Nice colourings and the 4-colour theorem

Peter Dörre
Department of Informatics and Natural Sciences
Fachhochschule Südwestfalen (University of Applied Sciences)
Frauenstuhlweg 31, D-58644 Iserlohn, Germany
Email: doerre.peter(at)fh-swf.de

Mathematics Subject Classification: 05C15

Abstract

Proving for triangulations an extended version of the 4-colour theorem by induction, we manage to exclude the case which led to the failure of Kempe’s attempted proof. The new idea is to claim the existence of a “nice” 4-colouring, in which existing Kempe chains satisfy a special condition, and to show that the assumption of its non-existence by a counterexample always leads to a contradiction: hence there is such a colouring.

Keywords: planar graph, triangulation, chromatic number, Kempe chain, Jordan’s curve theorem.

1 Introduction

In response to Kempe’s incorrect proof of the 4-colour conjecture in 1879 [1], Heawood [2] published a proof of the 5-colour theorem for planar graphs, together with an example graph which exposed an essential error in Kempe’s approach. The 4-colour theorem was first proved by Appel and Haken (see e.g. [3]) in 1976 with the help of extensive computer calculations. Improved and independent versions of this type of proof do exist since 1996 [4]. The search for “old-fashioned” proofs which can be checked “by hand” can still be considered as a worthwhile enterprise, at least for a posterior verification of a computer-based proof. Hopes that list colouring ideas could be helpful to find such a proof have not been fulfilled to date. In what follows a proof “by hand” without the use of list colouring ideas is presented.

2 Theorems for the colouring of planar graphs

The standard statement of the 4-colour theorem is expressed in the vertex-colouring context with the usual assumptions, i.e. a coloured map in the plane or on the sphere is represented by its dual simple graph G with coloured vertices. When two vertices $v_k, v_l \in V(G)$ are connected by an edge $v_kv_l \in E(G)$ (i.e. when countries have a common line-shaped border), a (proper) colouring requires $c(v_k) \neq c(v_l)$ for the colours of the endpoints of the edge.
Theorem 1. The chromatic number of a planar graph is at most four.

Without loss of generality graphs to be studied for the proof can be restricted to triangulations. A planar graph G is called a triangulation if it is connected, without loops, and every interior face is (bounded by) a triangle (3-cycle), as well as the (in the plane infinite) exterior face. It follows from Euler’s polyhedral formula that a planar graph with $n \geq 3$ vertices has at most $3n - 6$ edges, and the triangulations are the edge-maximal planar graphs. Every planar graph H (e.g. a proper near-triangulation) can be generated from a triangulation G by removing edges and disconnected vertices. As removal of edges reduces the number of restrictions for colouring, the chromatic number of H is not greater than that of G.

Definition 1. Let $H_{\alpha\beta} \subseteq G$ denote the subgraph of G, induced by the vertices coloured with distinct colours α and β, and let $H_{\alpha\beta}(v) \subseteq H_{\alpha\beta}$ be the component of $H_{\alpha\beta}$ that has v in its vertex set. A bi-coloured path $P_{\alpha\beta} = P_{\beta\alpha} \subseteq H_{\alpha\beta}$ in which consecutive vertices are alternatingly coloured with colours α and β is called a Kempe chain.

Definition 2. A chord of a cycle C is an edge not in $E(C)$ between two vertices in $V(C)$, the endpoints of the chord. A virtual chord of a cycle C is a not necessarily existing chord which is used (as a tool) to identify two non-adjacent vertices in $V(C)$ by its endpoints.

Then instead of Theorem 1, it is convenient to prove the following sharper version.

Theorem 2 (extended 4-colour theorem). Let G be a triangulation. Then G is 4-colourable, and for every arbitrarily chosen 5-cycle $C_5 \subset G$ without vertices in its interior, there is a nice colouring of G and C_5: a colouring such that for every arbitrarily chosen pair of non-crossing virtual chords of C_5, a Kempe chain condition holds: at most one Kempe chain $P_{\alpha\beta}$ exists between the endpoints of one of these chords in the exterior of C_5, coloured with two distinct colours $\alpha, \beta \in [4]$ occurring on C_5 only once.

3 **Proof of Theorem 2**

Triangulations with $n \in \{3, 4\}$ have no 5-cycles and are trivially 4-colourable. Then we perform induction with respect to the number n of vertices in G.

Basis case. (This paragraph is not a necessary part of the proof, but serves illustrative purposes.) For $n = 5$ the only existing triangulation (isomorphism class) has degree sequence 44433 and is derived from the non-planar complete graph K_5 by removing one of the two crossing edges. This graph is 4-colourable, has a 5-cycle without vertex in its interior, and can be coloured in such a way that there is at most one Kempe chain in the exterior of C_5 (see Fig. 1) with colours occurring on C_5 only once, namely P_{42} between v_3 and v_1 (and not P_{41} between v_3 and v). Hence this colouring is nice.
Let $n \geq 5$ and the theorem be true for up to n vertices. Then consider in the induction step a triangulation G with $n+1$ vertices. Let $G' = G - v$ denote the triangulation with one vertex v removed (and zero, one, or two edges temporarily inserted such that G' is again a triangulation), and let C_k denote the k-cycle of neighbours $N(v)$ of v.

In the first step of the proof we extend the colouring of G' to G. Euler’s polyhedral formula for planar graphs with $n > 3$ vertices assures that there is a k-valent vertex $v \in V(G)$, $k \in \{3, 4, 5\}$, as every triangulation has $3n - 6$ edges, which implies an average degree less than 6. In the second step it is proved that for every 5-cycle $C_5 \subseteq G$ with vertex-free interior, and every arbitrarily chosen pair of virtual chords, the Kempe chain condition holds.

We begin with the first step. First assume that v is a 3-valent vertex. After colouring G', add v again and colour it with the colour not used by its neighbours.

Otherwise assume that v is a 4-valent vertex. Then we follow the correct part of Kempe’s work [1]. If the 4-cycle $C_4 = v_1 \cdots v_4$ of the neighbours $N(v)$ is not yet 3-coloured, assume a colour sequence 1-2-3-4. By Jordan’s curve theorem, there cannot be Kempe chains P_{13} (between v_1 and v_3) and P_{24} (between v_2 and v_4) simultaneously. If P_{13} does not exist, re-colour in $H_{13}(v_1)$. Otherwise it follows that P_{24} does not exist, then re-colour in $H_{24}(v_2)$. Hence either colour 1 or 2 becomes free and can be used for v to obtain a colouring of G.

Without 3- or 4-valent vertices in $V(G)$, there is a 5-valent vertex v, and $G' = G - v$. Then consider the cycle of its neighbours $C_5 = v_1 \cdots v_5$ as the chosen 5-cycle. All possible colourings of $C_5 \subseteq G'$ obtained from applying the induction hypothesis to G' are (isomorphic to the colourings) shown in Fig. 2a. Among them there must be a nice colouring of G' and C_5, such that for every chosen pair of virtual chords, the Kempe chain condition holds.

If this colouring is a colouring of G' in which C_5 receives a 3-colouring (colour sequence e.g. 1-4-3-4-3), no Kempe chain exists with colours occurring on C_5 once, and G is nicely 4-colourable without changing the colouring of G'.

Next assume that the nice colouring of G' leads to a colour sequence 1-2-3-4-2 for $v_1, \ldots, v_5 \in V(C_5)$ (see Fig. 2b), i.e. both chords v_1v_3 and v_1v_4 have endpoint colours occurring

Fig. 1: Two drawings of the triangulation G with $n = 5$ and a 5-cycle C_5 with vertex-free interior.
once on C_5. Then choose a pair of virtual chords such that the temporarily inserted edges correspond to the virtual chords. By the induction hypothesis, at least one of the possible Kempe chains P_{13} between v_1 and v_3, or P_{14} between v_1 and v_4, does not exist in the exterior of $C_5 \subset G'$, say P_{14} does not exist. Hence re-colour in $H_{14}(v_4)$ such that now $c(v_4) = 1$, and colour 4 can be used for v to obtain a 4-colouring of G.

Figure 2a, 2b, 2c: A 5-cycle $C_5 \subset G'$ with v_1v_3 and v_1v_4 as temporary edges and all possible 4-colourings (Fig. 2a). Figs. 2b and 2c show special cases. Virtual chords are dashed.

Otherwise assume a colour sequence 1-2-3-4-3 (see Fig. 2c, or the analogous case 1-4-3-4-2 not shown graphically) as part of the nice colouring of G'. Then choose v_4v_1 and v_4v_2 as virtual chords. By the induction hypothesis it follows that possible Kempe chains P_{14} and P_{24} cannot exist both. If P_{14} does not exist, continue as in the previous case. Otherwise assume P_{14} exists, which excludes the existence of P_{24} between v_2 and v_4. Then re-colour in $H_{24}(v_2)$ to obtain $c(v_2) = 4$, and colour 2 can be used for v to obtain a 4-colouring of G.

The second step of the proof requires the extension of the nice colouring to G, i.e. to show the validity of the Kempe chain condition for every arbitrarily chosen 5-cycle $C_5 \subset G$ with vertex-free (but not edge-free) interior, and every arbitrarily chosen pair of virtual chords of C_5.

Assume a counterexample for a contradiction, i.e. there is a 5-cycle C_5 and there exist only colourings (at least one) of G and C_5 such that for an arbitrarily chosen pair of virtual chords, two Kempe chains exist, each with both endpoint colours occurring once on C_5. Then C_5 must have a 4-colouring, say $c(v_i) = i$ for $v_i \in V(C_5)$, $i \in [4]$, and $c(v_5) = 2$ is the colour occurring twice (see Fig. 3a). Furthermore, as the only possible pair of virtual chords with endpoint colours occurring once on C_5 is v_1v_3 and v_1v_4, there must be two Kempe chains P_{13} (between v_1 and v_3) and P_{14} (between v_1 and v_4). Now we have found a 5-cycle C_5 and a pair of virtual chords with an invalid Kempe chain condition. However, it is easy to show that with the choice of virtual chords fixed, we always run into a contradiction.

As there is especially a Kempe chain P_{13} between v_1 and v_3, it follows by Jordan’s curve theorem that there cannot be a Kempe chain P_{24} between v_2 and v_4 in the exterior of C_5.

Case A. We first consider the case that a (real) chord $v_2v_4 \in E(G)$ does not exist. Then we may re-colour in $H_{24}(v_2)$ such that the colour 4 of P_{14} (if this Kempe chain still exists) now occurs twice on C_5, as $c(v_4) = 4$ remains. Note that re-colouring in $H_{24}(v_2)$ can alternatively destroy P_{14} and create a Kempe chain P_{23} between v_5 and v_3 (this can be considered as the reason why Kempe’s proof attempt failed). Here we notice that v_5 and v_3 are not endpoints of a chord from the pair of chosen virtual chords (to be considered as fixed). In total we have P_{13} together with either P_{14} (colour 4 occurs twice) or no P_{14} at all. Hence there is another colouring of C_5 and G in which the Kempe chain condition holds for the chosen pair of virtual chords, a contradiction.

![Fig. 3a](image1.png) ![Fig. 3b](image2.png)

Figs. 3a-b. A 5-cycle C_5 with a chosen pair of virtual chords with endpoint colours occurring once on C_5. In Fig. 3b, edge v_2v_4 is a real chord.

Case B. Now suppose there is a (real) chord v_2v_4 (see Fig. 3b). With two existing Kempe chains, there is especially a Kempe chain P_{14} between v_1 and v_4. It follows analogously that a Kempe chain P_{23} between v_3 and v_5 cannot exist in the exterior of C_5. Hence re-colour in $H_{23}(v_5)$ such that the colour 3 of P_{13} (if this Kempe chain still exists) occurs twice on C_5. This re-colouring is not possible in case there is a real chord v_3v_5. With this case excluded, we again obtain a contradiction, even if alternatively, P_{13} is destroyed and a Kempe chain P_{24} between v_2 and v_4 comes into existence, as it has other endpoints than the chosen pair of virtual chords. Note that here the aim of re-colouring in a component of G is not to find a nice colouring, but to create a contradiction.

Case C. However, a chord v_3v_5 of C_5 cannot co-exist with a chord v_2v_4 of C_5 in a planar graph G. Hence there is no counterexample.

Acknowledgments

The author is indebted to all who contributed to the evolution of this paper by pointing out with great indulgence errors and inadequacies in previous versions. This paper is written in honour of A. B. Kempe who provided the proof-tool.
References

[1] A. B. Kempe: On the geographical problem of the four colors, *Amer. J. Math.* 2 (1879), 193-200

[2] P. J. Heawood: Map-colour theorem. *Quart. J. Pure Appl. Math.* 24 (1890), 332-338

[3] K. Appel and W. Haken: The solution of the four-color-map problem. *Sci. Amer.* 237 (1977), 108-121

[4] N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas: A new proof of the four colour theorem. *Electron. Res. Announc. Amer. Math. Soc.* 2 (1996), 17-25 (electronic)