The 2011 outburst of the recurrent nova T Pyx.
Evidence for a face-on bipolar ejection.
Olivier Chesneau, A. Meilland, D. P. K. Banerjee, Jean-Baptiste Le Bouquin, H. Mcalister, F. Millour, S.T. Ridgway, A. Spang, T.A. Ten Brummelaar, M. Wittkowski, et al.

To cite this version:
Olivier Chesneau, A. Meilland, D. P. K. Banerjee, Jean-Baptiste Le Bouquin, H. Mcalister, et al.. The 2011 outburst of the recurrent nova T Pyx. Evidence for a face-on bipolar ejection.. Astronomy and Astrophysics - A, EDP Sciences, 2011, pp._. <hal-00625395v3>

HAL Id: hal-00625395
https://hal.archives-ouvertes.fr/hal-00625395v3
Submitted on 26 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The 2011 outburst of the recurrent nova T Pyx. Evidence for a face-on bipolar ejection.

O. Chesneau1, A. Meilland1, D. P. K. Banerjee2, J.-B. Le Bouquin3, H. McAlister4, F. Millour1, S.T. Ridgway6, A. Spang1, T. ten Brummelaar5, M. Wittkowski2, N.M. Ashok2, M. Benisty3, J.-P. Berger2, T. Boyajian3, Ch. Farrington1, P.J. Goldfinger3, A. Merand6, N. Nardetto1, R. Petrov1, Th. Rivinius3, G. Schaefer4, Y. Touhami6, and G. Zins3,*

1 UMR 6525 Fizeau, Univ. Nice Sophia Antipolis, CNRS, Obs. de la Côte d’Azur, Bvd de l’Obs., BP4229 F-06304 NICE Cedex 4
2 Physical Research Laboratory, Navrangpura, Ahmedabad, Gujarat, India
3 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), UMR 5274, Grenoble, France
4 Georgia State University, P.O. Box 3969, Atlanta GA 30302-3969, USA
5 CHARA Array, Mount Wilson Observatory, 91023 Mount Wilson CA, USA
6 National Optical Astronomy Observatories, 950 North Cherry Avenue, Tucson, AZ, 85719, USA
7 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany
8 Max Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
9 European Southern Observatory, Casilla 19001, Santiago 19, Chile

Received, accepted.

ABSTRACT

Aims. T Pyx is the first recurrent nova historically studied, seen in outburst six times between 1890 and 1966 and then not for 45 years. We report on near-IR interferometric observations of the recent outburst of 2011. We compare expansion of the H and K band continuum and the Bry emission line, and infer information on the kinematics and morphology of the early ejecta.

Methods. We obtained near-IR observations of T Pyx at dates ranging from \(t = 2.37 \) d to \(t = 48.2 \) d after the outburst, with the CLASSIC recombiner, located at the CHARA array, and with the PIONIER and AMBER recombiners, located at the VLTI array. These data are supplemented with near-IR photometry and spectra obtained at Mount Abu, India.

Results. Slow expansion velocities were measured (\(\leq 300 \text{ km s}^{-1} \)) before \(t = 20 \) d. From \(t = 28 \) d on, the AMBER and PIONIER continuum visibilities (K and H band, respectively) are best simulated with a two component model consisting of an unresolved source plus an extended source whose expansion velocity onto the sky plane is lower than \(\sim 700 \text{ km s}^{-1} \). The expansion of the Bry line forming region, as inferred at \(t = 28 \) d and \(t = 35 \) d is slightly larger, implying velocities in the range \(500-800 \text{ km s}^{-1} \), still strikingly lower than the velocities of \(1300-1600 \text{ km s}^{-1} \) inferred from the Doppler width of the line. Moreover, a remarkable pattern was observed in the Bry differential phases. A semi-quantitative model using a bipolar flow with a contrast of 2 between the pole and equator velocities, an inclination of \(i = 15^\circ \) and a position angle P.A. \(= 110^\circ \) provides a good match to the AMBER observables (spectra, differential visibilities and phases). At \(t = 48 \) d, a PIONIER dataset confirms the two component nature of the H band emission, consisting of an unresolved stellar source and an extended region whose appearance is circular and symmetric within error bars.

Conclusions. Most observations are consistent with a bipolar model, oriented nearly face-on. This finding has profound implications for the interpretation of past, current and future observations of the expanding nebula.

Key words. Techniques: high angular resolution; (Stars:) novae, cataclysmic variables; individual: T Pyx; Stars: circumstellar matter

1. Introduction

A classical nova eruption results from a thermonuclear runaway on the surface of a white dwarf which is accreting material from a companion star in a close binary system. T Pyxidis (T Pyx) is a unique recurrent nova that was in outburst six times between 1890 and 1966 (intervals of \(\sim 20 \) yr). T Pyx was discovered in outburst at a visual magnitude of 13.0 on 2011 April 14.29 UT (JD=2455665.79); which we take as \(t = 0 \) (Waagan et al. 2011). This is the first outburst of T Pyx since December 7, 1966, nearly 45 years before.

The evolution of the nova is relatively slow, thereby providing time and scope for organizing joint observations with optical interferometry arrays such as CHARA and the VLTI. T Pyx is surrounded by an interesting nebula in expansion that has been investigated by the HST during more than 10 yr (Schaefer et al. 2010, and references therein). The knots are expanding in the plane of the sky with velocities ranging from roughly 500 to 715 km s\(^{-1}\). In contrast, the velocities inferred from Doppler widths of the ejecta of recent outbursts were observed to be much faster at about 1500 km s\(^{-1}\). Although T Pyx is a well-observed system, it still has many mysteries. Why did the ejecta expand so slowly in the plane of the sky? An important spectroscopic study of the binary system from Uthas et al. (2010) provided evidence of a low-inclination for the system orbit (\(i = 10 \pm 2^\circ \)), a particularly important constraint for the interpretation of interferometric data, as it appears that the ejecta emitted around these outbursting sources are rarely spherical.

This letter presents optical interferometry measurements obtained from different facilities which provide important infor-
Table 1. Journal of interferometric observations.

date	MJD	t-t₀	Instrument	Base	projected baselines	Calibrators*
2011/04/17	2450000.5+	2.92	CLASSIC	W1-W2	107.4	HD78752, HD79290
2011/04/23	2450000.5+	8.81	AMBER	K0-A1-11	-159.0/96.2/−105.0	HD79347
2011/04/26	2450000.5+	12.81	PIONIER	A1-G1-I1-K0	74.9/42/113/82/44	HD78739
2011/04/28	2450000.5+	13.93	CLASSIC	W1-E2	202.1/213.3	HD78752, HD79290
2011/05/12	2450000.5+	28.76	AMBER	UT1-3-4	59.5/95.6/117.7	HD79347
2011/05/20	2450000.5+	35.77	AMBER	UT1-3-4	56.2/89.9/105.6	HD78739
2011/06/01	2450000.5+	48.74	PIONIER	D0-G1-H0-11	68/47/63/67/37/40	HD78739

* Calibrator angular diameters from SearchCal@JMMC (Bonneau et al. 2006): HD 78752 (G0V, 0.22±0.02mas), HD 79290 (A0V, 0.13±0.01mas), HD 73947 (K2III, 0.86±0.02mas), HD 87303 (K2III, 0.90±0.07mas), HD 78739 (K0III, 0.32±0.02mas).

Fig. 1. Light curve of T Pyx with the dates of the optical interferometry observations. Blue diamonds indicate a subset of AAVSO data in V, and green squares in I. Orange triangles and red stars indicate H and K band photometry from Mt Abu (India).

Fig. 2. K-band interferometric visibilities obtained with CLASSIC at t=2.92 (green diamond) and t=13.93 (red triangles). The thick dotted and dashed lines indicate are the UD curves corresponding to Table 2.

2. Observations

Near-infrared JHK photometric and spectroscopic observations were obtained on a regular basis from the 1.2m telescope at the Mt. Abu Observatory, India. These measurements helped to prepare the interferometric observations and to evaluate the relative contribution of the various continuum and line components (Fig.1). Initial observations are reported in Banerjee & Ashok (2011) while a fuller study is in preparation.

Prompt broad-band interferometric observations were secured with CLASSIC, a two-telescope high sensitivity system located at CHARA on Mt. Wilson (ten Brummelaar et al. 2005). Despite the faintness and low declination of the source, observations in the K-band were obtained at t=2.92d (K=6.4, from Mt Abu observations) and t=13.93d (K=5.7). The log of the observations is presented in Table 1 and the data in Fig.2.

Several interferometric observations at medium spectral resolution (R=1500) across the Brγ line were obtained with AMBER, a 3-telescope combiner located at the VLTI (Petrov et al. 2007). The first observations were performed with the 1.8m Auxiliary Telescopes (ATs) at t=8.81d, when the source was below the interferometric sensitivity limit of AMBER (K=5.7), but a useful spectrum was obtained. The second and third measurements, obtained with the 8.2m Unit Telescopes (UTs) at t=28.76 (K=4.9) and t=35.77d (K=5), provided good quality dispersed visibilities, closure and differential phases (see Fig.5). Unfortunately, the calibrator measurement for the last date is of poor quality preventing any reliable calibration of the absolute visibility.

Imaging broad-band interferometric observations were obtained at t=12.81d (H=6) with the PIONIER visitor instrument (Berger et al. 2010; Le Bouquin et al. 2011). These observations provided the simultaneous measurement of 6 absolutely calibrated visibilities and 4 closure-phases in the H-band, therefore allowing the study of the spatial morphology of the near-infrared emission. A critical second observation was obtained at t=48.74d (H=6), again with the ATs (Fig.3).

3. Analysis

The absolute visibility measurements were fitted with simple geometrical models using the LITpro software (Tallon-Bosc et al. 2008, JMMC). The results are shown in Table 2. A simple uniform disk (UD) model, i.e. a circular disk of uniform brightness in the plane of the sky, was fitted to the measurements for the early observations. For later observations, a two component model consisting in an unresolved component, and a co-centered form disk (UD) model, i.e. a circular disk of uniform brightness, was fitted to the measurements for the early observations. For later observations, a two component model consisting in an unresolved component, and a co-centered form disk (UD) model, i.e. a circular disk of uniform brightness, was fitted to the measurements for the early observations.
Table 2. Analysis of the V^2 using geometrical models.

Instrument	Spectral Band	t-t_0	Single component model	Double components model		
		day	UD diameter [mas]	Unres. Flux [%]	UD Flux [%]	UD diam. [mas]
CHARA/CLASSIC	broad K	2.92	1.12 ±0.2	-	-	-
VLTI/PIONIER	broad H	12.81	0.6±0.1	-	-	-
CHARA/CLASSIC	broad K	13.93	1.12±0.14	-	-	-
VLTI/AMBER	2.1±0.05μm	28.76	2.58±0.3	65±12	35±8	7.3±0.3
VLTI/PIONIER	broad H	48.74	2.23±0.1	83±9	17±2	8.5±0.2

Fig. 3. H-band interferometric visibilities obtained with PIONIER at t=12.81 (open red) and t=48.74 (filled green). The corresponding uv-plane is displayed in the subpanel.

(t=12.81d) provided a H-band UD diameter significantly smaller than the CLASSIC K band measurements, even taking into account the small time difference between the two measurements. This effect cannot be attributed to emission lines seen at these dates, that contribute less than 10-15% of the flux in the H band and less than 5% in the K band. A large scale component with a rising flux contribution in the K band may account for the observations, and is consistent with a H-K flux difference of 0.33 mag that is observed consistently during the event. Assuming a two component model, with a fixed contribution of 70±10% from a ‘stellar’ source with a diameter of 0.6mas, the extended K-band source should have a diameter larger than 1.5-2mas, and therefore be almost fully resolved by CLASSIC. Assuming a distance of D=3.5±1pc from Schaefer et al. (2010), that may be a lower limit (Shore et al. 2011), the expansion velocity inferred from such an extended component is about 5000 km s^{-1}, while the H-band core expansion is estimated to be ∼100 km s^{-1} (Fig.4).

Interestingly, the FWHM of the Brγ line measured from the AMBER spectrum at t=8.81d is 590 km s^{-1}, i.e. is consistent with our hypothesis of the expanding extended component (Fig.5).

Then follows a second epoch during which AMBER interferometric data were obtained on two dates, yet providing calibrated visibilities only at t=28.76d. A single UD does not account well for the observed visibilities at t=28.76d (reduced χ^2=35), the two component model provides a better fit to the data (χ^2=5). This gives an upper limit for the expansion of the extended continuum component of 700 km s^{-1}. This is in contrast with the width of the Bry line, for which we measured a FWHM of 1050±50 km s^{-1}. Furthermore, the Doppler velocity associated with the P-Cygni absorption in the line is found to be -1450±100 km s^{-1} (Fig.5). The Bry line-forming region should therefore expand much faster, and a large visibility drop should be measured through the Bry line, as seen for RS Oph (Chesneau et al. 2007). However, the dispersed Bry visibilities are only slightly lower than the nearby continuum, implying a moderate diameter increase of less than 10%. One week later, the visibilities dropped in the line indicating a large expansion of the Bry line-forming region (taking into account the 25% increase of the line flux). At that time the line FWHM was measured to be 1600±50 km s^{-1} and the P-Cygni absorption indicated a wind velocity of 1800±100 km s^{-1}. The differential phases show a complex structured signal that can be described by 2 opposite S-shaped signals, with variations related to the baseline lengths and P.A. dependency. The pattern is symmetrical about the line center, with the width and amplitude of the signal increasing between the two dates, although the amplitude never went beyond 10° (again by contrast with what was observed for RS Oph).

The last observations, performed at t=48.74d with PIONIER, bring complementary and crucial information, owing to the larger uv coverage involved. The H band source is now well resolved and departs from a simple model. A good fit (χ^2 = 1.1) is reached using the two component model (Table 2). The extended component estimated expansion velocity in the plane of the sky is lower than 700 km s^{-1}. The closure phases do not exceed 2.5°. Moreover using a flattened structure for the extended component does not improve the fit and constrains the aspect ratio to 1±0.07. This implies that the complex yet weak phase signal seen by AMBER originates from a source with a predominantly symmetrical appearance.

Fig. 4. Result of the Uniform Disk (UD) estimates from the continuum V^2 measurements from the various interferometers. Before t=20d, the source size is estimated using a single UD in the H and K bands (PIONIER: orange triangle; CLASSIC: red diamonds). The last points indicate the extended source in the double component model (AMBER: red square; PIONIER: orange triangle)
Chesneau et al.: The 2011 outburst of the recurrent nova T Pyx.

4. A face-on bipolar event

The heterogeneous data set originating from different instruments provides intriguing data, and is unique in view of the complementary constraints provided for the analysis. The interpretation of these data can be divided into several key temporal steps.

- CLASSIC and PIONIER data obtained at $t=2.92d$, $12.81d$ and $t=13.93d$ show an extended H and K band source. The fact that T Pyx is resolved so early is intriguing. An hypothesis might be a light echo witnessing a close-by circumbinary environment, adding incoherent flux to the measurement. The expansion rate is then low between the first and second measurements, and a striking difference is observed between the H and the K band inferred diameters. This suggests an advanced decoupling between a shrinking optically thick core and an expanding free-free emitting optically thin envelope.

- The AMBER data obtained at $t=28.76d$ provide evidence that the Brγ line forming region projected onto the sky is formed close to the expanding continuum, while being more extended at $t=35.77d$. The Doppler velocity accelerated from 1300 km s$^{-1}$ to 1600 km s$^{-1}$ in the time interval. A striking differential phase pattern is observed.

Fig. 5. AMBER data. Top: comparison between the Brγ line at $t=8.81$ (blue curve), $t=28.76d$ (red curve) and $t=35.77d$ (green curve). Bottom: Above - differential visibility comparison between $t=28.76d$ and $t=35.77d$ (scaled to the continuum V^2 at $t=28.76$). Below: same with differential phases. The phases are compared with the phases from the model (dashed line, $\chi^2_r=1.1$ and 1.4, respectively).
The PIONIER dataset secured at $t=48.74$d is critical for establishing the two component nature of the emission, consisting in an unresolved stellar source and an extended region whose appearance is circular and symmetric within error bars.

A face-on bipolar event could account for the ensemble of information described above, in accordance with the finding of a low inclination for the system (Uthas et al. 2010). In particular, the differential phase pattern can be linked to the geometry and kinematics of the ejecta. We developed a ‘toy’ model that provides a good match to the observations. Given two ad-hoc three-dimensional distributions, one for the ‘emission’ of the ejecta and one for the velocity field, we reconstructed intensity maps in narrow spectral bands in the emission line and then computed the corresponding visibilities and differential phases. The intensity map is created considering that the matter was ejected during the corresponding visibilities and differential phases at the two epochs and ϕ. Consequently, the geometry is directly related to kinematics of the ejecta. We used the following radial expansion law:

$$v_r(\theta) = v_{\text{pole}} + \left(v_{\text{eq}} - v_{\text{pole}}\right) \sin \theta$$

(1)

where θ is the colatitude, and v_{pole} and v_{eq} are the polar and equatorial radial velocities, respectively.

We also considered an emission decreasing according to a power law of the distance. At a given epoch t the 3D intensity distribution is proportional to:

$$I(r, \theta, \phi) \propto \frac{1}{r^\alpha} \exp \left[-\frac{(v_1 - r)^2}{2\sigma_f^2}\right]$$

Using this model we were able to fit the Bry differential visibilities and phases, as well as the line profile for the two epochs. The parameters of the best model are: $i=15^\circ$, P.A. of the polar axis of 110°, $\alpha=2$ and the velocities for the two epochs:

- $v_{\text{pole}}=1200$ km s$^{-1}$ and $v_{\text{eq}}=600$ km s$^{-1}$ at $t=28.76$d
- $v_{\text{pole}}=1600$ km s$^{-1}$ and $v_{\text{eq}}=700$ km s$^{-1}$ at $t=35.77$d

The fit of the differential phases at the two epochs and the model images are shown in Fig 5 and the model in Fig 6. The polar and equatorial velocities are in good agreement with the Doppler and sky plane velocities estimated in Sect.3. Furthermore, the P.A. of the equatorial plane overdensity is oriented in a direction similar to the P.A. of the faint X-ray nebula (Balman 2010).

The face-on bipolar nebula allows one to better understand the curious nebula scrutinized with HST (Schaefer et al. 2010; Shara et al. 1997, 1989). The knots are concentrated in a ring (3.2-6$''$), expanding radially with a velocity in the restricted range of 500-700 km s$^{-1}$, and with a mean radial velocity of about 500 km s$^{-1}$ (O’Brien & Cohen 1998). Deciphering between a projected sphere and a bipolar structure producing a dense, face-on ring is difficult, considering that radial velocity measurements of individual clumps are missing.

Some recent examples suggest that bipolarity in the ejecta of classical recurrent novae may be relatively frequent: RS Oph (Ribeiro et al. 2009; Bode et al. 2007; Chesneau et al. 2007), V445 Pup (Woudt et al. 2009), V1280 Sco (Chesneau et al. 2008, Chesneau et al., in prep.) or HR Del (Harman & O’Brien 2003).

A significant difference though exists between the TPX and RS Oph environments: the lack of material around TPX, witnessed for instance by the lack of hard X-rays (Kuulkers et al. 2011), leads us to favor a bipolarity induced by a process internal to the system, whether by the common envelope interaction with the companion, since the development of the event is relatively slow, or by invoking an intrinsically bipolar ejection related to a spun-up central star (Porter et al. 1998; Lloyd et al. 1997).

Acknowledgements. The CHARA Array is funded by the National Science Foundation through NSF grant AST-008253, by Georgia State University, the W. M. Keck Foundation, the Packard Foundation, and the NASA Exoplanet Science Institute. Research at the Physical Research Laboratory is funded by the Dept. of Space, Govt. of India. STR acknowledges partial support from NASA grant NNH09AK731.

References
Balman, Ş. 2010, MNRAS, 404, L26
Banoose, D. P. K. & Ashok, N. M. 2011, The Astronomer’s Telegram, 3297, 1
Berger, J.-P., Zins, G., Lazareff, B., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7734
Bode, M. F., Harman, D. J., O’Brien, T. J., et al. 2007, ApJL, 665, L63
Bonneau, D., Clauss, J.-M., Delfosse, X., et al. 2006, A&A, 456, 789
Chesneau, O., Banerjee, D. P. K., Millour, F., et al. 2008, A&A, 487, 223
Chesneau, O., Nardetto, N., Millour, F., et al. 2007, A&A, 464, 119
Harman, D. J. & O’Brien, T. J. 2003, MNRAS, 344, 1219
Kuulkers, E., Page, K. L., Ness, J.-U., et al. 2011, The Astronomer’s Telegram, 3285, 1
Le Bouquin, J.-B., Berger, J.-P., Zins, G., et al. 2011, submitted in A&A
Lloyd, H. M., O’Brien, T. J., & Bode, M. F. 1997, MNRAS, 284, 137
O’Brien, T. J. & Cohen, J. G. 1998, ApJL, 498, L59+
Petrov, R. G., Malbet, F., Weigelt, G., et al. 2007, A&A, 464, 1
Porter, J. M., O’Brien, T. J., & Bode, M. F. 1998, MNRAS, 296, 943
Ribeiro, V. A. R. M., Bode, M. F., Darnley, M. J., et al. 2009, ApJ, 703, 1955
Schaefer, B. E., Pagnotta, A., & Shara, M. M. 2010, ApJ, 708, 381
Shara, M. M., Moffat, A. F. J., Williams, R. E., & Cohen, J. G. 1989, ApJ, 337, 720
Sharon, S., Zurek, D. R., Williams, R. E., et al. 1997, AJ, 114, 258
Shore, S. N., Augusteijn, T., Ederoclite, A., & Uthas, H. 2011, A&A, 533, L8+
Tallon-Bosco, I., Tallon, M., Thébault, E., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7013
Uten Brummelaar, T. A., McAlister, H. A., Ridgway, S. T., et al. 2005, ApJ, 628, 853
Uthas, H., Knigge, C., & Steeghs, D. 2010, MNRAS, 409, 237
Waagan, E., Linnott, M., Bolzoni, S., et al. 2011, Central Bureau Electronic Telegrams, 2700, 1
Woudt, P. A., Steeghs, D., Karovska, M., et al. 2009, ApJ, 706, 738

Fig. 6. Bry Bipolar-flow model (without central source) seen at $i=90^\circ$ (right) and $i=10^\circ$ (left, the best model) and P.A.=110° (best model).