1. Introduction

Blueprints are a common generalization of commutative (semi)rings and monoids. The associated geometric objects, blue schemes, are therefore a common generalization of usual scheme theory and \mathbb{F}_1-geometry (as considered by Kato [5], Deitmar [3] and Connes–Consani [2]). The possibility of forming semiring schemes allows us to talk about idempotent schemes and tropical schemes (cf. [11]). All this is worked out in [9].

It is known, though not covered in literature yet, that the Proj-construction from usual algebraic geometry has an analogue in \mathbb{F}_1-geometry (after Kato, Deitmar and Connes–Consani). In this note we describe a generalization of this to blueprints. Privately, Koen Thas has announced a treatment of Proj for monoidal schemes (see [13]).

We follow the notations and conventions of [10]. Namely, all blueprints that appear in this note are proper and with a zero. We remark that the following constructions can be carried out for the more general notion of a blueprint as considered in [9]; the reason that we restrict to proper blueprints with a zero is that this allows us to adopt a notation that is common in \mathbb{F}_1-geometry.

Namely, we denote by A^n_B the (blue) affine n-space $\text{Spec}(B[T_1,...,T_n])$ over a blueprint B. In case of a ring, this does not equal the usual affine n-space since $B[T_1,...,T_n]$ is not closed under addition. Therefore, we denote the usual affine
n-space over a ring B by $\mathbb{A}^n_B = \text{Spec}(B[T_1, \ldots, T_n]^+)$. Similarly, we use a superscript “+” for the usual projective space \mathbb{P}^n_B and the usual Grassmannian $\text{Gr}(k, n)_B^+$ over a ring B.

2. Graded blueprints and Proj

Let B be a blueprint and M a subset of B. We say that M is additively closed in B if for all additive relations $b = \sum a_i$ with $a_i \in M$ also b is an element of M. Note that, in particular, 0 is an element of M. A graded blueprint is a blueprint B together with additively closed subsets B_i for $i \in \mathbb{N}$ such that for all $i, j \in \mathbb{N}$ and $a \in B_i, b \in B_j$, the product ab is an element of B_{i+j} and such that for every $b \in B$, there is a unique finite subset I of \mathbb{N} and unique non-zero elements $a_i \in B_i$ for every $i \in I$ such that $b = \sum a_i$. An element of $\bigcup_{i \geq 0} B_i$ is called homogeneous. If $a \in B_i$ is non-zero, then we say, more specifically, that a is homogeneous of degree i.

We collect some immediate facts for the graded blueprint B as above. The subset B_0 is multiplicatively closed, i.e. B_0 can be seen as a subblueprint of B. The subblueprint B_0 equals B if and only if for all $i > 0$, $B_i = \{0\}$. In this case we say that B is trivially graded. By the uniqueness of the decomposition into homogeneous elements, we have $B_i \cap B_j = \{0\}$ for $i \neq j$.

This means that the union $\bigcup_{i \geq 0} B_i$ has the structure of a wedge product $\bigvee_{i \geq 0} B_i$. Since $\bigvee_{i \geq 0} B_i$ is multiplicatively closed, it can be seen as a subblueprint of B. We define $B_{\text{hom}} = \bigvee_{i \geq 0} B_i$ and call the subblueprint B_{hom} the homogeneous part of B.

Let S be a multiplicitive subset of B. If b/s is an element of the localization $S^{-1}B$ where f is homogeneous of degree i and s is homogeneous of degree j, then we say that b/s is a homogeneous element of degree $i - j$. We define $S^{-1}B_0$ as the subet of homogeneous elements of degree 0. It is multiplicatively closed, and inherits thus a subblueprint structure from $S^{-1}B$. If S is the complement of a prime ideal p, then we write $B_{(p)}$ for the subblueprint $(B_{(p)})_0$ of homogeneous elements of degree 0 in B_p.

An ideal I of a graded blueprint B is called homogeneous if it is generated by homogeneous elements, i.e. if for every $c \in I$, there are homogeneous elements $p_i, q_j \in I$ and elements $a_i, b_j \in B$ and an additive relation $\sum a_ip_i + c = \sum b_jq_j$ in B.

Let B be a graded blueprint. Then we define Proj B as the set of all homogeneous prime ideals p of B that do not contain $B_0^+ = \bigvee_{i \geq 0} B_i$. The set $X = \text{Proj } B$ comes together with the topology that is defined by the basis

$$U_h = \{p \in X | h \notin p\}$$

where h ranges through B_{hom} and with a subset sheaf O_X that is the sheafification of the association $U_h \mapsto B[h^{-1}]_0$ where $B[h^{-1}]$ is the localization of B at $S = \{h^i | i \geq 0\}$.

Note that if B is a ring, the above definitions yield the usual construction of Proj B for graded rings. In complete analogy to the case of graded rings, one proves the following theorem:

Theorem 1. The space $X = \text{Proj } B$ together with O_X is a blue scheme. The stalk at a point $p \in \text{Proj } B$ is $O_{X,p} = B_{(p)}$. If $h \in B_{\text{hom}}^+$, then $U_h \cong \text{Spec } B[h^{-1}]_0$. The inclusions $B_0 \hookrightarrow B[h^{-1}]_0$ yield morphisms $\text{Spec } B[h^{-1}]_0 \to \text{Spec } B_0$, which glue to a structural morphism $\text{Proj } B \to \text{Spec } B_0$. \hfill \Box

If B is a graded blueprint, then the associated semiring B^+ inherits a grading. Namely, let $B_{\text{hom}} = \bigvee_{i \geq 0} B_i$ the homogeneous part of B. Then we can define B^+_0 as the additive closure of B_0 in B^+, i.e. as the set of all $b \in B$ such that there is an additive relation of the form $b = \sum a_i$ in B with $a_i \in B_i$. Then $\bigvee B^+_0$ defines a grading of B^+. Similarly, the grading of B induces a grading on a tensor product $B \otimes_D C$ with respect to blueprint morphisms $C \to B$ and $C \to D$ under the assumption that the image of C is contained in B_0. Consequently, a grading of B implies a grading of $B_{\text{inv}} = B \otimes_{\mathbb{F}_1} [\mathbb{F}_1^+]$ (see [9, Lemma 1.4] and [10, p. 11]) and of the ring $B^+_\mathbb{Z} = B_{\text{inv}}^+$. Analogously, if both B and D are graded and the image of C lies in both B_0 and D_0, then $B \otimes_D C$ inherits a grading from the gradings of B and D.

3. Projective space

The functor Proj allows the definition of the projective space \mathbb{P}^n_B over a blueprint B. Namely, the free blueprint $C = B[T_0, \ldots, T_n]$ over B comes together with a natural grading (cf. [9, Section 1.12] for the definition of free blueprints). Namely, C_i consists of all monomials $bT_0^{e_0} \cdots T_n^{e_n}$ such that $e_0 + \cdots + e_n = i$ where $b \in B$. Note that $C_0 = B$ and $C_0 = C$.

The projective space \mathbb{P}^n_B is defined as $\text{Proj } B[T_0, \ldots, T_n]$. It comes together with a structure morphism $\mathbb{P}^n_B \to \text{Spec } B$.

In case of $B = \mathbb{F}_1^+$, the projective space $\mathbb{P}^n_{\mathbb{F}_1^+}$ is the monoidal scheme that is known from \mathbb{F}_1-geometry (see [4], [1, Section 3.1.4]) and [10, Ex. 1.6]). The topological space of $\mathbb{P}^n_{\mathbb{F}_1^+}$ is finite. Its points correspond to the homogeneous prime ideals $(S_i)_{i \leq n} \subset \mathbb{F}_1^+[S_0, \ldots, S_n]$ where I ranges through all proper subsets of $\{0, \ldots, n\}$.

In case of a ring B, the projective space \mathbb{P}^n_B does not coincide with the usual projective space since the free blueprint $B[S_0, \ldots, S_n]$ is not a ring, but merely the blueprint of all monomials of the form $bS_0^{e_0} \cdots S_n^{e_n}$ with $b \in B$. However, the associated scheme $\mathbb{P}^n_B = (\mathbb{P}^n_B)^+$ coincides with the usual projective space over B, which equals $\text{Proj } B[S_0, \ldots, S_n]^+$.

4. Closed subschemes

Let X be a scheme of finite type. By an \mathbb{F}_1-model of X we mean a blue scheme X of finite type such that $X^+_\mathbb{Z}$ is isomorphic to X. Since a finitely generated \mathbb{Z}-algebra is, by definition, generated by a finitely generated multiplicative
subset as a \(\mathbb{Z} \)-module, every scheme of finite type has an \(F_1 \)-model. It is, on the contrary, true that a scheme of finite type possesses a large number of \(F_1 \)-models.

Given a scheme \(X \) with an \(F_1 \)-model \(X \), we can associate to every closed subscheme \(Y \) of \(X \) the following closed subscheme \(Y \) of \(X \), which is an \(F_1 \)-model of \(Y \). In case that \(X = \text{Spec } B \) is the spectrum of a blueprint \(B = A//R \), and thus \(X \sim \text{Spec } B^+ \) is an affine scheme, we can define \(Y \) as \(\text{Spec } C \) for \(C = A//R(Y) \) where \(R(Y) \) is the pre-addition that contains \(\sum a_i = \sum b_j \) whenever \(\sum a_i = \sum b_j \) holds in the coordinate ring \(\Gamma(Y) \) of \(Y \). This is a process that we used already in [10, Section 3].

Since localizations commute with additive closures, i.e. \((S^{-1}B)^+ = S^{-1}(B^+) \) where \(S \) is a multiplicative subset of \(B \), the above process is compatible with the restriction to affine opens \(U \subset X \). This means that given \(U = \text{Spec } (S^{-1}B) \), which is an \(F_1 \)-model for \(X \), \(U \) is an \(F_1 \)-model of \(Y \) that is associated to the closed subscheme \(Y' = X' \times_X Y \) of \(X' \) by the above process is the spectrum of the blueprint \(S^{-1}C \). Consequently, we can associate with every closed subscheme \(Y \) of a scheme \(X \) with an \(F_1 \)-model \(X \) a closed subscheme \(Y \) of \(X \), which is an \(F_1 \)-model of \(Y \); namely, we apply the above process to all affine open subschemes of \(X \) and glue them together, which is possible since additive closures commute with localizations.

In case of a projective variety, i.e. a closed subscheme \(Y \) of a projective space \(+\mathbb{P}_2^n \), we derive the following description of the associated \(F_1 \)-model \(Y \) in \(\mathbb{F}_1 \) by homogeneous coordinate rings. Let \(C \) be the homogeneous coordinate ring of \(Y \), which is a quotient of \(\mathbb{Z}[S_0, \ldots, S_n]^{+} \) by a homogeneous ideal \(I \). Let \(R \) be the pre-addition on \(\mathbb{F}_1[\mathbb{Z}[S_0, \ldots, S_n]] \) that consists of all relations \(\sum a_i = \sum b_j \) such that \(\sum a_i = \sum b_j \) in \(C \). Then \(B = \mathbb{F}_1[\mathbb{Z}[S_0, \ldots, S_n]]//R \) inherits a grading from \(\mathbb{F}_1[\mathbb{Z}[S_0, \ldots, S_n]] \) by defining \(B_i \) as the image of \(\mathbb{F}_1[\mathbb{Z}[S_0, \ldots, S_n]]_i \) in \(B \). Note that \(B \subset C \) and that the sets \(B_i \) equal the intersections \(B_i = C_i \cap B \) for \(i \geq 0 \) where \(C_i \) is the homogeneous part of degree \(i \) of \(C \). Then the \(F_1 \)-model \(Y \) of \(Y \) equals \(\text{Proj } B \).

5. \(F_1 \)-models for Grassmannians

One of the simplest examples of projective varieties that is not toric is the Grassmannian \(\text{Gr}(2, 4) \). The problem of finding \(F_1 \)-models for Grassmannians was originally posed by Soulé in [12], and solved by the authors by obtaining a torification from the Schubert cell decomposition (cf. [8,7]). In this note, we present Section 3.

Let \(\text{Gr}(2, 4) \) be the homogeneous coordinate ring of \(\text{Gr}(2, 4) \), and let \(\text{Proj } \mathbb{F}_1[\text{Gr}(2, 4)] \) be the image of \(\mathbb{F}_1[\mathbb{Z}[S_0, \ldots, S_n]]_i \) in \(\mathbb{F}_1[\mathbb{Z}[S_0, \ldots, S_n]]//R \).

Define the blueprint \(\mathcal{O}_{\mathbb{F}_1}(\text{Gr}(2, 4)) = \mathbb{F}_1[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}]/R \) where the congruence \(R \) is generated by the Plücker relation \(x_{12}x_{34} + x_{14}x_{23} = x_{13}x_{24} \) (the signs have been picked to ensure that the totally positive part of the Grassmannian is preserved, cf. [6]). Since \(R \) is generated by a homogeneous relation, \(\mathcal{O}_{\mathbb{F}_1}(\text{Gr}(2, 4)) \) inherits a grading from the canonical morphism

\[
\pi : \mathbb{F}_1[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}] \longrightarrow \mathbb{F}_1[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}]/R.
\]

Let \(\text{Gr}(2, 4)_{\mathbb{F}_1} = \text{Proj } \mathcal{O}_{\mathbb{F}_1}(\text{Gr}(2, 4)) \). The base extension \(\text{Gr}(2, 4)^+ \) is the usual Grassmannian, and \(\pi \) defines a closed embedding of \(\text{Gr}(2, 4)_{\mathbb{F}_1} \) into \(\mathbb{P}_{2, 4}^+ \), which extends to the classical Plücker embedding \(\text{Gr}(2, 4)_C^+ \subset \mathbb{P}_{2, 4}^+ \).

Homogeneous prime ideals in \(\mathcal{O}_{\mathbb{F}_1}(\text{Gr}(2, 4)) \) are described by their generators as the proper subsets \(I \subset \{x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}\} \) such that \(I \) is either contained in one of the sets \(\{x_{12}, x_{34}\}, \{x_{14}, x_{23}\}, \{x_{13}, x_{24}\}, \) or otherwise \(I \) has a non-empty intersection with all three of them. In other words, \(I \) cannot contain elements in two of the above sets without also containing an element of the third one. \(\text{Gr}(2, 4)_{\mathbb{F}_1} \) is depicted in Fig. 1. It consists of \(6 + 12 + 11 + 6 + 1 = 36 \) prime ideals of ranks

![Fig. 1](https://example.com/fig1.png)
0, 1, 2, 3 and 4, respectively (cf. [10, Def. 2.3] for the definition of rank), thus resulting in a model essentially different to the one presented in [8], which had 35 points corresponding to the coefficients of $N_{\text{Gr}(2,4)}(q) = 6 + 12(q - 1) + 11(q - 1)^2 + 5(q - 1)^3 + 1(q - 1)^4$. In spite of arising from different constructions, both \mathbb{F}_1-models for $\text{Gr}(2,4)$ have $6 = \binom{4}{2}$ closed points, supporting the naive combinatorial interpretation of $\text{Gr}(2,4)_{\mathbb{F}_1}$. These six points correspond to the \mathbb{F}_1-rational Tits points of $\text{Gr}(2,4)_{\mathbb{F}_1}$, which reflect the naive notion of \mathbb{F}_1-rational points of an \mathbb{F}_1-scheme (cf. [10, Section 2.2]).

As in the classical setting, the Grassmannian $\text{Gr}(2,4)_{\mathbb{F}_1}$ does admit a covering by six \mathbb{F}_1-models of affine 4-space, which correspond to the open subsets of $\text{Gr}(2,4)_{\mathbb{F}_1}$ where one of the generators is non-zero. However, these \mathbb{F}_1-models of affine 4-space are not the standard model $A^4_{\mathbb{F}_1} = \text{Spec}(\mathbb{F}_1[a, b, c, d])$, but the “$2 \times 2$-matrices” $M_{2,\mathbb{F}_1} = \text{Spec}(\mathbb{F}_1[a, b, c, d, D]/\langle ad = bc + D \rangle)$ in case that one of x_{12}, x_{34}, x_{14} or x_{23} is non-zero, and the “twisted 2×2-matrices” $M^*_1,\mathbb{F}_1 = \text{Spec}(\mathbb{F}_1[a, b, c, d, D]/\langle ad + bc = D \rangle)$ in case that one of x_{13} or x_{24} is non-zero.

References

[1] C. Chu, O. Lorscheid, R. Santhanam, Sheaves and K-theory for \mathbb{F}_1-schemes, Adv. Math. 229 (4) (2012) 2239–2286.
[2] A. Connes, C. Consani, Characteristic 1, entropy and the absolute point, preprint, arXiv:0911.3537v1, 2009.
[3] A. Deitmar, Schemes over \mathbb{F}_1, in: Number Fields and Function Fields—Two Parallel Worlds, in: Progr. Math., vol. 239, Birkhäuser Boston, Boston, MA, 2005, pp. 87–100.
[4] A. Deitmar, \mathbb{F}_1-schemes and toric varieties, Beiträge Algebra Geom. 49 (2) (2008) 517–525.
[5] K. Kato, Toric singularities, Amer. J. Math. 116 (5) (1994) 1073–1099.
[6] J. López Peña, \mathbb{F}_1-models for cluster algebras and total positivity, in preparation.
[7] J. López Peña, O. Lorscheid, Mapping \mathbb{F}_1-land an overview of geometries over the field with one element, in: Noncommutative Geometry, Arithmetic and Related Topics, Johns Hopkins University Press, 2011, pp. 241–265.
[8] J. López Peña, O. Lorscheid, Torified varieties and their geometries over \mathbb{F}_1, Math. Z. 267 (3–4) (2011) 605–643.
[9] O. Lorscheid, The geometry of blueprints. Part I: Algebraic background and scheme theory, Adv. Math. 229 (3) (2012) 1804–1846.
[10] O. Lorscheid, The geometry of blueprints. Part II: Tits–Weyl models of algebraic groups, preprint, arXiv:1201.1324, 2012.
[11] G. Mikhalkin, Tropical geometry, unpublished notes, 2010.
[12] C. Sou lé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (1) (2004) 217–244, 312.
[13] K. Thas, Notes on \mathbb{F}_1, I. Combinatorics of D_2-schemes and \mathbb{F}_1-geometry, in preparation.