Abstract:
Objective The utility of capsule endoscopy (CE) findings in the route selection for double balloon endoscopy (DBE) has not been adequately discussed. The PillCam Progress Indicator in the RAPID 6.5 software program graphically demonstrates the progress of the capsule endoscope through the small-bowel. This study aimed to clarify the usefulness of the PillCam Progress Indicator in choosing the initial DBE route.

Methods We retrospectively examined 50 consecutive patients with 50 target lesions detected on both CE and DBE at Hiroshima University Hospital from January 2011 to February 2018. In this study, we selected antegrade DBE on the basis of % Capsule Progress <50% as a clinical trial. The association between the PillCam Progress Indicator data and the DBE route to the target lesion was analyzed.

Results The target lesion was reached via the initial DBE route in 96% (48/50) of cases. The cutoff values for selecting an antegrade route for DBE were 50% for % Capsule Progress and 42% for % SB Time. At the cutoff value, the sensitivity, specificity, and positive and negative predictive values for route selection were 100%, 91%, 93%, and 100% for % Capsule Progress and 96%, 91%, 93%, and 95% for % SB Time.

Conclusion The PillCam Progress Indicator was useful for determining the appropriate initial DBE route.

Key words: capsule endoscopy, double balloon endoscopy, progress indicator, small-bowel

Introduction

Recently, technological advances have allowed for the visualization of the entire small-bowel using endoscopic systems, including capsule (1) and balloon (2) endoscopes. These endoscopes have been widely used in clinical practice (3) and have revolutionized the diagnosis and treatment of small-bowel diseases (4-7). The guidelines committee of the Japanese Gastroenterological Endoscopy Society (JGES) has developed the “Clinical Practice Guidelines for Enteroscopy.” According to these guidelines, capsule endoscopy (CE) is the first-line small-bowel endoscopy tool for use in cases of occult gastrointestinal bleeding (OGIB) (3). This procedure is relatively simple, safe, and comfortable for patients. Indeed, the clinical utility of CE in the diagnosis of small-bowel diseases has been reported by various groups (8-17). CE enables the observation of the small-bowel but does not provide the ability to perform biopsy for a histological analysis or therapeutic intervention.

Balloon endoscopy (BE) allows for histological specimens to be obtained using methods such as forceps biopsy, and interventional treatments including endoscopic hemostatic treatments, endoscopic resection, and balloon dilation can be performed. In 2001, Yamamoto et al. (2) first described double balloon endoscopy (DBE) as a new method for visualizing the entire small-bowel. Diagnostic and therapeutic DBE has been widely used for evaluating small-bowel diseases (4-7, 18-21).

CE has been reported to achieve total bowel enteroscopy in approximately 70-80% of cases (22, 23), with a total small-bowel observation rate using DBE of approximately 70% (24-26). Total bowel enteroscopy may be successfully carried out using either antegrade or retrograde BE. The
choice of an antegrade or retrograde approach is dependent upon the patient’s symptoms and imaging examination results. When CE is performed before DBE, the findings from CE can be used predict where the lesion will be located in the small-bowel.

The best method for utilizing the CE results for BE route selection has not been adequately discussed. There have been some studies on the utility of the CE transit time for determining the DBE route (27-29). Kaffes et al. (30) and Hendel et al. (31) chose antegrade DBE to visualize two-thirds of the proximal small-bowel based on their experience and to assess the likelihood of reaching the relevant lesion. The PillCam Progress Indicator (Medtronic, Minneapolis, USA), operating on the RAPID 6.5 software program (Medtronic, graphically demonstrates the progress of a capsule endoscope through the small-bowel. The PillCam Progress Indicator is displayed during entire small-bowel observation. The system then reports the % Capsule Progress and % SB Time. The % Capsule Progress represents a percentage of the entire small-bowel images. The % SB Time represents a percentage of the entire small-bowel transit time. Although the PillCam Progress Indicator (Medtronic) estimates the location of the CE within the small-bowel, there are no reports concerning the usefulness of the PillCam Progress Indicator (Medtronic) for choosing the optimal DBE route.

The aim of this study was to clarify the usefulness of the PillCam Progress Indicator in selecting the initial DBE route.

Materials and Methods

Patients

We retrospectively examined 50 consecutive patients (male, n=33; female, n=17; mean age, 69 years, CE performed by SB2, n=26) with 50 lesions detected by both CE and DBE at Hiroshima University Hospital from January 2011 to February 2018. Patients in whom enteroscopy was achieved by CE and those in whom lesions were detected by both CE and DBE were enrolled. In our hospital, we usually perform CE prior to DBE, and the initial DBE route is determined based on the interpretation of the CE results.

Table 1 shows the clinical characteristics of the enrolled patients. The data for each patient were obtained by a retrospective medical record review and from stored endoscopic findings. The final diagnoses for all enrolled patients were included in the medical chart. Data on the examinations and procedures performed, including computed tomography (CT), small-bowel follow-through, CE, and DBE, along with the operative specimen results, were collected from the patients’ medical records.

This study was performed in accordance with the Declaration of Helsinki. All patients were informed of the risks and benefits of CE and DBE, and each patient provided their written informed consent for the procedure to be performed. None of the patients refused the examinations during the study period. This study was approved by the Hiroshima University Hospital Institutional Review Board (registration number: E-1143).

CE procedure

Capsule endoscopy was performed using the PillCam SB2 or SB3 (Medtronic). The capsule endoscope was swallowed with a solution of dimethicone after an overnight fast. Sodium picosulfate and magnesium citrate were administered for bowel preparation the night before swallowing the capsule endoscope. For patients with renal dysfunction, only sodium picosulfate was prescribed. The patients were allowed to drink clear liquids every 2 hours and to eat a light meal 4 hours after swallowing the CE. CE recordings were reviewed using the RAPID 6.5 or 8.0 software (Medtronic).

Total enteroscopy by CE was considered successful when the capsule endoscope reached the cecum or the site of anastomosis in the ileocecal area within the recording time. The % Capsule Progress and % SB Time were defined as the percentages of the initial images that confirmed the target lesion endoscopically. The capsule recordings were reviewed by 2 experienced physicians, each of whom had read more than 30 capsule videos.

DBE procedure

The DBE system (FUJIFILM Medical, Tokyo, Japan) consisted of a video endoscope with a flexible overtube and a pressure-controlled pump system. In this study, we used the EN-450P5 endoscope with the TS-12140 overtube or the EN-450T5 or EN-580T5 endoscope with the TS-13140 overtube. Antegrade DBE was performed after an overnight fast. Retrograde DBE was performed after bowel preparation with oral electrolyte lavage used for regular lower gastrointestinal endoscopy. For bowel preparation and oral lavage, the patient consumed 250 mL of magnesium citrate (Maggolcor; Horii Pharmaceutical Ind., Osaka, Japan) on the day before the examination, followed by 2 L of magnesium citrate.
rate, 2 L of polyethylene glycol solution (Niflec; Ajinomoto Pharma, Tokyo, Japan), or 1 L of high-concentration polyethylene glycol solution (Moviprep; Ajinomoto Pharma) on the morning of the examination. For both approaches, intestinal looping was checked fluoroscopically. Patients were sedated with midazolam and pentazocine, if necessary. Blood pressure, heart rate, and oxygen saturation were monitored during the DBE procedure. The endoscopic findings were evaluated by 2 physicians who had experienced more than 100 DBE studies.

Evaluations

We evaluated the following: PillCam Progress Indicator (% Capsule Progress and % SB Time), the frequency of reaching the target lesions according to the PillCam Progress Indicator, and the cutoff values for % Capsule Progress and % SB Time used to choose antegrade DBE.

We defined the target lesion as the lesion detected by CE that corresponded to the lesion detected by 2 physicians on DBE. Lesions identified on only CE or DBE were excluded. Cases with multiple lesions were excluded from this study.

Statistical analyses

Continuous data are reported as the mean ± standard deviation and range. Comparisons were performed using the chi-squared test for categorical data. Receiver-operating characteristic (ROC) curves were created to determine the optimal cutoff values for the % Capsule Progress and % SB Time used for the initial choice to perform antegrade DBE. P values of <0.05 were considered statistically significant. The JMP Pro 13 software program (SAS, Cary, USA) was used to perform the statistical analyses.

Results

Fifty patients underwent CE and DBE for 50 target lesions. We divided the patients into two groups based on the initial DBE route selected according to the % Capsule Progress (antergrade, n=30; retrograde, n=20). In this study, antegrade DBE was usually selected when the PillCam Progress Indicator showed a % Capsule Progress value of <50% as a clinical trial. Fig. 1 shows a flowchart of the decision-making process for the initial DBE route according to the PillCam Progress Indicator and the frequency of reaching the target lesions. Table 2 shows the final diagnoses of all patients. Angioectasia was the most common disease in this series.

The average times to reach to the target lesions from the pyloric ring in antegrade DBE and from the ileocecal valve in retrograde DBE were 21.8 minutes and 24.4 minutes, respectively. There were no significant differences between an-
The frequency of reaching the target lesion by antegrade DBE was 42%. At this cutoff value, the sensitivity, specificity, positive predictive value, and negative predictive value for route selection were 96%, 91%, 93%, and 95%, respectively. The area under the ROC curve (AUC) for % Capsule Progress was 0.963. In the ROC curve for % SB Time, the cutoff value for selecting antegrade DBE was 50%. At this cutoff value, the sensitivity, specificity, positive predictive value, and negative predictive value for route selection were 100%, 91%, 93%, and 100%, respectively. The area under the ROC curve (AUC) for % SB Time was 0.960. The differences were not statistically significant.

In 2 cases, we were unable to reach the target lesions during the initial antegrade DBE procedure (Table 6). These cases required route changes to reach the target lesions. We reached the target lesions during secondary retrograde DBE in both cases. In one patient diagnosed with hemangioma, the patient underwent CE for OGIB. The CE showed a bluish submucosal tumor when the % Capsule Progress and % SB Time values were both 34%. We initially selected antegrade DBE, but could not reach the target lesion. Next, we...
performed retrograde DBE and were able to reach the target lesion. Due to repeated gastrointestinal bleeding, this patient underwent partial small-bowel resection. Intraoperatively, the target lesion was located in the lower small-bowel, 50 cm cephalad from the cecal bulb. In the second patient, the % Capsule Progress and % SB Time values of the target lesion were 6% and 12%, respectively. Although it was estimated that the target lesion would be located in the upper small-bowel because of the low progress indicator values, we could not reach the target lesion during the initial antegrade DBE procedure. We therefore performed retrograde DBE to reach the target lesion. The target lesion in this patient was considered to be located in the lower small-bowel based on computed tomography performed after DBE.

Our study revealed that the % Capsule Progress and % SB Time values are useful as accurate indicators for DBE route selection. With our protocol, the target lesion was reached during the initial DBE procedure in 96% of the cases in this study. The % Capsule Progress and % SB Time values of the target lesion were 6% and 12%, respectively. Although it was estimated that the target lesion would be located in the upper small-bowel because of the low progress indicator values, we could not reach the target lesion during the initial antegrade DBE procedure. We therefore performed retrograde DBE to reach the target lesion. The target lesion in this patient was considered to be located in the lower small-bowel based on computed tomography performed after DBE.

Discussion

Our study revealed that the % Capsule Progress and % SB Time values are useful as accurate indicators for DBE route selection. With our protocol, the target lesion was reached during the initial DBE procedure in 96% of the cases in this study. The % Capsule Progress and % SB Time values of the target lesion were 6% and 12%, respectively. Although it was estimated that the target lesion would be located in the upper small-bowel because of the low progress indicator values, we could not reach the target lesion during the initial antegrade DBE procedure. We therefore performed retrograde DBE to reach the target lesion. The target lesion in this patient was considered to be located in the lower small-bowel based on computed tomography performed after DBE.

![Figure 3](image-url)
Figure 3. The receiver-operating curve (ROC) for % SB Time in the selection of the initial double-balloon endoscopy route. The cutoff value for selecting antegrade DBE was 42%. At this cutoff value, the sensitivity, specificity, positive predictive value, and negative predictive value for route selection were 96%, 91%, 93%, and 95%, respectively. The area under the ROC curve (AUC) value for % Capsule Progress was 0.960.

No.	Age (years)	Sex	Chief complaint	Past history of abdominal surgery	Target lesion	% Capsule Progress	% SB time	Route
1	70	Female	Anemia	Absent	Hemangioma	34%	34%	Antegrade→retrograde
2	74	Male	Anemia, melena	Absent	Lymphangioma	6%	12%	Antegrade→retrograde
and % SB Time for selecting antegrade DBE using ROC curves. The cutoff values of the % Capsule Progress and % SB Time were 50% and 42%, respectively. In general, the capsule endoscope moves more rapidly in the duodenum and proximal jejunum in comparison to the other parts of the small-bowel (32). Thus, it might be assumed that the % SB Time value would be lower than the % Capsule Progress value. In fact, the ROC curves of the % Capsule Progress and % SB Time values did not differ to a statistically significant extent, and the usage of both values might be more useful for selecting the route for DBE.

Our data showed that two target lesions were not reached when an antegrade route was used in the initial DBE procedure. In these cases, the lesions were located more distally in the small-bowel than was reflected during CE. Thus, it is preferable to determine the initial DBE route on the basis of the PillCam Progress Indicator findings as well as other data, such as CT, ultrasound, or enteroclysis.

The present study was associated with some limitations. First, it was a single-center retrospective study. The retrospective design could have resulted in a recruitment bias and a loss of some data. Second, the number of participants was relatively small. Third, the endoscopy devices and review software were not the same in all cases. For example, the SB3 was found to have superior image resolution in comparison to the SB2. The SB3 also has an adaptive frame rate (AFR) feature that automatically changes the imaging frame rate, depending on the capsule speed, and expands the shooting area. Thus, differences in the devices may have affected the results in the cases involving proximal jejunum lesions. In previous studies, it was reported that the SB3 could increase diagnostic yields (33, 34). However, Xavier et al. reported that the SB3 did not improve the overall diagnostic yield in comparison to the SB2 (35). Thus, this difference might not have affected our results. Further large prospective cohort studies will provide more evidence for selecting the most appropriate initial DBE route.

In conclusion, the PillCam Progress Indicator of CE was useful for determining the appropriate initial DBE route.

The authors state that they have no Conflict of Interest (COI).

References
1. Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature 405: 417, 2000.
2. Yamamoto H, Sekine Y, Sato Y, et al. Total enteroscopy with a nonsurgical steerable double-balloon method. Gastrointest Endosc 53: 216-220, 2001.
3. Yamamoto H, Ogata H, Matsumoto T, et al. Clinical practice guideline for enteroscopy. Dig Endosc 29: 519-546, 2017.
4. Fukumoto A, Tanaka S, Shishido T, Takemura Y, Oka S, Chayama K. Comparison of detectability of small-bowel lesions between capsule endoscopy and double-balloon endoscopy for patients with suspected small-bowel disease. Gastrointest Endosc 69: 857-865, 2009.
5. Kameda N, Higuchi K, Shiba M, et al. A prospective, single-blind trial comparing wireless capsule endoscopy and double-balloon enteroscopy in patients with obscure gastrointestinal bleeding. J Gastroenterol 43: 434-440, 2008.
6. Shishido T, Oka S, Tanaka S, et al. Outcome of patients who have undergone total enteroscopy for obscure gastrointestinal bleeding. World J Gastroenterol 18: 666-672, 2012.
7. Fukumoto A, Tanaka S, Yamamoto H, et al. Diagnosis and treatment of small-bowel stricture by double balloon endoscopy. Gastrointest Endosc 66: S108-S112, 2007.
8. Meron GD. The development of the swallowable video capsule (M 2A). Gastrointest Endosc 52: 817-819, 2000.
9. Lewis BS, Swain P. Capsule endoscopy in the evaluation of patients with suspected small intestinal bleeding: results of a pilot study. Gastrointest Endosc 56: 349-353, 2002.
10. Pennazio M, Santucci R, Rondonotti E, et al. Outcome of patients with obscure gastrointestinal bleeding after capsule endoscopy: report of 100 consecutive cases. Gastroenterology 126: 643-653, 2004.
11. Apostolopoulos P, Liatsos C, Grahn IM, et al. The role of wireless capsule endoscopy in investigating unexplained iron deficiency anemia after negative endoscopic evaluation of the upper and lower gastrointestinal tract. Endoscopy 38: 1127-1132, 2006.
12. Apostolopoulos P, Liatsos C, Grahn IM, et al. Evaluation of capsule endoscopy in active, mild-to-moderate, overt, obscure GI bleeding. Gastrointest Endosc 66: 1174-1181, 2007.
13. Urbain D, De Looze D, Demedts I, et al. Video capsule endoscopy in small-bowel malignancy: a multicenter Belgian study. Endoscopy 38: 408-411, 2006.
14. Bailey AA, Debinski HS, Appleyard MN, et al. Diagnosis and outcome of small bowel tumors found by capsule endoscopy: a three-center Australian experience. Am J Gastroenterol 101: 2237-2243, 2006.
15. Hartmann D, Schmidt H, Bolz G, et al. A prospective two-center study comparing wireless capsule endoscopy with intraoperative enteroscopy in patients with obscure GI bleeding. Gastrointest Endosc 61: 826-832, 2005.
16. Imagawa H, Oka S, Tanaka S, et al. Improved detectability of small-bowel lesions via capsule endoscopy with computed virtual chroomeendoscopy: a pilot study. Scand J Gastroenterol 46: 1133-1137, 2011.
17. Watari I, Oka S, Tanaka S, et al. Is occult obscure gastrointestinal bleeding a definite indication for capsule endoscopy? A retrospective analysis of diagnostic yield in patients with occult versus overt bleeding. Gastroenterol Res Pract 2013: 915463, 2013.
18. Matsuzo Y, Manabe N, Tanaka S, et al. Small-intestinal Peutz-Jeghers polyps resected by endoscopic polypectomy with double-balloon enteroscopy and removal confirmed by ultrasonography. Dig Dis Sci 51: 2337-2340, 2006.
19. Yamamoto H, Sugano K. A new method of enteroscopy-the double-balloon method. Can J Gastroenterol 17: 273-274, 2003.
20. Domagk D, Mensink P, Aktas H, et al. Single- vs. double-balloon enteroscopy in small-bowel diagnostics: a randomized multicenter trial. Endoscopy 43: 472-476, 2011.
21. Iwaga A, Oka S, Tanaka S, Kunihara S, Nakano M, Chayama K. Polidocanol injection therapy for small-bowel hemangioma by using double-balloon endoscopy. Gastrointest Endosc 84: 163-167, 2016.
22. Carey EJ, Leighton JA, Heigh RI, et al. A single-center experience of 260 consecutive patients undergoing capsule endoscopy for obscure gastrointestinal bleeding. Am J Gastroenterol 102: 89-95, 2007.
23. Ben-Soussan E, Savoye G, Antonietti M, Ramirez S, Ducrotte P, Lerebours E. Is a 2-liter PEG preparation useful before capsule endoscopy? J Clin Gastroenterol 39: 381-384, 2005.
24. Yamamoto H, Yano T, Ohmiya N, et al. Double-balloon endoscopy is safe and effective for the diagnosis and treatment of small-bowel disorders: prospective multicenter study carried out by expert and non-expert endoscopists in Japan. Dig Endosc 27: 331-337, 2015.

25. May A, Farber M, Aschmonicit I, et al. Prospective multicenter trial comparing push-and-pull enteroscopy with the single- and double-balloon techniques in patients with small-bowel disorders. Am J Gastroenterol 105: 575-581, 2010.

26. Messer I, May A, Manner H, Ell C. Prospective, randomized, single-center trial comparing double-balloon enteroscopy and spiral enteroscopy in patients with suspected small-bowel disorders. Gastrointest Endosc 77: 241-249, 2013.

27. Gay G, Delvaux M, Fassler I. Outcome of capsule endoscopy in determining indication and route for push-and-pull enteroscopy. Endoscopy 38: 49-58, 2006.

28. Li X, Chen H, Dai J, Gao Y, Ge Z. Predictive role of capsule endoscopy on the insertion route of double-balloon enteroscopy. Endoscopy 41: 762-766, 2009.

29. Nakamura M, Ohmiya N, Shirai O, et al. Route selection for double-balloon endoscopy, based on capsule transit time, in obscure gastrointestinal bleeding. J Gastroenterol 45: 592-599, 2010.

30. Kaffes AJ, Siah C, Koo JH. Clinical outcomes after double-balloon enteroscopy in patients with obscure GI bleeding and a positive capsule endoscopy. Gastrointest Endosc 66: 304-309, 2007.

31. Hendel JW, Vilmann P, Jensen T. Double-balloon endoscopy: who needs it? Scand J Gastroenterol 43: 363-367, 2008.

32. Singeap AM, Stanciu C, Trifan A. Capsule endoscopy: the road ahead. World J Gastroenterol 22: 369-378, 2016.

33. Monteiro S, de Castro FD, Carvalho PB, Moreira MJ, Rosa B, Cotter J. PillCam(R) SB3 capsule: Does the increased frame rate eliminate the risk of missing lesions? World J Gastroenterol 22: 3066-3068, 2016.

34. Kunihara S, Oka S, Tanaka S, et al. Third-generation capsule endoscopy outperforms second-generation based on the detectability of esophageal varices. Gastroenterol Res Pract 2016: 9671327, 2016.

35. Xavier S, Monteiro S, Magalhães J, Rosa B, Moreira MJ, Cotter J. Capsule endoscopy with PillCamSB2 versus PillCamSB3: has the improvement in technology resulted in a step forward? Rev Esp Enferm Dig 110: 155-159, 2018.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).

© 2019 The Japanese Society of Internal Medicine
Intern Med 58: 1375-1381, 2019