Frobenius restricted varieties in numerical semigroups

Aureliano M. Robles-Pérez*† and José Carlos Rosales*‡

Abstract

The common behaviour of many families of numerical semigroups led up to defining, firstly, the Frobenius varieties and, secondly, the (Frobenius) pseudo-varieties. However, some interesting families are still out of these definitions. To overcome this situation, here we introduce the concept of Frobenius restricted variety (or R-variety). We will generalize most of the results for varieties and pseudo-varieties to R-varieties. In particular, we will study the tree structure that arise within them.

Keywords: R-varieties; Frobenius restricted number; varieties; pseudo-varieties; monoids; numerical semigroups; tree (associated to an R-variety).

2010 AMS Classification: 20M14

1 Introduction

In [11], the concept of (Frobenius) variety was introduced in order to unify several results which have appeared in [1], [3], [16], and [17]. Moreover, the work made in [11] has allowed to study other notables families of numerical semigroups, such as those that appear in [7], [9], [12], and [13].

There exist families of numerical semigroups which are not varieties but have a similar structure. For example, the family of numerical semigroups with maximal embedding dimension and fixed multiplicity (see [15]). The study of this family, in [2], led to the concept of m-variety.

In order to generalize the concepts of variety and m-variety, in [8] were introduced the (Frobenius) pseudo-varieties. Moreover, recently, the results obtained in [8] allowed us to study several interesting families of numerical semigroups (for instance, see [10]).

*Both authors are supported by the project MTM2014-55367-P, which is funded by Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER, and by the Junta de Andalucía Grant Number FQM-343. The second author is also partially supported by Junta de Andalucía/Feder Grant Number FQM-5849.
†Departamento de Matemática Aplicada, Universidad de Granada, 18071-Granada, Spain.
‡Departamento de Álgebra, Universidad de Granada, 18071-Granada, Spain.
In this work, our aim will be to introduce and study the concept of \(R\)-variety (that is, Frobenius restricted variety). We will see how it generalizes the concept of pseudo-variety and we will show that there exist significant families of numerical semigroups which are \(R\)-varieties but not pseudo-varieties.

Let \(N\) be the set of nonnegative integers. A numerical semigroup is a subset \(S\) of \(N\) such that it is closed under addition, contains the zero element, and \(N \setminus S\) is finite.

It is well known (see [14, Lemma 4.5]) that, if \(S\) and \(T\) are numerical semigroups such that \(S \subseteq T\), then \(S \cup \{\max(T \setminus S)\}\) is another numerical semigroup. We will denote by \(F_T(S) = \max(T \setminus S)\) and we will call it as the Frobenius number of \(S\) restricted to \(T\).

An \(R\)-variety is a non-empty family \(\mathcal{R}\) of numerical semigroups that fulfills the following conditions.

1. \(\mathcal{R}\) has a maximum element with respect to the inclusion order (that we will denote by \(\Delta(\mathcal{R})\)).
2. If \(S, T \in \mathcal{R}\), then \(S \cap T \in \mathcal{R}\).
3. If \(S \in \mathcal{R}\) and \(S \neq \Delta(\mathcal{R})\), then \(S \cup \{F_{\Delta(\mathcal{R})}(S)\} \in \mathcal{R}\).

In Section 2 we will see that every pseudo-variety is an \(R\)-variety. Moreover, we will show that, if \(V\) is a variety and \(T\) is a numerical semigroup, then \(V_T = \{S \cap T \mid S \in V\}\) is an \(R\)-variety. In fact, we will prove that every \(R\)-variety is of this form.

Let \(\mathcal{R}\) be an \(R\)-variety and let \(M\) be a submonoid of \((\mathbb{N}, +)\). We will say that \(M\) is an \(R\)-monoid if it can be expressed as intersection of elements of \(\mathcal{R}\). It is clear that the intersection of \(\mathcal{R}\)-monoids is another \(\mathcal{R}\)-monoid and, therefore, we can define the \(\mathcal{R}\)-monoid generated by a subset of \(\Delta(\mathcal{R})\). In Section 3 we will show that every \(\mathcal{R}\)-monoid admits a unique minimal \(\mathcal{R}\)-system of generators. In addition, we will see that, if \(M\) is an \(\mathcal{R}\)-monoid and \(x \in M\), then \(M \setminus \{x\}\) is another \(\mathcal{R}\)-monoid if and only if \(x\) belongs to the minimal \(\mathcal{R}\)-system of generators of \(M\).

In Section 4 we will show that the elements of an \(R\)-variety, \(\mathcal{R}\), can be arranged in a tree with root \(\Delta(\mathcal{R})\). Moreover, we will prove that the set of children of a vertex \(S\), of such a tree, is equal to \(\{S \setminus \{x\} \mid x\text{ is an element of the minimal }\mathcal{R}\text{-system of generators of }S\text{ and }x > F_{\Delta(\mathcal{R})}(S)\}\). This fact will allow us to show an algorithmic process in order to recurrently build the elements of an \(R\)-variety.

Finally, in Section 5 we will see that, in general and contrary to what happens with varieties and pseudo-varieties, we cannot define the smallest \(R\)-variety that contains a given family \(\mathcal{F}\) of numerical semigroups. Nevertheless, we will show that, if \(\Delta\) is a numerical semigroup such that \(S \subseteq \Delta\) for all \(S \in \mathcal{F}\), then there exists the smallest \(R\)-variety (denoted by \(\mathcal{R}(\mathcal{F}, \Delta)\)) containing \(\mathcal{F}\) and having \(\Delta\) as maximum (with respect the inclusion order). Moreover, we will prove that \(\mathcal{R}(\mathcal{F}, \Delta)\) is finite if and only if \(\mathcal{F}\) is finite. In such a case, that fact will allow us to compute, for a given \(\mathcal{R}(\mathcal{F}, \Delta)\)-monoid, its minimal \(\mathcal{R}(\mathcal{F}, \Delta)\)-system of
generators. In this way, we will obtain an algorithmic process to determine all the elements of \(R(\mathcal{F}, \Delta) \) by starting from \(\mathcal{F} \) and \(\Delta \).

Let us observe that the proofs, of some results of this work, are similar to the proofs of the analogous results for varieties and pseudo-varieties. However, in order to get a self-contained paper, we have not omitted several of such proofs.

2 Varieties, pseudo-varieties, and \(R \)-varieties

It is said that \(M \) is a submonoid of \((\mathbb{N}, +) \) if \(M \) is a subset of \(\mathbb{N} \) which is closed for the addition and such that \(0 \in M \). It particular, if \(S \) is a submonoid of \((\mathbb{N}, +) \) such that \(\mathbb{N} \setminus S \) is finite, then \(S \) is a numerical semigroup.

Let \(A \) be a non-empty subset of \(\mathbb{N} \). Then it is denoted by \(\langle A \rangle \) the submonoid of \((\mathbb{N}, +) \) generated by \(A \), that is,

\[
\langle A \rangle = \{ \lambda_1 a_1 + \cdots + \lambda_n a_n \mid n \in \mathbb{N} \setminus \{0\}, \ a_1, \ldots, a_n \in A, \ \lambda_1, \ldots, \lambda_n \in \mathbb{N} \}.
\]

It is well known (see for instance [14, Lemma 2.1]) that \(\langle A \rangle \) is a numerical semigroup if and only if \(\gcd(A) = 1 \).

Let \(M \) be a submonoid of \((\mathbb{N}, +) \) and let \(A \subseteq \mathbb{N} \). If \(M = \langle A \rangle \), then it is said that \(A \) is a system of generators of \(M \). Moreover, it is said that \(A \) is a minimal system of generators of \(M \) if \(M \neq \langle B \rangle \) for all \(B \subset A \). It is a classical result that every submonoid \(M \) of \((\mathbb{N}, +) \) has a unique minimal system of generators (denoted by \(\text{msg}(M) \)) which, in addition, is finite (see for instance [14, Corollary 2.8]).

Let \(S \) be a numerical semigroup. Being that \(\mathbb{N} \setminus S \) is finite, it is possible to define several notable invariants of \(S \). One of them is the Frobenius number of \(S \) (denoted by \(F(S) \)) which is the greatest integer that does not belong to \(S \) (see [6]). Another one is the genus of \(S \) (denoted by \(g(S) \)) which is the cardinality of \(\mathbb{N} \setminus S \).

Let \(S \) be a numerical semigroup different from \(\mathbb{N} \). Then it is obvious that \(S \cup \{F(S)\} \) is also a numerical semigroup. Moreover, from [14, Proposition 7.1], we have that \(T \) is a numerical semigroup with \(g(T) = g + 1 \) if and only if there exist a numerical semigroup \(S \) and \(x \in \text{msg}(S) \) such that \(g(S) = g, \ x > F(S) \), and \(T = S \setminus \{x\} \). This result is the key to build the set of all numerical semigroups with genus \(g + 1 \) when we have the set of all numerical semigroups with genus \(g \) (see [14, Proposition 7.4]).

In [11] it was introduced the concept of (Frobenius) variety in order to generalize the previous situation to some relevant families of numerical semigroups.

It is said that a non-empty family of numerical semigroups \(V \) is a (Frobenius) variety if the following conditions are verified.

1. If \(S, T \in V \), then \(S \cap T \in V \).
2. If \(S \in V \) and \(S \neq \mathbb{N} \), then \(S \cup \{F(S)\} \in V \).

However, there exist families of numerical semigroups that are not varieties, but have a very similar behavior. By studying these families of numerical semigroups, we introduced in [8] the concept of (Frobenius) pseudo-variety.
It is said that a non-empty family of numerical semigroups \(\mathcal{P} \) is a \emph{(Frobenius) pseudo-variet y} if the following conditions are verified.

1. \(\mathcal{P} \) has a maximum element with respect to the inclusion order (that we will denote by \(\Delta(\mathcal{P}) \)).

2. If \(S, T \in \mathcal{P} \), then \(S \cap T \in \mathcal{P} \).

3. If \(S \in \mathcal{P} \) and \(S \neq \Delta(\mathcal{P}) \), then \(S \cup \{F(S)\} \in \mathcal{P} \).

From the definitions, it is clear that every variety is a pseudo-variet y. Moreover, as a consequence of [8, Proposition 1], we have the next result.

Proposition 2.1. Let \(\mathcal{P} \) be a pseudo-variet y. Then \(\mathcal{P} \) is a variety if and only if \(\mathbb{N} \in \mathcal{P} \).

The following result asserts that the concept of \(R \)-variet y generalizes the concept of pseudo-variet y.

Proposition 2.2. Every pseudo-variet y is an \(R \)-variet y.

Proof. Let \(\mathcal{P} \) be a pseudo-variet y. In order to prove that \(\mathcal{P} \) is an \(R \)-variet y, we have to show that, if \(S \in \mathcal{P} \) and \(S \neq \Delta(\mathcal{P}) \), then \(S \cup \{F(S)\} \in \mathcal{P} \). Since \(\mathcal{P} \) is a pseudo-variet y, we know that \(S \cup \{F(S)\} \in \mathcal{P} \). Thus, to finish the proof, it is enough to see that \(F(S) = F_{\Delta(\mathcal{P})}(S) \). On the one hand, it is clear that \(F_{\Delta(\mathcal{P})}(S) \leq F(S) \). On the other hand, since \(S \cup \{F(S)\} \in \mathcal{P} \), then we have that \(F(S) \in \Delta(\mathcal{P}) \). Therefore, \(F(S) \in \Delta(\mathcal{P}) \setminus S \) and, consequently, \(F(S) \leq F_{\Delta(\mathcal{P})}(S) \).

In the next example we see that there exist \(R \)-varieties that are not pseudo-varieties.

Example 2.3. Let \(\mathcal{R} \) be the set formed by all numerical semigroups which are contained in the numerical semigroup \(\langle 5, 7, 9 \rangle \). It is clear that \(\mathcal{R} \) is an \(R \)-variet y. However, since \(S = \langle 5, 7, 9 \rangle \setminus \{5\} \in \mathcal{R} \), \(S \neq \Delta(\mathcal{R}) = \langle 5, 7, 9 \rangle \), \(F(S) = 13 \), and \(S \cup \{13\} \notin \mathcal{R} \), we have that \(\mathcal{R} \) is not a pseudo-variet y.

Generalizing the above example, we can obtain several \(R \)-varieties, most of which are not pseudo-varieties.

1. Let \(T \) be a numerical semigroup. Then \(\mathcal{L}_T = \{S \mid S \text{ is a numerical semigroup and } S \subseteq T\} \) is an \(R \)-variet y. Observe that \(\mathcal{L}_T \) is the set formed by all numerical subsemigroups of \(T \).

2. Let \(S_1 \) and \(S_2 \) be two numerical semigroups such that \(S_1 \subseteq S_2 \). Then \([S_1, S_2] = \{S \mid S \text{ is a numerical semigroup and } S_1 \subseteq S \subseteq S_2\} \) is an \(R \)-variet y.

3. Let \(T \) be a numerical semigroup and let \(A \subseteq T \). Then \(\mathcal{R}(A, T) = \{S \mid S \text{ is a numerical semigroup and } A \subseteq S \subseteq T\} \) is an \(R \)-variet y. Observe that both of the previous examples are particular cases of this one.
Remark 2.4. Let p, q be relatively prime integers such that $1 < p < q$. Let us take the numerical semigroups $S_1 = \langle p, q \rangle$ and $S_2 = \frac{S_1}{2} = \{ s \in \mathbb{N} | 2s \in S_1 \}$. In [4, 5], Kunz and Waldi study the family of numerical semigroups $\{S_1, S_2\}$, which is an R-variety but not a pseudo-variety.

The next result establishes when an R-variety is a pseudo-variety.

Proposition 2.5. Let R be an R-variety. Then R is a pseudo-variety if and only if $F(S) \in \Delta(R)$ for all $S \in R$ such that $S \neq \Delta(R)$.

Proof. (Necessity.) If R is a pseudo-variety and $S \in R$ with $S \neq \Delta(R)$, then $S \cup \{F(S)\} \in R$. Therefore, $F(S) \in \Delta(R)$.

(Sufficiency.) In order to show that R is a pseudo-variety, it will be enough to see that $S \cup \{F(S)\} \in R$ for all $S \in R$ such that $S \neq \Delta(R)$. For that, since $F(S) \in \Delta(R)$, then it is clear that $F_{\Delta(R)}(S) = F(S)$ and, therefore, $S \cup \{F(S)\} = S \cup \{F_{\Delta(R)}(S)\} \in R$.

An immediate consequence of Propositions 2.1 and 2.5 is the following result.

Corollary 2.6. Let R be an R-variety. Then R is a variety if and only if $\mathbb{N} \in R$.

Our next purpose, in this section, will be to show that to give an R-variety is equivalent to give a pair (V, T) where V is a variety and T is a numerical semigroup. Before that we need to introduce some concepts and results.

Let S be a numerical semigroup. Then we define recurrently the following sequence of numerical semigroups.

- $S_0 = S$,
- if $S_\ell \neq \mathbb{N}$, then $S_{\ell+1} = S_\ell \cup \{F(S_\ell)\}$.

Since $\mathbb{N} \setminus S$ is a finite set with cardinality equal to $g(S)$, then we get a finite chain of numerical semigroups $S = S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_{g(S)} = \mathbb{N}$. We will denote by $C(S)$ the set $\{S_0, S_1, \ldots, S_{g(S)}\}$ and will say that it is the chain of numerical semigroups associated to S. If \mathcal{F} is a non-empty family of numerical semigroups, then we will denote by $C(\mathcal{F})$ the set $\bigcup_{S \in \mathcal{F}} C(S)$.

Let \mathcal{F} be a non-empty family of numerical semigroups. We know that there exists the smallest variety containing \mathcal{F} (see [11]). Moreover, by [11, Theorem 4], we have the next result.

Proposition 2.7. Let \mathcal{F} be a non-empty family of numerical semigroups. Then the smallest variety containing \mathcal{F} is the set formed by all finite intersections of elements of $C(\mathcal{F})$.

Now, let \mathcal{R} be an R-variety. By applying repeatedly that, if $S \in \mathcal{R}$ and $S \neq \Delta(\mathcal{R})$, then $S \cup \{F_{\Delta(\mathcal{R})}(S)\} \in \mathcal{R}$, we get the following result.

Lemma 2.8. Let \mathcal{R} be an R-variety. If $S \in \mathcal{R}$ and $n \in \mathbb{N}$, then $S \cup \{x \in \Delta(\mathcal{R}) | x \geq n\} \in \mathcal{R}$.
We are ready to show the announced result.

Theorem 2.9. Let \mathcal{V} be a variety and let T be a numerical semigroup. Then \(\mathcal{V}_T = \{ S \cap T \mid S \in \mathcal{V} \} \) is an R-variety. Moreover, every R-variety is of this form.

Proof. By Proposition 2.4 we know that, if \mathcal{V} is a variety, then $\mathbb{N} \in \mathcal{V}$ and, therefore, T is the maximum of \mathcal{V}_T (that is, $T = \Delta(\mathcal{V}_T)$). On the other hand, it is clear that, if $S_1, S_2 \in \mathcal{V}_T$, then $S_1 \cap S_2 \in \mathcal{V}_T$.

Now, let $S \in \mathcal{V}$ such that $S \cap T \neq T$ and let us have $t = F_T(S \cap T)$. In order to conclude that \mathcal{V}_T is an R-variety, we will see that $(S \cap T) \cup \{ t \} \in \mathcal{V}_T$.

First, let us observe that $t = \max(T \setminus (S \cap T)) = \max(T \setminus S)$. Then, because $S \in \mathcal{V}$ and \mathcal{V} is a variety, we can easily deduce that $\bar{S} = S \cup \{ t, \rightarrow \} \in \mathcal{V}$. Moreover, $(S \cap T) \cup \{ t \} \subseteq (S \cap T) \cup (\{ t, \rightarrow \} \cap T) = \bar{S} \cap T$. Let us see now that $\bar{S} \cap T \subseteq (S \cap T) \cup \{ t \}$. In other case, there exists $t' > t$ such that $t' \in T$ and $t' \notin S$, in contradiction with the maximality of t. Therefore, $(S \cap T) \cup \{ t \} = \bar{S} \cap T$ and $\bar{S} \in \mathcal{V}$. Consequently, $(S \cap T) \cup \{ t \} \in \mathcal{V}_T$.

Let \mathcal{R} be an R-variety and let \mathcal{V} be the smallest variety containing \mathcal{R}. To conclude the proof of the theorem, we will see that $\mathcal{R} = \mathcal{V}_{\Delta(R)}$. It is clear that $\mathcal{R} \subseteq \mathcal{V}_{\Delta(R)}$. Thus, let us see the reverse one. For that, we will prove that, if $S \in \mathcal{V}$, then $S \cap \Delta(\mathcal{R}) \in \mathcal{R}$. In effect, by Proposition 2.7 we have that, if $S \in \mathcal{V}$, then there exist $S_1, \ldots, S_k \in C(\mathcal{R})$ such that $S = S_1 \cap \cdots \cap S_k$. Therefore, $S \cap \Delta(\mathcal{R}) = (S_1 \cap \Delta(\mathcal{R})) \cap \cdots \cap (S_k \cap \Delta(\mathcal{R}))$. Since \mathcal{R} is an R-variety, then \mathcal{R} is closed under finite intersections. Therefore, to see that $S \cap \Delta(\mathcal{R}) \in \mathcal{R}$, it is enough to show that $S_i \cap \Delta(\mathcal{R}) \in \mathcal{R}$ for all $i \in \{ 1, \ldots, k \}$. Since $S_i \in C(\mathcal{R})$, then it is clear that there exist $S'_i \in \mathcal{R}$ and $n_i \in \mathbb{N}$ such that $S_i = S'_i \cup \{ n_i, \rightarrow \}$. Therefore, $S_i \cap \Delta(\mathcal{R}) = S'_i \cup \{ x \in \Delta(\mathcal{R}) \mid x \geq n_i \} \in \mathcal{R}$, by applying Lemma 2.8.

The above theorem allows us to give many examples of R-varieties starting from already known varieties.

1. Let us observe that, if \mathcal{V} is a variety and $T \in \mathcal{V}$, then $\mathcal{V}_T = \{ S \cap T \mid S \in \mathcal{V} \} = \{ S \in \mathcal{V} \mid S \subseteq T \}$ is an R-variety contained in \mathcal{V}. Thus, for instance, we have that the set formed by all Arf numerical semigroups, which are contained in a certain Arf numerical semigroup, is an R-variety.

2. Observe also that, if \mathcal{V} is a variety and T is a numerical semigroup such that $T \notin \mathcal{V}$, then $\mathcal{V}_T = \{ S \cap T \mid S \in \mathcal{V} \}$ is an R-variety not contained in \mathcal{V} (because $T \notin \mathcal{V}_T$ and $T \notin \mathcal{V}$). Let us take, for example, the variety \mathcal{V} of all Arf numerical semigroups and $T = \langle 5, 8 \rangle \notin \mathcal{V}$. In such a case, \mathcal{V}_T is the R-variety formed by the numerical semigroups which are the intersection of an Arf numerical semigroup and T.

Corollary 2.10. Let \mathcal{R} be an R-variety and let U be a numerical semigroup. Then $\mathcal{R}_U = \{ S \cap U \mid S \in \mathcal{R} \}$ is an R-variety.

Proof. By applying Theorem 2.9 we have that there exist a variety \mathcal{V} and a numerical semigroup T such that $\mathcal{R} = \mathcal{V}_T = \{ S \cap T \mid S \in \mathcal{V} \}$. Therefore,
\[\mathcal{R}_U = \{ S \cap T \cap U \mid S \in \mathcal{V} \} = \mathcal{V}_{T \cap U}, \] which is clearly an \(R \)-variety (by Theorem 2.9 again).

The next result says us that Theorem 2.9 remains true when variety is replaced with pseudo-variety.

Corollary 2.11. Let \(\mathcal{P} \) be a pseudo-variety and let \(T \) be a numerical semigroup. Then \(\mathcal{P}_T = \{ S \cap T \mid S \in \mathcal{P} \} \) is an \(R \)-variety. Moreover, every \(R \)-variety is of this form.

Proof. By Proposition 2.2, we know that, if \(\mathcal{P} \) is a pseudo-variety, then \(\mathcal{P} \) is an \(R \)-variety. Thereby, by applying Corollary 2.10 we conclude that \(\mathcal{P}_T \) is an \(R \)-variety.

Now, by Theorem 2.9 we know that, if \(\mathcal{R} \) is an \(R \)-variety, then there exist a variety \(\mathcal{V} \) and a numerical semigroup \(T \) such that \(\mathcal{R} = \mathcal{V}_T \). To finish the proof, it is enough to observe that all varieties are pseudo-varieties.

Let us see an illustrative example of the above corollary.

Example 2.12. From [8, Example 7], we have the pseudo-variety

\[\mathcal{P} = \{ \langle 5, 6, 8, 9 \rangle, \langle 5, 6, 9, 13 \rangle, \langle 5, 6, 8 \rangle, \langle 5, 6, 13, 14 \rangle, \langle 5, 6, 9 \rangle, \langle 5, 6, 14 \rangle, \langle 5, 6, 13 \rangle, \langle 5, 6, 19 \rangle, \langle 5, 6 \rangle \} \].

Thereby, we have that \(\mathcal{P}_T \) is an \(R \)-variety for each numerical semigroup \(T \).

3 Monoids associated to an \(R \)-variety

In this section, \(\mathcal{R} \) we will be an \(R \)-variety. Now, let \(M \) be a submonoid of \((\mathbb{N}, +)\). We will say that \(M \) is an \(R \)-monoid if it is the intersection of elements of \(\mathcal{R} \).

The next result is easy to proof.

Lemma 3.1. The intersection of \(\mathcal{R} \)-monoids is an \(\mathcal{R} \)-monoid.

From the above lemma we have the following definition: let \(A \subseteq \Delta(\mathcal{R}) \). We will say that \(\mathcal{R}(A) \) is the \(\mathcal{R} \)-monoid generated by \(A \) if \(\mathcal{R}(A) \) is equal to the intersection of all the \(\mathcal{R} \)-monoids which contain the set \(A \). Observe that \(\mathcal{R}(A) \) is the smallest \(\mathcal{R} \)-monoid which contains the set \(A \) (with respect to the inclusion order). The next result has an easy proof too.

Lemma 3.2. If \(A \subseteq \Delta(\mathcal{R}) \), then \(\mathcal{R}(A) \) is equal to the intersection of all the elements of \(\mathcal{R} \) which contain the set \(A \).

Let us take \(A \subseteq \Delta(\mathcal{R}) \). If \(M = \mathcal{R}(A) \), then we will say that \(A \) is an \(\mathcal{R} \)-system of generators of \(M \). Moreover, we will say that \(A \) is a minimal \(\mathcal{R} \)-system of generators of \(M \) if \(M \neq \mathcal{R}(B) \) for all \(B \subseteq A \). The next purpose in this section will be to show that every \(\mathcal{R} \)-monoid has a unique minimal \(\mathcal{R} \)-system of generators. For that, we will give some previous lemmas. We can easily deduced the first one from Lemma 3.2.
Lemma 3.3. Let A, B be two subsets of $\Delta(R)$ and let M be an R-monoid. We have that

1. if $A \subseteq B$, then $R(A) \subseteq R(B)$;
2. $R(A) = R(\langle A \rangle)$;
3. $R(M) = M$.

If M is an R-monoid, then M is a submonoid of $(\mathbb{N}, +)$. Moreover, as we commented in Section 2, we know that there exists a finite subset A of M such that $M = \langle A \rangle$. Thereby, by applying Lemma 3.3 we have that $M = R(M) = R(\langle A \rangle) = R(A)$. Consequently, A is a finite R-system of generators of M. Thus, we can establish the next result.

Lemma 3.4. Every R-monoid has a finite R-system of generators.

In the following result, we characterize the minimal R-systems of generators.

Lemma 3.5. Let $A \subseteq \Delta(R)$ and $M = R(A)$. Then A is a minimal R-system of generators of M if and only if $a \notin R(A \setminus \{a\})$ for all $a \in A$.

Proof. (Necessity.) If $a \in R(A \setminus \{a\})$, then $A \subseteq R(A \setminus \{a\})$. Thus, by Lemma 3.3 we get that $M = R(A) \subseteq R(R(A \setminus \{a\})) = R(A \setminus \{a\}) \subseteq R(A) = M$. Therefore, $M = R(A \setminus \{a\})$, in contradiction with the minimality of A.

(Sufficiency.) If A is not a minimal R-system of generators of M, then there exists $B \subsetneq A$ such that $R(B) = M$. Then, by Lemma 3.3 if $a \in A \setminus B$, then $a \in M = R(B) \subseteq R(A \setminus \{a\})$, in contradiction with the hypothesis.

The next result generalizes an evident property of submonoids of $(\mathbb{N}, +)$. More concretely, every element x of a submonoid M of $(\mathbb{N}, +)$ is expressible as a non-negative integer linear combination of the generators of M that are smaller than or equal to x.

Lemma 3.6. Let $A \subseteq \Delta(R)$ and $x \in R(A)$. Then $x \in R(\{a \in A \mid a \leq x\})$.

Proof. Let us suppose that $x \notin R(\{a \in A \mid a \leq x\})$. Then, from Lemma 3.2 we know that there exists $S \in R$ such that $\{a \in A \mid a \leq x\} \subseteq S$ and $x \notin S$. By applying now Lemma 2.8 we have that $\bar{S} = S \cup \{m \in \Delta(R) \mid m \geq x + 1\} \in R$. Observe that, obviously, $A \subseteq \bar{S}$ and $x \notin \bar{S}$. Therefore, by applying once again Lemma 2.8 we get that $x \notin R(A)$, in contradiction with the hypothesis.

We are now ready to show the above announced result.

Theorem 3.7. Every R-monoid admits a unique minimal R-system of generators. In addition, such a R-system is finite.

Proof. Let M be an R-monoid and let A, B be two minimal R-systems of generators of M. We are going to see that $A = B$. For that, let us suppose that $A = \{a_1 < a_2 < \cdots\}$ and $B = \{b_1 < b_2 < \cdots\}$. If $A \neq B$, then
there exists $i = \min\{k \mid a_k \neq b_k\}$. Let us assume, without loss of generality, that $a_i < b_i$. Since $a_i \in M = \mathcal{R}(A) = \mathcal{R}(B)$, by Lemma 3.6 we have that $a_i \in \mathcal{R}\{b_1, \ldots, b_{i-1}\}$. Because $\{b_1, \ldots, b_{i-1}\} = \{a_1, \ldots, a_{i-1}\}$, then $a_i \in \mathcal{R}\{a_1, \ldots, a_{i-1}\}$, in contradiction with Lemma 3.6. Finally, by Lemma 3.4 we have that the minimal \mathcal{R}-system of generators is finite. □

If M is a \mathcal{R}-monoid, then the cardinality of the minimal \mathcal{R}-system of generators of M will be called the \mathcal{R}-range of M.

Example 3.8. Let S, T be two numerical semigroups such that $S \subseteq T$. We define recurrently the following sequence of numerical semigroups.

- $S_0 = S$,
- if $S_i \neq T$, then $S_{i+1} = S_i \cup \{F_T(S_i)\}$.

Since $T \setminus S$ is a finite set, then we get a finite chain of numerical semigroups $S = S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_n = T$. We will denote by $C(S, T)$ the set $\{S_0, S_1, \ldots, S_n\}$ and will say that it is the chain of S restricted to T. It is clear that $C(S, T)$ is an R-variety. Moreover, it is also clear that, for each $i \in \{1, \ldots, n\}$, S_i is the smallest element of $C(S, T)$ containing $F_T(S_{i-1})$. Therefore, $\{F_T(S_{i-1})\}$ is the minimal $C(S, T)$-system of generators of S_i for all $i \in \{1, \ldots, n\}$. Let us also observe that the empty set, \emptyset, is the minimal $C(S, T)$-system of generators of S_0. Therefore, the $C(S, T)$-range of S_i is equal to 1, if $i \in \{1, \ldots, n\}$, and 0, if $i = 0$.

It is well known that, if M is a submonoid of $(\mathbb{N}, +)$ and $x \in M$, then $M \setminus \{x\}$ is another submonoid of $(\mathbb{N}, +)$ if and only if $x \in \text{msg}(M)$. In the next result we generalize this property to \mathcal{R}-monoids.

Proposition 3.9. Let M be an \mathcal{R}-monoid and let $x \in M$. Then $M \setminus \{x\}$ is an \mathcal{R}-monoid if and only if x belongs to the minimal \mathcal{R}-system of generators of M.

Proof. Let A be the minimal \mathcal{R}-system of generators of M. If $x \not\in A$, then $A \subseteq M \setminus \{x\}$. Therefore, $M \setminus \{x\}$ is a \mathcal{R}-monoid containing A and, consequently, $M = \mathcal{R}(A) \subseteq M \setminus \{x\}$, which is a contradiction.

Conversely, by Theorem 3.7 we have that, if $x \in A$, then $\mathcal{R}(M \setminus \{x\}) \neq \mathcal{R}(A) = M$. Thereby, $\mathcal{R}(M \setminus \{x\}) = M \setminus \{x\}$. Consequently, $M \setminus \{x\}$ is a \mathcal{R}-monoid. □

Let us illustrate the above proposition with an example.

Example 3.10. Let T be a numerical semigroup and let $A \subseteq T$. Then we know that $\mathcal{R}(A, T) = \{S \mid S$ is a numerical semigroup and $A \subseteq S \subseteq T\}$ is an R-variety. By applying Proposition 3.9, we easily deduce that, if $S \in \mathcal{R}(A, T)$, then the minimal $\mathcal{R}(A, T)$-system of generators of S is $\{x \in \text{msg} \mid x \notin A\}$.

From Theorem 2.9 we know that every R-variety is of the form $\mathcal{V}_T = \{S \cap T \mid S \in \mathcal{V}\}$, where \mathcal{V} is a variety and T is a numerical semigroup. Now, our purpose is to study the relation between \mathcal{V}-monoids and \mathcal{V}_T-monoids.
Proposition 3.11. Let M be a submonoid of $(\mathbb{N}, +)$ and let T be a numerical semigroup. Then M is a \mathcal{V}_T-monoid if and only if there exists a \mathcal{V}-monoid M' such that $M = M' \cap T$.

Proof. (Necessity.) If M is a \mathcal{V}_T-monoid, then there exists $F \subseteq \mathcal{V}_T$ such that $M = \bigcap_{S \in F} S$. But, if $S \in F$, then $S \in \mathcal{V}_T$ and, consequently, there exists $S' \in \mathcal{V}$ such that $S = S' \cap T$. Now, let $F' = \{S' \in \mathcal{V} \mid S' \cap T \in F\}$ and let $M' = \bigcap_{S' \in F'} S'$. Then it is clear that M' is a \mathcal{V}-monoid and that $M = M' \cap T$.

(Sufficiency.) If M' is a \mathcal{V}-monoid, then there exists $F' \in \mathcal{V}$ such that $M' = \bigcap_{S' \in F'} S'$. Let $F = \{S' \cap T \mid S' \in F'\}$. Then it is clear that $F \subseteq \mathcal{V}_T$ and that $\bigcap_{S \in F} S = M' \cap T$. Therefore, $M' \cap T$ is a \mathcal{V}_T-monoid.

Observe that, as a consequence of the above proposition, we have that the set of \mathcal{V}_T-monoids is precisely given by $\{M \cap T \mid M$ is a \mathcal{V}-monoid$\}$.

Corollary 3.12. Let T be a numerical semigroup. If $A \subseteq T$, then $\mathcal{V}_T(A) = \mathcal{V}(A) \cap T$.

Proof. By Proposition 3.11 we know that $\mathcal{V}(A) \cap T$ is a \mathcal{V}_T-monoid containing A. Therefore, $\mathcal{V}_T(A) \subseteq \mathcal{V}(A) \cap T$.

Let us see now the opposite inclusion. By applying once more Proposition 3.11 we deduce that there exists a \mathcal{V}-monoid M such that $\mathcal{V}_T(A) = M \cap T$. Thus, it is clear that $A \subseteq M$ and, thereby, $\mathcal{V}(A) \subseteq M$. Consequently, $\mathcal{V}(A) \cap T \subseteq M \cap T = \mathcal{V}_T(A)$.

From Corollary 3.12, we have that the set formed by the \mathcal{V}_T-monoids is $\{\mathcal{V}(A) \cap T \mid A \subseteq T\} = \{M \cap T \mid M$ is a \mathcal{V}-monoid and its minimal \mathcal{V}-system of generators is including in $T\}$. Moreover, observe that, if $T \in \mathcal{V}$, then $\mathcal{V}_T(A) = \mathcal{V}(A)$ and, therefore, in such a case the set formed by all the \mathcal{V}_T-monoids coincides with the set formed by all the \mathcal{V}-monoids that are contained in T.

For some varieties there exist algorithms that allow us to compute $\mathcal{V}(A)$ by starting from A. Thereby, we can use such results in order to compute $\mathcal{V}_T(A)$. Let us see two examples of this fact.

Example 3.13. An LD-semigroup (see [12]) is a numerical semigroup S fulfilling that $a + b - 1 \in S$ for all $a, b \in S \setminus \{0\}$. Let \mathcal{V} the set formed by all LD-semigroups. In [12] it is shown that \mathcal{V} is a variety. Let $T = \{5, 7, 9\}$ (observe that $T \notin \mathcal{V}$). By Theorem 2.4 we know that $\mathcal{V}_T = \{S \cap T \mid S \in \mathcal{V}\}$ is an R-variety. Let us suppose that we can compute \mathcal{V}_T($\{5\}$).

In [12] we have an algorithm to compute $\mathcal{V}(A)$ by starting from A. By using such algorithm, in [12] Example 33 it is shown that $\mathcal{V}$$\{5\} = \langle 5, 9, 13, 17, 21 \rangle$. Therefore, by applying Corollary 3.12 we have that $\mathcal{V}_T$$\{5\} = \langle 5, 9, 13, 17, 21 \rangle \cap \langle 5, 7, 9 \rangle = \langle 5, 9, 17, 21 \rangle$.

Example 3.14. An PL-semigroup (see [17]) is a numerical semigroup S fulfilling that $a + b + 1 \in S$ for all $a, b \in S \setminus \{0\}$. Let \mathcal{V} the set formed by all PL-semigroups. In [17] it is shown that \mathcal{V} is a variety and it is given an algorithm to compute $\mathcal{V}(A)$.
by starting from A. Let $T = \langle 4, 7, 13 \rangle$ (observe that $T \in \mathcal{V}$). By Theorem 2.9 we know that $\mathcal{V}_T = \{ T \cap S \mid S \in \mathcal{V} \}$ is an R-variety. Let us suppose that we can compute $\mathcal{V}_T(\langle 4, 7 \rangle)$.

From \cite{7} Example 48, we know that $\mathcal{V}(\langle 4, 7 \rangle) = \langle 4, 7, 9 \rangle$. Thus, by applying Corollary 3.12 we have that $\mathcal{V}_T(\langle 4, 7 \rangle) = \langle 4, 7, 9 \rangle \cap \langle 4, 7, 13 \rangle = \langle 4, 7, 13 \rangle$.

Let T be a numerical semigroup. We know that, if M is a \mathcal{V}_T-monoid, then there exists a \mathcal{V}-monoid, M', with minimal \mathcal{V}-system of generators contained in T, such that $M = M' \cap T$. The next result says us that, in this situation, the minimal \mathcal{V}-system of generators of M' is just the minimal \mathcal{V}_T-system of generators of M.

Proposition 3.15. Let $A \subseteq T$. Then A is the minimal \mathcal{V}_T-system of generators of $\mathcal{V}_T(A)$ if and only if A is the minimal \mathcal{V}-system of generators of $\mathcal{V}(A)$.

Proof. (Necessity.) Let us suppose that A is not the minimal \mathcal{V}-system of generators of $\mathcal{V}(A)$. That is, there exists $B \subsetneq A$ such that $\mathcal{V}(B) = \mathcal{V}(A)$. Then, from Corollary 3.12 we have that $\mathcal{V}_T(A) = \mathcal{V}(A) \cap T = \mathcal{V}(B) \cap T = \mathcal{V}_T(B)$. Therefore, A is not the minimal \mathcal{V}_T-system of generators of $\mathcal{V}_T(A)$.

(Sufficiency.) Let us suppose that A is not the minimal \mathcal{V}_T-system of generators of $\mathcal{V}_T(A)$. Then $\mathcal{V}_T(B) = \mathcal{V}_T(A)$ for some subset $B \subsetneq A$. On the other hand, due to A is the minimal \mathcal{V}-system of generators of $\mathcal{V}(A)$, from Lemma 3.5 we have an element $a \in A$ such that $a \notin \mathcal{V}(B)$. Consequently, $a \in \mathcal{V}(A) \cap T$ and $a \notin \mathcal{V}(B) \cap T$. Finally, from Corollary 3.12 $\mathcal{V}_T(A) = \mathcal{V}(A) \cap T \neq \mathcal{V}(B) \cap T = \mathcal{V}_T(B)$, which is a contradiction. \qed

We finish this section with two examples that illustrate the above proposition.

Example 3.16. Let \mathcal{V} be such as in Example 3.14 and let $T = \langle 4, 6, 7 \rangle$. From \cite{12} Example 26, we know that $\mathcal{V}(\langle 4, 7, 10 \rangle) = \langle 4, 7, 10, 13 \rangle$ and, moreover, that $\{4\}$ is its minimal \mathcal{V}-system of generators. Then, from Proposition 3.15 $\{4\}$ is the minimal \mathcal{V}-system of generators of $\mathcal{V}_T(\langle 4, 7, 10 \rangle) = \langle 4, 7, 10, 13 \rangle \cap \langle 4, 6, 7 \rangle$.

Example 3.17. Let \mathcal{V} be such as in Example 3.14 and let $T = \langle 3, 4 \rangle$. From \cite{7} Example 44, we know that $\{3\}$ is the minimal \mathcal{V}-system of generators of $S = \langle 3, 7, 11 \rangle$. Therefore, by Proposition 3.15 $\{3\}$ is the minimal \mathcal{V}_T-system of generators of $S \cap T$.

4 The tree associated to an R-variety

Let V be a non-empty set and let $E \subseteq \{ (v, w) \in V \times V \mid v \neq w \}$. It is said that the pair $G = (V, E)$ is a graph. In addition, the vertices and edges of G are the elements of V and E, respectively.

Let $x, y \in V$ and let us suppose that $(v_0, v_1), (v_1, v_2), \ldots, (v_{n-1}, v_n)$ is a sequence of different edges such that $v_0 = x$ and $v_n = y$. Then, it is said that such a sequence is a path (of length n) connecting x and y.

11
Let G be a graph. Let us suppose that there exists r, vertex of G, such that it is connected with any other vertex x by a unique path. Then it is said that G is a tree and that r is its root.

Let x, y be vertices of a tree G and let us suppose that there exists a path that connects x and y. Then it is said that x is a descendant of y. Specifically, it is said that x is a child of y when (x, y) is an edge of G.

From now on in this section, let \mathcal{R} denote an R-variety. We define the graph $G(\mathcal{R})$ in the following way,

- \mathcal{R} is the set of vertices of $G(\mathcal{R})$;
- $(S, S') \in \mathcal{R} \times \mathcal{R}$ is an edge of $G(\mathcal{R})$ if and only if $S' = S \cup \{F_{\Delta(\mathcal{R})}(S)\}$.

If $S \in \mathcal{R}$, then we can define recurrently (such as we did in Example 3.8) the sequence of elements in \mathcal{R},

- $S_0 = S$,
- if $S_i \neq \Delta(\mathcal{R})$, then $S_{i+1} = S_i \cup \{F_{\Delta(\mathcal{R})}(S_i)\}$.

Thus, we obtain a chain (of elements in \mathcal{R}) $S = S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_n = \Delta(\mathcal{R})$ such that (S_i, S_{i+1}) is an edge of $G(\mathcal{R})$ for all $i \in \{0, \ldots, n-1\}$. We will denote by $C_\mathcal{R}(S)$ the set $\{S_0, S_1, \ldots, S_n\}$ and will say that it is the chain of S in \mathcal{R}. The next result is easy to prove.

Proposition 4.1. $G(\mathcal{R})$ is a tree with root $\Delta(\mathcal{R})$.

Observe that, in order to recurrently construct $G(\mathcal{R})$ starting from $\Delta(\mathcal{R})$, it is sufficient to compute the children of each vertex of $G(\mathcal{R})$. Let us also observe that, if T is a child of S, then $S = T \cup \{F_{\Delta(\mathcal{R})}(T)\}$. Therefore, $T = S \setminus \{F_{\Delta(\mathcal{R})}(T)\}$. Thus, if T is a child of S, then there exists an integer $x > F_{\Delta(\mathcal{R})}(S)$ such that $T = S \setminus \{x\}$. As a consequence of Propositions 3.9 and 4.1 and defining $F_{\Delta(\mathcal{R})}(\Delta(\mathcal{R})) = -1$, we have the following result.

Theorem 4.2. The graph $G(\mathcal{R})$ is a tree with root equal to $\Delta(\mathcal{R})$. Moreover, the set formed by the children of a vertex $S \in \mathcal{R}$ is $\{S \setminus \{x\} \mid x \in \text{msg}(S), x > F_{\Delta(\mathcal{R})}(S)\}$.

We can reformulate the above theorem in the following way.

Corollary 4.3. The graph $G(\mathcal{R})$ is a tree with root equal to $\Delta(\mathcal{R})$. Moreover, the set formed by the children of a vertex $S \in \mathcal{R}$ is $\{S \setminus \{x\} \mid x \in \text{msg}(S), x > F_{\Delta(\mathcal{R})}(S) \text{ and } S \setminus \{x\} \in \mathcal{R}\}$.

We illustrate the previous results with an example.

Example 4.4. We are going to build the R-variety $\mathcal{R} = \langle 5, 6, 7 \rangle = \{S \mid S \text{ is a numerical semigroup and } \langle 5, 6 \rangle \subseteq S \subseteq \langle 5, 6, 7 \rangle\}$. Observe that, if $S \in \mathcal{R}$ and $x \in \text{msg}(S)$, then $S \setminus \{x\} \in \mathcal{R}$ if and only if $x \notin \{5, 6\}$. Moreover, the maximum of \mathcal{R} is $\Delta = \langle 5, 6, 7 \rangle$. By applying Corollary 4.3 we can recurrently build $G(\mathcal{R})$ in the following way.
\[\langle 5, 6, 7 \rangle \text{ has got a unique child, which is } \langle 5, 6, 7 \rangle \setminus \{7\} = \langle 5, 6, 13, 14 \rangle. \] Moreover, \(F_\Delta(\langle 5, 6, 13, 14 \rangle) = 7. \]

\[\langle 5, 6, 13, 14 \rangle \text{ has got two children, which are } \langle 5, 6, 13, 14 \rangle \setminus \{13\} = \langle 5, 6, 14 \rangle \text{ and } \langle 5, 6, 13, 14 \rangle \setminus \{14\} = \langle 5, 6, 13 \rangle. \] Moreover, \(F_\Delta(\langle 5, 6, 14 \rangle) = 13 \) and \(F_\Delta(\langle 5, 6, 13 \rangle) = 14. \)

\[\langle 5, 6, 13 \rangle \text{ has not got children.} \]

\[\langle 5, 6, 14 \rangle \text{ has got a unique child, which is } \langle 5, 6, 14 \rangle \setminus \{14\} = \langle 5, 6, 19 \rangle. \] Moreover, \(F_\Delta(\langle 5, 6, 14 \rangle) = 14. \)

\[\langle 5, 6, 19 \rangle \text{ has got a unique child, which is } \langle 5, 6, 19 \rangle \setminus \{19\} = \langle 5, 6 \rangle. \] Moreover, \(F_\Delta(\langle 5, 6 \rangle) = 19. \)

\[\langle 5, 6 \rangle \text{ has not got children.} \]

Therefore, in this situation, \(G(\mathcal{R}) \) is given by the next diagram.

\[\begin{array}{c}
\langle 5, 6, 7 \rangle \\
\mathcal{R} = \left[\langle 5, 6, 7 \rangle, \langle 5, 6, 13, 14 \rangle \right] \\
\end{array} \]

Observe that, if we represent the vertices of \(G(\mathcal{R}) \) using their minimal \(\mathcal{R} \)-systems of generators, then we have that \(G(\mathcal{R}) \) is given by the following diagram.

\[\begin{array}{c}
\mathcal{R}(\{7\}) \\
\mathcal{R}(\{13, 14\}) \\
\mathcal{R}(\{14\}) \quad \mathcal{R}(\{13\}) \\
\mathcal{R}(\{19\}) \\
\mathcal{R}(\emptyset) \\
\end{array} \]

Let us observe that the \(R \)-variety \(\mathcal{R} = \left[\langle 5, 6 \rangle, \langle 5, 6, 7 \rangle \right] \) depict in the above example is finite and, therefore, we have been able to build all its elements in a finite number of steps. If the \(R \)-variety is infinite, then it is not possible such situation. However, as a consequence of Theorem 4.2, we can show an algorithm in order to compute all the elements of the \(R \)-variety when the genus is fixed.
Algorithm 4.5. INPUT: A positive integer \(g \).
OUTPUT: \(\{ S \in \mathcal{R} \mid g(S) = g \} \).
1. If \(g < g(\Delta(\mathcal{R})) \), then return \(\emptyset \).
2. Set \(A = \{ \Delta(\mathcal{R}) \} \) and \(i = g(\Delta(\mathcal{R})) \).
3. If \(i = g \), then return \(A \).
4. For each \(S \in A \), compute the set \(B_S \) formed by all elements of the minimal \(\mathcal{R} \)-system of generators of \(S \) that are greater than \(F_{\Delta(\mathcal{R})}(S) \).
5. If \(\bigcup_{S \in A} B_S = \emptyset \), then return \(\emptyset \).
6. Set \(A = \bigcup_{S \in A} \{ S \setminus \{ x \} \mid x \in B_S \} \), \(i = i + 1 \), and go to (3).

We illustrate the operation of this algorithm with an example.

Example 4.6. Let \(\Delta = \langle 4, 6, 7 \rangle = \{ 0, 4, 6, 7, 8, 10, \rightarrow \} \). It is clear that \(g(\Delta) = 5 \). Let \(\mathcal{R} = \{ S \mid S \) is a numerical semigroup and \(\{ 4, 6 \} \subseteq S \subseteq \Delta \} \). We have that \(\mathcal{R} \) is an infinite \(\mathcal{R} \)-variety because \(\langle 4, 6, 2k + 1 \rangle \in \mathcal{R} \) for all \(k \in \{ 5, \rightarrow \} \). By using Algorithm 4.5, we are going to compute the set \(\{ S \in \mathcal{R} \mid g(S) = 8 \} \).

- \(A = \{ \Delta \} \), \(i = 5 \).
- \(B_{\Delta} = \{ 7 \} \).
- \(A = \{ \langle 4, 6, 11, 13 \rangle \} \), \(i = 6 \).
- \(B_{\langle 4, 6, 11, 13 \rangle} = \{ 11, 13 \} \).
- \(A = \{ \langle 4, 6, 13, 15 \rangle, \langle 4, 6, 11 \rangle \} \), \(i = 7 \).
- \(B_{\langle 4, 6, 13, 15 \rangle} = \{ 13, 15 \} \) and \(B_{\langle 4, 6, 11 \rangle} = \emptyset \).
- \(A = \{ \langle 4, 6, 15, 17 \rangle, \langle 4, 6, 13 \rangle \} \), \(i = 8 \).
- The algorithm returns \(\{ \langle 4, 6, 15, 17 \rangle, \langle 4, 6, 13 \rangle \} \).

Our next purpose in this section will be to show that, if \(\mathcal{R} \) is an \(\mathcal{R} \)-variety and \(T \in \mathcal{R} \), then the set formed by all the descendants of \(T \) in the tree \(G(\mathcal{R}) \) is also an \(\mathcal{R} \)-variety. It is clear that, if \(S, T \in \mathcal{R} \), then \(S \) is a descendant of \(T \) if and only if \(T \in C_{\mathcal{R}}(S) \). Therefore, we can establish the following result.

Lemma 4.7. Let \(\mathcal{R} \) be an \(\mathcal{R} \)-variety and \(S, T \in \mathcal{R} \). Then \(S \) is a descendant of \(T \) if and only if there exists \(n \in \mathbb{N} \) such that \(T = S \cup \{ x \in \Delta(\mathcal{R}) \mid x \geq n \} \).

As an immediate consequence of the above lemma, we have the next one.

Lemma 4.8. Let \(\mathcal{R} \) be an \(\mathcal{R} \)-variety and \(S, T \in \mathcal{R} \) such that \(S \neq T \). If \(S \) is a descendant of \(T \), then \(F_{\Delta(\mathcal{R})}(S) = F_T(S) \).

Now we are ready to show the announced result.
Theorem 4.9. Let \mathcal{R} be an R-variety and $T \in \mathcal{R}$. Then

$$\mathcal{D}(T) = \{ S \in \mathcal{R} \mid \text{S is a descendant of T in the tree } G(\mathcal{R}) \}$$

is an R-variety.

Proof. Clearly, T is the maximum of $\mathcal{D}(T)$. Let us see that, if $S_1, S_2 \in \mathcal{D}(T)$, then $S_1 \cap S_2 \in \mathcal{D}(T)$. Since, from Lemma 4.7, we know that there exist $n_1, n_2 \in \mathbb{N}$ such that $T = S_i \cup \{ x \in \Delta(\mathcal{R}) \mid x \geq n_i \}$, $i = 1, 2$, it is sufficient to show that $T = (S_1 \cap S_2) \cup \{ x \in \Delta(\mathcal{R}) \mid x \geq \min\{n_1, n_2\} \}$. It is obvious that $(S_1 \cap S_2) \cup \{ x \in \Delta(\mathcal{R}) \mid x \geq \min\{n_1, n_2\} \} \subseteq T$. Let us see now the opposite inclusion. For that, let $t \in T$ such that $t \notin S_1 \cap S_2$. Then $t \notin S_1$ or $t \notin S_2$ and, therefore, $t \in \{ x \in \Delta(\mathcal{R}) \mid x \geq n_1 \}$ or $t \in \{ x \in \Delta(\mathcal{R}) \mid x \geq n_2 \}$. Thereby, $t \in \{ x \in \Delta(\mathcal{R}) \mid x \geq \min\{n_1, n_2\} \}$. Consequently, $T \subseteq (S_1 \cap S_2) \cup \{ x \in \Delta(\mathcal{R}) \mid x \geq \min\{n_1, n_2\} \}$. By applying again Lemma 4.7, we can assert that $S_1 \cap S_2 \in \mathcal{D}(T)$.

Finally, let $S \in \mathcal{D}(T)$ such that $S \neq T$. From Lemma 4.8, $S \cup \{ F_T(S) \} = S \cup \{ F_{\Delta(\mathcal{R})}(S) \} \in \mathcal{R}$ and, in consequence, $S \cup \{ F_T(S) \} \in \mathcal{D}(T)$. \[\Box\]

From the previous comment to [8, Example 7], we know that, if \mathcal{V} is a variety and $T \in \mathcal{V}$, then $\mathcal{D}(T)$ is a pseudo-variety and, moreover, every pseudo-variety can be obtained in this way. Therefore, there exist R-varieties which are not the set formed by all the descendants of an element belonging to a variety.

The following result shows that an R-variety can be obtained as the set formed by intersecting all the descendants, of an element belonging to a variety, with a numerical semigroup.

Corollary 4.10. Let \mathcal{V} be a variety, let $\Delta \in \mathcal{V}$, and let T be a numerical semigroup. Let $\mathcal{D}(\Delta) = \{ S \mid S \text{ is a descendant of } \Delta \text{ in } G(\mathcal{V}) \}$ and let $\mathcal{D}(\Delta, T) = \{ S \cap T \mid S \in \mathcal{D}(\Delta) \}$. Then $\mathcal{D}(\Delta, T)$ is an R-variety. Moreover, every R-variety can be obtained in this way.

Proof. If \mathcal{V} is a variety, then \mathcal{V} is an R-variety and, by applying Theorem 4.9, we have that $\mathcal{D}(\Delta)$ is an R-variety. From Corollary 2.10 we conclude that $\mathcal{D}(\Delta, T)$ is an R-variety.

If \mathcal{R} is an R-variety, by Theorem 2.0 we know that there exist a variety \mathcal{V} and a numerical semigroup T such that $\mathcal{R} = \{ S \cap T \mid S \in \mathcal{V} \}$. Now, it is clear that $\mathcal{V} = \mathcal{D}(\mathbb{N}) = \{ S \mid S \text{ is a descendant of } \mathbb{N} \text{ in } G(\mathcal{V}) \}$. Therefore, we have that $\mathcal{R} = \{ S \cap T \mid S \in \mathcal{D}(\mathbb{N}) \} = \mathcal{D}(\mathbb{N}, T)$. \[\Box\]

In the next result we see that the above corollary is also true when we write pseudo-variety instead of variety.

Corollary 4.11. Let \mathcal{P} be a pseudo-variety, let $\Delta \in \mathcal{P}$, and let T be a numerical semigroup. Let $\mathcal{D}(\Delta) = \{ S \mid S \text{ is a descendant of } \Delta \text{ in } G(\mathcal{P}) \}$ and let $\mathcal{D}(\Delta, T) = \{ S \cap T \mid S \in \mathcal{D}(\Delta) \}$. Then $\mathcal{D}(\Delta, T)$ is an R-variety. Moreover, every R-variety can be obtained in this way.
Proof. If \(\mathcal{P} \) is a pseudo-variety, then \(\mathcal{P} \) is an \(R \)-variety and, by applying Theorem 4.9 we have that \(\mathcal{D}(\Delta) \) is an \(R \)-variety as well. Now, from Corollary 2.10 we have that \(\mathcal{D}(\Delta, T) \) is an \(R \)-variety.

That every \(R \)-variety can be obtained in this way is an immediate consequence of Corollary 4.10 and having in mind that each variety is a pseudo-variety.

We conclude this section by illustrating the above corollary with an example.

Example 4.12. Let \(\mathcal{P} \) the pseudo-variety which appear in Example 2.12 In [8, Example 7] it is shown that \(G(\mathcal{P}) \) is given by the next subtree.

\[
\begin{align*}
\langle 5, 6, 8, 9 \rangle & & \langle 5, 6, 9, 13 \rangle & & \langle 5, 6, 8 \rangle \\
\langle 5, 6, 13, 14 \rangle & & \langle 5, 6, 9 \rangle & & \\
\langle 5, 6, 14 \rangle & & \langle 5, 6, 13 \rangle & & \\
\langle 5, 6, 19 \rangle & & \langle 5, 6 \rangle & & \\
\langle 5, 6 \rangle & & \langle 5, 6 \rangle & & \\
\end{align*}
\]

By applying Corollary 4.11 we have that, if \(T \) is a numerical semigroup, then \(\mathcal{R} = \{ S \cap T \mid S \in \mathcal{D}(\langle 5, 6, 13, 14 \rangle) \} \) is an \(R \)-variety. Let us observe that \(\mathcal{D}(\langle 5, 6, 13, 14 \rangle) = \{ \langle 5, 6, 13, 14 \rangle, \langle 5, 6, 14 \rangle, \langle 5, 6, 13 \rangle, \langle 5, 6, 19 \rangle, \langle 5, 6 \rangle \}. \)

5 The smallest \(R \)-variety containing a family of numerical semigroups

In [11, Proposition 2] it is proved that the intersection of varieties is a variety. As a consequence of this, we have that there exists the smallest variety which contains a given family of numerical semigroups.

On the other hand, in [8] was shown that, in general, the intersection of pseudo-varieties is not a pseudo-variety. Nevertheless, in [8, Theorem 4] it is proved that there exists the smallest pseudo-variety which contains a given family of numerical semigroups.

Our first objective in this section will be to show that, in general, we cannot talk about the smallest \(R \)-variety which contains a given family of numerical semigroups.

Lemma 5.1. Let \(\mathcal{F} \) be a family of numerical semigroups and let \(\Delta \) be a numerical semigroup such that \(S \subseteq \Delta \) for all \(S \in \mathcal{F} \). Then there exists an \(R \)-variety \(\mathcal{R} \) such that \(\mathcal{F} \subseteq \mathcal{R} \) and \(\max(\mathcal{R}) = \Delta \).
Proof. Let $\mathcal{R} = \{ S \mid S $ is a numerical semigroup and $ S \subseteq \Delta \}$. From Item 1 in Example 2.3 we have that \mathcal{R} is an R-variety. Now, it is trivial that $\mathcal{F} \subseteq \mathcal{R}$ and $\max(\mathcal{R}) = \Delta$.

The proof of the next lemma is straightforward and we can omit it.

Lemma 5.2. Let $\{ \mathcal{R}_i \}_{i \in I}$ be a family of R-varieties such that $\max(\mathcal{R}_i) = \Delta$ for all $i \in I$. Then $\bigcap_{i \in I} \mathcal{R}_i$ is an R-variety and $\max(\bigcap_{i \in I} \mathcal{R}_i) = \Delta$.

The following result says us that there exists the smallest R-variety which contains a given family of numerical semigroups and has a certain maximum.

Proposition 5.3. Let \mathcal{F} be a family of numerical semigroups and let Δ be a numerical semigroup such that $S \subseteq \Delta$ for all $S \in \mathcal{F}$. Then there exists the smallest R-variety which contains \mathcal{F} and with maximum equal to Δ.

Proof. Let \mathcal{R} be the intersection of all the R-varieties containing \mathcal{F} and with maximum equal to Δ. From Lemmas 5.1 and 5.2 we have the conclusion.

We will denote by $\mathcal{R}(\mathcal{F}, \Delta)$ the R-variety given by Proposition 5.3. Now we are interested in describe the elements of such an R-variety.

Lemma 5.4. Let $S_1, S_2, \ldots, S_n, \Delta$ be numerical semigroups such that $S_i \subseteq \Delta$ for all $i \in \{1, \ldots, n\}$. Then $F(\Delta)(S_1 \cap \cdots \cap S_n) = \max \{ F(\Delta)(S_1), \ldots, F(\Delta)(S_n) \}$.

Proof. We have that $F(\Delta)(S_1 \cap \cdots \cap S_n) = \max (\Delta \setminus (S_1 \cap \cdots \cap S_n)) = \max ((\Delta \setminus S_1) \cup \cdots \cup (\Delta \setminus S_n)) = \max \{ \max(\Delta \setminus S_1), \ldots, \max(\Delta \setminus S_n) \} = \max \{ F(\Delta)(S_1), \ldots, F(\Delta)(S_n) \}$.

Let us recall that, if S and Δ are numerical semigroups such that $S \subseteq \Delta$, then we defined $C(S, \Delta)$ in Example 2.3 (that is, the chain of S restricted to Δ). If \mathcal{F} is a family of numerical semigroups such that $S \subseteq \Delta$ for all $S \in \mathcal{F}$, then we will denote by $C(\mathcal{F}, \Delta)$ the set $\bigcup_{S \in \mathcal{F}} C(S, \Delta)$.

Theorem 5.5. Let \mathcal{F} be a family of numerical semigroups and let Δ be a numerical semigroup such that $S \subseteq \Delta$ for all $S \in \mathcal{F}$. Then $\mathcal{R}(\mathcal{F}, \Delta)$ is the set formed by all the finite intersections of elements in $C(\mathcal{F}, \Delta)$.

Proof. Let $\mathcal{R} = \{ S_1 \cap \cdots \cap S_n \mid n \in \mathbb{N} \setminus \{0\} \text{ and } S_1, \ldots, S_n \in C(\mathcal{F}, \Delta) \}$. Having in mind that $\mathcal{R}(\mathcal{F}, \Delta)$ is an R-variety which contains \mathcal{F} and with maximum equal to Δ, we easily deduce that $\mathcal{R} \subseteq \mathcal{R}(\mathcal{F}, \Delta)$.

Let us see now that \mathcal{R} is an R-variety. On the one hand, it is clear that $\Delta = \max(\mathcal{R})$ and that, if $S, T \in \mathcal{R}$, then $S \cap T \in \mathcal{R}$. On the other hand, let $S \in \mathcal{R}$ such that $S \neq \Delta$. Then $S = S_1 \cap \cdots \cap S_n$ for some $S_1, \ldots, S_n \in C(\mathcal{F}, \Delta)$. Now, from Lemma 5.4 we have that $F(S) = \max \{ F(S_1), \ldots, F(S_n) \}$ and, thus, $F\Delta(S_i) \leq F(S)$ for all $i \in \{1, \ldots, n\}$. Let us observe that, if $F(S) > F(S_i)$, then $S \cup \{ F(S) \} = S_i$. Moreover, if $F(S) = F(S_i)$, then we get $S \cup \{ F(S) \} = S_i \cup \{ F(S) \} \in C(\mathcal{F}, \Delta)$. Therefore, $S \cup \{ F(S) \} \in C(\mathcal{F}, \Delta)$ for all $i \in \{1, \ldots, n\}$. Since $S \cup \{ F(S) \} \cap \cdots \cap S_n \cup \{ F(S) \}$, then $S \cup \{ F(S) \} \in \mathcal{R}$. Consequently, \mathcal{R} is an R-variety.

Finally, since \mathcal{R} is an R-variety which contains \mathcal{F} and with maximum equal to Δ, then $\mathcal{R}(\mathcal{F}, \Delta) \subseteq \mathcal{R}$ and, thereby, we conclude that $\mathcal{R} = \mathcal{R}(\mathcal{F}, \Delta)$.
Let us observe that, if \mathcal{F} is a finite family, then $C(\mathcal{F}, \Delta)$ is a finite set and, therefore, $\mathcal{R}(\mathcal{F}, \Delta)$ is a finite R-variety.

Lemma 5.6. Let \mathcal{R} and \mathcal{R}' be two R-varieties. If $\mathcal{R} \subseteq \mathcal{R}'$, then $\Delta(\mathcal{R}) \subseteq \Delta(\mathcal{R}')$.

Proof. If $\mathcal{R} \subseteq \mathcal{R}'$, then $\Delta(\mathcal{R}) \subseteq \mathcal{R}'$. Therefore, $\Delta(\mathcal{R}) \subseteq \Delta(\mathcal{R}')$. \hfill \square

The next example shows us that, in general, we cannot talk about the smallest R-variety which contains a given family of numerical semigroups.

Example 5.7. Let $\mathcal{F} = \{(5,6), (5,7)\}$. As a consequence of Lemma 5.6, the candidate to be the smallest R-variety which contains \mathcal{F} must have as maximum the numerical semigroup $(5,6,7)$ (that is, the smallest numerical semigroup containing $(5,6)$ and $(5,7)$). Thus, the candidate to be the smallest R-variety which contains \mathcal{F} is $\mathcal{R}(\mathcal{F}, (5,6,7))$.

Let us see now that $\mathcal{R}(\mathcal{F}, (5,6,7)) \not\subseteq \mathcal{R}(\mathcal{F}, (5,6,7,8))$ and, in this way, that there does not exist the smallest R-variety which contains \mathcal{F}. In order to do it, we will show that $(5,6,7,8) \not\in \mathcal{R}(\mathcal{F}, (5,6,7,8))$. In fact, by applying Theorem 5.5, if $(5,6,7) \not\in \mathcal{R}(\mathcal{F}, (5,6,7,8))$, then we deduce that there exist $S_1 \in C((5,6),(5,6,7,8))$ and $S_2 \in C((5,7),(5,6,7,8))$ such that $S_1 \cap S_2 = (5,6,7)$. Since $S_1 \in C((5,6),(5,6,7,8))$, then there exists $n_1 \in \mathbb{N}$ such that $S_1 = (5,6) \cup \{x \in (5,6,7,8) \mid x \geq n_1\}$. Moreover, $(5,6,7) \subseteq S_1$ and, thereby, $n_1 \leq 7$. Consequently, $8 \in S_1$. By an analogous reasoning, we have that $8 \in S_2$ too. Consequently, $8 \in S_1 \cap S_2 = (5,6,7)$, which is false.

Let \mathcal{R} be an R-variety. We will say that \mathcal{F} (subset of \mathcal{R}) is a system of generators of \mathcal{R} if $\mathcal{R} = \mathcal{R}(\mathcal{F}, \Delta(\mathcal{R}))$. Let us observe that, in such a case, \mathcal{R} is the smallest R-variety which contains \mathcal{F} and with maximum equal to $\Delta(\mathcal{R})$.

We will say that an R-variety, \mathcal{R}, is finitely generated if there exists a finite set $\mathcal{F} \subseteq \mathcal{R}$ such that $\mathcal{R} = \mathcal{R}(\mathcal{F}, \Delta(\mathcal{R}))$ (that is, if \mathcal{R} has a finite system of generators). As a consequence of Theorem 5.5 we have the following result.

Corollary 5.8. An R-variety is finitely generated if and only if it is finite.

From now on, \mathcal{F} will denote a family of numerical semigroups and Δ will denote a numerical semigroup such that $S \subseteq \Delta$ for all $S \in \mathcal{F}$. Our purpose is to give a method in order to compute the minimal $\mathcal{R}(\mathcal{F}, \Delta)$-system of generators of a $\mathcal{R}(\mathcal{F}, \Delta)$-monoid by starting from \mathcal{F} and Δ.

If $A \subseteq \Delta$, then for each $S \in \mathcal{F}$ we define

$$
\alpha(S) = \begin{cases}
S, & \text{if } A \subseteq S, \\
S \cup \{x \in \Delta \mid x \geq x_S\}, & \text{if } A \nsubseteq S,
\end{cases}
$$

where $x_S = \min\{a \in A \mid a \notin S\}$.

As a consequence of Lemma 3.2 and Theorem 5.5 we have the next result.

Lemma 5.9. The $\mathcal{R}(\mathcal{F}, \Delta)$-monoid generated by A is $\bigcap_{S \in \mathcal{F}} \alpha(S)$.

Recalling that $\mathcal{R}(\mathcal{F}, \Delta)(A)$ denotes the $\mathcal{R}(\mathcal{F}, \Delta)$-monoid generated by A, we have the following result.
Proposition 5.10. If $A \subseteq \Delta$, then $B = \{x_S \mid S \in \mathcal{F} \text{ and } A \nsubseteq S\}$ is the minimal $\mathcal{R}(\mathcal{F}, \Delta)$-system of generators of $\mathcal{R}(\mathcal{F}, \Delta)(A)$.

Proof. Let us observe that, if $S \in \mathcal{F}$, then $A \subseteq S$ if and only if $B \subseteq S$. Moreover, if $A \nsubseteq S$, then $\min\{a \in A \mid a \notin S\} = \min\{b \in B \mid b \notin S\}$. Therefore, by applying Lemma 5.9 we have that $\mathcal{R}(\mathcal{F}, \Delta)(A) = \mathcal{R}(\mathcal{F}, \Delta)(B)$. Consequently, in order to prove that B is the minimal $\mathcal{R}(\mathcal{F}, \Delta)$-system of generators of $\mathcal{R}(\mathcal{F}, \Delta)(A)$, will be enough to see that, if $C \subset B$, then $\mathcal{R}(\mathcal{F}, \Delta)(C) \neq \mathcal{R}(\mathcal{F}, \Delta)(A)$.

In effect, if $C \subset B$, then there exists $S \in \mathcal{F}$ such that $x_S \notin C$ and, thereby, we have that $C \subseteq S$ or that $\min\{c \in C \mid c \notin S\} > x_S$. Now, by applying once more time Lemma 5.9, we easily deduce that $x_S \notin \mathcal{R}(\mathcal{F}, \Delta)(C)$. Since $x_S \in B \subseteq A$, then we get that $A \nsubseteq \mathcal{R}(\mathcal{F}, \Delta)(C)$ and, therefore, $\mathcal{R}(\mathcal{F}, \Delta)(C) \neq \mathcal{R}(\mathcal{F}, \Delta)(A)$.

As an immediate consequence of the above proposition we have the next result.

Corollary 5.11. Every $\mathcal{R}(\mathcal{F}, \Delta)$-monoid has $\mathcal{R}(\mathcal{F}, \Delta)$-range less than or equal to the cardinality of \mathcal{F}.

We will finish this section by illustrating its content with an example.

Example 5.12. Let $\mathcal{F} = \{\langle 5, 7, 9, 11, 13 \rangle, \langle 4, 10, 11, 13 \rangle\}$ and $\Delta = \{4, 5, 7\}$. We are going to compute the tree $G(\mathcal{R}(\mathcal{F}, \Delta))$.

First of all, to compute the minimal $\mathcal{R}(\mathcal{F}, \Delta)$-system of generators of $\langle 4, 5, 7 \rangle$, we apply Proposition 5.10 with $A = \{4, 5, 7\}$. Since $x_{\langle 5, 7, 9, 11, 13 \rangle} = 4$ and $x_{\langle 4, 10, 11, 13 \rangle} = 5$, then $\{4, 5\}$ is such a minimal $\mathcal{R}(\mathcal{F}, \Delta)$-system. Now, because $\mathcal{F}_\Delta(\langle 4, 5, 7 \rangle) = -1$, and by applying Theorem 4.2 we get that $\langle 4, 5, 7 \rangle$ has two children, $\langle 4, 5, 7 \rangle \setminus \{4\} = \langle 5, 7, 8, 9, 11 \rangle$ (with $\mathcal{F}_\Delta(\langle 5, 7, 8, 9, 11 \rangle) = 4$) and $\langle 4, 5, 7 \rangle \setminus \{5\} = \langle 4, 7, 9, 10 \rangle$ (with $\mathcal{F}_\Delta(\langle 4, 7, 9, 10 \rangle) = 5$).

Now, if we take $A = \{5, 7, 8, 9, 11\}$ in Proposition 5.10, then we have that $x_{\langle 5, 7, 9, 11, 13 \rangle} = 8$ and $x_{\langle 4, 10, 11, 13 \rangle} = 5$. Thus, we conclude that $\{5, 8\}$ is the minimal $\mathcal{R}(\mathcal{F}, \Delta)$-system of $\langle 5, 7, 8, 9, 11 \rangle$. Moreover, since $\mathcal{F}_\Delta(\langle 5, 7, 8, 9, 11 \rangle) = 4$, then Theorem 4.2 asserts that $\langle 5, 7, 8, 9, 11 \rangle \setminus \{5\} = \langle 7, 8, 9, 10, 11, 12, 13 \rangle$ (with $\mathcal{F}_\Delta(\langle 7, 8, 9, 10, 11, 12, 13 \rangle) = 5$) and $\langle 5, 7, 8, 9, 11 \rangle \setminus \{8\} = \langle 5, 7, 9, 11, 13 \rangle$ (with $\mathcal{F}_\Delta(\langle 5, 7, 9, 11, 13 \rangle) = 8$) are the two children of $\langle 5, 7, 8, 9, 11 \rangle$.

With $A = \{4, 7, 9, 10\}$, we get that $\{4, 7\}$ is the minimal $\mathcal{R}(\mathcal{F}, \Delta)$-system of $\langle 4, 7, 9, 10 \rangle$. By recalling that $\mathcal{F}_\Delta(\langle 4, 7, 9, 10 \rangle) = 5$, we conclude that $\langle 4, 7, 9, 10 \rangle$ has only one child, that is $\langle 4, 7, 9, 10 \rangle \setminus \{7\} = \langle 4, 9, 10, 11 \rangle$ (with $\mathcal{F}_\Delta(\langle 4, 9, 10, 11 \rangle) = 7$).

By repeating the above process, we get the whole tree $G(\mathcal{R}(\mathcal{F}, \Delta))$.

19
Now, we are going to represent the vertices of $G(\mathcal{R}(\mathcal{F}, \Delta))$ using their minimal $\mathcal{R}(\mathcal{F}, \Delta)$-systems of generators. Moreover, we add to each vertex the corresponding Frobenius number restricted to Δ. Thus, we clarify all the steps to build the tree $G(\mathcal{R}(\mathcal{F}, \Delta))$.

6 Conclusion

We have been able to give a structure to certain families of numerical semigroups which are not (Frobenius) varieties or (Frobenius) pseudo-varieties. For that we have generalized the concept of Frobenius number to the concept of restricted Frobenius number and, then, we have defined the \mathcal{R}-varieties (or (Frobenius) restricted variety).

After studying relations among varieties, pseudo-varieties, and \mathcal{R}-varieties, we have introduced the concepts of \mathcal{R}-monoid and minimal \mathcal{R}-system of generators of a \mathcal{R}-monoid, which lead to associate a tree with each \mathcal{R}-variety and, in consequence, obtain recurrently all the elements of an \mathcal{R}-variety.

Finally, although in general it is not possible to define the smallest \mathcal{R}-variety that contains a given family \mathcal{F} of numerical semigroups, we have been able to
give an alternative when we fix in advance the maximum of the smallest R-variety.

References

[1] M. Bras-Amorós, P. A. García-Sánchez, Patterns on numerical semigroups, *Linear Algebra Appl.* **414** (2006), 652–669.

[2] M. Bras-Amorós, P. A. García-Sánchez, and A. Vico-Oton, Nonhomogeneous patterns on numerical semigroups, *Int. J. Algebra Comput.* **23** (2013), 1469–1483.

[3] M. Delgado, P. A. García-Sánchez, J. C. Rosales, J. M. Urbano-Blanco, Systems of proportionally modular Diophantine inequalities, *Semigroup Forum* **76** (2008), 469–488.

[4] E. Kunz, On the type of certain numerical semigroups and a question of Wilf, *Semigroup Forum* **93** (2016), 205–210.

[5] E. Kunz, R. Waldi, Geometrical illustration of numerical semigroups and of some of their invariants, *Semigroup Forum* **89** (2014), 664–691.

[6] J. L. Ramírez Alfonsín, *The Diophantine Frobenius problem* (Oxford Univ. Press, 2005).

[7] A. M. Robles-Pérez, J. C. Rosales, The numerical semigroup of phrases’ lengths in a simple alphabet, *The Scientific World Journal* **2013** (2013), Article ID 459024, 9 pages.

[8] A. M. Robles-Pérez, J. C. Rosales, Frobenius pseudo-varieties in numerical semigroups, *Ann. Mat. Pura Appl.* **194** (2015), 275–287.

[9] A. M. Robles-Pérez, J. C. Rosales, Numerical semigroups in a problem about cost-effective transport. To appear in *Forum Math.* DOI: 10.1515/forum-2015-0123

[10] A. M. Robles-Pérez, J. C. Rosales, Numerical semigroups in a problem about economic incentives for consumers. Preprint ([arXiv:1605.03900](arXiv:1605.03900 [math.GR])).

[11] J. C. Rosales, Families of numerical semigroups closed under finite intersections and for the Frobenius number, *Houst. J. Math.* **34** (2008), 339–348.

[12] J. C. Rosales, M. B. Branco, D. Torrão, Sets of positive integers closed under product and the number of decimal digits, *J. Number Theory* **147** (2015), 1–13.

[13] J. C. Rosales, M. B. Branco, D. Torrão, Bracelet monoids and numerical semigroups, *Appl. Algebr. Eng. Commun. Comput.* **27** (2016), 169–183.
[14] J. C. Rosales and P. A. García-Sánchez, *Numerical semigroups* (Developments in Mathematics, vol. 20, Springer, New York, 2009).

[15] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and M. B. Branco, Numerical semigroups with maximal embedding dimension, *Int. J. Commutat. Rings* 2 (2003), 47–53.

[16] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and M. B. Branco, Arf numerical semigroups, *J. Algebra* 276 (2004), 3–12.

[17] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and M. B. Branco, Saturated numerical semigroups, *Houst. J. Math.* 30 (2004), 321–330.