The vertex-rainbow index of a graph

Yaping Mao†

Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China

Abstract

The k-rainbow index $r_x^k(G)$ of a connected graph G was introduced by Chartrand, Okamoto and Zhang in 2010. As a natural counterpart of the k-rainbow index, we introduced the concept of k-vertex-rainbow index $r_{vx}^k(G)$ in this paper. For a graph $G = (V, E)$ and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a such subgraph $T = (V', E')$ of G that is a tree with $S \subseteq V'$. For $S \subseteq V(G)$ and $|S| \geq 2$, an S-Steiner tree T is said to be a vertex-rainbow S-tree if the vertices of $V(T) \setminus S$ have distinct colors. For a fixed integer k with $2 \leq k \leq n$, the vertex-coloring c of G is called a k-vertex-rainbow coloring if for every k-subset S of $V(G)$ there exists a vertex-rainbow S-tree. In this case, G is called vertex-rainbow k-tree-connected. The minimum number of colors that are needed in a k-vertex-rainbow coloring of G is called the k-vertex-rainbow index of G, denoted by $r_{vx}^k(G)$. When $k = 2$, $r_{vx}^2(G)$ is nothing new but the vertex-rainbow connection number $r(vc)(G)$ of G. In this paper, sharp upper and lower bounds of $sr_{vx}^k(G)$ are given for a connected graph G of order n, that is, $0 \leq sr_{vx}^k(G) \leq n - 2$. We obtain the Nordhaus-Guddum results for 3-vertex-rainbow index, and show that $r_{vx}^3(G) + r_{vx}^3(G) = 4$ for $n = 4$ and $2 \leq r_{vx}^3(G) + r_{vx}^3(G) \leq n - 1$ for $n \geq 5$. Let $t(n, k, \ell)$ denote the minimal size of a connected graph G of order n with $r_{vx}^k(G) \leq \ell$, where $2 \leq \ell \leq n - 2$ and $2 \leq k \leq n$. The upper and lower bounds for $t(n, k, \ell)$ are also obtained.

Keywords: vertex-coloring; connectivity; vertex-rainbow S-tree; vertex-rainbow index; Nordhaus-Guddum type.

AMS subject classification 2010: 05C05, 05C15, 05C40, 05C76.

*Supported by the National Science Foundation of China (No. 11161037) and the Science Found of Qinghai Province (No. 2014-ZJ-907).

†E-mail: maoyaping@ymail.com
1 Introduction

The rainbow connections of a graph which are applied to measure the safety of a network are introduced by Chartrand, Johns, McKeon and Zhang [6]. Readers can see [6, 7, 9] for details. Consider an edge-coloring (not necessarily proper) of a graph $G = (V, E)$. We say that a path of G is rainbow, if no two edges on the path have the same color. An edge-colored graph G is rainbow connected if every two vertices are connected by a rainbow path. The minimum number of colors required to rainbow color a graph G is called the rainbow connection number, denoted by $rc(G)$. In [15], Krivelevich and Yuster proposed a similar concept, the concept of vertex-rainbow connection. A vertex-colored graph G is vertex-rainbow connected if every two vertices are connected by a path whose internal vertices have distinct colors, and such a path is called a vertex-rainbow path. The vertex-rainbow connection number of a connected graph G, denoted by $rvc(G)$, is the smallest number of colors that are needed in order to make G vertex-rainbow connected.

For more results on the rainbow connection and vertex-rainbow connection, we refer to the survey paper [21] of Li, Shi and Sun and a new book [22] of Li and Sun. All graphs considered in this paper are finite, undirected and simple. We follow the notation and terminology of Bondy and Murty [2], unless otherwise stated.

For a graph $G = (V, E)$ and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a such subgraph $T = (V', E')$ of G that is a tree with $S \subseteq V'$. A tree T in G is a rainbow tree if no two edges of T are colored the same. For $S \subseteq V(G)$, a rainbow S-Steiner tree (or simply, rainbow S-tree) is a rainbow tree connecting S. For a fixed integer k with $2 \leq k \leq n$, the edge-coloring c of G is called a k-rainbow coloring if for every k-subset S of $V(G)$ there exists a rainbow S-tree. In this case, G is called rainbow k-tree-connected. The minimum number of colors that are needed in a k-rainbow coloring of G is called the k-rainbow index of G, denoted by $rx_k(G)$. When $k = 2$, $rx_2(G)$ is the rainbow connection number $rc(G)$ of G. For more details on k-rainbow index, we refer to [3, 8, 12, 18, 19].

Chartrand, Okamoto and Zhang [9] obtained the following result.

Theorem 1 [8] For every integer $n \geq 6$, $rx_3(K_n) = 3$.

As a natural counterpart of the k-rainbow index, we introduce the concept of k-vertex-rainbow index $rvx_k(G)$ in this paper. For $S \subseteq V(G)$ and $|S| \geq 2$, an S-Steiner tree T is said to be a vertex-rainbow S-tree or vertex-rainbow tree connecting S if the vertices of $V(T) \setminus S$ have distinct colors. For a fixed integer k with $2 \leq k \leq n$, the vertex-coloring c of G is called a k-vertex-rainbow coloring if for every k-subset S of $V(G)$ there exists a vertex-rainbow S-tree. In this case, G is called vertex-rainbow k-tree-connected. The minimum number of colors that are needed in a k-vertex-rainbow coloring of G is called the k-vertex-rainbow index of G, denoted by $rvx_k(G)$. When $k = 2$, $rvx_2(G)$ is nothing new but the vertex-rainbow connection number $rvc(G)$ of G. It follows, for every nontrivial
connected graph G of order n, that

$$rvx_2(G) \leq rvx_3(G) \leq \cdots \leq rvx_n(G).$$

Let G be the graph of Figure 1 (a). We give a vertex-coloring c of the graph G shown in Figure 1 (b). If $S = \{v_1, v_2, v_3\}$ (see Figure 1 (c)), then the tree T induced by the edges in $\{v_1u_1, v_2u_1, u_1u_4, u_4v_3\}$ is a vertex-rainbow S-tree. If $S = \{u_1, u_2, v_3\}$, then the tree T induced by the edges in $\{u_1u_2, u_2u_4, u_4v_3\}$ is a vertex-rainbow S-tree. One can easily check that there is a vertex-rainbow S-tree for any $S \subseteq V(G)$ and $|S| = 3$. Therefore, the vertex-coloring c of G is a 3-vertex-rainbow coloring. Thus G is vertex-rainbow 3-tree-connected.

In some cases $rvx_k(G)$ may be much smaller than $rx_k(G)$. For example, $rvx_k(K_{1,n-1}) = 1$ while $rx_k(K_{1,n-1}) = n - 1$ where $2 \leq k \leq n$. On the other hand, in some other cases, $rx_k(G)$ may be much smaller than $rvx_k(G)$. For $k = 3$, we take n vertex-disjoint cliques of order 4 and, by designating a vertex from each of them, add a complete graph on the designated vertices. This graph G has n cut-vertices and hence $rvx_3(G) \geq n$. In fact, $rvx_3(G) = n$ by coloring only the cut-vertices with distinct colors. On the other hand, from Theorem [1] it is not difficult to see that $rx_3(G) \leq 9$. Just color the edges of the K_n with, say, color 1, 2, 3 and color the edges of each clique with the colors 4, 5, \cdots, 9.

Steiner tree is used in computer communication networks (see [14]) and optical wireless communication networks (see [13]). As a natural combinatorial concept, the rainbow index and the vertex-rainbow index can also find applications in networking. Suppose we want to route messages in a cellular network in such a way that each link on the route between more than two vertices is assigned with a distinct channel. The minimum number of channels that we have to use is exactly the rainbow index and vertex-rainbow index of the underlying graph.

The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou [8] in 1989, is a natural generalization of the concept of classical graph distance. Let G be a connected graph of order at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance $d(S)$ among the vertices of S (or simply the distance of S) is the minimum size among all connected subgraphs whose vertex sets contain S. Let n and k be two integers with $2 \leq k \leq n$. The Steiner k-eccentricity $e_k(v)$ of a vertex v of G is
defined by $e_k(v) = \max \{d(S) : S \subseteq V(G), |S| = k, \text{ and } v \in S\}$. The Steiner k-diameter of G is $sdiam_k(G) = \max \{e_k(v) : v \in V(G)\}$. Clearly, $sdiam_k(G) \geq k - 1$.

Then, it is easy to see the following results.

Proposition 1 Let G be a nontrivial connected graph of order n. Then $rvx_k(G) = 0$ if and only if $sdiam_k(G) = k - 1$.

Proposition 2 Let G be a nontrivial connected graph of order n ($n \geq 5$), and let k be an integer with $2 \leq k \leq n$. Then

$$0 \leq rvx_k(G) \leq n - 2.$$

Proof. We only need to show $rvx_k(G) \leq n - 2$. Since G is connected, there exists a spanning tree of G, say T. We give the internal vertices of the tree T different colors. Since T has at most two leaves, we must use at most $n - 2$ colors to color all the internal vertices of the tree T. Color the leaves of the tree T with the used colors arbitrarily. Note that such a vertex-coloring makes T vertex-rainbow k-tree-connected. Then $rvx_k(T) \leq n - 2$ and hence $rvx_k(G) \leq rvx_k(T) \leq n - 2$, as desired. \hfill \qed

Observation 1 Let $K_{s,t}$, K_{n_1,n_2,\ldots,n_k}, W_n and P_n denote the complete bipartite graph, complete multipartite graph, wheel and path, respectively. Then

1. For integers s and t with $s \geq 2, t \geq 1$, $rvc(K_{s,t}) = 1$.
2. For $k \geq 3$, $rvx_k(K_{n_1,n_2,\ldots,n_k}) = 1$.
3. For $n \geq 4$, $rvx_k(W_n) = 1$.
4. For $n \geq 3$, $rvx_k(P_n) = n - 2$.

Let $\mathcal{G}(n)$ denote the class of simple graphs of order n and $\mathcal{G}(n,m)$ the subclass of $\mathcal{G}(n)$ having graphs with n vertices and m edges. Give a graph parameter $f(G)$ and a positive integer n, the Nordhaus-Gaddum (NG) Problem is to determine sharp bounds for: (1) $f(G) + f(\overline{G})$ and (2) $f(G) \cdot f(\overline{G})$, as G ranges over the class $\mathcal{G}(n)$, and characterize the extremal graphs. The Nordhaus-Gaddum type relations have received wide attention; see a recent survey paper [1] by Aouchiche and Hansen.

Chen, Li and Lian [10] gave sharp lower and upper bounds of $rx_k(G) + rx_k(\overline{G})$ for $k = 2$. In [11], Chen, Li and Liu obtained sharp lower and upper bounds of $rvx_k(G) + rvx_k(\overline{G})$ for $k = 2$. In Section 2, we investigate the case $k = 3$ and give lower and upper bounds of $rvx_3(G) + rvx_3(\overline{G})$.

Theorem 2 Let G and \overline{G} be a nontrivial connected graph of order n. If $n = 4$, then $rvx_3(G) + rvx_3(\overline{G}) = 4$. If $n \geq 5$, then we have

$$2 \leq rvx_3(G) + rvx_3(\overline{G}) \leq n - 1.$$

Moreover, the bounds are sharp.
Let \(s(n, k, \ell) \) denote the minimal size of a connected graph \(G \) of order \(n \) with \(rx_k(G) \leq \ell \), where \(2 \leq \ell \leq n-1 \) and \(2 \leq k \leq n \). Schiermeyer [24] focused on the case \(k = 2 \) and gave exact values and upper bounds for \(s(n, 2, \ell) \). Later, Li, Li, Sun and Zhao [17] improved Schiermeyer’s lower bound of \(s(n, 2, 2) \) and got a lower bound of \(s(n, 2, \ell) \) for \(3 \leq \ell \leq \lceil \frac{n}{2} \rceil \).

In Section 3, we study the vertex case. Let \(t(n, k, \ell) \) denote the minimal size of a connected graph \(G \) of order \(n \) with \(rvx_k(G) \leq \ell \), where \(2 \leq \ell \leq n-2 \) and \(2 \leq k \leq n \). We obtain the following result in Section 3.

Theorem 3 Let \(k, n, \ell \) be three integers with \(2 \leq \ell \leq n - 3 \) and \(2 \leq k \leq n \). If \(k \) and \(\ell \) have the different parity, then

\[
 n - 1 \leq t(n, k, \ell) \leq n - 1 + \frac{n - \ell - 1}{2}.
\]

If \(k \) and \(\ell \) have the same parity, then

\[
 n - 1 \leq t(n, k, \ell) \leq n - 1 + \frac{n - \ell}{2}.
\]

2 Nordhaus-Guddum results

To begin with, we have the following result.

Proposition 3 Let \(G \) be a connected graph of order \(n \). Then the following are equivalent.

1. \(rvx_3(G) = 0 \);
2. \(sdiam_3(G) = 2 \);
3. \(n - 2 \leq \delta(G) \leq n - 1 \).

Proof. For Proposition 3, \(rvx_3(G) = 0 \) if and only if \(sdiam_3(G) = 2 \). So we only need to show the equivalence of (1) and (3). Suppose \(n - 2 \leq \delta(G) \leq n - 1 \). Clearly, \(G \) is a graph obtained from the complete graph of order \(n \) by deleting some independent edges. For any \(S = \{u, v, w\} \subseteq V(G) \), at least two elements in \(\{uv, vw, uw\} \) belong to \(E(G) \). Without loss of generality, let \(uv, vw \in E(G) \). Then the tree \(T \) induced by the edges in \(\{uv, vw\} \) is an \(S \)-Steiner tree and hence \(d_G(S) \leq 2 \). From the arbitrariness of \(S \), we have \(sdiam_3(G) \leq 2 \) and hence \(sdiam_3(G) = 2 \). Therefore, \(rvx_3(G) = 0 \).

Conversely, we assume \(rvx_3(G) = 0 \). If \(\delta(G) \leq n - 3 \), then there exists a vertex \(u \in V(G) \) such that \(d_G(u) \leq n - 3 \). Furthermore, there are two vertices, say \(v, w \), such that \(uv, uw \notin E(G) \). Choose \(S = \{u, v, w\} \). Clearly, any rainbow \(S \)-tree must occupy at least a vertex in \(V(G) \setminus S \), which implies that \(rvx_3(G) \geq 1 \), a contradiction. So \(n - 2 \leq \delta(G) \leq n - 1 \).

After the above preparation, we can derive a lower bound of \(rvx_3(G) + rvx_3(G) \).
Lemma 1 Let \(G \) and \(\overline{G} \) be a nontrivial connected graph of order \(n \). For \(n \geq 5 \), we have \(\rvx_3(G) + \rvx_3(\overline{G}) \geq 2 \). Moreover, the bound is sharp.

Proof. From Proposition 2, we have \(\rvx_3(G) \geq 0 \) and \(\rvx_3(\overline{G}) \geq 0 \). If \(\rvx_3(G) = 0 \), then we have \(n - 2 \leq \delta(G) \leq n - 1 \) by Proposition 3 and hence \(\overline{G} \) is disconnected, a contradiction. Similarly, we can get another contradiction for \(\rvx_3(\overline{G}) = 0 \). Therefore, \(\rvx_3(G) \geq 1 \) and \(\rvx_3(\overline{G}) \geq 1 \). So \(\rvx_3(G) + \rvx_3(\overline{G}) \geq 2 \).

To show the sharpness of the above lower bound, we consider the following example.

Example 1: Let \(H \) be a graph of order \(n-4 \), and let \(P = a, b, c, d \) be a path. Let \(G \) be the graph obtained from \(H \) and the path by adding edges between the vertex \(a \) and all vertices of \(H \) and adding edges between the vertex \(d \) and all vertices of \(H \); see Figure 2 (a). We now show that \(\rvx_3(G) = \rvx_3(\overline{G}) = 1 \). Choose \(S = \{a, b, d\} \). Then any \(S \)-Steiner tree must occupy at least one vertex in \(V(G) \setminus S \). Note that the vertices of \(V(G) \setminus S \) in the tree must receive different colors. Therefore, \(\rvx_3(G) \geq 1 \). We give each vertex in \(G \) with one color and need to show that \(\rvx_3(G) \leq 1 \). It suffices to prove that there exists a vertex-rainbow \(S \)-tree for any \(S \subseteq V(G) \) with \(|S| = 3 \). Suppose \(|S \cap V(H)| = 3 \). Without loss of generality, let \(S = \{x, y, z\} \). Then the tree \(T \) induced by the edges in \(\{xa, ya, za\} \) is a vertex-rainbow \(S \)-tree. Suppose \(|S \cap V(H)| = 2 \). Without loss of generality, let \(x, y \in S \cap V(H) \). If \(a \in S \), then the tree \(T \) induced by the edges in \(\{xa, ya\} \) is a vertex-rainbow \(S \)-tree. If \(b \in S \), then the tree \(T \) induced by the edges in \(\{xa, ya, ab\} \) is a vertex-rainbow \(S \)-tree. Suppose \(|S \cap V(H)| = 1 \). Without loss of generality, let \(x \in S \cap V(H) \). If \(a, b \in S \), then the tree \(T \) induced by the edges in \(\{xa, ab\} \) is a vertex-rainbow \(S \)-tree. If \(b, c \in S \), then the tree \(T \) induced by the edges in \(\{xd, cd, bc\} \) is a vertex-rainbow \(S \)-tree. If \(a, c \in S \), then the tree \(T \) induced by the edges in \(\{xa, ab, bc\} \) is a vertex-rainbow \(S \)-tree. Suppose \(|S \cap V(G')| = 0 \). If \(a, b, c \in S \), then the tree \(T \) induced by the edges in \(\{ab, bc\} \) is a vertex-rainbow \(S \)-tree. If \(a, b, d \in S \), then the tree \(T \) induced by the edges in \(\{ab, cd\} \) is a vertex-rainbow \(S \)-tree. From the arbitrariness of \(S \), we conclude that \(\rvx_3(G) \leq 1 \). Similarly, one can also check that \(\rvx_3(\overline{G}) = 1 \). So \(\rvx_3(G) + \rvx_3(\overline{G}) = 2 \).

We are now in a position to give an upper bound of \(\rvx_3(G) + \rvx_3(\overline{G}) \). For \(n = 4 \), we have \(G = \overline{G} = P_4 \) since we only consider connected graphs. Observe that \(\rvx_3(G) = \).
Observation 2 Let G, \overline{G} be connected graphs of order n ($n = 4$). Then $rvx_3(G) + rvx_3(\overline{G}) = n$.

For $n \geq 5$, we have the following upper bound of $rvx_3(G) + rvx_3(\overline{G})$.

Lemma 2 Let G, \overline{G} be connected graphs of order n ($n = 5$). Then $rvx_3(G) + rvx_3(\overline{G}) \leq n - 1$.

Proof. If G is a path of order 5, then $rvx_3(G) = 3$ by Observation 1. Observe that $sdiam_3(\overline{G}) = 3$. Then $rvx_3(\overline{G}) \leq 1$ and hence $rvx_3(G) + rvx_3(\overline{G}) \leq 4$, as desired.

![Figure 3: Graphs for Lemma 2](image)

If G is a tree but not a path, then we have $G = H_1$ since \overline{G} is connected (see Figure 3 (a)). Clearly, $rvx_3(G) \leq 2$. Furthermore, \overline{G} consists of a K_2 and a K_3 and two edges between them (see Figure 3 (a)). So we assign color 1 to the vertices of K_2 and color 2 to the vertices of K_3, and this vertex-coloring makes the graph G vertex-rainbow 3-tree-connected, that is, $rvx_3(\overline{G}) \leq 2$. Therefore, $rvx_3(G) + rvx_3(\overline{G}) \leq 4$, as desired.

Suppose that both G and \overline{G} are not trees. Then $e(G) \geq 5$ and $e(\overline{G}) \geq 5$. Since $e(G) + e(\overline{G}) = e(K_5) = 10$, it follows that $e(G) = e(\overline{G}) = 5$. If G contains a cycle of length 5, then $G = \overline{G} = C_5$ and hence $rvx_3(G) = rvx_3(\overline{G}) = 2$. If G contains a cycle of length 4, then $G = H_2$ (see Figure 3 (b)). Clearly, $rvx_3(G) = rvx_3(\overline{G}) = 2$. If G contains a cycle of length 3, then $G = \overline{G} = H_3$ (see Figure 3 (c)). One can check that $rvx_3(G) = rvx_3(\overline{G}) = 2$. Therefore, $rvx_3(G) + rvx_3(\overline{G}) = 4$, as desired.

Lemma 3 Let G be a nontrivial connected graph of order n, and $rvx_3(G) = \ell$. Let G' be a graph obtained from G by adding a new vertex v to G and making v be adjacent to q vertices of G. If $q \geq n - \ell$, then $rvx_3(G') \leq \ell$.

Proof. Let \(c : V(G) \to \{1, 2, \cdots, \ell\} \) be a vertex-coloring of \(G \) such that \(G \) is vertex-rainbow 3-tree-connected. Let \(X = \{x_1, x_2, \cdots, x_q\} \) be the vertex set such that \(vx_i \in E(G') \). Set \(V(G) \setminus X = \{y_1, y_2, \cdots, y_{n-q}\} \). We can assume that there exist two vertices \(y_j, y_k \) such that there is no vertex-rainbow tree connecting \(\{v, y_j, y_k\} \); otherwise, the result holds obviously.

We define a minimal \(S \)-Steiner tree \(T \) as a tree connecting \(S \) whose subtree obtained by deleting any edge of \(T \) does not connect \(S \). Because \(G \) is vertex-rainbow 3-tree-connected, there is a minimal vertex-rainbow tree \(T_i \) connecting \(\{x_i, y_j, y_k\} \) for each \(x_i \ (i \in \{1, 2, \cdots, q\}) \). Then the tree \(T_i \) has four types; see Figure 4. For the type shown in (c), the Steiner tree \(T_i \) connecting \(\{x_i, y_j, y_k\} \) is a path induced by the edges in \(E(P_1) \cup E(P_2) \) and hence the internal vertices of the path \(T_i \) must receive different colors. Therefore, the tree induced by the edges in \(E(P_1) \cup E(P_2) \cup \{vx_i\} \) is a vertex-rainbow tree connecting \(\{v, y_j, y_k\} \), a contradiction. So we only need to consider the other three cases shown in Figure 4 (a), (b), (d). Obviously, \(T_i \cap T_j \) may not be empty. Then we have the following claim.

Claim 1: No other vertex in \(\{x_1, x_2, \cdots, x_q\} \) different from \(x_i \) belong to \(T_i \) for each \(1 \leq i \leq q \).

Proof of Claim 1: Assume, to the contrary, that there exists a vertex \(x'_i \in \{x_1, x_2, \cdots, x_q\} \) such that \(x'_i \neq x_i \) and \(x'_i \in V(T_i) \). For the type shown in Figure 4 (a), the Steiner tree \(T_i \) connecting \(\{x_i, y_j, y_k\} \) is a path induced by the edges in \(E(P_1) \cup E(P_2) \) and hence the internal vertices of the path \(T_i \) receive different colors. If \(x'_i \in V(P_1) \), then the tree induced by the edges in \(E(P_1') \cup E(P_2) \cup \{vx_i\} \) is a vertex-rainbow tree connecting \(\{v, y_j, y_k\} \) where \(P_1' \) is the path between the vertex \(x'_i \) and the vertex \(y_j \) in \(P_1 \), a contradiction. If \(x'_i \in V(P_2) \), then the tree induced by the edges in \(E(P_2) \cup \{vx_i\} \) is a vertex-rainbow tree connecting \(\{v, y_j, y_k\} \), a contradiction. The same is true for the type shown in Figure 4 (b). For the type shown in Figure 4 (c), the Steiner tree \(T_i \) connecting \(\{x_i, y_j, y_k\} \) is a tree induced by the edges in \(E(P_1) \cup E(P_2) \cup E(P_3) \) and hence the internal vertices of the tree \(T_i \) receive different colors. Without loss of generality, let \(x'_i \in V(P_1) \). Then the tree induced by the edges in \(E(P_1') \cup E(P_2) \cup E(P_3) \) is a vertex-rainbow tree connecting \(\{v, y_j, y_k\} \) where \(P_1' \) is the path between the vertex \(x'_i \) and the vertex \(v \) in \(P_1 \), a contradiction. \(\blacksquare \)
From Claim 1, since there is no vertex-rainbow tree connecting \(\{ v, y_{j1}, y_{j2} \} \), it follows that there exists a vertex \(y_k \) such that \(c(x_l) = c(y_k) \) for each tree \(T_i \), which implies that the colors that are assigned to \(X \) are among the colors that are assigned to \(V(G) \setminus X \). So \(rvx_3(G) = \ell \leq n - q \). Combining this with the hypothesis \(q \geq n - \ell \), we have \(rvx_3(G) = n - q \), that is, all vertices in \(V(G) \setminus X \) have distinct colors. Now we construct a new graph \(G' \), which is induced by the edges in \(E(T_1) \cup E(T_2) \cup \cdots \cup E(T_q) \).

Claim 2: For every \(y_i \) not in \(G' \), there exists a vertex \(y_s \in G' \) such that \(y_i y_s \in E(G) \).

Proof of Claim 2: Assume, to the contrary, that \(N(y_i) \subseteq \{ x_1, x_2, \ldots, x_q \} \). Since \(G \) is vertex-rainbow 3-tree-connected, there is a vertex-rainbow tree \(T \) connecting \(\{ y_i, y_{j1}, y_{j2} \} \). Let \(x_r \) be the vertex in the tree \(T \) such that \(x_r \in N_G(y_i) \). Then tree induced by the edges in \((E(T) \setminus \{ y_i x_r \}) \cup \{ vx_r \} \) is a vertex-rainbow tree connecting \(\{ v, y_{j1}, y_{j2} \} \), a contradiction.

From Claim 2, \(G[y_1, y_2, \ldots, y_{n-q}] \) is connected. Clearly, \(G[y_1, y_2, \ldots, y_{n-q}] \) has a spanning tree \(T \). Because the tree \(T \) has at least two pendant vertices, there must exist a pendant vertex whose color is different from \(x_1 \), and we assign the color to \(x_1 \). One can easily check that \(G \) is still vertex-rainbow 3-tree-connected, and there is a vertex-rainbow tree connecting \(\{ v, y_{j1}, y_{j2} \} \). If there still exist two vertices \(y_{j3}, y_{j4} \) such that there is no vertex-rainbow tree connecting \(\{ v, y_{j3}, y_{j4} \} \), then we do the same operation until there is a vertex-rainbow tree connecting \(\{ v, y_{j3}, y_{j4} \} \) for each pair \(y_{j3}, y_{j4} \in \{ 1, 2, \ldots, n - q \} \). Thus \(G' \) is vertex-rainbow 3-tree-connected. So \(rvx(G') \leq \ell \).

Proof of Theorem 2: We prove this theorem by induction on \(n \). By Lemma 2, the result is evident for \(n = 5 \). We assume that \(rvx_3(G) + rvx_3(\overline{G}) \leq n - 1 \) holds for complementary graphs on \(n \) vertices. Observe that the union of a connected graph \(G \) and its complement \(\overline{G} \) is a complete graph of order \(n \), that is, \(G \cup \overline{G} = K_n \). We add a new vertex \(v \) to \(G \) and add \(q \) edges between \(v \) and \(V(G) \). Denoted by \(G' \) the resulting graph. Clearly, \(\overline{G'} \) is a graph of order \(n + 1 \) obtained from \(\overline{G} \) by adding a new vertex \(v \) to \(\overline{G} \) and adding \(n - q \) edges between \(v \) and \(V(G) \).

Claim 3: \(rvx_3(G') \leq rvx_3(G) + 1 \) and \(rvx_3(\overline{G'}) \leq rvx_3(\overline{G}) + 1 \).

Proof of Claim 3: Let \(c \) be a \(rvx_3(G) \)-vertex-coloring of \(G \) such that \(G \) is vertex-rainbow 3-tree-connected. Pick up a vertex \(u \in N_G(v) \) and give it a new color. It suffices to show that for any \(S \subseteq V(G') \) with \(|S| = 3 \), there exists a vertex-rainbow \(S \)-tree. If \(S \subseteq V(G) \), then there exists a vertex-rainbow \(S \)-tree since \(G \) is vertex-rainbow 3-tree-connected. Suppose \(S \not\subseteq V(G) \). Then \(v \in S \). Without loss of generality, let \(S = \{ v, x, y \} \). Since \(G \) is vertex-rainbow 3-tree-connected, there exists a vertex-rainbow tree \(T' \) connecting \(\{ u, x, y \} \). Then the tree \(T \) induced by the edges in \(E(T') \cup \{ u, v \} \) is a vertex-rainbow \(S \)-tree. Therefore, \(rvx_3(G') \leq rvx_3(G) + 1 \). Similarly, \(rvx_3(\overline{G'}) \leq rvx_3(\overline{G}) + 1 \).
From Claim 3, we have $rvx_3(G') + rvx_3(G) \leq rvx_3(G) + 1 + rvx_3(G) + 1 \leq n + 1$. Clearly, $rvx_3(G') + rvx_3(G) \leq n$ except possibly when $rvx_3(G') = rvx_3(G) + 1$ and $rvx_3(G) = rvx_3(G) + 1$. In this case, by Lemma [3], we have $q \leq n - rvx_3(G) - 1$ and $n - q \leq n - rvx_3(G) - 1$. Thus, $rvx_3(G) + rvx_3(G) \leq (n - 1 - q) + (q - 1) = n - 2$ and hence $rvx_3(G') + rvx_3(G) \leq n$, as desired. This completes the induction.

To show the sharpness of the above bound, we consider the following example.

Example 2: Let G be a path of order n. Then $rvx_3(G) = n - 2$. Observe that $sdiam_3(G) = 3$. Then $rvx_3(G) = 1$, and so we have $rvx_3(G) + rvx_3(G) = (n - 2) + 1 = n - 1$.

3 The minimal size of graphs with given vertex-rainbow index

Recall that $t(n, k, \ell)$ is the minimal size of a connected graph G of order n with $rvx_k(G) \leq \ell$, where $2 \leq \ell \leq n - 2$ and $2 \leq k \leq n$. Let G be a path of order n. Then $rvx_k(G) \leq n - 2$ and hence $t(n, k, n - 2) \leq n - 1$. Since we only consider connected graphs, it follows that $t(n, k, n - 2) \geq n - 1$. Therefore, the following result is immediate.

Observation 3 Let k be an integer with $2 \leq k \leq n$. Then

$$t(n, k, n - 2) = n - 1.$$

A rose graph R_p with p petals (or p-rose graph) is a graph obtained by taking p cycles with just a vertex in common. The common vertex is called the center of R_p. If the length of each cycle is exactly q, then this rose graph with p petals is called a (p, q)-rose graph, denoted by $R_{p,q}$. Then we have the following result.

Proof of Theorem 3: Suppose that k and ℓ has the different parity. Then $n - \ell - 1$ is even. Let G be a graph obtained from a $(\frac{n-\ell-1}{2}, 3)$-rose graph $R_{\frac{n-\ell-1}{2}, 3}$ and a path $P_{\ell+1}$ by identifying the center of the rose graph and one endpoint of the path. Let w_0 be the center of $R_{\frac{n-\ell-1}{2}, 3}$, and let $C_i = w_0v_iu_iw_0$ ($1 \leq i \leq \frac{n-\ell-1}{2}$) be the cycle of $R_{\frac{n-\ell-1}{2}, 3}$. Let $P_{\ell+1} = w_0w_1 \cdots w_\ell$ be the path of order $\ell + 1$. To show the $rvx_k(G) \leq \ell$, we define a vertex-coloring $c : V(G) \to \{0, 1, 2, \cdots, \ell - 1\}$ of G by

$$c(v) = \begin{cases}
 i, & \text{if } v = w_i \ (0 \leq i \leq \ell - 1); \\
 1, & \text{if } v = u_i \text{ or } v = v_i \ (1 \leq i \leq \frac{n-\ell-1}{2}); \\
 1, & \text{if } v = w_\ell.
\end{cases}$$

One can easily see that there exists a vertex-rainbow S-tree for any $S \subseteq V(G)$ and $|S| = 3$. Therefore, $rvx_k(G) \leq \ell$ and $t(n, k, \ell) \leq n - 1 + \frac{n-\ell-1}{2}$.

Suppose that k and ℓ has the same parity. Then $n - \ell$ is even. Let G be a graph obtained from a $(\frac{n-\ell}{2}, 3)$-rose graph $R_{\frac{n-\ell}{2}, 3}$ and a path P_ℓ by identifying the center of the
rose graph and one endpoint of the path. Let \(w_0 \) be the center of \(R_{\frac{n-\ell}{2}, 3} \), and let \(C_i = w_0v_iu_iw_0 \) (1 \(\leq i \leq \frac{n-\ell}{2} \)) be the cycle of \(R_{\frac{n-\ell}{2}, 3} \). Let \(P_\ell = w_0w_1 \cdots w_{\ell-1} \) be the path of order \(\ell \). To show the \(rvx_k(G) \leq \ell \), we define a vertex-coloring \(c : V(G) \rightarrow \{0, 1, 2, \cdots, \ell - 1\} \) of \(G \) by
\[
c(v) = \begin{cases}
 i , & \text{if } v = w_i \ (0 \leq i \leq \ell - 1); \\
 1 , & \text{if } v = u_i \text{ or } v = v_i \ (1 \leq i \leq \frac{n-\ell}{2})
\end{cases}
\]
One can easily see that there exists a vertex-rainbow \(S \)-tree for any \(S \subseteq V(G) \) and \(|S| = 3 \). Therefore, \(rvx_k(G) \leq \ell \) and \(t(n, k, \ell) \leq n - 1 + \frac{n-\ell}{2} \).

References

[1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161(4-5)(2013), 466–546.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[3] Q. Cai, X. Li, J. Song, Solutions to conjectures on the \((k, \ell)\)-rainbow index of complete graphs, Networks 62(2013), 220–224.

[4] Q. Cai, X. Li, J. Song, The \((k, \ell)\)-rainbow index of random graphs, accepted by Bull. Malays. Math. Sci. Soc.

[5] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008), R57.

[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85–98.

[7] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54(2)(2009), 75–81.

[8] G. Chartrand, O.R. Oellermann, S. Tian, H.B. Zou, Steiner distance in graphs, Časopis pro pěstování matematiky 114(1989), 399-410.

[9] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(2010), 360–367.

[10] L. Chen, X. Li, H. Lian, Nordhaus-Gaddum-type theorem for rainbow connection number of graphs, Graphs Combin. 29(5)(2013), 1235–1247.

[11] L. Chen, X. Li, M. Liu, Nordhaus-Gaddum-type theorem for the rainbow vertex connection number of a graph, Utilitas Math. 86(2011),335–340.

[12] L. Chen, X. Li, K. Yang, Y. Zhao, The 3-rainbow index of a graph, accepted by Discuss. Math. Graph Theory.
[13] X. Cheng, D. Du, *Steiner trees in Industry*, Kluwer Academic Publisher, Dordrecht, 2001.

[14] D. Du, X. Hu, *Steiner tree problems in computer communication networks*, World Scientific, 2008.

[15] M. Krivelevich, R. Yuster, *The rainbow connection of a graph is (at most) reciprocal to its minimum degree three*, J. Graph Theory 63(3)(2010), 185-191.

[16] X. Huang, X. Li, Y. Shi. J. Yue, Y. Zhao, *Rainbow connections for outerplanar graphs with diameter 2 and 3*, accepted for publication by Appl. Math. Comput.

[17] H. Li, X. Li, Y. Sun, Y. Zhao, *Note on minimally d-rainbow connected graphs*, Graphs & Combin. 30(4)(2014), 949–955.

[18] X. Li, I. Schiermeyer, K. Yang, Y. Zhao, *Graphs with 3-rainbow index n – 1 and n – 2*, accepted by Discuss. Math. Graph Theory.

[19] X. Li, I. Schiermeyer, K. Yang, Y. Zhao, *Graphs with 4-rainbow index 3 and n – 1*, arXiv:1312.3069 [math.CO] 2014.

[20] X. Li, Y. Shi, *On the rainbow vertex-connection*, Discuss. Math. Graph Theory 33(2), 307–313.

[21] X. Li, Y. Shi, Y. Sun, *Rainbow connections of graphs–A survey*, Graphs Combin. 29(1)(2013), 1-38.

[22] X. Li, Y. Sun, *Rainbow Connections of Graphs*, SpringerBriefs in Math., Springer, New York, 2012.

[23] E.A. Nordhaus, J.W. Gaddum, *On complementary graphs*, Amer. Math. Monthly 63(1956), 175–177.

[24] I. Schiermeyer, *On minimally rainbow k-connected graphs*, Discrete Appl. Math. 161(2013), 702–705.