SARS-CoV-2 myopathy

Josef Finsterer, MD, PhD [1], Fulvio A. Scorza, MD [2]

1] Klinik Landstrasse, Messerli Institute, Vienna, Austria

[2] Disciplina de Neurociência. Escola Paulista de Medicine/Universidade Federal de São Paulo/. (EPM/UNIFESP). São Paulo, Brasil. scorza@unifesp.br

There are no conflicts of interest

No funding was received

Author contribution: JF: design, literature search, discussion, first draft, critical comments

Informed consent: was obtained

The study was approved by the institutional review board

Key words: coronavirus, myopathy, myositis, rhabdomyolysis, myalgia

Corresponding author:

Finsterer J, MD, PhD

Postfach 20

1180 Vienna

Austria, Europe

Tel. +43-1-71165-72085

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jmv.26399.

This article is protected by copyright. All rights reserved.
Since the occurrence of the first infection with SARS-CoV-2 in December 2019, increasing evidence accumulated that not only the lung but also other organs, including the central nervous system (CNS) and the peripheral nervous system (PNS), can be involved in the infection [1,2,3]. Involvement of the PNS in SARS-CoV-2-infected patients includes Guillain-Barre syndrome (GBS) [4,5], myasthenia gravis (MG) [6,7], myositis [8], myalgia [9], rhabdomyolysis [10,11,12], muscle wasting [13], and critical-ill myopathy [14,15]. Here we summarise and discuss recent findings concerning the involvement of the striated muscle in the infection.

Muscle involvement was first described in a retrospective study of 214 Chinese patients [16]. In this study, 23/214 (10.7%) of the patients were reported with “skeletal muscle injury” [16]. No specific investigations were carried out to further specify the type and pathophysiology of muscle injury, why the cause remained unclear [16]. In a study of 41 infected Chinese patients, 18 (44%) patients reported myalgia and fatigue [9]. In all these patients myalgia was present already at onset of the infection [9]. Seven patients required ICU care and 11 did not [9]. In a study of 138 infected Chinese patients, myalgia was reported by 48 (34.8%) patients [17]. Creatine-kinase (CK) was normal in most of these patients [17]. In a retrospective European study of 1420 infected patients, myalgia was found in 887 (62.5%) patients [18]. In a study of 1099 Chinese patients myalgia and fatigue were reported in 164 (14.9%) participants [19]. However, CK-elevation >200U/l was detected in only 90/657 (13.7%) tested patients [19]. In an US study on 1150 SARS-CoV-2-infected patients, 67 (26%) complained about myalgia [20]. CK-elevation was noted in some patients, without reporting the exact number [20]. Among 99 Chinese patients, 11 (11%) complained about “muscle ache” [21]. In a retrospective study of 27 pediatric patients with multisystem SARS-CoV-2
infection, four developed muscle weakness of whom three had a myogenic electromyography (EMG) [22]. All these studies did not mention how often muscle symptoms had been recognised already prior to the infection and none of these patients was prospectively investigated for primary or secondary muscle disease.

Specific myopathies have been particularly reported in single patients (table 1). Myositis has been reported in 13 patients (table 1). In a 58yo female with limb weakness and ptosis, CK-elevation, and fibrillations, myositis was diagnosed upon muscle biopsy [8]. In a 38yo Chinese male with myalgia and CK-elevation, SARS-CoV-2-associated myositis with rhabdomyolysis was diagnosed upon EMG and muscle biopsy [23]. SARS-CoV-2-associated myositis and rhabdomyolysis was also reported in another male based upon muscle MRI [24]. In a case series of 10 SARS-CoV-2-infected patients from Brazil, minimal invasive, ultrasound-guided, post-mortem studies revealed that 60% of the patients had features of myositis and 80% displayed necrotic muscle fibers on autopsy [25]. Additionally, rhabdomyolysis was reported in five other patients [10,11,12,26,27]. In one of these patients CK-elevation reached a value of >400000 (table 1) [11]. In all five patients did pulmonary manifestations occur simultaneously or preceded the onset of muscle symptoms.

The causes of muscle damage in SARS-CoV-2-infected patients are quite heterogeneous. Myopathy could be explained by infection with the virus (myositis), by immune-mechanisms (immune myositis), by electrolyte disturbances, critical ill myopathy due to treatment on the ICU, drug side effects, or hypoxia. Muscle manifestations may be particularly due to application of myotoxic drugs given for treatment of the infection, such as steroids, statins, chloroquine, lopinavir, ritonavir or atazanavir or due to interactions between drugs applied [28]. Myositis may be due to secondary T-cell mediated injury, due to generation of myositis specific antibodies, or due to generation of pro-inflammatory mediators, such as IL-6, MCP-1, or TNF-α.

Myalgia in infected patients can be due to rhabdomyolysis, edema, electrolyte imbalances, or due to immune-mediated myositis [25].
a recent review it has been concluded that myopathy in SARS-CoV-2-infected patients is rather related to damage via immune mechanisms due to massive cytokine release than direct invasion of the virus into muscle tissue [29]. Myalgia due to myositis is frequent during infections with influenza-A, influenza-B, or enterovirus. Whether the infection unMASKS previously unrecognized muscle disease or truly induces muscle disease in a previously normal muscle remains speculative but there are indications that SARS-CoV-2 truly damages the skeletal muscle in many patients.

Overall, the striated muscles are frequently affected in patients with SARS-CoV-2 infection but, in the majority of the cases, muscle involvement is non-specific, manifesting as myalgia (11-62% of cases), fatigue, weakness, or wasting. Only rarely a specific muscle disease, such as myositis, is diagnosed. Since work-up of muscle involvement in the infection is usually incomplete, the causes of muscle disease remain unsolved in the majority of the cases. Muscle damage in SARS-CoV-2-infected patients can be immune-mediated, due to electrolyte-disturbances, a complication of sepsis, bed-rest, adverse reaction to drugs, or due to hypoxia. Rhabdomyolysis requires close monitoring of muscle enzymes and renal function parameters, and treatment with fluids, diuretics, or hemodialysis in case of renal failure respectively analgesics in case of muscle pain.

References

1 Aghagoli G, Gallo Marin B, Katchur NJ, Chaves-Sell F, Asaad WF, Murphy SA. Neurological Involvement in COVID-19 and Potential Mechanisms: A Review. Neurocrit Care 2020;10.1007/s12028-020-01049-4. doi:10.1007/s12028-020-01049-4

2 Collantes MEV, Espiritu AI, Sy MCC, Anlacan VMM, Jamora RDG. Neurological manifestations in COVID-19 infection: A systematic review and meta-analysis. Can J Neurol Sci 2020;1-26. doi:10.1017/cjn.2020.146

3 Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol 2020;S1474-4422(20)30221-0. doi:10.1016/S1474-4422(20)30221-0
4 Manganotti P, Bellavita G, D'Acunto L, et al. Clinical neurophysiology and cerebrospinal liquor analysis to detect Guillain Barré syndrome and polyneuritis cranialis in COVID-19 patients: a case series. J Med Virol 2020;10.1002/jmv.26289. doi:10.1002/jmv.26289

5 Finsterer J, Scorza FA, Ghosh R. COVID-19 polyradiculitis in 24 patients without SARS-CoV-2 in the cerebro-spinal fluid. J Med Virol 2020;10.1002/jmv.26121. doi:10.1002/jmv.26121

6 Anand P, Slama MCC, Kaku M, et al. COVID-19 in patients with myasthenia gravis. Muscle Nerve. 2020;62(2):254-258. doi:10.1002/mus.26918

7 Singh S, Govindarajan R. COVID-19 and generalized Myasthenia Gravis exacerbation: A case report. Clin Neurol Neurosurg 2020;196:106045. doi:10.1016/j.clineuro.2020.106045

8 Zhang H, Charmchi Z, Seidman RJ, Anziska Y, Velayudhan V, Perk J. COVID-19-associated myositis with severe proximal and bulbar weakness. Muscle Nerve 2020;10.1002/mus.27003. doi:10.1002/mus.27003

9 Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5

10 Valente-Acosta B, Moreno-Sanchez F, Fueyo-Rodriguez O, Palomar-Lever A. Rhabdomyolysis as an initial presentation in a patient diagnosed with COVID-19. BMJ Case Rep 2020;13(6):e236719. doi:10.1136/bcr-2020-236719

11 Gefen AM, Palumbo N, Nathan SK, Singer PS, Castellanos-Reyes LJ, Sethna CB. Pediatric COVID-19-associated rhabdomyolysis: a case report. Pediatr Nephrol 2020;35(8):1517-1520. doi:10.1007/s00467-020-04617-0

12 Jin M, Tong Q. Rhabdomyolysis as Potential Late Complication Associated with COVID-19. Emerg Infect Dis 2020;26(7):1618-1620. doi:10.3201/eid2607.200445

13 Gualtieri P, Falcone C, Romano L, et al. Body Composition Findings by Computed Tomography in SARS-CoV-2 Patients: Increased Risk of Muscle Wasting in Obesity. Int J Mol Sci 2020;21(13):E4670. doi:10.3390/ijms21134670

This article is protected by copyright. All rights reserved.
14 Tankisi H, Tankisi A, Harbo T, Markvardsen LK, Andersen H, Pedersen TH. Critical illness myopathy as a consequence of Covid-19 infection. Clin Neurophysiol 2020;131(8):1931-1932. doi:10.1016/j.clinph.2020.06.003

15 Guidon AC, Amato AA. COVID-19 and neuromuscular disorders. Neurology 2020;94(22):959-969. doi:10.1212/WNL.00000000000009566

16 Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):1-9. doi:10.1001/jamaneurol.2020.1127

17 Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020;323(11):1061-1069. doi:10.1001/jama.2020.1585

18 Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med 2020;10.1111/joim.13089. doi:10.1111/joim.13089

19 Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020;382(18):1708-1720. doi:10.1056/NEJMoa2002032

20 Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 2020;395(10239):1763-1770. doi:10.1016/S0140-6736(20)31189-2

21 Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7

22 Abdel-Mannan O, Eyre M, Löbel U, et al. Neurologic and Radiographic Findings Associated With COVID-19 Infection in Children. JAMA Neurol 2020;e202687. doi:10.1001/jamaneurol.2020.2687

23 Zhang Q, Shan KS, Minalyan A, O'Sullivan C, Nace T. A Rare Presentation of Coronavirus Disease 2019 (COVID-19) Induced Viral Myositis With Subsequent Rhabdomyolysis. Cureus. 2020;12(5):e8074. doi:10.7759/cureus.8074
24 Beydon M, Chevalier K, Al Tabaa O, et al. Myositis as a manifestation of SARS-CoV-2. Ann Rheum Dis 2020;annrheumdis-2020-217573. doi:10.1136/annrheumdis-2020-217573

25 Nunes Duarte-Neto A, de Almeida Monteiro RA, da Silva LFF, et al. Pulmonary and systemic involvement of COVID-19 assessed by ultrasound-guided minimally invasive autopsy. Histopathology 2020;10.1111/his.14160. doi:10.1111/his.14160

26 Mukherjee A, Ghosh R, Aftab G. Rhabdomyolysis in a Patient With Coronavirus Disease 2019. Cureus 2020;12(7):e8956. doi:10.7759/cureus.8956

27 Husain R, Corcuera-Solano I, Dayan E, Jacobi AH, Huang M. Rhabdomyolysis as a manifestation of a severe case of COVID-19: A case report. Radiol Case Rep 2020;15(9):1633-1637. doi:10.1016/j.radcr.2020.07.003

28 Ghasemiyeh P, Borhani-Haghighi A, Karimzadeh I, et al. Major Neurologic Adverse Drug Reactions, Potential Drug-Drug Interactions and Pharmacokinetic Aspects of Drugs Used in COVID-19 Patients with Stroke: A Narrative Review. Ther Clin Risk Manag 2020;16:595-605. doi:10.2147/TCRM.S259152

29 Özdağ Acarli AN, Samanci B, Ekizoğlu E, et al. Coronavirus Disease 2019 (COVID-19) From the Point of View of Neurologists: Observation of Neurological Findings and Symptoms During the Combat Against a Pandemic. Noro Psikiyatr Ars 2020;57(2):154-159. doi:10.29399/npa.26148

30 Zhong ZF, Huang J, Yang X, et al. Epidemiological and clinical characteristics of COVID-19 patients in Hengyang, Hunan Province, China. World J Clin Cases 2020;8(12):2554-2565. doi:10.12998/wjcc.v8.i12.2554

Table 1. SARS-CoV-2-infected patients with muscle involvement so far reported

NOP	Age	Sex	Symptoms	Signs	CK (U/l)	MG	EMG	MB
887	nr	nr	myalgia	nr	nr	nr	nr	nr
164	nr	nr	myalgia, fatigue	nr	>200 in 90	nr	nr	nr
67	nr	nr	myalgia	nr	nr	nr	nr	nr
48	nr	nr	myalgia	nr	normal	nr	nr	nr
23	nr	nr	muscle injury	nr	nr	nr	nr	nr

This article is protected by copyright. All rights reserved.
Patient	Gender	Age	Weakness	CK	EMG	NOP	Diagnosis	
18	nr	nr	myalgia	nr	nr	nr	nr[9]	
11	nr	nr	myalgia	nr	nr	nr	br[21]	
10	nr	nr	nr	nr	nr	nr	myositis	
5	nr	nr	myalgia	nr	nr	nr	nr[30]	
4	8-15	2m, 2f	weakness	nr	nr	nr	myogenic	
1	60	m	weakness	tenderness	11842	>12000	nr	nr[22]
1	58	f	weakness	PT, DTR	700	nr	fibrillations	myositis
1	36	f	weakness	PT	nr	nr	nr[7]	
1	42	f	weakness, DV, DP	weakness	nr	nr	nr	nr[6]
1	71	m	weakness, myalgia	none	8720	2079	nr	nr[10]
1	16	m	myalgia, fatigue	tenderness	427656	45µg/L	nr	nr[11]
1	38	m	myalgia	normal	42670	nr	nr	nr[23]
1	nr	m	myalgia, weakness	weakness	25384	nr	nr	nr[24]
1	49	m	myalgia	normal	22740	nr	nr	nr[26]
1	38	m	myalgia	nr	33000	nr	nr	nr[27]

CK: creatine-kinase, DP: dysphagia, DTR: diminished tendon reflexes, DV: double vision, EMG: electromyography, MB: muscle biopsy, MG: myoglobin, NOP: number of patients, nr: not reported, PT: ptosis