2. 巻頭言

日本的思考に基づく新しいケミカルバイオロジー概念提案の勧め
東北大学多元物質科学研究所 和田 健彦

4. 主催研究会報告

第 19 回生命化学研究会 報告

6. 研究紹介

6. 如何に水中で分子を識別するか？
～分子認識、分子の局在変化、化学反応～
岐阜大学工学部 池田 将

14. タンパク質を模倣する、操作する
～合成化学からタンパク質への挑戦～
東京工業大学生命理工学院・JST さきがけ 村岡 貴博

20. 新世代ビスフェノールと核内受容体の構造活性相関解析研究
～ハロゲン原子を含有するリガンドとその受容体～
九州大学大学院理学研究院 松島 綾美

26. 論文紹介「気になった論文」

東北大学多元物質科学研究所 山田 研
九州大学大学院工学府 仲本 正彦
東北大学多元物質科学研究所 菅井 祥加

36. お知らせ

異動
受賞
編集後記
日本の思考に基づく新しいケミカルバイオロジー概念提案の勧め

東北大学 多元物質科学研究研究所 和田健彦

2016年夏、リオ・オリンピックでの史上最多メダル獲得に日本中が大いに盛り上がった。今回、日本メダリストの特徴の一つは「不利な状況でも逆転を信じ、最後まで諦めない姿勢」ではないかと、個人的には感じた。例えば女子レスリングのメダリスト達、バトミントン女子のタカマツペア、そして女子シンクロなど、いずれも最後まで粘り強く戦い抜き、勝利を手にした沢山の選手達が記憶に刻まれた。ここ数回世界トップレベルには及ばなかった女子シンクロは、ペア・団体共メダルを獲得し、井村コーチの過酷な指導がマスコミで好意的に取上げられ、個人的には興味深く感じた（井村コーチは中学時代、私の体育の先生（当時は福井先生）で、1年の時に赤鬼と呼ばれた体育の井村先生と結婚された（笑）。「人間そんな簡単に死なへん、口開く暇あったら頑張り！...死にそうに過酷な練習、まさに地獄だったと選手達が口を揃える、かつてのスポ根漫画のような極めて日本的スパルタ練習。そんな古典的指導も、選手の心に響き、厳しくてもついていく...メダル獲得後、井村コーチに抱きつき、涙ながらに喜びと感謝を表す選手達...素晴らしい指導者は時代を超え、未だ日本的鍛錬も有効であることを感じた。さらにパワハラなんて批判は一切無く、その指導方法を評価し、讃えるマスコミ…「ゆとり世代は努力せず、すぐに諦める」とか、「一生懸命取組まず、根性がない」等「最近の若い者は…」的な評価の無意味さと共に、報道の姿勢にも感じるところが多かった。

とかく悲観的評価を耳にする日本の若い世代の魅力的な潜在能力、現代でも日本の伝統的な愛情を秘めた妥協を許さない厳しい指導が効果的なケースがあることを再認した。今回の成果に基づき、オリンピック強化選手制度の一層の充実のため、H28年度324億円のスポーツ予算がH29年度以降大幅に増額されるとの報道を目にすることが多く、いやが上にも2020年東京オリンピックへの期待が高まる。

一方、科学に目を転じるとH27年度の科研費新規+継続課題に対する直接経費の合計は1,671億円で、H26年度より57億円の減額であると手元の資料には記されている（日本学術振興会 平成27年度科学研究費助成事業の配分について から）。スポーツ経費は予算増額に見合った成果・実績が得られたのに対し、科研費は効率が悪く、効果が少ない…的な判断が影響しているように読取れる報道も目に入った。タレント豊かな人財を幼少時から発掘し、科学的理論と分析に基づく論理的かつ効率的なトレーニング、そして先に紹介したようにスポ根漫画のような過酷な練習を乗り越えることにより獲得する強靭な身体と精神が勝利をもたらす…スポーツの場合は10を100に、そして100を1,000にも鍛え上げる方法論が成立し、それ故、予算投入が有効に機能していると読み解くことも出来る。一方、科学に関しては如何か…類似の方法論に基づくと、既にシーズが見出された研究、あるいは先駆的研究者らにより提案され、実証された研究を発展させる研究の場合、1を10に、そして100にも1,000にも展開する方法論が適用出来る可能性が高く、高い投資効果が期待される。しかし、全く新しい方法論や革新的パラダイムの提案を目指すプロジェクトは、0を1にするタイプの研究と捉えることも出来、投資効果は先の研究に比較し、仮に低いことが予想される。しかし、成果・実績主義に基づく投資対効果を重視した重点的投資だけでは、我が国科学・技術の長期
的推進と発展は期待し難いことを、多くの著名研究者の方々も警告されている。では全く新しい方法論やパラダイムの提案を目指す研究とはどんな研究か…私を含め、ほとんどの研究者が提案書を作成する際、本申請は新しい方法論の実証と真理の追求を目指す…的な記述を盛り込むことが多いと思われる。しかし、俯瞰的・客観的に評価すると、独自と記されたシーズの礎には欧米を中心とした優れた研究者の先駆的探究に触発され、シーズを発展させたプロジェクトもあり、独創性に欠けると評価されることも多いと聞く。

斬新な方法論、画期的なパラダイムの提案を目指すのなら、東洋的な包括・俯瞰的科学体系の構築を目指すのも一手かと、最近強く感じている。特に恒常性的維持や免疫応答に代表される細胞機能・生体応答の理解等、本研究会の多くの方が取組むケミカルバイオロジーの真理追求には、1対1対応を論理の礎とする現代主力の西洋的科学のみならず、多様性を許容し、閾値の存在を前提とする等、暖昧性と遅延性を許容し得る東洋科学的、哲学的構想の導入が重要ではないかと感じている。このような包括的許容性を受入れ得る独自の科学的論理体系を日本の構築しており、この活用が日本の科学、特に近年欧米のみならずアジアで急速にレベルが向上し、後れをとっている謂わざるを得ない日本のケミカルバイオロジー研究がグローバルレベルで輝き、世界をリードするための重要な視点になり得るのではないかと期待している。

先日元会長の浜地格先生に上記の漠然とした考えをお話ししたところ、「日本は明治維新以降、西洋科学を積極的に取込み、教育の推進と研究の発展に努力してきた。この過程で日本では欧米の教科書をそのまま使うのではなく、専門用語さえも日本語への訳を熟考し、独自の科学用語体系の構築に成功した。例えばCellを細胞と訳す…逐語訳に留まらず対象の実体をしっかりと理解し、割当てられた漢字は、現代であれも、その深い洞察力に感服するほど適切で、素晴らしい訳であると感じる。韓国や中国ではこのような取組みがなされず、英語のまま、あるいは日本漢字をそのまま転用している」とお話し頂いた。もちろん明治時代、人々は英語をほとんど理解出来なかったという背景も影響しているとは思うが、先人の素晴らしい努力による日本語訳に基づく独自の考え方、そして暖昧性を許容する日本語に基づくユニークな科学感が育まれ、それ故ノーベル賞受賞者も多いと考える事も出来る。今後、細胞から生体レベル応答解析・理解を対象とする生命化学研究では、日本的思考に基づく哲学的概念が重要になり得ると期待している。

ただこの暖昧性を許容する科学への具体的な戦略構築は容易ではない。この観点から、細胞内の複雑・夾雑系における生体分子の安定構造や分子間相互作用等の解析、理解と推定等に向けた、元会長の甲南大学理事杉本直己先生らの分子クラウディングという概念の提唱と一連の研究は極めて興味深い。種々多彩な条件下での実験系の検討と物理化学的解析に基づき、細胞環境下では水の活量が希薄溶液系とは大きく変化し、その結果特有な構造が安定化され、その構造変化とこれに基づく相互作用変化が鍵を握っている可能性が報告されている。これらの研究は暖昧模様とした自然・生体現象を、詳細で精緻な実験系の構築により網羅的に検討すると共に、俯瞰的に解析・理解、新しいパラダイムの構築に成功され、当に日本的観点・思考も取入れられた素晴らしい哲学的概念の提案例であり、西洋科学に立脚した客観性を有する多くの実験事実を、東洋科学的に読み解いた画期的なパラダイム提案だと敬服している。

日本の化学、特に生命化学研究を唯一無二のレベルまで高め、科研費等の公的な研究資金投入に応えるためには、研究費獲得のための研究でなく、伝統的な日本の思考を見直し、若い研究者の潜在能力を信じ、パワハラ・アカハラ等と批判されることを恐れず、愛情と信頼を秘めた愛協恵議論・批判を活発に行い、老若男女の区別無く切磋琢磨すると共に、西洋科学の限界を克服し得る東洋科学的思考の活用も視野に、斬新な方法論やユニークなパラダイムの構築を目指していくことも重要ではないかと感じている。

日本の科学者、特に私も含め生命化学研究会会員が、ユニークな研究を推進し、哲学的構想を提案し、リオリンピック強化選手のように世界をリードする研究者とし、さらに飛躍し、輝くことを夢見て...
第19回生命化学研究会 報告

2016年8月1日〜2日に第19回生命化学研究会～生命化学・温故知新～を、山口県下関市豊北町のホテル西長門リゾートで開催しました。全国各地から32名の方々に参加していただき、非常に綺麗な夏の日本海を望む海沿いの会場で、生命化学の最先端についての熱い議論が交わされました。まず、幹事の藤井会長から開会の挨拶があった後、3名の講師（桑原正靖さん、松浦和則さん、世良貴史さん）による講演と、参加者ほぼ全員によるポスター発表がありました。二日目には2名の講師（小倉俊一郎さん、竹中繁織さん）による講演があり、昼食後、解散となりました。

主催：日本化学会フロンティア生命化学研究会
会期：2016年8月1日(月)〜2日(火)
会場：ホテル西長門リゾート
幹事：藤井 郁雄（大阪府大院理）

プログラム
8月1日(月)
13:30 開会の挨拶 藤井 郁雄（大阪府大院理）
13:40〜14:30「生命分子創製：核酸バイオマーカー検出法開発編」 桑原 正靖（群馬大理工）
14:30〜15:20「ペプチドを分子設計して人工ウイルスキャプシドと光誘起ナノファイバーを創る」 松浦 和則（鳥取大院工）
15:40〜16:30「人工核酸結合タンパク質誘導体の農業・医療への応用」 世良 貴史（岡山大院自然科学）
16:40〜17:40 ポスター発表
17:40〜 運営委員会

8月2日(火)
8:30〜8:50 総会
8:50〜9:40「アミノレブリン酸(ALA)が拓く医療〜がんの診療からミトコンドリアの活性化まで～」 小倉 俊一郎（東工大院生命理工）
9:40〜10:30「ナフタレンジイミドの核酸化学への応用」 竹中 繁織（九工大工）
10:30 閉会の挨拶 三原 久和（東工大院生命理工）
如何に水中で分子を識別するか？
～分子認識、分子の局在変化、化学反応～

岐阜大学 工学部
池田 将
（m_ikeda@gifu-u.ac.jp）

1. はじめに

水中あるいは体内など生体条件で特定の分子を識別する分子システムの開発は、診断や治療など様々な医療応用の基盤となる重要な研究課題である。筆者が卒研生（1997年）として配属先に選んだ九州大学新海研究室（当時は JST プロジェクトも進行中）ではポロン酸を認識部位とする糖の蛍光分子センサーの開発に成功しており12、糖を識別するポロン酸修飾分子の開発は研究室の大きなテーマの一つであった。筆者が人生最初に選んだ竹内正之先生（NIMS 主席研究員、当時：助手）のグループの研究テーマも、ポロン酸の糖の認識能を利用したもので、ポルフィリンのナノワイヤーをセンサにおじるというアイディアだった。また、当時の新海研究室には、糖の識別に関して、ポロン酸を扱うグループがある一方で、浜地格先生（現京都大学教授、当時：助教授）は、レクチンの一種である ConA を糖の蛍光センサーに改変する挑戦をされていっていた。その実験手法がとてもエレガントかつユニークで、報告会のたびに一つ一つ理解するのに一生懸命だった（その時は、後に浜地研究室の助教として採用頂けるとは夢にも思わなかった）。また、池田篤志先生（現広島大学教授、当時：助手）は、フラーレンを認識するカプセル分子の開発などで世界と競争していた。振り返ってみると、アイディアと競争の臨場感に溢れた環境で学生時代を過ごした。

竹内先生のグループは、「人工分子を用いた分子認識において、1:1の錯体形成では選択性の向上に限界があるのではないか、生体にそってアロステリック効果（Allosteric Effect, [positive or negative]と[homotropic or heterotropic]を組み合わせて4種類)を活用してみよう」という戦略を打ち出し始めた（そもそも生体も選択性の向上にアロステリック効果を巧みに利用しているようである）。当時博士3年生の今田博士がダブルデッカー型ポルフィリンという美しい分子でアロステリックなゲスト認識することを立証した研究と論文4aをみて憧れた。この研究

図1 Positive Homotropic Allosterism を示すホスト分子の例
究から「同一ゲスト分子の協同的認識（positive homotropic allosterism）」発現において、必要と考えられるホスト分子の構造的特徴は、回転対称軸をもつように複数個認識部位を導入すること（図1A）というシンプルな分子設計戦略を導き出し、認識部位を選ぶことで様々なゲスト認識に応用できることが示された5。ポロン酸を認識部位とすると、（読み出しはCDスペクトルという制限はあるものの）オリゴ糖の認識をアロステリックに行えることが明らかになり5c、後輩の菅崎修士（現富士フィルム）を中心にガン抗原糖鎖であるSialyl LewisXの認識にも成功した5d（図1B）。

一方で、生体高分子の分子認識を知れば知るほど、中性の水中で、しかも様々な生体分子や細胞が存在する複雑な環境において、酵素、抗体、あるいはアプタマーが達成している生体分子の分子認識能に小さな分子が勝つのは至難の業であると感じずにはいられなかった。その後、水中における分子の識別とは少し距離をおき、分子集合体（新海研博士後期課程、Jean-Marie Lehn研ポドク）やらせん分子（八島ERATO研ポドク、新海研特任助手）の構造美や機能を追求した6。

2. 超分子ヒドロゲル内の分子の局在変化を利用した分子の識別

2007年から京都大学浜地研究室の助教として採用頂き、水中で働く分子をどのように設計し、扱い、評価するかの基本から、タンパク質をはじめ大腸菌や細胞を扱った生物実験などを一から学んだ。浜地先生は、タンパク質のそのまま有機化学やリン酸化ペプチドの認識などケミカルバイオロジーの分野でインパクトのある研究を多数報告されているが、自己集合性材料に関しても独創的な研究を展開されている。特に、水中でナノファイバーネットワークとなりゲル状物質を形成する超分子ヒドロゲル化剤（図2）の開発に関して先駆的な成果を挙げられており7、そのグループ（ゲル組と呼ばれていた）を任せて頂いた。

図2 超分子ヒドロゲルの形成メカニズム

浜地研ゲル組では私が在籍する前から、ヒドロゲル内での蛍光性分子の動き（局在変化）を利用した分子を識別する蛍光センサーの開発を行なっていた。そのアイディアは眼から鱗の斬新なものであり、一般的な蛍光分子センサーの設計指針とはかなり異なる。通常、蛍光分子センサーを創るときには、認識情報を分子の構造変化などを介して蛍光スペクトル変化に変換する機構が必要である。これを如何に（基本的には1個の）分子の中に組み込むかが肝要となる。一方、ゲル組では、ゲル中での蛍光性分子の局在変化（ヒドロゲル内には「水の空間」とファイバー内部の「疎水性空間」（疎水性相互作用で集まったナノファイバーが創りだす超分子ヒドロゲル内にできる独特の空間））が存在）を蛍光スペクトル変化として読み出すという全く新しいコンセプトのセンサーの開発を具現化していた8。最初に浜地先生に任されたテーマの一つが、これに関連して、ヒドロゲルの内部にもう一つ空間（3種類の空間）を作りたいというものだった。浜地先生は、かなり昔から細胞内のオルガネラのようなものを意識していた。
頂いたヒントと助言を頼りに学生さんと試行錯誤の後、ポーラスなシリカ微粒子（MCM）内部あるいは層状無機微粒子の層間の「イオン性空間」が超分子ヒドロゲル内の「水の空間」と「疎水性空間」と共存可能な3種類目の空間になることを示出した。図3Bには、アニオン性の蛍光分子（P-coum、図3A、実はこの分子を見つけたのにも一苦労）を内包させたNH2-MCM（空孔内部がカチオン性（NH基を有する）のMCM）を超分子ヒドロゲルに導入したゲル材料内の蛍光顕微鏡によって可視化した画像を示している。アニオン性蛍光分子P-coumを5dP-coumの内部（イオン性空間）に内包させたNH2-MCMにポリアニオンを添加すると、イオン交換によってNH2-MCMの細孔内（イオン性空間）に内包されたP-coumを追い出すことができる。そこで、「P-coumの蛍光共鳴エネルギー移動（FRET）アクセプターになる疎水性蛍光分子を予め疎水性空間であるファイバーに取り込みえていた超分子ヒドロゲル」に「P-coum内包NH2-MCM」をハイブリッドした。このハイブリッドゲル材料におけるポリアニオンの添加量に応じてFRET現象の増強に伴う蛍光スペクトル変化が確認され（蛍光色も変わる）、ポリアニオンセンサーとして機能することを明らかにした（図3C）。この結果は、P-coumがポリアニオンの存在を感じ、粒子状の「イオン性空間」から「水の空間」を介してファイバー状の「疎水性空間」へ局在変化したことを示している（図3A（実はこの間に酵素反応によってP-coumを疎水性にする仕組みも組み込んでる）。その様子を蛍光顕微鏡で追跡することもできる。さらに、NH2-MCMの変わりにアニオン性表面を持つ層状微粒子（モンリロナイト）を利用すると同様の動作原理に基づいたポリアニオンセンサーを創ることもできる。また、細胞内のオルガネラ間を移動するセカンドメッセージのように分子の挙動（局在変化）を利用した分子システムとして、材料開発に新しい視点や設計指針を与えてくれる。

3. 化学反応を利用し、分子を識別する超分子材料ヒドロゲル

超分子ヒドロゲルの応用をあたかもこれ考えて過ごすようになったある日、学生時代には糖の相互作用部位として利用していたボロン酸が、H2O2に対する蛍光分子センサーとして利用できることを示した論文に目を留まった。読んでもみると、ボロン酸とH2O2の化学反応は細胞内のような複雑な環境においても選択的に
進行することに驚いた。化学反応を利用すればボロン酸のような小さな分子でも選択的な分子の識別が可能であり、化学反応を超分子ヒドロゲルに利用すれば、複雑な環境でも生体分子を識別する超分子材料を作ることができないではないだろう（しかも、小さな分子の化学反応や構造変化がバルクの溶液物性（ゲルかソルか）に反映されることになる）。分子を識別するのに鍵と鍵穴の分子認識以外にも化学反応を使う戦略があることに気付かされた瞬間だった。調べてみると、ボロン酸誘導体BPmoc 基（図4A）は、アミノ基の保護基として1975年には論文が発表されているし（Protective Groups in Organic Synthesisにも紹介されている）10b、そもそも、類似の反応がヒドロホウ素化-酸化反応として有機化学の教科書に載っている（現在、学部の講義で担当している範囲だそうだ）。

早速、BPmoc 基を修飾した超分子ゲル化剤の開発を始めた。発表した論文では触れていないが、当初、フェニルボロン酸部位は親水部として働くだろうと考えて、分子設計と合成を進めた。しかし、合成したBPmoc 修飾分子は加熱しても水に溶けない状況が続いた。溶液を塩基性にしたり、ボロン酸をジオールと反応させたりして親水化する手も試したが、最終的にはフェニルボロン酸を塩水部として捉えなおし、当時超分子ヒドロゲル化剤になる確率が高いことが示されつつあったペプチドのN末端にBPmoc 基を修飾するという分子設計にシフトした。そこで数ヶ月で、当時4年生の谷田君（現クラレ）がフェニルアラニン-フェニルアラニンジペプチド（FF）のN末端にBPmoc 基を導入したBPmoc-FF（図4A）がヒドロゲルを形成することを見出した11a。早速、H₂O₂ 水溶液をゲルの上から添加してみると、しばらくしてゲルが崩壊してソル（水溶液）になった。狙い通りであった。図4Aのような反応が進行しているものと考えられる。また、後述するが、同じ分子設計で、還元反応によって脱離する置换基（NPmoc 基）をジペプチドFFのN末端に導入してみると、予想通りの還元反応によってゲルがソルになることが確認された11a,b,d。光切断型の置换基を利用すれば、光応答超分子ヒドロゲルをつくることもできる11a,c。

図4 酸化反応を利用し生体分子を識別して溶ける超分子ヒドロゲル
ここで、H₂O₂はオキシダーゼが基質を酸化する際に副生成物として産生されることに当初から目を付けていた。すなわち、H₂O₂応答性超分子ヒドロゲルにオキシダーゼを内包させたゲル材料は、酵素反応から生成するH₂O₂に対しても同じように応答するだろうと考えていた。そうすると、H₂O₂に対する応答をオキシダーゼの基質応答へと拡張できることになる。自然界にはさまざまな基質に対するオキシダーゼがあり、その幾つか（例えば、グルコースや尿酸、コリン、コレステロールを酸化するオキシダーゼ）は容易に手に入る。また、一般的にはヒドロゲルは、酵素を活性化まで内包できることが知られており、最適な材料の組み合わせもある。そこで実際に、グルコースオキシダーゼ（GOx）をBPmoc-FFヒドロゲルに内包させたハイブリッドゲルを製製したところ、D-グルコースを添加すると期待通りゾル化した（図4B）。HPLC/MS分析による生成物解析から想定している反応の進行も確認された。すなわち、ハイブリッドゲル中でグルコースはGOxによってH₂O₂に変換され、そのH₂O₂がBPmoc-FFヒドロゲルのゾル化を誘起していることが示唆された。また、D-ガラクトースやL-グルコースを添加したときにはゾル化は確認されず、GOxの選択性を反映した結果であった11a。以上から、標的バイオマークーカー基質とするオキシダーゼをH₂O₂に応答する超分子ヒドロゲルに内包すれば、そのバイオマークーカーの濃度や存在を感知し、ゾル化するイントリジェントなゲル材料を開発できる可能性が示唆された。その他のオキシダーゼ（コリン（COx）、尿酸（UOx）、サルコシン（SOx））を内包させると、対応する基質に選択的に応答して溶けることも確かめられ（図4C），ここでは中性でも低濃度でゲル形成可能なBPmoc-FFFを使っている。11b）多様な生体分子を識別して溶けるヒドロゲルがH₂O₂との化学反応を基軸に1種類のゲル化剤に酵素を選び混ぜ合わせることでつくられることが実証した。水中、生体環境においても分子を識別する超分子材料の設計指針を一つ見つけることができた気がする。

全く同様の戦略で、BPmoc基の代わりにNPmoc基を用いると（図5A）、ニトロ基を還元する還元剤（亜ジチオン酸ナトリウム：Na₂S₂O₄）添加で溶けるヒドロゲルをつくることもできる（図5B）。この場合、補酵素NADH

図5 還元反応を利用して生体分子を識別して溶ける超分子ヒドロゲル
要求性のニトロ還元酵素(NR)による還元反応を利用することも可能である(図5C)。さらに、NAD⁺から
NADHへの還元反応とカップルさせて基質の酸化を触媒する酵素がやはり天然には多く存在する。例えば、乳酸脱水素酵素(LDH)はその一つであり、これをNAD⁺、NRと一緒に還元応答性ヒドロゲルに包埋すると、乳酸添加によって溶けるゲルとなった(図5D、右から2番目のスポット)。このことは、ゲルの中で、乳酸がLDHによって酸化される際にNAD⁺がNADHへと変換され、そのNADHを利用してNRがNPmoc-FFFを還元し、ナノファイバーネットワークを消失させていることを意味している。補足して、がん細胞周辺では乳酸濃度が高いとされている。

上記の化学／酵素反応を組み合わせると、情報処理に基づく刺激応答性を引き出すことも可能である。
例えば、GOxとCOXを組み合わせてBPmoc-FFFゲルに包埋すると、ゲルす
あるいはコリンの存在を感知して溶けるヒドロゲルができる(図6A)。これは論理情報処理回路としては、OR型に対応す
る。一方、二種類のゲル化剤(BPmoc-FFFとNPmoc-FFF)を組み合わせ、GOxとNRを包埋すると、グルコースとNADHが両方存在するときのみ溶けて、グルコースあるいはNADHのみでは溶けないゲルとなる(図6B)。これはAND型情報処理に対応する。このような論理演算を介して二種類の生体分子の存在を感知することは、例えば、ゲルに封入した薬剤放出などの応用において、刺激応答機能の精度や選択性の向上に繋がると期待される11b。

化学反応活用の特徴を考えてみたい。まず、系の可逆性に関して、今回示してきたような切断反応を使うと基本的には不可逆な系になってしまうが、用途によっては一度の応答で十分利用価値のある材料も作ることができるだろう。また、可逆的な反応を上手く利用できるような分子設計も可能である。利用する化学反応の速度や感度も実際の応用には重要となる。この点は有機分子としての置換基の合理的最適化やスクリーニングなどの活用によって改良できることを期待したい。最後に、化学反応の特徴として、複数の反応を組み合わせたネットワークを構築して情報を変換あるいは増幅できる点を挙げたい。生体も利用しているように、外部環境に応答するファジーでロバストな超分子システムを構築できる点が化学反応の最大の特徴かもしれない。

5. おわりに
以上、分子の識別に焦点を当て筆者の携わった研究を紹介させて頂いた。抗体やアプタマーなど生体分子の夾雑的な環境での分子認識のパワーにはやはり圧倒される。何ができるのだろうと時折考える。そもそも分子の大きさ(情報量)が違うので敵わないのかとも思うこともあるが、構成分子(基本的に核酸は4種類、タンパク質は20種類)や原子に縛られることなく原子を適切かつ自在に配置した小さな分子が示す
化学反応性は、その一つの答えとして、生体分子にはないユニークな応答性や機能性を創造するチャンスを与えてくれそうに思う。斬新な考えではないかもしれませんが、生体分子と化学反応性の人工分子をハイブリッドする化学を基盤として、医療応用などを目指し、雑多な生体環境でも働くシンプルでインテリジェントな機能性分子を合理的かつ合目的に開発し、その適用範囲と限界を見極めるべく研究を進めている。

2012年に岐阜大学北出幸夫研究室に准教授として着任した後、この方法論を核酸に適用する研究に取り組んでいる（核酸は岐阜にきて一から学んだ）。まずは、Nitrobenzyl(NB)基が還元反応によって脱離するだろうと考え、グアニン(dG)の6位にNBを導入したdG-NBのホスホロアミダイト体を開発した。挙動を追跡しやすいようにG-quadruplexを形成する15merのDNAの5'末端にG-NBを導入し、還元による応答をCDスペクトルおよびHPLCで追跡したところ、期待通り、還元剤を添加すると一本鎖状態からG-quadruplexに折り畳まれることが明らかになった（図7）13。

Photo-caged型生体分子の報告例は多いが、Chemical-caged型生体分子の報告例は未だ少なく、生体内で自律的に周辺環境を識別する機能性分子として一線を画する応用が可能になるものと考え、ある先生の叱咤激励を胸に、さらなる機能化と検証を進めている。このような切断反応を利用したChemical-caged型の分子は、生体直交的な連結反応の成熟とあいまって最近注目され始めている14。最後に、化学反応の親和力は10~100 kJ/molに達するため、室温でも容易に非線形領域に達するらしい15。化学反応をうまく使えば、平衡から遠くはなれた状態(far-from-equilibrium state)を超分子システムでも作り出そうである16。本稿で紹介したこれまでの経験（アロステリック効果、分子の自己集合、局在制御や区画化17、そして化学反応など）に新しい方法論の考案を絶えつつ、少しでも化学的に生命の謎や機能に迫る分子システムの創製ができればと目論んで研究室のメンバーと一つ一つ実験に取り組んでいる。

謝辞

ここで紹介した主な研究成果は、京都大学・浜地格教授の懇切丁寧な指導と断言の温かい激励によるものであり、ここに深く感謝致します。また、指導を賜っている先生方と色々と助けくださっている共同研究者や関係諸氏、そして、なにより、昼夜を問わず実験してくれた学生諸氏にこの場を借りて心より感謝致します。最後に、このような貴重な執筆の機会を与えて下さった鳥取大学・松浦和則教授に感謝致します。

参考文献
1) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Nature 1995, 374, 345–347.
2) 当時一生懸命読んだ総説、James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew. Chem. Int. Ed. Engl. 1996, 35, 1910–1922.
3) 最近の総説として、(a) Ricci, F.; Valleé-Belisle, A.; Simon, A. J.; Porchetta, A.; Plaxco, K. W. Acc. Chem. Res. 2016, ASAP (doi: 10.1021/acs.accounts.6b00276). (b) Kuriyan, J.; D. Eisenberg. Nature 2007, 450, 983–990.

4) (a) Takeuchi, M.; Imada T.; Shinkai S. Angew. Chem. Int. Ed. 1998, 37, 2096–2099. (b) Ikeda, M.; Takeuchi, M.; Sugasaki, A.; Robertson, A.; Imada, T.; Shinkai, S. Supramol. Chem. 2000, 12, 321–345.

5) (a) Shinkai, S.; Ikeda, M.; Sugasaki, A.; Takeuchi, M. Acc. Chem. Res. 2001, 34, 494–503. (b) Takeuchi, M.; Ikeda, M.; Sugasaki, A.; Shinkai, S. Acc. Chem. Res. 2001, 34, 865–873. (c) Ikeda, M.; Shinkai, S.; Osuka, A. Chem. Commun. 2000, 1047–1048. (d) Sugasaki, A.; Sugiyasu, K.; Ikeda, M.; Takeuchi, M.; Shinkai, S. J. Am. Chem. Soc. 2001, 123, 10239–10244.

6) 携わった研究をまとめた総説として、Ikeda, M. Bull. Chem. Soc. Jpn. 2013, 86, 10–24.

7) (a) Kiyonaka, S.; Sugiyasu, K.; Shinkai, S.; Hamachi, I. J. Am. Chem. Soc. 2002, 124, 10954-5. (b) Kiyonaka, S.; Sada, K.; Yoshimura, I.; Shinkai, S.; Kato, N.; Hamachi, I. Nat. Mater. 2004, 3, 58–64

8) Yamaguchi, S.; Yoshimura, I.; Kohira, T.; Tamaru, S.-i.; Hamachi, I. J. Am. Chem. Soc. 2005, 127, 11835-118341.

9) (a) Wada, A.; Tamaru, S.-i.; Ikeda, M.; Hamachi, I. J. Am. Chem. Soc. 2009, 131, 5321–5330. (b) Ikeda, M.; Yoshii, T.; Matsu, T.; Tanida, T.; Komatsu, H.; Hamachi, I. J. Am. Chem. Soc. 2011, 133, 1670–1673.

10) (a) Miller, E. W.; Tulyathan, O.; Isacoff, E. Y.; Chang, C. J. Nat. Chem. Biol. 2007, 3, 263–267. (b) Kemp, D. S.; Roberts, D. C. Tetrahedron Lett. 1975, 16, 4625–4628.

11) (a) Ikeda, M.; Tanida, T.; Yoshii, T.; Hamachi, I. Adv. Mater. 2011, 23, 2819–2822. (b) Ikeda, M.; Tanida, T.; Yoshii, T.; Kurotani, K.; Onogi, S.; Urayama, K.; Hamachi, I. Nat. Chem. 2014, 6, 511–518. (c) 二光子励起に応答する超分子ヒドロゲル: Yoshii, T.; Ikeda, M.; Hamachi, I. Angew. Chem. Int. Ed. 2014, 53, 7264–7267. (d) Shigemitsu, H.; Fujisaku, T.; Onogi, S.; Yoshii, T.; Ikeda, M.; Hamachi, I. Nat. Protoc. 2016, 11, 1744–1756.

12) 熱可逆性の反応であるDiels-Alder反応を利用した昇温駆動型超分子ヒドロゲルシステム (a) Ikeda, M.; Ochi, R.; Kurita, Y.-S.; Pochan, D. J.; Hamachi, I. Chem. Eur. J. 2012, 18, 13091–13096. (b) Ochi, R.; Nishida, T.; Ikeda, M.; Hamachi, I. J. Mater. Chem. B 2014, 2, 1464–1469.

13) Ikeda, M.; Kamimura, M.; Hayakawa, Y.; Shibata, A.; Kitade, Y. ChemBioChem 2016, 17, 1304–1307.

14) 最近の総説として、Li, J.; Chen. P. R. Nat. Chem. Biol. 2016, 12, 129–37.

15) イリヤ・プリゴジン、ディリプ・コンデプディ著、妹尾学／岩元和敏訳、「現代熱力学」、朝倉書店 (2001).

16) (a) Boekhoven, J.; Hendriksen, W. E.; Koper, G. J. M.; Eelkema, R.; van Esch, J. H. Science 2015, 349, 1075–1079. (b) Ikegami, T.; Kageyama, Y.; Obara, K.; Takeda, S. Angew. Chem. Int. Ed. 2016, 55, 8239–8243.

17) 関連して、最近、浜地研究室では、細胞内の微小管とアクチンフィラメントのように、交じり合わず共存する(Orthogonalな)二種類の超分子ファイバーベベアを見出している。Onogi, S.; Shigemitsu, H.; Yoshii, T.; Tanida, T.; Ikeda, M.; Kubota, R.; Hamachi, I. Nat. Chem. 2016, 8, 743–752.
タンパク質を模倣する、操作する
～合成化学からタンパク質への挑戦～

東京工業大学生命理工学院
JST さきがけ
村岡 貴博
tmuraoka@bio.titech.ac.jp

1. はじめに

今回我々の研究内容についてご紹介する機会を与えて下さり、誠にありがとうございます。私が2008年に東北大学多元物質科学研究所の助教に着任してから、東京工業大学生命理工学院に移った現在まで、金原数教授のご指導のもとで、タンパク質を模倣する、またはタンパク質を操作(特に安定化)することを目指した機能性分子の開発を行っております。本稿では、両プロジェクトのこれまでの成果についてご紹介させて頂きます。

2. タンパク質を模倣する

「タンパク質模倣」、このコンセプト自体は全く新しいものではありません。我々が始める以前から、生体模倣(バイオミメティクス)の一部として存在するコンセプトです。しかし多くの場合、例えば酵素の活性部位を模倣し、触媒をデザインする、といったタンパク質の一部を切り出した形での模倣が行われてきました。我々はそれに対し、刺激応答性(入力)、機能(出力)、そして存在する場といったタンパク質の性質を「総合的に」模倣することを目指しています。そして究極的には、生体内でタンパク質と同じように機能する合成分子を作る、という夢に向かって研究を進めています。

その中で、対象として膜タンパク質に注目しています。細胞膜などの脂質二分子膜中に存在する膜タンパク質の、一つの特徴的な機能は膜を介した物質輸送であり、これが膜貫通分子として機能を果たしています。まず、こうした機能を示す膜タンパク質の模倣にあたり、立体構造に注目しました。特に物質輸送を行う膜貫通タンパク質に広く見られる構造に、複数回貫通構造があります。複数のαヘリックスが膜を貫通し、バンドル化した構造がその代表例であり、内部に物質輸送を行うチャネルが生体内のタンパク質に注目しました。
形成されます。複数回膜貫通構造を形成する膜タンパク質の一次構造には、疎水性アミノ酸が多く含まれる部分と、親水性アミノ酸が多く含まれる部分の織り返し構造が見られます。脂質二分子膜の内側は疎水的ですので、疎水性ドメインが膜を貫通し、親水性ドメインが膜外部に位置する形でポリペプチド鎖が折りたたまれ、複数回膜貫通構造が形成されると考えられます。この点に着目し、膜貫通を期待した剛直で疎水的な芳香族性部位（ビスフェニルエチニルベンゼン、BPEB）と、親水的で柔軟なオリゴエチレングリコールを交互に連結した分子を開発しました（図1A）。BPEBは蛍光を示すことから、ジオレオイルホスファチジルコリン(DOPC)と1の混合物で作られたジャイアント単層ベシクル(GUV)を蛍光顕微鏡で観察したところ、GUVの形状と一致するリング像が見られました（図1B, C）。従って、1がGUVの脂質二分子膜内に含まれることがわかります。スピン標識されたリン脂質を用いた変位蛍光消光解析から、1の芳香族部位が膜の内側に存在し、かつDOPC分子とほぼ平行方向、つまり膜面に対して垂直方向を向いて膜を貫通していることも示されました。BPEBは、溶液中分散状態では390 nm付近に極大を持つ蛍光を発し、自己集合により蛍光極大波長が440 nm付近へ長波長シフトすることが知られています。膜に挿入された1の蛍光スペクトルを測定したところ、428 nmに極大を持つ蛍光が見られました。またこの蛍光極大は、1の膜中濃度を200倍変化させてもほとんど動かず、つまり濃度依存性が見られませんでした（図1D）。以上より、1はDOPC脂質二分子膜内でBPEB部が分子内でスタックした立体構造、つまり四回膜貫通型構造を形成していることが示唆されました。1を含むDOPC平面二分子膜を用いて、伝導度測定を行ったところ、1が超分子チャネルを形成し、イオン透過性を示すことが明らかとなりました。HEPESバッファー（20 mM HEPES, 50 mM KCl, pH 7.5）中に作成された1を含む平面膜に電圧をかけたところ、チャネルを通じたイオン透過が観察されました（図2）。この濃度において、平面膜上に126分子程度の1しか存在していないことを考慮すると、1つの箱型電流が1つのチャネルに由来するものと考えられます。このチャネルは、オームの法則に則った電流−電圧特性を示し、伝導度は70 pSでした。イオン透過性に関する1の濃度依存性解析から、ヒル係数が3.8 ± 0.1と算出されたことから、イオン透過の寄与しているチャネルは、1の四量体であることが示されました。これらの得られた物性値を用いてヒルの式を解くことで、イオンチャネルの孔径は0.53 nmであることが算出されました（図3）。
(DPA)部位を有し、その先に親水的なオクタエチレングリコールをリン酸エステルを挟んで有しています。光学活性体を用いることにより、円偏光二色性(CD)スペクトルを用いて構造に関する情報を得ることができます。2は両末端にトリイソプロピルシリル(TIPS)基を持ちますが、それを脱保護した3も併せて合成しました。芳香族部の近傍にマイナスチャージを有するリン酸エステルを配置することで、アドレナリンなどの天然リガンドとの相互作用を期待しました。蛍光顕微鏡観察や変異蛍光消光解析から、2または3がDOPC脂質二分子膜中に含まれることが示されました。DOPC脂質二分子膜中の2、3のコンフォメーションについて、CDスペクトルや単分子膜のπ-A等温線から分子専有面積を求めることで調べました。その結果、DOPC中の2、3はフォールディングした構造で膜中に埋まっており、かつ2のTIPS基は膜中に埋まっていることが示唆されました（図4）。リガンドPAと脂質二分子膜中の2、3との相互作用について調べました。PA添加に伴い、2、3いずれもCDスペクトル変化を示したことから、両者が相互作用していることが明らかとなりました。2とPAとの解離定数は、ビアコア表面プラズモン共鳴(SPR)システムから370μMと求められました。一方3とPAとの解離定数は、CDスペクトル変化から577μMと求められました。

このリガンドとの吸脱着によるイオン透過性変化について、平面膜を用いた微弱電流測定により調べました。2を含むDOPC脂質二分子膜は、初め、ほとんど電流を示さず（図5A）、平面膜の片側にPAを加えた場合も、ほとんど変化は見られませんでした（図5B）。ここで興味深いことに、膜両側にPAを加えた場合、電流の大きな増加が見られ、イオンチャネルを通じたイオン透過が示唆されました（図5C）。PAと強く相互作用するβシクロデキストリン(βCD)を平面膜片側加えた所、電流は著しく減少し、両側に加えると電流をほとんど見られなくなりました。その後PAを平面膜両部に加えると、再び電流が観測されたことから、リガンド吸脱着による可逆的な透過性スイッチングが示されました。この電流透過性の濃度依存性解析から、2•PA複合体の三量体が上下に

図4 リガンド結合部位を有する膜插入分子2の分子構造と膜中での立体構造についての模式図
図5 リガンドPAとの結合に応答した2のイオン透過性スイッチ。(A)リガンド無し(B)膜片側にリガンド添加時 (C)膜両側にリガンド添加時の微弱電流プロファイル。
で重なることで超分子イオンチャネルが形成されていることが示唆されました。一方3は、PAの有無に関わらずイオン透過性は示しませんでした。上記の通り、3とPAと相互作用することから、2において膜に埋まっているTIPS基がアンカーのように働き、チャネル形成に有利な効果を与えているものと推察されます。2-PAのイオンチャネル形成メカニズムについて、PAとの複合化による2の電荷遮蔽やコンフォメーション変化が、静電相互作用やvan der Waals相互作用などによりハーフチャネル形成を促し、それがさらに膜の上下でvan der Waals相互作用などによりスタックし、イオンチャネル形成へとつながっているものと考えられます。最近、この研究の発展として、膜を貫通する構造のリガンド応答性分子を用いて、生細胞膜中でのリガンド応答性イオン透過を実現することもできています。

この一連の芳香族性部位とオリゴエチレングリコールから構築される交互両親媒性化合物に関する研究の中で、興味深い発見がありました。一つは、光照射によるペシクル形現象である。DOPCと環状交互両親媒性化合物4(図6A)の混合物を水和させると、μmサイズの不定形粒子が得られました(図6B)。ここに紫外光、または可視光を照射すると、粒子からGUVが次々に発生する様子が観察されました(図6C)。この観察から、粒子表面に光照射に応答するGUVが生成されることが示唆されます。このGUVの生成は、粒子表面のコンフォメーション変化を介して起きるものと推察されます。赤外光照射や加熱では同様の現象は見られなかったことから、光がトリガーとなって粒子の形状変化を誘発するものと考えられます。さらに、図7に示すように、環状交互両親媒性化合物が形成する単結晶が熱で曲がる、という現象も発見しました。図7Bに示すように、長さ1 cmを超える5の針状結晶をホットステージ上に置き、加熱すると、結晶の屈曲運動が観察されました。この結晶運動は、単結晶-単結晶相転移に起因していることが明らかとなり、両状態でのX線結晶構造解析の結果、主にテトラエチレングリコール鎖部分がコンフォメーション変化していることが分かりました。こうしたスケールの運動が、単結晶中の規則的な分子のパッキングによってμmスケールにまで増幅されており、大変興味深い現象です。
3. タンパク質を操作する

ポリエチレングリコールは、一般に生体親和性が高いことが知られており、バイオ関連の研究で広く用いられる物質です。我々は、通常鎖状構造から成るPEGに対し、二次元的な構造を持たせることによって、トポロジー効果による新たなPEGの性質が見いだせるのではないか、と言う点に興味を持ち、図8Aに示すように最小の二次元構造である三角形構造をもたせたPEG類縁体6を開発しました。一般にPEGは、水中で加熱に伴いコンフォメーション変化し、疎水性を増す性質を有します12。同様の熱応答性は6でも見られました。しかし興味深いことに、疎水性増加に伴う6の脱水和温度は、通常のPEGの>90 °Cより著しく低く、60 °C付近であることが分かりました。このした基底物性に見られるトポロジー効果に目を付けて、6が、同程度の分子量の鎖状PEGでは見られないタンパク質凝集抑制効果を示すことを見出した。卵白リゾチームのPBSバッファ溶液を加熱すると白濁します（図8B）。これは、タンパク質が熱凝集したことを示します。しかしリゾチームと6の混合の場合、加熱による白濁は見られませんでした（図8C）。同じ分子量の鎖状PEG添加では、加熱によって白濁が生じたことから、この凝集抑制効果は分子構造の違い、つまり形の効果によるものと考えられます。加熱処理後に最大78%の酵素活性が残存したことから、大部分のタンパク質が安定化されることが分かります（図8D）。円偏光二色性（CD）スペクトルや1H NMRスペクトルを用いた解析から、6を含むPBSバッファー中において、90 °Cでもリゾチームは部分的な二次・三次構造を保持し、冷却後もそれらがほぼ完全に戻ることが示されました。蛍光偏光解消などの実験結果から、高温で変性タンパク質と6が相互作用していることが示唆されており、それによってタンパク質同士の会合、つまり凝集が抑制されているものと考えられます。このように、一次元から二次元へとPEGの構造を変えたことにより、タンパク質の安定性を制御・操作することができることを実証することができました13。

図8 (A)構造化PEG 6。 (B)リゾチーム、ならびに(C)リゾチームと6の混合物のPBSバッファ溶液の、20 °C、90 °Cでの写真。リゾチーム濃度：0.21 mM、6の濃度：34 mM。 (D)種々の添加剤存在下、90 °Cで30分間加熱処理後のリゾチームの残存酵素活性。

最近ではさらに、六角形までの幾何学構造を有するPEGを開発し、形の変化に伴い不連続的に熱応答性や自己集合特性が変化し、特に三角形と六角形で興味深い熱応答性自己集合が起きることが見出しています14。両親媒性構造を導入したPEGにも注目し、温度変化に対してヒステリシスを有する自己集合特性の発現や、ペプチドの選択的抽出、短鎖PEGでのタンパク質凝集抑制効果の実現などにも成功しております15。また、このような精密構造修飾されたPEG化合物を合成する上で必要となる、分子量分布がほとんど無い長鎖PEGのカラムクロマトグラフィーを用いない大量合成についての方法も確立しており16、PEGの構造と機能の関連性や、さらなる生体分子の操作17について、今後研究を展開していきます。
本研究は東京工業大学生命理工学院金原数教授の研究室で行った成果であり、金原教授のご指導に心から感謝の意を表します。GUVの作成と観察では、北陸先端科学技術大学院大学マテリアルサイエンス研究科の高木昌宏教授、濱田勉准教授、森田雅宗博士（現 東京工業大学日本学術振興会特別研究員）のご指導賜りました。また、イオン伝導度測定では、東京大学大学院工学系研究科の野地博行教授、田端和仁助教（現 東京大学講師）のご協力頂きました。タンパク質NMR測定では京都大学大学院工学研究科の白川昌宏教授、柄尾鉄人助教授（現 京都大学教授）のご協力頂りました。ここに厚く御礼申し上げます。最後に、研究遂行にご協力頂いた研究室メンバー、卒業生に深く感謝致します。

【引用文献】

[1] B. K. Kobilka et al., Nature, 2007, 450, 383.
[2] (a) L. A. Weiss, N. Sakai, B. Ghebremariam, C. Ni, S. Matile, J. Am. Chem. Soc., 1997, 119, 12142; (b) J. Ren, S. Lew, Z. Wang, E. London, Biochemistry, 1997, 36, 10213; (c) A. S. Ladokhin, Methods Enzymol., 1997, 278, 462.
[3] M. Levitus, K. Schmieder, H. Ricks, K. D. Shimizu, U. H. F. Bunz, M. A. Garcia-Garibay, J. Am. Chem. Soc., 2001, 123, 4259.
[4] T. Muraoka, T. Shima, T. Hamada, M. Morita, M. Takagi, K. Kinbara, Chem. Commun., 2011, 47, 194.
[5] A. V. Hill, Biochem. J., 1913, 7, 471.
[6] B. Hille, Ion Channels of Excitable Membranes, 3rd Edition, Sinauer Associates, Sunderland, 2001.
[7] T. Muraoka, T. Shima, T. Hamada, M. Morita, M. Takagi, K. V. Tabata, H. Noji, K. Kinbara, J. Am. Chem. Soc., 2012, 134, 19788.
[8] D. M. Cortes, L. G. Cuello, E. Perozo, J. Gen. Physiol., 2001, 117, 165.
[9] T. Muraoka, T. Endo, K. V. Tabata, H. Noji, S. Nagatoishi, K. Tsumoto, R. Li, K. Kinbara, J. Am. Chem. Soc., 2014, 136, 15584.
[10] (a) T. Shima, T. Muraoka, T. Hamada, M. Morita, M. Takagi, H. Fukuoka, Y. Inoue, T. Sagawa, A. Ishijima, Y. Omata, T. Yamashita, K. Kinbara, Langmuir, 2014, 30, 7289; (b) T. Shima, T. Muraoka, K. V. Tabata, H. Noji, K. Kinbara, Pure Appl. Chem., 2014, 86, 1259.
[11] T. Shima, T. Muraoka, N. Hoshino, T. Akutagawa, Y. Kobayashi, K. Kinbara, Angew. Chem. Int. Ed., 2014, 53, 7173.
[12] S. Saeki, N. Kuwahara, M. Nakata, M. Kaneko, Polymer, 1976, 17, 685.
[13] (a) T. Muraoka, K. Adachi, M. Ui, S. Kawasaki, N. Sadhukhan, H. Obara, H. Tochio, M. Shirakawa, K. Kinbara, Angew. Chem., Int. Ed., 2013, 52, 2430; (b) T. Muraoka, N. Sadhukhan, M. Ui, S. Kawasaki, E. Hazemi, K. Adachi, K. Kinbara, Biochem. Eng. J., 2014, 86C, 41.
[14] S. Kawasaki, T. Muraoka, T. Hamada, K. Shigyou, F. Nagatsugi, K. Kinbara, Chem. Asian J., 2016, 11, 1028.
[15] (a) N. Sadhukhan, T. Muraoka, D. Abe, Y. Sasanuma, D. R. G. Subekti, K. Kinbara, Chem. Lett., 2014, 43, 1055; (b) S. Kawasaki, T. Muraoka, H. Obara, T. Ishii, T. Hamada, K. Kinbara, Chem. Asian J., 2014, 9, 2778; (c) N. Sadhukhan, T. Muraoka, M. Ui, S. Nagatoishi, K. Tsumoto, K. Kinbara, Chem. Commun., 2015, 51, 8457; (d) R. Li, T. Muraoka, K. Kinbara, Langmuir, 2016, 32, 4546.
[16] (a) A. M. Wawro, T. Muraoka, K. Kinbara, Polym. Chem., 2016, 7, 2389; (b) A. M. Wawro, T. Muraoka, M. Kato, K. Kinbara, Org. Chem. Front., accepted (10.1039/C6QO00398B).
[17] H. Tateishi-Karimata, T. Muraoka, K. Kinbara, N. Sugimoto, ChemBioChem, 2016, 17, 1399.
新世代ビスフェノールと核内受容体の構造活性相関解析研究
～ハロゲン原子を含有するリガンドとその受容体～

九州大学大学院理学研究院化学部門
構造機能生化学研究室
松島 綾美
(ayami@chem.kyushu-univ.jp)

1. はじめに
みなさんは、どのようにしてご自分の所属研究室を選んだでしょうか？ 私が九州大学理学部化学科に入学したのは、21年前のことです。そして、4年生で研究室配属を迎えました。 “つくる”ことが好きで、“生き物”も好きな私は、有機化学の研究室に行くか、生物化学の研究室に行くか、の選択で大変に迷いました。私と同じように、いくつかの研究室で迷われた方も多いと思います。私の場合は、当時、助教授でいらした下東康幸先生の「教科書では『疎水性相互作用』という曖昧なことばで説明される、生体内の弱い相互作用を解明する」という言葉に魅力を感じ、先生が主宰されていた生物化学講座（現：構造機能生化学研究室）を第一希望としました。ここで、希望者8名から6名を選抜するジャンケンに勝ったことが、現在の私に繋がっています。研究は、意図して進むことも、意図せずして展開することもあります。ジャンケンという意図の及ばない結果から幕をあげた、私の研究についてご紹介します。

私の研究の関心は、リガンドとその受け手である受容体が、互いを認識し、複数の分子間相互作用で結合して受容体の構造変化を惹起すること、そして、それが下流にそのシグナルを伝えることにあります。つまり、シグナル伝達というドアをあける鍵について明らかにすることです。タンパク質中の芳香族アミノ酸などに由来する弱い生体内相互作用のひとつであるπ結合に注目しています。最近は、特に、フッ素や塩素などのハロゲン原子を含有するリガンドと、受容体の相互作用に興味を持っていました。研究標的となる受容体は、トロンビン受容体、オピオイド受容体、そして、エストロゲン受容体のような核内受容体、と変遷してきました。しかし、リガンドと受容体の間に、弱い相互作用の重要性を解明したい、という興味は共通です。本稿では、まず、私の原点となった、分子機能探索子としての含フッ素フェニルアラニンを用いたベプチドリガンドの合成、活性測定研究を紹介します。そして、現在行っている、ハロゲン含有の新世代ビスフェノールの構造活性相関解析研究について、これまでに分かっている内容をご紹介します。

2. 含フッ素フェニルアラニンを用いたトロンビン受容体活性化機構の解明
血液凝固に関わるトロンビン受容体は、リガンドを受容体自身に内蔵する白色い受容体です。つまり、セリンプロテアーゼである酵素トロンビンが、トロンビン受容体に結合してN端側を切除し、内蔵リガンドSer–Phe–Leu–Leu–Arg–Asn–Pro の部位が露出して受容体に結合することで、受容体が活性化されます。一方で、N端7アミノ酸残基のベプチドを合成し、添加するだけでもトロンビン受容体を活性化できます。
そこで、合成ペプチドを利用して、活性化の鍵となる構造要因を解明しました。ペプチドの2位フェニルアラニンPheが活性に必須なことが分かりました。そこで私たちは、Phe側鎖ベンゼン環の活性構造要因を解析するために、ベンゼン環水素をフッ素に置换した含フッ素Phe、合計20種を個々に導入した含フッ素ペプチドリガンドを化学合成し、分子認識の探索子として用いるという独創的な手法により、構造活性相関解析を行いました（図1）13。私が主に担当したのは、フェニル基上の水素2つをフッ素に置き換えたフッ素Phe2置换体と、3つを置き換えたフッ素Phe3置换体でした。そして、ヒト血小板凝集活性を測定しました。

まず、ベンゼン環上の水素を全てフッ素に置換すると、活性が完全に失われます。これは、π相互作用が失われたことを示します。そして、水素で1個、2個、3個、と逆置換していくと活性が現れ、次第に強くなるということが判明しました。この結果より、フェニル基上の水素がCH/π相互作用をしていることがはっきりと示されました。そして、この研究により、ベンゼン環の2-3位エッジ（縁）に存在する水素2個がedge-to-face CH/π相互作用を辻なしに展開しているという具体的な相互作用様式を初めて明らかにしました。さらに、フェニル基のパラ位にフッ素がある置換体では、活性が増強されるというフッ素原子の特性も見出されました。フッ素が水素に置き換わることによって、直接、あるいは間接的にリガンドと受容体の相互作用を増強していると考えられました。こうした研究に携わったことで、リガンドと受容体の間の相互作用に一層の興味をかき立てられました。それと共に、水素原子がたったひとつフッ素原子に置き換わるだけで、活性が大きく変わることに驚きを覚えました。

3. ビスフェノールAが結合する核内受容体の発見

私は配属された研究室で博士課程まで進学して学位を取得しました。そして、九州大学医学研究院における約1年間の博士研究員を経て、出身研究室の助教に採用して頂きました。ひとつの研究対象について研究を深めてきたのだろう、と思われるかもしれませんが全くそうではありませんでした。昆虫の繊維ペプチドに関する研究で博士の学位を取り、その後、ブリオニンタンパク質に関する研究を経て、トロンビン受容体と同じGタンパク質結合型受容体（GPCR）であるオピオイド受容体や、細胞の核内で遺伝子転写を制御する転写因子である核内受容体に関する研究をする機会を頂きました。なぜか、「はじめてする実験研究だけはうまくいく」という経験が多いです。そのような中で、助教に採用後、研究する機会を頂いたフェノールとその受容体に関する研究は、今まで続いています的研究のひとつです。

フェノール骨格を2つ繋いだビスフェノールAは、プラスチック製品を構成するポリカーボネート樹脂やエポキシ樹脂の工業原料として汎用される身近な化合物です。一方で、ビスフェノールAの低用量作用が注目されています4。これは、ごく微量の暴露で、実験動物の生殖系や脳神経系に悪影響を及ぼすことをいいます。著者もホヤを使ってこの影響を解析し、発生時期の暴露で卵の孵化率などに悪影響があることを報告しました5。このフェノールAがエストロゲン活性を示すことは、古くから知られていました。そのため、ビスフェノールAの作用標的はエストロゲン受容体であると理解されてきました。しかし、ビスフェノールAのエストロゲン受容体に対する結合能を内因性の女性ホルモンのエストラジオールの1,000倍から10,000倍も弱いことが知られていた。そこで、エストロゲン受容体以外にも結合する受容体があるので
はいないか？と考えられました。核内受容体はヒトに48種類存在しますが、これらの中からビスフェノールAに結合する受容体として同定したのが、エストロゲン受容体と良く似ていますが、全く別の核内受容体であるエストロゲン受容体γ型（ERRγ）でした。ビスフェノールAは、また内在性ホルモンに匹敵するほどに、ERRγに非常に強く結合することを明らかにしました。ERRγは、エストロゲン受容体とはリガンドに対する応答特性が異なります。ERRγは、核内受容体で、初めから高い転写活性を示す、いわば「自発活性化型」の核内受容体です。この結果を受けて、ERRγのレポーター遺伝子アッセイによる転写活性化試験系を構築し、ビスフェノールAがERRγの転写活性に与える影響を評価しました。これが強く結合するのだから、当然、活性の変化があるはずだと思われました。しかし、予想に反して、自発活性化核内受容体であるERRγが、初めから示す転写活性に対して、それをさらに活性化することもなく、ERRγの転写活性は全く変化させませんでした。そこで、本当にビスフェノールAは、ERRγの活性制御に関わるリガンド結合ドメインの結合しているのか？という疑問が生じました。そこで、ERRγに結合するリガンドの阻害剤としての働きがあるのか？を調べました。乳癌の治療薬タモキシフェンの活性代謝物である4-ヒドロキシタモキシフェン（4-OHT）はERRγが初めから示す高い転写活性を抑制する阻害剤です。そこで、4-OHTを添加した後に、ビスフェノールAを加えれば、リガンド結合ドメインにおけるこれらの競合が起き、活性に変化が見られるはずですと考えました。結果として、4-OHTにより抑制された活性は、ビスフェノールAの添加により回復することを証明できました。ところで、核内受容体と対、Gタンパク質共役型受容体（GPCR）研究では研究の歴史も長く、受容体に結合し、GPCRが元々持つ構成的活性、すなわち基盤活性を変化させないリガードはニュートラルアンタゴニストとよばれます。エストロゲン受容体のようなリガードで活性化される核内受容体も、同様に考えることができるのではないかと思われます（図2）。では、ERRγののように、初めから100%活性構造の構成的活性を持っている場合、この基盤活性を変化させないリガードはどのように呼べば良いでしょうか？ニュートラルアンタゴニストに対応する言葉として、ニュートラルアゴニストといえるかもしれません。また、インバースアゴニストの阻害剤なので、インバースアンタゴニストと言えるかもしれません。いずれにしろ、核内受容体にはリガード依存的に活性を発揮、リガード依存型核内受容体と、初めから高い構成活性をもつ自発活性化型核内受容体が存在するため、これらの活性化機構や生理機能については区別して考える必要があるそうです。

さらに、ビスフェノールAとERRγの複合体の結晶構造解析に取り組みました。最終的には質の良い結晶が得られることで、複合体の構造を明らかにすることが出来ました（図3）。この解析により、ビスフェノールAはERRγが初めからとる活性構造にすっぽりと包まれるように結合することが明らかになりました。そのために、活性を全く変化させないのだということが、はっきりと示されました。また、結晶構造の理解が明らかになったこ
とで、リガンド結合部位の構築について理解が深めることができました。こうして、私たちは、リガンド結合部位近傍に存在して、リガンド結合ドメインを構築するアミノ酸残基の側鎖を後ろから支える「支援残基」の重要性なども明らかにしています11,12)。

4. ビスフェノールAFはERαのアゴニストでERβのアンタゴニスト

ビスフェノールAがERαに強く結合することは明らかになりましたが、低用量作用を引き起こすメカニズムは不明のままだ。一方で、プラスチック製品に耐熱性などの付加価値を上げるためのビスフェノール誘導体、すなわち新世代ピフェノールが開発され、使用されています。これらに対する安全性の評価は、ほとんど手つかずの状態です。そこで私たちは、新世代ピフェノールとさまざまな核内受容体との結合試験を実施しました。そして、エストロゲン受容体α型に、ピフェノールAFが、ピフェノールAよりもずっと強く結合することを見出しました13)。ピフェノールAFは、ピフェノールAのフェニル基をつなぐ炭素上にある2つのメチル基の水素原子を全てフッ素原子に置き換えた化合物です(図4)。さらに、これが、エストロゲン受容体α型よりもβ型にずっと強く結合することも発見しました。この化合物の活性を、ヒト子宮頸癌由来のHeLa細胞を用いたレポーター遺伝子アッセイでの転写活性を利用して調べたところ、ピフェノールAFはエストロゲン受容体α型では転写を活性化するアゴニストですが、β型では活性化作用を示さないことが判明しました。さらに、解析を進め、内在リガンドである女性ホルモン・エストラジオールの活性を抑制するアンタゴニストとして働くという予想の結果を得ました。現在、ピフェノールAFがエストロゲン受容体α型のアゴニストであり、β型のアンタゴニストとなる分子機構について、解明研究を行っているところです。

5. ハロゲン結合

ピフェノールAFはハロゲン原子であるフッ素原子を含んでいます。近年、このようにハロゲン原子を含むリガンドと、受容体タンパク質の間における、ハロゲン原子を介した結合が注目されています14)。これが「ハロゲン結合」と呼ばれる弱い非共有結合です。その名の通り、ハロゲン原子を介した結合は、小分子では古くから知られていた。ハロゲン結合は、ルイス酸であるハロゲン原子とルイス塩基の間の相互作用であり、ハロゲンが求電子的に働くときに形成されると説明されます。しかしこ、求核的に働く場合があることも分かっています。これは、ハロゲン原子上には、これと共存結合している原子によって、電荷の偏りが生じているためです。こうしたことから、現在はハロゲン原子が関わる結合は、全てまとめてハロゲン結合と呼ばれます。また、一般的には、タンパク質などの生体分子中では、タンパク質の酸素原子とリガンドのハロゲン原子の間に形成される場合が多く、ちょっとハロゲン結合は水素結合に対応する形になる場合が多いようです。このようなハロゲン原子を含むリガンドと受容体の相互作用は、前述のトロンビン受容体とそのリガンドとの結合で解明しようとしてきたことであり、興味深い研究課題です。リガンドに計画的にハロゲン原子を導入することで、大変有効な薬剤設計が可能になると考えています。

6. おわりに

最近の研究成果として、他にも、エストロゲン受容体α型とERRが共発現することにより、エストロゲン受容体α型単独の場合に比較して、エストラジオールの最大転写活性が約4倍に大きく増強されることも発
見ました\(^{15,16}\)。ERRにはα型、β型、γ型の3種が存在します。しかし、増強作用があるのは、α型、とγ型だけでした。ビスフェノールAでも同様の実験結果を得ており、ビスフェノールAの低用量作用の原因の解明に繋がる可能性があります。現在、このER-ERR増強作用の分子メカニズムの解明にも取り組んでいます。現在までのところ、ERRのDNA結合領域は増強作用に必要とされており、エストロゲン受容体が結合するエストロゲン応答配列の繰り返し配列や、それらを繋ぐ間隔の影響を受けすることが分かっています。まだまだ、分からないことが、本当にたくさんあります。実験を進める上で、いろいろな作業仮説を考え、展開して行きます。私は今まで、有り難いことに、たくさんの学生さんと一緒に実験する機会を頂いています。その中で、感じることがあります。作業仮説のとおりの実験結果でなければならない、そうでなければ自分がした実験の意味がない、と考える学生さんも、割と多くいらっしゃるように感じます。もちろん私の考えた作業仮説が合っていると大変嬉しいです。しかし、残念ながら、そうではないことがあるのもまた事実です。「無駄」といえるようなものはなく、ひとつひとつを丁寧にフィードバックしながら、意図せずに新しい研究展開に繋がることもあるのが、科学の面白いところではないかとも思います。

謝辞
これらの研究は、九州大学大学院理学研究院化学部門の構造機能生化学研究室の助教として採用されて以来、准教授昇任後も引き続き、下東康幸先生のもとで共に実施してきた成果です。下東先生から頂いた御指導と御支援なくして、これらの研究展開はありませんでした。また、本研究を推進するにあたり、構造機能生化学研究室に所属されていた坂口和靖先生(現:北海道大学大学院理学研究院)や野瀬健先生(現:九州大学基幹教育院)はもちろんのこと、本当に数多くの共同研究者の先生方にお世話になり、また多くの学部生、大学院生に参画して頂きました。この場をお借りして、改めて心から厚く御礼を申し上げます。

参考文献
1) Fujita, T., Nose, T., Matsushima, A., Okada, K., Asai, D., Yamauchi, Y., Shirasu, N., Honoda, T., Shigeo, D., and Shimohigashi, Y. *Tetrahedron Lett.*, 41, 923-927 (2000).
2) Matsushima, A., Fujita, T., Nose, T., and Shimohigashi, Y. *J Biochem.*, 128, 225-232 (2000).
3) Matsushima, A., Fujita, T., Okada, K., Shirasu, N., Nose, T., and Shimohigashi, Y. *Bull. Chem. Soc. Jpn.*, 73, 2531-2538 (2000).
4) Saal, vom F.S., and Hughes, C. *Environ. Health Perspect.*, 113, 926-933 (2005).
5) Matsushima, A., Ryan, K., Shimohigashi, Y., and Meinertzhagen, I.A. *Environ. Pollut.*, 173, 257-263 (2013).
6) Helsen, C., and Claessens, F. *Mol., Cell. Endocrinol.*, 382, 97-106 (2014).
7) Takayanagi, S., Tokunaga, T., Liu, X., Okada, H., Matsushima, A., and Shimohigashi, Y. *Toxicol Lett.*, **167**, 95-105 (2006).
8) Okada, H., Tokunaga, T., Liu, X., Takayanagi, S., Matsushima, A., and Shimohigashi, Y. *Environ Health Perspect.*, **116**, 32-38 (2008).
9) Matsushima, A., Kakuta, Y., Teramoto, T., Koshiba, T., Liu, X., Okada, K., Tokunaga, T., Kawabata, S., Kimura, M., and Shimohigashi, Y. *J Biochem.*, **142**, 517-524 (2007).
10) Matsushima, A., Teramoto, T., Okada, H., Liu, X., Tokunaga, T., Kakuta, Y., and Shimohigashi, Y. *Biochem Biophys Res Commun.*, **373**, 408-413 (2008).
11) Liu, X., Matsushima, A., Okada, H., and Shimohigashi, Y. *J Biochem.*, **148**, 247-254 (2010).
12) Liu, X., Matsushima, A., Nakamura, M., Costa, T., Nose, T., and Shimohigashi, Y. *J Biochem.*, **151**, 403-415 (2012).
13) Matsushima, A., Liu, X., Okada, H., Shimohigashi, M., and Shimohigashi, Y. *Environ Health Perspect.*, **118**, 1267-1272 (2010).
14) Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., and Terraneo, G. *Chem Rev.*, **116**, 2478-2601 (2016).
15) 下東康幸, 劉暁輝, 松島綾美 Endocrine Disrupter NEWS LETTER Vol. 15, No. 4, p 5 (2013).
16) 劉 暁輝, 松島綾美, 下東康幸 BIO Clinica, Vol. 30, No. 10, p 90 北隆館 (2015).
山田 研（やまだ けん）
東北大学多元物質科学研究所 生命機能分子合成化学研究分野 助教
ken.yamada.e7@tohokua.ac.jp

この度は、生命化学研究レター“気になった論文”への執筆機会を頂きまして、編集委員の先生方に厚く御礼申し上げます。私は2011年に東京工業大学生命理工学研究科・関根光雄教授のもと学位を取得後、2012年よりMcGill大学化学科のMasad J. Damha教授の研究室に博士研究員として所属、2014年4月より東北大学多元物質科学研究所（永次研究室）にて助教として勤務しております。学生時代から一貫して、化学修飾を施された機能性核酸の開発研究を行ってきまわりました。現在、標的酵素・蛋白質の狙ったアミノ酸残基へ選択的に架橋反応を起こす核酸誘導体の開発を行っています。ケミカルバイオロジーの分野において標的分子に対する化学反応を利用した方法論は、生命現象の解明を目指す上で強力なツールとなるため、研究が盛んに行われております。中でも、ホジキン病研究分野に関連した報告は、ゲノム配列が解明された後DNAの塩基配列の変化に伴わない後天的な遺伝子発現制御として、大きなインパクトを与えています。本稿では“化学反応”を起点として、同分野に一石を投じた論文を幾つか紹介させて頂きます。

5-Formylcytosine Could Be a Semipermanent Base in Specific Genome Sites
Su, M.; Kirchner, A.; Stazzoni, S.; Müller, M.; Wagner, M.; Schröder, A.; Carell, T. Angew. Chem. Int. Ed. 2016, 55, 1-5.

DNAを構成する主要な核酸塩基4種に加え、図1aに示す4種のエピジェネティック塩基の存在が知られている。その中の5-ホルミルシトシン（5-fC）はプロモーター領域のCpGアイランドに多く存在することや、Thymine-DNA Glycosylase (Tdg)により塩基除去修復の基質となることが知られており、またゲノム全体におけるfCの分布率等の“グローバルな解析”は成されている。しかし、“個々のfCの形成・除去のダイナミクス”について全容は明らかになっていない。本論文で著者らは、fCに架橋反応する核酸プローブを発開し、“特定領域の特定のfCの形成・除去のダイナミクス”の検出について報告している。本手法の基盤技術は、(i) fC特異的に化学反応を起こす修飾核酸プローブ、および(ii) Droplet digital PCR（ddPCR）による希少転写産物の定量にある。fCプローブ構造の最適化の結果、fCの相補塩基から4-5塩基5'上流側に反応性核酸U*（図1b）が存在する場合に二重鎖のメジャー側から効率良くヒドロキシルアミンがfCにアクセスでき（図2d）、fCホルミル基選択的に最も良い架橋効率を示している。続いて著者らはマウス由来ES細胞からDNAを抽出し、fCが多く存在することが知られる2つのゲノム領域における、特定のfCの形成・除去

図1. (a) エピジェネティック塩基の構造 (b) 著者らのプローブの修飾様式、および同プローブを用いたfC検出法
の定量を行った。ネガティブコントロールとしては、(i) Tdg 欠損（Tdg⁻）、また(ii) Dnmt（DNA メチル転移酵素）(1, 3a, 及び3b)欠損（Dnmt TKO）それぞれの ES 細胞から抽出した DNA を用いている。プロープはまず抽出した DNA に対して配列選択的にプロープの U*と DNA の fC で架橋反応させる。架橋していないプロープを洗浄除去した後、図2aのようにレポーターオリゴ R と架橋プロープ末端をラグレーションさせる。続いて ddPCR によりライゲーションオリゴ抽出の 1DNA と、内標としての非架橋 DNA の PCR 産物 2 それぞれを定量し fC の存在率を算出している。特定ゲノム領域の fC 存在率は、Tdg⁻の細胞由来の DNA では 28.5%、Tdg⁺では約半分の 15.7%であった（図2b）。次に細胞中の“全 DNA”における“全 fC の存在率”を従来法で算出したところ、特定の fC の存在率の平均値が示されていた（図2c）。この結果の重要な点として、(i) Tdg が fC を完全に除去していない点と、(ii) 特定の fC の存在率とゲノム全体の fC（global fC）の存在率に相関があった点である。これらは、fC は塩基除去反応における一過性の反応中間体ではなく、半永久的にゲノム上に存在すること、また特定のサイトの fC が特異的に除去・保護されることがなく、ゲノム全体で存在率が上下していることを示唆している。

近年では RNA のメチル化に関する論文が徐々に増えている。本論文では、著者らが開発した手法“m¹A-seq.”を用いて、新たな mRNA の転写後修飾様式として "N1-メチルアデノシン（m¹A）" の存在を証明している。本論文の重要な点として、non-coding RNA である tRNA、rRNA のフォールディングに寄与していると見なされていた m¹A が、遺伝子をコードする mRNA 中に機能性塩基として存在しており、ストレス応答、翻訳制御等に関与している事実を示した点、また化学的不安定な m¹A の存在位置を検出する手法を開発した点である。m¹A 修飾サイトを同定する際にシーケンシングを行うが、著者らはその際に化学的に不安定な m¹A の存在位置を検出する手法を開発した点である。

m¹A 修飾サイトを同定する際にシーケンシングを行うが、著者らはその際に化学的に不安定な m¹A が m⁶A に変換される "Dimroth 転位"を利用し、その転位の有無により生じる配列情報の差（変異）から m¹A の位置を同定している（図4）。誌面の都合上、膨大なデータから成る論文を詳細には紹介できないが、広く知られているDimroth 転位を利用し、既存概念を覆すまでの研究に展開する凄みは圧巻である。
Identification of Direct Targets and Modified bases of RNA Cytosine Methyltransferases

Vahid Khoddami, Bradley R. Cairns, *Nat. Biotech.* 2013, 31, 458-464.

最後にメチル化標的の詳細が明らかでなかった RNA メチルトランスフェラー (RMT) のひとつ NSUN2 の、メチル化サイトの同定を行った論文を紹介する。

著者の手法の要となるケミストリーは、5-アザシチジン (5-azaC) 特有の化学特性にある。5-azaC は細胞内で 5-azaC-5′トリリン酸へ変換され、DNA/RNA に組み込まれる。そこで 5-azaC は、偽シチジンとして DNA (または RNA) メチル化酵素によるメチル化反応に取込まれ、酵素活性部位に存在するシスチンと安定な共有結合体を形成し、酵素活性を阻害する (図 5b, 1st step)。5-azaC はピリミジンと比べ電子不足なトリリン格を有する為、求電子性が比較的高くなっている 6 位炭素を起点とし、塩基性条件下で開環して非環式核酸塩基アナログのグアニルウレア (GU) へと変換される、ユニークな性質を有している。さらに、この 5-azaC 分解物である GU は、シトシンと塩基対形成特性能を有している (図 5c)。つまり、この 5-azaC の箇所が GU に変換された RNA から作製した cDNA を PCR で増幅した際に得られる RNA 配列を反映した cDNA は、C (5-azaC) が G に変異した産物となる (図 6c)。

著者はこの変異をシトシンメチル化発生サイトのシグナルとして利用している。実際に細胞内にて、5-azaC を介して NSUN2 が架橋した RNA 産物を免疫沈降で抽出し、RNA をフラグメント化して (ここで 5-azaC→GU 変換が起きていると思われる)、シーケンシングを行う (図 6c)。図 6-b,d に示すように、NSUN2 の標的となる tRNA 群、または tRNA 上の C メチル化マッピングにも成功している。

以上 3 報はいずれも化学反応を起点として展開された研究であり、有機化学的視点から、分子生物学の未知の領域に挑んだ好例として紹介させて頂きました。末筆ではございますが、本執筆の貴重な機会を与えられた、鳥取大学・大学院工学研究科、松浦和則先生に心より感謝申し上げます。
仲本 正彦（Nakamoto Masahiko）
九州大学大学院工学府 博士後期課程3年
m.nakamoto@kyudai.jp

この度、生命科学研究レター「気になった論文」への執筆機会を与えていただき、大変光栄に思っております。私は現在九州大学大学院工学府にて三浦佳子教授、星野友准教授の指導の下、動的機能を有する合成高分子ナノゲル粒子についての研究を行っています。私共はタンパク質のような動的で高次な機能をもつ合成高分子材料の開発を目指して日々研究を行っています。そのため、タンパク質の機能発現のための分子設計からは学ぶところが多く、大変興味を持っております。本稿では、タンパク質の様々なpKをもつカルボン酸残基のプロトン交換反応の速度論的解析手法の開発と、大腸菌由来多剤排出輸送体EmrEによる基質・プロトンの共役輸送メカニズムを提案した論文を紹介します。

Site-Specific Protonation Kinetics of Acidic Side Chains in Proteins Determined by pH-Dependent Carboxyl 13C NMR Relaxation
Johan Wallerstein, Ulrich Weininger, M. Ashhar I. Khan, Sara Linse, and Mikael Akke, J.Am. Chem. Soc. 2015, 137, 3093–3101.

タンパク質による反応触媒や物質輸送においてプロトン移動反応は重要な役割を担い、多くの酵素反応においてプロトン移動速度が反応全体の律速段階となります。しかしながら従来、タンパク質内側鎖の個々のカルボン酸のプロトン交換速度を部位特異的に直接測定した例は多くありませんでした。IR分光法や蛍光相関分光法を用いて部位固有の情報を系全体にわたって観察するためには煩雑なラベリングが必要となります。また、^{1}H-NMRによる水分子の緩和測定ではタンパク質側鎖のプロトン交換過程に部位固有の情報は得られません。本論文では、異なるpH条件で測定された13C NMR横緩和時間をプロトン交換、プロトン結合およびプロトン解離過程からなる比較的シンプルな関数を用いて解析することでプロトン結合・解離の速度定数(k_{on}およびk_{off})を算出しています。著者らはアスパラギン酸(D)およびグルタミン酸(E)残基を有する連鎖球菌族由来のプロテインGのB1ドメインの変異体をモデルタンパク質として用いました(図1(a))。

解析結果から、水素結合アクセプト部位となっているカルボン酸残基が低いk_{on}により低いpK_aを有していることが明らかになりました(D22, D46, D47およびE56)。これにより関連する残基の水素結合を受け入れることにより、水素結合を受け入れられる部位のカルボキシレートアニオンが安定化されることでプロトン結合速度定数k_{on}が低下することを示しています。また、プロトン化したカルボキシル基がペプチド骨格のカルボニル部位と水素結合していると考えられる残基においては、低いk_{off}と高いk_{on}を持つことが示されました(D37)。

測定により算出された種々のカルボン酸残基の$log(k_{on})$はpK_aに対して線形相関が見られたのに対して、$log(k_{off})$においてはpK_aに対する依存性が見られませんでした(図1(a)(b))。得られたライン自自由エネルギー関係は、遷移状態-プロトン化状態間の自由エネルギー変化が少なく、それぞれの残基間でのk_{on}およびpK_aの変化は主に種々の相互作用による脱プロトン状態の安定性の差によって説明できることを示しています。本論文で解析対象となった残基は比較的タンパク質表面に露出しているため、拡散律速の速い結合
解離過程が観察されています。そのため、膜タンパク質内部のような水分子の極端に少ない環境におけるカルボン酸残基についての適応には解析モデルの改善の余地があるかと思いますが、本論文により示された解析手法を用いて、これまで以上に詳細なタンパク質による種々の反応の速度論的メカニズムが明らかにされることが期待されます。

Protonation-dependent Conformational Dynamics of the Multidrug Transporter EmrE
Reza Dastvan, Axel W. Fischer, Smriti Mishra, Jens Meiler, and Hassane S. Mchaourab
Proc. Natl. Acad. Sci. USA, 2016, 113, 1220–1225.

細胞膜には、細胞毒性をもつ様々な物質を認識し、能動的に細胞外へ排出する多剤排出タンパク質が存在します。大腸菌由来多剤排出輸送体EmrEはプロトン勾配を利用して疎水性カチオン分子（基質）を細胞外へと排出する、プロトン・基質共役輸送体として知られています。機能ユニットは、4つの疎水性膜貫通ヘリックス(TM)を含むプロトマーからなるホモ二量体で、TM1、TM2およびTM3が基質結合ポケットとして機能します。基質はTM1内のグルタミン酸(E14)と結合し、結合部位に2つのリガンド（基質およびプロトン）が相互排除的に結合することで共役輸送が行われるとされています。しかしながら、従来報告されている結晶構造は基質結合型に限られており、輸送サイクルにおける必須の中間体であるプロトン結合型についての構造的解釈は得られていませんでした。
そのため、EmrEの構造変化と輸送メカニズムの詳細は明らかにされていませんでした。本論文では、系
統的に変異シスチンをスピンラベルしたEmrEのn-dodecyl-β-D-maltopyranoside（β-DDM）ミセル中での
各残基間距離情報を電子電子二重共鳴（DEER）により観察しています。著者らは、得られたEmrEの基質
結合型（図2(a) TPP）、プロトン結合型（図2(a) pH 5）およびアポ型（図2(a) pH 8）の構造情報から、構造変
化を伴う一連の輸送サイクルを明らかにしようと試みています（図2(a)）。
得られた各残基間の距離分布から、アポ型では高い柔軟性をもつ一方で、基質結合型では特にTM1-3
およびL1およびL3ループ構造において剛直性が増加することが分かりました。また、論文ではG26Cをスピ
ンラベルしたリガンド非結合型EmrEを用いてpHに依存した残基間距離の変動についても観察しています。
得られた構造変化のpKₐがE14の酸解離平衡定数pKₐと近い値をとることから、E14のプロトン酸化変化に
より大きな構造変化が生じると結論しています（図2(b)）。
3状態の構造情報から著者らの提案する全体の輸送機構では、基質非存在下ではE14にプロトンが結合
し、EmrEは細胞質へのプロトン漏出を防ぐようシスチンで閉塞した状態をとっています（図3(a)）。脂質
二重層の内部リーフレットから、Y40とF44を含むTM2が構造変化することで開いたゲートを通じて基質が
結合し、相互排除的にプロトンが細胞質へと放出されます。その結果アシスチン変化の基質結合型構造が
安定化されます（図3(b)）。次いでE14の脱プロトン化による構造変化により細胞外環境（低pH環境）へと基
質が曝され、基質の解離とプロトンの結合が起こります（図3(c)）。以上の様々な交互アクセスサイクルで共役
輸送が行われると提唱しています。一連の輸送サイクルはシンプルかつ合理的な分子設計に基づいてい
て、素晴らしいと思いました。
菅井 祥加（すがい ひろか）
東北大学 多元物質科学研究所 生命機能制御物質化学研究分野 博士後期課程 2年
h.sugai@dc.tohoku.ac.jp

この度は、生命化学研究レター「気になった論文」への執筆機会をいただき、誠にありがとうございます。
私は現在、東北大学 多元物質科学研究所にて和田健彦教授のご指導のもと、ハイポキシア関連疾患を標的とした核酸医薬の開発、特に核酸医薬候補となる人工核酸の細胞内送達をテーマとした研究に携わっています。近年、市販の低分子医薬や抗体医薬を代替・相補する次世代医薬として核酸医薬が注目されており、研究開発や臨床試験が活発化してきています。しかし、核酸医薬が概念化されてから40年近くたった現在でも、承認に至った例はわずか3品目であり、siRNAに至っては未だ例がありません（2016年9月現在）。実用化への課題の一つとされているのが、核酸を細胞内へ送達するためのドラッグデリバリーシステムの構築です。天然の核酸は、ポリアミンを有する高分子であるため、負に帯電した脂質二重膜である細胞膜を透過することは困難です。従って、効率的に核酸を細胞内へ導入する手法の開発は、極めて重要な課題です。そこで今回は、核酸の細胞内送達に関連する最近の論文について、気になった3報を紹介致します。

A Tailor-Made Specific Anion-Binding Motif in the Side Chain Transforms a Tetrapeptide into an Efficient Vector for Gene Delivery

Mao Li, Stefanie Schlesiger, Shirley K. Knauer, and Carsten Schmuck, Angew. Chem. Int. Ed. 2015, 54, 2941-2944.

はじめに、高いトランスフェクション効率を示すペプチド類縁体についての報告を紹介します。アルギニン残基に富んだペプチドは、細胞膜透過性を有することから生体高分子の細胞内送達キャリアとして注目されています。しかし、膜透過性を付与するためには、最低でも6残基のアルギニンが必要であると考えられ、トランスフェクション試験と使用する際にはそれ以上の残基数が必要とされます。以上の背景に基づき、既存の膜透過性ペプチドの性能を向上させることを目的として、著者らは、グアニジウム基を改良したアニオン結合モチーフの開発を行いました。

一般に、グアニジウム基を有するアルギニンは、アミノ基を有するリジンよりも細胞膜通過性が優れていることが知られています。これは、グアニジウム基がリン酸基・カルボキシル基・硫酸基等との間に二重の水素結合を形成できるため、より強く細胞膜上の分子と相互作用し得るからであると言われています。それを踏まえ、著者らは、グアニジウム基をもつGuanidinocarboxylpyrrole (GCP)部位であれ、細胞膜通過性の向上が期待できると考えました。GCP部位を有する四量体1、アルギニン四量体2、リジン四量体3を合成し（図1）、市販のポリエチレレンイン（PEI）も加えた4種について、ヒト子宮頸癌由来HeLa細胞に対する緑色蛍光タンパク（GFP）遺伝子導入効率をその発現量から検討しました。その結果、ペプチ
ド類縁体 1 は、PEI と比較して分子量が小さく正電荷数が少ないにもかかわらず、PEI と同等の高いトランスフェクション効率を有することが示されました（図 2 □）。わずか 4 残基のペプチド類縁体は、PEI と比較して分子量が小さく正電荷数が少ないにもかかわらず、PEI と同等の高いトランスフェクション効率を有することが示されました（図 2 □）。わずか 4 残基のペプチド類縁体は、PEI と比較して分子量が小さく正電荷数が少ないにもかかわらず、PEI と同等の高いトランスフェクション効率を有することが示されました（図 2 □）。

本論文では、GCP 部位を有する比較的低分子量のペプチド類縁体が、低毒性かつ高効率なトランスフェクション試薬となることが示されました。しかし、対照化合物として用いられている PEI は、重合度や直鎖・分岐構造、脱アシル化度等によって、トランスフェクション効率が大きく影響を受けることが知られています。そこで、リポフェクタムのような、より最適なトランスフェクション試薬との比較が望まれていると考えられます。GCP 部位のようなアミノ結合モチーフの分子設計指針は、遺伝子導入に限らず幅広い多様なキャリアにも応用できると考えられるため、今後の展開が期待されます。

Direct Cytosolic Delivery of siRNA Using Nanoparticle-Stabilized Nanocapsules
Ying Jiang, Rui Tang, Bradley Duncan, Ziwen Jiang, Bo Yan, Rubul Mout, and Vincent M. Rotello, Angew. Chem. Int. Ed. 2015, 54, 506–510.

次に、siRNA を直接細胞質へ送達するキャリアについての報告を紹介します。siRNA 送達キャリアの開発は精力的に行われていますが、多くはエンドサイトーシスを介するため細胞内区画に閉じ込められやすい傾向があります。エンドソームへの閉じ込めは、投与量増加による副作用の誘起につながる恐れがあるため、解決すべき課題の一つです。エンドソームからの脱出を促進させる方法も報告されていますが、エンドソームを介さず、siRNA を細胞質へ送達させる方法は、根本的な解決策となり得ます。

本論文において著者らは、ナノ粒子安定化ナノカプセル（nanoparticle-stabilized nanocapsules: NPSCs）を用いた siRNA 送達を行いました。NPSC とは、コアとなる液滴の表面上にナノ粒子が集合した構造モチーフのことです。著者らは既に、リノール酸の油滴が形成するコア（図 3●）の表面をアルギニン修飾金ナノ粒子（図 3●: Arg–AuNPs）で被覆することによって安定なNPCS を作製できること、さらには小分子の細胞内送達に応用できることを報告しています（Angew. Chem. Int. Ed. 2011, 50, 477-481）。本論文では、Arg と siRNA との間の静電的自己集合によって NPSC を siRNA 送達に応用できると考え、その特性が評価されました。
リノール酸と Arg-AuNPs から成る NPSCs に対して Cy3 蛍光標識 siRNA を混合することで NPSC/Cy3-siRNA を製造し、HeLa 細胞への送達を観察した結果、NPSC/Cy3-siRNA は細胞質全体に広がる高い取り込み示すことが分かりました（図 4）。取り込み機構としては、以下6つ理由から、膜融合であると考察されています [1. Lysosome tracer との非共局在 2. 細胞質全体への経時的な拡散 3. コレステロール断片化誘起剤 nystatin 添加による取り込み低下（膜融合に、コレステロールが関与） 4. エンドサイトシスマーカー FITC-dextran との非共局在 5. 低温での取り込み低下（膜融合は低温で停止） 6. コレステロール断片化誘起剤 dynamin 阻害剤添加による取り込み低下]。細胞毒性も見られず、非エンドサイトシス経路を介して細胞内へ取り込まれる NPSC/siRNA は、効率的な送達キャリアとして期待できます。さらに、二つの系を用いて NPSC/siRNA の標的遺伝子ノックダウン効率が評価されました。一つ目は、不安定化緑色蛍光タンパク (deGFP) を標的とした系です。安定発現細胞株 deGFP-HEK239 細胞におけるノックダウン効率を deGFP の発現量から評価した結果、90% の発現抑制が確認されました。二つ目は、polo-like kinase 1 (PLK1) の阻害剤、がん細胞の増殖を抑制することが知られています。ヒト乳頭瘤由来 MDA-MB-231 細胞における PLK1 のノックダウン効率を細胞生存率測定とウェスタンブロットによって評価しました（図 5）。その結果、70% の細胞死誘起および 95% の発現抑制が確認されました。これは、市販のリポフェクタミンに優る結果であり、送達キャリアとしての NPSC/siRNA の有用性が明らかとなりました。本論文で報告された膜融合型のトランスフェクション試薬は、エンドソームからの脱出や後期エンドソーム内の分解等の課題を回避できる方法として非常に魅力的です。一般に膜融合型の化合物は、一過性と言え細胞毒性が観測されることが多いにもかかわらず、NPSC/siRNA は毒性が低く、極めて優れた特性を有するとと言えます。本系のより幅広い発展のためにも詳細な導入機構および低毒性発現の機構解明などが望まれます。

Effective Antisense Gene Regulation via Noncationic, Polyethylene Glycol Brushes
Xueguang Lu, Fei Jia, Xuyu Tan, Dali Wang, Xueyan Cao, Jiamin Zheng, and Ke Zhang, J. Am. Chem. Soc. 2016, 138, 9097–9100.

最後に、ポリエチレングリコール (PEG)・DNA 複合体の細胞内送達についての報告を紹介します。近年核酸の細胞内送達には、カチオン性高分子に基づくキャリアが広く用いられています。しかし、細胞毒性や免疫原性等を誘起しやすい傾向にあるため、新たなキャリア開発も望まれています。著者らは、非カチオン性キャリアとして Mirkin らが報告している球状核酸 (spherical nucleic acid: SNAs) の特性に着目しました。 SNA は、コアとなる球状ナノ粒子の表面に共有結合を介して核酸を密に配列させた三次元状ナノ構造体です (J. Am. Chem. Soc. 2012, 134, 1376–1391)。酵素耐性があり、表面が負に帯電しているにもかかわらず細胞内へ取り込まれるなど独特な特徴を有しており、核酸送達のキャリアとして注目されています。著者らは、SNA の「密な構造が有する酵素耐性が最終的な機能発現にとって重要になる」という仮説を立て、SNA にインスピレーションを受けた polymer-assisted-compaction of DNA (pacDNA) と名付けた構造
体の開発を行いました（図6）。このpacDNAは、I-3本のDNA鎖が結合した主鎖に対して、立体的に密集したPEGの側鎖を有する構造を持ちます。本論文においては、ヒト上皮成長因子受容体2（Her2）のmRNAを標的としたアンチセンスDNA鎖を有するpacDNAについて、PEG密度による影響を考察するために10kDa PEG、5kDa PEG、Y型PEG側鎖を持つpacDNAと、pacDNAは、1-3本のDNA鎖が結合した主鎖に対して、立体的に密集したPEGの側鎖を有する構造を持ちます。本論文においては、ヒト上皮成長因子受容体2（Her2）のmRNAを標的としたアンチセンスDNA鎖を有するpacDNAについて、PEG密度による影響を考察するために10kDa PEG、5kDa PEG、Y型PEGの側鎖を持つpacDNAと、pacDNAの特性が検討されました。まず、pacDNAが有する相補鎖認識性と酵素耐性を評価するために、蛍光アッセイが行われました。具体的には、蛍光標識DNAに対しクエンチャーを含む相補鎖を添加することで、観測される消光から相補鎖認識性を評価しています。また、あらかじめ二重鎖形成によって消光されている系にDNA分解酵素を添加することで、分解伴う蛍光強度変化から酵素耐性を調べています（図7）。アッセイの結果、pacDNA10k、pacDNA5k、Y型PEG-DNAはいずれも相補鎖認識のカイネティクスにはほとんど違いがない一方で、pacDNA10kのみがDNA単体の約20倍という高い酵素耐性を示しました。pacDNA5kやY型PEG-DNAは密集が不十分である故に酵素が近づきやすい一方で、pacDNA10kは相補鎖が近づきやすいが分解酵素は近づきにくいというSNA様の特性を持っています。続いて、Cy3蛍光標識DNAを用いてヒト卵巢癌由来SKOV3細胞への送達を評価しました（図8）。その結果、pacDNA10kのみが細胞膜透過性を示すことが確認されました。さらに、Her2が過剰発現しているSKOV3細胞にて、pacDNAのアンチセンス効果が評価されました。Her2発現量をウェスタンブロットで定量した結果、pacDNA10kは濃度10nMでも95％の発現抑制を示すことが分かり（図9）、pacDNAのアンチセンス分子としての有用性が明らかとなりました。本論文では、適切な構造を有するPEG・DNA複合体の細胞膜透過性およびアンチセンス効果の発現性が示されました。一般に、PEG鎖の付与は安定性を向上させる一方で細胞膜透過性を低下させることが知られているため、この論文で示された結果は非常に衝撃的だと感じました。SNAの細胞内取り込み機構（Proc. Natl. Acad. Sci. USA. 2013, 110, 7625-7630）との違いも含めた取り込みの機構など、今後の研究がさらに気になるところです。

以上、核酸の細胞内導入に関する論文を3報紹介致しました。近年、新たな方法論や新たな材料を駆使したドラッグデリバリーシステムの開発が盛んに行われており、核酸医薬は今後益々進展してゆくと期待されます。末筆になりましたが、今回このような貴重な機会を与えてくださった鳥取大学大学院工学研究科松浦和則教授に深く御礼申し上げます。
異 動

平井 剛
九州大学薬学研究院 教授
2016 年 9 月
E-mail: gohirai@phar.kyushu-u.ac.jp

大神田淳子
信州大学学術研究院（農学系）教授
2016 年 10 月
E-mail: johkanda@shinshu-u.ac.jp

受 賞

中田 栄司（京都大学 エネルギー理工学研究所）
第 10 回バイオ関連化学シンポジウム講演賞（2016 年 9 月 8 日 受賞）
「DNA ナノ構造体に酵素を配置した分子スイッチボード」
2016 年度化学・生物素材研究開発奨励賞（2016 年 10 月 12 日 受賞）
「DNA ナノ構造体上で実現した高効率な多段階物質変換システム」

民秋 均（立命館大学）
The Japanese Photochemistry Association Lectureship Award (2016) （2016 年 9 月 6 日 受賞）
“Chlorophylls: photochemistry, metabolism, and synthetic application”

有賀 克彦（物質・材料研究機構）
MRSI（インド材料学会）名誉会員
編集後記

毎年私が担当する生命化学研究レターは、ノーベル賞ウィークに編集作業をしています。今年の医学生理学賞は「オートファジー」の東工大の大隅良典栄誉教授が受賞され、化学賞は「分子機械」でソバージュ名誉教授・ストッダート教授・フェリンガ教授の３氏が受賞されました。「分子機械」は私にとっても馴染みのある分野なので喜ばしいことですが、日本人の受賞があっても良かったのではないかと思う今日この頃です。

次号の生命化学研究レターは、大神田さんの担当により、2017年2月頃の発行を予定しております。ニュースレター改善のために、みなさんのご要望・ご意見をお待ちしております。下記の編集担当まで、ご連絡をいただければ幸いです。

平成28年10月8日

松浦和則
鳥取大学大学院工学研究科
ma2ra-k@chem.tottori-u.ac.jp

編集担当
井原敏博（熊本大学）
大神田淳子（信州大学）