Tropical and algebraic curves with multiple points

Eugenii Shustin

To Oleg Yanovich Viro in occasion of his 60th birthday

Abstract

Patchworking theorems serve as a basic element of the correspondence between tropical and algebraic curves, which is a core of the tropical enumerative geometry. We present a new version of a patchworking theorem which relates plane tropical curves with complex and real algebraic curves having prescribed multiple points. It can be used to compute Welschinger invariants of non-toric Del Pezzo surfaces.

1 Introduction

The patchworking construction in the toric context is originated in the Viro method suggested in 1979-80 for obtaining real algebraic hypersurfaces with prescribed topology [19, 20, 21]. Later it was developed and applied to other problems, in particular, to the tropical geometry. Namely, it serves as an important step in the proof of a correspondence between tropical and algebraic curves which in turn is a core of the enumerative applications of the tropical geometry (see, for example, the foundational Mikhalkin’s work [9] and other versions and modifications in [10, 13, 15, 17]). We continue the latter line and present here a new patchworking theorem. The novelty of our version is that it allows one to patchwork algebraic curves with prescribed multiple points, whereas the similar existing statements in tropical geometry apply only to nonsingular or nodal curves.

The cited results are restricted to the case of curves in toric varieties (for example, the plane blown up in at most three points). Since the consideration of curves on a blown up surface is equivalent to the study of curves with fixed multiple points on the original surface, one can apply the tropical enumerative geometry to count curves on the plane blown up at more than three points. This approach naturally leads to the question: What are the plane tropical curves which correspond (as non-Archimedean amoebas or logarithmic limits) to algebraic curves with fixed generic multiple points on toric surfaces? The question appears to be more complicated than that resolved in [9, 13], and no general answer is known so far.

1Rephrasing Selman Akbulut, who called Viro’s disciples “little Viro’s”, our contribution is “a little patchworking theorem” descending from “the great Viro’s patchworking theorem”.

1
The goal of the present paper is to prove a patchworking theorem for a specific sort of plane tropical curves, i.e., we show that each tropical curve in the chosen class gives rise to an explicitly described set of algebraic curves on a given toric surface, in a given linear system, of a given genus, and with a given collection of fixed points with prescribed multiplicities (Theorem 2, section 3). Furthermore, in the real situation, we compute the contribution of the constructed curves to the Welschinger invariant (Theorem 3, section 3).

In fact, we do not know all the tropical curves, which may give rise to the above algebraic curves, and, furthermore, we restrict our patchworking theorem to a statement which is sufficient to settle the two following problems:

• to prove recursive formulas of the Caporaso-Harris type for the Welschinger invariants of \((\mathbb{P}^1)^2_{(0,2)}\), the quadric hyperboloid, blown up at two imaginary points, and for \(\mathbb{P}^2_{(k,2l)}\), \(k + 2l \leq 5\), \(l \leq 1\), the plane, blown up at \(k\) generic real points and at \(l\) pairs of conjugate imaginary points [6];

• to establish a new correspondence theorem between algebraic curves of a given genus in a given linear system on a toric surface and some tropical curves, and find new real tropical enumerative invariants of real toric surfaces [18].

We mention here an important consequence of the former result

Theorem 1 (6) Let \(\Sigma\) be one of the real Del Pezzo surfaces \((\mathbb{P}^1)^2_{(0,2)}\) or \(\mathbb{P}^2_{(k,2l)}\), \(k + 2l \leq 5\), \(l \leq 1\), and let \(D \subset \Sigma\) be a real ample divisor. Then the Welschinger invariants \(W_0(\Sigma, D)\), corresponding to the totally real configurations of points, are positive, and they satisfy the asymptotic relation

\[
\lim_{n \to \infty} \frac{\log W_0(\Sigma, nD)}{n \log n} = \lim_{n \to \infty} \frac{\log GW_0(\Sigma, nD)}{n \log n} = -K_\Sigma D,
\]

where \(GW_0(\Sigma, D)\) are the genus zero Gromov-Witten invariants.

A similar statement for all the real toric Del Pezzo surfaces except for \((\mathbb{P}^1)^2_{(0,2)}\) was known before [4, 5].

Preliminary notations and definitions. If \(P \subset \mathbb{R}^n\) is a pure-dimensional lattice polyhedral complex, \(\dim P = d \leq n\), by \(|P|\) we denote the lattice volume of \(P\), counted so that the lattice volume of a \(d\)-dimensional lattice polytope \(\Delta \subset \mathbb{R}^n\) is the ratio of the Euclidean volume of \(\Delta\) and of the minimal Euclidean volume of a \(d\)-dimensional lattice simplex in the linear \(d\)-subspace of \(\mathbb{R}^n\), parallel to the affine \(d\)-space spanned by \(\Delta\). In particular, \(|P| = \#P\) if \(P\) is finite.

Given a lattice polyhedron \(\Delta\), by \(\text{Tor}_K(\Delta)\) \(^2\) we denote the toric variety over a field \(K\), associated with \(\Delta\), and by \(L_\Delta\) we denote the tautological line bundle (i.e., the bundle generated by the monomials \(z^\omega\), \(\omega \in \Delta\), as global sections). The divisors

\(^2\)We omit subindex in the complex case writing simply \(\text{Tor}(\Delta)\).
$\text{Tor}_K(\sigma) \subset \text{Tor}_K(\Delta)$, corresponding to the facets (faces of codimension 1) σ of Δ, we call toric divisors. By $\text{Tor}_K(\partial \Delta)$ we denote the union of all the toric divisors in $\text{Tor}_K(\Delta)$.

The main field we use is $K = \bigcup_{m>1} \mathbb{C}(t^{1/m})$, the field of locally convergent complex Puiseux series possessing a non-Archimedean valuation $\text{Val}: K^* \rightarrow \mathbb{R}$, $\text{Val}\left(\sum_r a_r t^r\right) = -\min\{r : a_r \neq 0\}$.

Denote $\text{ini}\left(\sum_r a_r t^r\right) = a_v$, where $v = -\text{Val}\left(\sum_r a_r t^r\right)$.

The field K is algebraically closed and contains a closed real subfield $K_R = \text{Fix(Conj)}$, $\text{Conj}(\sum_r a_r t^r) = \sum_r a_r t^r$.

We remind here the definition of Welschinger invariants [23], restricting ourselves to a particular situation. Let Σ be a real unnodal (i.e., without $(-n)$-curves, $n \geq 2$) Del Pezzo surface with a connected real part $\mathbb{R}\Sigma$, and let $D \subset \Sigma$ be a real ample divisor. Consider a generic configuration ω of $c_1(\Sigma) \cdot D - 1$ distinct real points of Σ. The set $R(D, \omega)$ of real (i.e., complex conjugation invariant) rational curves $C \in |D|$ passing through the points of ω is finite, and all these curves are nodal and irreducible. Put

$$W(\Sigma, D, \omega) = \sum_{C \in R(D, \omega)} (-1)^{s(C)},$$

where $s(C)$ is the number of solitary nodes of C (i.e., real points, where a local equation of the curve can be written over \mathbb{R} in the form $x^2 + y^2 = 0$). By Welschinger’s theorem [23], the number $W(\Sigma, D, \omega)$ does not depend on the choice of a generic configuration ω, and hence we simply write $W(\Sigma, D)$, omitting the configuration in the notation of this Welschinger invariant.

In what follows we shall use a generalized definition of the Welschinger sign of a curve. Namely, let C be a real algebraic curve on a smooth real algebraic surface Σ, and let $\mathcal{P} \subset \Sigma$ be a conjugation invariant finite subset. Assume that C has no singular local branches (i.e., is an immersed curve). Then we define the Welschinger sign

$$W_{\Sigma, \mathcal{P}}(C) = (-1)^{s(C, \Sigma, \mathcal{P})},$$

where $s(C, \Sigma, \mathcal{P}) = \sum_{z \in \text{Sing}(C')} s(C', z), \quad (1)$

C' being the strict transform of C under the blow up of Σ at \mathcal{P}, and $s(C', z)$ is the number of solitary nodes in a local δ-const deformation of the singular point z of C' into $\delta(C', z)$ nodes, where δ denotes the δ-invariant of singularity (i.e., the maximal possible number of nodes in its deformation). It is evident that $s(C', z)$ is correctly defined modulo 2, and hence $W_{\Sigma, \mathcal{P}}(C)$ is well-defined.

Organization of the material. In section [2] we set forth the geometry of plane tropical curves adapted to our purposes, completing with the definition of weights of
tropical curves which, in the complex case, designate the number of algebraic curves associated with the given tropical curves in the further patchworking theorem, and, in the real case, the contribution of the real algebraic curves in the associated set to the Welschinger number. In section 3, we provide two patchworking theorems, the complex and the real one, in which we explicitly construct algebraic curves associated to the tropical curves under consideration.

Acknowledgement. The author was supported by the grant no. 465/04 from the Israel Science Foundation, a grant from the Higher Council for Scientific Cooperation between France and Israel, and a grant from the Tel Aviv University. This work was completed during the author’s stay at the Centre Interfacultaire Bernoulli, École Polytechnique Fédérale da Lausanne and at Laboratoire Emile Picard, Université Paul Sabatier, Toulouse. The author thanks the CIB-EPFL and UPS for the hospitality and excellent working conditions. Special thank are due to I. Itenberg, who pointed out a mistake in the preliminary version of Theorem 3. Finally, I express my gratitude to the unknown referee for numerous remarks, corrections, and suggestions.

2 Parameterized plane tropical curves

For the reader’s convenience, we remind here some basic definitions and facts about tropical curves, which we shall use in the sequel. The details can be found in [8, 9, 12].

2.1 Definition

An abstract tropical curve is a compact graph Γ without divalent vertices and isolated points such that $\Gamma = \Gamma \setminus \Gamma_0 \subset \Gamma$, where $\Gamma_0 \subset \Gamma$ is the set of univalent vertices, is a metric graph whose closed edges are isometric to closed segments in \mathbb{R}, and non-closed edges Γ-ends are isometric to rays in \mathbb{R} or to \mathbb{R} itself. Denote by Γ_0, resp. Γ_0, the set of vertices of Γ, resp. Γ, and split the set Γ_1 of edges of Γ into Γ_1, the set of the Γ-ends, and Γ_1, the set of closed (finite length) edges of Γ. The genus of Γ is $g = b_1(\Gamma) - b_0(\Gamma) + 1$.

A plane parameterized tropical curve (shortly PPT-curve) is a pair (Γ, h), where Γ is an abstract tropical curve and $h : \Gamma \to \mathbb{R}^2$ is a continuous map whose restriction to any edge of Γ is a non-zero \mathbb{Z}-affine map and which satisfies the following balancing and nondegeneracy conditions at any vertex v of Γ: For each $v \in \Gamma_0$,

$$\sum_{e \in E, \alpha \in \mathbb{T}} dh_\alpha(\tau_\alpha(e)) = 0 ,$$

and

$$\text{Span}\{dh_\alpha(\tau_\alpha(e)) ; v \in e, e \in \Gamma_1\} = \mathbb{R}^2 ,$$
where \(\tau(e) \) is the unit tangent vector to an edge \(e \) at the vertex \(v \). The **degree** of a PPT-curve \((\Gamma, h)\) is the unordered multi-set of vectors \(\{dh(\tau(e)) : e \in \Gamma^1_v \} \), where \(\tau(e) \) denotes the unit tangent vector of a \(\Gamma \)-end pointing to the univalent vertex.

Observe that

\[
\sum_{e \in \Gamma^1_v} dh(\tau(e)) = 0 ,
\]

what immediately follows from the balancing condition (2). We shall also use another form of the \(\Gamma \)-end-balancing condition. For each \(\Gamma \)-end \(e \) pick any point \(x_e \in h(e\backslash \Gamma^0) \). Then

\[
\sum_{e \in \Gamma^1_v} \langle R_{\pi/2}(dh(\tau(e))), x_e \rangle = 0 ,
\]

where \(R_{\pi/2} \) is the (positive) rotation by \(\pi/2 \). This is an elementary consequence of the stuff discussed in the next section: one can lift a PPT-curve to a plane algebraic curve over a non-Archimedean field, consider the defining polynomial, and then use the fact that the product of the roots of the (quasihomogeneous) truncations of this polynomial on the sides of its Newton polygon equals 1. We leave details to the reader.

Since \(dh(v(\tau_v(e))) \in \mathbb{Z}^2 \), we have a well-defined positive weight function \(w : \Gamma^1 \to \mathbb{Z} \) in the relation \(dh_v(\tau_v(e)) = w(e)u_v(e) \) with \(u_v(e) \) being the primitive integral tangent vector to \(h(e) \), emanating from \(h(v) \). In the sequel, when modifying tropical curves we speak of changes of edge weights, which in terms of \(h \) and \(\Gamma \) means that \(h \) remains unchanged whereas the metric on the chosen edges is multiplied by a constant.

Observe that a connected component of \(\Gamma \setminus F \), where \(F \) is finite, naturally induces a new PPT-curve (further on referred to as **induced**) when making the metric on the non-closed edges of that component complete and respectively correcting the map \(h \) on these edges. These induced curves and the unions of few of them, coming from the same \(\Gamma \setminus F \), are called PPT-curves **subordinate** to \((\Gamma, h)\).

The **deformation space** \(M(\Gamma, h) \) of a PPT-curve \((\Gamma, h)\) is obtained by variation of the length of the finite edges of \(\Gamma \) and combining \(h \) with shifts. It can be identified with an open rational convex polyhedron in Euclidean space, and its closure \(\overline{M}(\Gamma, h) \) can be obtained by adding the boundary of that polyhedron which corresponds to PPT-curves with some edges \(e \in \Gamma^1 \) contracted into points.

Deformation equivalent PPT-curves are often called to be of the same **combinatorial type**. The degree and the genus are invariants of the combinatorial type as well as the following characteristics. We call a PPT-curve \((\Gamma, h)\)

- **irreducible** if \(\Gamma \) is connected,
- **simple** if \(\Gamma \) is trivalent, and
- **pseudo-simple** if, for any vertex \(v \in \Gamma^0 \) incident to \(m > 3 \) edges \(e_1, e_2, ..., e_m \), one has \(u_v(e_1) \neq u_v(e_j), 1 < j < m \), and only two distinct vectors among \(u_v(e_1), ..., u_v(e_m) \)
In the latter case, an edge e_i emanating from a vertex $v \in \Gamma^0$ of valency $m > 3$ is called **simple**, if $u_i(e_i) \neq u_j(e_j)$ for all $j \neq i$, and is called **multiple** otherwise.

2.2 Newton polygon and its subdivision dual to a plane tropical curve

Given a PPT-curve $Q = (\Gamma, h)$, the image $T = h(\Gamma) \subset \mathbb{R}^2$ is a finite planar graph, which supports an embedded plane tropical curve (shortly EPT-curve) $h_*Q := (T, h_*(w))$ with the (edge) weight function

$$h_*(w) : T^1 \rightarrow \mathbb{Z}, \quad h_*(w)(E) = \sum_{e \in T^1, h(e) = E} w(e).$$

The respective balancing condition immediately follows from (2). Furthermore, there exists a convex lattice polygon $\Delta \subset \mathbb{R}^2$ (different from a point) and a convex piece-wise linear function

$$f_T : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x) = \max_{\omega \in \Delta \cap \mathbb{Z}^2} \langle \omega, x \rangle + c_\omega, \quad x \in \mathbb{R}^2,$$

such that

- T is the corner locus of f_T,
- for any two linearity domains D_1, D_2 of f_T, corresponding to linear functions in formula (5) with gradients ω_1, ω_2, respectively, and having a common edge $E = D_1 \cap D_2$ of T, it holds $\omega_2 - \omega_1 = h_*(w)(E) \cdot u(E)$, where $u(E)$ is the primitive integral vector orthogonal to E and directed from D_1 to D_2.

Here the polygon Δ, called the **Newton polygon** of Q, is defined uniquely up to a shift in \mathbb{R}^2, and f_T is defined uniquely up to addition of a linear affine function.

The Legendre dual to f_T function $\nu_T : \Delta \rightarrow \mathbb{R}$ is convex piece-wise linear, and its linearity domains define a subdivision S_T of Δ into convex lattice subpolygons. This subdivision S_T is dual to the pair (\mathbb{R}^2, T) in the following way: there is 1-to-1 correspondence between the faces of subdivision of \mathbb{R}^2 determined by T and the faces of subdivision S_T such that (i) the sum of the dimensions of dual faces is 2, (ii) the correspondence inverts the incidence relation, (iii) the dual edges of T and of S_T are orthogonal, and the weight of an edge of T equals the lattice length of the dual edge of S_T. In particular, if $V = (\alpha, \beta)$ is a vertex of T, then $\nabla \nu_T = (-\alpha, -\beta)$ along the dual polygon Δ_V of the subdivision S_T.

Furthermore, we can obtain an extra information on the subdivision S_T out of the original PPT-curve Q. Namely,

- with each edge $e \in \Gamma^1$ we associate a lattice segment σ_e which is orthogonal to $h(e)$ and satisfies $|\sigma_e| = w(e)$,
with each vertex \(v \in \Gamma^0 \) we associate a convex lattice polygon \(\Delta_v \), whose sides are suitable translates of the segments \(\sigma_e, e \in \Gamma^1, v \in e \). Denote by \(\sigma_{v,e} \) the side of \(\Delta_v \), which is a translate of \(\sigma_e \) and whose outward normal is \(dh_v(\tau_e(e)) \).

Let a polygon \(\Delta_V \) of the subdivision \(S_T \) be dual to a vertex \(V \) of \(T \). Then (up to a shift)

\[
\Delta_V = \sum_{e \in \Gamma^1 \cap h^{-1}(V) \neq \emptyset} \sigma_e + \sum_{e \in \Gamma^0 \cap h(v) = V} \Delta_v. \tag{6}
\]

In this connection, we can speak on \(\nabla \nu_T \) along the polygons \(\Delta_v \) appearing in (6).

A EPT curve \(T \) is called nodal, if the dual subdivision \(S_T \) consists of triangles and parallelograms, i.e., when the non-trivalent vertices of \(T \) are locally intersections of two straight lines. A nodal EPT curve canonically lifts into a simple PPT curve when one resolves all nodes of the given curve.

2.3 Compactified tropical curves

For a given convex lattice polygon \(\Delta \), different from a point, we define a compactification \(\mathbb{R}^2_\Delta \) of \(\mathbb{R}^2 \) in the following way. If \(\dim \Delta = 2 \), we identify \(\mathbb{R}^2 \) with the positive orthant \((\mathbb{R}_{>0})^2 \) by the coordinate-wise exponentiation, then identify \((\mathbb{R}_{>0})^2 \) with the interior of \(\mathbb{R}^2_\Delta := \text{Tor}_{\mathbb{R}}(\Delta)_+ \approx \Delta \), the non-negative part of the real toric variety \(\text{Tor}_{\mathbb{R}}(\Delta) \), via the moment map

\[
\mu(x) = \frac{\sum_{\omega \in \Delta_\gamma} x^\omega}{\sum_{\omega \in \Delta_\gamma^2} x^\omega}, \quad x \in (\mathbb{R}_{>0})^2.
\]

If \(\Delta \) is a segment, then we take \(\Delta' = \Delta \times \sigma, \sigma \) being a transverse lattice segment, and define \(\mathbb{R}^2_\Delta \) as the quotient of \(\mathbb{R}^2_{\Delta'} \) by contracting the sides parallel to \(\sigma \). We observe that the rays in \(\mathbb{R}^2 \), directed by an external normal \(u \) to a side \(\sigma \) of \(\Delta \) and emanating from distinct points on a line, transverse to \(\sigma \), close up at distinct points on the part of \(\partial(\mathbb{R}^2_\Delta) \), corresponding to the interior of \(\sigma \) in the above construction.

So, we can naturally compactify a PPT-curve \((\Gamma, h) \) into \((\overline{\Gamma}, \overline{h}) \), by extending \(h \) up to a map \(\overline{h} : \overline{\Gamma} \to \mathbb{R}^2_\Delta \).

2.4 Marked tropical curves

An abstract tropical curve with \(n \) marked points is a pair \((\overline{\Gamma}, G) \), where \(\overline{\Gamma} \) is an abstract tropical curve and \(G = (\gamma_1, ..., \gamma_n) \) is an ordered \(n \)-tuple of distinct points of \(\overline{\Gamma} \). We say that a marked tropical curve \((\overline{\Gamma}, G) \) is regular if each connected component of \(\overline{\Gamma} \setminus G \) is a tree containing precisely one vertex from \(\overline{\Gamma}^0_\infty \). Furthermore, a marked tropical curve \((\overline{\Gamma}, G) \) is called

\[^3 \text{Clearly, the rays directed by vectors distinct from any exterior normal to sides on } \Delta \text{ close up at respective vertices of } \mathbb{R}^2_\Delta. \]
• **end-marked**, if \(G \cap \Gamma^0 = \emptyset \) and the points of \(G \) lie on the ends of \(\Gamma \), one on each end,

• **regularly end-marked**, if \(G \cap \Gamma^0 = \emptyset \), the points of \(G \) lie on the ends of \(\Gamma \), and \((\Gamma, G)\) is regular.

A parametrization of a (compact) plane tropical curves with marked points is a triple \((\Gamma, G, h)\), where \((\Gamma, G)\) is a marked abstract tropical curve, and \((\Gamma, h)\) is a PPT-curve. We define the deformation space \(\mathcal{M}(\Gamma, G, h) \subset \mathcal{M}(\Gamma, h) \) by fixing the combinatorial type of the pair \((\Gamma, G)\) \((G\) being an ordered sequence). It can be identified with a convex polyhedron in \(\mathbb{R}^N \), where the coordinates designate the two coordinates of the image \(h_i \) of a fixed vertex \(v_0 \), the lengths of the edges \(e_i \), and the distances between the marked points lying inside edges of \(\Gamma \) to some fixed points inside these edges (chosen one on each edge), cf. [1]. Further on the deformation type of a marked PPT-curve is called a **combinatorial** type.

Lemma 1 Let \(\Delta \) be a convex lattice polygon, \(X = (x_1, \ldots, x_n) \) a sequence of points in \(\mathbb{R}^2_\Delta \) (not necessarily distinct). Then there exists at most one \(n \)-marked regular PPT-curve \((\Gamma, G, h)\) with the Newton polygon \(\Delta \) and with a fixed combinatorial type, such that \(h_i = x_i, \gamma_i \in G, i = 1, \ldots, n. \)

Proof. If such a marked PPT-curve exists, it is sufficient to uniquely restore each connected component of \(\Gamma \setminus G \), and hence, the general situation reduces to the case of an irreducible rational PPT-curve (a subordinate curve defined by such a connected component) with \(|\Gamma_\infty^0| - 1 = |\Gamma_\infty^1| - 1\) marked univalent vertices. We proceed by induction on \(|\Gamma^1|\). The base of induction, i.e. the case \(|\Gamma^1| = 1\) is evident. Assume that \(|\Gamma^1| > 1\).

If there are two \(\Gamma \)-ends \(e_1, e_2 \) with marked points that emanate from one vertex \(v \in \Gamma^0 \) and are mapped into the same straight line by \(h \), then either \(h(e_1) = h(e_2) \), in which case we replace \(e_1, e_2 \) by one end of weight \(w(e_1) + w(e_2) \) and respectively replace two marked points by one, thus, reducing \(|\Gamma^0|\) by 1 and keeping the irreducibility and the rationality of the tropical curve, or \(h(e_1) \) and \(h(e_2) \) are the opposite rays emanating from \(h(v) \), in which case we remove the \(\Gamma \)-end with lesser weight, leaving the other with weight \(|w(e_1) - w(e_2)|\), thus, reducing \(|\Gamma^1|\) by 1 or 2.

If there are no \(\Gamma \)-ends as above, from

\[|\Gamma^0| - |\Gamma^1| = 1 \quad \text{and} \quad 3 \cdot |\Gamma^0| \leq 2 \cdot |\Gamma^1| + |\Gamma^1_\infty| \]

we deduce that \(|\Gamma^0| \leq |\Gamma^1_\infty| - 2\). Hence there are two non-parallel \(\Gamma \)-ends with marked points which merge to a common vertex \(v \in \Gamma^0 \), which thereby is determined uniquely. So, we remove the above \(\Gamma \)-ends and the vertex \(v \) from \(\Gamma \), then extend the other edges of \(\Gamma \) coming to \(v \) up to new ends and mark on them the points mapped to \(h(v) \). Thus, the induction assumption completes the proof. \(\square \)
2.5 Tropically generic configurations of points

Let \(\Delta \) be a convex lattice polygon, \(\mathbf{x} = (x_1, \ldots, x_k) \) a sequence of distinct points in \(\mathbb{R}^2_\Delta \) such that \(x_i \in \sigma_i, \ 1 \leq i \leq r \), where \(\sigma_1, \ldots, \sigma_r \subset \mathbb{R}^2_\Delta \) correspond to certain sides of \(\Delta \), and \(x_i \in \mathbb{R}^2 \subset \mathbb{R}^2_\Delta, \ r < i \leq k \). Let \(\mathbf{m} = (m_1, \ldots, m_k) \) be a sequence of non-negative integers, called weights of the points \(x_1, \ldots, x_k \), respectively. A subconfiguration of \((\mathbf{x}, \mathbf{m}) \) is a configuration \((\mathbf{x}, \mathbf{m'}) \) with \(\mathbf{m'} \leq \mathbf{m} \) (component-wise).

Let \(\mathcal{C} \) be a combinatorial type of an irreducible end-marked PPT-curve with Newton polygon \(\Delta \), with \(m = m_1 + \ldots + m_k \) \(\Gamma \)-ends and marked points \(\gamma_1, \ldots, \gamma_m \). A weighted configuration \((\mathbf{x}, \mathbf{m}) \) is called \(\mathcal{C} \)-generic, if there is no end-marked irreducible PPT-curve \((\Gamma, G, \mathbf{h}) \) of type \(\mathcal{C} \) such that \(\mathbf{h}(G) = (\mathbf{x}, \mathbf{m}) \), i.e.

\[
\mathbf{h}(\gamma_i) = x_i, \quad \sum_{j<i} m_j < i \leq \sum_{j\leq i} m_j, \quad i = 1, \ldots, k.
\]

A weighted configuration \((\mathbf{x}, \mathbf{m}) \) is called \(\Delta \)-generic, if it together with all its subconfigurations is generic with respect to the combinatorial types of end-marked irreducible PPT-curves which have \(m \leq |\partial \Delta \cap \mathbb{Z}^2| \) \(\Gamma \)-ends and directing vectors of all edges orthogonal to integral segments in \(\Delta \). A (non-weighted) configuration \(\mathbf{x} \) is called \(\Delta \)-generic if all possible weighted configurations \((\mathbf{x}, \mathbf{m}) \) are \(\Delta \)-generic.

Lemma 2 The \(\Delta \)-generic configurations with rational coordinates \(\mathbf{x} = (x_1, \ldots, x_k) \subset \mathbb{R}^2_\Delta \) such that \(x_i \in \sigma_i, \ 1 \leq i \leq r, \ x_i \in \mathbb{R}^2, \ r < i \leq k \), form a dense subset of \(\sigma_1 \times \ldots \times \sigma_r \times (\mathbb{R}^2)^{k-r} \).

Proof. Notice that there are only finitely many (up to the choice of edge weights) combinatorial types of end-marked irreducible PPT-curves under consideration and only finitely many weight collections \(\mathbf{m} \) to consider. We shall prove that, for any such combinatorial type \(\mathcal{C} \) of end-marked irreducible PPT-curves, the image of the natural evaluation map \(\text{Ev} : \mathcal{M}(\mathcal{C}) \to \sigma_1 \times \ldots \times \sigma_r \times (\mathbb{R}^2)^{k-r} \) is nowhere dense, and hence is a finite polyhedral complex of a positive codimension. This would suffice for the proof of Lemma due to the aforementioned finiteness.

Thus, assuming that an end-marked irreducible curve \((\Gamma, G, \mathbf{h}) \) of type \(\mathcal{C} \) matches a weighted rational configuration \((\mathbf{x}, \mathbf{m}) \), we shall show that this imposes a nontrivial relation on the coordinates of the points \(\mathbf{x} \), and hence complete the proof. Clearly, any point \(x_i \in \mathbf{x} \) lying on \(\partial \mathbb{R}^2_\Delta \) (\(\Delta \) being the Newton polygon of \((\Gamma, G, \mathbf{h}) \)) is a univalent vertex for some ends of \(\Gamma \), whose \(\mathbf{h} \)-images lie on the same straight line. So, pushing all the points of \(\mathbf{x} \cap \partial \mathbb{R}^2_\Delta \) along the corresponding lines, we can make \(\mathbf{x} \subset \mathbb{R}^2 \). Take an irrational vector \(a \in \mathbb{R}^2 \) and pick the point \(x_i \in \mathbf{x} \) with the maximal value of the functional \(\langle a, x \rangle \). Notice that there are no vertex \(v \in \Gamma^0 \) with \(\langle a, h(v) \rangle \geq \langle a, x_i \rangle \), since otherwise, due to the balancing condition (2), one would find an end \(e \) of \(\Gamma \) with \(h(e) \) lying entirely in the half-plane \(\langle a, x \rangle > \langle a, x_i \rangle \) contrary to the assumptions made. Hence, for each end \(e \in \Gamma_\infty^1 \) with \(h(e) \) passing through \(x_i \), we have \(\langle a, \tau(e) \rangle > 0 \), which yields that

\[
\sum_{e \in \Gamma_\infty^1, \ x_i \in h(e)} m_e \cdot dh(\tau(e)) \neq 0
\]
for any positive integers m_e, and which finally implies that the coordinates of x_i nontrivially enter relation (4).

Lemma 3 Let \mathcal{F} be a Δ-generic configuration of points, $Q = (\Gamma, G, \mathcal{h})$ a marked regular PPT-curve with Newton polygon Δ which matches \mathcal{F}. Then

(i) $(\mathcal{h})^{-1}(\mathcal{F}) = G$;

(ii) if K is a connected component of $\Gamma \setminus G$, then its edges can be oriented so that
- the edges merging to marked points, emanate from these points,
- the unmarked Γ-end is oriented towards its univalent endpoint,
- from any vertex $v \in K^0$ emanates precisely one edge, and this edge is simple.

Remark 4 It follows from Lemma 3 that if an edge of Γ is multiple for both of its endpoints and contains a marked point inside which matches a point $x \in \mathcal{F}$, then all the other edges joining the same vertices contain marked points matching x.

Proof of Lemma 3

(i) Assume that there is a point $\gamma \in (\mathcal{h})^{-1}(\mathcal{F}) \setminus G$. It belongs to a component K of $\Gamma \setminus G$, which is a tree due to the regularity of the considered marked tropical curve, and hence, is cut by γ into two trees K_1, K_2, and only one of them, say K_1 contains a Γ-end free of marked points. Then, marking the new point γ, we obtain that the irreducible (rational) PPT-curve induced by K_2 is end-marked and matches a subconfiguration of \mathcal{F} contrary to its Δ-genericity.

(ii) Observe that the image of the unmarked ray does not coincide with the image of any other edge of K, what immediately follows from the statement (i).

Next we notice that, if p is a vertex of K, e a multiple edge merging to p, then the connected component $K(e)$ of $K \setminus \{p\}$, starting with the edge e does not contain the unmarked K-end. Indeed, otherwise, we consider another edge e' of K merging to p so that $u_p(e') = u_p(e)$. Then we take the graph $K \setminus K(e)$, which after a suitable modification of the weights of the edges of $K(e')$ (the component of $K \setminus \{p\}$ starting with e') induces an end-marked (rational) PPT-curve matching the Δ-generic configuration \mathcal{F}, thus, a contradiction.

It follows from the latter observation that K has no edge being multiple for both of its endpoints. Indeed, otherwise we would have two vertices $v_1, v_2 \in K^0$, joined by an edge $e \in K^1$, multiple for both v_1 and v_2, and then would obtain that the unmarked K-end is contained either in the component of $K \setminus \{v_1\}$ starting with e, or in the component of $K \setminus \{v_2\}$ starting with e, contrary to the above conclusion.

Finally, we define an orientation of the edges of K, opposite to the required one. Start with the unmarked K-end and orient it towards its multivalent endpoint. In any other step, coming to a vertex $v \in K^0$ along some edge, we orient all other edges merging to v outwards. Since K is a tree, the orientation smoothly extends to all of its edges. The preceding observations confirm that any edge e oriented in this manner towards a vertex $v \in E$ is simple for v. \qed
2.6 Weights of marked pseudo-simple regular PPT-curves

In this section, $Q = (\Gamma, G, \overline{\mathbb{h}})$ is always a regular marked pseudo-simple PPT-curve. Denote $G_\infty = G \cap \Gamma^0_\infty$ and $G_0 = G \cap \Gamma^0_\infty$, and put $\overline{\mathbf{x}} = \overline{\mathbb{h}}(G)$, $\overline{\mathbf{x}}^\circ = \overline{\mathbb{h}}(G_\infty)$. Throughout this section we assume that

(T1) no edge of Γ is multiple for two vertices of Γ,

(T2) G_0 does not contain vertices of valency > 3,

(T3) $\overline{\mathbf{x}}$ is Δ-generic.

In particular, by Lemma 3 we have that $(\overline{\mathbb{h}})^{-1}(\overline{\mathbf{x}}) = G$.

Complex weights. We define the complex weight of a PTT-curve $Q = (\Gamma, G, \overline{\mathbb{h}})$ as

$$M(Q) = \prod_{v \in \Gamma^0} M(Q, v) \cdot \prod_{e \in \Gamma^1} M(Q, e) \cdot \prod_{\gamma \in G} M(Q, \gamma),$$

(7)

where the values $M(Q, v), M(Q, e), M(Q, \gamma)$ are computed along the following rules.

(M1) $M(Q, e) = w(e)$ for each edge $e \in \Gamma^1$.

(M2) $M(Q, \gamma) = 1$ for each $\gamma \in G \cap (\Gamma^0_\infty \cup \Gamma^0_\infty)$, and $M(Q, \gamma) = w(e)$ for each $\gamma \in G \cap (\Gamma^0_\infty \cup \Gamma^0_\infty)$, $\gamma \in e \in \overline{\Gamma}$.

To define $M(Q, v), v \in \Gamma^0$, introduce some notation: denote by Δ_v the lattice triangle whose boundary is combined of the vectors $dh(\tau_v(e))$, rotated clockwise by $\pi/2$, where e runs over all the edges of $\overline{\Gamma}$ emanating from v. Next, we put:

(M3) If $v \in \Gamma^0 \cap G$, then $M(Q, v) = |\Delta_v|$.

(M4) If $v \in \Gamma^0 \setminus G$ is trivalent, then it belongs to a connected component K of $\overline{\Gamma} \setminus G$ which we orient as in Lemma 3(ii) and thus define two edges $e_1, e_2 \in \Gamma^1$ merging to v. In this case we put $M(Q, v) = |\Delta_v|(w(e_1)w(e_2))^{-1}$.

(M5) Let $v \in \Gamma^0$ be of valency $s + r + 1 > 3$, where $1 \leq r \leq s$, $2 \leq s$, and let $e_i, i = 1, ..., s + r + 1$, be all the edges with endpoint v so that the edges $e_i, 1 \leq i \leq s$, have a common directing vector $u_v(e_1)$, the edges $e_i, s < i \leq s + r$, have a common directing vector $u_v(e_{s+1})$, and e_{s+r+1} is a simple edge emanating from v along the orientation of Lemma 3(ii). Consider a rational PPT-curve Q_v induced by the graph $\Gamma_v = \{v\} \cup \bigcup_{i=1}^{s+r+1} e_i \subset \overline{\Gamma}$, pick auxiliary marked points $\gamma_i \in e_i \setminus \{v\}, i = 1, ..., s + r$, in such a way that $\overline{\Gamma}(\gamma_i) = y_i \in \mathbb{R}^2$ as $1 \leq i \leq s$, and $\overline{h}(\gamma_i) = y_i' \in \mathbb{R}^2$ as $s < i \leq s + r$. Then we replace y_i' (resp. y_i'') by a generic set of distinct points $y_{1,i}, ..., y_{s,i}$ close to y_i' (resp. distinct points $y_{s+1,i}, ..., y_{s+r,i}$ close to y_i''), and take rational regularly end-marked PPT-curves of degree $\{dh(\tau_v(e_i))\}_{i=1,...,s+r+1}$ matching the configuration $y_{1,i}, ..., y_{s+r,i}$ so that the \overline{h}-image of the Γ-end of weight $w(e_i)$ with the directing vector $u_v(e_i)$ passes through the point $y_{i,i}, i = 1, ..., s + r$ (see Figure 11). By [9, Corollaries 2.24 and 4.12], the set \mathcal{T} of these PPT-curves is

\[\text{Notice that by construction there is a canonical 1-to-1 correspondence between the ends of } Q_v \text{ and the ends of any of the curves obtained in the deformation.}\]
finite, and they all are simple. Then put

$$M(Q, v) = \sum_{Q' \in \mathcal{T}} M(Q') , \quad (8)$$

where all terms $M(Q')$ are computed by formula (7) and the rules (M1) - (M4).

Remark 5 (1) We point out that the right-hand side of (8) does not depend on the choice of the configuration $(y_i)_{i=1, s+r+1}$, what follows from [1, Theorem 4.8] (observe that the degree of the evaluation map as in [1, Definition 4.6] coincides with the right-hand side of (8) in our situation). Slightly modifying the Mikhalkin correspondence theorem ([4, Theorem 1]), one can deduce that $M(Q, v)$ as defined in (8) equals the number of complex rational curves C on the toric surface $\text{Tor}(\Delta_v)$ such that

- C belongs to the tautological linear system $|\mathcal{L}_\Delta|$,
- for each side σ of Δ_v, the intersection points of C with the toric divisor $\text{Tor}(\sigma) \subset \text{Tor}(\Delta_v)$ are in 1-to-1 correspondence with the Γ-ends of the tropical curves from \mathcal{T}, orthogonal to σ, C is nonsingular along $\text{Tor}(\sigma)$, and the intersection multiplicities are respectively equal to the weights of the above Γ-ends,
• C passes through a generic configuration of $s + r + 1$ points in \(\text{Tor}(\Delta_v) \).

Furthermore, T consists of just one curve as $r = 1$. Indeed, its dual subdivision of the Newton triangle Δ_v must be as described above with the order of segments dual to the parallel Γ-ends, which is determined uniquely by the disposition of the points y_1, \ldots, y_s.

(2) If Q is simple (i.e. all the vertices of Γ are trivalent, then \(\mathfrak{M} \)) gives

\[
M(Q) = \frac{\prod_{e \in \Gamma^+} |\Delta_e|}{\prod_{\gamma \in \Gamma^-} \gamma w(e)},
\]

which generalizes Mikhalkin’s weight introduced in \(\mathfrak{M} \), Definitions 2.16 and 4.15], and coincides with the multiplicity of a tropical curve from \(\mathfrak{M} \).

Real weights. A PPT-curves $Q = (\overline{\Gamma}, G, \overline{h})$ equipped with an additional structure, a continuous involution $c : (\overline{\Gamma}, G, \overline{h}) \otimes$ and a subdivision $G = \Re G \cup \Im G$ invariant with respect to c, is called real.

Clearly, $\Im \overline{\Gamma} := \overline{\Gamma} \setminus \Re \overline{\Gamma}$, where $\Re \overline{\Gamma} = \text{Fix } c|_{\overline{\Gamma}}$ consists of two disjoint subsets $\Re \overline{\Gamma}$, $\Im \overline{\Gamma}$ interchanged by c.

Given a real PPT-curve Q, we can construct a (usual) PPT-curve $Q/c = (\overline{\Gamma}/c, G/c, \overline{h}/c)$. Notice that the weights of the edges obtained here by identifying $\Re \overline{\Gamma}$ and $\Im \overline{\Gamma}$ are even. Conversely, given a (usual) PPT-curve $Q = (\overline{\Gamma}, G, \overline{h})$ and a set $I(\overline{\Gamma}) \subset \overline{\Gamma}$, which includes only edges of even weight, we construct a real PPT-curve $Q' = (\overline{\Gamma}', G', \overline{h})$ as follows: (i) put $K = \bigcup_{e \in I(\overline{\Gamma})} e$ and obtain the graph $\overline{\Gamma}'$ by gluing up $\overline{\Gamma}$ with another copy K' of K at the vertices of Γ, common for K and the closure of $\overline{\Gamma} \setminus K$, (ii) the map \overline{h} coincides on K and K', whereas the weights of the doubled edges are divided by 2 in order to keep the balancing condition, (iii) the points of $G \cap K$ are respectively doubled to K'. Finally, define an involution c on Q' interchanging K and K', and define a subdivision $G' = \Re G' \cup \Im G'$.

We shall consider only real PPT-curves with the following properties:

(R1) $\Re \overline{\Gamma}$ is nonempty and has no one-point connected component,

(R2) $\Im \overline{\Gamma}$ has only uni- and trivalent vertices (if nonempty),

(R3) the marked points $G_0 \cap \Re \overline{\Gamma}$ are not vertices of $\Re \overline{\Gamma}$,

(R4) $\Im G \setminus \Re \overline{\Gamma}$ is empty or consists of some trivalent vertices of Γ,

(R5) the closure of any component of $\Re \overline{\Gamma} \setminus G$ contains a point from $\Im G$.

Observe that the closure of $\Im \overline{\Gamma}$ joins $\Re \overline{\Gamma}$ at vertices of valency > 3 (which are not in G by condition (T2)).
The real weight of a real PPT-curve Q is defined as
\[
W(Q) = (-1)^{\ell_1/2^2} \prod_{e \in \Gamma_0} W(Q, v) \cdot \prod_{e \in \Gamma} W(Q, e) \cdot \prod_{\gamma \in G_0} W(Q, \gamma),
\]
with $W(Q, v), W(Q, e), W(Q, \gamma)$ computed along the following rules:

(W1) For an edge $e \in \mathbb{R}_\Gamma$, put $W(Q, e) = 0$ or 1 according as $w(e)$ is even or odd. For an edge $e \in \Gamma^1$, $e \in \mathbb{S}_\Gamma$, put $W(Q, e)W(Q, c(e)) = w(e)$. For an edge $e \in \Gamma^1$, $e \in \mathbb{S}_\Gamma$, put $W(Q, e) = 1$.

(W2) For $\gamma \in G_0 \cap \mathbb{R}_\Gamma \setminus \Gamma^0$, put $W(Q, \gamma) = 1$. For $\gamma \in \mathbb{R}_G \cap \Gamma^0$, put $W(Q, \gamma) = 1$. For $\gamma \in \mathbb{S}_G$, $\gamma = v \in \Gamma^0$, put $W(Q, \gamma) = |\Delta_v|$. For $\gamma \in G_0$, $\gamma \in e \in \mathbb{S}_\Gamma$, put $W(Q, \gamma)M(Q, c(\gamma)) = w(e)$.

(W3) For a vertex $v \in \Gamma^0 \cap \mathbb{S}_\Gamma$, put $W(Q, v)W(Q, c(v)) = (-1)^{|\mathbb{S}_\Gamma| |\mathbb{R}_\Gamma|} M(Q, v)$ (see condition (M4) for the definition of $M(Q, v)$). For a trivalent vertex $v \in \Gamma^0 \cap \mathbb{R}_\Gamma$, put $W(Q, v) = (-1)^{|\mathbb{S}_\Gamma| |\mathbb{R}_\Gamma|} M(Q, v)$.

(W4) For a four-valent vertex $v \in \Gamma^0$ incident to two simple edges from \mathbb{R}_Γ and two multiple edges e', e'' from \mathbb{S}_Γ, put $W(Q, v) = (-1)^{|\mathbb{S}_\Gamma| |\mathbb{R}_\Gamma|} |\Delta_v|/(2w(e'))$.

(W5) Let $v \in \Gamma^0$ be of valency > 3 incident to

- a simple edge $e_1 \in \mathbb{R}_\Gamma$,
- edges $e_i \in \mathbb{R}_\Gamma$, $1 < i \leq r_1 + 1$, and $e_i' \in \mathbb{S}_\Gamma$, $1 \leq i \leq s_1$, for some nonnegative r_1, s_1, all with the same directing vector $u' \neq u_0(e_1)$, and
- edges $e_i \in \mathbb{R}_\Gamma$, $r_1 + 1 < i \leq r_1 + r_2 + 1$, and $e_i' \in \mathbb{S}_\Gamma$, $1 < i \leq s_1 + s_2$, for some nonnegative r_2, s_2 such that $r_2 + 2s_2 \geq 2$, all with the same directing vector $u'' \neq u_0(e_1), u'$.

Take the real PPT-curve Q_v induced by v and the edges emanating from v, correspondingly restrict on Q_v the involution c, and introduce a finite c-invariant set of marked points G_v picking up one point on each edge emanating from v but e_1. Consider the PPT-curve Q_v/c and perform with it the deformation procedure described in (M5) (cf. Figure [M]) getting a finite set of simple rational regularly end-marked PPT-curves. Any curve $\widetilde{Q} = (\tilde{\Gamma}, \tilde{G}, \tilde{h})$ from this set, we turn into a real PPT-curve. Namely, first, we include into the set $I(\tilde{\Gamma}^1)$ all the Γ-ends which correspond to the Γ/c-ends of Q_v from \mathbb{S}_Γ/c. Then we maximally extend the set $I(\tilde{\Gamma}^1)$ in the following inductive procedure: if two edges $f_1, f_2 \in I(\tilde{\Gamma}^1)$ merge to a vertex $p \in \tilde{\Gamma}^0$, then the third edge f_3, emanating from p should be added to $I(\tilde{\Gamma}^1)$. Clearly, by construction, the weights of the edges $e \in I(\tilde{\Gamma}^1)$ are even; hence we can make a real PPT-curve $Q' = (\tilde{\Gamma}, \tilde{G}', \tilde{h}')$, letting $\mathbb{R}_\Gamma' = \mathbb{G}' \cap \mathbb{R}_\Gamma$, $\mathbb{S}_\Gamma' = \mathbb{G}' \cap \mathbb{S}_\Gamma$. Denoting the final set of
real PPT-curves by \mathcal{T} and observing that their real weight $W(Q')$ can be computed along the above rules (W1) - (W4), we define

$$W(Q, v) = \sum_{Q' \in \mathcal{T}} W(Q') .$$

The fact that the latter expression does not depend on the choice of the perturbation of the points y', y'' (cf. construction in (M5) and Figure 1) follows from a more general statement proven in [13].

Remark 6 (1) If $c = \text{Id}$, $\mathcal{G} = \emptyset$, and Q is simple, we obtain the well-known formula: $W(Q) = 0$ when \mathcal{T} contains an even weight edge, and $W(Q) = (-1)^a$, $a = \sum_{v \in \Gamma^0} \text{Int}(\Delta_v) \cap \mathbb{Z}^2$, when all the edge weights of \mathcal{T} are odd (cf. [9, Definition 7.19] or [13, Proposition 6.1], where, in addition, $\deg Q$ consists of only primitive integral vectors).

(2) If Q is rational, Q/c is simple and $G_{\infty} = \mathcal{R} \cap \Gamma^0 = \mathcal{R} \cap \mathcal{G} = \emptyset$, we obtain a generalization of [15, Formula (2.12)] (in version at arXiv:math/0406099). Indeed, if \mathcal{R} contains an edge of even weight, we obtain $W(Q) = 0$ in (11) due to (W1), and accordingly we obtain $w(Q/c) = 0$ in [13, Section 2.5] (in the notations therein). If \mathcal{R} contains only edges of odd weight, then [13, Formula (2.12)] reads

$$w(Q/c) = (-1)^{a+b} \prod_{v \in \Gamma^0 \cap \mathcal{G}} \frac{|\Delta_v|}{2} \cdot \prod_{v \in (\Gamma/c)^0 \cap (\mathcal{G}/c)} \frac{|\Delta_v|}{2}$$

(11)

with $a = \sum_{v \in (\Gamma/c)^0} \text{Int}(\Delta_v) \cap \mathbb{Z}^2$, $b = |(\Gamma/c)^0 \cap (\mathcal{G}/c)|$, whereas in (11) we obtain $\ell_1 = 0$ by the assumption $\mathcal{R} \cap \mathcal{T} = \emptyset$, $\ell_2 = |(\Gamma/c)^0 \cap (\mathcal{G}/c)|$ due to the rationality of Q and simplicity of Q/c, and, furthermore, taking into account that $w(e) = 2w(e') = 2w(c(e'))$ for $e = (e' \cup c(e'))/c \in (\Gamma/c)^1$, $e' \in \Gamma^1$, $e' \in \mathcal{G}$, we compute the other factors in (11):

$$\prod_{v \in \Gamma^0} W(Q, v) = \prod_{v \in \Gamma^0 \cap \mathcal{G}} (-1)^{\text{Int}(\Delta_v) \cap \mathbb{Z}^2} \cdot \prod_{v \in (\Gamma/c)^0 \cap (\mathcal{G}/c)} (-1)^{\text{Int}(\Delta_v) \cap \mathbb{Z}^2} / M(Q, v)$$

$$\times \prod_{v \in (\Gamma/c)^0 \cap \mathcal{G}/c} (-1)^{\text{Int}(\Delta_v) \cap \mathbb{Z}^2} \cdot \prod_{v \in (\Gamma/c)^0 \cap (\mathcal{G}/c)} \frac{|\Delta_v|}{w(e)}$$

$$= \prod_{v \in (\Gamma/c)^0 \cap \mathbb{Z}^2} (-1)^{\text{Int}(\Delta_v) \cap \mathbb{Z}^2} \cdot \prod_{v \in (\Gamma/c)^0 \cap (\mathcal{G}/c)} \frac{|\Delta_v|}{2} \cdot \prod_{v \in (\Gamma/c)^0 \cap (\mathcal{G}/c)} \frac{2}{w(e)}$$

$$\times 2^{-|\mathcal{R} \cap \mathcal{G}|} \prod_{v \in (\Gamma/c)^1 \cap \mathcal{G}/c} 2 \cdot \prod_{v \in (\Gamma/c)^1 \cap \mathcal{G}/c} \frac{2}{w(e)}$$

$$\prod_{v \in \Gamma} W(Q, e) = \prod_{v \in (\Gamma/c)^1 \cap \mathcal{G}/c} \frac{w(e)}{2} \cdot \prod_{v \in (\Gamma/c)^1 \cap \mathcal{G}/c} \frac{w(e)}{2} .$$
\[
\prod_{\gamma \in G_0} W(Q, \gamma) = \prod_{\epsilon \in \Delta G \cap \mathcal{M}} |\Delta_\epsilon| \prod_{\epsilon \in (\Delta/c)^0 \cap (\Delta/c) \neq \emptyset} \frac{w(\epsilon)}{2},
\]

which altogether gives (with \(a, b\) from (11))

\[
W(Q) = (-1)^{a+b} \prod_{\epsilon \in \Delta G \cap \mathcal{M}} |\Delta_\epsilon| \prod_{\epsilon \in (\Delta/c)^0 \cap (\Delta/c) \neq \emptyset} \frac{|\Delta_\epsilon|}{2} = w(Q/c).
\]

3 Patchworking theorem

3.1 Patchworking data

Combinatorial-geometric part. In the notation of section 2.6, let \(Q = (\Gamma, G, h)\) be a pseudo-simple irreducible regular marked PPT-curve of genus \(g\) which has a nondegenerate Newton polygon \(\Delta\) and which satisfies condition (T1)-(T3) of section 2.6.

Let \(G_0\) split into disjoint subsets \(G_0 = G_0^{(m)} \cup G_0^{(dm)}\) such that \(G_0^{(m)} \cap \Gamma^0 = \emptyset\) and \(h(G_0^{(m)}) \cap h(G_0^{(dm)}) = \emptyset\). We equip the points of \(G_0\) with the following multiplicities:

- if \(\gamma \in G_0^{(m)}\), put \(m(\gamma) = 1\),
- if \(\gamma \in G_0^{(dm)}\) is a (trivalent) vertex of \(\Gamma\), put \(m(\gamma) = (1, 1)\),
- if \(\gamma \in G_0^{(dm)}\) is not a vertex of \(\Gamma\), put \(m(\gamma) = (1, 0)\) or \((0, 1)\).

In the sequel, by \(\hat{Q}\) we denote the PPT-curve \(Q\) equipped with the subdivision \(G_0 = G_0^{(m)} \cup G_0^{(dm)}\) and the multiplicity function \(m(\gamma), \gamma \in G_0\) as above.

Definition 7 A pair \(\gamma, \gamma'\) of distinct points in \(G_0\) is called special if \(h(\gamma) = h(\gamma')\) and \(m(\gamma) = m(\gamma')\). A pair of parallel multiple edges \(e, e' \in \Gamma^0\) emanating from a vertex \(v \in \Gamma^0\) of valency \(> 3\) is called special if there are disjoint open connected subsets \(K, K'\) of \(\Delta_{\Gamma^0}\) such that

- \(K\) contains the germ of \(e\) at \(v\) and the point \(\gamma\), \(K'\) contains the germ of \(e'\) at \(v\) and the point \(\gamma'\),
- there is a homeomorphism \(\varphi : K \to K'\) satisfying \(h|_K = h|_{K'} \circ \varphi\).

A vertex \(v \in \Gamma^0\) incident to a special pair of edges is called special.

Then we assume the following:

(T4) The edges in special pairs have weight 1, and at least one of the simple edges emanating from a special vertex has weight 1.
m(\gamma_1) = m(\gamma_2) = 1 \quad m(\gamma_1) = m(\gamma_2) = m(\gamma_3) = (1, 0) \\
m(\gamma_4) = (0, 1)

\begin{align*}
\gamma_2 & \quad e_2 \\
v & \quad \gamma_1 \quad e_1 \\
\downarrow h & \\
\end{align*}

\begin{align*}
\gamma_4 & \quad e_2 \\
v & \quad \gamma_3 \quad \gamma_2 \\
\downarrow h & \\
\end{align*}

Figure 2: Illustration to Definition 7

(T5) Let e, e' be a special pair of edges emanating from a vertex v ∈ Γ⁰, and let K, K' be disjoint connected subsets of Γ \ {v} as in Definition 7; then K ∪ K' contains at most one special pair of points of G₀.

(T6) A special pair of edges cannot be a pair of Γ-ends and cannot be a pair of finite length edges which end up at a special pair γ, γ' ∈ Γ⁰ such that h(γ) = h(γ') and mt(γ) = mt(γ') = (1, 1).

(T7) Let a vertex v ∈ Γ⁰ be a special vertex, and let \{e₁, ..., eₛ\} be a maximal (with respect to inclusion) set of edges of Γ incident to v and such that
- each edge eᵢ contains a point γᵢ ∈ G₀, 1 ≤ i ≤ s,
- h(γ₁) = ... = h(γₛ) and mt(γ₁) = ... = mt(γₛ).

Suppose that \text{dist}(v, vᵢ) ≤ \text{dist}(v, vᵢ₊₁), 1 ≤ i < s, vᵢ ∈ Γ⁰ \ {v} being the second vertex of eᵢ. Then we require

\[\text{dist}(v, γ₁) > \sum_{1 ≤ i < s-1} \text{dist}(γᵢ, vᵢ) + 2 \cdot \text{dist}(γₛ₋₁, vₛ₋₁). \]

(12)

Notice that, in condition (T7), at most one edge eᵢ is a Γ-end (cf. (T6)) and it must be eₛ.

Introduce also the semigroup

\[\mathbb{Z}_{>0} = \{ \alpha = (\alpha₁, \alpha₂, ...) : \alphaᵢ \in \mathbb{Z}, \alphaᵢ ≥ 0, \ i = 1, 2, ..., \ |\{ i : \alphaᵢ > 0\}| < \infty \}. \]
equipped with two norms

$$\|\alpha\|_0 = \sum_{i=1}^{\infty} |\alpha_i|, \quad \|\alpha\|_1 = \sum_{i=1}^{\infty} i|\alpha_i|,$$

and the partial order

$$\alpha \succeq \beta \iff \alpha - \beta \in \mathbb{Z}_{\geq 0}.$$

For each side σ of Δ introduce the vectors $\beta^\sigma \in \mathbb{Z}_{\geq 0}$ such that the coordinate β^σ_i of β^σ equals the number of the univalent vertices $v \in \Gamma^0$ such that $\vec{h}(v) \in \sigma \subset \mathbb{R}^2_\Lambda$ and $w(e) = i$ for the Γ-end e merging to v, for all $i = 1, 2, ...$

Algebraic part. Let $\Sigma = \text{Tor}_K(\Delta)$. The coordinate-wise valuation map $\text{Val} : (\mathbb{K}^\times)^2 \to \mathbb{R}^2$ naturally extends up to $\text{Val} : \Sigma \to \mathbb{R}^2_\Lambda$. Let $\overline{\mathbf{p}} \subset \Sigma := \text{Tor}_K(\Delta)$ be finite and satisfy $\text{Val}(\overline{\mathbf{p}}) = \overline{x} = \overline{h}(G)^{\square}$ Suppose that

(A1) each point $x \in h(G^{(m)}) \subset \overline{x}$ has a unique preimage in \overline{p},

(A2) the preimage of each point $x \in h(G^{(dm)}) \subset \overline{x}$ consists of an ordered pair of points $p_{1,x}, p_{2,x} \in \overline{p}$,

(A3) there is a bijection $\psi : \overline{p}^\circ \to G_\circ$, where $\overline{p}^\circ := \text{Val}^{-1}(\overline{x}^\circ)$, $\overline{x}^\circ = \overline{h}(G_\circ)$, such that $\text{Val}(p) = \overline{h}(\psi(p))$, $p \in \overline{p}^\circ$,

(A4) the sequence \overline{p} is generic among the sequences satisfying the above conditions.

Define the multiplicity function $\mu : \overline{p} \cap (\mathbb{K}^\times)^2 \to \mathbb{Z}_{>0}$ such that:

- for $p \in \overline{p} \cap (\mathbb{K}^\times)^2$, $\text{Val}(p) = \overline{x} \in h(G^{(m)})$, put

$$\mu(p) = \sum_{\gamma \in G^{(m)}, \ h(\gamma) - \overline{x}} \text{mt}(\gamma),$$

(13)

- for the points $p_{1,x}, p_{2,x}$, where $\text{Val}(p_{1,x}) = \text{Val}(p_{2,x}) = x \in h(G^{(dm)})$, put

$$\mu(p_{1,x}) = m_1, \ \mu(p_{2,x}) = m_2, \ (m_1, m_2) = \sum_{\gamma \in G^{(dm)}, \ h(\gamma) - \overline{x}} \text{mt}(\gamma).$$

(14)

From this definition and from the count of the Euler characteristic of Γ, we derive

$$\sum_{p \in \overline{p} \cap (\mathbb{K}^\times)^2} \mu(p) + |\overline{p}^\circ| - |\Gamma^0_\circ| = g - 1.$$

(15)

Let $\Delta' \subset \mathbb{R}^2$ be a convex lattice polygon such that there is another lattice polygon (or segment, or point) Δ'' satisfying $\Delta' + \Delta'' = \Delta$. Then we have a well defined line bundle $\mathcal{L}_{\Delta'}$ on $\text{Tor}_K(\Delta)$. Let $\overline{p}' \subset \overline{p}$ and $\mu' : \overline{p}' \cap (\mathbb{K}^\times)^2 \to \mathbb{Z}_{>0}$ be such that $\mu'(p) \leq \mu(p)$ for all $p \in \overline{p}'$. Let $(\beta^\sigma)_{\sigma \in \mathcal{D}}$, $\sigma \subset \partial \Delta$, be such that $(\beta^\sigma)' \leq \beta^\sigma$ for all sides σ of Δ. We say that the tuple $(\Delta', g', \overline{p}', \mu', \{ (\beta^\sigma) \}_{\sigma \in \partial \Delta})$, where $g' \in \mathbb{Z}_{>0}$, is compatible, if

Subsection added 5: This means, in particular, that the points of \overline{x} have rational coordinates.
In view of (15) and \(|(\beta^\sigma)'|_1 = \langle c_1(\mathcal{L}_\Delta), \text{Tor}_K(\sigma) \rangle \) for all sides \(\sigma \) of \(\Delta \),

- \((\beta^\sigma)' \geq \|(p \in \mathcal{P} \cap \text{Tor}_K(\sigma)) : \psi(p) = \gamma \in \epsilon \in G^1_\infty, w(\epsilon) = i \|\) for all sides \(\sigma \) of \(\Delta \) and all \(i = 1, 2, ... \),

- \(g' \leq \|\text{Int}(\Delta' \cap \mathbb{Z}^2)\| \), and

\[
\sum_{p \in \mathcal{P} \cap (\mathbb{K}^*)^2} \mu'(p) + |\mathcal{P} \cap \mathcal{P}^\sigma| - \sum_{\sigma \in \partial \Delta} |(\beta^\sigma)'|_0 = g' - 1 .
\]

In view of (15) and \(|\Gamma^0_\infty| = \sum_{\sigma \in \partial \Delta} |\beta^\sigma|_0 \), the tuple \((\Delta, g, \mathcal{P}, \mu, \{(\beta^\sigma)'\}_{\sigma \in \partial \Delta})\) is compatible.

For any compatible tuple \((\Delta', g', \mathcal{P}', \mu', \{(\beta^\sigma)'\}_{\sigma \in \partial \Delta})\), introduce the set \(\mathcal{C}(\Delta', g', \mathcal{P}', m', \{(\beta^\sigma)'\}_{\sigma \in \partial \Delta})\) of reduced irreducible curves \(C \in |\mathcal{L}_\Delta|\) passing through \(\mathcal{P}'\) and such that

- the points \(p \in \mathcal{P}' \cap (\mathbb{K}^*)^2\) are nonsingular for \(C\), and

\[
(C \cdot \text{Tor}_K(\partial \Delta))_p = w(e) ,
\]

where \(\gamma = \psi(p) \in G^1_\infty\), and \(e \in G^1_\infty\) merges to \(\gamma\),

- the local branches of \(C\) centered at the points of \(C \cap \text{Tor}_K(\partial \Delta)\) are smooth, and, for each side \(\sigma\) of \(\Delta\) and each \(i = 1, 2, ...,\) there are precisely \((\beta^\sigma)'_i\) local branches \(P\) of \(C\) centered at \(C \cap \text{Tor}_K(\sigma)\) such that

\[
(P \cdot \text{Tor}_K(\sigma)) = i ,
\]

\(i = 1, 2, ...,\)

- \(C\) has genus \(\leq g'\),

- at each point \(p \in \mathcal{P}' \cap (\mathbb{K}^*)^2\), the multiplicity of \(C\) is \(\text{mt}(C, p) \geq \mu'(p)\).

We now impose new conditions on the algebraic pathworking data:

\[
(A5) \text{ For any compatible tuple } (\Delta', g', \mathcal{P}', m', \{(\beta^\sigma)'\}_{\sigma \in \partial \Delta}) , \text{ the set } \\
\mathcal{C}(\Delta', g', \mathcal{P}', m', \{(\beta^\sigma)'\}_{\sigma \in \partial \Delta}) \text{ is finite, all the curves } C \in \\
\mathcal{C}(\Delta', g', \mathcal{P}', m', \{(\beta^\sigma)'\}_{\sigma \in \partial \Delta}) \text{ are immersed, have genus } g' , \text{ and have mul-} \\
\text{tiplicity } \text{mt}(C, p) = m'(p) \text{ at each point } p \in \mathcal{P}' \cap (\mathbb{K}^*)^2 ; \text{ furthermore,} \\
H^1(C', J_2(C')) = 0 , \tag{16}
\]

where \(C'\) is the normalization and \(J_2(C')\) is the (twisted with \(C'\)) ideal sheaf of the zero-dimensional scheme \(Z \subset C'\) which contains the lift of \(\mathcal{P}\) and of the points of tangency of \(C\) and \(\text{Tor}_K(\partial \Delta)\) upon \(C'\), and which has length \((C \cdot \text{Tor}_K(\partial \Delta))_p\) at the lift of \(p \in \mathcal{P}' \cap \text{Tor}_K(\partial \Delta)\), and the length \((C \cdot \text{Tor}_K(\partial \Delta))|_p - 1\) at the lift of each point \(z \in C \cap \text{Tor}_K(\partial \Delta) \setminus \mathcal{P}'.\)
Here we verify the condition (A5) for the versions of the patchworking theorem used in [6, 18].

Lemma 8 Condition (A5) holds if

- either $\mu(p) = 1$ for all $p \in \mathcal{P} \cap (K^*)^2$,
- or the surface $\Sigma = \text{Tor}_K(\Delta)$ is one of $\mathbb{P}^2, \mathbb{P}^2_k$ with $1 \leq k \leq 3$, $(\mathbb{P}^1)^2$, the configuration \mathcal{P}° is contained in one toric divisor E of Σ, and

$$
|\{p \in \mathcal{P} \cap (K^*)^2 : \mu(p) > 1\}| \leq \begin{cases} 4, & \Sigma = \mathbb{P}^2, \\ 5 - E^2 - k, & \Sigma = \mathbb{P}^2_k, \\ 3, & \Sigma = (\mathbb{P}^1)^2. \end{cases}
$$

Moreover, all the curves C in the considered sets are nonsingular along $\text{Tor}_K(\partial \Delta)$, are nodal outside \mathcal{P}, and have ordinary singularity of order $m'(p)$ at each point $p \in \mathcal{P} \cap (K^*)^2$.

Proof. We prove the statement only for the original data $(\Delta, g, \mathcal{P}, m, \{\beta^\sigma\}_{\sigma \in \partial \Delta})$, since the other compatible tuples can be treated in the same way.

Observe that, in the first case, each curve $C \in \mathcal{C}(\Delta, g, \mathcal{P}, m, \{\beta^\sigma\}_{\sigma \in \partial \Delta})$ satisfies

$$
\sum_{\substack{p \in \mathcal{P} \cap (K^*)^2 \\
\mu(p) > 1}} \mu(p) < \left| C \cap \text{Tor}(\partial \Delta) \right| - 1. \quad (17)
$$

In the second situation, except for finitely many lines or conics (which, of course, satisfy (A5)), the other curves obey (17) by Bezout theorem (just consider intersections with suitable lines or conics - we leave this to the reader as a simple exercise).

So, we proceed further under the condition (17). Let $\mathcal{P} = \{p \in \mathcal{P} \cap (K^*)^2 : \mu(p) > 1\}$. Consider the family \mathcal{C}' of reduced irreducible curves $C' \in |\mathcal{L}_K|$ of genus at most g, which have multiplicity $\geq \mu(p)$ at each point $p \in \mathcal{P}$, whose local branches centered along $\text{Tor}_K(\partial \Delta)$ are nonsingular, and the number of such branches crossing the toric divisor $\text{Tor}_K(\sigma) \subset \text{Tor}_K(\Delta)$ with multiplicity i equals β^σ_i for all sides σ of Δ and all $i = 1, 2, ...$

The classical deformation theory argument (see, for instance, [2, 3]) Zariski tangent space to \mathcal{C}' at $C \in \mathcal{C} := \mathcal{C}(\Delta, g, \mathcal{P}, m, \{\beta^\sigma\}_{\sigma \in \partial \Delta})$ is naturally isomorphic to $H^0(C', \mathcal{J}_Z(C'))$, where C', $\mathcal{J}_Z(C')$ are defined in (A5). So, we have

$$
deg Z = \sum_{p \in \mathcal{P}} \mu(p) + C \cdot \text{Tor}_K(\Delta) - |C \cap \text{Tor}(\partial \Delta)| = \sum_{p \in \mathcal{P}} \mu(p) - CK_S - |C \cap \text{Tor}(\partial \Delta)| < -CK_S - 1. \quad (18)
$$

Hence (see [2, 3]) $H^1(C', \mathcal{J}_Z(C')) = 0$, which yields

$$
h^0(C', \mathcal{J}_Z(C')) = C^2 - 2\delta(C) - \deg Z - g(C) + 1
$$

20
\[= -CK_\Sigma + 2g(C) - 2 - \deg Z - g(C) + 1 \]
\[= g(C) - 1 + |C \cap \text{Tor}(\partial \Delta)| - \sum_{p \in \mathcal{P}} \mu(p) \equiv \mathcal{P} \mathcal{P} | - (g - g(C)) \] \hspace{1cm} (19)

Since \(\mathcal{P} \mathcal{P} \) is a configuration of generic points (partly on \(\text{Tor}_K(\partial \Delta) \)), we derive that
\(g(C) = g \) and that \(C \) is finite.

For the rest of the required statement, we assume that a curve \(C \in \mathcal{C} \) is either not nodal outside \(\mathcal{P} \), or has singularities on \(\text{Tor}_K(\partial \Delta) \), or has at some point \(p \in \mathcal{P} \cap (K^*)^2 \) a singularity more complicated than an ordinary point of order \(\mu(p) \). Then (cf. the argument in the proof of [11, Proposition 2.4]) one can find a zero-dimensional scheme \(Z \subset Z' \subset C' \) of degree \(\deg Z' = \deg Z + 1 \) such that the Zariski tangent space to \(C' \) at \(C \) is contained in \(H^0(C', J_{Z'}(C')) \). However, then one derives from [18] that \(\deg Z' < -CK_\Sigma \), and hence again \(H^1(C', J_{Z'}(C')) = 0 \), which in view of [19] will lead to
\[h^0(C', J_{Z'}(C')) = |\mathcal{P} \mathcal{P}| - 1 \]
what finally implies the emptiness of \(\mathcal{C} \). \(\square \)

3.2 Algebraic curves over \(K \) and tropical curves

If \(C \in |\mathcal{L}_\Delta| \) is a curve on the toric surface \(\text{Tor}_K(\Delta) \), then the closure \(\text{Cl}(\text{Val}(C \cap (K^*)^2)) \subset \mathbb{R}^2 \) supports an EPT-curve \(T \) with Newton polygon \(\Delta \) (cf. section 2.2) which is defined by a convex piece-wise linear function \(\omega \) coming from a polynomial equation \(F(z) = 0 \) of \(C \) in \((K^*)^2 \):
\[F(z) = \sum_{\omega \in \Delta \cap \mathbb{Z}^2} A_\omega z^\omega, \quad A_\omega \in K, \quad c_\omega = \text{Val}(A_\omega), \quad z \in (K^*)^2 . \] \hspace{1cm} (20)

The EPT-curve obtained does not depend on the choice of the defining polynomial of \(C \) and will be denoted by \(\text{Trop}(C) \).

Observe also that the polynomial (20) can be written
\[F(z) = \sum_{\omega \in \Delta \cap \mathbb{Z}^2} (a_\omega + O(t^{-0})) t^{\nu(\omega)} z^\omega \]
with the convex piece-wise linear function \(\nu : \Delta \to \mathbb{R} \) as in section 2.2 and the coefficients \(a_\omega \in C \) non-vanishing at the vertices of the subdivision \(S_T \) of \(\Delta \).

3.3 Patchworking theorems

The algebraically closed version.

Theorem 2 Given the patchworking data, a PPT-curve \(\hat{Q} \) and a configuration \(\mathcal{P} \), satisfying all the conditions of section 3.1, there exists a subset \(\mathcal{C}(\hat{Q}) \subset \mathcal{C}(\Delta, g, \mathcal{P}, m, \{ \beta^s \}_{s \in \Delta}) \) of \(M(Q) \) curves \(C \) such that \(\text{Trop}(C) = h_\beta Q \). Furthermore, for any distinct (non-isomorphic) curves \(\hat{Q}_1 \) and \(\hat{Q}_2 \), the sets \(\mathcal{C}(\hat{Q}_1) \) and \(\mathcal{C}(\hat{Q}_2) \) are disjoint.
Remark 9 We would like to underline one useful consequence of Theorem 2: The PPT-curve \(Q \) and the multiplicities of its marked curves must satisfy the restrictions known for the respective algebraic curves with multiple points.

The real version. In addition to all the above hypotheses, we assume the following:

(R6) the configuration \(\overline{p} \) is Conj-invariant, \(\text{Val}(\Re(\overline{p})) \cap \text{Val}(\Im(\overline{p})) = \emptyset \), where \(\Re(\overline{p}) := \text{Fix}(\text{Conj}|_{\overline{p}}) \) and \(\Im(\overline{p}) = \overline{p}(\Re(\overline{p})) \).

(R7) the PPT-curve \(Q \) possesses a real structure \(c : Q \subset G = \Re G \cup \Im G \) such that

(i) the bijection \(\psi \) from (A3) takes \(G_\infty \cap \Re G \) into \(\Re(\overline{p}) \cap \text{Tor}_\kappa(\partial \Delta) \) and takes \(G_\infty \cap \Im G \) into \(\Im(\overline{p}) \cap \text{Tor}_\kappa(\partial \Delta) \), respectively,

(ii) \(h(G_\infty \cap \Re G) \in \text{Val}(\Re(\overline{p})) \), \(h(G_0 \cap \Im G \cap \Gamma^0) \in \text{Val}(\Im(\overline{p})) \),

(iii) \(\Re G \cap G^{(\text{dm})} \cap \Im \Gamma = \emptyset \),

(iv) if \(\gamma \in G_0 \cap \Im G \cap \Im \Gamma \), \(\text{mt}(\gamma) = (1,0) \), then \(\text{mt}(c(\gamma)) = (0,1) \),

(v) if \(e \in \Gamma_\infty^1 \), \(e \in \Re \Gamma \), then \(w(e) \) is odd.

Theorem 3 In the notations and hypotheses of Theorem 2 and under assumptions (R1)-(R7), the following holds

\[
\sum_{C \in \Re(C(\hat{Q}))} W_{\Sigma(\mathcal{C})}(C) = W(Q),
\]

(21)

where \(\Re(C(\hat{Q})) \) is the set of the real curves in \(C(\hat{Q}) \), and \(W_{\Sigma(\mathcal{C})}(C) \) defined in (7).

3.4 Proof of Theorem 2

Our argument is as follows. First, we dissipate each multiple point \(p \in \overline{p} \) of multiplicity \(k > 1 \) into \(k \) generic simple points (in a neighborhood of \(p \)), and then, using the known patchworking theorems (\cite[Theorem 5]{13} and \cite[Theorem 2.4]{16}), obtain \(M(Q) \) curves \(C \in |\mathcal{L}_\Delta| \) of genus \(g \) matching the deformed configuration \(\overline{q} \). After that, we specialize the configuration \(\overline{q} \) back into the original configuration \(\overline{\mathcal{C}} \) and show that each of the constructed curves converges to a curve with multiple points and tangencies as asserted in Theorem 2.

Remark 10 The deformation part of our argument works well in a rather more general situation, whereas the degeneration part appears to be more problematic, and at the moment we do not have a unified approach to treat all possible degenerations which may lead to algebraic curves with multiple points.

\footnote{The complete proof is provided in \cite{16}.}
Following [13, Section 3], we obtain the algebraic curves C over \mathbb{K} as germs of one-parameter families of complex curves $C(t)$, $t \in (\mathbb{C}, 0)$, with irreducible fibres $C(t)$, $t \neq 0$, of genus g and a reducible central fibre $C(0)$. The given data of Theorem 2 provide us with a collection of suitable central fibres $C(0)$ out of which we restore the families using the patchworking statement [13, Theorem 5].

Step 1. We start with a simple particular case which later will serve as an element of the proof in the general situation. Assume that Q is a rational, simple, regularly end-marked PPT-curve, $h_a Q \subset \mathbb{R}^2$ is a (compactified) nodal embedded plane tropical curve, $\mathcal{P} \subset \text{Tor}_K(\mathfrak{a} \Delta)$, $G = G_\mathfrak{a}$, $\mathcal{F} = \mathcal{F}_\mathfrak{a}$, and $\mathcal{P} \overset{\text{Val}}{\to} \mathcal{F} \overset{\theta}{\to} G$ are bijections. Here $M(Q)$ is given by formula (9), and this number of required rational curves $C \subset \text{Tor}_K(\Delta)$ is obtained by a direct application of [13, Theorem 5].

The combinatorial part of the patchworking data for the construction of curves over \mathbb{K} consist of the tropical curve Q which defines a piece-wise linear function $\nu : \Delta \to \mathbb{R}$ and a subdivision $S : \Delta = \Delta_1 \cup ... \cup \Delta_N$ (see section 2.2). The algebraic part of the patchworking data includes the limit curves $C_k \subset \text{Tor}(\Delta_k)$, the deformation patterns C_v associated with the (finite length edges) edges $e \in \Gamma^1$ (see [13, Section 5.1] and [16, Section 2.1]), and the refined conditions to pass through the fixed points (see [13, Section 5.4] and [7, Section 2.5.9]).

First, we orient the edges of Γ as in Lemma 3.ii. Then define complex polynomials f_e, $e \in \Gamma^1$, and f_v, $v \in \Gamma^0$, in the following inductive procedure. In the very beginning, for the Γ-ends e with marked points γ, we define

$$f_e(x, y) = (\eta^q x^p - \xi^p y^q)^{w(e)} ,$$

where $u(e) = (p, q)$ and (ξ, η) are quasiprojective coordinates of the point $\text{in}(\mathcal{P})$ on $\text{Tor}(e) \subset \text{Tor}(\Delta)$ such that $\gamma = \psi(\mathcal{P})$ (here ψ is the bijection from condition (A3) above). Define a linear order on Γ^0 compatible with the orientation of Γ. On each stage, we take the next vertex $v \in \Gamma^0$ and define f_v and f_e, where e is the edge emanation from v. Namely, the polynomials f_{e_1}, f_{e_2} associated with the two edges merging to v, determine points $z_1 \in \text{Tor}(\sigma_1)$, $z_2 \in \text{Tor}(\sigma_2)$ on the surface $\text{Tor}(\Delta_v)$, σ_1, σ_2 being the sides of Δ_v orthogonal to $\mathcal{H}(e_1)$, $\mathcal{H}(e_2)$, respectively, and we construct a polynomial f_v with Newton polygon Δ_v, which defines an irreducible rational curve $C_v \subset \text{Tor}(\Delta_v)$, nonsingular along $\text{Tor}(\mathfrak{a} \Delta_v)$, crossing $\text{Tor}(e_i)$ at z_i, $i = 1, 2$, and crossing $\text{Tor}(e)$ at one point z_0 (at which one has $(C_v \cdot \text{Tor}(e))_{z_0} = w(e)$). By [13, Lemma 3.5], up to a constant factor there are $|\Delta_v|/(w(e_1)w(e_2)) = M(Q, v)$ choices for such a polynomial f_v. After that we define $f_v(x, y)$ via (22) with ξ, η the (quasihomogeneous) coordinates of z_0 in $\text{Tor}(\sigma)$, where σ is the side of Δ_v orthogonal to $\mathcal{H}(e)$. So, the limit curves $C_k \subset \text{Tor}(\Delta_k)$ are C_v for the triangles Δ_k dual to $h(v)$, and are given by $f_{e_1} f_{e_2}$, where $e_1, e_2 \in \Gamma^1$ appear in the decomposition (6) of a parallelogram Δ_k.

The set of limit curves is completed by a set of deformation patterns (see [13, Sections 3.5 and 3.6]) as follows. Namely, for each edge $e \in \Gamma^1$ with $w(e) > 1$, the deformation pattern is an irreducible rational curve $C_e \subset \text{Tor}(\Delta_v)$, where
$\Delta_e := \text{conv}\{(0,1), (0,-1), (w(e),0)\}$, whose defining (Laurent) polynomial $f_e(x,y)$ has the zero coefficient of $x^{w(e)-1}$ and the truncations to the edges $\{(0,1), (w(e),0)\}$ and $\{(0,-1), (w(e),0)\}$ of Δ_e fitting the polynomials f_{v_1}, f_{v_2}, where v_1, v_2 are the endpoints of e (see the details in [13, Sections 3.5 and 3.6]). Remind that, by [13, Lemma 3.9] there are $w(e) = M(Q,e)$ suitable polynomials f_e.

The conditions to pass through a given configuration \overline{p} do not admit a refinement. Indeed, following [13, Section 5.4], we can turn a given fixed point p into $(\xi,0)$, $\xi = \xi^0 + O(t^{-\ell}) \in \mathbb{K}$, by means of a suitable toric transformation. Then, in [13, Formula (6.4.26)], the term with the power $1/m$ will vanish.\footnote{7The mentioned term contains η^0_0, the initial coefficient of the second coordinate of p, and not ξ^0_0 as appears in the published text. The correction is clear, since in the preceding formula for τ one has just η^0_0.}

The above collections of limit curves and deformation patterns coincide with those considered in [13], the transversality hypotheses of [13, Theorem 5] are verified in [13, Section 5.4]. Notice that all these curves are nodal by construction.

Theorem 2. Notice that all these curves are nodal by construction.

Step 2. Now we come back to the general situation and deform the given configuration \overline{p} into the following new configuration \overline{q}.

Each point $p = (\xi^{t_1a} + \ldots, \eta^{t_b} + \ldots) \in \overline{p} \cap (\mathbb{K}^*)^2$ with multiplicity $\mu(p) > 1$ (defined by [13] or [14]) we replace by $\mu(p)$ generic points in $(\mathbb{K}^*)^2$ with the same valuation image $\text{Val}(\overline{p}) = (-a,-b)$ and the initial coefficients of the coordinates close to $\xi, \eta \in \mathbb{C}^*$, respectively. Furthermore, we extend the bijection ψ from (A3) up to a map $\psi: \overline{q} \to G$ in such a way that

- $\text{Val}_{\overline{q}} = \overline{h} \circ \psi$,
- each point $\gamma \in G \setminus \Gamma^0$ has a unique preimage, each point $\gamma \in G \cap \Gamma^0$ has precisely two preimages,
- if $\gamma \in G^{(dm)} \setminus \Gamma^0$, $h(\gamma) = x$, then $\psi^{-1}(\gamma)$ is close to $p_{1\cdot x}$ or to $p_{2\cdot x}$ according as $\text{mt}(\gamma) = (1,0)$ or $(0,1)$,
- if $\gamma \in G^{(dm)} \cap \Gamma^0$, $h(\gamma) = x$, then $\psi^{-1}(\gamma)$ consists of two points, one close to $p_{1\cdot x}$ and the other close to $p_{2\cdot x}$.

Next we construct a set $\mathcal{C}' \subseteq \mathcal{C}(\Delta, g, \overline{q}, 1, \{\beta^q\}_{q \in \partial \Delta})$ of $M(Q)$ curves with the tropicalization $h_{\ast}Q$. By Lemma [8] they are irreducible, nodal, of genus g, and with specified tangency conditions along $\text{Tor}_G(\partial \Delta)$.\footnote{7}
Step 3. Similarly to Step 1, we obtain the limit curves from a collection of polynomials in $\mathbb{C}[x, y]$ associated with the edges and vertices of the parameterizing graph Γ of Q:

(i) Let $\gamma \in G \setminus G^0$ lie on the edge $e \in \Gamma^1$. Then we associate with the edge e a polynomial $f_e(x, y)$ given by (22) with the parameters described in Step 1.

(ii) Let $\gamma \in G_0$ be a (trivalent) vertex v of Γ. Then $f_v(x, y)$ is a polynomial with Newton triangle Δ_v (see section 2.2) defining in $\text{Tor}(\Delta_v)$ a rational curve $C_v \in |\mathcal{L}_{\Delta_v}|$ which crosses each toric divisor of $\text{Tor}(\Delta_v)$ at one point, where it is nonsingular, and which passes through the two points $\psi^{-1}(\gamma)$. Observe that by [15, Lemma 2.4], up to a constant factor there are precisely $|\Delta_v|$ polynomials f_v as above (though the assertion and the proof of [15, Lemma 2.4] are restricted to the real case, it works well in the same manner in the complex case regardless the parity of the side length of Δ_v).

(iii) Edges emanating from a vertex $v \in \Gamma^0 \cap G_0$ do not contain any other point of G due to the Δ-general position, and we define polynomials f_e for them by formula (22) where ξ, η are the (quasihomogeneous) coordinates of the intersection point of C_v with $\text{Tor}(\sigma)$, σ being the side of Δ_v orthogonal to $\overline{h(e)}$.

(iv) Pick a connected component K of $\Gamma \setminus G$ and orient it as in Lemma 3(ii). Then we inductively define polynomials for the vertices and closed edges of K: In each stage we define polynomials f_v and f_e for a vertex v and a simple closed edge e emanating from v, whereas the polynomials $f_{e'}$ for all the edges e' of K merging to v are given. Each of the latter polynomials defines a point on $\text{Tor}(\Delta_v)$, and these points are distinct. We denote their set by X. Then we choose a polynomial $f_v(x, y)$ with Newton triangle Δ_v defining an irreducible rational curve $C_v \subset \text{Tor}(\Delta_v)$ which

- is nonsingular along $\text{Tor}(\partial \Delta_v)$,
- crosses $\text{Tor}(\partial \Delta_v)$ at each point $z \in X$ with multiplicity $w(e')$, where the edge $e' \in \Gamma^1$ merging to v is associated with a polynomial $f_{e'}$ which determines the point z,
- crosses $\text{Tor}(\partial \Delta_v) \setminus X$ at precisely one point z_0.

Notice that z_0 is the unique intersection point of C_v with the toric divisor $\text{Tor}(\sigma) \subset \text{Tor}(\Delta_v)$, where σ is orthogonal to $\overline{h(e)}$, and $(C_v \cdot \text{Tor}(\sigma))_{z_0} = w(e)$. We claim that up to a constant factor there are precisely $M(Q, v)$ polynomials f_v as required.

The case of a trivalent vertex v was considered in Step 1. In general, observe that the set of the required curves is finite, since we impose

$$(C_v \cdot \text{Tor}(\partial \Delta_v)) - 1 = -C_vK_{\text{Tor}(\Delta_v)} - 1$$

conditions on the rational curves $C_v \in |\mathcal{L}_{\Delta_v}|$, and the conditions are independent by Riemann-Roch. The cardinality of this set does not depend neither on the choice
of a generic configuration of fixed points on Tor(∂Δv), nor on the choice of an algebraically closed ground field of characteristic zero. Thus, we consider the field K and pick the fixed points on TorK(∂Δv) so that the valuation takes them injectively to a Δv-generic configuration in ∂R2. Then the rule (M5) and the construction in Step 1 provide M(Q, v) curves as required. The fact that there are no other curves in consideration follows from a slightly modified Mikhalkin’s correspondence theorem (for detail, see, for instance, [18]).

We then define fε(x, y) via (22) with ξ, η the (quasihomogeneous) coordinates of z0 in Tor(σ).

Summarizing we deduce that the number of choices of the curves Cv, v ∈ Γ0, and Ce, e ∈ Γ1, equals

\[\prod_{v \in Γ_0} M(Q, v) \cdot \prod_{e \in Γ_1} M(Q, e) \cdot \prod_{\gamma \in G} M(Q, \gamma) = M(Q) . \]

Step 4. Now we define the limit curves, the deformation patterns, and the refined conditions to pass through fixed points.

For each polygon Δk of the subdivision S of Δ, the limit curve Ck ⊂ Tor(Δk) is defined by the product of the constructed above polynomials fε, fε corresponding to the summands in the decomposition (3) of Δk.

The deformation pattern for each edge e ∈ Γ1 such that w(e) > 1 is defined in the way described in Step 1.

At last, the condition to pass through a given point q ∈ 0 such that γ = ψ(q) ∈ G lies in the interior of an edge e ∈ Γ1 with w(e) > 1, admits a refinement (see [13, Section 5.4] and [7, Section 2.5.9]) which in its turn is defined up to the choice of a w(e)-th root of unity, where e ∈ Γ1 contains γ.

So, the total number of choices we made up to now is

\[\prod_{v \in Γ_0} M(Q, v) \cdot \prod_{e \in Γ_1} M(Q, e) \cdot \prod_{\gamma \in G} M(Q, \gamma) = M(Q) . \]

Step 5. Let us verify the hypotheses of the patchworking theorem from [13, 16].

First requirement to the limit curves (see [13], conditions (A), (B), (C) in section 5.1, or [16], conditions (C1), (C2) in section 2.1) is ensured by the generic choice of ini(q), q ∈ 0. Namely, the limit curves do not contain multiple non-binomial components (i.e. defined by polynomials with nondegenerate Newton polygons), any two distinct components of any limit curve Ck ⊂ Tor(Δk) intersect transversally at non-singular points which all lie in the big torus (C*)2 ⊂ Tor(Δk), and, finally, the intersection points of any component of a limit curve Ck with Tor(∂Δk) are non-singular.

The main requirement is the transversality condition for the limit curves and deformation patterns (see [13, Section 5.2] and [16, Section 2.2]), which is relative to the choice of an orientation of the edges of the underlying tropical curve. In

26
one considers an orientation of edges of the embedded plane tropical curve (cf. section 2.2), which in our setting is just \(h_a(Q) \subset \mathbb{R}^2 \). Here we consider the orientation of the edges of the connected components of \(\overline{\Gamma} \setminus G \) as defined in Lemma 3(ii). Since this orientation does not define oriented cycles and since the intersection points of distinct components of any limit curve with the toric divisors are distinct, the proof of [13, Theorem 5] and [16, Theorem 2.4] with the orientation of \(\Gamma \) is a word-for-word copy of the proof with the orientation of \(h(\Gamma) \). Moreover, comparing with [13, 16], here we impose extra conditions to pass through the points \(\text{ini}(q) \), \(q \in \overline{q} \).

The deformation patterns are transversal in the sense of [13, Definition 5.2], due to [13, Lemma 5.5(ii)], where both the inequalities hold, since the deformation patterns are nodal ([13, Lemma 3.9]), and thus do not contribute to the left-hand side of the inequalities, whereas their right-hand sides are positive.

The transversality of a limit curve \(C_k \subset \Sigma_k := \text{Tor}(\Delta_k) \) in the sense of [13, Definition 5.1] means the triviality (i.e. zero-dimensionality) of the Zariski tangent space at \(C_k \) to the stratum in \(|\mathcal{C}_{\Delta_k}| \) formed by the curves which split into the same number of rational components as \(C_k \) (i.e. the components of \(C_k \) do not glue up when deforming along such a stratum) each of them having the same number of intersection points with \(\text{Tor}(\partial \Delta_k) \) as the respective component of \(C_k \) and with the same intersection number, and such that all but one of these intersection points are fixed. In other words the conditions imposed on each of the components of \(C_k \) determine a stratum with the one-point Zariski tangent space. Indeed, the above fixation of intersection numbers of a component \(C' \) of \(C_k \) and all but one intersection points of \(C' \) with \(\text{Tor}(\partial \Delta_k) \) imposed \(-C'K_{\Sigma_k} - 1 \) conditions which all are independent due to Riemann-Roch on \(C' \).

Thus, [13, Theorem 5] applies, and each of the \(M(Q) \) refined patchworking data constructed above produces a curve \(C \subset \text{Tor}_K(\Delta) \) as asserted in Theorem 2.

Step 6. Now we specialize the configuration \(\overline{q} \) into \(\overline{p} \) and prove that each of the curves \(C \in \mathcal{C}' \) constructed above tends (in an appropriate topology) to some curve \(\hat{C} \in |\mathcal{C}_\Delta| \).

To obtain the required limits, we introduce a suitable topology. Since the variation of \(\overline{q} \) does not affect its valuation image, the same holds for the (variable) curves \(C' \in \mathcal{C}' \), and hence one can fix once forever the function \(\nu : \Delta \to \mathbb{R} \). Then, writing each coordinate of any point \(q \in \overline{q} \) as \(X = t^{-\text{val}(X)}\Psi_q, X(t) \) and each coefficient of the defining polynomials of \(C \) as \(A_\omega = t^{\nu(\omega)}\Psi_\omega(t) \), and, assuming (without loss of generality) that all the exponents of \(t \) in the above coordinates and coefficients are integral, we deal with the following topology in the space of the functions \(\psi_\omega(t) \) holomorphic in a neighborhood of zero: Take the \(C^0 \) topology in each subspace consisting of the functions convergent in \(|t| \leq \epsilon \) and then define the inductive limit topology in the whole space.

So, we assume that the variation of \(\overline{q} \) reduces to only variation of \(\text{ini}(q) \), \(q \in \overline{q} \cap (\mathbb{R}^*)^2 \), whereas the reminders of the corresponding series in \(t \) stay un-
To show that the families of the curves $C \in \mathcal{C}$ have limits, we recall that their coefficients appear as solutions to a system of analytic equations, which is solvable by the implicit function theorem due to the transversality of the initial (refined) patchworking data (cf. [13, 16]). Thus, to confirm the existence of the limits of the curves $C \in \mathcal{C}$, it is sufficient to show that the system of equations and the (refined) patchworking data have limits and the latter limit is transverse. In particular, we shall obtain that, in each coefficient $A_\omega = t^{\nu(\omega)} \Psi_\omega(t)$, $\omega \in \Delta \cap \mathbb{Z}^2$, the factor Ψ_ω converges uniformly in the family.

We start with analyzing the specialization of limit curves. Since the given tropical curve Q stays the same, we go through the curves C_v, $v \in \Gamma^0$, and C_e, $e \in \overline{\Gamma}$. Clearly, the curves C_v, $e \in \overline{\Gamma}$, keep their form as $\text{ini}(q)$ tends to $\text{ini}(p)$, $p \in \overline{P}$. Similarly, the curves C_v corresponding to the vertices $v \in \Gamma^0$ of valency 3 remain as described in Step 1, i.e. nodal nonsingular along $\text{Tor}(\partial \Delta_v)$, and crossing each toric divisor at one point. Furthermore, the curves C_v corresponding to the non-special vertices $v \in \Gamma^0$ of valency > 3, remain as described in Step 3, paragraph (iv), since the intersection points of C_v with the toric divisors which correspond to the edges of $\overline{\Gamma}$ merging to v, do not collate and remain generic in the specialization as they are not affected by possible collisions of the points $\text{ini}(q)$, $q \in \overline{q}$. So, let us consider the case of a special vertex $v \in \Gamma^0$. By (T4) C_v cannot split into proper components, and hence specializes into an irreducible rational curve. Furthermore, the intersection points of C_v with the toric divisors which correspond to the special edges may collate forming singular points, centers of several smooth branches. So, finally, the transversality conditions for such a curve reduce to the fact, that the Zariski tangent space at C_v to the stratum in $|\mathcal{L}_{\Delta_v}|$ consisting of rational curves with given intersection points along the two toric divisors which are related to the oriented edges of $\overline{\Gamma}$ merging to v, is zero-dimensional. This is precisely the same stratum conditions as in Step 5, and the argument of Step 5 (Riemann-Roch on the rational curve C_v) shows that all the $-C_v K_{\text{Tor}(\Delta_v)} - 1$ conditions defining the stratum in the Severi variety parameterizing the rational curves in $|\mathcal{L}_{\Delta_v}|$ are independent.

Next, we notice that by assumption (T4) the possible collision of intersection points of C_v with $\text{Tor}(\partial \Delta_v)$ concerns only transverse intersection points (i.e. those which correspond to edges of weight 1), and hence does not affect neither the deformation patterns, nor the refined conditions to pass through \overline{P}. Thus, each of the curves $C \in \mathcal{C}$ degenerates into some curve $\hat{C} \in |\mathcal{L}_{\Delta_v}|$ which is given by polynomial with coefficients $A_\omega = t^{\nu(\omega)} \Psi_\omega(t)$, $\omega \in \Delta$, containing factors Ψ_ω convergent uniformly in some neighborhood of 0 in \mathbb{C}.

Remark 11
(1) Observe that the genus of \hat{C} does not exceed the genus of C.

(2) Notice also that there is no need to study refinements of possible singular points appearing in the above collisions of the intersection points of C_v with $\text{Tor}(\partial \Delta_v)$. Indeed, the number of the transverse conditions we found equals the number of parameters - hence no any extra ramification is possible.
Step 7. Next we show that, at each point \(p \in \mathcal{P} \) with \(\mu(p) > 1 \), the obtained curve \(C \) has \(\mu(p) \) local branches.

Considering the point \(p \in (\mathbb{R}^s)^2 \) as a family of points \(p^{(t)} \in (\mathbb{C}^s)^2, t \neq 0 \), we claim that the curves \(\hat{C}^{(t)} \subset \text{Tor}(\Delta) \) have \(\mu(p) \) branches at \(p^{(t)}, t \neq 0 \). For, we will describe how glue up the limit curves forming \(\hat{C}^{(0)} \) when \(\hat{C}^{(0)} \) deforms into \(\hat{C}^{(t)} \), \(t \neq 0 \). Our approach is to compare the above gluing with the gluing of the limit curves in the deformation of \(C^{(0)} \) into \(C^{(t)}, t \neq 0 \), where \(C \in \mathcal{C}' \) passes through the configuration \(\mathcal{Q} \), and the comparison heavily relies on the one-to-one correspondence between the limit curves of \(\hat{C} \) and \(C \in \mathcal{C}' \) established in Step 6.

Let \(q_1, ..., q_s \) be all the points of the configuration \(\mathcal{Q} \) which appear in the dissipation of the point \(p \in \mathcal{P} \) (cf. Step 2), and let \(\gamma_i = \psi(q_i), i = 1, ..., s \), be the corresponding marked points on \(\Gamma \) so that \(\gamma_i \in e_i \in \Gamma^t, i = 1, ..., s \). If the edges \(h(e_i), h(e_j) \) intersect transversally at \(V = h(\gamma_i) = h(\gamma_j) \), then \(V \) is a vertex of the plane tropical curve \(h_s(Q) \) dual to a polygon \(\Delta_V \) of the corresponding subdivision of \(\Delta \). The components \(C_i, C_j \subset \text{Tor}(\Delta_V) \) the curve \(C^{(0)} \) passing through \(\text{ini}(q_i), \text{ini}(q_j) \in (\mathbb{C}^s)^2 \subset \text{Tor}(\Delta_V) \), respectively, intersect transversally in \((\mathbb{C}^s)^2 \), and their intersection points in \((\mathbb{C}^s)^2 \) do not smooth up in the deformation \(C^{(t)}, t \neq 0 \), and the same holds for the corresponding components \(\hat{C}_i, \hat{C}_j \) of \(\hat{C}^{(0)} \) meeting at \(\text{ini}(p) \in (\mathbb{C}^s)^2 \subset \text{Tor}(\Delta_V) \), since the smoothing out of an intersection point \(\text{ini}(p) \) of \(\hat{C}_i \) and \(\hat{C}_j \) would raise the genus of \(\hat{C} \) above the genus of \(C \) contrary to Remark 11. Suppose that, in the above notation, \(h(e_i) \) and \(h(e_j) \) lie on the same straight line, but \(e_i, e_j \) have no vertex in common (see Figure 3(a)). We consider the case of finite length edges \(e_i, e_j \); the case of ends can be treated similarly. Let \(v_i, v_j \) be the vertices of \(e_i \), and \(v_j, v_j' \) be the vertices of \(e_j \). Their dual polygons \(\Delta_{e_i}, \Delta_{e_j}, \Delta_{e_i}, \Delta_{e_j} \) (see section 2.2) have sides \(E_i, E_i', E_j, E_j' \) orthogonal to \(h(e_i) \). In the deformation \(C^{(0)} \to C^{(t)}, t \neq 0 \), the limit curves \(\hat{C}_i \subset \text{Tor}(\Delta_{e_i}) \) and \(\hat{C}_j \subset \text{Tor}(\Delta_{e_j}) \) passing through \(\text{ini}(q_i) \in \text{Tor}(E_i) = \text{Tor}(E_i') \) glue up forming a branch centered at \(q_i^{(t)} \), and similarly the limit curves \(\hat{C}_j \subset \text{Tor}(\Delta_{e_j}) \) and \(\hat{C}_j \subset \text{Tor}(\Delta_{e_j}) \) passing through \(\text{ini}(q_j) \in \text{Tor}(E_j) = \text{Tor}(E_j) \) glue up forming a branch centered at \(q_j^{(t)} \). The same happens when \(C \) specializes into \(\hat{C} \), \(q_i, q_j \) specialize into \(p \), since again the aforementioned restriction \(g(\hat{C}) \leq g(C) \) does not allow the limit curves \(\hat{C}_i, \hat{C}_j \) glue up with the limit curves \(C_i, C_j \).

The remaining case to study is given by the tropical data described in condition (T7), section 3.1 Without loss of generality we can assume that all the edges \(e_1, ..., e_s \) have a common vertex \(v \) and their \(h \)-images lie on the same line (see an example in Figure 3(b)). Applying an appropriate invertible integral-affine transformation, we can make the edges \(e_1, ..., e_s \) horizontal and the point \(x = \text{Val}(p) \in \mathbb{R}^2 \) to be the origin. Correspondingly, \(v = (-\alpha, 0), v_i = (\alpha_i, 0), i = 1, ..., s \), with \(0 < \alpha_1 \leq ... \leq \alpha_s \leq \infty \) and

\[
\alpha > \sum_{1 \leq i \leq s-1} \alpha_i + 2\alpha_{s-1} .
\]

(23)

In what follows we suppose that \(\alpha_s < \infty \). The case \(\alpha_s = \infty \) admits the same treatment as the case of finite \(\alpha_s \gg \alpha \).
Figure 3: Illustration to Step 7 of the proof of Theorem 2
Let \(q_i = \psi^{-1}(\gamma_i), 1 \leq i \leq s \), be the points of the configuration \(\overline{\mathcal{F}} \) which appear in the deformation of the point \(p \) described in Step 2. Our assumptions yield that
\[
p = (\xi + O(t^{>0}), \eta + O(t^{>0})), \quad q_i = (\xi_i + O(t^{>0}), \eta_i + O(t^{>0})), \quad i = 1, \ldots, s,
\]
with some \(\xi, \eta \in \mathbb{C}^* \), \(\xi_i \) close to \(\xi \), \(\eta_i \) close to \(\eta \), \(i = 1, \ldots, s \). Furthermore, the triangles \(\Delta_v \) and \(\Delta_{v_i} \) dual to the vertices \(v \) and \(v_i \), \(1 \leq i \leq s \), respectively, have vertical edges \(\sigma \subset \partial \Delta_v \) and \(\sigma_i \subset \partial \Delta_{v_i} \), \(1 \leq i \leq s \), along which the function \(\nu \) (see section 2.2) is constant. By assumptions (T4)-(T6), the limit curve \(C_v \subset \text{Tor}(\Delta_v) \) crosses the toric divisor \(\text{Tor}(\sigma) \) at the points \(\eta_1, \ldots, \eta_s \) with the total intersection multiplicity \(s \), and each of the limit curves \(C_{v_i} \subset \text{Tor}(\Delta_{v_i}) \), \(1 \leq i \leq s \), crosses the toric divisor \(\text{Tor}(\sigma_i) \) at the unique point \(\eta_i \) transversally, and the corresponding limit curve \(\hat{C}_{v_i} \) crosses \(\text{Tor}(\sigma_i) \) at the point \(\eta \) transversally, too.

Now we move the points \(q_1, \ldots, q_s \) keeping their \(x \)-coordinates and making \((q_1)_y = \ldots = (q_s)_y = (p)_y \). As shown in Step 6, the curve \(C \) (depending on \(q_1, \ldots, q_s \)) converges to a curve \(C' \) with the same Newton polygon, genus, and tropicalization, and the limit curves of \(C \) component-wise converge to limit curves of \(C' \). Consider now the polynomial \(\tilde{F}(x, y) := F'(x, y + (p)_y) \), where the polynomial \(F'(x, y) \) defines the curve \(C' \). As in the refinement procedure described in [13, Section 3.4] or [7, Section 2.5.8], the subdivision of the Newton polygon \(\tilde{\Delta} \) of \(\tilde{F} \) contains the fragment bounded by the triangle \(\delta = \text{conv}\{(0,0), (1, s), (s + 1, 0)\} \) (see Figure 3(d)) which matches the points \(q_1, \ldots, q_s \). The corresponding function \(\tilde{v} : \tilde{\Delta} \to \mathbb{R} \) takes the values
\[
\tilde{v}(0,0) = \alpha, \quad \tilde{v}(1,s) = 0, \quad \tilde{v}(k,s+1-k) = \sum_{1 \leq i < k} \alpha_i, \quad k = 2, \ldots, s + 1
\]
along the incline part of \(\partial \delta \). The tropical limit of \(\tilde{F} \) restricted to the above fragment consists of a subdivision of \(\delta \), determined by some extension of the function \(\tilde{v} \) inside \(\delta \), and of limit curves which must meet the following conditions:

- these limit curves glue up into a rational curve (with Newton triangle \(\delta \)), since, in the original tropical curve, the spoken fragment corresponds to a tree (see Figure 3(b));

- the intersection points \(q \) of the curve \(C_\delta := \{ \tilde{F}_\delta = 0 \} \) with the line \(x = (p)_x \) such that \(\text{Val}(q)_y \leq 0 \) converge to \(p \) as \(q_1, \ldots, q_s \) tend to \(p \), where \(\tilde{F}_\delta \) is the sum of the monomials of \(\tilde{F} \) matching the set \(\Delta \cap \mathbb{Z}^2 \), and the convergence is understood in the topology of Step 6;

- the subdivision of \(\delta \) contains a segment \(\tilde{\sigma} \) of length \(s \) lying inside the edge \([0,0), (s + 1, 0)\], along which the function \(\tilde{v} \) is constant and such that the corresponding toric divisor \(\text{Tor}(\tilde{\sigma}) \) intersects with the limit curves at the points \(\xi_1, \ldots, \xi_s \).

These restrictions and inequality (23) leave only one possibility the subdivision of \(\delta \) shown in Figure 3(c,d) (the subdivision (c) for the case \(\alpha > \alpha_1 + \ldots + \alpha_s \), and the subdivision (d) for the case \(\alpha < \alpha_1 + \ldots + \alpha_s \)). The limit curve \(C_\delta \subset \text{Tor}(\delta') \) for a triangle \(\delta' \subset \delta \) having a horizontal base splits into \(H(\delta) \) distinct straight lines (any
of them crossing each toric divisor at one point), where $H(\delta')$ is the height. The limit curve $\mathbb{C}_{\delta'} \subset \text{Tor}(\delta')$ for a trapeze $\delta' \subset \delta$ splits into $H(\delta')$ straight lines as above and the suitable number of straight lines $x = \text{const}$ (which reflect the splitting of the trapeze into the Minkowski sum of a triangle with a horizontal segment). All the limit curves are uniquely defined by the intersections with the toric divisors $\text{Tor}(\sigma')$ for incline segments σ' (in our construction, these data are determined by the points q_1, \ldots, q_s and by intersections with $\text{Tor}(\sigma)$ introduced above. When q_1, \ldots, q_s tend to p, the subdivision of δ remains unchanged, whereas the limit curves naturally converge component-wise. Then we immediately derive that components of the limit curves passing through $\text{ini}(p)$ do not glue up together in the deformation $\hat{\text{C}}(t)$, $t \neq 0$, since otherwise the (geometric) genus of $\hat{\text{C}}(t)$, $t \neq 0$, would jump above the genus of C which is impossible (see Remark 11).

Step 8. By assumption (A5), section 3.1, the curves $\hat{\text{C}} \subset \text{Tor}_\mathbb{C}(\Delta)$ are immersed, irreducible, of genus g, have multiplicity $\mu(p)$ at each point $p \in \hat{\text{p}} \cap (K^*)^2$, and satisfy the tangency conditions with $\text{Tor}_\mathbb{C}(\sigma \Delta)$ as specified in the assertion of Theorem 2. It remains to show that we have constructed precisely $M(Q)$ curves $\hat{\text{C}}$. Indeed, condition (16) implies that, for any dissipation of each point $p \in \hat{\text{p}} \cap (K^*)^2$ into $\mu(p)$ distinct points there exists a unique deformation of $\hat{\text{C}}$ into a curve $\text{C} \in \mathcal{C}$ such that a priori prescribed branches of $\hat{\text{C}}$ at p will pass through prescribed points of the dissipation.

Finally, we notice that the sets $\mathcal{C}(\hat{Q}_1)$ and $\mathcal{C}(\hat{Q}_2)$ are disjoint for distinct (non-isomorphic PPT-curves \hat{Q}_1, \hat{Q}_2. Indeed, the collections of limit curves as constructed in Steps 1 and 3 appear to be distinct for distinct curves \hat{Q}_1 and \hat{Q}_2 and the given configuration $\hat{\text{p}}$.

\[\square\]

3.5 **Proof of Theorem 3**

The curves $\text{C} \in \mathcal{R}(\hat{Q})$ constructed in the proof of Theorem 2 are immersed, and hence the formula (11) for the Welschinger weight applies, thus the left-hand side of (21) is well defined.

Next we go through the proof of Theorem 2 counting the contribution to the right-hand side of (21).

First, we deform the configuration $\bar{\text{p}}$ as described in Step 2, assuming that the deformed configuration $\bar{\text{q}}$ is Conj-invariant and that the map $\psi : \bar{\text{q}} \to \text{G}$ sends $\mathcal{R}(\bar{\text{q}}) = \bar{\text{q}} \cap \text{Fix}($Conj$)$ to $\mathcal{R} \subset \mathcal{G}$ and sends $\mathcal{S}(\bar{\text{q}}) = \bar{\text{q}} \cup \mathcal{S}(\bar{\text{q}})$ to $\mathcal{S} \subset \mathcal{G}$, respectively. In particular, if $p \in \mathcal{R}(\bar{\text{p}})$, and the points $\text{Val}(p)$ is an image of r points of $\mathcal{R} \cap \mathcal{S}$ and s pairs of points of $\mathcal{R} \cap \mathcal{S}$, then p deforms into r real points and s pairs of imaginary conjugate points.

Notice that the replacement of $\bar{\text{p}}$ by $\bar{\text{q}}$ causes a change of sign in the left-hand side of (21) and of the quantity of the real curves in count in the right-hand side of
Right now we explain the change of sign: the dissipation of a real point p as in the preceding paragraph means that, for each curve $C \in C'$ we count r real solitary nodes more in a neighborhood of p, since in the non-deformed situation, the point p should be blown up for the computation of the Welschinger sign. This change is reflected in the sign $(-1)^{\ell_1}$, $\ell_1 = |\Re G \cap 3\Gamma|/2$, in the right-hand side of formula (10).

Next we follow the procedure in Steps 3 and 4 of the proof of Theorem 2 and construct Conj-invariant collections of limit curves, deformation patterns, and refined conditions to pass through fixed points:

- by [15, Proposition 8.1(i)] the existence of an even weight edge $e \in \Gamma^1$, $e \subset \Re \Gamma$ annihilates the contribution to the Welschinger number, and hence by (R7)(v) we can assume that all the edges $e \subset \Re \Gamma$ have odd weight, in particular, with the finite length edges $e \subset \Re \Gamma$ one can associate a unique real deformation pattern with an even number of solitary nodes (cf. [15, Lemma 2.3]),

- the limit curves associated with the vertices of $\Re \Gamma$ contribute as designated in rules (W2)-(W4) in section 2.6 (cf. [15, Lemmas 2.3, 2.4, and 2.5]),

- the construction of limit curves and deformation patterns associated with the vertices and edges of $\Im \Gamma$ (a half of $\Re \Gamma$), contributes as designated in rules (W1)-(W3) (cf. with the complex formulas in the proof of Theorem 2 and with [15, Section 2.5]), accordingly, the data associated with $\Im \Gamma$ are obtained by the conjugation,

- the refinement of the condition to pass through fixed points contributes as designated in rule (W2) as we have a unique refinement for $\gamma \in \Re \Gamma$ and $w(e)$ refinements for $\gamma \in e \in \Re \Gamma^1$.

The remaining step is to explain the factor 2^{ℓ_2}, $\ell_2 = (|3G \cap 3\Gamma| - b_0(3\Gamma))/2$, in formula (10). Indeed, when constructing the limit curves associated with the vertices of $\Re \Gamma$, we start with the respective fixed points which all are imaginary in the configuration \mathbf{q}, and thus we choose a point in each of the $|G \cap \Re \Gamma| = |G \cap 3\Gamma|/2$ pairs of the corresponding points in \mathbf{q}. Observe that, in the degeneration $\mathbf{q} \rightarrow \mathbf{p}$, $|\Re G \cap 3\Gamma|$ pairs of imaginary points of \mathbf{q} merge to real points in \mathbf{p}, which leaves only $|3G \cap 3\Gamma|/2$ choices in the original configuration \mathbf{p}. After all, we factorize by the interchange of the components of 3Γ, coming to the required factor 2^{ℓ_2}.

References

[1] Gathmann, A., and Markwig, H.: The numbers of tropical plane curves through points in general position. J. reine angew. Math. 602 (2007), 155–177.
[2] Greuel, G.-M., and Karras, U.: Families of varieties with prescribed singularities. Compos. math. 69 (1989), no. 1, 83–110.

[3] Greuel, G.-M., and Lossen, C.: Equianalytic and equisingular families of curves on surfaces. Manuscripta math. 91 (1996), no. 3, 323–342.

[4] Itenberg, I. V., Kharlamov, V. M., and Shustin, E. I.: Logarithmic equivalence of Welschinger and Gromov-Witten invariants. Russian Math. Surveys 59 (2004), no. 6, 1093–1116.

[5] Itenberg, I. V., Kharlamov, V. M., and Shustin, E. I.: New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants. Proc. Steklov Math. Inst. 258 (2007), 65-73.

[6] Itenberg, I., Kharlamov, V., and Shustin, E.: Recursive formulas and logarithmic asymptotics of Welschinger invariants of real non-toric Del Pezzo surfaces, in preparation.

[7] Itenberg, I., Mikhalkin, G., and Shustin, E.: Tropical algebraic geometry/ Oberwolfach seminars, vol. 35. Birkhauser, 2007.

[8] Mikhalkin, G.: Decomposition into pairs-of-pants for complex algebraic hypersurfaces. Topology 43 (2004), 1035–1065.

[9] Mikhalkin, G.: Enumerative tropical algebraic geometry in \(\mathbb{R}^2 \). J. Amer. Math. Soc. 18 (2005), 313–377.

[10] Nishinou, T., and Siebert, B.: Toric degenerations of toric varieties and tropical curves. Duke Math. J. 135 (2006), no. 1, 1–51.

[11] Orevkov, S., and Shustin, E.: Pseudoholomorphic, algebraically unrealizable curves. Moscow Math. J. 3 (2003), no. 3, 1053–1083.

[12] Richter-Gebert, J., Sturmfels, B., and Theobald, T.: First steps in tropical geometry. Idempotent mathematics and mathematical physics, Contemp. Math. 377, Amer. Math. Soc., Providence, RI, 2005, pp. 289–317.

[13] Shustin, E.: A tropical approach to enumerative geometry. Algebra i Analiz 17 (2005), no. 2, 170–214 (English translation: St. St. Petersburg Math. J. 17 (2006), 343–375).

[14] Shustin, E.: On manifolds of singular algebraic curves. Selecta Math. Sov. 10, no. 1, 27–37 (1991).

[15] Shustin, E.: A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces. J. Alg. Geom. 15 (2006), no. 2, 285–322 (corrected version at arXiv:math/0406099).
[16] Shustin, E.: Patchworking construction in the tropical enumerative geometry. *Singularities and Computer Algebra*, C. Lossen and G. Pfister, eds., Lond. Math. Soc. Lec. Notes Ser. 324, Proc. Conf. dedicated to the 60th birthday of G.-M. Greuel, Cambridge Univ. Press, 2006, pp. 273–300.

[17] Shustin, E.: Welschinger invariants of toric Del Pezzo surfaces with non-standard real structures. *Proc. Steklov Math. Inst.* 258 (2007), 219–247.

[18] Shustin, E.: *New enumerative invariants and correspondence theorems for plane tropical curves*, in preparation.

[19] Viro, O. Ya.: Gluing of plane real algebraic curves and construction of curves of degrees 6 and 7. *Lect. Notes Math.* 1060, Springer, Berlin etc., 1984, pp. 187–200.

[20] Viro, O. Ya.: Real algebraic plane curves: constructions with controlled topology. *Leningrad Math. J.* 1 (1990), 1059–1134.

[21] Viro, O. Ya.: *Patchworking Real Algebraic Varieties*. Preprint at arXiv:math/0611382.

[22] Viro, O.: Dequantization of Real Algebraic Geometry on a Logarithmic Paper. *Proceedings of the 3rd European Congress of Mathematicians*, Birkhäuser, Progress in Math. 201, (2001), 135–146.

[23] Welschinger, J.-Y.: Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry. *Invent. Math.* 162 (2005), no. 1, 195–234.

School of Mathematical Sciences
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University
Ramat Aviv, 69978 Tel Aviv, Israel
E-mail address: shustin@post.tau.ac.il

35