Talar fractures: radiological and CT evaluation and classification systems

Giuseppe Caracchini1, Michele Pietragalla1, Alioscia De Renzis1, Michele Galluzzo2, Mattia Carbone3, Marcello Zappia4, Anna Russo5, Federico Greco2, Vittorio Miele1

1 Department of Radiology, Careggi University Hospital, Florence, Italy; 2 Department of Emergency Radiology, S. Camillo Hospital, Rome, Italy; 3 A.O.U. San Giovanni di Dio e Ruggi d’Aragona, Department of Radiology, Italy; 4 Università degli Studi del Molise, Department of Medicine and Health Science “V. Tiberio”, Campobasso, Italy; 5 Università degli Studi della Campania Luigi Vanvitelli, Department of Internal and Experimental Medicine, Naples, Italy

Summary. Introduction: The talus is the second largest bone of the foot. It is fundamental to ensure normal ankle-foot movements as it connects the leg and the foot. Talar fractures are usually due to high energy traumas (road accidents, high level falls). They are not common as they account for 3-5% of ankle and foot fractures and 0.85% of all body fractures. However, talar fractures not correctly diagnosed and treated can lead to avascular necrosis of the astragalus, pseudoarthrosis, early osteoarthrisis and ankle instability, declining the quality of life of patients. Methods: A PubMed search was performed using the terms “talus” “talar fractures” and “talar fractures classification”, selecting articles published in the last 98 years. We selected articles about pre-treatment and post-surgery talar fractures diagnostic imaging. We also selected articles about talar fractures complications and traumatic talar dislocations. Case reports have not been included. Aim of the work: to describe radiological evaluations, classification systems, and biomechanical patterns involved in talar fractures. Also we will briefly describe talar fractures complications and treatment option and strategies. Conclusions: This work suggests a radiological approach aimed to classify talar fractures and guide treatment strategies, improving patient outcomes. (www.actabiomedica.it)

Key words: trauma, trauma imaging, talus, talar fractures, classification, radiology, biomechanics, conventional radiography, CT

Introduction

The talus or talo is the second largest bone of the foot. The name “talo” derives from the mythical giant Talos, a bronze giant from Crete defeated by Jason and the Argonauts receding his only vein that reaches the neck from the ankle (1).

The talus can be divided in three parts: an head, a neck, and a body. The body has three processes: posterior, lateral and medial process.

The talus is fundamental to ensure the normal ankle-foot biomechanic as it connects the leg and the foot through the tibio-talar joint, the leg and the hindfoot through the sub-talar joint and the midfoot to the hindfoot through the articulation of Chopart (2).

About two thirds of the talus is covered with cartilage. Only the area around the talar neck and the posterior aspect of the body are not covered so as to allow periosteal blood supply. Vascular supply to the astragalus originates from three vascular systems: the posterior tibial artery, the dorsalis pedis artery and the perforating fibular artery (3, 4). The talus has not tendinous insertion. Because of these peculiar characteristics, talar fractures not correctly diagnosed and treated can lead to Avascular Necrosis (AVN) and early osteoarthritis (5, 6).
The talus is a weight bearing bone, and in healthy subjects it is very resistant to traumas as it has very thick subchondral bone. Strong forces are required to produce talar fractures. One of the first series of talar fractures were reported in pilots and parachutists of the Royal Air Force during the First World War, hence the term “aviator’s astragalus” (7).

Nowadays talar fractures are not common, they account for 3-5% of ankle and foot fractures and 0.85% of all body fractures. They are usually the consequence of high energy traumas (road accidents, high level falls). The majority of patients show other associated fractures, such as in the ankle or in the foot or in other parts of the body (8-10).

Common risk factors are osteoporosis, diabetes mellitus, peripheral neuropathy, osteomalacia, and long-term immunosuppressive therapy.

From the clinical point of view, patients with talar fractures usually have swelling and visible hematoma in the ankle region and limited tibiotalar, subtalar and midtalar Range Of Motions (ROM). Frequently patients are unable to bear body weight on the affected extremity (10-15).

Biomechanical mechanisms leading to talar fractures are various, as there are different biomechanical patterns leading to different talar fractures.

Talar fractures can be classified according the anatomic region involved: head, neck, and body fractures. Body fractures are the most common (61%), talar head fractures are the least common (5%). They can also be classified in intra articular fractures and extra articular fractures (10, 16-20).

The most frequently used neck fractures classification is the one proposed by Hawkins LG in 1970, lately modified by Canale and Kelly in 1978 that includes four fracture types (21, 22).

The most used body fractures classification is the Sneppen classification, that divides talar body fractures in six mayor types (23, 24).

Talar fractures can occur isolated or they can be part of more complex conditions. Associated injuries can be the loss of normal anatomical relationship between ankle and foot bones, damages to the vascular supply systems and concomitant extra talar fractures.

First line diagnostic imaging is based on radiography and Multi Detector Computed Tomography (CT) scans, with Volume Rendering Technique (VRT) and Multi Parametric Reconstruction (MPR) (25-30). A correct and prompt diagnosis is mandatory to guide effective management decisions and optimize treatment outcomes (26, 31-35).

Talar fractures not correctly diagnosed and treated can lead to avascular necrosis of the astragalus, early osteoarthrosis and ankle instability, declining the quality of life of patients (36-40).

Radiologic assessment

Radiography is usually chosen as first examine to evaluate a suspected astragalus fracture. Radiography assessment is generally performed with three standard projections: antero-posterior (AP) and latero-lateral (LL) views of the ankle, and the so called “mortise view” (AP with 30°internal rotation of the foot). The mortise view allows a better visualisation of the lateral aspects of the talus with no superimposition of the fibular malleolus. AP, oblique, and lateral projections of the foot are also generally performed. Because of the superimposition of ankle and foot structures, radiography has low sensitivity and specificity for talar fractures. Moreover, patients are frequently in critical conditions and it is not always possible to obtain good quality radiographs (31, 41-45).

Multi Detector Computed Tomography (MDCT) images have both higher sensibility and specificity than radiography. CT images can be more easily interpreted even when anatomical relations are subverted. MPR images should be performed along the anatomical axes of the foot (46-50). MDCT evaluation with MPR and VRT reconstruction are recommended to best assess fracture(s), anatomical relationship, degree of comminution (51), eventual intra articular loose bodies. CT is also needed to guide management decisions and for surgical planning (23, 52).

Ultrasound (US) and Magnetic Resonance Imaging (MRI) have limited role in the acute setting of astragalus fractures (53-60). They can be useful in a second look for the evaluation of soft-tissue injury, especially for the evaluation of the posterior talo-tibial ligament (61).
Fractures classification

Talar fractures are classified according to anatomic region: head, neck, and body.

Body fractures are the most common and talar head fractures are the least common (10, 16). Talar body fractures account for 61%, neck fractures account for 5%, and head fractures account for 5%; 29% of talar fractures involve head and neck, neck and body or all three components (16, 62-65).

Talar body fractures

Talar body fractures are the most common type of body fractures (16). This kind of fracture generally results from an impaction injury, which damages the articular cartilage and subchondral bone (68, 69) (fig. 1). Fractures of the talar dome may be difficult to detect in standard radiographs. Dale et al retrospectively reviewed 132 talus fractures detected in 122 patients over a period of 1.5 years: they found that approximately 31% of talar dome compression fractures were not diagnosed during the initial radiographies (16).

Osteochondral fractures of the talar dome

Osteochondral fractures of the talar dome are the most common type of body fractures (16). This kind of fracture generally results from an impaction injury, which damages the articular cartilage and subchondral bone (68, 69) (fig. 1). Fractures of the talar dome may be difficult to detect in standard radiographs. Dale et al retrospectively reviewed 132 talus fractures detected in 122 patients over a period of 1.5 years: they found that approximately 31% of talar dome compression fractures were not diagnosed during the initial radiographies (16).

The modified Berndt and Harty classification counts 5 stages:
- Stage 1: subchondral bone compression.
- Stage 2: incomplete separation of the fragments.
- Stage 3: complete separation of the fragments with no displacement.
- Stage 4: complete separation of the fragments with displacement.
- Stage 5: large cyst below the articular surface.

Different types of lesions have different treatment and prognosis.

Figure 1. Coronal MPR shows an osteochondral medial defect of the talar dome (A, white arrow) associated with a «trimalleolar fracture». Sagittal MPR (B) and VRT (C) reconstructions better visualize the displaced fragments (white arrow).
Lateral lesions are usually shallow and commonly caused by dorsiflexion and inversion injuries.

Medial lesions are generally less symptomatic, and typically deeper than lateral lesions; they probably result from plantar flexion and inversion injuries.

Stable and nondisplaced OCF have good prognosis; on the other hand displaced and unstable lesions frequently lead to AVN (15, 72-75).

Posterior process body fractures

This kind of fracture more frequently involves the lateral part of the posterior tubercle (so called “Shepherd fracture”); fractures of the medial part of the tubercle (Cedell fracture) are less frequent (61). Posterior process fractures result from the compression of the posterior process between tibia and calcaneus caused by forced plantar flexion, or from direct trauma to the hind foot. Forced plantar flexion can also result in rupture of the syndesmosis of an os trigonum (76). In the Paulos LE experience, based on 20 patients collected from an orthopaedic sports medicine center, clinical examination was strongly diagnostic: all patients with a posterior process fracture came with significant deep palpable tenderness located posterior to the astragalus and anterior to the Achilles tendon. Also, all patients referred hindfoot pain exacerbated from passive plantar flexion. Pain could also be seen with passive handling of the toe because of the anatomic location of flexor hallucis longus tendon in the hindfoot near the posterior lateral tubercle. Posterior process fractures must be differentiated from an os trigonum – an accessory bone located posteriorly to the talus (77). The os trigonum is present in approximately 7% of general population and it is bilateral in 66% of the cases. In conventional radiographies, posterior process fractures have irregular edges and do fit with a defect on the adjacent posterior part of the talus. On the other hand, an os trigonum has round or oval shape and smooth edges, with complete cortical covering and does not fit with the talus (78) (fig. 2).

Conservative treatment is usually chosen for posterior process fractures; if conservative treatment fails, surgical excision of the fragment may be necessary (76, 79, 80).
Simple fractures and fractures with a less than 2 mm displacement can be managed conservatively. If the displacement is greater than 2 mm open reduction and internal fixation (ORIF) is recommended (90). Small comminuted fragments should be removed (79, 91). Late diagnosis of this kind of fractures can lead to pseudoarthrosis, joint instability and osteoarthritis, requiring subtalar fusion.

True talar body fractures

Usually resulting from high-energy trauma, the incidence of this kind of lesion is difficult to estimate as they commonly occur associated to other injuries. They can involve the talocalcaneal joint, the tibiotalar joint, or both. Different fracture patterns have been reported, ranging from simple two-fragment fractures to comminuted injuries (fig. 6 and fig. 7).

Fractures of the talar body often result from high energy traumas - usually a high-level fall or motor vehicle accident - leading to axial loading on a dorsiflexed foot. Crush comminuted talar body fractures have the worst prognosis of all talar body injuries (92). They generally result from high-energy traumas and an open wound is frequently associated. In case of bone loss and fragments dislocation the risk of avascular necrosis is high.

Initial diagnosis can be made with standard AP, lateral and the so called “mortise view” radiography;
however, subsequent CT with MPR is recommended to assess the degree of comminution, anatomical relationship and for surgical planning (23, 25, 72).

Talar body fractures’ treating aims to restore congruity of the tibiotalar and talocalcaneal joints. Conservative management is reserved for nondisplaced fractures, even if the majority of talar body fractures are displaced and will require operative treatment. Complications such as AVN and posttraumatic osteoarthritis are common. Associated talar neck and open fractures increase the likelihood of complications (23, 72).
Talar fractures: radiological and CT evaluation and classification system

Talar neck fractures

These fractures were historically considered as the most frequent of the talus (16, 21, 93). Nevertheless neck fractures were recently proved by Dale JD to constitute only 5% of all talar fractures (16). The inconsistency probably is due to the lack of clear differentiation between talar neck and talar body fractures. The widely accepted definition is the one proposed by Inokuchi S, who examined 215 fractures of the talus; this classification is based on the location of the inferior fracture line. If the fracture line is anterior or inferior to the lateral process of the talus and the talar dome cartilage, it is classified as a talar neck fracture (94) (fig. 8). The most common causal mechanism of this kind of frac-

Figure 4. Comminuted lateral process fracture. AP radiograph (A), coronal CT MPR (B) and VRT reconstruction (C)

Figure 5. Lateral Process cortical avulsion (coronal CT MPR)

Figure 6. Two fragments body fracture. Axial CT scan (A) and sagittal Multi Planar Reconstruction

Talar neck fractures

These fractures were historically considered as the most frequent of the talus (16, 21, 93). Nevertheless neck fractures were recently proved by Dale JD to constitute only 5% of all talar fractures (16). The inconsistency probably is due to the lack of clear differentiation between talar neck and talar body fractures. The widely accepted definition is the one proposed by Inokuchi S, who examined 215 fractures of the talus; this classification is based on the location of the inferior fracture line. If the fracture line is anterior or inferior to the lateral process of the talus and the talar dome cartilage, it is classified as a talar neck fracture (94) (fig. 8). The most common causal mechanism of this kind of frac-
ture is forced dorsiflexion of the talus against the tibia. A stronger force may result in subtalar or tibiotalar dislocations. Peterson et al experimented mechanisms of neck fractures on twenty cadavers. They found that maximal stress concentration in the collum tali was necessary to fracture the talus itself. The authors achieved this eliminating all movements in the ankle joint and fixing the body of the talus as a cantilever between the tibia and the calcaneus. This was done by applying pre-tension on the foot in a shoe by four rigging screws fixed to the sole (95). The first series of talar neck fractures was described in airplane pilots during World War I and termed “aviator astragalus” by Anderson (7) in 1919. Nowadays, such injuries usually result from high-level falls and road accidents and they are frequently associated with more complex injuries of the foot (16).

The first classification system for talar neck fractures was described by Hawkins in 1970 after the evaluation of fifty-seven fractures detected in fifty-five patients (21). The Hawkins classification was subsequently modified by Canale and Kelly in 1978 after the analysis of seventy-one fractures of the neck (22) (tab. 1).

Type I is a nondisplaced fracture (fig. 9). As the fracture line may be parallel to the x-ray beam, this type of fracture may be difficult to detect. Usually only

| Table 1. The modified Hawkins-Canale classification of talar neck fracture with associated risk of osteonecrosis |
|---------------------------------|---|---------------------------------|
Fracture type	Description	Risk of Osteonecrosis (%)
I	Nondisplaced talar neck fracture	0-15
II	Talar neck fracture and talocalcaneal dislocation	20-50
III	Talar neck fracture, talocalcaneal dislocation and tibiotalar dislocation	100
IV	Talar neck fracture and disruption of all talar articulations	100
the blood supply coming from the dorsolateral aspect of the neck is involved, while the other two blood supply systems are normally intact, so the risk of AVN is low (0-15%) (22, 37).

Type II is a neck fracture with subluxation or dislocation of the subtalar joint, frequently associated with a medial dislocation and an open wound is commonly present. The tibiotalar and talonavicular joints remain congruent. In this type of injuries at least two of the three blood supply systems are involved: the proximal talar neck branches (as in type I), as well as vessels entering inferiorly in the roof of the sinus tarsi and tarsal canal. Even the third main source of blood, which enters via the medial surface of the body, can be injured, so the risk of AVN is higher than in type I (20-50%) (22, 37).

Type III is a type II fracture with subluxation/dislocation of the subtalar joint and subluxation/dislocation of the tibiotalar joints. The talonavicular joint does not dislocate.

The double dislocation with postero-medial extrusion of the talus places the posterior tibial neurovascular bundle at high risk (22, 96). All three of the major sources of blood supply to the talus are commonly injured with type III talar neck fractures and the risk of AVN is very high (up to 100%) (22, 37).

Figure 9. Type I neck fracture. LL ankle (A) and oblique foot (B) radiographs, sagittal CT MPR (C) and VRT reconstruction (D)
In the initial evaluation of talar neck fracture standard AP, lateral, and oblique radiographs of the ankle and foot should be obtained. Talar neck’s fractures are best appreciated on ankle’s lateral views, especially in the case of vertical displacement (22, 37). CT is usually performed to better delineate fracture(s) and displacement, as well as to find radiographically occult fractures (i.e. small avulsion fractures, posterior and lateral processes fractures, osteochondral defects) (16). Only nondisplaced talar neck fractures can be treated conservatively, so every displacement of the fragments has to be detected. Recent studies suggest that fracture displacement, degree of comminution, extent of soft tissue injury, and the quality of surgical reduction influence the development of osteonecrosis and the overall result (97-100). Type II injuries are usually surgically reduced. For type III and IV fractures, closed reduction may be initially attempted to relieve skin tension and minimize soft-tissue injury; however, definitive treatment consists of open reduction and internal fixation (101).

Talar head fractures

Talar head fractures involve the articular surface of the talus at the talonavicular articulation, often accompanied by dislocation or subluxation and adjacent bone fractures. Dale JD retrospectively reviews 132 talar fractures detected in 122 patients and stated that these are the least common fractures of the talus, accounting for 5% of all talar fractures (16). Coltart WD analyzed 228 injuries to talus treated by surgeons working in orthopaedic units of the Royal Air Force between 1940 and 1945. He described two distinct talar head fracture patterns: a crush injury to the articular surface with significant comminution and a shear fracture (102) (fig. 10).

Patients with isolated talar head fractures usually present with pain, swelling and tenderness to palpation over the talar head. Also painful range of motion at the midtarsal joint is usually present (102).

Fractures of the talar head are usually seen on AP, oblique, and lateral radiographs of the foot. The profile of the talar head should be carefully evaluated on all the radiographs to diagnose even subtle fracture and displacement. After a talar head injury is identified or suspected, CT evaluation with MPR should be performed to better evaluate the degree of fragments displacement and the extension of the fracture line. Simple nondisplaced talar head fractures results that talar dislocations more frequently occur with associated bone fractures (103).

Peritalar dislocation

Peritalar dislocation is not common. It is defined as the contemporary loss of normal anatomic relations between the talus, the navicular bone, and calcaneus, while the subtalar and calcaneocuboid joints remain congruent (104). This dislocation is also known as hindfoot dislocation. The causal mechanism could be either a foot plantar-flexing trauma with inversional forces, determining medial subtalar joint dislocation (80%) or with eversional forces, determining lateral dislocation (17%) (105). Rare anterior and posterior dislocations have also been reported (105-107). Subtalar dislocation can be either caused by low-energy trauma, such as trauma occurring in jumping sports as volleyball or basketball, or by high-energy trauma (road accidents, high level falls) (108). Lateral subtalar dislocations result from eversional forces, displacing the distal foot laterally to the talus. They are often associated with bone fractures, with a high likelihood
ratio of joint instability and AVN. Prompt reduction is mandatory to reduce neurovascular damage (109).

The diagnosis of subtalar dislocation is usually made on AP, lateral, and oblique radiographs of the ankle.

After reduction, antero-posterior, lateral radiographs and the so called “mortise view” should be obtained to confirm the results. CT examination should be performed too. CT with multiplanar and volume rendering reconstruction permits a better delineation of anatomic relationship and has a higher sensitivity for associated fractures. Hindfoot fractures frequently occur in association to subtalar dislocations; there could be fractures of the posterior process of the talus, osteochondral fractures and calcaneus fractures. Osteochondral lesions are particularly frequent (12-38% of medial dislocations and up to 100% of lateral dislocations) (103, 110).

Total dislocation

Total dislocation is a very serious and extremely rare condition, accounting for 0.06% of all foot dislocations and 2% of talar fracture-dislocations (111) (fig. 11). Total dislocation usually results from high-energy collisions, often in high-speed accidents, with a significant force applied to the foot resulting in a complete separation of the talus from the calcaneus and navicular bones. The posterior process of the talus may be detached from the posterior talar facet, and the navicular bone may be dislocated anteriorly. The calcaneus and talus are moved outward and forward, often with associated fractures of the calcaneus and navicular bone. The clinical presentation is often dramatic, with marked swelling, pain, deformity, and loss of motion. The diagnosis is made by radiographs, which may show the dislocated bones and associated fractures. CT scanning may be necessary to fully assess the extent of the injury. Treatment is surgical, with open reduction and internal fixation of any associated fractures. The prognosis depends on the severity of the injury and the success of the surgical intervention.
trauma. Also known as pan-talar dislocation, it is the dislocation of the talus from all its articulations (112). It usually comes with open wound. Fractures of the foot bones are frequently associated. However, a rare subtype with no associated fracture has been described.

X-Rays can be initially obtained, but subsequent CT examination with multiplanar and volume rendering examination is mandatory. This injury has a high risk of infection and AVN. Total dislocation can be treated with takedown and arthrodesis; reimplantation of the extruded talus can be attempt (112).

Conclusion

The talus has a complex anatomy and biomechanics. Conventional Radiography is the first line methodic in the evaluation of a potential talar fracture; however CT scans with MPR and VRT reconstructions are necessary to accurately assess and classify talar fractures. A correct and prompt diagnosis is mandatory to guide effective management decisions and optimize treatment outcomes.

References

1. Matthews S. (i) Fractures of the talus. Orthopaedics and Trauma 26(3): 149-54.
2. Frigg A, Frigg R, Hintermann B, Barg A, Valderrabano V. The biomechanical influence of tibiotalar containment on stability of the ankle joint. Knee Surg Sports Traumatol Arthrosc 2007; 15(11): 1353-62.
3. Gelberman RH, Mortensen WW. The arterial anatomy of the talus. Foot Ankle 1983; 4(2): 64-72.
4. Mullfinger GL, Trueta J. The blood supply of the talus. J Bone Joint Surg Br 1970; 52(1): 160-7.
5. Ohl X, Harisboure A, Hemery X, Dehoux E. Long-term follow-up after surgical treatment of talar fractures: Twenty cases with an average follow-up of 7.5 years. Int Orthop 2011; 35(1): 93-9.
6. Vallier HA. Fractures of the Talus: State of the Art. J Orthop Trauma 2015; 29(9): 385-92.
7. Anderson H, Flack M, Gotch O. The medical and surgical aspects of aviation. The Joint committee of Henry Frowde and Hodder and Stoughton: Oxford Press; 1919.
8. Santavirta S, Seitsalo S, Kiviluoto O, Myllynen P. Fractures of the talus. J Trauma 1984; 24(11): 986-9.
9. Rogosic S, Bojanic I, Boric I, Tudor A, Srdoc D, Sestan B. Unrecognized fracture of the posteromedial process of the talus--a case report and review of literature. Acta Clin Cro- at. 2010; 49(3): 315-20.
10. Melenevsky Y, Mackey RA, Abrahams RB, III NBT. Talar Fractures and Dislocations: A Radiologist’s Guide to Timely Diagnosis and Classification. Radiographics 2015; 35(3): 765-79.
11. Barile A, Arrigoni F, Bruno F, Guglielmi G, Zappia M, Reginelli A, et al. Computed Tomography and MR Imaging in Rheumatoid Arthritis. Radiol Clin North Am 2017.
12. Barile A, Bruno F, Arrigoni F, Splendiani A, Di Cesare E, Zappia M, et al. Emergency and Trauma of the Ankle. Semin Musculoskeletal Radiol 2017; 21(3): 282-9.
13. Reginelli A, Zappia M, Barile A, Brunese L. Strategies of imaging after orthopedic surgery. Musculoskeletal Surg 2017; 101.
14. Barile A, Bruno F, Mariani S, Arrigoni F, Brunese L, Zappia M, et al. Follow-up of surgical and minimally invasive treatment of Achilles tendon pathology: a brief diagnostic imaging review. Musculoskeletal Surg 2017; 101: 51-61.
15. de Filippo M, Azzali E, Pesce A, Saba L, Mostardi M, Borgia D, et al. CT arthrography for evaluation of autologous chondrocyte and chondral-inductor scaffold implantation in the osteochondral lesions of the talus. Acta Biomedica 2016; 87(3): 51-6.
16. Dale JD, Ha AS, Chew FS. Update on talar fracture patterns: a large level I trauma center study. AJR Am J Roentgenol 2013; 201(5): 1087-92.
17. Reginelli A, Capasso R, Ciccone V, Croce MR, Di Grezia G, Carbone M, et al. Usefulness of triphasic CT aortic angiography in acute and surveillance: Our experience in the assessment of acute aortic dissection and endoleak. Int J Surg 2016; 33: S76-S84.
18. Barile A, La Marra A, Arrigoni F, Mariani S, Zugaro L, Splendiani A, et al. Anaesthesists, steroids and platelet-rich plasma (PRP) in ultrasound-guided musculoskeletal procedures. Br J Radiol 2016; 89(1065).
19. Masciocchi C, Arrigoni F, Barile A. Role of conventional RX, CT, and MRI in the evaluation of prosthetic joints. Imaging of Prosthetic Joints: A Combined Radiological and Clinical Perspective: Springer-Verlag Milan; 2014. p. 63-9.
20. Masciocchi C, Conchiglia A, Conti L, Barile A. Imaging of insufficiency fractures. Geriatric Imaging: Springer-Verlag Berlin Heidelberg; 2013. p. 83-91.
21. Hawkins LG. Fractures of the neck of the talus. J Bone Joint Surg Am 1970; 52(5): 991-1002.
22. Canale ST, Kelly FB, Jr. Fractures of the neck of the talus. Long-term evaluation of seventy-one cases. J Bone Joint Surg Am 1978; 60(2): 143-56.
23. Shakked RJ, Tejwani NC. Surgical treatment of talus fractures. Orthop Clin North Am 2013; 44(4): 521-8.
24. Snepen O, Christensen SB, Krosgoe O, Lorentzen J. Fracture of the body of the talus. Acta Orthop Scand 2013; 201(5): 1087-92.
25. Wechsler RJ, Schweitzer ME, Karasick D, Deely DM, Glaser JB. Helical CT of talar fractures. Skeletal Radiol 1997; 26(3): 137-42.
56. Cuomo G, Zappia M, Iudici M, Abignano G, Rotondo A, Valentini G. The origin of tendon friction rubs in patients with systemic sclerosis: a sonographic explanation. Arthritis Rheum 2012; 64(4): 1291-3.

57. Zappia M, Reginelli A, Russo A, D’Agosto GF, Di Pietto F, Genovese EA, et al. Long head of the biceps tendon and rotator interval. Musculoskeletal Surg 2013; 97(suppl 2): S99-S108.

58. Pinto A, Brunese L, Pinto F, Reali R, Daniele S, Romano L. The Concept of Error and Malpractice in Radiology. Semin Ultrasound CT MRI 2012; 33(4): 275-9.

59. Pinto A, Brunese L, Pinto F, Acampora C, Romano L. E-learning and education in radiology. Eur J Radiol 2011; 78(3): 368-71.

60. Miele V, Piccolo CL, Trinci M, Galluzzo M, Ianniello S, Brunese L. Diagnostic imaging of blunt abdominal trauma in pediatric patients. Radiol Med 2016; 121(5): 409-30.

61. Cedell CA. Rupture of the posterior talotibial ligament with the avulsion of a bone fragment from the talus. Acta Orthop Scand 1974; 45(5): 454-61.

62. Muto M, Perrotta V, Guarneri G, Lavanga A, Vassallo P, Reginelli R, et al. Vertebralplasty and kyphoplasty: Friends or foes? Radiol Med 2008; 113(8): 117-84.

63. Caranci F, Tedeschi E, Leone G, Reginelli A, Gatta G, Pinto A, et al. Errors in neuroradiology. Radiol Med 2015; 120(9): 795-801.

64. Pinto A, Pinto F, Faggian A, Rubino G, Caranci F, Macarini L, et al. Sources of error in emergency ultrasonography. Critical Ultrason Journal 2013; 5 (suppl 1): 1-5.

65. Tamburrini S, Solazzo A, Sagnelli A, Del Vecchio L, Reginelli A, Monsorro M, et al. Amyotrophic lateral sclerosis: sonographic evaluation of dysphagia. Radiol Med 2010; 115(5): 784-93.

66. Thordarson DB. Talar body fractures. Orthop Clin North Am 2001; 32(1): 65-77, viii.

67. Early JS. Management of fractures of the talus: body and head regions. Foot Ankle Clin 2004; 9(4): 709-22.

68. Mukherjee SK, Young AB. Dome fracture of the talus. A review and new surgical approach for medial dome lesions. Foot Ankle 1985; 5(4): 165-85.

69. De Filippo M, Corsi A, Evaristi L, Bertoldi C, Sverzellati N, Averna R, et al. Critical issues in radiology requests and reports. Radiol Med 2011; 116(1): 152-62.

70. Azzi E, Milanese G, Martella I, Ruggirello M, Seletti V, Ganazzoli C, et al. Imaging of osteonecrosis of the femoral head. Acta Biomed 2016; 87 Suppl 3: 6-12.

71. Paulos LE, Johnson CL, Noyes FR. Posterior compartment fractures of the ankle. A commonly missed athletic injury. Am J Sports Med 1983; 11(6): 439-43.

72. Nyska M, Howard CB, Matan Y, Cohen D, Peyser A, Garti N, et al. Fracture of the posterior body of the talus—the hidden fracture. Arch Orthop Trauma Surg 1998; 117(1-2): 114-7.

73. Mc DA. The os trigonum. J Bone Joint Surg Br 1955; 37-B(2): 257-65.

74. Summers NJ, Murdock MM. Fractures of the talus: a comprehensive review. Clin Podiatr Med Surg 2012; 29(2): 187-203, vii.

75. De Filippo M, Ingegnoli A, Carloni A, Verardo E, Sverzellati N, Onniboni M, et al. Erdheim-Chester disease: clinical and radiological findings. Radiol Med 2009; 114(8): 1319-29.

76. Boack DH, Manegold S. Peripheral talar fractures. Injury 2004; 35 Suppl 2: SB23-35.

77. Hawkins LG. Fracture of the Lateral Process of the Talus. J Bone Joint Surg Am 1965; 47: 1170-5.

78. Ebraheim NA, Skie MC, Podeszwa DA, Jackson WT. Evaluation of process fractures of the talus using computed tomography. J Orthop Trauma 1994; 8(4): 332-7.

79. Kirkpatrick DP, Hunter RE, Janes PC, Mastrangelo J, Nicholas RA. The snowboarder’s foot and ankle. Am J Sports Med 1998; 26(2): 271-7.

80. Boon AJ, Smith J, Zobitz ME, Amrami KM. Snowboarder’s talus fracture. Mechanism of injury. Am J Sports Med 2001; 29(3): 333-8.

81. von Knoch F, Beckord U, von Knoch M, Sommer C. Fracture of the lateral process of the talus. J Bone Joint Surg Br 2007; 89(6): 772-7.

82. Lee P, Hunter TB, Taljanovic M. Musculoskeletal colloquialisms: how did we come up with these names? Radiographics 2004; 24(4): 1009-27.

83. Chan GM, Yoshida D. Fracture of the lateral process of the talus associated with snowboarding. Ann Emerg Med 2003; 41(6): 854-8.

84. Morrison W, Sanders T. Problem Solving in Musculoskeletal Imaging 2008.

85. Heckman JD, McLean MR. Fractures of the lateral process of the talus. Clin Orthop Relat Res 1985(199): 108-13.

86. Perera A, Baker JF, Lui DF, Stephens MM. The management and outcome of lateral process fracture of the talus. Foot Ankle Surg 2010; 16(1): 15-20.

87. Ebraheim NA, Patil V, Owens C, Kandimala Y. Clinical outcome of fractures of the talar body. Int Orthop 2008; 32(6): 773-7.

88. Rammelt S, Zwipp H. Talar neck and body fractures. Injury 2009; 40(2): 120-35.
94. Inokuchi S, Ogawa K, Usami N. Classification of fractures of the talus: clear differentiation between neck and body fractures. Foot Ankle Int 1996; 17(12): 748-50.
95. Peterson L, Romanus B, Dahlberg E. Fracture of the collum tali— an experimental study. J Biomech 1976; 9(4): 277-9.
96. Daniels TR, Smith JW. Talar neck fractures. Foot Ankle 1993; 14(4): 225-34.
97. Vallier HA, Nork SE, Barei DP, Benirschke SK, Sangeorzan BJ. Talar neck fractures: results and outcomes. J Bone Joint Surg Am 2004; 86-A(8): 1616-24.
98. Bellamy JL, Keeling JJ, Wenke J, Hsu JR. Does a longer delay in fixation of talus fractures cause osteonecrosis? J Surg Orthop Adv 2011; 20(1): 34-7.
99. Fortin PT, Balazsy JE. Talus fractures: evaluation and treatment. J Am Acad Orthop Surg 2001; 9(2): 114-27.
100. Fournier A, Barba N, Steiger V, Lourdais A, Frin JM, Williams T, et al. Total talar fracture – long-term results of internal fixation of talar fractures. A multicentric study of 114 cases. Orthop Traumatol Surg Res 2012; 98(Suppl): S48-55.
101. Coughlin M, Saltzman C, Anderson R. Mann's surgery of the foot and ankle. 2014.
102. Coltart WD. Aviator's astragalus. J Bone Joint Surg Br 1952; 34-B(4): 545-66.
103. DeLee JC, Curtis R. Subtalar dislocation of the foot. J Bone Joint Surg Am 1982; 64(3): 433-7.
104. Barber JR, Bricker JD, Haliburton RA. Peritalar dislocation of the foot. Can J Surg 1961; 4: 205-10.
105. Saltzman C, Marsh JL. Hindfoot Dislocations: When Are They Not Benign? J Am Acad Orthop Surg 1997; 5(4): 192-8.
106. Lasanianos NG, Lyra DN, Mouzopoulos G, Tsutseos N, Garnavos C. Early mobilization after uncomplicated medial subtalar dislocation provides successful functional results. Journal of Orthopaedics and Traumatology 2011; 12(1): 37-43.
107. Zimmer TJ, Johnson KA. Subtalar dislocations. Clin Orthop Relat Res. 1989(238): 190-4.
108. Grantham SA. Medical Subtalar Dislocation: Five Cases with a Common Etiology. J Trauma 1964; 4: 845-9.
109. Speck B, Dazzi H, Gratwohl A, Tichelli A, Nissen C. Bone marrow transplantation for haemopoietic neoplasia. Evaluation of a new approach to T cell depletion. Bone Marrow Transplant 1989; 4 Suppl 4: 56-7.
110. Christensen SB, Lorentzen JE, Krogsoe O, Sneppen O. Subtalar dislocation. Acta Orthop Scand. 1977; 48(6): 707-11.
111. Flaherty E, Chew FS. Emergency Imaging of Foot Trauma. Semin Roentgenol 2016; 51(3): 268-79.
112. Karampinas PK, Kavroudakis E, Polyzois V, Vlamis J, Pneumaticos S. Open talar dislocations without associated fractures. Foot Ankle Surg 2014; 20(2): 100-4.

Received: 15 September 2017
Accepted: 20 December 2017
Correspondence:
Vittorio Miele, MD
Department of Radiology Careggi University Hospital
L.go G. A. Brambilla, 3 – 50134 Florence (Italy)
E-mail: vmiele@sirm.org