Does expanding community-based primary health care coverage also address unmet need for family planning and improve program impact? Findings from a plausibility trial in northern Ghana

Patrick O. Asuming,1 Ayaga A. Bawah,2 Edmund Wedam Kanmiki,3 James F. Phillips4

1Department of Finance, University of Ghana Business School, Legon, Accra, Ghana
2Regional Institute for Population Studies, University of Ghana, Legon, Accra, Ghana
3Institute for Social Science Research, University of Queensland, Indooroopilly, QLD, Australia
4Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA

ABSTRACT

Background: The core strategy for achieving universal health coverage (UHC) in Ghana concerns the goal of expanding access to primary health services to all rural households through an initiative known as Community-based Health Planning and Services (CHPS). To test means of accelerating CHPS implementation, a 5-year primary health system strengthening trial was launched in 2010 that was known as the Ghana Essential Health Interventions Program (GEHIP). Fielded in 4 rural northern districts with 7 comparison districts, GEHIP achieved total CHPS coverage in 4 years, thereby expanding access to community nursing care for the treatment of childhood illness, the provision of immunizations, and promotion and delivery of family planning services.

Methods: The impact of UHC achievement on contraceptive use and unmet need is assessed with a 2 stage random sample of reproductive-aged women residing in treatment and comparison districts at the GEHIP baseline and end line. A difference-in-differences (DIDs) regression model is employed to estimate the average GEHIP treatment effect on the use of modern contraceptives and unmet need for contraception.

Results: After controlling for maternal age, children ever born, education, religion, ethnicity, and occupation, regression results show that the GEHIP program had a significant DID effect on modern contraceptive use (odds ratio [OR], 1.795; 95% confidence interval, 1.320–2.439) but no effect on unmet need for contraception.

Conclusion: Expanding access to community-based primary health care improved contraceptive use, but was insufficient for reducing unmet need. Possible implications for supplementing community-based primary health care with family planning focused social mobilization are reviewed.

Keywords: Contraceptive use; Family planning; Unmet need; Community-based health care; Universal health coverage; Health systems strengthening; Northern Ghana
INTRODUCTION

In recent years, Ghana has been at the forefront of health systems development in Africa, due in part to the successful development of community-based primary health care. Policies that can be traced to the Alma Ata accord, refined by formative research in Navrongo over the 1994–1996 period and tested by a plausibility trial from 1996 to 2003 have demonstrated that community-based primary health care can save childhood lives and reduce fertility.

In response to this evidence, the Ghana Health Service adopted the Community-based Health Planning and Services (CHPS) Initiative in 1999 as a policy aiming to scale-up lessons learned. Following national CHPS implementation in 2000, long term observation trials and tests of replicability show that posting nurses to community locations and mobilizing rural villages to develop systems for stationing primary healthcare accelerated the achievement of Millennium Development Goal 4 (reduction in child mortality) in localities where CHPS service system was fully functional.

Apart from initiatives in Mozambique, Tanzania, and Rwanda, longitudinal experimental studies of health systems development are rarely pursued in Africa. Studies of the impact of health systems strengthening on family planning preferences and use are rarer still. This paper examines the widely accepted, but seldom tested, assumption that implementing health system strengthening programs is tantamount to achieving universal access to family planning. Successful program implementation is typically associated with increased contraceptive use and diminished unmet need. In general, increases in contraceptive use are typically associated with concomitant declines in unmet need for contraception. However, these relationships have been less consistently demonstrated in Africa, and where unmet need trends are less likely to be related to health program effort than has been the case in other regions. We examine the family planning and unmet need impact of a project known as the Ghana Essential Health Interventions Program (GEHIP), a highly successful plausibility trial of health system strengthening for expanding community-based primary health care coverage. GEHIP had a comprehensive regimen of family planning services embedded into its primary health care operational design. The project accelerated CHPS coverage from 20% of households in treatment districts at the baseline to 100% in 4 years, a level of progress that was double the coverage achieved in comparison districts. Lessons emerging from this success have moved Ghana closer to achieving its universal health coverage (UHC) goals.

GEHIP had concomitant child survival effects at a low incremental cost. This paper tests the hypothesis that expanded access to community-based health care by pursuing UHC is associated with a corresponding impact on family planning and preferences to space or limit childbearing.

The primary care system in Ghana is organized as a 4-leveled hierarchy of care. Tertiary referral services are provided at regional and teaching hospitals. Most districts have hospitals with surgical care capabilities. Sub-district clinics and health centers vary in staffing and level of service provision but, in general, provide basic preventive and curative health services. At the lowest level, community-based care is provided by the CHPS initiative. A program that is implemented in clusters of communities termed “zones” where populations ranging from 3 to 5 thousand receive primary health care services from resident paramedical workers termed “Community Health Officers (CHO).” Each CHO is trained to provide basic curative and preventive health services, that includes family planning counselling and care for oral, injectable and barrier methods, as well as referral services for maternal and child health clinical care at sub-district clinics where long acting contraception is available.

https://e-jghs.org

https://doi.org/10.35500/jghs.2020.2.e18
The historical antecedent to CHPS was the Navrongo Community Health and Family Planning Project which achieved extraordinary success in reducing childhood mortality in one district by mobilizing rural communities to develop local health systems and stationing nurses in the community.4,6 When levels of child mortality are compared with 1990 estimates, levels recorded in Navrongo treatment communities were reduced by over half in only 3 years and by two thirds within 7 years.4 Navrongo results for family planning were also indicative of success, but operational requirements of family planning impact differed somewhat from the corresponding strategic requirements for childhood survival success.5 Wherever nurses were deployed, child survival impact was pronounced. But nurse deployment had no impact on family planning and fertility unless CHO activities were combined with community mobilization and male outreach for family planning. Where this combined approach was implemented, Navrongo experiment reduced fertility by 15%, corresponding to a one birth reduction in the total fertility rate relative to communities that lacked exposure to this approach.5 Achieving geographic access to care was essential to achieving family planning impact but supplementing this approach with family planning oriented social mobilization was an essential prerequisite for women to progress with implementing their perceived need for family planning care.28

Access to primary care was not immediately achieved by the 1999 CHPS policy. A variety of service delivery, manpower, communication, logistics, resource management, and leadership bottlenecks constrained the pace of CHPS sponsored scale-up of accessible community services in its first decade of operation.29 In response to monitoring evidence showing this slow pace of implementation, the Ministry of Health launched a qualitative appraisal of the CHPS program in 2009 which aimed to clarify operational factors that constrain CHPS scale-up. The review compared leadership responses to questions about CHPS implementation in regions and districts where CHPS was progressing well with corresponding responses in regions and districts where the pace of implementation was unacceptably slow.30 Recommendations of this review highlighted a set of systems development needs that informed the operational design of GEHIP.31 Specific health system strengthening recommendations provided operational details that exemplified ways to implement World Health Organization (WHO) recommended “building blocks” for strengthening health system functioning.32 GEHIP was designed to test the proposition that implementing the WHO framework would address problems highlighted in the Ministry of Health review, thereby strengthening health system functioning by accelerating CHPS implementation and improving survival.

The targeted interventions undertaken by GEHIP to strengthen the health systems included: 1) construction of low cost interim CHPS community facilities with volunteer labor as a means of accelerating the production of health posts where CHPS primary health care services could be provided, 2) expanding community-engagement for organizing emergency referral systems and acute care at hospitals, 3) training volunteers in providing support for CHO administered “integrated management of childhood illness” services, 4) simplifying and improving information systems for frontline workers, 5) assuring uninterrupted logistics and supplies, 6) improving procedures for prioritizing financial planning according to needs defined by the burden of disease, and 7) redirecting leadership training to community engagement and district resource mobilization.

As such, GEHIP was a UHC development initiative that was not explicitly focused on family planning. Yet, its focus on improving CHPS access was tantamount to improving access
to the full range of family planning care that CHO are trained and equipped to provide. This involved provision of information and care for oral, barrier, and injectable methods as well as referral services for clinical methods and backstopping needs. Because family planning is a key component of CHPS services, the set of interventions implemented by GEHIP are posited to improve access to family planning care and use of methods. Moreover, GEHIP interventions could improve the credibility of family practice by developing popular awareness of its impact on childhood survival. The potential impact of improved access to CHPS services on unmet need is unknown, but baseline research produced evidence that only 13% of currently married women were using modern contraception while nearly half of the non-users indicated perceived need. Desired to space additional childbearing was particularly prominent, representing 31.7% of all non-contracepting respondents. On one hand, GEHIP interventions could increase demand for family planning in ways that exceed system capacity to provide services. Or, enhanced access to CHPS care may facilitate interest in adoption without offsetting social barriers to contraceptive practice, an effect that would increase unmet need. Alternatively, GEHIP could improve access in a manner that potential users seek, directly supporting the implementation of their preferences by offsetting supply-side constraints to use of contraceptives, thereby reducing unmet need.

GEHIP interventions were instituted in 4 treatment districts in Ghana’s Upper East Region (UER) of northern Ghana: Bongo, Builsa North and South and Garu Tempane. Seven contiguous districts—Bawku Municipal and Bawku West, Bolgatanga Municipal, Binduri, Nabdam, Pusiga and Talensi—served as GEHIP comparison areas (Fig. 1). Two districts—Kassena-Nankana Municipal and Kassena-Nankana West districts—were excluded because they had been sites for the implementation of potentially confounding health interventions of completed Naval Health Research Center research protocols.

METHODS

Data resources

The data used in this study emanated from 2 rounds of cross-sectional surveys of households in the UER of Ghana collected solely for the evaluation of the GEHIP project. The first round of the survey was conducted prior to implementation of GEHIP interventions in 2011 and the terminal survey was conducted in 2015. Both rounds followed identical 2-stage sampling procedures. In the first stage, 66 predominantly rural enumeration areas (EAs) were sampled from 11 UER districts using probabilities proportional to population size of the districts. A complete listing of all households in the sampled EAs was conducted to serve as sampling frame for second stage sampling. In the second stage, random household selection proceeded within each cluster proportional to EA size until the target sample total of 6,000 women of reproductive age were selected. A similar procedure was adopted at the end line with a complete re-listing of households, using the baseline 66 clusters. All women of reproductive age (15–49 years) in the sampled households were interviewed in both survey rounds. A total of 5,564 women of reproductive age were interviewed at baseline while 5,914 were interviewed at end line.

The questionnaire employed was adapted from the 2008 Ghana Demographic and Health Surveys (GDHS) instrument. Accordingly, information was collected on women’s educational attainment, reproductive and pregnancy histories, fertility preferences, use of
antenatal care services, place of delivery and post-natal care services. In keeping with GDHS procedures, contraceptive use was recorded by method as well as reproductive preference information required for calculating unmet need for contraception. In addition, the questionnaire collected information on household characteristics and asset ownership for determining wealth status.

Our definition of unmet need follows that of the DHS recommended procedure developed by Westoff and Bankole. Accordingly, 4 categories of women are classified as having an unmet need: 1) Women who are currently married and fecund and report that they want to postpone their next birth for at least 2 years, or 2) women who do not want any more children but are currently not using a modern contraceptive method, or 3) currently pregnant women who report that their pregnancy was not wanted or was wanted later, or 4) amenorrheic women who are currently not using modern contraceptive method but report that their last birth was mistimed or unwanted. For this analysis we restrict our sample to only currently married women aged 15 to 49. Thus 3,143 women representing 56.6% of sampled surveyed at baseline and 3,308 representing 55.6% of surveyed women at end line were included in the analysis in this study.
Statistical procedures

This paper aims to test the hypothesis that the GEHIP set of interventions leads to increased use of modern contraceptives and reduced unmet need for family planning. The GEHIP project was designed to accommodate systems analyses that bring into account the multi-level aspects of the administrative hierarchy of the program, the research and the health and survival implications of household exposure to services at different levels of the health delivery system. Since GEHIP was designed as a plausibility trial and was not a randomized controlled trial (RCT), districts were not randomly assigned to the intervention or comparison cells. As such, we do not expect a balance of baseline and end line characteristics between women in the intervention and comparison districts as would have been the case in an RCT. Methods adjust for this problem by including potential confounders in regression models.

To identify the effect of the GEHIP project on contraceptive use and unmet need for contraception, we estimate the Heckman\(^{39,40}\) difference-in-differences (DIDs) model of average treatment effects (ATEs) given by:

\[
\text{Outcome}_{it} = \alpha + \gamma \text{GEHIP}_{it} + \theta \text{end}_{t} + \beta (\text{GEHIP}_{it} \times \text{end}_{t}) + X_{it}' \rho + \varepsilon_{it} \quad (1)
\]

where \(i\) denotes woman, \(d\) denotes district and \(t\) denotes time (survey round). GEHIP is an indicator that a district where a given sample household is located is a GEHIP intervention district, end is an indicator for end line observation, with the DID estimator identified by the coefficient on the interaction of these 2 terms, \(\beta\). The vector \(X\) denotes characteristics of women, including age and its square, education, children ever born, religion, ethnicity, indicator for being in a polygamous marriage, occupation and enrollment status in the National Health Insurance Scheme (NHIS), Ghana’s social health insurance program. The vector \(X\) also specifies household level variables such as residence type (rural or urban) and household wealth index. The idiosyncratic error term is \(\varepsilon\). All analyses were conducted with the STATA version 14.12 (StataCorp, College Station, TX, USA).\(^{41}\)

The 2 main outcomes variables analyzed in this paper are 1) indicator for using modern contraceptive, and 2) indicator for having unmet need for contraception. Because of the dichotomous nature of both outcome variables, model 1 estimations are standard logistic regression models with effects expressed as odds ratios (ORs). All regressions employed procedures for adjusting standard errors for EA cluster level effects to account for possible correlation in outcome variables within common localities.

Ethical approvals

Ethical approval for the GEHIP project was granted by the Navrongo Health Research Centre ethical review board under IRB number FWA0000250 and the ethical review board of Columbia University Medical Center, Mailman School of Public Health under IRB number AAAD7478.

RESULTS

Descriptive statistics

Table 1 presents the descriptive statistics of the study participants. This analysis is restricted to currently married women. Our baseline sample included 3,143 women, made of 1,535 women in the intervention districts and 1,608 from the comparison districts. The end line
sample includes 3,308 women, including 1,700 from the intervention districts and 1,608 from the comparison districts. Table 1 shows that women in the sample are quite young. At both baseline and end line, about half of the women in our analytical sample were less than 30 years of age. Educational attainment in this largely rural setting is quite low. At baseline, 72% of women in the intervention districts and 80% of women in the comparison districts had no formal education. Only 4% of women in the intervention districts and 2% of women in the comparison districts had secondary education or higher. The end line sample shows only a slight improvement in the level of educational attainment, with 69% of women in the intervention districts and 73% of women in comparison districts having no formal education.

At baseline, the average number of children ever born to the women was slightly above 4 per women and this was slightly higher in the intervention districts (4.14) compared with the comparison (3.98) districts. The intervention districts saw a slightly higher reduction in children ever born between the baseline and the end line.

Table 1. Background characteristics of study respondents

Characteristics	Baseline (2011)	End line (2015)		
No. of women	Intervention	Comparison	Intervention	Comparison
	1,535	1,608	1,700	1,608
	0.08	0.06		
Woman’s age in years				
15–19	4.4	3.2	4.5	5.3
20–24	14.3	16.6	15.1	18.1
25–29	18.3	18.4	18.4	19.9
30–34	18.3	19.6	17.5	17.0
35–39	18.4	18.3	17.9	16.4
40–44	17.1	14.1	15.8	13.1
45–49	9.1	9.8	10.8	10.1
Woman’s education				
No formal education	72.1	80.3	68.9	73.1
Primary/middle/JHS	23.9	17.7	24.2	22.0
Secondary plus	3.9	2.1	5.9	4.0
	0.00	0.10		
Children ever born	4.1 (2.3)	3.9 (2.2)	3.7 (2.2)	3.8 (2.2)
	0.04	0.07		
Woman in polygamous marriage				
Yes	38.1	37.8	36.5	32.5
No	61.9	62.2	63.5	67.5
	0.86	0.02		
Woman’s religion				
Christian	55.1	44.1	56.2	54.6
Traditional	17.1	16.6	12.4	11.2
Islam	24.2	34.8	29.9	31.3
No religion	3.7	4.5	1.6	2.9
	0.00	0.04		
Woman’s ethnicity				
Buli	30.8	0.1	31.4	0.0
Frafra	21.8	39.8	19.9	49.6
Kusasi	22.5	41.9	21.0	32.2
Others	24.9	18.2	27.7	18.1
	0.00	0.00		
Woman’s occupation				
Farming	50.9	44.0	49.4	33.6
Trading	25.6	23.6	19.4	23.3
Hairdressing/dressmaking	8.7	10.9	11.9	13.3
Student	0.8	0.9	1.7	1.4
Others/no occupation	14.0	20.5	17.6	18.4
	0.00	0.00		
Woman currently enrolled in the NHIS				
Yes	37.5	39.6	44.7	39.0
No	62.5	60.4	55.3	61.0
	0.34	0.01		

Values are presented as percent distributions or mean (standard deviation). P-values are from χ² tests. NHIS = National Health Insurance Scheme; JHS = junior high school.
About 38% of the women were in polygamous marriages at baseline and this was similar between the intervention and comparisons. There was a slight reduction in the fraction of women in polygamous union at the end line and this was more pronounced in the comparison area. The commonest religion among the women in the sample is Christianity with more than half of the women identifying with this religion. The other religions practiced by women in the sample are Islam and traditional African religion.

The 3 most common ethnic groups were Buli, Frafra, and Kusasi which together account for 78% of the sample. The most common occupation among women is farming, followed by trading. Consistent with national enrollment rates, enrollment in the NHIS was about 38% at the baseline and this was similar between the intervention and comparison districts. However, at the end line, enrollment in the NHIS was slightly higher for the intervention districts (45% compared with 39%).

Table 1 also presents tests of differences in the characteristics of women between the intervention and comparison districts at the baseline. The table shows that the age marital composition of treatment and comparison districts the baseline were similar, but educational attainment, children ever born, religion, ethnicity and occupation compositions differed significantly. Since these latter variables are predictors of contraceptive use, it is important to control for these in the estimation.

The effect of GEHIP on contraceptive use

Figs. 2 and 3 present graphical illustrations of the DID estimation of the effect of the GEHIP interventions on contraceptive use and unmet need for contraception. Both figures illustrate crude contraceptive prevalence rate without controlling for other factors that affect contraceptive use and unmet need. Fig. 2 and Table 2 shows that at baseline contraceptive prevalence was slightly higher in the comparison districts (19% compared with 16.4%). However, at the end line this relationship reversed (26.9% compared with 20.7%). As a rate of increase, contraceptive use increased by 64% in the intervention areas compared with 9% in comparison areas. The corresponding crude DID estimate is 55%, a statistically significant ATE (OR, 1.71; 95% confidence interval [CI], 1.26–2.31) showing that GEHIP interventions had a statistically significant positive effect on the use of modern contraceptives.

Fig. 2. Effect of the GEHIP project on contraceptive use.
GEHIP = Ghana Essential Health Interventions Program; CI = confidence interval.
Fig. 3 shows the effect of GEHIP on unmet need. The figure shows that unmet need rose in both intervention and comparison districts between the baseline and end line. The rate of increase was slightly higher in the comparison districts (from 31.7% to 44.8%) compared with the intervention regions (34.9% to 44.7%). The crude DID estimate is not significant (OR, 0.85; 95% CI, 0.64–1.12). This shows that the GEHIP project had no significant effect on unmet need for contraception.

Table 2 presents unadjusted baseline and end line contraceptive prevalence and unmet need levels for treatment and comparison areas. Although contraceptive use remained low, overall prevalence increased by 10 percentage points, representing a substantial change over the short 5 years of observation. Unmet need was virtually constant, however.

Table 3 presents the main results of the effect of GEHIP interventions on the use of modern contraceptives. The table reports ORs from logistic regression models along with the 95% CI. The crude model presents results without controlling for covariates. The extended model includes a rich set of covariates. At baseline, the use of modern contraceptives was slightly lower in the intervention districts compared to the comparison districts but this difference is not statistically significant (OR, 0.835; 95% CI, 0.587–1.187). Consistent with Ghana as a whole, there was slight, but non-significant increase in the use of modern contraceptives between the baseline and end line. The interaction term estimating the ATE was nonetheless statistically significant, showing that GEHIP had an impact on the use of modern contraceptives.

Table 2. Characteristics of GEHIP treatment and comparison area study respondent baseline and end line current contraceptive use and unmet need for limiting and spacing

No. of women	Baseline (2011)	End line (2015)	Change (2011–2015; percent change)					
	Intervention	Comparison	P-value	Intervention	Comparison			
Percent currently using a modern contraceptive	(n = 1,535)	(n = 1,608)	0.03	(n = 1,700)	(n = 1,608)	0.00	+10.50 (+64.40)	+1.50 (+7.60)
Yes	16.40	19.20	0.03	26.90	20.70	0.00	+10.50 (+64.40)	+1.50 (+7.60)
No	83.60	80.80	0.03	73.10	79.30	0.00	+10.50 (+64.40)	+1.50 (+7.60)
Percent unmet need for contraception	(n = 1,535)	(n = 1,608)	0.01	(n = 1,700)	(n = 1,608)	0.49	+1.05 (+2.30)	−2.89 (−5.70)
No unmet need	46.24	50.71	0.01	47.30	47.80	0.49	+1.05 (+2.30)	−2.89 (−5.70)
Unmet need for spacing	35.21	30.26	0.01	31.20	32.20	0.49	+1.05 (+2.30)	−2.89 (−5.70)
Unmet need for limiting	18.55	19.03	0.01	20.70	19.80	0.49	+1.05 (+2.30)	−2.89 (−5.70)

GEHIP = Ghana Essential Health Interventions Program.
Covariates	Crude model	Extended model		
	OR	95% CI	OR	95% CI
GEHIP intervention district	0.82	0.59–1.15	0.84	0.59–1.18
End line	1.09	0.89–1.36	1.11	0.89–1.38
GEHIP interventiona end line	1.71c	1.26–2.31	1.79c	1.32–2.44
Age group (yr)				
15–19 (ref.)	1.00			
20–24	1.76b	1.11–2.79		
25–29	2.01c	1.27–3.17		
30–34	2.08c	1.37–3.14		
35–39	1.84c	1.19–2.83		
40–44	1.30	0.83–2.06		
45–49	0.72	0.43–1.20		
Children ever born	1.09c	1.04–1.14		
Education				
No formal education (ref.)	1.00			
Primary/JHS	1.41c	1.18–1.68		
Secondary plus	1.28a	0.95–1.73		
Polygamous marriage				
No	1.00			
Yes	0.70c	0.59–0.83		
Religion				
Christian	1.00			
Traditional	0.86	0.69–1.06		
Islam	1.05	0.83–1.33		
No religion	0.75	0.44–1.27		
Ethnic group				
Buli (ref.)	1.00			
Frafra	1.07	0.78–1.49		
Kusasi	1.01	0.68–1.50		
Others	0.84	0.60–1.18		
Occupation				
No occupation	1.00			
Farming	1.49b	1.05–2.13		
Trading	1.65c	1.17–2.33		
Hairdressing/dressmaking	1.72c	1.26–2.36		
Student	2.19b	1.18–4.10		
Others	1.42a	0.95–2.13		
NHIS				
Not currently enrolled (ref.)	1.00			
Currently enrolled	1.24a	1.05–1.47		
Locality				
Urban (ref.)	1.00			
Semi-urban	1.03	0.67–1.59		
Rural	1.07	0.72–1.59		
Wealth index				
Poorest (ref.)	1.00			
Poorer	0.93	0.72–1.19		
Middle	0.96	0.76–1.19		
Richer	1.19	0.94–1.53		
Richest	1.17	0.93–1.47		
Constant	0.24c	0.19–0.30	0.05c	0.03–0.12

The sample used for these regressions are all currently married women in reproductive age (excluding infecund women and women who were currently pregnant). Table reports results from logistic regression models. In all regressions, standard errors are clustered at the enumeration area level.

GEHIP = Ghana Essential Health Interventions Program; OR = odds ratio; CI = confidence interval; JHS = junior high school.

*P < 0.1; **P < 0.05; ***P < 0.01.
contraceptives (OR, 1.795; 95% CI, 1.320–2.439). In absolute terms, the level of use remained low at the end of GEHIP, but the change in contraceptive use was pronounced (Table 2), with the change between baseline and end line the upturn representing an 80% increase in the GEHIP intervention districts relative to comparison districts, from 16.4% to 26.9% during the study period.

Table 3 also shows that the ORs on the covariates are largely consistent with expectation. There is a non-linear relation between age and use of modern contraceptives. Relative to women aged 15–19 years, the odds of contraceptive use increase up to those aged 30–34 years and then falls afterwards. The number of children ever born to a woman increases the likelihood of contraceptive use. An additional child born to women increases the OR by almost 10%. Education increases the likelihood of using modern contraceptives as those with primary and secondary education have higher odds of using contraceptives compared to those with no education. The type of marriage also affects use of contraceptives. Women in polygamous marriages are less likely to use modern contraceptives compared with those in monogamous marriages. Occupation of the woman also has an effect on contraceptive prevalence. Compared to women who reported having no occupation, women who are into farming, trading, hairdressing/dressmaking or other forms of occupation have higher odds of using modern contraceptives.

Finally, the results also suggest that insurance enrollment is associated with the use of modern contraceptives. Women who were currently enrolled in the NHIS were more likely to use modern contraceptives even though contraceptives are supposed to be free irrespective of insurance status. The results also indicate that religion, ethnicity, household wealth status and locality (rural or urban) all have no effect on the use of modern contraceptives.

The impact of GEHIP on unmet need.
The DID estimate in Table 4 shows that the impact of GEHIP on reducing unmet need is not statistically significant. In fact, unmet need for contraception actually increased significantly between baseline and end line, although this trend occurred in all study areas and was unassociated with GEHIP.

Table 4 also shows that age, children ever born, religion, ethnicity and occupation all have statistically significant effect on unmet need for contraception. Older women are less likely to have unmet need for contraception even though here too, there appears to be nonlinearity in the effect. Women who have higher number of children ever born are more likely to have unmet need for contraception. In terms of education, women with secondary education or higher were surprisingly more likely to have unmet need for contraception. Women who practice Islam are less likely to have unmet need for contraception compared to those who are Christians. In terms of occupation, women who are traders or farmers were less likely to have unmet need for contraception. The type of marriage (monogamous or polygamous), enrollment status in the NHIS, household wealth status and locality type (rural or urban) had no effect on unmet need.

DISCUSSION

The results in Table 4 contrast with results reported by international investigations of the determinants of unmet need. In particular, studies in other settings have found...
Table 4. Effect of GEHIP on unmet need for contraception

Covariates	Crude model	Full model		
	OR	95% CI	OR	95% CI
GEHIP intervention areas	1.21a	0.98–1.50	1.18	0.93–1.51
Follow-up period	1.23a	0.98–1.54	1.23a	0.98–1.55
GEHIP intervention^ follow-up	0.85	0.64–1.12	0.83	0.64–1.11
Age group (yr)				
15–19 (ref.)	1.00		1.00	
20–24	0.89	0.65–1.23	0.89	0.65–1.23
24–29	0.61a	0.44–0.84	0.61a	0.44–0.84
30–34	0.52a	0.37–0.73	0.52a	0.37–0.73
35–39	0.43a	0.29–0.64	0.43a	0.29–0.64
40–44	0.46a	0.32–0.68	0.46a	0.32–0.68
45–49	0.90	0.59–1.38	0.90	0.59–1.38
Children ever born	1.16c	1.12–1.21	1.16c	1.12–1.21
Education				
No formal education (ref.)	1.00		1.00	
Primary/JHS	0.95	0.82–1.09	0.95	0.82–1.09
Secondary plus	1.04	0.79–1.36	1.04	0.79–1.36
Polygamous marriage				
Not in polygamous marriage (ref.)	1.00		1.00	
In polygamous marriage	0.99	0.89–1.11	0.99	0.89–1.11
Religion				
Christian (ref.)	1.00		1.00	
Traditional	0.94	0.81–1.09	0.94	0.81–1.09
Islam	0.92	0.77–1.10	0.92	0.77–1.10
Ethnic group				
Buli (ref.)	1.00		1.00	
Frafra	0.88	0.68–1.15	0.88	0.68–1.15
Kusasi	0.89	0.69–1.14	0.89	0.69–1.14
Others	0.90	0.71–1.14	0.90	0.71–1.14
Occupation				
No occupation (ref.)	1.00		1.00	
Farming	0.77a	0.59–1.02	0.77a	0.59–1.02
Trading	0.70a	0.54–0.91	0.70a	0.54–0.91
Hairdressing/dressmaking	0.74a	0.57–0.97	0.74a	0.57–0.97
Student	1.06	0.67–1.66	1.06	0.67–1.66
Other occupation	0.92	0.68–1.22	0.92	0.68–1.22
Insurance				
No insurance coverage	1.00		1.00	
Has insurance coverage	0.96	0.85–1.09	0.96	0.85–1.09
Locality				
Urban	1.00		1.00	
Semi-urban	0.91	0.68–1.22	0.91	0.68–1.22
Rural	0.99	0.75–1.32	0.99	0.75–1.32
Wealth index				
Poorest (ref.)	1.00		1.00	
Poorer	1.12	0.96–1.30	1.12	0.96–1.30
Middle	1.09	0.95–1.25	1.09	0.95–1.25
Richer	1.00	0.87–1.16	1.00	0.87–1.16
Richest	0.92	0.78–1.08	0.92	0.78–1.08
Constant	0.88	0.75–1.05	1.25	0.73–2.16
Observations	6,446		6,446	
Pseudo-R²	4.83		396.08	
Wald chi-square	0.00		0.02	

The sample used for these regressions are all currently married women in reproductive age (15–49 years). Table reports results from logistic regression models. In all regressions, standard errors are clustered at the enumeration area level. GEHIP = Ghana Essential Health Interventions Program; OR = odds ratio; CI = confidence interval; JHS = junior high school.

aP < 0.1; bP < 0.05; cP < 0.01.
that educational attainment is associated with reduced unmet need and relatively high contraceptive use.43 The desire to space childbirth in West African settings is pervasive, but this preference can be associated with customs that prolong post-partum abstinence or lactational amenorrhea that have little or no association with educational attainment or other variables that are commonly found to be covariates of reproductive preferences.44 Spacing need is common, even among low parity women, without association with education, relative wealth, or other commonly observed associations. The unanticipated results reported in Table 4 therefore merit further investigation.

This paper investigated whether strengthening community-based primary health care coverage in a poor rural setting of northern Ghana improved fertility regulation. Results show that GEHIP was associated with a statistically significant increase in modern contraceptives use. However, this outcome was not accompanied by an effect on unmet need for family planning. Very substantial demand for contraception remains, even if access to services is improved. This outcome is the possible consequence of GEHIP induced increased demand for contraception and use whereby overall demand increased more rapidly than the implementation of demand as actual use. These findings are consistent with other studies in Ghana showing that improvements in primary health care access can improve fertility regulation. Beginning with the Danfa Project’s landmark demonstration that contraceptive prevalence increases with the provision of primary healthcare,45,46 and by the results of a Navrongo Health Research Centre trial,2,3 research has showed that demand for family planning was extensive and the provision of services could induce and sustain reproductive change.5,6 But, findings also suggest that social constraints to the implementation of reproductive preferences can persist in ways that sustain unmet need, even if contraceptive use is increasing.47

Existing literature has shown that access to primary health care is defined by geographic proximity,48 service quality,49 clinical readiness50,51 or by health insurance schemes that promote access to health care that the poor would otherwise lack.48,52-54 The interventions under the GEHIP program improved primary care access by addressing constraints to use of primary health care that are associated with proximity to care. Our findings support the growing evidence that integrated health services strengthening benefits all aspects of the system, including contraceptive services.55,56 Effective improvement of geographic access, modality access, and quality assurance requires integrated operational designs in the mode of CHPS provided care. When the coverage of CHPS primary health care services was improved family planning use was directly affected.

But this result does not necessarily show that pent-up demand for family planning is fully addressed by improving geographic access to care. In fact, convenient services may generate demand at a pace of change that is equivalent to the pace of change in use, particularly if social constraints continue to prevent women from implementing their preferences.57 GEHIP developed health services that are mainly located in the confines of community-based facilities. The original Navrongo experiment showed, however, that achieving results with convenience services had no effect unless a parallel program was in place that sponsored outreach to men, communication to communities, and gender-based support of women.6,58 Various studies are showing that as time has progressed, this social engagement component of CHPS has been allowed to atrophy,28,59-61 with the focus of community activities shifting to the provision of care in community health posts.62-64 Our findings show that GEHIP’s expansion of convenient fixed facility services, as mandated by the UHC policy agenda, was associated with a significant impact on contraceptive use, but that unmet potential was
unaddressed with this approach. Our research has showed that GEHIP had a significant impact on childhood mortality,33 but fertility effects were confined only marginal effects among young women.59 This outcome suggests that a more comprehensive integration of health interventions with social engagement for promoting family planning could further the impact of CHPS on family planning and met need for contraception.

The persistence of unmet need in the context of successful implementation of UHC policy demonstrates the importance of revisiting implementation strategies for CHPS that succeeded during its pilot phase.1,65-67 In particular, this would involve reactivating strategies for engaging men in program activities though outreach to male social networks and support for women who are confronting spousal discord over their intention to adopt a method.57

Developing community-based primary health care has become an internationally recognized priority component of policies aiming to achieve UHC.68,69 The GEHIP program in Ghana permits tests of the hypothesis that UHC oriented interventions will improve fertility regulation. The results from this paper show that strengthening health systems in rural African setting involving strategies to expand the coverage of community-based primary health care and improve the range and quality of the services provided has the additional benefit of increasing the use of modern contraceptives. However, a more comprehensive social engagement approach will be needed for Ghana’s health program to improve its response to unmet need for contraception.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of staff of the Navrongo Health Research Center for their contribution to data collection and processing.

REFERENCES

1. Bennett FJ. Primary health care and developing countries. Soc Sci Med 1979;13A(5):505-14.
 PUBMED | CROSSREF

2. Binka FN, Nazzar A, Phillips JF. The Navrongo community health and family planning project. Stud Fam Plann 1995;26(3):121-39.
 PUBMED | CROSSREF

3. Nazzar A, Adongo PB, Binka FN, Phillips JF, Debpuur C. Developing a culturally appropriate family planning program for the Navrongo experiment. Stud Fam Plann 1995;26(6):307-24.
 PUBMED | CROSSREF

4. Binka FN, Bawah AA, Phillips JF, Hodgson A, Adjuik M, MacLeod B. Rapid achievement of the child survival millennium development goal: evidence from the Navrongo experiment in Northern Ghana. Trop Med Int Health 2007;12(5):578-83.
 PUBMED | CROSSREF

5. Debpuur C, Phillips JF, Jackson EF, Nazzar A, Ngom P, Binka FN. The impact of the Navrongo Project on contraceptive knowledge and use, reproductive preferences, and fertility. Stud Fam Plann 2002;33(2):141-64.
 PUBMED | CROSSREF

6. Phillips JF, Bawah AA, Binka FN. Accelerating reproductive and child health programme impact with community-based services: the Navrongo experiment in Ghana. Bull World Health Organ 2006;84(12):949-55.
 PUBMED | CROSSREF

7. Awoonor-Williams JK, Feinglass ES, Tobey R, Vaughan-Smith MN, Nyonator FK, Jones TC. Bridging the gap between evidence-based innovation and national health-sector reform in Ghana. Stud Fam Plann 2004;35(3):164-77.
 PUBMED | CROSSREF
8. Nyonator FK, Awoonor-Williams JK, Phillips JF, Jones TC, Miller RA. The Ghana community-based health planning and services initiative for scaling up service delivery innovation. Health Policy Plan 2005;20(1):25-34.
PUBMED | CROSSREF

9. Awoonor-Williams JK, Phillips JF, Bawah AA. Scaling down to scale-up: Ghana’s strategy for achieving health for all at last. J Glob Health Sci 2019;1(1):e9.
CROSSREF

10. Sherr K, Fernandes Q, Kanté AM, Bawah A, Condo J, Mutale W, et al. Measuring health systems strength and its impact: experiences from the African Health Initiative. BMC Health Serv Res 2017;17(Suppl 3):827.
PUBMED | CROSSREF

11. Kanté AM, Exavery A, Jackson EF, Kassimu T, Baynes CD, Hingora A, et al. The impact of a randomized cluster trial of paid community health workers deployment on child survival in rural Tanzania. BMC Health Serv Res 2019;19(1):492.
PUBMED | CROSSREF

12. Magge H, Chilengi R, Jackson EF, Wagenaar BH, Kante AMAHI PHIT Partnership Collaborative. Tackling the hard problems: implementation experience and lessons learned in newborn health from the African Health Initiative. BMC Health Serv Res 2017;17(Suppl 3):829.
PUBMED | CROSSREF

13. Iyer HS, Hirschhorn LR, Nisingizwe MP, Kamanzi E, Drobac PC, Rwabukwisi FC, et al. Impact of a district-wide health center strengthening intervention on healthcare utilization in rural Rwanda: use of interrupted time series analysis. PLoS One 2017;12(8):e0182418.
PUBMED | CROSSREF

14. World Health Organization. World Report on Knowledge for Better Health: Strengthening Health Systems. Geneva: World Health Organization; 2004.

15. Balabanova D, Mills A, Conteh L, Akkazieva B, Banteyerga H, Dash U, et al. Good Health at Low Cost 25 years on: lessons for the future of health systems strengthening. Lancet 2013;381(9883):2118-33.
PUBMED | CROSSREF

16. Phillips JF, Sheff M, Boyer CB. The astronomy of Africa’s health systems literature during the MDG era: Where are the systems clusters? Glob Health Sci Pract 2015;3(3):482-502.
PUBMED | CROSSREF

17. Optimizing the contributions of the nursing and midwifery workforce to achieve universal health coverage and the sustainable development goals through education, research and practice. Human resources for health observer No 22. https://apps.who.int/iris/bitstream/handle/10665/259363/9789241511971-eng.pdf. Updated 2017. Accessed March 17, 2020.

18. Quick J, Jay J, Langer A. Improving women’s health through universal health coverage. PLoS Med 2014;11(1):e1001580.
PUBMED | CROSSREF

19. Sen G, Govender V. Sexual and reproductive health and rights in changing health systems. Glob Public Health 2015;10(2):228-42.
PUBMED | CROSSREF

20. Bongaarts J, Mauldin WP, Phillips JF. The demographic impact of family planning programs. Stud Fam Plann 1990;21(6):299-310.
PUBMED | CROSSREF

21. Bongaarts J. The impact of family planning programs on unmet need and demand for contraception. Stud Fam Plann 2014;45(2):247-62.
PUBMED | CROSSREF

22. Sedgh G, Hussain R. Reasons for contraceptive nonuse among women having unmet need for contraception in developing countries. Stud Fam Plann 2014;45(2):151-69.
PUBMED | CROSSREF

23. Alkema L, Kantorova V, Menozzi C, Biddlecom A. National, regional, and global rates and trends in contraceptive prevalence and unmet need for family planning between 1990 and 2015: a systematic and comprehensive analysis. Lancet 2013;381(9878):1642-52.
PUBMED | CROSSREF

24. Phillips JF, Binka FN, Awoonor-Williams JK, Nyonator FK, Bawah AA. Ghana: Four decades of community-based primary health care development. In: Bishai D, editor. Health for All – Success Stories from Countries That Transformed People’s Health: Essays to Recognize the 40th Anniversary of the Alma Ata Conference. Baltimore, MD: Johns Hopkins University Press; 2019.

25. Phillips JF, Awoonor-Williams JK, Bawah AA. The Ghana Essential Health Intervention Programme (GEHIP): a Plausibility Trial of Health System Strengthening in Four Rural Districts of Northern Ghana. Final Report. New York, NY: Columbia University: 2016.
26. Kanmiki EW, Akazili J, Bawah AA, Phillips JF, Awoonor-Williams JK, Asuming PO, et al. Cost of implementing a community-based primary health care strengthening program: the case of the Ghana Essential Health Interventions Program in northern Ghana. *PLoS One* 2019;14(2):e0211956.

27. Ghana Health Service. *Community-Based Health Planning and Services: Operational Policy*. Accra: Ghana Health Service; 2015.

28. Dalaha MA, Stone AE, Krumholz AR, Oduro AR, Phillips JF, Adongo PB. A qualitative analysis of the effect of a community-based primary health care programme on reproductive preferences and contraceptive use among the Kassena-Nankana of northern Ghana. *BMC Health Serv Res* 2016;16:80.

29. Awoonor-Williams JK, Phillips JF, Bawah AA. Catalyzing the scale-up of community-based primary healthcare in a rural impoverished region of northern Ghana. *Int J Health Plann Manage* 2016;31(4):e273-89.

30. Binka F, Aikins M, Sackey SO, Aryeetey R, Dzodzomenyo M, Esena R, et al. *In-Depth Review of the Community-Based Health Planning Services (CHPS) Programme: a Report of the Annual Health Sector Review 2009*. Accra: School of Public Health, University of Ghana; 2009.

31. Awoonor-Williams JK, Bawah AA, Nyonator FK, Asuru R, Oduro A, Ofosu A, et al. The Ghana essential health interventions program: a feasibility trial of the impact of health systems strengthening on maternal & child survival. *BMC Health Serv Res* 2013;13(Suppl 2):s3.

32. World Health Organization. *Every Body’s Business. Strengthening Health Systems to Improve Health Outcomes WHO’s Frame Work for Action 2007*. Geneva: World Health Organization; 2007.

33. Bawah AA, Awoonor-Williams JK, Asuming PO, Jackson EF, Boyer CB, Kanmiki EW, et al. The child survival impact of the Ghana Essential Health Interventions Program: a health systems strengthening plausibility trial in Northern Ghana. *PLoS One* 2019;14(6):e0218025.

34. Bawah AA, Asuming P, Achana SF, Kanmiki EW, Awoonor-Williams JK, Phillips JF. Contraceptive use intentions and unmet need for family planning among reproductive-aged women in the Upper East Region of Ghana. *Reprod Health* 2019;16(1):26.

35. Oduro AR, Wak G, Azongo D, Dehpuur C, Wontuo P, Kondayire F, et al. Profile of the Navrongo health and demographic surveillance system. *Int J Epidemiol* 2012;41(4):968-76.

36. Ghana Statistical Service (GSS); Ghana Health Service (GHS); ICF Macro. *Ghana Demographic and Health Survey 2008*. Rockville, MD: GSS, GHS, ICF Macro; 2009.

37. Ghana Statistical Service (GSS); Ghana Health Service (GHS); ICF International. *Ghana Demographic and Health Survey 2014*. Rockville, MD: GSS, GHS, ICF International; 2015.

38. Westoff CF, Bankole A. Trends in the demand for family limitation in developing countries. *Int Fam Plan Perspect* 2000;26(2):56-62.

39. Heckman J. Effects of child-care programs on women’s work effort. *J Polit Econ* 1974;82(2 Part 2):S136-63.

40. Heckman JJ, Hotz VJ. Choosing among alternative nonexperimental methods for estimating the impact of social programs: the case of manpower training. *J Am Stat Assoc* 1989;84(408):862-74.

41. StataCorp. *STATA User’s Guide*. College Station, TX: StataCorp; 2019.

42. Staveteig S. *Understanding Unmet Need in Ghana: Results from a Follow-up Study to the 2014 Ghana Demographic and Health Survey*. Rockville, MD: ICF International; 2016.

43. Wulifan JK, Brenner S, Jahn A, De Allegri M. A scoping review on determinants of unmet need for family planning among women of reproductive age in low and middle income countries. *BMC Womens Health* 2016;16(2).

44. Bledsoe CH, Allan HG, D’Alessandro U, Langerock P. Constructing natural fertility: the use of western contraceptive technologies in rural Gambia. *Popul Dev Rev* 2013;39(1):81-113.

45. Neumann AK, Wurapa FK, Lourie IM, Ofosu-Amaah S. Strategies for strengthening health services infrastructure: a case study in Ghana. *Soc Sci Med* 1979;13(2):129-35.
46. Ward WB, Neumann AK, Pappoe ME. Community health education in rural Ghana: the Danfa Project—an assessment of accomplishments. *Int Q Community Health Educ* 1981;2(2):143-55.

47. Phillips JF, Jackson EF, Bawah AA, Williams I. The long-term fertility impact of the Navrongo project in northern Ghana. *Stud Fam Plann* 2012;43(3):175-90.

48. Billi JE, Pai CW, Spahlinger DA. The effect of distance to primary care physician on health care utilization and disease burden. *Health Care Manage Rev* 2007;32(1):22-9.

49. Hirschhorn LR, Baynes C, Sherr K, Chintu N, Awoonor-Williams JK, Finnegan K, et al. Approaches to ensuring and improving quality in the context of health system strengthening: a cross-site analysis of the five African Health Initiative Partnership programs. *BMJ Health Serv Res* 2013;13(Suppl 2):S8.

50. Mbalinda SN, Nakimuli M, Kakaire O, Osinde MO, Kakande N, Kaye DK. Does knowledge of danger signs of pregnancy predict birth preparedness? A critique of the evidence from women admitted with pregnancy complications. *Health Res Policy Syst* 2014;12:60.

51. Miller R, Fisher A, Miller K, Ndhlouv L, Magwana BN, Askew I, et al. *The Situation Analysis Approach to Assessing Reproductive Planning and Reproductive Health Services: a Handbook.* New York, NY: Population Council; 1997.

52. Okwaraji VB, Edmond KM. Proximity to health services and child survival in low- and middle-income countries: a systematic review and meta-analysis. *BMJ Open* 2012;2(4):e001196.

53. Gage AD, Leslie HH, Bitton A, Jerome JG, Joseph JP, Thermidor R, et al. Does quality influence utilization of primary health care? Evidence from Haiti. *Global Health* 2018;14(1):59.

54. Asuming PO, Kim HB, Sim A. *IZA DP No. 11117. Long-run Consequences of Health Insurance Promotion: Evidence from a Field Experiment in Ghana.* Bonn: IZA – Institute of Labor Economics; 2017.

55. Nolte E, Pitchfort E. What is the evidence on the economic impacts of integrated care? Technical report [Internet]. http://www.euro.who.int/__data/assets/pdf_file/0019/251434/What-is-the-evidence-on-the-economic-impacts-of-integrated-care.pdf?ua=1. Updated 2014. Accessed May 25, 2020.

56. Cash-Gibson L. *Integrating Health Services, Technical Series on Primary Health Care.* Geneva: World Health Organization; 2018.

57. Bawah AA, Akwongoo P, Simmons R, Phillips JF. Women’s fears and men’s anxieties: the impact of family planning on gender relations in northern Ghana. *Stud Fam Plann* 1999;30(1):54-66.

58. Phillips JF, Jackson EF, Bawah AA, MacLeod B, Adongo P, Baynes C, et al. The long-term fertility impact of the Navrongo project in northern Ghana. *Stud Fam Plann* 2012;43(3):175-90.

59. Phillips JF, Jackson EF, Bawah AA, Asuming PO, Awoonor-Williams JK. The fertility impact of achieving universal health coverage in an impoverished rural region of Northern Ghana. *Gates Open Res* 2019;3:1537.

60. Kushitor MK, Biney AA, Wright K, Phillips JF, Awoonor-Williams JK, Bawah AA. A qualitative appraisal of stakeholders’ perspectives of a community-based primary health care program in rural Ghana. *BMC Health Serv Res* 2019;19(1):675.

61. Wright KJ, Biney A, Kushitor M, Awoonor-Williams JK, Bawah AA, Phillips JF. Community perceptions of universal health coverage in eight districts of the Northern and Volta regions of Ghana. *Glob Health Action* 2020;13(1):1705460.

62. Wiru K, Kumi-Kyereme A, Mahama EN, Amenga-Etego S, Owusu-Agyei S. Utilization of community-based health planning and services compounds in the Kintampo North Municipality: a cross-sectional descriptive correlational study. *BMJ Health Serv Res* 2017;17(1):679.

63. Awoonor-Williams JK, Sory EK, Nyonator FK, Phillips JF, Wang C, Schmitt ML. Lessons learned from scaling up a community-based health program in the Upper East Region of northern Ghana. *Glob Health Sci Pract* 2013;1(1):17-33.
64. Assan A, Takian A, Aikins M, Akbarisari A. Challenges to achieving universal health coverage through community-based health planning and services delivery approach: a qualitative study in Ghana. *BMJ Open* 2019;9(2):e024845.

65. Eliason S, Baiden F, Quansah-Asare G, Graham-Hayfron Y, Bonsu D, Phillips J, et al. Factors influencing the intention of women in rural Ghana to adopt postpartum family planning. *Reprod Health* 2013;10:34.

66. Baatiema L, Skovdal M, Rifkin S, Campbell C. Assessing participation in a community-based health planning and services programme in Ghana. *BMC Health Serv Res* 2013;13:233.

67. Tindana PO, Rozmovits L, Boulanger RF, Bandewar SV, Aborigo RA, Hodgson AV, et al. Aligning community engagement with traditional authority structures in global health research: a case study from northern Ghana. *Am J Public Health* 2011;101(10):1857-67.

68. Perry HB, Rassekh BM, Gupta S, Wilhelm J, Freeman PA. Comprehensive review of the evidence regarding the effectiveness of community-based primary health care in improving maternal, neonatal and child health: 1. rationale, methods and database description. *J Glob Health* 2017;7(1):010901.

69. Freeman P, Perry HB, Gupta SK, Rassekh B. Accelerating progress in achieving the millennium development goal for children through community-based approaches. *Glob Public Health* 2012;7(4):400-19.