Nowadays, we have entered the golden age of economic development, and the Internet of Things (IoT) has also ushered in the opportunity of development, and the rapid development of IoT is also beneficial to drive the economy forward continuously. Therefore, the research on IoT is very meaningful and meets the contemporary development needs and greatly facilitates people's daily life through the interconnection of all things. In today's era of massive data, all kinds of data are complicated and messy, and if the large amount of data obtained is not properly classified and processed, the major problem will be that a pile of disordered and messy data is generated, and it is impossible to find the corresponding useful, engineering value, and regular data among them, and then, such data can only be discarded. Such a simple and brutal way of data processing is not only a waste of data resources but also may inadvertently throw away important, confidential, and private data information. If such data is carelessly discarded, the consequences will be incalculable, because such data information is likely to be used, processed, and disseminated by unscrupulous elements, which will eventually result in the following consequences: for individuals, it is equivalent to making their privacy public, which will seriously affect all aspects of life; for enterprises, if confidential data information is disseminated, then it will bring unpredictable losses to the enterprise. The adaptive data processing method for edge node sensing in ubiquitous NB-IoT can make the data generated from NB-IoT modules in ubiquitous IoT have practical engineering application value after processing, so the data source of this paper is the IoT data generated from NB-IoT communication modules in ubiquitous network (called NB-IoT dataset in this paper). The experimental results show that the accuracy of the adaptive data classification achieved by these two algorithms reaches about 75%, which provides some help to improve the efficiency of data utilization.

1. Introduction

As the economy continues to develop, the era of Internet of Everything has arrived, which can provide some help to change the human lifestyle [1]. What is the Internet of Things? First of all, the English translation of the Internet of Things is Internet of thing, which is abbreviated as IoT. "Internet of Things" literally means that an object or intelligence is connected to a network, i.e., the object or intelligence contributes information by connecting to the Internet and generates useful information based on it and does not require human involvement in the process, and this self-sufficient mechanism is called the Internet of Things [2]. IoT can be divided into several application markets from the cybersecurity level. The first is the service application, which refers to the application market that uses the results of data analysis to provide a specific service; the second is the analytical processing market, in which there are two forms: one is the consulting market, i.e., cybersecurity through a form similar to cyber consulting, and the second is the software market, which refers to the market which is the analysis of "things." The second is the software market, which refers to a data processing method that uses data analysis techniques to analyze the data collected by "things" [3]; the third is the platform, where “platform” refers to the IoT platform, such as Ali cloud and ONT-net. In the platform,
the activation, authentication, and billing of the “things” are realized in the platform service market of communication management. The fourth refers to the device, which is an important part of the IoT. In the IoT, the device refers to some modules that collect data; the fifth refers to the network, which is the basis and key of IoT communication. In this paper, the network under study is the ubiquitous network, and the IoT is the narrowband IoT, i.e., the edge sensing of NB-IoT.

At the beginning of the 21st century, a concept called “ubiquitous network” became known to people. The ubiquitous network enables people to connect to networks such as the Internet of Things (IoT) anytime and anywhere, which provides the hard conditions for data transmission and data sharing [4], where the ubiquitous network allows people to access the network anytime and anywhere.

Research on ubiquitous NB-IoT has always been a research hotspot, such as a research scholar proposed a design and implementation of shared parking space based on NB-IoT; in the research of the paper, the authors firstly described the current situation of parking space at home and abroad, followed by the design of two subsystems of parking space: one is the design of smart parking space lock, and the other is the design of cloud system of shared parking space. In the design of smart parking space lock, STM32 is used as the main controller, NB-IoT communication module is used for networking, and RTC clock module is used for clock control and timing; in the design of cloud system for shared parking space, the authors choose TLINK IoT platform as the server according to the status quo in order to provide the IP address of public network. In order to test whether the parking space only system can operate effectively, the authors used the WeChat applet approach to verify, and the final results show that the use of IoT can enable information interaction between people and things and can give full play to the role of IoT technology in some fields today such as intelligent transportation field, data security field, and adaptive data security processing [5].

Not only that, the research field based on ubiquitous IoT has been expanded from the original simple smart home and other common life scenarios to data processing, data analysis, and other data mining fields, such as some research scholars have presented their insights for data processing methods in power systems. In the paper, the authors firstly proposed that ubiquitous power IoT is important for electric power system, because using ubiquitous IoT can make the whole system realize more comprehensive information sharing and information opening, and at the same time, it is beneficial to connect in the ubiquitous power IoT system to realize more refined management of equipment. However, at the same time, there are some problems in the process of adaptive processing technology of ubiquitous power IoT edge-aware nodes, such as the response time of the edge node sensing adaptive data processing does not meet the requirements, and the security of the data processing process is not high, and there is a lack of certain standards in the process of data processing. To address these problems, the authors propose three methods to implement adaptive data processing techniques for edge-aware nodes in ubiquitous power systems [6].

In summary, in the era of rapid technological changes, the Internet of Everything has become a trend and can greatly facilitate people’s lives in various fields of life, and the main research topic of this paper is the research of adaptive data processing methods for edge-aware nodes in ubiquitous NB-IoT. In Section 4, the paper will analyze the experimental data and results in detail and finally obtain comprehensive conclusions.

2. Research Background

2.1. Importance of Adaptive Processing Methods for Ubiquitous NB-IoT Edge Node Sensing

2.1.1. Edge Adaptive Data Processing Is More Advantageous Compared to Cloud Computing [7]. NB-IoT edge node sensing needs to design certain edge computing technology, and edge computing can push the communication and processing capabilities of gateways or smart devices directly into the devices, and then, these devices can use the capabilities of edge computing to determine which data can be stored locally and which data need to be sent to the cloud platform for further analysis and processing. And as technology grows, the capabilities of the IoT grow and connectivity improve, and the edge computing approach not only facilitates data storage and transmission but also enables certain adaptive data processing methods, while also improving the security protection of the data. Therefore, compared with pure cloud computing, the edge node aware adaptive data processing method for ubiquitous NB-IoT has more research significance and practicality.

2.1.2. Adaptive Data Processing at the Edge Can Solve the Security Problem to a Certain Extent [8]. Data always encounters various risks in transmission, and the data collected by sensors and the data at the edge may be affected by certain security threats. Therefore, security issues can be mitigated by adding some encryption algorithms to the edge adaptive data processing or by using gateways that work with the edge to store some sensitive data locally through the local network and by adding security systems and performing some data analysis in them in order to make the data more secure. In order to increase security, more secure communication technologies can be used, such as MQTT for uplink and downlink data communication.

2.1.3. Adaptive Data Processing at the Edge Can Reduce Bandwidth and Cost [9]. For companies and enterprises, large data centers and data security maintenance are required for data transmission and large amounts of data storage, and extensive network areas for interaction of massive data information require high cost support. Not only that, transferring massive amounts of data also requires high bandwidth support, and high bandwidth support leads to service degradation, which in turn can create data latency and data security issues, and these are additional costs incurred. However, for edge computing, it does not need additional bandwidth addition and only requires lower cost edge gateway to store and save data at the edge, so realizing adaptive data processing at the edge can reduce bandwidth
cost, which can save total cost and achieve the purpose of open source and cost saving.

2.2. Problems in the Adaptive Processing Method for Ubiquitous NB-IoT Edge Node Sensing

2.2.1. Long Response Time for Real-Time Control. In ubiquitous NB-IoT edge computing, there is the problem of long passive waiting time for data feedback at the edge side. The response time in the whole IoT system is the sum of the delay of each device receiving and sending data in the whole transmission link and the sum of the processing time of each level of device. Then, it will lead to real-time control reaction time which is too long; if it is automatic driving, robot surgery, and other requirements of high time precision control, then the reaction time process is a fatal disadvantage, so in practical applications, how to control the reaction time within a reasonable range is one of the more important breakthrough points. If the time control is unreasonable, it will lead to the response time of perceptual adaptive data processing for NB-IoT edge nodes that does not meet the requirements, which makes the adaptive data processing method unable to integrate the development characteristics of the big data era, thus limiting the application and innovation of ubiquitous networks in the perceptual adaptive data processing method for IoT edge nodes [10].

2.2.2. Security Needs to Be Improved. The IoT comes from a distributed test control system, the essence of which advocates decentralization and security, and nowadays, the research on IoT systems is based on cloud platforms or cloud servers. According to the barrel effect, whether in the NB-oriented IoT or power IoT, if there is a problem in one part of the system, such as power failure and network disconnection, then the reaction control is failure, which will lead to the whole IoT system or platform can not work, and then, security will also be affected to a certain extent, and serious may lead to the risk of data leakage. Similarly, in terms of data privacy and confidentiality, if some more sensitive and private data is stored directly in the IoT, then the data is extremely easy to be intercepted, controlled, and utilized by the unfaithful elements, thus causing the risk of data security [11].

2.2.3. Proliferation of Edge Data. In recent years, as artificial intelligence has been vigorously developed, the concept about IoT technology has been gradually known and become the measurement and control end of the industrial Internet. According to the prediction of relevant data, compared to cloud computing, in the next few years, the edge-side data of enterprises outside the cloud or in traditional data centers will be higher than the current data storage volume by 75% [12]. This shows that the amount of data at the edge of IoT is proliferating, which in turn also leads to the situation that the traditional methods about massive data processing are not applicable to the current IoT system with proliferating edge data, so it is more important and practical to study an adaptive data processing method about physical network edge node sensing that is suitable for today’s data status [13].

2.2.4. Not Good Identification of Useful Information. As can be seen from point 3, the development of IoT technology has been greatly promoted by the development of artificial intelligence and the advanced network in recent years. However, in the process of IoT development, the amount of data about the edge end is also proliferating, and the impact of such exponential data proliferation may lead to the problem that today’s data processing methods are not applicable to the current situation, and not only that, it will also lead to the increase of invalid transmission and the situation that IoT systems cannot identify useful information well. Compared with cloud computing, the raw data collected by IoT edge-side sensing, such as haze data collection of atmospheric environment, temperature collection, carbon dioxide content measurement, and other data, are many invalid data. According to a survey, the invalid data and the data that can be discarded after computing occupy 50%-70% of the total data in the IoT system [14], this part of useless data information will also be transmitted in the network because it is not discarded, but this invalid transmission method that cannot identify useful information well and discard useless information will undoubtedly increase the load pressure on the network [15].

3. Materials and Methods

3.1. Overview of the Internet of Things. From Section 1, it is clear that the Internet of Things (IoT) refers to the “Internet of Things connected to people,” which specifically refers to the interaction of information through various sensor devices and the connection of all objects used to the Internet for information interaction, uplink and downlink communication, and information and data processing and analysis according to an agreed protocol, such as the MQTT protocol. It is a network that identifies and measures certain factors in life, such as temperature, humidity, and carbon dioxide content, and has the ability to track, manage, and monitor them [16]. The three-layer structure of the Internet of Things is shown in Figure 1.

From Figure 1, it can be seen that the three-layer structure of IoT has application layer, network layer, and sensing layer. Among them, the application layer can also be called the transport layer, and in this layer, the contents included are the application interface layer and the technical support layer. This process needs to be combined with the needs of the industry for the purpose of service presentation and service development through its connection to the web layer. In the network layer, the main refers to the use of the Internet to complete the communication link of uplink and downlink data communication, including the transport layer and communication layer. In the transmission layer, the main thing is to use the Internet, sensor networks and mobile communication networks, or other convergence technologies, to transmit the data information sensed by sensors and other devices in an unobstructed, highly reliable, and secure data link. In the communication layer, the information collected in the sensing layer is combined and aggregated through various network technologies, and the massive amount of information obtained is integrated together for subsequent processing. For the perception layer,
at the hardware level, various sensors are used to collect data from the real world, and through certain means, generally at the software level, the collected data are processed and analyzed in real time and transformed into data or information that can be processed in the virtual world. Technology (RFID technology), etc.

From the above, it can be seen that IoT can be roughly divided into three layers, so what are the characteristics of that layer? What are the advantages of using IoT to implement adaptive data processing methods?

First of all, IoT has the characteristic of comprehensive sensing. In this feature, it is expressed that IoT is a collection and wide application of various different sensing technologies. As can be seen from the above, there are a large number and many types of sensor devices deployed in the perception layer of IoT, and each sensor is a different source of information; collecting the same type of data information or different types of data information, not only that, the format of the data information collected by different sensors may also be different, and the characteristics of the sensor are that the data information from the sensor device has real time. Therefore, IoT has the ability of comprehensive perception for the real world, which also provides certain advantages in adaptive data processing [17].

The second feature is the reliable delivery. IoT can be said to be a kind of ubiquitous network of the Internet by nature. The ubiquitous network in this context is a unified level with “ubiquitous” in this paper. The data information collected by the above-mentioned sensors is interacted and transmitted through various wired and wireless networks, which are then integrated with the Internet, and the data arriving at the network layer will be transmitted by the Internet in a timely and accurate manner [18]. But to achieve safe, reliable, and accurate data transmission in IoT is a huge project of heterogeneous various network protocols, which is not the main research content of this paper, so this paper does not consider this aspect and set the security of data transmission within a reasonable range.

The third feature is that IoT has the ability of intelligent processing [19]. In the IoT, not only does it provide a communication channel between sensors but it also has the ability of intelligent processing, which enables intelligent control of objects. In IoT, the main way to achieve this function is to use various intelligent technologies, such as pattern recognition, deep learning, and other technologies, to integrate into the algorithmic programming of IoT. Not only that, IoT can also select, process, and process useful information from the vast amount of information collected by sensors to suit the needs of different users [20].

3.2. Data Processing for Ubiquitous NB-IoT. In the physical layer of IoT, NB-IoT is called narrowband cellular IoT, so what is the difference between narrowband IoT and the IoT that is often referred to? First of all, this narrowband requirement is reflected in 180 kHz; the band is equivalent to the width of the protected broadband of 4 G; that is to say, NB-IoT network is based on 4 G network and evolved from 4 G network. One of the general architectures regarding NB-IoT data transmission and data processing is shown in Figure 2.

In Figure 2, NB-IoT goes through a total of five endpoints and six processes from the NB-IoT terminal to the data endpoint. It starts with NB-IoT sending data to the base station, but the preparation work before the start should realize the air port connection from the NB-IoT terminal to the base station, and then, the data is sent to the base station through the NB-IoT terminal. The base station, also known as eNodeB, is to realize the connection with the IoT core mainly through the S1-lite interface, in which the connection between the base station and the IoT core network is realized, and the nonaccess layer is stored in the wireless communication protocol stack, and the stack that is generally stored is UMTS, and it is used as the functional layer between the NB-IoT and the sensing device. The NB core network is equivalent to a data transfer station, not only assuming the function of sending the obtained data to the IoT platform for analysis and processing but also having the function of data interaction with the nonaccess layer of the data terminal. The IoT platform is equivalent to the aggregation layer, in which all the data are collected and integrated according to the different types of data, and the function of data forwarding is realized, in which the organized data information is forwarded to different data terminals for processing; finally, the data transmission and data processing in the whole NB-IoT core architecture are completed, and the data arriving at the data will be processed by the terminal according to different needs.

3.3. Architecture for Ubiquitous NB-IoT. Ubiquitous NB-IoT is a kind of integration of a variety of information technology and communication technology use, among which information technology has artificial intelligence, mobile Internet, etc. It is important for the research of adaptive data processing methods. The research of adaptive data processing methods for edge sensing nodes can deepen and promote the research based on ubiquitous NB-IoT oriented and can improve the stability and normal operation when using NB-IoT communication modules for data transmission and analysis and improve the ability of NB-IoT to process data by incorporating Bloom filtering algorithms or
neural network algorithms on the original basis. The IoT under ubiquitous network is shown in Figure 3.

From Figure 3, it can be seen that the ubiquitous network exists in the whole IoT system and provides the channel for information interaction for the whole NB-IoT. If the upstream and downstream communication of data is realized under the ubiquitous Internet of Things, then the Internet on the left can be taken as the sensor device side and the Internet on the right as the cloud platform side as shown in Figure 3. The direction of uplink communication is to upload the collected data to the cloud after processing by certain means such as MQTT protocol; the direction of downlink communication is to summarize and process the data obtained from the uplink communication by the cloud platform and to respond the processing results to the device sensors. The whole uplink and downlink communication is carried out under the ubiquitous network and through the Internet-based transmission of the Internet of Things system.

4. Results and Discussion

According to the description of security issues in the IoT in Section 2, it is known that if the data is directly stored in the IoT system or platform directly, then it is easier to have security problems, so this paper advocates to store some hidden and high confidentiality demand data in the data security protection procedure based on the network edge, because the protection of data security by storing the data in the edge IoT nodes is far better than centralizing data directly to data storage services and also improves certain security in transmission, but in practice, it is not recommended to transmit less data with high privacy and confidentiality needs of this kind. In summary, excluding the security issue, this paper then proceeds to complete the study of adaptive data processing methods for edge node sensing of the entire ubiquitous NB-IoT by comparing and analyzing different algorithms in terms of their efficiency and performance.

In this paper, the data collected in the ubiquitous NB-IoT through hardware conditions are converted in a certain format and form to form the NB-IoT dataset, but in the NB-IoT dataset, there are both valuable IoT data and meaningful non-IoT data. In this section, we implement the adaptive classification process for this dataset.

4.1. Bloom Filtering Algorithm. The Bloom filtering algorithm is the procedure used in the Bloom filter and consists of a random data structure, where the data structure is particularly efficient in space. Bloom filter is a combination of the underlying array and hash function together, the principle of Bloom filter is relatively simple, and we filter the data by using Bloom filter and by formulating a reasonable dataset, Bloom filtering accomplishes the information processing by determining whether a certain data is in the set or not. If the value has already been marked, it is recorded as 1; otherwise, it is recorded as 0. The formula for calculating the error rate of the Bloom filter and the formula for calculating the concept of being set to 1 are shown in

\[
1 - e^\left(-\frac{nk}{\text{size}}\right)
\]

\[
1 - \frac{1}{m}
\]

For the above formula, where size is the size of the bit set, \(n\) is the number of target data, \(k\) is the number of hash functions used, and \(m\) is the size of an array of bits in the bit list. The flow of the determination of the value using the Bloom filter is shown in Figure 4.

In order to verify the efficacy of this paper for the method of adaptive output data processing for edge node sensing of ubiquitous NB-IoT, this paper designs the relevant NB-IoT module and collects the data and then achieves the classification performance of NB-IoT data by Bloom filter, where the experimental results are shown in Figure 5.

From Figure 5, it can be seen that by using Bloom filter to classify the NB-IoT dataset, the final classification result obtained is 232 MB for IoT data and 68 MB for non-IoT data; the total data is 310 MB, of which the data loss is 10 M.

In the obtained NB dataset, besides, IoT data, there are also non-IoT data and other data such as BER and processing data. After using Bloom filter to classify the IoT dataset, then the BER of the obtained data classification is shown in Figure 6.

Observing Figure 6, it can be seen that using Bloom filter for BER test on NB-IoT dataset, it is found that the BER of Bloom filter for IoT data will be higher, higher than in about
And as the number of tests increases, for the NB-IoT dataset, data for both IoT and non-IoT or other data increases with the number of tests, but the overall increase in the interval is not large, greater than between [0, 0.13]. In the dataset in this article, the number of tests has reached 10 times, and the situation of each time is recorded accordingly. In the end, the curve shown in the figure is formed. There is a turning point between 6 times and the 8th time. It can be speculated that in the 10 tests of this round, there is a test value for the test of the Bloom filter for the NB-IoT dataset of this article. The test value at the beginning is not necessarily the best, and the minimum error rate may occur in the subsequent test value.

4.2. Adaptive Gradient Method (Adagrad). Mathematically, neural networks are an operational model. It is an imitation behavior for bionics. It is imitated with human thinking habits and thinking methods and has the ability to calculate and express people, which is equivalent to a smart body. After continuous development and growth of neural networks, there are many neural network algorithms, which have also emerged many algorithms for adaptive optimization of data processing, such as RMSprop methods, Addelta methods, and adaptive gradient algorithms. Among them, the adaptive gradient method is derived from the gradient drop algorithm, so the training speed of the adaptive gradient decrease method will be faster. However, because only one sample is trained in each iteration process, the gradient method has higher accuracy for the original gradient decline method, and the convergence speed will also increase.

To understand the adaptive gradient algorithm, you need to start with the fundamental gradient decrease algorithm. The gradient drop algorithm is proposed based on the optimization problem, mainly to solve the problem of
the maximum and minimum value of the overall situation, and in the actual application of machine learning, the most optimized problem is generally described as a minor value problem of a certain function. The gradient drop algorithm is one of the methods to solve this problem in machine learning.

The gradient drop algorithm is mainly obtained according to the number and gradient in mathematics, and the gradient is the guidance of the function and determines the direction of the entire model. In the entire neural network model, if a certain algorithm is used, it is necessary to pay attention to the setting of the initial value, the setting of the learning rate, and the design of the network structure of the entire neural network model. This paper investigates adaptive data processing methods for IoT edge-aware nodes under ubiquitous networks. Therefore, for data implementation adaptive processing, this article uses the adaptive gradient algorithm to complete the error data contained in the NB-IoT dataset to filter and screen it.

\[h + \frac{\partial l}{\partial w} \odot \frac{\partial l}{\partial w} \]
\[w - \eta \frac{1}{\sqrt{h^2} \partial w} \]

It can be seen from formulas ((3)) and ((4)) that \(h \) is an intermediate variable of the weight renewal formula, and \(w \) is the weight \(\eta \) to be updated, which represents the learning rate of adaptive gradient algorithm. For formula (3), because the adaptive gradient algorithm retains all the previous gradient data, the existence of this formula can ensure the square harmony of all the previous gradient values, which \(\odot \) indicates the dots of the matrix. After the \(h \) value is found, the value of the learning rate is adjusted by the countdown of the root \(\eta \) number 2 in formula (4). In other words, the use of these two formulas to the algorithm can be modified by updating and learning rates, which can make the neural network model decay in accordance with the elements of the agreed parameters. To adopt a small learning rate for large-changing parameters, a larger learning rate for more stable parameters is the theoretical result of the adaptive gradient algorithm.

In summary, by using the adaptive gradient algorithm, the NB-IoT dataset of the edge nodes of the Internet of Things is used to process the adaptive data processing. The comparison curve of the error rate of the adaptive gradient algorithm obtains the adaptive gradient algorithm as shown in Figure 7.

In Figure 7, the adaptive data classification is performed by the NB-IoT dataset filtered by the NB-IoT data and adaptive gradient algorithm filtering under Bloom. The ingenuity rate of the IoT data filtered by the blue curve part of the blue curve part, the orange curve part represents the misinterpreting rate of the IoT data filtered by the adaptive gradient algorithm in the neural network model. The code rate of both the IoT data filtered under Bloom filtering and the IoT data filtered by the neural network model eventually stabilized around 0.3, but the number of misinterpretations for both at the same location was the time from the 0th to the 2nd test. In the second time, there was a particularly large turning point. The reason for the problem that caused such a large turning point should be caused by improper selection of the initial value. For adaptive gradient algorithms, a large part of the learning rate is not appropriate, but it is finally adjusted to the optimal value through formula (3) and formula (4). Therefore, after the second time, the misunderstand rate suddenly decreased directly. After continuous adjustment of the related parameters of the Bloom filtering algorithm and adaptive gradient algorithm, the error rate of the two algorithms in the end is stable at about 0.3. But in terms of stability, the stability of the Bloom filtering algorithm or the adaptive gradient algorithm is not high. The accuracy of the adaptive gradient algorithm based on the edge perception nodes under the pan-IoT is shown in Figure 8.

The ACC curve of IoT data classification based on the adaptive gradient algorithm under the neural network model is shown in Figure 8. ACC represents the accuracy rate. According to the curve in the figure, the adaptive
classification results of NB-IoT data under the adaptive gradient algorithm can reach a stable level after the 7th to 10th times.

5. Conclusion

In this paper, firstly through the analysis of relevant literature and finally through the development of the Internet of Things and economy are discussed, the Internet of Things and economic development are complementary to each other, so the data processing method based on the ubiquitous NB Internet of Things in this paper has a certain practical significance. In the research background of Section 2, two aspects are mainly discussed. First, the importance of adaptive data processing method oriented to ubiquitous NB Internet of Things edge node perception is discussed. Second, the problems existing in mass data processing method in Internet of Things are summarized. Finally, an adaptive data processing method for edge node perception of ubiquitous NB Internet of Things is necessary. In Section 3, firstly, a theoretical overview of the Internet of Things is given. Secondly, the role and significance of ubiquitous network in NB Internet of Things are emphasized, and the structure of ubiquitous NB Internet of Things is analyzed. The results and discussion in Section 4 are the core of this paper. In this chapter, two different algorithms are used to classify data in ubiquitous NB Internet of Things. The final experimental results show that the Bloom algorithm and the adaptive gradient algorithm have similar stability, and the accuracy is about 75%.

Data Availability

The dataset is available upon request.

Conflicts of Interest

The authors declare no conflicts of interest.
References

[1] E. Oliveira, A. R. da Rocha, M. Mattoso, and F. C. Delicato, "Latency and energy-awareness in data stream processing for edge based IoT systems," Journal of Grid Computing, vol. 20, no. 3, 2022.

[2] D. Yu and J. Zhu, "Retracted article: Statement of retraction: research on digital image wavelet transform filtering optimization processing method based on DSP internet of things," International Journal of Computers and Applications, vol. 44, no. 6, p. 597, 2022.

[3] H.-J. Ni, "Research on smart learning ecosystem structure based on ubiquitous internet of Things," IOP Conference Series: Earth and Environmental Science, vol. 508, no. 1, article 012122, 2020.

[4] H. Song, Y. Chen, Q. Dong, and X. Wang, "Application research of "edge-cloud collaboration" architecture in security protection of ubiquitous power Internet of Things," IOP Conference Series Materials Science and Engineering, vol. 790, no. 1, article 012005, 2020.

[5] W. Yin, C. Feng, J. Shi, J. Lu, and L. Wang, "Application of distribution network current differential protection based on ubiquitous internet of things in line selection and location of small current grounding system," Journal of Physics: Conference Series, vol. 1486, no. 6, article 062014, 2020.

[6] N. Sai Lohitha and K. P. Muthu, "An efficient framework for processing big data in internet of things enabled cloud environments," International Journal of Communication Systems, vol. 35, no. 10, 2022.

[7] C. Antonio, C. Vincenzo, N. Antonino et al., "Recent considerations on gaming console based training for multiple sclerosis rehabilitation," Medical Sciences, vol. 10, no. 1, p. 13, 2022.

[8] M. E. Amr, A. A. Al, M. A. Awamry, A. S. Elmenyawi, and T. Eldien, "Design and implementation of a low-cost IoT node for data processing, case study: smart agriculture," The Journal of Communication, vol. 17, no. 2, 2022.

[9] C. L. Wu, T. C. Cheng, C. H. Min, and T. M. Fong, "Cyber-physical ubiquitous cycling with fuzzy-controlled panorama manifestation based on internet of things technologies," IEEE Sensors Journal, vol. 20, no. 5, 2020.

[10] C. Zhu, "Exploring the role of sports APP in (campus fitness) intelligent solutions using data fusion algorithm and internet of things," International Journal of Grid and Utility Computing, vol. 13, no. 1, p. 40, 2022.

[11] C. Jorge and N. Luis, "Enabling processing power scalability with internet of things (IoT) clusters," Electronics, vol. 11, no. 1, p. 81, 2022.

[12] S. Ahn, "Bartleby, the IoT, and flat ontology: how ontology is written in the age of ubiquitous computing," Postmodern Culture, vol. 29, no. 3, 2019.

[13] X. Chenchu, G. Zhifan, Z. Dong, Z. Jinglin, X. Lei, and L. Shuo, "Applying cross-modality data processing for infarction learning in medical internet of things," IEEE Internet of Things Journal, vol. 8, no. 23, 2021.

[14] Z. Xiaohua, W. Xue, S. Wang, Y. Lu, and W. Hui, "Online Monitoring of Transmission Line Operation Based on Power Internet of Things," Journal of Physics: Conference Series, vol. 2108, no. 1, article 012053, 2021.

[15] G. Jiting and L. Zhiqiang, "Research on data secure transmission and processing method of a LoRa IoT system," Journal of Physics: Conference Series, vol. 1802, no. 3, article 032044, 2021.

[16] J. Aihua, Y. Huihong, L. Delong, and T. Junyang, "Key technologies of ubiquitous power Internet of Things-aided smart grid," Journal of Renewable and Sustainable Energy, vol. 11, no. 6, 2019.

[17] H. Bian and Q. Wang, "Application and research of IEEE1588 protocol in ubiquitous power internet of things," International Journal of Intelligent Information and Management Science, vol. 8, no. 5, 2019.

[18] L. N. Xavier, V. A. Villagrá, V. B. Mario, R. Diego, and S. R. Mario, "An IoT-focused intrusion detection system approach based on preprocessing characterization for cybersecurity datasets," Sensors, vol. 21, no. 2, p. 656, 2021.

[19] W. Hu, H. Li, W. Yao, and Y. Hu, "Energy optimization for WSN in ubiquitous power internet of things," International Journal of Computers Communications & Control, vol. 14, no. 4, 2019.

[20] Y. Zhang, "Energy efficiency management and route optimization for wireless sensor network under the ubiquitous power internet of things," European Journal of Electrical Engineering, vol. 21, no. 2, pp. 217–222, 2019.