In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched gracilaria *Gracilaria edulis* and robust sea moss *Hypnea valentiae*

Shunmugiah Mahendran a,*, Pandiaraaj Maheswari a, Vanaraj Sasikala a, Jeba jaya Rubika a, Jeyaraj Pandiarajan b,*

a Department of Microbiology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, Tamil Nadu, India
b Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, Tamil Nadu, India

A R T I C L E I N F O

Handling Editor: Dr. Aristidis Tsatsakis

Keywords:
Antioxidant activity
Gracilaria edulis
Hypnea valentiae
Polyphenol
DPPH
ABTS
FT-IR
GC-MS

A B S T R A C T

In recent years, seaweeds drew the intense attention of the researchers owing their biological properties with their multi assorted applications to the humans. Red seaweeds are well-known for their biological activities due to enrichment of phenolic residues. The present investigation deals with the portrayal of biological behavior of red algae *Gracilaria edulis* and *Hypnea valentiae*. Polyphenol was extracted using methanol in a soxhlet extractor for 6 h. The crude polyphenol compound was partially purified in DEAE cellulose52 column. The total phenolic content present in the polyphenol compound was *G. edulis* (75.49 ± 0.12 %) and *H. valentiae* (70.08 ± 0.34 %). The phytochemicals present in the two seaweeds were flavonoids, saponins, tannins, phenolics, alkaloids and steroids. The antimicrobial activity of polyphenol compounds was assessed against seven human pathogens, five plant pathogens and three fungal pathogens. The free radical scavenging activity of polyphenol compound was assayed such as total antioxidant capacity, reducing power, hydrogen peroxide scavenging activity, DPPH, ABTS, hydroxyl-scavenging assay, superoxide anion radical scavenging and nitric oxide. Polyphenol compound was analyzed by FT-IR and GC-MS.

1. Introduction

The different phenolic compounds can act each one alone or through synergistic mechanisms to impart various biological effects. Due to the presence of a richly diverse set of phenolic compounds, different extraction methods are needed for complete characterization of the different types and amounts present in a whole system or complex matrix [1]. Polyphenols, carotenoids and polysaccharides are present in seaweeds and they can be applied in food, pharmaceuticals and cosmetic products as they bring health benefits to consumers [2].

The richness of antioxidant found in many foods and beverages including fruits, vegetables, tea, coffee and cacao on human health have been recently recognized as the beneficial influence in mankind [3]. Phenolic antioxidant compounds can remove free radical production and intercept the dissemination of autooxidation. Anticholinergic compounds as drugs are used extensively to treat Alzheimer’s disease and peptic ulcer [4]. Screening of antioxidant properties of plants and plant-derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions, including the antioxidants. Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative-stress-mediated pathological processes [5].

Red algae (*Botryocarciales* sp. Additionally, *Gracilaria* sp.) and green algae (*C. Sertularioideae* and *Codium* sp.) were present in high antioxidant activity, indicating that these marine algae extracts exert potential natural antioxidant properties [6]. Free radicals are in the form of reactive oxygen and nitrogen species, these can occur, due to oxidative stress brought about by the imbalance of the bodily antioxidant defense system and free-radical formation [7]. Oxidative stress has been linked to cancer, aging, ischemic injury, inflammation and neurodegenerative diseases. Biological molecules of the kind mentioned lipids, proteins, enzymes, DNA and RNA are affected by reactive oxygen species such as superoxide radical, hydroxyl radical, peroxyl radical and nitric oxide radical, leading to cell or tissue injury associated with aging, atherosclerosis carcinogenesis [8].

A group of phenol compounds found in seaweeds called phlorotannins, which function as polymers of phloroglucinol, have been
reported to act as strong antioxidant properties and their free radical scavenging ability is more powerful than that of other polyphenols compared to terrestrial plants [9]. Polyphenols synthesized by seaweeds, as one of the largest and most widely distributed groups of seaweed phytochemicals, have gained special attention due to their pharmacological activity and array of health-promoting benefits, as polyphenols play a significant role in the high variety of seaweed biological activities [10,11].

High biological activity of algae is often associated with the presence of powerful and nontoxic natural antioxidants. The antioxidant effect is associated with polyphenols and particularly the phlorotannins, oligomers or polymers of phloroglucinol [11,12]. Some polyphenolic compounds also exhibit antioxidant effects, such as catechins, flavonols and flavonol glycosides, have been identified in methanol extracts of red and brown algae [13-15].

Infrared (IR) spectroscopy was until recently the most frequently used vibrational technique for the study of the chemical composition of polyphenols (phytocolloids). This technique presents two main advantages, it requires minute amounts of sample (mg), and it is a non-aggressive method with reliable accuracy [16]. This study was designed to study the purification, antimicrobial and antioxidant activities of polyphenol compound of Gracilaria edulis and Hypnea valentiae red seaweed obtained from Mandapam coastal area, Gulf of Mannar, Tamil Nadu, India.

2. Materials and methods

2.1. Sample collection

The red seaweed is Gracilaria edulis and Hypnea valentiae were collected from the Mandapam (Lat 9°16'18.22"N, Long 79°10'05.04"E) a coastal fishing village in Ramanathapuram district, Tamil Nadu, India.

2.2. Extraction of crude polyphenols

In the laboratory, algal sample was rinsed with sterile distilled water, shade dried, cut into small pieces and powdered in a mixer grinder. It was stored in air-tight polypropylene container at room temperature. 100 g of G. edulis and H. valentiae powders were separately extracted with 500-ml methanol in a soxhlet extractor for 6 h. For both, the extraction was repeated twice. The total extract of both was filtered and the obtained filtrate was concentrated under reduced pressure to dryness. The concentrated extract served as the seaweed polyphenol compounds for further analysis [17].

2.3. Purification polyphenol compound

The crude polyphenol compound was further purified by column chromatography and then applied to a DEAE-cellulose 52 column. The collected fractions were estimated for the total phenolic contents [18].

2.4. Estimation of total phenolic content

Phenolic contents of crude methanolic extracts were estimated by the method of Seneviratne et al. [18]. 100 μL crude samples were mixed with 2 mL of 2 % sodium carbonate and allowed to stand for 2 min at room temperature in the dark. The absorbance of all sample solutions was measured at 720 nm using spectrophotometer. Gallic acid was used as a standard and a calibration curve was prepared with a range of concentrations from 10 to 200 mg/L. Phenolic content was expressed as gallic acid equivalent per gram (GAE/g) of extract.

2.5. Phytochemical analysis

Tests for phytochemical constituents including flavonoids, saponins, tannins, phenolics, alkaloids and steroid followed the methods described previously [19].

2.6. Antimicrobial assay

Antibacterial activity of polyphenol from G. edulis and H. valentiae was determined against 7 clinical pathogens and three plant pathogens using the disc diffusion method [20-22]. Two holes were placed on MHA plate using well cutter. The 24-h-old cultures were swabbed in Muller Hinton agar (microbiological grade) plates by using a sterile cotton swab aseptically. The disks were loaded with 30 mcg titer value against the control tetracycline 50 mcg. The plates were incubated at 35 °C for 24 h. The results were obtained by measuring the diameter of inhibition zone for each well and expressed in millimeter. The human clinical pathogens were selected for this study, namely, Klebsiella sp, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Serratia sp and Salmonella sp. The five plant pathogens namely, Erwinia amylovora, Listeria monocytogenes, Xanthomonas sp, Erwinia carotovora and Alkaligenes. Fungal cultures were incubated for 2-3 days at room temperature and seeded on Sabouraud Dextrose Agar plates (SDA) for bioassay by the agar disc diffusion method. Whatman No.1 filter paper disc of 6 mm containing seaweed extract was placed on the surface of the plates. After 72 h at 30 °C the plates were observed for the presence of inhibition zones [23]. The three fungal pathogens namely, Rhizopus stolonifer, Aspergillus japonicus and Aspergillus nidulans was obtained from the laboratory in Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi, Tamil Nadu, India.

2.7. In vitro antioxidant activity

2.7.1. Determination of total antioxidant capacity

Total antioxidant activity of polyphenol from G. edulis and H. valentiae was determined according to the method of Prieto et al. [24]. Briefly, 0.3-ml sample was mixed with 3.0 mL reagent solution (0.6-M sulfuric acid, 28 mM sodium phosphate and 4 mM ammonium molybdate). The reaction mixture was incubated at 95 °C for 90 min under water bath. The absorbance of all sample mixtures was measured at 695 nm after 15 min. Ascorbic acid was used as standard.

2.7.2. Determination of reducing power

Reducing power of the polyphenol from G. edulis and H. valentiae was determined by the following method of Yamaguchi et al. [25]. Briefly, 4 mL of reaction mixture, containing samples of different concentrations in the phosphate buffer (0.2 M, pH 6.6) was incubated with potassium ferricyanide (1% w/v) at 50 °C for 20 min. The reaction was terminated by TCA solution (10 % w/v). The solution was then mixed with distilled water and ferric chloride (0.1 % w/v) solution and the absorbance was measured at 700 nm.

2.7.3. Hydrogen peroxide scavenging assay

The free radical scavenging activity of the polyphenol from G. edulis and H. valentiae was determined by hydrogen peroxide assay [26]. Hydrogen peroxide (10 mM) solution was prepared in phosphate buffered saline (0.1 M, pH 7.4). 1 mL of the extract containing samples of different concentrations (100, 250, 500, 750, and 1000 μg) was rapidly mixed with 2 mL of hydrogen peroxide solution. The absorbance was measured at 230 nm in the UV spectrophotometer after 10 min of incubation at 37 °C against a blank (without hydrogen peroxide). The percentage of scavenging of hydrogen peroxide was calculated using the formula

\[
\text{Percentage scavenging (H}_2\text{O}_2) = \left(\frac{A_0 - A_1}{A_0}\right) \times 100
\]

\(A_0 \) - Absorbance of control; \(A_1 \) - Absorbance of sample

2.7.4. DPPH radical scavenging assay

The free radical scavenging activity of polyphenol from G. edulis and
H. valentiae was measured by the 1-1-Diphenyl-2-picryl-hydrazyl (DPPH) following the method of Blois, [27]. DPPH was used as a reagent, which evidently offers a convenient and accurate method for titrating oxidizable groups of natural (or) synthetic antioxidants. 0.1 mM solution of DPPH in methanol was prepared and 1 mL of this solution was added to 3 mL of seaweed extracts of different concentrations (100, 250, 500, 750, and 1000 μg). After 10 min, absorbance was measured at 517 nm. The percentage-scavenging activity values were calculated using the following formula:

\[
\text{Percentage of Scavenging} = \left(\frac{A_{0} - A_{1}}{A_{0}} \right) \times 100
\]

Where \(A_{0}\) is the absorbance of control and \(A_{1}\) is absorbance of sample turbidity factor.

2.7.5. ABTS inhibition assay

The ability of the extract to scavenge ABTS (2, 2 azino bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt) radical scavenging was determined by the method of Re et al. [28]. ABTS was generated by mixing 5 mL of 7 mM ABTS with 88 μL of 14 mM potassium persulfate under darkness at room temperature for 16 h. The solution was diluted with 50 % ethanol and the absorbance at 734 nm was measured. The ABTS radical cation scavenging activity was assessed by mixing 5 mL of ABTS solution (absorbance of 0.7 ± 0.05) with 0.1 mL polyphenol (100, 250, 500, 750, and 1000 μg). The final absorbance was measured at 743 nm using spectrophotometer. The percentage of scavenging was calculated using the following formula:

\[
\text{% of scavenging} = \left(\frac{A_{0} - A_{1}}{A_{0}} \right) \times 100
\]

Where \(A_{0}\) - Absorbance of control; \(A_{1}\) - Absorbance of sample.

2.7.6. Hydroxyl radical scavenging assay

The hydroxyl radical scavenging activity was measured by studying the competition between deoxyribose and test compounds for hydroxyl radicals generated by Fe\(^{3+}\). Ascorbate EDTA H\(_{2}\)O\(_2\) system (Fenton reaction) according to the method of Kunchandy and Rao [29]. The hydroxyl radicals attack deoxyribose that eventually results in TBARS formation. The reaction mixture contained in a final volume of 1.0 mL, 100 μL of 2-deoxy-2-ribose (28 mM in potassium phosphate-potassium hydroxide buffer, pH 7.4) 500 μL solutions of various concentrations of polyphenol (100, 250, 500, 750, and 1000 μg) and standard in KH\(_{2}\)PO\(_{4}\)-KO\(_{2}\)H buffer (20 mM, pH 7.4). 200 μL of 1.0 M sodium dihydrogen phosphate, 200 μL of 1.0 M sodium ascorbate, 100 μL of 10 mM hydrogen peroxide and 100 μL of 1.0 M ascorbic acid was incubated at 37 °C for 1 h.

The free radical damage imposed on the substrate, deoxyribose (TBARS) was measured by the method of the Yuan and Walsh [30]. 1.0 mL of thiobarbituric acid (1 %) and 1.0 mL of trichloroacetic acid (2.8 %) were added to the test tubes and were incubated at 100 °C for 30 min. After cooling, absorbance was measured at 535 nm against control containing deoxyribose and buffer. The percentage scavenging was determined by the comparing the result of the test compound and control using the following formula,

\[
\text{Radical scavenging activity} = \left(\frac{A_{0} - A_{1}}{A_{0}} \right) \times 100
\]

Where \(A_{0}\) - Absorbance of control; \(A_{1}\) - Absorbance of sample.

2.7.7. Superoxide anion radical scavenging assay

Measurement of superoxide anion scavenging activity of the polyphenol from *G. edulis* and *H. valentiae* was done based on the method of Nishimiki et al. [31]. About 1 mL of nitro blue tetrazolium (NBT) solution (156 μM NBT in 100 mM phosphate buffer, pH 7.4), 1 mL of NADH solution (468 μM in 100 mM phosphate buffer, pH 7.4) and 0.1-mL sample at various concentrations (100, 250, 500, 750, and 1000 μg) were mixed and the reaction was started by adding 100 μL of phenazine methosulphate (PMS) solution (60 μM PMS in 100 mM phosphate buffer, pH 7.4). The reaction mixture was incubated at 25 °C for 5 min and the absorbance at 560 nm was measured against blank samples. The percentage-scavenging value was determined as follows.

\[
\text{Radical scavenging activity} = \left(\frac{A_{0} - A_{1}}{A_{0}} \right) \times 100
\]

Where \(A_{0}\) - Absorbance of control; \(A_{1}\) - Absorbance of sample.

2.7.8. Nitric oxide radical scavenging assay

Nitric oxide radicals generated from sodium nitroprusside solution at physiological pH interact with oxygen to produce nitrite ions which were measured by the Griess reaction [32]. 2 mL of sodium nitroprusside (10 mm) was mixed with a 1-mL polyphenol with varying concentrations (100, 250, 500, 750, and 1000 μg) in a phosphate buffer (pH 7.4). The mixture was incubated at 25 °C for 150 min. 1 mL of sulfanilic acid reagent (0.33 % sulfanilamide in 20 % acetic acid) was added to 0.5 mL of the incubated solution and allowed to stand for 5 min for completing diazotization. Then, 1 mL of 0.1 % naphthylenediamine dihydrochloride was added and incubated at room temperature for 30 min. Absorbance was read at 540 nm and percentage scavenging was calculated as follows.

\[
\text{Radical scavenging activity} = \left(\frac{A_{0} - A_{1}}{A_{0}} \right) \times 100
\]

Where \(A_{0}\) - Absorbance of control; \(A_{1}\) - Absorbance of sample.

2.8. FT-IR spectrophotometer analysis

Infrared spectra (IR) were also used to identify the phenolic compounds. Seaweed extracts along with the standard gallic acid were tested using SHIMADZU- FT-IR instrument. One milligram of dry sample was mixed with 100 mg of dry potassium bromide (KBr) and then compressed to prepared salt-disc (3-mm diameter). These disks were analyzed under Fourier transform IR-Spectrophotometer. The absorption was read between 400 and 4000 cm\(^{-1}\) [17].

2.9. GC–MS analysis

The *G. edulis* and *H. valentiae* polyphenol compounds were characterized by gas chromatograph (GC-2010) interfaced using a quadrupole mass spectrometer (QP-2010) analyzer to determine its chemical constituents using Rt-x 5 capillary column (30 m × 0.32 mm × 0.5 μm) [33]. Interpretation of mass spectrum analysis was done using database of National Institute Standard and Technology.

3. Results

3.1. Estimation of total phenolic content

The total phenolic content present in the polyphenol compound was *G. edulis* (75.49 ± 0.12 %) and *H. valentiae* (70.08 ± 0.34 %) of phenolic content present.

3.2. Phytochemical analysis

Diverse phytochemicals were acknowledged from *G. edulis* and *H. valentiae*, polyphenol compound evaluation shown the existence of the following in both the samples flavonoids, saponins, tannin and steroids, whereas phenolics and alkaloids are found only in *G. edulis* and not in *H. valentiae*.

3.3. Antimicrobial activity of polyphenol compound against pathogens

The polyphenol compound was assessed against seven human bacterial pathogens and five plant bacterial pathogens. The *G. edulis* polyphenol compound showed a maximum of 23 mm of inhibition zone against *Bacillus subtilis* and *H. valentiae* polyphenol compound showed a maximum of 17 mm of inhibition zone against *Klebsiella oxytoca* of...
human bacterial pathogens showed in Table 1. The polyphenol compound was assessed against three fungal pathogens. The *G. edulis* polyphenol showed higher value 23 mm of inhibition zone against *Rhizopus stolonifer* and *H. valentiae* polyphenol compound showed 18 mm of inhibiting zone against *Aspergillus nidulans* is shown in Table 1.

The polyphenol compound showed a maximum of *G. edulis* (20 mm) and *H. valentiae* (18 mm) inhibition zones against *Erwinia carotovora* of plant pathogens showed in Table 1.

3.4. Free radical scavenging activity of polyphenol compound

The *in vitro* antioxidant activity of *G. edulis* and *H. valentiae* was present in total antioxidant capacity, reducing power, hydrogen peroxide scavenging activity, DPPH, ABTS, hydroxyl-scavenging assay, superoxide anion radical scavenging and nitric oxide showed in Table 2.

3.5. FT-IR spectrophotometer analysis

The FT-IR spectrum was purified polyphenol compound of *G. edulis* is shown in Fig. 1. The strong peak at 3383.87 cm\(^{-1}\) explained N–H stretching vibration (amide group) even the signal at 2360.71 and 2337.56 cm\(^{-1}\) cleard the C–H stretching vibration. The signal at 1406.97 cm\(^{-1}\) contributed C–H stretching vibration and 1637.45 cm\(^{-1}\) contributed C=O stretching vibration. The signal was 1046.31 and 716.51 concern weak stretching vibration. The *H. valentiae* polyphenol compound present in a strong peak at 3128.32 cm\(^{-1}\) explained C–H stretching vibration (aromatics group), even the signal at 1680.85 cm\(^{-1}\) cleared the C=C stretching alkenes. The signal at 1510.16 and 1400.22 cm\(^{-1}\) contributed C=C stretching (in ring) vibration aromatics. The signal was 752.19, 639.36, 605.61 cm\(^{-1}\) concern C=CI stretching the alky halide vibration shown in Fig. 2.

3.6. GC–MS analysis

GC–MS analysis shows the polyphenol compound of *G. edulis* and *H. valentiae* in the following peaks were obtained for partially purified

Table 1

Antimicrobial activity of polyphenol compound (30 mcg) against human and plant pathogens.

S. No	Test organisms	Tetracycline - 50 mcg (mm)	*G. edulis* (mm) (30 mcg)	*H. valentiae* (mm) (30 mcg)
1	*Klebsiella oxytoca*	24	21	17
2	*Escherichia coli*	22	19	12
3	*Suphylococcus aures*	24	18	14
4	*Pseudomonas aeruginosa*	27	16	11
5	*Bacillus subtilis*	28	23	15
6	*Serratia sp*	26	20	13
7	*Salmonella sp*	25	22	16
	Antibacterial activity against Human pathogens			
1	*Erwinia amylovora*	20	17	10
2	*Listeria monocytogenes*	18	15	12
3	*Xanthomonas sp*	21	14	11
4	*Erwinia carotovora*	23	20	18
5	*Albigenes sp*	25	18	15
6	**Antifungal activity**			
1	*Rhizopus stolonifer*	27	23	16
2	*Aspergillus japonicus*	23	19	13
3	*Aspergillus nidulans*	21	17	18

Table 2

% of *in vitro* antioxidant activity of polyphenol compound.

S. No	Anti Oxidant activities	*G. edulis*	*H. valentiae*
1	Total antioxidant capacity	82.93 ± 0.48 %	78.12 ± 0.22 %
2	Reducing power	80.56 ± 0.36 %	75.09 ± 0.39 %
3	Hydrogen peroxide scavenging activity	77.46 ± 0.40 %	73.18 ± 0.32 %
4	DPPH	74.16 ± 0.49 %	61.41 ± 0.27 %
5	ABTS	62.33 ± 0.66 %	56.84 ± 0.41 %
6	Hydroxyl scavenging assay	68.23 ± 0.55 %	60.09 ± 0.37 %
7	Superoxide anion radical scavenging	71.73 ± 0.57 %	59.75 ± 0.17 %
8	Nitric oxide	76.13 ± 0.44 %	68.25 ± 0.31 %

The MeOH extracts of red seaweed *H. valentiae* exhibited higher yield (6.5 g/100 g dry sample) followed by *J. rubens* and *H. muscorum* (5.3 and 4.8 g/100 g dry sample, respectively) [34]. *Gracilaria manilaensis* polyphenol extracts were prepared by soxhlet extraction using organic solvents hexane (0.56 %), dichloromethane (0.63 %), chloroform (1.25 %), ethyl acetate (1.19 %), acetone (1.24 %), methanol (3.12 %) and absolute ethanol (2.53 %) [35]. The polyphenol from *Padina boergesenii* was estimated at 5 g/100 mL of dry weight in polyphenol. The recovered polyphenol from *Padina boergesenii* was estimated at the fresh weight 0.8 ± 0.01 mg/100 mL and dry weight 0.5 ± 0.01 mg/100 mL [36]. The analysis of phenolic compounds is affected by their source, the extraction and purification techniques employed, the sample particle size, the storage conditions, and the presence of interfering substances in extracts such as fatty acids or pigments [37]. In this study red seaweeds *G. edulis* and *H. valentiae* polyphenol was extracted using hot water and crude polyphenol were partially purified using in DEAE cellulose52.

The presence of phytochemical constituents in *G. edulis* and *H. valentiae* is flavonoids, saponins, tannins, phenolics, alkaloids and steroids. Similarly, the phytochemicals present in *G. corticata* are alkaloids, terpenoids, flavonoids, tannins, polyphenols, saponins, cardiac glycosides and quinine [36]. The *G. corticata* possess higher total phenol content (4.00 ± 0.35 mg GAE/g) compared to *G. edulis* (3.4 ± 0.21 mg GAE/g). *G. corticata* (3.33 ± 0.12 mg CE/g DW) and *G. edulis* (2.6 ± 0.08 mg CE/g DW) extract significantly varied in total flavonoid content respectively [39]. The ethanol, acetone, methanol and water extracts of *Hypnea valentiae* were subjected to a phytochemical analysis of fifteen chemical compounds (alkaloids terpenoids, steroids, tannin, saponins, flavonoids, phlobatannins, glycosides, anthraquinones, chloride, carbohydrate, reducing sugar, amino acid, protein and phenolic compound) [40].

The antimicrobial activity of red seaweed polyphenol from *G. edulis* and *H. valentiae* was found against human, plant and fungal pathogens. Antimicrobial activity of 70 % methanolic and DMSO extracts of *G. corticata* and *G. edulis* was found effective against seafood-borne pathogens *E. coli*, *Photobacterium sp*. *Pseudomonas fluorescens*, *Staphylococcus aureus* and *Bacillus subtillis* [39]. Antifungal activity of red seaweed *H. valentiae* was against pathogenic bacterial *Erwinia carotovora*, *Bacillus, Streptococcus, Entrobacter* and *Pseudomonas*. No inhibition zone as formed on all pathogenic bacteria’s [40]. The antimicrobial activity proved chloroform: methanol (2:1 v/v) extract residue of the experimental brown algae. The brown algae showed maximum antimicrobial activity of *E. coli* (2.2 ± 0.063) and *Staphylococcus aureus* (6.2 ± 0.128) respectively [41].

product of polyphenol 7.948 (Diethyl Phthalate), 13.120 (9-Octadeconoic acid), 14.238 (1H-Benzimidazole, 5,6-dimethyl), 15.945 (Benzenec, 2-{(tert-butylmethylsilyl) oxy}-1-isopropyl-4-methyl-), 16.424 (5-Methyl-2-trimethylsilyloxy-acetophene), 16.907 (1H-Indole, 2-methyl-3-phenyl-), 16.994 (Benzo[h]quinoline, 2,4-dimethylen), 17.374 (1,2-Benzisothiazol-3-amine (tbdms), 17.779 (diethyl bis (trimethylsilyl) ester) and 17.840 (5-Methyl-2-phenylindolizine) shown in Figs. 3 and 4.
The total antioxidant capacity of polyphenol from *G. edulis* was found to be 82.93 ± 0.48 % and *H. valentiae* 78.12 ± 0.22 %. Similarly, the seaweed is presented in total antioxidant activity of *P. gymnospora* (1.92 ± 0.05 mg), *G. lithophila* (1.54 ± 0.07 mg) and *H. valentiae* (1.27 ± 0.05 mg) respectively [42]. The total antioxidant activity of methanolic extract was *U. lactuca* showed 0.91 ± 0.09 mg GAE/g [43]. The total antioxidant of the *G. jasminoides* polyphenolic compounds was expressed as the number of equivalents of ascorbic acid. The total antioxidant activity was dose-dependently increased [44].

Reducing power of *H. musciformis* (Abs700 nm 1.46) *H. valentiae* (Abs700 nm 0.48) and *J. rubens* (Abs700 nm 0.45,) respectively [34]. The reducing power of MeOH (Abs700 nm 0.07–0.74) and EtOAc extracts (Abs700 nm 0.013–0.467) of red seaweed *Kappaphycus alvarensis* extracts were reported to be higher than n-hexanic extract (Abs700 nm 0.017–0.16 at 0.5–5 mg/mL) [45]. The reducing power of *T. ornata* increases with the increasing concentration. The reducing power of the samples from *T. ornata* was 0.2 ± 0.04 to 0.72 ± 0.07 [17]. The polyphenol from *G. edulis* 80.56 ± 0.36 % and *H. valentiae* 75.09 ± 0.39 %. The reducing capacities of various concentrations of polyphenol were compared with standard compound, which implies that as the concentration increases the reducing power of the extracts was also increased.

The polyphenol compound from seaweed can be a potential source of antioxidants with protective and useful effects [46]. The hydrogen peroxide scavenging activity of polyphenol compound of *G. edulis* is 77.46 ± 0.40 % and *H. valentiae* 73.18 ± 0.32 % was estimated. Similarly, many species of seaweed possess scavenging ability of hydrogen peroxide [47]. The strongest H$_2$O$_2$ scavenging effect of *H. musciformis* EtOAc fraction can be explained due to the presence of hydrophilic phenolics [18]. H$_2$O$_2$ scavenging activity (%) at 1 mg/mL of the MeOH extracts/fractions of the red seaweeds are recorded in *H. musciformis* (43.01 ± 0.81 mg/mL), *H. valentiae* (32.75 ± 1.03 mg/mL) and *J. rubens* (27.63 ± 1.36 mg/mL) [34]. The *C. Socialis* phenolic compounds have been identified with interesting antibacterial activity against methicillin-resistant *Staphylococcus aureus* [48].

The DPPH radical scavenging assay for the *G. edulis* is 74.16 ± 0.49 % and *H. valentiae* 61.41 ± 0.27 %. Also, DPPH radicals scavenging activities in the methanolic extracts of red seaweeds *G. corticata* (44.32 %), *G. dura* (33.03 %), *G. debilis* (53.34 %), *G. fergusonii* (23.99 %) and *G. salicornia* (53.43 %) [49]. MeOH extract of *H. musciformis* (15.4 %), *J. rubens* (17.7 %) showed significantly higher DPPH-scavenging activities than *H. valentiae* (7.7 %) [34]. DPPH, *T. ornata* was shown high activity (84.27 ± 2.17 % scavenging activity on DPPH compared with standard Gallic acid [17]. The significant free radical scavenging activities in DPPH radical scavenging antioxidant assays compared to the
The ABTS inhibition assay for the polyphenol from *G. edulis* is 62.33 ± 0.66 % and *H. valentiae* 56.84 ± 0.41 %. Similarly, EtOAc fraction of *H. muscosum* is registered with significantly higher ABTS scavenging activity (63.3 %) followed by *H. valentiae* (27.9 %) and *J. rubens* (11.0 %) [34]. Likewise, *G. edulis* showed significantly higher ABTS + free radical scavenging activity (40.24 %) than *G. corticata* (32.65 %) [39]. Equally, the ABTS radical scavenging activity in red seaweeds could be due to the presence of high carotenes and other pigments with long hydrocarbon chain and animated compounds [50].

The hydroxyl-scavenging assay *G. edulis* is 68.23 ± 0.55 % and *H. valentiae* 60.09 ± 0.37 %. Likewise, the extracts of red seaweeds, *Gracilaria verrucosa*, *G. textorii*, *Grateloupia filicina* and *Polysiphonia japonica* also reported potentially high hydroxyl-scavenging activity [51]. The hydroxyl scavenging assay *T. ornata* exhibited the inhibition of about (70.12 ± 2.03 %), but this is lower than the standard gallic acid (1 000 μg/mL) whose inhibition is 44.92 ± 1.97 % [17]. The superoxide anion radical scavenging assay for the *G. edulis* 71.73 ± 0.57 % and *H. valentiae* 59.75 ± 0.17 %. Similarly, the superoxide radical scavenging activity from *Ulua pertusa* was found to be 23.4–93.8% [52]. The nitric oxide scavenging assay for the *G. edulis* is 76.13 ± 0.44 % and *H. valentiae* 68.25 ± 0.31 %. Likewise, *G. corticata* exhibited higher nitric oxide radical scavenging activity (36.78 %) than *G. edulis* 35.25 % [39]. The suppression of nitric oxide release may be attributed to a direct nitric oxide scavenging effect. The *T. ornata* had scavenging activity of 39.8 ± 2.52 % [17].

The FT-IR was performed for extracted polyphenol compound from *G. edulis* and *H. valentiae* observe in powder form at 3383.87 cm⁻¹ explained N–H stretching vibration (amide group) and The strong peak at 3128.32 cm⁻¹ explained C–H stretching vibration (aromatics group). Similarly, the FT-IR spectrum of *G. corticata* and *G. edulis* confirmed the presence of free hydroxyl alcohol, alkyne, esters, conjugated ketone,
cyclic alkenes, allene, ester sulfate, the skeleton of galactons, 3,6-anhy-
also recorded the same number of peaks lying between 1026.16,
GC-MS analysis was performed for extracted polyphenol compound from G. edulis and H. valentiae in a highly complex nature. Similarly, the GC-MS shows of G. corticata exposed that the presence of 17 sec-
also the cultivation of these red seaweeds will pave the attention of small-scale sector through
S. Mahendran et al.
[15] Y. Yoshie-Stark, Distribution of flavonoids and related compounds from seaweeds in Japan, J. Tokyo Univ. Fish. 89 (2003) 1–4.
[16] P. Vijayabaskar, V. Shiyamala, Antioxidant properties of seaweed polyphenol from Turbinaria ornata (Turner) J. Agardh, 1846, Asian Pac. J. Trop. Biomed. 34 (2014) 90–98.
[17] M. Senevirathne, S.H. Kim, S. Ueyama, T. Yokokura, Structural study of fucoidan from claid-phenonakamarus, Glycoconj. Gate J. 16 (1999) 19–28.
[18] M. Senevirathne, S.H. Kim, Y.J. Jeon, Phlorotannins as bioactive agents from brown algae, Process Biochem. 46 (2011) 2219–2224.
[19] A.S. Kamba, L.G. Hassan, Phytochemical screening and antimicrobial activities of
[20] L. Pereira, A. Sousa, H. Coelho, A.M. Amado, F.J.A. Ribeiro-Claro, Use of FT-IR, FT-
[21] Ekrem Koksal, Hatice Tohma, Omer Kılıc, Yusuf Alan, Abdülmelik Aras, Mustafa Abdullah Yılmaz, Ilhami Gulcin, Ercan Bursal, Assessment of antimicrobial and antioxidant activities of Turkish microorganisms, Afr. J. Pharm. Pharmacol. 4 (2010) 645–652.
[22] Hatice Tohma, Ekrem Kılıc, Yusuf Alan, Abdülmelik Aras, Mustafa Abdullah Yılmaz, Ilhami Gulcin, Ercan Bursal, Salih H. Albawal, RP-HPLC/MS/MS analysis of the polyphenolic compounds, antioxidant and antimicrobial activities of Salvia L. species, Antioxid. 38 (5) (2016) 1–15.
[23] H.A. El-Masyr, H.H. Fahmy, A.S.H. Abdelwahed, Synthesis and antimicrobial activity of some new benzimidazole derivatives, Molecules 5 (2000) 1429–1438.
[24] P. Prieto, M. Pineda, M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex specific to antioxidant, antimicrobial, anticholinesterase and antidiabetic activities of Turkish endemic Achillea cucculata (Asteraeaceae) from ethanol extract, South Afr. J. Bot. 85 (2012) 190–198.
[25] N. Eryuury, U.M. Kocyigit, P. Taslimi, M. Atas, M. Tekin, I. Gulcin, in vitro antioxidant, antimicrobial, anticholinesterase and antidiabetic activities of Turkish endemic Achillea cucculata (Asteraeaceae) from ethanol extract, South Afr. J. Bot. 85 (2012) 190–198.
[26] N. Heffernan, N.P. Brunton, R.J. FitzGerald, T.J. Smyth, Profiling of the molecular content of brown algae (Pheophyceae) species: extraction, identification and quantification, Biomolecules 9 (2019) 244.
[27] I. Wijesekara, S.K. Kim, Y.X. Li, Y.X. Li, Phlorotannins as bioactive agents from brown algae, Process Biochem. 46 (2011) 2219–2224.
[28] I.G. Mekinic, D. Skroza, V. Simat, I. Hamed, M. Cagali, Z.P. Perkovic, Phenolic content of brown algae (Pheophyceae) species: extraction, identification and quantification, Biomolecules 9 (2019) 244.
[29] Ne Fromm, P. Jünger, W. Boller, Antioxidant activities of extracts from five anti-viral medicinal plants, J. Ethnopharmacol. 96 (2005) 201–205.
[30] S. Mahendran, S. Manoharan, S. Ramakrishnan, A. Arul, S. Uma, A. Ramesh, M. Ramesh, V. Subramanian, R. Ganesan, S. Ramakrishnan, Antioxidant activities of phlorotannins purified from Ecklonia cava on free radicals scavenging using ESR and H2O2 mediated DNA damage, Eur. Food Res. Technol. 226 (2) (2007) 71–79.
[31] M. Nishimiki, N.A. Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen, Biochem. Biophys. Res. Commun. 46 (1972) 849–853.
[32] Y.V. Yuan, N.A. Walsh, Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds, Food Chem. Toxicol. 44 (2006) 1144–1150.
[33] M. Nishimiki, N.A. Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen, Biochem. Biophys. Res. Commun. 46 (1972) 849–853.
[34] V.Y. Yuan, N.A. Walsh, Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds, Food Chem. Toxicol. 44 (2006) 1144–1150.
[35] M. Nishimiki, N.A. Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen, Biochem. Biophys. Res. Commun. 46 (1972) 849–853.
[32] I. Gulcin, Antioxidant and antiratical activities of L- Carnitine, Life Sci. 78 (2006) 803–811.
[33] Xiaoyun Tao, Hongnan Sun, Jian Chen, Luning Li, Yin Wang, Aidong Sun, Analysis of polyphenols in apple pomace using gas chromatography-mass spectrometry with derivatization, Int. J. Food Prop. 17 (8) (2014) 1818–1827.
[34] Kajal Chakraborty, Deepu Joseph, Nammunayathuputhenkotta Krishnankartha Praveen, Antioxidant activities and phenolic contents of three red seaweeds (Division: rhodophyta) harvested from the Gulf of Mannar of Peninsular India, J. Food Sci. Technol. 52 (4) (2015) 1924–1935.
[35] Nor Salmi Abdullah, Shamsul Muhamad, Ibrahim Che Omar, Hasmah Abdullah, Radical scavenging activity and total phenolic content of Gracilariamanilaensis extracts, Technol. Sci. Soc. Sci. Human. Int. Conf. 2012 (2012) 1–7.
[36] K. Rajamani, S.T. Somasundaram, T. Manivasagam, T. Balasubramanian, P. Anantharaman, Hepatoprotective activity of brown alga Padina boergesenii against CCl4 induced oxidative damage in wistar rats, Asian Pac. J. Trop. Med. 7 (2010) 696–701.
[37] F. Shahidi, M. Naczk, Phenolics in Food and Nutraceuticals, CRC Press, Boca Raton, FL, USA, 2003. ISBN 9780367395094.
[38] Gopalan Rajkumara, Periyakali Saravana Bhavan, Veeran Srinivasan, Rajendran Udayasuriyan, Phytochemical screenings of the marine red alga, Gracilariacorticata, Noble Int. J. Sci. Res. 1 (8) (2017) 90–97.
[39] Abimbimn Arulkumar, Thomas Rosemary, Sathyan Paramasivam, Ramaswamy Babu Rajendran, Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilariaorticata and Gracilariaedulis) from Falk Bay, India, Biocatal. Agric. Biotechnol. 15 (2018) 63–71.
[40] P. Rama Devi, I. Vasudhevan, C. Babu, M. Muthu Ganga, C.P. Balakrishnan, Phytochemical analysis and bioactive compound separation of sea weed, Hymenuvemeleri, Int. J. Res. Advent Technol. 6 (11) (2018) 3192–3197.
[41] P. Rajasulochana, P. Krishnamoorthy, R. Dharmotharan, Isolation, identification of bromophenol compound and antibacterial activity of Kappaphycus, Int. J. Pharma Bio Sci. 3 (2) (2012) 176–186.
[42] C. Saranya, C. Parthiban, P. Anantharaman, Evaluation of antibacterial and antioxidant activities of seaweeds from Pondicherry coast, Adv. Appl. Sci. Res. 5 (4) (2014) 92–90, 2014.
[43] S. Meenakshi, D.G. Manicka, S. Tamilmozhi, M. Arumugam, T. Balasubramanian, Total Flavonoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast, Glob. J. Pharmacol. 3 (2) (2009) 59–62.
[44] Riaz Uddin, Moni Rani Saha, Nusrat Sobhan, Hemayet Hossain, Ismet Ara Jahan, Raushanara Akter, Ashrafal Alam, HPLC-Analysis of polyphenolic compounds in Gardenia jasminoides and determination of antioxidant activity by using free radical scavenging assays, Adv. Pharm. Bull. 4 (3) (2014) 273–281.
[45] S.K. Kumar, K. Ganesan, P.V.S. Rao, Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty an edible seaweed, Food Chem. 107 (2008) 289–295.
[46] L. Valdes, A. Cuervo, N. Salazar, P. Ruiz-Madiedo, M. Guzman, S. Gonzalez, The relationship between phenolic compounds from diet and microbiota, impact on human health, Food Funct. 6 (8) (2015) 2424–2439.
[47] N. Sriwardhana, K.W. Lee, S.H. Kim, J.W. Ha, Y.J. Jeon, Antioxidant activity of Hibiscusususformis on reactive oxygen species scavenging and lipid peroxidation inhibition, Food Sci. Technol. Int. 9 (5) (2003) 339–348.
[48] S. Lavoie, A.M. Sweeney-Jones, N. Mojib, B. Dave, K. Gadging, C.W. McNamara, C. L. Quave, K. Scoi, J. Kuhn, Antibacterial oligomeric polyphenols from the green alga Cladophora socialis, J. Org. Chem. 84 (2019) 5035–5045.
[49] M. Kumar, P. Kumari, N. Trivedi, M.K. Shukla, V. Gupta, C.R.K. Reddy, B. Jha, Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India, J. Appl. Phycol. 23 (2011) 797–810.
[50] Y.L. Chew, Y.Y. Lim, M. Omar, K.S. Khoo, Antioxidant activity of three edible seaweeds from two areas in South East Asia, LWT Food Sci. Technol. 41 (2008) 1067–1072.
[51] S.J. Heo, S.H. Cha, K.W. Lee, Y.J. Jeon, Antioxidant activities of red algae from Jeju Island, Korean Soc. Phycol. 21 (2006) 149–156.
[52] H. Qi, Q. Zhang, T. Zhao, R. Hu, K. Zhang, Z. Li, In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulvapotamos (Chlorophyta), Bioorg. Med. Chem. Lett. (2006) 2441–2445.