Patellariopsidaceae Fam. Nov. With Sexual-Asexual Connection and a New Host Record for *Cheirospora botryospora* (Vibrisseaceae, Ascomycota)

Anuruddha Karunarathna1,2,4,5, Derek Peršoh6, Anusha H. Ekanayaka4,5, Ruvishika S. Jayawardena3, K. W. Thilini Chethana4, Ishani D. Goonasekara3,4,5, Ratchadawan Cheewangkoon2,7, Erio Camporesi8,9, Kevin D. Hyde3,4,5, Saisamorn Lumyong1,7,10* and Samantha C. Karunarathna1,3,4*

1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 2 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 3 World Agroforestry Centre, East and Central Asia, Kunming, China, 4 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China, 5 Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand, 6 AG Geobotany, Ruhr-University Bochum, Bochum, Germany, 7 Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 8 A.M.B. Circolo Micologico “Giovanni Carini”, Brescia, Italy, 9 A.M.B. Gruppo, Micologico Forlivese “Antonio Cicognani”, Forlì, Italy, 10 Academy of Science, The Royal Society of Thailand, Bangkok, Thailand

Helotiales is a polyphyletic order of Ascomycetes. The paucity of relevant molecular data and unclear connections of sexual and asexual morphs present challenges in resolving taxa within this order. In the present study, Patellariopsidaceae fam. nov., the asexual morph of *Patellariopsis atrovinosa*, and a new record of *Cheirospora botryospora* (Vibrisseaceae) on *Fagus sylvatica* (Fagaceae) from Italy are discussed based on morphology and molecular phylogeny. Phylogenetic analyses based on a combined sequence dataset of LSU and ITS were used to infer the phylogenetic relationships within the Helotiales. The results of this research provide a solid base to the taxonomy and phylogeny of Helotiales.

Keywords: Ascomycetes, Cheirospora botryospora, Leotiomycetes, Pezizomycotina, sporodochium

INTRODUCTION

The Leotiomycetes (Pezizomycotina) is a very diverse class and was erected when the super-class Leotiomyceta was split into seven classes by Eriksson & Winka (Eriksson and Winka, 1997). Leotiomycetes currently comprises 13 orders, out of which eight are monotypic, while over 200 genera are represented by one species only (Baral, 2016; Wijayawardene et al., 2018; Ekanayaka et al., 2019; Johnston et al., 2019). Among the orders in Leotiomycetes, Helotiales consists of the highest number of genera, *incertae sedis* within the familial rank (ca. 90–151) (Baral, 2016; Quijada et al., 2018; Wijayawardene et al., 2018). Hawksworth (2001) estimated that Helotiales consists of 70,000 species. Only 2,334 species belonging to 423 genera in 25 families have been recorded in Helotiales. This constitutes half of all known species in Leotiomycetes (Ekanayaka et al., 2019).
Recent phylogenetic studies based on ribosomal DNA analyses have reported the polyphyletic nature of Helotiales (Ekanayaka et al., 2019; Johnston et al., 2019). The lack of knowledge between asexual and sexual morph connections complicates the systematics of this order (Wang et al., 2006b). Many helotialean fungi are known based on a sexual morph, with their asexual morphs being either undiscovered or assumed to have been lost in evolution (Wang et al., 2006b). On the other hand, it is suggested that asexual morphs from various environmental samples are members of Helotiales, without mention of their sexual morphs (Sutton and Hennenber, 1994; Marvanova et al., 1997).

Helotiales is the largest group of non-lichen forming ascomycetes and occur in a wide range of niches (Ekanayaka et al., 2017; Wijayawardene et al., 2017). The members of Helotiales are recorded as plant pathogens, endophytes, nematode-trapping fungi, mycorrhizae, fungal parasites, terrestrial and aquatic saprobes, root symbionts and wood rot fungi (Wang et al., 2006a).

The objectives of this study are to introduce a new family with their sexual-axexual inter-connection and to provide a new host record for Cheirospora in Vibriisaceae.

MATERIALS AND METHODS

Plant Sample Collection, Morphological Studies and Isolation of Pure Culture

Dead aerial branches of *Fagus sylvatica* L. (Fagaceae) and *Corylus avellana* L. (Betulaceae) were collected from Passo la Calla, Stia (province of Arezzo [AR]) Italy and Fiumicello di Premilcuore (province of Forlì-Cesena [FC]) Italy, respectively. Specimens were preserved and observed following the method of Karunarathna et al. (2017). Hand-cut sections of the fruiting structures were mounted in water for microscopic studies and photomicrography. Specimens were examined with a Nikon ECLIPSE 80i compound microscope and photographed with a Canon EOS 600D digital camera fitted to the microscope. Measurements of morphological characteristics were made with the Tarosoft (R) Image Frame Work program and images used for figures were processed with Adobe Photoshop CS3 Extended version 10.0 (Adobe Systems, United States).

Single spore isolation was carried out following the method described in Chomnunti et al. (2014). Germinated spores were individually transferred to potato dextrose agar (PDA) plates and grown at 10–16°C. Colony color and other characteristics were observed and measured after 1 week and 3 weeks. The specimens were deposited in the Mae Fah Luang University Herbarium (MFLU), Chiang Rai, Thailand. Living cultures were deposited in Mae Fah Luang Culture Collection (MFLUCC). Facesoffungi (FoF) and Index Fungorum numbers (IF) were acquired as in Jayasiri et al. (2015) and Index Fungorum (2019).

DNA Extraction, PCR Amplification, and Sequencing

Genomic DNA was extracted from fresh fungal mycelium grown on PDA media at 16°C for 4 weeks using the Biospin Fungus Genomic DNA Extraction Kit (BioFlux®, Hangzhou, China) following the instructions of the manufacturer.

The DNA amplification was performed by polymerase chain reaction (PCR). A partial sequence of the LSU rRNA gene region was amplified using the primer pair LR0R and LRS (Vilgalys and Hester, 1990). The internal transcribed spacer regions (ITS1, 5.8S, ITS2) were amplified using the primer pair ITS5 and ITS4 (White et al., 1990). PCR was carried out following the protocol of Phookamsak et al. (2014). The quality of PCR products was checked by gel electrophoresis on 1% agarose gels stained with ethidium bromide. The amplified PCR fragments were sent to a commercial sequencing provider (Shanghai Sangon Biological Engineering Technology & Services Co., Shanghai, China). The sequence data acquired were deposited in GenBank (Table 1).

Sequencing of the ITS region of strain MFLUCC 17-1411 was failed due to an intron, of about 1.4 kb in length, positioned between the binding site of primer ITS5 and the start of the ITS region. To obtain a double-stranded ITS sequence, a piece of sporodochium <0.5 mm³ was removed from the specimen and added to a reaction tube with 5 µl of sterile distilled water (dH²O). The soaked specimen was frozen (−20°C) and thawed (+20°C) for five times and 0.5 µl of the solution was used for amplification. Based on initially obtained sequence information, a forward primer (Karu_F01: 5′-CAATGATCAAAGCAGTTGCG-3′) was designed, which has similar properties as the ITS4 primer and binds to the intron sequences close its 3′-end. The PCR reaction included 0.5 µl of the DNA-containing solution, 0.25 µl of each primer (Karu_F01 and ITS4; 10 µM, each), 5.25 µl of sterile dH₂O and 6.25 µl of the GoTaq® G2 Hot Start Colorless Master Mix (PRoMEGA; GoTaq® Hot Start Polymerase in 2 × Colorless GoTaq® Reaction Buffer (pH 8.5), 400 µM dNTPs, 4 mM MgCl₂). The PCR commenced with 3 min denaturation at 95°C, followed by 33 amplification cycles (27 s at 94°C, 60 s at 56°C, and 90 s at 72°C) and a final elongation at 72°C for 7 min. The PCR products were cleaned by successive incubation at 37°C for 30 min and 80°C for 15 min after adding 0.2 µl exonuclease I (20,000 U/ml), 0.2 µl Shrimp-Alkaline-Phosphatase (1,000 U/ml; both New England Biolabs) and 1.6 µl sterile dH₂O to 5 µl of PCR product. Purified PCR products were sequenced by the sequencing service of the Ruhr-Universität Bochum using a Genetic Analyzer 3130xl (Applied Biosystems).

Phylogenetic Analyses

Phylogenetic analyses were conducted separately based on LSU and ITS gene sequence data. Reference sequences (Table 1) of representative families in Leotiomyces were retrieved from GenBank. The related sequences were obtained from a BLAST search and from recently published data (Ekanayaka et al., 2019). Individual datasets for LSU and ITS genes were aligned using the default settings of MAFFT V.7.036 (Katoh et al., 2018) and improved manually where necessary using Bioedit. Aligned gene regions were concatenated using Bioedit v7.2 (Hall, 1999) and analyzed.

1http://mafft.cbrc.jp/alignment/server/
TABLE 1 | Taxa used in the phylogenetic analyses and their corresponding GenBank numbers (Newly generated sequences are indicated in black bold).

Species	Strain/ Voucher No.	GenBank Accession No.
	ITS	LSU
Acidornelania paniculica	61R8	KF874619
Amilocosica sp.	KUS_F51377	JN006992
Aquaporuticum pinicola	ATCC_MYA-4213	NR_111345
Arcanophora aurata	KUS-F52038	JN033933
Arcanophora aurelia	KUS-F51520	JN033409
Ascorycnidula cylichnium	KUS_F52351	JN086709
Ascorycnidula sarcoides	HKAS 90651	MK591999
Bryocladuscus campyloto	POD-101074	JX93084
Bryoglossum gracile	DAO178087	AY78926
Bugliaria pulla	DHP 15-215	KUB45540
Cadophora fastigiata	CBS 869.69	MH895469
Cadophora malorum	A163	AY249057
Cheiropsis botryospora	MFUCC 17-1399	MN535816
Chlorosplenium chloro	BHI_F7394	MG553994
Chlorosplenium chloro	BHI_F7394a	MG553993
Crucellorpus umtumvariae	CBS 125742	MH863669
Dicenthaosa rubra	MFU 18-1828	MK591979
Disculina boudieri	HB3426	KC412001
Drepanopeziza ribis	CBS 200.36	MH855774
Drepanopeziza salicis	CBS 405.64	MH858467
Enceliopsis rhododendri	CBS 905.69	MH854799
Geniculospora grandis	CBS 261.84	MH873440
Godronia rubra	CBS 162.66	MH85762
Gradinella coracina	ILS60491	JN012009
Haplographum delicatum	CBS 196.73	MH872362
Heterosphaeria linearne	MFU 15-2764	MK591955
Heterosphaeria patella	G.M. 2014-08-04-1	MF196187
Hylacosphaena bicolor	CBS 144009	MH819392
Hylacosphaena vitreola	CBS 126276	MH863954
Hydrocora chactoleadia	CCM F-10890	KC834062
Hymenotremellina madsonii	ICMP 15648	KJ606676
Lachnum abnorme	KUS-F52080	JN033935
Lambertella seddsosa	WU 3244	KY493962
Loramyceus junicola	CBS 293.52	MH85704
Loramyceus macrosporus	CBS 235.53	MH857170
Mitrulina ushualae	POD-10964	K2C73438
Motisia cinerea	CBS 128349	JF514865
Neopyrenopeziza nigripigmentata	MFU 16-0599	NR_163783
Patellariosis atrovirens	G.M. 2014-06-15-1	KY462814
Patellariosis atrovirens	G.M. 2016-05-04-1	KU70066
Patellariosis atrovirens	MFUCC 17-1411	MN535817
Patellariosis dennisi	CBS 174.66	MH858765
Patellariosis dennisi	G.M. 2017-09-04-3	MK120898
Peltigeromyces sp.	HB 6432	KO090803
Phialocephala scopiformis	CBS 468.94	NR_161186
Phialocephala urceolata	UAM1 10827	NR_111285
Pulvinata tormentosa	MFU 18-1819	MK591965
Rhexcercosporidium carotae	CBS 418.65	MH858647
		MK584938

[Continued]

Initial alignment of LSU region included 7163 base pairs and ITS region included 6619 base pairs. In the phylogenetic analysis, LSU and ITS regions consisted of ambiguously aligned regions. Hence, manual alignment was performed where necessary and some unambiguous regions were removed from the analysis. The removed regions of LSU data set are 0–2658, 2738–2888, 2897–2955, 3037–3220, 3285–3338, 3421–3464, 3723–3730, 4029–4103, 4129–4562, 4581–7163. The excluded regions of the ITS data set are 0–146, 149–173, 181–2164, 2199–2234, 2253–2307, 2714–2923, 2936–2971, 2986–3052, 3065–3113, 3132–3270, 3331–6619. In the final alignment, LSU and ITS regions consist of 988 and 587 bp, respectively.

Phylogenetic constructions of combined gene trees were performed using maximum likelihood (ML), maximum parsimony (MP) and bayesian inference (BI) criteria. Maximum likelihood trees were generated using the RaxML-HPC2 on XSEDE (8.2.8) (Stamatakis et al., 2008; Stamatakis, 2014) in likelihood trees were generated using the RAxML-HPC2 on parsimony (MP) and bayesian inference (BI) criteria. Maximum likelihood trees were performed to determine whether the trees inferred under different optimality criteria were different.

Evolutionary models for phylogenetic analyses were selected independently for each locus using MrModeltest v. 3.7 (Nylander, 2004) under the Akaike Information Criterion (AIC) implemented in both PAUP v. 4.0b10 and MrBayes v. 3. Bayesian inference analysis was conducted with MrBayes v. 3.1.2 (Nylander, 2004; Swoford, 2002) using the heuristic search option, random stepwise addition, and 1000 replicates, with maxtrees set at 1000. Descriptive tree statistics for parsimony such as Tree Length [TL], Consistency Index [CI], Retention Index [RI], Relative Consistency Index [RC] and Homoplasy Index [HI] were calculated for trees generated under different optimality criteria.

The Kishino Hasegawa tests (Kishino and Hasegawa, 1989) were performed to determine whether the trees inferred under different optimality criteria were different.
gamma distribution with a proportion of invariant site (TrN+I+G) was applied for LSU gene region and symmetrical model with discrete gamma distribution coupled with a proportion of invariant sites (TIM2ef+I+G) was applied for ITS gene region. Two parallel runs were conducted, using the default settings, but with the following adjustments: Four simultaneous Markov chains were run for 2,000,000 generations and trees were sampled every 100th generation. The distribution of log-likelihood scores indicated the stationary phase for each search and were used to decide if extra runs were required to achieve convergence, using Tracer v. 1.6 (Rambaut et al., 2014). The first 20% of the generated trees represented the burn-in phase and were discarded. The remaining trees were used to calculate posterior probabilities of the majority rule consensus tree.

Phylogenetic Analyses
Phylogenetic trees obtained from LSU and ITS single gene analyses as well as the combined gene analyses share similar overall topologies at the generic level and are in agreement with previous studies (Johnston et al., 2014; Crous et al., 2015; Ekanayaka et al., 2019). The concatenated LSU and ITS dataset consisted of 58 taxa.

The RAxML analysis of the LSU dataset yielded a best scoring tree (Figure 1) with a final ML optimization likelihood value of -16138.064322. The matrix had 758 distinct alignment patterns, with 19.46% of undetermined characters or gaps. Parameters for the GAMMA+P-Invar model of the LSU and ITS were as follows: Estimated base frequencies; $A = 0.247456$, $C = 0.223115$, $G = 0.280101$, $T = 0.249328$; substitution rates indicated the stationary phase for each search and were used to decide if extra runs were required to achieve convergence, using Tracer v. 1.6 (Rambaut et al., 2014). The first 20% of the generated trees represented the burn-in phase and were discarded. The remaining trees were used to calculate posterior probabilities of the majority rule consensus tree.

Sexual Morph
Patellariopsis forms a well-supported (ML 74/BYPP 0.98) clade sister to Chlorospleniaeaceae, Loramycetaceae, Mollisiaceae and Vibrisseaceae. In Index Fungorum, Patellariopsis is included in Dermateaceae, but Wijayawardene et al. (2017) placed Patellariopsis in Helotiales genera incertae sedis based on morphology. Furthermore, in Ekanayaka et al. (2019), this clade was denoted as separate taxa based on phylogenetic analyses. Hence, we introduce this clade as a new family based on morphology and phylogeny.

Type Genus
Patellariopsis Dennis, Kew Bull. 19(1): 114 (1964)

Notes
Patellariopsis forms a well-supported (ML 74/BYPP 0.98) clade sister to Chlorospleniaeaceae, Loramycetaceae, Mollisiaceae and Vibrisseaceae. In Index Fungorum, Patellariopsis is included in Dermateaceae, but Wijayawardene et al. (2017) placed Patellariopsis in Helotiales genera incertae sedis based on morphology. Furthermore, in Ekanayaka et al. (2019), this clade was denoted as separate taxa based on phylogenetic analyses. Hence, we introduce this clade as a new family based on morphology and phylogeny.

Patellariopsis Dennis, Kew Bull. 19(1): 114 (1964)

Index Fungorum number: IF556217, Faces of Fungi number: FoF06575

The genus classified under Helotiales genera incertae sedis, Leotiomyctes (Wijayawardene et al., 2018). The type species is Patellariopsis clavispora (Berk. & Broome) Dennis. Five species are recorded in Index Fungorum (2019), P. atrovinosa (A. Bloxam ex Curr.) Dennis, P. carnea G.W. Beaton, P. clavispora (Berk. & Broome) Dennis, P. dennisii (E. Müll. & Hütter) Schläpf.-Bernh., and P. indica A. Pande. We were unable to find any reported described asexual morphs of Patellariopsis in the literature.

Taxonomy
In this section, Patellariopsidaceae Karun., Camporesi & K.D. Hyde, fam. nov. and the new record of Cheir ospora botryospora are described and illustrated. Helotiales includes several families with sporodochial asexual morphs viz. Gelatinoidiscaceae, Helotiaeaceae and Mollisiaceae. A morphological comparison among members of the Helotiales is given in Tables 2, 3.

Notes
Patellariopsis forms a well-supported (ML 74/BYPP 0.98) clade sister to Chlorospleniaeaceae, Loramycetaceae, Mollisiaceae and Vibrisseaceae. In Index Fungorum, Patellariopsis is included in Dermateaceae, but Wijayawardene et al. (2017) placed Patellariopsis in Helotiales genera incertae sedis based on morphology. Furthermore, in Ekanayaka et al. (2019), this clade was denoted as separate taxa based on phylogenetic analyses. Hence, we introduce this clade as a new family based on morphology and phylogeny.

Patellariopsis atrovinosa (A. Bloxam ex Curr.) Dennis, Kew Bull. 29(1): 167 (1974)

Index Fungorum number: IF 319233, Facesoffungi number: FoF06574

Sexual morph: Refer to Dennis (1974). Asexual morph:
FIGURE 1 | RAxML tree based on a combined dataset of LSU and ITS partial sequence data. Bootstrap support values for maximum likelihood equal to or higher than 70%, maximum parsimony equal to or higher than 70%, and Bayesian posterior probabilities equal to or greater than 0.90 are displayed on the nodes, respectively. Newly generated sequences are indicated in white. The tree is rooted to Lambertella seditiosa and Rutstroemia longipes.

Sporodochium 33–37 µm high, 278–355 µm diam. ($\bar{x} = 35 \times 324 \mu m$, $n = 5$), sub-epidermal or sub-peridermal, solitary. **Conidiophores** 41–78 $\times 1–1.5 \mu m$ ($\bar{x} = 58 \times 1.3 \mu m$, $n = 20$) cylindrical, straight or slightly curved, branched over the conidiophore, sepetate, hyaline, expanding toward the apices, smooth. **Conidiogenous cells** 1.5–2 $\times 1–1.6 \mu m$.
Family	Hyphomycetous conidiomata	Conidiophore	Conidiogenous cell	Conidia
Amicodiscaceae (Ekanayaka et al., 2019)	Hyphomycetous/stromatic	Hyaline to cinnamon-colored glistening slimy heads, straight or flexuous, dark brown and thick-walled except at the apex	Terminal, cylindrical, sympodially proliferate	Cylindrical to cylindric-ellipsoidal, hyaline, aseptate, thin-smooth walled.
Discinellaceae (Ekanayaka et al., 2019)	Hyphomycetous conidiomata	Holoblastic		Mostly hyaline, sometimes branched, filiform, globose, or fusoid some form dimorphic conidia
Drepanopezizaceae (Yoshikawa and Yokoyama, 1992; König et al., 2017)	Hyphomycetous/acervulus	Holoblastic		Sometimes two types. Macroconidia-ellipsoid to fusoid, slight curved. Microconidia-ellipsoid to bacilliform Aseptate, hyaline and subglobose
Gelatinodiscaceae (Seaver, 1938; Johnston et al., 2010)	Sporodochial			
Helotiales (Peláez et al., 2011; Jaklitsch et al., 2018)	Hyphomycetous, sporodochial or synnematal	Macroconidia – holoblastic/Microconidia – phialidic	Macroconidia – hyaline, filiform or stauroporous, dark brown, in chains, bulbs or solitary on conidiophores and 3–5-septate. Microconidia rarely pigmented, multicellular and appended	
Heterosphaeriaceae (Leuchtmann, 1987)	Synanamorphic, hyphomycetous acervulus and ceolomycteous			
Hyaloscyphaceae (Jaklitsch et al., 2016)	hyphomycetous sporochoical	Phialidic		Aseptate, hyaline or brown, branched and muriform or in chains
Hydrocinaceae (Ekanayaka et al., 2019)	Hyphomycetous	Long, hyaline, simple or branched, filiform	Proliferate, sympodial.	Filiform, branched, sometimes septate and fragment into microconidia.
Loramyctaceae (Digby and Goos, 1967; Walsh et al., 2014)	anguillospora-like	Conidiophores are simple or occasionally branch. Conidiogenous cells are hyaline and straight. Conidia are globose, sub-ellipsoid or sigmoid and hyaline	Conidiogenous cells are hyaline and straight. Conidia are globose, sub-ellipsoid or sigmoid and hyaline	Conidia are globose, sub-ellipsoid or sigmoid and hyaline
Mollisiaceae (Sutton and Ganapathi, 1978; Butin et al., 1996; Grünig et al., 2002)	Sporodochial	Hyaline to brown		Unicellular, ellipsoid or phragmosporous, hyaline or brown and also in chains
Patellariopsidaceae	Sporodochium	Cylindrical, straight or slightly curved, branched over the conidiophore, septate, hyaline, expanding toward the apices, smooth	Holoblastic, polyblastic, cylindrical, integrated, hyaline, smooth.	Sphaerical, acropetal, branched chains, globose to cylindrical mass of small, thick-walled, dark brown, septate, eguttulate, smooth, cheirid, conidium-complex
Phialcephala urceolata clade (Wang, 2009)	Hyphomycetous	Hyaline to darkly pigmented, septate and mononematos	Phialidic and conidiogenous cells are flask to urn-shaped and each with a prominent cylindrical and hyaline collarette	Globose, pedicellate and single or adhering in small clusters at the phialide apex
Plamtnetrulaeaceae (Marvanová and Bárlocher, 2001; Goodwin, 2002; Gönczöl and Révay, 2003; Grünig et al., 2011; Gonçalves et al., 2012; King et al., 2013; Travadon et al., 2015; Duarte et al., 2016; Walsh et al., 2018)	hyphomycetous or ceolomycteous	Hyaline to brown		Ellipsoid to rod-shaped or filiform with pointed apices and 0–1-septate
Solenopeziaceae (Ekanayaka et al., 2019)	Conidiomata hyphomycetous	Simple, sparsely branched or absent	Cylindrical to subclavate, sometimes apically slightly swollen	Hyaline or black, septate, branched, lunate, sometimes formed in a chain and becoming tortuous and appearing as terminal dictyospores, rarely appended
Vitrissaeaeeae (flurraiga and Israel, 1985; Goh and Hyde, 1998; Goh et al., 1998; Kirschner and Oberwinkler, 2001; Shinoy et al., 2010; Hernández-Pestrepo et al., 2012, 2017; Legon, 2012; Crous et al., 2015)	hyphomycetous, phialidic or acervulus	Straight, cylindrical, hyaline and sometimes branched	Holoblastic or polytretic	Ellipsoid or irregular in shape and unicellular or up to 7–septate
TABLE 3 | Comparison of major sexual morph characteristics of families in order Helotiales based on Ekanayaka et al. (2019).

Family	Ascomata	Excipulum Peridium	Paraphyses	Asci	Ascospores
Amicodiscaceae	Apothecial, cupulate, sessile or sub-stipitate, margins covered by hairs	Ectal excipulum textura angularis or textura prismatica cells,	Filiform, cylindrical, separte, simple	8-spored, amyloid, sometimes arising	Ellipsoid to fusoid, aseptate, guttulate, lemon-yellow pigmented
		medullary excipulum loosely arranged hyphae		from croziers	
Aquapoterium	Apothecial, cupulate, receptacle, sessile or tipitate,	Ectal excipulum textura prismatica cells or a single layer of parallel hyphae with enlarged, globose apices, medullary excipulum reduced or composed of loosely arranged hyphae	Filiform, hyaline, obtuse to lavate at apex, separte, smooth-walled, simple or branched	8-spored, amyloid or non-amyloid, cylindric-clavate	Ellipsoid to clavate cylindric, hyaline, smooth-walled, 0–1-septate, surrounded by a gelatinous sheath
Unguicularia clade	sessile or tipitate, sometimes margins covered with short cylindrical hairs				
Arachnopezizaceae	Apothecial, covered by hairs	Ectal excipulum textura angularis to prismatica cells, medullary excipulum textura prismatica to textura obita cells	Cylindrical, hyaline	8-spored, cylindric clavate, amyloid, arising from croziers	Ellipsoid to fusoid, 0–7-septate
Bryoglossaceae	Apothecial, clavate to apitate or cupulate to turbinate, long stipitate, gelatinous	Ectal excipulum textura porrecta cells, medullary excipulum textura intricata cells	Filiform, swollen at the apex	8-spored, amyloid or non-amyloid, arising from croziers	Ellipsoid to fusoid, aseptate, gelatinate
Bulgariella clade	Apothecial or rarely cleistothelial, cupulate, discoid, turbinate or capitate, sessile or stipitate, margins and flanks are covered with hairs	Ectal excipulum textura prismatica cells, textura obita cells, medullary excipulum is composed of cells of textura intricata or textura obita cells	Filiform, lanceolate or cylindrical	8-spored, cylindric clavate, amyloid or non-amyloid, arising from croziers	Globose, elipsoid to filiform, separte or aseptate, hyaline or brownish, guttulate
Chlorosplenaceae	Apothecial, cupulate or discoid, sessile or substipitate	Ectal excipulum textura angularis cells, medullary excipulum textura intricata cells	Filiform, separte	8-spored, cylindric clavate, amyloid	Ellipsoid to fusoid, hyaline and smooth walled
Colipila clade	Apothecial cupulate, covered by long cylindrical hairs	Ectal excipulum and medullary excipulum textura prismatica cells	Dimorphic, sub cylindrical and not exceed the length of asci, or broadly lanceolate and exceed the length of asci	8-spored, cylindric clavate, amyloid, arising from croziers	Ellipsoid to fusoid
Discinellaceae	Apothecial, discoid to cupulate, circular, gelatinous,	Ectal excipulum textura prismatica or textura porrecta cells, medullary excipulum textura intricata to prismatica cells	Filiform, branched at the apex	8-spored, cylindrical, amyloid or non amyloid, sometimes arising from croziers	Ellipsoid, aseptate, hyaline, without sheath
	0–1-septate, smooth-walled				
Drepanopezizaceae	Apothecial, cupulate, sessile, mostly immersed	A thin layer of textura angularis cells,	Apically slightly swollen, straight	4–8– sporated, non amylloid	Ellipsoid to fusoid, 0–2-septate
Gelatinodiscaceae	Apothecial, cupulate or discoid, some are tremellloid, form cerebiform masses which each lobule contains a tubinate apothecium	Ectal excipulum textura prismatica to textura angularis to globulousa cells, medullary excipulum textura obita to textura porrecta or textura intricata cells	Filiform, cylindrical, apically swollen, guttulate	8-spored, amyloid, arising from croziers	Ellipsoid to fusoid, hyaline, yellowish or brownish, smooth, with a gelatinous sheath, guttulate, 0–5-septate
Godroniaceae	Apothecial, urceolate, discoid or cupulate, mostly stromatic, erumpent,	Ectal excipulum textura prismatica to angularis cells, medullary excipulum textura epidermoidea, prismatica to porrecta cells	Filiform or lanceolate, simple or branched, sometimes slightly swollen at the apex	8-spored, cylindric clavate, amyloid or non-amyloid	Fusoid, hyaline, separte, guttulate
	sometimes covered with hairs				
Helotiaceae	Apothecial, cupulate, discoid, capitate to clavate, turbinate or globose, sessile or tipitate, margins and flanks smooth or covered with hairs	Ectal excipulum textura prismatica, intricata, globulousa-angularis, or tobita cells, medullary excipulum textura intricata or porrecta cells	Cylindrical, separte or aseptate, hyaline to yellowish, guttulate	4–8–spored, cylindric-clavate, amyloid or non amyloid, sometimes arising from croziers	Ellipsoid, fusoid or filiform, 1–3-septate, rarely ornamented
Heterosphaeriaceae	Apothecial, discoid, black, sessile, erumpent, gelatinous	Ectal excipulum textura angularis cells, medullary excipulum textura porrecta cells	Clavate contains many guttules	8-spored, amyloid, arising from croziers	Aseptate, ellipsoid to fusoid, without gel sheath
Hyaloscyphaceae	Apothecial, cupulate or discoid, sessile or substipitate, sometimes	Ectal excipulum textura globulousa cells, medullary excipulum textura porrecta, intricata to obita cells	Filiform, separte, branched, slightly swollen at the apices	8-spored, cylindric clavate, amyloid, arising from croziers	Ellipsoid to fusoid, aseptate or separte, hyaline

(Continued)
TABLE 3 | Continued

Family	Ascomata	Excipulum Peridium	Paraphyses	Asci	Ascospores
Hydrocinaceae	Apothecial, cupulate, sessile or substipitate	Ectal excipulum textura globulosa cells, medullary excipulum textura	Filiform, septate, branched, slightly swollen at the apices	8-spored, cylindric clavate, amyloid, arising from croziers	Ellipsoid to fusoid, aseptate or septate, hyaline
Lachnaceae	Apothecial or discoid, sessile or stipitate, margins and flanks are covered with hair	Ectal excipulum textura prismatic cells, medullary excipulum textura prismatic cells	Filiform, septate, unbranched, sometimes apically swollen and pigmented	8-spored, cylindric clavate, amyloid or non-amyloid, sometimes arising from croziers	Fusiform, septate, sometimes with terminal appendages and gel sheath
Loramycetaceae	Apothecial or perithelial, apothecia cupulate or pulvinate, perithecia	Ectal excipulum textura prismatic cells, medullary excipulum textura prismatic cells	Filiform, cylindrical, with yellow carotenoid droplets	8-spored, amyloid, cylindrical clavate, mostly arising from croziers	Ellipsoid to long filiform, 0–7-septate, guttulate
Mitrulaceae	Apothecial, clavate, stipitate	Ectal excipulum textura prismatic cells, medullary excipulum textura prismatic cells	Filiform, cylindrical, apically swollen, guttulate	8-spored, cylindrical clavate, amyloid	Ellipsoid to fusoid, hyaline, 3–7-septate
Mollisiaceae	Apothecial, discoid covered by hairs,	Ectal excipulum textura prismatic cells, medullary excipulum textura prismatic cells	Filiform, and pigmented at the apices	8-spored, cylindrical clavate, amyloid	Ellipsoid to fusoid, hyaline, 3–7-septate
Patellariopsidaceae	Apothecial, discoid, sessile	Ectal excipulum textura globulosa cells to angularis cells, medullary excipulum	Filiform, cylindrical, apically swollen, guttulate	8-spored, cylindrical clavate, amyloid	Ellipsoid to fusoid, hyaline, 3–7-septate
Petigeromyces clade	Apothecial, cartilaginous, thin, with a large variety of lobes	Records are not available for micro morphological characters			
Phialocephala urceola	clade				
Phialocephala clade	Apothecial, cupulate, discoid or urn-shaped, sessile or sub stipitate, sometimes covered with pigmented hairs	Ectal excipulum textura prismatic cells, medullary excipulum textura prismatic cells	Filiform, cylindrical or lanceolate, guttulate	8-spored, conical apex, amyloid	Ellipsoid to long filiform, 0–3-septate, guttulate
Ploetnerulaceae	Apothecial, cupulate, discoid or urn-shaped, sessile or sub stipitate, sometimes covered with pigmented hairs	Ectal excipulum textura globulosa cells to angularis cells, medullary excipulum textura prismatic cells	Filiform, lanceolate or cylindrical	8-spored, cylindrical clavate, amyloid or non-amyloid, sometimes arising from croziers	Globose, ellipsoid to fusiform, septate or aseptate, guttulate
Solenopziaceae	Apothecial, cupulate, discoid or pulvinate, sessile or stipitate, sometimes covered with hyaline, whitish, yellow or brown, non-bristle like hairs	Ectal excipulum textura prismatic cells, medullary excipulum textura prismatic cells	Filiform, lanceolate or cylindrical	8-spored, cylindrical clavate, long stipitate, sometimes amyloid, arising from croziers	Globose, ellipsoid to fusiform, septate or aseptate, guttulate
Vibrisseaceae	Apothecial, cupulate or clavate, sessile to stipitate	Ectal excipulum textura globulosa cells to angularis cells, medullary excipulum textura prismatic cells	Filiform, apically slightly swollen, sometimes branched	8-spored, cylindrical clavate, long stipitate, sometimes amyloid, arising from croziers	Globose, ellipsoid to fusiform, septate or aseptate, guttulate

(\(\bar{x} = 1.8 \times 1.4 \, \mu m, n = 20\)) holoblastic, polyblastic, cylindrical, integrated, hyaline, smooth. *Conidia* 1.5–2.7 \(\times\) 1.5–2.5 \(\mu m\) (\(\bar{x} = 2 \times 2 \, \mu m, n = 40\)), spherical, proliferating with several, short, lateral, acropetal, branched chains. Primary branches in turn develop secondary branches, which eventually form a globose to cylindrical mass of small, thick-walled, dark brown, septate, euguttulate, smooth, cheiriod, conidium-complex.

Colonies growing on PDA becoming 2 cm within 10 days at 16°C, circular, flat, cottony, irregular margin, with less aerial mycelium, olivaceous green to gray from above and dark brown from below.

Material Examined

ITALY, Forlì-Cesena [FC], Fiumicello di Premilcuore, dead aerial branch of *Corylus avellana* L. (Betulaceae), 5 September 2015, E. Camporesi, IT 3178 (MFLU 16-2950), living cultures, MFLUCC 17-1411.

Cheirospora Moug. & Fr., in Fries, Syst. Orb. Veg. (Lundae) 1: 365 (1825)

Index Fungorum number: IF 7614, Faces of Fungi number: FoF06593

The genus is in Helotiales genera incertae sedis, Leotiomycetes (Wijayawardene et al., 2018). Ekanayaka et al. (2019) placed this genus under Vibrisseaceae. The type species is *C. botryospora* (Mont.) Berk. & Broome. There are four species in Index Fungorum (2019), *C. alni* Shabunin., *C. betulina* (P. Karst.) Kuntze., *C. botryospora* (Mont.) Berk. & Broome and *C. oblonga* (Fuckel) Kuntze.
Cheirospora botryospora (Mont.) Berk. & Broome, Ann. Mag. nat. Hist., Ser. 2 5: 455 (1850)

Index Fungorum number: IF 294800, Facesoffungi number: FoF06594 (Figure 3)

Saprobic on dead branches of Fagus sylvatica L. Sexual morph: unidentified. Asexual morph: Sporodochium 1850–1854 µm high, 3728–3732 µm diam. (\bar{x} = 1852 × 1730 µm, n = 5), sub-epidermal or sub-peridermal, solitary. Conidiophores 171–225 × 3–4 µm (\bar{x} = 198 × 3.5 µm, n = 20) cylindrical, straight or slightly curved, branched only at the base, septate, hyaline, expanding toward the apices, smooth. Conidiogenous cells 8–7 × 10–11 µm (\bar{x} = 7.5 × 10.5 µm, n = 20) holoblastic, polyblastic, cylindrical, integrated, hyaline, smooth. Conidia 10–11 × 9–11 µm (\bar{x} = 10.5 × 10.5 µm, n = 40), sphaerical, proliferating with several, short, lateral, acropetal, branched chains. Primary branches in turn develop secondary branches which eventually form a globose to cylindrical mass of small, thick-walled, dark brown, septate, eguttulate, smooth, cheiroid, conidium-complex, enclosed in a gelatinous sheath.

Colonies growing on PDA to 2 cm diam. within 10 days at 16°C, circular, flat, cottony, irregular margin, with less aerial mycelium, olivaceous green to gray from above and dark brown from below.

Material Examined
ITALY, Province of Arezzo [AR], Passo la Calla - Stia, dead aerial branch of Fagus sylvatica (Fagaceae), 5 September 2015, E. Camporesi, IT 2609 (MFLU 15-2612), ex-type living culture, MFLUCC 17-1399.

DISCUSSION
The highly divergent morphological, ecological and biological characteristics of Helotiales makes it a focus for taxonomic studies in the Leotiomycetes, as it is one of the most problematic groups for traditional classification and molecular phylogeny (Wang et al., 2006a). It is a poorly studied order, within which...
about 19–27% of the genera have an uncertain position at the family level (Baral, 2016). Hence, the taxa in Helotiales have already been subjected to several nomenclatural reinterpretations (Wang et al., 2006a). Lantz et al. (2011) revealed that some genera related to members in Helotiales were traditionally placed in Rhytismatales.

Patellariopsidaceae is established herein based on morphological and phylogenetic support. Comparisons of
major sexual and asexual morph characteristics of families in Helotiales are provided in Tables 2 and 3. The asexual morph characteristics of this family are unique in having sporodichium with cheiroid conidium complex. The cheiroid conidium complexes are also present in C. botryospora in Vibriaseae. Patellariopsidaceae differs from Vibriaseae, in having highly branched conidiohores and thicker conidia complexes. Further, the sexual morph of the Patellariopsidaceae shows unique characteristics by having a sessile discoid apothecium, paraphyses with filiform, branched and pigmented apices, cylindric-clavate, amyloid asci and ellipsoid to hyaline septate ascospores. Patellariopsidaceae was further supported by phylogeny. Hence, herein we establish the Patellariopsidaceae under Helotiales.

Most of the Patellariops species were recorded from the United Kingdom with few exceptions (Beaton and Weste, 1978; Farr and Rossman, 2020). Patellariopsis atrovina on Prunus laurocerasus was also reported from the United Kingdom. In our study, we report the asexual morph of P. atrovina on Corylus avellana from Italy. Patellariopsis carnea on dead grass twigs was reported from Australia (Beaton and Weste, 1978). P. clavispora shows a wide host range, which includes Acer sp., Corylus sp., Crataegus sp., Fagus sp., Fraxinus sp., Ligustrum sp., Prunus sp., Quercus sp. and Symphoricarpos sp. from the United Kingdom (Dennis, 1978, 1986) and Mangifera indica from Pakistan (Ahmad, 1978).

Apart from ribosomal RNA sequence data, the use of protein-coding gene phylogenies involving helotialean fungi are slowly emerging (Wang et al., 2006b; Johnston et al., 2014). Most contemporary results suggest that the Helotiales and currently delimited families are not monophyletic and that the highly conserved small subunit (SSU) rRNA gene is not informative enough to resolve these lineages with confidence (Gernandt et al., 2001).

In our phylogenetic analyses, all the Patellariopsis strains available in the GenBank were included. Among them, the phylogenetic placement of P. dennisii (G.M. 2017 09 04.3) is ambiguous. No morphological descriptions are available in the literature for comparison (Ekanayaka et al., 2019; Vu et al., 2019) and the topology obtained in this study is similar to the topology obtained by Ekanayaka et al. (2019). Hence, we suggest the need for having more data to clarify the position of P. dennisii (G.M. 2017-09-04.3). The blast results for the Patellariopsis dennisii (CBS 174.66) strain include several other Ascomycetous fungi. Therefore, Patellariopsis dennisii (CBS 174.66) was excluded in our dataset after the preliminary phylogenetic analyses.

Genealogical Concordance Phylogenetic Species Recognition (GCP SR) analysis using multi-gene concatenated sequences is used to determine the recombination level within phylogenetically closely related species. Under this study three P. atrovina strains MFLUCC 17-1411, G.M. 2016-05-04.1, G.M. 2014-06-15.1, and P. dennisii G.M. 2017 09 04.3 were subjected to the GCP SR analysis. The analysis failed due to the lack of the informative characters in the highly similar sequences of P. atrovina strains MFLUCC 17-1411, G.M. 2016-05-04.1 and G.M. 2014-06-15.1.

Based on phylogenetic analyses, our strain MFLUCC 17-1411 forms a well-supported (ML 100/MP 100/BYPP 1.00) clade with specimens G.M. 2016-05-04.1 and G.M. 2014-06-15.1 (both P. atrovina). The phylogenetic relatedness is supported by the 100% similarity between sequences. The asexual stage of Patellariopsis is not recorded in literature. Hence, no morphological comparison can be done between the strains MFLUCC 17-1411 and P. atrovina. Nevertheless, no scientific evidence was provided to confirm this association. Hence, we justify MFLUCC 17-1411 belongs to the P. atrovina.

Cheirospora botryospora MFLUCC 17-1399 forms a well-supported clade with (ML 100/MP 100/BYPP 1.00) C. botryospora CPC 24607 and this was further supported by morphology. C. botryospora CPC 24607 was isolated from Fagus sylvatica in Germany. Danti et al. (2002) identified an endophytic Cheirospora sp. on Fagus sylvatica from Italy. However, they were unable to identify it to the species level. Therefore, in this study, based on morphology and phylogeny the first report of C. botryospora on F. sylvatica from Italy is provided (Farr and Rossman, 2020).

In this study, the Patellariopsidaceae fam. nov. is introduced with an asexual morph. Furthermore, a new host record for the C. botryospora (Vibriaseae) and updated phylogenetic tree for Helotiales are provided.

DATA AVAILABILITY STATEMENT

The datasets analyzed in this manuscript are not publicly available. Requests to access the datasets should be directed to anumandrack@yahoo.com.

AUTHOR CONTRIBUTIONS

AK and KH designed the study. AK performed the morphological study and phylogenetic the data analyses with the help of DP, AE, KC, and RJ. DP did the primer design. SL and SK provided the grant. AK wrote the manuscript. RJ, DP, IG, KC, AE, SK, SL, RC, and KH reviewed and edited the manuscript. All authors reviewed and approved the final manuscript.

ACKNOWLEDGMENTS

We appreciate the kind support given by the laboratory staff of Center of Excellence in Microbial Diversity and sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand and Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China. The Plant Germplasm and Genomics Center in Germplasm Bank of Wild Species, Kunming Institute of Botany are thanked for the support in doing molecular work. KH would like to thank “the future of specialist fungi in a changing
climate: baseline data for generalist and specialist fungi associated with ants, *Rhododendron* species and *Dracena* species* (Grant No. DBG6080013) and “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion” (RDG6130001). SK thanks Chiang Mai University for funding his postdoctoral research.

REFERENCES

Ahmad, S. (1978). Ascomycetes of Pakistan Part I. Biol. Soc. Pak. Monogr. 7, 1–236.

Baral, H.-O. (2016). “Inoperculate discomycetes,” in *Syllabus of Plant Families: A. Engler’s Syllabus der Pflanzenfamilien Part 1/2*, eds W. Jaklitsch, H. O. Baral, R. Lucking, H. T. Lumbsch, and W. Frey (Stuttgart: Schweizerbart Science Publishers), 157–205.

Beaton, G., and Weste, G. (1978). Four inoperculate discomycetes from Victoria, Australia. *Trans. Br. mycol. Soc.* 71, 215–221. doi: 10.1016/S0007-1536(78)80101-6

Butin, H., Pehl, L., de Hoog, G. S., and Wollenzien, U. (1996). *Trimmatostroma abietis* sp. nov. (hyphomycetes) and related species. *Antonie Van Leeuwenhoek* 69, 203–209. doi: 10.1007/BF00399607

Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B., Tian, Q., Perloš, D., Dhami, M. K., et al. (2014). The sooty moulds. *Fungal Divers.* 66, 1–36. doi: 10.1007/s11251-014-0278-5

Crous, P. W., Schuster, R. K., Wingfield, M. J., Lombard, L., Giraldo, A., Christensen, M., et al. (2015). Systematics and evolution: *FUSE I.* *Sydowia* 67, 81–118. doi: 10.1055/s-0035-1503669

Danti, R., Sieber, T. N., and Sanguineti, G. (2002). Endophytic mycobiota in bark of European beech (*Fagus sylvatica*) in the Apennines. *Mycol. Res.* 106, 1343–1348. doi: 10.1017/S0953756202006779

Dennis, R. W. G. (1974). *New or Interesting British Microfungi. II.*

Dennis, R. W. G. (1978). *British Ascomycetes. Vaduz: J. Cramer.*

Dennis, R. W. G. (1986). *Fungi of the Hebrides. Kew: Royal Botanic Gardens, 383.*

Digby, S., and Goos, R. D. (1987). Morphology, development and taxonomy of *Sordaria*. *Sydowia* 41, 95–98. doi: 10.1055/s-0037-16453

Ekanayaka, A. H., Ariyawansa, H. A., Hyde, K. D., Jones, E. B. G., Daranagama, D. A., Phillips, A. J. L., et al. (2017). *DISCOMYCETES: the apothecial forms of the discomycetes Tapesia and Pyrenopeziza.*

Eriksson, O. E., and Winka, K. (1997). Supraordinal taxa of Engler’s Syllabus der Pflanzenfamilien Part 1/2, Stuttgart: Schweizerbart Science Publishers.

Farr, D. F., and Rossman, A. (2020). *Fungal Databases, U.S. National Fungus Collections, ARS, USDA.* Available online at: https://nt.ars-grin.gov/fungaldatabases/ (accessed February 10, 2020).

Gernandt, D. S., Platt, J. L., Stone, J. K., Spatafor, J. W., Holst-Jensen, A., Hamelin, R. C., et al. (2001). Phylogenetics of Helotiales and Rhytismatales based on partial small subunit nuclear ribosomal DNA sequences. *Phytopathol.* 90, 514–517. doi: 10.1080/00275514.2001.12063226

Goh, T. K., and Hyde, K. D. (1998). A synopsis of and a key to *Diplococcium* species, based on the literature, with a description of a new species. *Fungal Divers.* 1, 65–83.

Goh, T. K., Hyde, K. D., and Umali, T. E. (1998). Two new species of *Diplococcium* from the tropics. *Mycolgia* 90, 514–517. doi: 10.1080/00275514.1998.12026936

Gonçalves, V. N., Vaz, A. B. M., Rosa, C. A., and Rosa, L. H. (2012). Diversity and distribution of fungal communities in lakes of Antarctica. *FEMS Microbiol. Ecol.* 82, 439–471. doi: 10.1111/j.1574-6941.2012.01424.x

Göres, L., and Révy, A. (2003). Treehole fungal communities: aquatic, aero-aquatic and enatactious hyphomycetes. *Fungal Divers.* 12, 19–34.

Goodwin, S. B. (2002). The barley scald pathogen *Rhynchosporium secalis* is closely related to the discomycetes *Tapesia* and *Pyrenopeziza.* *Mycol. Res.* 106, 645–654. doi: 10.1017/S0953756202006007

Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. *Mycol. Res.* 105, 1422–1432. doi: 10.1017/S0953756201004725

Hernández-Restrepo, M., Gené, J., Castañeda-Ruíz, R. F., Mená-Portales, J., Crous, P. W., and Guarro, J. (2017). Phylogeny of saprobic microfungi from Southern Europe. *Stud. Mycol.* 86, 53–97. doi: 10.1016/S1388-1619(17)30005-2

Huanelsen, J. P., and Ronquist, F. (2001). MBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics* 17, 754–755. doi: 10.1093/bioinformatics/17.8.754

Index Fungorum (2019). Available online at: http://www.indexfungorum.org/ (accessed July 25, 2019).

Iturria, T., and Israel, H. W. (1985). Studies in the genus *Strombymyces* (Helotiales). 5. Comidita and conidigenosis in Pseudospiroptes: a light and electron microscope investigation. *Can. J. Bot.* 63, 195–200. doi: 10.1139/b85-022

Jaklitsch, W., Baral, H. O., Lucking, R., Lumbsch, H. T., Frey, W. (2016). *Syllabus of Plant Families - A. Engler’s Syllabus der Pflanzenfamilien Part 1/2*, Stuttgart: Schweizerbart Science Publishers.

Jayasiri, S. C., Hyde, K. D., Ariyawansa, H. A., Bhat, J., Buyck, B., Cai, L., et al. (2015). The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. *Fungal Divers.* 74, 3–18. doi: 10.1007/s13225-015-0351-8

Johnston, P., Park, D., Baral, H.-O., Galán, R., Platas, G., and Tena, R. (2014). The phylogenetic relationships of *Torrendiella* and *Hymenotorrendiella* gen. nov. within the Leotiomycetes. *Phyto-taxa* 177, 1–25. doi: 10.11164/phytotaxa.177.11.11

Johnston, P. R., Park, D., and Manning, M. A. (2010). *Neobulgaria alba* sp. nov. and its *Phialophora*-like anamorph in native forests and kiwifruit orchards in New Zealand. *Mycotaxon* 113, 385–396.

Johnston, P. R., Quijada, L., Smith, C. A., Baral, H.-O., Hosoya, T., Baschien, C., et al. (2019). A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. *IMA Fungus* 10:1. doi: 10.1186/s43008-019-0002-x

Karunarathna, A., Senanayake, I., Jeewon, R., Phokamsak, R., Goonasekara, I., Wasanisinghe, D., et al. (2017). Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. *Mycosphere* 8, 1818–1834. doi: 10.5943/ mycosphere/8/10/8

Katoh, K., and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and
the branching order in hominoidea. J. Mol. Evol. 29, 170–179. doi: 10.1007/BF02100115
König, H., Unden, G., and Fröhlich, J. (2017). "Biology of microorganisms on grapes" in Mast and in Wine, eds H. König, G. Unden, and J. Fröhlich (Cham: Springer International Publishing), doi: 10.1007/978-3-319-60021-5
Lantz, H., Johnston, P. R., Park, D., and Minter, D. W. (2011). Molecular phylogeny reveals a core clade of Rhytismatales. Mycologia 103, 57–74. doi: 10.3852/10-060
Legon, N. (2012). Cheirospora botryospora - a very common rarity? Field Mycol. 13, 128–130. doi: 10.1016/j.fdmyc.2012.10.006
Leuchtmann, A. (1987). Species of heterosphaeria discomycetes and their anamorphs. Mycota 28, 261–284.
Marvanová, L., and Báročker, F. (2001). Hyphomycetes from Canadian streams. VI. Rare species in pure cultures. Česk. Mykol. 53, 1–28.
Marvanová, L., Janardhanan, K. K., Rajendran, C., Natarajan, K., and Hawskworth, D. L. (1997). “Freshwater hyphomycetes: a survey with remarks on tropical taxa,” in Tropical Mycology, eds K. K. Janardhanan, C. Rajendran, K. Natarajan, and D. L. Hawskworth (Enfield: Science Publishers, Inc), 169–226.
Meyer, M., and Carrières, E. (2007). Inventaire de la Biodiversité dans la Forêt de Schnellert (Commune de Berdorf). Paris: Musée national d’histoire naturelle.
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). “Creating the CIPRES Science Gateway for inference of large phylogenetic trees,” in Proceedings of the 2010 Gateway Computing Environments Workshop (GCE) (IEEE), New Orleans, LA, 1–8. doi: 10.1109/GCI.2010.5676129
Nylander, J. (2004). MrModeltest V2. Program distributed by the author.
Peláez, F., Collado, J., Platas, G., Overy, D. P., Martín, J., Vicente, F., et al. (2011). Phylology and intercontinental distribution of the pneumocandin-producing anamorphic fungus Glarea lozoyensis. Mycology 2, 1–17. doi: 10.1080/21501203.2010.544334
Phookamsak, R., Liu, J. K., McKenzie, E. H. C., Manamgoda, D. S., Ariyawansa, H., Thambugala, K. M., et al. (2014). Revision of phaeosphaeriaceae. Fungal Divers. 68, 159–238. doi: 10.1007/s13225-014-0308-3
Quijada, L., Johnston, P. R., Cooper, J. A., and Pfister, D. H. (2018). Overview of Phacidiales, including Spadicoides gen. nov. on Nothofagus. Mycologia 110, 201–214. doi: 10.1080/00222933.2017.1406748
Walshe, E., Luo, J., and Zhang, N. (2014). Acidomelanios panicola gen. et sp. nov. from switchgrass roots in acidic New Jersey pine barrens. Mycologia 106, 856–864. doi: 10.3852/13-377
Wang, Y.-Z. (2009). A new species of Arachnopeziza from Taiwan. Mycotaxon 108, 485–489. doi: 10.5248/108.485
Wang, Z., Binder, M., Schoch, C. L., Johnston, P. R., Spatafora, J. W., and Hibbett, D. S. (2006a). Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Mol. Phylouenet. Evol. 41, 295–312. doi: 10.1016/j.ympev.2006.05.031
Wang, Z., Johnston, P. R., Takamatsu, S., Spatafora, J. W., and Hibbett, D. S. (2006b). Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98, 1065–1075. doi: 10.1080/15572536.2006.11832634
White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic, in PCR Protocols, eds M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White (San Diego, CA: Academic Press), 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1
Wijayawardene, N. N., Hyde, K. D., Lumbsch, H. T., Liu, J. K., Maharachchikumbura, S. S. N., Ekanayaka, A. H., et al. (2018). Outline of Ascomycota 2017. Fungal Divers. 88, 167–263. doi: 10.1007/s10322-018-0394-8
Wijayawardene, N. N., Hyde, K. D., Rajeshkumar, K. C., Hawskworth, D. L., Madrid, H., Kirk, P. M., et al. (2017). Notes for genera: Ascomycota. Fungal Divers. 86, 1–594. doi: 10.1007/s10322-017-0386-0
Yoshikawa, M., and Yokoyama, T. (1992). "Thedgonia ligustrina in Nippon Kingakkai Kaiho" 50, 177–184.
Zhaxybayeva, O., and Gogarten, J. P. (2002). Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3:4. doi: 10.1186/1471-2164-3-4
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer RJ declared a past co-authorship with the authors AK, DP, AE, RJ, KC, IC, RC, EH, KL, SK to the handling editor.

Copyright © 2020 Karunarathna, Peršoh, Ekanayaka, Jayawardena, Chethana, Goonasekara, Cheewangkoon, Camporese, Hyde, Lamyong and Karunarathna. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.