Observation of the Decay $B_c^\pm \rightarrow J/\psi \pi^\pm$ and Measurement of the B_c^\pm Mass

T. Aaltonen, J. Adelman, T. Akimoto, M.G. Albrow, B. Álvarez González, S. Amerio, D. Amidei, A. Anastassov, A. Anzola, J. Antos, M. Aoki, G. Apollinari, A. Apresyan, T. Arisawa, A. Artikov, W. Ashmanskas, A. Attal, A. Aurisano, F. Azfar, F. Azzi-Bacchetta, P. Azzurri, N. Bacchetta, W. Badgett, A. Barbaro-Galtieri, V.E. Barnes, B.A. Barnett, S. Baroiant, V. Bartsch, G. Bauer, P.-H. Beauchemin, F. Bedeschi, P. Bednyak, S. Behari, G. Bellettini, J. Bellinger, A. Belloni, D. Benjamin, A. Beretvas, J. Beringer, T. Berry, A. Bhatti, M. Binkley, D. Bisello, B. I. Bija, R.E. Blair, C. Blocker, B. Blumenfeld, A. Boche, A. Bodek, V. Boisvert, G. Bolla, A. Bolshov, D. Bortoletto, J. Boudreau, A. Boveia, B. Brau, A. Bridgeman, L. Brigliriodi, C. Bromberg, E. Brubaker, J. Budagov, H.S. Budd, S. Budd, K. Burkett, G. Busetto, P. Bussey, A. Buzatu, K.L. Byrum, S. Cabrera, M. Campanelli, M. Campbell, F. Canelli, A. Canepa, D. Carlsmithe, R. Carosi, S. Carrillo, C. Casal, M. Casarsa, A. Castro, P. Catastini, D. Cauz, M. Cavalli-Sforza, A. Cerri, L. Cerri, S.H. Chang, Y.C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, D. Chokheli, J.P. Chou, G. Choudalakis, S.H. Chuang, C. Chung, Y.S. Chung, C.I. Ciobanu, M.A. Ciocci, A. Clark, D. Clark, G. Compostella, M.E. Convy, J. Conway, B. Cooper, K. Copic, M. Cordelli, G. Cortiana, F. Crescioli, C. Cuena Almenar, J. Cuevas, R. Culbertson, J.C. Culy, D. Dagenhart, M. Datta, T. Davies, P. de Barbaro, G. De Cecco, A. Deaisher, G. De Leutender, A. Dell’Orso, D. Demortier, J. Deng, M. Deninno, D. De Pedis, P.F. Derwent, G.P. Di Giovanni, C. Dionisi, B. Di Ruzza, J.R. Dittmann, M. D’Onofrio, S. Donati, P. Dong, J. Donini, T. Dorigo, S. Dube, F. Efron, P. Ebacher, S. Errede, H.C. Fang, S. Farring, T.W. Fekkador, R.G. Feld, M. Feindt, J.P. Fernandez, C. Ferrarazz, R. Field, G. Flanagan, R. Forrest, S. Forrester, M. Franklin, J.C. Freeman, I. Furic, M. Gallinaro, J. Galyardt, F. Garbeross, J.E. Garcia, J.F. Garfinkel, K. Genser, H. Gerberich, D. Gerdes, S. Giagu, V. Giakoumopoulou, G. Giannetti, K. Gibson, J.L. Gimble, C.M. Ginsburg, N. Giokaris, M. Giordani, P. Giorni, M. Giunta, V. Gidolev, D. Glinzinski, M. Gold, N. Goldschmidt, A. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharyov, G. Guell, I. Gorenlov, A. Gresee, S. Grinstein, C. Grosso-Pilcher, R.C. Group, U. Grundler, M. Guimaraes da Costa, Z. Gunay-Unalan, C. Haber, K. Hahn, R. Hahn, E. Halkiadakis, A. Hamilton, B.-Y. Han, J.Y. Han, R. Handler, F. Happpacher, H. Haru, D. Hare, M. Hare, S. Harper, R.F. Harr, R.M. Harris, M. Hartz, K. Hatakeyama, J. Hauser, C. Hays, M. Heck, A. Hejboer, B. Heinemann, C. Henderson, M. Herndon, J. Heusser, S. Hewanage, D. Hidas, C.S. Hill, D. Hirschiule, A. Hocker, S. Hou, M. Houcken, S.-C. Hsu, B.T. Huffman, R.E. Hughes, U. Humes, J. Huston, J. Incandela, G. Intorto, M. Iori, A. Ivanov, Y. Iyutin, E. James, B. Jayatilaka, J. Jeands, F.J. Jeon, S. Jindariani, W. Johnson, J. Jones, K.K. Joo, S.Y. Jun, J.E. Jun, T.R. Jung, T.R. Kamon, D. Kar, P.E. Karchin, Y. Kato, R. Kephart, U. Kerzel, V. Khotilovich, B. Kilminster, D.H. Kim, H.S. Kim, E. Kim, M.J. Kim, S.B. Kim, Y.K. Kim, N. Kimura, L. Kirsch, S. Klimenko, M. Klute, B. Kluts, S. Konyong, A. Kopytov, A.V. Kotwal, J. Kraus, M. Krep, J. Kroll, N. Krumnack, M. Kruse, V. Krutikhov, T. Kubo, S.E. Kuhlmann, T. Kuh, N.P. Kulkarni, Y. Kusakabe, S. Kwon, A.T. Laasanen, S. Lai, S. Lami, S. Lammel, M. Lancaster, R.L. Lancaster, M. Lannon, A. Lath, G. Latino, I. Laazizerra, T. LeCompte, J. Lee, J. Lee, Y.L. Lee, S.W. Lee, Y. Leefere, N. Leonardi, S. Leone, F. Levi, J.D. Lewis, C. Lin, C.S. Lin, S. Linac, M. Lindgren, E. Lipeles, A. Lister, D.O. Litvintsev, T. Liu, N.S. Lockyer, A. Loganov, M. Loreti, L. Lovas, Y.S. Lu, D. Lucchesi, J. Luce, C. Lucia, P. Lujan, P. Lukens, T. Lungu, L. Lyons, J. Lys, R. Lysak, E. Lytken, P. Mack, D. Macqueen, R. Madakkal, K. Maeshima, K. Makhouli, T. Mak, P. Maksimovic, S. Malde, S. Malik, G. Manca, A. Manousakis, M. Margaroli, C. Marino, C.P. Marino, A. Martin, M. Martin, V. Martin, M. Martinez-Ballarin, M. Maruyama, P. Mastrandra, M. Masubuchi, M.E. Mattson, P. Mazzanti, K.S. McFarland, P. McIntyre, R. McNulty, A. Mehta, P. Mehtala, S. Menzenker, A. Menzione, F. Merkel, C. Mesropian, A. Messina, T. Miao, N. Miladinovic, J. Miles, R. Miller, C. Mills, M. Mikhik, A. Mitra, G. Mitselmakher, H. Miyake, S. Moed, N. Moggi, C.S. Moon, R. Moore, M. Morello, P. Movilla Fernandez, J. Müllerstädt, A. Mukherjee, T. Muller, R. Mumford, P. Murat, M. Mussini, J. Nachtman, Y. Nagai, A. Nagano, J. Naganoma, K. Nakamura, I. Nakano, A. Napier, V. Necula, C. Neu, M.S. Neubauer, J. Nielsen.
L. Nodulman, M. Norman, O. Norniella, E. Nurse, S.H. Oh, Y.D. Oh, I. Oksuzian, T. Okusawa, R. Oldeman, R. Orava, K. Osterberg, S. Pagan Griso, C. Pagliai, E. Palencia, V. Papadimitriou, A. Papaikonomou, A.A. Paramonov, B. Parks, S. Pashapour, J. Patrick, G. Pauletta, M. Paulini, C. Paus, D.E. Pellett, A. Penzo, T.J. Phillips, I. Piacentino, J. Piedra, L. Pinera, K. Pitts, C. Plager, L. Pondrom, O. Pouthos, N. Pounder, F. Prakoshyn, A. Pronko, J. Proudfoot, F. Ptohos, G. Punzi, J. Pursley, J. Rademacker, S. Rahaman, V. Ramakrishnan, N. Ranjan, I. Redondo, B. Reisert, V. Rekovic, P. Renton, M. Rescigno, S. Richter, F. Rimondi, L. Ristori, A. Rohson, T. Rodrigo, E. Rogers, S. Rolli, R. Roser, M. Rossi, R. Rossin, P. Roy, A. Ruiz, J. Russ, V. Rusu, H. Saarikko, A. Safonov, W.K. Sakumoto, G. Salamanna, O. Saltò, L. Santi, S. Sarkar, L. Sartori, K. Sato, A. Savoy-Navarro, T. Scheidle, P. Schlabach, E.E. Schmidt, M.A. Schmidt, M.P. Schmidt, M. Schmitt, T. Schwarz, L. Scodellaro, A.L. Scott, A. Scribano, F. Scuri, A. Sedov, S. Seidel, Y. Seiya, A. Semenov, L. Sexton-Kennedy, A. Sfyria, S.Z. Shalhout, M.D. Shapiro, T. Shears, P.F. Shepard, D. Sherman, M. Shinojima, M. Shochet, Y. Shon, I. Shreyber, A. Sidoti, P. Sinervo, A. Sisakyan, A. Slaughter, J. Slannwhite, K. Sliva, J.R. Smith, F.D. Snider, R. Snihur, M. Soderberg, A. Soha, S. Somalwar, V. Sorin, J. Spalding, F. Spinella, T. Spreitzer, P. Squillacioti, M. Stanitzki, R. St. Denis, O. Stelzer-Chilton, D. Stentz, J. Strollogas, D. Stuart, J.S. Suh, A. Sukhanov, H. Sun, I. Suslov, T. Suzuki, A. Taffard, R. Takashima, Y. Takeuchi, R. Tanaka, M. Tecchio, P.K. Teng, K. Terashi, J. Thom, A.S. Thompson, G.A. Thompson, E. Thomson, P. Tipton, V. Tiwari, S. Tkaczyk, D. Toback, S. Tokar, K. Tollefson, T. Tomura, D. Tonelli, S. Torre, D. Torretta, S. Tourneur, W. Trischuk, Y. Tu, N. Turini, F. Ukemawa, U. Uozumi, S. Vallecorsa, N. van Remortel, A. Varganov, E. Vataga, F. Vázquez, G. Velev, C. Vellidis, V. Veszprémi, M. Vidal, R. Vidal, I. Vila, R. Vilar, T. Vine, M. Vogel, I. Volobouev, G. Volpi, F. Würthwein, P. Wagner, R.G. Wagner, R.L. Wagner, J. Wagen, W. Wagner, T. Wakisaka, R. Wallny, S.M. Wang, A. Warburton, D. Waters, M. Weinberger, W.C. Weser III, B. Whitehouse, D. Whiteson, A.B. Wicklund, E. Wicklund, G. Williams, H.H. Williams, P. Wilson, B.L. Winer, P. Wittich, S. Wolbers, C. Wolfe, T. Wright, X. Wu, S.M. Wynne, A. Yagil, K. Yamamoto, J. Yamamoto, T. Yamashita, C. Yang, U.K. Yang, Y.C. Yang, W.M. Yao, G.P. Yeh, J. Yoh, K. Yorita, T. Yoshida, G.B. Yu, I. Yu, S.S. Yu, J.C. Yun, L. Zanello, A. Zanetti, I. Zaw, X. Zhang, Y. Zheng, S. Zucchelli

(CDF Collaboration*)

*Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439
3Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
4Baylur University, Waco, Texas 76798
5Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
6Brandeis University, Waltham, Massachusetts 02254
7University of California, Davis, Davis, California 95616
8University of California, Los Angeles, Los Angeles, California 90024
9University of California, San Diego, La Jolla, California 92033
10University of California, Santa Barbara, Santa Barbara, California 93106
11Instituto de Física de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
12Carnegie Mellon University, Pittsburgh, PA 15213
13Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
14Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
15Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
16Duke University, Durham, North Carolina 27708
17Fermi National Accelerator Laboratory, Batavia, Illinois 60510
18University of Florida, Gainesville, Florida 32611
19Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
20University of Geneva, CH-1211 Geneva 4, Switzerland
21Glasgow University, Glasgow G12 8QQ, United Kingdom
22Harvard University, Cambridge, Massachusetts 02138
23Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
24University of Illinois, Urbana, Illinois 61801
25The Johns Hopkins University, Baltimore, Maryland 21218
26Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
The B_c^\pm meson is observed through the decay $B_c^\pm \to J/\psi \pi^\pm$, in data corresponding to an integrated luminosity of 2.4 fb$^{-1}$ recorded by the CDF II detector at the Fermilab Tevatron. A signal of 1.08 ± 0.15 candidates is observed, with a significance that exceeds 8σ. The mass of the B_c^\pm meson is measured to be 6275.6 ± 2.9 (stat.) ± 2.5 (syst.) MeV/c^2.

PACS numbers: 13.25.Hw, 14.40.Nd, 14.40.Lb, 13.20.He

The B_c^\pm meson is composed of a bottom quark, b, and an anti-charm quark, \bar{c}, the heaviest quark flavors expected to form mesons. The presence of two relatively heavy quarks is unique in the B_c^\pm system, and affects the theoretical calculation of the decay properties and mass of the B_c^\pm meson. Either quark in the B_c^\pm meson

PACS numbers: 13.25.Hw, 14.40.Nd, 14.40.Lb, 13.20.He
can decay weakly, which suggests copious decay modes \(^{2}\) and an expected lifetime much shorter than that of other \(B\) mesons \(^{3}\). The mass of the \(B_{s}^{±}\) meson has been predicted using a variety of theoretical techniques. Non-relativistic potential models have been used to predict a mass of the \(B_{s}^{±}\) in the range of 6247 - 6286 MeV/c\(^2\) \(^{4}\), and a slightly higher value is found for a perturbative QCD calculation \(^{5}\). Recent lattice QCD calculations provide a \(B_{s}^{±}\) mass prediction of 6304 ± 12 ±18 MeV/c\(^2\) \(^{6}\). Precision measurements of the properties of the \(B_{s}^{±}\) are needed to test these calculations.

The \(B_{s}^{±}\) meson is too massive to be produced at \(e^{+}e^{-}\) colliders operating near the \(\Upsilon(4S)\) center of mass energy, and only a few candidate events, which were consistent with background processes, were observed at LEP \(^{7}\). With a large \(b\)-quark production cross section and powerful multipurpose detectors, the Fermilab Tevatron is well-suited to the study of all species of \(B\) hadrons, including the \(B_{s}^{±}\) meson. In particular, this collaboration observed the \(B_{s}^{±}\) meson in semileptonic decays and used these candidates to measure the lifetime of the \(B_{s}^{±}\) to be 0.463 ±0.063±0.036 ps \(^{8}\). In addition, we have previously presented evidence for a \(B_{s}^{±} \rightarrow J/\psi\pi^{±}\) signal \(^{9}\).

In this Letter, an analysis is presented which observes the decay mode \(B_{s}^{±} \rightarrow J/\psi\pi^{±}\), with \(J/\psi \rightarrow \mu^{+}\mu^{-}\), and precisely measures the \(B_{s}^{±}\) mass. This observation is made in \(p\bar{p}\) collisions at a center of mass energy of 1.96 TeV using the Collider Detector at Fermilab (CDF II) \(^{10}\). The results presented here are based on a data sample with an integrated luminosity of 2.4 fb\(^{-1}\), and supersede our earlier measurement \(^{9}\), which was based on an integrated luminosity of 360 pb\(^{-1}\).

This analysis makes use of the tracking and muon identification systems. The tracking system consists of double-sided silicon detectors \(^{11}\) and a 96 layer open-cell drift chamber (COT) \(^{12}\) that operate inside a solenoid with a 1.4 T field oriented along the beam axis. Charged particles originating from the collision point are measured in the tracking system with a momentum resolution of \(\sigma(\vec{p}_T)/p_T \sim 0.0015 p_T(\text{GeV}/c)^{-1}\) \(^{13}\). Muon candidates from the decay \(J/\psi \rightarrow \mu^{+}\mu^{-}\) are identified by two sets of drift chambers located radially outside the electromagnetic and hadronic calorimeters. The central muon chambers cover the pseudorapidity region \(|\eta| < 0.6\) and are sensitive to muons with transverse momentum \(p_T > 1.4\) GeV/c. A second muon system covers the region 0.6 < \(|\eta| < 1.0\) and detects muons having \(p_T > 2.0\) GeV/c. Muon triggering and identification are based on matching tracks measured in the muon system to COT tracks. This analysis is based on events recorded with a trigger that is dedicated to the collection of a \(J/\psi \rightarrow \mu^{+}\mu^{-}\) sample. The first level of the three-level trigger system requires two muon candidates with tracks in the COT and muon chamber systems that match in the transverse view. The second level imposes the requirement that muon candidates have opposite charge and limits the accepted range of opening angle between the two muon candidates. The highest level of the \(J/\psi\) trigger reconstructs the muon pair in software, and requires that the invariant mass of the pair falls within the range 2.7 - 4.0 GeV/c\(^2\).

The analysis of the data begins with a selection of well-measured \(J/\psi \rightarrow \mu^{+}\mu^{-}\) candidates. Events are required to contain two oppositely charged muon candidates that satisfy restrictive matching requirements, consistent with the full measurement precision of the COT and muon chamber systems. We also require that both muon tracks have associated measurements in at least three layers of the silicon detector and a two-track invariant mass within 70 MeV/c\(^2\) of the world-average \(J/\psi\) mass \(^{14}\). This data sample provides approximately 17 million events containing \(J/\psi\) candidates, measured with an average mass resolution of 13 MeV/c\(^2\).

Both \(B^{±} \rightarrow J/\psi K^{±}\) and \(B_{s}^{±} \rightarrow J/\psi\pi^{±}\) combinations are reconstructed in this analysis. The relatively plentiful \(B^{±}\) sample serves as a reference signal and is used to develop criteria for the \(B_{s}^{±}\) selection. These final states are identified by assigning the \(\pi^{±}\) or \(K^{±}\) mass to all tracks not used in the \(J/\psi\) reconstruction. In order to provide the measurement resolution sufficient to discriminate between directly produced tracks and \(B\)-hadron decay products, the \(\pi^{±}\) and \(K^{±}\) candidate tracks are required to have measurements on at least three layers of the silicon detector. Each three-track combination must satisfy a fit in which the tracks are required to originate from a common vertex and the invariant mass of the muon pair is constrained to the world average \(J/\psi\) mass. Approximately 65 000 \(B^{±}\) candidates are identified in this loosely selected sample.

The selection requirements are further improved to give a large \(B^{±} \rightarrow J/\psi K^{±}\) signal with very small background, in order to increase the significance of the \(B_{s}^{±}\) observation. Since the \(B_{s}^{±}\) lifetime is significantly shorter than the lifetime of the \(B^{±}\), each selection variable under consideration has been studied for its effect on preserving signal and removing background only for \(J/\psi K^{±}\) combinations with \(80 < ct < 300\) \(\mu m\), where \(t\) is the proper decay time determined from \(t \equiv L_T \cdot \vec{p}_T(B) \cdot M(B) / p_T(B)\) \(^{15}\). \(M(B)\) is the mass of the combination, \(p_T(B)\) is the transverse momentum of the combination, and \(L_T\) is the transverse displacement of the \(J/\psi K^{±}\) decay vertex from the beamline. Each selection quantity considered is evaluated for its efficiency in retaining the \(B^{±}\) signal and reducing the combinatorial background in the 5.4 - 5.5 GeV/c\(^2\) mass range.

Several characteristics of the \(J/\psi K^{±}\) candidates are considered for selection requirements. Minimum \(p_T\) requirements on the \(K^{±}\) and \(B^{±}\) candidates are used to suppress backgrounds from \(J/\psi K^{±}\) combinations that are not related to the \(B^{±}\) decay. Reasonable vertex quality is assured by placing a minimum value on the accepted probability \(P(\chi^2)\) of the mass- and vertex-constrained fit used to obtain the \(B^{±}\) candidate. The trajectory of the \(K^{±}\) is required to originate from the \(B^{±}\) decay ver-
tex by placing a requirement on its distance of closest approach $d_{SV}(K)$ and associated uncertainty $\sigma_{d_{SV}}(K)$ with respect to the vertex found in the J/ψ fit. Similar quantities $d_{PV}(K)$ and $\sigma_{d_{PV}}(K)$ measured with respect to the primary vertex are used to remove tracks that originate from direct production processes. We suppress the promptly-produced combinatorial background by rejecting candidates with small ct. A requirement on σ_{ct} removes poorly-reconstructed combinations and other backgrounds. We also reject $J/\psi K^{\pm}$ combinations that are inconsistent with having originated from the beamline by requiring a small magnitude for the transverse impact of the candidate, $d_{PV} = L_{T} \times |p_{T}(B)|/|p_{T}(B)|$, and a small angle β between L_{T} and $p_{T}(B)$.

Two sets of selection criteria based on these quantities are listed in Table I. The first step of the selection process is to impose the “standard” selection requirements listed above and retain all $J/\psi K^{\pm}$ combinations that satisfy them. However, the selection studies indicate that a substantial number of $B^{\pm} \rightarrow J/\psi K^{\pm}$ signal events fail exactly one of the standard selection requirements. To increase the overall signal efficiency, we introduce a “high-p_T” selection, comprised of combinations that satisfy more restrictive p_T requirements, and pass all but one of the other high-p_T selection criteria in Table I. Figure 1 shows the reconstructed $B^{\pm} \rightarrow J/\psi K^{\pm}$ signal for candidates that satisfy the standard or high-p_T selection criteria. The additional combinations retained by the high-p_T selection increase the B^{\pm} yield by 28%. The total signal of approximately 21 100 B^{\pm} candidates with a small background of 430 events in the B^{\pm} sideband region between 5.4 and 5.5 GeV/c demonstrates that this selection effectively removes the background to B-hadron candidates.

Selection variable	Standard	High-p_T		
$p_T(T_{rk}) > 1.7$ GeV/c	> 2.5 GeV/c	> 6 GeV/c		
$p_T(J/\psi T_{rk}) > 5$ GeV/c	> 6 GeV/c	> 10 GeV/c		
$P(\chi^2) > 0.1$	> 1	> 1		
$	d_{SV}(T_{rk})	< 100 \mu m$	$< 80 \mu m$	$< 50 \mu m$
$	d_{PV}(T_{rk})	/\sigma_{d_{PV}(T_{rk})} > 2.5$	> 3	> 4
$	d_{PV}(B)	/\sigma_{d_{PV}(B)} > 2.5$	> 3	> 4
$ct > 80 \mu m$	$> 100 \mu m$	$> 150 \mu m$		
$\sigma_{ct} > 30 \mu m$	$> 25 \mu m$	$> 35 \mu m$		
$\beta < 0.4$ radians	< 0.3 radians	< 0.5 radians		

The candidates used for the reconstruction of the B^{\pm} are obtained by applying the selection criteria in Table I to the sample interpreted as $J/\psi \pi^{\pm}$. Figure 2 shows the $B^{\pm} \rightarrow J/\psi K^{\pm}$ candidates under the combined standard and high-p_T selections. The data are also shown for a limited mass region suggested by theoretical expectations 4,5,6. A clear excess of $J/\psi \pi^{\pm}$ combinations is evident around 6280 MeV/c^2.

The data shown in Fig. 2(b) are fitted using an unbinned log likelihood function that uses a Gaussian shape for the signal plus a background model that includes contributions from both combinatorial sources and contributions from Cabibbo-suppressed B^{\pm} to $J/\psi K^{\pm}$ decays in the probability distribution function. Simulated events are used to estimate the mass distribution expected from the misidentified Cabibbo-suppressed process, and it is found to be approximately Gaussian, centered 60 MeV/c^2 below the true B^{\pm} mass and having a 30 MeV/c^2 width. The characteristic width for the signal in the probability distribution function is varied for each candidate in proportion to the mass uncertainty estimated from the individual track uncertainties. A similar fit performed on the B^{\pm} candidates finds that the mass resolution is underestimated by a factor of 1.55 with this method. Consequently, the mass uncertainties used in the $J/\psi \pi^{\pm}$ fit are scaled by this factor. For the central value of the fit, the Cabibbo-suppressed contribution is fixed to 0.05 of the total B^{\pm} yield, which is comparable to the measurements obtained for Cabibbo-suppressed B^{\pm} decays [14]. Fig. 2(b) shows a projection of the fit overlaid on the data, which has $\chi^2/DoF = 34.6/32$ and a probability of $P(\chi^2) = 0.30$.

The result of the unbinned fit over the mass range 6150 – 6500 MeV/c^2 gives a B^{\pm} signal of 108 ± 15 candidates with a mass of 6275.6 ± 2.9 MeV/c^2. This fit was repeated over the same mass range with the constraint that no signal is present in order to obtain a significance measurement. The ratio of likelihoods between the two fits yields a probability for the null hypothesis of 1.2×10^{-16}, equivalent to a fluctuation of 3σ or more in a Gaussian distribution. A second significance test was also performed, which used a Monte Carlo simulation to estimate the probability for a background-only sample to mimic a signal at least as significant as the one observed. This study confirmed the significance estimate obtained from ratio-of-likelihoods test. We conclude that this enhancement is an observation of the process $B^{\pm} \rightarrow J/\psi \pi^{\pm}$.

Studies that were performed for the mass measurement of other B mesons that contain a J/ψ in the final state are used for an evaluation of some of the systematic uncertainties. The systematic uncertainty due to tracking detector misalignments and material distributions used in track fitting is assessed by varying these within reasonable limits. Based on these studies, a systematic uncertainty of 0.6 MeV/c^2 is assigned to track fitting. A comparison between the fitted B^{\pm} mass in 12 independent periods of data finds the measured mass of the B^{\pm} meson for each subset to be within 1.8σ of the entire sample. Consequently, no systematic uncertainty is assigned for time dependent effects on this mass measurement. The momentum scale of the tracking system is calibrated with
the \(J/\psi, \psi(2S)\), and \(Y\) states, all of which have been well measured previously \cite{14}. The uncertainty of the momentum scale for the decay products of \(B^{\pm}\), which was derived from this calibration, contributes an additional mass uncertainty of 0.6 MeV/\(c^2\). The sensitivity of the mass measurement to the assumed Cabibbo-suppressed background process was tested with simulated events. Variations of 0.0 - 0.1 for the fractional contribution correspond to mass measurement variations of 0.8 MeV/\(c^2\), which is taken to be the systematic uncertainty associated with this unknown background contribution.

An additional systematic uncertainty comes from the fitting procedure. The scale factor associated with the mass uncertainty which is used in the fit was set to the best value obtained in a fit to the topologically similar \(B^{\pm} \rightarrow J/\psi K^{\pm}\) final state. However, other reconstructed \(B\) hadrons that include a \(J/\psi\) in the final state have been studied as well. Scale factors in the range of 1.25 - 2.0 have been suggested by these studies, so the fit for the \(B^{\pm}\) mass was repeated for this range. An uncertainty of 2.2 MeV/\(c^2\) in the calculated \(B^{\pm}\) mass is indicated due to the fitting procedure. The combined systematic uncertainty is the sum in quadrature of the uncertainties in our calibration, tracking, and fitting procedure. The total systematic uncertainty in the \(B^{\pm}\) mass measurement is determined to be 2.5 MeV/\(c^2\).

In conclusion, we have observed fully reconstructed \(B^{\pm}\) mesons through the decay \(B^{\pm} \rightarrow J/\psi \pi^{\pm}\). A signal of 108 \(\pm\) 15 candidates is observed with a significance greater than an 8\(\sigma\) fluctuation of a Gaussian distribution. The mass of the \(B^{\pm}\) meson is measured to be \(6275.6 \pm 2.9\text{ (stat.)} \pm 2.5\text{ (syst.)} \text{ MeV}/c^2\).

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

\[\text{References}\]
FIG. 1: The invariant mass distribution of $J/\psi K^\pm$ combinations.

FIG. 2: (a). The invariant mass distribution of $J/\psi \pi^\pm$ combinations. (b) Identical to (a), but in a narrower mass range around the theoretically favored B_c^\pm mass. The projection of the fit to the data is indicated by the curve overlaid on (b).