Mazur-Ulam theorem for probabilistic 2-normed spaces

Wasfi Shatanawia, Mihai Postolacheb,∗

aDepartment of Mathematics, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan.
bDepartment of Mathematics and Informatics, University Politehnica of Bucharest, Bucharest, 060042, Romania.

Abstract

In this paper we prove the Mazur-Ulam theorem for probabilistic 2-normed spaces. Our study is a natural continuation of that of Cobzas [S. Cobzas, Aequationes Math., 77 (2009) 197–205]. ©2015 All rights reserved.

Keywords: Isometry map, Mazur-Ulam theorem, 2-normed space, linearly dependent.

2010 MSC: 46B20, 46S50, 54E70.

1. Introduction

A mapping \(T \) from a metric space \(X \) into a metric space \(Y \) is called an isometry map if \(T \) satisfies
\[d_Y(T(x), T(y)) = d_X(x, y) \]
for all \(x, y \in X \), where \(d_X(\cdot, \cdot) \) and \(d_Y(\cdot, \cdot) \) denote the metrics in the spaces \(X \) and \(Y \), respectively. The map \(T \) is called affine if \(T \) is linear up to translation.

Mazur and Ulam \cite{11}, proved that every isometry \(T \) from a real normed space \(X \) onto another real normed space \(Y \) is affine, while Baker \cite{5} proved that an isometry map from a real normed linear space \(X \) into a strictly convex real normed linear space \(Y \) is affine.

For related works on this subject, we refer the reader to Aleksandrov \cite{1}, Cobzas \cite{6}, Chu et al. \cite{7, 8, 9}, and Rassias et al. \cite{13, 17, 18}.

Probabilistic metric spaces are spaces on which there is a distance function taking as values distribution functions, the distance between two points \(a \) and \(b \) is a distribution function in the sense of probability theory \(\nu(a, b) \), whose values \(\nu(p, q)(x) \) can be interpreted as the probability that the distance between \(a \) and \(b \) is less than \(x \). The notion of probabilistic metric space was introduced by Menger \cite{12}. The idea of Menger’s was to use distribution functions instead of nonnegative real numbers as values of the metric.

∗Corresponding author
Email addresses: swasfi@hu.edu.jo (Wasfi Shatanawi), mihai@mathem.pub.ro (Mihai Postolache)

Received 2015-05-14
Probabilistic normed spaces were introduced by Šternov in 1963 [19]. New definitions of probabilistic normed spaces were studied by Alsina et al. [2, 3, 4]. It is remarkable that the probabilistic generalization of metric spaces appears to be well adapted for the investigation of quantum particle physics, particularly in connections with both string and ε^∞ theory, which were given and studied by El Naschie [14, 15].

The notion of the probabilistic n-normed space was introduced by A. Poumosleimi and M. Salimi [16], while the notion of probabilistic 2-normed space was introduced by I. Golet [10]. In 2009, S. Cobzas studied the Mazur-Ulam theorem for probabilistic normed spaces [6].

In this paper, we study the Mazur-Ulam theorem for probabilistic 2-normed spaces.

2. Basic Concepts

Denote by \triangle the set of distribution functions, meaning, nondecreasing, left continuous functions $\nu: \mathbb{R} \to [0, 1]$, with $\nu(-\infty) = 0$ and $\nu(\infty) = 1$. Let D be the subclass of \triangle formed by all functions $\nu \in \triangle$ such that

$$\lim_{x \to -\infty} \nu(x) = 0 \text{ and } \lim_{x \to \infty} \nu(x) = 1.$$

The set of distance functions are

$$\triangle^+ = \{ \nu \in \triangle : \nu(0) = 0 \} \quad \text{and} \quad D^+ = D \cap \triangle^+.$$

It follows that for $\nu \in D^+$, we have $\nu(x) = 0$ for all $x \leq 0$. Two important distance functions are

$$\varepsilon_0(x) = \begin{cases}
0 & x \leq 0; \\
1 & x > 1
\end{cases}$$

and

$$\varepsilon_\infty(x) = \begin{cases}
0 & x < \infty; \\
1 & x = \infty
\end{cases}$$

A triangle function T is a binary operation on \triangle^+ that is commutative and associative, nondecreasing in each place and has ε_0 as identity, that is $T(\nu, \varepsilon_0) = \nu$. A t-norm is a continuous binary operation on $[0, 1]$, that is commutative, associative, nondecreasing in each variable and has 1 as identity. The triangle function τ_T associated to a t-norm T is defined by

$$\tau_T(F, G)(x) = \sup \{ T(F(s), G(t)) : s + t = x \}.$$

In this paper we are interested in the definition of probabilistic n-normed spaces, specially in the case of $n = 2$.

Definition 2.1 [16]. Let X be a real linear space with $\dim X \geq n$, let T be a triangle function, and let ν be a mapping from X into D^+. If the following conditions are satisfied:

1. $\nu(x_1, \ldots, x_n) = \varepsilon_0$ if x_1, \ldots, x_n are linearly dependent,
2. $\nu(x_1, \ldots, x_n) \neq \varepsilon_0$ if x_1, \ldots, x_n are linearly independent,
3. $\nu(x_1, \ldots, x_n) = \nu(x_{j1}, \ldots, x_{jn})$ for any permutation (j_1, j_2, \ldots, j_n) of $(1, 2, \ldots, n)$
4. $\nu(\beta x_1, \ldots, x_n) = \nu(x_1, \ldots, x_n) \left(\frac{\beta}{|\beta|} \right)$, for every $s > 0$, and $\beta \neq 0$,
5. $\nu(x_1, \ldots, x_{n-1}, x_n + y) \geq T(\nu(x_1, \ldots, x_{n-1}, x_n), \nu(x_1, \ldots, x_{n-1}, y))$

for $y, x_1, \ldots, x_n \in X$, then ν is called a probabilistic 2-norm on X and the triple (X, ν, T) is called a probabilistic 2-normed space.

Definition 2.2. Let X be a real linear space and x, y, z mutually disjoint elements of X. Then x, y and z are said to be 2-collinear if

$$y - z = t(x - z),$$

for some real number t.
3. Main Results

We start our work by giving the definition of probabilistic 2-normed space.

Definition 3.1 ([10]). Let X be a real linear space with $\dim X \geq 2$, let T be a triangle function, and let ν be a mapping from X into D^+. If the following conditions are satisfied:

1. $\nu(x_1, x_2) = \varepsilon_0$ if x_1 and x_2 are linearly dependent,
2. $\nu(x_1, x_2) \neq \varepsilon_0$ if x_1 and x_2 are linearly independent,
3. $\nu(x_1, x_2) = \nu(x_2, x_1)$,
4. $\nu(\beta x_1, x_2) = \nu(x_1, x_2) \left(\frac{s}{|s|} \right)$, for every $s > 0$, and $\beta \neq 0$,
5. $\nu(x_1 + x_2, y) \geq T(\nu(x_1, y), \nu(x_2, y))$

for $y, x_1, x_2 \in X$, then ν is called a probabilistic 2-norm on X and the triple (X, ν, T) is called a probabilistic 2-normed space.

From now on, unless otherwise stated, we let (X, ν, T) and (Y, ν, T) be probabilistic 2-normed spaces.

In our work, we assume that: If x and y are linearly independent elements in X or in Y, then $\nu(x, y)$ is strictly increasing.

The following lemma due to A. Pourmoslemi and M. Salimi [16] is crucial in proving our next result.

Lemma 3.2 ([16]). For $x_1, x_2 \in X$ and $\alpha \in \mathbb{R}$, we have

$$\nu(x_1, \alpha x_1 + x_2) = \nu(x_1, x_2).$$

The following result is essential for proving our main result.

Lemma 3.3. Let x_1 and x_2 be any two distinct elements in X, and let

$$u = \frac{x_1 + x_2}{2}.$$

Then u is the unique element in X satisfying for all $s > 0$ the following equalities:

$$\nu(x_1 - u, x_1 - c)(s) = \nu(x_2 - c, x_2 - u)(s) = \nu(x_1 - c, x_2 - c)(2s)$$

for $c \in X$ where $x_1 - c$ and $x_2 - c$ are linearly independent and x_1, x_2, u are 2-collinear.

Proof. Choose $c \in X$ with $x_1 - c, x_2 - c$ being linearly independent. For $s > 0$ we have

$$\nu(x_1 - u, x_1 - c)(s) = \nu \left(x_1 - \frac{x_1 + x_2}{2}, x_1 - c \right)(s)$$

$$= \nu \left(\frac{x_1 - x_2}{2}, x_1 - c \right)(s)$$

$$= \nu(x_1 - x_2, x_1 - c)(2s)$$

$$= \nu(x_1 - c + c - x_2, x_1 - c)(2s)$$

$$= \nu(x_2 - c, x_1 - c)(2s)$$

$$= \nu(x_1 - c, x_2 - c)(2s).$$

Similarly, we can show that

$$\nu(x_2 - c, x_2 - u)(s) = \nu(x_1 - c, x_2 - c)(2s).$$

To prove the uniqueness, assume that w is an element in X satisfying for all $s > 0$ the equalities:

$$\nu(x_1 - w, x_1 - c)(s) = \nu(x_2 - c, x_2 - w)(s) = \nu(x_1 - c, x_2 - c)(2s)$$

(3.1)
for $c \in X$ where $x_1 - c$ and $x_2 - c$ are linearly independent and x_1, x_2, w are 2-collinear. Since x_1, x_2, w are 2-collinear, there is a scalar t such that $w = (1-t)x_1 + tx_2$. Hence for $s > 0$, we have

$$\nu(x_1 - w, x_1 - c)(s) = \nu(x_1 - (1-t)x_1 - tx_2, x_1 - c)(s)$$
$$= \nu(tx_1 - tx_2 - ct, x_1 - c)(s)$$
$$= \nu(t(x_1 - c) - t(x_2 - c), x_1 - c)(s)$$
$$= \nu(-t(x_2 - c), x_1 - c)(s)$$
$$= \nu(x_1 - c, x_2 - c) \left(\frac{s}{|t|} \right)$$

and

$$\nu(x_2 - c, x_2 - w)(s) = \nu(x_2 - c, (1-t)x_2 - (1-t)x_1)(s)$$
$$= \nu(x_2 - c, (1-t)x_2 - (1-t)x_1 - (1-t)c + (1-t)c)(s)$$
$$= \nu(x_2 - c, (1-t)(x_2 - c) - (1-t)(x_1 - c))(s)$$
$$= \nu(x_2 - c, x_1 - c) \left(\frac{s}{1-t} \right)$$
$$= \nu(x_1 - c, x_2 - c) \left(\frac{s}{1-t} \right).$$

Since w satisfies Equation (3.1) and $\nu(x_1 - c, x_2 - c)$ is strictly increasing, we get that

$$2 \left(\frac{1}{1-t} \right) = \left(\frac{1}{|t|} \right).$$

So we conclude that $t = \frac{1}{2}$, and hence $w = u$. \hfill \Box

Using similar arguments as in the proof of Lemma 3.3, we can prove the following result.

Lemma 3.4. Let x_1 and x_2 be any two distinct elements in X. Let

$$u = \frac{x_1 + x_2}{2}.$$

Then u is the unique element in X satisfying for all $s > 0$ the following equalities:

$$\nu(u - x_1, x_2 - c)(s) = \nu(x_1 - c, u - x_2)(s) = \nu(x_1 - c, x_2 - c)(2s),$$

for $c \in X$ where $x_1 - c$ and $x_2 - c$ are linearly independent and x_1, x_2, u are 2-collinear.

To achieve our main result we introduce the following definition.

Definition 3.5. Let (X, ν, T) and (Y, ν, T) be probabilistic 2-normed spaces. We call the map $f: X \to Y$ probabilistic 2-isometry if

$$\nu(f(x) - f(c), f(y) - f(c))(s) = \nu(x - c, y - c)(s)$$

holds, for all $x, y, c \in X$ and all $s > 0$.

Lemma 3.6. Let $f: X \to Y$ be probabilistic 2-isometry from probabilistic 2-normed space (X, ν, T) into probabilistic 2-normed space (Y, ν, T). Define the map f from (X, ν, T) into (Y, ν, T) by the rule $g(x) = f(x) - f(0)$. Then f is probabilistic 2-isometry iff g is probabilistic 2-isometry.
Proof. Assume that f is probabilistic 2-isometry, then for $a, b, c \in X$ and $s > 0$ we have

$$\nu(g(a) - g(c), g(b) - g(c))(s) = \nu(f(a) - f(0) - (f(c) - f(0)), f(b) - f(0) - (f(c) - f(0)))(s) = \nu(f(a) - f(c), f(b) - f(c))(s) = \nu(a - c, b - c)(s).$$

So g is probabilistic 2-isometry.

Similarly we may show that if g is probabilistic 2-isometry, then f is probabilistic 2-isometry. \hfill \square

We have furnished all necessary background to introduce and prove our main result.

Theorem 3.7. Let $f : X \to Y$ be probabilistic 2-isometry from probabilistic 2-normed space (X, ν, T) into probabilistic 2-normed space (Y, ν, T) with the property that if $a, b,$ and c are 2-collinear in X, then $f(a), f(b),$ and $f(c)$ are 2-collinear in Y. Then f is affine.

Proof. By Lemma 3.6, we may assume that $f(0) = 0$. So it suffices to prove that f is linear. Let x and y be two distinct elements in X, and $u = \frac{x + y}{2}$. Since $\dim X \geq 2$, there is $c \in X$ such that $x - c$ and $y - c$ are linearly dependent. Now for $s > 0$, we have

$$\nu(f(x) - f(u), f(x) - f(c))(s) = \nu(x - u, x - c)(s) = \nu\left(x - \frac{x + y}{2}, x - c\right)(s) = \nu(x - c - (y - c), x - c)(2s) = \nu(y - c, x - c)(2s) = \nu(f(y) - f(c), f(x) - f(c))(2s) = \nu(f(x) - f(c), f(y) - f(c))(2s).$$

Similarly, we may prove that

$$\nu(f(y) - f(u), f(y) - f(c))(s) = \nu(f(x) - f(c), f(y) - f(c))(2s).$$

By Lemma 3.3, we conclude that

$$f(u) = f\left(\frac{x + y}{2}\right) = \frac{f(x) + f(y)}{2}. \quad (3.2)$$

For $x \in X$, $s > 0$, and $\alpha \in \mathbb{R}^+ \setminus \{0\}$, we have

$$\epsilon_0(s)=\nu(\alpha x, x)(s) = \nu(\alpha x - 0, x - 0)(s) = \nu(f(\alpha x) - f(0), f(x) - f(0))(s) = \nu(f(\alpha x), f(x))(s).$$

So $f(\alpha x)$ and $f(x)$ are linearly dependent. Hence there is $k \in \mathbb{R}$ such that $f(\alpha x) = kf(x)$. Choose $y \in X$ such that x and y are linearly independent. Then for $s > 0$, we have

$$\nu(x, y)\left(\frac{s}{\alpha}\right) = \nu(\alpha x, y)(s) = \nu(f(\alpha x), f(y))(s) = \nu(kf(x), f(y))(s) = \nu(f(x), f(y))\left(\frac{s}{|k|}\right) = \nu(x, y)\left(\frac{s}{|k|}\right),$$

and hence $\alpha = |k|$.

W. Shatanawi, M. Postolache, J. Nonlinear Sci. Appl. 8 (2015), 1228–1233 1232
Claim: \(k = \alpha \).
If \(k = -\alpha \), then for \(s > 0 \), we have
\[
\nu(x, y) \left(\frac{s}{\alpha - 1} \right) = \nu((\alpha - 1)x, y)(s) = \nu(\alpha x - x, y - x)(s)
\]
\[
= \nu(f(\alpha x) - f(x), f(y) - f(x))(s) = \nu(-\alpha f(x) - f(x), f(y) - f(x))(s)
\]
\[
= \nu(f(x), f(y) - f(x)) \left(\frac{s}{\alpha + 1} \right) = \nu(f(x), f(y)) \left(\frac{s}{\alpha + 1} \right)
\]
So \(|\alpha - 1| = \alpha + 1 \), and hence \(\alpha = 0 \) which is a contradiction. Therefore \(k = \alpha \) and so that \(f(\alpha x) = \alpha f(x) \), for all \(\alpha \in \mathbb{R}^+ \setminus \{0\} \).

Similarly, we can show that \(f(\alpha x) = \alpha f(x) \) for all \(\alpha \in \mathbb{R}^- \setminus \{0\} \). Given two distinct elements \(x \) and \(y \) in \(X \). Since
\[
f(x + y) = f \left(\frac{2x + 2y}{2} \right)
\]
by Equation (3.2), we get that
\[
f(x + y) = f(2x) + f(2y) = 2f(x) + 2f(y) = f(x) + f(y).
\]
If \(x = y \), then \(f(x + y) = f(2x) = 2f(x) = f(x) + f(x) = f(x) + f(y) \). So \(f \) is affine.

References

[1] A. D. Aleksandrov, Mappings of families of sets, Soviet Math. Dokl., 11 (1970), 116–120.
[2] C. Alsina, B. Schweizer, C. Sempi, A. Sklar, On the definition of a probabilistic inner product space, Rend Mat. Appl., 17 (1997), 115–127.
[3] C. Alsina, B. Schweizer, A. Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46 (1993), 91–98.
[4] C. Alsina, B. Schweizer, A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208 (1997), 446–452.
[5] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly, 78 (1971), 655–658.
[6] S. Cobzas, A Mazur-Ulam theorem for probabilistic normed spaces, Aequationes Math., 77 (2009), 197–205.
[7] H. Y. Chu, On the Mazur-Ulam problem in linear 2-normed spaces, J. Math. Anal. Appl., 327 (2007), 1041–1045.
[8] H. Y. Chu, S. H. Ku, D. S. Kang, Characterizations on 2-isometries, J. Math. Anal. Appl., 340 (2008), 621–628.
[9] H. Y. Chu, C. G. Park, W. G. Park, The Aleksandrov problem in linear 2-normed spaces, J. Math. Anal. Appl., 289 (2004), 666–672.
[10] I. Golet, On probabilistic 2-normed spaces, Novi Sad J. Math., 35 (2005), 95–102.
[11] S. Mazur, S. Ulam, Sur les transformations isométriques d’espaces vectoriels normés, C. R. Acad. Sci. Paris, 194 (1932), 946–948.
[12] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942), 535–537.
[13] B. Mielnik, T. M. Rassias, On the Aleksandrov problem of conservative distances, Proc. Amer. Math. Soc., 116 (1992), 1115–1118.
[14] M. S. El Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos Solitons Fractals, 9 (1998), 517–529.
[15] M. S. El Naschie, On the unification of heterotic strings, M theory and \(\varepsilon^\infty \) theory, Chaos Solitons Fractals, 11 (2000), 2397–2408.
[16] A. Pournosolemi, M. Salimi, Probabilistic n-normed spaces, D-compact sets and D-bounded sets, Chaos, Solitons Fractals, 42 (2009), 2729–2734.
[17] T. M. Rassias, On the A. D. Aleksandrov problem of conservative distances and the Mazur-Ulam theorem, Nonlinear Anal., 47 (2001), 2597–2608.
[18] T. M. Rassias, P. Šemrl, On the Mazur-Ulam problem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc., 118 (1993), 919–925.
[19] A. N. Šerstnev, On the motion of a random normed space, Dokl. Akad. Nauk. SSSR, 149 (1963), 280–283.