Thyroid hormone role on cerebellar development and maintenance: a perspective based on transgenic mouse models

Larissa C. Faustino and Tania M. Ortiga-Carvalho*

Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Cerebellum development is sensitive to thyroid hormone (TH) levels, as THs regulate neuronal migration, differentiation, and myelination. Most effects of THs are mediated by the thyroid hormone receptor (TR) isoforms TRβ1, TRβ2, and TRα1. Studies aimed at identifying TH target genes during cerebellum development have only achieved partial success, as some of these genes do not possess classical TH-responsive elements, and those that do are likely to be temporally and spatially regulated by THs. THs may also affect neurodevelopment by regulating transcription factors that control particular groups of genes. Furthermore, TH action can also be affected by TH transport, which is mediated mainly by monocarboxylate transporter family members. Studies involving transgenic animal models and genome-wide expression analyses have helped to address the unanswered questions regarding the role of TH in cerebellar development. Recently, a growing body of evidence has begun to clarify the molecular, cellular, and functional aspects of THs in the developing cerebellum. This review describes the current findings concerning the effects of THs on cerebellar development and maintenance as well as advances in the genetic animal models used in this field.

Keywords: thyroid hormones, genes, cerebellum, brain development, animal models

INTRODUCTION

The thyroid hormones (THs) thyroxine (T₄) and 3,5,3′-triiodothyronine (T₃) are essential for embryonic development and play critical roles in cellular metabolism, acting primarily through the stimulation of oxygen consumption and basal metabolic rate (1, 2). THs are necessary for proper central nervous system (CNS) development, and they have long been known to regulate neuronal differentiation and migration, synaptogenesis, and myelination (3–6). The cerebellum is located near the rear of the brain stem at the midbrain–hindbrain junction, and this structure is generally thought to coordinate proprioceptive–motor functions, although more recently, it has also been associated with neurocognition (7, 8). The cerebellum was one of the first targets of TH action to be identified, and it is a useful model for studying the mechanisms by which THs influence the CNS. In particular, the cerebellum has a relatively homogenous and simple structure with a well-characterized laminar organization and a small number of cell types that develop within spatially defined regions (9–11). The majority of TH actions are mediated through the binding of T₃ to nuclear thyroid hormone receptors (TRs), which act as ligand-modulated transcription factors that modify the expression of target genes (12). Fundamentally, TH nuclear signaling is mediated by interactions between TRs and specific DNA sequences known as thyroid response elements (TREs), which associate with a variety of co-factors within the regulatory regions of target genes (12, 13). TR isoforms are expressed in several brain regions, including the cerebellum (14, 15). However, the target genes of THs and the cells that express genes likely to be involved in cerebellar development and maintenance are still not well-established (6, 16).

In addition to the classical roles of TH in the nucleus, TH can also initiate rapid effects at the cell surface, within mitochondria and via cytoplasmic TRs (17, 18). The fact that brain development in TR knockout (KO) animals is only slightly affected (19) suggests the existence of non-genomic morphogenic roles for TH in the CNS. One of the best characterized non-genomic roles for TH in the brain is illustrated by the induction of actin polymerization in astrocytes by T₄ in vitro (20), which is very important for the organization of extracellular neural guidance molecules during neurodevelopmental processes. Finally, TH metabolism and transport, which are mediated mainly by deiodinases (21) and monocarboxylate transporters (22, 23), respectively, have also been shown to be important for cerebellar function.

The aims of this review are to briefly describe the current knowledge concerning the effects of THs on cerebellar development and functional maintenance as well to summarize advances in the genetic animal models used in this field.

THE INFLUENCE OF THs ON CEREBELLAR ONTOGENESIS

In humans, T₃, T₄, and TRs are already present within the developing cortex prior to the onset of fetal thyroid gland activity, or gestational week 12, which suggests an important role for maternal TH during this critical window of brain development (24–27). Congenital hypothyroidism leads to structural and intellectual impairment in infants (28). Furthermore, TH administration to human infants with congenital hypothyroidism immediately after birth was shown to promote near-normal intellectual development (29). The majority of studies on the role of THs in neurodevelopment have been carried out in rodent models in which THs,
deiodinases, and TRs are present prior to the onset of fetal TH synthesis and secretion (30, 31). *Paired box 8* (*Pax8*) KO mice are a commonly used animal model for studying the effects of postnatal TH on CNS development, as *Pax8* is an essential transcription factor for thyroid follicular cell differentiation, and its absence leads to thyroid gland dysgenesis (32). Therefore, the *Pax8*-KO mouse is a model for congenital hypothyroidism that displays extensive abnormalities in cerebellar development, resulting in an ataxic phenotype (32–34) (Table 1).

Rodent cerebellar development is complete within the first 2–3 weeks after birth, when the cerebellar foliation process, which encompasses the transition from a smooth cerebellar surface to an X lobule cerebellum, is completed (7). It has long been known that cerebellar ontogenesis is closely linked to TH regulation (60–62), although the molecular mechanisms through which THs modulate this process remain unclear. Hypothyroidism results in a number of morphological alterations in the cerebellum, including increased neuronal death within the internal granular layer (IGL), increased perudance of the external granular layer (EGL), defects in granular cell migration, impaired Purkinje cell dendritogenesis, delayed myelination, defects in the late differentiation pattern of Golgi interneurons and mossy fibers, reduced protrusions of Bergmann glial cells, and increased cell apoptosis (9, 46, 63–65). TH administration prior to the end of postnatal week 2 prevented these structural changes. Moreover, the expression levels of neurotrophins and growth factors, such as BDNF, NT3, and EGF, as well as cell adhesion molecules, such as NCAM and L1, are modified by TH in the developing cerebellum (63, 66–68). For example, TH was shown to promote cerebellar neuronal migration and the differentiation of Bergmann glia by inducing EGF secretion (69).

PERSPECTIVES FROM TRANSGENIC MOUSE MODELS

T3 and T4 enter the cell through plasma membrane transporters, including the monocarboxylate transporter family members MCT8 and MCT10, organic anion transporting peptides (OATP), and carriers of L-amino acids (LATs) (70, 71). Recent studies have indicated that TH transporters such as MCT8, which are found in a subset of neuronal populations (23), may play critical roles in neurodevelopment processes mediated by THs. Patients harboring inactivating mutations in the MCT8 gene (*Slc16a2*) exhibit Allan–Herndon–Dudley syndrome, which is characterized by psychomotor retardation, lack of speech development, increased serum T3 concentrations, and low T4 levels (72, 73).

Although MCT8-KO mice have been generated, they do not display the same neurological abnormalities observed in human patients (Table 1). This phenomenon is likely due to the presence of other neuronal TH transporters, such as OATP14, LAT1, and LAT2, during earlier stages of mouse brain development that compensate for the absence of MCT8 (36, 74). However, another possible explanation for the difference between the mouse and human phenotypes is that human MCT8 is necessary for the transport of an unknown signaling molecule necessary for CNS development, which is consistent with clinical evidence indicating that the neurological syndromes observed in patients with MCT8 mutations are more severe than those observed in patients with congenital hypothyroidism (36). A recent study performed in MCT8-KO mice demonstrated that TH transport of an unknown signaling molecule necessary for CNS development is largely compensated for by increased T3 uptake from circulation, and, indeed, this was later confirmed by experiments carried out in double *Dio1/Dio2*-KO mice, which demonstrated normal serum T3 concentrations and only mild neurological phenotypes (21). On the other hand, Dio3-KO animals were characterized by high T3 levels during perinatal development, which induced the upregulation of TH-responsive genes in the cerebellum (43, 44). Recently, it was reported that Dio3-KO mice exhibited impaired cerebellar foliation, early premature disappearance of the EGL, rapid expansion of the molecular layer, and abnormal locomotor behavior. Furthermore, the cerebellar phenotypes of these mice could be partially rescued by deletion of the TRα1 isoform (45) (Table 1).

The majority of TH functions are mediated through nuclear TRs, which are members of a superfamily of ligand-modulated transcription factors that can either upregulate or downregulate target gene transcription (2). The consensus for positively regulated genes is that TRs bind to activating TREs both in the presence and absence of T3. In the absence of T3, TR represses target gene transcription by recruiting corepressors, whereas in the presence of T3, co-repressors are released and co-activators are recruited, leading to transcriptional up regulation (1, 12). In mammals, two different genes encode at least three high-affinity TRs: TR-β1 (*Thrb*), TR-β2 (*Thrb*), and TR-α1 (*Thra*) (77). TR-α1 is the isoform that is predominantly expressed both prenatally and postnatally throughout the brain, including the developing cerebellum, and it is responsible for nearly 80% of total receptor T3 binding (14, 78, 79). In contrast, TR-β expression is confined to the...
Animal model	Etiology	HPT axis	Brain TH state	Cerebellar phenotype	Locomotor behavior	Reference
Pax8-KO	Pax8 knockout	Thyroid gland dysgenesis	Increased TRH and TSH expression; elevated cerebellar D2 activity; decreased cerebellar D3 activity	Increased cell number in the EGL; reduced dendritic growth in Purkinje cells	Ataxic phenotype	(32, 33, 35)
Slc16a2 KO	MCT8 knockout	Elevated serum levels of T3 and TSH; decreased serum levels of T4	Reduced T3 and T4 brain content; increased TRH expression; increased cerebellar D2 activity; decreased cerebellar D3 activity	Milder neurological phenotype than that observed in patients; no alterations in Purkinje cells	Locomotor activity similar to WT mice	(35–38)
Pax8/Slc16a2 double KO	Pax8 and MCT8 knockout	Thyroid gland dysgenesis	Increased TRH and TSH expression; increased cerebellar D2 activity; decreased cerebellar D3 activity	Reduced dendritic arborization; thinner molecular layer		(35)
Slco1c1 KO	OATP1C1 knockout	Normal serum T3 and T4 levels	Mild decrease in T4 brain content; normal T3 brain content	Normal Purkinje cell morphology	Normal motor activity on rotarod test	(39)
Slco1c1/Slc16a2 double KO	OATP1C1 and MCT8 knockout	Elevated serum levels of T3 and TSH; decreased serum levels of T4	Brain-specific hypothyroidism increased TRH expression; elevated cerebellar D2 activity; reduced cerebellar D3 activity	Impaired arborization and dendritic growth of Purkinje cells at P12; no alterations in Purkinje cells at P33 or P120	Impaired motor coordination and locomotor activity	(38)
Slc7a8 KO	LAT2 knockout	Normal serum T3, T4, and TSH levels	Normal TSH expression; normal pituitary D2 expression; normal cerebellar D3 expression	Normal cerebellar gene expression and morphology	Mildly impaired movement coordination on rotarod test	(40)
Dio2-KO	D2 knockout	Normal serum T3 levels; elevated serum T4, and TSH levels	Decreased T3 brain content; increased brain D3 activity	Milder alterations in cerebellar TH-responsive genes (Srg1 and Hr) than in hypothyroidism		(41, 42)
Dio3-KO	D3 knockout	Increased serum T3 levels during perinatal development	Brain thyrotoxicosis; increased cerebellar D2 activity; reduced cerebellar D3 activity	Upregulated cerebellar TH-responsive genes (Hr); impaired cerebellar foliation; early dissipation of EGL; rapid expansion of the molecular layer	Dependent locomotor activity on vertical pole and rotarod test	(43–45)
Thra−−	TRα1 deletion	Normal serum T3 levels; slightly decreased serum T4 levels; reduced serum TSH levels	Decreased TSHα expression; increased TSHβ expression	Non-hypothyroid cerebellar phenotype	Normal locomotor activity	(46, 47)
Thrb−−	All TRβ deletion	Increased levels of TSH, T3, and T4	Increased T3 brain content decreased TSH expression	No alterations in TH-responsive genes in the cerebellum	No behavioral defects	(48, 49)

(Continued)
Animal model	Etiology	HPT axis	Brain TH state	Cerebellar phenotype	Locomotor behavior	Reference
Thrb ∆337T	TRβ mutation	Elevated levels of T3, T4, and TSH	Hypothyroid-like brain (low levels of TH-responsive genes BDNF and Pcp2)	Impaired cerebellar foliation; altered laminar organization; abnormal Purkinje cell dendritogenesis; reduced Bergmann glia fibers; reduced cerebellar gene expression (Pcp2)	Severe impairment in balance and coordination	(50, 51)
Thra PV	TRα1 mutation	Mild increase of T3, T4, and TSH levels		Reduced cerebellar gene expression (Srg1)		(52)
Thra R384C	TRα1 mutation	Normal serum levels of T4, T3	Normal TSH expression	Delayed migration of EGL to IGL; mild alterations of Purkinje cells	Reduced locomotor activity	(53, 54)
Thra L400R	TRα1 mutation	Normal serum levels of T4, T3	Normal TSH expression	Hypothyroid-like brain (low levels of TH-responsive genes)	Late granule cell differentiation pattern similar to congenital hypothyroidism; mild alterations of Purkinje cell arborization; low expression of TH-responsive genes (Hr and Pcp2); delayed loss of Purkinje cells axonal regenerative capacity; impaired differentiation of Purkinje cells and Bergmann glia	(55–58)
Ncoa1−/−	SRC-1 deletion	Elevated TSH, T4, and T3 levels		Delayed Purkinje cells development and maturation	Reduced motor coordination and strength	(59)

BDNF, brain-derived neurotrophic factor; EGL, external granular layer; IGL, internal granular layer; Srg1, synaptotagmin-related gene 1; Hr, hairless; Pcp2, Purkinje cell protein 2.

few postnatal neuronal populations, including the paraventricular hypothalamus, cerebellar Purkinje cells, and hippocampal pyramidal and granule cells (80, 81). In rodents, TR-α1 is already present at E11.5 in the neural tube and at E12.5 in the diencephalon and ventral rhombencephalon (14). Both TRα and TRβ are expressed in the cerebellum. TRα is primarily expressed in the early cerebellar neurepithelium, granular cell precursors, and later in the transient EGL, whereas TRβ is predominantly expressed during later stages, notably in the Purkinje cell layer (PCL) and in deep internal layers (14, 81, 82) (Figure 1).

Thra- and Thrb-KO mouse models, which exhibit abrogated nuclear signaling, have been created to address the roles of different TR isoforms in proper brain development and function (47, 48, 83). However, it was reported that these mice exhibit only a mild neurological phenotype compared with hypothyroid animals, indicating that the absence of T3 binding (unliganded TR) is more harmful to the CNS than the absence of TR isoforms (46, 84) (Table 1). Later, Thra- and Thrb-knock-in mutant mice expressing dominant-negative TRs were generated, and it was reported that these mice were phenotypically distinct from TR-KO mice (50, 53–55). Specifically, in mice harboring the Thrb ∆337T mutation – a point mutation in the ligand-binding domain that prevents T3 binding but not binding to DNA or co-factors (85) – cerebellar morphogenesis was similar to that observed in congenital hypothyroidism, presumably because TR remained constitutively bound to its co-repressors, thereby mimicking a hypothyroid state (50). Hashimoto et al. (50) demonstrated that Thrb ∆337T mice displayed impairments in balance and coordination, reductions in the molecular and PCLs, and decreases in the number and branching of Purkinje cells, which may account for the decreased cerebellar size observed in these mutant animals.

Therefore, functional TR-β is required for TH-dependent cerebellar development, which was further demonstrated by the phenotypes observed in Thrb ∆337T mutant mice, including defects in cerebellar foliation, altered laminar organization, abnormal Purkinje cell dendritogenesis, and reduced Bergmann glia fibers (51). Cerebellar foliation is characterized by the presence of 10 well-formed lobules and sub-lobules (7). In Thrb ∆337T
homzygotes at postnatal day (PND) 21, researchers observed decreases in the molecular and granular layers as well as a failure in the subdivision of lobule VI, which is subdivided into sub-lobules VLa and Vlb in wild-type and heterozygous animals. During PND 9, which is the initial period of cerebellar development, Thrb Δ337T mice fail to form fissures between lobules VI–VII, and lobule IX is also severely affected. During both the initial and final stages of cerebellar foliation, the Thrb Δ337T mutation leads to extreme defects in fissure and lobule formation (51). Unfortunately, the identification of direct target genes that are regulated by TH in the developing brain using RNA-based techniques has been problematic. However, recent studies using chromatin immunoprecipitation combined with DNA microarray analysis (ChIP on chip) identified a large number of TR-β binding sites and target genes in the developing mouse cerebellum, reinforcing the role of TR-β in mediating gene transcription through TH in this brain structure (86, 87). Chatonnet et al. introduced TR-α1 and TR-β1 into a neural cell line lacking endogenous TRs and demonstrated that the majority of the T3 target genes analyzed were regulated by both TR-α1 and TR-β1. Nevertheless, a significant number of the analyzed genes showed strong preferences for one receptor isoform over the other (88).

In the cerebellum of mice carrying a cell-specific L400R mutation in the ligand-binding domain of TR-α1 Thra L400R), which prevents histone acetyltransferase recruitment and facilitates the permanent recruitment of co-repressors, there is a delay in the pattern of granule cell differentiation similar to what is observed in congenital hypothyroid animals; however, Purkinje cell arborization is not strongly affected in these mutants (55). Another study involving Thra L400R mice highlighted the importance of TRα-dependent signaling in postnatal brain development by showing that it promotes the secretion of neurotrophins from astrocytes and Purkinje cells and that it maintains adult brain function by limiting the proliferation of oligodendrocyte precursor cells (56). Late in their development, these mutant mice displayed a loss of axonal regenerative capacity in Purkinje cells, which is thought to play a role in the brain maturation process. These data indicate an important role for TR-α1 in mediating T3-induced inhibition of axonal regeneration in Purkinje cells (57). In addition, it was very recently reported that the L400R mutation primarily affects the differentiation of two specific cerebellar cell populations, Purkinje cells, and Bergmann glia, which indicates that the autonomous effects of TH on these cells indirectly impact global cerebellar cortex development (58). In Purkinje cells, T3 acts through TR-α1 to promote dendritic tree development and the secretion of neurotrophic factors, whereas in Bergmann glia, T3 promotes the development and organization of radial fibers and the alignment of cell bodies within the PCL (58) (Table 1). In humans, a role for TR-α1 in brain development is supported by descriptions of patients with cognitive impairment phenotypes similar to those observed in congenital hypothyroidism who harbor primary mutations in the THRA gene (89, 90).

Taken together, these data suggest that TR-α and TR-β function together to mediate the processes of cerebellar ontogenesis controlled by THs. Compared with Thrb mutants, Thra-knock-in mice show more severe cerebellar defects, indicating that TR-α may play a key role in regulating the expression of target genes involved in cerebellar ontogeny (52). Other relevant mutant animal models with impaired neurological phenotypes also exist, such as Ncoa1-KO animals. Steroid receptor co-activator 1, which is encoded by the Ncoa1 gene, has been shown to modulate TH activity via specific TR isoforms (91, 92). This co-activator is highly expressed in the cerebellum; thus, Ncoa1-KO mice exhibit cerebellar abnormalities that are similar to those observed in congenital hypothyroid mice (59).

CONCLUDING REMARKS

It has been known for decades that cerebellar development is regulated by THs. Although the molecular mechanisms through which THs impact CNS development are becoming better understood, primarily due to studies in genetic animal models, many issues remain to be addressed. Only a few T3 targets in neural
cells have been described to date, it is important to identify addi-
tional direct target genes of THs and to determine how these genes
are temporally and spatially regulated during specific neurode-
velopment. Finally, the rapid non-genomic actions of THs and
the role of the recently described thyronine derivatives require
further analysis. Therefore, additional studies will be necessary
before our model of TH activity within the developing cerebellum
is complete.

ACKNOWLEDGMENTS

Grants and fellowships: FAPERJ to Larissa C. Faustino; CNPq and
FAPERJ to Tania M. Ortiga-Carvalho.

REFERENCES

1. Lazar M. Thyroid hormone action: a binding contact. J Clin Invest (2003) 122:497–9. doi:10.1172/JCI19479
2. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest (2012) 122(9):3035–43. doi:10.1172/JCI60047
3. Anderson GW, Schoonover CM, Jones SA. Control of thyroid hormone action in the developing rat brain. Thyroid (2003) 13(11):1039–56. doi:10.1089/105072503776827129
4. de Escobar GM, Obregón MJ, del Rey FE. Maternal thyroid hormones early in pregnancy and fetal brain development. Best Pract Res Clin Endocrinol Metab (2004) 18(2):225–48. doi:10.1016/j.beem.2004.03.012
5. Bernal J. Thyroid hormones and brain development. In: Manto M, de Escobar GM, Obregón MJ, del Rey FE. Thymroid hormone metabolism and action in the mouse brain. Develop Biol (2003) 258:138–49. doi:10.1016/S0012-1606(02)00039-7
6. Díez D, Grijoa-Martínez C, Agresti F, Marco GD, Tomacchera M, Pincheira A, et al. Thyroid hormone action in the adult brain: gene expression profiling of the effects of single and multiple doses of triiodo-l-thyronine in the rat striatum. Endocrinology (2008) 149(3):3989–4000. doi:10.1210/en.2008-0350
7. Altman J, Bayer SA. Development of the Cerebellar System in Relation to its Evolution, Structure, and Functions. Boca Raton: CRC Press (1997).
8. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain Res Dev Brain Res (2012) 230:150–7. doi:10.1016/j.devbrainres.2012.05.012
9. Legrand J. Effects of thyroid hormones on central nervous system development. In: Yarni J, editor. Neurobehavioral Teratology. Amsterdam: Elsevier (1984). p. 31–63.
10. Piosik PA, van Groenigen M, van Doorn J, Baas F, de Vijlder JJ. Effects of maternal thyroid hormone action in the developing human brain. Thyroid (2003) 13(10):2546–60. doi:10.1097/01/thy.000001201
11. Koibuchi N, Ikeda Y. Hormones and cerebellar development. In: Manto M, de Escobar GM, Obregón MJ, del Rey FE. Thyroid hormone metabolism and action in the mouse brain. Develop Biol (2003) 258:138–49. doi:10.1016/S0012-1606(02)00039-7
12. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. J Mol Endocrinol (2007) 38(3):94–106. doi:10.1677/JME-06-0054
13. Liu Y, Xia X, Fondell JD, Yen PM. Thyroid hormone-regulated target genes are temporally and spatially regulated during specific neurodevelopment. J Mol Endocrinol (2007) 38(3):94–106. doi:10.1677/JME-06-0054
40. Braun D, Wirth EK, Wohlgemuth F, Reix N, Klein MO, Grutters A, et al. Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem J (2011) 439(2):249–55. doi:10.1042/BJ20110759

41. Guadano-Ferraz A, Obregon MJ, St Germain DL, Bernal J. The type 2 iodothyrofine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A (1997) 94:10309–6. doi:10.1073/pnas.94.19.10391

42. Galton VA, Wood ET, Germain EAS, Withrow CA, Aldrich G, Germain GMS, et al. Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology (2007) 148:3080–8. doi:10.1210/en.2006.2007-1727

43. Hernandez A, Martínez ME, Fiering S, Galton VA, Germain DS. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest (2006) 116(2):476–84. doi:10.1172/JCI26240

44. Hernandez A, Martínez E, Fiering S, Galton VA, St Germain DL. Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis. Endocrinology (2007) 148:5680–70. doi:10.1210/en.2007-0652

45. Peeters RP, Hernandez A, Lily N, Michelle M, David SS, Mei P, et al. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor alpha 1. Endocrinology (2013) 154(1):550–61. doi:10.1210/en.2012-1738

46. Morte B, Manzano J, Scanlan T, Vennstrom B, Bernal J. Deletion of the thyroid hormone receptor α1 prevents the structural alterations of the cerebellum caused by hypothyroidism. Proc Natl Acad Sci U S A (2002) 99(6):3985–9. doi:10.1073/pnas.022611299

47. Willikens L, Johansson C, Salto C, Barlow C, Campo-Barros A, Baas E, et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J (1998) 17:455–61. doi:10.1093/emboj/17.2.455

48. Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM, et al. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J (1996) 15(12):3006–15.

49. Sandboher C, Schwartz HL, Mariah CN, Forrest D, Oppenheimer JH. Beta receptor isomers are not essential for thyroid hormone-dependent acceleration of PCP-2 and myelin basic protein gene expression in the developing brains of neonatal mice. Mol Cell Endocrinol (1998) 137:109–15. doi:10.1016/S0303-7207(98)00005-7

50. Hashimoto K, Cartay FH, Borges PP, Lee CE, Abel ED, Elmqvist JK, et al. An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci U S A (2001) 98:3998–4003. doi:10.1073/pnas.051454698

51. Portella A, Carvalho F, Faustino LC, Ortega-Carvalho TM, Gomes FC. Thyroid hormone receptor beta mutation causes severe impairment of cerebellar development. Mol Cell Neurosci (2010) 44(1):68–77. doi:10.1016/j.mcn.2010.02.004

52. Ishiy Y, Esaki T, Kaneshige M, Suzuki H, Cook M, Sokoloff L, et al. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone receptor alpha 1. Proc Natl Acad Sci U S A (2001) 98:341–8. doi:10.1073/pnas.171391498

53. Tinnakov A, Nordstrom K, Thoren P, Kindblom JM, Malin S, Rozell B, et al. SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci (2003) 23(1):121–32. doi:10.1523/jneurosci.0123-02.2003

54. Venero C, Guadaño-Ferraz A, Herrero AI, del Escobar AG, Bernal J, et al. The parallel fibers. Brain Res (1978) 141:125–39. doi:10.1016/0006-8993(78)90174-9

55. Schiavi E,来进行的甲状腺激素对小鼠大脑的影响。J Clin Invest (2000) 116(10):2571–9. doi:10.1172/JCI29812

56. Schneider MJ, Fiering SN, Pallud SE, Parlow AF, Galton V A. Thyroid hormone on cerebellum oligodendrocyte differentiation. Mol Cell Neurosci (2010) 42(5):499–514. doi:10.1016/j.mcn.2010.05.002

57. Martinet R, Gomes FCA. Neurogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem (2005) 280:43911–8. doi:10.1074/jbc.M209284200

58. Faquvier T, Chauvetet F, Picou F, Lamonerie T, Flamant F. Purkinje cells and Bergmann glia are primary targets of the TRα1 thyroid hormone receptor during mouse cerebellum postnatal development. Development (2014) 141:166–75. doi:10.1242/dev.103326

59. Ishihara E, Yoshida-Komiya H, Chen CS, Liao S, Davis RL, O’Malley BW, et al. SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci (2003) 23(1):213–22.

60. Nicolson JL, Allman J. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. J Cell proliferation and differentiation. Brain Res (1972) 44(1):13–23. doi:10.1016/0006-8993(72)90362-9

61. Lauder JM. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer. Brain Res (1977) 126:31–51. doi:10.1016/0006-8993(77)90213-X

62. Lauder JM. Effects of early hypo- and hyperthyroidism on development of rat cerebellar cortex. IV. The parallel fibers. Brain Res (1978) 142(1):25–39. doi:10.1016/0006-8993(78)90174-9

63. Heuer H, Mason CA. Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor α1. J Neurosci (2003) 23(35):10604–12.

64. V arianno C, Guadaño-Ferraz A, Herrero AI, Nordström K, Manzano J, del Escobar AG, et al. Reduced hippocampal brain-derived neurotrophic factor (BDNF) in neonatal rats after prenatal exposure to propylthiouracil (PTU). Endocrinology (2012) 153(3):1311–6. doi:10.1210/en.2011-1437

65. Tinnakov A, Nordstrom K, Thoren P, Kindblom JM, Malin S, Rozell B, et al. Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha 1. EMBO J (2002) 21:3079–87. doi:10.1093/emboj/cdf523

66. Venero C, Guadano-Ferraz A, Herrero AI, Nordstrom K, Manzano I, del Escobar GM, et al. Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha 1 can be ameliorated by T3 treatment. Genes Dev (2005) 19(14):2515–23. doi:10.1101/gad.346105

67. Schiavi E, Stevenson RE. The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome. Best Pract Res Clin Endocrinol Metab (2007) 21(2):307–21. doi:10.1016/j.beem.2007.03.009

68. Friesema ECH, Jansen J, Heuer H, Trajkovic M, Bauer K, Visser TJ. Mechanisms of disease: psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nat Clin Pract Endocrinol Metab (2006) 2(9):512–23. doi:10.1038/nctmet0262

69. Schwartz C, Stevenson RE, The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome. Best Pract Res Clin Endocrinol Metab (2007) 21(2):307–21. doi:10.1016/j.beem.2007.03.009

70. Friesema ECH, Visser WE, Visser TJ. Genetics and phenomics of thyroid hormone transporters. Mol Cell Endocrinol (2010) 322:107–13. doi:10.1016/j.mce.2010.01.016

71. Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone actions on the cerebellum. Thyroid hormone on the cerebellum.
77. Tata JR. The road to nuclear receptors of thyroid hormone. Biochim Biophys Acta (2013) 1830(7):3860–6. doi:10.1016/j.bbabio.2012.02.017
78. Ercan-Fang S, Schwartz HL, Oppenheimer JH. Isoform-specific 3,5,3′-triiodothyronine receptor binding capacity and messenger ribonucleic acid content in rat adenohypophysis: effect of thyroidal state and comparison with extrapituitary tissues. Endocrinology (1996) 137:3228–33. doi:10.1210/en.137.8.8754744
79. Gil-Ibanez P, Morote B, Bernal J. Role of thyroid hormone receptor subtypes alpha and beta on gene expression in the cerebral cortex and striatum of postnatal mice. Endocrinology (2013) 154:1940–7. doi:10.1210/en.2012-2189
80. Bradley DJ, Young WS, Weinerberger C. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci U S A (1988) 86(18):7250–4. doi:10.1073/pnas.86.18.7250
81. Strait KA, Schwartz HL, Seybokd VS, Ling NC, Oppenheimer JH. Immunofluorescence localization of thyroid hormone receptor protein beta 1 and variant alpha 2 in selected tissues: cerebellar Purkinje cells as a model for beta 1 receptor-mediated developmental effects of thyroid hormone in brain. Proc Natl Acad Sci U S A (1991) 88:3887–91. doi:10.1073/pnas.88.9.3887
82. Mellerstrom B, Naranjo JR, Santos A, Gonzalez AM, Bernal J. Independent expression of the alpha and beta c-erbA genes in developing rat brain. Mol Endocrinol (1991) 5:1339–50. doi:10.1210/mend-5-9-1339
83. Gauthier K, Chassande O, Plateroti M, Roux JP, Legrand C, Pain B, et al. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J (1999) 18:623–31. doi:10.1093/emboj/18.3.623
84. Flamant F, Samarut J. Thyroid hormone receptors: lessons from knock-out and knock-in mutant mice. Trends Endocrinol Metab (2003) 14:85–90. doi:10.1016/S1053-2760(02)00043-7
85. Usala SJ, Menke JB, Watson TL, Wondsford FE, Weintraub BD, Berard J, et al. A homozygous deletion in the c-erbA beta thyroid hormone receptor gene in a patient with generalized thyroid hormone resistance: isolation and characterization of the mutant receptor. Mol Endocrinol (1991) 5:327–35. doi:10.1210/mend-5-3-327
86. Dong H, Yauk CL, Rowan-Carroll A, You SH, Zoeller RT, Lambert I, et al. Identification of thyroid hormone receptor binding sites and target genes using ChIP-on-chip in developing mouse cerebellum. PLoS One (2009) 4(2):e4610. doi:10.1371/journal.pone.0004610
87. Gagne R, Green JR, Dong H, Wade MG, Yauk CL. Identification of thyroid hormone receptor binding sites in developing mouse cerebellum. BMC Genomics (2013) 14:341. doi:10.1186/1471-2164-14-341
88. Chatonnet F, Guyot R, Benoit G, Flamant F. Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells. Proc Natl Acad Sci U S A (2013) 110(8):E766–75. doi:10.1073/pnas.1210626110
89. Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, et al. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med (2012) 366:243–9. doi:10.1056/NEJMoa1110296
90. van Mullem A, van Heerebeek R, Chrysis D, Visser E, Medici M, Andrikoula M, et al. Clinical phenotype and mutant TRα1. N Engl J Med (2012) 366:1451–3. doi:10.1056/NEJMoa1113940
91. Weiss RE, Xu J, Ning GJ, O’Malley B, Refetoff SV. Mice deficient in the steroid receptor coactivator 1 (SRC-1) are resistant to thyroid hormone. EMBO J (1999) 18:1900–4. doi:10.1093/emboj/18.7.1900
92. Mahajan MA, Samuels HJ. Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development. Endocr Rev (2005) 26(4):583–97. doi:10.1210/er.2004-0012

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 February 2014; accepted: 02 May 2014; published online: 20 May 2014.

Copyright © 2014 Faustino and Ortiga-Carvalho. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.