Evaluation of finger millet (Eleusine coracana (L.) Gaertn.) varieties for grain yield in lowland areas of southern Ethiopia

Tariku Simion1*, Selamawit Markos1 and Tamirat Samuel1

Abstract: Finger millet (Eleusine coracana L. Gaertn.) is a staple food crop in drought-prone areas. An experiment was conducted in Konso zone and Dirashe districts, Southern Ethiopia, in order to obtain high yielding varieties using eight improved and one local finger millet varieties in 2018. The experiment was laid down in a randomized completely block design with three replications. The combined analysis of variance for grain yield revealed a significant effect (P < 0.05) due to varieties, locations, and their interactions. Combined mean yield of varieties indicated that Bonaya (2992 kg/ha), Padet (2909 kg/ha), Wama (2733 kg/ha), and Tessama (2727 kg/ha) had the highest grain yield without significant difference among the four and had yield advantage of 41.8%, 38.7%, 31.9%, and 31.7% compared to the local check (1899 kg/ha), in the given order. The present study revealed that Bonaya, Padet, Wama, and Tessama varieties could be recommended for further pre-extension and dissemination in the study areas and similar agro-ecologies.

Subjects: Agriculture & Environmental Sciences; Botany; Plant & Animal Ecology; Soil Sciences

Keywords: lowland; grain yield; Eleusine coracana

1. Introduction
Finger millet (Eleusine coracana (L.) Gaertn.) is a small-seeded cereal grown in low rainfall areas of the world. Its wide adaptability to drought-prone areas and diverse cultural conditions makes it an important food security crop. The productivity of finger millet is low in Ethiopia due to different constraints, including shortage of improved varieties, non-adoption of improved technologies,
diseases, and moisture stress (Tsehaye et al., 2006; Degu et al., 2009). In Ethiopia, finger millet is the sixth important crop after tef, wheat, maize, sorghum, and barley. It is produced on 456,057.31 ha of land, from which 103,082.3 tons are obtained at the national level per year (Central Statistical Agency [CSA], 2018).

Finger millet is one of the important staple food crops in Southern Ethiopia including Konso zone and Derashe district, and most of the time, it has been produced by marginal farmers. In southern Ethiopia, finger millet is the sixth important crop after tef, wheat, maize, sorghum, and barley. It is produced on 4,485.63 ha of land, from which 72.0 tons are obtained at the regional level per year (Central Statistical Agency [CSA], 2018). The current productivity of the commodity is below national average productivity, which is (2260 kg/ha). Shortage of improved varieties, non-adoption of improved technologies, diseases, and moisture stress are major constraints (Degu et al., 2009).

Since variety development takes a longer time, as an immediate solution, it is advisable to avail the existing improved varieties to the farmers. However, the new improved varieties should not be directly disseminated to the farming communities for wide-scale production before they are evaluated for their performance. The present study was initiated to select high grain-yielding finger millet varieties for low land areas of Konso zone and Derashe district and areas with similar agro-ecologies.

2. Materials and methods
An experiment was conducted on farmers’ fields during the 2018 main cropping season at Konso zone (Arfaide and Sorobo Kebeles) and Derashe district (Gato Kebele) in Southern Ethiopia. Gato (Altitude: 1252 m.a.s.l and soil type: sandy loam), Arfaide (Altitude: 1312 m.a.s.l and soil type: sandy), Sorobo (Altitude: 1350 m.a.s.l and soil type: sandy). Average rainfall distribution of the areas is 700–1025 mm. Eight finger millet varieties and one local cultivar were grown in randomized complete block design with three replications. Planting was done by hand drilling at a seed rate of 10 kg/ha. Each experimental plot had six rows with five-meter length and 45 cm inter-row spacing. Intra-row spacing was maintained at 10 cm after thinning. Nationally recommended fertilizer rate was applied at the rate of 50 kg/ha of NPS at planting and 100 kg/ha of urea (50 kg at planting and 50 kg at 35–40 days after weeding). Data were collected for plant height (taken at maturity) and finger length on the basis of five sample plants randomly taken from the four central rows, whereas grain yield was taken on a plot basis. Genstat (16th edition 2014) software was used for statistical analysis.

3. Results and discussion
The combined analysis of variance over locations indicated that there were a significant difference (P < 0.05) among varieties for plant height, finger length, and grain yield (Table 1). Over locations, mean grain yield of the varieties indicated that Bonaya, Padet, Wama, and Tessama had the highest grain yield advantage without significant difference among the four in the given order (Table 2). The result reported by (Hailegebrial et al., 2017) for grain yield in finger millet varieties suggested that the contribution of environment and varieties to the observed variation of yield was large. This suggested testing of varieties in different localities is must before recommending for large-scale production.

The highest grain yield was obtained for variety Padet (3592 kg/ha), and most of the varieties had the lowest grain yield performance at Gato (Table 3). The varieties Wama (3567 kg/ha), Bonaya (3189 kg/ha), and Tessama (3065 kg/ha) were high grain yielders without statistical difference among the three at Sorobo (Table 4), whereas Tessama (2991 kg/ha), Padet (2991 kg/ha), Bonaya (2981 kg/ha), Meba (2858 kg/ha), Axum (2788 kg/ha), and Wama (2525 kg/ha) recorded highest grain yields at Arfaide without statistical difference among them (Table 5). The mean values of finger length over locations ranged from 7.2 cm (local) to 9.7 cm (Axum) (Table 2). The mean plant height values range from 96.3 cm (Gudetu) to 133.9 cm (Tessema) (Table 2).

4. Conclusion and recommendation
The combined analysis of variance showed that the effect of environments, varieties, and their interactions for grain yield was significant (P < 0.05). The environment played a significant role
Table 1. Combined analysis of variance for yield and agronomic traits of nine finger millet varieties

Source of variation	DF	GY	PH	FL
Replication	2	305.822	46.46	0.334
Location	2	553.665*	1058.84**	2.880ns
Variety	8	877.380**	1351.59*	7.200**
Location × Variety	16	88.167**	248.56**	3.074*
Residual	52	714.417	40.28	1.689
CV (%)		11.4	5.6	15.3

*and **Significant at 0.05 and 0.01 probability levels. DF: degree of freedom; GY: grain yield; PH: plant height; FL: finger length; CV (%): coefficient of variation in percentage.

Table 2. Combined mean values for yield and agronomic traits of nine finger millet varieties

Varieties	GY (kg/ha)	PH (cm)	FL (cm)
Axum	2554b	123.7 c	9.667d
Wama	2727ab	125.9 c	9.489cd
Bonaya	2992 a	110.4b	8.422abc
Addis 01	2549b	109.4b	7.778ab
Padet	2909a	114.9b	8.022ab
Local	1899c	99.1a	7.289a
Gudatu	2562b	96.3a	7.711ab
Tessama	2733ab	133.9d	9.600cd
Meba	2574b	113.9b	8.578bcd
Grand mean	2611	114.17	8.51
LSD (0.05)	486.5	10.398	2.129

GY: grain yield; PH: plant height; FL: finger length; LSD (0.05): least significant difference. Means in the same column followed by the same letter are not significantly different at 5% level of significance.

Table 3. Mean values of yield and agronomic traits of nine finger millet varieties at Gato

Varieties	GY (kg/ha)	PH (cm)	FL (cm)
Axum	2084 c	120.7a	7.27
Wama	2088 c	120.7a	8.40
Bonaya	2546bc	108.6b	8.40
Addis 01	2415 c	110.4b	8.20
Padet	3592a	104.7b	8.27
Meba	2337 c	107.1b	8.67
Gudatu	2942b	86.6 c	7.93
Tessama	2143 c	122.7a	10.53
Local	2336 c	123.1a	8.33
Grand mean	2498	111.6	8.44
LSD (0.05)	487.7	9.70	NS

GY: grain yield; PH: plant height; FL: finger length; LSD: least significant difference. Means in the same column followed by the same letter are not significantly different at 5% level of significance.
Table 4. Mean values of yield and agronomic traits of nine finger millet varieties at Sorobo

Varieties	GY (kg/ha)	PH (cm)	FL (cm)
Axum	2777bc	132.0bc	12.000c
Wama	3567a	151.5a	9.867b
Bonaya	3189ab	124.1bc	8.867ab
Addis 01	3105b	93.0f	7.267a
Padet	2404c	123.2bcd	7.867ab
Local	1705d	112.0de	7.867ab
Gudatu	2611c	101.5ef	8.333ab
Tessama	3065a	134.3b	9.200ab
Meba	2526c	120.5cd	8.467ab
Grand mean	2772	121.3	8.86
LSD (0.05)	446.8	11.75	2.066

GY: grain yield; PH: plant height; FL: finger length; LSD: least significant difference. Means in the same column followed by the same letter are not significantly different at 5% level of significance.

Table 5. Mean values of yield and agronomic traits of nine finger millet varieties at Arfaide

Varieties	GY (kg/ha)	PH (cm)	FL (cm)
Axum	2788a	132.0bc	9.267abc
Wama	2525ab	134.3b	10.260a
Bonaya	2981a	124.1bc	7.933cd
Addis 01	2141b	93.0f	7.067de
Padet	2991a	123.2bcd	8.000cd
Local	657c	101.5ef	6.267e
Gudatu	2133b	120.5cd	7.067de
Tessama	2991a	151.5a	9.533ab
Meba	2858a	112.0de	8.600bc
Grand mean	2452	121.3	8.21
LSD (0.05)	641.0	11.75	1.424

GY: grain yield; PH: plant height; FL: finger length; LSD: least significant difference. Means in the same column followed by the same letter are not significantly different at 5% level of significance.

in influencing the expression of studied traits, which suggests the varied performance of the varieties across environments. This is indicative of the necessity of testing finger millet varieties at multiple locations for large-scale production. An ideal finger millet genotype should have a high mean yield combined with a low degree of fluctuation under different environments. The combined mean grain yield value of varieties over environments indicated that Bonaya (2992 kg/ha), Padet (2909 kg/ha), Wama (2733 kg/ha) and Tessama (2727 kg/ha) had the highest grain yield performance. Hence, these varieties could be recommended for further pre-extension and demonstration in the study areas and area with similar agro-ecologies.

Acknowledgements
The authors would like to thank South Agricultural Research Institute, Arba Minch Agricultural Research Center for financing and providing working facility and all staff members for their commitment during this study.

Competing interests
The authors declare no competing interests.

Author details
Taniku Simion1
E-mail: trk2011smn@gmail.com
ORCID ID: http://orcid.org/0000-0001-5502-8834
Selamawit Markos1
E-mail: selammark2011@gmail.com

Funding
The authors received no direct funding for this research.
Tamirat Samuel
E-mail: tamiratsame@gmail.com

1 Crop Science, Arba Minch Agricultural Research Center, Arba Minch, Ethiopia.

Citation information
Cite this article as: Evaluation of finger millet (Eleusine coracana (L.) Gaertn.) varieties for grain yield in lowland areas of southern Ethiopia, Tariku Simion, Selamawit Markus & Tamirat Samuel, Cogent Food & Agriculture (2020), 6: 1788895.

References
Central Statistical Agency (CSA). (2018). Central statistical agency agricultural sample survey. Central Statistical Agency.
Degu, E., Adugna, A., Tadese, T., & Tesso, T. (2009, September 19-21). Genetic resources, breeding and production of millets in Ethiopia. In New approaches to plant breeding of orphan crops in Africa. Proceedings of an international conference. 2007.
Genstat Release 16th Edition (PC/Windows 7) Copyright. (2014). VSN International Ltd. germplasm. In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, & M. Tamo (Eds.). Hallegebrial, K., Yiergalem, T., Alem, R., Redoe, W., Desalegn, Y., & Welegerima, G. (2017). Yield performance and adaptability of finger millet landrace in North Western Tigray, Ethiopia. World News of Natural Sciences, 15, 98–111. www.worldnewsnaturalsciences.com
Tsehay, Y., Berg, T., Tsegaye, B., & Tanto, T. (2006). Farmers’ management of finger millet (Eleusine coracana L.) diversity in Tigray, Ethiopia and implications for on-farm conservation. Biodiversity and Conservation, 15(13), 4289–4308. https://doi.org/10.1007/s10531-005-3581-3

© 2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Food & Agriculture (ISSN:) is published by Cogent OA, part of Taylor & Francis Group.
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions
Submit your manuscript to a Cogent OA journal at www.CogentOA.com