ESI

Poly(alanine-nylon-alanine) as a bioplastic: chemoenzymatic synthesis, thermal properties and biological degradation effects

Prashant G. Gudeangadi,a Kei Uchida, b Ayaka Tateishi, a Kayo Terada, a Hiroyasu Masunaga, c Kousuke Tsuchiya,* a Hitoshi Miyakawa b and Keiji Numata** a

a Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
b Center for Bioscience Research & Education, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan.
c Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.

Tel: +81-48-467-9525 Fax: +81-48-462-4664,

E-mail: keiji.numata@riken.jp
Figure S1. MALDI TOF mass spectra of AlaNylXAla after the reaction without enzyme as negative controls.
Figure S2 13C NMR spectra of poly(AlaNylXAla) in TFA-d, (125 MHz, 25°C).
Figure S3. WAXS 1D profiles of poly(AlaNylXAla) ($X = 4, 5, \text{ and } 6$) at elevated temperatures from 40 to 260°C.