Withaferin A Induces Heat Shock Response and Ameliorates Disease Progression in a Mouse Model of Huntington’s Disease

Tripti Joshi1 · Vipendra Kumar1 · Elena V. Kaznacheyeva2 · Nihar Ranjan Jana1,3

Received: 20 February 2021 / Accepted: 14 April 2021 / Published online: 26 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Impairment of proteostasis network is one of the characteristic features of many age-related neurodegenerative disorders including autosomal dominantly inherited Huntington’s disease (HD). In HD, N-terminal portion of mutant huntingtin protein containing expanded polyglutamine repeats accumulates as inclusion bodies and leads to progressive deterioration of various cellular functioning including proteostasis network. Here we report that Withaferin A (a small bioactive molecule derived from Indian medicinal plant, Withania somnifera) partially rescues defective proteostasis by activating heat shock response (HSR) and delays the disease progression in a HD mouse model. Exposure of Withaferin A activates HSF1 and induces the expression of HSP70 chaperones in an in vitro cell culture system and also suppresses mutant huntingtin aggregation in a cellular model of HD. Withaferin A treatment to HD mice considerably increased their lifespan as well as restored progressive motor behavioral deficits and declined body weight. Biochemical studies confirmed the activation of HSR and global decrease in mutant huntingtin aggregates load accompanied with improvement of striatal function in Withaferin A-treated HD mouse brain. Withaferin A-treated HD mice also exhibit significant decrease in inflammatory processes as evident from the decreased microglial activation. These results indicate immense potential of Withaferin A for the treatment of HD and related neurodegenerative disorders involving protein misfolding and aggregation.

Keywords Huntington’s disease · Withaferin A · HSF1 · Proteostasis · Inflammation

Introduction
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor deficits like chorea and fluctuations in gait, cognitive decline and psychiatric instabilities. Chorea or involuntary movement of extremities is the most prominent symptom afflicted by the patient with HD, although impairment in voluntary movements can also be observed in these patients [1, 2]. The HD is caused by an abnormal expansion of CAG triplets in the exon-1 of Huntingtin (HTT) gene resulting in translated abnormal polyglutamine (polyQ) stretch in the encoded protein [3]. The length of the CAG repeat in the HTT gene can be considered as an on or off switch for the development of the disease and the severity of the disease is directly proportional with the repeat length. Further, the polyQ containing segment of the mutant huntingtin is enzymatically cleaved into N-terminal fragments that are very unstable and eventually form insoluble aggregates in the nucleus, cytoplasm and neuronal processes [4–6]. As a result, there are selective dysfunction and degeneration of striatal neurons in the early stage followed by progressive degeneration of other brain regions [6–9]. Neuropathological severity of the disease is categorized into five distinct scores with 0 (least display of micro- and macroscopic abnormalities) to 4 (noticeable alterations) in due course of the disease progression [10].

Formation of proteinaceous inclusions is a characteristic hallmark of most protein misfolding neurodegenerative diseases like HD and Alzheimer’s disease [6, 11, 12]. In HD, polyQ containing misfolded mutant huntingtin fragments or their aggregates have been demonstrated to disrupt wide array of cellular functioning including disruption
of protein quality control mechanisms in various model systems [11, 13–15]. Normally, cells have stringent protein quality control mechanisms that systematically employ chaperone machinery, ubiquitin–proteasome system and autophagy to clear abnormal proteins. These components are necessary for maintaining cellular proteostasis and efficient cellular functioning [16]. However, in HD, all these proteostasis-regulating mechanisms are progressively impaired [13, 17–23]. Pharmacological inducers/activators targeting different components of proteostasis
machinery have been reported to reduce aggregate load and slow the disease progression in various animal models of HD [21, 22, 24–26]. Since the function of various molecular chaperones as well as their master regulator, heat shock factor 1 (HSF1), is severely compromised, it is believed that upregulation of HSF1 activity could be a promising strategy to restore proteostasis and disease pathogenesis in HD [27–31]. Indeed, several HSF1 activators showed promising result in rescuing HD phenotypes in various animal models [27, 28, 32–35]. However, many of the pharmacological activator of HSF1 are toxic to the cell, and therefore, identification of relatively safer activator is crucial for prolonged treatment.

In the present study, we dissected the potential role of Withaferin A (WA) in inducing heat shock response (HSR) through the activation of HSF1 and possible involvement of WA-mediated HSR in suppressing mutant huntingtin aggregation and rescuing neuronal dysfunction and disease progression using cellular and R6/2 transgenic mouse model of HD. WA, a small active principal component of Indian medicinal plant *Withania somnifera* (commonly known as Ashwagandha), has been shown to possess an anti-inflammatory, anti-cancer and neuroprotective properties [36, 37]. This molecule has been demonstrated to rescue neuronal dysfunction and neurodegeneration in various animal models of neurodegenerative disorders [38–42]. However, the molecular mechanism through which WA provides neuroprotective effect is still unclear and the effect of this molecule in animal model of HD is unexplored. Here, we demonstrate that the treatment of WA strongly activates HSF1, which could be mediated through its effect on thiol modification of various cellular proteins. Treatment of low doses of WA to HD150Q cells (a cellular model of HD) significantly reduces the mutant huntingtin aggregation. We also demonstrate that the prolonged treatment of WA from the early stage of disease progression significantly recovers various motor behavioral deficits and extends the lifespan of HD mice.

Materials and Methods

Materials

Cell culture reagents including high glucose DMEM (Dulbecco’s modified Eagle medium), BCA protein determination kit, MG132, primary antibodies such as mouse monoclonal anti-β-actin (A5316) anti-GFP (11814460001), and Withaferin A were procured from Sigma. Fetal bovine serum (FBS), trypsin, penicillin–streptomycin, Opti-MEM and Lipofectamine-2000 were purchased from Gibco/Thermo Fisher Scientific. Goat polyclonal anti-huntingtin (SC8767), rabbit polyclonal anti-DARPP32 (SC11365), mouse polyclonal anti-HSP70 (SC-24) and mouse monoclonal anti-GAPDH (SC-32233) were purchased from Santa Cruz Biotechnology. Mouse monoclonal anti-IC2 (MAB1574) and Immobilon Western chemiluminescent HRP substrate kit were purchased from Millipore. Rabbit polyclonal anti-ubiquitin (Z0458) and anti-Iba1 (01919741) were purchased from Dako and Wako respectively. Horseradish peroxidase (HRP) conjugated and biotinylated secondary antibodies, VectaStain ABC kit and ImmPACT NovaRED HRP substrate kits were purchased from Vector laboratories. Dual-Luciferase Reporter assay system (E1910) and plasmids pGL4.41/[luc2P/HSE/Hygro] and pRL-SV40 were purchased from Promega. Ponasterone A (45–0478) and trizol reagent were procured from Invitrogen. For cDNA synthesis and semi-quantitative PCR, TaKaRa RNA LA PCR™ Kit (RR012A) was used.

Cell Culture, Drug Treatment, Dual-Luciferase Assay and Mutant Huntingtin Aggregate Counting

HT22 cells (kindly provided by Dr. Dave Schubert, Salk Institute, USA) were cultured in DMEM supplemented with 10% heat-inactivated FBS and penicillin–streptomycin. For immunoblot analysis, cells were routinely cultured in a 6-well tissue culture plate at sub-confluent density, and after 24 h of plating, cells were treated with WA for different time periods. For dual-luciferase assay, HT22 cells were plated in 24-well tissue culture plates at sub-confluent density. After 15–18 h, cells were transiently transfected with pGL4.41-HSE Firefly luciferase reporter plasmid (containing 4 copies of heat shock element (HSE) and Renilla normalization plasmid (pRLSV40) using Lipofectamine 2000 as per manufacturer’s protocol. After 18 h of transfection,
cells were treated with WA for 12 h. Cells were then lysed with the passive lysis buffer and subjected to dual-luciferase assay. The ratio of Firefly to Renilla was calculated and data was expressed as fold change.

In another set of experiments, HD150Q cells (a stable and ecdysone-inducible cellular system) that express truncated N-terminal huntingtin fused with enhanced green fluorescence protein (tNhtt-150Q-GFP) were cultured in DMEM supplemented with heat-inactivated 10% fetal bovine serum and antibiotics (0.4 mg/ml Zeocin and 0.4 mg/ml G418). Expression of tNhtt-150Q-GFP protein was induced with 1 µM of ponasterone A and simultaneously treated with different doses of WA for 48 h followed by preparation of cell lysate for immunoblot analysis. To count GFP-positive mutant huntingtin aggregates, HD150Q cells were seeded onto chamber slides and the aforementioned paradigm was followed for induction and treatment. After 48 h, images were taken in a fluorescence microscope across regions of the chamber slide. Three independent experiments were done to calculate percentage of cells with aggregates.

Animals and Drug Treatment

Mouse model of Huntington’s disease (strain B6CBA-Tg (H Dexon1) 62Gpb/3 J) was procured from The Jackson Laboratory. The animals were bred in the National Brain Research Centre animal facility. These transgenic animals (also referred as R6/2 line) carry the 5′-portion of the human HTT gene, containing the 120 CAG repeats. This model represents a rapidly progressive diseased phenotype. Animals had free access to pelleted diet and water ad libitum. All experiments were conducted in accordance with the strict guidelines outlined by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment and Forestry, Government of India, and were approved by the Institutional Animal Ethics Committee of the National Brain Research Centre (Protocol Number NBRC/IAEC/2019/154). After PCR-based genotyping, female HD mice along with their wild-type littermates were used for the present study. WA was dissolved in DMSO and diluted in saline (5% DMSO). Literature survey and pilot experiments of 5, 2 and 1 mg/kg body weight doses were carried out. Drug dose of 1 mg/kg body weight was found to be effective and safe and 15 doses were administered via intra-peritoneal route every alternate day starting at their age of 56th day until the 84th day. Mice were constantly monitored for their behavior, body weight and motor symptoms. At the 84th day, animals were sacrificed, brains were collected and different regions were dissected out and stored at −80 °C for further processing.

Behavioral Studies

Clasping Test

Mice were suspended through their tails and the time was noted when they brought their limbs firmly together. For every experimental time point, three trials of 60 s each were performed for each mouse and clasping scores assigned accordingly: 0, no clasping in 60 s; 1, clasping in 31–60 s; 2, clasping in 16–30 s; 3, clasping 11–15 s, 4, clasping in 6–10 s; 5, clasping 1–5 s.

Gait Analysis

Footprint gait analysis was done by immersing the hind and fore paws of the animal in different colored non-toxic inks. Mice were trained for 3 days to walk inside a wooden tunnel (40 x 5 cm) lined with white paper and then assessed for three trials. The walking footprint obtained on the white paper was used to measure stride length and distance between the fore and hind paws.

Rotarod Analysis

Mice were placed on the instrument with a rotating rod at 5 rpm for training. After 3 days of training, they were assessed for 3 trials in each week at constant speed of 10 rpm. A maximum of 60 s was permissible per trial per mouse. Average time of three trials per week was tabulated and plotted.

Measurement of Striatal Volume

Mice were anaesthetized with xylazine (10 mg/kg body weight) and ketamine (100 mg/kg body weight) and then transcardially perfused using PBS followed by 4% paraformaldehyde (PFA). Brains were carefully dissected and immersion-fixed in 4% paraformaldehyde (pH 7.4) overnight at 4 °C, rinsed thrice in PBS and impregnated with sucrose gradient of 10%, 20% and 30% for 24 h each at 4 °C. Leica CM3050 cryotome was used for cryo-sectioning of brain to 25-µm-thick sections that were stored at 4 °C in PBS with 0.02% sodium azide. Coronal sections were taken that spanned the entire striatum area from the anterior to posterior region. For measuring striatal volume, serial sections (every fifth section) were Nissl stained. Peripheral boundary of the striatum was carefully traced (taking reference from Allen Brain atlas) using stereo investigator software and the volume was calculated.

Immunostaining and Aggregate Counting

For immunostaining, cryo-sections from different experimental groups were placed onto the glass slide and first incubated with antigen masking solution for 40 min at
70 °C for antigen retrieval. After washing with PBS, quenching solution (10% H2O2, 10% methanol in PBS) was added for removal of endogenous peroxidases for 15 min and then washed with PBS. Permeabilization was done with 0.3% Triton X-100 for 10 min followed by blocking with normal horse serum (3%), bovine serum albumin (1%) and Triton X-100 (0.3%) for 2 h inside a humid chamber at room temperature. Sections were then incubated with huntingtin antibody (1:100 dilutions in blocking solution) for 16 h. After washing with PBS, the sections were incubated with biotinylated secondary antibody at a dilution of 1:500 for 2 h. The next step was VECTASTAIN-Elite ABC solution incubation of 2 h. Staining was developed using ImmPACT Novared peroxidase substrate kit as per the manufacturer’s protocol. Images were acquired by a Leica DM RXA2 bright field microscope. The ×40 images of the motor cortex, striatum and hippocampal region of the brain were analyzed for the total number of huntingtin positive aggregates using ImageJ software.

Fig. 2 Treatment of WA suppresses mutant huntingtin aggregation in a cellular model of HD. **a**, **b** HD150Q cells were plated onto 2-well chamber slide at low density, and on the next day, cells were simultaneously induced with ponasterone A (PonA) and treated with different doses of WA. Forty-eight hours of post treatment, images were taken from multiple fields in each treatment group using fluorescence microscope and numbers of aggregates were counted and expressed as percentage of cell having aggregates. Multiple aggregates in a single cell were considered single aggregate. Values represented are mean±SD of three independent experiments. *P<0.001 as compared to PonA-treated group. Scale bar; 100 μm. **c** HD150Q cells were platted onto 6-well tissue cultured plates and on the subsequent day, cells were induced and treated with WA for 48 h. Collected cells were then processed for immunoblot analysis using GFP (to detect tNhtt-150Q-GFP protein) and HSP70 antibodies. Band intensities of tNhtt-150Q-GFP and HSP70 were measured and normalized as described in Fig. 1. **d** HD150Q cells were induced and treated with WA as above; total RNA was extracted and subjected to semi-quantitative RT-PCR analysis. Values depicted are mean±SD of three independent experiments. In **d**, *P<0.05 and **P<0.001 as compared to respective PonA-treated group.
Immunoblotting and Dot Blot Assay

Mice were sacrificed and the cortex and striatal regions were carefully dissected out and snap frozen in liquid nitrogen. Samples were placed in −80 °C for storage. Tissues were lysed in RIPA lysis buffer (10 mM Tris, pH 7.4, 150 mM NaCl, 2.5 mM EGTA, 10 mM EDTA, 0.1% SDS, 1% Triton X-100, 1% sodium deoxycholate, 0.1 mM Na3VO4, 10 mM NaF, 5 mM Na4P2O7, and complete protease inhibitor cocktail) at 4 °C using a tissue homogenizer. Lysates were sonicated and centrifuged at 15,000 × g for 10 min. Supernatants obtained were collected and protein estimation was done using BCA method. The lysates were then mixed with sample buffer (1:1 ratio) and subjected to SDS-PAGE. Resolved proteins on the gel were transferred to nitrocellulose membrane that was followed by blocking with 5% non-fat skimmed milk for 2 h at room temperature. Next, the membrane was probed with different primary antibodies as followed: HSP70 (1:5000), GFP (1:5000), DARPP32 (1:5000), 1C2 (1:1000), Iba1 (1:500), β-actin (1:5000), GAPDH (1:5000). After primary incubation, the membrane was washed with TBST and appropriate HRP tagged secondary antibody was added. The blot was developed using Millipore Immobilon Western chemiluminescent HRP substrate.

For dot blot assay, cortex samples were homogenized in ice-cold RIPA buffer, sonicated on ice (pulse on time: 1 s, pulse off time: 1 s, total time 30 s) followed by BCA method for protein estimation. An equal concentration of each sample was treated with DNase I and then centrifuged at 15,000 × g for 15 min. The pellet was collected and treated with 2% SDS for 5 min at boiling temperature. An equal volume (comprising equal concentration) of different samples was filtered through SDS wash buffer pre-equilibrated nitrocellulose membrane. Membranes were then washed with SDS wash buffer and processed for immunoblotting with 1C2 antibody.

Semi-quantitative PCR

Total RNA was extracted from HD150Q cells using Trizol reagent following the manufacturer’s protocol. cDNA was then synthesized using cDNA synthesis kit from TaKaRa. The cDNA from HD150Q was processed for semi-quantitative PCR using GFP-specific primers. The data obtained was analyzed and expressed as fold change after normalization with GAPDH. Primer sequences for GAPDH and GFP are as follows: GAPDHF, 5’-GGTTGTCTCCTGCGACTTCA-3’; GAPDHR, 5’-TAGGGCCCTCTTGGTCTCATG-3’; GFPF, 5’-ACGTGACCGCCACAGGTCC-3’; GFPR, 5’-TGTTCTGCCTTAGTGCCCG-3’.

Statistical Analysis

Statistical scrutiny was conducted with SigmaPlot software. The data was represented as mean ± standard deviation (SD). Values were analyzed by using one- or two-way ANOVA followed by Holm-Sidak post hoc test. Survival data were Fig. 3 Treatment of WA rescues deteriorated body weight and increases the lifespan of HD mice. Female wild-type and HD mice were injected with either saline or WA from their age of 56 days and continued up to 84 days. Injections were given every alternate day. Body weight of each mouse was measured every week up to 84 days and then left untouched to monitor their lifespan. a Percent change of the body weight of saline- and drug-treated HD and wild-type mice groups. b Comparison of the survival rate of drug- and vehicle-treated HD mice. Data was analysed using two-way ANOVA followed by Holm-Sidak post hoc test. Values shown are mean ± SD with 9–12 animals in each experimental group. *P < 0.05 as compared to saline-treated HD group.
Results

WA Induces HSR and Reduces Mutant Huntingtin Aggregation

Severe impairment of HSR in HD prompted us to screen and identify novel small molecule activator of HSF1 from the natural product that could offer potential therapeutic benefit. Initial screening was performed using a luciferase-based reporter assay where cells were transiently transfected with luciferase reporter vector containing heat shock elements (pGL4.41) along with pRLSV40 control plasmid, treated with different molecules followed by dual-luciferase assay. Using this screening method, we have identified WA as one of the strong activators of HSF1 (Fig. 1a). MG132 was used as positive control while topotecan did not affect HSF1 activity. We further characterized the HSF1 activating property of WA by checking the expression of HSP70 (one of the commonly known HSF1-induced chaperones). Treatment of WA dose and time dependently induced the expression of HSP70 (Fig. 1b–d). We have also noticed that WA at the dose ranging from 1 to 5 µM caused about 10–50% loss of cell viability when treated for 12-h duration. The WA-mediated HSF1 activation was partially prevented upon co-treatment of the cell with N-acetyl cysteine (NAC) indicating further that WA-induced thiol adduct formation could be playing an important role in this process (Fig. 1e, f). WA-induced thiol modifications of various cellular proteins could also be linked with proteasomal malfunction as evident from increased accumulation of ubiquitinated proteins. These studies confirm that WA induces HSR through the activation of HSF1 and these results are in line with earlier studies [43, 44].

Since WA activates HSR and is relatively less toxic at lower doses (0.1–0.5 µM), we further explored its effect on mutant huntingtin aggregation in a cellular model of HD (HD150Q cell) that inducibly expresses truncated N-terminal mutant huntingtin containing 150Q fused with GFP (tNhtt-150Q-GFP). HD150Q cells were simultaneously induced to express tNhtt-150Q-GFP with ponasterone A and treated with different doses of WA and the rate of aggregate formation was monitored at different time points using a fluorescence microscope. As shown in Fig. 2a, b exposure of WA for 48 h significantly reduced tNhtt-150Q-GFP aggregation. WA treatment also significantly reduced the soluble level of tNhtt-150Q-GFP protein along with the induction of HSP70 in HD150Q cells (Fig. 2c, d). WA did not have any effect in the transcript level of tNhtt-150Q (Fig. 2e).

Fig. 4 Significant improvement of motor behavioral deficits in WA-treated HD mice. Long-term administration of WA improved motor deficits in HD mice. Animals were treated with saline or WA as described above and various tests to assess motor function were conducted at the end of each week. a Assessment of motor function through rotarod performance test. b Clasping test. c, d Footprint gait analysis. Values shown are mean ± SD with 10 animals in each experimental group. *P < 0.001 as compared to vehicle-treated HD group. Two-way (in a and b) or one-way (in c and d) ANOVA was used to analyse the data.
Treatment of WA to HD Mice Improved Their Motor Behavioral Deficits and Survival Rate Along with Restoration of Striatal Integrity

Since WA treatment reduced the aggregation of tNhtt-150Q protein in HD150Q cells, we further investigated the effect of this molecule in rescuing HD phenotype using a R6/2 transgenic mouse model of HD. These HD mice exhibit observable motor behavioral deficits along with impairment of HSF1 activity from 8 weeks onwards. Widespread nuclear aggregates of mutant huntingtin are also detectable from this time point [29, 45]. We started administering WA to HD mice at their 8 weeks of age. Initially, we tried to optimize the tolerable dose of WA using pilot experiment. At 5 mg/kg body weight dose for alternate days, 50% of HD mice died after 5 doses; however, at 1 mg/kg dose for 15 doses, all animals were healthy and even loss of body weight was partially improved. We then repeated the experiments with 1 mg/kg dose and treatment was continued up to 12 weeks. Body weight and various motor behavioral tests were monitored in every week. In this dosing paradigm, WA administration significantly improved the progressively declined body weight of HD mice (Fig. 3a). Interestingly, survival rate was considerably increased in this dosing schedule of WA (Fig. 3b). Average lifespan of HD mice was increased about 25 days. In the rotarod performance test, WA-treated mice performed much better than the vehicle-treated HD group, although the efficiency was decreased with increasing age (Fig. 4a). WA- and vehicle-treated wild-type mouse group performed well and did not fall down in this experimental condition. Clasping behavior of HD mice (one of the unique behavioral deficits in these mice) was progressively increased with age, which was significantly reduced upon WA treatment (Fig. 4b). Similarly, in footprint gait analysis, WA treatment to HD mice significantly increased their stride length and decreased the distance between fore and hind paws (Fig. 4c, d). All these tests clearly indicate that the treatment of WA considerably improved motor deficits in HD mice.

Since striatal degeneration is one of the distinctive features of HD and many of motor deficits are manifested due to the striatal dysfunction, we investigated the striatal structure and volume in the drug-treated HD mice along with controls. We noticed a significant reduction in striatal volume in 12-week-old HD mice and treatment of WA prevented the atrophy of the striatum (Fig. 5). Size of lateral ventricles was enlarged due to the atrophy of the striatum in HD mouse brain as evident from the Nissl-stained coronal brain section and treatment of WA for prolonged duration prevented the striatal atrophy. HSR inducing property of WA prompted us to compare the load of mutant huntingtin aggregates in the brain sample of vehicle- and WA-treated HD mice. Coronal brain sections obtained from both vehicle- and WA-treated mice (84 days old) were processed for immunohistochemical staining using huntingtin antibody and nuclear aggregates were counted in different brain regions. As shown in Fig. 6, treatment of WA reduced the number of nuclear aggregates in the striatal, cortical and hippocampal areas of HD mouse brain compared to the saline-treated HD group. There was about 40–50% reduction in nuclear aggregates in different brain regions of...
WA-treated HD mice when matched with saline-treated HD group (Fig. 6b). To further evaluate the level of insoluble mutant huntingtin, cortical samples were analyzed using dot blot assay and results were very similar to aggregate counting data. WA-treated HD cortical sample showed nearly 40% reduction in insoluble mutant huntingtin when compared with vehicle-treated HD samples (Fig. 6c). Next, we analyzed the level of soluble transgenic mutant huntingtin in the saline- and WA-treated cortical samples in immunoblot study using 1C2 antibody that specifically recognizes expanded polyQ epitope. As shown in Fig. 7, WA treatment significantly reduced the steady-state level of soluble transgenic mutant huntingtin. Huntingtin antibody was unable to detect the soluble pool of transgenic mutant huntingtin. Immunoblot analysis confirmed that the level of HSP70 was significantly reduced in the HD mouse brain and that was partially restored upon WA treatment indicating the induction of HSR in WA-treated animals (Fig. 8). However, increase of HSP70 in the WA-treated wild-type group was not significant. It is possible that the blood–brain barrier permeability of WA might be poor. Because of the disruption of blood brain barrier permeability in HD mice, WA might be more accessible to the brain [46]. Treatment of WA also partially restored the reduced level of striatal DARPP32 (a dopamine-regulated phosphoprotein 32) in HD mouse brain (Fig. 8). This finding correlates well with the restoration of striatal volume.

Fig. 6 Administration of WA significantly reduces the number of nuclear aggregates in HD mice brain. a Coronal brain sections acquired from vehicle- and WA-treated HD mice (females) were processed for IHC staining using huntingtin antibody to detect the aggregates (pointed by arrow). b Nuclear aggregates were manually counted in 2–3 different fields of each brain area. Brain sections from three different animals (4–5 sections/animal) were evaluated and values were expressed as percent change upon WA treatment. Values are mean ± SD with 3 animals in each experimental group. *P < 0.01 as compared to saline-treated HD group (one-way ANOVA followed by post hoc test). c Dot blot analysis of the insoluble fraction prepared from saline- and WA-treated wild-type and HD animals (cortical samples). Blot was detected with 1C2 antibody. Intensities of each spot were determined using NIH Image analysis software and expressed as fold change. In each spot, sample from different mice was used. Values are mean ± SD with 3 animals in each experimental group. *P < 0.001 as compared to vehicle-treated HD group (one-way ANOVA followed by post hoc test)
Reduced Inflammation in WA-Treated HD Mouse Brain

WA is shown to suppress the inflammatory process through the inhibition of NF-κB pathway and thereby could prevent neurodegeneration in animal models of ALS [38]. In R6/2 mice, inflammation is observed in the late stage of disease progression particularly around 12–14 weeks of age [47]. We used Iba1 antibody to detect activated microglia in the brain sample of saline- and WA-treated HD mice. Iba1 is a well-known marker of activated microglia and its level increases during activation. Immunohistochemical staining detected activated microglia in the striatum of HD mice as evident from their round cell body with short pseudopodia (Fig. 9). In wild-type mice, cell body of the microglia is comparatively large and has extensive branching. Treatment of WA reduced the number of activated microglia. Immunoblot analysis further detected increased level of Iba1 in the striatum of HD mice and treatment of WA brought down the level to nearly normal range (Fig. 9b, c). These results indicate treatment of WA significantly reduces the inflammatory process in HD mice.

Discussion

In the present investigation, we report that the treatment of WA delays the disease progression and increases the survival of HD mice and the beneficial effect could be mediated partly through the activation of HSF1 and subsequent induction of HSR. The HSR is an important physiological process involved in preserving cellular protein quality control and this process is progressively compromised in HD and related neurodegenerative diseases [13, 18–20, 22, 23]. Many of the components of HSR particularly molecular chaperones exceed their capacity to deal with the misfolded mutant huntingtin protein for their proper folding and clearance as expanded polyQ proteins are prone to misfold and difficulty to degrade through proteasome [19, 48–50]. More importantly, the function of HSF1, a master regulator of HSR, is also severely compromised in HD brain [27, 30]. How the activity of HSF1 is affected in HD is still unclear. While one report showed transcriptional repression of HSF1 in HD mouse brain [27], another report indicated enhanced degradation of HSF1 [30]. HSF1 transcriptional activity also could be reduced as the function of Sirt1 (that deacetylates and activates HSF1) is affected due to its aberrant interaction with mutant huntingtin [51, 52].

In any case, decrease in the activity of HSF1 in HD brain indicates that pharmacological activators of HSF1 could be one of the potential therapeutic strategies in reversing HD phenotypes. Indeed, several brain permeable small molecule activators of HSF1 have been demonstrated to rescue the HD phenotypes in multiple model systems. Some of those include geldanamycin, 17AAG, NVP-HSP990, HSF1A, celestrol, dexamethasone and azadiradione [27, 29, 33–35, 53]. Most of these molecules are toxic to the cell at higher concentrations, and therefore, identification of relatively less toxic HSF1 activator is critical for prolonged treatment particularly in rescuing neuronal dysfunction and neurodegeneration. In this context, HSF1 activator that has additional cellular targets linked with neuroprotection or enhanced clearance of abnormal proteins could be very important. For example, recently we have identified azadiradione that not only activates HSF1 but also induces the expression of Ube3a (an ubiquitin ligase), which is involved in the degradation of expanded polyglutamine proteins [29]. In the similar line, WA not only activates HSF1 but also demonstrated to have potent anti-inflammatory effect [38]. We have confirmed that WA activates HSF1 through thiol oxidation as treatment of NAC-prevented HSF1 activation. This has been suggested in an earlier report [43]. At higher

Fig. 7 WA treatment significantly reduces the soluble level of transgenic mutant huntingtin. a Cortical and striatal samples from 3 different mice (females) in each experimental group were subjected to immunoblot analysis using 1C2 antibody to detect the soluble transgenic mutant huntingtin fragment. b Band intensity of transgenic mutant huntingtin fragment was analyzed and expressed as fold change. Values are mean ± SD with 3 animals in each experimental group. *P < 0.05 (cortex) and P < 0.01 (striatum) as compared to saline-treated HD group (Student’s t-test)
doses, WA has been shown to inhibit proteasomal dysfunction and induction of autophagy and these effects could be linked with its effect on thiol modification in the cell [44]. Treatment of WA to HD150Q cells at relatively less toxic doses significantly increased the expression of HSP70 along with reduced level of soluble mutant huntingtin and their aggregation. These results indicate prolonged treatment of low doses of WA could be effective in suppressing mutant huntingtin aggregation possibly through their refolding and clearance. In HD mice, WA treatment (1 mg/kg body weight) was started at early stages of disease progression, and when visible, aggregates begin to appear and treatment was continued up to 12 weeks. In this treatment regime, WA significantly increased the lifespan of HD mice along with recovery of deteriorated motor functioning. Improvement of progressive worsening of the body weight of WA-treated HD mice is indicative of minimum drug-associated toxicity. Significant activation of HSF1 along with reduction of aggregate load in the drug-treated HD mice clearly indicates that HSF1-mediated restoration of HSR plays an important role in this process. WA might induce cellular stress at early stage of treatment, but eventually could make the cell more resistant with improved proteostasis. A recent study has shown similar outcome, where dietary restriction improves proteostasis through endoplasmic reticulum stress [54]. All these data indicate that treatment of WA at early stages of disease progression seems to be very effective.

Growing body of literature now indicates the neuroprotective role of *Withania somnifera* plant extracts or its active principal component (particularly WA) in various animal models of neurodegenerative disorders [37, 55]. Semi-purified root extract of this plant containing withanolides and withanosides reversed the behavioral deficits and amyloid plaque load in the brain of APPswe/PS1δE9 transgenic mouse model of Alzheimer’s disease [42]. Extensive studies in various animal models of ALS, the root extract or WA itself found to be very effective in rescuing behavioral deficits along with reduction in the level of mutant disease proteins (SOD1 and TDP-43) [38–41, 56]. The molecular mechanism through which WA reverses the ALS pathology is not clearly understood. WA-mediated reduction in neuroinflammation through inhibition of NF-κB activity is suggested to be playing an important role [38, 39]. However, treatment of WA results in significant reduction in the level of mutant SOD1 or TDP-43 along with induction of HSF1-induced chaperones (HSP25, HSP70) in the respective animal model [39, 56]. These results strongly indicate that there is induction of HSR in WA-treated animal models of ALS. A number of reports demonstrate that WA inhibits NF-κB pathway by binding and inhibiting the IκB kinase (IKK) leading to decreased phosphorylation and stabilization of IκB [38, 57]. The level of phosphorylated p65 subunit of NF-κB is also reduced upon WA treatment [38, 56]. In addition to IKK, WA also targets a number of other cellular factors (PPARγ, Hsp90, Nrf2, HIF-1 and AP-1) and altered function of these factors could also be linked in rescuing neurodegeneration [58]. It is important to mention that WA is the most extensively studied steroidal lactone found in *Withania somnifera*. However, there are several other steroidal lactones found in this and other *Solanaceae* family herb

Fig. 8 Induction of HSR and improvement of striatal function in WA-treated HD mice.

a Cortical and striatal lysates obtained from saline- and WA-treated wild-type and HD mice (females) were subjected to immunoblot analysis using various antibodies as indicated in the figure. Each lane in the blot represent sample from different mice.

b Band intensity of HSP70 from cortical and striatal samples was evaluated and plotted as fold change.

c Quantification of band intensity of DARPP32 in the striatal sample. Data represented as mean ± SD; n = 3 animals in each experimental group. *P < 0.05 as compared to saline-treated HD group (one-way ANOVA followed by post hoc test)
and their modes of action particularly anti-inflammatory role are yet to be fully explored.

Although our study primarily focused on WA-stimulated HSR in ameliorating HD progression, we cannot rule out the probable anti-inflammatory role of this drug in the rescue process as inflammation occurs in the brain of HD patients and mouse models of HD [59]. In R6/2 HD mouse model (used in this study), inflammation occurs in the late stage of disease progression (from 12 to 14 weeks of age) [47]. In fact, we have detected activated microglia in the striatum of 12-week-old HD mice (R6/2) and treatment of WA significantly reduced the number of activated microglia. WA could prevent inflammation in HD mouse brain from its inception by inhibiting the activation of NF-κB pathway, a pathway that seems to play a very critical role in HD [60–63]. Upregulation of NF-κB activity through aberrant stimulation of IKK is detected in HD mouse brain and also in astrocytes of patients and mouse with HD [62, 64]. A recent report has shown that agent EVP4593, an inhibitor of NF-κB signaling pathway acting due to SOC channel blockade, attenuated pathologically enhanced level of huntingtin in patient-specific iPSC-derived HD neurons and had a neuroprotective effect in the cell [65].

Altogether, our study demonstrate that WA treatment delays the disease progression and increase the lifespan in a mouse model of HD. HSF1 activating property along with anti-inflammatory function could brand WA as an attractive therapeutic molecule for treatment of HD and other protein misfolding neurodegenerative disorders.

Acknowledgements We would like to sincerely thank Mr. Mahendra Kumar Singh for his technical assistance.

Author Contribution All authors contributed study conception and design. Experimentations were performed by Tripti Joshi and Vipendra Kumar; data were analyzed by Tripti Joshi and Nihar Ranjan Jana. The first draft of the manuscript was written by Nihar Ranjan Jana and all authors read, commented and approved the final manuscript.

Funding This work was supported by a common research grant from BRICS countries involving India (Department of Science and Technology, reference number DST/IMRCD/BRICS/Neurotherapy/2017) and
Russia (The Russian Foundation for Basic Research, grant number 17–54–80006) as well as from the core grant of NBRC provided by Department of Biotechnology, Govt. of India.

Data Availability Data will be made available by the corresponding author on request.

All experiments were conducted in accordance with the strict guidelines outlined by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment and Forestry, Government of India, and were approved by the Institutional Animal Ethics Committee of the National Brain Research Centre (protocol number NBRC/IAEC/2019/154).

Declarations

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest The authors declare no competing interests.

References

1. Mendez MF (1994) Huntington's disease: update and review of neuropsychiatric aspects. Int J Psychiatry Med 24(3):189–208. https://doi.org/10.2190/HU6W-3K7Q-NAEL-XU6K

2. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA et al (2015) Huntington disease Nat Rev Dis Primers 1:15005. https://doi.org/10.1038/nrdp.2015.5

3. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72(6):971–983. https://doi.org/10.1016/0092-8674(93)90585-E

4. Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koida HB, Graham RK, Bromm M, Kazemi-Esfarjani P et al (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13(4):442–449. https://doi.org/10.1038/ng0896-442

5. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993

6. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621. https://doi.org/10.1146/annurev.neuro.29.051605.113042

7. Landles C, Bates GP (2004) Huntingtonin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep 5(10):958–963. https://doi.org/10.1038/sj.embor.7400250

8. Hedren JC, Foltstein SE (1995) Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropath Exp Neurol 54(1):105–120

9. Graveland GA, Williams RS, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227(4688):770–773

10. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropath Exp Neurol 44(6):559–577

11. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10):743–755. https://doi.org/10.1038/nrg1691

12. Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443(7113):774–779. https://doi.org/10.1038/nature05290

13. Margulis J, Finkbeiner S (2014) Proteostasis in striatal cells and selective neurodegeneration in Huntington’s disease. Front Cell Neurosci 8:218. https://doi.org/10.3389/fncel.2014.00218

14. Rubinsztein DC, Carmichael J (2003) Huntington’s disease: molecular basis of neurodegeneration. Expert Rev Mol Med 5(20):1–21. https://doi.org/10.1017/S1462399403006549

15. Jana NR, Nukina N (2003) Recent advances in understanding the pathogenesis of polyglutamine diseases: involvement of molecular chaperones and ubiquitin-proteasome pathway. J Chem Neuroanat 26(2):95–101

16. Samant RS, Livingston CM, Sontag EM, Frydman J (2018) Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control. Nature 563(7731):407–411. https://doi.org/10.1038/s41586-018-0678-x

17. Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448(7154):704–708

18. Wang J, Wang CE, Orr A, Tyldacka S, Li SH, Li XJ (2008) Impaired ubiquitin-proteasome system activity in the synapses of Huntington’s disease mice. J Cell Biol 180(6):1177–1189

19. Jana NR, Zemskov EA, Wang G, Nukina N (2001) Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet 10(10):1049–1059

20. Cortes CJ, La Spada AR (2014) The many faces of autophagy dysfunction in Huntington’s disease: from mechanism to therapy. Drug Discov Today 19(7):963–971

21. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related polyneuropathies. Cell Death Differ 16(1):46–56

22. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786

23. Pinho BR, Duarte AI, Canas PM, Moreira PI, Murphy MP, Oliveira JMA (2020) The interplay between redox signalling and proteostasis in neurodegeneration: in vivo effects of a mitochondria-targeted antioxidant in Huntington’s disease mice. Free Radic Biol Med 146:372–382. https://doi.org/10.1016/j.freeradbiomed.2019.11.021

24. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scalavilli F, Easton DF et al (2004) Inhibition of mTOR induces autophagy. Drug Discov Today 19(7):963–971

25. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10(12):930–944
29. Singh BK, Vatsa N, Nelson VK, Kumar V, Kumar SS, Mandal SC, Pal M, Jana NR (2018) Azadiradione restores protein quality control and ameliorates the disease pathogenesis in a mouse model of Huntington’s disease. Mol Neurobiol 55(8):6337–6346. https://doi.org/10.1007/s12035-017-0853-3

30. Gomez-Pastor R, Burchiel ET, Neef DW, Jaeger AM, Cabicelo E, McKinstry SU, Doss A, Aballay A et al (2017) Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat Commun 8:14405

31. Chafekar SM, Duennwald ML (2012) Impaired heat shock response in cells expressing full-length polyglutamylin-expanded huntingtin. PLoS ONE 7(5):e35929. https://doi.org/10.1371/journal.pone.0035929

32. Fujimoto M, Takaki E, Hayashi T, Kitaura Y, Tanaka Y, Inouye S, Nakai A (2005) Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem 280(41):34908–34916

33. Sittler A, Luzr R, Lueger G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10(12):1307–1315

34. Labbadia J, Cunliffe H, Weiss A, Katsuya E, Sathasivam K, Seredenia T, Woodman B, Moussaoui S et al (2011) Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington’s disease. J Clin Invest 121(8):3306–3319

35. Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, Gu W, Devlin JP et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279(53):56053–56060

36. Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5(4):334–346

37. Kuboya T, Tohda C, Komatsu K (2014) Effects of Ashwagandha (roots of Withania somifera) on neurodegenerative diseases. Biol Pharm Bull 37(6):892–897. https://doi.org/10.1248/bpb.b14-00022

38. Swarup V, Phanee D, Dupre N, Petri S, Strong M, Kriz J, Julien JP (2011) Deregelation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. J Exp Med 208(12):2429–2447. https://doi.org/10.1084/jem.20111313

39. Patel P, Julien JP, Kriz J (2015) Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics 12(1):217–233. https://doi.org/10.1007/s13141-014-0311-0

40. Dutta K, Patel P, Julien JP (2018) Protective effects of Withania somnifera extract in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Exp Neurol 309:193–204. https://doi.org/10.1016/j.expneurol.2018.08.008

41. Dutta K, Patel P, Rahimian R, Phanee D, Julien JP (2017) Withania somnifera reverses transactive response DNA binding protein 43 proteinopathy in a mouse model of amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neurotherapeutics 14(2):447–462. https://doi.org/10.1007/s12035-016-0499-2

42. Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V (2012) Withania somnifera reverses Alzheimer’s disease pathway by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A 109(9):3510–3515. https://doi.org/10.1073/pnas.1112209109

43. Santagata S, Xu YM, Wijeratne EM, Kontnik R, Rooney C, Perley CC, Kwon H, Clardy J, Kesari S, Whitesell L, Lindquist S, Gunatilaka AA (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7(2):340–349. https://doi.org/10.1021/cb200535m

44. Khan S, Rammello AW, Heikkila JJ (2012) Withaferin A induces proteasome inhibition, endoplasmic reticulum stress, the heat shock response and acquisition of thermotolerance. PLoS ONE 7(11):e50547. https://doi.org/10.1371/journal.pone.0050547

45. Maheshwari M, Shekhar S, Singh BK, Jamal I, Vatsa N, Kumar V, Sharma A, Jana NR (2014) Deficiency of Ube3a in Huntington’s disease mice brain increases aggregate load and accelerates disease pathology. Hum Mol Genet 23(23):6235–6245

46. Drouin-Ouellet J, Sawiak SJ, Csibani G, Lagace M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, MASON SL, Calon F, Lacroix A, Gowland PA, Francis ST, Barker RA, Cicchetti F (2015) Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol 78(2):160–177. https://doi.org/10.1002/ana.24406

47. Pido-Lopez J, Tanudjojo B, Farag S, Bondulich MK, Andre R, Tabrizi SJ, Bates GP (2019) Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington’s disease by etanercept treatment. Sci Rep 9(1):7202. https://doi.org/10.1038/s41598-019-43627-3

48. Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A, Morimoto RI (2004) Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J 23(21):4307–4318. https://doi.org/10.1038/sj.emboj.7600426

49. Jana NR, Tanaka M, Wang G, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9(13):2009–2018. https://doi.org/10.1093/hmg/9.13.2009

50. Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R, Mahal A, Smith DL, Woodman B, Bates GP (2004) Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 13(13):1389–1405. https://doi.org/10.1093/hmg/ddh144

51. Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H, Seredenia T, Arbez N, Zhu S, Sommers K, Qian J, Zhang J, Mori S, Yang XW, Tamashiro KL, Aja S, Morris TH, Luthi-Carter R, Martin B, Maudslay S, Mattson MP, Cichewicz RH, Ross CA, Holtzman DM, Krainc D, Duan W (2011) Neurorprotective role of SirT1 in mammalian models of Huntington’s disease through activation of multiple Sir1 targets. Nat Med 17(1):153–158. https://doi.org/10.1038/nm.2558

52. Reynolds RH, Petersen MH, Willert CW, Heinrich M, Nymann N, Dall M, Treebak JT, Bjorkqvist M, Silahtaroglu A, Hasholt L, Norremolle A (2018) Perturbations in the p53/miR-34a/SIRT1 pathway in the R6/2 Huntington’s disease model. Mol Cell Neurosci 88:118–129. https://doi.org/10.1016/j.mcn.2017.12.009

53. Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283(38):26188–26197

54. Matali L, Sarkar GC, Chamoli M, Malik Y, Kumar SS, Rautela U, Jana NR, Chakraborty K, Mukhopadhay A (2019) Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis. Proc Natl Acad Sci U S A 116(35):17383–17392. https://doi.org/10.1073/pnas.1900055116

55. Dar NJ, Ahmad Muzamil (2020) Neurodegenerative diseases and Withaniasomnifera (L.): an update. J Ethnopharmacol 238(3):105737

56. Tamura SS, Kumar S, Phanee D, Julien JP (2020) Withaferin-A treatment alleviates TAR DNA-binding protein-43 pathology and improves...
cognitive function in a mouse model of FTLD. Neurotherapeutics. https://doi.org/10.1007/s13311-020-00952-0

57. Heyninck K, Lahtela-Kakkonen M, Van der Veken P, Haegeman G, Vanden Berghe W (2014) Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKbeta. Biochem Pharmacol 91(4):501–509. https://doi.org/10.1016/j.bcp.2014.08.004

58. White PT, Subramanian C, Motiwala HF, Cohen MS (2016) Natural withanolides in the treatment of chronic diseases. Adv Exp Med Biol 928:329–373. https://doi.org/10.1007/978-3-319-41334-1_14

59. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landlees C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Moller T, Tabrizi SJ (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205(8):1869–1877. https://doi.org/10.1084/jem.20080178

60. Trager U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S, McKinnon C, Sirimathisinghi E, Kahlon S, Pfister EL, Moser R, Hummerich H, Antoniou M, Bates GP, Luthi-Carter R, Lowdell MW, Bjorkqvist M, Ostroff GR, Aronin N, Tabrizi SJ (2014) HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFκB pathway dysregulation. Brain 137(Pt 3):819–833. https://doi.org/10.1093/brain/awt355

61. Valadao PAC, Santos KBS, Ferreira EVTH, Macedo ECT, Teixeira AL, Guatimosim C, de Miranda AS (2020) Inflammation in Huntington’s disease: a few new twists on an old tale. J Neuroimmunol 348:577380. https://doi.org/10.1016/j.jneuroim.2020.577380

62. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 24(37):7999–8008. https://doi.org/10.1523/JNEUROSCI.2675-04.2004

63. Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O’Rourke JG, Khashwji H, Lukacsovich T, Zhu YZ, Lau AL, Massey A, Hayden MR, Zeitlin SO, Finkbeiner S, Green KN, LaFerla FM, Bates G, Huang L, Patterson PH, Lo DC, Cuervo AM, Marsh JL, Steffan JS (2009) IKK phosphorylates Huntington and targets it for degradation by the proteasome and lysosome. J Cell Biol 187(7):1083–1099. https://doi.org/10.1083/jcb.200909067

64. Hsiao HY, Chen YC, Chen HM, Tu PH, Chern Y (2013) A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease. Hum Mol Genet 22(9):1826–1842. https://doi.org/10.1093/hmg/ddt036

65. Vigont VA, Grekhnev DA, Lebedeva OS, Gusev KO, Volovikov EA, Skopin AY, Bogomazova AN, Shuvalova LD, Zubkova OA, Khomyakova EA, Glushankova LN, Klyushnikov SA, Illarioshkin SN, Lagarkova MA, Kaznacheyeva EV (2021) STIM2 mediates excessive store-operated calcium entry in patient-specific iPSC-derived neurons modeling a juvenile form of Huntington’s disease. Front Cell Dev Biol 9:625231. https://doi.org/10.3389/fcell.2021.625231

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.