Effects of Glucose and Insulin on Secretion of Amyloid-β by Human Adipose Tissue Cells

William G. Tharp¹, Dhananjay Gupta¹, Joshua Smith², Karen P. Jones², Amanda M. Jones², and Richard E. Pratley²

Objective: Obesity and type 2 diabetes mellitus are risk factors for developing Alzheimer disease. Overlapping patterns of metabolic dysfunction may be common molecular links between these complex diseases. Amyloid-β (Aβ) precursor protein and associated β- and γ-secretases are expressed in adipose tissue. Aβ precursor protein is up-regulated with obesity and correlated to insulin resistance. Aβ may be secreted by adipose tissue, its production may be regulated through metabolic pathways, and Aβ may exert effects on adipose tissue insulin receptor signaling.

Methods: Human stromal-vascular cells and differentiated adipocytes were cultured with different combinations of glucose and insulin and then assayed for Aβ in conditioned media. Aβ was measured in vivo using adipose tissue microdialysis.

Results: Aβ secretion was increased by glucose and insulin in vitro. Adipose tissue microdialysates contained Aβ. Adipocytes treated with Aβ had decreased expression of insulin receptor substrate-2 and reduced Akt-1 phosphorylation.

Conclusions: Aβ was made by adipose tissue cells in vitro at concentrations similar to in vivo measurements. Regulation of Aβ production by glucose and insulin and effects of Aβ on the insulin receptor pathway suggest similar cellular mechanisms may exist between neuronal dysfunction in Alzheimer disease and adipose dysfunction in type 2 diabetes.

Introduction

Patients with obesity or type 2 diabetes have increased risk of developing Alzheimer disease (1-3). Obesity and type 2 diabetes are epidemic, and Alzheimer disease accounts for more than 90% of diagnosed dementias (4-6). Alterations of glucose and insulin homeostasis are seen in regions of the brain with high amyloid-β (Aβ) plaque burden (7,8). Aβ is a 37 to 43 amino acid fragment of Aβ precursor protein (AβPP) produced by membrane-bound pro teasesthat forms soluble oligomers and insoluble fibrillar polymers (9-11). AβPP is ubiquitously expressed in eukaryotic cells, and variable proteolytic processing of AβPP produces a variety of peptides in addition to Aβ (12). Murine AβPP gene knock-outs have improved metabolic function, and transgenic mouse models of Alzheimer disease with chronically elevated plasma Aβ develop glucose intolerance, insulin resistance, and inflammation (13-15). Combined models of Alzheimer disease and obesity or type 2 diabetes demonstrate accelerated Aβ deposition and neurological dysfunction (16-19). Insulin increases Aβ secretion in neuronal culture, and cerebrospinal Aβ rises following hyperinsulinemic-euglycemic clamp (20,21). Aβ competitively binds the insulin receptor and insulin degrading enzyme (IDE) decreasing insulin receptor signaling, slowing Aβ and insulin degradation (22-24). These studies suggest a relationship between AβPP and metabolic dysfunction.

Recently, we found adipocytes express AβPP and the secretases required to make Aβ (25). AβPP transcription was increased in subjects with obesity and correlated with insulin resistance and inflammatory cytokine expression. We hypothesized adipose tissue secretes Aβ and insulin and glucose may regulate this process. We also hypothesized Aβ induces local effects on adipose insulin receptor signaling. To test these questions, we performed in vivo studies...
measuring Aβ production in human subcutaneous adipose tissue by microdialysis and in vitro studies using cultured human stromal-vascular cells (SVF) and differentiated adipocytes.

Methods

Study design

This study was approved by University of Vermont and Florida Hospital Institutional Review Boards. All subjects provided written informed consent. Subjects were lean (body mass index; BMI ≤ 25 kg/m²), had obesity without type 2 diabetes (BMI ≥ 30 kg/m²; hemoglobin A1c (HbA1c) < 6.5%; 48 mmol/mol), or obesity with type 2 diabetes (BMI ≥ 30 kg/m²; HbA1c > 6.5%; 48 mmol/mol). Subjects with type 2 diabetes were excluded if taking thiazolidinediones, long-acting incretin agonists, or more than two of the following: metformin, sulfonylurea, short-acting GLP-1 analog, or DPP-IV inhibitor. Subjects were excluded if they had recent weight changes or chronic medical conditions or took medications affecting glucose metabolism.

Adipose tissue biopsy, fractionation, and culture

Subcutaneous abdominal adipose tissue was obtained by percutaneous needle biopsy. SVCs were isolated by collagenase digestion and stored in liquid nitrogen (25). Cultures were established using standard protocols with modified glucose and insulin concentrations (26). SVC were passaged twice and then grown with 5.5 mM or 25 mM glucose as indicated. Adipocyte cultures were grown from SVC expanded in 5.5 mM glucose for 10 days, triggered to differentiate for 4 days, then matured for another 12 days. Maturation media contained 5.5 mM or 25 mM glucose plus 1, 10, or 500 nM insulin and was changed every 72 h. In certain experiments, media was supplemented with Aβ40 or Aβ42 (MesoScale Diagnostics) for the final 6 days of maturation or β-secretase inhibitor IV (EMD-Calbiochem) for the final 72 h of culture. Each condition was tested in three to six wells per subject. Media from similar conditions from the same subject were pooled and treated with protease inhibitor (Roche), one to two wells were fixed for cell counting and lipid quantification, one to two wells lysed with QIAzol, and one to two wells lysed with protein extraction buffer.

Microdialysis

Subjects were recruited from an ongoing study (see Table 1). After overnight fasting, microdialysis catheters (CMA63; Harvard Apparatus) were inserted into the subcutaneous abdominal adipose tissue and perfused with saline plus 4% human albumin for 45 min. A plasma sample was drawn into K + ethylenediaminetetra-acetic acid with 10 nM AEBSF (Sigma). After equilibration, the catheters were perfused at 0.5 μL/min for 240 min. Recovery of Aβ40 and Aβ42 estimated by the zero net flow was calibrated to dialyzed plasma (27).

Measurement of Aβ

Aβ40 and Aβ42 were measured using multiplex 4G8 immunoassay kits (Meso-Scale Discovery; Rockville, MD). Intra-assay percent coefficients of variation averaged 3.37 ± 3.1% for Aβ40 and 3.37 ± 2.8% for Aβ42. Inter-assay percent coefficients of variation averaged 5.8% for Aβ40 and 26.0% for Aβ42.

Immunoprecipitation

Conditioned adipocyte culture media was precipitated with acetone and resuspended in PBS. Aβ was immunoprecipitated using Dynabeads Protein G kit (Life Technologies). Beads were conjugated to anti-Aβ monoclonal mouse antibody 4G8 (Covance) or IgG isotype control, incubated with media precipitate or recombinant Aβ40 (5 ng/mL), eluted per kit instructions, prepared with Lamelli buffer, and separated with 18% Tris-sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Separated samples were transferred to polyvinylidene fluoride (PVDF) membrane, which was incubated with 4G8 followed by anti-mouse-horseradish peroxidase (HRP)-conjugated secondary antibody, treated with PicoWest luminal reagent (Pierce Biosciences), and exposed to film.

Western blotting

Adipocytes were lysed in 50 mM HEPES, 150 mM sucrose, 2 mM sodium orthovanadate, 80 mM β-glycerophosphate, 10 mM sodium fluoride, 10 mM sodium pyrophosphate, 2 mM sodium ethylene glycol tetra-acetic acid, 2 mM sodium ethylenediaminetetra-acetic acid, 1% Triton X-100, 0.1% SDS, protease inhibitor cocktail (Sigma-Aldrich), and 1 mM phenyl-methyl-sulfonyl-fluoride. Samples were separated on 10% SDS-PAGE, transferred to PVDF, probed with rabbit monoclonal Akt-1 antibody (Cell Signaling), followed by goat anti-rabbit-HRP-conjugated antibody (Bio-Rad), and bands detected using ECL reagent (Amersham). Membranes were stripped and incubated with rabbit monoclonal phospho-Akt (Ser473) (Cell Signaling) with the same secondary detection. Bands were quantitated using NIH-ImageJ software.

TABLE 1 Microdialysis cohort clinical data

Subjects (n)	Lean	With obesity	With obesity and type 2 diabetes	P
Sex (M/F)	6/3	3/1	4/2	
Age (years)	46.7 ± 15.7	39.7 ± 6.4	46.3 ± 10.5	0.7
Body mass index (kg/m²)	21.4 ± 2.6	47.5 ± 8.8	40.2 ± 6.2	<0.001
Percent body fat	25.0 ± 7.5	53.8 ± 1.1	47.9 ± 5.2	<0.001
Hemoglobin A1c % (mmol/mol)	5.6 ± 0.5 (38.0 ± 5.5)	5.9 ± 0.4 (41.0 ± 4.4)	6.9 ± 0.5 (52.0 ± 5.5)	0.005
Fasting blood glucose (mg/dL)	89.1 ± 7.8	90.6 ± 9.6	124.9 ± 24.1	0.009
Fasting blood insulin (μIU/mL)	3.3 ± 1.5	22.5 ± 14.1	12.3 ± 4.0	0.008

Data are presented as mean ± standard deviation.
Gene expression

Sample RNA was extracted using RNEasy Lipid Tissue Mini Kits (Qiagen; Valencia, CA) with RNase-Free DNase treatment (Qiagen). A cDNA library was made using 1 μg RNA template and oligo-dT primers (Clontech; Mountain View, CA). Gene expression was measured with Applied Biosystems 7300 (Life Technologies Inc.; Carlsbad, CA) using TaqMan primers (see Supporting Information Table 1) normalized to GAPDH.

Cell counting and lipid quantification

Cells were fixed in 4% paraformaldehyde and stained with DAPI (Roche, IN) and Nile Red (Sigma). A 4 cm² tiled-image was taken using a Nikon TE2000 microscope using Nikon Elements (Nikon, USA). Cell counts were generated by counting all individual nuclei (diameter <30 microns and circularity index >0.8), dividing the entire DAPI binary mask by the average individual nuclear area, and extrapolating to the entire well. Lipid content (μm²/cell) was generated by dividing the Nile Red binary mask by the cell count and is an index of differentiation (26).

Immunofluorescence microscopy

 Cultures from three subjects were fixed with 4% paraformaldehyde and 0.1% Triton-X in PBS, blocked with 1% BSA in PBS, stained with antibodies against Aβ (monoclonal 6E10, Covance; polyclonal anti-oligomeric Aβ, EMD-Millipore), AβPP (monoclonal 22C11, Abcam; San Francisco, CA), CD68 (monoclonal PG-M1, DakoCytomation; Carpinteria, CA), CD45 (monoclonal F10-89-4, Abcam), or βIII tubulin (monoclonal 2G10, Abcam), incubated with secondary antibodies, counterstained with DAPI and Nile Red, then imaged. Antibodies were used at recommended concentrations, with dilutions between 1:200 and 1:1000 in PBS. All image channels were adjusted based on no-primary negative control images (see Supporting Information Figures 1–3).

Statistical analyses

Data were analyzed using STATA v11.2 (StataCorp LP; College Station, TX). Differences among cultures were assessed by repeated measures of ANOVA with linear Wald tests for multiple testing correction. Differences among microdialysis groups were assessed by ANOVA. All appropriate statistical assumptions were met. Non-normal data were log-transformed as indicated. A P value <0.05 was considered significant. All values are presented as mean ± SEM unless noted.

Results

Human adipocytes and SVC secrete Aβ in vitro

SVC and adipocytes were grown from abdominal adipose biopsies of 16 subjects (four lean, six with obesity, and six with obesity and type 2 diabetes). Cultures were grown with 5.5 mM glucose and 10 nM insulin. Media from the last 72 h of culture were assayed for Aβ by electrochemiluminescence assay. SVC basal media contained 2.5% FBS and 23.0 ± 4.1 pg/mL Aβ40, but no detectable Aβ42. Basal adipocyte trigger and maintenance media were serum free and no Aβ species were detectable before culture. Aβ40 and Aβ42 were detected in all SVC conditioned media at 214.6 ± 21.1 pg/mL and 10.8 ± 1.4 pg/mL, respectively (corrected for media base content) (Figure 1a). Aβ42 was detected in all adipocyte conditioned media at 21.0 ± 3.7 pg/mL (Figure 1a), but Aβ42 was not (data not shown).

We also used immunoprecipitation and treatment with a β-secretase inhibitor to assure that we were measuring Aβ and not a cross-reactive product. Aβ peptides were immunoprecipitated from concentrated adipocyte media and recombinant Aβ40 solution using 4G8 monoclonal antibody (Figure 1b, lanes 3, 4). Bands were nearly identical between media and Aβ40 solution. No peptides were detected using IgG control (Figure 1b, lane 2). Treatment of adipocyte cell cultures with a β-secretase inhibitor for 72 h showed a dose-dependent reduction in Aβ concentrations (Supporting Information Figure 4). These data show human SVC and adipocytes make and secrete soluble Aβ peptides in vitro.

Microanatomy and immunofluorescence

Cultures derived from primary adipose biopsies initially contain multiple cell types. After several passages, these cultures are mainly...
adipose stromal cells; however, we could not initially exclude contaminating leukocytes or neurons as the source of Aβ (26). From our prior studies, we know Aβ can be found in adipose tissue macrophages, but whether this reflects production or phagocytosis by these cells is unknown (25). Using immunofluorescence microscopy we examined the distribution of AβPP and Aβ in vitro and probed for macrophage, leukocyte, and neuronal markers in our cultures. AβPP was homogenously expressed in SVC cultures (Figure 2a). In adipocyte cultures, AβPP was expressed in both stromal cells and differentiating adipocytes (Figure 2a, c). Using monoclonal and polyclonal anti-Aβ antibodies we found widespread presence of Aβ in SVC and adipocyte cultures (Figure 2b, d; Supporting Information Figure 1). We did not find punctate or cell-specific restriction of Aβ staining. There was no immunoreactivity to the macrophage marker CD68 or the leukocyte antigen CD45 in our cultures (Supporting Information Figures 2 and 3). There was no immunostaining of neuronal-specific βIII tubulin (Supporting Information Figures 2 and 3). Taken together with our secretion data, these results confirmed Aβ production by human adipose tissue stromal cells and adipocytes in vitro.

Aβ is present in human adipose tissue in vivo

In vivo adipose cell-derived Aβ constitutes a fraction of local concentrations in balance with degradation, production by other cells within the adipose niche, and flux to or from the plasma. With this in mind we sought to determine if Aβ was measureable in adipose tissue in vivo using microdialysis.

Aβ recovery was calibrated by dialyzing plasma in vitro (n = 8; Figure 3a) (27). We recruited 13 subjects with a range of body composition and metabolic function (six lean, three with obesity, four with...
Effects of glucose and insulin on Aβ secretion in vitro

Next we asked if alterations in glucose or insulin concentrations altered Aβ production similar to neuronal cultures (20,21). SVC cultures from 14 subjects (four lean, six with obesity, and four with obesity and type 2 diabetes) were grown at 5.5 mM or 25 mM glucose. The cells in each well were counted (Supporting Information Figure 5a). As SVC in 25 mM glucose had reduced cell counts compared with 5.5 mM (P < 0.001; Supporting Information Figure 5b), secretion data were normalized to cell count. SVC secreted more Aβ40 and Aβ42 when cultured in 25 mM compared with 5.5 mM glucose (P = 0.003 and 0.031, respectively; Figure 4a, b), without differences among donors (P > 0.3). AβPP and presenilin-1 (PSEN1) expression trended down in 25 mM compared with 5.5 mM glucose (P = 0.11 and 0.08, respectively) without differences in β-secretase-1 (BACE1; P = 0.6) or presenilin-2 (PSEN2; P = 0.3; Supporting Information Figure 6a–d). No differences in insulin receptor (INS-R), insulin receptor substrate-1 (IRS1), or IDE expression were observed between conditions (P = 0.13–0.55; data not shown). Glucose transporter-4 (GLUT4) was undetectable (Cv > 35 for all). These results show glucose increased SVC Aβ secretion without changing AβPP system transcription.

SVC from 14 subjects (four lean, six with obesity, and four with obesity and type 2 diabetes) were grown at 5.5 mM glucose, differentiated, and matured with 1, 10, or 500 nM insulin and 5.5 mM or 25 mM glucose. Proliferation or differentiation of the cells did not differ among conditions (P > 0.18 for both; Supporting Information Figure 5c–e). Adipocytes secreted more Aβ40 in 500 nM insulin compared with 1 or 10 nM insulin at both glucose concentrations (P = 0.001; Figure 4c). Secretion of Aβ40 was not different with 1 or 10 nM insulin or with either glucose concentration (P = 0.11–0.63). Aβ40 secretion was not different among donors phenotypes (P > 0.15).

At 5.5 mM glucose, increasing insulin reduced AβPP and secretase genes transcription (P < 0.01 for all; Figure 5a–d). Adipocytes in 25 mM glucose demonstrated elevated AβPP transcription with increasing insulin (P < 0.05 for all) without differences in secretase transcription. At 1 nM insulin, high glucose reduced transcription of AβPP, BACE1, and PSEN2 compared with low glucose (P < 0.04 for all) without altering PSEN1. Conversely, adipocytes in high glucose and insulin had elevated AβPP and secretase expression compared with those in low glucose and high insulin (P ≤ 0.008 for all).

Insulin decreased adipocyte INS-R, IRS1, IRS2, and IDE expression at 5.5 mM glucose (P ≤ 0.0004 for all; Supporting Information Figure 7). At 1 nM insulin, high glucose reduced IRS1 and IRS2 expression compared with low (P < 0.01 for both). At 500 nM insulin, high glucose increased IRS1 and IDE compared with low (P < 0.001 for both). There was no change in GLUT4 expression (Supporting Information Figure 7b). Together, these data show that glucose increases Aβ secretion by SVcs without alteration of AβPP system gene expression, insulin increases Aβ secretion by adipocytes, and both glucose and insulin alter the expression of AβPP system genes in adipocyte cultures.

Incubation with Aβ reduces expression of IRS2 and activation of Akt-1

Last we asked whether Aβ could have local effects on adipose tissue function. Adipocyte cultures from 11 subjects (four lean, four with obesity, three with obesity and type 2 diabetes) were treated with Aβ40 or Aβ42 for 6 days. Media contained 10 nM insulin and 5.5 mM glucose. Aβ40 and Aβ42 did not change cell numbers or lipid content (Supporting Information Figure 8a–d). Neither Aβ/
species altered AβPP, BACE1, PSEN2, INS-R, GLUT4, IRS1, or IDE transcription (P > 0.09 for all; data not shown).

Adipocytes cultured with Aβ40 or high concentrations of Aβ42 had reduced IRS2 transcription (P < 0.023; Figure 6a, b). Total Akt-1 levels were not altered by Aβ (P > 0.6 for log-transformed data; Figure 6c). Akt-1 serine-472 phosphorylation was reduced with high Aβ40 (P = 0.04, log-transformed data; Figure 6d) and the ratio of phosphorylated to total Akt-1 tended to decrease with high Aβ (P = 0.07, Figure 6e). These results show that treatment of adipocytes with physiological concentrations of Aβ induced changes in the insulin receptor signaling pathway.

Discussion

Obesity and type 2 diabetes are risk factors for developing Alzheimer disease in later life. While the role of Aβ in Alzheimer disease is debated, a growing body of data shows the AβPP system may be involved in peripheral glucose and insulin metabolism. Previously, we found AβPP expression in isolated adipocytes was increased in obesity and correlated with measures of insulin resistance and cytokine expression (25). Here we show that human adipocytes and SVC cultures secrete Aβ peptides and that Aβ is present in the adipose interstitium in vivo. Aβ secretion in vitro was increased by insulin in adipocytes independent of AβPP system transcription. SVC secreted more Aβ when cultured with high glucose concentrations. Incubation of adipocytes with Aβ altered expression and activation within the insulin receptor signaling pathway. These results show Aβ formation in adipose tissue may be linked to altered metabolic dysfunction and elevated Aβ concentrations in the adipose tissue interstitial fluid could alter insulin receptor signaling.

SVC secreted Aβ at ~1/10th the neuronal rate, but at similar levels to cultured fibroblasts (27,28). Differentiated adipocytes secreted Aβ at ~1/100th the neuronal rate. The rates were not affected by the donor’s metabolic phenotype, consistent with a prior study showing in vitro conditions can normalize adipocytes cultured from subjects with type 2 diabetes (29). We found increased Aβ secretion in SVC cultured at high glucose and in adipocytes cultured with high insulin without correlation to AβPP system transcription. Our cultures were derived from primary SVC which contain multiple cell types when collected, but become homogenous following multiple passages. We did not find contaminating leukocytes or neurons in our cultures using microscopy.

Using microdialysis we measured Aβ in adipose tissue in situ. Measured concentrations were consistent with those found in culture and represented a fraction (~16%) of the circulating plasma levels. There are several considerations for interpreting these data. This is a small, exploratory cohort and it is not powered to determine differences between metabolic phenotypes of the subjects. The study cohort included subjects with obesity without diabetes. This group of three subjects had much higher insulin levels than the control group and the obesity with diabetes group. It is important to note the small size of these groups precludes extrapolation about the
association of insulin or glucose levels with the measured Aβ concentrations. Further, these measurements represent the steady-state production, destruction, and transport of Aβ between the adipose tissue and vascular compartment. In this study, we did not measure differences in adipose tissue blood flow which has been shown to vary with obesity (30). The kinetics and mechanisms of Aβ distribution among peripheral tissues has not yet been described. Further experiments incorporating measurements of flux between the vascular compartment and the adipose interstitium are needed to more precisely measure the secretion rate and dynamics of Aβ in human adipose tissue in vivo. These foundational experiments are necessary for examination of Aβ secretion differences among metabolic phenotypes.

Cultured neurons secrete Aβ when treated with insulin (0.1 nM–100 μM), in part, due to increased transport of AβPP to the cell surface and exocytosis of intracellular Aβ (21,28). Endogenous Aβ in CSF and blood can fluctuate acutely in response to glucose and insulin (14,20,25,31). Secretion of Aβ by adipose tissue cells could result from direct effects of glucose and insulin on secretase activity and exocytosis pathways, or through secondary effects like induction of inflammation, mitochondrial dysfunction, or the unfolded protein response. Aβ competes with insulin for the insulin receptor and for degradation by IDE (22,23). This competition reduces signal transduction through the insulin receptor signaling pathway and prolongs the half-lives of both Aβ and insulin (32,33). Chronic in vitro treatment of adipocytes with Aβ species at 100 to 1,000 pg/mL reduced IRS2 expression. Interestingly, insulin resistance in human adipocytes is generally associated with alterations in IRS1, but loss of negative feedback on the insulin signaling pathway reduces expression and activation of both IRS1 and IRS2 (30,34-36). Impaired IRS2 activation in brains from patients with Alzheimer disease is associated with insulin-like growth factor-1 (IGF-1) resistance, but human adipocytes have low expression of IGF-1 receptors (8,37). In addition, we found treatment with high levels of Aβ reduced phosphorylation of Akt-1 at serine 473. This site is phosphorylated during insulin receptor signaling and reductions are associated with insulin and IGF-1 resistance (38-40). These observations merit deeper investigation, but suggest chronic elevations in Aβ could induce insulin receptor pathway dysfunction in adipocytes.

Beyond those noted above, there are several important limitations to these data. We have not delineated the exact mechanisms involved in Aβ secretion. With the exception of Aβ and Akt-1, we have not measured levels of other proteins, nor have we measured enzymatic activity of the secretases or IDE. It is quite possible that subtleties among transcription, translation, and function exist which may refine our understanding of Aβ regulation in adipose tissue. We have not measured an acute effect of Aβ on insulin-stimulated glucose uptake. Whether the changes observed in our culture experiments...
correspond to functional impairments in cellular metabolism need to be addressed in future experiments. In addition, our microdialysis cohort is small and further experiments will be needed to assess the adipose cell contribution to interstitial Aβ, the local kinetics of adipose Aβ production and clearance, and associations with metabolic dysfunction.

In summary, here we show that human adipose tissue cells secrete Aβ

\[\text{Aβ} \]

in vitro at concentrations similar to interstitial adipose Aβ in vivo, adipose Aβ secretion may be regulated by insulin or glucose, and incubation of adipose cells with Aβ alters the insulin receptor signaling pathway. These data suggest a direct relationship between adipose Aβ and metabolic function and highlight dysfunction in
cellular pathways that could link obesity, type 2 diabetes, and Alzheimer disease.

Acknowledgments

We gratefully acknowledge Dr. Russell P. Tracy, PhD, from the University of Vermont for helpful discussions about study design and technical assistance with measurement of amyloid peptides.

© 2016 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS)

References

1. Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 2009;66:300-305.
2. Luchsinger JA. Adiposity, hyperinsulinemia, diabetes and Alzheimer’s disease: an epidemiological perspective. Eur J Pharmacol 2008;585:119-129.
3. Rios JA, Cisternas P, Arrese M, Barja S, Inestrosa NC. Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014;121:125-146.
4. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011;378:31-40.
5. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011;377:557-567.
6. Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2012;2:a006239.
7. Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2012;2:a006213.
8. Talbot K, Wang HY, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012;122:1316-1338.
9. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353-356.
10. Muller UC, Zheng H. Physiological functions of APP family proteins. Cold Spring Harb Perspect Biol 2012;4:002888.
11. Masters CL, Selkoe DJ. Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012;2:a006262.
12. Coulson EJ, Paliga K, Beyreuther K, Masters CL. What the evolution of APP family proteins. Cold Spring Harb Perspect Biol 2012;4:002888.
13. Takeda S, Sato N, Uchio-Yamada K, et al. Oral glucose loading modulates plasma beta-amyloid level in Alzheimer’s disease patients: potential diagnostic method for Alzheimer’s disease. J Biol Chem 2011;286:19799-19807.
14. Zhang Y, Zhou B, Zhang F, et al. Amyloid-beta induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway. Diabetes 2012;61:1434-1443.
15. Needham BE, Wibek ME, Ciccottosto GD, et al. Identification of the Alzheimer’s disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth. J Pathol 2008;215:155-163.
16. Cao D, Lu H, Lewis TL, Li L. Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem 2007;282:36275-36282.
17. Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 2004;18:902-904.

18. Jimenez-Palmares M, Ramos-Rodriguez JJ, Lopez-Acosta JJ, et al. Increased Abeta production prompts the onset of glucose intolerance and insulin resistance. Am J Physiol Endocrinol Metab 2012;302:E1373-E1380.
19. Takeda S, Sato N, Uchio-Yamada K, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci USA 2010;107:7036-7041.
20. Fishel MA, Watson GS, Montine TJ, et al. Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol 2005;62:1539-1544.
21. Gasparini L, Gouras GK, Wang R, et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 2001;21:2561-2570.
22. Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003;100:4162-4167.
23. Qiu WQ, Walsh DM, Ye Z, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998;273:32730-32738.
24. Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 2002;22:RC221.
25. Lee YH, Sharp WG, Maple RL, Nair S, Pernama PA, Pratley RE. Amyloid precursor protein expression is upregulated in adipocytes in obesity. Obesity (Silver Spring) 2008;16:1493-1500.
26. Skark T, Hauner H. Primary culture of human adipocyte precursor cells: expansion and differentiation. Methods Mol Biol 2012;806:215-226.
27. Castellano JM, Kim J, Stewart FR, et al. Human apolipoprotein E isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 2011;3:89ra57.
28. Citron M, Vigo-Pelfrey C, Teplow DB, et al. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc Natl Acad Sci USA 1994;91:11993-11997.
29. Burren J, Lindmark S, Renstrom F, Eriksson JW. In vitro reversal of hyperglycemia normalizes insulin action in fat cells from type 2 diabetes patients: is cellular insulin resistance caused by glucotoxicity in vivo? Metabolism 2003;52:239-245.
30. Jansson PA, Larsson A, Smith U, Lunowroth P. Glycerol production in subcutaneous adipose tissue in lean and obese humans. J Clin Invest 1992;89:1610-1617.
31. Takeda S, Sato N, Uchio-Yamada K, et al. Oral glucose loading modulates plasma beta-amyloid level in Alzheimer’s disease patients: potential diagnostic method for Alzheimer’s disease. Dement Geriatr Cogn Disord 2012;34:25-30.
32. Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 2007;282:33305-33312.
33. Zhao WQ, De Felice FG, Fernandez S, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 2008;22:246-260.
34. Brannmark C, Nyman E, Fagerholm S, et al. Insulin signaling in type 2 diabetes - experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes. J Biol Chem 2013;288:9867-9880.
35. Pereira MJ, Palming J, Rizzell M, et al. mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes. Mol Cell Endocrinol 2012;355:96-105.
36. Renstrom F, Buren J, Svensson M, Eriksson JW. Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metabolism 2007;56:190-198.
37. Back K, Brannmark C, Strafors P, Arrqvist HJ. Differential effects of IGF-I, IGF-II and insulin in human preadipocytes and adipocytes-role of insulin and IGF-I receptors. Mol Cell Endocrinol 2011;339:130-135.
38. Cleveland-Donovan K, Maile LA, Tsiras WG, Tekkonia T, Kirkland JL, Boney CM. IGF-I activation of the AKT pathway is impaired in visceral but not subcutaneous preadipocytes from obese subjects. Endocrinology 2010;151:3752-3763.
39. Chu SP, Fong JC. Mechanism of inhibition of insulin-stimulated glucose transport by 4-bromocrotonic acid in 3T3-L1 adipocytes. Cell Signal 2003;15:269-277.
40. Hresko RC, Mueckler M. mTOR.RICTOR is the Sre743 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 2005;280:40406-40416.