This is the post-print, accepted version of this article. Published as:

Dulipssy, J. and Gysel, M. and Sjogren, S. and Meyer, N. and Good, N. and Kammermann, L. and Michaud, V. and Weigel, R. and Gruening, S. and Martins dos Santos, C. and Villiani, P. and Laj, P. and Sellegrí, K. and Metzger, A. and McFiggans, G. and Wehrle, G. and Ritcher, R. and Dommen, J. and Ristovski, Z. and Baltensperger, U. and Weingartner, E. (2009) Intercomparison study of six HTDMAs : results and general recommendations for HTDMA operation. Atmospheric Measurement Techniques, 2. pp. 363-378.

© Copyright 2009 The Authors.

This work is distributed under the Creative Commons Attribution 3.0 License.
Intercomparison study of six HTDMAs: results and general recommendations for HTDMA operation

J. Duplissy¹, M. Gysel¹, S. Sjogren¹, N. Meyer², N. Good³, L. Kammermann¹, V. Michaud⁴, R. Weigel⁴, S. Martins dos Santos⁵, C. Gruening⁵, P. Villani⁴, P. Laj⁴, K. Sellegr⁴, A. Metzger¹, G. McFiggans³, G. Wehrle¹, R. Richter¹, J. Dommen¹, Z. Ristovski², U. Baltensperger¹, and E. Weingartner¹

[1] Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
[2] International Laboratory for Air Quality and Health, Queensland University of Technology, QLD 4000, Brisbane, Australia
[3] Centre for Atmospheric Sciences, University of Manchester, M13 9PL, Manchester, United Kingdom
[4] Laboratoire de Météorologie Physique, Blaise Pascal University, 63000, Clermont-Ferrand, France
[5] Climate Change Unit, Joint Research Center, I-21027, Ispra, Italy
[*] IAST, FHNW University of Applied Sciences, 5210, Windisch, Switzerland

Correspondence to: ernest.weingartner@psi.ch

Abstract

We report on an inter-comparison of six different hygroscopicity tandem differential mobility analysers (HTDMAs). These HTDMAs are used worldwide in laboratories and in field campaigns to measure the water uptake of aerosol particles and were never
intercompared. After an investigation of the different design of the instruments with their advantages and inconveniences, the methods for calibration, validation and analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instrument and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.

1 Introduction

Atmospheric aerosols are typically hygroscopic and absorb significant amounts of water at high relative humidity (RH). Hygroscopic growth with increasing RH influences the light scattering by particles, their potential to act as cloud condensation nuclei, and their chemical reactivity. The RH dependence of light scattering is one of the parameters needed to estimate the direct climate forcing by aerosol particles. Thus, the dry particle size distribution and their size-dependent hygroscopic growth factors must be known to model the humidity dependence of the light scattering of an aerosol. Efforts are currently undertaken to include the effects of hygroscopic growth of aerosol particles in global climate models (GCM) in order to better predict the scattering properties and size distribution of aerosols under varying humidity conditions (Randall et al., 2007). The two most widely used techniques enabling measurement of the change in the amount of water absorbed in an aerosols particle for varying RH are the single particle levitation technique using an electrodynamic balance (EDB; Tang and Munkelwitz, 1993) and the hygroscopicity tandem differential mobility analyser (HTDMA; Liu et al., 1978; Swietlicki et al., 2008) technique. The EDB technique, which measures the properties of individual super-micrometer particles, is suitable for laboratory measurements. The HTDMA technique, which probes the hygroscopicity of all particles of a well-defined dry diameter at once, is suitable for field and laboratory measurements. HTDMA instruments cover the sub-micrometer diameter range, which contains the majority of the atmospheric aerosol particles.
All HTDMAs existing worldwide are custom built instruments and very few intercomparison studies between different instruments have been reported. This gap has been filled with this study as part of the EC project EUSAAR (European Supersites for Atmospheric Aerosol Research; http://www.eusaar.net/). Two intercomparison workshops have been conducted involving in total six different HTDMAs from five research groups with the aim to harmonise the design and the quality assurance protocols of HTDMAs. This was done in order to ensure comparability of field measurements taken by different research groups. The overall objective of EUSAAR is the integration for air quality and climate studies of measurements of atmospheric aerosol properties performed in a distributed network of 20 high quality European ground-based stations.

The goals of these two instrument intercomparison workshops were threefold: first, careful calibration of the instruments and validation of performance and accuracy by measurement of different pure aerosols with well-known behaviour; second, identification of the reason for discrepancies between the measurements from different instruments; third, instrument comparison using a complex organic aerosol with unknown properties.

Secondary organic aerosol (SOA) generated in a smog chamber was chosen for that purpose. SOA is of particular interest because more than 50% of organic aerosol is formed via oxidation and subsequent condensation of gaseous compounds (Kanakidou et al., 2005). Characterisation of the hygroscopic properties of such SOA is a topic of current research.

In conclusion to this study, recommendations for HTDMA operation within EUSAAR are presented. The instruments shown in this study have been upgraded accordingly in order to ensure quality and comparability of field measurements performed by the different instruments at the EUSAAR supersites.
2 Experimental section

2.1 HTDMA operation principle

During operation of an HTDMA, a quasi-monodisperse size cut of particles with dry diameter D_0 at RH $\leq 15\%$ is selected from a polydisperse aerosol using a differential mobility analyser (DMA). Upon exiting the first DMA (DMA1) the aerosol is conditioned in a controlled humid environment before being passed into the second DMA (DMA2), which is held at a well defined RH. DMA2 is used to detect the resulting equilibrium particle diameter $D(RH)$, which is normally larger than D_0 due to water absorption. The hygroscopic diameter growth factor (GF) is defined as the measured mobility diameter ratio:

$$GF(RH) = \frac{D(RH)}{D_0}$$

(Equation 1)

The sizing of the particle size distribution after humidification can be done in two alternative ways. Either by ramping the voltage (diameter) set point at DMA2 in discrete steps (commonly referred to as differential mobility particles sizer, DMPS) or by scanning the diameter range with a continuous exponential voltage ramp (commonly referred to as scanning mobility particle sizer, SMPS), while recording the particle number concentration with a concentration particle counter (CPC). The former method is slightly slower, whereas the latter method may result in a smearing of the measurement signal, if too short scan times are used (Weingartner et al., 2002). The total time for a single scan is of the order of 5 minutes, thus optimising the trade-off between maximising counting statistics and minimising the influence of variations of the aerosol concentration at the HTDMA inlet, which distort the recorded growth factor distribution. The measurement frequency can be increased considerably by constraining the scanned diameter range to a physically reasonable growth factor range for the aerosol being sampled and the RH set point.
2.2 Design of instruments

Six instruments, originating from five research groups from Australia, France, Great Britain, Italy and Switzerland participated in the two HTDMA inter-comparison workshops conducted at the Paul Scherrer Institute (PSI), Switzerland, during summer 2006 and winter 2007. The Swiss group provided two HTDMAs, one of which (HTDMA1) was present during both campaigns. Technical specification and literature references for each HTDMA (named HTDMA1 through HTDMA6) are given in Table 1.

Figure 1 shows the corresponding schematics illustrating the different humidification systems, inputs and process variables for RH regulation and the temperature stabilised regions. These are key factors that influence the accuracy and reproducibility of the measurements.

2.2.1 Sheath air flow systems

All HTDMAs were designed with re-circulating sheath/excess air systems in the DMAs. This has the advantage of maintaining a more similar gas phase composition in the sheath air compared to the sample and facilitates easier sheath air RH control. Vacuum pumps are commonly used to generate recirculating sheath/excess air flows and have proven to be a robust method (Biskos et al., 2006; Johnson, 2008; Weingartner et al., 2002). HTDMA2 through HTDMA6 applied the closed loop/vacuum pump set-up using a critical orifice or mass flow controller to control the sheath/excess air flow rate (see Table 1). Important considerations when choosing a pump are leak tightness, stability of the flow rate and an inert head space. The pistons in vacuum pumps generally operate at a frequency low enough to cause periodic flow oscillations. Rapid flow rate oscillations caused by the pump diaphragm can be dampened using a series of flow through volumes (Johnson et al., 2005) at the exit of the pump or by flow restrictions imposing a slight overpressure (Fletcher et al., 2007; Weingartner et al., 2002). In some setups, the overpressure tubes must be kept at a slightly higher temperature to avoid water condensation. Prior to the DMA temperature, equilibration can be achieved by directing the sheath air through an in-line heat exchanger. Exposure of the aerosol to higher temperatures inside a pump may also alter its chemical properties through changes in the gas phase / aerosol partitioning. HTDMA1 worked also with a closed loop sheath/excess
air set-up, whereas PID-controlled blowers instead of vacuum pumps were used to generate the air flow. Despite the fact that precise regulation of the blower power and leak tightness are critical (Paulsen et al., 2006), this set-up has the advantage that the recalculating air stream is hardly heated nor compressed.

2.2.2 Temperature stability

Growth factor measurements in a HTDMA at a well defined RH are only possible if temperature gradients in DMA2 are \(\leq 0.1 \text{ K} \) because a temperature change of \(\pm 0.1 \text{ K} \) results in an RH change of \(\pm 0.6\% \) at an RH of 90\%. The first HTDMA systems used passive temperature control methods (McMurry and Stolzenburg, 1989) ideally keeping their systems in air-conditioned rooms or insulating them from their surroundings (Virkkula et al., 1999), before active temperature control was introduced (Brechtel et al., 2000, Prenni et al. 2001). Present HTDMA instruments use water baths (Cubison et al., 2005; Hennig et al., 2005; Weingartner et al., 2002), temperature controlled cabinets (Cocker III et al., 2001; Duplissy et al., 2008; Prenni et al., 2001; Villani et al., 2008) or passive, insulated regions (Johnson, 2008; Virkkula et al., 1999). HTDMA 1 & 6 of this study had at least DMA2 operated in a temperature controlled cabinets; HTDMA 3 & 4 had at least DMA2 submersed in a water bath; the DMA2s of HTDMA 2 & 5 were placed in a thermally isolated environment (see Figure 1 and Table 1).

2.2.3 Humidifier design and RH regulation

A requirement of aerosol humidifiers is that the aerosol particles are humidified in a controlled and stable manner. The humidification system must generate water vapour, transfer the water vapour into the aerosol sample and/or sheath air flows and regulate the resulting RH. Exclusive humidification of the aerosol sample flow is only possible for HTDMAs using a closed-loop sheath air set-up for DMA2, where the RH of the sheath air will follow the RH of the incoming sample flow with a certain delay. Additional humidification of the sheath air flow is required for HTDMAs with an open sheath/excess
air set-up and it can also be applied to significantly shorten the response time to RH set point changes for HTDMAs using a closed-loop set-up.

The generation of water vapour can be achieved by passing air over a surface of liquid water, possibly separated by a membrane such as Goretex™ or Nafion™, by bubbling air directly through water, or by using a water vapour saturated vermiculite. From the vapour source, the transfer of the water vapour into the sample or sheath flow is normally done with a laminar flow humidity exchanger or through a membrane such as Goretex™ or Nafion™. A source of dry air is applied by most instruments for RH regulation or for active drying of the sample flow. Connecting a vacuum pump to a Nafion™ dryer is a technique to generate dry air, which does not need regular maintenance nor any regeneration. Alternatively, Nafion™ dryers are used, which with a dry purge air flow or diffusion (silica gel) dryers require a secondary source of dry air or regeneration of absorbent regeneration, respectively.

Regulation of the humidity has been achieved by mixing humid and dry air in variable proportions (Biskos et al., 2006; Cubison et al., 2005; Johnson, 2008; McMurry and Stolzenburg, 1989; Weingartner et al., 2002), by temperature control of the liquid water, which acts as the vapour source (Virkkula et al., 1999), or by a combination of these two methods (Cruz and Pandis, 2000). HTDMA1, 2, 3 and 4 can perform a scanning of the RH in DMA2 automatically, while HTDMA5 and 6 require manual operation for RH set point changes. The latter makes it more difficult to achieve sufficient RH resolution in the hydration curve needed e.g. for a precise characterization of the deliquescence transition (see Section 3.2). The humidification set-up of the instruments involved in this inter-comparison workshop are summarised in Table 1 (see also Figure 1).

2.2.4 Residence time of the aerosol at high RH

A sufficient residence time for growth factor equilibration at an RH virtually equal to the RH in DMA2 is required such that no significant growth occurs during sizing in DMA2. Various papers have discussed whether organic/inorganic aerosol mixtures show mass transfer limitations of water uptake (contrary to pure inorganic salts which equilibrate
within timescales of <1 s). Kerminen et al. (1997) considered the gas-phase transfer to particles before cloud activation, and calculated equilibration times <1 s. However, Chuang et al. (2003) found during a field study in Mexico City that 0-2% of the particles exhibited growth times larger than 2-3 s, which was explained by a low mass accommodation coefficient. Sjogren et al. (2007) and Chan and Chan (2005) showed in laboratory experiments that certain organic substances mixed with inorganic salts can have equilibration times larger than 40 s. Therefore HTDMAs should be equipped with a residence chamber held at an RH virtually equal to the RH in DMA2, where the particles have sufficient time for equilibration before sizing in DMA2. On the other hand volatile particles may suffer from evaporation artefacts inside the HTDMA if the residence time exceeds a few tens of seconds. Gysel et al. (2007) and Mikhailov et al. (2004) demonstrated that this artefact occurs for ammonium nitrate particles and it can be expected that also other compounds (e.g. semivolatile organics) may show this effect. Evaporation artefacts, which will most likely lead to an underestimation of the GF, can be minimised by shortening the residence time or by decreasing the temperature. Clearly further studies are needed to identify the optimum residence time. Residence times of the different HTDMA instruments used in this study are given in Table 1.

In addition to the residence time effects, Biskos et al. (2006) observed that significant differences between the RH of sample and sheath flow (≥ 3% RH), can lead to erroneous results for inorganic salts. Therefore it is recommended to keep the RH difference between aerosol sample flow and sheath air flows as small as possible, ideally ≤±2%. This is impossible in systems which do not control the humidity in the sample flow, but only in the DMA2 sheath flow such as HTDMA5. This system has only an uncontrolled pre-humidifier in the aerosol sample flow while operating above 60% RH. It is shown below (See Sections 4.1.4 and 4.2) that this can cause measurement artefacts. The humidification system of HTDMA2, with a single humid purge flow for the humidification of sheath air and aerosol sample flows, keeps the RH differences to a minimum (Johnsonn et al., 2008). Data presented in this paper are only reported if the RH difference was ≤2% (except for HTDMA5 which can not fulfill this criterion due to its design).
2.2.5 Measurement of the relevant RH

The relevant RH which determines the equilibrium GF measured by the HTDMA is when the GF is at equilibrium at the beginning of DMA2 and assuming no RH change within the classification region of DMA2. Measurement of the RH is normally the major source of uncertainty in HTDMA GF measurements. Previous studies have reported GF data with an RH uncertainty of up to ±4% RH (Prenni et al., 2007). As an example the theoretical GF of pure ammonium sulphate at an RH of 86 and 94% is 1.61 and 2.01, respectively, thus illustrating the large GF uncertainty imposed through the RH uncertainty. Except HTDMA5 and 6, all HTDMAs of this study measured the RH indirectly through accurate temperature and dew point measurements using a PT100 resistance temperature detector (RTD) and a dew point mirror (DPM), respectively. HTDMA5 and 6 used capacitive RH sensors (Humicap Sensors from Vaisala) for direct RH measurements, which are less expensive but also less accurate. For this study the temperature probes were placed in the water bath (HTDMA4), attached to the outer wall of DMA2 (HTDMA1), inside DMA2 (HTDMA3), or in the excess air flow (HTDMA2). For a typical dew-point hygrometer, the accuracy of the temperature and dew point temperature measurement is ±0.15°C, translating into a RH accuracy of ±1.2% at 90% RH and T=20°C. In comparison, capacitive sensors have generally an accuracy of ±1.5% when measuring within their specified RH range. A further advantage of dew point sensors is that only the temperature has to be measured in the DMA2 while the dew point can be monitored at some distance of DMA2, as long as the partial pressure of the water vapour is not altered by e.g. pressure drop in the transfer line. In contrast, capacitive RH measurements have to be done directly in DMA2 or two additional temperature measurements are needed for correction of temperature changes. Most HTDMA instruments can reliably measure at RH≤90% RH, whereas measuring at RH≥95% is a challenge. Reaching 95% RH is only possible with optimised humidifiers (e.g. HTDMA2) or by cooling the sample flow after humidification (e.g. HTDMA1). Furthermore, the risk of condensation increases and possible consequences are high voltage arcs in DMA2 potentially damaging the instrument.
2.3 Aerosol generation

The HTDMA inter-comparison was done with inorganic salts with known hygroscopic growth and with secondary organic aerosols produced by photochemical oxidation of gaseous precursors. The latter was used as a proxy for ambient secondary organic aerosol.

2.3.1 Nebulisation of inorganic salts

Artificial aerosol particles were generated by nebulisation of a ~0.05 g/l salt solution (\((\text{NH}_4)_2\text{SO}_4\), purity >99.5%, Fluka; NaCl, >99.5%, Merck; NaNO\textsubscript{3}, >99%, Merck) in MilliQ water. The atomizer (TSI type 3076) was operated with clean air from a pure air generator (AADCO 737-series 15 A). The solution droplets were dried in a custom-built diffusion dryer with a residence time of ~60 s prior distribution to all HTDMAs. All HTDMAs were supplied with aerosols from the same nebuliser in order to exclude potential discrepancies between instruments caused by differences in the samples.

2.3.2 Secondary aerosol formation in a smog chamber

Photo-oxidation experiments were carried out in a 27-m3 Teflon chamber (Paulsen et al., 2005) at 20°C and 50% RH and with 10 (±2) ppb of NO\textsubscript{2}. \(\alpha\)-pinene (Aldrich, 98%) was evaporated in a heated glass sampling bulb and flushed into the humidified chamber with pure air to generate a mixing ratio of 20 (±2) ppb. Rather low, atmospherically relevant precursor concentrations were chosen because it had been shown that high precursor concentrations reduce the hygroscopicity of photo-oxidized SOA due to gas-to-particle partitioning effects of the aerosol (Duplissy et al., 2008). Four xenon arc lamps (4 kW each) were used to simulate the solar light spectrum and initiate the photochemical reaction. Before turning on the lights the mixture was allowed to equilibrate within the chamber for approximately 30 minutes. Nucleation of SOA particles was observed one hour after the lights were switched on, followed by condensational growth to a final diameter after 8 hours of photo-oxidation. The particle number size distribution was measured using a TSI 3936 long column SMPS. The dry diameter selected by the
HTDMAs was chosen to follow the current modal size of the SOA particle distribution, in order to make sure that the dominant fraction (at least 80%) of selected particles carried a single charge.

3 Calibration, validation and data analysis

3.1 Calibration

The particle sizing by the DMAs as well as the RH measurement can be checked and calibrated independently. Sizing is crucially dependent on correct flow rates and high voltage (HV) applied to the DMA. Therefore, all flows in the system, the analogue output for controlling the HV supply as well as the HV amplification factor must be calibrated. The performance of the DMAs can be tested with certified particles of known size such as polystyrene latex (PSL) spheres, though this is difficult for diameter <100 nm. Stable sizing by DMA1 and DMA2 in addition to exact knowledge of possible small sizing offsets is a prerequisite for accurate HTDMA measurements. Both can be tested by a dry offset calibration measurement using a non-volatile aerosol, where the humidification is simply switched off. Eventually DMA2 will stabilize at the same RH as DMA1 and hence the true GF of particles passing the HTDMA will be unity. The corresponding measured GF reveals the offset of the two DMAs. Correction of this offset in all measurement data is done by using the actual measured \(D_0 \) as a reference diameter for the calculated growth factors according to Gysel et al. (2008). The temporal variability of the actual measured \(D_0 \) indicates the sizing stability of the HTDMA. Additionally, the final RH in DMA2 shows whether the RH in DMA1 is sufficiently low.

The temperature and dew point temperature probes of a DPM can be independently calibrated. A common way to calibrate capacitive RH sensors or to validate DPM measurements is to expose them to the equilibrium RH above a saturated salt solution at a range of relevant temperatures. Equilibrium RH values for various temperature saturated salt solutions can be found in literature (e.g. Tang and Munkelwitz, 1993). A calibration curve can be applied to correct the RH measurement of the capacitive sensors. Indirect
RH calibration of RH sensors through measurement of the GF of pure salts is not recommended because the measured GFs can be biased by further effects such as non-spherical particle shape (shape factor), restructuring, impurities, RH gradients in the DMA2, not accurate flow in DMA2. For dew point sensors, it is recommended to perform also a saturation test. The measured dew points can periodically be checked by feeding air saturated with water vapour into the dew point sensors at a well defined temperature (the same temperature as in the DMA2) and by measuring the resulting dew point and DMA2 temperature (Duplissy et al., 2008; Weingartner et al., 2002). This allows an internal calibration of the dew point sensors by adjusting the measured dew point temperatures to the measured DMA2 temperature. Care has to be taken that no water is lost by condensation in the transfer lines.

3.2 Validation of HTDMA accuracy

Periodic validation of accuracy and performance of a HTDMA should be tested with measurements of pure test substances with known hygroscopic properties such as ammonium sulphate.

The equilibrium size of inorganic aerosol particles in humid air often shows a hysteresis depending on their RH history (Seinfeld and Pandis, 2006). A crystalline particle exposed to increasing RH does not significantly change its size until the deliquescence relative humidity (DRH) is reached and a solution droplet is formed. At RH>DRH the particle is always present as a solution droplet. Once in the liquid phase, the particle can exist in a meta-stable equilibrium state as a supersaturated solution droplet at a RH<DRH. Recrystallisation occurs at the efflorescence relative humidity (ERH) which is given by the supersaturation at which crystallization takes place. Hysteresis effects are very distinct for some inorganic salts such as sodium chloride or ammonium sulphate. Due to insoluble impurities, the crystallisation can occur at higher RH than the ERH. The DRH, ERH, and RH history of an atmospheric particle determines whether it is present as a solid or a liquid particle (Colberg et al., 2003; Wang et al., 2008), which is an important factor for
many atmospheric impacts. Accurate measurement of DRH and ERH is hence an important specification of HTDMA instruments.

A standard online method to verify the accuracy of the measured RH is to measure the deliquescence point of pure salts (e.g. (NH$_4$)$_2$SO$_4$ and NaCl). However, accurate determination of the deliquescence transition may be difficult or even impossible depending on the HTDMA set-up (see Section 2.2.3). Therefore, it is recommended to measure complete humidograms of ammonium sulphate including a full hydration curve with the deliquescence transition. A validation at a single RH is only a weak test because compensating effects from DMA performance, shape factors, restructuration, RH bias or impurities cannot be excluded. The measurement of a full hydration curve helps to distinguish between sizing or RH measurement errors resulting in vertically or horizontally biased data points, respectively.

3.3 Standard data analysis

A first step of the data analysis is the determination of the actual measured D_0 as opposed to the nominal D_0 in order to account for small sizing offsets between the two DMAs as discussed in Section 3.1. The next step involves the inversion of the raw data with an appropriate algorithm (Swietlicki et al., 2008). We applied the TDMA inversion approach (TDMAinv) developed by Gysel et al. (2008). This algorithm uses a full TDMA kernel function and approximates the inverted growth factor probability density function (GF-PDF) as a piecewise linear function. The inversion routines are largely automated and the TDMAinv toolkit is available on the web (http://people.web.psi.ch/gysel/). Alternative inversion approaches are e.g. the TDMAfit algorithm introduced by Stolzenburg and McMurry (1988), which approximates the GF-PDF as a superposition of multiple Gaussians.

During measurements at a nominally constant RH the RH in DMA2 typically varies around the target value. An empirical correction (Equation 3 in the paper by Gysel et al. 2008) accounting for such small RH variations has been applied to all GF values measured during constant RH experiments, whereas only data within a band of ±2% RH
were considered. This correction assures comparability of the results reported by the instruments also if the actual RH in DMA2 differed slightly.

3.4 Interference of doubly charged particles

A DMA selects aerosol particles by their electrical mobility which depends on their physical diameter and elementary charge. Therefore, particles selected by DMA1 of a HTDMA can have different physical diameters if they carry a different number of charges, with the following consequences (Gysel et al., 2008): Firstly, the physical diameter of the selected dry particles may not be well defined, e.g. if the number fraction of singly and doubly charged particles is comparable. Secondly, the measured single charge equivalent mobility growth factor is smaller than the physical diameter growth factor for particles carrying multiple charges due to the nonlinearity of the Cunningham slip correction. The relative number fractions of singly, doubly or triply charged particles behind DMA1 depend on the shape of the polydisperse number size distribution of the dry particles entering the HTDMA.

For illustration, Figures 2a and 2b show two examples of number size distributions, as observed during field measurements, along with the calculated size dependent number fractions of singly, doubly and triply charged particles.

Often the singly charged particles dominate (>80%) and the HTDMA data analysis is straight forward and not biased by the multiply charged particles. Sometimes the number fraction of multiply charged particles is significant at certain diameter ranges – e.g. at \(D_0 \approx 150 \text{ nm}\) in Fig. 2a or at \(D_0 \approx 60 \text{ nm}\) in Fig 2b. In such cases the HTDMA signal is a superposition of contributions from different dry sizes, and hence an accurate retrieval of the growth information is impossible. Therefore HTDMA measurements must always be accompanied by number size distribution measurements and subsequent removal of those HTDMA data points, where the number fraction of singly charged particles dropped below a critical limit (~80%). This applies for field measurements but is also important for measurements of laboratory generated particles: Nebulised aerosol particles are often
relatively large (modal dry diameter >100nm) and the HTDMA measurement of D<100nm can be significantly biased by multiply charged particles.

Accurate data analysis is also possible if multiply charged particles dominate after size selection with a number fraction of more than ~80% of doubly (or triply) charged particles. In such cases the HTDMA kernel function for two (or three) charges must be used for the inversion of the raw measurement distribution functions (Gysel et al., 2008). Alternatively the raw data can first be analysed as if all particles were singly charged, followed by correction of the obtained growth factors with a size and GF dependent offset as shown in Fig. 2c. The technique of setting the DMA1 to a voltage, where predominantly doubly (or triply) charged particles were selected, has been used in a recent smog chamber study to extend the measurement range of HTDMA to larger diameters (D_0=250-575 nm) (Duplissy et al., 2008).

4 Results and discussion

Here we first present several experiments conducted with pure ammonium sulphate which aim to validate the accuracy and performance of HTDMA1 through 6 against theory. A second series of experiments with SOA provides an inter-comparison of the HTDMAs with a complex organic sample, where the actual behaviour is not known. This is followed by a discussion of discrepancies found between the measured GFs and theory as well as between the instruments.

4.1 Validation experiments with pure ammonium sulphate

4.1.1 Sizing stability

Dry ammonium sulphate particles were used to validate the stability of the diameter measurement. For this purpose the humidification of the HTDMA was switched off and
the difference of the measured GF from unity revealed the sizing offset of the two DMAs (see above). The temporal variability of the actual measured D_0 indicates the sizing stability of the HTDMA. All instruments of this study were fairly stable with a temporal variability of D_0 of less than ±1% (see Table 1).

4.1.2 RH stability under constant laboratory temperature conditions

Here we show that the ability of a HTDMA to maintain constant RH is primarily determined by its humidification control and feedback system and how the critical parts are shielded against external temperature variations. All HTDMAs were able to hold the variability of the RH measured in DMA2 within the uncertainty imposed by the accuracy of this measurement (Table 1 and Figure 1). HTDMA2, 4, and 6 are able to maintain a relatively constant RH in DMA2 (within ±0.4% RH) because they use a PID controlled feedback from the RH measured in DMA2 to the humidifier load. HTDMA3 and 5 which do not have any RH feedback from DMA2 were less stable with a standard deviation higher than ±0.6% RH to the target value. HTDMA1, completely enclosed in a temperature controlled housing, achieved high stability with a standard deviation of ±0.25% RH even without a PID controlled feedback.

4.1.3 RH stability under variable laboratory temperature conditions

Room temperature is often subject to considerable variations, particularly during field campaigns with basic facilities influenced by e.g. warming solar radiation or opening of windows and doors. The HTDMAs should still be able to acquire accurate GF measurements and whenever possible precisely at the set point RH. Tests with simulated room temperature drops were performed to reveal the robustness of the individual systems against such perturbations. Each system was first measuring the GF of ammonium sulphate at a stable laboratory temperature of 24°C and at a constant RH (90, 85 or 40%, depending on the instrument/experiment). Then all doors and windows were opened leading to a sudden temperature drop down to ~14°C. HTDMA2 and 3 were tested separately with citric acid as a test salt. RH variations in DMA2 are undesirable
though acceptable if they remain within limits. However, this is only true if the GF measurements remain accurate despite the RH drifts imposed by the room temperature variations. The RH stability (right ordinate) of the HTDMAs during the above temperature drop test as well as the corresponding relative accuracy of the measured GFs (right ordinate) are illustrated in Figure 3. The relative GF bias, GF_{bias}, is defined as:

$$GF_{bias} = \frac{GF_{measured} - GF_{theory}(RH_{measured})}{GF_{theory}(RH_{measured})}$$ \hspace{1cm} (Equation 2)

where $GF_{measured}$ is the measured GF and GF_{theory} is the theoretical GF of the sample at measured RH, $RH_{measured}$. GF_{bias} should be less than ~3% for a well calibrated HTDMA. This corresponds to ±0.05 uncertainty of ammonium sulphate GF at 90% RH.

HTDMA1 is not at all affected by the temperature drop because all relevant parts are in a temperature controlled housing, and hence the RH remains constant and the measured GFs accurate. HTDMA2 is not insulated and the temperature of its second DMA dropped by 6°C roughly following the room temperature (not shown). Nevertheless the RH remained constant thanks to the short response time of the humidification system and all measured GFs were accurate. HTDMAs4, 5, and 6 were not able to keep the RH constant. The temperature of DMA2 is held constant in HTDMA4 and 6, while a considerable part of the sheath flow loop of DMA2 is exposed to ambient temperature. A drop or increase of laboratory temperature leads to a lower or higher RH in the external parts of the sheath flow loop, respectively, and all water absorbing parts such as filters then act as a source or sink of water vapour. This effect drives the RH in DMA2 off its target value, unless the counteracting regulation capacity of the humidification system is strong enough. Distinctly lower laboratory temperatures compared to DMA2 can also lead to condensation in the external parts of the sheath flow loop, in which case an effective RH control is impossible. Similar effects are responsible for the RH drift of HTDMA5 where the humidifier is held at constant temperature but not the DMA2. These two effects are the cause of the RH drop seen in Figure 3 at time zero. The GF_{bias} values in Figure 3 show that the sharp temperature drop also causes large systematic measurement errors of up to 50% in HTDMA5 and 6, i.e. the particles where sometimes not deliquesced despite a
measured RH clearly above 80%. HTDMA6 showed up to 3 growth modes indicating rapid RH fluctuations or strong inhomogeneity within the flow. HTDMA3 was running a humidogram during the temperature drop and therefore no conclusion can be drawn for its ability to keep a constant RH within varying laboratory temperature. However, even at a low RH (10%) an increase of GF

bias

was observed (from 0 to 5%) during the first 2 hours of the temperature drop. A consequence of the occurrence of GF

bias

larger than a few percent is that all measurements conducted under conditions with varying laboratory temperature exceeding a critical gradient must be treated as invalid.

Concluding, it is best to have the whole HTDMA system including sheath air loops in temperature controlled boxes/baths. A reduction of the water absorption capacity in the external parts of the sheath flow loop helps increasing the robustness of the RH control for those systems that are not completely temperature controlled.

4.1.4 Humidograms of pure ammonium sulphate

Pure ammonium sulphate was chosen as a test substance because it is a major component of the atmospheric aerosol and its thermodynamic behaviour is well characterised. In addition, ammonium sulphate particles are not volatile and exhibit an approximately spherical structure which renders a shape correction unnecessary. Theoretical diameter growth factors were obtained from the Aerosol Diameter Dependent Equilibrium Model (ADDEM; Topping et al., 2005). Measurements of ammonium sulphate particles with dry diameter \(D_0=100\) nm were performed at the beginning of the inter-comparison period and at regular intervals (about every 1 week) thereafter. This included complete growth curves as shown in Figure 4, whereas only data points with an RH gradient during a scan of \(\Delta RH<1\%\) are considered.

Both hydration and dehydration curves of ammonium sulphate were recorded in this study, lasting between 40 minutes to 10 hours for a complete RH cycle depending on the instrument (see Table 1). The duration of an RH ramp is limited by the response time to
RH set point changes in some instruments. Other instruments have very short response times, though a certain RH gradient should not be exceeded in order to assure equilibration of the RH in DMA2 and to keep RH changes during the scan of a single growth spectrum low. In addition to that, some instruments provided automated RH ramping and therefore better RH resolution in the hydration curve, desirable for a precise characterisation of the deliquescence transition (see Table 1).
The measurements of the six HTDMAs were reproducible and the GFs at 85% RH agreed with theory within ±2.1% for all HTDMAs except HTDMA5 which exhibited errors of up to ±5.6% (see also Table 2 for a summary of the validation results). It is interesting to note that at the deliquescence transition all HTDMAs, except HTDMA1, measured GFs in between the solid crystal (1.00) and the completely dissolved solution droplet (1.48).

As this phase transition is expected to be very fast (on the order of a few milliseconds) for sub-micron ammonium sulphate particles, all points should lay either on the upper or lower branch of the growth curve (Biskos et al., 2006). Impurities in the aerosol can be excluded because no such intermediate GFs were measured by HTDMA1, which sampled from the same nebuliser. It has to be emphasized that none of these “intermediate” points are the result of averaging two separated growth modes from solid and hydrated particles. Bimodal growth distributions can occur when the RH in DMA2 crosses the DRH during a scan. Two phenomena could explain the measurement of intermediate GFs. First, aerosol and sheath air RH are not the same and they equilibrate within the DMA2, or second, the sheath air in the 2nd DMA experiences a temperature gradient while passing through it, which results in a RH gradient. In both cases, the aerosol will deliquesce during passage through DMA2, thus resulting in an apparent size of the particle in between the solid and deliquesced state. Biskos et al. (2006) showed that intermediate points are measured at RH close to the DRH when the RH difference between aerosol and sheath air flow is larger than 3% RH close to DRH, which is the most probable explanation for the intermediate GFs measured by HTDMA5 and potentially also for HTDMA6 with two independent humidification systems. In HTDMA2 it is ensured that both aerosol and sheath air have the same RH and there this artefact is most probably caused by temperature gradients in the DMA2 which lacks a good temperature control. The heat exchangers for the sheath flow might be insufficient in HTDMA4 where DMA2 is submersed in a water bath. Additionally, particular care is needed for HTDMA4 to avoid large differences between the RH in the aerosol sample and the one in the sheath air. The existence of temperature gradients within the sheath air of DMA2 leads to inaccurate measurements of the DRH as shown in Table 2.
Summarising, all HTDMAs (except HTDMA5) find a good agreement between measured and theoretically predicted growth factors (difference < 2.1%). The DRH point is also measured within ΔRH<±3% uncertainty of the literature value DRH=79.9%, indicating a fairly accurate RH calibration. The higher deviation of HTDMA5 is explained with the large differences between the RH in the aerosol sample (50%) and the one in the sheath air (85%).

4.2 Inter-comparison with SOA

The hygroscopic growth behaviour of SOA has been investigated in several previous studies. Some of these studies appear to agree with each other, some do not. However, a direct comparison of such results is rarely possible because the hygroscopic properties of SOA particles depend on precursor concentration, photochemical reaction time, etc. (Duplissy et al., 2008) and because the measurements are done at different RH in different studies. The performance of HTDMAs for SOA can therefore only be assessed by simultaneous measurements.

SOA produced by photo-oxidation of α-pinene was investigated during the two workshops. HTDMA1, the only instrument participating at both workshops, measured slightly different GFs (Figures 5 and 6). However, the bag of the chamber had been replaced with a new one just a few days before the experiments of the second workshop. Most probably some semi-volatile material evaporating from the bag surface partitioned into the SOA, thus potentially explaining the observed difference.

The general sampling strategy employed was to measure just one dry size for several hours and then switch to a larger dry size. By selecting the largest dry size at which there were sufficient statistics it was possible to measure that size for a longer time without the influence of multiply charged particles (as the mode of the size distribution grew). By not
cycling through a series of different dry sizes one could not see clearly if there was any difference between them at a specific time in the experiment. It should also be noted that below 100nm the Kelvin effect becomes increasingly important i.e. particles of identical composition will take on less water if they are smaller. All HTDMAs measured an increase of the GF with photo-chemical reaction time for a given dry size. It is not clear how the hygroscopicity of particles of different dry sizes compares. As the aerosol particles of a given size in the chamber are created by a combination of homogeneous nucleation, condensation and coagulation it is difficult to predict a general trend in the hygroscopicity of particles with different size at a given time. In contrast to the good agreement between the HTDMAs found for the inorganic salts, significant differences between the HTDMAs were observed for SOA. Possible reasons for part of the discrepancies will be discussed in the following.

HTDMA1 measured during all the α-pinene experiments, and measured similar growth factors during experiments 1 and 2 (Figure 5), while HTDMA2 and 3 measured different growth factors in the different experiments. In experiment 3 (Figure 6) HTDMA1 measured a slightly lower growth factor than in experiments 2 and 3. HTDMA2 and HTDMA3 measured growth factors in reasonable agreement with each other, but lower than HTDMA1, although only a limited amount of data was collected by HTDMA2. The different growth factors of the different instruments indicate that there is a property of the aerosol produced in the α-pinene experiments which enables it to take up varying amounts of water in the different HTDMA’s and that relatively small changes in conditions of the experiment may alter the hygroscopic behaviour. Based on the tests performed during these experiments no obvious instrument design feature is causing these discrepancies, so it is only possible to hypothesise what may be causing them. Clearly more investigations are required.
Results from the second workshop are presented in Figure 6. The upper panel shows results as analysed by each group with their own analysis procedures, while the lower panel shows the same data, re-analysed and corrected according to the recommendations provided in this paper (see Sect. 5):

The GF values for HTDMA4 in the top panel of Figure 6 are too low because the RH in DMA1 was high (approx 33% instead of <15%). SOA experiences a GF of ~1.025 at RH=33% (measured with HTDMA1, while performing a humidogram Duplissy et al., 2008) and therefore the GF at 90% is underestimated by 2.5%. This bias was corrected in the data shown in the bottom panel of Figure 6. The effects of a too high RH in DMA1 would not be detected with validation experiments using e.g. pure (NH₄)₂SO₄, as they remain crystalline at RH<80%. As a consequence the RH in DMA1 has to be monitored continuously in order to ensure RH<15%.

HTDMA6 investigated three different dry diameters during the course of the experiment (D₀=30, 50 and 75 nm). Uncorrected results from this instrument show an initial fast increase in GF followed by a plateau. A change of D₀ results in an abrupt GF change. This artefact is caused by a too coarse growth factor resolution of the employed DMPS software, resulting in a high GF uncertainty. All points with insufficient sizing resolution were removed during the reanalysis (bottom panel of Figure 6).

HTDMA5 also changed the selected dry diameter during the course of the experiment (D₀=50 and 75 nm) and shows lower GF when larger particles are selected. A possible explanation for this discrepancy is an insufficient equilibration time. As shown in Figure 1, HTDMA5 only prehumidifies the aerosol at 50% RH (8 seconds) before being fully humidified to the target RH within the DMA2, thus providing no residence time at all at high RH prior to sizing inside the 2nd DMA. The measured growth factors are low because the SOA particles are not fully in equilibrium with the high RH during their
presence in DMA2. Again, an insufficient residence time at high RH prior to sizing in DMA2 can influence the measured hygroscopic growth (Chan and Chan, 2005; Sjogren et al., 2007). Results shown for HTDMA5 in Figure 6 indicate that larger particles are more affected by this effect. It is therefore suggested to expose the aerosol sample to the nominal RH during at least 10s before measuring the GF. Analogously, it is also suggested to allow the particle to dry for at least 10s before the selection of the dry size by the DMA1.

After careful reanalysis of all raw data, good agreement between the GFs measured by the different HTDMAs was found within the first 4 hours of the experiment when $D_0 \leq 50$ nm. However, discrepancies remained for particles with $D_0 = 75$ nm selected after 6 hours of photochemical reaction. HTDMA5, 6, 4 and 1 measured GF values of 1.09, 1.13, 1.15 and 1.2 respectively with a residence time of 0, 2, 8 and 15 seconds, respectively. This trend is in line with the hypothesis of kinetic limitations, though these discrepancies could be also due to temperature. The HTMDAs operate at different temperature, which could lead to a different partitioning of the SOA. At higher temperature, the more volatile compounds can evaporate from the particle phase to the gas phase. The remaining particle will have therefore a different chemical composition and thus could have different hygroscopic properties (Asa-Awuku et al., 2008; Meyer et al., 2008).

4.3 Discussion of discrepancies found for SOA

Even though the growth factor of SOA derived from photo-oxidation of α-pinene is roughly known, discrepancies between measurements made by different HTDMAs remain open due to the limited number of direct inter-comparisons. A first hypothesis for the cause of these complex discrepancies is that the HTDMAs affect the gas-particle equilibrium of semi-volatile compounds of the SOA in a different manner by the way they dry or wet the aerosol. A second hypothesis is that the temperature at which the hygroscopicity is measured has an influence on the partitioning between gas and aerosol
phase components, again leading to changes in the observed GF. A third hypothesis is that the residence time of the aerosol inside the instrument also could play a role, due to e.g. slow reversibility of oligomer formation, which could result in a slow increase of the equilibrium GF with increasing time at high RH.

5 Recommendations for operating HTDMAs

Based on the results of these workshops, recommendations for building a new generation of HTDMAs for field operation at the EUSAAR supersites, as well as standardised calibration, quality assurance and data analysis procedures are provided in the following:

5.1 HTDMA design

- The sample RH should be drier than 15% RH during at least 10s prior to entering DMA1. The sample RH at the entrance of the first DMA and in the excess air should be monitored. (See Sect. 4.2)
- The humidified sample should be equilibrated to the nominal RH during at least 10s before entering DMA2. Residence times longer than ~40s are not recommended due to potential evaporation artefacts of semivolatile material such as ammonium nitrate. The exact residence time should be measured and reported. (See Sect. 2.2.4)
- DMA2 must not have any temperature gradient. This can be achieved with a well-stirred water bath or an insulated and temperature controlled box. Care has to be taken to have sufficiently large heat exchangers of the sheath air flow. (See Sect. 4.1.4)
- The HTDMA should be able to hold the RH constantly at the nominal value (±2%RH) over an extended period of time (days). This can be done using feedback loops. (See Sect. 4.1.4)
- All sections containing high RH flow should be temperature controlled to avoid water vapour condensation and to improve the performance under conditions with variable room temperature. Alternatively the RH buffering capacity of the high RH sections should be reduced as far as possible. If instability of the RH occurs due to change of ambient temperature, then the data should not be used. (See Sect. 4.1.3)
- The temperature should be measured in the sheath and excess air of DMA2, as closely to the DMA2 as possible, and the temperature difference should be ≤ 0.1°C, in order to check that no RH gradient greater than ~0.7% exists in the DMA2 at RH < 90% (see Sect. 2.2.3).
• The RH ramping should be automated for improved measurements of hydration/dehydration curves. The RH changes should result in a RH gradient larger 2% RH downstream of the humidifier. (See Sect. 4.1.4).

5.2 Instrument calibration (see Sect. 3.1)

• The analogue output for controlling the HV supply as well as the HV amplification factor must be calibrated.
• All flows rates must be calibrated.
• Temperature and dew point measurement must be calibrated.
• Capacitive RH sensors must be calibrated.

5.3 Instrument validation (see Sect. 4.1 and 3.3)

• Certified PSL spheres can be used to verify the sizing of the DMAs
• The validation of accurate sizing and RH measurement should be done by recording a full hydration curve of ammonium sulphate including the deliquescence transition.
• The correct size dependence of the GF of ammonium sulphate across the range of selected dry diameters should at least be verified for the nominal RH of the field measurements.

5.4 Instrument operation

• Small sizing offsets between DMA1 and DMA2 must be determined for all dry sizes with regular dry scans. We suggest to do this on a weekly basis.
• The measurement quality can be improved by constraining the scanned diameter range to a physically reasonable growth factor range.
• We suggest to conduct ambient measurements at RH=90% (where most ambient salts are deliquesced) and at a selection of the following particle dry diameters: 35, 50, 75, 110, 165 and/or 265 nm. This aims at providing comparable data sets from different sites.
5.5 Recommendation for data analysis

- An SMPS (or an alternative instrument giving the size distribution of the measured aerosol) must run beside the HTDMA and all measurements with a contribution of less than 80% singly charged particles must be removed. (See Sect. 3.3)
- Small sizing offsets between DMA1 and DMA2 must be accounted for in the data analysis. (See Section 3.3)
- An appropriate TDMA inversion algorithms such as TDMAinv or TDMAfit must be applied. (see Section 3.3)
- All measured GFs should be corrected to the nominal RH if the measured RH was within ±2% of the target RH. All data outside the RH tolerance should be ignored. (See Sect. 1.4)

Acknowledgements

This work was performed in the framework of the Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme, EUSAAR Contract N° RII3-CT-2006-026140-. It was further supported by the EC projects EUCAARI and ACCENT, the ESF programme INTROP as well as the Swiss National Science Foundation. Partner 4 acknowledges financial support from the French National Research Agency (ANR) under the AEROTROP programme and the PRIMEQUAL programme.
References

Asa-Awuku, A., Engelhart, G. J., Lee, B. H., Pandis, S. N., and Nenes, A.: Relating CCN activity, volatility, and droplet growth kinetics of beta-caryophyllene secondary organic aerosol. ACPD, 8, 10105-10151, 2008.

Biskos, G., Paulsen, D., Russell, L. M., Buseck, P. R., and Martin, S. T.: Prompt deliquescence and efflorescence of aerosol nanoparticles. Atmos. Chem. Phys., 6, 4633-4642, 2006.

Brechtel, F. J. and Kreidenweis, S. M.: Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part II: Laboratory and ambient studies. Journal of the Atmospheric Sciences, 57, 1872-1887, 2000.

Chan, M. N. and Chan, C. K.: Mass transfer effects in hygroscopic measurements of aerosol particles. Atmos. Chem. Phys., 5, 2703-2712, 2005.

Chuang, P. Y.: Measurement of the timescale of hygroscopic growth for atmospheric aerosols. Journal of Geophysical Research, 108, 4282, doi:10.1029/2002JD002757, 2003.

Cocker III, D. R., Whitlock, N. E., Flagan, R. C., and Seinfeld, J. H.: Hygroscopic properties of Pasadena, California aerosol. Aerosol Sci. Technol., 35, 637-647, 2001.

Colberg, C. A., Luo, B. P., Wernli, H., Koop, T., and Peter, T.: A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles. Atmos. Chem. Phys., 3, 909-924, 2003.

Cruz, C. N. and Pandis, S. N.: Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol. Env. Sci. Technol., 34, 4313-4319, 2000.

Cubison, M. J., Coe, H., and Gysel, M.: A modified hygroscopic tandem DMA and a data retrieval method based on optimal estimation. J. Aerosol Sci., 36, 846-865, 2005.

Duplissy, J., Gysel, M., Alfarra, M. R., Dommen, J., Metzger, A., Prevot, A. S. H., Weingartner, E., Laaksonen, A., Raatikainen, T., Good, N., Turner, F., McFiggans, G., and Baltensperger, U.: Cloud forming potential of secondary organic aerosol under near atmospheric conditions. Geophys. Res. Lett., 35, L03818, doi:10.1029/2007GL031075, 2008.

Fletcher, C. A., Johnson, G. R., Ristovski, Z. D., and Harvey, M.: Hygroscopic and volatile properties of marine aerosol observed at Cape Grim during the P2P campaign. Environmental Chemistry, 4, 162-171, 2007.

Gysel, M., Weingartner, E., and Baltensperger, U.: Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. Env. Sci. Technol., 36, 63-68, 2002.

Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmospheric Chemistry and Physics, 7, 6131-6144, 2007.
Gysel, M., McFiggans, G., and Coe, H.: Inversion of tandem differential mobility analyser (TDMA) measurements. submitted to Journal of Aerosol Science, 2008.

Hennig, T., Massling, A., Brechtel, F. J., and Wiedensohler, A.: A tandem DMA for highly temperature-stabilized hygroscopic particle growth measurements between 90% and 98% relative humidity. Journal of Aerosol Science, 36, 1210-1223, 2005.

Johnson, G. R., Fletcher, C., Meyer, N. K., Modini, R., and Ristovski, Z.: A robust, portable H-TDMA for field use. submitted to Environmental Science and Technology, 2008.

Johnson, G. R., Ristovski, Z. D., D'Anna, B., and Morawska, L.: Hygroscopic behavior of partially volatilized coastal marine aerosols using the volatilization and humidification tandem differential mobility analyzer technique. J. Geophys. Res.-Atmos., 110, 2005.

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsiganis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys., 5, 1053-1123, 2005.

Kerminen, V.-M.: The effects of particle chemical character and atmospheric processes on particle hygroscopic properties. J. Aerosol Sci., 28, 121-132, 1997.

Liu, B. Y. H., Pui, D. Y. H., Whitby, K. T., Kittelson, D. B., Kousaka, Y., and McKenzie, R. L.: Aerosol mobility chromatograph - new detector for sulfuric-acid aerosols. Atmos. Environ., 12, 99-104, 1978.

McMurry, P. H. and Stolzenburg, M. R.: On the sensitivity of particle size to relative humidity for Los Angeles aerosols. Atmos. Environ., 23, 497-507, 1989.

Meyer, N. K., Duplicissy, J., Gysel, M., Metzger, A., Weingartner, E., Alfarra, M. R., Fletcher, C., Good, N., McFiggans, G., Jonsson, A. M., Hallquist, M., Baltensperger, U., and Ristovski, Z. D.: Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles. Atmos. Chem. Phys. Discuss., 8629-8659, 2008.

Mikhailov, E., Vlasenko, S., Niessner, R., and Pöschl, U.: Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement. Atmos. Chem. Phys., 4, 323-350, 2004.

Paulsen, D., Dommen, J., Kalberer, M., Prevot, A. S. H., Richter, R., Sax, M., Steinbacher, M., Weingartner, E., and Baltensperger, U.: Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene-NOx-H2O in a new reaction chamber for atmospheric chemistry and physics. Env. Sci. Technol., 39, 2668-2678, 2005.

Paulsen, D., Weingartner, E., Alfarra, M. R., and Baltensperger, U.: Volatility measurements of photochemically and nebulizer-generated organic aerosol particles. J. Aerosol Sci., 37, 1025-1051, 2006.
Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell, L. M., and Ming, Y.: The effects of low molecular weight dicarboxylic acids on cloud formation. J. Phys. Chem., A105, 11240-11248, 2001.

Prenni, A. J., Petters, M. D., Kreidenweis, S. M., DeMott, P. J., and Ziemann, P. J.: Cloud droplet activation of secondary organic aerosol. Journal of Geophysical Research, 112, D10223, doi:10.1029/2006JD007963, 2007.

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., V., K., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change - Climate Models and their Evaluation. Cambridge University Press, Cambridge, 30 United Kingdom and New York, 2007.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons, Inc., New York, 2006.

Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubison, M. J., Coe, H., Zardini, A., Marcolli, C., Krieger, U. K., and Peter, T.: Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. Journal of Aerosol Science, 38, 157-171, 2007.

Stolzenburg, M. R. and McMurry, P. H.: TDMAFIT user's manual, University of Minnesota, Department of Mechanical Engineering, Particle Technology Laboratory, Minneapolis, 1988.

Swietlicki, E., Hansson, H. C., Hameri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P. H., Petaja, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala, M.: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - a review. Tellus Series B-Chemical and Physical Meteorology, 60, 432-469, 2008.

Tang, I. N. and Munkelwitz, H. R.: Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos. Environ., 27A, 467-473, 1993.

Topping, D. O., McFiggans, G. B., and Coe, H.: A curved multi-component aerosol hygroscopicity model framework: Part 1 - Inorganic compounds. Atmos. Chem. Phys., 5, 1205-1222, 2005.

Van Dingenen, R., Putaud, J. P., Martins-Dos Santos, S., and Raes, F.: Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign. Atmos. Chem. Phys., 5, 2203-2226, 2005.

Villani, P., Picard, D., Michaud, V., Laj, P., and Wiedensohler, A.: Design and validation of a volatility hygroscopic tandem differential mobility analyser (VHTDMA) to characterize the relation ships between the thermal and hygroscopic properties of atmospheric aerosol particles. Aerosol Sci. Technol., 42, 729-741, 2008.
Virkkula, A., Van Dingenen, R., Raes, F., and Hjorth, J.: Hygroscopic properties of aerosol formed by oxidation of limonene, α-pinene, and β-pinene. Journal of Geophysical Research, 104, 3569-3579, 1999.

Wang, J., Daniel, J. J., and Scot, T. M.: Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions. J. Geophys. Res., 113, 2008.

Weingartner, E., Gysel, M., and Baltensperger, U.: Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: Setup and first applications. Environmental Science & Technology, 36, 55-62, 2002.

Weingartner, E., Nyeki, S., and Baltensperger, U.: Seasonal and diurnal variation of aerosol size distributions (10 < D < 750 nm) at a high-alpine site (Jungfraujoch 3580 m asl). Journal of Geophysical Research, 104, 26809-26820, 1999.
Table 1: Technical description of the six HTDMAs.

Specificities/HTDMA	HTDMA1	HTDMA2	HTDMA3	HTDMA4	HTDMA5	HTDMA6
Reference paper	Duplissy et al., (2008)	Johnson et al.,(2008)	Cubison et al., (2005); Gysel et al., (2007)	Weingartner et al., (2002); Gysel et al., (2002)	Van Dingenen et al., (2005)	Villani et al., (2008)
Humidification system	bubbling air through liquid water	bubbling air through liquid water filled with water saturated vermiculite	bubbling air through liquid water	bubbling air through liquid water	heated liquid water separated by a Nafion™ tube	controlled injection of liquid water on a heated resistance
water vapour source						
Humidity control	PID controller & switching valves	PID controller & switching valves	Variable speed pumps mixing dry and wet air	PID controller & solenoid valves	Temperature of the heated liquid water	Injection of correct amount of water
Humidification of the sample (Through what?)	Nafion tube	Nafion tube	Gore Tex	Gore Tex	Nafion tube	Nafion tube
Humidification	sample flow only	both sample flow and sheath air	sample flow only	sample flow only	Prehumidification, (RH=50%) of sample flow, and sheath air	both sample flow and sheath air
Feedback control for RH from second DMA	no	yes	No	yes	no	yes
Residence time of the sample at the correct RH before entering the DMA	15s	4s	30s	8s	Prehumidification (RH=50%) of sample flow, and sheath air	2s
Prehumidificator option or not	no	no	yes	no	yes (RH=50%)	yes
Humidification Performance						
Time needed to go from 90% to dry and back to 90% RH	10 hours	30 min	1 hours	5 hours	1 hours	30 min
Maximum RH with good stability	95	95	90	95	90	90
Specificities/HTDMA	HTDMA1	HTDMA2	HTDMA3	HTDMA4	HTDMA5	HTDMA6
---------------------	--------	--------	--------	--------	--------	--------
RH stability under stable condition[%]± Standard deviation	95±0.25	95±0.07	73±1	90±0.3	87±0.6	85±0.2
Time used to perform RH stability[hr]	10	4	12	5.5	6	9.5
Capacity to keep stable RH if drop of the lab temperature	Yes	Yes	No tested	No	No	Yes
Automatic humidogram	yes	Yes	Yes	Yes	No	No

RH sensor

Type of sensor (Dew Point/Capacitor)	DewPoint mirror (Edge)	DewPoint mirror (GE)	DewPoint mirror (Edge)	Capacitive sensor (Humicap Sensors from Vaisala)	4 Capacitative sensors
Accuracy at 90% RH	±1.2%	±1.2%	±1.2%	±2%	±2%
Precision of the sensor	±0.1	±0.1	±0.1	±1.7	±1.7
Position of the probe in the system	Exit air	Exit air	Exit air	Exit air	Exit air

Flows system

Closed or open loop	Closed	Closed	Closed	Closed	Closed	Closed
Pump or blower	Blower	Pump	Pump	Pump	Pump	Pump
Regulation of the flows. (PID, MFC, Critical Orifice)	PID	MFC	Critical Orifice	Critical Orifice	Critical Orifice	MFC
Flow DMA 1 [l/min]	6±0.01	10±0.05	5.5±0.01	3±0.01	8.6 ±0.1	10 ±0.05
Flow aerosol DMA 1 [l/min]	0.6 ±0.05	2±0.1	0.55±0.05	0.3±0.05	0.97 ±0.05	2 ±0.1
Flow DMA 2 [l/min]	3 ±0.01	5±0.05l	5.5±0.01	3±0.01	8.7 ±0.1	5 ±0.05
Flow aerosol DMA 2 [l/min]	0.3 ±0.05	1±0.05	0.55±0.05	0.3±0.05	0.97±0.05	1 ±0.05

Temperature control system

First DMA	Box T° regulated	none	none	Water bath not T° regulated	none	none
Humidification part	T° regulated	none	none	none	none	T° regulated
Second DMA	Box T° regulated	thermally isolated environment	Water bath not T° regulated	Water bath not T° regulated	thermally isolated environment	Box T° regulated

Continued on next page…
Specificities/HTDMA	HTDMA1	HTDMA2	HTDMA3	HTDMA4	HTDMA5	HTDMA6	
Temperature stability during SOA measurement							
First DMA ($T\pm\Delta T$ °C)	25±/-.1	Lab T.					
Humidification part ($T\pm\Delta T$ °C)	25±/-0.1	Lab T.					
Second DMA ($T\pm\Delta T$ °C)	20⁻⁺/0.1	Lab T.	Lab T.	Lab T.	19.5⁻⁺/-0.3	Lab T.	
HTDMA performance							
Size measured with DMA1 set to select 100 nm diameter particles and standard deviation	Workshop1 100±0.05	Workshop2 98.5±0.05	101±0.2	101.8±0.3	104.3±1	106.9±3.3	97±1
Time performed for D_0 stability [hrs]	48 and 24	9.5	22	28	3	2	
Measurable size range DMA2	30nm to 600nm	~15nm to 350nm	~20nm to 800nm				
sizing mode: scanning / stepping	scanning	scanning	stepping	scanning	stepping	stepping	
Second CPC for total number variation exiting DMA1?	No	No	No	No	No	Yes	
Table 2: Measured deliquescence RH and GF (at 85 and 90% RH) of ammonium sulphate.

	HTDMA1	HTDMA2	HTDMA3	HTDMA4	HTDMA5	HTDMA6	Reference values
Deliquescence							
RH [%]	80.2±0.34	78.5±3	79.5±3	79.2±1.4	81±2	78.95±1.2	79.9 1)
Number of	7	1	3	12	8	7	
measurements							
GF at 85±0.5%	1.56±0.03	1.55±0.03	1.54±0.03	1.57±0.01	1.48±0.04	4	1.535±0.0
Number of	14	2	1	6	11		
measurements							
Deviation to the	-0.3	-1.1	-1.8	0.2	-5.6	-2.1	
theory [%]							
GF at 90% RH	1.72±0.03	1.69±0.03	1.67±0.03	No data	No data	No data	1.722 2)
Number of	8	2	1	0	0	0	
points							
Deviation to the	-0.12	-0.19	-3				
theory [%]							

1) The measured DRH of ammonium sulphate is 79.9% RH for large particles (Tang and Munkelwitz, 1993).

2) The theoretical GF (for Do = 100nm) are taken Topping et al. (2005).
Figure 1: Schematics of all HTDMAs illustrating the humidity production principles, PID feedbacks for RH regulation, and temperature stabilised parts.
Figure 2: Panels a and b show two example aerosol number size distributions (red shadings) measured at the Jungfraujoch, Switzerland, in 1997 (Weingartner et al., 1999). The black lines indicate the raw counts recorded by the CPC as a function of electrical mobility diameter set at the DMA. The bottom panels show the proportion of particles carrying 1, 2, or 3 charges (both polarities). In the example of Panel a, the singly charged particles dominate (≥80%) at most set diameters and an accurate HTDMA analysis is possible. Only at D₀≈150 nm the selected physical diameter is not well defined because ~40% of the particles are doubly charged, and data analysis is hampered. Panel c shows a two-dimensional plot of
the GF offset for doubly charged particles as a function of the diameter set at DMA1 and the single charge equivalent GF measured, defined as $GF_{\text{true}} = GF_{\text{measured}} + GF_{\text{offset}}$
Figure 3: Testing the influence of a laboratory temperature drop from 24°C to 14°C on the RH stability and measurement accuracy. The blue dots (left axis) show the RH inside DMA2. The relative deviation of the measured GF from the theoretical value (calculated from Topping et al. 2005) corresponding to the measured RH is shown as green dots (right axis). Negative and positive GF bias (See Equation 2) mean negative and positive deviations from theory, respectively. HTDMA4 was not measuring GFs during this test and HTDMA3 was running a humidogram.
Figure 4: Humidograms of ammonium sulphate measured with the 6 HTDMAs. Data points describe GF measured by the 6 HTDMAs, dashed lines represent theoretical GF (Topping et al., 2005). For HTDMA1, 3 and 4, due to their humidification systems (See Sect. 2.2.3), only measurements performed during decreasing or stable RH are shown. During increasing RH the aerosol could already deliquesced prior to entering DMA2.
Figure 5: GF of SOA at 90%RH during the first workshop for two experiments.
Figure 6: GF of SOA (at 90% RH) during the second workshop. The top panel shows the results as provided by the respective HTDMA operators using their own analysis procedures. The bottom panel shows the results after a reanalysis using the procedure recommended in this paper.