Correction to: Redefinition of the concept of fuzzy set based on vague partition from the perspective of axiomatization

Xiaodong Pan · Yang Xu

Published online: 7 February 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Correction to: Soft Comput
https://doi.org/10.1007/s00500-017-2855-5

I recently found that several errors occur in the statement of Definition 5.2 in Section 5 in the paper "Redefinition of the concept of fuzzy set based on vague partition from the perspective of axiomatization".

As it had been pointed out at the end of Section 4 of this paper that "the set of vague attribute values is defined as a free algebra on the elementary set of vague attribute values", and fuzzy sets are mathematical formulation for vague attribute values, hence, the set of fuzzy sets in \(U \) can be seen as freely generated by a vague partition of \(U \).

Based on this consideration, Definition 5.2 of this paper can be corrected as follows:

Definition 5.2 Let \(U = [a, b] \subset \mathbb{R} \) and \(\widetilde{U} = \{\mu_{A_1}(x), \ldots, \mu_{A_n}(x)\} \), \(n \in \mathbb{N}^+ \), a vague partition of \(U \). The set \(\mathcal{F}(\widetilde{U}) \) of fuzzy sets in \(U \) with respect to \(\widetilde{U} \) consists of the following elements:

1. if there exists \(i \in \pi \) such that \(\mu_A(x) = \mu_{A_i}(x) \) for all \(x \in U \), then \(A = \{(x, \mu_A(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \);
2. if \(\mu_A(x) = \bar{p}(x) = 1 \) for all \(x \in U \), then \(A = \{(x, \mu_A(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \);
3. if \(\mu_A(x) = \mu(x) = 0 \) for all \(x \in U \), then \(A = \{(x, \mu_A(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \);
4. if \(A = \{(x, \mu_A(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \) and \(r \in \mathbb{Q}^+ \), then \(A' = \{(x, (\mu_A(x))^r) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \);
5. if \(A = \{(x, \mu_A(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \), and \(N \) is a strong negation on \([0, 1]\), then \(A^N = \{(x, (\mu_A(x))^N) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \);
6. if \(A = \{(x, \mu_A(x)) \mid x \in U\} \), \(B = \{(x, \mu_B(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \), and \(\odot \) is a triangular norm, then \(A \odot B = \{(x, \mu_A(x) \odot \mu_B(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \);
7. if \(A = \{(x, \mu_A(x)) \mid x \in U\} \), \(B = \{(x, \mu_B(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \), and \(\oplus \) is a triangular conorm, then \(A \oplus B = \{(x, \mu_A(x) \oplus \mu_B(x)) \mid x \in U\} \in \mathcal{F}(\widetilde{U}) \);
8. \(\mathcal{F}(\widetilde{U}) \) not include other elements.

In fact, \(\mathcal{F}(\widetilde{U}) \) can be considered as a function space based on \(\widetilde{U} \).

We apologize to the readers for any inconvenience these errors might have caused.