Abstract

Activating mutations in the TERT promoter were recently identified in up to 71% of cutaneous melanoma. Subsequent studies found TERT promoter mutations in a wide array of other major human cancers. TERT promoter mutations lead to increased expression of telomerase, which maintains telomere length and genomic stability, thereby allowing cancer cells to continuously divide, avoiding senescence or apoptosis. TERT promoter mutations in cutaneous melanoma often show UV-signatures. Non-melanoma skin cancer, including basal cell carcinoma and squamous cell carcinoma, are very frequent malignancies in individuals of European descent. We investigated the presence of TERT promoter mutations in 32 basal cell carcinomas and 34 cutaneous squamous cell carcinomas using conventional Sanger sequencing. TERT promoter mutations were identified in 18 (56%) basal cell carcinomas and in 17 (50%) cutaneous squamous cell carcinomas. The recurrent mutations identified in our cohort were identical to those previously described in cutaneous melanoma, and showed a UV-signature (C>T or CC>TT) in line with a causative role for UV exposure in these common cutaneous malignancies. Our study shows that TERT promoter mutations with UV-signatures are frequent in non-melanoma skin cancer, being present in around 50% of basal and squamous cell carcinomas and suggests that increased expression of telomerase plays an important role in the pathogenesis of these tumors.
recent publication found TERT promoter mutations in 78% of BCC and 50% of SCC [26].

In our study we investigate the presence of TERT promoter mutations in BCCs and SCCs, and their associations with clinical and pathologic features.

Materials and Methods

Sample selection

Samples of primary BCCs and SCCs were obtained from 66 patients treated in the Department of Dermatology, University Hospital Essen, Germany. The study was approved by the Institutional Review Board of the University of Duisburg-Essen (Ethikkommission der Universität Duisburg-Essen) under the IRB protocol number 12-4961-BO. All patients provided written informed consent.

DNA isolation

10 µm-thick sections were cut from formalin-fixed, paraffin-embedded tumor tissues. The sections were deparaffinized and tumor tissue was manually macrodissected. Genomic DNA was isolated using the QiAamp DNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

Direct (Sanger) sequencing

PCR amplification of the TERT promoter region was performed using primers hTERT_F ACGAAGTGGC-CAGGGGCA and hTERT_R CTGCGCTGACCCCTCACTC and primers hTERT_short_F CAGGGCTGAAACCCTC and hTERT_short_R GTCTGTGGCCCTTCACCTTT (163bp product) as previously described [20]. PCR products were used as templates for sequencing after purification with the QiAquick PCR Purification Kit (Qiagen). Sequencing chromatogram files were examined using Chromas (version 2.01, University of Sussex, Brighton, United Kingdom) or Sequencher (demo version 5.1, Gene Codes Corporation, Ann Arbor, MI, USA) software.

Results

Study cohort

The study cohort consisted of 32 BCC and 34 SCC samples, from 43 males and 23 females. The median age was 72.6 years for SCC and 73.0 years for BCC. Histopathologic analysis was performed on all samples to assess histologic subtype, tumor thickness, cystic component, ulceration status, and presence of pigmentation for BCC, as well as tumor thickness, Clark level, acantholysis, lymphovascular involvement (LVI), perineural involvement (PNI), and presence of ulceration in SCC. Clinico-pathologic characteristics are listed in Table 1.

TERT promoter mutation analysis

Recurrent TERT promoter mutation analysis was performed using clinical and pathologic features.

Mutations	BCC	SCC
Wild-type	14 (44%)	17 (50%)
Mutant	18 (56%)	17 (50%)
c.-146C>T	10 (31%)	5 (15%)
c.-124C>T	4 (13%)	5 (15%)
c.-126C>T	2 (6%)	4 (12%)
c.-138,139CC>TT	1 (3%)	2 (6%)
c.-124C>T, c.-126C>T	0	1 (3%)
c.-126,127CC>TT, c.-146C>T	1 (3%)	0

Associations of clinical and pathologic parameters with TERT promoter mutation status

Apart from a small, statistically significant (p = 0.046) difference in age between patients with TERT promoter-mutant BCCs (median 75.5 years) and those with TERT promoter-wild type BCCs (median 71.0 years), there were no statistically significant associations of TERT mutation status with clinicopathologic parameters (Table 2 and 3).

Discussion

BCC and SCC harbor distinct patterns of genetic alterations. BCC have genetic alterations activating the hedgehog signaling pathway. In contrast, SCC show alterations leading to activation of the MAPK and AKT signaling pathway, such as overexpression or mutations of genes such as RAS, EGFR, or PI3KCA [17,18]. Losses of CDKN2A [17] and inactivation of NOTCH1 [18] are also frequent in SCC, but not in BCC. The only previously recognized common genetic event in both tumors is TP53 mutations. We found TERT promoter mutations in a substantial proportion of both BCC and SCC. The frequency of these mutations in BCC, SCC, melanoma [19,20] and other cancers [21] suggests that increased expression of the holoenzyme telomerase is an important event in a wide range of human malignancies.

The role of UV-mediated tumorigenesis in BCC and SCC is supported by epidemiologic data and by the presence of UV-signature mutations in TP53 (BCC and SCC), PTCH1 (BCC) or RAS (SCC) [2,3,5,11,16]. The mutations we identified in the TERT promoter have a UV-signature with C>T or CC>TT changes, consistent with an etiologic role for UV exposure. However, c.-124C>T and c.-146C>T mutations have also been identified in cancer types such as hepatocellular cancer, bladder cancer, thyroid cancer and gliomas, in which UV-induced mutations are unlikely [21–23]. CC>TT alterations are considered virtually pathognomonic of UV-induction [16,27] and were rare or not described in the aforementioned tumors, however were shown in Figure 1. One c.-146C>T mutant tumor also harbored a c.-126,127CC>TT mutation. Seventeen (50%) SCCs harbored TERT promoter mutations (Table 1), which included c.-124C>T (n = 6, 18%), c.-124,125CC>TT (n = 2, 6%), c.-138,139CC>TT (n = 4, 12%), and c.-146C>T (n = 5, 15%). One c.-124C>T case had a concomitant c.-126C>T mutation. All identified mutations showed a UV-signature (C>T and CC>TT) [27].
frequent in cutaneous melanoma and other cutaneous tumors occurring on sun-damaged skin [20,25]. There is a rare C>T SNP (rs35550267) at position c.-139. To our knowledge no known SNP has been reported at c.-125 (dbSNP). Thus, although we cannot exclude that of the ten CC>TT alterations detected (six c.-138_139CC>TT, three c.-124_125CC>TT and one c.-

Figure 1. Recurrent mutations identified in the TERT promoter of BCC and SCC. Representative sequencing chromatograms showing the wild type sequence (on top) and representative examples of the mutations identified in both basal and squamous cell carcinoma samples – c.-124C>T, c.-124_125CC>TT, c.-138_139CC>TT or c.-146C>T (alternatively annotated according to the chromosome location as Chr.5. 1295228C>T, Chr.5. 1295228_1295229CC>TT, Chr.5. 1295242_1295243CC>TT or Chr.5.1295250C>T, respectively). All presented mutations were found in both tumor cohorts however the presented chromatograms are from a BCC, SCC, BCC, and BCC, respectively.

doi:10.1371/journal.pone.0080354.g001

Table 2. Associations of clinical and pathologic parameters in BCC with TERT promoter mutation status.

Parameter	Level	All cases	TERTwt	TERTmut	P value**
	N = 32	N = 14	N = 18		
Age at diagnosis (years)	Median 73	71.0	75.5	0.046	
Sex	Female 10	4	6	1.00	
Tumor location	Head & neck 23	10	13	0.36	
Tumor thickness	Median 1.2 mm	1.1 mm	1.35 mm	0.16	
Histologic type	Nodular 15	7	8	0.20	
	Micronodular 5	1	4		
	Superficial 8	5	3		
	Infiltrative 3	0	3		
Cystic component	No 24	10	14	0.70	
Ulceration	No 17	10	7	0.07	
Pigment	No 31	14	17	1.00	
	Yes 1	0	1		

TERTwt = TERT promoter wild-type; TERTmut = TERT promoter mutant.

**Based on chi-squared or Fisher exact tests for categorical variables, and on Mann-Whitney test for continuous variables. Cases with missing data were excluded from statistical analyses.

Histologic parameters analyzed were based on the World Health Organization’s classification and histologic criteria[31]. Tumor thickness was measured as for cutaneous melanomas[32].

doi:10.1371/journal.pone.0080354.t002
some, or potentially even all, represent a preexisting C>T variation with an additional C>T mutation, we do believe these alterations, found in 13% of BCC and 18% of SCC, most likely primarily represent UV-exposure tandem mutations, arguing for UV-exposure inducing TERT promoter mutations in these tumors. Future larger studies with paired tumor and constitutional DNA should be able to definitively address the role of dipyrimidine mutations in the TERT promoter of BCC and SCC.

Matched blood samples of the tumors analyzed in our study were not available, precluding us from directly excluding the presence of germ-line mutations at the mutation hotspots c.-124 or c.-146. However, germ-line mutations at these hotspots have not been observed in various TERT promoter mutation studies which compared paired tumor and normal (blood) tissue isolated DNA [19–21,24,26], nor were they present in the 1000 Genomes database [28]. This makes it almost certain that the mutations detected at these loci in our tumor cohort were somatically acquired.

Table 3. Associations of clinical and pathologic parameters in SCC with TERT mutation status.

Parameter	Level	All cases	TERT^{wt}	TERT^{mut}	P value**
Age at diagnosis	Median	72.6	76.8	72.5	0.69
(years)	Range	46–95	46–90	52–95	
Sex	Female	13	7	6	0.72
	Male	21	10	11	
Tumor location	Head & neck	25	11	14	0.80
	Extremities	5	3	2	
	Trunk	2	1	1	
	Missing data	2	2	0	
Tumor thickness	Median	3.95 mm	4.7 mm	3.9 mm	0.95
	Range	2.8–10.0 mm	2.8–10.0 mm	3.0–10.0 mm	
Clark level	III	6	5	1	0.13
	IV	17	6	11	
	V	10	5	5	
Grade	1 (well differentiated)	8	4	4	0.72
	2 (moderately differentiated)	16	7	9	
	3 (poorly differentiated)	10	6	4	
Acantholysis	No	29	15	14	1.00
	Yes	5	2	3	
Ulceration	No	19	8	11	0.30
	Yes	15	9	6	
Desmoplasia	No	30	14	16	0.48
	Yes	3	2	1	
Perineural invasion	No	28	15	13	0.66
	Yes	6	2	4	
Lymphovascular invasion	No	33	16	17	1.00
	Yes	1	1	0	
Mean survival (months)*		42.5	68.6	(33.7–51.4)	(57.5–79.7)

TERT^{wt} = TERT promoter wild-type; TERT^{mut} = TERT promoter mutant.

*Estimates of mean survival from Kaplan Meier method (median survival not reached); p value estimated using log-rank test.

**Based on chi-squared or Fisher exact tests for categorical variables, and on Mann-Whitney test for continuous variables. Cases with missing data were excluded from statistical analyses.

Histologic parameters analyzed were based on the World Health Organization’s classification and histologic criteria[33]. Clark level of invasion and tumor thickness were measured as for cutaneous melanomas[32].

doi:10.1371/journal.pone.0080354.t003
The only significant correlation with clinical parameters observed in our cohort, was a slight difference in age between TERT promoter mutant and non-mutant BCC. Our cohort is small and larger more detailed follow up studies will be required to verify this finding and to determine if additional clinicopathologic correlations with TERT promoter mutation status can be identified.

In summary, our study identifies TERT promoter mutations with a UV-signature as frequent events in BCC and SCC non-melanoma skin cancer. Similar results independently validating these findings were recently reported by Scott et al., who found recurrent TERT promoter mutations in 78% of BCC and 50% of SCC [26]. Future studies will be required to determine whether TERT promoter mutations have prognostic implications or may be targeted therapeutically. This would be especially valuable in patients with metastatic SCC for whom prognosis is poor and effective therapies are lacking.

Acknowledgments

We would like to thank Mingxia Song and Nicola Bielefeld for their excellent technical support.

Author Contributions

Conceived and designed the experiments: KGG RM UH TS. Performed the experiments: I. Moller I. Moll MS AS KGG. Analyzed the data: KGG BS TS LZ DS UH. Contributed reagents/materials/analysis tools: KGG UH TS. Wrote the paper: KGG RM BS TS I. Moller I. Moll MS AS LZ DS UH.

References

1. Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 30: 774–778.
2. Leiter U, Garbe C (2008) Epidemiology of melanoma and nonmelanoma skin cancer—the role of sunlight. Adv Exp Med Biol 624: 89–103.
3. Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8: 743–754.
4. Alam M, Ratner D (2001) Cutaneous squamous-cell carcinoma. N Engl J Med 344: 975–983.
5. Schilling B, Murali R, Bielefeld N, Schwamborn M, et al. (2013) Frequent TERT promoter mutations in atypical fibroxanthomas and pleomorphic dermal sarcomas. Mod Pathol.
6. De Strooper B, Haustaetter F, Zhang D, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65.
7. Feinberg AP, Nathanson KL, Maranian MR, et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463: 191–196.
8. Wang N, Sanborn Z, Arnett KL, Bayston LJ, Liao W, et al. (2011) Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A 108: 17761–17766.
9. Huang FW, Hodin E, Xu MJ, Kryakov GV, Chin L, et al. (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339: 957–959.
10. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, et al. (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339: 959–961.
11. King DJ, Reitman ZF, Jiao Y, Bettegowda C, Agrawal N, et al. (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A.
12. Landa I, Gandy I, Chan TA, Minnatake N, Matsue M, et al. (2013) Frequent Somatic TERT Promoter Mutations in Thyroid Cancer: Higher Prevalence in Advanced Forms of the Disease. J Clin Endocrinol Metab.
13. Vinagre J, Almeida A, Populo H, Battista R, Lyra J, et al. (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4: 2185.
14. Grewank KG, Murali R, Schilling B, Schale S, Sucker A, et al. (2013) TERT promoter mutations in ocular melanoma distinguish between conjunctival and uveal tumours. Br J Cancer 109: 497–501.
15. Grewank K, Schilling B, Murali R, Bielefeld N, Schwamborn M, et al. (2013) TERT promoter mutations are frequent in atypical fibroxanthomas and pleomorphic dermal sarcomas. Mod Pathol.
16. Scott GA, Laughlin TS, Rothberg PG (2013) Mutations of the TERT promoter are common in basal cell carcinoma and squamous cell carcinoma. Mod Pathol.
17. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463: 191–196.
18. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65.
19. Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579: 859–862.
20. Gunes C, Rudolph KL (2013) The role of telomeres in stem cells and cancer. Cell 152: 390–393.
21. Wang N, Sanborn Z, Arnett KL, Bayston LJ, Liao W, et al. (2011) Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A 108: 17761–17766.
22. Huang FW, Hodin E, Xu MJ, Kryakov GV, Chin L, et al. (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339: 957–959.
23. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, et al. (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339: 959–961.
24. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, et al. (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A.
25. Landa I, Gandy I, Chan TA, Minnatake N, Matsue M, et al. (2013) Frequent Somatic TERT Promoter Mutations in Thyroid Cancer: Higher Prevalence in Advanced Forms of the Disease. J Clin Endocrinol Metab.
26. King DJ, Reitman ZF, Jiao Y, Bettegowda C, Agrawal N, et al. (2013) TERT promoter mutations in ocular melanoma distinguish between conjunctival and uveal tumours. Br J Cancer 109: 497–501.
27. Grewank KG, Murali R, Schilling B, Schale S, Sucker A, et al. (2013) TERT promoter mutations in ocular melanoma distinguish between conjunctival and uveal tumours. Br J Cancer 109: 497–501.
28. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65.
29. Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579: 859–862.
30. Gunes C, Rudolph KL (2013) The role of telomeres in stem cells and cancer. Cell 152: 390–393.