Structural and Optical Properties of $\text{Zn}_x/\text{Te}_{1-x}$ Layered Thin Film on Glass Substrate

Abstract
This work, results on the Annealing effects, optical and structural study of $\text{Zn}_x/\text{Te}_{1-x}$ thin films of 200 nm obtained by the vacuum evaporation technique. The layers are grown and then annealed for various temperatures and characterized by XRD, SEM and photo absorbance studies. Band gap of $\sim 2.1\text{eV}$ has obtained by optical measurements. SEM micrographs clearly indicate cluster growth at the surface of a thin film of $\text{Zn}_{0.5}\text{Te}_{0.5}$ composition. However no prominent cluster growth has been observed at other stoichiometry ratios.

Keywords: ZnTe thin films; I-V characteristics; Surface morphology; Optical band gap

Introduction
ZnTe is the most attractive semiconducting materials of II-VI group. The material has various applications in selection of devices optoelectronic and microelectronic devices [1-5]. $\text{Zn}_x/\text{Te}_{1-x}$ thin films has analyzed and characterized for electrical, optical & structural properties because of above applications. Cluster growth at the surface of thin film of $\text{Zn}_{0.5}\text{Te}_{0.5}$ composition with annealing shows that the cluster growth becomes uniform with increase in temperature. Results carried out with systematic investigations on these properties of evaporated $\text{Zn}_x/\text{Te}_{1-x}$ thin films.

Experimental
Thin films has deposited at vacuum of 10^{-5} torr on clean glass substrates by vacuum coating unit [6]. Stoichiometry ratio of pure Zn (99.99%) granules and Te (99.99%) powder has taken to prepare $\text{Zn}_x\text{Te}_{1-x}$, where $x=0.5,0.2$ and 0.8. electronic balance has used to weigh these materials and found resolution of $\pm 0.0001 \text{g}$, in accordance with the percentage of composition used [7]. The material to be coated is placed in a tungsten boat. After reaching the high vacuum (10^{-5} mbar) in the chamber, the material is heated indirectly by passing the current slowly to the electrodes [8]. Thin Films has prepared at room temperature, thickness and evaporation rate of deposited films measured by quartz crystal monitor which is fixed to the unit [7]. Initially deposited Zn layer then Te layers was deposited with $x=0.5,0.2$ and 0.8 respectively to obtain stacked layers, and thin film thickness has measured through “Hind Hivac” Digital Thickness Monitor Model-DTM-101 [6, 8].

Results & Discussion
Surface morphology
SEM micrographs shown clearly indicate cluster growth at the surface of thin film of $\text{Zn}_{0.5}\text{Te}_{0.5}$ composition in Figure 1(a) annealed at 373 K. Figure 1(b) 423 K and Figure 1(c) 573 K shows that the cluster growth becomes uniform with increase in annealing temperature. However no prominent cluster growth has been observed at other stoichiometry ratios.

Optical properties
An absorbance spectrum of $\text{Zn}_x\text{Te}_{0.5}$ thin films has been taken at different temperatures through Systronics spectra photometer.
117. Thin film material’s energy band gaps has calculated by absorbance spectra, by means of relation $\alpha \hbar \nu = A(\hbar \nu - E_g)^n$, here $\hbar \nu$ is energy of photon, α is the coefficient of absorption, E_g is band gap, A is constant is 0.5. Figure 2 shows spectral variation for Zn$_x$/Te$_{1-x}$ deposited on glass substrate these extrapolating lines gives optical gap [9]. It is observer that annealing decreases the band gap and confirms the mixing of Zn and Te to form Zn$_x$/Te$_{1-x}$ film. The band gap obtained for annealing temperature 573K is very close to reported values.

Figure 2: Spectral variation for Zn$_{50}$/Te$_{50}$ thin films.

Energy dispersive X-ray analysis (EDAX) graphs of Zn$_x$/Te$_{1-x}$

The EDAX values Figure 3 show the signatures of Zn$_x$/Te$_{1-x}$ present in the glass substrate on which the films are grown. The photographs shown represent thin films of various stoichiometry ratios without annealing.

Figure 3: Energy Dispersive X-ray Analysis graphs of Zn$_x$/Te$_{1-x}$

(a) Zn (50): Te (50),
(b) Zn (20): Te (80),
(c) Zn (80): Te (20).

Conclusion

It is concluded that thin film of 200 nm Zn$_x$/Te$_{1-x}$ for $x=0.1$ and 0.2 have prepared by thermal evaporation technique. The grown layers are annealed at different temperatures and then characterized by XRD, SEM and photo absorbance studies. Band gap of $\sim 2.1\text{eV}$ has obtained using optical measurements. Optical band gap was calculated as 2.1 eV from the absorption data which is close to the room temperature of 2.25 eV or Zn$_x$/Te$_{1-x}$ EDAX of thin film reveal phase mix of Zn$_x$/Te$_{1-x}$ SEM micrographs clearly indicate cluster growth at the surface of thin film of Zn$_{50}$/Te$_{50}$ composition. However no prominent cluster growth has been observed at other stoichiometry ratios.

Acknowledgement

No acknowledgement.

Conflict of interest

NO conflict of interest.

References

1. Sinaoui A, Trabelsi I, Cheffar Akkar F, Aousgi F, Kanzari M (2014) Study of Structural, Morphological and Optical Properties of Sb$_2$S$_3$ Thin Films Deposited by Oblique Angle Deposition. Int J Thin Fil Sci Tec 3(1): 19-25.
2. Pattnaik S, Sawant SN, M Nagaraja, Shashank N, Balakrishna KM, et al. (1986) Structural Optical and Electrical Properties of Vacuum Evaporated Indium Doped Zinc Telluride Thin Films. Materials Science SB: 307.
3. Mathew X, Enriquez JP, Sebastian P, Pattabi M, Sanchez-Juarez A, et al. (2000) Energy Mater. Sol Cells 63: 355.
4. RShaban E, Ishu C, Mohammed SH, Joes MFF (2009) Micro structural parameters and optical constants of ZnTe thin films with various thicknesses. Physica B: Physics of Condensed Matter 404(20): 3571-3576.
5. MS Vingradov, DVLasilevski, Inorg Mat 21 (1985).
6. Dinesh CSharma, Srivastava S, Vijay YK, Sharma YK (2012) Preparation and Optical Properties of ZnTe/ZnTe: Cr Bilayer Thin Films, International Journal of Recent Research and Review 11: 1-5.
7. Singh M, Arora JS, Vijay M Sudharsan YK (2006) Optical, electrical and thermoelectric power studies of AISb thin film bilayer structure. Bulletin of Materials Science 29(1): 17-20.
8. Aborai AM, Ahmad EA M, Abdel Wahab H Shokry Hassan, Shaaban ER (2015) Structural and optical properties of ZnTe thin films induced by plasma immersion ion implantation. International Journal of New Horizons in Physics 2(1): 11-20.
9. T Hino, Y Ken (1974) Space Charge Limited Currents and Thermally Stimulated Currents in ZnTe and CdSe Films. Jpn J Appl Phys 13(6).
10. Patel SM, Patel NG (1983) Optimization of Growth Conditions for ZnTe Films. Mater Lett 2(2): 131-133.
11. Salem SM, Seddek MB, Salem AM, Saleh HA (2011) Structural characterization and electrical properties of thermally evaporated ZnTe films treated with AgNO$_3$ solution. J of App Sc Res 7(5): 698-705.
12. Shinde UP, Patil AV, Dighavkar CG, Patil SJ, Kapadnis KH, et al. (2010) Photoconductivity study as a function of thickness and composition of Zn-Te thin films for different illuminated conditions at room temperature. Optoelec and Adv Mate Rapid Comm 4: 291.