Cardiopulmonary Resuscitation Preferences of People Receiving Dialysis

Gwen M. Bernacki, MD, MHSA; Ruth A. Engelberg, PhD; J. Randall Curtis, MD, MPH; Manjula Kurella Tamura, MD; Lyndia C. Brumback, PhD; Danielle C. Lavallee, PharmD, PhD; Elizabeth K. Vig, MD, MPH; Ann M. O’Hare, MD, MA

Abstract

IMPORTANCE Whether the cardiopulmonary resuscitation (CPR) preferences of patients receiving dialysis align with their values and other aspects of end-of-life care is not known.

OBJECTIVE To describe the CPR preferences of patients receiving dialysis and how these preferences are associated with their responses to questions about other aspects of end-of-life care.

DESIGN, SETTING, AND PARTICIPANTS Cross-sectional survey study of a consecutive sample of patients receiving dialysis at 31 nonprofit dialysis facilities in 2 US metropolitan areas (Seattle, Washington, and Nashville, Tennessee) between April 22, 2015, and October 2, 2018. Analyses for this article were conducted between December 2018 and April 2020.

EXPOSURES Participants were asked to respond to the question “If you had to decide right now, would you want CPR if your heart were to stop beating?” Those who indicated they would probably or definitely want CPR were categorized as preferring CPR.

MAIN OUTCOMES AND MEASURES This study examined the association between preference for CPR and other treatment preferences, engagement in advance care planning, values, desired place of death, expectations about prognosis, symptoms, and palliative care needs.

RESULTS Of the 1431 individuals invited to complete the survey, 1006 agreed to participate, and 873 were included in the analytic cohort (61.0%). The final cohort had a mean (SD) age of 62.6 (14.0) years; 489 (56.0%) were men, and 526 (60.3%) were White individuals. Among 736 of 873 participants (84.3%) who indicated that they would definitely or probably want CPR (CPR group), 554 (75.3%) wanted mechanical ventilation vs 13 of 137 (9.5%) of those who did not want CPR (do not resuscitate [DNR] group) (P < .001). A total of 248 of 736 participants (33.7%) in the CPR group vs 83 of 137 (60.6%) in the DNR group had documented treatment preferences (P < .001). In terms of values about future care, 171 participants (23.2%) in the CPR group vs 5 of 137 (3.7%) in the DNR group valued life prolongation (P < .001); 319 in the CPR group (43.3%) vs 108 of 137 in the DNR group (78.8%) valued comfort (P < .001); and 246 participants (33.4%) in the CPR group vs 24 of 137 (17.5%) in the DNR group were unsure about their wishes for future care (P < .001). In the CPR group, 207 (28.1%) had thought about stopping dialysis vs 62 of 137 (45.3%) in the DNR group (P < .001), and 181 (24.6%) vs 57 of 137 (41.6%) had discussed stopping dialysis (P = .001). No statistically significant associations were observed between CPR preference and documentation of a surrogate decision maker, thoughts or discussion of hospice, preferred place of death, expectations about prognosis, reported symptoms, or palliative care needs.

CONCLUSIONS AND RELEVANCE The CPR preferences of patients receiving dialysis were associated with some, but not all, other aspects of end-of-life care. How participants responded to questions about these other aspects of end-of-life care were not always aligned with their CPR preference.

Key Points

Question Do the cardiopulmonary resuscitation (CPR) preferences of patients receiving dialysis align with their responses to questions about other aspects of end-of-life care?

Findings Among 873 participants in this cross-sectional survey study, most (84.3%) indicated they would definitely or probably want CPR. Preference for CPR was associated with some, but not all, of the other domains of end-of-life care that were examined; responses to questions about these other aspects of end-of-life care were not always aligned with participants’ CPR preference.

Meaning Code status discussions with patients receiving dialysis should be integrated with broader conversations about their values, goals, and preferences for end-of-life care.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

JAMA Network Open. 2020;3(8):e2010398. doi:10.1001/jamanetworkopen.2020.10398

August 24, 2020
Abstract (continued)

preference. More work is needed to integrate discussions about code status with bigger picture conversations about patients' values, goals, and preferences for end-of-life care.

Introduction

People with end-stage kidney disease (ESKD) receiving maintenance dialysis have mortality rates of 15% to 20% per year.\(^1\) Compared with the general population, these patients are far more likely to die prematurely of a cardiac arrest.\(^2\) Out-of-hospital sudden cardiac death occurs 20 times more often in people receiving dialysis than in the general population.\(^1,3,6\) Less than 25% of patients who experience a cardiac arrest during dialysis treatment survive to hospital discharge, and only 8% to 15% survive more than 1 year after the arrest.\(^3,6,10\) Most prior studies have also shown that outcomes after in-hospital cardiac arrest are less favorable for these patients than for more broadly defined populations, with only one-half surviving beyond 5 months (compared with almost 3 years for the general population).\(^3,12\) Patients receiving maintenance dialysis who survive a cardiac arrest in the hospital are also more likely to be discharged to a skilled nursing facility compared with other survivors of cardiac arrest.\(^13\)

Despite their generally poor outcomes after resuscitation, available data suggest that patients receiving dialysis are much more likely to receive cardiopulmonary resuscitation (CPR) than members of the general population. These patients are also more likely to receive intensive patterns of end-of-life care focused on life prolongation compared with some other seriously ill populations.\(^11,14-17\) The extent to which these aggressive patterns of end-of-life care focused on life extension align with the values, goals, and preferences of individual patients receiving dialysis is not known.\(^18\) Although most patients with advanced kidney disease say that they would want to be resuscitated,\(^19-21\) most also indicate that they would value comfort and relief of suffering if they were seriously ill or dying and that they would prefer to die at home.\(^20\)

Because resuscitation preferences are often elicited reflexively at times of transition, such as hospital admission or dialysis initiation or when obtaining consent for procedures, these conversations may not be integrated with a broader process of advance care planning that explores patients’ values, goals, expectations, and preferences for future care.\(^22,23\) Although at least 1 study\(^3\) has attempted to gauge the extent to which the resuscitation preferences of patients undergoing dialysis are honored, no prior studies to our knowledge have evaluated the association between patients’ resuscitation preferences and how they respond to questions about other aspects of end-of-life care. This study used data collected from patients receiving dialysis who participated in a survey about end-of-life care to describe the association of resuscitation preferences with self-reported participant characteristics and with other domains of palliative and end-of-life care.

Methods

Study Design

In this cross-sectional survey study, we analyzed data from the United States Renal Data System Study of Treatment Preferences (USTATE) conducted among patients at 31 nonprofit dialysis facilities in 2 US metropolitan areas (Seattle, Washington, and Nashville, Tennessee) between April 22, 2015, and October 2, 2018, in accordance with best practices for survey research.\(^24,25\) Analyses for this article were conducted between December 2018 and April 2020. Patients were eligible to participate in USTATE if they were 21 years or older, sufficiently fluent to complete surveys in English, cognitively able to provide written informed consent, and receiving maintenance dialysis. Study staff consulted
with dialysis facility charge nurses to identify patients who met these eligibility criteria and then approached eligible patients in person during their dialysis session, resulting in a pragmatic consecutive sample of eligible patients receiving dialysis at each facility at the time of survey administration. Most patients approached were receiving in-center hemodialysis; a small convenience sample of patients were receiving peritoneal dialysis. Study participants could choose whether to complete the survey themselves or have a study coordinator record their responses to survey questions during their dialysis session. The study was approved by the institutional review board at the University of Washington, Seattle, and written informed consent was obtained from participants. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Survey
The USTATE survey included items that had been previously validated as well as items developed by the study investigators (R.A.E., M.K.T., D.C.L., E.K.V., and A.M.O.) that were refined during the pilot testing phase of the survey. The survey included questions about patients’ preference for CPR as well as about their values, preferences, knowledge, and expectations pertaining to other aspects of end-of-life care, including self-reported engagement in advance care planning, values around life prolongation, knowledge and preferences about other care decisions (ie, mechanical ventilation, dialysis discontinuation, and hospice enrollment), preferred place of death, expectations about prognosis, symptom burden, and palliative care needs (eAppendix in the Supplement). Respondents were also asked to provide some basic information about themselves (eg, age, sex, race, ethnicity, highest educational level, importance of spiritual and/or religious beliefs, time receiving dialysis, and self-reported health assessment).

Primary Exposure
Responses to the following question were used to define the primary exposure: “If you had to decide right now, would you want CPR (cardiopulmonary resuscitation) if your heart were to stop beating?” Possible responses included definitely yes, probably yes, probably no, and definitely no. For the analyses described herein, participants who indicated they would probably or definitely want CPR were classified as preferring CPR, whereas those who said they would probably or definitely not want CPR were classified as preferring not to be resuscitated (do not resuscitate [DNR]).

Outcomes
This study examined the association between preference for CPR and 9 study outcomes. Outcome 1 was the preference for receipt of mechanical ventilation; participants were asked if they would want this intervention if they “had to decide right now,” and those indicating they would definitely or probably want this intervention were classified as preferring mechanical ventilation. Outcome 2 was self-reported engagement in advance care planning, which included (1) documentation of a surrogate decision maker (“I have signed official papers naming someone to make medical decisions for me [eg, as part of a living will or advance directive]” and have or have not discussed this choice with him or her) and (2) documentation of treatment preferences (“I have signed official papers documenting my preferences [eg, living will or advance directive]” and have or have not talked with at least one friend or family member about this preference). Outcome 3 was the participant’s values around life prolongation. Participants were queried about their preferred plan of care if they “were to become very sick in the future,” with responses categorized as “extending life even if that means having more pain and discomfort” vs “relieving pain and discomfort as much as possible, even if that means not living as long” vs “I’m not sure which I would choose”. Outcome 4 was whether participants had had thoughts or prior discussions about stopping dialysis vs not. Outcome 5 was whether they had had thoughts or prior discussions about receiving hospice care if they were to become sicker or if their goals changed vs not. Outcome 6 was the respondent’s desired place of death (categorized as home if home or the home of a relative or friend or as other if hospital, nursing home, or other setting).
Outcome 7 was the expectation about prognosis (categorized as predicted life expectancy of <5 years vs 5-10 years vs >10 years vs unsure). Outcome 8 was the presence or absence of symptoms over the past week, including (1) weakness or lack of energy, (2) pain, (3) difficulty sleeping, (4) poor mobility, (5) anxiety, (6) shortness of breath, and (7) depression. Outcome 9 was the presence of palliative care needs, including (1) "would like someone to talk to about treatment options for the future" vs not, (2) "would like help with making plans in case I become very ill (advance care planning)" vs not, (3) "would like someone to talk to about my care plan and treatments" vs not, (4) "would like to have someone to talk to about finding meaning in my life now" vs not, (5) "would like help with learning to cope with feelings of sadness" vs not, and (6) "would like to have someone to talk to about dying and death" vs not.

Covariates

Multivariable analyses were adjusted for self-reported participant characteristics. These included age (categorized as <60, 60-74, and ≥75 years), sex, race (categorized as White, Black, or other, which included Asian, American Indian, Alaskan Native, Native Hawaiian, or other Pacific Islander), ethnicity (categorized as non-Hispanic vs Hispanic), highest educational level (categorized as no college vs at least some college/trade school), importance of spiritual and/or religious beliefs based on responses to the statement “My religious and spiritual beliefs are really what lie behind my whole approach to life” (categorized as definitely true or tends to be true vs tends not to be true or definitely not true), length of time receiving dialysis (categorized as <1 year, 1-5 years, or >5 years), and self-reported health status (categorized as good, very good, or excellent vs fair or poor) (eAppendix in the Supplement).

Statistical Analysis

Logistic regression was used to evaluate the association of the aforementioned self-reported participant characteristics with a preference for CPR. To evaluate the association between preference for CPR and the 9 study outcomes, this study used logistic or multinomial regression depending on whether the outcome was binary or multicategorical, after adjustment for self-reported participant characteristics. Estimates of association are presented as adjusted risk differences with 95% CIs. Predicted risks of the relevant outcome for the exposure group were calculated by fixing the value of the other covariates at the mean value for the cohort. To account for multiple comparisons, a threshold of 2-sided $P < .001$ was used for analyses of study outcomes. All analyses were conducted using Stata, version 13.1 (StataCorp LLC).

Results

Between April 22, 2015, and October 2, 2018, a total of 1592 patients were approached to participate in the study. During the first 8 months of recruitment, 161 eligible patients were invited to participate in the pilot phase of the study, and 146 of these completed pilot versions of the survey (90.7% response rate). After the pilot phase, a further 1431 eligible patients were invited to participate, and 1006 patients completed the final version of the survey. Nine of these respondents were excluded because they did not record their name and/or date of birth on the paper survey or consent form, along with an additional 124 participants who did not complete one or more survey questions included in the analyses described herein, yielding an analytic cohort of 873 participants (61.0% of 1431 eligible patients invited to complete the final version of the survey).

Cohort Characteristics and CPR Preference

Among 873 participants included in the analytic sample, the mean (SD) age at the time of survey completion was 62.6 (14.0) years; 489 (56.0%) were men, and 526 (60.3%) were White individuals. In the total sample, 248 participants (28.4%) had been receiving dialysis for less than 1 year at the time of survey administration, 426 (48.8%) had been receiving dialysis between 1 and 5 years, and
199 (22.8%) had been receiving dialysis for more than 5 years. Overall, 505 (57.9%) participants described themselves as being in good, very good, or excellent health, with 274 (31.4%) in fair health and 94 (10.8%) in poor health (Table 1).

Among 873 participants, 571 (65.4%) said that they definitely wanted to be resuscitated and 165 (18.9%) said that they probably wanted to be resuscitated. A total of 137 participants did not prefer resuscitation; 60 (6.9%) said that they probably did not want to be resuscitated, and 77 (8.8%) said that they definitely did not want to be resuscitated.

Association Between Self-reported Participant Characteristics and Preference for CPR
Self-reported participant characteristics that were independently associated with a preference for CPR included younger age, Black race, and reporting that spiritual and/or religious beliefs were important to them. These results are summarized in Table 2.

Association of Preference for CPR With Other Aspects of End-of-Life Care
Among the 84.3% (736 of 873) of participants who indicated that they would definitely or probably want CPR (CPR group), 554 (75.3%) participants vs 13 of 137 (9.5%) of those who did not want CPR (DNR group) wanted mechanical ventilation ($P < .001$). In the CPR group, 248 participants (33.7%) had documented their treatment preferences vs 83 of 137 participants (60.6%) in the DNR group.

Self-reported characteristic	No. (%)	Resuscitation preference	
	Total sample (N = 873)	Yes/CPR (n = 736)	No/DNR (n = 137)
Age, y			
<60	359 (41.1)	340 (46.2)	19 (13.9)
60-74	348 (39.9)	277 (37.6)	71 (51.8)
≥75	166 (19.2)	119 (16.2)	47 (34.3)
Sex			
Female	384 (44.0)	320 (43.5)	64 (46.7)
Male	489 (56.0)	416 (56.5)	73 (53.3)
Race			
White	526 (60.3)	428 (58.2)	98 (71.5)
Black	229 (26.2)	212 (28.8)	17 (12.4)
Asian, American Indian, Alaskan Native, Native Hawaiian, or other Pacific Islander	118 (13.5)	96 (13.0)	22 (16.1)
Ethnicity			
Non-Hispanic	821 (94.0)	691 (94.2)	>127 (>92.0)*
Hispanic	52 (6.0)	43 (5.8)	<11 (<8.0)
Highest educational level			
Completed high school/GED or less	394 (45.1)	331 (45.0)	63 (46.0)
Completed at least some college/trade school	479 (54.9)	405 (55.0)	74 (54.0)
Spiritual and/or religious beliefs important			
Definitely true or tends to be true	621 (71.1)	534 (72.6)	87 (63.5)
Tends not to be true or definitely not true	252 (28.9)	202 (27.5)	50 (36.5)
Time receiving dialysis, y			
<1	248 (28.4)	211 (28.7)	37 (27.0)
1-5	426 (48.8)	346 (47.0)	80 (58.4)
>5	199 (22.8)	179 (24.3)	20 (14.6)
Self-reported health assessment			
Good, very good, or excellent	505 (57.9)	431 (58.6)	74 (54.0)
Fair	274 (31.4)	231 (31.4)	43 (31.4)
Poor	94 (10.8)	74 (10.1)	20 (14.6)

Abbreviations: CPR, cardiopulmonary resuscitation; DNR, do not resuscitate; GED, General Educational Development test.

* Percentages have been rounded and may not total 100.
* Preference for CPR was “probably or definitely wanting CPR.”
* Preference for CPR was “probably or definitely not wanting CPR.”
* Number not specified to protect confidentiality.
With regard to values about future care, 171 participants (23.2%) in the CPR group vs 5 participants (3.7%) in the DNR group valued life prolongation \((P < .001)\); 319 (43.3%) vs 108 of 137 (78.8%) \((P < .001)\) valued comfort, and 246 (33.4%) vs 24 of 137 (17.5%) were unsure about their wishes for future care \((P < .001)\). In the CPR group, 207 (28.1%) participants vs 62 of 137 (45.3%) in the DNR group had thought about stopping dialysis \((P < .001)\), and 181 participants (24.6%) vs 57 of 137 (41.6%) had discussed stopping dialysis \((P = .001)\). After accounting for multiple comparisons, no statistically significant associations were observed between CPR preference and documentation of a surrogate decision maker, thoughts or discussion of hospice, preferred place of death, expectations about prognosis, reported symptoms, or palliative care needs (Table 3).

Discussion

Most individuals (84.3% [736 of 873]) receiving outpatient dialysis at nonprofit facilities in 2 US metropolitan areas who participated in our survey indicated they would definitely or probably want to be resuscitated if their heart were to stop beating. In analyses adjusted for self-reported participant characteristics, CPR preference was associated with some, but not all, of the other domains of end-of-life care that were examined. Furthermore, study participants’ CPR preferences were not always aligned with how they responded to questions about these other aspects of end-of-life care. These findings argue for caution in extrapolating patients’ values, preferences, knowledge, and expectations pertaining to other aspects of end-of-life care from their resuscitation choice. Stronger efforts are needed to improve education around CPR and contextualize discussions about

Table 2. Association Between Self-reported Participant Characteristics and Preference for CPR
Self-reported characteristic
Age, y
<60
60-74
\(\geq 75\)
Sex
Female
Male
Race
White
Black
Asian, American Indian, Alaskan Native, Native Hawaiian, or other Pacific Islander
Ethnicity
Non-Hispanic
Hispanic
Highest educational level
Completed high school/GED or less
Completed at least some college/trade school
Spiritual and/or religious beliefs important
Tends not to be true or definitely not true
Definitely true or tends to be true
Time receiving dialysis, y
\(< 1\)
1-5
\(> 5\)
Self-reported health assessment
Good, very good, or excellent
Fair
Poor

Abbreviations: CPR, cardiopulmonary resuscitation; GED, General Educational Development test; NA, not applicable.

a Adjusted risk differences represent differences in predicted probability of preferring CPR compared with the referent category (adjusted for age, sex, race, ethnicity, highest educational level, spirituality/religiosity, time receiving dialysis, and self-reported health assessment). Predicted probabilities represent the expected proportion of patients in each category of exposure who would prefer CPR if all cohort members belonged to that category.

b Omnibus \(P\) values.
resuscitation preference within a broader conversation about end-of-life wishes for members of this population.

In other populations, the percentage of patients expressing a preference for CPR have ranged from 22% to 93%, with marked differences depending on patients’ health state and illness severity. To our knowledge, only a few prior studies have asked people with advanced kidney disease about their resuscitation preferences. Although these studies were conducted in various clinical settings, geographic locations, and time periods and framed the question in different ways, a common finding across all studies was that a substantial number of participants wished to be resuscitated. Among the larger studies, the percentage of patients who preferred CPR has ranged from 39% of 584 Canadian patients with advanced kidney disease, to 65% of members of a

Table 3. Association Between Participants’ Preference for CPR and Other Aspects of End-of-Life Care

End-of-life care domain	No. (%)	Resuscitation preference	Adjusted risk difference, % (95% CI)	P value
Preference for mechanical ventilation				
Total (N = 873)				
CPR (n = 736)	554 (75.3)	13 (9.5)	63.8 (57.4 to 70.3)	<.001
DNR (n = 137)				
Advance care planning				
Documented surrogate	331 (37.9)	248 (33.7)	83 (60.6)	<.001
Documented treatment preferences				
Values about future care				<.001
Longevity	176 (20.2)	171 (23.2)	5 (3.7)	<.001
Comfort	427 (48.9)	319 (43.3)	108 (78.8)	<.001
Unsure	270 (30.9)	246 (33.4)	24 (17.5)	<.001
Stopping dialysis	269 (30.8)	207 (28.1)	62 (45.3)	<.001
Discussion of stopping dialysis	238 (27.3)	181 (24.6)	57 (41.6)	<.001
Enrolling in hospice	470 (53.8)	385 (52.3)	85 (62.0)	.14
Discussion of hospice	201 (23.0)	160 (21.7)	41 (29.9)	.18
Desired in-home death	518 (59.3)	427 (58.0)	91 (66.4)	.42
Expectation about prognosis, y				.03
<5	103 (11.8)	71 (9.7)	33 (23.9)	.02
5-10	135 (15.5)	113 (15.4)	22 (15.9)	.49
≥10	292 (33.4)	266 (36.1)	26 (18.8)	.08
Unsure	343 (39.3)	286 (38.9)	57 (41.3)	.62
Reported symptoms				
Weakness or lack of energy	530 (60.7)	441 (59.9)	89 (65.0)	.74
Pain	454 (52.0)	389 (52.9)	65 (47.5)	.53
Difficulty sleeping	442 (50.6)	376 (51.1)	66 (48.2)	.74
Poor mobility	379 (43.4)	314 (42.7)	65 (47.5)	.85
Anxiety	258 (29.5)	219 (29.8)	39 (28.5)	.85
Shortness of breath	257 (29.4)	217 (26.4)	41 (29.9)	.67
Depression	204 (23.4)	166 (22.6)	38 (27.7)	.12
Palliative care needs				
Discussion about future treatment options	425 (48.7)	364 (49.5)	61 (44.5)	.75
Advance care planning	384 (44.0)	336 (45.7)	48 (35.0)	.25
Discussion about care plan and treatment	282 (32.3)	241 (32.7)	41 (29.9)	.74
Help coping with sadness	242 (27.3)	203 (27.6)	39 (28.5)	.63
Discussion about finding meaning in life	150 (17.2)	133 (18.1)	17 (12.4)	.53
Discussion about dying and death	112 (12.8)	98 (13.3)	14 (10.2)	.45

Abbreviations: CPR, cardiopulmonary resuscitation; DNR, do not resuscitate.

a Percentages by resuscitation preference are not adjusted for self-reported participant characteristics. These have been rounded and may not total 100.

b Adjusted risk differences represent the difference between the predicted probability of each outcome if all cohort members selected CPR vs if all cohort members selected DNR (adjusted for age, sex, race, ethnicity, highest educational level, spirituality/religiosity, time receiving dialysis, and self-reported health assessment).

c Omnibus P values.
sociodemographically diverse population of 423 patients receiving dialysis in Cleveland, Ohio, to 87% of 469 patients receiving maintenance dialysis in Kansas City, Missouri, Rochester, New York, and northern West Virginia. Consistent with the study by Moss et al, a preference for CPR among participants in the present study was associated with younger age and Black race. Although none of these studies explicitly examined the association between resuscitation preferences and responses to questions about other aspects of end-of-life care, most reported a high frequency of unmet palliative care needs and substantial symptom burden as well as poor knowledge and limited discussion about hospice. For example, Davison and Saeed et al reported that most patients surveyed wanted their nephrologists to be responsive to their spiritual, social, and psychological concerns. Davison also reported that, although 83% of participants thought it was very important to plan for end of life, less than half of study participants indicated they had discussed their end-of-life wishes with their care team. Saeed et al found that more than half (53%) of participants in their study preferred to die at home and almost 20% were unfamiliar with hospice. Our study adds to this earlier work by examining the association between resuscitation preferences and how patients responded to questions about other aspects of end-of-life care.

Although not required by the Centers for Medicare & Medicaid Services, preferences for resuscitation are often elicited as part of the dialysis consent process. How patients respond to questions about code status in this context has direct implications for how dialysis facility staff will react in the event of a cardiac arrest, although the results of a recent study suggested that approximately 81% of patients receiving care in a large dialysis organization who wanted to receive CPR were not resuscitated. Although there may be a place for a checklist approach to eliciting patients’ preferences about particular clinical interventions, especially when this choice pertains to risky procedures and/or crisis situations, this approach may have the unintended consequence of dislocating discussions about CPR from the broader process of advance care planning and bigger picture conversations about patients’ values and goals of care. A siloed approach to discussion of resuscitation preferences in this and other narrow contexts and/or crisis situations may result in missed opportunities to address misconceptions about CPR and explore apparent inconsistencies between patients’ resuscitation preferences and their values, preferences, knowledge, and expectations for future care. Although members of this study cohort who preferred CPR were more likely to value life extension than those who did not wish to be resuscitated, most valued relief of pain and discomfort or were unsure about their future care. We suspect that framing discussions about future care around patients’ values and goals rather than their preferences for specific interventions like CPR may be helpful in improving the quality of end-of-life care.

Prior studies conducted in patients with kidney disease and in other populations support the feasibility and effectiveness of engaging patients and families in advance care planning. That a substantial proportion of participants herein who did not want to be resuscitated had documented neither a surrogate decision maker nor treatment preferences illuminates an important gap in care. A default approach to resuscitation in many health care systems makes these patients especially vulnerable to receiving care that is incongruent with their preferences. Furthermore, 1 in 4 patients in the present study who wanted to receive CPR did not want to receive mechanical ventilation, highlighting the importance of efforts to educate patients and families about what CPR typically involves, the context in which this intervention tends to be delivered, and the most likely outcomes. Such efforts should focus not only on the low likelihood of surviving an episode of CPR for members of this population but also on the clinical context, and specifically the tendency of successful CPR to serve as a gateway to other intensive interventions intended to prolong life, such as mechanical ventilation and intensive care unit admission. Prior research in other populations suggests that patients are less likely to want to be resuscitated when they are informed about the expected outcome.

JAMA Network Open. 2020;3(8):e2010398. doi:10.1001/jamanetworkopen.2020.10398

August 24, 2020 8/14
Although palliative care specialists are often called on to support discussions of goals of care and treatment preferences, their training also equips them to address patients’ palliative care needs and symptom burden. Palliative care consultation has been associated with improvement in symptom burden in other populations but is underused for patients receiving maintenance dialysis. Although little is known about the feasibility, acceptability, and effectiveness of enhancing palliative care support for patients receiving maintenance dialysis, the very high prevalence of palliative care needs and symptom burden among these individuals highlights the potential value of efforts to improve their access to palliative care.

Limitations
Our study has several important limitations. First, the results of this cross-sectional survey study conducted at nonprofit dialysis facilities in 2 US metropolitan areas may not be generalizable to patients receiving dialysis at for-profit facilities, those living in other parts of the country, and those who were excluded from our study (non–English-speaking individuals and persons unable to provide written informed consent). Although the demographic characteristics of our cohort resemble those of the overall US population receiving dialysis, the high percentage of patients enrolled in our study who rated their health as good, very good, or excellent could mean that their CPR preferences are not generalizable to the overall US population undergoing dialysis. Second, although we used an existing instrument to elicit participants’ CPR preferences, our approach has some inherent limitations and provides only a partial understanding of these preferences. For example, a Likert-type scale is subject to response bias, and the scale we used did not include neutral or uncertain response options. We also did not frame the question about CPR preference with background information about the intervention and expected outcomes. Nor did we ask about patients’ resuscitation preferences in different hypothetical future health states, elicit trade-offs, assess for stability in preferences over time, or collect information on dialysis facility resuscitation policies. Third, how individuals responded to survey items may differ from responses that they might provide during discussions with clinicians about goals of care because of differences in context.

Conclusions
Most patients undergoing dialysis at 31 nonprofit facilities in 2 US metropolitan areas who participated in this study indicated they definitely or probably wanted to be resuscitated if their heart were to stop beating. Resuscitation preferences were associated with responses to some, but not all, questions about other domains of end-of-life care. Furthermore, participants’ CPR preferences were not always aligned with how they responded to questions about these other aspects of end-of-life care. These findings underline the importance of educational initiatives to improve patients’ understanding of the clinical context and outcomes of CPR and of contextualizing discussions about code status in a broader conversation and understanding what matters most to each patient.
Author Affiliations: Department of Medicine, University of Washington, Seattle (Bernacki, Engelberg, Curtis, Vig, O’Hare); Cambia Palliative Care Center of Excellence, University of Washington, Seattle (Bernacki, Engelberg, Curtis); Department of Medicine, Stanford University Medical Center, Palo Alto, California (Kurella Tamura); Division of Nephrology, Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California (Kurella Tamura); Department of Biostatistics, University of Washington, Seattle (Brumback); Department of Surgery, University of Washington, Seattle (Lavallee); Hospital and Specialty Medicine, VA Puget Sound Health Care System, Seattle, Washington (Vig, O’Hare); Geriatrics, VA Puget Sound Health Care System, Seattle, Washington (Vig); Kidney Research Institute, University of Washington, Seattle (O’Hare).

Author Contributions: Dr O’Hare had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The United States Renal Data System Study of Treatment Preferences (USTATE) was conducted by members of the United States Renal Data System (USRDS) Special Study on Palliative and End-of-Life Care (Drs Engelberg, Curtis, Kurella Tamura, Lavallee, Vig, and O’Hare).

Concept and design: Bernacki, Engelberg, Curtis, O’Hare.

Acquisition, analysis, or interpretation of data: Bernacki, Curtis, Kurella Tamura, Brumback, Lavallee, Vig, O’Hare.

Drafting of the manuscript: Bernacki.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: O’Hare.

Obtained funding: Kurella Tamura, O’Hare.

Administrative, technical, or material support: Bernacki, Engelberg, Kurella Tamura, O’Hare.

Supervision: Curtis, Brumback, Lavallee, O’Hare.

Conflicts of Interest Disclosures: Dr Bernacki reported receiving grants from the National Heart, Lung, and Blood Institute (NHLBI). Dr Engelberg reported receiving grants from the NHLBI (T32HL125195-04) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (U01DK120150). Dr Curtis reported receiving grants from Cambia Health Foundation and the National Institutes of Health (NIH). Dr Brumback reported grants from Cambia Health Foundation and the NIH. Dr O’Hare reported receiving grants or personal fees from the American Society of Nephrology, Centers for Disease Control and Prevention, Chugai Pharmaceutical Co, Ltd, Coalition for Supportive Care of Kidney Patients, Dialysis Clinic Inc, DEVENIR Foundation, Fresenius Medical Care, Hammersmith Hospital, Health and Aging Policy Fellows Program, Japanese Society for Dialysis Therapy, Kaiser Permanente Northern California, NIDDK, University of California San Francisco, University of Pennsylvania, UpToDate, and VA Health Services Research and Development Service. No other disclosures were reported.

Funding/Support: This work has been supported by the NHLBI (grant T32HL125195-04) and the NIDDK (grant U01DK120150) (Drs Engelberg, Curtis, Kurella Tamura, Lavallee, and O’Hare).

Role of the Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The data reported herein have been supplied by the USRDS. The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as official policy or interpretation of the US Government.

Additional Contributions: We thank the following Kidney Research Institute staff members for assisting with survey administration: Linda Manahan, BA, Carlyn Clark, MSW, Kirstin O’Loughlin, MS, Lori Linke, BA, Lisa Anderson, BA, Hanna Larson, MS, Michelle Nguyen, BA, and John Kundzins, MPH. We thank Bill Peckham, BS (deceased), Carol Keller, MPA, Dori Schatell, MS, and Denise Eilers, BSN, for providing input on survey design. We thank Jonathan Himmelfarb, MD, at the Kidney Research Institute; Joyce Jackson, MHA, formerly of Northwest Kidney Centers (now retired); Karen Majchrzak, MS, and Doug Johnson, MD, at Dialysis Clinic Inc; and staff at Northwest Kidney Centers, Dialysis Clinic Inc, Puget Sound Kidney Centers, and Olympic Peninsula Kidney Center for supporting recruitment efforts. We thank Kevin Abbott, MD, and Larry Agooda, MD, at the NIDDK for supporting this work, as well as members of the USRDS steering committee for providing valuable input on study design, including the University of Michigan team led by Rajiv Saran, MD, Vahahn Shahinian, MD, and Bruce Robinson, MD, and the University of California, Irvine team led by Kamyar Kalantar-Zadeh, MD, PhD, Csaba Kovessy, MD, and Steven Jacobsen, MD, PhD. We thank Paul Hebert, PhD, at the University of Washington for providing guidance on statistical analyses. They were not compensated for their contributions.

REFERENCES
1. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2019;73(3)(suppl 1):A7-A8. doi:10.1053/j.ajkd.2019.01.001
beneficiaries on hemodialysis. Am J Kidney Dis. 2017;69(5):684-695.
doi:10.1053/j.ajkd.2016.12.006

3. Pun PH, Dupre ME, Starks MA, et al; CARES Surveillance Group. Outcomes for hemodialysis patients given cardiopulmonary resuscitation for cardiac arrest at outpatient dialysis clinics. J Am Soc Nephrol. 2019;30(3):461-470. doi:10.1681/ASN.2018090911

4. Bobzas H, Atar I, Yildirir A, et al. Prevalence and predictors of arrhythmia in end stage renal disease patients on hemodialysis. Ren Fail. 2007;29(3):331-339. doi:10.1080/0886020701191237

5. Banerjee D. Sudden cardiac death in haemodialysis: clinical epidemiology and mechanisms. J Electrocardiol. 2016;49(6):843-847. doi:10.1016/j.jelectrocard.2016.07.016

6. Pun PH, Lehrich RW, Smith SR, Middleton JP. Predictors of survival after cardiac arrest in outpatient hemodialysis clinics. Clin J Am Soc Nephrol. 2007;2(3):491-500. doi:10.2215/CJN.02360706

7. Lim HJ, Jeong J, Kim J, Ro YS, Shin SD. Effect of estimated glomerular filtration rate (eGFR) on incidence of out-of-hospital cardiac arrests: a case-control study. Resuscitation. 2019;142:38-45. doi:10.1016/j.resuscitation.2019.06.291

8. Davis TR, Young BA, Eisenberg MS, Rea TD, Copass MK, Cobb LA. Outcome of cardiac arrests attended by Emergency Medical Services staff at community outpatient dialysis centers. Kidney Int. 2008;73(8):933-939. doi:10.1038/sj.ki.5002749

9. Lehrich RW, Pun PH, Tanenbaum ND, Smith SR, Middleton JP. Automated external defibrillators and survival from cardiac arrest in the outpatient hemodialysis clinic. J Am Soc Nephrol. 2007;18(1):312-320. doi:10.1681/ASN.2006040392

10. Karnik JA, Young BS, Lew NL, et al. Cardiac arrest and sudden death in dialysis units. Kidney Int. 2001;60(1):350-357. doi:10.1046/j.1523-1755.2001.00806.x

11. Wong SP, Kreuter W, Curtis JR, Hall YN, O’Hare AM. Trends in in-hospital cardiopulmonary resuscitation and survival in adults receiving maintenance dialysis. JAMA Intern Med. 2015;175(6):1028-1035. doi:10.1001/jamainternmed.2015.0406

12. Moss AH, Holley JL, Upton MB. Outcomes of cardiopulmonary resuscitation in dialysis patients. J Am Soc Nephrol. 1992;3(6):1238-1243.

13. Saeed F, Adil MM, Malik AA, Schold JD, Holley JL. Outcomes of in-hospital cardiopulmonary resuscitation in maintenance dialysis patients. J Am Soc Nephrol. 2015;26(12):3093-3101. doi:10.1681/ASN.2014080766

14. Wong SPY, Kreuter W, O’Hare AM. Treatment intensity at the end of life in older adults receiving long-term dialysis. Arch Intern Med. 2012;172(8):661-663. doi:10.1001/archinternmed.2012.268

15. Wachterman MW, Silver C, Smith D, Ersek M, Lipsitz SR, Keating NL. Quality of end-of-life care provided to patients with different serious illnesses. JAMA Intern Med. 2016;176(8):1095-1102. doi:10.1001/jamainternmed.2016.1200

16. Wachterman MW, Hailpern SM, Keating NL, Kurella Tamura M, O’Hare AM. Association between hospice length of stay, health care utilization, and Medicare costs at the end of life among patients who received maintenance hemodialysis. JAMA Intern Med. 2018;178(6):792-799. doi:10.1001/jamainternmed.2018.0256

17. O’Hare AM, Hailpern SM, Wachterman M, et al. Hospice use and end-of-life spending trajectories in Medicare beneficiaries on hemodialysis. Health Aff (Millwood). 2018;37(6):980-987. doi:10.1377/hlthaff.2017.1181

18. Urquhart-Scord C, Craig JC, Hemmelgarn B, et al. Patient and caregiver priorities for outcomes in hemodialysis: an international nominal group technique study. Am J Kidney Dis. 2016;68(3):444-454. doi:10.1053/j.ajkd.2016.02.037

19. Moss AH, Hozyayn O, King K, Holley JL, Schmidt RJ. Attitudes of patients toward cardiopulmonary resuscitation in the dialysis unit. Am J Kidney Dis. 2001;38(4):847-852. doi:10.1053/ajkd.2001.27705

20. Davison SN. End-of-life care preferences and needs: perceptions of patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(2):195-204. doi:10.2215/CJN.05960809

21. Saeed F, Sardar MA, Davison SN, Murad H, Duberstein PR, Quill TE. Patients’ perspectives on dialysis decision-making and end-of-life care. Clin Nephrol. 2019;91(5):294-300. doi:10.5414/CN109608

22. Kryworuchko J, Strachan PH, Nouvet E, Downar J, You JJ. Factors influencing communication and decision-making about life-sustaining technology during serious illness: a qualitative study. BMJ Open. 2016;6(5):e010451. doi:10.1136/bmjopen-2015-010451

23. Bradshaw CL, Gale RC, Chettiar A, et al. Medical record documentation of goals-of-care discussions among older veterans with incident kidney failure. Am J Kidney Dis. 2020;75(5):744-752. doi:10.1053/j.ajkd.2019.07.024
Cardiopulmonary Resuscitation Preferences of People Receiving Dialysis

24. O'Hare AM, Kurella Tamura M, Lavallee DC, et al. Assessment of self-reported prognostic expectations of people undergoing dialysis: United States Renal Data System Study of Treatment Preferences (USTATE). JAMA Intern Med. 2019;179(10):1325-1333. doi:10.1001/jamainternmed.2019.2879

25. American Association for Public Opinion Research. Best practices for survey research. Accessed April 23, 2020. https://www.aapor.org/Standards-Ethics/Best-Practices.aspx

26. Davison SN, Jhangri GS. Existential and supportive care needs among patients with chronic kidney disease. J Pain Symptom Manage. 2010;40(6):838-843. doi:10.1016/j.jpainsymman.2010.03.015

27. Connors AF Jr, Dawson NV, Desbiens NA, et al. A controlled trial to improve care for seriously ill hospitalized patients: the Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT). JAMA. 1995;272(20):1518-1524. doi:10.1001/jama.1995.03530200027032

28. Wachterman MW, Marcantonio ER, Davis RB, et al. Relationship between the prognostic expectations of seriously ill patients undergoing hemodialysis and their nephrologists. JAMA Intern Med. 2013;173(13):1206-1214. doi:10.1001/jamainternmed.2013.6036

29. Raj R, Ahuja K, Frandsen M, Murtagh FEM, Jose M. Validation of the IPOS–Renal Symptom Survey in advanced kidney disease: a cross-sectional study. J Pain Symptom Manage. 2018;56(2):281-287. doi:10.1016/j.jpainsymman.2018.04.006

30. Teno JM, Fisher ES, Hamel MB, Coppola K, Dawson NV. Medical care inconsistent with patients' treatment goals: association with 1-year Medicare resource use and survival. J Am Geriatr Soc. 2002;50(3):496-500. doi:10.1046/j.1532-5410.2002.50016.x

31. Sudore RL, Stewart AL, Knight SJ, et al. Development and validation of a questionnaire to detect behavior change in multiple advance care planning behaviors. PLoS One. 2013;8(9):e72465. doi:10.1371/journal.pone.0072465

32. Modes ME, Engelberg RA, Downey L, et al. Toward understanding the relationship between prioritized values and preferences for cardiopulmonary resuscitation among seriously ill adults. J Pain Symptom Manage. 2019;58(4):567-577. doi:10.1016/j.jpainsymman.2019.06.011

33. Kyrioptakis G, Francis LE, O'Toole E, Towe TP, Rosé JH. Preferences for aggressive care in underserved populations with advanced-stage lung cancer: looking beyond race and resuscitation. Support Care Cancer. 2014;22(5):1251-1259. doi:10.1007/s00520-013-2079-x

34. Young KA, Wordingham SE, Strand JJ, Roger VL, Dunlay SM. Discordance of patient-reported and clinician-ordered resuscitation status in patients hospitalized with acute decompensated heart failure. J Pain Symptom Manage. 2017;53(4):745-750. doi:10.1016/j.jpainsymman.2016.11.010

35. Dunlay SM, Swetz KM, Redfield MM, Mueller PS, Roger VL. Resuscitation preferences in community patients with heart failure. Circ Cardiovasc Qual Outcomes. 2014;7(3):353-359. doi:10.1161/CIRCOUTCOMES.113.000759

36. Ufere NN, O'Riordan DL, Bischoff KE, et al. Outcomes of palliative care consultations for hospitalized patients with liver disease. J Pain Symptom Manage. 2019;58(5):766-773. doi:10.1016/j.jpainsymman.2019.07.011

37. Haidet P, Hamel MB, Davis RB, et al. Outcomes, preferences for resuscitation, and physician-patient communication among patients with metastatic colorectal cancer: SUPPORT investigators: Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments. Am J Med. 1998;105(3):222-229. doi:10.1016/S0002-9343(98)00242-3

38. O'Donnell H, Phillips RS, Wenger N, Teno J, Davis RB, Hamel MB. Preferences for cardiopulmonary resuscitation among patients 80 years or older: the views of patients and their physicians. J Am Med Dir Assoc. 2003;4(4):139-144. doi:10.1016/S1525-8610(04)07032-0

39. Phillips RS, Wenger NS, Teno J, et al. Choices of seriously ill patients about cardiopulmonary resuscitation: correlates and outcomes: SUPPORT Investigators: Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments. Am J Med. 1996;100(2):128-137. doi:10.1016/S0002-9343(97)89450-B

40. Wenger NS, Phillips RS, Teno JM, et al. Physician understanding of patient resuscitation preferences: insights and clinical implications. J Am Geriatr Soc. 2000;48(5):544-551. doi:10.1111/j.1532-5415.2000.tb03440.x

41. Holley JL, Finucane TE, Moss AH. Dialysis patients' attitudes about cardiopulmonary resuscitation and stopping dialysis. Am J Nephrol. 1989;9(3):245-251. doi:10.1159/000167974

42. Singer PA, Thiel EC, Naylor CD, et al. Life-sustaining treatment preferences of hemodialysis patients: implications for advance directives. J Am Soc Nephrol. 1995;6(5):1410-1417.

43. Christakis NA. The ellipsis of prognosis in modern medical thought. Soc Sci Med. 1997;44(3):301-315. doi:10.1016/S0197-9536(96)00100-1
44. Haynes AB, Weiser TG, Berry WR, et al: Safe Surgery Saves Lives Study Group. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360(5):491-499. doi:10.1056/NEJMsa0810119

45. Field RA, Fritz Z, Baker A, Grove A, Perkins GD. Systematic review of interventions to improve appropriate use and outcomes associated with do-not-attempt-cardiopulmonary-resuscitation decisions. Resuscitation. 2014;85(11):1418-1431. doi:10.1016/j.resuscitation.2014.08.024

46. Badlour NA, Siew ED, Robinson-Cohen C, et al. Serious illness treatment preferences for older adults with advanced CKD. J Am Soc Nephrol. 2019;30(11):2252-2261. doi:10.1681/ASN.2019040385

47. Sehgal A, Galbraith A, Chesney M, Schonfeld P, Charles G, Lo B. How strictly do dialysis patients want their advance directives followed? JAMA. 1992;267(1):59-63. doi:10.1001/jama.1992.03480010067026

48. Fahner JC, Beunders AJM, van der Heide A, et al. Interventions guiding advance care planning conversations: a systematic review. J Am Med Dir Assoc. 2019;20(3):227-248. doi:10.1016/j.jamda.2018.09.014

49. Song MK, Metzger M, Ward SE. Process and impact of an advance care planning intervention evaluated by bereaved surrogate decision-makers of dialysis patients. Palliat Med. 2017;31(3):267-274. doi:10.1177/0269216316652012

50. Song MK, Ward SE, Fine JP, et al. Advance care planning and end-of-life decision making in dialysis: a randomized controlled trial targeting patients and their surrogates. Am J Kidney Dis. 2015;66(5):813-822. doi:10.1053/j.ajkd.2015.05.018

51. Amro OW, Ramasamy M, Strom JA, Weiner DE, Jaber BL. Nephrologist-facilitated advance care planning for hemodialysis patients: a quality improvement project. Am J Kidney Dis. 2016;68(1):103-109. doi:10.1053/j.ajkd.2015.11.024

52. Schmidt RJ, Weaver BB, Long D. The power of advance care planning in promoting hospice and out-of-hospital death in a dialysis unit. J Palliat Med. 2015;18(1):62-66. doi:10.1089/jpm.2014.0031

53. Goff SL, Unruh ML, KlingenSmith J, et al. Advance care planning with patients on hemodialysis: an implementation study. BMC Palliat Care. 2019;18(1):64. doi:10.1186/s12904-019-0437-2

54. Goff SL, Eneanya ND, Feinberg R, et al. Advance care planning: a qualitative study of dialysis patients and families. Clin J Am Soc Nephrol. 2015;10(3):390-400. doi:10.2215/CJN.07490714

55. Scherer JS, Hanwood K, Frydman JL, et al. A descriptive analysis of an ambulatory kidney palliative care program. J Palliat Med. 2020;23(2):259-263. doi:10.1089/jpm.2018.0647

56. Detering KM, Hancock AD, Reade MC, Silvester W. The impact of advance care planning on end-of-life care in elderly patients: randomised controlled trial. BMJ. 2010;340:c1345. doi:10.1136/bmj.c1345

57. Wachterman MW, Lipsitz SR, Lorenz KA, Marcantonio ER, Li Z, Keating NL. End-of-life experience of older adults dying of end-stage renal disease: a comparison with cancer. J Pain Symptom Manage. 2017;54(6):1418-1431. doi:10.1016/j.jpainsymman.2017.08.013

58. Feely MA, Hildebrandt D, Edakkanambeth Varayil J, Mueller PS. Prevalence and contents of advance directives among older adults. Am J Kidney Dis. 2010;55(5):390-400. doi:10.1053/j.ajkd.2010.02.014

59. Holley JL. Advance care planning in CKD/ESRD: an evolving process. Clin J Am Soc Nephrol. 2012;7(6):1033-1038. doi:10.2215/CJN.00580112

60. Kaufman SR. Ordinary Medicine: Extraordinary Treatments, Longer Lives, and Where to Draw the Line. Duke University Press Books; 2015. Critical Global Health: Evidence, Efficacy, Ethnography Series.

61. Jesus JE, Allen MB, Michael GE, et al. Preferences for resuscitation and intubation among patients with do-not-resuscitate/do-not-intubate orders. Mayo Clin Proc. 2013;88(7):658-665. doi:10.1016/j.mayocp.2013.04.010

62. Kaldjian LC, Erekson ZD, Haberle TH, et al. Code status discussions and goals of care among hospitalised adults. J Med Ethics. 2009;35(6):338-342. doi:10.1136/jme.2008.027854

63. Murphy DJ, Burrows D, Santilli S, et al. The influence of the probability of survival on patients’ preferences regarding cardiopulmonary resuscitation. N Engl J Med. 1994;330(8):545-549. doi:10.1056/NEJM199402243300807

64. Becker C, Lecheler L, Hochstrasser S, et al. Association of communication interventions to discuss code status with patient decisions for do-not-resuscitate orders: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(6):e195033. doi:10.1001/jamanetworkopen.2019.5033

65. Dalal S, Bruera E. End-of-life care matters: palliative cancer care results in better care and lower costs. Oncologist. 2017;22(4):361-368. doi:10.1634/theoncologist.2016-0277

66. Feely MA, Swetz KM, Zavala E, Thorstensdottir B, Albright RC, Williams AW. Reengineering dialysis: the role of palliative medicine. J Palliat Med. 2016;19(6):652-655. doi:10.1089/jpm.2015.0181
67. Chettiar A, Montez-Rath M, Liu S, Hall YN, O’Hare AM, Kurella Tamura M. Association of inpatient palliative care with health care utilization and postdischarge outcomes among Medicare beneficiaries with end stage kidney disease. *Clin J Am Soc Nephrol*. 2018;13(8):1180-1187. doi:10.2215/CJN.00180118

68. Davison SN, Jassal SV. Supportive care: integration of patient-centered kidney care to manage symptoms and geriatric syndromes. *Clin J Am Soc Nephrol*. 2016;11(10):1882-1891. doi:10.2215/CJN.01050116

69. Davison SN, Jhangri GS. Impact of pain and symptom burden on the health-related quality of life of hemodialysis patients. *J Pain Symptom Manage*. 2010;39(3):477-485. doi:10.1016/j.jpainsymman.2009.08.008

70. Saini T, Murtagh FEM, Dupont PJ, McKinnon PM, Hatfield P, Saunders Y. Comparative pilot study of symptoms and quality of life in cancer patients and patients with end stage renal disease. *Palliat Med*. 2006;20(6):631-636. doi:10.1177/0269216306070236

71. Murtagh FE, Addington-Hall J, Higginson IJ. The prevalence of symptoms in end-stage renal disease: a systematic review. *Adv Chronic Kidney Dis*. 2007;14(1):82-99. doi:10.1053/j.ackd.2006.10.001

72. Abdel-Kader K, Unruh ML, Weisbord SD. Symptom burden, depression, and quality of life in chronic and end-stage kidney disease. *Clin J Am Soc Nephrol*. 2009;4(6):1057-1064. doi:10.2215/CJN.00430109

73. Lam DY, Scherer JS, Brown M, Grubbs V, Schell J0. A conceptual framework of palliative care across the continuum of advanced kidney disease. *Clin J Am Soc Nephrol*. 2019;14(4):635-641. doi:10.2215/CJN.09330818

74. Culp S, Lupu D, Arenella C, Armistead N, Moss AH. Unmet supportive care needs in U.S. dialysis centers and lack of knowledge of available resources to address them. *J Pain Symptom Manage*. 2016;51(4):756-761.e2. doi:10.1016/j.jpainsymman.2015.11.017

75. Tourangeau R, Rips LJ, Rasinski K. *The Psychology of Survey Response*. Cambridge University Press; 2000. doi:10.1017/CBO9780511819322

SUPPLEMENT.

eAppendix. United States Renal Data System Study of Treatment Preferences (USTATE) Patient Questionnaire