Four Flavors of Entailment

Sibylle M"ohle1(✉), Roberto Sebastiani2✉, and Armin Biere1✉

1 Johannes Kepler University Linz, Linz, Austria
sibylle.moehle-rotondi@jku.at
2 DISI, University of Trento, Trento, Italy

Abstract. We present a novel approach for enumerating partial models of a propositional formula, inspired by how theory solvers and the SAT solver interact in lazy SMT. Using various forms of dual reasoning allows our CDCL-based algorithm to enumerate partial models with no need for exploring and shrinking full models. Our focus is on model enumeration without repetition, with potential applications in weighted model counting and weighted model integration for probabilistic inference over Boolean and hybrid domains. Chronological backtracking renders the use of blocking clauses obsolete. We provide a formalization and examples. We further discuss important design choices for a future implementation related to the strength of dual reasoning, including unit propagation, using SAT or QBF oracles.

1 Introduction

Model enumeration is a key task in various activities, such as lazy Satisfiability Modulo Theories [29], predicate abstraction [13], software product line engineering [7], model checking [2, 18, 31], and preimage computation [14, 30].

Whereas in some applications enumerating models multiple times causes no harm, in others avoiding repetitions is crucial. Examples are weighted model counting (WMC) for probabilistic reasoning in Boolean domains and weighted model integration (WMI), which generalizes WMC for hybrid domains [22, 23]. There, the addends are partial satisfying assignments, i.e., some variables remain unassigned. Each of these assignments represents a set of total assignments, and consequently, the number of the addends is reduced. A formula might be represented in a concise manner by the disjunction of its pairwise contradicting partial models, which is of interest in digital circuit synthesis [1]. Partial models are relevant also in predicate abstraction [13], preimage computation [14, 30], and existential quantification [4]. They can be obtained by shrinking total models [32]. Alternatively, dual reasoning, where the formula is considered together with its negation, allows for pruning the search space early and detecting partial models. It is also applied in the context of model counting [3, 19].

If only a subset X of the variables is significant, the models are projected onto these relevant variables. We say that we existentially quantify the formula over the irrelevant variables Y and write $\exists Y \left[F(X, Y) \right]$, where $F(X, Y)$ is a formula over variables X and Y such that $X \cap Y = \emptyset$. Projected model enumeration
occurs in automotive configuration [34], existential quantifier elimination [4],
image computation [9,10], predicate abstraction [13], and bounded model check-
ing [31].

To avoid finding models multiple times, blocking clauses might be added to
the formula under consideration [11,18]. This method suffers from a potentially
exponential blowup of the formula and consequent slowdown of unit propagation.
Toda and Soh [33] address this issue by a variant of conflict analysis, which is
motivated by Gebser et al. [8] and is exempt from blocking clauses. Chronological
backtracking in Grumberg et al. [9] and our previous work [21] ensures that the
search space is traversed in a systematic manner, similarly to DPLL [5], and the
use of blocking clauses is avoided. Whenever a model is found, the last (relevant)
decision literal is flipped. No clause asserting this flipped decision is added, which
might cause problems during later conflict analysis. This problem is addressed
by modifying the implication graph [9] or by an alternative first UIP scheme [33].

Our contribution. We lift the way how theory and SAT solver interact in SMT
to propositional projected model enumeration without repetition. Based on the
notion of logical entailment, combined with dual reasoning, our algorithm detects
partial models in a forward manner, rendering model shrinking superfluous. The
test for entailment is crucial in our algorithm. Anticipating a future implementa-
tion, we present it in four flavors with different strengths together with examples.
The main enumeration engine uses chronological CDCL [25], is exempt from
blocking clauses, and thus does not suffer from a formula blowup. Its projection
capabilities make it suitable also for applications requiring model enumeration
with projection. We conclude our presentation by a formalization of our algo-
rithm and a discussion of the presented approach. Our work is motivated by
projected model counting and weighted model integration. We therefore focus on
(projected) model enumeration without repetition. Contrarily to Oztok and Dar-
wiche [26], we use an oracle and build a Disjoint Sum-of-Products (DSOP) [1].
The work by Lagniez and Marquis [12] is orthogonal to ours. It is led by a dis-
junctive decomposition of the formula under consideration after a full model is
found and also decomposes it into disjoint connected components.

2 Preliminaries

A literal \(\ell\) is a variable \(v\) or its negation \(\neg v\). We denote by \(V(\ell)\) the variable
of \(\ell\) and extend this notation to sets and sequences of literals. We write \(\bar{\ell}\) for
the complement of \(\ell\), i.e., \(\bar{\ell} = \neg \ell\), defining \(\neg \neg \ell = \ell\). A formula in conjunctive
normal form (CNF) over variables \(V\) is defined as a conjunction of clauses,
which are disjunctions of literals with variable in \(V\), whereas a formula in disjunctive
normal form (DNF) is a disjunction of cubes, which are conjunctions of literals.
We might interpret formulae, clauses, and cubes also as sets of clauses or cubes,
and literals and write \(C \in F\) for referring to a clause or cube \(C\) in a formula \(F\)
and \(\ell \in C\) where \(\ell\) is a literal in \(C\). The empty CNF formula and the empty
cube are denoted by 1, the empty DNF formula and the empty clause by 0.
A total assignment is a mapping from the set of variables V to the truth values 1 (true) and 0 (false). A trail $I = \ell_1 \ldots \ell_n$ is a non-contradictory sequence of literals, which might also be interpreted as a (possibly partial) assignment, where $I(\ell) = 1$ if $\ell \in I$ and $I(\ell) = 0$ if $\neg \ell \in I$. We denote the empty trail by ε and the set of variables of the literals on I by $V(I)$. Trails and literals might be concatenated, written $I = JK$ and $I = J\ell$, provided $V(J) \cap V(K) = \emptyset$ and $V(J) \cap V(\ell) = \emptyset$. We interpret I also as a set of literals and write $\ell \in I$ to denote a literal ℓ on I. The residual of a formula F under a trail I, written $F|_I$, is obtained by replacing the literals ℓ in F, where $V(\ell) \subseteq V(I)$, by their truth value, and by recursively propagating truth values through Boolean connectives.

In particular, for a CNF formula this consists in removing satisfied clauses as well as falsified literals. By “=” in $F|_I = 1$ and $F|_I = 0$, notably by omitting quantifiers, we explicitly mean syntactical equality and consider the (possibly partial) assignment represented by I, i.e., only the literals on I. The notion of residual is extended similarly to clauses and literals. We denote by $X - I$ the unassigned variables in X. By $\pi(I, X)$ we refer to the projection of I onto X and extend this notation to sets of literals.

The decision level function $\delta: V \mapsto \mathbb{N} \cup \{\infty\}$ returns the decision level of a variable v. If v is unassigned, we have $\delta(v) = \infty$, and δ is updated whenever v is assigned or unassigned. We define $\delta(\ell) = \delta(V(\ell))$ for a literal ℓ, $\delta(C) = \max\{\delta(\ell) \mid \ell \in C\}$ for a clause $C \neq 0$, and $\delta(I) = \max\{\delta(\ell) \mid \ell \in I\}$ for a sequence of literals $I \neq \varepsilon$. Further, $\delta(L) = \max\{\delta(\ell) \mid \ell \in L\}$ for a set of literals $L \neq \emptyset$. We define $\delta(0) = \delta(\varepsilon) = \delta(\emptyset) = 0$. The updated function δ, in which $V(\ell)$ is assigned to decision level d, is denoted by $\delta[\ell \mapsto d]$. If all literals in V are unassigned, we write $\delta[V \mapsto \infty]$ or $\delta \equiv \infty$. The function δ is left-associative, i.e., $\delta[I \mapsto \infty][\ell \mapsto d]$ first unassigns all literals on I and then assigns literal ℓ to decision level d. We mark the decision literals on I by a superscript, i.e., ℓ^d, and denote the set consisting of the decision literals on I by $\text{decis}(I) = \{\ell \mid \ell^d \in I\}$. Similarly, we denote the set of unit literals in F or its residual under I by $\text{units}(F)$ or $\text{units}(F|_I)$. Trails are partitioned into decision levels, and $I_{\leq n}$ is the subsequence of I consisting of all literals ℓ where $\delta(\ell) \leq n$.

Following Sebastiani [28], we say that a (partial) assignment I entails a formula F, if all total extensions of I satisfy F. In this work it was noticed that, if I entails F, we can not conclude that $F|_I = 1$, but only that $F|_I$ is valid. Consider as an example $F = (x \land y) \lor (x \land \neg y)$ over variables $X = \{x\}$ and $Y = \{y\}$ and the trail $I = x$ ranging over $X \cup Y$. The possible extensions of I are $I' = xy$ and $I'' = x\neg y$. We have $F|_{I'} = F|_{I''} = 1$, therefore I entails F. Notice that $F|_I = y \lor \neg y$ is valid but it syntactically differs from 1.

3 Early Pruning for Projected Model Enumeration

Our approach is inspired by how theory solvers and the SAT solver interact in lazy SMT. A general schema is described in Fig. 1. Let $F(X,Y)$ be a formula over relevant variables X and irrelevant variables Y such that $X \cap Y = \emptyset$. A SAT solver executes enumeration, either DPLL-based [5,6] or CDCL-based [17,24],
Input: formula $F(X,Y)$ over variables $X \cup Y$ such that $X \cap Y = \emptyset$, trail I, decision level function δ

Output: DNF M consisting of models of F projected onto X

Enumerate (F)

1. $I := \varepsilon$ // empty trail
2. $\delta := \infty$ // unassign all variables
3. $M := 0$ // empty DNF
4. forever do
 5. $C := \text{PropagateUnits} (F, I, \delta)$
 6. if $C \neq 0$ then // conflict
 7. $c := \delta(C)$ // conflict level
 8. if $c = 0$ then
 9. return M
 10. else if all variables in $X \cup Y$ are assigned then // I is total model
 11. if $V(\text{decs}(I)) \cap X = \emptyset$ then // no relevant decision left
 12. return $M \lor \pi(I,X)$ // record I projected onto X
 13. $M := M \lor \pi(I,X)$ // record I projected onto X
 14. $b := \delta(\text{decs}(\pi(I,X)))$ // highest relevant decision level
 15. $\text{Backtrack}(I, b - 1)$ // flip last relevant decision
 16. else if $\text{Entails}(I, F)$ then // I is partial model
 17. if $V(\text{decs}(I)) \cap X = \emptyset$ then // no relevant decision left
 18. return $M \lor \pi(I,X)$ // record I projected onto X
 19. $M := M \lor \pi(I,X)$ // record I projected onto X
 20. $b := \delta(\text{decs}(\pi(I,X)))$ // highest relevant decision level
 21. $\text{Backtrack}(I, b - 1)$ // flip last relevant decision
 22. else
 23. $\text{Decide}(I, \delta)$

Fig. 1. Early pruning for projected model enumeration. Lines 1–16 and 23–24 list CDCL-based model enumeration with chronological backtracking. If after unit propagation no conflict occurs and not all variables are assigned, an oracle might be called to check whether I entails F (line 17). If Entails returns 1, the relevant decision literal with highest decision level might be flipped. Otherwise, a decision is taken (line 24). Notice that lines 12–16 and lines 18–22 are identical.

on F, maintaining a trail I over variables $X \cup Y$. In lines 1–16 and 23–24, we consider the CDCL-based enumeration engine with chronological backtracking of our framework [21]. Now assume unit propagation has been carried out until completion, no conflict occurred and there are still unassigned variables (line 17). The trail I already might entail F, although $F|_I \neq 1$. We can check whether I entails F by an incremental call to an “oracle” [16] Entails on I and F. If Entails returns 1, the procedure does not need to test any total extension of I, since all of them are models of F. It can proceed and flip the relevant decision literal with highest decision level (line 21–22). If Entails returns 0, a decision needs to be taken (line 24). Notice that lines 12–16 and lines 18–22 are identical. Our method is based on chronological backtracking and follows the scheme in our
framework [21], the functions PropagateUnits() and AnalyzeConflict() are taken from our previous work [20]. Entails plays the role of an “early pruning call” to a theory solver in SMT, and F plays the role of the theory [29]. Redundant work is saved by applying unit propagation until completion before calling Entails.

Quantified Entailment Condition. We use quantifiers with QBF semantics, and quantified formulae are always closed. A closed QBF formula evaluates to either 1 or 0. Consider $\varphi = \forall X \forall Y \left[F_{I} \right]$, where F is a formula over variables $X \cup Y$ and the trail I ranges over $X \cup Y$. In φ, the remaining variables $(X \cup Y) - I$ are quantified. Accordingly, by $\forall X \forall Y \left[F_{I} \right] = 1$, we express that all possible total extensions of I satisfy F, in contrast to $F_{I} = 1$, expressing syntactic equality according to Sect. 2. The latter fact implies the former, but not vice versa.

Entailment Under Projection. If Entails implements the notion of entailment described in Sect. 2, then by calling it on I and F, we check whether $F_{I} = 1$ for all total extensions J of I, i.e., whether $\forall X \forall Y \left[F_{I} \right] = 1$. However, since we are interested in the models of F projected onto X, it suffices to check that for each possible assignment J_{X} to the unassigned variables in X, there exists one assignment J_{Y} to the unassigned variables in Y such that $F_{I} = 1$ where $I' = I \cup J_{X} \cup J_{Y}$. In essence, we need to determine the truth of the QBF formula $\forall X \exists Y \left[F_{I} \right]$, which, in general, might be expensive, computationally. In some cases, however, a computationally cheaper (but weaker) test might be sufficient. Entails in line 17 of Enumerate can be seen as a black box pooling four entailment tests of different strengths, which we discuss in the next section.

4 Testing Entailment

Consider the original entailment condition, $\forall X \forall Y \left[F_{I} \right] = 1$. Now we have that $\forall X \forall Y \left[F_{I} \right] = 1 \iff \exists X \exists Y \left[\neg F_{I} \right] = 0$. Therefore, to check whether I entails F, a SAT solver might be called to check whether $\neg F \land I$ is unsatisfiable. The SAT solver returns “unsat”, if and only if I entails F. This observation motivates the use of dual reasoning for testing entailment in cases where cheaper tests fail. We present four flavors of the entailment test and provide examples.

1) $F_{I} = 1$ (syntactic check). If $F_{I} = 1$, also $\forall X \forall Y \left[F_{I} \right] = 1$, and I entails F.
2) $F_{I} \approx 1$ (incomplete check in P). Alternatively, if F_{I} differs from 1, an incomplete algorithm might be used, to check whether $\neg F \land I$ is unsatisfiable, by for instance executing only unit propagation or aborting after a predefined number of decision levels.
3) $F_{I} \equiv 1$ (semantic check in coNP). A SAT oracle runs on $\neg F \land I$ until termination. Basically, it checks the unsatisfiability of $\neg F \land I$, i.e., whether it holds that $\exists X \exists Y \left[\neg F_{I} \right] = 0$. If it answers “unsat”, then I entails F.
4) $\forall X \exists Y \left[F_{I} \right] = 1$ (check in Π_{2}^{P}). A QBF oracle is called to check whether the 2QBF formula $\forall X \exists Y \left[F_{I} \right]$ is 1.

Modern SAT solvers mostly work on CNFs. Thus, following our dualization approach [19], we may convert $F(X, Y)$ and $\neg F(X, Y)$ into CNF formulae $P(X, Y, S)$ and $N(X, Y, T)$, where S and T denote the variables introduced by the CNF encoding. Notice that $I \land \neg F$ is unsatisfiable iff $I \land N$ is unsatisfiable.
Table 1. Examples of formulae F over relevant variables X and irrelevant variables Y. For a concise representation of formulae, we represent conjunction by juxtaposition and negation by overline. In all examples, I entails F projected onto X. The entailment tests are listed from left to right in ascending order by their strength. Here, “✓” denotes the fact that I passes the test in the column, if applied to the formula in the row.

F	X	Y	$I = 1$	$\equiv 1$	$\ni 1$	2QBF
$(x_1 \lor y \lor x_2)$	$\{x_1, x_2\}$	$\{y\}$	✓	✓	✓	✓
$x_1 y \lor \overline{y} x_2$	$\{x_1, x_2\}$	$\{y\}$	✓	✓	✓	✓
$x_1(\overline{x_2} \overline{y} \lor \overline{x_2} y \lor x_2 \overline{y} \lor x_2 y)$	$\{x_1, x_2\}$	$\{y\}$	✓	✓	✓	✓
$x_1(x_2 \leftrightarrow y)$	$\{x_1, x_2\}$	$\{y\}$	✓	✓	✓	✓

Table 1 lists four examples, which differ in the strength of the required entailment test. The first column lists the formula F, the second and third column show the definitions of X and Y. For a concise representation of formulae, we represent conjunction by juxtaposition and negation by overline. The fourth column contains the current trail I. The fifth to eighth column denote the tests, in ascending order by their strength: $F|_1 = 1$, $F|_1 \approx 1$, $F|_1 \equiv 1$, $\forall X \exists Y [F|_1] = 1$. In all examples, I entails F, and “✓” denotes the fact that I passes the test in the column, if applied to the formula in the row.

Consider the first example, $F = (x_1 \lor y \lor x_2)$ and $I = x_1$. We have $F|_1 = 1$, and I entails F, which is detected by the syntactic check. For the second example, $F = x_1 y \lor \overline{y} x_2$, we have $F|_1 = y \lor \overline{y}$, which is valid, but it syntactically differs from 1. The SAT solver therefore calls Entails on $\neg F \land I$. For $\neg F = (\overline{x_1} \lor \overline{y})(y \lor \overline{x_2})$, we find $\neg F|_1 = (\overline{y})(y)$. After propagating \overline{y}, a conflict at decision level zero occurs, hence Entails returns 1, and an incomplete test is sufficient. In this example, $\neg F$ is already in CNF. The key idea conveyed by it can easily be lifted to the case where additional variables are introduced by the CNF transformation of $\neg F$. For the third example, $F = x_1(\overline{x_2} \overline{y} \lor \overline{x_2} y \lor x_2 \overline{y} \lor x_2 y)$, both $P|_1$ and $N|_1$ are undefined and contain no units. However, $N|_1$ is unsatisfiable, the SAT oracle call on $N \land I$ terminates with “unsat”, and Entails returns 1. Hence, this example requires at least a SAT oracle. For the last example, $F = x_1(x_2 \leftrightarrow y)$, we define

$$P = (x_1)(s_1 \lor s_2)(\overline{s_1} \lor x_2)(\overline{s_1} \lor y)(\overline{s_2} \lor \overline{x_2})(\overline{s_2} \lor \overline{y})$$ with $S = \{s_1, s_2\}$ and

$$N = (\overline{t_1} \lor t_1 \lor t_2)(\overline{t_1} \lor x_2)(\overline{t_1} \lor y)(\overline{t_2} \lor \overline{x_2})(\overline{t_2} \lor \overline{y})$$ with $T = \{t_1, t_2\}$

We have $P|_1 \neq 1$. Neither $P|_1$ nor $N|_1$ contains a unit literal, hence the incomplete test is too weak. Assume a SAT solver is called to check unsatisfiability of $N \land I$, and x_2 is decided first. After propagating $\overline{t_2}$, t_1 and \overline{y}, a total model of N is found. The SAT solver answers “sat”, and Entails returns 0. A QBF solver checking $\varphi = \forall X \exists Y [x_2 y \lor \overline{x_2} \overline{y}]$ returns 1. In fact, φ is true for $I = x_2 y$ and $I = \overline{x_2} \overline{y}$, and Entails answers 1. Thus, at least a QBF oracle is needed.
Enumerate (lines 17–22 in function \(\text{Enumerate} \)). It extends our previous calculus \([21]\) by projection and by a general-

The algorithm listed in Fig. 1 can be expressed by means of a formal calculus (Fig. 2). It extends our previous calculus \([21]\) by projection and by a generalized precondition modeling an incremental call to an oracle for checking entailment (lines 17–22 in function \texttt{Enumerate}). Notably, in our work \([21]\), only total models are found, while entailment in our actual work enables the detection of partial models. The variables in \(Y\) and \(S\) (from the CNF encoding) are treated equally with respect to unit propagation and decision. We therefore merge those two variable sets into \(Y\) to simplify the formalization. This does not affect the outcome of the entailment test. In favor of a concise description of the rules, we emphasize the differences to our previous framework \([21]\) and refer to this work for more details.

The procedure terminates as soon as either a conflict at decision level zero occurs (rule \texttt{EndFalse}) or a possibly partial model is found and \(I\) contains no relevant decision literal (rule \texttt{EndTrue}). Requiring that no relevant decision is left on the trail prevents the recording of redundant models. The projection

Rule	Description		
\texttt{EndTrue}:	\((F, I, M, \delta) \sim_{\text{EndTrue}} M \lor m \) if \(V(\text{decs}(I)) \cap X = \emptyset\) and \(m \overset{\text{def}}{=} \pi(I, X)\) and \(\forall X \exists Y [F	_I] = 1\)	
\texttt{EndFalse}:	\((F, I, M, \delta) \sim_{\text{EndFalse}} M\) if exists \(C \in F\) and \(C	_I = 0\) and \(\delta(C) = 0\)	
\texttt{Unit}:	\((F, I, M, \delta) \sim_{\text{Unit}} (F, I\ell, M, \delta[\ell \mapsto a])\) if \(F	_I \neq 0\) and exists \(C \in F\) with \(\{\ell\} = C	_I\) and \(a \overset{\text{def}}{=} \delta(C \setminus \{\ell\})\)
\texttt{BackTrue}:	\((F, I, M, \delta) \sim_{\text{BackTrue}} (F, UK\ell, M \lor m, \delta[L \mapsto \infty][\ell \mapsto b])\) if \(UV \overset{\text{def}}{=} I\) and \(D \overset{\text{def}}{=} \pi(\text{decs}(I), X)\) and \(b + 1 \overset{\text{def}}{=} \delta(D) \leq \delta(I)\) and \(\ell \in D\) and \(b = \delta(D \setminus \{\ell\}) = \delta(U)\) and \(m \overset{\text{def}}{=} \pi(I, X)\) and \(K \overset{\text{def}}{=} V_b\) and \(L \overset{\text{def}}{=} V\rangle_b\) and \(\forall X \exists Y [F	_I] = 1\)	
\texttt{BackFalse}:	\((F, I, M, \delta) \sim_{\text{BackFalse}} (F, UK\ell, M, \delta[L \mapsto \infty][\ell \mapsto j])\) if exists \(C \in F\) and exists \(D\) with \(UV \overset{\text{def}}{=} I\) and \(C	_I = 0\) and \(c \overset{\text{def}}{=} \delta(C) = \delta(D) > 0\) such that \(\ell \in D\) and \(\ell \in \text{decs}(I)\) and \(\tilde{\ell}	_V = 0\) and \(F \land \overline{M} = D\) and \(j = \delta(D \setminus \{\ell\})\) and \(b \overset{\text{def}}{=} \delta(U) = c - 1\) and \(K \overset{\text{def}}{=} V_b\) and \(L \overset{\text{def}}{=} V\rangle_b\)
\texttt{DecideX}:	\((F, I, M, \delta) \sim_{\text{DecideX}} (F, I\ell^d, M, \delta[\ell \mapsto d])\) if \(F	_I \neq 0\) and \(\text{units}(F	_I) = \emptyset\) and \(\delta(\ell) = \infty\) and \(d \overset{\text{def}}{=} \delta(I) + 1\) and \(V(\ell) \in X\)
\texttt{DecideY}:	\((F, I, M, \delta) \sim_{\text{DecideY}} (F, I\ell^d, M, \delta[\ell \mapsto d])\) if \(F	_I \neq 0\) and \(\text{units}(F	_I) = \emptyset\) and \(\delta(\ell) = \infty\) and \(d \overset{\text{def}}{=} \delta(I) + 1\) and \(V(\ell) \in Y\) and \(X - I = \emptyset\)

Fig. 2. Rules for \texttt{Enumerate}.

5 Formalization

The algorithm listed in Fig. 1 can be expressed by means of a formal calculus (Fig. 2). It extends our previous calculus \([21]\) by projection and by a generalized precondition modeling an incremental call to an oracle for checking entailment (lines 17–22 in function \texttt{Enumerate}). Notably, in our work \([21]\), only total models are found, while entailment in our actual work enables the detection of partial models. The variables in \(Y\) and \(S\) (from the CNF encoding) are treated equally with respect to unit propagation and decision. We therefore merge those two variable sets into \(Y\) to simplify the formalization. This does not affect the outcome of the entailment test. In favor of a concise description of the rules, we emphasize the differences to our previous framework \([21]\) and refer to this work for more details.

The procedure terminates as soon as either a conflict at decision level zero occurs (rule \texttt{EndFalse}) or a possibly partial model is found and \(I\) contains no relevant decision literal (rule \texttt{EndTrue}). Requiring that no relevant decision is left on the trail prevents the recording of redundant models. The projection
of \(I \) onto \(X \) is recorded. Rule Unit remains unchanged except for the missing precondition \(F|_I \neq 1 \). If \(I \) entails \(F \) and contains relevant decision literals, the one at the highest decision level is flipped, and the projection of \(I \) onto \(X \) is recorded (rule BackTrue). Requiring that the last relevant decision literal is flipped prevents the recording of redundant models. Rule BackFalse remains unchanged. A decision is taken whenever \(F|_I \neq 0 \) and \(F|_I \) contains no unit. Relevant variables are prioritized (rule DecideX) over irrelevant ones (rule DecideY).

Although not mandatory for correctness, the applicability of rule Unit might be restricted to the case where \(F|_I \neq 1 \). Similarly, a decision might be taken only if \(I \) does not entail \(F \). Notice that in rules Unit, DecideX, and DecideY, the precondition \(F|_I \neq 0 \) can also be omitted.

6 Conclusion

In many applications (projected) partial models play a central role. For this purpose, we have presented an algorithm and its formalization inspired by how theory solvers and the SAT solver interact in SMT. The basic idea was to detect partial assignments entailing the formula on-the-fly. We presented entailment tests of different strength and computational cost and discussed examples.

The syntactic check “\(F|_I = 1 \)” is cheapest, using clause watches or counters for keeping track of the number of satisfied clauses or alternatively the number of assigned variables (line 11 in Fig. 1). It is also weakest, since \(F|_I \) must syntactically coincide with 1. The incomplete check, denoted by “\(F|_I \approx 1 \)”, is slightly more involved. It calls a SAT solver on the negation of the formula, restricted, e.g., to unit propagation or a limited number of decision levels, and also might return “unknown”. The SAT oracle executes an unsatisfiability check of \(\neg F \land I \), given a (partial) assignment \(I \), which might be too restrictive. The QBF oracle is the most powerful test, but also the most expensive one. It captures entailment under projection in a precise manner expressed by \(\forall X \exists Y [F|_I] = 1 \). Combining dual reasoning with oracle calls allows to avoid shrinking of total models. Finally, chronological CDCL renders the use of blocking clauses superfluous.

We claim that this is the first method combining dual reasoning and chronological CDCL for partial model detection. It is anticipated that applications with short partial models benefit most, since oracle calls might be expensive. We plan to implement our method and validate its competitiveness on applications from weighted model integration and model counting with or without projection. We also plan to investigate methods concerning the implementation of QBF oracles required by flavour 4), e.g., dependency schemes introduced by Samer and Szeider [27] or incremental QBF solving proposed by Lonsing and Egly [15].

Acknowledgments. The work was supported by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria, by the QuaSI project funded by D-Wave Systems Inc., and by the Italian Association for Artificial Intelligence (AI*IA). We thank the anonymous reviewers and Mathias Fleury for suggesting many textual improvements.
References

1. Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L.: Compact DSOP and partial DSOP forms. Theory Comput. Syst. 53(4), 583–608 (2013). https://doi.org/10.1007/s00224-013-9447-2

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

3. Biere, A., Hölldobler, S., Möhle, S.: An abstract dual propositional model counter. In: YSIP, CEUR Workshop Proceedings, vol. 1837, pp. 17–26. CEUR-WS.org (2017)

4. Brauer, J., King, A., Kriener, J.: Existential quantification as incremental SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_17

5. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

7. Galindo, J.A., Acher, M., Tirado, J.M., Vidal, C., Baudry, B., Benavides, D.: Exploiting the enumeration of all feature model configurations: a new perspective with distributed computing. In: SPLC, pp. 74–78. ACM (2016)

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7_23

9. Grumberg, O., Schuster, A., Yadgar, A.: Memory efficient all-solutions SAT solver and its application for reachability analysis. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 275–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4_20

10. Gupta, A., Yang, Z., Ashar, P., Gupta, A.: SAT-based image computation with application in reachability analysis. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 391–408. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X_22

11. Klebanov, V., Manthey, N., Muise, C.: SAT-based analysis and quantification of information flow in programs. In: Joshi, K., Siegle, M., Stoelinga, M., D’ Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 177–192. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_16

12. Lagniez, J., Marquis, P.: A recursive algorithm for projected model counting. In: AAAI. pp. 1536–1543. AAAI Press (2019)

13. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predicate abstraction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 424–437. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_39

14. Li, B., Hsiao, M.S., Sheng, S.: A novel SAT all-solutions solver for efficient preimage computation. In: DATE, pp. 272–279. IEEE Computer Society (2004)

15. Lonsing, F., Egly, U.: Incremental QBF solving. In: O’ Sullivan, Barry (ed.) CP 2014. LNCS, vol. 8656, pp. 514–530. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_38

16. Marques-Silva, J.: Computing with SAT oracles: past, present and future. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 264–276. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0_27
17. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)
18. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_19
19. Möhle, S., Biere, A.: Dualizing projected model counting. In: Tsoukalas, L.H.,
Grégoire, É., Alamaniotis, M. (eds.) ICTAI 2018, pp. 702–709. IEEE (2018)
20. Möhle, S., Biere, A.: Backing backtracking. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 250–266. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_18
21. Möhle, S., Biere, A.: Combining conflict-driven clause learning and chronological
backtracking for propositional model counting. In: GCAI, EPiC Series in Comput-
ing, vol. 65, pp. 113–126. EasyChair (2019)
22. Morettin, P., Passerini, A., Sebastiani, R.: Efficient weighted model integration via
SMT-based predicate abstraction. In: IJCAI, pp. 720–728. ijcai.org (2017)
23. Morettin, P., Passerini, A., Sebastiani, R.: Advanced SMT techniques for weighted
model integration. Artif. Intell. 275, 1–27 (2019)
24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535. ACM (2001)
25. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_7
26. Oztok, U., Darwiche, A.: An exhaustive DPLL algorithm for model counting. J.
Artif. Intell. Res. 62, 1–32 (2018)
27. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reasoning 42(1), 77–97 (2009)
28. Sebastiani, R.: Are you satisfied by this partial assignment? https://arxiv.org/abs/
2003.04225
29. Sebastiani, R.: Lazy satisfiability modulo theories. JSAT 3(3–4), 141–224 (2007)
30. Sheng, S., Hsiao, M.S.: Efficient preimage computation using a novel success-driven
ATPG. In: DATE, pp. 10822–10827. IEEE Computer Society (2003)
31. Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Hei-
delberg (2000). https://doi.org/10.1007/10722167_36
32. Tibebu, A.T., Fey, G.: Augmenting all solution SAT solving for circuits with struc-
tural information. In: DDECS, pp. 117–122. IEEE (2018)
33. Toda, T., Soh, T.: Implementing efficient all solutions SAT solvers, ACM J. Exp.
Algorithmics, 21(1), 1.12:1–1.12:44 (2016)
34. Zengler, C., Küchlin, W.: Boolean quantifier elimination for automotive configuration – a case study. In: Pecheur, C., Dierkes, M. (eds.) FMICS 2013. LNCS, vol.
8187, pp. 48–62. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
41010-9_4