On total edge irregularity strength of tadpole chain graph \(T_r(6,n) \)

E Nurdini, I Rosyida, and Mulyono
Mathematics Department, Universitas Negeri Semarang, Semarang, Indonesia

E-mail: eka.nurdini51@gmail.com; iisisnaini@gmail.com; mulyono.mat@mail.unnes.ac.id

Abstract. Given a graph \(G(V,E) \) with a non-empty set of vertices \(V \) and a set of edges \(E \). A total labelling \(f: V \cup E \rightarrow \{1,2, \ldots,k\} \) is called an edge irregular total labeling if the weight of every edge is distinct. The weight of an edge, under the total labeling \(f \), is the sum of label of edge and all labels of vertices that are incident to \(e \). In other words, \(wt(xy) = f(xy) + f(x) + f(y) \). The total edge irregularity strength of \(G \), denoted by \(tes(G) \) is the minimum \(k \) used to label graph \(G \) with the edge irregular total labeling. A tadpole chain graph of length \(r \), denoted as \(T_r(6,n) \), is a chain graph that consists of tadpole graph \(T(6,n) \) on each block. In this paper, we get \(tes(T_r(6,n)) = \left\lceil \frac{(6n^2r+2)}{3} \right\rceil \) and construct an algorithm to find it.

1. Introduction

Given a simple, connected and undirected graph \(G = (V(G),E(G)) \). A labelling of \(G \) is a function that assigns a set of elements of \(G \) into a set of positive integers [14]. A labeling \(f \) on \(G \) is said to be a total labeling if its domain is union \(V(G) \cup E(G) \). Bača et al. [3] defined an edge irregular total \(\lambda \)-labeling as a function \(f : V(G) \cup E(G) \rightarrow \{1,2, \ldots,k\} \) which has the weights \(wt(uv) \neq wt(xy) \) for every two different edges \(uv \) and \(xy \), where \(wt(e) = wt(uv) = f(u) + f(uv) + f(v) \). Further, a total edge irregularity strength of \(G \), symbolized by \(tes(G) \), is a minimum number \(k \) in edge irregular total \(k \)-labeling.

The bounds for \(tes \) of any graph \(G \) was given by Bača et al. [3] as the following:

\[
\left\lceil \frac{|E(G)|+2}{3} \right\rceil \leq tes(G) \leq |E|.
\]

(1)

Meanwhile, Ivančo and Jendrol [8] found a conjecture for \(tes \) of graph \(G \):

\[
tes(G) = \max \left\{ \left\lceil \frac{|E(G)|+2}{3} \right\rceil, \left\lceil \frac{\Delta(G)+1}{2} \right\rceil \right\}
\]

(2)

where \(\Delta(G) \) is a maximum degree of all vertices of \(G \).

The proof of Conjecture (2) has been revealed by some researchers for some special graphs, such as: Jendrol et al. [9] verified \(tes \) of complete and complete bipartite graphs; Ivančo and Jendrol [8] gave \(tes \) of any tree. Furthermore, \(tes \) of some graph classes has been investigated by many researches as well as presented in Gallian [4]. Mushayt and Ahmad investigated at \(tes \) of hexagonal grid graphs [10]. Indriati et al. ([6],[7]) found \(tes \) of generalized helm and generalized web graphs. Nurdini and Rosyida [11] found \(tes \) of dovetail graph with some pendant vertices and related graph. Rosyida and Indriati [13] provided \(tes \) of \(C_3 \) and \(C_4 \) cactus chain graphs with pendant vertices. The readers can find more results on \(es \), \(tes \), and \(tvs \) of graphs in [5].

The authors were encouraged by the results in Rosyida et al. [12] that determined \(tvs \) of \(T_r(4,1) \) tadpole chain graph. The authors were also interested to the result in [5] that gave an edge irregularity
strength (es) of cycle chain graphs and results from Ahmad et al. [1] which proposed es of several chain graphs. The problem investigated in this paper is different to the result in [12], [5] and [1]. We verify tes of tadpole chain graph $T_r(6,n)$ and construct an algorithm to find it.

2. Main Results

In the following investigation, we discuss an exact value of the total edge irregularity strength of $T_r(6,n)$ tadpole chain graph as presented in Theorem 2.1. We refer the concept of $T_r(6,n)$ tadpole chain graph from [2] and [12].

Definition 1 A tadpole graph $T_{(k,n)}$, is the graph created by concatenating an edge from any vertex of G_k with a pendant of P_n for integers $k \geq 3$ and $n \geq 1$. The tadpole graph contains $m + n$ vertices and $m + n$ edges.

Definition 2 Given a connected graph $G(V,E)$. A block cut vertex graph of G is a graph in which the vertices are the blocks and cut vertices of G. A chain graph is a graph which contains some blocks B_1, B_2, \ldots, B_r so that each pair of block B_i, B_{i+1} has at most one common cut vertex such that the block cut vertex is a path. A chain graph which each block is tadpole graph is called tadpole chain graph.

In a $T_r(6,n)$ tadpole chain graph, each hexagon has cut vertices at most two, each of two hexagons has one common cut vertex, and a path P_n concatenated in each hexagon. The length of the chain is indicated by the number r on $T_r(6,n)$ tadpole chain graph. The notation $T_r(6,n)$ stands for a $T(6,n)$ tadpole chain graph with length r. The formula for tes of $T_r(6,n)$ is presented in Theorem 2.3.

Theorem 1 Given a tadpole chain graph $T_r(6,n)$ with length r and B_i concatenated in each hexagon. The total edge irregularity strength of $T_r(6,n)$ is

\[\text{tes}(T_r(6,n)) = \left[\frac{(6+n)r+2}{3} \right]. \]

Proof. Tadpole chain graph $T_r(6,n)$ consists of $(6+n)r$ edges. Let $u_{2i-1}, u_{2i}, v_i, x_{2i-1}, x_{2i}$ be vertices located on each hexagon. Let u_{2i-1}, u_{2i} be the two vertices on the top of hexagon for $i = 1, 2, \ldots, r$, let v_i be the cut vertices for $i = 1, 2, \ldots, r$, and x_{2i-1}, x_{2i} be vertices located on the bottom of hexagon for $i = 1, 2, \ldots, 2r$. Let x_{2i-1} be the vertex that concatenated with y_i^n which is the part of y_i for $i = 1, 2, \ldots, r$ and $j = 1, 2, \ldots, n$. The lower bound for tes of the graph $T_r(6,n)$ is as follows [3]:

\[\left[\frac{(6+n)r+2}{3} \right] \leq \text{tes}(T_r(6,n)) \leq (6+n)r. \]

Further, we show the upper bound of tes($T_r(6,n)$) $\leq \left[\frac{(6+n)r+2}{3} \right]$ by constructing a total k-labeling $f : V \cup E \rightarrow \{1, 2, \ldots, k\}$ where $k = \left[\frac{(6+n)r+2}{3} \right]$ as follows.

Case 1. For $n = 3 \ mod \ 3$:

Labels of vertices are defined as the following:

\[f(U_{2i-1}) = f(U_{2i}) = \left[\frac{(6+n)i+2}{3} \right], \quad i = 1, 2, \ldots, r \]

\[f(X_{2i-1}) = f(X_{2i}) = \left[\frac{(6+n)i+2}{3} \right] - 1, \quad i = 1, 2, \ldots, r \]

\[f(V_i) = \left[\frac{(6+n)i+2}{3} \right] - 3, \quad i = 1, 2, \ldots, r \]
\[f(Y'_i) = \frac{(6 + n)i - n + \left(\left\lfloor \frac{i}{3} \right\rfloor - 6 \right)}{3}, i = 1, 2, ..., r; j = 1, 2, ..., n \]

Meanwhile, labels of edges are:

\[f(U_{2i-1}U_{2i}) = \left\lfloor \frac{(6 + n)i + 2}{3} \right\rfloor - 3, i = 1, 2, ..., r \]
\[f(U_{2i-1}V_i) = f(V_iX_{2i-1}) = f(X_{2i-1}X_{2i}) = \left\lfloor \frac{(6 + n)i + 2}{3} \right\rfloor - 2, i = 1, 2, ..., r \]
\[f(U_{2i-2}V_i) = f(V_iX_{2i-2}) = \frac{(6 + n)i - n + 3}{3}, i = 1, 2, ..., r \]
\[f(Y'_iY'^{i+1}_i) = \frac{(6 + n)i - n + \left(\left\lfloor \frac{i+2}{3} \right\rfloor - 6 \right)}{3}, i = 1, 2, ..., r; j = 1, 2, ..., n \]
\[f(X_{2i-1}Y''_i) = \left\lfloor \frac{(6 + n)i - 8}{3} \right\rfloor - 3, i = 1, 2, ..., r \]

Case 2. For \(n \neq 3 \mod 3 \):

Labels of vertices are defined as follows:

\[f(U_{2i-1}) = f(U_{2i}) = \begin{cases}
3, & \text{if } i = 1; n = 2 \\
\left\lfloor \frac{(6 + n)i + 2}{3} \right\rfloor, & i = 1, 2, ..., r
\end{cases} \]
\[f(X_{2i-1}) = \begin{cases}
1, & \text{if } i = 1; n = 1 \\
2, & \text{if } i = 1; n = 2 \\
\left\lfloor \frac{(6 + n)i + 2}{3} \right\rfloor - 1, & i = 1, 2, ..., r
\end{cases} \]
\[f(X_{2i}) = \begin{cases}
2, & \text{if } i = 1; n = 2 \\
\left\lfloor \frac{(6 + n)i + 2}{3} \right\rfloor - 1, & i = 1, 2, ..., r
\end{cases} \]
\[f(V_i) = \begin{cases}
1, & \text{if } i = 1 \text{ and } n = 1 \\
\left\lfloor \frac{(6 + n)i + 2}{3} \right\rfloor - 3, & i = 1, 2, ..., r
\end{cases} \]
\[f(Y'_i) = \left\lfloor \frac{(6 + n)i - n + j - 6}{3} \right\rfloor, i = 1, 2, ..., r; j = 1, 2, ..., n \]

Meanwhile, labels of edges are:
\(f(U_{2i-1}U_{2i}) = \begin{cases}
\frac{(6 + n)i + 2}{3} - 4, & \text{if } ((6 + n)i) \mod 3 = 2, i = 1,2,\ldots,r \\
\frac{(6 + n)i + 2}{3} - 2, & \text{if } ((6 + n)i) \mod 3 = 1, i = 1,2,\ldots,r \\
\frac{(6 + n)i + 2}{3} - 3, & \text{if } ((6 + n)i) \mod 3 = 0, i = 1,2,\ldots,r
\end{cases}\)

\(f(U_{2i-1}V_i) = \begin{cases}
\frac{(6 + n)i + 2}{3} - 3, & \text{if } ((6 + n)i) \mod 3 = 2, i = 1,2,\ldots,r \\
\frac{(6 + n)i + 2}{3} - 1, & \text{if } ((6 + n)i) \mod 3 = 1, i = 1,2,\ldots,r \\
\frac{(6 + n)i + 2}{3} - 2, & \text{if } ((6 + n)i) \mod 3 = 0, i = 1,2,\ldots,r
\end{cases}\)

\(f(V_iX_{2i-1}) = \begin{cases}
\frac{(6 + n)i + 2}{3} - 3, & \text{if } ((6 + n)i) \mod 3 = 2, i = 1,2,\ldots,r \\
\frac{(6 + n)i + 2}{3} - 1, & \text{if } ((6 + n)i) \mod 3 = 1, i = 1,2,\ldots,r \\
\frac{(6 + n)i + 2}{3} - 2, & \text{if } ((6 + n)i) \mod 3 = 0, i = 1,2,\ldots,r
\end{cases}\)

\(f(X_{2i-1}X_{2i}) = \begin{cases}
\frac{(6 + n)i + 2}{3} - 3, & \text{if } ((6 + n)i) \mod 3 = 2, i = 1,2,\ldots,r \\
\frac{(6 + n)i + 2}{3} - 1, & \text{if } ((6 + n)i) \mod 3 = 1, i = 1,2,\ldots,r \\
\frac{(6 + n)i + 2}{3} - 2, & \text{if } ((6 + n)i) \mod 3 = 0, i = 1,2,\ldots,r
\end{cases}\)

\(f(U_{2i-2}V_i) = f(V_iX_{2i-2}) = \begin{cases}
\frac{(6 + n)i - (n - 2)}{3}, & i = 1,2,\ldots,r
\end{cases}\)

\(f(Y_i^jY_{i+1}^j) = \begin{cases}
\frac{(6 + n)i - n + j - 4}{3}, & i = 1,2,\ldots,r; j = 1,2,\ldots,n
1, & i = 1, n = 1,2
\end{cases}\)

\(f(X_{2i-1}Y_i^n) = \begin{cases}
\frac{(6 + n)i - 8}{3}, & i = 1,2,\ldots,r
\end{cases}\)

Since we get the labels of vertices and edges are less than or equal to \(\text{tok} = \left\lceil \frac{(6 + n)r + 2}{3} \right\rceil\), then the labeling \(f\) is \(ak\)-total labeling.

Further, we verify that the weights of edges are distinct under the function \(f\) as follows:

\(wt(U_{2i-1}U_{2i}) = (6 + n)i, i = 1,2,\ldots,r\)
\(wt(U_{2i-1}V_i) = (6 + n)i - 2, i = 1,2,\ldots,r\)
\(wt(V_iX_{2i-1}) = (6 + n)i - 3, i = 1,2,\ldots,r\)
\(wt(X_{2i-1}X_{2i}) = (6 + n)i - 1, i = 1,2,\ldots,r\)
wt(U_{2i-2}V_i) = (6 + n)i + 2, i = 1, 2, \ldots, r
wt(V_i X_{2i-2}) = (6 + n)i + 1, i = 1, 2, \ldots, r
wt(Y_i^i Y_i^{i+1}) = (6 + n)i - n + j - 4, i = 1, 2, \ldots, r, j = 1, 2, \ldots, n
wt(X_{2i-1} Y_i^n) = wt(Y_i^{n-1} Y_i^n) + 1, i = 1, 2, \ldots, r

It is clear that the weights of all edges are distinct and we obtain upper bound:

tes(T_r(6, n)) \leq \left\lfloor \frac{(6 + n)r + 2}{3} \right\rfloor.

Thus, we show that tes of T_r(6, n) as follows:

tes(T_r(6, n)) = \left\lfloor \frac{(6 + n)r + 2}{3} \right\rfloor.

3. Computational results

In this section, we present computational result of tes of T_r(6, n) graph. A computer program by using Matlab R2016a is constructed based on an algorithm in Table 1.

Table 1. Algorithm to determine tes of T_r(6, n) tadpole chain graph.

Command	Description	
1	Input r	% Length of chain graph
2	Input n	% Number of vertices in path Pn
3	for i=1 to r	% assign labels to vertices of G
4	f(U_{2i-1}) = ceil\left(\frac{(6+n)i+2}{3}\right);	f(U_{2i}) = ceil\left(\frac{(6+n)i+2}{3}\right)
5	f(X_{2i-1}) = ceil\left(\frac{(6+n)i+2}{3}\right) - 1;	f(X_{2i}) = ceil\left(\frac{(6+n)i+2}{3}\right) - 1
6		f(V_i) = ceil\left(\frac{(6+n)i+2}{3}\right) - 3
7	for j=1 to n	f(Y_i^j) = \frac{(6 + n)i - n + \left(3\text{ceil}\left(\frac{i}{3}\right) - 6\right)}{3}
8	end	
9	for i=1 to r	% assign labels to edges and determine the weights
10		f(U_{2i-1} U_{2i}) = ceil\left(\frac{(6+n)i+2}{3}\right) - 3;
11		wt(U_{2i-1} U_{2i}) = (6 + n)i;
12		f(U_{2i-1} V_i) = ceil\left(\frac{(6+n)i+2}{3}\right) - 2
13		wt(U_{2i-1} V_i) = (6 + n)i - 2
14		f(V_i X_{2i-1}) = ceil\left(\frac{(6+n)i+2}{3}\right) - 2
15		wt(V_i X_{2i-1}) = (6 + n)i - 3
16		f(X_{2i-1} X_{2i}) = ceil\left(\frac{(6+n)i+2}{3}\right) - 2
17		wt(X_{2i-1} X_{2i}) = (6 + n)i - 1
Commands:

\[f(U_{2i}V_{i+1}) = \frac{(6+n)i-n+3}{3} \]
\[wt(U_{2i}V_{i+1}) = (6+n)i + 2, \]
\[f(V_{i+1}X_{2i}) = \frac{(6+n)i-n+3}{3} \]
\[wt(V_{i+1}X_{2i}) = (6+n)i + 1, \]
\[f(X_{2i-1}V^n_i) = \text{ceil} \left(\frac{(6+n)i-8}{3} \right) - 3 \]
\[(V_i^{j-1}V_i^{j+1}) = \frac{(6+n)i-n + \left(3\text{ceil} \left(\frac{i+2}{3} \right) \right) - 6}{3} \]
\[wt(V_i^{j-1}V_i^{j+1}) = (6+n)i-n+j-4 \]

As a simulation, we give an illustration of the edge irregular total 13-labeling of \(T_4(6,3) \) in Figure 1. The weight of each edge is printed in the red color. By using the algorithm, the labeling output and \(tes \) of \(T_r(6,3) \) from computer program is given in Figure 2.

![Figure 1. The total 13-labeling of \(T_4(6,3) \).](image-url)
Matlab output for determining t_{es} of $T_4(6,3)$ is presented in Figure 2.

Figure 2. The labeling output of total 13-labeling of $T_4(6,3)$ by Matlab.
4. Conclusions
In this paper, we have invented and proved test of tadpole chain graph $T_r(6, n)$. We found that $tes(T_r(6, n)) = \left\lfloor \frac{(6+n)r+2}{3} \right\rfloor$ and an algorithm to find the tes is also constructed. In upcoming work, we will investigate tes of generalized tadpole chain and generalized cactus chain graphs. Moreover, we present an open problem for further research.

Open Problems The total vertex irregularity strength of generalized tadpole chain and generalized cactus chain graphs

Acknowledgment
This paper is supported by Basic Research Grant, Ristekdikti, with contract number 192/SP2H/LT/BRPM2019.

References
[1] Ahmad A, Gupta A, Simanjuntak R 2018 Computing the edge irregularity strengths of chain graphs and the join of two graphs Electronic Journal of Graph Theory and Applications 6(1) 201-07
[2] Arockiamary S T 2016 Total edge irregularity strength of diamond snake and dove IJPAM 109 125-132
[3] Bača M, Jendrol S, Miller M and Ryan J 2007 On irregular total labeling Discrete Math 307 1378-1388
[4] Gallian J A 2017 A dynamic survey of graph labeling The Electronic Journal of Combinatorics 19 #DS6
[5] Imran M, Aslam A, Zafar S and Nazeer W 2017 Further results on edge irregularity strength of graphs Indonesian Journal of Combinatorics 1(2) 82-91
[6] Indriati D, Widodo, Wijayanti I E and Sugeng K A 2013 On the total edge irregularity strength of generalized helm AKCE International Journal of Graphs and Combinatorics 10(2) 147-55
[7] Indriati D, Widodo, Wijayanti I E, Sugeng K A and Baca M 2015 On total edge irregularity strength of generalized web graphs and related graphs Mathematics in Computer Science 9 161-67
[8] Ivančo J and Jendrol S 2006 Total edge irregularity strength of trees Discussiones Math Graph Theory 26 449-456
[9] Jendrol S, Miskuf J and Sotak R 2010 Total edge irregularity strength of complete graphs and complete bipartite graphs Discrete Mathematics 310(3) 400-07
[10] Mushayt O A and Ahmad A 2012 On the total edge irregularity strength of hexagonal grid graphs Australasian Journal of Combinatorics 53 263–271
[11] Nurdin E, Rosyida I 2018 On total edge irregularity strength of dove tail graph with pendant vertices and its subdivision J of Phys: Conference Series 1217 012064
[12] Rosyida I, Mulyono and Indriati D 2019 Determining total vertex irregularity strength of $T_r(4, 1)$ tadpole chain graph and its computation Procedia Computer Science 157 699–706
[13] Rosyida I, Indriati D 2018 On total edge irregularity strength of some cactus chain graphs with pendant vertices J of Phys: Conference Series 1211 012016
[14] Wallis W D 2001 Magic Graphs Birkhauser Boston