as well as in developed nations. Researchers are also beginning to appreciate the role of medicinal plants in health care delivery [1]. In recent time, interest with herbal medicine for antimicrobial activities has been increased significantly. This is as a result of the effectiveness, low cost and the availability of these herbal medicines, the economic crisis, high cost of industrialized medicines, inefficient public access to medical and pharmaceutical care, in addition to the side effects caused by synthetic drugs are some of the factors contributing to the central role of medicinal plants in health care [2,3].

So, there is serious need to develop new antimicrobial agents that are very effective with minimal unwanted side effects and higher plants represent a potential source of novel antibiotic prototypes [4]. Medical plants have shown a promising alternative for the treatment of infectious diseases. In the antibacterial research, the vast majority, 78% of the new chemical entities are natural or natural products derived molecules [5].

In effect, at last 35,000 plant species are used for medicinal purposes throughout the world [6]. The most important industrial medicines nowadays are based on about 90 species of herbs and in developing countries, traditional remedies are usually based on mixtures of herbs collected from nature [7]. Among such plants, *Sida alba* L. (Malvaceae), is a herbaceous plant broadly distributed in tropical and subtropical areas. The medicaments are prepared most often from a combination of two or more plant products, which many a time many contain active constituents with multiple physiological activities and could be used in treating various disease conditions [7]. In Burkina Faso, the aqueous extracts of *Sida alba* L. (Malvaceae) are...
mostly used in popular folk medicine for the treatment of several diseases, particularly in the hepatitis virus diseases [8]. Ethnobotanical investigations in the central region of Burkina Faso and certain recent studies performed in laboratory have shown that Sida alba L. is frequently and widely used in traditional medicine to treat various kinds of diseases such as infectious diseases in children, malaria, fever, pain, variola, antibacterial, anti-inflammatory, analgesic activities and hepatoprotective [8,9]. Previous studies performed in our laboratory showed that aqueous acetone extract of Sida alba L. contains saponosides, coumarins, steroids, polyphenol compounds and alkaloids and possess antioxidant and anti-inflammatory properties [10]. Because pharmacological properties of Sida alba L. are highly attractive to assess for a new drug discovery, the present investigation reports the antimicrobial activities of polyphenol-rich fractions from Sida alba L. The bacteriostatic, bactericidal and time-kill assay studies of polyphenol-rich fractions were screened against clinical strains of bacteria. The aim was to justify the traditional antimicrobial use of this species and to produce scientific data for a future project for manufacturing phytomedicines, for use in combination with conventional antimicrobial drugs to better manage resistant bacteria infectious diseases.

Materials

Plants material

Sida alba L. was collected fresh in August 2008 in Gampela, 25 Km east of Ouagadougou, capital of Burkina Faso. The plant was botanically identified by Prof. Millogo-Rasolodimby from the plants Biology Department of the University of Ouagadougou. Voucher specimen (ID-10473) was deposited at the Herbarium of the “Laboratoire de Biologie et d’Ecologie Végétale, UFR/SVT of University of Ouagadougou”.

Bacterial strains and antibiotics

Microorganisms used in this study were isolated from clinical samples at Laboratory of the General Hospital of Ouagadougou in Burkina Faso. Commercially available antibiotic diffusion discs (10 μg/disc) and Co-trimoxazol were purchased from Alkom Laboratories LTD. Clinical isolates were: Shigella dysenteriae, Shigella boydii, Shigella flexneri, Salmonella typhi, Klebsiella pneumonia, Klebsiella arogenes, Escherichia coli, Enterococcus faecalis, Enterobacter aeruginosa and Proteus mirabilis. The following microorganisms were all identified by the use of their biochemical profiles as recommended by the manual “Bactériologie Medical” [11].

Chemicals

All reagents were of analytical grade. Acetone, n-hexane were supplied by Fluka chemie (Buchs, Switzerland). INT (p-iodonitrotetrazolium chloride) was purchased from sigma-Aldrich chemie (Steinheim, Germany).

Methods

Polyphenols extraction

The harvested plant materials fresh (broken into leaf stems) were dried in the laboratory at room temperature (20-25°C), afterwards samples were ground to pass a sieve of 0.3 mm. Polyphenols were extracted with aqueous acetone (80%, v/v). The extract was then washed with hexane to remove chlorophyll and other low molecular weight compounds. Acetone was evaporated and the extract was lyophilized and stored at 22°C prior to biological tests. For the tests, lyophilized sample was dissolved with 10% DMSO in water at the desired concentration [9].

In vitro antibacterial activity

Preparation of inocula

The susceptibility tests were performed by Mueller Hinton agar-well diffusion method [12]. The bacterial strains grown on nutrient agar at 37°C for 18 h were suspended in a saline solution (0.9%, w/v)NaCl and adjusted to a turbidity of 0.5 Mac Farland standard (10⁶ CFU/ml). To obtain the inocula, these suspensions were diluted 100 times in Muller Hinton agar (DIFCO, Becton Dickinson, USA). Each Petri plate was inoculated with 15 μl of each bacterial suspension (10⁶ CFU/ml). After drying in a sterile hood, 6 mm diameter discs impregnated with 10% DMSO in water and commercially available antibiotic diffusion discs (Co-trimoxazol from Alkom Laboratories LTD) were used as positive reference standards (10 μg/disc) for all bacterial strains.

Disc-diffusion assay

Petri plates (9 cm) were prepared with 20 ml of a base layer of molten Mueller Hinton agar (DIFCO, Becton Dickinson, USA). Each Petri plate was inoculated with 15 μl of each bacterial suspension (10⁶ CFU/ml). After drying in a sterile hood, 6 mm diameter discs soaked with 10 μl of the different polyphenol-rich fractions dilutions were placed on the agar. Discs containing Co-trimoxazol were used as positive controls and 10% DMSO was used as a negative control. The plates were incubated for 24 h at 37°C and at 44°C for Escherichia coli because this bacterium is thermo resistant. The diameters of the inhibition zones were evaluated in millimeters. The extract inducing inhibition
zone ≥ 3 mm around disc were considered as antibacterial. All tests were performed in triplicate and the bacterial activity was expressed as the mean of inhibition diameters (mm) produced [15].

Micro-well dilution assay Minimum inhibitory concentration (MIC) was determined by the microdilution method in culture broth as recommended by [16]. Eight serial two-fold dilutions of polyphenol-rich fractions or conventional antibiotic were prepared as described before, to obtain final concentration range of 400 to 3.125 μg/ml. The 96-well micro-plates (NUNC, Denmark) containing 100 μL of Mueller Hinton (MH) broth were used. For each bacteria strain, three columns of eight wells to the micro-plate were used. Each well has getting: the culture medium + polyphenol-rich fractions or the combination of polyphenol-rich fractions with Co-trimoxazol + inoculum (10 μl of inocula) and INT (50 μl; 0.2 mg/ml). The plates were covered and incubated at 37°C and at 44°C for Escherichia coli for 24 h. All tests were performed in triplicate and the bacterial activity was expressed as the mean of inhibitions produced. Inhibition of bacterial growth was judged by rose or yellow colour. The MIC was defined as the lowest concentration of extract or fraction of extract at which no colony was observed after incubation. So, the MIC was defined as the lowest concentration at which no visible growth was observed.

Minimal bactericidal concentration (MBC) Minimum bactericidal concentration (MBC) was recorded as a lowest extract concentration killing 99.9% of the bacterial inocula after 24 h incubation at 37°C. Each experiment was repeated at least three times. MBC values were determined by removing 100 μl of bacterial suspension from subculture demonstrating no visible growth and inoculating nutrient agar plates. Plates were incubated at 37°C and at 44°C for Escherichia coli for 24 h. The MBC is determined with the wells whose the concentrations are ≥ MIC [15,17]. The MBC were determined in Mueller Hinton (MH) agar (DIFCO, Becton Dickinson, USA) medium.

Evaluation of bactericidal and bacteriostatic capacity
The action of an antibacterial on the bacterial strains can be characterized with two parameters such as Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC). According to the ratio MBC/MIC, we appreciated antibacterial activity. If the ratio MBC/MIC = 1 or 2, the effect was considered as bactericidal but if the ratio MBC/MIC = 4 or 16, the effect was defined as bacteriostatic [18].

Time-kill assay A bactericidal effect is defined as a 3 Log decrease in the CFU/ml or a 99.9% kill over a specified time [19]. The definition of kill for this study has been used as per [20]. Kill-time can be determined at 6 h [22]. In this study the kill measurement was determined by the actual reduction in viable counts at 6 h for each isolate. Bacteria strains possessing the bactericidal effect were chosen to perform time-kill assay. Thus, 0.5 Mac Farland standards suspensions of the microorganisms were diluted to have 50 ml of approximately 10⁶ CFU/ml in nutrient broth, and the concentration corresponding to the best MIC, were respectively added to the corresponding culture. The cultures were incubated at 37°C. At 0, 1, 2, 3, 4, 5 and 6 h, an aliquot of 100 μl was removed and diluted with 10 ml sterile broth. The obtained suspension was used to inoculate 9 cm diameter Petri plates with a sterile non toxic cotton swab on a wooden applicator as indicated before in the agar-well diffusion assay. After 24 h incubation at 37°C, the viability of the microorganisms was evaluated by the presence of colonies on the plates. The experiment was carried out twice following [9] method with light modifications.

Results
In this present study, ten bacteria strain (Gram-negative and Gram-positive bacteria) were used. The antibacterial assays were performed by the agar-well diffusion and the broth micro dilution methods; so that they could be qualified and quantified by inhibition zone diameters, MIC, MBC, Time-kill assays. One noticed that the susceptibility of the bacteria to the polyphenol-rich fractions on the basis of inhibition zone diameters varied according to the microorganism, the results are reported in Table 1. There is a significant variation in the diameters of inhibition zone values (DIZ) of polyphenol-rich fractions (Table 1).

According to the results, the combination of polyphenol-rich fractions with Co-trimoxazol has the high

Microorganisms	Co-trimoxazol	Polyphenol
Shigella dysenteria	19.00 ± 1.73	22.66 ± 0.58
Shigella boydi	20.66 ± 0.58	21.33 ± 4.04
Shigella flexneri	19.00 ± 1.00	23.66 ± 4.93
Salmonella thyphi	nd	24.33 ± 1.15
Klebsiella pneumonia	nd	29.66 ± 1.53
Klebsiella arogenes	nd	14.00 ± 1.00
Escherichia coli	nd	29.00 ± 1.00
Enterococcus faecalis	21.00 ± 1.00	28.66 ± 1.53
Enterobacter aeruginosa	nd	22.00 ± 2.65
Proteus mirabilis	20.66 ± 1.53	24.66 ± 1.53

The results are the means of number of the colonies ± standard deviations. nd: no detected activity.
activity comparatively to the polyphenol-rich fractions alone (Table 2).

As for the micro-well dilution assay (MIC) and Minimum bactericidal concentration (MBC) of polyphenol-rich fractions, result varied according to the microorganism (Table 3). About the micro-well dilution assay (MIC) and Minimum bactericidal concentration (MBC) of the combination of polyphenol-rich fractions with Co-trimoxazol, results were represented by (Table 4). The MIC values were ranged from 12.5 to 50 μg/ml and for the MBC values were ranged from 25 to 200 μg/ml. The bactericidal and bacteriostatic effect of polyphenol-rich fractions and the combination of polyphenol-rich fractions with Co-trimoxazol was determined using the ratio MBC/MIC (Table 3 and Table 4).

Concerning the time-kill assay of polyphenol-rich fractions (Table 5) and the combination of polyphenol-rich fractions with Co-trimoxazol (Table 6), the results showed that after 5 h exposition there was no viable microorganism in the initial inoculums. The effect of polyphenol-rich fractions and the combination of polyphenol-rich fractions with Co-trimoxazol was faster on Enterococcus faecalis than the other bacteria strains (Table 5 and Table 6).

Discussion

Previous studies have been carried out in different parts of the globe to extract plant products for screening antibacterial activity [23]. Plants produce highly bioactive molecules that allow them to interact with other organisms in their environment. Many of these substances are important in the defense against herbivores and contribute to the resistance to diseases [24]. Many investigators have evaluated the bioactivity of plant extracts and the isolated constituents against the serious infectious organisms [25].

Table 2 Inhibition zone diameters (mm) recorder in agar-well diffusion assay using the combination of polyphenol-rich fractions with Co-trimoxazol

Microorganisms	Polyphenol + Co-tri
Shigella dysenteriae	27.66 ± 1.53
Shigella boydii	29.33 ± 0.58
Shigella flexneri	29.00 ± 1.73
Salmonella typhi	12.33 ± 1.15
Klebsiella pneumonia	13.33 ± 2.31
Klebsiella arogenes	12.66 ± 3.79
Escherichia coli	12.33 ± 3.22
Enterococcus faecalis	29.66 ± 2.89
Enterobacter aeruginosa	14.66 ± 1.53
Proteus mirabilis	27.00 ± 1.00

The results are the means of number of the colonies ± standard deviations.

Table 3 Bacteriostatic (-) and Bactericidal (+) effects of Sida alba L. polyphenol-rich fractions

Microorganisms	MIC (μg/ml)	MBC (μg/ml)	Effects
Shigella dysenteriae	25 ± 0.00	50 ± 0.00	+
Shigella boydii	25 ± 0.00	50 ± 0.00	+
Shigella flexneri	25 ± 0.00	50 ± 0.00	+
Salmonella thyphi	50 ± 0.00	100 ± 0.00	-
Klebsiella arogenes	50 ± 0.00	200 ± 0.00	-
Klebsiella pneumonia	50 ± 0.00	200 ± 0.00	-
Escherichia coli	50 ± 0.00	200 ± 0.00	-
Enterococcus faecalis	25 ± 0.00	50 ± 0.00	+
Enterobacter aeruginosa	25 ± 0.00	100 ± 0.00	-
Proteus mirabilis	25 ± 0.00	50 ± 0.00	+

The results are the means of number of the colonies ± standard deviations. +: bactericidal effect, -: bacteriostatic effect

Table 4 Bacteriostatic (-) and Bactericidal (+) effects of combination of polyphenol-rich fractions with Co-trimoxazol

Microorganisms	MIC (μg/ml)	MBC (μg/ml)	MBC/MIC	Effect
Shigella dysenteriae	25 ± 0.00	50 ± 0.00	2	+
Shigella boydii	25 ± 0.00	50 ± 0.00	2	+
Shigella flexneri	25 ± 0.00	50 ± 0.00	2	+
Salmonella thyphi	25 ± 0.00	100 ± 0.00	4	-
Klebsiella arogenes	100 ± 0.00	400 ± 0.00	4	-
Klebsiella pneumonia	100 ± 0.00	400 ± 0.00	4	-
Escherichia coli	100 ± 0.00	400 ± 0.00	4	-
Enterococcus faecalis	125 ± 0.00	25 ± 0.00	2	+
Enterobacter aeruginosa	100 ± 0.00	400 ± 0.00	4	-
Proteus mirabilis	125 ± 0.00	25 ± 0.00	2	+

The results are the means of number of the colonies ± standard deviations. +: bactericidal effect, -: bacteriostatic effect.
The data analysis indicates that the tested polyphenol extract showed the significant results when compared with the Co-trimoxazol. Indeed, the antibacterial activity profile of the isolated constituents (polyphenols) when compared with antibiotic effects shows that the activity depends on the pure form of the constituents. This may be due to the fact that the bioactive constituents such as polyphenol compounds were responsible for the antimicrobial activity. In effect, some previous studies showed that polyphenolic compounds cause inhibition of a wide range of microorganisms. Phenol is well known as a chemical antiseptic [29]. In addition, Phenolic and terpenic antimicrobial activities are well documented [15]. Polyphenols, such as tannins and flavonoids, are important antibacterial activity [26]. The antimicrobial activity of flavonoids is due to their ability to complex with extracellular and soluble protein and to complex with bacterial cell wall while that of tannins may be related to their ability to inactivate microbial adhesions, enzymes and cell envelop proteins [24]. We noticed that our extracts or in combination showed relatively the best inhibitory activity against Enterococcus faecalis a Gram-positive bacterium followed by Proteus mirabilis a Gram-negative bacterium. The highest sensitivity of Enterococcus faecalis may be due to its cell wall structure and outer membrane [30]. Gram-positive bacteria are generally more sensitive in the extracts than Gram-negative bacteria [31]. A possible explanation for these observations may lie in the significant differences in the outer layers of Gram-positive bacteria. The permeability of the cell wall of the Gram-negative organism is generally less efficient than Gram-positive ones probably because of the presence of the high level of phospholipids in the cell wall compared with Gram-positive bacteria [32].

Gram-negative bacteria however, possess an outer membrane and unique periplasme space not found in Gram-positive bacteria [32]. The resistance of Gram-negative bacteria towards antibacterial substances is related to the hydrophilic surface of their outer membrane which is rich in lipopolysaccharide molecules, presenting a barrier to the penetration of numerous antibiotic molecules and is also associated with the enzymes in periplasme space, which are capable of breaking down the molecules introduced from outside [33]. The resistances of the bacteria to the current antibiotics necessitate the further studies on the isolated constituents to find out their safety and efficacy profile. This highlights the continuous interest in laboratory screening of medicinal plants, not only to determine the scientific rationale for their usage, but also to discover new active principles. African medicinal plants have been focused on phenolic compounds, terpenoids or essential oils [34]. The plants have been found to exert good in vitro antimicrobial activities and some active principles have been isolated.

Microorganisms	Time-kill (h)						
	0 h	1 h	2 h	3 h	4 h	5 h	6 h
Shigella dysenteriae	+ (UC)	+ (UC)	23 ± 03	14 ± 01	05 ± 03	-	-
Shigella boydii	+ (UC)	+ (UC)	25 ± 01	13 ± 01	04 ± 01	-	-
Shigella flexneri	+ (UC)	+ (UC)	23 ± 03	14 ± 02	05 ± 01	-	-
Enterococcus faecalis	+ (UC)	+ (UC)	21 ± 01	06 ± 01	-	-	-
Proteus mirabilis	+ (UC)	+ (UC)	26 ± 03	15 ± 01	07 ± 03	-	-

The results are the means of number of the colonies ± standard deviations.

+ : For the presence of the colonies
- : For absence of colonies
UC: uncountable
Conclusion
In short according our results, polyphenol-rich fractions from Sida alba L. were found to possess promising anti-
microbial activities when applied alone or in combination with conventional antimicrobial drugs to treat infectious
diseases due to multi-resistant bacterial strains.

Acknowledgements
The authors are grateful to the France Embassy in Burkina Faso/EGIDE- France for the mobility scholarship which has permitted to do this work. The authors think Prof. Millogo Rasoldimby from the plants Biology Department of the University of Ouagadougou for the botanically identified of plants.

Author details
1Laboratoire de Biochimie et Chimie Appliquées (LABOCA), UFR/SVT, Université de Ouagadougou, 09 BP 848 Ouagadougou 09, Burkina Faso.
2Laboratoire de Phytopathologie, UFR Agrobiologie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943 Franceville, Gabon.
3Laboratoire de Physiologie Animale, Electrophysiologie et de Pharmacologie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, Franceville, Gabon.
4Laboratoire de Biochimie et de Génétique moléculaire microbienne, UFR/SVT, Université de Ouagadougou, 03 BP 7131 Ouagadougou 03, Burkina Faso.
5Laboratoire de Nutrition et de Pharmacologie, UFR BioSciences, Université de Cocody, Abidjan 22 BP: 582 Abidjan 22, Côte d'Ivoire.

Authors’ contributions
KK and AH carried out the study and wrote the manuscript. JMF, ANL, AS and NB supervised the work and the manuscript. JYD, BMB and OGN contributed to the manuscript corrections. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 4 December 2011 Accepted: 24 February 2012

References
1. Kolwloe SO, Kolwloe OT, Akanji MA: Effects of aqueous extract of Khaya senegolensis stem bark on biochemical and hematological parameters in rats. J Pharmacol Toxicco 2011, 6(6):602-607.
2. Johann S, Rizzolatti MG, Doncini CL, de-Resende MA, Paula S: Antifungal properties of plants used in Brazilian traditional medicine against clinically relevant fungal pathogens. Braz J Microbiol 2007, 38:11-14.
3. Tiwari U, Rastogi B, Singh P, Saraf DK, Vyas SP: Immunomodulatory effects of aqueous extract of Tridax procumbens in experimental animals. J Ethnopharmacol 2004, 92:113-119.
4. Afolyan AJ: Extracts from the shoots of Arutotis aroroides inhibit the growth of bacteria and fungi. Pharm Biol 2003, 41(1):22-25.
5. Newman DJ, Cagg GM, Snader KM: Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 2003, 66:1022.
6. Kong JM, Goh NK, Chia LS, Chia TF: Recent advances in traditional plant drugs and orchids. Acta Pharmacol Sin 2003, 24:27-31.
7. Ipinke EV, Udensi O, Ekato UB, Ujah ET, Asuquo BO, Udoh FB: Effect of crude extract of Carica papaya seeds on the reproductive efficiency of male albino rats. Global J Pure Applied Sci 2007, 13:365-368.
8. Nacoulma OG: Medicinal Plants and Their Traditional Uses in Burkina Faso Ph D. Thesis. University of Ouagadougou, 1996, 328.
9. Karou D, Savadogo A, Canini A, Yameogo S, Montesano C, Simpropo J, Colizzi V, Traore AS: Antibacterial activity of alkaloids from Sida acuta. Afr J Biotechnol 2006, 5(2):195-200.
10. Konate K, Souza A: Polyphenol contents, antioxidant and anti-inflammatory activities of six malvaceae species traditionally used to treat hepatitis B in Burkina Faso. Eur J Sci Res 2010, 44(4):570-580.
11. Le Minor L, Véron M: Bactériologie Médicale. Edited by: Flammarion medicine-sciences 773, ISBN 1984, 2-257-10418-8.
12. Perez C, Pauli M, Bazareque P: An antibiotic assay by the agar-well diffusion method. Acta Biologicae et Medecine Experimentalis 1990, 15:113-115.
13. Ezoubei A, Gadhi CA, Fidil N, Benharref A, Jana M, Vanhaelen M: Isolation and antimicrobial activity of two phenolic compounds from Pulicaria odorata L. J Ethnopharmacol 2005, 99:267-292.
14. Pujol V, Villard J: Research of antifungal substances secreted by higher fungi in culture. French Pharmaceut J 1990, 48:17-22.
15. Rabe T, Mullsholland D, van Staden J: Isolation and identification of antibacterial compounds from Veronica colorata leaves. J Ethnopharmacol 2002, 80:91-94.
16. NCCLS-National Committee for Clinical Laboratory Standards: Performance standard for anti-microbial susceptibility testing: eleventh informational supplement. Document M100-S11. National Committee for Clinical Laboratory Standards, Wayne, PA, USA, 2001.
17. Traoré R: Contribution has the Study of the Adhesion of Enterobacteriaces of the kirin Klettsiella proteus and K seratia with the Human epithelial Cells Doct thesis science pharmacutical.Université libre de Bruxelles, 1993, 158.
18. Berche P, Galliard JL, Simonet M: In Nosocomial Infections Caused by Bacteria and Their Prevention in Bacteriology. Edited by: Flammarion Medicine Sciences 1988, 64-71.
19. Wolfe EF, Klepser ME, Pfäffli MA: Antifungal dynamics of amphotericin B and fluconazole in combination against Candida albicans, effect of lag time. J Antimicrob Chemother 1999, 43(S):1-14.
20. Rabe T, van Staden J: Antimicrobial activity of South African plants used for medicinal purposes. J Ethnopharmacol 1997, 56:81-87.
21. White RL, Bugess DS, Manduru M, Bosso JA: Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard and E test. Antimicrob Agents Chemother 1996, 40:1914-1918.
22. National Committee for Clinical Laboratory Standards: Methods for Determining Bactericidal Activity of Antimicrobial Agent. Wayne, PA: National Committee for Clinical Laboratory Standards; 1992.
23. Ravikumar S, Nazar S, Nuralshea A, Abideen S: Antibacterial activity of traditional therapeutic coastal medicinal plants against some pathogens. Environ Biol 2005, 26:383-386.
24. Cowan NH: Plants products as antimicrobial agents. Clin Microbiol Rev 1999, 12:564-582.
25. Parekh J, Sumitra C: In vitro Microbiocidal of Extracts of Launaea procumbens Roxb. (Labiatae), Vitis vinifera L. (Vitaceae) and Cypers rotundus L. (Cyperaceae). Afr J Biomed Res 2006, 9:99-93.
26. Machado TD, Leal ICR, Amaral ACF, dos Santos KRN, da Silva MG, Kuster RM: Antimicrobial elagatannin of Punica granatumunfruits. J Braz Chem Soc 2002, 13:606-610.
27. Shrivastava SM, Kumar S, Chaudhary M: Time-kill curve studies of against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Proteus vulgaris. Res J Med Plant 2009, 3(1):116-122.
28. Jazani NE, Zoroohi MH, Shahab S, Yeka Z, Natreghi S: Evaluation of the synergistic effect of water soluble extracts of green tea (Camellia sinensis) on the activity of ciprofloxacin in urinary isolated E. coli. J Biol Sci 2007, 7:1500-1503.
29. Abbeer M, Haj A, Sanaa OY: Antimicrobial activity of Acacia nilotica Extracts Against Some Bacteria Isolated from Clinical Specimens. Res J Med Plant 2007, 1(1):25-28.
30. Zaika LL: Spices and herbs- their antimicrobial activity and its determination. J Food Safety 1988, 9:87-118.
31. Lopez P, Sanchez C, Batlle Nerin C: Antibacterial and antioxidant properties of plants used in Brazilian traditional medicine against clinically relevant fungal pathogens. Braz J Microbiol 2007, 38:11-14.
32. Nikaido H: Outer membrane. In: Echerichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Edited by: Neidhardt FC. Washingon: American Society for Microbiology Press; 1996:29-47, D.C.
33. Gao Y, Bellum MV, Stiles M: The outer membrane of Gram-negative bacteria inhibits antibacterial activity of Brochocin C. Applied Environ Microbiol 1999, 65:4329-4333.
34. Erasto P, Bojase-Moleta G, Majinda RRT: Antimicrobial and antioxidant flavonoids from the roots wood of Boisanthus spesiosus. Phytochemistry 2004, 65:875-880.