Cholesterol Depletion from the Plasma Membrane Triggers Ligand-independent Activation of the Epidermal Growth Factor Receptor*

Xu Chen and Marilyn D. Resh‡

From the Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 and Graduate Program in Biochemistry and Structural Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021

We recently demonstrated that depletion of plasma membrane cholesterol with methyl-β-cyclodextrin (MβCD) caused activation of MAPK (Chen, X., and Resh, M. D. (2001) J. Biol. Chem. 276, 34617–34623). MAPK activation was phosphatidylinositol 3-kinase (PI3K)-dependent and involved increased tyrosine phosphorylation of the p85 subunit of PI3K. We next determined whether MβCD treatment induced tyrosine phosphorylation of other cellular proteins. Here we report that cholesterol depletion of serum-starved COS-1 cells with MβCD or filipin caused an increase in Tyr(P) levels of the 180-kDa protein that was identified as the epidermal growth factor receptor (EGFR). Cross-linking experiments showed that MβCD-induced dimerization of EGFR, indicative of receptor activation. Reagents that block release of membrane-bound EGFR ligands did not affect MβCD-induced tyrosine phosphorylation of EGFR, indicating that MβCD activation of EGFR is ligand-independent. Moreover, MβCD treatment resulted in increased tyrosine phosphorylation of EGFR downstream targets and Ras activation. Incubation of cells with the specific EGFR inhibitor AG4178 blocked MβCD-induced phosphorylation of EGFR, SHC, phospholipase C-γ, and Gab-1 as well as MAPK activation. We conclude that cholesterol depletion from the plasma membrane by MβCD causes ligand-independent activation of EGFR, resulting in MAPK activation by PI3K and Ras-dependent mechanisms. Moreover, these studies reveal a novel mode of action of MβCD, in addition to its ability to disrupt membrane rafts.

Cholesterol is a membrane lipid that regulates both the flexibility and the mechanical stability of the membrane bilayer. It has also been shown that cholesterol plays a critical role in assembling membrane microdomains, such as rafts and caveolae, in a separate phase from the rest of the bilayer (1–3). Cholesterol and lipid rafts are involved in numerous cellular processes, including membrane protein segregation and concentration, protein and lipid sorting, and virus assembly and release (1, 3, 4). However, excess cholesterol is toxic to cells and can contribute to the development of diseases such as atherosclerosis and Alzheimer’s disease (5, 6). It is therefore important for cells to maintain cholesterol homeostasis.

Methyl-β-cyclodextrin (MβCD)1 is a water-soluble cyclic heptasaccharide that has been used to deliver hydrophobic drugs based on its property of solubilizing non-polar substances (7). This compound has also been demonstrated to bind cholesterol with high specificity (7). Cholesterol from the plasma membrane of cultured cells is rapidly removed in response to MβCD (8–10), and MβCD has therefore been extensively used as a cholesterol-depleting reagent. Recent studies also indicate that cholesterol depletion by MβCD disrupts membrane rafts (11, 12) and affects signaling pathways at the cell surface (13, 14).

We recently demonstrated (15) that cholesterol depletion by MβCD induced ERK activation via a PI3K-dependent pathway. How cholesterol removal regulated this pathway was not clear. We had observed that treatment of cells with MβCD caused an increase in tyrosine phosphorylation of the p85 subunit of PI3K. It was therefore of interest to determine whether cholesterol depletion by MβCD induces tyrosine phosphorylation of other cellular proteins. Here we show that MβCD treatment of cells induced tyrosine phosphorylation of multiple proteins. A combination of Tyr(P) antibody/agarose affinity purification and mass spectrometry was used to identify one of the proteins (180 kDa) as the epidermal growth factor receptor (EGFR). MβCD treatment induced tyrosine phosphorylation of downstream targets of EGFR, including SHC, PLC-γ, and Gab-1 as well as Ras activation. We conclude that cholesterol depletion from the plasma membrane triggers signal transduction through ligand-independent activation of the EGFR receptor.

MATERIALS AND METHODS

Antibodies and Reagents—Goat polyclonal anti-p-EGFR (Tyr-1173), rabbit polyclonal anti-EGFR (1005), anti-ERK2 (C-14), and anti-Gab-1 (H-198), and monoclonal anti-Tyr(P) (P799) and anti-p-ERK (E-4) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Monoclonal anti-EGFR (neutralizing) and monoclonal anti-PLC-γ were obtained from Upstate Biotechnology (Lake Placid, NY). Rabbit anti-p-EGFR (Tyr-1086) and anti-p-EGFR (Tyr-845) were purchased from Cell Signaling Technology (Beverly, MA). Rabbit polyclonal anti-SHC and mouse monoclonal anti-SHC were obtained from BD Biosciences. Fluorescein isothiocyanate-conjugated anti-mouse secondary antibody was obtained from Molecular Probes (Eugene, OR). GM6001 was obtained from Chemicon International (Temecula, CA). Bis(sulfosuccinimidyl) suberate (BS3) was obtained from Pierce. Wortmannin, TPA, CRM197, cholesterol, filipin, and methyl-β-cyclodextrin were purchased from Sigma. Tyrphostin AG1478 was obtained from Biomol (Plymouth Meeting, PA). Epidermal growth factor was obtained from Calbiochem. Trapsol was obtained from Cycloextrin Technologies Development Inc. (High Springs, FL).

1 The abbreviations used are: MβCD, methyl-β-cyclodextrin; EGF, epidermal growth factor; EGFR, EGF receptor; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; MEK, MAPK/ERK kinase; PI3K, phosphatidylinositol 3-kinase; PBS, phosphate-buffered saline; BS3, bis(sulfosuccinimidyl) suberate; TPA, 12-O-tetradecanoylphorbol-13-acetate; PLC, phospholipase C.

* This work was supported by National Institutes of Health Grant GM 57966. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., Box 143, New York, NY 10021. Tel.: 212-639-2514; Fax: 212-717-3317; E-mail: m-resh@ski.mskcc.org.

This paper is available on line at http://www.jbc.org
Cell Culture, Transfection, and Cholesterol Depletion—COS-1 cells, A431 cells, and 3T3 cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (COS-1, A431) or with 10% calf serum (3T3 cells). COS-1 cells were transfected with LipofectAMINE 2000 (Invitrogen) according to the manufacturer’s instructions. Cholesterol depletion of cells was performed as described previously (15). Briefly, cells were serum-starved for 24 h and then incubated with the indicated concentration of MβCD (dissolved in Dulbecco’s modified Eagle’s medium) or other indicated cholesterol depletion reagents for 1 h at 37 °C before lysis. For inhibitor experiments, serum-starved cells were incubated for 1 h at 37 °C with indicated inhibitors in the presence of 2% MβCD prior to harvest.

Identification of Proteins by Mass Spectrometry—Six 100-mm plates of COS-1 cells were serum-starved and then treated with 2% MβCD for 1 h. Cells were lysed in RIPA buffer (150 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.5% deoxycholate, 1% Triton X-100, 10 mM Tris, pH 7.4, 1 mM Na3VO4, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 250 μg/ml Pefabloc (Roche Molecular Biochemicals)) and then subjected to affinity purification using an anti-TyrP/agarose conjugate. Samples were washed three times with RIPA buffer and analyzed by SDS-PAGE and Coomassie Blue staining. Individual protein bands were excised and digested with trypsin, and the tryptic peptides were subjected to mass fingerprinting by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry by the Sloan-Kettering Microchemistry Facility. Top “major” experimental masses (m/z) were used to search a non-redundant human data base using the PeptideSearch algorithm. A molecular weight range twice the predicted weight was covered, with a mass accuracy restriction of 40 ppm or better, and a maximum of one missed cleavage site allowed per peptide. In addition, mass spectrometric based sequencing (electrospray ionization-mass spectrometry) of selected peptides was performed using a PE-SCIEX API300 triple quadrupole instrument, fitted with a continuous flow nano-electrospray source (“JaFIS”).

Immunoprecipitation and Immunoblotting—Cells were lysed with RIPA buffer, and lysates were clarified at 14,000 rpm in an Eppendorf centrifuge for 10 min at 4 °C. For immunoprecipitation, lysates were incubated with the indicated antibodies and protein A-agarose (Santa Cruz Biotechnology). Samples were washed three times with RIPA buffer and analyzed by SDS-PAGE. Western blotting was performed using the indicated antibodies. Proteins were detected using horseradish peroxidase-conjugated secondary antibodies and ECL Western blotting detection reagents following the manufacturer’s instructions. Ras activation was assayed using a Ras Activation Assay Kit (Upstate Biotechnology) following the manufacturer’s instructions.

Immunofluorescence Microscopy—Immunofluorescence staining was carried out as described previously (16). COS-1 cells were seeded onto 25-mm glass coverslips and serum-starved for 24 h before treatment with 1% MβCD for 2 h. The cells were washed twice with PBS, fixed with 3.7% formalin/PBS for 15 min, permeabilized with 0.2% Triton in PBS for 5 min, and incubated with anti-TyrP (1 μg/ml) monoclonal antibody for 45 min. Cells were washed four times with PBS and incubated with fluorescein isothiocyanate-conjugated secondary antibody and ECL Western blotting detection reagents following the manufacturer’s instructions. The cell lysates were analyzed by Western blotting (WB) with the indicated antibodies.

RESULTS

MβCD Induces Tyrosine Phosphorylation of Proteins in COS-1 Cells—Our recent studies (15) showed that treatment of COS-1 cells with MβCD activated MAPK via a PI3K-dependent pathway. Moreover, MβCD-treated cells exhibited enhanced tyrosine phosphorylation of the p85 subunit of PI3K. We therefore examined whether tyrosine phosphorylation of other cellular proteins was increased in response to MβCD. COS-1 cells were serum-starved for 24 h and then were treated with 1% MβCD for 1 h at 37 °C. Cell lysates were analyzed by SDS-PAGE and anti-Tyr(P) Western blotting. As shown in Fig. 1A, tyrosine phosphorylation levels of two prominent proteins, termed p180 and p130, were increased upon treatment with MβCD. Similar results were also observed in NIH 3T3 cells. Furthermore, immunofluorescence staining of COS-1 cells with anti-Tyr(P) antibody revealed a striking increase in the levels of cellular protein tyrosine phosphorylation upon treatment of MβCD, compared with control cells, particularly at the plasma membrane and in the perinuclear region (data not shown). These results demonstrate that MβCD can induce tyrosine phosphorylation of cellular proteins.

Identification of Tyrosine-phosphorylated Proteins Stimulated by MβCD—The next set of experiments was designed to identify the MβCD-induced phosphorylated proteins. Serum-starved COS-1 cells were treated with 2% MβCD for 1 h, and cell lysates were subjected to affinity purification using an anti-TyrP/agarose conjugate. Bound protein samples were resolved by SDS-PAGE and Coomassie Blue staining. As shown in Fig. 1B, an 180-kDa band was apparent in the lane from MβCD-treated cells. The p180 band was excised and digested with trypsin. Mass spectrometric fingerprinting analysis was...
Cyclodextrin Activates EGF Receptor Signaling

Fig. 2. Concentration-dependent effects of MβCD on tyrosine phosphorylation of EGFR. A, serum-starved COS-1 cells were incubated in the presence of the indicated concentrations of MβCD for 1 h. Cell lysates were subjected to SDS-PAGE and Western blotting with an anti-pEGFR antibody. B, quantitation of data from the above experiment is plotted. Phosphorylation of EGFR stimulated by 2% MβCD was normalized to 100%.

performed as described under "Materials and Methods," resulting in the identification of p180 as the EGFR.

To confirm that Tyr(P) 180 was the EGFR, immunoprecipitation and Western blotting of lysates from MβCD-treated COS-1 cells was performed with anti-EGF receptor and anti-Tyr(P) antibodies. As depicted in Fig. 1C, treatment of cells with MβCD clearly induced EGFR phosphorylation. Similar results were also observed using anti-p-EGFR antibody, which recognizes only tyrosine-phosphorylated (Tyr-1173) EGFR. In human A431 cells, which express high levels of EGFR, it was shown that MβCD strongly increased EGFR phosphorylation (Fig. 1D). Moreover, the MβCD-induced increase in EGFR phosphorylation was inhibited by AG4178, a specific inhibitor of EGFR tyrosine kinase activity (19). It is important to note that these experiments were performed with serum-starved cells, implying that phosphorylation of EGFR induced by MβCD is ligand-independent (see below).

Role of Cholesterol in MβCD-induced EGFR Phosphorylation—We next examined the concentration dependence of MβCD on EGFR phosphorylation. Serum-starved COS-1 cells were treated with increasing concentrations of MβCD for 1 h at 37 °C and then lysed. Samples were subjected to SDS-PAGE and Western blotting using an anti-p-EGFR antibody. MβCD induced phosphorylation of EGFR in a concentration-dependent manner (Fig. 2), with maximal EGFR phosphorylation occurring at 2% MβCD. Concentrations of MβCD above 2% resulted in loss of cell viability.

Quantitation of cholesterol levels revealed that addition of 2% MβCD resulted in an -40% reduction in membrane cholesterol content (Fig. 3A). In order to determine whether depletion of cholesterol by MβCD was responsible for EGFR phosphorylation, MβCD was preincubated with or without 40 μg/ml cholesterol and added to serum-starved COS-1 cells for 1 h. Cell lysates were subjected to SDS-PAGE followed by Western blotting using an anti-p-EGFR antibody. Phosphorylation of EGFR was analyzed and quantitated from three independent experiments. The level of phosphorylation of EGFR induced by MβCD was normalized to 100%. C and D, serum-starved COS-1 cells were incubated in the absence or presence of 10 μg/ml filipin (C) or 40 μM Trappsol (D). Phosphorylation of EGFR was monitored as described in B.

Fig. 3. The role of cholesterol in tyrosine phosphorylation of EGFR induced by MβCD. A, COS-1 cells were treated with or without 2% MβCD for 1 h and washed, and the plasma membrane fraction was isolated. The amount of cholesterol in the membrane fraction was measured by using Sigma Infinity Cholesterol Reagent (see "Materials and Methods"). Data are expressed as the amount of cholesterol per mg of total plasma membrane protein. B, 1% MβCD was preincubated with or without 40 μg/ml cholesterol and added to serum-starved COS-1 cells for 1 h. Cell lysates were subjected to SDS-PAGE followed by Western blotting using an anti-p-EGFR antibody. Phosphorylation of EGFR was analyzed and quantitated from three independent experiments. The level of phosphorylation of EGFR induced by MβCD was normalized to 100%.

Next we examined whether other cholesterol depletion agents can cause ligand-independent EGFR phosphorylation. COS-1 cells were incubated with 2-OH-propyl-β-cyclodextrin (Trappsol), which is as effective in depleting cell membrane cholesterol as MβCD (20), or filipin, a cholesterol-binding agent (21). Both Trappsol and filipin caused EGFR phosphorylation (Fig. 3, C and D). These data imply that cholesterol depletion from the cell membrane induces EGFR phosphorylation.

MβCD Causes Ligand Independent Dimerization and Activation of EGFR—It has been established previously that upon EGF binding, EGFR undergoes ligand-induced dimerization, a prerequisite for normal receptor signaling (22). The tyrosine phosphorylation of EGFR induced by MβCD occurs in the absence of EGF addition. We therefore investigated whether MβCD can also cause EGFR dimerization, indicative of EGFR activation. Serum-starved COS-1 cells were stimulated with 2% MβCD for 1 h at 37 °C and then exposed to the membrane-impermeable cross-linker BS3. As shown in Fig. 4, MβCD increased dimerization of EGFR to a similar extent as 25 ng/ml EGF, implying that MβCD induced ligand-independent activation of EGFR.

Previous studies (23–25) have reported that transactivation of EGFR can occur by release of membrane-anchored EGFR ligands; this event is mediated by activation of transmembrane metalloproteinases. We therefore performed two sets of experiments to determine whether MβCD activation of EGFR was truly ligand-independent. First, cells were treated with a neu-
phorylation of the EGFR targets SHC, PLC-/H9253 and Gab-1. Ly-
sates from serum-starved COS-1 cells that were not treated or
treated with MjCD were immunoprecipitated with anti-
SHC or PLC-γ or Gab-1 antibodies, followed by SDS-PAGE and
Western blotting with an anti-Tyr(P) antibody. As shown in
Fig. 7, treatment of cells with MjCD induced tyrosine phos-
phorylation of all three SHC isoforms (p66, p52, and p46) as
well as PLC-γ and Gab-1. MjCD-induced SHC, PLC-γ, and
Gab-1 phosphorylation levels were reduced by about 90% in
the presence of the EGFR inhibitor AG4178 (data not shown).
Thus, ligand-independent activation of EGFR results in phos-
phorylation of downstream targets of EGFR.

In order to monitor Ras activation, cells were treated with
MjCD or EGF, and the amount of activated Ras was quantify-
ted using a Ras binding domain-glutathione S-transferase
pulldown assay. As depicted in Fig. 8, 2% MjCD induced a
10–13-fold activation of Ras, compared with 20-fold obtained with 25 ng/ml EGF. It is therefore likely that Ras-dependent pathways contribute to ERK activation by MβCD.

The Role of PI3K in MβCD-induced EGFR Signaling—Our previous study (15) established that MβCD induced ERK activation in a PI3K-dependent manner. We therefore performed experiments to determine at which stage in the signaling pathway PI3K was involved. The PI3K inhibitor wortmannin had no effect on MβCD-induced tyrosine phosphorylation of EGFR, SHC, PLC-γ, and Gab-1 (data not shown). However, wortmannin did significantly inhibit MβCD-induced ERK activation. Wortmannin caused a 50% reduction in pERK levels in cells treated with 2% MβCD and a 75% reduction in pERK in cells treated with 1% MβCD (Fig. 9, A and B). In order to determine whether a Ras/Raf/MEK pathway was responsible for the residual pERK activity, we incubated MβCD-treated cells in the presence, absence, or combination of wortmannin and/or PD98059, a MEK inhibitor. As depicted in Fig. 9B, the combination of wortmannin and PD98059 reduced pERK to basal levels. Taken together, these results suggest that both PI3K and Ras-dependent pathways contribute to the MβCD-induced activation of EGFR signaling.

DISCUSSION

Cyclodextrins such as MβCD effectively remove cholesterol from the plasma membrane (8–10, 14, 28, 29). This property has made MβCD an extensively used agent to study the function of rafts, membrane microdomains whose integrity depends on the presence of cholesterol. In this report, we show that cholesterol depletion by MβCD also has a striking effect on tyrosine phosphorylation of endogenous cellular proteins. The data presented here clearly demonstrate that MβCD treatment results in activation of the endogenous EGFR, as evidenced by increased tyrosine phosphorylation and dimerization of EGFR, increased tyrosine phosphorylation of downstream substrates of EGFR, including endogenous SHC, PLC-γ, and Gab-1, and...
Cyclodextrin Activates EGF Receptor Signaling

Fig. 10. A model for MβCD-induced MAPK activation. Depletion of plasma membrane cholesterol by MβCD leads to dimerization and activation of EGFR and signaling via PI3K and Ras-dependent pathways. See text for details.

activation of ERK. All of these events were blocked by AG4178, a specific EGFR kinase inhibitor, implying that MβCD induced EGFR signal transduction.

Several lines of evidence support the hypothesis that depletion of plasma membrane cholesterol plays a critical role in MβCD-mediated EGFR activation. First, multiple cholesterol-binding reagents, including MβCD, filipin, and trappsol, caused EGFR phosphorylation (Fig. 3, C and D). Moreover, the MβCD effect on EGFR phosphorylation was blunted by preincubating MβCD with cholesterol (Fig. 3B). Based on these results we conclude that cholesterol depletion by MβCD triggers EGFR signaling.

The data presented in the current study, combined with our recent report (15), establish a mechanism whereby MβCD induces ERK activation, i.e. activation of EGFR. Moreover, this work sheds light on the signaling pathways that are induced as a result of MβCD-induced EGFR activation. Multiple lines of evidence implicate PI3K as being required for MβCD-induced ERK activation. For example, expression of a dominant-negative PI3K mutant blocks MβCD-induced ERK activation (15). In addition, the adaptor protein Gab-1, which links activated growth factor receptors to PI3K (30, 31), is tyrosine-phosphorylated in MβCD-treated cells (Fig. 7C). Moreover, both wortmannin and LY294002, specific PI3K inhibitors, reduce ERK activation by MβCD (15). It is interesting to note that the extent of inhibition by wortmannin varied with the concentration of MβCD, with 75% inhibition of ERK activation obtained when cells were treated with 1% MβCD, and only 50% inhibition at 2% MβCD (Fig. 9). These results imply that additional, PI3K-independent pathways are activated by increasing MβCD concentrations.

We observed previously (15) that transfection of cells with dominant-negative Ha-RasN17 had no apparent effect on MβCD-induced ERK activation. However, limitations posed by transfection efficiency and/or contributions from other Ras isoforms may have obscured a potential role for Ras in this system. We therefore utilized a more sensitive and specific assay, which detects binding of activated Ras to the Ras binding domain of Raf (32). The data depicted in Fig. 8 reveal that Ras is indeed activated by MβCD, and it is likely that Ras activation also contributes to pERK formation.

A model that illustrates our current knowledge of MβCD-induced ERK activation is depicted in Fig. 10. Treatment of cells with MβCD causes cholesterol depletion from the plasma membrane, EGFR dimerization and activation, and EGFR autophosphorylation. At least two downstream signaling pathways are then activated. Phosphorylation and recruitment of SHC triggers the classical Ras/Raf/MEK/MAPK cascade. In addition, PI3K is activated, potentially through Gab-1 (30, 31), leading to MAPK activation via a still unknown mechanism (33). Inhibiting either pathway, with wortmannin or PD98059, provides only partial inhibition of MβCD-induced ERK activation, whereas in the presence of both inhibitors, pERK is reduced to basal levels (Fig. 9). Thus, the Ras and PI3K pathways apparently operate independently and in parallel.

Alterations in Protein Phosphorylation Induced by MβCD—MβCD-triggered increases in protein phosphorylation have also been observed in other studies. For example, MβCD treatment induced transient tyrosine phosphorylation of ZAP-70, LAT, and phospholipase Cγ1 in T cells (13) and resulted in constitutive phosphorylation of SHC in rat adipocytes (14). Removal of plasma membrane cholesterol by MβCD was shown to increase tyrosine phosphorylation in sperm (34). Moreover, cholesterol depletion by MβCD has been shown to hyperactivate ERK and increase EGFR phosphorylation (28, 35, 36). The mechanisms responsible for induction of protein phosphorylation by MβCD in these systems have not been identified. It will be interesting to determine whether activation of growth factor receptors represents a common signaling mechanism in response to membrane cholesterol levels.

The effects of MβCD on ERK are likely to be dependent on cell type. ERK activation in response to MβCD has been observed in COS-1 (15), NIH 3T3 (15), PC12 (37), Rat-1 (28), and T lymphocytes (13, 38). In contrast, MβCD inhibits the activation of ERK induced by shear stress or ischemia in endothelial cells (39, 40) or by insulin in HIRcB cells (41). However, in rat adipocytes, cholesterol depletion by β-cyclodextrin has no effect on ERK activation (14). The reason for these differences in cellular responses is not known but may be related to differences in EGFR abundance.

Ligand-independent Activation of the EGFR—Activation of EGFR signaling in the absence of exogenously added ligand has been observed in several systems. For example, deletions in the extracellular ligand-binding domains of the EGFR have been found in several human tumors, including gliomas, as well as in the avian retroviral oncoprotein vErbB. These mutants trigger oncogenic signals in a ligand-independent manner (42, 43). Transactivation of EGFR can be induced by G-protein-coupled receptors (44, 45) or platelet-derived growth factor (46). In addition, oxidative stress or expression of E-cadherins in epithelial cells stimulates activation of EGFR and subsequent activation of MAPK (47, 48). In many of the instances cited above, EGFR activation has been shown to be mediated by stimulated release of membrane-anchored EGF-like ligand precursors (23–25, 49, 50).

EGFR signaling induced by MβCD occurred in the absence of exogenous EGF, suggesting that ligand-independent activation of EGFR was occurring. Several lines of evidence support the conclusion that EGFR activation by MβCD is truly ligand-independent. First, it is unlikely that MβCD induced the synthesis of EGF, resulting in autocrine stimulation. When conditioned media from cells treated with MβCD were placed on serum-starved cells, no activation of ERK and EGFR phosphorylation was observed (data not shown). Second, treatment with a neutralizing monoclonal antibody, which effectively blocks the ligand-binding site of the EGFR, blocked the action of exogenously added EGF but had no effect on MβCD-induced EGFR phosphorylation and activation (Fig 6). Third, addition of broad spectrum matrix metalloproteinase inhibitors GM6001 or BB-94 had no effect on MβCD-induced EGFR phosphorylation and activation but blocked EGFR transactivation by TPA (Fig 6). Finally, the Src inhibitor PP2 had no effect on MβCD-induced ERK activation, implying that Src-dependent transactivation of EGFR was not contributing to signaling. Taken together, these data strongly support the hypothesis that cholesterol depletion triggers ligand-independent EGFR activation.
Several potential mechanisms may account for the ability of MβCD to induce EGF receptor signaling. It has been shown recently (51, 52) that cholesterol depletion by MβCD inhibits clathrin-coated budding and prevents formation of clathrin-coated endocytic vesicles. Therefore, one possibility is that endocytosis of EGF is inhibited by MβCD, resulting in a higher concentration of EGF at the cell surface. Burke et al. (55) have provided evidence that EGF signaling is regulated by endocytosis and intracellular trafficking. However, it has been shown that signals transduction from internalized EGF also occurs from endosomes (54). For example, Oksvold et al. (55) showed that a substantial fraction of tyrosine-phosphorylated EGFR and Shc, Grb2, and pERK exists in endosomes and that EGF signaling is not only limited to the plasma membrane but also occurs in the early endosome and late endosome.

Alternatively, perturbation of gross membrane structure may mediate EGF activation. For example, Zwick et al. (56) demonstrated that plasma membrane depolarization triggers EGF activation. Moreover, cholesterol depletion by MβCD has been shown to induce the formation of large scale domains in living cell membranes (29). It is tempting to speculate that cholesterol depletion may occur in response to formation of these new plasma membrane domains. Finally, two recent reports showed that cholesterol depletion was shown to increase the intrinsic tyrosine kinase activity of the EGFR in membranes generated from MβCD-treated NIH 3T3 cells (36).

The results obtained with MβCD in vitro are likely to have potential physiological significance for cholesterol depletion in vivo. Millions of patients are currently being treated with statins to lower serum cholesterol. There is increasing evidence in the literature that statin treatment also reduces membrane cholesterol levels (57, 58). It is therefore possible that the effects on signal transduction observed with acute MβCD treatment of cells may be mimicked by long term statin treatment. Although future work is required to elucidate the exact mechanism of cholesterol in regulating EGF signaling, the data presented in the current study indicate that cholesterol depletion triggers ligand-independent EGF activation and intracellular signaling.

Acknowledgments—We thank Drs. Hediye Erdjument-Bromage and Paul Tempel for mass spectrometry analyses; Dr. XiQian Liang and Wolf Lindwasser for helpful discussions; Raya Louf Nisenbaum for technical assistance; and Debra Alston for secretarial support.

REFERENCES
1. Simons, K., and Ikonen, E. (1997) Nature 387, 569–572.
2. Brown, D. A., and London, E. (1998) Annu. Rev. Cell Dev. Biol. 14, 111–136.
3. Saito, Y., and Hidaka, H. (1998) Prog. Brain Res. 113, 151–158.
4. Simons, K., and Ikonen, E. (1997) Nature 387, 569–572.
5. Brown, D. A., and London, E. (1998) Annu. Rev. Cell Dev. Biol. 14, 111–136.
6. Simons, K., and Ikonen, E. (1997) Nature 387, 569–572.
7. Wouters, F. S., and Bastiaens, P. I. (1999) Nat. Med. 5, 560–566.
8. Peiró, S., Comella, J. X., Enrich, C., Martin-Zauro, D., and Rocamora, N. (2000) J. Biol. Chem. 275, 37846–37852.
9. Tsai, W., Morielli, A. D., and Peralta, E. G. (1997) J. Biol. Chem. 272, 26998–27004.
10. Kilsdonk, E. P., Yancey, P. G., Stoudt, G. W., Johnson, W. J., Phillips, M. C., and Rothblat, G. H. (1996) J. Biol. Chem. 271, 16026–16034.
11. Klein, U., Gimpl, G., and Fahrenholz, F. (1995) Biochemistry 34, 13784–13793.
12. Kilsdonk, E. P., Yancey, P. G., Stoudt, G. W., Johnson, W. J., Phillips, M. C., and Rothblat, G. H. (1996) J. Biol. Chem. 271, 16026–16034.